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Remarques préliminaires - Preliminary remarks.

Remarques préliminaires.

Pour des raisons pratiques, la totalité de cette these a été rédigée en anglais et
seule I'introduction a été traduite en frangais. L’espoir est que cela ne rebutera pas
le lecteur intéressé par le contenu du présent document.

Dans la mesure du possible, les notations utilisées sont usuelles. Néammoins,
il a parfois fallu faire un choix. En particulier :

Les intervalles ouverts de nombres réels sont écrits en accord avec la convention
frangaise. Par exemple, pour a < b € RU {—oo} U {400}, 'ensemble {z e R:a <
x < b} est noté |a, b[.

La relation d’inclusion ensembliste est également écrite suivant la convention
francgaise, a savoir C. L’inclusion stricte est quant a elle notée C.

Un entier naturel est souvent vu comme ’ensemble de ses prédécesseurs stricts.
En particulier, si & > 0, alors kK = {0,1,...,k — 1}. Par ailleurs, l’ensemble des
entiers naturels est noté w (notation ordinale).

Etant donné un ensemble X, sa cardinalité est notée | X]|.

Enfin, si < est un ordre total sur un ensemble X et z,y € X, alors {z,y}<
représente 'ensemble {z,y} étant entendu que z < y. De méme, {s; : i € w}<
représente l'ensemble {s; : i € w} étant entendu que s; < s; deés lors que i < j.

Preliminary remarks.

The notations which are used in the present thesis are fairly standard. Never-
theless, a choice was sometimes needed. In particular:

Open intervals of real numbers are written according to the French convention.
For example, for a < b€ RU{—o0} U {+o0}, {z € R:a <z < b} is written ]a, b[.

Set-theoretic inclusion is also written according to the French convention, that
is C, while strict inclusion is written C.

A natural number is often seen as the set of its strict predecessors. In particular,
k= {0,1,...,k — 1} whenever k > 0. On the other hand, the set of all natural
numbers is written according to the ordinal convention, that is w.

Given a set X, its cardinality is written |X|.

Finally, if < is a linear ordering on a set X and z,y € X, then {x, y} < represents
the set {x,y} being understood that x < y. Similarly, {s; : i € w}~ denotes the set
{s; i € w}, being understood that s; < s; whenever i < j.
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Introduction et présentation des résultats (version
francaise).

1. Notions générales et motivations.

L’étude des propriétés de type Ramsey des espaces métriques finis en connexion
avec la structure des espaces métriques ultrahomogenes séparables est au cceur de
la présente these. Elle est motivée par les travaux récents de Kechris, Pestov
et Todorcevic qui relient la théorie de Fraissé des classes d’amalgamation et des
structures ultrahomogenes, la théorie de Ramsey et la dynamique topologique des
groupes d’automorphismes des structures dénombrables. Plus précisemment, le
point de départ de nos travaux est marqué par la détermination du flot minimal
universel du groupe d’isométries surjectives de I'espace rationnel d’Urysohn Ug
qui conduit a une nouvelle démonstration d’un théoréeme di a Pestov. Ce théoreme
contient deux ingrédients principaux.

Le premier est l'espace métriqgue universel d’Urysohn U. Cet espace, qui
apparait relativement tot dans D'histoire de la géométrie métrique (la définition
d’espace métrique est donnée dans la these de M. Fréchet en 1906, [19]), est
Peeuvre de P. Urysohn en 1925. Sa caractérisation fait référence a une propriété
aujourd’hui connue sous le nom d’ultrahomogénéité : Un espace métrique X est
ultrahomogene lorsque toute isométrie entre sous-espaces finis de X se prolonge en
une isométrie surjective de X sur lui-méme. Grace a cette définition, U peut étre
caractérisé comme suit : A isométrie pres, il s’agit de I'unique espace métrique
complet séparable ultrahomogene et dans lequel tout espace métrique fini se plonge
isométriquement. Une conséquence directe de cette caractérisation/définition est
que U est universel non seulement vis-a-vis de la classe des espaces métriques finis
mais aussi vis-a-vis de la classe des espaces métriques séparables tout entiere. Cette
propriété est essentielle et est précisément la raison pour laquelle Urysohn constru-
isit U : Auparavant, personne n’aurait pu dire si un espace métrique séparable
pouvait ou non étre universel vis-a-vis de la classe de tous les espaces métriques
séparables. Malgré cela, U tomba véritablement dans I’oubli avec la découverte
de l'universalité de C([0, 1]) par Banach et Mazur et ce n’est que récemment qu’un
regain d’intérét se manifesta pour U, notamment grace aux travaux de Katétov,
Uspenskij, Vershik, Bogatyi et Pestov.

Intéressons-nous maintenant au concept de moyennabilité extréme issu de la
dynamique topologique. Un groupe topologique G est extrémement moyennable ou
possede la propriété de point fize sur les compacts lorsque toute action continue
de G sur un espace topologique compact X quelconque admet un point fixe (ie un
point z € X tel que Vg € G ¢ -z = z). La moyennabilité extréme des groupes
topologiques intervient naturellement en dynamique topologique lors de 1’étude des
flots minimauzx universels. Etant donné un groupe topologique G, un G-flot est un

7
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espace topologique compact X muni d’une action continue de G sur X. Un G-flot
est minimal lorsque toutes ses orbites sont denses. Moyennant ’axiome du choix,
il est aisé de démontrer que tout G-flot inclut un G-sous-flot minimal. Il est en
revanche moins évident de démontrer que tout groupe topologique G admet un G-
flot minimal universel M(QG), c’est a dire un G-flot minimal qui peut étre envoyé sur
n’importe quel autre G-flot minimal via un homomorphisme surjectif. Par ailleurs,
M(G) est déterminé & isomorphisme prés par ces propriétés (Un homomorphisme
d’'un G-flot X dans un G-flot Y est une application continue 7 : X — Y telle
que pour tout z € X et g € G, w(g-xz) = g-n(z). Un isomorphisme est un
homomorphisme bijectif). Lorsque G est localement compact mais pas compact,
M(G) est un objet extrémement complexe. Néammoins, pour certains groupes G
non-triviaux, M (G) se réduit & un point. Ces groupes sont précisément les groupes
extrémement moyennables. Un tel exemple est exhibé par le théoreme de Pestov :

THEOREME (Pestov [65]). Muni de la topologie de la convergence simple, le
groupe iso(U) des isométries surjectives de U est extrémement moyennable.

La plupart des techniques mises en oeuvre dans [65] provient de la théorie
des groupes topologiques. Néammoins, associée a un autre résultat di a Pestov
[64] selon lequel le groupe d’automorphismes Aut(Q, <) des bijections de Q qui
préservent l'ordre est aussi extrémement moyennable, une analyse détaillée de la
démonstration du théoréeme précédent permit d’isoler un noyau combinatoire rela-
tivement substantiel. La détermination de ce noyau constitue précisément le con-
tenu de [40] et met en évidence Iémergence de deux composantes principales : La
théorie de Fraissé et la théorie de Ramsey structurale.

Mise au point dans les années cinquante par R. Fraissé, la théorie de Fraissé
fournit une analyse modele-théorique et combinatoire de ce que 1'on appelle au-
jourd’hui les structures ultrahomogénes dénombrables. Soient L = {R; : i € I} une
signature relationnelle fixée et X et Y deux L-structures. Un plongement de X
dans Y est une application injective m : X — Y telle que pour tout ¢ € I et tous
T1yeeoTn € X ¢

(w1,...,2y) € RX ssi (n(21),...,7(x,)) € RY.

Un isomorphisme de X dans Y est un plongement surjectif. Lorsqu’il existe
un isomorphisme de X dans Y, on écrit X =2 Y. Enfin, G(() est défini par :

<;>:{XcY:5igX}

Lorsqu’il existe un plongement de X dans Y, on écrit X < Y. Une classe K de
L-structures est alors héréditaire lorsque pour toute L-structure X et tout Y € K :

X<Y—=XeKk.

Elle possede la propriété de plongement simultané lorsque pour tous X, Y € K,
il existe Z € K tel que X,Y < Z. Elle possede la propriété d’amalgamation lorsque
pour toutes structures X, Yy, Y; € K et tous plongements f; : X — Y et
fi: X — Y, il existe une structure Z € K et des plongements gy : Yo — Z,
g1: Y1 — Z tels que go o fo = g1 0 f1.

Soit F une L-structure. Son dge, Age(F), est la collection de toutes les L-
structures finies qui se plongent dans F. F est ultrahomogene lorsque tout isomor-
phisme entre sous-structures finies de F peut étre prolongé en un automorphisme de
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F. Enfin, une classe K de L-structures finies est une classe de Fraissé lorsque K con-
tient une infinité dénombrable de structures a isomorphisme pres, est héréditaire,
contient des structures de cardinalité finie arbitrairement grande, et possede les pro-
priétés de plongement simultané et d’amalgamation. Ces concepts étant présentés,
le principal pilier de la théorie de Fraissé peut étre formulé comme suit :

THEOREME (Fraissé [16]). Soit L une signature relationnelle et K une classe
de Fraissé de L-structures. Alors il existe, a isomorphisme preés, une unique L-
structure dénombrable ultrahomogeéne telle que Age(F) = K. F est appelée limite
de Fraissé de K et est notée Flim(K).

Le résultat fondateur de la théorie de Ramsey est plus ancien. Démontré en
1930 par F. P. Ramsey, il peut étre formulé comme suit. Pour un ensemble X et
un entier [, soit [X]' I'ensemble des sous-ensembles de X & [ éléments :

THEOREME (Ramsey [72]). Pour tout k € w ~ {0} et l,m € w, il existe p € w
tel que pour tout ensemble X a p éléments, si [X]|' est soumis a une partition
comportant k classes, alors il eviste Y C X a m éléments tel que [Y]' est inclus
dans une des classes de la partition.

En revanche, ce n’est qu’au début des années soixante-dix grace aux travaux
de plusieurs personnes parmi lesquelles Erdés, Graham, Leeb, Rothschild, Nesetril
et Rodl, que les idées essentielles qui composent ce théoréme furent reprises et
développées pour donner naissance a la théorie structurale de Ramsey. Voici les
concepts de base qui y sont attachés : Pour k,l € w ~ {0} et trois L-structures

X,Y,Z, la notation Z — (Y)zc,l signifie :
Pour tout x : (%) — k il existe Ye (%) tel que |x” GE)\ <L

Lorsque I = 1, on écrit simplement Z — (Y)? Alors, étant donnée une classe
K de L-structures finies et ordonnées, on dit de I qu’elle possede la propriété de

Ramsey lorsque pour tous X, Y € K et tout k& € w ~\ {0}, il existe Z € K tel que :

Z— (Y)}

Les techniques mises au point dans [40] mettent en évidence 'existence de
plusieurs liens entre moyennabilité extréme, flots minimaux universels, théorie de
Fraissé et théorie de Ramsey structurale.

Par exemple : Soit L* une signature relationnelle comportant un symbole de
relation binaire particulier <. Une L*-structure ordonnée est une L*-structure X
pour laquelle I'interprétation <* de < est un ordre total.

THEOREME (Kechris-Pestov-Todorcevic [40]). Soit L* D {<} une signature
relationnelle, K* une classe de Fraissé de L*-structures ordonnées et (F,<F) =
Flim(K*). Alors les assertions suivantes sont équivalentes :

(1) Aut(F,<F) est extrémement moyennable.
(2) K* posséde la propriété de Ramsey.

Avec plusieurs autres théoremes du méme type, ce résultat plante le décor
général au sein de laquelle I'attaque combinatoire de la moyennabilité extréme
peut avoir lieu. Lorsque l'on s’intéresse a 1’étude de la moyennabilité extréme
pour un groupe de la forme Aut(FLim(K*)), ce théoréme peut étre utilisé tel
quel. Néammoins, ses applications ne sont pas réduites a ce cas particulier. La
démonstration combinatoire du théoreme de Pestov mentionné précédemment en est
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une excellente illustration. Les idées principales sont les suivantes : Une premiere
étape consiste en l'utilisation du théoreme de Ramsey suivant, di a Nesetfil.

TuEOREME (Nesetfil [56]). La classe Mg des espaces métriques a distances
rationnelles posséde la propriété de Ramsey.

Pour la seconde étape, on fait appel au théoreme général cité auparavant. On
établit ainsi la moyennabilité extréme du groupe G := Aut(Flim(Mg)). Enfin,
pour la derniére étape, on montre que G se plonge de maniere dense et continue
dans iso(U), et que cette propriété suffit & déduire la moyennabilité extréme de
iso(U) de celle de G.

La succes de cette stratégie conduit les auteurs de [40] & poser plusieurs ques-
tions relatives a la théorie de Ramsey métrique. Par exemple :

Question : Parmi les classes de Fraissé d’espaces métriques finis ordonnés,
quelles sont celles qui possédent la propriété de Ramsey ?

Ce probleme général peut étre vu comme la version métrique d’un probléeme
célebre tres similaire pour les graphes ordonnés finis a l'origine de nombreuses
recherches au cours des années soixante-dix. Dans notre cas, il s’agit de la mo-
tivation qui justifie la recherche de classes d’espaces métriques finis satisfaisant la
propriété de Ramsey dont plusieurs exemples sont présentés au cours de cette these.

Parallelement & la propriété de Ramsey, une autre notion combinatoire relative
aux classes de Fraissé émerge de [40]. Il s’agit de la propriété d’ordre et une
attention particuliere lui est également portée ici.

Comme précédemment, on fixe une signature relationnelle L* muni d’un sym-
bole de relation binaire particulier < et on définit une signature L par L = L*~{<}.
Puis, étant donnée une classe K* de L*-structures ordonnées, on définit la classe K
de L-structures par :

K={X:3<X (X, <X)ek}.

On dit alors que K* possede la propriété d’ordre lorsque pour tout X € K, il
existe Y € K tel que pour tout ordre total <X sur X et <¥ sur Y, si (X, <X),
(Y,<Y) € K*, alors (Y, <Y) inclut une copie isomorphe de (X, <X). La propriété
d’ordre est pertinente car elle conduit & plusieurs notions dignes d’intérét.

Les premieres sont relatives a la dynamique topologique et a la moyennabilité
extréme : Toujours dans [40], il est démontré que pour certaines classes de Fraissé
de structures ordonnées, la propriété d’ordre permet directement de produire des
Aut(Flim(K))-flots minimaux. Mieux : Lorsque la propriété de Ramsey et la pro-
priété d’ordre sont réunies, une détermination explicite du flot minimal universel
de Aut(Flim(K)) devient possible. Ce fait mérite d’étre cité car avant [40], on ne
dénombrait que trés peu de cas de groupes non extrémement moyennables et ou le
flot minimal universel est a la fois descriptible et métrisable. Cette méthode permit
entre autres la détermination du flot minimal universel du groupe d’automorphismes
de plusieurs limites de Fraissé remarquables telles que le graphe de Rado R, les
graphes de Henson H,, l'algebre de Boole dénombrable et sans atome B, ou
I’espace vectoriel Vg de dimension Xy sur un corps fini F.

La seconde classe de notion est purement combinatoire et est appelée degré de
Ramsey : Etant donnés une classe K de L-structures et X € /C, supposons qu’il
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existe I € w N\ {0} tel que pour tout Y € K et tout k € w \ {0}, il existe Z € K tel
que :
Z— (Y)r,

Le degré de Ramsey de X dans K est alors défini comme le plus petit entier
ayant cette propriété, et on constate que sa détermination effective devient possible
des lors que K est issu d’une K* satisfaisant a la fois les propriétés de Ramsey et
d’ordre.

En fait, Particle [40] permet d’envisager la détermination de flots minimaux
universels et le calcul des degrés de Ramsey comme deux manifestations différentes
d’un méme phénomene. En revanche, la version combinatoire présente un avantage
indéniable : Celui d’avoir admis une variation qui conduisit a un concept nouveau
en dynamique topologique et qui serait probablement apparu beaucoup plus tard
si la connexion avec la théorie de Ramsey n’avait pas été identifiée. La variation
issue de la notion de degré de Ramsey est appelée grand degré de Ramsey, alors que
le nouveau concept de dynamique topologique est appelé stabilité par oscillations
pour les groupes topologiques.

La définition des grands degrés de Ramsey & partir des degrés de Ramsey peut
se faire a partir de I’observation suivante : Si F est la limite de Fraissé d’une classe
de Fraissé K, alors X € K admet un degré de Ramsey dans K lorsqu’il existe | € w
tel que pour tout Y € K et tout k € w ~ {0},

X
F— (Y)k,l‘
Le grand degré de Ramsey correspond a la méme notion lorsque ce résultat

reste valide quand Y est remplacé par F. Sa valeur Tx(X) est alors le plus petit
l € w tel que
F— (F)y,.

Méme si elles n’apparaissent pas de manieére completement explicite, les no-
tions de degré de Ramsey et de grand degré de Ramsey sont présentes en théorie de
Ramsey structurale depuis fort longtemps. Cependant, alors que I'immense collec-
tion de résultats en théorie de Ramsey finie conduit tres souvent a la détermination
des degrés de Ramsey, on ne dénombre que trés peu de situations ot une analyse
complete des grands degrés de Ramsey peut étre effectuée. Les travaux de cette
these apportent une petite contribution dans ces deux domaines.

La stabilité par oscillation pour les groupes topologiques est une notion beau-
coup plus récente. Ce concept apparait dans [40] et est détaillé dans le livre [66] de
Pestov. Il est important car il englobe plusieurs idées profondes issues de I'analyse
fonctionnelle géométrique et de la combinatoire. Pour un groupe topologique G,
on note Uy, (G) Puniformité dont une base est donnée par les ensembles de la forme
Vi = {(z,y) : 27ty € V} ol V est un voisinage de 1’élément neutre. Soit main-
tenant GL la complétion de (G, UL (Q)). GL peut ne pas étre un groupe topologique
mais est toujours un monoide topologique. Pour une fonction réelle f définie sur
un ensemble X, on définit ’oscillation de f sur X par :

osc(f) = sup{|f(y) — f(z)| : z,y € X}.

Soit maintenant G un groupe topologique, f : G — R une application uni-
formément continue et f I'unique prolongement de f a GL par uniforme continuité.
On dit que f est stable par oscillations lorsque pour tout € > 0, il existe un idéal
a droite Z ¢ GL tel que
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osc(f 1 T) < e.
Enfin, soit G un groupe topologique agissant sur un espace topologique X de
maniere continue. Pour f: X — R et z € X, soit f, : G — R définie par

Vge G f.(g9) = f(gx).

On dit alors que 'action est stable par oscillations lorsque pour toute f : X —
R bornée et continue et tout x € X, f, est stable par oscillations des lors qu’elle
est uniformément continue.

Le contexte métrique se préte particulierement bien a la description de la rela-
tion entre grands degrés de Ramsey et stabilité par oscillations. Un espace métrique
X est indivisible lorsque pour tout k € w strictement positif and toute application
x @ X — k, il existe X cX isométrique a X sur lequel x est constante. Il
est clair que lorsque X est dénombrable et ultrahomogene, indivisibilité de X et
grands degrés de Ramsey dans la classe Age(X) des sous-espaces métriques finis
de X sont reliés : X est indivisible ssi ’espace métrique réduit & un point possede
un grand degré de Ramsey dans Age(X) égal a 1. Observons également que la
notion d’indivisibilité peut étre affaiblie au sens suivant : Pour un espace métrique
X = (X,dX),Y C X et € >0, on pose

Y)e={zeX:IyeY d¥(x,y) <e}

On dit alors que X est e-indivisible lorsque pour tout k € w strictement positif,
tout x : X — k et tout € > 0, il existe ¢ < k et X C X isométrique a X tel que

X C (XA

En gardant ce concept a l’esprit, voici la connexion promise :

THEOREME (Kechris-Pestov-Todorcevic [40], Pestov [66]). Pour un espace
métrique X complet ultrahomogene, les assertions suivantes sont équivalentes :

(1) Lorsque iso(X) est muni de la topologie de la convergence simple, l’action
standard de iso(X) sur X est stable par oscillations.
(2) Pour tout e > 0, X est e-indivisible.

Une des conséquences de la jeunesse de la notion de stabilité par oscillations
pour les groupes topologiques est que la liste des résultats qui la font intervenir
est relativement réduite. Cependant, quelques résultats célebres peuvent étre in-
terprétés en terme de stabilité par oscillations. Par exemple, si on note S la sphere
unité de ’espace de Hilbert £5, on peut mentionner que le probleme de savoir si
Paction standard de iso(S™) sur S*° est stable par oscillations ou pas motiva une
quantité impressionnante de recherche entre la fin des années soixante et le début
des années quatre-vingt-dix. C’est seulement en 1994 que Odell and Schlumprecht
parvinrent & présenter une solution (cf [63]), apportant ainsi une réponse au célebre
probléme de la distortion pour s :

TuEOREME (Odell-Schlumprecht [63]). L’action standard de iso(S*) sur S
n’est pas stable par oscillations.

La derniere partie de cette these est consacrée a 1’étude d’un probleme similaire
pour la sphere d’Urysohn S. Nos travaux ne conduisent pas & une solution complete
mais permettent néammoins d’envisager la situation sous de nouveaux éclairages.
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2. Organisation et présentation des résultats.

Le chapitre 1 est consacré a la présentation de plusieurs classes de Fraissé
d’espaces métriques dont le role est central dans toute la suite.

Une des classes les plus importantes est la classe Mg des espaces métriques finis
a distances rationnelles. Son espace d’Urysohn (nom donné a la limite de Fraissé
dans le contexte métrique) est un espace métrique dénombrable et ultrahomogene
noté Ug et appelé 'espace d’Urysohn rationnel. Plusieurs variations sur le theme
de Mg seront également citées : La classe Mgnjo,1] des espaces métriques finis a
distances dans QN]0, 1], dont ’espace d’Urysohn est la sphére d’Urysohn rationnelle
Sp. La classe M, des espaces métriques finis a distances dans w, qui conduit a
Iespace d’Urysohn naturel U,,. Et enfin les classes M,njo,m) des espaces métriques
finis & distances dans {1,...,m} o m est un entier naturel strictement positif, qui
conduisent & des versions bornées de U, notées U,,.

Deux autres types de classes occupent une place privilégiée. Le premier type
consiste en les classes de la forme Ug d’espaces ultramétriques finis a distances
dans un sous-ensemble dénombrable fixé S de |0, +oo[. Toute classe Us conduit
a un espace d’Urysohn ultramétrique noté Bg et qui, contrairement a la plu-
part des espaces d’Urysohn, peut étre décrit de maniere tres explicite. Le sec-
ond type consiste en les classes Mg d’espaces métriques finis a distances dans S
ot S CJ0,+o00[ est dénombrable et satisfait la condition des 4-valeurs, une condi-
tion isolée par Delhommé, Laflamme, Pouzet et Sauer dans [9] et qui caractérise
les sous-ensembles S C]0,+oo[ pour lesquels la classe Mg possede la propriété
d’amalgamation. Chaque Mg conduit & un espace noté Ug qui peut parfois étre
décrit de fagon explicite lorsque S est fini et relativement simple.

Enfin, l'inventaire s’achéve avec deux classes d’espaces métriques finis eucli-
diens, a savoir la classe Hg des sous-espaces métriques affinement indépendants
de l'espace de Hilbert ¢5 a distances dans S ou S est un sous-ensemble dense
dénombrable de |0, +oo], et la classe Sg des espaces métriques finis X & distances
dans S et qui se plongent isométriquement dans la spheére unité S™ de ¢y avec
{0¢,} U X affinement indépendant (S étant toujours un sous-ensemble dense de
]0,400[.). Les espaces d’Urysohn correspondants sont respectivement des sous-
espaces métriques de £y et S°° mais qui malheureusement n’apparaitront dans la
suite que de maniere anecdotique.

Une fois que les classes de Fraissé et les espaces d’Urysohn qui leurs sont at-
tachés sont présentés, on s’intéresse a I'interaction entre espaces métriques complets
séparables et espaces d’Urysohn. Les premieres questions sur lesquelles on se penche
sont les suivantes :

(1) La complétion d'un espace d’Urysohn est-elle toujours ultrahomogene ?
(2) Un espace métrique complet séparable ultrahomogeéne est-il toujours la
complétion d’un espace d’Urysohn ?
La réponse pour (1) est négative et est fournie par un exemple tiré d’un article
de Bogatyi [4]. Ce n’est pas le cas pour (2), ce qui conduit au premier véritable
résultat de cette these, cf théoreme 6 :

THEOREME. Tout espace métrique complet séparable et ultrahomogéne inclut
un sous-espace métrique dense dénombrable et ultrahomogéne.

On enchaine ensuite sur la description des complétions des espaces d’Urysohn
évoqués précédemment. Plusieurs espaces remarquables apparaissent alors, parmi
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lesquels l’espace d’Urysohn original U (comme la complétion de Ug), la sphere
d’Urysohn S (comme la complétion de Sg), 'espace de Baire N (et de maniére plus
générale tous les espaces ultramétriques complets séparables et ultrahomogenes),
ainsi que l'espace de Hilbert ¢5 et sa sphere unité S°°.

Le chapitre 2 est consacré a la théorie de Ramsey finie des espaces métriques et
essentiellement axé sur des démonstrations nouvelles inspirées de la démonstration
combinatoire du théoréeme de Pestov via le théoreme de Nesettil et la théorie
développée dans [40]. On commence par exposer la démonstration du théoréme
de Nesetril qui conduit au résultat suivant. Pour S CJ0,4oc[, on note M§ la
classe des espaces métriques finis ordonnés a distances dans S. Alors (cf théoreme
13) :

THEOREME (Nesettil [56]). Soit T' C|0, 00| stable par sommes et S un segment
initial de T. Alors M§ posséde la propriété de Ramsey.

On démontre ensuite que des résultats similaires peuvent étre obtenus pour
d’autres classes d’espaces métriques finis ordonnés. La premiere classe concernée
est construite a partir de la classe Ug : Soit X un espace ultramétrique. On dit
qu’un ordre total < sur X est convexe lorsque toutes les boules métriques de X sont
<-convexes. Pour S CJ0,+oco[, on note U< la classe des espaces ultramétriques
finis, ordonnés de maniére convexe et a distances dans S. Alors (cf théoréme 14) :

THEOREME. Soit S CJ0,+ool. Alors USS posséde la propriété de Ramsey.

Le second type de classes pour lequel on parvient a démontrer un théoreme de
Ramsey est basé sur les classes Mg. Soit K une classe d’espaces métriques. On dit
qu’une distance s €]0, +oo] est critique pour K lorsque pour tout X € K, on définit
une relation d’équivalence =~ sur X en posant :

Vo,y € X x~y « dX(z,y) < s.

La relation = est alors appelée relation d’équivalence métrigue sur X. On dit
alors d’un ordre total < sur X € K qu’il est métrique lorsqu’étant donnée une
relation d’équivalence métrique ~ sur X, les ~-classes sont <-convexes. KEtant
donné S CJ0, +o0[, on note M= la classe des espaces métriques finis, ordonnés de
maniere métrique et & distances dans S. Alors (cf théoreme 15) :

THEOREME. Soit S un sous-ensemble fini de |0, +oo[ de taille |S| < 3 et satis-
faisant la condition des 4 valeurs. Alors MG~ posséde la propriété de Ramsey.

Apres I’étude de la propriété de Ramsey, on s’intéresse a la propriété d’ordre.
Pour S segment initial de T' C]0, 00|, T stable par sommes, la propriété d’ordre

pour M§ peut étre démontrée grace & un argument probabiliste, cf [55]. Ici, on
présente une démonstration basée sur la propriété de Ramsey (cf théoreme 16) :

THEOREME. Soit T' C|0, +oo[ stable par sommes et S un segment initial de T.
Alors M§ posséde la propriété d’ordre.

On poursuit avec la propriété d’ordre pour USS et pour ME<, cf théorémes 18
et 21 :

THEOREME. USS posséde la propriété d’ordre.

THEOREME. Soit S un sous-ensemble fini de |0, +oo| de taille |S| < 3 et satis-
faisant la condition des 4 valeurs. Alors MG posséde la propriété d’ordre.
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On utilise ensuite propriété de Ramsey et propriété d’ordre pour calculer cer-
tains degrés de Ramsey. Dans la situation présente, ce calcul est possible pour
les classes Mg lorsque S est un segment initial de T avec T' CJ0, +oo] stable par
sommes (cf théoreme 23), Us (cf théoreme 24) et Mg ol S est un sous-ensemble fini
de ]0, +oo de taille |S| < 3 et satisfaisant la condition des 4-valeurs (cf théoreme
25).

De la combinatoire, on passe ensuite a la dynamique topologique. On présente
tout d’abord la démonstration du théoréeme de Pestov établissant la moyennabilité
extréme de iso(U) et on poursuit avec plusieurs résultats sur la moyennabilité
extréme et les flots minimaux universels. Par exemple, (cf théoreme 37) :

THEOREME. Le flot minimal universel de iso(Bg) est composé de l’espace
compact cLO(Bg) des ordres totauz convexes sur Bs muni de l'action iso(Bg) %
cLO(Bg) — cLO(Bs), (g, <) —<9 définie par v <9 y ssi g~ (z) < g~ (y).

Ce théoreme permet en particulier de déduire le résultat suivant relatif a
l'espace de Baire N (cf théoréme 39) :

THEOREME. Le flot minimal universel de iso(N') est donné par ’espace compact
cLO(N) des ordres totauz convexes sur N muni de l’action iso(N) x cLON) —
cLOW), (g, <) ——<9 définie par x <9 y ssi g~ (z) < g~ (y).

En guise de dernier exemple (cf théoréme 43) :

THEOREME. Soit S un sous-ensemble fini de |0, 4o0o[ de taille |S| < 3 et sat-
isfaisant la condition des 4 waleurs. Alors le flot minimal universel minimal de
iso(Ug) est donné par l'espace compact mLO(Uyg) des ordres totaur métriques sur
Us muni de laction iso( Ug) x mLO(Us) — mLO(Uy), (g, <) —<9 définie par
x <9y ssigl(z) < g l(y).

On remarque en particulier que les espaces sous-jacents a tous ces flots mini-
maux universels sont métrisables.

Le chapitre 2 s’acheve avec plusieurs questions ouvertes a propos de la propriété
de Ramsey pour les classes Mg ainsi qu’avec une connexion possible entre la théorie
de Ramsey euclidienne et un théoreme de Gromov et Milman.

Le chapitre 3 est consacré a la théorie de Ramsey infinie. On commence par
une courte section sur les grands degrés de Ramsey. Le mot courte ne peut pas étre
oté de la phrase précédente car dans la plupart des cas, la détermination des grands
degrés de Ramsey est trop ardue pour étre menée a bien ici. Il y a néammoins un
cas pour lequel une analyse compléete est possible (cf théoreme 49) :

THEOREME. Soit S un sous-ensemble fini de |0, +o0o[. Alors chaque élément
de Us admet un grand degré de Ramsey dans Us.

En fait, on est méme en mesure de calculer la valeur exacte de ce grand degré
de Ramsey. Ce résultat est & mettre en regard avec (cf théoreme 50) :

THEOREME. Soit S un sous-ensemble infini dénombrable de )0, +oo[ et soit X

un élément de Us tel que | X| = 2. Alors X n’a pas de grand degré de Ramsey dans
Us.

On poursuit avec une section portant sur I'indivisibilité des espaces d’Urysohn.
Apreés la présentation de plusieurs résultats généraux tirés de [9], on fournit les
détails de la démonstration du théoréme suivant (cf théoreme 51) :
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THEOREME (Delhommé-Laflamme-Pouzet-Sauer [9]). Sy n'est pas indivisible.

On s’intéresse ensuite a I’étude d’espaces d’Urysohn plus simples, & savoir les
espaces U,,. Il apparait alors que dans la plupart des cas, le probleme demeure
ouvert. Les exceptions concernent les cas les plus élémentaires ol des théoremes
généraux dis a Milliken ou a Sauer peuvent étre appliqués.

On enchaine alors sur l'indivisibilité des espaces d’Urysohn ultramétriques.
Comme pour les grands degrés de Ramsey, ces cas se montrent relativement acces-
sibles et conduisent au théoréme suivant (obtenu indépendemment par Delhommé,
Laflamme, Pouzet et Sauer dans [9]), cf section 3.3 :

THEOREME. Soit X un espace ultramétrique dénombrable et ultrahomogeéne.
Alors X est indivisible ssi l’ordre total usuel renversé > sur R induit un bon ordre
sur son ensemble de distances.

En fait, les espaces d’Urysohn ultramétriques sont tellement dociles que I'on
est méme en mesure d’établir le résultat suivant (cf théoreme 59) :

THEOREME. Soit S un sous-ensemble infini dénombrable de |0, +oco[ tel que
Uordre total usuel renversé > sur R induit un bon ordre sur S. Alors étant donnée
une application f : Bs — w, il existe une copie isométrique X de Bg dans Bg
telle que f est continue ou injective sur X.

Apres les espaces ultramétrique, on clot la section consacrée a l'indivisibilité
avec ’étude des espaces Ug lorsque S est fini et satisfait la condition des 4 valeurs.
Le résultat qu’on obtient ne couvre que partiellement le cas |S| < 4 mais son
obtention se montre a la fois longue et laborieuse. Pour le formuler précisément, une
nouvelle définition est nécessaire : Pour des sous-ensembles finis S = {sg, ..., Sm}<
et T = {to,...,tn}< de ]0,00[, on écrit S ~ T lorsque m = n et

Vi, 5,k <m, s; <Sj+8k - t; <tj+tk.

Alors (cf théoréme 60) :

THEOREME. Soit S un sous-ensemble fini de ]0,4o0[ de taille |S| < 4 et sat-
isfaisant la condition des 4 valeurs. Supposons que S = {1,2,3,4}. Alors Ug est
indivisible.

Apres l'indivisibilité, on s’intéresse a la stabilité par oscillations. Certains cas
sont faciles a étudier. Par exemple, comme on peut désormais s’y attendre au vu
des résultats qui précedent, les espaces ultramétriques complets séparable ultraho-
mogenes entrent dans cette catégorie (cf théoreéme 65).

THEOREME. Soit X un espace ultramétrique complet séparable et ultrahomogéne.
Alors Uaction standard de iso(X) sur X est stable par oscillations ssi l’ordre total
usuel renversé > sur R induit un bon ordre sur son ensemble de distances.

Cependant, dans la plupart des cas, I’étude de la stabilité par oscillations semble
difficile & mener a bien. Le cas de S™ a déja été présenté dans la section précédente
de cette introduction. La derniere partie de cette these est consacrée a I’étude d’un
probleme similaire pour la spheére d’Urysohn S, a savoir : L’action standard de
iso(S) sur S est-elle stable par oscillations ? Sans étre en mesure de fournir une
solution complete, on est en mesure d’apporter quelques réponses. En particulier,
on montre que le probleme de la stabilité par oscillation pour S est équivalent a un
probléme purement combinatoire relatif aux espaces U, (cf théoréme 67) :
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THEOREME. Les assertions suivantes sont équivalentes :
i) L’action standard de iso(S) sur S est stable par oscillations.
it) Pour tout € > 0, Sg est e-indivisible.
i11) Pour tout m € w strictement positif, U,, est 1-indivisible.
iv) Pour tout m € w strictement positif, Uy, est indivisible.

Au vu de ce résultat, les meilleures bornes que 'on parvient a atteindre pour
le moment sont les suivantes (cf théorémes 73 et 74) :

THEOREME. Pour tout m <9, U, est 1-indivisible.
THEOREME. S est 1/6-indivisible.

On acheve le chapitre 3 et la these avec quelques questions portant sur les
grands degrés de Ramsey pour les classes Mg et 'indivisibilité des espaces Ug.

Tout au long de la présente dissertation, on s’efforce de fournir des références
aussi précises que possible aux résultats qui ne sont pas les notres. Les résultats
nouveaux relatifs aux propriétés de Ramsey des espaces ultramétriques finis et a la
dynamique topologique de leurs espaces d’Urysohn (chapitre 2) sont tirés de [61].
Ceux qui sont relatifs aux grands degrés de Ramsey et a l'indivisibilité des espaces
ultramétriques (chapitre 3) sont tirés de [62]. Enfin, ceux qui sont relatifs a la
spheére d’Urysohn (chapitre 3) devraient étre publiés dans [71].






Introduction.

3. General notions and motivations.

The study of Ramsey theoretic properties of finite metric spaces in connection
with the structure of separable ultrahomogeneous metric spaces is the backbone
of the present thesis. Our original motivation comes from the recent work [40] of
Kechris, Pestov and Todorcevic connecting Fraissé theory of amalgamation classes
and ultrahomogeneous structures, Ramsey theory, and topological dynamics of au-
tomorphism groups of countable structures. More precisely, the starting point of
our research is the computation of the universal minimal flow of the surjective isom-
etry group of the rational metric space Ug leading to a new proof of a theorem by
Pestov. This theorem contains two main ingredients.

The first one is the so-called universal Urysohn metric space U. This space,
which appeared relatively early in the history of metric geometry (the definition
of metric space is given in the thesis of M. Fréchet in 1906, [19]), was constructed
by Paul Urysohn in 1925. Its characterization refers to a property known today
as ultrahomogeneity: A metric space X is ultrahomogeneous when every isometry
between finite metric subspaces extends to an isometry of X onto itself. With this
definition in mind, U can be characterized as follows: Up to isometry, it is the
unique complete separable ultrahomogeneous metric space which includes all finite
metric spaces. As a direct consequence, U is universal not only for the class of
all finite metric spaces, but also for the class of all separable metric spaces. This
property is essential and is precisely the reason for which Urysohn constructed U:
Before, it was unknown whether a separable metric space could be universal for the
class of all separable metric spaces. However, U virtually disappeared after Banach
and Mazur showed that C([0, 1]) was also universal and it is only quite recently that
U became again subject to research, in particular thanks to the work of Katétov,
Uspenskij, Vershik, Bogatyi and Pestov.

Recall now the concept of extreme amenability from topological dynamics. A
topological group G is extremely amenable or satisfies the fized point on compacta
property when every continuous action of G on a compact topological space X
admits a fixed point (ie a point z € X such that Vg € G ¢ -2 = z). Extreme
amenability of topological groups naturally comes into play in topological dynamics
when studying so-called universal minimal flows. Given a topological group G, a
compact G-flow is a compact topological space X together with a continuous action
of G on X. A G-flow is minimal when every orbit is dense. It is easy to show that
every G-flow includes a minimal subflow. It is less obvious that every topological
group G has a universal minimal flow M(G), that is a minimal G-flow that can be
homomorphically mapped onto any other minimal G-flow. Furthermore, it turns
out that M(G) is uniquely determined by these properties up to isomorphism (A
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homomorphism between two G-flows X and Y is a continuous map 7 : X — Y
such that for every x € X and g € G, n(g-z) = g - n(x). An isomorphism is
a bijective homomorphism). When G is locally compact but non compact, M(G)
is an intricate object. However, there are some non-trivial groups G where M (G)
trivializes and those are precisely the extremely amenable ones. Pestov theorem
provides such an example:

THEOREM (Pestov [65]). Equipped with the pointwise convergence topology, the
group iso(U) of isometries of U onto itself is extremely amenable.

Most of the techniques used in [65] come from topological group theory. How-
ever, a careful analysis of the proof together with another result of Pestov in [64]
according to which the automorphism group Aut(Q, <) of all order-preserving bi-
jections of the rationals is also extremely amenable allowed to isolate a substantial
combinatorial core. The determination of this core is precisely the content of [40]
and shows the emergence of two major components: Fraissé theory and structural
Ramsey theory.

Developed in the fifties by R. Fraissé, Fraissé theory provides a general model
theoretic and combinatorial analysis of what is called today countable ultrahomoge-
neous structures. Let L = {R; : i € I'} be a fixed relational signature, and X and Y
be two L-structures. An embedding from X to Y is an injective map 7 : X — Y
such that for every ¢ € I and z1,...,z, € X:

(71,...,7,) € RX A (m(z1),...,7(2,)) € RY.
An isomorphism from X to Y is a surjective embedding. When there is an
isomorphism from X to Y, this is written X 2 Y. Finally, (i) is defined as:

G((){fch:XNX}

When there is an embedding from an L-structure X into another L-structure Y,
we write X < Y. A class K of L-structures is hereditary when for every L-structure
X and every Y € K:

X<Y—=XeKk.

It satisfies the joint embedding property when for every X, Y € K, there is
Z € K such that X, Y < Z. It satisfies the amalgamation property when for every
X, Yy, Y; € K and embeddings fy: X — Yp and f; : X — Y, thereis Z € K
and embeddings go : Yo — Z, g1 : Y1 — Z such that gy o fo = ¢1 0 fi1.

Let F be an L-structure. Its age, Age(F), is the collection of all finite L-
structures that can be embedded into F. F is ultrahomogeneous when every iso-
morphism between finite substructures of F can be extended to an automorphism
of F. Finally, a class KC of finite L-structures is a Fraissé class when K contains
only countably many structures up to isomorphism, is hereditary, contains struc-
tures of arbitrarily high finite size, has the joint embedding property and the has
the amalgamation property. With these concepts in mind, here is the fundational
result in Fraissé theory:

THEOREM (Fraissé [16]). Let L be a relational signature and KC a Fraissé class
of L-structures. Then there is, up to isomorphism, a unique countable ultrahomo-
geneous L-structure F such that Age(F) = K. F is called the Fraissé limit of K
and denoted Flim(K).
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The fundational result of Ramsey theory is older. It was proved in 1930 by
F. P. Ramsey and can be stated as follows. For a set X and an integer [, let [X]'
denote the set of subsets of X with [ elements:

THEOREM (Ramsey [72]). For every k € w~{0} andl,m € w, thereisp € w so
that given any set X with p elements, if [X]' is partitioned into k classes, then there
is Y C X with m elements such that [Y]' lies in one of the parts of the partition.

However, it is only in the early seventies thanks to the work of several people,
among whom Erdds, Graham, Leeb, Rothschild, Nesettil and Rodl, that the es-
sential ideas behind this theorem crystallized and expanded to structural Ramsey
theory. Here are the related basic concepts: For k,l € w~ {0} and a triple X, Y, Z
of L-structures, Z — (Y)i(,l is an abbreviation for the statement:

For any x : (2) — k there is Y € (%) such that |y (;‘2)

<L

When [ = 1, this is simply written Z — (Y)? Now, given a class /C of finite
ordered L-structures, say that K has the Ramsey property when for every X, Y € K
and every k € w ~\ {0}, there is Z € K such that:

Z— (V)i

The techniques developed in [40] show the existence of several bridges between
extreme amenability, universal minimal flows, Fraissé theory and structural Ram-
sey theory. For example: Let L* be a relational signature with a distinguished
binary relation symbol <. An order L*-structure is an L*-structure X in which the
interpretation <* of < is a linear ordering. If K* is a class of L*-structures, K* is
an order class when every element of C* is an order L*-structure.

THEOREM (Kechris-Pestov-Todorcevic [40]). Let L* D {<} be a relational sig-
nature, K* a Fraissé order class in L* and (F,<¥) = Flim(K*). Then the following
are equivalent:

(1) Aut(F,<F) is extremely amenable.
(2) K* is a Ramsey class.

Together with several similar theorems, this result sets up a general landscape
into which the combinatorial attack of extreme amenability can take place. When
one is interested in the study of extreme amenability for a group of the form
Aut(Flim(K*)), this theorem can be used directly. However, the range of its appli-
cations is not restricted to this particular case. The combinatorial proof of Pestov
theorem quoted previously provides a good illustration of that fact. Here are the
main ideas. A first step consists in making use of the following Ramsey theorem
due to Nesetfil:

TueorEM (Neetfil [56]). The class Mg of all finite ordered metric spaces
with rational distances has the Ramsey property.

A second step is to refer to the general aforementionned theorem. It follows
that the the group G := Aut(Flim(M3)) is extremely amenable. Finally, the last
step establishes that G embeds continuously and densely into iso(U), and that this
property is sufficient to transfer extreme amenability from G to iso(U).

The success of this strategy led the authors of [40] to ask several general ques-
tions related to metric Ramsey theory, among which stands the following one:
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Question: Among the Fraissé classes of finite ordered metric spaces, which
ones have the Ramsey property ?

This general problem can be seen as a metric version of a well-known similar
problem for finite ordered graphs which originated an impressive quantity of re-
search in the seventies. In our case, it is undoubtedly the main motivation to look
for classes of finite ordered metric spaces with the Ramsey property, and several
examples will be exposed throughout the present thesis.

Together with Ramsey property, another combinatorial notion related to Fraissé
classes emerges from [40]. It is called ordering property and will also receive a
particular attention in our work.

As previously, fix a relational signature L* with a distinguished binary relation
symbol < and let L be the signature L* \ {<}. Now, given an order class K* of
L*-structures, let I be the class of L-structures defined by:

K={X:(X,<X)eK}.

Say that * has the ordering property when given X € C, there is Y € K such
that given any linear orderings <*X and <Y on X and Y, if (X, <X) , (Y, <Y) € K*,
then (Y, <Y) contains an isomorphic copy of (X, <*). Ordering property is relevent
because it leads to several interesting notions.

The first ones are related to topological dynamics and extreme amenability:
Still in [40], it is shown that for a certain kind of Fraissé order class K*, ordering
property provides a direct way to produce minimal Aut(Flim(K))-flows. Better:
When Ramsey property and ordering property are both satisfied, an explicit deter-
mination of the universal minimal flow of Aut(Flim(K)) becomes available. This
fact deserves to be mentionned as before [40], there were only very few cases of
non extremely amenable topological groups for which the universal minimal flow
was explicitly describable and known to be metrizable. This method allowed to
compute the universal minimal flow of the automorphism group of several remark-
able Fraissé limits like the Rado graph R, the Henson graphs H,, the countable
atomless Boolean algebra B, or the Ry-dimensional vector space V g over a finite
field F.

The second kind of notion is purely combinatorial and is called Ramsey degree:
Given a class K of L-structures and X € K, suppose that there is | € w ~ {0} such
that for any Y € K, and any k € w ~\ {0}, there exists Z € K such that:

Z— (Y).

The Ramsey degree of X in K is then defined as the least such number, and it
turns out that its effective computation is possible whenever K is coming from a
K* satisfying both Ramsey and ordering property.

In fact, the paper [40] allows to see determination of universal minimal flows
and computation of Ramsey degrees as the two sides of a same coin. However, the
combinatorial formulation turned out to carry an undeniable advantage: That of
allowing a variation which led to a new concept in topological dynamics and which
may have appeared much later if not in connection with partition calculus. The
variation around the notion of Ramsey degree is called big Ramsey degree, while
the new concept in topological dynamics is called oscillation stability for topological
groups.
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A possible way to introduce big Ramsey degrees is to observe that Ramsey
degrees can also be introduced as follows: If F' denotes the Fraissé limit of a Fraissé
class K, X € K admits a Ramsey degree in I when there is | € w such that for any
Y € K, and any k € w \ {0},

F— (Y)S,

The big Ramsey degree corresponds to the exact same notion when this latter
result remains valid when Y is replaced by F. Its value Ty (X) is the least | € w
such that

F— (F)y,.

Though not in this terminology, Ramsey degrees and big Ramsey degrees have
now been studied for a long time in structural Ramsey theory. However, whereas
the well-furnished collection of results in finite Ramsey theory very often leads to
the determination of the Ramsey degrees, there are only few situations where the
analysis of big Ramsey degrees has been completed. Here, we modestly expand
those lists with theorems related to classes of finite metric spaces.

Oscillation stability for topological groups is much more recent a notion. This
concept appears in [40] and is more fully explained in the book [66] by Pestov.
It is important as it captures several deep ideas coming from geometric functional
analysis and combinatorics. For a topological group G, recall that the left uni-
formity Ur(G) is the uniformity whose basis is given by the sets of the form
Vi = {(z,y) : ™'y € V} where V is a neighborhood of the identity. Now, let
GL denote the completion of (G,Ur(Q)). GL may not be a topological group but
is always a topological semigroup. For a real-valued map f on a set X, define the
oscillation f on X as:

osc(f) = sup{|f(y) — f(z)| : z,y € X}.
Now, let G be a topological group, f : G — R be uniformly continuous, and f
be the unique extension of f to GL by uniform continuity. Say that f is oscillation
stable when for every € > 0, there is a right ideal Z C GL such that

ose(f [ T) < e.
Finally, let G be a topological group acting G continuously on a topological
space X. For f: X — R and z € X, let f, : G — R be defined by

Vg G fulg) = flg).

Then say that the action is oscillation stable when for every f : X — R
bounded and continuous and every x € X, f, is oscillation stable whenever it is
uniformly continuous.

The relationship between big Ramsey degrees and oscillation stability can be
particularly well understood in the metric context. First, call a metric space X
indivisible when for every strictly positive k € w and every x : X — k, there is X C
X isometric to X on which x is constant. It should be clear that when X is countable
and ultrahomogeneous, indivisibility of X is related to big Ramsey degrees in the
Fraissé class Age(X) of all finite metric subspaces of X: X is indivisible iff the
1-point metric space has a big Ramsey degree in Age(X) equal to 1. Observe also
that indivisibility can be relaxed in the following sense: If X = (X, dX) is a metric
space, Y C X and € > 0, set

Y)e={reX:IyecY d¥(x,y) <e}



24 INTRODUCTION.

Now, say that X is e-indivisible when for every strictly positive k € w, every
X : X — k and every € > 0, there are ¢ < k and X C X isometric to X such that

X < (X A{i})e.
With this concept in mind, here is the promised connection:

THEOREM (Kechris-Pestov-Todorcevic [40], Pestov [66]). For a complete ul-
trahomogeneous metric space X, the following are equivalent:

(1) When iso(X) is equipped with the topology of pointwise convergence, the
standard action of iso(X) on X is oscillation stable.
(2) For every e >0, X is e-indivisible.

A consequence of the youth of the notion of oscillation stability for topological
groups is that the list of results that can be attached to it is fairly restricted.
However, some well-known results can be interpreted in terms oscillation stability.
For example, S denoting the unit sphere of the Hilbert space f5, it should be
mentionned that a problem equivalent to finding whether the standard action of
iso(S*°) on S* is oscillation stable motivated an impressive amount of research
between the late sixties and the early nineties. It is only in 1994 that Odell and
Schlumprecht finally presented a solution (cf [63]), solving the so-called distortion
problem for £s:

THEOREM (Odell-Schlumprecht [63]). The standard action of iso(S*°) on S™
1s not oscillation stable.

The last part of this thesis is devoted to the somehow similar problem for the
Urysohn sphere S. Our work does not lead to a complete solution but sill allows
the investigation of several promising tracks.

4. Organization and presentation of the results.

Chapter 1 is devoted to the presentation of several Fraissé classes of finite metric
spaces whose role is central in our work.

One of the most important ones is the class Mg of finite metric spaces with
rational distances. Its Urysohn space (the name given to the Fraissé limit in the
metric context) is a countable ultrahomogeneous metric space denoted Ug and
called the rational Urysohn space. Several variations of Mg are also of interest
for us: The class Mgnjo,1] of finite metric spaces with distances in QN]0, 1], whose
Urysohn space is the rational Urysohn sphere Sg. The class M., of finite metric
spaces with distances in w, leading to the integral Urysohn space U,. And finally
the classes M,,njo,m) of finite metric spaces with distances in {1,...,m} where m
is a strictly positive integer, giving raise to bounded versions of U, denoted U,,.

Two other kinds of classes appear prominently in our work. The first kind
consists of the classes of the form Ug of finite ultrametric spaces with distances in a
prescribed countable subset .S of |0, +o00[. Every Us leads to a so-called ultrametric
Urysohn space denoted Bg and which, unlike most of the Urysohn spaces, can be
described very explicitly. The second kind consists of the classes Mg of finite metric
spaces with distances in S where S C]0, +o0cf is countable and satisfies the so-called
4-values condition, a condition discovered by Delhommé, Laflamme, Pouzet and
Sauer in [9] and which characterizes those subsets S CJ]0, +oo[ for which the class
M of all finite metric spaces with distances in S has the amalgamation property.
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Every Mg leads to a space denoted Ug which can also sometimes be described
explicitly when S is finite and not too complicated.

Finally, we finish our list with two classes of finite Euclidean metric spaces,
namely the class Hg of all finite affinely independent metric subspaces of the Hilbert
space {3 with distances in S where S is a countable dense subset of |0, +-o00[, and the
class Sg of all finite metric spaces X with distances in S which embed isometrically
into the unit sphere S°° of ¢5 with the property that {0, }UX is affinely independent
(S still being a countable dense subset of ]0,+oo[). The corresponding Urysohn
spaces are countable metric subspaces of /5 and S*° respectively but unfortunately,
they only appear anecdotically in our work.

Once those Fraissé classes and their related Urysohn spaces are presented, we
turn our attention to the interplay between complete separable ultrahomogeneous
metric spaces and Urysohn spaces. We start with considerations around the follow-
ing questions:

(1) Is the completion of a Urysohn space still ultrahomogeneous 7
(2) Does every complete separable ultrahomogeneous metric space appear as
the completion of a Urysohn space 7

The answer to (1) is negative and is provided by an example taken from an
article of Bogatyi [4]. On the other hand, the answer to (2) turns out to be positive
and provides our first substantial theorem, see theorem 6:

THEOREM. Fwvery complete separable ultrahomogeneous metric space Y in-
cludes a countable ultrahomogeneous dense metric subspace.

We then turn to the description of the completion of the Urysohn spaces pre-
sented previously. It is the opportunity to present several remarkable spaces, among
which the original Urysohn space U (as the completion of Ug), the Urysohn sphere
S (as the completion of Sg), the Baire space N (and more generally all the com-
plete separable ultrahomogeneous ultrametric spaces), as well as the Hilbert space
f5 and its unit sphere S°°.

Chapter 2 is devoted to finite metric Ramsey calculus and, as already stressed
in the first section of this introduction, is mainly concerned about new proofs along
the line of the combinatorial proof of Pestov theorem via NeSetfil theorem and the
theory developed in [40]. For completeness, we start with a presentation of Negetfil
theorem leading to the following result. For S C|0,4+o0[, let M denote the class
of all finite ordered metric spaces with distances in S. Then (see 13):

THEOREM (Nesettil [56]). Let T C]0,+oo[ be closed under sums and S be an
initial segment of T. Then M§ has the Ramsey property.

Then, we show that similar results hold for other classes of finite ordered metric
spaces. The first class is built on the class Us: Let X be an ultrametric space. Call
a linear ordering < on X convexr when all the metric balls of X are <-convex.
For S CJ0, +o0[, let USS denote the class of all finite convexly ordered ultrametric
spaces with distances in S. Then (see theorem 14):

THEOREM. Let S CJ0,+o0[. Then USS has the Ramsey property.

The second kind of class where we can prove Ramsey property is based on the
classes Mg. Let K be a class of metric spaces. Call a distance s €]0, +oo] critical
for K when for every X € K, one defines an equivalence relation ~ on X by setting:
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Vz,y € X x =~y dX(z,y) < s.

The relation = is then called a metric equivalence relation on X. Now, call a
linear ordering < on X € K metric if given any metric equivalence relation ~ on
X, the ~-equivalence classes are <-convex. Given S C|0,+oo[, let MZ< denote
the class of all finite metrically ordered metric spaces with distances in S. Then
(see theorem 15):

THEOREM. Let S be finite subset of |0, +oo] of size |S| < 3 and satisfying the
4-values condition. Then MT< has the Ramsey property.

After the study of Ramsey property, we turn to ordering property. For S initial
segment of T' C]0, +oo[, T closed under sums, ordering property for Mg can be
proved via a probabilistic argument, see [55]. We present here a proof based on
Ramsey property (see theorem 16):

THEOREM. Let T CJ0,+o00[ be closed under sums and S be an initial segment
of T. Then MS has the ordering property.

We then follow with the ordering property for U5~ and for M=, see theorems
18 and 21:

THEOREM. USS has the ordering property.

THEOREM. Let S be finite subset of 10, +oo[ of size |S| < 3 and satisfying the
4-values condition. Then ME< has the ordering property.

As mentionned in the first section of the introduction, Ramsey property to-
gether with ordering property allow the computation of Ramsey degrees. In the
present situation, we are consequently able to compute the exact value of the Ram-
sey degrees in the classes Mg when S is an initial segment of T' with T' C]0, 00|
is closed under sums (see 23), Us (see 24) and Mg where S is a finite subset of
10, +o0[ of size |S| < 3 and satisfying the 4-values condition (see 25).

Finally, we turn to applications in topological dynamics. We first present the
proof of Pestov theorem about the extreme amenability of iso(U) and then follow
with several results about extreme amenability and universal minimal flows. For
example (see theorem 37):

THEOREM. The universal minimal flow of iso(Bg) is the set cLO(Bg) of convex
linear orderings on Bg together with the action iso(Bg) x ¢cLO(Bgs) — cLO(Bg),
(9,<) =< defined by v <9y iff g~ (z) < g (y).

On the other hand, recalling that A denotes the Baire space (see theorem 39):

THEOREM. The universal minimal flow of iso(N') is the set cLO(N) of convex
linear orderings on N together with the action iso(N) x cLON) — cLO(N),
(9. <) —<? defined by 2 <7y iff g~ (z) < g~ (y).

As a last example (theorem 43):
THEOREM. Let S be finite subset of |0, +oo] of size |S| < 3 and satisfying the 4-

values condition. Then the universal minimal flow of iso(Ug) is the set mLO(Ug)
of metric linear orderings on Ug together with the action iso( Ug) x mLO(Ug) —

mLO(Us), (g, <) =< defined by x <9y iff g~ (z) < g~ (y).



4. ORGANIZATION AND PRESENTATION OF THE RESULTS. 27

In particular, the underlying spaces of all those universal minimal flow are
metrizable.

We finish Chapter 2 with several open questions concerning Ramsey property
for the classes Mg as well as a possible connection between Euclidean Ramsey
theory and a theorem by Gromov and Milman.

Chapter 3 is devoted to infinite metric Ramsey calculus. We start with a short
section on big Ramsey degrees. Short cannot be removed from the previous sentence
because in most of the cases, the determination of big Ramsey degrees turns out
to be too difficult for us to complete. Still, there is one case where we manage to
provide a full analysis (see theorem 49):

THEOREM. Let S be a finite subset of |0, +oo[. Then every element of Us has
a big Ramsey degree in Usg.

In fact, we are even able to compute exact the value of the big Ramsey degree.
This has to be compared with (see theorem 50):

THEOREM. Let S be an infinite countable subset of 10, +oo[ and let X be in Us
such that | X| > 2. Then X does not have a big Ramsey degree in Us.

We follow with a section on indivisibility of Urysohn spaces. After the presen-
tation of several general results taken from [9], we provide the details of the proof
of the following theorem (see theorem 51):

THEOREM (Delhommé-Laflamme-Pouzet-Sauer [9]). Sy is not indivisible.

Then, we turn to the study of indivisiblity of simpler Urysohn spaces, namely
the spaces U,,. It then turns out that for most of the cases, this problem re-
mains open. The exceptions concern the most elementary instances where general
theorems such as Milliken theorem or Sauer theorem can be applied.

We then follow with indivisibility for ultrametric Urysohn spaces. As for big
Ramsey degrees, these cases turn out to be accessible and lead to the following
theorem (proved independently of Delhommé, Laflamme, Pouzet and Sauer in [9]),
see section 3.3:

THEOREM. Let X be a countable ultrahomogeneous ultrametric space. Then X
is indivisible iff the reverse linear ordering > on R induces a well-ordering on its
distance set.

In fact, ultrametric Urysohn spaces behave so nicely that we are even able to
establish the following refinement (see theorem 59):

THEOREM. Let S be an infinite countable subset of |0, +o0[ such that the reverse
linear ordering > on R induces a well-ordering on S. Then given any map f :
Bg — w, there is an isometric copy X of Bgs inside Bg such that f is continuous
or injective on X.

After ultrametric Urysohn spaces, we finish the section on indivisibility with
the study of the spaces Ug when S is finite and satisfies the 4-values condition.
Our result only pratially covers the case |S| < 4 but even so turns out to be long
and tedious. To state it precisely, we need an extra definition: For finite subsets
S ={s0,--,8m}< and T = {to,...,tn}< 0of |0, 00[, define S ~ T when m = n and

Vi, j, k <m, s; < 85+ 8k >t <ty + k.
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Then (see theorem 60):

THEOREM. Let S be finite subset of 10, +oo| of size |S| < 4 and satisfying the
4-values condition. Assume that S » {1,2,3,4}. Then Ug is indivisible.

After indivisibility, we turn to oscillation stability. There are some cases where
it is easy to study. For example, unsurprisingly in view of the previous results,
complete separable ultrahomogeneous ultrametric spaces enter this category (see
theorem 65).

THEOREM. Let X be a complete separable ultrahomogeneous ultrametric space.
Then the standard action of iso(X) on X is oscillation stable iff the reverse linear
ordering > on R induces a well-ordering on its distance set.

However, in most of the cases, the study of oscillation stability seems to be
hard to complete. The case of S™ was already presented in the previous section
of this introduction. The last part of this thesis is devoted to the somehow similar
problem for the Urysohn sphere S, namely: Is the standard action of iso(S) on
S oscillation stable 7 Without reaching a complete solution, we are able to make
some progress. In particular, we show that the oscillation stability problem for S
is equivalent to a purely combinatorial problem involving the Urysohn spaces U,,
(see theorem 67):

THEOREM. The following are equivalent:
i) The standard action of iso(S) on S is oscillation stable.
i1) For every € > 0, Sg is e-indivisible.
i11) For every strictly positive m € w, Uy, is 1-indivisible.
i) For every strictly positive m € w, U, is indivisible.

We then finish with the best bounds we can obtain so far. Namely, (see theo-
rems 73 and 74):

THEOREM. For every m <9, U, is l-indivisible.
THEOREM. S is 1/6-indivisible.

We then close chapter 3 and this thesis with questions about big Ramsey degrees
in the classes Mg and indivisibility of the spaces Ug.

Throughout all the present thesis, we refer as accurately as possible to the
original authors and publications for all the results which are not ours. The new
results related to finite Ramsey calculus of finite ultrametric spaces and topological
dynamics of their Urysohn spaces (Chapter 2) are taken from [61]. Those related
to big Ramsey degrees and indivisibility of ultrametric spaces (Chapter 3) are taken
from [62]. Finally, those related to the oscillation stability problem for the Urysohn
sphere (Chapter 3) should appear in [71].



CHAPTER 1

Fraissé classes of finite metric spaces and Urysohn
spaces.

1. Fundamentals of Fraissé theory.

In this section, we introduce the basic concepts related to Fraissé theory. We
follow [40] but a more detailed approach can be found in [17] or [32]. Let L =
{R; :i € I'} be a fixed relational signature. Let X and Y be two L-structures. An
embedding from X to Y is an injective map m : X — Y such that for every i €
and z1,...,z, € X:

(T1,...,2,) € RE M (m(z1),...,7(2n)) € RY.
An isomorphism from X to Y is a surjective embedding while an automorphism
of X is an isomorphism from X onto itself. Of course, X and Y are isomorphic

when there is an isomorphism from X to Y. This is written X 2 Y. Finally, (§)
is defined as:

X

When there is an embedding from an L-structure X into another L-structure Y,
we write X < Y. A class K of L-structures is hereditary when for every L-structure
X and every Y € K:

<Y>{}~(CY:)~(NX}

X<Y—=XeKk.

It satisfies the joint embedding property when for every X, Y € K, there is
Z € K such that X, Y < Z. It satisfies the amalgamation property (or is an
amalgamation class) when for every X, Yo, Y; € K and embeddings fy : X — Yy
and f; : X — Y, there is Z € K and embeddings g0 : Yo — Z, g1 : Y1 — Z
such that gg o fo = g1 o f1. Finally, K has the strong amalgamation property (or is
a strong amalgamation class) when one can also fullfill:

G = g§¥o 0 giYi(= g F5X).

A structure F is ultrahomogeneous when every isomorphism between finite sub-
structures of F' can be extended to an automorphism of F. Fraissé theory provides
a general analysis of countable ultrahomogeneous structures.

Let F be an L-structure. The age of F, Age(F), is the collection of all finite
L-structures that can be embedded into F. Observe also that if F is countable,
then Age(F) contains only countably many isomorphism types. Abusing language,
we will say that Age(F) is countable. Similarly, a class K of L-structures will be
said to be countable if it contains only countably many isomorphism types.

A class I of finite L-structures is a Fraissé class when K is countable, hered-
itary, contains structures of arbitrarily high finite size, has the joint embedding
property and the has the amalgamation property.

29
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It should be clear that if F is a countable ultrahomogeneous L-structure, then
Age(F) is a Fraissé class. The following theorem, due to Fraissé, establishes a kind
of converse:

THEOREM 1 (Fraissé [16]). Let L be a relational signature and K a Fraissé
class of L-structures. Then there is, up to isomorphism, a unique countable ultra-
homogeneous L-structure F such that Age(F) = KC. F is called the Fraissé limit of
K and denoted Flim(K).

We do not enter the details of the proof here but let us simply mention that
uniqueness of the Fralssé limit is due to the following fact:

PROPOSITION 1. Let F be a countable L-structure. Then F is ultrahomogeneous
iff for every finite substructures X, Y of F with |Y| = |X| + 1, every embedding
X — F can be extended to an embedding Y — F.

Let us now illustrate how these concepts translate in the context of the central
objects of this thesis: Metric spaces. There are several ways to see a metric space
X = (X,dX) as a relational structure. For example, one may consider a binary
relation symbol Rs for every ¢ in QN]0, +oo[ and set

(z,y) € R¥ & d¥(z,y) < 4.

One may also allow J to range over |0, +ool, and define:

(z,y) € R¥ < d¥(z,y) = 4.

This latter approach has the disadvantage of requiring the signature to be un-
countable if uncountably many distances appear in the metric space we are working
with. This is a real issue as Fraissé theory really deals with countable signatures,
but in the present case, the instances where Fraissé theory will be needed will in-
volve only countably many distances so the second way of encoding the distance
map by relations will not cause any problem.

With these facts in mind, substructures in the context of metric spaces really
correspond to metric subspaces and embeddings are really isometric embeddings. It
follows that if X,Y are metric spaces, then (§) is the set of all isometric copies of
X inside Y.

Other kinds of relational structures will come into play, namely, ordered metric
spaces (structures of the form (X, <*) = (X,dX, <X) where X is a metric space
and <X is a linear ordering on X), graphs (structures G in the language { R; } where
RE is binary, symmetric and irreflexive), edge-labelled graphs (structures G in the
language {Rs : § €]0,+oo[} where each RS is binary symmetric and irreflexive),
ordered edge-labelled graphs. .. However, the reader should be aware that in many
cases, we will not be too cautious with the notational aspect. In particular, we
will almost never use the relational notation for a metric space. Similarly, when
dealing with an edge-labelled graph G, we will always work with the labelling map
G defined by

dom(\F) = U56]07+00[R? and A\ (z,y) < (z,y) € RE.

A class IC of metric spaces is hereditary when it is closed under isometries and
metric subspaces. Next, suppose we want to show that a class K of finite metric
spaces has the strong amalgamation property. We take X, Y, Y1 € K, isometric
embeddings fo : X — Yg and f; : X — Y and we wish to find Z € K and
embeddings gg : Yo — Z, g1 : Y1 — Z such that gy o fo = g1 o f1. Thanks to
the previous comments, we may assume without loss of generality that X is really
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a metric subspace both of Yy and Y7, and that Yo NY; = X. Hence, the metrics
d¥o and d¥' agree on X and are equal to dX on X. So we will be done if we can
prove that d¥° UdY! can be extended to a metric on Yy UY;. As we will see later,
the most convenient way to proceed will strongly depend on how K will be defined.

Let us now examine the meaning of ultrahomogeneity. A metric space X is
ultrahomogeneous when any isometry between two finite subspaces can be extended
to an isometry of X onto itself. Throughout this thesis, the set of all isometries of
a metric space X onto itself is denoted iso(X).

In the metric setting, Fraissé theorem consequently states:

THEOREM 2 (Fraissé theorem for metric spaces.). Let K be a Fraissé class of
metric spaces. Then there is, up to isometry, a unique countable ultrahomogeneous
metric space X whose class of finite metric subspaces is exvactly K. This space will
be called the Urysohn space associated to K.

As we mentionned when stating the general form of Fraissé theorem, uniqueness
of the Urysohn space can be shown via a back-and-forth argument after having
restated ultrahomogeneity in terms of a certain extension property. The purpose
of what follows is to state this extension property, and to show that it is indeed
equivalent to ultrahomogeneity. We start with the following important concept:

DEFINITION 1. If X = (X, dX) is a metric space, a map f : X — R is Katétov
over X when:

Ve,y € X, |f(z) = fy)| < d¥(z,y) < f(2) + f(y).
If E(X) denotes the set of all Katétov maps over X, X C Y and f € E(X), a
point y € Y realizes f over X when:

Ve e X, d¥(z,y) = f(x).

Equivalently, if f € E(X), then f can be thought as a potential new point that
can be added to the space X. Indeed, if f does not vanish on X, then one can

extend the metric dX on XU{f} by defining, for every =,y in X, é)\((x, f) = f(x)

and J)\((z,y) = d®(z,y). It is not the case when f vanishes at some point x but
then, one can check that for every y € X, f(y) = d*(z,y) and so f can be identified
with z. In any case, the corresponding metric space will be denoted X U {f}.

PROPOSITION 2. Let Y be a countable metric space. Then Y is ultrahomo-
geneous iff for every finite subspace X C Y and every Katétov map f over X, if
X U{f} embeds into Y, then there is y € Y realizing f over X. The same result
holds when Y is complete separable.

PROOF. Assume that Y is countable (resp. complete separable) and ultraho-
mogeneous. Consider an embedding ¢ : X U {f} — Y. By ultrahomogeneity of
Y, there is an isometry ¢ of Y onto itself such that:

Ve e X, ¥(x)=¢(z).

Then, ¥~ (p(f)) € Y realizes f over X.

For the converse, suppose first that Y is countable. Assume that {zo,...,2,}
and {zo,...,2,} are isometric finite subspaces of Y and that ¢ : 23 — 2z is an
isometry. We wish to extend ¢ to an isometry of Y onto itself. We do that thanks
to a back and forth method. First, extend {zo,...,2,} and {z0,...,2,} so that
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{zr ik ewt={z:k€w} =Y. For k < n,let o(k) = 7(k) = k. Then, set
o(n+1) =n+1. Consider the map f,1 defined on {¢(x, 1)) : & <n+ 1} by:

Ve <n+1, faor1(e(@om)) = d¥ (To(ni1)s To))-

Observe that f,, 1 is Katétov over {o(z)) : & < n+ 1} and that the space
{o(Tomy) + b <n+1}U{fny1} is isometric to {zs ) : & < n+1}. By hypothesis on
Y, we can consequently find ¢(2,(,,41)) realizing f, 41 over {¢@(x,xy) : K <n+1}.
Next, let:

T(n+1) =min{k € w: 2, & {@(2o(;)) 11 <n+1}}
Consider the map g,,41 defined on {z,) : & <n+ 1} by:

VE<n+1, gni1(@om) = d¥ (Zrme1), 9(Tok)))-

Then g1 is Katétov over {z,x) : & < n + 1} and the space {z,) : k <
n+ 1} U {gnq1} is isometric to {¢(2,x)) : & < n+ 1} U{2;(n41)}. So again, by
hypothesis on Y, we can find ¢! (z;(,41)) € Y realizing g,41 over {omy + k <
n+ 1}. In general, if o and 7 have been defined up to m and ¢ has been defined
on Ty :={Z0(0), - s To(m) } U{0 H(20(0))s - - s (2o(m)) } set:

om+1)=min{k cw:ap ¢ T}

Consider the map f,,+1 defined on ¢"T,, by:

Frnt1 (@) = & (To(mt1) Tor))
Yk <m+1, { 7 aimxi)>e
Fmi1(2r))) = A (Zo(mar), ¢~ (2r k)
Observe that f,,11 is Katétov over ¢”'T,, and that ¢"T,, U{fmn+1} is isometric
to Trn U {Z5(m41)}- By hypothesis on Y, we can consequently find ¢(zq(m+1))
realizing f,,11 over ¢'T,,. Next, let:

T(m+1) =min{k € w: 2z & {p(T50;)) 11 <n+1}}

Consider the map g, +1 defined on T}, by:

Vk <m4+1 { gm-i-l(xa_(k)) = dY(ZT(m+1)7(P($U(k)))
" gm0z w) = dY (Zrima) Zr(k)

Then g,41 is Katétov over Ty, and Tj, U {gm+1} is isometric to ¢"T,, U
{#(m+1)}- So again, by hypothesis on Y, we can find go’l(zT(mH)) € Y real-
izing g1 over T,,. After w steps, we are left with an isometry ¢ with Y = {zy :
k€ w}=dom(p) and Y = {2z, : k € w} =ran(p). This finishes the proof when Y
is countable.

If Y is complete separable, then the same proof works except that at the very
beginning, instead of extending {xy, ..., z,} and {z0, ..., 2z, } so that {zy : k € w} =
{z 1 k € w} =Y, we simply require that {z, : k¥ € w} and {zj : k € w} should be
dense in Y. At the end of the construction, ¢ is such that {z : k € w} C dom(y)
and {z : k € w} C ran(y). We can consequently extend it to an isometry of Y
onto itself. d
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2. Amalgamation and Fraissé classes of finite metric spaces.

2.1. First examples and path distances. The very first natural example
of amalgamation class of finite metric spaces is the class M of all finite metric
spaces. Showing that M satisfies the amalgamation property (and in fact the strong
amalgamation property) is not difficult but the underlying idea will be useful later
so we provide a complete proof.

PRrROPOSITION 3. The class M of all finite metric spaces has the strong amal-
gamation property.

PrOOF. Let X, Yo, Y1 € M and isometries fo: X — Yp and f; : X — Y.
We wish to find Z € M and isometries gy : Yo — Z, g1 : Y1 — Z such that
go © fo = g1 o fi. Equivalently, as mentionned in the previous section, we may
assume that X is a metric subspace both of Yy and Yy, that Yo N'Y; = X, and
that we have to extend d¥° U dY! to a metric on Yy UY;. To achieve that, see
Z :=YyUY; as an edge-labelled graph. For x,y € Z, and n € w strictly positive,
a define path from x to y of size n as is a finite sequence v = (2;);<n such that
Zo =, zn_1 =y and for every i <n — 1,

(2i, 2i41) € dom(A%).

The length of v is then defined by:

n—1
vl = Z M (21, zig1)-
i=0

Observe that here, the edge-labelled graph Z is metric. This means that for
every (z,y) € dom(\?%) and every path v from x to y:

N (@, y) < |-

This fact allows to define the a metric d% as follows: For z,y in Z, let P(z,vy)
be the set of all paths from x to y. Now, set:

d?(z,y) = mf{||y[| : v € P(z,y)}-
Then d? is as required. ([l

M is consequently a strong amalgamation class. Not beeing countable, it is
not a Fraissé class but this can be fixed by restricting the distances to a fixed
subset of ]0,+oo[ (0 is always a distance, so we never mention it as such). The
simplest such examples are the classes Mg and M,,, corresponding to the distance-
sets QN]0, +o00[ and wN]0, 00| respectively. These classes are indeed obviously
countable and hereditary. As for the amalgamation property, one can proceed
exactly as for M: The fact that the path distance takes its values in QN]0, 4+o0[ or
wN]0, +o0] is guaranteed by the fact that these sets are closed under finite sums.
Notice also that one may even take bounded subsets of |0, +o00[, say QN]0,r] or
wN]0, 7] for some strictly positive r € Q or w. In these cases, the previous proof
still works provided ||| is replaced by ||v|l<r:

17ll<r = min (][, 7).
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2.2. Ultrametric spaces. Recall that a metric space X = (X,dX) is ultra-
metric when given any x,y, z in X,

dX (2, 2) < max(dX(z, ), dX(y, 2)).
Using the idea of the previous section, one can prove:

PROPOSITION 4. Let S C|0,+o0[. Then the class Us of all finite ultrametric
spaces with distances in S has the strong amalgamation property.

PROOF. Reproduce the proof for M except that instead of ||v||, use ||v|lmax
defined by:

H’YHmax = OQIingaf—l )\Z(Ziy ziJrl).

O

It follows that when S is countable, Ug is a Fraissé class with strong amalga-
mation property. In fact, we will see in section 3.2 that:

PROPOSITION 5. Let K be a Fraissé class of finite ultrametric spaces. Assume
that KC has the strong amalgamation property. Then there is a countable S C|0, +00]
such that K = Us.

An explicit and detailed study of the classes Usg is carried out by Bogatyi in [3].
Ultrametric spaces are closely related to trees. Recall that a partially ordered set is a
tree T = (T, <T) when the set {s € T : s <T t} is <T-well-ordered for every element
t € T. When every element of T has finitely many <T-predecessors, the height of
t € Tisht(t) = |[{s € T :s <T t}|. When n < ht(t), t(n) denotes the unique
predecessor of ¢ with height n. The m-th level of T is T(m) = {t € T : ht(t) = m}.
The height of T, ht(T), is the least m such that T(m) = . When |T(0)| = 1,
we say that T is rooted. When T is rooted and s,t € T, A(s,t) is defined by
A(s,t) = max{n < ht(T) : s(n) = t(n)}.

The link between ultrametric spaces and trees is the following: Consider a tree
T of finite height, rooted, and where the set T™*" of all <T-maximal elements of
T coincides with the top level set of T. Given such a tree of height n and a finite
sequence ag > ay > ... > a,—1 of strictly positive real numbers, there is a natural
ultrametric space structure on T™" if the distance d is defined by:

d(S, t) = aA(s,t)-

Conversely, given any ultrametric space X with finitely many distances given
by ag > a; > ... > an_1, there is a tree T of height n such that X is the natural
ultrametric space associated to T and (a;);<n. The elements of T are the ordered
pairs of the form (m,b) where m € n and b = {y € X : dX(y,z) < a,,} for some
x € X. The structural ordering <7 is given by:

(1,b) <T (m,c) iff (I <m and b C c).
This connection with trees induces very particular structural properties. For
example:

THEOREM 3 (Shkarin [75]). Let X be a finite ultrametric space. Then there is
n € w such that X embeds into any Banach space Y with dim'Y > n.

This theorem is the last member of a long chain of results concerning isometric
embeddings of ultrametric spaces. For example, Vestfrid and Timan proved in [86]
(see also [87]) that any separable ultrametric space is isometric to a subspace of {5
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(a result also obtained independently by Lemin in [44]). Vestfrid showed later that
the result is also true if one replaces ¢ by ¢1 or ¢y. Fichet proved that any finite
ultrametric space embeds isometrically into ¢, for every p € [1,00], and Vestfrid
generalized this fact for a wider class of spaces. For more references, see [75]. We
do not present the proof of Shkarin’s theorem here but Fichet’s result, which we
proved before being aware of the reference, can be obtained easily by combinatorial
means:

THEOREM 4 (Fichet [14]). Let X be a finite ultrametric space. Then there is
n € w such that X embeds into any Banach space {, withp € [1,00] and dim Y > n.

PROOF. Let X be a finite ultrametric space with distances given by ag > a3 >

. > ap—1 and let T be the finite tree of height n such that X is the natural
ultrametric space on T™*" associated to (a;)i<n. We show that n = |T| works. For
p = 00, this is a simple consequence of the fact that E‘o).f | embeds any metric space
of size |X| so we concentrate on the case p € [1,00[. Let (e;)ier be a subfamily of

the canonical basis of ¢,, of size |T|. For ¢t € T, let

Observe then that for every z,y € X:

B=

)= | D> )+ > ut)y”

t;{Ty t;(Tz

Now, let ¢ : X — £, be defined by:

We claim that ¢ is an isometry. Indeed, let z,y € X. Then:
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P
o) — @I = || Y pt)ee— > ulte:
t<Ty t<Tx
P
= Z u(t)e: + Z u(t)e: — Z wu(t)er — Z w(t)es
T thy t<Tx t<Tz
<T t%\TI +<Ty t;{Ty
P
= Z pu(t)er — Z p(t)e
t<Ty t<Ta
t;{Tz t;(Ty
= > )P+ Y u)?
t<Tx t<Ty
t£Ty tLTa
= d*(z,y)".

O

2.3. Amalgamation classes associated to a distance set. The previous
examples are in fact particular instances of a more general case. Indeed, for S C
10, 4+00[, let Mg denote the class of finite metric spaces with distances in S. We
saw that when S is an initial segment of a set which is closed under finite sums,
the path distance allows to prove that Mg is an amalgamation class. But are there
some other cases? For example, can one characterize those subsets S C]0, +oo| for
which Mg is an amalgamation class? The answer is yes, thanks to a result due to
Delhommé, Laflamme, Pouzet and Sauer in [9].

DEFINITION 2. Let S C|0,+o0[. S satisfies the 4-values condition when for
every So, 81, 80, 81 € S, if there ist € S such that:

[so —s1] <t <so+s1, |sh—sy <t<sy+s),
then there is uw € S such that:
lso — 8| <u<so+sy, |s1—si<u<sy+s).
THEOREM 5 (Delhommé-Laflamme-Pouzet-Sauer [9]). Let S C|0,4+o0[. TFAE:
i) Mg has the strong amalgamation property.
ii) Mg has the amalgamation property.
ii1) S satisfies the 4-values condition.
PROOF. i) — ii) is obvious. For ii)— iii), fix s, s1, $(, 87 € S such that there
is t € S with:

|so —s1| <t <so+s1, [sp— sy <t <sp+ s

Now, consider Y := {xo,z1,y} and Y’ := {zg, 21,3’} and observe that one can
define metrics d¥ and d¥ on'Y and Y’ by setting:
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dY(any) = 50, dY(xlay) = 81, dY(x(hxl) =1
dY' (xo,y) = s, d¥ (x1,y) =5, d¥ (zo,2}) =t
Therefore, one can obtain a metric space Z be obtained by amalgamation of Y
and Y’ along {z,71}. Then u = d%(y,y') is as required.
For iii) — i), consider Y, and Y; in Mg such that d¥° and d¥* agree on
Yy NY;. We wish to show that d¥° UdY! can be extended to a metric d on Yy UY;.
We start with the case where |Yy N\ Y1| = |¥1 N\ Y| = 1. Set:

YosYi={w}, Yi~Yo={n}

The only thing we have to do is to define d on (yo,y1). Equivalently, we need
to find u € S such that for every y € Yo N Y7:

¥ (yo,y) — d¥ (y, 1) < u < d¥0(yo, y) + d¥* (y, 1)
To achieve that, observe that m < m/, where m and m’ are defined by:

m = max{|d¥°(yo,y) — d¥ (y,y1)| - y € YoNY1}
m' = min{d¥°(yo,y) +d¥ (y,41) : y € Yo N Y1}

Pick witnesses y and 3’ for m and m’ respectively. Then, set:

S0 = dYO(y()vy)a S1 = d¥: (y17y)
so=d¥°(yo,y"), sy =d (y1,9')
Set also:

t=d¥o(y,y') =d" (y,y).
Then observe that:
[so —s1] <t <sop+s1, |sh— sy <t<sy+sh

So by the 4-values condition, we obtain the required u € S. We now proceed
by induction on the size of the symmetric difference YyAY;. The previous proof
covers the case |[YpAY)| < 2. For the induction step, let Y = Y5 UY;. The cases
where Yy and Y; are C-comparable are obvious, so we may assume that Yy and
Y1 are C-incomparable. For ¢ < 2, pick y; € Y; N\ Y;_1. By induction assumption,
obtain a common extension Zg of Yo and Y1 \ {y1} on Y ~\ {y1}. By induction
assumption again, obtain another common extension Z; of Zg \ {yo} and Y; on
Y ~ {yo}. Now, observe that Y = Zy U Z; and that |ZoAZ;| = 2, so we can apply
the previous case to Zg and Z; to obtain the required extension. ([l

There are some cases where the 4-values condition is easily seen to hold. For
example, if S C [a,2a] for some strictly positive a, then S satisfies the 4-values
condition. It is also the case when S is closed under sums or absolute value of
the difference, which explains why it is possible to restrict distances to Q or w.
On the other hand, 4-values condition is also preserved when passing to an initial
segment. This allows distance sets of the form QN]0,r] or wN]0,r]. Finally, when
S C {sp:n € Z} with s, < % Snt+1, S also satisfes the 4-values condition as all
the elements in Mg are actually ultrametric. The 4-values condition consequently
covers a wide variety of examples.

For our purposes, the 4-values condition is relevent because it allows to produce
numerous examples of Fraissé classes whose elements can be relatively well handled
from a combinatorial point of view. To illustrate that fact, the rest of this section
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will be devoted to a full classification of the classes Mg when |S| < 3. This means
that we are going to establish a list of classes such that any class Mg with |S| < 3
will be in some sense isomorphic to some class in the list. More precisely, for finite
subsets S = {sg,...,8m}t<, T = {to,...,tn}< of |0, +00[, define S ~ T when m =n
and:

Vi, g,k <m, 8 <848, —t; <tj+ 1.

Observe that when S ~ T, S satisfies the 4-value condition iff T" does and in
this case, S and T essentially provide the same amalgamation class of finite metric
spaces as any X € Mg is isomorphic to X' = (X,dX’) € M7 where:

Vo,y € X, dX(z,y) = s; < d¥ (z,y) = t,.

Now, clearly, for a given cardinality m there are only finitely many ~-classes,
so we can find a finite collection Sy, of finite subsets of |0, co[ of size m such that
for every T of size m satisfying the 4-value condition, there is S € &, such that
T ~ S. Here, we provide such examples of S,, for m < 3. The reader will find a
complete list in Appendix A for m = 4. This is the largest value we considered as
there are already more than 70 ~-equivalence classes on which to test the 4-values
condition. In the sequel, S = {s; : i < |S|}< is a subset of |0, 4+o0].

The case |S| = 1 is trivial so we start with |S| = 2. There are then only 2
~-classes corresponding to the following chains of inequalities:

(1) S < s1 < 2s¢.
(2) s < 250 < s71.

(1) is satisfied by the set {1,2}. The 4-values condition is satisfied because
{1,2} is an initial segment of w which is closed under sums. M 9} is consequently
a Fraissé class. Observe that elements of My 5y can be seen as graphs where an
edge correspond to a distance 1 and a non-edge to a distance 2.

(2) is satisfied by the set {1,3}, which is also a particular case since 1 < % - 3.
Thus, elements of My, 3y are ultrametric and My 3y is a Fraissé class.

For |S| = 3, there are more cases to consider. To list all the relevent chains
of inequalities involving elements of S, we first write all the relevent inequalities
involving sg, s1 and their sums. We obtain:

(1) So < 81 < 250 < 89+ 81 < S1.
(2) Sp < 250 < 51 < 8¢+ 81 < 2871.

We now look at how s may be inserted in these chains. For (1), there are 4
possibilities:

So < 81 < S9 < 2809 < S+ 51 < 281 {2,3,4}
So < 81 < 2809 < 89 <50+ 51 <281 {1,273}
So < 81 < 250 < Sg+ 81 < 89 < 281 {1,2,4}
So < 81 < 289 < 809+ 51 <251 < 89 {1,275}

(1a
(1b
(1lc

o —

(1d

We now have to check if the 4-values condition holds for all the corresponding
sets.

(1a) {2,3,4} is an initial segment of w N [2, 400 which is closed under sums.
Thus, {2,3,4} satisfies the 4-values condition. Since there are no non-metric trian-
gles, the elements of M3 34} can be seen as the edge-labelled graphs with labels
in {2,3,4}.
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(1b) {1,2,3} is also an initial segment of a set which is closed under sums, so
it satisfies the 4-values condition. Note that here, there is a non-metric triangle
(corresponding to the distances 1,1, 3).

(1c) {1,2,4} does not satisfy the 4-values condition because of the quadruple
(1,1,2,4). M1 2.4y is consequently not a Fraissé class.

(1d) Finally, {1,2,5} satisfies the 4-values condition but this has to be done by
hand (see Appendix A for the details). Simply observe that for X € My o5, the
relation ~ defined by z ~ y « dX(x,y) < 2 is an equivalence relation. ~~-classes
can be thought as finite graphs with distance 5 between them. An example is given
in figure 1.

FIGURE 1. An element of My 3 5.

For (2), there are only 3 cases:

(2a) sp < 250 < 81 < 82 < S + 81 < 281 {1,3,4}
(Qb) So < 289 < 81 < 809+ 851 < 82 < 251 {1,3,6}
(2¢) sp < 289 < 81 < 89+ 851 < 281 < 89 {1,3,7}

(2a) The 4-values condition holds for {1, 3,4} but as for {1,2,5}, this has to be
proved by hand. For X € My 3 4, the relation ~ defined by » ~ y < dX(z,y) =1
is an equivalence relation. Between the elements of two disjoint balls of radius 1,
the distance can be arbitrarily 3 or 4. An example is given in figure 2.

FIGURE 2. An element of My 3 43.

(2b) {1,3,6} also satisfies the 4-values condition (to be checked by hand). For
X € My 36, the relation ~ defined by z ~ y < dX(x,y) = 1 is an equivalence
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relation. Between the elements of two disjoint balls of radius 1, the distance is
either always 3 or always 6. An example is provided in figure 3.

FIGURE 3. An element of My, 36y.

(2c) Elements of My 37y are ultrametric. It follows that this class is a Fraissé
class.

2.4. Euclidean spaces. Another way to generate amalgamation classes of
finite metric spaces is to fix an ultrahomogeneous metric space and to consider the
class of its finite subspaces. For example, if n € w is fixed, the Euclidean space E,, of
dimension n is ultrahomogeneous (in fact it is even more than ultrahomogeneous as
every isometry between any two metric subspaces can be extended to an isometry of
E,, onto itself). Thus, the class of finite metric subspaces of F,, is an amalgamation
class. However, because of the bound on the dimension, such a class will never
have the strong amalgamation property. This requirement being unavoidable for
our purposes, it will consequently be preferable for us to work with a subclass
of the class H consisting of all the finite affinely independent metric subspaces of
the Hilbert space ¢5. It is easy to see that H does have the strong amalgamation
property. As it is the case for M, H is not a Fraissé class because it is not countable
but this can be fixed by restricting the set of distances. For S subset of |0, +o0],
let Hg denote the class of all elements of H with distances in S.

PROPOSITION 6. Let S be dense subset of ]0,+o00[. Then Hg has the strong
amalgamation property.

PRrROOF. Following the strategy applied in the previous section, it is enough to
show that strong amalgamation holds for Yy and Y; along X where

[YoNY1]=[Y1\Yy|=1and Y; = XU {y;} for each i < 2.

Set n = |X|. See R""! as a hyperplane in R" and X as a metric subspace of
R™ 1. Fix §jy € R" such that for every z € X,
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190 — [l = d¥° (yo. ).
Now, it should be clear that in R™ there are exactly two points y such that
Vo € X, || —a| = d¥ (y1, 2).

Call them §™ and 77", with ||g7"™ — fo|| < [|F7"*® — §io||. Observe that ;"
and 7% are distinct and symmetric with respect to R®~!. Thus,

~min ~max

||y1 *QOH < [|77"** = Foll-
Indeed, if the distances were the same, §y would be in R®~!, which is not
the case. Now, notice that if we work in R™*!, we can use rotations to obtain a

~main

continuous curve ¢ : [0, 1] — R™*! such that ¢(0) = 7", p(1) = §7**® and
Vte[0,1] Vo e X |lp(t) -z =d¥ (y1,2).
Define § : [0,1] — R by:

5(t) = lle(t) = ol

By the intermediate value theorem, ¢ takes a value in S for some ¢, €]0,1].
Then X U {70} U {p(to)} is the required amalgam. O

Observe that a slight modification of the argument allows to show that another
class is Fraissé and has strong amalgamation: For X € H, let X* be the edge
labelled graph obtained from X by adjoining an extra point * to X such that
M7 (x,%) = 1 for every © € X. The class Sg is then defined by the class of all
elements X in Hg such that X* is also in Hg. Equivalently, Sg is the class of all
elements of Hg which embed isometrically into the unit sphere S> of /5 with the
property that {0y, } U X is affinely independent.

PROPOSITION 7. Let S be dense subset of |0,4+00[. Then Sg has the strong
amalgamation property.

PROOF. In the previous proof, simply replace X, Yo and Yy by X*, Y, and
Y7 respectively. O

Remark. It is known that ¢ is the only separable infinite dimensional ul-
trahomogeneous Banach space. In fact, much more is known. For example, any
separable infinite dimensional Banach space X where every isometry between finite
subsets of size at most 3 can be extended to an isometry of X onto itself has to be
an inner product space. The problem of whether 3 can be replaced by 2 is the con-
tent of the famous Banach-Mazur rotation problem. Mazur first proved in [47] that
the answer is positive in the finite dimensional case. Pelczynski and Rolewicz later
showed in [69] that the answer is no if one allows X to be non-separable...But in
the infinite dimensional separable case, the problem remains open, though several
partial results seem to suggest that the answer should be positive (see for example
[6], [73], or b[5] for a survey).
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2.5. Other examples. There are certainly many more examples of amalga-
mation classes of finite metric spaces than the ones we mentionned already but
as the classification of Fraissé classes of finite metric spaces is not known, we will
stop our inventory here and refer the interested reader to [4] by Bogatyi or [88] by
Watson. Let us simply mention a very last example, dealing with the class Q of
finite metric spaces satisfying the ultrametric quadrangle inequality. Those are the
spaces X for which given any xg, x1, T2, r3 € X,
dX(zg, 1) + dX(z2, 73) < max{dX(zq, r2) + dX(z1,3),dX (20, 23) + dX(71,22)}.

It turns out that Q is in fact exactly the class of all finite metric spaces which
can be embedded into R-trees. R-trees are defined as follows. For a metric space Y
and yo,y1 € Y, a geodesic segment in Y joining yo to y; is an isometric embedding
g:10,d¥ (yo,y1)] — Y with g(0) = yo and g(d¥ (yo, 1)) = y1. Now, a metric space
T is a real tree if i) For any two distinct points of T, there is a geodesic segment
joining them, and ii) If two geodesic segments have exactly one common boundary
point, then their union is also a geodesic segment. Using this characterization of Q,
one can show that Q (resp. Qg, the class obtained by restricting the distances to
Q) is an amalgamation class. R-trees play an important role in so-called asymptotic
geometry, but the purpose for which we introduce them here is that they will provide
an easy counterexample in section 4 of the present chapter.

3. Urysohn spaces.

Recall that according to Fraissé theorem, there is a particular countable ul-
trahomogeneous metric space X attached to any Fraissé class K of metric spaces:
The Urysohn space associated to IC. The purpose of this section is to provide some
information about the Urysohn spaces associated to the classes we introduced pre-
viously. However, before we start, we should mention that in most of the cases, we
will not be able to provide a concrete description of the space. This phenomenon is
explained by a general result due to Pouzet and Roux [70] concerning Fraissé limits
and implying that in some sense, given a countable language L and a Fraissé class
K of L-structures, the Fraissé limit is generic among all the countable L-structures
whose age is included in K. More precisely, when the set of all the countable L-
structures whose age is included in K is equipped with the relevent topology, the
set of all countable L-structures isomorphic to Flim(KC) is a dense Gs. This fact is
to be compared with the well-known result of Erdds and Rényi [13] according to
which a random countable graph (obtained by choosing edges independently with
probability 1/2 from a given countable vertex set) is isomorphic to the Rado graph
with probability 1.

3.1. The spaces Ug and Sg. The first Urysohn space we present is the
space Ug associated to the class Mg. Ug is called the rational Urysohn space
and deserves a particular treatment. It can indeed be seen as the initial step in
the construction of Urysohn to provide the very first example of universal separable
metric space. The original construction is quite technical but in essence contains the
same ideas as the ones that were used some thirty years later in the work of Fraissé.
The first observation is that to build Ug, it is enough to construct a countable
metric space Y with rational distances such that given any finite subspace X of Y
and every Katétov map f over X with rational values, there is y € Y realizing f
over X. Indeed, for such a Y, ultrahomogeneity is guaranteed by the equivalence
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provided in proposition 2. On the other hand, the set of all finite subspaces is
clearly included in Mg. Consequently, to prove that the finite subspaces of Y
is exactly Mg, it suffices to show that every element of Mg appears as a finite
subspace of Y. This is done via the following induction argument: For X € Mg,
fix an enumeration {z,, : n < |X|}. Then construct an isometric copy X of X inside
Y by starting with an arbitrary zo in Y and by choosing Z,; in the induction
step realizing the Katétov map f,41 defined over {Zg,...Z,} by:

fo1 (@) = A (i1, 21).

The construction of Y can be achieved via some kind of exhaustion argument:
Start with a singleton Xy. Then, if X,, is constructed for some n € w, X, 11 is
build so as to be countable with rational distances, including X,,, and such that
given every finite subspace X C X,, and every Katétov map f over X with rational
values, there is y € X,,11 realizing f over X. Then Y = (J,,, Xy, is as required. An
elegant way to perform the induction step is to follow the method due to Katétov
[39]. It is based on the observation that if X is a finite subspace of X,, and f is
Katétov over X, then there is a natural way to extend f to kx, (f) on X,,: Consider
the strong amalgam Z of XU {f} and X,, along X obtained using the path metric
presented in proposition 3. Then kx, (f) is defined by:

Vy € Xy, kx,(f)(y) = d?(f.y) (= min{d*"(y,2) + f(z) : x € X}).
Then, let:

Xnp1 = J{kx, (f) : f € E(X),X C Y, X finite}.

Equipped with the sup norm, X,,+1 becomes a metric space X, 1. The map
T dx"ﬂ(m7 -) then defines an isometric embedding of X,, into X,,+1. X, can
consequently be thought as a subspace of X,, 11 and one can check that X,, 1 has
the required property with respect to X,,.

A bounded variation of Ugq is obtained by considering the class Mgnjo,1- The
corresponding Urysohn space, Sq, is the rational Urysohn sphere. It will receive a
particular interest when we deal with indivisibility.

3.2. Ultrametric Urysohn spaces. We saw that when S C]0, +oo[, the class
Us of finite ultrametric spaces with distances in S is an amalgamation class. So
when S is at most countable, the class Ug is a Fraissé class whose corresponding
Urysohn space is denoted Bg. A particular feature of this space is that unlike most
of the other Urysohn spaces, it admits a very explicit description. Namely, Bg
can be seen as the set of all finitely supported elements of Q° equipped with the
distance dBs defined by:

dBs(z,y) = max{s € S : x(s) # y(s)}
In fact, using the tree representation, one can show that the family (Bg)s
when S CJ0,+oo[ is at most countable entirely exhausts the class of countable
ultrahomogeneous ultrametric spaces:

ProPOSITION 8. Let X be a countable ultrahomogeneous ultrametric space.
Then there is a countable S C|0,+00] such that X = Bg.

The spaces Bg are well-known. They appear together with a study of the classes
Us in the article [3] by Bogatyi but were already studied from a model-theoretic
point of view by Delon in [8] and mentionned by Poizat in [68]. More recently,
they appeared in [20] by Gao and Kechris for the study of the isometry relation
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between ultrahomogeneous discrete Polish ultrametric spaces from a descriptive
set-theoretic angle. They are also central in [9] where homogeneity in ultrametric
spaces is studied with details. In this thesis, these spaces will play a crucial role
when we come to the study of big Ramsey degrees as they represent the only case
where a complete analysis can be carried out.

Remark. A consequence of the previous proposition is the fact that we men-
tionned in section 2.2 stating that the classes Ug are the only Fraissé classes of
finite ultrametric spaces with strong amalgamation property.

3.3. Urysohn spaces associated to a distance set. Similarly, we saw that
when S CJ0, +oo] satisfies the 4-values condition, the class Mg of finite metric
spaces with distances in S is a strong amalgamation class. So when S is at most
countable, the class Mg is a Fraissé class whose corresponding Urysohn space is
the Urysohn space with distances in S, denoted Ug. Ug is a particular case of
such space. Similarly, we may simply take S = wN]0, +00[ to obtain the integral
Urysohn space U,. For S = {1,2,...,m}, one obtains a bounded version of U,
denoted U,,. Observe that for m = 2, U,, is really the path distance metric space
associated to the Rado graph. Finally, the 4-values condition allows to consider sets
S with a more intricate structure than those considered so far. The corresponding
Urysohn spaces may then be quite involved combinatorial objects, even when S is
finite. In this subsection, we provide a description of Ug when |S| < 3. For |S| = 4,
some cases will be described in the Appendix in order to study their indivisibility
properties, a notion introduced in the third chapter of this thesis. In what follows,
the numbering corresponds to the one introduced in subsection 2.3.

For |S| = 1, there is essentially only one Urysohn space: Uy, introduced above.

For |S| = 2, there are two distances sets, {1,2} and {1,3}. We just mentionned
the case S = {1,2} where the Urysohn space is the Rado graph. As for S = {1, 3},
it was also already presented: Uy 3y is ultrametric and is the in fact one of the
spaces Bg described in the previous section.

For |S| = 3, there are six distances sets.

(la) S = {2,3,4}. Elements of My, 34, are essentially edge-labelled graphs
with labels in {2,3,4}. Consequently, Uy 3 4) can be seen as a complete version of
the Rado graph with three kinds of edges.

(1b) S = {1,2,3}. This case was mentionned above, Uy 53y is the space we
denoted Us. However, like Uy and unlike the other spaces U,, for m > 4, Us can
be described quite simply. This fact, noticed by Sauer, will be crucial in the third
chapter. The main observation is that the only non metric triangle with labels
in {1,2,3} corresponds to the labels 1,1,3. It follows that Us can be encoded
by the countable ultrahomogeneous edge-labelled graph with edges in {1,3} and
forbidding the complete triangle with labels 1,1,3. The distance is then defined as
the standard shortest-path distance. Equivalently, the distance between two points
connected by an edge is the label of the edge while the distance between two points
which are not connected is 2.

(1d) S = {1,2,5}. The structure of the elements of M, 5 5} allows to see that
Uy1,2,5y is composed of countably many disjoint copies of Uz, and that the distance
between any two points not in the same copy of Us is always 5. Figure 4 is an
attempt to represent this space.
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(2a) S = {1,3,4}. Here, Uy 34, can be seen as some kind of random partite
graph with several kinds of edges. It is composed of countably many disjoint copies
of U; and points belonging to different copies of Uy can be randomly at distance
3 or distance 4 apart. Figure 5 is an attempt to represent this space.
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FIGURE 5. Uy 34y

(2b) S ={1,3,6}. Uyy 3) is also composed of countably many disjoint copies
of U; but the distance between points in two fixed disjoint copies of U; does not
vary as in the previous case, and is either 3 or 6. A convenient way to construct
Uy1,3,6} is to obtain it from Uy after having multiplied all the distances by 3 and
blown the points up to copies of U;. Figure 6 is an attempt to represent this space.

(2¢) For S ={1,3,7}, Ug is again ultrametric, equal to Bg.
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3.4. Countable Hilbertian Urysohn spaces. We saw in section 2.4 that
when S is a dense subset of ]0, +o0], the class Hg of all finite affinely independent
metric subspaces of /5 is a strong amalgamation class. It follows that the Urysohn
space Hg associated to Hg is a countable metric subspace of ¢ whose elements
are all affinely independent. Similarly, the class Sg is a strong amalgamation class
(recall that Sg is the class of all finite metric spaces X with distances in S and which
embed isometrically into the unit sphere S* of ¢, with the property that {0, } UX
is affinely independent). Thus, the associated Urysohn space Sg is a countable
metric subspace of S® whose elements are affinely independent. Without being
able to go any deeper into the description of those objects, we will see that these
spaces have very familiar completions.

4. Complete separable ultrahomogeneous metric spaces.

It follows from Fraissé’s theorem that the countable ultrahomogeneous metric
spaces are exactly the Fraissé limits of the Fraissé classes of finite metric spaces.
However, many interesting ultrahomogeneous metric are not countable but only
separable. We may consequently wonder if there are links between separable ul-
trahomogeneous metric spaces and countable ones. For example, is the completion
of an ultrahomogeneous metric space still ultrahomogeneous? And if so, does ev-
ery complete separable ultrahomogeneous metric space appear as the completion of
a countable ultrahomogeneous metric space? The following theorem provides the
answer to the first question.

ProPOSITION 9 (Folklore). There is an ultrahomogeneous metric space whose
completion is not ultrahomogeneous.

PRrROOF. Consider the space Y defined as follows: Elements of Y are maps
y : [0, py[— w with p, €]0, 400 and {t € [0, py[: y(t) # 0} C {t; : i € w} for some
converging strictly increasing sequence (t;);c. of elements in 0, +o0o[. For z,y € Y,
set:

t(z,y) =min{s € Q: z(s) # y(s)}.
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Then, let:

d¥ (z,y) = (pa — t(z,y)) + (py — t(z,y)).

One can check that Y is complete separable but not ultrahomogeneous. In
fact, it is not even point-homogeneous: For y € Y, if p, € Q, then Y ~\ {y}
has infininitely many connected components. On the other hand, if p, ¢ Q, then
Y~ {y} has only two connected components. We now prove the theorem by showing
that Y admits an ultrahomogeneous dense subspace: Consider the subspace X of
Y corresponding to the elements = of Y such that p, €]0,4+00[NQ and for which
{t € [0, pz[: x(t) # 0} is finite. One can check that X is countable and dense in
Y. But one can also check that X is ultrahomogeneous by verifying that it is the
Fraissé limit of the class Qg presented in subsection 2.5. O

The first question above consequently has a negative answer. The purpose of
what follows is to show that it is not the case for the second question and that
essentially, every complete separable ultrahomogeneous metric space is obtained by
completing a countable one.

THEOREM 6. FEwvery complete separable ultrahomogeneous metric space Y in-
cludes a countable ultrahomogeneous dense metric subspace.

ProOOF. We provide two proofs. The first one is standard: Let Xg C Y be
countable and dense. We construct X countable and ultrahomogeneous such that
Xp € X C Y. We proceed by induction. Assuming that X,, C Y countable has
been constructed, get X,, 11 as follows: Consider F the set of all finite subspaces of
X,,. For F € F, consider the set E,, (F) of all Katétov maps f over F with values in
the set {d¥ (z,y) : ,y € X,,} and such that F U {f} embeds into Y. Observe that
X,, being countable, so are {d¥ (z,y) : =,y € X,,} and E,,(F). Then, for F € F, f €
E,(F), fix y{; € Y realizing f over F. Finally, let X,, 11 be the subspace of Y with
underlying set X,, U {y{: :F e F,f e Ey(F)}. After w steps, set X = |J,,c,, Xn.
X is clearly a countable dense subspace of Y. It is ultrahomogeneous thanks to
the equivalent formulation of ultrahomogeneity provided in proposition 2. Indeed,
according to our construction, for every finite subspace F C X and every Katétov
map f over F, if FU {f} embeds into X, then there is y € X realizing f over F.
This finishes the first proof.

The second proof was pointed out by Stevo Todorcevic and involves logical
methods. Fix a countable elementary submodel M < Hjy for some large enough 6
and such that Y,d¥ € M. Let X = M N'Y. We claim that X has the required
property. First, observe that X is dense inside Y since by the elementarity of M,
there is a countable D € M (and therefore D C M) which is a dense subset of Y.
For ultrahomogeneity, let F C X be finite and let f be a Katétov map over F such
that F U {f} embeds into X. Observe that f € M. Indeed, dom(f) € M. On the
other hand, let F U {y} C X be isometric to F U {f} via an isometry . Then for
every z € F,dY(p(x),y) € M. But d¥(¢(z),y) = f(z). Thus, ran(f) € M. It
follows that f is an element of M. Now, by ultrahomogeneity of Y, there is y in Y
realizing f over F. So by elementarity, there is « in X realizing f over F. O

4.1. The spaces U and S. The metric completion U of Ug, is known as
the Urysohn space. It was constructed by Urysohn in 1925 and is, up to isometry,
the unique complete separable ultrahomogeneous metric space which contains all
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finite metric spaces. It follows that U is also universal for the class of all separable
metric spaces. This property deserves to be mentionned as historically, U is the
first example of separable metric space with this property. However, after Banach
and Mazur showed that C([0, 1]) was also an example of such a space, the Urysohn
space virtually disappeared and it is only after the work of Katétov [39] that U
became again subject to research, in particular thanks to the work of Uspenskij,
Vershik, Gromov, Bogatyi and Pestov. Today, a complete presentation of the result
about the Urysohn space would require much more than what we can provide in the
present thesis but the reader will find an attempt of survey in the appendix. Let us
simply mention the following result due to Pestov [65]: Whenever iso(U) (equipped
with the pointwise convergence topology) acts continuously on a compact space,
the action admits a fixed point. We will have the opportunity to come back to this
theorem but we would like to mention that its reformulation in terms of structural
Ramsey theory by Kechris, Pestov and Todorcevic [40] is the starting point of this
thesis.

The metric completion of Sq is the Urysohn sphere S. Up to isometry, S is the
unique complete separable ultrahomogeneous metric space which contains all finite
metric spaces with diameter less or equal to 1. S is pretty much as well understood
as U is in the sense that most of the proofs working for U can be transposed for
S. Later in this thesis, we will however study a property called oscillation stability
and with respect to which U and S behave differently.

4.2. Complete separable ultrahomogeneous ultrametric spaces. We
now turn to a description of ﬁs, the completion of Bg. Note that if 0 is not an
accumulation point for S, then Bg is discrete and ﬁs = Bg. Hence, in what
follows, we will assume that 0 is an accumulation point for S.

PRroPOSITION 10. The completion Es of the ultrametric space Bg is the ultra-
metric space with underlying set the set of all elements x € Q° for which there is a
strictly decreasing sequence (s;)icw of elements of S converging to 0 such that x is
supported by a subset of {s; : 1 € w}. The distance is given by

dBS(gc,y) =min{s € S:Vte S(s<t—z(t)=y)}

PrROOF. We first check that Bg is dense in ﬁs- Let z € ﬁg be associated
to the sequence (8;)icw. For n € w, let x, € Bg be defined by z,(s) = x(s) if
$ > Sp41 and by z,(s) = 0 otherwise. Then dBs (n,2) €< $p+1 — 0, and the
sequence (T, )new converges to x. To prove that f’:g is complete, let (z,)ncw be a
Cauchy sequence in ]§5. Observe first that given any s € S, the sequence z,(s) is
eventually constant. Call z(s) the corresponding constant value.

CLAIM. x € ES.

x is obviously in Q°. To show that x is supported by a subset of {s; : i € w}
for some strictly decreasing sequence (s;);c. of elements of S converging to 0, it
is enough to show that given any s € S, there are t < s < r € S such that z is
null on SNJ¢, s[ and on SN|s,r[. To do that, fix ¢ < s in S, and take N € w such
that Vg > p > N, dBs(z,,7,) < t'. zy being in ]§S, there are t and r in S such
that ¢’ <t < s < r and zy is null on SNJ¢, s[ and on SN|s,r[. We claim that x
agrees with xy on SN|t’, +0o0], hence is null on SNJ¢, s[ and on SN|s, r[. Indeed, let
n > N. Then dBs(z,,rn) <t < ss0 z, and xy agree on SN|t’, +co[. Hence, for
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every u € SNJt', +oo[, the sequence (z,,(u))n>n is constant and by definition of x
we have z(u) = x,,(u). The claim is proved.

CLAIM. The sequence (Tp)new converges to x.

Let € > 0. Fix s € SN]0,¢[ and N € w such that Vg > p > N, dﬁs(zq,xp) <e.
Then, as in the previous claim, for every n > N, x,, and zx (and hence z) agree

on SNJs, +oo[. Thus, dﬁs(xn,z) <s<e. O

Observe that when S = {1/(n+1) : n € w}, the metric completion of Bg is the
Baire space denoted N, a space of particular importance in descriptive set theory.

Observe also that in the ultrametric setting, there is no analog of the Urysohn
space U: Passing to the completion does not provide a complete separable ul-
trahomogeneous ultrametric space which is universal for the class of all separable
ultrametric spaces. There is a good reason behind this:

PRrROPOSITION 11. An ultrametric on a separable space takes at most countably
many values.

PROOF. Let X be ultrametric and separable with Xy C X countable and dense.
Then S := {d*(z,y) : © # y € X} is countable and X, embeds into Bg, so the
completion Xo of Xy embeds into ﬁs. But X C XO. It follows that X embeds into
B s and that only countably many distances appear in X. [

Finally, observe that thanks to the proposition in section 3.2, we obtain:

PRrROPOSITION 12. Let X be a complete separable ultrahomogeneous ultrametric
space. Then there is a countable S C]0,4+o00[ such that X = Bsg.

4.3. ¢, and S*°. The purpose of this section is to show how ¢y or S are
connected to the spaces introduced in section 3.4. We mentionned indeed that for
a countable dense S CJ0, +o0[, Hg is a Fraissé class whose corresponding Urysohn
space Hg is a countable metric subspace of 5 but that the structure of this space
was quite mysterious. The goal of this section is to prove that it is not the case for
the completion:

PROPOSITION 13. Let S CJ0,4o0[ be countable and dense. Then the metric
completion of Hg is {5.

PROOF. It is enough to prove that if Hg is seen as a metric subspace of /5
containing Og,, then its closure X := H; is a vector subspace of £5. Indeed, X will
then be an infinite dimensional closed subspace of /5, hence isometric to ¢5 itself.

We first show that if x € X and A € R, then Az € X. By continuity of y — Ay,
it suffices to concentrate on the case where x € Hg. Without loss of generality,
we may assume x # Oy, and A # 0. Fix ¢ > 0. Using the fact that S is dense
in ]0,4o0[, we can pick y € ¢35 such that {0,z,y} € Hg and ||y — Az|| < e. By
ultrahomogeneity, find ¢y’ € Hg such that {04, 2,3’} and {0,,x,y} are isometric
via the obvious map. Then an easy computation shows that ||y’ — Az|| < . Hence,
Ar € X.

Next, we show that X is closed under sums. As previously, continuity of +
allows to restrict ourselves to the case where z,y € Hg \ {0s,}. Fix ¢ > 0. As
previously, find z € ¢3 be such that ||(z+y) — 2| < € and {0g,,2,y,2} € Hgs.
By ultrahomogeneity, find z’ € {5 such that {0g,,x,y,2'} and {0, z,y,2} are
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isometric via the obvious map. Then again, an elementary computation shows that
l(x+y) — 2| <e. It follows that (z +y) € X.
O

A similar fact holds for Sg:

PROPOSITION 14. Let S CJ0,+o00[ be countable and dense. Then the metric
completion of Sg is S™.

PROOF. See Sg as a metric subspace of S*°. Since elements of Sg U {0g, } are
affinely independent, it is enough to prove that Y := Sg is such that {\y : \ €
R,y € Y} is a vector subspace of ¢5. Indeed, Y will then be the intersection of an
infinite dimensional closed subspace of {5 with S°°, hence isometric to S itself. To
do that, it suffices to show that mefy) €Y whenever z,y € Y and x+y # Oy,

By continuity of ||.|| and of +, it is enough to consider the case where z,y € Sg.
Fix € > 0. Find z € S* such that {z,y, 2} € Sg and ‘
ultrahomogeneity, find 2’ € ¢5 such that {0y,, z,y, 2’} and {04, x, y, 2} are isometric

e (z +y) — Z’H < e. It follows

lz+yll

1

via the obvious map. Then one can check that ‘



CHAPTER 2

Ramsey calculus, Ramsey degrees and universal
minimal flows.

1. Fundamentals of Ramsey theory and topological dynamics.

In this section, we introduce the basic concepts related to structural Ramsey
theory and present the recent results due to Kechris, Pestov and Todorcevic estab-
lishing a bridge between structural Ramsey theory and topological dynamics. As
for the introductory section in Chapter 1, our main reference here is [40].

Recall that for L-structures X, Z in a fixed relational language L, (>Z() denotes
the set of all copies of X inside Z. For k,l € w ~ {0} and a triple X,Y,Z of

L-structures, Z — (Y)i{l is an abbreviation for the statement:

For any y : ()Z() — k thereis Y € (‘Z{) such that |x” (§)| <L

When [ = 1, this is simply written Z — (Y)i( Given a class K of L-structures
and X € K, suppose that there is I € w ~\ {0} such that for any Y € K, and any
k € w~ {0}, there exists Z € K such that:

Z— (Y)5,

Then we write tx(X) for the least such number and call it the Ramsey degree
of X in IC. These concepts are closely related to purely Ramsey-theoretic results
for classes of order structures: Let L* be a relational signature with a distinguished
binary relation symbol <. An order L*-structure is an L*-structure X in which the
interpretation <X of < is a linear ordering. If K* is a class of L*-structures, K* is
an order class when every element of * is an order L*-structure.

Now, given a class K* of finite ordered L*-structures, say that K* has the
Ramsey property (or is a Ramsey class) when for every (X, <*X), (Y, <Y) € K* and
every k € w \ {0}, there is (Z, <%) € K* such that:

X
(Z,<%) — (Y, <¥) <

Observe that k can be replaced by 2 without any loss of generality. On the
other hand, given L* as above, let L be the signature L* \ {<}. Then given an
order class K*, let IC be the class of L-structures defined by:

K={X:(X,<X)ec K}

Say that K* is reasonable when for every X, Y € K, every embedding 7 :
X — Y and every linear ordering < on X such that (X, <) € K*, there is a linear
ordering <’ on Y such that 7 is also an embedding from (X, <) into (Y, <’). For
our purposes, reasonability is relevent because of the following proposition:

PROPOSITION 15. Let L* D {<} be a relational signature, K* a Fraissé order
class in L*, L = L* ~ {<} and K = {X : (X, <X) € K*}. Let (F,<¥) = Flim(K*).
Then the following are equivalent:

51
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i) K is a Fraissé class and F = Flim(KC).
i1) KC* is reasonable.

Finally, say that K* has the ordering property when given X € K, there is
Y € K such that given any linear orderings <X and <Y on X and Y, if (X, <X) ,
(Y,<Y) € K*, then (Y, <Y) contains an isomorphic copy of (X, <*X). Equivalently,
for every (X, <X) € K*, there is Y € K such that for every linear ordering <Y on
Y:

(Y, <Y) e K* = ((X,<*) embeds into (Y, <Y)).

Though not exactly stated in the present terminology, the study of the exis-
tence and the computation of Ramsey degrees have traditionally been completed
for several classes of finite structures such as graphs, hypergraphs and set systems
(Nesetfil-Rodl [58], [60]), vector spaces (Graham-Leeb-Rothschild [25]), Boolean
algebras (Graham-Rothschild [26]), trees (Fouché [15])...For more information
about structural Ramsey theory, the reader should refer to [54], to [27] or [55]. As
for orderings, it seems that their role was identified quite early (see for example
[42] or [57]). This information, together with many other references about Ramsey
and ordering properties, can be found in [55]. On the other hand, metric spaces do
not seem to have attracted much consideration, except maybe when the Ramsey
exponent is small (namely, |X| =1 or 2, see for example Nesettil-Rodl [59]). It is
only very recently that the first Ramsey class of finite metric spaces was discovered.
This result, due to Nesettil and which will be presented in the next section, was mo-
tivated by the connection we present now between Ramsey theory and topological
dynamics.

Let G be a topological group and X a compact Hausdorff space. A G-flow is a
continous action G x X — X. Sometimes, when the action is understood, the flow
is simply referred to as X. Given a G-flow X, a nonempty compact G-invariant
subset Y C X defines a subflow by restricting the action to Y. X is minimal
when X itself is the only nonempty compact G-invariant set (or equivalently, the
orbit of any point of X is dense in X). Using Zorn’s lemma, it can be shown that
every G-flow contains a minimal subflow. Now, given two G-flows X and Y, a
homomorphism from X to Y is a continuous map 7 : X — Y such that for every
z€Xand g€ G, (g -x)=g-7n(x). An isomorphism from X to Y is a bijective
homomorphism from X to Y. The following fact is a standard result in topological
dynamics (a proof can be found in [1]):

THEOREM 7. Let G be a topological group. Then there is a minimal G-flow
M(G) such that for any minimal G-flow X there is a surjective homomorphism
m: M(G) — X. Moreover, up to isomorphism, M(G) is uniquely determined by
these properties.

M (G) is called the universal minimal flow of G. When G is locally compact but
non compact, M(G) is a highly non-constructive object. Observe also that when
M (G) is reduced to a single point, G has a strong fixed point property: Whenever
G acts continuously on a compact Hausdorff space X, there is a point z € X such
that g - x = x for every g € G. G is then said to be extremely amenable.

THEOREM 8 (Kechris-Pestov-Todorcevic [40]). Let L* D {<} be a relational
signature, K* a Fraissé order class in L* and (F,<¥) = Flim(K*). Then the
following are equivalent:
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(1) Aut(F,<F) is extremely amenable.
(2) K* is a Ramsey class.

Let Xy« be the set of all K*-admissible orderings, that is linear orderings <
on F such that for every finite substructure X of F, (X, <] X) € K*. Seen as
a subspace of the product F' x F' via characteristic functions, the set of all linear
orderings on F' can be thought as a compact space. As a subspace of that latter
space, X~ is consequently compact and acted on continuously by Aut(F) via the
action Aut(F) x Xicx — Xycx, (g, <) —<9 defined by z <9 y iff g7 (z) < g7 (y).
In other words, X~ can be seen as a compact Aut(F)-flow. The following theorem
links minimality of this Aut(F)-flow with the ordering property:

THEOREM 9 (Kechris-Pestov-Todorcevic [40]). Let L* D {<} be a relational
signature, L = L* \ {<}, K* a reasonable Fraissé order class in L*, and K = {X :
(X,<X) € K*}. Let (F,<¥) = Flim(K*) and Xy« be the set of all K*-admissible
orderings. Then the following are equivalent:

(1) Xy« is a minimal Aut(F)-flow.
(2) K* satisfies the ordering property.

Additionally, when Ramsey property and ordering property are satisfied, even
more can be said about Xjc«:

THEOREM 10 (Kechris-Pestov-Todorcevic [40]). Let L* D {<} be a relational
signature, L = L* \ {<}, K* a reasonable Fraissé order class in L*, and K = {X :
(X,<X) € K*}. Let (F,<F) = Flim(K*) and Xy~ be the set of all K*-admissible
orderings. Assume finally that K* has the Ramsey and the ordering properties.
Then the universal minimal flow of Aut(F) is Xic«. In particular, it is metrizable.

Note that this result is not the first one providing a realization of the univer-
sal minimal flow of an automorphism group by a space of linear orderings: This
approach was first adopted by Glasner and Weiss in [21] in order to compute the
universal minimal flow of the permutation group of the integers. The paper [40]
continues this trend and provides various other examples. Let us also mention
that before [40], the pioneering example by Pestov in [64], followed by the one by
Glasner and Weiss, constituted some of the very few known cases of non extremely
amenable topological groups for which the universal minimal flow was known to be
metrizable, a property that M (Aut(F)) shares.

Here, we will be using these theorems to derive results about groups of the
form iso(X) where X is the Urysohn space or the completion of the Urysohn space
attached to a Fraissé class of finite metric spaces.

This chapter is organized as follows: In section 2, we present several Ramsey
classes of finite ordered metric spaces. We start with NeSettil theorem about finite
ordered metric spaces, follow with finite convexly ordered ultrametric spaces and
finish with results about finite metrically ordered metric spaces. In section 3, we
turn to the study of the ordering property and show that all the aforementionned
classes satisfy it. We then apply those results to derive several applications. In
section 4, we compute Ramsey degrees while in section 5, we use the connection
from [40] to deduce applications in topological dynamics. We finish in section 6
with some concluding remarks and open problems in metric Ramsey calculus.
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2. Finite metric Ramsey theorems.

2.1. Finite ordered metric spaces and NesSetiil’s theorem. In what fol-
lows, M< denotes the class of all finite ordered metric spaces. The purpose of this
section is to present the proof of the following result, due to Nesetfil.

THEOREM 11 (Nesetiil [56]). M= is a Ramsey class.

The main idea is to perform a variation of the so-called partite construction.
This technique is now well-known as its introduction by Nesetiil and Rodl in the
late seventies allowed to solve the long-standing conjecture stating that for every
n € w, the class of all finite ordered K, -free graphs is a Ramsey class.

2.1.1. Free amalgamation of edge-labelled graphs. The first step is to see finite
ordered metric spaces as finite ordered edge-labelled graphs. The result of Nesettil
and R6d]l mentionned above can easily be transposed in the context of edge-labelled
graphs (note that the partite construction originally appeared in [58], but the
interested reader may refer to [54] for the details): If one fixes a label set L, the
class of all finite ordered edge-labelled graphs with labels in L is a Ramsey class.
It follows that if (X, <*) and (Y, <Y) are finite ordered metric spaces, then there
is an edge-labelled graph (Z, <Z) with labels in the distance set of Y such that:

xX
(2, <) — (Y.<)

The problem here of course is that nothing guarantees that Z is a metric space.
The purpose of what follows is to show that this requirement can be fullfilled.

Before going into the details of the proof, observe that ordered edge-labelled
graphs satisfy the following version of amalgamation property, called free amalga-
mation property: For ordered edge-labelled graphs (X, <X), (Y, <¥0), (Y1, <Y1)
and embeddings fy : (X, <X) — (Yo, <¥0), f1: (X,<X) — (Y, <Y?), there
is a third ordered edge-labelled graph (Z, <%) and embeddings go : (Yo, <¥°) —
(Z,<?%), g1 : (Y1,<¥1) — (Z,<%) such that:

i) Z = gi¥o UgiMi.
i) 0.0 fo = 910 fu, g1 X = g Yo N g Yi(= gf 15 X).
i) dom(\%) = Uy, 6/dom(\Y") = {(g:(2),gi(v) : (2,) € dom(X¥*)}.

Such a (Z,<%) is called a free amalgam of (Yo,<Y°) and (Y1,<Y!) over
(X, <X). One may think of (Z, <%) as obtained by gluing (Yo, <¥°) and (Y1, <Y!)
along a prescribed copy of (X, <X). In what follows, free amalgamation will be
used to perform the following kind of operation: If an ordered edge-labelled graph
(X, <X) embeds into (Yo, <¥°) and (Y, <¥1), then we may obtain a new ordered
edge-labelled graph by extending every copy of (X, <X) in (Y1, <¥!) to a copy of
(Yo, <Y0) and by adding no more connections than necessary.

2.1.2. Hales-Jewett theorem. Another ingredient in Negettil’s proof is the well-
known Hales-Jewett theorem coming from combinatorics. A direct combinatorial
proof can be found in [27], while a topological proof based on ultrafilters can be
found in [78]. Let I" be a set (the alphabet), v ¢ T’ (the variable), and N a strictly
positive integer. A word of length N in the alphabet T is a map from N to I'. A
variable word in the alphabet T is a word in the alphabet I' U {v} taking the value
v at least once. If x is a variable word and v € T, (x) denotes the word obtained
from z by replacing all the occurences of v by v and (x) denotes the set defined by
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() = {3(z) ;v €T}
The set of all words of length N in the alphabet I is denoted W (T, N), whereas
the set of all variable words in the alphabet I' is denoted V(T', N).

THEOREM 12 (Hales-Jewett [29]). Let I' be a finite alphabet and k € w strictly
positive. Then there exists N € w such that whenever W(T', N) is partitioned into
k many pieces, there is a variable word x of length N in the alphabet T' such that
(x) lies in one part of the partition.

2.1.3. Liftings. With the previous concepts in mind, we can turn to the first
part of Nesettil’s proof. It involves an analog of partite graphs called here liftings.
For an edge-labelled graph (X, <*) and subsets A and B of X, write A <* B when

Yae AVbe B a<Xb.

DEFINITION 3. Let (X, <X) with X = {x, : a € |X|}.x be an ordered edge-
labelled graph. A lifting of (X, <X) is an ordered edge-labelled graph (Y,<Y) with
Y =Uac|x| Yo such that:

i) For every a < o/ < |X|, Yo <Y Y,.
it) For every a, o’ < |X|, Yo € Ya, Yor € Yo,

- a# o
{ ;ya;éyz’) € dOIIl(/\ ) — (xomxo/) € dOHl(AX)
« « )‘Y(yomyo/) = AX(xQVrOU)

LeEMMA 1. Let (X, <X) be a finite ordered metric space and (Y, <Y) be a lifting
of (X, <X). Then there is a lifting (Z,<%) of (X, <X) such that:

X,<X
(2.<%) — (Y.<),

PROOF. Observe first that since d¥ is defined everywhere on X x X, z, € Y,
for every a < |X|. More generally, if (Zo)a<|x| is a strictly increasing enumeration
of some copy (X, <X) of (X, <X) in (Y, <Y), then Z, is in € Y, for every o < |X]|.

Moreover, if @ # o' < |X|, then

/\Y(ii'O” i’a/) = )\X((Ea, xa/).

In other words, the label of an edge in a copy of (X, <*) in (Y, <Y) depends
only on the parts where the extremities of this edge live. Now, let N € w be large
Y,<Y)N

enough so that Hales-Jewett theorem holds for the colorings of the set (X ox

with two colors.
For a < |X|, set Z, = YN. Now, define Z = Ua<|x| Za- Z is a subset of yN

and is consequently linearly ordered by the restriction <% of the lexicographical
ordering on YV . Note that this ordering respects the parts of the decomposition

Z = Ua<‘X| Z, ie:
Zo <% ... <% Zix|1
For the edges, proceed as follows: For o, o < |X]|, zo € Zq, 20 € Zqr, set
(Za)zar) € dom(A%) « (VR < N (24(n), 24/(n)) € dom(AY)).

In this case, set
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MN(2a, 2ar) = AX(Ta, Tar)-

This situation is illustrated in figure 1.

Copies of Yy, Copies of Y
n=0 \ \ | \ \ |
\ )\X(mm flf'a’) \

1 \ <+« +———t—» |
2 \ | \ |
3 \ ) | \ ) |
/ /
\ | \ |
A (B0, 2o
e LS |
\ \

\ \ | \ \ |
\ | \ |
N-1 | | \ |

\ 2> (Tas Tar) \
N-2 | \ e ——»\ |

Zo Doy

FIGURE 1. An edge {zq, 2o} With label AX(z4, 7o/).

It should be clear that the resulting ordered edge-labelled graph (Z, <%) is a

xX
lifting of (X, <*X). We are now going to show that (Z, <%) — (Y, <Y);X’< ). For
n < N, let m, denote the n-th projection from Z onto Y, ie:

Vz e Z mn(z) =z(n).

First, observe that copies of (X, <*) are related to their projections. The proof
is easy and left to the reader:

Cram. Let (X, <3() C (Z,<%). Then:

~ S z ~ < Y
(X, <) e (255 < (vn <N (X, <X) e (§jx))
Co . . Z,<% . v, N
This implies that we can identify ( ) with ( ’ ) , the set of words of

X:<X X, <X
Y
length N in the alphabet (§§x)

CLAM. Let U be a variable word of length N in the alphabet (};2;) Then
(Y, <Y) embeds into |J (U).
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PRrROOF. Let V. C N be the set where the variable lives and let F' = N \ V.
For n € F, the nth letter of U is a copy {27 : a < |X|}v of (X, <X) in (Y, <Y).
Now, for y € Y with y € Y, let e(y) be the element of Z, defined by (see figure
2):

xny ifneF
cwm={ 5 fred

™
S
=
R
S

<

I
Za

FIGURE 2. e(y) for y € Y,,.

Then e is an embedding from (Y, <Y) into (Z, <%) and its direct image (Y, <Y)
satisfies:

50 cUw).
O

We can now complete the proof of the lemma. Let x : ()Z(E,Z() — 2. Thanks to

Y,<Y) N

the first claim, y transfers to a coloring X : (X ox

— 2. Now, by Hales-Jewett

N
theorem for (%Z:) and two colors, there is a variable word U of length N in

the alphabet G({Z:) so that (U) is monochromatic. This means that (g <<U,><) is

monochromatic and by the second claim there is a copy (?, <?) of (Y, <Y) inside
(Z, <2) satisfying (¥'<x) € U (). O
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2.1.4. Partite construction. We start with the following definition, linked to
the notion of metric path introduced in Chapter 1. Recall that for an edge-labelled
graph (Z,<%), x,y € Z, and n € w strictly positive, a path from x to y of size n as
is a finite sequence v = (z;);<n such that zg = x, z,-1 = y and for every i <n —1,

(ZZ‘, Zi+1) S dOHl()\Z)

For x,y in Z, P(x,y) is the set of all paths from x to y. If v = (2;)i<n is in

P(z,y), ||v]| is defined as:

n—1
Iyl = Z 6(2i, zit1)
i=0

On the other hand, for r € R, |v|/<, is defined as:
Ill<r = min(fly[l, ).

DEFINITION 4. Let | € w be strictly positive and X be an edge-labelled graph.
X is l-metric when for every (x,y) € dom(\X) and every path v from x toy of size
less or equal to l:

M (z,y) < |yl
It follows that X is metric when X is [-metric for every strictly positive [ € w.

Observe that this concept is only relevent when A* is not defined everywhere on
X x X.

PROPOSITION 16. Letl € w. Let Z be a finite [-metric edge-labelled graph with
label set Ly such that | € w is such that max Ly < l.minLyz. Then A% can be
extended to a metric on Z.

ProoF. Using the notation introduced in Chapter 1, simply check that d? is
as required, where

Vm,y €Z dz(xuy) = inf{H’YHSmaXLZ HIOlS P('Tvy)}

O
Now, let Dy be the distance set of Y. To show that there is a finite ordered
X
metric space (Z, <%) such that (Z, <%) — (Y, <Y)gx’< ), it suffices to show that

for every strictly positive [ € w, the statement H; holds, where

H; : "There is an [-metric edge-labelled graph (Z, <Z%) with Lz C Dy such that
X
(Z,<%) — (Y, <),

PrROOF. We proceed by induction on [ > 0. For [ = 1, there is no restriction
on Z, so Hj is true according to the general theory of Nesetfil and Rodl. Assume
now that for a given [ > 0, H; holds with witness (Z,<%) = {2z, : a < |Z|}.
Let (Pg, <F9) be the lifting of (Z, <%) obtained as follows: The underlying set Py
is obtained by taking a disjoint union of copies of (Y,<Y), one for each copy of
(Y, <Y) in (Z, <%):

Py = UBE(ZKZ) Ys.

Y, <Y

For the parts of Py, given 3 € (‘Z(z‘z(), let 75 be the order preserving isometry
from Y3 onto 3 and let
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z
o = U{ﬂ'g NS (gzy)}
Then define
POa = 7<T_O{Zoc}~

The construction of Py is illustrated in figure 3.

(Pg, <?)
‘e ®© & &) ‘S ®© & &)

o jQQQDj 3‘ j 3 QD

o

| | v T
2<% Cee@Red @ee &

S

Copies of (Y, <Y) in (Z, <%)

FiGurE 3. Construction of Pyg.

Finally, for the linear ordering <¥°, observe that the linear ordering <% already
allows to compare points which are not in a same part. By ordering the elements
within a same part arbitrarily, one consequently obtains a linear ordering which
respects the parts of the decomposition of Py. The resulting lifting of (Z, <%) is
(Po, <P0).

Observe that Pg is metric, and consequently (I + 1)-metric. Now, write

(>Z<’§f<) ={Xi... Xq}~

Inductively, we are now going to construct liftings (P1, <P1),..., (P4, <F4) of
(Z,<?%), each of them (I + 1)-metric, and such that:
X
(Py, <F1) — (Y, <¥)5° ")
To construct (Py,<F1), consider ToX;. The ordered edge-labelled graph in-
duced on this set, call it (Vi,<V1), is a lifting of (X, <X). Apply lemma 1 to get
a lifting (W1, <W1) of (X, <) such that

X
(Wla <W1) - (V17 <V1);X7< )

W1,<w1
Vi,<V1
of (Pgy,<P?). The resulting finite edge-labelled graph is P;. Its construction is
illustrated in figure 4.

By strong amalgamation property, extend every element of ( ) to a copy
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Wy
—

® >coples of Py

¥

V\T/' copy of V;

parts supporting X;

a8

FIGURE 4. Construction of Py from Py.

It should be clear that associated to P; is a natural projection m; from P; onto
Z. This allows to define the parts and the ordering on P;.

CLAM. Py is (I 4 1)-metric.

PROOF. Let 7o, ..., 7141 be a path in Py such that (zg,z;41) € dom(\FP1). We
want

1
NP1 (20, 2141) < Zx\Pl(xk,a:kH).
k=0
Or equivalently
1
N2 (i (o), m1 (wig1)) < D N (i (), w1 (w41))-
k=0
Since Z is l-metric, the only case to consider is when the only connections
occuring between elements of the projection of the path are (m(z), 71 (2141)) and
those of the form (m(xg),m1(2g+1)) where k < I. Since both W; and Py are
(I + 1)-metric, it is enough to show that the path either stays in Wy, or stays
in a fixed copy P of Py. So suppose that the path leaves W;. Using a circular
permutation, we may reenumerate the path such that g € P ~~ Wy. It follows
then that x;11 is also in P. Now, assume now that for some k, z; ¢ P. Find
a < j < bsuch that 4,2, € W;. Observe that because W is a copy of X in Z
(namely X;1), m1(z,) and 71 (xp) are connected. But this is a contradiction: Since
zo ¢ Wi, mi(zo) ¢ {m1(2a), m1(2p)} and so (w1(za), m1(2s)) # (m1(20), T1(2141)).
On the other hand a + 1 # b. O

In general, to build (P;, 1, <Fi+1) from (P;, <F?), simply repeat the same pro-
cedure: Consider 7<r_iXi+1. The ordered edge-labelled graph (V;41, <Vi+1) induced
on this set is a lifting of (X, <*X). Apply lemma 1 to get a lifting (W, <Wi+1)
of (X, <X) such that

(X,<*)

(Wi-‘rlv <Wi+1) - (Vi-‘rlv <V )2
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Wigq,<Witt
v, ) to a
Vigr,<Vitt

copy of (P;,<F#). The resulting finite edge-labelled graph is P;;;. The parts and
the ordering on P, are defined according to the natural projection m;41 from P; 4
onto Z. P, then becomes a lifting of Z, and one can show that it is (I + 1)-metric.
We now finish the proof by showing that

By strong amalgamation property, extend every element of (

X
(Pg, <P1) — (Y, <¥)50<),

For the sake of clarity, we temporarily drop mention of the linear orderings

attached to the edge-labelled graphs under consideration.
Let x : (1;‘7) — 2. We want to find Y € (l;q) such that GZ) is monochromatic.

x induces a coloring x : (V;](‘?) — 2 and by construction:

X

Wq - (VQ)Q

Thus, there is a copy {/'q of V, in W, so that (\)/(‘1) is monochromatic. Now,

when constructing P, from P,_;, V, was extended to f’q,l € (qul) for which x
~ =

induces x : (ngl) — 2. Notice that \7(1 is exactly f’q,l N ﬁXq, the subgraph
of P,_; projecting in Z onto X,. (%) being monochromatic, every two copies of
X in iv/'q projecting in Z onto X, have the same color.

Now, consider the natural copy Wq_l of W,_1 in f’q_l. X induces a 2-coloring

of (W)q(”) and W,_; was chosen so that
Wi — (qul);('

Therefore, there is a copy \N/'q,l of Vg1 in Wq,l so that (Vg(‘l) is monochro-
matic. Now, knowing how P,_; is constructed from P,_5, observe that V,_;
extends to a copy P,_o of P,_5 inside P,_;, with respect to which x induces:

x: (g7 — 2

As previously, \~7q_1 is exactly ]_5,1_2 N mq—2X4—1, the subgraph of f'q_g pro-
jecting onto X,_o. (V&) being monochromatic, every two copies of X in Vo1
projecting in Z onto X,_» have the same color. Keep in mind that thanks to the
companion result at the previous step, the same holds for those copies of X in V,_;
projecting in Z onto X,.

By repeating this argument ¢ times, we end up with a copy Pg of Py in P, so
that given any k € {1,..., ¢}, any two copies of X in Py projecting in Z onto Xy,
have the same color. From y, we can consequently construct a coloring

X A{X1, .., Xt = ()Z() — 2.
The color X(X}) is simply the common color of all the copies of X in f’o

projecting onto Xj. Now, remember that Z was chosen so as to satisfy:
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Thus, there is 8 € (5) such that (Q) is X-monochromatic. At the level of f’o
and Y, this means that all the copies of X in 150 projecting in Z onto a subset
of 0 have the same color. But by construction, the subgraph of P, projecting
onto (3 includes a copy Y, namely Yg. Yg is consequently an element of (1;?) for
which (3)((5) is monochromatic. This proves the claim, and finishes the proof of the
theorem. (]

In fact, the previous proof allows to prove a slightly more general result. For
S CJ0,+o0[, let M5 denote the class of all finite ordered metric spaces with dis-
tances in S.

THEOREM 13 (Nesetiil [56]). Let T C]0,+o0[ be closed under sums and S be
an initial segment of T. Then M§ has the Ramsey property.

It follows that in particular, the classes Mé, M(Em]o l with r > 0in Q, MS and
Mfm]o m] with m > 0 in w are Ramsey. Let us mention here that the assumption
on the behavior of S with respect to sums is not superficial. We will see in the next

two subsections that when this requirement is not fullfilled, the situation is pretty
different.

2.2. Finite convexly ordered ultrametric spaces. The purpose of this
subsection is to provide another example of a Ramsey class. Let X be an ultrametric
space. Call a linear ordering < on X conver when all the metric balls of X are
<-convex. For S CJ0,+oo], let USS denote the class of all finite convexly ordered
ultrametric spaces with distances in S.

THEOREM 14. Let S C|0,4+o00[. Then USS has the Ramsey property.

To prove this result, we first need some notations for the partition calculus on
trees. Given trees (T, <) and (S, < ) as described in chapter 1, section 2.2, say
that they are isomorphic when there is a bijection between them which preserves
both the structural and the lexicographical orderings. Also, given a tree (U, <}gw),
set:

U<\ _ i Ty . T _T \ ~
(T,:;ZI;L) - {(T’ <;£:1;) * T C U /\ (T7 <£z) = (T7 <’l£z)}

Now, if (S, <), (T,<E,) and (U, <Y ) are trees, the symbol

(S,<ha)
(U, <i2e) — (T, <),
abbreviates the statement:

U ~ - u
For any x : (Isjzlé”) — k there is (T, <E,) € (I;E;TI), 1 < k, such that:

X (55 = (i}

LEMMA 2. Given an integer k € w ~ {0}, a finite tree (T, <L) and a subtree
(S,<8.) of (T, <k.) such that ht(T) = ht(S), there is a finite tree (U, <) such

S
that ht(U) = ht(T) and (U,<U,) — (T, <F, )5,

A natural way to proceed is by induction on the height ht(T) of T. Actually,
it is so natural that after having done so, we realized that this method had already
been used in [15] where the exact same result is obtained! Consequently, we choose
to provide a different proof which uses the notion of ultrafilter-tree.
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PROOF. For the sake of clarity, we sometimes not mention the lexicographical
orderings explicitly. For example, T stands for (T, <~ ). So let T C S be some
finite trees of height n and set U be equal to wS". U is naturally lexicographically
ordered. To prove the theorem, we only need to prove that U — (T)S Indeed,
even though U is not finite, a standard compactness argument can take us to the
finite.

Let {s; :i <[S[}.s be a strictly <8 -increasing enumeration of the elements
of S and define f : |[S| — |S| such that:

i) £(0) = 0.
ii) s¢(;) is the immediate <S-predecessor of s; in S if i > 0.
Similarly, define g : [T| — [T| for T = {t; : j <|T|} . . Let also
S ={XcU:XCS8} (resp. 7={XCU:XCT}).

where X C S means that X is a <lle]x—initia1 segment of some S~S. & (resp.
) has a natural tree structure with respect to <llgx—initial segment, has height |S|
(resp. |T|) and
Fmar — (ISJ) (resp. TmaT = (}I{))

Now, for z in U, let ISy(x) denote the set of immediate <Y-successors of z in
U. Then observe that if X € .7\ ™" is enumerated as {z; : 1 < |X|} v and

u € U such that X < wu (that is < u for every z € X), then:
XU {u} e Liffue ISU(xf(|X\))
Consequently, X, X’ € . \ .¥™?" can be simultaneously extended in . iff:
(X)) = Ty x0))-

Now, for u € U, let W, be a non-principal ultrafilter on ISy (u) and for every

X e L™ et Vx = Wa,xp,- Hence, Vx is an ultrafilter on the set of all

elements u in U which can be used to extend X in .#. Let S be a V-subtree of 7,
that is a subtree such that for every X € § \ .&™%*:

{fueU: X < uAXU{u}eS}eVx.
CLAIM. There is T € ((T]) such that (Z‘) C §mer,
For X € S, let:

Ux ={ueU:X < unXU{u}eS}

T is constructed inductively. Start with 79 = @. Generally, suppose that
7o <}gw e <}gw 7; were constructed such that:

VX C {r,...,75}, Xes/—>XeS.
Consider now the family Z defined by:
IT={I1cCH{0,....5}:{ti:ieI}U{tj1} C S}
For I € 7 let:
Xr={n:1el}.
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(X1)rez is consequently the family of all elements of . which need to be
extended with 7;41. In other words, we have to choose 7;4; € U such that:

1) {7_03--~a7_j+1} S 7.
il) XU {141} € S for every I € Z.
To do that, notice that for any u € U which satisfies 7; < u, we have:
{T(], e ,Tj,u} e 7 iffuce ISU(Tg(j+1))~

Now, for any such « and any I € Z, we have X; U {u} € . ie u allows a
simultaneous extension of all the elements of {X; : I € Z}. Consequently, Vx, does
not depend on I € Z. Let V be the corresponding common value. For every I € 7,
we have Ux, € V so one can pick 7j41 such that:

U
Tj <iew Tit1 € [ Ux;
IeT

Then 741 is as required. Indeed, on the one hand, because 7,1 € ISu(74(;+1)):
{r0,...,Tj11} € 7.
On the other hand, since 7;41 € Ux,,
XrU{rj41} € S for every I € T.

At the end of the construction, we are left with T := {r; : j €|T|} € T such
that:

(3) e smes

The claim is proved. The proof of the lemma will be complete if we prove the
following claim:

CrAamM. Given any k € w~ {0} and any x : (g) — k, there is a V-subtree S
of & such that 8™ is xy-monochromatic.

We proceed by induction on the height of .. The case ht(.¥) = 0 is trivial so
suppose that the claim holds for ht(.) = n and consider the case ht(.¥) = n + 1.
Define a coloring A : .(n) — k by:

AX)=ciff {fueU: XU{u} € (n+1) Ax(XU{u}) =¢} € Vx.

By induction hypothesis, we can find a V-subtree S, of 7 | n (the tree formed
by the n first levels of .#) such that S*** is A-monochromatic with color €y. This
means that for every X € S,,, the set Vx is in Vx, where Vx is defined by:

Vx ={ueU: XU{u} € L(n+1) A x(XU{u}) =¢o}
Now, let:
S=8SU{XU{u}: XeS, AueVx}.

Then S is a V-subtree of .% and S™% is x-monochromatic. (|
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We now show how to obtain theorem 14 from lemma 2. Fix S CJ0,+oo,
let (X, <X), (Y,<Y) € U and consider (T,<T ) associated to (Y,<Y). As
presented in section 2, (Y,<Y) can be seen as (T™*,<E ). Now, notice that

there is a subtree (S, < ) of (T,<T_) such that for every (i, <)~() € (T;L<§L),

the downward <T-closure of X is isomorphic to (S,<lsex). Conversely, for any

(S, <l§ez) in ("gjl;;f), (gma ). These facts allow us to build

l

(Z,<?%) such that:

max T
’<lez

€z S .. T
<5 .)isin ( X X

X
(Z,<2) — (Y, <))

Indeed, apply lemma 2 to get (U, <} ) of height ht(T) such that:

(S.<fex)
(U, <llgz) — (T, <’lIe‘m)k e’
Then, simply let (Z, <?%) be the convexly ordered ultrametric space associated
to (U, <,). To check that (Z, <?%) works, let:
z
X (X 2x) — k.
X transfers to:

A (‘SJ;;%:) ok

~ ~ U Tm T
Thus, we can find (T, <t )€ (g:l;*) such that (g:lse*) is A-monochromatic.
' Nlex

*Slex

. ~mazx T . Tmaw <'i‘
Then the convexly ordered ultrametric space (T, <) is such that (7 4 ')

: - mar g v :
is x-monochromatic. But (T, <}.,) = (Y,<"). Theorem 14 is proved.

Remark. We will see later in this chapter that unlike U<, the class US of
all finite ordered ultrametric spaces with distances in S does not have the Ramsey

property.

2.3. Finite metrically ordered metric spaces. The results of the two pre-
vious sections suggest that the metric structure of the spaces under consideration
strongly influences the kind of linear orderings to be adjoined in order to get a
Ramsey-type result. The present subsection can be seen as an illustration of that
fact. Let K be a class of metric spaces. For s €]0,4+oc[ and X € K, let ~X be the
binary relation defined on X by:

Vz,y € X x~Xy o d¥(z,y) < s.

Say that s is critical for K when for every X € K, ~X is an equivalence relation
on X. On the other hand, given X € K, say that a binary relation R is a metric
equivalence relation on X when there is s €]0, +oo[ critical in K such that R =~X.
For example, for the classes Mg, any s € S such that |s,2s] NS = is critical. Of
course, when S is finite, max .S is always critical, but there might be other critical
distances. For instance, 2 is critical for My o 5y, 1 is critical for My 34y and for
M1,3,63- On the other hand, given S CJ0, +o0[, any s € S is critical for Us.

Now, call a linear ordering < on X € K metric if given any metric equivalence
relation ~ on X, the ~-equivalence classes are <-convex. Given S C|0, 400, let

ME< denote the class of all finite metrically ordered metric spaces with distances
in S.

THEOREM 15. Let S be finite subset of |0, 4+00[ of size |S| < 3 and satisfying
the 4-values condition. Then MZ< has the Ramsey property.
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PRrROOF. The case |S| = 1is trivial. Recall that for |S| = 2, there are essentially
two cases, namely S = {1,2} and S = {1,3}. When X € My 5}, all the linear
orderings on X are metric so /\/lf{”1<2} = M{<1 2} is a Ramsey class thanks to theorem
13. On the other hand, when X € My 33, X is ultrametric and the metric linear
orderings on X are the convex ones. Thus, M’ﬁé} = z,[{01<3} and has the Ramsey
property thanks to theorem 14. For |S| = 3, the cases to consider are:

(la) {2, 3,4} (1b) {1, 2,3} (1d) {1, 2, 5}
(2a) {1, 3,4} (2b) {1, 3,6} (2¢) {1,3, 7}
(1a) and (1b) are covered by theorem 13. (2c) is covered by theorem 14. The

remaining cases could be treated one by one but in what follows, we cover them all
at once thanks to the following lemma. Let T := {1,2,5,6,9}. Then:

LEMMA 3. M has the Ramsey property.

PROOF. For (X, <*) € MJ<, let Bx be the set of all balls of X of radius 2.
Define an ordered graph (Gx, <%x) as follows: The set of vertices of Gx is given
by

Gx = |J (S u{rX(@):z b}

beBx
The linear ordering <©* is such that
i) v <Gx {7X(z) : 2 € b} <Gx v whenever b <X V.
i) %
The set E(Gx) of edges of Gx is such that:
i) {vF, 0¥} € E(Gx) iff (Vx € b Va' € b d*(z,2') € {5,6}).
ii) For every b € Bx and z € X, {vF, 7% (2)} € E(Gx) iff z € b.
iii) {7X(z),7X(z)} € BE(Gx) iff d®(z,2") € {1,5}.

The construction of Gx from X is illustrated in figure 5.

is order-preserving.

Gx

Vb, Up, Ups Vp,y

FI1GUrE 5. Construction of Gx. from X
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Now, define d¥(G%) ({v, w} _ax, {v/,w'} cax ) by:

if v=2" and {w,w'} € E(Gx).

if v=2" and {w,w'} ¢ F(Gx)

if v#v" and {v,v'} € E(Gx) and {w,w'} € E(Gx)
if v#v" and {v,v'} € E(Gx) and {w,w'} ¢ E(Gx)
9 ifv#0 and {v,v'} ¢ E(Gx)

O UL N

CLAIM. dE(GX) s q metric.

PROOF. It is enough to show that the triangle inequality is satisfied. Take
{v,w}_cx, {v,w'}_ex and {v", 0"} _cx in F(Gx) and set
dP(GX) ({v,w} cax, {v,w'}cex) =
PG ({v,w'} cax, {v", w"} cox) =
PG ({v, w}oex, {v",w"}ex) =7
We have to show that we are not in one of the following cases: (o, 3 € {1,2}
and v > 5) or (a € {1,2}, B8 € {5,6} and v = 9). Assume that «, 3 € {1,2}.
Then v = v" and v/ = v”. Thus, v = v" and v < 5 so the first case is covered.
For the second case, assume that o € {1,2} and g € {5,6}. Then v = v’ and
{v,v"} € E(Gx). It follows that {v,v"} € E(Gx) and so v # 9. O

For z € X, let b(x) denote the only element b of Bx such that = € b and define
a map px : X — E(Gx) by ¢x(z) = {vi%w),ﬂx(x)}. Then it is easy to check
that when F(Gx) is equipped with the lexicographical ordering:

CLAIM. @x is an order-preserving isometry.

The map (X, <X) — (Gx, <®%) consequently codes the ordered metric space
(X, <X) into the ordered graph (Gx, <©*). We now prove two essential properties
of this coding. Let (Y,<Y) be a finite ordered metric space and (X, <*X) be a
subspace of (Y, <Y).
1) Every copy of (X, <X) in (Y, <Y) gives raise to a copy of (Gx, <) in
(Gy, <GY).
2) Conversely, every copy of (Gx, <%%) in (Gy, <%¥) codes a copy of
(X, <*)in (Y, <Y).
More precisely, for 1), let (Y, <Y) € M/*<. Thanks to the previous claim, we
have:

(Y, <) 2 ({0, 7Y (W)} cov 1y € Y}, <o) = (Y, <Y).

CrLA. Let (X, <X) e (;’;2;) Then (J X, <% U X) = (Gx, <).

PROOF. Since ¢y is an order-preserving isometry, Zp_yfi supports a copy of
(X, <X) in (Y,<Y). Let ¢ : X — pyX be the order-preserving isometry wit-
nessing that fact. On the one hand:

UX = {v)f, zemxX}ui{r¥(z):zc pyX}
= {vp@) T E€X}IU {7Y((x)) : 2 € X}
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On the other hand:
Gx = {vi%x) rz e XPU{r¥(z): 2 € X}.

So it is enough to check that the map defined by U;%x) — Ul??w(a:)) and 7% (z)

7Y (1p(x)) for every x € X is an ordered graph isomorphism. The fact that the
ordering is preserved is obvious. To verify that the edges are also preserved, we
have to check that for every z, 2’ € X:

1) {0360 Vitery} € E(Gx) HE {0300y Vi(w(aryy} € E(Gy).

ii) {vg%x),ﬂx(x')} € E(Gx) iff {vggw(x)),wY(w(x’))} € E(Gy).

iii) {7 (2), 7% (2)} € B(Gx) iff {7¥ (s (2)), 7Y (¥(a"))} € E(Gy).
Let « # 2’ € X. For i)

{vﬁx),vﬁx/)} € E(Gx) < dX(x,2") € {5,6}
o d¥(Y(2), (")) € {5,6}
= A0 Vol € B(Gy)
For ii)
{vg%x),wx(x’)} € E(Gx) < dX(x,2') €{1,2}
o d¥(Y(2), (") € {1,2}
= {0y (W)} € E(Gy)
Finally, for iii)
{7X(z),7%(2")} € E(Gx) <« d¥(z,2') € {1,5}
= d¥()(2),¥(a")) € {1,5}
= ArY (@), 7Y (¥())} € E(Gy)

O

For 2), we need to show how, given a copy of (Gx, <%X), one can reconstruct
a 'natural’ copy of (X, <X). We proceed as follows: Let (G,<%) be a copy of
(Gx,<%%) and let ¢ be an order-preserving graph isomorphism from (Gx, <©%)
onto (G,<%). Then the ordered metric subspace of (E(Gx), <iez) supported by
{{U(U;%I)),U(ﬂ'x(.’lf))} : x € X} is isomorphic to (X, <X). In the sequel, it will be
denoted Xg and will be called the natural copy of (X, <*) inside (E(Gx), <iez)-

We can now turn to a proof of the lemma. For the sake of clarity, we temporarily
drop mention of the linear orderings attached to the graphs and the metric spaces
under consideration. Let X,Y be in M'< and k > 0 be in w. Thanks to Ramsey
property for the class of finite ordered graphs, find a finite ordered graph K such
that:

K — (Gy); >

Now, let Z be the ordered metric space F(K) equipped with the metric de-
scribed previously and ordered lexicographically. We claim that:

Indeed, let x : ()Z() — k. x induces A : (éfx) — k defined by
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AG) = x(Xa)-

Find Gy = Gy such that (g;) is A-monochromatic. Call its color ¢ and let Y
be the natural copy of Y inside E(Gvy). Then (;) is x-monochromatic: Indeed, if

X € (¥), then by a previous claim | JX 2 Gx. It follows that x(X) = A(JX) = e.
This finishes the proof of the lemma. O

We now deduce theorem 15 from lemma 3. To show that M’{”l<2 5} has the Ram-
sey property, let (X, <*), (Y, <Y) be in M, Then (X, <*X) are also (Y, <Y)

{1,2,5}"
X
in M7'< so we can find (Z,<%) in M'< such that (Z,<?%) — (Y, <Y);X’< ),

Now, define a new metric d{2°} on Z by:

1 if d%(z,y) =1
d{1?275}(1’7y) = 2 lf dz(xvy) = 2
5 if d%(xz,y) =5

Then, observe that (Z,d’,<%) in MT{anﬁ} is such that

X
(Z,d',<?%) — (Y, <Y)§X’< ),

For ./\/17{”1<3 ne the proof is the same except that d% is not replaced by d{12:5}
but by d{*34} defined by:

1 if d%(z,y) € {1,2}
d{11374}($7y) = 3 lf dz(x7y) = 5
4 if d%(x,y) =6

Finally, for ./\/lf{”17<376}, replace dZ by d{136} defined by:

1 if d%(z,y) € {1,2}
d{lvgvﬁ}(m7y) = 3 lf dz(lﬂ,y) € {5’6}
6 if d%(z,y)=9

3. Ordering properties.

After Ramsey property, we turn to the study of ordering properties. As we will
see, ordering property is usually much easier to prove than Ramsey property.

3.1. Finite ordered metric spaces. We start with a case for which the
ordering property is a consequence of the Ramsey property.

THEOREM 16. M< has the ordering propertsy.

PROOF. Let D be the largest distance appearing in X. Observe that (X, <X)
can be embedded into (X, <X) such that (X, <X) and (X,X>) are isomorphic.
There is consequently no loss of generality if we assume that (X, <X) and (X,X >)
are isomorphic. We first construct (Z, <%) including (X, <*X) as a subspace and
such that given any x <X y € X, there is z € Z such that:

v <%z <% yand d4(z,2) = d%(z,y).
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A way to obtain such an (Z, <Z) is to proceed as follows. Seeing (X, <*) as a
finite ordered edge-labelled graph, connect any two distinct points by a broken line
consisting of two edges with label D. Observe that the corresponding edge-labelled
graph is [-metric for every [ so the labelling can be extended using the shortest
path distance. Therefore, the corresponding metric space Z does include X as a
subspace. We now have to order Z. Take xz <X y € X. When expanding X to
Z, a broken line {z,y, 2z} was added with d%(z,z) = d%4(y,z) = D. Define a linear
ordering <%*¥} on this line by:

Now, concatenate all the orderings of the form <%} according to the lexico-
graphical ordering on the the set of edges {{z,y}x : x,y € X} in order to obtain
<Z. Then, the finite ordered metric space Z is as required. Now, let (T, <T) be
the unique ordered metric space with two points and distance D between them,
and let (Y, <Y) be such that:

(Y, <¥) — (T,<M).
CLAIM. Given any linear ordering < on Y, (Y, <) includes a copy of (X, <%).

To prove that claim, let < be a linear ordering on Y and let x : (T’ET) —2
be such that:

x({z,y}) = 1iff <Y and < agree on {z,y}.

By construction, we can find a copy (Z, <2) of (Z,<?%) in (Y,<Y) with (T <f-)

monochromatic. Call € the correspondong color. Now, let (X, <X) be a copy of
(X, <X) inside (Z, <%).

SuBcLAM. (X, <) 2 (X, <X).

There are two cases, according to the value of €. If e = 1, we prove that given
any z,y € X, < and <X agree on {z,y}. This will show X, <) = (X, <X) So let
z <X y. Find z € Z such that = <Z <2 y and dz(x z) = dz(m z) = D. Since
e=1, < and <Z agree on {z,z} and {z,y}. Thus,z <z <yandsoz < z. Ife =0,
we prove that given any x,y € X < and <X dlsagree on {x,y} This will show
(X, <) (XX >) and since (X, X >) = (X <X), we will get (X <) = (X, <X)
Let 2 <X y. Pick z € Z such that = <Z <2 y and dz(x, z) = dz(x, z) = D. Since
e =0, < and <z disagree on {z,z2} and {z,y}. Thus, z > z > y and so = > z.
This proves the subclaim, finishes the proof of the claim and completes the proof
of the lemma. O

The proof we presented here makes use of Ramsey property but we should
mention here that this is not the only way to proceed. See for example [55] where
the same result is proved thanks to a probabilistic argument.

Observe also that as for Ramsey property, the previous proof allows to prove
ordering property for classes M§ whenever S is an initial segment of some T' C
10, +00[ which is closed under sums:

THEOREM 17. Let T CJ0,+o0] be closed under sums and S be an initial segment
of T. Then MS has the ordering property.
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Thus, Mg, Méﬂ]()ﬂ‘] with 7 > 0 in Q, MS and MSO]O,m] with m > 0 in w

have the ordering property.
3.2. Finite convexly ordered ultrametric spaces. The next case of order-

ing property shows that ordering property can be proved completely independently
of Ramsey property.

THEOREM 18. USS has the ordering property.

We begin with a simple observation coming from the tree representation of
elements of US*S.

LEMMA 4. Z/l§< is a reasonable Fraissé order class.

PROOF. The proof is left to the reader. Let us simply mention that it suffices
to show that given X C Y in Us and <X a convex linear ordering on X, there is a
convex linear ordering <¥ on Y such that <Y | X =<X. O

Call an element Y of Us convezly order-invariant when (Y, <;) = (Y, <2)
whenever <;, <5 are convex linear orderings on Y. The following result is a direct
consequence of the previous lemma:

LEMMA 5. Let (X,<*X) € USS and assume that X C Y for some convexly
order-invariant Y in Us. Then given any convex linear ordering < on Y, (X, <X)
embeds into (Y, <).

PROOF. Let <Y be as in the previous lemma. Let also < be a convex linear
orderings on Y. Then (X, <*X) embeds into (Y, <Y) = (Y, <). O

We now show that any element of g embeds into a convexly order-invariant
one.

LEMMA 6. Let X € Us. Then X embeds into Y for some convezly order-
nvariant Y € Usg.

PROOF. Let ag > a1 > ... > a,_1 enumerate the distances appearing in X.
The tree representation of X has n levels. Now, observe that such a tree can be
embedded into a tree of height n and where all the nodes of a same level have the
same number of immediate successors, and that the ultrametric space associated
to that tree is convexly order-invariant. (I

Theorem 18 follows then directly.

We finish this subsection with the justification of the remark at the end of 2.2
stating that the class US of all finite ordered ultrametric spaces with distances in
S does not have the Ramsey property. We start with:

THEOREM 19. US does not have the ordering property.

PROOF. Let (X, <*) be in S and such that the ordering <* is not convex on
X. Let Y be in Us. Then there is a linear ordering < on Y such that (X, <*) does
not embed into (Y, <). Namely, any convex linear ordering < on Y works. O
We now show how this result can be used to prove:

THEOREM 20. US does not have the Ramsey property.

PROOF. Assume for a contradiction that U5 does have the Ramsey property.
Then by a proof similar to the proof of theorem 16, U§ would also have the ordering
property, which is not the case. ([l
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3.3. Finite metrically ordered metric spaces. Finally, we show how the
methods used in the two previous subsections can be combined to prove that the
ordering property holds for other classes of finite ordered metric spaces.

THEOREM 21. Let S be a finite subset of |0, 4o00[ of size |S| < 3 and satisfying
the 4-values condition. Then M has the ordering property.

PROOF. As usual, the case |S| = 1 is obvious. For S = {1,2},{2,3,4} or
{1,2, 3}, every linear ordering is metric so M%< is really MS and as for theorem
16, ordering property is a consequence of Ramsey property. For S = {1,3} or
{1,3,7}, the metric linear orderings are the convex ones, so ordering property is
given by theorem 18. So the only remaining cases are the cases S = {1,2,5}, {1, 3,6}
and {1, 3,4}.

For {1,2,5}, ordering property comes from ordering property for finite graphs.
To prove that fact, recall that for X € My 25y, balls of radius < 2 are disjoint
and can be seen as finite graphs with distance 5 between them. Observe now that
given (X, <X) ¢ Mﬁéﬁ}, we can embed (X, <X) into (Y,<Y) € M’ﬁéﬁ} where
all the balls of radius 2 are isomorphic (as ordered graphs) to a same finite ordered
graph (H,<H). So Y = Ui<kYi for some k € w, with Yo <Y ... <Y Yj;_1 and
(Y, <Y1Y;) = (H,<H) for every i < k. Let K be a finite graph such that given
any linear ordering < on K, (H, <) embeds into (K, <). Then the metric space
Z defined by Z = Ui<kzi with Z; = K for every i < k is such that for every metric
linear ordering < on Z, (Y,<Y) and hence (X, <X) embeds into (Z, <).

For {1,3,6}, ordering property also comes from ordering property about finite
graphs. Recall that in that case, balls of radius 1 can be seen as complete graphs,
and that between any two such balls, the distance between any two points is either
always 3 or always 6. Let (X, <*) be in /\/lf{"lfg,ﬁ}. Embed (X, <*) into (Y, <Y)
€ Mﬁé,e} where all balls of radius 1 have the same size m. Define now a graph
Gy on the set Gy of balls of radius 1 of Y by connecting two balls iff the distance
between any two of their points is equal to 3. Observe that the ordering <Y beeing
natural, it induces a linear ordering Gy. Observe also that given a linear ordering
on Gy, there is a unique metric linear ordering on Y extending it. Now, let K
be a finite graph such that given any linear ordering on K, (Gvy,<%Y¥) embeds
into (K, <). Let Z be the metric space whose space of balls is isomorphic to the
graph K and where every ball of radius 1 has size m. Then given any metric linear
ordering < on Z, (X, <*) embeds into (Z, <).

For {1,3,4}, the proof is a bit more involved. Fix (X, <X) € M’ﬁé ne Recall

that the relation ~ defined by x ~ y < d¥(z,y) = 1 is an equivalence relation.
However, unlike the previous cases, the distance between the elements of two dis-
joint balls of radius 1 can be arbitrarily 3 or 4. For (Y,<Y) € M?Il,<374}7 say that
a linear ordering < on Y is a local perturbation of <¥ when

Vr,y €Y d¥(z,y) 23— (z <y x<¥y)

LEMMA 7. There is (Y,<Y) € ./\/l’{”ng} such that for any local perturbation <
of <Y, (X, <X) embeds into (Y, <).

PROOF. First, define a new linear ordering <X on X by setting
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X (z,y) =1 — (x <Fyeoy<Xuz)

V”“”“X{ X (2,y) 23— (v <Xy o 3 <X y)

Now, let (T,<T) be the ordered metric space with two points and distance
1 between them. Let also (X;,<*1) be in M’ﬁ% 4y and such that (X, <X) and

(X, <X) embed into (X;,<*1). By Ramsey property, find (Y, <Y) such that

r:[‘7 T
(Y, <Y) — (Xy, <X1){T<)

We claim that (Y,<Y) is as required: Let < be a local perturbation of <¥.

Then, define x : (‘1{’2;) — 2 by

x(T, <T) = 1iff < and <Y agree on (T, <T).

- ~ % X
By construction, there is a copy (Xi, <*1) of (X;, <%X1) such that (X{JETI) is

x-monochromatic with color €. If ¢ = 0, consider X c )~(1 such that
(X, <X} X) = (X, <X).
Then
(X, <] X) = (X, <X).
On the other hand, if ¢ = 1, consider X c )Ail such that
(X, <X1] X) 2 (X, <X).
Then
(X, < X) = (X, <X).
O

LEMMA 8. There is (Z,<%) € M7{"1<3 4 such that for any metric linear ordering

< on Z, there is a local perturbation < of <Y such that (Y, <) embeds into (Z, <).

PROOF. Define a new linear ordering <Y, on Y by

X (zy)=1— (@ <Fyoz<y)
V””’y”{ X (z,y) >3- (z <Xy oy <Xa)
Now, let (U, <Y) be the ordered metric space with two points and distance
3 between them. Let also (Y1,<Y1) be in /\/lf{"1<3 43 such that (Y, <Y), (Y,<Y)
embed into (Y71,<Y!) and such that between any two balls of radius 1, there are
two points with distance 3 between them. Still by Ramsey property, find (Z, <%)
such that

u
(Z,<2) — (Y, <Y1){0)

. . . L (Z,<?%
Then Z is as required: Define A : (U <U) — 2 by

AU, <ﬁ) = 1iff < and <% agree on (U, <ﬁ).
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By construction, there is a copy (Y7, <?1) of (Y1, <Y1) such that (Y[}EE]) is

A-monochromatic with color . If € = 0, consider Y C 3?1 such that
(Y, <¥11Y) 2 (Y, <)
Otherwise, € = 1 and choose Y C ?1 such that
(Y, <Y1 Y) = (Y, <Y).

Then in both cases, (?, <! {() =~ (Y, <) for some local perturbation < of <¥.
U

To finish the proof of the theorem, it is now enough to observe that given any
metric linear ordering < on Z, (X, <*X) embeds into (Z, <). O

4. Ramsey degrees.

In this section, we show how the Ramsey property and the ordering property
allow to show the existence and to compute the exact values of Ramsey degrees
in various contexts. We start with the results about M. For X € M, let LO(X)
denote the set of all linear orderings on X. Thus, the number |[LO(X)|/|iso(X)]|
is essentially the number of all nonisomorphic structures one can get by adding a
linear ordering on X. Indeed, if <;,<s are linear orderings on X, then (X, <)
and (X, <2) are isomorphic as finite ordered metric spaces if and only if the unique
order preserving bijection from (X, <;) to (X, <2) is an isometry. This defines an
equivalence relation on the set of all finite ordered metric spaces obtained by adding
a linear ordering on X. In what follows, an order type for X is an equivalence class
corresponding to this relation.

THEOREM 22. Every X € M has a Ramsey degree tp(X) in M and
ta(X) = [LO(X)]/[iso(X)].

PrOOF. Let 7(X) denote the number |LO(X)|/liso(X)|. We first prove that
tam(X) < 7(X), ie that for every Y € M, k € w ~\ {0}, there is Z € M such that

Z— (Y)i(,T(X)-

Let {<,: a € A} be a set of linear orderings on X such that for every linear
ordering < on X, there is a unique o € A such that (X, <) and (X, <,) are
isomorphic as finite ordered metric spaces. Then A has size 7(X) so without loss
of generality, A = {1,...,7(X)}. Now, let <Y be any linear ordering on Y. By
Ramsey property for M< we can find (Z, <%') € M< such that

(Zy, <) — (Y, <),
Now, construct inductively (Zz,<%2),...,(Z,x), <%") € MF such that for
every n € {1,...,7(X) — 1},

(Zns1, <z"+1) — (Zy,, <Zn)l(€X’<n+1)'

Finally, let Z = Z,(x). Then one can check that Z — (Y)ﬁr(x)-
To prove the reverse inequality ta(X) > 7(X), we need to show that there is
Y € M such that for every Z € M, there is x : ()Z() — 7(X) with the property:
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VY € (%),

()] = ().

Fix X € M. By ordering property for M<, find Y € M such that for any
linear ordering < on Y, (Y, <) contains a copy of each order type of X. Now, let
Z € M and pick <% any linear ordering on Z. Define a coloring x : ()Z() — 7(X)
which colors any copy X of X according to the order type of (5(, <z )NC) Now, if
possible, let Y € (g) Then (?, <Z XN/) contains a copy of every order type of X,
and

(]

The exact same proof can be used in different contexts. For example, one can
replace M by Mg where S is an initial segment of a subset of ]0,4+o0o[ which is
closed under sums:

THEOREM 23. Let T CJ0, +o00[ be closed under sums and S be an initial segment
of T. Then every X € Mg has a Ramsey degree tp4(X) in Mg and

tats (X) = [LO(X)]/[iso(X)]-

This fact has two consequences. On the one hand, the only Ramsey objects
(those for which t g (X) = 1) are the equilateral ones. On the other hand, there
are objects for which the Ramsey degree is LO(X) (ie |X]|!), those for which there
is no nontrivial isometry.

We now turn to ultrametric spaces: Given S CJ]0,+o0[, we showed that the
class USS has the Ramsey property and the ordering property. Thus, if for X € Us,
cLO(X) denotes the set of all convex linear orderings on X, we obtain:

THEOREM 24. Let S CJ]0,+oc0]. Then every X € Us has a Ramsey degree
tus (X) in Us and
tys (X) = [cLO(X)]/iso(X))].

This fact makes the situation for ultrametric spaces a bit different from the
metric case: First, the ultrametric spaces for which the true Ramsey property
holds are those for which the corresponding tree is uniformly branching on each
level. Hence, in the class Ug, every element can be embedded into a Ramsey
object, a fact which does not hold in the class of all finite metric spaces. Second,
one can notice that any finite ultrametric space has a nontrivial isometry (this fact
is obvious via the tree representation). Thus, the Ramsey degree of X is always
strictly less than |[cLO(X)|. In fact, a simple computation shows that the highest
value t (X) can get if the size of X is fixed is 2/%1=2 and is realized when the tree
associated to X is a comb, ie when all the branching nodes are placed on a same
branch.

Finally, for S finite subset of |0, 400 of size |S| < 3 and satisfying the 4-values
condition, we saw that the class M'J'< has the Ramsey and the ordering properties.
It follows that if for X € Mg, mLO(X) denotes the set of all metric linear orderings
on X, one gets:

THEOREM 25. Let S be finite subset of |0,4+o00[ of size |S| < 3 and satisfying
the 4-values condition. Then every X € Mg has a Ramsey degree tp5(X) in Mg
and
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tats (X) = [mLO(X)[/[iso(X)|.
5. Universal minimal flows and extreme amenability.

After the study of Ramsey and ordering properties, we turn to applications in
topological dynamics.

5.1. Pestov theorem. In this subsection, we present a proof of the following
result:

THEOREM 26 (Pestov [65]). Equipped with the pointwise convergence topology,
the group of isometries iso(U) of the Urysohn space is extremely amenable.

In the sequel, we present how this result can be deduced from the general theory
exposed in the introduction of this chapter. The proof is taken from [40].

First, the class Mg is a reasonable Fraissé class. It follows that Flim(./\/l(é) =
(Ug, <Y2) for some linear ordering <Y2 on Ug. Furthermore, we saw that Mg
has the Ramsey and the ordering properties. Consequently:

THEOREM 27 (Kechris-Pestov-Todorcevic [40]). Aut(Ug, <Y?) is extremely
amenable.

THEOREM 28 (Kechris-Pestov-Todorcevic [40]). The universal minimal flow
of iso(Ug) is the set LO(Ug) of linear orderings on Uy together with the action
iso(Ug) x LO(Ug) — LO(Uy), (9,<) ——<9 defined by x <9 y iff g~ (z) <
97 ()

We now show how to deduce theorem 26 from those results.

LEMMA 9. Let G, H be topological groups and m : G — H be a continuous
morphism with dense range. Assume that G is extremely amenable. Then so is H.

PROOF. Let X be an H-flow. Denote by « : H x X — X the action. Define
now @ : G x X — X by a(g,z) = a(w(g),z). This turns X into a G-flow so
there is a fixed point zg € X. But since 7 has dense range, x is also fixed for the
H-flow. ([

Now, recall that U is the completion of Ug so given any g € iso(Ug), there is
a unique g extending g on U. Since every g € Aut(Ug, <Y?) is in particular an
isometry of Ug, the map g +— g is 1-1 from Aut(Ug, <Y?) into iso(U) and it is easy
to check that it is continuous. Consequently, according to the previous lemma, it
only remains to show that its range is dense in iso(U).

LEMMA 10. Let D C iso(U). Let d denote the metric on Ugy. Assume that:
Ve >0 Vzi1...2, € U Yheiso(U) Jzy...al,y1...y, € U g€ D
Visn dz, ;) <& d(h(zi),y;) < €, 9(z7) = yi-
Then D is dense in iso(U).

PRrROOF. Fix € > 0, h € iso(U) and z; ...x, € U. Thanks to the hypothesis,
find 2} ...20,y} ...y, € U and g € D for £/2. Then for i < n:

d(g(zi), h(z:)) d(g(w:), 9(x7)) + d(g(x;), h(z:))
d(ws, x7) + d(y;, h(xi))

N

< €
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So to check that {g : g € Aut(Ug, <Y2)} is dense in iso(U), it is enough to
show:

LEMMA 11. Given x1...Zn,Y1 -..Yn € U such that x; — y; is an isometry and
given e > 0, there are zy ... x},y1 ...y, € Ug so that z} — y. is an order-preserving
isometry with respect to < and

Vi<n dz),x;) <e, dyl,y) <e.

PROOF. We proceed by induction on n. For n = 1, simply choose z},y. € Ug
such that d(z}, z;) < e and d(y},y;) < €. For the induction step, assume that we are
at stage n and wish to step up to n+ 1. Suppose that x1,...,Zp411,¥%1,---Ynt1 € U
are given so that x; — y; is an isometry. By induction hypothesis, find «f ...z,
and y] ...y, € Ug so that =} — gy} is an order-preserving isometry and

Vi<n dah,z) <e/2, dyi,y) <e/2.
Fix 29, 1,90, , € Ug such that
d(ng—‘rl?xn"rl) < 5/27 d(yg—i-lvyn—‘rl) < 5/2'

For i < n, set d; := d(x2 1, }), d(y0.1,y}). Without loss of generality, we may
assume that € < d;, d;. Therefore:

\di — d(@n g1, 23)| < |d(20 1, 2ng1) + d(z, 77)| <e.
Similarly,
|di — d(yn+1,9:)| <e.
So
|di — di| = |di — d(xpy1,2:) + d(@ni1, 25) — d(Yni1,Ys) + dYng1,v:) — di] <e.
Now, set e; := (d; + d})/2 and consider the ordered metric space
({z},... ,x;,xfwl,u}, d, <)
where
d'(af, @) = d(ay, 25), d' (2, 2 4q) = d(@], 27 40), d(uw, 7)) = e
and d'(u, 20 ) is any irrational number satisfying the inequalities:
Vi<n |d —e] <d(u,28, ) <2 <d; +e;.

Observe that the existence of such a number is guaranteed by the following
inequalities:

3d;+d
di+€¢=+>5.

and

i

d;—d,
s <e

|di — €| =
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As for <, we let it agree with the ordering < of Ug for «,..., 2,22, and set
o} < u as well as 29| < u. Assuming that d’ defines a metric, we finish the proof
as follows: By the properties of (Ug, <Y?), we can find a point 2}, € Ug with
af < al, iy forevery i < n, 2, < a) . and d(z}, 1, 2}) = e;, d(a}, 4,20, ) =
d'(u, 22 ,) < 2e. Similarly, we can find y/, ., € Ug with y; < y,,, for every i <n,
Ynt1 < Yng1 and d(yp 1, 97) = ey d(Yny1sYnga) = @' (u, 2541) < 2e. Then, 2} > y;
defines an order preserving map and

d(x), 1, Tns1) < d($%+1>$2+1) + d(xgH»l’ Tpt1) < 3¢

which completes the proof. It remains to check that d’ indeed defines a metric:
(i) Since d'(20 1, ;) = d;, d'(u,x}) = e;, we need to check that

|d; —e;| < d'(u, 20 1) < d; + e,
which is given by the definition of d’(u,z9_ ).
(ii) Let a;; = d(2"i,2}). We need to verify that
lei —ej] < aij < e +ej.
On the one hand:
\d: — d;| < iy < di + dj.
On the other hand, a;; = d(y'i,y) so we also have:
|} — d}| < oy < df + .
Adding and dividing by 2, we obtain the required inequality. O

As in previous sections, simple adaptations of the proof allow to deduce similar

results for other spaces. Fot example, instead of working with M@ and the structure

(Ug, <Ye), one can work with the reasonable Fraissé class M(Em}o 1] and its Fraissé

limit (Sg, <52). Here are the results we obtain in this case:
THEOREM 29 (Kechris-Pestov-Todorcevic [40]). Aut(Sg, <5?) is extremely amenable.

THEOREM 30 (Kechris-Pestov-Todorcevic [40]). The universal minimal flow
of iso(Sg) is the set LO(Sg) of linear orderings on Sg together with the action
iso(Sg) xLO(Sg) — LO(Syp), (g, <) —<9 defined by x <9 y iff g~ (z) < g~ (y).

THEOREM 31 (Pestov [65]). iso(S) is extremely amenable.

Other interesting examples appear when the distance set Q is replaced by w or
{1,...,m} for some strictly positive m in w. One then deals with the reasonable
Fraissé classes MS and M3, and their Fraissé limits (U, <Y~) and (U,,, <Y™)
respectively:

THEOREM 32 (Kechris-Pestov-Todorcevic [40]). Aut(U,,<Y~) is extremely
amenable.

THEOREM 33 (Kechris-Pestov-Todorcevic [40]). The universal minimal flow
of iso(U,,) is the set LO(U,) of linear orderings on U, together with the action
iso(U,) x LO(U,) — LO(U,), (g,<) ——<9 defined by v <9 y iff g~ *(z) <

~1
9 ()
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THEOREM 34 (Kechris-Pestov-Todorcevic [40]). Aut(U,,, <Um) is extremely
amenable.

THEOREM 35 (Kechris-Pestov-Todorcevic [40]). The universal minimal flow
of iso(U,,) is the set LO(U,y,) of linear orderings on U, together with the action
iso(Up,) x LO(U,,) — LO(Uy,), (9,<) —<9 defined by x <9 y iff g~ (x) <

—1
97 ()

5.2. Ultrametric Urysohn spaces. After Pestov theorem and its variations,
the results we present now deal with ultrametric spaces. In chapter 1, we men-
tionned that the Urysohn space Bg of the class Us when S is a countable distance
set can be described explicitly. USS being a reasonable Fraissé class, its Fraissé limit
is therefore equal to (Bg, <Bs) for some linear ordering <Bs on Bg. It turns out
that as Bg, <Bs is also easy to descibe: It is simply the lexicographical ordering

<gfa coming from the natural tree associated to Bg.

PROPOSITION 17. Let S C|0, 400 be countable. Then Flim(US~) = (Bs, <ﬁi),

ProOF. The only thing we have to check is that <g§

ordering on Bg, ie that (Bg, <£§) is ultrahomogeneous. In what follows, we relax
the notation and simply write d (resp. <) instead of dBs (resp. <ii). We proceed
by induction on the size n of the finite substructures.

For n =1, if z and y are in Bg, just define g : Bg — Bg by

is the relevent linear

9(z) =z+y—u.

For the induction step, assume that the homogeneity of (Bg, <) is proved for
finite substructures of size n and consider two isomorphic substructures of (Bg, <)
of size n+1, namely 1 < ... < xp41 and y1 < ... < yp41. By induction hypothesis,
find h € Aut(Bg, <) such that for every 1 < ¢ < n, h(z;) = y;- We now have to
take care of z,4+1 and y,4+1. Observe first that thanks to the convexity of <, we
have

d(Tpn, Tpt1) = min{d(z;, xpnt1) 1 1 < i < n}
Similarly,
A(Yn, Yn+1) = min{d(yi, yni1) : 1 < i < nj
Set
s = d(@n, Tnt1) = d(Yns Ynt1)-
Note that y,+1 and h(z,41) agree on SN|s, oco[. Indeed,

max(d(Yn+1,Yn)s A(Yn, M(Tn11)))
max(d(yn+17 yn)7 d(h(l‘n), h(xn-‘rl)))
max(s,s) = s

d(yn+17 h(xﬂl+1))

NN N

Note also that since ¥, < yny1 (resp. h(zyn) < h(zn41)), we have

Yn(8) < Ynt1(s)-

Similarly,



80 2. RAMSEY CALCULUS, RAMSEY DEGREES AND UNIVERSAL MINIMAL FLOWS.

yn(s) = h(wn)(s) < h(ni1)(s).

So (RN Q)N]yn(s), min(yn+1(s), h(znt1)(s))[ is non-empty and has an element
a. Ja, 00[NQ is order-isomorphic to Q so we can find a strictly increasing bijective
¢ :]a, 00[NQ —]a, 00[NQ such that

¢((n41)(s)) = Yny1(s).

Now, define j : Bg — Bg by:
If d(x,ypt1) > s then j(z) = z.
If d(z,Yn+1) < s then

x(t) ift>s
) x(t) ift =sand z(t) < «
J(@)() = o(x(t)) if t =sand a < xz(t)

2(t) + Yur1 (0) = (s (1) i <s

One can check that j € Aut(Bg, <) and that for every 1 <

[ § j(yZ) = Yi-
Now, let g = j o h. We claim that for every 1 < ¢ < n+1, g(z;) =

. Indeed, if
1 <@ < nthen g(z;) = j(h(x;)) = j(yi;) = y;- Moreover,
9(@ni1)(t) = J(h(zni1))(t)
h(zn41)(t) ift>s
= 9 o(@n1)(t) = ynta(t) ift =s
(anrl) t) + yn+1( ) h(xn+1)(t) = yn+1(t) ift<s
ie g(Tnt1) = Ynt1- U

Therefore, Ramsey property together with ordering property for U5 lead to
the following result in topological dynamics:

THEOREM 36. Aut(Bg, <[3) is extremely amenable.

THEOREM 37. The universal minimal flow of iso(Bg) is the set cLO(Bg) of
convezx linear orderings on Bg together with the action iso(Bg) x cLO(Bg) —
cLO(Bs), (g,<) —<9 defined by v <9 y iff g~ (z) < g7 (y).

Remark. In [40], theorem 6.6, it is mentionned that for S = 2, theorem 36 can
actually be proved directly using preservation of extreme amenability under direct
and semi-direct products of topological groups. More recently, we were informed
by Christian Rosendal that it is also the case for any countable S. Had this result
been known to us before theorem 14, the equivalence provided by theorem 8 would
have allowed to deduce theorem 14 from it.

We now use these results to compute the universal minimal flow of the metric
completion Bg of Bg. We follow the scheme adopted in the previous section. Let

<gfa be the natural lexicographical ordering on B S.

LEMMA 12. There is a continuous group morphism for which Aut(Bg, <llzi)
embeds densely into Aut(ﬁs, <ﬁi),
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PROOF. Every g € iso(Bg) has unique extension § € iso(ﬁs) Moreover,
observe that <B les can be reconstituted from < lei More precisely, if Z,9 € BS, and
x,y € Bg such that dBs (z,%), dBs (y,9) < dBs (Z,9), then

P - T B
T<gyiffe <ty

Note that this is still true when <gs, and <£§ are replaced by <€ CLO(]§S) and

X
<[ Bs € cLO(Bg) respectively. Later, we will refer to that fact as the coherence
property. lts first consequence is that the map g — ¢ can actually be seen as a map

from Aut(Bg, <P?) to Aut(]§57 <Ps). Tt is easy to check that it is a continuous
embeddlng We now prove that it has dense range. Take h € Aut(]gs,<lem)
1 <lew <lex Ty in BS, € > 0, and consider the corresponding basic open
neighborhood W around h. Take n > 0 such that n < ¢ and for every 1 < i #
ji<n,n< d S(&;,%;). Now, pick T1ye- s Ty Y1,---,Yn € Bg such that for every
1<i<n, dB 5(Z4, ;) < m and dBs (h(:%z),yl) < 7. Then one can check that the
map x; — y; is an isometry from {z; : 1 <i < n}to{y; : 1 <i < n} (because Bg is
ultrametric) which is also order-preserving (thanks to the coherence property). By

ultrahomogeneity of (Bg, <2§), we can extend that map to go € Aut(Bg, <g§).
Finally, consider the basic open neighborhood V" around gy given by z1,...,z, and

n. Then {§: g € V} C W. Indeed, let g € V. Then dBs(§(2;), h(2;)) is less or
equal to

max{dBs (§(2,), §(:)), dB5 (§(x2), do (1)), dBS (Go(x;), h(E:))}

Now, since g is an isometry, dBs (9(24),9(xy)) = dBs (T4, ;) < m < e. Also,
since g € V, dBs(§(x;), do(z;)) < n < e. Finally, by construction of go,

dBs (go (). h(#:)) = dP5 (yi, h(#:)) < n <.
Thus dBs(§(2;), h(3)) < e and § € W. O
As a direct corollary, we obtain:
THEOREM 38. Aut(Bs, <Efc) is extremely amenable.

Let us now look at the topological dynamics of the isometry group iso(ﬁs).
Note that iso(ﬁs) is not extremely amenable as its acts continuously on the space
of all convex linear orderings cLO(ﬁS) on ]§s with no fixed point. The following
result shows that in fact, this is its universal minimal compact action.

THEOREM 39. The universal minimal flow of iso(Bs) is the set cLO(Bg) to-
gether with the action iso(Bg) x ¢cLO(Bg) —> cLO(Bg), (g, <) —<9 defined by
z<Tyiff g (x) <97 (y)-

PROOF. Equipped with the topology for which the basic open sets are those
of the form {<€ cLO(Bg) :< | X =<| X} (resp. {<€ cLO(Bg) :<] X =<[ X})
where X is a finite subset of Bg (resp. Bg), the space cLO(Byg) (rebp cLO(Bs))
is compact. To see that the action is continuous, let <& CLO(BS) g € 1so(BS)

and W a basic open neighborhood around <9 given by a finite X C B s. Now take
€ > 0 strictly smaller than any distance in X and consider
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U= {h€iso(Bg) : Yz € X(dBs (g~ (2),h " (z)) < &)}
Let also
V = {<€ cLO(Bs) :<| TX =<| 7 X}

where ‘g X (resp. nx ) denotes the inverse image of X under g (resp. h). We
claim that for every (h,<) € U x V, we have <"€ W. To see that, observe first
that if z,y € X, then h=(z) < h=1(y) iff g~ 1(z) < g~ (y) (this is a consequence
of the coherence property). So if (h, <) € U x V and z,y € X we have

x <"y iff h7l(z) < h7'(y) by definition of <"
iff g~ '(z) < g '(y) Dby the observation above
iff ¢ '(x)<g '(y) sinceheU
iff = <%y by definition of <9
So <"c W and the action is continuous.
To complete the proof of the theorem, notice that the restriction map ¢ defined
by ¢ : cLO(Bg) — cLO(Bg) with ¥ (<) =<]| By is actually a homeomorphism.
The proof of that fact is easy thanks to the coherence property and is left to the

reader. It follows that cLO(Bg) can be seen as the universal minimal flow of iso(Byg)
via the action « : iso(Bg) x cLO(Bg) — c¢LO(Byg) defined by

alg, <) =71 (W (<)9).
Now, observe that if g € iso(Bg) and <€ ¢LO(Bg), then
<#9)] Bg = (<| Bg)?’.

It follows that ¢(<?(9)) = 4(<)9 and thus a(g, <) = Y~ ((<)9) =<9,

Observe also that there is a natural dense embedding ¢ : iso(Bg) — iso(]ABS)
(recall that iso(Bg) is equipped with the pointwise convergence topology coming
from the discrete topology on Bg whereas iso(ﬁs) is equipped with the pointwise
convergence topology coming from the metric topology on B s).

Now, let X be a minimal iso(ﬁg)—ﬂow. Since ¢ is continuous with dense range,
the action [ :iso(Bg) x X — X defined by 5(g,z) = ¢(g) - = is continuous with
dense orbits and allows to see X as a minimal iso(Bg)-flow. Now, by one of the
previous comments, cLO(ﬁs) is the universal minimal iso(Bg)-flow so there is a
continuous and onto 7 : cLO(ﬁs) — X such that for every g in iso(Bg) and every
< in CLO(]ABS)7 m(alg, <)) = Blg,m(<)), ie. m(<?W)) = ¢(g) - 7(<). To finish
the proof, it suffices to show that this equality remains true when ¢(g) is replaced
by any h in iso(ﬁs). But this is easy since ¢ is continuous with dense range, 7
is continuous, and the actions of iso(]§s) on CLO(ﬁs) and X considered here are
continuous. (]

We finish with several remarks. The first one is a purely topological comment
along the lines of the remark following theorem 37: To show that the underlying
space related to the universal minimal flow of iso(Bg) is cLO(Bg), we used the fact
that the restriction map v : cLO(Bg) — ¢LO(Bg) defined by ¢(<) =<| By is a
homeomorphism. cLO(Bg) being metrizable, we consequently get:
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THEOREM 40. The underlying space of the universal minimal flow of iso(Es)
is metrizable.

The second consequence is based on the simple observation that when the
distance set S'is {1/n:n € w~ {0}}, Bg is the Baire space N. Hence:

THEOREM 41. When N is equipped with the product metric, the universal min-
imal flow of iso(N) is the set of all convex linear orderings on N'.

5.3. Urysohn spaces Ug. We finish this section on topological dynamics
with results about the spaces Ug associated to the classes Mg. When S is a subset
of |0, 400 satisfying the 4-values condition, the class M%< is a reasonable Fraissé
class. It follows that Flim(MZ'<) = (Ug, <Ys) for some metric linear ordering
<UYs on Ug. Furthermore, we saw that ME< has the Ramsey and the ordering
properties whenever S has size less or equal to 3. Consequently:

THEOREM 42. Let S be finite subset of |0, 4+00[ of size |S| < 3 and satisfying
the 4-values condition. Then Aut(Us, <Ys) is extremely amenable.

THEOREM 43. Let S be finite subset of |0, +00[ of size |S| < 3 and satisfying the
4-values condition. Then the universal minimal flow of iso(Ug) is the set mLO( Ug)
of metric linear orderings on Ug together with the action iso(Ug) x mLO(Ug) —
mLO(Us), (g, <) ——<? defined by = <9 y iff g~ (x) < 9~ (1),

6. Concluding remarks and open problems.

The purpose of this section is to present several questions related to the Ramsey
calculus of finite metric spaces that we were not able to solve.

6.1. Classes M’ when |S| is finite. The first question we would like to
present concerns the generalization of theorem 15 and theorem 21. We showed that
when S is a finite subset of |0, +-o00[ of size |S| < 3 satisfying the 4-values condition,
the class M%< of all finite metrically ordered metric spaces with distances in S
has the Ramsey property and the ordering property. For |S| = 4, the verification
is being carried out. So far, all the results provide a positive answer to:

Question 0. Let S be a finite subset of |0, +oco] satisfying the 4-values condi-
tion. Does the class M%< have the Ramsey property and the ordering property?
If so, is finiteness of S really necessary?

Remark. We mentionned after theorem 36 that extreme amenability re-
sults can sometimes be proved directly via algebraic methods and may allow to
deduce new Ramsey theorems. The classes M7 where |S| < 3 and S satis-
fies the 4-values condition provide other illustrations of that fact. For example,
Aut(Ugy 25}, <U125}) can be seen as a semi-direct product of Aut(Q,<) and
Aut(R, <®)? where (R, <) is the Fraissé limit of the class G< of all finite or-
dered graphs. Aut(Q, <) is extremely amenable because thanks to the usual finite
Ramsey theorem, the class LO of all the finite linear orderings is a Ramsey class
(extreme amenability of Aut(Q, <) was originally proved by Pestov in [64] before
[40] and corresponds to one of the very first examples of non-trivial extremely
amenable groups). On the other hand, Aut(R,<%) is extremely amenable be-
cause G< is a Ramsey class. It follows that Aut(Uy; o5y, <U11:25)) is extremely
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amenable. The same holds for Aut(U{11376}7<U{1=3’6}), which can be seen as a
semi-direct product of Aut(R, <®) and Aut(Q, <)@. Unfortunately there are some
cases like S = {1, 3,4} where such an analysis does not seems to be possible (it is
unfortunate because such a generalized phenomenon might have allowed to attack
the first part of Question 0 by induction on the size of S).

6.2. Euclidean metric spaces. The second question we would like to present
is related to a field that we mentionned in chapter 1 but that we did not even
touch: Euclidean Ramsey theory. To make the motivation clear, let us start with
the following results in topological dynamics:

THEOREM 44 (Gromov-Milman [28]). FEquipped with the pointwise convergence
topology, the group iso(S°°) of all surjective isometries of S is extremely amenable.

THEOREM 45 (Pestov [65]). Equipped with the pointwise convergence topology,
the group iso(¢2) of all surjective isometries of {2 is extremely amenable.

In [65], theorem 44 is proved thanks to the same method as the one used to
prove theorem 26. This latter result being the consequence of the Ramsey property
for ./\/16, it is therefore conceivable that a Ramsey result is hidden behind theorem
44 and and corollary 45. Some theorems from Euclidean Ramsey theory seem to
suggest that there is some hope: Recall that H is the class consisting of all the
finite affinely independent metric subspaces of the Hilbert space ¢5. Let K; denote
the unique element of H with only one point.

THEOREM 46 (Frankl-Rédl [18]). Let Y€ H and k > 0 be in w. Then there is
K,

a finite metric subspace Z of ly such that Z — (Y),.*.

A result of similar flavor holds for the class of S of all elements X of H which
embed isometrically into S°° with the property that {0, } U X is affinely indepen-
dent.

THEOREM 47 (Matousek-Rodl [46]). Let Y € S and k > 0 be in w. Then there
K,

is a finite metric subspace Z of S such that Z — (Y),".

Recall that we proved in the previous chapter that the classes Hg and Sg
when S CJ0,+oo[ is dense and countable are strong amalgamation classes, and
that the metric completions of the corresponding Fraissé limits are ¢ and S*°
respectively. Therefore, theorems 46 and 47 may be seen as the first steps towards
general Ramsey theorems. However, the difficulty posed by the combinatorics of
Euclidean metric spaces has so far kept us away from any progress in this direction.
This may not be so surprising for a combinatorialist: Euclidean Ramsey theory is
a well-known source of difficult problems (see for example [24] for a list of unsolved
and well-paid problems). For example, we are not even able to prove that the
metric space Z from theorem 46 and theorem 47 can be constructed so as to stay
into the relevent class or that we can work with ordered metric spaces instead of
Y and Z. The kind of linear orderings to be considered is consequently unclear,
even though the results of the previous sections strongly suggest that the class of
all linear orderings is the most relevent one. We state all these guesses precisely:

Question 1. Let S be a dense subset of ]0, +00[. Is the class H§ consisting of
all the finite ordered affinely independent metric subspaces of the Hilbert space ¢
with distances in S a Ramsey class? Does it have the ordering property?
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Question 2. Same question with the class S§ of all finite ordered X of H
with distances in S and which embed isometrically into S® with the property that
{0¢,} U X is affinely independent.






CHAPTER 3

Big Ramsey degrees, indivisibility and oscillation
stability.

1. Fundamentals of infinite metric Ramsey calculus and oscillation
stability.

Recall that given a Fraissé class K of L-structures and X € K, the Ramsey
degree txc(X) of X in K is defined when there is [ € w such that for any Y € K,
and any k € w ~\ {0}, there exists Z € K such that:

Z— (Y)5,
In this case, ti(X) is simply the least such I. Equivalently, if F denotes the

Fraissé limit of I, X admits a Ramsey degree in I when there is [ € w such that
for any Y € K, and any k € w \ {0},

F— (Y)X,
If this latter result remains valid when Y is replaced by F, we say, following
[40], that X has a big Ramsey degree in K. Its value T (X) is the least | € w such

that
F— (F)y,.

The notion of big Ramsey degree can be seen as a generalization of the notion
of indivisibility. F is indivisible when for every strictly positive k € w and every
x : F — k, there is F C F and isomorphic to F on which x is constant. When
K is a class of finite metric spaces, F is the Urysohn space associated to I and
it is indivisible when given every strictly positive k € w and every x : F — k,
there is an isometric copy F of F included in F on which x is constant. It turns
out that as pointed out in [9], the notion of indivisiblity is too strong a concept
to be studied in a general setting. For example, as soon as a metric space X is
uncountable, there is a partition of X into two pieces such that none of the pieces
includes a copy of the space via a continuous 1 — 1 map. Thus, from the point of
view of indivisibility, only countable metric spaces are relevent. This is the reason
for which relaxed versions of indivisibility were introduced. If X = (X, dX) is a
metric space, Y C X and € > 0, set

(Y).={zeX :JyecY Xy <c)
Now, say that X is e-indivisible when for every strictly positive k € w and
every x : X — k, there is i < k and X C X isometric to X such that

X C (X {i})e-
Equivalently, X is e-indivisible when for every finite cover v of X there is A € v
and X C X isometric to X such that

X C (A)..

87
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When X is e-indivisible for every € > 0, X is approxzimately indivisible. When
X is complete and ultrahomogeneous metric space, this notion corresponds to the
notion of oscillation stability introduced in [40]. To present this concept, we start
with a short reminder about uniform spaces. Given a set X, a uniformity on X
is a collection U of subsets of X x X called entourages satisfying the following
properties:

(1) U is closed under finite intersections and supersets.
(2) Every V € U includes the diagonal A = {(z,z) : x € X}.
(3) ¥V €U, then V71 :={(y,z): (z,y) eV} €U.
(4) If V € U, there exists U € U such that
UoU:={(z,2):JyeU ((z,y) eUAN(y,z) eU)}CV.

(X,U) is then called a uniform space. A basis for U is a family B C U such
that for every U,V € U, there is W € B such that W Cc U NV.

Every uniform space (X,U) carries a structure of topological space (X, Ty/) by
declaring a subset O of X to be open if and only if for every = in O there exists an
entourage V such that {y € X : (z,y) € V} is a subset of O. (X,U) is separated
when (X, Ty,) is, or equivalently when (U = A. A sequence (z,)ne, of elements
of X is Cauchy when

VWelddN cwVp,gew (q2p=2N — (z4,2p) €V)

and (X,U) is complete when every Cauchy sequence in (X, ) converges in (X, Ty).
Uniform spaces constitute the natural setting where uniform continuity can be
defined: Given two uniform spaces (X,U) and (Y,V), amap f : X — Y is
uniformly continuous when

YWevaUueu (UcC FV).

When additionally f is bijective and f~! is uniformly continuous, f is called a
uniform homeomorphism. Given a separated uniform space (X Z/l) there is, up to
uniform homeomorphism, a unique complete uniform space (X u ) including (X, U)
as a dense uniform subspace, called the completion of (X,U). In what follows, we
will be particularly interested in uniform structures coming from topological groups.
In particular, for a topological group G, the left uniformity Uy, (G) is the uniformity
whose basis is given by the sets of the form V;, = {(z,y) : 271y € V} where V is
a neighborhood of the identity. Now, let GZ denote the completion of (G,UL(G)).
In general, GL is not a topological group. However, it is always a topological
semigroup. For a real-valued map f on a set X, define the oscillation of f on X
as:

osc(f) = sup{|f(y) — f(z)] : 2,y € X}.

DEFINITION 5. Let G be a topological group, f G — R be uniformly con-
tinuous, and f be the unique extension of f to GL by uniform continuity. fis
oscillation stable when for every € > 0, there is a right ideal T C GL such that

osc( f 7)) <e.
DEFINITION 6. Let G be a topological group acting G continuously on a topo-

logical space X. For f: X — R and x € X, let f, : G — R be defined by
Vg €G fulg) = flgz).
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Then the action is oscillation stable when for every f : X — R bounded
and continuous and every x € X, f, is oscillation stable whenever it is uniformly
continuous.

With these concepts in mind, we are now ready to link oscillation stability to
the Ramsey-type properties introduced previously: It turns out that when G is
the group iso(X) of all isometries from X onto itself equipped with the pointwise
convergence topology, GL can be thought as a topological subsemigroup of the
topological semigroup Emb(X) of all isometric embeddings from X into itself.

THEOREM 48 (Kechris-Pestov-Todorcevic [40], Pestov [66]). Let G be a topo-
logical group acting continuously and transitively on a complete metric space X by
isometries. Then the following are equivalent:

(1) The action of G on X is oscillation stable.

(2) Every bounded real-valued 1-Lipschitz map f on X is oscillation stable.

(8) For every strictly positive k € w, every x : X — k and every € > 0, there
are g € GL and i < k such that "X C (¢ {i})..

When one of those equivalent conditions is fullfilled, X is oscillation stable. In
addition, one can check that when the metric space X is ultrahomogeneous, then
GL is actually equal to Emb(X). For that reason, in the realm of ultrahomogeneous
metric spaces the previous theorem can be stated as follows:

COROLLARY 1. For a complete ultrahomogeneous metric space X, the following
are equivalent:

(1) When iso(X) is equipped with the topology of pointwise convergence, the
standard action of iso(X) on X is oscillation stable.

(2) For every bounded 1-Lipschitz map f: X — R and every € > 0, there is
an isometric copy X of X in X such that

osc(f I X) <e.
(3) X is approzimately indivisible.

In particular, for complete ultrahomogeneous metric spaces, oscillation stability
and approximate indivisibility coincide. In the more general context of structural
Ramsey theory, big Ramsey degrees and oscillation stability for topological groups
are also closely linked. For more information about this connection, see [40], section
11(E), or the book [66].

Remark. Though quite close in essence, the concept of oscillation stability
presented here is not the same as the classical concept of oscillation stability used
in Banach space theory. For more details, see the remark in section 4, at the end
of the introduction.

2. Big Ramsey degrees.

In this section, we present the only case where we were able to provide a
complete analysis for the big Ramsey degree: Ultrametric spaces.

THEOREM 49. Let S be a finite subset of |0, +oo[. Then every element of Us
has a big Ramsey degree in Us.
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THEOREM 50. Let S be an infinite countable subset of 10, +oo[ and let X be in
Us such that | X| > 2. Then X does not have a big Ramsey degree in Us.

The ideas we use to reach this goal are not new. The way we met them is
through some unpublished work of Galvin, but in [53], Milner writes that they
were also known to and exploited by several other authors, among whom Hajnal
(who apparently realized first the equivalent of lemma 13 and stated it explicitly
in [32]), and Haddad and Sabbagh ([35], [36] and [37]).

Recall that when S is finite and given by elements sg > s1... > 591 > 0,
it is convenient to see the space Bg as the set w!®! of maximal nodes of the tree
wSsISh = Ui<| S| w' ordered by set-theoretic inclusion and equipped with the metric
defined for x # y by

d(l‘, y) = SA(w,y)

where A(z,y) is the height of the largest common predecessor of z and y in

WSSl For A c w!®l] set
At ={alk:a€ ANk <n}

It should be clear that when A,B C w!®l, then A and B are isometric iff
Al = Bl Consequently, when X € Us, one can define the natural tree associated
to X in Us to be the unique (up to isomorphism) subtree Tx of wSIS! such that
for any copy X of X in Bg, Xl ~ Tx.

Given a subtree T of w!5!, set
<Is| ~ ~
(“% ) ={T: T cwSSIAT =T}
W<IS] <Is|

When k,l € w \ {0} and for any x : (“.n ) — k there is U € (“_5) such

ws

that y takes at most [ values on (g), we write

WSS, (wgwsw):l

)

If there is | € w . {0} such that for any k € w ~ {0}, wS®¥l — (w<|s‘)zl, the

least such [ is called the Ramsey degree of T in w<I91.

LEMMA 13. Let X C w!S! and let T = X'. Then T has a Ramsey degree in
WSSl equal to |e(T)|.

PROOF. Say that a subtree U of wSI5l is ezpanded when:
(1) Elements of U are strictly increasing.
(2) For every u,v € U and every k € |5,
u(k) # v(k) — (Vj 2 k u(j) # v(j))

WISl

Note that every expanded Te ( T ) is linearly ordered by <T defined by
s <T ¢iff (s =0 or s(|s|) < t(|t])
and that then <T is a linear extension of the tree ordering on T. Now, given
<|s ~ <|s
<€ e(T), let (“’T !‘) denote the set of all expanded T € (“’Tl ‘) with type <, that

is such that the order-preserving bijection between the linear orderings ('i‘, <T)

and (T, <) induces an isomorphism between the trees T and T. Define the map
WIS

V< (g ) — WM by

Y<(T) = {t(|¢]) - t € T~ {0}}
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Then v~ is a bijection. Call ¢~ its inverse map.
NE]

Now, let k € w~ {0} and x : (¥ ) — k. Define A : [w]/T1=1 — k(D) by
A(M) = (X(‘P<(M)))<ee(T)

By Ramsey’s theorem, find an infinite N C w such that A is constant on
[N] ITI=1 Then, on the subtree N <51 of wSI8! any two expanded elements of (“25‘)
with same type have the same x-color. Now, let U be an expanded everywhere
infinitely branching subtree of NSISI. Then U is isomorphic to w<S/Sl and y does
not take more than |e(T)| values on (}rj)

To finish the proof, it remains to show that |e(T)| is the best possible bound.
To do that, simply observe that for any U € (ij:), every possible type appears

on (ITJ) (Il

This lemma has two direct consequences concerning the existence of big Ramsey
degrees in Ug. Indeed, it should be clear that when X € Ug, X has a big Ramsey
degree in Us iff Tx has a Ramsey degree in w<!5 and that these degrees are equal.
Thus, theorem 49 follows.

On the other hand, observe that if S C S’ are finite and X € Us has size at
least two, then the big Ramsey degree Ty, (X) of X in Us: is strictly larger than
the big Ramsey degree of X in Us. In particular, Ty, (X) tends to infinity when
|S’| tends to infinity. That fact can be used to prove theorem 50.

PROOF OF THEOREM 50. It suffices to show that for every k € w~ {0}, there is

k' > k and a coloring x : (%(S) — k' such that for every @ € (gz), the restriction

of x on (g) has range k’. Thanks to the previous remark, we can fix S’ C S finite
such that X € Us, and the big Ramsey degree k' of X in Us: is larger than k. Recall
that Bg C w® soif 1g : S — 2 is the characteristic function of S’, it makes sense
to define f : Bs — Qg by

f(z) =1gx

Observe that d(f(z), f(y)) = d(x,y) whenever d(x,y) € S’. Thus, given any
Qe (gg), the direct image f”@ of @ under f is in (82:) Now, let ' : (') — &/

be such that for every Q' € (82:), the restriction of ¥’ to (?(,) has range k’. Then
x = X' o f is as required. O

3. Indivisibility.

As stated in the introduction of this chapter, indivisibility corresponds to the
most elementary case in the analysis of the big Ramsey degrees, so one might wonder
why the part of this thesis devoted to indivisibility is much larger than the one about
big Ramsey degrees. Here is the reason: With the exception of ultrametric spaces,
the obstacles posed by indivisibility are in most of the cases substantial enough for
many problems to remain open. Fortunately, there were also some recent progress,
in particular thanks to the paper [9] by Delhommé, Laflamme, Pouzet and Sauer
where a detailed analysis of metric indivisibility is carried out. For example, we
already mentionned a general observation from [9] in the introduction: From the
point of view of metric indivisiblity, only countable spaces are relevent. But this is
not the only immediate restriction:
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PRrOPOSITION 18. Let X be a metric space whose distance set is unbounded.
Then X is divisible.

PRroOOF. We follow [9]. Observe that inductively, we can construct a sequence
of reals (rp)new With ro = 0 together with a sequence (x,)nec. of elements of X
such that

Vn <w 2r, < dX(zo,Tni1) < Tnil — Tn-

Now, define x : X — 2 by setting:

Vee X X(.Z‘) =0« (dx(l‘Q,I) (S U [7’2n7r2n+1[> .
new
We claim that y divides X: Let ¢ : X — X be an isometric embedding.
Let n € w be such that dX(zg, (7)) € [rn,7ns1[- Then one can check that

dX (20, p(nt2)) € [Fns1,mnrzl, and so x(@(x0)) # x(p(Tnt2))- .

It follows that even if we restrict our attention to the Urysohn spaces associated
to the Fraissé classes of finite metric spaces, some spaces may have a trivial be-
haviour as far as indivisibility is concerned. For example, Ug and U,, are divisible.
However, we will see that when the two obstacles of cardinality and unboundedness
are avoided, indivisibility can be substantially more difficult to study. During the
past three years, the space whose indivisibility properties attracted most of the at-
tention is Sg. The question of knowing whether Sg is indivisible or not is explicitly
stated in [56] and in [66]. This problem was solved in [9] by Delhommé, Laflamme,
Pouzet and Sauer, and we present their result in subsection 3.1. In subsection 3.2,
we present the few known results concerning indivisibility of the spaces U,, when
m € w. In 3.3, we consider the case of the countable ultrahomogeneous ultrametric
spaces before turning to the study of indivisibility for the spaces Ug with |S| < 4
in subsection 3.4.

3.1. Divisibility of Sg. Apart from the intrinsic combinatorial interest, the
motivation attached to this problem comes from the problem of the oscillation
stability for the Urysohn sphere S. Indeed, had Sgp been indivisible, S would have
been oscillation stable. We will however see now that the actual answer for the
indivisibility problem for Sg is not the one that was hoped for. All the concepts
and results presented in this subsection come from [9] and are due to Delhommé,
Laflamme, Pouzet and Sauer.

THEOREM 51 (Delhommé-Laflamme-Pouzet-Sauer [9]). Sg is divisible.

Proor. Call a sequence of elements zy,...,x, of Sg an e-chain from zq to x,
if for every i < n, d5¢(z;, ;1) < e. The key idea is the following simple geometrical
fact: Let y € Sq, r € [0,1] irrational, z € Sg and n € w strictly positive such that

1
dse 11— :
< (1= 57)

Let also ' € Sg be such that

dSe(z,2') > r
Finally, let € > 0 be such that
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1

St Dm+o)

Then for every e-chain (z;);<n from z to 2/, there is ¢ < n such that

1 1
1= < dS(y, x; (11— .
r ( n—l—l) (y, ;) <r ( n+2>

With this fact in mind, we now prove that Sg is divisible. First, construct
inductively a subset Y of Sg together with a family (r,)yey of irrationals in ]0, 1/2[
such that

Vo € Sg Ny €Y d5(yu, z) < 7y

Now, let x : Sg — 2 be defined by

1 1

We claim that x divides Sg. Indeed, let g@ be an isometric copy of Sg in Sg.
Fix € Sg, and consider n > 0 such that

1 1
Ty, * (1_n> < d5(yy, ) <71y, - <1— n—|—1>'

In Sg, there is 2’ such that d52(z,2’) > r, . Fix ¢ > 0 with

1

S hrDm+2)

Then in §Q, there is an e-chain (x;);<, from z to /. But by the previous
property, there is ¢ < n such that

1 1
(1= < d*(y, @ 1= .
r < n—|—1> (y,x;) < ( n+2>

Then x(x) # (). 0

Theorem 51 is actually only a particular case of a more general result which can
be proved using the same idea. For a metric space X, z € X, and € > 0, let A\ (z)
be the supremum of all reals ! < 1 such that there is an e-chain (x;);<, containing
x and such that d*(zg,2,) > [. Then, define

AMz)=sup{leR:Ve >0 A (x) =1}

THEOREM 52 (Delhommé-Laflamme-Pouzet-Sauer [9]). Let X be a countable
metric space. Assume that there is xo € X such that A(zg) > 0. Then X is divisible.

Theorem 51 then follows since in Sg every x is such that A(z) = 1.
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3.2. Are the U,,’s indivisible? We mentionned earlier that Ug is divisible
because its distance set is unbounded. We also saw in the previous subsection
that unboundedness is not the only reason for this phenomenon as the bounded
counterpart Sg of Ug is not indivisible either. In this subsection, we try to answer
the same question when Ug is replaced by U,,. This latter space is divisible because
its distance set is unbounded. However, what if one works with one of its bounded
versions, namely a space of the form U,, when m € w? We will see in this section
that apart from the most elementary cases, not much is known. Of course, when
m = 1, the space U,, is indivisible. The first non-trivial case is consequently for
m = 2. However, we mentionned in chapter 1 that Us is really the Rado graph
R where the distance is 1 between connected points and 2 between non-connected
distinct points. Therefore, indivisiblity for Us is equivalent to indivisibility of R,
a problem whose solution is well-known:

ProrosITION 19. The Rado graph R is indivisible.

PROOF. Let k € w be strictly positive and x : R — k. Let {z, : n € w}
be an enumeration of the vertices of R. If all vertices have color 0, we are done.
Otherwise, choose %y such that x(Zy) = 0. In general, assume that Z, ..., %, were
constructed with y-color 0 and such that

Vi,j <n {i,3;} € E® < {x;,2;} € E®.
Now, consider the set E defined by
E={zeR:Vi<n ({&,2} € E® o {z;,zp41} € E®)} ~A{zo,..., 20}

If x does not take the value 0 on E, observe that the subgraph of R supported
by FE is ultrahomogeneous and includes an isomorphic copy of every finite graph.
Therefore, this subgraph is isomorphic to R itself and x is constant on it with value
1, so we are done. Otherwise, x takes the value 0 on E and we choose z,41 in F
and such that x(z,+1) = 0. Thus, if the construction stops at some stage, then we
are left with a copy of R with y-color 1. Otherwise, after w steps, we are left with
{Zy, : n € w} isomorphic to R and with y-color 0. O

Another possible proof for the indivisibility of R uses a Ramsey-type theorem
known as Milliken’s theorem. This result will be useful later in this thesis to prove
that Urysohn spaces more sophisticated than Uy are indivisible, so we present it
now. The main concept attached to Milliken’s theorem is the concept of strong
subtree: Fix a downwards closed finitely branching subtree T of the tree w<* with
height w. Thus, the root of T is simply the empty sequence and the height of a
node t € T is the integer |¢| such that ¢ : |[¢{| — w. Say that a subtree S of T is
strong when

i) S is rooted.
ii) Every level of S is included in a level of T.
iii) For every s € S not of maximal height in S and every immediate successor

t of s in T there is exactly one immediate successor of s in S extending ¢.

For s,t € T, set
sAt=max{ueT:uCs, ucCt}.
Now, for A C T, set
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AN={sAt:s,t € A}
Note that A C A" and that A" is a rooted subtree of T. For A, B C T, write
AEmB when there is a bijection f : A — B” such that for every s,t € A":

i)sCte f(s) C f(1).

i) [s| < [t] < [f(s)] < [f()].

ili) se A« f(s) € B.

iv) t(|s[) = f(@)(|f(s)]) whenever |s| < [¢].

It should be clear that Em is an equivalence relation. Given A C T, the Em-
equivalence class of A is written [A]gy. Finally, for a strong subtree S of T, let
[Algm | S denote the set of all elements of [A]gy, included in S. With these notions
in mind, the version of Milliken’s theorem we need can be stated as follows:

THEOREM 53 (Milliken [51]). Let T be a nonempty downwards closed finitely
branching subtree T of w<* with height w. Let A be a finite subset of T. Then for
every strictly positive k € w and every k-coloring of [Algm, there is a strong subtree
S of T with height w such that [Algm | S is monochromatic.

For more on this theorem and its numerous applications, the reader is referred
to [79]. We now show how to deduce proposition 19 from theorem 53.

PROOF. Let T be the complete binary tree 2<¢. On T, define the following
graph structure (sometimes called the standard graph structure on 2<“) by:

Vs <te2<¢ {s,t} e E o (s| < [t], t(]s]) =1).

Now, observe that R embeds into the corresponding resulting graph. Indeed,
let {z,, : n € w} be an enumeration of the vertices of R. Set tx = 0. In general,
assume that o, ..., ¢, were constructed such that |¢;| =i for every ¢ and

Vi,j <n ({ti,tj}GEH{xi,xj}GER),
Choose t,,11 € 2<% with height n + 1 and such that
Vk<n tn+1(7;) =1« {xk,an} € E®.

Then after w steps, we are left with {¢,, : n € w} isomorphic to R. In fact,
observe that this construction can be carried out inside any strong subtree S of
T. On the other hand, it follows that R is indivisible iff (2<“ FE) is. But now,
indivisibility of (2<%, E) is guaranteed by Milliken’s theorem: Let A denote the
1-point subset of 2<“. Then [A]gy, is simply 2<% itself. So given k € w strictly
positive and a coloring x : 2<¥ — k, one can find a y-monochromatic strong
subtree S of 2<“. The subgraph of (2<%, F') supported by S being isomorphic to
(2<% E) itself, S provides the required x-monochromatic copy of (2<%, F). O

The following case to consider is Ug, which turns out to be another particular
case. As mentionned already in chapter 1, Us can be encoded by the countable
ultrahomogeneous edge-labelled graph with edges in {1, 3} and forbidding the com-
plete triangle with labels 1,1,3. The distance between two points connected by an
edge is the label of the edge while the distance between two points which are not
connected is 2. This fact allows to show:

THEOREM 54 (Delhommé-Laflamme-Pouzet-Sauer [9]). Us is indivisible.
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The proof of this theorem can be deduced from the proof of the indivisibility
of the K,,-free ultrahomogeneous graph by El-Zahar and Sauer in [10]. We do not
provide the details here but mention few facts which will be useful for us later in
subsection 3.4. The presentation we adopt follows [9]. Fix a relational signature
L and consider an L-structure H. A nonempty subset O of H is an orbit if it is
an orbit for the action of the automorphism group Aut(H) on H which pointwise
fixes a finite subset of H. Now, given two L-structures R and S, write R < S when
there is a partition of R into finitely many parts Ry,..., R, such that for every
i < n, R; embeds into S. The following theorem follows from results in [11] and
[74]. For the definition of free amalgamation see chapter 2, subsection on NeSettil’s
theorem.

THEOREM 55 (El-Zahar - Sauer [11], Sauer [74]). Let L be a finite binary sig-
nature and H a countable ultrahomogeneous L-structure whose age has free amal-
gamation. Then H is indivisible iff any two orbits of H are related under <.

It follows that to prove that Ujs is indivisible, it suffices to show that the
countable ultrahomogeneous edge-labelled graph with edges in {1, 3} and forbidding
the complete triangle with labels 1,1,3 satisfies those conditions, which in the
present case is easy to check. We will see later that this method is actually useful
in many cases. However, it does not allow to solve all the indivisibility problems
that we are interested in. In particular, the indivisibility problem for Uy is still,
so far, left open. More will be said about this in subsection 3.4 where many other
combinatorial problems will appear. Indivisibility properties of U, and the other
spaces U, will also appear in subsection 4.2 when dealing with the oscillation
stability problem for the Urysohn sphere.

3.3. Indivisibility of ultrametric Urysohn spaces. We saw in section 2
that the classes of ultrametric spaces Ug were the only case where we were able to
compute the big Ramsey degree explicitly. However, theorem 49 and theorem 50
leave an open case: Nothing is said about the big Ramsey degree of the 1-point
ultrametric space when the set S is infinite. In other words, theorems 49 and 50 do
not solve the indivisibility problem for Bg when S is infinite. The purpose of this
subsection is to fix that flaw.

THEOREM 56. Let S CJ0,+oo] be countable. Assume that the reverse linear
ordering > on R does not induce a well-ordering on S. Then there is a map x :
Bs — w whose restriction on any isometric copy X of Bg inside Bg has range
w.

In particular, in this case, Bg is divisible. This result should be compared with
the following one:

THEOREM 57. Let S C|0,+o00[ be finite or countable. Assume that the reverse
linear ordering > on R induces a well-ordering on S. Then Bg is indivisible.

Two remarks before entering the technical parts: First, theorem 56 and the-
orem 57 were first obtained completely independently of our work by Delhommé,
Laflamme, Pouzet and Sauer in [9]. The proofs presented here are ours but the
reader should be aware of the fact that for theorem 57, though the ideas are essen-
tially the same, the proof presented in [9] is considerably shorter. Second remark:
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Together with a previous remark according to which every countable ultrahomoge-
neous ultrametric space is of the form Bg for some at most countable S CJ0, +o0],
they can be synthetized as follows:

THEOREM 58. Let X be a countable ultrahomogeneous ultrametric space. Then
X is indivisible iff the reverse linear ordering > on R induces a well-ordering on
its distance set.

This subsection is organized as follows. Theorem 56 is proved in 3.3.1. Theorem
57 is proved in 3.3.2. Finally, in 3.3.3, we present an application of theorem 57
dealing with restrictions of maps f : Bg — w.

3.3.1. Proof of theorem 56. Fix a countable subset S of ]0, +oo[ such that the
reverse linear ordering > on R does not induce a well-ordering on S. The idea to
prove that Bg is divisible is to use a coloring which is constant on some particular
spheres. More precisely, observe that (S,>) not being well-ordered, there is a
strictly increasing sequence (s;);ec. of reals such that so = 0 and s; € S for every
1 > 0. Observe that we can construct a subset E of Bg such that given any y € Bg,
there is exactly one x in E such that for some i < w, dBs(x,y) < s;. Indeed, if
sup; .., S; = 00, simply take I/ to be any singleton. Otherwise, let p = sup;_,, s;
and choose F C Bg maximal such that

Vo,y € E d®%(z,y) > p

To define x : Bg — w, let (A4;);jew be a family of infinite pairwise disjoint
subsets of w whose union is w. Then, for y € Bg, let e(y) and i(y) be the unique
elements of E and w respectively such that dBs(e(y),y) € [si(y), Si(y)+1], and set

x(y) =7 iff i(y) € A;
CLAIM. X is as required.

PRrROOF. Let Y C Bg be isometric to Bg. Fix y € Y. For every j € w,
pick i; > i(y) + 1 such that i; € A;. Since Y is isometric to Bg, we can find
an element y; in Y such that dBs(y,y;) = s;;. We claim that x(y;) = j, or
equivalently i(y;) € A;. Indeed, consider the triangle {e(y),y,y;}. Observe that in
an ultrametric space every triangle is isosceles with short base and that here,

B (e(y),y) < si, = d(y,y;)
Thus,
dP% (e(y), y;) = d°%(y,y;) € [si;, 56,411
And therefore e(y;) = e(y) and i(y;) =i; € A;. O

3.3.2. Proof of theorem 57. When S CJ0, +oo] is finite, it follows from the proof
of section 2 that the 1-point ultrametric space has a big Ramsey degree equal to
1. Thus, Bg is indivisible. From now on, we consequently concentrate on the case
where S is infinite. Fix an infinite countable subset S of ]0, +o0[ such that the
reverse linear ordering > on R induces a well-ordering on S. Our goal here is to
show that the space Bg is indivisible. For convenience, we will simply write d
instead of dBs.

Observe first that the collection Bg of metric balls of Bg is a tree when ordered
by reverse set-theoretic inclusion. When & € Bg and r € S, B(z,r) denotes the
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set {y € Bg : dBs(x,y) < r}. z is called a center of the ball and 7 a radius. Note
that in Bg, non empty balls have a unique radius but admit all of their elements
as centers. Note also that when s > 0 is in S, the fact that (S, >) is well ordered
allows to define
sT =max{t €S :t<s}
The main ingredients are contained in the following definition and lemma.

DEFINITION 7. Let A C Bs and b € Bg with radius r € SU{0}. Say that A is
small in b whenr =0 and ANb=0 orr >0 and ANb can be covered by finitely
many balls of radius .

We start with an observation. Assume that {z, : n € w} is an enumeration of
Bg, and that we are trying to build inductively a copy {a, : n € w} of Bg in A
such that for every n,m € w, d(an, am) = d(zy, ). Then the fact that we may be
blocked at some finite stage exactly means that at that stage, a particular metric
ball b with AN b # 0 is such that A is small in b. This idea is expressed in the
following lemma.

LEMMA 14. Let X C Bg. The following are equivalent:

i) (5,) # 0.
ii) There isY C X such thatY is not small in b wheneverb € Bs and Y Nb # 0.

PROOF. Assume that i) holds and let ¥ be a copy of Bg in X. Fix b € Bg
with radius r and such that Y Nb # (. Pick z € Y Nb and let E C Bg be an
infinite subset where all the distances are equal to r. Since Y is isometric to Bg,
Y includes a copy E of E such that z € E. Then E C Y Nb and cannot be covered
by finitely many balls of radius r—, so ii) holds.

Conversely, assume that ii) holds. Let {x, : n € w} be an enumeration of
the elements of Bg. We are going to construct inductively a sequence (yp)new of
elements of Y such that

Vm,n € w d(Ym,Yn) = d(Tm, Tn)

For yo, take any element in Y. In general, if (y,)n<k is built, construct yi41
as follows. Consider the set E defined as

E={yeBs:Vn<k dy,yn) = d(@kt1,2,)}
Let also
r = min{d(zgp41,2,) : n < k}
and
M={n<k:dags1,2,) =1}

We want to show that ENY # 0. Observe first that for every m,n € M,
d(Ym»yn) < r. Indeed,

AWYm, Yn) = A Xm, Tpn) < max(d(@m, Th+1), d(Tht1, Tn)) =7

So in particular, all the elements of {y,, : m € M} are contained in the same
ball b of radius 7.

Cram. E=b~U,ers Bym,r™).
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ProOF. It should be clear that

EcCb~ U B(ym,r")
meM

On the other hand, let y € b~ | B(ym,r~). Then for every m € M,

meM
d(yvym) =Tr= d($k+1,l‘m)

so it remains to show that d(y, y,) = d(zk+1,2,) whenever n ¢ M. To do that,
we use again the fact that every triangle is isosceles with short base. Let m € M.
In the triangle {@, T, Trt1}, we have d(xp41,2,) > 7 SO

AT, Tkt1) =7 < d(Tp, Trm) = d(Tp, Trt1)

Now, in the triangle {ym,yn, v}, d(y,ym) = r and d(Ym, yn) = d(Tm,zn) > 7.
Therefore,

d(yvyn) = d(ymayn) = d(:l)m,SCn) = d(xk+1axn)
Il

We consequently need to show that (b~ ,,car B(Ym,r~))NY # 0. To achieve
that, simply observe that when m € M, we have y,, € Y Nb. Thus, Y Nb #
and by property ii), Y is not small in b. In particular, ¥ Nb is not included in

U'meMB(ym7T7)' I:l

We are now ready to prove theorem 57. However, before we do so, let us make
another observation concerning the notion smallness. Let Bg = AU B.

Note that if A is small in b € Bg, then 1) AN b cannot contribute to build a
copy of Bg in A and 2) BNb is isometric to b. So intuitively, everything happens as
if b were completely included in B. So the idea is to remove from A all those parts
which are not essential and to see what is left at the end. More precisely, define a
sequence (Ay)aew, recursively as follows:

o Ay = A
o Apt1 = Ao N U{b: A, is small in b}.
e For o < wq limit, A, = ﬂn<a A,
Since Bg is countable, the sequence is eventually constant. Set
B =min{a <w; : Agy1 = An}

Observe that if Ag is non-empty, then Ag is not small in any metric ball it
intersects. Indeed, suppose that b € Bg is such that Ag is small in . Then
Agr1Nb=0. But Ag41 = Ag so Az Nb = 0. Therefore, since Ag C A, A satisfies
condition ii) of lemma 14 and (E’:ls) £ 0.

It remains to consider the case where Ag = (). According to our second ob-
servation, the intuition is that A is then unable to carry any copy of Bg and
is only composed of parts which do not affect the metric structure of B. Thus,
B should include an isometric copy of Bg. For a < wq, let C, be the set of
all minimal elements (in the sense of the tree structure on Bg) of the collection
{b € Bs: A, is small in b}. Note that since all points of B can be seen as balls
of radius 0 in which A is small, we have B C |JCy. Note also that (|JCa)a<w, 18
increasing. By induction on o > 0, it follows that

Vo<a<w Au=Bs~ [ JUJC

n<o
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CLAM. Leta <wi, b € Co with radiusr € S. Then b\, ., U{c € C; : ¢ C b}
s small in b.

PROOF. A, is small in b so find ¢ ...c,—1 € Bs with radius r~ and included
in b such that
Aanbc | Je

<n

b~ U ¢ C U UC,,
<n n<a

Note that by minimality of b, if n < «, then b C ¢ cannot happen for any
element of C,,. It follows that either cNb =0 or ¢ C b. Therefore,

b\UciC UU{ceCn:ch}

i<n n<a

Then thanks to ()

CLAIM. Let o < wi and b € Cy. Then (Bl'?b) £ 0.

PRrROOF. We proceed by induction on a < ws.

For o = 0, let b € Cy. Without loss of generality, we may assume that the radius
r of b is strictly positive and hence in S. Ag = A is small in b so find cg,...,cph_1
with radius = such that Anb C (J,.,, ¢;. Then b~ |J,.,, ¢; is isometric to b and
is included in B N'b.

Suppose now that the claim is true for every n < . Let b € C, with radius
r € S. Thanks to the previous claim, we can find ¢q...c,_1 € Bs with radius r—
and included in b such that

b:UCiU UU{CGC":CCb}

<n n<a

UU{CEC,,:ch}:U{CE U tcCb}

n<a n<o

<n

Observe that

It follows that if D, is defined as the set of all minimal elements (still in the
sense of the tree structure on Bg) of the collection

{ce UCn:ch/\W<n cNe; =0}
n<o
Then {¢; : i < n} UD, is a collection of pairwise disjoint balls and |JD, is

isometric to b. By induction hypothesis, (BSC) # () whenever ¢ € D, and there is

an isometry . : ¢ — B Nec. Now, let ¢ : |JD, — B Nb be defined as
Y= U Pe
c€D,,

We claim that ¢ is an isometry. Indeed, let x,2" € |JD,. If there is ¢ € D,
such that z,z’ € ¢ then

d(p(x), p(a) = d(pc(), pe(a’)) = d(@,2")
Otherwise, find ¢ # ¢’ € D, with z € ¢ and 2’ € /. Observe that since we are
in an ultrametric space, we have

Vy,z€c Yy, 2 ed dy,y') =d(z,2")
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Thus, since z, o(x) € ¢ and =/, p(a') € ¢/, we get

d(p(x), (') = d(z, 2)
O

To finish the proof of theorem 57, it suffices to notice that as a metric ball
(the unique ball of radius max S), Bg is in C3. So according to the previous claim,
(]fs) # () and we are done.

3.3.3. An application of theorem 57. Let S C]0, 4+o0[ be infinite and countable
such that the reverse linear ordering > on R induces a well-ordering on S. We saw
that Bg is then indivisible but that there is no big Ramsey degree for any X € Ug
as soon as |X| > 2. In other words, in the present context, the analogue of infinite
Ramsey’s theorem holds in dimension 1 but fails for higher dimensions. Still, one
may ask if some partition result fitting in between holds. For example, given any
f :Bgs — w, is there an isometric copy of Bg inside Bg on which f is constant
or injective? Such a property is sometimes refered to as selectivity. Selectivity can
be thought as an intermediate Ramsey-type result between dimension 1 and 2. It
is indeed clearly stronger than the 1-dimensional result, but is in turn implied by
the 2 dimensional one if one considers the 2-coloring x defined by x({z,y}) = 1 iff
f(x) = f(y). Tt turns out that in the present case, selectivity does not hold. To
see that, consider a family (b,,)nc. of disjoint balls covering Bg whose sequence
of corresponding radii (7, )ne. decreases strictly to 0 and define f : Bg — w by
f(z) =niff x € b,. Then f is not constant or injective on any isometric copy of Bg.
Observe in fact that f is neither uniformly continuous nor injective on any isometric
copy of Bg. However, if “uniformly continuous” is replaced by “continuous”, then
the result becomes true:

THEOREM 59. Let S be an infinite countable subset of |0,+o00| such that the
reverse linear ordering > on R induces a well-ordering on S. Then given any
map [ : Bs — w, there is an isometric copy X of Bg inside Bs such that f is
continuous or injective on X.

The purpose of what follows is to provide a proof of that fact. The reader will
notice the similarities with the proof of theorem 57.

DEFINITION 8. Let f : Bs — w, Y C Bg and b € Bg with radius r > 0.
Say that f has almost finite range on b with respect to Y when there is a finite
family (¢;)i<n of elements of Bs with radius v~ such that f has finite range on

Ynb~U.,c)
LEMMA 15. Let f: Bs — w and Y C Bg such that for every b € Bg meeting

Y, f does not have almost finite range on b with respect to Y. Then there is an
isometric copy of Bg included in'Y on which f is injective.

PrROOF. Let {z, : n € w} be an enumeration of the elements of Bg. Our goal is
to construct inductively a sequence (Y, )new of elements of Y on which f is injective
and such that

Vm,n € w d(Ym,Yn) = d(Tm, Tn)

For yo, take any element in Y. In general, if (yy,)n<k is built, construct yxyq

as follows. Consider the set E defined as

E={yeBs:Vn<k dy,yn) = dxrs1,7n)}
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As in lemma 14, there is b € Bg with radius r > 0 intersecting Y and a set M
such that

E=b~ |J Blym:r)
meM

Since f does not have almost finite range on b with respect to Y, f takes
infinitely many values on E and we can choose y1+1 € E such that

Vv <k f(yn) # f(Yrs1)
O

We now turn to a proof of theorem 59. Here, our strategy is to define recursively
a sequence (Qq)acw, Whose purpose is to get rid of all those parts of Bg on which
f is essentially of finite range:
* Qo =Bs.
e Qut1 = Qu ~UJ{b: f has almost finite range on b with respect to Q}.
e For a < wy limit, Q, = ﬂn<a Q-

B being countable, the sequence is eventually constant. Set

B =min{a <w; : Qay1 = Qa}

If Q)5 is non-empty, then f and Q) satisfy the hypotheses of lemma 15. Indeed,
suppose that b € Bg is such that f has almost finite range on b with respect to Q3.
Then Qpy1 Nb=0. But Qpy1 = Qpso QzNb=10.

Consequently, suppose that Q3 = (. The intuition is that on any ball b, f is
essentially of finite range. Consequently, we should be able to show that there is
X e (gi) on which f is continuous.

For a < wy, let C, be the set of all minimal elements of the collection {b :
f has almost finite range on b with respect to Q,}. Then

V0<a<w1 Qa:BS\UUCn (**)

n<o
CLAIM. Let o < wy and b € C,. Then there is be (Z) on which f is continuous.

PROOF. We proceed by induction on a < ws.

For a =0, let b € Cy. f has almost finite range on b with respect to Qg = Bg
so find ¢y, . .., ¢, 1 with radius 7~ such that f has finite range on b~ J;_,, ¢;. Then
b~ U<, ¢i is isometric to b. Now, by theorem 57, b is indivisible. Therefore, there
isbe (Z) on which f is constant, hence continuous.

Suppose now that the claim is true for every n < «. Let b € C, with radius
reS. Findcy...cp_1 € Bg with radius r~ and included in b such that f has finite
range on Qo N (b~ U, ., ¢i). Then b’ := b~ J,,, ¢ is isometric to b and thanks to

(%),

<n

V=0n)u®n ]y

n<a
Now, let D,, be defined as the set of all minimal elements of the collection

{ce UCn:ch/\Vi<n cNe; =0}

n<a
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Then, for the same reason as in section 3, we have
b =('NQa) U JDa

Thanks to theorem 57, b’ N Q, or |JD, includes an isometric copy bof b If
b N Q. does, then for every i < m, ¢; N b is a metric ball of b of same radius as
¢;. Thus, b~ U<y Ci is an isometric copy of b on which f takes only finitely many
values and theorem 57 allows to conclude. Otherwise, suppose that | J D, includes
an isometric copy of b. Note that |JD, includes an isometric copy of itself on
which f is continuous. Indeed, by induction hypothesis, for every ¢ € D,, there
is an isometry ¢, : ¢ — ¢ such that f is continuous on the range ¢”c of p.. As
in the previous section, one obtains an isometry by setting ¢ := |JDy — |UDa

defined as
o=
c€D,

Thus, its range ¢” |J D, is an isometric copy of | J D, on which f is continuous.
Now, since |JD, includes an isometric copy of b, so does ¢”|JD, and we are
done. |

We conclude with the same argument we used at the end of theorem 57: As a
metric ball, Bg is in Cg. Thus, there is an isometric copy X of Bg inside Bg on
which f is continuous.

3.4. Indivisibility of Ug when |S| < 4. The last spaces we will be studying
in this section on indivisibility are the spaces Ug where S is a finite set satisfying
the 4-values condition. We saw already that they provided a wide variety of com-
binatorial objects and that the classes Mg to which they are attached seemingly
behave quite well from a Ramsey-theoretic point of view. The purpose of this sub-
section is to see if this apparent good behaviour of the Mg’s also appears at the
level of their Urysohn spaces. On the other hand, subsection 3.2 ended up with an
open question: Is U, indivisible? The cases of Uy and Ujs seem to suggest that
the answer is positive, but how far should this intuition be trusted knowing that it
is based on two instances only? Consequently, this subsection should also be seen
as a good opportunity to take a firmer grasp on the indivisibility problem for Uy.
This light gives a particularly ironical flavor to the following result:

THEOREM 60. Let S be finite subset of 10,400 of size |S| < 4 and satisfying
the 4-values condition. Assume that S = {1,2,3,4}. Then Ug is indivisible.

PrOOF. When the proofs are not elementary, their main ingredients are Mil-
liken’s theorem (theorem 53) and Sauer’s theorem (theorem 55) stated in 3.2. As
mentionned in chapter 1, there are many classes Mg, and hence many spaces Ug
when S has size 4 and satisfies the 4-values condition. Thus, we only cover here
the cases where |S| < 3. The cases where |S| =4 and S ~ {1,2,3,4} are treated
in appendix.

For |S| = 1, the result is trivial.

For |S| = 2: When S = {1, 2}, the Urysohn space is the Rado graph equipped
with the path metric. The Rado graph being indivisible, so is Uy ;. When
S = {1,3}, Uy 3 is ultrametric and is indivisible thanks to theorem 57.

For |S| = 3:
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(la) S = {2,3,4}. Uy 34; can be seen as a complete version of the Rado
graph with three kinds of edges. An easy variation of the proof working for the
Rado graph shows that Uys 3 4y is indivisible.

(1b) S = {1,2,3}. Uy 2,3 is the space we denoted Us and we saw in theorem
54 that it is indivisible.

(1d) S = {1,2,5}. Uy 5y is composed of countably many disjoint copies of
U,, and the distance between any two points not in the same copy of Us is always
5. The indivisibility of Us consequently implies that Uy, 5 5) is indivisible.

(2a) S = {1,3,4}. Uy 34y is composed of countably many disjoint copies of
U, and points belonging to different copies of U; can be randomly at distance 3 or
distance 4 apart. As for Uy, its indivisibility can be proved via Milliken theorem:
Fix an w-linear ordering < on 2<% extending the tree ordering and consider the
standard graph structure on 2<%:

Vs <te2<¥ {s,t} € E< (s| <|t|,t(|s]) =1).
Now, define a map d on the set [2<¢]2 of pairs of 2<“ as follows: Let {s,t},

{s',#'} < be in [2<¥]2. Then define d({s,t}-,{s',t'}<) as:

1 ifs=¢
3 ifs#s and {t,t'} € E.
4 ifs#s and {t,t'} ¢ E.

It is easy to check that d is a metric. Since d takes its values in {1,3,4},
([2<¥]?,d) embeds into Uyy 3 43. We now claim that the space Uy 3 43 embeds into
([2<“’] d). To do that, we actually show that Uy 343 embeds into the subspace

X of ([2<%]?, d) supported by the set

X ={{s,t}< € 2]t |s| <[tl, s <iea t, t(Is]) = O}.

The embedding is constructed inductively. Let {z, : n € w} be an enumeration
of Uy 343. We are going to construct a sequence ({sn,tn})new of elements in X
such that

Vm,n €w d({s,t}<,{s',t'}<) = dV 039 (2, 7,).

For {so,to0}<, take sp = ) and ¢y = 0. Assume now that {so,to}<, .-, {Sn,tn}<
are constructed such that all the elements of {so, ..., s, }U{to, . .., t,} have different
heights and all the s;’s are strings of 0’s. Set

M ={m <n:dY039 (z,,,2,41) = 1}.

If M = 0, choose s,,+1 to be a string of 0’s longer that all the elements con-
structed so far. Otherwise, there is s € 2<% such that

YmeM s, =s.

Set sp,+1 = s. Now, choose t,,41 above all the elements constructed so far and
such that

DVm g M (tpii([tml) =1) < (V02 (240, 2m) = 3).
i) {snt1,tns1t< € X,

i) is easy to satisfy because all the t,,’s have different heights. As for ii),
[$nt1] < |[tns1] and th41(|snt1]) = 0 are also easy (again because all heights are
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different) while 11 <jex tnt1 i satisfied because s,11 being a 0 string, |s,41| <
|tnt1| implies sp11 <jex tnt1. After w steps, we are left with {{s,,t,}:n € w} C X
isometric to Uy 343. Observe that actually, this construction shows that Uy 3 4y
embeds into any subspace of ([2<“]2,d) supported by a strong subtree of 2<%,

Now, to prove that Uy, 34y is indivisible, it suffices to prove that given any
X : ([2<%]%,d) — k where k € w is strictly positive, there is a strong subtree T of
2<% such that x is constant on [T]?NX. But this is guaranteed by Milliken theorem:
Indeed, consider the subset A := {0,01}. Then using the notation introduced for
theorem 53, [A]gm = X. So the restriction x | [A]gm is really a coloring of X,
and there is a strong subtree T of height w such that [A]lg, [ T = [T N X is
x-monochromatic.

(2b) S = {1,3,6}. Uyy 3} is obtained from Uy after having multiplied all the
distances by 3 and blown the points up to copies of U;. Its indivisibility is a direct
consequence of the basic infinite pigeonhole principle and of the indivisibility of Us.

(2¢) S ={1,3,7}. Ug is indivisible because ultrametric. O

{1,2,3,4} is consequently the only case with S = 4 for which the indivisibility
problem remains unsolved. At that point, there are two options. The first one is to
apply the well-known combinatorial lemma stating that if a result holds for the first
30 cases, then it also holds for the 31st. On the other hand, for those readers who
might be disturbed by the controversial character of the aforementionned lemma,
analyzing the different proofs in order to see what they - and not their result -
suggest is a maybe more reasonable alternative. We should mention that in our
view, the reason for which Uy stands apart might be that it is actually the very
first case were metricity comes into play. Indeed, for all the other sets S with
|S| < 4, the space Ug can be coded as an object where the metric aspect does
not appear and this is what makes Milliken’s and Sauer’s theorems helpful. Our
feeling is consequently that solving the indivisibility problem for Uy requires a new
approach. Still, we have to admit that what we are hoping for is a positive answer.
Theorem 60 is undoubtedly responsible for that, but we will see in section 4.2.6
that there are other results about the spaces U,, - namely approximate versions of
indivisibility - supporting this intuition.

4. Approximate indivisibility and oscillation stability.

After the study of indivisibility of countable Urysohn spaces, we now turn to
approximate indivisibility of complete separable metric spaces. As presented in
section 1, in the realm of ultrahomogeneous metric spaces, approximate indivisibil-
ity corresponds to oscillation stability whose formulation brings topological groups
into the picture. This fact is worth being mentionned as one of the most signifi-
cant metric Ramsey-type theorems, namely Milman’s theorem, appeared in close
connection with topological groups dynamics. For N € w strictly positive, let SV
denote the unit sphere of the (N + 1)-dimensional Euclidean space. Recall also S*
denotes the unit sphere of the Hilbert space, Milman’s theorem can be stated as
follows:

THEOREM 61 (Milman [52]). Let f : S — R be uniformly continuous. Then
for everye > 0 and every N € w, there is a vector subspace V' of {5 with dimV = N
such that

osc(f [V NS®) <e.



106 3. BIG RAMSEY DEGREES, INDIVISIBILITY AND OSCILLATION STABILITY.

Equivalently:

THEOREM 62 (Milman [52]). Let v be a finite cover of S*°. Then for every

€ >0 and every N € w, there is A € v and an isometric copy SN of SV in S such
that SN C (A)..

Milman’s theorem is at the heart of the recent book [66], where the interested
reader will find a wide variety of its developments in geometric functional analysis,
topological group theory and combinatorics. One of the most famous questions
raised after the discovery of Milman’s theorem is known as the distortion problem
for 5 and asks the following: Does Milman’s theorem still hold when N is replaced
by co? In other words, if f : S —— R is uniformly continuous and ¢ > 0, is
there an infinite-dimensional subspace V' of f5 such that osc(f [ V N S®) < &?
Or, with the terminology introduced in section 1: Is S°° approximately indivisible?
This problem remained opened for about 30 years, until the solution of Odell and
Schlumprecht in [63]:

THEOREM 63 (Odell-Schlumprecht [63]). S is not approzimately indivisible.

However, quite surprisingly, this solution is not based on an analysis of the
intrinsic geometry of /5. For that reason, it is sometimes felt that something es-
sential is still to be discovered about the metric structure of S°°. This impression
is certainly one of the motivations for the introduction of the concept of oscillation
stability as presented in section 1. From this point of view, the approximate indivis-
ibility problem for the Urysohn sphere S inherits a special status: Behind a solution
based on the geometry of S, a better understanding of S°° might be hidden. At
the present moment, it is unclear whether such a belief is justified or not. What is
clear is that the approximate indivisibility problem for S is still open. In fact, there
are relatively few results about approximate indivisibility and oscillation stability
in general. Here is, with theorem 63, one of the most significant ones known so far:

THEOREM 64 (Hjorth [31]). Let G be a non-trivial Polish group. Then seen as
a complete metric space, G is not oscillation stable.

Remark. Before the concept of oscillation stability for topological groups was
introduced by Kechris, Pestov and Todorcevic, Milman’s work led to a notion which
we will call here classical oscillation stability. This concept has now been central
in geometric functional analysis for several decades and is already visible in the
formulation of theorem 61: Given a Banach space E, a function f : Sgp — R
defined on the unit sphere Sg of E is oscillation stable in the classical sense if
for every infinite-dimensional closed subspace Y of F, and every € > 0, there is a
infinite-dimensional closed subspace Z of Y such that

osc(f | ZNSg) <e.

Now, say that E is oscillation stable in the classical sense if every uniformly
continuous f : Sg — R is oscillation stable in the classical sense. In spirit, classical
oscillation stability and oscillation stability for topological groups are consequently
closely related. In some cases, they even coincide: When Sg is ultrahomogeneous
as a metric space, classical oscillation stability for a Banach space E is equivalent
to oscillation stability of its unit sphere in the sense of [40]. However, this case is
quite exceptional: When Sg is not ultrahomogeneous (which actually holds as soon
as E is not a Hilbert space), this equivalence does not hold anymore and there is
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no direct connection between classical oscillation stability and oscillation stability
for topological groups.

4.1. Approximate indivisibility for complete separable ultrametric
spaces. We saw in 3.3 that the indivisibility problem was completely solved for
ultrametric Urysohn spaces. When passing to the metric completion, this allows to
solve the approximate indivisibility problem for the complete separable ultrahomo-
geneous ultrametric spaces:

THEOREM 65. Let X be a complete separable ultrahomogeneous ultrametric
space. Then X is approximately indivisible iff the reverse linear ordering > on R
induces a well-ordering on its distance set.

PROOF. According to the results of chapter 1, section 4.2, X = ﬁs for some
countable S CJ]0,+oo[. Assume that the reverse linear ordering > on R induces
a well-ordering on S. Then Bg is indivisible so ﬁs is oscillation stable. On the
other hand, assume that the reverse linear ordering > on R does not induce a
well-ordering on S. Consider the extension X to X of the coloring x used in the
proof of theorem 56 to divide Bg. Then X proves that X is not approximately
indivisible. g

4.2. Approximate indivisibility of S. As already mentionned in section
3.1, the first attempt towards the approximate indivisibility for S corresponds to
the study of the indivisiblity problem for Sg: Had Sg been indivisible, S would
have been approximately indivisible. However, we saw with theorem 51 that Sg
is not indivisible. Worse: The proof of that fact does provide any information
about S, so the approximate indivisibility problem for S has to be attacked from
another direction. The purpose of this subsection is to provide such an alternative.
In essence, the idea remains the same: Approximate indivisibility for S can be
attacked via the study of the exact indivisibility of simpler spaces. Sg was the first
natural candidate because it is a very good countable approximation of S. But
this good approximation is paradoxically responsible for the divisibility of Sg: The
distance set of Sq is too rich and allows to create a dividing coloring. A natural
attempt at that point is consequently to replace Sg by another space with a simpler
distance set but still allowing to approximate S in a reasonable sense. There are
natural candidates for this position: The spaces obtained from the U,,’s after
having rescaled the distances in [0, 1]. In the sequel, these spaces will be denoted
S,.’s. Formally, for m € w strictly positive, if U, = (U,,dY™), then

dUnz
Sm = (Um7 -

This subsection is organized as follows: In 4.2.1, we will show that the spaces
S, indeed approximate S:

THEOREM 66. For every strictly positive m € w, there is an isometric copy S’;
of 8y, inside S such that (Spm)1/m = S.

We will then connect approximate indivisiblity of S and indivisibility of the
Sm's (4.2.2-4.2.5):

THEOREM 67. The following are equivalent:

i) S is oscillation stable.
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ii) Sg is approzimately indivisible.
iii) For every strictly positive m € w, Sy, is 1/m-indivisible.
iv) For every strictly positive m € w, Sy, is indivisible.
Next, in 4.2.6, we will present the bounds that our results allow to reach before
finishing in 4.2.7 with possible approaches towards indivisiblity of the spaces S,,.
Before going deeper into the technical details, let us mention here that part
of our hope towards the discretization strategy comes from the proof of a famous
result in Banach space theory, namely Gowers’ stabilization theorem for ¢y [23],

where combinatorial Ramsey-type theorems imply that the unit sphere S., of co
and its positive part Sjo are approximately indivisible.

4.2.1. Proof of theorem 66. For m € w strictly positive, set
[0,1] :={k/m : k€ {0,...,m}}.
On the other hand, for « € [0,1], set
[a],, = min[a, 1] N[0, 1],,.

Since S is the metric completion of Sg, it is eilough to show that for every
strictly positive m € w, there is an isometric copy S,, of S,, inside Sg such that
(§m)1/m = Sg. This is achieved thanks to a back and forth argument. Fix (z,)new
an enumeration of S,, and (yn)new an enumeration of Sg. Define

O'(O) = 07 i‘g(o) = 7Yo-
Set also
T(-1) = -1, 7(1) = min{j € w: 1/m < d5(Z (0, y;)}
Now, consider the metric subspace Zg of Sg supported by the set
Zo = {Z5(0), Yr(1) }-
Let fo: Zg — Q be defined by
fo(Zo) = [d5%(Zo(0),y1)],, 5 foWr@)) = fo(Eo0)) — d5%(Zo(0), y1)
Then one can check that

i) fo is Katétov over Zjg.
i) fo(Zo(0)) € [0, 1.
Now, let
o(1) = min{i € w: d5n (T (0y, i) = fo(To(0))}-

Define also Z,(1) € Sq realizing fy over Zg. Note that the existence of o(1)
is guaranteed by the ultrahomogeneity of S,, whereas the existence of Z,(;) is
guaranteed by the ultrahomogeneity of Sg.

In general, suppose that Z,(0), (1) - - - To(2n-2), To(2n—1) are defined such that
the map ) +— Z,(r) is an isometry between {z ) : 0 < k < 2n — 1} and
{jg(k) :0< k< 2n—1}. Let

o(2n) =minw \ {o(k) : 0 < k < 2n —1}.

Set also Zq(2n) € Sq such that:

Vk €{0,...,2n — 1}, d5(Zo(k), Zo(an)) = A5 (Zo(k), To(2n))-

Then let 7(2n + 1) be defined by
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T(2n+1) =min{j € w:Vk € {0,1...2n}, 1/m < d5 (T, y;)}
Let also Z,, be the metric subspace of Sg supported by the set
Zn =A{Zo) : 0 <k <20} U{Yri2n41) )}
CLAM. There is a map f : Z, — Q such that:
i) fn is Katétov over Z,,.
i) Vk € {0,...,2n}, fa(Fow) € [0, 1m.
i) fn(Yr@nt1)) <1/m.
Assuming that this claim is true, let
o(2n+1) =min{i € w: Vk € {0,...,2n}, d®(z,(1), %) = fulZo@))}-
Let Zo(2n4+1) € Sq realizing f,, over Z,. As before, the existence of o(2n + 1)

is guaranteed by the ultrahomogeneity of S, whereas the existence of Z,(2,41) is
guaranteed by the ultrahomogeneity of Sg. After w steps, we are left with

Sm = {Zs(n) : n € w} C Sq.
CLAIM. gm is as required.
PRrROOF. Observe that ¢ : w — w is a bijection. It follows that
{Zom) :n€w} =8S,,.

But §m is isometric to {z,(,) : n € w}. Thus, §m is a copy of S,, inside
Sq. To prove that (S,,)1/m = Sq, note first that 7 : {2n —1 : n € W} — w
is strictly increasing. Then, observe that for every n € w and every j such that
T(2n — 1) < j < 7(2n+ 1), there is k € {0...2n} such that

dSQ(i‘G(k),yj) < 1/m.
On the other hand, for j = 7(2n + 1),

dse (i'a(2n+1)> y'r(2n+1)) < 1/m'
O
We now turn to the proof of the claim concerning the existence of f,. For
k € {0,...2n}, set
Fn(Eory) = [d%(Zo(), Yrzns) ], -
Now, let
fn(y7(2n+1)) = max{ [ds@ (io(k)ay7(2n+l))~|m - ds@ (ia(k)ayT(Qn—H)) :0<k < 277’}
It is enough to show that for every 0 < k,1 < 2n, the following triangle inequal-
ities hold:
| fn(@o(ky) = fn(Toy)| < d5(For)s To) < fulZow) + Frl@ow) (k)
|fo(@o) = faWr@nin)| < 5oy, Yrnt1) < fal@o) + foWr@ntn) (25)
For (1x,): The right inequality is not a problem:
A5 (1), T (1)) < A5 Zo (k) Yr2n+ 1)) FA52 (Yr@nt1)s To) < Fr(Eo )+ n(Eow))-
For the left inequality, we use the following simple fact:
Va,B €R, Vp € w, ‘ﬁ_a| Sp/m - ||—ﬁ—|m - |—O‘-|m| gp/m
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Indeed, assume that | — o] < p/m. We want |[mg] — [ma]| < p. Without
loss of generality, « < 8. Then 0 < [mf] — [ma] < mB+1—ma < p+1, so
|[fmB] — [ma]| < p and we are done. In our case, that property is useful because
then the left inequality directly follows from

|d5(Z o (), Yr 20 41)) — A5 Wr@nt1), Zo))| < d5U(Fo()s To(r)) € [0, 1] m.

For (2):

| fa(@o)) = faWrnsn)| = fal@o) = fa¥r@ntn))-
This is because f,,(Z5x)) = 1/m and 0 < frn(Yr2n+1)) < 1/m. Furthermore,

Fa@o) = Fal¥r@ntrn) < Fal@om) = (fa(@om)) — A5 (E0 k), Yr2nt1)))

< d(Zo(k)s Yr2n+1))

So the left inequality is satisfied. For the right inequality, simply observe that

dSe (i‘a(k)vyT@n-f—l)) < fn(ja(k:))

At that point, we should mention however that theorem 66 will not help us
in the proof of theorem 67. For example, theorem 66 does not imply alone that
if for some strictly positive m € w, S,, is indivisible, then S is 1/m-indivisible:
Assume that x : S — k. x induces a coloring of S, so by indivisibility of S,,
there is §m C S, isometric to S,, on which y is constant. But how does that allow
to obtain a copy of S?7 For example, are we sure that (gm)l /m includes a copy
of S? We are not able to answer this question, but recent results of Melleray in
[49] strongly suggest that S,, not being with compact completion, (gm)l /m Teally
depends on the copy §m and can be extremely small. In particular, it may not
include a copy of S. Thus, to our knowledge, theorem 66 does not say anything
about approximate indivisiblity of S, except maybe that the spaces S,,’s are not
totally irrelevent for our purposes.

4.2.2. From oscillation stability of S to approximate indivisibility of Sg. The
purpose of what follows is to prove the implication i) — i) of theorem 67.

THEOREM 68. Assume that S is oscillation stable. Then Sg is approximately
indivisible.

This theorem is proved thanks to the following proposition. Here, Sg is seen
as a dense metric subspace of S.

PROPOSITION 20. Let e > 0 and S be a copy of S in S. Then (A,S")EHSQ includes
a copy of Sg.

PROOF. We construct the required copy of Sg inductively. Let {y, : n € w}
enumerate a copy of Sg in S. For k € w, set

5_5 b 1
M WAT
1=0
Set also
e 1
nk:gﬁ

S being dense in S, choose 2y € Sg such that d5(yo, 20) < y. Assume now
that zg ...z, € Sg were constructed such that for every k,l < n
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{ d(yr,y1) = d® (2, 21)
d5 (21, yr) < O

Again by denseness of Sg in S, fix z € Sg such that

ds(z> Ynt1) < NMnti-

Then for every k < n,

|d5(z,21) = d°(yns1ue)| = |d%(z,2) — d° (2, Yna1) + d° (2k, Ynt1)
—d® (Yn11,Uk) |

d5(2,yns1) + d° (20, y)

Nnt1 + Ok

NMnt1 + On

VASVANIV/AN

It follows that there is 2,41 € Sg such that

Vk <n ds(2n+1u Zk) = ds(ynJrhyk:)
ds(zn+1az) < Mn+1 + §n

Indeed, consider the map f defined on {zx : k < n}U{z} by:

{ Vk<n f(z) = d®Yns1, uk)
f(z) = |ds(za2k) - ds(yn+1,yk)|

Then f is Katétov over the subspace of Sg supported by {z; : k < n} U{z}, so
simply take 2,41 € Sq realizing it. Observe then that

ds(zn-i-la Ynt1) < d® (Zn41,2) + d® (2, Ynt1)
< Nn+1 + 6n + Mn+1
< 5n+1

After w steps, we are left with {z,;n € w} C Sg N (S). isometric to Sg. |
We now show how to deduce theorem 68 from proposition 20:

PROOF OF THEOREM 68. Let € > 0, k € w strictly positive and x : So — k.
Then in S:

s = JXAi)e

i<k
By oscillation stability of S, there is ¢ < k and a copy S of S included in S such
that

SC ((Y{i})6/2)5/4-

By proposition 20, there is a copy §Q of Sg in (§)5/4 N Sg. Then in Sg

Sg € (% {i})e.
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4.2.3. From approzimate indivisibility of Sg to 1/m-indivisibility of Sy,. Here,
we provide a proof for the implication i7) — #ii) of theorem 67.

THEOREM 69. Assume that Sg is approzimately indivisible. Then for every
strictly positive m € w, Sy, is 1/m-indivisible.

Theorem 69 is the direct consequence of the following proposition:

PROPOSITION 21. Let € > 0 and assume that Sg is e-indivisible. Then Sy, is
1/m-indivisible whenever m < 1/e.

PrOOF. Let € > 0, assume that Sg is e-indivisible and fix m € w strictly
positive such that e < 1/m. Define [ds@]m by

Ve,ye X [dSe] (x,y) = [d%(z,y)], .

CLAIM. [ds@]m s a metric on Sg.

Proor. Triangle inequality is the only thing which needs to be checked. Let
z,Yy, 2 in Sg. Then

[dSo(z,2)] < [dSo(z,y) + dSe(y,2)] .
Now,
d%(z, 2) + d%(z,y) < [d%(z, 2)],, + [d%2(2,9)],, € [0, Um.
It follows that
[dSe(z,y) +d(y, 2)],, < [d%(z,2)],, + [d%(z,9)],,.
Thus
[d52(z,2)], < [d%(x,2)]  + [d5(z,y)], .
([l

Let X,,, be the metric space (Sg, [ds@]m) and let 7, denote the identity map
from Sg to X,,. Observe that X,, and S,, embed into each other, and that conse-
quently, 1/m-indivisibility of S,, is equivalent to 1/m-indivisibility of X,,. So let
k € w be strictly positive and x : X,,, — k. x induces a coloring xy o7 : Sog — k.
Sg being e-indivisible, there is i < k and a copy §@ of Sg inside Sg such that

Sq C (\om{i})..
Now, observe that "’ g@ is a copy of X inside X. Furthermore, note that
Vo #y € Sq (d%(z,y) < 1/m) — (X (r(x),7(y)) = 1/m).
Since € < 1/m, it follows that
" (xor{i})e € (X{iD1/m-
And so

Sg € (XAiD)1/m-
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4.2.4. From m-indivisibility of S2(m24+m) to indivisibility of Sy,. The pur-

pose of what is coming next is to prove the implication ii) — iv) of theorem 67.

THEOREM 70. Assume that for every strictly positive m € w, S,, is 1/m-
indivisible. Then for every strictly positive m € w, S, is indivisible.

Theorem 70 is proved via the following proposition:

PROPOSITION 22. Assume that for some strictly positive m € w, Sa(m24m) 8

m—mdim’sible. Then S, is indivisible.

PROOF. Let m € w strictly positive and such that Sy(,244,) is m-
indivisible. We are going to create a metric space W with distances in [0, 1],
and a bijection 7 : Sy (2 1,,) —> W such that for every subspace Y of Sy(n2qm),
if (Y)1/2(m2+m) includes a copy of S,,, then so does 7Y

Assuming that such a space W is constructed, the theorem is proved as fol-
lows: Observe first that W and S,,, embed into each other. Indivisibility of W
is consequently equivalent to indivisibility of S,, and it is enough to show that
W is indivisible. Let k € w be strictly positive and x : W — k. Then y o7 :
So(m24+m) — k and by m—indivisibility of So(m24m), there is i < k such that
(W{i})l/g(mz+m) includes a copy of Sy (24 m). Since S, embeds into So(m24m),
(W{i})1/2(m2+m) also includes a copy of S,,. Thus, % {i} = 7"\ o 7{i} includes
a copy of S,,,, and therefore a copy of W.

We now turn to the construction of W. This space is obtained by modifying
the metric on Sy (241, to a metric d, so that W = (So(m21m), d) and 7 is simply
the identity map from Sy(,,24 ) to W. d is defined as follows: Observe that for
x € [0, 1]g(m24m) there is a unique 0 < I < m such that

-1 -1 1 l
rE |t T
m m‘+m m m°+m
So we can consider the map f : [0, 1]a(m24m) — [0, 1], defined by

l -1 -1 1 l
Va € [0, 1]a(m2 +m) (f(x):Eer] m +m2+m’E+m2+m})

Observe that f is increasing, that f(0) = 0, and that

€
DA e (2102 5 (0t g ) =

Note also that f is subadditive: Let x,y, € [0, 1]2(n24m). Assume that

-1 -1 1 l
TE|—+———y—+ ———
m m2+m’'m m2+m
Then there is n € {1,...,2m + 4} such that
-1 -1 n n
xTr =
m m2+m  2(m?+m)

Similarly, there are I’ € {0,...,m} and n’ € {1,...,2m + 4} such that

l’—ljL -1 n n'
m m2+m  2(m?2+4+m)

y:
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So
by — l+l’+ L+ i_'_ 1 N n+n'
- m2+m m  m2+m 2(m? +m)
R I+0 n—(2m+4)+n" —(2m+4)
om m2+m 2(m2 4+ m)
! /
< I+ I+1
m m2+m
Therefore,

A IS A A
ﬂx+w<f< )—

e = = @) + ()

It follows that the map d := fo dS20m2+m) is a metric. d clearly takes its values
in [0, 1],,, so to show that d is as required, it suffices to prove that for every subspace
Y of So(m2im), if (Y)1/2(m24m) includes a copy of S,,, then 7Y includes a copy
of S,,. So let Y be a subspace of Sy(;,24,,) such that (Y)i/2(m24m) includes a

copy Sm of S,,. Then for every @ € S,,, there is an element ¢(z) € Y such that

dS2(7n2+m)(x7Qp(x)) < m Thus,
~ 1
A €S, ‘ds2(m2+m> , — d320m24m) , < —
z#y (p(x), ¢ (y)) @<
Since d2m2+m) (2, y) € [0, 1],
(@5 @), () ) = d2nem (@)
That is
d(m(p(2)), 7(p(y))) = d>2n24m) (2, y)

Thus, ©"ran(¢) C 7Y is isometric to S,,. O

4.2.5. From indivisibility of S,, to oscillation stability of S. In what follows,
we close the loop of implications of theorem 67 and show that iv) — ).

THEOREM 71. Assume that for every strictly positive m € w, S, is indivisible.
Then S is oscillation stable.

Theorem 71 is a consequence of the following proposition:

PROPOSITION 23. Assume that for some strictly positive m € w, S, is indi-
visible. Then S is 1/2m-indivisible.

Proposition 23 is itself a consequence of the following fact:

PROPOSITION 24. For every strictly positive m € w, there is an isometric copy
S,, of Sy inside S such that for every S, C S, isometric to Spm, (Sm)i/2m
includes an isometric copy of S.

Proposition 23 can be deduced from proposition 24 as follows:
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PROOF OF PROPOSITION 23. Let x : S — k for some strictly positive k € w.
X induces a k-coloring of the copy S;, constructed in the previous theorem. By
indivisibility of S,,, find ¢ < k and S,,, C S}, such that x is constant on S,, with

value i. But by proposition 24, in S, (S;,)1 /2, includes a copy of S. So (Y{i})l/gm
includes a copy of S. U

We now turn to a proof of proposition 24.

PROOF OF PROPOSITION 24. The core of the proof is contained in lemma 16
which we present now. Fix an enumeration {y, : n € w} of Sg. Also, keeping
the notation introduced in the proof of proposition 21, let X,,, be the metric space
(So, {ds@wm). The underlying set of X,, is really {y, : n € w} but to avoid
confusion, we write it {z, : n € w}, being understood that for every n € w,
Ty, = Yn. On the other hand, remember that S,, and X,,, embed isometrically each
other.

LEMMA 16. There is a countable metric space Z with distances in [0,1] and
including X, such that for every X, = {2y 1 n € w} C Xy with 0 1 w — w
strictly increasing and x, v+ T () isometric, (Xon)1/2m includes an isometric copy
Of S@.

Assuming lemma 16, we now show how we can deduce proposition 24. Z is
countable with distances in [0,1] so we may assume that it is a subspace of S.
Now, take S;, a subspace of X,, and isometric to S,,. We claim that S}, works:
Let S,, C Sy, be isometric to S,,. The enumeration {x, : n € w} induces a
linear ordering < of §m in type w. We first show that (gm)l /2m includes a copy
of Sg. According to lemma 16, it suffices to show that (gm, <) includes a copy of
{zn :n € w}c seen as an ordered metric space. To do that, observe that since X,,
embeds isometrically into S,,, there is a linear ordering <* of S,, in type w such
that {z, : n € w}< embeds into (S,,, <*) as ordered metric space. Therefore, it is
enough to show:

CLAIM. (8., <) includes a copy of (8m, <*).
PRrROOF. Write
(S, <*) ={sn :n €Ew}en.
(S, <) = {tn : n € w}e.

Let 0(0) = 0. If 0(0) < ... < o(n) are chosen such that sy +— () is a finite
isometry, observe that the following set is infinite

{icw:Vk<n dS(tym),ti) = d> (sk, snt1)}
Therefore, simply take o(n + 1) as the least element of
{i >o(n):Vk<n ds(ta(k),ti) = d5" (1, 8n11)}-
(Il

Now, observe that since the metric completion of Sg is S, the closure of

(gm)l/gm in S includes an isometric copy of S. But then we are done since (S, )1/2m
is closed in S. O
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We now turn to a proof of lemma 16. The strategy is first to construct the
set Z where the required metric space Z is supposed to be based on, and then to
construct d? (lemmas 17-21). To construct Z, proceed as follows: For ¢ C w, write
t as the strictly increasing enumeration of its elements:

t={t;:i€]s|}<.
Now, let T' be the set of all finite nonempty subsets ¢ of w such that z,, — x;,

is an isometry between {x, : n € w} and {x;, :n € w}. T is a tree when ordered
by end-extension. Let

Z = X,UT.

ﬂ(z):{ z if z € X,,.

For z € Z, define
Tmaxz 1fz€T.

Now, define an edge-labelled graph structure on Sg by defining  with domain
dom(d) C Sg x Sg and range ran(d) C [0,1] as follows :

If s,t € T, then (s,t) € dom(d) iff s and ¢ are <y comparable and in this case,

6(‘9, t) = ds@ (ymaxsa ymaxt)
If ,y € X, then (z,y) is always in dom(d) and
8(z,y) = d*n(z,y)
If t € T and z € X,,, then (z,s), (s,z) are in dom(d) iff © = 7 (¢). In this case
0(x,s) =d(s,z) =1/2m

For a branch b of T and i € w, let b() be the unique element of b with height
i in T. Observe that b(i) € [w]*Tt. Observe also that for every i,j € w, b(i) is
connected to 7(b(i)) and b(j), with

8(b(i), m(b(i)) = 1/2m and 8(b(i),b(j)) = d5(ys, y;)

In particular, if b is a branch of T, then § induces a metric on b and the map
from Sg to b mapping y; to b(i) is a surjective isometry. We claim that if we can
show that § can be extended to a metric d4 on Z with distances in [0,1], then
lemma 16 will be proved. Indeed, let

X, = {Zomn) 1 n €W} C X,y
with o : w — w strictly increasing and x, +— 2,(,) isometric. See ran(c) as a
branch b of T. Then (b, d?%) = (b,6) is isometric to Sg and

bC (7"b)1/2m = (Xm)1/2m~

Our goal now is consequently to show that § can be extended to a metric on
Z with values in [0, 1]. Recall that for z,y € Z, and n € w strictly positive, a path
from x to y of size n as is a finite sequence v = (2;);<n such that zp =z, 2,1 =y
and for every i < n — 1,

(2i, ziy1) € dom(9).
For x,y in Z, P(x,y) is the set of all paths from x to y. If v = (2;)i<n is in
P(x,y), ||7] is defined as:

n—1
vl = Z 6(zis zi41)
i=0

On the other hand, [|v||<1 is defined as:
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I7ll<1 = min([l], 1)
Here, we are going to show that the required metric can be obtained with d%
defined by

d?(z,y) = inf{[|7ll<1 : v € P(x,y)}.

Equivalently, we are going to show that for every (z,y) € dom(9), every path
~ from x to y is metric, that is:

o(z,y) < Il<a-

Let z,y € Z. Call a path v from x to y trivial when v = (z,y) and irreducible
when no proper subsequence of v is a non-trivial path from z to y. Finally, say that
7 is a cycle when (x,y) € dom(6§). It should be clear that to prove that d4 works,
it is enough to show that the previous inequality is true for every irreducible cycle.
Note that even though § takes only rational values, it might not be the case for dZ.
We now turn to the study of the irreducible cycles in Z.

LEMMA 17. Let xz,y € T. Assume that x and y are not <p-comparable. Let
v be an irreducible path from x toy in T. Then there is z € T such that z <p =z,
z<ryandy=(z,z2vy).

PrOOF. Write v = (2;)i<n+1. 21 is connected to x so z; is <p-comparable
with x. We claim that z; <7 x : Otherwise, * <7 z; and every element of T
which is <p-comparable with z; is also <p-comparable with z. In particular, 2o is
<p-comparable with x, a contradiction since zo and = are not connected. We now
claim that z; <7 y. Indeed, observe that z; <p zo : Otherwise, zo0 <7 21 <7 T
S0 zo <7 x contradicting irreducibility. Now, every element of T which is <p-
comparable with z5 is also <p-comparable with z;, so no further element can be
added to the path. Hence zo = y and we can take z; = z. (I

LEMMA 18. Every non-trivial irreducible cycle in X,, has size 3.
PRrROOF. Obvious since ¢ induces the metric d*™ on X,,. ([

LEMMA 19. Every non-trivial irreducible cycle in T has size 3 and is included
in a branch.

PROOF. Let ¢ = (#;)i<n be a non-trivial irreducible cycle in T. We may assume
that zg <7 z,—1. Now, observe that every element of T' comparable with z; is also
comparable with z,_;. In particular, z; is such an element. It follows that n = 3
and that zg, z1, 29 are in a same branch. O

LEMMA 20. Fwvery irreducible cycle in Z intersecting both X,, and T is sup-
ported by a set whose form is described in Figure 1.

PROOF. Let C' be a set supporting an irreducible cycle ¢ intersecting both
X, and T. Tt should be clear that |C' N X,,| < 2: Otherwise C' would support a
subcycle of size 3 included in X,,, and which therefore would be a strict subcycle
of ¢, contradicting irreducibility.

If C' N X, has size 1, let zp be its unique element. In ¢, zg is connected to two
elements which we denote z; and z3. Note that 21,25 € T so m(z1) = 7(z3) = 20.
Since elements in T" which are connected never project on a same point, it follows
that z1, z3 are <p-incomparable. Now, ¢ induces an irreducible path from z; to z3
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Case 1: Case 2: Case 3:

z1,20€T z21,20,23 €T z1,20,23 €T

21, z9 <p-comparable Zo <7 21, 22 <7T 23 29 <7 21, 22 <T 23
20,23 € X e X 20,24 € X

20 =m(21), z3 = 7(22) 20 =m(21) = 7(z3) 20 = m(21),24 = 7(23)

FIGURE 1. Irreducible cycles

in T so from lemma 17, there is zo € C such that zo <7 21, 29 <7 23, and we are
in case 2.

Assume now that C' N X,,, = {z0,24}. Then there are 21,23 € C NT such that
m(z1) = 20 and 7(z3) = z4. Note that since zg # z4, we must have z; # z3. Now,
CNT induces an ierreducible path from z; to z3 in T'. By lemma 17, either z; and z3
are compatible and in this case, we are in case 1, or z1 and z3 are <p-incomparable
and there is zo in C N'T such that zo <7 21, 20 <7 23 and we are in case 3. [l

LEMMA 21. Ewvery non-trivial irreducible cycle in Z is metric.

PROOF. Let ¢ be an irreducible cycle in Z. If ¢ is supported by X, then by
lemma 18 ¢ has size 3 and is metric since § induces a metric on X. If ¢ is supported
by T, then by lemma 19 c¢ also has size 3 and is included in a branch b of T. Since
¢ induces a metric on b, ¢ is metric. We consequently assume that ¢ intersects
both X,, and T. According to lemma 20, ¢ is supported by a set C whose form is
covered by one of the cases 1, 2 or 3. So to prove the present lemma, it is enough to
show every cycle obtained from a reindexing of the cycles described in those cases
is metric.

Case 1 : The required inequalities are obvious after having observed that

0(z0, 23) = [0(21, 22)],, and 0(z0,21) = 6(22,23) = 1/2m

Case 2 : Observe that since m(z1) = m(z3) = 2, we must have 0(z1,22) =
0(z2, 23). Notice also that §(zo,21) = §(z0,23) = 1/2m. The required inequalities
follow.

Case 3 : Observe that d(zg,21) = d(23, 24) = 1/2m, so the inequalities we need
to check are

0(z0, 24) 0(z1,22) +6(22,23) +1/m  (2)
For (1) :
0(z1,22) < [6(21,22)],,

6(m(z1), m(22))
0(20, m(22))

< (20, 24) + 0(24,7(22))

= (20, 2) + [(23,22)],,

< 0(z0,24) +6(22,23) +1/m
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For (2) : Write z; = b(j), 22 = b'(k), 22 = b(i) = V/(i). Then 2z = 7(z1) =
Tmaxb(j) and z4 = T(23) = Tmaxp (k). Observe also that d(z1,22) = dSe(y;,y;) and
that 6(z2, 23) = d5¢(y;, yr). So

5(20724) = de (xmaxb(')axmaxb’(k))
dse

Ymax b(5)> Ymax b’(k))—‘

N

[d5(

I'dS@ (ymax b(5)» Ymax b(s )) + d (ymax b (i) s Ymax b/ (k) )—‘ m
{dsq(yjayl + d (ylvyk)—‘m

[
1

(5(21, 2’2) + 5(227 33)—|
(21, 22) + 6(22,23) + 1/m

N

O

4.2.6. Bounds. Ideally, the title of this part would have been ”"The Urysohn
sphere is approximately indivisible” and we would have ended this thesis with
the proof of one of the different formulations of approximate indivisibility for S
presented in theorem 67. Unfortunately, so far, our numerous attempts to reach
this goal did not succeed. This is why this part is not the last one and is entitled
"bounds”. Instead, what we will be presenting now will show how far we were able
to push in the different directions suggested by theorem 67.

We start with a summary about the indivisibility properties of the spaces S,,.
Up to rescaling, these are really the spaces U,,. Now, recall that in section 3.2, we
mentionned that the best known result about indivisibility properties of the spaces
U,, is Sauer’s theorem stating that Uj is indivisible. Thus, S3 is indivisible. For
Uy, and hence Sy, the problem is still open though results from section 3.4 clearly
show that spaces of the form Ug where S is finite with size less or equal to 4 have
a tendency to be indivisible.

We now turn to 1/m-indivisibility of the spaces S,,,. In theorem 23, we showed
how an exact indivisibility result transfers to an approximate one. It turns out that
a slight modification of the proof allows to show:

THEOREM 72. Assume that for some strictly positive m € w, S, is indivisible.
Then Ss,, is 1/3m-indivisible.

PRrROOF. To prove this theorem, it suffices to show that there is an isometric
copy S;» of S,,, inside S3,, such that for every S, C S;* isometric to S,y, (gm)l/gm
includes an isometric copy of Sg,,,. The proof is essentially the same as the proof of
theorem 24 except that instead of the metric space X, = (Sg, [d5¢] ), one works
with (Sgm, (ds@] ..)- The fact that the approximation can be made up to 1/3m and
not 1/2m comes from the fact that for a € [0, 1]3,,,, @ < [a],, < a+2/3m whereas
if @ € [0,1]NQ, one only has o < [«],, < a4+ 1/m. O

Thus:
THEOREM 73. For every m <9, Sy, is 1/m-indivisible.

It follows that as far as 1/m-indivisibility is concerned, the first open case
corresponds to m = 10. Observe that the previous result is equivalent to the fact
that for every m < 9, Uy is 1-indivisible.

We now turn to the computation of values € with respect to which S is e-
indivisible. At that point, there are two alternatives: Either use the indivisibility
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results of the spaces S,,, or use their 1/m-indivisibility properties. As far as indi-
visibility is concerned, the best current € with respect to which S is e-indivisible is
provided by Sauer’s theorem together with theorem 23, namely:

THEOREM 74. S is 1/6-indivisible.

On the other hand, if at some point an approximate indivisibility result for
S, showed up independently of an exact one, we would still be able to compute a
bound for S:

THEOREM 75. Assume that for some strictly positive m € w, S, is 1/m-
indivisible. Then S is e-indivisible for every e > 3/2m.

PROOF. Let ¢ > 3/2m. Consider S}, constructed in proposition 24. Now, let
k € w be strictly positive and x : S — k. x induces a coloring of S}, and S,,
being 1/m-indivisible, there are ¢ < k and gm C S;, isometric to S,, such that
S C (X{i})1/m- By construction, (gm)l/gm includes an isometric copy of S.
Now,

((y{i})l/m)l/Qm C (Y{l})\?/Zm - (y{z})s
It follows that (% {i}). includes an isometric copy of S. O

Remark. If S,, is indivisible, there are now two ways to compute bounds on
S. The first way is provided by theorem 23 and gives 1/2m. On the other hand,
one may also apply theorem 72 first, and then theorem 75. The bound is then
3/2-1/3m = 1/2m. Thus, the two approches are equivalent.

4.2.7. Towards indivisibility of the spaces Sy,. In this last part, we present two
additional results which can be seen as two possible tracks for an attack of the
indivisibility problem for the spaces S,,. The first one makes a reference to the
space Sg:

THEOREM 76. Let m € w be strictly positive. Assume that for every strictly
positive k € w and x : Sg — k, there is a copy Sy, of S, in Sg on which x is
constant. Then S,, is indivisible.

PRrROOF. Once again, we work with X,, = (Sg, (dSQ]m) and the identity map
Tm ¢ Sg — S;,. Think of X, as a subspace of S,,,. Now, let & € w be strictly
positive and x : S,, — k. Then x induces a coloring of X,,, and therefore a
coloring x om of Sg. By hypothesis, there is a copy §m of S;, in Sg on which yom
is constant with value i < k. Then 7”’S,, C ¥ {i}. The result follows since 7”'S,,
is isometric to S,,. O

The second result of this part introduces new metric spaces C,,’s for which
the indivisibity is equivalent to the indivisibility of S,,’s but which, unlike the
S..’s, present the advantage of having a very explicit description. Let P denote
the Cantor space, that is the topological product space 2¢. Let C(P) denote the
set of all continuous maps from P to R equipped with the ||.||cc norm. Since the
work of Banach and Mazur, it is known that C(P) is a universal separable metric
space. Actually, Sierpinski’s proof of that fact allows to show the following result.
For m € w strictly positive, let C,, denote the space of all continuous maps from
P to [0, 1], equipped with the distance induced by ||.||so-
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THEOREM 77. C,, is a countable metric space and is universal for the class of
all countable metric spaces with distances in [0, 1], .

PROOF. We first show that C,, is countable: If f € C,, and k € [0,1],, then
7{/4:} is closed. Thus, 7{1@} =P~Uju 7{]} is open. It follows that f is a linear
combination with integer coefficients of characterictic functions of clopen subsets
of P. Hence, C,, is countable.

We now show that C,, is universal: Let X be a countable metric space with
distances in [0, 1],,, and L,, := Lip1(X, [0, 1],,,) denote the topological space of all 1-
Lipschitz maps from X to [0, 1], equipped with the pointwise convergence topology.
Seen as a subspace of [0,1]X, L,, is closed, hence compact and metrizable. Thus,
there is ¢ : P — L,, continuous and onto. Now, for € X, let ¢, be defined on

P by
Vs € P pa(s) = ¢(s)(x).

We are going to show that ¢ : X — C,,, defines an isometry from X into C,,.
To prove that ¢ takes its values in C,,, let © € X and k € [0, 1],,. Then

Go{k} ={s € P:o(s)(x) = k} = ¢{u € [0,1X : u(x) = k} N L.

Hence, % ,{k} is open in P and ¢, is continuous. To finish the proof, it suffices
to show that ¢ preserves distances. Let x,y € X. Then

e — ylloe < sup [p(s)(x) — ¢(s)(y)| < sup d™(z,y).
seP seP

On the other hand, let h, : X — [0, 1], be defined as h,(y) = d*(z,y). Then
ha € Lin: |ha(y) — ha(2)| = |d®(z,y) — d*(z, 2)| < d*(y,2). Now, ¢ being onto,
there is sg € P such that ¢(sg) = h,. Then |¢(so)(z) — d(s0)(y)| = dX(x,y). Thus,
P2 = pylloo = d*(z,y). O

It follows that S,, is indivisible iff C,, is. C,, being a much more concrete
object than S,,, studying its indivisibility might be a alternative to solve the indi-
visibility problem for S,,.

5. Concluding remarks and open problems.

We mentionned several times in this chapter that for the moment, not much is
known as far as big Ramsey degrees are concerned, so this direction already provides
a first axis of future research. In fact, this is not particular to metric spaces: Even
at the more general level of structural Ramsey theory, very little is known. To our
knowledge, apart from ultrametric spaces, the only cases where a complete analysis
was carried out correspond to finite linear orderings (Devlin, see section 11 of [40]
or [79]) and finite graphs (Laflamme-Sauer-Vuksanovic [45]). Furthermore, even
when big Ramsey degrees are determined, their explicit computation is not always
easy. Ultrametric spaces are a good illustration of this phenomenon: For X € Uy,
we proved that Ty, (X) is equal to the number of linear extensions of the tree
associated to X in Ug but we did not touch the question of how this number can
be computed in practice. For graphs, the problem is similar, and it turns out that
even in the most simple cases, highly non-trivial combinatorial problems appear
(see for example [43]). For more about big Ramsey degrees in structural Ramsey
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theory, see [40], section 11, or [79]. Back to the metric context, here is the question
which looks like the most reasonable to us:

Question 3. Let m € w be strictly positive. Does every X in M0, have a
big Ramsey degree in M,,njo,m)? More generally, if S C]0, +-ocol is finite and satisfies
the 4-values condition, does every X in Mg have a big Ramsey degree in Mg?

When X is the 1-point metric space Ky, this question is closely related to
indivisibility. However, as mentionned several times already in the body of this
thesis, our belief is not only that K; has a big Ramsey degree in the classes M,,qj0,m]
and Mg but that the related Urysohn spaces U,, and Ug, starting with Uy, are
indivisible. . . But as so far this statement is no more than a simple belief, here is
the next and last question:

Question 4. Is U, indivisible? More generally, for m € w strictly positive,
is U,, indivisible? Even more generally, if S CJ]0,+o0o[ is finite and satisfies the
4-values condition, is Ug indivisible?

Equivalently for U,,, is C,, indivisible? Or, using theorem 76, given a coloring
X : Sg — 2, is there a copy S,, of S,,, in Sg on which x is constant?



Appendix A. Amalgamation classes Mg when
S| < 4.

The purpose of this appendix is to provide a list of all the amalgamation classes
Mg when |S| < 4. Thanks to [9], it is known that Mg is an amalgamation class
iff S satisfies the 4-values condition. Recall that S satisfies the 4-values condition
when for every s, s1, s, 87 € S, if there is t € S such that:

|so — s1| St <so+s1, [sh— st <t <sp+ sy,
then there is u € S such that:

[so — sl Su<sg+sp, |s1—s)<u<si+s].
6. |S|=3.

6.1. sg < 51 <259 < 89+ 51 <281 < 89 {1,2,5}.

For a quadruple (ug, u1, us, us) of elements of S, let I(ug,u1, us,us) be defined
as the interval:

I(ug, u1,uz,ug) := [max(|lug — u1l, jus — ug|), min(ug + w1, us + ug)]

Call (ug,u1,uz,u3) good if I(ug,us,us,u3) NS # @. Otherwise, call it bad.
Define also (ug,u1,u2,uz)* := (ug, us, us, us). So S satisfies the 4-values condition
iff for every (ug,u1,uz,uz) € S, (ug,u1,uz, us) is good iff (ug, u,us,us)* is good.
Also, call a permutation o of {0,1,2,3} trivial if:

\V/(UO, Uy, uz, U3) € 547 I(“’J(O)v Ug (1)) Uo(2)s uo’(?))) = I(“Ov Uy, Uz, U3)-

Equivalently, o is trivial when ¢”{0,1} € {{0,1},{2,3}}. Now, set:

A:={ls—§|:s,§ €S} B:={s+s :ss €S}

Here, A = {1,3,4}, while B = {2, 3,4}UC with C C [5,4o0[. For every interval
[a,b] where a € A,b € B~ C and such that [a,b]N.S = ), we find all the quadruples
(ug,u1,uz,us) (up to trivial permutation) such that I(ug,u1,us, us3) = [a,b]. Up to
a trivial permutation, this allows to find all the bad quadruples. In the present case,
here is the list of all intervals [a,b] where a € A,b € B and such that [a,b] NS = (),
together with the quadruples (ug, u1, u2, us) such that I(ug,u1,us,us) = [a,b].

[3,2] (2,5,1,1)

[3,3] (2,5,1,2)

[3.4] (2,5,2,2)

[4,2] (1,5,1,1)

[4,3] (1,5,1,2)

[4,4] (1,5,2,2)
Now, let T be the transposition of {0,1,2,3} permuting 1 and 2. Let also T
be the set of all trivial permutations of {0,1,2,3}. Observe that T'U {7} gen-
erates the whole group of permutations of {0,1,2,3}. Thus, we have to check
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that the set of bad quadruples is closed under all permutations In practice, how-
ever, note that given any permutation o of {0,1,2,3}, (us(0), Us(1)s Us(2), Uo(3)) 18
equal to (ug, u1, u2,us), to (ug, u, ug, us)* = (uo,m,ul,u?,) or to (ug, uy, ug, us)s =
(ug, u3, us,u1) up to trivial permutation. Thus, it suffices to show that for every
bad quadruple (ug, w1, us,us) above, (ug,ur,us,uz)* and (ug,ur, us,us). are also
bad. Observe also that there are some cases where checking only (ug, u1, ug, us)* or
(up,u1,us2,us)s is enough. For example, if ug = uq, checking that (ug,ue,u1,us)*
is bad is sufficient. There are even cases where there is nothing to check, namely
when all but one of the u;’s are equal. Here, if ~ denotes equality modulo a trivial
permutation:

*
3 )

2,5,1,1)
2,5,1,2),
1,5,1,2)* = (1,1,5,
(1,5,2,2)* = (1,2,5,2) ~ (

It follows that S satisfies the 4-values condition.

) ) )

2,1,5
2,2,1
1,1,5

séﬂ,b
QR 2R

v Ot Ot Ot
— = N
NN =N DN

N TN TN
H
N N TN
N N TN
— N = =

~—_— — — —

)

6.2, sp <250 < 81 <82 <89+ <281 {1,3,4}.

A=1{1,2,3}, B={2}UC, CC4,+o0].
(2,2] (1,3,1,1)
(3:2] (1,4,1,1)

{1, 3,4} satisfies the 4-values condition.

6.3. sp <259 <51 <S89+ 81 <5S2< 251 {1,3,6}.
A={2,3,5}, B={2,4}UC, CCI6,+00].

2,2] (1,3,1,1)
3,2] (3,6,1,1) (3,6,1,1)* =(3,1,6,1) ~ (1,6,1,3)
5,2] (1,6,1,1)
5,4] (1,6,1,3) (1,6,1,3)* =(1,1,6,3) ~ (3,6,1,1)

{1, 3,6} satisfies the 4-values condition.

7. |S| = 4.

For |S| = 4, there are more cases to consider. Recall that for |S| = 3, the
sets we had to check with the 4-values criterion were provided by the following
inequalities:

(1a) sp < 81 < 82 < 280 < 89+ 851 < 281
(lb) So < 81 < 250 < 89 < Sg+ 81 <281
(ld) Sg < 81 < 250 < Sg+ 81 <281 < 89
(2a) sg < 280 < 81 < 82 < Sp + 81 < 281
(Qb) Sg < 280 < 81 < Sg+ 81 < 89 < 2871
(2¢) sp < 289 < 81 < S0+ 51 < 251 < S92

We look at how sg + s2, s1 + s2 and 2ss may be inserted in these chains:

For (1a):
So < 81 < 89 <280 < 8o+ 81 <S8+ 852 <251 <814 52 < 289
So < 81 < 89 < 280 < 89+ 81 <281 <89+ 89 <851+ 89 < 289



For (1Db):
So < s1 < 259
S < s1 < 289

For (1d):
So < 81 < 289

For (2a):
So < 280 < 81
S0 < 2580 < $1

For (2b):
Sso < 2589 < $1
Sso < 2s¢ < s1

For (2¢):
Sso < 2s¢ < s1

7. 15| = 4.

< 89 < 89+ 851 < 89+ S92 < 287
< 89 < 809+ 51 < 2581 < 8¢+ S2

< Sp+ 81 <281 < 89 <S89+ 89

< 89 < 89+ 51 < 89+ S2 < 2871
< 89 < 89+ 81 <281 <Sp+ 89

< 809+ 51 < 82 < 8¢+ S92 < 281
< 809+ 81 < 89 < 281 < Sg + So

< 809+ 81 < 281 < 89 < Sg+ So

< 81+ 89
< 81+ 89

<81+82

< 81+ 89
< 81+ 89

< 81+ 89
< 81+ 82

< 81+ 82

< 282
< 282

< 282

< 259
< 282

< 252
< 252

< 282
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We now insert s3 in these chains and check if the 4-values condition holds for
all the corresponding sets.

7.1, 59 <81 <89 <28) < 8Sg+51 <8p+ 82 <281 <81+ 89 < 289 {5,7,8}.

7.1.1. 59 < s3 < 259 {5, 7,8, 11}
No metric restriction. S satisfies the 4-values condition.

7.1.2. 259 < 83 < s9 + 1 {5, 7,8, 11}

A C0,6], BC[10,40o0].

No bad quadruple. S satisfies the 4-values condition.

7.1.3. sp+ 51 < s3 < 89+ S92 {5, 7,8, 13}

A C[0,8], BC[10,4o0].

No bad quadruple. S satisfies the 4-values condition.

7.1.4. so+ 82 < s3 <281 {5,7,8,14}.
(5,14,5,7) is a bad quadruple while (5,14,5,7)* = (5,5,14,7) is not. S does
not satisfy the 4-values condition.

7.1.5. 251 < 83 < 81+ So {5, 7,8, 15}.
(5,15,5,7) is a bad quadruple while (5,15,5,7)* = (5,5,15,7) is not. S does
not satisfy the 4-values condition.
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7.1.6. 51+ 52 < s3 < 259 {5, 7,8, 16}.
(7,16,7,8) is a bad quadruple while (7,16,7,8)* = (7,7,16,8) is not. S does
not satisfy the 4-values condition.

7.1.7. 2s9 < s3 {5,7,8,17}.
S = 5" U {t} where S’ satisfies the 4-values condition and 2max S’ < ¢. It is
easy to check that the 4-values condition is always satisfied in such a situation.

7.2, 59 <81 <89 <289 < Sp+81 <281 <8Sg+ 82 <81+ 82 <289 {5,6,9}.

7.2.1. So < 83 < 280 {5,6,97 10}
No metric restriction. S satisfies the 4-values condition.

7.2.2. 259 < 83 < 8o + 81 {5,6,9, 11}
so does not appear in any non-metric triangle with labels in S. 4-values condi-
tion is satisfied.

7.2.3. so+ s1 < s3 < 2571 {5,6,9, 12}
Same as previous case. 4-values condition is satisfied.

7.2.4. 251 < 53 < 89+ S2 {5, 6,9, 14}
Same as previous case. 4-values condition is satisfied.

7.2.5. 89+ S92 < 83 < 81 + S2 {5,679, 15}
{5,6,9,15} ~ {5,7,8,15}. So according to 7.1.5, S does not satisfy the 4-values
condition.

7.2.6. s1+s2 < s3<2s2 {5,6,9,18}. {5,6,9,18} ~ {5,7,8,16}. So according
to 7.1.6, S does not satisfy the 4-values condition.

7.2.7. 255 < s3 {5,6,9,19}.
{5,6,9,19} ~ {5,7,8,17}. So according to 7.1.7, S satisfies the 4-values condi-
tion.

7.3, 80 < 81 < 280 < 83 <80+ <S80+ 82 <28 <81+52 <282 {4,7,9}.

7.3.1. 59 < s3 < 8¢+ 81 {4,7,97 11}
s1 does not appear in any non-metric triangle with labels in S. 4-values condi-
tion is satisfied.

7.3.2. sp+ 81 < s3 < S0+ S92 {4, 7,9, 12}
{4,7,9,13} ~ {1,2,3,4}, and 4-values condition is satisfied as {1,2,3,4} is an
initial segment of a set which is closed under sums.
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7.3.3. 80+ 82 < 83 < 287 {4,7,9,14}.
(4,14,4,7) is a bad quadruple while (4,14,4,7)* = (4,4,14,7) is not. S does
not satisfy the 4-values condition.

7.3.4. 251 < 83 < 81+ So {4, 7,9, 16}.
(4,16,4,7) is a bad quadruple while (4,16,4,7)* = (4,4,16,7) is not. S does
not satisfy the 4-values condition.

7.3.5. 51+ 89 < 53 < 289 {4, 7,9, 18}
(7,18,4,9) is a bad quadruple while (7,18,4,9)* = (7,4,18,9) is not. S does
not satisfy the 4-values condition.

7.3.6. 255 < s3 {4,7,9,19}.
4-values condition is satisfied as S = S' U {¢t} with S’ satisfying the 4-values
condition and 2max S’ < t.

T4, sg<s1 <289 < 83 < 89451 <251 < 8Sg+82 < 81+89 <289 {8,14,21}.

7.4.1. 59 < 83 < 8¢+ 51 {8, 14,21,22}
s1 does not appear in any non-metric triangle with labels in S. 4-values condi-
tion is satisfied.

7.4.2. so+ 81 < s3 < 2s; {8,14,21,28}.
{8,14,21,28} ~ {4,7,9,12}. Thus, according to 7.3.2, S satisfies the 4-values
condition.

7.4.3. 251 < 83 < 80+ s2 {8,14,21,29}.
(14,29, 8,8) is a bad quadruple while (14,29,8,8)* = (14,8,29,8) is not. S
does not satisfy the 4-values condition.

T.4.4. 5o+ 82 < s3<s1+s2 {8,14,21,35}.
{8,14,21,35} ~ {4,7,9,16}. Thus, according to 7.3.4, S does not satisfy the
4-values condition.

TA5. 81+ sy < 83 <2y {8,14,21,42).
{8,14,21,42} ~ {4,7,9,18}. According to 7.3.5, S consequently does not sat-
isfy the 4-values condition.

7.4.6. 255 < s3 {8,14,21,43}.
4-values condition is satisfied as S = S’ U {t} with S’ satisfying the 4-values
condition and 2max S’ < t.
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7.5, 59 < 81 <280 < 89g+81 <281 < 89 < 89+ 83 <81+ 89 <289 {2,3,7}.

7.5.1. 59 < 83 < 89+ S2 {2,3,7,9}.

={1,2,4,5,6,7}, B={4,5,6}UC, C C[9,+00].
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S =1{2,3,7,9} satisfies the 4-values condition.

7.5.2. sg+ s9 < 53 < 81+ S9 {2,3,7, 10}.

(2,2,10,7) is not. S does

(2,10,2,7) is a bad quadruple while (2,10,2,7)*

not satisfy the 4-values condition.

7.5.3. 81+ 52 < s3 < 259 {2,3, 7, 14}.
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S =1{2,3,7,14} satisfies the 4-values condition.

7.54. 2s9 < s3 {2,3,7,15}. 4-values condition is satisfied as S = S" U {¢}
with S’ satisfying the 4-values condition and 2max S’ < t.

7.6. S0 <250 < 81 < 83 < 80+ <S80+ 82 <28 <81+83 <282 {2,6,7}.

7.6.1. s9 < s3 < 5o+ 81 {2,6,7,8}
A={1,2,4,5,6),B= {4} UC,C C [8,+o0].

[4,4] (2,6,2,2)
[5,4] (2,7,2,2)
6,4] (2,8,2,2)

S =1{2,6,7,8} satisfies the 4-values condition.

7.6.2. sg+ s1 < s3 < 8¢+ S2 {2, 6,7, 9}
(6,9,2,2) is a bad quadruple while (6,9,2,2)* = (6,2,9,2) is not. .S does not
satisfy the 4-values condition.

7.6.3. sp+ s < s3 < 2851 {2,6, 7, 12}.
A= {1,4,5,6, 10}, B= {4,8,9} uc, Cc [12,—1—00[.

[4,4]  (2,6,2,2)
5.4 (2.7.2,2)

(7,12,2,2) (7,12,2,2)* = (7,2,12,2) ~ (2,12,2,7)
6,4 (2,8,2,2)

(6,12,2,2) (6,12,2,2)" = (6,2,12,2) ~ (2,12,2,6)
[10,4] (2,12,2,2)
[10,8] (2,12,2,6) (2,12,2,6)* = (2,2,12,6) ~ (6,12,2,2)
[10,9] (2,12,2,7) (2,12,2,7)* = (2,2,12,7) ~ (7,12,2,2)

S ={2,6,7,12} satisfies the 4-values condition.

7.6.4. 251 < s3 < 81+ So {2, 6,7, 13}
(2,13,6,6) is a bad quadruple while (2,13,6,6)* = (2,6,13,6) is not. S does
not satisfy the 4-values condition.

7.6.5. 51+ 82 < 83 < 282 {2,6,7,14}.
(6,14,2,7) is a bad quadruple while (6,14,2,7)* = (6,2,14,7) is not. S does
not satisfy the 4-values condition.

7.6.6. 255 < s3 {2,6,7,15}.
4-values condition is satisfied as S = S’ U {t} with S’ satisfying the 4-values
condition and 2max S’ < t.
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T.T. 50 <289 <81 <82 <89+ 81 <281 <89+ 83 <814 892 < 289.
This chain of inequalities is not consistent: If so < sg + s1 and 2s; < sg + S9
then s1 < 280.

T.8. 50 <289 <81 <89+81 <82 <89+ 82 <281 <81+ 89 < 289 {1,4,6}.

7.8.1. sy < s3<so+s2 {1,4,6,7T}.

A=1{1,2,3,56},B={2,5}UC, C CI[7,+ocl.
2,2] (4,6,1,1) (4,6,1,1)* = (4,1,6,1) ~ (1,6,1,4)
3,2 (4,7,1,1) (4,7,1,1)* = (4,1,7,1) ~ (1,7,1,4)

(1,4,1,1)
5,2] (1,6,1,1)
5,5 (1,6,1,4) (1,6,1,4)* =(1,1,6,4) ~ (4,6,1,1)
6,2] (1,7,1,1)
6,5] (1,7,1,4) (1,7,1,4)*=(1,1,7,4) = (4,7,1,1)

S =1{1,4,6,7} satisfies the 4-values condition.

7.8.2. sg+ 59 < s3 <28 {1468}

A=1{2,3,4,5,7}, B=1{2,5,7JUC, C C[8,+o0].

2,2] (4,6,1,1) (4,6,1,1)* = (4,1,6,1) ~ (1,6,1,4)
(6,8,1,1) (6,8,1,1)* =(6,1,8,1) ~ (1,8,1,6)

(3,2] (1,4,1,1)

[4,2] (4,8,1,1) (4,8,1,1)* = (4,1,8,1) ~ (1,8,1,4)

[5,2] (1,6,1,1)

[5,5] (1,6,1,4) (1,6,1,4)* =(1,1,6,4) ~ (4,6,1,1)

7.2] (1,8,1,1)

[7,5] (1,8,1,4) (1,8,1,4)* =(1,1,8,4) ~ (4,8,1,1)

(7,7 (1,8,1,6) (1,8,1,6)* = (1,1,8,6) ~ (6,8,1,1)

=2

S =1{1,4,6,8} satisfies the 4-values condition.

-

7.8.3. 251 < s3 < 81 + S9 {14610}
A= {2,3,4,5,6,9}, B = {2,5,7,8} uc, Cc [10,—‘1-00[.

[2,2] (4,6,1,1) (4,6,1,1)* = (4,1,6,1) ~ (1,6,1,4)
3,2] (1,4,1,1)

[4,2] (6,10,1,1) (6,10,1,1)* = (6,1,10,1) ~ (1,10,1,6)
5,2] (1,6,1,1)

5,5] (1,6,1,4) (1,6,1,4)* = (1,1,6,4) ~ (4,6,1,1)
[6,2] (4,10,1,1) (4,10,1,1)* = (4,1,10,1) ~ (1,10,1,4)
[6,5] (4,10,1,4) (4,10,1,4), = (4,4,1,10) ~ (1,10,4,4)
(9,2] (1,10,1,1)

[9,5] (1,10,1,4) (1,10,1,4)* = (1,1,10,4) ~ (4,10,1,1)
9,7 (1,10,1,6) (1,10,1,6)* = (1,1,10,6) ~ (6,10,1,1)
9,8] (1,10,4,4) (1,10,4,4)* = (1,4,10,4) ~ (4,10,1,4)

S =1{1,4,6,10} satisfies the 4-values condition.
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7.8.4. 814 59 < 83 < 259 {1,4,6, 12}.
(4,12,4,6) is a bad quadruple while (4,12,4,6)* = (4,4,12,6) is not. S does
not satisfy the 4-values condition.

7.8.5. 259 < 83 {1,4, 6, 13}.
4-values condition is satisfied as S = S’ U {t} with S’ satisfying the 4-values
condition and 2max S’ < t.

7.9. sg <289 <81 <Sg+81 <8y <281 <Sg+ 82 <81+ 82 <289 {2,5,9}.

7.9.1. s9 < s3 < 251 {2,5,97 10}
{2,5,9,10} ~ {1,4,6,7}. Thus, according to 7.8.1, S satisfies the 4-values
condition.

7.9.2. 251 < s9 < S¢ + So {2,5,9, 11}
(5,11,2,5) is a bad quadruple while (5,11,2,5), = (5,5,2,11) is not. S does
not satisfy the 4-values condition.

7.9.3. 59+ 52 < 53 < 51+ So {2, 5,9, 14}
{2,5,9,14} ~ {1,4,6,10} so according to 7.8.3, S satisfies the 4-values condi-
tion.

7.9.4. 514 59 < s3 < 259 {2,5,9, 18}.
(5,18,5,9) is a bad quadruple while (5,18,5,9)* = (5,5,18,9) is not. S does
not satisfy the 4-values condition.

7.9.5. 259 < s3.
4-values condition is satisfied as S = 5" U {t} with S’ satisfying the 4-values
condition and 2max S’ < t.

7.10. sg < 2sp <81 <809+ 51 <251 < 82< 89+ S3 <81+ 89 <289 {1,3,7}.

7.10.1. sg < s3 < S + S2 {1,3, 7, 8}

A=1{1,2,4,5,6,7}, B={2,4,61UC, C C[8,+ool.
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S:

7.10.3. 51+ s2 < s3 < 289 {1,3, 7, 14}

{2,4,6,7,11,13}, B ={2,4,6,8,10}UC, C C [14,+0o0].

A:
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{1,3,7,14} satisfies the 4-values condition.

S:

7.10.4. 2s5 < s3 {1,3,7,15}.

S’ U {t} with S’ satisfying the 4-values

4-values condition is satisfied as S

condition and 2max S’ < t.






Appendix B. Indivisibility of Ug when |S| < 4.

The purpose of this Appendix is to show that for |S| =4, S = {1,2,3,4} and
satisfying the 4-values condition, the space Ug is indivisible. The main ingredients
of the proofs are indivisibility of Ug when |S| < 3, Milliken’s theorem (theorem
53) and Sauer’s theorem (theorem 55). In what follows, the numbering of the cases
corresponds to the sections in Appendix A.

2.1.1. {5,7,8,10}

Ug can be seen as a complete version of the Rado graph with four kinds of
edges. An easy variation of the proof working for the Rado graph shows that this
space is indivisible.

2.1.2. {5,7,8,11}
8 does not appear in any non-metric triangle with labels in S. Thus, Ug is
indivisible thanks to Sauer’s theorem.

2.1.3. {5,7,8,13}
Same as previous case.

2.1.7. {5,7,8,17}

Ug is composed of countably many disjoint copies of Uys 7y and the dis-
tance between any two points not in the same copy of Uys 75} is always 17. The
indivisibility of Uys 7 gy consequently implies that Ug is indivisible.

2.2.1. {5,6,9,10}

{5,6,9,10} ~ {5,7,8,10}, so Ug is isomorphic to the space in 2.1.1 and hence
indivisible.

2.2.2. {5,6,9,11}

9 does not appear in any non-metric triangle with labels in S. Thus, Ug is
indivisible thanks to Sauer’s theorem.

2.2.3. {5,6,9,12}
Same as previous case.

2.2.4. {5,6,9,13}
Same as previous case.

2.2.7. {5,6,9,19}

135
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{5,6,9,19} ~ {5,7,8,17}, so Ug is isomorphic to the space in 2.1.7 and hence
indivisible.

2.3.1. {4,7,9,11}
7 does not appear in any non-metric triangle with labels in S. Thus, Ug is
indivisible thanks to Sauer’s theorem.

2.3.2. {4,7,9,13}
{4,7,9,13} ~ {1,2, 3,4} so essentially, Ug is Uy. This case is open.

2.3.6. {4,7,9,19}

Ugs is composed of countably many disjoint copies of Uy 79y and the dis-
tance between any two points not in the same copy of Uyy 79) is always 19. The
indivisibility of Uy, 79} consequently implies that Ug is indivisible.

2.4.1. {8,14,21,22}
14 does not appear in any non-metric triangle with labels in S. Thus, Ug is
indivisible thanks to Sauer’s theorem.

2.4.2. {8,14,21,28}
Elements in Mg are isomorphic to elements in Mg with S’ as in 2.3.2. This
case is consequently open and equivalent to indivisibility of Uy.

2.4.6. {8,14,21,43}

Ug is composed of countably many disjoint copies of Uyg 14 21} and the distance
between any two points not in the same copy of Ujg 14,01} is always 43. The
indivisibility of Uyg 14,21} consequently implies that Ug is indivisible.

2.5.1. {2,3,7,9}

The proof of indivisibility for Ug is a simple adaptation of the proof of indivis-
ibility of Uy 34): Fix an w-linear ordering < on 2<% extending the tree ordering
and consider the following graph structure on 2<%:

Vs <te2< {5t} e E« (|s| <[t|,t(|s]) = 1).

Now, define d on the set [2<*]? of pairs of 2<% as follows: Let {s,t},{s’,t'} <
be in [2<¢]2. Then d({s,t},{s',t'} <) is:

if s=s"and {¢t,t'} € E.
if s=s"and {t,t'} ¢ E.
if s # s and {t,t'} € E.
9 ifs#s and {t,t'} ¢ E.

~N W N

One can check that d is a metric. Since d takes its values in {2,3,7,9},
([2<%]?,d) embeds into Ug. We now show that Ug embeds into the subspace
X of ([2<*]2,d) supported by the set

X ={{s,t}c € 2]t |s| <|t], 5 <iea t, t(Is]) = O}

The embedding is constructed inductively. Let {z,, : n € w} be an enumeration
of Ug. We are going to construct a sequence ({$p,t,})ncw of elements in X such
that
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Vm,n € w d({s,t}<,{s',t'}<) = dYs (zm, Tp).
For {sq,to}<, take sp = ) and ty = 0. Assume now that {so,to}<, .-, {Sn,tn}<
are constructed such that all the elements of {so, ..., s, }U{to, . .., t,} have different
heights and all the s;’s are strings of 0’s. Set

M={m<n:dYs (v, z011) € {2,3}}).
If M = 0, choose s,,11 to be a string of 0’s longer that all the elements con-
structed so far. Otherwise, there is s € 2<% such that

YmeM s, =s.

Set s,+1 = s. Now, choose t,,11 above all the elements constructed so far and
such that

) Vme M (tar1([tm]) = 1) < (dYS (@pp1, 2m) = 2).
i) Vm ¢ M (tpta1([tm]) = 1) < (dUS (Tnt1,Tm) = 7).
lll) {Sn+17tn+1}< € X.

i) and ii) are easy to satisfy because all the t,,’s have different heights. As for
iii), [sn41] < |tns1| and tn41(|snt1]) = 0 are also easy (again because all heights are
different) while 11 <jes tnt1 i satisfied because s, 41 being a 0 string, |s,4+1| <
[tnt1| implies $p11 <jex tny1. After w steps, we are left with {{s,,t,}:n € w} C X
isometric to Ug. Observe that actually, this construction shows that Ug embeds
into any subspace of ([2<“]?,d) supported by a strong subtree of 2<“.

Now, to prove that Ug is indivisible, it suffices to prove that given any x :
([2<¥]2,d) — k where k € w is strictly positive, there is a strong subtree T of 2<%
such that x is constant on [T]? N X. But this is guaranteed by Milliken theorem:
Indeed, consider the subset A := {0,01}. Then using the notation introduced for
theorem 53, [A]gm = X. So the restriction x | [A]gm is really a coloring of X,
and there is a strong subtree T of height w such that [A]lg, [ T = [T]? N X is
x-monochromatic.

2.5.3. {2,3,7,14}
Uyg is obtained from Us by multiplying the distances by 7 and then blowing
up the points to copies of Uy 33. Uz and Uy, 3y being indivisible, so is Ug.

2.5.4. {2,3,7,15}

Us is composed of countably many disjoint copies of Uy 37, and the dis-
tance between any two points not in the same copy of Uys 37 is always 15. The
indivisibility of Uyy 37} consequently implies that Ug is indivisible.

2.6.1. {2,6,7,8}

In this case, indivisibility of Ug can be proved thanks to the method of 2.5.1.
except that instead of [2<¥]?, one works with [3<“]? and d({s,t}, {s,t'}<) defined
on the set [3<¢]? of pairs of 3<% by:

if s=14¢

if s # s" and t/(Jt])
if s # s" and /(J¢])
if s # s’ and t/(|t])

0 O N

0.
1.
2
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2.6.3. {2,6,7,12}
Again, we apply Milliken’s theorem. Consider E the standard graph structure
on 2<% and define d({s,t}<,{s’,t'}<) by:

if s=3s"and {¢t,t'} € E.

if s# s and {s,s'} ¢ E and {t,t'} ¢ E.

if s# s and {s,s'} ¢ E and {t,t'} € E.
2 ifs#s and {s,s'} € E.

= 3 O N

Then one can check that d is a metric on [2<¢]? and that ([2<“]?,d) and Ug
embed into each other. Milliken’s theorem provides indivisibility.

2.6.6. {2,6,7,15}

Ug is composed of countably many disjoint copies of Ugy67) and the dis-
tance between any two points not in the same copy of Uyz 6.7} is always 15. The
indivisibility of Uy, ¢ 73 consequently implies that Ug is indivisible.

2.8.1. {1,4,6,7}

Let f:{1,4,6,7} — {2,6,7,12} be such that f(1) =2, f(4) =7, f(6) =6
and f(7) = 12. Then observe that f establishes an isomorphism between Ug and
Uj{2,6,7,12} (case 2.6.3). Uyy 67,12} being indivisible, so is Ug.

2.8.2. {1,4,6,8}

Ug is obtained from Uyy g gy after having blown the points up to copies of Uj.
Its indivisibility is a direct consequence of the basic infinite pigeonhole principle
and of the indivisibility of Uy gy-

2.8.3. {1,4,6,10}

Ug is obtained from Uy 10 after having blown the points up to copies of Uj.
Its indivisibility is a direct consequence of the basic infinite pigeonhole principle and
of the indivisibility of Uy 10}-

2.8.5. {1,4,6,13}

Ugs is composed of countably many disjoint copies of Uy 46 and the dis-
tance between any two points not in the same copy of Uyy 46y is always 13. The
indivisibility of Uy 46y consequently implies that Ug is indivisible.

2.9.1. {2,5,9,10}
{2,5,9,10} ~ {1,4,6,7}, so Ug is isomorphic to the space in 2.8.1 and is
indivisible.

2.9.3. {2,5,9,14}
{5,6,9,14} ~ {1,4,6,10}, so Ug is isomorphic to the space in 2.8.3 and is
indivisible.

2.9.5. {2,5,9,19}

Ug is composed of countably many disjoint copies of Uy 59y and the dis-
tance between any two points not in the same copy of Uyy 5.9; is always 19. The
indivisibility of Uy, 5 93 consequently implies that Ug is indivisible.
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2.10.1. {1,3,7,8}
This case is another instance where Milliken’s theorem is useful. Consider F
the standard graph structure on 2<¢ and define d({s,t,u}.,{s’,t',u'} <) by:

ifs=s andt =1t
ifs=s andt#t.
if s # s and {u,u'} € E.
8 ifs# s and {u,u'} ¢ E.
Then one can check that d is a metric on [2<¢“]3. ([2<%]3,d) embeds into Ug
because d takes values in S. Conversely, given any strong subtree T' of 2<%, Ug
embeds into [T]?> NY where Y C [2<¥]? given by all the triples {s,t,u}~ such that

- w

|s| < [t] < |ul
§ <iex t <pex U
t(|s]) = uls]) = u(]t]) = 0
Equivalently, Y = [B]gn with B = {0,10,110}. These facts allow to apply
Milliken’s theorem and to deduce indivisibility of Ug.

2.10.2. {1,3,7,10}

Ug is obtained from Uy3 7 10} after having blown the points up to copies of U;.
Its indivisibility is a direct consequence of the basic infinite pigeonhole principle and
of the indivisibility of Uz 7 10}-

2.10.3. {1,3,7,14}

Ug is obtained from Uys 7 14) after having blown the points up to copies of U;.
Its indivisibility is a direct consequence of the basic infinite pigeonhole principle and
of the indivisibility of Uz 7 14}.

2.10.4. {1,3,7,15}
Uyg is ultrametric with four distances, hence indivisible.






Appendix C. On the universal Urysohn space U.

The purpose of this appendix is to provide some additional information about
the Urysohn space U. As already mentionned, U was originally constructed by P.
Urysohn in 1925 in order to show that there is a separable metric space into which
every separable metric space embeds isometrically. In the original paper, U was
obtained as the completion of Ug which was constructed by hand and inductively.
Here are the main features of U as presented in [80] but using our terminology:

THEOREM 78 (Urysohn).

(1) For every finite subspace X C U and every Katétov map f over X, there
is x € U realizing f over X.

(2) Every separable metric space embeds isometrically into U.

(3) U is ultrahomogeneous.

(4) U is the unique complete separable metric space satisfying (2) and (3).

(5) U is path connected and locally path connected.

(6) U includes two isometric subspaces X and Y such that no isometry from
U onto itself maps X onto Y.

Some 30 years later, in [33], Huhunaisvili improved the result (3) about ultra-
homogeneity:

THEOREM 79 (Huhunaisvili). Let ¢ : X — Y be a bijective isometry between

two compact subspaces of U. Then ¢ can be extended to an isometry of U onto
itself.

However, together with an article by Sierpinski [76], Huhunaisvili’s contribu-
tion represents the only study about U between 1927 and 1986 (There is an article
in 1971 by Joiner but the main result is only the rediscovery of a subcase covered
by Huhunaigvili’s theorem). In 1986, Katétov provided in [39] the construction of
Ug presented in Chapter 1. Thanks to the work of Uspenskij, this new approach
became the starting point of a new period of interest for U. Today, research about
U and the topological group iso(U) of its surjective isometries (equipped with the
pointwise convergence topology) is well alive, as illustrated by the workshop or-
ganized recently in Be’er Sheva (May 2006). In what follows, we present a short
selection of the main results from the last 20 years. For a more detailed presen-
tation, the reader should refer to [20], [66], or to the original papers. In a near
future, another source of reference may also be [71] the proceedings volume of the
aforementionned workshop to appear in Topology and its applications.

We start with a result which completes the work carried out by Urysohn and
Huhunaisvili about ultrahomogeneity. It is quite surprising that after having re-
mained unsolved for such a long time, it was obtained recently, independently and
simultaneously by two persons.
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THEOREM 80 (Ben Ami [2], Melleray [49]). Let X be a Polish metric space.
TFAE:

1) X is compact.

it) If Xo and X1 are isometric copies of X inside U and ¢ : Xg — X,
then ¢ can be extended to an isometry of U onto itself.

Here are two other theorems about the intrinsic geometry of U:

THEOREM 81 (Melleray, [49]). Let ¢ € iso(U) whose orbits have compact clo-
sure. Then the set of fized points of ¢ is either empty or isometric to U.

THEOREM 82 (Melleray, [49]). Let X be a Polish metric space. Then there is
@ in iso(U) whose set of fixed points in U is isometric to U.

Next, we present the structures which are supported by U. We start with the
topological characterization of U:

THEOREM 83 (Uspenskij [82]). U is homeomorphic to £s.

Next, recall that a group is monothetic if it contains a dense subgroup isomor-
phic to the additive group of the integers Z.

THEOREM 84 (Cameron-Vershik [7]). U admits the structure of a monothetic
Polish group.

This result has to be compared with the following one, due to Holmes:

THEOREM 85 (Holmes [34]). When U is embedded isometrically into a Banach
space with a fixed point xo sent to the zero element of the Banach space, any finite
subset of the copy of U which does not contain xg is linearly independent and the
closed linear span of the copy of U is uniquely determined up to linear isometry.

It follows that U does not support the structure of Banach space. Indeed,
calling (U) the Banach space provided by the previous theorem, (U) cannot have
U as underlying set: Otherwise, (U) would be an ultrahomogeneous Banach space
but we mentionned in Chapter 1 that the only ultrahomogeneous Banach space is
ly. (U) is a wild object but is better understood today in the context of so-called
Lipschitz-free spaces. For example, a recent theorem from Godefroy and Kalton [22]
allows to show that every separable Banach space embeds linearly and isometrically
into (U). However, many basic questions about (U) remain unanswered. For
example, does that space admit a basis? Nevertheless, (U) turned out to be helpful
in the resolution of certain problems, as in [50] where it allowed to reach a result
about the complexity of the isometry relationship between separable Banach spaces.

We finish our first list of properties related to U by a theorem due to Vershik
[83]. We wrote in the introduction that in some cases, Fraissé limits can be seen
as random objects. U is only the completion of a Fraissé limit but a result of very
similar flavor seems to hold. We state it following Pestov ([66], p.143):

THEOREM 86 (Vershik). Let M be the set of all metrics on w and let P(M)
be the set of all probability measures on M. Then, for a generic p € P(M), the
completion of (w,d) is isometric to U p-almost surely in d € M.

We now turn to properties related to iso(U), starting with the following theorem
due to Uspenskij:
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THEOREM 87 (Uspenskij [81]). Every second countable topological group is
isomorphic to a topological subgroup of iso(U).

In fact, more can be said:

THEOREM 88 (Melleray [48]). For every Polish group G, there is a closed
subspace X of U such that G = {p € iso(U) : ¢ X = X}.

On the other hand, there are also some informations about the actions of iso(U):

THEOREM 89 (Pestov [65]). Every continuous action of iso(U) on a compact
space admits a fized point.

As mentionned several times in the body of the present thesis, this result is par-
ticularly important for our present work because it can be proved via combinatorial
methods. However, we should emphasize that in fact, iso(U) satisfies a stronger
property called the Lévy property and which implies the previous theorem, see [66]
or [67].

Other problems concerning iso(U) can be attacked via combinatorics. For
example, the following result announced by Vershik [84] and proved independently
by Solecki [77] can be seen as a metric version of the well-known result about the
extension of partial isomorphisms of finite graphs due to Hrushovski [38].

THEOREM 90 (Solecki [77], Vershik [84]). Let X be a finite metric space. Then
there is a finite metric space Y such that X C Y and such that every isometry ¢
with dom(p),ran(p) C X of X extends to an isometry of Y onto itself.

The importance of this result is related to the following concepts. For a Polish
group G and n € w, the diagonal action of G on G™ is the action defined by:

g- (hh ceey hn) = (ghlg_17 L 7gh’ng_1)'
An element (hq,...,h,) of G™ is cyclically dense if for some g € G, the set
{g* - (h1,...,hy) : k € w} is dense in G™.

THEOREM 91 (Solecki [77]). All the diagonal actions of iso( U) have cyclically
dense elements.

THEOREM 92 (Solecki [77]). There are two elements of iso(U) generating a
dense subgroup.

The last result we finish with comes from [41] and provides a so-called recon-
struction theorem. The core of the proof is again related to metric combinatorics
and extension properties in the Urysohn space. However, it seems to us that this
result deserves a particular attention because while most of the previous results
deal with isometries, this one concerns a broader class of maps: For metric spaces
X and Y, call a homeomorphism g : X — Y locally bi-Lipschitz if every x € X
has a neighborhood U such that g [ U is bi-Lipschitz. Let L(X) denotes the set of
all bi-Lipschitz homeomorphisms of X, then:

THEOREM 93 (Kubis-Rubin). Let X and Y be open subspaces of U. Suppose
that ¢ is a group isomorphism between L(X) and L(Y). Then there is a locally
bi-Lipschitz homeomorphism T between X and Y such that:

Vg e L(X) ¢(g)=Togor !
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