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et les membres du groupe de théorie des ensembles, m’ont permis de bénéficier de
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Remarques préliminaires - Preliminary remarks.

Remarques préliminaires.

Pour des raisons pratiques, la totalité de cette thèse a été rédigée en anglais et
seule l’introduction a été traduite en français. L’espoir est que cela ne rebutera pas
le lecteur intéressé par le contenu du présent document.

Dans la mesure du possible, les notations utilisées sont usuelles. Néammoins,
il a parfois fallu faire un choix. En particulier :

Les intervalles ouverts de nombres réels sont écrits en accord avec la convention
française. Par exemple, pour a < b ∈ R ∪ {−∞} ∪ {+∞}, l’ensemble {x ∈ R : a <
x < b} est noté ]a, b[.

La relation d’inclusion ensembliste est également écrite suivant la convention
française, à savoir ⊂. L’inclusion stricte est quant à elle notée (.

Un entier naturel est souvent vu comme l’ensemble de ses prédécesseurs stricts.
En particulier, si k > 0, alors k = {0, 1, . . . , k − 1}. Par ailleurs, l’ensemble des
entiers naturels est noté ω (notation ordinale).

Etant donné un ensemble X, sa cardinalité est notée |X|.
Enfin, si ≺ est un ordre total sur un ensemble X et x, y ∈ X, alors {x, y}≺

représente l’ensemble {x, y} étant entendu que x ≺ y. De même, {si : i ∈ ω}≺
représente l’ensemble {si : i ∈ ω} étant entendu que si ≺ sj dès lors que i < j.

Preliminary remarks.

The notations which are used in the present thesis are fairly standard. Never-
theless, a choice was sometimes needed. In particular:

Open intervals of real numbers are written according to the French convention.
For example, for a < b ∈ R ∪ {−∞} ∪ {+∞}, {x ∈ R : a < x < b} is written ]a, b[.

Set-theoretic inclusion is also written according to the French convention, that
is ⊂, while strict inclusion is written (.

A natural number is often seen as the set of its strict predecessors. In particular,
k = {0, 1, . . . , k − 1} whenever k > 0. On the other hand, the set of all natural
numbers is written according to the ordinal convention, that is ω.

Given a set X, its cardinality is written |X|.
Finally, if ≺ is a linear ordering on a set X and x, y ∈ X, then {x, y}≺ represents

the set {x, y} being understood that x ≺ y. Similarly, {si : i ∈ ω}≺ denotes the set
{si : i ∈ ω}, being understood that si ≺ sj whenever i < j.
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2. Amalgamation and Fräıssé classes of finite metric spaces. 33
3. Urysohn spaces. 42
4. Complete separable ultrahomogeneous metric spaces. 46

Chapter 2. Ramsey calculus, Ramsey degrees and universal minimal flows. 51
1. Fundamentals of Ramsey theory and topological dynamics. 51
2. Finite metric Ramsey theorems. 54
3. Ordering properties. 69
4. Ramsey degrees. 74
5. Universal minimal flows and extreme amenability. 76
6. Concluding remarks and open problems. 83

Chapter 3. Big Ramsey degrees, indivisibility and oscillation stability. 87
1. Fundamentals of infinite metric Ramsey calculus and oscillation

stability. 87
2. Big Ramsey degrees. 89
3. Indivisibility. 91
4. Approximate indivisibility and oscillation stability. 105
5. Concluding remarks and open problems. 121

Appendix A. Amalgamation classes MS when |S| 6 4. 123
6. |S| = 3. 123
7. |S| = 4. 124

Appendix B. Indivisibility of US when |S| 6 4. 135

5



6 CONTENTS

Appendix C. On the universal Urysohn space U. 141

Bibliography 145

Index 149



Introduction et présentation des résultats (version
française).

1. Notions générales et motivations.

L’étude des propriétés de type Ramsey des espaces métriques finis en connexion
avec la structure des espaces métriques ultrahomogènes séparables est au cœur de
la présente thèse. Elle est motivée par les travaux récents de Kechris, Pestov
et Todorcevic qui relient la théorie de Fräıssé des classes d’amalgamation et des
structures ultrahomogènes, la théorie de Ramsey et la dynamique topologique des
groupes d’automorphismes des structures dénombrables. Plus précisemment, le
point de départ de nos travaux est marqué par la détermination du flot minimal
universel du groupe d’isométries surjectives de l’espace rationnel d’Urysohn UQ
qui conduit à une nouvelle démonstration d’un théorème dû à Pestov. Ce théorème
contient deux ingrédients principaux.

Le premier est l’espace métrique universel d’Urysohn U. Cet espace, qui
apparâıt relativement tôt dans l’histoire de la géométrie métrique (la définition
d’espace métrique est donnée dans la thèse de M. Fréchet en 1906, [19]), est
l’œuvre de P. Urysohn en 1925. Sa caractérisation fait référence à une propriété
aujourd’hui connue sous le nom d’ultrahomogénéité : Un espace métrique X est
ultrahomogène lorsque toute isométrie entre sous-espaces finis de X se prolonge en
une isométrie surjective de X sur lui-même. Grâce à cette définition, U peut être
caractérisé comme suit : A isométrie près, il s’agit de l’unique espace métrique
complet séparable ultrahomogène et dans lequel tout espace métrique fini se plonge
isométriquement. Une conséquence directe de cette caractérisation/définition est
que U est universel non seulement vis-à-vis de la classe des espaces métriques finis
mais aussi vis-à-vis de la classe des espaces métriques séparables tout entière. Cette
propriété est essentielle et est précisément la raison pour laquelle Urysohn constru-
isit U : Auparavant, personne n’aurait pu dire si un espace métrique séparable
pouvait ou non être universel vis-à-vis de la classe de tous les espaces métriques
séparables. Malgré cela, U tomba véritablement dans l’oubli avec la découverte
de l’universalité de C([0, 1]) par Banach et Mazur et ce n’est que récemment qu’un
regain d’intérêt se manifesta pour U, notamment grâce aux travaux de Katĕtov,
Uspenskij, Vershik, Bogatyi et Pestov.

Intéressons-nous maintenant au concept de moyennabilité extrême issu de la
dynamique topologique. Un groupe topologique G est extrêmement moyennable ou
possède la propriété de point fixe sur les compacts lorsque toute action continue
de G sur un espace topologique compact X quelconque admet un point fixe (ie un
point x ∈ X tel que ∀g ∈ G g · x = x). La moyennabilité extrême des groupes
topologiques intervient naturellement en dynamique topologique lors de l’étude des
flots minimaux universels. Etant donné un groupe topologique G, un G-flot est un
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8 INTRODUCTION ET PRÉSENTATION DES RÉSULTATS (VERSION FRANÇAISE).

espace topologique compact X muni d’une action continue de G sur X. Un G-flot
est minimal lorsque toutes ses orbites sont denses. Moyennant l’axiome du choix,
il est aisé de démontrer que tout G-flot inclut un G-sous-flot minimal. Il est en
revanche moins évident de démontrer que tout groupe topologique G admet un G-
flot minimal universel M(G), c’est à dire un G-flot minimal qui peut être envoyé sur
n’importe quel autre G-flot minimal via un homomorphisme surjectif. Par ailleurs,
M(G) est déterminé à isomorphisme près par ces propriétés (Un homomorphisme
d’un G-flot X dans un G-flot Y est une application continue π : X −→ Y telle
que pour tout x ∈ X et g ∈ G, π(g · x) = g · π(x). Un isomorphisme est un
homomorphisme bijectif). Lorsque G est localement compact mais pas compact,
M(G) est un objet extrêmement complexe. Néammoins, pour certains groupes G
non-triviaux, M(G) se réduit à un point. Ces groupes sont précisément les groupes
extrêmement moyennables. Un tel exemple est exhibé par le théorème de Pestov :

Théorème (Pestov [65]). Muni de la topologie de la convergence simple, le
groupe iso(U) des isométries surjectives de U est extrêmement moyennable.

La plupart des techniques mises en oeuvre dans [65] provient de la théorie
des groupes topologiques. Néammoins, associée à un autre résultat dû à Pestov
[64] selon lequel le groupe d’automorphismes Aut(Q, <) des bijections de Q qui
préservent l’ordre est aussi extrêmement moyennable, une analyse détaillée de la
démonstration du théorème précédent permit d’isoler un noyau combinatoire rela-
tivement substantiel. La détermination de ce noyau constitue précisément le con-
tenu de [40] et met en évidence l’émergence de deux composantes principales : La
théorie de Fräıssé et la théorie de Ramsey structurale.

Mise au point dans les années cinquante par R. Fräıssé, la théorie de Fräıssé
fournit une analyse modèle-théorique et combinatoire de ce que l’on appelle au-
jourd’hui les structures ultrahomogènes dénombrables. Soient L = {Ri : i ∈ I} une
signature relationnelle fixée et X et Y deux L-structures. Un plongement de X

dans Y est une application injective π : X −→ Y telle que pour tout i ∈ I et tous
x1, . . . , xn ∈ X :

(x1, . . . , xn) ∈ RX
i ssi (π(x1), . . . , π(xn)) ∈ RY

i .

Un isomorphisme de X dans Y est un plongement surjectif. Lorsqu’il existe
un isomorphisme de X dans Y, on écrit X ∼= Y. Enfin,

(
Y

X

)
est défini par :

(
Y

X

)
= {X̃ ⊂ Y : X̃ ∼= X}

Lorsqu’il existe un plongement de X dans Y, on écrit X 6 Y. Une classe K de
L-structures est alors héréditaire lorsque pour toute L-structure X et tout Y ∈ K :

X 6 Y → X ∈ K.

Elle possède la propriété de plongement simultané lorsque pour tous X,Y ∈ K,
il existe Z ∈ K tel que X,Y 6 Z. Elle possède la propriété d’amalgamation lorsque
pour toutes structures X, Y0, Y1 ∈ K et tous plongements f0 : X −→ Y0 et
f1 : X −→ Y, il existe une structure Z ∈ K et des plongements g0 : Y0 −→ Z,
g1 : Y1 −→ Z tels que g0 ◦ f0 = g1 ◦ f1.

Soit F une L-structure. Son âge, Age(F), est la collection de toutes les L-
structures finies qui se plongent dans F. F est ultrahomogène lorsque tout isomor-
phisme entre sous-structures finies de F peut être prolongé en un automorphisme de
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F. Enfin, une classe K de L-structures finies est une classe de Fräıssé lorsque K con-
tient une infinité dénombrable de structures à isomorphisme près, est héréditaire,
contient des structures de cardinalité finie arbitrairement grande, et possède les pro-
priétés de plongement simultané et d’amalgamation. Ces concepts étant présentés,
le principal pilier de la théorie de Fräıssé peut être formulé comme suit :

Théorème (Fräıssé [16]). Soit L une signature relationnelle et K une classe
de Fräıssé de L-structures. Alors il existe, à isomorphisme près, une unique L-
structure dénombrable ultrahomogène telle que Age(F) = K. F est appelée limite
de Fräıssé de K et est notée Flim(K).

Le résultat fondateur de la théorie de Ramsey est plus ancien. Démontré en
1930 par F. P. Ramsey, il peut être formulé comme suit. Pour un ensemble X et
un entier l, soit [X]l l’ensemble des sous-ensembles de X à l éléments :

Théorème (Ramsey [72]). Pour tout k ∈ ω r {0} et l,m ∈ ω, il existe p ∈ ω
tel que pour tout ensemble X à p éléments, si [X]l est soumis à une partition
comportant k classes, alors il existe Y ⊂ X à m éléments tel que [Y ]l est inclus
dans une des classes de la partition.

En revanche, ce n’est qu’au début des années soixante-dix grâce aux travaux
de plusieurs personnes parmi lesquelles Erdős, Graham, Leeb, Rothschild, Nešetřil
et Rödl, que les idées essentielles qui composent ce théorème furent reprises et
développées pour donner naissance à la théorie structurale de Ramsey. Voici les
concepts de base qui y sont attachés : Pour k, l ∈ ω r {0} et trois L-structures

X,Y,Z, la notation Z −→ (Y)
X

k,l signifie :

Pour tout χ :
(
Z

X

)
−→ k il existe Ỹ ∈

(
Z

Y

)
tel que |χ′′

(
Ỹ

X

)
| 6 l.

Lorsque l = 1, on écrit simplement Z −→ (Y)
X

k . Alors, étant donnée une classe
K de L-structures finies et ordonnées, on dit de K qu’elle possède la propriété de
Ramsey lorsque pour tous X, Y ∈ K et tout k ∈ ω r {0}, il existe Z ∈ K tel que :

Z −→ (Y)
X

k

Les techniques mises au point dans [40] mettent en évidence l’existence de
plusieurs liens entre moyennabilité extrême, flots minimaux universels, théorie de
Fräıssé et théorie de Ramsey structurale.

Par exemple : Soit L∗ une signature relationnelle comportant un symbole de
relation binaire particulier <. Une L∗-structure ordonnée est une L∗-structure X

pour laquelle l’interprétation <X de < est un ordre total.

Théorème (Kechris-Pestov-Todorcevic [40]). Soit L∗ ⊃ {<} une signature
relationnelle, K∗ une classe de Fräıssé de L∗-structures ordonnées et (F, <F) =
Flim(K∗). Alors les assertions suivantes sont équivalentes :

(1) Aut(F, <F) est extrêmement moyennable.
(2) K∗ possède la propriété de Ramsey.

Avec plusieurs autres théorèmes du même type, ce résultat plante le décor
général au sein de laquelle l’attaque combinatoire de la moyennabilité extrême
peut avoir lieu. Lorsque l’on s’intéresse à l’étude de la moyennabilité extrême
pour un groupe de la forme Aut(Flim(K∗)), ce théorème peut être utilisé tel
quel. Néammoins, ses applications ne sont pas réduites à ce cas particulier. La
démonstration combinatoire du théorème de Pestov mentionné précédemment en est
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une excellente illustration. Les idées principales sont les suivantes : Une première
étape consiste en l’utilisation du théorème de Ramsey suivant, dû à Nešetřil.

Théorème (Nešetřil [56]). La classe M<
Q des espaces métriques à distances

rationnelles possède la propriété de Ramsey.

Pour la seconde étape, on fait appel au théorème général cité auparavant. On
établit ainsi la moyennabilité extrême du groupe G := Aut(Flim(M<

Q )). Enfin,
pour la dernière étape, on montre que G se plonge de manière dense et continue
dans iso(U), et que cette propriété suffit à déduire la moyennabilité extrême de
iso(U) de celle de G.

La succès de cette stratégie conduit les auteurs de [40] à poser plusieurs ques-
tions relatives à la théorie de Ramsey métrique. Par exemple :

Question : Parmi les classes de Fräıssé d’espaces métriques finis ordonnés,
quelles sont celles qui possèdent la propriété de Ramsey ?

Ce problème général peut être vu comme la version métrique d’un problème
célèbre très similaire pour les graphes ordonnés finis à l’origine de nombreuses
recherches au cours des années soixante-dix. Dans notre cas, il s’agit de la mo-
tivation qui justifie la recherche de classes d’espaces métriques finis satisfaisant la
propriété de Ramsey dont plusieurs exemples sont présentés au cours de cette thèse.

Parallèlement à la propriété de Ramsey, une autre notion combinatoire relative
aux classes de Fräıssé émerge de [40]. Il s’agit de la propriété d’ordre et une
attention particulière lui est également portée ici.

Comme précédemment, on fixe une signature relationnelle L∗ muni d’un sym-
bole de relation binaire particulier < et on définit une signature L par L = L∗r{<}.
Puis, étant donnée une classe K∗ de L∗-structures ordonnées, on définit la classe K
de L-structures par :

K = {X : ∃ <X (X, <X) ∈ K∗}.

On dit alors que K∗ possède la propriété d’ordre lorsque pour tout X ∈ K, il
existe Y ∈ K tel que pour tout ordre total <X sur X et <Y sur Y, si (X, <X),
(Y, <Y) ∈ K∗, alors (Y, <Y) inclut une copie isomorphe de (X, <X). La propriété
d’ordre est pertinente car elle conduit à plusieurs notions dignes d’intérêt.

Les premières sont relatives à la dynamique topologique et à la moyennabilité
extrême : Toujours dans [40], il est démontré que pour certaines classes de Fräıssé
de structures ordonnées, la propriété d’ordre permet directement de produire des
Aut(Flim(K))-flots minimaux. Mieux : Lorsque la propriété de Ramsey et la pro-
priété d’ordre sont réunies, une détermination explicite du flot minimal universel
de Aut(Flim(K)) devient possible. Ce fait mérite d’être cité car avant [40], on ne
dénombrait que très peu de cas de groupes non extrêmement moyennables et où le
flot minimal universel est à la fois descriptible et métrisable. Cette méthode permit
entre autres la détermination du flot minimal universel du groupe d’automorphismes
de plusieurs limites de Fräıssé remarquables telles que le graphe de Rado R, les
graphes de Henson Hn, l’algèbre de Boole dénombrable et sans atome B∞ ou
l’espace vectoriel VF de dimension ℵ0 sur un corps fini F .

La seconde classe de notion est purement combinatoire et est appelée degré de
Ramsey : Etant donnés une classe K de L-structures et X ∈ K, supposons qu’il
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existe l ∈ ω r {0} tel que pour tout Y ∈ K et tout k ∈ ω r {0}, il existe Z ∈ K tel
que :

Z −→ (Y)
X

k,l.

Le degré de Ramsey de X dans K est alors défini comme le plus petit entier
ayant cette propriété, et on constate que sa détermination effective devient possible
dès lors que K est issu d’une K∗ satisfaisant à la fois les propriétés de Ramsey et
d’ordre.

En fait, l’article [40] permet d’envisager la détermination de flots minimaux
universels et le calcul des degrés de Ramsey comme deux manifestations différentes
d’un même phénomène. En revanche, la version combinatoire présente un avantage
indéniable : Celui d’avoir admis une variation qui conduisit à un concept nouveau
en dynamique topologique et qui serait probablement apparu beaucoup plus tard
si la connexion avec la théorie de Ramsey n’avait pas été identifiée. La variation
issue de la notion de degré de Ramsey est appelée grand degré de Ramsey, alors que
le nouveau concept de dynamique topologique est appelé stabilité par oscillations
pour les groupes topologiques.

La définition des grands degrés de Ramsey à partir des degrés de Ramsey peut
se faire à partir de l’observation suivante : Si F est la limite de Fräıssé d’une classe
de Fräıssé K, alors X ∈ K admet un degré de Ramsey dans K lorsqu’il existe l ∈ ω
tel que pour tout Y ∈ K et tout k ∈ ω r {0},

F −→ (Y)
X

k,l.

Le grand degré de Ramsey correspond à la même notion lorsque ce résultat
reste valide quand Y est remplacé par F. Sa valeur TK(X) est alors le plus petit
l ∈ ω tel que

F −→ (F)
X

k,l.

Même si elles n’apparaissent pas de manière complètement explicite, les no-
tions de degré de Ramsey et de grand degré de Ramsey sont présentes en théorie de
Ramsey structurale depuis fort longtemps. Cependant, alors que l’immense collec-
tion de résultats en théorie de Ramsey finie conduit très souvent à la détermination
des degrés de Ramsey, on ne dénombre que très peu de situations où une analyse
complète des grands degrés de Ramsey peut être effectuée. Les travaux de cette
thèse apportent une petite contribution dans ces deux domaines.

La stabilité par oscillation pour les groupes topologiques est une notion beau-
coup plus récente. Ce concept apparâıt dans [40] et est détaillé dans le livre [66] de
Pestov. Il est important car il englobe plusieurs idées profondes issues de l’analyse
fonctionnelle géométrique et de la combinatoire. Pour un groupe topologique G,
on note UL(G) l’uniformité dont une base est donnée par les ensembles de la forme
VL = {(x, y) : x−1y ∈ V } où V est un voisinage de l’élément neutre. Soit main-

tenant ĜL la complétion de (G,UL(G)). ĜL peut ne pas être un groupe topologique
mais est toujours un monöıde topologique. Pour une fonction réelle f définie sur
un ensemble X, on définit l’oscillation de f sur X par :

osc(f) = sup{|f(y) − f(x)| : x, y ∈ X}.

Soit maintenant G un groupe topologique, f : G −→ R une application uni-

formément continue et f̂ l’unique prolongement de f à ĜL par uniforme continuité.
On dit que f est stable par oscillations lorsque pour tout ε > 0, il existe un idéal

à droite I ⊂ ĜL tel que
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osc(f̂ ↾ I) < ε.

Enfin, soit G un groupe topologique agissant sur un espace topologique X de
manière continue. Pour f : X −→ R et x ∈ X, soit fx : G −→ R définie par

∀g ∈ G fx(g) = f(gx).

On dit alors que l’action est stable par oscillations lorsque pour toute f : X −→
R bornée et continue et tout x ∈ X, fx est stable par oscillations dès lors qu’elle
est uniformément continue.

Le contexte métrique se prête particulièrement bien à la description de la rela-
tion entre grands degrés de Ramsey et stabilité par oscillations. Un espace métrique
X est indivisible lorsque pour tout k ∈ ω strictement positif and toute application

χ : X −→ k, il existe X̃ ⊂ X isométrique à X sur lequel χ est constante. Il
est clair que lorsque X est dénombrable et ultrahomogène, indivisibilité de X et
grands degrés de Ramsey dans la classe Age(X) des sous-espaces métriques finis
de X sont reliés : X est indivisible ssi l’espace métrique réduit à un point possède
un grand degré de Ramsey dans Age(X) égal à 1. Observons également que la
notion d’indivisibilité peut être affaiblie au sens suivant : Pour un espace métrique
X = (X, dX), Y ⊂ X et ε > 0, on pose

(Y )ε = {x ∈ X : ∃y ∈ Y dX(x, y) 6 ε}

On dit alors que X est ε-indivisible lorsque pour tout k ∈ ω strictement positif,

tout χ : X −→ k et tout ε > 0, il existe i < k et X̃ ⊂ X isométrique à X tel que

X̃ ⊂ (←−χ {i})ε.

En gardant ce concept à l’esprit, voici la connexion promise :

Théorème (Kechris-Pestov-Todorcevic [40], Pestov [66]). Pour un espace
métrique X complet ultrahomogène, les assertions suivantes sont équivalentes :

(1) Lorsque iso(X) est muni de la topologie de la convergence simple, l’action
standard de iso(X) sur X est stable par oscillations.

(2) Pour tout ε > 0, X est ε-indivisible.

Une des conséquences de la jeunesse de la notion de stabilité par oscillations
pour les groupes topologiques est que la liste des résultats qui la font intervenir
est relativement réduite. Cependant, quelques résultats célèbres peuvent être in-
terprétés en terme de stabilité par oscillations. Par exemple, si on note S∞ la sphère
unité de l’espace de Hilbert ℓ2, on peut mentionner que le problème de savoir si
l’action standard de iso(S∞) sur S∞ est stable par oscillations ou pas motiva une
quantité impressionnante de recherche entre la fin des années soixante et le début
des années quatre-vingt-dix. C’est seulement en 1994 que Odell and Schlumprecht
parvinrent à présenter une solution (cf [63]), apportant ainsi une réponse au célèbre
problème de la distortion pour ℓ2 :

Théorème (Odell-Schlumprecht [63]). L’action standard de iso(S∞) sur S∞

n’est pas stable par oscillations.

La dernière partie de cette thèse est consacrée à l’étude d’un problème similaire
pour la sphère d’Urysohn S. Nos travaux ne conduisent pas à une solution complète
mais permettent néammoins d’envisager la situation sous de nouveaux éclairages.
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2. Organisation et présentation des résultats.

Le chapitre 1 est consacré à la présentation de plusieurs classes de Fräıssé
d’espaces métriques dont le rôle est central dans toute la suite.

Une des classes les plus importantes est la classe MQ des espaces métriques finis
à distances rationnelles. Son espace d’Urysohn (nom donné à la limite de Fräıssé
dans le contexte métrique) est un espace métrique dénombrable et ultrahomogène
noté UQ et appelé l’espace d’Urysohn rationnel. Plusieurs variations sur le thème
de MQ seront également citées : La classe MQ∩]0,1] des espaces métriques finis à
distances dans Q∩]0, 1], dont l’espace d’Urysohn est la sphère d’Urysohn rationnelle
SQ. La classe Mω des espaces métriques finis à distances dans ω, qui conduit à
l’espace d’Urysohn naturel Uω. Et enfin les classes Mω∩]0,m] des espaces métriques
finis à distances dans {1, . . . ,m} où m est un entier naturel strictement positif, qui
conduisent à des versions bornées de Uω notées Um.

Deux autres types de classes occupent une place privilégiée. Le premier type
consiste en les classes de la forme US d’espaces ultramétriques finis à distances
dans un sous-ensemble dénombrable fixé S de ]0,+∞[. Toute classe US conduit
à un espace d’Urysohn ultramétrique noté BS et qui, contrairement à la plu-
part des espaces d’Urysohn, peut être décrit de manière très explicite. Le sec-
ond type consiste en les classes MS d’espaces métriques finis à distances dans S
où S ⊂]0,+∞[ est dénombrable et satisfait la condition des 4-valeurs, une condi-
tion isolée par Delhommé, Laflamme, Pouzet et Sauer dans [9] et qui caractérise
les sous-ensembles S ⊂]0,+∞[ pour lesquels la classe MS possède la propriété
d’amalgamation. Chaque MS conduit à un espace noté US qui peut parfois être
décrit de façon explicite lorsque S est fini et relativement simple.

Enfin, l’inventaire s’achève avec deux classes d’espaces métriques finis eucli-
diens, à savoir la classe HS des sous-espaces métriques affinement indépendants
de l’espace de Hilbert ℓ2 à distances dans S où S est un sous-ensemble dense
dénombrable de ]0,+∞[, et la classe SS des espaces métriques finis X à distances
dans S et qui se plongent isométriquement dans la sphère unité S∞ de ℓ2 avec
{0ℓ2} ∪ X affinement indépendant (S étant toujours un sous-ensemble dense de
]0,+∞[.). Les espaces d’Urysohn correspondants sont respectivement des sous-
espaces métriques de ℓ2 et S∞ mais qui malheureusement n’apparâıtront dans la
suite que de manière anecdotique.

Une fois que les classes de Fräıssé et les espaces d’Urysohn qui leurs sont at-
tachés sont présentés, on s’intéresse à l’interaction entre espaces métriques complets
séparables et espaces d’Urysohn. Les premières questions sur lesquelles on se penche
sont les suivantes :

(1) La complétion d’un espace d’Urysohn est-elle toujours ultrahomogène ?
(2) Un espace métrique complet séparable ultrahomogène est-il toujours la

complétion d’un espace d’Urysohn ?

La réponse pour (1) est négative et est fournie par un exemple tiré d’un article
de Bogatyi [4]. Ce n’est pas le cas pour (2), ce qui conduit au premier véritable
résultat de cette thèse, cf théorème 6 :

Théorème. Tout espace métrique complet séparable et ultrahomogène inclut
un sous-espace métrique dense dénombrable et ultrahomogène.

On enchâıne ensuite sur la description des complétions des espaces d’Urysohn
évoqués précédemment. Plusieurs espaces remarquables apparaissent alors, parmi
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lesquels l’espace d’Urysohn original U (comme la complétion de UQ), la sphère
d’Urysohn S (comme la complétion de SQ), l’espace de Baire N (et de manière plus
générale tous les espaces ultramétriques complets séparables et ultrahomogènes),
ainsi que l’espace de Hilbert ℓ2 et sa sphère unité S∞.

Le chapitre 2 est consacré à la théorie de Ramsey finie des espaces métriques et
essentiellement axé sur des démonstrations nouvelles inspirées de la démonstration
combinatoire du théorème de Pestov via le théorème de Nešetřil et la théorie
développée dans [40]. On commence par exposer la démonstration du théorème
de Nešetřil qui conduit au résultat suivant. Pour S ⊂]0,+∞[, on note M<

S la
classe des espaces métriques finis ordonnés à distances dans S. Alors (cf théorème
13) :

Théorème (Nešetřil [56]). Soit T ⊂]0,+∞[ stable par sommes et S un segment
initial de T . Alors M<

S possède la propriété de Ramsey.

On démontre ensuite que des résultats similaires peuvent être obtenus pour
d’autres classes d’espaces métriques finis ordonnés. La première classe concernée
est construite à partir de la classe US : Soit X un espace ultramétrique. On dit
qu’un ordre total < sur X est convexe lorsque toutes les boules métriques de X sont
<-convexes. Pour S ⊂]0,+∞[, on note Uc<

S la classe des espaces ultramétriques
finis, ordonnés de manière convexe et à distances dans S. Alors (cf théorème 14) :

Théorème. Soit S ⊂]0,+∞[. Alors Uc<
S possède la propriété de Ramsey.

Le second type de classes pour lequel on parvient à démontrer un théorème de
Ramsey est basé sur les classes MS . Soit K une classe d’espaces métriques. On dit
qu’une distance s ∈]0,+∞[ est critique pour K lorsque pour tout X ∈ K, on définit
une relation d’équivalence ≈ sur X en posant :

∀x, y ∈ X x ≈ y ↔ dX(x, y) 6 s.

La relation ≈ est alors appelée relation d’équivalence métrique sur X. On dit
alors d’un ordre total < sur X ∈ K qu’il est métrique lorsqu’étant donnée une
relation d’équivalence métrique ≈ sur X, les ≈-classes sont <-convexes. Etant
donné S ⊂]0,+∞[, on note Mm<

S la classe des espaces métriques finis, ordonnés de
manière métrique et à distances dans S. Alors (cf théorème 15) :

Théorème. Soit S un sous-ensemble fini de ]0,+∞[ de taille |S| 6 3 et satis-
faisant la condition des 4 valeurs. Alors Mm<

S possède la propriété de Ramsey.

Après l’étude de la propriété de Ramsey, on s’intéresse à la propriété d’ordre.
Pour S segment initial de T ⊂]0,+∞[, T stable par sommes, la propriété d’ordre
pour M<

S peut être démontrée grâce à un argument probabiliste, cf [55]. Ici, on
présente une démonstration basée sur la propriété de Ramsey (cf théorème 16) :

Théorème. Soit T ⊂]0,+∞[ stable par sommes et S un segment initial de T .
Alors M<

S possède la propriété d’ordre.

On poursuit avec la propriété d’ordre pour Uc<
S et pour Mm<

S , cf théorèmes 18
et 21 :

Théorème. Uc<
S possède la propriété d’ordre.

Théorème. Soit S un sous-ensemble fini de ]0,+∞[ de taille |S| 6 3 et satis-
faisant la condition des 4 valeurs. Alors Mm<

S possède la propriété d’ordre.
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On utilise ensuite propriété de Ramsey et propriété d’ordre pour calculer cer-
tains degrés de Ramsey. Dans la situation présente, ce calcul est possible pour
les classes MS lorsque S est un segment initial de T avec T ⊂]0,+∞[ stable par
sommes (cf théorème 23), US (cf théorème 24) et MS où S est un sous-ensemble fini
de ]0,+∞[ de taille |S| 6 3 et satisfaisant la condition des 4-valeurs (cf théorème
25).

De la combinatoire, on passe ensuite à la dynamique topologique. On présente
tout d’abord la démonstration du théorème de Pestov établissant la moyennabilité
extrême de iso(U) et on poursuit avec plusieurs résultats sur la moyennabilité
extrême et les flots minimaux universels. Par exemple, (cf théorème 37) :

Théorème. Le flot minimal universel de iso(BS) est composé de l’espace
compact cLO(BS) des ordres totaux convexes sur BS muni de l’action iso(BS) ×
cLO(BS) −→ cLO(BS), (g,<) 7−→<g définie par x <g y ssi g−1(x) < g−1(y).

Ce théorème permet en particulier de déduire le résultat suivant relatif à
l’espace de Baire N (cf théorème 39) :

Théorème. Le flot minimal universel de iso(N ) est donné par l’espace compact
cLO(N ) des ordres totaux convexes sur N muni de l’action iso(N ) × cLO(N ) −→
cLO(N ), (g,<) 7−→<g définie par x <g y ssi g−1(x) < g−1(y).

En guise de dernier exemple (cf théorème 43) :

Théorème. Soit S un sous-ensemble fini de ]0,+∞[ de taille |S| 6 3 et sat-
isfaisant la condition des 4 valeurs. Alors le flot minimal universel minimal de
iso(US) est donné par l’espace compact mLO(US) des ordres totaux métriques sur
US muni de l’action iso(US)×mLO(US) −→ mLO(US), (g,<) 7−→<g définie par
x <g y ssi g−1(x) < g−1(y).

On remarque en particulier que les espaces sous-jacents à tous ces flots mini-
maux universels sont métrisables.

Le chapitre 2 s’achève avec plusieurs questions ouvertes à propos de la propriété
de Ramsey pour les classes MS ainsi qu’avec une connexion possible entre la théorie
de Ramsey euclidienne et un théorème de Gromov et Milman.

Le chapitre 3 est consacré à la théorie de Ramsey infinie. On commence par
une courte section sur les grands degrés de Ramsey. Le mot courte ne peut pas être
ôté de la phrase précédente car dans la plupart des cas, la détermination des grands
degrés de Ramsey est trop ardue pour être menée à bien ici. Il y a néammoins un
cas pour lequel une analyse complète est possible (cf théorème 49) :

Théorème. Soit S un sous-ensemble fini de ]0,+∞[. Alors chaque élément
de US admet un grand degré de Ramsey dans US.

En fait, on est même en mesure de calculer la valeur exacte de ce grand degré
de Ramsey. Ce résultat est à mettre en regard avec (cf théorème 50) :

Théorème. Soit S un sous-ensemble infini dénombrable de ]0,+∞[ et soit X

un élément de US tel que |X| > 2. Alors X n’a pas de grand degré de Ramsey dans
US.

On poursuit avec une section portant sur l’indivisibilité des espaces d’Urysohn.
Après la présentation de plusieurs résultats généraux tirés de [9], on fournit les
détails de la démonstration du théorème suivant (cf théorème 51) :
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Théorème (Delhommé-Laflamme-Pouzet-Sauer [9]). SQ n’est pas indivisible.

On s’intéresse ensuite à l’étude d’espaces d’Urysohn plus simples, à savoir les
espaces Um. Il apparâıt alors que dans la plupart des cas, le problème demeure
ouvert. Les exceptions concernent les cas les plus élémentaires où des théorèmes
généraux dûs à Milliken ou à Sauer peuvent être appliqués.

On enchâıne alors sur l’indivisibilité des espaces d’Urysohn ultramétriques.
Comme pour les grands degrés de Ramsey, ces cas se montrent relativement acces-
sibles et conduisent au théorème suivant (obtenu indépendemment par Delhommé,
Laflamme, Pouzet et Sauer dans [9]), cf section 3.3 :

Théorème. Soit X un espace ultramétrique dénombrable et ultrahomogène.
Alors X est indivisible ssi l’ordre total usuel renversé > sur R induit un bon ordre
sur son ensemble de distances.

En fait, les espaces d’Urysohn ultramétriques sont tellement dociles que l’on
est même en mesure d’établir le résultat suivant (cf théorème 59) :

Théorème. Soit S un sous-ensemble infini dénombrable de ]0,+∞[ tel que
l’ordre total usuel renversé > sur R induit un bon ordre sur S. Alors étant donnée
une application f : BS −→ ω, il existe une copie isométrique X de BS dans BS

telle que f est continue ou injective sur X.

Après les espaces ultramétrique, on clot la section consacrée à l’indivisibilité
avec l’étude des espaces US lorsque S est fini et satisfait la condition des 4 valeurs.
Le résultat qu’on obtient ne couvre que partiellement le cas |S| 6 4 mais son
obtention se montre à la fois longue et laborieuse. Pour le formuler précisément, une
nouvelle définition est nécessaire : Pour des sous-ensembles finis S = {s0, . . . , sm}<

et T = {t0, . . . , tn}< de ]0,∞[, on écrit S ∼ T lorsque m = n et

∀i, j, k < m, si 6 sj + sk ↔ ti 6 tj + tk.

Alors (cf théorème 60) :

Théorème. Soit S un sous-ensemble fini de ]0,+∞[ de taille |S| 6 4 et sat-
isfaisant la condition des 4 valeurs. Supposons que S ≁ {1, 2, 3, 4}. Alors US est
indivisible.

Après l’indivisibilité, on s’intéresse à la stabilité par oscillations. Certains cas
sont faciles à étudier. Par exemple, comme on peut désormais s’y attendre au vu
des résultats qui précèdent, les espaces ultramétriques complets séparable ultraho-
mogènes entrent dans cette catégorie (cf théorème 65).

Théorème. Soit X un espace ultramétrique complet séparable et ultrahomogène.
Alors l’action standard de iso(X) sur X est stable par oscillations ssi l’ordre total
usuel renversé > sur R induit un bon ordre sur son ensemble de distances.

Cependant, dans la plupart des cas, l’étude de la stabilité par oscillations semble
difficile à mener à bien. Le cas de S∞ a déjà été présenté dans la section précédente
de cette introduction. La dernière partie de cette thèse est consacrée à l’étude d’un
problème similaire pour la sphère d’Urysohn S, à savoir : L’action standard de
iso(S) sur S est-elle stable par oscillations ? Sans être en mesure de fournir une
solution complète, on est en mesure d’apporter quelques réponses. En particulier,
on montre que le problème de la stabilité par oscillation pour S est équivalent à un
problème purement combinatoire relatif aux espaces Um (cf théorème 67) :
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Théorème. Les assertions suivantes sont équivalentes :

i) L’action standard de iso(S) sur S est stable par oscillations.

ii) Pour tout ε > 0, SQ est ε-indivisible.

iii) Pour tout m ∈ ω strictement positif, Um est 1-indivisible.

iv) Pour tout m ∈ ω strictement positif, Um est indivisible.

Au vu de ce résultat, les meilleures bornes que l’on parvient à atteindre pour
le moment sont les suivantes (cf théorèmes 73 et 74) :

Théorème. Pour tout m 6 9, Um est 1-indivisible.

Théorème. S est 1/6-indivisible.

On achève le chapitre 3 et la thèse avec quelques questions portant sur les
grands degrés de Ramsey pour les classes MS et l’indivisibilité des espaces US .

Tout au long de la présente dissertation, on s’efforce de fournir des références
aussi précises que possible aux résultats qui ne sont pas les nôtres. Les résultats
nouveaux relatifs aux propriétés de Ramsey des espaces ultramétriques finis et à la
dynamique topologique de leurs espaces d’Urysohn (chapitre 2) sont tirés de [61].
Ceux qui sont relatifs aux grands degrés de Ramsey et à l’indivisibilité des espaces
ultramétriques (chapitre 3) sont tirés de [62]. Enfin, ceux qui sont relatifs à la
sphère d’Urysohn (chapitre 3) devraient être publiés dans [71].





Introduction.

3. General notions and motivations.

The study of Ramsey theoretic properties of finite metric spaces in connection
with the structure of separable ultrahomogeneous metric spaces is the backbone
of the present thesis. Our original motivation comes from the recent work [40] of
Kechris, Pestov and Todorcevic connecting Fräıssé theory of amalgamation classes
and ultrahomogeneous structures, Ramsey theory, and topological dynamics of au-
tomorphism groups of countable structures. More precisely, the starting point of
our research is the computation of the universal minimal flow of the surjective isom-
etry group of the rational metric space UQ leading to a new proof of a theorem by
Pestov. This theorem contains two main ingredients.

The first one is the so-called universal Urysohn metric space U. This space,
which appeared relatively early in the history of metric geometry (the definition
of metric space is given in the thesis of M. Fréchet in 1906, [19]), was constructed
by Paul Urysohn in 1925. Its characterization refers to a property known today
as ultrahomogeneity : A metric space X is ultrahomogeneous when every isometry
between finite metric subspaces extends to an isometry of X onto itself. With this
definition in mind, U can be characterized as follows: Up to isometry, it is the
unique complete separable ultrahomogeneous metric space which includes all finite
metric spaces. As a direct consequence, U is universal not only for the class of
all finite metric spaces, but also for the class of all separable metric spaces. This
property is essential and is precisely the reason for which Urysohn constructed U:
Before, it was unknown whether a separable metric space could be universal for the
class of all separable metric spaces. However, U virtually disappeared after Banach
and Mazur showed that C([0, 1]) was also universal and it is only quite recently that
U became again subject to research, in particular thanks to the work of Katĕtov,
Uspenskij, Vershik, Bogatyi and Pestov.

Recall now the concept of extreme amenability from topological dynamics. A
topological group G is extremely amenable or satisfies the fixed point on compacta
property when every continuous action of G on a compact topological space X
admits a fixed point (ie a point x ∈ X such that ∀g ∈ G g · x = x). Extreme
amenability of topological groups naturally comes into play in topological dynamics
when studying so-called universal minimal flows. Given a topological group G, a
compact G-flow is a compact topological space X together with a continuous action
of G on X. A G-flow is minimal when every orbit is dense. It is easy to show that
every G-flow includes a minimal subflow. It is less obvious that every topological
group G has a universal minimal flow M(G), that is a minimal G-flow that can be
homomorphically mapped onto any other minimal G-flow. Furthermore, it turns
out that M(G) is uniquely determined by these properties up to isomorphism (A
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homomorphism between two G-flows X and Y is a continuous map π : X −→ Y
such that for every x ∈ X and g ∈ G, π(g · x) = g · π(x). An isomorphism is
a bijective homomorphism). When G is locally compact but non compact, M(G)
is an intricate object. However, there are some non-trivial groups G where M(G)
trivializes and those are precisely the extremely amenable ones. Pestov theorem
provides such an example:

Theorem (Pestov [65]). Equipped with the pointwise convergence topology, the
group iso(U) of isometries of U onto itself is extremely amenable.

Most of the techniques used in [65] come from topological group theory. How-
ever, a careful analysis of the proof together with another result of Pestov in [64]
according to which the automorphism group Aut(Q, <) of all order-preserving bi-
jections of the rationals is also extremely amenable allowed to isolate a substantial
combinatorial core. The determination of this core is precisely the content of [40]
and shows the emergence of two major components: Fräıssé theory and structural
Ramsey theory.

Developed in the fifties by R. Fräıssé, Fräıssé theory provides a general model
theoretic and combinatorial analysis of what is called today countable ultrahomoge-
neous structures. Let L = {Ri : i ∈ I} be a fixed relational signature, and X and Y

be two L-structures. An embedding from X to Y is an injective map π : X −→ Y
such that for every i ∈ I and x1, . . . , xn ∈ X:

(x1, . . . , xn) ∈ RX
i iff (π(x1), . . . , π(xn)) ∈ RY

i .

An isomorphism from X to Y is a surjective embedding. When there is an
isomorphism from X to Y, this is written X ∼= Y. Finally,

(
Y

X

)
is defined as:

(
Y

X

)
= {X̃ ⊂ Y : X̃ ∼= X}

When there is an embedding from an L-structure X into another L-structure Y,
we write X 6 Y. A class K of L-structures is hereditary when for every L-structure
X and every Y ∈ K:

X 6 Y → X ∈ K.

It satisfies the joint embedding property when for every X,Y ∈ K, there is
Z ∈ K such that X,Y 6 Z. It satisfies the amalgamation property when for every
X, Y0, Y1 ∈ K and embeddings f0 : X −→ Y0 and f1 : X −→ Y, there is Z ∈ K
and embeddings g0 : Y0 −→ Z, g1 : Y1 −→ Z such that g0 ◦ f0 = g1 ◦ f1.

Let F be an L-structure. Its age, Age(F), is the collection of all finite L-
structures that can be embedded into F. F is ultrahomogeneous when every iso-
morphism between finite substructures of F can be extended to an automorphism
of F. Finally, a class K of finite L-structures is a Fräıssé class when K contains
only countably many structures up to isomorphism, is hereditary, contains struc-
tures of arbitrarily high finite size, has the joint embedding property and the has
the amalgamation property. With these concepts in mind, here is the fundational
result in Fräıssé theory:

Theorem (Fräıssé [16]). Let L be a relational signature and K a Fräıssé class
of L-structures. Then there is, up to isomorphism, a unique countable ultrahomo-
geneous L-structure F such that Age(F) = K. F is called the Fräıssé limit of K
and denoted Flim(K).
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The fundational result of Ramsey theory is older. It was proved in 1930 by
F. P. Ramsey and can be stated as follows. For a set X and an integer l, let [X]l

denote the set of subsets of X with l elements:

Theorem (Ramsey [72]). For every k ∈ ωr{0} and l,m ∈ ω, there is p ∈ ω so
that given any set X with p elements, if [X]l is partitioned into k classes, then there
is Y ⊂ X with m elements such that [Y ]l lies in one of the parts of the partition.

However, it is only in the early seventies thanks to the work of several people,
among whom Erdős, Graham, Leeb, Rothschild, Nešetřil and Rödl, that the es-
sential ideas behind this theorem crystallized and expanded to structural Ramsey
theory. Here are the related basic concepts: For k, l ∈ ω r {0} and a triple X,Y,Z

of L-structures, Z −→ (Y)
X

k,l is an abbreviation for the statement:

For any χ :
(
Z

X

)
−→ k there is Ỹ ∈

(
Z

Y

)
such that |χ′′

(
Ỹ

X

)
| 6 l.

When l = 1, this is simply written Z −→ (Y)
X

k . Now, given a class K of finite
ordered L-structures, say that K has the Ramsey property when for every X, Y ∈ K
and every k ∈ ω r {0}, there is Z ∈ K such that:

Z −→ (Y)
X

k

The techniques developed in [40] show the existence of several bridges between
extreme amenability, universal minimal flows, Fräıssé theory and structural Ram-
sey theory. For example: Let L∗ be a relational signature with a distinguished
binary relation symbol <. An order L∗-structure is an L∗-structure X in which the
interpretation <X of < is a linear ordering. If K∗ is a class of L∗-structures, K∗ is
an order class when every element of K∗ is an order L∗-structure.

Theorem (Kechris-Pestov-Todorcevic [40]). Let L∗ ⊃ {<} be a relational sig-
nature, K∗ a Fräıssé order class in L∗ and (F, <F) = Flim(K∗). Then the following
are equivalent:

(1) Aut(F, <F) is extremely amenable.
(2) K∗ is a Ramsey class.

Together with several similar theorems, this result sets up a general landscape
into which the combinatorial attack of extreme amenability can take place. When
one is interested in the study of extreme amenability for a group of the form
Aut(Flim(K∗)), this theorem can be used directly. However, the range of its appli-
cations is not restricted to this particular case. The combinatorial proof of Pestov
theorem quoted previously provides a good illustration of that fact. Here are the
main ideas. A first step consists in making use of the following Ramsey theorem
due to Nešetřil:

Theorem (Nešetřil [56]). The class M<
Q of all finite ordered metric spaces

with rational distances has the Ramsey property.

A second step is to refer to the general aforementionned theorem. It follows
that the the group G := Aut(Flim(M<

Q )) is extremely amenable. Finally, the last

step establishes that G embeds continuously and densely into iso(U), and that this
property is sufficient to transfer extreme amenability from G to iso(U).

The success of this strategy led the authors of [40] to ask several general ques-
tions related to metric Ramsey theory, among which stands the following one:
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Question: Among the Fräıssé classes of finite ordered metric spaces, which
ones have the Ramsey property ?

This general problem can be seen as a metric version of a well-known similar
problem for finite ordered graphs which originated an impressive quantity of re-
search in the seventies. In our case, it is undoubtedly the main motivation to look
for classes of finite ordered metric spaces with the Ramsey property, and several
examples will be exposed throughout the present thesis.

Together with Ramsey property, another combinatorial notion related to Fräıssé
classes emerges from [40]. It is called ordering property and will also receive a
particular attention in our work.

As previously, fix a relational signature L∗ with a distinguished binary relation
symbol < and let L be the signature L∗ r {<}. Now, given an order class K∗ of
L∗-structures, let K be the class of L-structures defined by:

K = {X : (X, <X) ∈ K∗}.

Say that K∗ has the ordering property when given X ∈ K, there is Y ∈ K such
that given any linear orderings <X and <Y on X and Y, if (X, <X) , (Y, <Y) ∈ K∗,
then (Y, <Y) contains an isomorphic copy of (X, <X). Ordering property is relevent
because it leads to several interesting notions.

The first ones are related to topological dynamics and extreme amenability:
Still in [40], it is shown that for a certain kind of Fräıssé order class K∗, ordering
property provides a direct way to produce minimal Aut(Flim(K))-flows. Better:
When Ramsey property and ordering property are both satisfied, an explicit deter-
mination of the universal minimal flow of Aut(Flim(K)) becomes available. This
fact deserves to be mentionned as before [40], there were only very few cases of
non extremely amenable topological groups for which the universal minimal flow
was explicitly describable and known to be metrizable. This method allowed to
compute the universal minimal flow of the automorphism group of several remark-
able Fräıssé limits like the Rado graph R, the Henson graphs Hn, the countable
atomless Boolean algebra B∞ or the ℵ0-dimensional vector space VF over a finite
field F .

The second kind of notion is purely combinatorial and is called Ramsey degree:
Given a class K of L-structures and X ∈ K, suppose that there is l ∈ ω r {0} such
that for any Y ∈ K, and any k ∈ ω r {0}, there exists Z ∈ K such that:

Z −→ (Y)
X

k,l.

The Ramsey degree of X in K is then defined as the least such number, and it
turns out that its effective computation is possible whenever K is coming from a
K∗ satisfying both Ramsey and ordering property.

In fact, the paper [40] allows to see determination of universal minimal flows
and computation of Ramsey degrees as the two sides of a same coin. However, the
combinatorial formulation turned out to carry an undeniable advantage: That of
allowing a variation which led to a new concept in topological dynamics and which
may have appeared much later if not in connection with partition calculus. The
variation around the notion of Ramsey degree is called big Ramsey degree, while
the new concept in topological dynamics is called oscillation stability for topological
groups.
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A possible way to introduce big Ramsey degrees is to observe that Ramsey
degrees can also be introduced as follows: If F denotes the Fräıssé limit of a Fräıssé
class K, X ∈ K admits a Ramsey degree in K when there is l ∈ ω such that for any
Y ∈ K, and any k ∈ ω r {0},

F −→ (Y)
X

k,l.

The big Ramsey degree corresponds to the exact same notion when this latter
result remains valid when Y is replaced by F. Its value TK(X) is the least l ∈ ω
such that

F −→ (F)
X

k,l.

Though not in this terminology, Ramsey degrees and big Ramsey degrees have
now been studied for a long time in structural Ramsey theory. However, whereas
the well-furnished collection of results in finite Ramsey theory very often leads to
the determination of the Ramsey degrees, there are only few situations where the
analysis of big Ramsey degrees has been completed. Here, we modestly expand
those lists with theorems related to classes of finite metric spaces.

Oscillation stability for topological groups is much more recent a notion. This
concept appears in [40] and is more fully explained in the book [66] by Pestov.
It is important as it captures several deep ideas coming from geometric functional
analysis and combinatorics. For a topological group G, recall that the left uni-
formity UL(G) is the uniformity whose basis is given by the sets of the form
VL = {(x, y) : x−1y ∈ V } where V is a neighborhood of the identity. Now, let

ĜL denote the completion of (G,UL(G)). ĜL may not be a topological group but
is always a topological semigroup. For a real-valued map f on a set X, define the
oscillation f on X as:

osc(f) = sup{|f(y) − f(x)| : x, y ∈ X}.

Now, let G be a topological group, f : G −→ R be uniformly continuous, and f̂

be the unique extension of f to ĜL by uniform continuity. Say that f is oscillation

stable when for every ε > 0, there is a right ideal I ⊂ ĜL such that

osc(f̂ ↾ I) < ε.

Finally, let G be a topological group acting G continuously on a topological
space X. For f : X −→ R and x ∈ X, let fx : G −→ R be defined by

∀g ∈ G fx(g) = f(gx).

Then say that the action is oscillation stable when for every f : X −→ R

bounded and continuous and every x ∈ X, fx is oscillation stable whenever it is
uniformly continuous.

The relationship between big Ramsey degrees and oscillation stability can be
particularly well understood in the metric context. First, call a metric space X

indivisible when for every strictly positive k ∈ ω and every χ : X −→ k, there is X̃ ⊂
X isometric to X on which χ is constant. It should be clear that when X is countable
and ultrahomogeneous, indivisibility of X is related to big Ramsey degrees in the
Fräıssé class Age(X) of all finite metric subspaces of X: X is indivisible iff the
1-point metric space has a big Ramsey degree in Age(X) equal to 1. Observe also
that indivisibility can be relaxed in the following sense: If X = (X, dX) is a metric
space, Y ⊂ X and ε > 0, set

(Y )ε = {x ∈ X : ∃y ∈ Y dX(x, y) 6 ε}
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Now, say that X is ε-indivisible when for every strictly positive k ∈ ω, every

χ : X −→ k and every ε > 0, there are i < k and X̃ ⊂ X isometric to X such that

X̃ ⊂ (←−χ {i})ε.

With this concept in mind, here is the promised connection:

Theorem (Kechris-Pestov-Todorcevic [40], Pestov [66]). For a complete ul-
trahomogeneous metric space X, the following are equivalent:

(1) When iso(X) is equipped with the topology of pointwise convergence, the
standard action of iso(X) on X is oscillation stable.

(2) For every ε > 0, X is ε-indivisible.

A consequence of the youth of the notion of oscillation stability for topological
groups is that the list of results that can be attached to it is fairly restricted.
However, some well-known results can be interpreted in terms oscillation stability.
For example, S∞ denoting the unit sphere of the Hilbert space ℓ2, it should be
mentionned that a problem equivalent to finding whether the standard action of
iso(S∞) on S∞ is oscillation stable motivated an impressive amount of research
between the late sixties and the early nineties. It is only in 1994 that Odell and
Schlumprecht finally presented a solution (cf [63]), solving the so-called distortion
problem for ℓ2:

Theorem (Odell-Schlumprecht [63]). The standard action of iso(S∞) on S∞

is not oscillation stable.

The last part of this thesis is devoted to the somehow similar problem for the
Urysohn sphere S. Our work does not lead to a complete solution but sill allows
the investigation of several promising tracks.

4. Organization and presentation of the results.

Chapter 1 is devoted to the presentation of several Fräıssé classes of finite metric
spaces whose role is central in our work.

One of the most important ones is the class MQ of finite metric spaces with
rational distances. Its Urysohn space (the name given to the Fräıssé limit in the
metric context) is a countable ultrahomogeneous metric space denoted UQ and
called the rational Urysohn space. Several variations of MQ are also of interest
for us: The class MQ∩]0,1] of finite metric spaces with distances in Q∩]0, 1], whose
Urysohn space is the rational Urysohn sphere SQ. The class Mω of finite metric
spaces with distances in ω, leading to the integral Urysohn space Uω. And finally
the classes Mω∩]0,m] of finite metric spaces with distances in {1, . . . ,m} where m
is a strictly positive integer, giving raise to bounded versions of Uω denoted Um.

Two other kinds of classes appear prominently in our work. The first kind
consists of the classes of the form US of finite ultrametric spaces with distances in a
prescribed countable subset S of ]0,+∞[. Every US leads to a so-called ultrametric
Urysohn space denoted BS and which, unlike most of the Urysohn spaces, can be
described very explicitly. The second kind consists of the classes MS of finite metric
spaces with distances in S where S ⊂]0,+∞[ is countable and satisfies the so-called
4-values condition, a condition discovered by Delhommé, Laflamme, Pouzet and
Sauer in [9] and which characterizes those subsets S ⊂]0,+∞[ for which the class
MS of all finite metric spaces with distances in S has the amalgamation property.
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Every MS leads to a space denoted US which can also sometimes be described
explicitly when S is finite and not too complicated.

Finally, we finish our list with two classes of finite Euclidean metric spaces,
namely the class HS of all finite affinely independent metric subspaces of the Hilbert
space ℓ2 with distances in S where S is a countable dense subset of ]0,+∞[, and the
class SS of all finite metric spaces X with distances in S which embed isometrically
into the unit sphere S∞ of ℓ2 with the property that {0ℓ2}∪X is affinely independent
(S still being a countable dense subset of ]0,+∞[). The corresponding Urysohn
spaces are countable metric subspaces of ℓ2 and S∞ respectively but unfortunately,
they only appear anecdotically in our work.

Once those Fräıssé classes and their related Urysohn spaces are presented, we
turn our attention to the interplay between complete separable ultrahomogeneous
metric spaces and Urysohn spaces. We start with considerations around the follow-
ing questions:

(1) Is the completion of a Urysohn space still ultrahomogeneous ?
(2) Does every complete separable ultrahomogeneous metric space appear as

the completion of a Urysohn space ?

The answer to (1) is negative and is provided by an example taken from an
article of Bogatyi [4]. On the other hand, the answer to (2) turns out to be positive
and provides our first substantial theorem, see theorem 6:

Theorem. Every complete separable ultrahomogeneous metric space Y in-
cludes a countable ultrahomogeneous dense metric subspace.

We then turn to the description of the completion of the Urysohn spaces pre-
sented previously. It is the opportunity to present several remarkable spaces, among
which the original Urysohn space U (as the completion of UQ), the Urysohn sphere
S (as the completion of SQ), the Baire space N (and more generally all the com-
plete separable ultrahomogeneous ultrametric spaces), as well as the Hilbert space
ℓ2 and its unit sphere S∞.

Chapter 2 is devoted to finite metric Ramsey calculus and, as already stressed
in the first section of this introduction, is mainly concerned about new proofs along
the line of the combinatorial proof of Pestov theorem via Nešetřil theorem and the
theory developed in [40]. For completeness, we start with a presentation of Nešetřil
theorem leading to the following result. For S ⊂]0,+∞[, let M<

S denote the class
of all finite ordered metric spaces with distances in S. Then (see 13):

Theorem (Nešetřil [56]). Let T ⊂]0,+∞[ be closed under sums and S be an
initial segment of T . Then M<

S has the Ramsey property.

Then, we show that similar results hold for other classes of finite ordered metric
spaces. The first class is built on the class US : Let X be an ultrametric space. Call
a linear ordering < on X convex when all the metric balls of X are <-convex.
For S ⊂]0,+∞[, let Uc<

S denote the class of all finite convexly ordered ultrametric
spaces with distances in S. Then (see theorem 14):

Theorem. Let S ⊂]0,+∞[. Then Uc<
S has the Ramsey property.

The second kind of class where we can prove Ramsey property is based on the
classes MS . Let K be a class of metric spaces. Call a distance s ∈]0,+∞[ critical
for K when for every X ∈ K, one defines an equivalence relation ≈ on X by setting:
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∀x, y ∈ X x ≈ y ↔ dX(x, y) 6 s.

The relation ≈ is then called a metric equivalence relation on X. Now, call a
linear ordering < on X ∈ K metric if given any metric equivalence relation ≈ on
X, the ≈-equivalence classes are <-convex. Given S ⊂]0,+∞[, let Mm<

S denote
the class of all finite metrically ordered metric spaces with distances in S. Then
(see theorem 15):

Theorem. Let S be finite subset of ]0,+∞[ of size |S| 6 3 and satisfying the
4-values condition. Then Mm<

S has the Ramsey property.

After the study of Ramsey property, we turn to ordering property. For S initial
segment of T ⊂]0,+∞[, T closed under sums, ordering property for M<

S can be
proved via a probabilistic argument, see [55]. We present here a proof based on
Ramsey property (see theorem 16):

Theorem. Let T ⊂]0,+∞[ be closed under sums and S be an initial segment
of T . Then M<

S has the ordering property.

We then follow with the ordering property for Uc<
S and for Mm<

S , see theorems
18 and 21:

Theorem. Uc<
S has the ordering property.

Theorem. Let S be finite subset of ]0,+∞[ of size |S| 6 3 and satisfying the
4-values condition. Then Mm<

S has the ordering property.

As mentionned in the first section of the introduction, Ramsey property to-
gether with ordering property allow the computation of Ramsey degrees. In the
present situation, we are consequently able to compute the exact value of the Ram-
sey degrees in the classes MS when S is an initial segment of T with T ⊂]0,+∞[
is closed under sums (see 23), US (see 24) and MS where S is a finite subset of
]0,+∞[ of size |S| 6 3 and satisfying the 4-values condition (see 25).

Finally, we turn to applications in topological dynamics. We first present the
proof of Pestov theorem about the extreme amenability of iso(U) and then follow
with several results about extreme amenability and universal minimal flows. For
example (see theorem 37):

Theorem. The universal minimal flow of iso(BS) is the set cLO(BS) of convex
linear orderings on BS together with the action iso(BS)× cLO(BS) −→ cLO(BS),
(g,<) 7−→<g defined by x <g y iff g−1(x) < g−1(y).

On the other hand, recalling that N denotes the Baire space (see theorem 39):

Theorem. The universal minimal flow of iso(N ) is the set cLO(N ) of convex
linear orderings on N together with the action iso(N ) × cLO(N ) −→ cLO(N ),
(g,<) 7−→<g defined by x <g y iff g−1(x) < g−1(y).

As a last example (theorem 43):

Theorem. Let S be finite subset of ]0,+∞[ of size |S| 6 3 and satisfying the 4-
values condition. Then the universal minimal flow of iso(US) is the set mLO(US)
of metric linear orderings on US together with the action iso(US)×mLO(US) −→
mLO(US), (g,<) 7−→<g defined by x <g y iff g−1(x) < g−1(y).
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In particular, the underlying spaces of all those universal minimal flow are
metrizable.

We finish Chapter 2 with several open questions concerning Ramsey property
for the classes MS as well as a possible connection between Euclidean Ramsey
theory and a theorem by Gromov and Milman.

Chapter 3 is devoted to infinite metric Ramsey calculus. We start with a short
section on big Ramsey degrees. Short cannot be removed from the previous sentence
because in most of the cases, the determination of big Ramsey degrees turns out
to be too difficult for us to complete. Still, there is one case where we manage to
provide a full analysis (see theorem 49):

Theorem. Let S be a finite subset of ]0,+∞[. Then every element of US has
a big Ramsey degree in US.

In fact, we are even able to compute exact the value of the big Ramsey degree.
This has to be compared with (see theorem 50):

Theorem. Let S be an infinite countable subset of ]0,+∞[ and let X be in US

such that |X| > 2. Then X does not have a big Ramsey degree in US.

We follow with a section on indivisibility of Urysohn spaces. After the presen-
tation of several general results taken from [9], we provide the details of the proof
of the following theorem (see theorem 51):

Theorem (Delhommé-Laflamme-Pouzet-Sauer [9]). SQ is not indivisible.

Then, we turn to the study of indivisiblity of simpler Urysohn spaces, namely
the spaces Um. It then turns out that for most of the cases, this problem re-
mains open. The exceptions concern the most elementary instances where general
theorems such as Milliken theorem or Sauer theorem can be applied.

We then follow with indivisibility for ultrametric Urysohn spaces. As for big
Ramsey degrees, these cases turn out to be accessible and lead to the following
theorem (proved independently of Delhommé, Laflamme, Pouzet and Sauer in [9]),
see section 3.3:

Theorem. Let X be a countable ultrahomogeneous ultrametric space. Then X

is indivisible iff the reverse linear ordering > on R induces a well-ordering on its
distance set.

In fact, ultrametric Urysohn spaces behave so nicely that we are even able to
establish the following refinement (see theorem 59):

Theorem. Let S be an infinite countable subset of ]0,+∞[ such that the reverse
linear ordering > on R induces a well-ordering on S. Then given any map f :
BS −→ ω, there is an isometric copy X of BS inside BS such that f is continuous
or injective on X.

After ultrametric Urysohn spaces, we finish the section on indivisibility with
the study of the spaces US when S is finite and satisfies the 4-values condition.
Our result only pratially covers the case |S| 6 4 but even so turns out to be long
and tedious. To state it precisely, we need an extra definition: For finite subsets
S = {s0, . . . , sm}< and T = {t0, . . . , tn}< of ]0,∞[, define S ∼ T when m = n and

∀i, j, k < m, si 6 sj + sk ↔ ti 6 tj + tk.



28 INTRODUCTION.

Then (see theorem 60):

Theorem. Let S be finite subset of ]0,+∞[ of size |S| 6 4 and satisfying the
4-values condition. Assume that S ≁ {1, 2, 3, 4}. Then US is indivisible.

After indivisibility, we turn to oscillation stability. There are some cases where
it is easy to study. For example, unsurprisingly in view of the previous results,
complete separable ultrahomogeneous ultrametric spaces enter this category (see
theorem 65).

Theorem. Let X be a complete separable ultrahomogeneous ultrametric space.
Then the standard action of iso(X) on X is oscillation stable iff the reverse linear
ordering > on R induces a well-ordering on its distance set.

However, in most of the cases, the study of oscillation stability seems to be
hard to complete. The case of S∞ was already presented in the previous section
of this introduction. The last part of this thesis is devoted to the somehow similar
problem for the Urysohn sphere S, namely: Is the standard action of iso(S) on
S oscillation stable ? Without reaching a complete solution, we are able to make
some progress. In particular, we show that the oscillation stability problem for S

is equivalent to a purely combinatorial problem involving the Urysohn spaces Um

(see theorem 67):

Theorem. The following are equivalent:

i) The standard action of iso(S) on S is oscillation stable.

ii) For every ε > 0, SQ is ε-indivisible.

iii) For every strictly positive m ∈ ω, Um is 1-indivisible.

iv) For every strictly positive m ∈ ω, Um is indivisible.

We then finish with the best bounds we can obtain so far. Namely, (see theo-
rems 73 and 74):

Theorem. For every m 6 9, Um is 1-indivisible.

Theorem. S is 1/6-indivisible.

We then close chapter 3 and this thesis with questions about big Ramsey degrees
in the classes MS and indivisibility of the spaces US .

Throughout all the present thesis, we refer as accurately as possible to the
original authors and publications for all the results which are not ours. The new
results related to finite Ramsey calculus of finite ultrametric spaces and topological
dynamics of their Urysohn spaces (Chapter 2) are taken from [61]. Those related
to big Ramsey degrees and indivisibility of ultrametric spaces (Chapter 3) are taken
from [62]. Finally, those related to the oscillation stability problem for the Urysohn
sphere (Chapter 3) should appear in [71].



CHAPTER 1

Fräıssé classes of finite metric spaces and Urysohn
spaces.

1. Fundamentals of Fräıssé theory.

In this section, we introduce the basic concepts related to Fräıssé theory. We
follow [40] but a more detailed approach can be found in [17] or [32]. Let L =
{Ri : i ∈ I} be a fixed relational signature. Let X and Y be two L-structures. An
embedding from X to Y is an injective map π : X −→ Y such that for every i ∈ I
and x1, . . . , xn ∈ X:

(x1, . . . , xn) ∈ RX
i iff (π(x1), . . . , π(xn)) ∈ RY

i .

An isomorphism from X to Y is a surjective embedding while an automorphism
of X is an isomorphism from X onto itself. Of course, X and Y are isomorphic
when there is an isomorphism from X to Y. This is written X ∼= Y. Finally,

(
Y

X

)

is defined as: (
Y

X

)
= {X̃ ⊂ Y : X̃ ∼= X}

When there is an embedding from an L-structure X into another L-structure Y,
we write X 6 Y. A class K of L-structures is hereditary when for every L-structure
X and every Y ∈ K:

X 6 Y → X ∈ K.

It satisfies the joint embedding property when for every X,Y ∈ K, there is
Z ∈ K such that X,Y 6 Z. It satisfies the amalgamation property (or is an
amalgamation class) when for every X, Y0, Y1 ∈ K and embeddings f0 : X −→ Y0

and f1 : X −→ Y, there is Z ∈ K and embeddings g0 : Y0 −→ Z, g1 : Y1 −→ Z

such that g0 ◦ f0 = g1 ◦ f1. Finally, K has the strong amalgamation property (or is
a strong amalgamation class) when one can also fullfill:

g′′0 f ′′
0 X = g′′0Y0 ∩ g′′1Y1(= g′′0 f ′′

0 X).

A structure F is ultrahomogeneous when every isomorphism between finite sub-
structures of F can be extended to an automorphism of F. Fräıssé theory provides
a general analysis of countable ultrahomogeneous structures.

Let F be an L-structure. The age of F, Age(F), is the collection of all finite
L-structures that can be embedded into F. Observe also that if F is countable,
then Age(F) contains only countably many isomorphism types. Abusing language,
we will say that Age(F) is countable. Similarly, a class K of L-structures will be
said to be countable if it contains only countably many isomorphism types.

A class K of finite L-structures is a Fräıssé class when K is countable, hered-
itary, contains structures of arbitrarily high finite size, has the joint embedding
property and the has the amalgamation property.

29
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It should be clear that if F is a countable ultrahomogeneous L-structure, then
Age(F) is a Fräıssé class. The following theorem, due to Fräıssé, establishes a kind
of converse:

Theorem 1 (Fräıssé [16]). Let L be a relational signature and K a Fräıssé
class of L-structures. Then there is, up to isomorphism, a unique countable ultra-
homogeneous L-structure F such that Age(F) = K. F is called the Fräıssé limit of
K and denoted Flim(K).

We do not enter the details of the proof here but let us simply mention that
uniqueness of the Fräıssé limit is due to the following fact:

Proposition 1. Let F be a countable L-structure. Then F is ultrahomogeneous
iff for every finite substructures X,Y of F with |Y| = |X| + 1, every embedding
X −→ F can be extended to an embedding Y −→ F.

Let us now illustrate how these concepts translate in the context of the central
objects of this thesis: Metric spaces. There are several ways to see a metric space
X = (X, dX) as a relational structure. For example, one may consider a binary
relation symbol Rδ for every δ in Q∩]0,+∞[ and set

(x, y) ∈ RX
δ ↔ dX(x, y) < δ.

One may also allow δ to range over ]0,+∞[, and define:

(x, y) ∈ RX
δ ↔ dX(x, y) = δ.

This latter approach has the disadvantage of requiring the signature to be un-
countable if uncountably many distances appear in the metric space we are working
with. This is a real issue as Fräıssé theory really deals with countable signatures,
but in the present case, the instances where Fräıssé theory will be needed will in-
volve only countably many distances so the second way of encoding the distance
map by relations will not cause any problem.

With these facts in mind, substructures in the context of metric spaces really
correspond to metric subspaces and embeddings are really isometric embeddings. It
follows that if X,Y are metric spaces, then

(
Y

X

)
is the set of all isometric copies of

X inside Y.
Other kinds of relational structures will come into play, namely, ordered metric

spaces (structures of the form (X, <X) = (X, dX, <X) where X is a metric space
and <X is a linear ordering on X), graphs (structures G in the language {R1} where
RG

1 is binary, symmetric and irreflexive), edge-labelled graphs (structures G in the
language {Rδ : δ ∈]0,+∞[} where each RG

δ is binary symmetric and irreflexive),
ordered edge-labelled graphs. . . However, the reader should be aware that in many
cases, we will not be too cautious with the notational aspect. In particular, we
will almost never use the relational notation for a metric space. Similarly, when
dealing with an edge-labelled graph G, we will always work with the labelling map
λG defined by

dom(λG) =
⋃

δ∈]0,+∞[ R
G
δ and λG(x, y) ↔ (x, y) ∈ RG

δ .

A class K of metric spaces is hereditary when it is closed under isometries and
metric subspaces. Next, suppose we want to show that a class K of finite metric
spaces has the strong amalgamation property. We take X, Y0, Y1 ∈ K, isometric
embeddings f0 : X −→ Y0 and f1 : X −→ Y and we wish to find Z ∈ K and
embeddings g0 : Y0 −→ Z, g1 : Y1 −→ Z such that g0 ◦ f0 = g1 ◦ f1. Thanks to
the previous comments, we may assume without loss of generality that X is really
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a metric subspace both of Y0 and Y1, and that Y0 ∩ Y1 = X. Hence, the metrics
dY0 and dY1 agree on X and are equal to dX on X. So we will be done if we can
prove that dY0 ∪ dY1 can be extended to a metric on Y0 ∪ Y1. As we will see later,
the most convenient way to proceed will strongly depend on how K will be defined.

Let us now examine the meaning of ultrahomogeneity. A metric space X is
ultrahomogeneous when any isometry between two finite subspaces can be extended
to an isometry of X onto itself. Throughout this thesis, the set of all isometries of
a metric space X onto itself is denoted iso(X).

In the metric setting, Fräıssé theorem consequently states:

Theorem 2 (Fräıssé theorem for metric spaces.). Let K be a Fräıssé class of
metric spaces. Then there is, up to isometry, a unique countable ultrahomogeneous
metric space X whose class of finite metric subspaces is exactly K. This space will
be called the Urysohn space associated to K.

As we mentionned when stating the general form of Fräıssé theorem, uniqueness
of the Urysohn space can be shown via a back-and-forth argument after having
restated ultrahomogeneity in terms of a certain extension property. The purpose
of what follows is to state this extension property, and to show that it is indeed
equivalent to ultrahomogeneity. We start with the following important concept:

Definition 1. If X = (X, dX) is a metric space, a map f : X −→ R is Katĕtov
over X when:

∀x, y ∈ X, |f(x) − f(y)| 6 dX(x, y) 6 f(x) + f(y).

If E(X) denotes the set of all Katĕtov maps over X, X ⊂ Y and f ∈ E(X), a
point y ∈ Y realizes f over X when:

∀x ∈ X, dY(x, y) = f(x).

Equivalently, if f ∈ E(X), then f can be thought as a potential new point that
can be added to the space X. Indeed, if f does not vanish on X, then one can

extend the metric dX on X∪̇{f} by defining, for every x, y in X, d̂X(x, f) = f(x)

and d̂X(x, y) = dX(x, y). It is not the case when f vanishes at some point x but
then, one can check that for every y ∈ X, f(y) = dX(x, y) and so f can be identified
with x. In any case, the corresponding metric space will be denoted X ∪ {f}.

Proposition 2. Let Y be a countable metric space. Then Y is ultrahomo-
geneous iff for every finite subspace X ⊂ Y and every Katĕtov map f over X, if
X ∪ {f} embeds into Y, then there is y ∈ Y realizing f over X. The same result
holds when Y is complete separable.

Proof. Assume that Y is countable (resp. complete separable) and ultraho-
mogeneous. Consider an embedding ϕ : X ∪ {f} −→ Y. By ultrahomogeneity of
Y, there is an isometry ψ of Y onto itself such that:

∀x ∈ X, ψ(x) = ϕ(x).

Then, ψ−1(ϕ(f)) ∈ Y realizes f over X.
For the converse, suppose first that Y is countable. Assume that {x0, . . . , xn}

and {z0, . . . , zn} are isometric finite subspaces of Y and that ϕ : xk 7→ zk is an
isometry. We wish to extend ϕ to an isometry of Y onto itself. We do that thanks
to a back and forth method. First, extend {x0, . . . , xn} and {z0, . . . , zn} so that
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{xk : k ∈ ω} = {zk : k ∈ ω} = Y. For k 6 n, let σ(k) = τ(k) = k. Then, set
σ(n + 1) = n + 1. Consider the map fn+1 defined on {ϕ(xσ(k)) : k < n + 1} by:

∀k < n + 1, fn+1(ϕ(xσ(k))) = dY(xσ(n+1), xσ(k)).

Observe that fn+1 is Katĕtov over {ϕ(xσ(k)) : k < n + 1} and that the space
{ϕ(xσ(k)) : k < n+1}∪{fn+1} is isometric to {xσ(k) : k 6 n+1}. By hypothesis on
Y, we can consequently find ϕ(xσ(n+1)) realizing fn+1 over {ϕ(xσ(k)) : k < n + 1}.
Next, let:

τ(n + 1) = min{k ∈ ω : zk /∈ {ϕ(xσ(i)) : i < n + 1}}

Consider the map gn+1 defined on {xσ(k) : k < n + 1} by:

∀k 6 n + 1, gn+1(xσ(k)) = dY(zτ(n+1), ϕ(xσ(k))).

Then gn+1 is Katĕtov over {xσ(k) : k < n + 1} and the space {xσ(k) : k <
n + 1} ∪ {gn+1} is isometric to {ϕ(xσ(k)) : k < n + 1} ∪ {zτ(n+1)}. So again, by

hypothesis on Y, we can find ϕ−1(zτ(n+1)) ∈ Y realizing gn+1 over {xσ(k) : k <
n + 1}. In general, if σ and τ have been defined up to m and ϕ has been defined
on Tm := {xσ(0), . . . , xσ(m)} ∪ {ϕ−1(zσ(0)), . . . , ϕ(zσ(m))}, set:

σ(m + 1) = min{k ∈ ω : xk /∈ Tm}.

Consider the map fm+1 defined on ϕ′′Tm by:

∀k < m + 1,

{
fm+1(ϕ(xσ(k))) = dY(xσ(m+1), xσ(k))
fm+1(zτ(k))) = dY(xσ(m+1), ϕ

−1(zτ(k)))

Observe that fm+1 is Katĕtov over ϕ′′Tm and that ϕ′′Tm ∪{fm+1} is isometric
to Tm ∪ {xσ(m+1)}. By hypothesis on Y, we can consequently find ϕ(xσ(m+1))
realizing fm+1 over ϕ′′Tm. Next, let:

τ(m + 1) = min{k ∈ ω : zk /∈ {ϕ(xσ(i)) : i < n + 1}}

Consider the map gm+1 defined on Tm by:

∀k < m + 1,

{
gm+1(xσ(k)) = dY(zτ(m+1), ϕ(xσ(k)))
gm+1(ϕ

−1(zτ(k))) = dY(zτ(m+1), zτ(k))

Then gn+1 is Katĕtov over Tm and Tm ∪ {gm+1} is isometric to ϕ′′Tm ∪
{zτ(m+1)}. So again, by hypothesis on Y, we can find ϕ−1(zτ(m+1)) ∈ Y real-
izing gm+1 over Tm. After ω steps, we are left with an isometry ϕ with Y = {xk :
k ∈ ω} = dom(ϕ) and Y = {zk : k ∈ ω} = ran(ϕ). This finishes the proof when Y

is countable.
If Y is complete separable, then the same proof works except that at the very

beginning, instead of extending {x0, . . . , xn} and {z0, . . . , zn} so that {xk : k ∈ ω} =
{zk : k ∈ ω} = Y, we simply require that {xk : k ∈ ω} and {zk : k ∈ ω} should be
dense in Y. At the end of the construction, ϕ is such that {xk : k ∈ ω} ⊂ dom(ϕ)
and {zk : k ∈ ω} ⊂ ran(ϕ). We can consequently extend it to an isometry of Y

onto itself. ¤
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2. Amalgamation and Fräıssé classes of finite metric spaces.

2.1. First examples and path distances. The very first natural example
of amalgamation class of finite metric spaces is the class M of all finite metric
spaces. Showing that M satisfies the amalgamation property (and in fact the strong
amalgamation property) is not difficult but the underlying idea will be useful later
so we provide a complete proof.

Proposition 3. The class M of all finite metric spaces has the strong amal-
gamation property.

Proof. Let X, Y0, Y1 ∈ M and isometries f0 : X −→ Y0 and f1 : X −→ Y.
We wish to find Z ∈ M and isometries g0 : Y0 −→ Z, g1 : Y1 −→ Z such that
g0 ◦ f0 = g1 ◦ f1. Equivalently, as mentionned in the previous section, we may
assume that X is a metric subspace both of Y0 and Y1, that Y0 ∩ Y1 = X, and
that we have to extend dY0 ∪ dY1 to a metric on Y0 ∪ Y1. To achieve that, see
Z := Y0 ∪ Y1 as an edge-labelled graph. For x, y ∈ Z, and n ∈ ω strictly positive,
a define path from x to y of size n as is a finite sequence γ = (zi)i<n such that
z0 = x, zn−1 = y and for every i < n − 1,

(zi, zi+1) ∈ dom(λZ).

The length of γ is then defined by:

‖γ‖ =

n−1∑

i=0

λZ(zi, zi+1).

Observe that here, the edge-labelled graph Z is metric. This means that for
every (x, y) ∈ dom(λZ) and every path γ from x to y:

λZ(x, y) 6 ‖γ‖.

This fact allows to define the a metric dZ as follows: For x, y in Z, let P (x, y)
be the set of all paths from x to y. Now, set:

dZ(x, y) = inf{‖γ‖ : γ ∈ P (x, y)}.

Then dZ is as required. ¤

M is consequently a strong amalgamation class. Not beeing countable, it is
not a Fräıssé class but this can be fixed by restricting the distances to a fixed
subset of ]0,+∞[ (0 is always a distance, so we never mention it as such). The
simplest such examples are the classes MQ and Mω, corresponding to the distance-
sets Q∩]0,+∞[ and ω∩]0,+∞[ respectively. These classes are indeed obviously
countable and hereditary. As for the amalgamation property, one can proceed
exactly as for M: The fact that the path distance takes its values in Q∩]0,+∞[ or
ω∩]0,+∞[ is guaranteed by the fact that these sets are closed under finite sums.
Notice also that one may even take bounded subsets of ]0,+∞[, say Q∩]0, r] or
ω∩]0, r] for some strictly positive r ∈ Q or ω. In these cases, the previous proof
still works provided ‖γ‖ is replaced by ‖γ‖6r:

‖γ‖6r = min(‖γ‖, r).
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2.2. Ultrametric spaces. Recall that a metric space X = (X, dX) is ultra-
metric when given any x, y, z in X,

dX(x, z) 6 max(dX(x, y), dX(y, z)).

Using the idea of the previous section, one can prove:

Proposition 4. Let S ⊂]0,+∞[. Then the class US of all finite ultrametric
spaces with distances in S has the strong amalgamation property.

Proof. Reproduce the proof for M except that instead of ‖γ‖, use ‖γ‖max

defined by:

‖γ‖max = max
06i6n−1

λZ(zi, zi+1).

¤

It follows that when S is countable, US is a Fräıssé class with strong amalga-
mation property. In fact, we will see in section 3.2 that:

Proposition 5. Let K be a Fräıssé class of finite ultrametric spaces. Assume
that K has the strong amalgamation property. Then there is a countable S ⊂]0,+∞[
such that K = US.

An explicit and detailed study of the classes US is carried out by Bogatyi in [3].
Ultrametric spaces are closely related to trees. Recall that a partially ordered set is a
tree T = (T,<T) when the set {s ∈ T : s <T t} is <T-well-ordered for every element
t ∈ T . When every element of T has finitely many <T-predecessors, the height of
t ∈ T is ht(t) = |{s ∈ T : s <T t}|. When n < ht(t), t(n) denotes the unique
predecessor of t with height n. The m-th level of T is T(m) = {t ∈ T : ht(t) = m}.
The height of T, ht(T), is the least m such that T(m) = ∅. When |T(0)| = 1,
we say that T is rooted. When T is rooted and s, t ∈ T, ∆(s, t) is defined by
∆(s, t) = max{n < ht(T) : s(n) = t(n)}.

The link between ultrametric spaces and trees is the following: Consider a tree
T of finite height, rooted, and where the set Tmax of all <T-maximal elements of
T coincides with the top level set of T. Given such a tree of height n and a finite
sequence a0 > a1 > . . . > an−1 of strictly positive real numbers, there is a natural
ultrametric space structure on Tmax if the distance d is defined by:

d(s, t) = a∆(s,t).

Conversely, given any ultrametric space X with finitely many distances given
by a0 > a1 > . . . > an−1, there is a tree T of height n such that X is the natural
ultrametric space associated to T and (ai)i<n. The elements of T are the ordered
pairs of the form 〈m, b〉 where m ∈ n and b = {y ∈ X : dX(y, x) 6 am} for some
x ∈ X. The structural ordering <T is given by:

〈l, b〉 <T 〈m, c〉 iff (l < m and b ⊂ c).

This connection with trees induces very particular structural properties. For
example:

Theorem 3 (Shkarin [75]). Let X be a finite ultrametric space. Then there is
n ∈ ω such that X embeds into any Banach space Y with dimY > n.

This theorem is the last member of a long chain of results concerning isometric
embeddings of ultrametric spaces. For example, Vestfrid and Timan proved in [86]
(see also [87]) that any separable ultrametric space is isometric to a subspace of ℓ2
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(a result also obtained independently by Lemin in [44]). Vestfrid showed later that
the result is also true if one replaces ℓ2 by ℓ1 or c0. Fichet proved that any finite
ultrametric space embeds isometrically into ℓp for every p ∈ [1,∞], and Vestfrid
generalized this fact for a wider class of spaces. For more references, see [75]. We
do not present the proof of Shkarin’s theorem here but Fichet’s result, which we
proved before being aware of the reference, can be obtained easily by combinatorial
means:

Theorem 4 (Fichet [14]). Let X be a finite ultrametric space. Then there is
n ∈ ω such that X embeds into any Banach space ℓp with p ∈ [1,∞] and dimY > n.

Proof. Let X be a finite ultrametric space with distances given by a0 > a1 >
. . . > an−1 and let T be the finite tree of height n such that X is the natural
ultrametric space on Tmax associated to (ai)i<n. We show that n = |T| works. For

p = ∞, this is a simple consequence of the fact that ℓ
|X|
∞ embeds any metric space

of size |X| so we concentrate on the case p ∈ [1,∞[. Let (et)t∈T be a subfamily of
the canonical basis of ℓp of size |T|. For t ∈ T, let

µ(t) =

{
(

ap
n−1

2 )
1
p if ht(t) = n − 1

(
ap

i

2 −
ap

i+1

2 )
1
p if ht(t) = i < n − 1

Observe then that for every x, y ∈ X:

dX(x, y) =




∑

t6Tx

t­Ty

µ(t)p +
∑

t6Ty

t­Tx

µ(t)p




1
p

.

Now, let ϕ : X −→ ℓp be defined by:

ϕ(x) =
∑

t6Tx

µ(t)et.

We claim that ϕ is an isometry. Indeed, let x, y ∈ X. Then:
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‖ϕ(y) − ϕ(x)‖p
=

∥∥∥∥∥∥

∑

t6Ty

µ(t)et −
∑

t6Tx

µ(t)et

∥∥∥∥∥∥

p

=

∥∥∥∥∥∥∥∥∥

∑

t6Ty

t6Tx

µ(t)et +
∑

t6Ty

t­Tx

µ(t)et −
∑

t6Tx

t6Ty

µ(t)et −
∑

t6Tx

t­Ty

µ(t)et

∥∥∥∥∥∥∥∥∥

p

=

∥∥∥∥∥∥∥∥∥

∑

t6Ty

t­Tx

µ(t)et −
∑

t6Tx

t­Ty

µ(t)et

∥∥∥∥∥∥∥∥∥

p

=
∑

t6Tx

t­Ty

µ(t)p +
∑

t6Ty

t­Tx

µ(t)p

= dX(x, y)p.

¤

2.3. Amalgamation classes associated to a distance set. The previous
examples are in fact particular instances of a more general case. Indeed, for S ⊂
]0,+∞[, let MS denote the class of finite metric spaces with distances in S. We
saw that when S is an initial segment of a set which is closed under finite sums,
the path distance allows to prove that MS is an amalgamation class. But are there
some other cases? For example, can one characterize those subsets S ⊂]0,+∞[ for
which MS is an amalgamation class? The answer is yes, thanks to a result due to
Delhommé, Laflamme, Pouzet and Sauer in [9].

Definition 2. Let S ⊂]0,+∞[. S satisfies the 4-values condition when for
every s0, s1, s

′
0, s

′
1 ∈ S, if there is t ∈ S such that:

|s0 − s1| 6 t 6 s0 + s1, |s′0 − s′1| 6 t 6 s′0 + s′1,

then there is u ∈ S such that:

|s0 − s′0| 6 u 6 s0 + s′0, |s1 − s′1| 6 u 6 s1 + s′1.

Theorem 5 (Delhommé-Laflamme-Pouzet-Sauer [9]). Let S ⊂]0,+∞[. TFAE:

i) MS has the strong amalgamation property.

ii) MS has the amalgamation property.

iii) S satisfies the 4-values condition.

Proof. i) → ii) is obvious. For ii)→ iii), fix s0, s1, s
′
0, s

′
1 ∈ S such that there

is t ∈ S with:

|s0 − s1| 6 t 6 s0 + s1, |s′0 − s′1| 6 t 6 s′0 + s′1.

Now, consider Y := {x0, x1, y} and Y ′ := {x0, x1, y
′} and observe that one can

define metrics dY and dY′

on Y and Y ′ by setting:
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{
dY(x0, y) = s0, dY(x1, y) = s1, dY(x0, x1) = t

dY′

(x0, y
′) = s′0, dY′

(x1, y
′) = s′1, dY′

(x0, x
′
1) = t

Therefore, one can obtain a metric space Z be obtained by amalgamation of Y

and Y′ along {x0, x1}. Then u = dZ(y, y′) is as required.
For iii) → i), consider Y0 and Y1 in MS such that dY0 and dY1 agree on

Y0 ∩Y1. We wish to show that dY0 ∪ dY1 can be extended to a metric d on Y0 ∪Y1.
We start with the case where |Y0 r Y1| = |Y1 r Y0| = 1. Set:

Y0 r Y1 = {y0}, Y1 r Y0 = {y1}.

The only thing we have to do is to define d on (y0, y1). Equivalently, we need
to find u ∈ S such that for every y ∈ Y0 ∩ Y1:

|dY0(y0, y) − dY1(y, y1)| 6 u 6 dY0(y0, y) + dY1(y, y1).

To achieve that, observe that m 6 m′, where m and m′ are defined by:
{

m = max{|dY0(y0, y) − dY1(y, y1)| : y ∈ Y0 ∩ Y1}
m′ = min{dY0(y0, y) + dY1(y, y1) : y ∈ Y0 ∩ Y1}

Pick witnesses y and y′ for m and m′ respectively. Then, set:
{

s0 = dY0(y0, y), s1 = dY1(y1, y)
s′0 = dY0(y0, y

′), s′1 = dY1(y1, y
′)

Set also:

t = dY0(y, y′) = dY1(y, y′).

Then observe that:

|s0 − s1| 6 t 6 s0 + s1, |s′0 − s′1| 6 t 6 s′0 + s′1.

So by the 4-values condition, we obtain the required u ∈ S. We now proceed
by induction on the size of the symmetric difference Y0∆Y1. The previous proof
covers the case |Y0∆Y1| 6 2. For the induction step, let Y = Y0 ∪ Y1. The cases
where Y0 and Y1 are ⊂-comparable are obvious, so we may assume that Y0 and
Y1 are ⊂-incomparable. For i < 2, pick yi ∈ Yi r Yi−1. By induction assumption,
obtain a common extension Z0 of Y0 and Y1 r {y1} on Y r {y1}. By induction
assumption again, obtain another common extension Z1 of Z0 r {y0} and Y1 on
Y r {y0}. Now, observe that Y = Z0 ∪ Z1 and that |Z0∆Z1| = 2, so we can apply
the previous case to Z0 and Z1 to obtain the required extension. ¤

There are some cases where the 4-values condition is easily seen to hold. For
example, if S ⊂ [a, 2a] for some strictly positive a, then S satisfies the 4-values
condition. It is also the case when S is closed under sums or absolute value of
the difference, which explains why it is possible to restrict distances to Q or ω.
On the other hand, 4-values condition is also preserved when passing to an initial
segment. This allows distance sets of the form Q∩]0, r] or ω∩]0, r]. Finally, when
S ⊂ {sn : n ∈ Z} with sn < 1

2 sn+1, S also satisfes the 4-values condition as all
the elements in MS are actually ultrametric. The 4-values condition consequently
covers a wide variety of examples.

For our purposes, the 4-values condition is relevent because it allows to produce
numerous examples of Fräıssé classes whose elements can be relatively well handled
from a combinatorial point of view. To illustrate that fact, the rest of this section
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will be devoted to a full classification of the classes MS when |S| 6 3. This means
that we are going to establish a list of classes such that any class MS with |S| 6 3
will be in some sense isomorphic to some class in the list. More precisely, for finite
subsets S = {s0, . . . , sm}<, T = {t0, . . . , tn}< of ]0,+∞[, define S ∼ T when m = n
and:

∀i, j, k < m, si 6 sj + sk ↔ ti 6 tj + tk.

Observe that when S ∼ T , S satisfies the 4-value condition iff T does and in
this case, S and T essentially provide the same amalgamation class of finite metric
spaces as any X ∈ MS is isomorphic to X′ = (X, dX′

) ∈ MT where:

∀x, y ∈ X, dX(x, y) = si ↔ dX′

(x, y) = ti.

Now, clearly, for a given cardinality m there are only finitely many ∼-classes,
so we can find a finite collection Sm of finite subsets of ]0,∞[ of size m such that
for every T of size m satisfying the 4-value condition, there is S ∈ Sm such that
T ∼ S. Here, we provide such examples of Sm for m 6 3. The reader will find a
complete list in Appendix A for m = 4. This is the largest value we considered as
there are already more than 70 ∼-equivalence classes on which to test the 4-values
condition. In the sequel, S = {si : i < |S|}< is a subset of ]0,+∞[.

The case |S| = 1 is trivial so we start with |S| = 2. There are then only 2
∼-classes corresponding to the following chains of inequalities:

(1) s0 < s1 6 2s0.
(2) s0 < 2s0 < s1.

(1) is satisfied by the set {1, 2}. The 4-values condition is satisfied because
{1, 2} is an initial segment of ω which is closed under sums. M{1,2} is consequently
a Fräıssé class. Observe that elements of M{1,2} can be seen as graphs where an
edge correspond to a distance 1 and a non-edge to a distance 2.

(2) is satisfied by the set {1, 3}, which is also a particular case since 1 < 1
2 · 3.

Thus, elements of M{1,3} are ultrametric and M{1,3} is a Fräıssé class.
For |S| = 3, there are more cases to consider. To list all the relevent chains

of inequalities involving elements of S, we first write all the relevent inequalities
involving s0, s1 and their sums. We obtain:

(1) s0 < s1 6 2s0 < s0 + s1 < s1.
(2) s0 < 2s0 < s1 < s0 + s1 < 2s1.

We now look at how s2 may be inserted in these chains. For (1), there are 4
possibilities:

(1a) s0 < s1 < s2 6 2s0 < s0 + s1 < 2s1 {2, 3, 4}
(1b) s0 < s1 6 2s0 < s2 6 s0 + s1 < 2s1 {1, 2, 3}
(1c) s0 < s1 6 2s0 < s0 + s1 < s2 6 2s1 {1, 2, 4}
(1d) s0 < s1 6 2s0 < s0 + s1 < 2s1 < s2 {1, 2, 5}

We now have to check if the 4-values condition holds for all the corresponding
sets.

(1a) {2, 3, 4} is an initial segment of ω ∩ [2,+∞[ which is closed under sums.
Thus, {2, 3, 4} satisfies the 4-values condition. Since there are no non-metric trian-
gles, the elements of M{2,3,4} can be seen as the edge-labelled graphs with labels
in {2, 3, 4}.
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(1b) {1, 2, 3} is also an initial segment of a set which is closed under sums, so
it satisfies the 4-values condition. Note that here, there is a non-metric triangle
(corresponding to the distances 1, 1, 3).

(1c) {1, 2, 4} does not satisfy the 4-values condition because of the quadruple
(1, 1, 2, 4). M{1,2,4} is consequently not a Fräıssé class.

(1d) Finally, {1, 2, 5} satisfies the 4-values condition but this has to be done by
hand (see Appendix A for the details). Simply observe that for X ∈ M{1,2,5}, the

relation ≈ defined by x ≈ y ↔ dX(x, y) 6 2 is an equivalence relation. ≈-classes
can be thought as finite graphs with distance 5 between them. An example is given
in figure 1.

Figure 1. An element of M{1,2,5}.

For (2), there are only 3 cases:

(2a) s0 < 2s0 < s1 < s2 6 s0 + s1 < 2s1 {1, 3, 4}
(2b) s0 < 2s0 < s1 < s0 + s1 < s2 6 2s1 {1, 3, 6}
(2c) s0 < 2s0 < s1 < s0 + s1 < 2s1 < s2 {1, 3, 7}

(2a) The 4-values condition holds for {1, 3, 4} but as for {1, 2, 5}, this has to be
proved by hand. For X ∈ M{1,3,4}, the relation ≈ defined by x ≈ y ↔ dX(x, y) = 1
is an equivalence relation. Between the elements of two disjoint balls of radius 1,
the distance can be arbitrarily 3 or 4. An example is given in figure 2.

Figure 2. An element of M{1,3,4}.

(2b) {1, 3, 6} also satisfies the 4-values condition (to be checked by hand). For
X ∈ M{1,3,6}, the relation ≈ defined by x ≈ y ↔ dX(x, y) = 1 is an equivalence
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relation. Between the elements of two disjoint balls of radius 1, the distance is
either always 3 or always 6. An example is provided in figure 3.

Figure 3. An element of M{1,3,6}.

(2c) Elements of M{1,3,7} are ultrametric. It follows that this class is a Fräıssé
class.

2.4. Euclidean spaces. Another way to generate amalgamation classes of
finite metric spaces is to fix an ultrahomogeneous metric space and to consider the
class of its finite subspaces. For example, if n ∈ ω is fixed, the Euclidean space En of
dimension n is ultrahomogeneous (in fact it is even more than ultrahomogeneous as
every isometry between any two metric subspaces can be extended to an isometry of
En onto itself). Thus, the class of finite metric subspaces of En is an amalgamation
class. However, because of the bound on the dimension, such a class will never
have the strong amalgamation property. This requirement being unavoidable for
our purposes, it will consequently be preferable for us to work with a subclass
of the class H consisting of all the finite affinely independent metric subspaces of
the Hilbert space ℓ2. It is easy to see that H does have the strong amalgamation
property. As it is the case for M, H is not a Fräıssé class because it is not countable
but this can be fixed by restricting the set of distances. For S subset of ]0,+∞[,
let HS denote the class of all elements of H with distances in S.

Proposition 6. Let S be dense subset of ]0,+∞[. Then HS has the strong
amalgamation property.

Proof. Following the strategy applied in the previous section, it is enough to
show that strong amalgamation holds for Y0 and Y1 along X where

|Y0 r Y1| = |Y1 r Y0| = 1 and Yi = X ∪ {yi} for each i < 2.

Set n = |X|. See Rn−1 as a hyperplane in Rn and X as a metric subspace of
Rn−1. Fix ỹ0 ∈ Rn such that for every x ∈ X,
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‖ỹ0 − x‖ = dY0(y0, x).

Now, it should be clear that in Rn there are exactly two points y such that

∀x ∈ X, ‖ỹ − x‖ = dY1(y1, x).

Call them ỹmin
1 and ỹmax

1 , with
∥∥ỹmin

1 − ỹ0

∥∥ 6 ‖ỹmax
1 − ỹ0‖. Observe that ỹmin

1

and ỹmax
1 are distinct and symmetric with respect to Rn−1. Thus,

∥∥ỹmin
1 − ỹ0

∥∥ < ‖ỹmax
1 − ỹ0‖.

Indeed, if the distances were the same, ỹ0 would be in Rn−1, which is not
the case. Now, notice that if we work in Rn+1, we can use rotations to obtain a
continuous curve ϕ : [0, 1] −→ Rn+1 such that ϕ(0) = ỹmin

1 , ϕ(1) = ỹmax
1 and

∀t ∈ [0, 1] ∀x ∈ X ‖ϕ(t) − x‖ = dY1(y1, x).

Define δ : [0, 1] −→ R by:

δ(t) = ‖ϕ(t) − ỹ0‖

By the intermediate value theorem, δ takes a value in S for some t0 ∈]0, 1[.
Then X ∪ {ỹ0} ∪ {ϕ(t0)} is the required amalgam. ¤

Observe that a slight modification of the argument allows to show that another
class is Fräıssé and has strong amalgamation: For X ∈ H, let X∗ be the edge
labelled graph obtained from X by adjoining an extra point ∗ to X such that
λX∗

(x, ∗) = 1 for every x ∈ X. The class SS is then defined by the class of all
elements X in HS such that X∗ is also in HS . Equivalently, SS is the class of all
elements of HS which embed isometrically into the unit sphere S∞ of ℓ2 with the
property that {0ℓ2} ∪ X is affinely independent.

Proposition 7. Let S be dense subset of ]0,+∞[. Then SS has the strong
amalgamation property.

Proof. In the previous proof, simply replace X, Y0 and Y1 by X∗, Y∗
0 and

Y∗
1 respectively. ¤

Remark. It is known that ℓ2 is the only separable infinite dimensional ul-
trahomogeneous Banach space. In fact, much more is known. For example, any
separable infinite dimensional Banach space X where every isometry between finite
subsets of size at most 3 can be extended to an isometry of X onto itself has to be
an inner product space. The problem of whether 3 can be replaced by 2 is the con-
tent of the famous Banach-Mazur rotation problem. Mazur first proved in [47] that
the answer is positive in the finite dimensional case. PeÃlczynski and Rolewicz later
showed in [69] that the answer is no if one allows X to be non-separable. . . But in
the infinite dimensional separable case, the problem remains open, though several
partial results seem to suggest that the answer should be positive (see for example
[6], [73], or b[5] for a survey).
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2.5. Other examples. There are certainly many more examples of amalga-
mation classes of finite metric spaces than the ones we mentionned already but
as the classification of Fräıssé classes of finite metric spaces is not known, we will
stop our inventory here and refer the interested reader to [4] by Bogatyi or [88] by
Watson. Let us simply mention a very last example, dealing with the class Q of
finite metric spaces satisfying the ultrametric quadrangle inequality . Those are the
spaces X for which given any x0, x1, x2, x3 ∈ X,

dX(x0, x1) + dX(x2, x3) 6 max{dX(x0, x2) + dX(x1, x3), d
X(x0, x3) + dX(x1, x2)}.

It turns out that Q is in fact exactly the class of all finite metric spaces which
can be embedded into R-trees. R-trees are defined as follows. For a metric space Y

and y0, y1 ∈ Y, a geodesic segment in Y joining y0 to y1 is an isometric embedding
g : [0, dY(y0, y1)] −→ Y with g(0) = y0 and g(dY(y0, y1)) = y1. Now, a metric space
T is a real tree if i) For any two distinct points of T, there is a geodesic segment
joining them, and ii) If two geodesic segments have exactly one common boundary
point, then their union is also a geodesic segment. Using this characterization of Q,
one can show that Q (resp. QQ, the class obtained by restricting the distances to
Q) is an amalgamation class. R-trees play an important role in so-called asymptotic
geometry, but the purpose for which we introduce them here is that they will provide
an easy counterexample in section 4 of the present chapter.

3. Urysohn spaces.

Recall that according to Fräıssé theorem, there is a particular countable ul-
trahomogeneous metric space X attached to any Fräıssé class K of metric spaces:
The Urysohn space associated to K. The purpose of this section is to provide some
information about the Urysohn spaces associated to the classes we introduced pre-
viously. However, before we start, we should mention that in most of the cases, we
will not be able to provide a concrete description of the space. This phenomenon is
explained by a general result due to Pouzet and Roux [70] concerning Fräıssé limits
and implying that in some sense, given a countable language L and a Fräıssé class
K of L-structures, the Fräıssé limit is generic among all the countable L-structures
whose age is included in K. More precisely, when the set of all the countable L-
structures whose age is included in K is equipped with the relevent topology, the
set of all countable L-structures isomorphic to Flim(K) is a dense Gδ. This fact is
to be compared with the well-known result of Erdős and Rényi [13] according to
which a random countable graph (obtained by choosing edges independently with
probability 1/2 from a given countable vertex set) is isomorphic to the Rado graph
with probability 1.

3.1. The spaces UQ and SQ. The first Urysohn space we present is the
space UQ associated to the class MQ. UQ is called the rational Urysohn space
and deserves a particular treatment. It can indeed be seen as the initial step in
the construction of Urysohn to provide the very first example of universal separable
metric space. The original construction is quite technical but in essence contains the
same ideas as the ones that were used some thirty years later in the work of Fräıssé.
The first observation is that to build UQ, it is enough to construct a countable
metric space Y with rational distances such that given any finite subspace X of Y

and every Katĕtov map f over X with rational values, there is y ∈ Y realizing f
over X. Indeed, for such a Y, ultrahomogeneity is guaranteed by the equivalence
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provided in proposition 2. On the other hand, the set of all finite subspaces is
clearly included in MQ. Consequently, to prove that the finite subspaces of Y

is exactly MQ, it suffices to show that every element of MQ appears as a finite
subspace of Y. This is done via the following induction argument: For X ∈ MQ,

fix an enumeration {xn : n < |X|}. Then construct an isometric copy X̃ of X inside
Y by starting with an arbitrary x̃0 in Y and by choosing x̃n+1 in the induction
step realizing the Katĕtov map fn+1 defined over {x̃0, . . . x̃n} by:

fn+1(x̃k) = dX(xn+1, xk).

The construction of Y can be achieved via some kind of exhaustion argument:
Start with a singleton X0. Then, if Xn is constructed for some n ∈ ω, Xn+1 is
build so as to be countable with rational distances, including Xn, and such that
given every finite subspace X ⊂ Xn and every Katĕtov map f over X with rational
values, there is y ∈ Xn+1 realizing f over X. Then Y =

⋃
n∈ω Xn is as required. An

elegant way to perform the induction step is to follow the method due to Katĕtov
[39]. It is based on the observation that if X is a finite subspace of Xn and f is
Katĕtov over X, then there is a natural way to extend f to kXn

(f) on Xn: Consider
the strong amalgam Z of X∪ {f} and Xn along X obtained using the path metric
presented in proposition 3. Then kXn

(f) is defined by:

∀y ∈ Xn, kXn
(f)(y) = dZ(f, y) (= min{dXn(y, x) + f(x) : x ∈ X}).

Then, let:

Xn+1 =
⋃

{kXn
(f) : f ∈ E(X),X ⊂ Y,X finite}.

Equipped with the sup norm, Xn+1 becomes a metric space Xn+1. The map
x 7→ dXn+1(x, ·) then defines an isometric embedding of Xn into Xn+1. Xn can
consequently be thought as a subspace of Xn+1 and one can check that Xn+1 has
the required property with respect to Xn.

A bounded variation of UQ is obtained by considering the class MQ∩]0,1]. The
corresponding Urysohn space, SQ, is the rational Urysohn sphere. It will receive a
particular interest when we deal with indivisibility.

3.2. Ultrametric Urysohn spaces. We saw that when S ⊂]0,+∞[, the class
US of finite ultrametric spaces with distances in S is an amalgamation class. So
when S is at most countable, the class US is a Fräıssé class whose corresponding
Urysohn space is denoted BS . A particular feature of this space is that unlike most
of the other Urysohn spaces, it admits a very explicit description. Namely, BS

can be seen as the set of all finitely supported elements of QS equipped with the
distance dBS defined by:

dBS (x, y) = max{s ∈ S : x(s) 6= y(s)}

In fact, using the tree representation, one can show that the family (BS)S

when S ⊂]0,+∞[ is at most countable entirely exhausts the class of countable
ultrahomogeneous ultrametric spaces:

Proposition 8. Let X be a countable ultrahomogeneous ultrametric space.
Then there is a countable S ⊂]0,+∞[ such that X = BS.

The spaces BS are well-known. They appear together with a study of the classes
US in the article [3] by Bogatyi but were already studied from a model-theoretic
point of view by Delon in [8] and mentionned by Poizat in [68]. More recently,
they appeared in [20] by Gao and Kechris for the study of the isometry relation
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between ultrahomogeneous discrete Polish ultrametric spaces from a descriptive
set-theoretic angle. They are also central in [9] where homogeneity in ultrametric
spaces is studied with details. In this thesis, these spaces will play a crucial role
when we come to the study of big Ramsey degrees as they represent the only case
where a complete analysis can be carried out.

Remark. A consequence of the previous proposition is the fact that we men-
tionned in section 2.2 stating that the classes US are the only Fräıssé classes of
finite ultrametric spaces with strong amalgamation property.

3.3. Urysohn spaces associated to a distance set. Similarly, we saw that
when S ⊂]0,+∞[ satisfies the 4-values condition, the class MS of finite metric
spaces with distances in S is a strong amalgamation class. So when S is at most
countable, the class MS is a Fräıssé class whose corresponding Urysohn space is
the Urysohn space with distances in S, denoted US . UQ is a particular case of
such space. Similarly, we may simply take S = ω∩]0,+∞[ to obtain the integral
Urysohn space Uω. For S = {1, 2, . . . ,m}, one obtains a bounded version of Uω

denoted Um. Observe that for m = 2, Um is really the path distance metric space
associated to the Rado graph. Finally, the 4-values condition allows to consider sets
S with a more intricate structure than those considered so far. The corresponding
Urysohn spaces may then be quite involved combinatorial objects, even when S is
finite. In this subsection, we provide a description of US when |S| 6 3. For |S| = 4,
some cases will be described in the Appendix in order to study their indivisibility
properties, a notion introduced in the third chapter of this thesis. In what follows,
the numbering corresponds to the one introduced in subsection 2.3.

For |S| = 1, there is essentially only one Urysohn space: U1, introduced above.
For |S| = 2, there are two distances sets, {1, 2} and {1, 3}. We just mentionned

the case S = {1, 2} where the Urysohn space is the Rado graph. As for S = {1, 3},
it was also already presented: U{1,3} is ultrametric and is the in fact one of the
spaces BS described in the previous section.

For |S| = 3, there are six distances sets.
(1a) S = {2, 3, 4}. Elements of M{2,3,4} are essentially edge-labelled graphs

with labels in {2, 3, 4}. Consequently, U{2,3,4} can be seen as a complete version of
the Rado graph with three kinds of edges.

(1b) S = {1, 2, 3}. This case was mentionned above, U{1,2,3} is the space we
denoted U3. However, like U2 and unlike the other spaces Um for m > 4, U3 can
be described quite simply. This fact, noticed by Sauer, will be crucial in the third
chapter. The main observation is that the only non metric triangle with labels
in {1, 2, 3} corresponds to the labels 1, 1, 3. It follows that U3 can be encoded
by the countable ultrahomogeneous edge-labelled graph with edges in {1, 3} and
forbidding the complete triangle with labels 1, 1, 3. The distance is then defined as
the standard shortest-path distance. Equivalently, the distance between two points
connected by an edge is the label of the edge while the distance between two points
which are not connected is 2.

(1d) S = {1, 2, 5}. The structure of the elements of M{1,2,5} allows to see that
U{1,2,5} is composed of countably many disjoint copies of U2, and that the distance
between any two points not in the same copy of U2 is always 5. Figure 4 is an
attempt to represent this space.
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Figure 4. U{1,2,5}.

(2a) S = {1, 3, 4}. Here, U{1,3,4} can be seen as some kind of random partite
graph with several kinds of edges. It is composed of countably many disjoint copies
of U1 and points belonging to different copies of U1 can be randomly at distance
3 or distance 4 apart. Figure 5 is an attempt to represent this space.

Figure 5. U{1,3,4}.

(2b) S = {1, 3, 6}. U{1,3,6} is also composed of countably many disjoint copies
of U1 but the distance between points in two fixed disjoint copies of U1 does not
vary as in the previous case, and is either 3 or 6. A convenient way to construct
U{1,3,6} is to obtain it from U2 after having multiplied all the distances by 3 and
blown the points up to copies of U1. Figure 6 is an attempt to represent this space.

(2c) For S = {1, 3, 7}, US is again ultrametric, equal to BS .
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Figure 6. U{1,3,6}.

3.4. Countable Hilbertian Urysohn spaces. We saw in section 2.4 that
when S is a dense subset of ]0,+∞[, the class HS of all finite affinely independent
metric subspaces of ℓ2 is a strong amalgamation class. It follows that the Urysohn
space HS associated to HS is a countable metric subspace of ℓ2 whose elements
are all affinely independent. Similarly, the class SS is a strong amalgamation class
(recall that SS is the class of all finite metric spaces X with distances in S and which
embed isometrically into the unit sphere S∞ of ℓ2 with the property that {0ℓ2}∪X

is affinely independent). Thus, the associated Urysohn space SS is a countable
metric subspace of S∞ whose elements are affinely independent. Without being
able to go any deeper into the description of those objects, we will see that these
spaces have very familiar completions.

4. Complete separable ultrahomogeneous metric spaces.

It follows from Fräıssé’s theorem that the countable ultrahomogeneous metric
spaces are exactly the Fräıssé limits of the Fräıssé classes of finite metric spaces.
However, many interesting ultrahomogeneous metric are not countable but only
separable. We may consequently wonder if there are links between separable ul-
trahomogeneous metric spaces and countable ones. For example, is the completion
of an ultrahomogeneous metric space still ultrahomogeneous? And if so, does ev-
ery complete separable ultrahomogeneous metric space appear as the completion of
a countable ultrahomogeneous metric space? The following theorem provides the
answer to the first question.

Proposition 9 (Folklore). There is an ultrahomogeneous metric space whose
completion is not ultrahomogeneous.

Proof. Consider the space Y defined as follows: Elements of Y are maps
y : [0, ρy[−→ ω with ρy ∈]0,+∞[ and {t ∈ [0, ρy[: y(t) 6= 0} ⊂ {ti : i ∈ ω} for some
converging strictly increasing sequence (ti)i∈ω of elements in ]0,+∞[. For x, y ∈ Y,
set:

t(x, y) = min{s ∈ Q : x(s) 6= y(s)}.
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Then, let:

dY(x, y) = (ρx − t(x, y)) + (ρy − t(x, y)).

One can check that Y is complete separable but not ultrahomogeneous. In
fact, it is not even point-homogeneous: For y ∈ Y, if ρy ∈ Q, then Y r {y}
has infininitely many connected components. On the other hand, if ρy /∈ Q, then
Yr{y} has only two connected components. We now prove the theorem by showing
that Y admits an ultrahomogeneous dense subspace: Consider the subspace X of
Y corresponding to the elements x of Y such that ρx ∈]0,+∞[∩Q and for which
{t ∈ [0, ρx[: x(t) 6= 0} is finite. One can check that X is countable and dense in
Y. But one can also check that X is ultrahomogeneous by verifying that it is the
Fräıssé limit of the class QQ presented in subsection 2.5. ¤

The first question above consequently has a negative answer. The purpose of
what follows is to show that it is not the case for the second question and that
essentially, every complete separable ultrahomogeneous metric space is obtained by
completing a countable one.

Theorem 6. Every complete separable ultrahomogeneous metric space Y in-
cludes a countable ultrahomogeneous dense metric subspace.

Proof. We provide two proofs. The first one is standard: Let X0 ⊂ Y be
countable and dense. We construct X countable and ultrahomogeneous such that
X0 ⊂ X ⊂ Y. We proceed by induction. Assuming that Xn ⊂ Y countable has
been constructed, get Xn+1 as follows: Consider F the set of all finite subspaces of
Xn. For F ∈ F , consider the set En(F) of all Katĕtov maps f over F with values in
the set {dY(x, y) : x, y ∈ Xn} and such that F∪ {f} embeds into Y. Observe that
Xn being countable, so are {dY(x, y) : x, y ∈ Xn} and En(F). Then, for F ∈ F , f ∈

En(F), fix yf
F ∈ Y realizing f over F. Finally, let Xn+1 be the subspace of Y with

underlying set Xn ∪ {yf
F : F ∈ F , f ∈ En(F)}. After ω steps, set X =

⋃
n∈ω Xn.

X is clearly a countable dense subspace of Y. It is ultrahomogeneous thanks to
the equivalent formulation of ultrahomogeneity provided in proposition 2. Indeed,
according to our construction, for every finite subspace F ⊂ X and every Katĕtov
map f over F, if F ∪ {f} embeds into X, then there is y ∈ X realizing f over F.
This finishes the first proof.

The second proof was pointed out by Stevo Todorcevic and involves logical
methods. Fix a countable elementary submodel M ≺ Hθ for some large enough θ
and such that Y, dY ∈ M . Let X = M ∩ Y. We claim that X has the required
property. First, observe that X is dense inside Y since by the elementarity of M ,
there is a countable D ∈ M (and therefore D ⊂ M) which is a dense subset of Y.
For ultrahomogeneity, let F ⊂ X be finite and let f be a Katĕtov map over F such
that F ∪ {f} embeds into X. Observe that f ∈ M . Indeed, dom(f) ∈ M . On the

other hand, let F̃ ∪ {y} ⊂ X be isometric to F ∪ {f} via an isometry ϕ. Then for
every x ∈ F, dY(ϕ(x), y) ∈ M . But dY(ϕ(x), y) = f(x). Thus, ran(f) ∈ M . It
follows that f is an element of M . Now, by ultrahomogeneity of Y, there is y in Y

realizing f over F. So by elementarity, there is x in X realizing f over F. ¤

4.1. The spaces U and S. The metric completion U of UQ, is known as
the Urysohn space. It was constructed by Urysohn in 1925 and is, up to isometry,
the unique complete separable ultrahomogeneous metric space which contains all
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finite metric spaces. It follows that U is also universal for the class of all separable
metric spaces. This property deserves to be mentionned as historically, U is the
first example of separable metric space with this property. However, after Banach
and Mazur showed that C([0, 1]) was also an example of such a space, the Urysohn
space virtually disappeared and it is only after the work of Katĕtov [39] that U

became again subject to research, in particular thanks to the work of Uspenskij,
Vershik, Gromov, Bogatyi and Pestov. Today, a complete presentation of the result
about the Urysohn space would require much more than what we can provide in the
present thesis but the reader will find an attempt of survey in the appendix. Let us
simply mention the following result due to Pestov [65]: Whenever iso(U) (equipped
with the pointwise convergence topology) acts continuously on a compact space,
the action admits a fixed point. We will have the opportunity to come back to this
theorem but we would like to mention that its reformulation in terms of structural
Ramsey theory by Kechris, Pestov and Todorcevic [40] is the starting point of this
thesis.

The metric completion of SQ is the Urysohn sphere S. Up to isometry, S is the
unique complete separable ultrahomogeneous metric space which contains all finite
metric spaces with diameter less or equal to 1. S is pretty much as well understood
as U is in the sense that most of the proofs working for U can be transposed for
S. Later in this thesis, we will however study a property called oscillation stability
and with respect to which U and S behave differently.

4.2. Complete separable ultrahomogeneous ultrametric spaces. We

now turn to a description of B̂S , the completion of BS . Note that if 0 is not an

accumulation point for S, then BS is discrete and B̂S = BS . Hence, in what
follows, we will assume that 0 is an accumulation point for S.

Proposition 10. The completion B̂S of the ultrametric space BS is the ultra-
metric space with underlying set the set of all elements x ∈ QS for which there is a
strictly decreasing sequence (si)i∈ω of elements of S converging to 0 such that x is
supported by a subset of {si : i ∈ ω}. The distance is given by

dB̂S (x, y) = min{s ∈ S : ∀t ∈ S(s < t → x(t) = y(t))}.

Proof. We first check that BS is dense in B̂S . Let x ∈ B̂S be associated
to the sequence (si)i∈ω. For n ∈ ω, let xn ∈ BS be defined by xn(s) = x(s) if

s > sn+1 and by xn(s) = 0 otherwise. Then dB̂S (xn, x) 6 sn+1 −→ 0, and the

sequence (xn)n∈ω converges to x. To prove that B̂S is complete, let (xn)n∈ω be a

Cauchy sequence in B̂S . Observe first that given any s ∈ S, the sequence xn(s) is
eventually constant. Call x(s) the corresponding constant value.

Claim. x ∈ B̂S.

x is obviously in QS . To show that x is supported by a subset of {si : i ∈ ω}
for some strictly decreasing sequence (si)i∈ω of elements of S converging to 0, it
is enough to show that given any s ∈ S, there are t < s < r ∈ S such that x is
null on S∩]t, s[ and on S∩]s, r[. To do that, fix t′ < s in S, and take N ∈ ω such

that ∀q > p > N , dB̂S (xq, xp) < t′. xN being in B̂S , there are t and r in S such
that t′ < t < s < r and xN is null on S∩]t, s[ and on S∩]s, r[. We claim that x
agrees with xN on S∩]t′,+∞[, hence is null on S∩]t, s[ and on S∩]s, r[. Indeed, let

n > N . Then dB̂S (xn, xN ) < t′ < s so xn and xN agree on S∩]t′,+∞[. Hence, for
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every u ∈ S∩]t′,+∞[, the sequence (xn(u))n>N is constant and by definition of x
we have x(u) = xn(u). The claim is proved.

Claim. The sequence (xn)n∈ω converges to x.

Let ε > 0. Fix s ∈ S∩]0, ε[ and N ∈ ω such that ∀q > p > N , dB̂S (xq, xp) < ε.
Then, as in the previous claim, for every n > N , xn and xN (and hence x) agree

on S∩]s,+∞[. Thus, dB̂S (xn, x) 6 s < ε. ¤

Observe that when S = {1/(n+1) : n ∈ ω}, the metric completion of BS is the
Baire space denoted N , a space of particular importance in descriptive set theory.

Observe also that in the ultrametric setting, there is no analog of the Urysohn
space U: Passing to the completion does not provide a complete separable ul-
trahomogeneous ultrametric space which is universal for the class of all separable
ultrametric spaces. There is a good reason behind this:

Proposition 11. An ultrametric on a separable space takes at most countably
many values.

Proof. Let X be ultrametric and separable with X0 ⊂ X countable and dense.
Then S := {dX(x, y) : x 6= y ∈ X0} is countable and X0 embeds into BS , so the

completion X̂0 of X0 embeds into B̂S . But X ⊂ X̂0. It follows that X embeds into

B̂S and that only countably many distances appear in X. ¤

Finally, observe that thanks to the proposition in section 3.2, we obtain:

Proposition 12. Let X be a complete separable ultrahomogeneous ultrametric

space. Then there is a countable S ⊂]0,+∞[ such that X = B̂S.

4.3. ℓ2 and S∞. The purpose of this section is to show how ℓ2 or S∞ are
connected to the spaces introduced in section 3.4. We mentionned indeed that for
a countable dense S ⊂]0,+∞[, HS is a Fräıssé class whose corresponding Urysohn
space HS is a countable metric subspace of ℓ2 but that the structure of this space
was quite mysterious. The goal of this section is to prove that it is not the case for
the completion:

Proposition 13. Let S ⊂]0,+∞[ be countable and dense. Then the metric
completion of HS is ℓ2.

Proof. It is enough to prove that if HS is seen as a metric subspace of ℓ2
containing 0ℓ2 , then its closure X := HS is a vector subspace of ℓ2. Indeed, X will
then be an infinite dimensional closed subspace of ℓ2, hence isometric to ℓ2 itself.

We first show that if x ∈ X and λ ∈ R, then λx ∈ X. By continuity of y 7→ λy,
it suffices to concentrate on the case where x ∈ HS . Without loss of generality,
we may assume x 6= 0ℓ2 and λ 6= 0. Fix ε > 0. Using the fact that S is dense
in ]0,+∞[, we can pick y ∈ ℓ2 such that {0, x, y} ∈ HS and ‖y − λx‖ < ε. By
ultrahomogeneity, find y′ ∈ HS such that {0ℓ2 , x, y′} and {0ℓ2 , x, y} are isometric
via the obvious map. Then an easy computation shows that ‖y′ − λx‖ < ε. Hence,
λx ∈ X.

Next, we show that X is closed under sums. As previously, continuity of +
allows to restrict ourselves to the case where x, y ∈ HS r {0ℓ2}. Fix ε > 0. As
previously, find z ∈ ℓ2 be such that ‖(x + y) − z‖ < ε and {0ℓ2 , x, y, z} ∈ HS .
By ultrahomogeneity, find z′ ∈ ℓ2 such that {0ℓ2 , x, y, z′} and {0ℓ2 , x, y, z} are
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isometric via the obvious map. Then again, an elementary computation shows that
‖(x + y) − z′‖ < ε. It follows that (x + y) ∈ X.

¤

A similar fact holds for SS :

Proposition 14. Let S ⊂]0,+∞[ be countable and dense. Then the metric
completion of SS is S∞.

Proof. See SS as a metric subspace of S∞. Since elements of SS ∪ {0ℓ2} are
affinely independent, it is enough to prove that Y := SS is such that {λy : λ ∈
R, y ∈ Y} is a vector subspace of ℓ2. Indeed, Y will then be the intersection of an
infinite dimensional closed subspace of ℓ2 with S∞, hence isometric to S∞ itself. To
do that, it suffices to show that 1

‖x+y‖ (x+y) ∈ Y whenever x, y ∈ Y and x+y 6= 0ℓ2 .

By continuity of ‖.‖ and of +, it is enough to consider the case where x, y ∈ SS .

Fix ε > 0. Find z ∈ S∞ such that {x, y, z} ∈ SS and
∥∥∥ 1
‖x+y‖ (x + y) − z

∥∥∥ < ε. By

ultrahomogeneity, find z′ ∈ ℓ2 such that {0ℓ2 , x, y, z′} and {0ℓ2 , x, y, z} are isometric

via the obvious map. Then one can check that
∥∥∥ 1
‖x+y‖ (x + y) − z′

∥∥∥ < ε. It follows

that 1
‖x+y‖ (x + y) ∈ Y. ¤



CHAPTER 2

Ramsey calculus, Ramsey degrees and universal
minimal flows.

1. Fundamentals of Ramsey theory and topological dynamics.

In this section, we introduce the basic concepts related to structural Ramsey
theory and present the recent results due to Kechris, Pestov and Todorcevic estab-
lishing a bridge between structural Ramsey theory and topological dynamics. As
for the introductory section in Chapter 1, our main reference here is [40].

Recall that for L-structures X,Z in a fixed relational language L,
(
Z

X

)
denotes

the set of all copies of X inside Z. For k, l ∈ ω r {0} and a triple X,Y,Z of

L-structures, Z −→ (Y)
X

k,l is an abbreviation for the statement:

For any χ :
(
Z

X

)
−→ k there is Ỹ ∈

(
Z

Y

)
such that |χ′′

(
Ỹ

X

)
| 6 l.

When l = 1, this is simply written Z −→ (Y)
X

k . Given a class K of L-structures
and X ∈ K, suppose that there is l ∈ ω r {0} such that for any Y ∈ K, and any
k ∈ ω r {0}, there exists Z ∈ K such that:

Z −→ (Y)
X

k,l.

Then we write tK(X) for the least such number and call it the Ramsey degree
of X in K. These concepts are closely related to purely Ramsey-theoretic results
for classes of order structures: Let L∗ be a relational signature with a distinguished
binary relation symbol <. An order L∗-structure is an L∗-structure X in which the
interpretation <X of < is a linear ordering. If K∗ is a class of L∗-structures, K∗ is
an order class when every element of K∗ is an order L∗-structure.

Now, given a class K∗ of finite ordered L∗-structures, say that K∗ has the
Ramsey property (or is a Ramsey class) when for every (X, <X), (Y, <Y) ∈ K∗ and
every k ∈ ω r {0}, there is (Z, <Z) ∈ K∗ such that:

(Z, <Z) −→ (Y, <Y)
(X,<X)

k

Observe that k can be replaced by 2 without any loss of generality. On the
other hand, given L∗ as above, let L be the signature L∗ r {<}. Then given an
order class K∗, let K be the class of L-structures defined by:

K = {X : (X, <X) ∈ K∗}.

Say that K∗ is reasonable when for every X,Y ∈ K, every embedding π :
X −→ Y and every linear ordering ≺ on X such that (X,≺) ∈ K∗, there is a linear
ordering ≺′ on Y such that π is also an embedding from (X,≺) into (Y,≺′). For
our purposes, reasonability is relevent because of the following proposition:

Proposition 15. Let L∗ ⊃ {<} be a relational signature, K∗ a Fräıssé order
class in L∗, L = L∗ r {<} and K = {X : (X, <X) ∈ K∗}. Let (F, <F) = Flim(K∗).
Then the following are equivalent:

51
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i) K is a Fräıssé class and F = Flim(K).

ii) K∗ is reasonable.

Finally, say that K∗ has the ordering property when given X ∈ K, there is
Y ∈ K such that given any linear orderings <X and <Y on X and Y, if (X, <X) ,
(Y, <Y) ∈ K∗, then (Y, <Y) contains an isomorphic copy of (X, <X). Equivalently,
for every (X, <X) ∈ K∗, there is Y ∈ K such that for every linear ordering <Y on
Y:

(Y, <Y) ∈ K∗ →
(
(X, <X) embeds into (Y, <Y)

)
.

Though not exactly stated in the present terminology, the study of the exis-
tence and the computation of Ramsey degrees have traditionally been completed
for several classes of finite structures such as graphs, hypergraphs and set systems
(Nešetřil-Rödl [58], [60]), vector spaces (Graham-Leeb-Rothschild [25]), Boolean
algebras (Graham-Rothschild [26]), trees (Fouché [15]). . . For more information
about structural Ramsey theory, the reader should refer to [54], to [27] or [55]. As
for orderings, it seems that their role was identified quite early (see for example
[42] or [57]). This information, together with many other references about Ramsey
and ordering properties, can be found in [55]. On the other hand, metric spaces do
not seem to have attracted much consideration, except maybe when the Ramsey
exponent is small (namely, |X| = 1 or 2, see for example Nešetřil-Rödl [59]). It is
only very recently that the first Ramsey class of finite metric spaces was discovered.
This result, due to Nešetřil and which will be presented in the next section, was mo-
tivated by the connection we present now between Ramsey theory and topological
dynamics.

Let G be a topological group and X a compact Hausdorff space. A G-flow is a
continous action G×X −→ X. Sometimes, when the action is understood, the flow
is simply referred to as X. Given a G-flow X, a nonempty compact G-invariant
subset Y ⊂ X defines a subflow by restricting the action to Y . X is minimal
when X itself is the only nonempty compact G-invariant set (or equivalently, the
orbit of any point of X is dense in X). Using Zorn’s lemma, it can be shown that
every G-flow contains a minimal subflow. Now, given two G-flows X and Y , a
homomorphism from X to Y is a continuous map π : X −→ Y such that for every
x ∈ X and g ∈ G, π(g · x) = g · π(x). An isomorphism from X to Y is a bijective
homomorphism from X to Y . The following fact is a standard result in topological
dynamics (a proof can be found in [1]):

Theorem 7. Let G be a topological group. Then there is a minimal G-flow
M(G) such that for any minimal G-flow X there is a surjective homomorphism
π : M(G) −→ X. Moreover, up to isomorphism, M(G) is uniquely determined by
these properties.

M(G) is called the universal minimal flow of G. When G is locally compact but
non compact, M(G) is a highly non-constructive object. Observe also that when
M(G) is reduced to a single point, G has a strong fixed point property: Whenever
G acts continuously on a compact Hausdorff space X, there is a point x ∈ X such
that g · x = x for every g ∈ G. G is then said to be extremely amenable.

Theorem 8 (Kechris-Pestov-Todorcevic [40]). Let L∗ ⊃ {<} be a relational
signature, K∗ a Fräıssé order class in L∗ and (F, <F) = Flim(K∗). Then the
following are equivalent:
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(1) Aut(F, <F) is extremely amenable.
(2) K∗ is a Ramsey class.

Let XK∗ be the set of all K∗-admissible orderings, that is linear orderings ≺
on F such that for every finite substructure X of F, (X,≺↾ X) ∈ K∗. Seen as
a subspace of the product F × F via characteristic functions, the set of all linear
orderings on F can be thought as a compact space. As a subspace of that latter
space, XK∗ is consequently compact and acted on continuously by Aut(F) via the
action Aut(F)×XK∗ −→ XK∗ , (g,<) 7−→<g defined by x <g y iff g−1(x) < g−1(y).
In other words, XK∗ can be seen as a compact Aut(F)-flow. The following theorem
links minimality of this Aut(F)-flow with the ordering property:

Theorem 9 (Kechris-Pestov-Todorcevic [40]). Let L∗ ⊃ {<} be a relational
signature, L = L∗ r {<}, K∗ a reasonable Fräıssé order class in L∗, and K = {X :
(X, <X) ∈ K∗}. Let (F, <F) = Flim(K∗) and XK∗ be the set of all K∗-admissible
orderings. Then the following are equivalent:

(1) XK∗ is a minimal Aut(F)-flow.
(2) K∗ satisfies the ordering property.

Additionally, when Ramsey property and ordering property are satisfied, even
more can be said about XK∗ :

Theorem 10 (Kechris-Pestov-Todorcevic [40]). Let L∗ ⊃ {<} be a relational
signature, L = L∗ r {<}, K∗ a reasonable Fräıssé order class in L∗, and K = {X :
(X, <X) ∈ K∗}. Let (F, <F) = Flim(K∗) and XK∗ be the set of all K∗-admissible
orderings. Assume finally that K∗ has the Ramsey and the ordering properties.
Then the universal minimal flow of Aut(F) is XK∗ . In particular, it is metrizable.

Note that this result is not the first one providing a realization of the univer-
sal minimal flow of an automorphism group by a space of linear orderings: This
approach was first adopted by Glasner and Weiss in [21] in order to compute the
universal minimal flow of the permutation group of the integers. The paper [40]
continues this trend and provides various other examples. Let us also mention
that before [40], the pioneering example by Pestov in [64], followed by the one by
Glasner and Weiss, constituted some of the very few known cases of non extremely
amenable topological groups for which the universal minimal flow was known to be
metrizable, a property that M(Aut(F)) shares.

Here, we will be using these theorems to derive results about groups of the
form iso(X) where X is the Urysohn space or the completion of the Urysohn space
attached to a Fräıssé class of finite metric spaces.

This chapter is organized as follows: In section 2, we present several Ramsey
classes of finite ordered metric spaces. We start with Nešetřil theorem about finite
ordered metric spaces, follow with finite convexly ordered ultrametric spaces and
finish with results about finite metrically ordered metric spaces. In section 3, we
turn to the study of the ordering property and show that all the aforementionned
classes satisfy it. We then apply those results to derive several applications. In
section 4, we compute Ramsey degrees while in section 5, we use the connection
from [40] to deduce applications in topological dynamics. We finish in section 6
with some concluding remarks and open problems in metric Ramsey calculus.
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2. Finite metric Ramsey theorems.

2.1. Finite ordered metric spaces and Nešetřil’s theorem. In what fol-
lows, M< denotes the class of all finite ordered metric spaces. The purpose of this
section is to present the proof of the following result, due to Nešetřil.

Theorem 11 (Nešetřil [56]). M< is a Ramsey class.

The main idea is to perform a variation of the so-called partite construction.
This technique is now well-known as its introduction by Nešetřil and Rödl in the
late seventies allowed to solve the long-standing conjecture stating that for every
n ∈ ω, the class of all finite ordered Kn-free graphs is a Ramsey class.

2.1.1. Free amalgamation of edge-labelled graphs. The first step is to see finite
ordered metric spaces as finite ordered edge-labelled graphs. The result of Nešetřil
and Rödl mentionned above can easily be transposed in the context of edge-labelled
graphs (note that the partite construction originally appeared in [58], but the
interested reader may refer to [54] for the details): If one fixes a label set L, the
class of all finite ordered edge-labelled graphs with labels in L is a Ramsey class.
It follows that if (X, <X) and (Y, <Y) are finite ordered metric spaces, then there
is an edge-labelled graph (Z, <Z) with labels in the distance set of Y such that:

(Z, <Z) −→ (Y, <Y)
(X,<X)

2

The problem here of course is that nothing guarantees that Z is a metric space.
The purpose of what follows is to show that this requirement can be fullfilled.

Before going into the details of the proof, observe that ordered edge-labelled
graphs satisfy the following version of amalgamation property, called free amalga-
mation property : For ordered edge-labelled graphs (X, <X), (Y0, <

Y0), (Y1, <
Y1)

and embeddings f0 : (X, <X) −→ (Y0, <
Y0), f1 : (X, <X) −→ (Y1, <

Y1), there
is a third ordered edge-labelled graph (Z, <Z) and embeddings g0 : (Y0, <

Y0) −→
(Z, <Z), g1 : (Y1, <

Y1) −→ (Z, <Z) such that:

i) Z = g′′0Y0 ∪ g′′1Y1.

ii) g0 ◦ f0 = g1 ◦ f1, g′′0 f ′′
0 X = g′′0Y0 ∩ g′′1Y1(= g′′0 f ′′

0 X).

iii) dom(λZ) =
⋃

i<2 g′′i dom(λYi) = {(gi(x), gi(y)) : (x, y) ∈ dom(λYi)}.

Such a (Z, <Z) is called a free amalgam of (Y0, <
Y0) and (Y1, <

Y1) over
(X, <X). One may think of (Z, <Z) as obtained by gluing (Y0, <

Y0) and (Y1, <
Y1)

along a prescribed copy of (X, <X). In what follows, free amalgamation will be
used to perform the following kind of operation: If an ordered edge-labelled graph
(X, <X) embeds into (Y0, <

Y0) and (Y1, <
Y1), then we may obtain a new ordered

edge-labelled graph by extending every copy of (X, <X) in (Y1, <
Y1) to a copy of

(Y0, <
Y0) and by adding no more connections than necessary.

2.1.2. Hales-Jewett theorem. Another ingredient in Nešetřil’s proof is the well-
known Hales-Jewett theorem coming from combinatorics. A direct combinatorial
proof can be found in [27], while a topological proof based on ultrafilters can be
found in [78]. Let Γ be a set (the alphabet), v /∈ Γ (the variable), and N a strictly
positive integer. A word of length N in the alphabet Γ is a map from N to Γ. A
variable word in the alphabet Γ is a word in the alphabet Γ ∪ {v} taking the value
v at least once. If x is a variable word and γ ∈ Γ, γ̂(x) denotes the word obtained
from x by replacing all the occurences of v by γ and 〈x〉 denotes the set defined by
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〈x〉 = {γ̂(x) : γ ∈ Γ}.

The set of all words of length N in the alphabet Γ is denoted W (Γ, N), whereas
the set of all variable words in the alphabet Γ is denoted V (Γ, N).

Theorem 12 (Hales-Jewett [29]). Let Γ be a finite alphabet and k ∈ ω strictly
positive. Then there exists N ∈ ω such that whenever W (Γ, N) is partitioned into
k many pieces, there is a variable word x of length N in the alphabet Γ such that
〈x〉 lies in one part of the partition.

2.1.3. Liftings. With the previous concepts in mind, we can turn to the first
part of Nešetřil’s proof. It involves an analog of partite graphs called here liftings.
For an edge-labelled graph (X, <X) and subsets A and B of X, write A <X B when

∀a ∈ A ∀b ∈ B a <X b.

Definition 3. Let (X, <X) with X = {xα : α ∈ |X|}<X be an ordered edge-
labelled graph. A lifting of (X, <X) is an ordered edge-labelled graph (Y, <Y) with
Y =

⋃
α<|X| Yα such that:

i) For every α < α′ < |X|, Yα <Y Yα′ .

ii) For every α, α′ < |X|, yα ∈ Yα, yα′ ∈ Yα′ ,

{
(yα, yα′) ∈ dom(λY)
yα 6= yα′

→





α 6= α′

(xα, xα′) ∈ dom(λX)
λY(yα, yα′) = λX(xα, xα′)

Lemma 1. Let (X, <X) be a finite ordered metric space and (Y, <Y) be a lifting
of (X, <X). Then there is a lifting (Z, <Z) of (X, <X) such that:

(Z, <Z) −→ (Y, <Y)
(X,<X)

2

Proof. Observe first that since dX is defined everywhere on X × X, xα ∈ Yα

for every α < |X|. More generally, if (x̃α)α<|X| is a strictly increasing enumeration

of some copy (X̃, <X̃) of (X, <X) in (Y, <Y), then x̃α is in ∈ Yα for every α < |X|.
Moreover, if α 6= α′ < |X|, then

λY(x̃α, x̃α′) = λX(xα, xα′).

In other words, the label of an edge in a copy of (X, <X) in (Y, <Y) depends
only on the parts where the extremities of this edge live. Now, let N ∈ ω be large

enough so that Hales-Jewett theorem holds for the colorings of the set
(
Y,<Y

X,<X

)N

with two colors.
For α < |X|, set Zα = Y N

α . Now, define Z =
⋃

α<|X| Zα. Z is a subset of Y N

and is consequently linearly ordered by the restriction <Z of the lexicographical
ordering on Y N . Note that this ordering respects the parts of the decomposition
Z =

⋃
α<|X| Zα ie:

Z0 <Z . . . <Z Z|X|−1

For the edges, proceed as follows: For α, α′ < |X|, zα ∈ Zα, zα′ ∈ Zα′ , set

(zα, zα′) ∈ dom(λZ) ↔
(
∀n < N (zα(n), zα′(n)) ∈ dom(λY)

)
.

In this case, set
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λZ(zα, zα′) = λX(xα, xα′).

This situation is illustrated in figure 1.

Figure 1. An edge {zα, zα′} with label λX(xα, xα′).

It should be clear that the resulting ordered edge-labelled graph (Z, <Z) is a

lifting of (X, <X). We are now going to show that (Z, <Z) −→ (Y, <Y)
(X,<X)

2 . For
n < N , let πn denote the n-th projection from Z onto Y, ie:

∀z ∈ Z πn(z) = z(n).

First, observe that copies of (X, <X) are related to their projections. The proof
is easy and left to the reader:

Claim. Let (X̃, <X̃) ⊂ (Z, <Z). Then:

(X̃, <X̃) ∈
(
Z,<Z

X,<X

)
↔

(
∀n < N π′′

n(X̃, <X̃) ∈
(
Y,<Y

X,<X

))
.

This implies that we can identify
(
Z,<Z

X,<X

)
with

(
Y,<Y

X,<X

)N
, the set of words of

length N in the alphabet
(
Y,<Y

X,<X

)
.

Claim. Let U be a variable word of length N in the alphabet
(
Y,<Y

X,<X

)
. Then

(Y, <Y) embeds into
⋃

〈U〉.
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Proof. Let V ⊂ N be the set where the variable lives and let F = N r V .
For n ∈ F , the nth letter of U is a copy {xn

α : α < |X|}<Y of (X, <X) in (Y, <Y).
Now, for y ∈ Y with y ∈ Yα, let e(y) be the element of Zα defined by (see figure
2):

e(y)(n) =

{
xn

α if n ∈ F
y if n ∈ V

Figure 2. e(y) for y ∈ Yα.

Then e is an embedding from (Y, <Y) into (Z, <Z) and its direct image (Ỹ, <Ỹ)
satisfies:

(
Ỹ,<Ỹ

X,<X

)
⊂

⋃
〈U〉.

¤

We can now complete the proof of the lemma. Let χ :
(
Z,<Z

X,<X

)
−→ 2. Thanks to

the first claim, χ transfers to a coloring χ̂ :
(
Y,<Y

X,<X

)N
−→ 2. Now, by Hales-Jewett

theorem for
(
Y,<Y

X,<X

)N
and two colors, there is a variable word U of length N in

the alphabet
(
Y,<Y

X,<X

)
so that 〈U〉 is monochromatic. This means that

(⋃
〈U〉

X,<X

)
is

monochromatic and by the second claim there is a copy (Ỹ, <Ỹ) of (Y, <Y) inside

(Z, <Z) satisfying
(
Ỹ,<Ỹ

X,<X

)
⊂

⋃
〈U〉. ¤
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2.1.4. Partite construction. We start with the following definition, linked to
the notion of metric path introduced in Chapter 1. Recall that for an edge-labelled
graph (Z, <Z), x, y ∈ Z, and n ∈ ω strictly positive, a path from x to y of size n as
is a finite sequence γ = (zi)i<n such that z0 = x, zn−1 = y and for every i < n− 1,

(zi, zi+1) ∈ dom(λZ).

For x, y in Z, P (x, y) is the set of all paths from x to y. If γ = (zi)i<n is in
P (x, y), ‖γ‖ is defined as:

‖γ‖ =

n−1∑

i=0

δ(zi, zi+1)

On the other hand, for r ∈ R, ‖γ‖6r is defined as:

‖γ‖6r = min(‖γ‖, r).

Definition 4. Let l ∈ ω be strictly positive and X be an edge-labelled graph.
X is l-metric when for every (x, y) ∈ dom(λX) and every path γ from x to y of size
less or equal to l:

λX(x, y) 6 ‖γ‖.

It follows that X is metric when X is l-metric for every strictly positive l ∈ ω.
Observe that this concept is only relevent when λX is not defined everywhere on
X × X.

Proposition 16. Let l ∈ ω. Let Z be a finite l-metric edge-labelled graph with
label set LZ such that l ∈ ω is such that max LZ 6 l.min LZ. Then λZ can be
extended to a metric on Z.

Proof. Using the notation introduced in Chapter 1, simply check that dZ is
as required, where

∀x, y ∈ Z dZ(x, y) = inf{‖γ‖6max LZ
: γ ∈ P (x, y)}.

¤

Now, let DY be the distance set of Y. To show that there is a finite ordered

metric space (Z, <Z) such that (Z, <Z) −→ (Y, <Y)
(X,<X)

2 , it suffices to show that
for every strictly positive l ∈ ω, the statement Hl holds, where

Hl : ”There is an l-metric edge-labelled graph (Z, <Z) with LZ ⊂ DY such that

(Z, <Z) −→ (Y, <Y)
(X,<X)

2 ”.

Proof. We proceed by induction on l > 0. For l = 1, there is no restriction
on Z, so H1 is true according to the general theory of Nešetřil and Rödl. Assume
now that for a given l > 0, Hl holds with witness (Z, <Z) = {zα : α < |Z|}.
Let (P0, <

P0) be the lifting of (Z, <Z) obtained as follows: The underlying set P0

is obtained by taking a disjoint union of copies of (Y, <Y), one for each copy of
(Y, <Y) in (Z, <Z):

P0 =
⋃

β∈(Z,<Z

Y,<Y)
Yβ .

For the parts of P0, given β ∈
(
Z,<Z

Y,<Y

)
, let πβ

0 be the order preserving isometry

from Yβ onto β and let
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π0 =
⋃
{πβ

0 : β ∈
(
Z,<Z

Y,<Y

)
}.

Then define

P0α = ←−π0{zα}.

The construction of P0 is illustrated in figure 3.

Figure 3. Construction of P0.

Finally, for the linear ordering <P0 , observe that the linear ordering <Z already
allows to compare points which are not in a same part. By ordering the elements
within a same part arbitrarily, one consequently obtains a linear ordering which
respects the parts of the decomposition of P0. The resulting lifting of (Z, <Z) is
(P0, <

P0).
Observe that P0 is metric, and consequently (l + 1)-metric. Now, write

(
Z,<Z

X,<X

)
= {X1 . . .Xq}.

Inductively, we are now going to construct liftings (P1, <
P1),. . ., (Pq, <

Pq ) of
(Z, <Z), each of them (l + 1)-metric, and such that:

(Pq, <
Pq ) −→ (Y, <Y)

(X,<X)

2

To construct (P1, <
P1), consider ←−π0X1. The ordered edge-labelled graph in-

duced on this set, call it (V1, <
V1), is a lifting of (X, <X). Apply lemma 1 to get

a lifting (W1, <
W1) of (X, <X) such that

(W1, <
W1) −→ (V1, <

V1)
(X,<X)

2 .

By strong amalgamation property, extend every element of
(
W1,<W1

V1,<V1

)
to a copy

of (P0, <
P0). The resulting finite edge-labelled graph is P1. Its construction is

illustrated in figure 4.
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Figure 4. Construction of P1 from P0.

It should be clear that associated to P1 is a natural projection π1 from P1 onto
Z. This allows to define the parts and the ordering on P1.

Claim. P1 is (l + 1)-metric.

Proof. Let x0, . . . , xl+1 be a path in P1 such that (x0, xl+1) ∈ dom(λP1). We
want

λP1(x0, xl+1) 6

l∑

k=0

λP1(xk, xk+1).

Or equivalently

λZ(π1(x0), π1(xl+1)) 6

l∑

k=0

λZ(π1(xk), π1(xk+1)).

Since Z is l-metric, the only case to consider is when the only connections
occuring between elements of the projection of the path are (π1(x0), π1(xl+1)) and
those of the form (π1(xk), π1(xk+1)) where k 6 l. Since both W1 and P0 are
(l + 1)-metric, it is enough to show that the path either stays in W1, or stays
in a fixed copy P of P0. So suppose that the path leaves W1. Using a circular
permutation, we may reenumerate the path such that x0 ∈ P r W1. It follows
then that xl+1 is also in P. Now, assume now that for some k, xk /∈ P. Find
a < j < b such that xa, xb ∈ W1. Observe that because π′′

1W1 is a copy of X in Z

(namely X1), π1(xa) and π1(xb) are connected. But this is a contradiction: Since
x0 /∈ W1, π1(x0) /∈ {π1(xa), π1(xb)} and so (π1(xa), π1(xb)) 6= (π1(x0), π1(xl+1)).
On the other hand a + 1 6= b. ¤

In general, to build (Pi+1, <
Pi+1) from (Pi, <

Pi), simply repeat the same pro-
cedure: Consider ←−πiXi+1. The ordered edge-labelled graph (Vi+1, <

Vi+1) induced
on this set is a lifting of (X, <X). Apply lemma 1 to get a lifting (Wi+1, <

Wi+1)
of (X, <X) such that

(Wi+1, <
Wi+1) −→ (Vi+1, <Vi+1

)
(X,<X)

2
.
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By strong amalgamation property, extend every element of
(Wi+1,<Wi+1

Vi+1,<Vi+1

)
to a

copy of (Pi, <
Pi). The resulting finite edge-labelled graph is Pi+1. The parts and

the ordering on Pi+1 are defined according to the natural projection πi+1 from Pi+1

onto Z. Pi+1 then becomes a lifting of Z, and one can show that it is (l+1)-metric.
We now finish the proof by showing that

(Pq, <
Pq ) −→ (Y, <Y)

(X,<X)

2 .

For the sake of clarity, we temporarily drop mention of the linear orderings
attached to the edge-labelled graphs under consideration.

Let χ :
(
Pq

X

)
−→ 2. We want to find Ỹ ∈

(
Pq

Y

)
such that

(
Ỹ

X

)
is monochromatic.

χ induces a coloring χ :
(
Wq

X

)
−→ 2 and by construction:

Wq −→ (Vq)
X

2

Thus, there is a copy Ṽq of Vq in Wq so that
(
Ṽq

X

)
is monochromatic. Now,

when constructing Pq from Pq−1, Ṽq was extended to P̃q−1 ∈
(

Pq

Pq−1

)
for which χ

induces χ :
(
P̃q−1

X

)
−→ 2. Notice that Ṽq is exactly P̃q−1 ∩

←−−πq−1Xq, the subgraph

of P̃q−1 projecting in Z onto Xq.
(
Ṽq

X

)
being monochromatic, every two copies of

X in Ṽq projecting in Z onto Xq have the same color.

Now, consider the natural copy W̃q−1 of Wq−1 in P̃q−1. χ induces a 2-coloring

of
(
W̃q−1

X

)
and Wq−1 was chosen so that

Wq−1 −→ (Vq−1)
X

2 .

Therefore, there is a copy Ṽq−1 of Vq−1 in W̃q−1 so that
(
Ṽq−1

X

)
is monochro-

matic. Now, knowing how Pq−1 is constructed from Pq−2, observe that Ṽq−1

extends to a copy P̃q−2 of Pq−2 inside P̃q−1, with respect to which χ induces:

χ :
(
P̃q−2

X

)
−→ 2.

As previously, Ṽq−1 is exactly P̃q−2 ∩ ←−−πq−2Xq−1, the subgraph of P̃q−2 pro-

jecting onto Xq−2.
(
Ṽq−1

X

)
being monochromatic, every two copies of X in Ṽq−1

projecting in Z onto Xq−2 have the same color. Keep in mind that thanks to the

companion result at the previous step, the same holds for those copies of X in Ṽq−1

projecting in Z onto Xq.

By repeating this argument q times, we end up with a copy P̃0 of P0 in Pq so

that given any k ∈ {1, . . . , q}, any two copies of X in P̃0 projecting in Z onto Xk

have the same color. From χ, we can consequently construct a coloring

χ̂ : {X1, . . . ,Xq} =
(
Z

X

)
−→ 2.

The color χ̂(Xk) is simply the common color of all the copies of X in P̃0

projecting onto Xk. Now, remember that Z was chosen so as to satisfy:

Z −→ (Y)
X

2 .
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Thus, there is β ∈
(
Z

Y

)
such that

(
β
X

)
is χ̂-monochromatic. At the level of P̃0

and χ, this means that all the copies of X in P̃0 projecting in Z onto a subset

of β have the same color. But by construction, the subgraph of P̃0 projecting
onto β includes a copy Y, namely Yβ . Yβ is consequently an element of

(
Pq

Y

)
for

which
(
Yβ

X

)
is monochromatic. This proves the claim, and finishes the proof of the

theorem. ¤

In fact, the previous proof allows to prove a slightly more general result. For
S ⊂]0,+∞[, let M<

S denote the class of all finite ordered metric spaces with dis-
tances in S.

Theorem 13 (Nešetřil [56]). Let T ⊂]0,+∞[ be closed under sums and S be
an initial segment of T . Then M<

S has the Ramsey property.

It follows that in particular, the classes M<
Q , M<

Q∩]0,r] with r > 0 in Q, M<
ω and

M<
ω∩]0,m] with m > 0 in ω are Ramsey. Let us mention here that the assumption

on the behavior of S with respect to sums is not superficial. We will see in the next
two subsections that when this requirement is not fullfilled, the situation is pretty
different.

2.2. Finite convexly ordered ultrametric spaces. The purpose of this
subsection is to provide another example of a Ramsey class. Let X be an ultrametric
space. Call a linear ordering < on X convex when all the metric balls of X are
<-convex. For S ⊂]0,+∞[, let Uc<

S denote the class of all finite convexly ordered
ultrametric spaces with distances in S.

Theorem 14. Let S ⊂]0,+∞[. Then Uc<
S has the Ramsey property.

To prove this result, we first need some notations for the partition calculus on
trees. Given trees (T, <T

lex) and (S, <S
lex) as described in chapter 1, section 2.2, say

that they are isomorphic when there is a bijection between them which preserves
both the structural and the lexicographical orderings. Also, given a tree (U, <U

lex),
set: (U,<U

lex

T,<T

lex

)
= {(T̃, <T̃

lex) : T̃ ⊂ U ∧ (T̃, <T̃
lex) ∼= (T, <T

lex)}.

Now, if (S, <S
lex), (T, <T

lex) and (U, <U
lex) are trees, the symbol

(U, <U
lex) −→ (T, <T

lex)
(S,<S

lex)

k

abbreviates the statement:

For any χ :
(U,<U

lex

S,<S

lex

)
−→ k there is (T̃, <T̃

lex) ∈
(U,<U

lex

T,<T

lex

)
, i < k, such that:

χ′′
(T̃,<T̃

lex

S,<S

lex

)
= {i}.

Lemma 2. Given an integer k ∈ ω r {0}, a finite tree (T, <T

lex) and a subtree
(S, <S

lex) of (T, <T

lex) such that ht(T) = ht(S), there is a finite tree (U, <U

lex) such

that ht(U) = ht(T) and (U, <U

lex) −→ (T, <T

lex)
(S,<S

lex)

k .

A natural way to proceed is by induction on the height ht(T) of T. Actually,
it is so natural that after having done so, we realized that this method had already
been used in [15] where the exact same result is obtained! Consequently, we choose
to provide a different proof which uses the notion of ultrafilter-tree.
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Proof. For the sake of clarity, we sometimes not mention the lexicographical
orderings explicitly. For example, T stands for (T, <T

lex). So let T ⊂ S be some
finite trees of height n and set U be equal to ω6n. U is naturally lexicographically

ordered. To prove the theorem, we only need to prove that U −→ (T)
S

k . Indeed,
even though U is not finite, a standard compactness argument can take us to the
finite.

Let {si : i < |S|}<S

lex
be a strictly <S

lex-increasing enumeration of the elements

of S and define f : |S| −→ |S| such that:

i) f(0) = 0.

ii) sf(i) is the immediate <S-predecessor of si in S if i > 0.

Similarly, define g : |T| −→ |T| for T = {tj : j < |T|}<T

lex
. Let also

S = {X ⊂ U : X < S} (resp. T = {X ⊂ U : X < T}).

where X < S means that X is a <U
lex-initial segment of some S̃ ∼= S. S (resp.

T ) has a natural tree structure with respect to <U
lex-initial segment, has height |S|

(resp. |T|) and

S max =
(
U

S

)
(resp. T max =

(
U

T

)
).

Now, for x in U, let ISU(x) denote the set of immediate <U-successors of x in
U. Then observe that if X ∈ S r S max is enumerated as {xi : i < |X|}<U

lex
and

u ∈ U such that X <U
lex u (that is x <U

lex u for every x ∈ X), then:

X ∪ {u} ∈ S iff u ∈ ISU(xf(|X|))

Consequently, X,X ′ ∈ S r S max can be simultaneously extended in S iff:

xf(|X|) = x′
f(|X′|).

Now, for u ∈ U, let Wu be a non-principal ultrafilter on ISU(u) and for every
X ∈ S r S max, let VX = Wxf(|X|)

. Hence, VX is an ultrafilter on the set of all

elements u in U which can be used to extend X in S . Let S be a ~V-subtree of S ,
that is a subtree such that for every X ∈ S r S max:

{u ∈ U : X <U
lex u ∧ X ∪ {u} ∈ S} ∈ VX .

Claim. There is T̃ ∈
(
U

T

)
such that

(
T̃

S

)
⊂ Smax.

For X ∈ S, let:

UX = {u ∈ U : X <U
lex u ∧ X ∪ {u} ∈ S}.

T̃ is constructed inductively. Start with τ0 = ∅. Generally, suppose that
τ0 <U

lex . . . <U
lex τj were constructed such that:

∀X ⊂ {τ0, . . . , τj}, X ∈ S → X ∈ S.

Consider now the family I defined by:

I = {I ⊂ {0, . . . , j} : {ti : i ∈ I} ∪ {tj+1} < S}

For I ∈ I let:

XI = {τi : i ∈ I}.
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(XI)I∈I is consequently the family of all elements of S which need to be
extended with τj+1. In other words, we have to choose τj+1 ∈ U such that:

i) {τ0, . . . , τj+1} ∈ T .

ii) XI ∪ {τj+1} ∈ S for every I ∈ I.

To do that, notice that for any u ∈ U which satisfies τj <U
lex u, we have:

{τ0, . . . , τj , u} ∈ T iff u ∈ ISU(τg(j+1)).

Now, for any such u and any I ∈ I, we have XI ∪ {u} ∈ S ie u allows a
simultaneous extension of all the elements of {XI : I ∈ I}. Consequently, VXI

does
not depend on I ∈ I. Let V be the corresponding common value. For every I ∈ I,
we have UXI

∈ V so one can pick τj+1 such that:

τj <U
lex τj+1 ∈

⋂

I∈I

UXI

Then τj+1 is as required. Indeed, on the one hand, because τj+1 ∈ ISU(τg(j+1)):

{τ0, . . . , τj+1} ∈ T .

On the other hand, since τj+1 ∈ UXI
,

XI ∪ {τj+1} ∈ S for every I ∈ I.

At the end of the construction, we are left with T̃ := {τj : j ∈ |T|} ∈ T such
that:

(
T̃

S

)
∈ Smax

The claim is proved. The proof of the lemma will be complete if we prove the
following claim:

Claim. Given any k ∈ ω r {0} and any χ :
(
U

S

)
−→ k, there is a ~V-subtree S

of S such that Smax is χ-monochromatic.

We proceed by induction on the height of S . The case ht(S ) = 0 is trivial so
suppose that the claim holds for ht(S ) = n and consider the case ht(S ) = n + 1.
Define a coloring Λ : S (n) −→ k by:

Λ(X) = ε iff {u ∈ U : X ∪ {u} ∈ S (n + 1) ∧ χ(X ∪ {u}) = ε} ∈ VX .

By induction hypothesis, we can find a ~V-subtree Sn of S ↾ n (the tree formed
by the n first levels of S ) such that Smax

n is Λ-monochromatic with color ε0. This
means that for every X ∈ Sn, the set VX is in VX , where VX is defined by:

VX := {u ∈ U : X ∪ {u} ∈ S (n + 1) ∧ χ(X ∪ {u}) = ε0}

Now, let:

S = Sn ∪ {X ∪ {u} : X ∈ Sn ∧ u ∈ VX}.

Then S is a ~V-subtree of S and Smax is χ-monochromatic. ¤
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We now show how to obtain theorem 14 from lemma 2. Fix S ⊂]0,+∞[,
let (X, <X), (Y, <Y) ∈ Uc<

S and consider (T, <T
lex) associated to (Y, <Y). As

presented in section 2, (Y, <Y) can be seen as (Tmax, <T
lex). Now, notice that

there is a subtree (S, <S
lex) of (T, <T

lex) such that for every (X̃, <X̃) ∈
(
Tmax,<T

lex

X,<X

)
,

the downward <T-closure of X̃ is isomorphic to (S, <S
lex). Conversely, for any

(S̃, <S̃
lex) in

(T,<T

lex

S,<S

lex

)
, (S̃

max
, <S̃

lex) is in
(
Tmax,<T

lex

X,<X

)
. These facts allow us to build

(Z, <Z) such that:

(Z, <Z) −→ (Y, <Y)
(X,<X)

k

Indeed, apply lemma 2 to get (U, <U
lex) of height ht(T) such that:

(U, <U
lex) −→ (T, <T

lex)
(S,<S

lex)

k .

Then, simply let (Z, <Z) be the convexly ordered ultrametric space associated
to (U, <U

lex). To check that (Z, <Z) works, let:

χ :
(
Z,<Z

X,<X

)
−→ k.

χ transfers to:

Λ :
(U,<U

lex

S,<S

lex

)
−→ k.

Thus, we can find (T̃, <T̃
lex) ∈

(U,<U

lex

T,<T

lex

)
such that

(T̃,<T̃

lex

S,<S

lex

)
is Λ-monochromatic.

Then the convexly ordered ultrametric space (T̃
max

, <T̃
lex) is such that

(
T̃

max
,<T̃

lex

X,<X

)

is χ-monochromatic. But (T̃
max

, <T̃
lex) ∼= (Y, <Y). Theorem 14 is proved.

Remark. We will see later in this chapter that unlike Uc<
S , the class U<

S of
all finite ordered ultrametric spaces with distances in S does not have the Ramsey
property.

2.3. Finite metrically ordered metric spaces. The results of the two pre-
vious sections suggest that the metric structure of the spaces under consideration
strongly influences the kind of linear orderings to be adjoined in order to get a
Ramsey-type result. The present subsection can be seen as an illustration of that
fact. Let K be a class of metric spaces. For s ∈]0,+∞[ and X ∈ K, let ≈X

s be the
binary relation defined on X by:

∀x, y ∈ X x ≈X
s y ↔ dX(x, y) 6 s.

Say that s is critical for K when for every X ∈ K, ≈X
s is an equivalence relation

on X. On the other hand, given X ∈ K, say that a binary relation R is a metric
equivalence relation on X when there is s ∈]0,+∞[ critical in K such that R =≈X

s .
For example, for the classes MS , any s ∈ S such that ]s, 2s] ∩ S = ∅ is critical. Of
course, when S is finite, maxS is always critical, but there might be other critical
distances. For instance, 2 is critical for M{1,2,5}, 1 is critical for M{1,3,4} and for
M{1,3,6}. On the other hand, given S ⊂]0,+∞[, any s ∈ S is critical for US .

Now, call a linear ordering < on X ∈ K metric if given any metric equivalence
relation ≈ on X, the ≈-equivalence classes are <-convex. Given S ⊂]0,+∞[, let
Mm<

S denote the class of all finite metrically ordered metric spaces with distances
in S.

Theorem 15. Let S be finite subset of ]0,+∞[ of size |S| 6 3 and satisfying
the 4-values condition. Then Mm<

S has the Ramsey property.
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Proof. The case |S| = 1 is trivial. Recall that for |S| = 2, there are essentially
two cases, namely S = {1, 2} and S = {1, 3}. When X ∈ M{1,2}, all the linear

orderings on X are metric so Mm<
{1,2} = M<

{1,2} is a Ramsey class thanks to theorem

13. On the other hand, when X ∈ M{1,3}, X is ultrametric and the metric linear

orderings on X are the convex ones. Thus, Mm<
{1,3} = Uc<

{1,3} and has the Ramsey

property thanks to theorem 14. For |S| = 3, the cases to consider are:

(1a) {2, 3, 4} (1b) {1, 2, 3} (1d) {1, 2, 5}
(2a) {1, 3, 4} (2b) {1, 3, 6} (2c) {1, 3, 7}

(1a) and (1b) are covered by theorem 13. (2c) is covered by theorem 14. The
remaining cases could be treated one by one but in what follows, we cover them all
at once thanks to the following lemma. Let T := {1, 2, 5, 6, 9}. Then:

Lemma 3. Mm<
T has the Ramsey property.

Proof. For (X, <X) ∈ Mm<
T , let BX be the set of all balls of X of radius 2.

Define an ordered graph (GX, <GX) as follows: The set of vertices of GX is given
by

GX =
⋃

b∈BX

{vX
b } ∪ {πX(x) : x ∈ b}.

The linear ordering <GX is such that

i) vX
b <GX {πX(x) : x ∈ b} <GX vX

b′ whenever b <X b′.

ii) πX is order-preserving.

The set E(GX) of edges of GX is such that:

i) {vX
b , vX

b′ } ∈ E(GX) iff (∀x ∈ b ∀x′ ∈ b′ dX(x, x′) ∈ {5, 6}).

ii) For every b ∈ BX and x ∈ X, {vX
b , πX(x)} ∈ E(GX) iff x ∈ b.

iii) {πX(x), πX(x′)} ∈ E(GX) iff dX(x, x′) ∈ {1, 5}.

The construction of GX from X is illustrated in figure 5.

Figure 5. Construction of GX. from X
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Now, define dE(GX)({v, w}<GX , {v′, w′}<GX ) by:





1 if v = v′ and {w,w′} ∈ E(GX).
2 if v = v′ and {w,w′} /∈ E(GX)
5 if v 6= v′ and {v, v′} ∈ E(GX) and {w,w′} ∈ E(GX)
6 if v 6= v′ and {v, v′} ∈ E(GX) and {w,w′} /∈ E(GX)
9 if v 6= v′ and {v, v′} /∈ E(GX)

Claim. dE(GX) is a metric.

Proof. It is enough to show that the triangle inequality is satisfied. Take
{v, w}<GX , {v′, w′}<GX and {v′′, w′′}<GX in E(GX) and set





dE(GX)({v, w}<GX , {v′, w′}<GX ) = α
dE(GX)({v′, w′}<GX , {v′′, w′′}<GX ) = β
dE(GX)({v, w}<GX , {v′′, w′′}<GX ) = γ

We have to show that we are not in one of the following cases: (α, β ∈ {1, 2}
and γ > 5) or (α ∈ {1, 2}, β ∈ {5, 6} and γ = 9). Assume that α, β ∈ {1, 2}.
Then v = v′ and v′ = v′′. Thus, v = v′′ and γ < 5 so the first case is covered.
For the second case, assume that α ∈ {1, 2} and β ∈ {5, 6}. Then v = v′ and
{v′, v′′} ∈ E(GX). It follows that {v, v′′} ∈ E(GX) and so γ 6= 9. ¤

For x ∈ X, let b(x) denote the only element b of BX such that x ∈ b and define
a map ϕX : X −→ E(GX) by ϕX(x) = {vX

b(x), π
X(x)}. Then it is easy to check

that when E(GX) is equipped with the lexicographical ordering:

Claim. ϕX is an order-preserving isometry.

The map (X, <X) 7→ (GX, <GX) consequently codes the ordered metric space
(X, <X) into the ordered graph (GX, <GX). We now prove two essential properties
of this coding. Let (Y, <Y) be a finite ordered metric space and (X, <X) be a
subspace of (Y, <Y).

1) Every copy of (X, <X) in (Y, <Y) gives raise to a copy of (GX, <GX) in
(GY, <GY).

2) Conversely, every copy of (GX, <GX) in (GY, <GY) codes a copy of
(X, <X) in (Y, <Y).

More precisely, for 1), let (Y, <Y) ∈ Mm<
T . Thanks to the previous claim, we

have:

(Y, <Y) ∼= ({{vY
b(y), π

Y(y)}<GY : y ∈ Y}, <lex) =: (Ỹ, <Ỹ).

Claim. Let (X̃, <X̃) ∈
(
Ỹ,<Ỹ

X,<X

)
. Then (

⋃
X̃, <GY↾

⋃
X̃) ∼= (GX, <GX).

Proof. Since ϕY is an order-preserving isometry, ←−ϕYX̃ supports a copy of

(X, <X) in (Y, <Y). Let ψ : X −→ ←−ϕYX̃ be the order-preserving isometry wit-
nessing that fact. On the one hand:

⋃
X̃ = {vY

b(x) : x ∈ ←−ϕYX̃} ∪ {πY(x) : x ∈ ←−ϕYX̃}

= {vY
b(ψ(x)) : x ∈ X} ∪ {πY(ψ(x)) : x ∈ X}
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On the other hand:

GX = {vX
b(x) : x ∈ X} ∪ {πX(x) : x ∈ X}.

So it is enough to check that the map defined by vX
b(x) 7→ vY

b(ψ(x)) and πX(x) 7→

πY(ψ(x)) for every x ∈ X is an ordered graph isomorphism. The fact that the
ordering is preserved is obvious. To verify that the edges are also preserved, we
have to check that for every x, x′ ∈ X:

i) {vX
b(x), v

X
b(x′)} ∈ E(GX) iff {vY

b(ψ(x)), v
Y
b(ψ(x′))} ∈ E(GY).

ii) {vX
b(x), π

X(x′)} ∈ E(GX) iff {vY
b(ψ(x)), π

Y(ψ(x′))} ∈ E(GY).

iii) {πX(x), πX(x′)} ∈ E(GX) iff {πY(ψ(x)), πY(ψ(x′))} ∈ E(GY).

Let x 6= x′ ∈ X. For i)

{vX
b(x), v

X
b(x′)} ∈ E(GX) ↔ dX(x, x′) ∈ {5, 6}

↔ dY(ψ(x), ψ(x′)) ∈ {5, 6}
↔ {vY

b(ψ(x)), v
Y
b(ψ(x′))} ∈ E(GY)

For ii)

{vX
b(x), π

X(x′)} ∈ E(GX) ↔ dX(x, x′) ∈ {1, 2}

↔ dY(ψ(x), ψ(x′)) ∈ {1, 2}
↔ {vY

b(ψ(x)), π
Y(ψ(x′))} ∈ E(GY)

Finally, for iii)

{πX(x), πX(x′)} ∈ E(GX) ↔ dX(x, x′) ∈ {1, 5}
↔ dY(ψ(x), ψ(x′)) ∈ {1, 5}
↔ {πY(ψ(x)), πY(ψ(x′))} ∈ E(GY)

¤

For 2), we need to show how, given a copy of (GX, <GX), one can reconstruct
a ’natural’ copy of (X, <X). We proceed as follows: Let (G, <G) be a copy of
(GX, <GX) and let σ be an order-preserving graph isomorphism from (GX, <GX)
onto (G, <G). Then the ordered metric subspace of (E(GX), <lex) supported by
{{σ(vX

b(x)), σ(πX(x))} : x ∈ X} is isomorphic to (X, <X). In the sequel, it will be

denoted XG and will be called the natural copy of (X, <X) inside (E(GX), <lex).
We can now turn to a proof of the lemma. For the sake of clarity, we temporarily

drop mention of the linear orderings attached to the graphs and the metric spaces
under consideration. Let X,Y be in Mm<

T and k > 0 be in ω. Thanks to Ramsey
property for the class of finite ordered graphs, find a finite ordered graph K such
that:

K −→ (GY)
GX

k

Now, let Z be the ordered metric space E(K) equipped with the metric de-
scribed previously and ordered lexicographically. We claim that:

Z −→ (Y)
X

k .

Indeed, let χ :
(
Z

X

)
−→ k. χ induces Λ :

(
K

GX

)
−→ k defined by
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Λ(G) = χ(XG).

Find G̃Y
∼= GY such that

(
G̃Y

GX

)
is Λ-monochromatic. Call its color ε and let Ỹ

be the natural copy of Y inside E(GY). Then
(
Ỹ

X

)
is χ-monochromatic: Indeed, if

X̃ ∈
(
Ỹ

X

)
, then by a previous claim

⋃
X̃ ∼= GX. It follows that χ(X̃) = Λ(

⋃
X̃) = ε.

This finishes the proof of the lemma. ¤

We now deduce theorem 15 from lemma 3. To show that Mm<
{1,2,5} has the Ram-

sey property, let (X, <X), (Y, <Y) be in Mm<
{1,2,5}. Then (X, <X) are also (Y, <Y)

in Mm<
T so we can find (Z, <Z) in Mm<

T such that (Z, <Z) −→ (Y, <Y)
(X,<X)

2 .

Now, define a new metric d{1,2,5} on Z by:

d{1,2,5}(x, y) =





1 if dZ(x, y) = 1
2 if dZ(x, y) = 2
5 if dZ(x, y) > 5

Then, observe that (Z, d′, <Z) in Mm<
{1,2,5} is such that

(Z, d′, <Z) −→ (Y, <Y)
(X,<X)

2 .

For Mm<
{1,3,4}, the proof is the same except that dZ is not replaced by d{1,2,5}

but by d{1,3,4} defined by:

d{1,3,4}(x, y) =





1 if dZ(x, y) ∈ {1, 2}
3 if dZ(x, y) = 5
4 if dZ(x, y) > 6

Finally, for Mm<
{1,3,6}, replace dZ by d{1,3,6} defined by:

d{1,3,6}(x, y) =





1 if dZ(x, y) ∈ {1, 2}
3 if dZ(x, y) ∈ {5, 6}
6 if dZ(x, y) = 9

¤

3. Ordering properties.

After Ramsey property, we turn to the study of ordering properties. As we will
see, ordering property is usually much easier to prove than Ramsey property.

3.1. Finite ordered metric spaces. We start with a case for which the
ordering property is a consequence of the Ramsey property.

Theorem 16. M< has the ordering property.

Proof. Let D be the largest distance appearing in X. Observe that (X, <X)

can be embedded into (X̃, <X̃) such that (X̃, <X̃) and (X̃,X̃ >) are isomorphic.
There is consequently no loss of generality if we assume that (X, <X) and (X,X >)
are isomorphic. We first construct (Z, <Z) including (X, <X) as a subspace and
such that given any x <X y ∈ X, there is z ∈ Z such that:

x <Z z <Z y and dZ(x, z) = dZ(z, y).
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A way to obtain such an (Z, <Z) is to proceed as follows. Seeing (X, <X) as a
finite ordered edge-labelled graph, connect any two distinct points by a broken line
consisting of two edges with label D. Observe that the corresponding edge-labelled
graph is l-metric for every l so the labelling can be extended using the shortest
path distance. Therefore, the corresponding metric space Z does include X as a
subspace. We now have to order Z. Take x <X y ∈ X. When expanding X to
Z, a broken line {x, y, z} was added with dZ(x, z) = dZ(y, z) = D. Define a linear
ordering <{x,y} on this line by:

x <{x,y} z <{x,y} y.

Now, concatenate all the orderings of the form <{x,y} according to the lexico-
graphical ordering on the the set of edges {{x, y}<X : x, y ∈ X} in order to obtain
<Z. Then, the finite ordered metric space Z is as required. Now, let (T, <T) be
the unique ordered metric space with two points and distance D between them,
and let (Y, <Y) be such that:

(Y, <Y) −→ (T, <T)
(Z,<Z)

2 .

Claim. Given any linear ordering < on Y, (Y, <) includes a copy of (X, <X).

To prove that claim, let < be a linear ordering on Y and let χ :
(
Y,<Y

T,<T

)
−→ 2

be such that:

χ({x, y}) = 1 iff <Y and < agree on {x, y}.

By construction, we can find a copy (Z̃, <Z̃) of (Z, <Z) in (Y, <Y) with
(
Z,<Z

T,<T

)

monochromatic. Call ε the correspondong color. Now, let (X̃, <X̃) be a copy of

(X, <X) inside (Z̃, <Z̃).

Subclaim. (X̃, <) ∼= (X, <X).

There are two cases, according to the value of ε. If ε = 1, we prove that given

any x, y ∈ X̃, < and <X agree on {x, y}. This will show (X̃, <) ∼= (X̃, <X̃). So let

x <X̃ y. Find z ∈ Z̃ such that x <Z̃ z <Z̃ y and dZ̃(x, z) = dZ̃(x, z) = D. Since

ε = 1, < and <Z̃ agree on {x, z} and {z, y}. Thus, x < z < y and so x < z. If ε = 0,

we prove that given any x, y ∈ X̃, < and <X disagree on {x, y}. This will show

(X̃, <) ∼= (X̃,X̃ >) and since (X̃,X̃ >) ∼= (X̃, <X̃), we will get (X̃, <) ∼= (X̃, <X̃).

Let x <X̃ y. Pick z ∈ Z̃ such that x <Z̃ z <Z̃ y and dZ̃(x, z) = dZ̃(x, z) = D. Since

ε = 0, < and <Z̃ disagree on {x, z} and {z, y}. Thus, x > z > y and so x > z.
This proves the subclaim, finishes the proof of the claim and completes the proof
of the lemma. ¤

The proof we presented here makes use of Ramsey property but we should
mention here that this is not the only way to proceed. See for example [55] where
the same result is proved thanks to a probabilistic argument.

Observe also that as for Ramsey property, the previous proof allows to prove
ordering property for classes M<

S whenever S is an initial segment of some T ⊂
]0,+∞[ which is closed under sums:

Theorem 17. Let T ⊂]0,+∞[ be closed under sums and S be an initial segment
of T . Then M<

S has the ordering property.
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Thus, M<
Q , M<

Q∩]0,r] with r > 0 in Q, M<
ω and M<

ω∩]0,m] with m > 0 in ω

have the ordering property.

3.2. Finite convexly ordered ultrametric spaces. The next case of order-
ing property shows that ordering property can be proved completely independently
of Ramsey property.

Theorem 18. Uc<
S has the ordering property.

We begin with a simple observation coming from the tree representation of
elements of Uc<

S .

Lemma 4. Uc<
S is a reasonable Fräıssé order class.

Proof. The proof is left to the reader. Let us simply mention that it suffices
to show that given X ⊂ Y in US and <X a convex linear ordering on X, there is a
convex linear ordering <Y on Y such that <Y↾ X =<X. ¤

Call an element Y of US convexly order-invariant when (Y, <1) ∼= (Y, <2)
whenever <1, <2 are convex linear orderings on Y. The following result is a direct
consequence of the previous lemma:

Lemma 5. Let (X, <X) ∈ Uc<
S and assume that X ⊂ Y for some convexly

order-invariant Y in US. Then given any convex linear ordering < on Y, (X, <X)
embeds into (Y, <).

Proof. Let <Y be as in the previous lemma. Let also < be a convex linear
orderings on Y. Then (X, <X) embeds into (Y, <Y) ∼= (Y, <). ¤

We now show that any element of US embeds into a convexly order-invariant
one.

Lemma 6. Let X ∈ US. Then X embeds into Y for some convexly order-
invariant Y ∈ US.

Proof. Let a0 > a1 > . . . > an−1 enumerate the distances appearing in X.
The tree representation of X has n levels. Now, observe that such a tree can be
embedded into a tree of height n and where all the nodes of a same level have the
same number of immediate successors, and that the ultrametric space associated
to that tree is convexly order-invariant. ¤

Theorem 18 follows then directly.
We finish this subsection with the justification of the remark at the end of 2.2

stating that the class U<
S of all finite ordered ultrametric spaces with distances in

S does not have the Ramsey property. We start with:

Theorem 19. U<
S does not have the ordering property.

Proof. Let (X, <X) be in U<
S and such that the ordering <X is not convex on

X. Let Y be in US . Then there is a linear ordering < on Y such that (X, <X) does
not embed into (Y, <). Namely, any convex linear ordering < on Y works. ¤

We now show how this result can be used to prove:

Theorem 20. U<
S does not have the Ramsey property.

Proof. Assume for a contradiction that U<
S does have the Ramsey property.

Then by a proof similar to the proof of theorem 16, U<
S would also have the ordering

property, which is not the case. ¤
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3.3. Finite metrically ordered metric spaces. Finally, we show how the
methods used in the two previous subsections can be combined to prove that the
ordering property holds for other classes of finite ordered metric spaces.

Theorem 21. Let S be a finite subset of ]0,+∞[ of size |S| 6 3 and satisfying
the 4-values condition. Then Mm<

S has the ordering property.

Proof. As usual, the case |S| = 1 is obvious. For S = {1, 2}, {2, 3, 4} or
{1, 2, 3}, every linear ordering is metric so Mm<

S is really M<
S and as for theorem

16, ordering property is a consequence of Ramsey property. For S = {1, 3} or
{1, 3, 7}, the metric linear orderings are the convex ones, so ordering property is
given by theorem 18. So the only remaining cases are the cases S = {1, 2, 5}, {1, 3, 6}
and {1, 3, 4}.

For {1, 2, 5}, ordering property comes from ordering property for finite graphs.
To prove that fact, recall that for X ∈ M{1,2,5}, balls of radius 6 2 are disjoint
and can be seen as finite graphs with distance 5 between them. Observe now that
given (X, <X) ∈ Mm<

{1,2,5}, we can embed (X, <X) into (Y, <Y) ∈ Mm<
{1,2,5} where

all the balls of radius 2 are isomorphic (as ordered graphs) to a same finite ordered

graph (H, <H). So Y ∼=
⋃̇

i<kYi for some k ∈ ω, with Y0 <Y . . . <Y Yk−1 and

(Yi, <
Y↾ Yi) ∼= (H, <H) for every i < k. Let K be a finite graph such that given

any linear ordering < on K, (H, <H) embeds into (K, <). Then the metric space

Z defined by Z ∼=
⋃̇

i<kZi with Zi
∼= K for every i < k is such that for every metric

linear ordering < on Z, (Y, <Y) and hence (X, <X) embeds into (Z, <).
For {1, 3, 6}, ordering property also comes from ordering property about finite

graphs. Recall that in that case, balls of radius 1 can be seen as complete graphs,
and that between any two such balls, the distance between any two points is either
always 3 or always 6. Let (X, <X) be in Mm<

{1,3,6}. Embed (X, <X) into (Y, <Y)

∈ Mm<
{1,3,6} where all balls of radius 1 have the same size m. Define now a graph

GY on the set GY of balls of radius 1 of Y by connecting two balls iff the distance
between any two of their points is equal to 3. Observe that the ordering <Y beeing
natural, it induces a linear ordering GY. Observe also that given a linear ordering
on GY, there is a unique metric linear ordering on Y extending it. Now, let K

be a finite graph such that given any linear ordering on K, (GY, <GY) embeds
into (K, <). Let Z be the metric space whose space of balls is isomorphic to the
graph K and where every ball of radius 1 has size m. Then given any metric linear
ordering < on Z, (X, <X) embeds into (Z, <).

For {1, 3, 4}, the proof is a bit more involved. Fix (X, <X) ∈ Mm<
{1,3,4}. Recall

that the relation ≈ defined by x ≈ y ↔ dX(x, y) = 1 is an equivalence relation.
However, unlike the previous cases, the distance between the elements of two dis-
joint balls of radius 1 can be arbitrarily 3 or 4. For (Y, <Y) ∈ Mm<

{1,3,4}, say that

a linear ordering < on Y is a local perturbation of <Y when

∀x, y ∈ Y dY(x, y) > 3 → (x < y ↔ x <Y y)

Lemma 7. There is (Y, <Y) ∈ Mm<
{1,3,4} such that for any local perturbation <

of <Y, (X, <X) embeds into (Y, <).

Proof. First, define a new linear ordering <X
∗ on X by setting
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∀x, y ∈ X

{
dX(x, y) = 1 → (x <X

∗ y ↔ y <X x)
dX(x, y) > 3 → (x <X

∗ y ↔ x <X y)

Now, let (T, <T) be the ordered metric space with two points and distance
1 between them. Let also (X1, <

X1) be in Mm<
{1,3,4} and such that (X, <X) and

(X, <X
∗ ) embed into (X1, <

X1). By Ramsey property, find (Y, <Y) such that

(Y, <Y) −→ (X1, <
X1)

(T,<T)

2

We claim that (Y, <Y) is as required: Let < be a local perturbation of <Y.

Then, define χ :
(
Y,<Y

T,<T

)
−→ 2 by

χ(T̃, <T̃) = 1 iff < and <Y agree on (T̃, <T̃).

By construction, there is a copy (X̃1, <
X̃1) of (X1, <

X1) such that
(
X̃1,<X̃1

T,<T

)
is

χ-monochromatic with color ε. If ε = 0, consider X̃ ⊂ X̃1 such that

(X̃, <X̃1↾ X̃) ∼= (X, <X
∗ ).

Then

(X̃, <↾ X̃) ∼= (X, <X).

On the other hand, if ε = 1, consider X̃ ⊂ X̃1 such that

(X̃, <X̃1↾ X̃) ∼= (X, <X).

Then

(X̃, <↾ X̃) ∼= (X, <X).

¤

Lemma 8. There is (Z, <Z) ∈ Mm<
{1,3,4} such that for any metric linear ordering

≺ on Z, there is a local perturbation < of <Y such that (Y, <) embeds into (Z,≺).

Proof. Define a new linear ordering <Y
∗∗ on Y by

∀x, y ∈ Y

{
dX(x, y) = 1 → (x <X

∗ y ↔ x <X y)
dX(x, y) > 3 → (x <X

∗ y ↔ y <X x)

Now, let (U, <U) be the ordered metric space with two points and distance
3 between them. Let also (Y1, <

Y1) be in Mm<
{1,3,4} such that (Y, <Y), (Y, <Y

∗∗)

embed into (Y1, <
Y1) and such that between any two balls of radius 1, there are

two points with distance 3 between them. Still by Ramsey property, find (Z, <Z)
such that

(Z, <Z) −→ (Y1, <
Y1)

(U,<U)

2

Then Z is as required: Define Λ :
(
Z,<Z

U,<U

)
−→ 2 by

Λ(Ũ, <Ũ) = 1 iff < and <Z agree on (Ũ, <Ũ).
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By construction, there is a copy (Ỹ1, <
Ỹ1) of (Y1, <

Y1) such that
(
Ỹ1,<Ỹ1

U,<U

)
is

Λ-monochromatic with color ε. If ε = 0, consider Ỹ ⊂ Ỹ1 such that

(Ỹ, <Ỹ1↾ Ỹ) ∼= (Y, <Y
∗∗).

Otherwise, ε = 1 and choose Ỹ ⊂ Ỹ1 such that

(Ỹ, <Ỹ1↾ Ỹ) ∼= (Y, <Y).

Then in both cases, (Ỹ, <↾ Ỹ) ∼= (Y, ⊳) for some local perturbation ⊳ of <Y.
¤

To finish the proof of the theorem, it is now enough to observe that given any
metric linear ordering ≺ on Z, (X, <X) embeds into (Z,≺). ¤

4. Ramsey degrees.

In this section, we show how the Ramsey property and the ordering property
allow to show the existence and to compute the exact values of Ramsey degrees
in various contexts. We start with the results about M. For X ∈ M, let LO(X)
denote the set of all linear orderings on X. Thus, the number |LO(X)|/|iso(X)|
is essentially the number of all nonisomorphic structures one can get by adding a
linear ordering on X. Indeed, if <1, <2 are linear orderings on X, then (X, <1)
and (X, <2) are isomorphic as finite ordered metric spaces if and only if the unique
order preserving bijection from (X, <1) to (X, <2) is an isometry. This defines an
equivalence relation on the set of all finite ordered metric spaces obtained by adding
a linear ordering on X. In what follows, an order type for X is an equivalence class
corresponding to this relation.

Theorem 22. Every X ∈ M has a Ramsey degree tM(X) in M and

tM(X) = |LO(X)|/|iso(X)|.

Proof. Let τ(X) denote the number |LO(X)|/|iso(X)|. We first prove that
tM(X) 6 τ(X), ie that for every Y ∈ M, k ∈ ω r {0}, there is Z ∈ M such that

Z −→ (Y)
X

k,τ(X).

Let {<α: α ∈ A} be a set of linear orderings on X such that for every linear
ordering < on X, there is a unique α ∈ A such that (X, <) and (X, <α) are
isomorphic as finite ordered metric spaces. Then A has size τ(X) so without loss
of generality, A = {1, . . . , τ(X)}. Now, let <Y be any linear ordering on Y . By
Ramsey property for M< we can find (Z1, <

Z1) ∈ M< such that

(Z1, <
Z1) −→ (Y, <Y)

(X,<1)

k .

Now, construct inductively (Z2, <
Z2), . . . , (Zτ(X), <

Zτ(X)) ∈ M<
S such that for

every n ∈ {1, . . . , τ(X) − 1},

(Zn+1, <
Zn+1) −→ (Zn, <Zn)

(X,<n+1)

k .

Finally, let Z = Zτ(X). Then one can check that Z −→ (Y)
X

k,τ(X).

To prove the reverse inequality tM(X) > τ(X), we need to show that there is

Y ∈ M such that for every Z ∈ M, there is χ :
(
Z

X

)
−→ τ(X) with the property:
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∀Ỹ ∈
(
Z

Y

)
,

∣∣∣χ′′
(
Ỹ

X

)∣∣∣ = τ(X).

Fix X ∈ M. By ordering property for M<, find Y ∈ M such that for any
linear ordering < on Y, (Y, <) contains a copy of each order type of X. Now, let

Z ∈ M and pick <Z any linear ordering on Z. Define a coloring χ :
(
Z

X

)
−→ τ(X)

which colors any copy X̃ of X according to the order type of (X̃, <Z↾ X̃). Now, if

possible, let Ỹ ∈
(
Z

Y

)
. Then (Ỹ, <Z↾ Ỹ) contains a copy of every order type of X,

and ∣∣∣χ′′
(
Ỹ

X

)∣∣∣ = τ(X).

¤

The exact same proof can be used in different contexts. For example, one can
replace M by MS where S is an initial segment of a subset of ]0,+∞[ which is
closed under sums:

Theorem 23. Let T ⊂]0,+∞[ be closed under sums and S be an initial segment
of T . Then every X ∈ MS has a Ramsey degree tMS

(X) in MS and

tMS
(X) = |LO(X)|/|iso(X)|.

This fact has two consequences. On the one hand, the only Ramsey objects
(those for which tMS

(X) = 1) are the equilateral ones. On the other hand, there
are objects for which the Ramsey degree is LO(X) (ie |X|!), those for which there
is no nontrivial isometry.

We now turn to ultrametric spaces: Given S ⊂]0,+∞[, we showed that the
class Uc<

S has the Ramsey property and the ordering property. Thus, if for X ∈ US ,
cLO(X) denotes the set of all convex linear orderings on X, we obtain:

Theorem 24. Let S ⊂]0,+∞[. Then every X ∈ US has a Ramsey degree
tUS

(X) in US and

tUS
(X) = |cLO(X)|/|iso(X)|.

This fact makes the situation for ultrametric spaces a bit different from the
metric case: First, the ultrametric spaces for which the true Ramsey property
holds are those for which the corresponding tree is uniformly branching on each
level. Hence, in the class US , every element can be embedded into a Ramsey
object, a fact which does not hold in the class of all finite metric spaces. Second,
one can notice that any finite ultrametric space has a nontrivial isometry (this fact
is obvious via the tree representation). Thus, the Ramsey degree of X is always
strictly less than |cLO(X)|. In fact, a simple computation shows that the highest
value tUS

(X) can get if the size of X is fixed is 2|X|−2 and is realized when the tree
associated to X is a comb, ie when all the branching nodes are placed on a same
branch.

Finally, for S finite subset of ]0,+∞[ of size |S| 6 3 and satisfying the 4-values
condition, we saw that the class Mm<

S has the Ramsey and the ordering properties.
It follows that if for X ∈ MS , mLO(X) denotes the set of all metric linear orderings
on X, one gets:

Theorem 25. Let S be finite subset of ]0,+∞[ of size |S| 6 3 and satisfying
the 4-values condition. Then every X ∈ MS has a Ramsey degree tMS

(X) in MS

and
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tMS
(X) = |mLO(X)|/|iso(X)|.

5. Universal minimal flows and extreme amenability.

After the study of Ramsey and ordering properties, we turn to applications in
topological dynamics.

5.1. Pestov theorem. In this subsection, we present a proof of the following
result:

Theorem 26 (Pestov [65]). Equipped with the pointwise convergence topology,
the group of isometries iso(U) of the Urysohn space is extremely amenable.

In the sequel, we present how this result can be deduced from the general theory
exposed in the introduction of this chapter. The proof is taken from [40].

First, the class MQ is a reasonable Fräıssé class. It follows that Flim(M<
Q ) =

(UQ, <UQ) for some linear ordering <UQ on UQ. Furthermore, we saw that M<
Q

has the Ramsey and the ordering properties. Consequently:

Theorem 27 (Kechris-Pestov-Todorcevic [40]). Aut(UQ, <UQ) is extremely
amenable.

Theorem 28 (Kechris-Pestov-Todorcevic [40]). The universal minimal flow
of iso(UQ) is the set LO(UQ) of linear orderings on UQ together with the action
iso(UQ) × LO(UQ) −→ LO(UQ), (g,<) 7−→<g defined by x <g y iff g−1(x) <
g−1(y).

We now show how to deduce theorem 26 from those results.

Lemma 9. Let G, H be topological groups and π : G −→ H be a continuous
morphism with dense range. Assume that G is extremely amenable. Then so is H.

Proof. Let X be an H-flow. Denote by α : H × X −→ X the action. Define
now ᾱ : G × X −→ X by ᾱ(g, x) = α(π(g), x). This turns X into a G-flow so
there is a fixed point x0 ∈ X. But since π has dense range, x0 is also fixed for the
H-flow. ¤

Now, recall that U is the completion of UQ so given any g ∈ iso(UQ), there is
a unique ḡ extending g on U. Since every g ∈ Aut(UQ, <UQ) is in particular an
isometry of UQ, the map g 7→ ḡ is 1-1 from Aut(UQ, <UQ) into iso(U) and it is easy
to check that it is continuous. Consequently, according to the previous lemma, it
only remains to show that its range is dense in iso(U).

Lemma 10. Let D ⊂ iso(U). Let d denote the metric on UQ. Assume that:

∀ε > 0 ∀x1 . . . xn ∈ U ∀h ∈ iso(U) ∃x′
1 . . . x′

n, y′
1 . . . y′

n ∈ U ∃g ∈ D
∀i 6 n d(xi, x

′
i) < ε, d(h(xi), y

′
i) < ε, g(x′

i) = y′
i.

Then D is dense in iso(U).

Proof. Fix ε > 0, h ∈ iso(U) and x1 . . . xn ∈ U . Thanks to the hypothesis,
find x′

1 . . . x′
n, y′

1 . . . y′
n ∈ U and g ∈ D for ε/2. Then for i 6 n:

d(g(xi), h(xi)) 6 d(g(xi), g(x′
i)) + d(g(x′

i), h(xi))
= d(xi, x

′
i) + d(y′

i, h(xi))
< ε

¤
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So to check that {ḡ : g ∈ Aut(UQ, <UQ)} is dense in iso(U), it is enough to
show:

Lemma 11. Given x1 . . . xn, y1 . . . yn ∈ U such that xi 7→ yi is an isometry and
given ε > 0, there are x′

1 . . . x′
n, y′

1 . . . y′
n ∈ UQ so that x′

i 7→ y′
i is an order-preserving

isometry with respect to < and

∀i 6 n d(x′
i, xi) < ε, d(y′

i, yi) < ε.

Proof. We proceed by induction on n. For n = 1, simply choose x′
i, y

′
i ∈ UQ

such that d(x′
i, xi) < ε and d(y′

i, yi) < ε. For the induction step, assume that we are
at stage n and wish to step up to n+1. Suppose that x1, . . . , xn+1, y1, . . . yn+1 ∈ U
are given so that xi 7→ yi is an isometry. By induction hypothesis, find x′

1 . . . x′
n

and y′
1 . . . y′

n ∈ UQ so that x′
i 7→ y′

i is an order-preserving isometry and

∀i 6 n d(x′
i, xi) < ε/2, d(y′

i, yi) < ε/2.

Fix x0
n+1, y

0
n+1 ∈ UQ such that

d(x0
n+1, xn+1) < ε/2, d(y0

n+1, yn+1) < ε/2.

For i 6 n, set di := d(x0
n+1, x

′
i), d(y0

n+1, y
′
i). Without loss of generality, we may

assume that ε < di, d
′
i. Therefore:

|di − d(xn+1, xi)| 6
∣∣d(x0

n+1, xn+1) + d(xi, x
′
i)

∣∣ < ε.

Similarly,

|d′i − d(yn+1, yi)| < ε.

So

|di − d′i| = |di − d(xn+1, xi) + d(xn+1, xi) − d(yn+1, yi) + d(yn+1, yi) − d′i| < ε.

Now, set ei := (di + d′i)/2 and consider the ordered metric space

({x′
1, . . . , x

′
n, x0

n+1, u}, d
′,≺)

where

d′(x′
i, x

′
j) = d(x′

i, x
′
j), d′(x′

i, x
0
n+1) = d(x′

i, x
0
n+1), d′(u, x′

i) = ei

and d′(u, x0
n+1) is any irrational number satisfying the inequalities:

∀i 6 n |di − ei| 6 d′(u, x0
n+1) < 2ε < di + ei.

Observe that the existence of such a number is guaranteed by the following
inequalities:

di + ei =
3di+d′

i

2 > ε.

and

|di − ei| =
|di−d′

i|
2 < ε.
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As for ≺, we let it agree with the ordering < of UQ for x′
1, . . . , x

′
n, x0

n+1 and set
x′

i ≺ u as well as x0
n+1 ≺ u. Assuming that d′ defines a metric, we finish the proof

as follows: By the properties of (UQ, <UQ), we can find a point x′
n+1 ∈ UQ with

x′
i < x′

n+1 for every i 6 n, x0
n+1 < x′

n+1 and d(x′
n+1, x

′
i) = ei, d(x′

n+1, x
0
n+1) =

d′(u, x0
n+1) < 2ε. Similarly, we can find y′

n+1 ∈ UQ with y′
i < y′

n+1 for every i 6 n,
y0

n+1 < y′
n+1 and d(y′

n+1, y
′
i) = ei, d(y′

n+1, y
0
n+1) = d′(u, x0

n+1) < 2ε. Then, x′
i 7→ y′

i

defines an order preserving map and

d(x′
n+1, xn+1) 6 d(x′

n+1, x
0
n+1) + d(x0

n+1, xn+1) < 3ε

which completes the proof. It remains to check that d′ indeed defines a metric:
(i) Since d′(x0

n+1, x
′
i) = di, d′(u, x′

i) = ei, we need to check that

|di − ei| 6 d′(u, x0
n+1) 6 di + ei,

which is given by the definition of d′(u, x0
n+1).

(ii) Let αij = d(x′i, x′
j). We need to verify that

|ei − ej | 6 αij 6 ei + ej .

On the one hand:

|di − dj | 6 αij 6 di + dj .

On the other hand, αij = d(y′i, y′
j) so we also have:

∣∣d′i − d′j
∣∣ 6 αij 6 d′i + d′j .

Adding and dividing by 2, we obtain the required inequality. ¤

As in previous sections, simple adaptations of the proof allow to deduce similar
results for other spaces. Fot example, instead of working with M<

Q and the structure

(UQ, <UQ), one can work with the reasonable Fräıssé class M<
Q∩]0,1] and its Fräıssé

limit (SQ, <SQ). Here are the results we obtain in this case:

Theorem 29 (Kechris-Pestov-Todorcevic [40]). Aut(SQ, <SQ) is extremely amenable.

Theorem 30 (Kechris-Pestov-Todorcevic [40]). The universal minimal flow
of iso(SQ) is the set LO(SQ) of linear orderings on SQ together with the action
iso(SQ)×LO(SQ) −→ LO(SQ), (g,<) 7−→<g defined by x <g y iff g−1(x) < g−1(y).

Theorem 31 (Pestov [65]). iso(S) is extremely amenable.

Other interesting examples appear when the distance set Q is replaced by ω or
{1, . . . ,m} for some strictly positive m in ω. One then deals with the reasonable
Fräıssé classes M<

ω and M<
m and their Fräıssé limits (Uω, <Uω ) and (Um, <Um)

respectively:

Theorem 32 (Kechris-Pestov-Todorcevic [40]). Aut(Uω, <Uω ) is extremely
amenable.

Theorem 33 (Kechris-Pestov-Todorcevic [40]). The universal minimal flow
of iso(Uω) is the set LO(Uω) of linear orderings on Uω together with the action
iso(Uω) × LO(Uω) −→ LO(Uω), (g,<) 7−→<g defined by x <g y iff g−1(x) <
g−1(y).
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Theorem 34 (Kechris-Pestov-Todorcevic [40]). Aut(Um, <Um) is extremely
amenable.

Theorem 35 (Kechris-Pestov-Todorcevic [40]). The universal minimal flow
of iso(Um) is the set LO(Um) of linear orderings on Um together with the action
iso(Um) × LO(Um) −→ LO(Um), (g,<) 7−→<g defined by x <g y iff g−1(x) <
g−1(y).

5.2. Ultrametric Urysohn spaces. After Pestov theorem and its variations,
the results we present now deal with ultrametric spaces. In chapter 1, we men-
tionned that the Urysohn space BS of the class US when S is a countable distance
set can be described explicitly. Uc<

S being a reasonable Fräıssé class, its Fräıssé limit
is therefore equal to (BS , <BS ) for some linear ordering <BS on BS . It turns out
that as BS , <BS is also easy to descibe: It is simply the lexicographical ordering
<BS

lex coming from the natural tree associated to BS .

Proposition 17. Let S ⊂]0,+∞[ be countable. Then Flim(Uc<
S ) = (BS , <BS

lex).

Proof. The only thing we have to check is that <BS

lex is the relevent linear

ordering on BS , ie that (BS , <BS

lex) is ultrahomogeneous. In what follows, we relax

the notation and simply write d (resp. <) instead of dBS (resp. <BS

lex). We proceed
by induction on the size n of the finite substructures.

For n = 1, if x and y are in BS , just define g : BS −→ BS by

g(z) = z + y − x.

For the induction step, assume that the homogeneity of (BS , <) is proved for
finite substructures of size n and consider two isomorphic substructures of (BS , <)
of size n+1, namely x1 < . . . < xn+1 and y1 < . . . < yn+1. By induction hypothesis,
find h ∈ Aut(BS , <) such that for every 1 6 i 6 n, h(xi) = yi. We now have to
take care of xn+1 and yn+1. Observe first that thanks to the convexity of <, we
have

d(xn, xn+1) = min{d(xi, xn+1) : 1 6 i 6 n}

Similarly,

d(yn, yn+1) = min{d(yi, yn+1) : 1 6 i 6 n}.

Set

s = d(xn, xn+1) = d(yn, yn+1).

Note that yn+1 and h(xn+1) agree on S∩]s,∞[. Indeed,

d(yn+1, h(xn+1)) 6 max(d(yn+1, yn), d(yn, h(xn+1)))

6 max(d(yn+1, yn), d(h(xn), h(xn+1)))

6 max(s, s) = s

Note also that since yn < yn+1 (resp. h(xn) < h(xn+1)), we have

yn(s) < yn+1(s).

Similarly,
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yn(s) = h(xn)(s) < h(xn+1)(s).

So (R r Q)∩]yn(s),min(yn+1(s), h(xn+1)(s))[ is non-empty and has an element
α. ]α,∞[∩Q is order-isomorphic to Q so we can find a strictly increasing bijective
φ :]α,∞[∩Q −→]α,∞[∩Q such that

φ(h(xn+1)(s)) = yn+1(s).

Now, define j : BS −→ BS by:
If d(x, yn+1) > s then j(x) = x.
If d(x, yn+1) 6 s then

j(x)(t) =





x(t) if t > s
x(t) if t = s and x(t) < α
φ(x(t)) if t = s and α < x(t)
x(t) + yn+1(t) − h(xn+1)(t) if t < s

One can check that j ∈ Aut(BS , <) and that for every 1 6 i 6 n, j(yi) = yi.
Now, let g = j ◦ h. We claim that for every 1 6 i 6 n + 1, g(xi) = yi. Indeed, if
1 6 i 6 n then g(xi) = j(h(xi)) = j(yi) = yi. Moreover,

g(xn+1)(t) = j(h(xn+1))(t)

=





h(xn+1)(t) if t > s
φ(h(xn+1)(t)) = yn+1(t) if t = s
h(xn+1)(t) + yn+1(t) − h(xn+1)(t) = yn+1(t) if t < s

ie g(xn+1) = yn+1. ¤

Therefore, Ramsey property together with ordering property for Uc<
S lead to

the following result in topological dynamics:

Theorem 36. Aut(BS , <BS

lex) is extremely amenable.

Theorem 37. The universal minimal flow of iso(BS) is the set cLO(BS) of
convex linear orderings on BS together with the action iso(BS) × cLO(BS) −→
cLO(BS), (g,<) 7−→<g defined by x <g y iff g−1(x) < g−1(y).

Remark. In [40], theorem 6.6, it is mentionned that for S = 2, theorem 36 can
actually be proved directly using preservation of extreme amenability under direct
and semi-direct products of topological groups. More recently, we were informed
by Christian Rosendal that it is also the case for any countable S. Had this result
been known to us before theorem 14, the equivalence provided by theorem 8 would
have allowed to deduce theorem 14 from it.

We now use these results to compute the universal minimal flow of the metric

completion B̂S of BS . We follow the scheme adopted in the previous section. Let

<B̂S

lex be the natural lexicographical ordering on B̂S .

Lemma 12. There is a continuous group morphism for which Aut(BS , <BS

lex)

embeds densely into Aut(B̂S , <B̂S

lex).
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Proof. Every g ∈ iso(BS) has unique extension ĝ ∈ iso(B̂S). Moreover,

observe that <B̂S

lex can be reconstituted from <BS

lex . More precisely, if x̂, ŷ ∈ B̂S , and

x, y ∈ BS such that dB̂S (x, x̂), dB̂S (y, ŷ) < dB̂S (x̂, ŷ), then

x̂ <B̂S

lex ŷ iff x <BS

lex y

Note that this is still true when <B̂S

lex and <BS

lex are replaced by ≺∈ cLO(B̂S) and
≺↾ BS ∈ cLO(BS) respectively. Later, we will refer to that fact as the coherence
property . Its first consequence is that the map g 7→ ĝ can actually be seen as a map

from Aut(BS , <BS

lex) to Aut(B̂S , <B̂S

lex). It is easy to check that it is a continuous

embedding. We now prove that it has dense range. Take h ∈ Aut(B̂S , <B̂S

lex),

x̂1 <B̂S

lex . . . <B̂S

lex x̂n in B̂S , ε > 0, and consider the corresponding basic open
neighborhood W around h. Take η > 0 such that η < ε and for every 1 6 i 6=

j 6 n, η < dB̂S (x̂i, x̂j). Now, pick x1, . . . , xn, y1, . . . , yn ∈ BS such that for every

1 6 i 6 n, dB̂S (x̂i, xi) < η and dB̂S (h(x̂i), yi) < η. Then one can check that the

map xi 7→ yi is an isometry from {xi : 1 6 i 6 n} to {yi : 1 6 i 6 n} (because B̂S is
ultrametric) which is also order-preserving (thanks to the coherence property). By

ultrahomogeneity of (BS , <BS

lex), we can extend that map to g0 ∈ Aut(BS , <BS

lex).
Finally, consider the basic open neighborhood V around g0 given by x1, . . . , xn and

η. Then {ĝ : g ∈ V } ⊂ W . Indeed, let g ∈ V . Then dB̂S (ĝ(x̂i), h(x̂i)) is less or
equal to

max{dB̂S (ĝ(x̂i), ĝ(xi)), d
B̂S (ĝ(xi), ĝ0(xi)), d

B̂S (ĝ0(xi), h(x̂i))}

Now, since ĝ is an isometry, dB̂S (ĝ(x̂i), ĝ(xi)) = dB̂S (x̂i, xi) < η < ε. Also,

since g ∈ V , dB̂S (ĝ(xi), ĝ0(xi)) < η < ε. Finally, by construction of g0,

dB̂S (ĝ0(xi), h(x̂i)) = dBS (yi, h(x̂i)) < η < ε.

Thus dB̂S (ĝ(x̂i), h(x̂i)) < ε and ĝ ∈ W . ¤

As a direct corollary, we obtain:

Theorem 38. Aut(B̂S , <B̂S

lex) is extremely amenable.

Let us now look at the topological dynamics of the isometry group iso(B̂S).

Note that iso(B̂S) is not extremely amenable as its acts continuously on the space

of all convex linear orderings cLO(B̂S) on B̂S with no fixed point. The following
result shows that in fact, this is its universal minimal compact action.

Theorem 39. The universal minimal flow of iso(B̂S) is the set cLO(B̂S) to-

gether with the action iso(B̂S) × cLO(B̂S) −→ cLO(B̂S), (g,<) 7−→<g defined by
x <g y iff g−1(x) < g−1(y).

Proof. Equipped with the topology for which the basic open sets are those

of the form {≺∈ cLO(B̂S) :≺↾ X =<↾ X} (resp. {≺∈ cLO(BS) :≺↾ X =<↾ X})

where X is a finite subset of B̂S (resp. BS), the space cLO(B̂S) (resp. cLO(BS))

is compact. To see that the action is continuous, let <∈ cLO(B̂S), g ∈ iso(B̂S)

and W a basic open neighborhood around <g given by a finite X ⊂ B̂S . Now take
ε > 0 strictly smaller than any distance in X and consider



82 2. RAMSEY CALCULUS, RAMSEY DEGREES AND UNIVERSAL MINIMAL FLOWS.

U = {h ∈ iso(B̂S) : ∀x ∈ X(dB̂S (g−1(x), h−1(x)) < ε)}

Let also

V = {≺∈ cLO(B̂S) :≺↾ ←−g X =≺↾
←−
h X}

where ←−g X (resp.
←−
h X) denotes the inverse image of X under g (resp. h). We

claim that for every (h,≺) ∈ U × V , we have ≺h∈ W . To see that, observe first
that if x, y ∈ X, then h−1(x) ≺ h−1(y) iff g−1(x) ≺ g−1(y) (this is a consequence
of the coherence property). So if (h,≺) ∈ U × V and x, y ∈ X we have

x ≺h y iff h−1(x) ≺ h−1(y) by definition of ≺h

iff g−1(x) ≺ g−1(y) by the observation above

iff g−1(x) < g−1(y) since h ∈ U

iff x <g y by definition of <g

So ≺h∈ W and the action is continuous.
To complete the proof of the theorem, notice that the restriction map ψ defined

by ψ : cLO(B̂S) −→ cLO(BS) with ψ(<) =<↾ BS is actually a homeomorphism.
The proof of that fact is easy thanks to the coherence property and is left to the

reader. It follows that cLO(B̂S) can be seen as the universal minimal flow of iso(BS)

via the action α : iso(BS) × cLO(B̂S) −→ cLO(B̂S) defined by

α(g,<) = ψ−1(ψ(<)g).

Now, observe that if g ∈ iso(BS) and <∈ cLO(B̂S), then

<ϕ(g)↾ BS = (<↾ BS)g.

It follows that ψ(<ϕ(g)) = ψ(<)g and thus α(g,<) = ψ−1(ψ(<)g) =<ϕ(g).

Observe also that there is a natural dense embedding ϕ : iso(BS) −→ iso(B̂S)
(recall that iso(BS) is equipped with the pointwise convergence topology coming

from the discrete topology on BS whereas iso(B̂S) is equipped with the pointwise

convergence topology coming from the metric topology on B̂S).

Now, let X be a minimal iso(B̂S)-flow. Since ϕ is continuous with dense range,
the action β : iso(BS) × X −→ X defined by β(g, x) = ϕ(g) · x is continuous with
dense orbits and allows to see X as a minimal iso(BS)-flow. Now, by one of the

previous comments, cLO(B̂S) is the universal minimal iso(BS)-flow so there is a

continuous and onto π : cLO(B̂S) −→ X such that for every g in iso(BS) and every

< in cLO(B̂S), π(α(g,<)) = β(g, π(<)), i.e. π(<ϕ(g)) = ϕ(g) · π(<). To finish
the proof, it suffices to show that this equality remains true when ϕ(g) is replaced

by any h in iso(B̂S). But this is easy since ϕ is continuous with dense range, π

is continuous, and the actions of iso(B̂S) on cLO(B̂S) and X considered here are
continuous. ¤

We finish with several remarks. The first one is a purely topological comment
along the lines of the remark following theorem 37: To show that the underlying

space related to the universal minimal flow of iso(B̂S) is cLO(B̂S), we used the fact

that the restriction map ψ : cLO(B̂S) −→ cLO(BS) defined by ψ(<) =<↾ BS is a
homeomorphism. cLO(BS) being metrizable, we consequently get:
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Theorem 40. The underlying space of the universal minimal flow of iso(B̂S)
is metrizable.

The second consequence is based on the simple observation that when the

distance set S is {1/n : n ∈ ω r {0}}, B̂S is the Baire space N . Hence:

Theorem 41. When N is equipped with the product metric, the universal min-
imal flow of iso(N ) is the set of all convex linear orderings on N .

5.3. Urysohn spaces US. We finish this section on topological dynamics
with results about the spaces US associated to the classes MS . When S is a subset
of ]0,+∞[ satisfying the 4-values condition, the class Mm<

S is a reasonable Fräıssé
class. It follows that Flim(Mm<

S ) = (US , <US ) for some metric linear ordering
<US on US . Furthermore, we saw that Mm<

S has the Ramsey and the ordering
properties whenever S has size less or equal to 3. Consequently:

Theorem 42. Let S be finite subset of ]0,+∞[ of size |S| 6 3 and satisfying
the 4-values condition. Then Aut(US , <US ) is extremely amenable.

Theorem 43. Let S be finite subset of ]0,+∞[ of size |S| 6 3 and satisfying the
4-values condition. Then the universal minimal flow of iso(US) is the set mLO(US)
of metric linear orderings on US together with the action iso(US)×mLO(US) −→
mLO(US), (g,<) 7−→<g defined by x <g y iff g−1(x) < g−1(y).

6. Concluding remarks and open problems.

The purpose of this section is to present several questions related to the Ramsey
calculus of finite metric spaces that we were not able to solve.

6.1. Classes Mm<
S when |S| is finite. The first question we would like to

present concerns the generalization of theorem 15 and theorem 21. We showed that
when S is a finite subset of ]0,+∞[ of size |S| 6 3 satisfying the 4-values condition,
the class Mm<

S of all finite metrically ordered metric spaces with distances in S
has the Ramsey property and the ordering property. For |S| = 4, the verification
is being carried out. So far, all the results provide a positive answer to:

Question 0. Let S be a finite subset of ]0,+∞[ satisfying the 4-values condi-
tion. Does the class Mm<

S have the Ramsey property and the ordering property?
If so, is finiteness of S really necessary?

Remark. We mentionned after theorem 36 that extreme amenability re-
sults can sometimes be proved directly via algebraic methods and may allow to
deduce new Ramsey theorems. The classes Mm<

S where |S| 6 3 and S satis-
fies the 4-values condition provide other illustrations of that fact. For example,
Aut(U{1,2,5}, <

U{1,2,5}) can be seen as a semi-direct product of Aut(Q, <) and

Aut(R, <R)Q where (R, <R) is the Fräıssé limit of the class G< of all finite or-
dered graphs. Aut(Q, <) is extremely amenable because thanks to the usual finite
Ramsey theorem, the class LO of all the finite linear orderings is a Ramsey class
(extreme amenability of Aut(Q, <) was originally proved by Pestov in [64] before
[40] and corresponds to one of the very first examples of non-trivial extremely
amenable groups). On the other hand, Aut(R, <R) is extremely amenable be-
cause G< is a Ramsey class. It follows that Aut(U{1,2,5}, <

U{1,2,5}) is extremely



84 2. RAMSEY CALCULUS, RAMSEY DEGREES AND UNIVERSAL MINIMAL FLOWS.

amenable. The same holds for Aut(U{1,3,6}, <
U{1,3,6}), which can be seen as a

semi-direct product of Aut(R, <R) and Aut(Q, <)Q. Unfortunately there are some
cases like S = {1, 3, 4} where such an analysis does not seems to be possible (it is
unfortunate because such a generalized phenomenon might have allowed to attack
the first part of Question 0 by induction on the size of S).

6.2. Euclidean metric spaces. The second question we would like to present
is related to a field that we mentionned in chapter 1 but that we did not even
touch: Euclidean Ramsey theory. To make the motivation clear, let us start with
the following results in topological dynamics:

Theorem 44 (Gromov-Milman [28]). Equipped with the pointwise convergence
topology, the group iso(S∞) of all surjective isometries of S∞ is extremely amenable.

Theorem 45 (Pestov [65]). Equipped with the pointwise convergence topology,
the group iso(ℓ2) of all surjective isometries of ℓ2 is extremely amenable.

In [65], theorem 44 is proved thanks to the same method as the one used to
prove theorem 26. This latter result being the consequence of the Ramsey property
for M<

Q , it is therefore conceivable that a Ramsey result is hidden behind theorem
44 and and corollary 45. Some theorems from Euclidean Ramsey theory seem to
suggest that there is some hope: Recall that H is the class consisting of all the
finite affinely independent metric subspaces of the Hilbert space ℓ2. Let K1 denote
the unique element of H with only one point.

Theorem 46 (Frankl-Rödl [18]). Let Y ∈ H and k > 0 be in ω. Then there is

a finite metric subspace Z of ℓ2 such that Z −→ (Y)
K1

k .

A result of similar flavor holds for the class of S of all elements X of H which
embed isometrically into S∞ with the property that {0ℓ2} ∪ X is affinely indepen-
dent.

Theorem 47 (Matoušek-Rödl [46]). Let Y ∈ S and k > 0 be in ω. Then there

is a finite metric subspace Z of S∞ such that Z −→ (Y)
K1

k .

Recall that we proved in the previous chapter that the classes HS and SS

when S ⊂]0,+∞[ is dense and countable are strong amalgamation classes, and
that the metric completions of the corresponding Fräıssé limits are ℓ2 and S∞

respectively. Therefore, theorems 46 and 47 may be seen as the first steps towards
general Ramsey theorems. However, the difficulty posed by the combinatorics of
Euclidean metric spaces has so far kept us away from any progress in this direction.
This may not be so surprising for a combinatorialist: Euclidean Ramsey theory is
a well-known source of difficult problems (see for example [24] for a list of unsolved
and well-paid problems). For example, we are not even able to prove that the
metric space Z from theorem 46 and theorem 47 can be constructed so as to stay
into the relevent class or that we can work with ordered metric spaces instead of
Y and Z. The kind of linear orderings to be considered is consequently unclear,
even though the results of the previous sections strongly suggest that the class of
all linear orderings is the most relevent one. We state all these guesses precisely:

Question 1. Let S be a dense subset of ]0,+∞[. Is the class H<
S consisting of

all the finite ordered affinely independent metric subspaces of the Hilbert space ℓ2
with distances in S a Ramsey class? Does it have the ordering property?
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Question 2. Same question with the class S<
S of all finite ordered X of H

with distances in S and which embed isometrically into S∞ with the property that
{0ℓ2} ∪ X is affinely independent.





CHAPTER 3

Big Ramsey degrees, indivisibility and oscillation
stability.

1. Fundamentals of infinite metric Ramsey calculus and oscillation

stability.

Recall that given a Fräıssé class K of L-structures and X ∈ K, the Ramsey
degree tK(X) of X in K is defined when there is l ∈ ω such that for any Y ∈ K,
and any k ∈ ω r {0}, there exists Z ∈ K such that:

Z −→ (Y)
X

k,l.

In this case, tK(X) is simply the least such l. Equivalently, if F denotes the
Fräıssé limit of K, X admits a Ramsey degree in K when there is l ∈ ω such that
for any Y ∈ K, and any k ∈ ω r {0},

F −→ (Y)
X

k,l.

If this latter result remains valid when Y is replaced by F, we say, following
[40], that X has a big Ramsey degree in K. Its value TK(X) is the least l ∈ ω such
that

F −→ (F)
X

k,l.

The notion of big Ramsey degree can be seen as a generalization of the notion
of indivisibility . F is indivisible when for every strictly positive k ∈ ω and every

χ : F −→ k, there is F̃ ⊂ F and isomorphic to F on which χ is constant. When
K is a class of finite metric spaces, F is the Urysohn space associated to K and
it is indivisible when given every strictly positive k ∈ ω and every χ : F −→ k,

there is an isometric copy F̃ of F included in F on which χ is constant. It turns
out that as pointed out in [9], the notion of indivisiblity is too strong a concept
to be studied in a general setting. For example, as soon as a metric space X is
uncountable, there is a partition of X into two pieces such that none of the pieces
includes a copy of the space via a continuous 1 − 1 map. Thus, from the point of
view of indivisibility, only countable metric spaces are relevent. This is the reason
for which relaxed versions of indivisibility were introduced. If X = (X, dX) is a
metric space, Y ⊂ X and ε > 0, set

(Y )ε = {x ∈ X : ∃y ∈ Y dX(x, y) 6 ε}

Now, say that X is ε-indivisible when for every strictly positive k ∈ ω and

every χ : X −→ k, there is i < k and X̃ ⊂ X isometric to X such that

X̃ ⊂ (←−χ {i})ε.

Equivalently, X is ε-indivisible when for every finite cover γ of X there is A ∈ γ

and X̃ ⊂ X isometric to X such that

X̃ ⊂ (A)ε.

87
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When X is ε-indivisible for every ε > 0, X is approximately indivisible. When
X is complete and ultrahomogeneous metric space, this notion corresponds to the
notion of oscillation stability introduced in [40]. To present this concept, we start
with a short reminder about uniform spaces. Given a set X, a uniformity on X
is a collection U of subsets of X × X called entourages satisfying the following
properties:

(1) U is closed under finite intersections and supersets.
(2) Every V ∈ U includes the diagonal ∆ = {(x, x) : x ∈ X}.
(3) If V ∈ U , then V −1 := {(y, x) : (x, y) ∈ V } ∈ U .
(4) If V ∈ U , there exists U ∈ U such that

U ◦ U := {(x, z) : ∃y ∈ U ((x, y) ∈ U ∧ (y, z) ∈ U)} ⊂ V .

(X,U) is then called a uniform space. A basis for U is a family B ⊂ U such
that for every U, V ∈ U , there is W ∈ B such that W ⊂ U ∩ V .

Every uniform space (X,U) carries a structure of topological space (X,TU ) by
declaring a subset O of X to be open if and only if for every x in O there exists an
entourage V such that {y ∈ X : (x, y) ∈ V } is a subset of O. (X,U) is separated
when (X,TU ) is, or equivalently when

⋂
U = ∆. A sequence (xn)n∈ω of elements

of X is Cauchy when

∀V ∈ U ∃N ∈ ω ∀p, q ∈ ω (q > p > N → (xq, xp) ∈ V )

and (X,U) is complete when every Cauchy sequence in (X,U) converges in (X,TU ).
Uniform spaces constitute the natural setting where uniform continuity can be
defined: Given two uniform spaces (X,U) and (Y,V), a map f : X −→ Y is
uniformly continuous when

∀V ∈ V ∃U ∈ U (U ⊂
←−
f V ).

When additionally f is bijective and f−1 is uniformly continuous, f is called a
uniform homeomorphism. Given a separated uniform space (X,U), there is, up to

uniform homeomorphism, a unique complete uniform space (X̂, Û) including (X,U)
as a dense uniform subspace, called the completion of (X,U). In what follows, we
will be particularly interested in uniform structures coming from topological groups.
In particular, for a topological group G, the left uniformity UL(G) is the uniformity
whose basis is given by the sets of the form VL = {(x, y) : x−1y ∈ V } where V is

a neighborhood of the identity. Now, let ĜL denote the completion of (G,UL(G)).

In general, ĜL is not a topological group. However, it is always a topological
semigroup. For a real-valued map f on a set X, define the oscillation of f on X
as:

osc(f) = sup{|f(y) − f(x)| : x, y ∈ X}.

Definition 5. Let G be a topological group, f : G −→ R be uniformly con-

tinuous, and f̂ be the unique extension of f to ĜL by uniform continuity. f is

oscillation stable when for every ε > 0, there is a right ideal I ⊂ ĜL such that

osc(f̂ ↾ I) < ε.

Definition 6. Let G be a topological group acting G continuously on a topo-
logical space X. For f : X −→ R and x ∈ X, let fx : G −→ R be defined by

∀g ∈ G fx(g) = f(gx).
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Then the action is oscillation stable when for every f : X −→ R bounded
and continuous and every x ∈ X, fx is oscillation stable whenever it is uniformly
continuous.

With these concepts in mind, we are now ready to link oscillation stability to
the Ramsey-type properties introduced previously: It turns out that when G is
the group iso(X) of all isometries from X onto itself equipped with the pointwise

convergence topology, ĜL can be thought as a topological subsemigroup of the
topological semigroup Emb(X) of all isometric embeddings from X into itself.

Theorem 48 (Kechris-Pestov-Todorcevic [40], Pestov [66]). Let G be a topo-
logical group acting continuously and transitively on a complete metric space X by
isometries. Then the following are equivalent:

(1) The action of G on X is oscillation stable.
(2) Every bounded real-valued 1-Lipschitz map f on X is oscillation stable.
(3) For every strictly positive k ∈ ω, every χ : X −→ k and every ε > 0, there

are g ∈ ĜL and i < k such that g′′X ⊂ (←−χ {i})ε.

When one of those equivalent conditions is fullfilled, X is oscillation stable. In
addition, one can check that when the metric space X is ultrahomogeneous, then

ĜL is actually equal to Emb(X). For that reason, in the realm of ultrahomogeneous
metric spaces the previous theorem can be stated as follows:

Corollary 1. For a complete ultrahomogeneous metric space X, the following
are equivalent:

(1) When iso(X) is equipped with the topology of pointwise convergence, the
standard action of iso(X) on X is oscillation stable.

(2) For every bounded 1-Lipschitz map f : X −→ R and every ε > 0, there is

an isometric copy X̃ of X in X such that

osc(f ↾ X̃) < ε.

(3) X is approximately indivisible.

In particular, for complete ultrahomogeneous metric spaces, oscillation stability
and approximate indivisibility coincide. In the more general context of structural
Ramsey theory, big Ramsey degrees and oscillation stability for topological groups
are also closely linked. For more information about this connection, see [40], section
11(E), or the book [66].

Remark. Though quite close in essence, the concept of oscillation stability
presented here is not the same as the classical concept of oscillation stability used
in Banach space theory. For more details, see the remark in section 4, at the end
of the introduction.

2. Big Ramsey degrees.

In this section, we present the only case where we were able to provide a
complete analysis for the big Ramsey degree: Ultrametric spaces.

Theorem 49. Let S be a finite subset of ]0,+∞[. Then every element of US

has a big Ramsey degree in US.
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Theorem 50. Let S be an infinite countable subset of ]0,+∞[ and let X be in
US such that |X| > 2. Then X does not have a big Ramsey degree in US.

The ideas we use to reach this goal are not new. The way we met them is
through some unpublished work of Galvin, but in [53], Milner writes that they
were also known to and exploited by several other authors, among whom Hajnal
(who apparently realized first the equivalent of lemma 13 and stated it explicitly
in [32]), and Haddad and Sabbagh ([35], [36] and [37]).

Recall that when S is finite and given by elements s0 > s1 . . . > s|S|−1 > 0,

it is convenient to see the space BS as the set ω|S| of maximal nodes of the tree
ω6|S| =

⋃
i6|S| ω

i ordered by set-theoretic inclusion and equipped with the metric

defined for x 6= y by

d(x, y) = s∆(x,y)

where ∆(x, y) is the height of the largest common predecessor of x and y in
ω6|S|. For A ⊂ ω|S|, set

A↓ = {a ↾ k : a ∈ A ∧ k 6 n}

It should be clear that when A,B ⊂ ω|S|, then A and B are isometric iff
A↓ ∼= B↓. Consequently, when X ∈ US , one can define the natural tree associated
to X in US to be the unique (up to isomorphism) subtree TX of ω6|S| such that

for any copy X̃ of X in BS , X̃
↓ ∼= TX.

Given a subtree T of ω|S|, set
(
ω6|S|

T

)
= {T̃ : T̃ ⊂ ω6|S| ∧ T̃ ∼= T}

When k, l ∈ ω r {0} and for any χ :
(
ω6|S|

T

)
−→ k there is U ∈

(
ω6|S|

ω6|S|

)
such

that χ takes at most l values on
(
U

T

)
, we write

ω6|S| −→ (ω6|S|)
T

k,l

If there is l ∈ ω r {0} such that for any k ∈ ω r {0}, ω6|S| −→ (ω6|S|)
T

k,l, the

least such l is called the Ramsey degree of T in ω6|S|.

Lemma 13. Let X ⊂ ω|S| and let T = X↓. Then T has a Ramsey degree in
ω6|S| equal to |e(T)|.

Proof. Say that a subtree U of ω6|S| is expanded when:

(1) Elements of U are strictly increasing.
(2) For every u, v ∈ U and every k ∈ |S|,

u(k) 6= v(k) → (∀j > k u(j) 6= v(j))

Note that every expanded T̃ ∈
(
ω6|S|

T

)
is linearly ordered by ≺T̃ defined by

s ≺T̃ t iff (s = ∅ or s(|s|) < t(|t|))

and that then ≺T̃ is a linear extension of the tree ordering on T̃. Now, given

≺∈ e(T), let
(
ω6|S|

T,≺

)
denote the set of all expanded T̃ ∈

(
ω6|S|

T

)
with type ≺, that

is such that the order-preserving bijection between the linear orderings (T̃,≺T̃)

and (T,≺) induces an isomorphism between the trees T̃ and T. Define the map

ψ≺ :
(
ω6|S|

T,≺

)
−→ [ω]|T|−1 by

ψ≺(T̃) = {t(|t|) : t ∈ T̃ r {∅}}
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Then ψ≺ is a bijection. Call ϕ≺ its inverse map.

Now, let k ∈ ω r {0} and χ :
(
ω6|S|

T

)
−→ k. Define Λ : [ω]|T |−1 −→ ke(T) by

Λ(M) = (χ(ϕ≺(M)))≺∈e(T)

By Ramsey’s theorem, find an infinite N ⊂ ω such that Λ is constant on

[N ]|T|−1. Then, on the subtree N6|S| of ω6|S|, any two expanded elements of
(
ω6|S|

T

)

with same type have the same χ-color. Now, let U be an expanded everywhere
infinitely branching subtree of N6|S|. Then U is isomorphic to ω6|S| and χ does
not take more than |e(T)| values on

(
U

T

)
.

To finish the proof, it remains to show that |e(T)| is the best possible bound.

To do that, simply observe that for any U ∈
(
ω6|S|

ω6|S|

)
, every possible type appears

on
(
U

T

)
. ¤

This lemma has two direct consequences concerning the existence of big Ramsey
degrees in US . Indeed, it should be clear that when X ∈ US , X has a big Ramsey
degree in US iff TX has a Ramsey degree in ω6|S| and that these degrees are equal.
Thus, theorem 49 follows.

On the other hand, observe that if S ( S′ are finite and X ∈ US has size at
least two, then the big Ramsey degree TUS′ (X) of X in US′ is strictly larger than
the big Ramsey degree of X in US . In particular, TUS′ (X) tends to infinity when
|S′| tends to infinity. That fact can be used to prove theorem 50.

Proof of theorem 50. It suffices to show that for every k ∈ ωr{0}, there is

k′ > k and a coloring χ :
(
BS

X

)
−→ k′ such that for every Q ∈

(
BS

BS

)
, the restriction

of χ on
(

Q
X

)
has range k′. Thanks to the previous remark, we can fix S′ ⊂ S finite

such that X ∈ US′ and the big Ramsey degree k′ of X in US′ is larger than k. Recall
that BS ⊂ ωS so if 1S′ : S −→ 2 is the characteristic function of S′, it makes sense
to define f : BS −→ QS′ by

f(x) = 1S′x

Observe that d(f(x), f(y)) = d(x, y) whenever d(x, y) ∈ S′. Thus, given any

Q ∈
(
BS

BS

)
, the direct image f ′′Q of Q under f is in

(
QS′

QS′

)
. Now, let χ′ :

(
QS′

X

)
−→ k′

be such that for every Q′ ∈
(
QS′

QS′

)
, the restriction of χ′ to

(
Q′

X

)
has range k′. Then

χ = χ′ ◦ f is as required. ¤

3. Indivisibility.

As stated in the introduction of this chapter, indivisibility corresponds to the
most elementary case in the analysis of the big Ramsey degrees, so one might wonder
why the part of this thesis devoted to indivisibility is much larger than the one about
big Ramsey degrees. Here is the reason: With the exception of ultrametric spaces,
the obstacles posed by indivisibility are in most of the cases substantial enough for
many problems to remain open. Fortunately, there were also some recent progress,
in particular thanks to the paper [9] by Delhommé, Laflamme, Pouzet and Sauer
where a detailed analysis of metric indivisibility is carried out. For example, we
already mentionned a general observation from [9] in the introduction: From the
point of view of metric indivisiblity, only countable spaces are relevent. But this is
not the only immediate restriction:
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Proposition 18. Let X be a metric space whose distance set is unbounded.
Then X is divisible.

Proof. We follow [9]. Observe that inductively, we can construct a sequence
of reals (rn)n∈ω with r0 = 0 together with a sequence (xn)n∈ω of elements of X
such that

∀n < ω 2rn < dX(x0, xn+1) < rn+1 − rn.

Now, define χ : X −→ 2 by setting:

∀x ∈ X χ(x) = 0 ↔

(
dX(x0, x) ∈

⋃

n∈ω

[r2n, r2n+1[

)
.

We claim that χ divides X: Let ϕ : X −→ X be an isometric embedding.
Let n ∈ ω be such that dX(x0, ϕ(x0)) ∈ [rn, rn+1[. Then one can check that
dX(x0, ϕ(xn+2)) ∈ [rn+1, rn+2[, and so χ(ϕ(x0)) 6= χ(ϕ(xn+2)). ¤

It follows that even if we restrict our attention to the Urysohn spaces associated
to the Fräıssé classes of finite metric spaces, some spaces may have a trivial be-
haviour as far as indivisibility is concerned. For example, UQ and Uω are divisible.
However, we will see that when the two obstacles of cardinality and unboundedness
are avoided, indivisibility can be substantially more difficult to study. During the
past three years, the space whose indivisibility properties attracted most of the at-
tention is SQ. The question of knowing whether SQ is indivisible or not is explicitly
stated in [56] and in [66]. This problem was solved in [9] by Delhommé, Laflamme,
Pouzet and Sauer, and we present their result in subsection 3.1. In subsection 3.2,
we present the few known results concerning indivisibility of the spaces Um when
m ∈ ω. In 3.3, we consider the case of the countable ultrahomogeneous ultrametric
spaces before turning to the study of indivisibility for the spaces US with |S| 6 4
in subsection 3.4.

3.1. Divisibility of SQ. Apart from the intrinsic combinatorial interest, the
motivation attached to this problem comes from the problem of the oscillation
stability for the Urysohn sphere S. Indeed, had SQ been indivisible, S would have
been oscillation stable. We will however see now that the actual answer for the
indivisibility problem for SQ is not the one that was hoped for. All the concepts
and results presented in this subsection come from [9] and are due to Delhommé,
Laflamme, Pouzet and Sauer.

Theorem 51 (Delhommé-Laflamme-Pouzet-Sauer [9]). SQ is divisible.

Proof. Call a sequence of elements x0, . . . , xn of SQ an ε-chain from x0 to xn

if for every i < n, dSQ(xi, xi+1) 6 ε. The key idea is the following simple geometrical
fact: Let y ∈ SQ, r ∈ [0, 1] irrational, x ∈ SQ and n ∈ ω strictly positive such that

dSQ(y, x) < r ·

(
1 −

1

n + 1

)
.

Let also x′ ∈ SQ be such that

dSQ(x, x′) > r

Finally, let ε > 0 be such that
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ε <
1

(n + 1)(n + 2)
.

Then for every ε-chain (xi)i6n from x to x′, there is i 6 n such that

r ·

(
1 −

1

n + 1

)
6 dSQ(y, xi) < r ·

(
1 −

1

n + 2

)
.

With this fact in mind, we now prove that SQ is divisible. First, construct
inductively a subset Y of SQ together with a family (ry)y∈Y of irrationals in ]0, 1/2[
such that

∀x ∈ SQ ∃!yx ∈ Y dSQ(yx, x) < rx.

Now, let χ : SQ −→ 2 be defined by

χ(x) = 0 ↔

(
∃n > 0 ryx

.

(
1 −

1

2n

)
6 dSQ(yx, x) < ryx

.

(
1 −

1

2n + 1

))
.

We claim that χ divides SQ. Indeed, let S̃Q be an isometric copy of SQ in SQ.

Fix x ∈ S̃Q, and consider n > 0 such that

ryx
·

(
1 −

1

n

)
6 dSQ(yx, x) < ryx

·

(
1 −

1

n + 1

)
.

In S̃Q, there is x′ such that dSQ(x, x′) > ryx
. Fix ε > 0 with

ε <
1

(n + 1)(n + 2)
.

Then in S̃Q, there is an ε-chain (xi)i6n from x to x′. But by the previous
property, there is i 6 n such that

r ·

(
1 −

1

n + 1

)
6 dX(y, xi) < r ·

(
1 −

1

n + 2

)
.

Then χ(x) 6= χ(xi). ¤

Theorem 51 is actually only a particular case of a more general result which can
be proved using the same idea. For a metric space X, x ∈ X, and ε > 0, let λε(x)
be the supremum of all reals l 6 1 such that there is an ǫ-chain (xi)i6n containing
x and such that dX(x0, xn) > l. Then, define

λ(x) = sup{l ∈ R : ∀ε > 0 λε(x) > l}.

Theorem 52 (Delhommé-Laflamme-Pouzet-Sauer [9]). Let X be a countable
metric space. Assume that there is x0 ∈ X such that λ(x0) > 0. Then X is divisible.

Theorem 51 then follows since in SQ every x is such that λ(x) = 1.
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3.2. Are the Um’s indivisible? We mentionned earlier that UQ is divisible
because its distance set is unbounded. We also saw in the previous subsection
that unboundedness is not the only reason for this phenomenon as the bounded
counterpart SQ of UQ is not indivisible either. In this subsection, we try to answer
the same question when UQ is replaced by Uω. This latter space is divisible because
its distance set is unbounded. However, what if one works with one of its bounded
versions, namely a space of the form Um when m ∈ ω? We will see in this section
that apart from the most elementary cases, not much is known. Of course, when
m = 1, the space Um is indivisible. The first non-trivial case is consequently for
m = 2. However, we mentionned in chapter 1 that U2 is really the Rado graph
R where the distance is 1 between connected points and 2 between non-connected
distinct points. Therefore, indivisiblity for U2 is equivalent to indivisibility of R,
a problem whose solution is well-known:

Proposition 19. The Rado graph R is indivisible.

Proof. Let k ∈ ω be strictly positive and χ : R −→ k. Let {xn : n ∈ ω}
be an enumeration of the vertices of R. If all vertices have color 0, we are done.
Otherwise, choose x̃0 such that χ(x̃0) = 0. In general, assume that x̃0, . . . , x̃n were
constructed with χ-color 0 and such that

∀i, j 6 n {x̃i, x̃j} ∈ ER ↔ {xi, xj} ∈ ER.

Now, consider the set E defined by

E = {x ∈ R : ∀i 6 n
(
{x̃i, x} ∈ ER ↔ {xi, xn+1} ∈ ER

)
} r {x0, . . . , xn}.

If χ does not take the value 0 on E, observe that the subgraph of R supported
by E is ultrahomogeneous and includes an isomorphic copy of every finite graph.
Therefore, this subgraph is isomorphic to R itself and χ is constant on it with value
1, so we are done. Otherwise, χ takes the value 0 on E and we choose xn+1 in E
and such that χ(xn+1) = 0. Thus, if the construction stops at some stage, then we
are left with a copy of R with χ-color 1. Otherwise, after ω steps, we are left with
{x̃n : n ∈ ω} isomorphic to R and with χ-color 0. ¤

Another possible proof for the indivisibility of R uses a Ramsey-type theorem
known as Milliken’s theorem. This result will be useful later in this thesis to prove
that Urysohn spaces more sophisticated than U2 are indivisible, so we present it
now. The main concept attached to Milliken’s theorem is the concept of strong
subtree: Fix a downwards closed finitely branching subtree T of the tree ω<ω with
height ω. Thus, the root of T is simply the empty sequence and the height of a
node t ∈ T is the integer |t| such that t : |t| −→ ω. Say that a subtree S of T is
strong when

i) S is rooted.

ii) Every level of S is included in a level of T.

iii) For every s ∈ S not of maximal height in S and every immediate successor
t of s in T there is exactly one immediate successor of s in S extending t.

For s, t ∈ T , set

s ∧ t = max{u ∈ T : u ⊂ s, u ⊂ t}.

Now, for A ⊂ T , set
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A∧ = {s ∧ t : s, t ∈ A}.

Note that A ⊂ A∧ and that A∧ is a rooted subtree of T. For A,B ⊂ T , write
AEmB when there is a bijection f : A∧ −→ B∧ such that for every s, t ∈ A∧:

i) s ⊂ t ↔ f(s) ⊂ f(t).

ii) |s| < |t| ↔ |f(s)| < |f(t)|.

iii) s ∈ A ↔ f(s) ∈ B.

iv) t(|s|) = f(t)(|f(s)|) whenever |s| < |t|.

It should be clear that Em is an equivalence relation. Given A ⊂ T , the Em-
equivalence class of A is written [A]Em. Finally, for a strong subtree S of T, let
[A]Em ↾ S denote the set of all elements of [A]Em included in S. With these notions
in mind, the version of Milliken’s theorem we need can be stated as follows:

Theorem 53 (Milliken [51]). Let T be a nonempty downwards closed finitely
branching subtree T of ω<ω with height ω. Let A be a finite subset of T. Then for
every strictly positive k ∈ ω and every k-coloring of [A]Em, there is a strong subtree
S of T with height ω such that [A]Em ↾ S is monochromatic.

For more on this theorem and its numerous applications, the reader is referred
to [79]. We now show how to deduce proposition 19 from theorem 53.

Proof. Let T be the complete binary tree 2<ω. On T, define the following
graph structure (sometimes called the standard graph structure on 2<ω) by:

∀s < t ∈ 2<ω {s, t} ∈ E ↔ (|s| < |t|, t(|s|) = 1).

Now, observe that R embeds into the corresponding resulting graph. Indeed,
let {xn : n ∈ ω} be an enumeration of the vertices of R. Set t0 = ∅. In general,
assume that t0, . . . , tn were constructed such that |ti| = i for every i and

∀i, j 6 n
(
{ti, tj} ∈ E ↔ {xi, xj} ∈ ER

)
.

Choose tn+1 ∈ 2<ω with height n + 1 and such that

∀k 6 n tn+1(i) = 1 ↔ {xk, xn+1} ∈ ER.

Then after ω steps, we are left with {tn : n ∈ ω} isomorphic to R. In fact,
observe that this construction can be carried out inside any strong subtree S of
T. On the other hand, it follows that R is indivisible iff (2<ω, E) is. But now,
indivisibility of (2<ω, E) is guaranteed by Milliken’s theorem: Let A denote the
1-point subset of 2<ω. Then [A]Em is simply 2<ω itself. So given k ∈ ω strictly
positive and a coloring χ : 2<ω −→ k, one can find a χ-monochromatic strong
subtree S of 2<ω. The subgraph of (2<ω, E) supported by S being isomorphic to
(2<ω, E) itself, S provides the required χ-monochromatic copy of (2<ω, E). ¤

The following case to consider is U3, which turns out to be another particular
case. As mentionned already in chapter 1, U3 can be encoded by the countable
ultrahomogeneous edge-labelled graph with edges in {1, 3} and forbidding the com-
plete triangle with labels 1, 1, 3. The distance between two points connected by an
edge is the label of the edge while the distance between two points which are not
connected is 2. This fact allows to show:

Theorem 54 (Delhommé-Laflamme-Pouzet-Sauer [9]). U3 is indivisible.



96 3. BIG RAMSEY DEGREES, INDIVISIBILITY AND OSCILLATION STABILITY.

The proof of this theorem can be deduced from the proof of the indivisibility
of the Kn-free ultrahomogeneous graph by El-Zahar and Sauer in [10]. We do not
provide the details here but mention few facts which will be useful for us later in
subsection 3.4. The presentation we adopt follows [9]. Fix a relational signature
L and consider an L-structure H. A nonempty subset O of H is an orbit if it is
an orbit for the action of the automorphism group Aut(H) on H which pointwise
fixes a finite subset of H. Now, given two L-structures R and S, write R ≺ S when
there is a partition of R into finitely many parts R0, . . . , Rn such that for every
i 6 n, Ri embeds into S. The following theorem follows from results in [11] and
[74]. For the definition of free amalgamation see chapter 2, subsection on Nešetřil’s
theorem.

Theorem 55 (El-Zahar - Sauer [11], Sauer [74]). Let L be a finite binary sig-
nature and H a countable ultrahomogeneous L-structure whose age has free amal-
gamation. Then H is indivisible iff any two orbits of H are related under ≺.

It follows that to prove that U3 is indivisible, it suffices to show that the
countable ultrahomogeneous edge-labelled graph with edges in {1, 3} and forbidding
the complete triangle with labels 1, 1, 3 satisfies those conditions, which in the
present case is easy to check. We will see later that this method is actually useful
in many cases. However, it does not allow to solve all the indivisibility problems
that we are interested in. In particular, the indivisibility problem for U4 is still,
so far, left open. More will be said about this in subsection 3.4 where many other
combinatorial problems will appear. Indivisibility properties of U4 and the other
spaces Um will also appear in subsection 4.2 when dealing with the oscillation
stability problem for the Urysohn sphere.

3.3. Indivisibility of ultrametric Urysohn spaces. We saw in section 2
that the classes of ultrametric spaces US were the only case where we were able to
compute the big Ramsey degree explicitly. However, theorem 49 and theorem 50
leave an open case: Nothing is said about the big Ramsey degree of the 1-point
ultrametric space when the set S is infinite. In other words, theorems 49 and 50 do
not solve the indivisibility problem for BS when S is infinite. The purpose of this
subsection is to fix that flaw.

Theorem 56. Let S ⊂]0,+∞[ be countable. Assume that the reverse linear
ordering > on R does not induce a well-ordering on S. Then there is a map χ :
BS −→ ω whose restriction on any isometric copy X of BS inside BS has range
ω.

In particular, in this case, BS is divisible. This result should be compared with
the following one:

Theorem 57. Let S ⊂]0,+∞[ be finite or countable. Assume that the reverse
linear ordering > on R induces a well-ordering on S. Then BS is indivisible.

Two remarks before entering the technical parts: First, theorem 56 and the-
orem 57 were first obtained completely independently of our work by Delhommé,
Laflamme, Pouzet and Sauer in [9]. The proofs presented here are ours but the
reader should be aware of the fact that for theorem 57, though the ideas are essen-
tially the same, the proof presented in [9] is considerably shorter. Second remark:
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Together with a previous remark according to which every countable ultrahomoge-
neous ultrametric space is of the form BS for some at most countable S ⊂]0,+∞[,
they can be synthetized as follows:

Theorem 58. Let X be a countable ultrahomogeneous ultrametric space. Then
X is indivisible iff the reverse linear ordering > on R induces a well-ordering on
its distance set.

This subsection is organized as follows. Theorem 56 is proved in 3.3.1. Theorem
57 is proved in 3.3.2. Finally, in 3.3.3, we present an application of theorem 57
dealing with restrictions of maps f : BS −→ ω.

3.3.1. Proof of theorem 56. Fix a countable subset S of ]0,+∞[ such that the
reverse linear ordering > on R does not induce a well-ordering on S. The idea to
prove that BS is divisible is to use a coloring which is constant on some particular
spheres. More precisely, observe that (S,>) not being well-ordered, there is a
strictly increasing sequence (si)i∈ω of reals such that s0 = 0 and si ∈ S for every
i > 0. Observe that we can construct a subset E of BS such that given any y ∈ BS ,
there is exactly one x in E such that for some i < ω, dBS (x, y) < si. Indeed, if
supi<ω si = ∞, simply take E to be any singleton. Otherwise, let ρ = supi<ω si

and choose E ⊂ BS maximal such that

∀x, y ∈ E dBS (x, y) > ρ

To define χ : BS −→ ω, let (Aj)j∈ω be a family of infinite pairwise disjoint
subsets of ω whose union is ω. Then, for y ∈ BS , let e(y) and i(y) be the unique
elements of E and ω respectively such that dBS (e(y), y) ∈ [si(y), si(y)+1[, and set

χ(y) = j iff i(y) ∈ Aj

Claim. χ is as required.

Proof. Let Y ⊂ BS be isometric to BS . Fix y ∈ Y . For every j ∈ ω,
pick ij > i(y) + 1 such that ij ∈ Aj . Since Y is isometric to BS , we can find
an element yj in Y such that dBS (y, yj) = sij

. We claim that χ(yj) = j, or
equivalently i(yj) ∈ Aj . Indeed, consider the triangle {e(y), y, yj}. Observe that in
an ultrametric space every triangle is isosceles with short base and that here,

dBS (e(y), y) < sij
= d(y, yj)

Thus,

dBS (e(y), yj) = dBS (y, yj) ∈ [sij
, sij+1[

And therefore e(yj) = e(y) and i(yj) = ij ∈ Aj . ¤

3.3.2. Proof of theorem 57. When S ⊂]0,+∞[ is finite, it follows from the proof
of section 2 that the 1-point ultrametric space has a big Ramsey degree equal to
1. Thus, BS is indivisible. From now on, we consequently concentrate on the case
where S is infinite. Fix an infinite countable subset S of ]0,+∞[ such that the
reverse linear ordering > on R induces a well-ordering on S. Our goal here is to
show that the space BS is indivisible. For convenience, we will simply write d
instead of dBS .

Observe first that the collection BS of metric balls of BS is a tree when ordered
by reverse set-theoretic inclusion. When x ∈ BS and r ∈ S, B(x, r) denotes the
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set {y ∈ BS : dBS (x, y) 6 r}. x is called a center of the ball and r a radius. Note
that in BS , non empty balls have a unique radius but admit all of their elements
as centers. Note also that when s > 0 is in S, the fact that (S,>) is well ordered
allows to define

s− = max{t ∈ S : t < s}

The main ingredients are contained in the following definition and lemma.

Definition 7. Let A ⊂ BS and b ∈ BS with radius r ∈ S ∪ {0}. Say that A is
small in b when r = 0 and A ∩ b = ∅ or r > 0 and A ∩ b can be covered by finitely
many balls of radius r−.

We start with an observation. Assume that {xn : n ∈ ω} is an enumeration of
BS , and that we are trying to build inductively a copy {an : n ∈ ω} of BS in A
such that for every n,m ∈ ω, d(an, am) = d(xn, xm). Then the fact that we may be
blocked at some finite stage exactly means that at that stage, a particular metric
ball b with A ∩ b 6= ∅ is such that A is small in b. This idea is expressed in the
following lemma.

Lemma 14. Let X ⊂ BS. The following are equivalent:
i)

(
X
BS

)
6= ∅.

ii) There is Y ⊂ X such that Y is not small in b whenever b ∈ BS and Y ∩b 6= ∅.

Proof. Assume that i) holds and let Y be a copy of BS in X. Fix b ∈ BS

with radius r and such that Y ∩ b 6= ∅. Pick x ∈ Y ∩ b and let E ⊂ BS be an
infinite subset where all the distances are equal to r. Since Y is isometric to BS ,
Y includes a copy Ẽ of E such that x ∈ Ẽ. Then Ẽ ⊂ Y ∩ b and cannot be covered
by finitely many balls of radius r−, so ii) holds.

Conversely, assume that ii) holds. Let {xn : n ∈ ω} be an enumeration of
the elements of BS . We are going to construct inductively a sequence (yn)n∈ω of
elements of Y such that

∀m,n ∈ ω d(ym, yn) = d(xm, xn)

For y0, take any element in Y . In general, if (yn)n6k is built, construct yk+1

as follows. Consider the set E defined as

E = {y ∈ BS : ∀ n 6 k d(y, yn) = d(xk+1, xn)}

Let also

r = min{d(xk+1, xn) : n 6 k}

and

M = {n 6 k : d(xk+1, xn) = r}

We want to show that E ∩ Y 6= ∅. Observe first that for every m,n ∈ M ,
d(ym, yn) 6 r. Indeed,

d(ym, yn) = d(xm, xn) 6 max(d(xm, xk+1), d(xk+1, xn)) = r

So in particular, all the elements of {ym : m ∈ M} are contained in the same
ball b of radius r.

Claim. E = b r
⋃

m∈M B(ym, r−).
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Proof. It should be clear that

E ⊂ b r
⋃

m∈M

B(ym, r−)

On the other hand, let y ∈ b r
⋃

m∈M B(ym, r−). Then for every m ∈ M ,

d(y, ym) = r = d(xk+1, xm)

so it remains to show that d(y, yn) = d(xk+1, xn) whenever n /∈ M . To do that,
we use again the fact that every triangle is isosceles with short base. Let m ∈ M .
In the triangle {xm, xn, xk+1}, we have d(xk+1, xn) > r so

d(xm, xk+1) = r < d(xn, xm) = d(xn, xk+1)

Now, in the triangle {ym, yn, y}, d(y, ym) = r and d(ym, yn) = d(xm, xn) > r.
Therefore,

d(y, yn) = d(ym, yn) = d(xm, xn) = d(xk+1, xn)

¤

We consequently need to show that (br
⋃

m∈M B(ym, r−))∩Y 6= ∅. To achieve
that, simply observe that when m ∈ M , we have ym ∈ Y ∩ b. Thus, Y ∩ b 6= ∅
and by property ii), Y is not small in b. In particular, Y ∩ b is not included in⋃

m∈M B(ym, r−). ¤

We are now ready to prove theorem 57. However, before we do so, let us make
another observation concerning the notion smallness. Let BS = A ∪ B.

Note that if A is small in b ∈ BS , then 1) A ∩ b cannot contribute to build a
copy of BS in A and 2) B∩b is isometric to b. So intuitively, everything happens as
if b were completely included in B. So the idea is to remove from A all those parts
which are not essential and to see what is left at the end. More precisely, define a
sequence (Aα)α∈ω1

recursively as follows:

• A0 = A.
• Aα+1 = Aα r

⋃
{b : Aα is small in b}.

• For α < ω1 limit, Aα =
⋂

η<α Aη.

Since BS is countable, the sequence is eventually constant. Set

β = min{α < ω1 : Aα+1 = Aα}

Observe that if Aβ is non-empty, then Aβ is not small in any metric ball it
intersects. Indeed, suppose that b ∈ BS is such that Aβ is small in b. Then
Aβ+1 ∩ b = ∅. But Aβ+1 = Aβ so Aβ ∩ b = ∅. Therefore, since Aβ ⊂ A, A satisfies

condition ii) of lemma 14 and
(

A
BS

)
6= ∅.

It remains to consider the case where Aβ = ∅. According to our second ob-
servation, the intuition is that A is then unable to carry any copy of BS and
is only composed of parts which do not affect the metric structure of B. Thus,
B should include an isometric copy of BS . For α < ω1, let Cα be the set of
all minimal elements (in the sense of the tree structure on BS) of the collection
{b ∈ BS : Aα is small in b}. Note that since all points of B can be seen as balls
of radius 0 in which A is small, we have B ⊂

⋃
C0. Note also that (

⋃
Cα)α<ω1

is
increasing. By induction on α > 0, it follows that

∀ 0 < α < ω1 Aα = BS r
⋃

η<α

⋃
Cη (∗)
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Claim. Let α < ω1, b ∈ Cα with radius r ∈ S. Then br
⋃

η<α

⋃
{c ∈ Cη : c ⊂ b}

is small in b.

Proof. Aα is small in b so find c0 . . . cn−1 ∈ BS with radius r− and included
in b such that

Aα ∩ b ⊂
⋃

i<n

ci

Then thanks to (∗)

b r
⋃

i<n

ci ⊂
⋃

η<α

⋃
Cη

Note that by minimality of b, if η < α, then b ( c cannot happen for any
element of Cη. It follows that either c ∩ b = ∅ or c ⊂ b. Therefore,

b r
⋃

i<n

ci ⊂
⋃

η<α

⋃
{c ∈ Cη : c ⊂ b}

¤

Claim. Let α < ω1 and b ∈ Cα. Then
(
B∩b

b

)
6= ∅.

Proof. We proceed by induction on α < ω1.
For α = 0, let b ∈ C0. Without loss of generality, we may assume that the radius

r of b is strictly positive and hence in S. A0 = A is small in b so find c0, . . . , cn−1

with radius r− such that A ∩ b ⊂
⋃

i<n ci. Then b r
⋃

i<n ci is isometric to b and
is included in B ∩ b.

Suppose now that the claim is true for every η < α. Let b ∈ Cα with radius
r ∈ S. Thanks to the previous claim, we can find c0 . . . cn−1 ∈ BS with radius r−

and included in b such that

b =
⋃

i<n

ci ∪
⋃

η<α

⋃
{c ∈ Cη : c ⊂ b}

Observe that ⋃

η<α

⋃
{c ∈ Cη : c ⊂ b} =

⋃
{c ∈

⋃

η<α

: c ⊂ b}

It follows that if Dα is defined as the set of all minimal elements (still in the
sense of the tree structure on BS) of the collection

{c ∈
⋃

η<α

Cη : c ⊂ b ∧ ∀i < n c ∩ ci = ∅}

Then {ci : i < n} ∪ Dα is a collection of pairwise disjoint balls and
⋃
Dα is

isometric to b. By induction hypothesis,
(
B∩c

c

)
6= ∅ whenever c ∈ Dα and there is

an isometry ϕc : c −→ B ∩ c. Now, let ϕ :
⋃

Dα −→ B ∩ b be defined as

ϕ =
⋃

c∈Dα

ϕc

We claim that ϕ is an isometry. Indeed, let x, x′ ∈
⋃
Dα. If there is c ∈ Dα

such that x, x′ ∈ c then

d(ϕ(x), ϕ(x′)) = d(ϕc(x), ϕc(x
′)) = d(x, x′)

Otherwise, find c 6= c′ ∈ Dα with x ∈ c and x′ ∈ c′. Observe that since we are
in an ultrametric space, we have

∀y, z ∈ c ∀y′, z′ ∈ c′ d(y, y′) = d(z, z′)
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Thus, since x, ϕ(x) ∈ c and x′, ϕ(x′) ∈ c′, we get

d(ϕ(x), ϕ(x′)) = d(x, x′)

¤

To finish the proof of theorem 57, it suffices to notice that as a metric ball
(the unique ball of radius maxS), BS is in Cβ . So according to the previous claim,(

B
BS

)
6= ∅ and we are done.

3.3.3. An application of theorem 57. Let S ⊂]0,+∞[ be infinite and countable
such that the reverse linear ordering > on R induces a well-ordering on S. We saw
that BS is then indivisible but that there is no big Ramsey degree for any X ∈ US

as soon as |X| > 2. In other words, in the present context, the analogue of infinite
Ramsey’s theorem holds in dimension 1 but fails for higher dimensions. Still, one
may ask if some partition result fitting in between holds. For example, given any
f : BS −→ ω, is there an isometric copy of BS inside BS on which f is constant
or injective? Such a property is sometimes refered to as selectivity . Selectivity can
be thought as an intermediate Ramsey-type result between dimension 1 and 2. It
is indeed clearly stronger than the 1-dimensional result, but is in turn implied by
the 2 dimensional one if one considers the 2-coloring χ defined by χ({x, y}) = 1 iff
f(x) = f(y). It turns out that in the present case, selectivity does not hold. To
see that, consider a family (bn)n∈ω of disjoint balls covering BS whose sequence
of corresponding radii (rn)n∈ω decreases strictly to 0 and define f : BS −→ ω by
f(x) = n iff x ∈ bn. Then f is not constant or injective on any isometric copy of BS .
Observe in fact that f is neither uniformly continuous nor injective on any isometric
copy of BS . However, if “uniformly continuous” is replaced by “continuous”, then
the result becomes true:

Theorem 59. Let S be an infinite countable subset of ]0,+∞[ such that the
reverse linear ordering > on R induces a well-ordering on S. Then given any
map f : BS −→ ω, there is an isometric copy X of BS inside BS such that f is
continuous or injective on X.

The purpose of what follows is to provide a proof of that fact. The reader will
notice the similarities with the proof of theorem 57.

Definition 8. Let f : BS −→ ω, Y ⊂ BS and b ∈ BS with radius r > 0.
Say that f has almost finite range on b with respect to Y when there is a finite
family (ci)i<n of elements of BS with radius r− such that f has finite range on
Y ∩ (b r

⋃
i<n ci).

Lemma 15. Let f : BS −→ ω and Y ⊂ BS such that for every b ∈ BS meeting
Y , f does not have almost finite range on b with respect to Y . Then there is an
isometric copy of BS included in Y on which f is injective.

Proof. Let {xn : n ∈ ω} be an enumeration of the elements of BS . Our goal is
to construct inductively a sequence (yn)n∈ω of elements of Y on which f is injective
and such that

∀m,n ∈ ω d(ym, yn) = d(xm, xn)

For y0, take any element in Y . In general, if (yn)n6k is built, construct yk+1

as follows. Consider the set E defined as

E = {y ∈ BS : ∀ n 6 k d(y, yn) = d(xk+1, xn)}
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As in lemma 14, there is b ∈ BS with radius r > 0 intersecting Y and a set M
such that

E = b r
⋃

m∈M

B(ym, r−)

Since f does not have almost finite range on b with respect to Y , f takes
infinitely many values on E and we can choose yk+1 ∈ E such that

∀n 6 k f(yn) 6= f(yk+1)

¤

We now turn to a proof of theorem 59. Here, our strategy is to define recursively
a sequence (Qα)α∈ω1

whose purpose is to get rid of all those parts of BS on which
f is essentially of finite range:

• Q0 = BS .
• Qα+1 = Qα r

⋃
{b : f has almost finite range on b with respect to Qα}.

• For α < ω1 limit, Qα =
⋂

η<α Qη.

BS being countable, the sequence is eventually constant. Set

β = min{α < ω1 : Qα+1 = Qα}

If Qβ is non-empty, then f and Qβ satisfy the hypotheses of lemma 15. Indeed,
suppose that b ∈ BS is such that f has almost finite range on b with respect to Qβ .
Then Qβ+1 ∩ b = ∅. But Qβ+1 = Qβ so Qβ ∩ b = ∅.

Consequently, suppose that Qβ = ∅. The intuition is that on any ball b, f is
essentially of finite range. Consequently, we should be able to show that there is
X ∈

(
BS

BS

)
on which f is continuous.

For α < ω1, let Cα be the set of all minimal elements of the collection {b :
f has almost finite range on b with respect to Qα}. Then

∀ 0 < α < ω1 Qα = BS r
⋃

η<α

⋃
Cη (∗∗)

Claim. Let α < ω1 and b ∈ Cα. Then there is b̃ ∈
(
b
b

)
on which f is continuous.

Proof. We proceed by induction on α < ω1.
For α = 0, let b ∈ C0. f has almost finite range on b with respect to Q0 = BS

so find c0, . . . , cn−1 with radius r− such that f has finite range on br
⋃

i<n ci. Then
b r

⋃
i<n ci is isometric to b. Now, by theorem 57, b is indivisible. Therefore, there

is b̃ ∈
(
b
b

)
on which f is constant, hence continuous.

Suppose now that the claim is true for every η < α. Let b ∈ Cα with radius
r ∈ S. Find c0 . . . cn−1 ∈ BS with radius r− and included in b such that f has finite
range on Qα ∩ (b r

⋃
i<n ci). Then b′ := b r

⋃
i<n ci is isometric to b and thanks to

(∗∗),

b′ = (b′ ∩ Qα) ∪ (b′ ∩
⋃

η<α

⋃
Cη)

Now, let Dα be defined as the set of all minimal elements of the collection

{c ∈
⋃

η<α

Cη : c ⊂ b ∧ ∀i < n c ∩ ci = ∅}
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Then, for the same reason as in section 3, we have

b′ = (b′ ∩ Qα) ∪
⋃

Dα

Thanks to theorem 57, b′ ∩ Qα or
⋃
Dα includes an isometric copy b̃ of b. If

b′ ∩ Qα does, then for every i < n, ci ∩ b̃ is a metric ball of b̃ of same radius as
ci. Thus, b̃ r

⋃
i<n ci is an isometric copy of b on which f takes only finitely many

values and theorem 57 allows to conclude. Otherwise, suppose that
⋃
Dα includes

an isometric copy of b. Note that
⋃
Dα includes an isometric copy of itself on

which f is continuous. Indeed, by induction hypothesis, for every c ∈ Dα, there
is an isometry ϕc : c −→ c such that f is continuous on the range ϕ′′

c c of ϕc. As
in the previous section, one obtains an isometry by setting ϕ :=

⋃
Dα −→

⋃
Dα

defined as

ϕ =
⋃

c∈Dα

ϕc

Thus, its range ϕ′′
⋃
Dα is an isometric copy of

⋃
Dα on which f is continuous.

Now, since
⋃
Dα includes an isometric copy of b, so does ϕ′′

⋃
Dα and we are

done. ¤

We conclude with the same argument we used at the end of theorem 57: As a
metric ball, BS is in Cβ . Thus, there is an isometric copy X of BS inside BS on
which f is continuous.

3.4. Indivisibility of US when |S| 6 4. The last spaces we will be studying
in this section on indivisibility are the spaces US where S is a finite set satisfying
the 4-values condition. We saw already that they provided a wide variety of com-
binatorial objects and that the classes MS to which they are attached seemingly
behave quite well from a Ramsey-theoretic point of view. The purpose of this sub-
section is to see if this apparent good behaviour of the MS ’s also appears at the
level of their Urysohn spaces. On the other hand, subsection 3.2 ended up with an
open question: Is U4 indivisible? The cases of U2 and U3 seem to suggest that
the answer is positive, but how far should this intuition be trusted knowing that it
is based on two instances only? Consequently, this subsection should also be seen
as a good opportunity to take a firmer grasp on the indivisibility problem for U4.
This light gives a particularly ironical flavor to the following result:

Theorem 60. Let S be finite subset of ]0,+∞[ of size |S| 6 4 and satisfying
the 4-values condition. Assume that S ≁ {1, 2, 3, 4}. Then US is indivisible.

Proof. When the proofs are not elementary, their main ingredients are Mil-
liken’s theorem (theorem 53) and Sauer’s theorem (theorem 55) stated in 3.2. As
mentionned in chapter 1, there are many classes MS , and hence many spaces US

when S has size 4 and satisfies the 4-values condition. Thus, we only cover here
the cases where |S| 6 3. The cases where |S| = 4 and S ≁ {1, 2, 3, 4} are treated
in appendix.

For |S| = 1, the result is trivial.
For |S| = 2: When S = {1, 2}, the Urysohn space is the Rado graph equipped

with the path metric. The Rado graph being indivisible, so is U{1,2}. When
S = {1, 3}, U{1,3} is ultrametric and is indivisible thanks to theorem 57.

For |S| = 3:
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(1a) S = {2, 3, 4}. U{2,3,4} can be seen as a complete version of the Rado
graph with three kinds of edges. An easy variation of the proof working for the
Rado graph shows that U{2,3,4} is indivisible.

(1b) S = {1, 2, 3}. U{1,2,3} is the space we denoted U3 and we saw in theorem
54 that it is indivisible.

(1d) S = {1, 2, 5}. U{1,2,5} is composed of countably many disjoint copies of
U2, and the distance between any two points not in the same copy of U2 is always
5. The indivisibility of U2 consequently implies that U{1,2,5} is indivisible.

(2a) S = {1, 3, 4}. U{1,3,4} is composed of countably many disjoint copies of
U1 and points belonging to different copies of U1 can be randomly at distance 3 or
distance 4 apart. As for U2, its indivisibility can be proved via Milliken theorem:
Fix an ω-linear ordering < on 2<ω extending the tree ordering and consider the
standard graph structure on 2<ω:

∀s < t ∈ 2<ω {s, t} ∈ E ↔ (|s| < |t|, t(|s|) = 1).

Now, define a map d on the set [2<ω]2 of pairs of 2<ω as follows: Let {s, t}<,
{s′, t′}< be in [2<ω]2. Then define d({s, t}<, {s′, t′}<) as:





1 if s = s′

3 if s 6= s′ and {t, t′} ∈ E.
4 if s 6= s′ and {t, t′} /∈ E.

It is easy to check that d is a metric. Since d takes its values in {1, 3, 4},
([2<ω]2, d) embeds into U{1,3,4}. We now claim that the space U{1,3,4} embeds into

([2<ω]2, d). To do that, we actually show that U{1,3,4} embeds into the subspace

X of ([2<ω]2, d) supported by the set

X = {{s, t}< ∈ [2<ω]2 : |s| < |t|, s <lex t, t(|s|) = 0}.

The embedding is constructed inductively. Let {xn : n ∈ ω} be an enumeration
of U{1,3,4}. We are going to construct a sequence ({sn, tn})n∈ω of elements in X
such that

∀m,n ∈ ω d({s, t}<, {s′, t′}<) = dU{1,3,4}(xm, xn).

For {s0, t0}<, take s0 = ∅ and t0 = 0. Assume now that {s0, t0}<, . . . , {sn, tn}<

are constructed such that all the elements of {s0, . . . , sn}∪{t0, . . . , tn} have different
heights and all the si’s are strings of 0’s. Set

M = {m 6 n : dU{1,3,4}(xm, xn+1) = 1}.

If M = ∅, choose sn+1 to be a string of 0’s longer that all the elements con-
structed so far. Otherwise, there is s ∈ 2<ω such that

∀m ∈ M sm = s.

Set sn+1 = s. Now, choose tn+1 above all the elements constructed so far and
such that

i) ∀m /∈ M (tn+1(|tm|) = 1) ↔ (dU{1,3,4}(xn+1, xm) = 3).

ii) {sn+1, tn+1}< ∈ X.

i) is easy to satisfy because all the tm’s have different heights. As for ii),
|sn+1| < |tn+1| and tn+1(|sn+1|) = 0 are also easy (again because all heights are
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different) while sn+1 <lex tn+1 is satisfied because sn+1 being a 0 string, |sn+1| <
|tn+1| implies sn+1 <lex tn+1. After ω steps, we are left with {{sn, tn} : n ∈ ω} ⊂ X

isometric to U{1,3,4}. Observe that actually, this construction shows that U{1,3,4}

embeds into any subspace of ([2<ω]2, d) supported by a strong subtree of 2<ω.
Now, to prove that U{1,3,4} is indivisible, it suffices to prove that given any

χ : ([2<ω]2, d) −→ k where k ∈ ω is strictly positive, there is a strong subtree T of
2<ω such that χ is constant on [T ]2∩X. But this is guaranteed by Milliken theorem:
Indeed, consider the subset A := {0, 01}. Then using the notation introduced for
theorem 53, [A]Em = X. So the restriction χ ↾ [A]Em is really a coloring of X,
and there is a strong subtree T of height ω such that [A]Em ↾ T = [T ]2 ∩ X is
χ-monochromatic.

(2b) S = {1, 3, 6}. U{1,3,6} is obtained from U2 after having multiplied all the
distances by 3 and blown the points up to copies of U1. Its indivisibility is a direct
consequence of the basic infinite pigeonhole principle and of the indivisibility of U2.

(2c) S = {1, 3, 7}. US is indivisible because ultrametric. ¤

{1, 2, 3, 4} is consequently the only case with S = 4 for which the indivisibility
problem remains unsolved. At that point, there are two options. The first one is to
apply the well-known combinatorial lemma stating that if a result holds for the first
30 cases, then it also holds for the 31st. On the other hand, for those readers who
might be disturbed by the controversial character of the aforementionned lemma,
analyzing the different proofs in order to see what they - and not their result -
suggest is a maybe more reasonable alternative. We should mention that in our
view, the reason for which U4 stands apart might be that it is actually the very
first case were metricity comes into play. Indeed, for all the other sets S with
|S| 6 4, the space US can be coded as an object where the metric aspect does
not appear and this is what makes Milliken’s and Sauer’s theorems helpful. Our
feeling is consequently that solving the indivisibility problem for U4 requires a new
approach. Still, we have to admit that what we are hoping for is a positive answer.
Theorem 60 is undoubtedly responsible for that, but we will see in section 4.2.6
that there are other results about the spaces Um - namely approximate versions of
indivisibility - supporting this intuition.

4. Approximate indivisibility and oscillation stability.

After the study of indivisibility of countable Urysohn spaces, we now turn to
approximate indivisibility of complete separable metric spaces. As presented in
section 1, in the realm of ultrahomogeneous metric spaces, approximate indivisibil-
ity corresponds to oscillation stability whose formulation brings topological groups
into the picture. This fact is worth being mentionned as one of the most signifi-
cant metric Ramsey-type theorems, namely Milman’s theorem, appeared in close
connection with topological groups dynamics. For N ∈ ω strictly positive, let SN

denote the unit sphere of the (N + 1)-dimensional Euclidean space. Recall also S∞

denotes the unit sphere of the Hilbert space, Milman’s theorem can be stated as
follows:

Theorem 61 (Milman [52]). Let f : S∞ −→ R be uniformly continuous. Then
for every ε > 0 and every N ∈ ω, there is a vector subspace V of ℓ2 with dim V = N
such that

osc(f ↾ V ∩ S∞) < ε.
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Equivalently:

Theorem 62 (Milman [52]). Let γ be a finite cover of S∞. Then for every

ε > 0 and every N ∈ ω, there is A ∈ γ and an isometric copy S̃N of SN in S∞ such

that S̃N ⊂ (A)ε.

Milman’s theorem is at the heart of the recent book [66], where the interested
reader will find a wide variety of its developments in geometric functional analysis,
topological group theory and combinatorics. One of the most famous questions
raised after the discovery of Milman’s theorem is known as the distortion problem
for ℓ2 and asks the following: Does Milman’s theorem still hold when N is replaced
by ∞? In other words, if f : S∞ −→ R is uniformly continuous and ε > 0, is
there an infinite-dimensional subspace V of ℓ2 such that osc(f ↾ V ∩ S∞) < ε?
Or, with the terminology introduced in section 1: Is S∞ approximately indivisible?
This problem remained opened for about 30 years, until the solution of Odell and
Schlumprecht in [63]:

Theorem 63 (Odell-Schlumprecht [63]). S∞ is not approximately indivisible.

However, quite surprisingly, this solution is not based on an analysis of the
intrinsic geometry of ℓ2. For that reason, it is sometimes felt that something es-
sential is still to be discovered about the metric structure of S∞. This impression
is certainly one of the motivations for the introduction of the concept of oscillation
stability as presented in section 1. From this point of view, the approximate indivis-
ibility problem for the Urysohn sphere S inherits a special status: Behind a solution
based on the geometry of S, a better understanding of S∞ might be hidden. At
the present moment, it is unclear whether such a belief is justified or not. What is
clear is that the approximate indivisibility problem for S is still open. In fact, there
are relatively few results about approximate indivisibility and oscillation stability
in general. Here is, with theorem 63, one of the most significant ones known so far:

Theorem 64 (Hjorth [31]). Let G be a non-trivial Polish group. Then seen as
a complete metric space, G is not oscillation stable.

Remark. Before the concept of oscillation stability for topological groups was
introduced by Kechris, Pestov and Todorcevic, Milman’s work led to a notion which
we will call here classical oscillation stability . This concept has now been central
in geometric functional analysis for several decades and is already visible in the
formulation of theorem 61: Given a Banach space E, a function f : SE −→ R

defined on the unit sphere SE of E is oscillation stable in the classical sense if
for every infinite-dimensional closed subspace Y of E, and every ε > 0, there is a
infinite-dimensional closed subspace Z of Y such that

osc(f ↾ Z ∩ SE) < ε.

Now, say that E is oscillation stable in the classical sense if every uniformly
continuous f : SE −→ R is oscillation stable in the classical sense. In spirit, classical
oscillation stability and oscillation stability for topological groups are consequently
closely related. In some cases, they even coincide: When SE is ultrahomogeneous
as a metric space, classical oscillation stability for a Banach space E is equivalent
to oscillation stability of its unit sphere in the sense of [40]. However, this case is
quite exceptional: When SE is not ultrahomogeneous (which actually holds as soon
as E is not a Hilbert space), this equivalence does not hold anymore and there is
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no direct connection between classical oscillation stability and oscillation stability
for topological groups.

4.1. Approximate indivisibility for complete separable ultrametric

spaces. We saw in 3.3 that the indivisibility problem was completely solved for
ultrametric Urysohn spaces. When passing to the metric completion, this allows to
solve the approximate indivisibility problem for the complete separable ultrahomo-
geneous ultrametric spaces:

Theorem 65. Let X be a complete separable ultrahomogeneous ultrametric
space. Then X is approximately indivisible iff the reverse linear ordering > on R

induces a well-ordering on its distance set.

Proof. According to the results of chapter 1, section 4.2, X = B̂S for some
countable S ⊂]0,+∞[. Assume that the reverse linear ordering > on R induces

a well-ordering on S. Then BS is indivisible so B̂S is oscillation stable. On the
other hand, assume that the reverse linear ordering > on R does not induce a
well-ordering on S. Consider the extension χ̂ to X of the coloring χ used in the
proof of theorem 56 to divide BS . Then χ̂ proves that X is not approximately
indivisible. ¤

4.2. Approximate indivisibility of S. As already mentionned in section
3.1, the first attempt towards the approximate indivisibility for S corresponds to
the study of the indivisiblity problem for SQ: Had SQ been indivisible, S would
have been approximately indivisible. However, we saw with theorem 51 that SQ
is not indivisible. Worse: The proof of that fact does provide any information
about S, so the approximate indivisibility problem for S has to be attacked from
another direction. The purpose of this subsection is to provide such an alternative.
In essence, the idea remains the same: Approximate indivisibility for S can be
attacked via the study of the exact indivisibility of simpler spaces. SQ was the first
natural candidate because it is a very good countable approximation of S. But
this good approximation is paradoxically responsible for the divisibility of SQ: The
distance set of SQ is too rich and allows to create a dividing coloring. A natural
attempt at that point is consequently to replace SQ by another space with a simpler
distance set but still allowing to approximate S in a reasonable sense. There are
natural candidates for this position: The spaces obtained from the Um’s after
having rescaled the distances in [0, 1]. In the sequel, these spaces will be denoted
Sm’s. Formally, for m ∈ ω strictly positive, if Um = (Um, dUm), then

Sm = (Um,
dUm

m
).

This subsection is organized as follows: In 4.2.1, we will show that the spaces
Sm indeed approximate S:

Theorem 66. For every strictly positive m ∈ ω, there is an isometric copy S̃m

of Sm inside S such that (S̃m)1/m = S.

We will then connect approximate indivisiblity of S and indivisibility of the
Sm’s (4.2.2-4.2.5):

Theorem 67. The following are equivalent:

i) S is oscillation stable.
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ii) SQ is approximately indivisible.

iii) For every strictly positive m ∈ ω, Sm is 1/m-indivisible.

iv) For every strictly positive m ∈ ω, Sm is indivisible.

Next, in 4.2.6, we will present the bounds that our results allow to reach before
finishing in 4.2.7 with possible approaches towards indivisiblity of the spaces Sm.

Before going deeper into the technical details, let us mention here that part
of our hope towards the discretization strategy comes from the proof of a famous
result in Banach space theory, namely Gowers’ stabilization theorem for c0 [23],
where combinatorial Ramsey-type theorems imply that the unit sphere Sc0

of c0

and its positive part S+
c0

are approximately indivisible.

4.2.1. Proof of theorem 66. For m ∈ ω strictly positive, set

[0, 1]m := {k/m : k ∈ {0, . . . ,m}}.

On the other hand, for α ∈ [0, 1], set

⌈α⌉m = min[α, 1] ∩ [0, 1]m.

Since S is the metric completion of SQ, it is enough to show that for every

strictly positive m ∈ ω, there is an isometric copy S̃m of Sm inside SQ such that

(S̃m)1/m = SQ. This is achieved thanks to a back and forth argument. Fix (xn)n∈ω

an enumeration of Sm and (yn)n∈ω an enumeration of SQ. Define

σ(0) = 0, x̃σ(0) = y0.

Set also

τ(−1) = −1, τ(1) = min{j ∈ ω : 1/m 6 dSQ(x̃σ(0), yj)}

Now, consider the metric subspace Z0 of SQ supported by the set

Z0 := {x̃σ(0), yτ(1)}.

Let f0 : Z0 −→ Q be defined by

f0(x̃σ(0)) =
⌈
dSQ(x̃σ(0), y1)

⌉
m

, f0(yτ(1)) = f0(x̃σ(0)) − dSQ(x̃σ(0), y1)

Then one can check that

i) f0 is Katĕtov over Z0.

ii) f0(x̃σ(0)) ∈ [0, 1]m.

iii) f0(yτ(1)) < 1/m.

Now, let

σ(1) = min{i ∈ ω : dSm(xσ(0), xi) = f0(x̃σ(0))}.

Define also x̃σ(1) ∈ SQ realizing f0 over Z0. Note that the existence of σ(1)
is guaranteed by the ultrahomogeneity of Sm whereas the existence of x̃σ(1) is
guaranteed by the ultrahomogeneity of SQ.

In general, suppose that x̃σ(0), x̃σ(1) . . . x̃σ(2n−2), x̃σ(2n−1) are defined such that
the map xσ(k) 7→ x̃σ(k) is an isometry between {xσ(k) : 0 6 k 6 2n − 1} and
{x̃σ(k) : 0 6 k 6 2n − 1}. Let

σ(2n) = minω r {σ(k) : 0 6 k 6 2n − 1}.

Set also x̃σ(2n) ∈ SQ such that:

∀k ∈ {0, . . . , 2n − 1}, dSQ(x̃σ(k), x̃σ(2n)) = dSm(xσ(k), xσ(2n)).

Then let τ(2n + 1) be defined by
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τ(2n + 1) = min{j ∈ ω : ∀k ∈ {0, 1 . . . 2n}, 1/m 6 dSQ(x̃σ(k), yj)}.

Let also Zn be the metric subspace of SQ supported by the set

Zn = {x̃σ(k) : 0 6 k 6 2n} ∪ {yτ(2n+1)}.

Claim. There is a map fn : Zn −→ Q such that:

i) fn is Katĕtov over Zn.

ii) ∀k ∈ {0, . . . , 2n}, fn(x̃σ(k)) ∈ [0, 1]m.

iii) fn(yτ(2n+1)) < 1/m.

Assuming that this claim is true, let

σ(2n + 1) = min{i ∈ ω : ∀k ∈ {0, . . . , 2n}, dSm(xσ(k), xi) = fn(x̃σ(k))}.

Let x̃σ(2n+1) ∈ SQ realizing fn over Zn. As before, the existence of σ(2n + 1)
is guaranteed by the ultrahomogeneity of Sm whereas the existence of x̃σ(2n+1) is
guaranteed by the ultrahomogeneity of SQ. After ω steps, we are left with

S̃m := {x̃σ(n) : n ∈ ω} ⊂ SQ.

Claim. S̃m is as required.

Proof. Observe that σ : ω −→ ω is a bijection. It follows that

{xσ(n) : n ∈ ω} = Sm.

But S̃m is isometric to {xσ(n) : n ∈ ω}. Thus, S̃m is a copy of Sm inside

SQ. To prove that (S̃m)1/m = SQ, note first that τ : {2n − 1 : n ∈ ω} −→ ω
is strictly increasing. Then, observe that for every n ∈ ω and every j such that
τ(2n − 1) < j < τ(2n + 1), there is k ∈ {0 . . . 2n} such that

dSQ(x̃σ(k), yj) < 1/m.

On the other hand, for j = τ(2n + 1),

dSQ(x̃σ(2n+1), yτ(2n+1)) < 1/m.

¤

We now turn to the proof of the claim concerning the existence of fn. For
k ∈ {0, . . . 2n}, set

fn(x̃σ(k)) =
⌈
dSQ(x̃σ(k), yτ(2n+1))

⌉
m

.

Now, let

fn(yτ(2n+1)) = max{
⌈
dSQ(x̃σ(k), yτ(2n+1))

⌉
m
− dSQ(x̃σ(k), yτ(2n+1)) : 0 6 k 6 2n}

It is enough to show that for every 0 6 k, l 6 2n, the following triangle inequal-
ities hold:∣∣fn(x̃σ(k)) − fn(x̃σ(l))

∣∣ 6 dSQ(x̃σ(k), x̃σ(l)) 6 fn(x̃σ(k)) + fn(x̃σ(l)) (1k,l)∣∣fn(x̃σ(k)) − fn(yτ(2n+1))
∣∣ 6 dSQ(x̃σ(k), yτ(2n+1)) 6 fn(x̃σ(k)) + fn(yτ(2n+1)) (2k)

For (1k,l): The right inequality is not a problem:

dSQ(x̃σ(k), x̃σ(l)) 6 dSQ(x̃σ(k), yτ(2n+1))+dSQ(yτ(2n+1), x̃σ(l)) 6 fn(x̃σ(k))+fn(x̃σ(l)).

For the left inequality, we use the following simple fact:

∀α, β ∈ R, ∀p ∈ ω, |β − α| 6 p/m −→ |⌈β⌉m − ⌈α⌉m| 6 p/m.
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Indeed, assume that |β − α| 6 p/m. We want |⌈mβ⌉ − ⌈mα⌉| 6 p. Without
loss of generality, α 6 β. Then 0 6 ⌈mβ⌉ − ⌈mα⌉ < mβ + 1 − mα 6 p + 1, so
|⌈mβ⌉ − ⌈mα⌉| 6 p and we are done. In our case, that property is useful because
then the left inequality directly follows from∣∣dSQ(x̃σ(k), yτ(2n+1)) − dSQ(yτ(2n+1), x̃σ(l))

∣∣ 6 dSQ(x̃σ(k), x̃σ(l)) ∈ [0, 1]m.

For (2k): ∣∣fn(x̃σ(k)) − fn(yτ(2n+1))
∣∣ = fn(x̃σ(k)) − fn(yτ(2n+1)).

This is because fn(x̃σ(k)) > 1/m and 0 6 fn(yτ(2n+1)) < 1/m. Furthermore,

fn(x̃σ(k)) − fn(yτ(2n+1)) 6 fn(x̃σ(k)) − (fn(x̃σ(k)) − dSQ(x̃σ(k), yτ(2n+1)))

6 dSQ(x̃σ(k), yτ(2n+1))

So the left inequality is satisfied. For the right inequality, simply observe that

dSQ(x̃σ(k), yτ(2n+1)) 6 fn(x̃σ(k)).

At that point, we should mention however that theorem 66 will not help us
in the proof of theorem 67. For example, theorem 66 does not imply alone that
if for some strictly positive m ∈ ω, Sm is indivisible, then S is 1/m-indivisible:
Assume that χ : S −→ k. χ induces a coloring of Sm so by indivisibility of Sm

there is S̃m ⊂ Sm isometric to Sm on which χ is constant. But how does that allow

to obtain a copy of S? For example, are we sure that (S̃m)1/m includes a copy
of S? We are not able to answer this question, but recent results of Melleray in

[49] strongly suggest that Sm not being with compact completion, (S̃m)1/m really

depends on the copy S̃m and can be extremely small. In particular, it may not
include a copy of S. Thus, to our knowledge, theorem 66 does not say anything
about approximate indivisiblity of S, except maybe that the spaces Sm’s are not
totally irrelevent for our purposes.

4.2.2. From oscillation stability of S to approximate indivisibility of SQ. The
purpose of what follows is to prove the implication i) → ii) of theorem 67.

Theorem 68. Assume that S is oscillation stable. Then SQ is approximately
indivisible.

This theorem is proved thanks to the following proposition. Here, SQ is seen
as a dense metric subspace of S.

Proposition 20. Let ε > 0 and S̃ be a copy of S in S. Then (S̃)ε∩SQ includes
a copy of SQ.

Proof. We construct the required copy of SQ inductively. Let {yn : n ∈ ω}

enumerate a copy of SQ in S̃. For k ∈ ω, set

δk =
ε

2

k∑

i=0

1

2i

Set also

ηk =
ε

3

1

2k+1

SQ being dense in S, choose z0 ∈ SQ such that dS(y0, z0) < δ0. Assume now
that z0 . . . zn ∈ SQ were constructed such that for every k, l 6 n
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{
dS(yk, yl) = dS(zk, zl)
dS(zk, yk) < δk

Again by denseness of SQ in S, fix z ∈ SQ such that

dS(z, yn+1) < ηn+1.

Then for every k 6 n,

∣∣dS(z, zk) − dS(yn+1, yk)
∣∣ =

∣∣dS(z, zk) − dS(zk, yn+1) + dS(zk, yn+1)

−dS(yn+1, yk)
∣∣

6 dS(z, yn+1) + dS(zk, yk)

< ηn+1 + δk

< ηn+1 + δn

It follows that there is zn+1 ∈ SQ such that

{
∀k 6 n dS(zn+1, zk) = dS(yn+1, yk)
dS(zn+1, z) < ηn+1 + δn

Indeed, consider the map f defined on {zk : k 6 n} ∪ {z} by:

{
∀k 6 n f(zk) = dS(yn+1, yk)
f(z) =

∣∣dS(z, zk) − dS(yn+1, yk)
∣∣

Then f is Katĕtov over the subspace of SQ supported by {zk : k 6 n}∪ {z}, so
simply take zn+1 ∈ SQ realizing it. Observe then that

dS(zn+1, yn+1) 6 dS(zn+1, z) + dS(z, yn+1)

< ηn+1 + δn + ηn+1

< δn+1

After ω steps, we are left with {zn;n ∈ ω} ⊂ SQ ∩ (S̃)ε isometric to SQ. ¤

We now show how to deduce theorem 68 from proposition 20:

Proof of theorem 68. Let ε > 0, k ∈ ω strictly positive and χ : SQ −→ k.
Then in S:

S =
⋃

i<k

(←−χ {i})ε/2

By oscillation stability of S, there is i < k and a copy S̃ of S included in S such
that

S̃ ⊂ ((←−χ {i})ε/2)ε/4.

By proposition 20, there is a copy S̃Q of SQ in (S̃)ε/4 ∩ SQ. Then in SQ

S̃Q ⊂ (←−χ {i})ε.

¤
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4.2.3. From approximate indivisibility of SQ to 1/m-indivisibility of Sm. Here,
we provide a proof for the implication ii) → iii) of theorem 67.

Theorem 69. Assume that SQ is approximately indivisible. Then for every
strictly positive m ∈ ω, Sm is 1/m-indivisible.

Theorem 69 is the direct consequence of the following proposition:

Proposition 21. Let ε > 0 and assume that SQ is ε-indivisible. Then Sm is
1/m-indivisible whenever m 6 1/ε.

Proof. Let ε > 0, assume that SQ is ε-indivisible and fix m ∈ ω strictly
positive such that ε 6 1/m. Define

⌈
dSQ

⌉
m

by

∀x, y ∈ X
⌈
dSQ

⌉
m

(x, y) =
⌈
dSQ(x, y)

⌉
m

.

Claim.
⌈
dSQ

⌉
m

is a metric on SQ.

Proof. Triangle inequality is the only thing which needs to be checked. Let
x, y, z in SQ. Then

⌈
dSQ(x, z)

⌉
m

6
⌈
dSQ(x, y) + dSQ(y, z)

⌉
m

.

Now,

dSQ(x, z) + dSQ(z, y) 6
⌈
dSQ(x, z)

⌉
m

+
⌈
dSQ(z, y)

⌉
m

∈ [0, 1]m.

It follows that
⌈
dSQ(x, y) + dSQ(y, z)

⌉
m

6
⌈
dSQ(x, z)

⌉
m

+
⌈
dSQ(z, y)

⌉
m

.

Thus
⌈
dSQ(x, z)

⌉
m

6
⌈
dSQ(x, z)

⌉
m

+
⌈
dSQ(z, y)

⌉
m

.

¤

Let Xm be the metric space (SQ,
⌈
dSQ

⌉
m

) and let πm denote the identity map
from SQ to Xm. Observe that Xm and Sm embed into each other, and that conse-
quently, 1/m-indivisibility of Sm is equivalent to 1/m-indivisibility of Xm. So let
k ∈ ω be strictly positive and χ : Xm −→ k. χ induces a coloring χ ◦ π : SQ −→ k.

SQ being ε-indivisible, there is i < k and a copy S̃Q of SQ inside SQ such that

S̃Q ⊂ (←−−−χ ◦ π{i})ε.

Now, observe that π′′S̃Q is a copy of X inside X. Furthermore, note that

∀x 6= y ∈ SQ (dSQ(x, y) 6 1/m) → (dXm(π(x), π(y)) = 1/m).

Since ε 6 1/m, it follows that

π′′(←−−−χ ◦ π{i})ε ⊂ (←−χ {i})1/m.

And so

π′′S̃Q ⊂ (←−χ {i})1/m.

¤
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4.2.4. From 1
2(m2+m) -indivisibility of S2(m2+m) to indivisibility of Sm. The pur-

pose of what is coming next is to prove the implication iii) → iv) of theorem 67.

Theorem 70. Assume that for every strictly positive m ∈ ω, Sm is 1/m-
indivisible. Then for every strictly positive m ∈ ω, Sm is indivisible.

Theorem 70 is proved via the following proposition:

Proposition 22. Assume that for some strictly positive m ∈ ω, S2(m2+m) is
1

2(m2+m) -indivisible. Then Sm is indivisible.

Proof. Let m ∈ ω strictly positive and such that S2(m2+m) is 1
2(m2+m) -

indivisible. We are going to create a metric space W with distances in [0, 1]m
and a bijection π : S2(m2+m) −→ W such that for every subspace Y of S2(m2+m),
if (Y)1/2(m2+m) includes a copy of Sm, then so does π′′Y.

Assuming that such a space W is constructed, the theorem is proved as fol-
lows: Observe first that W and Sm embed into each other. Indivisibility of W

is consequently equivalent to indivisibility of Sm and it is enough to show that
W is indivisible. Let k ∈ ω be strictly positive and χ : W −→ k. Then χ ◦ π :
S2(m2+m) −→ k and by 1

2(m2+m) -indivisibility of S2(m2+m), there is i < k such that

(←−−−χ ◦ π{i})1/2(m2+m) includes a copy of S2(m2+m). Since Sm embeds into S2(m2+m),

(←−−−χ ◦ π{i})1/2(m2+m) also includes a copy of Sm. Thus, ←−χ {i} = π′′←−−−χ ◦ π{i} includes
a copy of Sm, and therefore a copy of W.

We now turn to the construction of W. This space is obtained by modifying
the metric on S2(m2+m) to a metric d, so that W = (S2(m2+m), d) and π is simply
the identity map from S2(m2+m) to W. d is defined as follows: Observe that for
x ∈ [0, 1]2(m2+m) there is a unique 0 6 l 6 m such that

x ∈

]
l − 1

m
+

l − 1

m2 + m
,

l

m
+

l

m2 + m

]

So we can consider the map f : [0, 1]2(m2+m) −→ [0, 1]m defined by

∀x ∈ [0, 1]2(m2+m)

(
f(x) =

l

m
↔ x ∈

]
l − 1

m
+

l − 1

m2 + m
,

l

m
+

l

m2 + m

])

Observe that f is increasing, that f(0) = 0, and that

∀α ∈ [0, 1]m ∀ε ∈ {−2,−1, 0, 1, 2} f

(
α +

ε

2(m2 + m)

)
= α

Note also that f is subadditive: Let x, y,∈ [0, 1]2(m2+m). Assume that

x ∈

]
l − 1

m
+

l − 1

m2 + m
,

l

m
+

l

m2 + m

]

Then there is n ∈ {1, . . . , 2m + 4} such that

x =
l − 1

m
+

l − 1

m2 + m
+

n

2(m2 + m)

Similarly, there are l′ ∈ {0, . . . ,m} and n′ ∈ {1, . . . , 2m + 4} such that

y =
l′ − 1

m
+

l′ − 1

m2 + m
+

n′

2(m2 + m)
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So

x + y =
l + l′

m
+

l + l′

m2 + m
− 2

(
1

m
+

1

m2 + m

)
+

n + n′

2(m2 + m)

=
l + l′

m
+

l + l′

m2 + m
+

n − (2m + 4) + n′ − (2m + 4)

2(m2 + m)

6
l + l′

m
+

l + l′

m2 + m

Therefore,

f(x + y) 6 f

(
l + l′

m
+

l + l′

m2 + m

)
=

l + l′

m
=

l

m
+

l′

m
= f(x) + f(y)

It follows that the map d := f ◦ dS2(m2+m) is a metric. d clearly takes its values
in [0, 1]m so to show that d is as required, it suffices to prove that for every subspace
Y of S2(m2+m), if (Y)1/2(m2+m) includes a copy of Sm, then π′′Y includes a copy
of Sm. So let Y be a subspace of S2(m2+m) such that (Y)1/2(m2+m) includes a

copy S̃m of Sm. Then for every x ∈ S̃m, there is an element ϕ(x) ∈ Y such that

dS2(m2+m)(x, ϕ(x)) 6 1
2(m2+m) . Thus,

∀x 6= y ∈ S̃m

∣∣∣dS2(m2+m)(ϕ(x), ϕ(y)) − dS2(m2+m)(x, y)
∣∣∣ 6

1

m2 + m

Since dS2(m2+m)(x, y) ∈ [0, 1]m,

f
(
dS2(m2+m)(ϕ(x), ϕ(y))

)
= dS2(m2+m)(x, y)

That is

d(π(ϕ(x)), π(ϕ(y))) = dS2(m2+m)(x, y)

Thus, π′′ran(ϕ) ⊂ π′′Y is isometric to Sm. ¤

4.2.5. From indivisibility of Sm to oscillation stability of S. In what follows,
we close the loop of implications of theorem 67 and show that iv) → i).

Theorem 71. Assume that for every strictly positive m ∈ ω, Sm is indivisible.
Then S is oscillation stable.

Theorem 71 is a consequence of the following proposition:

Proposition 23. Assume that for some strictly positive m ∈ ω, Sm is indi-
visible. Then S is 1/2m-indivisible.

Proposition 23 is itself a consequence of the following fact:

Proposition 24. For every strictly positive m ∈ ω, there is an isometric copy

S
∗
m of Sm inside S such that for every S̃m ⊂ S

∗
m isometric to Sm, (S̃m)1/2m

includes an isometric copy of S.

Proposition 23 can be deduced from proposition 24 as follows:
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Proof of proposition 23. Let χ : S −→ k for some strictly positive k ∈ ω.
χ induces a k-coloring of the copy S∗

m constructed in the previous theorem. By

indivisibility of Sm, find i < k and S̃m ⊂ S∗
m such that χ is constant on S̃m with

value i. But by proposition 24, in S, (S̃m)1/2m includes a copy of S. So (←−χ {i})1/2m

includes a copy of S. ¤

We now turn to a proof of proposition 24.

Proof of proposition 24. The core of the proof is contained in lemma 16
which we present now. Fix an enumeration {yn : n ∈ ω} of SQ. Also, keeping
the notation introduced in the proof of proposition 21, let Xm be the metric space
(SQ,

⌈
dSQ

⌉
m

). The underlying set of Xm is really {yn : n ∈ ω} but to avoid
confusion, we write it {xn : n ∈ ω}, being understood that for every n ∈ ω,
xn = yn. On the other hand, remember that Sm and Xm embed isometrically each
other.

Lemma 16. There is a countable metric space Z with distances in [0, 1] and

including Xm such that for every X̃m = {xσ(n) : n ∈ ω} ⊂ Xm with σ : ω −→ ω

strictly increasing and xn 7→ xσ(n) isometric, (X̃m)1/2m includes an isometric copy
of SQ.

Assuming lemma 16, we now show how we can deduce proposition 24. Z is
countable with distances in [0, 1] so we may assume that it is a subspace of S.
Now, take S∗

m a subspace of Xm and isometric to Sm. We claim that S∗
m works:

Let S̃m ⊂ S∗
m be isometric to Sm. The enumeration {xn : n ∈ ω} induces a

linear ordering < of S̃m in type ω. We first show that (S̃m)1/2m includes a copy

of SQ. According to lemma 16, it suffices to show that (S̃m, <) includes a copy of
{xn : n ∈ ω}< seen as an ordered metric space. To do that, observe that since Xm

embeds isometrically into Sm, there is a linear ordering <∗ of Sm in type ω such
that {xn : n ∈ ω}< embeds into (Sm, <∗) as ordered metric space. Therefore, it is
enough to show:

Claim. (S̃m, <) includes a copy of (Sm, <∗).

Proof. Write

(Sm, <∗) = {sn : n ∈ ω}<∗ .

(S̃m, <) = {tn : n ∈ ω}<.

Let σ(0) = 0. If σ(0) < . . . < σ(n) are chosen such that sk 7→ tσ(k) is a finite
isometry, observe that the following set is infinite

{i ∈ ω : ∀k 6 n dS(tσ(k), ti) = dSm(sk, sn+1)}

Therefore, simply take σ(n + 1) as the least element of

{i > σ(n) : ∀k 6 n dS(tσ(k), ti) = dSm(sk, sn+1)}.

¤

Now, observe that since the metric completion of SQ is S, the closure of

(S̃m)1/2m in S includes an isometric copy of S. But then we are done since (S̃m)1/2m

is closed in S. ¤
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We now turn to a proof of lemma 16. The strategy is first to construct the
set Z where the required metric space Z is supposed to be based on, and then to
construct dZ (lemmas 17-21). To construct Z, proceed as follows: For t ⊂ ω, write
t as the strictly increasing enumeration of its elements:

t = {ti : i ∈ |s|}<.

Now, let T be the set of all finite nonempty subsets t of ω such that xn 7→ xtn

is an isometry between {xn : n ∈ ω} and {xtn
: n ∈ ω}. T is a tree when ordered

by end-extension. Let

Z = Xm∪̇T .

For z ∈ Z, define

π(z) =

{
z if z ∈ Xm.

xmax z if z ∈ T .

Now, define an edge-labelled graph structure on SQ by defining δ with domain
dom(δ) ⊂ SQ × SQ and range ran(δ) ⊂ [0, 1] as follows :

If s, t ∈ T , then (s, t) ∈ dom(δ) iff s and t are <T comparable and in this case,

δ(s, t) = dSQ(ymax s, ymax t)

If x, y ∈ Xm, then (x, y) is always in dom(δ) and

δ(x, y) = dXm(x, y)

If t ∈ T and x ∈ Xm, then (x, s), (s, x) are in dom(δ) iff x = π(t). In this case

δ(x, s) = δ(s, x) = 1/2m

For a branch b of T and i ∈ ω, let b(i) be the unique element of b with height
i in T . Observe that b(i) ∈ [ω]i+1. Observe also that for every i, j ∈ ω, b(i) is
connected to π(b(i)) and b(j), with

δ(b(i), π(b(i)) = 1/2m and δ(b(i), b(j)) = dSQ(yi, yj)

In particular, if b is a branch of T , then δ induces a metric on b and the map
from SQ to b mapping yi to b(i) is a surjective isometry. We claim that if we can
show that δ can be extended to a metric dZ on Z with distances in [0, 1], then
lemma 16 will be proved. Indeed, let

X̃m = {xσ(n) : n ∈ ω} ⊂ Xm

with σ : ω −→ ω strictly increasing and xn 7→ xσ(n) isometric. See ran(σ) as a

branch b of T . Then (b, dZ) = (b, δ) is isometric to SQ and

b ⊂ (π′′b)1/2m = (X̃m)1/2m.

Our goal now is consequently to show that δ can be extended to a metric on
Z with values in [0, 1]. Recall that for x, y ∈ Z, and n ∈ ω strictly positive, a path
from x to y of size n as is a finite sequence γ = (zi)i<n such that z0 = x, zn−1 = y
and for every i < n − 1,

(zi, zi+1) ∈ dom(δ).

For x, y in Z, P (x, y) is the set of all paths from x to y. If γ = (zi)i<n is in
P (x, y), ‖γ‖ is defined as:

‖γ‖ =

n−1∑

i=0

δ(zi, zi+1)

On the other hand, ‖γ‖61 is defined as:
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‖γ‖61 = min(‖γ‖, 1)

Here, we are going to show that the required metric can be obtained with dZ

defined by

dZ(x, y) = inf{‖γ‖61 : γ ∈ P (x, y)}.

Equivalently, we are going to show that for every (x, y) ∈ dom(δ), every path
γ from x to y is metric, that is:

δ(x, y) 6 ‖γ‖61.

Let x, y ∈ Z. Call a path γ from x to y trivial when γ = (x, y) and irreducible
when no proper subsequence of γ is a non-trivial path from x to y. Finally, say that
γ is a cycle when (x, y) ∈ dom(δ). It should be clear that to prove that dZ works,
it is enough to show that the previous inequality is true for every irreducible cycle.
Note that even though δ takes only rational values, it might not be the case for dZ.
We now turn to the study of the irreducible cycles in Z.

Lemma 17. Let x, y ∈ T . Assume that x and y are not <T -comparable. Let
γ be an irreducible path from x to y in T . Then there is z ∈ T such that z <T x,
z <T y and γ = (x, z, y).

Proof. Write γ = (zi)i<n+1. z1 is connected to x so z1 is <T -comparable
with x. We claim that z1 <T x : Otherwise, x <T z1 and every element of T
which is <T -comparable with z1 is also <T -comparable with x. In particular, z2 is
<T -comparable with x, a contradiction since z2 and x are not connected. We now
claim that z1 <T y. Indeed, observe that z1 <T z2 : Otherwise, z2 <T z1 <T x
so z2 <T x contradicting irreducibility. Now, every element of T which is <T -
comparable with z2 is also <T -comparable with z1, so no further element can be
added to the path. Hence z2 = y and we can take z1 = z. ¤

Lemma 18. Every non-trivial irreducible cycle in Xm has size 3.

Proof. Obvious since δ induces the metric dXm on Xm. ¤

Lemma 19. Every non-trivial irreducible cycle in T has size 3 and is included
in a branch.

Proof. Let c = (zi)i<n be a non-trivial irreducible cycle in T . We may assume
that z0 <T zn−1. Now, observe that every element of T comparable with z0 is also
comparable with zn−1. In particular, z1 is such an element. It follows that n = 3
and that z0, z1, z2 are in a same branch. ¤

Lemma 20. Every irreducible cycle in Z intersecting both Xm and T is sup-
ported by a set whose form is described in Figure 1.

Proof. Let C be a set supporting an irreducible cycle c intersecting both
Xm and T . It should be clear that |C ∩ Xm| 6 2: Otherwise C would support a
subcycle of size 3 included in Xm, and which therefore would be a strict subcycle
of c, contradicting irreducibility.

If C ∩Xm has size 1, let z0 be its unique element. In c, z0 is connected to two
elements which we denote z1 and z3. Note that z1, z3 ∈ T so π(z1) = π(z3) = z0.
Since elements in T which are connected never project on a same point, it follows
that z1, z3 are <T -incomparable. Now, c induces an irreducible path from z1 to z3
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Figure 1. Irreducible cycles

in T so from lemma 17, there is z2 ∈ C such that z2 <T z1, z2 <T z3, and we are
in case 2.

Assume now that C ∩ Xm = {z0, z4}. Then there are z1, z3 ∈ C ∩ T such that
π(z1) = z0 and π(z3) = z4. Note that since z0 6= z4, we must have z1 6= z3. Now,
C∩T induces an ierreducible path from z1 to z3 in T . By lemma 17, either z1 and z3

are compatible and in this case, we are in case 1, or z1 and z3 are <T -incomparable
and there is z2 in C ∩ T such that z2 <T z1, z2 <T z3 and we are in case 3. ¤

Lemma 21. Every non-trivial irreducible cycle in Z is metric.

Proof. Let c be an irreducible cycle in Z. If c is supported by X, then by
lemma 18 c has size 3 and is metric since δ induces a metric on X. If c is supported
by T , then by lemma 19 c also has size 3 and is included in a branch b of T . Since
δ induces a metric on b, c is metric. We consequently assume that c intersects
both Xm and T . According to lemma 20, c is supported by a set C whose form is
covered by one of the cases 1, 2 or 3. So to prove the present lemma, it is enough to
show every cycle obtained from a reindexing of the cycles described in those cases
is metric.

Case 1 : The required inequalities are obvious after having observed that

δ(z0, z3) = ⌈δ(z1, z2)⌉m and δ(z0, z1) = δ(z2, z3) = 1/2m

Case 2 : Observe that since π(z1) = π(z3) = z0, we must have δ(z1, z2) =
δ(z2, z3). Notice also that δ(z0, z1) = δ(z0, z3) = 1/2m. The required inequalities
follow.

Case 3 : Observe that δ(z0, z1) = δ(z3, z4) = 1/2m, so the inequalities we need
to check are

δ(z1, z2) 6 δ(z2, z3) + δ(z0, z4) + 1/m (1)

δ(z0, z4) 6 δ(z1, z2) + δ(z2, z3) + 1/m (2)

For (1) :

δ(z1, z2) 6 ⌈δ(z1, z2)⌉m

= δ(π(z1), π(z2))

= δ(z0, π(z2))

6 δ(z0, z4) + δ(z4, π(z2))

= δ(z0, z4) + ⌈δ(z3, z2)⌉m

6 δ(z0, z4) + δ(z2, z3) + 1/m
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For (2) : Write z1 = b(j), z2 = b′(k), z2 = b(i) = b′(i). Then z0 = π(z1) =
xmax b(j) and z4 = π(z3) = xmax b′(k). Observe also that δ(z1, z2) = dSQ(yj , yi) and

that δ(z2, z3) = dSQ(yi, yk). So

δ(z0, z4) = dXm(xmax b(j), xmax b′(k))

=
⌈
dSQ(ymax b(j), ymax b′(k))

⌉
m

6
⌈
dSQ(ymax b(j), ymax b(i)) + dSQ(ymax b′(i), ymax b′(k))

⌉
m

=
⌈
dSQ(yj , yi) + dSQ(yi, yk)

⌉
m

= ⌈δ(z1, z2) + δ(z2, z3)⌉m

6 δ(z1, z2) + δ(z2, z3) + 1/m

¤

4.2.6. Bounds. Ideally, the title of this part would have been ”The Urysohn
sphere is approximately indivisible” and we would have ended this thesis with
the proof of one of the different formulations of approximate indivisibility for S

presented in theorem 67. Unfortunately, so far, our numerous attempts to reach
this goal did not succeed. This is why this part is not the last one and is entitled
”bounds”. Instead, what we will be presenting now will show how far we were able
to push in the different directions suggested by theorem 67.

We start with a summary about the indivisibility properties of the spaces Sm.
Up to rescaling, these are really the spaces Um. Now, recall that in section 3.2, we
mentionned that the best known result about indivisibility properties of the spaces
Um is Sauer’s theorem stating that U3 is indivisible. Thus, S3 is indivisible. For
U4, and hence S4, the problem is still open though results from section 3.4 clearly
show that spaces of the form US where S is finite with size less or equal to 4 have
a tendency to be indivisible.

We now turn to 1/m-indivisibility of the spaces Sm. In theorem 23, we showed
how an exact indivisibility result transfers to an approximate one. It turns out that
a slight modification of the proof allows to show:

Theorem 72. Assume that for some strictly positive m ∈ ω, Sm is indivisible.
Then S3m is 1/3m-indivisible.

Proof. To prove this theorem, it suffices to show that there is an isometric

copy S∗∗
m of Sm inside S3m such that for every S̃m ⊂ S∗∗

m isometric to Sm, (S̃m)1/3m

includes an isometric copy of S3m. The proof is essentially the same as the proof of
theorem 24 except that instead of the metric space Xm = (SQ,

⌈
dSQ

⌉
m

), one works

with (S3m,
⌈
dSQ

⌉
m

). The fact that the approximation can be made up to 1/3m and

not 1/2m comes from the fact that for α ∈ [0, 1]3m, α 6 ⌈α⌉m 6 α+2/3m whereas
if α ∈ [0, 1] ∩ Q, one only has α 6 ⌈α⌉m < α + 1/m. ¤

Thus:

Theorem 73. For every m 6 9, Sm is 1/m-indivisible.

It follows that as far as 1/m-indivisibility is concerned, the first open case
corresponds to m = 10. Observe that the previous result is equivalent to the fact
that for every m 6 9, U9 is 1-indivisible.

We now turn to the computation of values ε with respect to which S is ε-
indivisible. At that point, there are two alternatives: Either use the indivisibility
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results of the spaces Sm, or use their 1/m-indivisibility properties. As far as indi-
visibility is concerned, the best current ε with respect to which S is ε-indivisible is
provided by Sauer’s theorem together with theorem 23, namely:

Theorem 74. S is 1/6-indivisible.

On the other hand, if at some point an approximate indivisibility result for
Sm showed up independently of an exact one, we would still be able to compute a
bound for S:

Theorem 75. Assume that for some strictly positive m ∈ ω, Sm is 1/m-
indivisible. Then S is ε-indivisible for every ε > 3/2m.

Proof. Let ε > 3/2m. Consider S∗
m constructed in proposition 24. Now, let

k ∈ ω be strictly positive and χ : S −→ k. χ induces a coloring of S∗
m and Sm

being 1/m-indivisible, there are i < k and S̃m ⊂ S∗
m isometric to Sm such that

S̃m ⊂ (←−χ {i})1/m. By construction, (S̃m)1/2m includes an isometric copy of S.
Now,

((←−χ {i})1/m)1/2m ⊂ (←−χ {i})3/2m ⊂ (←−χ {i})ε.

It follows that (←−χ {i})ε includes an isometric copy of S. ¤

Remark. If Sm is indivisible, there are now two ways to compute bounds on
S. The first way is provided by theorem 23 and gives 1/2m. On the other hand,
one may also apply theorem 72 first, and then theorem 75. The bound is then
3/2 · 1/3m = 1/2m. Thus, the two approches are equivalent.

4.2.7. Towards indivisibility of the spaces Sm. In this last part, we present two
additional results which can be seen as two possible tracks for an attack of the
indivisibility problem for the spaces Sm. The first one makes a reference to the
space SQ:

Theorem 76. Let m ∈ ω be strictly positive. Assume that for every strictly

positive k ∈ ω and χ : SQ −→ k, there is a copy S̃m of Sm in SQ on which χ is
constant. Then Sm is indivisible.

Proof. Once again, we work with Xm = (SQ,
⌈
dSQ

⌉
m

) and the identity map
πm : SQ −→ Sm. Think of Xm as a subspace of Sm. Now, let k ∈ ω be strictly
positive and χ : Sm −→ k. Then χ induces a coloring of Xm, and therefore a

coloring χ ◦π of SQ. By hypothesis, there is a copy S̃m of Sm in SQ on which χ ◦π

is constant with value i < k. Then π′′S̃m ⊂ ←−χ {i}. The result follows since π′′S̃m

is isometric to Sm. ¤

The second result of this part introduces new metric spaces Cm’s for which
the indivisibity is equivalent to the indivisibility of Sm’s but which, unlike the
Sm’s, present the advantage of having a very explicit description. Let P denote
the Cantor space, that is the topological product space 2ω. Let C(P ) denote the
set of all continuous maps from P to R equipped with the ‖.‖∞ norm. Since the
work of Banach and Mazur, it is known that C(P ) is a universal separable metric
space. Actually, Sierpinski’s proof of that fact allows to show the following result.
For m ∈ ω strictly positive, let Cm denote the space of all continuous maps from
P to [0, 1]m equipped with the distance induced by ‖.‖∞.
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Theorem 77. Cm is a countable metric space and is universal for the class of
all countable metric spaces with distances in [0, 1]m.

Proof. We first show that Cm is countable: If f ∈ Cm and k ∈ [0, 1]m then
←−
f {k} is closed. Thus,

←−
f {k} = P r

⋃
j 6=k

←−
f {j} is open. It follows that f is a linear

combination with integer coefficients of characterictic functions of clopen subsets
of P . Hence, Cm is countable.

We now show that Cm is universal: Let X be a countable metric space with
distances in [0, 1]m and Lm := Lip1(X, [0, 1]m) denote the topological space of all 1-
Lipschitz maps from X to [0, 1]m equipped with the pointwise convergence topology.
Seen as a subspace of [0, 1]Xm, Lm is closed, hence compact and metrizable. Thus,
there is φ : P −→ Lm continuous and onto. Now, for x ∈ X, let ϕx be defined on
P by

∀s ∈ P ϕx(s) = φ(s)(x).

We are going to show that ϕ : X −→ Cm defines an isometry from X into Cm.
To prove that ϕ takes its values in Cm, let x ∈ X and k ∈ [0, 1]m. Then

←−ϕ x{k} = {s ∈ P : φ(s)(x) = k} =
←−
φ {u ∈ [0, 1]Xm : u(x) = k} ∩ Lm.

Hence, ←−ϕ x{k} is open in P and ϕx is continuous. To finish the proof, it suffices
to show that ϕ preserves distances. Let x, y ∈ X. Then

‖ϕx − ϕy‖∞ 6 sup
s∈P

|φ(s)(x) − φ(s)(y)| 6 sup
s∈P

dX(x, y).

On the other hand, let hx : X −→ [0, 1]m be defined as hx(y) = dX(x, y). Then
hx ∈ Lm: |hx(y) − hx(z)| =

∣∣dX(x, y) − dX(x, z)
∣∣ 6 dX(y, z). Now, φ being onto,

there is s0 ∈ P such that φ(s0) = hx. Then |φ(s0)(x) − φ(s0)(y)| = dX(x, y). Thus,
‖ϕx − ϕy‖∞ = dX(x, y). ¤

It follows that Sm is indivisible iff Cm is. Cm being a much more concrete
object than Sm, studying its indivisibility might be a alternative to solve the indi-
visibility problem for Sm.

5. Concluding remarks and open problems.

We mentionned several times in this chapter that for the moment, not much is
known as far as big Ramsey degrees are concerned, so this direction already provides
a first axis of future research. In fact, this is not particular to metric spaces: Even
at the more general level of structural Ramsey theory, very little is known. To our
knowledge, apart from ultrametric spaces, the only cases where a complete analysis
was carried out correspond to finite linear orderings (Devlin, see section 11 of [40]
or [79]) and finite graphs (Laflamme-Sauer-Vuksanovic [45]). Furthermore, even
when big Ramsey degrees are determined, their explicit computation is not always
easy. Ultrametric spaces are a good illustration of this phenomenon: For X ∈ US ,
we proved that TUS

(X) is equal to the number of linear extensions of the tree
associated to X in US but we did not touch the question of how this number can
be computed in practice. For graphs, the problem is similar, and it turns out that
even in the most simple cases, highly non-trivial combinatorial problems appear
(see for example [43]). For more about big Ramsey degrees in structural Ramsey



122 3. BIG RAMSEY DEGREES, INDIVISIBILITY AND OSCILLATION STABILITY.

theory, see [40], section 11, or [79]. Back to the metric context, here is the question
which looks like the most reasonable to us:

Question 3. Let m ∈ ω be strictly positive. Does every X in Mω∩]0,m] have a
big Ramsey degree in Mω∩]0,m]? More generally, if S ⊂]0,+∞[ is finite and satisfies
the 4-values condition, does every X in MS have a big Ramsey degree in MS?

When X is the 1-point metric space K1, this question is closely related to
indivisibility. However, as mentionned several times already in the body of this
thesis, our belief is not only that K1 has a big Ramsey degree in the classes Mω∩]0,m]

and MS but that the related Urysohn spaces Um and US , starting with U4, are
indivisible. . . But as so far this statement is no more than a simple belief, here is
the next and last question:

Question 4. Is U4 indivisible? More generally, for m ∈ ω strictly positive,
is Um indivisible? Even more generally, if S ⊂]0,+∞[ is finite and satisfies the
4-values condition, is US indivisible?

Equivalently for Um, is Cm indivisible? Or, using theorem 76, given a coloring

χ : SQ −→ 2, is there a copy S̃m of Sm in SQ on which χ is constant?



Appendix A. Amalgamation classes MS when
|S| 6 4.

The purpose of this appendix is to provide a list of all the amalgamation classes
MS when |S| 6 4. Thanks to [9], it is known that MS is an amalgamation class
iff S satisfies the 4-values condition. Recall that S satisfies the 4-values condition
when for every s0, s1, s

′
0, s

′
1 ∈ S, if there is t ∈ S such that:

|s0 − s1| 6 t 6 s0 + s1, |s′0 − s′1| 6 t 6 s′0 + s′1,

then there is u ∈ S such that:

|s0 − s′0| 6 u 6 s0 + s′0, |s1 − s′1| 6 u 6 s1 + s′1.

6. |S| = 3.

6.1. s0 < s1 6 2s0 < s0 + s1 < 2s1 < s2 {1, 2, 5}.
For a quadruple (u0, u1, u2, u3) of elements of S, let I(u0, u1, u2, u3) be defined

as the interval:

I(u0, u1, u2, u3) := [max(|u0 − u1|, |u2 − u3|),min(u0 + u1, u2 + u3)]

Call (u0, u1, u2, u3) good if I(u0, u1, u2, u3) ∩ S 6= ∅. Otherwise, call it bad.
Define also (u0, u1, u2, u3)

∗ := (u0, u2, u1, u3). So S satisfies the 4-values condition
iff for every (u0, u1, u2, u3) ∈ S4, (u0, u1, u2, u3) is good iff (u0, u1, u2, u3)

∗ is good.
Also, call a permutation σ of {0, 1, 2, 3} trivial if:

∀(u0, u1, u2, u3) ∈ S4, I(uσ(0), uσ(1), uσ(2), uσ(3)) = I(u0, u1, u2, u3).

Equivalently, σ is trivial when σ′′{0, 1} ∈ {{0, 1}, {2, 3}}. Now, set:

A := {|s − s′| : s, s′ ∈ S} B := {s + s′ : s, s′ ∈ S}.

Here, A = {1, 3, 4}, while B = {2, 3, 4}∪C with C ⊂ [5,+∞[. For every interval
[a, b] where a ∈ A, b ∈ B rC and such that [a, b]∩S = ∅, we find all the quadruples
(u0, u1, u2, u3) (up to trivial permutation) such that I(u0, u1, u2, u3) = [a, b]. Up to
a trivial permutation, this allows to find all the bad quadruples. In the present case,
here is the list of all intervals [a, b] where a ∈ A, b ∈ B and such that [a, b]∩ S = ∅,
together with the quadruples (u0, u1, u2, u3) such that I(u0, u1, u2, u3) = [a, b].

[3, 2] (2, 5, 1, 1)
[3, 3] (2, 5, 1, 2)
[3, 4] (2, 5, 2, 2)
[4, 2] (1, 5, 1, 1)
[4, 3] (1, 5, 1, 2)
[4, 4] (1, 5, 2, 2)

Now, let τ be the transposition of {0, 1, 2, 3} permuting 1 and 2. Let also T
be the set of all trivial permutations of {0, 1, 2, 3}. Observe that T ∪ {τ} gen-
erates the whole group of permutations of {0, 1, 2, 3}. Thus, we have to check

123
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that the set of bad quadruples is closed under all permutations. In practice, how-
ever, note that given any permutation σ of {0, 1, 2, 3}, (uσ(0), uσ(1), uσ(2), uσ(3)) is
equal to (u0, u1, u2, u3), to (u0, u1, u2, u3)

∗ = (u0, u2, u1, u3) or to (u0, u1, u2, u3)∗ =
(u0, u3, u2, u1) up to trivial permutation. Thus, it suffices to show that for every
bad quadruple (u0, u1, u2, u3) above, (u0, u1, u2, u3)

∗ and (u0, u1, u2, u3)∗ are also
bad. Observe also that there are some cases where checking only (u0, u1, u2, u3)

∗ or
(u0, u1, u2, u3)∗ is enough. For example, if u0 = u1, checking that (u0, u2, u1, u3)

∗

is bad is sufficient. There are even cases where there is nothing to check, namely
when all but one of the ui’s are equal. Here, if ≈ denotes equality modulo a trivial
permutation:

(2, 5, 1, 1)∗ = (2, 1, 5, 1) ≈ (1, 5, 1, 2)
(2, 5, 1, 2)∗ = (2, 2, 1, 5) ≈ (1, 5, 2, 2)
(1, 5, 1, 2)∗ = (1, 1, 5, 2) ≈ (2, 5, 1, 1)
(1, 5, 2, 2)∗ = (1, 2, 5, 2) ≈ (1, 5, 1, 2)

It follows that S satisfies the 4-values condition.

6.2. s0 < 2s0 < s1 < s2 6 s0 + s1 < 2s1 {1, 3, 4}.

A = {1, 2, 3}, B = {2} ∪ C, C ⊂ [4,+∞[.

[2, 2] (1, 3, 1, 1)
[3, 2] (1, 4, 1, 1)

{1, 3, 4} satisfies the 4-values condition.

6.3. s0 < 2s0 < s1 < s0 + s1 < s2 6 2s1 {1, 3, 6}.

A = {2, 3, 5}, B = {2, 4} ∪ C, C ⊂ [6,+∞[.

[2, 2] (1, 3, 1, 1)
[3, 2] (3, 6, 1, 1) (3, 6, 1, 1)∗ = (3, 1, 6, 1) ≈ (1, 6, 1, 3)
[5, 2] (1, 6, 1, 1)
[5, 4] (1, 6, 1, 3) (1, 6, 1, 3)∗ = (1, 1, 6, 3) ≈ (3, 6, 1, 1)

{1, 3, 6} satisfies the 4-values condition.

7. |S| = 4.

For |S| = 4, there are more cases to consider. Recall that for |S| = 3, the
sets we had to check with the 4-values criterion were provided by the following
inequalities:

(1a) s0 < s1 < s2 6 2s0 < s0 + s1 < 2s1

(1b) s0 < s1 6 2s0 < s2 6 s0 + s1 < 2s1

(1d) s0 < s1 6 2s0 < s0 + s1 < 2s1 < s2

(2a) s0 < 2s0 < s1 < s2 6 s0 + s1 < 2s1

(2b) s0 < 2s0 < s1 < s0 + s1 < s2 6 2s1

(2c) s0 < 2s0 < s1 < s0 + s1 < 2s1 < s2

We look at how s0 + s2, s1 + s2 and 2s2 may be inserted in these chains:

For (1a):

s0 < s1 < s2 < 2s0 < s0 + s1 < s0 + s2 < 2s1 < s1 + s2 < 2s2

s0 < s1 < s2 < 2s0 < s0 + s1 < 2s1 < s0 + s2 < s1 + s2 < 2s2
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For (1b):

s0 < s1 < 2s0 < s2 < s0 + s1 < s0 + s2 < 2s1 < s1 + s2 < 2s2

s0 < s1 < 2s0 < s2 < s0 + s1 < 2s1 < s0 + s2 < s1 + s2 < 2s2

For (1d):

s0 < s1 < 2s0 < s0 + s1 < 2s1 < s2 < s0 + s2 < s1 + s2 < 2s2

For (2a):

s0 < 2s0 < s1 < s2 < s0 + s1 < s0 + s2 < 2s1 < s1 + s2 < 2s2

s0 < 2s0 < s1 < s2 < s0 + s1 < 2s1 < s0 + s2 < s1 + s2 < 2s2

For (2b):

s0 < 2s0 < s1 < s0 + s1 < s2 < s0 + s2 < 2s1 < s1 + s2 < 2s2

s0 < 2s0 < s1 < s0 + s1 < s2 < 2s1 < s0 + s2 < s1 + s2 < 2s2

For (2c):

s0 < 2s0 < s1 < s0 + s1 < 2s1 < s2 < s0 + s2 < s1 + s2 < 2s2

We now insert s3 in these chains and check if the 4-values condition holds for
all the corresponding sets.

7.1. s0 < s1 < s2 < 2s0 < s0 + s1 < s0 + s2 < 2s1 < s1 + s2 < 2s2 {5, 7, 8}.

7.1.1. s2 < s3 6 2s0 {5, 7, 8, 11}.
No metric restriction. S satisfies the 4-values condition.

7.1.2. 2s0 < s3 6 s0 + s1 {5, 7, 8, 11}.

A ⊂ [0, 6], B ⊂ [10,+∞[.

No bad quadruple. S satisfies the 4-values condition.

7.1.3. s0 + s1 < s3 6 s0 + s2 {5, 7, 8, 13}.

A ⊂ [0, 8], B ⊂ [10,+∞[.

No bad quadruple. S satisfies the 4-values condition.

7.1.4. s0 + s2 < s3 6 2s1 {5, 7, 8, 14}.
(5, 14, 5, 7) is a bad quadruple while (5, 14, 5, 7)∗ = (5, 5, 14, 7) is not. S does

not satisfy the 4-values condition.

7.1.5. 2s1 < s3 6 s1 + s2 {5, 7, 8, 15}.
(5, 15, 5, 7) is a bad quadruple while (5, 15, 5, 7)∗ = (5, 5, 15, 7) is not. S does

not satisfy the 4-values condition.
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7.1.6. s1 + s2 < s3 6 2s2 {5, 7, 8, 16}.
(7, 16, 7, 8) is a bad quadruple while (7, 16, 7, 8)∗ = (7, 7, 16, 8) is not. S does

not satisfy the 4-values condition.

7.1.7. 2s2 < s3 {5, 7, 8, 17}.
S = S′ ∪ {t} where S′ satisfies the 4-values condition and 2max S′ < t. It is

easy to check that the 4-values condition is always satisfied in such a situation.

7.2. s0 < s1 < s2 < 2s0 < s0 + s1 < 2s1 < s0 + s2 < s1 + s2 < 2s2 {5, 6, 9}.

7.2.1. s2 < s3 6 2s0 {5, 6, 9, 10}.
No metric restriction. S satisfies the 4-values condition.

7.2.2. 2s0 < s3 6 s0 + s1 {5, 6, 9, 11}.
s2 does not appear in any non-metric triangle with labels in S. 4-values condi-

tion is satisfied.

7.2.3. s0 + s1 < s3 6 2s1 {5, 6, 9, 12}.
Same as previous case. 4-values condition is satisfied.

7.2.4. 2s1 < s3 6 s0 + s2 {5, 6, 9, 14}.
Same as previous case. 4-values condition is satisfied.

7.2.5. s0 + s2 < s3 6 s1 + s2 {5, 6, 9, 15}.
{5, 6, 9, 15} ∼ {5, 7, 8, 15}. So according to 7.1.5, S does not satisfy the 4-values

condition.

7.2.6. s1+s2 < s3 6 2s2 {5, 6, 9, 18}. {5, 6, 9, 18} ∼ {5, 7, 8, 16}. So according
to 7.1.6, S does not satisfy the 4-values condition.

7.2.7. 2s2 < s3 {5, 6, 9, 19}.
{5, 6, 9, 19} ∼ {5, 7, 8, 17}. So according to 7.1.7, S satisfies the 4-values condi-

tion.

7.3. s0 < s1 < 2s0 < s2 < s0 + s1 < s0 + s2 < 2s1 < s1 + s2 < 2s2 {4, 7, 9}.

7.3.1. s2 < s3 6 s0 + s1 {4, 7, 9, 11}.
s1 does not appear in any non-metric triangle with labels in S. 4-values condi-

tion is satisfied.

7.3.2. s0 + s1 < s3 6 s0 + s2 {4, 7, 9, 12}.
{4, 7, 9, 13} ≈ {1, 2, 3, 4}, and 4-values condition is satisfied as {1, 2, 3, 4} is an

initial segment of a set which is closed under sums.
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7.3.3. s0 + s2 < s3 6 2s1 {4, 7, 9, 14}.
(4, 14, 4, 7) is a bad quadruple while (4, 14, 4, 7)∗ = (4, 4, 14, 7) is not. S does

not satisfy the 4-values condition.

7.3.4. 2s1 < s3 6 s1 + s2 {4, 7, 9, 16}.
(4, 16, 4, 7) is a bad quadruple while (4, 16, 4, 7)∗ = (4, 4, 16, 7) is not. S does

not satisfy the 4-values condition.

7.3.5. s1 + s2 < s3 6 2s2 {4, 7, 9, 18}.
(7, 18, 4, 9) is a bad quadruple while (7, 18, 4, 9)∗ = (7, 4, 18, 9) is not. S does

not satisfy the 4-values condition.

7.3.6. 2s2 < s3 {4, 7, 9, 19}.
4-values condition is satisfied as S = S′ ∪ {t} with S′ satisfying the 4-values

condition and 2max S′ < t.

7.4. s0 < s1 < 2s0 < s2 < s0 + s1 < 2s1 < s0 + s2 < s1 + s2 < 2s2 {8, 14, 21}.

7.4.1. s2 < s3 6 s0 + s1 {8, 14, 21, 22}.
s1 does not appear in any non-metric triangle with labels in S. 4-values condi-

tion is satisfied.

7.4.2. s0 + s1 < s3 6 2s1 {8, 14, 21, 28}.
{8, 14, 21, 28} ∼ {4, 7, 9, 12}. Thus, according to 7.3.2, S satisfies the 4-values

condition.

7.4.3. 2s1 < s3 6 s0 + s2 {8, 14, 21, 29}.
(14, 29, 8, 8) is a bad quadruple while (14, 29, 8, 8)∗ = (14, 8, 29, 8) is not. S

does not satisfy the 4-values condition.

7.4.4. s0 + s2 < s3 6 s1 + s2 {8, 14, 21, 35}.
{8, 14, 21, 35} ∼ {4, 7, 9, 16}. Thus, according to 7.3.4, S does not satisfy the

4-values condition.

7.4.5. s1 + s2 < s3 6 2s2 {8, 14, 21, 42}.
{8, 14, 21, 42} ∼ {4, 7, 9, 18}. According to 7.3.5, S consequently does not sat-

isfy the 4-values condition.

7.4.6. 2s2 < s3 {8, 14, 21, 43}.
4-values condition is satisfied as S = S′ ∪ {t} with S′ satisfying the 4-values

condition and 2max S′ < t.
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7.5. s0 < s1 < 2s0 < s0 + s1 < 2s1 < s2 < s0 + s2 < s1 + s2 < 2s2 {2, 3, 7}.

7.5.1. s2 < s3 6 s0 + s2 {2, 3, 7, 9}.

A = {1, 2, 4, 5, 6, 7}, B = {4, 5, 6} ∪ C, C ⊂ [9,+∞[.

[4, 4] (3, 7, 2, 2) (3, 7, 2, 2)∗ = (3, 2, 2, 7) ≈ (2, 7, 2, 3)
[4, 5] (3, 7, 2, 3) (3, 7, 2, 3)∗ = (3, 3, 2, 7) ≈ (2, 7, 3, 3)
[4, 6] (3, 7, 3, 3)
[5, 4] (2, 7, 2, 2)
[5, 5] (2, 7, 2, 3) (2, 7, 2, 3)∗ = (2, 2, 7, 3) ≈ (3, 7, 2, 2)
[5, 6] (2, 7, 3, 3) (2, 7, 3, 3)∗ = (2, 3, 7, 3) ≈ (3, 7, 2, 3)
[6, 4] (3, 9, 2, 2) (3, 9, 2, 2)∗ = (3, 2, 9, 2) ≈ (2, 9, 2, 3)
[6, 5] (3, 9, 2, 3) (3, 9, 2, 3)∗ = (3, 3, 2, 9) ≈ (2, 9, 3, 3)
[6, 6] (3, 9, 3, 3)
[7, 4] (2, 9, 2, 2)
[7, 5] (2, 9, 2, 3) (2, 9, 2, 3)∗ = (2, 2, 9, 3) ≈ (3, 9, 2, 2)
[7, 6] (2, 9, 3, 3) (2, 9, 3, 3)∗ = (2, 3, 9, 3) ≈ (3, 9, 2, 3)

S = {2, 3, 7, 9} satisfies the 4-values condition.

7.5.2. s0 + s2 < s3 6 s1 + s2 {2, 3, 7, 10}.
(2, 10, 2, 7) is a bad quadruple while (2, 10, 2, 7)∗ = (2, 2, 10, 7) is not. S does

not satisfy the 4-values condition.

7.5.3. s1 + s2 < s3 6 2s2 {2, 3, 7, 14}.

A = {1, 4, 5, 7, 11, 12}, B = {4, 5, 6, 9, 10} ∪ C, C ⊂ [14,+∞[.

[4, 4] (3, 7, 2, 2) (3, 7, 2, 2)∗ = (3, 2, 7, 2) ≈ (2, 7, 2, 3)
[4, 5] (3, 7, 2, 3) (3, 7, 2, 3)∗ = (3, 3, 2, 7) ≈ (2, 7, 3, 3)
[4, 6] (3, 7, 3, 3)
[5, 4] (2, 7, 2, 2)
[5, 5] (2, 7, 2, 3) (2, 7, 2, 3)∗ = (2, 2, 7, 3) ≈ (3, 7, 2, 2)
[5, 6] (2, 7, 3, 3) (2, 7, 3, 3)∗ = (2, 3, 7, 3) ≈ (3, 7, 2, 3)
[7, 4] (7, 14, 2, 2) (7, 14, 2, 2)∗ = (7, 2, 14, 2) ≈ (2, 14, 2, 7)
[7, 5] (7, 14, 2, 3) (7, 14, 2, 3)∗ = (7, 2, 14, 3) ≈ (3, 14, 2, 7)

(7, 14, 2, 3)∗ = (7, 3, 2, 14) ≈ (2, 14, 3, 7)
[7, 6] (7, 14, 3, 3) (7, 14, 3, 3)∗ = (7, 3, 14, 3) ≈ (3, 14, 3, 7)
[11, 4] (3, 14, 2, 2) (3, 14, 2, 2)∗ = (3, 2, 14, 2) ≈ (2, 14, 2, 3)
[11, 5] (3, 14, 2, 3) (3, 14, 2, 3)∗ = (3, 3, 2, 14) ≈ (2, 14, 3, 3)
[11, 6] (3, 14, 3, 3)
[11, 9] (3, 14, 2, 7) (3, 14, 2, 7)∗ = (3, 2, 14, 7) ≈ (7, 14, 2, 3)

(3, 14, 2, 7)∗ = (3, 7, 2, 14) ≈ (2, 14, 3, 7)
[11, 10] (3, 14, 3, 7) (3, 14, 3, 7)∗ = (3, 3, 14, 7) ≈ (7, 14, 3, 3)
[12, 4] (2, 14, 2, 2)
[12, 5] (2, 14, 2, 3) (2, 14, 2, 3)∗ = (2, 2, 14, 3) ≈ (3, 14, 2, 2)
[12, 6] (2, 14, 3, 3) (2, 14, 3, 3)∗ = (2, 3, 14, 3) ≈ (3, 14, 2, 3)
[12, 9] (2, 14, 2, 7) (2, 14, 2, 7)∗ = (2, 2, 14, 7) ≈ (7, 14, 2, 2)
[12, 10] (2, 14, 3, 7) (2, 14, 3, 7)∗ = (2, 3, 14, 7) ≈ (7, 14, 2, 3)

(2, 14, 3, 7)∗ = (2, 7, 3, 14) ≈ (3, 14, 2, 7)
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S = {2, 3, 7, 14} satisfies the 4-values condition.

7.5.4. 2s2 < s3 {2, 3, 7, 15}. 4-values condition is satisfied as S = S′ ∪ {t}
with S′ satisfying the 4-values condition and 2maxS′ < t.

7.6. s0 < 2s0 < s1 < s2 < s0 + s1 < s0 + s2 < 2s1 < s1 + s2 < 2s2 {2, 6, 7}.

7.6.1. s2 < s3 6 s0 + s1 {2, 6, 7, 8}.

A = {1, 2, 4, 5, 6}, B = {4} ∪ C,C ⊂ [8,+∞[.

[4, 4] (2, 6, 2, 2)
[5, 4] (2, 7, 2, 2)
[6, 4] (2, 8, 2, 2)

S = {2, 6, 7, 8} satisfies the 4-values condition.

7.6.2. s0 + s1 < s3 6 s0 + s2 {2, 6, 7, 9}.
(6, 9, 2, 2) is a bad quadruple while (6, 9, 2, 2)∗ = (6, 2, 9, 2) is not. S does not

satisfy the 4-values condition.

7.6.3. s0 + s2 < s3 6 2s1 {2, 6, 7, 12}.

A = {1, 4, 5, 6, 10}, B = {4, 8, 9} ∪ C, C ⊂ [12,+∞[.

[4, 4] (2, 6, 2, 2)
[5, 4] (2, 7, 2, 2)

(7, 12, 2, 2) (7, 12, 2, 2)∗ = (7, 2, 12, 2) ≈ (2, 12, 2, 7)
[6, 4] (2, 8, 2, 2)

(6, 12, 2, 2) (6, 12, 2, 2)∗ = (6, 2, 12, 2) ≈ (2, 12, 2, 6)
[10, 4] (2, 12, 2, 2)
[10, 8] (2, 12, 2, 6) (2, 12, 2, 6)∗ = (2, 2, 12, 6) ≈ (6, 12, 2, 2)
[10, 9] (2, 12, 2, 7) (2, 12, 2, 7)∗ = (2, 2, 12, 7) ≈ (7, 12, 2, 2)

S = {2, 6, 7, 12} satisfies the 4-values condition.

7.6.4. 2s1 < s3 6 s1 + s2 {2, 6, 7, 13}.
(2, 13, 6, 6) is a bad quadruple while (2, 13, 6, 6)∗ = (2, 6, 13, 6) is not. S does

not satisfy the 4-values condition.

7.6.5. s1 + s2 < s3 6 2s2 {2, 6, 7, 14}.
(6, 14, 2, 7) is a bad quadruple while (6, 14, 2, 7)∗ = (6, 2, 14, 7) is not. S does

not satisfy the 4-values condition.

7.6.6. 2s2 < s3 {2, 6, 7, 15}.
4-values condition is satisfied as S = S′ ∪ {t} with S′ satisfying the 4-values

condition and 2max S′ < t.
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7.7. s0 < 2s0 < s1 < s2 < s0 + s1 < 2s1 < s0 + s2 < s1 + s2 < 2s2.

This chain of inequalities is not consistent: If s2 6 s0 + s1 and 2s1 6 s0 + s2

then s1 6 2s0.

7.8. s0 < 2s0 < s1 < s0 + s1 < s2 < s0 + s2 < 2s1 < s1 + s2 < 2s2 {1, 4, 6}.

7.8.1. s2 < s3 6 s0 + s2 {1, 4, 6, 7}.

A = {1, 2, 3, 5, 6}, B = {2, 5} ∪ C, C ⊂ [7,+∞[.

[2, 2] (4, 6, 1, 1) (4, 6, 1, 1)∗ = (4, 1, 6, 1) ≈ (1, 6, 1, 4)
[3, 2] (4, 7, 1, 1) (4, 7, 1, 1)∗ = (4, 1, 7, 1) ≈ (1, 7, 1, 4)

(1, 4, 1, 1)
[5, 2] (1, 6, 1, 1)
[5, 5] (1, 6, 1, 4) (1, 6, 1, 4)∗ = (1, 1, 6, 4) ≈ (4, 6, 1, 1)
[6, 2] (1, 7, 1, 1)
[6, 5] (1, 7, 1, 4) (1, 7, 1, 4)∗ = (1, 1, 7, 4) ≈ (4, 7, 1, 1)

S = {1, 4, 6, 7} satisfies the 4-values condition.

7.8.2. s0 + s2 < s3 6 2s1 {1, 4, 6, 8}.

A = {2, 3, 4, 5, 7}, B = {2, 5, 7} ∪ C, C ⊂ [8,+∞[.

[2, 2] (4, 6, 1, 1) (4, 6, 1, 1)∗ = (4, 1, 6, 1) ≈ (1, 6, 1, 4)
(6, 8, 1, 1) (6, 8, 1, 1)∗ = (6, 1, 8, 1) ≈ (1, 8, 1, 6)

[3, 2] (1, 4, 1, 1)
[4, 2] (4, 8, 1, 1) (4, 8, 1, 1)∗ = (4, 1, 8, 1) ≈ (1, 8, 1, 4)
[5, 2] (1, 6, 1, 1)
[5, 5] (1, 6, 1, 4) (1, 6, 1, 4)∗ = (1, 1, 6, 4) ≈ (4, 6, 1, 1)
[7, 2] (1, 8, 1, 1)
[7, 5] (1, 8, 1, 4) (1, 8, 1, 4)∗ = (1, 1, 8, 4) ≈ (4, 8, 1, 1)
[7, 7] (1, 8, 1, 6) (1, 8, 1, 6)∗ = (1, 1, 8, 6) ≈ (6, 8, 1, 1)

S = {1, 4, 6, 8} satisfies the 4-values condition.

7.8.3. 2s1 < s3 6 s1 + s2 {1, 4, 6, 10}.

A = {2, 3, 4, 5, 6, 9}, B = {2, 5, 7, 8} ∪ C, C ⊂ [10,+∞[.

[2, 2] (4, 6, 1, 1) (4, 6, 1, 1)∗ = (4, 1, 6, 1) ≈ (1, 6, 1, 4)
[3, 2] (1, 4, 1, 1)
[4, 2] (6, 10, 1, 1) (6, 10, 1, 1)∗ = (6, 1, 10, 1) ≈ (1, 10, 1, 6)
[5, 2] (1, 6, 1, 1)
[5, 5] (1, 6, 1, 4) (1, 6, 1, 4)∗ = (1, 1, 6, 4) ≈ (4, 6, 1, 1)
[6, 2] (4, 10, 1, 1) (4, 10, 1, 1)∗ = (4, 1, 10, 1) ≈ (1, 10, 1, 4)
[6, 5] (4, 10, 1, 4) (4, 10, 1, 4)∗ = (4, 4, 1, 10) ≈ (1, 10, 4, 4)
[9, 2] (1, 10, 1, 1)
[9, 5] (1, 10, 1, 4) (1, 10, 1, 4)∗ = (1, 1, 10, 4) ≈ (4, 10, 1, 1)
[9, 7] (1, 10, 1, 6) (1, 10, 1, 6)∗ = (1, 1, 10, 6) ≈ (6, 10, 1, 1)
[9, 8] (1, 10, 4, 4) (1, 10, 4, 4)∗ = (1, 4, 10, 4) ≈ (4, 10, 1, 4)

S = {1, 4, 6, 10} satisfies the 4-values condition.
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7.8.4. s1 + s2 < s3 6 2s2 {1, 4, 6, 12}.
(4, 12, 4, 6) is a bad quadruple while (4, 12, 4, 6)∗ = (4, 4, 12, 6) is not. S does

not satisfy the 4-values condition.

7.8.5. 2s2 < s3 {1, 4, 6, 13}.
4-values condition is satisfied as S = S′ ∪ {t} with S′ satisfying the 4-values

condition and 2max S′ < t.

7.9. s0 < 2s0 < s1 < s0 + s1 < s2 < 2s1 < s0 + s2 < s1 + s2 < 2s2 {2, 5, 9}.

7.9.1. s2 < s3 6 2s1 {2, 5, 9, 10}.
{2, 5, 9, 10} ∼ {1, 4, 6, 7}. Thus, according to 7.8.1, S satisfies the 4-values

condition.

7.9.2. 2s1 < s2 6 s0 + s2 {2, 5, 9, 11}.
(5, 11, 2, 5) is a bad quadruple while (5, 11, 2, 5)∗ = (5, 5, 2, 11) is not. S does

not satisfy the 4-values condition.

7.9.3. s0 + s2 < s3 6 s1 + s2 {2, 5, 9, 14}.
{2, 5, 9, 14} ∼ {1, 4, 6, 10} so according to 7.8.3, S satisfies the 4-values condi-

tion.

7.9.4. s1 + s2 < s3 6 2s2 {2, 5, 9, 18}.
(5, 18, 5, 9) is a bad quadruple while (5, 18, 5, 9)∗ = (5, 5, 18, 9) is not. S does

not satisfy the 4-values condition.

7.9.5. 2s2 < s3.
4-values condition is satisfied as S = S′ ∪ {t} with S′ satisfying the 4-values

condition and 2max S′ < t.

7.10. s0 < 2s0 < s1 < s0 + s1 < 2s1 < s2 < s0 + s2 < s1 + s2 < 2s2 {1, 3, 7}.

7.10.1. s2 < s3 6 s0 + s2 {1, 3, 7, 8}.

A = {1, 2, 4, 5, 6, 7}, B = {2, 4, 6} ∪ C, C ⊂ [8,+∞[.
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[2, 2] (1, 3, 1, 1)
[4, 2] (3, 7, 1, 1) (3, 7, 1, 1)∗ = (3, 1, 7, 1) ≈ (1, 7, 1, 3)
[4, 4] (3, 7, 1, 3) (3, 7, 1, 3)∗ = (3, 3, 1, 7) ≈ (1, 7, 3, 3)
[4, 6] (3, 7, 3, 3)
[5, 2] (3, 8, 1, 1) (3, 8, 1, 1)∗ = (3, 1, 8, 1) ≈ (1, 8, 1, 3)
[5, 4] (3, 8, 1, 3) (3, 8, 1, 3)∗ = (3, 3, 1, 8) ≈ (1, 8, 3, 3)
[5, 6] (3, 8, 3, 3)
[6, 2] (1, 7, 1, 1)
[6, 4] (1, 7, 1, 3) (1, 7, 1, 3)∗ = (1, 1, 7, 3) ≈ (3, 7, 1, 1)
[6, 6] (1, 7, 3, 3) (1, 7, 3, 3)∗ = (1, 3, 7, 3) ≈ (3, 7, 1, 3)
[7, 2] (1, 8, 1, 1)
[7, 4] (1, 8, 1, 3) (1, 8, 1, 3)∗ = (1, 1, 8, 3) ≈ (3, 8, 1, 1)
[7, 6] (1, 8, 3, 3) (1, 8, 3, 3)∗ = (1, 3, 8, 3) ≈ (3, 8, 1, 3)

S = {1, 3, 7, 8} satisfies the 4-values condition.

7.10.2. s0 + s2 < s3 6 s1 + s2 {1, 3, 7, 10}.

A = {2, 3, 4, 6, 7, 9}, B = {2, 4, 6, 8} ∪ C, C ⊂ [10,+∞[.

[2, 2] (1, 3, 1, 1)
[3, 2] (7, 10, 1, 1) (7, 10, 1, 1)∗ = (7, 1, 10, 1) ≈ (1, 10, 1, 7)
[4, 2] (3, 7, 1, 1) (3, 7, 1, 1)∗ = (3, 1, 7, 1) ≈ (1, 7, 1, 3)
[4, 4] (3, 7, 1, 3) (3, 7, 1, 3)∗ = (3, 3, 1, 7) ≈ (1, 7, 3, 3)
[4, 6] (3, 7, 3, 3)
[6, 2] (1, 7, 1, 1)
[6, 4] (1, 7, 1, 3) (1, 7, 1, 3)∗ = (1, 1, 7, 3) ≈ (3, 7, 1, 1)
[6, 6] (1, 7, 3, 3) (1, 7, 3, 3)∗ = (1, 3, 7, 3) ≈ (3, 7, 1, 3)
[7, 2] (3, 10, 1, 1) (3, 10, 1, 1)∗ = (3, 1, 10, 1) ≈ (1, 10, 1, 3)
[7, 4] (3, 10, 1, 3) (3, 10, 1, 3)∗ = (3, 3, 1, 10) ≈ (1, 10, 3, 3)
[7, 6] (3, 10, 3, 3)
[9, 2] (1, 10, 1, 1)
[9, 4] (1, 10, 1, 3) (1, 10, 1, 3)∗ = (1, 1, 10, 3) ≈ (3, 10, 1, 1)
[9, 6] (1, 10, 3, 3) (1, 10, 3, 3)∗ = (1, 3, 10, 3) ≈ (3, 10, 1, 3)
[9, 8] (1, 10, 1, 7) (1, 10, 1, 7)∗ = (1, 1, 10, 7) ≈ (7, 10, 1, 1)

S = {1, 3, 7, 10} satisfies the 4-values condition.

7.10.3. s1 + s2 < s3 6 2s2 {1, 3, 7, 14}.

A = {2, 4, 6, 7, 11, 13}, B = {2, 4, 6, 8, 10} ∪ C, C ⊂ [14,+∞[.
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[2, 2] (1, 3, 1, 1)
[4, 2] (3, 7, 1, 1) (3, 7, 1, 1)∗ = (3, 1, 7, 1) ≈ (1, 7, 1, 3)
[4, 4] (3, 7, 1, 3) (3, 7, 1, 3)∗ = (3, 3, 1, 7) ≈ (1, 7, 3, 3)
[4, 6] (3, 7, 3, 3)
[6, 2] (1, 7, 1, 1)
[6, 4] (1, 7, 1, 3) (1, 7, 1, 3)∗ = (1, 1, 7, 3) ≈ (3, 7, 1, 1)
[6, 6] (1, 7, 3, 3) (1, 7, 3, 3)∗ = (1, 3, 7, 3) ≈ (3, 7, 1, 3)
[7, 2] (7, 14, 1, 1) (7, 14, 1, 1)∗ = (7, 1, 14, 1) ≈ (1, 14, 1, 7)
[7, 4] (7, 14, 1, 3) (7, 14, 1, 3)∗ = (7, 1, 14, 3) ≈ (3, 14, 1, 7)

(7, 14, 1, 3)∗ = (7, 3, 1, 14) ≈ (1, 14, 3, 7)
[7, 6] (7, 14, 3, 3) (7, 14, 3, 3)∗ = (7, 3, 14, 3) ≈ (3, 14, 3, 7)
[11, 2] (3, 14, 1, 1) (3, 14, 1, 1)∗ = (3, 1, 14, 1) ≈ (1, 14, 1, 3)
[11, 4] (3, 14, 1, 3) (3, 14, 1, 3)∗ = (3, 3, 1, 14) ≈ (1, 14, 3, 3)
[11, 6] (3, 14, 3, 3)
[11, 8] (3, 14, 1, 7) (3, 14, 1, 7)∗ = (3, 1, 14, 7) ≈ (7, 14, 1, 3)

(3, 14, 1, 7)∗ = (3, 7, 1, 14) ≈ (1, 14, 3, 7)
[11, 10] (3, 14, 3, 7) (3, 14, 3, 7)∗ = (3, 3, 14, 7) ≈ (7, 14, 3, 3)
[13, 2] (1, 14, 1, 1)
[13, 4] (1, 14, 1, 3) (1, 14, 1, 3)∗ = (1, 1, 14, 3) ≈ (3, 14, 1, 1)
[13, 6] (1, 14, 3, 3) (1, 14, 3, 3)∗ = (1, 3, 14, 3) ≈ (3, 14, 1, 3)
[13, 8] (1, 14, 1, 7) (1, 14, 1, 7)∗ = (1, 1, 14, 7) ≈ (7, 14, 1, 1)
[13, 10] (1, 14, 3, 7) (1, 14, 3, 7)∗ = (1, 3, 14, 7) ≈ (7, 14, 1, 3)

(1, 14, 3, 7)∗ = (1, 7, 3, 14) ≈ (3, 14, 1, 7)

S = {1, 3, 7, 14} satisfies the 4-values condition.

7.10.4. 2s2 < s3 {1, 3, 7, 15}.
4-values condition is satisfied as S = S′ ∪ {t} with S′ satisfying the 4-values

condition and 2max S′ < t.





Appendix B. Indivisibility of US when |S| 6 4.

The purpose of this Appendix is to show that for |S| = 4, S ≁ {1, 2, 3, 4} and
satisfying the 4-values condition, the space US is indivisible. The main ingredients
of the proofs are indivisibility of US when |S| 6 3, Milliken’s theorem (theorem
53) and Sauer’s theorem (theorem 55). In what follows, the numbering of the cases
corresponds to the sections in Appendix A.

2.1.1. {5, 7, 8, 10}
US can be seen as a complete version of the Rado graph with four kinds of

edges. An easy variation of the proof working for the Rado graph shows that this
space is indivisible.

2.1.2. {5, 7, 8, 11}
8 does not appear in any non-metric triangle with labels in S. Thus, US is

indivisible thanks to Sauer’s theorem.

2.1.3. {5, 7, 8, 13}
Same as previous case.

2.1.7. {5, 7, 8, 17}
US is composed of countably many disjoint copies of U{5,7,8} and the dis-

tance between any two points not in the same copy of U{5,7,8} is always 17. The
indivisibility of U{5,7,8} consequently implies that US is indivisible.

2.2.1. {5, 6, 9, 10}
{5, 6, 9, 10} ∼ {5, 7, 8, 10}, so US is isomorphic to the space in 2.1.1 and hence

indivisible.

2.2.2. {5, 6, 9, 11}
9 does not appear in any non-metric triangle with labels in S. Thus, US is

indivisible thanks to Sauer’s theorem.

2.2.3. {5, 6, 9, 12}
Same as previous case.

2.2.4. {5, 6, 9, 13}
Same as previous case.

2.2.7. {5, 6, 9, 19}

135
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{5, 6, 9, 19} ∼ {5, 7, 8, 17}, so US is isomorphic to the space in 2.1.7 and hence
indivisible.

2.3.1. {4, 7, 9, 11}
7 does not appear in any non-metric triangle with labels in S. Thus, US is

indivisible thanks to Sauer’s theorem.

2.3.2. {4, 7, 9, 13}
{4, 7, 9, 13} ∼ {1, 2, 3, 4} so essentially, US is U4. This case is open.

2.3.6. {4, 7, 9, 19}
US is composed of countably many disjoint copies of U{4,7,9} and the dis-

tance between any two points not in the same copy of U{4,7,9} is always 19. The
indivisibility of U{4,7,9} consequently implies that US is indivisible.

2.4.1. {8, 14, 21, 22}
14 does not appear in any non-metric triangle with labels in S. Thus, US is

indivisible thanks to Sauer’s theorem.

2.4.2. {8, 14, 21, 28}
Elements in MS are isomorphic to elements in MS′ with S′ as in 2.3.2. This

case is consequently open and equivalent to indivisibility of U4.

2.4.6. {8, 14, 21, 43}
US is composed of countably many disjoint copies of U{8,14,21} and the distance

between any two points not in the same copy of U{8,14,21} is always 43. The
indivisibility of U{8,14,21} consequently implies that US is indivisible.

2.5.1. {2, 3, 7, 9}
The proof of indivisibility for US is a simple adaptation of the proof of indivis-

ibility of U{1,3,4}: Fix an ω-linear ordering < on 2<ω extending the tree ordering
and consider the following graph structure on 2<ω:

∀s < t ∈ 2<ω {s, t} ∈ E ↔ (|s| < |t|, t(|s|) = 1).

Now, define d on the set [2<ω]2 of pairs of 2<ω as follows: Let {s, t}<, {s′, t′}<

be in [2<ω]2. Then d({s, t}<, {s′, t′}<) is:





2 if s = s′ and {t, t′} ∈ E.
3 if s = s′ and {t, t′} /∈ E.
7 if s 6= s′ and {t, t′} ∈ E.
9 if s 6= s′ and {t, t′} /∈ E.

One can check that d is a metric. Since d takes its values in {2, 3, 7, 9},
([2<ω]2, d) embeds into US . We now show that US embeds into the subspace
X of ([2<ω]2, d) supported by the set

X = {{s, t}< ∈ [2<ω]2 : |s| < |t|, s <lex t, t(|s|) = 0}.

The embedding is constructed inductively. Let {xn : n ∈ ω} be an enumeration
of US . We are going to construct a sequence ({sn, tn})n∈ω of elements in X such
that



APPENDIX B. INDIVISIBILITY OF US WHEN |S| 6 4. 137

∀m,n ∈ ω d({s, t}<, {s′, t′}<) = dUS (xm, xn).

For {s0, t0}<, take s0 = ∅ and t0 = 0. Assume now that {s0, t0}<, . . . , {sn, tn}<

are constructed such that all the elements of {s0, . . . , sn}∪{t0, . . . , tn} have different
heights and all the si’s are strings of 0’s. Set

M = {m 6 n : dUS (xm, xn+1) ∈ {2, 3}}.

If M = ∅, choose sn+1 to be a string of 0’s longer that all the elements con-
structed so far. Otherwise, there is s ∈ 2<ω such that

∀m ∈ M sm = s.

Set sn+1 = s. Now, choose tn+1 above all the elements constructed so far and
such that

i) ∀m ∈ M (tn+1(|tm|) = 1) ↔ (dUS (xn+1, xm) = 2).

ii) ∀m /∈ M (tn+1(|tm|) = 1) ↔ (dUS (xn+1, xm) = 7).

iii) {sn+1, tn+1}< ∈ X.

i) and ii) are easy to satisfy because all the tm’s have different heights. As for
iii), |sn+1| < |tn+1| and tn+1(|sn+1|) = 0 are also easy (again because all heights are
different) while sn+1 <lex tn+1 is satisfied because sn+1 being a 0 string, |sn+1| <
|tn+1| implies sn+1 <lex tn+1. After ω steps, we are left with {{sn, tn} : n ∈ ω} ⊂ X

isometric to US . Observe that actually, this construction shows that US embeds
into any subspace of ([2<ω]2, d) supported by a strong subtree of 2<ω.

Now, to prove that US is indivisible, it suffices to prove that given any χ :
([2<ω]2, d) −→ k where k ∈ ω is strictly positive, there is a strong subtree T of 2<ω

such that χ is constant on [T ]2 ∩ X. But this is guaranteed by Milliken theorem:
Indeed, consider the subset A := {0, 01}. Then using the notation introduced for
theorem 53, [A]Em = X. So the restriction χ ↾ [A]Em is really a coloring of X,
and there is a strong subtree T of height ω such that [A]Em ↾ T = [T ]2 ∩ X is
χ-monochromatic.

2.5.3. {2, 3, 7, 14}
US is obtained from U2 by multiplying the distances by 7 and then blowing

up the points to copies of U{2,3}. U2 and U{2,3} being indivisible, so is US .

2.5.4. {2, 3, 7, 15}
US is composed of countably many disjoint copies of U{2,3,7} and the dis-

tance between any two points not in the same copy of U{2,3,7} is always 15. The
indivisibility of U{2,3,7} consequently implies that US is indivisible.

2.6.1. {2, 6, 7, 8}
In this case, indivisibility of US can be proved thanks to the method of 2.5.1.

except that instead of [2<ω]2, one works with [3<ω]2 and d({s, t}<, {s′, t′}<) defined
on the set [3<ω]2 of pairs of 3<ω by:





2 if s = s′

6 if s 6= s′ and t′(|t|) = 0.
7 if s 6= s′ and t′(|t|) = 1.
8 if s 6= s′ and t′(|t|) = 2.
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2.6.3. {2, 6, 7, 12}
Again, we apply Milliken’s theorem. Consider E the standard graph structure

on 2<ω and define d({s, t}<, {s′, t′}<) by:





2 if s = s′ and {t, t′} ∈ E.
6 if s 6= s′ and {s, s′} /∈ E and {t, t′} /∈ E.
7 if s 6= s′ and {s, s′} /∈ E and {t, t′} ∈ E.
12 if s 6= s′ and {s, s′} ∈ E.

Then one can check that d is a metric on [2<ω]2 and that ([2<ω]2, d) and US

embed into each other. Milliken’s theorem provides indivisibility.

2.6.6. {2, 6, 7, 15}
US is composed of countably many disjoint copies of U{2,6,7} and the dis-

tance between any two points not in the same copy of U{2,6,7} is always 15. The
indivisibility of U{2,6,7} consequently implies that US is indivisible.

2.8.1. {1, 4, 6, 7}
Let f : {1, 4, 6, 7} −→ {2, 6, 7, 12} be such that f(1) = 2, f(4) = 7, f(6) = 6

and f(7) = 12. Then observe that f establishes an isomorphism between US and
U{2,6,7,12} (case 2.6.3). U{2,6,7,12} being indivisible, so is US .

2.8.2. {1, 4, 6, 8}
US is obtained from U{4,6,8} after having blown the points up to copies of U1.

Its indivisibility is a direct consequence of the basic infinite pigeonhole principle
and of the indivisibility of U{4,6,8}.

2.8.3. {1, 4, 6, 10}
US is obtained from U{4,6,10} after having blown the points up to copies of U1.

Its indivisibility is a direct consequence of the basic infinite pigeonhole principle and
of the indivisibility of U{4,6,10}.

2.8.5. {1, 4, 6, 13}
US is composed of countably many disjoint copies of U{1,4,6} and the dis-

tance between any two points not in the same copy of U{1,4,6} is always 13. The
indivisibility of U{1,4,6} consequently implies that US is indivisible.

2.9.1. {2, 5, 9, 10}
{2, 5, 9, 10} ∼ {1, 4, 6, 7}, so US is isomorphic to the space in 2.8.1 and is

indivisible.

2.9.3. {2, 5, 9, 14}
{5, 6, 9, 14} ∼ {1, 4, 6, 10}, so US is isomorphic to the space in 2.8.3 and is

indivisible.

2.9.5. {2, 5, 9, 19}
US is composed of countably many disjoint copies of U{2,5,9} and the dis-

tance between any two points not in the same copy of U{2,5,9} is always 19. The
indivisibility of U{2,5,9} consequently implies that US is indivisible.
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2.10.1. {1, 3, 7, 8}
This case is another instance where Milliken’s theorem is useful. Consider E

the standard graph structure on 2<ω and define d({s, t, u}<, {s′, t′, u′}<) by:





1 if s = s′ and t = t′.
3 if s = s′ and t 6= t′.
7 if s 6= s′ and {u, u′} ∈ E.
8 if s 6= s′ and {u, u′} /∈ E.

Then one can check that d is a metric on [2<ω]3. ([2<ω]3, d) embeds into US

because d takes values in S. Conversely, given any strong subtree T of 2<ω, US

embeds into [T ]3 ∩ Y where Y ⊂ [2<ω]3 given by all the triples {s, t, u}< such that





|s| < |t| < |u|
s <lex t <lex u
t(|s|) = u(|s|) = u(|t|) = 0

Equivalently, Y = [B]Em with B = {0, 10, 110}. These facts allow to apply
Milliken’s theorem and to deduce indivisibility of US .

2.10.2. {1, 3, 7, 10}
US is obtained from U{3,7,10} after having blown the points up to copies of U1.

Its indivisibility is a direct consequence of the basic infinite pigeonhole principle and
of the indivisibility of U{3,7,10}.

2.10.3. {1, 3, 7, 14}
US is obtained from U{3,7,14} after having blown the points up to copies of U1.

Its indivisibility is a direct consequence of the basic infinite pigeonhole principle and
of the indivisibility of U{3,7,14}.

2.10.4. {1, 3, 7, 15}
US is ultrametric with four distances, hence indivisible.





Appendix C. On the universal Urysohn space U.

The purpose of this appendix is to provide some additional information about
the Urysohn space U. As already mentionned, U was originally constructed by P.
Urysohn in 1925 in order to show that there is a separable metric space into which
every separable metric space embeds isometrically. In the original paper, U was
obtained as the completion of UQ which was constructed by hand and inductively.
Here are the main features of U as presented in [80] but using our terminology:

Theorem 78 (Urysohn).

(1) For every finite subspace X ⊂ U and every Katĕtov map f over X, there
is x ∈ U realizing f over X.

(2) Every separable metric space embeds isometrically into U.
(3) U is ultrahomogeneous.
(4) U is the unique complete separable metric space satisfying (2) and (3).
(5) U is path connected and locally path connected.
(6) U includes two isometric subspaces X and Y such that no isometry from

U onto itself maps X onto Y.

Some 30 years later, in [33], Huhunaǐsvili improved the result (3) about ultra-
homogeneity:

Theorem 79 (Huhunaǐsvili). Let ϕ : X −→ Y be a bijective isometry between
two compact subspaces of U. Then ϕ can be extended to an isometry of U onto
itself.

However, together with an article by Sierpinski [76], Huhunaǐsvili’s contribu-
tion represents the only study about U between 1927 and 1986 (There is an article
in 1971 by Joiner but the main result is only the rediscovery of a subcase covered
by Huhunaǐsvili’s theorem). In 1986, Katĕtov provided in [39] the construction of
UQ presented in Chapter 1. Thanks to the work of Uspenskij, this new approach
became the starting point of a new period of interest for U. Today, research about
U and the topological group iso(U) of its surjective isometries (equipped with the
pointwise convergence topology) is well alive, as illustrated by the workshop or-
ganized recently in Be’er Sheva (May 2006). In what follows, we present a short
selection of the main results from the last 20 years. For a more detailed presen-
tation, the reader should refer to [20], [66], or to the original papers. In a near
future, another source of reference may also be [71] the proceedings volume of the
aforementionned workshop to appear in Topology and its applications.

We start with a result which completes the work carried out by Urysohn and
Huhunaǐsvili about ultrahomogeneity. It is quite surprising that after having re-
mained unsolved for such a long time, it was obtained recently, independently and
simultaneously by two persons.
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Theorem 80 (Ben Ami [2], Melleray [49]). Let X be a Polish metric space.
TFAE:

i) X is compact.

ii) If X0 and X1 are isometric copies of X inside U and ϕ : X0 −→ X1,
then ϕ can be extended to an isometry of U onto itself.

Here are two other theorems about the intrinsic geometry of U:

Theorem 81 (Melleray, [49]). Let ϕ ∈ iso(U) whose orbits have compact clo-
sure. Then the set of fixed points of ϕ is either empty or isometric to U.

Theorem 82 (Melleray, [49]). Let X be a Polish metric space. Then there is
ϕ in iso(U) whose set of fixed points in U is isometric to U.

Next, we present the structures which are supported by U. We start with the
topological characterization of U:

Theorem 83 (Uspenskij [82]). U is homeomorphic to ℓ2.

Next, recall that a group is monothetic if it contains a dense subgroup isomor-
phic to the additive group of the integers Z.

Theorem 84 (Cameron-Vershik [7]). U admits the structure of a monothetic
Polish group.

This result has to be compared with the following one, due to Holmes:

Theorem 85 (Holmes [34]). When U is embedded isometrically into a Banach
space with a fixed point x0 sent to the zero element of the Banach space, any finite
subset of the copy of U which does not contain x0 is linearly independent and the
closed linear span of the copy of U is uniquely determined up to linear isometry.

It follows that U does not support the structure of Banach space. Indeed,
calling 〈U〉 the Banach space provided by the previous theorem, 〈U〉 cannot have
U as underlying set: Otherwise, 〈U〉 would be an ultrahomogeneous Banach space
but we mentionned in Chapter 1 that the only ultrahomogeneous Banach space is
ℓ2. 〈U〉 is a wild object but is better understood today in the context of so-called
Lipschitz-free spaces. For example, a recent theorem from Godefroy and Kalton [22]
allows to show that every separable Banach space embeds linearly and isometrically
into 〈U〉. However, many basic questions about 〈U〉 remain unanswered. For
example, does that space admit a basis? Nevertheless, 〈U〉 turned out to be helpful
in the resolution of certain problems, as in [50] where it allowed to reach a result
about the complexity of the isometry relationship between separable Banach spaces.

We finish our first list of properties related to U by a theorem due to Vershik
[83]. We wrote in the introduction that in some cases, Fräıssé limits can be seen
as random objects. U is only the completion of a Fräıssé limit but a result of very
similar flavor seems to hold. We state it following Pestov ([66], p.143):

Theorem 86 (Vershik). Let M be the set of all metrics on ω and let P(M)
be the set of all probability measures on M . Then, for a generic µ ∈ P(M), the
completion of (ω, d) is isometric to U µ-almost surely in d ∈ M .

We now turn to properties related to iso(U), starting with the following theorem
due to Uspenskij:
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Theorem 87 (Uspenskij [81]). Every second countable topological group is
isomorphic to a topological subgroup of iso(U).

In fact, more can be said:

Theorem 88 (Melleray [48]). For every Polish group G, there is a closed
subspace X of U such that G ∼= {ϕ ∈ iso(U) : ϕ′′

X = X}.

On the other hand, there are also some informations about the actions of iso(U):

Theorem 89 (Pestov [65]). Every continuous action of iso(U) on a compact
space admits a fixed point.

As mentionned several times in the body of the present thesis, this result is par-
ticularly important for our present work because it can be proved via combinatorial
methods. However, we should emphasize that in fact, iso(U) satisfies a stronger
property called the Lévy property and which implies the previous theorem, see [66]
or [67].

Other problems concerning iso(U) can be attacked via combinatorics. For
example, the following result announced by Vershik [84] and proved independently
by Solecki [77] can be seen as a metric version of the well-known result about the
extension of partial isomorphisms of finite graphs due to Hrushovski [38].

Theorem 90 (Solecki [77], Vershik [84]). Let X be a finite metric space. Then
there is a finite metric space Y such that X ⊂ Y and such that every isometry ϕ
with dom(ϕ), ran(ϕ) ⊂ X of X extends to an isometry of Y onto itself.

The importance of this result is related to the following concepts. For a Polish
group G and n ∈ ω, the diagonal action of G on Gn is the action defined by:

g · (h1, . . . , hn) = (gh1g
−1, . . . , ghng−1).

An element (h1, . . . , hn) of Gn is cyclically dense if for some g ∈ G, the set
{gk · (h1, . . . , hn) : k ∈ ω} is dense in Gn.

Theorem 91 (Solecki [77]). All the diagonal actions of iso(U) have cyclically
dense elements.

Theorem 92 (Solecki [77]). There are two elements of iso(U) generating a
dense subgroup.

The last result we finish with comes from [41] and provides a so-called recon-
struction theorem. The core of the proof is again related to metric combinatorics
and extension properties in the Urysohn space. However, it seems to us that this
result deserves a particular attention because while most of the previous results
deal with isometries, this one concerns a broader class of maps: For metric spaces
X and Y, call a homeomorphism g : X −→ Y locally bi-Lipschitz if every x ∈ X

has a neighborhood U such that g ↾ U is bi-Lipschitz. Let L(X) denotes the set of
all bi-Lipschitz homeomorphisms of X, then:

Theorem 93 (Kubís-Rubin). Let X and Y be open subspaces of U. Suppose
that ϕ is a group isomorphism between L(X) and L(Y). Then there is a locally
bi-Lipschitz homeomorphism τ between X and Y such that:

∀g ∈ L(X) ϕ(g) = τ ◦ g ◦ τ−1.





Bibliography

[1] J. Auslander, Minimal flows and their extensions, North Holland, 1988.

[2] E. Ben Ami, Private communication, 2005.
[3] S. A. Bogatyi, Universal homogeneous rational ultrametric on the space of irrational num-

bers, Moscow Univ. Math. Bull, 55, 20-24, 2000.

[4] S. A. Bogatyi, Metrically homogeneous spaces, Russian Math. Surveys, 52, 221-240, 2002.
[5] F. Cabello Sánchez, Regards sur le problème des rotations de Mazur, Extracta Math., 12,

97-116, 1997.
[6] F. Cabello Sánchez, A theorem on isotropic spaces, Studia Math., 133 (3), 257-260, 1999.

[7] P. J. Cameron, A. M. Vershik, Some isometry groups of Urysohn space, preprint
arxiv:math.MG/0407186.

[8] F. Delon, Espaces ultramétriques, J. Symbolic Logic, 49, 405-422, 1984.
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Huhunaǐsvili theorem, 141

indivisibility, 87

1/6-indivisibility for S, 120

1/m-indivisibility for Sm, 107, 119

ε-indivisibity, 87

approximate indivisibility, 88

for S∞, 106

for SQ, 107

for S, 107

for complete ultrahomogeneous ultramet-
ric spaces, 107

for Cm, 121

for Sm, 107, 119, 120

for SQ, 92

for U2, 94

for U3, 95

for Um, 94

for US , 103

for BS , 96

for a structure, 87

for metric space, 87

isomorphic, 29

isomorphism, 29

joint embedding property, 29
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