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Théorie de Ramsey :

Etude de certains objets au sein desquels

des structures organisées apparaissent lorsque

les objets en question deviennent grands.

Ici : Des espaces métriques.

Dynamique topologique :

Etude de certains ensembles de transfor-

mations via leurs actions sur des espaces

géométriques.

Ici : Des groupes d’isométries agiront sur

des espaces topologiques compacts.

Motivation :

L’étude de propriétés de type Ramsey peut

aider à comprendre la structure de certains

espaces géométriques très homogènes.



Definition:
A metric space X is ultrahomogeneous
when every isometry between finite subsets
extends to an isometry of X onto itself.

Prototype examples:

• The unit sphere S∞ of `2.

• The Baire space N .

• The Urysohn sphere S:

Up to isometry, the unique metric space
with distances in [0,1] which is:

i) Complete, separable.

ii) Ultrahomogeneous.

iii) Universal for the class of all finite
metric spaces with distances in [0,1].



First general idea:

The structure of countable ultrahomoge-

neous metric spaces can be studied from a

combinatorial point of view.

Theorem (Fräıssé, Bogatyi):

Every countable ultrahomogeneous metric

space is the generic universal object asso-

ciated to a particular class M0 of finite

metric spaces (Fräıssé class).



Second general idea:

The structure of complete separable ultra-

homogeneous metric spaces can be studied

via the structure of countable ultrahomo-

geneous spaces.

Theorem 1:

Every separable ultrahomogeneous metric

space has a countable ultrahomogeneous

dense subspace.



Finite Ramsey calculus, extreme

amenability and universal minimal

flows



Pestov’s theorem on the extreme

amenability of iso(S)

Theorem (Pestov):

Equip iso(S) with the pointwise convergence

topology. Then every continuous action of

iso(S) on a compact Hausdorff space K has

a fixed point, ie:

∃x ∈ K ∀g ∈ iso(S) g · x = x

Remark:

iso(S) is said to be extremely amenable.



Definition:
Let (X, <X), (Y, <Y), (Z, <Z) be finite or-
dered metric spaces and k ∈ ω, k > 0.

(Z, <Z) −→ (Y, <Y)
(X,<X)
k

means: For every coloring of the copies of
(X, <X) in (Z, <Z) with k colors, there is a
copy (Ỹ, <Ỹ) of (Y, <Y) in which all copies
of (X, <X) in (Ỹ, <Ỹ) have same color.

Definition:
A class M of finite ordered metric spaces
has the Ramsey property when:

For every (X, <X), (Y, <Y) in M, there is
(Z, <Z) in M such that

(Z, <Z) −→ (Y, <Y)
(X,<X)
k



Definition:

Let M be a class of finite ordered metric

spaces and M0 be the class of finite metric

spaces X such that for some linear ordering

<X on X: (X, <X) ∈M.

M has the Ordering property when:

For any (X, <X) in M, there is Y in M0

such that for every linear ordering ≺ on Y:

(Y,≺) ∈M⇒ (X, <X) embeds in (Y,≺).



Theorem (Nešeťril):

The class M<
Q∩[0,1] of finite ordered metric

spaces with rational distances in [0,1] has

the Ramsey and the Ordering properties.

Corollary (Kechris-Pestov-Todorcevic):

iso(S) is extremely amenable.



Ultrametric spaces

Definition:

A linear ordering < on a metric space is

convex when all the metric balls are <-

convex.

Theorem 2:

Let S ⊂]0,+∞[. The class of finite con-

vexly ordered ultrametric spaces with dis-

tances in S has the Ramsey and the Or-

dering properties.



Definition:
Let G be a topological group. A minimal
G-flow is a compact Hausdorff space K

together with a continuous action of G on
K where the orbit of every x ∈ K is dense
in K.

Fact:
Let G be a topological group. Then there
is a minimal G-flow M(G) such that for
every minimal G-flow K, there is a contin-
uous onto π : M(G) −→ K such that

∀g ∈ G, ∀x ∈ K, π(g · x) = g · π(x).

M(G) is unique up to isomorphism.

Theorem 3:
M(iso(N )) is the set of all convex linear
orderings on N together with the action
(g, <) 7−→<g defined by

x <g y ↔ g−1(x) < g−1(y).



Other examples

Notation:

Let S ⊂]0,+∞[, s ∈]0,+∞[, MS the class

of all finite metric space with distances in

S, X ∈MS. Define EX
s by

∀x, y ∈ X xEX
s y ↔ dX(x, y) 6 s.

Definition:

s is critical for MS when for every X in

MS, EX
s is an equivalence relation on X.

Definition:

Let X ∈ MS, < a linear ordering on X.

< is metric when for every critical s, the

EX
s -equivalence classes are <-convex.



Fact(Delhommé-Laflamme-Pouzet-Sauer):

There is a condition characterizing those

sets S ⊂]0,+∞[ for which the class MS of

finite metric spaces with distances in S is

a Fräıssé class: The 4 values condition.

Theorem 4:

Let S ⊂]0,+∞[ of size |S| 6 3 satisfying

the 4 values condition. Then the class of

all finite metrically ordered metric spaces

with distances in S has the Ramsey and

the Ordering properties.



Ramsey degrees and Big Ramsey

degrees



Definition: Let X,Y,Z be metric.

Z −→ (Y)Xk,l

means: Given a coloring of the copies of

X in Z with k colors, there is a copy Ỹ of

Y such that at most l colors are taken on

the set of copies of X in Ỹ.

Definition: Let M0 be a class of finite

metric spaces, X ∈M0. The Ramsey de-

gree of X in M0 is the least l ∈ ω ∪ {ω}
such that: For every Y ∈ M0 and k ∈ ω,

there is Z ∈M0 such that

Z −→ (Y)Xk,l.



Notation:
LO(X): Linear orderings on X.
cLO(X): Convex linear orderings on X.
mLO(X): Metric linear orderings on X.

Corollary 4:
Every X ∈ MQ∩[0,1] has a finite Ramsey
degree in MQ∩[0,1] equal to

|LO(X)|/|iso(X)|

Corollary 5:
Every X ∈ US has a finite Ramsey degree
in US equal to

|cLO(X)|/|iso(X)|

Corollary 6:
Let S ⊂]0,+∞[ satisfying the 4 values con-
dition, |S| 6 3. Then every X ∈ MS has a
finite Ramsey degree in MS equal to

|mLO(X)|/|iso(X)|



Big Ramsey degrees

Definition:

Let M0 be a Fräıssé class of finite met-

ric spaces and UM0
its associated Urysohn

space. Let X ∈ M0. The Big Ramsey

Degree of X in M0 is the least l ∈ ω∪{ω}
such that: For every k ∈ ω,

UM0
−→ (UM0

)X
k,l



Theorem 7:

Let S ⊂]0,+∞[ be finite. Then any X ∈ US

has a finite Big Ramsey Degree in US which

can be computed explicitly.

Theorem 8:

Let S ⊂]0,+∞[ be infinite. Then any X ∈
US with |X| > 2 has a Big Ramsey Degree

in US equal to ω.

Question:

What if S is infinite and |X| = 1?



Indivisibility and metric oscillation

stability



Definition:

A metric space X is indivisible when for
every partition X = A1 ∪ . . .∪Ak, there are
X̃ isometric to X and i 6 k such that:

X̃ ⊂ Ai

Definition:

A complete separable ultrahomogeneous met-
ric space X is metrically oscillation sta-

ble when for every bounded, 1-Lipschitz
f : X −→ R and every ε > 0, there is X̃

isometric to X such that:

∀x, y ∈ X̃, |f(y)− f(x)| < ε

Equivalently:

Whenever X = A1∪. . .∪Ak and ε > 0, there
are X̃ isometric to X and i 6 k such that:

X̃ ⊂ (Ai)ε



The distortion problem for `2

Theorem (Odell-Schlumprecht):

The unit sphere S∞ of the Hilbert space `2
is not metrically oscillation stable.

Problem:

The intrinsic geometry of S∞ does not ap-

pear in the proof !



Ultrahomogeneous ultrametric spaces

Theorem (Folklore):

The Baire space N is metrically oscillation

stable.

Theorem 9:

Let X be a countable ultrahomogeneous

ultrametric space with distance set DX.

Then X is indivisible iff (DX, >) is a well-

ordering.

Corollary 10:

Let Y be a complete separable ultraho-

mogeneous ultrametric space with distance

set DY. Then Y is metrically oscillation

stable iff (DY, >) is a well-ordering.



The oscillation stability problem for S

1st attempt:

Study the indivisibility of the rational Urysohn

sphere SQ.

Thm(Delhommé-Laflamme-Pouzet-Sauer):

SQ is not indivisible.

Key: The distance set of SQ is too rich.

General question:

What if we replace it by a simpler set S?

For example, what if S is finite ?



Case |S| = 1: Trivial.

Case |S| = 2:

• S = {1,2}: Random graph. Indivisible.

• S = {1,3}: Ultrametric. Indivisible.

Case |S| = 3:
7 cases to check with the 4 values condi-
tion.
6 possible distance sets S.
All of them provide an indivisible space.

Case |S| = 4:
About 50 essential cases to check with the
4 values condition.
22 possible distance sets S.
21 cases provide an indivisible space.
1 case remains open: {1,2,3,4}.

This is quite unfortunate. . .



Theorem 11:

The following are equivalent:

i) S is metrically oscillation stable.

ii) ∀m ∈ ω, U{1,...,m} is indivisible.

Thm(Delhommé-Laflamme-Pouzet-Sauer):

U{1,2,3} is indivisible.

Remark:

i) and ii) are also equivalent to:

iii) ∀m ∈ ω, U{1,...,m} is 1-indivisible.

Theorem 12:

U{1,...,m} is 1-indivisible whenever m 6 9.



Theorem 13:

Let m ∈ ω, ε > 0. Assume U{1,...,m} in-

divisible. Then S is (1/2m + ε)-metrically

oscillation stable.

Corollary 14:

S is (1/6 + ε)-metrically oscillation stable

for every ε > 0.



Concluding questions:

• Can the extreme amenability of U(`2)

(Gromov-Milman, Pestov) be proved via

Ramsey property for a class of finite

Euclidean metric spaces ?

• Can combinatorial methods help un-

derstanding the Distortion property for

`2. Why is S∞ NOT metrically oscilla-

tion stable (Odell-Schlumprecht)?

• For m ∈ ω, is U{1,...,m} indivisible ?


