Théorie de Ramsey
Structurale des Espaces
Métriques et Dynamique
Topologique des Groupes
d'Isométries.

Lionel Nguyen Van Thé

_

Equipe de Logique, Université Paris 7

Direction Stevo Todorcevic

_

4 Décembre 2006

Théorie de Ramsey :

Etude de certains objets au sein desquels des structures organisées apparaissent lorsque les objets en question deviennent grands.

Ici : Des espaces métriques.

Dynamique topologique:

Etude de certains ensembles de transformations via leurs actions sur des espaces géométriques.

Ici : Des **groupes d'isométries** agiront sur des **espaces topologiques compacts**.

Motivation:

L'étude de propriétés de type Ramsey peut aider à comprendre la structure de certains espaces géométriques très homogènes.

Definition:

A metric space X is **ultrahomogeneous** when every isometry between finite subsets extends to an isometry of X onto itself.

Prototype examples:

- The unit sphere \mathbb{S}^{∞} of ℓ_2 .
- ullet The Baire space ${\mathcal N}.$
- The Urysohn sphere S:

Up to isometry, the unique metric space with distances in [0,1] which is:

- i) Complete, separable.
- ii) Ultrahomogeneous.
- iii) Universal for the class of all finite metric spaces with distances in [0, 1].

First general idea:

The structure of countable ultrahomogeneous metric spaces can be studied from a combinatorial point of view.

Theorem (Fraïssé, Bogatyi):

Every countable ultrahomogeneous metric space is the generic universal object associated to a particular class \mathcal{M}_0 of finite metric spaces (Fraïssé class).

Second general idea:

The structure of complete separable ultrahomogeneous metric spaces can be studied via the structure of countable ultrahomogeneous spaces.

Theorem 1:

Every separable ultrahomogeneous metric space has a countable ultrahomogeneous dense subspace.

Finite Ramsey calculus, extreme amenability and universal minimal flows

Pestov's theorem on the extreme amenability of iso(S)

Theorem (Pestov):

Equip iso(\mathbb{S}) with the pointwise convergence topology. Then every continuous action of iso(\mathbb{S}) on a compact Hausdorff space K has a fixed point, ie:

$$\exists x \in K \ \forall g \in \mathsf{iso}(\mathbb{S}) \ g \cdot x = x$$

Remark:

iso(S) is said to be **extremely amenable**.

Definition:

Let $(\mathbf{X}, <^{\mathbf{X}}), (\mathbf{Y}, <^{\mathbf{Y}}), (\mathbf{Z}, <^{\mathbf{Z}})$ be finite ordered metric spaces and $k \in \omega, k > 0$.

$$(\mathbf{Z},<^{\mathbf{Z}})\longrightarrow (\mathbf{Y},<^{\mathbf{Y}})_{k}^{(\mathbf{X},<^{\mathbf{X}})}$$

means: For every coloring of the copies of $(\mathbf{X},<^{\mathbf{X}})$ in $(\mathbf{Z},<^{\mathbf{Z}})$ with k colors, there is a copy $(\widetilde{\mathbf{Y}},<^{\widetilde{\mathbf{Y}}})$ of $(\mathbf{Y},<^{\mathbf{Y}})$ in which all copies of $(\mathbf{X},<^{\mathbf{X}})$ in $(\widetilde{\mathbf{Y}},<^{\widetilde{\mathbf{Y}}})$ have same color.

Definition:

A class \mathcal{M} of finite ordered metric spaces has the **Ramsey property** when:

For every $(\mathbf{X},<^{\mathbf{X}}),(\mathbf{Y},<^{\mathbf{Y}})$ in \mathcal{M} , there is $(\mathbf{Z},<^{\mathbf{Z}})$ in \mathcal{M} such that

$$(\mathbf{Z},<^{\mathbf{Z}})\longrightarrow (\mathbf{Y},<^{\mathbf{Y}})_{k}^{(\mathbf{X},<^{\mathbf{X}})}$$

Definition:

Let \mathcal{M} be a class of finite ordered metric spaces and \mathcal{M}_0 be the class of finite metric spaces \mathbf{X} such that for some linear ordering $<^{\mathbf{X}}$ on \mathbf{X} : $(\mathbf{X},<^{\mathbf{X}})\in\mathcal{M}$.

 \mathcal{M} has the **Ordering property** when:

For any $(\mathbf{X}, <^{\mathbf{X}})$ in \mathcal{M} , there is \mathbf{Y} in \mathcal{M}_0 such that for every linear ordering \prec on \mathbf{Y} :

 $(\mathbf{Y}, \prec) \in \mathcal{M} \Rightarrow (\mathbf{X}, <^{\mathbf{X}})$ embeds in (\mathbf{Y}, \prec) .

Theorem (Nešetřil):

The class $\mathcal{M}^<_{\mathbb{Q}\cap[0,1]}$ of finite ordered metric spaces with rational distances in [0,1] has the Ramsey and the Ordering properties.

Corollary (Kechris-Pestov-Todorcevic): iso(S) is extremely amenable.

Ultrametric spaces

Definition:

A linear ordering < on a metric space is **convex** when all the metric balls are <-convex.

Theorem 2:

Let $S \subset]0, +\infty[$. The class of finite convexly ordered ultrametric spaces with distances in S has the Ramsey and the Ordering properties.

Definition:

Let G be a topological group. A **minimal** G-**flow** is a compact Hausdorff space K together with a continuous action of G on K where the orbit of every $x \in K$ is dense in K.

Fact:

Let G be a topological group. Then there is a minimal G-flow M(G) such that for every minimal G-flow K, there is a continuous onto $\pi:M(G)\longrightarrow K$ such that

$$\forall g \in G, \forall x \in K, \pi(g \cdot x) = g \cdot \pi(x).$$

M(G) is unique up to isomorphism.

Theorem 3:

 $M(\mathrm{iso}(\mathcal{N}))$ is the set of all convex linear orderings on \mathcal{N} together with the action $(g,<)\longmapsto <^g$ defined by

$$x <^g y \leftrightarrow g^{-1}(x) < g^{-1}(y).$$

Other examples

Notation:

Let $S \subset]0, +\infty[$, $s \in]0, +\infty[$, \mathcal{M}_S the class of all finite metric space with distances in S, $\mathbf{X} \in \mathcal{M}_S$. Define $E_s^{\mathbf{X}}$ by

$$\forall x, y \in \mathbf{X} \quad x E_s^{\mathbf{X}} y \leftrightarrow d^{\mathbf{X}}(x, y) \leqslant s.$$

Definition:

s is **critical for** \mathcal{M}_S when for every **X** in \mathcal{M}_S , $E_s^{\mathbf{X}}$ is an equivalence relation on **X**.

Definition:

Let $\mathbf{X} \in \mathcal{M}_S$, < a linear ordering on \mathbf{X} . < is **metric** when for every critical s, the $E_s^{\mathbf{X}}$ -equivalence classes are <-convex.

Fact(Delhommé-Laflamme-Pouzet-Sauer):

There is a condition characterizing those sets $S \subset]0, +\infty[$ for which the class \mathcal{M}_S of finite metric spaces with distances in S is a Fraïssé class: The **4 values condition**.

Theorem 4:

Let $S \subset]0, +\infty[$ of size $|S| \leq 3$ satisfying the 4 values condition. Then the class of all finite metrically ordered metric spaces with distances in S has the Ramsey and the Ordering properties.

Ramsey degrees and Big Ramsey degrees

Definition: Let **X**, **Y**, **Z** be metric.

$$\mathbf{Z} \longrightarrow (\mathbf{Y})_{k,l}^{\mathbf{X}}$$

means: Given a coloring of the copies of X in Z with k colors, there is a copy \widetilde{Y} of Y such that at most l colors are taken on the set of copies of X in \widetilde{Y} .

Definition: Let \mathcal{M}_0 be a class of finite metric spaces, $\mathbf{X} \in \mathcal{M}_0$. The **Ramsey degree of X in** \mathcal{M}_0 is the least $l \in \omega \cup \{\omega\}$ such that: For every $\mathbf{Y} \in \mathcal{M}_0$ and $k \in \omega$, there is $\mathbf{Z} \in \mathcal{M}_0$ such that

$$\mathbf{Z} \longrightarrow (\mathbf{Y})_{k,l}^{\mathbf{X}}.$$

Notation:

LO(X): Linear orderings on X.

cLO(X): Convex linear orderings on X. mLO(X): Metric linear orderings on X.

Corollary 4:

Every $\mathbf{X}\in\mathcal{M}_{\mathbb{Q}\cap[0,1]}$ has a finite Ramsey degree in $\mathcal{M}_{\mathbb{Q}\cap[0,1]}$ equal to

Corollary 5:

Every $\mathbf{X} \in \mathcal{U}_S$ has a finite Ramsey degree in \mathcal{U}_S equal to

Corollary 6:

Let $S \subset]0, +\infty[$ satisfying the 4 values condition, $|S| \leq 3$. Then every $\mathbf{X} \in \mathcal{M}_S$ has a finite Ramsey degree in \mathcal{M}_S equal to

$$|\mathsf{mLO}(\mathbf{X})|/|\mathsf{iso}(\mathbf{X})|$$

Big Ramsey degrees

Definition:

Let \mathcal{M}_0 be a Fraïssé class of finite metric spaces and $\mathbb{U}_{\mathcal{M}_0}$ its associated Urysohn space. Let $\mathbf{X} \in \mathcal{M}_0$. The **Big Ramsey Degree of X in** \mathcal{M}_0 is the least $l \in \omega \cup \{\omega\}$ such that: For every $k \in \omega$,

$$\mathbb{U}_{\mathcal{M}_0} \longrightarrow (\mathbb{U}_{\mathcal{M}_0})_{k,l}^{\mathbf{X}}$$

Theorem 7:

Let $S \subset]0, +\infty[$ be finite. Then any $\mathbf{X} \in \mathcal{U}_S$ has a finite Big Ramsey Degree in \mathcal{U}_S which can be computed explicitly.

Theorem 8:

Let $S \subset]0, +\infty[$ be infinite. Then any $\mathbf{X} \in \mathcal{U}_S$ with $|\mathbf{X}| \geqslant 2$ has a Big Ramsey Degree in \mathcal{U}_S equal to ω .

Question:

What if S is infinite and $|\mathbf{X}| = 1$?

Indivisibility and metric oscillation stability

Definition:

A metric space **X** is **indivisible** when for every partition $\mathbf{X} = A_1 \cup \ldots \cup A_k$, there are $\widetilde{\mathbf{X}}$ isometric to **X** and $i \leq k$ such that:

$$\widetilde{\mathbf{X}} \subset A_i$$

Definition:

A complete separable ultrahomogeneous metric space \mathbf{X} is **metrically oscillation stable** when for every bounded, 1-Lipschitz $f: \mathbf{X} \longrightarrow \mathbb{R}$ and every $\varepsilon > 0$, there is $\widetilde{\mathbf{X}}$ isometric to \mathbf{X} such that:

$$\forall x, y \in \widetilde{\mathbf{X}}, \quad |f(y) - f(x)| < \varepsilon$$

Equivalently:

Whenever $\mathbf{X} = A_1 \cup ... \cup A_k$ and $\varepsilon > 0$, there are $\widetilde{\mathbf{X}}$ isometric to \mathbf{X} and $i \leq k$ such that:

$$\widetilde{\mathbf{X}} \subset (A_i)_{\varepsilon}$$

The distortion problem for ℓ_2

Theorem (Odell-Schlumprecht):

The unit sphere \mathbb{S}^{∞} of the Hilbert space ℓ_2 is not metrically oscillation stable.

Problem:

The intrinsic geometry of \mathbb{S}^{∞} does not appear in the proof!

Ultrahomogeneous ultrametric spaces

Theorem (Folklore):

The Baire space $\mathcal N$ is metrically oscillation stable.

Theorem 9:

Let \mathbf{X} be a countable ultrahomogeneous ultrametric space with distance set $D_{\mathbf{X}}$. Then \mathbf{X} is indivisible iff $(D_{\mathbf{X}}, >)$ is a well-ordering.

Corollary 10:

Let \mathbf{Y} be a complete separable ultrahomogeneous ultrametric space with distance set $D_{\mathbf{Y}}$. Then \mathbf{Y} is metrically oscillation stable iff $(D_{\mathbf{Y}}, >)$ is a well-ordering.

The oscillation stability problem for $\mathbb S$

1st attempt:

Study the indivisibility of the rational Urysohn sphere $\mathbb{S}_{\mathbb{O}}$.

Thm(Delhommé-Laflamme-Pouzet-Sauer): $\mathbb{S}_{\mathbb{O}}$ is not indivisible.

Key: The distance set of $\mathbb{S}_{\mathbb{O}}$ is too rich.

General question:

What if we replace it by a simpler set S? For example, what if S is finite?

Case |S| = 1: Trivial.

Case |S| = 2:

- $S = \{1, 2\}$: Random graph. Indivisible.
- $S = \{1,3\}$: Ultrametric. Indivisible.

Case |S| = 3:

7 cases to check with the 4 values condition.

 $\mathbf{6}$ possible distance sets S.

All of them provide an indivisible space.

Case |S| = 4:

About **50** essential cases to check with the 4 values condition.

- **22** possible distance sets S.
- 21 cases provide an indivisible space.
- **1** case remains open: $\{1, 2, 3, 4\}$.

This is quite unfortunate. . .

Theorem 11:

The following are equivalent:

- i) \mathbb{S} is metrically oscillation stable.
- ii) $\forall m \in \omega$, $\mathbb{U}_{\{1,...,m\}}$ is indivisible.

Thm(Delhommé-Laflamme-Pouzet-Sauer): $\mathbb{U}_{\{1,2,3\}}$ is indivisible.

Remark:

- i) and ii) are also equivalent to:
- iii) $\forall m \in \omega$, $\mathbb{U}_{\{1,...,m\}}$ is 1-indivisible.

Theorem 12:

 $\mathbb{U}_{\{1,\ldots,m\}}$ is 1-indivisible whenever $m \leqslant 9$.

Theorem 13:

Let $m \in \omega$, $\varepsilon > 0$. Assume $\mathbb{U}_{\{1,\dots,m\}}$ indivisible. Then \mathbb{S} is $(1/2m + \varepsilon)$ -metrically oscillation stable.

Corollary 14:

 \mathbb{S} is $(1/6 + \varepsilon)$ -metrically oscillation stable for every $\varepsilon > 0$.

Concluding questions:

- Can the extreme amenability of $\mathbb{U}(\ell_2)$ (Gromov-Milman, Pestov) be proved via Ramsey property for a class of finite Euclidean metric spaces ?
- Can combinatorial methods help understanding the Distortion property for ℓ_2 . Why is \mathbb{S}^{∞} NOT metrically oscillation stable (Odell-Schlumprecht)?
- For $m \in \omega$, is $\mathbb{U}_{\{1,...,m\}}$ indivisible ?