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Abstract

This paper presents new statistical methods in the field of exposure assessment. We focus on the estimation of the probability for

the exposure to exceed a fixed safe level such as the provisional tolerable weekly intake (PTWI), when both consumption data and

contamination data are independently available. Various calculations of exposure are proposed and compared. For many con-

taminants, PTWI belongs to the exposure tail distribution, which suggests the use of extreme value theory (EVT) to evaluate the

risk. Our approach consists in modelling the exposure tail by a Pareto type distribution characterized by a Pareto index which may

be seen as a measure of the risk of exceeding the PTWI. Using propositions by EVT specialists, we correct the bias of the usual Hill

estimator to accurately estimate this risk index. We compare the results with an empirical plug-in method and show that the Pareto

adjustment is relevant and efficient when exposure is low compared to the PTWI while the plug-in method should be used when

exposure is higher. To illustrate our approach, we present some exposure assessment for heavy metals (lead, cadmium, mercury) via

sea product consumption.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Quantitative assessment of consumer exposure to

contaminants via food consists in a stepwise procedure

as recommended by FAO/WHO (1997). Exposure can

be defined as the cross product of contamination and

consumption data for given food items and contami-

nants. Total exposure is a summation over all these

exposure values. First, the assessment is realized for

maximum levels of contamination in order to be con-

servative and then if the estimated exposure exceeds its

safety limit, a more accurate method of dietary exposure

is applied to get a more realistic estimator. One simple

way to do so is to consider mean levels of contamina-

tion. However, to precisely assess the individual expo-

sure of a given population, one should take into account

both the individual variability and the global structure

of the food basket of each consumer but also the vari-

ability and the specificity (left censorship) of the con-

tamination data. Several attempts have been done to

account for the individual variability when repeated

measures are available (Nusser et al., 1996). In the

present paper, most attention is paid to the quantitative

assessment of the exposure to contaminants when both

individual consumption data and contamination data

are available.

In this study, the parameter of interest is the proba-

bility that the individual exposure, due to several food

items, exceeds a given level. This level may be fixed

a priori, for instance it can be the provisional tolera-

ble weekly intake (PTWI) or any other toxicological
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reference level or safety limit. From a statistical point of

view, the estimation of this probability highly depends

on the tail behavior of the exposure distribution, more

precisely on the extreme exposures. The main statistical

tool for this is extreme value theory (EVT). EVT has

encountered a great success in many application fields,

such as flood or stock exchange prediction, see Em-

brechts et al. (1999). In these fields, extreme values are

more interesting than averages because ‘‘extraordinary’’

events are more interesting than ‘‘ordinary’’. Contami-

nation and consumption data present the same proper-

ties i.e. risk mainly concerns high consumers or highly

polluted food items, which are extreme values. EVT

is also of interest for nutrients in order to compare in-

takes with the tolerable upper level of intake. At the

opposite, lowest nutrient values are the most relevant

when dealing with nutrient deficiencies. However we

will focus only on exposure to contaminants in this

paper. The originality of EVT is to fully take into ac-

count the very high (or very low) observed values.

The principle is to model the tail of the exposure dis-

tribution by a Pareto type distribution, characterized

by a Pareto index which can be interpreted as a risk

index. The well-known instability of the classical Hill

estimator of the Pareto index may be greatly improved

by using bias correction techniques introduced by

Feuerverger and Hall (1999) and Beirlant et al. (1999).

This study will give some empirical evidence of the

interest and the feasibility of EVT for the estimation of

the probability that the individual exposure exceeds a

given level. Results will be compared to a more empir-

ical approach based on Monte-Carlo estimators of the

distribution.

As an application, the exposures to lead, cadmium

and methylmercury contained in sea products––wild

fish, farmed fish, mollusk and shellfish––will be evalu-

ated using French data. The purpose here is not to

evaluate the global food exposure risk but rather to

study the risks related to the exposure to heavy metals

from sea products. These contaminants were chosen for

both methodological and practical reasons. Human

beings can be exposed to heavy metals through out

different pathways: air inhalation, drinking water, con-

taminated soils and contaminated foods. Heavy metals

like lead (Pb), mercury (Hg) and cadmium (Cd) are

dangerous for human health because of their accumu-

lation properties. Heavy metals are particularly toxic to

children because they may ingest relatively higher

amounts of metals from food than adults, in terms of

consumption per body weight (WHO-IPCS-EHCs,

website). Food sources, such as fish and shellfish, can be

contaminated by any heavy metal through trophic bio-

accumulation, but mercury and methylmercury (MeHg),

the toxic form of mercury, are almost exclusively present

in sea products (WHO-IPCS-EHCs, website). These

remarks indicate that, in order to describe the risk

exposure to these heavy metals via sea products, it is

necessary to separately consider lead and cadmium

which are present in many other products and methyl-

mercury. The exposure to lead and cadmium due to sea

product consumption is expected to be low in compar-

ison to the overall exposure. In particular, empirical

methods even tends to predict a null probability to ex-

ceed the PTWI; the proposed EVT techniques allows to

obtain a better extrapolation. Methylmercury is a toxic

naturally occurring in fish after ingesting mercury pol-

luted feed. The associated risk is thus completely specific

to sea product consumption: a precise exposure assess-

ment is thus of great interest. Furthermore, for the

exposure to methylmercury, it will be interesting to

separately assess children exposure to adult since long

term health effects are more important for this sensitive

population (Grandjean et al., 1997).

Section 2 gives the description of the data, the

methods retained for exposure assessment and a precise

presentation of the methodology based on EVT and tail

estimation. Contents of Section 3 is the exposure

assessment for lead, cadmium and mercury via sea

product consumption and a discussion about the dif-

ferent methods of quantification.

2. Material and methods

2.1. Data description

2.1.1. Food consumption data

Consumption data come from the French survey

INCA detailed in CREDOC-AFFSA-DGAL (1999)

which concerns the food consumption of 3003 indi-

viduals aged 3 years old and more. This food record

survey concerns all consumptions at home or outside,

during one week: it was realized in four ways through

a period of 11 months in order to integrate the sea-

sonal effects. The portion sizes were estimated by

duplicate weighing for food consumed at home and by

photographs for food consumed outside. This is cur-

rently in France the only survey which provides indi-

vidual consumptions (at home and outside). Besides of a

detailed food nomenclature of about 900 food items

clustered in 45 groups, individual sociodemographic

data are available, including the individual body weight

and age.

Among this food list, 92 food items containing fish or

sea products were found in the groups ‘‘Fish’’, ‘‘Shellfish

and Mollusk’’, ‘‘Mixed dishes’’, ‘‘Soups’’ and miscella-

neous (Fish in ‘‘Meat products’’). For some of these

items, such as breaded fish, consumption data were

weighed by a recipe factor. The operational study file

contained the properly weighed consumption values for

92 products and n ¼ 2513 sea product consumers,

including sociodemographic informations.
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2.1.2. Contamination data

Sea product contamination data were collected

through different analytical surveys performed by sev-

eral French institutions (MAAPAR, 1998–2002; IFR-

EMER, 1994–1998). For each of the three studied

contaminants (Pb, Cd and Hg), there were respectively

3089, 3017 and 2643 contamination values expressed in

mg per kg of fresh weight. These values were clustered

into three categories (‘‘Wild Fish’’, ‘‘Farmed fish’’ and

‘‘Mollusks and shellfish’’) according to their contami-

nation level.

According to Cossa et al. (1989) and Claisse et al.

(2001), methylmercury in sea products can be extrapo-

lated from mercury contents. Therefore, conversion

factors were applied to analytical data in order to get the

corresponding methylmercury (MeHg) concentration in

food: 0.84 for fishes, 0.43 for mollusks and 0.36 for

shellfish.

2.2. Scenarios for exposure calculation

Various strategies for exposure calculation can be

achieved depending on the nature of the available data:

this is extensively described in Kroes et al. (2002). A

quick review will help in understanding the various

assumptions and the different methods compared in this

work.

First, since PTWI is expressed as contaminant unit

per kilogram of body weight it is of great interest to

know the consumer body weights from consumption

surveys. In this study, food consumption data are col-

lected at the individual level and body weight is available

so that no body weight approximation is needed.

Due to the detection or quantification limits of ana-

lytical methods, contamination data are very often left-

censored. This rounding effect is related to the physical

chemical phenomena involved in any analytical mea-

surement. According to their proportion, these censored

data are usually replaced either by the limit of detection

(LOD) or limit of quantification (LOQ) or by half of

these limits or by zero (GEMS/Food-EURO, 1995).

Because there are very few censored data (<10%) in our

application, the first assumption, which is conservative,

will be used: censored data are replaced by LOD or LOQ

in this study. The ‘‘choice’’ between LOD and LOQ is

made according to the declaration of the analysts.

When coupling contamination and food consumption

data, different levels of aggregation are possible

depending on the calculus mode and the size of the data

set. For small contamination data sets, it is useless to

consider a large number of food items in consumption

data. On the contrary, the calculation will be more

accurate if each food consumption may be weighed by

the correct contamination data. In order to evaluate the

impact of aggregation or disaggregation, two levels no-

ted AL and DL ranking from the most to the less

aggregated are considered. More precisely, as contami-

nation data were clustered into three categories (‘‘Wild

Fish’’, ‘‘Farmed fish’’ and ‘‘Mollusks and shellfish’’),

each of the 92 food items was linked to one of these

categories (see also Cr�epet and Leblanc, 2003). This

leads to two levels of aggregation which are noted as:

• DL: disaggregated level, Ci
j is the consumption of

product j for sea product consumer i, with j varying

from 1 to 92.

• AL: aggregated level, Ci
ðjÞ is the consumption of prod-

uct from category ðjÞ for consumer i, with ðjÞ being
‘‘Wild Fish’’, ‘‘Farmed fish’’ or ‘‘Mollusks and shell-

fish’’.

So that a consumer is more generally defined by Ci, a

92-dimensional (DL) or a three-dimensional vector (AL)

and his body weight wi for i varying from 1 to n.

For example, if data are available for trout, salmon

and bass, the aggregated level (AL) will consist in using

the same value of contamination for the three species

since they all belong to the ‘‘Farmed fish’’ category, for

example the average of contamination; on the contrary,

for the disaggregated level (DL) each species is sepa-

rately considered. Only two aggregation levels are used

but it is possible to defined a whole continuum of

aggregation levels.

Two kinds of calculus will be considered:

• Deterministic calculus. The contaminant concentra-

tion for each food will be expressed according to

three way: (i) D-AVE the average of all available con-

tamination data for this food; (ii) D-97.5 for the

97.5th percentile and (iii) D-MAX for the maximum.

In this notation, D stands for deterministic because

no randomization is assumed concerning contamina-

tion data. Each consumer faces the same contamina-

tion levels. The D-AVE calculation corresponds the

usual realistic methods mentioned in Section 1.

• Double random sampling. This exposure assessment

method is a non-parametric Monte-Carlo method,

also described in Gauchi and Leblanc (2002). It con-

sists in randomly selecting, on one hand a con-

sumer that is a basket of food consumption values

and his associated body weight, and, on the other

hand as many contamination values as food items

in the basket. The random sampling size is denoted

by B. This method is denoted 2R since both consump-

tion and contamination distributions are Randomly

used.

More precisely, such random selection among the

available data is a selection according to the empirical

cumulative distribution function (c.d.f.) of the data. For

instance, for consumption data, each consumer may be

selected with probability 1=n.

J. Tressou et al. / Food and Chemical Toxicology 42 (2004) 1349–1358 1351



The deterministic calculus (at least D-AVE and D-

MAX) can be achieved for both AL and DL aggregation

levels but the 2R calculus (and the D-97.5) need much

more data and cannot be achieved at the DL level. In-

deed, AL is necessary for random sampling so that

contamination data set is large enough. Concerning the

DL level, it was necessary to associate to each 92 food

items the corresponding analytical data by scanning all

the available analyses. For instance, for ‘‘Fried sole’’ or

‘‘Steam-cooked sole’’, all the contamination data con-

cerning ‘‘sole’’ were used to calculate average or maxi-

mum, while for vaguer named items, such as ‘‘Fish

soup’’ or ‘‘Fried fish’’, all analytical data from the

clusters ‘‘Wild fish’’ and ‘‘Farmed fish’’ were taken.

For the 2R calculus mode, according to U -statistic

arguments presented in another paper by Bertail and

Tressou (2003), it is necessary that B � N , where N is

the sum of all the sample sizes (consumption, contami-

nation in each category ‘‘Wild fish’’, ‘‘Farmed’’ and

‘‘Mollusks and shellfish’’). For example, for lead, there

are 592 analyses concerning ‘‘Fish’’, 532 for ‘‘Farmed

fish’’ and 1965 for ‘‘Mollusks and shellfish’’, and n ¼
2513 sea product consumers, so that B � 5602, which is

fulfilled with B ¼ 10; 000. Although this value of B al-
lows for a certain stability of the exposure distribution,

the results, presented in next section, correspond to the

mean over 100 repetitions of the same calculus.

To summarize, for each exposure computation, the

calculation is performed according to the following

points:

• the aggregation level (AL or DL),

• the calculus mode (D-AVE, D-97.5, D-MAX or 2R).

Left censorship and body weight treatments are fixed

here but could also generate other calculation scenarios.

Such decomposition could serve as guidelines for

further exposure assessment to test the sensitivity of the

results.

Furthermore, individual consumptions are assumed

to be independent and identically distributed as well as

contamination data.

2.3. Risk characterization: definition of the parameter of

interest

Chemical food risks to human health are assessed by

comparing the dietary exposure with an adequate safe

exposure level, such as provisional tolerable weekly in-

take (PTWI) proposed by the Joint FAO/WHO Expert

Committee on Food Additives (JECFA). This step of

the risk assessment is well described in Renwick et al.

(2003). Our goal is to estimate the probability that the

exposure of an individual from a given population ex-

ceeds the PTWI. In a large population, a precise esti-

mation of this quantity is of great importance since even

a difference of 1& involves a large number of individ-

uals.

2.3.1. The plug-in (PI) estimator

If Xi is defined as the exposure value to a given con-

taminant for an individual i (i ¼ 1; . . . ; n) and assuming
that exposure values are available for all individuals and

expressed in the same unit as the PTWI, a simple way to

estimate the risk is to use the plug-in (PI) or empirical

estimator of the probability to exceed the PTWI, defined

as:

#ðXi > PTWIÞ

n

where #ðXi > PTWIÞ denotes the number of exposure
values that exceed the PTWI. For example, if this

quantity is equal to 0.05 for a given population, it means

that an unknown individual belonging to that popula-

tion may exceed the PTWI with a probability of 5%.

The results obtained with the PI estimator will be

compared to those issued with the tail estimation (TE)

method extensively described in next section.

2.3.2. The tail estimation (TE) based estimator

2.3.2.1. Extreme value theory (EVT) for risk assessment.

A few basic facts about EVT are now recalled

(Embrechts et al., 1999). We give here the results con-

cerning the high extreme values (right tail of the distri-

bution) but they can be transposed to lowest values (left

tail of the distribution) if one is interested by nutrient

deficiencies.

Let X1; . . . ;Xn be a n-sample, that is n independent

and identically distributed (i.i.d.) random variables

(r.v.). F denotes its cumulative distribution function

(c.d.f.), i.e. F ðxÞ ¼ PrðXi6 xÞ for any Xi, i ¼ 1; . . . ; n.
X1;n6 � � � 6Xn;n denotes the associated ordered sample

so that Xi;n is the ith smallest variable among the ðXiÞi.
EVT main theorem (Fisher Tippett theorem) gives

the asymptotic behavior of the sample maxima Xn;n

when n goes to infinity. There are only three possibilities

for the asymptotic distribution G of Xn;n: Gumbel,

Fr�echet or Weibull distributions. The Jenkinson repre-

sentation allows to write the c.d.f. of G as a function Gc

depending on an index c. The limit case c ! 0 corre-

sponds to the Gumbel distribution, the case c > 0 to the

Fr�echet distribution and the case c < 0 to the Weibull

distribution.

These laws are called extreme value distributions and

each one corresponds to a special tail behavior: Gumbel

law is related to light-tailed distribution such as normal,

log-normal or exponential distributions; Fr�echet law to

heavy-tailed distributions such as Pareto, Cauchy or

Student distributions and Weibull law to finite support

distributions that is for instance uniform distribution.

This limit distribution Gc of Xn;n is highly related to

the tail behavior of the ðXiÞi so that one way to use EVT
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is to adjust a distribution to the tail of the ðXiÞi, i.e. the
largest ðXiÞi.
The application of EVT to risk assessment consists in

adjusting a distribution to the distribution tail of the

exposure. Here, the realizations of the ðXiÞi are the
exposure levels obtained from the calculation procedure

described in the previous section.

An example of distribution of exposure is given in

Fig. 1. The zoom on the tail of the distribution shows

that very high values are reached. The first assumption is

thus that exposure has a heavy-tailed distribution. A

standard way to model such heavy tail phenomenon is

to use a Pareto law. For any x belonging to the tail of

distribution, i.e. for sufficiently large x, it is assumed that

1� F ðxÞ ¼ Cx
�1=c. In that case, the maximum is of

Fr�echet type with index c > 0 which may be interpreted
as a risk index.

In our model, the parameter of interest is the prob-

ability that individual exposure exceeds the PTWI:

PrðXi > PTWIÞ ¼ C½PTWI	
�1=c

which is an increasing

function of c. Fig. 2 clearly illustrates the influence of c

on the thickness of the distribution tail and conse-

quently on the risk as defined earlier. Indeed, the

probability to exceed a fixed level d of the x-axis, rep-

resented by the surface delimited by the x-axis, a vertical

line at the d level and the left part of the curve, increases

when c increases.

2.3.2.2. Estimation of parameters. Fitting the distribu-

tion tail to a Pareto law consists in estimating the

parameters C and c for x large enough. This notion of

‘‘sufficiently large’’ is quantified by selecting a fraction

of the sample, i.e. the k largest observed values.

If ðXiÞi¼1;...;n are independent and identically distrib-
uted (i.i.d.), conditionally to k, maximum likelihood

technique allows to estimate c and C by

cMVðkÞ ¼ Hk;n ¼
1
k

P

k

i¼1 log
Xn�iþ1;n

Xn�k;n

CMVðkÞ ¼
k

n
ðXn�k;nÞ

1=Hk;n

(

where Xi;n as before denotes the ith order statistic and

Hk;n is the Hill estimator (Embrechts et al., 1999).

The Hill estimator is very sensitive to the choice of k

as shown in Fig. 3 (the Hill estimator is the dashed line).
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Indeed its bias increases with k while its variance de-

creases with k.

One way to correct this is to introduce slowing

varying functions, so that 1� F ðxÞ ¼ Cx
�1=c

LðxÞ, where
LðxÞ denotes a satisfying for all t > 0, LðtxÞ

LðxÞ
! 1 as x ! 1,

which takes into account small deviations from the exact

Pareto case (Beirlant et al., 1999; Feuerverger and Hall,

1999). All distributions of this type are of Fr�echet type

with index c.

One example of slowly varying function is LðxÞ ¼ 1þ
Dx

�b, with b > 0 and D 2 R

. This form can for instance

appear when considering a population which is a mix-

ture of two different populations with risk exposures

with two different risk indexes c1 and c2 (c1 > c2). In that

case, the resulting distribution of exposure is not strictly

Pareto but perturbed by a slowly varying function with

c ¼ c1 and b ¼ 1=c2 � 1=c1 > 0. In our case, the data are
more likely to come from a mixture of several popula-

tions with different risks.

This slowly varying function induces a bias on the

estimator and may strongly reduce the rate of conver-

gence of the Hill estimator. The principle of the bias

correction method is to interpret the Hill estimator as an

estimator of the QQplot slope perturbed by a small

deviation induced by the slowly varying function. Tak-

ing the weighted average of several slopes allows to re-

duce the bias showing that this average behaves like an

exponential r.v. with mean depending on the parame-

ters. The technical principles about the bias correction

method and about the estimation of parameters are

available from the authors. Simulations of the validity

of these corrections are available in Feuerverger and

Hall (1999). Fig. 3 gives an example of bias correction.

These estimations can be done for different values of

k (bc
k
is the current bias-corrected estimator of c) and the

optimal sample fraction k

 can then be chosen as the

solution of the program:

min
k;k>10

ĉ2
k

k
þ ðHk;n � ĉ

k
Þ
2

which consists in minimizing the asymptotic mean

squared error (AMSE) of the Hill estimator.

As explained above, our parameter of interest is

C½PTWI	
�1=c

and is estimated by cC
 ½PTWI	
�1=bc


where
bc
 ¼ ĉ

k
 is the bias corrected estimator of c taken at the

optimal sample fraction k

, and cC
 ¼ k




n
ðXn�k
;nÞ

1=ĉk
 is

the resulting estimator of constant C.

This method of risk estimation is referred to as TE

(tail estimation) in the application.

3. Results

3.1. Exposure to heavy metals due to sea product

consumption

Results for food exposure to lead (Pb), cadmium (Cd)

and methylmercury (MeHg) are given in Table 1. Each

line of this table corresponds to a different calculation of

exposure for a given contaminant according to the

proposed assumptions, leading to six scenarios for each

contaminant. For example, for scenario 1, the exposure

to lead from sea products is described by its average, its

97.5th percentile and its maximum over the sea product

consumers. This first scenario corresponds to a calcu-

lation with a deterministic calculus at disaggregated le-

vel (DL) using average of contamination (D-AVE). The

last columns give the associated probabilities of

exceeding the PTWI, calculated with our new method

based on tail estimation (TE) and the plug-in method

(PI).

The international toxicological references (PTWI)

were established and revised by the JECFA. The most

recent references were used for this study and are: 25 lg/

week/kg b.w. for lead, (revision FAO/WHO, 1999), 7 lg/

week/kg b.w. for cadmium (revision FAO/WHO, 2000),

and 1.6 lg/week/kg b.w. for methylmercury (revision

FAO/WHO, 2003).

As mentioned in Section 1, it is clear that methyl-

mercury exposure needs a particular focus (next section)

while lead and cadmium which are present in other

foods, will better illustrates the proposed TE method.

According to previous French reports using different

calculation modes, similar to D-AVE in SCOOP 3.2.11

(2003) and to D-MAX in CREDOC (1998), the expo-

sure due to sea products is from 3% to 11% of the total

food exposure for lead and from 8% to 25% of the total

food exposure for cadmium.
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Fig. 3. Example of bias correction for the risk index c: Hill estimator

(dashed line), bias corrected Hill estimator (solid line) and confidence

interval for the debiased estimator (dots); the minimization of AMSE

gives k
 ¼ 50, bc
 ¼ 0:252 and Hk
 ;n ¼ 0:265. Case of the exposure to

lead, disaggregated level, average contamination.

1354 J. Tressou et al. / Food and Chemical Toxicology 42 (2004) 1349–1358



An important remark concerns the significance of all

these results. This assessment of exposure to heavy

metals was made on effective sea product consumers

from the INCA data. A multiplicative coefficient of

2513/3003¼ 84% may be applied to risk calculated with

PI in order to take into account the non-consumers and

extrapolate to the whole population (adults and chil-

dren) of the survey. Because of the short period of the

survey, the bias due to the observed zeros is well known:

individuals with null consumptions in INCA may be

true non-consumers of sea products or may scarcely

consume sea products, maybe in large quantity, but not

during the survey week. This bias, which can be evalu-

ated by comparisons with other sources on household

consumptions, such as the Secodip panel survey (daily

observations during a year), is not significant in the case

of sea products in France.

Our main observations are:

• The aggregation level assumption has a high impact

on the results. DL gives lower exposure levels and

lower risks than AL for all contaminant for a given

calculus mode. For example, for Pb, the comparison

of average exposures of scenarios 1 and 3 show the

importance of aggregation. This can be explained

by the fact that the mean contamination for DL is

lower than the mean contamination for AL. Under

AL assumption, averages are taken over a larger

number of observations and high values boost the

average of contamination. For example, average of

contamination for tuna fish is higher than for any

other fishes but for AL, all fishes are assumed to be

contaminated at the average level of all fishes which

is higher because of tuna. However, 2R calculus is

not possible for DL assumption since there is not en-

ough data to be sampled in.

• At a given aggregation level, D-AVE (deterministic-

average contamination) and 2R (double random) give

similar results in average but randomization of con-

tamination for the 2R calculus allows to reach higher

exposure levels so that 97.5th percentile and maxima

are higher for 2R than for D-AVE. Likewise, risk is

higher for 2R than for D-AVE (see scenarios 9 and

12 with similar averages but different maximum and

risks). If high consumptions are associated with high

levels of contamination, some exposure may be very

high and 2R allows to consider them without using

an unrealistic assumption, such as D-MAX or D-

97.5. These two last methods are not realistic but

present the advantage to be conservative. Indeed if

D-MAX or D97.5 gives null risks or negligible risks

of exceeding the PTWI, there is no need to be more

accurate in the process.

• Plug-in (PI) methods gives null risk of exceeding the

PTWI for D-AVE calculus for Cd and Pb (see lines

1, 3, 7 and 9). This illustrates a clear drawback of

the PI estimate: risk cannot be evaluated if PTWI

is too large when compared to the higher observed

Table 1

Exposure assessment to lead (Pb), cadmium (Cd) and methylmercury (MeHg) for sea product consumers (for 2R, B ¼ 10; 000)

Scenario Contaminant

(PTWI in lg/kg

b.w.)

Assumptions Exposure (lg/week/kg b.w.) Associated probability

of exceeding the PTWI

Aggregation level Calculus mode Average 97.5th

percentile

Maximum TE PI

1 Pb (25) DL D-AVE 0.325 1.406 5.143 3.17E)07 0

2 D-MAX 3.847 15.239 36.239 3.76E)03 4.78E)03

3 AL D-AVE 0.387 1.774 7.735 2.90E)06 0

4 D-97.5 1.290 6.176 26.776 2.20E)04 3.98E)04

5 D-MAX 6.392 23.095 93.934 1.67% 1.87%

6 2R 0.386 2.096 21.725 1.03E)04 2.60E)05

7 Cd (7) DL D-AVE 0.199 1.061 3.537 7.14E)05 0

8 D-MAX 2.592 13.200 32.080 10.94% 9.15%

9 AL D-AVE 0.235 1.211 5.434 7.54E)05 0

10 D-97.5 0.780 4.054 18.132 4.10E)03 3.18E)03

11 D-MAX 4.694 20.763 90.021 100% 20.57%

12 2R 0.234 1.422 19.391 7.92E)04 7.97E)04

13 MeHg (1.6) DL D-AVE 0.628 2.712 17.213 9.26% 7.40%

14 D-MAX 9.167 39.989 110.486 100% 75.05%

15 AL D-AVE 1.113 4.202 10.796 100% 21.53%

16 D-97.5 4.807 18.270 46.760 100% 76.72%

17 D-MAX 16.039 60.573 155.832 100% 92.40%

18 2R 1.114 6.273 50.217 75.63% 18.38%
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values (extreme tail of the empirical distribution).

Thus, when risk or sample size are small and since a

null risk does not exist, precise quantification is not

possible with this method. The tail estimation (TE)

method allows a much more accurate quantification.

• TE mostly gives higher risks of exceeding the PTWI

than PI and the difference is sometimes very impor-

tant. For example, in scenario 18, the probability de-

creases from about 76% for TE to 18% for PI.

However, TE sometimes does not allow for accurate

estimation of the probability of exceeding the PTWI

when this probability is too important. As shown in

Fig. 4, if the PTWI is not in the distribution tail,

the Pareto assumption is not sufficient to evaluate

the probability of exceeding the PTWI. Indeed,

Pareto c.d.f. is defined for xP a, where a is such that

F ðaÞ ¼ 0, i.e. Ca
�1=c

¼ 1) a ¼ C
c. Therefore, if

PTWI < a, the probability to exceed the PTWI is the-

oretically equal to 1. In scenarios 11, 14, 15, 16

and 17, the TE method is then too conservative (a

100% probability of exceeding the PTWI) and the

PI method should be used. Furthermore, if the PTWI

is too close to a, the risk estimation may be too high

(it may be the case for scenario 13). To summarize,

we can say that: tail estimation (TE) method yields

a good risk estimation if the PTWI is located in the

distribution tail (PTWI3 in the illustration); a conser-

vative risk estimation is obtained for lower PTWI

(PTWI2 in the illustration); small PTWI relatively

to the observed values leads to an overestimated

value of 100% (PTWI1 in the illustration).

3.2. A focus on methylmercury

Results concerning MeHg according to the age of the

population are presented in Table 2. Four sub-popula-

tions are considered: the 3–8 years old sea product

consumers (n ¼ 440, 86% of this age class), the 9–15

years old sea product consumers (n ¼ 437, 81% of this

age class), the 16–60 years old sea product consumers

(n ¼ 1280, 83% of this age class) and the over 60 years

old sea product consumers (n ¼ 356, 89% of this age

class). Risk of exceeding the PTWI was calculated

according to PI method, since PTWI does not belong to

the distribution tail, i.e. the probability of exceeding it is

too high to use TE. Three calculus scenarios are pre-

sented: DL D-AVE, AL D-AVE and AL 2R.

The role of the aggregation level is even more

important in this case for all population groups and

especially for 3–8 year old children, where the proba-

bility of exceeding the PTWI varies from 17% (DL) to

45% (AL) for D-AVE calculus mode. However, it is

clear that according to these data, the exposure of

children (aged 3–8) is systematically higher than the

exposure of the rest of the population. As D-AVE cal-

culus is concerned, contamination is the same for all

individuals so that the observed differences are due to

the consumption behaviors. Children eat more sea

products relatively to their body weight than the rest of

the population. To be more accurate, confidence inter-

vals for PI risks are currently being constructed thanks

to the use of incomplete U-Statistics. The first results

show that the observed differences according to the

population age are significant. About the characteriza-

tion of target groups, developments are needed as sug-

gested in Bertail (2002).

3.3. Discussion

In this section, we discuss two points raised in the

refereeing process concerning, on the one hand, theFig. 4. Pareto adjustment and risk index estimation.

Table 2

Estimation of the probability of exceeding the methylmercury PTWI for sea product consumers according to age class (method of risk estimation: PI,

for 2R, B ¼ 5000)

Assumption 3–8 years old (%) 9–15 years old (%) 16–60 years old (%) Over 60 years

old (%)

All sea product

consumers (%)Aggregation level Calculus

mode

DL D-AVE 17.06 5.72 5.08 5.9 7.40

AL D-AVE 45.91 24.94 13.59 15.73 21.53

2R 32.91 20.42 13.74 15.22 18.38
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definition of the parameter of interest, when using

transversal consumption data and, on the other hand,

the absence of parametric adjustments in this paper.

When using our available data for the estimation of

the probability to exceed the PTWI (defined over life

time), one underlying hypothesis is that individuals are

facing a constant distribution of exposure over time and

keep the same consumption behavior over their lifetime.

Indeed, if this assumption is omitted, the comparison

between a one week exposure and the PTWI defined

over lifetime is nonsense. This is a strong assumption

which cannot be avoided with our available data, but

might be relaxed by combining our methods with some

proposals by Nusser et al. (1996) or Wallace et al. (1994)

if time series of consumption (or at least repeated

measures) are observed. These methods are compared

and discussed in Hoffmann et al. (2002). Moreover, it is

assumed that occasional short-term excursions above

the PTWI would have no major health consequences,

provided that the average intake over long periods is

not exceeding the PTWI. Therefore, the parameter of

interest may rather be interpreted as the probability of

occasional short-term excursions above the PTWI than

a true probability to develop a disease because of the

exposure to the contaminant.

In this paper, we deliberately do not use any para-

metric adjustment to well known distributions, such as

log-normal or exponential, neither in the exposure

assessment step, nor on the estimation of the parameter

of interest step. This is one important principle when

dealing with extreme values: these parametric adjust-

ments are rather efficient in measuring mean behavior

but irrelevant when dealing with risks and focusing on

extremes. Indeed, adjustment tests, such as Kolmogorov

or v2, give more importance to the central tendency than

to extreme values and have a very little power. In

addition, parametric adjustment of marginal consump-

tions do not reflect the wholesome phenomenon, be-

cause they do not account for the correlation structure

of the consumptions of products that may be comple-

mentary or substitute. Modelling the distribution of the

whole vector of consumptions is generally impossible as

it lies in a space of large dimension, but also because of

the problems of possible null consumptions for several

items, which makes a mixture approach very difficult to

implement.

Another objection to the use of marginal parametric

adjustments is that they do not allow a good control of

the error level (of types I and II). For x contaminated

item groups, there is a need to fit 2x distributions to get

the exposure (x for the consumption data, x for the

contamination data), some of them on sample sizes

smaller than 30. Even if we accept by some test, each

parametric adjustments, the global (statistical) error of

types I and II may be bigger than 100%, unless we have

a huge amount of data. . .

For these reasons, we only consider here the empirical

distribution of the consumption vectors, which is the

best non-parametric estimator of the multidimensional

distribution of the consumption vector.

4. Conclusion

This paper leads to several types of conclusions.

First, it is important to note that the scenarios of the

exposure calculation (such as levels of aggregation used

to couple data, calculus mode,. . .) have a strong impact

on the values of the exposure so that one must not use

numerical results without indicating them.

Deterministic methods for exposure assessment have

many drawbacks. If the mean of contamination is used,

the exposure is systematically under-evaluated because

the extreme contamination are not taken into account.

Using high fixed percentiles of contamination leads

to hide a part of the population at risk. Such phenom-

enon is well known in other fields (finance, hydrology)

which currently use the methods described here. Mod-

elling the tail behavior of the exposure by a Pareto

distribution is empirically consistent with the available

data and allows for very accurate (or at least conser-

vative) estimation of the probability to exceed a given

level. However, one specificity of this application to

food exposure assessment is the heterogeneity of con-

sumption behaviors. From a statistical point of view,

this leads to several bias problems which may be solved

by using recent developments in the field of extreme

value theory (EVT).

Concerning the feasibility of the method based on

EVT, it is important to check whether the exposure to

the studied contaminant is actually close to the toxico-

logical limit or not. Indeed, if the PTWI does not belong

to the distribution tail, Pareto tail adjustment is useless

while, on the opposite case, it allows to accurately

quantify low probability of exceeding the PTWI. Devel-

opments are still needed concerning confidence interval

for such probabilities to exceed a given toxicological

level.

As far as exposure assessment is concerned, according

to the data used and by comparison to the PTWI,

methylmercury intake via the consumption of sea

products seems important for a significant part of the

population, above all children. The case of lead and

cadmium clearly illustrates the fact that EVT allows to

quantify the risk to exceed the toxicological reference

when it is low.
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Abstract

This paper presents some statistical methodologies to evaluate the food exposure to a contaminant and quantify the outcome of a

new maximum limit on a food item. Our application deals with Ochratoxin A (OTA). We focus on the quantitative evaluation of the

distribution of exposure based on both consumption data and contamination data. One specific aspect of contamination data is left

censorship due to the limits of detection. Three calculation procedures are proposed: [P1] a deterministic method using means of

contamination; [P2] a probabilistic method using a parametric adjustment of the distributions of contamination taking into account

the left censorship; and [P3] a non-parametric method which consists in randomly selecting the consumption data and the contam-

ination values. Our main result shows that a non-parametric probabilistic approach is well adapted for the purpose of exposure

assessment, when large samples are available. In the application to OTA, the probability to exceed a safe level is high, particularly

for children. Simulations show that the impact of the existing standards on cereals and the currently proposed standards on wine

generally do not significantly reduce the risk to be overexposed to OTA.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Exposure assessment; ML; Ochratoxin A; Left censorship; Probabilistic approaches

1. Introduction

Contaminants and natural toxicants such as myco-

toxins may be present in several food items at acceptable

levels that do not cause considerable risks to human

health. However, because of all the occurrences of con-

taminants in different food items, exposure, and toxico-

logical profile may be considered as dangerous for

human health if the cumulative intake remains above

the toxicological references established by the interna-

tional scientific committees. Exposure to mycotoxins in

food is a widely recognized health risk, which has been

receiving an increasing attention (Bhat and Vasanthi,

1999). According to consumer protection consider-

ations, the European Commission has been applying

food standards to contaminants and toxins in foods

since March 2001 (Commission européenne, 2001; EU

Regulation No. 466/2001). The Codex Alimentarius

FAO/WHO commission has also proposed food stan-

dards to contaminants and natural toxins, based on

methodological processes scientifically validated by risk

assessors and accepted by risk managers, since 2002

(CCFAC, 2003). At the European level, negotiations

for setting maximum limits (ML) for mycotoxins in

foods/food groups are also currently in progress but

the methodology is not as accurate as the one proposed

0273-2300/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.yrtph.2004.07.005
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by the Codex Alimentarius. Nevertheless, these ML

should concern the main contributors to the total die-

tary exposure.

This paper proposes a statistical methodology that al-

lows to quantify the exposure of a population to a nat-

ural toxicant and provides some tools to help risk

managers in deciding whether the exposure to a healthy

risk would be significantly lower when introducing new

food standards.

Our application deals with Ochratoxin A (OTA),

which is a mycotoxin produced by fungi Aspergillus och-

raceus and Penicillium viridicatum. This mycotoxin can

be detected in several food items: cereals, coffee, grapes,

pork meat, wine, beer. . . Ochratoxin A is a well-known

nephrotoxic agent. High exposure has been shown to in-

duce kidney tumors as well as several other toxic effects

in experimental animals. The toxin was evaluated several

times by the Joint FAO/WHO Expert Committee on

Food Additives, (JECFA, 2001). Basing its recommen-

dations on the nephrotoxic effect in pigs in a sub-chronic

study, it has established a Provisional Tolerable Weekly

Intake (PTWI) of 100 ng/kg of body weight per week

(approximately 14 ng/kg bw/day). The aim of this paper

is to accurately quantify the exposure to OTA, the prob-

ability to exceed the PTWI, and to evaluate the impact of

new food standards on this probability. For this, we first

consider the existing food standards on OTA for the ma-

jor contributor to exposure, that is cereals (>70% of the

exposure in France) and then consider some of the new

proposed standards to OTA for wine, a low contributor

to the exposure (<5% in France) compared to cereals.

Section 2 deals with the description of our data. Sec-

tion 3 proposes three ways to model the exposure when

both contamination and consumption data are avail-

able, taking into account (or not) different aspects of

the data. They respectively focus on the structure of

the correlation of the consumption data, the treatment

of the censorship for contamination data and the possi-

bilities to establish statistical comparisons between tar-

get populations or to evaluate the impact of the

introduction of new food standards. Finally, Section 4

gives the main outcomes of this study from both a meth-

odological and a quantitative point of view.

2. Description of the data

2.1. Consumption data

The National French survey called ‘‘INCA,’’ realized

by CREDOC-AFFSA-DGAL (1999), has been chosen

for several reasons. The survey focuses on the individual

consumptions of French people; it is done over a week

and includes food-away-from-home consumptions. Con-

trary to many consumption surveys, values are not taken

at the household level, but at the individual level. Some

socio-demographic data such as sex, age, professional

category, region, and body weights are also available:

this is particularly interesting and even necessary in food

risk assessment especially to define the relative consump-

tions of each individuals, i.e., the individual consump-

tions (of each food) divided by the individual body

weight, but also to determine and target the ‘‘popula-

tions at risk’’ (see also Bertail, 2002, on these aspects).

This survey is composed of two samples:

� The adults: 1985 individuals (over 15) among whom

1474 are normo-reporters (NR Adults). By normo-re-

porters, it is meant the individuals whose nutrition

needs are covered by the declared consumptions.

The statistical analysis will be based on the whole

population, because keeping just normo-reporters

would generate some bias selection problems and

destroy the ‘‘representativity’’ of the sample in terms

of professional category, region, age, and sex struc-

ture. However some indications will be given when

dealing with the normo-reporters alone.

� The children: 1018 from 3 to 14 years old.

A brief description of the consumption data is given

in Table 1. This table just contains the food groups as-

sumed to be contaminated (see section Matching both

sources for details).

A major drawback of these data is the duration of the

survey: one week is not sufficiently long to measure

occasional consumptions (French ‘‘foie gras’’ for exam-

ple). There is actually a strong need of longer term indi-

vidual consumptions data in France.

Table 1

Description of the consumption data (unit: g/week or mL/week)

Food groups Children Adults (NR adults)

Mean 95th percentile Mean 95th percentile

Pork and poultry meat products 203 515 250 (272) 666 (718)

Wine 5 0 702 (802) 3135 (3406)

Cereal-based products 1046 2103 586 (687) 1601 (1743)

Cereals 1103 2346 1414 (1582) 2959 (3087)

Coffee 6 36 90 (93) 274 (273)

Fruit and vegetable products 205 950 115 (134) 600 (660)

Dry fruit and vegetable 101 420 123 (136) 520 (583)

Rice, semolina 252 767 267 (277) 902 (950)

Beer 4 0 198 (212) 1000 (1000)
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2.2. Contamination data

Several sources of contamination data have been used

in this study in order to have a realistic view in terms of

variability of the contamination by OTA. First, analyses

have been realized on unprocessed food products by the

Ministry of Agriculture and the Ministry of Economy

and Finances (DGAL 1998–1999, DGCCRF, 1998–

2001). These analyses were enriched by analyses on food

as consumed by the National Institute of Agronomical

Research (2000, 2001). At last, some specific data about

wine contamination have been supplied by the National

Office of Wines (ONIVINS, 1999, 2000).

All these data present a large part of left censored

data. Indeed, each laboratory has its own limit of detec-

tion (LOD) and limit of quantification (LOQ) in relation

to the food that is analyzed and the analytical method

that is used. Between 50 and 100% of the data are under

these limits. This induces a bias that can be dealt with, in

a first approach, by considering several treatments of the

censorship:

� H1 The censored data are replaced by the corre-

sponding LOD or LOQ,

� H2 The censored data are replaced by the corre-

sponding LOD or LOQ divided by 2,

� H3 The censored data are replaced by zero.

H2 is recommended (GEMs/Food-WHO, 1995) if

there is more than 60% of censored values among the

data.

The contamination data are described in Table 2.

Most of these are highly censored: 72% of wine samples

are below the LOD (0.01 lg/L) while 90% of the 1063

analyses realized on pork and poultry meat are censored

at levels varying from 0.2 to 0.5 lg/kg.

2.3. Matching both sources

In both cases, the data were clustered into nine

groups according to the contamination level of prod-

ucts. Indeed, for exposure assessment a contamination

value is assigned to each specific consumption: this is

done here within the group.

For example, the group Cereal-based products is com-

posed of biscuits, cakes, or breakfast cereals. It differs

from the group Cereals, which is composed of bread,

biscotti or pasta. Indeed, all these products are contam-

inated via wheat flour at a high level. Another solution,

which is often used in practice, is to consider percentages

of wheat flour (Leblanc et al., 2002). This is not neces-

sary here since there is specific contamination data for

products as consumed.

A short description of the different groups is given

here in order to compare our results with others studies:

� Wine: wine and wine-based cocktails including

champagne.

� Pork and poultry meat product: giblets such as liver,

brain, or heart, cold cuts including ham.

� Cereal-based products: biscuits, cakes, and breakfast

cereals (muesli).

� Cereals: bread, biscotti, pasta including pizza, and

sandwiches.

� Coffee: roasted and instant.

� Fruit and vegetable products: grapes, grape juice, or

other drinks based on presumed contaminated product.

� Dry fruit and vegetable: all dry fruits and vegetables

including prepared dishes such as ‘‘Chili con carne’’.

� Rice, semolina: including prepared dishes such as paella.

� Beer: all kind of beers including beer cocktails.

The exhaustive list of these food items is available

from authors on request.

3. Statistical methodology

3.1. Three ways to model the exposure

In this paper, three procedures for the exposure

assessment are proposed and compared. These are not

Table 2

Description of the contamination data, (unit: lg/kg)

Products Number of

measured

values

Censored

values

Percentage of

censored

values (%)

Mean Median Maximum

H1 H2 H3 H1 H2 H3 H1 H2 H3

Pork and poultry meat 1063 From 0.2 to 0.5 90 0.313 0.189 0.064 0.200 0.100 0.000 6.100 6.100 6.100

Wine 996 0.01, 0.05 or 0.1 72 0.135 0.131 0.127 0.010 0.005 0.000 4.330 4.330 4.330

Cereal-based products 75 0.5 or 1 96 0.611 0.357 0.103 0.500 0.250 0.000 6.100 6.100 6.100

Cereals 241 0.2, 0.5 or 1 59 0.728 0.609 0.490 0.500 0.250 0.000 11.100 11.100 11.100

Coffee 103 From 0.05 to 1 52 0.984 0.779 0.573 0.700 0.500 0.000 10.600 10.600 10.600

Fruit and vegetable

products

103 From 0.02 to 1 56 0.193 0.149 0.104 0.090 0.070 0.000 3.450 3.450 3.450

Dry fruit and vegetable 82 From 0.05 to 1 87 0.446 0.287 0.129 0.500 0.250 0.000 4.300 4.300 4.300

Rice, semolina 43 From 0.25 to 1 93 0.533 0.300 0.067 0.500 0.250 0.000 1.400 1.400 1.400

Beer 2 0.05 or 0.1 100 0.075 0.038 0.000 0.075 0.038 0.000 0.100 0.050 0.000
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exhaustive, but indicate three statistical directions: a

non-probabilistic approach (as far as contamination is

concerned), a semi-parametric probabilistic approach,

and a non-parametric probabilistic one. Each of these

methods answers to specific needs. This is explained in

the following paragraphs using the following notations:

� C = (C1, . . . ,CP) denotes the relative consumption

vectors of each individual, i.e., the individual con-

sumptions (per week) of food 1 to P divided by the

individual body weight,

� Q = (Q1, . . . ,QP) denotes the contamination vectors,

where P is the number of contaminated foods (or groups

of foods).

[P1]. The ‘‘�Determinist’’ procedure

It consists in balancing each consumption by a typical

fixed value of contamination �Q ¼ ð�Q1; . . . ;
�QP Þ, say the

mean, the median, the 95th percentile or the maximal

value of the contamination, replacing censored data

according to, respectively, the assumptions H1, H2, or

H3. Then, the individual total food exposure is

K ¼
XP

j¼1

�QjCj:

The case of �Q being means is useful to make quick

comparison with other studies since this calculation is

recommended by WHO-FAO-JECFA (1997). When

the median is used instead of the mean, the evaluation

is a bit more realistic. Indeed, it is known that the

mean may be a bad indicator of the central tendency

of a distribution especially when the distribution is very

skewed (which is the case for contamination data). At

last, the use of the 95th percentile or the maximum

may be justified in a very conservative approach to de-

tect contaminants with low risk to exceed the safe

exposure level.

[P2]. The ‘‘semi-parametric’’ procedure.

This method consists in adjusting a parametric distri-

bution to the contamination data (for a specific food

item), for example a log-normal distribution, a gamma

distribution, or any parametric distribution, indexed

by some finite parameter h, that fits the data. Parameters

may be estimated by maximum likelihood methods (say

ĥ), eventually by taking into account the censoring

mechanism in the likelihood.

More precisely, if h denotes the (maybe multidimen-

sional) parameter of the chosen distribution, fh its den-

sity (PDF) and Fh its cumulative distribution function

(CDF), q = (q1, . . . ,qm) the m observations for a given

product and c = (c1, . . . ,cm) the associated censorship in-

dex (equals 1 when the data are censored, in this case,

qi = LOD) then ĥ is obtained by maximizing the log-

likelihood

lðq; c; hÞ ¼
Xm

i¼1

ð1� ciÞ½ln fhðqiÞ� þ ci½ln F hðqiÞ�:

Indeed, the first component concerns non-censored

observations distributed according to fh and the second

component is the log-likelihood for the censored obser-

vations whose corresponding true values are actually

lower than the observed (cf. use of Fh).

The adjustments are realized for four distributions:

Log-normal, Gamma, Weibull, and v2. The last one

has the advantage to only have one parameter while

the others need the estimation of two parameters.

The next step consists in proceeding to a Monte Car-

lo simulation of size N. The contamination values are

sampled according to the adjusted distribution for each

food j = 1, . . . ,P and consumption vectors are sampled

with replacement among the initial consumption data.

The sampling size N should be greater than the number

of observed consumers n and greater than the number

of analyses realized for each food L(j), j = 1, . . . ,P.

The parametric adjustment of the marginal distribu-

tions of the consumption values product by product

(or group by group) has not been retained because it

does not account for the structure of the dependence

between the different consumptions. Corrections to this

problem that will not be discussed here may be found

in Gauchi and Leblanc (2002). In this procedure, we se-

lect the whole consumption vectors among the observed

data so that the individual diet and so the correlations

between the consumptions are fully taken into account.

The main advantage of this method is that it is more

realistic than a determinist procedure and overall, allows

a systematic treatment of the censorship. One difficulty

is to find the correct distribution. Indeed, since the

adjustment procedure accounts for the left censorship

of the data, usual adjustment tests can not be used.

[P3]. The ‘‘non-parametric’’ procedure

It consists in sampling with replacement both the ob-

served consumption vectors and the contamination val-

ues. This is sometimes improperly called ‘‘empirical

bootstrap’’ since variables are drawn according to,

respectively, (P + 1) empirical distributions. As in [P1],

censored data are replaced by some specific values

according to treatments H1, H2, or H3. Similarly to

[P2], the sampling size N has to be greater than n and

the L(j), j = 1, . . . ,P.

The major advantage of this procedure is its realistic

aspect: the distribution of exposure is built by consider-

ing that an individual has, equi-probably, one of the n

observed consumer�s behavior and that the eaten food

j is equi-probably contaminated according to the L(j)

observed values, for j = 1, . . . ,P.

An interesting current development is to use a non-

parametric model accounting for the censorship process.

This can be done by considering the Kaplan–Meier esti-

mators (see Kaplan and Meier, 1958) of the contamina-
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tion distributions instead of the empirical estimator and

using similar Monte Carlo methods.

3.2. Characterization of the risk and confidence interval

The risk is quantified by the probability to exceed a

fixed safe reference level, d. If r(d) denotes this probabil-

ity, the understanding of r(d) = 5% for a given popula-

tion is that an unknown individual of this population

may exceed d with probability of 5%. For OTA, the pro-

visional tolerable weekly intake (PTWI) is the usual con-

sidered level. Its value has been fixed to 35 ng/week/kg

bw at the European level (SCF, 1998) and to 100 ng/

week/kg bw at the international level (JECFA, 2001).

However, d may be any dose that is supposed to be safe

for the consumer. It has to be recalled that the PTWI is

determined as the tolerable dose over the lifetime so that

occasional short-term intakes above this limit are not

necessarily risky. However, the consumption data does

not measure the long-term and it is also difficult to mod-

el food behavior over the life cycle. A long term ap-

proach would require long-term consumption data as

well further researches in modeling food consumption

behavior over time. Besides, since a PTWI, or any other

‘‘safe-level’’ does not provide any information on the

magnitude of the harm expected, combining the expo-

sure assessment with a dose–response function would

be more useful for evaluating the severity of a particular

health threat but it is not available. Estimating the prob-

ability to exceed the PTWI will therefore essentially

serve as an indicator for a potential risk.

This quantity will be evaluated by the empirical or

Plug-In estimator, that is the empirical counterpart of

the parameter we want to estimate. Denoting by Ki for

i = 1, . . . ,N, the individual exposures obtained by draw-

ing with replacement both an individual basket (the vec-

tor of its relative consumptions) and some contamination

data, the estimator is simply r̂ðdÞ ¼ #ðK iPdÞ

N
where

#(KiP d) is the number of exposures that exceed d. This

is the proportion of consumers whose exposure exceeds d.

U statistic arguments given in Bertail and Tressou

(2003) allows to build confidence intervals for this quan-

tity in a fully non-parametric way (see Lee, 1990 for an

introduction to U statistics). Asymptotically valid confi-

dence intervals may be obtained in particular by using

Bootstrap techniques (Efron, 1982) as described in the

algorithm below.

The procedure developed in Bertail and Tressou

(2003) may be decomposed in three steps:

(Step 1) Estimation

� Obtain a distribution of exposure from procedure [P3],

� Calculate the estimator r̂ðdÞ ¼ #ðK iPdÞ

N
.

(Step 2) Resampling

Iterate b = 1, . . . ,B times

� Draw bootstrap samples with the same sizes

n,L(1), . . . ,L(P) as the original samples, by drawing

consumption and contamination data with replace-

ment from the initial observations,

� Obtain a distribution of the exposure from the boot-

strap samples using method [P3] (which itself consists

in associating randomly the contamination data with

the consumption vectors)

� Calculate the corresponding value of the plug-in esti-

mator rb(d).

End of the iteration

(Step 3) Confidence interval (CI) building

With the bootstrap estimators fr̂bðdÞ; b ¼ 1; . . . ;Bg,
build the empirical distribution of the estimated risk to

exceed d.

� Considering the a/2th percentile r̂a=2ðdÞ and the (1 � a/

2)th percentile r̂1�a=2ðdÞ of the empirical distribution

of the fr̂bðdÞ; b ¼ 1; . . . ;Bg, a (1 � a)% non-paramet-

ric CI also known as the percentile CI is given:

½2r̂ðdÞ � r̂1�a=2ðdÞ; 2r̂ðdÞ � r̂a=2ðdÞ�:

� An other solution is to calculate the observed empir-

ical standard deviation r̂ðdÞ and mean �rðdÞ of the val-
ues fr̂bðdÞ; b ¼ 1; . . . ;Bg and to use an asymptotic

normal approximation so that a (1 � a)% CI is then

given by:

�rðdÞ � U1�a=2

� �

rðdÞ
� �

;

where (U1 � a/2) is the (1 � a/2)th percentile of a stan-

dard normal distribution (1.96 for a = 5%).

As an illustration, Fig. 1 shows the histogram of the

bootstrap values. For d = 35, the 95% confidence inter-

vals are:

� [34.92%; 37.40%] for the non-parametric CI.

� [34.89%; 37.49%] with a normal approximation.

Fig. 1. Observed distribution of the probability to exceed the

European PTWI, (Procedure [P3], Assumption H1 for censorship).
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Both calculations give about the same results with a

slightly narrower CI for the non-parametric CI. This last

technique will thus be used in the following because of

its simplicity.

3.3. Impact of a new proposed standard in food

One way to adequately protect consumers is to set

standards on the foods that are the main contributors

to the total dietary exposure (CCFAC, 2003). To help

the decision process, a possible solution is to simulate

the impact of the new proposed standards on the glo-

bal consumer protection as it was done by JECFA

on aflatoxin M1 and OTA (JECFA, 2001). The main

idea is to assume that all food contamination data over

the proposed maximum limit (ML) will not appear

anymore in the market. In practice, the procedure con-

sists in using the previous calculation methods with a

distribution curve of contamination cut off at the ML

and to compare the exposure distributions and the

associated risk. This procedure of course assumes that

the new standards will not induce a drastic change in

the consumption habits (for instance by substitution

effects).

These procedures can also be applied to a specific

population, for example to check whether children or

wine consumers are more risky populations or not and

if they are sensitive to the proposed standard in terms

of decrease of the associated risk.

4. Results and discussion

4.1. Comparison of the proposed methods

The three calculation procedures were implemented

using Gauss Software (Aptech Systems, www.Aptech.-

com) and results are given in Table 3. The unit for expo-

sure is the nanogram per week per kilogram of body

weight (ng/w/kg bw).

For the determinist procedure, we have used the med-

ian, mean, and maximum as proposed in the section Sta-

tistical methodology. The mean is the most often used

statistic and it is more conservative than the median,

above all when a large proportion of the data is left cen-

sored. However, the procedure [P1]-median is more real-

istic in the general case since each individual has a

probability of 50% to face a contamination lower than

the median and the same probability to face a greater

contamination than the median. For OTA, the results

obtained for the [P1]-maximum procedure strongly

show the need for refined evaluations.

For the semi-parametric procedure [P2], the sampling

size is N = 5000 and we present the mean results over

200 repetitions of the sampling step. Accounting for

the variability of the data using some bootstrap tech-

nique was not possible because of the structure of the

contamination data: when one builds the contamination

bootstrap samples with size L(j), it is possible to select

L(j) times the same value so the MLE of the parameters

can not be achieved.

As far as the non-parametric approach is concerned,

simulations were made using a size of N = 5000 and a

number of Bootstrap iterations B = 200 for the CI con-

struction. These numbers, determined in Bertail and

Tressou (2003), are high enough to give consistent re-

sults. The statistics on the exposure presented in Table

3 are the mean values obtained on the B iterations.

In this paragraph, we use all the 3003 individuals of

the INCA survey and both the international PTWI

(100 ng/w/kg bw) and the SCF�s PTWI (35 ng/w/kg

bw). More accurate calculations are made in the para-

graph �Quantitative evaluation of exposure to OTA, im-

pact of MLs on wine and cereal products.�

A first important remark is that the choice of the cal-

culation procedure has a strong impact: the probability

Table 3

Comparison of the different calculation procedures for exposure assessment

Calculation procedure Censorship Statistics on exposure (in ng/w/kg bw) r(35) (%) r(100) (%)

Median Mean 95th percentile

[P1]-median H1 23.7 29.3 68.3 27.0 0.7

[P1]-median H2 12.1 14.9 34.7 5.0 0.0

[P1]-median H3 0.0 0.0 0.0 0.0 0.0

[P1]-mean H1 32.8 39.6 90.2 45.3 3.6

[P1]-mean H2 24.5 28.8 63.4 26.0 0.5

[P1]-mean H3 15.7 18.0 37.5 6.4 0.0

[P1]-maximum H1, H2, H3 441.6 516.7 1128.2 99.8 98.6

[P2]-log-normal Included 8.9 90.1 86.6 14.8 4.2

[P2]-gamma Included 7.9 20.3 79.8 15.8 3.3

[P2]-weibull Included 8.1 22.9 81.3 15.1 3.6

[P2]-v2 Included 8.1 22.5 92.0 18.0 4.3

[P3] H1 27.0 41.4 114.9 36.2 5.7

[P3] H2 16.9 30.5 96.4 19.9 4.2

[P3] H3 4.4 19.8 86.2 12.4 3.7
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to exceed a fixed level of 35 ng/w/kg bw varies from 0 to

99.8%, which is rather confusing. In the following para-

graphs, we underline the main reasons for so huge

differences.

4.1.1. Left censorship can have a strong influence on

the probability to exceed the PTWI

It is maybe not intuitive that the left censorship in-

duced by LOD/LOQ, which mainly concerns low risks,

strongly influences the right tail of the risk that is high

exposures. Actually, since many food items are pre-

sumed to be contaminated, it does make a huge differ-

ence to sum many zeros or many small values. As a

consequence, in both procedures [P1] and [P3], the dis-

tributions of exposure are strongly modified when

changing the censorship assumptions, whatever part of

the distribution is retained (mean, tail . . ., see Table 2).

In the same way, risk to exceed the European PTWI

goes from 36.2% under H1 to 12.4% under H3 for pro-

cedure [P3] and from 45.3 to 6.4% for procedure [P1]

when using mean contaminations (see Table 3). This is

less important when considering the international

PTWI. In fact, if the PTWI belongs to the tail of the dis-

tribution, the differences between the assumptions H1,

H2, and H3 are negligible when looking at r(100). In

the following, we do not present all the censorship

assumptions when the difference is negligible and rather

show the results under H2.

4.1.2. Parametric adjustment (when suitable) leads

to a bad estimation of the tail of contamination

As log-normal distributions are usually chosen for

contamination distribution adjustments, procedure [P2]

was implemented using this distribution on all food item

groups, except ‘‘Beer’’ for which a fixed value of 0.05 lg/

L was used because there was not enough data for this

product. Since this distribution was not suitable for

the wine contamination, we also made the adjustment

to a Gamma distribution, a Weibull distribution and a

v
2 distribution.. For each distribution, the parameters

were estimated by maximum likelihood and 5000 values

were sampled according to the adjusted distribution: the

mean and the 95th percentile were calculated over these

5000 values. The mean results over 200 repetitions are

presented in Table 4 for the eight food group contami-

nation distributions.

For the log-normal adjustment, the structure of the

wine data (72% of the data are lower than 0.01, but there

exist a few very large values compared to 0.01 such as

4.33) leads to a very low estimation of the mean param-

eter (0.000975) and a large standard error (4.41) so that

it is possible to sample very large values. This explains

the mean of 8.51 for the wine contamination in Table

4. For the other products, we do not observe such ab-

surd result, but the tail can be underestimated (see Cof-

fee) or overestimated (see Rice, Semolina).

When looking at Gamma distribution, the mean of

contamination are in adequacy with the observed data

(mostly between ‘‘Observed with H2’’ and ‘‘Observed

with H3’’) but the 95th percentile can still show overes-

timation (Rice, Semolina) or underestimation (Cereal

based products) of the tail.

The results obtained for the Weibull distribution are

not suitable for Wine and Coffee since the means are

not between the ones of ‘‘Observed with H1’’ and ‘‘Ob-

served with H3.’’

At last, the v
2 distribution (which is a particular

Gamma) gives results similar to the ones obtained when

adjusting a Gamma distribution.

When looking at the global exposure described in Ta-

ble 3, the mean for the [P2]-log-normal procedure (90.1)

is strongly biased because of the bad estimation of the

Table 4

Comparison of the parametric adjustment and the observed distribution of contamination (unit: lg/kg or lg/L)
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Wine contamination. The other results are in adequacy

with the [P1]-Mean and the [P3] procedures since the

mean exposure, the 95th percentile exposure and the

probability to exceed the European PTWI are between

the ones obtained with H2 and H3, which is logical

when there is a large proportion of censored data. Fig.

2 gives the smoothed densities (obtained with a gaussian

kernel) and percentiles for the distribution of global

exposure obtained with the four parametric adjustments

for procedure [P2] and with the three censorship treat-

ments for procedure [P3].

This procedure however is hard to standardize since

each contamination distribution is specific. Indeed, to

make an automatic adjustment to the best distributions,

it would be necessary to build a test that accounts for

the left censorship of the data, but these tests are known

to have little power. In our application, it is clear that

the log normal distribution has to be rejected for the

wine contamination while it is the most often used distri-

bution. This illustrates the need to test several distribu-

tions to get the best fit.

The procedure [P2] however has the advantage to

fully take into account the left censorship process; this

is an important direction of research.

4.1.3. Non-parametric probabilistic approaches bring

variability

The probabilistic approaches (particularly proce-

dure [P3]) leads to a more variable exposure even if

means of exposure are close. For example, comparing

the procedure [P1]-Mean, H2, and the procedure [P3],

H2 in Table 3, we observe that the 95th percentile

goes from 63.4 to 96.4 although the means are close

(28.8 and 30.5). This is intuitively due to the fact

that the sampling procedure used in [P3] for contam-

ination allows more variability since both low and

high values of exposure are taken into account as

shown in Fig. 3.

Fig. 3. Introduction of randomization on the contamination.

(B) Distribution of exposure, Procedure [P3]-Mean, H1.(A) Distribution of exposure, Procedure [P1]-Mean, H1.

Fig. 2. Comparison of the different calculation procedures for global exposure assessment.
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4.1.4. Other sources of bias, uncertainty, or variability

1. Comparing the wine consumption from INCA data

and from an INRA-ONIVINS study (see D�hauteville

et al., 2001), we observe that wine consumption seems

to be under-evaluated in INCA (twice lower in term

of mean consumption). However, since we are essen-

tially interested in relative contributions, no correc-

tion has been applied on the consumptions, since a

similar under-evaluation phenomenon can appear

for other products.

2. In Section 2.3, we explain the need for the constitu-

tion of groups of foods that are assumed to be con-

taminated. These choices (number of groups, food

items) can have an important impact on the exposure

evaluation. When the number of group is reduced

(aggregation), there is more variability among each

group for both consumption and contamination so

that high percentiles of exposure can reach higher val-

ues (Tressou et al., 2004).

3. Another assumption made in this work concern the

contamination: we combine vectors of consumption

per week with a single contamination value. This

implies that all cereals (for example) eaten by a con-

sumer during a whole week contain precisely the same

level of OTA. This is obviously a simplification of

reality, but this can be justified for certain food if

one supposes that people do their shopping ounce a

week and that the storage conditions do not alter

the food, which could the case for rice, and pasta. Oth-

ers assumptions are also difficult to justify. What

should be the reference? the day of consumption?

the meal? It can also depend on the food: is it possible

to stock it? is this food eaten at home or outside? To

see the impact of this assumption, we compared the

distribution of exposure obtained if we combine the

consumption of each day with a (maybe) different

value of contamination for each day (denoted CD)

to the one with a contamination fixed for a week

(denoted CW). We applied procedure [P3], H2 in both

cases with N = 5000. The probability to exceed the

international PTWI, r(100), goes from 4.2% for CW

to 2.6% for CD while the probability to exceed the

SCF PTWI, r(35), goes from 19.8% for CW to

24.4% for CD. As illustrated in Fig. 4, under the

assumption of single contamination value during the

whole week (CW), the extreme tail of the distribution

is heavier (the 95th percentiles varies from 87 to 76 ng/

w/kg bw), but the variability introduced in the second

calculation (CD) gives higher values for the other per-

centiles. The mean exposure is in both cases around 28

ng/w/kg bw, but the standard error goes from 42 ng/w/

kg bw for CW to 28 ng/w/kg bw for CD since some

rare but extremely high values of exposure can be

reached in CW when high contamination values are

affected to a high consumer of the main contributor.

4. Another issue, mentioned in the section Characteriza-

tion of the risk and confidence interval is that the

PTWI should be compared to some long term expo-

sure. Long term consumption is smoother so that the

use of the available 7 days consumption data leads to

overestimate the high percentiles of exposure, the influ-

ence on the rest of distribution is not obvious and

would differ according to the assumption made on

the contamination distributions. Indeed, these could

remain the same on the long term or could be modified

because climatic changes or new legislation. . .

4.2. Quantitative evaluation of exposure to OTA,

impact of MLs on wine and cereal products

In the following, we use the results of procedure [P3]

combined with the proposed confidence interval build-

ing, which is the most satisfactory. It is actually the most

realistic method above all for the tail estimation since it

takes into account both the consumption and contami-

nation variability and can not select any value (con-

sumption or contamination) that is not observed.

Fig. 4. Comparison of the two distributions of exposure according to

the assumption on the variability of exposure (procedure [P3], H2).
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4.2.1. Children�s exposure is higher than adults

As explained in the Section 2.1, adults are over 15.

The results are presented in Table 5 under the three cen-

sorship assumptions and we look at the probability to

exceed the international PTWI (100 ng/w/kg bw).

A preliminary remark concerns the normo-reporters

(NR) among adults. We have chosen to keep the whole

sample to avoid bias selection problems. However, when

we proceed to the calculations corresponding to scenario

2 of Table 5 on the subpopulation of the NR adults. The

mean exposure then is 23.9 ng/w/kg bw, the median

exposure 14.3 ng/w/kg bw and the 95th percentile

77.0 ng/w/kg bw. These value statistics are slightly high-

er than for the whole population of adults. Nevertheless,

the risk to exceed the international PTWI, r(100), is

3.4% with CI [1.48–5.14%], which is quite similar to

the risk obtained for the total adult population.

An important comment concerns the difference be-

tween adults and children (scenarios 1 and 4): the expo-

sure is twice higher for children, which leads to a

probability to exceed the PTWI which is three times

higher. This can be due to a specific consumption behav-

ior of children (age effect) that will change when they

grow up or to a new consumption behavior (generation

effect) that can lead to a higher risk for the future adults.

The age effect can be explained by the fact that children

eat more (relatively to their body weight) than adults.

Moreover, as shown in Table 6, the total exposure of

adults and children does not have the same composition:

the contribution of Wine or Beer is obviously null for

children and the Cereal-based products represents

36.3% of the children total exposure. These are again

mean results over 200 repetitions of procedure [P3] with

N = 5000.

We now mainly focus on:

� The impact of a ML of 5 lg/kg on cereals and cereals

products which are the main contributors of the

exposure to OTA. Two subpopulations are com-

pared: adults (n = 1985) and children (n = 1018).

� The impact of different proposed MLs on wine rang-

ing from 1 to 3lg/L with the comparison of adults

(n = 1985) and wine consumers (n = 1170).

4.2.2. Impact of a ML on cereals

The European commission established a ML for

OTA of 5 lg/kg for raw cereal grains and of 3 lg/kg

for derived cereal products including processed cereal

products and cereal grains intended for direct human

consumption. Codex Alimentarius is discussing a ML

of 5 lg/kg for certain species of cereals (wheat, barley,

and rye, CCFAC, 2002). We have thus decided to quan-

tify the impact of this measure. Practically, all analyses

greater than the proposed ML are deleted before pro-

ceeding to [P3]: in our data, there are no value between

3 and 5 lg/kg forCereal products so that the impact of

the Codex proposal is the same as the one of the EU reg-

ulation. Table 7 presents the impact of this ML of 5 lg/

kg for children and adults: the exposure is then com-

pared to the international PTWI (which is the reference

for the Codex).

From scenarios 3 and 4 in, we observe that the chil-

dren exposure is reduced when applying a ML of 5 lg/

kg on cereals: the 95th percentile goes from 124 to

94 ng/w/kg bw. When considering the children aged un-

der 8, the risk to exceed the PTWI reaches 8.6% with CI

[5.4–12.4%] and is reduced to 5.3% with CI[4.5–8.5%]

when considering the ML of 5 lg/kg on cereals (censor-

ship H2). However, this reduction does not appear to be

statistically significant for children at the 5% level. From

scenarios 1 and 2, the adult exposure is reduced and the

Table 5

Comparison of adults and children

Scenario Assumptions: no on

wine nor on cereals

Procedure + censorship Statistics on exposure

(in ng/w/kg bw)

Probability to exceed

the safe level

Population Median Mean 95th percentile r(100) (%) Non-parametric CI (%)

1 Adults [P3] + H1 20.6 27.9 73.8 2.9 1–4.18

2 Adults [P3] + H2 12.5 21.2 66.4 2.9 1.44–4.66

3 Adults [P3] + H3 4.0 15.2 68.0 3.0 1.86–4.76

4 Children [P3] + H1 45.8 62.3 167.0 10.9 7.48–14.66

5 Children [P3] + H2 27.2 42.3 124.1 6.6 2.94–8.82

6 Children [P3] + H3 3.9 24.7 115.8 5.9 2.9–9

Table 6

Comparison of the contribution of the different foods according to age

(procedure [P3], H2)

Products Population

Adults (%) Chidren (%)

Pork and poultry meat 5.5 4.8

Wine 4.8 0.0

Cereal-based products 19.0 36.5

Cereals 49.6 43.0

Coffee 6.1 0.4

Fruit and vegetable products 1.6 3.0

Dry fruit and vegetable 3.5 3.1

Rice, semolina 9.2 9.3

Beer 0.8 0.0
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effect is significant. Indeed, the CI goes from [1.44–

4.66%] to [0–1.36%]. As a conclusion, the introduction

of this ML on cereals significantly reduces the risk to ex-

ceed the safe exposure for adults. However, the reduc-

tion does not seem to be important enough to also

protect efficiently children.

4.2.3. Impact of a new ML on wine

The three proposed MLs are 1, 2, and 3 lg/L. These

are currently being discussed at the European commis-

sion. On the other hand, ML on cereals have already

been introduced as explained in the previous section.

We therefore look at the impact of these MLs on the

exposure of adults and wine consumers and also on the

probability to exceed the European PTWI in Table 8 in

the presence of MLs on cereals.

Comparing scenarios 1–4, there is no reduction of the

adult exposure whatever the choice of the ML. We ob-

serve the same result when considering the wine consum-

ers (see scenarios 5–8). This is essentially explained by

the fact that cereals are the main contributor. Of course,

if we do not consider the ML on cereals the result is the

same: neither the exposure nor the probability to exceed

the European PTWI are significantly reduced.

5. Conclusions

This paper focuses on two aspects: methodology for

exposure assessment and quantitative evaluation of the

exposure to a specific contaminant which is OTA. A first

remark is that the modeling options always have an

important impact on the estimated levels of the expo-

sure. We show here that the left censorship treatment

of the contamination data has a great impact on the

exposure, even on the high percentiles. There are in fact

many sources of uncertainty and variability concerning

the model and the data. We underlined in this paper

the fact that long term consumption data would give

lower values for the high percentile of exposure if it

was available; using a different value of contamination

for each day of consumption would also modify the

shape of the exposure by diminishing the 95th percentile

and increasing the lower percentiles of exposure com-

pared to the exposure issued with a single value of con-

tamination for the whole week. The choices for the

matching of contamination data and consumption data

are also important. The comparison of the three pro-

posed calculation procedures leads to select the non-

parametric probabilistic method, [P3], because it is more

realistic than the deterministic one, [P1]. Even if the

semi-parametric probabilistic procedure [P2] is attrac-

tive because censorship is part of the model, it does

not correctly reflect the right tail of the distribution of

contamination so that it leads to biased exposure assess-

ment. More importantly, the construction of confidence

interval for the probability to exceed the PTWI in the

fully non-parametric method allows to compare target

populations and to measure the impact of setting new

ML on some major contributors.

To summarize the quantitative conclusions concern-

ing OTA, children are the most sensitive population

Table 7

Impact of ML on cereals (procedure [P3], H2)

Scenario Assumptions: no ML on wine Statistics on exposure (in ng/w/kg bw) Probability to exceed the safe level

Population ML on cereals Median Mean 95th percentile r(100) (%) Non-parametric CI (%)

1 Adults None 12.5 21.2 66.4 2.9 1.44–4.66

2 Adults 5.0 12.2 17.5 50.1 0.9 �0.08–1.36

3 Children None 27.2 42.3 124.1 6.6 2.94–8.82

4 Children 5.0 26.2 35.9 94.2 4.4 2.92–6.2

Table 8

Impact of a ML on wine (procedure [P3], H2)

Scenario Assumptions: MLs on cereals Statistics on exposure (in ng/w/kg bw) Probability to exceed the safe level

Population ML on wine Median Mean 95th percentile r(35) Non-parametric CI

1 Adults None 12.3 17.8 50.3 9.8 7.4–12.3

2 Adults 3.0 12.3 17.8 50.5 9.8 5.8–11.2

3 Adults 2.0 12.3 17.8 50.2 9.9 7.2–12.7

4 Adults 1.0 12.2 17.6 49.1 9.5 5.9–11.4

5 Wine consumers None 12.7 18.8 53.6 11.0 6–12.1

6 Wine consumers 3.0 12.7 18.8 53.6 11.0 8.8–14

7 Wine consumers 2.0 12.7 18.5 52.1 10.6 8.4–13.6

8 Wine consumers 1.0 12.6 18.1 50.4 10.1 7.6–13.1
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but the proposed codex ML on cereals would not signif-

icantly reduce the probability to exceed the PTWI. How-

ever, the risk to exceed the PTWI is significantly reduced

for adults when applying a ML of 5 lg/kg on cereals. On

the other hand, the currently proposed ML on wine does

not have a significant impact neither on adults nor on

wine consumers.
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Summary. This article proposes statistical tools for quantitative evaluation of the risk due to the presence
of some particular contaminants in food. We focus on the estimation of the probability of the exposure to
exceed the so-called provisional tolerable weekly intake (PTWI), when both consumption data and contam-
ination data are independently available. A Monte Carlo approximation of the plug-in estimator, which may
be seen as an incomplete generalized U-statistic, is investigated. We obtain the asymptotic properties of
this estimator and propose several confidence intervals, based on two estimators of the asymptotic variance:
(i) a bootstrap type estimator and (ii) an approximate jackknife estimator relying on the Hoeffding de-
composition of the original U-statistics. As an illustration, we present an evaluation of the exposure to
Ochratoxin A in France.

Key words: Bootstrap; Exposure to contaminant; Jackknife; Ochratoxin A; PTWI; Tolerable dose.

1. Introduction

Food may be naturally contaminated by some chemical com-
ponents that may become toxic for the human organism if
the total amount ingested through food consumption exceeds
a certain tolerable dose. For example, Ochratoxin A (OTA) is
a natural mycotoxin found in many foods (e.g., cereals, wine,
etc.) produced by fungi of the Aspergillus and Penicillium fam-
ilies, which has been classified as a genotoxic carcinogen in
1998 by the European Scientific Committee for Food. It is
supposed to be one of the causing agents of Balkan endemic
nephropathy (a kidney dysfunction; see Boižić et al., 1995 for
a review).

An important toxicological concept to measure the health
impact of a contaminant is the so-called provisional tolerable
weekly intake (PTWI) expressed in terms of nanogram per
body weight per week (ng/kgbw/wk in the following). Expo-
sure below the PTWI may be considered as safe for human
health (without any distinction between individuals except
their body weight). Even though its value may not be the
same for different countries, this quantity generally serves as
the basis to decide whether or not there is a specific public
health problem related to a particular contaminant and to
plan food regulatory programs. In particular, an important
issue is to evaluate whether the (complete or partial) sup-
pression of the contaminated products or the reduction of the
contamination in some product (for instance by imposing a

maximal limit to certain commercialized items) may have a
significant impact on the global exposure of the individuals.

Our approach in this study will be to evaluate the proba-
bility that the individual exposure over a week exceeds the
PTWI. Actually, because of the lack of data, the perma-
nent exposure over a lifetime is difficult to estimate, thus
our parameter may be interpreted as the probability of
occasional short-term excursions above the PTWI rather than
a true probability to develop a disease because of the expo-
sure to the contaminant. However, it still remains an im-
portant indicator and is actually the main risk indicator
that could be interesting for international committees (see
http://www.codexalimentarius.net). Estimating precisely
its value and giving confidence intervals (CIs) are thus of
prime importance.

If one could observe in a survey the global individual expo-
sure defined as the quantity of contaminant ingested during
a certain period per kgbw, one could estimate the mean of
global exposure or the probability of the exposure (over a
given period of observation) to exceed the PTWI. Such data
are currently not available since it would involve repeated
costly chemical analysis of all the products ingested by the
individuals. The quantitative evaluation of the global expo-
sure to a contaminant relies both on data from consumption
surveys and analytical data on food contamination which may

1



2 Biometrics

be assumed independent at this step. If P food items are as-
sumed to be contaminated at a random level qp and con-
sumed at levels cp , for p = 1, . . . ,P then the exposure is D =
∑

P
p=1q

pcp. The purpose is then to try to evaluate the distri-
bution of D, so as to compute mean, variance, quantiles, etc.
A deterministic approach is currently used: it assumes that
qp is fixed, typically equal to the mean or the median of all
the analytical observations (which somehow means that the
contamination is highly concentrated around its mean). Such
a method clearly tends to ignore the variability of the contam-
ination, which may be very high. Based on the available data,
a second approach is to try to estimate parametrically each
marginal distribution (for each consumption and contamina-
tion) to derive, either by Monte Carlo simulations or analyt-
ically, an approximation of the distribution of the exposure
(see Gauchi and Leblanc, 2002): such an approach is currently
used in much software used in food risk assessment (see for ex-
ample, “the Montecarlo project” of the Institute of European
Food Studies, http://www.tchpc.tcd.ie/montecarlo/). We
may object that such a method does not take into account the
structure of the correlation of the consumptions, since some
contaminated products may be (in economic terms) comple-
mentary or substitute. Moreover parametric fits to log-normal
or exponential distributions, which are currently used, tend to
eliminate the individuals in the tail of the distribution, which
certainly has the greatest impact in risk evaluation as shown
in Tressou et al. (2002). This method does not solve the prob-
lem of null consumptions (for some products) that should be
taken into account. Estimating the full multidimensional dis-
tribution seems to be an impossible task because of the high
multidimensionality of the problem. Moreover, the problem
of the null consumptions introduces many frontier problems,
which makes difficult a mixture approach that would consist
of putting different masses on each consumption basket con-
taining one or several zeros. The most realistic method actu-
ally seems the one based on fully nonparametric Monte Carlo
simulations sometimes called a bootstrap method (although
it is not really a bootstrap). It consists of independently
randomly drawing a large number B of consumption vectors
and contamination values in order to obtain B exposure val-
ues to get an empirical distribution of exposure. Then, an
easy way to evaluate the probability of interest is to consider
the frequency of simulations exceeding the PTWI among the
simulated data. The purpose of this article is to validate such
a method and give some asymptotically correct methods to
construct CIs. These CIs are useful to statistically compare
populations or to measure the impact of the introduction of
a maximum limit (ML) on a particular product. Technical
results are detailed in Bertail and Tressou (2003).

One should note that the ideas developed here may also
be useful in toxicology, environmental research, or in other
fields, when there are several sources of pollution, with rates
that may also be random.

The outline of the article is as follows. In Section 2, we
introduce our main notations and relate our problem to
the study of a generalized U-statistic. Section 3 shows how
the Monte Carlo steps affect the previous results. We then
propose two methods for practical variance estimation. Re-
sults on the OTA risk evaluation are presented in Section 4.

2. Estimating the Probability of the Exposure

to Exceed the PTWI

2.1 Notation

To estimate the probability of exposure to exceed a fixed de-
terministic level d, two types of data are available if P food
items are assumed to be contaminated:

� Contamination data: qpjp is the contamination value ob-
tained for the jpth analysis of the food item p with jp =
1 . . . L(p). We assume that the (qpjp)jp=1, ... ,L(p) are i.i.d.

realizations of a random variable (r.v.) Qp with proba-
bility distribution Qp, p = 1, . . . , P .

� Normalized consumption data (also called individual
contaminated baskets): ci =

(

ci1, . . . , c
i
p, . . . , c

i
P

)

is the
vector of consumptions of individual i observed during a
week, standardized by the respective individual weights
for i = 1, . . . ,n; we assume that these are i.i.d. realiza-
tions of a multidimensional r.v. C = (C1, . . . ,CP ) with
probability distribution C.

All consumers are supposed to be independent, and the
consumption and contaminated data are assumed to be inde-
pendent. Moreover, contamination observations for the P food
items are generally independent. These assumptions are quite
reasonable and correspond to what we practically observe in
our data.

Let (C1, . . . , CP ,Q1, . . . ,QP ) ∼ D = Cn ×
∏P

p=1
Qp denote

the joint probability distribution of the consumption and
the contamination r.v.’s. The individual exposure D =
∑

P
p=1Q

pCp has a distribution entirely characterized by D.
In this framework, our parameter of interest is a functional of
D defined by

θd(D) = PD(D > d) = PD

(

P
∑

p=1

QpCp > d

)

= ED

(

1l

{

P
∑

p=1

QpCp > d

})

,

where 1l{
∑P

p=1
QpCp > d} = 1 if

∑

P
p=1Q

pCp > d and 0 else.

Let Ĉn and Q̂p,L(p), p = 1, . . . , P, be the empirical proba-
bility distribution functions based on our data that are

Ĉn(c) =
1

n

n
∑

i=1

δCi(c),

with c ∈ R
P and δCi(c) = 1 if C i = c and 0 else. Ĉn(c) is

the proportion of individuals consuming a particular profile
vector c of food items. We also define

Q̂p,L(p)(q) =
1

L(p)

L(p)
∑

j=1

δQp

j
(q),

for p = 1, . . . ,P , with a similar definition of δQp

j
.
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The empirical distribution of D is given by Demp = Ĉn ×
∏P

p=1
Q̂p,L(p).

The natural plug-in estimator of θd(D) is given by

θd(Demp) = PDemp

(

P
∑

p=1

QpCp > d

)

= E

Ĉn×

P
∏

p=1

Q̂p,L(p)

(

1l

{

P
∑

p=1

QpCp > d

})

=
1

Λ

n
∑

i=1

L(1)
∑

j1=1

. . .

L(P )
∑

jP =1

1l

{

P
∑

p=1

qpjpc
i
p > d

}

,

where Λ = n×
∏P

p=1
L(p).

Intuitively, θd(Demp) is the proportion of exceedances of d

calculated over all possible combinations of consumption vec-
tors and contamination values drawn with replacement. It is,
thus, an unbiased estimator of θd(D).

The quantity θd(Demp) may thus be seen as a general-
ized U-statistic of degrees k0 = 1, k1 = 1, . . . , kP = 1,
with kernel ψ(ci, q1, . . . , qP ) = 1l{

∑P

p=1
qpcip > d}, where ci =

(cip)p=1, ... ,P ∈ R
P (see definition in Lee, 1990).

Results on the asymptotic behavior of generalized
U-statistics presented in Lee (1990, p. 141) can be gener-
alized under the assumption that the sample sizes in each
independent sample are typically of the same order. In our
framework, this is certainly not the case: in particular, con-
sumption surveys are generally based on large populations
whereas analytical data are generally obtained thanks to a
smaller number of samples. In the following paragraph, we
show how it is quite easy to obtain the limiting distribution
of our estimator θd(Demp) under reasonable assumptions by
using the well-known Hoeffding decomposition.

2.2 Asymptotic Behavior of the Risk Generalized U-Statistic

In order to determine the asymptotic behavior and variance
of this generalized U-statistic, we will decompose the gener-
alized U-statistics into a sum of gradients. The gradients are
constructed as follows. Let

ψC(c1, . . . , cP ) = E

(

1l

{

P
∑

p=1

QpCp > d

}
∣

∣

∣

∣

∣

(C1, . . . , CP )

= (c1, . . . , cP )

)

− θd(D)

be the influence function of the U-statistics with respect to C.
We similarly define for j = 1, . . . ,P

ψQj
(qj) = E

(

1l

{

P
∑

p=1

QpCp > d

}
∣

∣

∣

∣

∣

Qj = qj

)

− θd(D),

which is actually the influence function of θd(D), seen as a
function of Qj uniquely. These gradients are referred to as
gradients of order 1. They give the contributions due to the
different components of the exposure.

The distributions Qp , p = 1, . . . ,P are supposed not to be
degenerated (i.e., not reduced to a unique point) in order to
ensure that these first-order gradients are not all identically
zero.

The Hoeffding decomposition allows us to get the following
central limit theorem.

Theorem 1 (Asymptotic behavior version 1): Define: N =

n +
∑P

p=1
L(p). If (n/N) → η > 0, L(p)/N → βp > 0 for p =

1, . . . ,P , and if one of the variances V[ψQp
(Qj)],

p = 1, . . . , P, or V [ψC(C1, . . . , CP )] is nonzero then

N 1/2 [θd(Demp) − θd(D)] −→
N→∞

N (0, S2),

with

S2 =
1

η
V [ψC(C1, . . . , CP )] +

P
∑

j=1

1

βj

V
[

ψQj
(Qj)

]

. (1)

The assumptions of Theorem 1 may not be practically satis-
fied since the number of contamination values for a food item,
that is one of the L(j), may be small (due to cost matters). In
this case, the assumptions and results of the preceding theo-
rem can be modified as follows:

Theorem 2 (Asymptotic behavior version 2): Define

N ∗ = min
j=1,...,P

{

L(j), such that 0 < V
[

ψQj
(Qj)

]

< ∞
}

.

If β∗
j = lim(L(j)/N ∗) ∈ [1,+∞] and lim(N ∗/n) = 0, then

N ∗1/2 [θd(Demp) − θd(D)] −→
N→∞

N (0, S∗2)

with

S∗2 =

P
∑

j=1

1

β∗
j

V
[

ψQj
(Qj)

]

. (2)

Complete proofs of these theorems are available in Bertail
and Tressou (2003).

3. Approximating the Estimator by Incomplete

U-Statistics

3.1 Monte Carlo Approximation and Variance Estimation

From a practical point of view, it is generally not possible
to construct the generalized U-statistic θd(Demp), since it is

the average of Λ = n×
∏P

p=1
L(p) terms. We rather use an

incomplete U-statistic defined by

θd,B(Demp) = B−1
∑

(i,j1,...,jp)∈LB

1l

{

P
∑

p=1

qpjpc
i
p > d

}

,

where LB is a subset of {1, . . . , n} × {1, . . . , L(1)} × · · · ×
{1, . . . , L(P )} of size B much smaller than Λ.

More precisely, LB is defined as a random subset of cardi-
nality #LB = B selected with replacement, that is
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LB =





(
i, ji1, . . . , j

i
P

)
∈ {1, . . . , n} × {1, . . . , L(1)} × · · · × {1, . . . , L(P )} ,





i randomly chosen in {1, . . . , n} ,

ji1 randomly chosen in {1, . . . , L(1)} ,
...

jiP randomly chosen in {1, . . . , L(P )}





such that #LB = B





.

Intuitively, it consists of drawing (with replacement) inde-
pendent samples of consumption vectors and contamination
values in order to obtain B exposure values. θd,B(Demp) is the
percentage of values exceeding d among the B corresponding
calculated values.

This technique damages the variance of the estimator. How-
ever, if B is large enough, the induced distortion is negli-
gible compared to the initial estimator. Indeed, it can be
shown using arguments similar to Lee (1990, p. 193) that
V(θd,B(Demp)) = O(1/B) + (1 − 1/B)V(θd(Demp)).

The asymptotic behavior of the incomplete U-statistic
θd,B(Demp) depends on the asymptotic behavior of the asso-
ciated complete U-statistic θd(Demp) according to the chosen
hypotheses (see Theorems 1 and 2). The larger B is, the nearer
the two asymptotic distributions are, as shown in Theorem
3.1, Bertail and Tressou (2003).

For the construction of CIs, estimators of the asymptotic
variances are needed. However, the plug-in estimators of (1)
and (2) (see their expressions in Bertail and Tressou, 2003) are
not easily computable, since they are also defined as a sum
of approximately Λ terms. The next section proposes some
approximations.

3.2 Estimation of the Variance and Confidence Interval

3.2.1 Bootstrap variance estimator and percentile confidence

interval. Bootstrapping the generalized U-statistics consists
of drawing (with replacement) bootstrap samples from the
original data and repeating on these pseudo-data the calcu-
lation of θd,B(Demp) a large number of times (s = 1, . . . ,M).
Formally, if θd,B

(s) denotes the estimator obtained for the sth
stage, then the bootstrap variance is given by

VBoot =
1

M

M∑

s=1

(
θd,B

(s) − θd,B
)2

,

where θd,B = (1/M)
∑M

s=1
θd,B

(s). This variance is an asymp-
totically convergent estimator of the true variance: justifica-
tion of this method for U-statistics (which may be easily trans-
posed to generalized U-statistics) may be found in Lee (1990)
(see Helmers, 1991 for second-order properties).

Following Efron (1979), the (1 − α)-basic percentile CI is
[
θd,B

[α/2]; θd,B
[1−α/2]

]
, (3)

where θd,B
[β] is the βth observed percentile of {θd,B

(s),
s = 1, . . . ,M}.

Using the asymptotic normality of θd,B(Demp), an asymp-
totic (1 − α)-CI is also given by

θd(D) ∈
[
θd,B(Demp) ± Φ−1

α/2

√
VBoot

]
,

where Φ−1
α/2

is the α/2th quantile of a normal distribution.

3.2.2 Estimation of the variance components by jackknife.
Another solution to estimate the asymptotic variance of the
generalized U-statistics is to estimate each component of the
two proposed variances for θd(Demp) by a jackknife method
(Appendix A.1), which can easily be derived for a one-
dimensional U-statistic. We finally get

VJack(ψC) =
1

(n− 1)

n∑

i=1

(
ψ̂C

(
ci1, . . . , c

i
P

)
− ψC

)2
,

with ψC = (1/n)
∑n

i=1
ψ̂C(c

i
1, . . . , c

i
P ) and where ψ̂C is a con-

vergent estimator for ψC , for instance, ψ̂C(c
j
1 , . . . , c

j
P ) =

(1/BC)
∑

(j1,...,jP )∈LBC

1l(
∑P

p=1
qjpc

j
p >d)− θd,B(Demp), where

LBC
is a subset of indices in {1, . . . ,L(1)} × · · · ×

{1, . . . ,L(P )} of cardinality #(LBC
) = BC (drawn with re-

placement).
We may similarly define the jackknife variance estimators

VJack(ψQj
) for V(ψQj

(Qj)), for j = 1, . . . ,P using subsets of
cardinality BQj .

Under the hypotheses of Theorem 1, an estimator of the
asymptotic variance is then given by

S̃2
N =

N

n
VJack(ψC) +

P∑

l=1

N

L(l)
VJack(ψQj

). (4)

Similarly for Theorem 2, the asymptotic variance is estimated
by

S̃2
N∗ =

P∑

l=1

N ∗

L(l)
VJack(ψQj

). (5)

These variances may be used directly to construct asymp-
totically Gaussian (1 − α)-CIs, respectively, for Theorems 1

and 2, θd(D) ∈ [θd,B(Demp) ± Φ−1
α/2(S̃

2
N/N)1/2] and θd(D) ∈

[θd,B(Demp) ± Φ−1
α/2

(S̃2
N∗/N ∗)1/2], where Φ−1

α/2
is the α/2th

quantile of a normal distribution.
3.2.3 Bootstrap after jackknife t-percentile confidence inter-

vals. The estimators defined in (4) and (5) may be used to
bootstrap the standardized U-statistics to obtain better CIs
(see Hall, 1992). Indeed, it is known that the basic percentile
and asymptotic methods presented above are equivalent in
terms of coverage accuracy. We expect them to be asymp-
totically correct up to an error of size O(N−1) for two-sided
CIs, under the hypotheses of Theorem 1. However, bootstrap-
ping an asymptotic pivotal statistic (a pivotal root in the
bootstrap literature) may yield substantial theoretical im-
provements (see Hall, 1986a). It seems quite reasonable (but
cumbersome to prove) to assume that such results hold in
our situation provided that the size of the subsets used to
construct the jackknife variance estimators are large enough
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Table 1

Description of the contamination data (unit: µg/kg; mean contamination given for the three censorship treatments: left censored
replaced by LoD [Case 1], LoD/2 [Case 2], or zero [Case 3])

Mean (in µg/kg)
Food item Number of Limits of detection Percentage of
group measured values, L(p) (LoD) censored values Case 1 Case 2 Case 3

Pork and poultry meat 1063 From 0.2 to 0.5 90 0.313 0.189 0.064
Wine 996 0.01 72 0.135 0.131 0.127
Cereal-based products 75 0.5 or 1 96 0.611 0.357 0.103
Cereals 241 0.2, 0.5, or 1 59 0.728 0.609 0.490
Coffee 103 From 0.05 to 1 52 0.984 0.779 0.573
Fruit and vegetable products 103 From 0.01 to 1 56 0.193 0.149 0.104
Dry fruit and vegetable 82 From 0.05 to 1 87 0.446 0.287 0.129
Rice, semolina 43 From 0.25 to 1 93 0.533 0.300 0.067
Beer 2 0.05 or 0.1 100 0.075 0.038 0.000

or at least well chosen (see Hall, 1986b). Under reasonable
assumptions on the moments of our data, we expect that the
t-percentile confidence interval is third-order correct with an
error of size O(N−2). Because of the complexity of the es-
timators, we describe the algorithm used to implement this
method in Appendix A.2. It consists of a bootstrap procedure
with its usual steps: estimation and resampling. In the estima-
tion step, the estimator θd,B(Demp) and its variance estimators

S̃2
N and S̃2

N∗ are first computed and then these estimators are
computed for each bootstrap sample in order to obtain the
distribution of the associated studentized estimators.

4. Application: Exposure to OTA

As explained in the Introduction, this method was developed
to quantify precisely the risk related to OTA exposure. In
this application, we particularly focus on the feasibility of the
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Figure 1. An example of distribution of exposure to OTA, censorship case 1, simulation of size B = 10,000.

method and compare all the proposed CIs. We also use this
method to compare the exposure of different subpopulations
and to test the impact of a new maximum limit (ML) on
a specific food item. We answer a particular current issue,
whether or not new MLs on OTA in wine have an impact on
the exposure to OTA in France.

4.1 Data Description

In this study, we use as consumption data the INCA survey on
individual consumptions of n = 3003 French consumers (see
CREDOC-AFFSA-DGAL, 1999 for details). The subjects re-
ported all the food and beverages they consumed during 1
week. This survey is not specific to exposure assessment: it
was conceived to give a global description of French consump-
tion behavior. This is currently the only survey in France that
provides individual consumptions (at home and outside) in
units of g/kgbw/wk.
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The contamination analyses (µg/kg food) have been col-
lected from different French institutions (INRA, DGAL,
DGCCRF, and ONIVINS for wine). These analyses are
strongly left censored because of the limit of detection
(LoD) and/or quantification of the laboratories. To avoid this
problem, we apply here the generally used treatment that con-
sists of repeating the evaluation under three different speci-
fications: the censored values are replaced by the LoD (Case
1), by the LoD divided by two (Case 2), or by zero (Case 3).
Table 1 gives a description of these contamination data. We
are currently developing a model using the Kaplan–Meier es-
timator of the c.d.f. to avoid these simplifications that have a
great impact on the final risk-level evaluation, as we will see
later.

Our parameter of interest is defined here as the probability
for the exposure to exceed the PTWI, which, in Europe, is
equal to 35 ng/kgbw/wk.

First, we give a few indications on the size of our data set:

� We consider P = 9 food item groups: wine, pork and
poultry meat, cereal-based products, cereals, coffee, fruit
and vegetable products, dry fruits and vegetables, rice and
semolina, beer.

� We can build up to n×
∏

9

j=1
L(j) ≃ 4 × 1021 different ex-

posure values. It explains why we need to use incomplete
U-statistics.

� The convergence rates of Theorems 1 and 2 de-
pend on N = n +

∑
9

j=1

∑
9

j=1
L(j) = 3003 + 2708 = 5711

and N ∗ = minj=1,...,9{L(j), such that 0<V(ψQj∗
(Qj)) <

∞} = 43, which is the smallest number of analyses real-
ized for the category “rice and semolina.”

The results are given for different values of the following tun-
ing parameters:

� B the size of the simulated distributions of the exposure
(see an example in Figure 1),

� M the number of bootstrap resamples,
� BC and BQj the subsampling size used in the jackknife

variance approximation. For simplicity we have chosen
BC = BQj , j = 1, . . . ,P .

4.2 Comparison of the Proposed CIs

Table 2 gives the estimation of θd(D) and the standard errors
obtained using the two preceding theorems for different values
of B, BC , and BQj as well as the corresponding 95% CI.

Comparing the applications of our two main theorems, we
observe that, even though the standard error from Theorem 2
is slightly lower than the one corresponding to Theorem 1,
both methods lead to very similar CIs. In order to balance
the computation times and the accuracy of the results, the
parameter values can be chosen as follows: B = 5000, M =
200, and BC = BQj

= 300, for all j. Reading Table 2 horizon-
tally, we observe that the CIs are very close to each other, so
that there is (a posteriori) no real need to use the improved
t-percentile method. The asymptotic and basic percentile con-
fidence intervals give similar results. In order to check this, we
evaluate the CI coverage probabilities and lengths thanks to
a Monte Carlo simulation.
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Table 3

Variance decomposition, comparison of populations; contaminant: OTA; PTWI = 35 ng/kgbw/wk; B = 5000, M = 200, and
BC = BQj

= 300, j = 1, . . . , P

Whole sample 3- to 10-year-old sample Over 11-year-old sample

Variance from Theorem 1 Theorem 2 Theorem 1 Theorem 2 Theorem 1 Theorem 2

Consumptions 11.1% – 36.1% – 6.0% –
Pork and poultry meat 0.3% 0.4% 0.3% 0.5% 0.3% 0.3%
Wine 0.6% 0.7% 0.2% 0.3% 0.8% 0.8%
Cereal-based products 22.8% 25.6% 30.1% 47.1% 21.8% 23.2%
Cereals 46.6% 52.5% 20.7% 32.5% 55.3% 58.8%
Coffee 4.9% 5.6% 1.7% 2.7% 5.6% 6.0%
Fruit and vegetable products 2.7% 3.0% 2.5% 3.9% 2.0% 2.1%
Dry fruits and vegetables 4.1% 4.6% 2.8% 4.4% 3.3% 3.5%
Rice, semolina 6.8% 7.7% 5.5% 8.5% 5.0% 5.4%
Beer 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4.3 Evaluation of Coverage Probabilities for Known
Contamination and Contamination Distributions

Given the probability distribution functions of the normalized
consumption vectors (normalized as divided by body weight),
fC and these of the P contamination values, fQ1

, . . . , fQP
, ex-

plicit calculation of the probability that exposure exceeds d
is not possible in the general case except if consumptions are
independent. However, it is possible to compute the “true” pa-
rameter value thanks to a Monte Carlo simulation. We choose
here a multivariate log-normal distribution for fC and Pareto
distributions for fQ1

, . . . , fQP
: all parameters are estimated

from the data described in Section 4.1 in order to get some
realistic distributions (P = 9). We sampled 1,000,000 values
from fC , fQ1

, . . . , fQP
, to build 1,000,000 exposure levels that

yields θd=35 (D) = 37.54%. The absolute error is of order 0.1%.
To estimate the coverage probability of our CI, we repeat

L = 500 times the proposed U-statistic procedure on sim-
ulated samples from fC , fQ1

, . . . , fQP
, of respective sizes n,

L(1), . . . ,L(P ) (with n = 3003, (L(p))p=1, ... ,P from Table 1
as in our data). The resulting empirical coverage for L = 500
ranged between 96% and 97.8% and the width of the intervals
ranged between 6.1% and 6.2%.

We observe that the four coverage probabilities reach (and
even exceed) the (1 − α)% confidence level. In terms of CI
length, the asymptotic and basic percentile CIs give slightly
better results than the t-percentile CIs. In terms of coverage
probabilities, the t-percentile CIs are the best. However, the
heaviness of the calculations and the small gain of accuracy
lead us to prefer the basic percentile. We repeated this proce-
dure for several values of B and M. The results (available on
request) are quite similar for reasonable values. In the follow-
ing we will retain B = 5000 and M = 200.

4.4 Illustration of Possible Uses of the U-Statistics Procedure

The impact of the censorship treatment was evaluated by con-
sidering the three different strategies described above (Cases
1–3) and examining their impact on the estimated risk of ex-
ceeding the PTWI. In any case, the risk related to OTA expo-
sure is nonnegligible. The 95% CI goes from [9.2%–15.9%] for
Case 3 up to [32.8%–39.8%] for Case 1. This clearly advocates
for further research in the field of censorship treatments.

Theorems 1 and 2 provide two decompositions of the vari-
ance of the probability to exceed a fixed level, i.e., the “risk.”
These decompositions allow to classify the observed distribu-
tions in terms of contribution to the “risk.” Table 3 presents
the contribution of each term to the variance of Theorems 1
and 2 for the whole sample and for two subpopulations.

For the whole sample, we observe that the main con-
tributors to the variance of θd=35 (D) are the “cereal” and
“cereal-based products” contamination distributions (47%
and 23%): these are thus the main “risk” factors. It is im-
portant to note that the consumption behavior is the third
main contributor. Both theorems give the same classification
for the contamination distribution and Theorem 2 needs less
calculation so that one can choose between the two theo-
rems. When comparing the 3- to 10-year-old sample to the
rest of the population, we observe that consumption behavior
is the first contributor to the variance of the “risk” (36.1%).
Then, the order is modified: the “cereal-based products” con-
tamination (biscuits, breakfast cereals, . . .) is a stronger con-
tributor than the “cereals” contamination (bread, pasta, . . .),
essentially because of the specific children consumption be-
havior. This shows that changes in the children consumption
behavior would be more efficient than regulatory policies even
if applied to the main contributors. When considering the over
11-year-old sample, we observe that the “coffee” contamina-
tion rank is increased since the variability of this contamina-
tion has a greater impact on the risk variance when consider-
ing a population that is more likely to consume coffee.

An important application of our results is that they allow
to statistically evaluate the impact of new regulations, for
instance, on the ML of (contaminant) residuals allowed on
the market. To give some insight into the importance of the
problem, we consider the particular case of wine, for which a
new European regulation is under study. At the present time,
there is no ML. We briefly investigate the impact of impos-
ing an ML for OTA of 1 µg/L, which has recently been sug-
gested. First, repeating the same calculation (Case 1) without
taking into account the wine analyses that exceed 1 µg/L al-
lows to measure the impact of the introduction of a new ML
on OTA in wine (assuming that all the corresponding wine
will be withdrawn from the market). The 95% CI then goes
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from [32.8%–39.8%] to [31.7%–39.2%], which shows that the
impact of such a new norm is negligible. This is clearly ex-
plained by the fact that cereal is the main “risk” factor. An
exhaustive study of this regulation problem is given in Tressou
et al. (2004).

Considering Case 1 censorship treatment, we can also eval-
uate the risk for different subpopulations. On the one hand,
children (aged under 10) are overexposed to OTA compared
to older people: the 95% CI goes from [75.6%–82.2%] for un-
der 10 down to [20.0%–27.3%] for over 10. On the other hand,
women’s risk is lower than men’s risk since the 95% CIs are,
respectively, [28.4%–35.9%] and [37.9%–45.0%].

5. Conclusion

In this article, we explore the asymptotic properties of some
incomplete generalized U-statistics well suited for risk assess-
ment of the exposure to contaminants, when both contam-
ination data and individual consumptions are available. We
show that the estimator of the probability for the exposure to
exceed some safe fixed level is asymptotically Gaussian and we
derive its asymptotic variance. We propose several methods
for estimating the variance and we obtain the CIs. These the-
oretical results are applied to risk assessment of the exposure
to OTA. Some basic comparisons show that the naive boot-
strap and the basic percentile method give very good CIs for
this estimation problem even if the t-percentile keeps better
coverage probabilities. The main conclusion concerning OTA
is that the risk is nonnegligible in France, above all in chil-
dren according to our data. However, a new regulation on the
ML of OTA in wine would not be sufficient to significantly
decrease the risk of exposure.
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Appendix

A.1 Jackknife Estimation of V(ψC(C1, . . . , CP ))

To simplify the notation for the gradient of the gen-
eralized U-statistics, we will use the notation U (C) =
1
n

∑n

i=1
ψC(c

i
1, . . . , c

i
P ).

First, note that as U (C) is a unidimensional mean, we have
V(U (C)) = V(ψC)/n. Thus we may compute its jackknife vari-
ance estimator given by using the following “leave one out”
construction. For this define

U (C)(−i) =
1

n− 1

n∑

j=1
i�=j

ψ̂C

(
cj1 , . . . , c

j

P

)
,

where ψ̂C is a convergent estimator for ψC , for instance,

ψ̂C

(
cj1 , . . . , c

j

P

)
=

1

BC

∑

(j1,...,jP )∈LBC

× 1l

(
P∑

p=1

qjpc
j
p > d

)
− θd,B(Demp),

where LBC
is a subset of indices in {1, . . . ,L(1)} × · · · ×

{1, . . . ,L(P )} of cardinality #(LBC
) = BC (drawn with re-

placement). The jackknife variance of the consumption gradi-
ent is now given by

VJack(U
(C)) =

n− 1

n

n∑

i=1

(
U (C)(−i) − U (C)

)2
,

with U (C) = 1
n

∑n

i=1
U (C)(−i) = 1

n

∑n

j=1
ψ̂C(c

j
1 , . . . , c

j

P ). It fol-
lows that V (ψC) may be estimated by
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VJack(ψC) = (n− 1)

n∑

i=1

(
U (C)(−i) − U (C)

)2

=
1

(n− 1)

n∑

i=1

(
ψ̂C

(
ci1, . . . , c

i
P

)
− ψC

)2

with ψC = 1
n

∑n

i=1
ψ̂C(c

i
1, . . . , c

i
P ).

A.2 Algorithm for the Bootstrap after Jackknife t-Percentile

Confidence Intervals

In the following, the term V Jack denotes indifferently S̃2
N/N

or S̃2
N∗/N ∗ derived from Theorem 1 or Theorem 2.

1. Estimation step: Suppose that {C} denotes the set of
observed consumption vectors and {Qp}, p = 1, . . . ,P
the sets of observed contamination values.

(a) Calculate a first estimator θ̂ = θd,B(Demp) of θd(D)
by selecting with replacement B consumption vectors
in {C} and B contamination values in each of the
{Qp}, p = 1, . . . ,P .

(b) Calculate the variance estimator V Jack using resam-
pling in {C} and the {Qp}, p = 1, . . . ,P of respective
sizes BC and BQp

, p = 1, . . . ,P .

2. Resampling step: Iterate M times, s = 1, . . . ,M .
Draw a bootstrap sample of consumptions C(s) and

contaminations Q
(s)
p , p = 1, . . . ,P with replacement from

the initial observations, with the same corresponding
sizes n, L(1), . . . ,L(P ).

(a) Calculate on this sample, the incomplete U-statistic
θd,B

(s) by selecting with replacement B consumption
vectors in {C(s)} and B contamination values in each

of the {Q
(s)
p }, p = 1, . . . ,P (in order to get B exposure

levels and to mimic the original estimation method).
(b) Calculate the corresponding variance

estimator V
(s)
Jack using resamplings in {C(s)} and

{Q
(s)
p }, p = 1, . . . ,P of respective sizes BC and BQp

,
p = 1, . . . ,P .

(c) Compute the studentized estimator of the risk

t
(s)
θ =

θd,B
(s) − θ̂

√

V
(s)

Jack

.

3. The t-percentile confidence interval is then given by

[

θ̂ −
√

VJackt
[1−α/2]
θ ; θ̂ −

√

VJackt
[α/2]
θ

]

,

where t
[β]
θ is the βth percentile of {t

(s)
θ , s = 1, . . . ,M}.
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Abstract

This paper shows how empirical likelihood method can be generalized to combine different sources of

data. We apply our theoretical results to assess the risk due to the presence of methylmercury in fish and

sea products. We combine the two main French consumption surveys and some French contamination

data in order to estimate a food risk index. This risk index is defined as the probability that exposure to

a contaminant (e.g. methylmercury) exceeds a safe dose, where exposure is the cross product between

consumption and contamination. We show that empirical likelihood tool is a powerful method to build

confidence intervals for this risk index using all the available information.

Some key words: Incomplete U-statistics, Euclidean Likelihood, Exposure to methylmercury, sea food

consumption, risk index

Introduction

Empirical likelihood introduced by Owen (Owen, 1988, 1990) is a nonparametric inference method based on

a data driven likelihood ratio function. Like the bootstrap and jackknife, empirical likelihood inference does

not require the specification of a family of distributions for the data. Empirical likelihood can be thought

as a bootstrap without resampling or as a likelihood without parametric assumptions. Likelihood methods

are very effective. They can be used to find efficient estimators, and to build tests that have good power

properties. Likelihood is also flexible. When data are incompletely observed, distorted or sampled with

bias, likelihood methods can be used to offset or even correct these problems. Knowledge arising other data

can be incorporated via constraints under the form of estimating equations. Other methods can be applied

to incorporate side information, like survey sampling, Deville & Sarndal (1992), weighting, Hellerstein &
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Imbens (1999) or data combination, Ridder & Moffitt (2006) and this issue can be linked to the early Ireland

& Kullback (1968).

Empirical likelihood has the advantage to combine the reliability of the nonparametric methods with the

flexibility and the effectiveness of the likelihood approach.

The empirical likelihood techniques have been widely developed these last years. Refer to Owen (2001)

book and the references therein for a complete bibliography on the topic.

A fundamental problem in risk assessment and particularly in food risk is the diversity of data sources.

We often have consumption data coming from different surveys (household budget panels, food dietary

records, 24 hours recall and food frequency questionnaires) using different methodologies (stratification or

quota methods) and analytical contamination data coming from different laboratories. The aim of this paper

is to show how empirical likelihood can be used to combine different sources of data in order to estimate a

food risk index.

In the first section, we recall that the flexibility of empirical likelihood allows to combine several inde-

pendent sources of data. Owen generalizes Wilks’s result, stating that likelihood ratio in parametric models

are asymptotically χ2, to nonparametric or semi-parametric models. This result allows to build confidence

region for simple parameters. We extend this result to the problem of combining data and we focus on

building confidence region for the common mean of two independent samples. Different uses of empirical

likelihood for similar problems can be found in Qin (1997) and chapters 3, 6 and 11 of Owen (2001), pages

51, 130 and 223-225.

In the second section, our aim is to build confidence regions for a parameter of interest which is a food

risk index, using the generalization of empirical likelihood to combine different sources of data. This risk

index is defined as the probability that exposure to a contaminant exceeds a safe dose d. Exposure to a

contaminant that concerns P foods is calculated as the cross product between the P−dimensional vector

of consumptions and the P contamination values. Consumption are ”relative” consumption in the sense

that they are expressed in terms of individual body weight. The safe dose d is called Provisional Tolerable

Weekly Intake (PTWI) when consumption is expressed on a week basis. The risk index to be estimated is

denoted by θd. For our estimation problem, we have P + 2 samples corresponding to the contaminations

of the P products and 2 complementary consumption surveys. The principle of empirical likelihood is to

find some empirical weights for each observation (summing to one within each data set) under the model

constraints (e.g. the parameter definition under the empirical weights). The program of the empirical

likelihood is at first glance difficult to solve, due to the high non linearity of the parameter of interest.

Following Bertail (2004), a solution is to linearize the constraints defining the parameter of interest. The
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linearization consists in decomposing the nonlinear function into a sum of independent influence functions

using Hadamard differentiability arguments. Since our parameter of interest is also a generalized U-statistics

(Bertail & Tressou, 2005), this linearization can be viewed as a Hoeffding decomposition. On the other

hand, the high multidimensionality of the problem calls for the use of incomplete U-statistics in the case of

P > 1. The asymptotic convergence to a χ2 of the likelihood ratio calculated with this linearization and

incomplete U-statistics is checked and the ideas of the proof are given in appendix A.2. Another technical

modification of the empirical likelihood is suggested: the Kullback-Leibler distance can be replaced by the

Euclidean distance yielding another kind of confidence intervals much quicker to implement.

In the third section, we apply our results to the assessment of the risk due to the presence of methylmer-

cury (MeHg) in fish and sea product. Indeed at high concentrations, methylmercury, a well-known environ-

mental toxic found in the aquatic environment, can cause lesions of the nervous system and serious mental

deficiencies in infants whose mothers were exposed during pregnancy (WHO, 1990). There is also some

concerns that methylmercury may give rise to retarded development or other neurological effects at lower

levels of exposure, which are consistent with standard patterns of fish consumption (Davidson et al., 1995;

Grandjean et al., 1997; National Research Council (NRC) of the national academy of sciences Price, 2000).

In 2003, a new Provisional Tolerable Weekly Intake (PTWI) for methylmercury, of 1.6 µg per week per kg of

body weight, took into account the latest epidemiological results compiled by the Joint Expert Committee

on Food Additives and Contaminants (FAO/WHO, 2003). Methylmercury is mainly found in fish and fishery

products, so only these products have been considered when estimating human exposure in this paper.

It is obvious that the value of the exposure strongly depends of the estimated food consumption and

contamination data used. It is therefore very important to have an accurate estimation of the food risk

index since its value will serve as arguments for nutritional recommendations or new standards about the

contamination of the food. The objective of this paper is to improve the estimation of the probability

that the French exposure exceeds the PTWI by combining the two consumption surveys available in France

and the contamination data. The aim is to catch all the available information to estimate the risk index.

In the application, the estimator of the probability to exceed the methylmercury PTWI is 3.27% with a

95%-confidence interval of [3.08%; 3.47%] when consuming sea products.

1 Empirical likelihood as a tool for combining data

Suppose that we have two independent samples
(

X
(1)
i

)n1

i=1
and

(

X
(2)
j

)n2

j=1
which are respectively independent

and identically distributed (i.i.d.) with distributions P1 and P2 such that EP1
(X(1)) = EP2

(X(2)) = µ ∈ R.
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The empirical likelihood for these two samples is given by

n1
∏

i=1

p
(1)
i

n2
∏

j=1

p
(2)
j ,

where P =

{

(

p
(1)
i

)n1

i=1
,
(

p
(2)
j

)n2

j=1

}

are the sets of weights related to
(

X
(1)
i

)n1

i=1
and

(

X
(2)
j

)n2

j=1
, with con-

straints

0 ≤ p
(1)
i ≤ 1, 0 ≤ p

(2)
j ≤ 1,

n1
∑

i=1

p
(1)
i = 1,

n2
∑

j=1

p
(2)
j = 1.

The constraints on the positivity of the weights are forced as soon as log-likelihoods are considered. The

weights being positives and summing to 1, none can be bigger than 1.

The idea now is to maximize this empirical likelihood product under the constraints provided by the

model:

C(µ) =







P

∣

∣

∣

∣

∣

∣

n1
∑

i=1

p
(1)
i X

(1)
i = µ,

n2
∑

j=1

p
(2)
j X

(2)
j = µ,

n1
∑

i=1

p
(1)
i = 1,

n2
∑

j=1

p
(2)
j = 1







.

This constraint set C(µ) can be augmented by some estimating equations that would allow to incorporate

some knowledge arising from other data or from the model under consideration. For example, the national

census provides the repartition of the population according to different criteria (age, sex, region, profession)

and could be integrated via estimating equations of the form

n1
∑

i=1

p
(1)
i Z

(1)
i = z0,

n2
∑

j=1

p
(2)
j Z

(2)
j = z0, (1)

where Z
(1)
i and Z

(2)
j are vectors describing the belonging to specified sociodemographic categories in surveys

1 and 2 and z0 the vector of the corresponding percentages of these categories based on the national census.

The convergence results will not be affected by the introduction of such sociodemographic criteria, see Qin

& Lawless (1994) and Owen (2001), chapter 3, page 51.

The empirical likelihood program is given by

Ln1,n2
(µ) = sup

P∈C(µ)

n1
∏

i=1

p
(1)
i

n2
∏

j=1

p
(2)
j .
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Using Kühn and Tücker’s arguments, the empirical likelihood program is equivalent to

ln1,n2
(µ) = − sup

λ1,λ2∈R






n1∑

i=1

ln
[
1 + λ1

(
X

(1)
i − µ

)]
+

n2∑

j=1

ln
[
1 + λ2

(
X

(2)
j − µ

)]



 ,

where ln1,n2
(µ) = ln [Ln1,n2

(µ)] and λr is the Kühn and Tücker’s coefficient associated to the constraint
nr∑
i=1

p
(r)
i X

(r)
i = µ for r = 1, 2. ln1,n2

(µ) can be seen has the supremum over (λ1, λ2) of a parametric log-

likelihood :

ln1,n2
(λ1, λ2, µ) =

n1∑

i=1

ln
[
1 + λ1

(
X

(1)
i − µ

)]
+

n2∑

j=1

ln
[
1 + λ2

(
X

(2)
j − µ

)]
,

see Bertail (2002).

The likelihood ratio test statistic can be written rn1,n2
(µ) = −2 [ln1,n2

(µ) − ln1,n2
(µ̂)], where µ̂ is the

arg supµ ln1,n2
(µ). Using the previous remark, rn1,n2

is the log of a parametric likelihood ratio :

rn1,n2
(µ) = −2

[
sup

λ1,λ2∈R

{ln1,n2
(λ1, λ2, µ)} − sup

λ1,λ2,µ∈R

{ln1,n2
(λ1, λ2, µ)}

]
.

A direct application of classical results allows to establish that :

Theorem 1 (Convergence to a χ2)

Assume that we have two independent samples
(
X

(1)
i

)n1

i=1
∼ P1 i.i.d. and

(
X

(2)
j

)n2

j=1
∼ P2 i.i.d. with

common mean µ ∈ R. Assume that n1 and n2 go to infinity and that their ratio is bounded, then

rn1,n2
(µ)

n2→∞

−−−−→
n1→∞

χ2(1).

A confidence interval for µ is thus given by
{
µ

∣∣rn1,n2
(µ) ≤ χ2

1−α(1)
}

, where χ2
1−α(1) is the (1 − α)th

percentile of the χ2 distribution with 1 degree of freedom.

2 Generalization to the construction of confidence intervals for a

food risk index

In this section, we want to estimate θd, the probability that exposure to a contaminant exceeds a tolerable

dose d, when P foods (or groups of foods) are assumed to be contaminated taking into account different

data sources. For this purpose, P +2 data sets are available: two data sets coming from two complementary

consumption surveys and the P sets of analysis made on the foods. The differences with the first section are
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the number of data sources to combine and the form of the model constraints. In the first section, we had 2

samples and a linear model constraint. In this section, we want to combine P + 2 samples under 2 nonlinear

model constraints.

2.1 Framework and notations

The P contamination samples are indexed by the letter Q.

For k = 1, ..., P, Q[k] denotes the random variable for the contamination of food k, with distribution Q[k].
(

q
[k]
lk

)

l=1,...,Lk

is a Lk−sample i.i.d. from Q[k]. Its empirical distribution is

Q
[k]
Lk

=
1

Lk

Lk
∑

l=1

δ
q
[k]
l

,

where δ
q
[k]
l

(q) = 1 if q = q
[k]
l and 0 else.

The two consumption samples are indexed by the letter C.

C(r) denotes the P -dimensional random variable for the relative consumption vector in survey r = 1, 2,

with distribution C(r).
(

c
(r)
1,i . . . c

(r)
P,i

)nr

i=1
=

(

c
(r)
i

)nr

i=1
is a nr−i.i.d. sample from C(r) for survey r = 1, 2. Its empirical distribution

for survey r = 1, 2 is

C
(r)
nr

=
1

nr

nr
∑

i=1

δ
c
(r)
i

.

Then, the probability that the exposure of one individual exceeds a dose d is θ
(r)
d = Pr

(

D(r) > d
)

, with

D(r) =
P

∑

k=1

Q[k]C
(r)
k . when using the survey r. Our aim is to estimate θd or give confidence interval for θd

using all the available data sets by equaling θ
(1)
d and θ

(2)
d .

2.2 Empirical likelihood program

We define the sets of weights P =

{

(

p
(1)
i

)n1

i=1
,
(

p
(2)
j

)n2

j=1
,

{

(

w
[k]
lk

)Lk

lk=1
, k = 1, . . . , P

}}

associated to the 2

samples of consumption and P samples of contamination. The empirical likelihood is given by

n1
∏

i=1

p
(1)
i

n2
∏

j=1

p
(2)
j

P
∏

k=1

Lk
∏

lk=1

w
[k]
lk

,
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with 2 constraints on consumption weights: ∀r = 1, 2,

nr∑

i=1

p
(r)
i = 1 and P constraints on contamination

weights: ∀1 ≤ k ≤ P,

Lk∑

lk=1

w
[k]
lk

= 1.

The model constraints are for r = 1, 2

E eDr

{
1l

{
P∑

k=1

Q[k]C
(r)
k > d

}
− θd

}
= 0, (2)

where D̃r =
P∏

k=1

Q̃
[k]
Lk

× C̃
(r)
nr is the joint discrete probability distribution of the P contamination samples

and the rth consumption survey sample. Q̃
[k]
Lk

denotes a discrete probability measure dominated by Q
[k]
Lk

,

that is Q̃
[k]
Lk

=

Lk∑

l=1

w
[k]
l δ

q
[k]
l

with

Lk∑

l=1

w
[k]
l = 1 for k = 1, . . . , P . In the same way, C̃

(1)
n1 and C̃

(2)
n2 are discrete

probability measures dominated by C
(1)
n1 and C

(2)
n2 , i.e. C̃

(r)
nr =

nr∑

i=1

p
(r)
i δ

c
(r)
i

with

nr∑

i=1

p
(r)
i = 1, r = 1, 2. These

are empirical probabilities for each of the P + 2 samples. E eDr
is the expectation under the joint discrete

probability distribution D̃r.

The model constraints on θd have an explicit (but unpleasant) expression for θd = θ
(1)
d = θ

(2)
d , where

θ
(r)
d =

nr∑

i=1

L1∑

l1=1

· · ·

Lk∑

lk=1

· · ·

LP∑

lP =1

p
(r)
i




P∏

j=1

w
[j]
lj


 1l

{
P∑

k=1

q
[k]
lk

c
(r)
k,i > d

}
.

2.3 Linearization and approximated empirical likelihood

The preceding empirical likelihood program is difficult to solve, both from theoretical and practical points

of view, because of the highly nonlinear form of the model constraints. The same problem already appears

when studying the asymptotic behavior of the θd with only one consumption survey and equiprobability

on all set of weights (p
(r)
i

= 1/nr, w
[k]
l

= 1/Lk). The solution used is to see θd as a generalized U-statistic

and to linearize it using Hoeffding decomposition (Lee, 1990; Bertail & Tressou, 2005). More generally, the

adapted method is to find a way to consider linear constraints for which it is easier to solve the optimiza-

tion problem. This linearization is asymptotically valid as soon as the parameter of interest is Hadamard

differentiable, see Bertail (2004) for details. Linearization is easier when using the influence function of

ΨD=ED

{

1l

(

∑P

k=1
Q[k]C

(r)
k

> d

)}

−θd, where D is the joint distribution of contaminations and consump-
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tions. The influence function of ΨD at point
[
q1, . . . , qP , c(r)

]
is, for r = 1, 2

Ψ
(1)
D [q1, . . . , qP , c] = E P∏

k=1

Q
[k]
Lk

{
1lPP

k=1 Q[k]C
(r)
k

>d
− θd

∣∣∣ C(r) = c
}

+
P∑

m=1

E
∏

k 6=m

Q
[k]
Lk

×C
(r)
nr

{
1lPP

k=1 Q[k]C
(r)
k

>d
− θd

∣∣∣ Q[m] = qm

}
.

Its empirical counterpart can be written explicitly if D̂ denotes the empirical version of D as

Ψ
(1)
bD

[q1, . . . , qP , c] = U0 (c) + U
(r)
1 (q1) + . . . + U (r)

m (qm) + . . . + U
(r)
P (qP ), (3)

where

U0 (c) =
1

P∏
k=1

Lk

∑

1≤lk≤Lk

1≤k≤P

1lPP

k=1 q
[k]
lk

ck>d
− θd, (4)

and for m = 1 · · ·P ,

U (r)
m (qm) =

1

nr ×

P∏
k=1
k 6=m

Lk

nr∑

i=1

L1∑

l1=1

. . .

Lm−1∑

lm−1=1

Lm+1∑

lm+1=1

. . .

LP∑

lP =1

1l





qmc

(r)
i,m +

P∑

k=1
k 6=m

q
[k]
lk

c
(r)
i,k > d





− θd. (5)

U0

(
c(r)

)
and the

(
U

(r)
m (q[m])

)P

m=1
are one-dimensional U-statistics with kernel 1l

(
P∑

k=1

q[k]ck > d

)
and

degree 1.

An approximate version of the model constraint (2) is given by

E
eDr

{
Ψ

(1)
bD

[
Q[1], . . . , Q[P ], C(r)

]}
= 0,

which may be rewritten

n1∑

i=1

p
(1)
i U0

(
c
(1)
i

)
+

P∑

k=1

[
Lk∑

lk=1

w
[k]
lk

U
(1)
k

(
q
[k]
lk

)]
= 0,

n2∑

j=1

p
(2)
j U0

(
c
(2)
j

)
+

P∑

k=1

[
Lk∑

lk=1

w
[k]
lk

U
(2)
k

(
q
[k]
lk

)]
= 0.

When P = 1, we have :

Theorem 2 Assume that we have a contamination sample (ql)
L1

l=1
i.i.d. and 2 independent consumption
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samples
(
c
(1)
i

)n1

i=1
i.i.d. and

(
c
(2)
j

)n2

j=1
i.i.d. with common risk index θ

(1)
d = θ

(2)
d = θd ∈ R. Assume that n1,

n2 and L1 go to infinity and that their ratios are bounded, then the empirical likelihood program consists in

solving the dual program

ln1,n2,L1(θd) = − sup
λ1,λ2,γ1,γ2,γ3∈R

n1+n2+L1−γ1−γ2−γ3=0






n1∑
i=1

ln
{

γ1 + λ1U0

(
c
(1)
i

)}
+

n2∑
j

=1

ln
{

γ2 + λ2U0

(
c
(2)
i

)}

+
L1∑
l=1

ln
{

γ3 + λ1U
(1)
1 (ql) + λ2U

(2)
1 (ql)

}





. (6)

The maximum likelihood’s estimator associated to this quantity is θ̂d = arg supθd
ln1,n2,L1

(θd).

Let rn1,n2,L1
(θd) = −2

[
ln1,n2,L1

(θd) − ln1,n2,L1

(
θ̂d

)]
, then rn1,n2,L1(θd) → χ2(1).

The proof of these results is given in appendix A.1. This theorem yields an (1− α)th confidence interval

for θd such that
{
θd : rn1,n2,L1(θd) ≤ χ2

1−α(1)
}

.

From a practical point of view, this linearized constraints allows for a good convergence of the optimization

algorithm (gradient descent such as Newton-Raphson). These algorithmic aspects are discussed in chapter

12 from Owen (2001).

2.4 Extension to the case of several products by incomplete U-statistics

For P > 1, the computation of the different U-statistics defined in (4) and (5) becomes too heavy when the

data sets are large (if Lk and/or nr are large). To solve this problem, we proceed to a new approximation

replacing complete U-statistics by incomplete U-statistics. Their properties are well described in Blom (1976)

or Lee (1990).

Let us define the incomplete U-statistics associated to equations (4) and (5). For r = 1 or 2, the

incomplete version of (4) is given by

U
0,B

(r)
0

(
c(r)

)
=

1

B0

∑

(l1...lP )∈B
(r)
0

1l

{
P∑

k=1

q
[k]
lk

c
(r)
k > d

}
− θd, (7)

where B
(r)
0 is a set of indexes (l1, . . . , lP ) randomly chosen with replacement in ⊗P

k=1 {1, . . . , Lk} , with size

B
(r)
0 .
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For m = 1, . . . , P, the incomplete version of (5) is given by

U
(r)

m,B
(r)
m

(qm) =
1

B
(r)
m

∑

(l1,...,lm−1,lm+1,...,lP ,i)∈B
(r)
m

1l

{

m−1
∑

k=1

q
[k]
lk

c
(r)
i,k + qmc

(r)
i,m +

P
∑

k=m+1

q
[k]
lk

c
(r)
i,k > d

}

− θd, (8)

where B
(r)
m is a set of indexes (l1, . . . , lm−1, lm+1, . . . , lP , i) that are randomly chosen with replacement in

⊗P
k=1
k 6=m

{1, . . . , Lk} × {1 . . . nr}, with size B
(r)
m .

In the following, we will use B = B
(r)
0 = B

(r)
m pour m = 1, ..., P and r = 1, 2. This value must be chosen

greater than max {n1, n2, L1, ..., LP } in order to assure that the difference between complete and incomplete

versions is of order o(B−1/2).

The approximate influence function is

Ψ
(1)
B

[

q1, . . . , qP , c(r)
]

= U
0,B

(r)
0

(

c(r)
)

+ U
(r)

1,B
(r)
1

(q1) + . . . + U
(r)

m,B
(r)
m

(qm) + . . . + U
(r)

P,B
(r)
P

(qP ).

The model constraints are then

n1
∑

i=1

p
(1)
i U

0,B
(1)
0

(

c
(1)
i

)

+
P

∑

k=1

[

Lk
∑

lk=1

w
[k]
lk

U
(1)

k,B
(1)
k

(

q
[k]
lk

)

]

= 0,

n2
∑

j=1

p
(2)
j U

0,B
(2)
0

(

c
(2)
j

)

+
P

∑

k=1

[

Lk
∑

lk=1

w
[k]
lk

U
(2)

k,B
(2)
k

(

q
[k]
lk

)

]

= 0.

Corollary 3 Assume that we have P independent contamination samples
(

q
[k]
lk

)Lk

lk=1
i.i.d. for each k smaller

than P and 2 independent consumption samples
(

c
(1)
i

)n1

i=1
i.i.d. and

(

c
(2)
j

)n2

j=1
i.i.d. with common risk index

θ
(1)
d = θ

(2)
d = θ ∈ R. Assume that n1, n2 and (Lk)1≤k≤P go to infinity and that their ratios are bounded,

then the likelihood ratio for P products, rn1,n2,L1,...,LP
(θd), is asymptotically χ2(1) :

rn1,n2,L1,...,LP
(θd) → χ2(1).

See the appendix (A.2) for the proof. As before, this yields an (1−α)th confidence interval for θd such that

{

θd : rn1,n2,L1,...,LP
(θd) ≤ χ2

1−α(1)
}

.
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2.5 A faster alternative: Euclidean likelihood

The empirical likelihood program as written in this paper consists in minimizing the Kullback-Leibler distance

between a multinomial on the sample (D̃1 × D̃2) and the observed data (D1 × D2). Following the ideas of

Bertail et al. (2005), we replace the Kullback-Leibler distance by the Euclidean distance. The objective

function of the empirical likelihood program ln1,n2,L1,...,LP
(θd)

− sup
n

p
(1)
i

, p
(2)
j

, w
[k]
lk

,k=1,..,P
o

ln





n1
∏

i=1

p
(1)
i

n2
∏

j=1

p
(2)
j

P
∏

k=1

Lk
∏

lk=1

w
[k]
lk





is then replaced by the euclidean likelihood program with objective function ln1,n2,L1,...,LP
(θd), given by

1

2
min

n

p
(1)
i

, p
(2)
j

, w
[k]
lk

,k=1,..,P
o

n1
∑

i=1

(

n1p
(1)
i − 1

)2

+

n2
∑

j=1

(

n2p
(2)
j − 1

)2

+
P

∑

k=1

Lk
∑

lk=1

(

Lkw
[k]
lk

− 1
)2

. (9)

We get a result equivalent to corollary (3) :

Corollary 4 Under the assumptions of Corollary 3, the pivotal statistic

rn1,n2,L1,...,LP
(θd) = ln1,n2,L1,...,LP

(θd) − inf
θ

ln1,n2,L1,...,LP
(θ)

is asymptoticly χ2(1) :

rn1,n2,L1,...,LP
(θd) → χ2(1).

See appendix B for proof.

This choice of distance is closely related with the Generalized Method of Moments (GMM), see Newey

& Smith (2004) for precisions on links between Empirical Likelihood and GMM. Instead of logarithms, the

program (9) only involves quadratic terms and is then much easier to solve as shown in appendix B. We

even get explicit solutions. This considerably decreases computation time, making exploration easier and

allowing to test different constraints and models.

A particularity of Euclidean distance is that the weights p
(1)
i , p

(2)
j and w

[k]
lk

cannot be forced to be

positives. This constraint, automatically realized for Kullback-Leibler distance, is incompatible with the

constraint forcing the weights to sum to 1.

The gain in computation time is counter-balanced by some lost in adaptability to the data and to the

constraints, and results will be given in the applications with both Kullback-Leibler and Euclidean distances.

Practical use of these methods shows that Euclidean distance can be use for previous exploration (look for
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the most useful constraints for example), and to give first-step estimators. Empirical likelihood then can be

used on the final model, to get precise confidence regions and estimators and the first-step estimators can

be used to start the optimization.

The following part illustrates this strategy on an application, where the complicate structure and big size

data make computation time issues important.

3 Application: Risk assessment for fish and sea product consump-

tion

Chronic exposure assessment require reliable estimates of long-term food consumption data because the so

called PTWI is defined by toxicologists over the lifetime. Nevertheless, in general for technical reasons,

collecting individual food consumption on a long term is not feasible. In France, two data sets are avail-

able to us: the SECODIP panel collecting long-term household purchases (from 1989 to nowadays) allows

the estimation of the chronic probability to be over the PTWI. These data are households’ purchase. A

first approximation of individual consumption consists in extrapolating the household consumption to the

individual one by dividing households’ purchase by the size of the family. The second source of data is the

national INCA survey based on short-term consumptions (one week), which allows to calculate the individual

probability to exceed the PTWI on one week. Such a survey does not permit to evaluate precisely chronic

exposure but only to extrapolate the one week consumption for the life time consumption.

Some preliminary studies show that the use of INCA or SECODIP survey for the exposure estimation to

methylmercury give different results. Those results are consistent with the literature showing that the survey

duration influence the percentage of consumers and the level of food intakes among consumers only (Lambe

et al., 2000). There are many interpretations for the differences between the two consumption surveys that

will be detailed at the end of section 3.1.1.

Numerous methods have been proposed to extrapolate from short-term to long-term intake based on

repeated short-term measures in the field of nutrition (see for review, Hoffmann et al., 2002; Price et al.,

1996). Another idea developed here, is to combine information from short and long-term food survey

using empirical likelihood. Contamination data are also combined in order to estimate the probability that

French population exposure to methylmercury exceeds the PTWI. For methylmercury, its value has been

established to 1.6 µg per kilogram of body weight per week (µg/w/kg bw) by a scientific international

committee (FAO/WHO, 2003)

The aim of this part is to combine INCA, SECODIP and contamination data in order to combine all
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the information (individual and chronic consumption and contamination) brought by these three sources of

data.

3.1 Data description and specific features

3.1.1 Food consumption data

The French ”INCA” survey (r = 1), carried out by CREDOC-AFSSA-DGAL (1999), collected data on

the food consumption of n1 = 3003 individuals during one week. The survey is composed by 1985 adults

aged 15 years or over and 1018 children aged between3 to 14 years. The data were acquired during an 11-

month period from consumption logs completed by the participants for a period of 7 consecutive days; the

identification of foods and quantities was simplified by the use of a catalog of photographs. The satisfactory

national representativeness of the sample was ensured by stratification (region of residence, town size) and

by the application of quotas (age, sex, individual professional/cultural category, household size) on each

subsample (adults, children). From the survey, 92 food items were selected with respect to fish or fishery

products, and included fish, fish farming, shellfish, mollusks, mixed dishes, soups and miscellaneous fishery

products. Since body weight of all individual is available, ”relative” consumptions are computed dividing

the amount consumed during the week by the body weight.

The proportion of children (34%) in this survey is too high compared to the national census (INSEE,

1999) (15%). We will correct this distortion using empirical likelihood adding a constraint on the proportion

of children (aged between 3 and 14 years) as proposed in equation (1) . The additional constraint is

EeC
(1)
n1

[

1l
3≤Z

(1)
i

≤14

]

= 0.15,

where Z
(1)
i

is the age of individual i in survey r = 1.

This modifies the form of the dual log-likelihood (6) in the part concerning the first survey:

n1
∑

i=1

ln
{

γ1 + λ1U0

(

c
(1)
i

)

+ λage

(

1l
3≤Z

(1)
i

≤14
− 0.15

)}

.

The SECODIP panel, from TNS SECODIP (http://www.secodip.fr), is composed of two sub-panels.

The first one focuses on purchases of fresh fruits and vegetables, the second one collects purchases of fresh

meats, fishes and wine. We use the second panel which is composed of 5236 households inquired over one

year (the 1999 year). Among these households, only 3211 households are considered by SECODIP like good

reporters (the number of weeks for which they had collected theirs purchases is sufficient). In this panel, 24
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food groups containing fish or sea products are retained. Individuals’ consumption is created by inputting

to each individual the household’s purchase divided by the number of persons in the household. We also

divide this result by 52 (number of weeks in a year) and 60 (mean body weight) to uniform the units to the

INCA survey scale. This results into n2 = 9588 individual relative week consumptions.

The differences between the two surveys have many explanations:

• the SECODIP panel is an household Budget Survey and Serra-Majem et al. (2003) found that, in

general, results from Household Budget Surveys in Canada and Europe agree well with the individual

dietary data;

• the SECODIP panel does not account for outside consumptions: members of the panel do not record

purchases for outside consumptions;

• the INCA survey is realized in a public health perspective so people could modify their consumption

behavior during the survey week in favor of foods they assume to be ”healthy” as fish.

All these arguments explain the higher fish consumption in INCA survey. We choose to introduce a

coefficient α to scale the SECODIP consumption to account for all these facts introducing an additional

modeling

E(C(1)) = αE(C(2)).

The coefficient is applied to the SECODIP data rather than the INCA survey because the estimation of

individual consumptions from the SECODIP data is more approximative. SECODIP consumptions are

then multiplied by α and all empirical likelihood program resolutions are equivalent. The coefficient α is

estimated together with the risk index θd, leading to confidence regions for (θd, α) calibrated by a χ2(2), i.e.

rn1,n2,
L1

(θd, α) → χ2(2). We then optimize on α for each θd to get a profiled likelihood on θd, calibrated by

a χ2(1). In the P -dimensional case, α is also P -dimensional and confidence regions for (θd, α) are calibrated

by a χ2(P + 1).

3.1.2 Contamination data

Food contamination data concerning fish and fishery products available on the French market were gen-

erated by accredited laboratories from official national surveys performed between 1994 and 2003 by the

French Ministry of Agriculture and Fisheries MAAPAR (1998-2002) and the French Research Institute for

Exploitation of the Sea (IFREMER, 1994-1998). These L = 2832 analytical data are expressed in terms

of total mercury in mg/kg of fresh weight. Part of the mercury present in the sea can be transform by
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microbial activity in its organic form, methylmercury (MeHg), which is much more dangerous to human

health. MeHg is present in sea-foods, the highest levels being found in predatory fishes, particularly those

at the top of the aquatic food chain. According to Claisse et al. (2001), Cossa et al. (1989), Thibaud & Nol

(1989), methylmercury levels in fish and fishery products can be extrapolated from the mercury content. For

this reason, conversion factors have been applied to the analytical data in order to obtain the corresponding

methylmercury (MeHg) concentration in the different foods considered: 0.84 for fish, 0.43 for mollusk and

0.36 for shellfish.

Contamination data are frequently left-censored because of the quantification limits of analytical methods.

Different assumptions are used to replace censored data. In our sample, we find 7% of censored data for

which the levels of mercury were below the detection limit or quantification limit. We adhere to international

recommendations (GEMs/Food-WHO, 1995) and apply a value equal to half the detection limit or half the

quantification limit for these data. We refer to Tressou et al. (2004) for further discussion on the impact of

left censored level.

3.2 Results when considering one global sea product

We regroup in this subsection all products of interest consumed in INCA and SECODIP into a single

group, the sea products. Then the contaminations are attributed to the total individual consumption of sea

products. Calculations can therefore be performed using the complete U-statistics.

(a) Empirical likelihood confidence region (b) Empirical likelihood ratio profile
horizontal axis is θ1.6, horizontal axis is θ1.6,

vertical axis is α vertical axis is rn1,n2,L1
(θ1.6)

Figure 1: Empirical likelihood for one product (solid, with age constraint; dot, without age constraint)

15



Figure 1(a) shows the two 95% confidence regions for the couple of parameters (θ1.6, α). The confidence

region for (θ1.6, α) not constrained on children proportion in INCA is marked by a dotted line, the solid line

corresponding to the constrained confidence region. We can see that the constraint make the 2 surveys closer

(α is smaller, the confidence region is translated to the bottom) and decrease the risk (θ1.6 is smaller, the

confidence region is translated to the left). Children are known to be a more sensitive group to food exposure

because of their higher relative consumptions: they eat more compared to their body weight than adults.

When adding the age constraint, the discrete probability measure related to the INCA survey, the
(

p
(1)
i

)

i
,

are modified so that children become less influent, which explains the risk reduction and the decrease of α.

Figure 1(b) shows the profiles of the empirical likelihood ratios (rn1,n2,L1
(θ1.6)). We get 2 profiles, the

dotted line correspond to the unconstrained case. The horizontal line gives the 95% level of the chi-square

distribution (χ2
95%(1)), limiting the confidence interval for the risk index. The 95% confidence interval for

θ1.6 constraining INCA children proportion is [3.08%; 3.47%] and the risk index estimator is θ∗1.6 = 3.27%.

The optimal scaling parameter is α∗ = 1.31. This is an estimation of the factor to convert individual food

purchases of sea products into individual consumptions of sea products.

When the constraint on age is ignored, the estimator of θ1.6 is the arithmetic mean of INCA survey

and α−scaled SECODIP data (marked by the vertical dotted black line). Indeed, the best correction (α)

is when both means are equal and then the maximum of the likelihood for θ1.6 is this common value. The

SECODIP data has then no effect on the value of the estimator but has an effect on the confidence interval:

uncertainty is reduced thanks to the large sample of consumption values provided by the SECODIP data.

This particular case is due to the simplicity of the optimization when there is no constraint: the weights at

the global optimum all equal the inverse of the sample sizes, and then the estimator of θ1.6 is the arithmetic

mean.

When the constraint on age is imposed, the weights of INCA survey can no more equal 1/n1 in order to

fulfill the age constraint added on INCA sample. Then, all the weights and the value of α adjust through

the optimization process. The effect of the SECODIP data is then both on the estimator of θ1.6 and on its

confidence interval.

Euclidean likelihood: The Euclidean distance is not as sharp as the Kullback one’s, which is used in the

empirical likelihood case. The functional involved in the Euclidean distance
(

x → x2/2
)

is much smoother

than the function of empirical likelihood (x → lnx). Moreover, the constraint on age being linear and only

on the smaller consumption sample INCA, the associated term in the Euclidean likelihood is small in front

of the risk index term, which is nonlinear and concerns both consumption samples INCA and SECODIP.

The effect of the constraint is thus highly reduced: confidence regions as shown in Figure 2(a) as well as
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profiles as shown in Figure 2(b) are almost identical.

(a) Euclidean likelihood confidence region (b) Euclidean likelihood ratio profile
horizontal axis is θ1.6, horizontal axis is θ1.6,

vertical axis is α vertical axis is rn1,n2,L1
(θ1.6)

Figure 2: Euclidean likelihood for one product (solid, with age constraint; dot, without age constraint)

3.3 Results when considering two products

Products are grouped into two types of sea products, the first one is fish and the second one is mollusk and

shellfish. We have L1 = 1541 values of contamination for the group of fish and L2 = 1291 values for the

second. In this case, the computation of the complete U-statistics would require the sum of a very high

number of terms: for example, U
(2)
1 (q[2]) is a sum of n2 × L1 = 9588 × 1541 terms. For computational

reasons, calculation are done using the incomplete U-statistics of size B = 10000 defined in equations (7)

and (8). α is here 2-dimensional.

The confidence interval for the risk index is [5.20; 5.64] and the estimator is θ∗1.6 = 5.43%. The correction

factors on SECODIP data are α∗

1 = 1.8 and α∗

2 = 1.65. Figure (3) shows the profile of the empirical likelihood

ratio. The probability calculated when products are considered as a single group of product is smaller

than when products are gathered into two groups. Tressou et al. (2004) showed that grouping/aggregating

products in larger groups had an impact on methylmercury intake by producing a higher level of exposure

and consequently an higher probability that exposure exceeds the PTWI than when all products within a

nomenclature are considered as a single food item. Consequently in order to improve this risk assessment, it

would be necessary to go deeper in the food nomenclature of both surveys to create more groups. This was

not tested here because the grouping relevant in terms of contamination (e.g. considering predatory fishes
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and non predatory fishes) was not possible through the available SECODIP food nomenclature.

Figure 3: Empirical likelihood ratio profile for two products with age constraint (horizontal axis is θ1.6 and
vertical axis is rn1,n2,L1,L2

(θ1.6))

4 Conclusion

This paper shows how empirical likelihood method could be generalized to combine different sources of data.

We apply our theoretical results to assess the risk due to the presence of methylmercury in fish and sea

products. We combine the two different main French consumption surveys and some French contamination

data in order to estimate a food risk index. Results show how empirical likelihood tool is a powerful method

to build confidence intervals for this risk index using all the available information.

A technical improvement would consist in using a statistical method to disaggregate household purchases

into individual ”at home” consumptions and correct for the difference between ”at home” and total food

consumption. Chesher (1997) proposes such a method for the decomposition of household nutritional intakes

into individual intakes accounting for outside consumptions. In an empirical likelihood program this method

would require the estimation of a great number of parameters which causes optimization problems. This

kind of methodology could however avoid the use of the scaling parameter α between SECODIP and INCA

panels, which would be more satisfactory.

From an applied point of view, it would be interesting to consider different sub-populations and estimate

the risk index for at risk groups. In the case of methylmercury, focus should be on women of childbearing

age and young children as in Tressou et al. (2004).

Acknowledgment 5 We thank Christine Boizot (INRA-CORELA) for the support she has provided in

18



handling the SECODIP data as well as Jean-Charles Leblanc (AFSSA) for the contamination data. Many

thanks also to Patrice Bertail (CREST-LS) for his careful reading of the manuscript. All errors remain ours.

A Proofs of Empirical Likelihood results

A.1 Proof of Theorem 2

First, we consider the optimization of the empirical likelihood program for two consumption surveys and

one food product. We explicit the dependence in θd reminding that U0 (c) = 1
L

∑L
l=1 1l{qlc >d} − θd and

U
(r)
1 (q) = 1

nr

∑nr

i=1 1ln
qc

(r)
i

>d
o − θd, for r = 1, 2.

The program is to maximize
n1
∏

i=1

p
(1)
i

n2
∏

j=1

p
(2)
j

L
∏

l=1

wl, (10)

under the constraints:

n1
∑

i=1

p
(1)
i = 1,

n2
∑

j=1

p
(2)
j = 1,

L
∑

i=1

wl = 1,

n1
∑

i=1

p
(1)
i U0

(

c
(1)
i

)

+
L
∑

l=1

wlU
(1)
1 (ql) = 0,

n2
∑

j=1

p
(2)
j U0

(

c
(2)
i

)

+
L
∑

l=1

wlU
(2)
1 (ql) = 0.

To carry out this optimization, we will take the ln of (10). This will forced the weights to be positive and

then it is not necessary to impose it as a constraint. The difference between these constraints and the non

linear ones defined in equation (2) is o
(

N
−1/2
r

)

where Nr = nr + L (o and O means here in probability: oP

and OP). By TLC arguments, we have :

n1
∑

i=1

p
(1)
i U0

(

c
(1)
i

)

= O

(

n
−1/2
1

)

,

n2
∑

j=1

p
(2)
j U0

(

c
(2)
j

)

= O

(

n
−1/2
2

)

,

L
∑

l=1

wlU
(r)
1 (ql) = O

(

L−1/2
)

. (11)

The optimization program (10) can be rewritten max
wl, γ

a
,p

(r)
i

, γ
r
, λr

H

(

wl, γa , p
(r)
i , γr, λr

)

with :

H

(

wl, γa , p
(r)
i , γr, λr

)

=

ln

(

n1
∏

i=1

p
(1)
i

n2
∏

i=1

p
(2)
i

L
∏

l=1

wl

)

− γ1

[

n1
∑

i=1

p
(1)
i − 1

]

− γ2

[

n2
∑

i=1

p
(2)
i − 1

]

− γ1

[

L
∑

i=1

wl − 1

]

− λ1

[

n1
∑

i=1

p
(1)
i U0

(

c
(1)
i

)

+
L
∑

l=1

wlU
(1)
1 (ql)

]

− λ2

[

n2
∑

i=1

p
(2)
i U0

(

c
(2)
i

)

+
L
∑

l=1

wlU
(2)
1 (ql)

]

.
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Using ∂H

∂p
(r)
i

= 1

p
(r)
i

− γr − λrU0

(

c
(r)
i

)

= 0 and the similar expression for ∂H

∂wl

gives that

p
(r)
i =

1

γr + λrU0

(

c
(r)
i

) and wl =
1

γa + λ1U
(1)
1 (ql) + λ2U

(2)
1 (ql)

. (12)

Note that we also have
nr
∑

i=1

p
(r)
i

∂H

∂p
(r)
i

= nr − γr − λr

nr
∑

i=1

p
(r)
i U0

(

c(1)
r

)

= 0 (13)

and using the constraints, we get that

0 =

n1
∑

i=1

p
(1)
i

∂H

∂p
(1)
i

+

n2
∑

i=1

p
(2)
i

∂H

∂p
(2)
i

+

L
∑

i=1

wl

∂H

∂wl

= n1 + n2 + L − γ1 − γ2 − γa. (14)

The problem (10) can be rewritten using (12) and (14) :

− sup
λ1,λ2,γ1,γ2,γ

a
∈R

n1+n2+L−γ
1
−γ

2
−γ

a
=0















n1
∑

i=1

ln
{

γ1 + λ1U0

(

c
(1)
i

)}

+
n2
∑

j=1

ln
{

γ2 + λ2U0

(

c
(2)
i

)}

+
L
∑

l=1

ln
{

γa + λ1U
(1)
1 (ql) + λ2U

(2)
1 (ql)

}















.

Furthermore, (13) with
∑nr

i=1 p
(r)
i U0

(

c
(r)
i

)

= O(n
−1/2
r ) gives that γr = nr + vr with vr = λr · O(n

−1/2
r )

and then

p
(r)
i =

1

nr + vr + λrU0

(

c
(r)
i

) and wl =
1

L − v1 − v2 + λ1U
(1)
1 (ql) + λ2U

(2)
1 (ql)

.

Let’s consider the case of the wl. Adapting Owen’s proof, equation (11) for r = 1 combined to (12) yields

for the (wl)l constraint

O

(

L−1/2
)

=
L

∑

i=1

wlU
(1)
1 (ql) =

L
∑

i=1

U
(1)
1 (ql)

L − v1 − v2 + λ1U
(1)
1 (ql) + λ2U

(2)
1 (ql)

=

L
∑

i=1

U
(1)
1 (ql)

L
−

1

L

L
∑

i=1

[

−v1 − v2 + λ1U
(1)
1 (ql) + λ2U

(2)
1 (ql)

]

· U
(1)
1 (ql)

L − v1 − v2 + λ1U
(1)
1 (ql) + λ2U

(2)
1 (ql)

,

O

(

L−1/2
)

= U
(1)
1 −

λ1

L

L
∑

i=1

wl

[

U
(1)
1 (ql)

]2

−
λ2

L

L
∑

i=1

wlU
(1)
1 (ql)U

(2)
1 (ql),

where U
(1)
1 = L−1

∑L
i=1 U

(1)
1 (ql) and because the terms in v1 and v2 are of negligible order .

Using Owen’s arguments, we get:

U
(1)
1 + O

(

L−1/2
)

=
λ1

L

[

U
(1)
1

]2

+
λ2

L
U

(1)
1 U

(2)
1 , U

(2)
1 + O

(

L−1/2
)

=
λ2

L

[

U
(2)
1

]2

+
λ1

L
U

(1)
1 U

(2)
1 ,
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where
[
U

(1)
1

]2

= L−1
∑L

i=1

[
U

(1)
1 (ql)

]2

and U
(1)
1 U

(2)
1 = L−1

∑L
i=1 U

(1)
1 (ql)U

(2)
1 (ql)

2. It can be rewritten:




λ∗

1

λ∗

2



 = L





[
U

(1)
1

]2

U
(1)
1 U

(2)
1

U
(1)
1 U

(2)
1

[
U

(2)
1

]2





−1 


U

(1)
1 + O

(
L−1/2

)

U
(2)
1 + O

(
L−1/2

)



 . (15)

As the empirical variance-covariance matrix convergence to a non-degenerated variance-covariance matrix

EP

[(
U

(1)
1 U

(2)
1

)
′
(
U

(1)
1 U

(2)
1

)]
and as U

(1)
1 and U

(2)
1 are of order O(L−1/2) then λ1 and λ2 are of order

O(L1/2).

When considering p
(r)
i instead of wl the calculus are easier and we get that:

λr = nr

([
U

(r)
0

]2
)−1

U
(r)
0 + O(n1/2

r ), (16)

where U
(r)
0 = n−1

r

∑nr

i=1 U0

(
c
(r)
i

)
and

[
U

(r)
0

]2

= n−1
r

∑nr

i=1

[
U0

(
c
(r)
i

)]2

.

Now that we control the size of λr at the optimum for both nr and L with (16) and (15), the arguments

of Owen (2001) chapter 11.4 and the proof of Qin & Lawless (1994) give the expected convergence of

rn1,n2,L(θd) = 2 ∗

(
ln1,n2,L(θd) − ln1,n2,L(θ̂d)

)
to a χ2

(1).

A.2 Proof of Corollary 3, case P > 1

This can be generalized to the case of P products. We show here the idea of the proof for P = 2. The

incomplete U-statistics related to the contamination of the 2 products are denoted U
(r)
1,B and U

(r)
2,B . The

program consists in maximizing
n1
∏

i=1

p
(1)
i

n2
∏

i=1

p
(2)
i

L1
∏

l=1

w
[1]
l

L2
∏

l=1

w
[2]
l ,

under the constraints:

n1
∑

i=1

p
(1)
i = 1,

n2
∑

i=1

p
(2)
i = 1,

L1
∑

i=1

w
[1]
l = 1,

L2
∑

i=1

w
[2]
l = 1,

n1
∑

i=1

p
(1)
i U

0,B
(1)
0

(

c
(1)
i

)

+

L1
∑

l=1

w
[1]
l U

(1)

1,B
(1)
1

(

q
[1]
l

)

+

L2
∑

l=1

w
[2]
l U

(1)

2,B
(1)
2

(

q
[2]
l

)

= 0,

n2
∑

i=1

p
(2)
i U

0,B
(2)
0

(

c
(2)
i

)

+

L1
∑

l=1

w
[1]
l U

(2)

1,B
(2)
1

(

q
[1]
l

)

+

L2
∑

l=1

w
[2]
l U

(2)

2,B
(2)
2

(

q
[2]
l

)

= 0.
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with for r = 1, 2 and k = 1, 2 :

nr
∑

i=1

p
(r)
i U

0,B
(r)
0

(

c
(r)
i

)

= O

(

n−1/2
r

)

,

Lk
∑

l=1

wlU
(r)

k,B
(r)
k

[

q
[k]
l

]

= O

(

L
−1/2
k

)

.

We get as before for r = 1, 2 and k = a, b

p
(r)
i =

1

nr + vr + λrU0,B
(r)
0

(

c
(r)
i

) and w
[k]
l =

1

Lk + vk + λ1U
(1)

k,B
(1)
k

(

q
[k]
l

)

+ λ2U
(2)

k,B
(2)
k

(

q
[k]
l

) ,

with v1 + v2 + va + vb = 0 and the proof follows the same lines as for 1 product.

B Euclidean likelihood

With the objective function of the program being replaced by

1

2
min

n

p
(1)
i

, p
(2)
i

, w
[k]
lk

,k=1,..,P
o

2
∑

r=1

nr
∑

i=1

(

nrp
(r)
i − 1

)2

+

P
∑

k=1

Lk
∑

lk=1

(

Lkw
[k]
lk

− 1
)2

,

we get simpler expressions, which allow to reach explicit solutions.

For the sake of simplicity, we present the results for two consumptions surveys and one food product

(P = 1), the optimization program can be rewritten

1

2
min

n

p
(1)
i

, p
(2)
i

, wl

o

n1
∑

i=1

(

n1p
(1)
i − 1

)2

+

n2
∑

i=1

(

n2p
(2)
i − 1

)2

+
L

∑

l=1

(Lwl − 1)
2
,

under the constraints:
n1
∑

i=1

p
(1)
i = 1,

n2
∑

i=1

p
(2)
i = 1,

L
∑

i=1

wl = 1,

n1
∑

i=1

p
(1)
i U0

(

c
(1)
i

)

+
L

∑

l=1

wlU
(1)
1 (ql) = 0,

n2
∑

i=1

p
(2)
i U0

(

c
(2)
i

)

+
L

∑

l=1

wlU
(2)
1 (ql) = 0.

In the case of the Kullback discrepancy, the presence of the ln ensures that the weights are positives. Here,

the weights have no reason to be positive and if we add these constraints, the optimization program has no

solution, see Owen (2001). This can be astonishing at first glance. In fact, negative weights are essentially

obtained when the size of the data is too small and this problem does not appear in the applications above.

For small sample studies, this property can be desirable, because it allows to consider the points outside of

convex hull of the data, which can be very small in this context.
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The optimization program can be rewritten:

min
1

2

n1∑

i=1

(

n1p
(1)
i

− 1
)2

+
1

2

n2
∑

i=1

(

n2p
(2)
i

− 1
)2

+
1

2

L
∑

l=1

(Lwl − 1)
2

− λ1

[

n1
∑

i=1

p
(1)
i

U0

(

c
(1)
i

)

+
L

∑

l=1

wlU
(1)
1 (ql)

]

− λ2

[

n2
∑

i=1

p
(2)
i

U0

(

c
(2)
i

)

+
L

∑

l=1

wlU
(2)
1 (ql)

]

− γ1

[

n1
∑

i=1

p
(1)
i

− 1

]

− γ2

[

n2
∑

i=1

p
(2)
i

− 1

]

− γa

[

L
∑

i=1

wl − 1

]

.

Let us denote by H the objective function of this optimization problem, then

∂H/∂p
(r)
i

= nr(nrp
(r)
i

− 1) − γr − λrU0

(

c
(r)
i

)

= 0

and then p
(r)
i

=
1

nr

+
γr + λrU0

(

c
(r)
i

)

n2
r

.

As the weights sum to 1, we have

1 =

nr
∑

i=1

p
(r)
i

= 1 +
γr + λrU

(r)
0

nr

so γr = −λrU
(r)
0 ,

and then

p
(r)
i

=
1

nr

+ λr

U0

(

c
(r)
i

)

− U
(r)
0

n2
r

and wl =
1

L
+ λ1

U
(1)
1 (ql) − U

(1)
1

L2
+ λ2

U
(2)
1 (ql) − U

(2)
1

L2
.

The constraints can be rewritten:

U
(1)
0 + U

(1)
1 + λ1





V

(

U
(1)
0

)

n1
+

V

(

U
(1)
1

)

L



 + λ2

Cov
(

U
(1)
1 , U

(2)
1

)

L
= 0,

U
(2)
0 + U

(2)
1 + λ2





V

(

U
(2)
0

)

n2
+

V

(

U
(2)
1

)

L



 + λ1

Cov
(

U
(1)
1 , U

(2)
1

)

L
= 0,

where V and Cov denote the empirical variance operator, V(X) = (X2) −
(

X
)2

, and the covariance operator,

Cov(X, Y ) = (X · Y ) − X · Y . These terms do not depend on θd.

Note that U
(r)
0 = U

(r)
1 by definition of these U-statistics and write it U (r). The optimum is then reached
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at






λ
∗

1

λ
∗

2






= −2







V

“

U
(1)
0

”

n1
+

V

“

U
(1)
1

”

L

Cov
“

U
(1)
1 ,U

(2)
1

”

L

Cov
“

U
(1)
1 ,U

(2)
1

”

L

V

“

U
(2)
0

”

n2
+

V

“

U
(2)
1

”

L







−1 





U (1)

U (2)







and the optimal value can be directly computed, with no optimization procedure, strongly time expensive.

Finally, replacing the values of the weights and the λ’s in the optimization program, we get :

l(n1, n2, L) =
4

2







U (1)

U (2)







′ 





V

“

U
(1)
0

”

n1
+

V

“

U
(1)
1

”

L

Cov
“

U
(1)
1 ,U

(2)
1

”

L

Cov
“

U
(1)
1 ,U

(2)
1

”

L

V

“

U
(2)
0

”

n2
+

V

“

U
(2)
1

”

L







−1 





U (1)

U (2)






.

Case P > 1:

We also use this framework for the 2 surveys 2 products context. The form of the Euclidean likelihood is

almost the same, with U (r) := U
(r)
0 = U

(r)
1 = U

(r)
2 :

l(n1, n2, L1, L2) =

9

2







U (1)

U (2)







′ 





V

“

U
(1)
0

”

n1
+

V

“

U
(1)
1

”

L1
+

V

“

U
(1)
2

”

L2

Cov
“

U
(1)
1 ,U

(2)
1

”

L1
+

Cov
“

U
(1)
2 ,U

(2)
2

”

L2

Cov
“

U
(1)
1 ,U

(2)
1

”

L1
+

Cov
“

U
(1)
2 ,U

(2)
2

”

L2

V

“

U
(2)
0

”

n2
+

V

“

U
(2)
1

”

L1
+

V

“

U
(2)
2

”

L2







−1 





U (1)

U (2)






.
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Abstract

Contaminants and natural toxicants such as mycotoxins may be present in several food items,

which may be considered as dangerous for human health if the cumulative intake remains above

the toxicological safe references. This intake or exposure can be estimated using both consump-

tion surveys and analytical data that record the contamination levels of the food. Analytical data

often present some left censorship, i.e. data below some limit of detection or quanti�cation. This

paper proposes the integration of a non parametric modelling of the left censorship of analytical

data in a model aiming at giving a quantitative evaluation of the risk due to the presence of some

particular contaminants in food. We focus on the estimation of the "risk", de�ned as the proba-

bility for exposure to exceed the so-called provisional tolerable weekly intake (PTWI), when both

consumption data and contamination data are independently available. To account for the left

censorship of the contamination data (due to the existence of detection/ quanti�cation limits),

we propose to use a Kaplan Meier (KM) estimator instead of the empirical cumulative distrib-

ution function generally used in non parametric procedures. We give the asymptotic behavior

of our estimator and derive the asymptotic properties of the associated risk estimator. Several

con�dence intervals are obtained using a double bootstrap procedure. A detailed algorithm is

proposed. As an illustration, we present an evaluation of the risk exposure to Ochratoxin A in

France and use our risk estimator to show that children under 10 are a population particularly at

risk. Imposing some maximum limits on particular food items, namely cereals and wine, would

not signi�cantly reduce the risk.

Keywords: Kaplan-Meier estimator, Risk Assessment, Bootstrap, Ochratoxin A, Left cen-

sorship.

1 Introduction: censorship in exposure assessment

Contaminants and natural toxicants such as mycotoxins may be present in several food items at acceptable

levels that do not cause considerable risks to human health. However because of all the occurrences of

contaminants in di¤erent food items, exposure to a contaminant may be considered as dangerous for human

health if the cumulative intake remains above the toxicological safe references. If (C1; : : : ; CP ) denotes

the consumed amount per body weight (relative consumption) of P foods that may contain the studied

chemical, contaminant or pesticide and if (Q1; : : : ; QP ) denotes the concentrations found in each of the P

foods, then the total exposure is de�ned to be D =
PP

p=1QpCp: Risk is then quanti�ed as the probability for
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exposure to exceed some safe level d; Pr(D > d): This safe level is determined from experimental toxicological

studies and is called the Provisional Tolerable Weekly Intake (PTWI). Risk can therefore be evaluated using

both consumption data and contamination data. If there is an e¤ective risk, two kinds of public decision

can occur: recommendations on reducing some food consumptions or new food standards on certain food

contaminations. These actions may have drastic economic consequences with no evidence of e¤ective risk

reduction if their e¤ects are not accurately assessed.

Analytical data, such as contaminant, chemical or pesticide concentrations, often present left censorship

due to the existence of limit of detection (LoD) or quanti�cation (LoQ). The treatment of this censorship

is for example discussed in Helsel (2004). A preliminary question is to decide wether it is left censorhip

or left truncation: here there is no doubt about the fact that it is left censorship since in the case of left

truncation, the sample sizes are random. Since these limits of detection or quanti�cation, sometimes called

limit of reporting (LoR, for short), depend on the analyzed substance and the analytical method used, they

are here assumed to be random. In most food exposure assessment, such analytical data are combined with

food consumption data and certain recommendations arose concerning the treatment of the censored values

(GEMs/Food-WHO, 1995). It consists in replacing the censored value with the LoR (MLC1), half of the

LoR (MLC2) or zero (MLC3) according to the proportion of censored data in the sample. If the sample has

less than 60% of value below the LoR, then these censored data are replaced by half of the LoR; otherwise,

the two other solutions have to be tested. The problem is that these assumptions have a great impact on

the mean of the exposure but also on the high percentiles when the proportion of censored data is high.

In order to evaluate the probability for exposure to exceed some safe level d; Pr(D > d); we need

to estimate the distribution of exposure. There are currently several ways to obtain such estimators of the

distribution. First, a deterministic procedure using means of concentrations or any �xed level of concentration

is necessary to have a general idea of the phenomenon. However, we gain accuracy in using some probabilistic

procedures taking into account the variability of the contaminations either in a parametric or non parametric

way. The parametric procedure consists in �tting a well-known distribution to the observed concentrations

and sometimes to the observed consumptions taking into account their correlation structure using some

maximum likelihood techniques. The non parametric procedure consists in using random selection with

replacement from both observed concentration data and observed consumption data (Gauchi and Leblanc,

2002; Tressou et al., 2004b). A single value of exposure is thus obtained as the cross-product between any

vector of relative consumptions and any series of contamination values. This last method is the most realistic

one since simulation allows each consumer to face any of the observed concentrations of contaminant, chemical

or pesticide. However, the obtained distribution of exposure is very sensitive to the censoring mechanism
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above all when the proportion of censored data is high.

A �rst solution to account for the left censorship mechanism is to model the censorship as a part of

the likelihood in the parametric procedure. Another parametric solution involving mixture of mass on zero

and lognormal distribution is proposed in Paulo et al. (2005). This �rst solution has been tested in Tressou

et al. (2004b): the drawback of this method is the bad estimation of the tail of the distribution. Indeed,

with maximum likelihood techniques, the tail behavior is strongly in�uenced by the choice of the underlying

distribution. This is a major drawback of parametric procedures in general whether it takes into account

the censorship mechanism or not. This is the reason why we have mainly developed some non parametric

tools. In Bertail and Tressou (2005), the empirical estimator of the probability Pr(D > d) with no censored

data (that is the proportion of exposures exceeding d; where exposures are obtained by crossing randomly

selected observed consumptions and contaminations) is viewed as an incomplete U-Statistics. Its asymptotic

behavior can therefore be determined and allows for the construction of asymptotic con�dence intervals.

In section 2, we propose to use the Kaplan-Meier (KM) estimator of the distribution of concentrations

instead of the empirical distribution and to determine the asymptotic behavior of the derived estimator of

Pr(D > d). This estimator is then computed as the proportion of exposures exceeding the safe dose d,

where exposures are obtained by crossing randomly selected observed consumptions and contaminations; the

consumption vectors being selected according to their empirical distribution and the contamination values

according to the Kaplan Meier estimator of their distribution. The asymptotic behavior of this KM based

estimator is derived using Hadamard di¤erentiability and Functional Delta method arguments. Precise

de�nitions of these mathematical tools can be found in van der Vaart (1998).

The last section is dedicated to the implementation of the method on data concerning French exposure

to a contaminant: Ochratoxin A (OTA). Ochratoxin A (OTA) is a mycotoxin produced by fungi Aspergillus

Ochraceus and Penicillium Viridicatum. This mycotoxin can be detected in several food items: cereals,

co¤ee, grapes, pork meat, wine, beer. . . Ochratoxin A is nephrotoxic, genotoxic, teratogenic, carcinogenic

and immunosuppressive. The compound has been linked to Balkan Endemic Nephropathy, a kidney disease

frequently observed in the Balkan countries (Boiµzíc et al., 1995, for a review). In this paper, we propose to

accurately quantify the exposure to OTA accounting for left censorship of analytical data and to evaluate the

impact of some currently discussed food standards proposed by the European commission on this probability.

For this, we �rst consider the existing food standards on OTA for the major contributor to exposure, that

is cereals (>70% of the exposure in France) and then consider some of the new proposed standards to OTA

for wine, a low contributor to the exposure (<5% in France) compared to cereals for di¤erent censorship

treatments.
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2 Asymptotic behavior of the KM-based plug-in estimator of Pr(D >

d)

In this section, the asymptotic behavior of the KM based estimator of Pr(D > d) = �(d) is derived using

Hadamard di¤erentiability and Functional Delta method arguments. Precise de�nitions of these mathemati-

cal tools can be found in van der Vaart (1998). We will prove that our parameter of interest �(d) is Hadamard

di¤erentiable with respect to the joint distribution of the consumptions and the contaminations. Weak con-

vergence of the Kaplan Meier estimators (for concentration distributions) and empirical distribution function

(for consumption distribution) will in turn imply the convergence in law of our plug-in estimator.

2.1 Notations and assumptions

To estimate the probability of exposure to exceed a �xed deterministic level d, two types of data are available

if P food items are assumed to be contaminated:

� Normalized consumption data (also called individual contaminated baskets): ci =
�

ci1; : : : ; c
i
p; : : : ; c

i
P

�

is the vector of consumptions of individual i observed during a week, standardized by the respective in-

dividual body weights for i = 1; : : : ; n; we assume that these are i.i.d. realizations of a multidimensional

random variable (r.v.) C = (C1; : : : ; CP ) with probability distribution C:

� Contamination data: xpjp is the contamination value obtained for the j
th
p analysis of the food item

p with jp = 1 : : : L(p). �pjp indicates if this contamination value is left censored (�
p
jp
= 0) or not

(�pjp = 1). We assume that the (x
p
jp
; �
p
jp
)jp=1:::L(p) are i.i.d. realizations of the random vector (Xp;�p):

The true contamination probability distribution of food item p is denoted by Qp; for p = 1; : : : ; P: If

Qp denotes a r.v. with distribution Qp and G
p the associated left censorship random variable then

Xp = max(Qp; Gp) and �p = 1l fQp > Gpg ; where 1l fAg = 1 if A is true and 0 otherwise. Qp and Gp

are assumed to be independent.

All consumers are supposed to be independent, and the consumption and contaminated data are assumed

to be independent. Moreover, contamination observations for the P food items are generally independent.

These assumptions are quite reasonable and correspond to what we practically observe in our data.

Let D = C�
P
Q

p=1
Qp denotes the joint distribution of the consumption C and the P contaminations Qp; for

p = 1; : : : ; P . The individual exposure D =
PP

p=1Q
pCp has a distribution entirely characterized by D: In
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this framework, our parameter of interest is a functional of D de�ned by

�d(D) = PD(D > d) = PD

 

P
X

p=1

QpCp > d

!

= ED

 

1l

(

P
X

p=1

QpCp > d

)!

;

where 1l
n

PP

p=1Q
pCp > d

o

= 1 if
PP

p=1Q
pCp > d and 0 else.

2.2 Left Kaplan Meier estimator

The left Kaplan Meier estimator is used to estimate the contamination distribution for each food item p:

It is de�ned from the realizations (xpjp ; �
p
jp
)jp=1:::L(p) of the random vector (Xp;�p): Let us omit in this

section the index p and consider a left censored sample (Xj ;�j)j=1;:::;L associated to the r.v. (Qj) and (Gj)

such that Xj = max(Qj ; Gj) and �j = 1l fQj > Gjg. We introduce the following cumulative distribution

functions (CDF):

H(x) = P(X � x); H1(x) = P(X � x;� = 1):

These are respectively the CDF of the (Xj) and the CDF of the uncensored Xi:They can be estimated by

their empirical counterpart HL and H1L; de�ned by

HL(x) =
1

L

L
X

j=1

1l fXj � xg and H1L(x) =
1

L

L
X

j=1

1l fXj � x;�j = 1g :

Denoting by F and G the respective CDF of the (Qj) and the (Gj) ; say F (x) = P(Q � x) and G(x) =

P(G � x); we have H = FG and dH1 = GdF so that the reverse hazard is given by

�(t) =

Z

]t;1]

dF

F
=

Z

]t;1]

dH1

H
:

This quantity only depends on H1 and H so that one can calculate its empirical counterpart �L from the

observations. Moreover if we use the product integral function (denoted 	) to �; we get F = 	(�) (see Gill

and Johansen, 1990, for details):

The CDF of the true data is given by F = 	(�): A consistent estimator is thus

[FKM = R
]:;1]

�

1� d�L
�

= R
]:;1]

�

1�
dH1L

HL

�

Using the sample (Xj ;�j)j=1;:::;L; if X
�

(1) < : : : < X�

(i) < : : : < X�

(k) denote the k distinct uncensored

observed values, we de�ne for i = 1; : : : ; k :
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� Ri =
PL

j=1 1l
n

Xj = X
�

(i);�j = 1
o

; the number of uncensored observations that are equal to X�

(i). We

have Ri = LdH1L:

� Ni =
PL

j=1 1l
n

Xj � X
�

(i)

o

; the number of observed values (censored or not) which are smaller or equal

to X�

(i): We have Ni = LHL:

then, we have for t � 0

[FKM (t) =
k
Y

i=1

�

1�
Ri

Ni

�1l
(X�

(i)
>t)
:

This estimator is the same as the one proposed in Patilea and Rolin (2001) where a product limit estimator

is derived for doubly censored data if there is no right censorship.

The asymptotic behavior of this left KM estimator can be derived using the functional Delta Method

since [FKM results as an Hadamard di¤erentiable function of (HL;H1L) as in the right censored case, see Gill

and Johansen (1990) for details. It is given by

p
L

h

[FKM � F
i

L
!

L!1

GKM ;

where
L
! denotes the weak convergence and GKM is a Gaussian process with zero mean and covariance

cov(GKM (s);GKM (t)) = F (s)F (t)

Z

]s^t;1]

d�(u)

H(u)��H1(u)
:

An estimator of the variance of the Kaplan Meier estimator is given by

�

[FKM

�2
Z

]:;1]

d�L(u)

HL(u)��H1L(u)
;

i.e. for any t 2 R+

�

[FKM (t)
�2 L
X

i=1

Ri1l�
X�

(i)
>t

�

Ni(Ni �Ri)
:

The calculation of the covariance is derived from the analogous calculation for right censored data.

Indeed, when one looks at some left censored data X, it is the same as considering as the right censored

data Y = M � X where M is a large constant. The calculation of this covariance for right censored data

can be found in Gill (1994) or Andersen et al. (1993). A direct calculation may also be done using reverse

martingale arguments: Gómez et al. (1994) proposes a proof using the backward Doleans equation.

Finally, we notice that in case of uncensored data (� � 1), this asymptotic behavior is equivalent to the

convergence of the empirical process to a F-Brownian bridge.
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2.3 Asymptotic behavior of the KM-based plug-in estimator

As explained in the introduction, we choose to estimate �d(D) by Pr eD(D > d) = �d

�
eD
�
where eD =

eCn �
PQ
p=1

eQLp denotes the joint distribution of the Kaplan Meier (KM) estimators of the distribution of

consumption and contamination. Recall that the KM estimate of the consumption vector is the same as the

empirical estimator in absence of censorship.

De�ne the functional

D �7�! �(D) = PrD(D > d) = E(D)

"
1l

 
PX

p=1

QpCp > d

!#
:

Our estimator is thus given by �
�
eD
�
: the convergence and asymptotic behavior of this estimator can be

obtained using the functional delta method. For this we need � to be Hadamard di¤erentiable.

As a composition of several Hadamard di¤erentiable functions, � is also Hadamard di¤erentiable with a

gradient given by

then the in�uence function of � is given by

�
(1)
D
: (L �D) =

Z
�0D (L �D) ;

where L is a distribution with values in R2P and the in�uence function �0
D
is given by

�0D (C;Q1; : : : ; QP ) =

0
BBBBBBB@

E

h
1l(
P

P
p=1

QpCp>d)jC
i

E

h
1l(
P

P
p=1

QpCp>d)jQ1
i

...

E

h
1l(
P

P
p=1

QpCp>d)jQP
i

1
CCCCCCCA

� PrD(D > d):e;

whith e = (1; : : : ; 1)0 2 R2P .

The independence of the consumption and contamination distributions and the result about the as-

ymptotic behavior of the left KM estimator, given in the previous section, yield that we jointly have the

approximation when n!1; L(1)!1; :::; L(P )!1;

0
BBBBBBB@

p
n
�
eCn � Cn

�

p
L(1)

�
eQL(1) �Q1

�

...
p
L(P )

�
eQL(P ) �QP

�

1
CCCCCCCA

L!

0
BBBBBBB@

G
KM
C

G
KM
Q1

...

G
KM
QP

1
CCCCCCCA

;
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where the (P + 1) limiting processes are independent and
L! denotes the weak convergence.

Let us assume that

N = n+
PX

j=1

L(j);
n

N
! � > 0 and

L(j)

N
! �j > 0; 8j = 1; : : : ; P; (C1)

then we have

p
N

0
BBBBBBB@

fCn � Cn
Q̂L(1) �Q1

...

Q̂L(P ) �QP

1
CCCCCCCA

L!
N!1

0
BBBBBBB@

G
KM
C =

p
�

G
KM
Q1

=
p
�1

...

G
KM
QP

=
p
�P

1
CCCCCCCA

:

The functional Delta Method yields

p
N
h
�
�
eD
�
��(D)

i
L!

N!1

�
(1)
D

0
BBBBBBB@

G
KM
C =

p
�

G
KM
Q1

=
p
�1

...

G
KM
QP

=
p
�P

1
CCCCCCCA

:= GKMD;d ;

where

GKMD;d =

Z
E

h
1l(
P

P
p=1

QpCp>d)jC = c
i
:
G
KM
Cp
�
(dc) +

PX

j=1

Z
E

h
1l(
P

P
p=1

QpCp>d)jQj = qj
i
:
G
KM
Qjp
�j
(dqj) : (1)

This limit variable is Gaussian and its variance covariance is composed of a consumption term with weight

1=� and P contamination terms with weights (1=�j)j=1;:::;P as it is the case when there is no censorship (see

Theorem 1 in Bertail and Tressou (2005)).

In practice, the assumption C1 may not be satis�ed when the number of contamination values for a food

item, that is one of the L(p); is small (due to cost matters). In this case, the precedent assumptions and

results can be modi�ed as follows: let us assume that

N� = min
p=1;:::;P

n
L(j); such that 0 < V

h
E

�
1l(
P

P
p=1

QpCp>d)jQj
�i
<1

o
;
L(j)

N�
! ��j > 1 and

N�

n
! 0;

(C2)

we obtain similarly

p
N�

h
�d

�
eD
�
� �d (D)

i
L!

N�!1

�
GKMD;d

��
=

PX

j=1

Z
E

h
1l(
P

P
p=1

QpCp>d)jQj = qj
i
:
G
KM
Qjp
��j

(dqj) (2)

9



This limit variable
�

GKMD;d

�

�

is Gaussian with a variance that can decomposed into P terms depending on

the P distributions of contamination with weights
�

1=��j
�

j=1;:::;P
.

Both sets of assumptions (C1) and (C2) will be considered to build con�dence intervals in the next

sections.

3 Practical calculation of the estimator and associated CIs

3.1 Computation of the risk estimator: the KM procedure

The explicit calculation of the risk e�(d) requires both

� the calculation of each KM CDF estimator for the P distributions of contamination and the calculation

of the empirical CDF of the relative consumption vectors

� and the proper combination of these CDF to compute the risk.

These CDF estimators consists in a list of distinct observed (uncensored) values with associated cumula-

tive frequency, i.e. for each distribution some
�
X�

(i);
[FKM (X

�

(i))
�
if we use the notations at the end of section

2.2. Let us denote by en; eL(1); : : : ; eL(P ); the respective number of such distinct observed (uncensored) values

for the distribution of relative consumption vectors and for the P distributions of contamination. From

these CDF estimators, it is easy to get the associated empirical PDF. The cross product of these empirical

PDF theoretically gives the en � eL(1) � : : : � eL(P ) possible exposure levels with associated probability of

occurrence, that is the PDF of exposure from which it is possible to compute the risk estimator �d

�
eD
�
as

the proportion of exceedances of d: However, the calculation of en� eL(1)� : : :� eL(P ) terms is not technically

achievable: in our application, en � eL(1) � : : : � eL(P ) � 2:1013: As in Bertail and Tressou (2005), we over-

come this problem by using the random version of this calculation: instead of combining all possible relative

consumption vectors with all possible contaminations, we proceed to a Monte Carlo approximation of size

B < en� eL(1)� : : :� eL(P ): Indeed, the practical calculation of �d
�
eD
�
is achieved through a simulation of

size B according to both the empirical CDF of relative consumption vectors and the KM CDF estimators

of contamination. In order to account for the correlation structure of these data, vectors of P consumption

values are sampled for each consumer: this corresponds to a sampling with replacement among the observed

vectors of consumption. The P contamination values are independently sampled according to the KM esti-

mator of the observed distribution (by applying the generalized inverse of the KM estimator to B random

uniform and independent numbers). Combining these contamination values to the consumption vectors, we
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get B exposure values. Then, �d

�
eD
�
is the percentage of these exposures that exceed d: The B exposure

values and �d

�
eD
�
are referred as the (results of) KM procedure.

This KM procedure can not be applied if the contamination sample is fully censored: in this case, the

contamination is �xed at a very low arbitrary level denoted by q:

3.2 Computation of the con�dence intervals

A bootstrap procedure (see Efron and Tibshirani, 1993, for a general introduction to Bootstrap) is applied

to obtain con�dence intervals (CI�s). Such Bootstrap procedure is justi�ed by noticing that our parameter

is continuously Hadamard di¤erentiable and using the results of Pons and Turckeim (1989) and Gill (1989).

First, we build (basic) percentile and asymptotic CI�s as explained in the algorithm given in the appendix

A. Then, we propose to use a double bootstrap to estimate on one hand the total variance of �d

�
eD
�
and

on the other hand each variance term under both (C1) and (C2): this yield a decomposition of the variance

of �d

�
eD
�
. This double bootstrap also allows to build t-percentile CI�s which can theoretically improve over

the basic percentile as explained in Hall (1986) or Beran (1988). The �rst bootstrap level allows to estimate

the distribution of �d

�
eD
�
while the second bootstrap level gives three di¤erent estimators of its variance

used to studentized the estimator of �d

�
eD
�
: One particularity of this bootstrap procedure is the presence

of censorship: indeed, when creating the contamination bootstrap samples, couples "value-censorship index"

(Xi;�i) are sampled to reproduce the censorship phenomenon as explained in Efron (1981).

The algorithm, fully described in appendixA, is composed of �ve steps : the estimation step, the �rst

bootstrap level resampling step, the computation of the �rst level CI�s, the second bootstrap level resampling

step and the computation of the second level CI�s. This yields 6 CI�s:

� the Basic Percentile CI based on the empirical distribution of the �rst bootstrap level estimators of

�d

�
eD
�
;

� the Percentile CI based on the empirical distribution of the �rst bootstrap level estimators of �d

�
eD
�

and the estimator of �d

�
eD
�
obtained from the estimation step,

� the Asymptotic CI based on the empirical variance of the �rst bootstrap level estimators of �d

�
eD
�

and the estimator of �d

�
eD
�
obtained from the estimation step,

� the Double Bootstrap t-percentile CI using the empirical variance of the second bootstrap level esti-

mators of �d

�
eD
�
for each �rst bootsrap level estimator,
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� the (C1) t-percentile CI using the empirical term by term variance (under C1) of the second bootstrap

level estimators of �d

�
eD
�
for each �rst bootsrap level estimator,

� and the (C2) t-percentile CI using the empirical term by term variance (under C2) of the second

bootstrap level estimators of �d

�
eD
�
for each �rst bootsrap level estimator.

These CI can be compared to those obtained when using the traditional substitution treatment that is,

as explained in the introduction, replacing the censored data with the LoR, half of the LoR or zero.

4 Validation of the method: a simulation study

In order to validate the method, we propose to evaluate the coverage probabilities and CI�s lengths using

known contamination and consumption distributions. Given the probability distribution functions (PDF) of

the relative consumption vectors (relative as divided by body weight) fC and the ones of the P contaminations

values, fQ1
; � � � ; fQP

, explicit calculation of the probability that exposure exceeds d is not possible in the

general case except if consumptions are independent. However, it is possible to compute the �true� parameter

value thanks to a Monte Carlo simulation. We choose here a multivariate log normal distribution for fC

and Pareto distributions for fQ1
; � � � ; fQP

with all parameters (lognormal and Pareto PDF) estimated from

our real data. We sampled 1; 000; 000 values from each PDF fC ; fQ1
; : : : ; fQP

; to build 1; 000; 000 exposure

levels which yields a true value of �d=35 (D) = 37:55%: The absolute error is of order 0:1%: In order to

introduce a left censorship phenomenon for the contamination data, the censorship distribution is supposed

to be discrete and identical for the food groups. It is denoted by g�: to be close to what we observe in real

data, we have �xed g� to the empirical distribution of the observed censored values of our contamination

data. Simulation of the left censored distribution efQp
arising from fQp

is obtained through the following

algorithm:

1. Independently, sample a value q according to fQp
and a value � from g�

2. Compute eq = max(q; �) and � = 1l (eq > �) : The couple (eq; �) is a value from efQp
:

To estimate the coverage probability of our con�dence intervals, we repeat L = 500 times the �rst boot-

strap level of the algorithm described in the previous section on simulated samples from fC ; efQ1
; � � � ; efQP

; of

respective sizes n; L(1); : : : ; L(P ) (equal to the observed sizes in our real data). The resulting empirical

coverage width of the intervals are presented in Table 1. This procedure took about 240 hours. If L = 10,

we get coverage probabilities of 100% for the three t-percentile CI�s with a mean length of 6:5%:
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Table 1 around here, see page 24

These results advocate for the use of the asymptotic or basic percentile CI�s. Indeed the double bootstrap

resampling step is very time consuming and the t-percentile CI�s do not give better results than the basic

percentile or asymptotic CI�s. However the variance decomposition obtained under (C1) or (C2) can yield

complementary results as shown in the next section.

To demonstrate the improvement of the KM procedure over the substitution adhoc methods, we estimate

the coverage probabilities of the basic percentile CI�s for the adhoc substitution methods (MLC1, MLC2,

MLC3). The mean CIs for L=500 are: [59:5%; 65:4%] for MLC1, [42:5%; 48:6%] for MLC2 and [12:1%; 18:2%]

for MLC3. These result in very bad coverage probabilities: at best 11% of the CIs contain the true value of

�d=35 (D) (for MLC2).

We also check the consistency of the CI for di¤erent values of d (11 values from 5 to 60). We always have

coverage probabilities greater than 95%:

5 Application: French exposure to ochratoxin A

In this application, we want to estimate the probability for exposure to OTA to exceed the provisional

tolerable weekly intake (PTWI). This toxicological reference is determined thanks to experiments on animals

(and conversion factors) as the amount of a contaminant that can be ingested without appreciable risk during

the lifetime. It is expressed in terms of nanograms per week per kilogram of body weight (ng/w/kgbw),

relative consumptions (i.e. divided by body weight) are considered instead of real consumptions. For OTA,

the PTWI was �xed to 35 ng/w/kgbw by the Scienti�c Committee for Food (SCF) of the European Food

Safety Agency.

5.1 Description of data

5.1.1 Consumption data

The national French survey called �INCA� (see CREDOC-AFSSA-DGAL, 1999) was chosen because it has

the advantage to measure the individual consumptions of 3003 French people over a week, including the

meals eaten outside of the house. In opposition to many consumption surveys in France, values are not

taken at the household level but at the individual level. Besides, some socio-demographic data are available

such as body weight, sex, age, or PCS, which are interesting or even necessary (body weight) in accurate food

risk assessment. The surveyed individuals are 3 to 92 years old. This survey is composed of 2 samples:1018

children from 3 to 14 years old. and 1985 adults (over 15). The data is described in Table 2.
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A major drawback of this data is the duration of the survey: one week long is not su¢cient to measure

occasional consumptions (French �foie gras� for example) and it is not long enough to evaluate chronic

exposure. There is a strong need for longer term individual French consumption data. For this reason the

parameter of interest, �(d), has to be seen as a risk indicator in opposition to a hazard indicator.

5.1.2 Contamination data

Several sources of contamination data have been used in this study in order to have a realistic variability of

contamination. First, analyses were realized on unprocessed food products by the Ministry of Agriculture

and the Ministry of Economy and Finances (DGAL, DGCCRF, 2000). These were enriched by analyses on

food as consumed from the National Institute of Agronomical Research (INRA 2000, 2001). At last, speci�c

data about wine contamination comes from the National O¢ce of Wines (ONIVINS, 1999, 2000).

All these data present a large part of left censored data. Indeed, each laboratory has its own limit of

detection (LOD) and limit of quanti�cation (LOQ) in relation with the analyzed food and the analytical

method used. Between 50 and 100% of the data are under these limits, see Table 3. This induces a bias that

can be solved at a �rst level by using ad hoc methods mentioned in the introduction:

MLC1 The censored data are replaced by the corresponding LOD or LOQ,

MLC2 The censored data are replaced by the corresponding LOD or LOQ divided by 2,

MLC3 The censored data are replaced by zero.

We will compare these ad hoc methods with our proposed method.

Another important drawback of these data is the size of the sample for the group Beer : there are only

two analyses and both of them are censored which disables any statistical treatment. The contamination is

thus considered as �xed to a level q that can either be 0.05 or 0 and that will be detailed in the application.

5.1.3 Matching both sources

In both cases, the data were clustered into nine groups according to the contamination level of products:

see Table 2 and 3 for descriptive statistics about consumption and contamination in each group. A full food

item list for each group is available on request to the author. Indeed, the exposure assessment needs to a¤ect

a contamination value to each consumption: this is done within the group. The choices made to build these

clusters (number of cluster, composition of the clusters) have an impact on the assessment as mentioned in

Tressou et al. (2004a,b).
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For example, the group Cereal-based products is composed of biscuits, cakes or breakfast cereals. It

di¤ers from the group Cereals, which is composed of bread, biscotti or pasta. Indeed, all these later foods

are contaminated via wheat �our at a higher level. Another solution, which is often used in practise, is to

consider percentages of wheat �our (as in Leblanc et al., 2002). This is not necessary here since there is

speci�c contamination data for products as consumed.

Table 2 around here, see page 24

Table 3 around here, see page 24

5.2 Results and discussion

5.2.1 Distribution of exposure to OTA

We �rst present a comparison between:

� the exposure distributions obtained using the MLC1, MLC2 or MLC3 ad hoc method thanks to the

non parametric procedure, i.e. the distribution obtained using both the empirical CDF of relative

consumption vectors and the empirical CDF�s of contamination transformed according MLC1, MLC2

or MLC3.

� the distribution obtained with the parametric procedure described in introduction and in Tressou

et al. (2004b), for a lognormal distribution (P-LogN), a Gamma distribution (P-Gamma), a Weibull

distribution (P-Weib)and a Chisquare Distribution (P-Chi2).

� and the one obtained thanks to the KM procedure.

Figure 1 gives the smoothed densities (using Gaussian kernels) of the KM, P-Gamma and MLC1, MLC2

and MLC3 distributions obtained with B = 5000 simulations.

Figure 1 around here, see page 27

The central part of the KM distribution is very closed to the one of the P-Gamma that also accounts for

the censorship. However, this graphic does not show much of the right tail of the distribution, which is the

risky part of the distribution (exposure exceeding the PTWI).

Table 4 gives a few statistics to describe all these distributions that will help in comparing them.

Table 4 around here, see page 25
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Since the exposures from the MLC3 distribution are by de�nition the smaller and since censorship a¤ects

about 80% of the data, the true distribution of exposure should be between the MLC2 and MLC3 distribution.

This is the case for the KM distribution, even in the right tail while it is not always true for the parametric

based procedure. Indeed, the tail of the P-Gamma is lighter than the MLC3 distribution. The estimators for

the probability to exceed the PTWI range from 12:2% (MLC3) to 35:6% (MLC1): it remains lower for the

KM distribution than for all parametric distribution since no contamination level bigger than the observed

maximum occurs in this KM distribution.

This KM procedure is possible thanks to the assumption that left censorship of the contamination data

is a random phenomenon. This would not be true in case of �xed censorhip which would be the case if all

the data came from the same laboratory with a unique limit of detection or quanti�cation. In this case,

only the conditional distribution (quanti�ed contaminations) can be estimated unless one uses parametric

assumptions following ideas of Helsel (2004); Singh and Nocerino (2002); Shumway et al. (2002) or Kroll

and Stedinger (1996). Some further research could also introduce the di¤erence between the LOD and the

LOQ information (when available): indeed, data of type "<LOQ" are likely to be greater than data of type

"<LOD" and this can not be taken into account here.

5.2.2 Probability to exceed the PTWI, Con�dence intervals.

When using the algorithm of section 3.2, the mean value for e�(d) from the KM procedure is about 13%: This

means (if one assumes that the data re�ects the long term consumption) that a French consumer taken at

random has a probability of 13% to exceed the safe dose: this may be considered as a quite risky exposure.

Let us �rst have a look at the sensitivity of the model to the parameters: the simulation size in the

KM procedure B; the �rst bootstrap level size M1 and the second bootstrap level size M2: Table 5 shows

the in�uence of the choice of the parameters B; M1 and M2 on the CI bounds. We observe here that the

Percentile and Asymptotic CI�s are very sensitive to the estimation step of the bootstrap procedure. However

it seems that the choice of the tuning parameters do not have a great importance so that we keep B = 5000;

M1 = 200 and M2 = 200: We obtained similar results when considering q = 0 or 0:05: In the following, we

keep q = 0:

Table 5 around here, see page 25

As the consumption data is composed of two independent samples (adults and children), it is more

accurate to consider the two populations separately. Table 7 gives the Basic Percentile CI�s obtained for

adults and children as well as for di¤erent age groups. A Probit model which regressed to model the belonging

to the risky zone 1l (D > 35) over all the socio-demographic variables of the INCA survey shows that age
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and sex are the main factors for belonging to the risky zone. We observe here that children under 10 is the

riskier population with a signi�cantly di¤erent "risk" compared to adults. The KM procedure allows for a

unique conclusion in this population comparison: when using the ad hoc censorship treatments (M1, M2,

M3), the di¤erence was signi�cative using MLC1 but was not if MLC2 or MLC3 was used (see Tressou et

al., 2004b, for results in the same direction).

We can also look at the variance decomposition of this "risk" estimator in table 6. We observe the

particular behavior of the distribution of contamination of cereals and cereals based products: these are the

two main contributors to the PTWI. Indeed when applying 200 times the KM procedure (B = 5000), the

mean contributions to the SCF PTWI of the groups cereals and cereals based products are respectively 74%

and 10%.

Table 6 around here, see page 26

5.2.3 Impact of new food standards

The European commission established a maximum limit (ML) for OTA of 5 �g/kg for raw cereal grains

and of 3 �g/kg for derived cereal products including processed cereal products and cereal grains intended

for direct human consumption. Codex Alimentarius is discussing a ML of 5 �g/kg for certain species of

cereals (wheat, barley and rye). We have thus decided to quantify the impact of this measure. Practically,

all analyses greater than the proposed ML are deleted before proceeding to the calculation: in our data,

there are no value between 3 and 5 �g/kg for Cereal products so that the impact of the Codex proposal is

the same as the one of the EU regulation. Table 8 illustrates the impact of such a sanitary limit for adults

and children under 10 which was shown to be a very sensitive population. We observe a risk reduction that

is not signi�cant neither on adults nor on children when comparing the CI�s.

Table 8 around here, see page 26

For wine, three ML�s (1 �g/L, 2 �g/L and 3 �g/L) are currently being discussed at the European

commission. Table 9 illustrates the impact of such sanitary limits on adults and wine consumers. For all

proposed ML�s, the risk reduction is not signi�cant using 95% CI�s.

Table 9 around here, see page 27

In Tressou et al. (2004b), the impact of such ML�s was tested using a non parametric model with MLC1,

MLC2 or MLC3 censorship ad hoc method: the risk reduction consecutive to the application of a ML of 5

�g/kg for cereals for the children population was signi�cant for the M1 method and was not for the MLC2
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or MLC3 methods, which disabled any possible conclusion contrary to our KM based method that allows

for unique conclusion.

6 Conclusion

This paper presents an exposure assessment method based on the combination of Kaplan Meier estimators,

that accounts for left censorship of the contamination data. The main assumption to check for using the

KM estimator is the random feature of the censorship: this can be accepted in our datasets because of

the heterogeneity of the limits of detection and quanti�cation. The proposed KM procedure is fully non

parametric and allows to quantify the probability that exposure exceeds a safe dose, namely the PTWI, when

there are some non-quanti�ed or non-detected contamination data. We derive the asymptotic behavior of

the risk estimator thanks to the functional Delta Method. Using bootstrap and double bootstrap procedures,

we proposed six di¤erent con�dence intervals for our parameter of interest. The Basic Percentile CI gives

the best results: it has both good coverage probabilities and reasonable computing time. This CI is obtained

through a simple bootstrap technique that allows to account for uncertainty of both consumption data and

contamination data. It can be used to compare di¤erent subpopulations or evaluate the impact of sanitary

limits on particular food items: children under 10 are shown to be the riskier population for OTA exposure

and speci�c ML�s on cereals or wine do not signi�cantly reduce the risk exposure.

A Algorithm for con�dence interval building

We propose in this appendix the full description of the algorithm we used to compute the 6 CI�s brie�y

described in section 3.2. It is composed of the �ve following steps:

(Step 1) Estimation step

Compute e� = e�(d) according to the KM procedure on the initial samples of consumptions C and

contamination Qp; p = 1; : : : ; P .

(Step 2) First bootstrap level:

� For m1 = 1; : : :M1; draw a bootstrap sample of consumptions C
�(m1) and bootstrap samples of

contaminations Q
�(m1)
p ; p = 1; : : : ; P with replacement from the initial observations, with the

same corresponding sizes n;L(1); : : : ; L(P ):

� Compute e�(m1) by applying the KM procedure on the bootstrap samples C�(m1) and Q
�(m1)
p ;

p = 1; : : : ; P .
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� Compute also the variance of e�

c�2 =
1

M1

M1X

m1=1

 
e�(m1) �

"
1

M1

M1X

m1=1

e�(m1)

#!2
; (3)

� In order to evaluate the term by term variances from (1) and (2),

� Compute e�(m1)
jC by applying the KM procedure on the initial sample C and bootstrap samples

Q
�(m1)
p ; p = 1; : : : ; P .

� For j = 1; : : : ; P; compute e�(m1)
jQj

by applying the KM procedure on the initial sample Qj and

bootstrap samples C�(m1) and Q
�(m1)
p ; p = 1; : : : ; P; p 6= j.

� It is then possible to compute the "conditional to C" variance term 1
nV
�
A(d;C)

�
from (1),

c�2jC =
1

M1

M1X

m1=1

 
e�(m1)
jC �

"
1

M1

M1X

m1=1

e�(m1)
jC

#!2
;

and, for j = 1; : : : ; P; the "conditional to Qj" variance terms
1

L((j)V
�
B(d;Qj)

�
from (1) and (2),

c�2jQj
=

1

M1

M1X

m1=1

 
e�(m1)
jQj

�

"
1

M1

M1X

m1=1

e�(m1)
jQj

#!2

and the associated total variances from (1) and (2)

c�2(C1) = c�2jC +
PX

j=1

c�2jQj
; (4)

c�2(C2) =
PX

j=1

c�2jQj
: (5)

(Step 3) From this �rst bootstrap level, we can compute the following (1� �)%�con�dence intervals (CI):

� the Basic Percentile CI de�ned by
h
e�[�=2]; e�[1��=2]

i
where e�[�] is the �th percentile of

n
e�(m1);m1 = 1; : : : ;M1

o

(see Efron and Tibshirani, 1993);

� the Percentile CI de�ned by
h
2e� � e�[1��=2]; 2e� � e�[�=2]

i
where e�[�] is the �th percentile of

n
e�(m1);m1 = 1; : : : ;M1

o

(see Hall, 1992),

� the Asymptotic CI de�ned by
h
e� � ��1�=2 �

p
c�2
i
where ��1�=2 is the �=2

th quantile of a normal

distribution. This asymptotic CI could also be computed using c�2(C1) or c�2(C2) instead of c�2:
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(Step 4) To go further and studentize the estimators of the �rst bootstrap level, we want to estimate the variance

of e�(m1): For this, we use a second bootstrap level: m2 = 1; : : : ;M2 for each m1 �rst bootstrap level in

the spirit of Hall (1986).

� For each second bootstrap level iterationm2; draw a bootstrap sample of consumptions C
��(m2;m1) and

bootstrap samples of contaminationsQ
��(m2;m1)
p ; p = 1; : : : ; P with replacement from the �rst level

bootstrap level bootstrap samples C�(m1) and Q
�(m1)
p ; p = 1; : : : ; P , with the same corresponding

sizes n;L(1); : : : ; L(P ):

� For the global variance estimation, compute e�(m2;m1) by applying the KM procedure on the boot-

strap samples C��(m2;m1) and Q
��(m2;m1)
p ; p = 1; : : : ; P: Then compute the global variance of e�(m1)

with

c�2
(m1)

B =
1

M2

M2X

m2=1

 
e�(m2;m1) �

"
1

M2

M2X

m2=1

e�(m2;m1)

#!2
:

� For the component by component variance, compute for each second level bootstrap m2;

� e�(m2;m1)
jC : apply the KM procedure on the bootstrap samples C�(m1) and Q

��(m2;m1)
p ; p =

1; : : : ; P: Then compute the "conditional to C�(m1)" variance term with

c�2
(m1)

jC =
1

M2

M2X

m2=1

 
e�(m2;m1)
jC �

"
1

M2

M2X

m2=1

e�(m2;m1)
jC

#!2
;

� for j = 1 : : : ; P; e�(m2;m1)
jQj

: apply the KM procedure on the bootstrap samples C��(m2;m1),

Q
�(m1)
j and Q

��(m2;m1)
p ; p = 1; : : : ; P ; p 6= j: Then compute the "conditional to Q

�(m1)
j "

variance term with

c�2
(m1)

jQj
=

1

M2

M2X

m2=1

 
e�(m2;m1)
jQj

�

"
1

M2

M2X

m2=1

e�(m2;m1)
jQj

#!2
;

� The variance under (C1) is estimated byc�2
(m1)

(C1) =
c�2
(m1)

jC +
PP

j=1
1
�j
c�2
(m1)

jQj
and if (C2) is used,

c�2
(m1)

(C2) =
PP

j=1
1
��
j

c�2
(m1)

jQj
as in step 2.

(Step 5) Thanks to those variance estimators, we get three di¤erent studentized distributions

t(m1) =
e�(m1) � e�
b�(m1)
B

; t
(m1)
(C1) =

e�(m1) � e�
b�(m1)
(C1)

; t
(m1)
(C2) =

e�(m1) � e�
b�(m1)
(C2)

:
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The t-percentile con�dence intervals (CI) with con�dence 1� � are then given by

h
e� � b� � t[1��=2]; e� � b� � t[�=2]

i
;

h
e� � b�(C1) � t[1��=2](C1) ; e� � b�(C1) � t[�=2](C1)

i
;

h
e� � b�(C2) � t[1��=2](C2) ; e� � b�(C2) � t[�=2](C2)

i
;

where t
[�]
(:) respectively are the �

th percentile of empirical distribution of
�
t(m1);m1 = 1; : : : ;M1

	
or

n
t
(m1)
(C1) ;m1 = 1; : : : ;M1

o
or
n
t
(m1)
(C2) ;m1 = 1; : : : ;M1

o
and b� is the standard deviation associated to

variance (3) ; b�(C1) the standard deviation associated to variance to (4) and b�(C2) the standard deviation

associated to variance (5) :

If t(m1) is used, the CI is called "Double Bootstrap", if t
(m1)
(C1) is used, the CI is called "t-percentile

(C1)" and if t
(m1)
(C2) is used, the CI is called "t-percentile (C2)".
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Tables and �gures

Table 1: Coverage probabilities and CI widths: B = 5000, M1 = 200.

CI de�nition Basic-Percentile Percentile Asymptotic

Coverage probability 96.8% 87.4% 95.0%

CI width 6.26% 6.26% 6.24%

Table 2: Description of the consumption data. (Unit: g/week or mL/week)

Children Adults (NR Adults)

Food groups Mean 95
th
Percentile Mean 95

th
Percentile

Pork and poultry meat 203 515 250 (272) 666 (718)

Wine 5 0 702 (802) 3135 (3406)

Cereal-based products 1046 2103 586 (687) 1601 (1743)

Cereals 1103 2346 1414 (1582) 2959 (3087)

Co¤ee 6 36 90 (93) 274 (273)

Fruit and vegetable products 205 950 115 (134) 600 (660)

Dry fruit and vegetable 101 420 123 (136) 520 (583)

Rice, semolina 252 767 267 (277) 902 (950)

Beer 4 0 198 (212) 1000 (1000)

Table 3: Description of the contamination data

Products Number of Censorship Percentage Mean Maximum

measured values values of censored values MLC1 MLC2 MLC3 MLC1, MLC2, MLC3

Pork and poultry meat 1063 from 0.2 to 0.5 90% 0.313 0.189 0.064 6.1

Wine 996 0.01, 0.05 or 0.1 72% 0.135 0.131 0.127 4.33

Cereal-based products 75 0.5 or 1 96% 0.611 0.357 0.103 6.1

Cereals 241 0.2, 0.5 or 1 59% 0.728 0.609 0.490 11.1

Co¤ee 103 from 0.05 to 2 52% 0.984 0.779 0.573 10.6

Fruit and vegetable products 103 from 0.02 to 1 56% 0.193 0.149 0.104 3.45

Dry fruit and vegetable 82 from 0.05 to 1 87% 0.446 0.287 0.129 4.3

Rice, semolina 43 from 0.25 to 1 93% 0.533 0.300 0.067 1.4

Beer 2 0.05 or 0.1 100% 0.075 0.038 0.000 0.1, 0.05, 0
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Table 4: Comparison of the MLC1, MLC2, MLC3, the parametric based distributions and KM distributions, example of distribution

for simulations of size 5; 000 ; DHT=35ng/w/kg bw.

P25 Median Mean P75 P95 P99 P(D>PTWI)

KM 1.3 7.4 19.9 18.9 83.2 215.8 13.8%

MLC1 16.4 26.6 39.2 45.7 105.5 220.3 35.6%

MLC2 9.9 17.0 29.9 30.6 91.7 254.4 20.4%

MLC3 0.1 4.5 18.2 16.5 81.7 210.2 12.2%

P-LogN 3.9 8.7 75.5 20.6 85.1 312.1 14.8%

P-Gamma 2.5 7.7 21.0 21.6 84.7 179.5 15.8%

P-Weib 3.0 8.1 23.1 21.3 79.5 218.4 15.1%

P-Chi2 2.3 8.5 22.8 25.8 91.8 192.8 18.0%

Table 5: In�uence of the parameter choice for con�dence interval building; PTWI = 35; q = 0.

Parameters 95% Con�dence Intervals (in %)

B M1 M2 Basic Percentile Percentile Asymptotic Double Bootstrap (C1) (C2)

5000 200 200 9.58 16.82 8.34 15.58 8.95 16.21 9.40 16.50 9.45 16.24 9.46 16.24

5000 200 300 9.60 16.54 10.30 17.24 10.02 16.82 10.98 17.91 10.98 17.91 10.98 17.91

5000 400 100 9.24 16.52 10.88 18.16 10.03 17.37 11.05 20.08 11.14 19.56 11.15 19.54

5000 400 200 9.26 16.74 9.02 16.50 9.10 16.66 9.37 17.81 9.42 17.89 9.42 17.87

10000 200 200 9.34 17.36 8.56 16.58 9.21 16.71 8.98 18.43 8.96 18.29 8.94 18.30

5000 400 300 9.22 16.96 8.76 16.50 9.06 16.66 9.29 18.11 9.43 18.10 9.43 18.08

10000 400 400 9.36 16.07 9.37 16.08 9.05 16.39 9.47 17.49 9.51 17.41 9.50 17.43
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Table 6: Variance components

Number of Percentage of Contribution (in %) to Contribution (in %) to

analyses censored values b�(C1) b�(C2)

Consumption (All food) 3003 � 12.25 �

Pork and poultry meat 1063 90% 12.34 14.07

Wine 996 72% 12.37 14.09

Cereal-based products 75 96% 9.60 10.94

Cereals 241 59% 4.20 4.78

Co¤ee 103 52% 12.30 14.02

Fruit and vegetable products 103 56% 12.33 14.05

Dry fruit and vegetable 82 87% 12.32 14.04

Rice, semolina 43 93% 12.28 14.00

Beer 2 100% 0 0

Table 7: In�uence of age on the probability to exceed the safe level. (Basic Parcentile CI�s, M1 = 200, B = 5000 and q = 0)

scenario Sample size 95%-Con�dence interval for �(35) (%)

Children (less than 15) 1018 13.02 21.88

3-6 341 14.38 27.68

7-10 344 13.28 22.80

11-14 333 9.72 18.30

Adults (over 15) 1985 7.42 12.86

15-24 311 7.10 14.18

25-64 1365 7.52 13.46

over 64 309 7.12 12.52

Table 8: Impact of a sanitary limit on cereals on the probability to exceed the safe level. (Basic Percentile CI�s, M1 = 200, B = 5000

and q = 0)

Population (Sample size) Scenario 95% Con�dence interval for �(35) (%)

Adults (1985) No food standard 7.18 13.64

ML=5 �g=kg for cereals 5.00 10.46

Children under 10 (685) No food standard 15.06 24.76

ML=5 �g=kg for cereals 13.38 20.92
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Table 9: Impact of sanitary limits on wine on the probability to exceed the safe level. (Basic Percentile CI�s, M1 = 200, B = 5000 and

q = 0)

Population (Sample size) Scenario 95% Con�dence interval for �(35) (%)

Adults (1985) No food standard 6.96 14.28

ML=3 �g=L for wine 6.72 13.24

ML=2 �g=L for wine 7.56 13.58

ML=1 �g=L for wine 6.72 12.88

Wine consumers (1198) No food standard 8.48 14.72

ML=3 �g=L for wine 8.46 14.76

ML=2 �g=L for wine 7.56 14.70

ML=1 �g=L for wine 7.20 13.86

Figure 1: Comparison of exposure distributions obtained using the KM procedure , �tting a Gamma distribution and obtained under
MLC1, MLC2 , MLC3.
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Abstract

This paper presents an updated assessment of exposure in France to methyl mercury through the consumption of fish and fishery
products, and proposes several management scenarios which could reduce this exposure through changes to fish contamination lev-
els or fish consumption patterns. The exposure model was applied in line with previous methodological results [Tressou, J., Crépet,
A., Bertail, P., Feinberg, M.H., Leblanc J.Ch., 2004a. Probabilistic exposure assessment to food chemicals based on extreme value
theory: application to heavy metals from fish and sea products. Food Chem. Toxicol. 42, 1349–1358; Tressou, J., Leblanc, J.Ch.,
Feinberg, M., Bertail, P., 2004b. Statistical methodology to evaluate food exposure to a contaminant and influence of sanitary lim-
its: application to ochratoxin A. Regul. Toxicol. Pharmacol. 40, 252–263] so as to obtain a realistic estimate of probability and con-
fidence intervals (95% CI) concerning French consumers exposed to levels exceeding the revised fixed provisional tolerable weekly
intake (PTWI) for methyl mercury of 1.6 lg/week/kg of body weight, established by the Joint FAO/WHO Expert Committee on
Food Additives in 2003. The results showed that young children aged between 3 and 6 years old or 7 and 10 years old, and women
of childbearing age were at the risk groups. With respect to these groups and according to the fish consumers patterns (consumers of
predatory fish only or consumers of predatory and nonpredatory fish), the results suggested that strategies to diminish MeHg expo-
sure by reducing the amount of predatory fish consumed would be more efficient in significantly decreasing the probability of
exceeding the PTWI than the implementation of international standards.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Methyl mercury; Fish consumption; Risk management options; Exposure scenarios

1. Introduction

At high concentrations, methyl mercury (MeHg), a
well-known environmental toxicant found in the aquatic
environment, can cause lesions of the nervous system
and serious mental deficiencies in infants whose mothers
were exposed during pregnancy (WHO, 1990). There is
also concern that methyl mercury may give rise to re-
tarded development or other neurological effects at the
lower levels of exposure which are more consistent with

standard patterns of fish consumption (Davidson et al.,
1995; Grandjean et al., 1997; NRC, 2000). In 2003, a
new provisional tolerable weekly intake (PTWI) for
methyl mercury, of 1.6 lg/week/kg of body weight, took
into account the latest epidemiological results compiled
by the Joint Expert Committee on Food Additives and
Contaminants (JECFA, 2003). Methyl mercury is
mainly found in fish and fishery products, so only these
products have been considered when estimating human
exposure in this paper. Since the revised PTWI was pub-
lished, several national food safety agencies have emit-
ted advice or guidelines regarding a reduction in the
consumption of certain types of fish (e.g., predatory spe-
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cies) by more vulnerable groups such as young children,
pregnant women, and generally women of childbearing
age (FDA-EPA, AFSSA, FSAI, and FSANZ). Based
on a risk assessment performed by the European Food
Safety Authority, The European Commission also con-
cluded as to the need to protect vulnerable groups and
published advice on the consumption of predatory fish
(EC, 2004). At its 37th Session in April 2005, the Codex
Committee on Food Additives and Contaminants will
be putting forward a discussion paper on guideline levels
for methyl mercury in fish (CCFAC, 2005).

To analyse in more detail the French situation in this
respect, the present paper proposes an updated version
of the exposure assessment model regarding methyl mer-
cury, and a comparison of the influence of different risk
management scenarios in terms of reducing exposure,
particularly for more vulnerable groups. First of all,
we describe the methods most appropriate to estimating
French exposure to methyl mercury and present the re-
sults. Second, to emphasise the effects of different risk
management options on exposure, several scenarios,
including compliance with existing guidelines (CAC,
1991) or standards (EC, 2001) or with the new guidelines
being put forward concerning levels or restrictions on
fish consumption, are simulated with respect to the most
vulnerable groups.

2. Methodology

2.1. The exposure model

Consumption data were obtained from the French
‘‘INCA’’ survey, carried out by CREDOC-AFFSA-
DGAL (1999). This survey collected data on the food
consumption during one week of 3003 individuals aged
3 years or over. These data were acquired during an
11-month period from consumption logs completed par-
ticipants for a period of 7 consecutive days; the identifi-
cation of foods and quantities was simplified by the use
of a catalogue of photographs. The satisfactory national
representativeness of the sample was ensured by stratifi-
cation (region of residence, town size) and by the appli-
cation of quotas (age, sex, individual professional/
cultural category, and household size). From the survey,
89 individual food items were selected with respect to
fish or fishery products, and included fish, fish farming,
shellfish, molluscs, mixed dishes, soups, and miscella-
neous fishery products. Exposure to methyl mercury
was determined only for individuals those consuming
fish and fishery products (n = 2101). Two samples, chil-
dren and adults, were analyzed separately.

• The adult sample included 1985 individuals aged 15
years or over. To eliminate bias caused by an
under-estimation of food consumption by some sub-

jects, 511 ‘‘under-reporting’’ individuals (for whom
the calculated ratio between energy consumed and
basic metabolism was lower than a certain threshold)
were excluded from the calculations shown below.
The sample of ‘‘normal reporting’’ adults therefore
comprised 1474 individuals. 1253 (85%) of ‘‘normal
reporting’’ adults were consumers.

• The child sample included 1018 individuals aged 3–14
years. Unlike the adults, the children was not filtered,
because no formula was available to identify under-
reporting individuals. Eight hundred and forty-eight
(83%) children were consumers.

Food contamination data concerning fish and fish-
ery products available on the French market were gen-
erated by accredited laboratories from official national
surveys performed between 1994 and 2003 by the
French Ministry of Agriculture and Fisheries (MAA-
PAR, 1998–2003), and the French Research Institute
for Exploitation of the Sea (IFREMER, 1994–1998).
These 2818 analytical data were expressed in terms of
total mercury in mg/kg of fresh weight. Based on these
analytical results of contamination, a mean value was
calculated for each of the 89 individual food items con-
taining fish and fishery products and declared as hav-
ing been consumed by the consumers in the survey
(see Table 1).

For certain items in the nomenclature of the 89 indi-
vidual food items, such as breaded fish, consumption
data were weighted by a recipe factor. This correction
factor was determined from the percentage fish content
specified on labels, to obtain a realistic proportion of
fish in the final fish-based product ready to eat.

Analytical results are expressed as total mercury, but
the substance most dangerous to human health is the or-
ganic form, methyl mercury (MeHg), which mainly oc-
curs as a result of microbial activity on the mercury
present in the sea. MeHg is present in sea-foods, the
highest levels being found in predatory fishes, particu-
larly those at the top of the aquatic food chain. Accord-
ing to Claisse et al. (2001); Cossa et al. (1989); and
Thibaud and Noel (1989); methyl mercury levels in fish
and fishery products can be extrapolated from the mer-
cury content. For this reason, conversion factors have
been applied to the analytical data to obtain the corre-
sponding MeHg concentration in different foods: 0.84
for fish, 0.43 for mollusc, and 0.36 for shellfish (see
Table 1). It should be noted that in several Experts
Committee reports, total mercury was assumed to corre-
spond to methyl mercury.

Because the PTWI is established as a contaminant
unit per kilogram of body weight, and the influence of
an approximated body weight has been shown to pro-
duce an under-estimation of exposure, the actual indi-
vidual body weights declared by consumers were used
to estimate their exposure to methyl mercury.
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Table 1

Description of contamination data concerning mercury in fish and fishery products (unit: mg/kg of fresh matter)

Food item Number of

contamination values

Mean mercury

contamination

Conversion

factor

Mean methyl mercury contamination

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Anchovy fillets, canned in oil 26 0.065 0.84 0.055 0.055 0.055 0.055

Anglerfish or Monkfish, grilleda 15 0.153 0.84 0.128 0.128 0.128 —

Burbota 15 0.153 0.84 0.128 0.128 0.128 —

Carp, oven cooked 34 0.062 0.84 0.052 0.052 0.052 0.052

Carpaccio of salmon 14 0.034 0.84 0.029 0.029 0.029 0.029

Caviar substitute 1541 0.162 0.84 0.136 0.118 0.089 0.064

Cod, oven cooked 34 0.121 0.84 0.102 0.102 0.102 0.102

Cod, salted, poached 34 0.121 0.84 0.102 0.102 0.102 0.102

Cod, steamed 34 0.121 0.84 0.102 0.102 0.102 0.102

Codfish fritters 21 0.134 0.84 0.112 0.112 0.112 0.112

Crab or poached edible crab 3 0.089 0.36 0.032 0.032 0.032 0.032

Crab, canned 3 0.089 0.36 0.032 0.032 0.032 0.032

Crabsticks 1541 0.162 0.84 0.136 0.118 0.089 0.064

Cuttlefish 6 0.069 0.84 0.058 0.058 0.058 0.058

Dab 4 0.050 0.84 0.042 0.042 0.042 0.042

Dogfish, grilleda 10 0.289 0.84 0.243 0.217 0.217 —

Eel, oven cookeda 4 0.175 0.84 0.147 0.147 0.147 —

Fillet of linga 1 0.076 0.84 0.064 0.064 0.064 —

Fish cakes, fried 100 0.090 0.84 0.075 0.075 0.075 0.075

Fish in sauce, frozen 1541 0.162 0.84 0.136 0.118 0.089 0.064

Fish mousse 1541 0.162 0.84 0.136 0.118 0.089 0.064

Fish nugget 100 0.090 0.84 0.075 0.075 0.075 0.075

Fish nugget, fried 100 0.090 0.84 0.075 0.075 0.075 0.075

Fish pastry 1541 0.162 0.84 0.136 0.118 0.089 0.064

Fish soup, canned 1541 0.162 0.84 0.136 0.118 0.089 0.064

Fresh swordfisha 19 0.625 0.84 0.525 0.314 0.083 —

Hake 19 0.083 0.84 0.069 0.069 0.069 0.069

Hake (Alaska) 23 0.082 0.84 0.069 0.069 0.069 0.069

Halibuta 1541 0.162 0.84 0.136 0.118 0.089 —

Herring, fried 2 0.040 0.84 0.033 0.033 0.033 0.033

Herring, grilled 2 0.040 0.84 0.033 0.033 0.033 0.033

Herring, smoked 2 0.040 0.84 0.033 0.033 0.033 0.033

Lemon sole 4 0.050 0.84 0.042 0.042 0.042 0.042

Lemon sole, steamed 4 0.050 0.84 0.042 0.042 0.042 0.042

Mackerel, fried 24 0.074 0.84 0.062 0.062 0.062 0.062

Mackerel, in tomato sauce, canned 24 0.074 0.84 0.062 0.062 0.062 0.062

Mackerel, in white wine sauce, canned 24 0.074 0.84 0.062 0.062 0.062 0.062

Mackerel, oven cooked 24 0.074 0.84 0.062 0.062 0.062 0.062

Mussels, boiled 677 0.031 0.43 0.013 0.013 0.013 0.013

Oyster 510 0.036 0.43 0.015 0.015 0.015 0.015

Pâté of white fish or shellfish 1570 0.160 b 0.134 0.117 0.088 0.076

Perch, oven cooked 7 0.096 0.84 0.081 0.081 0.081 0.081

Pickled herring or Rollmops 2 0.040 0.84 0.033 0.033 0.033 0.033

Pike, oven cookeda 17 0.099 0.84 0.083 0.083 0.083 —

Pilchard, in tomato sauce, canned 39 0.062 0.84 0.052 0.052 0.052 0.052

Plaice, fried 3 0.047 0.84 0.040 0.040 0.040 0.040

Plaice, steamed 3 0.047 0.84 0.040 0.040 0.040 0.040

Rainbow trout, cooked in oven 470 0.050 0.84 0.042 0.041 0.041 0.041

Ray, frieda 23 0.156 0.84 0.131 0.076 0.076 —

Red mullet, fresh 5 0.136 0.84 0.114 0.114 0.114 0.114

River trout, steamed 470 0.050 0.84 0.042 0.041 0.041 0.041

Rock salmon or dogfish, rawa 10 0.289 0.84 0.243 0.217 0.217 —

Rockfish 1541 0.162 0.84 0.136 0.118 0.089 0.089

Saithe 23 0.082 0.84 0.069 0.069 0.069 0.069

Salmon, raw 14 0.034 0.84 0.029 0.029 0.029 0.029

Salmon, smoked 14 0.034 0.84 0.029 0.029 0.029 0.029

Salmon, steamed 14 0.034 0.84 0.029 0.029 0.029 0.029

Salted nugget (with fowl or fish) 1541 0.162 0.84 0.136 0.118 0.089 0.064

Sardine in oil, canned 39 0.062 0.84 0.052 0.052 0.052 0.052

Sardine, in tomato sauce, canned 39 0.062 0.84 0.052 0.052 0.052 0.052

Sardine, raw 39 0.062 0.84 0.052 0.052 0.052 0.052

(continued on next page)

A. Crépet et al. / Regulatory Toxicology and Pharmacology 42 (2005) 179–189 181



When matching contamination and food consump-
tion data, different levels of product aggregation are
possible, depending on the methods used to model expo-
sure and data size. The disaggregated case is when all
products within a nomenclature are considered as a food
item. The aggregated case is when products are grouped
into a reasonable number of classes. A previous study
showed that the aggregated level had an impact on
methyl mercury intake by producing a higher degree
of exposure than the disaggregated level (Tressou
et al., 2004a). This observation could be explained by
the fact that for the aggregated level, contamination
values were dependent on data homogeneity. Indeed, if
within a class, a product contains numerous high
contamination values, the average contamination will
be greater than if the true contamination is attributed
to each product. For this reason, the disaggregated level
has been used in the present study.

Contamination data are frequently left-censored be-
cause of the quantification limits of analytical methods.

Different assumptions are used to replace censored data.
In our sample, we found 7% of censored data for which
the levels of mercury were below the detection limit or
quantification limit. We adhered to international recom-
mendations (GEMs/Food-WHO, 1995) and applied a
value equal to half the detection limit or half the quan-
tification limit for these data.

In line with previous studies comparing the different
models used to calculate exposure (Tressou et al.,
2004a,b), we employed as more appropriate and more
efficient method when disaggregated level is considered,
adopting a deterministic approach. This method con-
sisted in estimating the exposure to methyl mercury by
combining the individual food consumption data for
each consumer of fish and fishery products with the
mean contamination level of each product and dividing
it by the actual body weight of the consumer. Although
it is acknowledged that a mean may be a poor indicator
of the central trend of a distribution, particularly when
this distribution is markedly skewed (which is often

Table 1 (continued)

Food item Number of

contamination values

Mean mercury

contamination

Conversion

factor

Mean methyl mercury contamination

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Scallop 27 0.016 0.43 0.007 0.007 0.007 0.007

Scampi 13 0.090 0.36 0.033 0.033 0.033 0.033

Sea bassa 33 0.094 0.84 0.079 0.079 0.079 —

Seafood 1276 0.033 b 0.014 0.014 0.014 0.014

Shrimp nugget 5 0.014 0.36 0.005 0.005 0.005 0.005

Shrimp or prawn, boiled 5 0.014 0.36 0.005 0.005 0.005 0.005

Skate, oven cookeda 23 0.156 0.84 0.131 0.076 0.076 —

Skate, simmereda 23 0.156 0.84 0.131 0.076 0.076 —

Skewer of fish 1541 0.162 0.84 0.136 0.118 0.089 0.064

Skewer of shrimps 5 0.014 0.36 0.005 0.005 0.005 0.005

Sole, cooked in oven 12 0.100 0.84 0.084 0.084 0.084 0.084

Special pizza (sea food) 1276 0.033 b 0.014 0.014 0.014 0.014

Spiny lobster 2 0.218 0.36 0.078 0.078 0.078 0.078

Squid, fried 4 0.055 0.84 0.046 0.046 0.046 0.046

Taramasalata 13 0.101 0.84 0.084 0.084 0.084 0.084

Trout, rainbow, cooked, dry heat 470 0.050 0.84 0.042 0.041 0.041 0.041

Trout, rainbow, steamed 470 0.050 0.84 0.042 0.041 0.041 0.041

Tuna in oil, canneda,c 290 0.329 0.84 0.277 0.263 0.210 —

Tuna, rawa,d 31 0.813 0.84 0.683 0.401 0.320 —

Tuna, oven bakeda,d 31 0.813 0.84 0.683 0.401 0.320 —

Tuna, natural canneda,c 290 0.329 0.84 0.277 0.263 0.210 —

Turbot, wild 10 0.024 0.84 0.020 0.021 0.022 0.023

Unspecified fish dish 1541 0.162 0.84 0.136 0.118 0.089 0.064

Vol-au-vent 2818 0.093 b 0.081 0.071 0.054 0.036

Whelk, cooked, moist heat 1 0.037 0.43 0.016 0.016 0.016 0.016

Whiting, fried 45 0.093 0.84 0.078 0.078 0.078 0.078

Whiting, steamed 45 0.093 0.84 0.078 0.078 0.078 0.078

Winkle (Whelk), boiled 1248 0.032 0.43 0.014 0.014 0.014 0.014

Scenario 1. Use of the full contamination data set.

Scenario 2. Exclusion of contamination data over 0.5 mg/kg for fishes, and over 1 mg/kg for predatory fishes.

Scenario 3. Exclusion of all contamination data over 0.5 mg/kg for all species of fish.

Scenario 4. Exclusion of predatory fish from consumption (noted by —, no contamination have been taken into account).
a Predatory fish listed as defined by CAC (1991) and completed by list from the EC Ruling dated March 8th 2001 No. 466/2001.
b Adapted conversion factor is used according to the type of fish (0.36 for shellfish, 0.43 for mollusc, and 0.84 for fish).
c The species used to calculate the mean canned tuna contamination are: thunnus alalunga, thunnus albacares, and thunnus pelamis.
d The species used to calculate the mean fresh tuna contamination are: thunnus thynnus and thunnus obesus.
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the case for contamination data), the use of average con-
taminant concentrations in intake calculations provides
a realistic and appropriate estimation of long-term
exposure, because these intakes are compared with the
reference toxicological intakes established over an entire
lifetime (FAO/WHO, 1997). Individual consumption
data and contamination data are supposed to be inde-
pendent and identically distributed. Thus, the individual
food exposure is:

Ei ¼

P89
j¼1CijQj

W i

;

where
Cij is the consumption in grams per week of product j

by person i;
Qj is the mean of product j contamination expressed

in mg/kg of fresh weight;
Wi is the body weight of person i; and
Ei is the exposure to methyl mercury of person i.
The risk was characterized by the probability of

exposure of a population to exceed the revised PTWI
of 1.6 lg/kg b.w./week, established by JECFA in 2003.
If r (d) denotes this probability, then r (d) = 5% in a gi-
ven population means is that an unknown individual
in this population may exceed d with a probability of
5%. This allows extrapolating results from INCA survey
to French population. This probability is evaluated
using the empirical estimator r̂ðdÞ. r̂ðdÞ is the ratio be-
tween the number of exposures exceeding d and the total
number of exposures. In other words, r̂ðdÞ is the propor-
tion of consumers whose exposure exceeds d. The
asymptotically valid confidence interval of 95% for this
estimator, referred to as the CI, is built using the boot-
strap techniques already presented in a previous work
(Tressou et al., 2004b). Thereafter, when the probabili-
ties of two populations are compared, the difference be-
tween the probabilities is significant if the intervals do
not overlap.

2.2. Scenarios

To simulate the influence of different risk manage-
ment options on methyl mercury exposure with respect
to health and consumer protection, different scenarios
were applied, including changes to fish contamination
levels and fish consumption patterns. These scenarios
simulated possible risk management measures and

assumed that these measures would be 100% effective
at both the market (application of guideline levels of
contamination) and population levels (application of ad-
vice on fish consumption).

• Scenario 1. Use of the full contamination data set.
This scenario was applied to all the population age
groups.

• Scenario 2. Exclusion of contamination data over
Codex guideline levels or European standards for
methyl mercury (CAC, 1991; EC, 2001): for all fish
except predatory fish, the guideline level is 0.5 mg/
kg, while for predatory fish such as shark, swordfish,
tuna, pike, and others, the guideline level is 1 mg/kg.
This scenario was applied to only the most vulnerable
population groups, as defined from the results
obtained using Scenario 1. It appeared that the group
with the highest risk of exceeding the PTWI was chil-
dren below the age of 10 years. Moreover, the
JECFA Committee (JECFA, 2003) stated that the
most critical endpoint for methyl mercury was neuro-
behavioural effects on the foetus. Thus, women who
are pregnant or could become pregnant (referred to
in the text as women of childbearing aged 19–44
years) have been considered as a target group for risk
management measures. In the three scenarios which
follow, we will explore the effects of possible risk
reduction measures concerning exposure to methyl
mercury in these vulnerable population groups.

• Scenario 3. Exclusion of all contamination data over
0.5 mg/kg for all species of fish. In this case, it is pro-
posed to halve the guideline levels established for
predatory fish. This scenario and those referred to
below are based on the results obtained in Table
2A. Indeed, the contribution of different fish and fish-
ery products to exposure of individuals in vulnerable
groups which exceed the PTWI shows that predatory
fish constitute an important vector of exposure.
Moreover, in women of childbearing age, predatory
fish are the main vector of exposure (70%).

• Scenario 4. Exclusion of predatory fish from con-
sumption. This scenario considers the possibility that
vulnerable groups should exclude the consumption of
predatory fish from their eating behaviour during a
short period of their life (pregnancy for women and
childhood for children). For this scenario and the
next one, no standard on contamination is used.

Table 2A

Contribution of different fish and fishery products to the exposure of vulnerable persons exceeding the PTWI of 1.6 lg/kg b.w./week

Group Number of

individuals

Predatory

fish (%)

Other specified

fish (%)

Unspecified

fish (%)

Fishery product

(Molluscs, shellfish, etc.) (%)

3–6 years 293 27.2 22.1 50.4 0.2

7–10 years 283 28.9 32.0 38.3 0.8

Women of childbearing age 322 69.6 8.6 21.2 0.6
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• Scenario 5. Limitations on the consumption of preda-
tory fish. This scenario considers the possibility of
reducing exposure among vulnerable consumer groups
by limiting the consumption of predatory fish (canned
and fresh) adopting amore reasonable approach in line
with existing nutritional recommendations (PNNS,
2001), while the appropriate level of predatory fish
consumption must not exceed the PTWI. Based on
mean estimations, this scenario express fish consump-
tion advisories for two types of fish consumer patterns;
consumers only of predatory fish and consumers of
predatory fish and nonpredatory fish. It is important
to bear in mind that this estimation doesn�t take into
account special situation of over exposure relating,
for example, to possible local environmental pollution
sources of fish contamination or linked to at risk
behavioural practices (e.g, consumption of one type
of predatory fish highly contaminated).

2.3. Practical computation of the scenarios

For Scenario 2 and 3, means exposure to methyl mer-
cury have been recomputed taking into account the
exclusion of certain fish from contamination analysis.
Values of mean methyl mercury contamination for these
scenarios are presented in Table 1.

For Scenario 4, although no standard on contamina-
tion is used, mean contamination change for some food
items like ‘‘unspecified fish dish’’ due to the exclusion of
predatory fish from consumption and implicitly from
contamination data.

To obtain corresponding consumption advisories ex-
pressed in portions of predatory fish (canned and fresh)
in Section 3.5, the equations given below had been used.
Two types of fish consumer patterns are considered:
consumers only of predatory fish and consumers of
predatory and nonpredatory fish. Portions (noted Pg,k)
were calculated by dividing the maximum quantity of
predatory fish (canned and fresh) by the respective mean
quantity of a portion of canned and fresh predatory fish
(noted mg,k) reported to be consumed by the three ven-
erable groups in the INCA survey.

P g;k ¼
CMg;k

mg;k

;

where k = f for fresh predatory fish or k = c for canned
predatory fish and g denotes the group and;

• CMg,k, maximum consumption in grams of canned or
fresh predatory fish which could be consumed in one
week with reference to d: CMg;k ¼ d � W g=Qk.

• d takes for consumers of only predatory fish the value
of the PTWI (1.6 lg/kg b.w./week) and for consum-
ers of predatory and nonpredatory fish, d takes the
value of the difference between PTWI and the mean
exposure due to nonpredatory fish. This mean is cal-
culated from Table 2B and Table 4 (Scenario 1) and
was 0.76 lg/kg b.w./week for children between the
ages of 3 and 6 years, 0.54 lg/kg b.w./week for chil-
dren between the ages of 7 and 10 years, and
0.38 lg/kg b.w./week for women of childbearing age.

• Wg, mean body weight per aged group g, 19 kg for
children between the ages of 3 and 6 years, 29 kg
for children between the ages of 7 and 10 years, and
58 kg for women of childbearing age.

• Qk, mean of canned or fresh predatory fish contami-
nation expressed in mg/kg of fresh weight, respec-
tively: 0.24 mg/kg of fresh weight and 0.28 mg/kg of
fresh weight.

• For canned predatory fish, only tuna (thunnus ala-
lunga, thunnus albacares, and thunnus pelamis) is
sold and consumed on the French market. Then c

represented canned tuna.

3. Results

3.1. Scenario 1: estimation of exposure to methyl mercury

based on all contamination data

Table 3 shows the mean, median, and 97.5th percen-
tile of exposure expressed in microgram per kilogram of
body weight per week. It also presents the probability of
exceeding the revised PTWI for methyl mercury (1.6 lg/
kg b.w./week) among consumers of fish and fishery
products in the two population samples.

Children consumed a mean of 174 g/week of fish and
fishery food. Their mean exposure to methyl mercury
was therefore 0.65 lg/kg b.w./week and the value at
the 97.5 percentile was 2.57 lg/kg b.w./week. The prob-
ability of exceeding the PTWI estimated using the
empirical method was 6.7%, with a 95% CI [5.2; 8.5].

In adults, the mean consumption of fish and fishery
food was 285 g/week. Mean exposure was therefore
0.43 lg/kg b.w./week and at the 97.5 percentile, the

Table 2B

Contribution of different fish and fishery products to the exposure of vulnerable groups

Group Number of

individuals

Predatory

fish (%)

Other specified

fish (%)

Unspecified

fish (%)

Fishery product

(Molluscs, shellfish, etc.) (%)

3–6 years 293 12.6 54.6 29.3 3.5

7–10 years 283 10.6 48.5 35.2 5.7

Women of childbearing age 322 18.4 38.3 35.9 7.5
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value of exposure to methyl mercury was about 1.78 lg/
kg b.w./week. The probability of exceeding the PTWI
was 3.0% in the adult sample, with a 95% CI of [1.9;
3.9]. Thus, 97% of adults had exposure levels below the
PTWI.

The confidence intervals showed that the risk of
exceeding the PTWI significantly differed between the
two groups. Indeed, the probability of exceeding the
PTWI was twice as high in children than in adults.

Table 3 shows also, a more accurate estimate of expo-
sure to methyl mercury regarding different age groups in
the INCA population.

Mean exposure ranged from 0.36 lg/kg b.w./week
for subjects 15–24 years old to 0.87 lg/kg b.w./week

for children 3–6 years old. At the 97.5th percentile, the
exposure value ranged from 1.13 lg/kg b.w./week for
subjects 15–24 years old to 3.23 lg/kg b.w./week for
children 3–6 years old. It should be noted that in some
age groups, exposure at the 97.5th percentile exceeded
the PTWI, at 3.23 lg/kg b.w./week for children between
3 and 6 years, 2.34 lg/kg b.w./week for children be-
tween 7 and 10 years, 2.01 lg/kg b.w./week for adults
between 35 and 44 years, and 1.98 lg/kg b.w./week for
adults between 45 and 64 years, respectively. Regarding
the probability of exceeding the PTWI, values ranged
from 0.5 to 12.6%, with respective 95% CI of [0.0; 2.0]
and [8.9; 16.0]. The highest values were seen in children
between the ages of 3 and 6 years.

Table 3

Exposure assessment to methyl mercury in different age groups

Group Number of

individuals

Mean

consumption

(g/week)

Mean exposure

(lg/kg b.w./week)

Median exposure

(lg/kg b.w./week)

97.5th percentile

(lg/kg b.w./week)

Empirical

probability of

exceeding the

PTWI (1.6 lg/kg

b.w./week) (%)—

95% CI

Children (3–14 years) 848 174 0.65 0.44 2.57 6.7 [5.2;8.5]

3–6 293 151 0.87 0.60 3.23 12.6 [8.9;16.0]

7–10 283 181 0.60 0.45 2.34 5.0 [2.1;7.4]

11–14 272 191 0.47 0.32 1.58 2.2 [0.4;4.0]

Adults (>14 years) 1253 285 0.43 0.30 1.78 3.0 [1.9;3.9]

15–24 204 229 0.36 0.27 1.13 0.5 [0.0;2.0]

25–34 248 242 0.40 0.30 1.54 2.8 [1.2;5.2]

35–44 248 285 0.46 0.29 2.01 4.4 [1.6;6.9]

45–64 336 330 0.47 0.33 1.98 4.2 [2.4;6.5]

>64 217 319 0.44 0.32 1.52 1.8 [0.5;3.7]

Women of childbearing

age (19–44 years)

322 262 0.47 0.32 1.96 4.4 [2.5;6.5]

Table 4

Exposure assessment to methyl mercury concerning vulnerable groups under the different scenarios or management options

Group Scenarios Number of

individuals

Mean

consumption

(g/week)

Mean exposure

(lg/kg b.w./week)

Median exposure

(lg/kg b.w./week)

97.5th percentile

(lg/kg b.w./week)

Empirical

probability of

exceeding the

PTWI (1.6 lg/

kg b.w./week)

(%)—95% CI

3–6 years 1 293 151 0.87 0.60 3.23 12.6 [8.9;16.0]

2 293 151 0.78 0.58 2.76 9.9 [6.5;13.3]

3 293 151 0.67 0.51 2.17 7.5 [4.8;10.2]

4 283a 147 0.53 0.42 1.65 2.8 [1.1;4.9]

7–10 years 1 283 181 0.60 0.45 2.34 5.0 [2.1;7.4]

2 283 181 0.55 0.43 2.05 4.2 [2.1;6.7]

3 283 181 0.48 0.40 1.75 3.5 [1.8;5.3]

4 272a 175 0.38 0.30 1.36 1.5 [0.0;3.3]

Women of

childbearing age

1 322 262 0.47 0.32 1.96 4.4 [2.5;6.5]

2 322 262 0.42 0.29 1.48 1.6 [0.3;3.1]

3 322 262 0.35 0.25 1.26 0.6 [0.0;1.6]

4 308a 245 0.24 0.18 0.85 0.0 [0.0;0.0]

a Under Scenario 4, some consumers from each group have been excluded. It concerns consumers consuming only predatory fish (10 individuals for

children 3–6 years, 11 for children 7–10 years, and 14 for women of childbearing age).
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3.2. Scenario 2: simulated exposure to methyl mercury

excluding contamination values which exceeded Codex

guideline levels

The Codex guideline level for methyl mercury is
0.5 mg/kg for all fish except predatory species, where it
is 1 mg/kg (CAC, 1991). When we applied compliance
with the Codex guideline level to our exposure model,
2.3% of predatory fish samples as tuna, shark, sword-
fish, ray, and marlin would have been rejected from
the market.

In addition, Table 4 shows that compliance with Co-
dex guideline levels would not significantly reduce the
probability of exceeding the PTWI in vulnerable groups,
i.e., children aged between 3 and 6 years (9.9% versus
12.6% with 95% CI [6.5; 13.3] versus [8.9; 16.0]), children
aged between 7 and 10 years (4.2 versus 5.0% with 95%
CI [2.1; 6.7] versus [2.1; 7.4]), and women of childbear-
ing age (1.6 versus 4.4% with 95% CI [0.3; 3.1] versus
[2.5; 6.5]).

3.3. Scenario 3: simulated exposure to methyl mercury

after excluding all values exceeding 0.5 mg/kg for all fish

Table 4 shows that excluding all fish species contam-
inated at levels over 0.5 mg/kg did not significantly re-
duce the probability of exceeding the PTWI among
children aged between 3 and 6 years (7.5 versus 12.6%
with 95% CI [4.8; 10.2] versus [8.9; 16.0]), children aged
between 7 and 10 years (3.5 versus 5.0% with 95% CI
[1.8; 5.3] versus [2.1; 7.4]), but significantly reduced the
probability of exceeding the PTWI among women of
childbearing age (0.6 versus 4.4% with 95% CI [0.0;
1.6] versus [2.5; 6.5]). In addition, this scenario would
have rejected from the market 8.8% of predatory fish
samples and particularly tuna, swordfish, ray, grenadier,
marlin, and shark.

3.4. Scenario 4: simulated exposure to methyl mercury

excluding the consumption of predatory fish

Table 4 shows that among children aged between 3
and 6 years, this type of risk management option would
reduce significantly the probability of exceeding the
PTWI, without totally excluding any risk (2.8 versus
12.6% with 95% CI [1.1; 4.9] versus [8.9; 16.0]). Among
children aged between 7 and 10 years, the risk was not
significantly reduced (1.5 versus 5.0% with 95% CI
[0.0; 3.3] versus [2.1; 7.4]). And for women of childbear-
ing age, the probability of exceeding the PTWI would be
reduced significantly by a factor of two the exposure at
the 97.5th percentile and to zero the risk of exceeding
the PTWI with 95% CI [0.0; 0.0].

3.5. Scenario 5: simulated exposure to methyl mercury

restricting consumption of predatory fish

Results in Table 5 shows that the ranges of fish
quantity of a portion advisories which could be con-
sumed in one week with reference to the PTWI
according to the two types of fish consumers pattern
were between 65 and 110 g (0.5–2.5 portions) for chil-
dren aged from 3 to 6 years, between 125 and 170 g
(0.5–4 portions) for children aged from 7 to 10 years,
and between 290 and 330 g (1.5–5.5 portions) for wo-
men of childbearing age.

For example, in Table 5, you can read: women of
childbearing age who are consumers of predatory fish
only can consume up to 380 g/week of fresh predatory
fish that is 2 mean portions per week or up to 330 g/
week of canned tuna that is 5.5 mean portions per week,
without exceeding the PTWI. If they also eat nonpreda-
tory fish, they should reduce their consumption of fresh
predatory fish to 290 g/week that is 1.5 portions per
week or reduce their consumption of canned tuna to
255 g/week that is 4 mean portions per week.

Table 5

Fish consumption advisories according the fish consumers patterns and the PTWI

Fish consumers patterns Group Maximum consumption of

fresh predatory fisha

(g/week)–(portions/week)b

Maximum consumption of

canned tuna (g/week)–

(portions/week)b

CMg,f Pg,f CMg,c Pg,c

Consumers of predatory

fish only

3–6 years 125 1 110 2.5

7–10 years 190 1 170 4

Women of childbearing age 380 2 330 5.5

Consumers of predatory

and nonpredatory fish

3–6 years 65 0.5 60 1

7–10 years 125 0.5 110 2.5

Women of childbearing age 290 1.5 255 4

a Predatory fish listed as defined by CAC (1991) and completed by list from the EC Ruling dated March 8th 2001 No. 466/2001 (e.g., tuna,

swordfish, ray, grenadier, marlin, and shark).
b Disaggregated food consumption data from the INCA survey showed that the mean quantity of a portion of canned tuna consumed by children

between the ages of 3 and 6 years or 7 and 10 years, and by women of childbearing age, was around 40, 40, and 60 g/week. For fresh predatory fish,

the mean quantity of a portion was for the same groups 120, 160, and 170 g/week.
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4. Discussion

First of all, mention should be made of the methods

used to evaluate exposure to methyl mercury. Indeed

many parameters such as the food survey method em-

ployed, the choice of body weight, aggregation levels,

censored data treatment, conversion factors, recipe fac-

tors, etc., can influence exposure levels. These parame-

ters generate a degree of bias leading to the situation

where an assessment is never complete and often needs

to be refined a posteriori. Another important issue is

that when such ‘‘targeted’’ management options are pro-

posed concerning vulnerable groups, it is necessary to

obtain information on the principal contributory fac-

tors, based on the exposure of individuals exceeding

PTWI and not on the whole group, because these major

contributors may differ, depending on the population

considered.

It is important to note three kinds of remarks.

The first one is that the higher exposure among chil-

dren was clearly explained by the fact that exposure was

expressed on individual body weight basis. Children

consumption of fish and fishery products was similar

to that of adults with a significantly different body

weight (on average, 20 versus 70 kg). Exposure among

children was therefore much higher than in adults,

which does not imply that it will be higher when they

are adults.

The second one is that the main exposure vectors to

methyl mercury for children are food items referred to

in the French survey as ‘‘undetermined fish dish’’ or

‘‘fish with sauce’’ (50% for 3–6 years and 38% for 7–10

years). The mean contamination levels attributed to

these items could be particularly high because the mean

contamination value fixed in the model for these food

items was calculated using all fish contamination values,

which include a large proportion of predatory fishes.

Thus to avoid under or over-estimation, it would be nec-

essary to make a better estimation of children�s exposure

by knowing precisely which fishes are included in these

foods items.

The last one is that in view of the fact that the re-

sult of methyl mercury toxicity is neurobehavioural ef-

fects on the foetus, women of childbearing age are

considered to be the most vulnerable group. But it

should, however, be noted that some of the important

physiological modifications taking place during preg-

nancy and which might lead to lower exposure were

not taken into account in the exposure assessment

model. These include important increase in body

weight (on average, +12 to 16 kg), possible modifica-

tions of food behaviour such as an aversion to eating

fish (Bayley et al., 2002) and possible changes into

bioavailability.

Then, we examined the possible impact of risk reduc-

tion measures on the exposure of the two high-risk

groups: young children as defined above and women

of childbearing age so as to take into consideration pos-

sible exposure of a foetus.

For high-risk groups, a cut-off point in the distribu-

tion curve of contamination, as proposed in Scenario 2

and 3, would have less impact than a recommendation

to target consumer groups to exclude predatory fish

from their consumption pattern as proposed in Scenario

4 and 5.

In addition, such a risk management option with the

tested cut-off points would exclude fish from the market,

especially with respect to certain predatory fish species

such as tuna, swordfish, ray, marlin, grenadier, and

shark, and would have a negative economic impact

without being efficient in protecting vulnerable popula-

tions and significantly reducing to zero the risk of

exceeding the PTWI.

The impact of this recommendation would be more

efficient in women of childbearing age than in young

children, for two further reasons. First, the percentage

of predatory fish consumers in these groups is lower (be-

tween 10 and 13%), and second, predatory fish is not the

highest contributing vector to exposure in children who

are exceeding the PTWI (27% for 3–6 years and 29% for

7–10 years). This is not the case in women of childbear-

ing age who exceed the PTWI (70%).

At this stage, a reasonable option from the public

health, economic, and technical points of view, as pro-

posed in Scenario 5, might be to restrict the consump-

tion of predatory fish (canned and fresh) during a

short period of the life of the vulnerable groups in accor-

dance with their fish consumption patterns. Then their

exposures will not exceed the PTWI and foetus will

not be exposed to high level of health concern of methyl

mercury according to recommendations of the World

Health Organisation (WHO, 1990).

However, it is important to notice that in Scenario 4

and 5 a strong hypothesis is done on the reaction of vul-

nerable group. Indeed exposure is calculated while con-

sidering that the diffusion of information to vulnerable

group is 100% efficient, i.e., for Scenario 4 they reduce

their predatory fish consumption to zero.

In reality, according to the results from a recent publi-

cation on the impact on fish consumption among preg-

nant women after a national mercury advisory by

obstetric offices, Oken et al. (2003) have shown a decrease

of fish consumption of 27%. It seems that the diffusion of

information and its respect is not efficient to 100%. In any

case, for these two last scenarios, the diffusion of informa-

tion to pregnant women and by extension to children con-

cerning predatory fish consumption could be done by

gynaecologists and pediatrics medical doctors.

Also, another important point not taken into account

here and which needs to be focused on when dealing

with health advisory is the possible transfer of predatory

fish consumption on other fishes. This transfer may have
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an impact on exposure. On this last point, a National
Research Programme on Human Nutrition (INRA-IN-
SERM, 2004–2006) is actually in progress to explore this
issue for specific group at risk (women who may become
pregnant, pregnant women, nursing women, and young
children).

Despite these reassuring results, it should be noted
that preliminary results investigating specifically high
consumers of fish and fishery products (>2 portions
per week) along the French coasts showed that their
mean consumption could be around 3 times higher than
the consumption levels in consumers of fish and fishery
products recorded during the INCA survey (155 versus
54 g/day) (INRA/AFSSA/DGAL, 2004). Account
should also be taken of the health advantages of fish
consumption in preventing cardiovascular disease and
its beneficial effects on foetal development (SACN/
COT, 2004). At the opposite, a recent review of epidemi-
ological studies reports the risk of cardiovascular effects
associated with MeHg exposure (Stern, 2005). It is par-
ticularly important to measure both the risk and the
benefit of fish consumption. In spite of the fact that
the limitations on predatory fish consumption recom-
mended here do not specifically target fish species
known to be rich in x-3 polyunsaturated fatty acids
(PUFAs) (Mahaffey, 2004; Sidhu, 2004), further infor-
mation is required in regard of the French situation if
hypotheses are to be put forward in this respect. To as-
sist risk managers and health advisory agencies in their
approach to consumers, more information will be soon
available in 2005 on the French situation regarding the
benefits and risks of fish consumption. A national study
actually in progress will provide biomarkers for the
exposure to methyl mercury and to x-3 PUFAs (namely
eicosapentaenoic acid and docosahexaenoic acid) of
high consumers of fish and fishery products living along
the French coasts (INRA/AFSSA/DGAL, 2004). The
biomarkers soon available will help to validate the type
of exposure estimated by this analysis.

5. Conclusion

To conclude, this paper presents different scenarios
for a reduction in exposure to methyl mercury through
the consumption of fish and fishery products by the
French population. It describes the effects of various risk
management options on contamination levels and the
quantities consumed, and highlights the fact that pro-
viding advice on food consumption is more efficient than
fixing more restrictive guideline levels for methyl mer-
cury in fish. We also point out the need to refine our
exposure models to ensure greater accuracy regarding
the major dietary contributors not defined in our na-
tional survey, the need for further investigations with re-
spect to physiological considerations and more specific

information on vulnerable groups and high consumers
through the conduct of a survey on biomarkers for
exposure including also socio-economic aspects to better
assist risk managers in their decision-making.
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Tressou, J., Crépet, A., Bertail, P., Feinberg, M.H., Leblanc, J.Ch.,

2004a. Probabilistic exposure assessment to food chemicals based

on extreme value theory: application to heavy metals from fish and

sea products. Food Chem. Toxicol. 42, 1349–1358.

Tressou, J., Leblanc, J.Ch., Feinberg, M., Bertail., P., 2004b. Statis-

tical methodology to evaluate food exposure to a contaminant and

influence of sanitary limits: application to ochratoxin A. Regul.

Toxicol. Pharmacol. 40, 252–263.

WHO, 1990. Methylmercury, Environmental Health Criteria 101,

Geneva.

Acronyms

AFSSA Agence Française de Sécurité Sanitaire
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COT Committee on Toxicity

CREDOC Centre de Recherche pour l�Etude et

l�Observation des Conditions de Vie

DGAL Direction générale de l�alimentation

EC European Commission

EPA Environmental Protection Agency

FAO Food and Agriculture Organization

FDA Food and Drug Administration

FSAI Food Safety Authority of Ireland

FSANZ Food Standards Australia New Zealand

GEMs Global Environment Monitoring System

IFREMER Institut français de recherche pour
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