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UNIVERSITÉ PARIS VI

Subject

Materials Science

Presented by

Francesca Ianni

To obtain the degree of

Doctor Philosophiæ in Materials Science

Title

Complex behavior of colloidal suspensions

under shear: dynamics investigation
through light scattering techniques.

Discussed on the 16th March 2007
in front of the commission composed of:

Prof. Giancarlo Ruocco Thesis director
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Introduction

Colloidal systems are suspensions of nanoscopic particles in a liquid medium.
They are widespread in everyday life and in many industrial domains, but the
physical behavior of these materials is still poorly understood. When subject
to a shear flow, such systems may exhibit a wide and complex phenomenol-
ogy: appearance of a yield stress, decrease of the viscosity as the external
drive is enhanced (shear thinning), growth of the viscosity (shear thickening)
which may even lead to cessation of the flow (jamming transition) for strong
external drives, formation of bands along the flow (shear banding). Though
several experimental works have well characterized this complex rheology
(i.e. flow behavior), a microscopic description of the observed behavior is
still not exhaustive. One possible route to go further a phenomenological
description is to recognize a strong similarity between the dynamics of con-
centrated colloidal suspensions and the dynamics of glassy systems. Glasses
are liquids whose molecules are so tightly packed that the time relaxation
to reach thermodynamic equilibrium becomes experimentally infinite, while,
macroscopically, their viscosity diverges. Some of the tools which resulted
successful for the investigation of glassy dynamics have thus been extended
to account for the presence of driving forces. This idea, exploited for more
than one decade, has highly contributed to a better understanding of the mi-
croscopic behavior of colloidal materials. At the same time, the topic of the
glass transition is one of the more challenging in modern statistical mechan-
ics, and the phase behavior and fluctuation dynamics in out of equilibrium
systems is still an open issue. The virtuous relation among the physics of
colloidal materials and the physics of glassy systems can thus be exploited
the other way round: colloidal suspensions can be used as prototypic systems
for testing experimentally the theories developed for glassy systems. A part
of the work that we will present enhances this relation, by showing that the
dynamical behavior of a colloidal suspension under shear can be interpreted
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through the microscopic models describing glassy systems. The general aim
of this experimental work is the investigation of the microscopic dynamics
which underlies the complex rheological behavior exhibited by many colloidal
systems under a steady external drive. In particular, we will focus on three
different phenomenon: shear thinning and shear banding in a glassy system
(a Laponite clay suspension), and shear thickening in a concentrated suspen-
sion of charged silica particles. In both cases, the samples used represent
model systems for the observed phenomenology.

As suggested by many theoretical approaches to the study of glassy sys-
tems, a good variable capable of describing the dynamics of colloidal sus-
pensions is the particle density time correlation function F (t, t′), which en-
codes information about the microscopic relaxation timescales in the ma-
terial. Typically, a two step decay is observed in the correlation function
of concentrated colloidal suspensions. A fast relaxation accounts for local
rearrangements of the particles, while a slow decay represents a structural
relaxation process. The timescale of these collective rearrangements repre-
sents the microscopic counterpart of the viscosity of the system and is found
to be strongly influenced by a shear flow. In concentrated suspensions, the
shear thickening regime is believed to be induced by the formation of macro-
scopic clusters of particles, which hinder the flow and may even lead to a
jamming transition. An increase of the slow relaxation timescale is thus
expected as the external drive is enhanced. A more complex behavior is
observed in glassy colloids. These are out of equilibrium systems and their
correlation function F explicitly depends on the age of the system since sam-
ple preparation, called waiting time tw: F = F (tw, tw + t). In particular,
the slow relaxation time is found to increase with tw when the system is
at rest, thus driving to dynamical arrest. Such a behavior is called aging.
When subject to shear flow, a new relevant timescale in the dynamics of
the system is represented by the inverse shear rate γ̇−1 (the shear rate γ̇ is
the parameter used to quantify the external drive inducing the flow). The
competition between the timescale introduced by the flow and the natural
timescale of particle rearrangements may drive to a shear thinning behav-
ior, with the slow relaxation time τs decreasing as the shear rate γ̇ increases
(shear rejuvenation). A power law behavior τs ∼ γ̇−m with m < 1 is observed
in various theoretical models for glassy systems. When low shear rates are
applied to glassy suspensions, another interesting behavior is predicted by
theoretical models: the system splits into two bands, one flowing as a solid
body at a constant velocity and the other flowing at a finite local shear rate
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(shear localization). The difference among the two bands is believed to be
of dynamical nature, with an arrested phase in the solid band and a liquid
phase is the other.

Light scattering techniques are a perfect tool to follow the dynamics of
colloidal suspensions, as the scattered intensity signal gives direct informa-
tion on the timescales characterizing the motion of the colloidal particles. In
the single scattering regime, the drag motion of the particles under shear flow
can be monitored through the interference of the scattered beam with a ref-
erence laser beam. Such a technique (heterodyne dynamic light scattering)
allows direct access to the velocity profile of the system under shear and rep-
resents a local probe for the detection of shear bands. The scattered intensity
correlation function in the single scattering regime (homodyne dynamic light
scattering) is instead directly related to the particle density correlation func-
tion. In concentrated suspensions, where multiple scattering occurs, diffusive
wave spectroscopy can be used instead of dynamic light scattering. However,
in both techniques, a great limit to the investigation of the dynamics un-
der shear is represented by decorrelating effects of geometrical nature on the
scattered intensity, which prevents from accessing the slow relaxation time of
the system. Actually, following the system dynamics under a steady exter-
nal drive is prohibitive with any experimental technique, but information on
these dynamics can be deduced by the measurements performed soon after
shear cessation.

Despite the large amount of numerical and theoretical works investigating
the influence of a steady shear flow on the slow dynamics of glassy colloids,
an experimental microscopic counterpart is still relatively poor. No attempt
has been made up to now to investigate shear influenced dynamics through
a direct probe of the particle density correlation function. Using dynamic
light scattering, the rejuvenating effect of a steady shear flow on the aging
dynamics of a Laponite suspension is investigated through various protocols.
A phenomenological model accounting for the competition of timescales be-
tween the inverse shear rate and the structural relaxation time is proposed
to interpret the results. The same system is also investigated when low shear
rates are applied. The shear localization phenomenon is observed, with an
interesting phenomenology consisting in an oscillating velocity profile. In
glassy suspensions, distinct dynamics among of the two bands forming un-
der shear have never been observed experimentally and an attempt to detect
such difference is made.

The last part of the experimental work is devoted to the study of the

11



jamming regime in a concentrated suspension. The scenario depicted by
the experimental works proposed in the literature is still not exhaustive in
describing the particle microstructure responsible for shear-thickening. In
particular, investigation on the dynamics of the shear induced aggregates is
still lacking. Through speckle visibility spectroscopy, a technique based on
diffusive wave spectroscopy, we monitor the dynamics of the system during
the flow and we follow the relaxation of the shear induced aggregates after
shear cessation.

The thesis is divided into three parts:

1. The first, split into two chapters, introduces the scientific problem,
describing the phenomenology and the theories reported in the litera-
ture. In particular, in the first chapter, the complex phenomenology
observed in colloidal systems under a steady external drive is presented
and the principal results obtained up to now at the experimental level
are discussed. Particular attention is devoted to glassy systems. In
the second chapter, some of the most interesting microscopic theories
and phenomenological models developed for the microscopic descrip-
tion of these systems are reviewed. Most of them take inspiration from
the models thought for glassy systems, which have been extended to
account for the presence of a shear flow.

2. The second part, also divided into two chapters, presents the tech-
niques and the materials used in the experiments. In the first chapter,
the basic theories for dynamic light scattering and diffusive wave spec-
troscopy are briefly presented, with particular attention to the effect
of a drift velocity in the scattering particles. The second chapter is
dedicated to the description of the samples and the techniques used in
the experiments.

3. In the last part, divided into three chapters, the experimental results
are presented and discussed on the light of the theoretical models re-
ported in the first part. In the first chapter, we report an experiment in-
vestigating, through dynamic light scattering, the influence of a steady
shear flow on the dynamics of an aging Laponite suspension. In the sec-
ond chapter, the shear localization phenomenon is studied in the same
system through heterodyne and homodyne dynamic light scattering.
Finally, in the third chapter, we report the experiment investigating,
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through speckle visibility spectroscopy, the dynamics of shear induced
heterogeneities in a shear jamming, concentrated silica suspension.
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Part I

Rheology of colloidal systems
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C H A P T E R 1

Colloidal suspensions under shear:

phenomenology and experimental

facts

Suspensions of small solid particles in a liquid medium are usually called col-
loids, a term derived from the Greek work κoλλα for “glue”. The colloidal
particles in suspension may have a dimension between 1 nm and 10 µm. Ex-
amples of colloidal suspensions are ubiquitous: blood, paint, ink and cement
may represent a hint at their diversity and technological importance. Colloids
include foodstuff, pharmaceutical products, cosmetics and are precursors of
many manufactured goods, such as composites and ceramics. Stable suspen-
sions of inorganic particles had been obtained by alchemists already in the
seventeenth century. But it was only in the 1950s that suspensions of highly
monodisperse polymeric particles first became available, encouraging the de-
velopment of quantitative theories for the dynamics and flow properties of
colloidal suspensions.

The static and dynamic properties of colloidal suspensions can be very di-
verse, reflecting different kind of interactions between the colloidal particles.
For instance, spherical charged particles may form a crystalline structure
at even low volume fractions giving rise to a colloidal crystal, while charged
anisotropic particles at low concentrations or hard spheres at high concentra-
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tions may form a rigid phase with a disordered structure, typical of a glass.
Part of this thesis is devoted to the investigation of these amorphous colloidal
systems. Some of their mechanical features can be better understood if they
are considered as glasses. Glasses are liquids whose molecules are so tightly
packed that they cannot relax to the thermodynamic equilibrium (i.e. the
crystal phase) even over periods of months or years. They are characterized
by an aging behavior consisting in a dynamics slowing down with the age
of the system since its quench. Glassy colloids could represent ideal systems
to understand fundamental aspects of glassy systems. Indeed, they may be
tunable equivalents of atomic or molecular glasses which form in supercooled
liquids, with controllable interactions. Moreover, the spatial and temporal
scales are advantageously much larger than in atomic systems, allowing for
easier experimental study.

Investigating the structure and dynamics of colloidal suspensions is thus
interesting both for industrial application and for fundamental research. In
particular, the flow behavior of such suspensions and the corresponding mi-
croscopic dynamics are not trivial: this thesis is devoted to the investigation
of this aspect. Colloidal suspensions, like other condensed-phase materials
such as foams, emulsions and polymer melts are neither simple liquids nor
simple crystalline solids and do not fall into the classical scheme of phase
classification: solid, liquid or gas. These “complex fluids” possess mechan-
ical properties that are intermediate between ordinary liquids and ordinary
solids, for this reason they are called viscoelastic. For instance, they may
maintain their shape like a solid for a while and eventually flow like a liquid.
An example from everyday life is the toothpaste, which flows out of the tube
only when squeezed and stops flowing immediately after it has been applied
to the brush and so doesn’t sink into the bristles. In general, these complex
fluids typically behave as solids at short times and as liquids at long times
and the characteristic time required to pass to the “liquid-like” behavior
may vary from fractions of a second to days or even years, depending on the
fluid. Glassy colloids are among those complex fluids characterized by long
structural relaxation timescales.

In this work, we are interested in the investigation of the dynamics un-
derlying the complex flow behavior of colloidal suspensions. In this chapter,
we will first introduce (section 1.1) the basic principles of rheology (which
deals with the measurement and prediction of flow behavior). A hint to the
phenomenology of glassy colloidal systems is reported in 1.2. In 1.3, we will
then present the diverse behaviors encountered in colloidal suspensions un-
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der shear, together with some experimental results obtained up to now, with
particular attention to glassy colloidal systems.

1.1 Introduction to rheology

Rheology is the study of the deformation and flow of matter under the in-
fluence of an applied stress. The term was inspired by Heraclitus’s famous
expression “panta rei” (everything flows). In practice, rheology extends the
study of elasticity and Newtonian fluid mechanics to materials whose mechan-
ical behavior is intermediate between ordinary liquids and ordinary solids.
The basic tool of this subject is the rheometer, a device for applying a con-
trolled stress to a sample and measuring its deformation, or viceversa. Two
different types of experiment may be performed with a rheometer: steady
shearing experiments or oscillatory shearing experiments. The former is the
type of experiment we will focus on in this work and will be explained in
this section. The latter consists in imposing a small amplitude oscillatory
shearing at a certain frequency ω, that does not significantly deform the fluid
microstructure and allow to explore the rates of structural rearrangement.
Two quantities capable of describing the “solid-like” or “liquid-like” behavior
of the fluid can be measured through an oscillatory shearing experiment: the
storage modulus G′(ω), representing storage of elastic energy by the fluid and
the loss modulus G′′(ω), representing the viscous dissipation of this energy.
Oscillatory shearing experiments are beyond the scope of this work, thus we
address the reader to Ref. [1] for a formal definition of these quantities.

In the following, we will first define the variables used in rheology (1.1.1).
The flow behaviors that are typically observed in colloidal systems are intro-
duced in 1.1.2, while the solid-like behavior characterizing these systems is
presented in 1.1.3.

1.1.1 Rheometer geometry and rheological variables

We now introduce the basic tools used to describe a system under flow,
focusing in particular on steady shearing experiments. In general, there are
many different geometries for common flow cells used in rheometers. An
example is the cone-plate cell, where a rotating cone contacts a stationary
plate at its apex with a small opening angle. Another is the Couette cell,
consisting in two concentric cylinders, with the internal one rotating, which
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Figure 1.1: Simple shear geometry as in a plane Couette flow. The upper plate

slides at velocity v, while the bottom one is fixed. The arrows represent the flux

lines, while the directions c and e correspond, respectively, to the compressional

axis (θ = 3/4π) and the extensional axis (θ = 1/2π).

induces a “circular Couette flow”. Other classical geometries are also sliding
plates generating a “plane Couette flow”, or parallel disks inducing torsional
flow. Usually, the cartesian coordinates in a simple flow geometry are chosen
in order to orientate the x axis along the flow direction and the y axis along
the velocity gradient direction (Fig. 1.1).

The deformation rate of a fluid is defined by the velocity gradient tensor
field ∇v(r, t), which describes the steepness of the velocity variation as one
moves from point to point in any direction at time t (r is the position vector
relatively to an arbitrary origin). If v = (vx, vy, vz) ≡ v(r, t) is the velocity
vector, ∇v will be a matrix of dimensions 3×3. In a plane Couette geometry
(Fig. 1.1), there is only one non zero component of the velocity, namely vx

and it varies only in the y direction, so that the velocity gradient tensor
can be reconstructed from the scalar γ̇ = ∂vx/∂y, which is called shear rate.
Also for other shearing flows generated by the geometries usually chosen in
a rheological experiment, like the ones named above, there is for each fluid
element a frame in which the velocity gradient tensor has only one nonzero
element. This element is the so called shear rate and represents the derivative
of the velocity along the flow direction with respect to the coordinate along
the direction where the flow velocity varies, which is contained in the plane
orthogonal to the flow direction. In steady shearing experiments, in each
geometry the shear rate imposed on the fluid depends on a driving velocity
and on the dimensions of the geometry. For the sliding plate device, the
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shear rate is simply the velocity V of the moving plate (the other plate being
held stationary), divided by the gap H between the two plates: γ̇ = V/H .
In the cone and plate geometry, the shear rate is independent on the radial
distance from the rotating axis (differently to the parallel disks geometry):
γ̇ = Ω/ tan α, where Ω is the steady angular speed of the rotating cone and
α is the opening angle between the plate and the cone.

Let’s now define the stress tensor field σ(r, t) (in the following, we will
drop the dependence on r and t to simplify the formalism). If dSi is a
vectorial area element normal to the vector ni and dFi is the force acting on
this surface element, then we have

dFi = σijdSj

which defines the stress tensor σij. A pure hydrostatic pressure corresponds
to a diagonal stress tensor σij = −pδij (where δij is the Kronecker symbol).
Two particular combinations of the diagonal elements, which are independent
on p, are defined as the first and second stress differences:

N1 = σxx − σyy N2 = σyy − σzz

As may be shown from the equilibrium of moments acting on an infinitely
small cubic volume, whatever the nature of the flow, the stress tensor is a
symmetric tensor. In a shearing flow of an incompressible isotropic liquid, it
contains at least two nonzero components, σxy = σyx, as well as an isotropic
pressure term. In a simple liquid, these are the only non-zero components and
the normal stress differences are null. However, a complex fluid in general has
other nonzero components of the stress tensor, namely the normal stresses
σxx, σyy and σzz. Since the stress tensor is only determined to within the
additive isotropic tensor of the hydrostatic pressure, only the normal stress
differences can be measured. The cone and plate geometry and the parallel
disks geometry allow such measurement: for positive N1 (σxx > σyy), the
plates tend to be pushed apart; on the contrary, for negative N1 (σxx < σyy),
they tend to be pulled together.

In a plane Couette geometry, as the one depicted in Fig. 1.1, the only
off-diagonal nonzero elements of the stress tensor are σxy = σyx (the pressure
term −pδij = 0), which we will call shear stress σ. In such geometry, the
motion of a fluid of mass density ρ is described by the Navier-Stokes relation:

ρ∂v(y, t)/∂t = ∂σ(y, t)/∂y
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In a steady shearing experiment, the flow in such geometry is thus charac-
terized by a local shear stress σ that is constant across the gap. Instead,
for a laminar flow in a circular Couette geometry, the shear stress scales as
r−2, where r is the radial distance from the rotational axis of the cylinders.
If C is the torque applied to the fluid and h is the fluid height, the shear
stress results indeed as σ(r) = C/(2πhr2). Also the velocity gradient tensor
reduces to a scalar in these simple geometries. The shear viscosity for steady
shearing experiments in simple geometries can be defined by the constitutive
relation:

σ = ηγ̇

and represents the resistance opposed by the system to the flow. The curve
describing the shear stress behavior as a function of the shear rate applied
to the fluid is the so called flow curve σ(γ̇).

1.1.2 Flow behavior

The flow curve characterizes the mechanical properties of fluids under an
external drive. Here, some of the complex flow behavior typical of colloidal
suspensions will be presented. In simple liquids, also called Newtonian liq-
uids, the viscosity is constant by varying the shear rate, thus the shear stress
increases linearly with shear rate (linear rheology). On the contrary, complex
fluids are characterized by a viscosity depending on the shear rate: η = η(γ̇)
(non-linear rheology). In solid-like behaving fluids, the shear stress is inde-
pendent on shear rate when the steady state is reached, the shear viscosity
then scales as η(γ̇) ∼ γ̇−1. The flow thus induces a fluidization effect in the
system, consisting in a shear viscosity that decreases with increasing shear
rate: this behavior is referred to as shear thinning. Real complex fluids often
show an intermediate behavior between the solid-like and liquid-like proto-
types. Therefore, a shear thinning behavior characterized by the power law
η(γ̇) ∼ γ̇−m, where m < 1, is usually observed. The opposite behavior, with
a viscosity increasing with the shear rate or with the shear stress, can also
be observed at high stress and is called shear thickening.

The viscosity value for γ̇ → 0+ (i.e. limγ̇→0+ σ/γ̇) is called the zero shear
viscosity η0. For some fluids, η0 is not defined, as the flow curve exhibits a
non zero stress value when γ̇ → 0+. This stress value is called yield stress
σy. At small shear stresses, the system thus only deforms elastically, while
when σy is reached, it starts flowing. If yielding corresponds to the onset of
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a shear thinning regime, the flow curve can usually be fitted by the so called
Herschel-Bulkley relation σ(γ̇) − σy ∼ γ̇p, where 0 < p < 1. When σy = 0,
one obtains a so called power-law fluid (with p = 1 − m).

In the above description of the flow, we assumed that the shear rate is
constant across the gap of the cell. This is not always valid. An inter-
esting phenomenon which may show in some complex fluids at low applied
shear rates is shear banding, consisting in a flow subdivided into different
bands, parallel to the flow direction, characterized by different local shear
rates: γ̇ = γ̇(y) (in the coordinates system sketched in Fig.1.1). Though
it is not directly observable through mechanical measurements, the shear
banding phenomenon exhibits when the flow curve shows an instable region
represented by a decreasing branch.

Finally, we want to hint at the wall slip problem, which may emerge in
experiments on complex fluids under flow. In a rheometer cell, the fluid is
supposed to adheres against the solid boundaries. For molecular liquids like
water, wall slip is usually negligible, while a complex fluid with a solid-like
behavior is expected to slip on the bounding surface of the cell, as a solid
body would do. Glassy colloidal suspensions may behave as elastic materials
and wall slip may be induced by the formation of lubricating layers of pure
solvent next to the bounding surface of the rheometer cell. Slip may represent
a problem for accessing to the shear rate value, which is reduced by this
effect. It can be counteracted by using roughened rheometer surfaces, but
when it still persists, measuring the local velocity profile at the boundaries
is necessary [1].

1.1.3 Colloidal systems as soft solids

A parameter characterizing the “solid-like” behavior of a complex fluid is
the shear modulus G, which measures the free energy cost for shearing an
elementary volume [49]. Actually, this variable can be measured through
oscillating shear experiments, which are not performed in our work. However,
introducing this variable is worthy for a better comprehension of complex
fluids and will be useful when presenting some of the theoretical models
developed for these systems (2). Let’s consider a cube of material of size
L subject to a small shear strain γ = l/L, where l is the displacement.
This will cause a shear stress σ and the shear modulus G is defined by the
relation σ = Gγ. A compressive distortion, creating an excess pressure ∆p
at the same strain, induces instead a compression modulus K, defined by the
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relation ∆p ≃ Kγ. The two quantities G and K are similar as shear and
compression both change bond lengths by similar amounts. Most familiar
solids such as metals have G ≃ K ≃ 1011 Pa, so stresses beyond the elastic
limit can’t be attained under laboratory conditions.

In rheology, the solid-like behavior of a fluid is thus investigated through
the relation σ = Gγ, that is accessible in oscillating shear experiments. The
liquid-like behavior is instead exemplified by the relation σ = ηγ̇, accessible
through steady shear experiments, where the shear rate γ̇ is the temporal
derivative of the strain γ. A handy, though very crude rule links the zero
shear viscosity η0 to the shear modulus and the characteristic relaxation time
of the system dynamics τ :

η0 ∼ Gτ (1.1)

This formula traces back to Maxwell, who argued that a viscous fluid with
viscosity η0 can be thought as a relaxing solid with modulus G that relaxes
with a unique timescale τ . A Newtonian fluid is recovered by taking G → ∞
and τ → 0 at fixed η.

The high sensitivity of colloidal suspensions to a shear flow field is easily
demonstrated by the magnitude of the shear modulus G of a colloidal crystal.
The dimension of the shear modulus is energy per volume. With a simple
dimensional argument, considering that the interaction energy scale in a col-
loidal system is kBT and the length scale is the typical interparticle spacing
a, the value of G can be evaluated as G ∼ kBT/a3. In colloidal systems,
as in many complex fluids where the particle volume is much larger than in
molecular solids, one has G ≪ K and for this reason they are called “soft
solids”. Values of G of order 1 ÷ 100 Pa are typical of soft materials, thus
stresses well beyond the elastic limit can be attained experimentally. Since
the solvent has no shear modulus, the system static resistance to shear orig-
inates from the mesoscopic degrees of freedom associated with the colloidal
particle configurations. Instead, the compression modulus is still of order
1010 Pa as a colloidal suspension is mostly composed of the solvent, and re-
sists compression similarly to a liquid. On the other hand, if one compresses
osmotically a soft material (placing it within a semipermeable membrane
through which only the solvent can pass and squeezing it), a much lower
compression modulus results, typically similar in magnitude to G.

The origin of the low shear modulus is thus a matter of length scales,
as is due to the presence of large objects. The distinction between hard
and soft materials is also a matter of timescales. A solvent like water, for
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instance, actually resists shear flow, but its stress response to a sudden strain
relaxes on a timescale too fast to be measured with a common rheometer. On
the contrary, having a stress relaxation time on laboratory scales, many soft
materials can exhibit solid-like behavior at short times and then liquid-like
behavior at longer times in the same experiment.

1.2 Phenomenology of glassy colloidal suspen-

sions

By investigating a glassy colloidal system through a microscope, it is evident
that particles can move only by cooperating with each other: if a particle
slightly moves, then a neighbor particle may move into the place left free by
the first and so may do a third particle. We can suppose that, the higher the
particle volume fraction in the system, the more the particles have to coop-
erate to move and the slower will be their dynamics. At a critical volume
fraction, when all the particles have to cooperate in order to move and the
timescale of this cooperative motion diverges, the system reaches gelation
(i.e. the glassy phase). Crowding of the constituent particles traps them-
selves kinetically, precluding further exploration of the phase space. In this
sense, there are two extreme pictures that schematically characterize concen-
trated colloidal systems in the glassy phase, corresponding to very different
underlying interactions. The first image consists in colloidal particles rigidly
bound, that diffuse in solution and form fractal aggregates. If the concentra-
tion is large enough, these aggregates diffuse and aggregate further on and
eventually form a network made of rigidly interconnected aggregates. Col-
loidal systems with such a structure, which may be reached even at weak
volume fractions, are called gels. The second picture is that of particles that
repel each other and, at high concentrations, are pushed into one another.
Due to its energy, the system thus gets trapped in a metastable state of dis-
orderly crowded particles. This is what is usually called a soft glass, because
of its low shear modulus. We are interested in the microscopic dynamics
emerging during the glassy phase and in the effects of a shear flow on these
dynamics.

The dynamics of glassy systems is usually described by the autocorrela-
tion function of a relevant variable, like density fluctuations δρ(q, t) (q is the
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wave vector):

F (q, t0, t) = 〈δρ(q, t0)δρ(−q, t0 + t)〉/〈|δρ(q)2|〉 (1.2)

When the system is stationary, the correlator doesn’t depend on time t0. In
general, for a fixed time t0, the correlator typically exhibits two dynamical
timescales: a fast decay of F results from the vibrational degrees of free-
dom characterizing the oscillation of the particles around their equilibrium
position, while a slow decay results from the structural rearrangement of the
system through particle diffusion. While the fast relaxation usually doesn’t
depend strongly on the volume fraction, the slow relaxation drastically slows
down as soon as the glassy phase is approached. Moreover, after a quench
in the glassy phase, an aging behavior is observed: the structural relaxation
slows down with the time tw elapsed since the quench and the system enters
a non-ergodic state. In colloidal glassy systems, a quench into the glassy
phase can be achieved by preparing the sample at a volume fraction above
the critical one. In supercooled liquids instead, the quench consists in cool-
ing the system below the liquid-glass transition temperature. In the aging
regime, the system is out of equilibrium and the correlator explicitly depends
on the waiting time tw: F = F (q; tw, t).

When such a system is put under shear, the thickening effect due to
aging may be contrasted by a thinning effect induced by the flow. As a
result, a shear thinning behavior may emerge in the structural relaxation time
τ ∝ γ̇−m with m ≤ 1 (using the rough Maxwell relaxation 1.1 for the viscosity,
the macroscopic counterpart for this behavior may result). This situation can
therefore be used to probe the glassy phase, with the convenience of having
the system in a stationary state and the shear rate γ̇ rather than the waiting
time tw as a control parameter. Experimentally, the m exponent is system
dependent, so there is no reason to expect an universal value for it.

The sudden arrest of the colloidal system dynamics as the density is in-
creased and the fluidizing effect of an external drive can be classified in a
more general phenomenological scheme. It is the jamming transition picture,
accounting for a wide range of fluid-solid transitions and unifying apparently
diverse behaviors in very different systems, including not only supercooled
liquids and colloidal systems, but ranging from granular media to foams. The
state of structural arrest is identified as the jamming phase. In order to unify
the description of all routes to jamming, Liu and Nagel [25] use, as intrinsic
parameter of the system, the density ρ. The jamming phase can be overcome
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Figure 1.2: Phase diagram for the jamming transition prosed by Liu and Nagel

(left panel) and by Trappe et al. for weakly attractive colloids (right panel). The

divergences in the second diagram correspond to irreversible aggregation, where

the inverse critical volume fraction at which jamming occurs, Φ−1
c , is large; to the

limit of hard spheres, where T/U is large; and to high volume fractions of strongly

attracting particles that form, for example, sintered solids, where the yield stress

σy is large. The figures have been taken from Ref. [26].

and the system fluidized by thermalization, through temperature or vibra-
tion, or by a unidirectional stress or load that exceeds the yield stress of the
material σy. Thus, Liu and Nagel propose ρ−1, temperature T and stress
σ as the axes of a three dimensional jamming phase diagram (Fig. 4.8, left
panel). In this context, the experimental work of Trappe et al. [26] on the
fluid-solid transition of weakly attractive colloidal particles may be interest-
ing. Stabilization against irreversible aggregation results in these systems in
an attractive pair potential, like for sterically protected colloids. Like other
colloids, they undergo gelation with increasing concentration and decreasing
thermalization or stress. In colloidal systems, the degree of thermalization
is primarily controlled by the interparticle energy U , which sets the scale
of temperature. Besides, for weakly attractive colloidal system, the scale
of the stress is set by σ0 = kBT/a3, where a is the radius of the particles.
Therefore, the axis of the phase diagram become the inverse volume fraction
Φ−1, kBT/U and σ/σ0. The schematic phase diagram that they obtain con-
firms the applicability of the jamming concept to the behavior of colloidal
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suspensions. However, the shape of the experimental phase diagram differs
significantly from that originally proposed by Liu and Nagel, having every-
where the opposite curvature and diverging at each corner. These divergences
reflect the particular details of attractive colloidal particles.

1.3 Complex flow and experimental evidences

Due to the advantageous length scales and timescales, the effect of shear
flow can be controlled and precisely measured in colloidal suspensions using
scattering or direct imaging methods. The phenomenology of colloids under
shear comprehends very diverse complex behaviors, which we will introduce
in the following subsections together with some of the experimental results
obtained up to now.

1.3.1 Shear thinning

Usually, at low shear rates, colloidal suspensions show a Newtonian behav-
ior, resulting in a plateau in the flow curve at the value of the zero shear
viscosity η0. This regime is followed by a shear thinning regime and at very
high shear rates a shear thickening regime may be observed. An example
of such a behavior is shown in Fig. 1.3 for a charged suspension at differ-
ent concentrations. In hard spheres, charged spherical spheres or anisotropic
colloids, shear thinning behavior has been explained as due to an ordered
microstructure induced by the flow. This enhances the sliding between lay-
ers perpendicular to the velocity gradient direction (see section 2.5.1). In
disordered colloidal suspensions, the origin of shear thinning cannot be due
to a coupling between the flow and the microstructure (see section 2.2), but
has to be found in the interaction between the slow dynamics and the shear
flow. Some of the experiments performed to investigate this microscopic
mechanism are presented in the following section.

Experiments on shear thinning glassy colloids

For glassy colloids, the experimental investigation of the shear-influenced
slow dynamics at the microscopic level is still relatively poor. Typically, in
the experiments performed up to now, colloidal suspensions are prepared at
a volume fraction high enough to be in the glassy phase, where an aging
behavior is observed. In some experiments, the waiting time tw is set to
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Figure 1.3: Viscosity versus shear stress for aqueous suspension of charged

polysterene-ethylacrylate copolymer spheres of diameter d = 250 nm at various

volume fractions Φ. Figure from [2]

zero soon after sample preparation. In other experiments, the quench into
the glassy phase is obtained by applying a high shear, which have a strong
rejuvenation effect: the counting of tw starts soon after shear cessation. At
rest, the evolution of slow dynamics since the quench are usually monitored
through light scattering techniques. In particular, the scattered intensity
autocorrelation function is calculated and the slow time relaxation of the
correlation function is linked to the structural relaxation time τ of the system.
Therefore, the scaling between τ and tw is measured. The effect of shear flow
on this aging dynamics has been investigated both in oscillatory and steady
shear. For reasons that we will explain in 3.1.2, the measurement of the
slow relaxation timescale is not possible during steady shear, as under the
effect of the flow the intensity correlation function would decay at shorter
times. Therefore, the procedure followed to investigate the system dynamics
consists in stopping the flow for a short time to allow the measurement and
turning it on soon after. Diffusing Wave Spectroscopy (DWS) experiments
performed by Bonn and coworkers following this procedure have shown the
rejuvenating effect of shear on an aging sample [3]. The system investigated
is a Laponite suspension, a charged discoidal colloid that we will describe in
4.1.1 and will also be used in our experiments. In Bonn’s experiment, the
sample is left aging at rest after preparation. After a fixed time period, a
steady shear is started and the correlation function is measured. Repeating
the procedure for various shear rate values, the slow relaxation time of the
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Figure 1.4: Correlation functions measured by Bonn and coworkers using DWS

for different shear rates. The curve to the right is the reference without shear and

after 1 h of aging. After that, from right to left: 0.25 s−1, 2.5 s−1 and 25 s−1.

Figure from Ref. [3].

correlation function is observed to decrease with increasing shear rate (Fig.
1.4). However, a quantitative analysis of this dependence is missing in this
work.

Under oscillatory shear, Light Scattering Echo (LSE) technique allows to
investigate the dynamics during the shear, with no need to stop the flow. LSE
[4, 97] and also DWS experiments [6, 7] have been performed on various glassy
colloids, ranging from hard spheres to anisotropic charged particles, under
oscillatory strain. Evidences for a shear dependent structural relaxation time
and for rejuvenation of aged samples have been obtained. In particular, the
DWS experiment realized by Viasnoff and Lequeux [6] on a glassy sample of
charged spherical colloids is interesting. The system is quenched through the
application of an oscillatory strain of high amplitude. In the spontaneous
slow relaxation process that follows, τ scales linearly with tw. After the
high shear quench, various straining are applied and the following dynamics
is monitored. While shear of high amplitude rejuvenates old samples by
accelerating their dynamics, moderate shear amplifies aging: a phenomenon
that the authors call overaging. In an experiment performed by Kaloun
and coworkers [97], a similar protocol of shear is applied to aged samples
of charged discoidal colloids. Again, a linear dependence between τ and tw
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Figure 1.5: Characteristic time of the correlation functions, measured through

LSE by Kaloun and coworkers, as a function of the waiting time tw. For tw < 100

s, the system is not sheared (•), then it is sheared at moderate shear amplitude

(¥) and at tw > 600 s the shear is stopped (•). Reference aging in the absence of

shear (•) and under shear (¤) is also reported. Figure from Ref. [97].

after the shear quench exhibits. The sample is then submitted to various
periodic shear protocols and dynamics of tracer particles are investigated
during shear and after shear cessation. What they observe is that, though
a moderate shear amplitude fastens the dynamics during its application,
once the shear is ceased this acceleration doesn’t affect the dynamics any
more (Fig. 1.5). On the contrary, a strong shear completely rejuvenates the
system, as the aging evolution obtained after the shear quench is retraced
afterwards. As small amplitude oscillatory shearing does not significantly
deform the fluid microstructure, comparison with steady shear experiments
are not straightforward.

The statistical properties of multiple scattered light, probed in these DWS
and LSE experiments, are not easily represented in terms of the particle
density correlation function. For this reason, another technique is chosen
in this thesis to probe the dynamics of colloidal glasses under shear. It is
the dynamic light scattering technique in the single scattering regime (DLS),
which, on the contrary, provides a direct measurement of the particle correla-
tion functions. As will be explained in 3.1, the DLS technique probes indeed
the intermediate scattering function of the colloidal particles FM(q, t0, t) [8],
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which plays a central role in both theoretical and numerical approaches.

1.3.2 Shear thickening and jamming

After a regime of shear thinning, when the shear stress exceeds a critical value
σc, concentrated suspensions may exhibit a viscosity increasing with the ap-
plied stress. The increase of the viscosity may even lead to cessation of the
flow, inducing a jamming transition. Shear thickening have been observed
in hard sphere colloids and, mainly, in charged sphere colloids, where it is
enhanced. The dependence of σc on particle size, concentration and poly-
dispersity has been investigated by Maranzano and Wagner [9] in weakly
charged and hard sphere colloids. The onset of shear thickening is facili-
tated by high concentration (as also shown in Fig. 1.3), large particle size,
monodispersity of the colloids and by strong repulsive interactions between
the particles. As will be explained in 2.5, the origin of the shear thickening
phenomenon has been found theoretically in the formation of hydrodynamic
clusters along the compressional direction (see Fig. 1.1). The size of these
clusters grow with increasing stress, thus inhibiting the flow; while at high
stresses clusters spanning the entire system may lead to flow instability at
the jamming transition [104]. Systems permanently jammed after flow ces-
sation have also been observed [44]. The shear thickening phenomenon is
accompanied by a sign reversal in the first normal stress difference N1, which
is usually positive in non Newtonian liquids and turns out to be negative in
such regime.

Experimental study of the shear induced cluster formation is not trivial.
The first measurements investigating the particle structure of a system in the
shear thickening regime were conducted through small angle neutron scat-
tering by Laun and coworkers [11] and proved the existence of a short range
order and the absence of long range order. In this kind of experiments [12],
the quiescent scattering profile was recovered after shear cessation, showing
that the structure formed under shear is reversible. Measurements of nor-
mal stress differences are extremely difficult, due to their very small value.
However, the behavior of N1 as a function of the velocity gradient direction
have been investigated by Kolly and coworkers [13], who have shown that
heterogeneities in the particle density form in a direction that depends on
the flow direction. Direct observations have been used to better probe the
cluster formation [14, 15, 16]. Confocal microscopy enables the observation
of index-matched suspensions of colloidal particles. It has been observed

32



that, just after the cessation of flow at high shear rates, local particle density
is extremely heterogeneous and highly concentrated regions appear. Crys-
tallites forming under flow have also been detected and are supposed to be
responsible for jamming [15, 16]. Nevertheless, confocal microscopy does not
allow the observation of rapid motion of particles, thus the dynamics of the
particles under flow haven’t been investigated yet.

1.3.3 Yield stress and shear banding

In some complex fluids, when a stress below a critical yield stress σy is ap-
plied, the material deforms reversibly, recovering its original shape when the
stress is removed. Once the applied stress reaches σy, the material deforms
irreversibly. This behavior is observed in glassy colloids, where a network
of interactions spanning the entire system may form and a finite stress is
required in order to break this network before yielding. Also in electrically
charged colloids and in concentrated hard sphere suspensions a yielding be-
havior may emerge. In these cases, a finite stress is necessary for the breakage
of the macrocrystals characterizing the system structure at rest.

Glassy systems may also show a yielding behavior more complex than
ideal yield stress fluids. It is the so called viscosity bifurcation behavior,
observed by Coussot and coworkers in glassy clay suspensions [17]. For small
stresses, the viscosity increases in time until the system stops flowing; while
above a critical stress, the viscosity decreases continuously with time and
the flow accelerates (thixotropic behavior). This critical stress increases with
the time of preliminary rest before the stress application, due to spontaneous
aging of the system. A simple theoretical model able to predict these results
has been developed by the authors and is reported in 2.4.2.

Another interesting phenomenon which may show in complex fluids is
shear banding: flow subdivides into different bands, parallel to the flow direc-
tion, characterized by different local shear rates. This phenomenon is induced
by a decreasing branch in the flow curve (Fig. 1.6): in a controlled shear
experiment, shear banding is observed when the stress falls in the interval
where the flow curve is multivalued. Shear banding has first been observed in
various non colloidal complex fluids, like surfactant wormlike micelles, liquid
crystals and lamellar surfactant systems which can roll into multilamellar
vesicles (”onions”). In these systems, a structural phase transition occurs
under flow, with an ordered phase coexisting with a disordered phase. Thus
the difference between the flowing bands lies in the microstructure. Shear
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Figure 1.6: Schematic representation of a non-monotonic flow curve. When the

stress falls in the interval where the curve is multivalued, shear banding emerges.

Figure from Ref. [58].

banding has also been observed in yielding, glassy colloids, where the yield
stress provides a multivalued region in the flow curve. When heterogeneous
flow emerges in such systems, a band with null local shear rate, flowing as a
solid block, may coexist with a band flowing at a finite local shear rate. This
behavior has been called shear localization. According to numerical mod-
els [56], which are reported in 2.3.4, here the difference between the flowing
bands is of dynamical nature.

Experimentally, shear localization behavior in glassy colloids have been
investigated with the local velocity profile being accessed through magnetic
resonance imaging (MRI) [18, 20, 45] or visualization techniques [19]. The
first experiment evidencing the existence of a shear localization phenomenon
was performed by Pignon and coworkers [19] on a Laponite suspension in a
cone-plate geometry. In order to distinguish it from the local shear rate γ̇,
when necessary, the global applied shear rate will be represented with Γ̇ in
the following. After yielding, at very low applied shear rate Γ̇, shear is local-
ized in a thin layer in the bulk, which represents the interface between two
bands flowing as solid bodies. A so called “stick-slip” behavior is observed,
with the solid bands fracturing and rehealing periodically at the interface.
As a result, the measured stress shows stationary oscillations with a time pe-
riod T ≃ 100 s. When Γ̇ is increased, this fracturing behavior ceases and the
size of the layer where the shear is localized increases from the length scale
of particle distance to the entire gap size. An oscillating flow behavior have
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also been detected by Holmes and coworkers [45] for a colloidal star polymer
in a Couette flow. Rapid fluctuations (T < 1 s) between a linear velocity
profile and a profile characterized by shear localization were observed and
interpreted as a flow induced transition between a jammed and unjammed
state. Shear localization has been observed also in other clay suspensions in
Couette and cone-plate geometry by Coussot and coworkers [18]. In their
experiment, the size of the unsheared band is observed to increase with the
time of rest before shear application, due to spontaneous aging of the sys-
tem. The unsheared band size also depends on Γ̇ and decreases with Γ̇ until
eventually disappearing over a critical Γ̇, as in the experiment by Pignon and
coworkers. However, while in the last the sheared band nucleates in the bulk,
in all the other experiments it forms next to the wall and only two bands are
observed.

It’s important to remind that, in a circular Couette geometry, the stress
of a steady flow varies along the gap between a maximum value at the inner
wall and a minimum value at the outer wall. If the critical yield stress
(or the critical stress in the viscosity bifurcation behavior) falls into this
stress interval, thus the shear localization phenomenon will automatically
occur, with the unsheared band next to the outer wall. In a cone-plate
geometry instead, where the stress is constant across the gap, the shear
localization phenomenon is only induced by the instability in the flow curve.
Investigation of the dynamics of glassy colloids when shear localization occurs
is still missing. Thus the fact that a different dynamics accompanies the
different flowing bands haven’t been confirmed experimentally yet.
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C H A P T E R 2

Microscopic theories and

phenomenological models

Without aiming to an exhaustive review, in this chapter we will present some
of the models that have been developed to describe the behavior of colloidal
systems under shear. First, in order to better understand the general behav-
ior of colloidal systems, we will start with the examination of the interactions
between its constituents (2.1). A distinction between the microscopic mech-
anisms inducing a non-linear rheological behavior in glassy or non-glassy
colloids is evidenced in 2.2. We will then focus on the various theories intro-
duced to investigate the microscopic dynamics underlying the complex flow
behaviors of glassy colloidal systems. Shear thinning and yielding behavior
result from these theories, while sometimes the models can be extended to
describe shear thickening or shear banding behaviors (2.3). Other models,
mainly focusing on shear banding or yielding behavior are reported in a fol-
lowing section (2.4). Finally, we will present the theories describing the flow
behavior of non glassy spherical colloids, characterized by a shear thinning
region followed by the onset of a shear thickening regime (2.5).
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2.1 Interactions between colloids

The statistical mechanical description of a colloidal suspension is facilitated
by the possibility of coarse-graining over the solvent molecules, which are
many orders of magnitude smaller than the colloidal particles. A transition
from the microscopic level to the mesoscopic level is then achieved by inte-
grating out the fast degrees of freedom accounting for the solvent molecule dy-
namics. This results in an interaction potential between the colloids depend-
ing on the solvent properties. Approximating it as a sum of pair-potentials
between N spherical particles, the potential energy can be written as

V (rN) =
1

2

∑

i 6=j

v(rij)

where rij =| ri − rj |. These potentials are equivalent to the interaction
potentials between atoms in liquids or solids. Thus, methods developed for
the statistical mechanical description of liquids and solids can be applied
to derive macroscopic properties of colloidal suspensions. Considering two
spherical particles of radius R, separated by a distance r, they induce on
each other both attractions and repulsion. As neutral atoms interact by
van der Waals attractive potentials [22], by summing over the atoms of the
two extended spheres, the attractive interaction between the two colloidal
particles results in the attractive potential vvdW (r). In a simple picture,
this potential behaves as −AR/r for r << R and as −A(R/r)6 for r >> R,
where the Hamaker constant A can be expressed as the difference εc−εs of the
dielectric constants of colloids and solvent. Actually, the dielectric constant
depends on the frequency ω of the electric field inducing polarization in the
medium, but the dominant component in the Hamaker constant is the one at
ω ≃ 0. The strength of the van der Waals attraction can thus be controlled
by changing the refractive index ns of the solvent (ns ≃ √

εs). If this were
the only interaction between the colloidal particles, the suspension would be
unstable against aggregation. There are essentially two ways to stabilize the
suspension: charge stabilization and surface protection by polymer layers.

Similarly charged particles dispersed in a polar solvent repel each other,
while the presence of dissociated counter-ions and salt screen this repulsion
over the Debye length λD. The resulting screened Coulomb potential vc(r),
which also depends on the state of the solvent through the dielectric con-
stant, decreases as exp(−r/λD) for r > 2R. Increasing the ionic strength of
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the solution (e.g. by adding salt) induces a drop of both the amplitude and
the range λD of this repulsion. When the Debye length gets smaller than
the range of the attractions, the suspension becomes unstable and eventu-
ally flocculates. The competition between electrostatic repulsion and van
der Waals attraction for charged colloidal spheres in a salty solution is the
content of the DLVO theory [23, 24]. In the resulting pair potential, the at-
traction always dominates at very long and very short separations, while the
electrostatic repulsion dominates at length scales in between, where it may
induce a potential minimum. The overall behavior of the suspension then
depends on the depth of this minimum and on the amplitude of the barrier
that separates it from the minimum corresponding to quasi-contact between
the colloidal particles.
Another classical method to avoid aggregation of the particles is to sterically
protect the colloid surface with a polymer layer of thickness δ. In a good sol-
vent for the polymers, such layers are swollen by the solvent and form brushes
which repel each other for entropic reasons. The low polymeric concentra-
tion of the layers keeps the dielectric properties close to the solvent, without
inducing additional van der Waals attractions. The resulting interactive po-
tential between two colloids is very short-ranged and strongly repulsive and
it is well approximated by a wall potential typical of hard spheres.
Different interaction potentials between the colloidal particles may induce
very diverse structural and dynamical behaviors in the system. For example,
in spherical charged colloids, the long range nature of electrostatic inter-
actions may lead to the formation of a colloidal crystal at modest volume
fractions, as particles under strong repulsive interactions move to well de-
fined lattice points at which the separations between nearest neighboring
particles are as distant as possible. Also in hard sphere suspensions, at high
particle volume fractions, colloidal crystals form; while at higher volume
fractions the suspension form a colloidal glass. The picture given above for
model colloids is extremely simplified and doesn’t comprehend non spherical
colloidal particles, which are still very common. The interparticle pair poten-
tial of anisotropic particles, such as rods or disk-like colloids, may be more
complex, but typically induces collective behavior at volume fractions much
weaker than their spherical counterpart. For example, in charged discoidal
particles a glassy behavior may result at very low volume fractions.
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2.2 Glassy or non-glassy colloids under shear

Usually, the dynamics of a suspension is controlled by the Brownian motion
of the colloidal particles; while in glassy dispersions, the slow structural rear-
rangement dominates the dynamics inducing aging. When a colloidal system
is put under a shear rate γ̇, a new timescale, 1/γ̇, is introduced into the prob-
lem. The effect of a constant shear rate γ̇ on the particle dynamics of a non
glassy system can be quantified by the Peclet number, defined as the ratio
between the characteristic time of the shear rate (1/γ̇) and the characteristic
time of Brownian motion:

Pe =
6πηa3γ̇

kBT
=

a2γ̇

D

where D is the diffusion coefficient of the particles of diameter a in a solvent of
viscosity η. This parameter may also be interpreted as the ratio between the
energy induced by the shear flow (ηγ̇a3) and the thermic activation energy
(kBT ). At low Pe, the system exhibits a Newtonian behavior, while at
Pe > 1 a shear thinning regime emerges and at much higher Pe a shear
thickening behavior is observed. Instead, if the quiescent system exhibits a
structural relaxation time scale τs much longer than a2/D, then a second,
”dressed” Peclet number, Pe∗ = γ̇τs, can be defined [36]. This characterizes
the influence of shear on the structural relaxation and increases drastically
at the glass transition. The nonlinear rheology of colloids near the glass
transition is driven by the competition between structural rearrangement
and shearing that arises when Pe << 1 < Pe∗. A yielding behavior usually
emerges at low stress; while once the system starts flowing, it is characterized
by a shear thinning behavior. Very different microscopic mechanisms are
responsible for the non linear rheology of these two prototypes of colloidal
systems. As we will describe in 2.5, an order transition, induced in the
structure by the flow when Pe > 1, is responsible for shear thinning in non
glassy systems, while this order is disrupted when shear thickening occurs.
In glassy colloids instead, shear thinning is already evident when Pe << 1
and ordering transitions can be assumed absent. Thus the origin of this
phenomenon have to be found in the dynamical properties of the system, as
described by the various microscopical models reported in 2.3. The diverse
microscopic mechanisms underlying the shear thinning behavior also reflect
in the shear banding phenomenon. A heterogeneous dynamics along the
flow gradient direction induces the shear bands in a glassy system, while
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in other complex fluids the phenomenon originates from a difference in the
microstructure of the various bands.

2.3 Models for glassy colloids under shear

To investigate microscopically the dynamics of glassy colloidal systems under
shear, theories and models often inspired by theoretical studies on molecular
or atomic glasses have been developed. In these adapted models, the volume
fraction of the colloids represents the role played by the temperature in the
glass transition of supercooled liquids. Actually, colloidal suspensions can be
considered as ideal systems to understand fundamental aspects of the glass
transition. They are indeed tunable prototypes of atomic or molecular glassy
systems, with controllable interactions, while the spatial and temporal length
scales are advantageously much larger than in molecular systems and permit
easier experimental investigation.

In the following, we will proceed to the review of the principal theories and
models that describe the competition between spontaneous aging and shear
rejuvenating effect. Not only the yield and shear thinning behavior emerges,
but also a shear thickening behavior can be described microscopically by
some of these theories, while the shear banding induced by the presence of a
yield stress in the flow curve is predicted by some phenomenological models.
In the soft glassy rheology model, proposed by Sollich et al. and presented in
2.3.1, the yielding and shear thinning phenomena emerge from the descrip-
tion of the energy distribution in the system. The extension of the mode
coupling theory to shear flow have been proposed by various authors and
will be explained in 2.3.2: in this case, the shear thinning behavior after
yielding results from the decorrelation of the density fluctuations induced by
the flow. In both cases, an extension of the models to describe a shear thick-
ening system is attempted. The phenomenological simple model proposed
by Derec and coworkers, which may also be adapted to the description of
the shear banding phenomenon in yielding glassy colloids, is introduced in
2.3.3. Numerical models have been proposed in the literature to describe the
various complex flow behaviors of colloids, including also the shear banding
phenomenon. We have selected the numerical models more representative
for us and present them in 2.3.4.
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2.3.1 The soft glassy rheology model

A promising route for the investigation of the interplay between the drive and
the relaxation of a glassy system is the one followed by Sollich and coworkers
[27, 28], which extends the phenomenological ”trap” model to driven systems,
giving rise to the so-called soft glassy rheology (SGR) model. The picture
emerging from this model characterizes the shear thinning phenomenon as
the result of the energy pumped in the system by the shear perturbation.
This energy let the system overcome the deep energy barriers that confine it
in the arrested phase, thus accelerating the structural dynamics.

Before presenting the SGR model, we need to introduce the concept of
the effective temperature in a glassy system. During the aging regime, the
energy scale for mesoscopic rearrangements ∆E typically gives ∆E >> KT ,
though the dynamics are not completely frozen and exhibit slow evolution.
Empirically, it is possible to explain many of the rheological properties of
soft glasses by assuming that there is some sort of effective temperature Teff

at which the structural degrees of freedom (accounting for the slow dynam-
ics) thermalize. As the waiting time tw passes, the effective temperature
slowly relaxes to the vibrational temperature, which characterizes the fast
dynamics. Quantitatively, this is shown by studying the fluctuation dissi-
pation theorem (FDT), as the same aging behavior is observed both in the
correlation and response function of some significative variable [30]. Whereas
at equilibrium the bath temperature appears in the FDT, the theorem has
to be generalized in non-equilibrium aging systems at a given tw by replac-
ing the bath temperature with the effective temperature (which can thus
be defined by a generalized FDT). Adding the effect of a shear field to this
simplified approach leads generically to shear-thinning behavior; while intro-
ducing extra parameters in the model, shear thickening and jamming effects
can be described. Let’s start by introducing the trap model [31, 32], which
we will later extend to obtain first the SGR model and then the jamming
SGR model.

The trap model

One of the simplest model of glasses was obtained through a mathematical
trick, which reduces the glass transition to an effective one-body problem
showing a glass transition [49]. The trap model considers an ensemble of
independent particles moving by activated hopping between uncorrelated
traps. There is a distribution of barrier heights ρ(E) and the jump rate
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out of a trap is Γ0 exp(−E/x), where x represents the effective temperature
(x = KTeff ). These dynamics is defined by the equation of motion for a
probability distribution P (E, t) of traps occupied:

Ṗ (E, t) = −Γ0e
−E/xP (E, t) + Γ(t)ρ(E) (2.1)

where the first term on the right is escape from and the second is jump into
traps of energy E, while Γ(t) = 〈Γ0 exp(−E/x)〉P . Bouchaud [32] showed that
by choosing ρ(E) ∼ exp(−E/xg), for large E, a unique stationary solution
to equation 2.1 exists for x > xg, whereas no stationary solution exists for
x < xg. It is convenient to set xg = 1. This transition is reminescent of a
glass transition: the system is ergodic for x > 1 and non ergodic for x < 1.
In particular, above the transition (x > 1) one must wait a long time for the
deepest traps to become populated, but the distribution P (E, t) converges
to the equilibrium state. On the contrary, below the transition (x < 1),
the system evolves forever into deeper and deeper traps without reaching a
steady state. This leads to the aging behavior.

The SGR model

To extend the trap model to rheology, Sollich and coworkers [27] associated
the wells with harmonic mesoscopic regions, where a local strain variable l
may be defined. As the system is sheared, such regions will deform elastically,
gaining a stored energy 1

2
kl2 (where k is an elastic constant), up to a yield

point, characterized by a strain ly and a maximal elastic energy E = 1
2
kl2y.

The local shear stress is given by kl and, at the yield point, the mesoscopic
regions rearrange to new positions in which they are less deformed, thus
relaxing stress. While the region is distorted by the stress, the stored elastic
energy can be used to overcome the energy barriers and this principle can
explain qualitatively the macroscopic shear thinning behavior. A distribution
of the yield energies E is assumed to model the effects of structural disorder.
The state of a macroscopic sample is then characterized by a probability
distribution P (l, E; t), ruled by the following equation:

Ṗ (E, l; t) = −γ̇∂P (E, l; t)/∂l−Γ0e
−(E−kl2/2)/xP (E, l; t)+Γ(t)ρ(E)δ(l) (2.2)

where the first term on the right is from the deformation of local elements
between jumps and the others have the same interpretation as in the analog
equation for trap model 2.1. The macroscopic stress of the system is given by
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Figure 2.1: Flow curve for the SGR model, with x increasing from top to bottom;

the bold lines are for x = 2 and x = 1. A yield stress shows up for all curves with

x ≤ 1. The figure have been taken from Ref. [33].

σ = k〈l〉P . From equation 2.2, one finds out that flow interrupts aging and
ergodicity is restored with a steady state probability distribution by imposing
a steady γ̇ > 0. Steady state flow curves can be obtained and are shown in
Fig. 2.1. In the small γ̇ regime, one finds a Newtonian fluid for x > 2, when
σ = ηγ̇. In the model, the viscosity is simply the average relaxation time
to overcome the traps η = 〈exp(E/x)〉eq = 〈τ〉eq, taken over the equilibrium
distribution of energies. For 1 < x < 2 a power-law fluid with σ ∼ γ̇x−1

is obtained, while for x < 1 the so called Herschel-Bulkley behavior, with
the appearance of a yield stress, shows up: σ(γ̇) − σy ∼ γ̇1−x. Sollich and
coworkers also obtain the behavior of the complex dynamic shear modulus
G(ω) = G′ + iG′′ for the various regimes of the x parameter in an oscillatory
flow [27, 28].

In a following work, Hébraud and Lequeux [29] have proposed another
model, still based on the scheme of a system divided into mesoscopic blocks
carrying a stress σ, which this time depends on both time and position. In
their model, when the stress in a block reaches the critical stress value, the
block stress is set to zero and, as a consequence, the stress field is modified
in the whole sample. They define a probability P (σ, t) of finding a stress σ in
a block at time t and thus utilize a mean field approach to build an equation
for the evolution of P . As a result, they find a flow curve characterized by a
Newtonian regime or yield stress at low shear rates, a slow variation of the
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stress for higher shear rates and then an apparent Newtonian regime for very
large shear rates.

The jamming SGR model

The SGR model is exclusively shear thinning, with a monotonic flow curve
for all x. However, one can adapt the model to describe shear thickening
materials. The simplest route, proposed by Head and coworkers [34, 33], is to
declare that the noise temperature x is no longer constant, but is a decreasing
function of the global shear stress: x = x(σ). The basic idea is that in
shear thickening materials, stress can force particles to come very close, thus
forming clusters. This will make local rearrangements more difficult and a
lower noise temperature will characterize this state of the system. Depending
on the form of x(σ), a range of scenarios can be obtained. Many choices of
x(σ) produce flow curves with nonmonotonic regions, which exhibit hysteresis
in σ(t) under ramping the shear rate γ̇(t) first upwards and then downwards.
Moreover, a subset of these x(σ) also give rise to a jammed state for a range
of applied stresses. The criterion for this to arise is that the curve of x(σ)
drops below the inverted SGR yield stress curve σy(x). For an imposed shear
rate that decays to zero at late times, a jammed configuration is defined as
one with a finite asymptotic stress, σ(t) ∼ σy > 0 as γ̇(t) → 0+ and t → ∞.
It is found that whether or not this configuration is reached depends on the
entire strain history of the system.

Another way proposed by Head and coworkers to modify the SGR model
in order to obtain a shear thickening behavior, is to consider a noise temper-
ature depending on the local strain l: x = x(l), with x decreasing with in-
creasing l. Under these conditions, the flow curves are always monotonic and
continuously shear thickening, with a steady flow that is always reached un-
der a constant imposed strain rate. However, for a range of imposed stresses
and some choices of x(l), the response is not steady flow, but spontaneous
oscillation: γ̇ periodically oscillates around a well-defined mean.

2.3.2 Extension of the Mode Coupling Theory

Another approach to the investigation of the arrest and flow behavior of
glassy systems is the mode coupling theory (MCT), which is a mean field the-
ory proposed by Göetze [35] to describe the dynamics of supercooled liquids
and glasses. MCT has been particularly successful for colloidal suspensions
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and can be extended to include the presence of an external drive inducing
flow in such systems. In the following, we will first give a hint at the MCT,
then we will present the extension of the theory to systems under shear that
have been proposed by various authors, and finally we will introduce a model
that accounts for jamming behavior in the context of the MCT.

The Mode Coupling Theory

This is not the place to explain the MCT in detail [35], only those aspects per-
tinent to the developments of the theory to sheared glasses will be outlined.
The theory was developed to describe the glass transition in supercooled
molecular liquids. However, in these systems the dynamical timescales are
often too short to be accessed experimentally and the most promising sys-
tems for quantitative tests of the MCT have been dense suspensions of purely
repulsive particles, for which the temperature parameter used in the theory
have to be replaced by the inverse particle volume fraction. The central quan-
tities of the theory are the density correlators F (q, t). In a liquid, the system
is ergodic and F (q, t) decays to zero with time for all q. On the contrary,
in a glass limt→∞ F (q, t) = fq > 0, where fq is a nonergodicity parameter
characteristic of the arrested state. A finite fq represents the inability of the
structure to relax on lengthscales ∼ 2π/q, preventing an initial fluctuation
from fully decaying. Therefore, upon smooth variation of the density, the
system exhibits a sudden arrest transition corresponding to a discontinuous
jump of the non ergodic parameter from zero to a finite value. A closed
equation of motion can be found for the correlators; for a colloidal system,
by making the suitable approximations, the result is [35]:

F (q, t) + τ Ḟ (q, t) +

∫ t

0

m(t − t′)Ḟ (q, t′)dt′ = 0 (2.3)

where τ sets the timescale for the microscopic dynamics, while m(t− t′) is a
memory function. The structural relaxation is dominated by particle interac-
tions which either cage or bond a central particle among its neighbors. Near
the glass transition, either mechanism leads to a slowing down of particle
rearrangements accompanied by growing memory effects. The memory func-
tion describes the retarded friction effect which arises by this caging process.
The cage effect is driven by the local order as measured in the height of the
principal peak of the static structure factor, Sq

p
, where the wavevector qp

is inversely related to the average particle spacing. The decay time of this
dominant density mode sets the structural relaxation time.
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MCT for glassy systems under flow

The effect of a constant shear rate γ̇ on the particle dynamics can be measured
by the Peclet number, as explained in 2.2. Here we are interested in the case
when Pe << 1. In this regime, the steady state structure factor differs
only smoothly from the quiescent Sq around q ∼ qp, thus the effect of shear
cannot lie in a destruction of the quiescent local order. Rather, the effect
needs to arise from a shear-induced decorrelation of the memory built up in
the collective cage mode. Particles separated by a small distance in the flow
gradient direction become well separated for times beyond 1/γ̇. Beyond this
timescale, any system at nonzero flow rate should loose memory of previous
configurations, so that ergodicity is restored. In the q-space, the important
density fluctuations, characterized by q ∼ qp, are advected on this timescale
to higher q, where they decay rapidly. Even those fluctuations that are not
directly advected become ergodic. Hence cages, that transiently immobilizes
particles, are dissipated, thus resulting in a shear thinning behavior.

These are the considerations underlying the approaches proposed by Fuchs
and Cates [40] and by Miyazaki and Reichman [41] for the extension of the
MCT to systems under a stationary shear flow. The physical picture of these
two works is quite similar and also the results show many similarities. To
incorporate shearing into the MCT equations containing the density corre-
lators, they need to consider that translational invariance is violated under
shear. Another spatial symmetry is valid [81] by defining a time dependent
position vector r(t) = r+γ̇txey, where ey is the flow gradient direction, while
ex is the flow direction. In the q-space, this reflects in a coupling of fluctua-
tions of wavevector k with later fluctuations of wavevector k(t) = k+γ̇tkyex.
In both works, hydrodynamic interactions are neglected [37] and only the
Brownian contributions are considered. Under these conditions, they con-
struct a nonlinear equation for the correlators, where the effect of the shear
appears in a generalized memory function. The solution is evaluated numer-
ically for a two-dimensional model of colloidal suspension by Miyazaki and
Reichman and the result is a structural relaxation time decreasing as γ̇−m

with m = 0.8. Fuchs and Cates even go further by developing the so called
isotropically sheared hard spheres model [36]. As a result, they obtain a
shear-thinning behavior with exponent m = 1 and predict a transition in the
flow of these shear-thinning fluids, with diverging viscosity upon increasing
the interactions, and a solid yielding, with a yield stress that is finite at (and
beyond) the critical packing fraction characterizing the glass point.
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Actually, the first theoretical work extending the MCT to supercooled
liquids under stationary flow was developed by Berthier, Barrat and Kur-
chan [38], who proposed a schematic model based on the exactly solvable
p-spin model [43]. As a result, they obtain that a fluid above the glass tran-
sition temperature, which has two well-separated relaxation time scales at
equilibrium, shows instead an acceleration of the slow structural relaxation
when sheared in a certain range of shear rates. In particular, the follow-
ing relation for the slow relaxation time τs is predicted: τs ∼ γ̇−2/3. This
shear thinning behavior is accompanied by the appearance of an effective
temperature for the slow degrees of freedom, resulting in the violation of
the fluctuation-dissipation theorem. Below the glass transition temperature,
when the system is in a nonergodic state and the slow dynamics at rest is
characterized by an effective temperature, the shear induces a shear thinning
behavior and a stationary state is reached. Moreover, by constructing the
free-energy landscape of the model, the existence of a yield stress can be ex-
plained. Above the dynamical transition temperature Tc, the available phase
space is dominated by one large basin in the free energy, corresponding to
the paramagnetic liquid state. At Tc, a threshold level in free energy appears,
below which the free-energy surface is split into exponentially many discon-
nected regions. When the system is prepared in one of the deep regions below
the threshold, a weak driving force is expected to have no effect beyond a
trivial elastic response of the system, as it is not strong enough to make the
system overcome the barriers. If instead a strong drive is applied, the system
should escape the low-lying valley and surface above the threshold, where
the drive will suffice to keep it forever. These expectations are verified by
calculations proving the existence of a static yield stress σy(T ) in the model,
as defined by the minimal force required to make it flow.

As a consequence of the shear thinning and yielding behaviors found in
the model [39], a multivalued flow curves is expected in the interval of shear
stress σ ∈ [0, σy]. Therefore, shear localization would spontaneously develop
in such a stress interval, with a flowing band (γ̇local > 0) coexisting with a
non-flowing band (γ̇local = 0).

Schematic model for the jamming transition

The shear thickening phenomena has been explained theoretically in terms
of hydrodynamic interactions, as we will describe in 2.5. However, a recent
experiment by Bertrand and co-workers [44] have shown a shear induced
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jamming transition in a concentrated suspension that cannot be explained
by hydrodynamic forces alone. The jammed state persisted indeed after
cessation of shear. These observations have inspired a work by Holmes and
coworkers [45], where a schematic scalar model of the jamming transition in
the context of the MCT have been developed. Their speculative scenario for
the formation of the shear-induced glass is the following: the applied shear
stress induces a jamming transition through hydrodynamic interactions at
concentrations somewhat lower than would be required without the stress.
In the arrested state, flow ceases but stress remains and is now sustained by
interparticle and entropic forces rather than hydrodynamics.

Two features are introduced in the MCT approach in order to allow shear-
thickening and jamming scenarios to emerge: strain-induced memory loss,
which we have already introduced to account for shear thinning behavior
and stress-induced arrest. Stress can indeed hinder diffusion by distorting
cages and creating closer contact between particles. Holmes and coworkers
propose a schematic model considering a single correlator F (t), rather than
the infinite set Fq(t) used in the MCT. The memory function is then simplified
and, to account for both effects induced by shear, is modelled as follows:

m(t) = (v0 + ασ) exp(−γ̇t)F 2(t)

where v0 represents the system tendency to structural arrest in the absence of
any external drive and α represents the degree to which the intrinsic memory
of the system is enhanced by a shear stress σ. The exponential function
accounts for the flow-induced memory loss, which thus becomes important as
γ̇t ≥ 1. To close the schematic model, an equation for the viscosity is defined
[46]: η =

∫ ∞

0
F (t)dt = τ . The model has been solved numerically and, for

nonzero α, a nonergodic solution at zero shear rate always turns out for σ
sufficiently large. However, this state is unstable with respect to an ergodic
solution whenever the latter exists, meaning that a flowing state is preferred
to a jammed one if both exist. Fig. 2.2 shows three thickening scenarios,
depending on model parameters: upon increasing v0, there is a progression
from a monotonic, continuously shear-thickening curve, via a nonmonotonic
S-shaped curve, to a curve that extends right back to the vertical axis. As
the flow curve with negative slope are unstable to shear banding, in any
experiment at controlled shear rate, the stress would be expected to jump
discontinuously from the lower to the upper branch in the unstable region.
The steady state and the unstable solutions for the flow curves also emerged
in the jamming SGR model (2.3.2). Additionally, for the largest values of the
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Figure 2.2: Flow curves for different values of the v0 parameter. For the two

largest values, it appears that in the stress window σc1 < σ < σc2, the relaxation

time has diverged showing a jamming transition. Figure from Ref. [45].

parameter v0, there is a range of stress (σc1 < σ < σc2) for which the shear
rate returns to zero: this is the region where non ergodic solution exists and
the jammed state is stable.

2.3.3 Phenomenological Maxwell model

A simple model for the rheology of soft glassy materials, with no reference to
any microscopic mechanism, has been proposed by Derec et al. [47]. Also a
shear banding behavior can emerge from this model under certain conditions
[50], providing one of the most exhaustive descriptions of this phenomenon in
a glassy colloid. In the following, we will present the model, that results in a
yielding and shear thinning behavior, while the extension to the description of
the shear banding phenomenon will be explained in the next section. Derec
and coworkers adopt a homogeneous, scalar description, which focuses on
the collective relaxation mechanism and captures the competition between
spontaneous aging and flow-induced rejuvenation. Their approach is based
on the Maxwell model, which is the simplest visco-elastic model, with a single
time scale, but with a relaxation rate that evolves in time and is thus history-
dependent. The equation linking the stress σ to the shear rate γ̇ contains a
purely viscous element in series with an elastic one:

∂tσ = −a(t)σ + Gγ̇
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where G is the shear modulus and a is the so called fluidity, which is the
inverse of the mechanical relaxation time: a = 1/τ and thus will be low in
the vicinity of the glassy phase. To close the system, the equation for the
fluidity stands:

∂ta = −f(a) + g(a, σ, γ̇) (2.4)

where f , which accounts for spontaneous aging and g, accounting for shear
induced fluidization, are both positive functions. For long waiting times and
weak shear, the fluidity is expected to be small, so we are interested in the
behavior of f and g in the vicinity of a ≃ 0. Using formal expansions, the
two functions are expressed as

f(a)a→0+ ≃ −raα + vaα+β

g(a, σ, γ̇)a→0+ ≃ uσnγ̇map

The r parameter depends on the concentration and is positive in the liquid
phase and negative in the glassy one: r ∼ −(Φ − Φc). This general model
encompasses various models in the literature corresponding to specific choices
for the phenomenological exponents (α, β, n, m, p) [48]. Derec and coworkers
solve the general case and also present a specific simple case which we will
summarize in the following. They fix α = 2, which is the smallest value for
α such that the fluidity relaxes slower than the stress in the glassy phase.
The fluidity is thus the memory parameter in the system. For the other
parameters, they choose β = 1, n = 0, m = 2 and p = 0. The system is
quenched at t = 0 through a strong oscillating shear that fluidizes it, is then
left to relax spontaneously and finally is submitted to a constant shear rate
starting at t = tw. When the steady shear is turned on, the response of the
system will be in the linear regime as long as the coupling term uγ̇ remains
smaller than ra2. This earlier regime may provide a way to follow aging in
the system: they find that in the glassy phase the mechanical timescale is
τ(t) = 1/a(t) ∼ tµ for long times, with µ = 1/(α − 1). In this specific case,
µ = 1 and we are in the so called full aging regime. After a certain time, as
the fluidity decreases, the response of the system in the glassy phase becomes
non linear. In this regime, at low shear rates, a yield stress appears in the flow
curve and after yielding the time scale imposed by the shear rate determines
the fluidity (a ∝ γ̇). In the liquid phase (r > 0), a newtonian regime is found
at low shear rates. At higher shear rates, the liquid and glassy behavior both
merge in a shear thinning steady regime with an effective viscosity η ∝ γ̇−2/3.
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In the general case, keeping generic exponents in the model, the yield
stress in the low shear non linear regime holds whenever the parameter ǫ =
α−n−p is null, while a power-law fluid shows up when ǫ > 0. The low shear
rate behavior in the liquid phase is still Newtonian, while for high shear rates
a shear thinning power law regime is obtained for both the liquid and glassy
phase. A similar result of the flow behavior in the liquid and glassy phase
had already been obtained through the MCT theory approach on the p-spin
model [38], as we explained in 2.3.2.

Shear banding

Under certain conditions, the general model just presented can also describe
heterogeneous flows in yield stress fluids, as shown by Picard and coworkers
[50]. A nonmonotonic local flow curve is required, with a yield stress and
a decreasing branch for small but nonzero values of γ̇. In order to describe
spatial heterogeneities in the flow, the authors need to account for the effect
of a heterogeneous value of the fluidity on the dynamics. This is achieved by
adding a diffusion term D∇2a in the equation 2.4 for the fluidity. Boundary
conditions for the fluidity equation are also required and can sensitively influ-
ence the solution of the system of equations defined in the model. Indeed, the
wall affects the dynamics of the fluid in its neighborhood [51] and can have
important consequences on the overall macroscopic behavior. Two limiting
simple cases are considered for the boundary conditions of the fluidity, while
direct wall slippage is excluded. The geometry chosen to develop the model
is the plane Couette flow, with the two bounding plates located at y = 0
and y = H and the top plate moving along x at a velocity V . The equations
defining the model for a simple shear geometry are thus the following:

∂tΣ = −a(t)Σ + γ̇

∂ta = −f(a) + h(a)Σγ̇ + D∂2
yya

∫ H

0

dzγ̇(y, t) = V = Γ̇H

a|y=0,H = aw or ∂ya|y=0,H = 0

where Σ(t) and Γ̇(t) are global variables for the stress and the shear rate,
whereas a(y, t) and γ̇(y, t) are local variables.

Under imposed stress Σ, the dynamics of the field a(y) can be determined
by a Σ dependent functional evolving towards a local minimum. Two steady
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state solutions are found and the one selected by the system depends on
the initial conditions. There is a frozen branch corresponding to a frozen
bulk at a ∼ 0, with layers of finite fluidity close to the wall induced by the
boundary conditions. And a fluidized branch with the bulk at a finite value
of a (corresponding to the stress Σ on the up-rising part of the local flow
curve), with layers of possibly weaker fluidity close to the wall. The flow
curve at imposed stress Σ is plotted in Fig. 2.3. For stress values Σ lower
than a limiting value σd, only the frozen branch is stable, whereas for values
larger that a given σi only the fluidized branch is. The two limiting values
depend on the boundary condition of a, as the walls can act as nucleation
centers for either the frozen or fluidized phase. For intermediate values of the
stress σd < Σ < σi, both branches are possible solutions at long times and
the one selected depends on the initial conditions, i.e. on the system history.
When increasing the imposed fixed stress, the sudden jump from the frozen
to the fluid branch can thus be anticipated at a value σ∗, depending on the
preparation scheme, which fixes the transition from a final frozen to a final
fluid steady state. Therefore, the system has an effective yield stress between
σd and σi.

The case of an imposed shear rate Γ̇ is more complex, as both the field
a(y, t) and Σ(t) evolve in a coupled way in the system of equation describing
the model. The resulting macroscopic picture is represented on Fig. 2.3.
The two branches resulting from an imposed stress are still present in this
case, but for intermediate shear rates the system stabilizes in a banded state
at a stress very close to σ∗. In this shear banding state, a fraction of the
system is characterized by a fluidity close to zero, while another fraction has
a fluidity close to a(σ∗). The width of the fluidized region hf is typically
given by hf ∼ HΓ̇/γ̇∗, where γ̇∗ = a(σ∗)σ∗.

Finally, in a narrow vicinity of the transition from the quasi-homogeneous
branches to the situation of coexisting shear bands, various phenomena can
occur in the vicinity of the wall: nucleation of thin layers of fluidity different
from the bulk, or of layers of periodically oscillating fluidity with features
characteristic of a “stick-slip” behavior. In particular, for small wall fluidity
and imposed shear rate, a layer localized either close to the wall or in the
middle of the cell shows a fluidity oscillating between a frozen and a fluidized
state, while the rest of the system remains frozen. The system rapidly relaxes
to the frozen state (small fluidity), while the stress increases until a limit
where the fluidity abruptly increases, so the fluid is suddenly sheared. To
maintain a fixed global shear rate, σ relaxes quickly and the cycle starts again,
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Figure 2.3: Schematic flow curve at imposed stress Σ (left panel) and at imposed

shear rate Γ̇ (right panel). Thick lines represent the macroscopic and dashed and

continuous lines the local flow curves. The limits of stability of the frozen and fluid

branch are fixed by σi and σd in the left panel and by γ̇i and γ̇d in the right panel.

At imposed shear rate, between these two values shear bands from in the system.

At the transition between the two branches (grey areas), stable or oscillating thin

layer structures are observed in the vicinity of the wall. The figures have been

taken from Ref. [50].

as shown in Fig. 2.4. Oscillating response under steady driving has also
been observed in the model presented in 2.3.1 for shear thickening materials
[45]. Contrarily to the present model, that one described the homogeneous
behavior of a system, as no spatial heterogeneities were introduced in the
formalism, while the shear rate oscillated at a fixed stress.

2.3.4 Numerical Simulations

Non-linear rheological behavior of complex fluids can also be described through
computer simulations of supercooled liquids under shear. Yamamoto and
Onuki have done molecular dynamics simulations of a binary liquid with
a soft-core potential near the glass transition temperature [81], while Bar-
rat and Berthier numerically investigated a binary Lennard-Jones mixture
[53, 54, 55]. A shear localization behavior has also been predicted by Varnik
et al. [56] using this last model, as we will report in the following section.

Yamamoto and Onuki define bonds between neighboring particle pairs
owing to the sharpness of the first peak of the pair correlation functions
and they investigate the system dynamics by following the bond lifetime τb,
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Figure 2.4: Evolution of the global stress and of the maximum fluidity in the

oscillating layer. Figure from Ref. [50].

which turns out to be a decreasing function of the temperature T . Upon
structural rearrangements, the bonds break collectively in the form of clus-
ters, whose sizes grow with lowering the temperature. When a simple shear
flow is applied to the system, the perturbation drastically changes the glassy
dynamics when γ̇ exceeds the inverse of the structural relaxation time. The
bond breakage time, which is proportional to the structural relaxation time,
has the following dependence on the shear rate:

1

τb(γ̇)
≃ 1

τb(0)
+ Aγ̇ (2.5)

where A is a constant. Thus the bond breakage rate 1/τb(γ̇) consists in a ther-
mal breakage rate, represented by the first term on the right, which is strongly
dependent on T , and a shear induced breakage rate, proportional to γ̇. In the
strong shear condition (τb(0)γ̇ > 1), jump motions are induced by shear on
the timescale of 1/γ̇. When investigating the density autocorrelation func-
tion, the authors find a stretched exponential form exp[−(t/τ)β] for the slow
relaxation, with 0 < β < 1 and β increasing with γ̇ and T . This stretched
behavior of the slow relaxation is induced by large-scale heterogeneities in the
bond breakage process, marked by the coexistence of relatively weakly and
strongly bonded regions. As the shear rate or the temperature are increased,
the breakage occurs more homogeneously (β increases). In conclusion, the
authors determine the viscosity of the system from the bond breakage time:

η(γ̇) ∼= Aητb(γ̇) + ηB
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where ηB represents a background viscosity and Aη is a constant. Under
strong shear (τb(0)γ̇ > 1), the viscosity has the temperature independent
behavior: η(γ̇) ∼= (Aη/Ab)/γ̇ + ηB. If the background viscosity is negligible,
a constant limiting stress follows: σy

∼= Aη/Ab.

In the molecular dynamics simulations by Barrat and Berthier, results
comparable with the main predictions of mean-field calculation [38] are ob-
tained. When a shear rate γ̇ is applied to the system, a non-equilibrium
stationary state is reached after a transient of a few γ̇−1. A shear thinning
behavior is thus established both in the liquid and glassy phase, with an
exponent depending on temperature. When γ̇−1 is larger than the slow re-
laxation time, over the glass transition temperature a Newtonian regime is
found instead. In this context, they also study the FDT and its violations. In
the glassy phase, the violation of the theorem is similar to the one observed
in an aging system in the absence of an external drive. In the fluid state,
violations of the FDT appear only when the fluid is driven beyond the New-
tonian regime, and are then similar to that observed in the glassy phase. By
increasing the strength of the driving force, the effective temperature defined
by the generalized FDT increases.

Shear localization

Molecular dynamics simulations on the same glassy model investigated by
Barrat and Berthier [53] have been performed by Varnik and coworkers [56]
and shear localization phenomena has been observed. The flow curve ex-
hibited by the model system is shown in Fig. 2.5. For global shear rates Γ̇
smaller than a critical value Γ̇c, the system separates into a fluidized band,
with a finite local shear rate and an unsheared band. Due to the finite size
of the simulation box, the appearance of the shear band can occur equally
likely on both sides of the cell. In experimental systems, this symmetry is
not expected as one of the two solutions would be stabilized by the large
size of the system. By increasing the global shear rate, the thickness of the
sheared region grows, passing from the order of a few atomic diameter to the
whole gap size. When Γ̇ > Γ̇c, the flow is homogeneous with a linear velocity
profile.

Similarly to the results by Picard et al. 2.3.3, at very small global shear
rates, the authors observe a time dependence of the shear stress characteristic
of stick-slip phenomenon. As shown in Fig. 2.6, the stress oscillates between
a value close to the yield stress and a value smaller than the one obtained in
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Figure 2.5: Shear stress versus imposed shear rate Γ̇ = dγtot/dt. Under imposed

shear rate, if the corresponding steady state stress falls below the horizontal line, a

heterogeneous flow is expected, while the flow will be homogeneous in the opposite

case. The vertical line marks the shear rate Γ̇c on the boundary of this two flow

regimes. Figure from Ref. [57].

a homogeneous flow. Qualitatively, this behavior is obtained when the thick-
ness of the sheared layer becomes of the order of a few particle diameters,
which also corresponds to the width of the interface separating the sheared
and jammed regions. Finally, static properties are found to be constant
across the gap and a purely dynamical distinction between the two bands is
observed instead, as shown by the density correlation functions shown in Fig.
2.7. There are indeed two limiting behaviors of the correlation functions, cor-
responding to the sheared and jammed regions, with a rapid change from one
behavior to the other within a few layers localized at the interface between
the two bands. In the jammed region the system behaves as a glassy solid
as Φq(t; z) shows only a decorrelation accounting for the fast dynamics and
does not relax to zero on the simulation timescale. On the contrary, in the
sheared region the correlation function exhibits a two-step relaxation, with a
finite structural relaxation timescale. In order to validate experimentally the
results of the model, the authors thus encourage a determination of velocity
profiles together with a local probe of the dynamics.
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Figure 2.6: Shear stress versus time for small global shear rates (Γ̇ << Γ̇c). The

stress rises up to a value close to the yield stress and then suddenly drops to a

value smaller than the one obtained in a homogeneous flow. Figure from Ref. [56].

2.4 Other theories for shear banding and yielding

The shear banding phenomena has first been observed in various non colloidal
complex fluids, like surfactant wormlike micelles, liquid crystals and lamel-
lar surfactant systems which can roll into multilamellar vesicles (”onions”).
These systems don’t exhibit a glassy dynamics and their flow curve is not
characterized by the presence of a yield stress. It shows instead a decreasing
branch, which follows a region where the stress increases with the shear rate
(Fig. 1.6). In a controlled shear experiment, bands characterized by different
finite local shear rates may be observed when the stress falls in the interval
where the flow curve is multivalued. While in glassy systems the difference
between the bands is of dynamical nature, in these systems a structural phase
transition occurs under flow and an ordered phase coexists with a disordered
phase. Many theoretical models have been developed to describe the shear
banding phenomenon in these systems, in particular for wormlike micelles
[59, 60, 61]. The structural differences between the flowing phases is usually
identified through an order parameter and the investigation of its coupling
with the flow allow to obtain a selection criterion for the flow pattern and
the resulting macroscopic rheological behavior.

For glassy systems, where a structural variable cannot be identified to
distinguish the coexisting phases, exhaustive microscopical models are still
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Figure 2.7: Intermediate scattering function Φq(t; z) across the gap, when the

velocity profile of the system shows a fluidized band next to the left wall and an

unsheared band next to the right wall. Figure from Ref. [56].

missing. A phenomenological simple model for heterogeneous flow in yield
stress fluids has been proposed in Ref. [50], as described in 2.3.3. A numer-
ical work, describing shear localization in a model glass [56], has also been
presented in 2.3.4. An interesting work for non-glassy systems is the one
presented by Dhont [62], where a gradient term is added to the standard
constitutive relation in order to account for the rapid variation of the local
shear rate at the interface between the flow bands. As a result, shear band-
ing occurs in the fluid under controlled shear conditions, but the stationary
state is not uniquely determined and depends on the initial perturbation ap-
plied to the system. A ”quasi-thermodynamic” model proposed by Porte and
coworkers [58] describes the shear banding phenomenon in phase separating
fluids, but the same basic physical mechanism can be adapted to the banding
originating in glassy materials. Section 2.4.1 will be devoted to the presen-
tation of this model. A very simple phenomenological model, which we will
present in (2.4.2), has been proposed by Coussot and coworkers [17] to de-
scribe the behavior of thixotropic, yielding fluids which they had investigated
experimentally.
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2.4.1 A ”quasi-thermodynamic” model

In the microscopic model proposed by Porte and coworkers [58], the system is
described in terms of an effective non-equilibrium potential Fs, defined over
mesoscopic scales, that accounts for the free energy stored in a viscoelastic
material under steady-shear conditions. A strain-like order parameter γs

for the potential Fs is introduced in the model and describes the effective
state of the medium averaged over mesoscopic scales. The description of the
system through this order parameter is also adaptable to glassy systems, as
no direct dependence on the structure of the system is present in the model.
In steady state conditions, a generalized viscous constitutive equation yields:
σ = η(γs)γ̇ and the flow pattern depends on the shape of the potential Fs(γs).
If Fs is concave upwards at all γs, then the flow curve is monotonic. If, on
the contrary, the concavity of Fs changes sign in some range of γs, then the
flow curve is non monotonic, but its specific features depend on the viscous
law characterizing the system.

In a shear thinning system (dη/dγs < 0), the flow curve exhibits a de-
creasing branch and the fluid will undergo an internal transition at a unique
stress σt forming shear bands. This inhomogeneous flow regime is uniquely
defined by the system of equations proposed in the model, which determines
the local shear rates γ̇1 and γ̇2 in the two bands for a given global shear
rate Γ̇ (Fig. 1.6). The relative proportions x and 1 − x of the high and low
shear-rate bands is defined by the equation

xγ̇1 + (1 − x)γ̇2 = Γ̇

For a shear thickening system (dη/dγs > 0), the generic non-monotonic
shear curve has the form shown in Fig. 2.8. The resulting flow behavior is
completely different from the shear thinning case and shear banding is not
observed. In a shear controlled experiment, below γ̇1 the lower branch is
followed and the homogeneous flow is stable. At γ̇1 the stress σt is reached,
germs of the viscous state nucleates at a shear rate γ̇2, but a stationary
state is reached at point 3. Once above γ̇1, a stationary homogeneous flow
is recovered on the upper branch. Thus, upon increasing the shear rate,
a discontinuous jump from σt to σ3 is expected for the measured stress as
γ̇ passes through γ̇1. A reentrant region in the flow curve with unstable
solutions also resulted in the glassy models for shear thickening (2.3.1, 2.3.2),
where an oscillating stress resulted under steady shear.
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Figure 2.8: Schematic representation of a non-monotonic flow curve for a shear

thickening fluid. Figure from Ref. [58].

2.4.2 A simple model for yielding fluids

The experimental results on the mechanical behavior of various glassy fluids,
has suggested the simple phenomenological model for yielding fluids pre-
sented in Ref. [17]. At rest, the systems exhibited an aging behavior, while
in response to an applied stress, the fluid showed a bifurcation in flow be-
havior that depended on its flow history. In particular, a time-dependent
critical stress determined whether prolonged shearing would lead to a flow
or non-flow condition in steady state. This critical stress is identifiable as
a yield stress. The typical picture to describe yielding suspensions views a
network of interactions between the particles extending over the entire sam-
ple. The structural rearrangements taking place during the aging evolution
enhance the strength of the network interactions. The effect of the flow is to
disperse particles and consequently to diminish the strength of the network.
As usual, the rheological behavior of the system thus results from the com-
petition between the aging process and the rejuvenating effect of the shear
flow. In this framework, the authors suppose that the state of the material at
a given time can be described by a single parameter λ, which represents, for
instance, the degree of aggregation. For an aging system at rest, λ increases
at a constant rate of 1/T0, being T0 the characteristic time of the aging. The
rate of decrease of λ under shear rejuvenation is assumed proportional to the
shear rate. Therefore, the evolution of the λ parameter is described by the
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equation
dλ

dt
=

1

T0

− αλγ̇

where α is a system dependent constant. In the model, the viscosity of
the system is a function only of the instantaneous state of the material:
η = η0f(λ), with f an increasing function of λ. A dimensionless shear stress
T = σαT0/η0 is written as a function of a dimensionless shear rate Γ = αT0γ̇
as T = Γf(1/Γ). For a function f that increases sufficiently rapidly, thus
a viscosity increasing rapidly with λ, at small shear rates the flow curve
turns out to be nonmonotonic. Under controlled shear rate, shear banding
instability thus shows up below a critical shear rate Γ0, while a homogeneous
flow occurs over Γ0. Under controlled stress, for such a choice of f , the
fluid evolves either towards complete stoppage if the stress is smaller than
a certain value Tc, or towards a steady flow otherwise. This critical stress
depends on the previous flow history and can be expressed as a function of
the initial state of the material λ0. The more the system ages before stress
application, the bigger will be λ0 and Tc. The temporal evolution of the
viscosity as predicted by the model under various levels of stress is reported
in Fig. 2.9. For stresses larger than Tc the viscosity decreases and reaches a
steady value, while for smaller stresses the viscosity increases at an increasing
rate and tends towards infinity inducing flow stoppage, just as observed in
the experiments which suggested this model [17]. However, the yield stress
does not have a specific value as in ideal yield stress fluids. Indeed, it results
from a bifurcation, at the critical stress Tc(λ), between a drastic increase in
the viscosity leading to flow stoppage and a shear rejuvenation leading to a
steady state flow.

2.5 Shear thinning and shear thickening in non

glassy colloidal suspensions

In non glassy, concentrated colloidal suspensions, a shear thinning behavior
is observed at low shear stresses, while at high stresses a thickening regime,
which may end up in a jamming transition, shows up. Actually, dimensional
analysis implies that for a given value of the volume fraction, all monodis-
perse hard-sphere suspensions ought to show an onset of shear thickening,
which is not always accessible experimentally. In particles with long-ranged
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Figure 2.9: Change in dimensionless viscosity (T/Γ) over dimensionless time for

different dimensionless stress levels, according to the model proposed in Ref. [17].

The stress increases from top to bottom. Figure from Ref. [17].

interactions, like charged colloids, a more sever shear thinning is expected,
while the onset of the shear thickening regime and a following jamming tran-
sition are enhanced. A yield stress behavior may also be observed in these
systems before the onset of the shear thinning regime. This complex rhe-
ology originates from a coupling between the flow and the microstructure,
which has been investigated both on the theoretical and numerical ground. In
the following, the microscopic theories for this phenomenology are reported
(2.5.1), while in a later section (2.5.2) some numerical simulations and simple
models, describing the onset of shear thickening and jamming, are presented.

2.5.1 Microscopic theories

Hoffman first formulated a theory for the structural origin of shear thicken-
ing in the framework of charged colloids [63]. He interpreted the onset of
the shear thickening regime as an order-disorder transition. Concentrated,
charged sphere colloids form an ordered, crystalline phase at rest, with a face
centered cubic structure. Like in other fluids with an ordered phase, a yield
stress behavior is observed when they are forced to flow. After yielding,
the three-dimensionally ordered structure transforms into a layered struc-
ture that permits continuous deformation. In particular, planes of hexag-
onally close-packed spheres orthogonal to the flow gradient direction glides
over each other inducing a shear thinning behavior. Hoffman argued that,
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at some critical level of shear stress, a flow instability causes the particles to
break out of their ordered layers, inducing the rise in viscosity that defines
shear thickening. However, the breakup of the layered structure turned out
be a necessary but insufficient condition for shear thickening.

Therefore, another model has been proposed to describe the onset of the
shear thickening regime, which is the most often cited in recent literature.
This theory involves the formation of hydrodynamic clustering and explains
the increase of viscosity with the shear stress as due to the increasing di-
mension of these clusters [65]. This theory investigates the non-equilibrium
microstructure through the Smoluchowski equation for the probability den-
sity of the particle positions, taking into account hydrodynamics, Brownian
interactions and also an effective hard-sphere interparticle interaction. Only
binary collisions between particles are considered. The parameter used in the
model to quantify the effect of the flow on the system is the Peclet number Pe
(see 2.2). At small Pe the viscosity exhibits a Newtonian behavior, followed
by shear thinning when Pe > 1, while at larger Peclet numbers, Pe > 10,
the system enters in the shear thickening regime. The shear thinning is due
to the alinement of the particles under shear: convection starts to influence
diffusion in this regime of Pe and the microstructure is distorted faster by
the imposed flow than Brownian motion can restore isotropy. In this regime,
the dominant transport mechanism is still Brownian motion, which leads to a
positive value of the first normal stress difference. Shear thickening is instead
due to the formation of hydrodynamic clusters and the state of order of the
particles is not responsible for it as in the model proposed by Hoffman [66].
At high Pe, hydrodynamic interactions dominate, as a result the first nor-
mal stress difference changes from positive to negative values. Moreover, the
pair distribution function g(r) is found to be asymmetric, with an excess of
particles in the compressional axis. The pair-distribution function at contact
in the flow gradient plane, calculated for hard spheres with or without hy-
drodynamics interactions, is plotted in Fig. 2.10 as a function of θ, the angle
from the flow direction, and Pe. In the absence of hydrodynamic interac-
tions, there is no reduction of the mobility when two particles approach one
another and particle density in a boundary layer in the compressive region
of the flow accumulates rapidly with increasing Pe. Focusing on a refer-
ence particle, this acts indeed as an obstruction to particles being advected
from upstream, while downstream there is no obstruction to transport and
the extensional region is depleted of particles at large Pe. The inset of the
figure demonstrates that growth of the boundary-layer scales linearly with
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Figure 2.10: Pair distribution function under flow at contact (r = 2) in the flow

gradient plane as a function of θ, and Pe. From bottom to top: Pe =10, 15,

20, 30, 40, 60, 100, 200, 400, 600, 800, 1000. The left graphics is obtained from

the Smoluchoski equation for hard spheres in the absence of hydrodynamics inter-

actions, while the right one results from considering hydrodynamics interactions.

The inset shows the same results scaled by Pe (left plot) or Pe1/2 (right plot).

The figures have been taken from Ref. [67].

Pe. In the presence of hydrodynamic interaction, the detailed structure of
the boundary layer changes for the lubrication effect of hydrodynamic forces.
The squeezing together of two particles in the compressional region is indeed
resisted by the expulsion of solvent from the narrow gap separating them
and so is the pulling apart of the pair in the extensional region resisted by
the replenishment of solvent in the growing gap. The former action tends
to decrease the contact density in the compressional region, while the latter
creates a finite contact density in the extensional region. Now the growth
of the boundary layer scales as Pe1/2 and the weaker accumulation of parti-
cle density in the boundary layer is compensated by a concomitant increase
of the boundary layer thickness. In the case of hard spheres subject only
to hydrodynamic interactions, Brownian motion renders the contact value
of g finite. When excluded volume interactions are considered, the bound-
ary layer structure changes and is seen to separate from particle contact.
Shear thickening can thus be understood from this boundary layer analysis:
the hydrodynamic contribution to the stress from the boundary layer shear
thickens as the layer thins and the particles are pushed closer to contact with
increasing Pe. The above analysis at the level of two particles can explain
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the onset of shear thickening in dilute suspensions, but the treatment can
also be extended to concentrated suspensions [68], where the same boundary
layer structure is obtained.

2.5.2 Phenomenological models and numerical simulations

The microscopic theory developed by Brady and coworkers have inspired
many numerical works or theoretical models investigating the shear-induced
formation of hydrodynamic clusters in the compression axis [69, 71, 72].

A model of colloidal spheres interacting via shear, squeeze and rotation
lubrication interactions has been simulated by Ball and Melrose [69] and the
cluster formation phenomenon results. In particular, they investigate the
effect of hydrodynamic and Brownian interactions on the cluster formation.
In the absence of Brownian motion, the flow is found to be blocked by the
formation of particle clusters, within which catastrophically narrow gaps exist
between neighbors. The spacing between the particles in these clusters gets
smaller and smaller as the shear stress applied to the system increases: the
authors find indeed that the probability of having a percolating cluster with a
given inter-particle spacing saturates when the applied stress increases. This
gap narrowing in the clusters is referred to as a breakdown of lubrication.
The inclusion of a surface interaction or Brownian motion, having a repulsive
effect, can prevent this unphysical result. However, for high enough shear
rates very narrow gaps again may form in the clusters, while jamming is not
observed in this Brownian case.

Jamming transition is observed instead in a simple lattice model in two
dimensions studied by O’Loan and coworkers [71]. The model accounts for
the formation of clusters of particles under an imposed shear flow, which
fragment stochastically. The size distribution of these shear-induced clusters
shows a power law behavior and a hysteresis is found in the evolution of
their average size as a function of the shear rate. When clusters spanning the
entire system along the compression axis form, the system jams and in this
regime the average size of the clusters is found to increase roughly linearly
with increasing shear rate. An interesting picture of the jamming process
in a colloidal suspension is also given by [70]. A kinetic clustering model,
developed by Farr and coworkers [72], also predicts a jamming transition.
The theory is based on the shear induced growth of rigid rodlike clusters
down the compression axis and, compared to the pair theory of Brady and
coworkers, have the advantage of considering many body instabilities. In the
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model, rods grow by aggregation with other rods as they rotate in the flow.
As a result, a rapid collapse is found and a jamming transition at a volume
fraction below close packing is defined. It takes place when a rod cluster,
first forming in the compression axis, grows to infinite size before it tumble,
by passing θ = π/2 and entering in the region of extensional flow.

Finally, as the shear thickening phenomenon is governed by the shear
stress, efforts have also been devoted to the investigation of the critical stress
value for the onset of this regime, in dependence to the kind of interparticle
interactions. Scaling arguments have been used to determine the critical
stress as a function of particle size and volume fraction for hard spheres or
charged particles [73]. This is obtained by balancing the dominant repulsive
force responsible for the stability of the suspension with the hydrodynamic
force. When the ratio between this two forces is close to one, the onset of
the shear thickening regime takes place. When strong dissipative surface
forces are considered instead, shear thickening is enhanced [74]. Indeed,
the main consequence of the friction between particle surface is to induce
an asymmetry in the interparticle interactions. This asymmetry at contact
facilitates the formation of the hydrodynamic clusters and the onset of the
shear thickening regime takes place at smaller volume fraction and at smaller
shear stress.
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Part II

Methods and materials
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C H A P T E R 3

Dynamics investigation through

light scattering techniques

When a colloidal suspension is illuminated by coherent light, the far field
pattern of scattered light comprises a grainy diffraction pattern, where light
intensity is spatially correlated over an area called speckle (Fig. 3.1 a). At
some points in the far field, the phases of the light scattered by individual
particles are such that the individual fields interfere largely constructively to
give a large intensity; at other points, about one speckle size far, destructive
interference leads to a small intensity. Motion of the scatterers leads to
a significant change in the phase of the scattered light, thus the speckle
pattern fluctuates from one random configuration to another. In particular,
the intensity scattered to a point in the far field fluctuates randomly in time.
Information on the motions of the particles is encoded in this random signal:
at the simplest level, the faster the particles move, the more rapidly the
intensity fluctuates. Experimentally, information on the system dynamics is
extracted from the fluctuating scattered intensity I(t), by computing its time
correlation function:

G(t) = 〈I(0)I(t)〉 ≡ lim
T→∞

1

T

∫ T

0

dt′I(t′)I(t′ + t) (3.1)

As can be seen from this definition, the intensity correlation function com-
pares the signal I(t′) with a delayed version I(t′ + t) of itself, for all starting
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times t′ and for a range of delay times t. In order to have a high signal to
noise ratio, the acquisition time T in the experiment must be much larger
than the typical fluctuation time τc of the intensity: T ≫ τc. This rela-
tion is formalized in equation 3.1 through the limT→∞. When the system
dynamics are non-stationary on a timescale τe larger than the acquisition
time (τe ≫ T ), the correlation function depends on the time t0 when the
measurement starts:

G = G(t0, t) = 〈I(t0)I(t0 + t)〉 (3.2)

We want to remark here that the systems that we investigate in this work
may be non stationary: in the following, we will thus refer the more general
equation (3.2) for the correlation function. At zero delay (t = 0), equation
(3.2) reduces to 〈I2〉 (we consider the case where the scattered intensity is
stationary but the system dynamics are not). For delay times much greater
than the typical fluctuation time τc of the intensity (Fig. 3.1 b), fluctuations
in I(t0) and I(t0+t) are uncorrelated so that the correlation function reduces
to 〈I〉2. Thus, the intensity correlation function decays from the mean-square
intensity at small delay times to the square of the mean at long times. The
characteristic time τc of this decay is a measure of the typical fluctuation
time of the scattered intensity (Fig. 3.1 c) and quantifies the timescale of
the dynamics of the scattering particles.

Typically, in a light scattering experiment, laser polarized radiation hits
the sample and a detector, set in the far field, measures the intensity I(t) of
the scattered radiation. A classical (non-quantistic) approach to light scatter-
ing theory is valid when the laser wavelength is much larger than the length
scale of the scattering particles in the medium. Thus, the incident beam can
be schematized by a plane-wave, monochromatic radiation of wavelength λ
(inside the medium) and frequency ω:

E1(r, t) ≡ E0 exp[i(ki · r − ωt)] (3.3)

where the incident electric vector E0 is usually polarized perpendicular to
the scattering plane and the propagation vector ki has magnitude |ki| =
ki = 2π/λ. The scattering event usually implies only a very small change in
frequency and the process can be assumed ”quasielastic”. Thus, the prop-
agation vector ks of the light after one scattering event also has magnitude
2π/λ. When light weakly interacts with the sample so that one can consider
only single scattering events, Light Scattering theory is used to describe the

70



system and the corresponding technique is called Dynamic Light Scattering
(DLS). On the other hand, Diffusive Wave Spectroscopy theory (DWS) has
been developed to account for highly multiple scattering media.

DLS and DWS are the basic techniques that we have been using to in-
vestigate microscopically the rheological behavior of some colloidal systems.
In the following, the basic theories underlying these two techniques are pre-
sented.

3.1 Dynamic light scattering

In a dynamic light scattering experiment, most photons pass through the
sample undeviated and a few are scattered once. A detector set in the far
field at scattering angle θ fixes the direction of the scattered light, with
propagating vector ks. The intersection between the incident and scattered
beam is called scattering volume. The difference between the propagation
vectors of the scattered and incident beam defines the scattering vector q

q ≡ ks − ki (3.4)

whose modulus can be expressed as a function of the scattering angle and
the radiation wavelength as q = 4π/λ sin(θ/2). In the so called homodyne
method, the time correlation function of the scattered intensity I(q, t) =
|E(q, t)|2 is measured. When normalized, it is defined as

g(2)(q, t0, t) ≡
〈I(q, t0)I(q, t0 + t)〉

〈I(q)〉2 (3.5)

In the heterodyne method, a small portion of the unscattered laser light
(called local oscillator) is mixed with the scattered light. The sum of these
two interfering fields Elo + E (with Elo for the local oscillator and E for the
scattered light) hits the detector surface and the time correlation function of
the collected intensity Ie(q, t) = |Elo(t) + E(q, t)|2 is computed. By proper
choice of the experimental conditions and providing that the amplitude of
the local oscillator is much larger than the amplitude of the scattered field,
this correlation function is:

〈Ie(q, t0)Ie(q, t0 + t)〉 ∝ I2
lo + 2IloRe[〈E∗(q, t0)E(q, t0 + t)〉] (3.6)
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Figure 3.1: a) Coherent light scattered by a random medium, such as a suspen-

sion of colloidal particles, give rise to a speckle pattern in the far field. b) The

fluctuating intensity observed at a detector with the size of about one speckle. c)

The time-dependent part of the correlation function decays with a time constant

τc, corresponding to the typical timescale of the particle dynamics. Figure from

[75].
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where Ilo = |Elo|2. Therefore, the real part of the scattered field correlation
function can be measured through the heterodyne method. When normal-
ized, the field correlation function is defined as:

g(1)(q, t0, t) ≡
〈E∗(q, t0)E(q, t0 + t)〉

I(q)
(3.7)

When the dynamics of the sample are stationary, g(2)(q, t0, t) = g(2)(q, t) and
g(1)(q, t0, t) = g(1)(q, t).

In the following, we will elucidate the basic principles of dynamic light
scattering theory, in order to interpret the variables measured in a DLS
experiment and predict their behavior. Light scattering theory is introduced
in 3.1.1, while the effect of a shear flow on light scattering is discussed in
3.1.2.

3.1.1 Light scattering theory

In the single scattering regime, the amplitude of the scattered electric field
in the far field can be calculated through Maxwell’s equations. The basic
picture underlying light scattering theory [8], holding when the wavelength
λ is much larger than interatomic distances, views the incident electric field
inducing an oscillating polarization in the sample: charges are so accelerated
in the medium and irradiate light. At a mesoscopic level, the interaction
between the medium and light is represented by the local fluctuations of the
dielectric constant in the medium. These fluctuations are induced by the
motion of the molecules and are responsible for light scattered in directions
different from the incident one. The form, dimensions and interactions of the
molecules in the sample determine the properties of the scattered light (its
polarization, intensity, frequency shift and angular distribution).

The fundamental variable used in light scattering theory is the dielectric
constant fluctuation tensor. Calling ε(r, t) the dielectric constant tensor at
position r in the scattering volume V , its fluctuations are δε(r, t) = ε(r, t)−
ε0I, where I is the unity tensor and ε0 is the average dielectric constant in
the medium. The spatial Fourier transform of δε(r, t) is defined as

δε(q, t) =

∫

V

exp(iq · r)δε(r, t)d3r (3.8)

The main result of light scattering theory is to express the scattered electric
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field Es(R, t) at position R in the far field as a function of δε(q, t) [8]:

Es(R, t) = − ksE0

4πε0R
exp(iksR − iωt)δεif (q, t) (3.9)

where δεif (q, t) ≡ nf · δε(q, t) ·ni is the component of the dielectric constant
fluctuation tensor along the initial and final polarization directions ni and
nf . It is now evident that light scattering is induced by fluctuations of the
dielectric constant ε(r, t) in the medium in q-space: if ε(r, t) is homogeneous,
there would be no scattered light in other than the forward direction.

We now specialize to the case of samples which are isotropic in average
(as are the systems we use in our experiments), so that averaged quantities
such as g(1)(q, t0, t) depend only on the modulus q of the scattering vector.
From equation 3.9, the following relations hold for the normalized electric
field and intensity correlation function:

g(1)(q, t0, t) =
〈δε∗if (q, t0)δεif (q, t0 + t)〉

〈δεif (q)〉2
(3.10)

g(2)(q, t0, t) =
〈|δεif (q, t0)|2|δεif (q, t0 + t)|2〉

〈|δεif (q)|2〉2
(3.11)

Dielectric constant fluctuations, which are defined when the wavelength λ is
much larger than interatomic distances, can be expressed as a function of
the density fluctuations in the medium: δεif (q, t0, t) ∝ δρ(q, t0, t). Detecting
g(1)(q, t0, t) then represents a direct measurement of the density density au-
tocorrelation function (defined in equation 1.2), which is the variable used
in the theoretical and numerical works to investigate the dynamics in fluid
systems (as evidenced in 4.10):

g(1)(q, t0, t) = F (q, t0, t) (3.12)

For this reason, the field correlation function g(1)(q, t0, t) is frequently called
the “intermediate scattering function” FM(q, t0, t) ≡ g(1)(q, t0, t).

In a DLS experiment, the intermediate scattering function is usually the
quantity of interest and, under certain conditions, it can be obtained from
the measured intensity correlation function g(2)(q, t0, t). When the number
of particles in the scattering volume is large, the scattered field E(q, t) is a
complex random variable having a Gaussian probability distribution. The
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intensity I(q, t), measured at a point in the far field, is then distributed ex-
ponentially. In this case, the speckle in the random diffraction pattern is
known as “Gaussian speckle”. At a point in the pattern there is small proba-
bility of finding a very high instantaneous intensity and the most likely value
is very small. The correlation function of a complex Gaussian variable has
factorization properties which results in the following relation for g(1)(q, t0, t)
and g(2)(q, t0, t) [8]:

g(2)(q, t0, t) = 1 + |g(1)(q, t0, t)|2 (3.13)

which is called Siegert relation and can be easily derived, for example, for a
dilute suspension of identical spheres. However, this formula is applicable to
any fluid system for which the range of spatial correlations is much smaller
than the linear dimension of the scattering volume. Under these conditions,
the scattering volume contains a large number of correlation volumes (i.e.
volumes within which particle positions are correlated), and the correlation
volumes may take the role of the independent particles [75]. However, the
Siegert relation is obtained by considering the amplitude of the electric field
scattered to a point in the far field. In reality, a detector has a non-zero
active area and therefore sees different scattered fields at different points on
its surface. Then it can be shown that equation (3.13) is modified to

g(2)(q, t0, t) = 1 + B|g(1)q, t0, t)|2 (3.14)

where the factor B represents the degree of spatial coherence of the scattered
light over the detector and is determined by the ratio of the detector area
to the area of one speckle. In practice, with a classical two-pinhole setup
for collection, the detector aperture is usually chosen to accept about four
speckles, which give the maximum value for B = 0.8 [101]. The intermediate
scattering function can thus be derived by inverting equation (3.14).

The size of a speckle in the far field diffraction pattern can be estimated
from the size of the scattering volume. One should calculate how much
two points in the far field must be separated in order to have the scattered
electric fields at the two points uncorrelated. If the two points are defined
by scattering vectors q1 and q2, with ∆q ≡ q2 − q1, the following relation
holds [75]:

〈E(q1, t)E
∗(q2, t)〉 = |E0|2

N
∑

j=1

〈exp[i∆q · rj(t)]〉
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Figure 3.2: Propagation and scattering vectors describing light scattered to two

different points. When ∆θ is small, fluctuations in the two fields are correlated;

when ∆θ is large enough for the points to be in different speckles, the fluctuations

are uncorrelated.

where the position rj(t) of the particle can lie anywhere in the scattering
volume. Thus, an estimate of the value of ∆q at which correlation between
the two fields is lost is given by ∆qLv ≈ 2π, where Lv is the dimension of
the scattering volume parallel to ∆q (perpendicular to the direction of the
scattering). From Fig. 3.2, it is evident that the angle at the scattering
volume subtended by one speckle is

∆θ = ∆q/ks ≈ λ/Lv

We will now proceed with the explicit expressions for the intermediate
scattering function in the specific case of a sample containing discrete scat-
tering objects suspended in a liquid [75].

Discrete scatterers

For a colloidal system, the properties of the fluctuating scattered light can
be investigated by considering the simple situation of discrete spherical scat-
terers. Typically, the colloidal particles in solution scatter much more than
the solvent molecules, as they have an enormously larger polarizability. Be-
sides, their dynamics is much slower and their motion can be considered
independent on the motion of the solution molecules. The superposition of
the electric fields scattered in the direction of ks by all the colloidal particles
contained in the scattering volume represents the electric field collected by
the detector. The degrees of freedom accounting for the solvent can instead
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be integrated, resulting in a dependence of the scattered field on the solvent
dielectric constant. For discrete spherical scatterers, it can be shown that
the electric field at scattering vector q can be expressed as (as DLS deals
with normalized quantities, we omit the electric field amplitude E0):

E(q, t) =
∑

j

exp[−iq · rj(t)] (3.15)

where rj(t) is the position of the center of mass of particle j at time t (relative
to an arbitrary origin). Due to motion of the particles, positions rj(t) and
phase angles {q · rj(t)} evolve randomly with time, thus the total scattered
field itself fluctuates. For small time differences t, the phase angles have
not changed much and the total scattered field at time t0 + t, E(q, t0 + t),
is still correlated to E(q, t0). On the other hand, over times t such that a
particle moves a distance |rj(t0 + t) − rj(t0)| ≈ 2π/|q|, the phase angles
change by ∼ 2π and the total scattered field becomes totally uncorrelated. If
the suspension is dilute and particle positions are uncorrelated, g(1)(q, t0, t)
can be expressed as

g(1)(q, t0, t) = 〈exp(iq · ∆r(t0, t))〉 (3.16)

where ∆r(t0, t) ≡ r(t0 + t) − r(t0) are considered the same for each particle
(identical particles). Reminding that q = 2π/λ, the correlation function thus
decays appreciably when ∆r ≈ λ.

A typical case of dynamic light scattering experiment occurs when col-
loidal particle motion is dominated by Brownian diffusion and the dynamics
are stationary. In general, when the difference ∆r(t) in equation 3.16 is a
Gaussian variable, then g(1)(q, t) can be expressed as

g(1)(q, t) = exp[−q2〈∆r2(t)〉/6] (3.17)

For simple diffusion, 〈∆r2(t)〉 = 6Dt, where D is the particle diffusion coef-
ficient, thus we obtain

g(1)(q, t) = exp[−q2Dt] (3.18)

In this simple case, the autocorrelation function decays exponentially with
a time constant τ = (Dq2)−1. As the diffusion coefficient is linearly related
to the particle size, this result is used in a widespread application of DLS:
measuring particle size in dilute suspensions.
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3.1.2 Light scattered from a system under shear

When the particles in the scattering volume flow with a drag velocity, light
scattering is strongly affected whenever Brownian motion is dominated by
these drift dynamics. When scattering particles are moving at velocity v,
the frequency of the scattered electric field is Doppler shifted by ω = q · v,
where q is the scattering vector. In the heterodyne method, this results
in an oscillating behavior of the measured correlation function at frequency
ω. Local velocimetry measurements can thus be performed through this
technique and the detailed velocity profile in a stationary flowing fluid can
be obtained by varying the position of the scattering volume within the
sample. On the other hand, in the homodyne method, the effects of the
drift velocity are decorrelation terms of geometrical nature in the measured
correlation function. Through these terms, local velocimetry measurements
may thus be performed also through the homodyne method. However, in a
colloidal suspension under shear, this decay of the correlation function due to
flow usually takes place at timescales shorter than the structural relaxation
time. As a consequence, the timescale characterizing the slow dynamics of
such systems is no longer accessible during the flow. This represents the
strongest limit to dynamics investigation in complex systems under shear.
Light Scattering Echo experiments may overcome this problem [4, 97] in the
case of an oscillating shear rate. DLS experiments on colloidal systems under
shear are not reported in the literature, while in DWS experiments [6, 7]
(where the decorrelation effects are present: see 3.2), the system dynamics is
investigated by stopping the flow for a short time to allow the measurement.
In our DLS experiments, we have used the same procedure. This is a delicate
point, as some authors [36] state that the effect of shear rate on the structural
dynamics holds only during the flow and vanishes soon after shear cessation.
This problem will be discussed in 5.2, referring to the experiment in which
we investigated by DLS the shear effect on the structural dynamics of a
glassy system. In the following, the detailed expressions for the correlation
functions in heterodyne and homodyne DLS are retrieved.

Derivation of the intermediate scattering function

In a shear flow, the physical properties are no longer invariant under spatial
translations. However, a new translational invariance follows from the fact
that a shift of the origin of the reference frame (Fig. 3.3) by l along the x-axis
is equivalent to a new reference frame moving with a velocity −lγ̇ey [81, 82].
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Figure 3.3: Geometry of the scattering volume in a shear flow. V stands for the

scattering volume and A for the photocathode area. Figure from [79].

This implies that, in homogeneous stationary states, the time correlation
function of a density variable F (r, r′, t0, t) = 〈ρ(r, t0)ρ(r′, t0 + t)〉 may be
written as

F (r, r′, t0, t) = F (r′ − r − (v + γ̇(r′ · ex)ey)(t − t0), t − t0) (3.19)

In the Fourier space, F (q, t) =
∫

d3r exp(ik · r)〈ρ(r, t)ρ(0, 0)〉 and this in-
variance implies that

F (q, k, t0, t) = (2π)3δ(k − q − γ̇(t − t0)(q · ey)ex)F (q, t − t0) (3.20)

The Dirac delta function can be explained by noticing that a plane wave
composition fluctuation (∝ exp(iq · r) at t = 0) changes in time into a plane
wave with a time dependent wave vector

q′(t − t0) = q + γ̇(t − t0)(q · ey)ex (3.21)

As a consequence, the intermediate scattering function (generalized for two
different wave vectors)

g(1)(q, k, t0, t) = 〈E∗(q, t0)E(k, t0 + t)〉
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will be non zero only when k = q′(t − t0). In fact, this is strictly true only
for an infinite scattering volume V , while in practice, V corresponds to the
finite intersection of the incident and scattering beam. Approximating V as
the intersection between two infinite cylinders, its dimensions are a × a × c
(Fig. 3.3). Thus, the scattering vector q is only defined up to a precision
δqx = ±2π/c and δqy = δqz = ±2π/a. Let’s consider that one coherence
area of the speckle pattern is collected by the detector. The condition on the
scattering vectors (k = q′(t − t0)) results in the motion of coherence areas
in the x-direction. This leads to decorrelation in the intermediate scattering
function when |k − q| > δqx. From equation 3.21, the time characterizing
this decay of the correlation function, called the advection time, is

τa = 2π/(cγ̇qy) (3.22)

Another decorrelation term has to be considered. As soon as a particle
goes out from the scattering volume, it will no more contribute to the inter-
mediate scattering function (as it is evident from equation 3.15. Therefore,
the correlation function will decay on a timescale τt, which is the transit time
of the particles across the scattering volume. This time is

τt ≈ a/v (3.23)

where v is the mean velocity in the scattering volume. The values of τt and
τa have to be calculated according to the properties of the experimental set-
up. However, they are usually smaller than the timescale characterizing the
structural dynamics of the system under shear, which therefore cannot be
accessed.

Considering these two “artificial” decorrelation terms, we can calculate
the intermediate scattering function under a shear flow with negligible Brow-
nian displacement. For the phase in equation 3.16 expressing g(1), we can
write (see Fig. 3.3):

r(t0 + t) − r(t0) = v(t − t0) + γ̇xey(t − t0) (3.24)

Under stationary conditions, the intermediate scattering function can thus
be expressed as

g(1)(t) = exp(iq · v)F (t) (3.25)

where

F (t) =

∫

V

exp(iγ̇xqyt)d
3r
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This function decays to zero on a timescale τ ∼ min{τa, τt}.
In the homodyne method, where the modulus of the field correlation

function is measured (see equation 3.13), the phase factor disappears and
one measures:

g(2)(t) ∝ |F (t)|2

If the geometry of the experiment is chosen in order to have τt > τa, the decay
of F (t) will be dominated by the transit time. In this case, the homodyne
method can be used to estimate the local velocity in the scattering volume.

In the heterodyne method, the measured correlation function is deter-
mined by the real part of the intermediate scattering function (see equation
3.6):

〈Ie(q, 0)Ie(q, t)〉 ∝ Re[〈E∗(q, 0)E(q, t)〉] = cos(q · vt)F (t) (3.26)

The information about the velocity v is contained in the phase of the scat-
tering field. For this reason, the interference between the scattered field and
the local oscillator allows direct access to this velocity, while in the homo-
dyne method this information is lost. The correlation function measured in
the heterodyne method then oscillates periodically at frequency ω = q · v.
Knowing the scattering vector q, the velocity in the scattering volume can
thus be measured with high resolution.

3.2 Diffusive wave spectroscopy

In traditional DLS, the characteristic decay time of the intermediate scatter-
ing function is related to the dynamics of the medium through the length scale
set by the inverse scattering wave vector q−1. Knowledge of the q vector is
thus required in DLS to interpret the decay time of g(2)(q, t0, t). This strictly
limits its application to the single scattering regime. In the entirely oppo-
site limit, when very high multiple scattering occurs in the medium, DWS
approaches the problem of interpreting the scattered intensity correlation
function. In this regime, in which the sample has a “milky” appearance, the
propagation of light can be treated within the diffusion approximation. Each
photon is scattered a large number of times and its path can be described as
a random walk. As for conventional DLS, the decay of the measured corre-
lation function results from a change in phase of the scattered field by ≈ 2π.
However, as it is the total path length of the light through the sample that
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must change by approximately one wavelength to decorrelate the scattered
field, each scatterer need to move only a small fraction of wavelength. There-
fore, on a qualitative ground, DWS probes particle motion on length scales
much shorter than in traditional DLS.

In the multiple scattering limit, there are two length scales that charac-
terize light scattering and transport: the mean free path l between scattering
events and the transport mean free path l∗, which is the length scale over
which the direction of light propagation is randomized. When the particle
size a is comparable with the wavelength of light λ, scattering is strong and
l ∼ l∗. On the contrary, when a ≪ λ, l and l∗ become very large, with l < l∗,
and multiple scattering is relatively low. In the highly multiple scattering
limit, an expression for the field autocorrelation function can be obtained by
using the diffusive approximation. Let’s consider a DWS measurement in
transmission geometry, with a sample of thickness L ≫ l∗ and the scattered
light collected from a small area at the edge of the sample. A single photon
passing through the sample undergoes n scattering events and emerges with
a phase that depends on its total path length s. The total phase shift of
the photon after passing from the laser to the detector is Φ(t) = kis(t). The
total field at the detector is the superposition of the fields from all light paths
through the sample to the detector:

E(t) =
N

∑

p

Ep exp(−iΦp(t))

where the sum is over the paths and Ep is the amplitude of the field at the
detector from path p. Another sum over the particles in each path is implic-
itly contained in Φp(t). For a large number of paths N and for independent
particles, the electric field correlation function can be expressed as a sum over
path lengths s (in order to simplify the formalism, we consider the stationary
case):

g(1)(t) =
∑

s

P (s) exp(−1

3
k2

i 〈∆r2(t)〉 s

l∗
)

where P (s) is the fraction of scattered intensity in paths of length s and
〈∆r2(t)〉 is the mean square displacement of the particles. For diffusive mo-
tion and passing to the continuum limit, we obtain

g(1)(t) =

∫ ∞

0

P (s) exp(−2t

τ

s

l∗
)ds (3.27)
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where τ = (kiD)−1. Therefore, a light path of length s corresponds to a ran-
dom walk of s/l∗ steps and such a path contributes, on average, exp(−2t/τ)
per step to the decay of the autocorrelation function. The characteristic de-
cay time for a light path of length s is τ l∗/(2s), the time it takes the total
length to change by ≈ λ. Thus, the decay time of long light paths will be
relatively short and viceversa. Long paths decay relatively quickly because
displacements of the single particles much smaller than one wavelength are
enough to induce a change by one wavelength for the entire path length. In
the following, we will keep considering a Brownian motion for the particles
of the sample.

An explicit expression for the correlation function g(1)(t) can be obtained
by calculating the path length distribution P (s). Exploiting the diffusive
nature of light transport in highly scattering media, P (s) can be calculated
by solving the diffusion equation for light with the appropriate boundary
conditions. Therefore, the final expression for g(1)(t) depends on the bound-
ary conditions: the size and shape of the sample, the size of the incident
beam, which may be expanded or collimated, and the point from which the
outgoing light is collected. On the other hand, as the number of scattering
events is large, there is no appreciable angular dependence of the scattered
light fluctuations, contrarily to DLS.

In the transmission geometry, nearly all the photons leaving the sample
will have scattered the same number of times, corresponding to n ≈ (L/l∗)2

random walk steps and will have travelled a total distance s ∼ nl∗. Since
all the photons scatter approximately the same number of times, g(1)(t) will
decay nearly exponentially: g(1)(t) ≈ exp(−t/T ). As the correlation function
decays, on average, exp(−2t/τ) per step, the characteristic time of g(1)(t) is
approximately (l∗/L)2τ . Another commonly used geometry in DWS exper-
iments is the backscattering geometry. It is very convenient, as it requires
access to the sample from only one side. However, as backscattering involves
a significant number of light paths with length comparable to l∗, the diffusion
approximation must be used with caution in describing light transport. In
this geometry, there is a very broad distribution of photon path lengths: some
photons will enter the sample and scatter only a few times before leaving,
while others will scatter many times before being collected. Correspond-
ingly, there will be a broad distribution of decay times, so we expect that
g(1)(t) is a stretched exponential. The behavior of the correlation function
is well approximated by the expression g(1)(t) = exp(−α

√

6t/τ), where α is
a parameter depending on the geometry. The long light paths, which decay
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quickly and probe relatively short length scale motion, will contribute to the
fast decay of g(1)(t). At longer times, the decay of the correlation function
comes from the short paths and probes relatively long length scale motion.

Let’s conclude with the case of a multiple scattering sample under shear
[77]. We neglect Brownian motion and only consider a stationary shear for
the particles in the suspension, with a shear rate γ̇. The mean square dis-
placement of the particles along the flow direction will be 〈∆r2(t)〉 ≃ (γ̇t)2.
As the integration in equation 3.27 is over s, once the new expression for
〈∆r2(t)〉 has been substituted, the same derivations can be followed by re-
placing 2t/τ with (kiγ̇t)2l∗2/30. For example, in the backscattering geometry,
one obtains

g(1)(t) = exp(−t/τ) (3.28)

with τ−1 = αkil
∗γ̇/

√
10. As in dynamic light scattering, investigation of

the system dynamics under shear is limited by this decorrelation effect of
geometrical nature and the slow relaxation time of the system is not accessible
under flow. This is the reason why the shear has always been stopped during
the measurements in the DWS experiments proposed in the literature to
investigate the effect of the flow on a colloidal system dynamics [6, 7].
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C H A P T E R 4

The samples and the techniques

The behavior of colloidal systems under an imposed flow has been largely
investigated from a mechanical point of view through rheology. Complex
phenomena like shear thinning, shear thickening or yield stress have been ev-
idenced experimentally and many phenomenological and microscopic theories
have been proposed to describe them, as reported in the previous chapters.
However, the experimental study of the microscopic dynamics underlying
these rheological behaviors is still relatively poor, due to the difficulty in
monitoring the dynamics of the system under an imposed flow. During our
experimental work, we have used light scattering techniques to investigate
how a shear flow influences the dynamics of the colloidal particles in the
system. In particular, through DLS we directly accessed the density auto-
correlation function of the particles of a Laponite suspension, a shear thinning
system largely investigated in the “glass” community. The rejuvenation effect
of a steady shear flow on the aging dynamics of the system has been largely
studied. The formation of shear bands with a complex phenomenology has
also been monitored at low applied shear rates and an attempt of detecting
a distinct dynamics in the different shear bands has been done. The sample
and the methods used for these experiments are described in 4.1. The effect
of the flow on the dynamics of a shear thickening system has also been inves-
tigated. With this purpose, a concentrated suspension of silica particles has
been synthesized. The sample is highly multiple scattering and a particular

85



technique based on DWS, called Speckle Visibility Spectroscopy, has been
utilized. The technique and the sample for this experiment are presented in
4.2.

4.1 DLS measurements on a glassy suspension

The effect of the flow on the dynamics of a glassy suspension will be experi-
mentally investigated under several aspects using a DLS apparatus. The gen-
eral properties of the Laponite sample used in the experiments are described
in 4.1.1. The DLS set-up used for measuring the intermediate scattering
function and optionally monitoring the detailed velocity profile during the
flow is described in 4.1.2. The homodyne method will be used to follow the
evolution of the intermediate scattering function during aging, when the sys-
tem is subject to a steady shear flow (the shear will be temporarily stopped
during the measurement). Through the heterodyne method, shear banding
phenomenon will be observed instead. When shear banding phenomenon oc-
curs in glassy colloidal suspensions, a different dynamics is expected in the
different shear bands. As we will explain in 4.1.3, the classical DLS measure-
ments in homodyne method cannot be used to investigate these dynamics
and a new DLS method, based on an ensemble average over many rejuvenat-
ing experiments, is proposed to measure the intermediate scattering function.
This method will also be exploited to study the effect of a shear rejuvenation
on the following aging dynamics, when the shear is applied to a Laponite
sample in the arrested phase.

4.1.1 The Laponite clay suspension: a model system for

glassy dynamics

The sample we used in our experiments is a suspension of a synthetic mineral
clay, called Laponite. Mineral clays are a group of silicate materials charac-
terized by a layered structure. When wetted, clay is plastic and can be easily
shaped. Once dried, it becomes firm and, when subject to high temperature,
permanent physical and chemical reactions occur, inducing hardening of the
clay. All these properties made clay an ideal substance for earthenware, build-
ing bricks and pottery since prehistoric times. Besides, water suspensions of
clays show thixotropic properties, as one may have experienced when walking
on a wet clay soil (the shear exerted by the shoe sole makes the soil slippery).
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This rheological behavior is largely exploited in industry: the Laponite clay,
for example, is often used as an additive to modify the rheological behavior of
many waterborne products such as surface coatings, household cleaners and
personal care products. Besides its various industrial applications, Laponite
suspensions represent a very interesting colloidal system in the physicists’
community. Indeed, these suspensions display a dynamical behavior typical
of glassy systems, which makes them an ideal model of soft glassy materials.
Laponite samples also have the advantage of a very simple preparation and
thus their dynamical and rheological behavior have been largely investigated
experimentally. In the following, the chemical structure of the Laponite
particles in a water solution is discussed. Then, some theoretical, numerical
and experimental works investigating the dynamics and rheology of Laponite
suspensions are briefly presented. Finally, the procedure we have followed to
prepare the samples is described.

Chemical structure of mineral clay colloids

Typically, the layered structure of mineral clays consists in two dimensional
sheets of tetrahedrally coordinated silica linked to parallel sheets of octa-
hedrally coordinated alumina or magnesium oxide. Each silica layer is a
monocrystalline structure consisting of planes of silica tetrahedra (SiO2−

4 )
covalently bonded together. The surfaces of the silica sheet are covered by
the oxygen atoms of the tetrahedra and are hence negatively charged. The
octahedral sites in between the silica layers are occupied by divalent or triva-
lent ions. Alkali ions like potassium K+, sodium Na+, or calcium Ca++

compensate the oxygen charge forming an ionic bond. Synthetic clays like
Laponite are in general synthesized in a sodium rich environment, then the
great majority of their inter-layer cations are sodium ions [83]. This lay-
ered structure is easily cleaved along the oxygen surface plane into separate
leaves, because the bonding between different crystals are much weaker than
the bonding between tetrahedral sheets within each sheet. Many clay mineral
particles, such as hectorite and bentonite, have a column shaped structure
when dry, with the monocrystalline layers orthogonal to the column axis.
When dispersed in a polar solvent, like water, the weak bonds are easily
broken as the solvent penetrates into the inter-layer regions. The layered
structure thus separates into primary discoidal particles with the octahedral
layer sandwiched between two silica layers, and become dispersed as colloidal
platelets.
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Among synthetic mineral clays, Laponite is characterized by discoidal
particles that closely resembles the hectorite natural clay in both structure
and composition. Its mass density is ρL = 2.7 103 Kg/m3 and the unitary
disk has an average diameter of 25 nm and is 1 nm thick. Laponite particles
are quite monodisperse, with a relative diameter variation of about 30% [84].
Each platelet contains roughly 1500 unitary cell, which are repeated in two
directions and result in the disc shaped appearance of the crystal. The unit
cell is constituted by six octahedral magnesium ions sandwiched between two
layers of four tetrahedral silicon atoms groups. These groups are balanced
by twenty oxygen atoms and four hydroxyl groups. Some magnesium ions
are substituted by lithium ions and some spaces are empty, to give typically
a composition with the empirical formula:

Na+0.7[(Si8Mg5.5Li0.3)O20(OH)4]
−0.7

The height of the unit cell represents the thickness of the Laponite disk. In
dry Laponite powder, due to the holes of magnesium ions, the disks would
have a deficiency charge of 0.7 per unit cell. Sodium ions thus sandwich
between the platelets neutralizing them and inducing the column shaped
structure. In water, this structure is believed to disperse into single unitary
disks (Fig. 4.1). Sodium ions are thus released from the surface of the
particles, leading to a negative charge on the crystal surface. The free sodium
counterions are attracted by the bare negative charge on the surface of the
discoidal particle. A fraction of them is again adsorbed on the platelet, the
others remain into the surrounding of the surface, giving rise to a layer of
condensed counterions. At the same time, depending on the solution pH,
the edge of the disc adsorbs hydroxyl groups, getting positively charged.
When Laponite is suspended in pure water, the value of the pH is ≈ 10,
corresponding to an ionic strength I ≈ 10−4M (the whole contribution to
the ionic strength of the sample is due to the hydroxyl groups). At the
end, the total negative charge on the surface of the platelets is about 700
elementary charges, while the positive charge on the edges is about one order
of magnitude smaller than the surface charge.

Dynamics in Laponite suspensions

Laponite have been extensively investigated as a model system for disk-like
charged colloids. Due to the electric double layer around the platelets, the in-
teracting potential between the colloids is a repulsive Yukawa potential [85],
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Figure 4.1: Hydration of the sodium ions. In the dried powder, Laponite parti-

cles are organized into columnar structure. In aqueous dispersion, water hydrate

sodium ions in the interlayer region, leading to a dispersion of single laponite par-

ticles. The typical dimensions of a single Laponite disc are also drawn. Figure

from [86].

characterized by a screening length of about 30 nm at pH = 10. Taking into
account this screening effect, concentrations of the order of 1% in volume
correspond to effective volume concentrations of about ∼ 50%, which is the
value at which glassy phase is observed in hard-sphere systems. Diverse the-
oretical and numerical works have been devoted to the study of the complex
behavior resulting from this electrostatic interaction between the platelets.
In Ref. [87], the suspension has been modelled by a system of nonintersecting
disks carrying a rigid point quadrupole, which favors edge-to-face pair con-
figurations. Monte Carlo simulations on this model show that, at sufficiently
large values of the quadrupole moment, the system undergoes a reversible
sol-gel transition: at low concentration, disks assemble into elongated clus-
ters, while a space-filling gel phase is found at higher concentrations. The
gel phase exhibits a nearly incompressible network structure similar to the
“house-of-cards”, in which most of the particles are edge-to-face to each other
and there is no long-range order. This structure is conjectured to be typical
of clay gelation. Recent Brownian dynamics simulations [88] have explored
the out of equilibrium dynamics of a Laponite model with a repulsive Yukawa
potential among the particles. As a result, an aging behavior driving to an
arrested disordered state is observed.
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The phase diagram of Laponite suspensions has been largely investigated
experimentally, with particle concentration and ionic strength being the two
parameters controlling the system [89, 90, 91, 92, 93]. The formation of a
disordered arrested phase even at very low volume fractions and high ionic
strength has been observed, while at higher ionic strength (I& 10−2), floc-
culation occurs. It has largely been debated whether the arrested phase of
Laponite suspensions corresponds to a gel or a glassy phase [89, 90, 94].
Anyway, the aging dynamics, which drive to the arrested phase, is believed
to be induced by the formation of particle aggregates. By monitoring the
intermediate scattering function through DLS [92, 95, 96], the aging dynam-
ics is observed to display a two step relaxation scenario: a fast exponential
relaxation process, whose characteristic time τf remains of the same order of
magnitude found in very dilute suspensions; and a slow stretched exponen-
tial process, with characteristic time τs. The fast relaxation is found to be
independent on the age of the system and is believed to be related to sin-
gle particle diffusion. The slow relaxation is instead related to cooperative
motions and is observed to increase exponentially, or more than exponen-
tially with the waiting time tw, while becoming strongly stretched. When
the ionic strength is increased, the growth of τs proceeds more rapidly. For
sufficiently concentrated samples, a two stage aging process has been ob-
served through Multi-Speckle Dynamic Light Scattering [96, 97]: after the
exponential regime, a linear dependence of τs on tw shows up at long tw.

Rheological measurements

The aging dynamics and the effect of a steady shear has also been inves-
tigated through rheology [20]. The external drive is observed to induce a
drastic slowing down of the aging dynamics or even, in some cases, the reju-
venation of the system. Under shear, the spontaneous aging process observed
at rest is suppressed after surprisingly long time: in the numerical simula-
tions described in 2.3.4, a stationary state is reached instead after a short
transient of a few γ̇−1. In the non-equilibrium stationary state, the viscosity
η depends on the applied shear rate through the shear thinning behavior
η ∼ γ̇−m, with m = 0.6. Actually, in another work (by the same authors!)
[3], a different exponent is found: m = 0.9. As described in 1.3.1, in this
last work, the effect of a shear flow on the aging dynamics has also been
investigated microscopically, but a quantitative analysis is missing.
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Sample preparation

For our experiments, the sample is prepared following the procedure usually
described in the literature [90]. In particular, Laponite powder provided by
Laporte Ltd is dispersed in ultrapure deionized water at 3.4% wt concentra-
tion and stirred for ∼ 30 min. In order to eliminate aggregates (which may
form through the electrostatic interaction between the particles), the sample
is then filtered through a Millipore filter with a pore dimension of 0.45 µm.
While filtering, the sample is loaded into the shear cell. The obtained sus-
pension is optically transparent and initially ”liquid”. Cell loading is taken
as the origin of waiting times t0w for the aging dynamics of the system at rest.

4.1.2 The experimental set-up for homodyne and hetero-

dyne method

The sample is investigated in a home made [98], cone and plate shear cell
for DLS measurements, having a flat optical window as the static plate. The
cone has a radius of 5 cm and a bottom angle α = 0.20 rad (Fig. 4.2).
It is made up of aluminium and the surface is covered by a thin layer of
paint, in order to prevent ions from being released from the metal into the
Laponite suspension, thus changing the ionic strength of the sample. To
minimize stray light at the interface between the cone and the sample during
the DLS experiments, we used black paint. The cone is made rotate around
its symmetry axis at an angular velocity ranging from 10−2 Hz to 102 Hz by
a DC electrical motor with permanent magnet. The rotational axis is put
in the horizontal direction. Optionally, a plate-plate geometry can be used
by exchanging the cone with a glass plate of the same dimension. The glass
refractive index is 1.41 and the one of water (which is the average refractive
index of dilute Laponite suspensions) is 1.33: the difference among the two
indexes is small enough that the stray light at the interface is negligible.

The set-up we implemented for DLS measurements is sketched in Fig. 4.3.
A diode pumped solid-state laser (λ = 532 nm, P = 150 mW) is directed
towards a beam splitter; one of the two beams coming out is directed, through
a mirror and a convergent lens (of focal length f = 250 mm), towards the
cell containing the sample; the other beam, representing the local oscillator,
is attenuated by a filter and collected by a fiber collimator (of focal length
35 mm), followed by a single-mode optical fiber (f1, core diameter 3.5 µm).
The beam scattered by the sample passes through a convergent lens (of focal
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Figure 4.2: Shear cell used in the DLS experiments. W : optical window, C: cone

rotating around its symmetry axis, l: radius of the cone, α = l/h = 0.20 rad: angle

of the cone with respect to the bottom plane. A cylindrical coordinate system is

also drawn.

length f = 100 mm) and is collected, in the direction perpendicular to the
optical window, by another couple of collimator (of focal length 50 mm) and
fiber (f2). Approximating the beams as Gaussian beams [102], the focal
length is z0 = 160 mm for the incident and z0 = 13 µm for the scattered
beam. We fixed the intersection of the incident and scattered beam as closer
as possible to the waists (the waist is the focal point of the beam). Both
fibers are polarization-maintaining and the interference among the scattered
field and the local oscillator is achieved through a fiber optics beam splitter,
which ensures an optimal matching of the beam wavefronts [79]. Another
optical fiber propagates the interfering beam from the beam splitter to a
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photomultiplier (Hamamatsu). Finally, the digital signal in output from the
photomultiplier is sent to a correlator: photocounts are acquired through a
general purpose, counter/timer PCI board (National Instruments PCI 6602 )
and a set of software classes (implemented as extension modules of the object
oriented language Python) have been developed to perform basic tasks for the
statistical analysis of digital pulse trains. A typical application is real time
multi-tau photon correlation. However, a software approach, having access
to the full photocounts train, allows to efficiently prototype different analysis
protocols, going far beyond the simple autocorrelation function [99, 100].

In our experiment, the scattering geometry is fixed at a scattering angle
θ = 132o, thus the scattering vector is q = 22 µm−1. This fiber collection
apparatus allow a direct visualization of the scattering volume, as suggested
in Ref. [79]. Replacing the fiber f1 collecting the local oscillator with the one
at the opposite side of the beam splitter (see Fig. 4.3), the scattering volume
results as the intersection of the incident beam and the beam coming out from
f2. The scattering volume dimensions are c ∼ 160 µm in the x-direction and
a ∼ 120 µm in the y-direction (see Fig. 3.3). We placed the shear cell in
order to have the scattering volume positioned at a radial distance R = 2.1
cm from the rotational axis and the flux velocity in the azimuthal direction
(see the cylindrical coordinate system drawn in Fig. 4.2) coplanar with the
incident and scattering beams.

In the following, we describe the experimental protocols used for the
investigation of the particle dynamics through the homodyne technique and
for the velocimetry measurements through the heterodyne method.

Dynamics investigation through the homodyne method

For the sample of Laponite at 3.4% wt concentration, the number of scatter-
ing platelets in the scattering volume is about 1011. The Gaussian approx-
imation is therefore valid and the Siegert relation 3.14 holds. Through the
homodyne method (achieved by blocking the beam of the local oscillator in
the set-up described above), the intermediate scattering function can thus
be measured in the system at rest, giving a direct investigation of the sys-
tem dynamics. With respect to pinhole collection, classically used in DLS,
the optical fiber collecting device ensures a higher spatial coherence of the
beam on the photocatode [101]. Indeed, the electric field passing through the
collecting fiber has a fixed transverse profile [102], and the motion of the scat-
terers result only in fluctuations of the amplitude and the phase of the field

93



��

�
�
�
�
�
�

��

��

Figure 4.3: Experimental setup for DLS measurements. BS: beam splitter,

A: attenuator, C: collimator, M : mirror, S: sample, FOBS: fiber optics beam

splitter, f : single-mode fibers, L: converging lens, PMT : photomultiplier.

wave. Therefore, the optimal value B = 1 may be reached in equation 3.14.
An example of the correlation functions measured in the homodyne mode
is shown is Fig. 4.4, where the aging dynamics of a Laponite suspension is
monitored after cell loading.

When the system is under shear, fast decorrelation of the measured cor-
relation function due to geometrical effects will be observed, as explained in
3.1.2. In any point along the cell gap, the advection time τa will be responsi-
ble for this decay, as the corresponding transit time τt is expected to be much
longer than τa in this scattering geometry. For example, fixing the minimum
shear rate applicable in the cell γ̇ = 1.3 10−2 s−1 (assuming a linear velocity
profile along the gap), using equation 3.22 and 3.23, we obtain τa ∼ 6 ms and
τt ∼ 240 ms when the scattering volume is in the middle of the gap. When
we study the influence of a shear flow on the aging dynamics of the Laponite
sample, the timescales characterizing these slow dynamics will soon become
larger than τa, already at the minimum applicable shear rate (see Fig. 4.4).
For this reason, the homodyne measurements will be always performed in
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Figure 4.4: Normalized intensity autocorrelation functions during aging, for ten

equally spaced waiting times between 0.1 and 15 hours, when a Laponite suspen-

sion is left still after cell loading.

short time intervals during which the shear is stopped.

Velocimetry measurements through the heterodyne method

By choosing the heterodyne correlation scheme, the detailed velocity profile
in the shear cell can be measured by shifting the cell along the velocity
gradient direction. As explained by equation 3.26, the velocity of the particles
in the scattering volume is obtained from the oscillating frequency ω of the
measured correlation function: v = ω/(q cos q̂v), where q cos q̂v is fixed by
the scattering geometry. The frequency ω can be easily obtained as the point
of maximum of the correlation function Fourier transform [100]. In order to
spare computational time, one can directly calculate the Fourier transform
of the collected intensity Ie(t) and obtain the same result. Indeed, according
to the Wiener-Khinchin theorem, the power spectral density of a stationary
random process is the Fourier Transform of the corresponding autocorrelation
function:

∫ +∞

−∞

〈Ie(0)Ie(t)〉 exp(2πiνt)dt = 2π|
∫ +∞

−∞

Ie(t) exp(2πiνt)dt|2
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Figure 4.5: Time Fourier transform F of the intensity signal collected through the

heterodyne set-up for equally-spaced positions of the scattering volume spanning

the entire gap in the plate-plate geometry. The increase in the amplitude of the

peak as the static window is approached is probably due to an increase of the

scattering intensity (such heterogeneity may be induced by the cell wall). For

each curve, the point of maximum ωm is related to the particle velocity v in the

scattering volume through the relation ωm = v · q.

The particle velocity in the scattering volume can thus be measured in real
time by calculating, through the software correlator, the Fourier transform
of the intensity signal Ie(t) acquired in the time interval 0 ÷ T , as shown
in Fig. 4.5. The maximum time resolution that we can achieve with this
measurement, at a fixed position of the scattering volume in the gap, is T =
10−2 s. The spatial resolution is instead determined by the scattering volume
dimensions ∼ 100µm. Considering that the gap width is H = R tan α = 4.2
mm, a good spatial resolution is assured in the measurements of the velocity
profile.
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4.1.3 A new method for measuring the

Intermediate Scattering Function

Through the velocimetry measurements, shear localization phenomenon is
observed in the Laponite suspension for low applied shear rates and for long
waiting times since sample filtration. These results will be presented in 6,
here we only want to explain the motivations leading us to the introduction
of a novel DLS method. As suggested by the numerical and theoretical stud-
ies on shear localization (see 2.3.3, 2.3.4), the dynamics is expected to be
arrested in the null shear band and fluid-like in the band at finite shear. Ex-
perimentally, this difference in the dynamical behavior hasn’t been evidenced
yet. As usual, the dynamics can’t be monitored under shear, but may be fol-
lowed soon after shear stop in the two different bands. If the dynamics in the
two bands is completely different during the flow, we expect this difference to
be reflected in the dynamics of the particles soon after flow cessation in the
two regions of the sample. As we will report in 5.3, the aging dynamics fol-
lowing shear cessation, when the time elapsed since sample filtration is long,
proceed very fast. As a consequence, DLS can’t be the proper technique to
investigate such dynamics.

Indeed, in classical DLS experiments, the intensity correlation function is
measured as an average on the time origin over the acquisition time T (see
equation 3.1). When investigating Laponite system dynamics, the acquisition
time T needed to get a good signal to noise ratio must be kept longer than the
characteristic slow relaxation time of the system τs and shorter than the time
one should wait before changes in τs, due to the aging process, are significant.
This condition doesn’t hold when the aging dynamics is characterized by a
very fast evolution, as in the case described above. The intensity correlation
function thus cannot be obtained by time averaging and an ensemble average
may overcome the problem. Multi-Speckle Dynamic Light Scattering (MS-
DLS) or Multi-Speckle Diffusive Wave Spectroscopy (MS-DWS) compute the
intensity correlation function by averaging the intensity fluctuations over the
pixels of a digital camera detector, which collects part of the speckle pattern
[109]. The acquisition time is strongly reduced in these techniques, enabling
the investigation of the system dynamics for much longer τs or for faster aging
processes. However, in both techniques, the time resolution is much smaller
than in DLS, as it is limited by the frame rate of the camera device used
as detector. In particular, the timescale characterizing the slow dynamics of
the Laponite suspension in the regime we are interested in may be too short
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to be investigated through MS-DLS.

Thus, an original protocol to measure the intensity correlation function
is used. The intermediate scattering function is calculated as an ensemble
average over many rejuvenating experiments:

g(2)(t0, t) = 〈I(q, t0)I(q, t0 + t)〉e/〈I(q)〉2e

where 〈..〉e indicates the ensemble average over several intensity evolutions
acquired after cessation of a repeated shear application. In particular, we
choose the following protocol: a shear rate γ̇1 is applied to the system for
a time interval T1; after shear cessation, the counting of tw starts and the
intensity fluctuations are collected for a time interval T0 with a time reso-
lution of dt; then a shear rate of the same value γ̇1 is applied for T1 and
the cycle starts again. The whole measurement lasts several hours and we
obtain an ensemble of N acquisitions, having T0/dt counts each, after the
same initial conditions are imposed. In order to reach a good signal to noise
ratio in the correlation function, N need to be large. For this reason, the
acquisition time is extremely long in comparison to MS-DLS technique, but
the time resolution, fixed by dt, can be much higher with this DLS technique
and enables the investigation of faster dynamics.

Once the counts have been collected, we proceed to the calculation of the
correlation functions. To speed up the computation, the acquired counts are
first logarithmically binned: a logarithmic binning of tw is performed and
the counts are averaged in each bin. The intensity autocorrelation function
is then calculated for various tw as an ensemble average over all the bunches
of counts, in the time window dt÷T0. Calling ni(tw +t) the number of counts
in the bin at the elapsed time tw + t since shear cessation and at the i-th
acquisition, we can write

g(2)(tw, t) =
1

N

∑N
i=1 ni(tw)ni(tw + t)

n̄2

where n̄ is the average of all the counts in all the N acquisitions. The
resulting correlation functions are checked to be independent on the binning
procedures. An example of the resulting correlation functions is represented
in Fig. 4.6. In the following, consistency with classical DLS has been checked
for this original method of DLS.
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Figure 4.6: Normalized intensity autocorrelation functions obtained as an en-

semble average over many rejuvenating experiments on a initially gelled Laponite

sample. The functions are calculated for a set of waiting times between 0.3 s and

40 s (from left to right) after shear cessation.

Checking on the method

We first follow the statistics of the correlation functions calculated at different
tw [109]. We calculate for each acquisition i the value ni(tw)ni(tw + t̄)/n̄2,
with t̄ satisfying the condition g(2)(tw, t̄) = e−1. A histogram of these values
calculated over the N acquisitions can be plotted for various tw (Fig. 4.7).
Its shape, though very large, ensures that good statistics have been done in
the calculation of the correlation functions.

In order to compare the correlation functions measured through classi-
cal DLS and through this novel method, we monitored the dynamics of a
Laponite sample aging under shear (this regime will be described in details
in 5.2). At elapsed time t0w . 30 h since sample filtration, the system dynam-
ics after shear are stationary over the timescale of the tens of seconds and
can thus be investigated through classical DLS too. Soon after cell loading,
the sample is left aging under shear at γ̇1 = 100 s−1 and periodically shear is
stopped after a time T1 = 60 s, a pause of 5 s is taken in order to avoid inertial
effects due to flow stop and then the scattered intensity is acquired for T0 = 1
s, with a time resolution dt = 10−5 s. Each hour, the time-averaged intensity
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Figure 4.7: Histograms for the ensemble averaged correlation functions: for

14 waiting time values between 1 and 80 s, we plot the histograms of ∆tw =

ni(tw)ni(tw + t̄)/n̄2 (with t̄ satisfying the condition g(2)(tw, t̄) = e−1) calculated

for each acquisition i among N = 950 acquisitions.

correlation function is also measured through classical DLS by stopping the
shear for 80 s. The experiment lasts 24 h and the ensemble averaged inten-
sity correlation function is calculated from N = 1300 acquired bunches of
counts. As we will show in 5.2, the system under shear keeps on aging with
t0w. Thus, the dynamics change during the whole experiment and the ensem-
ble averaged correlation function will provide an average value of the slow
relaxation timescale. The ensemble averaged intensity correlation function is
thus compared to the average of all the intensity correlation functions mea-
sured during the experiment through classical DLS. As it is evident from Fig.
4.8, good agreement is observed between the intensity correlation functions
measured through the two methods.

4.2 Speckle Visibility Spectroscopy on a shear

thickening sample

Concentrated suspensions of silica particles have been largely used to in-
vestigate the rheological behavior of charge stabilized colloids. When the
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Figure 4.8: Intensity correlation function measured as an ensemble average over

many intensity acquisitions after shear cessation (thin line) compared to the time

averaged correlation function measured through classical DLS (bold line). Mea-

surements are performed on a Laponite sample aging under shear at γ̇1 = 100 s−1

for 24 h. As the sample ages during this long acquisition time, the correlation

function plotted in bold line is an average of all the correlation functions acquired

during the experiment through classical DLS.

suspension is sheared over a critical shear stress, a shear thickening behavior
is observed. At the microscopic level, clusters of particles are believed to
be responsible for this behavior. We will investigate the dynamics of these
flow induced heterogeneities through speckle visibility spectroscopy (SVS),
a recently introduced technique, which is based on DWS. In the following,
the experiments already proposed in the literature on the silica suspension
are briefly discussed and the synthesis we performed to obtain the sample is
described (4.2.1). The experimental apparatus for optical measurements on
a shear thickening sample is presented in 4.2.2, while the basic principles of
the SVS are discussed in 4.2.3.

4.2.1 The Silica suspension

A colloidal suspension of spherical silica particles is stabilized through the
electrostatic repulsion between the spheres, which are negatively charged
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(as soon as pH> 3). Positive counterions, gathering around the particles,
screen the interaction and induce an increase of the effective diameter of the
particles and a higher effective volume fraction. Such suspensions represent a
model system for spherical charged colloids. For this reason, the rheological
behavior of concentrated silica suspensions has been extensively studied in
the literature [103, 104]. From mechanical measurements, yield stress is
observed in the limit of low shear rates; a shear thinning regime follows
as the stress is increased and, above a critical volume fraction Φc, shear
thickening is observed above a critical stress σc. When steady shear rate
is applied on the system, giant stress fluctuations are observed in a small
range of concentrations and shear rates, indicating a jamming transition
[104]. At the microscopic level, when the suspension is ordered at rest (high
volume fractions), an ordered structure is kept during the flow at low shear
rate, inducing the shear thinning behavior. At high shear rates, this ordered
structure melts, but only above Φc this melting leads to shear thickening.

The scaling behavior of the critical stress σc with the volume fraction
Φ has been investigated [103], and a decreasing trend of σc as Φ increases
(provided that Φ > Φc) is found. The effect of the particle surface rough-
ness on the onset of the thickening regime has also been studied [106]: for
fixed particle size, shear thickening occurs at smaller volume fractions and
smaller shear stress when the particle surface is rough. This is because the
increased inter-particle contacts and friction, due the rough surface, increase
the overall viscosity (see 2.5.2). To reach more easily the jamming regime in
our experiments, the particle surface will be roughened.

Synthesis and sample preparation

The silica particles have been synthesized according to Stöber method [105],
which is based on the hydrolysis and condensation of tetraoxydethylsiloxane
(TEOS), with formula Si(OC2H5)4, in a basic medium made up of a solution
of ethanol (HOC2H5), water and ammonia. The balance equations of the
synthesis may be written as:

Si(OC2H5)4 + 4H2O
NH3, HOC2H5−→ Si(OH)4 + 4C2H5OH (4.1)

Si(OH4)
NH3, HOC2H5−→ SiO2 + 2H2O (4.2)

When TEOS is added to the basic solution, the hydrolysis produces SiO4,
whose concentration grows with time until a maximum (reached after about
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1 minute) and then decreases. Germs of silica particles nucleate when an
excess of SiO4 is present in the solution, while when the concentration of
SiO4 decreases under a threshold, layers of silica form around the previously
nucleated particles. The first step in the synthesis consists in the nucleation of
these germs, while a phase of continuous growth of the silica particles follows,
leading to a very monodisperse suspension. The shorter is the nucleation
period with respect to the growth period, the more monodisperse will be
the particles at the end of the synthesis. During the growth period, the
concentration of SiO4 must be kept low, in order to avoid nucleation of new
particles with a consequent increase of polydispersity. For this reason, low
quantities of the reagents (TEOS and the basic solution) have to be added
periodically to the initial solution during the growth phase, until the silica
particles reach the size needed.

At fixed temperature, the particle diameter depends on the relative con-
centration of TEOS/H2O/NH3 and can be determined through an empiric
equation [106]. Once the concentrations of the reagents are chosen, one pro-
ceeds to the nucleation phase. The average diameter d0 of the silica particles
after nucleation is measured through DLS. For the growth regime, one ex-
pects an average final diameter d = d0(n/n0)

1/3, where n0 is the mass of
TEOS added to the basic solution during the nucleation period, while n is
the total mass of TEOS added during the whole synthesis. The relative
concentrations of TEOS, ethanol, ammonia and water have been chosen in
order to obtain a final diameter d ∼ 700 nm. After nucleation, the particle
diameter measured through DLS is d0 = 270 nm, while after the growth, it is
d = 640 nm. The silica particles are then separated from the basic reaction
mixture by centrifugation, in order to obtain a water dispersion. They were
redispersed in deionized water and centrifuged again 4 times.

The particle surface is then roughened by adding sodium hydroxide to
the water suspension in a mass percentage of 19% with respect to the mass
of silica. The dispersion is then left under stirring for 24 hours. At basic
pH, the silica slowly depolymerizes [107] and one gets rough particles of
the same diameter. The mean square surface roughness of the particles has
been measured elsewhere by atomic force microscopy [106] and was 6.20 nm,
whereas it was 0.68 nm for the particles before the attack at basic pH. The
suspension is then rinsed through centrifugation and redispersed in deionized
water, until pH becomes neutral. We then prepared a suspension of rough
particles at a volume fraction of 0.37. The obtained sample is stable against
sedimentation on the timescale of the hours, while after about one day, a
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gradient in the particle concentration develops in the vertical direction. Once
poured in the cell, the same sample is used during the whole experiment.
Therefore, the experiment duration is limited within a few hours in order to
avoid sedimentation effects. The sample has an opaque white appearance, so
we can operate in a multiple scattering regime.

4.2.2 The experimental set-up

In order to perform both rheological and scattering measurements on the
silica sample, a stress controlled Carri-Med rheometer, where the system is
optically accessible, is used. The cell is a Couette cell with a rotating internal
cylinder of 27.5 mm diameter and a fixed external plexiglass cylinder of 30.0
mm diameter, which lets the laser beam pass through. A Spectra-Physics

Argon polarized laser beam, of wavelength λ = 514 nm, is expanded and hits
the sample with a gaussian spot size of ∼ 6 mm, at an angle of ∼ π/6 from
the normal of the outer cylinder surface. The light is then multiply scattered
by the suspension and the backscattered light is collected, in a direction
perpendicular to the cell outer surface. The collection optics consists of a
collimating lens that focuses diffused light onto a diaphragm, which selects
a part of it. Finally, a Pulnix CCD camera behind the diaphragm collects
the speckle pattern. The camera device has 768× 484 pixels and can collect
the images at a frequency ν = 15 Hz. It is interfaced to a PC provided with
a National Instruments card and the data are analyzed in real time using
LabWindows. The diaphragm size can be changed in order to adjust the
speckle size and thus the ratio of pixels to speckle areas [109]. As the light
multiply scattered by the sample is depolarized, a polarizer is added between
the lens and the diaphragm in order to minimize direct reflections. All the
measurements are performed in backscattering geometry, the dynamics of the
particles is thus probed in a volume defined by the section of the diaphragm
(≃ 6 mm × 6 mm) and the photon penetration depth in the sample. Using
a procedure described in Ref. [106], the photon mean free path inside the
suspension has been measured: l∗ = 93 ± 4 µm. The penetration depth in
backscattering geometry is of the order of a few mean free paths, we can thus
estimate that the volume explored in an experiment is of the order of 6 mm
× 6 mm × 0.2 mm. It contains about 109 particles, but represents a small
fraction of the entire Couette cell. In particular, its depth is approximately
one fifth of the gap.

Through the rheometer, we monitor the mechanical properties of the sil-
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Figure 4.9: Jamming of the concentrated suspension of rough silica particles.

Stress is increased from 0 Pa to 255 Pa, at a rate of 2.1 Pa.s−1 (continuous curve).

Then, the stress is decreased down to zero with the same absolute rate (dashed

curve). Jamming occurs for σ & 20 Pa. A slight hysteresis is observed when the

stress is decreased.

ica sample by imposing a ramp of stress on the system. For small stresses, the
shear rate increases smoothly with the stress; then, when the stress reaches
a critical value, a transition to a different regime occurs, where huge fluctu-
ations of the shear rate around a fixed value are observed (Fig. 4.9). The
occurrence of these huge fluctuations of the shear rate evidences a transition
to a jamming regime. If a decreasing ramp of stress is applied after the ris-
ing ramp, a slight hysteresis in the stress vs shear rate curve is observed.
Interpreting the shear thickening phenomenon as due to the formation of hy-
drodynamic clusters (see 2.5), the following picture may hold to explain the
occurrence of the jamming regime: shear induced aggregates, of macroscopic
size, hinder the flow inducing a drop in the shear rate; then, at this lower
shear rate, the aggregates break, so the shear rate increases and the cycle
starts again.

4.2.3 Speckle visibility spectroscopy

We are interested in the investigation of the heterogeneities induced by shear
in the jamming regime. In particular, we want to study the dynamics of

105



these heterogeneities while they relax to equilibrium after flow cessation.
These dynamics will be non-stationary, and thus cannot be studied through
classical DWS, in which the intensity correlation function is measured for one
speckle as an average over the time origins. As described in 4.1.3, MS-DWS
would overcome this limitation by averaging the intensity fluctuations over
the speckles of the diffraction pattern. Nevertheless, the temporal resolution
of MS-DWS is limited by the frame rate of the camera collecting the images.
In the silica sample, the characteristic time of the dynamics is too small to
be investigated through this technique.

A technique that can overcome these problems is the Speckle Visibility
Spectroscopy (SVS), which is based on the principles of DWS (discussed
in 3.2) and has been recently introduced by Dixon and Durian [110]. The
basic idea of the technique is the following: if the exposure time of the
camera detector is long compared to the timescale of speckle fluctuations,
the same average intensity is recorded for each pixel. On the contrary, if the
exposure time is shorter, the speckle pattern is visible. Thus, keeping the
exposure time fixed, the faster are the dynamics of the suspension, the more
the speckle image is blurred and the less contrasted is the speckle image.
The temporal resolution of this technique is of the order of the exposure
duration, that is much smaller than the camera frame rate (time elapsed
between two successive images), and allows the study of our system dynamics.
Quantitatively, one computes the contrast of an image, for a given exposure
time, as the variance of the intensity distribution across the pixels:

C(T, tw) =
〈(IT (tw))2〉p
〈IT (tw)〉2p

where the 〈..〉p is an ensemble average over all the pixels and the intensity
IT (tw) is the pixel time-integrated intensity over the exposure duration T :

IT (tw) =
1

T

∫ tw+T

tw

I(t′)dt′

For T much larger than the dynamical timescale of the system the contrast is
expected to be one, while in the opposite limit the expected value is two. The
contrast can be also expressed as a function of the intermediate scattering
function [111]:

C(T, tw) ∝
∫ T

0

(1 − t/T )[g(1)(t, tw)]2dt/T (4.3)
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Figure 4.10: Evolution of the contrast with the camera exposure duration T .

The intermediate scattering function is assumed to be a simple exponential, with

relaxation time τ evolving during the experiment. Right curve : τ ≡ τ0 = 100.

Left curve : τ ≡ τ1 = 1. Inset : difference between the two contrast curves,

Cτ0(T ) − Cτ1(T ) as a function of T . The maximum difference is obtained for a T

value approximately equal to the geometric average of τ0 and τ1,
√

τ0τ1

As it is evident from this equation, the contrast allows to explore the varia-
tions in the particles dynamics when the exposure time T is in the range of
the system dynamical timescales. If particle motion accelerates, the contrast
will decrease; on the contrary, if the dynamics slow down, the contrast will
increase. The exposure duration of the camera device can vary in the range
64 µs ÷19 ms. When the exposure duration T is varied, the laser inten-
sity is modified in order to keep 〈IT 〉p, the average intensity over the pixels,
fixed [111].

During the experiment, we chose to keep the exposure duration constant.
The optimum choice for T depends on the dynamics of the observed sample.
Let us indeed assume that the dynamics of the system is characterized, at a
given instant, by a decay time τ of the intermediate scattering function g(1),
and that τ may vary, as the system evolves, between τ0 and τ1, corresponding
to two different values of the contrast, Cτ0(T ) and Cτ1(T ). Assuming that
g(1) exhibits a simple exponential decay, the contrast can be calculated as a
function of T from equation 4.3: it is plotted for the values τ0 = 100 and
τ1 = 1 in Fig. 4.10. In order to have a good signal to noise ratio, we wish to
observe the maximum variation of the contrast during the experiment. One
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Figure 4.11: Contrast evolution for a system at rest, for different samples and

different camera exposure times T . From top to bottom: silica sphere suspension

for T = 191 µs, silica sphere suspension for T = 19.1 ms and water solution of

latex for T = 19.1 ms.

needs to find the value of T that maximizes the difference between Cτ0(T )
and Cτ1(T ). We observe that the maximum difference between the two curves
is reached for a time T = 12, of the order of the geometric mean of τ0 and τ1,√

τ0τ1. This result can be easily generalized, as it doesn’t change significantly
if we model the decay of the intermediate scattering function by other forms,
or if we consider a double decaying correlation function -with one timescale
remaining fixed- to account for another dynamical process present in the
system at a different timescale. We empirically chose for T the value that
maximizes the variation of the contrast during the experiments, and found
that T = 5.08 ms was the best choice for our system.

SVS on the silica sample

When we monitor the evolution of the contrast in the silica sample at rest,
we observe a very noisy signal. This is a consequence of both the properties
of the system and our choice of the shutter duration. In order to show that
the noise is not due to the setup, but is really an intrinsic characteristic of
the sample, we acquire the contrast signal of a water solution of latex, taken
for comparison. In Fig. 4.11, we plot the contrast, measured for an exposure
duration of the camera T = 19.1 ms, for both samples. We calculate the
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Figure 4.12: Fluctuations of the gradient (dotted line) and the contrast (solid

line) under an applied stress of 50 Pa. Low values of the gradient are associated

to high values of the contrast.

relative noise as the ratio between the standard deviation of the signal and
the difference between its average value and 1. We obtained a value of 0.011
for the noise of the silica sample and of 0.0035 for the one of the reference
sample, which is then a factor of three smaller. For a given sample, the noise
of the contrast signal depends on the chosen T . The amplitude of the noise
decreases when the exposure time T decreases with respect to the timescale
of the system dynamics. For the silica suspension, the relative contrast noise
at T = 191 µs is smaller by a factor of 4 than the noise at T = 19.1 ms
(Fig. 4.11). At the shutter duration chosen for the experiment (T = 5.08
ms), the amplitude of the noise is similar to the amplitude measured at
T = 19.1 ms.

Let’s now follow the evolution of the contrast while shearing the sample
in the jamming regime (we apply a shear stress σ = 50 Pa). While huge fluc-
tuations are observed in the shear rate, the contrast fluctuates in a correlated
manner, as it is evident from Fig. 4.12. When the sample is under shear,
the dominant movement of the particles is due to the flow. As evidenced in
equation 3.28, the typical timescale characterizing the intensity correlation
function thus scales as the inverse shear rate. As a result (see equation 4.3),
when the flow velocity decreases due to the shear rate fluctuations in the
jamming regime, the contrast will be higher and viceversa.
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C H A P T E R 5

Aging dynamics in a shear

thinning system

Despite the large amount of numerical and theoretical works investigating
the influence of a steady shear flow on the slow dynamics of glassy systems,
an experimental microscopic counterpart is still relatively poor. As reported
in 1.3.1, evidences for a shear dependent structural relaxation time have been
obtained by DWS, but quantitative results are still lacking. Moreover, the
statistical properties of multiple scattered light are not easily represented
in terms of the particle density correlation function. No attempt has been
made up to now to investigate shear influenced dynamics using DLS, which
directly probes the intermediate scattering function of the colloidal particles.
Through this technique, we begin by monitoring the evolution of the density
autocorrelation function when an aging colloidal suspension of Laponite is at
rest (5.1). Then, the rejuvenating effect of a steady shear flow on these aging
dynamics is investigated following two different protocols. First, we monitor
the dynamics while the system ages under shear (5.2). The observed behav-
ior reflects a competition of timescales between the inverse shear rate and
the structural relaxation time, as predicted by some of the numerical and
theoretical studies discussed in 2.3. A phenomenological model is proposed
to interpret the results. Secondly, the effect of the flow on the aging dynam-
ics following shear application is investigated (5.3). Two different regimes
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are observed, depending on whether the shear is applied before or after the
dynamical arrest (gelation) of the system. The behavior observed before gela-
tion is consistent with the proposed model, while the other regime cannot be
interpreted within that framework.

5.1 Standard aging and gelation

We first follow the standard aging evolution of the sample after cell loading.
The dynamics is monitored by measuring the intensity correlation function
g(2)(t0w, t) through the DLS set-up in the homodyne mode, being t0w the time
elapsed since sample filtration. The top frame of Fig. 5.1 shows the evolution
of g(2)(t0w, t), for an evenly spaced set of waiting times t0w spanning the interval
0.1 − 15 hours. As already observed in Laponite suspensions (see 4.1.1),
aging dynamics display a two step relaxation scenario. For the whole set
of t0w values reported in Fig. 5.1, a very good fit for the corresponding
intermediate scattering functions g(1)(t0w, t) is provided by

g(1)(t0w, t) = f exp
[

−(t/τs)
β
]

+ (1 − f) exp [−t/τf ] (5.1)

where all parameters (f , τs, β, τf ) depend on t0w. The stretched exponen-
tial form for the slow relaxation, where 0 < β < 1, can be viewed as the
superposition of single exponential decays with a certain distribution G(τ):

exp[−(t/τs)
β] =

∫ ∞

0

G(τ) exp(−t/τ)dτ (5.2)

The β exponent is closer to one the narrower is the G distribution. Many
approaches to slow dynamics in complex systems, as the MCT or the simu-
lated models described in 2.3.4, suggest that such a broad spectrum of time
scales arises from the heterogeneous character of slow dynamics [114]. From
this broad spectrum, an average relaxation time 〈τs〉 may be defined in order
to quantify the slow decay timescale:

〈τs〉 =

∫ ∞

0

exp[−(t/τs)
β] dt =

τs

β
Γ(1/β) (5.3)

where Γ is the Euler Gamma function. The evolution of 〈τs〉 and β are
reported in Fig. 5.2 (full circles): while the relaxation time increases more
than exponentially (as it was also visible from the top inset of Fig. 5.1),
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the slow decay becomes very stretched (β = 0.2). Also the fast relaxation
timescale τf evolve with t0w, exhibiting a slight increasing trend (Fig. 5.9,
open squares). This last result seems to be in disagreement with previous
observations [92, 96], that showed both the independence of the fast dynamics
on the age of the sample and the scaling of the fast relaxation time with
q−2. In these previous works, the first decay of the correlation function is
interpreted as an evidence of single particle diffusion, while the slow decay
accounts for collective dynamics.

For long t0w, the slow relaxation of the correlation function will not show
a complete decay within the time window explored and the slow relaxation
time won’t be definable any more. This behavior indicates a strong ergodicity
breaking and marks conventionally the crossover to the arrested phase [93].
With the time window accessible in our DLS experiment, gelation takes place
in our sample at t0w ∼ 18 h. A divergent behavior of the slow relaxation time
is indeed evident just before gelation in Fig. 5.2.

5.2 Aging under shear

The effect of a steady shear flow on the above described aging dynamics is now
investigated by monitoring the intermediate scattering function as the system
ages under flow. The competition between the structural relaxation time and
the inverse shear rate gives rise to a complex dynamical behavior that we
can quantitatively analyze by studying the detailed shape of the measured
correlation function. The scenario resulting from this analysis will provide
a microscopic counterpart of the strong shear-thinning behavior observed in
rheological studies of Laponite and of many other soft materials.

A steady shear rate γ̇ is applied to the Laponite sample soon after filtra-
tion and the correlation functions are collected every time lapse T1 = 10 m in
short time intervals T0 = 80 s, during which the rotor is stopped (γ̇ = 0) in
order to avoid the decorrelation terms discussed in 3.1.2. By measuring the
correlation function at different waiting times tw since shear cessation, we
check that the system is stationary on the timescales of T0. The robustness
of the results with respect to variations of T1 and T0 is also checked. The
same protocol of measurement is repeated for various γ̇. Through the het-
erodyne correlation scheme, we make sure that wall slip and distortion from
linearity in the velocity profile are negligible in the whole shear rate range
here investigated.
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Figure 5.1: Normalized intensity autocorrelation function for ten equally spaced

waiting times between 0.1 and 15 hours. Top frame refers to aging without shear,

while bottom frame refers to aging under shear with γ̇ = 223 s−1. Inset plots show

the same data in a double-logarithmic scale.

In the bottom frame of Fig. 5.1, we report the evolution of g(2)(t0w, t),
observed on the same set of t0w reported in top frame for standard aging,
when a shear rate γ̇ = 223 s−1 is applied. Though a stationary state is
never reached in the observation time window, for long enough waiting times,
the slow relaxation time grows slower than exponentially (the correlation
functions come closer in the inset, double-logarithmic plot), while the shape
of the relaxation function approaches a constant profile (constant stretching
exponent). Equation 5.3 still provides a good fit for all the correlators at the
various γ̇ values here investigated. The presence of a shear induced crossover
becomes evident if we plot the fitting parameters 〈τs〉 and β as a function of
t0w for different shear rates (Fig. 5.2). As long as the system dynamics are
fast on the timescale γ̇−1 (indicated by arrows in the plot), non-equilibrium
dynamics take place as if shear were not present: both the relaxation time
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Figure 5.2: Average slow relaxation time 〈τs〉 and stretching exponent β

as a function of waiting time t0w, during aging under different shear rates γ̇:

(△ )446, (◦)223, (⋄)67, (¤)22 s−1. Solid symbols (•) refer to aging without

shear. Arrows in top frame indicate the γ̇−1 values corresponding to each curve.

Inset in top frame shows the same data in a double-logarithmic scale.

τs and the corresponding stretching exponent β evolve with waiting time
following the γ̇ = 0 curves (full circles). The presence of shear starts to
affect the dynamics as soon as τs becomes larger than γ̇−1: the growth of τs

is dramatically reduced (even if not completely stopped) and the stretching
parameter β behavior flattens.

In the shear dominated region, 〈τs〉 displays a power law dependence on
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t0w (as evidenced in the double logarithmic plot inserted in the top panel of
Fig. 5.2), with an exponent which is roughly one for the higher shear rate and
increases above unity for lower shear rates. Though aging is never completely
absent, the slow relaxation dynamics, for a given waiting time, appears to
be very sensitive to γ̇, being faster and less stretched as γ̇ increases.

If we suddenly increase γ̇, rejuvenation is observed leading to faster re-
laxation time and smaller stretching (higher β). Crosses in Fig. 5.2 are the
average relaxation times and stretching exponents of two rejuvenated sam-
ples obtained by the two subsequent shear rate jumps: 63 s−1 → 223 s−1 and
223 s−1 → 446 s−1. This sudden rejuvenating effect seems to show that the
dynamics only depend on the waiting time t0w and the shear rate γ̇, while the
system doesn’t seem to keep memory of the shear history.

Also the fast dynamics seem to be influenced by shear when structural
relaxation occurs on a timescale longer than the inverse shear rate. In Fig.
5.3, the left panel shows τf vs. t0w for different values of the shear rate,
including γ̇ = 0. Similarly to the behavior of τs, also τf , in the presence of
a shear flow, seems to follow the behavior of the τf (γ̇ = 0) until the slow

timescale becomes comparable to γ̇−1. From this time on, τf increases slower
than in absence of shear. The right panel of Fig. 5.3 better demonstrates this
point: when τf is plotted against τs, all curves tend to collapse, indicating
a common origin of the fast and the slow dynamics in Laponite solutions.
This result thus seems to refute the interpretation of the fast relaxation as
due to single particle diffusion [92, 96]. Recently, the relation between the
fast and slow dynamics in Laponite suspensions have been interpreted [112]
within the so called coupling model [113].

5.2.1 A phenomenological model

As already reported in other experiments on glassy colloids (which we de-
scribed in 1.3.1), shear is found to have a deep effect on aging dynamics.
Here, we can directly access, through the intermediate scattering function,
the particle dynamics resulting from the competition between the highly
stretched structural relaxation and the inverse shear rate timescale. In par-
ticular, we found that γ̇τs ∼ 1 marks a crossover between an unperturbed
and a “shear dominated” aging. In this shear dominated regime, the dynam-
ics becomes strongly depended on the applied shear rate. This shows that,
though the shear was temporarily stopped for measuring the intermediate
scattering function, the system keeps memory of his dynamics under shear
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Figure 5.3: a) Crossover to shear dominated aging as observed in the timescale of

fast dynamics τf as a function of waiting time; b) all curves collapse when plotted

against the respective slow timescale (τs) and the crossover disappears.

during the acquisition. This justifies “a posteriori” the acquisition procedure.
We want to stress here that the exponential increase of the slow relaxation
time τs ∼ τ0 exp[−t0w/τe] reveals the presence of at least two well separated
intrinsic timescales (τe and τs) characterizing the aging dynamics of the sys-
tem. Nevertheless, though the shear rate is always such that γ̇τe ≫ 1, aging
dynamics is only affected by shear when the condition γ̇τs ∼ 1 is reached. In
order to highlight this result, in Fig. 5.4 we report the values of 〈τs(γ̇, t0w)〉
for constant t0w as a function of γ̇. The grey region represents the half-plane
〈τs〉 < γ̇−1, where slow dynamics takes place on a timescale shorter than γ̇−1.
This region is not affected by the presence of shear: the fluid is Newtonian
and, similarly to viscosity, 〈τs〉 is not dependent on γ̇. On the other hand,
shear plays an important role in the complementary half-plane, where 〈τs〉
displays a strong sensitivity to γ̇. The non-Newtonian behavior in the upper
half-plane of Fig. 5.4 resembles the same γ̇−m power law with m ∼ 1 (dashed
line) observed in some rheological measurements of Laponite viscosity [3] and
in some theoretical models on glassy systems (which we described in 2.3.2
and 2.3.3).

The whole scenario depicted above provides a microscopic counterpart of
the strong shear-thinning behavior observed in rheological studies of Laponite
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and of many other soft materials. In the simulated supercooled liquids which
we described in 2.3.4 and also in real fluids [1], the viscosity crossover from
a Newtonian to a non-Newtonian regime (where a power law dependence on
γ̇ emerges) is usually described by scaling laws such as:

η(γ̇) ≃ η(0)

1 + γ̇τη

(5.4)

The dynamical analogue of (5.4), suggested by Yamamoto and Onuki in [81],
has been reported in equation 2.5, which we rewrite here as:

1

τ(γ̇)
≃ 1

τ(0)
+ Aγ̇ (5.5)

As can be easily seen in this equation, shear rate provides a parallel relaxation
channel to the system which becomes predominant as soon as 1/τ(0, T ) ≪ Aγ̇.
Using the same kind of reasoning, which works remarkably well in the nu-
merical models, one would expect that even in an aging sample, as soon as
the unperturbed relaxation time grows large enough, shear rate will fix the
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relevant timescale and the system will become stationary even in the non
ergodic phases. This is actually what has been observed in the theoretical
models described in 2.3 and in the rheological studies on Laponite suspen-
sions (4.1.1).

We are now in the position of testing equation (5.5) by directly investigat-
ing the complete time behavior of density dynamics in the presence of a shear
flow. At a first glance, one would conclude that Fig. 5.2 is in contradiction
with (2.5) and the expectation that shear stops aging. It is indeed evident
that relaxation time continues to grow, even if no longer exponentially fast, at
least for more than one order of magnitude since it first “feels” the shear field.
On the other hand, as shown in Fig. 5.2, when the crossover occurs, the value
of the stretching exponent is about 0.5 or less. Assuming a heterogeneous
scenario for the distribution of relaxation times, 〈τs〉 will only represent the
average on a broad spectrum of timescales (spanning two decades at least).
Therefore, we expect that the shear is effective in interrupting aging only
for those timescales growing longer than a fixed, shear dependent, cutoff. In
other words we expect that equation (2.5) holds separately for every timescale
composing structural relaxation. The above scenario qualitatively accounts
for the observations of a slowly growing, though non saturating, structural
relaxation time after the crossover. The observed narrowing in the distri-
bution of timescales (larger β) with respect to the unperturbed case is also
explained by the model of Yamamoto and Onuki, which predicts an increase
of β with γ̇.

We want to put now the above observations on a more quantitative
ground. Assuming that (2.5) holds separately for each timescale, the slow
part of the intermediate scattering function (see equation 5.2) can be ex-
pressed as

g
(1)
0 (t0w, t) =

∫ ∞

0

G(t0w, τ) exp[−t/τ ]dτ (5.6)

where G is the unperturbed distribution of timescales. We now expect that
shear affects (5.6) as follows

g
(1)
γ̇ (t0w, t) =

∫ ∞

0

G(t0w, τ) exp[−t(1/τ + Aγ̇)]dτ (5.7)

= g
(1)
0 (t0w, t) exp[−Aγ̇t] (5.8)

In other words, if we divide the correlation function measured at a given
waiting time t0w and shear rate γ̇ by the corresponding unperturbed (γ̇ = 0)
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Figure 5.5: Ratio g
(1)
γ̇ (t0w, t)/g

(1)
0 (t0w, t) as a function of γ̇t, where g

(1)
γ̇ (t0w, t) is the

intermediate scattering function measured after a waiting time t0w during aging

with applied shear rate γ̇. ◦: γ̇=446 s−1, t0w=10 h ¤: γ̇=446 s−1, t0w=14 h

△: γ̇=223 s−1, t0w=14 h ⋄: γ̇=67 s−1, t0w=14 h. Solid line is an exponential fit

exp[−Aγ̇t] with A = 0.22.

correlation measured at the same t0w and plot the result as a function of γ̇t,
we should obtain the master curve exp[−Aγ̇t]. In Fig. 5.5 we report the
result of such a procedure obtained for three different values of γ̇ and two
waiting times. All curves collapse on the same master curve which is well
represented by a simple exponential with A = 0.22 (solid line). Similarly,
we could predict the shape of relaxation for given t0w and γ̇ by simply multi-
plying the unperturbed correlation function for the same t0w by the function
exp[−Aγ̇t]. If we do this for the γ̇ values here investigated and fit the re-
sult with a stretched exponential, we obtain a prediction for τs(t

0
w, γ̇) and

β(t0w, γ̇). The results of such a procedure, for those t0w values where g
(1)
0 (t0w, t)

is available, are shown in Fig. 5.6 as solid lines. The overall agreement with
the directly measured data points (open symbols) is very satisfactory and
supports the picture of the slow non-equilibrium dynamics of Laponite as
a heterogeneous superposition of relaxing units, each independently coupled
to shear through the composition rule for timescales: 1/τ → 1/τ + Aγ̇. We
notice that this phenomenological model manages to predict the dynamical
behavior of the system through only two parameters: the shear rate and the
age of the system. This implies that, at least in the regime here investigated,
the dynamics of the Laponite sample is not dependent on the shear history.
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5.3 Aging after shear rejuvenation

The shear rejuvenating effect on the dynamics of Laponite suspensions has
also been investigated by monitoring the aging evolution which follows the
application of a shear flow. Two different aging regimes are observed: one
is attained if the sample is rejuvenated before its gelation and one after the
rejuvenation of the gelled sample. The standard aging evolution is retraced
after shear cessation in the first case, while a completely different regime
is attained in the second one, where aging proceeds very fast after shear
rejuvenation.

Rejuvenation before gelation

In order to monitor the first regime of aging after shear rejuvenation, we
let the sample age until t0w = 13.4 h, when the system still has “fluid-like”
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Figure 5.7: Left: Normalized intensity autocorrelation functions for a Laponite

sample rejuvenated before entering the arrested phase. Correlation functions are

obtained through classical DLS for 16 equally spaced waiting times t0w between 0.2

and 3 hours (from left to right) since shear cessation. Right: Normalized intensity

autocorrelation functions for a gelled Laponite sample for a set of t0w between 0.3 s

and 40 s (from left to right). Correlation functions are obtained from the ensemble

average procedure described in 4.1.3. The time resolution here is too low to access

the fast decay.

dynamics. Then, we apply a shear rate of 100 s−1 for two minutes and finally
we follow the dynamics after shear cessation. We define tw the time elapsed
since shear cessation. Aging is monitored through the intensity autocorrela-
tion function g(2)(tw, t) for a set of tw between 0.2 and 3 hours, as reported in
Fig. 5.7 (left panel). The correlation functions have the same shape observed
in the standard aging regime and are still well fitted through the expression
of equation 5.1. The stretching parameter β decreases with tw as shown in
the left panel of Fig. 5.8. The evolution of 〈τs〉 as a function of tw is plotted
in Fig. 5.9 (full circles), where the tw axis has been shifted by superimposing
the first point of the curve on the normal aging curve.

As evidenced in the figure, once a shorter relaxation time is reached by
the system after the rejuvenating effect of the shear, the same aging evolution
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characteristic of the standard aging is followed. The same behavior can be
observed in the evolution of the fast relaxation timescale τf , which is plotted
in the inset of Fig. 5.9.
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Figure 5.8: Evolution of the β parameter, deduced from a stretched exponential

fit exp[(−t/τs)
β] of the intensity autocorrelation function. Left: Aging of a sample

rejuvenated before entering the arrested phase. Right: Aging of a rejuvenated

gelled sample.

Rejuvenation after gelation

We now turn to the investigation of the aging evolution after the shear is
applied to gelled samples. When a local shear rate γ̇1 is applied to the
system, the scattered intensity following shear cessation shows the type of
evolution reported in Fig. 5.10, where tw is the time elapsed since flow stop.
The fluctuations of the signal display a rapid slowing down within the plot
time window. In particular, the fluctuations look stationary if the time is
plotted in a logarithmic scale, as shown in the bottom panel of the figure. For
such a non-stationary, rapidly evolving dynamics, the intermediate scattering
function cannot be measured through classical DLS, where an average over
the time origins is performed. Therefore, the dynamics will be monitored
by measuring an ensemble averaged correlation function through the method
described in 4.1.3.
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Figure 5.9: Average slow relaxation time 〈τs〉 is plotted as a function of waiting

time tw for a sample aging soon after filtration (◦) and for the same sample aging

after the application of a shear rate of 100 s−1 for 2 minutes, 13.4 h after filtration

(•). tw is shifted in order to superimpose the first 〈τs〉 measured after the appli-

cation of shear with the standard aging curve. Black line is a guide for the eye.

The fast aging regime, observed after shear rejuvenation of a gelled sample is also

plotted for comparison for the same applied shear rate (+). The curve is shifted

in tw through the above described procedure. Inset: fast relaxation time τf as a

function of tw for the two aging evolutions, plotted through the same procedure.

We first need to point out that gelled samples, when subject to shear,
always exhibit wall slip on the static plate (optical window). In particular,
when a still, gelled Laponite suspension is put under shear, drastic wall
slip takes place and the whole system rotates as a solid body leaving a null
shear in the core (measurements of the velocity profile are performed through
the heterodyne mode). In order to apply a controlled shear rate, the solid
band has to be “broken” through the application of a high shear rate (γ̇0 >
100 s−1). A local shear rate γ̇1 < γ̇0 is applied soon after to investigate the
aging after-shear dynamics. Another procedure consists in letting the system
age under continuous shearing directly at γ̇1. Though wall slip is still present
at the lower shear rates investigated (γ̇1 ≪ γ̇0), velocity profiles show a finite
local shear rate. We found that, for a given local shear rate, the subsequent
aging dynamics is independent on which of the two described protocols is
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applied, confirming the independence of the sample dynamics on the shear
history. In the following, we will always refer to samples prepared according
to the first procedure.

With an initial shear rate γ̇0 = 200 s−1 of the duration of two minutes,
various experiments at different γ̇1 are performed. The measuring protocol
described in 4.1.3 is followed, with parameters T1 = T0 = 120 s and dt = 10−2

s. The time resolution, which is fixed by dt, has been chosen in order to let us
follow the slow dynamics, while limiting the time spent in the computation of
the correlation functions (the number of counts for each acquisition is given
by the ratio T0/dt). In order to minimize inertial effects due to flow stop,
the shear rate γ̇1 is set to zero through a decreasing ramp of the duration of
10 s. The whole measurement lasts about 24 hours. The resulting intensity
autocorrelation functions g(2)(tw, t) for a set of waiting times between 1 and
40 s are reported in Fig. 5.7 (right frame). The time resolution of the
correlation functions is too low to reveal the fast dynamics of the system. As
evidenced in 5.2, we may expect that the system ages during the experiment,
due to the long acquisition time. However, if we calculate the correlation
functions by taking only the first or last group of acquired counts, we obtain
the same results, showing that aging is negligible.

Compared to standard aging, the new aging regime entered by the reju-
venated gelled sample is characterized by intensity correlation functions of
a different form and by a much more rapid evolution of the slow relaxation
time with tw (Fig. 5.7). The corresponding intermediate scattering functions
are first fitted by a stretched exponential decay. The stretching parameter β
now statistically fluctuates around one and doesn’t seem to depend on the
waiting time (Fig. 5.8, right panel). For a given tw, the slow relaxation time
is then obtained as the value τs satisfying the condition: g(1)(τs, tw) = 0.5.
Results are checked to be consistent with other fitting procedures. The ob-
tained curves of τs vs tw for various γ̇1 in the range 6÷ 134 s−1 are reported
in Fig. 5.11. A plateau is evident at short tw, while a power law behavior is
found at longer tw: τs ∼ tcw. No significant difference is observed in the aging
evolution as the applied shear rate varies in the range here investigated. In
particular, the slow relaxation time soon after flow stop can be quantified
by the plateau value, which doesn’t show any dependence on γ̇1. The two
regimes of aging investigated are compared by adding, in Fig. 5.9, the plot of
the slow relaxation time evolution in this second regime: aging is so fast that
the curve seems to diverge instantaneously with the time resolution fixed by
the first regime.
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Figure 5.10: Fast slowing down of the scattered intensity fluctuations with the

waiting time for a rejuvenated gelled Laponite sample. Top: the evolution of

the counts revealed by the photomultiplier in 10−2 s soon after shear cessation

is plotted, tw = 0 corresponds to the shear stop. Bottom: log-linear plot of the

counts evolution; a logarithmic binning of tw has been performed and the counts

have been averaged in each bin.

5.3.1 Discussion

Once the shear is applied before gelation of the sample, a reduced relaxation
timescale is observed soon after shear stop. This starting value is predictable
by the phenomenological model proposed in 5.2. Indeed, the slow relaxation
timescale of the system at a given shear rate γ̇ and waiting time t0w can be
determined through the model once we have measured the intermediate scat-
tering function at t0w during the standard aging. In particular, by integrating
the slow part of the intermediate scattering function, for a given t0w we obtain
(from equation 5.7)

〈τsγ̇〉 =

∫ ∞

0

exp[−(t/τs0)
β0 − Aγ̇t] dt (5.9)

where τs0 and β0 are intended for the standard aging evolution. At tw = 13.6
h, just before the shear rate is applied to the sample, we have τs0 ∼ 1.5 10−2
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Figure 5.11: Aging after rejuvenation of a gelled Laponite sample. The evolution

with tw of the slow relaxation time τs is plotted for various applied shear rates γ̇1:

(⋄) 6 s−1, (¤) 28 s−1, (△) 66 s−1, (◦) 134 s−1. The curves doesn’t show significant

variations for the different γ̇1. Bold line is a fit to a t−1.2
w power law.

and β0 ∼ 0.15. From a numerical calculation, the right part of equation
5.9 can be plotted as a function of γ̇ (Fig. 5.12). The average relaxation
time measured after the application of a shear rate γ̇ = 100 s−1 is in good
agreement with the value predicted by the model. The following evolution of
the relaxation times (both fast and slow) is observed to trace the same aging
curves exhibited during the standard aging, showing that aging is reversible
in this regime and true rejuvenation is achieved through shear flow.

After shear rejuvenation of a sample in the arrested phase the system
dynamics is no longer reversible: the aging process that has induced the
arrested phase can’t be reached again through shear rejuvenation, and a
completely different regime is reached. The intensity correlation function
characterizing the dynamics in this new regime exhibits a simple exponential
decay, differently to what happens in the other regime. The approximate
scaling of the slow relaxation time as the inverse shear rate, suggested by
the phenomenological model and by the schemes usually applied to glassy
systems, is no longer valid. On the contrary, in the range of shear rates here
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Figure 5.12: Behavior of the average slow relaxation time at tw = 13.6 h as a

function of the applied shear rate, as expected from the proposed phenomenological

model. The time 〈τs〉 measured after the application of a shear rate γ̇ = 100 is

also plotted, showing to be compatible with the expected value. Grey line is a fit

to a γ̇−1 power law.

investigated (spanning more than one decade), the slow relaxation time after
flow stop doesn’t seem to depend on the applied shear rate. Therefore, at the
lower shear rates, the flow exhibits a surprisingly strong rejuvenating effect,
with the slow relaxation timescale getting shorter than the inverse shear
rate after flow stop. Then, the system quickly ages back to the arrested
state. After a plateau region (evident in a logarithmic plot), a power-law
dependence of the slow relaxation time with waiting time is observed for
long tw, with exponent c ∼ 1.2. Such a behavior (with two different regimes
for short and long tw) has already been observed after rejuvenation of other
colloidal glasses [6]. In other clay suspensions similar to Laponite, a power
law behavior of τs vs tw, with exponent close to one, has been observed
after shear rejuvenation of aged samples [7, 97]. However, we couldn’t find
for these systems any information in the literature about normal aging, or
aging after rejuvenation of young samples. It would be interesting to find
out whether a different, slower aging process is observed in these regimes,
as it happens in Laponite suspensions, and if the described phenomenology
can be generalized to charged discoidal colloids. Finally, the same power
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law behavior has also been observed during the standard aging of Laponite
suspensions at very long waiting times [96].

The phenomenology described above for the second regime of aging is not
well understood. If the arrested phase at the concentration here investigated
corresponds to a glassy phase, the observed behavior of the slow relaxation
time as a function of the shear rate would be totally unexpected. Actually, a
debate on the arrested phase of Laponite suspensions is still open [89, 90, 94]
and it is not clear yet whether a gel phase or glassy phase occur in the
system. The unexpected scaling of τs(tw → 0) with γ̇ and the following
rapid aging evolution may thus be interpreted through the formation of a
gel, characterized by the existence of a fractal network [89]. In this context,
Ref. [115, 116] suggest that the decorrelation of the scattered light wouldn’t
be due to the dynamics of single scatterers, but to a drift mechanism of
aggregates of particles due to micro-collapses of the structure.

131



C H A P T E R 6

Shear localization in a glassy

suspension

Over same range of shear rates, a shear localization phenomenon may be
observed in soft glassy materials: the flow separates into bands parallel to
the flow direction, with a sheared region coexisting with a completely steady
region (zero shear rate). As explained in 1.3.3, this behavior is due to the
presence of a yield stress, which induces a multivalued flow curve, and may
be accompanied by a stick-slip behavior, as observed in a few experiments
already described. From a theoretical point of view, these behaviors are pre-
dicted by the phenomenological Maxwell model (2.3.3) and by the numerical
model for glassy systems presented in 2.3.4, where a different dynamics is ob-
served in the two bands: in the unsheared band the system is arrested, while
in the sheared region a liquid-like behavior is exhibited. At the experimental
level, due to the difficulty in investigating the system dynamics under shear,
this difference in the dynamics hasn’t been evidenced yet.

In our experiments, we apply a low global shear rate Γ̇ (in the range
0.5÷5 s−1) on a Laponite suspension and we observe the occurrence of shear
localization through the heterodyne correlation scheme. To begin with, the
evolution of the flow velocity profile have been monitored under a constant
applied shear rate (6.1).Periodic oscillations of the velocity profile are ob-
served in very old samples: this stick-slip phenomenology is described in 6.2.
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Some preliminary results in monitoring the dynamics in the two bands are
also presented (6.3).

6.1 Velocity profile evolution

For glassy colloids, as soon as the system ages under shear, we expect the
flow curve to evolve with tw, as exemplified by the rheological measurements
on Laponite suspension reported in Fig. 6.1. As suggested by equation 5.4,
the curves are well fitted through the form σ = η0γ̇/(1 + (τηγ̇)α). The fit pa-
rameters are plotted in 6.2. We also expect that aging proceeds unperturbed
in the unsheared region and thus the yield stress increases with tw [17]. As
a consequence, the regime of shear localization will extend to higher applied
shear rates Γ̇ (see Fig. 2.5). At the same time, a slower aging takes place
in the sheared band and will induce an evolution of the fluid velocity profile
with tw in the range of Γ̇ where shear localization occurs. At a fixed tw, the
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Figure 6.1: Qualitative behavior of the flow curves for a Laponite suspension. The

sample here has a higher concentration than the one used in the other experiments

and aging is faster. The curves are equally spaced in time in the range of waiting

times 400 ÷ 530 s after sample filtration [117]. The curves are fitted through the

form σ = η0γ̇/(1 + (τηγ̇)α). The presence of a yield stress is expected, with an

increasing behavior with tw [118]. Its qualitative behavior is marked to show that

the flow curve is expected to be multivalued.
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Figure 6.2: Fit parameters of the curves plotted in Fig. 6.1 as a function of the
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problem of determining the flow behavior reduces to the determination of
the following variables: the shear stress σ, which is constant across the gap
in a plane Couette flow (as in the plate-plate or cone-plate geometry used
in our experiments) and the local shear rate in the liquid band γ̇loc. In our
experiments, we can access γ̇loc through the direct measurement of velocity
profile. We made an attempt to access the stress σ by measuring the tension
dissipated by the motor that induces the cone rotation. However, we didn’t
manage to obtain a high enough resolution and neither a qualitative behavior
of the stress could be accessed.

The three variables determining the flow behavior are related through the
following equations:

d/h = Γ̇/γ̇loc (6.1)

σ = ηγ̇ 6=0γ̇loc (6.2)

where ηγ̇ 6=0 is the fluid phase viscosity. Knowing the flow curve Σ = Σ(Γ̇)
(for the global variables), there will still be one equation missing to solve
the system and predict the flow behavior. This problem has been faced from
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a theoretical point of view in Ref. [119]. The authors first try to provide
a constraint by the equality of some thermodynamic variable for the two
phases, generalized for the out of equilibrium condition of the fluid band.
However, they found that there exists no physically reasonable definition
for such a variable and conclude that the coexistence of two phases cannot
be accounted for by invoking thermodynamic arguments. On the contrary,
the underlying principle governing this non-equilibrium coexistence is found
in the balance between the growth of the unsheared phase and the surface
erosion by the shearing liquid.

The qualitative evolution expected for the flow velocity profiles is observed
when we monitor a Laponite suspension aging under a low applied shear
rate (Γ̇ = 0.65 s−1). In both the plate-plate or cone-plate geometry, the flow
velocity profile evolves as reported in Fig. 6.3. A solid band thus nucleates on
the stationary wall (due to the interaction with the cell wall, the solid band
is expected to form at the boundary), but the local shear rate is observed to
vary continuously across the gap and there is not a sharp distinction among
the solid and the fluid bands.
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Figure 6.3: Evolution of the velocity profile in a cone-plate geometry (with non

metal walls). A global shear rate γ̇ = 0.65 s−1 is applied since sample filtration

and the profiles are collected at the following tw: 24 h (¤), 46 h (•) and 70 h

(△). As the cone velocity fluctuates during the experiment, the three profiles are

normalized at z/y = 0 to be better compared.
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6.1.1 The wall effect

On a practical ground, the shear localization phenomenon may also be en-
hanced, or completely induced by the inhomogeneity of the sample due to
its interactions with the walls [51] of the measuring device. This problem,
though apparently very specific, is often encountered in the experiments and
has also inspired a theoretical work by Ajdari [120].

Some of our experiments in the cone-plate geometry were performed with
a metal cone in the shearing cell (a thin insulating layer covers instead the
metal cone in all the experiments reported in the other sections). In order
to investigate the effect of the metal wall on the shear localization phe-
nomenon, we have monitored the evolution of the velocity profiles (through
the heterodyne correlation scheme) for various protocols of the applied shear
rate. When a low shear rate (γ̇ = 0.56 s−1) is applied to the sample soon
after filtration, shear localization is already observed after a few minutes
have passed. The unsheared band then enlarges until wall slip at the static
plate appears and another unsheared band forms on the static plate (Fig.
6.4). Contrarily to the evolution of the velocity profile observed when the
interaction between the wall and the sample is negligible (Fig. 6.3), here the
band forms next to the cone and enlarges very rapidly due to the interac-
tion between the metal wall and the sample. Another protocol we have used
consists in monitoring the evolution of the velocity profile while varying the
applied shear rate. Once a shear banding profile similar to the one reported
in Fig. 6.3 for tw = 162 min is reached (at an applied shear rate γ̇ = 0.90
s−1), we increase the applied shear rate and obtain the profiles reported in
Fig. 6.5. As it is evident from the inset, the width of the unsheared band
doesn’t vary with the applied shear rate.

These results suggest that a heterogeneity is induced in the system along
the gap by the metal wall of the cell, with the dynamics slowing down as the
cone is approached (as confirmed by a scan of the intermediate scattering
function along the gap). At contact with the aqueous suspension, the metal
wall may indeed release ions in solution, inducing a high ionic strength in
the vicinity of the cone and thus accelerating the aging dynamics [93]. As
a consequence, the evolution of the flow curve (as sketched in Fig. 6.1) will
proceed more rapidly near the cone than near the static plate and, in partic-
ular, the growth of the yield stress with tw will be very fast in the vicinity
of the cone. Therefore, at long tw, the flow curve will present a multival-
ued region extending to very high shear stresses (see Fig. 2.5). Among the
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Figure 6.4: Evolution of the velocity profile in a cone-plate geometry with metal

walls. A global shear rate γ̇ = 0.56 s−1 is applied since sample filtration.
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Figure 6.5: Velocity profiles at various global applied shear rates in a cone-plate

geometry with metal walls: γ̇ = 0.9 s−1 (N), γ̇ = 1.4 s−1 (⋄), γ̇ = 1.9 s−1 (◦). In

the inset, the profiles are normalized at z/y = 0.

variables describing the flow behavior of the system, we can experimentally
access the local shear rate γ̇loc and the width d of the liquid band. On the
contrary, we can’t access the stress value σ in our experiments. However, we
can qualitatively interpret the observed evolution of the velocity profiles by
looking at the evolution of the flow curves sketched in Fig. 6.1. The evolu-
tion of the velocity profiles at a constant global shear rate (Fig. 6.4) reflects
the aging dynamics of the system: as the viscosity of the system increases
with tw, the stress also increases but keeps smaller than the yield stress. The
observed widening of the unsheared band with tw may be interpreted within
this scenario. At a fixed tw, if we knew the particular behavior of the flow
curve, the stress of the system would be obtained from the intersection of
the measured γ̇loc of the fluid band with the flow curve. From the qualitative
evolution of the flow curve and from the observed increase of γ̇loc with tw, we
can infer that the points in the Σ-Γ̇ plot describing the state of the system
in the fluid band evolves as sketched in Fig. 6.6. The independence of the
band width on the applied shear rate (Fig. 6.5) may instead be due to the
shape of the flow curve: as it is visible in Fig. 6.1, at long enough shear
rates, a large increase of the shear rate induces only a slight increase of the
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stress. The independence of the shape of the velocity profile on the applied
shear rate may be due to the fact that the measurements take place in such
regime of the flow curve.
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Figure 6.6: Schematic representation of the state of the system in the fluid band

(open circles) as the waiting time evolves in the geometry with metal walls.

6.2 Oscillations of the shear banding profile

One of the few experiments where shear localization and stick-slip behavior
are observed in a glassy system was performed on Laponite suspensions in a
cone-plate geometry, with a visualization technique [19]. In such experiment,
the applied shear rate is very small (Γ̇ ∼ 10−4) and the stick-slip behavior
is observed at the interface of two solid bands in the bulk of the cell, with a
time period that is much smaller than the rotation period of the cone. We
want to investigate deeper this phenomenology in a higher range of shear
rates and with the advantage of using heterodyne dynamic light scattering,
which allows much more accurate measurements of the fluid velocity profile
with respect to the rough visualization technique used in [19].

When a shear rate in the range 0.5 ÷ 5 s−1 is applied to old Laponite
samples in a cone-plate or plate-plate geometry, a stick-slip behavior is often
observed. The results that we are going to present not only confirm the
prediction of some phenomenological and numerical models on glassy systems
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(presented in 2.3.3 and 2.3.4), but also show a more complex behavior of the
oscillations in the flow velocity profiles. As this part of the work is purely
phenomenological, we will simply describe the observed behavior by reporting
the plots of the oscillating flow velocity with some brief comments.
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Figure 6.7: The velocity profile oscillates between the two extreme profiles plotted

in the figure with a time period T ≃ 23 s. In the inset, the oscillations of the

particle velocity when the scattering volume is at z/H = 0.4 (top) and z/H = 0.7

(bottom) are plotted. These periodic oscillations of the particle velocity are only

observed far from the cone (y/h > 0.2). The small and fast oscillations visible in

the bottom curve of the inset have the same period of the cone rotation Trot ≃ 4

s. They are due to a slight misalignment of the rotational axis (with respect to

the orthogonal to the window plate), which induces a small oscillation of the gap

width (∼ 8%).

In a plate-plate geometry (where the gap width is h = 8 mm), periodic
oscillations of the velocity profile was observed when a shear rate Γ̇ = 4.5 s−1

was applied to a old Laponite sample. The oscillation period is larger than
the cone rotation period and remains constant on the timescale of the hours.
By looking at the particle velocity oscillations in different positions along the
gap, it is evident that the velocity profile oscillates among a configuration
where the shear is localized on the rotating plate side and a configuration
with a linear profile (Fig. 6.7). Most of the time, the system lies in an
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intermediate profile between the two. When the linear profile is reached, the
system will have a liquid-like behavior: it sticks on the wall and has a low
yield stress (the flow curve won’t be multivalued at the applied shear rate Γ̇).
On the contrary, in the instants when shear localization occurs, we expect
that an arrested phase characterizes the solid band, which will have a high
yield stress and slips on the wall.
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Figure 6.8: The velocity profile oscillates between the two extreme profiles plotted

in the figure. Most of the time, it coincides with the upper profile, as it is visible

in the inset, which shows the oscillations of the particle velocity at z/H = 0.4

(central curve) and z/H = 1 (bottom curve). The period of the oscillation slightly

varies among the two curves as the data are acquired at a time distance of 3 h. The

top curve of the inset represents the evolution of the cone velocity. The periodic

oscillations of the particle velocity are only observed far from the cone (y/h > 0.2).

In a cone-plate geometry, periodic oscillations of the velocity profile was
observed when a shear rate γ̇ = 0.8 s−1 was applied to a old Laponite sample.
In this regime, the cone rotation velocity is found to fluctuate very much (∼
15%). Now the flow doesn’t oscillate between a linear and a shear localization
profile (Fig. 6.8). However, in this configuration, we investigated the particle
velocity oscillations at fast timescales and a very interesting phenomenology
is observed. By reducing the acquisition time to 4 10−2, we monitor the
evolution of the cone velocity and particles velocity in the vicinity of the
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Figure 6.9: Very fast fluctuations of the cone velocity (top curve) and of the

particle velocity at z/h = 0.2 (bottom curve). The minimum value reached by

these fluctuations corresponds to the plateau value of the minimum velocity profile

plotted in Fig. 6.8.

cone (Fig. 6.9). The latter fluctuates much more than the cone velocity and
is observed to reach the plateau value of the minimum velocity profile plotted
in Fig. 6.8, as if a unique solid band forms across the whole gap and rapidly
fractures. Another interesting observation shows up when an intermediate
acquisition time is chosen (∼ 2 10−1): far from the cone, periodic oscillations
of the particle velocity shows up (Fig. 6.10). These oscillations have about
the same amplitude of the ones observed in Fig. 6.8, but now the period
is more than one order of magnitude smaller (is now smaller than the cone
rotation period) and strongly fluctuates.

6.3 Measuring the dynamics

We will now present some preliminary results on the detection of the dynam-
ics underlying the two phases observed in the shear localization regime. The
dynamics is monitored soon after shear cessation through the ensemble av-
erage procedure described in 4.1.3. As observed in the experiment described
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Figure 6.10: Fast oscillations of the particle velocity at z/h = 0.6 (•) and z/h = 1

(◦). Again, these oscillations are only observed far from the cone (y/h > 0.2), but

their period fluctuates enormously with time.

in 5.3, the aging evolution soon after shear cessation is slightly dependent on
the applied shear rate for old Laponite samples. However, we expect that the
rejuvenating effect of the flow disappears in the unsheared band, where the
shear rate is zero. If we thus measure the aging dynamics after flow cessa-
tion in the two bands, we expect a different evolution of the slow relaxation
time. As even a low shear rate may instantaneously rejuvenate the system
in the solid phase, great accuracy have to be spent to keep the shear rate
continuously null in the arrested phase. During the measuring protocol, it
is thus necessary to set the applied shear rate to zero through a decreasing
ramp. This allows to avoid that transient shear rates rise during flow stop
due to inertia of the flowing sample while the rotor is stopped.

In a cone-plate geometry, we first follow the evolution of the slow relax-
ation time after shear cessation when the whole system rotates as a solid
body (such condition is easily obtained when a shear rate is applied to a
gelled sample). Compared to the results obtained in 5.3 when the system
flows at a finite local shear rate, the slow relaxation is about two orders of
magnitude larger 6.11. Though an unexpected rejuvenating effect of the flow
emerges, this result shows that a much slower dynamics characterizes the sys-
tem. Now, we would like to obtain the same result in the shear localization
regime. Once the velocity profile reported in Fig. 6.11 (right panel, squares)
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Figure 6.11: Evolution of the slow relaxation time τ soon after shear cessation,

measured through the procedure described in 4.1.3 for various local shear rates

and velocity profiles. The velocity profile and the position of the scattering volume

during the various measurements are represented in the right plot. For comparison,

we added the evolution of τ (△) for a much higher shear rate (γ̇ = 134 s−1), for

which the velocity profile was linear.

is reached, we monitor the dynamics in the solid phase (y/h = 0.95) and in
the fluid phase (y/h = 0.40). Actually, no significant difference is observed
in the aging evolution after shear cessation. This may be due to the fact that
the unsheared band is too thin and some component of the velocity field vec-
tor may induce a finite shear rate in this region. Repeating the measurement
in a different configuration, characterized by a larger unsheared band, may
be a possible solution.
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C H A P T E R 7

Relaxation of aggregates in a

shear thickening system

In concentrated colloidal suspensions, the shear thickening regime is believed
to be induced by the formation of aggregates of particles, as we evidenced
in 2.5. However, investigation of the particle microstructure during the flow
displays many difficulties at the experimental level and the scenario depicted
by the experimental works proposed in the literature (see 1.3.2) is still not
exhaustive. In particular, investigation on the dynamics of these shear in-
duced aggregates is still lacking. Through speckle visibility spectroscopy, we
monitored the dynamics of a concentrated suspension of silica particles in the
jamming regime (see 4.2) and we follow the relaxation of the shear induced
aggregates after shear cessation as a function of the applied shear stress.

7.1 SVS measurements on the jamming silica

sample

While the suspension is continuously illuminated by the laser beam, we apply
a high shear stress (in the jamming regime) to the silica suspension and, after
a given time, stop the stress application. We observe that the dynamics of the
particles during the jamming regime may even be slower than the dynamics
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at rest. In Fig. 7.1, we report the evolution of the contrast when a shear stress
σ = 255 Pa is applied for 30 s. As soon as the stress is applied, the contrast
value drops; after a while, the suspension jams and huge contrast fluctuations
occur. Soon after shear cessation, we observe an overshoot of the contrast,
which then slowly decreases to a constant value, that is not necessarily the
same value it had before the shear. During the flow, the signal fluctuations
lead to contrast values higher than the value at rest before or after the stress
application. At these instants, the particle drift velocity must be very slow,
due the huge fluctuations of the shear rate. Thus, the timescale dominating
the dynamics is not due to the drag motion and another dynamical timescale
can be revealed. The peaks observed in the contrast during the flow show
that the dynamics characterized by this sometimes emerging timescale is
slower than the dynamics of the system at rest. The particles thus organized
themselves under flow in such a way that their motion is slower than their
free motion at rest.

Figure 7.1: Contrast behavior before, during and after the application of a stress

σ = 255 Pa during 30 s. The stress history is plotted in dashed line. During

the stress application, strong contrast fluctuations are observed. After the shear

cessation, the contrast exhibits an overshoot and then relaxes to a constant value.

When the same measurement is repeated under the same conditions, the
relaxation curve of the contrast after shear cessation exhibits scarce repro-
ducibility (Fig. 7.2): its amplitude, its noise, the final value and the charac-
teristic relaxation time vary with the measure; while sometimes the overshoot
cannot be observed either, as one of the three curves in the figure shows. In

146



particular, the contrast plateau value after the relaxation varies at each mea-
surement. As the ensemble of measurements presented in Fig. 7.2 are taken
with the same sample under the same conditions, it can be considered as a
sampling in which a different region of the system after shear cessation is
observed during each measurement. The presence of spatial heterogeneities
in the system (consisting in slower and faster regions), due to the very high
concentration of the suspension, may be responsible for this lack of repro-
ducibility. Indeed, if the length-scale of this heterogeneity is of the order of
the illuminated volume size, the non reproducibility of the contrast value at
rest may be easily explained: after contrast relaxation, the illuminated region
in the various experiments would be characterized by a different local con-
centration and thus a different dynamical timescale, which induces distinct
contrast values.

Figure 7.2: Contrast relaxation, soon after the application of a stress σ = 180

Pa during 30 s, for three different measurements performed under the same con-

ditions. The measurements are highly non-reproducible. The overshoot of the

contrast is not always observed, as exemplified by the bottom curve. The two

other curves exhibit an overshoot, but its amplitude, its characteristic decorrela-

tion time, the value of the baseline and the noise of the contrast signal vary with

the measurement.

Due to the decorrelation effect of the particle drag velocity on the scat-
tered intensity, quantitative results cannot be achieved during the flow. The
scarce reproducibility of the contrast relaxation after flow stop and the high
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noise of the signal (Fig. 7.2) also prevents us from making systematic mea-
surements after flow stop with an easy quantitative analysis of the results.
However, the qualitative evolution of the contrast after shear cessation can
be studied as a function of the applied stress. For three different stresses in
the jamming regime σ ∈ {100, 180, 255}, a set of 8 measurements (as the
one shown in Fig. 7.1) has been performed under the same conditions. The
curves which were not showing an overshoot have been dropped. We used
the following criterium : we selected only the curves whose noise was smaller
than the half-amplitude of the contrast decrease. The noise is measured
as the standard deviation of the contrast when it reaches the final plateau
value. For the larger stress value, σ = 255 Pa, none of the 8 curves had to
be dropped, for σ = 180 Pa, 2 of the set were dropped and 4 for σ = 100 Pa.
In order to compare the relaxation times after the application of different
stresses, we averaged the set of the remaining contrast data for each stress
value. As the contrast relaxation has an exponential behavior, we applied
a logarithmic binning procedure to each averaged curve, in order to reduce
noise at long time: firstly, the points of the curve have been averaged in
groups of ten, then they are further averaged in order to obtain a curve with
25 points logarithmically spaced on the x-axis. The resulting curves for the
contrast relaxation, at the stress value investigated, are plotted in Fig. 7.3.
To be better compared, the curves have been normalized between 0 and 1.
In order to quantify the relaxation time of these averaged curves, we have
chosen a stretched exponential function C(t) = exp(−t/τ)β, which gives a
good fit. The value of the τ parameter varies between 4 s for the smaller
stress and 29 s for the larger stress. As the value of the β parameter does
not remain constant, but varies between 0.5 and 0.7, the average relaxation
time 〈τ〉 (defined in equation 5.3) is calculated. The values of 〈τ〉 are plotted
as a function of the stress in the inset of Fig. 7.3. For the shear stress here
investigated, a higher applied stress thus induces a slower relaxation of the
contrast after shear cessation.

7.2 Discussion

We will now attempt an interpretation of the presented results in the light
of the reversible cluster formation phenomena (see 2.5), which is believed
to be responsible for the shear thickening behavior observed through the
mechanical measurements.
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Figure 7.3: Normalized and averaged contrast relaxation curves after the ap-

plication of a constant stress σ. Three values of the applied stress are studied:

σ = 100 Pa (¥), σ = 180 Pa (N) and σ = 255 Pa (¨). Each curve is fitted with

a stretched exponential form. Inset : average relaxation time 〈τ〉 as a function of

the applied stress.

A confirmation of cluster formation during the shear is given by the ob-
servation of the peaks in the contrast overcoming the contrast value at rest
(Fig. 7.1). We interpret these peaks as the presence of groups of particles,
passing through the illuminated region, that move slower than in the system
at rest. The contrast relaxation after the shear stop proves the reversibility
of these forming clusters. As reported in 2.5.2, Ball and Melrose observed
in their numerical model that, as the stress increases, percolating clusters of
ever decreasing spacing form. As suggested by this result, we may suppose
that the slower dynamics revealed during the shear is due to a reduced spac-
ing among the clusters of particles. After the shear stop, the pair distribution
function of the particles at rest is restored and the dynamics gets faster, so
the contrast relaxes to a smaller value.

The non reproducibility of the relaxing contrast curve for repeated ac-
quisitions (Fig. 7.2) may give us some qualitative information about the
cluster size. We want to stress here that, while the relaxation of the contrast
after flow stop evidences the formation of shear induced aggregates, the non
reproducibility of the contrast value after this relaxation shows that some
spatial heterogeneities still remain when the system is at rest, as previously
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discussed. The amplitude of the relaxing contrast should dependent on the
relative size of the aggregates in the volume of the illuminated region. In
some numerical simulations [71], the presence of clusters spanning the all
system is said to characterize the jamming regime. The varying amplitude
of the relaxing contrast for different acquisitions suggests that the cluster
size is comparable to the illuminated region. Unfortunately, a study of the
cluster size distribution is not possible, due to the fact that the illuminated
region, representing a fraction of the entire cell gap, may contain less than
one cluster. Moreover, as sometimes the contrast doesn’t show any over-
shoot after flow cessation, there must be some regions, at least as big as the
illuminated volume, without any of the macroscopic clusters responsible for
the jamming. This gives us an idea of the average distance among the clus-
ters, which should be of the order of the illuminated region maximum linear
size (≃ 6 mm). Finally, the variation of the characteristic relaxing time of
the contrast for different measurements at the same applied stress suggests a
varying spacing between the particles of the aggregates that happened to rest
in the illuminated volume. From the work of Ball and Melrose indeed, not
only clusters of different size, but also clusters with different spacing among
the particles are expected to coexist in the system.

From the study of the contrast relaxation at different stresses, we found
that for a bigger applied stress, on average, the relaxation time of the ag-
gregates is longer. As also suggested by the work of Ball and Melrose, a
bigger stress may thus induce a closer packing between the particles in the
cluster, so that it takes longer to restore the normal spacing between them.
Finally, the smaller is the stress, the more frequently the contrast overshoot
doesn’t shows up. This suggests that the density of macroscopic clusters in
the system increases with the applied stress. In fact, not only a decrease
of the inter-colloidal distance inside aggregates, but also an increase of the
aggregate size may be responsible for the observed behavior as the applied
stress is increased. Further experiments and direct observation of the colloids
organization under shear should allow to choose among these interpretations.
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Conclusions

Light scattering techniques have thus allowed us to investigate, from a dy-
namical point of view, the microscopic behavior characterizing the complex
rheology of colloidal systems. For three different phenomenologies, the col-
loidal particle dynamics have been monitored: shear thinning and shear
localization in a glassy suspension and shear thickening in a concentrated
suspension of charged particles.

In the shear thinning experiment, shear influenced dynamics have been
investigated in an aging Laponite suspension, which represents a model sys-
tem for glassy colloids. Through dynamic light scattering, we directly probe
the particle density correlation function, which is the relevant variable used
in the theoretical models for glassy systems. The rejuvenating effect of a
steady shear flow on the aging dynamics has been monitored through differ-
ent protocols. While the system ages under shear, the presence of the flow is
observed to strongly affect dynamics as soon as structural relaxation enters
the timescale γ̇−1. In this shear dominated region, the shear rate dependence
of the average slow relaxation time 〈τs〉 is well approximated by the power
law γ̇−α with α ∼ 1, which is the typical shear thinning behavior predicted
by the theoretical models and observed macroscopically in the viscosity. The
effect of shear on the detailed shape of the intermediate scattering function
can be well described assuming that the slow relaxation process arises from
the heterogeneous superposition of many relaxing units, each one indepen-
dently coupled to shear rate with a parallel composition rule for timescales:
1/τ → 1/τ + Aγ̇. We than investigated the effect of the flow on the aging
dynamics following shear application. If the experiment is performed before
the dynamical arrest of the system, full rejuvenation is observed and the
phenomenological model previously proposed is consistent with the observed
behavior. Once the system has reached the dynamical arrest, a shear flow
drives it to a completely different regime, with the system which rapidly ages
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back to the arrested phase soon after flow stop.
The shear localization phenomenon have been investigated, through dy-

namic light scattering, on the same system when low shear rates are applied.
An oscillating behavior of the velocity profile has been observed during the
shear localization regime, as predicted by some theoretical models. Shear lo-
calization induced by the inhomogeneity of the system due to the interaction
with metal walls of the cell is also investigated. For a steady profile exhibiting
shear localization, the detection of the dynamics in the two bands, during the
same experiment, have presented various difficulties and only preliminary re-
sults have been reached. We managed to observe an arrested dynamics only
when the entire fluid rotates as a solid body and further experiments are
needed to detect this behavior in the shear localization regime.

Finally, we investigated through speckle visibility spectroscopy the flow-
induced structures forming in a concentrated silica suspension in the jamming
regime. The presence of particles moving slower than at rest is evidenced
during the flow and the relaxation of the particle dynamics is monitored
after flow cessation for various shear stresses. The relaxation time of the
shear induced heterogeneities is observed to increase when a higher stress
is applied. The results are coherent with the behavior expected in some
numerical models, but direct observation of the colloids under shear should
allow to better understand the particle organization induced by the flow.

All the quantitative results have been obtained from measurements per-
formed after shear cessation, due to the experimental difficulties in the in-
vestigation of the slow dynamics under flow. An effort to overcome these
problems may open new perspectives in the investigation of the particle dy-
namic in the complex rheology of colloidal suspensions. Finally, we want to
remark that the whole work have focused on the dynamical aspect of the
problem. The particle structure induced by the flow is poorly investigated
at the experimental level and may contribute to a more exhaustive compre-
hension of the microscopic behavior of these systems.
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Summary

The aim of this experimental work is to characterize, through light scattering
techniques, the dynamics of some colloidal systems exhibiting a complex rhe-
ological behaviour. The thesis is developed around two topics: rejuvenation
and shear banding in a glassy colloidal system, and the jamming phenomenon
in a concentrated suspension of charged particles. In a Laponite suspension
-a model system for glassy colloidal systems- the competition between shear
rejuvenation and aging have been investigated during the flow, while two
regimes of aging have been evidenced after flow cessation. Shear localization
have been observed at low shear rates by monitoring the velocity profiles and
a stick-slip behaviour has been evidenced by the oscillations of the banded
velocity profile. In a concentrated suspension of silica particles in the jam-
ming regime, we have investigated the dynamics of flow-induced structures.
The presence of particles moving slower than at rest has been evidenced dur-
ing the flow and the relaxation of the particle dynamics has been studied
after flow cessation as a function of the applied shear stress.

Resumé

Ce travail expérimental cherche à mieux caractériser, au moyen des tech-
niques de diffusion de la lumière, la dynamique de certains systèmes collöıdaux
qui montrent un comportement rhéologique complexe. Il s’articule autour
de deux points: le rajeunissement et la formation des bandes de cisaille-
ment dans un système collöıdal vitreux, et le phenomène du jamming dans
une suspension concentrée de particules chargées. Dans une suspension de
Laponite -système modèle pour les collöıdes vitreux- la compétition entre le
rajeunissement dû au cisaillement et le vieillissement a été étudié pendant
l’écoulement, alors qu’aprés l’arret de l’écoulement deux régimes de vieillisse-
ment ont été observés. La localisation du cisaillement a été mis en evidence
à des taux faibles de cisaillement global, en mesurant les profils de vitesse du
fluide, mesure qui en outre, par ses oscillations, a révélé un comportement de
stick-slip. D’autre part dans une suspension concentrée de particules de silice
dans le régime de jamming, nous nous sommes interessés à la dynamique des
structures induites par l’écoulement et avons mis en évidence la présence de
particules plus lentes pendant le cisaillement, puis avons étudiés la relaxation
de la dynamique des particules après l’arret de l’écoulement en fonction des
contraintes appliquées.
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