

Couches minces nanostructurées de carbone amorphe dopées ou alliées : Elaboration par ablation laser femtoseconde et Caractérisations

Nadia Sbaï - Benchikh

 (1) Laboratoire Traitement du Signal et Instrumentation, St-Etienne. Dir. Thèse: <u>C.Donnet</u>

 (2) Ecole Nationale Supérieure des Mines de Saint-Etienne, Co-dir. Thèse: <u>K.Wolski</u>

Laboratoire de Physique de la matière condensée (LPMC) à Amiens,

ENS Paris, LISE Paris

LTDS- FCI

Traitement de Surface

(SPCTS) de Limoges,

2

Revue sur les DLC (1)

Qu'est que les DLC :

Les DLC « Diamond-Like Carbon » sont une famille de **matériaux carbonés amorphe** à fort taux d'hybridation en carbone **sp**³ et aux propriétés proches de celles **diamant**.

→ Graphite	Diamant 🔶
Opaque à la lumière visible	Transparent à la Iumière visible
100 % sp²	100% sp ³
Anisotrope	Isotrope
Dureté faible	Dureté élevée
Conducteur électrique (5.10 ⁻³ Ω.cm)	Isolant électrique (10 ¹⁴ - 10 ¹⁶ Ω.cm)
Conduit moyennement la chaleur	Excellent conducteur de chaleur

Revue sur les DLC (2)

Revue sur les DLC (3) : dopage / alliage des DLC

Introduction d'hétéro-atomes dans les DLC

Si F N B P S ... Concentrations atomiques <1% à 50%

 Elargissement du spectre de propriétés des a-C:X
 Réduction des contraintes résiduelles
 Moindre dépendance du frottement / usure vis-à-vis de l'humidité
 Diminution de la dureté des couches
 Propriétés physiques spécifiques à l'atome introduit

Revue sur les DLC (4) : dopage / alliage des DLC

> Dopage des DLC :

- ⇒ Limiter certaines caractéristiques critiques des DLC
- ⇒ Par des métaux : contrôle de la conductivité électrique

Orlianges 04

Les techniques de dépôts

Deux grandes familles de techniques :

Par voie chimique, CVD

> DLC : PECVD

« Plasma Enhanced Chemical Vapor Deposition »

→ Dissociation de précurseurs gazeux

 \rightarrow a-C:H ou ta-C:H

Par voie physique, PVD

«Physical Vapor Deposition»

- \rightarrow pas de précurseurs gazeux
- \rightarrow ta-C non hydrogéné
- → contrôle précis des compositions

L'ablation laser : PLD« Pulsed Laser Deposition »

L'Ablation Laser (PLD)

Developement des dépôts de DLC par Ablation Laser (PLD)

- \rightarrow Uitilisation large de la PLD nanoseconde à Tambiant. Voevodin > 90
- \rightarrow Précédentes études Wei 98, Zhu 01, Trusso 02, Suda 02, Orlianges 04 \ldots
- \rightarrow Contrôle précis des concentrations des films a-C:X

> Pourquoi la PLD femtoseconde ?

	PLD Nanoseconde	PLD Femtoseconde
Densité de Puissance	10 ⁸ - 10 ¹¹ W⋅cm ⁻²	> 10 ¹³ W⋅cm ⁻²
Densité d'escarbilles	élevée	faible
Energie cinétique des espèces	qq 10² eV	qq 10 ³ eV Adhérence améliorée
Morphologie des dépôts : Cas de ZnO Perrière et al., 2002	Croissance colonnaire	Nanocristaux de ZnO

Contrôle du procédé de dépôt par imagerie du plasma

Images obtenues à l'aide d'une caméra Intensifiée (I.C.C.D.) à un délai de 900 ns après l'impulsion laser sur la cible

Graphite

Nickel

Expansion des plasmas de métaux (Ni, Ta) très différente de celle du plasma de carbone

Clusters Me observés dans le panache plasma par spectroscopie optique d'émission

PLD femtoseconde des métaux

Ablation laser femtoseconde de cibles métalliques

Formation de nanoclusters métalliques

Plan Général

Programme CNRS « Matériaux 2002 »

> Dépôt de DLC dopés ou alliés par des métaux : Ni et Ta

Dépôt de couches minces a-C:Ni et a-C:Ta pour des teneurs :

1% at. < % at. < 15 % at.

Choix des méthodes de caractérisations analytiques et structurales :

- > Couches minces $\approx 1 \mu m$
- Structure amorphe ou nanostructurée
- Chimie du C (sp³, sp², sp¹)
- Métastable : sensibilité aux « rayonnements »

	XPS	FTIR	RBS NRA	ERDA	TEM EELS	XANES	Raman Vis	Raman UV	NMR
Analyse élémentaire (no H)	•		•		•	•			
Analyse H	8			٠	2				٠
Liaisons chimiques	٠	٠			٠	•	٠	•	٠
Hybridation C	٠	٠			٠	•	٠	•	٠
Ordre local nanostructure	2					•	٠	•	

« Formation permanente CNRS, Goutelas - 2004 »

Plan Général

PROCEDURE EXPERIMENTALE

PROCEDURE EXPERIMENTALE

> Ablation alternée C / Me et séquencée

Eléments	Vitesse d'ablation	Composition dépôt	Séquences
Carbone	22 nm/min	≈ 1µm	d'ablation
Tantale	37 nm/min	C 85% at.	Ablation C: 240 séquences de 9 s
Nickel	35 nm/min	Ni 15% at.	Ablation Ni : 240 séquences de 1 s

Dépôt de a-C:Ni et a-C:Ta pour des teneurs : 1% at. < % at. < 15 % at.

Choix des techniques d'analyses

- > RBS : Spectroscopie de rétrodiffusion Rutherford
- ⇒ Analyse élémentaire quantitative du dopage et vérification du protocole d'étalonnage
- ➢ MEB/ FEG : Microscopie Electronique à Balayage par Canon à Effet de Champ ⇒ Morphologie des couches
- > HRTEM : Microscopie Electronique à Transmission Haute Résolution
- \Rightarrow Analyse de la structure à l'échelle atomique.
- > EFTEM : **MET F**iltrée en **E**nergie
- \Rightarrow Imagerie élementaire des couches
- > GXRD : Diffraction des Rayons X sous incidence rasante
- \Rightarrow Etude de la structure cristalline
- > XPS : Spectroscopie de Photoélectrons X
- ⇒ Analyse chimique d'extrême surface
- > Spectroscopie Infrarouge et Spectroscopie Raman :
- ⇒ Liaisons et ordre/désordre

Techniques mises en oeuvre dans le cadre du GDR 2449

Plan Général

Spectroscopie de Rétrodiffusion Rutherford (RBS)²³

Principe :

- Dosage des dopants en fonction de la profondeur
- ➔ Accès indirect à la masse volumique

	Epaisseur en nm	Epaisseur (10 ¹⁵ at./cm ²)	% at. dopant RBS
C:Ni 2% at.	760	9 350	1 à 2%
C:Ni 15% at.	890	11 000	15%
C:Ta 2% at.	1040	11 400	1%
C:Ta 15% at.	1250	13 500	10%

⇒ Validation de la méthode de dopage des couches minces de carbone

Spectroscopie de Rétrodiffusion Rutherford (RBS)²⁴

 $\Rightarrow \rho_{\text{graphite}} (2,3 \text{ g·cm}^{-3}) < \rho_{\text{DLC}} = 3,1 \text{ g.cm}^{-3} < \rho_{\text{diamant}} (3,5 \text{ g·cm}^{-3})$

 \Rightarrow Jusqu'à 2% at. Me : « Graphitisation » du carbone ou porosité augmente \Rightarrow > 5% at. Me : « Graphitisation » cesse ou porosité diminue

Microscopie Electronique à Balayage

- Evidence de la nanostructure des films DLC dopés : nodules ~ 10– 200 nm
- > Augmentation en [Me] \Rightarrow distribution en taille plus large : Coalescence
- ➤ Taille moyenne des clusters Ni ≈ 68 nm (C:Ni 15% at.)

Taille moyenne des clusters Ta \approx 80 nm (C:Ta 15% at.)

Microscopie à force atomique (AFM)

Augmentation de la rugosité du DLC (RMS = 2 nm) par dopage Me

- ➢ RMS_{C:Ni 15% at.} = 32 nm
- ➢ RMS_{C:Ta 15% at.} = 50 nm

TEM filtrée en énergie : Imagerie élémentaire²⁷

Couche C:Ni 15% at.

Dépôt a-C:Ni nanostructurés constitués de nodules d'une centaine de nanomètre répartis dans une matrice de carbone.

EFTEM

Couche C:Ta 15% at.

- Film a-C:Ta nanostructurés constitués de nodules (≤ 100 nm) répartis dans une matrice de carbone.
- Pas de carbone dans les nodules.
- Fine couche de carbone avec oxygène de contamination entoure quelques nodules.

Diffraction des rayons X sous incidence rasante²⁹

TEM haute résolution

- Nickel sous forme métallique
- Deux contributions sp² et sp³ du carbone (sp²,sp³ ?)

X-ray Photoelectron Spectroscopy

• Phase de carbure de tantale en interface Ta et C.

• Hybridations mixtes sp² et sp³ mais controversés

IR Couches minces C:Ni

⇒ Matrice de C s'ordonne/désordonne avec la teneur en Me

Spectroscopie Raman

- Jusqu'à 2% at., augmentation ordre des amas graphitiques et du taux Csp²
- Au-delà, désorganisations du réseau C

Plan Général

Comportement tribologique

- Lubrifiant solide
- > Usure importante de l'antagoniste

Comportement tribologique et mécaniques

> Mesure de microdureté :

 \Rightarrow Usure abrasive

Pure DLC	ta-C:Me (15%)	acier
H~25 GPa	H~1-4 GPa	H~2-4 GPa

• Dureté comparable entre C:Me et Acier

> Alternance de « glissés-collés » : Usure adhésive

Propriétés électriques

Plan Général

Conclusions et Perspectives (1/3)

Elaboration de couches DLC nanostructurées

- ☆ Formation des clusters métalliques en mode femto
- ☆ Effets du bombardement des clusters sur la matrice carbonée
- ☆ Couches : composite carbone / métal nanostructuré
- Propriétés et comportement fonctionnels :

⇒ Lubrifiant solide, résistance à l'usure, dureté comparable à celle de l'acier

⇒Contrôle de la conductivité électrique

Conclusions et Perspectives (2/3)

Perspectives :

- ☆ Approfondir les mécanismes élémentaires de croissance par PLD femto *Diagnostic plasma, Simulation*
- I Elargir l'usage de la PLD femto sur d'autres systèmes nanostructurés
 Démarche "bottom up" : de la couche à l'application (notre travail)
 Démarche "top down" : de l'application à l'optimisation de la couche ?

Collaboration GDR 2449

GDR " Couches minces de carbone amorphe et/ou nanostruturées CNRS "Matériaux 2002

R LTDS : : M. Belin, J. Fontaine, M.I. De Barros, B. Vacher,

J.M. Martin

- R LPMC : Y. Gagou, A. Zeinert, M. Benlahsen, K. Zellama
- Rens: J.N. Rouzaud
- R ESPCI : J.Y. Laval
- R LISE : A. Pailleret, C. Deslouis

ZnO : Perrière et al., 2002

TABLE I. Structural properties of ZnO films grown by femtosecond and É nanosecond laser ablation.

14.44	Rocking curve FWHM	RBS χ_{min}	FWHM ϕ scan	Stresses	Crystallite size
fs films	1.3-2°	60%-80%	1.39°	-330 MPa	10-15 nm
ns films	0.3°	2%	0.65°	-550 MPa	50 nm
	Nan	ocristaux ZnO	< de		

Relations structures - propriétés

Robertson, 2002 (Review)

Relations structures - propriétés

Miscibilité Fe-Ni élevée

