Étude de la compétition déchirure ductile / rupture fragile : Application à la tenue mécanique des tubes en acier C-Mn et de leurs joints soudés

Vincent Le Corre

22 Septembre 2006 – CEA-Saclay

Laboratoire de Mécanique de Lille – École Centrale de Lille

Laboratoire d'Intégrité des Structures et de Normalisation – CEA Saclay

Problématique générale : l'Intégrité des Structures

Démontrer l'Intégrité d'une Structure

 \Leftrightarrow

Prouver sa capacité à remplir ses fonctions mécaniques :

- pour tous les modes de chargement,
- tout au long de sa durée de fonctionnement

Dans le contexte de la sûreté nucléaire :

- rupture d'un composant proscrite
- fonction de confinement primordiale

Prise en compte de la présence de fissures :

- soit dès la démonstration de sûreté
- soit après une détection de défauts

Problématique générale : le circuit secondaire

Évaluation de l'intégrité du circuit secondaire des réacteurs à eau pressurisée

 Tubes minces, en acier ferritique Carbone-Manganèse

✓ Pas d'irradiation

 ✓ Présence de joints soudés circonférentiels, non arasés et nondétensionnés

Schéma d'un réacteur REP

Problématique générale : le circuit secondaire

Évaluation de l'intégrité du circuit secondaire des réacteurs à eau pressurisée

 Tubes minces, en acier ferritique Carbone-Manganèse

✓ Pas d'irradiation

 ✓ Présence de joints soudés circonférentiels, non arasés et nondétensionnés

Schéma d'un réacteur REP

Problématique générale : le circuit secondaire

- ✓ Température minimale de fonctionnement
- ✓ Chargements de flexion
 - En fonctionnement : vibrations et dilatations d'ensemble => fissures de fatigue
 - Conditions accidentelles (séismes, etc) : Hautes énergies

✓ Variation de l'énergie de rupture du matériau : Domaine de transition Fragile/Ductile

 \Rightarrow Fragilisation par vieillissement du matériau (ZAT)

✓ Variation de l'énergie de rupture du matériau : Domaine de transition Fragile/Ductile

- ⇒ Fragilisation par vieillissement du matériau (ZAT)
- \Rightarrow Décalage en température dépendant de la géométrie de la structure

(effet du confinement de la plasticité)

Difficultés actuelles

- La compréhension de la compétition rupture fragile / déchirure ductile dans la partie supérieure du domaine de transition
 - Très forte dispersion expérimentale
 - Mode de rupture mixte ductile et fragile

- ✓ La transférabilité des critères de rupture de l'éprouvette à la structure
 - Nécessité de connaître les paramètres intrinsèques au matériau
 - Difficulté d'application des modèles sur les structures complexes

✓ La caractérisation des joints soudés (Comportement et Rupture)

- Microstructure et géométrie complexes
 - \Rightarrow Prélèvement difficiles
 - \Rightarrow Éprouvettes de faible épaisseur non-normalisées
 - ⇒ Nombre d'essais nécessairement réduit
- Présence de contraintes résiduelles
- Influence du vieillissement statique

Objectifs

Proposer une approche permettant de déterminer la température de disparition du clivage sur une structure soudée

- ✓ Préciser la dépendance à la géométrie du domaine de transition dans le cas d'une structure
- ✓ Établir une condition nécessaire à l'apparition de la rupture fragile par clivage
- ✓ Définir une méthode de caractérisation du comportement à rupture des joints soudés de la structure

Démarche adoptée / Plan de l'exposé

- I Développement d'un critère de rupture fragile en contrainte seuil
 - Définition d'une contrainte seuil
 - Analyse des essais sur éprouvettes fissurées
 - Expression simplifiée de la probabilité de rupture
- II Transférabilité du critère en contrainte seuil
 - Influence de la géométrie sur la zone de transition
 - Identification des paramètres du critère
- III Développement d'un essai de rupture sur composant
 - Préparation / Déroulement / Interprétation
 - Validation de la condition de contrainte seuil
- IV Méthode de caractérisation des Joints Soudés
 - Mise en place de méthodes expérimentales et numériques

I – Développement d'un critère de rupture fragile en contrainte seuil

I – Développement d'un critère en contrainte seuil

Objectif : Obtenir un critère autorisant une probabilité de rupture nulle

- \Rightarrow Nécessité d'utiliser une contrainte seuil
- Assurer l'applicabilité aux structures et aux joints soudés
 - \Rightarrow Identification à partir d'essais non-normalisés et peu nombreux

<u>Démarche</u> : S'appuyer sur les développements de l'approche locale (Beremin) Simplifier l'expression de la probabilité de rupture

<u>Outil</u> : la base de donnée du projet européen piloté par l'ESIS « *Euro Fracture Toughness* Dataset » sur l'acier ferritique 22NiMoCr37 [Heerens - 02] :

Nb d'essais par T° et Géométrie		Température							
		-150°C	-110°C	-90°C	-60°C	-40°C	-20°C	0°C	20°C
Géométrie	Traction	4		5	4	5	5	4	4
	AE1.6	32							
	CT12.5	31	55	31	62	32	31	32	
	CT25	34		34	34	32	50	41	10
	СТ50	30		30	30	30	30	30	30
	CT100			15			15	15	15

Grille d'essais de la base ESIS

I.1 – Définition d'une contrainte seuil

✓ Rupture de 32 éprouvettes AE par clivage à −150°C.

✓ Calcul de la contrainte principale maximale à rupture par une modélisation Éléments Finis.

Thèse Vincent Le Corre

I.1 – Définition d'une contrainte seuil

- ✓ Calcul de la probabilité expérimentale :
 - i = rang de σ_{11_i}

$$P_{Ri} = (i - 0.5) / N$$

 ✓ Ajustement d'une distribution de Weibull avec un seuil

$$P_{R} = 1 - \exp\left[\frac{\sigma_{11} - \sigma_{th}}{\sigma_{u} AE}\right]^{m_{AE}}$$

avec
$$\sigma_{th}$$
 = 1520 MPa σ_{u_AE} = 170 MPa

$$m_{AE} = 2.2$$

 σ_{th} est proche de la plus basse contrainte à rupture : MIN ($\sigma_{11\ MAX}$)= 1550 MPa

Soit V un volume composé de N volumes élémentaires V₀. ENTRAL LILLE Hypothèse sur p_{ri} : Constante sur $V_{th} = V (\sigma_{11} > \sigma_{th}) \dots \left\{ \begin{array}{l} p_{ri} = p_0 \quad si \quad \sigma_{11} > \sigma_{th} \\ p_{ri} = 0 \quad sin \, on \end{array} \right.$ La probabilité de rupture du volume V est réduite à celle du $1 - P_R = (1 - p_0)^{V_{th}/V_0}$ volume V_{th} $P_{R}' = -Ln(1-P_{R}) = \frac{1}{V_{0}}Ln\left(\frac{1}{1-p_{0}}\right)V_{th}$ $P_R' = F.V_{th}$ Relation linéaire entre le logarithme de la probabilité de rupture et le volume seuil V_{th}

I.2 – Hypothèse sur p_{ri}

✓ Modélisation par Éléments Finis nécessaire au calcul de V_{th}

Modèle élasto-plastique isotrope

	-90°C	-60°C	-40°C	-20°C	0°C	20°C
CT12.5	31	62	32	31	32	
CT25	34	34	32	50	41	10
СТ50	30	30	30	30	30	30
CT100	15			15	15	15

La déchirure est simulée par des relâchements de nœuds contrôlés par la courbe expérimentale J-∆a. Taille de maille en pointe de fissure : 250µm 36000 Nœuds / 8000 Éléments (quadratiques)

en cours de déchirure ductile sur une éprouvette CT50 à 20°C

- Évaluation de V_{th} : à la rupture pour les éprouvettes ductiles / fragiles à la fin de l'essai pour les éprouvettes ductiles
- Classement des éprouvettes à V_{th} croissant pour chaque série (Géométrie ; Température)
- Probabilité de rupture expérimentale de chaque éprouvette :

avec

$$Pr_i = \frac{i - 0.5}{N_i}$$

i = rang de l'éprouvette

 $N_i = N$ - nombre d'éprouvettes ductiles avec un V_{th} final inférieur au V_{th} de l'éprouvette de rang i.

✓ Confirmation de la relation linéaire entre P_R' et V_{th}

 $P_r'(V_{th})$ pour les éprouvettes CT12.5 de -60°C à -20°C

✓ F évolue fortement avec la temperature.

- ✓ F semble indépendant de la taille des CT.
 - \Rightarrow A 0°C, les 4 géométries peuvent être réunies dans une même série.

✓ V_{th} est un paramètre pertinent vis-à-vis de la probabilité de rupture.

 $P_r'(V_{th})$ pour toutes les éprouvettes à 0°C

Thèse Vincent Le Corre

I.3 – Expression de la fonction de sensibilité F

D'après l'hypothèse sur p_0 :

$$F = -\frac{1}{V_0} \cdot Ln(1-p_0)$$

Selon les essais sur éprouvettes AE :

$$-Ln(1-P_R) = \left(\frac{\sigma_{11} - \sigma_{th}}{\sigma_{u_AE}}\right)^{m_{AE}}$$

Par analogie, l'expression suivante est proposée :

$$F(\sigma_{Y}) = \frac{1}{V_{0}} \cdot \left(\frac{\sigma_{Y} - \sigma_{Y0}}{\sigma_{u} CT}\right)^{m_{CT}}$$

avec :

 $\sigma_{Y0} = 468 \text{ MPa} = \sigma_{Y}(T=20^{\circ}\text{C})$ $\sigma_{u_CT}.V_{0}^{1/m} = 156 \text{ MPa.mm}^{3/m}$ $m_{CT}=2.3$

I.3 – Expression du volume seuil V_{th}

Données numériques

 \checkmark V_{th} est proportionnel à Δa

I.3 – Expression du volume seuil V_{th}

Données	numériques

- ✓ V_{th} est proportionnel à ∆a
- \checkmark V_{th} est proportionnel à B²

I.3 – Expression du volume seuil V_{th}

<u>Données numériques</u>	
\checkmark V _{th} est proportionnel à Δa	A

✓ V_{th} est proportionnel à B²

 V_{th} évolue linéairement avec la limite d'élasticité σ_Y

Thèse Vincent Le Corre

I – Énoncé du critère

La probabilité de rupture fragile d'une éprouvette fissurée sollicitée dans la partie supérieure du domaine de transition fragile/ductile est donnée par :

II – Transférabilité du critère en contrainte seuil,Identification sur le matériau TU42 C

Tube en acier C-Mn « TU42 C » de diamètre ext. 219.1 mm, Épaisseur 16 mm

1	>-	
6		
X		
	F	Ŕ

Élément	С	Si	Mn	Р	S	Cu	Sn	Fe
% massique	0.19	0.19	0.77	0.013	0.006	0.02	0.003	Balance

✓ Les contraintes principales maximales à rupture sont évaluées via une modélisation par EF.

✓ Une distribution de Weibull à 3 paramètres des contraintes à rupture est difficile à identifier.

La contrainte seuil est obtenue à partir des plus basses contraintes à rupture.

 $\Rightarrow \sigma_{th}$ = 1300 MPa \Rightarrow m = 3.0

II.3 – Domaine de Transition sur éprouvettes CT et SENB

Thèse Vincent Le Corre

II.3 – Domaine de Transition sur éprouvettes CT et SENB

Faciès de rupture observés au MEB

- ✓ Aucune particule détectée aux alentours du site d'amorçage du clivage
- ✓ Mécanisme d'amorçage vraisemblablement induit par la déformation plastique

II.4 – Identification des paramètres du critère

$$-Ln(1-P_R) = F \cdot V_{th} \qquad F = \frac{1}{V_0} \cdot \left(\frac{\sigma_Y - \sigma_{Y0}}{\sigma_u cT}\right)^m$$

✓ Calcul des V_{th} par EF

✓ Hypothèse : σ_{vo} traduit l'influence de la géométrie dans F

 σ_{y_0} est la limite d'élasticité à la température de disparition du clivage (F=0)

✓ Classement des éprouvettes par ordre de « F.V_{th} » croissant

✓ Probabilité de rupture F expérimentale itérative

$$Pr_i = \frac{i - 0.5}{N_i}$$

✓ Le paramètre σ_u .V₀^{1/m} est identifié : $\sigma_{\rm H}V_0^{1/m} = 58,7 \text{ MPa mm}^{3/m}$

II- Transférabilité du critère en contrainte seuil

 $\checkmark \sigma_{Y0}$ quantifie l'influence du confinement.

Difficulté d'identification :

- > expérimentalement : température de disparition du clivage
- > numériquement

$$\alpha = \frac{\sigma_{11}MAX}{\sigma_{Y}} \quad ; \quad \sigma_{Y0} = \frac{\sigma_{th}}{\alpha}$$

 \checkmark Forte sensibilité de F à $\sigma_{\rm Y0}\,$: difficulté supplémentaire / cohérent avec les essais \ldots

✓ V_{th} : paramètre de chargement

✓ Identification de σ_{th} à partir d'essais à très basse température sur éprouvettes AE

- Extrapolation de la distribution expérimentale à une probabilité nulle
- $\checkmark \sigma_{\text{th}}$ dépassée sans apparition du clivage
 - $\sigma_{11 \text{ MAX}} > \sigma_{th}$ Condition nécessaire / non-suffisante
 - Influence de la plasticité et/ou de la triaxialité sur σ_{th}

II- Transférabilité du critère en contrainte seuil

 $\checkmark \sigma_{Y0}$ quantifie l'influence du confinement.

Difficulté d'identification :

- > expérimentalement : température de disparition du clivage
- ➤ numériquement

CENTRALE

 \checkmark Forte sensibilité de F à $\sigma_{_{YO}}\,$: difficulté supplémentaire / cohérent avec les essais \ldots

✓ V_{th} : paramètre de chargement

 \checkmark Identification de σ_{th} à partir d'essais à très basse température sur éprouvettes AE

- Extrapolation de la distribution expérimentale à une probabilité nulle
- $\checkmark \sigma_{th}$ dépassée sans apparition du clivage
 - $\sigma_{11 \text{ MAX}} > \sigma_{th}$ Condition nécessaire / non-suffisante
 - Influence de la plasticité et/ou de la triaxialité sur σ_{th}

III – Développement d'un Essai de Rupture

sur Composant

III.1 – Dimensionnement de l'essai sur composant

Géométrie et chargement :

✓ Tube mince ;

 ✓ contenant une fissure semi-elliptique, circonférentielle, peu profonde, débouchant en peau externe ;

 ✓ sous chargement de flexion pure, obtenu entre les appuis d'un montage de flexion 4-points.

✓ Épaisseur du tube et taille du défaut choisies de manière à :

- respecter les capacités du banc de flexion
- amorcer la déchirure ductile avant la ruine par plasticité généralisée du tube
- ne pas dépasser σ_{th} avant l'amorçage ductile

r_m = 100 mm

t = 11 mm

III.2 – Instrumentation et Refroidissement

Thèse Vincent Le Corre

III.3 – Déroulement de l'essai

✓ Température : -50°C autour de la fissure

III.4 – Dépouillement de l'essai : Faciès de rupture

10 mm

✓ Déchirure ductile beaucoup plus importante que sur les éprouvettes à cette température [1 mm de déchirure ductile avant rupture fragile sur SENB (a/W = 0.1) à −50°C]

III.5 – Évolution des contraintes

 σ_{th}

Fissure initiale

III – Développement d'un Essai de Rupture sur Composant

Essai démonstratif :

 ✓ Décalage du domaine de transition fragile/ductile par rapport aux éprouvettes de laboratoire :

À –50°C :

1 mm de déchirure sur une éprouvette SENB (a/W=0.1)

6.5 mm de déchirure sur le tube

 ✓ Absence du risque de rupture fragile à −50°C avant l'amorçage ductile

Essai de validation du critère :

- La condition de contrainte seuil permet d'estimer de manière simple une température de disparition du clivage
- Le décalage de la transition est dû au faible confinement de plasticité rencontré dans le cas des structures minces
- ✓ La modification importante de V_{th} est à l'origine de la rupture fragile après percement

IV – Méthode de caractérisation

des Joints Soudés

IV – Méthode de caractérisation des Joints Soudés

<u>Objectif</u> : Caractériser le joint soudé de la structure. Il s'agit d'un joint circonférentiel en V, en 10 passes :

- ✓ Géométrie complexe,
- ✓ Présence de contraintes résiduelles,
- ✓ Influence du vieillissement statique,
- ✓ Hétérogénéité microstructurale, ...

Caractérisations réalisées sur la ZAT :
✓ Identifications des microstructures
✓ Cartographie de micro-dureté
✓ Comportement en traction simple
✓ Résistance à la déchirure ductile

 ✓ Rupture dans la partie supérieure du domaine de transition Fragile/Ductile

IV.1 – Méthode de prélèvement par blocs successifs

Prélèvement d'éprouvettes CT et SENB avec entaille dans la ZAT uniquement

Thèse Vincent Le Corre

IV.2 – Étude expérimentale de la Transition Fragile/Ductile

✓ Évaluation de la température d'apparition du clivage sur éprouvettes CT et SENB(a/W=0.1)

 \checkmark Observations MEB des sites d'amorçage du clivage

 \Rightarrow Très forte dispersion dans les comportements à rupture

⇒ Détection d'inclusions sphériques micrométriques au site d'amorçage du clivage pour les 2 éprouvettes ayant montré le moins de déchirure.

IV.3 – Modélisation numérique des essais sur CT

IV – Méthode de caractérisation des Joints Soudés

✓ Démonstration de la faisabilité des essais de caractérisation d'un joint soudé de structure

- Prélèvement d'éprouvette mince non-normalisées
- Caractérisation du comportement mécanique moyen
- Caractérisation du comportement à rupture de la zone la plus faible

✓ Mise en évidence d'un mécanisme de rupture différent de celui du métal de base

✓ Démonstration de la faisabilité de la modélisation numérique des ces essais

- Maillage simplifié
- Calcul de J

Thèse Vincent Le Corre

Conclusions & Perspectives

Conclusions Générales

Développement d'un critère de rupture fragile dans la transition Fragile/Ductile

- $\Rightarrow \sigma_{\text{th}}$ > $\sigma_{\text{11 MAX}}$: condition nécessaire au clivage
 - ✓ Définition « statistique » de σ_{th} à partir d'essais sur éprouvettes AE

 \Rightarrow Pr = 1 - exp (-F. V_{th})

- ✓ V_{th} est le paramètre de chargement, il inclut :
 - L'influence de l'avancée de fissure ductile.
 - L'effet d'échelle

✓ F inclut :

- Les propriétés « matériau » : m, σ_u _{CT}, V₀
- L'effet du confinement : σ_{Y0}

✓ L'effet de la température est présent dans V_{th} et dans F via σ_{Y} .

 $\Rightarrow \sigma_{\text{th}}$ dépassée sans apparition du clivage

- $\checkmark \sigma_{11 \text{ MAX}} > \sigma_{\text{th}}$ Condition nécessaire / non-suffisante
- ✓ Influence de la plasticité et/ou de la triaxialité sur σ_{th}

Conclusions Générales

Essai de rupture sur Composant :

- \Rightarrow Essai démonstratif :
 - ✓ Mise en évidence du décalage du domaine de transition fragile/ductile par rapport aux éprouvettes de laboratoire
- \Rightarrow Essai de validation du critère :

- Le décalage de la transition est dû au faible confinement de plasticité rencontré dans le cas des structures minces
- \checkmark La modification importante de V_{th} est à l'origine de la rupture fragile après percement

Méthode de caractérisation des joints soudés :

- ⇒ Démonstration de la faisabilité des essais de caractérisation d'un joint soudé de structure
- \Rightarrow Démonstration de la faisabilité de la modélisation numérique des ces essais

Perspectives immédiates

Influence de la plasticité et/ou de la triaxialité sur σ_{th} :

 \Rightarrow Essais sur éprouvettes AE sur un matériau pré-écroui

Dépendance de la fonction F à la géométrie et/ou à la triaxialité :

- ⇒ Étude des essais de la base ESIS sur d'autres géométries (SENB, Éprouvette en croix)
- \Rightarrow Essais sur éprouvettes SENT sur l'acier TU42 C

Interprétation numérique de l'essai sur le tube :

- ⇒ Mieux reproduire le comportement global de l'essai en complétant le modèle
- ⇒ Préciser l'évolution du volume seuil en cours de déchirure et au percement

Second essai sur tube sans soudure :

⇒ Confirmer les premiers résultats avec une meilleure maîtrise des conditions expérimentales.

Étude des joints soudés :

- \Rightarrow Identifier les paramètres du modèle, la contrainte seuil en premier lieu
- \Rightarrow Réaliser un essai de rupture sur un tube soudé
- \Rightarrow Évaluer l'influence du joint soudé sur la tenue mécanique de la structure.

Thèse Vincent Le Corre

Perspectives à long terme

- ✓ Multiplier les applications du modèle sur d'autres matériaux
 - \Rightarrow Acier de cuve
- ✓ Étendre le modèle à l'ensemble de la zone transition
- ✓ Établir une méthode simplifiée d'application

 \Rightarrow Formules analytiques de calcul de V_{th}

✓ Essais sur tube (avec ou sans soudure) sous chargement biaxial

 \Rightarrow Flexion + Pression

✓ Quantifier l'influence des contraintes résiduelles

 \Rightarrow Mesures par diffraction neutronique

Étude de la compétition déchirure ductile / rupture fragile : Application à la tenue mécanique des tubes en acier C-Mn et de leurs joints soudés

Vincent Le Corre

22 Septembre 2006 – CEA-Saclay

Laboratoire de Mécanique de Lille – École Centrale de Lille

Laboratoire d'Intégrité des Structures et de Normalisation – CEA Saclay

Hypothèse sur p_{ri}


```
{\rm p_0} est la moyenne des {\rm p_{ri}} sur {\rm V_{th}} .....
```


 $\rho = \frac{r \cdot \sigma_{Y}}{J}$ $p_{0} = \frac{1}{r_{th}} \cdot \frac{J}{\sigma_{Y}} \cdot \int_{0}^{\rho_{th}} p_{ri}(\sigma_{Y} \cdot f(\rho)) \cdot d\rho$

 $p_0 = \frac{1}{V_{th}} \int_{V_{tl}} p_{ri}(\sigma) dV$

 $p_0 = \frac{1}{r_{th}} \int_{0}^{r_{th}} p_{ri}(\sigma_{11}).dr$

 p_{ri}, p_{0} $p_{0} = \frac{1}{V_{th}} \int_{V_{th}} p_{ri}(\sigma_{11}) dV$

Thèse Vincent Le Corre

Annexes – Dimensionnement de l'essai sur composant

Toutes les conditions sont remplies pour :

Annexes – Dimensionnement de l'essai sur composant

Toutes les conditions sont remplies pour :

Annexes – Préparation de la maquette d'essai

Thèse Vincent Le Corre

Algorithme d'application de la procédure G_{fr} pour une fissure bidimensionnelle

Annexes – Prédiction de la déchirure ductile

Annexes : Calcul de V_{th} , Maillage

