Étude de la compétition déchirure ductile / rupture fragile : Application à la tenue mécanique des tubes en acier C-Mn et de leurs joints soudés

Vincent Le Corre

22 Septembre 2006 - CEA-Saclay

Laboratoire de Mécanique de Lille – École Centrale de Lille Laboratoire d'Intégrité des Structures et de Normalisation – CEA Saclay

Problématique générale : l'Intégrité des Structures

Démontrer l'Intégrité d'une Structure

Prouver sa capacité à remplir ses fonctions mécaniques :

- pour tous les modes de chargement,
- tout au long de sa durée de fonctionnement

Dans le contexte de la sûreté nucléaire :

- rupture d'un composant proscrite
- fonction de confinement primordiale

Prise en compte de la présence de fissures :

- soit dès la démonstration de sûreté
- soit après une détection de défauts

Problématique générale : le circuit secondaire

Évaluation de l'intégrité du circuit secondaire des réacteurs à eau pressurisée

- ✓ Tubes minces, en acier ferritique
 Carbone-Manganèse
- ✓ Pas d'irradiation
- ✓ Présence de joints soudés circonférentiels, non arasés et nondétensionnés

Schéma d'un réacteur REP

3

Problématique générale : le circuit secondaire

Evaluation de l'intégrité du circuit secondaire des réacteurs à eau pressurisée

- ✓ Tubes minces, en acier ferritique Carbone-Manganèse
- ✓ Pas d'irradiation
- ✓ Présence de joints soudés circonférentiels, non arasés et nondétensionnés

Problématique générale : le circuit secondaire

- √ Température minimale de fonctionnement
- ✓ Chargements de flexion
 - En fonctionnement : vibrations et dilatations d'ensemble => fissures de fatigue
 - Conditions accidentelles (séismes, etc) : Hautes énergies

Thèse Vincent Le Corre 22 Septembre 2006

✓ Variation de l'énergie de rupture du matériau : Domaine de transition Fragile/Ductile

Thèse Vincent Le Corre 22 Septembre 2006

✓ Variation de l'énergie de rupture du matériau : Domaine de transition Fragile/Ductile

Thèse Vincent Le Corre 22 Septembre 2006

- ✓ Variation de l'énergie de rupture du matériau : Domaine de transition Fragile/Ductile
 - ⇒ Fragilisation par vieillissement du matériau (ZAT)

Thèse Vincent Le Corre 22 Septembre 2006

- √ Variation de l'énergie de rupture du matériau : Domaine de transition Fragile/Ductile
 - ⇒ Fragilisation par vieillissement du matériau (ZAT)
 - ⇒ Décalage en température dépendant de la géométrie de la structure (effet du confinement de la plasticité)

Difficultés actuelles

- Très forte dispersion expérimentale
- Mode de rupture mixte ductile et fragile

- Nécessité de connaître les paramètres intrinsèques au matériau
- Difficulté d'application des modèles sur les structures complexes

- Microstructure et géométrie complexes
 - ⇒ Prélèvement difficiles
 - ⇒ Éprouvettes de faible épaisseur non-normalisées

10

- ⇒ Nombre d'essais nécessairement réduit
- Présence de contraintes résiduelles
- Influence du vieillissement statique

Proposer une approche permettant de déterminer la température de disparition du clivage sur une structure soudée

- ✓ Préciser la dépendance à la géométrie du domaine de transition dans le cas d'une structure
- ✓ Établir une condition nécessaire à l'apparition de la rupture fragile par clivage
- ✓ Définir une méthode de caractérisation du comportement à rupture des joints soudés de la structure

Thèse Vincent Le Corre 22 Septembre 2006

Démarche adoptée / Plan de l'exposé

- I Développement d'un critère de rupture fragile en contrainte seuil
 - Définition d'une contrainte seuil
 - Analyse des essais sur éprouvettes fissurées
 - Expression simplifiée de la probabilité de rupture
- II Transférabilité du critère en contrainte seuil
 - Influence de la géométrie sur la zone de transition
 - Identification des paramètres du critère
- III Développement d'un essai de rupture sur composant
 - Préparation / Déroulement / Interprétation
 - Validation de la condition de contrainte seuil
- IV Méthode de caractérisation des Joints Soudés
 - Mise en place de méthodes expérimentales et numériques

12

 I – Développement d'un critère de rupture fragile en contrainte seuil

Thèse Vincent Le Corre 22 Septembre 2006

I – Développement d'un critère en contrainte seuil

Objectif : Obtenir un critère autorisant une probabilité de rupture nulle

⇒ Nécessité d'utiliser une contrainte seuil

Assurer l'applicabilité aux structures et aux joints soudés

⇒ Identification à partir d'essais non-normalisés et peu nombreux

<u>Démarche</u> : S'appuyer sur les développements de l'approche locale (Beremin)

Simplifier l'expression de la probabilité de rupture

Outil : la base de donnée du projet européen piloté par l'ESIS « Euro Fracture Toughness Dataset » sur l'acier ferritique 22NiMoCr37 [Heerens - 02] :

Nb d'essais par T° et Géométrie		Température								
		-150°C	-110°C	-90°C	-60°C	-40°C	-20°C	0°C	20°C	
Géométrie	Traction	4		5	4	5	5	4	4	
	AE1.6	32								
	CT12.5	31	55	31	62	32	31	32		
	CT25	34		34	34	32	50	41	10	
	CT50	30		30	30	30	30	30	30	
	CT100			15			15	15	15	

Grille d'essais de la base ESIS

I.1 – Définition d'une contrainte seuil

- ✓ Rupture de 32 éprouvettes AE par clivage à –150°C.
- ✓ Calcul de la contrainte principale maximale à rupture par une modélisation Éléments Finis.

Thèse Vincent Le Corre

22 Septembre 2006

I.1 – Définition d'une contrainte seuil

✓ Calcul de la probabilité expérimentale :

$$i = rang de \sigma_{11_i}$$

 $P_{Ri} = (i - 0.5) / N$

✓ Ajustement d'une distribution de Weibull avec un seuil

$$P_{R} = 1 - exp \left[\frac{\sigma_{11} - \sigma_{th}}{\sigma_{u_{AE}}} \right]^{m_{AE}}$$

avec
$$\sigma_{th}$$
 = 1520 MPa σ_{u_AE} = 170 MPa σ_{AE} = 2.2

 σ_{th} est proche de la plus basse contrainte à rupture : MIN (σ_{11_MAX})= 1550 MPa

I.2 – Définition d'un volume seuil

Soit V un volume composé de N volumes élémentaires V₀.

Hypothèse sur p_{ri} : Constante sur $V_{th} = V (\sigma_{11} > \sigma_{th})$ $\begin{cases} p_{ri} = p_0 & \text{si} \quad \sigma_{11} > \sigma_{th} \\ p_{ri} = 0 & \text{sin on} \end{cases}$ (Hypothèse de la contrainte seuil)

$$\begin{cases} p_{ri} = p_0 & \text{si } \sigma_{11} > \sigma_{th} \\ p_{ri} = 0 & \text{sin on} \end{cases}$$

La probabilité de rupture du volume V est réduite à celle du $1-P_R=(1-p_0)^{V_{th}/V_0}$ volume V volume V_{th}

$$1 - P_R = (1 - p_0)^{V_{th}/V_0}$$

$$P_{R}' = -Ln(1 - P_{R}) = \frac{1}{V_{0}} Ln\left(\frac{1}{1 - p_{0}}\right) V_{th}$$

$$P_R' = F.V_{th}$$

Hypothèse sur p_{ri}

œ

Temporellement

⇒ Avant l'amorçage ductile :

 \Rightarrow Après l'amorçage ductile :

• p₀ indépendant du chargement

✓ Modélisation par Éléments Finis nécessaire au calcul de V_{th}

	-90°C	-60°C	-40°C	-20°C	0°C	20°C
CT12.5	31	62	32	31	32	
CT25	34	34	32	50	41	10
CT50	30	30	30	30	30	30
CT100	15			15	15	15

Modèle élasto-plastique isotrope

Comportements globaux des 4 géométries.

21

Contrainte principale en avant de la pointe de fissure initiale en cours de déchirure ductile sur une éprouvette CT50 à 20°C

Évaluation de V_{th}:

à la rupture pour les éprouvettes ductiles / fragiles

à la fin de l'essai pour les éprouvettes ductiles

■ Classement des éprouvettes à V_{th} croissant pour chaque série (Géométrie ; Température)

■ Probabilité de rupture expérimentale de chaque éprouvette :

$$Pr_i = \frac{i - 0.5}{N_i}$$

avec i = rang de l'éprouvette

 $N_i = N$ - nombre d'éprouvettes ductiles avec un V_{th} final inférieur au V_{th} de l'éprouvette de rang i.

✓ Confirmation de la relation linéaire entre P_R' et V_{th}

P_r'(V_{th}) pour les éprouvettes CT12.5 de -60°C à -20°C

- √ F évolue fortement avec la temperature.
- √ F semble indépendant de la taille des CT.
 - ⇒ A 0°C, les 4 géométries peuvent être réunies dans une même série.
- √ V_{th} est un paramètre pertinent vis-à-vis de la probabilité de rupture.

P_r'(V_{th}) pour toutes les éprouvettes à 0°C

I.3 – Expression de la fonction de sensibilité F

D'après l'hypothèse sur p₀ :

$$F = -\frac{1}{V_0} \cdot Ln(1 - p_0)$$

$$-Ln(1-P_R) = \left(\frac{\sigma_{11} - \sigma_{th}}{\sigma_{u_AE}}\right)^{m_{AE}}$$

Par analogie, l'expression suivante est proposée :

$$F(\sigma_{Y}) = \frac{1}{V_{0}} \cdot \left(\frac{\sigma_{Y} - \sigma_{Y0}}{\sigma_{u} CT}\right)^{m_{CT}}$$

avec:

$$\sigma_{Y0} = 468 \text{ MPa} = \sigma_{Y}(T=20^{\circ}\text{C})$$

$$\sigma_{u CT}.V_0^{1/m} = 156 \text{ MPa.mm}^{3/m}$$

$$m_{CT} = 2.3$$

$$m_{CT} = m_{AE} \sim 2.3$$

I.3 – Expression du volume seuil V_{th}

Données numériques

 \checkmark V_{th} est proportionnel à Δa

25

I.3 – Expression du volume seuil V_{th}

Données numériques

- √ V_{th} est proportionnel à ∆a
- √ V_{th} est proportionnel à B²

26

I.3 – Expression du volume seuil V_{th}

Données numériques

- √ V_{th} est proportionnel à ∆a
- √ V_{th} est proportionnel à B²
- \checkmark V_{th} évolue linéairement avec la limite d'élasticité σ_{γ}

Thèse Vincent Le Corre

22 Septembre 2006

I – Énoncé du critère

La probabilité de rupture fragile d'une éprouvette fissurée sollicitée dans la partie supérieure du domaine de transition fragile/ductile est donnée par :

$$Pr = 1 - exp[-F \cdot V_{th}]$$

avec $V_{th} \propto \sigma_Y . B^2 . \Delta a$

et
$$F = \frac{1}{V_0} \cdot \left(\frac{\sigma_Y - \sigma_{Y0}}{\sigma_{u_CT}} \right)^m$$

V_{th} est le paramètre de chargement, il inclut :

- L'effet d'échelle (B²)
- L'influence de l'avancée de fissure ductile.

Finclut:

- Les propriétés « matériau »
- L'effet de confinement

L'effet de la température est présent à la fois dans V_{th} et dans F (via σ_{Y})

CT25 de -60°C à 0°C

II – Transférabilité du critère en contrainte seuil, Identification sur le matériau TU42 C

Thèse Vincent Le Corre 22 Septembre 2006

II.1 – Présentation du matériau

Tube en acier C-Mn « TU42 C » de diamètre ext. 219.1 mm, Épaisseur 16 mm

Élément	C	Si	Mn	P	S	Cu	Sn	Fe
% massique	0.19	0.19	0.77	0.013	0.006	0.02	0.003	Balance

L : Direction axiale

S: Direction radiale

T: Direction ortho-radiale

30

II.2 – Détermination de la contrainte seuil du TU42 C

√ 15 Essais sont réalisés sur éprouvettes AE2 à −175°C

- ✓ Les contraintes principales maximales à rupture sont évaluées via une modélisation par EF.
- ✓ Une distribution de Weibull à 3 paramètres des contraintes à rupture est difficile à identifier.

 La contrainte seuil est obtenue à partir des plus basses contraintes à rupture.

$$\Rightarrow$$
 σ_{th} = 1300 MPa \Rightarrow m = 3.0

II.3 – Domaine de Transition sur éprouvettes CT et SENB

CENTRALE LILLE

II.3 – Domaine de Transition sur éprouvettes CT et SENB

Faciès de rupture observés au MEB

- √ Aucune particule détectée aux alentours du site d'amorçage du clivage
- √ Mécanisme d'amorçage vraisemblablement induit par la déformation plastique

Thèse Vincent Le Corre 22 Septembre 2006

II.4 – Identification des paramètres du critère

$$\checkmark -Ln(1-P_R) = F \cdot V_{th}$$

$$-Ln(1-P_R) = F \cdot V_{th}$$

$$F = \frac{1}{V_0} \cdot \left(\frac{\sigma_Y - \sigma_{Y0}}{\sigma_{u_CT}}\right)^m$$

✓ Calcul des V_{th} par EF

✓ Hypothèse : σ_{vo} traduit l'influence de la géométrie dans F

 σ_{y_0} est la limite d'élasticité à la température de disparition du clivage (F=0)

- √ Classement des éprouvettes par ordre de « F.V_{th} » croissant
- ✓ Probabilité de rupture $Pr_i = \frac{i - 0.5}{N_i}$ expérimentale itérative
- ✓ Le paramètre σ_u . $V_0^{1/m}$ est identifié : $\sigma_{11}V_0^{1/m} = 58.7 \text{ MPa mm}^{3/m}$

II- Transférabilité du critère en contrainte seuil

CENTRALE

 $\checkmark \sigma_{Y0}$ quantifie l'influence du confinement.

Difficulté d'identification :

- > expérimentalement : température de disparition du clivage
- > numériquement

$$\alpha = \frac{\sigma_{11} MAX}{\sigma_{Y}} \quad ; \quad \sigma_{Y0} = \frac{\sigma_{th}}{\alpha}$$

✓ Forte sensibilité de F à σ_{V0} : difficulté supplémentaire / cohérent avec les essais ...

√ V_{th}: paramètre de chargement

- \checkmark Identification de σ_{th} à partir d'essais à très basse température sur éprouvettes AE
 - Extrapolation de la distribution expérimentale à une probabilité nulle
- \checkmark σ_{th} dépassée sans apparition du clivage
 - $\sigma_{11 \text{ MAX}} > \sigma_{th}$ Condition nécessaire / non-suffisante
 - Influence de la plasticité et/ou de la triaxialité sur $\sigma_{\rm th}$

II- Transférabilité du critère en contrainte seuil

CENTRALE

 $\checkmark \sigma_{v_0}$ quantifie l'influence du confinement.

Difficulté d'identification :

- > expérimentalement : température de disparition du clivage
- > numériquement

$$\alpha = \frac{\sigma_{11_MAX}}{\sigma_{Y}}, \quad \sigma_{Y0} = \frac{\sigma_{th}}{\alpha}$$

 \checkmark Forte sensibilité de F à $\sigma_{\text{Y}0}\,$: difficulté supplémentaire / cohérent avec les essais ...

√ V_{th}: paramètre de chargement

- \checkmark Identification de σ_{th} à partir d'essais à très basse température sur éprouvettes AE
 - Extrapolation de la distribution expérimentale à une probabilité nulle
- \checkmark σ_{th} dépassée sans apparition du clivage
 - $\sigma_{11 \text{ MAX}} > \sigma_{th}$ Condition nécessaire / non-suffisante
 - Influence de la plasticité et/ou de la triaxialité sur $\sigma_{\rm th}$

III – Développement d'un Essai de Rupture sur Composant

Thèse Vincent Le Corre 22 Septembre 2006

III.1 – Dimensionnement de l'essai sur composant

Géométrie et chargement :

✓ contenant une fissure semi-elliptique, circonférentielle, peu profonde, débouchant en peau externe;

✓ sous chargement de flexion pure, obtenu entre les appuis d'un montage de flexion 4-points.

38

- ✓ Épaisseur du tube et taille du défaut choisies de manière à :
 - respecter les capacités du banc de flexion
 - amorcer la déchirure ductile avant la ruine par plasticité généralisée du tube
 - ne pas dépasser σ_{th} avant l'amorçage ductile

CENTRALE LILLE

III.2 – Instrumentation et Refroidissement

Thèse Vincent Le Corre

CENTRALE LILLE

22 Septembre 2006

III.3 – Déroulement de l'essai

√ Température : -50°C autour de la fissure

- √ Séquences de décharges partielles pour la mesure de la complaisance élastique
- √ Rupture fragile après large plastification

40

III.4 – Dépouillement de l'essai : Faciès de rupture

- Fissure de fatigue conforme aux prédictions $(a_0; 2.c_0) = (4.50; 35.25)$
- ✓ Déchirure ductile symétrique, de forme elliptique, sans propagation de surface
- ✓ Striction importante
- ✓ Rupture fragile après percement
- √ Trajectoire symétrique de la fissure fragile

3 – Rupture fragile

2 – Déchirure ductile (avec striction)

41

1 – Fissure de fatigue

10 mm

✓ Déchirure ductile beaucoup plus importante que sur les éprouvettes à cette température [1 mm de déchirure ductile avant rupture fragile sur SENB (a/W = 0.1) à −50°C]

III.5 – Évolution des contraintes

CENTRALE LILLE

Modélisation de l'essai ⇒ V_{th} s'est largement étendu au moment du percement Z▲ Symétrie plane Symétrie plane Matériau isotrope (Plan yOz) O (Plan xOz) 5700 Éléments, 26400 Nœuds Taille de maille en pointe de fissure: 100x100x600 µm3 Éléments rigides

Déplacement relatif imposé sur les points A et B parallèlement à l'axe Ox

III - Développement d'un Essai de Rupture sur Composant

Essai démonstratif:

✓ Décalage du domaine de transition fragile/ductile par rapport aux éprouvettes de laboratoire :

À -50°C:

1 mm de déchirure sur une éprouvette SENB (a/W=0.1)

6.5 mm de déchirure sur le tube

✓ Absence du risque de rupture fragile à –50°C avant l'amorçage ductile

43

Essai de validation du critère :

- ✓ La condition de contrainte seuil permet d'estimer de manière simple une température de disparition du clivage
- ✓ Le décalage de la transition est dû au faible confinement de plasticité rencontré dans le cas des structures minces
- ✓ La modification importante de V_{th} est à l'origine de la rupture fragile après percement

IV – Méthode de caractérisationdes Joints Soudés

Thèse Vincent Le Corre 22 Septembre 2006

IV – Méthode de caractérisation des Joints Soudés

Objectif : Caractériser le joint soudé de la structure.

Il s'agit d'un joint circonférentiel en V, en 10 passes :

- √ Géométrie complexe,
- ✓ Présence de contraintes résiduelles,
- ✓ Influence du vieillissement statique,
- √ Hétérogénéité microstructurale, ...

- ✓ Identifications des microstructures
- ✓ Cartographie de micro-dureté
- ✓ Comportement en traction simple
- ✓ Résistance à la déchirure ductile
- ✓ Rupture dans la partie supérieure du domaine de transition Fragile/Ductile

45

IV.1 – Méthode de prélèvement par blocs successifs

Prélèvement d'éprouvettes de traction plates

46

Prélèvement d'éprouvettes CT et SENB avec entaille dans la ZAT uniquement

IV.2 – Étude expérimentale de la Transition Fragile/Ductile

- ✓ Évaluation de la température d'apparition du clivage sur éprouvettes CT et SENB(a/W=0.1)
- √ Observations MEB des sites d'amorçage du clivage

- ⇒ Très forte dispersion dans les comportements à rupture
- ⇒ Détection d'inclusions sphériques micrométriques au site d'amorçage du clivage pour les 2 éprouvettes ayant montré le moins de déchirure.

47

IV.3 – Modélisation numérique des essais sur CT

IV – Méthode de caractérisation des Joints Soudés

CENTRALE LILLE

- ✓ Démonstration de la faisabilité des essais de caractérisation d'un joint soudé de structure
 - Prélèvement d'éprouvette mince non-normalisées
 - Caractérisation du comportement mécanique moyen
 - Caractérisation du comportement à rupture de la zone la plus faible

- ✓ Démonstration de la faisabilité de la modélisation numérique des ces essais
 - Maillage simplifié
 - Calcul de J

Thèse Vincent Le Corre 22 Septembre 2006

Conclusions & Perspectives

Thèse Vincent Le Corre 22 Septembre 2006

Conclusions Générales

Développement d'un critère de rupture fragile dans la transition Fragile/Ductile

 \checkmark Définition « statistique » de σ_{th} à partir d'essais sur éprouvettes AE

$$\Rightarrow$$
 Pr = 1 - exp (-F. V_{th})

√ V_{th} est le paramètre de chargement, il inclut :

• L'influence de l'avancée de fissure ductile.

L'effet d'échelle

✓ F inclut:

Les propriétés « matériau » : m, σ_{u CT}, V₀

• L'effet du confinement : σ_{y_0}

✓ L'effet de la température est présent dans V_{th} et dans F via σ_{V} .

 $\Rightarrow \sigma_{th}$ dépassée sans apparition du clivage

 $\checkmark \sigma_{11 \text{ MAX}} > \sigma_{th}$ Condition nécessaire / non-suffisante

 \checkmark Influence de la plasticité et/ou de la triaxialité sur σ_{th}

Conclusions Générales

- ⇒ Essai démonstratif :
 - ✓ Mise en évidence du décalage du domaine de transition fragile/ductile par rapport aux éprouvettes de laboratoire
- ⇒ Essai de validation du critère :
 - ✓ La condition de contrainte seuil permet d'estimer de manière simple une température de disparition du clivage
 - ✓ Le décalage de la transition est dû au faible confinement de plasticité rencontré dans le cas des structures minces
 - ✓ La modification importante de V_{th} est à l'origine de la rupture fragile après percement

Méthode de caractérisation des joints soudés :

- ⇒ Démonstration de la faisabilité des essais de caractérisation d'un joint soudé de structure
- ⇒ Démonstration de la faisabilité de la modélisation numérique des ces essais

Thèse Vincent Le Corre 22 Septembre 2006

Perspectives immédiates

⇒ Essais sur éprouvettes AE sur un matériau pré-écroui

Dépendance de la fonction F à la géométrie et/ou à la triaxialité :

- ⇒ Étude des essais de la base ESIS sur d'autres géométries (SENB, Éprouvette en croix)
- ⇒ Essais sur éprouvettes SENT sur l'acier TU42 C

Interprétation numérique de l'essai sur le tube :

- ⇒ Mieux reproduire le comportement global de l'essai en complétant le modèle
- ⇒ Préciser l'évolution du volume seuil en cours de déchirure et au percement

Second essai sur tube sans soudure :

⇒ Confirmer les premiers résultats avec une meilleure maîtrise des conditions expérimentales.

Étude des joints soudés :

- ⇒ Identifier les paramètres du modèle, la contrainte seuil en premier lieu
- ⇒ Réaliser un essai de rupture sur un tube soudé
- ⇒ Évaluer l'influence du joint soudé sur la tenue mécanique de la structure.

Thèse Vincent Le Corre 22 Septembre 2006

Perspectives à long terme

- ✓ Multiplier les applications du modèle sur d'autres matériaux
 - ⇒ Acier de cuve
- ✓ Étendre le modèle à l'ensemble de la zone transition
- √ Établir une méthode simplifiée d'application
 - \Rightarrow Formules analytiques de calcul de V_{th}

- ✓ Essais sur tube (avec ou sans soudure) sous chargement biaxial
 - ⇒ Flexion + Pression

- ✓ Quantifier l'influence des contraintes résiduelles
 - ⇒ Mesures par diffraction neutronique

Thèse Vincent Le Corre 22 Septembre 2006

Étude de la compétition déchirure ductile / rupture fragile : Application à la tenue mécanique des tubes en acier C-Mn et de leurs joints soudés

Vincent Le Corre

22 Septembre 2006 - CEA-Saclay

Laboratoire de Mécanique de Lille – École Centrale de Lille

Laboratoire d'Intégrité des Structures et de Normalisation – CEA Saclay

Annexes – Hypothèse sur p_{ri}

Hypothèse sur p_{ri}

 p_0 est la moyenne des p_{ri} sur V_{th}

$$p_0 = \frac{1}{V_{th}} \cdot \int_{V_{th}} p_{ri}(\sigma) . dV$$

 $p_0 = \frac{1}{r_{th}} \int_{0}^{r_{th}} p_{ri}(\sigma_{11}).dr$

Champs de contrainte de [MacMeeking – 95]

 $\rho = \frac{r.\sigma_{Y}}{I}$

$$p_0 = \frac{1}{r_{th}} \cdot \frac{J}{\sigma_Y} \cdot \int_0^{r_{th}} p_{ri}(\sigma_Y \cdot f(\rho)) \cdot d\rho$$

$$p_0 = \frac{1}{\rho_{th}} J_{th}(\rho)$$

La moyenne p_0 sur V_{th} est indépendante du chargement

Annexes – Dimensionnement de l'essai sur composant

Toutes les conditions sont remplies pour :

et

$$a_0 = 4 \text{ mm}$$

 $J_i = 285 \text{ kJ/m}^2$

Annexes – Dimensionnement de l'essai sur composant

Toutes les conditions sont remplies pour :

et

$$a_0 = 4 \text{ mm}$$

58

Annexes – Préparation de la maquette d'essai

1/ Entaille mécanique (R < 0.1 mm)

2/ Pré-fissure de fatigue. $\Delta K_{FIN} = 22 \text{ MPa.m}^{1/2}$

Longueur de fissure (mm)

Diam.ext.: 211 mm Géométrie finale Épaisseur : 11 mm Fissure obtenue pour l'essai ' de rupture : Profondeur: 4.5 mm Longueur de surface : 35 mm

59

Annexes – Suivi de la préfissuration

Thèse Vincent Le Corre 22 Septembre 2006

Annexes – Prédiction de la déchirure ductile

Configuration initiale : Front $a_0(s)$

Recherche du chargement à l'amorçage F_0 : Calcul stationnaire dans la configuration initiale, recherche du chargement pour lequel $J(F_0, \delta_0) = J_i$

Choix d'un incrément de déplacement $\Delta\delta$ $\delta_i = \delta_{i-1} + \Delta\delta$

Calcul stationnaire dans la configuration a_{i-1}:

- Détermination du chargement F_{i-1} correspondant à δ_{i-1}.
- Pour chaque point k du front a_{i-1} (s),
 recherche de l'incrément vérifiant :

$$\Delta a_{i-1} = G_{fr}^{-1} \cdot [J_{pl,a_{i-1}}(\delta_i) - J_{pl,a_{i-1}}(\delta_{i-1})]$$

Maillage du nouveau front $a_i(s) = a_{i-1}(s) + \Delta a_{i-1}$

61

Algorithme d'application de la procédure G_{fr} pour une fissure bidimensionnelle

Annexes – Prédiction de la déchirure ductile

Annexes: Calcul de V_{th}, Maillage

Thèse Vincent Le Corre 22 Septembre 2006