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Résumé

1.1 Introduction

Le test, dans toutes ses variantes, est l’une des techniques de validation de logi-
ciels parmi les plus utilisées. Dans cette thèse, nous nous concentrons sur le test

de conformité [ISO/IEC, 1992] appliqué aux systèmes réactifs [Harel and Pnueli,
1985]. Par système réactif, nous entendons un logiciel réagissant aux stimuli de
son environnement. Le test de conformité consiste à vérifier si le comportement
d’une implémentation réelle sous test ����� d’un système réactif est correcte par
rapport à une spécification formelle. Le code de l’ ����� est inconnu et son com-
portement est uniquement visible par interaction avec un testeur qui contrôle
et observe l’ ����� à travers des interfaces spécifiques appelés points de contrôle et

d’observation (PCO). Ceci explique la nature boîte noire du test de conformité.
Une approche théorique du test de conformité a été formulé dans les travaux

de E. Brinsksma et J. Tretmans (voir par exemple, [Brinksma, 1988], [Tretmans,
1996b]). Cela permet de définir plusieurs notions: la relation de conformité qui
fixe l’ensemble des implémentations sous test correctes par rapport à une spéci-
fication donnée, les cas de test, leur exécution sur une ����� et les verdicts de test

associés à l’exécution. Cependant, le processus d’écriture des cas de test manuels
pour une spécification de grande taille est compliqué, cher et peut mener à des
erreurs.

Ceci est l’une des raisons du développement intensif des techniques pour la
génération automatique de tests fondées sur une base théorique solide. Certaines
de ces techniques sont basées sur le modèle des systèmes de transitions à en-
trées/sorties (IOLTS1) et sur des algorithmes à la volée efficaces. Il existe déjà des
outils universitaires (par exemple TorX [Belinfante et al., 1999], TGV [Fernandez
et al., 1996]) et industriels (par exemple Autolink [Telelogic, 1998], TestCom-
poser [Kerbrat and Ober, 1999]) qui implémentent ces algorithmes et produisent
des cas de test corrects dans un cadre formel. Néanmoins, ces théories et outils
ne prennent pas explicitement en compte les données du système car le modèle
sous-jacent d’IOLTS ne permet pas de le faire. Ainsi, afin de modéliser une spé-

1Provient de la terminologie anglaise “Input-Output Labeled Transition System”.
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cification de systèmes réactifs par IOLTS, il est nécessaire d’énumérer les valeurs
de chaque donnée utilisée par ce système. Ceci peut conduire au problème clas-
sique de l’explosion de l’espace d’états. De plus, cette énumération a aussi l’effet
d’obtenir des cas de test où toutes les données sont instanciées. Cela contredit
la pratique industrielle où les cas de test (écrits, par exemple, dans le langage
TTCN [ISO/IEC/JTC1/SC21, 1992]) sont de vrais programmes avec des don-
nées (variables, constantes symboliques et paramètres de communication). La
génération de tels cas de test exige de nouveaux modèles et techniques.

Dans cette thèse, nous avons atteint deux objectifs :

(1) Nous avons introduit un nouveau modèle appelé systèmes symboliques de
transitions à entrées/sorties (IOSTS2) et qui inclut explicitement toutes les
données d’un système réactif.

(2) Nous avons proposé et implémenté une nouvelle technique de génération de
tests qui traite symboliquement toutes les données d’un système en combi-
nant l’approche de génération de tests proposée dans les travaux précédents
de notre équipe de recherche (voir par exemple, [Fernandez et al., 1996]
et [Jéron, 2004]) avec l’interprétation abstraite (voir [Cousot and Cousot,
1976], [Cousot and Cousot, 1977]).

Ces travaux sont inspirés de l’article [Rusu et al., 2000].

1.2 État de l’art du test de conformité

La première partie de ce document consiste en deux chapitres décrivant l’état de
l’art pour le test de conformité boîte noire.

Dans le premier chapitre de cette partie (le chapitre 2) nous introduisons
les concepts formels utilisés dans la suite de cette thèse, c’est-à-dire que nous
exposons les notions présentés dans “Formal Methods in Conformance Testing”
[ISO/IEC, 1996], et nous évoquons brièvement les nouveaux développements de
ces dernières années dans le domaine de la formalisation du test de conformité.
Nous essayons en particulier de rendre le lecteur familier avec les principaux
concepts utilisés dans le test de conformité boîte noire.

Dans le deuxième chapitre de cette partie (le chapitre 3) nous nous focal-
isons principalement sur le test des machines d’états finis et des systèmes de
transitions à entrées/sorties. Nous présentons différents types de relations de
conformité pour les IOLTS, ainsi que différentes approches pour la génération
automatique de tests. Enfin, nous décrivons certains des outils existants utilisés

2Provient de la terminologie anglaise “Input-Output Symbolic Transition System”.
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pour le test de conformité de systèmes réactifs tels que TorX [Belinfante et al.,
1999], TGV [Fernandez et al., 1996] et Agatha [Lugato et al., 2002].

1.3 Génération de tests symboliques

La seconde partie de ce document est le cœur de notre travail. Il comporte
quatre chapitres dans lesquels nous introduisons un modèle symbolique utilisé
afin de spécifier des systèmes réactifs, ainsi qu’une technique symbolique pour
la génération de test basée sur ce modèle. Ici, nous résumons succinctement les
points principaux dans cette partie de la thèse.

1.3.1 Modèle : système symbolique de transitions à en-
trées/sorties

Dans le chapitre 4 de cette thèse, nous définissons un modèle de systèmes réactifs
que nous utilisons pour le test de conformité. Ce modèle est appelé système sym-
bolique de transitions à entrées/sorties (IOSTS) et á été précédemment introduit
dans [Rusu et al., 2000]. Le modèle des IOSTS est une version étendue du modèle
des systèmes de transitions á entrées/sorties (IOLTS). Il inclut explicitement les
données des systèmes réactifs et les manipule de façon symbolique.

Dans cette section, nous présentons une syntaxe des IOSTS au niveau intuitif
(la syntaxe formelle de ce modèle est évoquée dans la Section 4.2, page 79). Puis,
nous expliquons la sémantique des IOSTS et nous introduisons les notions de
comportement et de trace, qui sont fréquemment employées tout au long de ce
document. Enfin, nous présentons quelques sous-classes d’IOSTS utilisées plus
tard en génération de tests symboliques.

1.3.1.1 Syntaxe des IOSTS

L’IOSTS � décrit dans la figure 1.1 est composé de localités, par exemple Begin,
Idle, Pay, où Begin est la localité initiale, et de transitions. Les transitions sont
étiquetées par des actions, des gardes et des affectations. Par exemple, la tran-
sition d’origine Idle et de destination Pay a la garde

� �����
�����
	�� � ���� � , l’action

d’entrée Coin? portant les données
�����

�����
	�� � � depuis l’environnement ainsi que
l’affectation � ��	 ������� � ��	 ����� �����

�����
	�� � � . L’ensemble des actions est parti-
tionné en trois sous-éléments disjoints d’actions d’entrée, de sortie et internes.
Les actions d’entrée/sortie interagissent avec l’environnement et peuvent porter
des données tandis que des actions internes sont utilisées pour des calculs internes.
Par convention, les noms des actions d’entrée (resp. de sortie) s’achève par “?”
(resp. “!”). L’IOSTS de la figure 1.1 a trois entrées : Coin?, ChooseBeverage?,
Cancel?, deux sorties : Deliver!, Return!, et une action interne : tau. Il opère
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(cPrice > 0 and vPaid=0 and vBeverage=TEA)

tau
vPaid:=0

(pCoinValue > 0)
Coin ? (pCoinValue)

vPaid:= vPaid + pCoinValue

Cancel ?

(pRemaningValue = vPaid)
Return ! (pRemaningValue)

((vPaid < cPrice) and (pRemaningValue = cPrice - vPaid))
Return ! (pRemaningValue)

((vPaid >= cPrice) and (pRemaningValue = vPaid - cPrice))
Return ! (pRemaningValue)

vPaid:=cPrice

ChooseBeverage ? (pBeverage)
vBeverage:=pBeverageCancel ?

(vBeverage = pBeverage)
Deliver ! (pBeverage)

Begin

Idle

Pay

Choose

Return Delivery

Figure 1.1: Un exemple d’IOSTS � (une machine à café).

avec des données symboliques qui sont les variables : � � 	 ��� , � � � � ��� 	�� � , la con-

stante symbolique :
� � � � ��� , et les paramètres :

�����
�����
	�� � � , ��� ��� 	 � ���	� �
	�� � � ,� � � � ��� 	�� � . Intuitivement, les variables sont des données avec lesquelles on cal-

cule, les constantes symboliques sont des données qui ne peuvent pas être mod-
ifiées pendant la calcule et les paramètres sont des données pour communiquer
avec l’environnement. La portée d’un paramètre est seulement la transition éti-
quetée par l’action qui porte ce paramètre. Ainsi, si la valeur du paramètre doit
être utilisée dans des calculs ultérieurs, elle doit être mémorisée par son affecta-
tion à une variable. Par exemple, la valeur du paramètre

� � � � ��� 	�� � est sauvée
dans la variable � � � � ��� 	�� � en utilisant l’affectation � � � � ��� 	�� � � � � � � � ��� 	�� � de
la transition conduisant à la localité Delivery. Puis, cette valeur, qui était mé-
morisée dans � � � � ��� 	�� � , sera utilisée dans la garde

� � � � � ��� 	�� � � � � � � ��� 	�� � � de
la transition sortant de Delivery.

1.3.1.2 Sémantique des IOSTS

Intuitivement la sémantique d’un IOSTS peut être représentée comme suit. Soit
l’IOSTS (voir figure 1.1) représentant une machine à café. La machine part de
la localité Begin avec une valeur du paramètre

� � � � ��� satisfaisant la condition
initiale

��� � � � ���  � ��
 � � ��	 ��� � � ��
 � � � � � ��� 	�� � � TEA � , c’est-à-dire que le prix
de n’importe quelle boisson distribuée dans la machine est positif, que la somme
payée est égale à zéro, et que la boisson est du thé. Puis, l’IOSTS exécute
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la transition étiquetée par l’action interne tau, il affecte la variable � ��	 ��� , qui
mémorise la somme déjà réglée, à 0, et il atteint la localité Idle. Ensuite,
la machine attend une pièce, dénotée par l’action d’entrée Coin? qui porte en�����

�����
	�� � � la valeur de la pièce insérée. Dès que la machine reçoit une pièce, la
variable � ��	 ��� est augmentée par

�����
�����
	�� � � et la machine va à la localité Pay.

Si la somme n’est pas suffisante, c’est-à-dire � � 	 ����� � � � � ��� , la machine revient
à la localité Idle et retourne (grâce à l’action de sortie Return!) la différence
entre � ��	 ��� et

� � � � ��� . Dans la localité Choose, la machine attend le choix de la
boisson (thé ou café), puis la distribue et revient à la localité Begin. Il convient
de noter que dans les localités Idle et Choose, on peut appuyer sur le bouton
Cancel, au quel cas la machine rend la somme déjà payée et revient à la localité
initiale.

Plus formellement, la sémantique opérationnelle d’un IOSTS � est un IOLTS��� ����� (voir Définition 3.7 dans le Chapitre 3, page 41) dont les états, l’alphabet
et la relation de transition sont définis comme suit. Un état � est une paire 	�
����� ,
où 
 est une localité et � le vecteur de valeurs des variables et des constantes
symboliques, par exemple, � ��	 Delivery ��	 � � � � ��� ����� � ��	 ��� ����� � � � � ��� 	�� � �
TEA ��� . Un état initial ��� ��	�
�� ���!�"� est un état où 
�� est la localité initiale, et
où � � est un vecteur de valeurs des variables et des constantes symboliques qui
satisfont à la condition initiale. Nous notons # (resp. # � ) l’ensemble de tous les
états (resp. les états initiaux). Une action valuée $ est une paire 	�%&�(')� , où % est
une action et où ' est un vecteur de valeurs des paramètres de % , par exemple,
$ �*	,+.-�/,01��	 ����� �����
	�� � � �324��� ou $ �5	�67%98:��	;��� . Nous notons <��=<?>A@B<DC�@B<FE
l’ensemble des actions valuées qui est partitionné en trois sous-ensembles d’entrée
valuée, de sortie valuée et d’actions internes. Ensuite, nous définissons la relation

locale de transition GIHKJ�# � < � # comme l’ensemble de triplets 	;�4�L$F�M� NO� , où
���5	�
7���P� , � N �5	�
 N ��� N � sont des états et $ �*	�%&�(')� une action valuée telle que �
et ' sont des vecteurs de valeurs des variables, des constantes symboliques et des
paramètres qui satisfont la garde d’une transition 6 d’origine 
 et de destination 
 N
qui est étiqueté par l’action % , et telle que �QN est le nouveau vecteur de valeurs des
variables et des constantes symboliques obtenues à partir de � par les affectations
de variables de 6 . La relation globale de transition G est R HTSMU � GVH � , où � dénote
l’ensemble des transitions symboliques de l’IOSTS. Nous écrivons �XWG � N pour
	;�4�L$F�M�YNO�[Z1G .

Comportements et traces. Dans cet paragraphe, nous introduisons les no-
tions de comportements et de traces pour un IOSTS � arbitraire avec un ensem-
ble # d’états, un ensemble # � J\# d’états initiaux, et un ensemble < �]<?>M@^<DC_@F<FE
d’actions valuées. Ces notions nous permettent de raisonner formellement à pro-
pos de l’IOSTS � .
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Définition 1.1 (Comportement et ensemble des comportements) Un
comportement � est une séquence d’états et d’actions valuées partant d’un état
initial et suivant la relation de transition, c’est-à-dire :

��� � � � W��G ��� W��G �
	��
�
���
���� W��G ��
où G est la relation globale de transition, � � Z # � , et pour tout / Z ��� ��0Q� :
���AZ # , $��AZ < . On note

� ��� 	 � � � ����� � � l’ensemble de tous les comportements de
l’IOSTS � . �

Afin de définir la notion de trace de l’IOSTS � nous introduisons d’abord la
relation de trace � J]# � � <?> @ <[C ��� � # comme suit :

– ���� � N  � � � � N �"! �$# ���"�
�
���Y�M�� Z #�� � � � ��� E �G �
	��
�
���
���� E �G �
 � � N � � ,
où pour tout / � � �%� 0 : �&�AZB<FE , et ' est la séquence vide.

– � W� � N  # ���"�M�
	 Z #�� � � �� ��� WG �
	 �� � N � , où $ Z � < > @ <DC � .
– ��(� � N  # ���M�
�
�
� �M���Z #�� � ���3��� W �� �
	)���
�L������ W �+* �� �� � � N � , où pour

tout / � � �%� 0-, �
: $.�AZ � <)> @ <DC � , et / Z � < > @�<DC ��� .

Définition 1.2 (Ensemble de traces) L’ensemble de traces de � est défini
comme suit :

	 � 	 ������� � �  0 / Z � < > @ < C � �21 # � � Z # � �M�.Z #3� � � � (� �Y�54
�

1.3.1.3 Sous-classes d’IOSTS

Dans cette section, nous définissons des sous-classes d’IOSTS qui sont utilisées
dans la méthode symbolique de génération de test présentée au Chapitre 7.

IOSTS instanciés et initialisés. Le fait de disposer de constantes symbol-
iques dans le modèle IOSTS permet de décrire des spécifications génériques et,
on le verra, de produire des tests eux-mêmes génériques. Cependant, au cours de
l’exécution des tests, les valeurs de toutes les constantes symboliques et de toutes
les variables doivent toujours être définies. Par conséquent, nous avons besoin
d’introduire deux sous-classes d’IOSTS appelés IOSTS instanciés et initialisés.

Soit � un IOSTS avec un ensemble + de constantes symboliques, un ensemble6
de variables et une condition initiale 7 . Soit aussi 8.Z:9<;>= � + � , où 9<;?= � + �

est un domaine de + , un vecteur de valeurs de constantes symboliques + . Alors :
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(1) � est dit instancié si son ensemble + de constantes symboliques est vide.

(2) En remplaçant chaque constante symbolique � Z + par une valeur 8 � � � , on
obtient un IOSTS noté � � 8 � et appelé un instance de � .

(3) � est dit initialisé si pour chaque instance � � 8�� , il existe au plus un

vecteur de valeurs de ses variables
6

qui satisfait à la condition initiale 7 .

Il est important de remarquer que chaque instance d’un IOSTS initialisé a un
état initial unique.

IOSTS déterministe. Par la suite, nous interdisons les cas de test non-
déterministes dans le test, car un verdict de test ne doit pas dépendre des choix
internes du testeur. Par conséquent, dans ce paragraphe, nous introduisons
une sous-classe d’IOSTS déterministes qui seront utilisés ultérieurement pour
la représentation des cas de test.

Un IOSTS � est déterministe s’il ne contient pas d’actions internes, c’est-à-
dire <FE � �

, et si une transition au plus peut être exécutée à partir de chaque
état, autrement dit, � � Z # � $ Z � < >:@�<[C � � � � 	 � � � 0 � N Z # 1 �IWG � N 4���� � � .

Il est important de remarquer que pour chaque trace / de chaque instance
de l’IOSTS initialisé et déterministe � , l’ensemble d’états � ��� �	 � / est un
singleton. Ici, � ��� �	�� /  �0 � Z # 1 # � � Z # � � � � � (� �Y�54 , où # (resp. # � ) est un
ensemble d’états (resp. d’états initiaux) de � . Cette proposition est formulée
dans le théorème 4.1 au chapitre 4 (voir page 94).

IOSTS complets et complets en entrée. Dans ce paragraphe, nous intro-
duisons deux sous-classes des IOSTS qui seront nécessaires durant la génération
de test et le processus d’exécution de tests.

En effet, pour un IOSTS � représentant soit un cas de test soit une implé-
mentation sous test, nous devons supposer qu’il accepte toujours (qu’il ne bloque
pas) les entrées. Un tel IOSTS est appelé complet en entrée et défini comme
suit : � � Z # �L$ Z < > # � N Z # � � � W� � N � , où # est un ensemble d’états de � et
< > est l’ensemble des actions d’entrée valuées de � .

Par analogie avec l’approche de génération de test proposée par dans [Fernan-
dez et al., 1996], notre méthode symbolique de génération décrite au chapitre 7 de
ce document utilise un objectif de test comme mécanisme de sélection de test. En
d’autres termes, le but des objectifs de test est de marquer les traces d’une spéci-
fication donnée qui devraient être testées, sans modifier l’ensemble de toutes les
traces de cette spécification. Pour cela, chaque objectif de test 	�� doit être com-

plet par rapport sa spécification
�������

, c’est-à-dire que pour chaque état � Z #
	��
et pour chaque action valuée $\Z � <	�� � <�������� � , l’ensemble 0 � N Z #�	�� 1 � WG � N 4
n’est pas vide, et la condition initiale 7�	�� de l’objectif de test 	�� ne contient
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pas contraintes sur les variables et les constantes symboliques de la spécification�������
.

1.3.2 Opérations sur les IOSTS

Cette section résume les deux opérations principales sur les IOSTS définies au
chapitre 5. L’opération de composition parallèle est utilisée dans l’exécution du
test sur un système sous test car elle permet de modéliser une interaction entre
deux processus représentés par des IOSTS. Cette opération est inspirée de la com-
position parallèle de deux processus modélisés soit par LTS, soit par IOLTS (voir

par exemple, [Tretmans, 2002]). L’opération produit est l’opération principale de
la génération de tests car elle permet une interaction entre les comportements
d’une spécification et son objectif de test, et donc de sélectionner la partie de la
spécification pour laquelle un cas de test doit être généré. Cette opération est in-
spirée de l’opération produit définie sur les IOLTS et utilisée dans la méthode de
génération de tests décrite, par exemple, dans [Jéron, 2004]. La différence entre
ces deux opérations réside dans le fait que le produit défini sur les IOSTS effectue
une synchronisation non seulement sur les actions communes de deux systèmes
donnés, mais également sur les données de ces systèmes (rappelons que le modèle
IOSTS inclut explicitement les données du système). Ainsi, cette différence nous
permet d’accomplir une sélection plus précise du cas de test.

Composition parallèle. L’opération de composition parallèle permet à chaque
système d’exécuter indépendemment ses actions internes et impose une synchroni-
sation sur les actions d’entrée et de sortie partagées. L’opération est définie pour
des IOSTS compatibles. De manière informelle, deux IOSTS � � et � 	 sont
compatibles si (1) ils n’ont pas de données communes, c’est-à-dire � �����2	 � �

,
(2) l’alphabet des actions d’entrée (resp. de sortie) de � � est égal à l’alphabet
des actions de sortie (resp. d’entrée) de � 	 , et si les alphabets d’actions internes
de � � et � 	 sont disjoints, (3) en outre, les actions communes doivent porter
des paramètres du même type et en nombre égal dans les deux IOSTS. En outre,
la définition formelle de compatibilité pour la composition parallèle est donnée
dans la section 5.1 du chapitre 5.

Définition 1.3 (Composition parallèle) La composition parallèle entre deux
IOSTS � � �3	�� �M��7 �M��� �"��
�� � ��� �"� �)�(� et � 	 �3	��2	 ��7 	Y�	� 	���
��	 ��� 	�� �"	M� compatibles
pour la composition parallèle est un IOSTS � � 1 1 � 	 �3	�� ��7 �	�?��
 � ��� � � � , où :

(1) � � 6 @�+ @�
 , où
6 � 6 � @ 6 	 , + �]+ �:@�+ 	 et 
 ��
<� .

(2) 7�� 7 � 
 7 	 ;
(3) � �� � �

� 	 ;
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(4) 
 � � 	�
 � � ��
 �	 �?Z � est la localité initiale;

(5) � � � > @ �DC @ �FE est l’alphabet des actions, où �?> � �
, �DC � �DC� @ �DC	 , et

�FE ���FE � @ �FE 	 .
(6) l’ensemble des transitions symboliques � est construit à partir de � � et � 	

comme suit :

(a) pour chaque transition symbolique 6�� � 	�
 �M��%&� � � 2��� � �"��
 N � � Z �)� éti-
quetée par l’action interne % Z �)E , et pour chaque localité de la forme
	�
 �M��
 	M� où 
 	 Z � 	 , l’IOSTS composé � � 1 1 � 	 a une transition sym-
bolique de la forme 6 � 	�	�
 �M��
 	L� ��%&� � �  �M� � � @ � R�� S�� �

��� � � � � �L��	�
 N � ��
 	M��� Z
� , où, afin d’obtenir une transition symbolique avec des ensembles
d’affectations bien formés, nous affectons chaque variable de � 	 à
elle-même.

De la même manière, nous construisons une transition symbolique de
� � 1%1 � 	 pour chaque transition symbolique 6 	 Z �"	 sortant de 
 	 Z
� 	 et étiquetée par l’action interne % Z�� E 	 , et pour chaque localité de
la forme 	�
 �M��
 	L�[Z�� , où 
 � Z�� � .

(b) pour deux transitions symboliques 6�� � 	�
 �"��%&� � � 2��� � �"��
 N � � Z � �
et 6 	 � 	�
 	���%&� � � >	Y� � 	���
 N	 � Z � 	 étiquetées par une action com-

mune % Z �
� > � @ � C� � � �

� >	 @ � C	 � , une nouvelle transition symbol-
ique 6 � 	�	�
 �M��
 	"� ��%&� � � 2� 
 ?	 � � 	
	 � �K��� � � @ � 	 � � 	�	 � �7�,��	�
 N � ��
 N	 ��� Z � de
� � 1%1 � 	 est construite, où ?	 � � 	
	 � �7� (resp.

� 	 � � 	
	 � �7� ) est la garde
(resp. l’ensemble des affectations) de la transition symbolique 6 	 dans
laquelle chaque paramètre � � 	 Z � 	 porté par l’action % de 6 	 est rem-
placée par le paramètre correspondant � � � Z � � porté par l’action % de
6 � .

�

Produit. L’opération produit est la principale opération dans notre méthode
symbolique de génération de tests. Elle provoque “l’intersection” des comporte-
ments des deux IOSTS représentant, dans l’algorithme de génération de tests,
une spécification et un objectif de test. Cela permet de sélectionner une partie de
la spécification pour laquelle un cas de test doit être généré. L’opération produit
est définie pour des IOSTS compatibles.

De manière informelle, deux IOSTS � � et � 	 sont compatibles pour

l’opération produit si (1) ils ont les mêmes alphabets d’entrée, de sortie et d’actions
internes et (2) � � et � 	 ne partagent aucune variable et aucun paramètre, mais
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peuvent partager des constantes symboliques; de plus, les variables de � � peu-
vent être des constantes symboliques de � 	 , et les variables de � 	 peuvent être
des constantes symboliques de � � . Intuitivement, le deuxième point signifie que
nous interdisons que l’un des IOSTS change la valeur de l’une des variables de
l’autre IOSTS, mais nous donnons la possibilité à un IOSTS d’observer les vari-
ables de l’autre IOSTS. On trouvera la définition formelle des IOSTS compatibles
pour l’opération produit à la section 5.2 du chapitre 5.

L’IOSTS � � � � 	 � 	��B��7 �	� ��
 � ���.� � � qui est obtenu à partir de deux
IOSTS compatibles � ���X	��2	 ��7 	Y�	� 	 ��
 �	 ��� 	 � �"	"� et � 	��X	�� �M��7 �M� � �L��
 � � ��� �M� �)���
par l’opération de produit peut être défini par analogie avec � � 1 1 � 	 (voir

définition 1.3, page viii), où l’ensemble des données, l’alphabet des actions et
l’ensemble des transitions est définit comme suit :

(1) � � 6 @�+ @�
 , où
6 � 6 � @ 6 	 , + � � + � @ + 	���� � 6 � @ 6 	 � et 
 ��
<� .

(2) � � � >:@ �DC @ �FE , où � > ��� > � ��� >	 , �DC ���DC� ��DC	 et �FE ��FE � ��FE 	 .
(3) L’ensemble de transitions symboliques � est obtenu à partir de � � et � 	

ainsi qu’il est expliqué ci-dessous.

Pour deux transitions symboliques 6���� 	�
 �"��%&� � �  �L� � �M��
 N � � Z �)� et 6 	 �
	�
 	 ��%&� � � ?	 � � 	 ��
 N	 � Z � 	 étiquetées par une action commune % Z � � � � 	 ,
une nouvelle transition symbolique 6 � 	�	�
$�M��
 	L� ��%&� � �  � 
 >	 � � 	 	 � �7�,� � � @� 	 � � 	
	 � �K�,��	�
 N � ��
 N	 ��� Z � de � � 1 1 � 	 est construite, où ?	 � � 	
	 � �7� (resp.� 	 � � 	
	 � �K� ) est la garde (resp. l’ensemble des affectations) de la transition
symbolique 6 	 dans laquelle chaque paramètre � � 	 Z � 	 porté par l’action %
de 6 	 est remplacé par le paramètre correspondant � � � Z � � porté par l’action
% de 6 � .

Traces de la composition parallèle et du produit. Nous nous intéressons
aux relations suivantes entre les traces des systèmes obtenus par les opérations de
composition parallèle et de produit et celles de leurs composants. Formellement :

Proposition 1.1 Pour deux IOSTS � � et � 	 qui sont compatibles pour
l’opération de composition parallèle (resp. de produit) :

(1) 	 � 	 ������� � � 1%1 � 	���� 	 � 	 ������� � � � � 	 � 	 ������� � 	�� , et

(2) si � 	 est complet par rapport à � � , alors 	 � 	 ������� � � � � 	 � �
	 � 	 ������� � � � .

�
Le premier (resp. second) point de cette proposition est formulé comme le
théorème 5.2, page 112 (resp. théorème 5.5, page 134) du chapitre 5.
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1.3.3 Test de conformité avec les IOSTS

Dans cette section (qui est un bref résumé du Chapitre 6), nous décrivons la
théorie du test de conformité qui sert de base à la méthode de génération de
tests symboliques présentée dans la section suivante et implémentée comme l’outil
de génération de tests symboliques (STG3). Le travail exposé dans cette section
s’inspire principalement de la théorie de test de conformité développée par J. Tret-
mans (voir par exemple, [Tretmans, 1994], [Tretmans, 1996b]) et de la recherche
effectuée au sein de l’équipe VerTeCs, IRISA (voir [Rusu et al., 2000], [Morel,
2000], [Jard and Jéron, 2002]). Dans notre théorie du test de conformité, les
comportements des spécifications et des implémentations sous test sont modélisés
par des systèmes symboliques de transitions à entrées/sorties, et les relations de
conformité sont définies comme inclusion partielle de leurs traces. À la fin de
cette section, nous explicitons la notion de cas de test corrects en ce qui concerne
les spécifications et les objectifs de test.

1.3.3.1 Spécification

La spécification d’un système réactif est la description formelle des comporte-
ments du système qui sont généralement exprimés en utilisant des langages de de-
scription spécialisés, par exemple, SDL [ITU-T, 1994], LOTOS [ISO/IEC, 1988].
La sémantique opérationnelle de ces langages détaille tous les comportements
possibles du langage.

Formellement, une spécification
�������

est modélisée par un IOSTS
������� �

	���������� ��7����	���"�	�
�������"��
 � ������� �������	��� � ����������� initialisé (voir la définition donnée page vi)
Dans cette thèse, nous considérons (pour le processus de génération de test) des
spécifications sans cycles d’actions internes durant lesquelles le système exécute
ses calculs internes et ne communique pas avec son environnement.

L’exemple d’un IOSTS représentant la spécification d’une machine à café est
donné figure 1.1 (voir page iv).

1.3.3.2 Implémentation

L’implémentation sous test ��� � 4 est un système physique, par exemple des com-
posants logiciels ou matériels. Comme dans le cas énuméré (voir par exemple
les travaux de J. Tretmans [Tretmans, 1992], [Tretmans, 1996b] ou de T. Jéron
[Jard and Jéron, 2002], [Jéron, 2004]), on suppose que l’ ����� peut être modélisée
(c’est une “hypothèse de test” habituelle), afin de pouvoir raisonner sur la confor-
mité de celle-ci avec une spécification. Dans notre recherche, on suppose qu’une
implémentation sous test est modélisée par l’IOSTS

������ � 	����	� ���(� 7��	� �����	���	� �����
3Provient de la terminologie anglaise “Symbolic Test Generator”.
4Provient de la terminologie anglaise “Implementation Under Test”.
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 ��	� ��� �	� �	� � �(� � �	� ���K� , dont on ne connaît que l’alphabet d’actions d’entrée et de sortie,
et on suppose que (1) le type et le nombre de paramètres de ces actions sont
les mêmes que celles d’une spécification

�������
donnée, et (2) les paramètres de

����� sont en bĳection avec les paramètres de
�������

. On peut trouver la définition
formelle d’une implémentation sous test à la section 6.2 du chapitre 6.

1.3.3.3 Objectif de test

Par analogie avec l’approche de génération de tests proposée dans [Fernandez
et al., 1996], notre méthode de génération de tests symboliques exposée au
chapitre 7 de ce document, utilise le concept d’objectif de test. Un objectif
de test décrit des comportements d’un système donné devant être testé, et sert
à sélectionner une partie de la spécification du système pour laquelle un cas de
test sera généré.

Formellement, soit un IOSTS
�������

modélisant une spécification. Alors, un
objectif de test de

�������
est un IOSTS 	�� 5 avec la localité spéciale

� �������
� tel

que : 	�� est initialisé (voir page vi) et complet par rapport à
�������

(voir page vii).
En outre, nous devrions être capable d’exécuter l’opération produit entre 	�� et�������

, c’est-à-dire que 	�� devrait être compatible pour l’opération produit avec�������
(voir le paragraphe appelé Produit à la page page ix).

Exemple 1.1 (Objectif de test) L’IOSTS représenté figure 1.2 est un objectif
de test pour la spécification d’une machine à café montrée à la figure 1.1 (voir

page iv). Les transitions de l’objectif de test, représentées par une ligne discon-
tinue, sont générées automatiquement (voir l’algorithme décrit à la section 7.1
du chapitre 7, page 169) afin d’obtenir un objectif de test complet quant à ses
spécifications (voir la définition de la page vii).

L’objectif de test donné décrit des comportements où la machine distribue
du café, où l’utilisateur introduit au moins la somme requise en une seule fois, et
où il n’annule pas sa commande (voir les transitions continues du graphe montré
à la figure 6.5). Un comportement accepté est indiqué par l’arrivée à la localité

Begin tau Coin ? (pTPCoin) ChooseBeverage ? (pBev)
not (vPaid < cPrice) 
 Return ! (pRemVal)

Accept

(pBev = COFFEE) 
 Deliver ! (pBev)

Reject

Cancel ? 
(vPaid < cPrice) 

 Return ! (pRemVal)
not (pBev = COFFEE) 

 Deliver ! (pBev)

* *

Figure 1.2: Objectif de test.

Accept. L’objectif de test rejette des comportements qui correspondent à l’action
5Provient de la terminologie anglaise “Test Purpose”.
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d’annulation (Cancel), ou à l’insertion de plus d’une pièce. Les comportements
rejetés ne sont pas nécessairement faux, mais ils ne sont pas ciblés par l’objectif
de test. Notons aussi que l’objectif de test 	�� observe, mais ne modifie pas la
variable � ��	 ��� de la spécification

�������
. �

1.3.3.4 Relation de conformité

Dans la sous-section précédente, nous avons défini les notions de spécification,
d’implémentation sous test et d’objectif de test. Nous avons également supposé
qu’ils pouvaient tous être exprimés dans le modèle des IOSTS. Ce postulat nous
permet de raisonner formellement à propos des spécifications, des implémenta-
tions sous test et des objectifs de test.

Par conséquent, nous pouvons exprimer la conformité des implémentations
par rapport aux spécifications (et possiblement “filtrée” avec un objectif de test)
par des relations de conformité formelles entre leurs modèles. Une relation de
conformité définit exactement l’ensemble des implémentations conformes à une
spécification donnée.

Les relations de conformité introduites dans cette section et utilisées tout au
long de cette thèse sont des versions plus faibles des relations de conformité

� ��� ��� �
et

� ��� �
exposées par J. Tretmans et al. pour des IOLTS (voir [Tretmans, 1995],

[Tretmans, 1996b], [Tretmans, 2002]). Elles sont appelées
�����

et
� ��� 	�� . Nous

définissons ces relations de conformité au lieu d’utiliser l’un de leurs prédécesseurs
plus puissants (

����� ��� � et
����� �

) car :

(1)
�����

et
����� 	�� ne prennent en compte aucun blocage syntaxique (c’est-à-dire

blocages de sortie (ou outputlock), blocages complets (ou deadlocks) et
blocages vivants (ou livelocks) présentés page 42) des IOSTS, et

(2) le problème de décider si un système représenté par un IOSTS est bloqué
ou pas est indécidable en général. Cependant, dans le cas d’un IOSTS sans
blocages vivants syntaxiques, il est possible de construire syntaxiquement
l’IOSTS suspendu correspondant (un IOSTS suspendu est défini de manière
semblable à un IOLTS suspendu, voir définition 3.9 page 44). Il est donc
possible d’étendre la relation

�����
à la relation

����� �
définie par J. Tretmans.

L’idée de l’extension à déjà été proposée dans [Rusu et al., 2004].

Avant de donner la définition formelle des relations de conformité
�����

et
����� 	��

pour des spécifications, des objectifs de test et des implémentations instanciés,
nous introduisons auparavant :

(1) l’ensemble des actions de sortie valuées pouvant être générées par un IOSTS
� avec un ensemble d’états # , quand � est dans un état � N parmi un
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ensemble d’états # N J�# est défini comme suit :
�
���

� # N �  0 $3Z
<[C 1 # � N Z # N �M�.Z # � � � N.WG �Y� 4 .

(2) l’ensemble des comportements acceptés d’un IOSTS
� � 6 � ��������� � 	�� �

qui contient les comportements de la spécification
�������

sélectionnés par
l’objectif de test 	�� de

�������
grâce à l’opération produit, défini comme

suit :
� � ��� 	 � � � ������ ���  0 � � �9� � W �G ��� W �G �
	��
�
�L������ W �G ������� 1

� � Z # �� � 
 �������FZ #��������� 
�$. ZB<�� � 

� /^Z � � ��0-, � � � � �
�:Z # ��� 
 $.�1Z < � ��� 4

où < � � est l’ensemble des actions valuées de
� � , # � � est l’ensemble des états

de
� � , # �� � est l’ensemble des états initiaux de

� � , et # �������� est l’ensemble
des états accepteurs de

� � défini comme suit : 0 � Z # � � 1 # 	�
 �������K� � �������
�(�?Z

�
�����[� Z 9<;?= � 6 ���D@ + � ��� � � � � 	�	�
�� � � �7� � �������
�(�"�����7� 4 .

Il est important de remarquer que l’opération produit nous permet de sélec-
tionner précisément les comportements de la spécification acceptée par
l’objectif de test. En effet, d’après cette définition, on sait qu’un com-
portement accepté du produit synchrone

� � est, à une projection près,
un comportement accepté de l’objectif de test 	�� . De plus, d’après les
théorèmes 5.3 et 5.4 (voir pages 126 et 132), sa projection est un comporte-
ment de la spécification

�������
. Intuitivement,

� � ��� 	 � � � ������������� � 	���� et� ��� 	 � � � ������������ � � � � ��� 	 � � � ����� 	���� sont égaux à une projection près.

(3) l’ensemble des traces acceptées du produit synchrone
� � � ��������� � 	����

qui contient les traces de la spécification
�������

sélectionnées par l’objectif de
test 	�� de

�������
grâce à l’opération produit, noté

� 	 � 	 �������� ��� , est obtenu,
à partir de l’ensemble des comportements acceptés de

� � par la projection

sur les alphabets d’actions valuées d’entrée et de sortie de
� � .

Proposition 1.2 (Ensemble de traces acceptées de
� � ) Pour une

spécification
�������

et un objectif de test 	�� de
�������

, l’ensemble des traces
acceptées de leur produit

��������� 	�� est inclus dans l’ensemble des traces
de

�������
et dans l’ensemble des traces acceptées de 	�� , c’est-à-dire :

� 	 � 	 ����������������� 	��	 
�� 
�
� �^J 	 � 	 �������������� � � � 	 � 	 ������� 	����

Nous remarquons que, pour les traces acceptées du produit synchrone, il
est impossible d’obtenir l’égalité comme dans le cas des comportements
acceptés á cause de la projection. �

6Provient de la terminologie anglaise “Synchronous Product”.
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(4) l’ensemble des préfixes des traces acceptées
� 	 � 	 ��������� � � est défini comme

suit :
���������
	�������������������� �

�
( S��

���! 
� �#"�$ � �&%!')( N+*

�-, > ���/. , C��� � �1032 ( N N+* �-, > ���4. , C� � � �6587 (:9;( N< ( N N>=-?

où < > ��� et <DC� � sont les ensembles d’actions d’entrée et de sortie valuées de� � , et où / N@ / N N est l’opération de concaténation entre deux mots / N et / N N .
(5) l’ensemble des préfixes stricts de

� 	 � 	 ����� �� � � qui ne sont pas des traces
acceptées de

� � , est défini comme suit :
�A���������
	����������������/��� 9 �
�������B�
	/�A�����C�C�����A�/���EDF	/�A���������G��������

Définition 1.4 (Relations de conformité
�����

et
����� 	�� ) Soient

�������
une spé-

cification instanciée, 	�� un objectif de test instancié de
�������

, et ��� � une implé-
mentation modélisée par une IOSTS instanciée

������
. Alors :

(1) l’implémentation est conforme à la spécification, noté
� �� � � � ��� ������� � , si pour

toutes les traces / Z 	 � 	 �������������� � :
�
���

�  ����� ��� �	�� / �)J �
���

�������� ��� �	�� / � .
(2) l’implémentation est conforme à la spécification relativement à l’objectif

de test, noté
�  ����� ��������� ������� � , si pour toutes les traces / Z� � ���IH � � 	 � 	 ����������������� 	���� � :

�
���

� ������ ��� �	 � / �^J �
� �

�������� ��� �	�� / � . �

Intuitivement, une implémentation est conforme à une spécification donnée
si, après chaque trace de la spécification, les actions de sortie possibles de
l’implémentation sont inclues dans celles de la spécification. Dans le second cas,
l’inclusion doit être toujours vraie après chaque préfixe strict d’une trace de la
spécification qui est sélectionné par un objectif de test donné grâce à l’opération
produit.

La définition des relations de conformité
�����

et
����� 	�� est étendue au cas général

(autrement dit aux spécifications, aux cas de test et aux implémentations non-
instanciées) dans les sections 6.3 et 6.8 du chapitre 6. Dans ces mêmes sections, le
lecteur peut également trouver les exemples illustrant ces relations de conformité.

1.3.3.5 Cas de test

Les cas de test introduits dans ce paragraphe jouent un rôle central dans le test.
Au cours de l’exécution, les cas de test interagissent avec les implémentations sous
test, observent leurs sorties et, en se basant sur ces observations, génèrent des
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verdicts de test. La définition formelle d’un cas de test est donnée à la section 6.4
du chapitre 6 (voir page 143). Nous ne donnons ici qu’un bref résumé de cette
définition. Ainsi, un cas de test est un IOSTS 	 � 7 contenant trois ensembles
disjoints de localités � � � � , � � � ��� ��� � � � � 	

et � � � � telles que : 	 � est initialisé (voir

page vi), déterministe (voir page vii) et complet en entrée (voir page vii).

(cPrice > 0 and vPaid = 0 and vBeverage = TEA)

<Begin,Begin>

<Pay,Begin>

(pCoinValue > 0) 
 Coin ! (pCoinValue) 

 vPaid := 0 + pCoinValue

<Choose,Begin>

(pRemaningValue = vPaid - cPrice) and (vPaid >= cPrice) 
 Return ? (pRemaningValue) 

 vPaid := cPrice

Inconclusive

(pRemaningValue = vPaid - cPrice) and (vPaid < cPrice) 
 Return ? (pRemaningValue)

<Delivery,Begin>

ChooseBeverage ! (pBeverage) 
 vBeverage := pBeverage

Pass

(pBeverage = vBeverage) and (pBeverage = COFFEE) 
 Deliver ? (pBeverage)

(pBeverage = vBeverage) and not(pBeverage = COFFEE) 
 Deliver ? (pBeverage)

Figure 1.3: Cas de test.

Exemple 1.2 (Cas de test) La figure 1.3 présente un exemple de cas de test
pour une machine à café obtenu à partir de la spécification montrée dans la
figure 1.1 (voir page iv) et de l’objectif de test représenté sur la figure 1.2 (voir

page xii). Il couvre tous les comportements de la spécification qui sont ciblés par
l’objectif de test, c’est-à-dire qui acceptent un seul paiement et n’incluent pas la
commande d’annulation. Notons que le cas de test montré à la figure 1.3 n’est
pas complet en entrée car, à cause de l’espace limité de la figure 1.3, nous n’avons
pas montré les localités étiquetées par le verdict Fail, dans lesquelles le cas de
test arrive si une implémentation sous test produit une sortie non autorisée par
la spécification. �

1.3.3.6 Exécution de test et verdict de test

L’exécution de test est le processus qui consiste à exécuter un cas de test 	 �
sur une implémentation concrète sous test ��� � , d’observer des réponses de ����� ,
et, basé sur ces réponses, de générer un verdict de test. Dans cette thèse, nous

7Provient de la terminologie anglaise “Test Case”.
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modélisons l’exécution de test par la composition parallèle entre 	 � et le modèle�� � �
d’ ����� .

Avant de formaliser la notion de verdict de test, nous notons d’abord par �������
(resp. �����.;	����
��� ����� , ��� ��
 ) l’ensemble des états d’un cas de test donné dont
les localités sont dans l’ensemble � � � � (resp. � � � ��� ��� � � � � 	

, � � � � ).
Puis, nous considérons un cas de test 	 � et une implémentation sous test ��� �

modélisée par
�� � �

. Pour une trace / Z � �� � � 1 1 	 � � , le cas de test 	 � produit
le verdict ��	 ��� (resp. � � � � � � � � � ��� � , � 	 � � ) si l’état dans lequel 	 � arrive après /
appartient à ������� (resp. �����.;	����
���� ����� , ��� ��
 ). Formellement :

Définition 1.5 (Verdict de test) Soit / une trace de
� ������ 1 1 	 � � , alors :

� � 	�� � � ����� / � � ��	 ��� � ��� � 	 � ��� �	�� / J ������� �� � 	�� � � ����� / � ��� 	 � � � ��� � 	 � ��� �	�� / J ��� ��
��� � 	�� � � ����� / � ��� � � � � � � � � ��� � ����� � 	 � ��� �	�� / J �����.;	����
��� ����� �
�

Nous remarquons que pour une implémentation donnée, un cas de test produit
toujours le même verdict de test pour toute exécution d’une même trace sur cette
implémentation. Ceci provient directement du fait que tout cas de test 	 � est
un IOSTS initialisé et déterministe. Ainsi, il n’est pas difficile de montrer que
pour chaque trace / Z 	 � 	 �������  ����� 1 1 	 � � (qui est aussi une trace de 	 � à cause
de l’item (1) de la proposition 1.1, page x), tous les états de 	 � appartenant à� 	 � ��� �	�� / � correspondent exactement à une localité du cas de test 	 � . Néan-
moins, parce qu’une implémentation sous test peut avoir plusieurs réactions sur
une entrée depuis le testeur, un cas de test peut produire plusieurs exécutions
possibles donnant différents verdicts de test pour la même implémentation. Ainsi,
une implémentation sous test peut être rejetée, acceptée, ou peut produire le ver-
dict � � � � � � � � � ��� � pour le même cas de test en suivant différentes traces possibles
de la composition parallèle entre le cas de test et l’implémentation. De manière
formelle : un cas de test 	 � peut rejeter une implémentation ��� � modélisée par�� � �

s’il existe une trace / dans la composition parallèle entre
������

et 	 � après
quoi 	 � produit le verdict Fail, c’est-à-dire :

� 	 �! ��" _ ��� � � ������ �  # / Z 	 � 	 ������� �� � � 1 1 	 � � � � � 	 � � ����� � / � �#� 	 � ���
Les relations

 ��" _ $ � � � et
 ��" _ � � � � � �

peuvent être définies de la même manière
que la relation de rejet possible

 ��" _ ��� � � .

1.3.3.7 Propriétés attendue des cas de test

Dans les sous-sections précédentes nous avons introduit deux notions significatives
utilisées en test de conformité : les cas de test (voir section 1.3.3.5, page xv) et
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les relations de conformité (voir section 1.3.3.4, page xiii). L’objectif de cette
sous-section est d’établir le lien entre ces deux notions définies indépendamment.
Nous savons que ce lien existe. En effet, comme le but des cas de test est de nous
donner des informations sur la conformité d’une implémentation par rapport à
sa spécification, le cas de test doit conserver certaines propriétés de la relation
de conformité. Par exemple, produire le verdict � 	 � � doit impliquer la détection
de non-conformité dans une implémentation sous test. On dit alors que le cas de
test est non biaisé. En outre, nous définissons aussi plusieurs propriétés de cas de
test qui nous permettent de relier les cas de test non seulement aux spécifications
et aux implémentations, mais aussi aux objectifs de test.

La définition de telles propriétés est donnée plus bas. Il est essentiel de re-
marquer qu’elles sont ici formulées pour des spécifications, des objectifs de test,
des cas de test et des implémentations instanciées. On trouvera les définitions
générales de ces propriétés aux sections 6.6 et 6.10 du chapitre 6.

Définition 1.6 (Propriétés des cas de test) Soit
�������

une spécification
instanciée, 	�� un objectif de test instancié de

�������
, 	 � un cas de test

instancié généré automatiquement depuis
�������

et 	�� , et � ��� � un ensemble
d’implémentations sous test instanciées. Alors :

(1) 	 � est non biaisé pour
�������

et � ��� � , si pour chaque implémentation �����?Z
� � � � modélisée par

�� � �
:

�  � � � � ��� ������� � � � �
� 	 �  ��" _ ��� � � �� � � �

(2) 	 � est relativement complet pour
�������

, 	�� et � ��� � , si pour chaque implé-
mentation �����)Z � ��� � modélisée par

 �����
:

�
� �� � � ��������� ������� � � � � 	 �! ��" _ ��� � � ������ �

(3) 	 � est précis pour
�������

, 	�� et � ��� � , si pour chaque implémentation ����� Z
� � � � modélisée par

�� � �
et chaque trace / Z 	 � 	 �������  ����� 1%1 	 � � :

� � 	 � � ������� / � � ��	 ��� � � � � / Z � 	 � 	 ����������������� 	���� �

(3) 	 � est concluant pour
�������

, 	�� et � � � � , si pour chaque implémentation
����� Z � � � � modélisée par

�� � �
et chaque trace / Z 	 � 	 �������  ����� 1 1 	 � � :

� � 	 � � � ��� � / � ��� � � � � � � � � ��� � � � � / Z � 	 � 	 ��������������� � @ < C������� � 	 � 	 �������������� � �


/ �Z � � �IH � � 	 � 	 ���������������� 	�� � �
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�

Intuitivement, dire que le cas de test est non biaisé signifie qu’il ne rejette pas
les implémentations conformes (dans un ensemble donné). Cette propriété peut
être satisfaite en pratique, mais elle n’est pas suffisante en général. Par exem-
ple, un cas de test acceptant toutes les implémentations possibles est non biaisé.
L’exhaustivité relative signifie que le cas de test peut détecter, dans un ensemble
donné, toutes les implémentations non conformes avec la spécification relative-
ment à l’objectif de test. Précision signifie que le verdict ��	 ��� est donné lorsque
la trace observée de l’implémentation est une trace de la spécification qui est
sélectionnée par l’objectif de test. Cas de test concluant signifie que le verdict
� � � � � � � � � ��� � est donné quand la trace observée de l’implémentation est une trace
de la spécification qui finit par une action de sortie mais aucun prolongement de
cette trace ne peut produire le verdict ��	 ��� . Toutes les propriétés d’un cas de test
sont illustrées par des exemples intuitifs aux sections 6.6 et 6.10 du chapitre 6.

Enfin, nous introduisons le concept de cas de test correct. Intuitivement, cela
signifie que le cas de test donne toujours le bon verdict lorsqu’il est exécuté sur
une implémentation sous test donnée. Formellement :

Définition 1.7 (Cas de test correct) Un cas de test 	 � est correct pour un
ensemble � � � � d’implémentations s’il est non biaisé par rapport à

�������
et � ��� � ; et

relativement exhaustif, précis et concluant par rapport à
�������

, � ��� � et 	�� (voir

définition 1.6, page xviii). �

1.3.4 Principes de la génération de tests symboliques

L’approche symbolique de génération de tests proposée dans cette thèse se décom-
pose en plusieurs étapes résumées dans la figure 1.4 (voir page xx). Elle prend en
entrée une spécification

�������
et un objectif de test 	�� de

�������
. Comme on accepte

les objectifs de test incomplets, le premier pas de cette approche est de les rendre
complets par rapport à leurs spécifications. Dans un second temps, on va calculer
le produit entre la

�������
donnée et le 	�� complété afin de marquer les comporte-

ments de
�������

comme étant soit acceptés, soit rejetés par l’objectif de test, et on
va obtenir le produit synchrone

� � (voir figure 1.4, page xx). La troisième phase
construit les comportements déterministes visibles de

� � . En d’autres termes,
elle va supprimer les actions internes et les choix non-déterministes possibles de� � . Le résultat de cette étape est noté

� � � ��� (voir figure 1.4, page xx). L’étape
suivante, la sélection, consiste à extraire de

� � � ��� ses comportements permettant
d’aller de la localité initiale aux localités Pass ou Inconclusive. Le résultat de la
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Cas de test 	 � avec les localités
��	 ��� , � � � � � � � � � ��� � et � 	 � �

Complétion de 	�

en entrée

Graphe de test 	�
 avec les localités ��	 ��� et � � � � � � � � � ��� �

Sélection et inversement
d’actions d’entrée et de sortie de

� � � ���

� � � ��� déterministe

Clôture & déterminisation
(si possible)

Produit synchrone
� � avec les

localités
� �������

� et
� ��� ���

�

Produit

Spécification
������� 	�� complet

Complétion de 	��

Objectif de test 	��

Figure 1.4: Génération de test symboliques.
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sélection est appelé graphe de test et noté 	�
 8. En outre, durant la sélection,
nous inversons les alphabets des actions d’entrée et de sortie de 	�
 rendant 	�

apte à communiquer avec les implémentations sous test au cours du processus
d’exécution de test. Enfin, en rendant 	�
 complet en entrée, nous obtenons un
cas de test 	 � .

1.3.4.1 Rendre complet un cas de test

Dans la théorie du test présentée dans ce document, les cas de test, jouant le rôle
de mécanisme de sélection, doivent être complets par rapport à leur spécification.
En pratique, cette exigence complique souvent le processus d’écriture des objectifs
de test. Ainsi, nous décidons d’accepter des objectifs de test incomplets de la
part du programmeur et de les compléter automatiquement à la première étape
du processus de génération de tests. Ceci nous permet de nous focaliser sur
les comportements souhaités du système sous test en simplifiant sensiblement le
processus d’écriture de l’objectif de test.

Néanmoins, il est facile d’assurer syntaxiquement la complétion de l’objectif de
test par rapport à sa spécification. En effet, s’il existe une transition symbolique
sortant d’une localité 
 , étiquetée par une action % et qui ne mène pas à la localité� ��� ���

� , alors, nous ajoutons une transition symbolique de 
 à
� ��� ���

� , gardée par
la négation de la disjonction de toutes les gardes des transitions étiquetées par
l’action % et sortant de 
 . Sinon, nous ajoutons une boucle sur 
 étiquetée % . Le
lecteur peut trouver l’algorithme qui rend complet un objectif de test donné par
rapport à sa spécification à la section 7.1 du chapitre 7. Enfin, la figure 1.5(b)
illustre un objectif de test complet obtenu à partir de la spécification montrée à la
figure 1.1 et l’objectif de test dépeint à la figure 1.5(a) par l’algorithme expliqué
intuitivement plus haut.

1.3.4.2 Produit synchrone

Pour l’étape suivante de notre méthode de génération de tests, nous calculons
un produit synchrone

� � entre une spécification
�������

et un objectif de test 	��
complet relativement à

�������
(voir section précédente). Le but de cette phase est

d’identifier les comportements de
�������

comme acceptés par 	�� . L’idée d’utiliser
l’opération produit afin de marquer les comportements de

�������
a déjà été em-

ployée en génération de tests, voir par exemple les articles suivants [Jéron and
Morel, 1999], [Jard and Jéron, 2002]. Nous construisons le produit synchrone� � à partir des

�������
et 	�� donnés en utilisant l’opération produit définie au

paragraphe Produit page ix.

8Provient de la terminologie anglaise “Test Graph”.
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(pBev = COFFEE)
Deliver ! (pBev) Cancel ? (vPaid < cPrice)

Return ! (pRemVal)

Start

Begin

Accept Reject

(a) Objectif de test ��� .

Begin tau Coin ? ChooseBeverage ?
not (vPaid < cPrice) 
 Return ! (pRemVal)

Accept

(pBev = COFFEE) 
 Deliver ! (pBev)

Reject

Cancel ? 
(vPaid < cPrice) 

 Return ! (pRemVal)
not (pBev = COFFEE) 

 Deliver ! (pBev)

* *

(b) Objectif de test complet ����� .

Figure 1.5: Rendre complet un objectif de test donné ��� par rapport à sa spé-
cification � montrée à la figure 1.1 (voir page iv).

Il est important de souligner que comme 	�
��� et ��� sont compatibles pour
l’opération produit, et que ��� est complet par rapport à 	�
��� , alors, à cause du
second point de la Proposition 1.1 (voir page x), nous obtenons que l’opération
produit conserve l’ensemble des traces de 	�
��� , c’est-à-dire : �������������	�
�������
�������������	�
��������� !#" $%'& � .

Il est aussi important de signaler que les comportements acceptés du produit
synchrone 	�
���(�)��� sont, à une projection près, les comportements de 	�
���
acceptés par ��� . Par contre, nous avons obtenu seulement l’inclusion des traces
acceptées de 	�
���*�+��� dans l’intersection des traces de 	�
��� et des traces accep-
tées de ��� , c’est-à-dire : ,-�������������	�
���.�/���0�-12�������������	�
�����435,-����������6�7���0� .
Cette inclusion provient de la projection (voir la proposition 1.2 page xiv).

Exemple 1.3 (Produit synchrone) La figure 1.6 (voir page xxiii) montre le
résultat du calcul du produit pour la spécification d’une machine à café (voir
figure 1.1, page iv) et pour l’objectif de test de cette spécification décrit à la
figure 1.5(b) (voir page xxii). Le but de cet exemple est de souligner le fait
que l’opération produit marque des localités de la spécification donnée avec
,8���#
:9 , rendant les comportements qui y mènent acceptés par l’objectif de
test. Les comportements acceptés du produit calculé apparaîssent en vert sur
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(cPrice > 0) and (vPaid = 0) and (vBeverage = TEA)

<Begin,Begin>

<Idle,Begin>

tau 
 vPaid := 0

<Pay,Begin>

(pCoinValue > 0) 
 Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue) 

<Return,Reject>

Cancel ? 
  

((pRemaningValue = cPrice - vPaid) and 
 (vPaid < cPrice) and not(vPaid < cPrice)) 

 Return ! (pRemaningValue)

<Idle,Reject>

((pRemaningValue = cPrice - vPaid) and 
 (vPaid < cPrice)) 

  Return ! (pRemaningValue)

<Choose,Reject>

((pRemaningValue = vPaid - cPrice) and 
 (vPaid >= cPrice) and (vPaid < cPrice)) 

 Return ! (pRemaningValue) 
 vPaid := cPrice

<Choose,Begin>

((pRemaningValue = vPaid - cPrice) and 
 (vPaid >= cPrice) and not(vPaid < cPrice)) 

 Return ! (pRemaningValue) 
 vPaid := cPrice

<Begin,Reject>

(pRemaningValue = vPaid) 
  Return ! (pRemaningValue)

Cancel ?

<Pay,Reject>

(pCoinValue > 0) 
  Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue)

Cancel ?

<Delivery,Reject>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

Cancel ?

<Delivery,Begin>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

tau 
 vPaid := 0

((vPaid < cPrice) and 
 (pRemaningValue = cPrice - vPaid)) 

  Return ! (pRemaningValue)

((vPaid >= cPrice) and 
 (pRemaningValue = vPaid - cPrice)) 

  Return ! (pRemaningValue) 
 vPaid := cPrice

(vBeverage = pBeverage) 
  Deliver ! (pBeverage)

((vBeverage = pBeverage) and 
 not(pBeverage = COFFEE)) 

  Deliver ! (pBeverage)

<Begin,Accept>

((vBeverage = pBeverage) and 
 (pBeverage = COFFEE)) 

  Deliver ! (pBeverage) 
  

<Idle,Accept>

tau 
 vPaid := 0

<Pay,Accept>

(pCoinValue > 0) 
  Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue)

<Return,Accept>

Cancel ?

((vPaid < cPrice) and 
 (pRemaningValue = cPrice - vPaid)) 

  Return ! (pRemaningValue)

<Choose,Accept>

((vPaid >= cPrice) and 
 (pRemaningValue = vPaid - cPrice)) 

  Return ! (pRemaningValue) 
 vPaid := cPrice

(pRemaningValue = vPaid) 
  Return ! (pRemaningValue)

Cancel ?

<Delivery,Accept>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

(vBeverage = pBeverage) 
 Deliver ! (pBeverage)

Figure 1.6: Produit synchrone �� � � �� �� � � � .
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la figure 1.6 (voir page xxiii). Tous les autres comportements, imprimés en
rouge, sont considérés comme rejetés. Les comportements rejetés indiquent les
comportements de la spécification pour lesquels le cas de test ne sera pas généré.
Ils seront éliminés au cours des étapes suivantes de la méthode de génération de
tests. �

Les prochains pas de la méthode de génération de tests décrite dans le reste de ce
chapitre consistent à transformer et à simplifier le produit 	�� � ��	�
��� � ���0� afin
d’obtenir un cas de test correct dans le sens de la définition 1.7 (voir page xix).

1.3.4.3 Construction de comportements visibles

Il est important d’insister sur le fait que le test n’autorise pas le non-déterminisme
car les verdicts de test ne doivent pas dépendre des choix internes du testeur.
C’est pourquoi cette étape de la méthode de génération de tests est réservée à
l’élimination des actions internes de l’IOSTS 	�� , c’est-à-dire à la construction de��� �����
	�� �#	��0� , et à la résolution de choix non-déterministes restant pour les actions
d’entrée/sortie de  ��� � ��� �����
	�� �#	��-� � . Pour cela, nous proposons les opérations
syntaxiques de clôture et de déterminisation telles que :

������������#	��0��� ������������ ��� �����
	�� �#	��-� � � ����������6�� ��� � ��� �����
	�� ��	��0� �'� (1.1)

,-������������#	��0��� ,-������������ ��� �����
	�� �#	��-� � � ,-������������� ��� � ��� �����
	�� ��	��0� �'� (1.2)

Les procédures de clôture et de déterminisation et leurs propriétés sont décrites
aux sections A.1 et A.2 du chapitre 7, et brièvement résumées dans les deux
paragraphes suivants.

Clôture : éliminer les actions internes. Pour éliminer des actions internes
de 	�� , l’idée est de calculer l’effet de toute séquence d’actions internes qui mène
à une transition symbolique étiquetée par une action d’entrée ou de sortie, et de
coder cet effet dans la garde et les affectations de la dernière transition symbol-
ique.

Ceci résulte en une procédure syntaxique simple qui termine si l’IOSTS 	��
n’a pas de blocages vivants syntaxiques (c’est-à-dire des cycles d’actions internes).
Ceci est une hypothèse courante en test de conformité [Tretmans, 1999] posée pour
l’ensemble de ce travail de recherche. Soit ���

���� � �����������! 
��"� � �� �#$� une séquence de

transitions symboliques étiquetées par les actions internes %&��'������(%� et menant
à la transition symbolique �� �#$�

)� � �� *#+� étiquetée par l’action , d’entrée ou de
sortie (voir figure 1.7(a), page xxv). Supposons que les gardes et les affectations
correspondant à %.- ( / �10&�2�43 ) sont 56- et 78- ; et que les gardes et les affectations
correspondant à , sont 5 ) et 7 ) . Alors, cette séquence est remplacée par une
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��� ��� ��� �����	� ��

� � �� �

� � �� �
� 


����� 
��� 


(a) Un fragment d’un IOSTS ��� montrant une de ses séquences d’actions internes.

��� ��

� ��� � � ��� � ��������� ��� � � �!� � �#"$�%�&������� � �'�(� � � 
)� � �!� � ��"$���&������� � �'�

����� 
#�� 
)� � �!� � ��"*�%�&������� � �

(b) Un fragment de l’IOSTS +#, -/. 021�3245���76 obtenu à partir de ��� par la procédure de
clôture.

Figure 1.7: Un exemple de l’IOSTS ��� �����
	�� �#	��-� .

transition symbolique d’origine ��� , de destination �� �#+� , d’action , , de garde 5 �98
� 56�;: 7 �'�<8 �����/8 ��56 =: 7  *> �?: ������76���@8 ��56 A: 78 =: 78 $> �?: � ��� 7 �'� , et d’affectations
7 ) : 78 B: 7  *> �C:6� ����76� , où : est le symbole de la composition de fonctions (voir
figure 1.7(b), page xxv).

Déterminisation. La déterminisation consiste à retarder l’effet d’un choix non-
déterministe sur les actions observables qui le suivent. Par exemple, cela revient
à transformer en trois transitions deux transitions symboliques (avec les gardes
non-exclusives 5 � et 5 � et les affectations 7 � et 78� voir figure 1.8(a), page xxvi).
Une transition pour le cas où ��5 �=8ED 56� � est vrai, une autre pour le cas où
��D 5 �/8 5 � � est vrai, et la dernière pour le cas où � 5 �F8 5 � � est vrai. Dans ce dernier
cas, le choix d’affecter les variables selon 7 � ou 78� est retardé jusqu’à l’action
observable qui suit. Ainsi, si G est la prochaine action, alors l’affectation 7 � doit
avoir été exécutée, donc l’affectation est composée de la garde et de l’affectation
correspondant à G , ce qui produit la garde � 5�H;: 76��� et les affectations 7IH;: 76� .
De la même manière, si J est la prochaine action, alors 7 � doit être exécuté, ce
qui produit la garde ��5LK<: 78� � et les affectations 7MK?: 78� . Le résultat de l’IOSTS
obtenu par la procédure expliquée plus haut est montré à la figure 1.8(b) (voir
page xxvi).

Il est important de remarquer que cette procédure peut ne pas terminer (par
exemple si G � , et �NH � � , le retard continue à l’infini). Cependant, elle termine
pour un IOSTS appartenant à la sous-classe non-triviale des IOSTS déterministes
à l’horizon O , qui est définie à la section A.2.4 du chapitre 7.
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�

��� ���

��� ���

� �	�
������ �
� �	�
������ �

� �� 
� � �� �
� ���
�� � �� �

(a) Fragment d’un IOSTS ��� ������� ��!#"%$'& , où les transitions (�)
et (+* qui sont impliquées dans un choix non-déterministe,
sont montrées en pointillé.

,

,�- ,�.

,�/ ,�0

, - 1 .

2�3 -5476 3 .+89 2:�; 8< -
2 6 3 -54 3 .#89 2:�; 8< .2=3 ->4 3 .+89 2�:�; 8

2�3 /�? < -@8A 2: / 82 < /�? < -B8
2�3 05? < .+8C 2�: 0 82 < 0D? < .+8

3 /A 2: / 8< /
3 0C 2�: 0 8< 0

(b) Fragment de l’IOSTS EDFHGJILK�M N�O�P�Q F�I#R%S'TUT obtenu à par-
tir de K�M N�OJP5QVF5I+R%S'T par la procédure de déterminisation (les
localités et transitions symboliques nouvelles ou modifiées
sont montrées en pointillé).

Figure 1.8: Déterminisation d’un IOSTS WYX Z\[�]_^@`baHcedgf .
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Exemple. La figure 1.9 page xxvii illustre l’IOSTS 	����(-�� �  �.� � ��� �����
	�� �#	��0�'�
obtenu après extraction des comportements observables de l’IOSTS 	�� montré à
la figure 1.6 page xxiii (c’est-à-dire après application des procédures de clôture et
de déterminisation expliquées dans les deux derniers paragraphes). Les transitions
en bleu sur cette figure indiquent deux nouvelles transitions symboliques qui
remplacent les deux séquences d’actions internes de l’IOSTS 	�� .

1.3.4.4 Sélection d’un graphe de test

L’étape de sélection de notre méthode symbolique de génération de tests con-
fère son originalité à la méthode. Elle consiste à transformer l’IOSTS 	����(-��.�
 �.� � ��� �����
	�� �#	�
��� � ���-�'� obtenu à la suite de la phase précédente en un graphe de
test � � qui :

(1) (a) peut conduire à satisfaire l’objectif de test ��� à partir duquel 	���� -�� a
été généré, et

(b) contient “moins” d’états inaccessibles que l’ IOSTS 	���� -�� .
Afin de résoudre ces deux problèmes, l’algorithme va utiliser l’information
donnée sur les états accessibles et co-accessibles de 	����(-�� qui sont définis
comme suit :

– � ����	����
�� -�� � � ������
��(-���������� ������������#	���� -���� '�������
�� -�� �! "���$#%
�'&�( est l’ensemble de tous les états de 	����(-�� qui sont accessibles à partir
d’un état initial � � �)
 ��(-�� .

– *,+-� ����	� �.
 ) K K�(-�� �/� ���0�1
�� -���������� �3254�(-��!6 2�7�(-�� �98�'�� ) K K �1
 ) K K� -�� �! :�/#%
� ) K K &3( est l’ensemble des états de 	��;�(-�� qui peuvent mener à l’ensemble
des états d’acceptation 
 ) K K�(-�� de 	���� -�� .

(2) est capable de communiquer avec une implémentation sous test <>=�9?�A@B= 9 � .
Ceci signifie que les actions d’entrée de <>=�9 doivent être considérées comme
des actions de sortie de � � , et vice versa. Notons que les actions de l’IOSTS
	���� -�� ont les mêmes directions (entrée/sortie) que les actions de <>= 9 (voir
la construction de 	��;�(-�� ). Ainsi, pour obtenir le graphe de test qui peut
communiquer avec <>=�9 , les directions des actions de 	���� -�� doivent être in-
versées.

Il faudrait donc extraire de 	���� -�� la partie utile, c’est-à-dire un IOSTS dont
l’ensemble des traces soit exactement l’ensemble des préfixes stricts des traces
acceptées de 	��;�(-�� . Ceci repose sur le calcul de l’intersection de l’ensemble
des états accessibles à partir des états initiaux de 	����(-�� et de l’ensemble
des états co-accessibles à partir des états d’acceptation de 	����(-�� , c’est-à-dire
� ����	� �.
C��(-�� � 3D*,+-� ����	� �.
 ) K K�(-�� � . Or un calcul exact de cet ensemble d’états est en
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(cPrice > 0) and (vPaid = 0) and (vBeverage = TEA)

<Begin,Begin>

<Pay,Begin>

(pCoinValue > 0) 
 Coin ? (pCoinValue) 

 vPaid := (0 + pCoinValue) 

<Return,Reject>

Cancel ? 
 vPaid := 0

<Idle,Begin>

(pCoinValue > 0) 
 Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue) 

Cancel ?

((pRemaningValue = cPrice - vPaid) and 
 (vPaid < cPrice) and not(vPaid < cPrice)) 

 Return ! (pRemaningValue)

<Idle,Reject>

((pRemaningValue = cPrice - vPaid) and 
 (vPaid < cPrice)) 

  Return ! (pRemaningValue)

<Choose,Reject>

((pRemaningValue = vPaid - cPrice) and 
 (vPaid >= cPrice) and (vPaid < cPrice)) 

 Return ! (pRemaningValue) 
 vPaid := cPrice

<Choose,Begin>

((pRemaningValue = vPaid - cPrice) and 
 (vPaid >= cPrice) and not(vPaid < cPrice)) 

 Return ! (pRemaningValue) 
 vPaid := cPrice

<Begin,Reject>

(pRemaningValue = vPaid) 
  Return ! (pRemaningValue)

Cancel ?

<Pay,Reject>

(pCoinValue > 0) 
  Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue)

Cancel ?

<Delivery,Reject>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

Cancel ?

<Delivery,Begin>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

tau 
 vPaid := 0

((vPaid < cPrice) and 
 (pRemaningValue = cPrice - vPaid)) 

  Return ! (pRemaningValue)

((vPaid >= cPrice) and 
 (pRemaningValue = vPaid - cPrice)) 

  Return ! (pRemaningValue) 
 vPaid := cPrice

(vBeverage = pBeverage) 
  Deliver ! (pBeverage)

((vBeverage = pBeverage) and 
 not(pBeverage = COFFEE)) 

  Deliver ! (pBeverage)

<Begin,Accept>

((vBeverage = pBeverage) and 
 (pBeverage = COFFEE)) 

  Deliver ! (pBeverage) 
  

<Idle,Accept>

tau 
 vPaid := 0

<Pay,Accept>

(pCoinValue > 0) 
  Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue)

<Return,Accept>

Cancel ?

((vPaid < cPrice) and 
 (pRemaningValue = cPrice - vPaid)) 

  Return ! (pRemaningValue)

<Choose,Accept>

((vPaid >= cPrice) and 
 (pRemaningValue = vPaid - cPrice)) 

  Return ! (pRemaningValue) 
 vPaid := cPrice

(pRemaningValue = vPaid) 
  Return ! (pRemaningValue)

Cancel ?

<Delivery,Accept>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

(vBeverage = pBeverage) 
 Deliver ! (pBeverage)

Figure 1.9: Un exemple d’IOSTS �� �� � � � �� ��� 	 
� � � � �� � � .
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général impossible, les problèmes d’accessibilité et de co-accessibilité étant in-
décidables pour les IOSTS. Donc, nous sommes obligés de calculer seulement
des sur-approximations de ces ensembles, que nous utilisons dans l’algorithme de
sélection décrit plus bas.

Algorithme 1.1 (Sélection de graphe de test) Soient

– 	���� -�� � � ��� �(-�� 6�� �(-�� 6�� �(-���� '����(-���'��3��(-�� '
	�(-���'7���?4�(-�� 6 �;7�(-�� � '� �(-���� un IOSTS
obtenu à partir d’une spécification 	�
��� et d’un objectif de test ��� de 	�
���
en appliquant les opérations de produit et de clôture, et en exécutant la
procédure de déterminisation,

– � ������� ��	���� -���� et � � � ������� ��	���� -���� deux prédicats caractérisant les sur-
approximations des ensembles d’états accessibles et co-accessibles de
l’IOSTS 	��;�(-�� , et

– pour chaque localité ����	�(-�� de 	����(-�� , 	���� ��� � �#� et �.� 	���� ��� ��� � deux prédi-
cats qui caractérisent les sur-approximations des états accessibles et co-
accessibles de la forme

� �('
��� , où � ����� � �!� �(-�� 6"� �(-���� .
Dans la suite, nous utilisons également la notation � �
	�������� ��� �' #�%$.7;& , où 7 est
un ensemble d’affectations pour les variables � et � est une localité. Cette
notation identifie le prédicat caractérisant la sur-approximation des états
co-accessibles de la forme

� �('
�&� , où chaque variable ' �(� est substituée au
côté droit des affectations 7�� � 7 correspondantes.

Alors le graphe de test � 5 est l’IOSTS

� ���*),+ 6"� ),+ 6-� ).+ � '/�0).+ ' � � ).+ '1	2),+ ' �!� 4 ),+�6 � 7 ),+ � '3�4).+5�

obtenu à partir de 	��;�(-�� comme suit :

(1) �6).+ �7� �(-�� , � ).+-� � �(-�� et � ),+-� � �(-�� .

(2) �0),+ �7���(-��;88� � � ��� ��� ��	����(-���� .
(3) If � ��(-�� � , ���#
:9 , alors �3� ),+ � � �7��� . Sinon, � � ).+ � � ��(-�� .

(4)9 �?4 ),+ �9�;7� -�� et �;7 ),+ �7�?4�(-�� .
9Afin d’obtenir un graphe de test �;: apte à communiquer avec une implémentation sous

test, nous devons inverser les alphabets des actions d’entrée/sortie de l’IOSTS �7�4<>=@? .
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(5) L’ensemble des transitions symboliques de � � est : � ).+ � � �����).+ 6 � � ���
	����),+ ,
où :

(a)
 �����).+ � ����������������� ),+ ������� ).+��! "$# ���%�����������&���'���)( �+*  � -���,.- �+/021435376�8:9<; � * "$= 4�(-��.> = 7� -��7?$@)? ;" � ).+ 0 " � ;BA�CEDGFIH " � ? ;JFLKMA�CEDGFIH " �)( ? -ON ),+QP � @)? est satisfiable ? ;" � ( 021R3�3�6%8:9<0TS � ).+ 02UWVGX�X ? ; " � ( /0214353�6%8:9<0TS � ).+ 0 � ( ?ZY
est l’ensemble des transitions menant soit à une localité � �7��� soit à
une localité à partir de laquelle il est possible d’atteindre une localité
� �7��� , et

(b)
 � ���
	����).+ � �[���%����������� ).+ ���'��\5] 35^ ] 3L_
`QX�acbM6 �d "$# ���%���e�������f������� ( �+*  �(-���,g- �h/021R3�3�6%8:9i; � * = 7�(-�� @)? ;" � ).+ 0 " � ;jA�CEDGFIH " � ? ;lk�FLKmA�CEDGFIH " � ( ? -ON&).+ P � @)? est satisfiable ?4Y
est l’ensemble des transitions menant à une localité Inconclusive et
étiquetée par une action d’entrée de � � .

(6) L’ensemble des localités 	/).+ se compose des origines et des destinations des
transitions symboliques calculées plus haut � ).+ , c’est-à-dire

	1).+ � noqp�r ) r smr t.r ugr pwvwxzyE{ ),+ � � '��
( (

�
L’algorithme de sélection est illustrée par l’exemple suivant.

Exemple 1.4 Considérons l’IOSTS 	����(-�� décrit à la figure 1.9 (voir page xxvii).
Alors, nous expliquons comment utiliser l’algorithme de sélection afin de produire
des graphes de test différents.

Si nous calculons les sur-approximations de l’ensemble des états accessibles et
co-accessibles basés uniquement sur la structure de contrôle de 	����(-�� (c’est-à-dire
que pour chaque localité � de 	��;� -�� , 	���� ��� � �#� et � �
	�������� � � � sont définis comme le
prédicat 
�8� � , où 
� est une variable de contrôle), alors nous obtenons le graphe
de test � � � montré à la figure 1.10(a) (voir page xxxi). Dans ce cas, l’algorithme
de sélection est très similaire à celui utilisé par la méthode de génération de tests
pour IOLTS [Jéron, 2004]. Notons que cette approximation est imprécise car elle
ne prend pas en compte les données de 	����(-�� .

Le second graphe de test � � � (voir figure 1.10(b), page xxxi) a été con-
struit en utilisant les sur-approximations des ensembles des états accessibles
et co-accessibles obtenus par l’analyse symbolique de 	����(-�� abstraite par
polyèdres [Cousot and Halbwachs, 1978], [Jeannet, 2000b] (dans ce cas 	�������� ��� �



G
én

ér
a
ti

o
n

d
e

te
st

s
sy

m
b

o
li
q
u
es

xx
xi

(cPrice > 0 and vPaid = 0 and vBeverage = TEA)

<Begin,Begin>

<Pay,Begin>

(pCoinValue > 0) 
 Coin ! (pCoinValue) 

 vPaid := 0 + pCoinValue

<Choose,Begin>

(pRemaningValue = vPaid - cPrice) and (vPaid >= cPrice) 
 Return ? (pRemaningValue) 

 vPaid := cPrice

Inconclusive

(pRemaningValue = vPaid - cPrice) and (vPaid < cPrice) 
 Return ? (pRemaningValue)

<Delivery,Begin>

ChooseBeverage ! (pBeverage) 
 vBeverage := pBeverage

Pass

(pBeverage = vBeverage) and (pBeverage = COFFEE) 
 Deliver ? (pBeverage)

(pBeverage = vBeverage) and not(pBeverage = COFFEE) 
 Deliver ? (pBeverage)

(a) � � �

(cPrice >= 1) and (vPaid = 0) and (vBeverage = TEA)

<Begin,Begin>

<Pay,Begin>

(cPrice >= 1) and (vPaid = 0) and (vBeverage = TEA) and 
 (pCoinValue >= 1) and (pCoinValue >= cPrice) 

 Coin ! (pCoinValue) 
 vPaid := 0 + pCoinValue

<Choose,Begin>

(cPrice >= 1) and (vPaid >= cPrice) and (vBeverage = TEA) and 
 (pRemaningValue = vPaid - cPrice) 

 Return ? (pRemaningValue) 
 vPaid := cPrice

<Delivery,Begin>

(cPrice >= 1) and (vPaid = cPrice) and (vBeverage = TEA) and 
 (pBeverage = COFFEE) 

 ChooseBeverage ! (pBeverage) 
 vBeverage := pBeverage

Pass

(cPrice >= 1) and (vPaid >= 1) and (vPaid = cPrice) and 
 (pBeverage = vBeverage) and (vBeverage = COFFEE) and 

 (pBeverage = COFFEE) 
 Deliver ? (pBeverage)

(b) � � �

Figure 1.10: Graphes de test obtenus à partir de l’IOSTS �� �� � montré à la figure 1.9 (voir page xxvii) par l’algorithme
de sélection.
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et � �
	�������� � � � sont plus précis que ceux calculés dans le cas précédent). Comme
on peut le voir aisément sur la figure 1.10 (voir page xxxi), la sélection basée
sur cette abstraction est plus précise que celle décrite plus haut. En effet,
elle supprime avec succès deux localités @�� B+��  � = �	<��6� qui apparaissaient dans
� � � . La première localité @�� B+��  � = �	<��6� est éliminée en renforçant la garde
de la première transition symbolique de � � � de telle façon qu’il est possible
d’atteindre la localité � �7��� . Pour cela, nous avons utilisé l’information que la
première somme payée doit être suffisante pour recevoir la boisson. La seconde
localité @�� B+��  � = �	<��6� est éliminée en utilisant le même principe que plus haut,
c’est-à-dire en renforçant la garde de la transition symbolique où l’utilisateur
choisit la boisson. En effet, nous obligeons l’utilisateur à choisir du café, ce qui
correspond évidement à ce qu’il souhaite, voir l’objectif de test de la figure 1.2
page xii. �

Nous allons maintenant étudier la relation de trace entre l’IOSTS 	����(-�� et le
graphe de test � � obtenu à partir de 	����(-�� par l’algorithme de sélection (voir
page xxix). Remarquons tout d’abord que l’algorithme n’ajoute aucune tran-
sition symbolique à 	��;� -�� mais restreint les gardes de certaines transitions et
renomme certaines localités de 	����(-�� dans “pass” ou “inconclusive”. Par con-
séquent, l’ensemble de traces de � � ne peut être plus grand que l’ensemble de
traces de 	��;�(-�� . Cependant, nous ne pouvons assurément pas obtenir l’égalité
entre �������������� � � et ������������#	��;�(-���� . En effet, le but de l’algorithme de sélec-
tion est de choisir (1) les traces de 	����(-�� menant aux états à partir desquels il
est possible d’aller vers les états d’acceptation, et (2) les traces de 	���� -�� se ter-
minant par une action d’entrée valuée et menant aux états à partir desquels il
est impossible d’aller vers un état d’acceptation, et dont les préfixes stricts sont
des traces conduisant aux états à partir desquels il est possible d’aller vers des
états d’acceptation. Dans le dernier cas, le graphe de test � � doit produire le
verdict @�� B+��  � = �	<��6� . (Étant donné que le problème de savoir si à partir d’un
état on peut atteindre un état accepteur est indécidable, nous calculons une sur-
approximation de l’ensemble des états possédants cette propriété.) Ainsi, il est
clair que l’ensemble de traces de � � est inclus dans l’ensemble de traces de 	����(-�� .
Dans la proposition ci-dessous, nous caractérisons l’ensemble des traces de 	���� -��
ainsi que ses sous-ensembles de traces menant aux états “pass” ou “inconclusive”.

Proposition 1.3 (Traces de � � ) Soit � � un graphe de test obtenu à partir
de l’IOSTS 	����(-��8�  �.� � ��� �����
	�� ��	�
���.� ���-� � , où 	�
��� est une spécification avec
l’alphabet des actions d’entrée valuées 2�7%��
	�� , et ��� est un objectif de test de
	�
��� . Alors :

(1) �������������� � � 1 �������������	���� -���� ,
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(2) ���������� ������� �7� � � 1�,-�������������	�
����� ���-� , plus précisément,

(2.a) ���������� ������� �7� � � � 	�� ��� � �#,-������������#	�
���0�����0�'� , et

(3) �������������� �
	 � � �7� *-� 1 �7����������6��	�
����� � 2 7%��
	�� 3 ����������6��	�
����� � �
�*��� � � ,-������������#	�
���0�����0� � .
Notons que si la calcul exact était possible, alors la dernière inclusion se
transforme en une égalité.

où ���������� ����
� �7� � � et �������������� �
	 � � �7� � � sont les ensembles de traces du graphe de
test � � conduisant respectivement aux états “pass” et “inconclusive” de � � . �

Les propriétés (1), (2) et (3) de traces d’un graphe de test � � sont formellement
prouvées dans la section 7.4 du chapitre 7. Il est aussi important de souligner
que nous avons obtenu un cas de test � � qui est déterministe (voir lemme 7.1,
page 195 au chapitre 7).

1.3.4.5 Rendre un graphe de test complet en entrée

La dernière étape de notre méthode symbolique de génération de tests consiste
à transformer le graphe de test � � , obtenu à partir d’une spécification 	�
��� et
d’un objectif de test ��� de 	�
��� par les opérations et algorithmes décrits dans les
sections précédentes, en un cas de test � * . À cause de la définition d’un cas de
test donnée page xv, le cas de test � * doit toujours réagir sur n’importe quelle
entrée venant d’une implémentation sous test <>= 9 . Ceci signifie que � * ne doit
bloquer aucune entrée de <>= 9 , mais doit répondre négativement aux entrées incor-
rectes. Par conséquent, nous devons exiger que chaque localité du graphe de test
� � , à l’exception des localités � �7��� et @�� B+��  � = �	<��6� , (1) accepte n’importe quelle
entrée de <>= 9 , et (2) redirige les entrées incorrectes vers la nouvelle localité � � < � ,
c’est-à-dire rende � � complet en entrée. Pour accomplir ceci, nous proposons
une procédure syntaxique simple.

Soit � � un graphe de test avec un ensemble des localités 	 , un ensemble des
variables � , un ensemble des transitions symboliques � et un alphabet d’actions
d’entrée/sortie � � � 4 6 �;7 . Le cas de test � * est l’IOSTS obtenu à partir de
� � en ajoutant une nouvelle localité � � < �����	 et, pour chaque localité � ��	
et chaque action d’entrée , � � 4 , en ajoutant une transition symbolique � �� �
d’origine � , de destination � � < � , d’action , , d’affectations 7�� ��� � y�� � '�� � '�� et de
garde 5������ � v�� o p�r ) r s r t! v r u" v r p v x ��D 5#� v � . Autrement dit, toute entrée non exécutable
dans � � devient exécutable dans � * et mène aux nouvelles localités (de blocage
complet) � � < � . L’algorithme qui transforme � � en un cas de test complet en
entrée � * est donné dans la section 7.5 du chapitre 7.
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Un cas de test � * obtenu par la procédure décrite plus haut contient trois
types de verdicts : � �7��� , @�� B+��  � = �	<��6� et � � < � . Par conséquent, les ensem-
bles de traces de � * qui contiennent respectivement les traces menant aux
états “pass”, “inconcusive” et “fail” sont notés respectivement ���������� ����
� ��� *0� ,
�������������� �
	 � � �7� *0� et ������������ � ��� ��� *-� . Dans la proposition ci-dessous, nous carac-
térisons ces ensembles de traces.

Proposition 1.4 (Traces de � * ) Soit � * un cas de test obtenu à partir d’un
graphe de test � � � � ��� � ��� �  �.� � ��� �&���
	�� ��	�
��� � ���0� �'� , où 	�
��� est une spécification
avec un alphabet d’actions d’entrée valuées 2 4 %�� 	�� , ��� est un objectif de test de
	�
��� et select est l’algorithme 1.1 (voir page xxix). Alors :

(1) �������������� *-� � ������������7� � � 6 ������������ � ��� ��� *-� ,
(2) ���������� ����
� ��� *-� � ���������� �����
� ��� � � ,
(3) ������������ � �
	 � � ��� *-� � �������������� �
	 � � �7� � � , et

(4) ������������ � ��� �7� *0� 1/���������������	�
����� � 2;7%�� 	�� � �������������	�
����� � , plus précisément

(4.a) ������������ � ��� �7� *0��� �7������������7� � � � 2 7%�� 	�� � ������������7� � � � .
�

Les propriétés (1), (2), (3) et (4) de traces d’un cas de test � * sont formellement
démontrées à la section 7.5 du chapitre 7, et la preuve de la propriété (4.a) est
une conséquence directe de la procédure qui rend un graphe de test complet en
entrée. Il est aussi important de souligner que le cas de test � * que nous avons
obtenu est déterministe (pour les détails, le lecteur peut se référer au deuxième
point du théorème 7.2, page 203 du chapitre 7).

Exemple 1.5 Considérons le graphe de test � � � montré à la figure 1.10(b)
(voir page xxxi) obtenu par l’algorithme de sélection (voir page xxix). La
figure 1.11 (voir page xxxv) illustre le cas de test complet en entrée � * obtenu,
à partir du graphe de test � � donné, par la procédure expliquée dans cette
section. �

1.3.5 Correction d’un cas de test

Dans la section 1.3.4, nous avons décrit comment générer un cas de test symbol-
ique � * à partir d’une spécification 	�
��� et d’un objectif de test ��� de 	�
��� .
Nous avons également montré que le cas de test résultant � * est initialisé (par la
construction du cas de test) et déterministe (voir théorème 7.2, page 203). Cepen-
dant, nous n’avons pas montré que � * produit des résultats corrects lorsqu’il est
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(cPrice >= 1) and (vPaid = 0) and (vBeverage = TEA)

<Begin,Begin>

<Pay,Begin>

(cPrice >= 1) and (vPaid = 0) and (vBeverage = TEA) and 
 (pCoinValue >= 1) and (pCoinValue >= cPrice) 

 Coin ! (pCoinValue) 
 vPaid := 0 + pCoinValue

Fail

Return ? (pRemaningValue) Deliver ? (pBeverage)<Choose,Begin>

(cPrice >= 1) and (vPaid >= cPrice) and (vBeverage = TEA) and 
 (pRemaningValue = vPaid - cPrice) 

 Return ? (pRemaningValue) 
 vPaid := cPrice

not ((cPrice >= 1) and (vPaid >= cPrice) and (vBeverage = TEA) and 
 (pRemaningValue = vPaid - cPrice)) 

 Return ? (pRemaningValue)
Deliver ? (pBeverage)

<Delivery,Begin>

(cPrice >= 1) and (vPaid = cPrice) and (vBeverage = TEA) and 
 (pBeverage = COFFEE) 

 ChooseBeverage ! (pBeverage) 
 vBeverage := pBeverage

Return ? (pRemaningValue) Deliver ? (pBeverage)

Pass

(cPrice >= 1) and 
 (vPaid >= 1) and (vPaid = cPrice) and 

 (pBeverage = vBeverage) and (vBeverage = COFFEE) 
 Deliver ? (pBeverage)

Return ? (pRemaningValue)

not ((cPrice >= 1) and 
 (vPaid >= 1) and (vPaid = cPrice) and 

 (pBeverage = vBeverage) and (vBeverage = COFFEE)) 
 Deliver ? (pBeverage)

Figure 1.11: Cas de test complet en entrée � � .
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exécuté sur une implémentation sous test. Ainsi, le but de cette thèse est de
démontrer la correction du cas de test donné par rapport à la spécification 	�
��� ,
l’objectif de test ��� de 	�
��� , et l’ensemble des implémentations @ =�9 � , au sens de
la définition 1.7 (voir page xix). Formellement :

Théorème 1.1 (Correction de � * ) Le cas de test � * généré à partir de la
spécification 	�
��� et de l’objectif de test ��� par notre méthode symbolique de
génération de tests est correcte pour l’ensemble des implémentations sous test
@ =�9 � . �
Le lecteur trouvera la preuve formelle de la correction du cas de test à la sec-
tion 7.6 du chapitre 7.

1.3.6 Conclusion

Nous avons tout d’abord proposé un modèle pour la représentation des systèmes
réactifs appelé système symbolique des transitions à entrée/sortie (IOSTS). Ce
modèle nous permet de décrire plus précisément les systèmes réactifs en prenant
explicitement en compte leurs données. De plus, il nous autorise à générer des
cas de test sous la forme de programmes avec des variables, des constantes sym-
boliques et des paramètres (c’est-à-dire des cas de test génériques).

Ensuite, nous avons brièvement décrit les principes essentiels de la génération
symbolique de tests basée sur les IOSTS. Cette méthode traite symboliquement
les données d’un système en combinant l’approche de génération de tests pro-
posée auparavant par notre groupe de recherche [Fernandez et al., 1996] avec
l’interprétation abstraite [Cousot and Cousot, 1976], [Cousot and Cousot, 1977]
que l’on utilise pour la sélection des cas de test. De plus, ce modèle nous per-
met d’éviter le problème de l’explosion de l’espace d’états et de dériver des cas
de test génériques. Enfin, nous avons montré que notre méthode symbolique de
génération de tests dérive des cas de test corrects.

L’ensemble de ces travaux constituent un extension de l’approche proposée
initialement dans [Rusu et al., 2000].

1.4 Implémentation et résultats expérimentaux

La troisième partie de ce document est consacrée à l’implémentation de la méth-
ode symbolique de génération de tests proposée dans la seconde partie de la thèse,
ainsi qu’à l’étude de cas pour laquelle cette implémentation a été utilisée. Plus
précisément, au chapitre 8, nous employons la théorie et les algorithmes présen-
tés dans la deuxième partie de la thèse afin d’implémenter un prototype pour
la génération automatique et symbolique de cas de test appelé STG10 [Clarke

10Provient de la terminologie anglaise “Symbolic Test Generator”.
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et al., 2002], [Clarke et al., 2001b], [Clarke et al., 2001c]. Nous décrivons ensuite
l’utilisation de STG dans le test d’un protocole de communication qui transfère
un fichier de données présenté sous la forme d’une séquence de paquets. Le pro-
tocole est fondé sur le protocole classique du bit alterné, mais ne permet qu’un
nombre fini de retransmissions de chaque paquet. Enfin, nous comparons STG
à d’autres outils existants utilisés pour la génération de tests de conformité des
systèmes réactifs.

1.5 Conclusion

Ce mémoire s’achève par un résumé des principaux résultats obtenus, et par une
discussion sur les perspectives. Une brève description du dernier chapitre de ce
document est donnée ci-après.

Résumé. Cette thèse se situe dans le domaine du test de conformité boîte noire
pour les systèmes réactifs. De tels systèmes sont généralement complexes et de
taille importante. Il n’est donc pas aisé de les implémenter sans erreur. Même
une petite erreur peut mener à de sérieux dysfonctionnements du système (voir
les exemples donnés page 2). Il est par conséquent essentiel de développer des
techniques de détection d’erreur dans les systèmes réactifs qui les rendent plus
fiables. Dans cette thèse, nous nous concentrons sur l’une de ces techniques
appelée le test.

Au début de ce document, nous mentionnions qu’au cours des dernières décen-
nies, les théories de test et les techniques pour la dérivation automatique de tests
ont été développées. Certaines de ces techniques sont basées sur le modèle des
machines d’états finis (FSM11), et d’autres sur le modèle des systèmes de transi-
tions à entrée/sortie (IOLTS). Puisque, à notre avis, le modèle IOLTS est mieux
adapté pour le test des systèmes réactifs que le modèle FSM, nous nous sommes
focalisé sur l’étude des méthodes et algorithmes pour la dérivation automatique
de tests fondés sur les IOLTS. Nous avons tout particulièrement pris en con-
sidération deux algorithmes à la volée efficaces proposés dans [Tretmans, 1992],
[Jéron and Morel, 1999]. Nous avons également décrit des outils académiques
(par exemple TorX [Belinfante et al., 1999], TGV [Fernandez et al., 1996]) et
industriels (par exemple Autolink [Telelogic, 1998], TestComposer [Kerbrat and
Ober, 1999]) déjà existants, qui implémentent ces algorithmes et produisent des
cas de test corrects, ce qui signifie essentiellement qu’ils émettent toujours un
verdict correct.

Néanmoins, les théories et les outils fondés sur des IOLTS sont relativement
limités. Ils ne prennent pas explicitement en compte les données du système car

11Provient de la terminologie anglaise “Finite State Machine”.
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le modèle sous-jacent des IOLTS ne permet pas de le faire. Ainsi, pour modéliser
une spécification du système réactif avec des IOLTS, il est nécessaire d’énumérer
les valeurs de chaque donnée employée par le système. Ceci peut conduire au
problème classique de l’explosion de l’espace d’états. De plus, cette énumération
a aussi pour effet d’obtenir des cas de test où toutes les données sont instanciées.
Ceci contredit la pratique industrielle où les cas de test (écrits, par exemple dans
la langage TTCN [ISO/IEC/JTC1/SC21, 1992]) sont de vrais programmes avec
des données (variables, constantes symboliques et paramètres de communication).

Afin de résoudre les problèmes mentionnés ci-devant, nous avons proposé une
extension de l’approche [Rusu et al., 2000] pour la génération automatique de
cas de test symboliques sous la forme de systèmes étendus de transitions avec
des variables, des constantes symboliques et des paramètres de communication.
Ces systèmes sont appelés systèmes symboliques de transitions à entrées/sorties
(IOSTS).

Puis, nous avons présenté les concepts du test de conformité basé sur les
IOSTS. En d’autres termes, nous avons défini formellement (1) la relation de
conformité � � � entre une spécification et une implémentation sous test qui sont
toutes deux modélisées avec des IOSTS, (2) la notion de cas de test et (3) les
propriétés des cas de test, permettant d’établir un lien entre les cas de test et la
relation de conformité.

Nous avons décrit ensuite l’approche de génération symbolique de tests fondée
sur la théorie de test introduite plus haut et implémentée dans l’outil STG. La
description de cet outil et une étude de cas du protocole de retransmission bornée
sont données dans la troisième partie de notre travail. Enfin, nous avons com-
paré notre approche avec d’autres approches symboliques pour la génération au-
tomatique de tests. La majorité de celles-ci sont basées sur la propagation de
contraintes et utilisent des techniques de résolution de contraintes. De surcroît,
elles ne traitent pas du problème du non-déterminisme (rappelons que nous avons
posé comme hypothèse que le non-déterminisme est formellement interdit dans le
test). Les éléments originaux de notre approche sont : l’emploi d’une technique
d’interprétation abstraite au moment de la sélection du cas de test et les solu-
tions partielles au non-déterminisme. Notons que nous n’avons pas résolu tous
les problèmes en rapport avec la génération symbolique de tests. En particulier,
notre approche utilise aussi une technique de résolution de contrainte lorsque l’on
instancie des cas de test symboliques pendant leur exécution.

Nous pensons que notre approche symbolique de génération de tests mérite
d’être étudiée et que la recherche future peut améliorer son applicabilité aux
systèmes réactifs industriels.

Recherche future. Les idées suivantes pour la recherche à venir sont inspirées
du travail présenté dans cette thèse.
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De ioc à ioco. Avant d’entrer en détails dans les perspectives décrites dans ce
paragraphe, nous rappelons la différence entre les relations � � �.� [Tretmans,
1996a] et � � � (voir définition 1.4, page xv). Autrement dit, d’une part, la
relation ioco crée un lien entre une spécification suspendue � �#	�
����� et le
modèle suspendu d’une implémentation sous test � ��� ������� . Elle vérifie si,
après l’exécution de chaque trace de suspension (c’est-à-dire trace pouvant
contenir l’action de sortie spéciale � ) de la spécification, l’implémentation
produit ou pas uniquement des actions de sortie spécifiées. D’autre part,
la relation ioc crée un lien entre une spécification 	�
��� avec une implémen-
tation sous test � ����� , et effectue la même vérification que � � �.� mais pour
chacune de ses traces propres (c’est-à-dire trace ne contenant aucune action
� ) de la spécification.

Dans cette thèse, nous proposons une approche pour la génération sym-
bolique de tests qui est basée sur le modèle IOSTS et sur la relation ioc.
Cependant, cette approche a quelques faiblesses. L’une d’entre elles est le
problème des blocages, qui n’ont pas été traités dans la partie de la thèse
abordant la génération symbolique de tests. En revanche, nous avons décrit
ceci dans l’introduction (voir page 42). Afin d’améliorer notre génération
symbolique de tests dans ce domaine, il serait possible d’essayer l’approche
suivante (publiée dans [Rusu et al., 2004]).

(1) Limiter le modèle des IOSTS à un modèle qui ne contient pas de
blocages vivants syntaxiques (cycles d’actions internes), et qui utilise
la relation ioco [Tretmans, 1996a] comme critère de correction au lieu
de la relation ioc.

(2) Pour une spécification donnée, construire son IOSTS suspendu en co-
dant tous les blocages potentiels (de sortie et complets) d’une spécifi-
cation donnée avec l’action de sortie spéciale � .

Remarquons que le problème de la détection des blocages est indécidable
pour les IOSTS en général. Cependant, dans le cas de l’absence de blocages
vivants syntaxiques sur un IOSTS � , il est possible de construire syntax-
iquement l’IOSTS suspendu de � .

La solution classique pour détecter des blocages non-spécifiés dans une im-
plémentation sous test durant une expérience de test est d’équiper chaque
testeur avec une minuterie indiquant le temps que le testeur doit attendre
avant qu’une sortie n’apparaisse. Si la sortie n’a pas lieu avant un certain
temps, alors le testeur peut conclure que cette sortie n’aura plus lieu. Dans
ce cas, il décide que l’implémentation est bloquée.

Nous pensons que les suggestions données dans ce paragraphe aideront à
améliorer notre méthode symbolique de génération de tests.
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Propriétés de sûreté. Le rapport [Rusu et al., 2004] propose une approche
pour combiner la vérification et les techniques de test de conformité. Dans
ce rapport, la spécification formelle 	�
��� d’un système réactif donné est
modélisé par IOSTS, et chaque propriété de sécurité de 	�
��� est représen-
tée de la même manière qu’un objectif de test employé dans la méthode
symbolique de génération de tests. Alors,

Premièrement, chaque propriété est vérifiée sur 	�
��� en utilisant des tech-
niques automatiques (par exemple, l’interprétation abstraite) qui sont
fiables mais pas nécessairement complètes pour la classe de propriétés
de sécurité considérée ici.

Deuxièmement, pour chaque chaque propriété, un cas de test est généré
automatiquement à partir de la spécification et de cette propriété et il
est exécuté sur une implémentation boîte noire du système.

Si l’étape de vérification est réussie, c’est-à-dire si elle a établi que la spéci-
fication satisfait les propriétés, alors l’exécution peut détecter la violation
de la propriété par l’implémentation et la relation de conformité standard

� � �.� [Tretmans, 1996a] entre l’implémentation et la spécification. Si l’étape
de vérification n’est pas réussie, c’est-à-dire si elle n’a pas permis de prouver
ou de réfuter la propriété, alors l’exécution du test peut détecter en plus
une violation de la propriété par la spécification.

Critères de couverture. L’outil STG (comme son prédécesseur TGV [Fernan-
dez et al., 1996]) emploie les objectifs de test comme mécanisme de sélec-
tion de cas de test. Chaque objectif de test dans STG est donné sous la
forme d’un graphe. Cette représentation offre à un développeur de logiciels
une manière naturelle de décrire (partiellement) les comportements d’une
spécification donnée devant être testée. Néanmoins, l’écriture manuelle
d’objectifs de test exige une bonne connaissance de la spécification. Ceci
signifie que le processus d’écriture des objectifs de test est encore difficile à
accomplir pour les humains, surtout si une bonne couverture de la spécifica-
tion doit être ciblée. Nous pensons que les critères classiques de couverture
structurelle [Rapps and Weyuker, 1985] combinés avec l’analyse symbolique,
peuvent apporter des objectifs de test intéressants.

Études de cas. Jusqu’à présent, nous avons seulement généré des cas de test à
partir des spécifications académiques plus ou moins classiques d’une ma-
chine à café et d’un protocole de retransmission bornée. La prochaîne
étape importante est d’appliquer notre approche afin de tester des sys-
tèmes industriels réalistes. Nous avons déjà fait les premiers pas dans cette
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direction : nous avons généré des cas de test pour le porte-monnaie élec-
tronique (CEPS) [CEPSCO, 2000]. Cette étude de cas nous a donné les
résultats prometteurs publiés dans [Clarke et al., 2001a]. Ainsi, il serait in-
téressant de poursuivre de telles expériences. Nous pensons également que
de futures études de cas vont fournir des informations essentielles quant à
l’applicabilité de notre approche symbolique de génération de tests et nous
aidera à l’améliorer.
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Chapter 1

Introduction

This chapter describes the context of the thesis and gives the moti-
vations to the research presented in it. We start by introducing re-
active systems, and emphasizing the importance of such systems by
taking realistic situations from daily life. These situations motivate
using validation techniques, such as testing and verification, in order
to ensure correctness of reactive systems. Then, we focus on test-
ing, describe the role of testing in the software development cycle, and
discuss existing testing methods, with stress on conformance testing.
Next, we compare testing with another validation technique (verifica-
tion), and underline their complementarity by discussing advantages
and drawbacks of these techniques. Finally, we present the main goals
of the thesis and its outline.

1.1 Reactive Systems

The notion of reactive system was introduced by A. Pnueli and D. Harel in [Harel
and Pnueli, 1985]. In this work, the authors make a distinction between trans-
formational and reactive systems . The former accept inputs and, after a certain
period of time, produce outputs, i.e. they operate in an autonomous way. For
instance, a transformational system can be a program that calculates the square
root of an input, or more a complex program such as a compiler. The latter inter-
act permanently with its environment by continuously exchanging information.
Many systems in the real world can be considered as reactive: vending machines,
cash dispensers, or more complex software and hardware systems, such as silicon
chips, communication protocols, smart cards, industrial plants, avionic systems
and nuclear reactors. It is essential to realize how crucial reactive systems can
be, and how important it is to perform testing or other validation techniques on
them. For this purpose, we use a series of examples. All of them are available
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from the “10 Great Bugs of History” collection [CNET, 2000] and from the col-
lections of software bugs found at the “Software Quality Assurance and Testing
Resource Center” [Hower, 2003].

NASA Mariner 1, Venus Probe (1962). “A probe launched from Cape Ca-
naveral was set to go to Venus. After takeoff, the unmanned rocket carrying
the probe went off course, and NASA had to blow up the rocket to avoid
endangering lives on earth. NASA later attributed the error to a faulty line
of Fortran code” (see [Myers, 1976]).

Therac-25 Radiation Machine (June 1985–January 1987). “The
Therac-25 medical linear accelerator was responsible for six accidents
involving massive overdoses of radiation, four of which lead to deaths.
The proximate causes of the accidents were eventually attributed to two
separate and hard-to-reproduce faults caused by race conditions in the
data entry system.” Leveson and Turner published a detailed investigation
of the failures and the responses to them (see [Leveson and Turner, 1993]).

AT&T Long Distance Service (1990). “Switching errors in AT&T’s call
handling computers caused the company’s long-distance network to go down
for nine hours, the worst of several telephone outages in the history of the
system. The meltdown affected thousands of services and was eventually
traced to a single faulty line of code.”

NASA Mars Climate Orbiter (October 1999). “In October of 1999 the
$125 million NASA Mars Climate Orbiter spacecraft was believed to be
lost in space due to a simple data conversion error. It was determined that
spacecraft software used certain data in English units that should have been
in metric units. Among other tasks, the orbiter was to serve as a communi-
cations relay for the Mars Polar Lander mission, which failed for unknown
reasons in December 1999. Several investigating panels were convened to
determine the process failures that allowed the error to go undetected.”
The full story and the report about that are available in [Isbell and Savage,
1999].

Britain’s National Tax System (March 2002). “In March of 2002 it was
reported that software bugs in Britain’s national tax system resulted in
more than 100,000 erroneous tax over-charges. The problem was partly
attributed to the difficulty of testing the integration of multiple systems.”

Of course, this thesis does not pretend to solve the problems presented in the
examples above, it just shows some progress in formal test generation. The
examples above are used to emphasize the importance of the research oriented to
the improvement of existing validating techniques for reactive systems.
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1.2 Testing

This section introduces testing and discusses its usability at the present time. It
also briefly presents black-box conformance testing which is the main topic of all
remaining chapters of this work.

1.2.1 General View

Software testing [Myers, 1979] is a process that consists of examining computer
programs or systems with the intent of finding errors in them. The aim of testing
is to make sure that systems will work correctly during their utilization. Testing
can never be exhaustive for any realistic system because the time and effort that
can be spent on it is always limited. Therefore, it cannot guarantee complete
correctness of the system. That is to say, in E.W. Dĳkstra’s words:

Program testing can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their absence.

Testing is a time-consuming process, B. Boehm notices that:

“Checkout” and testing often consume 50% of software effort.

Nevertheless, it should be done for each phase of the software development cycle.
The main reason for this was mentioned by B. Boehm:

The cost of [finding and] fixing an error increases by an order of mag-
nitude at each stage in development.

The testing phases of this software development cycle are depicted in Figure 1.1
and explained below.

User Requirements

Component  Testing Integration Testing System Testing

Regression Testing

Acceptance Testing

?

Figure 1.1: Phases of the testing process.

Component (Unit) Testing is the process of testing small components of a
computer program, such as subprograms and subroutines. The purpose of
this phase is to focus on the testing of “building blocks” of the program,
instead of examining the entire program.
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Integration Testing determines whether all the components, which will be
linked in the given computer program, work correctly together, i.e. it tests
“links” between components.

System Testing examines a whole program, i.e. all components of the program
together. The goal of system testing is to reveal bugs that can be exposed
while testing the entire integrated program and not only its components.

Regression Testing is the process of testing a program whose code has been
modified. The modification of the code can occur while fixing errors or
adding new functionalities, for instance. The aim of regression testing is to
ensure that the modified program still satisfies its requirements and that
its previous functionalities have not been affected.

Acceptance Testing is a process determining whether a program satisfies the
requirements listed in the original development contract between customers
and, for example, a software company.

Nowadays, as software systems become larger and much more complex, many
software companies prefer to employ dedicated test engineers who focus only on
writing and executing test cases, rather than requiring programmers to develop
and test systems at the same time. The rest of this section discusses some of the
existing methods for testing.

1.2.2 Testing Methods

Software testing (e.g. [Myers, 1979], [Beizer, 1990]) distinguishes structural and
functional testing. As shown in Figure 1.2 , structural testing is based on the

Specification Implementation

testing

testing
functional

structural

Figure 1.2: Structural and functional testing.

analysis of the internal structure of an implementation (a realistic, executable
piece of software or hardware that should provide desired behaviors), while func-
tional testing consists of checking whether an implementation of the software or
hardware satisfies its specification (a description of the desired behaviors that
define only what the system should do, not how it is done).
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1.2.2.1 Structural Testing

Structural Testing, also referred to as white-box testing [Beizer, 1990], is a test
suite design method that relies on the knowledge of the internal structure of the
program, i.e. the test suite is derived from the program code. The aim of this
method is to test the program code (1) by choosing test data for examining, for
instance, each statement or every path in the program code; or (2) by checking
the boundary conditions for selection and repetition of control structures of the
program. Below we briefly describe some structural testing techniques.

Data-Flow Testing (see [Rapps and Weyuker, 1985]) is a technique for analyz-
ing how variables of a program are bound to values and how these variables
are used. More precisely, the purpose of data-flow testing is to construct
a test suite that forces the execution of different interactions between the
moment when variables are defined and when they are used in the program.

Mutation Testing (see [Budd et al., 1980], [Howden, 1982]) is a technique for
testing faulty hypotheses. The goal of mutation testing is to construct
a set of test cases that distinguish a given program from a mutated one,
i.e. a program generated from the original one by applying mutational
transformations (e.g. introducing errors to it).

Domain Testing (see [Beizer, 1990], [Jeng and Weyuker, 1994]) is a technique
to check that the values taken by a variable, a condition, or an index are
inside their specified or valid range. Domain testing also checks that the
program accepts only valid input data, because it is unlikely to get reason-
able results if incorrect input data have been entered.

1.2.2.2 Functional Testing

Functional Testing, also called black-box testing [Beizer, 1995], is a test suite
design method that checks that the functionalities of a given program correspond
to its specification without making any reference to its internal structures. The
aim of this method is to derive test cases from a program specification, to execute
them on the real program and to make sure that the latter behaves correctly
by comparing the outputs produced by the program with these required in the
specification. Bellow, we present examples of black-box testing.

Conformance Testing (see [Beizer, 1995], [Tretmans, 1992]) is a technique for
checking whether functionalities mentioned in the specification of a given
computer program have been implemented in this program. The aim of
conformance testing is to generate a set of test cases that examines whether
the program satisfies its specification. The question put here is: “Does the
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computer program do what is should do?”. Black-box conformance testing
is discussed in further detail in Chapter 2 (see page 13).

Performance Testing (see [IEEE/ANSI, 1990]) is a technique for comparing
the compliance of a given program with specified performance requirements.
The purpose of performance testing is to measure the resources, such as
execution time, response time, memory usage, etc. that are needed to carry
out the program. The typical question in performance testing, is: “How
fast does the program perform its task?”.

Robustness Testing is a technique defined as: “the degree to which a system
or component can function correctly in the presence of invalid inputs or
stressful environmental conditions” [IEEE/ANSI, 1990], i.e. the goal of
robustness testing is to examine the behaviors of a given program in an
erroneously behaving environment. The main question is here: “How does
the program react if its environment does not behave as expected?”.

Reliability Testing (see [Musa, 1975]) is a technique for testing whether a given
program performs its tasks correctly during a specified period of time and in
a specified environment. The question asked for reliability testing is: “How
long can we rely on the correct functioning of the computer program?”.

1.3 Testing and Verification

This section discusses two validation techniques that are used to increase the con-
fidence in the correct functioning of systems as prescribed by their specification.
These techniques are testing and verification. The aim of verification (see Fig-

Formal Model Concrete System

TestingVerification

ExercisingProving

Figure 1.3: Testing and verification.

ure 1.3) is to prove the properties of a computer system by formal manipulations
on its mathematical model. Verification gives a certainty about satisfaction of
these properties in the model. In comparison, testing (see Figure 1.3), as defined
in Section 1.2, is a process of examining a real, executable implementation of the
system with the intention of finding errors, and it can never guarantee that an
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implementation after testing is error-free. Moreover, testing and verification are
complementary techniques. In this thesis, we demonstrate that some verification
techniques are applicable to testing.

1.4 About this Thesis

In the previous sections of the introductory part of the thesis we briefly described
the testing area and its problems. The rest of this thesis is devoted to the black-
box conformance testing for reactive systems. In this section we present the main
contributions of our research and describe the structure of the thesis.

1.4.1 Motivation and Objectives

During the past years we have observed a continuous growth of software and
hardware systems in size and complexity, which caused many erroneous systems
to appear. As the majority of reactive systems are often crucial, the importance
of error detection in these systems has increased. This has been one of the rea-
sons for the current interest in testing reactive systems. During the last decades,
testing theories and tools used for automatic test generation have been developed.
In these theories and algorithms, the specifications of reactive systems are often
modeled by variants of the labeled transition systems (LTS). However, these
theories and tools do not explicitly take into account the systems data, since the
underlying model of LTS does not allow to do that. This limitation of the model
compels us to enumerate the values of the data before building the LTS model of
a system. This may result in the classical state-space explosion problem. More-
over, this enumeration has also the effect of obtaining test cases, where all data
are instantiated. This contradicts with industrial practice, where test cases (ex-
pressed, for instance, in TTCN [ISO/IEC/JTC1/SC21, 1992]) are real programs
with variables and parameters. The generation of such test cases requires new
models and techniques. In this thesis we have achieved two objectives.

First, we have introduced a new model called Input-Output Symbolic Transition
Systems (IOSTS) which explicitly includes all the data of a reactive system.

Second, we have proposed and implemented a new test generation technique
that symbolically treats all the data of a system by combining the test gener-
ation approach proposed by T. Jéron and his colleagues from IRISA/INRIA
Rennes and the Verimag laboratory, Grenoble (see for instance, [Fernandez
et al., 1996] and [Jéron, 2004]) with techniques of abstract interpretation
(see [Cousot and Cousot, 1976], [Cousot and Cousot, 1977]).
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1.4.2 Plan of the Thesis

The rest of the thesis is separated into three parts organized as follows.

Part I consists in two chapters describing the state of the art for black-box
conformance testing. More precisely:

In Chapter 2 we describe the formal background used in the remaining chapters
of the thesis, i.e. we introduce the concepts presented in “Formal Methods
in Conformance Testing” [ISO/IEC, 1996], and briefly report on new de-
velopments that have occurred in the field of formal conformance testing in
the last few years. In particular, we attempt at making the reader familiar
with the main concepts used in black-box conformance testing.

In Chapter 3 we focus on testing finite state machines and (input-output) la-
beled transition systems. We present different kinds of conformance re-
lations (e.g. conf, ioconf, ioco) for (IO)LTS, and different approaches for
automatic test generations. Finally, we describe some of existing tools used
in conformance testing of reactive systems.

Part II is the core of the thesis. It contains four chapters where we introduce
a symbolic model used to express the operational semantics of reactive systems
and a symbolic technique for test generation based on this model. The second
part of our work begins with the motivations for symbolic test generation. The
rest is organized as follows:

In Chapter 4 we define an extension of the input-output labeled transition sys-
tem model (called IOLTS) that explicitly includes data of a reactive system.
Then, we describe the syntax and semantics of IOSTS, and introduce some
subclasses of IOSTS used in symbolic test generation. The work contained
in this chapter is an extended version of [Rusu et al., 2000].

In Chapter 5 we introduce the two main operations on IOSTS which are used
in our test generation technique and in the process of test execution. They
are called product and parallel composition. In this chapter, we also present
several relationships concerning the set of traces of the IOSTS obtained after
the product or parallel composition operations. The operations defined in
the chapter are inspired from those presented in [Rusu et al., 2000].

In Chapter 6 we describe the theory of conformance testing that serves as a
basis for the symbolic test generation method described in the next chapter
and realized as the Symbolic Test Generator (STG) tool. The work pre-
sented in this chapter, is mainly inspired from the theory of conformance
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testing developed by J. Tretmans (see for example, [Tretmans, 1994], [Tret-
mans, 1996b]) and from the research which has been done in the VerTeCs
team, IRISA (see [Rusu et al., 2000], [Morel, 2000], [Jard and Jéron, 2002]).
In our theory of conformance testing, behaviors of specifications and imple-
mentations under test are modeled with input-output symbolic transition
systems, and the conformance relation is defined as a partial inclusion of
their traces. At the end of the chapter, we define a notion of correct test
cases with respect to specifications and test purposes.

In Chapter 7 we discuss the symbolic test generation method implemented in
the Symbolic Test Generator (STG) tool. The purpose of this method
is to compute a test suite starting from a given specification and a test
purpose. The three main steps of our symbolic test generation method are:
(1) computing a synchronous product 	�� between the specification and the
test purpose, (2) eliminating internal action and nondeterminism from 	�� ,
i.e. building the visible behaviors of 	�� denoted 	����(-�� , and (3) eventually,
selecting the behaviors of 	��;� -�� that are accepted by the test purpose. At
the end of the chapter, we show that the generated test case covers all
behaviors of the specification selected by the test purpose, and is correct.

Part III is devoted to the implementation of the symbolic test generation
method proposed in the previous part of the thesis, and to a case study for
which this implementation was used. More precisely:

In Chapter 8 we use the theory and algorithms presented in Part II, in order
to implement a prototype for automatic symbolic test case generation called
STG (Symbolic Test Generator) [Clarke et al., 2002], [Clarke et al., 2001b],
[Clarke et al., 2001c]. Then we describe the use of STG in the testing
of a communication protocol that transfers a huge data file through lossy
channels as a sequence of small packets. The protocol is based on the
well-known alternating bit protocol, but it only allows a bounded number
of retransmissions of each packet. Finally, we compare STG with other
existing tools used for conformance test generation of reactive systems.

The thesis ends with a summary of the main results achieved during my PhD
study at IRISA/INRIA Rennes, France, and a discussion on some perspectives
(see Chapter 9, page 239).
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Chapter 2

Formal Methods in Conformance
Testing

In this chapter we introduce the background for formal testing, which
serves as a fundamental basis for the work presented in this thesis that
allows the automatic generation of symbolic tests for reactive systems.
We first briefly discuss new developments in the field of testing and
motivates the use of formal methods in automatic testing of reactive
systems. We then summarize the main concepts of conformance test-
ing which are introduced in the standards IS-9646 [ISO, 1991] and
FMCT [ISO/IEC, 1996], and formalized in [Tretmans, 1992]. Fi-
nally, we present a test architecture in which a test suite is executed.
It is important to notice that all concepts introduced in this chapter
are given in generic level, i.e. they are independent of any particular
formal method.

Nowadays, software and hardware are getting more and more complex. They
usually consists of a variety of components which can be produced by different
manufacturers. This leads to compatibility problems between different prod-
ucts. In order to unify development processes and to define methods for testing
conformance between a product and its specification, the International Orga-
nization for Standardization (ISO) provided the international standard IS-9646
[ISO, 1991] containing a methodology and a framework for testing of commu-
nication protocols, for example SSCOP [Kahlouche et al., 1999]. It turned out
that this standard is also applicable to testing of other reactive systems, for
example, smart cards [Clarke et al., 2001a], and hardware [Kahlouche et al.,
1999]. The IS-9646 standard has been mainly oriented towards practical needs.
It incorporates practical experience of test experts who have been involved in
concrete testing. However, the formalism in IS-9646 is limited to definition of

13
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the TTCN [ISO/IEC/JTC1/SC21, 1992] language which is now widely used in
telecommunication area for the description of test suites.

The increasing usability of formal methods in the software/hardware devel-
opment processes, as well as new developments in the theory of testing, has
influenced the evolution of testing technology. This led to a joint project between
the International Organization for Standardization (ISO) and the International
Telecommunication Union (ITU) on “Formal Methods in Conformance Testing”
(FMCT) [ISO/IEC, 1996]. The goal of this project was to “establish a theory
and framework [...] which may be used to assess conformance of an implementa-
tion to behavior specified in a formal description”. The FMCT standard defines
the main concepts in conformance testing, which were formalized in [Tretmans,
1992], and which are summarized in this chapter.

2.1 Conformance

The notion of conformance, according to [ISO/IEC, 1996], is linked to implemen-
tations under test and specifications.

2.1.1 Specification

A specification of a reactive system is a formal description of behaviors that fixes
the properties of the system. In general, the specification is developed from
users’ requirements and expressed using either natural language, such as English
or French; or specialized description languages, such as SDL [ITU-T, 1994] or
LOTOS [ISO/IEC, 1988]. The semantics of the specification can be represented,
for example, by temporal logic [Pnueli, 1986], algebraic specifications [Dauchy
et al., 1993], extended finite state machines [Petrenko et al., 1999], transition
systems [Tretmans, 1992]. In this thesis, we use the following notations:

– ����� ��� for the universe of formal specifications, and

– 	�
��� for a single specification that belongs to �����;��� .

2.1.2 Implementation

An implementation under test is a concrete executable system, that is, one of the
goals of a development process. The implementation can consist of, for instance,
a single chip, hardware components or pieces of executable code. We denote by:

– � �	�
� – the universe of implementations, and

– <>=�9?��� �	�
� – a concrete implementation under test.
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In order to reason formally about an informal implementation <>=�9 � � �	�
� , it is
assumed that each concrete implementation <>=�9 can be modeled by a formal object
� ����� called a model of <>= 9 . The universe of the models of all implementations under
test is denoted by � � � � . In the literature on testing theory (see [Bernot, 1991]),
this assumption is referred to as the “testing hypothesis”, and can be formulated
in a semi-formal manner as follows:

Testing Hypothesis
� <>=�95� � �	�
��� � � � �!� � � � � �! <>= 9 is modeled by � � � �>& (2.1)

�
It is important to notice that the testing hypothesis does not imply that a model
of the implementation under test <>= 9 is known, it only assumes that such a model
exists.

2.1.3 Conformance as an Implementation Relation

To define conformance between an implementation under test <>= 9�� � �	�
� and
a specification 	�
����� �
��� ��� , we use the notion of an implementation relation
[Brinksma et al., 1990]. An implementation relation imp is a relation between
the set of implementation models � � � � and the set of specifications �����;��� , i.e.

����� 1 � � � � � ����� ��� (2.2)

Definition 2.1 (Conformance) An implementation <>=�9?� � �	�
� is conformant
to a specification 	�
��� � ����� ��� if the existing model � � � �!��� � � � of <>= 9 is ����� -
related to 	�
��� , i.e.

<>=�9 �.�	��
 �
	 � ���*� �(� 	�
��� � � � � � ����� 	�
���
�

The approach based on the implementation relation is shown on Figure 2.1. The
implementation <>= 95��� �	�
� correctly implements the specification 	�
��� � ����� ���
if

(1) it is modeled by � � � � belonging to the set � ����� 1 � � � � of models, and

(2) the model � � � � implements 	�
��� according to the implementation relation
����� .
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SPECS
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Figure 2.1: Conformance using an implementation relation.

It is important to notice that conformance between an implementation and a
specification depends on the chosen implementation relation. Some relations
are refusal preorder [Phillips, 1987], conf [Brinksma, 1988], and ioco [Tretmans,
1996a] which are discussed in Section 3.2.1 (see page 34).

2.2 Conformance Testing

Conformance testing assesses conformance of an unknown implementation under
test ( <>= 9 � � �	��� ) to its specification ( 	�
��� � �����;��� ) by means of test experi-
ments. Experiments consist of stimulating <>= 9 in certain ways and observing its
reactions (this process is called test execution). The decision made about confor-
mance is based on these observations. Each such experiment is called a test case.
We denote by:

–  � �� � – the universe of test cases,

– � * �� � �� � – a single test case, and

– ��	 1� � �� � – a set of test cases, which is called a test suite.

The purpose of the next two subsections is to describe the test execution process
which is always performed in a concrete test architecture.
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2.2.1 Test Architecture

A test architecture is an abstract description of the environment in which an
implementation under test ( <>= 9?��� �	��� ) is embedded, and where it communicates
with a tester. The test architecture that is used throughout the thesis is depicted

Test Cases

Tester

PCO

Fail, Pass,
Verdicts:

Inconclusive

conformant?
Spec iut

Figure 2.2: Test architecture and test execution.

in Figure 2.2. In order to perform testing of a reactive system, test cases have
to be produced from a formal description of the system’s behaviors, i.e. from a
specification 	�
����� ����� ��� . Then, they have to be given to a tester, which is a
program that executes test cases against a concrete implementation under test
<>=�9 . As the thesis focuses on conformance testing (a kind of functional testing
defined in Section 1.2.2.2, page 5), <>=�9 is considered as a black-box, which means
that the code of <>=�9 is unknown and only the behavior of <>=�9 can be observed
and analyzed. When <>=�9 interacts with the tester, its behavior becomes visible
through interfaces called points of control and observation (see Figure 2.2), in
short PCO.

The test architecture described above is ideal for real testing as the tester
directly communicates with <>=�9 . However, due to practical limitations, very often
the tester cannot access <>=�9 directly. Therefore, a test context, i.e. a system
where <>= 9 is embedded when it is tested, has to be taken into account. The last
situation is not the subject of this thesis, it is discussed in [Heerink, 1998].

2.2.2 Test Execution

A test execution is the process of stimulating a concrete implementation under
test <>=�9 � � �	��� by: (1) performing various test events which are specified in a
test case � * �  � �� � , (2) observing the responses from the given <>=�9 , and (3)
generating a test verdict based on these observations.

We denote by � � � the domain of all observations. Then, in order to reason
formally about an execution process, we model it with the following function:

����� � �  � �� � � � � � ���� ��� ��� � �:� (2.3)
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This function computes, for each test case ���������
	
��	 and each real implemen-
tation under test ��
����������	 modeled by �����������! #"$	 , a subset of observations%'&)(+*-,�.  0/1	32 .

The purpose of testing is to indicate whether observations obtained after a
test execution are correct or not. For that, we introduce a verdict function which
assigns to each observation a pass or fail verdict.

46587:9
; <>=@?  +/1	BAC�D E'FHG8�JIJK>LMG (�(ON (2.4)

A FPG8�JI verdict means that a divergence is detected between the implementation
��Q� and its specification RTSVU�W . A LMG (�( verdict 1 means that ��Q� behaves in con-
formance to RTSVU�W for the given observation.

Finally, using Functions (2.3) and (2.4), we characterize situations where an
implementation under test ��Q� (which is modeled with ���������X�! #"$	 ) fails or
passes a test case ��� :

��Q��YJZ ;\[ ] ��� ^ _a`b� 5�cO5d<T. ���eKf�H�g�h�h2jilk 465O7m9
;n<o=p. `�2rqsFHG8�JI1t
��Q��u8Z ]v]w5d] ��� ^ x . ��
��YJZ ;\[ ] ���02

These notions can be generalized for a test suite �1R * �j�y	Q��	 as follows:

��Q��YJZ ;\[ ] �1R ^ _z�����{�1R|ilkV��
��YJZ ;\[ ] ����t
��Q��u8Z ]v]w5d] �1R ^ x . ��
��YJZ ;\[ ] �1R$2 ^ }~���s�{�1R-i�k3��
��u8Z ]w]v5>] ����t

2.3 Test Suite Properties

This section studies the coherence between the notion of conformance (see Sec-
tion 2.1.3, page 15) applied to concrete implementations of the reactive system
and its formal specification, and the notion of successful test suite execution which
was defined in Section 2.2. It formalizes and discusses the properties of test suites,
which we want to obtain while generating the test suites automatically.

Soundness. A test suite �1R * ���
	
��	 is sound if all implementations ��Q�B�
������	 which are conformant to a specification RTSVU�W��{	��P�3��	 pass all tests be-
longing to this test suite �1R , i.e.

}���
����������	�ilk . ��Q� <d�Q� Y ��7�� Z ��=�=�� RTSVU�W62�q�� . ��Q��u8Z ]w]v5>] �1R�2$t (2.5)

1Later in the thesis the notion of a �1���f� verdict is refined by the introduction of an���T�f�)���w��� �����h  verdict. This verdict indicates the violation of a scenario (called test purpose)
for which a test case is generated.
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The soundness property is achievable for practical testing, but it is not sufficient
as the incorrect implementations, i.e. implementations that are non-conformant
to a specification, can pass the test suite. Thus, a test suite accepting all imple-
mentations is also sound.

Exhaustiveness. A test suite �1R * �j�y	Q��	 is exhaustive if all implementations
��
�@��������	 leading to Pass during the test execution of �1R , are conformant to a
specification RTSVU�W#��	���� �1	 , i.e.

}���Q�@��������	 i�k . ��
��u8Z ]w]v5>] �1R$2�q�� . ��Q� <d�
� Y �'7f� Z ��=�=�� RTSVU�W�2�t (2.6)

The exhaustiveness property of a test suite is achievable only in theory, as it
is often the case when the test suite should be infinite, for instance, when a
specification of the system under test contains loops.

Completeness. A test suite �1Rzq E1��� � KpidipidK
����� N * �j�y	
��	 is called com-
plete if it is sound and exhaustive, i.e.

}���
�@��������	 iPk . ��Q� <d�
� Y �'7�� Z ��=�=�� RTSVU�W�2�� � . ��Q��u8Z ]w]v5>] �1R�2$t (2.7)

It is important to note that a complete test suite distinguishes exactly between
all conformant and non-conformant implementations.

Discussion. It is theoretically possible to construct complete test suites [Tret-
mans, 1992], i.e. a test suite which is sound and exhaustive, but for practical
testing the exhaustiveness property becomes a very strong requirement as it is
not possible to execute an infinite number of tests in a limited period of time.
Thus, the standard IS-9646 [ISO, 1991] suggests to use a weaker requirement for
real testing, namely soundness.
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Chapter 3

Test Generation

In this chapter we present a brief overview of research and develop-
ments that have been done in conformance testing in last 35-40 years.
We first describe several test generation methods based on the model
of finite state machines. Then, we discuss some limitations of these
methods that have activated the research on different kinds of tran-
sition systems (e.g. labeled transition systems, input-output labeled
transition systems). Next, we present several testing relations defined
on these transition systems, and used as correctness criteria in con-
formance testing. Finally, we describe some existing techniques for
automatic test generation based on transition systems.

3.1 Test Generation based on Finite State Ma-

chines

A Finite State Machine (FSM) [Gill, 1962] is an abstract model which consists of
a set of states, an alphabet, and a transition function that maps symbols of alpha-
bet and current states to a next state. Computation begins in some state with
an input string. It changes to new states depending on the transition function.
There exist many variants of FSM, for instance, Moore machines that produce an
output for each state after receiving an input, or Mealy machines that produce
an output for each transition after receiving an input. The Mealy machines are
widly used for the purposes of testing.

This section gives a formal definition of a Mealy machine and briefly describes
several methods for test generation based on this model. The detailed description
of all these methods is given in the survey [Lee and Yannakakis, 1996] written by
D. Lee and M. Yanakakis.

21
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3.1.1 Model: Mealy Machines

A Mealy machine [Gill, 1962] consists of states and transitions between states.
Each transition is labeled by an input and output action. Formally:

Definition 3.1 (Mealy Machine) A Mealy machine is a tuple
��� K��+K�� K��
	 ,

where

–
�

is a nonempty, finite set of states,

– �-q��������� is a nonempty, finite alphabet of actions which consists of two
disjoint alphabets of input � � and output � � actions,

– � ? ��� � � AD �
is the partial transition function,

– � ? ��� ���$AD ��� is the partial output function. �

Before illustrating the definition of Mealy machines with an example, we remark
that they are deterministic in the sense of the classical definition (see [Hopcroft
and Ullman, 1979] or [Lewis and Papadimitriou, 1981]) which is }�� � � K����� � i�k�W�G���� . � . �TK��y2 2� "!>t . This is due to the fact that both � and � are functions
(see the definition above). Moreover, in order to be able to perform the execution
of sequences of input actions on some Mealy machine, and observe resulting
sequences of states or output actions, we extend the � and � functions as follows:��# ? ��� . � � 2$#�AD �

and �%# ? ��� . � � 2$#�AD . � � 2$# .
Example 3.1 An example of Mealy machine & is presented as the transition
diagram shown on Figure 3.1 (this example has been taken from the thesis of
P. Morel [Morel, 2000]). This machine & has four states � � K��('pK��*) and �,+ ; two

-�. -0/

-01-$2

a 3 y
b 3 y

a 3 x

a 3 y

b 3 y

b 3 y

b 3 xa 3 y
Figure 3.1: An example of Mealy machine & .

input actions � and 4 ; and two output actions 5 and 6 . Then, we explain how &
behaves in different states, for instance:
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(1) in the state � � , the Mealy machine & produces the output action 6 by
executing one of its input actions � or 4 , and moves to the state ��' ,

(2) in the state �() the Mealy machine & can produce two different output
actions and moves to two different states. More precisely, after receiving
the input action � , & produces the output action 6 and moves to the state�,+ , however after receiving the input action 4 , & produces the output action5 and stays in the same state �*) . �

Before stating the problem of conformance testing and explaining the use of Mealy
machines in it, we present several useful properties of Mealy machines. Consider
a Mealy machine � q � � K��eK���K0�
	 . We say that two states ���fK���� � �

of � are
equivalent if and only if for each input sequence the given machine � produces
the same output sequence, i.e. } `�� . � � 2 #+ilk �%# . ���fKh`�2eq �%# . ����Kh`P2 t . Next, we
formulate the following properties of Mealy machines. Similarly we can define the
notion of equivalent states for two different Mealy machines which have a same
alphabet of input and output actions.

Definition 3.2 (Properties of Mealy Machines)

(1) Two Mealy machines � and ��� with same alphabet of actions are equiva-
lent if and only if for every state of � there exists a corresponding equiv-
alent state in � � , and vice versa.

(2) A Mealy machine � q ��� K��+K�� K��
	 is minimized if and only if it does
not have two equivalent states, i.e. }��	�fK���� � � ilk . �
���q ����2 q��. �
� is not equivalent to ���d2�t .

(3) A Mealy machine � q ��� K��+K�� K��
	 is strongly connected if and only if for
every pair of states ��� K������ � there exists an input sequence ` � . � � 2 # after
which � moves from ��� to ��� , i.e. � # . �
�fKh`�2lq���� .

(4) A Mealy machine � q ��� K��eK�� K0�
	 is complete if and only if all its states
accept all input actions of � , i.e. for each state �b� �

and each input
action � � � � the functions � . �TK��y2 and � . �'K �V2 are defined, i.e. � and � of
� are total functions.

(5) A Mealy machine � is symmetric if and only if each vertex of its transition
diagram has the same number of incoming and outgoing edges. �
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Example 3.2 Consider the Mealy machine & depicted in Figure 3.1 (see
page 22). This machine:

(1) does not have any equivalent states. For instance, if we take the states� � and �(+ , then there exists the sequence of input actions � � such that� # . � � K�� �y2
� ��� �

���

�q � # . �(+6K � �y2
� ��� �

�	�

.

(2) is minimized as it does not contains equivalent states (see the item (1)).

(3) is strongly connected, as each state of this machine is reachable from any
other state by some sequence of input actions. For example, we can go from
the state � � to state �(+ by the following sequence of input actions � 4�4 � 4 �
(see Figure 3.1, page 22).

(4) is complete as for each state ( � � K��('�K��()pK��(+ ) and each output action ( � K 4 ),
the machine & has exactly one transition (see Figure 3.1, page 22). For
instance, from the state � � the machine & can move to the state �*' by
executing either � or 4 .

(5) is not symmetric, as the number of incoming and outgoing edges of � � and�(' is different (see Figure 3.1, page 22). �

3.1.2 The Problem of Conformance Testing

Consider a specification RTSVU�W � 	���� �1	 and an implementation under test
��Q� � ������	 , where (1) RTSVU�W is modeled by a complete Mealy machine, i.e. its
transition diagram and output function are known, and (2) ��Q� is modeled by
unknown Mealy machine (“black-box”), where we can observe only input and
output behaviors of ��Q� . Then, the problem of conformance testing (known also
as “fault detection” problem) consists in determining whether the specification
RTSVU�W is equivalent to the implementation ��Q� .

This problem cannot be solved without any assumptions made on the given
specification and implementation. Indeed, for any testing sequence we can con-
struct a Mealy machine ��
� that is not equivalent to the given machine RTSVU�W , but
produces the same output sequence as RTSVU�W . Thus, for the rest of the section we
assume that:

(1) RTSVU�W and ��Q� are modeled by strongly connected and minimized Mealy ma-
chines,
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(2) ��Q� has the same number of states as RTSVU�W , and

(3) sometimes we also suppose that RTSVU�W is symmetric.

Under these assumptions, in order to detect whether the given implementation
��
� is conformant to (i.e. equivalent to) the specification RTSVU�W , it is enough to
verify that ��
� does not contain faults of two following types:

Output Faults: in a given state � after receiving an input action � , the im-
plementation ��
� produces an output action 5 which is different from an
output action specified by RTSVU�W ,

Transfer Faults: from a given state after executing a transition labeled with� � 5 , the implementation ��
� moves to a state � � � which is different from a
state specified by RTSVU�W .

Example 3.3 Consider a specification & represented by the Mealy machine
shown on Figure 3.1 (see page 22); and an implementation under test � whose
state diagram shown on Figure 3.2. The implementation � contains two following
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Figure 3.2: An example of Mealy machine � .

faults:

(1) output fault, as it produces the output action 5 after applying the input
action 4 in the state �(+ (see Figure 3.2) while the specification & produces
the output action 6 in the same situation (see Figure 3.1, page 22), and

(2) transfer fault, as � moves to the state � ) after executing the input action4 in the state �*' (see Figure 3.2) while in the same situation & rest in the
state �(' (see Figure 3.1, page 22). �
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Finally, we explain how to construct elementary tests that are able to detect
output and transfer faults of the given implementation ��Q� . Each elementary test
consists in checking whether each transition of ��Q� works as it is described in the

specification RTSVU�W . Formally, for each transition ��� � �D � � of RTSVU�W it is necessary
first to drive ��Q� to the state � and to execute the required input action � in this
state � ; and then:

– to verify the produced by ��
� output (output faults testing), and

– to identify the target state of ��Q� by a sequence of input actions (transfer
faults testing).

The purpose of the test generation based on Mealy machines is to put all ele-
mentary tests together in order to obtain a test suite (i.e. a set of test cases) of
minimal size. Moreover, this test suite must be sound and exhaustive, meaning
that (1) it does not reject conformant implementation under test (soundness),
and (2) non-conformant implementation is rejected by a test case belonging to
this test suite (exhaustiveness).

3.1.3 Test Generation Methods

The following section is addressed to the different methods that allows to generate
test cases starting from a specification modeled as a Mealy machines. Other
detailed descriptions of these methods can be found in [Lee and Yannakakis,
1996], [Morel, 2000], or [Jéron, 2004].

3.1.3.1 Transition Tour (TT)

A transition tour is a sequence of input actions that executes each transition
of a specification RTSVU�W that is modeled by a strongly connected, complete and
minimized Mealy machine, at least once. It is important to notice that the
transition tour does not allow to identify a state in which the specification RTSVU�W
will move after executing this sequence. Thus, in general this sequence cannot
be used for detecting transfer faults. However, this problem can be fixed by a
modification of the Mealy machine, i.e. making it be able to report about its
current state.

The problem of finding a minimal transition tour is well-known problem of
graph theory. It consists in computating of an Euler tour which is a sequence
of transitions that starts and ends at the same state and contains each transi-
tion of a given Mealy machine exactly once. However, the Euler tour exists only
in strongly connected and symmetric Mealy machines (see the items (3) and (5)
of Definition 3.2, page 23). Therefore, any specification represented by a non-
symmetric Mealy machine must be transformed into symmetric one. This can be
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done by duplication of some edges in the corresponding transition diagram (this
operation in graph theory is as augmentation of the original graph). Each dupli-
cated edge results in a transition that executes more than once in the resulting
transition tour. The first concrete algorithm which computes an Euler tour was
proposed by J. Edmonds and E.L. Johnson in [Edmonds and Johnson, 1973].

The problem of finding a transition tour in a strongly connected but non-
symmetric Mealy machine is known as the Chinese Postman Problem.

Example 3.4 Consider the Mealy machine & whose transition diagram is de-
picted in Figure 3.1 (see page 22). It is strongly connected, complete and mini-
mized (see Example 3.2, page 24). However, according to the same example the
machine & it is not symmetric, thus, & does not contain an Euler tour.

In order to make & symmetric we duplicated the following transitions: ��' � � �D
�*) , �() � � �D �,+ and �(+ � � �D � � . The result of this duplication is show on Figure 3.3.
Then, for the obtained strongly connected Mealy machine & � we compute a tour
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Figure 3.3: Symmetric Mealy machine & � .

which (1) starts and ends in, for example, the state � � , and (2) does not contain
a same transition more then once. For the state � � this path can be following:
����� ? � � � � �D �(' � � �D �() � � �D �,+ � � �D � � � � �D �(' � � �D �() � � �D �,+ � � �D � � . Next, we remove all
transitions used in ����� from & � , and obtain four strongly connected and symmetric
Mealy machines. For all of them we perform the same computation as for & � ,
and obtain the three following tours:

�����j? �(' � � �D �('
���	��? �() � � �D �*)
���	
�? �,+ � � �D �(+

Finally, using the above computed tours we can construct transition tours for the
Mealy machine & � . One of these tours is:

� � � � �D �(' � � �D �*' � � �D �() � � �D �,+ � � �D �(+ � � �D � � � � �D �(' � � �D �*) � � �D �() � � �D �,+ � � �D � �
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The transition tour algorithm has first been applied for test generation by S. Naito
and M. Tsunoyama in 1981 (see [Naito and Tsunoyama, 1981]). Then, in 1986
C.A. Uyar and A.T. Dahbura [Uyar and Dahbura, 1986] applied the algorithm of
Euler tour to conformance testing. Finally, in collaboration with A.V. Aho and
D. Lee, they have extended this algorithm and published it as [Aho et al., 1988].

3.1.3.2 Distinguishing Sequence (DS)

Consider a specification RTSVU�W that is modeled by a strongly connected, complete
and minimized Mealy machine

� � K��eK���K0�
	 , where �sq"��� � ��� . Then, a distin-
guishing sequence of RTSVU�W is a sequence of input actions that produces a different
sequence of output actions for each state of RTSVU�W . Formally the existence of
distinguishing sequence in RTSVU�W can be characterized by the following formula:

_�� � � . � � 2 # } ��� K������ � iPk . �
� �q ����2 q�� . � # . �
� K�� � 2 �q � # . ���6K�� � 2 2rt
It is important to note that the technique of distinguishing sequence detects both
kinds of faults, i.e. output and transfer. However, a distinguishing sequence may
only exist for minimized Mealy machines. Moreover, its existence is very rare
even for minimized machines.

Example 3.5 Let us first consider the Mealy machine & shown on Figure 3.1
(see page 22). It is strongly connected, complete and minimized (see Example 3.2
on page 24). However, & does not contain any distinguishing sequence. Indeed,
if this sequence starts with:

– the input action � , then it is not possible to distinguish the states � ) and�,+ as after receiving � they produce the same output action 6 and move to
the same state �(+ ,

– the input action 4 , then the state � � and �(' cannot be distinguished for the
similar reason.

Next, we consider the Mealy machine shown on Figure 3.4. It is easy to
check that it is strongly connected, complete and minimized. Moreover, it
contains distinguishing sequences. For instance, the sequence 4�4 is the minimal
distinguishing sequence of this machine. Indeed, if we apply the sequence 4�4 to
the different state of the machine, then we obtain different output sequences:�%# . � � K 4�4 2$q 5 6 , �%# . �('pK 4�4 2$q 6 6 , �%# . �()pK 4�4 2$q 5 5 and �%# . �,+�K 4�4 2 q 6 5 .

�
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Figure 3.4: A Mealy machine containing distinguishing sequence.

The concepts of distinguishing sequence was defined as early as 1965 by E.F.
Moore in his first papers on finite state machines. Then, there were developed
by [Gill, 1962], [Hennie, 1964], [Gonenc, 1970], [Hsieh, 1971] and summarized
in [Kohavi, 1978].

3.1.3.3 Unique Input-Output Sequence (UIO)

Consider a specification RTSVU�W that is modeled by a strongly connected, complete
and minimized Mealy machine

��� K��eK���K0�
	 , where �sq ��� � ��� . Then, a unique
input-output sequence of a given state �	�P� � of RTSVU�W is a sequence of input actions����� � that distinguishes �
� from all other states of the specification RTSVU�W (i.e. a
sequence of output actions obtained after applying

����� � in the state ��� is different
from all sequences of output actions obtained after applying the same sequences����� � in all other states of RTSVU�W ). Formally:

��� �	��
������� �	����� ��� # ��� ����
��	��� � ��� � �!�  �" �$# # � � �&%'�(��� �)�*� # # � � �+%'�(��� ���,�.-
Notice that the existence of

�	�/� � sequences for each state ��� of RTSVU�W is not
guaranteed even if RTSVU�W is minimized.

Next, we illustrate the construction of unique input-output sequences on an
example, and explain how to generate a test sequence using the information about
them.

Example 3.6 (Generation of Test Sequences using UIO) Consider a Mealy
machine 0 whose transition diagram is depicted in Figure 3.5. It is not hard to
check that the given machine 0 is complete, strongly connected and minimized.
Each state of this machine has its unique input-output sequence:

(1) For � � , �	�/� � is equal to � . Indeed, the sequence of output actions obtained
after � in the state � � , i.e. �%# . � � K �V2aq 6 , is different from �%# . �('pK��y2aq�%# . �()pK �V2rq 5 .
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- . - / -01a 3 y
a 3 x

b 3 y
a 3 x

b 3 y

b 3 y
Figure 3.5: The Mealy machine 0 illustrating the UIO method.

(2) For �*' , �	�/� ' is equal to � � . This is due to the fact that �
# . �('�K�� �y2rq 5 6 is
different from both sequences � # . � � K � �y2rq 6 5 and � # . �()�K�� �y2lq 5 5 .

(3) For �*) , ����� ) is equal to 4 � . This is because � # . �()pK 4 �y2 q 6 6 is different from� # . � � K 4 �y2rq � # . �('pK 4 �y2rq 6 5 .

Using the information about the unique input-output sequences for each state of
0 , we explain how to generate a test sequence. Intuitively, we have to compute a
transition tour containing all the above computed unique input-output sequences.
This problem is solved by introducing pseudo transitions. This means that for
each unique input-output sequence

�	�/� � ( � q !OK��QK�� ) we create a new pseudo
transition that starts in the origin of

�	�/� � , ends in the target of
�	�/� � , and is

labeled with input and output sequences corresponding to
�	�/� � . For instance,

- . - / -01a 3 y
a 3 x

b 3 y

a 3 x

b 3 y

b 3 y

aa 3 xy

ba 3 yy

Figure 3.6: The Mealy machine 0 � obtained from the Mealy machine 0 (see
Figure 3.5, page 30) by adding pseudo transitions shown in red.

for
�	�/� '�q � � with origin and target in �*' , the Mealy machine 0 was augmented

with the loop on �*' that is labeled with � � � 5 6 (see Figure 3.6).
Next, in order to generate a test sequence, we compute a transition tour (see

Subsection 3.1.3.1, page 26) for a Mealy machine with pseudo transitions, which
visits each pseudo transition once. For this purpose we can use either use the
algorithm that solves the Chinese Postman Problem, or the algorithm that com-
putes Euler tour. Remember in order to use the last algorithm a Mealy machine



Test Generation based on Finite State Machines 31

must be symmetric, thus, we must transform the machine 0 � into symmetric one.
The resulting Mealy machine 0 � � of this transformation is depicted in Figure 3.7

- . - / -�1a 3 y
a 3 x

b 3 y

a 3 x

b 3 y

b 3 y

aa 3 xy

ba 3 yy

b 3 y

Figure 3.7: The symmetric Mealy machine 0 � � obtained from 0 � shown on Fig-
ure 3.6 (see page 30).

(see page 31). This machine was obtained by duplication of the transition ��' � � �D �*)
(see the dotted edge on Figure 3.7). One of testing sequences generated from 0 � �
by the transition tour method is:

� � � � �D �(' � � � � �C�D �(' � � �C3D �*) �
�
� ���D �(' � � �D �() � � �D � � � � �D �() � � �D �(' � � �D � � (3.1)

where the pseudo transitions �*' � � � � �C�D �(' and �*) �
�
� �	�D �(' can be decomposed into

two following sequences: �*' � � �C�D � � � � �C3D �*' and �() � � �C�D � � � � �C�D �*' respectively.
The method based on UIO sequences produces conformance test of a good

quality. However, it has a several problems. First, not all states of a Mealy
machine have a UIO sequence, and even if they do, the UIO sequence may be
too long to derive automatically. Second, in order to generate exhaustive test
cases (i.e. they reject all non-conformant implementations under test ) we must
make supplementary assumption on implementations under test, i.e. we have to
suppose that an implementation has the same UIO sequences as its specification.
If we do not make this assumption then the generated test sequences may accept
some non-conformant implementations. For instance, consider a specification

-�. -0/ - 1
b 3 y

a 3 y
a 3 x

b 3 y
a 3 x

b 3 y
Figure 3.8: A Mealy machine representing an implementation under test.

that is modeled by the Mealy machine 0 (see Figure 3.6, page 30), and an
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implementation under test depicted as the Mealy machine on Figure 3.8. It
is clear that this implementation is not conformant to the specification 0 , as,
for instance, after applying the sequence 4 � in the state � � , the specification 0
produces the sequence 6 5 , but the implementation produces 6 6 . However, the
implementation is not rejected by the test sequence shown as Formula (3.1). This
is due to the fact that the sequence of input actions 4 � is an UIO sequence for
the state �() of the specification 0 and is not an UIO sequence for the same state
of the implementation (we obtain the same output sequence 6 6 after applying
the sequence 4 � in the states �*) and � � ).

�

The concept of UIO sequences was first introduced by E.P. Hsieh in his pa-
per [Hsieh, 1971]. Then, in 1985 K. Sabnani and A. Dahbura [Sabnani and
Dahbura, 1985] applied this concept in conformance testing.

3.1.3.4 Characterizing Sequences (W-method)

Consider a specification RTSVU�W that is modeled by a strongly connected, complete
and minimized Mealy machine

��� K��eK���K0�
	 , where � q � � � � � . Then, a char-
acterizing sequence is a sequence of input actions that distinguishes two given
different state of RTSVU�W . Formally,

}��
� K������ � _�� � ��� . � � 2 # i�k . ��� �q ���p2�q�� . � # . ���fK�� � �d2 �q � # . ���6K�� � �d2 2�t
It is important to notice that a characterizing sequence always exists for each
state of minimized Mealy machine.

The W-method constructs the set of characterizing sequences for all pairs of
different states of the given Mealy machine, and then it constructs a test sequence
in a similar way as the UIO method (see Subsection 3.1.3.3, page 29).

Example 3.7 Consider the Mealy machine & whose transition diagram is de-
picted in Figure 3.1 (see page 22). It is strongly connected, complete and mini-
mized (see Example 3.2, page 24). Then, the set of characterizing sequences of
this machine & consists of three input sequences �3K 4 and � � . Indeed:

(1) � � is a characterizing sequence of � � and �,+ as � # . � � K�� �y2
� ��� �

���

�q � # . �,+6K�� �y2
� ��� �

�	�

,

(2) � is a characterizing sequence of:

– � � and �(' as � # . � � K��y2
� ��� �

�

�q � # . �('pK��y2
� ��� �

�

,

– �*' and �() as � # . �('pK��y2
� ��� �

�

�q � # . �()pK��y2
� ��� �

�

, and
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– �(' and �,+ as � # . �('pK �V2
� ��� �

�

�q � # . �,+�K��y2
� ��� �

�

,

(3) 4 is characterizing sequence of:

– � � and �() as � # . � � K 4 2
� ��� �

�

�q � # . �()�K 4 2
� ��� �

�

,

– �(' and �() as � # . �('pK 4 2
� ��� �

�

�q � # . �()�K 4 2
� ��� �

�

, and

– �() and �,+ as � # . �()pK 4 2� ��� �
�

�q � # . �,+6K 4 2� ��� �
�

.

Here we do not explain how to generate a test sequences using the computed
above characterizing sequences as this procedure is the same as for the UIO
method which was explained in Example 3.6 (see page 29).

�

The W-method was first introduced by M.P. Vasilevskii in [Vasilevskii, 1973].
Then, it has been elaborated and adapted to conformance testing problem by
T.S. Chow in [Chow, 1978].

3.1.4 Conclusion

The test generation methods that were described in this section are based on
the well-established theory of finite state machines. Another advantage of these
methods is that they generate sound and exhaustive test cases which are able
to detect output and transfer faults in the system under test. However, these
methods are not always applicable to real reactive systems (e.g. protocols or
smart cards) due to (1) the size of these systems, and (2) the hypotheses that
must be made on a specification and an implementation of this system in order to
be able to apply one of these test generation methods. Moreover, most of them
are very expensive on time and memory. These limitations have activated the
research and development of methods for test generation based on an alternative
model called transition systems.

3.2 Test Generation Based on Transition Sys-

tems

A Transition System (LTS) [Keller, 1976] is an abstract model based on two
primitive notions of state and transition. Since their appearance, transition sys-
tems have been used as an underlying model for protocols in the fields of formal
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verification, model checking, and testing. In this section we consider two ex-
tensions of transition systems called Labeled Transition Systems (LTS), where
each transition is labeled with an observable or internal action, and Input-Output
Transition Systems (IOLTS), where we make a distinction between observable
(output), controllable (input) and internal actions. For both classes of transition
systems, we give a brief overview of the testing relations. Finally, we describe
several approaches for test generation based on these models, and the tools using
there approaches.

In this section we have used the materials from the introduction parts of
the theses [Heerink, 1998] and [Nielsen, 2000] written by A.W. Heerink and B.
Nielsen respectively, the lecture notes [Tretmans, 2002] of J. Tretmans, and the
habilitation document [Jéron, 2004] of T. Jéron.

3.2.1 Testing based on Labeled Transition Systems

In this section we introduce the formalism of Labeled Transition Systems (LTS),
which is used to model the observable behaviors of reactive systems. We also
describe the semantics of LTS, and discuses several testing relations defined on
LTS.

3.2.1.1 Model: Labeled Transition Systems

Any labeled transition system ([Milner, 1980], [Brookes and Roscoe, 1985],
[Brinksma, 1988]) consists of nodes and transitions between nodes that are labeled
with observable or internal actions. Formally:

Definition 3.3 (LTS) A LTS is a tuple
��� K�� � K . � � E�� N 2�K)D 	 , where

–
�

is a countable, non-empty set of states,

– � � � � is the initial state,

– � is a countable alphabet of observable actions,

– � is used to denote any unobservable internal action, and

– D * ��� . � ��E�� N 2 � � is the transition relation. �

We illustrate the definition of LTS with an example.
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�
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coffee

�
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chocolate

Figure 3.9: A coffee machine modeled by LTS
�

.

Example 3.8 Consider the labeled transition system
�

shown on Figure 3.9.
It consists of eight states � � K�� � Kpipipi>K��
	 , where � � is the initial state of

�
, and

ten transitions. Each transition of
�

is labeled with either an observable
( W % ���PK� �JI�� K8W %�� U�UTK+� U�GyK W�� % W % I�GO��U ) or unobservable internal ( � ) action.

This labeled transition system
�

represents a coffee machine delivering
coffee, chocolate, or tea to the user. The behavior of this coffee machine can
be described as follows: after receiving a coin from the user, the machine may
move either to the state � � or to the state �*) . If the machine decided to go to
the state �() , then it delivers tea to the user, and ends its work in the state ��� .
If the machine is in the state � � after receiving the coin, then there exist two
possible scenarios: (1) the machine decides to move to the state � + by executing
its internal action � , to deliver coffee to the user, and to move to its initial
state � � ; or (2) the user has a possibility to add milk to his/her beverage, after
which the machine moves to the state ��� , where it executes one of its internal
action, delivers coffee of chocolate to the user, and moves to the initial state � � .

�

Before giving an overview about testing relations defined on LTS, we introduce
several notations for LTS. The same notations will be used later for Input-Output
Labeled Transition Systems.

Definition 3.4 Let � q ��� K�� � K . ��� E�� N 2hK)D�	 be an LTS. Let also:

–
� � * �

be a subset of states � ,
– � � * . � � E�� N 2 be a subset of actions of � ,
– �TK�� � � � be two states of � ,
– ��� ��� � � be an observable action of � ,
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– � � ��� � . ��� E�� N 2 be either an observable or internal action of � ,
– `�q � � ipipi0� �!� . �j2 # be a sequence of observable actions,
– �!q�� � ipipi����#� . � ��E�� N 2$# be a sequence of observable and internal actions, and
– �0q �+ipidi ��� . E�� N 2 # be a sequence of internal actions.

Then,
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(1)
���� � � � � � %�� % � ��� � �

,

(1.a)
���� � � � � � 
 � � �	�� � � - ,

(2)
��
� � � � � � ����� ���� � � �� � � � % � � �!% � � ��
�� � �  � � � �� � � � �� � � � � �� �

�  � � - ,

(2.a)
� 
� � � � � � 
 � � � 
� � � - ,

(3)
���" � � � ��� �  � � ��� � ���

��� �� � � � � - ,

(4)
�
�" � � � � � � % � ' ��
�� � � �" � � �� � ' �" � � - ,

(4.a)
� ��" � � � � � 
 � � � �" � � - ,

(5)
���" � � � �

�
�����
�
� " � �� � � � % � � �!% � � ��
 � � �  � �

�
�" � � �

�" � � � ���" �
�  � � - ,

(5.a)
���" � � � � � 
 � � �	�" � � - ,

(6) �����! �"$# �&% � � ')( � ��� � #+* � � �"-, ,
(7) � �/.103254�6 ( � � ' � � ��
 * � �" � � , ,
(7.a) �&% .103254�6 ( � � � � � .107284�6 ( � ,
(8) % is deterministic 9 : % does not have any internal actions and��� ��
	% ( ����� � # �	�  ;�<��= � �/.103254�6 ( �?>A@�- ,
(9) BC�����D �"E# �&% � � '�( � �F���! E"E# �&% � * � � ���&% .103254�6 ( � % �HG ��� �

� � ��" - , ,
(10) I!JLK 25M�N ��
 � � � ' � ��
 * � G ��� � % � � ��
 � � � � � �� � - , ,
(11) I 6O41M�N ��
 � � � ' � ��
 * � G ��� � % � � ��
 � � � � �� � � - , ,
(12) PQ"��! SR ��
 � � � ' � ��
 * � ( �����UT ')V , � # % � � ��
 � �	� � � �� � - , ,
(13) WYX1PZ"��! SR ��
 � � � ' � ��
 * � ( �����UT ')V , � # % � � ��
 � �	� �	�� � � - , .�
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The example below illustrates the notations given above.

Example 3.9 Let us consider a coffee machine modeled by the LTS depicted on
Figure 3.9 (see page 35), whose semantics was informally explained in Example 3.8
(see page 34). Then, it is not hard to check that:

(1) � ����� ���C�D � � , ��	 �����	����
 � ��C�D �(' , � � �D �,+ ,
(2) � � � � 
 � � � � ����� �C�D � � ,
(3) � � �� �,+ , �(' �� � � ,
(4) �
� �����	����
 � ��q�� � � , � � �� ��� ,

(5) � � ��� ��� � � � 
 � � ����� �q�� � � ,
(6) The LTS

�
has an infinite number of traces, i.e. � ��G'W�U (T. � 2 q

E ��� W % ����� W % ���Pi���U�G�� W % ���Hi�W %�� U�U�� W % ���Pi  �JI�� i�W %�� U�U��dipipi N
(7) . � ��Z�Y =�5O7 �'2lq E �,+�K�� �pK��
	 N , . � Z�Y =�5O7 W % ���H2lqsE � � K��()pK��,+ N ,. � Z�Y =�5O7 W % ���Pi W�� % W % I�GO� UO2lq�� ,

(8) The LTS
�

is non-deterministic as W�G���� . � � Z6Y =�587 W % ���12lq � ,

(9) The traces W % ���Pi���U�G , W % ����i�W %�� U�UOi W % ���Pi���U�G and W % ���Pi  �JI�� i�W�� % W % I�GO��U�i�W % ����i���U�G
lead to deadlocks, i.e. the LTS

�
cannot execute any observable action

after them. Thus, all these traces belong to ��� ��G'W�U (�. � 2 .
(10) For the set of state

� � q E � � K��,+�K��
	 N and set of actions � � q
EyW %�� U�U�K�� U�GyK8W�� % W % I�GO��U N , the set of successors of

� � by the actions from � �
is: u ��]w= M�N . � � 2 q E � � K��(' N . Indeed, the state � � is the successor of �(+ by
W %�� U�U , and the state �(' is the successor of ��	 by W�� % W % I�GO��U .

(11) For the set of state
� � qsE �()�K��,+�K��
	 N and set of actions � � qsEyW % ���PK  �JI��VK � N ,

the set of predecessors of
� � by the actions from � � is: u 7m5 M�N . � � 2 q

E � � K�� � K�� � N . Indeed, the state � � is the predecessors of �*) by W % ��� , and
the states � � and � � are the predecessors of �(+ and ��	 by � .

(12) The set of states reachable from
� � q E �()pK�� � N is ��U�G'W�� . � � 2�q E �()�K�� � N .

Indeed, from the state �
� we can reach only �
� by the empty sequence of
observable actions, and from �*) we can reach �
� by the sequence and �*) by
the empty sequence of observable actions.

Using Figure 3.9 (see page 35) the reader can easily check that the set
of states reachable from

� � q E � � N contains all states of the LTS
�

, i.e.
��U�G'W�� . � � 2rq�E � � K�� � KpipipioK��
	 N .
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(13) The set of states reachable from
� � q E �()pK�� � N is � % ��U�G'W�� . � � 2 q

E � � K�� � KpipipioK��
	 N . From Figure 3.9 (see page 35) it is easy to see that from all
state of the LTS

�
we can reach the states � ) and � � . For instance, from the

state �
� we may reach �
� by, for example, the sequence W�� % W % I�GO��UOi�W % ����i�� U�G .
Thus, � � is coreachable from �
� .
The reader also can check that � % �MU�G'W�� . E ��� N 2rqsE � � K�� � K��('pK��,+6K�� �pK��
	 N . �

Finally, we introduce the operation of parallel composition between two LTS
which will be used in order to model the communication between two different
systems.

Definition 3.5 (Parallel Composition ��� ) Let

(1) � � q ������� K�� ���� K . � ��� � E�� N 2hK)D ��� 	 , � '�q ������� K�� ���� K . � ��� � E�� N 2�K�D ��� 	
be two arbitrary LTS,

(2) � � K�� � � � ����� be two states of � � ,

(3) �('�K�� � ' � ����� be two states of � ' ,
(4) ��� . � ����	 � ��� 2 be a common observable action of � � and � ' , and

(5) � is the internal action of � � and � ' .
Then, the parallel composition between � � and � ' with synchronization on
common observable actions is the LTS:

� � ��� � '@q � . �����%� ����� 2�K � � ���� K�� ���� 	oK . � ����	 � ��� 2 ��E�� N K)D�
 ���� ������� 	
where the transition relation D�
 ���� ������� is the smallest relation satisfying the
three following inference rules:

� � �C�D ��� � � � K �*'j� ������ � � K��('�	 �C3D�
 ���� ������� � � � � K��*'�	 (3.2)

�*' �C�D ��� � � ' K � � � ������ � � K��('�	 �C3D�
 ���� ������� � � � K�� � ' 	 (3.3)

� � �C�D ��� � � � K �(' �C�D ��� � � '� � � K��('�	 �C3D�
 ���� ������� � � � � K�� � ' 	 (3.4)�
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3.2.1.2 Testing Relations for LTS

The LTS formalism offers an easy way to describe the observable behaviors of
reactive system. However, it also allows a possibility to design two different LTS
describing exactly the same observable behaviors. This disadvantage stimulated
a study of the equivalence and preorder relations based on the notion of ob-
servable behaviors. Many works have been done on establishing the relations
between LTS. For instance, observation equivalence [Milner, 1980], failure equiv-
alence [Hoare, 1985] and testing equivalence [de Nicola and Hennessy, 1984] were
defined. An overview about these works can be found in [van Glabbeek, 2001].
Nevertheless, in this section we are more interested in preorder relations (e.g.
testing preorder [de Nicola and Hennessy, 1984], refusal preorder [Phillips, 1987],
conf relation [Brinksma, 1988]) which are used to express the notion of one system
implements another. These relations can be used as the implementation relation
defined in Section 2.1.3 of Chapter 2 (see page 15).

General Hypotheses. For the rest of this subsection we consider a class of
LTS over an alphabet � , which we denoted as ��� � . �j2 . Moreover, by analogy
with the work of J. Tretmans [Tretmans, 1996b], we restrict this class to strongly
convergent LTS, i.e. LTS that do not contain infinite sequences of internal actions.

Testing Preorder [de Nicola and Hennessy, 1984], [de Nicola, 1987] was de-
fined by R. de Nicola and M. Hennessy.

Intuitively, an implementation that can be modeled by ��
� ����� � . �j2 is in
the testing preorder relation with a specification RTSVU�W������ � . �j2 (i.e. ��
�  ����
RTSVU�W ) if for a test case ���X���	� � . �j2 , the observations (traces and deadlocks)
obtained during interaction of ��� with the implementation ��Q� are included into
the possible observations obtained during the interaction of the same test case
��� with the specification RTSVU�W .

The detailed description of testing preorder can be found in [Heerink, 1998],
[Tretmans, 2002].

Refusal Preorder. I. Phillips in his thesis [Phillips, 1987] introduced the re-
fusal testing theory that is based on a stronger preorder relation than testing
preorder. He called this relation refusal preorder. The main difference between
testing and refusal preorder is that the latter is able to detect the absence of all
possible actions (i.e. deadlocks) and not to block on them. This is done by intro-
ducing a new observable action denoted � . The � -action occurs in the situations
where an implementation under test in not able to interact with a test case.

Intuitively, an implementation that can be modeled by ��Q���
�	� � . �j2 is in the
refusal preorder relation with a specification RTSVU�W �
�	� � . �j2 (i.e. ��Q� ���+RTSVU�W ) if
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for a test case ���������
	����� (which may include the � -action) the observations
(traces and deadlocks) that can be obtained when ��� communicates with the
implementation ����� can also be obtained during the communication between ���
and the specification ������� .

The formal definition of refusal preorder can be found in the thesis of I.
Phillips. The reader can also be addressed to [Heerink, 1998], [Nielsen, 2000]
[Tretmans, 2002] that give good summaries of different works on testing and
refusal preorders.

Conf Relation. In the works on the equivalence and preorder relations the
researchers were interested in establishing correctness criteria between an im-
plementation under test that can be modeled by ������� �!�"	#���� and its formal
specification �������
�$���"	��%�� by (1) providing a set of experiments (or, in other
words, test cases), and (2) analyzing the executions of these test cases on ����� and
������� .

However, the problem of test generation is different from that of establishing
correctness criteria. It can be formulated as follows: for a given correctness
criterion and a given specification ������� , we have to generate a test suite �&�('
���
	#���� that is able to distinguish correct and incorrect implementations based
on the observations.

The test generation problem was initially studied by E. Brinksma [Brinksma,
1988] at the end of 80s. In this work, he presented a method that, from a given
specification derives a set of test cases which distinguish between correct and
incorrect implementations with respect to the conf relation. The conf relation
(which is neither equivalence nor preorder relation) is a modification of the previ-
ously described preorder relation, where (1) interactions between a test case and
an implementation (or a specification) is modeled by the parallel composition (see
Definition 3.5, page 38), and (2) only traces of the specification are considered.

Definition 3.6 (conf Relation) Let �������)�*���"	��%�� be a specification and�������+�!�
	����� be a LTS which models a given implementation under test. Then,
the conf relation is defined as follows:

,%-/.1032�4�576�8:91;=<?> @
(3.5)ACB3DFEHGJILK ,NMO>�PRQ�,S, B1TSU <V;VWX, B3D�YZY -/.[0\>^] B�T=U <V;VWX,%8:9[;=<?>S>J_ B1TSU <V;VWX, B3D�YZY 8`91;=<?>S>ba

,S,Nc B1TSU <V;VWX, B3D�YZY -/.[0=>�] B�T=U <V;VWX,%8:9[;=<?>S>J_dc B�T=U <V;VWX, B3D�YZY 8:91;e<f>S>Jg
h

The conf relation is well adapted for testing, as it restricts all possible observations
to the traces of a specification. It tests only whether a given implementation does
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what it should do. This simplifies the testing task, as we do not have to take care
about unspecified behaviors.

In the paper [Brinksma, 1988], E. Brinksma also introduces a notion of canoni-

cal tester that can be automatically derived from a given specification. Intuitively,
a canonical tester is an LTS that preserves the traces of a specification and that
is able to decide whether an implementation is conf-related to the specification.
There exist several works on automatic generation of canonical testers, for exam-
ple, see [Brinksma, 1988], [Pitt and Freestone, 1990]. Detailed information about
canonical testers and conf relation can be found in the thesis of J. Tretmans
[Tretmans, 1992].

3.2.2 Testing based on Input-Output (Labeled) Transition
Systems

The testing techniques based on LTS (see Section 3.2.1, page 34) are very often
too theoretical to be used in practice. Indeed, it is assumed that a set of test cases
exists. Moreover, the LTS model does not allow to describe asymmetric commu-
nication between tester and implementation under test, i.e. there is no difference
between observable and controllable actions. However, this difference has a fun-
damental role in testing. Indeed, in the testing practice the tester chooses an
input action � , transmits it to the implementation under test, and observes out-
put actions produced by the implementation after � . Therefore, the model used in
testing must be more detailed. At least, it has to make a difference between input
and output actions. Many works had been done in this direction, for example,
Input-Output Automata (IOA) [Lynch and Tuttle, 1989] proposed by N. Lynch
and M. Tuttle, Input-Output State Machines (IOSM) [Phalippou, 1994] of M.
Phalippou, Input-Output (Labeled) Transition Systems (IO(L)TS) [Tretmans,
1995], [Jéron, 2004].

In this section we introduce the IO(L)TS model. Then we describe two im-
portant testing relations, namely, ioconf and ioco, used in conformance testing.
Finally, we describe several methodologies of test generation based on IO(L)TS
and ioconf or ioco relations.

3.2.2.1 Model: Input-Output Labeled Transition Systems

The Input-Output Labeled Transition Systems (IOLTS) is a variant of LTS, where
the alphabet of observable actions is separated into two disjoint alphabets of input
and output action. Formally:

Definition 3.7 (IOLTS) An IOLTS is a tuple
�������	�
� ����������� �����

, where

–
�

is a countable, non-empty set of states,
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–
�
� � � is the initial state,

– ��  � �  � is a countable alphabet of actions which consists of two disjoint
alphabets of input  � and output  � ,

–
� ' ��� �� � ������ � � is the transition relation.

h

Figure 3.9 (see page 35) can be used as an example of IOLTS, where ��� �	� ��
 � ��
are input action, ����� ��� � �����:��� ��� �\� � �\� � are output actions, and � is an internal
action (in the rest of this section in all figures showing IOLTS, input actions will
be marked with “?”, and output actions with “!”). The description of this IOLTS
was given in Example 3.8 (see page 34).

It is important emphasize that J. Tretmans in his works (e.g. [Tretmans,
1996b]) restricts the class of IOLTS to weakly input-enabled IOLTS, which are
also called input-compete IOLTS and defined below. This restriction is omitted
in this thesis. However, each time when we need to work with such IOLTS, we
will explicitly mention about it.

Definition 3.8 (Input-Complete IOLTS) An IOLTS � ������ � � �� � �� � � �� ��� ����� �
is input-complete if in each state of � all in-

puts actions of � are enabled (after execution of possible internal actions), i.e.� � � ��� � � �  �� ��� ����� 
.

h

All definitions given in Section 3.2.1.1 (see Definition 3.4, page 35) can be applied
to input-output labeled transition systems as IOLTS are LTS as well. Moreover,
the operation of parallel composition defined on page 38 and used to model the
interaction between an implementation under test and a test case, is exactly the
same as for LTS. However, it is important to notice that output actions of the
implementation must interact with input actions of the test case and vice versa.

At the end of this subsection, we discuss the blocking problem as is appears in
conformance testing. Let us consider an IOLTS � � ���"! ���
� ! � �% ! � ������ ����! �
interacting with its environment. During this interaction the system can either
normally proceed its computations, or can be blocked. By analogy with the works
of T. Jéron [Jard and Jéron, 2002], [Jéron, 2004], we distinguish three kinds of
blocking:

Outputlock: the system is in a state (see the left-hand side of Figure 3.10(a),
page 43), where it is only waiting for input actions from the environment.

Formally, a state
� � �#! is an outputlock if %$)� �� ! � ������'& �)(� �
'  �! .
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a? b? a? b?

���

(a) Outputlock

x! x!

���

(b) Deadlock

�

�

�

�

�

�
���

���

���

(c) Livelock

Figure 3.10: Three possible blockings in IOLTS.



Test Generation Based on Transition Systems 45

Deadlock: the system cannot perform any action (see the left-hand side of
Figure 3.10(b), page 43). Formally, a state

� � �"!
is a deadlock if

%$ � �% ! � ������'& � (� � ��� .
Livelock: the system is in a cycle of internal actions (see the left-hand side

of Figure 3.10(c), page 43). Formally, a state
� � �"!

is a livelock is� � ��� � � � � ��������� �� � �  
.

It is important to notice that a blocking of the given specification is not necessary
an error. It is evident for outputlocks, but it is also true for livelocks (that can
be obtained, for instance, as a consequence of the parallel composition between
several systems) and, moreover, for deadlocks. Hence, a test case applied to an
implementation under test ( ����� ) must distinguish between specified blockings of
����� (i.e. ones that exist in the specification), and non-specified blockings of �����
(i.e. ones that produced only by the implementation). Therefore, all possible
blockings of the specification have to be detected and marked with the special
output action � (see Figure 3.10, page 43).

Before giving the definition of an IOLTS in which all blockings are marked, we
denote the set of all quiescent states (i.e. outputlocks, deadlocks and livelocks)
of an IOLTS � as 	�� �%��
?��� � � � � � .
Definition 3.9 (Suspension IOLTS) For an IOLTS � ���� ! ���
�! � �� ! � ������ � ��! �

, we define a suspension IOLTS �b� � � ���� ! ���
�! � ����� !�� �������� ��� �� !�� � , where

(1) the alphabet of action is augmented with the special output action � , i.e.

��� !�� �  ! �� � � , and

(2) the transition relation of � � � � is constructed as follows:

� �� !�� � ��! �  ���� � & � ��	�� �%��
?��� � �7� � � �
h

The suspension traces of an IOLTS � (denoted � ��� � ����
�� � � ) are the traces of
its suspension IOLTS �b� � � , i.e. � ��� � ����
 � � � � ��� � ����
1���b� � � � .
3.2.2.2 Testing Relations for IOLTS

Jan Tretmans and his colleagues from the University of Twente, Netherlands have
adapted the testing preorder ����� and refusal preorder �! #" , which were informally
introduced on page 39, for the IOLTS model, and obtained input-output test-

ing preorder ��$&%'� and input-output refusal preorder �($#%*) (see [Tretmans, 1996b],
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[Tretmans, 2002]). Analogously to ����� and �( #" the new defined preorder relations
(1) allow implementations under test to do what is specified, and (2) does not
allow them to do more than what is specified. This requirement is too strong for
conformance testing. Indeed, in conformance testing we are only interested in
checking whether the implementation respects a specification, i.e. the question
that is posed here is: does the implementation do what it should do. Using this
argumentation Tretmans et al. introduced two new testing relations which they
called ���������	� [Tretmans, 1995] and ������� [Tretmans, 1996a] that are well adapted
for conformance testing and automatic test derivation. The original versions of
the � �
�����	� and ������� relations treat the problem of specified and unspecified out-
putlocks and deadlocks (see page 42). T. Jéron and his colleagues have extended
the conformance relations proposed by J. Tretmans (i.e. � �
�����	� and ������� ) for
livelocks detection (see page 42).

In this subsection we give the formal definitions of the � �
�����	� and ������� relations
and illustrate them with examples.

General Hypotheses. For the rest of this subsection we consider:

(1) a specification whose behaviors are modeled by a convergent IOLTS ������� �� �������� ��� � ������� � �% ������� � ������ � ��������� �
, where  ������� �( � ������� �  �������� .

We remind that an IOLTS is convergent if it does not contain an infinite
sequence of internal actions which goes through infinite number of different
states.

(2) an implementation under test whose possible behaviors are modeled by an
input-complete IOLTS ����� � ��������� ���
� ����� � �� ����� � ������ ��������� �

with alphabets of
input  � ����� '  � ������� and output  ������ '  �������� actions. The definition of an
input-complete IOLTS can be found on page 42.

Before describing the ioconf and ioco relations, we give an intermediate definition
of a set of output actions that can be generated by an IOLTS when it is in some
state. Formally, for an IOLTS � � ��� � ���
�� � �� � � �� ��� ����� �

with alphabet
 � �  �� �  �� , and a subset of states

� �� ' ��� , we define:

! ���f� � �� � � 	� �+ �� & � � � � � �� ��� � ��� ��� � � �� �  � (3.6)

Ioconf Relation. Intuitively, the implementation under test ����� is conformant
to the specification ������� (with the special output action � marking all possi-
ble blockings in ������� ) according to ioconf-relation if for each trace of ������� , the
implementation produces only outputs and blockings which are allowed by the
specification. Formally:
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Definition 3.10 (ioconf Relation) For a specification ������� and an implemen-
tation under test ����� formally described in paragraph General Hypotheses (see
page 45), the ioconf relation is defined as follows:

�=����� � �
�����	� �������:� �
(3.7)� � � ��� � ����
��=�������:� ��� ! ���7�*�b�e���������	�����	� � �O' ! ���f��� �S�������:�
� ������� � �  
h
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Figure 3.11: An example illustrating ioconf relation.

Example 3.10 To illustrate the definition of the ioconf relation, we consider
a suspension specification �b�=�������:� shown on Figure 3.11(a) (see page 46) and
two suspension implementations under test �b�=�����/.�� and �b�=������0f� depicted in Fig-
ures 3.11(b) and 3.11(c) respectively (see page 46). Notice that here and later,
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we use the abbreviation otherwise? to indicate all possible inputs of an imple-
mentation under test.

It is not hard to see that the specification ������� (which can be obtained from
�b�=�������`� by removing all loops on � ) only partially specifies the implementation
������. (which can be obtained from �b�=������.�� by removing all dotted edges from
Figure 3.11(b)), as �����/. in its initial state can execute the unspecified input ac-
tion � (see the green edges on Figure 3.11(b)). However, this implementation is
conformant to the specification, i.e. �e�����/. ���������	� �������:� . Indeed, after each trace
of ������� (which are � , � and � ��� ), it produces the same outputs as the specifica-
tion. For instance,

! ���f���b�e�����/.����	�����	� � � �  � ��' ! ���7�*�b�=�������:�
�	�����	� ��� �  � � or! ���f���b�e������.����	�����	� � ��� � �  � ��' ! ���f���b�=�������:���	�����	� � ��� � �  � � .
Next, we consider the second implementation under test ������0 obtained from

�b�e������0 � by removing all loops on output action � . From Figure 3.11(c), page 46
it is easy to see that after input action � , the implementation ������0 performs
unspecified output action � (see the red edge on Figure 3.11(c)). Formally,! ���f���b�e�����+0f���	�����	� � � �  � � � ���' ! ���f���b�=�������:�
� ������� � � �  � � . Therefore, this
implementation is not conformant to its specification, i.e. �L�e����� 0 ���������	� ������� � . h

Ioco Relation. In this paragraph we introduce the ioco relation which treats
specified and unspecified blockings. Intuitively, the implementation under test
����� is ioco-conformant to the specification ������� if for each suspension trace � of
������� , the outputs (including the � -action) produced by suspension ����� after this
trace are the outputs that can be produced by suspension ������� after � . Formally:

Definition 3.11 (ioco Relation) For a specification ������� and an implementa-
tion under test ����� formally described in paragraph General Hypotheses (see
page 45), the ioco relation is defined as follows:

�=����� � �
��� �������:� �
(3.8)� � �d� ��� � ����
 �S�������:� � � ! ���7�*�b�e����� � �	�����	� � �O' ! ���7���b�=�������`��� ������� � �  
h

Then, we illustrate the definition given above with an example. This example
had been taken from the habilitation document [Jéron, 2004] of T. Jéron.

Example 3.11 Consider Figure 3.12 (see page 49) which presents the suspension
IOLTS of a specification ������� and four suspension IOLTS of implementations
under test ������. – �����
	 . Then,
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Figure 3.12: An example illustrating ioco relation.
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(1) �e������. ������� �������:� as for all traces of the suspension specification ������� , the
outputs of �b�e������.�� are included into the outputs of �b�=�������`� . For instance,! ���7�*�b�e������.����	�����	�J� � � ���"��� � � � � � � � �  � ��' ! ���f���b�=�������:�
� �������3� � � ���"��� � � � � � � � �
 � � � � , where � � � ���"��� � � � � � � �d� ��� � ����
��=�������:� .

(2) �e�����+0 ������� �������:� as all suspension traces of � �S�������`� are traces of �b�=������07� .
Thus, it is not hard to check that after all suspension traces of ������� , � �=������0f�
produces exactly same outputs as �b�S������� � .
Moreover, from the initial state

� �
, �b�e������0f� can execute the input action

� (shown in green on Figure 3.12(c), page 49) which is not specified in
�b�S�������:� . However, the ioco relation allows this input action, because
ioco checks only the inclusions of output actions after all possible traces
of �b�=�������:� . This observation gives us a possibility to describe partial spec-
ifications.

(3) ���=������� � �
���b�������:� as the output action
�

of �b�e�������7� after the input action �
is not allowed by �b�=�������:� (see the red edge of Figure 3.12(d), page 49). For-
mally,

! ���f���b�e�������7���	�����	� � � �  � � � � � � �' ! ���f���b�=�������:�
� ������� � � �  � � � � .
(4) ���=����� 	 � �
���b�������:� as the blocking � (here it is a livelock) of �b�e����� 	f� af-

ter the suspension trace � ��� of � �S�������:� is not allowed by the specifica-
tion (see the loop shown in read in Figure 3.12(e), page 49). Indeed,! ���7�*�b�e����� 	?���	�����	� � ��� � �  � � � � �' ! ���7�*�b�S�������:� �	�����	� � � �  � � .

h

Ioconf vs. Ioco. The aim of this paragraph is to compare the two implemen-
tation relations ioconf and ioco (see Definitions 3.10 and 3.11, pages 45 and 47).

The ioconf and ioco conformance relations are quite similar. They both require
an implementation under test to react correctly to the traces that are explicitly
specified in the specification. In the same time, they allow the implementation to
react in any possible way to traces that are not explicitly specified. This means
that the ioconf and ioco relations permit the partial description of specifications,
which significantly simplifies the testing tack.

Nevertheless, the ioconf and ioco relations are different. Indeed, the purpose
of the ioco relation is to check whether after the execution of each suspension

trace (i.e. trace that may contain the � action marking all specified blockings) of
a specification, an implementation under test produces only specified outputs or
not. The ioconf relation checks the same things as ioco but for each proper trace
(i.e. trace that does not contain any � action) of a specification. This differ-
ence between the ioconf and ioco relations is illustrated on an example which is a
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slightly modified version of the example used by J. Tretmans in his paper [Tret-
mans, 1996b].

Example 3.12 Consider, a specification ������� whose suspension version is shown
on Figure 3.13(a) and an implementation under test ����� whose suspension version
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Figure 3.13: An example illustrating difference between ioconf and ioco relations.

is depicted in Figure 3.13(b).
It is not hard to check that the implementation ����� is not ioco-related to

its specification ������� , i.e. �L�e����� � �
��� �������:� . Consider the suspension trace � � � � �
of �b�=�������`� . Then we obtain that:

! ���f���b�e����� ���	�����	� � � � � � � �  � � � � (see Fig-
ure 3.13(a)), where the output action

�
cannot be produced by �b�S�������:� after the

trace � � � � � , indeed
! ���f��� �S�������:�
� ������� � � � � � � �  � � (see Figure 3.13(a)).

However, ����� is ioconf-related to ������� , i.e. �e����� ���������	� �������:� . As for
each trace � of ������� , where � is a word in the following language:
� � � � ��� � � � ��� ��� � � � � � � , the implementation ����� can produce only spec-
ified output actions. For instance, consider the trace � � � of ������� , then! ���7�*�b�e����� ���	�����	� � � � � �  � � � �C' ! ���7�*�b�=�������:�
�	�����	� � � � � �  � � � � . Therefore,
using the ioconf relation we cannot distinguish the left branch of ������� and �����
from the right one.

h

This section has intuitively shown that the ioco relation is stronger than ioconf.
Moreover, it treats more carefully the problem of blockings than ioconf. Due to
these reasons the ioco relation is used by many researchers as the basis for testing
and test generation (see Subsections 3.2.3 and 3.2.4, page 51 and 64).
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Nevertheless, in this thesis we build the testing theory and test generation
method based on a weaker variant of the ioconf relation (and, therefore, ioco)
which (1) does not treat the problem of blockings at all, and (2) is adapted
for the symbolic variant of input-output labeled transition systems (presented in
Chapter 4, page 77 and called IOSTS). The main reason for our choice is that the
problem of detecting when a system modeled by IOSTS is blocked is undecidable

in general. However, in the case of absence syntactical livelocks in a given IOSTS,
it is possible to syntactically build its suspension IOSTS. Thus, in this case it is
possible to extend our conformance relation to ioco defined by J. Tretmans. The
idea of this extension has been proposed in [Rusu et al., 2004].

3.2.3 Ioco-Based Test Generation Algorithms

This subsection describes two test generation algorithms based on the IOLTS
model and the ioco relation. Before describing these algorithms we consider
(1) a specification a specification whose behaviors are modeled by a convergent

IOLTS ������� with the alphabets of input  � ������� and output  �������� actions, and (2)
an implementation under test whose possible behaviors are modeled by an input-

complete IOLTS ����� � ��� ����� ���
� ����� � �� ����� � �� ��� ��������� �
with alphabets of input  � ����� '

 � ������� and output  ������ '  �������� actions. Also we consider that the implementation
relation (see Section 2.1.3, page 15) relating ������� and ����� is instantiated with ioco

(see Definition 3.11, page 47). Then, by analogy with the habilitation document
dissertation [Jéron, 2004] of T. Jéron we formally define a test case as follows.

Definition 3.12 (Test Case) A test case is an IOLTS ��� ������ � � � � � � �  � � ����� � � such that:

(1) The set of states
��� � is equipped with three disjoint sets of states

� �����"'��� � , 		� ��
[' ��� � and � � ����� �
���� � ��� ' ��� � that do not have any successor.

(2) The alphabet of actions  � � consists of only input and output actions, i.e.

 � � �( � � � �L � � � , where  � � � is equipped with the special action � indicating
blockings detection in an implementation under test.

(3) ��� is controllable, i.e. for any state
� � ��� � , ��� does not have the choice

neither between output actions, nor between input and output actions.
Formally:

A���E�� � � PRQ���� E M � � � P Q � �� � � g���� A���E M � � P^Q , � ��!�1>"�#� , �%$& � � >Ng^g

(4) All states of ��� from which we can execute an input action are input-
complete, i.e.

A'�LE�� � � P^Q(��� E M � � � P^Q � �� � � g��#� A'�!E M � � � PRQ � $� � � g g
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(5) The states belonging to the Fail or Inconclusive set of states are reachable
only by input actions, i.e.

A�� ��� � ��� ��� E � � � PRQ � � E ,��	�	
����� 572�4�5f2�������
 ���:>"�#� � E M � � � g

(6) From each state of ��� a verdict ( � � � � , � � 
 
 , or � � ��� � � � � 
 ��� � ) is accessible:

A �LE'� � � � ��� E ,NM � � > � � � � E ,� !�����"��	�#
$�%�� 5f2�4�572�������
 ���:>!P^Q �'&� � � g
h

Some examples of test cases are shown on Figures 3.14 and 3.16 (see pages 54
and 62), where the abbreviation otherwise? is used to indicate all possible
inputs of a tester that are sent by an implementation under test, and are not
specified in a test case.

In order to model the execution of a test case ��� on an implementation under
test ����� we use the parallel composition defined on page 38. The aim of the test
execution is to produce a testing verdict which is either Pass, Fail or Inconclusive.
Here, Pass means that no observable difference between a specification and an im-
plementation is detected; Fail means that an implementation behaves differently
from its specification; and Inconclusive (which is used only in testing based on a
test purpose) means that no error is detected, but a test purpose is not satisfied.
The formal definition of verdict can be found, for instance, in [Tretmans, 1996b],
[Morel, 2000], [Jéron, 2004].

In the rest of this subsection we describe test generation algorithms whose
main purpose is to derive sound and exhaustive test cases. These properties of test
cases permit to relate derived test cases with the notion of conformance. Remind
that a test case is (1) sound if it does not reject conformant implementations, and
(2) exhaustive if implementations which do not conform to their specification may
be rejected by some test case. In this section we do not give the formal definitions
of soundness and exhaustiveness as they can be easily found in works of M.-C.
Gaudel, T. Jéron, J. Tretmans and other researchers working in the testing area.

3.2.3.1 Blockings and Visible Behaviors of Specifications

Before describing the test generation algorithms, we remind that their aim is to
derive a test case ��� from a specification ������� , that detects unspecified blockings
in an implementation under test ����� . For this we have to find all possible blockings
in ������� and mark them with the special output action � . In other words, the first
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preliminary step for the test generation algorithms is to build a suspension IOLTS
�b�=�������`� for the given specification ������� .

Next, notice that during test execution, the tester first observes all possi-
ble reactions of the implementation ����� on its stimuli (i.e. the sequences of in-
put/output actions or traces), and, then, compare them with the specified ones.
For this it is useful to have a direct access to the set of traces of the specifica-
tion ������� � ���������� ���
� ������� � �� ����� � � ������ � ��������� �

, which can be characterized by the
deterministic IOLTS � ���f�=�������:� � ����� �*� ���
�� �*� �  � ��� ����� �*� � , where

–
��� ��� �����
	����� is the set of states,

–
� �� �*� �*� � � ������� �	�����	� �1� is the initial state,

–  � ��� �  �� ��� �F �� �*� is the alphabet consisting of input  �� �*� �  � ������� and
output  �� ��� �  �������� actions,

– the set of transitions is constructed as follows:

� ���� ��� � ��� � � � ��� � � ��� �*�%��� � � �  � �*�\��� � � � �*� � � ������� � �V� �

This algorithm for transformation of a given IOLTS ������� into a deterministic
one, i.e. � � �f�=�������:� , where ��� � ����
 �S�������:� � ��� � ����
���� ���7�=�������:� � , is identical to the
classical algorithm for determinization of finite state automata (see [Hopcroft
and Ullman, 1979]), which consists in two steps: (1) � -reduction, and (2) subset
construction. It is illustrated on Figures 3.14(a) and 3.14(b) (see page 54).

Finally, it is important to emphasize that if we extract visible behaviors of
a specification ������� before detecting blockings in it, then we risk to lose infor-
mation about some blockings implicitly specified in ������� . For instance, if we
determinize the specification ������� whose suspension IOLTS �b�=�������:� is shown on
Figure 3.14(a) (see page 54), then in the resulting IOLTS � � �f�=�������:� we will not
find neither outputlock nor livelock in ������� , as information about them was lost
during determinization. Therefore, in the case when the problem of unspecified
blockings must be treated, it is necessary first to construct � �S�������:� , and then to
extract visible behaviors of �b�=�������:� , i.e. to build � � �f�*�b�=�������:� � .
3.2.3.2 The Approach of J. Tretmans

In this section we describe a slightly modified version of test generation algorithm
proposed by J. Tretmans in his PhD thesis [Tretmans, 1992]. The difference
between the original algorithm and the algorithm proposed in this section is that:
the problem of detection of outputlocks, deadlocks (livelocks are not considered
in the works of J. Tretmans), and visible behaviors of a specification ������� is
incorporated into the original algorithm, but not in the proposed one. In the
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Figure 3.14: The approach of J. Tretmans.
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proposed algorithm we suppose that � � �7�*�b�S�������:�V� is already computed. In our
opinion this trick simplifies understanding of the approach of J. Tretmans.

Algorithm 3.1 (Tretmans Approach) Let ��������� $�� � � � �f�*�b�=�������:� � ����
� $�� ��� �� $�� � �% � $�� � ������ ��� � $�� � be an IOLTS which was obtained from a given spec-

ification ������� by detection of all possible blockings in ������� (i.e. by building
of �b�S�������:� ), and by determinization of �b�=�������:� (see the previous subsection,
page 53). Let also �b�e������� be a suspension IOLTS of an implementation under
test ����� .
Then, from the specification ������� we to construct a test case ��� ������ � � � � � � �  � � ����� � � , where

–
��� � � � � � � � � ����� � 	 � ��
 , where

� � � � ' � � $�� ,
–
��� � � � �
�

� $�� ,
–  � � �( � � � �  � � � , where  � � � '  �� $�� and  � � � '  �� $�� .

as follows:

(1) We create an IOLTS ��� consisting of only one initial state, i.e.
��� � �

 � � � � � and
��� � ��� . This IOLTS will represent a test case at the end of the

algorithm.

(2) While ��� contains at least one state
� � ��� � which (a) does not belong

neither to the Pass nor Fail set of states, and (b) does not have any outgoing
transitions belonging to

� � � , then perform one of the following three steps:

Stopping Condition:
� ����� � � � � ��� �� � � .

Notice that this step permits to stop the exploration of the given spec-
ification ������� .

Execution of an Input Action: If the set of input actions of ������� � $�� that
can be executed from the state

�
, is not empty, i.e.

�	�����
	�� � � � 	� �  �� $�� & � ��
� $�� � ����

then choose one of these actions, for instance, � � �	� 	���������� � � � , and
update the set of states

��� � and set of transitions
� � � of the test case

��� as follows:

(a)
��� � � � ��� � � �� � �	�����	� ��� � ,

(b)
��� � � � ��� � �  ��� � � � � � �	�����	� ��� � � .
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Execution of All Output Actions: If the set of output actions of
������� � $�� that can be executed from the state

�
, is not empty, i.e.

� ��� ���
	 � � � � 	� �  �� $�� & � ��
� $�� � ����

then update the set of states
��� � and set of transitions

� � � of the test
case ��� as follows:

(a)
� � � � � � � � 

�� �
����� ��� � ��	
	 ���� , � � 6�� ��� �1>�����  �� U -���� �

(b)
� � � � � � � � 

�� �
����� ��� � ��	�	 ���� � � � � � , � �76�� ��� ��> � ���� 

��� �
��� 	! #"��%$ &(' � �*) 	 � ��� ���
	�	 �+�,�  � ��� � � � U -�� � �

�.-� P
h

Finally, we illustrate the algorithm for test generation proposed by J. Tretmans
with an example.

Example 3.13 Consider an IOLTS � � �7�*�b�S�������:�V� shown on Figure 3.14(b) (see
page 54). By applying the Tretmans approach (formalized as Algorithm 3.1) to
this IOLTS, we can obtain the test cases depicted in Figures 3.14(c) and 3.14(d)
(see page 54).

The first test case ��� . (see Figure 3.14(c), page 54) stimulates an imple-
mentation representing a coffee machine with the coin action, and then waits
for a response from the implementation ����� . If ��� . receives an action which
is different from coffee or tea, then it stops with the Fail verdict. Otherwise
it continues the computation as follows: (1) it can choose to stop by accepting
the tea action and producing the Pass verdict, or (2) it can accept the coffee
action and continue stimulate the implementation ����� with the coin action until
producing either Pass or Fail verdict.

The second test case ���#0 shown on Figure 3.14(d) (see page 54) chooses to
be silent, i.e. it waits for some response from the implementation ����� . If the
implementation indicates that it is blocked (by sending � action), then ��� 0
decides to wait again for some response from ����� . If it receives the � action the
second time, it stimulates ����� with the coin action, waits for the tea action from
����� , and then stops by producing the Pass verdict. In all other cases, the test
case ���#0 stops with the Fail verdict.

h
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The set of test cases (possibly infinite) produced by Algorithm 3.1 (see page 55) is
sound and exhaustive. This statement was formulated by J. Tretmans as Theorem
6.3 in his paper [Tretmans, 1996b].

3.2.3.3 Test Generation Guided by Test Purposes

In the previous subsection (see page 55) we have described the Tretmans ap-
proach, where the derivation of test cases strongly depends on non-deterministic
choices of the algorithm (see page 55). Thus, it is not possible to generate test
cases for exercising a specific part of a implementation under test. Nevertheless,
this aspect is quite important for practical testing, as it is often necessary to test
only a part of the implementation and not the entire implementation. The re-
searchers working in the testing area have studied this aspect and proposed some
solutions. One of these solutions is to guide the test derivation process with test

purposes that formally describe a part of the specification for which test cases
must be generated. It has been proposed by T. Jéron and his colleagues from
IRISA/INRIA Rennes, France (see [Fernandez et al., 1996], [Morel, 2000], [Jard
and Jéron, 2002], [Jéron, 2002], [Jéron, 2004]). In these works a test purpose
is represented as an IOLTS consisting of incomplete sequences of specified input
and output actions. Formally:

Definition 3.13 (Test Purpose) Let ������� be a specification with alphabets
of input  � 	����� and output  �	����� actions. Then, a test purpose of ������� is an IOLTS
� � � ������� ���
� ��� �  ��� ������� � such that:

(1) The set of states
�����

is equipped with two disjoint set of states
� ��� ��� � ' �����

and � ��� ��� ��' ����� .

(2)  ��� �  � ��� �  � ��� , where  � ��� �( � 	����� and  � ��� �( �	 � �� �� � � .
(3) � � is deterministic (see the item (8) of Definition 3.4 on page 35).

(4) � � is complete, i.e.
� � � ����� � � �+ ��� � � ��������  

.

h

Figure 3.15(b) on page 58 gives an example of a possible test purpose for the spec-
ification ������� depicted in Figure 3.14(a) (see page 54) is shown on Figure 3.15(b)
(see page 58). This test purpose � � describes behaviors of the coffee machine
where the latter delivers coffee and does not block. An accepted (resp. rejected)
behavior is indicated by the arrival into the Accept (resp. Reject) location. It
is important to emphasize that the rejected behaviors of � � are not necessary
erroneous. They are just the behaviors that are not targeted by � � . Notice also
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Figure 3.15: Computation of the synchronous product.
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that on Figure 3.15(b) (and later) we use the * abbreviation indicating a set of
transitions labeled with all possible actions of � � except those specified.

Finally, we describe the ioco-based test generation algorithm which uses a test
purpose in order to extract the part of a specification for which a test case should
be derived.

Algorithm 3.2 (Test Generation Guided by Test Purposes) Consider a
specification ������� and a test purpose � � of ������� . Then, a test case ��� can be
generated by the following steps:

Blockings and Visible Behaviors of ������� . The first step of the algorithm
consists in the detection of all blockings in the given specification ������� (i.e.

building of �b�=�������:� ) as well as extracting visible behaviors from �b�=�������`�
(i.e. building of � ���f�*�b�=�������:� � ). This step was already explained in Subsec-
tion 3.2.3.1 (see page 53).

Synchronous Product. The purpose of the second step is to identify some
visible behaviors of the specification as accepted using the given test purpose
� � . In order to do this we compute a synchronous product between the
IOLTS � � �7�*�b�S�������:�V� obtained at the previous step of the algorithm, and
the test purpose � � . Formally:

Definition 3.14 (Synchronous Product) Let ������� � $�� � � ���?���b�=�������:�V� �� �
� $ � ���
�� $�� �  � $�� � � � $ � � be the deterministic suspension IOLTS of a specifica-

tion ������� , and � � � � ����� � ��� ��� �  ��� ������� � be a test purpose of ������� . Then,
the IOLTS � � � ���

	
� ���
�

	
� �  	 � � � 	

� �
is the synchronous product between

������� � $�� and � � , where:

(1)
�
	
� � �

� $�� � ����� is the set of states equipped with two sets of accepting
and rejecting states which are defined as follows:

� ��� ��� � 	
� � �

� $ � �� ��� ��� � ��� and � ��� ����� 	
� � �

� $�� � � ��� ����� ��� ,

(2)
���
	
� � ���
�

� $ � ���
� ��� � is the initial state,

(3)  	 � �(
�
	
� �H �	 � is the alphabet of input and output actions such that

 � 	 � �(
�
� $�� �  � ��� and  �	 � � 

�
� $�� �( � ��� , and

(4) the transition relation
�
	
�

is defined as follows:

� �
� $�� ��� ��� � ��

	
� ��� �

� $�� � � � ��� � � � � � � $�� ��
� $�� � �� $�� � � � � ��� �� ��� � � ��� �

h
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An example of the synchronous product computed from the deterministic
suspension IOLTS �����������
	��������� (see Figure 3.15(a), page 58) and its test
purpose ��� (see Figure 3.15(b), page 58) is shown on Figure 3.15(c) (see
page 58).

Selection or Complete Test Graph Construction. Remind that the aim of
this test generation algorithm is to construct a test case that examines
behaviors of the specification 	����� that are selected by the test purpose
��� . Therefore, it is not necessary to keep all traces of the synchronous
product 	�� computed at the previous step of the algorithm. It is enough
to choose behaviors of 	�� which (1) consist of only reachable states of
	�� , and (2) lead to accepting states of 	�� . (The notions of reachable and
coreachable states which will be used later, is given as the items (12) and
(13) on page 35.) Formally, we construct a complete test graph which is
defined as follows:

Definition 3.15 (Complete Test Graph) Let 	�� ���������� �"!��� ��#$���%� &'�(�*)
be the synchronous product computed from the

deterministic suspension specification 	������+-,/.0� �����������
	��������� with al-
phabet of input actions

#21+3,4. and a test purpose ��� . Let also 576%8 be an
implementation under test with alphabet of output actions

#:9;=<?> .
Then, a complete test graph is defined as an IOLTS @A�CB ����EDGF�HI� �"! D�FGH ��#JD�FGHK��&LD�FGH*)

selected from the synchronous product 	�� , where:

(1)
�ED�FGH �NMPO*QSRUT4V�WYX%V�W[Z]\�^�_ `��CRbaPc�_]Z is the set of states, where:

(a) M*O*Qd�N�
ef�g�� hi�-j �"! k�lnm �poq@sr�e$�g�� ht�(QEW�WY�Puv� k�l �w�px2QyO*Q , where QyOPQ{z
j �}| QEWYW��Puv� ����~ u[���v���
j ��m �s����QEWYW��Puv� ��� R�� ����� xCef�g�� ht�
j �v! k�l m ����� m , is
the set of states that are reachable from the initial state of 	�� and
coreachable from the accepting states of 	�� . Moreover, this set
does not contain accepting states of 	�� that are direct successors
of either other accepting states of 	�� , or unreachable from

� ! ���
states of 	�� .
Next, we denote by ��c[^3^C��M*OPQ�o�QEWYW��Puv� ��� the set of pass states.

(b) T/V�W�X%V�WPZ=\�^ _ `��:��u�X�^-�3����(� �3M*O*QC��x�M*O*Q is the set of inconclusive states,

where each state belonging to T/V�W�X%V�WPZ=\�^ _ `�� : (1) is a direct successor
of a state belonging to M*O*Q by an output action of 	�� , and (2)
does not belong to MPO*Q .

(c) a*c�_�ZE��j���g[5(� m is the set consisting on only one new state called
��g[5(� .

(2)
�"! D�FGH � �"!���

is the initial state in the case when M*O*Q����� . Notice that if
M*O*Qd��� , then @A�CB is the empty IOLTS.



62 Test Generation

(3)
# DGFGH � #21 D�FGH R #�9DGF�H

is the alphabet of input and output actions, where#�9DGFGH � #21��� � #21+-,/. and
#21 DGF�H � #�9;=<?> Rbj � m .

It is important to notice that the alphabets of input and output actions
are inverted due to the fact that: in order to be able to communicate
with an implementation, (1) output actions and blockings of the im-
plementation must be considered as input actions for a test case, and
(2) input actions of the implementation must be interpreted as output
actions of the test case.

(4)
& DGFGH � &������ R &	� 
����
���� ����� ��� R &������ �

is the transition relation, where:

(a) � ������� ���! #"%$&"' )(�*,+ � �(�.-/ 0+21436587:9<;>=@?4?'A>BC$D+FE$D�FGH,BG )(H+236587<I
is

the set of transitions leading to “lead to accept” states,

(b) � � 
��J�K
���� ����� ��� � ���! L"%$M"' N(O*P+ � �(�Q-> R+	1436587S9C;>=@?4?'ATBU$V+WE 1 DGF�H BX N(Y+
Z�[]\_^`[@\@acb ?'d e@fLI

is the set of transitions leading to inconclusive states,
and labeled with input actions of @A�CB ,

(c) � ����� �g� ���! L"%$&"ihkj@lKmn*po+ � �(�q-/ r+W143658729s;>=]?4?'AtBu$v+wE 1 D�FGH BF yxz �(�>I
is the set of transitions leading to the �ng[5(� state, and labeled with
input actions of @A�CB .
Notice that the introduction of the transitions leading to the �ng[5(�
state makes @A�CB input-complete (with respect to input action
of the given implementation 576�8 ). Therefore, @A�CB can properly
react on an incorrect input action and blocking incoming from this
implementation.

{

We illustrate the complete test graph construction with an example below.

Example 3.14 The complete test graph obtained from the synchronous
product shown on (see Figure 3.15(c), page 58) by the third step of the
algorithm is shown on Figure 3.16(a) (see page 62). The two crucial points
in this computation are the construction of the states and transitions of
@A�CB .

First, we need to construct the set of “leads to accept” states. For this we
need to compute:

– the set of states reachable from the initial state
�}|%�_|�)

of 	�� , which is
equal to the set of states of 	�� , i.e. e$�g�� h��
j �}|%�_|�) m � � �����

,

– the set of states from which it is possible to go to pass, which is
@sr�e$�g�� ht�(Q WYWY�[uv� �(� � ��QEW�WY�[uv� �(� Rbj �}|%�_|�)�����~*��|�)Gm , and
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���������

�	�
�����
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otherwise?
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Figure 3.16: The complete test graph and two possible test cases.
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– the set of “accept to accept” states which is QyOPQ �
j �i~*�����������	�w)�� j ��
K������������w)�� j ���%�����������	�w)G� j ���������������	�w)Gm

.

Using this information we construct the “leads to accept” states: MPO*Q��
�
e$�g�� h��
j �}|%�_|�) m �to�@sr�e$�g�� ht�(Q WYWY�[uv� �(� �w��xAQEO*Q � j ��~*�����������	�w)��v�}|%�_|�)G����~*�_|�)Gm

,
where the state

��~*�����������	�w)
is the pass state of @A�CB . The obtained states

are shown in green on Figure 3.16(a) (see page 62).

Second, we compute the set of inconclusive states. For this we compute the
direct successors of the “leads to accept” states previously calculated, by
the output actions of 	�� : u�X*^3��������������� > �������� ��!���#" � > ��� $#%��wMPO*QC� ��j � O � e$'&v���8 )�����(%��)�)Gm .
On Figure 3.16(a) (see page 62) these two states are merged into one state
shown in yellow and called *�+t��r,+t�Y�]6�- 5'.* .
Third, we augment the set of state of @A�CB with one ��g[5(� state shown in
red on Figure 3.16(a) (see page 62).

Next, we connect all green and yellow states with the same transitions
with which they were connected in the IOLTS 	�� (see Figures 3.15(c)
and 3.16(a), pages 58 and 3.16(a)). Finally, for each state different from
�$g/-�- , �ng[5(� and *�+t��r,+t�Y�]6�- 5'.* we add a transition labeled with otherwise?
(indicating all possible input actions which can be received by @A�CB ) and
leading to the ��g[5(� state.

{

Controllability. The last step of the algorithm consists in solving the control-
lability conflicts in the complete test graph @A�CB computed at the previous
step. There exist two kinds of controllability conflicts that may appear in a
state

�
of @A�CB : the first one is the choice between several output actions,

and the second one is the choice between input and output actions (see for
example, the choice between ��r[5'+10 and

�32
in the initial state

�}|%�_|�)
of @A�CB

shown on Figure 3.16(a), page 62).

These controllability conflicts can be solved by using a simple technique
that for each state

�
of @A�CB either:

(1) keeps one transition labeled with an output action. In this case the test
case takes the initiative, it chooses how to control an implementation
under test (see the test case shown on Figure 3.16(b), page 62). Or,

(2) keeps all transitions labeled with input actions. In this case the test
case gives an initiative to an implementation under test, and observes
its responses (see the test case depicted in Figure 3.16(c), page 62).

Notice that after applying this technique to a complete test graph we may
obtain several test cases. These test cases may contain states that are not
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reachable (resp. not coreachable) from their initial (resp. pass) states.
Therefore, it is recommended to perform reachability and coreachability
analysis on the resulting test cases (see the selection step of the algorithm).

{

Each element of the set of test cases obtained from a specification 	����� and
a set of test purposes of 	����� by Algorithm 3.2 (see page 59) satisfy all items
of Definition 3.12 (see page 51). Moreover, this set of test cases is sound and
exhaustive for the given set of test purposes. The last statement is proved by T.
Jéron in [Jéron, 2004] (see Theorem 3.2.2).

3.2.4 Test Generation Tools

The aim of this section is to describe software tools used for automatic test gen-
eration based on IOLTS. In this thesis we cite only three of these works, namely,
TorX, TGV and Autolink. However, there exist many other tools and techniques
which can be used for testing reactive systems. For example, TVeda ([Phalip-
pou and Groz, 1990], [Phalippou, 1994], [Clatin et al., 1995]) and TestComposer
([Kerbrat et al., 1999], [Kerbrat and Ober, 1999]).

3.2.4.1 TorX

TorX [Belinfante et al., 1999] is a tool combining ioco-based test generation
(namely, the Tretmans approach explained in Subsection 3.2.3.2, page 55) to-
gether with test execution. It was developed in the University of Twente, the
Netherlands. The TorX tool allows on-the-fly testing for LOTOS [ISO/IEC, 1988]

Specification TorX Implementation

generate input

check output

send input

observe output

Verdict:

Fail or Pass

Figure 3.17: Architecture of TorX.

and PROMELA [Leue and Holzmann, 1999] specifications. This means that in-
stead of deriving a complete test case, TorX generates (using a given specification)
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an input action, and executes this action on an implementation under test (it is
important to notice that before sending an input action to the implementation,
TorX encode it into the format acceptable by the implementation). Then, it
compares a decoded response (output or blocking) received from the implemen-
tation with specified ones, and depending on the result of this comparison, TorX
either continues its computation, or stops by generating the Pass or Fail verdict.
Figure 3.17 shows the architecture of the TorX tool that was explained above.

3.2.4.2 TGV

TGV (Test Generator with Verification technology) [Fernandez et al., 1996],
[Jéron and Morel, 1999], [Morel, 2000], [Jard and Jéron, 2002], [Jéron, 2004]
is a tool for automatic _ XKWYX -based test generation developed in collaboration by
IRISA/INRIA Rennes, France and Verimag, Grenoble, France.

The architecture of TGV is shown on Figure 3.18 (see page 65). The TGV tool

Specification

TGV

Test Purpose

Test Case Implementation

Test Execution

Verdict:

Fail, Inconclusive or Pass

Figure 3.18: Architecture of TGV.

takes as its input a formal specification (expressed in LOTOS [ISO/IEC, 1988],
SDL [ITU-T, 1994], UML [Fowler and Scott, 2000], or IF [Bozga et al., 2002]
description languages) and a test purpose used as test selection criterion and
formalized by an automata. Then, it automatically generates (see Algorithm 3.2
given in Subsection 3.2.3.3, page 59) TTCN [ISO/IEC/JTC1/SC21, 1992] test
cases. The main characteristic of TGV is the use of on-the-fly test generation
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technique [Fernandez et al., 1996] (i.e. the state space of the specification is
not completely stored). This technique allows to avoid the combinatorial state
explosion problem which is often the problem in generation of test cases for large-
size reactive systems. Finally, test cases derived by TGV are executed on a real
system under test, and a test verdict is obtained. Notice that in test generation
where selection of test cases is based on test purposes, there are possibly three
(and not two) kinds of verdict. The additional verdict is called *�+t��r,+t�Y�]6�- 5'.* . It
means that during test execution no errors were detected but a given test purpose
was not achieved.

The detailed information on the TGV tool and case studies where this tool was
used, could be found in [Morel, 2000], [Jard and Jéron, 2002], [Jéron, 2004] and
[Fernandez et al., 1997], [Jard et al., 2000], [du Bousquet et al., 2000] respectively.

3.2.4.3 Autolink

Autolink [Koch et al., 1998], [Schmitt et al., 1998], [Telelogic, 1998] (as its prede-
cessor SaMsTaG [Grabowski, 1994], [Grabowski et al., 1993]) is a tool for auto-
matic test derivation, where the selection mechanism is based on test purposes.
This tool is developed in collaboration by the University of Lüebeck, Germany
and the Swedish company Telelogic.

The Autolink tool takes as its inputs (1) a formal specification expressed
in SDL, and (2) a test purpose formalized by a MSC [ITU-T, 1996] (Message
Sequence Chart) that describes the complete sequence of specified input/output
actions (and not incomplete or abstract one as it is done in TGV) to be tested.
Then, it automatically generates a TTCN [ISO/IEC/JTC1/SC21, 1992] test case
by state exploration simulating both SDL specification and MSC test purpose. If
during the state exploration we received an event which

– violates the test purpose, but is valid according to the specification, then
the Autolink tool creates the TTCN *�+t��r,+t�Y�]6�- 5'.* verdict,

– violates both test purpose and specification, then the Autolink tool creates
the TTCN ��g[5(� verdict,

Otherwise, i.e. when the state exploration is not applicable, the Autolink stops
by producing a resulting TTCN test case.

The two principal critics which can be given for Autolink are: (1) the test
generation method used by Autolink is not based on well-studied conformance
relations such as ioco or ioconf, and (2) state explosion problem which appears
during the state exploration of large size reactive systems.
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3.2.5 Conclusion

The test generation methods presented in this section are based on the hypothesis
that the operational semantics of reactive systems, which are expressed in high-
level description languages (e.g. LOTOS, SDL or UML), can be modeled by
(input-output) labeled transition systems ((IO)LTS). The reactive systems often
manipulate complex data structure. Moreover, they can exchange their data
using input and output actions. However, the underlying model of (IO)LTS does
not allow to explicitly describe the data of these systems. Therefore, in order
to model a specification of such reactive system with (IO)LTS, it is necessary to
enumerate values of each datum used by this system. This enumeration often
leads to the combinatorial states explosion, moreover, in the case when a datum
of the reactive system has an infinite domain, the enumeration is impossible. The
possible solutions for this problem are briefly discussed in the next section.

3.3 Symbolic Test Generation Techniques

The purpose of this section is to present a brief description of the existing works
in the test generation that use symbolic techniques. In this thesis we cite only
some of these works. Nevertheless, there exist many tools and techniques that
relate to the our work described in the two next parts of the thesis.

3.3.1 Symbolic Testing for LOTOS

M.-C. Gaudel, P.R. James and G. Lestiennes in their works (see [Gaudel and
James, 1999], [Lestiennes and Gaudel, 2002]) proposed an approach that combines
the test generation for algebraic specifications and the symbolic simulation for
LOTOS [ISO/IEC, 1988].

The symbolic simulation for LOTOS was studied by E.H. Eertink in his the-
sis [Eertink, 1994], and implemented in the SMILE [Eertink, 1993] tool that can
be used for the test generation. The algorithm proposed by E.H. Eertink first
takes a LOTOS process and computes a set of symbolic transitions that can
be executed initially. Then, this algorithm is applied recursively to the rest of
the process that was obtained after execution one of the previously computed
symbolic transitions. This technique is based on constraints propagation.

In 1999, M.-C. Gaudel and P.R. James published the paper [Gaudel and
James, 1999], where they suggest to combine symbolic simulation (see the pre-
vious paragraph) with testing techniques that are based on abstract data types,
where tests are selected according to one among several selection hypotheses which
are chosen depending on (1) some knowledge about an implementation, (2) some
coverage criteria of a specification, and (3) ultimately cost considerations. In
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this paper the authors emphasized that the test generation must be based not
only on the symbolic simulation (a kind of reachability analysis), but also on the
backward propagation of constraints (coreachability analysis). This work was
followed by another paper [Lestiennes and Gaudel, 2002], where G. Lestiennes
and M.-C. Gaudel studies the same approach for the test derivation applied to
Input-Output Transition Systems with data. In this work the authors use ioco as
the conformance relation. Their work is currently not implemented. However, at
the end of the paper [Lestiennes and Gaudel, 2002] the authors mentioned that
they plan to automate the proposed method using existing test generation and
constraint propagation tools.

3.3.2 Agatha

Agatha [Lugato et al., 2002] is the automatic test generator developed in CEA
(Commissariat à l’Energie Atomique), France. This tool supports three phases
described below.

The first phase consists in transforming an Estelle [ISO/TC97/SC21, 1997],
SDL [ITU-T, 1994] or UML [Fowler and Scott, 2000] specification into a
low-level model called EIOLTS (Extended Input-Output Labeled Transi-
tion System). EIOLTS are made up of locations and transitions between
the locations. Each transition is labeled with: (1) an input action, (2) a
guard which is a Boolean expression over the variables and parameters car-
ried by the input action, (3) an output action, and (4) a set of variables’
assignments.

The second phase of Agatha is the test generation which is based on the sym-
bolic simulation of the states space using the exhaustive symbolic path
coverage. The symbolic simulation computes an execution tree. Each node
of this tree is a constraint on the variables characterizing a path of the
specification that leads to this node. During the construction of an exe-
cution tree, Agatha simplifies constraints using the rewriting engine called
Brute [Ishisone and Sawada, 2001]. Moreover, it uses the Omega [Kelly
et al., 1995] tool for detecting the constraints inclusion, which is necessary
to stop the state exploration.

The final phase of Agatha consists in searching a possible instantiation of the
execution tree computed at the previous phase, which permits to choose the
test case and to execute it on implementation under test. During this phase
Agatha uses either the Omega, or Con’Flex [Rellier and Vardon, 1998] tools.



70 Test Generation

3.3.3 GATeL

GATeL [Marre and Arnould, 2000] is a tool used in order to derive test cases
starting from a specification and a test purpose represented in the synchronous
data flow language LUSTRE [Halbwachs et al., 1991]. A specification written in
LUSTRE is a set of cyclic equations over variables, which allows to compute new
values of the variables using their current values. A test purpose, which describes
some important property to check, is an invariant or characterization of reachable
states of some implementation under test. The aim of the test derivation is to
search for a sequence that permits to satisfy the test purpose (the length of a test
sequence generated by GATeL is bounded). The GATeL test derivation method
is based on (1) computation of the product between the specification and the
test purpose, and (2) the backward propagation of constraints (also known as
coreachability analysis) from the goal state to an initial state of the computed
product. GATeL is integrated with the ECLiPSe tool [Cheadle et al., 2003] in
order to perform the constraint propagation.

It is important to notice that the GATeL tool generates test sequences form
only deterministic specifications. Therefore, the conformance relation, that is
used by GATeL, is to checks the equality between outputs obtained by the im-
plementation during the test and outputs expected by the specification.

3.3.4 BZ-Testing-Tool

BZ-TT (BZ-Testing-Tool) [Ambert et al., 2002] is an environment for automatic
boundary-value conformance and robustness testing from a formal specification
given in either B [Abrial, 1996] or Z [Spivey, 1992] notation. Its commer-
cial version LTG (Leirios Test Generator) is based on the same principles as
BZ-TT, but, in addition to the B notation, it allows to describe specifications
as Statecharts [Harel, 1987] or UML [Fowler and Scott, 2000] diagrams that are
widely-used in industry. Notice that BZ-TT, as well as LTG, treats only deter-
ministic specifications, thus, the generated by them test cases are represented as
sequences.

The main principles of the BZ-Testing-Tool which takes as an input a sys-
tem under the form of pre/post predicates over the system’s variables with finite
domains, are described below.

First, BZ-TT computes boundary states (i.e. states where at least one variable
has a value at an extremum of its domain) for a given system. This com-
putation is realized by the use of the set-constraint solver CLIS [Bouquet
et al., 2002] that is implemented on the base of the SICStus Prolog [Intel-
ligent Systems Laboratory, 2004].
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Second, using a bounded symbolic simulation, BZ-TT takes the system under
test from its initial state to some boundary state computed above. More
precisely, this step consists in the exploration of the state-space of the given
system starting from its initial state and using the best-first search algo-
rithm.

Third, in the case when a bounded state is reached, BZ-TT tests all possible
operations in this state. Notice that, if values of the state variables do not
satisfy pre-conditions of some operation, they are used for the robustness
testing.

Finally, we remark that the BZ-Testing-Tool allows to concatenate several test
sequences together. Indeed, after the derivation of one test sequence for a bound-
ary state, it is able to return to this boundary or the initial state of the system
under test.

3.3.5 Test Generation Tools for Structural Testing

From the discussion above, the reader can notice that the symbolic test gener-
ation tools, used in functional (black-box) testing, are based on techniques of
constraints propagation/solving. These techniques are also widely used in the
structural (white-box) testing. For instance, they are used in the INKA proto-
type developed by A. Gotlieb et al. ([Gotlieb et al., 1998], [Gotlieb et al., 2000])
which automatically derives test cases for the programs written in a subset of the
C language; and in the ATGen tool of C. Meudec [Meudec, 2001] that generates
test cases for ADA programs [Barnes, 1984]. The main ideas of such tools are:

(1) to find a path in the control-flow graph of a given program that leads to a
given state. Notice that the length of this path is bounded. This allows to
unfold cycles of the program under test.

(2) to generate inputs by solving the constraints through the computed above
path. This permit to obtain expected outputs.

It is important to remark that such tools are often limited to deterministic pro-
grams (here, we mean the observable determinism). This means that the outputs
of a given program strictly depend on inputs, i.e. the tester has a full control on
this program. It permits to automatically generate inputs for expected outputs.

3.3.6 Conclusion

In this section we have briefly described some existing methods and tools used for
the symbolic derivation of test cases from a formal specification of a given system
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under test. All of them use the constraint logic programming, moreover, they are
limited to deterministic specifications. These tools allow to generate precise test
cases under the form of test sequences (or trees) whose length is bounded.

The second part of the thesis is devoted to another symbolic test generation
method with selection guided by test purposes. This method is quite different
from ones mentioned in this section. It is based on a kind of transition system
(called Input-Output Symbolic Transition System or IOSTS) that symbolically
manipulates the data of a given system. It enables us (1) to avoid the state-
space explosion problem, as instead of enumerating values of all variables, we
manipulate symbolic states of the system that are characterized by formulas over
the systems data, and (2) to generate symbolic test cases that have the form of
programs and, therefore, are closer to the reality.

Moreover, our test generation method (more precisely, the mechanism of test
case selection) is based on a technique of abstract interpretation ([Cousot and
Cousot, 1976], [Cousot and Cousot, 1977]) instead of constraint solving. The
test cases derived by our method have the form of a graph as we do not need
to limit their length. They are less precise than the test cases generated by the
tools described in this section. However, they permit to obtain a global view on
the “past” and the “future” of a system under test. Finally remark that we are
able to treat non-deterministic specifications belonging to the non-trivial subclass
defined in Section A.2.4 (see page 304).

In the rest of this document we give the detailed description of the IOSTS
model, the symbolic test generation method with selection guided by test pur-
poses, and the tool implementing this method.
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Introduction

Motivation. In the last chapter of the introductory part of the thesis we saw
that in the last decades, testing theory and techniques for automatic test gen-
eration of reactive systems have been developed. Some of these techniques are
based on the (input-output) labeled transition systems model (i.e. (IO)LTS) and
efficient on-the-fly algorithms [Tretmans, 1992], [Jéron and Morel, 1999]. There
already exist academic (e.g. TorX [Belinfante et al., 1999], TGV [Fernandez et al.,
1996]) and industrial (e.g. Autolink [Telelogic, 1998], TestComposer [Kerbrat and
Ober, 1999]) tools that implement these algorithms and produce correct test cases
in a formal framework. However, these theories and tools do not explicitly take
into account the system data, since the underlying model of (IO)LTS does not
allow to do that. Thus, in order to model a specification of reactive systems with
(IO)LTS, it is necessary to enumerate the values of each data used by this sys-
tem. This may result in the classical state-space explosion problem. Moreover,
this enumeration also has the effect of obtaining test cases, where all data are
instantiated. This contradicts industrial practice, where test cases (written, for
instance, in the TTCN [ISO/IEC/JTC1/SC21, 1992] language) are real programs
with data (variables, parameters). The generation of such test cases requires new
models and techniques which we introduce in this part of the thesis.

Plan of Part II. The rest of this part is organized as follows.

In Chapter 4 we first present a new model that allows to explicitly introduce
the data of a system. This model is called input-output symbolic transition
system (IOSTS). Then, we describe the syntax and semantics of IOSTS.
Finally, we define some important subclasses of IOSTS, for instance, deter-
ministic and complete IOSTS.

In Chapter 5 we introduce the product operation and the operation of parallel
composition for IOSTS, which are extensions of the analogous operation
defined for IOLTS (see Definition 3.5 and 3.14, page 38 and 59). The
product operation will be used in the symbolic test generation process in
order to “intersect” behaviors of a specifications with behaviors of a test

75



76 Introduction

purpose, and the parallel composition will be used during test execution in
order to model the communication between an implementation under test
and a derived test case.

In Chapter 6 we build a formal background for conformance testing based on
the IOSTS model and the ioc conformance relation that is a weaker variant
of the standard ioconf and ioco conformance relations (it does not deal with
the problem of blockings because the detection of livelocks in IOSTS is
undecidable). Moreover, we define the notion of a correct test case.

In Chapter 7 we describe our symbolic test generation method where the selec-
tion of test cases is guided by test purposes. This method is very close to
the approach proposed by T. Jéron and his colleagues from IRISA/INRIA
Rennes, France and described in Subsection 3.2.3.3 (see page 57). However,
some steps of our symbolic test generation method are more complex than
those proposed by T. Jéron et al. since they have to take into account
the data of a given specification. For instance, the selection of a complete
test graph must use a semantics-based analysis in order to select the set
of states that are reachable from the initial state of a given IOSTS and
from which it is possible to go towards some accepting state of this IOSTS.
However, unlike the selection algorithm developed for IOLTS, the issue of
computing the exact set of reachable and coreachable states is undecidable
for IOSTS. Therefore, the selection algorithm for IOSTS is based on the
over-approximation of reachable and coreachable sets of states. At the end
of this chapter, we prove that our symbolic test generation method derives
a set of correct test cases.

The symbolic test generation method was implemented in the STG tool. The
description of this tool and a case study of the bounded retransmission protocol
are given in Part III of the thesis.

The work described in the second and third parts of this thesis is the result of
the collaboration with Vlad Rusu and Thierry Jéron, who have established the
initial theoretical framework for symbolic test generation [Rusu et al., 2000], as
well as Duncan Clarke, Bertrand Jannet and François-Xavier Ponscarme.



Chapter 4

Model: Input-Output Symbolic
Transition Systems

In this chapter we introduce a model of reactive systems that we use
for conformance testing. This model is called Input-Output Symbolic
Transition System (IOSTS). IOSTS is an extended version of IOLTS
defined in Subsection 3.2.2.1 of Chapter 3 (see page 41). It explicitly
includes data of the reactive systems, and symbolically manipulates
with them. At the beginning of the chapter we present an example of
IOSTS which helps to understand the model and its semantics at an
intuitive level. Then, we define the IOSTS formalism and discusses
its syntax and semantics. Finally, we introduce some subclasses of
IOSTS used in symbolic test generation. The work contained in this
chapter is an extended version of one presented in [Rusu et al., 2000].

4.1 Running Example

This section gives an intuitive explanation of IOSTS using the example of a
coffee machine depicted in Figure 4.1. This example is the running example for
the current part of the thesis.

Syntax. The IOSTS � (see Figure 4.1) is made up of locations, e.g. Begin,
Idle, Pay, where Begin is the initial location, and transitions. The transitions are
labeled with actions, guards and assignments. For example, the transition with
origin Idle and destination Pay has the guard �7� @sr[5'+���g*�]6��� | � , the input action
Coin? carrying the data � @sr[5'+���g*�]6� from the environment, and the assignment
."�fg[5������ ."�fg[5��
	 � @sr[5'+���g*�]6  . The set of actions is partitioned into three disjoint
subsets of input, output and internal actions. The input/output actions interact

77
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(cPrice > 0 and vPaid=0 and vBeverage=TEA)

tau
vPaid:=0

(pCoinValue > 0)
Coin ? (pCoinValue)

vPaid:= vPaid + pCoinValue

Cancel ?

(pRemaningValue = vPaid)
Return ! (pRemaningValue)

((vPaid < cPrice) and (pRemaningValue = cPrice - vPaid))
Return ! (pRemaningValue)

((vPaid >= cPrice) and (pRemaningValue = vPaid - cPrice))
Return ! (pRemaningValue)

vPaid:=cPrice

ChooseBeverage ? (pBeverage)
vBeverage:=pBeverageCancel ?

(vBeverage = pBeverage)
Deliver ! (pBeverage)

Begin

Idle

Pay

Choose

Return Delivery

Figure 4.1: IOSTS � (a coffee machine).

with the environment and may carry data from/to it, while internal actions are
used for internal computations. By convention the names of input (resp. output)
actions end with “?” (resp. “!”). The IOSTS in Figure 4.1 has three inputs:
Coin?, ChooseBeverage?, Cancel?, two outputs: Deliver!, Return!, and one in-
ternal action: tau. It operates with symbolic data consisting of the variables:
."�$g[5�� , .��:�.*��?g��K , symbolic constants: � ��� 5 �� , and parameters: � @sr[5'+���g*�]6� ,
� e$�� g,+�5'+�� ��g*�]6� , �	�A�.*���g��K . Intuitively, variables are data to compute with,
symbolic constants are data which cannot be changed during the computation,
and parameters are data to communicate with the environment. The scope of
a parameter is only the transition labeled by action which carries that parame-
ter. Thus, if the value of the parameter should be used in later computations,
it should be memorized through an assignment to a variable. For instance, the
value of the parameter �	�:�.*��?g��K is saved in the variable .��:�.*��?g��K using the
assignment .��:�.*��?g��K �]�L�	�A�.*���g��K of the transition leading to the Delivery lo-
cation. Then this value, which was memorized in .��:�.*��?g��K , is used in the guard
� .��:�.*��?g��KA�'�	�:�.*��?g��K�� of the transition outgoing from Delivery.

Semantics. The coffee machine, represented as the IOSTS in Figure 4.1, starts
in the location Begin with some values of the symbolic constant � ��� 5 �� and the
variables ."�$g[5�� , .��A�.*���g��K satisfying the initial condition �?� ���G5 �� � |�
 ."�fg[5�� �|�
 .��:�.*��?g��K � TEA � , that is, the price of any beverage dispensed by the
machine is strictly positive, and variables ."�$g[5�� and .��:�.*��?g��K are respectively
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equal to zero and to TEA. Then, it fires the transition labeled by the internal
action tau, assigns the variable ."�$g[5�� to 0, which memorizes the amount already
paid, and reaches the location Idle. Next, the machine expects a coin, denoted by
the Coin? input action that carries in � @sr[5'+���g*�]6� the value of the inserted coin.
When the coin is inserted the variable ."�$g[5�� is increased by � @sr[5'+���g*�]6  , and
the machine moves to the Pay location. If payment is not enough i.e. ."�$g[5����
� � � 5 �� , the machine moves back to the Idle location and returns (through the
Return!(pRemaningValue) output action) the difference between the paid amount
and the cost of a beverage, i.e. � ��� 5 ���� ."�$g[5�� . Otherwise, the machine moves
to the Choose location and returns in � e$�� g,+�5'+�� ��g*�]6  the difference between
."�fg[5�� and � � � 5 �� . In the Choose location, the machine waits for the choice of a
beverage (tea or coffee), then delivers the beverage, and moves back to the Begin
location. Note that in the locations Idle and Choose, the Cancel button can be
pressed, in which case the machine returns the amount already paid and moves
back to the initial location.

4.2 Syntax of IOSTS

At the beginning of this section we introduce types which are used to define a set
of typed data. Then, we present the notion of data domain and defines well-typed
expressions on the data. Finally, we give the formal definition of Input-Output
Symbolic Transition Systems (IOSTS).

Types, Data, Domains and Well-Typed Expressions. Let ��� j���� �
	
	
	��
��� �� m be a finite set of data types which consists of basic types, e.g. Boolean, nat-
ural, integer, enumerated types, and complex types, e.g. arrays, records, queues.
Also let � � j���� �
	�	
	Y� � � ��� m be a finite set of typed data, where the type of each
datum from � belongs to � . We denote by:

– ����� ���3� – the domain of the type � | � in which data of type � take their
values. We assume that for each � | � , ����� ���-� is not empty.

– ����u��I����� | � – the type of the element � | � .

– ����� ����� ������� ������u���������� – the domain of the datum � | � in which � of
type ����u�������� takes its values.

– ����� ����� ���� "! � ����� ����� – the data domain in which the data � take
their values.

Example 4.1 Consider the IOSTS � depicted in Figure 4.1 (see page 78). It
has the following set of typed data � � j�� ��� 5 �� � ."�$g[5�� � .��:�.*��?g��K � � @sr[5'+���g*�]6  �
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� e$�� g,+�5'+�� ��g*�]6� � �	�:�.*��?g��K m , where the data � � � 5 �� , ."�fg[5�� , � @sr[5'+���g*�]6�
and � e$�� g,+�5'+�� ��g*�]6� have the natural number type (denoted by ����� ) and
the data .��:�.*��?g��K , �	�:�.*��?g��K have an enumerated type consisting of two
elements TEA and COFFEE. Then, the domain of the set of data � is
����� ����� ���������	������� j TEA

�
COFFEE

m �
��������������� j TEA
�
COFFEE

m
.

{

Definition 4.1 (Well-Typed Expression) Let �� be a set of functions such
that each function ��� belonging to �� returns a value of type � | � . Then, an
expression

���3�
over the typed data � is a well-typed expression of type � if

(1)
���3��| ����� ���-� , which is a constant in ��� � ���3� , or

(2)
���3��| � and ����u���� ���3� �E� � , or

(3)
���3� ������� ���3� � �
	
	
	������3��� � , where

(a) ��� | �� is a function such that ��� � � ��� 	
	
	 � � ���& � , where � � �
	
	�	Y� � � | � ,
and

(b) each
���3� , ( �n� ~ 	 	��

) is a well-typed expression of type � , .
{

Among the types there are the standard types such as natural number (denoted
by ����� ), Boolean (denoted by �! " "# ), etc. with their usual interpretation. Among
the functions �� ( � | � ) there are standard functions like 	

� � � 

, etc. which are

interpreted as usual.

Example 4.2 To illustrate the definition given above, we consider the set of data
� from Example 4.1 (see page 79), and two sets of functions: �$&%(':� j 	 � � �*)Im

,
,+.-/-(0q� j � �

�
�21}��3}� � � �� � 
2�542�562� �87 m

, where each function has its usual
interpretation. Then,

– the expression 8 � 6� is a well-typed expression of type �9 " "# as 8 �G6� belongs
to the domain of the Boolean type, i.e. 8 � 6  | ����� �:�9 " "#�� .

– the expression ."�$g[5�� 	{� @sr[5'+���g*�]6  is a well-typed expression of type ����� .
Indeed, it consists of the data ."�$g[5�� and � @sr[5'+���g*�]6� which have the type
����� and the operation 	 returns a value of type ����� , i.e. 	

| �$&%(' .
{

We denote by:
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– � � ����� – the set of well-typed expressions of type � | � over the set of typed
data � .

– �J�����E���"+.-/-(0������ – the set of Boolean expressions over the set of typed data
� , i.e. the set of well-typed expressions of Boolean type (denoted by bool).

Definition 4.2 (IOSTS) An IOSTS is a tuple
� � ��� ���$��� ! � #:�
	J)

where

– � ���{R�dR�� is a finite set of typed data which consists of three mutually
disjoint sets of variables � , symbolic constants  and parameters � , i.e.
��� o������� 
 ��� o�������� 
 ��'o�������� .

–
�

is the initial condition belonging to the set of Boolean expression over
the set of typed data � , i.e.

��| �J��� � .
–
�

is a nonempty, finite set of locations.

–
��!:|��

is the initial location.

–
# � #21 R #�9 R #��

is a nonempty, finite alphabet of actions which consists
of three mutually disjoint alphabets of input actions

#f1
, output actions

#A9
and internal actions

#��
, i.e. � #21 o #�9 ����� 
 � #21 o #�� ����� 
 � #�9 o #�� ����� .

Each action � | #
is characterized by its signature ^ _ � ����� . The signature of

� is a tuple of types ^ _ �t����� � � � � �
	
	�	Y� ��� )2| � � . The signature of an internal
action � | #��

is the empty tuple
��)

.

–
	

is a finite set of symbolic transitions. Each symbolic transition
� ����-� � ���y��� ��� ��� ( )2|�	

consists of:

- a location
�E|��

called the origin of the symbolic transition.

- an action � | #
.

- a tuple of parameters
� � � � � �
	�	
	Y��� � )S| � � �� |"! � carried by the

action � . This tuple of parameters
�

corresponds to the signature of
the action � (see above) meaning that: (1) both tuples ^ _ � ����� and

�
have the same length, and (2) the type of each parameter

� , ( � � ~ 	 	  )
from the tuple of parameters

�
is equal to the type � , ( �}� ~ 	 	  ) in

^ _ � ����� .
- a guard

�
which is a Boolean expression over the parameters carried

by the action � , and variables and symbolic constants of the IOSTS,
i.e.

��| �J����R#'R � � .
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- a set of assignments � . Each assignment belonging to � has the form����� ��� , where �	��
 is a variable and ��� ������������ ����� 
	���	� �"! is a well-
typed expression of type #%$'&)()� �*! over variables, symbolic constants and
the parameters carried by the action + . For each variable �,�-
 , the
set of assignments � contains exactly one assignment.

The graphical representation of IOSTS (see for instance Figure 4.1,
page 78) does not show the assignments of the form �	�.�/� .

- a location 021 ��3 called the target of the symbolic transition.

4

Example 4.3 For better understanding of the IOSTS formalism, we consider
the IOSTS 5 shown on Figure 4.1 (see page 78), which consists of:

– the set of typed data: 6 �87*9;:=<;>?9A@CBD E�F GH
�I7KJL:�MN>?OQPLJLR�@SJT@S<UMWV�@NBD E�F GX

�
7LY"Z=[N>]\ ^QMT_.`Q@CPaYcbd@Se	MN\Q>]\�Vf^QMT_.`c@CPaYcR�@SJT@S<AMWV�@gBD E�F Gh . Note that the sets of symbolic

constants � , variables 
 and parameters i are mutually disjoint;

– the initial condition j � � 9;:=<;>?9A@lknmpoqJL:dMN>?Or�/mposJLR�@SJT@S<UMWV�@p� TEA ! ;
– the set of locations 3t�87'R�@?VT>]\uPwvWOx_y@CPW:dMNzcPKZ|{*[}[g~L@CPWbd@w�%`�<;\"PW��@W_.>]JT@S<Sz�B ;
– the initial location 0%� ��R�@?VT>]\���3 ;

– the alphabet of actions � � 7�Z=[N>]\fPKZ=MN\�9A@W_%BD E�F G�K�
��7'bd@w�2`�<;\"Pw��@W_.>]JT@S<)BD E�F G�x�

�I7}� +K� BD E�F G�K� .

The set of input ��� , output �p� and internal ��� actions are mutually disjoint.

Each action belonging to � has its signature. For example, action Z=[N>]\ has
signature �2�*�T�*� , where by �*�)� we denoted the natural number type.

– the set of transitions � . For instance, � contains the following transition:

� � � vwOx_y@D E�F G�
PKZ=[N>]\D E�F G�

PaY"Z=[N>]\ ^QMT_.`c@D E�F G�
P � Y"Z=[N>]\ ^QMT_.`c@�knm�!D E�F G 

P

7KJL:dMN>?O	���¡JL:dMN>?O�¢tY"Z=[N>]\ ^QMT_.`Q@T£WJLR�@SJT@S<UMWV�@��.�¡JLR�@SJT@S<UMWV�@NBD E�F G¤
PW:dMNzD E�F G�¦¥ �

Notice that the set of assignments � contains the assignment JLR�@SJT@S<UMWV�@§�.�JLR�@SJT@S<AMWV�@ , which by convention, is not shown in Figure 4.1 (see page 78).
4
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4.3 Semantics of IOSTS

This section is divided into two subsections: the first one describes the semantics
of the IOSTS formalism, and the second one introduces the important notions of
behaviors and traces that will be widely used through the thesis.

4.3.1 IOLTS as the semantics of IOSTS

In this section we formally define the semantics of IOSTS. More precisely, the se-
mantics of an IOSTS � can be represented by an IOLTS ��� ����� (see Definition 3.7
in Chapter 3, page 41), where:

(1) the set of states of ��� ����� is the set of valued states of � (defined in Sub-
section 4.3.1.2, page 84, and called later “states”),

(2) the alphabet of actions of ��� ����� is the alphabet of valued actions of �
(introduced in Subsection 4.3.1.3, page 85), and

(3) the transition relation of ��� ����� is extended to a global transition relation of
� , which will be defined in Subsection 4.3.1.4 (see page 86).

The rest of this section is organized as follows. First, we give several preliminary
notations that are used in definitions of states and valued actions of IOSTS.
Then, based on the notions of state and valued action we define two transition
relations: ��� (called local transition relation) and � (called global transition
relation). Finally, we give the formal definition of the IOSTS semantics.

4.3.1.1 Preliminary Notations and Definitions

Consider a set of typed data 6 and a datum 	 belonging to 6 , then:

(1) a vector of data values 
 ������ �%6 ! is called valuation of data 6 , and

(2) a value 
�� ������ ��	 ! of the datum 	 is called valuation of datum 	 .
Next, we formally define a notion of satisfiability of a Boolean expression by a
given valuation of data.

Definition 4.3 (Valuation Satisfies Expression) A valuation 
 ������ � 6 !
satisfies a Boolean expression ����� ��� �%6 ! (denoted by 
�� � ����� ) if the expression
�����f��	���
"��	 !�! , where each datum 	 � 6 is replaced by its value 
"��	 ! from 
 ,
evaluates to �! ��� . 4
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Example 4.4 To illustrate Definition 4.3, we consider the following set of typed
data: 6 � 7KJL:�MN>?O PN9;:�<;>?9A@NB , where the data JL:dMN>?OcPC9;:=<;>?9A@ are of the natural
type (denoted by �*�)� ), and the following Boolean expression ����� � 9;:=<S>?9A@��
� JL:�MN>?O����N! . Then,

– the valuation 
 � � JL:�MN>?OI����PC9;:=<S> 9A@���� � � ���� � 6 ! satisfies ����� as the
expression � �	�
�����N! evaluates to �%<;`Q@ , but

– the valuation 
 � � JL:dMN>?O ��xPC9;:=<;>?9A@���� � ������ � 6 ! does not satisfy �����
as the expression � ���������N! does not evaluate to �%<;`Q@ .

4

In this thesis we assume that satisfiability of all guards decorating symbolic tran-
sitions of IOSTS is decidable. For example, these guards can be expressed in a
decidable fragment of the theory of Presburger arithmetic [Presburger, 1929] with
uninterpreted functions [Ackermann, 1954]. For more details see paper [Rusu and
Zinovieva, 2001].

4.3.1.2 States

We give the definition of a state for an arbitrary IOSTS � � �?6 P j PA3dP 0 � P � P � � ,
where the set of data 6 consists of three mutually disjoint sets of variables 
 ,
symbolic constants � and parameters i . Then, we illustrate this notion with
simple examples. Finally, we introduce some new notations used later in this
thesis.

Definition 4.4 (State) A state � of � is a pair � 0 P 
�� , where 0 � 3 is a
location and 
 � ��
��L�!��� � X�� H � ������ � 
/��� ! is a valuation of the variables and

symbolic constants.
4

Example 4.5 The pair � 6 �L0�� � �  �� P � 9;:=<;>?9A@ ��xPLJL:dMN>?Or���TPLJLR�@SJT@S<UMWV�@�� TEA �U�
is a state � of the IOSTS 5 depicted in Figure 4.1 (see page 78). This pair consists
of the location 0 � 6 �L0�� � �  �� and the valuation 
 � � �xP��TP ����� � of the symbolic
constant 9;:=<;>?9A@ and the variables JL:�MN>?O and JLR�@SJT@S<UMWV�@ , where 9;:=<;>?9A@ and JL:dMN>?O
are of type nat and JLR�@SJT@S<UMWV�@ is of type �C�! #" � 7 TEA P COFFEE B . 4

Definition 4.5 (Initial State) An initial state � � � � 0 � P 
 � � of � is a state
where 0 � is the initial location, and 
 � is a valuation of the variables and symbolic
constants that satisfies (see Definition 4.3, page 83) the initial condition j of � .
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4

Example 4.6 Consider the IOSTS 5 depicted in Figure 4.1 (see page 78).
The state � � � ��� ��� ��� P � 9;:=<;>?9A@ � �xPLJL:dMN>?O � mxPWJLR�@SJT@S<UMWV�@ � TEA �U� is
one of the possible initial states of 5 , as Begin is its initial location, and
the values of the symbolic constant 9;:=<;>?9A@ and the variables JL:dMN>?O , JLR�@SJT@S<UMWV�@
satisfy the initial condition � 9;:=<;>?9A@lknmQo�� i�+!� 	 �/m*o�JLR�@SJT@S<AMWV�@p� TEA ! of 5 .

4

Notations. For a given IOSTS � � �?6 P j PA3 P 0 � P � P � � with set of data 6 �

 � �n� i , we denote by:

– � ��7 � 0 P 
 � �K0 ��3 o 
 ������ � 
 � � !UB – the set of states of � , and

– � � � 7 �%0 � P 
 � � �K0 � �s3 o 
 � � ���� � 
 �,� !qo 
 � � � j B�� � – the set of

initial states of � .

4.3.1.3 Valued Actions

We introduce the notion of valued action for an IOSTS � with alphabet of
actions � . Intuitively, a valued action is a pair consisting of an action + � � and
a valuation of the parameters carried by + . Formally:

Definition 4.6 (Valued Action) Let + be an action of � and	�
 � �2+ !�� ���� P������SP ��L� be a signature of this action (see Definition 4.2, page 81).
Then, a pair � � � + P�� � , where � is a vector of values � � � P������WP�� �W� such that for
all � � ������� , ���f������ �� �%! , is called valued action of � .

4

Example 4.7 The pair � � � ��� ��� P � � ��� is an example of valued action of the
IOSTS 5 shown on Figure 4.1 (see page 78), where + ����� ��� is an input action
of 5 which has the signature 	�
 � �2+ ! � �]�Q�T�*� , and �t� � � � , where �r� ���� � �Q�T� ! ,
is one of the possible valuations of 	�
 � �2+ ! .

Another example of valued action of 5 is � � � � +K� P � �U� , where + � � +�� is the
internal action and � is the empty tuple (remember that the signature of any
internal action is the empty tuple, see Definition 4.2, page 81).

4

Notations. We denote by ! the set of valued actions. ! is partitioned, accord-
ing to the partitioning of the alphabet of actions � (see Definition 4.2, page 81),
into three mutually disjoint subsets of valued input actions !p� , valued output ac-

tions !p� and internal actions ! � . Note that by abuse of notation, it is possible



86 Model: Input-Output Symbolic Transition Systems

to identify ��� and !�� as all internal actions carry an empty tuple of parameters
(see Definition 4.2, page 81).

4.3.1.4 Local and Global Transition Relations

In this section we introduce the notions of local and global transition relations.
They allows us to move from the syntactic level of the IOSTS formalism to the
semantic one. The section contains an intuitive example which permits better un-
derstanding of these notions. At the end of the section, we give several notations
which will be useful in the sequel.

We first introduce local and global transition relations intuitively. Let � �
�?6 P j PA3 P 02� P � P � � be an IOSTS with set of states � and set of valued actions ! ,
and �	� � 0 P + P�� P��rP � P 0 1 � � � be a symbolic transition of � . Then, the local

transition relation � � is the set of triples � � P � P �L1 � , where:

– � � �%0 P 
 � is a state, where 0 � 3 is the origin of the symbolic transition � ,
and 
 is a valuation of the variables and symbolic constants of � .

– � � � + P�� � is a valued action, where + � � is the action labeling the symbolic
transition � , and � is a valuation of parameters � carried by the action + .

– the pair of the valuations 
 and � satisfies (see Definition 4.3, page 83) the
guard � of � , i.e. � 
 P�� � � ��� .

– �L1 � �%021 P 
c1y� is a state, where 021 ��3 is the target of � , and 
�1 is the new
valuation of the variables and symbolic constants of � obtained from 

and � by execution of the parallel assignments belonging to � of � .

The union of all these sets of triples is called the global transition relation � of
the IOSTS � .

The formal definitions of the local and global transition relations, i.e. � � and
� , are given below.

Definition 4.7 (Local Transition Relation � � ) Let

– � � �?6 P j PA3 P 0 � P � P � � be an IOSTS with set of states � and set of valued
actions ! ,

– � � � 0 P + P�� P�� P � P 0 1 � � � be a symbolic transition of � ,

– 
 P 
 1 � ���� � 
/�q� ! be valuations of variables and symbolic constants of
� , and

– � � ���� � 	�
 � �2+ !a!�� ���� � �"! be a valuation of parameters � carried by
action + of the given symbolic transition �
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Then, the local transition relation � � � ��� !�� � of � is the smallest relation
satisfying the following inference rule:

� 
 P � � � � �� � ��
 � � 
 1� � ���T��	���
 � P ��� ���T! � £ ��� ��� � � 
 1� � 
 � �
� 0 P 
��

	 ��
 ��� ���"� 0 1 P 
 1 �
where ���T��	���
 � P ��� ���C! is the expression obtained by replacing in the expression
��� each variable or symbolic constant 	 � � 
 �-� ! by its value 
 � from the
valuation 
 , and each parameter � �,� by its value ��� from the valuation � .

4

Definition 4.8 (Global Transition Relation � ) The global transition rela-

tion � of � is the union of all sets � � associated with each symbolic transitions��� � , where � is the set of symbolic transitions of the IOSTS � , i.e.

� � �� ��� ��� (4.1)

4

Example 4.8 To illustrate the notion of local transition relation � � we consider:

(1) the IOSTS 5 shown on Figure 4.1 (see page 4.1) with the sets of variables
¡��7KJL:dMN>?O PLJLR�@SJT@S<UMWV�@gB , symbolic constants �8��7*9;:=<S>?9A@CB and parameters
i � 7LY"Z=[N>]\ ^QMT_.`Q@CPaYcbd@Se	MN\Q>]\�Vf^QMT_.`c@CPaYcR�@SJT@S<UMWV�@gB , and

(2) the symbolic transition:

� � � :dMNzD E�F G�
PWbd@w�%`�<;\D E�F G�

P � Ycb�@Se	MN\Q>]\�Vf^QMT_.`Q@ �D E�F G�
P��rP � PKZ|{*[}[g~L@D E�F G��¥ �

of 5 , where � � � JL:dMN>?O�� 9;:=<;>?9A@no Ycbd@Se	MN\Q>]\�Vf^QMT_.`Q@p�¡JL:dMN>?O��/9;:=<S>?9A@N! is
the guard of � and � � 7KJL:dMN>?O �.� 9;:=<;>?9A@)PWJLR�@SJT@S<UMWV�@���� JLR�@SJT@S<UMWV�@NB is the
set of assignments of � (note that the assignment JLR�@SJT@S<UMWV�@r�.� JLR�@SJT@S<UMWV�@
is not shown in Figure 4.1 (see page 78) due to the agreement about the
graphical representation of IOSTS made in Definition 4.2 (see page 81)).

Then, the local transition relation � � corresponding to the symbolic transition �
is a set of triples �U�%i�+ � P 
 �D E�F G�

P ��� � � �  � P � �D E�F G�
P � ��� � � � � P 
 1 �D E�F G� ¥

� such that the pair � 
 P � �
satisfies the guard � of � , and 
�1 is a “new” valuation of variables and symbolic
constants obtained from the assignments � of � .
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An example of a triple belonging to � � is shown below:

���%i�+ � P � �xP���P TEA �U� P � � � � �  � P � � �U� P � � � � � � � P � �xP �xP TEA �p�
where

– 
 � � �xP���P TEA � is the “old” valuation of the variables and symbolic con-
stants of 5 , where 
 � 9;:=<S>?9A@N! �
� , 
"� JL:dMN>?Oc!"��� , and 
"� JLR�@SJT@S<AMWV�@g! � TEA;

– � � � � � is the valuation of the signature of the output action + � b�@w�2`�<S\ .
Notice that the valuation � gives a value to each parameter of the symbolic
transition � , i.e. � � Ycbd@Se	MN\Q>]\�Vf^QMT_.`c@}! � �

;

– the pair of valuations � 
 P � � satisfies the guard � � � JL:dMN>?O � 9;:=<;>?9A@8o
Ycbd@Se	MN\Q>]\�Vf^QMT_.`c@��¡JL:dMN>?O��/9;:=<;>?9A@N! of � ; and

– the “new” valuation 
 1 � � �xP ��P TEA � , where 
 12� 9;:=<S>?9A@N! �� , 
c1%� JL:dMN>?O*! �� ,

c1%� JLR�@SJT@S<UMWV�@N!"� TEA, is obtained by executing the assignments of � which
are: JL:dMN>?O	��� 9;:�<;>?9A@ and JLR�@SJT@S<UMWV�@§���8JLR�@SJT@S<UMWV�@ .

4

In the definition given below we recall (with minor modifications) some notations
that was already introduced for (IO)LTS (see Definition 3.4 of the introductory
part, page 35).

Definition 4.9 For an IOSTS � with set of states � and set of valued actions
! , we introduce the following notations:

(1) �
�� �W1 for the triple � � P � P �L1�� belonging to the transition relation � , where

� P �W1 � � and � � ! ,

(2) �
�� for � �W1 � � � � � �� �W1 � , where � � � , � � ! ,

(3) �
��� for � �W1 � � � � � �� �W1 � , where � � � , � � ! , and

(4) ���� �W1 for � � � P������WP ��� � � � � � � � � �
	� ��� ����� ���� �
������	
� � � ����� , where for all

� ��� � � � ��� : � �|� ! , and � � ��! !�� .
4
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4.3.1.5 Formal Definition of the IOSTS Semantics

In this section we give a definition of the semantics of an arbitrary IOSTS which
can be expressed in terms of IOLTS as follows:

Definition 4.10 (Semantics of IOSTS) For an IOSTS � �
�?6 P j PA3 P 0 � P � P � � , the semantics of � is defined by an IOLTS ��� ����� �
� � P � � P ! P �n� , where

– � is the set of states of � ,

– � � � � is the set of initial states of � ,

– ! � !�� � !p� � !=� is the set of valued actions of � , and

– � is the global transition relation of � .

4

4.3.2 Behaviors, Sequences and Traces

In this section we introduce the notions of behaviors, sequences and traces for an
arbitrary IOSTS � with a set of states � , a set of initial states � � � � , and set
of valued actions ! � ! � � ! � � ! � . These notions allow us to reason formally
about the IOSTS � .

Definition 4.11 (Behavior) A behavior ��� of � is a sequence of states
and valued actions starting from an initial state �N� and following the transition
relation, i.e.

� � � � � � 	� � � ���� ��� ����� ���� � � �� ��� (4.2)

where

– � is the global transition relation of � (see Definition 4.8, page 87),

– � ��� is the length of ��� ,

– � � � � � , and

– for all � � � � � � : � �f� � , � �f� ! .

4
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Next, we define the notion of sequence. Informally, a sequence � of valued ac-
tions � � ����� � � of � is a sequence obtained from a behavior ��� � � � �
	� � � � ��
��� ����� ���  � � �� ��� of � by dropping the states � � P������SP ��� . Formally:

Definition 4.12 (Set of Sequences) The set of sequences of � is the set:

� @��S`Q@S\�9A@;~ � � ! � 7 � � ��! ! � � � � � � � � P � � � � � � � �� � � B (4.3)

4

Example 4.9 For the IOSTS 5 depicted in Figure 4.1 (see page 78) the following
sequence:

� � � � +K� P � �U� P
� Z=[N>]\fP � Y"Z=[N>]\ ^QMT_.`Q@p� � ��� P
� bd@w�%`�<;\"P � Ycb�@Se	MN\Q>]\�Vf^QMT_.`Q@p� � �U� P
� Z|{*[}[g~L@;R�@SJT@S<UMWV�@NP � YcR�@SJT@S<AMWV�@�� COFFEE �U� P
� ��@W_.>]JT@S<KP � YcR�@SJT@S<AMWV�@�� COFFEE �U�

is a sequence of valued actions belonging to
� @��S`c@S\�9A@;~ �25 ! . 4

Next, we introduce a trace relation and based on this newly defined relation give
a formal definition of a trace of the IOSTS � .

Definition 4.13 (Trace Relation � ) The trace relation � � � � � !�� � !�� ! � �
� of � is obtained from the global transition relation � defined above (see
Definition 4.8, page 87) by dropping internal actions:

- ���� �W1 � � � � �W1 !�� � � � � P������WP ��� � � � � � � � � � 	� ��� ����� ���  � � �� ��� � �W1 � ! ,
where for all � ������� � : � �f� !=� , and 	 is the empty sequence.

- �
�
� �W1 � � � � P ��� � � � � �
�� � � �� ������ �L1 � , where � � � !�� � !�� ! .

- ���� �W1 � � � � P������WP ��� � � � � � � � � �
	� ��� ����� ���  �
��� � 	
� ��� � �W1 � , where for

all � � ��� � � ��� : � �|� ��!�� � !p� ! , and  � ��! � � !�� ! � .
4

Definition 4.14 (Set of Traces) The set of traces of � is defined as follows:
� <UM'9A@;~ � � ! � 7  � ��! � � ! � ! � � � � � � � � P � � � � � � � �� � � B (4.4)

4
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Example 4.10 The following sequence of valued input/output actions:

 � � Z=[N>]\|P � Y"Z=[N>]\ ^QMT_.`c@�� � �U� P
� b�@w�2`�<S\|P � Ycbd@Se	MN\Q>]\�Vf^QMT_.`Q@p� � �U� P
� Z|{*[}[g~L@;R�@SJT@S<UMWV�@NP � YcR�@SJT@S<UMWV�@p� COFFEE �U� P
� ��@W_.>]JT@S<KP � YcR�@SJT@S<UMWV�@p� COFFEE �U�

represents one of the possible traces of the coffee machine depicted in Figure 4.1
(see page 78). 4

Finally, we introduce the notion of reachable state, and define a set of states in
which the IOSTS � can be after executing a given trace of � .

Definition 4.15 (Reachable State) A state � � � is reachable in
� if there exists a sequence � � � @��S`Q@S\�9A@;~ ��� ! that ends in � , i.e.

� � � � @��S`Q@S\�9A@;~ � � !AP �L� � � � � � �L� �� � � . 4

Example 4.11 To illustrate the definition given above we consider
the IOSTS 5 shown in Figure 4.1 (see page 78). Then, the state
� � � R�@?VT>]\fP � JL:dMN>?O � �TPLJLR�@SJT@S<UMWV�@ � COFFEE �U� of 5 is reachable, as
there exists the sequence � (see Example 4.9) which ends in this state � . Note
that the state � is also reachable by the trace � shown in Example 4.10.

4

Definition 4.16 ( � �
� #�(��  ) The set of states in which an IOSTS � can be

after the trace  � � <UM'9A@;~ ��� ! is defined as:

��� �
� #�(��  ! � 7 � � � � � � � � � � � � � �� � B (4.5)

4

4.4 Subclasses of IOSTS

In the current section we define some subclasses of IOSTS which are used in the
symbolic test generation method presented later in the thesis.
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4.4.1 Instantiated, Initialized and Deterministic IOSTS

In this subsection we introduce the subclasses of instantiated, initialized and
deterministic IOSTS, and illustrates them with simple examples. The main result
of the subsection, which will be exploit lated in the thesis, is: if an IOSTS is
initialized and deterministic, then each instance of this IOSTS moves to exactly

one state after each trace.

Definition 4.17 (Instantiated IOSTS) An IOSTS � is instantiated if its
set of symbolic constants � is empty.

4

Definition 4.18 (Instance of IOSTS) Let � be an IOSTS with the set
of symbolic constants � and � � ���� � � ! be a valuation of these symbolic
constants. Then, the instance � ��� ! of � and � is the IOSTS obtained by
replacing each symbolic constant

� � � by its value �'� � ! . Moreover, the set of
symbolic constants of � ��� ! is empty, i.e. ��� ��� � ��� . 4

Observation 4.1 All instances of an IOSTS � are instantiated.
4

Example 4.12 Consider the IOSTS 5 depicted in Figure 4.1 (see page 78),
which has one symbolic constant 9;:=<;>?9A@ of type nat, i.e. � � 7*9;:=<;>?9A@CB . Let us
also consider one of the possible valuations of � , for example, � � � � � , where
�)� 9;:=<;>?9A@T!�� � . Then, by replacing in 5 each instance of the symbolic constant9;:=<;>?9A@ by its value 3, we obtain the instance 5���� ! of the IOSTS 5 .

4

Definition 4.19 (Initialized IOSTS) An IOSTS � with the initial condition
j and the set of variables 
 is initialized if for every instance � ��� ! , there
exists at most one valuation of its variables which satisfies j (see Definition 4.3,
page 83).

4

Example 4.13 Let us consider an IOSTS 	 with the following initial condition
j � � 9;:�<;>?9A@rk m�! o � JL:dMN>?O	� 9;:=<S>?9A@N! , where 9;:=<;>?9A@ with #%$'&)('� 9;:=<S>?9A@N!�� �2�*�T�Q� is
a symbolic constant of 	 and JL:�MN> O with # $'&T('� JL:dMN>?OQ! � �]�Q�T�*� is a variable of 	 .
This IOSTS is initialized, as

– for all instances 	 ��� ! , where � � ���� � �Q�T� !�
 7Nm�B , there exists exactly
exactly one valuation of variable JL:dMN>?O which satisfies j . For example, for
	 �'� � �DUE�F�G�

! , the only one valuation satisfying � �rk m�!�o � JL:dMN>?Or��K! is 
 � � � � ,
where 
"� JL:dMN>?OQ! �
� .
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– for the instance 	 �'� m �D�E�F�G�
! , there are no valuations of the variable JL:dMN>?O which

satisfies � mrk m�!�o � JL:�MN>?O � m�! .
Next, if the initial condition of 	 is the following j � � 9;:�<;>?9A@ k¡mK!|o � JL:dMN>?O �9;:�<;>?9A@N! , then 	 is not initialized, as, for example, for 	 �'� � �D�E�F�G�

! , there exist at least

valuations of variable JL:dMN>?O satisfying � �rk m�!�o � JL:�MN>?O � ��! , e.g. 
 � JL:dMN>?OQ! ��� ,

 � JL:�MN>?Oc!"��� � . 4

Next, we introduce the subclass of deterministic IOSTS. The definition of a
deterministic IOSTS is inspired from that of a deterministic IOLTS (see the item
(8) of Definition 3.4, page 35). Intuitively, an IOSTS is deterministic if it does
not contain internal actions, and from each state at most one transition can be
fired. Formally:

Definition 4.20 (Deterministic IOSTS) An IOSTS � with a set of states
� and a set of valued actions ! � !d� � !p� � !=� is deterministic if:

(1) ! � � � , and

(2) for all states � � � and valued actions � � ! � � ! � , 9AMN<UO � 7 � 1 � � � � ��
�W1 B)! � � , where 9AMN<UO ��� ! denotes the cardinality of a set � .

4

We illustrate the definition of a deterministic IOSTS with an example.

Example 4.14 In Figure 4.2 (see page 94) we depict a simple coffee machine.
This machine accepts a strictly positive amount of money from the user, and
delivers either (1) only coffee if the user has paid less or equal to three units, or
(2) coffee with milk in the case when the paid amount was three or more than
three units. Note that if the user paid exactly three units, the outcome from
the coffee machine is non-deterministic. Thus, due to the violation of the second
item of Definition 4.20, the coffee machine shown on Figure 4.2 (see page 94) is
non-deterministic.

4

It is not hard to see that deterministic IOSTS are somewhat different from deter-
ministic IOLTS as they can have several initial states (the definition above does
not contain any restriction on the number of initial states of IOSTS). However,
the testing theory prohibits to use a tester that can choose its initial state as the
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Pay

Begin

Idle

CoffeeWithMilk

Coffee

pCoin ���
Coin?(pCoin)
vPaid � � pCoin

vPaid ���
Coffee!()

vPaid � �
Coffee!()

Milk!()

Figure 4.2: Non-deterministic coffee machine.

result of testing should not depend on internal choice of the tester. Therefore,
the tester must be modeled with an IOSTS that is not only deterministic but
also initialized. The next lemma shows that if an IOSTS is deterministic and
initialized, then each instance of this IOSTS can move to exactly one state after
each trace. Formally:

Theorem 4.1 (
	�
 	�����������������

is a Singleton) Let



be an initialized and
deterministic IOSTS with initial condition � , set of variables � and set of sym-
bolic constants � . Then, for each trace

�
of each instance


 	���
of the IOSTS


, where
�! #"%$!&'	 � � , the set of states

	
 	��(���(�������)�*�
is a singleton. +

Proof Consider an instance of the given IOSTS



, i.e.

 	����

. Due to Defini-
tion 4.18 (see page 92) we know that


 	��(�
does not have any symbolic constant,

i.e. �-,/.10325476 . Also, as we know that



is initialized (see the hypotheses of the
theorem), then there exists at most one valuation 8 of variables � which satisfies
the initial condition � of


 	���
(see Definition 4.19, page 92). Next, we consider

two cases:

(1) The valuation 8 satisfying � does not exist. In this case,

 	���

has an
empty set of traces.

(2) The valuation 8 satisfying � exists, and it is unique. Then, 9;:=<?>A@CB 	�
 	���D�FE4
6 , and there exists exactly one initial state in


 	��(�
.

Consider an arbitrary trace
�/ 9G:=<?>A@CB 	
 	��(�H�

starting in the unique initial
state of


 	���
. By the hypothesis of the lemma, we know that



is deter-

ministic. Thus,

 	���

is deterministic as well. Hence, each time during the
execution of

�
on


 	��(�
, it is possible to fire only one symbolic transition
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of � ��� ! (see Definition 4.20, page 93). Therefore, after the trace  the
IOSTS � ��� ! moves to exactly one state, i.e. � � ��� ! � � #�(��  ! is a singleton.

� ��� ��� �

4.4.2 Complete and Input-Complete IOSTS

In this subsection we introduce the subclasses of complete and input-complete
IOSTS. The hypotheses about completeness and input-completeness of IOSTS
involved in testing will be needed in the symbolic test generation and test execu-
tion processes.

For an IOSTS representing either a test case or an implementation under test,
we need to assume that is always accepts (does not block) all possible inputs. Such
IOSTS is called input-complete and defined as follows:

Definition 4.21 (Input-Complete IOSTS) An IOSTS � is input-complete

if for each state � � � and each valued input action � � !d� , � can move to
some state �L1 � � following its trace relation � , i.e. possibly after a sequence of
internal actions: � � � � P � � ! � � � 1 � � � � � �� � 1 �

4

Notice that the definition given above is semantic. Nevertheless, it can be
achieved using sufficient syntactical conditions. We illustrate the definition of
an input-complete IOSTS with an example.

Example 4.15 Consider two IOSTS 5 � and 5 � depicted in Figure 4.3, where
a transition 0 �� 0]1 is an abbreviation for the complement set of all transitions
leaving 0 . Then,

(1) 5 � (see Figure 4.3(a)) is not input-complete, as for example, we cannot
move from the state � � � R�@?VT>]\uP 
�� to another state �}1 by taking the valued
input action � � � ��� ��� P�� � ,

(2) 5 � (see Figure 4.3(b)) is input-complete due to the fact that from each state
of 5 � we can execute each valued input action of 5 � .

4
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(pBev = COFFEE)
Deliver ! (pBev) Cancel ? (vPaid < cPrice)

Return ! (pRemVal)

Start

Begin

Accept Reject

(a) ���

true 
  

*

(pBev = COFFEE) 
 Deliver ! (pBev) 

  
Cancel ? (vPaid < cPrice) 

 Return ! (pRemVal)

Coin ? ChooseBeverage ? not(vPaid < pPrice) 
 Return ! (mRemVal)

*

not(pBev = COFFEE) 
  Deliver ! (pBev) 

  

tau

PreInit_Start

Begin

Accept Reject

(b) ���

Figure 4.3: An example illustrating Definitions 4.21 and 4.22.

By analogy with the test generation approach proposed by T. Jéron (see Sec-
tion 3.2.3.3, page 57), our symbolic test generation method that will be described
in Chapter 7 of this document, uses a test purpose as the test selection mecha-
nism. In other words, the aim of test purposes is to mark the traces of a given
specification that should be tested without the global modification of all traces
of this specification. For this, each IOSTS representing a test purpose must be
complete with respect to another IOSTS representing a specification. Formally
complete a IOSTS is defined as follows:

Definition 4.22 (Complete IOSTS with respect to another IOSTS) Let
� � � �?6 � P j � PA3 � P 0 � � P � � P � ��� and � � � �?6 � P j � PA3 � P 0 �� P � � P � �A� be two IOSTS.
Then, � � is complete with respect to � � if:

(1) the set of variables of � � is disjoint with the set of symbolic constant of
� � , i.e. 
 ��� � � � � ,

(2) � � and � � have the same alphabets of actions, i.e. � � � � � ,
(3) the initial condition j � does not contain constraints on the variables and

symbolic constants of � � ,
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(4) for all locations 0 ��3 � and all actions + � �?� � � � � ! , there exist transitions:

� � � �%0 P + Pa� P�� � P � � P 0 � � � � � P������WPa� � � � 0 P + P�� P�� � P � � P 0 � � � � � (4.6)

such that �
� � ����� � � �

evaluates to �! ��� for all possible valuations of
variables, symbolic constants and parameters. Remember that in this thesis
we consider IOSTS whose guards are in a decidable theory for satisfiability.

4

Example 4.16 As in Example 4.15, we consider the two IOSTS 5 � and 5 � shown
in Figure 4.3. Then,

(1) 5 � (see Figure 4.3(a)) is not complete with respect to the IOSTS 5 shown in
Figure 4.1 (see page 78) as, for example, there are no symbolic transitions
labeled with action Coin, which leaves the location Begin.

(2) 5 � (see Figure 4.3(b)) is complete with respect to the IOSTS 5 in Figure 4.1
(see page 78) due to the facts:

(a) 5 � satisfies Item (1) of Definition 4.22, as 5 � does not have any vari-
ables, thus the intersection of the set of variables of 5 � with the set of
symbolic constants of 5 is empty,

(b) 5 � satisfies Item (2) of Definition 4.22, as ��� � � ��� �
7�Z=[N>]\uPWR�@SJT@S<UMWV�@CPKZ=MN\�9A@W_ PWbd@w�2`�<;\"Pw��@W_.>]JT@S<'P}� MN` B ,

(c) 5 � satisfies Item (3) of Definition 4.22, as its initial condition j � � �! � �
does not contain the constraints on variables and symbolic constants
of 5 , and

(d) 5 � satisfies Item (4) of Definition 4.22 (see Figure 4.3(b)). For example,
there exists the symbolic transition leaving the location Begin labeled
with action Coin and guarded with �! � � . Another example is: there
exist two symbolic transitions leaving the location Begin labeled with
the action Return and guarded with � JL:dMN>?O�� 9;:�<;>?9A@N! and ��� JL:dMN>?O��9;:=<S>?9A@N! respectively, where � JL:dMN>?O�� 9;:=<;>?9A@C! �

��� JL:dMN>?O�� 9;:=<S>?9A@N!
evaluates to �! ��� .

4
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Chapter 5

Operations with IOSTS

In this chapter we introduce several operations on IOSTS which are

used in the test generation technique and in the process of the test exe-

cution. They are called product and parallel composition. The product

operation is the main operation in the test generation as it allows to

“intersect” the behaviors of a specification and its test purpose, and

therefore, to select the part of the specification for which a test case

has to be generated. The operation of parallel composition is used in

the test execution on a system under test as this operation allows to

model an interaction between two processes represented by IOSTS. Fi-

nally, we present several relationships concerning the sets of traces of

IOSTS obtained after the product or parallel composition operations.

5.1 Parallel Composition

In this section we introduce the operation of parallel composition between two
IOSTS with synchronization on their common input and output actions. This
operation is inspired from the parallel composition between two processes modeled
by either LTS or IOLTS (see Definition 3.5, page 38). As usual, the operation of
parallel composition is used to model the execution of a test case on a black-box
implementation (see Chapter 6, page 137).

Before giving the formal definition of the parallel composition, we describe
the conditions under whose the parallel execution of two IOSTS is possible. In-
tuitively, two IOSTS � � and � � are compatible for the operation of parallel
composition if and only if:

– � � and � � do not share variables, symbolic constants and parameters.

– The alphabet of input (resp. output) actions of � � is equal to the alphabet
of output (resp. input) actions of � � , and the alphabets of internal action

99
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of � � and � � are disjoint. Moreover, the common actions must have the
same signature in both IOSTS.

Definition 5.1 (Compatible For Parallel Composition) Two IOSTS � � �
�?6 � P j � PA3 � P 0 � � P � � P ���a� and � � � �?6 � P j � PA3 � P 0 �� P � � P � �A� with actions alphabets
� � � � � � � � �� � � � � and � � � � �� � � �� � � � � are compatible for parallel composition

if and only if

(1) � � and � � have disjoint sets of data, i.e. 6 � �,6 � � � ; and

(2) (a) the alphabet of input (resp. output) actions of � � is the same as the
alphabet of output (resp. input) actions of � � , i.e. ��� � � �p�� and
�p�� � ���� ,

(b) the alphabets of internal actions of � � and � � are disjoint, i.e. � � � �
��� � ��� , and

(c) each common action + , which is either input for � � and output for
� � , or output for � � and input for � � , has the same signature
in both IOSTS � � and � � , i.e.

	�
 � � �2+ !l� 	�
 � � �2+ ! . More precisely,
the length of the tuples of types 	�
 � � �2+ !l� �� �� P������WP  � � � and 	�
 � � �%+ !��
�� �� P������WP  �� � is the same, and each type  �� of 	�
 � � �2+ ! corresponds to the
type  �� of 	�
 � � �2+ ! , i.e.

� � � ����� � � � 
�
� � 

�
� � .

4

Next, we formulate the operation of parallel composition and explain it on a
simple example.

Definition 5.2 (Parallel Composition ��� ) The parallel composition between
two IOSTS � � � �?6 � P j � P�3 � P 0 � � P � � P ���a� and � � � �?6 � P j � PU3 � P 0 �� P � � P � �S�
which are compatible for parallel composition is an IOSTS � � � � � � �
�?6 P j PA3dP 0 � P � P � � , where

– 6 �/
 � �n� i , where 
8� 
 � ��
 � , ��� � � �,� � and i � i � .
The set of parameters i of � � � ��� � is equal to the set of parameters
i � of � � as during the synchronization of the symbolic transitions each
parameter of � � is replaced with the corresponding parameter of � � (see
Rule (5.3));

– j � j � o j � ;
– 3t� 3 � � 3 � ;
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– 0 � � �%0 � � P 0 �� � ��3 is the initial location;

– � � ��� � �p� � ��� is the alphabet of actions, where �d� � � , �p� � �p�� � �p�� ,
and ��� � ��� � � ��� � .
The alphabet of input actions �d� is empty due to the following convention:
the result of synchronization between two symbolic transitions labeled re-
spectively with input and output actions is always a symbolic transition
labeled with an output action (see below);

– the set of symbolic transitions � is constructed from � � and � � as follows:

- for each symbolic transition � � � � � with origin 0�� ��3 � and destination
0]1 � ��3 � , which is labeled with an internal action + � � � � ; and a location
0 � ��3 � , there exists a symbolic transition ��� � with origin � 0�� P 0 �;� and
destination � 021 � P 0 �;� , which is labeled with the same action + and defined
by the following inference rule:

� 0�� P + Pa� P�� � P ��� P 0]1 � � � ���
0 � ��3 �
+ � ��� �

�U� 0�� P 0 �;� P + P�� P�� � P ��� � ��� � � X � � �	�.�/�*!�!AP � 0 1 � P 0 �;�U� � � (5.1)

where in order to obtain a symbolic transition with well-formed set
of assignments (i.e. each variable of � ��� � � � must be assigned),
we assign each variable of � � with itself (i.e. � � � X � � �s��� �Q! ). This
solution is reasonable as variables of � � should not change their values
while � � performs its internal action.

Similarly, a symbolic transition ��� � is obtained from a symbolic
transition � � � � � labeled with + � � � � and a location 0�� � 3 � , by
applying the following rule:

� 0 � P + Pa� P�� � P � � P 0]1� � � � �
0�� ��3 �
+ � � � �

�U� 0�� P 0 �;� P + P�� P�� � P � � ��� X 	 � �����/�*!a!�� � � P � 0�� P 0 1� �U� � � (5.2)

- for two symbolic transitions � � � � � and � � � � � , which are labeled
with a common action + that belongs to the set �?� � � � � �� ! � �?� �� � � �� ! ,
a new symbolic transition ��� � is constructed using the inference rule:

�%0�� P + P�� � P�� � P � � P 0 1 � � � ���
�%0 � P + P�� � P�� � P � � P 0]1� � � � �
+ � �?��� � � �p�� !"� �?�p�� � ���� !A£

�U�%0�� P 0 �A� P + P�� � P�� � o � ��� � � � � �!� P � � � � ��� � � � � �!� P � 0 1 � P 0 1� �U� � � (5.3)
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where � ��� � � � � � � (resp. � ��� � � � � �!� ) is the guard (resp. the set of assign-
ments) of the symbolic transition � � in which each parameter �

� � ��� �
carried by the action + of � � is replaced by the corresponding parameter
�

�
� �,� � carried by the action + of � � .

4

Example 5.1 In order to explain the operation of parallel composition we con-
sider two IOSTS 	 � and 	 � depicted in Figure 5.1 (see page 103).

The IOSTS 	 � (see Figure 5.1(a)) either:

– receives the input action EnterNumber from its environment, increases the
integer value entered to 	 � through this action, and returns some integer
value which is less or equal to the computed value through the output action
Result, or

– returns some negative integer value to the environment through the output
action Result.

The IOSTS 	 � (see Figure 5.1(b)) returns to the environment an integer value
which is negative or equal to zero, through the output action EnterNumber and
memorizes this value into the variable � . Then, it decreases the value of the
variable � by one while performing the internal action � � , and waits from the
environment the input action Result carrying some integer value which is greater
or equal to the value of � .

The IOSTS 	 � and 	 � are compatible for the operation of parallel composition
(see Definition 5.1, page 100) as:

(1) 	 � and 	 � do not have common variables, symbolic constants and param-
eters: 7 � BD E�F GX 	

� 7 �cBD E�F GX �
� � , 7 � � BD E�F GH 	

� 7 � � BD E�F GH �
��� and 7 � � BD E�F Gh 	

� 7 � � BD E�F Gh �
��� .

(2) (a) The alphabet of input (resp. output) actions of 	 � is equal to the
alphabet of output (resp. input) actions of 	 � , i.e. ��� � � �p�� �7��=\c� @S<���`�e��A@S<�B , � �� � � �� � 7'bd@;~;`*_��AB ; and the alphabets of internal
actions of 	 � and 	 � are disjoint, i.e. � � � �l��� � �87 � � B � 7 � � B§� � . And,

(b) The signatures of actions shared by 	 � and 	 � are the same. For
instance, the input action EnterNumber of 	 � and the output action
EnterNumber of 	 � have the same signature 	�
 � � � ��\c� @S<���`�e��A@S<'!��
	�
 � � � �=\c��@S<���`�e��A@S<'!"� ���L���x� , where �}��� denotes the integer type.
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���

���

���

���

���

	�
 � ����	 � � ����
EnterNumber?(

� �
)� � � � �

� �� � � �����

	 � � � � �
Result!(

� �
)

	 � ��� ��
Result!(

� �
)

(a) ���

����

��� �

����

��� 
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EnterNumber!(
' � )*,+ - ' �

. �*,+ -/*10�2

! ' �$3 * &
Result?(

' � )

(b) 465

7�8�9;:<8�=9?>

7�8�@A:<8�= @<>

7�8�BC:D8 = @ >7�8�@D:D8 =B >

7�8�B;:<8�=B >
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F�G;@�H�IJ6KLF�GAB$M�IJ

F NO@�H�IJ6KPF NO@QM�IJ
EnterNumber!(

N @
)RTS U NO@VWS U NO@

X BV,S U�V1Y/ZX @RTS U�R�[�Z

X @RTS U�R�[�ZX BV,S U�V1Y�Z

F N @ M R J6KPF N @ H V J
Result!(

N\@
)

(c) ]�^`_�_a]6b

Figure 5.1: The parallel composition between two IOSTS ced and cgf .



104 Operations on IOSTS

On Figure 5.1(c) we depicted the IOSTS 	 ��� � 	 � obtained from 	 � and 	 � by
performing the parallel composition as follows:

(1) the set of data of 	 � ��� 	 � consists of the following variables and symbolic
constants: 7 � P �cBD E�F GX

��7 � � P � � BD E�F GH
��7 � � BD E�F Gh ;

(2) the initial condition of 	 � ��� 	 � is the conjunction of the initial conditions
of 	 � and 	 � , i.e. j � � � � � m�!�o � � � � m�! (see Figure 5.1(c));

(3) the initial location of 	 ����� 	 � is the pair � 0 � P 0 1� � (see Figure 5.1(c)), where
0 � is the initial location of 	 � and 0 1� is the initial location of 	 � ;

(4) the alphabets of input, output and internal actions are constructed from the
alphabets of input, output and internal actions of 	 � or 	 � as following:
� � � � � � � � � � , where

– �d� � � ,
– � � �87��=\c� @S<���`�e��A@S<�Pwb�@;~;`x_��ABD E�F G� �	 �C� ��

, and

– � � � 7 � � P � � BD E�F G� � 	 �N� � �
(5) finally, we explain how to construct the set of symbolic transitions of

	 � � � 	 � .
(a) First, note that the IOSTS 	 � staying in its initial location 0 � can

perform either the action EnterNumber or the action Result, but 	 �
can execute only the action EnterNumber from its initial location
0 1� . By Definition 5.2 (see page 100) we know that the symbolic
transitions of 	 � and 	 � can be fired synchronously if they are la-
beled with the same actions. This means that at the first step we
synchronize the symbolic transitions of 	 � and 	 � outgoing from
their initial locations and labeled by the same action EnterNumber.
After synchronization (see Rule (5.3) of Definition 5.2, page 100),
we obtain the following symbolic transition of the IOSTS 	 � � � 	 � :� � �U�%0 � P 0 1� �

P �=\c��@S<���`�e��A@S<�P�� P � P � P � 0�� P 0 1 � ��� , where

– EnterNumber is the input action carrying the tuple of parameters��� ��� ��� ;
– the guard � is the conjunction of the guard � � � � m�! of 	 � and

the guard � � � � mK! of 	 � , where each parameter � � is replaced by
the parameter � � , i.e. � � � � � � m�!�o � � � � m�! ;
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– the assignments � is the union of the set of assignments 7 � �.� � � B
of 	 � and the set of assignments 7 � �.� � � B of 	 � , where each
parameter � � is replaced by the parameter � � , i.e. � �l7 � �.�
� � P �	�.� � � B

The result of this synchronization is shown on Figure 5.1(c) (see
the symbolic transition of 	 � ��� 	 � outgoing from the initial location
� 0 � P 0 1� � ).

(b) After the synchronization explained above 	 � and 	 � move to the
locations 0�� and 0]1 � respectively. In these locations 	 � and 	 � can fire
only their private internal actions � � and � � respectively. Thus, using
Rules (5.1) and (5.2) of Definition 5.2 (see page 100) the composed
IOSTS 	 � � � 	 � contains two following symbolic transitions:

– �U� 0�� P 0]1 � � P � � P � � Pa�! ��� PW7 � �.� � ¢ �TP �����
�cBKP � 0 � P 0]1 � �U�
– �U� 0�� P 0 1 � � P � � P � � Pa�! ��� PW7 � �.� � P �	�.�
� ���CBKP � 0�� P 0 1� �U�

(see Figure 5.1(c)).

(c) Continuing in the same way, we obtain the whole set of symbolic tran-
sitions of the IOSTS 	 � ��� 	 � (see Figure 5.1(c)).

4

5.1.1 Traces of the Parallel Composition

In this section we consider two IOSTS � � � �?6 � P j � PA3 � P 0 � � P � � P ���a� and � � �
�?6 � P j � PA3 � P 0 �� P � � P � �;� with sets of states � � , � � , and sets of valued actions ! � ,
! � . We assume that � � and � � are compatible for the parallel composition
(see Definition 5.1, page 100). Then, we study the relationship between the set
of traces of � � ��� � � and the sets of traces of � � and � � . The aim is to prove
the equality between the traces of � � � � � � and the intersection of the traces of
� � and � � , i.e.

� <UM'9A@;~ � � � ��� � � ! � � <AM'9A@;~ ��� � ! � � <UM'9A@;~ ��� � ! (5.4)

This equality is given as the theorem at the end of this section (see page 112). It
is important to emphasize that the result which we want to obtain (i.e. Equal-
ity (5.4)) is formulated at the semantics level of IOSTS while the definition of
the parallel composition (see page 100) is given at the syntax level. Thus, in
order to move from the syntax to the semantics level of IOSTS, we first study
how the transition relations of the given IOSTS � � and � � relate with the
transition relations of IOSTS obtained by from � � and � � by the parallel com-
position (see Lemmas 5.1 and 5.2 on page 106 and 107). The obtained relations
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allow us to show that for each sequence of valued input/output actions (i.e. for
 � ��! � 
 !=� � ! � � � ! � 
 !=� � ! � ), the IOSTS � ��� � � � has a visible behavior corre-
sponding to this sequence  if and only if both IOSTS � � and � � have visible
behaviors corresponding to  . This statement is formulated as Theorem 5.1 (see
page 109) that naturally imply Equality (5.4) which we have to prove.

Before giving the detailed proof of Equality (5.4), we make an observation
about the form of the states of the IOSTS obtained after the parallel composition
between � � and � � . Indeed, by definition of the parallel composition (see Def-
inition 5.2, page 100) and the semantics of IOSTS (see Definition 4.10, page 89),
all states of � � � � � � are of the form: �U�%0�� P 0 �;� P ��
 � P 
 �S�U� , where � 0�� P 
 ��� is a state
of � � and � 0 � P 
 �;� is a state of � � . This observation is implicitly used in all
lemmas and theorems of the current section.

Next, we prove that the IOSTS � � � ��� � moves from the state
�U�%0�� P 0 �S� P � 
 � P 
 �;�U� to the state �U� 021 � P 0 �;� P � 
c1 � P 
 �S�U� by executing an internal action
� belonging to !�� � if and only if the IOSTS � � moves from � 0�� P 
 ��� to � 021 � P 
c1 � � by
executing the same internal action and the IOSTS � � does not change its state
� 0 � P 
 �A� . Formally:

Lemma 5.1 Let

(1) � � � � 0�� P � P � � P�� � P � � P 0]1 � � � ��� be a symbolic transition of � � , which is
labeled with an internal action � � ��� � ,

(2) 0 � ��3 � be a location of � � , and

(3) � � �U�%0�� P 0 �;� P � P �?� P�� � P � � � � � � � X � � �	�.� �*!�!UP � 0]1 � P 0 �;�U� be the symbolic transition
of � � ��� � � obtained from � � and 0 � by Rule (5.1) of Definition 5.2 (see
page 101).

Then, for each internal action � � ! � � (remember that � � and !�� can be identified,
see Section 4.3.1.3, page 85), the triple �|�U�%0 � P 0 �;� P � 
 � P 
 �S�U� P � P �U�%021 � P 0 �;� P � 
c1 � P 
 �S�U�f�
belongs to � � if and only if the triple �|� 0�� P 
 ��� P � P � 0]1 � P 
 1 � �f� belongs to ��� 	 . 4

Proof

(1) As we know:

(a) � 
 � �,� � ! � � 
 � �,� � !"��� (see Definition 5.1, page 100), and

(b) the guard � � of the symbolic transition � � of � � is also the guard
of the symbolic transition � of � � � � � � (see the formulation of the
lemma),
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then we have that � � does not contain constraints on the variables and
symbolic constants of � � .
Thus, the valuation 
 � � 
 � P 
 �S� � ���� � 
 � � ! of � � ��� � � satisfies
the guard � � of the symbolic transition � if and only if the valuation 
�� ����� � 
 � �,� � ! of � � satisfies the guard � � of the symbolic transition � � .
Note that we did not mention anything about the valuation of parameters
due to the fact that the symbolic transitions � � and � are labeled with the
internal action � which, by Definition 4.2 (see page 4.2), does not carry any
parameters.

(2) From Rule (5.1 )of Definition 5.2 (see page 101) we have that:

the “new” valuation 
 1 � ���� � 
 � � ! of � � ��� � � is obtained from
the “old” one 
 � ���� � 
���� ! by executing in parallel the assignments
belonging to ��� � � � � � X � � � �.� �*!�! of the symbolic transition � if and only if

– the “new” valuation 
 1 � � ���� � 
 � ��� � ! of � � is obtained from the
“old” one 
 � ������ � 
 � � � � ! by executing in parallel the assignments
belonging to ��� of the symbolic transition � � , and

– the valuation 
 � ������ � 
 � �,� � ! of � � does not change.

The lemma follows directly from the items (1) and (2) above.
� ��� ��� �

Remark 5.1 By switching � � and � � in Lemma 5.1 we obtain a symmetrical
result.

4

By analogy with the previous lemma, we prove that the IOSTS � � ��� � � moves
from the state �U�%0�� P 0 �S� P � 
 � P 
 �;�U� to the state �U�%021 � P 021� � P ��
 1 � P 
c1 � �U� by executing a valued
input/output action � if and only if the IOSTS � � and � � move from � 0�� P 
 ���
(resp. � 0 � P 
 �S� ) to � 0 1 � P 
 1 � � (resp. � 0 1� P 
 1 � � ) by executing the same valued action � .

Lemma 5.2 Let

(1) + � �?��� � � �p�� !�� �?���� � �p�� !�� �p� be a common action of � � , � � and
� � ��� � � ,

(2) � � � � 0�� P + P�� � P � � P ��� P 0]1 � � � � � be a symbolic transition of � � ,
(3) � � � � 0 � P + P�� � P � � P � � P 0 1� � � � � be a symbolic transition of � � , and

(4) � � �U�%0�� P 0 �;� P + P�� � P�� � o � � � � � � � � � P ��� � � � � � � � � � � P � 0]1 � P 0 �;�U� be the symbolic
transition of � ��� � � � obtained from � � and � � by Rule (5.3) of Defini-
tion 5.2 (see page 101).
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Then, for each valued input or output action � � � + P�� � � ��!d� � � !p�� !"� � !p�� � !��� ! �
!�� , the triple �|��� 0�� P 0 �;� P � 
 � P 
 �S�U� P � P �U� 0]1 � P 0]1� � P � 
c1 � P 
c1 � �U�|� belongs to ��� if and only if

– the triple �U�%0�� P 
 ��� P � + P�� � P �%021 � P 
 1 � �U� belongs to � � 	 , and

– the triple �U�%0 � P 
 �S� P � + P�� � P �%0 1� P 
 1 � �U� belongs to � � � . 4

Proof First, notice that as � � and � � are compatible for composition, then
the signature of each common action + of � � and � � is the same (see Defi-
nition 5.1, page 100). Thus, we can replace each parameter carried by + of � �
with the corresponding parameter carried by + of � � in the guard � � and the
assignments � � of � � , i.e. � � � � � � � � � and � � � � � � � � � . Using this remark we prove
the lemma as follows:

(1) Due to Definition 5.1 (see page 100), we have that � 
 � ��� � ! � � 
 � ��� � ! ��� .
Thus, the guard � � (resp. � � ) of the symbolic transition � � (resp. � � )
does not contain constraints on the variables and symbolic constants of � �
(resp. � � ).
Therefore, the pair of valuations �U��
�� P 
 �S� P�� � satisfies the guard � � o
� � � � � � � �!� of the symbolic transition � if and only if

– � 
 � P � � satisfies the guard � � of the symbolic transition � � , and

– � 
 � P � � satisfies the guard � � of the symbolic transition ��� .
(2) From Rule (5.3) of Definition 5.2 (see page 101) we have that:

the “new” valuation 
 1 � ���� � 
 � � ! of � � � ��� � is obtained from
the “old” one 
 � ���� � 
��q� ! by executing in parallel the assignments
belonging to ��� � � � � � � � � � � of the symbolic transition � if and only if

– the “new” valuation 
 1 � � ���� � 
 � ��� � ! of � � is obtained from the
“old” one 
 � � ���� � 
 � � � � ! by executing in parallel the assignments
belonging to ��� of the symbolic transition � � , and

– the “new” valuation 
�1 � � ���� � 
 � ��� � ! of � � is obtained from the
“old” one 
 � � ���� � 
 � � � � ! by executing in parallel the assignments
belonging to � � of the symbolic transition � � .

The lemma follows directly from the items (1) and (2) above.
� ��� ��� �

Before going forward we need to introduce the � �

-behaviors for a given IOSTS.
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� �

-Behavior. Let � be an arbitrary IOSTS with alphabet of valued actions
! � !�� � !�� � !�� , set of states � and set of initial states � � � � . Let also ���
be a behavior of � (see Definition 4.11, page 89). Then, the element obtained
by the projection of � � on the set of states � and on the alphabet of valued
input/output actions ��! � � ! � ! , is called � �

-behavior.
Formally, a � �

-behavior is a sequence of states and valued input/output
actions � � �
	

� ��� � �
� ��� ����� ���� � � �

� ��� , where (1) � is the trace relation de-
fined on page 90, (2) � � � is the length of � �

, (3) � � � � � , and (4) for all
� � ��� � � � � �u� � P � �f� ��! � � !�� ! .

Remark that a � �

-behavior permits to have a direct connection with a trace
of the IOSTS � (see Definition 4.14, page 90). Indeed, as the sequence of valued
actions obtained from a given � �

-behavior by dropping all states is a trace of
� .

Next, we prove that for each sequence  of valued input/output actions, an IOSTS
� � ��� � � has a � �

-behavior corresponding to  if and only if � � and � � have
� �

-behaviors corresponding to the given sequence  . Formally:

Theorem 5.1 For each sequence of valued actions  � � � ����� � � belonging to
��! � � � ! �� ! � � � ! �� � ! �� ! � , the IOSTS � � � � � � has the following � �

-behavior:

� � � �U� 0 � � P 0 �� � P � 
 � � P 
 �� ��� �
	� �U� 0 �� P 0 �� � P � 
 �� P 
 �� �U�
�����
�U� 0 �� �� P 0 �� �� � P � 
 �  �� P 
 �� �� ��� � �� �U� 0 � � P 0 �� � P � 
 � � P 
 � � �U�

if and only if

– � � has � �� � � 0 � � P 
 � � � �
	� �%0 �� P 
 �� � ����� � 0 �� �� P 
 �  �� � � �� � 0 � � P 
 � � � , and

– � � has � �� � � 02�� P 
 �� � � 	� �%0 �� P 
 �� � ����� � 0 �� �� P 
 �  �� � � �� � 0 �� P 
 � � � . 4

Proof The proof is done by induction on the length of the sequence  of valued
actions belonging to � ! � � � ! �� ! � � ��! �� � ! �� ! � .
Induction Basis. Consider the empty sequence of valued actions 	 . We prove

that �U�%0%� � P 0%�� � P � 
 � � P 
 �� �U� is an initial state of � ��� � � � if and only if � 0%� � P 
�� � �
and � 0 �� P 
 �� � are initial states of � � and � � respectively.

Due to Definition 5.1 (see page 100), we have that � 
 � ��� � ! �	� 
 � ��� � !"��� .
Thus, the initial condition j � (resp. j � ) of � � (resp. � � ) does not contain
constraints on the variables and symbolic constants of � � (resp. � � ).
Thus, the valuation � 
 � � P 
 �� � � ���� � 
 � � ! of � � � � � � , satisfies the
initial condition j � o j � of � � ��� � � if and only if



110 Operations on IOSTS

– 
 � � � ���� � 
 � � � � ! satisfies the initial condition j � of � � , and

– 
 �� � ���� � 
 � � � � ! satisfies the initial condition j � of � � .
Therefore, the induction basis is proved.

Induction Hypothesis. Assume that for a sequence of valued actions u1 �
� � ����� � �  � the length of which is � � � , the IOSTS � � � � � � has the
� �

-behavior:

� � � �U� 0 � � P 0 �� � P � 
 � � P 
 �� ��� �
	� �U� 0 �� P 0 �� � P � 
 �� P 
 �� �U�
�����
�U� 0 �� �� P 0 �� �� � P ��
 �  �� P 
 �� �� �U� ��� � 	� ��� 0 �� �� P 0 �  �� � P � 
 �� �� P 
 �  �� �U�

if and only if � � and � � have the following � �

-behaviors:

� �� � � 0 � � P 
 � � � �
	� �%0 �� P 
 �� � ����� � 0 �� �� P 
 �  �� � ����� 	� � 0 �� �� P 
 �  �� �
� �� � � 0 �� P 
 �� � �
	� �%0 �� P 
 �� � ����� � 0 �� �� P 
 �  �� � ����� 	� � 0 �� �� P 
 �  �� �

Induction Step. Consider a sequence of valued actions of length � , i.e.  �
� � ����� � �  �D E�F G

�
¥ � � . We prove that:

� � � �U� 0 � � P 0 �� � P � 
 � � P 
 �� �U� � 	� �U�%0 �� P 0 �� � P � 
 �� P 
 �� �U�
����� (5.5)

�U� 0 �  �� P 0 �� �� � P � 
 �� �� P 
 �� �� �U� � �� �U� 0 � � P 0 �� � P � 
 � � P 
 � � �U�
is a � �

-behavior of � ��� � � � if and only if

� �� � �%0 � � P 
 � � � � 	� � 0 �� P 
 �� � ����� �%0 �  �� P 
 �� �� � � �� �%0 � � P 
 � � � (5.6)

� �� � �%0 �� P 
 �� � � 	� � 0 �� P 
 �� � ����� �%0 �  �� P 
 �� �� � � �� �%0 �� P 
 � � � (5.7)

are � �

-behaviors of � � and � � respectively.

By using prefix closure and the induction hypothesis, we obtain that for the
sequence  1 , the prefix of � �

(see Formula (5.5)) whose length is � � � , is
a sequence of states and valued input/output actions of � � � � � � if and

only if the prefixes of � �� and � �� (see Formulas (5.6), (5.7)), whose lengths
are also equal to � � � , are sequences of states and valued input/output
actions of � � and � � respectively.

Next, we prove that the trace relation �U� 0 �  �� P 0 �� �� � P � 
 �� �� P 
 �� �� �U� � �
�
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�U� 0 � � P 0 �� � P � 
 � � P 
 � � ��� which is the last step of � �

shown as Formula (5.5),
holds in � ��� � � � if and only if � 0 �  �� P 
 �� �� � � �� � 0 � � P 
 � � � (the last step of
� �� shown as Formula (5.6)) holds in � � and �%0 �  �� P 
 �� �� � � �� � 0 �� P 
 � � � (the
last step of � �� shown as Formula (5.7)) holds in � � .

First, using Definition 4.13 (see page 90) we unfold the last steps of � �� ,
� �� and � �

. Formulas (5.8), (5.9) and (5.10) respectively show results of
this unfolding. Then, we prove:

�%0 �  �� P 
 �� �� � �
		� ����� � �	� � 0�� P 
 ��� � �� �%0 1 � P 
 1 � � �

��� 		� ����� � �	� � 0 � � P 
 � � � (5.8)

� 0 �� �� P 
 �� �� � �
	�� ����� � ��� � 0 � P 
 �;� � �� � 0 1� P 
 1 � � �

��� 	�� ����� � ��� � 0 �� P 
 � � � (5.9)

where
��� ������� � � � � 	� � ��� � � , ��� ������� � � � � 	� � ��� � � , holds in � � and � �

respectively if and only if

��� 0 �� �� P 0 �  �� � P � 
 �� �� P 
 �  �� �U� �
	
� ����� � �
���� ��� 0�� P 0 �;� P � 
 � P 
 �S�U� � �� (5.10)

��� 0 1 � P 0 1� � P � 
 1 � P 
 1 � �U� �
�
����� 	
� ����� � � � �� �U� 0 � � P 0 �� � P � 
 � � P 
 � � �U�

where
�� � ��� � � �§¢ � ! � � � 	 � � � � � � � � � ! � , holds in � � � � � � .

(1) Using Lemma 5.1 (see page 106) and Remark 5.1 (see page 107) iter-
atively we get:

the state � � �U� 0�� P 0 �A� P � 
 � P 
 �S�U� is reachable (see Definition 4.15,
page 91) from � �� � � �U� 0 �� �� P 0 �  �� � P ��
 �  �� P 
 �� �� �U� by executing the se-
quence of internal actions � � ����� �

�����
which was constructed by using

each action belonging to the set: 7 � �� P������WP � �
� P � �� P������wP �

�

� B once

if and only if

the states ��� � � 0�� P 
 ��� and � � � � 0 � P 
 �A� are reachable from the states
� �� �� � �%0 �  �� P 
 �� �� � and � �  �� � � 0 �  �� P 
 �� �� � respectively by executing
the following sequences of internal actions: � �� ����� �

�
� and � �� ����� �

�

� , which
are obtained from the sequence � � ����� �

�����
by projection on the set of

internal actions of � � and � � respectively.

(2) From Lemma 5.2 (see page 107) we have:

the relation �U�%0�� P 0 �;� P ��
 � P 
 �S�U�D E�F G�
� �� �U� 0 ¥ � P 0 ¥� � P � 
 ¥ � P 
 ¥� ���D E�F G� ¥

holds in � � ��� � �
if and only if

� 0�� P 
 ���D E�F G��	
� �� �%0 ¥ � P 
 ¥ � �D E�F G� ¥ 	

holds in � � and � 0 � P 
 �S�D E�F G� �
� �� � 0 ¥� P 
 ¥� �D E�F G� ¥ �

holds in � � .
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(3) Applying iteratively Lemma 5.1 (see page 106) and Remark 5.1 (see
page 107) we obtain:

the state � � � �U� 0 � � P 0 �� � P � 
 � � P 
 � � ��� is reachable from �L1 �
��� 0]1 � P 0]1� � P � 
c1 � P 
c1 � �U� by executing the sequence of internal actions
�

����� � � ����� � � � �
which was constructed by using each action belonging

to the set: 7 � � � �� P������wP � �� P �
� � �� P������WP �

�
� B once

if and only if

the state � � � � � 0 � � P 
 � � � and � � � � � 0 �� P 
 � � � are reachable from �L1 � � �%021 � P 
c1 � �
and �W1 � � �%021� P 
c1 � � respectively by executing the following sequences of
internal actions: �

��� �� ����� � �� and �
� � � ����� �

�
, which are obtained from

the sequence �
����� � � ����� � � � �

by projection on the set of internal actions
of � � and � � respectively.

Therefore, we have proved that for any sequence  of length � , the IOSTS
� � � � � � has the ��� -behavior shown as Formula (5.5) if and only if � �
and � � have � � -behaviors shown as Formulas (5.6) and (5.7) respectively.

� ��� ��� �

Finally, we formally state and prove the theorem about the equality between
the set of traces of � ��� � � � and the set of traces obtained as the intersection
between the set of traces of � � and set of traces of � � .
Theorem 5.2 (Traces of the Parallel Composition) For two IOSTS � � and
� � which are compatible for the parallel composition (Definition 5.1, page 100),
the equality:

� <UM'9A@;~ � � � ��� � � !"� � <AM'9A@;~ ��� � ! � � <UM'9A@;~ ��� � !
holds.

4

Proof The proof of this theorem immediately follows from Definition 4.14 (see
page 90) and Theorem 5.1 (see page 109).

� ��� ��� �

5.2 Product

This section introduces the product operation � ��������� that is the main operation
in our symbolic test generation method (see Chapter 7, page 167). The product
operation “intersects” the behavior of two IOSTS representing, in the test gen-
eration algorithm, a specification and a test purpose. This allows to select a part
of the specification for which a test case has to be generated.
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The operation � � � � � � is inspired from the product operation � � ����� � defined
for IOLTS and used in the test generation method described in Subsection 3.2.3.3
(see page 57). The difference between � � � � � � and � � ��� ��� is that the former
performs not only synchronization on common actions of two given systems, but
also on data of these systems (remember that the IOSTS model explicitly includes
systems data). Therefore, the product operation defined for IOSTS permits to
perform more precise selection of test cases. In the rest of the thesis we only use
the product operation defined for IOSTS which is simply denoted by � without
index.

Before defining the product operation, we describe the conditions which per-
mit to perform the product operation between two IOSTS. Intuitively, two IOSTS
� � and � � are compatible for the product operation if and only if:

– � � and � � do not share either variables or parameters, but they may
share symbolic constants. Moreover the variables of � � can be symbolic
constants of � � , and the variables of � � can be symbolic constants of � � .
Also, in the case of a common datum, this datum must have the same type
in both IOSTS.

This condition is needed to avoid the conflicts between common data of
the IOSTS � � and � � . Indeed, assume the situation when � � and � �
have the common variable � , and they change differently the value of this
variable on the symbolic transitions that will be synchronized. If we try to
construct the product between these IOSTS � � and � � , we will be faced
with to the problem of choosing the right assignment of the variable � (i.e.

we do not know if variable should be evaluated as in � � or as in � � ). To
avoid this problem we forbid � � and � � to have the same variables.

Nevertheless, a common datum � of � � and � � can be considered, for
example, as a symbolic constant of � � and a variable of � � . In this
situation the conflict does not appear as, in the synchronous product � � �
� � , we treat this datum � as a variable and, therefore, assign it as in � � .

– Their alphabets of input, output and internal actions are equal, and their
common actions must have the same signature in both IOSTS.

Next we formally define the notion of compatibility for the product operation.

Definition 5.3 (Compatible For Product) Two IOSTS � � and � � with
sets of data: 6 � � 
 � �q� � � i � P 6 � � 
 � �q� � � i � and sets of actions: � � �
��� � � �p�� � ��� � P � � � ���� � �p�� � ��� � are compatible for the product operation if

(1) – � � and � � do not have common variables and parameters, i.e. 
 � �
 � � � and i � � i � � � ;
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– each common datum 	 � � � � � � � ! � � 
 � � � � !�� � 
 � � � � ! of � � and
� � has the same type in both IOSTS.

(2) – the alphabets of input, output and internal actions of � � and � � are
exactly the same, i.e. �d� � � ���� P �p�� � �p�� P ��� � � ��� � ; and

– each common action + of � � and � � has the same signature in both
IOSTS � � and � � , i.e.

	�
 � � �%+ ! � 	�
 � � �2+ ! . This means that the length
of the tuples of types 	�
 � � �%+ !�� �� �� P������wP  � � � and 	�
 � � �%+ !�� �� �� P������wP  �� �
is the same, and each type  �� of 	�
 � � �2+ ! corresponds to the type  �� of	�
 � � �2+ ! , i.e.

� � ������� � � � 
�
� � 

� � � .
4

Then, we formally define the product operation, make some observations about
it, and illustrate this operation with a simple example.

Definition 5.4 (Product � ) The product between two IOSTS � � � �?6 � P j � P3 � P 0 � � P � � P � �a� and � � � �?6 � P j � PA3 � P 0 �� P � � P � �A� which are compatible for the prod-
uct operation is an IOSTS � � � � � � �?6 P j PA3dP 0 � P � P � � , where

– 6 �/
 � � � i , where 
8� 
 � �I
 � , ��� � � � � � � ! 
 � 
 � �I
 � ! and i � i � .
The set of parameters i of � � � � � is equal to the set of parameters
i � of � � as during the synchronization of the symbolic transitions each
parameter of � � is replaced with the corresponding parameter of � � (see
Rule (5.11));

– j � j � o j � ;
– 3t� 3 � � 3 � ;
– 0%� � � 02� � P 02�� � ��3 is the initial location;

– � � ��� � �p� � ��� is the alphabet of actions, where �d� � ��� � � � ���� ! , �p� �
� �� � � � �� ! and � � � � � � � � � � � ! ; and

– the set of symbolic transitions � is constructed from � � and � � as follows:

For two symbolic transitions � � � ��� and � � � � � , which are labeled with an
action + that belongs to the alphabet � � � � � , a new symbolic transition� � � is constructed using the inference rule:

�%0�� P + P�� � P � � P ��� P 0 1 � � � � �
�%0 � P + P�� � P � � P � � P 0]1� � � � �

+ � � � � � � � !
��� 0�� P 0 �;� P + P�� � P�� � o � � � � � � � � � P ��� � � � � � � � � � � P � 0 1 � P 0 1� ��� � � (5.11)
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where � ��� � � � � � � (resp. � ��� � � � � �!� ) is the guard (resp. the set of assignments)
of the symbolic transition � � in which each parameter �

� � � � � carried by
the action + of � � is replaced by corresponding parameter �

�
� � � � carried

by the action + of � � .
4

It is important to notice that the product operation is stable, i.e. the result
of this operation is indeed an IOSTS. This statement follows directly from the
construction of the product (see Definition 5.4). The only one less trivial point is
to show that the assignment of the symbolic transitions of the IOSTS obtained
after the product operation are well-formed. This point is formulated and proved
below.

Observation 5.1 (Well-Formedness of Symbolic Transitions) Let � � and
� � be two IOSTS compatible for the product operation (see Definition 5.3,
page 113). Then, each symbolic transition of the IOSTS � � � � � obtained by
the product operation from � � and � � (see Definition 5.4, page 114) contains
exactly one assignment for each variable of � � � � � . 4

Proof Consider a variable � of � � � � � . Due to the fact that � � and � �
are compatible for the product operation (see Definition 5.3, page 113), we can
consider the following cases:

(1) � is a variable of � � and a symbolic constant of � � . In this case, � can
be assigned with a new value in � � , but cannot be assigned in � � . Thus,
if during the operation of parallel composition we synchronize a symbolic
transition of � � , which contains an assignment to the variable � , with any
other symbolic transition of � � , we will obtain a symbolic transition in
� � � � � containing only one assignment to � .
Similarly, we consider the case where � is a variable of � � and symbolic
constant of � � .

(2) � is a private variable of � � or � � . In this case, the variable � can be
assigned either in � � or in � � , thus each symbolic transition of � � � � �
contains exactly one assignment to � .

� ��� ��� �

Example 5.2 To illustrate the product operation we consider two IOSTS 	 �
and 	 � shown on Figure 5.2 (see page 116).

The IOSTS 	 � (see Figure 5.2(a)),
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	 � ����
NextIteration?()� � � ���;�� � � �����

	 � � � � ��� 	 � ����
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� �
)

	 � � � � � � ��
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� �
)
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	 � � � � �
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� �
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F�G H�IJ6KPF�G U�� J
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NO@

)

(c) ] ^��)] b

Figure 5.2: The product operation between two IOSTS c d and cgf .
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(1) in the case of receiving the input action EnterNumber from its environment,
computes the factorial of the integer value entered to 	 � through this action,
returns the computed value through the output action Result, and repeats
this operation again;

(2) in the case of receiving the input action NextIteration, 	 � returns the value
��� using the output action Result.

The IOSTS 	 � (see Figure 5.2(b)) receives some integer value, which is equal
to the value of its symbolic constants

�
, from the environment using the input

action EnterNumber; then it initializes the variable � to zero through its internal
action � ; and receives at most five times the input action NextIteration, each
time increasing the variable � by one; after that, 	 � sends to the environment
the output action Result.

These IOSTS 	 � and 	 � are compatible for the product operation (see Defini-
tion 5.3, page 113) as:

(1) – 	 � and 	 � do not have neither common variables nor common param-
eters: 7 � P �cBD E�F GX 	

� 7 � BDUE�FUGX �
��� , and 7 � � BD E�F Gh 	

� 7 � � BD E�F Gh �
��� ;

– 	 � and 	 � have two common data:
�

and � , where
�

is a symbolic
constant for both IOSTS, and � is a symbolic constant for 	 � (as it
never change its value, see Figure 5.2(b)) and a variables for 	 � . This
data have the same types in 	 � and 	 � , for example, the symbolic
constant

�
has integer type in both IOSTS.

(2) – The alphabets of input, output and internal actions of 	 � and 	 � are
equal, i.e. ��� � � ���� � 7���\c� @S<���`�e��A@S<�P �l@��)� v;� @S<UMC�%>?[N\uB , �p�� � �p�� �7'bd@;~;`*_��AB and � � � � ��� � ��7���MN` B .

– The signatures of actions shared by 	 � and 	 � are the same. For
instance, the output action Return of 	 � and 	 � has the same signa-
ture 	�
 � � � bd@w�2`�<;\f!�� 	�
 � � � bd@w�%`�<;\u!�� ���L���*� in both IOSTS, where �L���
denotes the integer type.

On Figure 5.2(c) we depicted the IOSTS 	 � � 	 � obtained from 	 � and 	 � by
performing the product operation as follows:

(1) the set of data of 	 � � 	 � consists of the following variables, symbolic
constants and parameters: 7 � P � P � BD E�F GX

��7 � BD�E�F�GH
��7 � � BD E�F Gh . Note that the symbolic

constant � of 	 � became the variable of 	 � � 	 � as it was the variable in
	 � ;
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(2) the initial condition of 	 � � 	 � is the conjunction of the initial conditions
of 	 � and 	 � , i.e. j � � � � m�!�o � � ���K! (see Figure 5.2(c));

(3) the initial location of 	 � � 	 � is the pair � 0 � P 0]1� � (see Figure 5.2(c)), where
0 � is the initial location of 	 � and 0]1� is the initial location of 	 � ;

(4) the alphabets of input, output and internal actions are the same as the
alphabets of input, output and internal actions of 	 � or 	 � ;

(5) finally, we explain how to construct the set of symbolic transitions of 	 � �
	 � .
First, note that the IOSTS 	 � staying in its initial location 0 � can perform
either the action EnterNumber or the action NextIteration, but 	 � can
execute only the action EnterNumber from its initial location 0 1� . By Defini-
tion 5.4 (see page 114) we know that the symbolic transitions of 	 � and 	 �
can be fired synchronously if they are labeled with the same actions. This
means that at the first step we synchronize the symbolic transitions of 	 �
and 	 � outgoing from their initial locations and labeled by the same ac-
tion EnterNumber. After synchronization, we obtain the following symbolic
transition of the IOSTS 	 � � 	 � : � � �U� 0 � P 0 1� �

P ��\c� @S<���`�e��A@S<�P�� P��rP � P � 0�� P 0 1 � �U� ,
where

– EnterNumber is the input action carrying the tuple of parameters ���
� � �a� ;

– the guard � is conjunction between the guard � m � � � � �Lm�! of 	 �
and the guard � � � � � ! of 	 � , where each parameter � � is replaced by
the parameter � � , i.e. � � � m � � � � �Wm�!�o � � � � � ! ;

– the assignments � is the union between the set of assignments 7 � ���
� � P � �.� �cB of 	 � and the set of assignments 7 � �.� � B of 	 � , where each
parameter � � is replaced by the parameter � � , i.e. � � 7 � ��� � � P ������ P � �.� � B

The result of this synchronization is shown on Figure 5.2(c) (see the sym-
bolic transition of 	 � � 	 � outgoing from the initial location �%0 � P 0]1� � ).
Continuing in the same way, we obtain the whole set of symbolic transitions
of the IOSTS 	 � � 	 � (see Figure 5.2(c)).

4
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5.2.1 Preliminary Definitions and Notations for Product

This section presents preliminary definitions and notations used in order to prove
several relationships about the sets of traces/sequences of the IOSTS obtained
after the product operation. All new notions are illustrated with intuitive exam-
ples.

Definition 5.5 (Fusion) Let
���

and
���

be two sets of typed data, � � be a
valuation of

���
and � � be a valuation of

���
. Then the fusion of � � and � � is

defined as follows:���
	 ������������������������ � � � � �"!#� � !%$'& � �(� � !)�+*-, ��	 ���� �.� � !)�0/2143658749
*-:"5 ;
Note that the operation of fusion of two valuations is asymmetric. It is useful for
proving the traces property of the product (see Section 5.2.2, page 122), where
some variables and symbolic constants can be shared.

Definition 5.6 (Projection) Let
�

be a set of typed data, � be a valuation
of

�
, and

���
be a subset of

�
. Then the projection of � onto

�<�
is defined as

follows: �=��	 ���>�@?BAC��D�E(F G)�����.H6I � � ! � � !%$ � � � ! ;
Example 5.3 This examples illustrates the fusion and projection operations de-
fined above.

(1) Consider two sets of typed data:
�<�J$LK � �#� � �M� �ON"P

and
�Q�R$SK �8N � �UTMP

, whereVXW�Y �-���)!Z$\[�]_^a`�b2c8c8de`�[�]f^
and

VXWgY �h�Q�(!%$\[�]_^a`�b2c8c8d
. Consider also

the valuation of
���

: � �i$ jlk��nmpoBqsr_�#tfu
, and the valuation of

���
: � �v$jxw��#yszO{h|4r�u

. Then, by performing the operation of fusion between � � and � �
we obtain the following valuation of

�
:������������� � � � � �"!Z$}j
k~)���)�� I �nmpo.q�r~ ��� ���� ��t~)���n���� �#y�z8{h|4r~ ��� ���� u

(2) We consider the following set of typed data:
� $�K � �#� � �(� �ON � �UTMP

, whereVXW�Y �-��!�$�[�]f^�`�b2c8cOd�`�[�]f^�`�b2c8cOd
. Note that

�
is the union of two

sets of typed data considered above, i.e.
�<�

and
���

. Consider also the
valuation of

�
: � $�jlk��nmpoBqsr_�#tO�#y�z8{h|�r�u

. Then, by performing the operation
of projection onto

���
and

���
, we obtain two valuations: � ��$�jhk��nmpo.q�r_��t_u

and � ��$�jxtO�#y�z8{h|�r�u
of

���
and

���
respectively.
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Observation 5.2 Let

���
and

���
be two sets of typed data, � � be a valuation of���

such that � � satisfies a Boolean expression � � 	�� �h����!
and � � be a valuation

of
�Q�

such that � � satisfies a Boolean expression � � 	�� �h�Q�"!
. If

��� 	 ������Q����� � �(� � !%$ � �.� � !	� , then
������������� � � � � �(!�
 $ � �� � �

.

;
Observation 5.3 Let

�'$ �����Q�Q�
be a set of typed data, and � be a valuation

of
�

such that � satisfies the conjunction of the following Boolean expressions
� � 	�� �-���)!

and � � 	�� �h�Q�(!
, i.e. � 
 $ � �� � �

.
Then, the valuation � � 	 VXWgY �h����!

(resp. � � 	 VXWgY �h�Q�"!
) obtained by

the operation
?.A �)DpE"F"G)� ���.H I � � ! (resp.

?.A ��D�E(F G)�����.H � � � ! ) satisfies � �
(resp. � �

), i.e.� ��
 $ � �
(resp. � ��
 $ � �

).

;
Lemma 5.3 Let

���
and

���
be two sets of typed data, � � be a valuation of����� ���

, � � be a valuation of
���������

and � N be a valuation of
����� �Q�

. Then,��������������j � � � � N u ��j � �M� � N u#!Z$�j-������������� � � � � � !�� � N u . ;
Proof To prove the observation we consider three following cases:

(1) Consider a datum
�

belonging to
�<�����Q�

. Due to the fact that � � 	VXWgY �h����� ���(!
(see the formulation of the observation) we obtain:

– on one side,
�������������nj � � � � N u"��j � �M� � N u�! � � ! is equal to

j � �#� � N uM� � ! (see Def-
inition 5.5), which is equal to � �(� � ! .

– on the other side,
j-�����������O� � � � � �(!�� � N uM� � ! is equal to

�����#� ����� � � � � �(!#� � ! ,
which by Definition 5.5 is equal to � �(� � ! .

(2) Similarly, consider a datum
�

belonging to
�a���Q���

. As we know that� � 	�VXW�Y �-����� ����!
(see the formulation of the observation), then:��������������j � � � � N u"��j � �M� � N u#! � � !%$}j � �M� � N uM� � !%$ � �.� � !j-������������� � ��� � �(!)� � N uM� � !%$\������������� � � � � �(!#� � !%$ � �.� � !

(3) Finally, consider a datum
�

belonging to
�<�����Q�

. By knowing that � N�	VXWgY �h�Q��� ���)!
(see the formulation of the observation), we have:�����#� �����nj � �#� � N u"�4j � �(� � N u#! � � !%$�j � � � � N u(� � !%$ � N � � !j-�����������O� � � � � �(!)� � N uM� � !%$ � N � � !
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� �������=�
Finally, we show that an IOSTS obtained by the product operation from two
initialized IOSTS is also initialized.

Lemma 5.4 (Initialized Product) Let � �
and � �

be two IOSTS with initial
conditions � ��� � �

, sets of symbolic constant � �#� � �
and sets of variables � �#� � � ,

such that:

(1) � �
and � �

are initialized (see Definition 4.19, page 92), and compatible
for the product operation (see Definition 5.3, page 113)

(2) � �
is complete with respect to � �

(see Definition 4.22, page 96).

Then, the IOSTS � ��` � �
obtained from � �

and � �
by the product operation

is also initialized.

;
Proof Consider an instance � �"�
	n��!

(resp. � ���
	��(!
) of � �

(resp. � �
), where	n� 	 VXW�Y � � �)!

(resp.
	�� 	 VXW�Y � � �"!

). By Definition 4.18 (see page 92) � � �
	n��!
(resp. � ����	��(!

) does not have any symbolic constant.
As � �

(resp. � �
) is initialized, then due to Definition 4.19 (see page 92)

there exists at most one valuation � � (resp. � � ) of variables � � (resp. � � ) which
satisfies the initial condition � �

(resp. � �
) of � �"�
	n��!

(resp. � ����	��"!
). Next,

consider two following cases:

(1) The valuation � � satisfying the initial condition � �
of � �"�
	n��!

does not
exist. In this case, it is easy to check that

�������������nj � � ��	n��u ��j � �M��	�� u#! that is a
valuation of variables and symbolic constants of � � ` � �

, does not satisfy
the initial condition

� � �� � �(!
of � �R` � �

.

The similar result can be obtained in the case, where the valuation � �
satisfying the initial condition � �

of � �4�
	��(!
does not exist

(2) The valuations � � and � � satisfying � �
and � �

of � �(��	n�)!
and � �4�
	��(!

respectively exist, and each of these valuations is unique.

As we know that � �
is complete with respect to � �

, then due to Def-
inition 4.22 (see page 96) we obtain that the initial condition � �

of � �
does not contain constraints over the data shared by � �

and � �
. Thus,

we can choose the values of these data to be equal to their values in � �
and

	p�
. Finally, by applying Observation 5.2 (see page 120), we obtain that�����#� �����nj � � ��	n��u"��j � �M��	�� u#!�
 $}� � �� � � !

.

The items (1) and (2) imply that the IOSTS � � ` � �
obtained from � �

and
� �

is initialized.
� �������=�
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5.2.2 Traces of the Product

In this section we consider two IOSTS � �
and � �

compatible for the product
operation, and study several relationships between traces/sequences of � �

, � �
and traces/sequences of the IOSTS � , obtained as the result of the product
operation between � �

and � �
. The main purpose is to prove the equality

between the set of traces of � �R` � �
and the set of traces of � �

, i.e.

���������
	U� � �R` � �"!%$����������
	_� � �)!
(5.12)

This equality will be formulated as Theorem 5.5 (see page 134). It is important to
emphasize that Equality (5.12) holds under additional conditions made on � �
and � �

(unlike the similar equality for the operation of parallel composition,
(see Equality (5.4), page 105), which holds without any additional conditions
(see Theorem 5.2, page 112)).

The rest of this section consists of two parts, where the first one proves the
inclusion of the set of sequences of � �

into the set of sequences of � � ` � �
,

and the second one proves the opposite inclusion, i.e. the set of sequences of
� ��` � �

is included into the set of sequences of � �
. We use these inclusions

in order to prove the main theorem about trace-equivalence between � �
and

� ��` � �
, which is formulated at the end of the section.

5.2.2.1 Sequences of the Product (First Inclusion).

The purpose of this section is to show that each sequence of � �
is also a sequence

of � � ` � �
. To prove this statement, we first show that if � �

and � �
move

from a state
|f�

(resp.
|4�

) to another state
|� �

(resp.
|� �

) by executing a valued
action � , then � ��` � �

moves also from a state
|

to another state
| �

by executing
the same valued action � . Formally:

Lemma 5.5 Let � � $�jl���#� � �#���R�#�){�� � �
������� �nu
and � �>$ jl�Q�M� � �M��� �(�){��� �
�R�M���@� u

be IOSTS compatible for the product operation (see Definition 5.4, page 114)
with sets of states � � , � � and sets of valued actions � �

, � �
.

Let also
m)� $�jh{h�#�)z2��� � ���Q�#�����#�){ � � u 	 � �

be a symbolic transition of � �
and

mp� $jh{C�4�)z2���2�M���g�M��� �M�){ �� u 	 �@�
be a symbolic transition of � �

.

Then, for all triples:

�m)�J$�jnjh{h�#� � �nu~ ��� �� I ��j-zs���Ru~ ��� ��
��j-{ � � � � � � u~ ��� ��! I u 	#"%$ I
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and �mp��$�j)jh{ �M� � �#u~ �p� �� � ��jhz2���Ru~ �p� ��
��jh{ �� � � � � u~ �p� ��  � u 	#"%$ �

of � �
and � �

respectively, if:

(1) the values of the common variables and symbolic constants of � �
and � �

in � �M� � � � are equal to their values in � � � � � � , i.e.
� � 	 � � � � � �)! � � � �R�

� �(!���� � �.� � !%$ � �(� � ! � � � � � � !%$ � � � � , and

(2) � $ jhz2���Ru
is a valued action of � �

and � �
, where

� 	 � VXW�Y ��� ��!�$VXW�Y � �2�(!n!
;

then, the triple:
�m $ j)jh{p�n������������� � � � � �"!pu~ �p� ��

��jhz2���Ru~ �p� ��
��jh{ � �������#� ����� � � � � � � � !�u~ �p� ��  

(5.13)

belongs to
"%$

of � ��` � �
, where

m
is defined by Equation (5.11) of Definition 5.4

(see page 114).

;
Proof From the hypotheses of the lemma and Definition 4.7 (see page 86) we
obtain that:

(1)
�m)��$0j)jh{h��� � �nu ��jhz2���Ru"��j-{ � � � � � � u)u 	#"%$ I

corresponds to the symbolic transitionm)��$ jh{h�#�)z2� � � ���e�#���g�#�){ � � u
; and the pair of valuations

j � �#���Ru
satisfies the

guard
�Q�

of
m��

, and

(2)
�mp�a$0j)jh{ �(� � � u ��jhz2���Ru"��j-{��� � � � � u)u 	#"%$ � corresponds to the symbolic transitionmp� $ jh{ �M�)z2� �2�4���g�M��� �M�){ �� u

; and the pair of valuations
j � �M���Ru

satisfies the
guard

���
of

m��
.

By performing the product operation (see Definition 5.4, page 114), we obtain
the following symbolic transition in � ��` � �

:m $�j)jh{h�#�n{ �#u"�)z2��� �����Q��� �g� � �2� � � � �h����� � � � � �2� � � � �l��j-{ � � �){ �� u)u
Then, we prove that the triple

�m
defined by Equation (5.13) belongs to

" $
.

First, as we know that:

(1) the valuations � � , � � � over
� � � � � �)!

of � �
, and the valuations � � , � � � over� � �Z� � �"!

of � �
exist, and

(2)
� � � � !�$ � � � � � �n!X� � � � � � � !

which follows from Definition 5.4 (see
page 114),
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then there exist the valuations
������������� � � � � �(! and

������������� � � � � � � � ! over
� � ���Q!

of � ��` � �
. Therefore, by the definition of a state (see Definition 4.4,

page 84), � �g` � �
has the following states:

|�$ j)jh{l���){ � u"�n�����������O� � � � � �(!�u and| � $}j)jh{ � � �){ �� u �n�����#� ���O� � � � � � � � !�u .
Second, we prove that the symbolic transition

m
obtained from

m#�
and

mp�
by

the product operation is executable in � �g` � �
, i.e. the pair of valuationsj-������������� � � � � �(!)���Ru

satisfies the guard
� �Q��� ��� � � � � �2� � !

of
m
. Indeed, as we know

that:

(1)
j � � ���Ru�
 $ �e�

,

(2)
j � �4���Ru�
 $ �g� � �2� � � � �

as:

(a)
j � �M���Ru�
 $ �g�

, and

(b)
��� � �2� � � � �

is the Boolean expression obtained from
� �

by substitu-
tion of all its parameters

�s�
carried by the action

z
of

m��
, with the

parameters
� �

carried by the same action
z

of
m��

. Remember that����� � � z�!%$ �#� � � �-z�!
.

(2)
���\	 � � �X� � �)!��\� � ��� � � !>��� � �.� � !a$ � �(� � !	� (see the hypotheses of the
lemma),

then by Observation 5.2 (see page 120) the valuations
�������������nj � � ���Ru ��j � �(���Ru#!

satisfies the conjunction of the Boolean expressions
�a�

and
�g� � �2� � � � �

. More-
over, due to Lemma 5.3 (see page 120) we obtain that

���4�#� �����nj � � ���Ru"��j � �(���Ru�! $j-������������� � � � � �(!)���Ru
. Therefore,

j �����#� ����� � � � � �"!)���Ru 
 $ �!�Q� � �g� � �2� � � � �-!
, and the

symbolic transition
m

of � � ` � �
is executable.

Third, we prove that the “new” valuation � � of the variables and symbolic con-
stants of � ��` � �

obtained by execution of the symbolic transition
m
, is equal

to
������������� � � � � � � � ! .
Indeed, � � is obtained from � $ ������������� � � � � �(! by parallel execution of the

assignments belonging to
��� �%� �>� � �2� � � � � !

. More precisely, � � is constructed as
follows: for each datum

��	 � � �� � ��!@��� � �%� � �"!
of � �R` � �

,

� � � � !%$
�������� �������

���(��j�?BAC��D�E(F G)�����	��
 I����I�� � � !����Ru#! � � ! * , ��	 � ��>� � �2� � � � �x�nj�?.A �)DpE"F"G)� ���	��
 � ��� � � � � !)���Ru#!#� � ! * , ��	 � �?BAC��D�E(F G)����� ��
 I����I��p� � ! � � ! * , ��	 � ��� � � � � � �"!?BAC��D�E(F G)����� ��
 � ��� � � � � ! � � ! * , ��	 � ��� � � � � � �)!� � � ! * , ��	 � ��� � � (5.14)
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Remember that (1) � �� � �X$��
and � � � � ��$��

due to the definition of IOSTS
(see page 81), and (2) � � � � � $��

as � �
and � �

are compatible for the product
operation.

Then, due to Definitions 5.5 and 5.6 (see pages 119) we have that:

(a)
?.A ��D�E(F G)����� ��
 I����I�� � ������������� � �#� � �(!~ ��� �

�

!J$ � � , and

(b) using the supplementary condition formulated as the lemma hypothesis,
and saying that all common data of � �

and � �
have the same val-

ues, i.e.
�=��	 � � � � � ��!�� � � � � � � !���� � �.� � !�$ � �(� � ! � , we have that?BAC��D�E(F G)����� ��
 � ��� � ��� ������������� � �#� � �(!~ ��� �

�

!J$ � � .
Moreover, if a common datum

�
of � �

, � �
is a constant in both IOSTS, then (1)�

is a constant in � � ` � �
, and (2) its value cannot be change during execution

of � �
, � �

and � �g` � �
. Next, due to the lemma hypothesis saying that:����	 � � � � � �n! ��� � � � � �(!���� � �.� � !%$ � �(� � ! � , we obtain:����	 � � � � � �"!���� � �(� � !%$ � �.� � !%$ � � � !	�

Using this statement together with the items (a) and (b) above, we can rewrite
Formula (5.14) as follows: for each datum

�
of � � ` � �

,

� � � � !%$
�������� �������

���(�nj � �#���Ru#! � � ! * , ��	 � ��>� � �2� � � � �x�nj � �4���Ru#!#� � ! * , ��	 � �� �(� � ! * , ��	 � ����� � �Z� � �"!� �.� � ! * , ��	 � ����� � �� � �)!� � � !Z$ � �(� � !Z$ � �.� � ! * , ��	 � ��� � � (5.15)

We also know that: for each datum
��	 � � � � � �)!

of � �
,

� � � � � !%$'& �g�"�nj � � ���Ru�! � � ! * , ��	 � �� �(� � ! * , ��	 � � (5.16)

and for each datum
��	 � � �%� � �"!

of � �
,

� � � � � !%$'& � ���nj � �4���Ru�! � � ! * , ��	 � �� �.� � ! * , ��	 � � (5.17)

Next, we remark that
�>� � �2� � � � ����j � �M���Ru#! $ � �.�nj � �M���Ru#!

. Indeed, as signature of
the actions

z
labeling symbolic transitions

m��
and

m��
, then we can substitute

�s�
by

� �
in the expression

�>�
. This substitution does not change the semantics of

the expression
� �

.
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Using this observation together with Formulas (5.15), (5.16) and (5.17), we ob-
tain: for each datum

�
of � �R` � �

,

� � � � !%$ & � � � � � ! * , ��	 � � � � � �)!� � � � � ! /�1�358749�* :(5 (5.18)

Finally, from Formula (5.18) and Definition 5.5 (see page 119) we get that � � $������������� � � � � � � � ! .
Therefore, the triple

�mJ$�jx|_� � �#| � u
of � �O` � �

, where
|>$�j)jh{h�#�){C�#u"�n�����������8� � � � � �(!pu

and
| � $�j)j-{ � � �){ � u �n�����#� ���O� � � � � � �(!�u , belongs to

"%$
of � �R` � �

. � ���������
Remind that the aim of this subsection is to prove that if a given IOSTS
� �

can fire a sequence � of valued actions, then the IOSTS � � ` � �
, where

� �
is a complete IOSTS with respect to � �

, can fire this sequence as well.
In order to prove this statement, we first show that if there exists some be-

havior of � �
corresponding to a sequence � belonging to � ����� ��� ���
	_� � �)!

(see
Definition 4.12, page 90), then there exists a behavior of � ��` � �

correspond-
ing to the same sequence � . It is important to notice that this statement holds
under some additional condition made on � �

.

Theorem 5.3 (Behaviors of the Product) Consider two IOSTS � �
and � �

such that:

(1) � �
and � �

are compatible for the product operation (see Definition 5.3,
page 113), and

(2) � �
is complete with respect to � �

(see Definition 4.22, page 96).

If � �
has the following behavior �	���
 jh{�� � � � � � u � I" jh{ �� � � �� u �M�M�(jh{��� �� � � ��� �� u ���" jh{ � � � � � � u

which corresponds to a sequence � $ � ���M�M� � � belonging to � ����� ��� ���
	U� � �)!
.

Then, there exists a behavior:

� � 
 jh{ � � � � u � I" j-{ � � � � u �M�(�Mjh{ ��� � � � ��� � u ���" jh{ � � � � u
in � � ` � �

corresponding to the same sequence � , where for all � from � to� , there exist a location
{��� 	 � �

of � �
and a valuation � � � 	 VXWgY � � �X� � �(!

of
variables and symbolic constants of � �

such that:

–
{��@$}jh{� � �){�� u

,
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– � � $\������������� � � � � � � � ! , and

–
����	 � � � � � �)! ��� � �%� � �(!���� � � � � � !%$ � � � � � !	� . ;

Proof The proof of this theorem is done by induction on the length of the
behavior � �� of � �

.

Induction Basis. Consider a behavior �	�� 
 jh{�� � � � � � u of length zero correspond-
ing to the sequence � 	 � ����� ��� ���
	U� � �)!

of length zero and prove that
� � ` � �

has a behavior � � 
 jh{��4� � �#u corresponding � .

First, as � ���
 jh{�� � � � � � u is a behavior of � �
, then the valuation � � � of variables

and symbolic constants of � �
satisfies the initial condition � �

of � �
, i.e.� � � 
 $ � �

.

Second, consider some valuation � �� of the variables and symbolic constants
of � �

satisfying the initial condition � �
, i.e. � �� 
 $ � �

and associate it with
the initial location

{!��
of � �

. As the initial condition � �
of � �

does not
contain constraints over the data shared by � �

and � �
(see Definition 4.22,

page 96), then we can choose the values of these data to be equal to their
values in � � � , i.e.

��� 	 � � � � � �)!� � � �Z� � �(!���� � �� � � !R$ � � � � � ! � . Therefore,
we constructed a behavior � �� 
 jh{��� � � �� u of � �

.

Finally, we prove that � � 
 jh{ � � � � u , where
{ � $ jh{ � � �){ �� u

and � � $�����#� ����� � � � � � �� ! , is a behavior of � �g` � �
corresponding to the sequence

� .

(1)
{ � $ jh{ � � �n{ �� u

is the initial location of � ��` � �
(see Definition 5.4,

page 114),

(2) � ��$\������������� � � � � � �� ! satisfies the initial condition � � � � �
of � �Z` � �

.
This statement is true, as by knowing that:

–
� � � � !%$}� � ��� � �)!s��� � �� � �(!

which follows from Definition 5.4
(see page 114),

– the valuation � � � (resp. � �� ) of the variables and symbolic constants
of � �

(resp. � �
) satisfies the initial condition � �

(resp. � �
) of

� �
(resp. � �

), and

–
����	 � � �%� � ��! � � � �X� � �"! ��� � �� � � !>$ � � � � � ! � (see the paragraph
above).

we can apply Observation 5.2 (see page 120), and obtain�����#� ����� � � � � � �� ! 
 $ � �� � �
.
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Therefore, we have proved that �	� 
 jh{��4� � ��u is a behavior of � � ` � �
. By

Definition 4.12 (see page 90) � � corresponds to a sequence � of length zero.

Induction Hypothesis. Assume that � �
has the following behavior of length� � � :

� �� 
 j-{ � � � � � � u � I" jh{ �� � � �� u �M�M�4j-{���� �� � � ��� �� u � ��� I" jh{��� �� � � ��� �� u
corresponding to the sequence � �X$ � �@�(�M� � ��� � 	 � ����� ��� ���
	_� � �)!

. Then,
there exists a behavior of length � � �

in � �R` � �
:

� � 
 j-{ � � � � u � I" jh{ � � � � u �M�M�4j-{ ��� � � � ��� � u � ��� I" jh{ ��� � � � ��� � u
corresponding to the same sequence � � , where

� � $ � � � ��� {�� 	 �J�4� � � � 	VXWgY � � �6� � �"! ��� { � $�j-{ � � �){ �� u � � � $\������������� � � � � � � � ! ��� �=��	 � � �@� � ��! �i� � ��
� � !>��� � � � � � !%$ � � � � � !	� !	� .

Induction Step. Consider a behavior of length � in � �
which corresponds to

the sequence � $ � �@�M�M� � ��� �~ ��� �
�  

� � 	 � ����� ��� ���
	U� � �)!
, i.e.

� �� 
 j-{ � � � � � � u � I" jh{ �� � � �� u �(�M�Mj-{ ��� �� � � ��� �� u ���" j-{ � � � � � � u (5.19)

First, by using prefix closure together with the induction hypothesis, we
obtain that in � ��` � �

there exists a behavior of length � � �
:

� � 
 j-{ � � � � u � I" jh{ � � � � u �M�M�4j-{���� � � � ��� � u � ��� I" jh{��� � � � ��� � u
corresponding to � � , where

� � $ � � � � � � � {��� 	 �J�4� � � � 	 VXW�Y � � �g�
� � !>��� {� $�jh{� � �){�� u � � �@$\������������� � � � � � � � ! � � �=��	 � � �(� � �)! � � � �.� � �"! ��� � � � � � !Z$� � � � � ! �-! � .
Therefore, we have that:

(1) there exist

– a location
{���� �� 	 �J�

in � �
, and

– a valuation � ��� �� 	vVXW�Y � � � � � �(!
in � �

, such that the values of
variables and symbolic constants shared by � �

and � �
are the

same as in � ��� ��
,

(2) the state
| ��� � $}j)j-{���� �� �){��� �� u"�n�����������O� � ��� �� � � ��� �� !pu

of � ��` � �
is reach-

able by � � $ � � �M�(� � ��� � (see Definition 4.15, page 91).
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Second, we consider the last step of the behavior shown as Equation (5.19),
i.e. the triple: jh{��� �� � � ��� �� u ����������� �
	� " jh{� � � � � � u
This triple, due to Definitions 4.8 and 4.7 (see pages 87 and 86), corre-
sponds to a symbolic transition

m � � $�j-{ ��� �� �)z2��� � ��� � � ��� � � �){ � � u
; and the pair of

valuations
j � ��� �� ���Ru

satisfies the guard
� � �

of
m � �

.

Next, as � �
is complete with respect to � �

, then using Item (4) of Defi-
nition 4.22 (see page 96), we get that � �

has the following symbolic tran-
sitions leaving the location

{���� �� 	 �J�
and labeled with the action

z
:m � I� $}jh{��� �� �)z2���2�M��� � I� ��� � I� �){� I� u"��M�M�m ���� $}jh{��� �� �nzs���2�M��� ���� ��� ���� �){���� u"��M�M�m ��� $ jh{��� �� �)z2���2�M��� ��� ��� ��� �){��� u"�

where ��� �
. As we also know that

� �
I��� �(�M� � � � �

evaluates to
mpoBqsr

, then the
pair of valuations

j � ��� �� ���Ru
satisfies at least one of these guards. Suppose

that
j � ��� �� ���Ru

satisfies the guard of the � -th symbolic transition ( � $ � � � � ),
i.e.

j � ��� �� ���Ru 
 $ � � ��
. Then, there exists the valuation � � �� 	�VXW�Y � � �6� � �(!

which is obtained from � ��� ��
by executing in parallel the assignments

� � ��
of

the symbolic transition
m ����

. Therefore, by Definition 4.7 (see page 86) the

triple
jh{ ��� �� � � ��� �� u � � ������� �
	� " jh{ ���� � � ���� u

belongs to
" $ � �� .

Finally, as we know that:

(1)
jh{��� �� � � ��� �� u ����������� �
	� " jh{ � � � � � � u 	 "%$ � I ,

(2)
jh{��� �� � � ��� �� u ����������� �
	� " jh{ ���� � � ���� u 	 " $ � �� , and

(3)
���
	 � � �� � �)! ��� � � � � �"! ��� � ��� �� � � !%$ � ��� �� � � !	�

,

then using Lemma 5.5 (see page 122) we obtain that the triple:j)jh{��� �� �){��� �� u"�������#� ���O� � ��� �� � � ��� �� !�u � � ������� ��	� " j)j-{�� � �){���� u �n�����#� ����� � � � � � ���� !�u
belongs to

" $ � of � ��` � �
, where

m �
is the symbolic transition of � ��`

� �
obtained by Equation (5.11) of Definition 5.4 (see page 114) from the

symbolic transitions
m � �

and
m � ��

of � �
and � �

respectively.
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Therefore, we have proved there exists the behavior:

� � 
 jh{ � � � � u � I" jh{ � � � � u �M�M�(jh{��� � � � ��� � u � �" jh{��� � �_u
in � �s` � �

corresponding to the same sequence � , where for all � from � to� , there exist a location
{ �� 	 �J�

of � �
and a valuation � � � 	�VXWgY � � � � � �(!

of variables and symbolic constants of � �
such that:

–
{��@$�j-{�� � �){�� u

,

– � � $ ������������� � � � � � � � ! , and

–
����	 � � � � � �n! ��� � � � � �"! ��� � � � � � !%$ � � � � � ! � .

� ���������
The inclusion of the set of sequences of � �

into the set of sequences of � �@` � �
follows directly from Theorem 5.3 and Definition 4.12 (see page 4.12). This
statement is formulated as the corollary bellow.

Corollary 5.1 (Sequences of the Product) Consider two IOSTS � �
and

� �
such that:

(1) � �
and � �

are compatible for the product operation (see Definition 5.3,
page 113), and

(2) � �
is complete with respect to � �

(see Definition 4.22, page 96).

the following inclusion holds:

� ����� ��� ���
	_� � �)!�� � ����� ��� ���
	U� � ��` � � !
(5.20);

5.2.2.2 Sequences of the Product (Second Inclusion).

The aim of the section is to prove that each sequence of � ��` � �
is also a

sequence of � �
. At the beginning we show that if � ��` � �

, where � �
is

complete with respect to � �
, moves from a state

|
to a state

| �
by executing a

valued action � , then � �
moves from a state

|f�
to another state

| � �
by executing

the same valued action � . Formally:

Lemma 5.6 Let � � $�jl���#� � �#���R�#�){�� � �
������� �nu
and � �>$ jl�Q�M� � �M��� �(�){��� �
�R�M���@� u

be two IOSTS with set of states � � , � � and set of valued actions � �
, � �

, such
that:
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(1) � �
and � �

are compatible for the product operation (see Definition 5.3,
page 113), and

(2) � �
is complete with respect to � �

(see Definition 4.22, page 96).

Let also
m $ j)jh{h�#�n{ �#u"�)z2��� � ���Q��� �g� � �2� � � � �l����� � �>� � �2� � � � �h��jh{ � � �){ �� u)u

be a symbolic
transition of � � ` � �

, which is obtained from two symbolic transitions
m#�Q$jh{h� �)z2��� �#���Q�#�����#�){ � � u

and
m��>$�j-{ �M�)z2���2�M�����M���>�4�){ �� u

of � �
and � �

respectively by
Equation 5.11 of Definition 5.4 (see page 114).

Then, for each triple
�m $ j)j)jh{h���){ �#u"� � u~ �p� ��

��jhz2���Ru~ �p� ��
�4j)jh{ � � �){ �� u"� � � u~ ��� ��  

belonging to
" $

, there

exists a triple
�m)� $�j)jh{h�#� � �nu~ �p� �� I ��jhz2���Ru~ �p� ��

�4jh{ � � � � � � u~ ��� ��  I u
belonging to

" $ I
, where � � and � � � are

obtained from � and � � by projection onto
� � �f� � ��!

, i.e. � �J$S?.A ��D�E"F"G)����� ��
 I ��� I � � � !
and � � � $L?.A ��D�E(F G)����� ��
 I ��� I � � � � ! . ;
Proof
First, from the hypothesis of the lemma we have that the given triple

�m
belonging

to
"%$

corresponds to
m $+j)j-{l�#�){C�#u"�)z2��� �#���Q��� �g� � �2� � � � �l�����Z� �>� � �2� � � � �h��jh{ � � �){ �� unu

.
Then, from Definition 4.7 (see page 86) we obtain that the pair of valuation

j � ���Ru
satisfies the guard

���� �g� � �2� � � � �
of

m
.

Second, from the hypothesis of the lemma we also have that � �
has a transitionm)�=$ jh{h���)z2��� �#���e� �������){ � � u

. Then, we prove that � �
can move from the state|f� $�jh{-�#� � �nu to the state

|� � $}jh{ � � � � � � u by executing the valued action � $}jhz2���Ru
.

Indeed, if we choose � � to be equal to
?BAC��D�E(F"G)� ��� ��
 I ��� I � � � ! (see Definition 5.6,

page 119) then as
j � ���Ru 
 $ �Q���%��� � �2� � � � �

we can use Observation 5.3 (see
page 120) and obtain that the pair

j � � ���Ru
satisfies

�Q�
. Then, we compute the

new valuation of variables and symbolic constants of � �
, i.e. � � � , from � � by

executing in parallel the assignments
� �

. Due to the fact that symbolic constants
of � �

cannot be variables of � �
, i.e. � � � � ��$��

(see Item (1) of Definition 4.22,
page 96), we obtain that the values of variables and symbolic constants in � � � are
exactly the same as their values in � � . Thus, � � � $L?BAC��D�E(F"G)� ���	��
 I����I�� � � � ! .
Therefore, we have proved that there exists a triple

�m)� $}jnjh{h�#� � ��u~ ��� �� I �4jhz2���Ru~ ��� ��
��j-{ � � � � � � u~ ��� ��  I u

belonging to
" $ I

of � �
, where � � $L?.A ��D�E"F"G)����� ��
 I����I���� � ! and � � � $?BAC��D�E(F"G)� ��� ��
 I����I�� � � � ! . � �������=�
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Next, we prove that if there exists some behaviour of � �2` � �
corresponding

to a sequence � belonging to � ����� ��� ���
	8� � �@` � �"!
(see Definition 4.12, page 90),

then there exists a behaviour of � �
corresponding to the same sequence � . This

statement holds under some additional condition made on � �
.

Theorem 5.4 (Behaviors of the Product) Consider two IOSTS � �
and � �

such that:

(1) � �
and � �

are compatible for the product operation (see Definition 5.3,
page 113), and

(2) � �
is complete with respect to � �

(see Definition 4.22, page 96).

If � ��` � �
has the behavior:

� � 
 jh{ � � � � u � I" j-{ � � � � u �M�(�Mjh{��� � � � ��� � u ���" jh{��� � �Uu
where for all � from � to � , there exist locations

{ � � 	 �R�
of � �

and
{��� 	 � �

of
� �

such that
{ � $ jh{ � � �){ �� u

. Moreover, this behavior corresponds to a sequence
� $ � ���M�M� � � belonging to � ����� ��� ���
	_� � �R` � �"!

.

Then, � �
has the behavior:

� �� 
 jh{ � � � � � � u � I" j-{ �� � � �� u �M�(�Mjh{ ��� �� � � ��� �� u � �" jh{ � � � � � � u
corresponding to the sequence � and to the locations

{ ��
( � $ � � � � ) of � �

. Here,
for all � from � to � , � � � $ ?BAC��D�E(F G)����� ��
 I����I�� � � � ! (see Definition 5.6, page 119).

;
Proof This theorem is proved by induction on the length of the behavior � �
of � ��` � �

.

Induction Basis. Consider a behavior �	� 
 jh{��4� � � u of length zero, where
{!��$j-{ � � �n{ �� u

, corresponding to the empty sequence � 	 � ����� ��� ���
	_� � � ` � �"!
;

and prove that � �
has a behavior � �� 
 jh{�� � � � � � u corresponding to � , where� � � $ ?BAC��D�E(F G)����� ��
 I����I���� � �"! .

Indeed, as we know that
| ��$ jh{��M� � � u is the initial state of � � ` � �

,
then by Definition 4.5 (see page 84) � � must satisfy the initial condition of
� �R` � �

, i.e. � � 
 $ � ��� � �
. Then, as we know that:

–
� � � � !Z$�� � �2� � ��!��=� � � � � �"!

which follows from Definition 5.4 (see
page 114), and

– � � � $S?BAC��D�E(F G)����� ��
 I����I��p� � �(! ,
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then, from Observation 5.3 (see page 120) we obtain that � � � satisfies � �
.

Therefore, we have constructed the behavior �	�� 
 jh{�� � � � � � u of � �
, which by

Definition 4.12 correspond to the sequence � of length zero.

Induction Hypothesis. Assume that � �R` � �
has the following behavior of

length � � � :
� � 
 jh{ � � � � u � I" jh{ � � � � u �M�M�(jh{��� � � � ��� � u � � � I" jh{��� � � � ��� � u

corresponding to the sequence � � $ � ���M�M� � ��� � 	 � ����� ��� ���
	_� � �)!
, where� � $ � � � � � � � {� � 	 �R� �){�� 	 �J� ��� {� $�jh{� � �){�� u �

.

Then, � �
contains the behavior:

� ���
 jh{ � � � � � � u � I" jh{ �� � � �� u �M�M�(jh{��� �� � � ��� �� u � � � I" jh{��� �� � � ��� �� u
corresponding to the sequence � � and to the locations

{ ��
( � $ � � � � � �

) of
� �

. Here,
� � $ � � � � � � ��� � � � $S?.A ��D�E(F G)����� ��
 I����I�� � � �l! � .

Induction Step. Consider a behavior of length � :

� � 
 jh{ � � � � u � I" jh{ � � � � u �M�M�(jh{ ��� � � � ��� � u ���" jh{ � � � � u (5.21)

of � ��` � �
which corresponds to a sequence � $ � ���M�M� � ��� �~ ��� �

�  
� � 	

� ����� ��� ���
	_� � ��` � �"!
, where

� � $ � � � � � { � � 	 ��� �n{ �� 	 � ����� { � $ jh{ � � �){ �� u �
.

First, by using prefix closure together with the induction hypothesis, we
obtain that � �

has the behavior:

� ���
 jh{ � � � � � � u � I" jh{ �� � � �� u �M�M�(jh{��� �� � � ��� �� u � � � I" jh{��� �� � � ��� �� u
corresponding to the sequence � � and to the locations

{���
( � $ � � � � � � ) of � �

.
Here,

� � $ � � � � � � ��� � � � $�?.A ��D�E(F G)����� ��
 I����I���� � �h! � . Thus, the state
| ��� �� $jh{��� �� � � ��� �� u

of � �
is reachable by � � $ � �@�M�M� � ��� � (see Definition 4.15,

page 91).

Second, we consider the last step of the behavior shown as Equation (5.21),
i.e.

jh{ ��� � � � ��� � u � �" j-{ � � � � u , which, due to Definitions 4.8 and 4.7 (see
pages 87 and 86), corresponds to a simbolic transition:m � $}jnjh{ ��� �� �){ ��� �� u"�)z2��� �#��� � � � � � � � �2� � � � �h��� � � � � � � � �2� � � � �h��jh{ � � �){ �� u)u
Then, from Lemma 5.6 (see page 130) we get that � �

can move from
the state

| ��� �� $ jh{��� �� � � ��� �� u
to the state

| � � $ jh{ � � � � � � u by executing the
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valued action � � $ jhz2���Ru
. Moreover, � ��� �� $ ?.A ��D�E(F G)����� ��
 I����I��p� � ��� � ! and� � � $S?.A ��D�E"F"G)����� ��
 I����I�� � � � ! .

Therefore, we have proved � �
has the behavior:

� ���
 jh{ � � � � � � u � I" jh{ �� � � �� u �M�M�(jh{��� �� � � ��� �� u � �" jh{� � � � � � u
corresponding to the same sequence � and to the locations

{ ��
( � $ � � � � ) of

� �
. Here, where for all � from

�
to � , the valuation � � � is obtained from � �

by projection onto the set
� � � � � �)!

.
� ���������

The inclusion of the set of sequences of � �@` � �
into the set of sequences of � �

follows from Theorem 5.3 and Definition 4.12 (see page 4.12). This statement is
formulated as the corollary above.

Corollary 5.2 (Sequences of the Product) For two IOSTS � �
and � �

such
that:

(1) � �
and � �

are compatible for the product operation (see Definition 5.3,
page 113), and

(2) � �
is complete with respect to � �

(see Definition 4.22, page 96),

the following inclusion holds:

� ����� ��� ���
	_� � �R` � �"!�� � ����� ��� ���
	_� � �n!
(5.22);

Finally, we formally state and prove the theorem about the equality between the
set of traces of � � ` � �

and the set of traces of � �
under some additional

conditions made on � �
and � �

.

Theorem 5.5 (Traces of the Product) For two IOSTS � �
and � �

such
that:

(1) � �
and � �

are compatible for the product operation (see Definition 5.3,
page 113), and

(2) � �
is complete with respect to � �

(see Definition 4.22, page 96),

the following equality:

���������
	_� � �R` � �"!%$�� �������
	U� � �)!
holds.

;
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Proof

(
�

) The proof of the first inclusion which states that any trace of the IOSTS
� � ` � �

is also a trace of � �
, follows from Definitions 4.12, 4.14 (see

pages 90 and 90) and Corollary 5.1 (see page 130).

( � ) The second inclusion, i.e. each trace of � �
is also a trace of � � ` � �

,
trivially follows from Definitions 4.12, 4.14 (see pages 90 and 90) and Corol-
lary 5.2 (see page 134).

� �������=�
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Chapter 6

Conformance Testing with IOSTS

In this chapter we describe the theory of conformance testing which
serves as a basis for the symbolic test generation method described in
the next chapter. The work presented in this chapter is mainly inspired
from the theory of conformance testing developed by J. Tretmans (see
[Tretmans, 1994], [Tretmans, 1996b], etc.) and the research done in
the VerTeCs team at IRISA (see [Rusu et al., 2000], [Morel, 2000],
[Jard and Jéron, 2002]). In our theory of conformance testing, be-
haviors of specifications and implementations under test are modeled
with Input-Output Symbolic Transition Systems, and the conformance
relation is defined as a partial inclusion of their traces.

The Plan of the Chapter. At the beginning of the chapter, we give the
formal definitions of a specification and an implementation under test. Then, we
introduce the notion of conformance relation between them, and define test cases
as well as their execution on implementations. Next, we link the notion of test
case with the notion of conformance relation, and formulate two first properties
(soundness and exhaustiveness) which have to be satisfied by test cases. Then,
we give the formal definition of a test purpose which is used as a mechanism for
test case selection. Finally, we redefine the conformance relation so that the test
purposes can be taken into account, and formulate a few other properties which
must be satisfied by test cases.

6.1 Specification

A specification ( ��� ��� 	������	�
�
, where the universe

��������
of the specifications

was introduced in Section 2.1.1, page 14 of Chapter 2) of a reactive system is
a formal description of the system behaviors, which, in general, are expressed

137



138 Conformance Testing with IOSTS

using specialized description languages, for instance, SDL [ITU-T, 1994], LO-
TOS [ISO/IEC, 1988]. The operational semantics of these languages describes
all possible behaviors of a system.

Formally, a specification is an initialized (see Definition 4.19, page 92) IOSTS
��� ���Q$ jl���������"� � ������� ���	������� �){ � ������� �
�
�������(�����������nu . In this work we consider (for the
test generation process) specifications without cycles of internal actions during
which the system performs its internal computations and does not communicate
with its environment. These cycles are called syntactic livelocks and formally
defined in Chapter 7 (see Definition A.4, page 257).

Example 6.1 (Specification) The IOSTS
�

depicted in Figure 6.1 is an
example of specification for a coffee machine. The syntax and semantics of this

(cPrice > 0 and vPaid=0 and vBeverage=TEA)

tau
vPaid:=0

(pCoinValue > 0)
Coin ? (pCoinValue)

vPaid:= vPaid + pCoinValue

Cancel ?

(pRemaningValue = vPaid)
Return ! (pRemaningValue)

((vPaid < cPrice) and (pRemaningValue = cPrice - vPaid))
Return ! (pRemaningValue)

((vPaid >= cPrice) and (pRemaningValue = vPaid - cPrice))
Return ! (pRemaningValue)

vPaid:=cPrice

ChooseBeverage ? (pBeverage)
vBeverage:=pBeverageCancel ?

(vBeverage = pBeverage)
Deliver ! (pBeverage)

Begin

Idle

Pay

Choose

Return Delivery

Figure 6.1: Specification.

system were explained in Section 4.1 of Chapter 4 (see page 77).

;

6.2 Implementation

An implementation under test (  ��� 	�� Y ���
, where the universe

� Y � �
of the

implementations was introduced in Section 2.1.2, page 14 of Chapter 2) is a
physical system, e.g. hardware or software components, which is represented in
testing as a black box interacting with a tester (see Figure 2.2, page 17). It
is important to note that  ��� is not a formal object, but due to the “testing
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hypothesis” (see Chapter 2, Formula (2.1), page 15) it can be modeled by the
formal object ������� 	 Y�W V �

(
Y�W V �

is the universe of implementation models
introduced in Section 2.1.2, page 14 of Chapter 2).

Formally, let ��� ���
$0jl� ������� � � ����� �"��� �������"�){�� ������� �
�
�������(�����������nu be a specification.
Then, an implementation under test (  � � ) is modeled by an IOSTS ������� $�jl�	��
 ����
� ��
 ���������
 ��p��{ ���
 �� �
����
 ���������
 ��lu such that:

(1) ������� does not have any common data with the specification ��� ��� , i.e.
����
 �� ���������� $ �

.

(2) the set of symbolic constants � ��
 �� is in bĳection with the set of symbolic
constants � ����� � of ��� ��� , i.e. there exists a bĳective function

y 
 � ��
 ��	�"
� ����� � such that

��� 	 � ��
 �� ��� G��U?_EU� � !%$\G��U?fEU�ly%� � !n!	�
.

Indeed, according to the testing norms published in [ISO, 1991], it does not
make any sense to check correctness of an implementation by generating
test cases from a specification that does not agree on the values of the
constants with the given implementation.

(3) the alphabets of input (
�����
 ��

), output (
�����
 ��

) actions are in the following
relations with the corresponding alphabets of ��� ��� : ��� ������� $ �����
 ��

,
�������� � $

�����
 ��
. The signatures of their common actions must be the same.

(4) ������� is input-complete (see Definition 4.21, page 95).

This assumption is needed as implementations under test must never refuse
any input from the tester.

6.3 Conformance

In the first two sections of this chapter we have assumed that specifications for re-
active systems and implementations under test can be modeled using the IOSTS
formalism. This allows us to reason formally about specifications and implemen-
tations. Consequently, we can express the conformance of implementations with
respect to specifications by a formal conformance relation between their models.
A conformance relation defines exactly the set of implementations conformant to
a given specification.

The conformance relation introduced in this section and used throughout the
thesis is a weaker version of the conformance relations

���OF(���4�
and

� ��F"�
defined

by J. Tretmans and al. for IOLTS (see [Tretmans, 1995], [Tretmans, 1996b],
[Tretmans, 2002]). It is called

���OF
. The reasons of defining the

� ��F
conformance

relation instead of using one of its stronger predecessors (i.e.
���OF(���4�

and
���OF(�

) are
that:
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(1)
���OF

does not take into account any quiescence (outputlocks, deadlocks, live-
locks defined on page 42) of IOSTS, and

(2) the problem of deciding whether a system represented as IOSTS is quiescent
or not is undecidable in general (due to existence of livelocks). Moreover, it
is quite complex even in the case when the existence of livelocks in IOSTS is
prohibited. We discuss this case in the last chapter of this thesis, where we
propose an idea of extension of the

���OF
relation to the

� ��F"�
relation defined

by J. Tretmans.

In order to formally define the
� ��F

conformance relation we first give an inter-
mediate definition and observation. Consider an arbitrary IOSTS � with set of
states � and set of valued actions � $ � � � � � � ��� . Then:

Definition 6.1 (
� � �(� � � ! and � � � � � ! ) The sets of valued outputs and valued

inputs, which can be generated by an IOSTS � when it is in some state
| �

among
the set of states � � � � , are defined as follows:

� ���"� � � ! � K � 	 � � 
 � | � 	 � � �#| 	 � ����| � �" | � P
(6.1)

� �%� � � ! � K � 	 � � 
 � | � 	 � � �#| 	 � ����| � �" |�� P
(6.2);

Next, we make an observation about the sets of valued input/output actions of
� obtained after some trace which does not belong to the set of traces of � .

Observation 6.1 For two arbitrary IOSTS � , � �
and a trace � which is a trace

of � �
but not a trace of � , i.e. �

	 ���������
	_� � � ! � ���������
	_� � !
,
� ���"� � � � GpEBA � !

and � �Z� � � � GpEBA � ! are the empty sets.

;
Indeed, as we know that �

�	 ���������
	_� � !
then

� � � � GpEBA � ! $ �
(see Defini-

tion 4.16, page 91). Thus, using the Definition 6.1 we obtain
� � � � ��! $ �

and
� �Z� ��!%$ �

.

Finally, we can formally define the conformance relation
���OF

. Intuitively, an im-
plementation  � � is conformant to a specification ��� ��� if for each trace of ��� ��� ,
 � � produces only outputs which are allowed by the specification. Formally:

Definition 6.2 (
���OF

for Instantiated IOSTS) Let ��� ��� 	 �����	�
�
be an in-

stantiated specification, and  ��� 	 � Y � �
be an implementation which is modeled

by the instantiated IOSTS � ����� 	'Y�W V �
. Then, the conformance relation

���OF
between ������� and ��� ��� , is defined as follows:� ��� � � � ��F ��� ���4! �

(6.3)�
�

	 � �������
	_� ��� ����!)��� � ���"� � � � ��� � GpEBA � ! � � � �(� ��� ��� � � GpEBA � !��
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where the relation �
� GpE.A

is defined on page 91.

;
Notice that this definition takes into account only specifications and implemen-
tations that do not have any constants (see definition of instantiated IOSTS
in Section 4.4.1, page 92). However, the conformance relation

���OF
can be nat-

urally extended to IOSTS that are not instantiated, see Definition 6.3. This
extension is possible due to the hypothesis (2) about implementations (see Sec-
tion 6.2, page 138), saying that there exists a one-to-one correspondence between
the symbolic constants of an implementation and the symbolic constants of a
specification.

Definition 6.3 (
� ��F

in General) An implementation  � � 	 � Y ���
is conformant

to a specification ��� ��� 	 ��������
if for all possible valuations

	
of their symbolic

constants, the instance ��� � � �
	�! of the model ������� of  ��� is ioc-related to the instance
��� ���f�
	.! of the specification ��� ��� , i.e.�  ��� � ��F ��� ���4! � � 	 	�VXW�Y � � ��
 ���!~ �p� �

������� � � ���
	�� �
��� ������� ��	.! ���OF �� r � �
	.!�� ;

The notion of conformance between implementations and specifications, which
was introduced in this section, is illustrated with a simple example.

Example 6.2 Let us consider an example depicted in Figure 6.2. This figure
consists of three subfigures: Figures 6.2(b) and 6.2(c) shows the models of the
implementations  � ��� and  � ��� respectively, and Figure 6.2(a) represents the for-
mal specification of these implementations.

As the specification ��� ��� and the implementations  ���#� and  ���p� do not have
any parameters, then they are already instantiated (see Definition 4.18, page 92).
Thus,  � ��� conformant to ��� ��� (resp.  ����� conformant to ��� ��� ) if and only if
��� � � I � ��F ��� ��� (resp. ��� � � � � ��F ��� ��� ).

(1)
� ������� I ���OF ��� ���4! as for each trace � of ��� ��� , the set of valued output actions
of ������� I is included into the set of valued output actions obtained after � by
��� ��� . For example, after the trace

j
�X����!pu 	 ���������
	U� ��� ���4! we obtain that:K�j��J��� � !�u ��j
�����x!�u P~ �p� �� ��
 �� I���������� ���
� � � 	 �
� K�j��Z��� � !pu"��j��Z�����8!pu"��j
���4��!�u P~ ��� �� ������� ��������� ���
� � � 	 �

Notice also that ��� � � I can execute the input action � in its initial state, which
is not specified by ��� ��� . This additional input does not violate conformance
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���

��� ���

��� ��� ��� ��	


���
a?(� )
�� � � b?()

� 
�� �������� 
���� ��� � 
���� ���
x!(� )

� � ��� �
y!(� )

� � ��� ��� � � � � �
x!(� ) z!()

(a) !#"%$'&

( �

( � ( � ( �

( � ( � ( 	 ( )

� �+* ��� �
a?(�,* )

b?()
c?()

� �+* ��� �
x!(�+* )

� �+* ��� �
x!(�+* ) z!()

x!(�+* )
otherwise? otherwise? otherwise?

otherwise? otherwise? otherwise? otherwise?

(b) -�.0/21�3

( �

( �

( � ( � ( �

a?(�+* )

� �+* � � ��� � �+* ��� �
x!(�,* ) � �+* ��� �

y!(�+* ) z!()

otherwise?

otherwise?

otherwise? otherwise? otherwise?

(c) -�.0/41+5

Figure 6.2: An example illustrating the conformance relation ioc. Here,� ��� � � I � ��F ��� ���4! and 6 � ��� � � � � ��F ��� ���4! .
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between � ����� I and ��� ��� , as the conformance relation verifies the inclusion of
valued outputs after the traces of ��� ��� . Thus, ioc allows to model partial
specifications.

(2) 6
� ������� � ���OF ��� ���4! as after the trace

j��@�����8!pu
of ��� ��� we obtain:K�j��J���
�8!�u ��j��J���-kO!�u ��j��X���hk8!�u"��j�������!pu P~ �p� �� ��
 �� � �
� ����� ����� � � � 	 � �� K�j �J�����U!�u"��j�� �4�hkO!pu P~ ��� �� ������� ��������� ����� � � � 	 � ;

6.4 Test Case

This section introduces the notion of test case (
�	� 	�
 � ��
 �

, where the universe
 � ��
 �
of test cases was introduced in Section 2.2, page 16 of Chapter 2), which

plays a central role in testing. During execution, the test cases interact with
implementations under test, observe their outputs, and, based on these observa-
tions, they generate test verdicts (see Figure 2.2, page 17). Formally, a test case
is defined as follows:

Definition 6.4 (Test Case) Let � ����� $ jl�	��
 ��p� � ��
 ��p������
 ����){ ���
 �� ������
 ������ ��
 ��hu be
the model of an implementation under test  � � . Then, a test case is an IOSTS�	� $}jh����� � ��������6�){�� �� ������ ���	��@u

such that:

(1) there exists an injective function
y 
 � ��
 �� �" � ��

such that
��� 	

� ��
 ��>��� G��U?fEU� � !Z$\G��U?_EU�lyZ� � !�!	�
.

This requirement is needed due to the fact that at the execution time the
valuation of common symbolic constants of a test case and an implemen-
tation under test must be the same (see the testing standard published
in [ISO, 1991]).

(2) the alphabet of actions
����

consists of only input and output actions, i.e.�����$ ��� �� � ��� ��
and

�
� �� $ �

.

(3)
�	�

is compatible for the parallel composition with ��� � � (see Definition 5.1,
page 100).

(4) the set of locations
����

is equipped with three mutually disjoint sets of
locations

�
� ��� � ����

, � � ��� � ����
and

� ��F(����F�� ����� ��E � ����
labeled with

verdicts Pass, Fail and Inconclusive respectively.

(5)
�	�

is initialized (see Definition 4.19, page 92).



144 Conformance Testing with IOSTS

(6)
�	�

is deterministic (see Definition 4.20, page 93).

(7)
�	�

is input-complete (see Definition 4.21, page 95) except for locations
belonging to the set

�
�
���6� � � ���"� � ��F(����F � ����� ��E

. ;

(cPrice > 0 and vPaid = 0 and vBeverage = TEA)

<Begin,Begin>

<Pay,Begin>

(pCoinValue > 0) 
 Coin ! (pCoinValue) 

 vPaid := 0 + pCoinValue

<Choose,Begin>

(pRemaningValue = vPaid - cPrice) and (vPaid >= cPrice) 
 Return ? (pRemaningValue) 

 vPaid := cPrice

Inconclusive

(pRemaningValue = vPaid - cPrice) and (vPaid < cPrice) 
 Return ? (pRemaningValue)

<Delivery,Begin>

ChooseBeverage ! (pBeverage) 
 vBeverage := pBeverage

Pass

(pBeverage = vBeverage) and (pBeverage = COFFEE) 
 Deliver ? (pBeverage)

(pBeverage = vBeverage) and not(pBeverage = COFFEE) 
 Deliver ? (pBeverage)

Figure 6.3: Test case.

Example 6.3 (Test Case) Figure 6.3 presents an example of test case for a
coffee machine, which is obtained from the specification shown on Figure 6.1
(see page 138) and the test purpose depicted in Figure 6.5 (see page 149). It
covers all the behaviors of the specification targeted by the test purpose, namely,
it accepts only one payment and does not exercise pushing the cancel button.
Note that the test case shown on Figure 6.3 in not input-complete, as, due to
the limited space of Figure 6.3, we did not show locations labeled with the Fail
verdict, in which the test case arrives if an implementation under test produces
an output that is not allowed by the specification.

;

6.5 Test Execution

Test execution, which was introduced in Section 2.2.2 of Chapter 2 (see page 17),
is the process of running a test case (

�	� 	 
 � ��
 �
) on a concrete black-box

implementation under test (  ��� 	 � Y � �
), observing responses from  � � , and based
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on these responses, generating a test verdict (see Figure 2.2, page 17). In the
thesis we model the test execution by the parallel composition (see Definition 5.2,
page 100) between

�	�
and the model � � � � of  ��� , which exists due to the “testing

hypothesis” (see Formula 2.1 in Chapter 2, page 15).

Test Verdict. The this paragraph we formalize the notion of test verdict corre-
sponding to each execution of a test case

�	� $}jl� ��� � ��������6�){�� �� �
����6���	��@u
on an implementation under test  � � . Before giving the formal definition of the
test verdict, we denote by:

–
��� � � $LKB|>$�jh{p� � u 	 � �� 
8{ 	 �

� ��� P ,
– � � ��� $ KB| $�jh{p� � u 	 � �� 
O{ 	 � � � � P , and

–
��� � W�� ���	��� ��
 � $SKB| $}jh{p� � u 	 � �� 
8{ 	 � ��F(����F�� ����� ��E P

the sets of states of
�	�

corresponding to the locations labeled with � � 	�	 ,  � ��
and � � ����� � � � 	 �� � .

Intuitively, a test verdict is defined as follows: consider an observable trace �
of the parallel composition

� � ����� 
 
 �	�g!
, where ��� � � is the model of an implemen-

tation under test  ��� and
�	�

is a test case; then,
�	�

produces the � � 	�	 (resp.
 � �� , � � ����� � � � 	 �� � ) verdict if the state in which the test case

�	�
arrives after the

trace � belongs to
��� � �

(resp. FAIL, INCONCLUSIVE). Formally:

Definition 6.5 (Verdict) Let � be a trace of ������� 
 
 �	� , then:����E.A���� F"G"�
�
!J$ � � 	�	B! * , � �	�

�
� GpE.A

�
� ��� � � !����E.A���� F"G"� � !J$  � �� ! * , � �	� � � GpE.A � � � � ��� !����E.A���� F"G"�

�
!J$

�
� ����� � � � 	 �� ��! * , � �	�

�
� GpE.A

�
� ��� � W�� ���	��� ��
 � ! ;

We remark that for a given implementation, a test case always produces a same
test verdict after several executions of a same trace on this implementation. This
follows directly from fact that any test case

�	�
is an initialized and deterministic

IOSTS (see the items (5) and (6) of Definition 6.4, page 143), thus, it is not hard
to show that for each trace �

	 ���������
	_� � � � � 
 
 �	�g!
(which is also a trace of�	�

due to Theorem 5.2, page 112), all states of
�	�

belonging to
� �	� � � GpE.A � !

correspond to exactly one location of the test case
�	�

.
Nevertheless, due to the fact that an implementation under test can have sev-

eral reactions on an input from the tester, a test case can produce several possible
executions giving possibly different test verdicts for the same implementation.
Thus, an implementation under test may be rejected, accepted, or may produce
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the �
� ����� � � � 	 �� � verdict for the same test case while following different possible

traces of the parallel composition between the test case and the implementation.
Formally:

Definition 6.6 ( � �
�
_

�
�
� �
) Let

�	� 	 
 � � 
 �
be a test case and ������� 	 Y�W V �

be a model of an implementation  � � 	 � Y ���
. Let also

�	�
and � ����� be compatible

for the parallel composition (see Definition 5.1, page 100).
Then,

�	�
may fail ������� if there exists a trace � in the parallel composition

between ������� and
�	�

after which
�	�

produces the  � �� verdict. Formally:� �	�
� � � _ � � ��� ������� ! �

(6.4)
� �

	 ���������
	U� ������� 
 
 �	�g!���� ��EBA���� F"G(� � !J$  � �� � ;
The relations � � � _ ? � ��� and � � � _ � ��F(����F

can be defined in the same way as the
relation of possible rejection � � � _ � � � � .
6.6 Property of a Test Case: Soundness

In the previous sections of this chapter we have introduced two significant notions
used in conformance testing, namely, test case (see Definition 6.4, page 143) and
conformance relation (see Definition 6.3, page 141). The aim of this section is to
establish the connection between these two independently defined notions. We
know that this connection exists. Indeed, as the purpose of test cases is to inform
us about conformance of an implementation with respect to its specification, then
the test cases must hold some properties relative to a conformance relation. For
instance, producing the  � �� verdict must imply detection of non-conformance in
an implementation under test. This property is called soundness. It is formally
defined as follows:

Definition 6.7 (Soundness) A test case
�	� 	 
 � ��
 �

with a set of symbolic
constants � is sound for a specification �� r � 	 �����	�
�

and set of implementations
under test � ��� 	 � � Y � �

if:� � q�m 	
� � ��	f��	 	�VXW�Y � � !����_� ��� � � �
	�! ���OF ��� ���U��	.!�!�$��

6 � �	���
	.!
� � � _ � � ��� ������� ��	.!�! � (6.5);
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Intuitively, a test case is sound if it does not reject conformant implementations.
This property can be achieved in practice, but for practical testing is not sufficient,
as incorrect implementations can also pass the test case. For instance, a test case
accepting all possible implementations is sound.

Example 6.4 Consider a test case
�	�

and a specification ��� ��� shown on Fig-
ures 6.4(a) and 6.4(b) (see page 148). Moreover, consider a set of implementations
� � ��	>$SK  � ��� P , where the model of  � ��� is depicted in Figures 6.4(c) (see page 148).
This test case

�	�
is sound for ��� ��� and � ��� 	>$SK  ����� P as:

– the model of  ����� , i.e. ��� � � I , is conformant to ��� ��� (see Example 6.2,
page 141);

–
�	�

does not reject � ����� I because for all maximal traces of
�	� 
 
 � � � � I (see

Figure 6.4(d), page 148) which are:j�� �4� � !puMj��J��� � !�u~ ��� �
�
I � j
�X����!puMj��J�4� � !pu~ ��� �

� � � j�� ���x!�uMj�������!pu~ ��� �
� �

the test case does not produce the  � �� verdict, i.e.
��EBA ����F"G(� � ��!�$

��EBA ����F"G(� � �(!%$ � � 	�	 , ��E.A�����F G(� � N !Z$ � � ����� � � � 	 �� � .
Thus,

�	�
does not reject implementations belonging to the set �

��� 	
, which are

conformant to ��� ��� . Therefore
�	�

is sound.

;
In testing the soundness of test cases is often defined together with exhaustiveness.
A set of test cases is exhaustive if implementations which do not conform to a
given specification may be rejected by a test case belonging to this set of test
cases. However, in this part of the thesis the notion of exhaustiveness is not used,
and therefore is not formally defined. It is replaced by another property called
relative exhaustiveness which is defined in the sequel. This property permits
to relate not only test cases, specifications and implementations, but also test
purposes introduced in the next section and used as selection mechanisms in out
test generation technique.

6.7 Test Purpose

The test case generation technique, which is presented in the thesis, uses the
concept of test purpose. A test purpose describes behaviors of the system to be
tested, and it is used in order to select a part of the system’s specification ��� ���
(see Section 6.1, page 137) for which a test case

�	�
(see Section 6.4, page 143)

will be generated. Formally:
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� �

Fail
� � � �

Fail Inconclusive Pass Fail Inconclusive Pass


���
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z?()
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#� � �
b!()

� 
��� ���2�� � 
����� ��� � 
��� � � �
x?(� )

� � ���� �
y?(� )

z?()
� � ��� �
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� 
�� ���2�� � 
#��� ��� � 
�� � � �
x?(� )

� � ���� ��� � � �� � �
x?(� )

y?(� )
z?()

� � ��� ��� � � � � �
x?(� )

(a) ���

���

��� ���

��� ��� ��� ��	


���
a?(� )
�� � � b?()

� 
�� �������� 
���� ��� � 
���� ���
x!(� )

� � ��� �
y!(� )

� � ��� ��� � � � � �
x!(� ) z!()

(b) !�" $'&

( �

( � ( � ( �

( � ( � ( 	 ( )

� � * ��� �
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� �+* ��� �
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otherwise? otherwise? otherwise?

otherwise? otherwise? otherwise? otherwise?

(c) -�.0/21�3

� ( �	� � �	


� ( � � � � 
 � ( � � � � 


� ( � � Pass 
 � ( � � Pass 
 � ( 	 � Inconclusive 



���� � ��� �
a!(� )
#� � � b!()

� 
�� ����� � � ��� �
x!(� )

� � � � �
x!(� ) z!()

(d) �����	� -�.0/21�3

Figure 6.4: Sound test case
�	�

for ��� ��� and � � ��	>$LK  � �#� P .
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Definition 6.8 (Test Purpose) Let ��� ��� be a specification. Then, a test
purpose of ��� ��� is an IOSTS

� � $'jl����6� � ��6������6��{�� �� �
���� ���	�� u
, where

� $
��� �� � ��� �� � �

� �� , such that:

(1)
� � is equipped with the special location

� �����
�
� 	 � ��

. This location plays
the role of a selection mechanism, i.e. it is used to indicate behaviors of the
specification ��� ��� which have to be tested;

(2) Each symbolic transition
m 	 � ��

of
� � , whose target is the location

� �����
�
�

and source is different from the target, is labeled with either input or output
action, i.e.

� j-{��nzs���J���������){ � u 	 � �� ��� �-{ �$ { � �i{ � $ � � � r  m)! $�� � z 	
��� �� � ��� �� ! �

;

(3)
� � is initialized (see Definition 4.19, page 92);

(4)
� � is complete with respect to ��� ��� (see Definition 4.22, page 96); and

(5)
� � is compatible for the product operation with ��� ��� (see Definition 5.3,
page 113). ;

To illustrate the definition above we consider the following example.

Example 6.5 (Test Purpose) Figure 6.5 (see page 149) presents one of the
possible test purposes for the coffee machine whose specification is shown on Fig-
ure 6.1 (see page 138). The dashed edges of the given test purpose are generated
automatically (see the algorithm described in Section 7.1 of Chapter 7, page 169)
in order to obtain a complete test purpose with respect to its specification (see
Definition 4.22, page 96).

The given test purpose describes behaviors where the machine delivers coffee
and the user does not introduce coins more than once and does not cancel (see full
edges of the graph shown on Figure 6.5). An accepted behavior is indicated by

Begin tau Coin ? (pTPCoin) ChooseBeverage ? (pBev)
not (vPaid < cPrice) 
 Return ! (pRemVal)

Accept

(pBev = COFFEE) 
 Deliver ! (pBev)

Reject

Cancel ? 
(vPaid < cPrice) 

 Return ! (pRemVal)
not (pBev = COFFEE) 

 Deliver ! (pBev)

* *

Figure 6.5: Test purpose.

arrival at the location Accept. The test purpose rejects behaviors that correspond
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to pressing the Cancel button, or inserting more than one coin. Rejected behaviors
are not necessarily erroneous, they are just behaviors that are not targeted by
the test purpose.

The common datum � ������� of � � (see Figure 6.5) and 	�
��� (see Figure 6.1,
page 138) is a variable of 	�
��� and a symbolic constant of � � . This does not
contradict any test purpose hypothesis (see Definition 6.8). �

At the end of this section we consider a specification 	�
��� and a test purpose � �
of 	�
��� with sets of variables ����� , symbolic constants ����� , states ����� and initial
states �������� ����� ; and introduce the notion of accepting trace for � � . Intuitively,
an accepting trace of � � is a trace (see Definition 4.14, page 90) which leads to
some state �! "����� corresponding to the special location #$�����%
'& . Formally:

Definition 6.9 (Accepting Traces of Test Purpose) The set of accepting
traces of � � is defined as follows:

#��)( � ���+*�,-� �/. 0 1-2  3�)( � ���+*�,-� �/.!4 (6.6)5 � �  6� ����87:9  <;>=�?@,��A����BC�/��� . 7 �EDGFIHKJLJLMON)P 7:9RQ  6�����TS�UV� �XWY �[Z]\
where HKJLJLMON)P^ `_$��� is the special location of � � (see the hypothesis (1) of
Definition 6.8, page 147). �

To illustrate the definition above we consider the example below.

Example 6.6 For instance, let us consider the test purpose � � depicted in Fig-
ure 6.5 and the following trace of this test purpose:

26a Fcb>d �fe 7 FOg Q:Q F�hi�[j � �k�L( 7 F COFFEE Q:Q Fcb>d �fe 7 FIl Q:Q F�hm�[j � �k�L( 7 F TEA QOQ
where F�g Qn7 F�l Q (resp. F COFFEE Qn7 F TEA Q ) are the valuations of the parameter

o� � b>d �fe (resp. 
qpr�L� ) carried by the input action b>d �fe (resp. by the output
action hi�[j � �k�L( ). This trace

2
is the accepting trace of � � as it is possible to

move from an initial state of � � , for example, F�pr��s �fe 7 F+� � ( � ���rDut 7 � �v����� Dxw Q:Q ,
to an accepting state, for example, Fy#$�����%
'& 7 F+� � ( � ���EDxt 7 � �v����� Dzw Q:Q , by

2
. �

6.8 Conformance Relative to Test Purpose

This section introduces a new conformance relation {V|8}�~c� . The relation { |�}�~c�
is slightly different from the relation {V|8} defined in Section 6.3 (see page 139).
The reason of its introduction is to establish the connection between the three
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components: implementation, specification and test purpose of the presented
testing theory, where the selection mechanism is based on test purposes.

In order to define the conformance relation { |�}�~c� , we first give some pre-
liminary definitions concerning the set of accepting traces and the sets of their
different prefixes.

Intuitively, the set of accepting traces consists of the traces of a specification
that are selected by a test purpose through the product operation (see Defini-
tion 5.4, page 114). Formally:

Definition 6.10 (Set of Accepting Traces of 	�
�����3� � ) Let

(1) 	�
���/ ������� be a specification with set of locations _
	����� ,
(2) � � be a test purpose of 	�
��� with set of locations _/~c� , and

(3) 	 � D 	�
����� � � be an IOSTS obtained from 	�
��� and � � by the product
operation (see Definition 5.4, page 114).

The IOSTS 	 � has the set of locations _��]� , the set of data ���I� D ���]�/B
���I�$B����I� , the set of states ���I� and the set of initial states ����I��� ���I� .

Then, for the IOSTS 	 � D 	�
�����3� � we define the set of accepting traces as:

#���( � ���+*�,%	 �!. 0
(6.7)1 2  3�)( � ���+*�,y	 �/.!4 5 F���	����� 7 #$�����%
'& Q  6_ �]� 75 9  <;>=�?T,��!�I�$B ���I� . 75 � �  � ��I��75 �KD F:F���	����� 7 HKJLJLMON)P Qn7:9RQ  6���I�TS U�� �<WY ��Z�\

where ��	�����$ 6_�	����� is a location of 	�
��� and HrJnJLMON)Pv _$��� is the special location
of � � (see the hypothesis (1) of Definition 6.8, page 147).

�

Then, we study the relationship between sets of traces/accepting traces of a
specification 	�
��� , a test purpose � � of 	�
��� , and the synchronous product 	�
�����
� � .

Theorem 6.1 (Set of Accepting Traces of 	�
���"� � � ) For a specification
	�
���/ ���#�!�$� and a test purpose � � of 	�
��� , the set of accepting traces of their
product 	�
���%�3� � is included into the set of traces of 	�
��� , i.e.

#���( � ���+* ,%	�
���%�3� �/. � �)( � ���+*�,y	�
��� .�& #���( � ���+* , � ��. (6.8)

�
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Proof Consider a trace
2 D����'ScScS���� belonging to #��)( � ���+*�,y	�
��� � � ��. , and

prove that this trace
2

also belongs to �)( � ���+*�,y	�
��� . and #���( � ���+*�,-� �/. .
(1) To prove the first membership, i.e.

2  `�)( � ���+*�,y	�
��� . , notice that due to
Definition 6.10 we have that #��)( � ���+*k,y	�
��� � � �!. is a subset of ��( � ���+* ,%	�
��� �
� �/. which is equal to �)( � ���+* ,%	�
��� . (see Theorem 5.5, page 134). Therefore,
each accepting trace

2  	�
�����@� � is a trace of 	�
��� , i.e.
2  x�)( � ���+* ,%	�
��� . .

(2) To show the second membership, i.e.
2  <#��)( � ���+*�,-� �/. , we consider some

sequence � D	�
�����'ScScS�������������� of 	�
�����"� � corresponding to
2

, where ���A 
,���� .�� ( ��D gkS S����3g ). It is important to notice that as

2  X#���( � ���+* ,%	�
��� �
� �/. then the sequence � leads to some accepting state F:F �� � 	����� 7 #E�����%
'& Qn7 �9 � Q  
, � �! �"$#�%�&�2�.

(see Definition 4.16, page 91), where � � 	�����  _�	��� � , #E�����%
'&  
_r~c� and 9 �  <;>=�?@,���	�����(' ~c� B � 	�����)' ~ � . .
Next, using the definition of a sequence (see page 90) we obtain that �
corresponds to the following behavior of 	�
����� � � :

*,+
	�����)' ~ � a FOF�� � 	����� 7 � � ~c� Qn7:9 � Q.-0/Y FOF �� � 	����� 7 �� � ~c� Qn7 �9 � Q213/4 FOF�� �	����� 7 � � ~c� Qn7:9 � Q

S[ScS (6.9)

FOF�� ��56�	�����L7 � ��56�~c� Qn7O9 ��56� Q -87Y F:F �� ��56�	�����L7 �� ��56�~ �CQn7 �9 ��56� Q 174 F:F�� � 	�����L7 � � ~c� Qn7O9 � Q
- 7)9 /Y FOF �� � 	�����L7 #E�����%
'& Qn7 �9 � Q

where for all � from w to � , there exist locations � � 	�����L7 �� � 	�����  _�	����� of 	�
��� ;
� � ~ � 7 �� � ~c�  _r~c� of � � ; and valuations of variables and symbolic constants

9 � 7 �9 �  <;>=�?@,���	�����)' ~c��B$� 	�����(' ~ � . of 	�
�����@� � . Then, by analogy with the
proof of Theorem 5.4 (see page 132), we can show that: if the synchronous
product 	�
��� � � � has the behavior shown as Formula (6.9), then the test
purpose � � , which is complete with respect to 	�
��� (see Definition 6.8,
page 147), has the following behavior:

* + ~c� a F�� � ~ � 7:9 � ~c� Q.- /Y F �� � ~c� 7 �9 � ~c� Q21 /4 F�� � ~c� 7O9 � ~c� Q
ScS[S
F�� ��56�~ �67:9 ��56�~ �@Q -:7Y F �� ��56�~c� 7 �9 ��56�~c� Q 174 F�� � ~c��7:9 � ~c� Q
- 7)9 /Y F%#E�����%
'& 7 �9 � ~ �RQ

corresponding to � , where for all �3D gkS S�� , 9 � ~c� and
�
9 � ~c� belong to

;>=�?@,�� ~c�CB �m~ � . . Notice that this behavior ends in the accepting state
F%#E�����%
'& 7 �9 � ~ �RQ . Therefore, the trace

2
corresponding to � belongs to the set

of accepting traces of � � , i.e.
2  #��)( � ���+*�,-� �/. .

; S�<iS�=6S
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Choose

Delivery

(cPrice = 2) 
 ChooseCoffee ? ()

Finish

DeliverCoffee ! ()

(a) �������

Choose DeliverCoffee ! ()

Delivery

(cPrice = 1) 
 ChooseCoffee ? ()

Reject

(cPrice <> 1) 
 ChooseCoffee ? ()

ChooseCoffee ! ()

Accept

DeliverCoffee ! ()

*

*

(b) �	�

<Choose, Choose>

<Delivery, Delivery>

(cPrice = 2 and cPrice = 1) 
 ChooseCoffee ? ()

<Delivery, Reject>

(cPrice = 2 and cPrice <> 1) 
 ChooseCoffee ? ()

<Finish, Accept>

DeliverCoffee ! ()

<Finish, Reject>

DeliverCoffee ! ()

(c) �
��������	�

Figure 6.6: #���( � ���+* ,%	�
��� � � ��. � ��( � ���+* ,%	�
��� . & #���( � ���+*�,-� �/. but
#��)( � ���+* ,%	�
���%�3� �/.��� �)( � ���+*�,y	�
��� .�& #���( � ���+*�, � �!. .

The example below illustrates Theorem 6.1. It is also used as a coun-
terexample for the statement saying that the traces of the specification 	�
��� are
included into the set of accepting traces of 	�
�����3� � .

Example 6.7 Consider a coffee machine whose specification 	�
��� is shown on
Figure 6.6(a). This coffee machine delivers a coffee if the price is equal to two
units. Consider also a test purpose � � of 	�
��� , which is depicted in Figure 6.6(b).
It describes behaviors where the coffee machine delivers coffee when the price is
equal to one unit (see the full edges of � � ). Then, we perform the product
operation (see Definition 5.4, page 114) between 	�
��� and � � , which result is
shown in Figure 6.6(c). As our aim is to illustrate Inclusion (6.8) (see page 151),
we compute the sets of traces of 	�
��� and the sets of accepting traces of � � and
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of 	�
���%� � � :

��( � ���+* ,%	�
��� . D 1 ���cFcb��)d d-*c�kb>d��K��� 7 F QOQ � Fcb��)d d-*c�kb>d��K��� 7 F Q:Q F�hm�[j � �k�L(kb>d��K��� 7 F Q:Q \
#���( � ���+* , � ��. D 1 F[b��)d d-*c�kb>d��K��� 7 F Q:Q � F�hi�[j � �k�L( b>d��K��� 7 F QOQ \
#���( � ���+* ,%	�
��� � � �/. D��

From above it is easy to see that the set of accepting trace of 	�
��� � � � ,
which is the empty set in this example, is included into the intersection between
��( � ���+*�,y	�
��� . and #��)( � ���+*�,-� �/. , which is

1 F[b��)d d-*c�kb>d��K��� 7 F Q:Q Fyhi�[j � �k�L( b>d��K��� 7 F Q:Q \ .
Thus the inclusion #���( � ���+*�,y	�
���%� � �/. � �)( � ���+*�,y	�
��� .�& #���( � ���+*�,-� �/. holds.

However, the opposite inclusion, i.e. #���( � ���+* ,%	�
��� � � �/. �

��( � ���+*�,y	�
��� . & #���( � ���+*�,-� �/. , does not hold. This is because 	�
��� and � �
do not synchronize on the values of common variables and symbolic constants.
�

Next, we define two sets containing prefixes of accepting traces of the synchronous
product between a specification 	�
��� and a test purpose � � of 	�
��� . The first
of these sets includes all possible prefixes of accepting traces of ,y	�
����� � �/. .
However, the second one consists of prefixes (1) which belong to the first set, and
(2) which are not accepting traces of ,y	�
����� � �/. . Formally:

Definition 6.11 (Set of Prefixes) For an IOSTS 	 � D 	�
��� � � � with set
of accepting traces #��)( � ���+*�,y	 �/. and sets of valued input �	� and valued output
�	
 actions, we define the set of prefixes of the accepting traces #���( � ���+* ,%	 ��. as
follows:

� (:��� ,%#���( � ���+*k,%	 ��.�. 0
(6.10)

W���� ~���� � ���� 	O���
1-2��  ,�� � B � 
 . � 4 5 2�� �  , � � B � 
 . � S U 2 D 2���� 2�� � Z]\

where
2 � �:2 � �

is the operation of concatenation between two strings
2 �

and
2 � �

. �

Definition 6.12 (Set of Strict Prefixes) For an IOSTS 	 � D 	�
��� � � �
with set of accepting traces #��)( � ���+*�,y	 �/. and set of prefixes

� (���� , #��)( � ���+*k,y	 ��.O. ,
we define the set of strict prefixes of #��)( � ���+*�,y	 �/. which are not accepting traces
of 	 � , as follows:

	 � (:��� ,%#��)( � ���+*�,y	 �/.O. 0 , � (:��� ,%#���( � ���+* ,%	 ��.�.� #���( � ���+* ,%	 ��.�. (6.11)

�
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Finally, we can formally introduce the conformance relation {V|8}�~c� . This confor-
mance relation defines the a set of implementations that are correct with respect
to a specification 	�
��� and relative to a test purpose � � of 	�
��� . Intuitively, an
implementation

��� & is conformant to 	�
��� and relative to � � if for each strict
prefix of an accepting trace of ,%	�
��� � � �/. which is not an accepting trace of
,y	�
��� � � �/. , ��� & produces only outputs which are allowed by the specification.
Formally:

Definition 6.13 ( {V|8}�~c� for Instantiated IOSTS) Let 	�
���x ���#�!�$�
be

an instantiated specification, � � be an instantiated test purpose of 	�
��� , and��� &  � ? ��� be an implementation which is modeled by instantiated IOSTS�����	�  ? =/; � . Then, the conformance relation {V|8}�~ � between
�
�����

, 	�
��� and
� � is defined as follows:

, �����	� {V|8}�~c�<	�
��� . 0
(6.12) 2  	 � (:��� ,%#���( � ���+* ,%	�
���%�3� �/.O. S U�� � &n, �������  �"$#�%�&�2�. � � � &n,y	�
���  "$#�%�& 2 . Z

�

By analogy with the conformance relation { |�} defined in Section 6.3 (see page 139),
the conformance relation {V|8}�~c� can be also extended to IOSTS that are not
instantiated. Before giving a definition of {V|8}�~ � in general we introduce some
new notations.

Notations. Consider a set of symbolic constants � , a valuation of these sym-
bolic constants �  ;>=!?@,]� . and an arbitrary IOSTS � with set of symbolic
constants ��� . Consider also that there exists an injective function � a �����4 �
such that

 J! 6�`S U #����3% ,]J . D #����3% ,���,IJ .O. Z . Then, the projection of the valuation
� onto ��� is denoted as follows:

����� � D ��& |�! % } # {V|#" � � ,$� .

where
��& |�! % } # {V|#" is defined in Section 5.2.1 of Chapter 5 (see Definition 5.6,

page 119).

Below we illustrate this new notation with an example.

Example 6.8 Consider:

(1) a set of symbolic constants � D 1&% 7('�7 J-\ , where ;>=!?@,]��) . D+*-,/. �103242�5 �
*-, . , and a valuation of these symbolic constants: �rD F�l 7 P7698 M 7;:�Q ;
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(2) an IOSTS � with set of symbolic constants ��)6D 1�� 7 Mk\ , where ;>=!?@,]��) . D
0324245 � *-,/. .

Moreover, the elements of ��) are in � -relation with elements of � , i.e. ' D ��, �).
and

% D ��,IM . , such that
#���� % , ' . D #����3% , ��, �.�. D+03242�5 and

#���� % , %). D #����3% , ��,]M .O. D
*-,/. .

Then, ������� D 1 P7698 M 7 l�\ . �

Definition 6.14 ( {V|8}8~ � in General) An implementation
��� &  � ? ��� is confor-

mant to a specification 	�
���� ���#�!�$� and relative to a test purpose � � of 	�
���
if for all possible valuations �  ;>=�?@,I� 	������B"�m~ � . of their symbolic constants,
the instance

�
����� ,��1������� 	�
 . of the model
�
�����

of
��� & is {V|8} ~c� ������ ��� � -related to the

instance 	�
���k,���� � ������� . of the specification 	�
��� , i.e.

, ��� &E{ |�} ~c�X	�
��� . 0
(6.13) �� <;>=�?@,I� 	�����ABC�m~ � . S U ������� ,$� ��� ��� 	�
 . {V|8} ~c� ������� ��� � 	�
���k,������ ������ . Z

�

For better understanding of the definitions given above, we illustrate them with
an example.

Example 6.9 Consider a specification 	�
��� and a simple test purpose � � shown
in Figures 6.7(a) and 6.7(b) (see page 157). We explain how to check if imple-
mentations

��� &(� and
��� &�� whose models are depicted in Figures 6.7(d) and 6.7(e)

(see page 157) respectively, are conformant to 	�
��� and relative to � � .
First notice that the specification 	�
��� , the test purpose � � and the imple-

mentations
��� &(� and

��� &�� do not have any symbolic constants. Thus, they are
already instantiated (see Definition 4.18, page 92). Therefore, , ��� & �${V|8}���� 	�
��� .
(resp. , ��� &���{ |�}k��� 	�
��� . ) if and only if , ������� / {V|8}k��� 	�
���

.
(resp. , ��������� {V|8}���� 	�
��� . ).

Then, in order to check whenever the relation {V|8} ��� holds between 	�
���
and the models

�����	�
/ 7
������� �

of the given implementations, we first com-
pute the product between 	�
��� and � � . The result of this computation
is shown in Figure 6.7(c) (see page 157), where #��)( � ���+*�,y	�
��� � � �/. D1 F�� 7 ,�g . Q F�� 7 ,�g . Q � F�� 7 ,�t . Q F�� 7 ,It . Q � F�� 7 , . Q F�� 7 ,�g . Q � F�� 7 , . Q F�� 7 ,�t . Q \ . Finally:

(1) , ������� / {V|8}k��� 	�
���
.

as for each strict prefix (see Definition 6.12, page 154) of
each accepting trace

2  #���( � ���+*�,y	�
��� � � �/. , the valued outputs of
� �����

/are included into the set of outputs obtained after this trace by 	�
��� . For
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���

��� ���

��� ��� ��	 ��


����
a?(� )��� � � b?()

� �� ������ � ���� ��� � ���� � �
x!(� )

� � ��� �
y!(� )

� � ��� � � � � ��� �
x!(� ) z!()

(a) �
��� �

Start

Accept

x!(�"! ! )
otherwise

*

(b) � �

# ����$ Start %

# �&�'$ Start % # ����$ Start %

# � � $ Accept % # � � $ Start % # � 	 $ Accept % # � 
 $ Start %

�(���
a?(� )��� � � b?()

� �(� ���)�� � ���� � � � �(�*� � �
x!(� )

� � ��� �
y!(� )

� � ��� � � � � ��� �
x!(� ) z!()

(c) �
��������	�

+ �

+ � + � + �

+ � + 	 + 
 + ,

� �"! ��� �
a?(� ! )

b?()
c?()

� �"! ��� �
x!(�-! )

� �"! ��� �
x!(�"! ) z!()

x!(�"! )
otherwise? otherwise? otherwise?

otherwise? otherwise? otherwise? otherwise?

(d) .�/�0�1�2

+ �

+ �

+ � + � + �
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� �"! �*� ��� � �"! ��� �
x!(�"! ) � �"! ��� �

y!(�"! ) z!()

otherwise?

otherwise?

otherwise? otherwise? otherwise?

(e) .�/'0�1-3

Figure 6.7: An example illustrating the conformance relation {V|8} ��� . Here,
, ������� / {V|8}���� 	�
���

.
and 4 , ������� � {V|8}k��� 	�
��� . .
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example, after the trace F�� 7 , . Q  	 � (:����,%#��)( � ���+*�,y	�
���"� � �!.�. we obtain
that: 1 F�� 7 ,�g . Qn7 F�� 7 , . Q \� ��� �

� � � 	�

/
�
	���
������� � �����

� 1 F�� 7 ,�g . QL7 F�� 7 ,It . QL7 F�� 7 , . Q \� ��� �
� 	����� �
	����������� � �����

(2) 4 , �����	� � { |�}k��� 	�
��� . as after the trace F�� 7 ,�g . Q belonging to
	 � (:��� ,%#���( � ���+*�,y	�
�����3� �/.O. we obtain:

1 F�� 7 ,�t . Qn7 F�� 7 ,Il . Qn7 F�� 7 ,Il . Qn7 F�� 7 , . Q \� ��� �
� � � 	�
 � �
	���
����� � � � �����

�� 1 F�� 7 ,�g . Qn7 F�� 7 ,]l . Q \� ��� �
� 	����� �
	��������� � � � �����

�

6.9 Relationships Between
!#"%$

and
!&"%$

� �

In this section we study relationships between the conformance defined in Sec-
tion 6.3 (see page 139) and the conformance relative to a test purpose presented
in Section 6.8 (see page 150).

6.9.1 Conformance Implies Relative Conformance

This section proves that if an implementation under test
��� & is conformant to a

specification 	�
��� , then for all test purposes � � of 	�
��� , ��� & is conformant to
	�
��� and relative to � � . Formally:

Theorem 6.2 ( {V|8} D Y { |�}8~c� )

��� &E{V|8} 	�
��� D Y  � � S U ��� &${ |�}�~c�X	�
���EZ (6.14)

�
Proof The definition of conformance (see Definition 6.3, page 141) says that��� & is conformant to 	�
��� if for each trace

2
of 	�
��� , outputs of

��� & after
2

are
included into the outputs of 	�
��� after

2
. The definition of conformance relative

to � � (see Definition 6.14, page 156) requires the same inclusion of outputs,
but for each strict prefix of each accepting trace of 	�
����� � � . As we know
that the set of accepting traces of 	�
��� � � � is a subset of traces of 	�
��� (see
Theorem 6.1, page 151), then by prefix closure each prefix

2 �
of each accepting

trace of ,y	�
�����3� ��. is a trace of 	�
��� , and therefore Implication (6.14) holds.; S�<iS�=6S
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���
�����	�

(a)

�����

���

���

�����	�

a!

(b) �������

Accept

 �!�"	#
a!

(c) $&%('

)+*-,�.
Accept /
 �!�"	#

(d) 02143�5768$&%('

 ,

Accept

 �!�"	#

a!

a!

(e) $&%:9

)+* , .  , /
 �!�"	#

(f) 02143�5;6<$&%:9

Figure 6.8: A counterexample showing that =?>A@ BDCDEGFIHKJ @LB�CNM .

6.9.2 Relative Conformance Does Not Imply Confor-
mance

In the previous section we have proved that conformance implies relative confor-
mance. More precisely, if an implementation under test OQPDR is conformant to a
specification S&TVUXW , then for all test purposes Y[Z of S&TVUXW , OQPDR is not conformant
with respect to S&TVUXW and Y[Z . However, the backward implication does not hold.
This fact is shown by the following counterexample.

Counterexample 6.1 ( =?>�@LB�CDEGF\HKJ @ BDC4M ) Consider a specification S&TVUXW (see
Figure 6.8(a)) such that its sets of data and symbolic transitions are empty, its
initial condition is equal to true, its alphabet contains one output action ] and its
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set of locations contains only one location �-� that is the initial location of 	�
��� .
Consider also an implementation under test

��� & without data. Assume that��� & is modeled by an IOSTS
�����	�

(see Figure 6.8(b)) with alphabet
1&% \ , which

consists of two locations ��� 7 ��� , where ��� is the initial location of
�
�����

, and one
symbolic transition from ��� to ��� which is labeled by the output action

%
.

Remark that this implementation is not conformant to the given specification,
i.e. 4 , �����	� { |�} 	�
��� . . Indeed, after the empty trace of 	�
��� (which is the sole trace
of the specification), 	�
��� does not produce any output action while

� �����
produces

the output action
%
. I.e. we obtain that:

 2  3�)( � ���+*�,y	�
��� .� ��� �
���
-
�

S U � � &n, �������  �"$#�%�&�2�.� ��� �
����� �

�� � � &n,y	�
���  "$#�%�& 2 .� ��� �
���

Z

Next, if we show that for all test purposes � � of 	�
��� , ��� & is conformant
with respect to 	�
��� and � � , then we have found an example showing that
4 ,%{ |�}�~c� D Y {V|8} . .

Consider the test purpose � � � shown on Figure 6.8(c). If we compute the
product between 	�
��� and � � � , we obtain the IOSTS ,%	�
��� � � � � . shown on
Figure 6.8(d). This IOSTS has a sole accepting trace which is the empty trace, i.e.
#���( � ���+*�,y	�
���%�3� � � . D 1 ��\ . Hence, the set of strict prefixes of #���( � ���+* ,%	�
��� �
� � � . is empty. Therefore, due to the Definition 6.13 (see page 155), we have:
, �����	� {V|8}8~c����	�
��� . .

Next, consider a test purpose � � � of the form of Figure 6.8(e). By using the
product operation we obtain the IOSTS ,%	�
���%�3� � � . depicted in Figure 6.8(f).
This IOSTS does not have any accepting trace, and therefore, it does not have
any strict prefix of accepting traces. Thus, , � ����� {V|8}8~c�
	$	�
��� . (see Definition 6.13,
page 155).

For any other test purpose (with &]( � � as its initial condition) of 	�
��� , the
product operation gives either the IOSTS shown on Figure 6.8(d) or the IOSTS
show on Figure 6.8(f). If we compute the product between 	�
��� and any test
purpose with � � j *c� as its initial condition, we obtain an IOSTS that does not
have any trace. Thus,

�
�����
is conformant with respect to 	�
��� and such test

purposes. From these facts, we can easily deduce that for each test purpose � � ,
, �����	� {V|8}8~c�X	�
��� . . Therefore, we have shown that 4 ,%{ |�}�~c� D Y { |�} . . �
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6.10 Properties of a Test Case: Relative Ex-

haustiveness, Accuracy and Conclusive-

ness

In addition to the (minimal) test case property called soundness (see Defini-
tion 6.7, page 146), we define another set of properties that one may expect from
a test case, and which are guaranteed by our test generation method described in
Chapter 7 (see page 167). Before giving the formal definitions of these properties,
we consider:

(1) a specification 	�
���K ���#�!�$� with set of variables ��	����� and set of symbolic
constants � 	����� ,

(2) a test purpose � � of 	�
��� with set of variables ��~ � and set of symbolic
constants �i~c� ,

(3) a test case � b  �� � � � � derived by the symbolic test generation method
described later in this thesis from 	�
��� and � � . This test case � b has the
following set of symbolic constants � ~��TDG,I� 	����� Bm�m~c� .  ,���	����� Bi� ~c� . , and

(4) a set of implementation under test � � & * such that each implementation
��� &

belonging to � � &f* is modeled by the IOSTS
�
���	�  X? =�; � which:

(a) is compatible for the parallel composition with � b (see Definition 5.1,
page 100), and

(b) has the set of symbolic constants � � � 	�
 such that there exists a bi-
jective function � a � � � 	�
 �4 � 	����� such that

 J  u� � � 	�
 S U #����3% ,IJ . D#���� % ,���,IJ .O. Z . Therefore, ;>=�?@,I� � � 	�
 . D ;>=!?@,]� 	����� . .
Next, we introduce the test case property which is called relative exhaustive-
ness. Intuitively, a test case � b is relatively exhaustive if implementations non-
conformant with the specification 	�
��� and relative to the test purpose � � may
be rejected by this test case. Formally:

Definition 6.15 (Relatively Exhaustiveness) A test case � b is relatively
exhaustive for a specification �RNqM J , a test purpose � � of 	�
��� , and a set of
implementations under test � � &f* if:

 ��� &  �� � &f* 7 �� <;>=�?@,O,I� 	����� B �m~c� .� ,I�$	����� B ��~c� .�. S (6.15)

U 4 , ������� ,�������� � 	�
 . {V|8}8~c� ������� ��� � 	�
���k,������ ������ .�. D Y
, � b ,�� . �  �

_
"  {�� �����	� ,���������� 	�
 .O. Z

�
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Then, we present the test case property called accuracy. Intuitively, a test case
� b is accurate if, when it produces the

�v� *�* verdict, then the observed trace of
the implementation under test is a trace of the specification 	�
��� that is selected
by the test purpose � � . Formally:

Definition 6.16 (Accuracy) A test case � b is accurate for a specification
	�
��� , a test purpose � � of 	�
��� , and a set of implementations under test � � &f* if:

 ��� &  �� � &f* 7 �! ^;>=!?@,�,I� 	�����AB �m~c� .� ,���	�����AB � ~c� .O. 72  3�)( � ���+*�, ������� ,���������� 	�
 .m4 4 � b�,�� .O. S (6.16)

U�� %�&�� {V} # , 2�. D �v� *�* D Y 2  #���( � ���+* ,%	�
���%�3� �/. ,$� . Z
�

Next, we define the conclusiveness of a test case. Intuitively, a test case � b is
conclusive if it produces the � e ��d e �[j � * � �k� verdict only when the observed trace of
the implementation is a trace of the specification 	�
��� ending by an output action,
but it cannot be extended into a trace producing the

��� *�* verdict. Formally:

Definition 6.17 (Conclusiveness) A test case � b is conclusive for a specifi-
cation 	�
��� , a test purpose � � of 	�
��� , and a set of implementations under test
� � &f* if

 ��� &  � � &f* 7 �� <;>=�?@,O,]� 	����� B �m~c� .� ,���	����� B � ~ � .O. 72  x��( � ���+* , �����	� ,$� ������� 	�
 .!4 4 � bi,�� .�. S
U�� %�&�� { } # , 2 . D � e ��d e �[j � * � �k� D Y (6.17)2  , �)( � ���+*�,y	�
���k,������ ������ .O. � � 
����������
	����������� .�& ��( � ���+*�,y	�
���k,$����� ������ .�.��

2 � � (:��� ,%#���( � ���+*�,O,%	�
���%�3� �/. ,�� .�.O. Z
where:

–
� (:��� is the set of non-strict prefixes of all accepting traces of the syn-
chronous product ,y	�
����� � ��. (see Definition 6.11, page 154), and

– �)( � ���+* ,%	�
���k,������ ������ .�.�� �	
����������
	����������� 0 1-2 � � 4�2  3��( � ���+* ,%	�
���k,������ ������ .�.�� �  
�	
�����������	 � �������� \

�

Finally, we illustrate all test case properties introduced above with an example.
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Example 6.10 Consider a specification 	�
��� , a test purpose � � of 	�
��� and a
test case � b shown on Figures 6.9(a), 6.9(b) and 6.9(d) (see page 164). Also
consider a set of implementations � � & * D 1���� &(��\ , where the model

�����	�
/ the im-

plementation
��� & � is depicted in Figure 6.9(e) (see page 164).

In order to decide whether � b is relatively exhaustive, accurate and conclusive
for 	�
��� , � � and � � &f* we perform the parallel composition between � b and

� ���	�
/ .The result of this operation is presented as Figure 6.9(f) (see page 164). Then,

(1) � b is relatively exhaustive for 	�
��� , � � and � � & * because

– � b does not reject
�����	�

/ as it never produces the � ��� j verdict during
its execution on the implementation

��� &(� (see Figure 6.9(f), page 164);

– the model of
��� &(� , i.e.

�������
/ , is conformant to 	�
��� and relative to � �

(see Example 6.9, page 156) .

(2) � b is accurate for 	�
��� , � � and � � & * because the traces
2 � a F�� 7 ,�g . Q F�� 7 ,�g . Q

and
2 � a F�� 7 , . Q F�� 7 ,�g . Q of , ������� /

4 4 � b . producing the
��� *�* verdict (see Fig-

ures 6.9(f), page 164) are the accepting traces of ,%	�
����� � ��. (see Fig-
ure 6.9(c), page 164).

(3) � b is conclusive for 	�
��� , � � and � � &f* as the trace
2�� a F�� 7 , . Q F�� 7 , . Q

of , ������� /
4 4 � b . producing the � e ��d e �[j � * � �k� verdict (see Figures 6.9(f),

page 164) is a trace of 	�
��� ending with the output action � of 	�
��� (see Fig-
ure 6.9(a), page 164) and is not a prefix of accepting traces of ,y	�
���
� � �/.
(see Figure 6.9(c), page 164).

�

6.11 Correctness of Test Cases

This section introduces the notion of correct test case. The correctness of a
test case intuitively means that the test case always gives the right verdict while
executing it on a given implementation under test. The formal definition of a
correct test case is given below.

Definition 6.18 (Correctness) A test case � b  � � � � � which is generated
from a specification 	�
���i ��������� and a test purpose � � is correct for a set of
implementations � � &f* � � ? ��� if it is sound with respect to 	�
��� and � � &f* ; and
relatively exhaustive, accurate and conclusive with respect to 	�
��� , � � & * and � �
(see Definitions 6.7, 6.15, 6.16, 6.17, pages 146, 161, 162, 162). �
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# � � $ Accept % # � � $ Start % # � 	 $ Accept % # � 
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� �� ��� � � � ��� �
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Figure 6.9: An example illustrating that a given test case � b is relatively ex-
haustive, accurate and conclusive for a specification 	�
��� , test purpose � � of
	�
��� and set of implementations � � &f*KD 1��
��� \ .
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Example 6.11 The test case � b shown on Figure 6.9(d) (see page 164) which
is derived from a specification 	�
��� and a test purpose � � of 	�
��� (see Fig-
ures 6.9(a), 6.9(b) on page 164), is correct for a set of implementations � � &f* D1���� &)�+\ (the model of

��� &(� is shown on Figure 6.9(e), page 164) as it is sound
(see Example 6.4, page 147), relatively exhaustive, accurate and conclusive (see
Example 6.10, page 163).

�
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Chapter 7

Symbolic Test Generation

The chapter describes our method for symbolic test generation imple-
mented in the Symbolic Test Generator (STG) tool. The purpose of
this method is to compute a test suite starting from a given specifica-
tion and test purposes. The generated test cases must be correct in
the sense of Definition 6.18 (see page 163), in particular, they are all
sound, relative exhaustive, accurate and conclusive. At the beginning
of the chapter we present the main steps of the method, then we de-
scribe them in more detail. Finally, we prove that the symbolic test
generation method produces correct test cases.

Sketch of the Chapter. In this paragraph we briefly describe the main steps
of a symbolic test generation method presented in this section. These steps are
summarized in Figure 7.1 (see page 168) and explained below.

The symbolic test generation method takes as inputs a specification 	�
��� and
a test purpose � � of 	�
��� . As incomplete test purposes are allowed (see explana-
tions in Section 7.1), the first step of this method is to make them complete with
respect to their specifications. The second step of the method consists in com-
puting the product between the given 	�
��� and completed � � in order to mark
behaviors of 	�
��� as accepted or rejected by the test purpose, and obtaining the
synchronous product 	 � (see Figure 7.1, page 168). The third step builds visible
deterministic behaviors of 	 � , in other words, it consists in removing internal
actions and possible non-deterministic choices from 	 � . The result of this step is
denoted by 	 ��� ��� (see Figure 7.1, page 168). The next step of the test generation,
namely selection, extracts from 	 ��� ��� its behaviors allowing to go from the initial
location to the Pass or Inconclusive locations. The result of selection is called
a test graph and denoted by � � . Moreover, during the selection we invert the
alphabets of input and output actions of � � making � � able to communicate

167
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Test Case � b with
�v� *�* ,

� e ��d e �[j � * � �k� and � ��� j Locations

Making � �
Input-Complete

Test Graph � � with
�v� *�* and � e ��d e �[j � * � �k� Locations

Selection and Inverting
Input/Output Actions of 	 ��� ���

Deterministic 	 ��� � �

Closure & Determinization
(if possible)

Synchronous Product 	 � with
#$�����%
'& and

� ��� ���n& Locations

Product

Specification 	�
��� Completed � �
Making � � Complete

Test Purpose � �

Figure 7.1: Symbolic test generation method.
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with implementations under test during the test execution process. Finally, by
making � � input-complete we obtain a test case � b .

7.1 Making a Test Purpose Complete

In the testing theory presented in this work, test purposes, playing the role of
selection mechanism, must be complete with respect to their specification (see
Definition 6.8, page 147). In practice this requirement often complicates the
process of writing test purposes. Thus, we decided to accept incomplete test
purposes from the system developer and complete them automatically at the
first stage of the test generation process. This decision allows us to focus on
the intended behaviors of the system under test, and significantly simplifies the
process of writing the test purposes.

Plan of the Section. The rest of this section is organized as follows: first,
we give an intuitive idea for an algorithm whose aim is to complete a given test
purpose with respect to its specification. Then, we present the formal algorithm,
and prove that this algorithm gives a correct result with respect to Definition 4.22
(see page 96). Finally, we illustrate the algorithm with an example.

Intuitive Idea of the Algorithm. Remember that in order to test a given
specification, the system developer should provide a test purpose. In this thesis
we require test purposes to be represented as IOSTS. This representation allows
to (partially) describe behaviors of a given specification that should be tested
(sequences of actions leading to the Accept location), or should not be tested
(sequences of actions leading to the deadlock location called here Reject).

As we have remarked above, the developer can provide an incomplete test
purpose which later will be completed with respect to its specification by Algo-
rithm 7.1 (see page 170). The intuitive idea of this algorithm is that in each
location of a given test purpose � � we must be able to execute any valued action
of its specification 	�
��� . Therefore, each location of � � must be completed with
all actions of 	�
��� as follows:

(1) Assume that an action
%

of 	�
��� is not specified in a location � of � � .
Hence, we suppose that in this location � , the developer does not care about
presence or absence of the action

%
in an implementation under test � 8P .

Thus, in the location � , we add a loop labeled by
%
.

(2) Assume that an action
%

of 	�
��� is specified in a location � of � � . Moreover,
the developer would like to test the presence of this action

%
in
��� & under

some condition � . Hence, we assume that he/she does not want to test
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occurrence of this action under another condition (different from � ). In
this case we add a new symbolic transition from � to Reject, which is labeled
with

%
and guarded with the negation of � .

(3) Assume again that an action
%

of 	�
��� is specified in a location � of � � ,
but the developer does not want to test occurrence of this action under a
condition � . However, the developer wishes to test the presence of this
action in

��� & under any other condition. Thus, in order to make � complete,
we add a loop on

%
in � which is guarded with the negation of � .

Remark that we have considered all possible situations, where a location � of � �
must be completed.

The ideas described above are realized by the following algorithm.

Algorithm 7.1 (Making a Test Purpose Complete with Respect to its
Specification) Consider a specification 	�
��� with alphabet of actions � 	��� ��D
� � 	����� B�� 
	����� B�� � 	����� , and an incomplete test purpose of this specification:
� � D F � ~ � 7�� ~ � 7 _r~c� 7 � � ~c��7 �!~c� 7�� ~c� Q , meaning that � � satisfies all hypothe-
ses of Definition 6.8 (see page 147) except the fourth one.

The algorithm for making � � complete with respect to 	�
��� consists of two steps
described below.

First, it checks if the given 	�
��� and � � respect the first and third items of
Definition 4.22 (see page 96). Notice that the algorithm does not check the
second item of this definition as � � is compatible for the product operation
with 	�
��� (see Definition 5.3, page 113), and therefore the equality of their
alphabets of actions is achieved.

Second, (i.e. when the items above are successfully checked) the algorithm
completes � � with respect to 	�
��� as follows.

For a location �� 6_K~c� and an action
%  ,��!~c� D�� 	����� . , we denote by:

�
	 � � D 1 P)��D F�� 7 % 7���7 �.� 7 H � 7 � � Qn7 ScS[S 7 P �mD F�� 7 % 7���7 � � 7 H � 7 � � Q \ �� ~c�
the set of all symbolic transitions P��� ��	 � � ( ��D g S S � ) leaving the location � ,
labeled with the action

%
and guarded with a Boolean expression � � that

is not syntactically equal to &]( � � .
Then, for each location �� "_K~c� and each action

%  ,��m~c�CD�� 	��� � . :
(1) if ��	 � � is not empty, then:
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(a) For the set of symbolic transitions ������ ���
	����� � ��� ����� ��
������������ ,
a self-loop ��!"�$# �&%(')%+*,%.-0/213�4�5.6879

: <; %(= ! %(�<>
will be generated. Here and in the next items, = ! �@?BA�5DCFEHGJI KMLN�OKQP
is the set of identity assignments.

(b) For the symbolic transitions �&J� / � ��� �SR �T���� �U; , a new transition

� ! �V# �&%(')%+*,%�-W/ 13�4X5FYZ6D[N\ 9�] 6 7[N\ 9.^
: _; %(= ! % ����������� >

leading to the ����������� location will be obtained.

(2) if � ��� � is empty (i.e. there are no symbolic transitions outgoing from �
and labeled with ' ), then a self-loop on the action ' will be produced,
i.e. a transition � ! �$# �&%(')%+*,% �&`badc %(= ! %(�<> will be added to �feDg . h

Next, we make an observation about the correctness of Algorithm 7.1 (see
page 170).

Observation 7.1 Let ikj �����mlonqp)rsl be a specification, and tsu be a test purpose
of ikj ��� which satisfies the first three hypotheses of Definition 4.22 (see page 96).
Then, Algorithm 7.1 presented in this section generates a test purpose tsu ! that
is complete with respect to the specification ikj ��� .

h

To prove this observation it is enough to show that tsu ! obtained from tsu by
Algorithm 7.1 preserves the hypothesis (4) of Definition 4.22 (see page 96):

(1) Assume that tsu has a symbolic transition from a location � to a location� !Wv�w����������� that is labeled with an action ' . Then, Algorithm 7.1 creates
a new symbolic transition leading to the Reject location and guarded with
the negation of the disjunction of all guards of symbolic transition outgoing
from � and labeled with ' .

(2) Otherwise, i.e. if tsu does not have a symbolic transition outgoing from a
location � and labeled with an action ' , Algorithm 7.1 creates a loop on '
in the location � .

Finally, we illustrate the algorithm making a test purpose complete with respect
to its specification on an example given below.
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(pBev = COFFEE)
Deliver ! (pBev) Cancel ? (vPaid < cPrice)

Return ! (pRemVal)

Start

Begin

Accept Reject

(a) ���

Begin tau Coin ? ChooseBeverage ?
not (vPaid < cPrice) 
 Return ! (pRemVal)

Accept

(pBev = COFFEE) 
 Deliver ! (pBev)

Reject

Cancel ? 
(vPaid < cPrice) 

 Return ! (pRemVal)
not (pBev = COFFEE) 

 Deliver ! (pBev)

* *

(b) ����� obtained from ��� and � by Algorithm 7.1

Figure 7.2: Making a given test purpose tsu complete with respect to its specifi-
cation � shown on Figure 6.1 (see page 138).

Example 7.1 Consider the specification of a coffee machine, which is shown on
Figure 6.1 (see page 138) and the test purpose tsu depicted in Figure 7.2(a)
below.
Due to the facts that:

(1) tsu does not have variables which at the same time are symbolic constants
of ikj ��� , as ��
	��
C EHG � 	8� u���� ���b � 	�� ���������

� � ;

(2) the initial condition �MeDg , which is equal to � ��� � , does not contain any
constraints on the variables (i.e. �Du! "�$# % �&% � � � �' )( � ) and symbolic constants
(i.e. � u���� ��� ) of ikj ��� ; and

(3) the alphabets of tsu and ikj ��� are equal, i.e. * e�g � *,+�-/.10 � 	32�4 �65 % 2  "5 ���)7 %298:4;4=<D� % � � � �> )( �U "?A@ 	Q����� �B��5 %)C �)7 �6� � �  �DE@ 	 �  "�  ;F .
we can perform the procedure explained in the second paragraph of the algorithm.
Bellow we explain how the G c)HBI$J location of tsu (see Figure 6.5) must be com-
pleted.

– First, as tsu has a symbolic transition outgoing from % � (K�65 and labelled
with ����� �B��5 , which leads to ����������� and has the guard

: L �Du! "�$#ML � u���� ���
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different from �&`Fa c . Then, we add to % � (K�65 a self-loop labeled with the����� �B��5 action and guarded with the negation of
:

, i.e. -0/ �Du! "�$# L � u ��� ���F;
(see Figure 7.2(b)).

– Second, as tsu has a transition outgoing from % � (K�65 and labelled withC �)7 �6� � � which leads to
� ����� j � and has the guard

: L j % � � � COFFEE
that is different from � ��� � . Then, we add a new transition from % � (K�65 to����������� , which is labeled with the same action C �)7 �6� � � and guarded with the
negation of

:
, i.e. -0/ j % � � � COFFEE ; (see Figure 7.2(b)).

– Finally, as tsu does not have any symbolic transitions outgoing from % � (K�65
which are labeled with 2�4 �65 , 298:4;4=<D� % � � � �' )( � , and �  "� , then we add to
% � (K�65 the self-loops on these actions (see Figure 7.2(b)).

The remaining locations of tsu , namely
� ����� j � and ����������� are completed with the

self-loops on all actions of tsu (see the symbolic transitions labeled with “*” on
Figure 7.2(b)) as there are no symbolic transitions outgoing from these locations
(see Figure 7.2(a)).

h

7.2 Product

At the next step of our test generation method we compute a synchronous prod-
uct i u between a specification ikj ��� and a completed (see previous section) test
purpose tsu of ikj ��� . The aim of this step is to identify some behaviors of ikj ���
as accepted by tsu . The idea of using the product operation in order to mark
the behaviors of ikj ��� arises from model-checking [Clarke et al., 1999], and was
already used in test generation, see for example, the following papers [Jéron and
Morel, 1999], [Jard and Jéron, 2002]. We construct the synchronous product i u
from the given ikj ��� and tsu using the product operation defined in Section 5.2
(see Definition 5.4). It is important to emphasize that as:

(1) ikj ��� and tsu are compatible for the product operation (see Definition 6.8,
page 147), and

(2) tsu is complete with respect to ikj ��� (see also Definition 6.8, page 147),

then due to Theorem 5.5 (see page 134) we obtain that the product operation
preserves the set of traces of ikj ��� , i.e. t:�' ����< / ikj ����; � t:�' ����< / ikj ����� tsu� 	�� ++g ; . More-

over, from Theorem 6.1 (see page 151) we know that accepting traces of the syn-
chronous product ikj ����� tsu are a subset of the traces of ikj ��� intersected with the
accepting traces of tsu , i.e.

� t:�' ����< / ikj ����� tsu ;�� t:�' ����< / ikj ����; � � t:�' ����< / tsu ; .
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(cPrice > 0) and (vPaid = 0) and (vBeverage = TEA)

<Begin,Begin>

<Idle,Begin>

tau 
 vPaid := 0

<Pay,Begin>

(pCoinValue > 0) 
 Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue) 

<Return,Reject>

Cancel ? 
  

((pRemaningValue = cPrice - vPaid) and 
 (vPaid < cPrice) and not(vPaid < cPrice)) 

 Return ! (pRemaningValue)

<Idle,Reject>

((pRemaningValue = cPrice - vPaid) and 
 (vPaid < cPrice)) 

  Return ! (pRemaningValue)

<Choose,Reject>

((pRemaningValue = vPaid - cPrice) and 
 (vPaid >= cPrice) and (vPaid < cPrice)) 

 Return ! (pRemaningValue) 
 vPaid := cPrice

<Choose,Begin>

((pRemaningValue = vPaid - cPrice) and 
 (vPaid >= cPrice) and not(vPaid < cPrice)) 

 Return ! (pRemaningValue) 
 vPaid := cPrice

<Begin,Reject>

(pRemaningValue = vPaid) 
  Return ! (pRemaningValue)

Cancel ?

<Pay,Reject>

(pCoinValue > 0) 
  Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue)

Cancel ?

<Delivery,Reject>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

Cancel ?

<Delivery,Begin>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

tau 
 vPaid := 0

((vPaid < cPrice) and 
 (pRemaningValue = cPrice - vPaid)) 

  Return ! (pRemaningValue)

((vPaid >= cPrice) and 
 (pRemaningValue = vPaid - cPrice)) 

  Return ! (pRemaningValue) 
 vPaid := cPrice

(vBeverage = pBeverage) 
  Deliver ! (pBeverage)

((vBeverage = pBeverage) and 
 not(pBeverage = COFFEE)) 

  Deliver ! (pBeverage)

<Begin,Accept>

((vBeverage = pBeverage) and 
 (pBeverage = COFFEE)) 

  Deliver ! (pBeverage) 
  

<Idle,Accept>

tau 
 vPaid := 0

<Pay,Accept>

(pCoinValue > 0) 
  Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue)

<Return,Accept>

Cancel ?

((vPaid < cPrice) and 
 (pRemaningValue = cPrice - vPaid)) 

  Return ! (pRemaningValue)

<Choose,Accept>

((vPaid >= cPrice) and 
 (pRemaningValue = vPaid - cPrice)) 

  Return ! (pRemaningValue) 
 vPaid := cPrice

(pRemaningValue = vPaid) 
  Return ! (pRemaningValue)

Cancel ?

<Delivery,Accept>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

(vBeverage = pBeverage) 
 Deliver ! (pBeverage)

Figure 7.3: Synchronous product �� � � �� �� � � � .
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Example 7.2 Figure 7.3 (see page 174) shows the result of the product
computation for the specification of a coffee machine (see Figure 6.1, page 138)
and the test purpose of this specification, which is depicted in Figure 7.2(b) (see
page 172). This example does not describe how the product was computed, as
this computation was explained in Section 5.2 (see Example 5.2, page 115). The
purpose of the example is to emphasize that the product operation marks some
locations of the given specification with

� ����� j � , making behaviors leading to
them accepted by the test purpose. The accepted behaviors of the computed
product are printed in green in Figure 7.3 (see page 174). All other behaviors, i.e.

ones that are printed in red, are considered as rejected. The rejected behaviors
indicate the behaviors of the specification for which the test case will not be gener-
ated. They will be eliminated on the next steps of the test generation method.

h

The next steps of the test generation method described in the rest of this chapter
consist in transforming and simplifying the product i u � / ikj ��� � tsu ; in order to
obtain a test case which is correct in the sense of Definition 6.18 (see page 163).

7.3 Construction of Visible Behaviors

It is important to emphasize that nondeterminism is prohibited in testing, as test
verdicts should not depend on internal choices of the tester. That is why this
step of the test generation method is reserved for elimination of internal actions
from an IOSTS i u � / ikj ��� � tsu ; obtained at the previous step of our symbolic
test generation method (i.e. construction of � � �������
	 / i u ; ), and resolution of non-
deterministic choices that remain for input/output actions of � � �������	 / i u ; (i.e.

construction of � 	�� / � � �������	 / i u ;+; ). For this we propose two syntactical operations
closure and determinization such that:

t:�' ����< / i u ; � t:�' ����< / � � �������	 / i u ;+;�� t �> ����< / � 	�� / � � �������	 / i u ;+;+; (7.1)
� t:�' ����< / i u ; � � t �> ����< / � � �������	 / i u ;+; � � t �> ����< / � 	�� / � � �������	 / i u ;+;+; (7.2)

The syntactical procedures of closure and determinization and their properties
are described in Appendixes A.1 and A.2 (see pages 246 and 274), and briefly
summarized in the two following subsections.

7.3.1 Closure: Eliminating Internal Actions

For eliminating internal actions from i u , the idea is to compute the effect of any
sequence of internal actions that leads to an input- or output-labeled symbolic
transition, and to encode this effect in the guard and assignments of the last
symbolic transition.
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This gives a simple syntactical procedure which terminates if the IOSTS i u
does not have syntactic livelocks (i.e. cycles of internal actions). Notice that
the condition about the absence of syntactic livelocks is a common hypothesis
in conformance testing [Tretmans, 1999], which is made consistently through

this document. Let � L ��� F��� � ���
	�	�	 �� F��� � ������ be a sequence of symbolic transi-

��� ��� ��� ������� ���
� �� � �

� �� � �
� �
!#"%$ �'& �

(a) A fragment of an IOSTS (;� that illustrates one of its sequences of internal actions.

�)� ���
� �+* " � �-,  ��&.*0/1/1/'* " � �
,  �324�+,5/1/1/�,  �6&.* " � ��,  �
,  �324�7,8/9/1/',  �6&!#"%$ �'& ��,  �
,  �324�+,8/9/1/�,  �

(b) A fragment of the IOSTS :3; <>=1?A@CBADE(;�GF obtained from (=� by closure.

Figure 7.4: An example of the IOSTS � � �������
	 / i u ; .
tion labeled with internal actions H � %�	�	�	�% H � that leads to the symbolic transition������ �� � ����-� labeled with either input or output action ' (see Figure 7.4(a)).
Assume that the guards and assignments corresponding to H  ( IW�JI 	)	 J ) are re-
spectively

:  and =  ; and the guards and assignments corresponding to ' are
: �

and =W� . Then, in order to eliminate from the sequence � all internal actions, we
replace � by one symbolic transition with origin �6� , target ����-� , action ' , guard: �5K / : �GL =M� ; KN	�	�	�K / : �OL�=P�RQS�5L0	�	�	�L�=T� ; K / : �UL�=V�UL�=V�4QS�WL0	�	�	�L�=T� ; , and
assignments =T�8LB=V�XLf=V�4QS��LV	�	�	YLf=M� , where L denotes function composition (see
Figure 7.4(b)). Notice that such procedure conserves the effect of the sequence
� .

7.3.2 Determinization

Determinization consists in postponing the effect if a non-deterministic choice on
the observable actions that follow it. This leads to splitting, for instance, two
symbolic transitions (with non-exclusive guards

: � and
: � and assignments =T�

and =Z� see Figure 7.5(a), page 177) into three: one for the case when / : �[K - : � ;
holds, another for the case when / - : �#K : � ; , and the last for the case when / : �.K: � ; holds. In the letter case the choice whether to assign the variables according
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�

��� ���

��� ���

�	�
�������� �
���
�������� �

� �� �� � �� �
� ����� � �� �

(a) A fragment of an IOSTS ��� ������ "!$#&%('*) , where sym-
bolic transitions +-, et +/. which are involved into a non-
deterministic choice of ��� ���0�$ "!�#/%1'2) , are shown as dotted
lines.

3

3�4 3�5

3�6 3�7

3�4"8 5

9;: 4=<?> : 5A@B 9�C�D @E 4
9 > : 4=< : 5&@B 9�C�D @E 59�: 4=< : 5&@B 9�C�D @

9�: 6�F E 4 @G 9�C 6H@9 E 6 F E 4I@
9�: 7 F E 5/@J 9�C 7I@9 E 7 F E 5&@

: 6G 9�C 6H@E 6
: 7J 9�C 7I@E 7

(b) A fragment of the IOSTS K$LNMNOQP�R S�T0U$VWL=O/X1Y2ZAZ ob-
tained from X(Y by the procedure of determinization (the
new/modified locations and symbolic transitions are shown
as dotted lines).

Figure 7.5: Determinization of an IOSTS []\ ^`_�acbIdfeNgihkj .
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to =M� or =Z� is postponed until the observable action that follows. Thus, if � is
the next action, then the assignments = � should have been executed. Hence the
assignments =T� is composed with the guard and the assignments corresponding to
� . This results in the guard / :�� L =T� ; and the assignments = � L =T� . Similarly, if � is
the next action, then =Z� should be executed, which produces the guard / :�� L =Z� ;
and the assignments = � L�=Z� . The result obtained from the IOSTS � � �������
	 / i u ;
by the procedure explained above is shown on Figure 7.5(b) (see page 177)

It is important to notice that the procedure explained above may not ter-
minate (e.g. if ' � � and � � � � , the postponing goes forever). However, it does
terminate for a non-trivial subclass IOSTS called IOSTS with lookahead � , which
is defined in Appendix A.2.4 (see page 304).

7.3.3 Example Illustrating Closure and Determinization

Figure 7.6 illustrates the IOSTS i u A ��B� � 	�� / � � �������	 / i u ;+; obtained after extrac-
tion of the observable behaviors from the IOSTS i u shown on Figure 7.3, page 174
(i.e. after application of the closure and determinization procedures explained
in the previous two paragraphs). The blue edges on this figure indicate two new
symbolic transitions replacing the two sequences of internal actions of the IOSTSi u . For more details the reader can check Example A.7 (see page 261).

7.4 Selection of a Test Graph

In this section we consider an IOSTS i u A ��B� � 	�� / � � �������	 / ikj ��� � tsu ; ++g ; obtained
from a specification ikj ����� lonJpdr and a test purpose tsu of ikj ��� by the product
operation (see Definition 5.4, page 114), the closure operation (see Definition A.7,
page 260) and the procedure of global determinization (see page 304).

Due to the results given in Sections 7.2, A.1.5 and A.2.3 (see pages 173, 270
and 299), we have that:

(1) i u A �� has the same set of traces as ikj ��� , i.e. t:�' ����< / i u A ��(; � t:�' ����< / ikj ���D; ;
(2) moreover, the set t:�' ����< / i u A ��.; contains accepting traces of i u A �� (see Def-

inition A.12, page 300) which are the traces of ikj ��� selected by tsu .

Next, we remind that the main purpose of the symbolic test generation method
is to construct a test case that examines behaviors of the specification that are
selected by the test purpose. Therefore, it is not necessary to keep all traces ofi u A �� which would make a test case huge and unreadable. It is enough to choose
traces of i u A 	� that (1) lead to the accepting states of i u A �� , i.e. satisfaction
of a test purpose tsu , and (2) do not contain, or contain “fewer” (than i u A �� )
unreachable states.
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(cPrice > 0) and (vPaid = 0) and (vBeverage = TEA)

<Begin,Begin>

<Pay,Begin>

(pCoinValue > 0) 
 Coin ? (pCoinValue) 

 vPaid := (0 + pCoinValue) 

<Return,Reject>

Cancel ? 
 vPaid := 0

<Idle,Begin>

(pCoinValue > 0) 
 Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue) 

Cancel ?

((pRemaningValue = cPrice - vPaid) and 
 (vPaid < cPrice) and not(vPaid < cPrice)) 

 Return ! (pRemaningValue)

<Idle,Reject>

((pRemaningValue = cPrice - vPaid) and 
 (vPaid < cPrice)) 

  Return ! (pRemaningValue)

<Choose,Reject>

((pRemaningValue = vPaid - cPrice) and 
 (vPaid >= cPrice) and (vPaid < cPrice)) 

 Return ! (pRemaningValue) 
 vPaid := cPrice

<Choose,Begin>

((pRemaningValue = vPaid - cPrice) and 
 (vPaid >= cPrice) and not(vPaid < cPrice)) 

 Return ! (pRemaningValue) 
 vPaid := cPrice

<Begin,Reject>

(pRemaningValue = vPaid) 
  Return ! (pRemaningValue)

Cancel ?

<Pay,Reject>

(pCoinValue > 0) 
  Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue)

Cancel ?

<Delivery,Reject>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

Cancel ?

<Delivery,Begin>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

tau 
 vPaid := 0

((vPaid < cPrice) and 
 (pRemaningValue = cPrice - vPaid)) 

  Return ! (pRemaningValue)

((vPaid >= cPrice) and 
 (pRemaningValue = vPaid - cPrice)) 

  Return ! (pRemaningValue) 
 vPaid := cPrice

(vBeverage = pBeverage) 
  Deliver ! (pBeverage)

((vBeverage = pBeverage) and 
 not(pBeverage = COFFEE)) 

  Deliver ! (pBeverage)

<Begin,Accept>

((vBeverage = pBeverage) and 
 (pBeverage = COFFEE)) 

  Deliver ! (pBeverage) 
  

<Idle,Accept>

tau 
 vPaid := 0

<Pay,Accept>

(pCoinValue > 0) 
  Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue)

<Return,Accept>

Cancel ?

((vPaid < cPrice) and 
 (pRemaningValue = cPrice - vPaid)) 

  Return ! (pRemaningValue)

<Choose,Accept>

((vPaid >= cPrice) and 
 (pRemaningValue = vPaid - cPrice)) 

  Return ! (pRemaningValue) 
 vPaid := cPrice

(pRemaningValue = vPaid) 
  Return ! (pRemaningValue)

Cancel ?

<Delivery,Accept>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

(vBeverage = pBeverage) 
 Deliver ! (pBeverage)

Figure 7.6: An example of the IOSTS

�� � �� � ��� 	 
�� �� �� �� 
 �� � �

.
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Plan of the Section. This section is organized as follows: at the beginning,
we describe a methodology for symbolic analysis of IOSTS which is used in order
to select a test graph t�� from i u A �� . Then, we present the algorithm for the
test graph selection. Finally, we formulate some properties preserved by this
algorithm, which are needed for proving the correctness of the generated test
cases.

7.4.1 Symbolic Analysis for IOSTS

The aim of this subsection is to present a methodology for analyzing input-output
symbolic transition systems. The methodology consists of reachability and core-
achability analysis (which are also known as forward and backward reachability
analysis). It describes how to perform these analyses iteratively and emphasizes
that the reachability and coreachability problems are undecidable in the general
case, i.e. when the state space of the transition system is unbounded. Thus, in
order to analyze IOSTS, we have to manipulate over-approximations of reachable
and coreachable sets of states, rather than use the exact sets of reachable and
coreachable states. It is important to emphasize that in this thesis we do not
explain how to compute an over-approximation of the reachable/coreachable set
of states. We make an assumption that this over-approximation can be computed
by using, for instance, the control structure of an IOSTS, or intervals, or poly-
hedra (see [Cousot and Cousot, 1976], [Cousot and Cousot, 1977], [Cousot and
Halbwachs, 1978], [Jeannet, 2000b]).

7.4.1.1 Reachability and Coreachability Analyses.

In this subsection we consider:

(1) a specification ikj ����� l nqp)r with set of locations �!+�-/.10 ,
(2) a test purpose tsu of ikj ��� with set of locations � eDg , and

(3) the IOSTS i u A 	�O� # /�� A 	� @�� A �� @�� A ���;� 	�� 	�
 4� % � A �� %+���A �� % � A �� %U/ * ?A �� @ * DA �� ;� 	�� ��
 4� % � A �� >
without internal actions, which is obtained from ikj ��� and tsu by apply-
ing the product and closure operations, and by performing the procedure of
global determinization, i.e. i u A ��T� � 	�� / � � �������	 / ikj ��� � tsu ; ; . The IOSTSi u A �� has the set of valued actions � A ��S� � ?A �� @ � DA �� , set of states � A 	� , set
of initial states � �A 	� � � A 	� . Moreover, for i u A 	� we define a set of accepting
states � � � �A �� � � A 	� as follows:

� � � �A �� � (7.3)����� A ������ A �� �"! � A ��$#%� A ��&!('*),+.-0/ A ��2143 A ��6587
� A ��:9 ����� �+�-
.10 � � � e�g � �<;<;<;=� ���  +�-
.10 � >�?@? A�BDC@� �<;<;<;=� ��� � +�-/.10 � � � eDg ���"!4E A ��6F



Selection of a Test Graph 181

where for all � from I to J�� I , ��� +�-
. 0 � � +�-
. 0 and ��� e�g � ��eDg , and
� ����� j � is

the special location of tsu .

Then, in order to select a subgraph of i u A 	� (called test graph and denoted byt�� ) leading to the satisfaction of the test purpose tsu , and containing “fewer”
unreachable states than i u A �� , we have to compute an intersection between the
sets of reachable and coreachable states of given IOSTS i u A �� . We say that:

(1) a state � A �� � � A 	� is reachable in i u A �� if there exists a trace � �t:�' ����< / i u A ��.; that ends in � A �� , i.e. ��� � t �' ����< / i u A ��(; % � �A 	� �
� �A �� 	 I � �A ��
	� � A ���P , and

(2) a state � A �� � � A �� is coreachable in i u A �� if from � A �� we may go to some
accepting state �

� � �A �� � � � � �A �� , i.e. ��� � / � ? @ � D ;� % � � � �A 	� � � � � �A �� 	 I � A �� 	� �
� � �A �� P .

This means that we have to perform reachability and coreachability analyses for
the IOSTS i u A �� . These analyses are based on the predicate transformers � ��� �
and � �	 which are used to compute successors and predecessors of some subset of
states � !A �� � � A �� of the given IOSTS i u A �� .
Predicate Transformers: � ��� � 3 /�� ; and � �
	 3 /�� ; . Before giving the formal
definitions of predicate transformers, we introduce two intermediate notion that
are used later in this section.

First, let � � � A �� be a location of i u A �� , and � ! ��� /�� A ��B@ � A ��(; be a predicate
over the variables � A �� and symbolic constants � A �� of i u A �� . Then, the Boolean
expression �q� L /�� � � � ; K�� ! , where � � is a special variable that indicates the
current location of the IOSTS i u A �� , is called the projection of � ! on � .

Second, we say that a state � � # �&%��o> � � A 	� of i u A �� satisfies the location
predicate � ��� /�� A ���@ � A ���@ 	 � �  k; (denoted as � � � � ) if and only if (1) the
variable � � is equal to the location � , and (2) the valuation � of variables � A �� and
symbolic constants � A �� satisfies � ! .
Definition 7.1 ( � ��� � 3 /�� ; ) Let � � # �H%+'d% *,% : %(= %(� ! > � � A �� be a symbolic transi-
tion of the IOSTS i u A �� , and � be a predicate over the variables and symbolic
constants of i u A 	� .

Then, the predicate transformer � ��� � 3 /�� ; of � with respect to � is a predicate
that characterizes the set of states reachable in one step from a state � � � A ��
satisfying the predicate � by executing the symbolic transition � , i.e.

� ��� � 3 /�� ; � ��� � � A �� %�� � / � ?A �� @ � DA �� ; 	 I �
� � 3 � ! K � � � � P (7.4)h



182 Symbolic Test Generation

Definition 7.2 ( � �	 3 /�� ; ) Let ��� # �H%+'d% *,% : %(= %(� ! > � � A �� be a symbolic transi-
tion of the IOSTS i u A 	� , and � be a predicate over the variables and symbolic
constants of i u A �� .

Then, the predicate transformer � �
	 3 /�� ; of � with respect to � is a predicate
that characterizes the set of states from which it is possible to reach the state
� ! � � A �� satisfying the predicate � by executing the symbolic transition � , i.e.

� �	 3 /�� ; � ��� !d� � A �� % � � / � DA �� @ � ?A �� ; 	 I � � � � ! K � ! � � � P (7.5)h

Example 7.3 Consider the symbolic transition � of the IOSTS � depicted in
Figure 6.1 (see page 138), that starts in the location

� # 7 � and leads to the locationu! �� . This symbolic transition is presented in Figure 7.7. Consider also a predicate

Idle Pay

pCoinValue > 0 
 Coin ? (pCoinValue) 

 vPaid := vPaid + pCoinValue

Figure 7.7: The symbolic transition of the IOSTS � (see Figure 6.1, page 138).

� over the special variable � � , and the variables ��� � 	 �Du  "�$# % �&% � � � �' )( �b and
symbolic constants � � � 	8� u���� ���  of the IOSTS � . For instance, � is equal to/ � � ���	� � cb; K / � u ��� ����
� K �Du! "�$# ��� K �&% � � � �> )( �W� TEA ; . Then, the predicate
transformer � ��� � 3 /�� ; of � with respect to � is computed as follows:

� <>=����6D�� F����������! ��#"%$'&(�! *),+* �+*-."!/0+1�32 �4-5$'26+0��798;:%$=<�>?"%@BA�+DCE D=7F8�:%$=<�>?"%@BA�+HGJI�FLK
DB��� � � �#"�M FNK
D� ��#"�$'& � �O ��#"%$'&�PQ7F8�:�$=<R>?"�@BA�+SKT *)U+! V+!-W"X/Y+ � �Z *)U+! �+*-W"X/Y+SK[2 �4-5$'26+ � �\2$�4-5$'26+AF]K
DB���#�_^!&1@`+_Ka2 �4-5$'26+HGbIZKc ��#"�$'&d�_ISKa 5),+* �+!-W"!/0+e� TEA FLf

�
DB��� � � �#"�MgK[2 �4-5$'26+ � GhI�Kc ��#"%$'& � GJI�Kc *)U+! V+!-W"X/Y+ � � TEA F

If we compute the predicate transformer � �	 3 /Fi� ; of the predicate i� which is the
same as � except of the variable � � is equal to u! �� and not to

� # 7 � , with respect
to the symbolic transition � shown in Figure 7.7, then we obtain:

� @CB*��D1j� F;���H�?� � �! ��#"%$'& � �! *)U+! �+*-W"X/Y+ � �V2$�4-5$'26+ � ��798;:%$=<�>?"%@BA�+DCE Dk7F8�:�$=<R>?"�@BA�+�GhI F]K
Dl�?�m�_^X&1@n+>FNK
D� ��#"%$'& � �O ��#"�$'&HPo798;:%$=<�>?"%@BA�+pKa 5),+* �+!-W"!/0+ � �g 5),+! V+!-W"!/0+_K[2$�4-5$'26+ � �\2 �4-5$'26+>FLK
Dl�?� � � �#"%M\Ka2$�q-5$'2.+ � GbIZKc ��#"�$'& � �_I�KT *),+* �+*-."!/0+ � � TEA F�f

�
Dl�?�m�_^X&1@n+pKr2$�q-5$'2.+�GhISKc ��#"%$'&tsJIZKT *)U+! V+!-W"X/Y+e� TEA F
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�

Using the definitions given above we first describe the exact reachability and
coreachability analyses for the given IOSTS �������	� with set of states 
����	� , set of
initial states 
����	��� 
������ , set of accepting states 
��������	��� 
������ , and alphabet of
valued actions ����������	��� � ����	� . It is important to emphasize that for IOSTS the
exact computation of sets of reachable and coreachable states (proposed in the
next two paragraphs) does not terminate in general. Thus in the sequel, instead
of performing the exact computation, we calculate over-approximations of sets of
reachable and coreachable states (see page 184).

Reachability Analysis. The purpose of reachability analysis is to compute
a set of all states of the IOSTS �������	� that are reachable from some state !"�
belonging to the set of initial states 
#����	� of ��� ���	� , i.e.

$#%�&"')(+*-, ����	�/. 0 132 4 , ���	�6587:9 4<;>= &"'/%/?@*BA>C ���	� .EDF2 � 4 , ������ G�HI2 �KJL 2NMPO (7.6)

We can try to compute the exact set of reachable states QSRNT8UWV�XB
Y������WZ by (1)
starting with the characteristic predicate 
#������ that describes the set of initial
states of the IOSTS ���[���	� , and (2) iteratively increasing this set of states by
taking its post-image until a fix point is reached, i.e. no new element is added
into this set. More formally, we iteratively compute the set of reachable states of
�������	� as follows:

QSRNT8UWV\XB
 ����	�)Z ] ^_@`3aSb>c>d�e
_ Xf
 ����	�NZ (7.7)

until the next computed element is already in QSRNT8UWV�XB
#������ Z . Here:

(1) for gh�ji , b>c>d�e �kXB
l����	�)Z ��
l����	� , and

(2) for gnmoi , b>c>d�e
_ Xf
������WZ �qpYrtsvuIuIu r	w `Wx�yzf{}|�~ b�c>d�e rtsvuIuIu r w Xf
l����	�NZB� , where

(a) �)�������E� _<���6������ is a sequence of consecutive symbolic transitions that
starts with the initial location of ���6���	� , and

(b) b>c�d�e r s uIuIu r w XB
 ����	�NZ ] b>c>d�e r w X b>c>d�e r	w�� s X�������X b�c>d�e r s XB
 ����	�)Z/Z ����� ZEZ .
However, this procedure does not always terminates for IOSTS. The example of
a such IOSTS is shown on Figure 7.8 (see page 185).
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Coreachability Analysis. The coreachability analysis in some sense is dual
to the reachability one. Its aim is to compute the set of states of ���6���	� which
may lead to the set of accepting states 
�E������	� of ���[���	� , i.e.

��� $#%�&"')(+*-, �E��������>.n0 132 4 , ���	��5 7 9 4 *�� ����	��� � ����	�/. � DY2 ����� 4 , ��������	� G+HI2 JL 2 ���-� MPO (7.8)

In order to compute the exact set of coreachable states we start from the charac-
teristic predicate 
l�E������	� representing the set of accepting states 
�E������	� of the IOSTS
��� ���	� and iteratively compute its pre-image until a fix point is reached. More
formally, we iteratively compute the set of reachable states of ���6���	� as follows:

�	� QSRNT8UWV\XB
 �E������	� Z ] ^_k`�a�b 
��
_ Xf
 ���������� Z (7.9)

until the next computed element is already in
�	� QSRNT8UWV Xf
���-����	� Z . Here:

(1) for gh�ji , b 
�� �"Xf
 �E������	� Z �q
 ���-����	� , and

(2) for gnmoi , b 
��
_ XB
 ���-����	�8Z �jpYrtsvuIuIu r	w `Wx yzB{ |�~ b 
�� rtsvuIuIu r w XB
 ��������	� Z � , where

(a) �N�������E� _ ��� ����	� is a sequence of consecutive symbolic transitions that
ends in any location  such that there exists a state !6���������� � 
#��������	� ,

(b) b 
�� r s uIuIu r w Xf
 �E������	� Z ] b 
�� r s X b 
�� r�� X�������X b 
�� r w XB
 �E������	� ZEZ ����� Z/Z .
Notice that, this procedure (as the procedure for the computation of the exact set
of reachable states described in the previous section) does not always terminates
for IOSTS.

Over-Approximations of QSRNT8UWV\Xf
����	� Z and
�	� Q RNT8UWV�Xf
l���������� Z . The exact itera-

tive computation of least fix points used in the reachability and coreachability
analyses of IOSTS (see pages 183 and 184) is often very expensive for large
input-output symbolic transition systems. Moreover, it is possible that this com-
putation does not terminate since it might not converge to a fix point in a finite
number of steps as it is shown below.

Indeed, if we consider the IOSTS depicted in Figure 7.8 (see page 185) that
represents a counter which increases the value of the variable � by � each time
when the input action � is executed. Intuitively, the least fix point of the con-
sidered IOSTS exists and it is the set of even natural numbers. However, the
iterative computation of the least fix point used in reachability/coreachability
analyses (see pages 183 and 184) does never converge. The reason is that at each
step of the iterative computation we obtain a state which does not belong to the
set of already computed states.

Therefore, it is not always possible to compute exact sets of reachable or core-
achable states for an IOSTS ���6���	� . However, there exist abstraction techniques
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v = 0

Inc
A ? 

 v := v + 2

Figure 7.8: The IOSTS representing a counter.

which can be used for computation of over-approximations of the sought set of
states (see [Cousot and Cousot, 1976], [Cousot and Cousot, 1977], [Cousot and
Halbwachs, 1978], [Jeannet, 2000b]). In this work we do not give any details
on how to compute the over-approximations of reachable and coreachable set of
states of the IOSTS ���6���	� , we just make the assumption that they exist.

7.4.2 Algorithm for the Test Graph Selection

At this point of the section we know what is the set of reachable and coreachable
states of the IOSTS ���[�����F��� � e X���� c>d � 
�� X�����RNU
	�� � Z/Z , and we make an assumption
about existence of an over-approximation of these sets of states. The purpose of
this subsection is to propose an algorithm that transforms the given IOSTS ���6���	�
into a test graph �� which:

(1) – may lead to the satisfaction of the test purpose � � from which ���6���	�
was generated, and

– contains “fewer” unreachable states then the IOSTS �������	� .
To solve these two problems the algorithm will use the given information
about reachable and coreachable states of �������	� .

(2) is able to communicate with an implementation under test ����� ��� ����� . This
means that input actions of ����� should be considered as output actions of
�� , and vice versa. Notice that, the actions of the IOSTS ���6���	� have the
same directions (input/output) as the actions of ����� (see the construction
of �������	� ). Thus, in order to obtain the test graph which can communicate
with ����� , the directions of the actions of ���6���	� must be inverted.

The algorithm for the test graph selection is presented below.

Algorithm 7.2 (Selection of the Test Graph) Let
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– ���[���	� � �/X�� ����� ��� ���	� ��� ���	� Z ���6���	� �������	� �	�l����� �"X�
������� � 
[������WZ � � ���	� � be an IOSTS
which is obtained from a specification ����RNU and a test purpose � � of ����RNU by
applying the product and closure operations, and performing the procedure
of global determinization,

– � �� ��� Xv�������	� Z and � c �
�� ��� X����[����� Z be two predicates characterizing over-

approximations of the sets of reachable and coreachable states of the IOSTS
��� ���	� , and

– for each location  � ����	� of ���[���	� , 
��� ��� X  Z and � c 
��� ��� X  Z be two predicates
that characterize over-approximations of reachable and coreachable states
of the form �������� , where � ������� X������	� ��� ���	� Z .
In the sequel, we also use the notation � c 
��� ��� X  Z ~ ��� � � , where � is a set
of assignments for variables � and  is a location. It denotes the predicate
characterizing an over-approximation of coreachable states of the form �������� ,
where each variable � � � is substituted with the right-hand side of the
corresponding assignments �6� � � .

Then, the test graph ��� is the IOSTS

� X����! ��� �! �"� �# Z �$�%�# �  � �# �$�&�! � X�
 � �! � 
 � �! Z � � �! �

obtained from ��� ����� as follows:

(1) ���! �'�����	� , � �! � � ���	� and � �! � � ����� .

(2) �(�! �'�6���	�*)+� c � �� ��� X����[���	� Z .

(3) If  ����	� �-,[UNUNR � � , then  � �! � �ST � � . Otherwise,  � �# �  ����	� .

(4)1 
�� �! �.
[����	� and 
[� �! �'
�����	� .
1In order to obtain a test graph /10 that is able to communicate with an implementation

under test, we must invert the alphabets of input/output actions of the IOSTS 2436587:9 .



Selection of a Test Graph 187

(5) The set of symbolic transitions of �� is � �# ] ��� ����! � � � ���	�
����# , where:

(a)
� � ����# 0 1�
�BD�� D��\D�� �! D���D�� �# ��[5* 7 
�BD�� D��\D�� D��[D���� � 4 � ���	� G+H ������ 'E'E% �"!$# � 4 *&% ����	� � % ����	� .-M . #

* � �# � * � #('*),+.-0/�* ��. #1-324'*),+.-0/8* � � .)H65 �! �7 �#M . is satisfiable . #
* ��� ��� '�'/%8�"! � L � �# � CY&�?�? . # * ���9��:� 'E'E%8�;! � L � �# � �<�	.FO

is the set of transitions leading either the a �ST � � location, or to a

location from which it is possible to reach some �ST � � location, and

(b)
� � ���=������# 0 11
�BD�� D��\D�� �! D��[D�>@? ' � ? ',ACB>?�D<E"% �S5* 7 
�BD�� D��\D�� D���D���� � 4 � ���	� G+H �F���� '�'/%8�"!$# � 4 % ����	� M . #

* � �! � * � #G'*),+.-0/>* ��. #IHJ-324'*),+.-0/�* � � .)H65 �# K7 �YM . is satisfiable .YO
is the set of transitions leading to inconclusive locations and labeled

with input actions of �� .

(6) The set of locations � �# consists of origins and targets of the above com-
puted symbolic transitions � �# , i.e.

�&�# ] LM=N�O � O PQO RSO TUO N	VCW `�x �! 
X ��� �
Y

�
Bellow we present two examples that illustrate the selection algorithm. More
precisely, we first explain how to use this algorithm in practice, and then we com-
pare test graphs obtained by the same selection algorithm but with two different
kinds of abstractions.

Example 7.4 The purpose of this example is to explain how the selection algo-
rithm can be used in practice. One of the key points of this algorithm is the use of
information about reachable and coreachable states of the analyzed IOSTS. This
information can be obtained by any tool performing symbolic analyses. In the
test generation tool, described in the third part of the thesis, we use NBac [Jean-
net, 2000a] that approximates a given symbolic system with a polyhedron, and
then performs reachability/coreachability analyses on it.

Consider the IOSTS ��� � zB{ | shown on Figure 7.9(a) (see page 188). Due to the
sake of simplicity, we assume that the alphabets of input/output actions of ��� � zf{}|
have been already inversed. In order to select a test graph �� from ��� � zB{ | , we:

First, perform the approximate coreachability analysis starting from the accept-
ing states (shown in green on Figure 7.9(a)) of ��� � zB{ | . This analysis gives
us an over-approximation of all states of ��� � zf{}| from which we may go to
accepting states. The result of the coreachability analysis is shown on Fig-
ure 7.9(b) (see page 188).
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� Begin � Begin �

� Pay � Begin �

� Choose � Begin �

� Delivery � Begin �

� Begin � Accept �

� Idle � Reject �

� Begin � Reject �

� Return � Reject �

cPrice � �
� pCoinValue � � � � � cPrice � � �

Coin!(pCoinValue)
vPaid �	 
 � pCoinValue

� vPaid � � � � � cPrice � � � �� vPaid � cPrice � �� pRemainingValue 	 vPaid � cPrice �

Return?(pRemainingValue)
vPaid �	 cPrice

� vPaid � � � � � cPrice � � � �� vPaid  cPrice � �� pRemainingValue 	 cPrice � vPaid �

Return?(pRemainingValue)

� vPaid 	 cPrice � � � cPrice � � �

ChooseBeverage!(pBeverage)
vBeverage �	 pBeverage

Cancel!()

� vPaid � � � � � cPrice � � � � � vPaid 	 cPrice � �� vBeverage 	 pBeverage � � � pBeverage 	 COFFEE �

Deliver?(pBeverage)

� vPaid � � � � � cPrice � � � � � vPaid 	 cPrice � �� vBeverage 	 pBeverage � � � pBeverage 	 TEA �

Deliver?(pBeverage)

(a) �� ���� � �� � ��� �� �� � � �� � � �! 

" Begin # Begin $% cPrice &' (

" Pay # Begin $% cPrice &' () % vPaid & cPrice (

" Choose # Begin $% cPrice &' () % vPaid * cPrice (

" Delivery # Begin $% cPrice &' () % vPaid * cPrice () % vBeverage * COFFEE (

" Begin # Accept $% cPrice &' () % cPrice * vPaid () % vBeverage * COFFEE (

pCoinValue &'

pRemainingValue * vPaid + cPrice

,- ./
% pBeverage * COFFEE ()% pBeverage * vBeverage (

(b) An over-aproximation of coreach-
able states of �� �� �� .

� Begin � Begin �

� Pay � Begin �

� Choose � Begin �

� Delivery � Begin �

Pass

InconclusiveInconclusive
� cPrice � � �

� pCoinValue � � � �� cPrice � � � � � pCoinValue � cPrice �

Coin!(pCoinValue)
vPaid �	 
 � pCoinValue

� pRemainingValue 	 vPaid � cPrice � �� cPrice � � � � � cPaid 	 cPrice �

Return?(pRemainingValue)
vPaid �	 cPrice

� vPaid � � � � � cPrice � � � �� vPaid  cPrice � �� pRemainingValue 	 vPaid � cPrice �
Return?(pRemainingValue)

� pRemainingValue 	 vPaid � cPrice � �0 � � cPrice � � � � � cPaid 	 cPrice � �

Return?(pRemainingValue)
vPaid �	 cPrice

� cPrice � � � � � vPaid 	 cPrice � � � pBeverage 	 COFFEE �

ChooseBeverage!(pBeverage)
vBeverage �	 pBeverage

� vBeverage 	 pBeverage � � � pBeverage 	 COFFEE � �� cPrice � � � � � cPrice 	 vPaid � � � pBeverage 	 COFFEE �

Deliver?(pBeverage)

� vPaid � � � � � cPrice � � � � � vPaid 	 cPrice � �� vBeverage 	 pBeverage � � � pBeverage 	 TEA �

Deliver?(pBeverage)

� vBeverage 	 pBeverage � � � pBeverage 	 COFFEE � �0 � � cPrice � � � � � cPrice � vPaid � � � pBeverage 	 COFFEE � �

Deliver?(pBeverage)

(c) �� � ���� obtained from �� �� �� after an approximated core-
achability analysis.

� Begin � Begin �

� Pay � Begin �

� Choose � Begin �

� Delivery � Begin �

Pass

cPrice � �
� pCoinValue � � � �� cPrice � � � � � pCoinValue � cPrice �

Coin!(pCoinValue)
vPaid �	 
 � pCoinValue

� pRemainingValue 	 vPaid � cPrice � �� cPrice � � � � � vPaid � cPrice �

Return?(pRemainingValue)
vPaid �	 cPrice

� cPrice � � � � � vPaid 	 cPrice � � � pBeverage 	 COFFEE �

ChooseBeverage!(pBeverage)
vBeverage �	 pBeverage

� vBeverage 	 pBeverage � � � pBeverage 	 COFFEE � � � vBeverage 	 COFFEE � �� cPrice � � � � � vPaid � � � � � vPaid 	 cPrice �

Deliver?(pBeverage)

(d) 1 2 obtained from �� � ���� after an ap-
proximated reachability analysis.

Figure 7.9: An example illustrating the selection algorithm.
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Second, using the information obtained at the first step, we modify
��������	�

as it
is indicated in the selection algorithm. More precisely, we:

(1) remove the symbolic transitions (a) that are labeled with an output

action, and (b) that leave the computed set of coreachable states of��� ��
���
.

For instance, the symbolic transition labeled with the ���������� output
action does not appear in

��� � ����	�
because if we take this transition, it

will not be possible to reach any accepting state of
��������	�

.

(2) redirect the symbolic transitions (a) that are labeled with an input

action, and (b) that leave the computed set of coreachable states of��� ��
���
, to an �������������	����� �!� location.

For example, see the two symbolic transitions leading to the left�������������	�"��� �!� location of
��� � ����	�

depicted in Figure 7.9(c).

(3) modify the guards of the other symbolic transitions by taking into
account the information about coreachable states.

For instance, consider the symbolic transition # leading to the loca-
tion $�%'&"(*)�+-,�.�/
021 . We know that in order to reach some accepting
state the price of the beverage should be strictly positive and the
amount paid by the user should be greater or equal to the price (i.e.3 � ��4 �
���65 7�8:9 3 � � ��
;<5 � �=4 �
����8 which was computed during the
approximate coreachability analysis, see the second node the graph
shown on Figure 7.9(b)). This simply means that the user should
introduce a coin whose value is greater or equal to � ��4 �
��� . No-
tice that this consequence can be computed automatically, by tak-
ing the pre-image of coreachable states corresponding to the loca-
tion $�%'&"(*)�+>,�.?/�021 . Therefore, in order to increase the probability to
reach some accepting state, we should strengthen the guard of # with3 � ��4 �
���'5@7�8*9 3 A ����� �:B�!�	���C5D� ��4 �
����8 . The result of this operation is
shown on Figure 7.9(c).

However, by strengthening guards of symbolic transitions labeled with
an input action we risk to loose the soundness of the resulting test
graph (and therefore, of the future test case). Therefore, in the case
when we modify guards of such symbolic transitions, we also need to
add other symbolic transitions that leave the set of coreachable states
and lead to an �������������	����� �!� location. The example of such symbolic
transitions is shown on Figure 7.9(c) (see the symbolic transitions lead-
ing to the right �������������	����� �!� location).

Finally, as the IOSTS
��� � ��
���

can contain unreachable states, we try to detect and
eliminate them by performing an approximated reachability analysis. It is
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not hard to check that any state corresponding to an �������������	�"��� �!� location
is not reachable. Therefore, the symbolic transitions leading to �������������	�"��� �!�
will be removed. The test graph obtained after the reachability analysis is
depicted in Figure 7.9(d) (see page 188).

�

Example 7.5 Consider an IOSTS
���������

depicted in Figure A.3 (see page 262).
Then, we explain how to use the selection algorithm to produce different test
graphs.

If we compute over-approximations of reachable and coreachable set of states
based on only control structure of

���������
(i.e. for each location � of

�����	�
�
, �������� 3 � 8

and ������������� 3 � 8 are defined as the predicate
A ����� , where

A � is a control variable),
then we obtain the test graph ���! shown on Figure 7.10(a) (see page 191). In
this case the selection algorithm is very similar to one used in the test generation
method for IOLTS (see Algorithm 3.2, page 59). Notice that this approximation
is rough as it does not take into account data of

���"�����
.

The second test graph ����# (see Figure 7.10(b), page 191) was constructed
by using the over-approximations of sets of reachable and coreachable states
obtained by the symbolic analysis of

���$�����
abstracted with polyhedra [Cousot

and Halbwachs, 1978], [Jeannet, 2000b] (in this case �������� 3 � 8 and ������������� 3 � 8
are definitely stronger than

A �%�&� ). As it is easy to see from Figure 7.10 (see
page 191), the selection based on this abstraction is more precise then one
described above. Indeed, it successfully eliminates two �������������	�"��� �!� locations
appeared in ���' . The first �������������	�"��� �!� locations is eliminated by strengthening
the guard of the first symbolic transition of ���! in such way that it is possible
to reach the

�  ��� location. For this we have used the information that the first
paid amount must be enough to receive the beverage. The second �������������	�"��� �!�
location is eliminated by using the same principle as above, i.e. by straightening
the guard of the symbolic transition where the user chooses a beverage. Indeed,
we force the user to choose a coffee in order to obtain this coffee.

�

Next, we study the trace relation between IOSTS
���$�����

and the test graph ���
obtained from

���$�����
by the selection algorithm (see page 185). First, we notice

that the algorithm (1) does not augment
���$�����

with any new symbolic transition
and (2) does not weaken guards of any symbolic transition, therefore, the set
of traces of ��� cannot be bigger than the set of traces of

���������
. However, we

definitely cannot obtain the equality between � 4  ����� 3 ���C8 and � 4  ����� 3 ���$�	�
� 8 .
Indeed, the purpose of the selection algorithm is to choose (1) the traces of

�����	�
�
leading to states from which it is possible to go to accepting states, and (2) the
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(cPrice > 0 and vPaid = 0 and vBeverage = TEA)

<Begin,Begin>

<Pay,Begin>

(pCoinValue > 0) 
 Coin ! (pCoinValue) 

 vPaid := 0 + pCoinValue

<Choose,Begin>

(pRemaningValue = vPaid - cPrice) and (vPaid >= cPrice) 
 Return ? (pRemaningValue) 

 vPaid := cPrice

Inconclusive

(pRemaningValue = vPaid - cPrice) and (vPaid < cPrice) 
 Return ? (pRemaningValue)

<Delivery,Begin>

ChooseBeverage ! (pBeverage) 
 vBeverage := pBeverage

Pass

(pBeverage = vBeverage) and (pBeverage = COFFEE) 
 Deliver ? (pBeverage)

(pBeverage = vBeverage) and not(pBeverage = COFFEE) 
 Deliver ? (pBeverage)

(a)

� ���

(cPrice >= 1) and (vPaid = 0) and (vBeverage = TEA)

<Begin,Begin>

<Pay,Begin>

(cPrice >= 1) and (vPaid = 0) and (vBeverage = TEA) and 
 (pCoinValue >= 1) and (pCoinValue >= cPrice) 

 Coin ! (pCoinValue) 
 vPaid := 0 + pCoinValue

<Choose,Begin>

(cPrice >= 1) and (vPaid >= cPrice) and (vBeverage = TEA) and 
 (pRemaningValue = vPaid - cPrice) 

 Return ? (pRemaningValue) 
 vPaid := cPrice

<Delivery,Begin>

(cPrice >= 1) and (vPaid = cPrice) and (vBeverage = TEA) and 
 (pBeverage = COFFEE) 

 ChooseBeverage ! (pBeverage) 
 vBeverage := pBeverage

Pass

(cPrice >= 1) and (vPaid >= 1) and (vPaid = cPrice) and 
 (pBeverage = vBeverage) and (vBeverage = COFFEE) and 

 (pBeverage = COFFEE) 
 Deliver ? (pBeverage)

(b)

� ���

Figure 7.10: Test graphs obtained from the IOSTS

�� � �	 shown on Figure A.3 (see page 262) by the selection
algorithm.
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traces of
���������

ending with a valued input action and leading to states from which
is not possible to go to any accepting state, and whose strict prefixes are traces
leading to states from which it is possible to go to some accepting state. (In the
last case the test graph ��� should produce the �������������	����� �!� verdict.) Thus, it
is clear that the set of traces of ��� is included into the set of traces of

���������
.

To prove this fact we first show the relation between behaviors of ��� and
�����	�
�

given below.

Theorem 7.1 (Behaviors of ��� ) Let ����� $�� )������")	�
����) ��� )��)������ 1 be a test
graph obtained from an IOSTS

��������� �D$�� )�� ����� )�� ����� ) ��� )��)�� ����� 1 by Algorithm 7.2
(see page 185). Then, for each sequence of valued actions � ���� ������������ 3��! "$#&%
�
' "$# 8)( � 3��! �	�
� %*�+'����� 8,( , if the test graph ��� has the behavior:

-/.���10 $ � � ��� )�2 � ��� 143657 $ �  ��� )82  ��� 19������$ � �;:  ��� )�2 �<:  ��� 1 3>=7 $ � � ��� )�2 � ��� 1
then there exists a location �/�?� ����� such that the IOSTS

���������
has the behavior:

-/.����� 0 $ � ��	�
� )�2 ������ 1&3657 $ �  ����� )�2  ����� 19������$ � �;:  ����� )�2 �;:  ����� 1 3>=7 $ � )�2 ��	�
� 1
where @ /A�CB D )�0FE 7�GH�/B � � ��� ���

������ 9I2
�
��� ��2

������ G and 2 � ��� �J2 ������ . �

Proof The proof is done by induction on the length of the sequence � of valued
actions belonging to

3��  ��� %K� ' ��� 8 ( � 3�� '����� %K�  ����� 8 ( .
Induction Basis. Consider the empty sequence of valued actions L , and a be-

havior of the test graph ��� corresponding to L , i.e.
- .��� 0 $ � � ��� )�2 � ��� 1 , where

��� ��� is the initial location of ��� , and 2�� ��� is an initial valuation of the vari-
ables and symbolic constants of ��� . Then, we prove that there exists an
initial location �������� such that

- .����� 0 $ �������� )�2M��	�
� 1 is a behavior of
���$�����

, where
2M������ ��2M� ��� .
(1) As the test graph ��� is obtained from the IOSTS

���$�����
by Algo-

rithm 7.2 (see page 185), then due to the item (3) of this algorithm we
know that the initial location � ������ exists.

(2) Next, as $ ��� ��� )�2M� ��� 1 is an initial state of ��� , then 2�� ��� satisfies the initial
condition of ��� , i.e. 2�� ���*N �O�1��� which by construction (see the item
(2) of Algorithm 7.2, page 185) is equal to

3 � ����� 9QP �SR ������� 3 ��������� 8 8 ,
where � �	�
� is the initial condition of the IOSTS

���������
. This implies

that the valuation 2�� ��� also satisfies � ����� , thus it can be used as an
initial valuation of the variables and symbolic constants of

���������
(re-

member that TU��� �VT �	�
� and WX��� �YW �	�
� due to the item (1) of the
selection algorithm).
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The items (1) and (2) imply that
- .�	�
� 0 $ �������� )82������� 1 , where 2M��	�
� � 2�� ��� , is a

behavior of
�����	�
�

corresponding to the empty trace L .
Induction Hypothesis. Assume that for a sequence of valued actions � � �

�  ������	� �<:  of length 0KE 7 , if the test graph ��� has the behavior:

- .���10 $ � � ��� )�2 � ��� 1&3 57 $ �  ��� )�2  ��� 1������ $ � �<: #��� )�2 �;: #��� 1 3 = � 57 $ � �<:  ��� )�2 �;:  ��� 1 (7.10)

then there exists a location �1� � ����� such that the IOSTS
���������

has the
behavior:

- .����� 0 $ � ������ )�2 ��	�
� 1&3 57 $ �  �	�
� )�2  ����� 19����� $ � �<: #�	�
� )�2 �;: #�	�
� 1 3 = � 57 $ � )�2 �;:  ����� 1 (7.11)

where @ /A�CB D )�0FE � GH�/B �
�
��� ���

������ 9 2
�
��� �J2

������ G and 2 �<:  ��� ��2 �<:  �����
.

Induction Step. Consider a sequence of valued actions of length 0 , i.e. � �
�  ������	� �<:  � ��� �

�
	
� � . We prove that if:

- .���10 $ � � ��� )�2 � ��� 143 57 $ �  ��� )82  ��� 19������$ � �;:  ��� )82 �<:  ��� 1 3 =7 $ � � ��� )�2 � ��� 1 (7.12)

is a behavior of ��� , then there exists �/�?� ����� such that

- .����� 0 $ � ��	�
� )�2 ������ 1&3 57 $ �  ����� )�2  ����� 19������$ � �;:  ����� )�2 �;:  ����� 1 3 =7 $ � )�2 ������ 1 (7.13)

is a behavior of
���������

, where @ /A�CB D?)�0 E 7�GA� B � � ��� � �
������ 9V2

�
��� � 2

������ G and
2 � ��� � 2 ��	�
� .
By using prefix closure and the induction hypothesis, we obtain that for the
sequence � �

, if the prefix of
- .��� (see Formula (7.12)) whose length is 0 E 7 ,

is a behavior of ��� , then there exists � �;:  ����� �J� ����� such that the prefix of- .�
���
(see Formula (7.13)) whose length is also equal to 0*E 7 , is a behavior

of
�����	�
�

. Moreover, we know that � �;:  ����� ��� �;:  ��� . Indeed, due to the selection
algorithm (see page 185) � �<:  �����

can be different from � �;:  ��� only in the case
where � �;:  ��� is equal either to

�  ��� , or to �������������	�"��� �!� . Remember that by
construction neither

�  ��� nor �������������	����� �!� has a successor. However, � �;:  ���
has at least one successor which is � � ��� (see the last transition relation of
Formula (7.12)). Thus, � �<:  �����

is equal to � �<:  ��� .

Finally, we prove that as the last transition relation of the behavior
- .���

(see Formula (7.12)), i.e.

�# � ���10 $ � �<:  ��� )�2 �;:  ��� 1 3 =� ����� ���E 7 $ � � ��� )�2 � ��� 1
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holds in ��� , then there exists a location ��� � ����� such that the last transi-
tion relation of the behavior

- .�����
(see Formula (7.13), i.e.

�# ������ 0 $ � �;:  �����
� � � �

�
� = � 5���

)Y2 �;:  �����
� ��� �

�
� = � 5���

1 3>= � ����� ���E 7 $ � )�2 ������ 1

holds in
���������

, and 2 ��	�
� ��2 � ��� .
Due to the definition of a transition relation (see page 86), we know that
��� has a symbolic transition:

# � ��� �<$ � �<:  ��� )�& )�� ) � ����)��>) � � ��� 1
such that $�2 �;:  ��� )��:1 N � � ��� and 2 � ��� �	� 3 $�2 �;:  ��� )
�:1�8 .
Next, as ��� is obtained from the IOSTS

���$�����
by Algorithm 7.2 (see

page 185), then due to the item (5) of this algorithm,
���$�����

has the fol-
lowing symbolic transition:

# ������ �D$ � �<:  �	�
�
� ��� �� = � 5���

)�& )�� ) � ����� )��>) ��1

Moreover, due to the item (5) of Algorithm 7.2 (see page 185), we know
that the guard

� ��� is equal to either:

–
3 �'����� 9 �������� 3 � �;:  ����� 8�9 ��� �������� 3 � 8�B T ������+G 8 , or

–
3 �'����� 9 �������� 3 � �;:  ����� 8�9�� ������������� 3 � 8�B T ������ G 8 .

Thus, as $�2 �;:  ��� )
�:1 N � � ��� and 2 �<:  ��� � 2 �;:  �����
, then $�2 �;:  ����� )
�:1 satisfies

�'�����
.

This means that the symbolic transition # ��	�
� of
���������

is executable. Also,
as the symbolic transitions # � ��� and # ������ have the same set of assignments � ,
then 2 ��	�
� �	� 3 $92 �;:  �����

� ��� �

�
� = � 5���

)
�:1�8 � 2 � ��� .

Therefore, we obtain that the last transition relation
�# ������ of the behavior- .�����

(see Formula (7.13)) holds in
���������

. This proves the induction step of
the theorem and the whole theorem.

� ��� ��� �
Next, notice that the alphabets of the test graph ��� and the IOSTS

���������
are

the same, and they consist of only input and output actions. Therefore, using
the theorem above, we directly obtain the following corollary:
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Corollary 7.1 (Traces of ��� ) Let ��� be a test graph obtained from the
IOSTS

�����	�
�
by Algorithm 7.2 (see page 185). Then, all traces of ��� are included

in the set of traces of
�����	�
�

, i.e.

� 4  ����� 3 ���C8�� � 4  ����� 3 ��������� 8 (7.14)

�

Finally, we prove that the selection algorithm (see page 185) produces a deter-
ministic test graph. Formally:

Lemma 7.1 ( ��� is Deterministic) A test graph ��� obtained from an IOSTS���$�����
by the selection algorithm presented above is deterministic in the sense of

Definition 4.20 (see page 93).
�

Proof

(1) We show that the test graph ��� does not contain any internal actions.

Indeed, notice that the IOSTS
���������

does not have any internal actions by
construction (thanks to the closure operation defined on page 260). Thus,
as ��� is obtained from

���������
by the selection algorithm (see page 185),

then it also does not contain internal actions. Therefore,
��� ��� .

(2) We prove that from each state of the test graph ��� at most one symbolic
transition can be fired, i.e. @����	�H����) � � 3��  ��� %C� ' ��� 8+�/B �� 4 ; 3�
 � � �
����� N � 37 � �� 8��@7�G .
Indeed, we know that:

(a) the IOSTS
���$�	�
�

is deterministic by construction (thanks to the pro-
cedure of the global determinization given on page 304), and

(b) the selection algorithm (see page 185) transforms the IOSTS
���������

to
the test graph ��� either (1) by removing non-executable symbolic
transitions and symbolic transitions starting in and leading to � ����� A��
locations; or (2) by splitting each symbolic transitions of

���$�	�
�
labeled

by action into two whose guards are disjoint.

Therefore, from the items (a) and (b) we can deduce the second statement
of the lemma.

The items (1) and (2) imply that the test graph ��� is deterministic (see
Definition 4.20, page 93).

� � � � �?�
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7.4.3 Traces of ��� Leading to Pass/Inconclusive States

Remember that in the previous subsection we proposed an algorithm which from
a given IOSTS

��������� ��� ��� 3 ��� �
	�� �� 3 � A ���� � � 8 8 , where
� A ��� is a specification and

� �
is a test purpose of

� A ��� , generates a test graph ��� which contains
�  ���

and �������������	����� �!� locations, and which can be executed on some implementation
under test. Therefore, a set of traces of ��� contains traces leading to

�  ��� and�������������	����� �!� states. In this section we are interested in studying some proper-
ties of such traces. In order to formally manipulate traces leading to

�  ��� or�������������	����� �!� , we must give formal definitions for them.

Definition 7.3 (Traces of ��� Leading to Pass/Inconclusive) Let ��� be
the test graph with set of states � "$# , set of initial states �H�" # � � " # , and set
of pass and inconclusive states, i.e. �
����� � � " # and ���AP����AP�������� �"! � � "$# .
Then, for ��� we define two sets of traces leading to states belonging to either
�
����� or �#�HP$���AP�������� �"! , as follows:

� 4  �����&%('*)+) 3 ���C8 , 
 � � � 4  ����� 3 ��� 8 N (7.15)- � � � � � "$# ) �/. � � � �0�
����� �/B � � �1 �/. � � � G �

� 4  �����(243�5+673�5 3 ���C8 , 
 � � � 4  ����� 3 ���C8 N (7.16)- � � � � � " # ) � � �98;: ��8 �<�#�HP$���AP�������� �"! �/B � � �1 � � ��8;: �98 G �
Notice that in the rest of the thesis any trace belonging to � 4  �����=%('*)+) 3 ��� 8 (resp.

to � 4  �����/243�5+673�5 3 ���C8 ) will be called pass trace (resp. inconclusive trace).
�

Now that the pass and inconclusive traces of the test graph ��� are formally
defined, we can study the relationship between them and and the sets of traces
and accepting traces of the IOSTS

���$�����
from which ��� was obtained by the

selection algorithm (see page 185).
Before going forward it is important to notice that the test graph ��� is

initialized (by construction) and deterministic (see Lemma 7.1, page 195) IOSTS.
Thus, due to Theorem 4.1 (see page 94), ��� cannot move to states corresponding
to different locations after execution of a given trace, e.g. ��� cannot be in a
pass and inconclusive state after the same trace � . This statement will be used
implicitly in proofs of the lemmas presented below.

Lemma 7.2 (Traces of ��� Leading to Pass) Let ��� be the test graph
generated from

���������
by Algorithm 7.2 (see page 185), where

���$�	�
�
is the IOSTS

obtained from the synchronous product between a specification
� A ��� and a test

purpose � �
by closure and determinization. Then:

� 4  �����&%/'*)+) 3 ���C8����'� 4  ����� 3 � A ���> � � 8 (7.17)
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�

Proof Consider a pass trace � of ��� , and prove that this trace is an accepting

trace of
� A ���� � �

.

At the beginning of the proof, notice that we have the two following properties:

(1) � is a trace of
���������

, i.e. � � � 4  ����� 3 ��������� 8
Indeed, as � is a pass trace of ��� , then due to Definition 7.3 (see page 196)
it is a trace of ��� , i.e. �J�&� 4  ����� 3 ���C8 . Thus, using Corollary 7.1 (see
page 195) we obtain that � is also a trace of the IOSTS

���$�	�
�
.

(1) The set of initial states of ��� is a subset of the set of initial states of
���������

,
i.e. ���" # � ������ ���	�

.

Indeed, if ��� � $ ��� )82�� 1 is an initial state of ��� , then the valuation 2 �
satisfies the initial condition of ��� that is

3 � ����� 9 P �SR ������� 3 ��������� 8 8 , where
� �	�
� is the initial condition of the IOSTS

���������
and P �SR ������� 3 ��������� 8 is the

predicate characterizing an over-approximation of the set of all coreachable
states of

���������
defined as Formula (7.8) (see page 184). Thus, 2 � satisfies

the initial condition � �	�
� of
���������

. Moreover, due to Algorithm 7.2 (see
page 185) ��� is the initial location of ��� as well as

���$�����
. Therefore, the

state ��� is also an initial state of
���$�����

.

From the items (1) and (2) we deduce that the trace � can be executed in both
IOSTS ��� and

�����	�
�
from a same initial state � � . It is important to notice that by

choosing the initial state � � , we fix values of all variables and symbolic constants
of ��� and

�����	�
�
. Moreover, we know that ��� and

�����	�
�
are deterministic.

Therefore, by analogy with the proof of the second item of Theorem 4.1 (see
page 94), we can show that by executing the trace � , ��� (resp.

���"�����
) moves

from the state � � to exactly one state � (resp. � � ).
Next, as � is a pass trace of ��� , then due to Definition 7.3 (see page 196) it

leads to the state � corresponding to a
�  ��� location of ��� . Thus, as all

�  ���
locations of ��� were obtained from the accepting locations of the IOSTS

���������
(see Algorithm 7.2, page 185), then the trace � of

���"�����
leads to the state � �

corresponding to an � ����� A�� location of
���$�����

. Therefore, � is an accepting trace
of

���������
. � � � ���?�

It is important to emphasize that the opposite inclusion, i.e. �'� 4  ����� 3 � A ����
� � 8 � � 4  �����&%('*)+) 3 ���C8 , does not hold. Before showing this fact we notice that
the set of accepting traces of

� A ���  � �
is the same as the set of accepting traces

of �'� 4  ����� 3 � A ���  � � 8 � �'� 4  ����� 3 ��������� 8 , where
��������� � � ��� 3 � � � 	 � ��� 3 � A ���  � � 8 8
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(see Theorems A.4 and A.9, pages 303 and 271). Therefore, it is enough to show
that �'� 4  ����� 3 ��������� 8 �� � 4  �����&%/'*)+) 3 ���C8 . This demonstration is done with the
following example.

Example 7.6 Consider the IOSTS
���������

shown on Figure 7.11(c) (see page 199)
that was obtained form:

– the specification
� A ��� of a coffee machine depicted on Figure 7.11(a) (see

page 199), and

– the test purpose � �
of

� A ��� that is depicted on Figure 7.11(b) (see
page 199),

by the product and closure operations, and the procedure of determinization. It
is not hard to check that

���$�����
has two accepting traces:

�  0 $������ � ) $ 1�1 $ ����� ����) $ 1�1 ) and

� # 0 $������ � ) $ 1�1 $ ����� ����) $ 1�1 $�� ���	� �!� 4�� ) $ 1�1
Then, by apply the selection algorithm to

���$�����
, we obtain the test graph ���

shown on Figure 7.11(d) (see page 199). Indeed, the selection algorithm removed:

(1) the symbolic transition #  labeled with the �*�� action, as (a) �*�� is the
input action of

���������
, and (b) it does not lead to any state from which it is

possible to go to some accepting state,

(2) the symbolic transition #	# labeled with the � ,�� /���,
	 ( action and outgoing
from the $��*��?)�� ��!� ��1 location, as it became in-executable after eliminating
the symbolic transition #	# , and

(3) the symbolic transition #�� labeled with the � ,�� /���,
	 ( action and outgoing
from the $ ����� ���!) � ����� A�� 1 location, as its origin is the accepting location of���������

.

From Figure 7.11(d) (see page 199) the reader can see that the resulting test
graph ��� has only one pass trace �  0 $������ � ) $ 1�1 $ ����� ��� ) $
1�1 , which is an
accepting trace of

�����	�
�
. Therefore, � 4  �����*%('*)+) 3 ��� 8 � �'� 4  ����� 3 ��������� 8� � � �

���
"�� ' 5�� )�� � %��+5�� " ���

, but

�'� 4  ����� 3 ��������� 8� ��� �
���
"�� ' 5�� )�� � %��+5�� " ���

�� � 4  �����&%/'*)+) 3 ���C8 . �

Before characterizing the set of inconclusive traces of the given test graph ��� ,
we make an observation about the form of these traces.
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�����
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otherwise

*

(b) 354
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(d) ]ns
Figure 7.11: A counterexample showing that tvuxw	y�z={�|5},~5��{=z�� u+��� ��
uxw	y�z={�|!���.���F}Yu��v� .
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Observation 7.2 (The Form of an Inconclusive Trace of ��� ) Let ��� be
the test graph with set of valued input actions ��� . Then, any inconclusive trace� of ��� has the form: ���
	�� , where ���� ������������������� and ��� ��� .  

This observation immediately follows from the construction of the test graph ���
(see Algorithm 7.2, page 185). Indeed, as each !�"��#$"�&%(')��*,+-� location of ��� is
different from the initial location .0/ 1)2 of ��� , then the set of inconclusive states
of ��� is different from the set of initial states of ��� . Therefore, � leading to
some inconclusive state cannot be an empty trace. Moreover, as we can move
to an !�"��#$"�&%(')��*,+-� location only by taking a symbolic transition labeled with an
input action (see the item (5.b) of Algorithm 7.2, page 185), then the last valued
action � of � is a valued input action of ��� .

Lemma 7.3 (Traces of ��� Leading to Inconclusive) Let ��� be a test
graph generated from a specification 3�45��� and a test purpose �76 of 3�45��� as it
was explained in Sections 7.1–7.4 (see pages 169–178). Then, a trace of ���
leading to some inconclusive state is a trace of 3�45��� ending with a valued output
action. However, it is not a prefix (see Definition 6.11, page 154) of any accepting
trace of �83�45���:9;�76�� . Formally:

�����������=<?>A@CBD>A@A�E������F (7.18)

���������������83�45���E� 	 �HGIKJML @ON �������������83�45���E�=�PQ6R���TSU�KV��������������83�45���:9;�76Q�M�

where �������������83�45���E� 	 � GIKJ=L @�WYX �Z	��;[
�\� �������������83�45���E�] �^� � GIKJ=L @�_  

Proof Consider a trace � belonging to �`����������<a>A@bBc>A@A������� . Due to Observa-
tion 7.2 (see page 200) � has the form ���8	T� , where ���� ������������������� and �^� ��� 1)2 .

(1) We prove that �edf���
	��^� �E�������������K3�45���E� 	 � GIKJ=L @ N �������������K3�45���E�M� .

(a) First, we show that � is a valued output action of 3�45��� .
Indeed, we remind that during the selection of the test graph from
the IOSTS 356Hg8hji dlk�mAn �Toqp r-sut�v m �83�45���w9x�76Q�=� we invert the directions
(input/output) of all actions of 356yg8hji . Thus, as � is a valued input

action of ��� , then it is a valued output action of 356ygzh{i . Therefore, � is
a valued output action of 3�45��� , i.e. �^� � GIKJML @ , due to the construction
of 356Hg8hji (see Sections 7.1–A.2, pages 169–274).

(b) Finally, we show that �|d}���,	{��� �E�����������-�83�45���E� 	 � GIKJML @ N �`�����������K3�45���E�M� .
Due to Definition 7.3 (see page 196) �edf�7�&	�� is a trace of ��� . Then,
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we remind that:

�������������Ts m p m o n � k�mAn �Toqp r�sut�v m �83�45���:9;�76Q�M�=�� ��� �1
2
�

F [see Corollary 7.1, page 195]

������������� k�mAn � o$p r�s�t�v m �83�45���:9;�76��=�M�
d

[see Theorem A.9, page 303]

�������������Toqp r�sut�v m �83�45���:9;�76Q�M� (7.19)
d

[see Theorem A.4, page 271]

�������������K3�45���Q9;�76Q�
d

[see Theorem 5.5, page 134]

�������������K3�45���E�
Thus, � � 	K� belongs to �������������83�45���E� . Moreover, using prefix closure we
get that ���� �������������83�45���E� . Therefore, as we know that �^� � GIKJML @ (see
the item (a) above), then � � �E�������������83�45���E� 	 � GIKJML @ N �������������83�45���E�=� .

(2) We prove that the inconclusive trace � of ��� does not belong to the set of
prefixes of accepting traces of �K3�45���Q9;�76Q� .
This statement can be shown by contradiction. Assume that � belongs
to 6R���TSU�KV��������������83�45��� 9f�76Q�M� , where 6R���TSU�DV��������������K3�45��� 9f�76Q�M� is the set
of all possible prefixes (strict and non-strict) of accepting traces of the
IOSTS 3�45��� 9 �76 (see Definition 6.11, page 154). Then, there exists a
sequence of valued input/output actions �7� � � � � � � � G ��� such that �Z	 �� ���
V��������������83�45���:9;�76�� .
(a) Assume that ��� � is the empty sequence of valued input/output ac-

tions. Then � � V��`�����������K3�45���\9 �76�� . Due to Definition 6.10
(see page 151) this means that � leads to an accepting state of
3�45���w9x�76 . Thus, the trace � must leads to a pass state in the test
graph ��� (see Algorithm 7.2, page 185). Therefore, as we know that
�	��
��� N��������������� � ����� � d! , then the statement above contradicts
with the assumption that � is an inconclusive trace of ��� , i.e. trace
leading to some inconclusive state of ��� .

(b) Assume that ��� � � � � � � � G ��" , then �Z	E�� ��� V��������������83�45���:9;�76Q� .
This means that the IOSTS 3�45��� 9 �76 can move from the state # d$ .�%'&)( obtained after executing � , to another state # �7d $ . � %'& � ( by the
first valued action of � � � , say � � d $+* %-,.( . Thus, we obtain that 3�45��� 9 (/ )

�76 has at least one symbolic transition of the form .102 3 . � .
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Next, due to our assumption that � is an inconclusive trace of the test
graph ��� constructed from 3�45���w9x�76 , we know that the state # is
an inconclusive state of ��� , i.e. the location . is named !�"��#$"�&%('
��*,+-� .
Moreover, we know that there are no symbolic transitions outgoing
form the !�"��#$"�&%('
��*,+-� location. But due to the observation � /�� there
is at least one symbolic transition outgoing from . d !�"��#$"�&%('
��*,+-� .
Therefore, a contradiction is obtained.

From the item (a) and (b) we get that � �� 6R���TS �DV��������������83�45���:9;�76��=� .
The items (1) and (2) prove the lemma. �������	�
�

7.5 Making a Test Graph Input-Complete

In this section we consider a test graph ��� produced from a specification 3�45��� �
�)� � � � and a test purpose �76 of 3�45��� by the operations and algorithms described
in the previous sections of Chapter 7 (see Sections 7.1–7.4 page 169–178). The
aim of this section is to transform the given test graph ��� into a test case
��� �� � �  � whose definition is given on page 143. Due to this definition the
test case ��� must always react on any input coming from an implementation
under test *,'�� � ��� �)� . This means that ��� must not block any inputs from
*,'�� , but it must negatively respond on incorrect inputs. Therefore, we have to
require that each location of the test graph ��� , except the 6������ and !�"��#$"�&%('
��*,+-�
locations, (1) accepts any input from *,'�� , and (2) redirects incorrect inputs to the
new � �$* % location, i.e. make ��� input-complete in the sense of Definition 4.21
(see page 95). Moreover, the test case ��� must be deterministic, as it has to
produce the same verdict all time while executing a same sequence of actions on
a same implementation under test.

Plan of the Section. The rest of this section is organized as follows: first, we
present an algorithm which makes a given test graph ��� input-complete except
in 6������ , !�"��#$"�&%(')��*,+-� and � �$* % locations, i.e. which generates a test case ��� .
Then, we illustrate this algorithm with an example. Next, we prove that the
result produced by the algorithm is input-complete in the sense of Definition 4.21
(see page 95), and deterministic (see Definition 4.20, page 93). Finally, we show
some properties characterizing the sets of traces of the generated test case ��� .

7.5.1 Algorithm Making ��� Input-Complete

Algorithm 7.3 (Making a Test Graph Input-Complete) Consider a test
graph ��� with set of variables � 1
2 , set of actions � 1
2 d � � 1
2 � � G 1
2 , set of
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locations � 1
2 , and set of symbolic transitions � 1
2 . Then, ��� is completed with
its input actions belonging to ��� 1
2 as it is described below.

First, for a location . � � 1�� and an action
* � � � 1�� d � IKJML @u� , we denote by:

����� 0
d X	��
 d $ .�% * %�%�� 
 %�� 
 %M. 
 ( % � � � % ��� d $ .�% * %��%�� � %�� � %�. � ( _ F�� 1
2

the set of all symbolic transitions of ��� outgoing from . and labeled with action*
.

Then, for each location . � ��� 1
2 P X 6�������%A!�"��#$"�&%(')��*,+-� _ � and each input action* � � � 1
2 :

(1) If (1) ����� 0 is not empty and (2) the disjunction of the gards of the symbolic
transitions belonging to ����� 0 does not equal to � ��'5� , i.e. ��� 
�� � � � � ��� ����� ���?� �d
� ��'5� , then we create a new symbolic transition:

� � d $ .�% * %��%� �!� 
�� � � � � � � � %�� � % � �$* % (
leading to the � �$* % location. Here and in the next item, � � d#" g�$	%'&)(+* ,.- d ,0/
is the set of identity assignments.

(2) If ����� 0 is empty, i.e. in the case when there are no symbolic transitions out-
going from . and labeled with

*
, we create the following symbolic transition:

� � d $ .	% * %1��% �325476 %� � % � �$* % (
which also leads to the � �$* % location.

 
Then, we prove that Algorithm 7.3 is correct, namely, it produces an input-
complete and deterministic IOSTS.

Theorem 7.2 (Correctness of Algorithm 7.3, page 202) An IOSTS ��� � d$98 1)2;: %=< 1
2>: %�� 1
2;: %�.T/ 1
2 : % � 1
2?: %1� 1
2;: ( with set of states @ 1
2?: and set of valued input
actions � � 1
2 : , which is produced form the test graph ��� by Algorithm 7.3 (see
page 202), is:

(1) input-complete (see Definition 4.21, page 95), except, in the locations 6������ ,
� �$* % and !�"��#$"�&%(')��*,+-� , and

(2) deterministic (see Definition 4.20, page 93).
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Proof

(1) We show that ��� � is input-complete except in the locations 6������ , � �$* % and
!�"��#$"�&%(')��*,+-� .
Indeed, due to Algorithm 7.3 we obtain that for each location . � ��� 1)2 : P
X 6������ % � �$* % %A!�"��#$"�&%('
��*,+-� _ � and each input action

* � � � 1
2 : , the disjunc-
tion of the guards � 
 % � � � %�� � of all symbolic transitions ��
 % � � � % ��� � � 1
2 :
outgoing from . and labeled with

*
, is equal to � ��'5� . Thus, for each state

# d $ .�%'& ( � @ 1
2 : of ��� � , and each valued input action �^d $+* %-,.( � ��� 1
2 : ,
there always exists a symbolic transition � h ( � d�� ����� ) outgoing from . and
labeled with

*
, whose guard is satisfied by the pair of valuations

$ & %	,.( .
Due to Definition 4.21 (see page 95) this means that ��� � is input-complete
except in the 6������ , � �$* % and !�"��#$"�&%('
��*,+-� locations.

(2) We prove that ��� � is deterministic in the sense of Definition 4.20 (see
page 93).

First, we show that ��� � does not contain any internal action.

Indeed, notice that the test graph ��� does not have any internal action
by construction (thanks to the closure operation defined on page 260).
Thus, as ��� � is obtained from ��� by Algorithm 7.3 (see page 202),
then it also does not contain internal action. Therefore, ��� d  .

Second, we show that from each state of ��� � at most one symbolic tran-
sition can be fired, i.e. � # � @ 1
2 : % �;� �T� � 1
2 : � � G 1
2 : � � * ���$�	�� X # � �
@ 1
2>: [ #�
3 # � _ �� � / .
To prove this statement we need to consider the two following cases.

(a) Let # be a state of ��� � , and � be a valued output action of ��� � .
Then,

– as ��� � is obtained from the test case ��� by Algorithm 7.3
(see page 202) which does not augment ��� with symbolic
transitions labeled with output actions, and

– as ��� is deterministic by construction (thanks to the proce-
dure of the global determinization given on page 304),

thus, we immediately obtain that ���$�	�� X # ��� @ 1
2 : [ #�
3 # � _ �� � .
(b) Let # d $ .�%'&)( be a state of ��� � , and � d $+* %-,.( be a valued input

action of ��� � .
First, notice that if the location . is equal to either 6������ ,
!�"��#$"�&%('
��*,+-� or � �$* % , then ���$�	�� X # � � @ 1
2 : [ # 
3 # � _ � d�� . This
statement follows directly from the fact that the IOSTS ��� �



Making a Test Graph Input-Complete 205

does not contain any symbolic transition outgoing from 6������ ,
!�"��#$"�&%(')��*,+-� or � �$* % locations (see the construction of ��� � , or
more precisely, Algorithms 7.2 and 7.3 presented on pages 185
and 202).

Second, suppose that the IOSTS ��� � obtained from the test graph
��� by Algorithm 7.3 (see page 202), has ��� � symbolic transi-
tions ��
 % � � � % ��� (a) outgoing from the location . which is different
from 6������ , !�"��#$"�&%(')��*,+-� and � �$* % , (b) labeled with the input action*
, and (c) guarded with Boolean expressions � 
 % � � � %�� � . Then:

– If all symbolic transitions ��
 % � � � % ��� are also symbolic transi-
tions of ��� , then due to Algorithm 7.3 (see page 202) we know
that �!� 
 � � � � � � � � d �3254 6 . Next, as ��� is deterministic, we
get that ���$�	�� X # � � @ 1
2 : [ #�
3 # � _ � d � .

– Otherwise, there exists exactly one symbolic transition, say

� h ( � d � ��� � ), which was added to ��� � by Algorithm 7.3
(see page 202). The rest of the symbolic transitions, i.e.

��
 % � � � % � h�� 
 % � h " 
 % � � � % ��� are symbolic transitions of ��� such
that:

(i) the disjunction of their guards is not equal to true (see Algo-
rithm 7.3, page 202), i.e. �!� 
�� � � � � �Qh�� 
	� �Qh " 
5� � � � � � � � �d
�32 4 6 , and

(ii) the guards of these symbolic transitions are mutually exclu-
sive due to the fact that ��� is deterministic.

Next, as the symbolic transition � h was added to ��� � by Al-
gorithm 7.3 (see page 202), then its guard � h is equal to
 H��� 
 � � � � � ��h�� 
 � ��h " 
�� � � � � � � � . Thus:

– the disjunction between ��� 
�� � � � � ��h�� 
 � �Qh " 
 � � � � � � � �
and the guard ��h of the symbolic transition � h is trivially
equal to �32 4 6 ,

– moreover, the guard ��h of � h is disjoint with the guards of
the symbolic transitions ��
 % � � � % � h�� 
 % � h " 
 % � � � % ��� , i.e. ��� �
* � % � / � * ��� �d �8� d�� ���Qh�] �
	 � d�� * .+# 6 / . Thus, using the
item (ii) we obtain that the guards of all symbolic transitions

��
 % � � � % � h % � � � % ��� are mutually exclusive.

From the items above we deduce that ���$�	�� X # � � @ 1)2 : [ # 
3
# � _ � d � .

�������	�
�



206 Symbolic Test Generation

At the end of the subsection we illustrate the algorithm producing an input-
complete test graph with an example.

Example 7.7 Consider the test graph ����� shown on Figure 7.10(b) (see
page 191) obtained after the selection algorithm (see page 185). The alphabet of
input actions of the given ����� consists of the two following elements:

� � � ')��" and� �&%(*,+-�u� . Notice that ����� is not input-complete in the sense of Definition 4.21
(see page 95) as, for instance, in the location

$�� �	�-*,"�% � �	�-*," ( it does not accept
neither

� � �T' ��" nor
� �&%(*,+-�u� input actions. Thus, we complete ����� with the input

actions as follows: we allow the test graph ����� to accept incorrect inputs in all
locations except the location 6������ , but we redirect them to the location � �$* % . For
example,

(1) consider the location
$ � �&%(*,+-�u��
 % � �	�-*," ( (see Figure 7.10(b), page 191). As

����� can receive the input action
� �&%(*,+-�u� only when the guard

� - ����6R��*c��� � � �]
�z+ 6��$* � � � �]
�z+ 6��$* � d ��6R��*c���q�]
�,4 � �u+-�u����)� d + � �u+-�u����)����]
�z+ � �u+-�u����)� d COFFEE �

is satisfied, then we create another symbolic transition accepting the in-
put action

� �&%(*,+-�u� in the case when the guard � is not satisfied, however
this new symbolic transition must go to the � �$* % location (see Figure 7.12,
page 207).

(2) consider the location
$ � �&%(*,+-�u��
 % � �	�-*," ( of ����� (see Figure 7.10(b),

page 191). This location must be completed with the input action
� � �T' ��"

by adding the new transition outgoing from
$ � �&%(*,+-�u��
�% � �	�-*," ( leading to

� �$* % , and labeled with the input action
� � �T')�u" (see Figure 7.12, page 207).

The input-complete test case ��� obtained from ����� is shown in Figure 7.12
(see page 207). Notice that, when this test case receives an incorrect input, e.g.� � �T' ��" in the location

$ � �&%(*,+-�u��
 % � �	�-*,")( , it does not block it, it produces the � �$* %
verdict.
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(cPrice >= 1) and (vPaid = 0) and (vBeverage = TEA)

<Begin,Begin>

<Pay,Begin>

(cPrice >= 1) and (vPaid = 0) and (vBeverage = TEA) and 
 (pCoinValue >= 1) and (pCoinValue >= cPrice) 

 Coin ! (pCoinValue) 
 vPaid := 0 + pCoinValue

Fail

Return ? (pRemaningValue) Deliver ? (pBeverage)<Choose,Begin>

(cPrice >= 1) and (vPaid >= cPrice) and (vBeverage = TEA) and 
 (pRemaningValue = vPaid - cPrice) 

 Return ? (pRemaningValue) 
 vPaid := cPrice

not ((cPrice >= 1) and (vPaid >= cPrice) and (vBeverage = TEA) and 
 (pRemaningValue = vPaid - cPrice)) 

 Return ? (pRemaningValue)
Deliver ? (pBeverage)

<Delivery,Begin>

(cPrice >= 1) and (vPaid = cPrice) and (vBeverage = TEA) and 
 (pBeverage = COFFEE) 

 ChooseBeverage ! (pBeverage) 
 vBeverage := pBeverage

Return ? (pRemaningValue) Deliver ? (pBeverage)

Pass

(cPrice >= 1) and 
 (vPaid >= 1) and (vPaid = cPrice) and 

 (pBeverage = vBeverage) and (vBeverage = COFFEE) 
 Deliver ? (pBeverage)

Return ? (pRemaningValue)

not ((cPrice >= 1) and 
 (vPaid >= 1) and (vPaid = cPrice) and 

 (pBeverage = vBeverage) and (vBeverage = COFFEE)) 
 Deliver ? (pBeverage)

Figure 7.12: Input-complete test case

� �

.
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7.5.2 Traces of a Test Case

In this subsection we consider a test case derived by the symbolic test genera-
tion method described in Chapter 7 (see page 167). The main purpose of this
subsection is to characterize the set of traces of the given test case.

First, we notice that any test case ��� �� � �  � has three kind of verdicts,
namely, 6������ , !�"��#$"�&%('
��*,+-� and � �$* % . Therefore, its set of traces contains traces
leading to pass, inconclusive and fail states. We remind that the notions of traces
leading to 6������ and !�"��#$"�&%('
��*,+-� were already introduced for a test graph ��� (see
Definition 7.3, page 196), and they are the same for the test case ��� . Therefore,
we have to introduce only the notion of traces leading to fail states of ��� .

Definition 7.4 (Traces of ��� Leading to Fail) Let ��� be a test case with
set of states @ 1�� , set of initial states @ / 1�� F @ 1�� , and set of fail states

� 
 � � F @ 1�� .
Then, the set of traces leading to states belonging to

� 
 � � is defined as follows:

�����
	������� <���� ������� ����� �����!	"�� � ���#�%$�&(' / �*) / 1��,+ '.- 0 h��
�0/21436587:9;' /=<> '?- 0 h���@�A (7.20)

In the rest of the thesis any trace belonging to �`��������� �B� <C� �����Q� is called a fail

trace.  

Then, we consider the test case ��� derived from some test graph ��� by Algo-
rithm 7.3 (see page 202), and make several observations/lemmas characterizing
the sets of fail, pass and inconclusive traces of ��� .

Lemma 7.4 (Pass Traces of ��� ) The set of pass traces of the test case ���
is equal to the set of pass traces of the test graph ��� , i.e.

����������� J ��DED ������� d �`��������� J ��DED �������
 

Proof In order to prove the lemma we have to show the two following inclusions.

( F ) Consider a pass trace �\dY� 
 � � � � � of the test graph ��� and prove that it
is a pass trace of the test case ��� .

By Definition 7.3 (see page 196) we know that the trace � leads from an
initial state #E/ d $ .T/ %'&�/ ( � @ / 1
2 to some pass state #HG 0 ici

d $ 6������ %'&�G 0 ici	(
�

� 
���� of ��� . Moreover, we know that the trace � corresponds to a sequence
of consecutive symbolic transitions: I - . / 0�J2 3 . 
 � � �=. � � 
 0"K2 3 6������ where
. 
 % � � � %�. � � 
 are locations of ��� , and

* 
 % � � � % * � are input/output actions of
��� corresponding to � 
 % � � � % � � which constitute the trace � .
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Then, due to the last step of the test case construction (see Algorithm 7.3,
page 202), we know that ��� and ��� have the same structure except of
new symbolic transitions leading to the � �$* % location which were added to
��� . Thus, ��� contains the sequence of symbolic transitions I .
Finally, as ��� and ��� have the same initial condition (see Algorithm 7.3,
page 202), and ��� is deterministic (see Theorem 7.2, page 203), then the
trace � executing on ��� from the same initial state # / as ��� leads to the
same pass state #2G 0 ici as ��� .

Therefore, � is a pass trace of the test case ��� (see Definition 7.3, page 196
which is the same for ��� ).

( F ) The proof of the second inclusion is similar to one of the first inclusion � F�� .
�������	�
�

Lemma 7.5 (Inconclusive Traces of ��� ) The set of inconclusive traces of
the test case ��� is equal to the set of inconclusive traces of the test graph ��� ,
i.e.

�`���������=<a>A@bBc>A@A�����:� d �����������=<a>A@bBc>A@u�������
 

Proof This lemma can be proved similarly as Lemma 7.4 on page 208. � �	���	�
�

Before characterizing the set of traces and the set of fail traces of the given test
case ��� , we make an observation about the form of a fail trace.

Observation 7.3 (The Form of a Fail Trace of ��� ) Let ��� be a test case
with set of valued input actions � � . Then, any fail trace � of ��� has the form:��)	�� , where ���� ������������������� and �^� � � .  
This observation follows directly from the construction of the test graph ��� (see
Algorithm 7.3, page 202). Indeed, as an � �$* % location of ��� is different from the
initial location . / 1�� of ��� , then the set of fail states of ��� is different from the
set of initial states of ��� . Therefore, � leading to some fail state cannot be an
empty trace. Moreover, as ��� can move to an � �$* % location only by taking some
symbolic transition labeled with an input action (see Algorithm 7.3, page 202),
then the last valued action � of � is a valued input action of ��� .
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Lemma 7.6 (Traces of ��� ) The set of traces of ��� is the union between the
set of traces of ��� and the set of fail traces of ��� , i.e.

�`���������������Q� d ������������������� � �`��������� �B� <C� �����Q�
 

Proof The proof of this lemma follows from the two statements shown below.

(1) All traces of the test graph ��� are included into the set of traces of the
test case ��� , i.e. �`�����������E������F �������������E����� .
Indeed, as the test case ��� is derived from ��� by adding new symbolic
transitions leading to the � �$* % location (see Algorithm 7.3, page 202), then
it keeps the structure of ��� . Therefore, any trace of ��� will be a trace of
��� .

(2) The trace � is a trace of the test case ��� and not a trace of the test graph
��� if and only if it is a fail trace of ��� , i.e. ���`���������������Q�-PQ�`���������������Q�M� d
�`��������� �B� <C� �����Q� .
( F ) We show that �E�������������E�����P �������������E���Q�=��F �`��������� �B� <C� �E����� .

This inclusion can be proved by contradiction.

Consider a trace � d � 
 � � � � � belonging to �E�������������E����� P
�`�����������E�����M� . Assume that this trace � does not belong to
�`��������� �B� <C� �����Q� . Thus, � leads to a state corresponding to a location .
different from � �$* % .
Next, we know that ��� has a sequence of consecutive symbolic transi-
tions: I - . / 0 J2 3 . 
 � � �M. � � 
 0 K2 3 . corresponding to � , where .0/ %M. 
 % � � � %�. � � 

are locations of ��� and

* 
 % � � � % * � are input/output actions of ���
that correspond to � 
 % � � � % � � . Moreover, . / �d � �$* % (see Algorithm 7.3,
page 202), . �d � �$* % (due to the assumption that � is not a fail trace of
��� ), and . 
 �d � �$* % % � � � %�. � � 
 �d � �$* % (due to the fact that there are no
symbolic transitions outgoing from the � �$* % location, see Algorithm 7.3
on page 202).

Finally, as the sequence I of ��� does not contain any symbolic tran-
sition leading to the � �$* % location, then due to Algorithm 7.3 (see
page 202) I is also a sequence of consecutive symbolic transitions of
��� . Therefore, the trace � is the trace of ��� . This contradicts with
the assumption that �\� ���`�����������E�����P �`�����������E�����M� .

( F ) We show that �E�������������E�����P �������������E���Q�=��F �`��������� �B� <C� �E����� .
Consider a trace � d ����	`� belonging to ����������� ��� <��T������� . Then, by
definition of a fail trace (see page 208), we obtain that:
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(a) � is a trace of ��� , and

(b) ����� ��� n8m v � � F � 
 � � . Therefore, the last action of the trace � ,

i.e. � corresponds to a symbolic transition of the form . 02 3 � �$* % ,
where . is a location of ��� and

*
is an input action of ��� . Then,

we know that the symbolic transitions of this form were added to
��� by Algorithm 7.3 (see page 202), thus � cannot be a trace of
��� .

The items (a) and (b) imply ( F ).

Therefore, we have shown that ���`���������������Q�fP �������������E�����M� d
����������� ��� <C� �E����� .

The proof of the lemma follows directly from the items (1) and (2). � �	���	� �

At the end of this subsection we study the relationship between the set of fail
traces of the test case ��� , and the set of traces of the specification 3�45��� from
which ��� was generated.

Lemma 7.7 (Traces of ��� Leading to Fail) Let ��� be a test case generated
from a specification 3�45��� � �)� � � � and a test purpose �76 of 3�45��� as it was
explained in Sections 7.1–7.5 (see pages 169–202). Then, a trace of ��� leading
to some fail state is a trace of 3�45��� concatenated with a valued output action,
but it is not a trace of 3�45��� .

����������� �B� <C� �E�����RFx���`�����������83�45���E� 	 � GIKJML @ �P �������������83�45���E� (7.21)

where �`�����������K3�45���E� 	 � GIKJML @ WYX �Z	��;[
� � �`�����������K3�45���E�] �^� � GIKJ=L @ _  

Proof Consider a trace � belonging to ����������� �B� <C� �����Q� . Due to Observation 7.3
(see page 209) � has the form ���
	�� , where ���� �`�����������E����� and ��� � � 1�� .

(1) We prove that �edf���
	�� belongs to ���`���������-�K3�45���E� 	 � GIKJML @ � .
(a) First, we show that the last valued action of � , i.e. � is a valued output

action of 3�45��� .
Indeed, as:

– � is a valued input action of the test case ��� derived from the
specification 3�45��� by the symbolic test generation method (see
Sections 7.1–7.5, pages 169–202), and

– during selection (see Algorithm 7.2, page 185), the directions (in-
put/output) of all actions were inverted,
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then � is a valued output action of 3�45��� , i.e. �^� � GIKJML @ .
(b) Second, we show that the strict maximal prefix of � , namely �7� , belongs

to �������������83�45���E� .
As � d;��)	�� is a fail trace of ��� , then due to the definition of a fail
trace (see Definition 7.4, page 208) �ed}��� 	 � is a trace of ��� . Then,
using prefix closure we obtain that ��� is also a trace of ��� .

Next, remember that �`�����������E����� d ������������������� � �`��������� �B� <C� �E����� (see
Lemma 7.6, page 210), where ��������������������F �`�����������83�45���E� due to the
following equalities and inclusion:

�`����������� s m p m o n � k�mAn � o$p r�s�t�v m �83�45���:9;�76��=�M�� ��� �1)2
�

F [see Corollary 7.1, page 195]

�`����������� k�mun � oqp r�s�t�v m �K3�45���Q9f�76��M�� ��� �I �������
�

d
[see Theorem A.9, page 303]

�`����������� o$p r�s�t�v m �83�45���:9;�76��=� (7.22)
d

[see Theorem A.4, page 271]

�`�����������83�45���:9;�76Q�
d

[see Theorem 5.5, page 134]

�`�����������83�45���E�
Thus, if we prove that ��� does not belong to the set of fail traces of
��� , then we get that ��� is a trace of the test graph ��� , and therefore,
it is a trace of 3�45��� .
We prove that ��� �� ����������� ��� <C� �E����� by contradiction. Assume that� � belongs to �`��������� ��� <��T������� . This means that it leads to some state
corresponding to the � �$* % location of ��� . Next, as we know that ���
does not have any symbolic transition outgoing from the � �$* % location
(see Algorithm 7.3, page 202), then ��� does not have any valued
actions ��� � 1�� such that � 	�� is a trace of ��� . This contradicts the
fact that � � is the strict maximal prefix of trace � of ��� .

Therefore, �� �� ����������� ��� <��T������� , hence, �� � �`���������������Q� (again,
this is because ����� �������������E����� and �������������E����� d �������������E���Q� �
�`��������� �B� <C� �����Q� ). Finally, due to Formula 7.22, � � � �`�����������K3�45���E� .

The items (a) and (b) imply that �\� �������������83�45���E� 	 � GIKJML @ .
(2) We prove that a fail trace �edf����	8� of ��� does not belong to �������������83�45��� � .

This statement can be proved by contradiction.
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Assume that � d ��5	�� is a trace of the specification 3�45��� . Then, due to
Formula (7.22), this trace �ed}���
	�� belongs to �������������8356Hgzh{i�� .
Next, as � is a fail trace of ��� , then due to the item (1) of the proof of
this lemma, � is a valued output action of 3�45��� and 356yg8hji . Then, as ��� is
obtained from 356 g8hji by the selection algorithm (see page 185) which does
not prune any symbolic transitions of 356yg8hji that are labeled with output

actions, and guarded with satisfiable expressions; then �ed}��� 	 � is a trace
of ��� . This contradicts the fact that the fail trace � dx� � 	$� of ��� does
not belongs to the set of traces of ��� (see the item (2) of the proof of
Lemma 7.7, page 211).

Therefore, ���� �`�����������K3�45���E� , and the second part of the lemma is proved.

The items (1) and (2) imply the lemma. � ��� ���
�

7.6 Correctness of a Test Case

At this point of the chapter we know how to generate a symbolic test case start-
ing from a specification and a test purpose. However, we did not show that the
generated test case produces correct results while executed on some implementa-
tion under test. Thus, the aim of this section is to prove the correctness of the
given test case for a set of implementations in the sense of Definition 6.18 (see
page 163).

General Hypotheses. In this section we consider:

(1) a specification 3�45��� � �)� � � � with set of variables � IKJML @ and set of symbolic
constants � IKJ=L @ , which

(a) does not contain any syntactic livelocks (see Definition A.4, page 257),
and

(b) is deterministic with lookahead � ��� (see Definition A.15, page 307).

(2) a test purpose �76 of 3�45��� with set of variables � 1	� and set of symbolic
constants � 1�� ,

(3) a test case ��� �� � �  � derived by the symbolic test generation method
(see Figure 7.1, page 168) from 3�45��� and �76 . This test case ��� has the
following set of symbolic constants � 1�� d ��� IKJ=L @ � � 1�� �-PR� � IKJML @ � � 1�� � , and
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(4) the set of implementation under test ���������
	����� such that each imple-
mentation ����� belonging to ������� is modeled by the IOSTS ������������� �!�
which:

(a) is compatible for the parallel composition with "$# (see Definition 5.1,
page 100), and

(b) has the set of symbolic constants %'&)( *,+ such that there exists the bi-
jective function -/.!%'&)( *0+213 %547698;: such that <>=?�@%A&)( *0+CBED F0GIHKJIL0=NMPO
F0GIHKJKLQ-AL0=NMRMTS . Therefore, �U�V�WL0%'&)( *0+9MAOX�U�Y�WLZ%5476R8[:�M .

Then, we state and prove the following theorem about correctness of the given
test case "$# .

Theorem 7.3 (Correctness of "$# ) The test case "$# which is generated from
the specification \K]_^�` and a test purpose "ba by the symbolic test generation
method described in the first six sections of the current chapter is correct for the
set of implementations under test ������� . c

Proof Before proving correctness of the given test case we first introduce
some notations. Let d be a valuation of symbolic constants of "$# , i.e. de�
�U�Y�WLZ%gfihbMEOj�U�Y��L9L0%547698;:�kP%gfNlbMimnLZop476R8[:qk2oEfrlsM9M (see the item (3) of the general
hypotheses). Then, we denote by:

(a) "$#PL0d)M an instance of the test case "$# ,

(b) Lt\K]_^�`Vu/"ba MvL,dwM an instance of the synchronous product between \K]_^�` and
"ba .

Notice that by test case construction, "$# and \K]_^�`xuX"ba have the same
set of symbolic constants.

(c) \K]_^�`yL0d{z,|0}�~TM an instance of the specification \K]_^�` , where d9z�|Z}�~sO�L0d��q� z�|Z}�~ M and
� is the notation for the projection operation given on page 155.

(d) "baPL,d��R�qM an instance of the test purpose "ba , where dv�R�VO�L,d��q� �{� M .
(e) �������9L0dQ�R� ���0M an instance of the model ������� of an implementation under test

belonging to ������� , where dT�R� ���'O�L0d{z�|Z}�~��C-sM (this is possible to do due to the
existence of the bĳective function - between the sets of symbolic constants
of ������� and \K]_^�` , see item (4.b) of the general hypotheses).

Then, in order to prove the correctness of "$# we have to prove its soundness,
relative exhaustiveness, accuracy and conclusiveness. For this we consider an arbi-
trary instance "$#PL,dwM of "$# , and the corresponding instances \K]_^�`yL,d9z,|0}�~7M , "baxL0d��{�iM ,
L7\K]_^�` u�"ba MvL,dwM and �������RL,dQ�R� ���ZM of \K]_^�` , "ba , \K]_^�`�u�"ba and ������� .
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Finally, before proving the above mentioned properties of the test case "$# , it is
important to emphasize that "$# is:

(1) initialized (see Definition 4.19, page 92).

Indeed, we know that the given specification \K]_^�` and test purpose "ba are
initialized IOSTS (see Section 6.1 on page 137 and item (2) of Definition 6.8
on page 147). Moreover, we know that "ba is complete with respect to
\K]_^�` and compatible for the product operation with \K]_^�` (see the items
(3) and (4) of Definition 6.8, 147). Therefore, we can use Lemma 5.4 (see
page 121) saying that the synchronous product L7\K]_^�`�u>"baYM is an initialized
IOSTS. Moreover, the test case "$# generated from the initialized IOSTS
Lt\K]_^�`�u�"ba M is also initialized by construction.

(2) deterministic in the sense of Definition 4.20 (see page 93) by the test case
construction. For more details see the second item of Theorem 7.2, page 203.

Therefore, for the instance "$#PL,dwM of "$# we implicitly make use of Theorem 4.1
(see page 94). I.e. when we say that a trace � brings "$#PL0d)M in a given state, we
implicitly assume that LN"$#PL0d)M�� � FtJ�����M is a singleton.

Soundness of "$# . In this part of the proof we show that the test case "$#
rejects only non-conformant implementations under test. According to the
definition of a sound test case (see page 146), we have to show the following
implication:

L)"$#xL,dwM��	� G _ � ��
�N�������9L,dQ�R� ���ZMRM>O�� ��L �������9L0dQ�R� ���ZM�
����P\K]_^�`yL0d{z�|Z}�~7M9M

We consider a trace � O�������� of L��������9L0dQ�R� ���0M����'"$#PL0d)M9M producing the �! w�#"
verdict, and prove that �������9L,dQ�R� ���,M is non-conformant with \K]_^�`yL,dRz,|0}�~TM from
which "$#PL,dwM was generated.

Indeed, as L �������RL0dQ�R� ���ZM��$�A"$#xL0dwMRM generates the �! w�#" verdict after executing
the trace � , i.e. %)J&�(')
 � F L*��MAO+�! w�#" , then we get that:

(1) � � ���@� "),- I`�^��KL)"$#xL0dwMRM and � � ".,/ I`�^��KL��������RL,dQ�R� ���ZM9M (see Theorem 5.2,
page 112), and

(2) "$#PL,dwM�� � FtJ����0�1� �3254�	76 (see Definition 6.5, page 145).

Thus,
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(a) � � � � is a fail trace of "$#xL0dwM (see items (1), (2) and Definition 7.4,
page 208), and

(b) by the test case construction, � is a valued input action of "$#PL0d)M (see
Algorithm 7.3, page 202). Therefore, it is a valued output action of
�s�����RL0dQ�R� ���ZM .

Finally, as we know that ".,/ I`�^�� ��� ���,L)"$#YM � L)"),/ I`�^��IL7\K]_^�`NM0���	� 476R8[: M m
"),/ I`�^��IL7\K]_^�`NM (see Lemma 7.7, page 211), then the trace � � �)� of "$#PL,dwM
does not belong to ".,/ I`�^��KLt\K]_^�`NM , however, its maximal strict prefix does
belong to ".,/ I`�^��IL7\K]_^�`NM , i.e. � � �1��
��".,/ I`�^��IL7\K]_^�`NM� � � ��"),- I`�^��KLt\K]_^�`NM .
Thus, we obtain that � is a valued output action which cannot be obtained
in \K]_^�`yL0d{z,|0}�~TM after the trace � � , i.e. ��
��� ��� L7\K]_^�`yL0d{z,|0}�~TM�� � FtJ&� � � M .
Moreover, due to the items (1) and (b) given above, we know that
� is a valued output action obtained in �������9L0dQ�R� ���0M after � � , i.e. � �
� ��� L��������RL,dQ�R� ���ZM � � FtJ&� � � M .
Therefore, according to the definition of conformance given on page 140,
we get that �������RL,dQ�R� ���ZM is non-conformant with \K]_^�`yL0d{z,|0}�~7M , and the soundness
of the test case "$# is proved.

Relative Exhaustiveness of "$# . We prove that an implementation under test
which is non-conformant to the specification \K]_^�` and relative to the test
purpose "ba may be rejected by the test case "$# .

Formally, using Definition 6.15 (see page 161) we have to show that:

��L��������9L,dQ�R� ���,M�
 � �ifrl���� �{��� \K]_^�`yL,d{z,|0}�~7M9M O�� L)"$#xL0dwM��	� G _ � ��
�N�������{L0dQ�R� ���ZM9M

Suppose that �������RL,dQ�R� ���ZM is not conformant to \K]_^�`yL0dRz�|Z}�~TM relative to "baPL,dv�{�iM .
Due to the definition of the conformance relative to the test purpose (see
page 155) we know that:

� � � � \_a ,�^��EL��Y".,/ I`�^��ILRLt\K]_^�`�u�"ba MvL0d)M9MRM���� ��� � B (7.23)

D � ��� ��� L��s�����9L0dQ�R� ���0M�� � FtJ���� � M� ��
��� ��� Lt\K]_^�`yL0d{z�|Z}�~TM�� � FtJ���� � MUS
where � � is the set of valued output actions of the implementation �E����� and
the specification \K]_^�` .

Let us choose:

(1) a trace � � belonging to \_a ,�^���L��Y".,/ I`�^��KL9Lt\K]_^�`�u�"ba MvL,dwM9MRM , and
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(2) a valued output action � of \K]_^�`yL0dRz,|0}�~TM and �������{L0dQ�R� ���ZM ,
which satisfy Formula (7.23). Thus, we have that � O � � �)� is a trace
of �������9L,dQ�R� ���0M , but not a trace of \K]_^�`yL0dRz�|Z}�~TM , i.e. �/� "),/ I`�^��IL �������9L0dQ�R� ���0M9M and (� )
� 
��".,/ I`�^��IL7\K]_^�`yL0d{z�|Z}�~QM9M .

Then, we need to prove the two statements given below.

First, the trace � � is a trace of "$#PL,dwM .
Indeed, as we know that ��� is a trace of Lt\K]_^�` u "ba MvL,dwM (see item
(1) above and Definition 6.12 on page 154), then due to the following
equalities:

".,/ I`�^��KL9Lt\K]_^�`�u�"ba MvL,dwMRM
O [see Theorem A.4, page 271]

".,/ I`�^��KL#�&� �������[JILRLt\K]_^�` u�"ba MvL0d)M9MRM
O [see Theorem A.9, page 303]

".,/ I`�^��KL#'IJ F L*�&� �������;JiL9L7\K]_^�` u�"ba M�L0dwMRM9M� �	� 
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we obtain that � � is also a trace of \_a������rL,dwM .
Next, as we know that:

– � � is a trace of \_a������rL0d)M which is not an accepting trace, but the
prefix of an accepting trace (see the item (1) at the beginning of
the proof and Definition 6.12 on page 154), and

– the test graph " � is obtained from \_a������ by the selection algo-
rithm (see page 185) whose purpose is to select all accepting traces
of \_a������ such that their strict prefixes are not accepting traces of
\_a������ ,

then � � is a trace of the test graph " � L0d)M .
Therefore, as "),- I`�^��yLN"$#PL0d)M9MAO ".,/ I`�^��KL)" � L,dwMRM kW".,/ I`�^�� ��� ���ZL)"$#PL,dwMRM (see
Lemma 7.6 on page 210), then � � �/".,/ I`�^��KL)"$#gL0dwMRM .

Second, L)"$#PL,dwM�� � FtJ���� � M�� L{�4A� �Vk 2 4n	�6�k 	��! b�"�! 6$#��p	&%(' MEO*) .
Indeed, � � is not an accepting trace of L7\K]_^�`Au "baVM�L0d)M (see the item (1)
at the beginning of the proof and Definition 6.12 on page 154), then it
cannot be a pass trace of "$#PL0d)M , as due to the selection algorithm (see
page 185) only accepting traces may be transformed into pass traces
of the test case. Therefore, L)"$#PL,dwM�� � FtJ���� � M��>�4'����O+) .
Next, � � is the prefix of an accepting trace of Lt\K]_^�` u�"baYMvL,dwM (see
the item (1) at the beginning of the proof and Definition 6.12 on
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page 154), thus there exists at least one valued action � � executable
after � � in \K]_^�`�u "baxL,dwM . Moreover, � � can also be executed in
the test case "$#PL0d)M after the trace � � of "$#PL0d)M (see Algorithm 7.2,
page 185). Thus, ��� cannot be an inconclusive or fail trace of "$#PL0d)M
as by construction, the test case does not contain any symbolic tran-
sition outgoing from ����`�����` "��q�����y^ and �! w�#" locations. Therefore,
LN"$#PL0d)M � � FtJ�� � � M�� L{	 �  s�"�! 6$#��p	&%(' k32 4�	76iMAO*) , and the second state-
ment has proved.

Due to the First and Second items above, we obtain that the trace � � brings
the test case "$#PL,dwM to a state � � � fih corresponding to a location 	��
 fih different from a� )��� , ����`�����` "��i�����y^ and �! w�#" . Moreover, as the test
case is input-complete by construction (see the first item of Theorem 7.2,
page 203), then by Definition 4.21 (see page 95) we know that any valued
input action of "$#PL,dwM can be executed from the state � .
Next, as � is an input valued action of "$#PL0d)M (due to item (2) at the
beginning of the proof, � is a valued output action of \K]_^�`yL0d9z�|Z}�~7M ; and due
to the test case construction � �47698;: � � z,|0}�~ � O ��� fih � � � ), then � O � �&� � is a trace(��� )

of "$#xL0dwM .

Finally:

(a) According to the observation L � M we know that � 
��".,/ I`�^��KLt\K]_^�`yL,d�z�|Z}�~7M9M .
Thus, due to the following equalities and inclution:

".,/ I`�^��IL7\K]_^�`yL0d{z�|Z}�~QM9M
O [see Theorem 5.5, page 134]

".,/ I`�^��ILRLt\K]_^�`�u�"ba MvL,dwM9M
O [see Theorem A.4, page 271]

".,/ I`�^��IL*�&� �������;JiL9L7\K]_^�` u "baYM�L0d)M9M9M
O [see Theorem A.9, page 303]

".,/ I`�^��IL*'IJ F L*�&� � �����;JiL9L7\K]_^�` u�"ba MvL,dwMRM9M� �	� 

49l����� ��� �

M


[see Corollary 7.1, page 195]

".,/ I`�^��IL �RJ�� J � F L#'IJvFrL*�&� �������;JiL9L7\K]_^�` u "baVM�L0dwMRM9MRM� ��� 

f�� � � �

M

we obtain that � 
��"),- I`�^��KL)" � L0dwMRM . Therefore, as we know that � �
"),/ I`�^��ILN"$#PL0d)M9M (see the observation L � � M ), then due to Lemma 7.6 (see
page 210), � is a fail trace of "$#PL,dwM , i.e. L)"$#xL0dwM � � FtJ&����MU�3254�	�6 .
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(b) Due to the observations L�� M and L���� M we know that � �
".,/ I`�^��KL��������RL,dQ�R� ���ZM9M and �>��".,/ I`�^��ILN"$#PL0d)M9M . Then, by Theorem 5.2 (see
page 112), �>��".,/ I`�^��KL��������9L0dQ�R� ���0M��$�'"$#xL0dwMRM .

The items (a) and (b) imply that the test case "$#PL,dwM produces the �  w�#"
verdict after the execution of the trace � on �E�����RL,dQ�R� ���ZM . Thus, due to Defini-
tion 6.6 (see page 146) �������9L0dQ�R� ���ZM may be rejected by the test case "$#PL,dwM .
Therefore, the test case "$# is relatively exhaustive.

Accuracy of "$# . In this part of the proof we show that if a test case "$#
derived from a specification \K]_^�` and a test purpose "ba of \K]_^�` , produces
the a� )��� verdict, then the observed trace of the implementation under test
����� is a trace of \K]_^�` that leads to acceptance of "ba .

Due to Definition 6.17 (see page 162), we have to prove that:

< �>��"),- I`�^��KL)"$#xL0dwM����N�������RL0dQ�R� ���ZMRM BED %)J&�(')
 � F L#��MEOXa� )��� O��
�>� �Y"),- I`�^��KL9L7\K]_^�` u�"ba M�L0dwMRM!S

Consider a trace � belonging to the set of traces of the IOSTS
L)"$#PL,dwM��$�N�s�����RL0dQ�R� ���ZM9M . Then, as the test case "$#PL0d)M produced the a� )��� ver-
dict while executing � on �������9L,dQ�R� ���ZM , then due to Definition 6.5 (see page 145)
we get that L)"$#PL,dwM�� � FtJ&� ��M$�@�4'� � . Therefore, according to Definition 7.3
(see page 196), we obtain that � is a pass trace of "$#PL0d)M .
Next, as we know that:

(1) ".,/ I`�^��T6 ����� L)"$#PL,dwMRM O "),/ I`�^��T6 ����� L)" � L,dwM9M (see Lemma 7.4, page 208),
where " � L0d)M is an instance of the test graph " � from which the test
case was obtained by the last step of the symbolic test generation
method (see Figure 7.1, page 168), and

(2) ".,/ I`�^��T6 ����� L)" � L,dwMRM � �Y".,/ I`�^��ILRLt\K]_^�` u "ba MvL,dwMRM (see Lemma 7.2,
page 196),

then � is an accepting trace of Lt\K]_^�`'u "baVM�L0dwM . Therefore, the test case "$#
is accurate.

Conclusiveness of "$# . We prove that the test case "$# produces an
����`�����` "��i�����y^ verdict only when the observed trace of the implementation
under test is a trace of the specification \K]_^�` ending with an output action,
but it cannot be extended into a trace producing the a� )��� verdict.
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According to Definition 6.17 (see page 162), we have to show that:

< � ��".,/ I`�^��KL)"$#PL,dwM��$�N�s�����RL0dQ�R� ���ZM9M B
D�%)J��(')
��vF L#��MEO ����`�����` "��q�����y^ O��
�>� L)"),- I`�^��KLt\K]_^�`yL,d{z,|0}�~TMRM � � �476R8[: � � z,|0}�~ � M�� ".,/ I`�^��KLt\K]_^�`yL,d{z,|0}�~TM9M�
� �� a ,�^��EL��Y".,/ I`�^��ILRLt\K]_^�`�u�"ba MvL0d)M9MRM!S

Consider a trace � belonging to the set of traces of the IOSTS
LN"$#PL0d)M��$�N�������RL,dQ�R� ���ZM9M . Then, as the test case "$#PL0d)M produced the
����`�����` "��q�����y^ verdict while executing � on �������{L0dQ�R� ���ZM , then due to Defini-
tion 6.5 (see page 145) we get that L)"$#PL,dwM�� � FtJ�����M>� 	 �  s�"�! 6$#��p	&%(' .
Therefore, according to Definition 7.3 (see page 196), we obtain that � is
an inconclusive trace of "$#PL,dwM .
Next, as we know that:

(1) ".,/ I`�^��R��� :���� : LN"$#PL0d)M9MEO "),- I`�^��R��� :���� : L)" � L0dwMRM (see Lemma 7.5, page 209),
where " � L0d)M is an instance of the test graph from which the test case
was obtained by the last step of the symbolic test generation method
(see Figure 7.1, page 168), and

(2) ".,/ I`�^��R��� :���� : LN" � L0d)M9M � LN".,/ I`�^��KLt\K]_^�`yL0d{z�|Z}�~7M9M � � �47698[: ��� z�|Z}�~ � �
"),/ I`�^��IL7\K]_^�`yL0d{z,|0}�~TMRM9M_m a ,�^���L �Y".,/ I`�^��KL9L7\K]_^�` u "ba M�L0dwMRM9M (see Lemma 7.3,
page 200),

then � is a trace of the specification \K]_^�`yL0dRz,|0}�~TM ending with an output action
of \K]_^�`yL,d{z,|0}�~TM , but it not an accepting trace of L7\K]_^�`guX"ba MvL,dwM . Therefore,
the test case "$# is conclusive.

� B��xB�	 B



Conclusion

In the second part of the thesis we described the main principles of symbolic test
generation. All along this part we were guided by the objectives listed below.

Choosing of a Model for Representation of Reactive Systems. In order
to automatically generate test cases for reactive systems, these systems
must be modelized. As we showed it in the introductory part of the thesis,
there exist many models that can be used for modelizing such systems, for
example, FSM or IOLTS. However, almost all of them are too limited:
for instance, they do not allow the explicit representation of data. In this
thesis we propose a model, called Input-Output Symbolic Transition System
(IOSTS), that enables us to describe reactive systems more precisely by
explicitly taking into account their data. This model allows us to generate
test cases under the form of programs with variables, symbolic constants and
parameters (i.e. generic test cases, which are closer to industrial practice,
for instance, to TTCN [ISO/IEC/JTC1/SC21, 1992] test cases), and to
avoid the classical state-space explosion problem.

Introducing a New Test Generation Method. In Chapter 7 of the thesis,
we proposed a method for automatic test generation that treats the data
of a given system symbolically by combining a test generation approach
proposed earlier in our research group and described in Section 3.2.3.3 (see
page 57) with abstract interpretation [Cousot and Cousot, 1976], [Cousot
and Cousot, 1977]. This method enables us to avoid the problem of state-
space explosion and to derive generic test cases.

One of the points that confers originality to our symbolic test generation
method is the selection step. The purpose of this step is to compute a test
graph from a given IOSTS \_a������ that consists in the states which are reach-
able from some initial state of \_a ����� , and from which it is possible to go
towards some accepting states of \_a ����� . Remember that we cannot use the
exact computation of reachable and coreachable states since, in general, the
computation does not terminate. Therefore, we are compelled to compute
only over-approximations of such states. For this, we use abstract interpre-
tation, which is a very powerful technique enabling us to calculate different
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properties of the system statically, for instance, the over-approximations
of reachable and coreachable sets of states. However, one difficulty in the
use of such a technique is the choice of the best abstraction, i.e. we try
to make a compromise between a precise enough abstraction and the time-
complexity of a technique using this abstraction. Moreover, we mention
that in the STG tool that will be described in the next part of the thesis,
we use an abstract interpretation technique as a black-box. This choice does
not oblige us to know all theoretical details of abstract interpretation and,
at the same time, it enables us to use and compare different existing kinds
of abstractions. Up to now, we have connected STG with the NBac tool
[Jeannet, 2000a] which, using the polyhedra abstraction, computes over-
approximations of reachable and coreachable states. We believe that future
research in this direction can improve our test case generation method.

At the end of the second part of the thesis proved that the symbolic test
generation method derives abstract test cases that are correct in the sense
of Definition 6.18, page 163 (i.e. they are sound, relatively exhaustive,
accurate and conclusive). These test cases can be easily translated into
some programming language (for example, C++ or Java) and executed on
a real implementation under test (see [Clarke et al., 2001c] and [Ponscarme,
2002]).

In the rest of the thesis we will present the prototype called STG (Symbolic Test
Generator) in which we have implemented the symbolic test generation algorithm
proposed in the second part of the thesis. We will also describe the use of STG in
the testing of the bounded retransmission protocol [Helmink et al., 1994]. Finally,
we will compare STG with other existing tools that generate symbolic test cases
for conformance testing of reactive systems.



Part III

Implementation and
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Chapter 8

STG: Symbolic Test Generator

STG is a tool that implements the symbolic test generation method
presented in Chapter 6 (see page 137) in order to automatically de-
rive symbolic test cases from a formal specification of a system under
test and a test purpose which describes a set of the system’s behav-
iors to be tested (see [Clarke et al., 2002], [Clarke et al., 2001b],
[Clarke et al., 2001c]). We first present the architecture of the STG
tool. Then, we describe the use of STG in testing of a communication
protocol that transfers a data file though lossy channels as a sequence
of packets. The protocol is based on the well-known alternating bit
protocol, but it allows for only bounded number of retransmission of
each packet. Finally, we compare STG with other tools used in the
testing community.

The first prototype of the STG tool has been developed by Duncan Clarke. In
this prototype Duncan has implemented all steps of the symbolic test generation
described in Chapter 6 (see page 137) except of the determinization, moreover,
the selection of test cases (i.e. the computation of over-approximations of the
reachable and coreachable sets of states) has been based on the control structure
of IOSTS of (for more details see the paper [Rusu et al., 2000]). Recently, the
author of this thesis in the collaboration with Bertrand Jeannet has implemented
the semantic-based (or, data-based) selection of test cases (in order to compute
over-approximations of the reachable and coreachsble sets of states of a given
IOSTS, we approximate this IOSTS with polyhedra). This work was published
in the paper [Zinovieva, 2002].
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8.1 Architecture of STG

This section describes an architecture of the STG tool shown on Figure 8.1 (see
page 227), and explains the connections of STG with other tools.

Currently the STG tool supports three phases that are briefly described in
next paragraphs.

Parsing and Compiling. The phase of parsing and compiling takes as its
input a file containing a formal specification and test purposes represented in
a language similar to IF ([Bozga et al., 1999b], [Bozga et al., 2002]) which
is rather intermediate representation between low-level models as FSM, LTS,
or IOSTS, and popular high-level description languages as SDL [ITU-T, 1994],
Statecharts [Harel, 1987] or UML [Fowler and Scott, 2000] (where contraints are
represented in OCL [Warmer and Kleppe, 1998]). Then, this file is parsed, and
the specification and test purposes are compiled into low-level IOSTS models
which are used in the symbolic test generation phase.

Symbolic Test Generation. The phase of the symbolic test generation (1)
takes as its inputs a specification \K]_^�` and a test purpose "ba of \K]_^�` represented
as IOSTS, and (2) derives from them a test case that covers all behaviors of the
specification selected by the test purpose. The symbolic test generation phase
has been presented in the details in Chapter 7 (see page 167). Below we remain
the main steps of this phase, as implemented in the current version of the STG
tool.

(a) Product allows to intersect the behaviors of the given specification \K]_^�` with
the test purpose "ba which must be complete with respect to \K]_^�` . The aim
of this operation is to mark behaviors of the specification which we want to
test as accepting. For details you can see Section 7.2 on page 173.

(b) Closure and Determinization takes the synchronous product \_a from the
previous step, and produces a trace-equivalent IOSTS \_a������ that (1) has
no internal actions, and (2) is deterministic (see Sections A.1 and A.2,
pages 246 and 274). Notice that in the current version of the STG tool the
algorithm for determinization is in the phase of implementation.

(c) Selection allows to select a subgraph of \_a ����� that leads to the satisfac-
tion of the test purpose and contains fewer unreachable states as \_a������ .
The detailed description of the selection step is given in Section 7.4 (see
page 178).

(d) Adding the �  w�#" verdict. This step consists in making the IOSTS computed
at the previous step input-complete by adding symbolic transitions leading
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to the new �! w�#" location. This step is needed as the generated test case
must properly react on all inputs outgoing from an implementation under
test. If some input is not specified in \K]_^�` , then the test case must produce
the �! w�#" verdict (see Section 7.5, page 202).

After all these steps we obtain a correct (see Definition 6.18, page 163) test
case with three kinds of verdicts: a� )��� , ����`�����` "��i�����y^ and �  w�#" . a� )��� means
that no errors were detected and the test purpose was satisfied (i.e. there were
no observable difference between implementation and specification). ����`�����` "��i�����y^
means that, although no errors were detected, the test purpose cannot be satisfied
any more. �! w�#" means that an error was detected.

Translation to C++/Java. The conversion phase translates the test case
obtained after symbolic test generation, into a concrete test program capable
of interacting with an implementation interface-compatible with original IOSTS
specification. The test program is then ready to be compiled and linked with the
black-box implementation under test for the test case execution. The details of
the conversion phase into C++ and Java languages can be found in [Clarke et al.,
2001c] and [Ponscarme, 2002] respectively.

8.1.1 Connection of STG with Other Tools

The STG tool is integrated with three tools described below.

Dotty [Gansner and North, 2000] is used to view IOSTS in graphical form,
fully decorated with locations names, guards, input/output/internal actions and
assignments. For instance, Figures 6.1, 6.5 and 7.12 (see page 138, 149 and
page 207) which are the specification, the test purpose and the test case of a
simple coffee machine, were produced by Dotty.

NBac [Jeannet, 2000a] is a tool for analyzing synchronous and deterministic
reactive systems containing combination of Boolean and numerical variables. It
is used for computing an over-approximation of reachable and coreachable sets of
states for IOSTS. The information about the reachable and coreachable states is
used by the selection algorithm (see page 185).

Omega Calculator [Kelly et al., 1995] is a tool for analyzing formulas in
Presburger arithmetic. It is used during the test execution phase, in order to
evaluate the constraints and select specific values for outputs of the tester.
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8.2 Case Study: Bounded Retransmission Pro-

tocol

The Bounded Retransmission Protocol (BRP) is a simplified variant of a telecom-
munication protocol used by Philips. The purpose of this protocol is to transfer
a large file across a lossy channel as a sequence of small packets (called chunks)
within a limited amount of time. After the file transmission, the BRP indicates
whether this file was successful transmitted or not. Moreover, there are possible
situations in which the protocol does not know whether the retransmission of the
file was a success. The BRP is parametrized by (1) the retransmission bound,
and (2) the number of chunks.

The bounded retransmission protocol has attracted the interest of the research
community due to the fact that it has interesting aspects to verify, to prove and
to test. For instance, L. Helmink, M. Sellink and F. Vaandrager [Helmink et al.,
1994] modeled the BRP as Input-Output Automata [Lynch and Tuttle, 1989]
and proved its correctness using the COQ system [Dowek et al., 1993], [Bertot
and Castéran, 2004]. R. Mateescu [Dowek et al., 1993] translated the � CRL
representation of the BRP protocol given in [Groote and van de Pol, 1993] into
the LOTOS [ISO/IEC, 1988] language and verified the correctness of this protocol
using model-checking rather than theorem-proving. K. Havelund and N. Shankar
[Havelund and Shankar, 1996] used an abstracted version of the BRP obtained
by the PVS [Owre et al., 1992] theorem prover, and verified its correctness using
model-checking with MUR � [Melton et al., 1992] state exploration tool. V. Rusu,
L. du Bousquet and T. Jéron [Rusu et al., 2000] proposed a theoretical approach
to symbolic test generation, and illustrated it using the BRP protocol.

The aim of this section is to present the sender of the bounded retransmission
protocol as an input-output symbolic transition system, and to generate a test
case that examines some behaviors of this protocol. For this we will use the STG
tool presented in the previous section.

Plan of the Section. In this section we first describe the architecture of the
bounded retransmission protocol. We then explain how to modelize the sender
part of this protocol as an IOSTS. We also present a particular test purpose for
the BRP. Finally, we show the test case that was automatically derived (using
the STG tool) from the BRP specification and the given test purpose.

8.2.1 Architecture of the BRP

The two main purposes of the bounded retransmission protocol presented in
this section are (1) to receive a file from the user, and (2) to deliver this file
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Figure 8.2: The architecture of the Bounder Retransmission Protocol.

as a sequence of small chunks accompanied with an alternating bit to the re-
ceiver. The alternating bit is used to detect the duplication of transmitted
chunks. After each file transfer the user receives a confirmation: OK in the
case of success, NOT_OK in the case of failure, i.e. some chunk was lost, and
DONT_KNOW if neither success nor failure can be established (this case will
be explained later).

More precisely, the BRP consists of a sender that transmits a chunk across
a first lossy channel to a receiver that acknowledges each transmission along a
second lossy channel (see Figure 8.2, page 230). These two channels can either
lose a message (which is either a chunk of the file or acknowledgement) or deliver
it correctly. After transmitting a chunk the sender waits for an acknowledgement.
If no acknowledgement arrives then it perform the timeout and resends the chunk.
The sender attempts to send each chunk at most cChunkMax times. If for some
chunk (except of the last one) even the cChunkMax attempt failed, then the rest
of the file is skipped and the user receives the NOT_OK confirmation. If the
resent limit is reached for the last chunk of the file, then the file might have been
transmitted successfully. In this case the sender is not sure, thus the user will
receive the DONT_KNOW confirmation. Notice that the resend limit can be
reached due to a lost acknowledgement as the acknowledgement channel is lossy
as well.

In the rest of this section we explain a unit testing of the bounded retrans-



Case Study: Bounded Retransmission Protocol 231

mission protocol. More precisely, we focus on the testing of the sender part of
the BRP.

8.2.2 The Specification of the BRP sender

Figure 8.3 (see page 231) presents the IOSTS specification for the sender of the
bound retransmission protocol whose architecture was described in the previ-
ous subsection. We remind that an IOSTS is made up of locations and sym-
bolic transitions. Each symbolic transition is decorated with a guard, an in-
put/output/internal action, and a set of assignments (we use the := notation for
a single assignment). A symbolic transition is firable when its guard is satisfied
and a complementary action is offered by the environment for synchronization.
Transitions labelled with internal actions (Timeout1 and Timeout2) can be
fired without synchronizing with the environment. The specification of the BRP
sender has:

(1) two symbolic constants cChunkMax and cRetMax, which respectively stand
for the maximal number of chunks in the file being sent, and for the maximal
number of retransmissions of one chunk.

(2) four variables vFile, vAltBit, vChunkNumber and vRetNumber, where (a)
vFile is used to memorize the file that the sender must transfer across a
lossy channel; (b) vAltBit used in order to detect duplication of the chunks;
and (3) vChunkNumber and vRetNumber are needed to count respectively
the chunks and retransmissions.

(3) three communicating parameters pFile, pChunk and pAltBit, where (a) pFile
is a file to be transmitted; and (b) pChunk and pAltBit are respectively a
chunk and an alternating bit to be sent from the sender to the receiver
thought the first lossy channel.

The BRP sender behaves as following. On reception of the REQ input action
with a file pFile from the user, the sender first saves this file in a variable vFile, and
then iteratively sends chunks vFile[i] (where ��O���B B�=�������%
	����� ) accompanied
with an alternating bit vAltBit to the user thought the SEND output action.
A chunk can be either acknowledged (see the ACK input action), or timed out
(see the Timeout1 internal action). In the case of time out, the sender resends
the same chunk. The status of the whole transmission is described by either (a)
OK meaning that all chunks were sent and acknowledged, (b) DONT_KNOW
meaning that all chunks were sent and all except of last one were acknowledged,
and (c) NOT_OK meaning that meaning that some intermediary chunk was
not acknowledged.
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pChunk � vFile[vChunkNumber]

�

SEND ! (pChunk, pAltBit)
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vChunkNumber � cChunkMax

OK ! ()
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cChunkMax � � �

DONT_KNOW ! ()

Timeout2
vReqNumber � � �

vHead � � �

Figure 8.3: The specification of the BRP sender.
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8.2.3 The Test Purpose

In order to extract a test case from the given specification, we have to provide the
STG tool with a supplementary information called test purpose. A test purpose
describes the behaviors of the specification that have to be exercised.

Idle

Reject Accept

�
vChunkNumber �������	�

vChunkNumber �
��� cChunkMax
OK ! ()

�
vChunkNumber �
�� cChunkMax ����
pChunk �
� � vFile[vChunkNumber ��� ] �
SEND ! (pChunk ��� , pAltBit ��� )

vChunkNumber ����� � vChunkNumber �
�����

DONT_KNOW ! ()

Timeout1

NOT_OK ! ()

Figure 8.4: BRP test purpose.

Figure 8.4 (see page 233) illustrates a test purpose that selects from the BRP
specification shown on Figure 8.3 (see page 231), the feature where the the BRP
sender transmits all chunks exactly once (i.e. without retransmissions), and the
user receives the OK confirmation indicating a successful outcome.

This test purpose has two symbolic constants ��������� and ��� �"!$#&%('*)�+ ; one
variable ���,�"!-#.%(/0!$132��547658 ; and one parameter 9$�,�:!$#.%�6;8 . It is provided with
the <>=?=?@BADC location that indicates the accepting behaviors of the BRP specifica-
tion. Also notice that the EF@HG;@?=IC location of the test purpose is used to discard
executions in which the BRP sender does not behave as intended, i.e. it executes
the internal action Timeout1 known to be followed by a retransmission, or it
send to the user the DONT_KNOW or NOT_OK confirmation.

8.2.4 The Test Case

Finally, Figure 8.5 (see page 234) shows the IOSTS representing a test case derived
from the specification (see Figure 8.3, page 231) and test purpose (see Figure 8.4,
page 233) by symbolic test generation process (for the details you can see either
the Section 8.1, page 225 or Chapter 7, page 167). This test case is specific to
this test purpose, as different test purposes generate different test cases.

It we take the close look at the test case generated by the STG tool and
depicted in Figure 8.5 (see page 234), then we first can see that it examines
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Figure 8.5: The test case for the BRP sender.
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the behaviors of the specification that were targeted by the test purpose. More
precisely, it starts by giving to the sender, a file �

� � 	�� to transmit. Then it
expects to receive the successive chunks of this file, and tries to acknowledge
each chunk. If it succeeds and receives the OK confirmation, then the a  )���
verdict is generated (i.e. the test case moves to the a� )��� location shown in
green on Figure 8.5, page 234). This means that the implementation behaved in
conformance with its specification and the test purpose is satisfied, indeed, all
chunks were sent without retransmission. If the test case gets another copy of
the chunk that it has just received, then the sender performed a retransmission.
In this case the ����`�����` "��i�����y^ verdict is generated (i.e. the test case moves to
the ����`�����` "��i�����y^ location shown in yellow on Figure 8.5, page 234). This may
happen if the test execution did not immediately acknowledge the sent chunk
(i.e. the sender did not receive an acknowledgement, and, therefore, it proceeds
to resending the same chunk.) Finally, if some other input is received, the verdict
�  w�#" is generated (i.e. the test case moves to the �! w�#" location shown in red on
Figure 8.5, page 234). Indeed, in this case the implementation emitted an output
that is not allowed by specification. Due to the limited space Figure 8.5 (see
page 234) does not show all symbolic transitions leading to the �! w�#" location.

It is important to emphasize that the test case shown in Figure 8.5 (see
page 234), like all other test cases generated by our method, incorporates its
own oracle. All of the computation steps necessary to verify the correctness of
numeric results are extracted from the specification and used by the tester to
verify arguments as they are received.

8.2.5 Conclusion

This section has described an example of using STG for testing the sender of the
bounded retransmission protocol. We have focused on the explanation of how to
generate a test case starting from specification and test purpose represented as
IOSTS models. We did not explain the first and last phases of the STG tool,
namely:

– parsing and compiling of specifications and test purposes written in a dialect
of IF-language [Bozga et al., 1999a], into low-level IOSTS models, and

– translation of the IOSTS test cases to C++/Java programs which are ready
to be compiled, linked to an interface-compatible implementation, and ex-
ecuted.

as they are quite technical, and are described in [Clarke et al., 2001c] and [Pon-
scarme, 2002].

The STG tool is also used in the development of larger case studies based
on the Common Electronic Purse System (CEPS) whose technical specification
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is given in [CEPSCO, 2000]. In paper [Clarke et al., 2001a] we have already re-
ported the first results obtained by testing the part of this specification which is
called “CEP Inquiry – Slot Information” (see Section 8.7.1 of [CEPSCO, 2000]).
Currently the STG tool is being used to incrementally test a prototype imple-
mentation of the full CEPS specification.

8.3 Related Works

In this section we present the main aspects that show the difference between our
test generation method described in the second part of the thesis and implemented
in the STG tool, and the other symbolic techniques for automatic test generation
which were presented in the last section of the introductory part of the thesis.

Non-Deterministic Specifications. One of the aspects making a difference
between STG and the tools mentioned in Section 3.3 (see page 67) is that: the
STG tool is able to derive test cases from a subclass of non-deterministic specifica-
tions (the theoretical work about this aspect is done in Section A.2 of this thesis,
see page 274), while other tools are often limited to deterministic specifications.

Abstract Interpretation. The second remarkable aspect concerns methods
used for the test case selection and the form of generated test cases. It is not
hard to notice that the techniques described in Section 3.3 (see page 67) are based
on the constraint technology which has been popular during the last few years. It
is also important to remark that these techniques are able to generate test cases
in the form of test sequences (or trees) of a bounded length, while the STG tool
derives test graphs.

Indeed, the GATeL [Marre and Arnould, 2000] tool derives test cases from
a given LUSTRE formal specification by interpreting it as a set of constraints
over boolean and integer variables, and then solving this set of constraints. The
Agatha [Lugato et al., 2002] tool uses the symbolic simulation in order to generate
a test execution tree, where each node is represented as a constraint over the
variables characterizing the path of a given specification leading to this node,
and then searchs for a possible instantiation of this tree using some constraint
solver. The BZ-Testing-Tool [Ambert et al., 2002], developed by the researchers of
LIFC, University of Franche-Comté, in order to derive test sequences, computes
first all boundary states for a given system using the CLPS constraint solver,
then takes the system from the initial state to some boundary state using the
symbolic simulation, and finally tests all possible operations of the system in this
boundary state. Moreover, the test generation tools used for structural (white-
box) testing also use the constraint logic programming technology. For instance,
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INKA [Gotlieb et al., 1998], based on the constraint solving, allows to generate
a path in the control flow graph of a given C program leading to a specified
point of this program. C. Meudec in his works on automatic test generation (e.g.
[Meudec, 2001]) uses the CLP solver for symbolic execution of ADA programs in
order to generate test cases.

The method proposed in this thesis is quite different from the methods and
tools mentioned above. Indeed, instead of the use of the constraint technology in
order to derive test cases, we choose to use a technique of abstract interpretation.
This technique allows us to generate test cases under the form of test graphs
instead of bounded test sequences as the most of the tools described above do.
This representation of test cases gives us a possibility to have a global view on
the “past” and the “future” of a system under test. Unfortunately, by obtaining
the “generality” we loose the precision of derived test cases.

Another important aspect that distinguishes our test generation method from
the other ones concerns the labelling. The labelling is the process of the instanti-
ation of some system’s variables with their values. This permits to activate some
constraints. More precisely, the labelling consists in unfolding a symbolic test
sequence according to the values of some variables. Therefore, the labelling can
be considered as a kind of rough abstraction, where the system’s control structure
is refined by the possible values of some variables. The technique of abstract in-
terpretation is more precise. Indeed, the control structure of a system under test
is refined only when it is really needed, i.e. in the case when behaviors described
the past and the future of the system are divergent.

The technique of abstract interpretation becomes more and more popular in
the fields of verification and testing. For instance, commercial tools developed by
the PolySpace Technology company (see http://www.polyspace.com), widely
use abstract interpretation in order to automatically detect run-time errors at
the compiling time of programs written in ADA, C and C++. The idea of such
tools is following: they first compute some abstraction of a given program, and
then solve the problem on this abstraction. If any error is not detected in the
abstraction of the program, then it definitely does not exist in the program itself.
However, if an error is detected in the abstraction, this means that the program
may contain this error as well.
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Chapter 9

Conclusion

The work presented in the preceding chapters has been focusing on the
development of testing techniques for reactive systems, from theory up
to implementation. In this chapter we reassess the main objectives
that have been fixed at the beginning of the thesis, and we summa-
rize the work that has been done in order to achieve these objectives.
Finally, we give some ideas and hints for future research.

9.1 Summary

Motivation. This thesis has been placed in the area of black-box conformance
testing for reactive systems. In the first chapter, we explained the importance of
reactive systems in daily life. Such systems are usually large and complex, and
it is thus not so evident to implement them without any error. Even a small
error may lead to serious disfunctioning of the system (see the examples given
on page 2). Therefore, it is important to develop techniques detecting errors in
reactive systems and which make sure these systems are more error proof. In this
thesis we focused on the study of one of those techniques called testing.

In the second and third chapters we mentioned that during the last decades
testing theories and techniques for automatic test derivation have been developed.
Some of these techniques have been based on the model of Finite State Machines
(or FSM), and others on the model of (Input-Output) Labeled Transition Systems
(or (IO)LTS). Since the model of IOLTS is more suitable for the testing of reac-
tive systems than FSM, then we have focused on the study of the methods and
algorithms for the automatic test derivation based on IOLTS. We have partic-
ularly reviewed two efficient on-the-fly algorithms proposed in [Tretmans, 1992],
[Jéron and Morel, 1999]. We have also described already existing academic (e.g.
TorX [Belinfante et al., 1999], TGV [Fernandez et al., 1996]) and industrial (e.g.
Autolink [Telelogic, 1998], TestComposer [Kerbrat and Ober, 1999]) tools imple-
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menting these algorithms and produce correct test cases, which means essentially
that they always emit the correct verdict.

Nevertheless, the theories and tools based on IOLTS are somewhat limited.
They do not explicitly take into account the system data because the under-
lying model of IOLTS does not allow to do it. Thus, in order to derive test
cases from a specification of the reactive system modeled by an IOLTS, it is nec-
essary to enumerate the values of each datum used by the system. This may
result in the classical state-space explosion problem. Moreover, this enumera-
tion also has the effect of obtaining test cases, where all data are instantiated.
This contradicts the industrial practice, where test cases (written, for instance, in
the TTCN [ISO/IEC/JTC1/SC21, 1992] language) are real programs with data
(variables, symbolic constants and communication parameters).

Summary of the Thesis. In order to solve the issues mentioned above, we pro-
posed a new approach for the automatic generation of symbolic test cases under
the form of extended labeled transition systems with variables, symbolic con-
stants and communication parameters. These systems are called Input-Output
Symbolic Transition Systems (or IOSTS). In Chapter 4 we described the syntax
and semantics of the IOSTS model. We also introduced some subclasses of IOSTS
that are important for conformance testing (e.g. deterministic or input-complete
IOSTS).

In Chapter 6 we presented the background for conformance testing based on
IOSTS. Namely, we formally defined (1) the conformance relation 
���� between
a specification and an implementation under test that are both modeled with
IOSTS, (2) the notion of a test case and (3) the properties of test cases that
enable to establish the connection between test cases and the conformance rela-
tion. The work presented in this chapter was mainly inspired from the theory of
conformance testing developed by J. Tretmans and his colleagues from the Uni-
versity of Twente, Netherlands (see [Tretmans, 1994], [Tretmans, 1996b]) and the
research done in the VerTeCs team at IRISA/INRIA Rennes, France (see [Rusu
et al., 2000], [Jard and Jéron, 2002]).

Then, in Chapter 7 we described the symbolic test generation approach based
on the testing theory introduced above. This approach is a generalization of
that proposed in earlier works of our group in collaboration with the Verimag
laboratory in Grenoble [Fernandez et al., 1996] and referred to in the introductory
part of the thesis. However, some steps of our symbolic test generation approach
(especially concerning the selection of a test graph) are more complex than those
proposed in [Fernandez et al., 1996], as they have to take into account the data
of a given system.

The symbolic test generation approach was implemented in the STG tool. The
description of this tool and a case study of the bounded retransmission protocol
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were given in the third part of our work.

At the end of the thesis, we compared our approach with other symbolic
approaches for automatic test generation. The majority of these are based on
constraint propagation and use constraint solving techniques. Moreover, they do
not deal with the issue of non-determinism (remember that non-determinism is
highly prohibited in testing). The original points of our approach are: the use of a
technique of abstract interpretation at the moment of test case selection, and the
partial solution for non-determinism. Notice that we did not solve all problems
with respect to symbolic test generation. In particular, our approach also uses
a constraint solving technique while instantiating symbolic test cases during a
test execution. The technical details of test execution were not explained in this
document, but some of them can be found in [Clarke et al., 2001c].

We believe that our symbolic test generation approach deserves future atten-
tion, and that research to come can improve its applicability to industrial reactive
systems.

9.2 Future Research

The following ideas for future research are inspired from the work presented in
this thesis.

From ioc to ioco. Before going into details of the perspective described in this
paragraph, we remind the difference between the 
 � � � [Tretmans, 1996a] and

���� (see Definition 6.3, page 141) relations. That is, in the first hand, the
ioco relation makes a connection between a suspended specification �WL7\K]_^�`wM
and the suspended model of an implementation under test � L �E������M . It checks
whether after the execution of each suspension trace (i.e. trace that may
contain the special output action � ) of the specification, the implementation
produces only specified output actions or not. In the other hand, the ioc

relation links a specification \K]_^�` with an implementation under test �E����� ,
and is checks the same thing as 
���� � but for each proper trace (i.e. trace
that does not contain any � action) of the specification.

In this thesis, we have proposed an approach for symbolic test generation
that is based on the IOSTS model and the ioc relation. However, this ap-
proach has some weaknesses. One of them is the problem of blockings that
has not been addressed in the symbolic test generation part of the thesis.
Nevertheless, this has been described in the introductory part (see page 42).
In order to improve our symbolic test generation in this direction, one may
attempt the following approach (published as the research report [Rusu
et al., 2004]):
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(1) Limit the IOSTS model to one that does not contain syntactic livelocks
(cycles of internal actions) in it, and use the ioco relation [Tretmans,
1996a] as a correctness criterion instead of the ioc relation.

(2) For a given specification, construct its suspension IOSTS by encoding
all potential blockings (outputlocks and deadlocks) of a given specifi-
cation with the special output action � .

Remark that the problem of blocking detection is undecidable for IOSTS in
general. However, in the case of absentce of syntactic livelocks in an IOSTS

�
, it is possible to construct syntactically the suspension IOSTS of

�
.

The classical solution for the detection of unspecified blockings in an im-
plementation under test during a test experiment, is to equip each tester
with a timer indicating the amount of time that the tester has to wait for
an output to occur. If the output does not occur before a certain amount of
time, then the tester may conclude that this output will no longer occur. In
this case, it decides (maybe wrongly) that the implementation is blocked.

We believe that the suggestions given in this paragraph will help to improve
our symbolic test generation method.

Safety Properties. The report [Rusu et al., 2004] proposes an approach for
combining verification and conformance testing techniques. In this re-
port, the formal specification \K]_^�` of a given reactive system is modeled
by IOSTS, and each safety property of \K]_^�` is represented in the same
manner as a test purpose used in the symbolic test generation method.
Then,

First, each property is verified on \K]_^�` using automatic techniques (e.g.
abstract interpretation) that are sound but not necessary complete for
the class of safety properties considered here.

Second, for each property, a test case is automatically generated from the
specification and this property and is executed on a black-box imple-
mentation of the system.

If the verification step was successful, that is, it has established that the
specification satisfies the properties, then the execution may detect the
violation of the property by the implementation and the standard 
 � � � con-
formance relation [Tretmans, 1996a] between implementation and specifi-
cation. Otherwise, i.e. if the verification step did not conclude, that is, it
did not allow to prove or to disprove the property, then the test execution
may additionally detect a violation of the property by the specification.
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Coverage Criteria. The STG tool (just as its predecessor TGV [Fernandez
et al., 1996]) uses test purpose as the mechanism for test case selection.
Each test purpose in STG is given under the form of a graph. This repre-
sentation offers a software developer a natural way to (partially) describe
the behaviors of a given specification to be tested. Nevertheless, the manual
design of test purposes requires a good knowledge of the specification. This
means that the process of the test purpose designing is still quite difficult
for humans, in particular if a good coverage of the specification must be
targeted. We believe that the classical structural coverage criteria [Rapps
and Weyuker, 1985] combined with symbolic analysis may yield interesting
test purposes.

Case Studies. So far, we have only generated test cases from more or less clas-
sical academic specifications of a coffee machine and the bounded retrans-
mission protocol. The next important step is to apply our approach so as
to test realistic industrial systems. We have already made the first steps in
this direction: we generated some test cases for Common Electronic Purse
System (CEPS) [CEPSCO, 2000]. This case study gave us the promising
results published in [Clarke et al., 2001a]. Thus, it would be interesting
to continue such experiments. We also believe that future case studies will
contribute with essential information about the applicability of our symbolic
test generation approach, and will help to improve our approach.
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A.1 Closure: Eliminating Internal Actions

Motivation. A test case should react promptly to all inputs from the imple-
mentation. A natural way to obtain this requirement is to make every location
of a test case (except the verdict locations) input-complete. However, the possi-
ble inputs in some locations of the test case may be hidden by internal actions.
For example, consider the location 	�� of the IOSTS

�
shown in Figure A.1 (see

page 248). As you can see,
�

can execute from 	�� the internal actions ��� and ��� ,
but the input action = can be executed only after ��� . Then, if we make the loca-
tion 	�� input-complete (see Definition 4.21, page 95), we obtain that the action =
can also be executed before the internal action ��� , which leads to modification of
the system’s behaviors. Thus, to make location 	�� input-complete we first have
to eliminate ��� . Therefore, in order to obtain the input-complete test case, all in-
ternal actions have to be eliminated from the synchronous product \_a computed
from a specification \K]_^�` and a test purpose "ba of \K]_^�` on the previous step of
the test generation method (see Section 7.2, page 173).

One more reason for elimination of internal actions from \_a is that the re-
sulting test case must be deterministic as a testing verdict must not depend on
internal choices of the test case. Therefore, if the reader takes a close look at
the definition of a deterministic IOSTS (see page 93), then he/she can see that
the first requirement of being deterministic is to have the empty set of internal
actions.

In the works of T. Jéron and his colleagues ([Jard and Jéron, 2002], [Jéron,
2004], etc.) on the test generation based on the IOLTS model, the operation of
elimination of internal actions (called later closure) is incorporated directly into
the determinization algorithm. However, in this thesis we prefer to separate the
closure operation from the determinization algorithm as both of them are quite
complex.

Sketch of the Section. The aim of the third step of the test generation method
is to build visible behaviors of \_a (i.e. to eliminate internal actions from \_a )
leaving the visible semantics of \_a unchanged. However, the problem of the
elimination of all internal actions from \_a is undecidable in general due to the
possible presents of syntactical livelocks in \_a , (see explanations in Section A.1.2,
page 257). This section proposes the closure operation that eliminates all internal
actions from an IOSTS \_a except of whose that are either directly leading to, or
involved into, syntactic livelocks of \_a . This operation is based on the collapsing
of all sequences of internal actions described in the first subsection of the current
section. Finally, we prove that the closure operation does not change the visible
semantics of \_a . In other words, we show that the IOSTS obtained after the
closure algorithm is trace-equivalent to the given IOSTS \_a .
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A.1.1 The Collapsing Operation for a � -Sequence

This section introduces the collapsing operation for a contiguous sequence of sym-
bolic transitions, called � -sequence, of some IOSTS. The aim of this operation
is to encode the effect of such a sequence into one transition. It is important to
have a clear understanding of the collapsing operation as it is the main operation
used in Section A.1.3 in order to define the closure operation for IOSTS (see
Definition A.7, page 260).

Before giving the formal definition of the collapsing operation we consider an
IOSTS

� O ��� ��� � 
 � 	�� ��� �
	�� , where � O� � k��	��k���� is the alphabet of input,
output and internal actions, and:

(1) call actions belonging to L�� m�� � M visible actions, and

(2) denote a symbolic transition �'O �
	 � � ��� ��� ��� ��	 � �n��	 by 	��� 3 	 � .

Then, we introduce the notion of � -sequence for the IOSTS
�

. Intuitively, a
� -sequence is a contiguous sequence of symbolic transitions of the IOSTS

�
such

that (1) all symbolic transitions involved into its maximal strict prefix are labeled
with internal actions, and (2) the last transition of this sequence can be labeled
with either a visible or internal action. Formally:

Definition A.1 (Set of � -Sequences) Let
� O ��� ��� � 
 ��	�� ��� �
	�� be an

IOSTS. Then, the set of � -sequences, denoted by \p^��v��^ ��`�^�� � L � M , is the set
of all contiguous sequences of symbolic transitions:

 . 	 �"!� 3 	$#sBrBrB 	&%(')# ��*,+(!� 3 	&%-'/.0�� 3 	&%

where 2143 ; 	 ��	�. �rBrB B ��	&%P� 

; �5. �rBrBrB � �,%('/. �2��� ; and � �6� . c

Notice that � -sequences are prefix closed. This observation follows directly from
Definition A.1, and it is formally stated below.

Observation A.1 (Prefix Closure of � -Sequence) Any prefix of a � -
sequence, whose length is greater then zero, is also a � -sequence. c

For better understanding of the notion of � -sequence we propose the following
example.

Example A.1 Consider the IOSTS
�

shown in Figure A.1 (see page 248). To il-
lustrate the notion of � -sequences we consider the following sequences of symbolic
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���

���

���

��� ���

��	

��
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��

� ���

���
������� ���

� �

���
��� � � �!�

� �

� �
" �

� � ��#
$%��� � # �
�&#

� � " � � � � � " � � �

��')( � � � ' � � '
*,+�- +/. +

� � " � � �

� � " � � �

��021 ����� 0 � � 0

�,��� " ��� � ���

�43,5 � ��� 3 � � 3

� 

" 

� 


� � " � � ��  "  � 

Figure A.1: The IOSTS
�

before the closure.
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transition of
�

:

	�. �� 3 	$# � \p^��v��^ ��`�^�� � L � M��
	�. �"!� 3 	�� ���� 3 	�� � \p^��v�_^ ��`�^�� � L � M �
	�� � �� 3 	�� � �� 3 	 �

�� 3 	�	 � \p^��v�_^ ��`�^�� � L � M��
	�� � �� 3 	
�

�� 3 	 � � �� 3 	�
�� 3 	�

�� \p^��v��^ ��`�^�� � L � M
The first three sequences respect the Definition A.1 (see page 247), and there-
fore, belong to \p^��v��^ ��`�^�� � L � M . However, the last one does not belong to
\p^��v��^ ��`�^�� � L � M , as its second symbolic transition, which belongs to the strict
maximal prefix of this sequence, is labeled with visible action = , which contra-
dicts the definition of � -sequences.

The last important thing to notice is that the set of � -sequences for
�

is
infinite as

�
contains the cycle of internal actions 	 � � �� 3 	�� � �� 3 	�� . (Such cycles

of internal actions are called syntactic livelocks and are formally defined in the
next section.) c

Next, we remind that the purpose of this section is to introduce the operation
which transforms any � -sequence into one single symbolic transition keeping its
effect. This operation is called collapsing operation and defined as follows:

Definition A.2 (Collapsing Operation) Let

 . 	 �"!� 3 	$#� �	� 

� !

BrBrB � �	� 

� *�+ !

	&%(')# ��*,+(!� 3 � ��� 

� *

	&%-'/.0�� 3 	&%

be a � -sequence of an IOSTS
�

, i.e.  � \p^��v�_^ ��`�^�� � L � M , such that each
symbolic transition ��� ( �'O 3yB�B  ) of  has a guard �"� and assignments � � . Then,
the collapsing operation transforms  into the single symbolic transition:

� �)� � �iH �{JIL  M$. 	��� 3 	&%
with the guard � O � . �@L�� #�� � .�M ��BrBrB �@L�� % � � %('/.5�WBrBrB � � .9M and the
assignments ��O ��% � ��%('/.p� BrBrB)� � #�� � . . c

It is important to notice that, as the definition of collapsing operation is given
at the syntactic level, the guards and assignments are treated as expressions (not
functions) on variables, symbolic constants and corresponding parameters. There-
fore, the composition operation � between them is implemented as a syntactic
substitution.
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For instance, consider two symbolic transition � � and � � � of an IOSTS
�

with
set of variables o . Assume that � � is labeled with an internal action which by
Definition 4.2 (see page 81) does not carry any parameter, and � � � is labeled with an
arbitrary action carrying a tuple � (possibly empty) of parameters. Assume also
that � � O�� ��. O � �� � ��� o�� and � � � O�� ��.�O � � �� � � � o�� are the assignments
of � � and � � � respectively, and � � � is the guard of � � � . Then, � � � � � � is the set
of assignments � � .�O � � �� L��� � � � �� M � � � o ���� � o�� , where every occurrence of a
variable �� in the right-hand side of the assignments � � �� has been replaced by the
expression � � �� . Similarly, � � � � � � is the guard obtained by substituting, for every
����o , all the occurrences of � in � � � by the corresponding expression � �� . Notice
that, � � � � � � and � � � � � � depend on variables, symbolic constants of

�
and

parameters � carried by the action labeling the symbolic transition � � � .
To illustrate the collapsing operation defined above, we consider the following

example.

Example A.2 As we know from Example A.1 (see page 247), the following con-
tiguous sequence of symbolic transitions:

 
	 . � �	� 

� �

	�� � �� 3
� �� 
	� �

	�� � �� 3 	��
�� 3 	�	� �	� 

���

is a � -sequence of the IOSTS
�

shown in Figure A.1 (see page 248). Suppose
that the symbolic transitions �  , � 	 and � � of  	 have the following guards and
assignments:

Symbolic

Transition
Guard Assignments

�  � 5. � . 1 � �  .�� � . . O � .������ �-#C.�O 3��
� 	 � 	5. � .�� �-# 1 � � 	 .�� � . . O ��� �-#5.�O � .�� �-#��
� � � � .�� 1 �-# � � .�� � . . O �-#�� �(# . O���� �-#��

where � . , �-# are the variables of
�

and � is the parameter carried by the visible
action � labeling the symbolic transition � � .

Then, by applying the collapsing operation (see Definition A.2, page 249) to

� -sequence  
	 , we obtain the symbolic transition � �)� � �iH �{JiL  	 M2. 	��
�� 3 	�	 such

that:

– the output action � carrying the same parameter � as the action � labeling
the symbolic transition � � ,

– the guard � is equal to L�� . 1 �qM� �	� 
� �

� LRL�� .����IM � 3 1 �qM� ��� 
� �"!$# �

� L�� 1 L � .%���iM � 3wM� ��� 
� � !$# �"!$# �

,

where � 	E� �  .�� � . . O ��� �(#5. OjL�� .&���IM'�3�� , and
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– the assignments ��O � � � � 	r�)�  is � � . . O L�� .�� �iM���3 � �(# O���� L � .�� �iM ��3 � .
c

Thus, at this point of the section we know how to syntactically collapse any � -
sequence  of an IOSTS

�
into a single symbolic transition � �)� ���IH �RJIL  M . The next

step is to show that the effect of the symbolic transition � � � ���IH �{JIL  M is equivalent
to that of  , i.e. we move from the syntactic level to the semantic one.

Notice that at the semantic level, guards and assignments of symbolic tran-
sitions of

�
are interpreted as functions. More precisely, let � be a sym-

bolic transition with an action � carrying a tuple � of parameters, a guard
� and assignments � . Then � can be identified with a function from val-
uations of variables o , symbolic constants % and parameters � to Booleans,
i.e. � . �U�Y�WLQo k %@k2�EMg13 � � � � ����- ��	 � � � ; and assignments can be identified
with a function from valuations of o , % and � to valuations of o and % , i.e.
�
. �U�Y��LQo k % k6��MV13 �U�V�WLZo k %2M . Moreover, the composition � between
either two assignments, or a guard and assignments, at the semantic level is
interpreted as the standard composition between functions.

For example, consider two symbolic transition ��. and � # of an IOSTS
�

with
set of variables o and set of constants % . Assume that ��. is labeled with an
internal action which by Definition 4.2 (see page 81) does not carry any param-
eters, and � # is labeled with an arbitrary action carrying a tuple � (possibly
empty) of parameters. Then, for assignments � . and � # of ��. and � # respec-
tively, the assignments � #�� � . denotes the function that associates, to valuations� � �U�Y�WLQo�k %2M and � � �U�V�WL �EM the valuation of variables and symbolic
constants � #wL � � .vL � M���� ��M . Also, an assignment � . and a guard � # of a symbolic
transitions ��. and � # respectively, can be composed together, i.e. � #p��� . denotes
the function that associates, to valuations

� � �U�V�WLZo�k�%2M and �@� �U�Y�WL �EM ,
the Boolean value � #)L � � . L � M ��� ��M .

Next, we prove that for any � -sequence  of an IOSTS
�

, the effect of the
symbolic transition � �)� � �iH �{JIL  M is equivalent to that of  . Before showing this, we
define the composition, denoted as � , between two local transition relations of

�
.

Definition A.3 (Composition of Local Transition Relations) For two
local transitions relations 3 � ! �

� u ���xu �
and 3 ��� � � u ��u �

, where
�

is a
set of states, � is a set of valued actions and � �x��� is a set of internal actions,
the composition of 3 � ! and 3 � � , denoted as 3 � � �x3 � ! , is the set:

� � �(. �-� ��� #���� � u � u � � � � � � � �-� � � � � BED � �(. �-� � � � � �n��3 � ! � �
� � �-� � � #��n��3 ��� S �

c
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Theorem A.1 (Preserving the Effect of � -Sequences by the Collapsing
Operation) Let

 . 	 �"!� 3 	$#� �	� 

� !

BrBrB � ��� 

� *,+(!

	 %(')# ��*�+ !� 3 � �	� 

� *

	&%('/. �� 3 	 %

be a � -sequence of an IOSTS
�

, i.e.  � \p^��v�_^ ��`�^�� � L � M . Also, let 3 �  ( ��O 3yB�B  )
and 3������ � ���	��
 �� � be the local transition relations corresponding to the symbolic
transition ��� of  and to the symbolic transition � �)� � �iH �{JiL  M . Then,

3������ � ���	��
 ��� � O LQ3 � * � LQ3 � *�+ ! ��B BrBN�VLQ3 ��� �x3 � ! M BrBrB M9M
c

Proof The proof is done by induction on the length of the � -sequence  �
\p^��v�_^ ��`�^�� � L � M .
Induction Basis. Consider a � -sequence  . 	 �� 3 	�.� �	� 


� !
� \p^��v��^ ��`�^�� � L � M of length

one, where the symbolic transition ��. has the guard � . and the assignments
� . . Then trivially 3������ � ���	��
 �� � O 3 � ! (see Definition A.2, page 249).

Induction Hypothesis. Assume that for the � -sequence

 � . 	 �"!� 3 	�.� ��� 

� !

BrB B 	&%-')# �� 3 	&%('/.� ��� 

� *,+(!

� \p^��v��^ ��`�^�� � L � M

which has length  � 3 , the equality shown below holds.

3������ � ���	��
 ���� � O LQ3 � *�+ ! � LtBrBrB)�VLQ3 ��� �x3 � ! M BrBrB M9M

Induction Step. Consider a � -sequence of length 

 . � �	� 

� �

	 � !� 3 	�. BrBrB�	&%-')# ��*�+ !� 3 � �	� 

� *

	&%('/. �� 3 	&% � \p^��v�_^ ��`�^�� � L � M (A.1)

and prove that the equality below holds.

3 ����� � ������
 �� � O LQ3 � * � LQ3 � *,+(! ��BrB B)�gLZ3 ��� �g3 � ! M B BrB M9M

Due to Observation A.1 (see page 247), the maximal strict prefix  � of the
given � -sequence  (see Formula (A.1), page 252) is also a � -sequence of

�
. Thus,  � can be collapsed according to Definition A.2 (see page 249)
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to the symbolic transition � �)� � �iH �{JIL  � M . 	 ��*,+(!� 3 	 %('/. with the guard � � O
� . �eL�� #U� � .�M � BrB B��eL�� %('/.E� ��%-')#!�PBrBrBy� � .�M and the assignments � � O
��%-'/.�� ��%(')#���BrB Br� � . . Consequently, the � -sequence  (see Formula (A.1),
page 252) can be equivalently represented as:

 . � ��� 

� ��� � ���	��
 ��� � �
	 ��*,+(!� 3

� *� 
�� �
	&%-'/.0�� 3 	&% (A.2)

Therefore, to prove the induction step it is enough to show the equality:

3������ � ������
 �� � O 3 � * �g3�� ��� � ���	��
 ���� � (A.3)

Notice that � � � ���IH �{JIL  M is the syntactic transition 	 �� 3 	&% with the guard
� O � . � L�� #�� � .9M � B BrB � L�� %�� � %('/.���BrBrB � � .�MAO � � �>L�� %�� � � M , and the
assignments ��O ��% � ��%-'/.b� BrBrBN� � .!O ��%5� � � .
( � ) First, we prove that for all triples

���
	 � � �� �	� 
�

� � � ��� �� ��� 

� *

� � 	&% � � % �� �	� 
� *
� belonging to

3������ � ���	��
 �� � , there exist two triples
���
	 � � �� �	� 
�

� � �,%('/. � � ���� ��� 

� *,+(!

� � 	&%('/.�� � %-'/.
�� ��� 
� *�+ !
� and

���
	&%-'/. � � %('/.
�� �	� 
� *,+ !

� � � ��� �� ��� 

� *

� � 	&% � � % �� �	� 
� *
� belonging respectively to 3 ����� � ���	��
 ��� � � and

3 � * . Here,
�
,

� %('/. and
� % are valuations of variables and symbolic

constants of the IOSTS
�

; and � is a valuation of parameters �
carried by the visible action � .
(1) As

���
	 � � �� �	� 
�

� � � � � �� �	� 

� *

� � 	 % � � % �� �	� 
� *
� belongs to the local transition relation

3������ � ���	��
 ��� � , then, due to Definition 4.7 (see page 86), we obtain
that:

(a) the pair of valuations
� � ��� � satisfies the guard �@O� � ��L�� %A�

� � M of � �)� ���IH �RJIL  M , and

(b) the valuation
� % is obtained from the pair of valuations

� � ��� �
by the assignments � , i.e.

� %gO �2L � � ��� ��M .
(2) Consider the state � %-'/.!O �

	&%('/. � � %-'/.
� , where 	&%('/. is the target of
the symbolic transition � � � ���IH �{JIL  � M , and

� %-'/. is the valuation of
variables and symbolic constants of

�
obtained from

�
using the

assignment � � of � � � ���IH �{JIL  � M . (Notice that we did not mention the
valuation of parameters, as the symbolic transition � �)� ���IH �RJKL  � M is
labeled with the internal action � %('/. which, due to Definition 4.2
(see page 81), does not carry any parameters.) Then,
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(a)
���
	 � � �� �	� 
�

� � �,%('/.�� � ���� ��� 

� *�+ !

� � 	&%-'/.�� � %('/.��� �	� 
� *�+ !
� � 3 � ��� � ���	��
 ����� � due to the fol-

lowing facts:

– 	 and 	&%('/. are respectively the origin and the target of
� �)� � �iH �{JIL  � M ,

– �,%('/. is the internal action labeling � �)� ���IH �RJKL  � M and carrying
the empty tuple of parameters,

–
�

satisfies the guard � � of � � � ���IH �{JiL  � M because:

- � � does not depend on any parameters as � �)� � �iH �{JIL  � M is
labeled with the internal action � %('/. that does not carry
any messages (see Definition 4.2, page 81), and

-
� � ��� �	� O � � � L�� % � � � M (see the item (1.a) above).

–
� %('/.'O � � L � M (see the beginning of the item (2)).

(b)
���
	&%-'/. � � %('/.
�� �	� 
� *,+ !

� � � ��� �� ��� 

� *

� � 	&% � � % �� �	� 
� *
� � 3 � * due to the facts:

– 	&%-'/. and 	&% are respectively the origin and the target of � %
(see Formula (A.2), page 253),

– � is the visible action labeling the symbolic transition ��. and
carrying the tuple � of parameters,

–
� � %('/.���� � satisfies the guard � % of �"% . Indeed, from the item
(1.a) above we know that

� � � � � � O � � �xL�� %p� � � M . Therefore:

D � � ��� � � O� % � � � S
� �
D � %_L � � L � � ��� ��M9M evaluates to �*,���^ S

� �
[ # � does not depend on the parameters as the
first symbolic transition ����� � ���	��
 ��� � � of � (see For-
mula (A.2), page 253) is labeled with internal action

��*�+ ! which does not carry any parameters due to Def-
inition 4.2 (see page 81). ]

D � %_L � � � L � M���� ��M evaluates to �*,���^ S
� �
D � � � L � M�� � � � O � %wS
� � [ # � ��� ��� � *,+(! due to Definition 4.7 (see page 86). ]

D � � %('/. � � � � O � %wS
–

� % is obtained from the pair of valuations
� � %('/. ��� � by the

assignments ��% . Indeed, from the item (1.b) we know that� % O �2L � � ��� ��M . As the set of assignments � is equal to
� %5� � � , then �2L � � ��� ��MAO L���%5� � � M�L � � ��� ��M . The latter can
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be equally represented, using the standard definition of the
functions composition, as � % L�� � L � � ��� ��MRM . Next, notice that
� � does not depend on any parameters as it is the assign-
ments of the symbolic transition � �)� � �iH �{JIL  � M that is labeled
with internal action � %('/. which due to Definition 4.2 (see
page 81) does not carry parameters. Then, � % L�� � L � � ��� ��MRM
can be rewritten as ��%_L � � � L � M���� ��M . Finally, as

� %-'/.!O � � L � M
(see the item (2.a)), then � % L � � � L � M ��� ��MYO � %�L � � %-'/. ��� ��M .
Therefore,

� %gO ��% L � � %('/. � � ��M .

Finally, the items (2.a) and (2.b) together with Definition A.2 (see
page 249) imply that the triple

�
���-� % � � % � belongs to 3 � * �g3������ � ���	��
 ���� � .

Therefore, the inclusion 3 ����� � ������
 �� � � 3 � * �g3 ����� � ���	��
 ��� � � is proved.

(


) We prove that all triples
���
	 � � �� ��� 
�

� � � ��� �� �	� 

� *

� � 	&% � � % �� ��� 
� *
� belonging to

3 � * �x3������ � ���	��
 ��� � � , also belong to 3������ � ���	��
 �� � . Here,
�

and
� % are valu-

ations of variables and symbolic constants of the IOSTS
�

; and � is
a valuation of parameters � carried by the visible action � .

First, as we know that
���
	 � � �� �	� 
�

� � � ��� �� ��� 

� *

� � 	&% � � % �� �	� 
� *
� belongs to

3 � * �x3������ � ���	��
 ����� � , then by Definition A.3 (see page 251) there
exist the state � %-'/. O �

	&%('/. � � %-'/.�� � �
and the valued action

� %-'/. O �
�,%('/. � � ����� � � such that

�
���-� %-'/. � � %('/. ����3�� ��� � ���	��
 ��� � � and�

� %('/. �/� % � � % ����3 � * . From

���
	 � � �� ��� 
�

� � � %-'/. � � ���� �	� 

� *�+ !

� � 	&%-'/.�� � %('/.��� �	� 
� *,+ !
� � 3������ � ���	��
 �� � � �

���
	 %('/. � � %('/. �� �	� 
� *,+(!

� � � ��� �� ��� 

� *

� � 	&% � � % �� �	� 
� *
� � 3 � *

and Definition 4.7 (see page 86) we obtain:

(a)
�

satisfies the guard � � of � � � ���IH �{JIL  � M ,
(b)

� %('/.!O � � L � M , where � � are the assignments of � �)� ���IH �RJKL  � M ,
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(c)
� � %('/. ��� � satisfies the guard � % of �"% . This means:

D � � %('/. ��� � � O� %wS
� �
D � � � L � M���� � � O� %wS
� �
D � � L � � ��� ��M�� O� %wS
� �
D � %_L � � L � � � � ��M9M evaluates to � � � � S
� �
D � � ��� �	� O� %�� � � S

Moreover, as we know that
� � O � � (see the item (a) above), we

obtain
� � ��� � � O� � � L�� % � � � M .

(d)
� %gO ��% L � � %('/.���� ��MEO � %_L � � � L � M���� ��MEO ��% L�� � L � � ��� ��M9MEO
L�� % � � � M�L � � ��� ��M .

Therefore, the triple
���
	 � � �� �	� 
�

� � � ��� �� �	� 

� *

� � 	 % � � % �� �	� 
� *
� has the following proper-

ties:

– the locations 	 and 	$% are respectively the origin and the target of
the symbolic transition � � � ���IH �{JiL  M (see Formula (A.2), page 253),

– � is the action labeling � �)� � �iH �{JiL  M and carrying the tuple � of
parameters,

– the pair of valuations
� � � � � satisfies the guard � O � � � L�� %!��� � M

of � � � ���IH �{JiL  M (see the item (c) above), and

– the valuation
� % is obtained from

� � � � � by applying the assign-
ments ��O�L ��% � � � M of � �)� � �iH �{JIL  M (see the item (d) above).

Thus, due to the definition about the local transition relation of
IOSTS (see page 86) we conclude that the triple

�
���-� % � � % � belongs to

3������ � ���	��
 ��� � . Therefore, the inclusion 3�� ��� � ���	��
 �� �  3 � * �P3������ � ���	��
 ��� � �
is proved.

The items ( � ) and (


) prove Equality (A.3) (see page 253). Finally, using
Equality (A.3) (see page 253) together with the induction hypothesis, we
prove the induction step and the whole theorem.

� B��xB�	 B
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A.1.2 Syntactic Livelocks in IOSTS

Before giving a short introduction for this section, we remind that the purpose
of Section A.1 is to define the syntactical operation for an IOSTS

�
that elim-

inates all internal actions from
�

leaving visible semantics of
�

unchanged.
Such an operation can be defined only under condition of absence of cycles of
internal actions during which the system performs internal computations with-
out communicating with its environment. To illustrate this statement we give an
example.

Example A.3 Consider the IOSTS
�

modeling the system which generates a
multiple of three. It is easy to see that this IOSTS has an infinite number of

���

���

���

���

���

Input?()	 � � �

� 	 ��
��
Output!(p)

��� � ����
�	 � � 	 ���

�
��� � �����

Figure A.2: The IOSTS
�

which is modeling mutiplication by three.

 -sequences, i.e. ! @#"%$:@%&�=?@('*),+ �.-0/ 132 & A�$(C(45+  -76 45+  8 9 -:6<; $(C A�$(C#= . Therefore, in
order to eliminate all internal actions from

�
, the collapsing operation has to be

applied infinitely many times. Due to these arguments, we limit our research
to IOSTS which do not contain any syntactic livelocks, and consequently which
have a finite number of  -sequences (see Theorem A.2, page 261). >

This section presents the formal definition of a cycle of internal actions which is
called later as syntactic livelock.

Definition A.4 (Syntactic Livelock) A syntactic livelock is a sequence of
symbolic transitions (1) which begins and ends in the same location, (2) which
does not go through the same location twice (except the location with which this
sequence begins and ends), and (3) each symbolic transition of this sequence is
labeled with internal action, i.e.

�@? )7AB C �ED�FGFHF �EIKJL? )NM(OPAB C �N?
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where (1) ������������	
	�	
������������ , (2) for all � and � from � to ����� , if ���� � then
��� �� �"! , and (3) #$����	
	�	
�%#�����&�(' ) . *

We illustrate the notion of syntactic livelock with an example below.

Example A.4 Let us consider the IOSTS + depicted in Figure A.1. Consider
also the sequence of symbolic transition �-, )/.0 1 ��2 )/30 1 ��, . This sequence is the
syntactic livelock of + as (1) it begins and ends in the same location �/, , (2) the
intermediate location �42 does not appear in this sequence more then ones, and
(3) all symbolic transitions involved into the sequence are labeled with internal
actions #65 and #67 . *

A.1.3 Closure for IOSTS without Syntactic Livelocks

The section introduces the closure operation for IOSTS that do not contain any
syntactic livelocks defined in Section A.1.2 (see page 257). The purpose of this
operation is to eliminate all internal actions from an IOSTS by computing the
effect of any # -sequence that ends with a symbolic transition 8 labeled with a
visible action, and by encoding it in 8 . The section ends with a proof that an
IOSTS obtained after the closure operation is well-formed.

Before defining the closure operation, it is necessary to introduce two new
notations concerning an IOSTS 9 �;:�< �>=?�@�A���/B��>'C�EDGF . The first one is the setHJILKEMENPORQ �TS�U of locations that can be directly reached from a location belonging to
some subset �TS of � by an action from some subset '&S of ' . This notion is used
in the closure operation to define the set of locations for the resulting IOSTSV$W ILK>XPY�Z[Q 9 U . The second new notion is the set of #\	^] -sequences for 9 . This
set contains all # -sequences (see Definition A.1, page 247) of 9 ending with a
symbolic transition labeled with a visible action of 9 . It is used to identify
all # -sequences of 9 that must be collapsed during the closure operation. The
formal definitions of HJILK_M NPO Q �TS�U and the set of #`	a] -sequences are given below. For
better understanding these definitions are supported with examples.

Definition A.5 ( HJILKEM N ORQ �TS�U ) Let 9 be an IOSTS with set of locations � and
alphabet of actions ' . Let also �GS be a subset of � and ' S be a subset of ' . Then,
the set: HJILK_M%NPO�Q � S U �cb �T�d� egf�]h�i' S ��� S �i� S 	kj � Sml0 1 �4nGo
is the set of locations that are the successors of locations belonging to � S by an
action ]h�(' S . *
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Example A.5 Consider the IOSTS + with set of locations ��� �
b �����������%��������������, �����6����5�����7
o depicted in Figure A.1 (see page 248). Notice that for
this example we do not take into account the symbolic transitions of + which
are shown as dotted lines in Figure A.1 (see page 248) as they correspond to a
syntactic livelock.

Then, we compute the set of successors of the locations ��� by some visible action
belonging to Q '	� 
 ' )� U �cb ] ���$��$��� ���L��� o as follows:

Location Action Successor

��� ] ���
��� � ���
��� — —
���  ��,
��, � ��7
��� — —
��5 � ��5
��7 � ��5

Thus, we obtain HLILK_M�� N���� N����� Q ���GU �cb �����%��� ����,��%��5�����76o . *

Next, as it has been announced at the beginning of the section, we formally define
the notion of #\	^] -sequences.

Definition A.6 (Set of #\	^] -Sequences) For an IOSTS 9 �
:R< �>=?�@�A��� B �>' � DTF and a location � � � , the set of #`	a] -sequences for � , de-
noted by �����! ��!"$#��&% )�' l Q � U , is the set of all sequences of symbolic transitions
starting in the location �

(*) � ),+0 1 ��� 	�	�	 ���� � ).-!/0+0 1 ���$�� l0 1 ���
where �2143 , �_��������	�	
	
����� �i� , # �>��	�	�	6�%#�����&�(' ) , and ]?� Q ' 
 ' )JU . *
It is not hard to see that the definitions of # -sequences and #\	^] -sequences (see
Definitions A.1 and A.6, pages 247 and 259) lead to the following observation:

Observation A.2 Let 9 � :R< �>=?���A��� B �>'C�EDGF be an IOSTS. Then, for each
location �T�i� , all #\	^] -sequences starting in � are # -sequences of 9 , i.e.

5 �T�i��	kj6�����! ��!"$#��&% )�' l Q � U�78�����! ��!"$#��&% ) Q 9 U n
*
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We illustrate the definition about #`	a] -sequences with an example.

Example A.6 Consider the IOSTS + shown in Figure A.1 (see page 248) with-
out syntactic livelocks, i.e. without transitions shown as the dotted lines. Then
we compute #\	^] -sequences that start, for instance, in the locations � � and ��7 of + .

(1) For the location �R� the set �����! ��!"$#��&% )�' l Q ����U consists of the four following
#`	a] -sequences: ��������

�������

��� ),+0 1 ��� )��0 1 �����0 1 ��, �
��� ) +0 1 ��� ) �0 1 ��� ) +	�0 1 ��,�
0 1 ��7 �
��� ),+0 1 ��� )��0 1 ��� ) +	�0 1 ��, )�0 1 ��5��0 1 ��5��
��� ),+0 1 ��� )�0 1 ��� )��0 1 ��5��0 1 ��5

� �������
�������

For example, the first sequence, i.e. �R� ) +0 1 ��� ) �0 1 ��� �0 1 ��,�� belongs to
�����! ��!"$#��&% )�' l Q ����U , as we can syntactically move from the location � � to the
location ��� following the symbolic transitions labeled with internal actions
# � and #6, , and then from the location ��� we can execute the visible action 
(see Figure A.1, page 248).

(2) For the locations �47 the sets of #\	^] -sequences, i.e. �����! ��!"$#��&% )�' l Q ��76U , is empty.
Indeed, the single symbolic transitions outgoing from this location is labeled
only with visible actions � .

Notice also that the sets �����! ��!"$#��&% )�' l Q ����U and �����! ��!"$#��&% )�' l Q ��76U are the subsets of
�����! ��!"$#��&% ) Q +?U . (We explained how to compute �����! ��!"$#��&% ) Q +?U in Example A.1,
page 247.) *

Now, using the notions of #\	^] -sequences and HJILK_M%NPO Q �TS�U together with the col-
lapsing operation (see Definition A.2, page 249), we can give the constructive

definition of the closure operation that eliminates all internal actions from an
IOSTS that does not contain any syntactic livelocks.

Definition A.7 (Closure) Let 9 � :R< �>= � � ��� B �>' � DAF be an IOSTS with-
out any syntactic livelocks (see Definition A.4, page 257). Then, the clo-

sure operation transforms the given IOSTS 9 into the IOSTS V�W ILK>XPY�Z[Q 9 U �:R< �>= �@�TS���� B �>' S�� D S F , where:

(1) ' S � ' 
 ' ) .
Thus, the alphabet of internal actions of V�W ILK�XPY�Z[Q 9 U is empty.

(2) �GS �cb � B o�� HLIJKEMEN � N � Q �&U�7 � .

Thus, the set of locations of V�W ILK>XPY�Z[Q 9 U consists of the initial location � B
of 9 and all the locations of 9 which are directly reachable from the
locations of 9 by visible actions.
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(3) D S � Q D 
 D )�U � D ����� � ���	��
 �� � , where

– D ) � b � )0 1 �-S e[� � ���d�4ST� ��� #�� ' )Lo 7 D , i.e. it is the set of all
symbolic transitions of 9 labeled with internal actions of 9 , and

– D ����� � ���	��

�� � � b V I W W � H KEZPQ ( UCe ( ��������� O Q �����! ��!"$#��&% )�' l Q � U%U%o , i.e. it is the set

of new symbolic transitions obtained from the set of all #\	^] -sequences
starting in the locations �GS of V$W ILK>XPY�Z[Q 9 U , i.e. � ����� O Q �����! ��!"$#��&% )�' l Q � U U ,
by applying to each # -sequence ( � � ����� O Q �����! ��!"$#��&% )�' l Q � U%U the collaps-
ing operation (see Definition A.2, page 249).

*

It is important to notice that the closure operation is stable, i.e. the result of
this operation is indeed an IOSTS. This statement follows directly from the
construction of the closure (see Definition A.7). The only non-trivial point is to
show that the set of transitions of the IOSTS obtained after the closure operation
is finite. This point is formulated as the theorem below.

Theorem A.2 (Well-Formedness of V$W ILK>XPY�Z[Q 9 U ) Let 9 � :R< �>=?���A����B �>'C� DTF
be an IOSTS without syntactic livelocks (see Definition A.4, page 257). Then,
the set of transition of the IOSTS V�W IJK�XPY�Z[Q 9 U obtained from 9 by the closure
operation (see Definition A.7, page 260) is finite. *

Proof The proof of the theorem follows directly from the statement: for all
visible actions ] � Q ' 
 ' )JU and all locations � � �GS , the set of #\	^] -sequences
starting in � is finite, which is proved by contradiction below.

Assume that the set �����! ��!"$#��&% )�' l Q � U , where � is a location belonging to
� S , is infinite. This means that there exists a #`	a] -sequence ( belonging to
�����! ��!"$#��&% )�' l Q � U whose length is greater or equal to e D ) e � 3 , where e D ) e is the
number of symbolic transitions (in 9 ) labeled with internal actions. Next,
from the definition of #\	^] -sequences (see page 259), we know that the maximal
strict prefix of ( consists of only internal transitions. Thus, as the length of this
prefix is greater or equal to e D�)`e!�;� , then it goes through the same internal
transition at least twice. Therefore, 9 contains a cycle of internal actions,
which contradicts the assumption that 9 does not contain syntactic livelocks
(see Definition A.4, page 257). " 	$# 	%i	
The example presented below illustrates the closure operation defined on
the page 260.

Example A.7 (Closure of IOSTS without Syntactic Livelocks) Consider
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(cPrice > 0) and (vPaid = 0) and (vBeverage = TEA)

<Begin,Begin>

<Pay,Begin>

(pCoinValue > 0) 
 Coin ? (pCoinValue) 

 vPaid := (0 + pCoinValue) 

<Return,Reject>

Cancel ? 
 vPaid := 0

<Idle,Begin>

(pCoinValue > 0) 
 Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue) 

Cancel ?

((pRemaningValue = cPrice - vPaid) and 
 (vPaid < cPrice) and not(vPaid < cPrice)) 

 Return ! (pRemaningValue)

<Idle,Reject>

((pRemaningValue = cPrice - vPaid) and 
 (vPaid < cPrice)) 

  Return ! (pRemaningValue)

<Choose,Reject>

((pRemaningValue = vPaid - cPrice) and 
 (vPaid >= cPrice) and (vPaid < cPrice)) 

 Return ! (pRemaningValue) 
 vPaid := cPrice

<Choose,Begin>

((pRemaningValue = vPaid - cPrice) and 
 (vPaid >= cPrice) and not(vPaid < cPrice)) 

 Return ! (pRemaningValue) 
 vPaid := cPrice

<Begin,Reject>

(pRemaningValue = vPaid) 
  Return ! (pRemaningValue)

Cancel ?

<Pay,Reject>

(pCoinValue > 0) 
  Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue)

Cancel ?

<Delivery,Reject>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

Cancel ?

<Delivery,Begin>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

tau 
 vPaid := 0

((vPaid < cPrice) and 
 (pRemaningValue = cPrice - vPaid)) 

  Return ! (pRemaningValue)

((vPaid >= cPrice) and 
 (pRemaningValue = vPaid - cPrice)) 

  Return ! (pRemaningValue) 
 vPaid := cPrice

(vBeverage = pBeverage) 
  Deliver ! (pBeverage)

((vBeverage = pBeverage) and 
 not(pBeverage = COFFEE)) 

  Deliver ! (pBeverage)

<Begin,Accept>

((vBeverage = pBeverage) and 
 (pBeverage = COFFEE)) 

  Deliver ! (pBeverage) 
  

<Idle,Accept>

tau 
 vPaid := 0

<Pay,Accept>

(pCoinValue > 0) 
  Coin ? (pCoinValue) 

 vPaid := (vPaid + pCoinValue)

<Return,Accept>

Cancel ?

((vPaid < cPrice) and 
 (pRemaningValue = cPrice - vPaid)) 

  Return ! (pRemaningValue)

<Choose,Accept>

((vPaid >= cPrice) and 
 (pRemaningValue = vPaid - cPrice)) 

  Return ! (pRemaningValue) 
 vPaid := cPrice

(pRemaningValue = vPaid) 
  Return ! (pRemaningValue)

Cancel ?

<Delivery,Accept>

ChooseBeverage ? (pBeverage) 
 vBeverage := pBeverage

(vBeverage = pBeverage) 
 Deliver ! (pBeverage)

Figure A.3: The IOSTS �� (see Figure 7.3, page 174) after the closure operation.
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the IOSTS ��� shown on Figure 7.3 (see page 174). Notice that ��� does not con-
tain any syntactic livelock. We explain how to compute the IOSTS V$W ILK>XPY�ZPQ ��� U .

(1) First, by removing the single internal action # from the alphabet of ��� , we
obtain the alphabet of V$W ILK>XPY�Z[Q ��� U , i.e.

'���� ���
	�� �������� �cb���� "$#����/� ����� " � � �!�"� % �$# �&% �&' ��( � o) *,+ -N/.��� ���
	0� 1�
�����
� b32 ��� � % �&'34 �65. 7'&" o) *,+ -N98��� ���
	0� 1�
�����

where '&)�:� ���
	0� 1�
���"� �<; .

(2) Next, using Figure 7.3 (see page 174) it is not hard to check that the set of
location of V�W ILK�XPY�Z[Q ��� U is:

�=��� ���
	0� 1�
����� � b : # � (>� " ��# � (>� " F>o) *,+ -
� � ���@? � ���� ���
	0� 1�
�����

� ����� 
 b : # � (>� " ��# � (>� " F�o) *,+ -� � �0ACB ���ED B � ��� � � ��� �
� �����

(3) Finally, we compute the set of # -sequences, which consists of two following
elements:

( � ) : # � (>� " ��# � (>� " F )0 1 :GF�H � ����# � (>� " F
I�JLK�M0 1 : � ��N ��# � (>� " F

( � ) : # � (>� " ��# � (>� " F )0 1 :GF�H � ����# � (>� " F
I�OLM6PCQ�R0 1 : 4 �65  7'!" ��4 �1S ��#65EF

By applying the collapsing operation to each of these # -sequences, we obtain
the set of syntactic transitions D �T��� � U0V:�WX�ZY�� containing two symbolic transitions
shown in blue on Figure A.3 (see page 262). Then, by replacing ( � and ( �
with these symbolic transitions, we obtain the resulting IOSTS V�W ILK�XPY�Z[Q ��� U
depicted in Figure A.3 (see page 262).

*

A.1.4 Traces of the Closure

In this section we consider an IOSTS 9 that does not contain syntactic livelocks
(see Definition A.4, page 257), and study the relationship between traces of 9
and traces of the IOSTS V$W ILK>XPY�Z[Q 9 U obtained from 9 by the closure operation
(see Definitions A.7, page 260). The purpose of this section is to prove the equality
between the set of traces of 9 and the set of traces of V$W ILK>XPY�ZPQ 9 U , i.e.

[ ' � #��&% Q V�W IJK�XPY�Z[Q 9 U U � [ ' � #��&% Q 9 U (A.4)
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General Hypotheses. For the rest of this section we consider an IOSTS 9 �
:R< �@=?�@�A��� B �>'C� DTF with set of states � and set of valued actions � � ��� ����� ��� ) .
Suppose also that 9 does not contain any syntactic livelock (see Definition A.4,
page 257). Finally, we consider the IOSTS V$W ILK>XPY�ZPQ 9 U obtained from 9 by the
closure operation (see Definition A.7, page 260).

Lemma A.1 (Behaviors of the Closure) The IOSTS 9 has a behavior:

�	�
 ) � B
� + �� B

� +1 � � 	�	�	 � �$�� � - �� ���� � -1 � �
where for all � from � to � , � � � �� � ��� , � �k� Q � 
 � )�U and � �k� Q � ) U�� if and only if

the IOSTS V$W ILK>XPY�ZPQ 9 U has the behavior:

�	��:� ���
	0�  � 
 � ) � B
� +1 � � 	�	
	 � ���� � -1 � �

*

Proof

(


) First, we prove that for all behaviors
� �
 )�� B

� + �� B
� +1 � � 	�	
	 � ���� � - �� ���� � -1� � of 9 , where for all � � ��	�	^� , � � � �� � ��� , � � � Q � 
 � )$U and �$� � Q � )�U�� ,

there exists a behavior
� ���� ���
	�� 1� 
 � )�� B

� +1 � � 	�	�	 � ���� � -1 � � in V�W IJK�XPY�Z[Q 9 U . The
proof of this implication is done by induction on �(��� .

Induction Basis. The case when � � � , i.e. where we have to show that
if the state � B is an initial state of 9 , then this state is also an initial
state of V�W IJK�XPY�Z[Q 9 U , follows directly from the facts that IOSTS 9 andV$W ILK>XPY�ZPQ 9 U have the same sets of data and the same initial conditions
(see Definition A.7, page 260).

Induction Hypothesis. For �A� � , assume that for a behavior
� S �
 )�� B

� +
�� B
� +1 � � 	�	�	 � �$ � � -&/ + �� �� � � -&/ +1 � ���� of 9 , where for all � � �J	 	a�d��� ,� �R� �� � ��� , � � � Q � 
 � )�U and � � � Q � )�U�� , there exists the behavior� S ��:� ���
	0� 1� 
 � )�� B

� +1 � � 	�	�	 � �$ � � -&/ +1 � �$�� in V�W IJK�XPY�Z[Q 9 U .
Induction Step. For � , consider a behavior:

� �
 ) ) *,+ -� O �

� B
� + �� B

� +1 � � 	�	�	
) *,+ -

last step

� �$�� � - �� ���� � -1 � � (A.5)

of 9 , where for all � � ��	�	^� , � � � �� �T��� , � � � Q � 
 � ) U and � �G� Q � ) U � .
Then, we prove that exists the behavior:

� ���� ���
	�� 1� 
 � ) ) *,+ -� O ���� ���
	0�  � 
 �
� B
� +1 � � 	�	�	

) *,+ -
last step

� �$�� � -1 � � (A.6)
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of V�W ILK�XPY�Z[Q 9 U .

First, as behaviors of IOSTS are prefix closed, then
� S �
 , which is a

prefix of behavior
� �
 of 9 (see Formula (A.5)), is also a behavior of

9 . Thus, using the induction hypothesis we obtain that V�W ILK>XPY�Z[Q 9 U
has the behavior

� S ���� ���
	�� 1� 
 � , which is a prefix of
� ��:� ���
	0�  � 
 � shown as For-

mula (A.6).

This means that as in 9 the state � �$�� is reachable from the initial
state � B by the sequence �P� �G� 	�	�	 � ������ ���� , then it is also reachable
from the same state � B in V$W ILK>XPY�Z[Q 9 U by the sequence �G� 	�	�	 � ���� .

Second, we have to show that as in 9 the state � � � : ��� � � �[F is
reachable from the state � �$�� � : ������>� � ����EF by a sequence of internal
actions � � � : # �� � : F%F 	
	�	 : #��� � : F�F (possibly empty) followed by the visible
valued action � � � : ] ���&F , then it is also reachable in V�W IJK�XPY�Z[Q 9 U from
the same state � �$�� � : ������>� � ����EF by the only visible valued action
� � � : ] ���&F . In other words, we have to prove that as

: ������>� � ����EF) *,+ -
� -!/0+

� ) +-
	 ����� 1 	
	�	
� ) �-�	 ����� 1) *G+ -

� -�
: �������>� �� ����EF) *,+ -�� -!/0+

� - ? � l 	 �
�

� 1 : ��� � � �LF) *G+ -
� -

(A.7)

which is the last step of
� �
 shown as Formula (A.5), that was unfolded

using Definition 4.13 (see page 90), holds in 9 , then the relation

: ���$��>� � ����%F) *,+ -
� -&/ +

� - ? � l 	 �
�

� 1 : ��� � � �[F) *,+ -
� -

(A.8)

which is the last step of
� ��:� ���
	0� 1� 
 � shown as Formula (A.6), holds inV�W ILK�XPY�Z[Q 9 U .

(1) As we know that Formula (A.7) holds in the IOSTS 9 , then

this IOSTS has the #`	a] -sequence ( ) ���$�� ) +-0 1) *,+ -� +
	�	�	 ) *G+ -� �

) �-0 1
) *,+ -� ��� +

������� l0 1 ��� .

Therefore, as the IOSTS V$W ILK>XPY�ZPQ 9 U is obtained from 9 by the
closure operation (see Definition A.7, page 260), then it contains

the symbolic transition 8,��� ���
	0� 1� 
 � ) ������ l0 1 ��� such that 8,��� ���
	�� 1� 
 � �V I W W � H KEZ[Q ( U .
(2) Using Definition A.2 (see page 249) and the fact that For-

mula (A.7) holds in 9 , we obtain that the triple : � �$��>� � � � � �PF
belongs to Q 1 � + � Q 	�	�	 � Q 1 � � � 1 � ��� + U U%U .
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Next, due to Observation A.2 (see page 259) we know that the
#\	^] sequence ( is also a # -sequence of 9 , thus we can use The-
orem A.1 (see page 252). From this theorem we obtain that as
the triple : � �$��@� � � � � �PF belongs to Q 1 � + � Q 	�	�	 � Q 1 � � � 1 � ��� + U%U U
(see the first sentence of the item (2)), then it also belongs to1 � ��� ���
	�� 1� 
 � of V�W ILK>XPY�Z[Q 9 U . This means that the relation presented
as Formula (A.8) holds in V�W ILK>XPY�Z[Q 9 U .

Therefore, we have proved that if in 9 the state � � is reachable from
the initial state � B by the sequence �[� �T� 	�	�	 � � � � , then it is also reach-
able in V$W ILK>XPY�Z[Q 9 U from the same state � B by the sequence �G� 	�	�	 � � .
This statement implies the induction step. Thus, the first implication
of the lemma is proved.

( � ) Second, we prove that for all behaviors
� ��:� ���
	0� 1� 
 � ) � B

� +1 � � 	�	
	 � ���� � -1 � �
of V�W ILK>XPY�Z[Q 9 U , where � �@��	�	�	6� � � � � and �G�@��	�	�	6� � � � Q � 
 � )�U , there ex-
ist �[�@��	�	�	6� � � � Q � ) U � and

�� � ��	�	�	6� �� ���� � � such that
� �
 ) � B

� + �� B
� +1

� � 	�	�	 � ���� � - �� ���� � -1 � � is a behavior of V$W ILK>XPY�ZPQ 9 U .
The proof of this implication is done by induction on � � � .

Induction Basis. The case when � � � , i.e. where we have to show that
if the state � B is an initial state of V�W ILK�XPY�Z[Q 9 U , then this state is also
an initial state of 9 , can be proved exactly as the basis step of the
first implication (


) (see page 264).

Induction Hypothesis. For � � � , assume that for a behavior
� S ���� ���
	�� 1� 
 � )

� B
� +1 � � 	�	�	 � �$ � � -!/0+1 � �$�� of V�W ILK�XPY�Z[Q 9 U , where � ����	�	�	6� � ���� �

� , �T�>��	�	�	6� � ������ Q � 
 � )$U , there exist �[�>�
	�	�	
� �$�$�� � Q � ) U�� and�� � �
	�	�	
� �� �$ � � � such that
� S �
 ) � B

� + �� B
� +1 � � 	�	
	 � �� � � -!/ + �� �� � � -&/ +1

� �$�� is a behavior of 9 .

Induction Step. For � , consider a behavior:

� ���� ���
	�� 1� 
 � ) ) *,+ -� O ���� ���
	0�  � 
 �
� B
� +1 � � 	�	�	

) *,+ -
last step

� �$�� � -1 � � (A.9)

of V�W ILK>XPY�Z[Q 9 U , where � �>��	�	
	
� � � � � , �G���
	�	�	
� � � � Q � 
 � )$U . Then, we
prove that 9 has the following behavior:

� �
 ) ) *,+ -� O �

� B
� + �� B

� +1 � � 	�	�	
) *,+ -

last step

� �$�� � - �� ���� � -1 � � (A.10)
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for �P�>��	�	
	
� � � � Q � )$U�� .

First, as behaviors of IOSTS are prefix closed, then
� S ���� ���
	�� 1� 
 � , which is

a prefix of behavior
� ���� ���
	0� 1� 
 � of V�W ILK>XPY�Z[Q 9 U (see Formula (A.9)), is also

a behavior of V�W ILK�XPY�Z[Q 9 U . Thus, using the induction hypothesis we
obtain that 9 has the behavior

� S �
 , which is a prefix of
� �
 shown

as Formula A.10.

This means that as in V�W ILK�XPY�Z Q 9 U the state � �$�� is reachable from the
initial state � B by the sequence �G� 	�	
	 � ���� , then it is also reachable
from the same state � B in 9 by the sequence �[� �T� 	�	�	 � �$�� � �$�� .

Second, we have to show that as in V�W ILK�XPY�Z[Q 9 U the state � � � : ��� � � �PF
is reachable from the state � �$�� � : ���$��>� � ����%F by the visible val-
ued action � � � : ] ���&F then it is also reachable in 9 from the
same state � ���� � : ������>� � �$��%F by a sequence of internal actions
� � � : # �� � : F�F 	�	
	 : # �� � : F�F (possibly empty) followed by the visible val-
ued action � � � : ] ���&F . In other words, we have to prove that if the
relation

: ���$��>� � ����%F) *,+ -
� -&/ +

� - ? � l 	 �
�

� 1 : ��� � � �[F) *,+ -
� -

(A.11)

which is the last step of
� ��:� ���
	0� 1� 
 � shown as Formula (A.9), holds inV�W ILK�XPY�Z[Q 9 U , then there exist � intermediate states in V�W ILK>XPY�Z[Q 9 U and

� valued internal actions : # �� � : F�F6��	 	 	�� : #��� � : F�F � � ) , where �(� � , such
that

: ������>� � ����EF) *,+ -
� -!/0+

� ) +- 	 ����� 1 	
	�	
� ) �- 	 ����� 1) *G+ -

� -�
: �������>� �� ����EF) *,+ -

�� -!/0+

� - ? � l 	 �
�

� 1 : ��� � � �LF) *G+ -
� -

(A.12)

which is the last step of
� �
 shown as Formula (A.10), that was un-

folded using Definition 4.13 (see page 90), holds in 9 .

To prove this statement first notice that as the relation shown as For-
mula (A.11) holds in the IOSTS V$W ILK>XPY�ZPQ 9 U , then:

(1) V�W IJK�XPY�Z[Q 9 U has the symbolic transition 8G��� �0�
	0� 1� 
 � ) ������ l0 1 ��� , and

(2) the triple : � ����>� � � � � �PF belongs to 1 � �:� ���
	0� 1� 
 � .
Next, we remind that 9 is the IOSTS from which V�W ILK>XPY�Z[Q 9 U was
constructed using the closure operation (see Definition A.7, page 260).
Therefore, as V�W ILK>XPY�Z[Q 9 U contains the symbolic transition 8 ��� �0�
	0� 1� 
 � ,
then either:
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(a) 9 has exactly the same symbolic transition 8 
 ) ������ l0 1 ��� . Thus,
as we know that the triple : � ����>� � � � � �JF belongs to 1 � ��� ���
	�� 1� 
 � ofV�W ILK>XPY�Z[Q 9 U (see the item (2) above), then this triple also belongs
to 1 � 
 of 9 . Or,

(b) 9 has a #`	a] -sequence ( ) ������ ) +-0 1) *G+ -� +
	�	�	 ) *,+ -� �

) �-0 1
) *G+ -� � � +

����$�� l0 1 ��� such that

8,��� ���
	�� 1� 
 � � V I WaW � H K Z[Q ( U . Due to Observation A.2 (see page 259) we
know that the #`	a] sequence ( is also a # -sequence of 9 . Thus, we
can use Theorem A.1 (see page 252) from which we obtain that:
as the triple : � �$��>� � �`� � �LF belongs to 1 � ��� ���
	0� 1� 
 � of V$W ILK>XPY�Z[Q 9 U (see
the item (1) above), then this triple also belongs to Q 1 � + � Q 	�	�	 �Q 1 � � � 1 � ��� + U%U U of 9 . Due to Definition A.2 (see page 249) this
means that there exist intermediate states between � ���� and � �
and valued internal actions : # �� � : F�F6��	 	 	�� : # �� � : F�F such that sequence
of relations shown as Formula (A.12) holds in 9 .

Therefore, we have proved that if in V$W ILK>XPY�ZPQ 9 U the state � � is reach-
able from the initial state � B by the sequence �G� 	
	�	 � � , then it is also
reachable in 9 from the same state � B by the sequence �[���G� 	�	�	 � � � � .
This statement implies the induction step. Thus, the second implica-
tion of the lemma is proved.

" 	$# 	$%(	

Next, just before proving the trace-equivalence between 9 and V�W IJK�XPY�Z[Q 9 U (see
Equality (A.4)), we show that:

(1) for each sequence � ��� ���
	0� 1� 
 � of the IOSTS V$W ILK>XPY�ZPQ 9 U , 9 has a sequence
� 
 obtained from �>�:� ���
	0� 1� 
 � by inserting some sequences of internal actions
(possibly empty) before each visible valued action of �E��� ���
	�� 1� 
 � ; and

(2) for each sequence � 
 of 9 , V�W IJK�XPY�Z[Q 9 U has the sequence � ��� ���
	0� 1� 
 � obtained
from � 
 by dropping all internal actions.

These statements are formalized as the following observation:

Observation A.3 (Sequences of the Closure) The sequence �E��� ���
	�� 1� 
 � �
�T� 	�	�	 � � , where � �h� Q � �������aU ( � � �J	 	a� ), belongs to �����! ��!"$#��&% Q V�W ILK>XPY�Z[Q 9 U%U
if and only if f �[�>��	�	
	
� � � � Q � )$U���	 j � 
 � �[���G� 	�	�	 �$� � � � �����! ��!"$#��&% Q 9 U n�	 *
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This observation follows directly from the definition of a sequence (see page 90)
and Lemma A.1 (see page 264).

Finally, we formally state and prove the theorem about the trace-equivalence
between an IOSTS 9 and the IOSTS V�W ILK>XPY�Z[Q 9 U obtained from 9 by the
closure operation.

Theorem A.3 (Traces of the Closure) The result of the closure operation
(see Definition A.7, page 260) applied to an IOSTS 9 without syntactic livelocks
has the same set of traces as 9 , i.e.

[ ' � #��&% Q V�W ILK>XPY�Z[Q 9 U%U � [ ' � #��&% Q 9 U
*

Proof

( 7 ) First, we show that each trace of V$W ILK>XPY�Z[Q 9 U is also a trace of 9 .

Consider an arbitrary trace � � � � 	�	�	 � � belonging to
[ ' � #��&% Q V�W ILK�XPY�Z[Q 9 U%U .

As the IOSTS V$W ILK>XPY�Z[Q 9 U does not have any internal action (see
Definition A.7, page 260), then the set of traces of V$W ILK>XPY�ZPQ 9 U is
equal to its set of sequences (see Definition 4.12, page 90) i.e.[ ' � #��&% Q V�W ILK>XPY�Z[Q 9 U%U � �����! ��!"$#��&% Q V�W IJK�XPY�Z[Q 9 U U . Thus, the trace � be-
longs to �����! ��!"$#��&% Q V$W ILK>XPY�ZPQ 9 U U . Next, due to the first implication (


)

of Observation A.3 (see page 268) we obtain that there exist the sequence
� � �[���G� 	�	�	 �$� � � of 9 for some �[�>��	�	
	
� � � � Q � )�U�� , where � ) is the al-
phabet of internal actions of 9 . Then, from the definitions of sequences
and traces (see pages 90 and 90 respectively), we know that if we drop all
internal action from the sequence � � �[� �G� 	�	�	 � � � � of 9 , then we obtain
the trace �G� 	�	�	 � � of 9 . Therefore, � � [ ' � #��&% Q 9 U .

(
�

) Second, we prove that each trace of 9 is also a trace of V$W ILK>XPY�Z[Q 9 U .
Consider a trace � � �G� 	�	�	 � � belonging to

[ ' � #��&% Q 9 U . Due to Defini-
tions 4.12 and 4.14 (see pages 90 and 90), this trace � corresponds to some
sequence � � �P� �G� 	�	
	 � � � � of 9 , where �$�k� Q � )�U�� ( � � ��	�	^� ). Next, using
the second implication ( � ) of Observation A.3 (see page 268) we get that
there exist the sequence � S � �G� 	�	
	 � � of V�W ILK>XPY�Z[Q 9 U . Finally, as �G�>��	�	
	
� � �
are visible valued actions, then the sequence � S , which is exactly the same
as � , is the trace of V�W IJK�XPY�Z[Q 9 U . Therefore �(� [ ' � #��&% Q V$W ILK>XPY�Z[Q 9 U%U .

" 	# 	$%i	



270 Appendix

A.1.5 Traces and Accepting Traces of �
�������	��
�����������������

In this section we consider two IOSTS ������#�� [ � and V$W ILK>XPY�ZPQ ������# � [ � U . The
first one is obtained by the product operation (see Definition 5.4, page 114) from a
specification ������# and a test purpose

[ � of ������# . The second one is obtained from
������#!� [ � by the closure operation (see Definition A.7, page 260). The purpose
of this section is to study the relationships between traces (see Definition 4.14,
page 90) and accepting traces (see Definition 6.10, page 151) of ������#"� [ � andV$W ILK>XPY�Z[Q ������#�� [ � U .

Before going into details we make an observation about absence of syntactic
livelocks (defined in Section A.1.2, page 257) in ������##� [ � with alphabet of
actions ' � ' � �d' � �d' ) and set of locations � � �%$�& Q P �i�('*) . Formally:

Lemma A.2 Let ������# be a specification without any syntactic livelock, and
[ �

be a test purpose of ������# . Then, the result of the product operation between
������# and

[ � , i.e. ������#!� [ � , is free of syntactic livelocks. *

Proof The proof of the observation is done by contradiction. Assume that
the synchronous product ������#�� [ � has a syntactic livelock (see Definition A.4,
page 257), for instance:

( $�& Q P,+ '�) ) : � �$�& Q P ��� � '*) F ),+0 1 : � � $�& Q P ��� � '*) F 	�	
	 : � �$��$�& Q P ��� �$��'�) F ).-&/ +0 1 : � �$�& QCP �%� � '*) F (A.13)

where
5 � � ��	�	^� � � 	 j #��k�i' ) � : � � $�& Q P ��� � '*) F �i�Tn .

Then, due to Definition 5.4 (see page 114), we know that the product ������#-�[ � is obtained from ������# and
[ � by synchronization on all their actions, which

are the same as the actions of ������#.� [ � . Thus, as ������#.� [ � has the sequence of
symbolic transitions ( $�& Q P/+ '*) shown as Formula (A.13), then ������# and

[ � have
the following sequences of symbolic transitions:

( $�& Q P ) � �$�& Q P ) +0 1 � � $�& QCP 	�	�	%� �$��$�& QCP ).-!/ +0 1 � �$�& Q P (A.14)

( '*) ) � � '*) ),+0 1 � � '*) 	�	�	 � �$��'*) ).-&/ +0 1 � � '�)
Now, from Formula (A.14) we see that ������# contains a syntactic livelock (see Def-
inition A.4, page 257). This contradicts with the hypothesis made in Section 6.1
(see page 137), which says that ������# does not contain syntactic livelocks. " 	# 	$%i	

Then, using Lemma A.2 and Theorem A.3 (see page 269) we obtain that the
closure operation preserves the set of traces of ������#!� [ � , i.e.

[ ' � #��&% Q V�W ILK>XPY�Z[Q ������#�� [ � U%U � [ ' � #��&% Q ������#�� [ � U (A.15)
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Finally, we show equality between sets of accepting traces of V�W ILK�XPY�Z[Q ������#!� [ � U
and ������#�� [ � .

Theorem A.4 (Accepting Traces of V�W ILK>XPY�Z[Q ������# � [ � U ) The result of the
closure operation (see Definition A.7, page 260) applied to a synchronous product
������#�� [ � (where ������# does not contain any syntactic livelock) has the same set
of accepting traces as ������#!� [ � , i.e.

� [ ' � #��&% Q V�W ILK�XPY�Z[Q ������#!� [ � U%U � � [ ' � #��&% Q ������#�� [ � U
*

Proof

( 7 ) First, we show that each accepting trace of V�W ILK>XPY�Z[Q ������# � [ � U is also an
accepting trace of ������#!� [ � .

Consider an arbitrary accepting trace � � � � 	�	�	 � � belonging
to

� [ ' � #��&% Q V$W ILK>XPY�ZPQ ������# � [ � U U and leading to an accepting state��� P P Q &�� � :�: �E� � #�#�����5EF6� � F , where : �E� � #�#�����5EF � � �	� � ���	� 
 � $�& Q P,+ '*) � and
� �
��� Q�� � � � ����� 
 � $�& Q P,+ '*) � ��� � � � ���	� 
 � $�& Q P + '�) � U .

Due to Definition A.7 (see page 260), the IOSTS V�W IJK�XPY�Z[Q ������#"� [ � U does
not have any internal actions. Thus, the given accepting trace � is also a
sequence (see Definition 4.12, page 90) of V�W ILK�XPY�Z[Q ������# � [ ��U leading to the
same accepting state ��� PCP Q &�� .
Next, due to Lemma A.2 (see page 270) about the absence of syntactic
livelocks in ������#"� [ � , we can use Observation A.3 (see page 268). From
the first implication (


) of this observation we obtain that there exist the

sequence � � �[� �T� 	�	�	 � � � � of ������#�� [ � for some �P�>��	�	�	6� � � � Q � ) $�& Q P,+ '*) U�� ,
where � ) $�& Q P + '*) is the alphabet of internal actions of ������# � [ � . Moreover,
notice that the first implication of the Observation A.3 (see page 268) follows
from the second implication ( � ) of Lemma A.1 (see page 264). If we make
attention to the proof of the latter implication (see page 266), we obtain
that the accepting state ��� PCP Q &�� is reachable in ������# � [ � by � .

Then, from the definitions of sequences, traces and accepting traces (see
pages 90, 90 and 151 respectively), we know that if we drop all internal
action from the sequence � � �[� �G� 	�	
	 � � � � of ������# � [ � , then we obtain the
accepting trace � � 	�	
	 � � of ������# � [ � . Therefore, � � � [ ' � #��&% Q ������# � [ ��U .

(
�

) Second, we prove that each accepting trace of ������# � [ � is also an accepting
trace of V$W ILK>XPY�Z[Q ������#�� [ � U .
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Consider an accepting trace � � � � 	�	�	 � � belonging to
� [ ' � #��&% Q ������# � [ � U ,

and leading to some accepting state ��� P P Q &�� .
First, we make an observation which says that ������# � [ � can move(� )
from a non-accepting location to an accepting location only by taking a
symbolic transition labeled with an input/output action, i.e. formally:5 :�: � $�& Q P ��� '*) F���] ���G� � ��� � : �4S $�& Q P ���4S '*) F�F � D $�& Q P,+ '�)�	kj Q � '*) �� �4S '�) � �4S '*) �
� #�#�����5�U �  Q ] � ' � $�& QCP/+ '*) � '��$�& Q P,+ '*) URn , where � '*) ���4S '�) are locations of[ � and � $�& Q P ���4S $�& Q P are locations of ������# . This observation follows from the
hypotheses (2) and (4) made on

[ � (see Definition 6.8, page 147), and the
product construction between ������# and

[ � (see Definition 5.4, page 114).

Second, using Definitions 4.12 and 4.14 (see pages 90 and 90) we have
that there exists a sequence � � � � �T� 	�	�	 � � � � � ��� � of ������# � [ � corre-
sponding to the trace � and leading to the same accepting state ��� P P Q &�� .
Here, �P�>��	�	
	
� � ��� � � Q � ) $�& Q P + '�) U�� . Next, due to definition of a sequence (see
page 90) we obtain that � corresponds to the following behavior

� �
:

:�: � B $�& Q P ��� B '*) F6� � B F � + :�: �� B $�& Q P � �� B '*) F6� �� B F � +1 :�: � �$�& Q P ��� � '*) F6� � � F
	�	�	 (A.16)
:�: �� ����$�& Q P � �� ����'*) F6� �� �$�� F � -1 :�: � � $�& QCP �%� � '*) F6� � � F

� - � + :�: �� � $�& QCP � � #�#�����5 F6� �� � F) *,+ -
�	��
�
�����

where for all � from � to � , : � � '*) ��� � $�& Q P F6� : �� � $�& QCP � �� � '*) FC� �%$�& Q P + '*) and
� � � �� � �
��  Q � $�& Q P,+ '*) � �-$�& Q P + '�) U .

Then, we show that the state :%: � � $�& QCP �%� � '*) F6� � � F of
� �

(see Formula (A.16))
is an accepting state of ������# � [ � , i.e. � � '*) � � #�#�����5 . This statement
can be proved by contradiction. First, we unfold the last step of

� �
(see

Formula A.16) according to Definition 4.13 (see page 90) as follows:

:%: � � $�& Q P ��� � '*) F6� � � F
� ) +- 	 ��� �� 1 	
	�	

� ) �- 	 ����� 1) *G+ -
� - � +�

:%: �� � $�& Q P � � #�#�����5EF6� �� � F) *G+ -
�	��
�
�����

Then, we assume that :�: � � $�& Q P ��� � '�) F6� � � F is an non-accepting state of ������#��[ � , i.e. � � '*) �� � #�#�����5 . Next, using Observation (� ) the state reachable from
the non-accepting state :�: � � $�& Q P ��� � '*) F6� � � F by # �� (i.e. the first internal action
of � ��� � ) is also non-accepting. Repeating this argument �?� � times (i.e.

for all remaining internal actions of �$��� � ) we obtain that the state ��� P P Q &�� is
non-accepting. This contradicts with the fact that � corresponding to

� �
is an accepting sequence of ������# � [ � . Therefore, :�: � � $�& Q P ��� � '*) F6� � � F is the
accepting state, where � � '*) � � #�#�����5 .
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Next, consider the sequence � S � �P� �T� 	
	�	 � � � � of ������# � [ � obtained
from the sequence � by eliminating its last sequence of internal actions,
i.e. � ��� � . From above we know that � S leads to the accepting state� S � P P Q &�� � :�: � � $�& QCP ��� � '*)) *,+ -� P P Q &��

F6� � � F .

Then, as we know that ������# � [ � does not have any syntactic livelocks
(see Lemma A.2), and � Sk� �����! ��!"$#��&% Q ������# � [ � U , we can use the second
implication ( � ) of Observation A.3 (see page 268). From this implication
we obtain that there exists the sequence � S S � �T� 	�	�	 � � of V�W ILK>XPY�Z[Q ������# �[ � U . Moreover, notice that the second implication of the Observation A.3
(see page 268) follows from the first implication (


) of Lemma A.1 (see

page 264). If we make attention to the proof of the latter implication (see
page 264), then we obtain that the accepting state � S � P P Q &�� is reachable inV�W ILK�XPY�Z[Q ������#!� [ � U by � S S .
Finally, (1) as �G�>��	�	�	6� � � are visible valued actions, then the sequence

� S S , which is exactly the same as � , is a trace of V�W ILK>XPY�Z[Q ������# � [ � U ,
and (2) as � S S leads to the accepting state � S � P P Q &�� , then the trace � ofV�W ILK�XPY�Z[Q ������# � [ ��U is an accepting trace (see Definition 6.10, page 151),
i.e. � � � [ ' � #��&% Q V$W ILK>XPY�ZPQ ������#!� [ ��U U .

" 	# 	$%i	
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A.2 Determinization

This section is devoted to the determinization of an IOSTS V�W ILK�XPY�Z[Q ��� U ob-
tained from the previous step of our test generation algorithm (see Section A.1,
page 246). This IOSTS may be non-deterministic due to several cause, for in-
stance, we have considered a sub specification of the initially deterministic spec-
ification, or a specification obtained from the parallel composition of two deter-
ministic systems executed in parallel where some communications are hidden. It
is important to emphasize that nondeterminism is prohibited in testing, as test
verdicts should not depend on internal choices of the tester. That is why this
step of the test generation method is reserved for elimination of the nondetermin-
ism from the IOSTS V�W ILK>XPY�Z[Q ����U . This means building another IOSTS, denoted

� Z�M�Q V�W ILK�XPY�Z[Q ��� U U , which has the same traces as V$W ILK>XPY�Z[Q ��� U , and therefore the
same traces as the product ��� � ������# � [ � (see Theorem A.3, page A.3), but
without non-deterministic choices. Notice that elimination of nondeterminism
from symbolic input/output transition systems is a difficult problem in general.
In this section we propose a procedure that treats some typical situations of
nondeterminism like one presented in Figures A.4(a) and A.7(a) (see pages 276
and 288).

Plan of the Section. The section is separated into three parts.
For the first two parts we consider an IOSTS 9 without internal actions

which has � 1 3 symbolic transitions 8@����	�	�	6�%8 � outgoing from the same location
� , labeled with the same action ] and guarded with Boolean expressions that are
not mutually exclusive. This means that 9 has a non-deterministic choice in
the location � .

In the first part of this section, we study the particular case of IOSTS with
a sole non-deterministic choice, such that the symbolic transitions 8��@��	�	�	6�%8 � in-
volved into the non-deterministic choice of 9 have the same set of assignments.
In order to solve non-determinism in 9 , we introduce the operation of local
determinization, which syntactically transforms the non-deterministic IOSTS 9
into a deterministic one leaving the trace semantics of 9 unchanged.

In the second part of the section, we generalize the particular case mentioned
above, i.e. we consider the situation, where the symbolic transitions 8�����	
	�	
�%8 �
involved into the non-deterministic choice of 9 have different sets of assignments.
In this section we first show that the general case of local determinization of
IOSTS can be reduced to the particular one, and then we propose an algorithm
which (1) syntactically solves the local non-determinism in 9 and (2) preserves
the semantics of 9 .

In the third part, we propose a procedure that transforms general non-
deterministic IOSTS 9 without internal action into a deterministic one

� Z�M�Q 9 U
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using the local determinization algorithm given in the second part of this sec-
tion. The two main purposes of this part are to study (1) the trace relation
between 9 and

� Z�M6Q 9 U , and (2) conditions under which the procedure of global
determinization terminates.

A.2.1 Local Determinization : Particular Case

This subsection is devoted to the problem of local determinization of IOSTS with-
out internal actions. More precisely, consider an IOSTS 9 � :R< �>= �@� ��� B � Q ' � �
'�� U@� DAF with � 1 3 symbolic transitions 8@�@��	�	�	6�%8 � starting in a location �k�(� and
labeled with an action ]�� ' . Assume that the guards

� ����	�	
	
� � � of 8�����	�	�	6�%8 �
respectively are not mutually exclusive. Thus in the location � the IOSTS 9
has a non-deterministic choice between its symbolic transitions 8��>�
	�	�	
� 8 � (the
formal definition of a non-deterministic choice is given on page 277). We also
assume that the sets of assignments of the symbolic transitions 8>����	�	
	
�%8 � involved
into the non-deterministic choice of 9 , are the same. The generalization of this
particular situation is given in Section A.2.2 (see page 287).

The aim of this subsection is to introduce a new operation on IOSTS 9 which
solves the local non-determinism between �81 3 symbolic transitions 8>����	�	�	6�%8 �
(in the case when the sets of assignments of 8>����	�	�	6�%8 � are equal), leaving the trace
semantics of the given IOSTS 9 unchanged.

Example A.8 (Local Determinization of + ) This example explains at the
intuitive level the general idea of the operation that transforms an IOSTS which
has a non-deterministic choice in a location � , into a deterministic IOSTS. The
formal definition of this operation is given on page 277.

Consider an IOSTS + , a fragment of which is shown on Figure A.4(a) (see
page 276). We suppose that + has a non-deterministic choice between two sym-
bolic transitions 8@� �;: �_��] ��� l �

� ����� �>���/� F and 8_� � : �_��] ��� l �
� ����� �������>F which have

the same sets of assignments, i.e. �C� � ��� . These transitions are depicted as the
bold edges in Figure A.4(a).

The local determinization of the given above IOSTS + is illustrated with
Figure A.4 (see page 276). It consists in:

(1) splitting the symbolic transitions 8@� and 8E� (with guards
� � and

� � and
assignments � � and ��� ) into three: one leading to the location �R� for the
case when Q � � ��� � �
U holds, another leading to the location �-� for the case
when Q

�
� � � � �6U holds, and the last leading to the new location �R� 	 � for the

case when Q � � � � �6U holds. Due to the fact that the sets of assignments of
8�� and 8_� are the same, i.e. �C� � � � , we can easily determine that in the
case when

� � � � � holds, i.e. both symbolic transitions 8>� and 8_� can be
executed, the variables must be assigned in the same way. This means that



276 Appendix
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������������ �
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� ��� ��� ��� ��� �� ���
� ��� �
	 ��� �
	 �� ��	

(a) A fragment of an IOSTS � , where the transitions ���
and ��� which are involved into non-deterministic choice, are
shown as dotted lines, and they have the same set of as-

signments, i.e. � �"!#�$� .
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* ,�4 '
*@26 '
*

(b) A fragment of the IOSTS B9CEDGF HGIKJ�LNM obtained from L by the opera-
tion of local determinization (the new/modified locations and symbolic
transitions are shown as dotted lines).

Figure A.4: Local Determinization of an IOSTS O .



Determinization 277

the set of assignments ��� of the symbolic transition ����� � guarded with the
Boolean expression 	�
����
���� is equal to ����� ������������� .

(2) duplicating each symbolic transition outgoing from targets ��� and ��� of the
symbolic transitions ��� and ��� , and replacing the source of this new transition
with the location ����� � which is the target of the symbolic transition ����� � .

The result of the local determinization of � is shown in Figure A.4(b). �

Next, just before giving the formal definition of the operation of local determiniza-
tion, we first introduce the notion of non-deterministic choice in an IOSTS.

Definition A.8 (Non-Deterministic Choice) Let  �"!$#&%�'(%�)*%+��,-%�.�%0/21 be
an IOSTS, where #3�54�687�6:9 and .;�5.*<=6>.@? . Then, we say that  has
a non-deterministic choice in the location �BAC) if there exist DCEGF symbolic
transitions �+�H%-I-I-IH%J��KLA&/ with:

(1) same origin �MA:) ,

(2) same action NOA8.�?P6&.�< carrying a tuple of parameters QSR , and

(3) guards 
���%-I�I-I�%�
TK such that there exists a pair of valuations !�UV%0WX1 , where
UYA[Z]\_^`	$4"6a7(� and WVRbA[Z]\_^c	dQeRP� , satisfying their conjunction, i.e.

!�UV%0WVRf1�g�5	�
(�hiI-I-I-j
TKk� .
Notice that it is possible to decide whether a given guard is satisfiable or not,
as we made an assumption that all guards decorating symbolic transitions
of an IOSTS are expressions in a decidable theory (see page 84). �

Then, we present the operation which solves a non-determinism between DlE"F
symbolic transitions of some IOSTS which are involved into a non-deterministic
choice of this IOSTS.

Definition A.9 (Local Determinization of  : Particular Case) Let

(1)  �m!$#:%�'n%�)2%J� , %�.�%0/M1 be an IOSTS with empty set of internal actions,
i.e. .po��;q .

(2) /hrs� RLt[uf��v]�w!��x%+NS%JQeRy%�
Tv$%+�@v�%+�zv�1(g{��v*Aa/�| be the set of symbolic transitions
involved into a non-deterministic choice of  in a location � for an action
N (see Definition A.8, page 277). Moreover, we assume that the sets of
assignments of the symbolic transitions belonging to /�rs� R are the same, i.e.}�~ %��nA�����%�g /hrs� R{g ��I=� ��v����X��� .
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(3) )�rs� R2t uP�zvVA�) g � ��vh�5!��x%+NS%JQeRy%�
Tv�%+�@v�%+�zv 1 Aj/�rs� R | be the set of targets of the
symbolic transitions belonging to / rs� R .

(4)1 F�� ��������� ��� �
	�� �� � be the set of all possible subsets constructed from the the set
of the indexes uk��%�I-I-IH%�g /hrs� R g | of the symbolic transitions /hrs� R ; and 9 be an
element of this set F � ��������� ��� �
	�� �� � .
The set F�� ��������� ��� � 	��  � � allows to obtain all possible mutually exclusive combina-
tions between the guards of the symbolic transitions / r � R involved into the
non-deterministic choice of  .

Then, the operation of local determinization illustrated with Figure A.5 (see
page 279) transforms the given IOSTS  into the IOSTS ������� ���-	  � �
!$#&%�'(%�)M��%�.�%0/@�s1 , where:

(1) )�� �"	 )��*)�rs� RP��6j)M�r � R , where )M�r � R t uP��� g 95A8F�� ��������� ��� � 	��  � � | .
(2) /�� �"	�/��X/hrs� Rf�h6c/@�r � R 6 	�� �! -�#"%$ � & & & ��' ( 	��  ' ) /!� � , where

(a) /��rs� R is a set of new symbolic transitions ���[� !��x%+NS%JQeR %�
*� %+�+�=%+����1 ,
where 95A8F � ��������� ��� �
	�� 
� � , with:

– ���>A8)M�r � R is the target of �,� ,

– 
-� � 	/. v0 
� 
_v��  	�. v0 21 � ��������� ��� � 	��  � �43%�65�7 
Tv�� is the guard of �,� ,
and

– �+� is the set of assignments of �,� , which is the same as the set
of assignments of all symbolic transitions belonging to /�rs� R , i.e.}�~ A�����%�g /hrs� R g ��I � �+�&���@vz� .

Notice that the guards of symbolic transitions belonging to /��rs� R are
mutually exclusive. Thus, by replacing / rs� R by /@�rs� R in the set of all
symbolic transitions / of  we solve the non-determinism between
the symbolic transitions /hr � R in  .

(b) /8� (see Figure A.5, page 279) is a set of symbolic transitions
! ��� %�9�v�%0Q;:=<�%�
_v � %+�@v �f%+�zv �H1 outgoing from the location �=� A )M�r � R , where

9 A F�� ��������� ��� � 	��  � � , such that there exists a symbolic transitions
��v � !��x%+NS%JQeR %�
Tv�%J��v�%J�d�s1 , where

~ A 9 , involved into a non-
deterministic choice and �xv is followed by symbolic transitions ��v �j�
! �d�z%�9�v�%JQ;:=<x%�
Tv �f%+�@v � %J�zv �H1 belonging to / of  . Formally:

>@?BA�C
DFEG?IHKJ4LMHMNPOFQ#HSRTLVU�HSWXL�UYHKEZL�U\[T]_^a`cb�d%e4f�g�g�g f�h ikjml n�h oqprEG?s`ct6uv f w p
xzy L@AaDGEMHS{�HMN w HSRTLSHSWXL|HSEFu�[!`}> v f w H (A.17)y L�UXAaDGEGuFHKJ#L|HMNPO0Q4HSRTLVUYHSWXL�U�HKEZL�U\[~`z>��������I`c^����0�

1Strictly speaking, the set
b d%e%f�g�g�g f�h i jml n h o

contains the empty set. However, in this thesis we
assume that �z�`}b d%e4f�g�g�g f�h ikjml n�h o .
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(a) A fragment of an IOSTS � , where the symbolic
transitions ����������������� ����� ��� which are involved into non-
deterministic choice, are shown in red color.
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(b) A fragment of the IOSTS +-,/.#0 1�243�576 obtained from 5 by
the operation of local determinization. Here, for all 8 from 9 to:<; =?>�@ AB; CED

, FHGI is a subset belonging to
:KJ�D�L
M
M
M L!; =?>�@ A?; N

such that OQPRFHGI .

Figure A.5: The example illustrating the operation of local determinization of an
IOSTS S .
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�

Next, we illustrate the operation of local determinization defined above with a
concrete example.

Example A.9 Consider a coffee machine depicted as the IOSTS � in Fig-
ure A.6(a) (see page 281). This coffee machine delivers either a coffee with milk
or a coffee with sugar when the paid amount is strictly positive. Notice that in
the location ��������� (shown in red) the IOSTS � has a non-deterministic choice
between two symbolic transitions (shown in red) labeled with the same output
action �	��
��� . It is important to notice that these symbolic transitions have the
same set of assignments.

Then, in order to make � deterministic we first enumerate all symbolic tran-
sitions outgoing from the location �*������� and labeled with the action Coffee,
i.e. we obtain the set:

/������ �����������p� ui�+���5!������S%��	��
���y%P!$1 % � ����!�" E$#% &(' )* $
%�u,+ 9BN ~.-0/ �1+ 9BN ~.- | %324��!65879!;:=< 1H%

�x���5!������S%��	��
���y%P!$1 % � ����!�"?>$#% &(' )*A@ %�u,+ 9BN ~.-0/ �1+ 9BN ~.- | %324��!658BDCFE���Gy1�|

This enumeration also gives the numbers to the targets of the symbolic transitions
belonging to /H�����-�����I�J��� , i.e.

)	�K�L�������I�J���]� uP� ���M24��!65879!;:=< %+�z���N2O��!658BDCFE���G |
Next, we the compute the set of possible subsets from the set of indexes uk��%�F |
used to enumerate the symbolic transitions involved into non-deterministic choice
of the IOSTS � :

F � ��� �#� � u{uk�y| %�uyFk| %�uk�y%�Fk|{|

Second, we modify the IOSTS � as follows:

(1) From the set of locations of � (see Figure A.6(a), page 281) we remove all
locations belonging to )P����� �����I�J��� and insert the following locations:

) � �K�L�������I�J��� � uP� ���M24��!65879!;:=< %+�z���N2O��!658BDCFE���Gk%+����� �X�"!�2O��!65879!;:=< %Q2O��!656BDCRE���G�1H|
which is computed from the sets FP� ��� �#� and )	����� ���S�I�J��� (see the item (1)
of Definition A.9 on page 277 for the detailed explanation). After this
procedure we obtain that �����\� ���-	6�X� has the same set of locations as � except
of the location �$��� �X�5!�2O��!65674!;:=< %Q2O��!656BDCRE���Gy1 (see the location shown in blue
on Figure A.6(b), page 281).
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���
Pay

Begin

� � �
WaitMilk

CoffeeWithMilk

� � � WaitSugar

CoffeeWithSugar

pCoin ���
Coin?(pCoin)
vPaid � � pCoin

vPaid �	�
Coffee!()

vPaid 
	�
Coffee!()

Milk!() Sugar!()

(a) The coffee machine � with the non-
deterministic choice between two symbolic transi-
tions shown as dotted lines.

� '� �����
WaitMilk � WaitSugar �

� �
Pay

Begin

� '��
WaitMilk

CoffeeWithMilk

� ���
WaitSugar

CoffeeWithSugar

vPaid ���
Coffee!()

vPaid ���
Coffee!()

vPaid
� �

Coffee!()

Milk!() Sugar!()

pCoin ���
Coin?(pCoin)
vPaid � � pCoin

Milk!() Sugar!()

(b) The coffee machine +K, . 0 1�2 3� 6 in which non-
determinism is solved by the operation of local de-
terminization.

Figure A.6: An example illustrating the operation of local determinization.
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(2) From the set of symbolic transitions of � (see Figure A.6(a), page 281) we
remove all symbolic transitions belonging to / �K���������I�J��� and add the following
new symbolic transitions:

� ��K���������I�J�������� � ���	��
�����������������	��������
 	!#"%$& '�( )1 * $+*�, *A@ 5
� ��-�.0/�13254 � -�.6/�13287 �89:
 <;>=? A@CB& '�( )

r $
���

� � ���	��
�����������������	��������
 	!#D%$& '�( )1 , * $+* *A@ 5
� ��-�.0/�13254 � -�.6/�13287 �89:
 <;FE8G�H�
I& '�( )

r @
���

� ��� � ���	��
�����������������	�����J��
 	!K�L$& '�( )1 * $ * * @ 5
� ��-�.0/�132K4 � -�.6/�13287 ���M9:
 <;>=? A@CBN�89:
 <;FE8G�H�
MIO�& '�( )

r $ � @
� 7

which is computed from the sets FP� ��� �#� , )	�K�L�������I�J��� and /H����� �����I�J��� (see the
item (2.a) of Definition A.9 on page 277 for the detailed explanation). The
result of this procedure you can see on Figure A.6(b), page 281 (see the
blue edges outgoing from the location � � ����� ).

(3) Finally, we duplicate two symbolic transitions outgoing from the locations
� � � 2O��!65879!;:=< and ���a� 2O��!656BDCRE���G and change their origins with the
location �$��� �X�5!�2O��!65879!;:=< %Q2O��!656BDCRE���G�1 (see Figure A.6(b), page 281).

The resulting IOSTS �����\� �,��	6�X� is deterministic in the sense of Definition 4.20 (see
page 93). �

A.2.1.1 Traces of ���Y��� ���-	  � : Particular Case

In this subsection we consider an IOSTS  � !�#:%�'n%�)2%+� , %�.B%0/M1 with set of
states P and set of valued actions Q � Q*<�6RQ@? . We suppose that  has
a non-deterministic choice between D E F of its symbolic transitions �H� �
!��x%+NS%JQeRy%�
(��%+�_��%+���01H%-I-I-I %J��K�� ! ��%JN %0QeRy%+
_K %+��K %+�zK�1 (see Definition A.8, page 277)
which have the same set of assignments (i.e.

}�~ %��cA �s��%JD ��I � �2v � ����� ). Finally,
we also consider the IOSTS ������� ���-	  � obtained from  by the operation of local
determinization (see Definition A.9, page 277).

The main purpose of this subsection is to prove that the operation of local
determinization of the IOSTS  defined in the previous subsection (see page 277)
preserves the semantics of the given IOSTS  .

In order to prove the statement above we first show that for all valued actionsS R corresponding to an action N of  , the IOSTS  moves from a state T to
a state T�R by taking one of the symbolic transitions ����%-I-I-I %J��K labeled with the
action N and involved into the non-deterministic choice of  if and only if the
IOSTS �����,� ���-	  � (see Definition A.9, page 277) moves from the same state T to
a state T��R by executing the same valued action S R . Formally:
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Lemma A.3 Let

(1)  �w!$#��c%�'��O%�)��O%+� ,� %�.��c%0/��L1 be an IOSTS with set of states P�� and
set of valued actions Q�� ,

(2) ��R �G!��x%+NS%JQeR %�
_Ry%+�@Ry%J�zRf1 be a symbolic transition of  belonging to a set
/hrs� R�� uf�+��%-I-I-I %J��Kk| � /�� of DCEGF symbolic transitions involved into the
non-deterministic choice of the IOSTS  in the location � for the action N
(see Definition A.8, page 277), and

(3) ������� ���-	  �;� !$#
	����� ���������$%�'�	����� ����������%�)�	����� ����������%+� ,	����� ��������� %�.�	����� ���������$%0/�	��� � ��� �����z1 be the
IOSTS with set of states P�	��� � ��� ����� and set of valued actions Q�	��� � ��� ����� , which is
obtained from  by the operation of local determinization in the location
� for the action N .

Then, for all states T � !��x%+U�1 and T-RL� !��zR %+USRf1 belonging to P�� and all valued
actions S R belonging to Q�� of the form !�NS%0WVR-1 , we obtain that: the relation T�! " T�R
holds in the IOSTS  if and only if there exists a state Tf�R �5!�� �R %+USRf1*A P�	����� ��������� ,
where � �R A:)�	����� ��� ����� , such that the relation T
! " T��R holds in the IOSTS ���Y�\� ����	d � .

�

Proof First, notice that the IOSTS ������� ���-	  � has a set / �rs� R �5uf� � � %-I-I-I %J� � 1��$#&%e�K5 |
of 	$F K(' �P� symbolic transitions which were obtained from the set / rs� R of  by
the item (2.a) of Definition A.9 (see page 277). It is important to emphasize that:

(1) the guards 
 � � %-I-I-I %�
 � 1��$#)%e�K5 of the symbolic transitions � � � %�I-I-IH%J� � 1��$#*%e�K5 belong-
ing to / �rs� R are mutually exclusive, and

(2) the disjunction of these guards are equal to the disjunction of the guards
of the transitions ����%-I-I�I�%J��K , belonging to /hr � R i.e. + v0 -, ����1 �$#*%e�K5�. 	�
T�v �Y�
+ v0 -, ��� K/. 	 
_v � .

The items (1) and (2) imply the following fact: the pair of valuations !�UV%0WMR�1
satisfies the guard 
_R of the symbolic transition �xR of  if and only if this pair
satisfies the guard 
��R of exactly one symbolic transition �x�R A&/@�rs� R of ���Y�\� �,�-	d � .

Therefore, the IOSTS  may move from the state T�� !��x%+U�1 to the state TPR �
!��zRy%+U R-1 , where USR�� �@R 	0!�UV%0WVRf1�� , by executing the symbolic transition ��R . In the
same time the IOSTS ���Y�\� �,��	  � may move from the same state T to the state
T-�R � !�� �R %+US�R 1 by executing the symbolic transition ���R .

Finally, as the symbolic transitions belonging to / r � R and /@�r � R have the same set
of assignments (see the hypothesis about  made on the page 282 and the item
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(2.a) of Definition A.9, page 277), then the set of assignments �2R of ��R>A�/�r � R
is also the set of assignments of ���R A /@�r � R . Thus, the valuation of variables and
symbolic constants of  and �����\� ����	d � obtained after the execution of �xR and
� �R from the same state T are equal, i.e. U R���U �R . �`I�� I���I

Second, we show that the operation of local determinization preserves the effects
of sequences consisting of two symbolic transitions �0R��#: , where the first symbolic
transition of this sequence is involved into a non-deterministic choice of  (i.e.

��R is equal to one of the symbolic transitions ���H%-I�I-I�%J��K ). Formally:

Lemma A.4 (Preserving Effects by the Operation of Local Deter-
minization) Let ��R8� !��x%+NS%JQeRy%�
TR %+��Ry%+�zR�1 be one of the D"E3F symbolic tran-
sitions �+��%-I-I-I %J��K which are involved into a non-deterministic choice of the IOSTS
 in the location � for the action N (see Definition A.8, page 277). Assume
that the symbolic transition �xR is followed by at least one symbolic transition
�#:M�"!��zRy%�9P%JQ;:+%+
*:+%J�+:+%+�0:x1 of the IOSTS  .

Then, for all states T�� !��x%+U�1 and T :�� !���:J%+UI:�1 of the IOSTS  and all
sequences S R S : of valued actions, which has the form ! N %�W R�1-!S9P%0WX:x1 , we obtain
that: the relation T !  !��' " T : holds in the IOSTS  if and only if this relation
holds in ������� ����	d � obtained from  by the operation of local determinization
(see page 277). �

Proof According to the item (4) of Definition 4.9 (see page 88), the statement
of the lemma can be reformulated as follows: there exists a state TPR��"!��zR %+USRf1 of
 such that

!��x%+U�1% &�' )�
� R�� � 
	' "��  !��zRy%+USR�1% &(' )� 

� :$� � � 	' "�
� ! ��:+%+U6:x1% &(' )� �

holds in the IOSTS  if and only if there exist two symbolic transitions �0�R and
��� : of �����,� ���-	  � and a state T-�R �"!�� �R %+US�R 1 of ������� ���-	  � , where U �R ��U R , such that

!��x%+U�1% &�' )�
� R�� � 
	' "���� !�� �R %+U �R 1% &(' )� �

� :$� � � 	' " � �
� ! ��:+%+U6:x1% &(' )� �

holds in the IOSTS �����,� �,�-	  � .
(1) The proof of the statement:

the relation T ! "��  T�R holds in  if and only if the relation
T ! "�� � T��R holds in ���Y�,� �,�-	  � , where (a) ���R is chosen exactly as
in Lemma A.3 (see page 283), and (b) Tf�R � !�� �R %+US�R 1 is a state of
���Y�,� ���-	  � such that US�R ��USR
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is similar to the proof of Lemma A.3 (see page 283).

(2) Next, we know that the symbolic transition ��R involved into the non-
deterministic choice of  is followed by the symbolic transition �\: . Then,
due to the item (2.b) of Definition A.9 (see page 277) the symbolic transi-
tion �x�R of ������� ����	d � is also followed by the symbolic transition ��� : which was
obtained from �,: by replacing its source ��R with the target of �x�R , i.e. by � �R .
This means that �x�R is equal to !��d�R %\9 %0Q;:+%�
-:+%+�+:J%+��:x1 .
Thus, the pair of valuations !�U R�%0WX:x1 satisfies the guard 
*: of the symbolic
transition �#: of the IOSTS  if and only if the pair of valuations !�U �R %�W :�1 ,
where US�R �CU R (see the item (1)), satisfies the guard of the symbolic tran-
sition ��� : of the IOSTS �����,� �,�-	  � , which is exactly the same as the guard of
�#: , i.e. 
*: .
Finally, as �,: and �x� : have the same set of assignments �}: and the same
target ��: , then both IOSTS  and ���Y��� �,�f	d � will be found in the same
state T : �w!���:J%+UI:�1 after the execution of the symbolic transitions ��: and � � :
from the states T-R and T �R respectively.

The items (1) and (2) imply the statement formulated at the beginning of the
proof. Therefore, the lemma is proved. �`I�� I �8I

Finally, we consider an IOSTS  with a non-deterministic choice between D�E�F
symbolic transitions which have the same set of assignments; and show that the
operation of local determinization presented on page 277 preserves the semantics
of  . Formally:

Theorem A.5 (Traces of ���Y�\� �,�f	d � : Particular Case) Let  �
!$#j%�'(%�)*%+� , %P	�.�<f6�.@? ��%0/21 be an IOSTS with a non-deterministic choice (see Defini-
tion A.8, page 277) between D>E�F symbolic transitions / r � R�� uf�+��%-I-I-I %J��K | which
have a same set of assignments. Let also ������� �,�f	d � be the IOSTS obtained from
 by the operation of the local determinization (see Definition A.9, page 277).
Then, these IOSTS  and ���Y��� ���-	  � have the same sets of traces, i.e.

� G�������� 	M���Y�,� ���-	  �0� � � G ������� 	  � (A.18)

�

Proof At the beginning of the proof we formulate and show the following three
statements.

(1) For all sequences of valued actions �L� S � I-I�I S�� :
	�
 / T , �' " T � � T , ! $' "�� $ Ty� I-I-IJT � %e� !��' "��

�
T � (A.19)

where
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(a) T , is an initial state of  , and T��H%-I-I�I %�T � are states of  , and

(b) for all
~

from � to � , ���v is a symbolic transition of  which does not

belong to /hr � R ,
is a behavior of the IOSTS  if and only if Formula (A.20) is also a
behavior of the IOSTS ���Y�\� �,��	  � .

This statement follows directly from the fact that the operation of local de-
terminization defined on page 277 does not modify the symbolic transitions
of  that are not involved into a non-deterministic choice of  .

(2) For every sequence of valued actions � � S R , where S R is a valued action
corresponding to a symbolic transition ��R involved into the non-deterministic

choice of  (i.e. �xR2Aj/hrs� R ), the IOSTS  has the behavior:

	 
� / T , �
�' " T � %e� ! ' "��  T �

where T , is an initial state of  , and T��H%�I-I-I�%JT � are states of  , if and only

if the IOSTS ���Y�\� ����	d � has the following behavior:

	�
	����� ��� ����� / T , �
�' " T � %e� ! ' "���� T � �

where T-� � is a state of ���Y�\� ����	  � which has the same valuation of variables
and symbolic constants as the state T � of  .

The statement follows from the item (1) above and Lemma A.3 (see
page 283).

(3) For every sequence of valued actions � � S R S : � � � such that S R S : is a sequence
of two valued actions corresponding to a sequence of consecutive symbolic
transitions ��R �#: , where �xR is involved into the non-deterministic choice of  
(i.e. ��R_A&/�rs� R ),

	�
 / T , �
�' " T�v !  !��' " T�v�� � �

� �' " T � (A.20)

where T-, is an initial state of  , and T���%�I-I-I�%JT � are states of  , is a
behavior of the IOSTS  if and only if Formula (A.20) is the behavior of
the IOSTS �����,� �,�-	  � .

This statement follows from the item (1) above and Lemma A.4 (see
page 284).
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Finally, from the statements proved in the items (1), (2) and (3) of the theorem,
and the hypothesis saying that  does not have internal actions; we obtain
Equality (A.18) using the definition of traces given on page 90. Therefore, the
theorem is proved. �`I�� I��8I

A.2.2 Local Determinization : General Case

In this subsection we consider an IOSTS without internal actions that has a
non-deterministic choice between D�E�F symbolic transitions (see Definition A.8,
page 277) decorated with different sets of assignments. The purpose of this section
is to attack the problem of the local determinization of this IOSTS, and to propose
an algorithm which solves it. In this section we show that the problem of local
determinization can be reduced to the one that was studied in the previous section
(see page 275).

Example A.10 (Local Determinization of � ) Consider the IOSTS � de-
picted in Figure A.7(a) (see page 288). Assume that this IOSTS has a non-
deterministic choice in the location � between two symbolic transitions �H� and ���
shown as the red edges on the figure. Notice that in this section we do not make
any assumption about equality of the assignments of ��� and ��� , i.e. we assume
that ���������� . The aim of this example is to explain how to algorithmically solve
the the non-determinism in the given IOSTS � . Notice that our solution will be
based on the operation of local determinization proposed in the previous section
(see Definition A.9, page 277).

The general idea of the algorithm is the same as the one used to deteterminize
the IOSTS � with two symbolic transitions involved into non-deterministic choice
of � , which have a same set of assignments (see Example A.8, page 275). We
remind that this idea consists in splitting the symbolic transitions ��� and �x� (with
guards 
�� and 
�� and assignments ��� and ��� ) involved into the non-deterministic
choice of � into three: � � � with the guard 	�
��� 7 
���� , � � � with the guard 	 7 
��- 
���� ,
and �+��� � with the guard 	 
��hj
��H� .

The main problem of splitting these symbolic transitions ��� and �x� is concerned
with their sets of assignments �B� and ��� respectively. Indeed, in the case when
	�
(� >
_��� holds, i.e. both symbolic transitions ��� and ��� can be executed, it is
not possible to determine which set of assignments � � or ��� should be performed
(notice that ��� is different from ��� ). However, we can postpone the procedure
of the variables assignment to the symbolic transitions that follow �H� and �x� . We
do it in three steps:

(1) Propagate the assignments of the symbolic transitions �H� and �x� onto the
guards and assignments of the symbolic transitions following them using
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(a) A fragment of an IOSTS � ,
where the transitions ��� and �! 
which are involved into a non-
deterministic choice, are shown as
dotted lines, and they have differ-

ent sets of assignments, i.e. " �$#%
"  .

&

&�' &�(

&�) &�*

+ ',.-�/�0�12�3
+ (,.-�/ 0 12 3

- +�465 2 '87 / 0�9;:<0!= 1> -�/ 4 1- 2 465 2 '?7 / 0�9;:@0!= 1
- +�AB5 2 (�7 / 0�9;:@0!= 1C�-�/ A 1- 2 AB5 2 (�7 / 0�9;:<0!= 1

(b) A fragment of the IOSTS DFE ob-
tained from D after the propagation
of assignments GIH and GKJ onto sym-
bolic transitions L?M and L8N .

O

O�P O�Q

O�R O�S

O�PUT Q

V�W P6XIY W Q8Z[ V�\�] Z^`_
V Y W PBX W Q8Z[ V�\�] Z^`_VaW PbX W Q8Z[ V�\ ] Z^`_

VaW�c6d ^ P?e \�]�f;g@]!h Zi V�\jc Z^ c6d ^ P?e \�]�f;g@]!h Z
V�W�k6d ^ Q�e \�]�f;g@]!h Zl V�\�k ZV ^ kBd ^ Q�e \�]�f;g<]mh Z

V�W�c6d ^ P8e \j]�f;g<]!h Zi V�\jc ZV ^ c6d ^ P?e \�]�f;g@]!h Z
V�W�kBd ^ Q�e \�]�f;g@]!h Zl V�\�k ZV ^ kBd ^ Q�e \�]�f;g@]mh Z

(c) A fragment of the IOSTSn6oqp�r s�t@uwvFx�y
obtained from

vFx
by the op-

eration of local determinization (see
Definition A.9, page 277).

O

O�P O�Q

O�R O S

O�PUT Q

V�W PBXzY W Q8Z[ V�\�] Z^ P
V Y W PBX W Q!Z[ V�\�] Z^ Q

W�ci V�\jc Z^ c
W�kl V�\�k Z^ k

V�W P6X W Q8Z[ V�\�] Z^�_

V�W�c�d ^ P?e \�]�f;g@]mh Zi V�\jc Z^ c�d ^ P?e \�]�f;g@]mh Z
V�W�k6d ^ Q�e \j]?f;g@]mh Zl V�\�k ZV ^ kBd ^ Q;e \�]�f;g@]mh Z

(d) A fragment of the result-
ing IOSTS

nBo;p{u|v}y
obtained fromnBo;p?r s�t@uwvFx~y

by canceling the prop-
agation of assignments (see Fig-
ure A.7(b)).

Figure A.7: Local Determinization of an IOSTS � .
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the operation of assignments propagation (see page 291). After this proce-
dure, we obtain an IOSTS ��� (see Figure A.7(b), page 288) in which the
symbolic transitions corresponding to ��� and ��� are still involved into the
non-deterministic choice (see the red edges of the figure), but they have the
same set of assignments � � . This set of assignments � � is used to save the
values of the parameters 	�
 carried by the action � into some new “obser-
vation variables”, and keep the rest of the variables unchanged.

(2) Apply the operation of local determinization (see Definition A.9, page 277)
to the IOSTS �� , and obtain the IOSTS ������� ����������� (see Figure A.7(c),
page 288).

(3) In the IOSTS ������� ������� � � , cancel the propagation of the assignments which
was done at the first step, and obtain the resulting IOSTS ����� ���!� shown on
Figure A.7(d) (see page 288).

Notice that in practice the decomposition in the three steps explained above is
not relevant as it is possible to transform directly the IOSTS � into the resulting
IOSTS ������� ��� ��� � � . Thus, in practice the local determinization (general case)
should be done in one step. However, in theory we prefer to keep all these steps as
they simplify very much the proof of the fact that the local determinization pre-
serves the trace semantics of the given IOSTS � (see Theorem A.7, page 298). "

Plan of the Subsection. The aim of this subsection is to introduce an algo-
rithm which allows to transform an IOSTS # with a non-deterministic choice be-
tween $&%(' symbolic transitions ����)�* *�* )+�-, with different sets of assignments, into
the IOSTS �������.# � in which this non-determinism between ����)�*�*�*�)+�-, is solved.

For this purpose we first define the operation transforming a given IOSTS
into the IOSTS that contains variables used to memorize values of parameters
carried by the actions of the given IOSTS (see Subsection A.2.2.1, page 290). The
reason of introducing this operation is that, while performing the determinization
of a given IOSTS, we need to conserve values of parameters in order to be able
to postpone the effects of symbolic transitions involved into non-deterministic
choices of IOSTS to symbolic transitions that follow them (see Subsection A.2.2.2,
page 291). Next, we present the formal algorithm used for determinization of the
IOSTS memorizing parameters that has a non-deterministic choice between $
symbolic transitions with different sets of assignments (see Subsection A.2.2.3,
page 295). Finally, we show that this algorithm preserves the trace semantics of
the given IOSTS (see Theorem A.7, page 298).
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A.2.2.1 IOSTS Memorizing Parameters

This subsection introduces the operation that allows to transform a given IOSTS�
# into the IOSTS # conserving the values of all parameters carried by the
actions of

�
# . Formally:

Definition A.10 (IOSTS Memorizing Parameters) For an IOSTS
�
# with

set of data
�������	�
���

and set of symbolic transitions  , we define the IOSTS
# that memorize parameters

�
of

�
# , as follows:

(1) For each parameter ��� �
we create a new variable ������ �

such that
����� � ��� � � ����� � ����� � .

(2) For each symbolic transition � ����� ) � )+	 
 ) � ) � ) � �"! �# and each parameter
�$� �

, if � is a parameter carried by the action � , i.e. �
� 	 
 , then the set
of assignments � is augmented with the new assignment ���&% � � , where �'�
is the variable corresponding to the parameter � .

This means that the value of each parameter from the tuple 	�
 is memorized
in the variable corresponding to this parameter.

"

Observation A.4 (Sequences and Traces of the IOSTS # Memorizing
Parameters of the IOSTS

�
# ) Two IOSTS

�
# and # , where # is the

IOSTS memorizing parameters of
�
# (see Definition A.10), have the same sets of

sequences and traces, i.e.

(*) +',-)'.0/ )�1 � � # � � (*) +',2)'.0/ )�1 ��# � (A.21)35476 / )�1 � � # � �835476 / )�1 �.# � (A.22)

"

Indeed, the IOSTS # is obtained from the given IOSTS
�
# by introducing new

variables that are observation variables, as they are only defined in # and never
used. I.e. they do not occur either (1) in the initial condition of # and in the
guards of the symbolic transitions of # (notice that the initial condition as well
as guards of # are the same as the initial condition and guards of

�
# ), or (2) on

the right-hand sides of the assignments of the symbolic transitions of # . Hence,
these observation variables cannot influence the sets of sequences and traces of�
# .
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A.2.2.2 Propagation of Assignments

In this subsection we consider a sequence � consisting of two consecutive symbolic
transitions of the IOSTS # . The main purposes of the subsection are (1) to
introduce the operation which postpones the effect of the first symbolic transition
of � to the symbolic transition that follows it, and (2) to show that this operation
does not change the semantics of the sequence � .
Definition A.11 (Propagation of Assignments) Let

� % ��� � ) � )+	 
 ) � 
 ) � 
 ) � � !� ��� ����
��� ��)
	 )+	�� )7�� )+����) ��� !� ��� ����

be a sequence of two consecutive symbolic transitions of the IOSTS # . Then, the
operation of propagation of assignments transforms � into the following sequence
of symbolic transitions:

����� ������� �
� ������� � % ��� ��)+��)�	 
 )7� 
 ) � �
 ) � � !� ��� ��� �
��� ��)
	 )+	��+) ���!�#" �!
%$ 	 
'& � 
)(.��) �.���*" �!
+$ 	 
,& � 
-(.��) ��� !� ��� ��  �

such that:

– � �
 �/. � % � �10 � � � �32 � 
��
4 �5. � 
6 % � 	 
6 0 � 
6 � � 
87 	 
6 � 	 
�4 , where
� 


is the set of variables used to memorize values of parameters 	 
 carried by
the action � (see Definition A.10, page 290);

– ���!�)" � 
+$ 	 
'& � 
)(�� is the composition of the guard �9� of ��� and the assignments
� 
 of �-
 in which each occurrence of any parameter from 	�
 is replaced with
its corresponding variable from the set

� 
 ;
– ���:�;" � 
+$ 	 
,& � 
-(.� is the composition between the assignments �<� of ��� and

the assignments � 
 of �-
 , where each occurrence of any parameter from 	�

in the right-hand side of � 
 is replaced with its corresponding variable from
the set

� 
 .
"

Next, we denote by ����� �����=���
�>�?�A@ �.# � the IOSTS obtained from the IOSTS #
by replacing the sequence � of two consecutive transitions with the sequence
����� ������� �
� ������� � .

Finally, we show that the operation of propagation of assignments preserves
the effect of the sequence � . Formally:
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Theorem A.6 (Preserving Effects by Propagation of Assignments) Let

� % ��� ��)+��)�	 
 )7� 
 ) �!
 ) � � !� ��� ����
��� ��)
	 )+	��+) ��+) ��� ) ��� !� ��� ���� (A.23)

where
� � ���� � �� ���

, be a sequence of two consecutive symbolic transitions of the
IOSTS # that was obtained from the IOSTS

�
# by memorizing its parameters

(see Definition A.10, page 290). Let also

����� ������� �
� ��� � ��� %��� � ) � )+	 
 ) � 
 ) � �
 ) � � !� ��� ��� �
��� ��)
	 )+	���) ����#" � 
=$ 	 
'& � 
-(�� ) ���:�*" � 
+$ 	 
'& � 
)(�� ) ��� !� ��� ��  �

(A.24)

where � �
 � . � % � � 0 ��� � � 2 � 
�� 4 � . � 
6 % � 	 
6 0 � 
6 � � 
!7 	 
6 � 	 
�4 , be
the sequence of the IOSTS ����� ���A�=���
�>��� @ ��# � , i.e. ����� ���A�=� �
� ����� ��� is the result of
propagation of assignments in � (see Definition A.11, page 291).

Then, for all states � � and � � of the IOSTS # , and for all sequences of valued
actions of the form � % � � )�� 
 !� ��� �� �

� 	 )�� � !� ��� �� � we have that:

the relation � � �� � � (see the item (4) of Definition 4.9, page 88) holds in # if

and only if the same relation holds in ����� ���A�=���
�>��� @ �.# � . "

Proof In order to prove the theorem we have to show that there exists a state� � of # such that � � � �� � � � � � �� � � � � holds in the IOSTS # if and only if there(� )

exists a state � � � of ����� ������� �
� ��� @ �.# � such that � � � �� �� � � � �
� �� �  � � � holds in the

IOSTS ����� ���A�=���
�>���,@���# � . For more details see the item (4) of Definition 4.9 on
page 88.

To show this statement �	��� we create an intermediate IOSTS # � which is the
same as the IOSTS # except that:

(a) the set of locations 
 of # is augmented with a new location
� �� ���
 ,

(b) the alphabet of actions � of # is augmented with the internal action  ���� ,
and

(c) instead of the sequence � of # the intermediate IOSTS # � has the following
sequence of three consecutive symbolic transitions:

� ������� ��������� 
���� 
���� �
 � � �! " #%$ &��  �
��� �'��()� �  ��+*-,'.0/1���
32 � 
54'6 
!78� � ��  " #%$ &�:9 ������ �<;!��� � ��� � ��� � � � �  " #%$ &�   �

(A.25)
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It is not hard to check that the closure operation (see Definition A.7, page 260) ap-(�)� )
plied to the IOSTS # � produces the IOSTS ����� ���A�=���
�>��� @ ��# � , i.e. � � �����=� � �.# � � �
����� ������� �
� ���'@ �.# � .

Then, in order to show the statement � ��� we formulate and prove two equivalences
(see the next two paragraphs) that imply �	��� , and therefore, the whole theorem.

First, we prove that there exists a state � � � ��� � )�� � ! of # such that

��� � )�� � !� ��� ��
	
� 
��  ���� � � � ��� ��)�� � !� ��� ����

� ���  ���� � � � ����� )�� � !� ��� ����

holds in # if and only if there exist states � � � � ��� ��)�� � � ! and � � �� � ��� �� )���� ! , ( � )
where ���� ������� � � �$� � , such that:

��� � )�� � !� ��� �� 	
� 
��  ���� � ��  � ��� � )�� � � !� ��� ��  �

��� � � ���� � �:9 ��� �� )�� � !� ��� ��   �
� ���  � �� � �   � ����� )�� � !� ��� �� �

holds in # � . This equivalence ��� � is proved in two steps:

(1) We first show that there exists the state � � of # such that � � � �� � � � �
holds in # if and only if there exist two states � � � and � � �� of # � such
that � � � �� ��� � � � � 9� � 9 � � �� holds in # � .
Indeed,

(a) the pair of valuations
� � ��)�� 
 ! satisfies the guard � 
 of the symbolic

transition � 
 of the IOSTS # if and only if it satisfies the guard
of the symbolic transition � � �
 of the IOSTS # � , which is exactly
the same as the guard of � 
 , i.e. � 
 ;

(b) notice that as the symbolic transition � � is guarded with the
Boolean expression ! 4 ,-) , then any valuations � � � of variables and
symbolic constants trivially satisfy the guard of � � .

The items (a) and (b) imply that the symbolic transition ��
 of # is
executable from the state � � � ��� � )�� � ! if and only if the sequence � � �
 � �
of # � is executable from the same state � � .
Next, by executing the symbolic transition ��
 from the state � � the
IOSTS # moves to the state � � � ��� ��)�� � ! ; and by executing the
sequence � � �
 � � from the state � � the IOSTS # � moves to the state� � �� � ��� �� )�� � ! . It is important to notice that the valuations of variables
and symbolic constants of the states � � and � � �� are identical. This is
because: by the construction of the sequence � � the assignments of the
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sequence �-� �
 � � have the same effect as the assignments of the symbolic
transition � 
 .
The argumentation given above proves the item (1).

(2) Next we show that the relation � � � �� � � � � holds in # if and only if

the relation � � ��
� �� � � � � holds in # � .

Indeed, the pair of valuations
� � ��)�� � ! satisfies the guard �� of the

symbolic transition � � of the IOSTS # if and only if it satisfies the
guard of the symbolic transition � � �� of the IOSTS # � , which is exactly
the same as the guard of � � , i.e. �� . Then, as � � and � � �� have the same
set of assignments ��� and the same target

� �
, then both IOSTS # and

# � will be found in the same state � � � ����� )�� � ! after executing the
symbolic transition � � (resp. �-� �� ) from the state � � (resp. � � �� ). Therefore,
the item (2) is proved.

The items (1) and (2) imply the equivalence ��� � .
Second, we prove that there exist states � � � � ��� ��)����� ! and � � �� � ��� �� )���� ! , where

� � � ������� � � �$� � , such that:

��� � )�� � !� ��� ��
	
� 
 �  � �� � �   � ��� ��)�� � � !� ��� ��  �

� � � � ���� � 9 ��� �� )���� !� ��� ��   �
� ���  � �� �   � ����� )�� � !� ��� ����

(A.26)

holds in # � if and only if the sequence of the following relations:( � � )
��� ��)�� � !� ��� �� 	

� 
 �  � �� � �  � ��� ��)�� � � !� ��� ��  �
� ���  � �� � �  � ����� )�� � !� ��� �� �

(A.27)

holds in ����� ���A�=� �
� ��� @ �.# � .

First, by looking at Formula (A.25) we obtain that � � �-� �� is a  * � -sequence of
the IOSTS # � (see Definition A.6 page 259). Then, we apply the closure
operation (see Definition A.7, page 260) to # � , and, due to observation
�	�)��� , obtain the IOSTS ����� �����=���
�>�?�A@ �.# � . It is important to notice that
during this operation the  * � -sequence � � � � �� of # � was transformed into
the symbolic transition � � of ����� �����=���
�>�?� @ ��# � by the collapsing operation
defined on page 249.

Second, as � � � � � � ��� � � � � � �� � � ��� , then from Theorem A.1 (see page 252) we
can deduce that � � �

� 9� �:9 � � ��
� �� �   � � � holds in # � if and only if � � �

� �� � � � � holds
in ����� ������� �
� ��� @ �.# � .
Finally, the equivalence ��� � � is proved by noticing that the relation � � � �� �   �
� � � which is the first step of Formula (A.26), holds in # if and only if
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the relation � � � �� �� � � � � which is the first step of Formula (A.27), holds in
����� ���A�=� �
� ��� @ �.# � . This follows from the fact that the symbolic transition ��� �

of � � (see Formula (A.25), page 292) is the same as the symbolic transition
� �
 of ����� ���A�=� �
� ��� � ��� (see Formula (A.24), page 292).

The equivalences ��� � and ��� � � imply the equivalence � ��� . Therefore, the theorem
is proved.

� *�� *�� *

A.2.2.3 Algorithm for Local Determinization (General Case) and
Traces of ��������# �

In this section we consider an IOSTS
�
# without internal actions, and the IOSTS

# � � � )�� ) 
 ) ��� )�� )  ! obtained from
�
# by Definition A.10 (see page 290).

We also consider that the latter IOSTS has the set of states 	 and the set of
valued actions 
 � 
�� � 
� . Finally, we suppose that # has a non-deterministic
choice between $ % ' symbolic transitions � � � ��� )+��)�	 
 ) � � ) � � ) � � ! )�*�*�*�)+�-, �
��� ) � )+	 
 )7� , ) � , ) � , ! (see Definition A.8, page 277) such that (1) � ��)�*�*�*�)+�-, can have
different sets of assignments, and (2) for all � from � to $ ,

� 6 is different from
�
, i.e.

the self-loops on the action � is forbidden in the location
�
. The last restriction

is needed in order to be able to correctly perform the operation of assignments
propagation on the first step of the algorithm of local determinization.

The two main purposes of this subsection are: (1) to propose an algorithm
for solving non-determinism in the given IOSTS # , and (2) to prove that this
algorithm preserves the semantics of # .

Algorithm A.1 (Local Determinization of # : General Case) The algo-
rithm for the local determinization of the IOSTS # consists of the three following
steps:

Step I : Propagation of Assignments in the IOSTS # . The purpose of
this step it to modify the given IOSTS # such that the operation of local
determinization (see Definition A.9, page 277) can be applied to it.

To reach this purpose we postpone the effects of the symbolic transitions
� ��)�*�*�*�)+�-, involved into the non-deterministic choice of # , onto the symbolic
transitions that follow them. This is done by replacing each sequence � 6 � 6�� of
# , where � � � * * $ and � � � * *�� , with the sequence � �6 �-�6�� � ����� ���A�=���
�>����� � 6 � 6�� �
(see Definition A.11, page 291).

It is important to emphasize that after the modification of the IOSTS #
described in the item (1) above the semantics of # may change. This effect ( � )
happens only in the case when there exists at least one symbolic transition
which has the same target as one of the symbolic transitions ����)�*�*�*�)+�-, , but
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which is different from this symbolic transition (see Figure A.8, page 297).
However, we fix this problem during the third step of the algorithm.

Step II : Local Determinization of the IOSTS # . After the first step of
the algorithm we obtain an IOSTS # � with the non-deterministic choice be-
tween the $ symbolic transitions � � � ) *�*�* )��-�, corresponding to ����)�*�*�*�)+�-, of # .
Notice that all symbolic transitions ��� � ) *�*�* )��-�, have the same set of assign-

ments. Thus, at second step of this algorithm we can apply the operation
of local determinization (see Definition A.9, page 277) to the IOSTS # � .
This operation returns the IOSTS �����+� �����.# � � where the non-deterministic
choice between � � � )�* *�* )+�-�, is solved. Figures A.7(b) and A.7(c) (see pages 288
and 288 respectively) illustrate the second step of the algorithm.

Step III : Canceling the Propagation of Assignments made on Step I.
The third step of the algorithm solves the problem mentioned as the remark
� � � in the first step of this algorithm. We remind that this problem is
due to the modification of the semantics of the given IOSTS # by the
assignments propagation performed for each symbolic transition involved
into a non-deterministic choice of # .

The solution of this problem is depicted in Figure A.7 (see page 288) and
formalized below.

(1) We select all sequences � � �6 �-�6�� of ������� ������# � � , where � � � * * $ and � � � * *�� ,
such that:

(a) � � �6 is the symbolic transition of �����+� ��� ��# � � with the guard � � �6 �
� �6 7 � � ��� ����� � � ,
	�� ��� 6�� � �� � , where � �6 is the guard of the symbolic
transition � �6 involved into the non-deterministic choice of # � , and

(b) � �6�� is the symbolic transition following � �6 in # � .
(2) Each sequence � � �6 �-�6�� of �����+� �����.# � � selected by the item (1) above is

replaced with the sequence � � � �6 � 6�� such that �-� �6 �-�6�� � ����� ���A�=� �
� ����� �-� � �6 � 6�� � ,
where

(a) �-� � �6 is the symbolic transition of ����� ��# � which same as the symbolic
transition � 6 of # except of the guard which stays the same as
the guard of � � �6 of ������� ��� ��# � � ,

(b) � 6�� is a symbolic transition following � 6 in # .

At the end of this step we obtain the deterministic IOSTS ����� ��# � which has
the same semantics as the given IOSTS # (see Theorem A.7, page 298).

"
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(a) The IOSTS � with the fol-
lowing set of traces: � �"!$#&%('$)*�,+ %-�.0/21�/2.43�/21(.0/

acd
/&1(.456/&1(.47$8

.

&�9

&�' &�(

&�) &�*

&�: &�;

,�<q-~1=
> ?�@ > <q-~1=
> ?�A

C�<;-U1=�> ?B=

,�<q-~1
x:=x

(x+1 = 1)C�D -~1=�> ?�=

-�=�?�A{1,�<;-U1=
> ?�=

E D -U1=
> ?B=

(b) The IOSTS FHGJI FHK�LMKON2P IRQ6S*T,U
which is obtained from T by
the assignments propagation (see
Definition A.11, page 291) applied
to the sequences of T shown in
blue and green (see Figure A.8(a)).
The set of traces of this IOSTS is
following: VRW"XZY&[]\MS^FHG_IRF�K�L4KON2P IRQ6S*T`U"U�ab�c0d2e�d"c4f�d2e]cgd&e(c4h6d&e(c4i$j

. This set
does not contain the trace acd of
T , thus the semantics of T and
FHGJI FHK�LMKON2P IRQ6S*T,U are different.

Figure A.8: The IOSTS k in which the operation of assignments propagation
leads to a modification of the semantics of k .
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Finally, we state and prove the theorem about trace-equivalence between the
given IOSTS # and the IOSTS ����� ��# � obtained from # by the algorithm for
the local determinization described above.

Theorem A.7 (Traces of ��������# � : General Case) Let # be the IOSTS
without internal actions, wchich is obtained from an IOSTS

�
# by mem-

orizing its parameters (see Definition A.10, page 290). Suppose that #
has a non-deterministic choice between $ % ' symbolic transitions � � �
��� ) � )+	 
 ) � � ) � � ) � � ! )�*�*�*�)+�-, � ��� )+��)�	 
 )7� , ) � , ) � , ! (see Definition A.8, page 277)
such that:

(1) ����) *�*�* )��-, can have different sets of assignments, and

(2) for all � from � to $ ,
� 6 is different from

�
, i.e. the self-loops on the action �

is forbidden in the location
�
. This restriction is needed in order to be able

to correctly perform the operation of assignments propagation on the first
step of Algorithm A.1 (see page 295) .

Then, the resulting IOSTS ����� ��# � obtained from the IOSTS # by the algorithm
of local determinization given on page 295 has the same set of traces as # , i.e.

3 476 / )�1 �.����� ��# ��� � 35476 / )�1 ��# �

"

Proof We assume that each symbolic transition � 6 ( � � � * * $ ) involved into
the non-deterministic choice of # is followed by symbolic transitions � 6 ��)�*�*�*�)+� 6�� .
Then,

(1) During Step I of the algorithm for local determinization of # we re-
place each sequence � 6 � 6�� ( � � � * * $ and � � � * *�� ) with the sequence
� �6 � �6�� � ����� ���A�=���
�>��� �.� 6 � 6�� � and obtain the new IOSTS # � . Then, due to The-
orem A.6 (see page 292), we obtain that these replacements preserve the
effects of the sequences � 6 � 6�� . Therefore, the semantics of these sequences is
remining unchanged, but the semantics of the whole IOSTS # may change,
i.e. it is possible that

35476 / )�1 ��# � �� 3 476 / )�1 �.# � �
(2) During Step II of the algorithm we apply the operation of local deter-

minization defined on page 277 to # � and obtain the IOSTS �����+� �����.# � � .
Then, due to Lemma A.3 (see page 283), we have that this operation pre-
serves the effects of each sequences of symbolic transitions ���6 �-�6�� of the IOSTS
# � , where � � � * * $ and � � � * *�� . By Theorem A.5 (see page 285) we also
get that

35476 / )�1 �������+� ��� �.# � �+� �835476 / )�1 �.# � � .
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(3) During Step III of the algorithm we cancel the propagation of assignments
made on Step I and obtain the IOSTS �������.# � . Then, due to Theorem A.6
(see page 292) we have that the effect of any sequences of two consecutive
symbolic transitions is preserved by the operation of propagation of as-
signments. Thus, if in ������� ��� ��# � � we replace each sequence of symbolic
transitions � � �6 � �6�� � ����� �����=���
�>�?� �.� � � �6 � 6�� � with the sequences � � � �6 � 6�� (see Step
III of Algorithm A.1), then the semantics of # will be preserved, i.e.35476 / )�1 ������� �.# �+� � 3 476 / )�1 �.# � .

� *�� *�� *

A.2.3 Traces and Accepting Traces of
���������	��
��������������������� �"!#!

In this section we consider an IOSTS � � ��� �=��� � (%$ � � with set of data
�����
� �$���

and set of actions � � ��� � �� , which was computed from the synchronous product(%$ � ('&-) /)( 3 $
by the closure operation as it is explained in Section A.1 (see

page 246).
Then, we augment the set of variables

�
of � � � � �=��� � (%$ �-� with some observa-

tion variables used to memorize values of parameters
�

carried by the actions
� of � � �����=� � � (%$ � � . I.e. we create an IOSTS � � �����=� ��� (%$ � memorizing parame-
ters

�
of the IOSTS � � �����=� ��� (%$ � � (see Definition A.10, page 290). According

to Observation A.4 (see page 290) the semantics of the IOSTS � � � � �=��� � (%$ � � and
� � � � �=��� � (%$ � is the same, i.e.

3 4 6 / )�1 ��� � �����=� ��� (%$ � � � � 35476 / )�1 ��� � �����=� � � (%$ ��� . More-
over, it is not hard to check that the IOSTS � � ��� �=��� � (%$ � � and � � ��� �=��� � (%$ � have
the same set of accepting traces. (Notice that the accepting traces of � � � � �=��� � (%$ ���
and � � �����=� ��� (%$ � are defined similarly as the accepting traces of the synchronous
product

(%$
, see Definition 6.10 on page 151).

Finally, we consider an IOSTS ��������� � �����=� � � (%$ �+� computed from � � �����=� � � (%$ �
by the algorithm of local determinization presented in the previous subsection
(see page 295). The aim of this section is to study the relationships between
traces and accepting traces of � � �����=� � � (%$ � and ��������� � �����=� ��� (%$ �+� .

Traces of ����� ��� � �����=� � � (%$ �+� . Using Theorem A.7 (see page 298) we obtain that
the algorithm of local determinization preserves the set of traces of the IOSTS
� � � � �=��� � (%$ � , i.e.

35476 / )�1 ������� � � � � � �=��� � (%$ �+��� � 35476 / )�1 ��� � �����=� � � (%$ �+� (A.28)

Accepting Traces of ����� ��� � �����=� ��� (%$ �+� . In this paragraph we first make an ob-
servation about the form of the locations of the IOSTS ������� � � ��� �=��� � (%$ ��� . Then
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we use this observation in order to define the notion of accepting trace for
������� � � ��� �=��� � (%$ ��� . Finally, we prove that the IOSTS ������� � � ��� �=��� � (%$ ��� has the
same set of accepting traces as the IOSTS � � �����=� � � (%$ � .
Observation A.5 (The Form of Locations of ����� ��� � �����=� � � ('&-) / ( 3 $ ��� ) All
location of an IOSTS ������� � � � � �=��� � ('&-) / ( 3 $ �+� are of the form:

�7��� �������� ) � � �
	 ! ) *�*�*�) ��� , ������� ) � , �
	 !7!
where for all � from � to $ % � , � 6 ������� and

� 6 �� are locations of a specification
('&-) /

and a test purpose
3 $

of
('&-) /

respectively. "
Intuitively, the set of accepting traces of the IOSTS ��������� � �����=� � � (%$ ��� consists of
the traces leading to states that correspond to the locations containing the word� / / )�& ! in their names. Formally:

Definition A.12 (Set of Accepting Traces of ����� ��� � �����=� ��� ('&-) / ( 3 $ �+� ) Let

(1)
('&-) / ��������� be a specification with set of locations 
 ������� ,

(2)
3 $

be a test purpose of
('&-) /

with set of locations 
 ��� , and

(3) ����� ��� � �����=� � � (%$ �+� be an IOSTS obtained from the synchronous product
(%$ �

('&-) / ( 3 $
by the closure operation (see Definition A.7, page 260) and the

algorithm of local determinization (see Algorithm A.1, page 295).

The IOSTS ����� ��� � �����=� � � (%$ �+� has the set of locations 
 , the set of data����� � � � �
, the set of states 	 and the set of initial states 	 ��� 	 .

Then, for the IOSTS ����� ��� � �����=� ��� (%$ �+� we define the set of accepting traces as
follows:

� 35476 / )�1 ��������� � � ��� �=��� � (%$ ���+� � (A.29).�� � 35476 / )�1 ������� � � � � � �=��� � (%$ �+���!0 � � � � 	 � )��� ��)�*�*�*�) ��� ������� ) � / / )�& ! !� ��� �!#" )�*�*�*�) � , ! � 
 )

��� ��� � � � �$� ��)
� � �7��� � ) *�*�* ) ��� ������� ) �%$&$&' � � !� ��� �!(" )�*�* * ) � , ! )�� ! � 	(*

$ � �*)+ � ( 4
where

� ������� � 
 ������� is a location of
('&-) /

and �%$&$&' � � � 
 ��	 is the special location
of

3 $
(see the hypothesis (1) of Definition 6.8, page 147). "
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Next, in order to prove the equality between sets of accepting traces of � � �������
	�������
and � 	���� � � ��������	���������

, we first show the set of accepting traces of � � �������
	�������
is

equal to the set of accepting traces of the IOSTS � 	���� ��� � � � ��������	���������
obtained

from � � ��������	�������
by the operation of local determinization. Formally:

Theorem A.8 (Accepting Traces of � 	���� ��� � � � ��������	����!�"$#&% '(�����
) Let

� � ��������	����!�"$#)%*'(���
be an IOSTS with a unique non-deterministic choice (see

Definition A.8, page 277) between + symbolic transitions which have a same set
of assignments.

Then, the resulting IOSTS � 	���� ���,� � � �������
	����!�"$#-%.'(�����
obtained from � � �������
	����!�"$#/%'(�0�

by the operation of local determinization (see Definition A.9, page 277) has
the same set of of accepting traces traces as � � ��������	����!�"$#�%1'(���

, i.e.
2 '4365�#$"�7�� � � ��������	����!�"$#8%1'(�����:9 2 '43$5�#$"�7�� � 	���� �;�<� � � �������
	����!�"$#�%='(���;���

>

Proof

( ? ) First, we show that each accepting trace of � � �������
	����!�"$#@%A'(���
is also an

accepting trace of � 	��;� ��� � � � ��������	����!�"$#8%B'(�����
.

Consider an arbitrary accepting trace C 9 DFEHG<G<G6DJI
belonging

to
2 '43$5�#$"�7�� � � �������
	����!�"$#K% '(���;�

and leading to an accepting stateL MON
N
PRQ�S 9 T6TVU�W 2 #$#$"�!HX�Y�W6Z[Y
, where

TVU�W 2 #$#$"�!HX�Y]\ ^ �_� ��`
a�bdc�eRf Q�P
N$gih<j/k and
Z \

lnm0op�rq��r� ��`
a�bsc;eRf Q�P
N$gih<j�k/tvu �r� ��`wa�bdc;exf Q;P
N6gih j�k � .
Due to Definition A.7 (see page 260) the IOSTS � � ��������	����!�"$#y%K'(���

does
not have any internal actions. Thus, the given accepting trace C is also a
sequence (see Definition 4.12, page 90) of � � ��������	����!�"$#z%{'(���

leading to the
same accepting state L|MON�N
PxQ�S .
Next, we consider two cases below.

(1) The sequence C corresponds to one of the following behaviors of
� � ��������	����!�"$#8%B'(���

:

(a) }�~EA� L<����[� L I 9 L<�&����H��� � L EHG<G<G L I���E ����H��� � L MON
N
PRQ�S , where

– L � is an initial state of � � �������
	����!�"$#�%='(���
,

– L E�W<G<G,G�W L I���E are states of � � ��������	����!�"$#8%1'(���
, and

– � E�W<G,G<G,W � I are symbolic transition of � � ��������	����!�"$#8%1'(���
which

are not involved into the (unique) non-deterministic choice of
� � �������
	����!�"$#�%B'(���

.
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(b) }:~� � L<� � ��i� L�� ����� � �����
	�[� L��� � � � ��H� L MON
N�PxQ�S , where

– L � is an initial state of � � �������
	����!�"$#�%1'(���
,

– L E�W<G<G<G�W L I���E are states of � � �������
	����!�"$#�%='(���
, and

– C 9 C � D �� E;D �� � C � � , where
D �� E;D �� � is a sequence of two val-

ued actions corresponding to a sequence of the consecutive
symbolic transitions � �� E � �� � , where � �� E is involved into the
non-deterministic choice of � � �������
	����!�"$#8%1'(�0�

.

As all symbolic transitions involved into the unique non-deterministic
choice of � � �������
	����!�"$#i%)'(�0�

have a same set of assignments (see the hy-
pothesis of the theorem), then we can use Theorem A.5 (see page 285).
Due to the statements formulated as the items (1) and (3) in the proof
of this theorem, we obtain that the behaviors } ~E and }:~� shown above
are also behaviors of the IOSTS � 	��;� �;�<� � � �������
	����!�"$#)% '(���;�

. Thus,
the state L|MON�N
PxQ�S is reachable in � 	���� �;�<� � � �������
	����!�"$#@%&'(���;�

by the se-
quence C . Finally, according to Definitions 4.12, 4.14 and A.12 (see
pages 90, 90 and 300) the sequence C is also an accepting trace of
� 	���� �;�<� � � �������
	����!�"$#�%B'(���;�

.

(2) The sequence C corresponds to the following behaviors of � � ��������	����!�"$#O%'(���
:

� ~�r� ��`wa�bdc;exf Q;P
N�gih<j�k�� � � � �������� I���E�����I���E�� !#" $% �'& �
���#(*)�+-, .0/��� � � ����� ��132�2�465879�����:� !#" $%<;>=�=@?�A6B

(A.30)

where

– L<� is an initial state of � � �������
	����!�"$#�%1'(���
,

– L E�W<G<G<G�W L I���E are states of � � �������
	����!�"$#8%1'(���
, and

– C 9 C � D I , where
D I

is a valued action corresponding to a symbolic
transition � I involved into the non-deterministic choice betweenCEDGF symbolic transitions � E�W,G<G<G,W � I�W<G<G,G,W ��H of � � �������
	����!�"$# %�'(���

.

In this case, due to the statement formulated as the item (2) in the
proof of Theorem A.5, page 285 (which we can use due to the hypoth-
esis about common set of assignments for all symbolic transitions in-
volved into the unique non-deterministic choice of � � ��������	����!�"$#n% '(���

)
we get that the IOSTS � 	��;� ��� � � � ��������	����!�"$#8%B'(�����

has the behavior:

� ~I cKJ�L MON_e �r� ��`
a�bsc�exf Q;P
N6gih<j�kxkP� � � � �������� I���E#����I���E�� !#" $% �9& �
���Q(*)�+-, .0/��� � � � �

R �" $# !��� E ��S�S�ST� � � ��S�S�ST� � H �Q���U� !�" $% � ;>=V=@?WA6B
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Next, we show that there exists � -th member ( � 9�� GxG + ) of the locationU �
of � 	���� �;�<� � � �������
	����!�"$#y% '(���;�

such that
U � is the accepting locationTrU�W 2 #$#$"�!HX;Y

of � � �������
	����!�"$#�%1'(���
.

Indeed, first notice that � � I is one of the symbolic transitions
of � 	���� ���,� � � �������
	����!�"$#�% '(���;�

obtained from the symbolic transi-
tions � E�W,G<G<G,W � I�W<G<G,G,W ��H involved into the non-deterministic choice of
� � ��������	����!�"$#�%B'(���

by the operation of local determinization (see the
item (2.a) of Definition A.9, page 277). Moreover, � � I leads to a lo-
cation of the form

U � 9 TrUrE�W<G,G<G,W6U � W<G<G,G,W6U H Y of � 	���� ���,� � � �������
	����!�"$#�% '(�����
that is the tuple of targets of some symbolic transitions involved into
the non-deterministic choice of � � ��������	����!�"$#0% '(���

, whose guards are
satisfied by the pair of valuations

TrZ[I���E$W�� Y
. As we know that

TVZ[I���E�W�� Y
satisfies the guard of the symbolic transition � I of � � �������
	����!�"$#�%B'(���
(see Formula (A.30) and Definition 4.7 on page 86) which leads to the
accepting location

TrU�W 2 #$#$"�!HX�Y
, and involved into the non-deterministic

choice of � � �������
	����!�"$#0%B'(���
, then

TVU�W 2 #$#$"�!HX�Y
is the � -th member (for

some � 9���GRG + ) of the tuple
U �
.

Then, as the location
U � 9]TrUrE�W<G,G<G�W TrU�W 2 #$#$"�!HX�Y

� ��� 	R �
W,G<G<G,W�U H Y contains the word

2 #$#$"�!HX
, then any state L � MON�N
PxQ�S corresponding to this location is an ac-

cepting state of � 	���� ���<� � � �������
	����!�"$# %K'(�����
. Therefore, due to Defini-

tions 4.12, 4.14 and A.12 (see pages 90, 90 and 300) the sequence C cor-
responding to the behavior } ~I c J L M N e �r� ��`wa�bdc�eRf Q;P
N$gih<j�kRk of � 	���� ���<� � � �������
	����!�"$# %'(�����

and leading to the accepting state L � MON�N
PxQ�S is the accepting trace
of � 	��;� �;�,� � � �������
	����!�"$#8%B'(���;�

.

The items (1) and (2) imply that C \ 2 '4365�#$"�7�� � 	��;� �;�<� � � �������
	����!�"$# %1'(�������
.

( 
 ) The proof of the second inclusion, i.e. the proof of the fact that each ac-
cepting trace of � 	���� ���,� � � �������
	����!�"$#p% '(�����

is also an accepting trace of
� � ��������	����!�"$#�% '(���

, can be done by analogy with the proof of the first in-
clusion by using items (1), (2) and (3) of the demonstration of Theorem A.5
(see page 285).

� G�yG�� G
Finally, we state and prove the theorem about equality between sets of accepting
traces of � � �������
	�������

and � 	��,� � � �������
	���������
.

Theorem A.9 (Accepting Traces of � 	���� � � �������
	����!�"$# %&'(�����
) The result of

Algorithm A.1 (see page 295) applied to an IOSTS � � �������
	����!�"$#p% '(���
with
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unique non-deterministic choice (see Definition A.8, page 277), has the same set
of accepting traces traces as � � �������
	����!�"$#�%1'(���

, i.e.

2 '43$5�#$"�7�� � � �������
	����!�"$#8%B'(���;��9 2 '/365�#$"�7�� � 	��<� � � ��������	����!�"$#8%1'(�����;�
>

Proof The proof of the theorem is similar to that of Theorem A.7 (see page 298)
except of (a) reasoning about accepting traces and not traces; and (b) using
Theorem A.8 instead of Theorem A.5 in the item (2) of the proof (see page 298).�pG��yG�� G

A.2.4 Global Determinization

This section describes a simple procedure for the global determinization of an
IOSTS without internal actions. The general idea is to iterate through all loca-
tions of the IOSTS, and each time when a non-deterministic choice (see Defini-
tion A.8, page 277) is detected, to apply the algorithm of local determinization
defined in previous section (see Algorithm A.1, page 295). Formally:

Procedure A.1 (Global Determinization of � ) Let
�
� be an IOSTS with-

out internal actions, and � 9 T�� W��@W6^ W�U � W|����� t �
	 �$W��8Y
be the IOSTS memorizing

parameters of
�
� (see Definition A.10, page 290). Then, in order to make the

IOSTS � deterministic in the sense of Definition 4.20 (see page 93), we perform
the following steps:

(1) From the set of locations
^

of � construct the subset
^ � ? ^

of all lo-
cations

U \ ^
which are origins of symbolic transitions involved into non-

deterministic choices (see Definition A.8, page 277).

(2) While the set
^ �

is not empty, do:

(a) For each location
U

belonging to
^ �

, perform the algorithm of local
determinization presented on page 295.

(b) At the end of the loop described in the item (a), we obtain a new
(possibly non-deterministic) IOSTS �

�
for which we recompute

^ �
.

>
It is important to notice that Procedure A.1 presented above does not always
terminate. However, if this procedure does terminate, it clearly produces an
IOSTS without non-deterministic choices, i.e. a deterministic IOSTS in sense of
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Definition 4.20 given on page 93. The termination problem is strongly connected
with the existence of cycles in IOSTS.

Indeed, let us consider the subclass of acyclic IOSTS (an example of these
IOSTS is shown in Figure A.6(a), page 281). Then, for any IOSTS � be-
longing to this subclass, we can guarantee that the procedure of global deter-
minization terminates. Indeed, first we remind that the algorithm of local de-
terminization (see Algorithm A.1, page 295) propagates a non-determinism of
� only forward. Therefore, by iterating through all locations involved into non-
deterministic choices of � and applying Algorithm A.1, we obtain a deterministic
IOSTS � .

However, if the IOSTS � contains cycles, it is possible that Procedure A.1
does not terminates. An example of such IOSTS is shown on Figure A.9 (see
page 305) below and explained in the item (1) of Example A.12 (see page 307).

������ ���

���

x � c

x �
	
a?()

x � � x ��
x �
	
a?()

x � � x ��

x �
�
b?()

x � � x ��
x �
	
b?()

x � � x ��x ���
c!(p)

Figure A.9: An IOSTS
�

which does not belong to the class of deterministic
IOSTS with lookahead � for any ����� .

Due to the fact that the subclass of acyclic IOSTS is very limited, our purpose
is to find another subclass (1) which is wider that the subclass of acyclic IOSTS,
and (2) for which Procedure A.1 terminates. The idea about this subclass was
inspired from the paper [Angluin, 1982]. By analogy with this paper the subclass
studied in the rest of this section is called deterministic IOSTS with lookahead � .

Plan of the Section. At the beginning of this section we introduce the sub-
class of IOSTS with lookahead � . Then, we show that the problem of checking
whether an IOSTS without internal actions belongs to this class or not is decid-
able. Finally, we prove that the procedure for global determinization terminates
for all IOSTS belonging to the subclass of IOSTS with lookahead � .
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� �

� � � � � �

� � ���

���

x � c

x � �
a?(p)

x � � x � p
x � �
a?(p)
x � � p

x � �
a?(p)

x � � x � p

p � 
b?(p)

x � � x � p

x � �
c!()

x � �
d!()

x �
�
c!()

p � 
b?(p)

x � � x ��

Figure A.10: An example of deterministic IOSTS
�

with lookahead � .

A.2.4.1 Deterministic IOSTS with Lookahead �
Before giving the formal definition of a deterministic IOSTS with lookahead � ,
we introduce two intermediate notions defined on the syntax level of IOSTS. Let
us consider an IOSTS 	 
�����������������������! #"$�&%('��*),+ without internal actions,
i.e. �.-,
0/ , then:

Definition A.13 ( �!132547698&: ) The set of locations in which the IOSTS 	 can
be after executing a sequence of input/output actions :�
<;>=@?�?A?�;CB � ���! D"E�&%F'7G
from a location � � � , is defined as:

H5IKJMLONQPARKS�T U V&IOWYX[Z]\^S�_a` =cb�b�b ` Bedgf I =ih�b�b�bih I BMjc= blk I.monp q I =>b�b�b I BMjc= m�rp q IOWFsut
(A.31)

where � mv w � W denotes a symbolic transition of 	 . x

Definition A.14 ( � -Follower) Let � be a fixed nonnegative integer. Then,
a sequence of input/output actions : � ���  "$� % ' B is said to be a � -follower of
the location � � � in the IOSTS 	 if the set of locations after executing the
sequence : from the location � of 	 is not empty, i.e. ���D1�25476y8.:z'|{
}/ . x

Example A.11 To illustrate the definition of a � -follower given above, we use
the IOSTS

�
depicted in Figure A.10. The IOSTS

�
has the following alphabet

of input/output actions: ���~ K"��&%('e
��7��;>���3�!"��y�����c�z' . Then, the sequence:
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– � ��� � ��� is a � -follower of the location
U � ,

–
���

is a F -follower of locations
U_E

and
U��

,

– � is a
�
-follower of location

U�	
.

At the end, we notice that each location of the IOSTS 
 has exactly one�
-follower, namely, the empty string � . This observation is valid for any arbitrary

IOSTS.
>

Next, we formally define a deterministic IOSTS with lookahead  and illustrate
this definition with an example.

Definition A.15 (Deterministic IOSTS with Lookahead  ) An IOSTS
� 9]T�� W � W$^ W6U � W|� � � t � 	 �6W��8Y

without internal actions is defined to be:

(1) deterministic with lookahead
�

if � does not contain any non-deterministic
choice in the sense of Definition A.8 (see page 277), and

(2) deterministic with lookahead  D �
if:

for any pair of distinct symbolic transitions � E)9 TrU�W � W�� + W�� E�W���E�W6UrE;Y
and

� � 9 TrU�W � W�� + W�� � W�� � W�U � Y involved into a non-deterministic choice of � (see
Definition A.8, page 277), there is no sequence of input/output actions� \ � � � t � 	 ���

that is a common  -follower of
U_E

and
U � . >

Example A.12 (Deterministic IOSTS with Lookahead  )

First, consider the IOSTS � depicted in Figure A.9 (see page 305). Notice that
this IOSTS � has the unique non-deterministic choice in the location

U �
between two syntactic transitions shown in red and labeled with the input
action � . However, � is not deterministic with lookahead  for any  \��

.
Indeed,

(a) As � contains a non-deterministic choice in the location
U � , then it is

not deterministic with lookahead
�
.

(b) It is not hard to check (see Figure A.9, page 305) that for any  D
�
, and any pair of distinct syntactic transitions involved into non-

deterministic choice of � , there always exists at least one common
 -follower for each target of these syntactic transitions. For instance,
the sequence

� � and
���

of length F are F -followers of
U E

and
U � ; or

the sequence
� � � � � � � of length � is � -follower of the same locations.

Therefore, � is not deterministic with lookahead  D �
.
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Second, consider the IOSTS 
 shown on Figure A.10 (see page 306). This
IOSTS is deterministic with lookahead � .
Indeed, for each pair of distinct syntactic transitions � E�W � � and � � (with
targets respectively

U_E�W6U � and
U��

) shown in red and involved into the unique
non-deterministic choice of 
 , the IOSTS 
 does not have any sequence
that is a common � -follower of the targets of these syntactic transitions.
More precisely:

(a) The locations
U_E

and
U � (which are the targets of � E and � � respectively)

as well as the locations
U � and

U��
(which are the targets of � E and � �

respectively) do not have a common follower other than the empty
sequence (see Figure A.10).

(b) However, the locations
U_E

and
U��

(which are the targets of � E and � �
respectively) have:

– a common
�
-follower which is the empty sequence � ,

– a common
�
-follower which is the string

�
, and

– a common F -follower which is the string
���

.

But, they do not have any common � -follower (see Figure A.10).

Therefore, according to Definition A.15 the IOSTS 
 is deterministic with
lookahead � .
It is interesting to notice that the IOSTS 
 is deterministic not only for
 9

� , but for all  D � . This observation, which is generalized below, leads
to the definition of the IOSTS with smallest lookahead  .

>

Observation A.6 If the IOSTS � is deterministic with lookahead  then it is
deterministic with lookahead

� �� C � , where C \ �
.

>

Definition A.16 (Deterministic IOSTS with Smallest Lookahead  ) An
IOSTS � is deterministic with smallest lookahead  if:

(1) it is deterministic with lookahead  (see Definition A.15), but

(2) it is not deterministic with lookahead
�  � �|�

.

>
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For instance, the IOSTS 
 shown in Figure A.10 (see page 306) is deterministic
with lookahead � , and not deterministic with lookahead F (see the second part
of Example A.12, page 307). Therefore, � is the smallest lookahead for 
 .

The next question posed in this section is: whether exists  \ �
such that a

given IOSTS is deterministic with lookahead  . The answer to this question is
given in the next paragraph.

A.2.4.2 Is an IOSTS Deterministic with Lookahead  for some  \ �
?

The problem of checking whether a given IOSTS � with set of locations
^

is
deterministic with lookahead  for some  \ �

, is decidable under the assump-
tion that we can decide the satisfiability of the guards (this assumption was made
consistently throughout the thesis). In order to describe a solution for this prob-
lem, we need to introduce the notion of a maximal common  follower for two
locations of IOSTS � .

Definition A.17 (Maximal Common  -Follower of Two Locations) LetUrE
and

U � be two distinct locations of the IOSTS � . Then, a sequence of in-
put/output actions � is defined to be a maximal common  -follower of

U�E
and

U �
if:

(1) � is a common  -follower of
U_E

and
U � , and

(2)
UrE

and
U � does not have another common  � -follower � � , where  ���  , such

that � is a strict prefix of � � .
>

Next, to check whether a given IOSTS is deterministic with lookahead  for some
 \ �

, we perform the following algorithm.

Algorithm A.2 (Detecting whether an IOSTS is Deterministic with
Lookahead  for some  \ �

) Let � 9 T�� W � W$^8W�U � W�� W���Y
be an IOSTS

without internal actions, i.e.
�&9 � � t � 	

. Then, we detect whether the given
IOSTS � belongs to the subclass of deterministic IOSTS with lookahead  \ �
for some  \ �

, in the three following steps:

(1) If the IOSTS � does not have any location
Uv\ ^

involved into some
non-deterministic choice of � (see Definition A.8, page 277), then it is
deterministic with lookahead

�
.



310 Appendix

(2) Otherwise, for each pair of distinct locations
U � W�U�� \ ^

belonging to� U����w��	 � � � , where the location
U

and the action � are involved into a non-
deterministic choice of � , we try to detect whether there exists an integer
 such that

U � and
U��

have a maximal common  -follower for some  \ �
. In

the case of existence of  we add it into an initially empty set of integers � ,
otherwise the algorithm stops. Formally, we perform the following steps:

(2.1) We create the two following sets:

– � ���
	 + ��	
� � 9�
,

– � H 	
� � 9��OTrU � W6U���Y�� (i.e. at the beginning of each iteration the set
� H 	
� must contain exactly one pair for which we try to compute
 ).

We also initialize the integer  to zero.

(2.2) While
� � H 	
���9��O�

do:

If
� � H 	
��� � ���
	 + ��	
� ��9��

, then

– � ����	 + ��	�� � 9 � ���
	 + ��	
� t � H 	�� ,

– � �H 	
� � 9 � H 	
� ,

– � H 	
� � 9 �OTVU �� W6U �� Y=\ �V^ %B^ ����� TrU � W6U���Y=\ � �H 	
� W � \ ����� t
�
	 � G � U � +! � U �� \ ��"vU�� +! � U �� \ �$#%�

, and

–  � 9  � �
.

Else, there exists an identical infinite sequence starting in the locationsU � and
U��

. Thus, the locations
U � and

U��
do not have a maximal

common successor. Therefore, the algorithm stops with the result
that the IOSTS does not belong to the subclass of deterministic
IOSTS with lookahead  .

(2.3) Add computed  to the set � .

(3) Finally, we choose the maximal integer  among all integers belonging to the
set � . This integer corresponds to a longest maximal common  -follower.
Thus, we conclude that � is deterministic with lookahead

� �� ���
.

>

Theorem A.10 (Termination of Algorithm A.2, page 309) The algorithm
detecting whether an IOSTS � 9 T�� W � W6^8W6U � W � W���Y

without internal actions is
deterministic with lookahead  for some  \ �

, terminates.
>
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Proof

First, we show that the inner loop represented as the item (2.2) of Algorithm A.2,
terminates.

The proof is done by the contradiction. Suppose that this inner loop does
not terminate. This means that the set � H 	�� is never empty. Thus, at each
iteration of this loop the size of the set � ����	 + ��	�� is increased at least by one. (� )
Indeed, � ���
	 + ��	
� is augmented only in the case when the intersection between
� ����	 + ��	�� and � H 	
� is empty. Hence, the size of � ����	 + ��	�� grows beyond any
bound (see the observation

�
�
�
), but in the same time � ����	 + ��	
� ? �V^=% ^ �

,
where

^
is the finite set of location of � (see Definition 4.2, page 81). We

obtain contradiction, therefore, the inner loop of Algorithm A.2 terminates.

Second, we notice that the outer loop of Algorithm A.2 (see the item (2),
page 309) also terminates.

The proof of this statement follows directly from the fact that the set of
locations

^
of the IOSTS � is finite; and therefore the set of the pairs

of distinct locations
U � W6U��0\{^

belonging to
� U�� �w��	�� � � , where the location

U
and the action � are involved into a non-deterministic choice of � , is also
finite.

Finally, the two items above imply the termination of Algorithm A.2 (see
page 309).

�pG��yG�� G

A.2.4.3 Termination of the Procedure of Global Determinization

The purpose of this paragraph and the whole section is to show that for any
 \ �

, the procedure of global determinization (see page 304) terminates for all
IOSTS belonging to the class of deterministic IOSTS with lookahead  introduced
in Subsection A.2.4.1 (see page 306). Formally:

Theorem A.11 (Termination of Procedure A.1, page 304) If there exists
 \ �

for which an IOSTS � 9 T��vW � W$^ W6U � W|� ��� t �
	 �$W��8Y
is deterministic with

smallest lookahead  then Procedure A.1 (see page 304) applied to � terminates.>

Proof The proof of this theorem is done by induction on  \ �
.

Induction Basis. Consider a deterministic IOSTS � with lookahead
�
. Due

to Definition A.15 (see page 307) this means the set of locations
^ �

involved
into non-deterministic choices of � , which is computed at the first step
of Procedure A.1 (see page 304), is empty. Thus, the procedure of global
determinization trivially terminates.
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$ of length % $ of length %

Figure A.11: A fragment of the deterministic IOSTS 	 W
with smallest lookahead

� �'&)( ' which was obtained from an IOSTS 	 by the first iteration of the inner
loop of Procedure A.1 (see the item (2.a) on page 304). Here, the locations � W = and
� W* belonging to ������=i��� * +&132547698 ; W ' , where ����=i��� * + and ; W are involved into some non-
deterministic choice of 	 W

, have the common � -follower : shown as the zigzag
sequences.

Induction Hypothesis. Assume that for a deterministic IOSTS 	 with small-
est lookahead � , Procedure A.1 (see page 304) terminates.

Induction Step. Consider a deterministic IOSTS 	 with smallest lookahead
� �+&,( ' , and show that the procedure of global determinization applied to
	 terminates.

(1) Let 	 W
be an IOSTS obtained from 	 after performing the al-

gorithm of local determinization for all locations involved into non-
deterministic choices of 	 (i.e. after the first iteration of the inner
loop of Procedure A.1, see the item (2.a) on page 304). Then, we show
that the IOSTS 	 W

is deterministic with smallest lookahead which is
less or equal to � .

The proof of this statement is done by contradiction. Assume that 	 W
(see Figure A.11, page 312) is deterministic with smallest lookahead
� �-&.( ' . Then, due to Definition A.16 (see page 308) we can deduce
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that there exist locations
U � E W6U �� \ ^����

such that:

(a)
U � E

and
U �� belong to

�VU � ���w��	 � � � � for some location
U � \ ^�� �

and some
action � � \�� ��� t �
	 �

, which are involved into a non-deterministic
choice of �

�
, and

(b)
U � E

and
U �� have a common  -follower, but they do not have any

common
� �� ���

-follower.

Next, as
U �

is involved into a non-deterministic choice of �
�
, and as

�
�
has been obtained from the IOSTS � by solving non-determinism

in all its locations involved into non-deterministic choices; then
U �

is a
newly created location, i.e.

U � \ ^����
but

U ���\ ^
.

Finally, as
U �

is a new location obtained by the algorithm of local de-
terminization (see page 295), then there exists at least two locationsUrE

and
U � in � such that:

(c)
U � 9 T;G,G<G,W6UVE�W<G<G<G�W6U � W,G<G<G Y ,

(d)
UrE

and
U � belongs to

� U����w��	 � � � for some location
U \�^

and some
action � \ ����� t �
	 �

, which are involved into a non-deterministic
choice of � , and

(e)
UrE

(resp.
U � ) is the direct predecessor of

U � E
(resp.

U �� ) by the action
� � . For better understanding look at Figure A.11 (see page 312).

Thus, as we know that
U � E

and
U �� of �

�
have a common  -follower,

but do not have any common
�  � �|�

-follower (see item (a)), then due
to the item (e) we obtain that the locations

U_E
and

U � of � have the
common

�  � ���
-follower, but do not have any common

�  � F � -follower.
This statement together with the item (d) and Definition A.16 (see
page 308), imply that the IOSTS � is deterministic with smallest
lookahead

�  � F � , which contradicts to the assumption that � is the
deterministic IOSTS with smallest lookahead

� �� ���
.

Therefore, at the end of the first iteration of the inner loop of Pro-
cedure A.1 (see page 304), we obtain a deterministic IOSTS �

�
with

smallest lookahead which is less or equal to  .

(2) Using the induction hypothesis, we conclude that Procedure A.1 (see
page 304) terminates.

� G�yG�� G
Hence, in this section we have located the class of IOSTS with lookahead  for
which the procedure of global determinization (see page 304) terminates, and
produces a deterministic IOSTS in sense of Definition 4.20 given on page 93.
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Résumé

La complexité croissante des systèmes réactifs fait que le test devient une technique de plus
en plus importante dans le développement de tels systèmes. Un grand intérêt est notamment
accordé au test de conformité qui consiste à vérifier si les comportements d’un système sous
test sont corrects par rapport à sa spécification. Au cours des dernières années, les théories et
outils de test de conformité pour la génération automatique de test se sont développés. Dans
ces théories et algorithmes, les spécifications des systèmes réactifs sont souvent modélisées par
différentes variantes des systèmes de transitions. Cependant, ces théories et outils ne prennent
pas explicitement en compte les données du système puisque le modèle sous-jacent de système
de transitions ne permet pas de le faire. Ceci oblige à énumérer les valeurs des données avant de
construire le modèle de système de transitions d’un système, ce qui peut provoquer le problème
de l’explosion de l’espace d’états. Cette énumération a également pour effet d’obtenir des cas
de test où toutes les données sont instanciées. Or, cela contredit la pratique industrielle où les
cas de test sont de vrais programmes avec des variables et des paramètres. La génération de tels
cas de test exige de nouveaux modèles et techniques. Dans cette thèse, nous atteignons deux
objectifs. D’une part, nous introduisons un modèle appelé système symbolique de transitions
à entrée/sortie qui inclut explicitement toutes les données d’un système réactif. D’autre part,
nous proposons et implémentons une nouvelle technique de génération de test qui traite sym-
boliquement les données d’un système en combinant l’approche de génération de test proposée
auparavant par notre groupe de recherche avec des techniques d’interprétation abstraite. Les
cas de test générés automatiquement par notre technique satisfont des propriétés de correction:
ils émettent toujours un verdict correct.

Mot-clés : test de conformité, génération symbolique de test, analyse symbolique.

Abstract

Due to the increasing complexity of reactive systems, testing has become an important technique
in the process of the development of such systems. In particular, a great deal of effort has been
devoted to conformance testing, which consists in checking whether the behaviors of a system
under test are correct with respect to its specification. During the last decades, conformance
testing theories and tools for automatic test generation have been developed. In these theories
and algorithms, the specifications of reactive systems are often modeled by different variants
of Labeled Transition Systems (LTS). However, these theories and tools do not explicitly take
into account the system’s data, since the underlying model of LTS are not able to do that.
This limitation of the model compels to enumerate the values of the data before building the
LTS model of a system. This may result in the state-space explosion problem. Moreover,
this enumeration also has the effect of obtaining test cases where all the data are instantiated.
This contradicts with industrial practice, where test cases are real programs with variables and
parameters. The generation of such test cases requires new models and techniques. In this
thesis we have achieved two objectives. First, we have introduced a model called Input-Output
Symbolic Transition Systems (IOSTS) which explicitly includes all the data of a reactive system.
Secondly, we have proposed and implemented a new test generation technique that symbolically
treats all the data of a system by combining the test generation approach proposed earlier in
our research group with techniques of abstract interpretation. The test cases automatically
derived by our technique satisfy some correction properties. This essentially means that they
always emit a correct verdict.

Keywords: conformance testing, symbolic test generation, symbolic analysis.


