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Chapter 1

The “Everywhere, Anytime,

Computing” Paradigm

1.1 Introduction

The technological context of the software systems is continuously evolving. Nowadays, the
availability of small communicating devices offers the opportunity to make the ’Everywhere,
Anytime Computing’ (EAC) a reality that naturally integrates our societies and economies.

In this thesis we define the meaning of the Everywhere, Anytime Computing concept to
that is built from three key concepts: (i) the concept of space and movement, (ii) the concept
of time, and (iii) the fact that computers are involved. Obviously, these keywords are a
simplification of a broader vision.

One may interpret the EAC as the ability to compute, in the sense of calculate, everywhere
and at anytime. Obviously, this interpretation is very minimal and does not present any ambi-
tious evolution of the current computer-based services (e-services) since these services already
exist. For instance, any small calculator fits within this definition and offers a computation
service to the users. So, the interpretation of the ’computing’ is more related on the ability to
offer high-level services rather than the primary and historical function of the computers that
is calculation.

Next generation e-services are feasible when you consider the breadth of interpreting EAC
concept. The innovation of the EAC can be captured only when introducing the communica-
tion and interaction abilities of the devices. In fact, the e-services are no longer closed, but
they are open and interact contextually with their surroundings to fulfill their functions.

At the very heart of next generation e-services is the fact that although e-services are
defined in particular places they are also available persistently and transparently everywhere.

The persistence and transparency of the e-services make them ubiquitous. The ubiquity
of the devices and their services has been initially introduced by Mark Weiser [Weiser, 1991].
M. Weiser was one of the first to create a new, yet realistic, perspective on the evolution
of informatics over the next twenty years by shifting the primary goal of computing from
the role of calculating to the offering of services [Weiser & Brown, 1997]. However, there are
differences between Weisers ubiquitous computing perspective and the vision is provided by
this thesis.
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14 Chapter 1 : The “Everywhere, Anytime, Computing” Paradigm

In fact, the Weiser’s vision emphasizes on the presence of the computers and software
services in a persistence manner around the human user. The human user is the central entity
of the system and all the interactions are defined between the human user and the ubiquitous
services. So, the openness and interactions between the software services in order to offer
more elaborated services are not considered as fundamental features. In contrast, our work
considers the openness and interaction among the e-services as fundamental features of the
EAC.

Currently, the term ubiquitous computing is overloaded. There are several other terms
that appeared such as: pervasive computing, ambient computing, wearable computers, ad
hoc computing etc. which imply some degree or sense of providing ubiquitous behaviour as
a property of the system . Generally, these terms are defined to indicate different levels of
granularity of the offered service. For instance, the service that manages the intensity of
the light in a room does not have the type of complexity as the service that delivers courses
and planning for the students in a university campus. In fact, while the former service can
be performed in a stand-alone manner, the later may imply negotiation mechanisms and
interactions in order to offer the right course at the right time to the students. Still, all these
definitions fit in the same logical framework that is presented in the next section.

1.2 Definition of the EAC Context

In order to avoid ambiguities, we propose a unified framework to capture the main important
features of the EAC context. Our framework belongs to the context of addressing EAC type
applications.

The EAC context describes the software systems that exhibit the following features:

� they are open and delimited1;

� they move within an abstract or physical topology;

� the movement of the systems causes their interactions; when the systems are interacting,
a point to point communication link is established among them.

� when the systems are interacting, they perform computations and exchange data in
order to achieve their design goals.

� the movement of the systems causes also their disconnection. In this case, the commu-
nication link disappears and the systems cannot communicate.

Hence, the above results in self-contained software systems, each system exhibits a property
of openness and thus interaction must occur between such systems if they are to maintain this
feature of self contained. It is the movement of the software systems within an abstract or
physical topology that induces their connection and disconnection. When connected, the
software systems can exchange data through the established point-to-point communication
link. This communication link disappears as soon as the software systems are disconnected.
This way to view the software systems is defined as the EAC paradigm.

It is worth noting that the management of the movement of the software systems and
establishment of the communication links are external to the EAC framework.

1For the definition of the openness and delimitation of the software systems: (cf. §2.2, page 19).
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1.3 Problem and Thesis Statements 15

1.3 Problem and Thesis Statements

Figure 1.1: Positioning of the work at the middleware layer.

Figure 1.1 describes a logical decomposition of the EAC concerns in term of layers. Our
work fits in the middleware layer. This layer is the intermediary layer between the operating
system, network technologies and the applications. The middleware layer offers an approach
along with libraries and tools to facilitate the design and implementation of the applications
by using the services offered by the lower-layers.

More precisely, the lower-layers are assumed to offer the following elements:

� the events of connection with external systems: in this case a direct point-to-point link
is established.

� the events of disconnection from external systems: in this case the communication link
is no more available.

� the communication link is assumed to be bi-directional and reliable. The reliability of
the communication link means that (i) the order of the emitted messages is preserved
(Fist In First Out); and (ii) the failure of delivering a message is notified.

Up until now there has not been an EAC solution that supports the many levels of design
in a single framework. This thesis produces such a framework that deals with:

1. the constraints of the communication medium in terms of intermittence of the commu-
nications;

2. the management of the on-the-fly composition and decomposition of the software sys-
tems;

3. the autonomy of the software entities and systems;
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16 Chapter 1 : The “Everywhere, Anytime, Computing” Paradigm

4. the management of the interoperability of the open systems.

A summary of the solution provided by this framework is as follows:

1. the use of the generative communication paradigm which is suitable to handle the con-
straints of the communication medium;

2. the use of formal algebraic structure in order to explicitly specify and implement the
on-the-fly composition of the software systems;

3. the internal integrity of the software entities is a sine qua none condition to ensure the
autonomy of the software entities;

4. the coordination point of view is used as a mean for the interoperability of autonomous
and open systems.

5. the use of a social metaphor that is expressive and powerful metaphor and reduces the
complexity of the engineering process. Hence, each software system is viewed as an open
and self-contained society of autonomous individuals that interacts and coordinates some
joint activities with other societies.

1.4 Contributions

The main contributions of the thesis are summarized as follows:

1.4.1 MIC∗

The development of the MIC∗ environment makes a contribution to both the research fields
of the blackboard paradigm and multi-agent systems.

The contribution to the blackboard paradigm and tuple space architectures is in the struc-
turing of the communication medium in a way that guarantees the autonomy of action of the
entities and eases the on-the-fly composition of software systems. Also, the information and
interaction carriers are structured. So, in contrast with the tuple space approaches, MIC∗

provides a unified structure to carry information and to represent the interaction means.

The contribution to the multi-agent systems is on the identification of the autonomy as an
important feature of this paradigm and the definition of objective criterion that guarantees
the autonomy of the software entities at the implementation level. The internal integrity
was found as a precondition for the autonomy. Hence, the MIC∗ approach emphasizes the
central role of the deployment environment of the autonomous agents to guarantee their
autonomy. Besides, the multi-agent system paradigm does not specify any particular paradigm
of communication between the agents. For the EAC context we have suggested to use the
generative communication as a communication paradigm. Consequently, the intermittence of
the communications does not drastically affect the functioning of the systems.

1.4.2 Coordination and Conversation Protocols

The interoperability of open software systems is a key issue for the EAC. The interoperability
has been addressed from a coordination point of view. Hence, independent systems may col-
laborate and execute joint activities at least if they agree on a common coordination protocol.
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1.5 Outlines 17

We have developed a dependency-based coordination model based on the coordination theory
of Malone and Crowston [Malone & Crowston, 1994].

The contribution that has been made is to link the coordination protocols with their
related conversations. Hence, the structure of the conversation between individuals that are
in a coordination process is completely defined and one has to check the consistency of the
coordination process by checking the consistency of the conversations.

This work has been integrated with the MIC∗ environment. Consequently, the deployment
environment guarantees that the defined coordination protocols are actually followed by the
autonomous software entities by observing the ongoing conversations.

1.4.3 EAC Engineering and Simulation Tools

To enable the benefits of the MIC∗ environment and the coordination theory developed in
this thesis to be applied to an EAC context we have developed a social model of the software
system. Within this social metaphor, the software system is considered as an open society
of agents that interact with other societies in a spontaneous manner. So, new organisational
concepts have been introduced such as the internal and interface roles, intracives and extracives
in order to adapt the social metaphor to the EAC context.

An integrated develompment environment (IDE) allows the modelling of the artificial
society and generates automatically the source code of the software system using the MIC∗

environment and the coordination framework.

1.5 Outlines

The rest of the thesis is organized as follows:

� Chapter 2: This chapter describes more precisely the constraints and hypotheses of
the EAC context and selects some existing approaches, which provide some of the key
features, results and designs that are used and extended to create our solution.

� Chapter 3: This chapter presents the MIC∗ environment that: (i) offers a generative
communication; (ii) guarantees the internal integrity of the software entities; (iii) models
the on-the-fly composition of software systems.

� Chapter 4: This chapter deals with the interoperability that is treated from a coordi-
nation point of view. An introduction to the coordination theory and the state of the
art of coordination models are presented in this chapter. Then the dependency-based
coordination model is presented along with some methods in order to check the consis-
tency of the coordination protocols by observing the ongoing conversations among the
software entities.

� Chapter 5: This chapter presents an engineering approach to model software systems
in the context of the EAC using the social metaphor. After the review of current organ-
isational models to specify agent societies, we make a proposition of an organisational
model that is adapted to the EAC context. An integrated development tool (IDE)
that follows the organisational model is presented in this chapter and helps in (i) the
modelling the software systems and (ii) the implementation of the software systems
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18 Chapter 1 : The “Everywhere, Anytime, Computing” Paradigm

by generating automatically their source code. The experiments with the developed
applications are conducted in a virtual 3D simulator.
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Chapter 2

State of the art

”Vérité dans un temps, erreur dans l’autre.”
Charles de Montesquieu.

2.1 Introduction

This chapter studies what are the relevant constraints and hypotheses that characterize the
EAC context. Starting from this study, some existing approaches such as the multi-agent
system (MAS) and blackboard (BB) paradigms are selected as pertinent starting points since
they answer some aspects of the EAC.

This chapter is organized as follows: section [2.2, page 19] presents the glossary of the terms
that are used in the rest of the chapters; section [2.3, page 24] presents the constraints and
hypotheses of the EAC; section [2.4, page 32] presents the BB paradigm and its technologies;
section [2.5, page 38] presents the MAS paradigm and its technologies; finally, section [2.6,
page 47] concludes this chapter.

2.2 Glossary

Before presenting the state of art, this section reviews a set of requirements common to most
EAC related systems. Each term used to capture aspects of the requirements is described and
working definitions are provided. The relationship between these are presented as a conceptual
graph in Figure 2.1.

2.2.1 Definitions

Datum

A datum is a particular encoding (or signal) of information. The datum may be stored in the
computer memory or exchanged through a communication medium.
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20 Chapter 2 : State of the art
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Figure 2.1: The glossary of the terms and their relationships presented as a conceptual graph.
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2.2 Glossary 21

Computer

Any device that is equivalent to the Turing machine [Turing, 1936] is considered as a computer.
The computer owns a memory, used to store data; and an execution unit, used to interpret
instructions. The program is a sequence of instructions. The interpretation of a program is
viewed as a series of elementary modifications of the memory with regards to the semantics
of the instructions.

Software Entity

This generic term refers to any datum or program that is stored in the memory or interpreted
by the execution unit.

Software Object

The object-oriented (OO) paradigm [Booch, 1994] organizes the software entities as a set
of features and a set of methods. This structure is known as the software object. The
’class’ defines the model of a set of objects. The inheritance is a relationship that allows the
reusability and extension of the existing classes by new classes.

Multi-Agent System (MAS)

A MAS is a system composed of multiple interacting agents, where each agent is a coarse-
grained computational system in its own right. An agent-based system is one in which the key
abstraction used is that of an agent.

Software Agent

An agent is an encapsulated software entity which exhibits the following characteristics
[Gallimore et al. , 1998]:

� autonomy: operates without the direct intervention of humans or other agents and has
control over its actions and internal state;

� responsiveness: perceives its environment (which may be the physical world, a user, a
collection of agents, etc.) and responds in a timely fashion to changes that occur in it;

� proactiveness: does not simply act in response to its environment, but exhibits oppor-
tunistic, goal-directed behavior and takes the initiative where appropriate;

� social ability: interacts, when it deems appropriate, with other agents in order to com-
plete its own problem solving and to help others with their activities.

Communication

The communication is a process that exchanges data among different software entities through
a communication medium.

te
l-0

01
42

84
3,

 v
er

si
on

 1
 - 

23
 A

pr
 2

00
7



22 Chapter 2 : State of the art

Interaction

The interaction is a special process of the communication where the interacting entities ex-
change influences to mutually change their states. These modifications affect their future
behaviors. The influences are reified as data and carried by the interaction medium.

Software System

A software system is a set of software entities that have been aggregated to accomplish some
particular functions.

Delimited System

A delimited system owns a clearly defined frontier. Consequently, one may know the inside
and outside of the system.

Distributed Software System

The software entities of a distributed software system are distributed over several computers
and linked by a communication medium.

Open Software System

An open software system is a delimited software system where the interaction is not limited
to the internal elements but extended to the external world.

Closed Software System

By contrast to an open software system, the interaction and communication occur only be-
tween the internal elements of a closed system.

Communication Medium

The communication medium carries data from one point to another. Network technologies
are examples of communication media. An introduction to network technologies is presented
in Annex F.

Interaction Medium

The interaction medium carries the influences of the interacting entities. Usually, within
informatics the influences are reified as data and carried by a communication medium.

Activity

A particular sequence of instructions is abstracted as a functional activity. An activity may
need resources in order to be executed and can produce other resources when finalized.
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2.2 Glossary 23

Coordination

According to Malone and Crowston [Malone & Crowston, 1994] the coordination is defined
as managing dependencies among the activities. The coordination protocol expresses these
dependencies and gives the means to manage them.

2.2.2 Using the Terms in Examples

The terms are used in the following examples to give a more precise idea of their semantics.
When a term appears, it is highlighted and written in italic.

Introduction to Informatics

The distinction between the information and its representation as data is one of the funda-
mental notion of the informatics. According to C. Shannon (1916-2001), the information is an
immaterial concept that reduces, for an external observer, the uncertainty about the state of
a physical or abstract system. For instance, the following sentence: ”Ten students are in the
classroom” gives information about the state of the classroom: currently only ten students are
present. To materialize this information, one has to encode it as a datum. Thus, the presented
sentence is a sequence of characters and words that represent the encoding of the information.
The information is independent from its encoding. For instance, by using mathematical nota-
tions, the previous information is represented as follows: ”room number student = 10”. The
presented data are encoded in a human readable manner. The computers can only understand
data written using the binary system. In fact, the computer is an electronic device and the
most elementary information that can be encoded using an electric signal owns only two states
(i) the signal is present, by convention this state is represented as 1; (ii) the signal is absent,
by convention this state is represented as 0. All data in informatics are sooner or later rep-
resented as a sequence of 1 and 0. The computer is composed of a memory and an execution
unit. The memory can be viewed as a table, where the rows are numbered and contain data.
The execution unit reads the data from the memory, and according to the semantics of an
instruction modifies this memory. Thanks to Alan Turing (1912-1954), the instructions are
also considered as data in modern computers. So, programs are also stored and read from the
memory. According to A. Turing, one can summarize the function of a computer as a process
that modifies the memory from an initial state to a final state according to the semantics of
a set of instructions.

The ’software entity’ is a generic term that refers to any structure that is represented as a
datum and stored in the memory of a computer (text files, image files, programs, databases and
so on). A software system is a set of software entities which have been aggregated to accomplish
a certain function. The operating systems are the common software systems met by the users.
The operating system is a set of software entities that eases the use of the computer’s hardware
resources. As examples of operating systems, one can mention the following: Linux, Unixtm,
Windows XPtm, Windows CEtm.

For software engineering purposes, the software objects appeared as structured software
entities composed of a set of features and methods that locally modifies these features. On
the other hand, software agents appeared as an extension of the objects with some higher-level
features.
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24 Chapter 2 : State of the art

Autonomy is one of the characteristics used to differentiate between an object-based system
and an agent-based system. The notion of autonomy in agent systems is intended to attribute
the agent with full control of its state of behaviour.

Modern Informatics: Computers + Communication Media

The computers that are distributed over different locations can be linked by a communication
medium to exchange data. So, the programs are no longer restrained to local data but have
access to the data of remote software entities. Within informatics, the process of exchanging
data through a communication medium is called communication.

For a software system, when the software entities are distributed over different computers
and can communicate, this system is called a distributed system. The communication medium
introduces also the notion of openness and closeness of the software systems. The elements of
a closed system communicate internally, while the elements of an open system communicate
with entities located beyond the frontier of the system.

The interaction is distinguished from the communication. In fact, while the communica-
tion assumes only the exchange of data; the interaction goes further and assumes that the
exchanged data modify the state of the entities. In this context, we speak about influences
rather than data, so that the communication medium becomes the interaction medium.

The coordination specifies the dependencies of joint activities that are carried out by several
distributed software entities. Hence, the coordination protocol specifies for each entity what
action to perform and when to perform it.

2.3 Constraints and Hypotheses of the EAC

In order to present a coherent and relevant state of the art, one has to make a preliminary
study of the constraints and hypotheses of the EAC. This preliminary study is used in order
to select the existing works that may constitute relevant starting points for our work.

From the software engineering point of view, we have considered the following major
constraints and hypotheses of the EAC:

� Constraints of the Communication Medium: Within the EAC, communication
media are not centralized but appear locally and spontaneously as soon as the physical
or logical communication links can be established. Besides, the communication between
the software entities can be intermittent and disturbed. These disturbances have not to
be considered as network problems but as hypotheses of work to be taken into account
at the conceptual and implementation levels.

� Hypothesis of the Autonomy: Traditional software engineering approaches assume
to have a complete knowledge and control of the software entities that compose the soft-
ware system. However, this assumption is challenged in open and large-scale distributed
systems. In fact, several systems developed by different authorities have to communi-
cate and interact. For example, let us consider a typical scenario of an Internet-based
application where an open software system developed by a company ’X’ interacts with
another software system developed by a company ’Y’. Neither of these companies con-
trols the global software system that is made by the composition of the two sub-systems:
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2.3 Constraints and Hypotheses of the EAC 25

’X’ plus ’Y’. However, these independent systems have to interact and coordinate their
actions to offer their functions. The lack of knowledge and means to control the behav-
ior of a software entity makes this entity behaving autonomously. The EAC assumes
the autonomy of the software entities and systems. So, the autonomy feature has to be
considered at the conceptual and implementation levels.

� Hypothesis of the Openness: As mentioned in section [1.2, page 14] the EAC assumes
the openness of software systems. In fact, the added value of the EAC is created by
the composition of open and interacting services. So, the EAC offers the potential to
provide a new generation of e-services, only because new functionalities can emerge by
the spontaneous interactions of more elementary services.

2.3.1 Dealing with the Constraints of the Communication Medium

Within information systems, software entities communicate using one of three paradigms: (i)
synchronous communication, (ii) asynchronous communication and (iii) generative communi-
cation.

Synchronous Communication

What is your
name? Zzz Zzz !

Mmm…

My name is
Abdel!!

Figure 2.2: Informal example of the synchronous communication paradigm.

Figure 2.2 represents an imaginary classroom where a teacher gives a course to students.
In the synchronous communication paradigm, when the teacher communicates with a student,
she/he sends a message and stops all her/his activities until the student responds. For in-
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26 Chapter 2 : State of the art

stance, this sketch is used when the teacher asks a question and waits for the answer. Within
informatics, this is similar to a function call. In fact, the communication process is considered
as an evaluation of a function that returns a result. The entity that calls the function pro-
vides the parameters and waits until receiving the result. The Remote Procedure Call (RPC)
[Birrell & Nelsen, 1984] is the exact mimic of the function call when the entities are distrib-
uted and joined by a communication medium. Currently, the synchronous communication
paradigm is the dominant paradigm for building distributed and open software systems.

The following technologies follow this paradigm: RPC [Birrell & Nelsen, 1984], Common
Object Request Broker Architecture1 (CORBA) [Vinoski, 1997][OMG, 2002], Javatm Remote
Method Invocation (RMI) [Sun-Microsystems, 1994], Hyper-Text Transport Protocol (HTTP)
[Fielding et al. , 1999], Wireless Application Protocol (WAPtm) [WAP-Forum, 2002], Service
Object Access Protocol (SOAP) and Web Services [Gudgin et al. , 2003].

Asynchronous Communication

What is your
name?

Mmm…

My name is
Abdel!!

…and you, what is 
your name?

My name is
Fabien !!

Figure 2.3: Informal example of the asynchronous communication paradigm.

The synchronous communication paradigm is suitable for controlled domains. For in-
stance, this paradigm is used within distributed systems where the entities are deployed on
a controllable communication medium such as a Local Area Network (LAN). However, Wide
Area Networks (WANs), such as the Internet, are no longer controllable by a single author-
ity and the software entities are autonomous. The asynchronous communication paradigm
appeared then as an interesting alternative. In fact, this paradigm suggests that the entities

1The Object Management Group (OMG) has recognised the limits of this paradigm for large scale distributed

systems and introduced the asynchronous messaging service in CORBA 3.0.
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2.3 Constraints and Hypotheses of the EAC 27

communicate asynchronously. This means that once the message has been sent, the emitting
entity continues its activities. For instance, the teacher continues her/his activities as soon as
the message has been sent (cf. Figure 2.3). When the teacher receives some messages from
the students, she/he is free to adopt her/his own strategy in selecting the most important
message to consider.

The following technologies follow this paradigm: MASs platforms such as MadKit
[Gutknecht & Ferber, 2000a], JADE [Bellifemine et al. , 1999][Bellifemine et al. , 2003], Zeus
[Nwana et al. , 1999].

Generative communication

Topic : Java

The topic of 
today is Java!

Sir, what is the 
topic ?

Topic : Java

Figure 2.4: Informal example of the generative communication paradigm.

The generative communication paradigm [Gelernter, 1985] suggests to make the transmit-
ted data persistent within the communication medium. For instance, when the teacher emits
a message following the asynchronous communication paradigm, then she/he has to resend
the message each time a new student arrives in the classroom. To avoid this, the teacher can
write at once the message on the blackboard and all the students have access at different times
to the message (cf. Figure 2.4).

As examples of technologies that follow this paradigm one may cite the applica-
tions developed around databases, blackboard architectures and tuple-spaces such as Linda
[Gelernter, 1985], TuCSon [Omicini & Zambonelli, 1998], dMars [Cabri et al. , 2001] and
TOTA [Mamei et al. , 2003].
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Discussion

The synchronous communication paradigm is inappropriate for the EAC since the communi-
cation is instantaneous and freezes the activities of the software entities. This is inapplicable
when the communications are intermittent and the software entities autonomous.

These points have been demonstrated experimentally. For instance, U. Saif and D.J
Greaves in [Saif & Greaves, 2001] present why RPC is overly restrictive, inflexible and in-
efficient for the communication requirements of the EAC. Their conclusions are not applicable
just for the RPC; they can be generalized to all the technologies that follow the synchronous
communication paradigm.

The asynchronous communication paradigm is more flexible and respects the autonomy of
the software entities. In fact, the behaviors are not halted and the software entities can select
dynamically what message to consider depending on their priorities and state. For instance,
Z. Guessoum, J.P Briot [Guessoum & Briot, 1999] and S. Cerri [Cerri, 1999] advocate that
the dynamical scheduling of the arriving messages is an important feature for the autonomy
of agents.

The asynchronous communication paradigm imposes that the communicating entities have
to be on the same physical or logical location at exactly the same time in order to communicate.
This is a constraining property especially for highly dynamical environments. Technologies
using this paradigm to develop EAC applications have already noticed this difficulty and have
suggested some ad hoc solutions such as the buffering of messages for a certain period before
deleting them [Laukkanen et al. , 2002b] [Caire et al. , 2003]. These ad hoc solutions try to
make the communication medium more persistent in order to deal with the intermittent nature
of the communications. Still, these approaches are pure engineering solutions and do not have
any paradigmatic or conceptual grounds.

Finally, the generative communication paradigm is the most appropriate for EAC since
the communication is timely and spatially uncoupled. In fact, the communication medium
maintains persistently the interactions among the software entities. Consequently, the inter-
action processes continue even when the software entities are temporarily disconnected from
the communication medium.

2.3.2 Dealing with the Autonomy of the Software Entities

Interpretation of the Autonomy

Steels in [Steels, 1995] tries to understand what makes a software entity autonomous. This
paper refers to a personal communication with Tim Smithers (1992) on the autonomy:

“The central idea in the concept of autonomy is identified in the etymology of the
term: autos (self) and nomos (rule or law). It was first applied to the Greek city-
state whose citizens made their own laws, as opposed to living according to those
of an external governing power. It is useful to contrast autonomy with the concept
of automatic systems. The meaning of automatic comes from the etymology of the
term cybernetic, which derives from the Greek for self-steering. In other words,
automatic systems are self-regulating, but they do not make the laws that their
regulatory activities seek to satisfy. These are given to them, or built into them.
They steer themselves along a given path, correcting and compensating for the
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2.3 Constraints and Hypotheses of the EAC 29

effects of external perturbation and disturbances as they go. Autonomous systems,
on the other hand are systems that develop, for themselves, the laws and strategies
according to which they regulate their behavior: they are self-governing as well as
self-regulating. They determine the paths they follow as well as steer along them.”

This description defines the autonomy of a system (or an entity) as its ability to produce
its own laws and to follow them. By contrast, an automatic system (or entity) is given the
laws and leaves them unchanged.

There are also other interpretations of the autonomy that will be presented in section
[2.5.2, page 41]. Still, the actual question is not in knowing what is the ’correct’ interpretation
of the autonomy but what is the most appropriate and meaningful for the EAC. In fact, on
some generic concepts there will be no consensus and people accept the definitions that are
meaningful to their specific domain. For the EAC the most meaningful interpretation of the
autonomy is the one that relates autonomy to the lack of knowledge and means to control the
software entities. In other words, the more an observer lacks knowledge and means to control
a software entity, the more she/he has to consider it as an autonomous entity.

However, there is still a gap between the conceptual debate on the autonomy and the
engineering of autonomous software entities. In fact, within the literature of MASs several
works present the how to build an autonomous software entity. For instance, for a cognitive
agent, this agent must have motivations that steer its behaviors (cf. §2.5.2, page 41). These
approaches assume too much knowledge on the agents’ internal model. In fact, who can force
all the agents of the EAC to have an explicit model of motivations in order to be considered
as autonomous!

In this thesis we have adopted a different point of view: the primary question is not to
have a recipe of how to build an autonomous software entity, but what are the low levels
requirements to guarantee autonomy. In [Gouäıch, 2003], we argue that the internal integrity
of a software entity is a sine qua none condition for the autonomy. The internal integrity is a
programming constraint that avoids the direct access or modification of the software entities’
internal state. So, the autonomous software entities have to be considered as bounded black-
boxes that do not intersect. In fact, if the structure of the software entity is accessed or
modified by any external entity, the decision process may be altered and consequently the
autonomy feature is lost.

The internal integrity is also shown for collaborative learning where the learning occurs as
an autonomous construction of knowledge. For instance, when an agent A ”learns by being
told” a piece of software from agent B, it is always A who decides to perform the change on
its own state [Cerri et al. , 2004].

The internal integrity can be justified as a fundamental feature to implement autonomous
software entities by either a top-down or bottom-up approach. We have adopted a top-
down approach. In other words, we have started from some high-level considerations such
as the interpretation of the autonomy and induced what are the low-level requirements to
guarantee the autonomy. The bottom-up approach is illustrated by McCann [McCann, 2002]
that justifies the internal integrity from a pragmatic point of view. In fact, J. McCann was
interested in developing a flexible operating system for the EAC context, namely the Go!
operating system [Law & McCann, 2000]. The ’Go!’ operating system has been built entirely
with the principle of the internal integrity. In fact, all the elements of the ’Go!’ operating
system are delimited and do not intersect. In order, to interact and exchange data these
elements use a communication medium that prohibits the direct access to the elements. The
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’Go!’ operating system has experimentally shown interesting features such as the extensibility,
adaptiveness and lightweightedness [Law & McCann, 2000].

Discussion

The autonomy of the systems and software entities is a fundamental feature for the EAC. In
order to implement the autonomy, the internal integrity has been considered as a sine qua none
condition. This means that neither paradigm nor architecture is suitable for the presented
vision of EAC, if the autonomy and consequently the internal integrity of the software entities
are not explicitly considered. This is an important discriminating criterion for the current
approaches and paradigms to know if they are suitable or not for the EAC. For instance, the
OO paradigm ignores completely the autonomy of the objects since their internal integrity is
not a primary concern. In fact, an object may change the state of another object directly by
setting a feature to a certain value or calling a method. So, the OO as a way to think the
software system is not suitable for the EAC. This does not mean that the OO architectures
cannot be used to build EAC applications. Still, this is only possible when adding solutions
and concepts that have no paradigmatic grounds within the OO. The proper approach is to
consider paradigms that deal explicitly with the autonomy of the software entities.

2.3.3 Interoperability of Open Systems

Concerns of the Interoperability

The communication is far from being sufficient to make heterogeneous open software systems
working together and coordinating their joint activities. In fact, when the information is
encoded as data and transmitted using the communication medium; the entity that receives
the data has to be able to decode the information and to capture its meanings and semantics.
So, while the communication media deal with the transfer of the encoding of information from
one point to another; the interoperability means deal with the transfer of the semantics of
information from one point to another. Furthermore, the interoperability concerns also the
means that makes the open systems collaborating for the achievement of joint activities.

The first concern of the interoperability that is related to the transfer of the semantics is
represented by the following works: eXtensible Markup Language (XML) [W3C, 2004a], RDF
Resource Description Framework (RDF) [W3C, 2004c], OWL (Web Ontologies Language)
[W3C, 2004b], Knowledge Interchange Format (KIF) [Genesereth & Fikes, 1994], DARPA
Agent Markup Language (DAML) [McIlraith et al. , 2001], Knowledge Query and Manipu-
lation Language (KQML) [Finin et al. , 1994], Semantic Language (SL) [FIPA, 2002c],FIPA
Agent Communication Language (FIPA-ACL) [FIPA, 2001].

The following works represent the second concern of the interoperability which is related
to the collaboration of open systems: coordination means presented in section [4.2, page
92], Web Services [W3C, 2002b], Web Service Choregraphy Interface (WSCI) [W3C, 2002a],
Business Process Modelling Language (BPML) [DBMI, 2000], Web Services Flow Language
(WSFL) [Leymann, 2001], XLANG [Thatte, 2001], Business Process Execution Language for
Web Services (BPEL4WS) [Weerawarana & Curbera, 2002].
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Discussion

The interoperability is a crucial point for the EAC. In fact, even if the current networking
technologies allow the communication between open software systems, the transmitted data
are useless until one provides the appropriate means to extract their semantics. The more
a paradigm or architecture handles the interoperability problem, the more it is appropriate
for the EAC. Furthermore, the interoperability is not limited to the exchange of information.
In fact, the coordination of joint activities is also part of the interoperability to make open
software systems collaborating and working together.

2.3.4 Overall Discussion

AutonomyCommunication Interoperability

MAS

BB

OO

� �

Figure 2.5: Preliminary analysis of current approaches that are suitable for the EAC.

We have tried to understand what are the constraints and hypotheses of the EAC. This
helps in selecting the relevant and potential works which have to be considered as starting
points for the engineering of EAC applications. From a software engineering point of view,
we have set three major selection criteria related to: (i) the communication media, (ii) the
autonomy of the software entities, and (iii) the interoperability of open software systems.

Figure 2.5 shows how the current major software engineering paradigms such as object
oriented (OO), multi-agent systems (MAS), and blackboard (BB) are analyzed according to
these criteria.

For the EAC the OO paradigm is the less appropriate approach to start with. In fact, the
communication among the objects follows the synchronous communication paradigm. The
communication paradigm is unsuitable for the EAC context (cf. §2.3.1, page 25). The au-
tonomy of the software entities is not handled within the OO paradigm since their internal
integrity is not guaranteed. In fact, the objects directly interact by modifying their states or
by calling side-effect methods. During the interaction process of the objects, the encoding of
the information is passed as parameters to the functions. This limits the integration of the
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interoperability solutions. In fact, the type and name of the parameters are often assumed as
enough to make the software systems interoperable. The classical example of this assumption
is the Interface Description Language (IDL) that is used to describe the functions of CORBA
objects. The IDL gives only the name of the functions and the type of their parameters; the
user of the object has to guess what is the semantics of the functions having these elements.

Even if the MAS and BB approaches do not completely satisfy the requirements of the
EAC; they are considered as good starting points for our work. In fact, the MAS paradigm pays
attention to the interoperability of open systems and to the autonomy of the software entities.
However, the communication paradigm which is used for the MAS is still not clearly defined
and most of the current approaches use the asynchronous paradigm (cf. §2.3.1, page 26).
For instance, the FIPA [FIPA, 1996] specifications consider the asynchronous communication
paradigm.

On the other hand, the BB paradigm offers the opportunity to guarantee the autonomy
of the software entities since their internal integrity is satisfied. In fact, since the interac-
tions are always conducted through the shared data space, this prevents the software entities
from directly changing their states. The communication within the BB paradigm follows the
generative paradigm (cf. §2.3.1, page 27), which has been considered as the most suitable com-
munication paradigm for the EAC. However, the first concern of the interoperability, which
is related to the transfer of the semantics, is not always considered as a key issue within the
BB paradigm and often a simple structure of information carrier is used. However, the second
concern of the interoperability, which is related to the execution of joint activities, has been
considered an important point. For instance, the works on the coordination media that fol-
lows the BB paradigm illustrate how the communication medium is used as a mean in order
to make autonomous software entities coordinate their actions to execute joint activities (cf.
§4.2.3, page 95).

The next two sections describe in more detail the BB and MAS paradigms and present
their advantages and limits for the EAC.

2.4 The Blackboard Paradigm

First, let us make a clear distinction between the blackboard (BB) as paradigm and the black-
board as architecture. The blackboard paradigm is a way to think the software system as a
set of software entities communicating through a shared persistent communication medium.
Each approach that follows the blackboard paradigm defines its own way to build the per-
sistent communication medium and how the access it. The blackboard architectures range
from the simple ones to the very complex. For instance, a memory that is shared between
different software entities on the same computer defines a simple blackboard architecture. In
a software system based on artificial ants [Parunak, 1997], the communication is defined by
the diffusion of pheromones. This system can also be considered as following the blackboard
paradigm even if the use of blackboard architecture is not explicitly mentioned. In fact, the
environment surrounding the ants and containing the pheromones constitutes the persistent
shared communication medium. Another example is the Internet. In fact, when several users
have access to web pages, they are using a shared and persistent communication medium
which is the web.
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2.4 The Blackboard Paradigm 33

2.4.1 Pioneer Works on the Blackboard Paradigm

The title of this section should be ’Pioneer works on the Blackboard Paradigm in Informatics’.
In fact, the blackboard paradigm is probably the most ancient and natural paradigm that the
humanity has followed to communicate in a timely and spatially uncoupled manner. So, its
pioneer works have to be considered with the appearance of the civilizations and humanity.
Still, this is too far from the problem treated by this thesis.

Within the informatics, the first works that mention the explicit use of a shared and
persistent communication medium are those of the ’distributed artificial intelligence’ (DAI).
In contrast to the classical artificial intelligence (AI) field where the focus is made on the
reasoning capabilities of a single ’intelligent’ entity; the DAI focuses on the ’intelligence’
of a group of entities. Hence, during the late 70s first DAI systems have emerged as an
interesting alternative for complex problem resolution. Originally, this research was to shift
the focus from computational control (e.g. algorithmic approach for problem resolution is
about computational control) to the communication and co-ordination among distributed
entities.

The HEARSAY II [Erman et al. , 1980] is a speech recognition system used to recognize
English speeches and querying databases. It is considered as the first system that has used the
BB paradigm: several software entities coordinate their actions and share knowledge through
a common data space. Erman and colleagues have noticed that finding an algorithmic solution
for the speech recognition problem is very hard. In fact, speech recognition involves different
competences of different entities, called knowledge sources (KS), to recognize signals, syllables,
words, sentences, semantics and so on. These entities need also to collaborate and to share
knowledge. This was conducted through the blackboard. However, the entities’ decision
process was not totally autonomous and a meta-entity, called Focus, was defined in order to
steer the execution of the system. Still, the global control was not known before the execution
and determined as a result of the entities interactions.

The Ether system is another example of pioneer blackboard systems. The Ether has been
introduced by a student of C. Hewitt (cf. §2.5.1, page 38), W.A. Kornfeld in [Kornfeld, 1979].
Kornfeld has noticed that the distribution is usually motivated by efficiency. Hence, the pro-
grams are executed concurrently to use more resources and to terminate more quickly. He
suggested the use of distribution for more ’qualitative’ criteria rather than ’quantitative’ crite-
ria. To demonstrate his approach, he developed a theorem-proving application: two different
algorithms proving a mathematical property were implemented; when these algorithms where
collaborating and sharing their partial results, the solution was found more quickly. Kornfeld’s
architecture is composed of two orthogonal components: the Ether, representing the persis-
tent communication medium; and the Sprites, representing the software entities. The sprites
communicate by sending and retrieving messages from the Ether. Furthermore, a sprite may
stop its execution waiting for a particular event to arrive in the Ether. In contrast to its
precedents architectures, the Ether has made the properties of the blackboard explicit. So,
the blackboard is no longer a flat set of data without any structure but owns some particular
properties that affect the dynamics of the software system. For instance, the Ether defines
the property of the commutability: the sprite creation and appearance of a message in the
Ether are commutative operations; and the monotoniaty: messages cannot disappear from the
Ether.
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Software 
Entity

Out, Eval

In, Read

Tuple Space

Tuples

Software 
Entity

Out, Eval
In, Read

Figure 2.6: The main elements of the tuple space architecture: tuples and the software entities
that communicate by reading and writing the tuples.
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2.4 The Blackboard Paradigm 35

2.4.2 The Tuple Spaces

The Tuple Spaces (TSs) have been introduced by researchers at the Yale University where
Linda [Gelernter, 1985] –the first tuple space-based system– has been developed. A TS system
is composed by the following elements:

� Tuple: A tuple is basically a list of typed fields. Fields may be actual when they hold
a value or formal when no value is contained.

� Tuple Space: A tuple space is an abstract storage location where tuples are deposited
and retrieved by the software entities that called processes.

� Processes: The processes store and retrieve the tuples using the following elementary
communication primitives:

– out: inserts a tuple into a tuple space which becomes visible to all the processes
with access to that tuple space.

– in: extracts a tuple from a tuple space, with its argument acting as the template,
anti-tuple, against which to match. When all the corresponding fields of a tuple
match the template the tuple is withdrawn from the tuple space.

– read: this is equivalent to ’in’ except that a matched tuple is not withdrawn from
the tuple space and remains visible to the other processes.

– eval: this is similar to ’out’, except it creates an independent process yielding the
tuple, which is inserted in the tuple space.

2.4.3 Tuple Space Architectures

There are several architectures that follow the principles of the Linda architecture. The goal
here is not to present an exhaustive list of these architectures. Only the architectures that
are relevant and present some interesting features are presented. We start by presenting the
original TS architecture Linda which has inspired the following models. The TuCSoN model
is then presented as it introduces a new functionality to the TSs by making them program-
mable. The TOTA architecture is presented as it explicitly targets the engineering of software
systems for the EAC context. Finally, the JavaSpaces architecture is presented to illustrate
the strategic shift adopted by important software companies such as Sun Microsystemstm to
benefit from the interesting features of the generative communication paradigm.

Linda

Linda [Gelernter, 1985][Gelernter et al. , 1985] is the first TS system developed as an
alternative to the RPC for building distributed software systems. Linda con-
sists of a reduced set of communication primitives to access and modify a shared
memory containing the tuples, namely the tuple space. Even if the tuple
space is conceptually centralized, it can be implemented in a decentralized man-
ner and several works have addressed the distribution of the tuple spaces such as:
[Alvez & Yovine, 1991][Karp, 1993][Douglas et al. , 1995][Hawick et al. , 2002]. Hence, sev-
eral Linda sub-systems are composed in order to build a coherent distributed tuple space
that guarantees the operational semantics of the communication primitives. Linda does not
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36 Chapter 2 : State of the art

make hypotheses on the internal models of the software entities. The software entities have
only to follow the syntax of the tuples, anti-tuples and the communication primitives.

TuCSoN

TuCSoN is a Linda-like TS proposed by A. Omicini and F. Zambonelli
[Omicini & Zambonelli, 1998]. The TuCSoN model has been designed for coordination
purposes and not only for communication. For instance, the authors use the term of
coordination medium rather than the communication medium to highlight the objectives of
the TuCSoN model and architecture.

Despite the fact that TuCSoN is a Linda-like TS, there are significant differences be-
tween these architectures. In fact, just as MARS [Cabri et al. , 2001] (another Linda-like
TS), the TuCSon model introduces the idea of a programmable coordination medium: while
Linda is composed of tuple spaces that define statically the interaction schemes between
the tuples and the anti-tuples, within TuCSoN the interaction schemes of the tuple centres
[Omicini & Denti, 2001a] are programmable and can be dynamically changed using the Re-
SpecT [Omicini & Denti, 2001b] logical programming language. In other words, each tuple
centres may define its own rules of reaction to the elementary communication primitives. This
is a significant modification of the initial approach proposed by Linda. In fact, the com-
munication medium is now an active entity that affects the dynamics of the global software
system. Consequently, the communication medium has to be considered explicitly as a first
class entity2 during the engineering phases of the software system.

TOTA

Tuples On The Air (TOTA) [Mamei et al. , 2003] is a TS based architecture that offers a
middleware to develop pervasive applications. TOTA has no notion of a centralized or shared
tuple spaces. The tuples are injected into the network of TOTA nodes from any node and can
propagate and diffuse according to tuple-specific propagation patterns. The software entities
can exploit a programming interface to define and inject new tuples into the TOTA network
and to locally sense both tuples and events associated with changes in the tuples’ distributed
structures such as the arrival and departure of tuples.

JavaSpacestm

JavaSpaces [Sun, 2000] service specification provides a distributed and persistence object ex-
change facility for the Java-based systems. JavaSpaces technology uses Java RMI for the
interaction between the distributed objects and Jini for implementing distributed services.
The JavaSpaces service holds entries that describe a group of objects. An entry is copied into
a JavaSpaces service and used for future lookup requests. This mechanism is similar to Linda
[Menezes et al. , 2001]. Hence, a distributed software system is viewed as a set of distributed
objects that exchange persistent objects, or messages, through a JavaSpaces service using
write and lookup operations.

Sun Microsystemstm has already developed the Jinitm and the Java RMItm technologies for
distributed computing. However, these technologies were not adapted for large-scale systems

2Recently, the MAS community has recognized that this is a key issue. The E4MAS workshop [E4MAS, 2004]

studies how to consider the communication medium as a first class entity within the MASs.
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2.4 The Blackboard Paradigm 37

that operate on unreliable communication media such as the Internet or wireless networks. As
for the CORBA, the interaction model among the software entities may explain this failure.
To avoid this problem, the JavaSpaces adopts the generative communication paradigm.

2.4.4 Advantages and Limitations of the BB Paradigm and TS Architec-
tures for the EAC

Obviously, the main advantage of the BB paradigm and TS architectures is the generative
communication. In fact, the constraints of the communication medium are handled gracefully
and flexibly by uncoupling the communication and interaction between the software entities on
space and time. So, the intermittent communications, disconnections and momentary failure
of some components do not disturb drastically the entire software system.

Moreover, the internal integrity is also respected by the BB paradigm. In fact, the software
entities do not have a direct access to the software structures of other entities, but interact
by the mediation of the communication medium. Furthermore, as shown by the TuCSoN
model, the communication medium is not passive but may own its proper reaction rules.
However, there are still some disadvantages and weaknesses to be considered in order to build
a framework for the EAC.

The first point concerns the soundness of the communication primitives’ semantics and our
hypotheses of work. For instance, the semantics of the ’in’ primitive is inconsistent with the
autonomy. In fact, the ’in’ primitive introduces the problem of shaded actions. The shaded
action problem appears when the software entity’s actions or influences, which are reified as
tuples, are always retrieved by another software entity. So, this entity shades completely the
actions of the emitting entity and from an external point of view the shaded entity does not
exist in the software system since its actions or influences are never perceived. Introducing
some reaction rules in the tuple centres can solve this problem. Still, the real problem is that
the tuple space is a simple flat set without any structure. Consequently, other entities might
change a state that another entity is responsible for without any obvious tracking of which
entity changed the data. This means that the autonomous definition of the entities is lost
because you can not claim an ownership of that data. The lack of structure also reduces the
scalability of TS based applications as the whole data space has to be synchronized with the
remote data spaces for in/out operations.

The second point concerns the tuples themselves. The tuples are the information carrier
that reifies the knowledge and actions of the software entities. Still, the tuples are unstruc-
tured. For instance, does an aggregation of tuples constitutes a tuple? Furthermore, the
anti-tuple is introduced as an ad hoc mean to lookup tuples. But, the anti-tuples and tuples
are not unified in a single structure. This prevents from having a certain level of introspection
within the TS. For instance, it is not possible to observe an observer. In other words, one
cannot make a lookup request using the ’in’ primitive to lookup anti-tuples.

The third point is a consequence of the second point and is caused by the artificial introduc-
tion of anti-tuples. This point concerns how the software entity interacts with its surroundings.
Generally, we can identify two kinds of interaction methods: the active interaction and the
passive interaction. Within the active interaction, the software entity requests explicitly to
sense its surroundings. So, the sensing means of this entity are only defined between the time
when the entity has requested to sense its surroundings and the time when the calculation of
its interaction is terminated. In the passive interaction, the software entity defines its sensing
means in a persistent manner. These sensing means continuously sense the surroundings and
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store information even if the software entity is performing another activity. The TS adopts an
active interaction method. In fact, the software entity cannot store its anti-tuples in the TS
and retrieves the results whenever it wants. Again, it is clearly a structural problem. In fact,
except the time when the software entities are actively requesting to sense their surroundings,
the TS does not define any location where to store the sensing means and the perceptions of
a software entity.

If the advantages of using the tuple space design to form part of the EAC solution then
resolving the above limitations of the tuple space design adequately are required.

2.5 The Multi-Agent Systems Paradigm

The MAS field is currently one of the most prolific field of DAI and software engineering in
terms of scientific publications and research work. Still, contrary to the OO architectures,
MAS architectures until now have not gained the necessary credibility to be considered as
the leading paradigm for the distributed software systems engineering. In fact, few companies
trust the MAS approach enough to build ’serious’ applications that are not just showcases.
This can be explained by the conservatism of the technological market. In fact, until a new
technology actually proves that it can do what the known technologies cannot, the major
actors of software engineering do not give it the required credibility. For the classical software
environments, that are mostly controlled environments, the fundamental features of the agents
are not required and the MAS approach cannot show clearly what are its advantages. In
fact, in these controlled environments, the MAS approach is viewed more as an amelioration
or evolution of software engineering and not as a revolution. However, the constraints of
EAC give the MAS paradigm a chance to demonstrate the promised revolution on software
engineering and informatics. This point of view is shared by F. Zambonelli and V. Parunak
[Zambonelli & Parunak, 2002] that see in the properties of EAC the signs of the revolution in
computer science and software engineering and a chance for the MAS paradigm to prove its
expressiveness and soundness.

In order to introduce the MAS paradigm, the following section presents some pioneer
works; then a more contemporary vision of the MASs is given in section [2.5.2, page 40].
In this section, we discuss two major trends of MASs namely, the agent centered and the
system centered approaches. Section [2.5.4, page 45] presents briefly the FIPA standard and
its proposition to address the EAC. Finally, section [2.5.5, page 47] enumerates the advantages
and weaknesses of the MAS approach to address the EAC context.

2.5.1 Pioneer Works of MASs

The actor model has been initially introduced by C.E. Hewitt in [Hewitt, 1976a] and was
joined later by G. Agha [Agha & Hewitt, 1985][Agha, 1986]. The actors are active software
entities that (i) communicate by sending asynchronous messages; (ii) create other actors; (iii)
and change their behaviors by becoming other actors. The dynamics of the software system
and the actors is not fully determined before the execution of the system; it is determined
by the relationships among the events generated by the actors. Consequently, as stated by
Hewitt in his paper:

“the control structure emerges as a pattern of passing messages among objects
being modeled.”
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2.5 The Multi-Agent Systems Paradigm 39

Notice that contrary to the HEARSAY system, which targeted a particular speech recog-
nition problem, the actor model is a generic pattern for the distributed resolution of problems.
The communication paradigm also differs between the HEARSAY and the actor model. In
fact, while HEARSAY used a blackboard architecture as a communication medium, the ac-
tors communicate using asynchronous messages. The actor model can be considered as the
ancestor of MAS and the differences between the actors and agents are not clear at least at
the conceptual model. In fact, Hewitt and Agha motivations for the Actor model are the same
as those presented by the MAS community. Probably, the autonomy feature makes a clear
distinction between the actors and the agents. Indeed, despite the fact that the theoretical
descriptions of the actors emphasize on the autonomy, this feature is not reified explicitly
at the implementation level. Consequently, when sending a message to another actor, the
emitting actor remotely controls its behavior.

D. Lenat has developed the PUP6 system where specialists, called beings, work together
to solve problems [Lenat, 1975]. The questions that are not answered by beings are forwarded
to a human operator. The beings differ from the HEARSAY knowledge sources: they do
not use blackboard architecture and are continuously modifying their internal structure and
behaviors.

These pioneer works of DAI have inspired the works conducted during the 1980s to consider
a software system as an artificial organization. For instance, M. Fox in his paper [Fox, 1981]
gives an organizational view of software systems by considering the HEARSAY and actors as
examples [Erman et al. , 1980]. Fox has noticed that the human organizations and software
systems share the same property on the entities, namely the bounded rationality. According to
H. Simon [Simon, 1957], a rationally bounded entity is an entity which reasoning capabilities
are limited. For instance, humans are rationally bounded and their intellectual faculties are
quickly flooded under complex information and tasks. The limitation of the human mind to
absorb complex information creates the need for grouping in organizations to solve complex
problems. The software entities are also rationally bounded. In fact, each software entity can
process only a limited amount of information. Consequently, the software entities have to
coordinate their efforts in order to solve complex problems. As an example of a coordination
pattern, R.G. Smith has proposed an economical metaphor for dynamical task allocation: the
contract net protocol[Smith, 1980]. This protocol assumes a topology of independent nodes;
each node has its own resources and communicates with other nodes using a communication
medium. The problem to be resolved is decomposed in several tasks; the tasks are then
allocated to the appropriate node using a negotiation mechanism between a coordinator and
the executors. This distributed negotiation process is characterized by the following points:

1. the control is locally achieved and does not imply centralization;

2. the information flows are bi-directionally exchanged between the coordinator and execu-
tors;

3. each entity evaluates information from a local point of view;

4. the final agreement is achieved by mutual selection, which means that the coordinator
and the executor agree on the task to be executed.

The Distributed Vehicle Monitoring Testbed (DVMT) [Lesser & Corkill, 1983] is also an
important example of DAI application developed by V. Lesser and D. Corkill at the Massa-
chusetts University. The DVTM simulates a control network of vehicles. The nodes of DVMT
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are problem solvers that analyze acoustically sensed data to identify, locate, and track pat-
terns of vehicles moving through a two dimensional space. Each node is associated with a
physical sensor sensing the signals generated by mobile vehicles. These signals are generally
altered by the surrounding environment, which induces local errors on the perceptions. The
DVMT application has demonstrated that the errors of perception were minimized when the
nodes work together. Hence, by sharing their local knowledge, the nodes were able to locally
correct errors and the global system gives more accurate results.

The Multi-Agent Computing Environment (MACE) platform [Gasser et al. , 1987] was
developed by Gasser and colleagues. The MACE platform was designed as a simulation
platform to test DAI applications and provides:

� a language for describing agents;

� a mapping of agents into processors;

� a communication medium that handles inter-agents communications.

The MACE active entities were called agents instead of actors or active objects since they
exhibit additional features such as the exploitation of an explicit organizational structure;
model of other agents; explicit representation of their goals, tasks, roles and capabilities.

For more readings, a summary of DAI works of this period (1980s) have been presented
by Bond and Gasser in [Bond & Gasser, 1988].

2.5.2 Current Vision(s) of MASs

The MAS paradigm seems to be an interesting approach for the design and development
of open and distributed software systems [Ferber, 1995] [Jennings & Wooldridge, 1997]. Ac-
cording to Demazeau [Demazeau, 1995] a MAS can be described with four main concepts
which are: Agent, Environment, Interaction and Organization (AEIO). The agents are the
autonomous goal-directed entities that populate MAS. They achieve their design goals by in-
teracting with other agents and by using the resources available in their environment. The
interaction is defined by Ferber [Ferber, 1995][Ferber, 1999] as the set of mechanisms used by
the agents either to share knowledge or to coordinate joint activities. The organization can be
defined as the set of mechanisms that reduces the entropy of the system and makes it ordered
behaving as a coherent whole.

The most consensual definition of the agents is given by Wooldridge and Jennings
[Wooldridge & Jennings, 1995]:

“Perhaps the most general way in which the term agent is used is to denote a
hardware or (more usually) software-based computer system that enjoys the follow-
ing properties:

� autonomy: agents operate without the direct intervention of humans or oth-
ers, and have some kind of control over their actions and internal state
[Castelfranchi, 1995];

� social ability: agents interact with other agents (and possibly humans) via
some kind of agent-communication language [Genesereth & Ketchpel, 1994];
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2.5 The Multi-Agent Systems Paradigm 41

� reactivity: agents perceive their environment, (which may be the physical
world, a user via a graphical user interface, a collection of other agents, the
Internet, or perhaps all of these combined), and respond in a timely fashion
to changes that occur in it;

� pro-activeness: agents do not simply act in response to their environment,
they are able to exhibit goal-directed behavior by taking the initiative.”

Since there is no formal or standardized definition, the agents are given just some funda-
mental features. Some of these features are also shared by other entities such as the actors or
objects. For instance, the software object can interact also with other objects and may react
to an external stimulus by returning a certain result. Still, we state that the most important
feature that distinguishes the agents from other known entities in software engineering is the
autonomy feature.

The autonomy has several interpretations within the literature of MASs. The following
section explores these interpretations and gives our point of view on the autonomy and why
this feature makes the MAS suitable for the EAC.

The Autonomy and the MAS Paradigm

Two main interpretations have been selected for the purpose of this thesis: the autonomy as
self-governance and as independence.

Autonomy as Self-Governance Castelfranchi [Castelfranchi, 1995] defines an au-
tonomous agent as a software program able to excise a choice that is relevant
in the context of goals-directed behavior. Luck and D’iverno in several works
[Luck & d’Inverno, 1995][Luck & D’Inverno, 2001][d’Inverno & Luck, 1996] share also the
same interpretation of autonomy and specify formally using the Z notations [Spivey, 1987]
what is an autonomous agent and what are the features that distinguish it from a software
object. From Luck and D’iverno perspective, an object is a simple software entity with some
features and actions. An autonomous agent is defined as an object with a set of motiva-
tions that steer the agent in selecting what are the goals to be achieved. Guessoum and Briot
[Guessoum & Briot, 1999] address also this issue and enrich a pure object architecture, Actalk,
with some mechanisms such as controlling message reception and selecting what behavior to
adopt in order to build an agent platform named DIMA.

Autonomy as Independence The Social Dependence Network (SDN) has been introduced
by Sichman et al. in [Sichman et al. , 1994]. The SDN gives some information about the social
context of an agent. This social context is then used by the agents to achieve their individual
goals. More precisely, the agents have external descriptions representing models about their
neighbors. An external description of an agent is composed by its goals, actions, resources
and plans. The goals represent the state of affair that the agent wants to reach; actions are
operations that an agent is able to perform; resources represent the means under the control
of the agent; and finally plans are sequences of actions and resources. Notice that the authors
adopt the hypothesis of external description compatibility implying that all the agents have the
same models about the others. This is unachievable in an open context where the set of agents
is not static and the communication is asynchronous. The SDN framework distinguishes three
forms of autonomy. An agent is a-autonomous for a given goal according to a set of plans,
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if there is a plan in this set that achieves the goal, and every action in each plan belongs to
its capabilities. An agent is considered as r-autonomous for a given goal according to a set
of plans, if there is a plan in this set that achieves the goal and every resource in each plan
belongs to its resources. Finally, an agent is s-autonomous when it is both a-autonomous and
r-autonomous. According to this definition, an agent is autonomous for a particular goal if it
does not depend for resources or actions on another agent.

Discussion Sichman et al. relate the autonomy of the agent on its social context. On the
other hand, Castelfranchi and colleagues relate the autonomy of an agent only to its own
behaviors. The latter definition seems to be more appropriate to catch what an autonomous
software agent means for the EAC context. In fact, as mentioned by [Luck & d’Inverno, 1995],
a pocket calculator that has the resources and actions to calculate some arithmetical operations
is seen as an autonomous agent according to the SDN definition. But the outputs of the
calculator are completely known given some inputs.

Our interpretation of the autonomy is more related on the decision process of the agents.
Still, it differs from the interpretation of Castelfranchi and colleagues. In fact, while Castel-
franchi and colleagues give an absolute definition, it is more interesting to give a relative
definition of the autonomy. In other words, an entity can be autonomous or not depending
on the observer of this entity.

If the external observer of an entity has enough knowledge and means to control its be-
haviors, this entity is not autonomous for this observer. By contrast, if the external observer
lacks knowledge and means to control the behaviors of the entity, the later is autonomous
since its outputs may change in response to the same stimulus. So, no matter if the behaviors
of the software entity are actually changing over time; it is the lack of knowledge and control
means that makes the software entity behaving as autonomous.

As a consequence of this interpretation of the autonomy, the software agents that have
been developed locally and that are under the total control of their designers do not exhibit
the same level of autonomy as foreign agents that have been developed by other authorities.
For the EAC context, the openness hypothesis implies that the software agents have to be
considered as autonomous entities since they have been developed by different authorities.

Objective Criterion to Implement Autonomous Agents

Within the MASs there is still a gap between the debate at the conceptual level on the
autonomy and the implementation of autonomous agents. In fact, most of the definitions and
interpretations of the autonomy give a subjective point of view without some objective criteria
to implement the autonomy. So, as Weiss and colleagues [Weiss et al. , 2003] have pointed
out, objective implementation criteria are necessary to define and guarantee the autonomy of
a software agent. We propose the internal integrity as an objective criterion to guarantee the
autonomy of the agents [Gouäıch, 2003].

The internal integrity is a programming constraint that considers an autonomous agent as a
bounded system which internal dynamics and structure are neither controllable nor observable
directly by an external entity. In fact, if the agent’s software structure is accessed or modified
by another entity, the decision process and behaviors may be altered. Since the decision
process of an agent has to be entirely determined only by its own perception and behaviors,
the internal integrity becomes a sine qua none condition to implement autonomous agents.
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2.5 The Multi-Agent Systems Paradigm 43

Ensuring the Internal Integrity The internal integrity criterion also raises some issues
with respect to the implementation of MASs: on one hand, the internal integrity has to be
taken into account to guarantee the autonomy; on the other hand, the autonomous agents
are interacting entities that need to act and modify the perceptions of other agents. Since
these perceptions are included within the boundaries of the agents, this contradicts the in-
ternal integrity statement. In other words, the problem is to enable the interaction between
autonomous agents which boundaries do not intersect.

To avoid this paradox, the MAS have to identify a non-agent entity that manages and
carries out the interactions. This entity has been named the agents’ deployment environment
(DE). Chapter 3 presents our proposition of a DE named MIC∗.

2.5.3 Agent Centered MAS and System Centered MAS

The MASs works can be divided into two main categories depending on the point of view
from which the MAS is studied. In fact, the MAS can be analyzed and studied from the agent
point of view. This represents the agent centred MAS (ACMAS) approach. On the other
hand, the MAS can be analyzed and studied as a whole at the systemic level. This represents
the systemic centered MAS (SCMAS). This decomposition has been proposed by Ferber in
[Ferber et al. , 2003]. Ferber’s uses the term organization centered MAS (OCMAS) instead of
SCMAS. The term system has been preferred to the term organization as it is more general
to represent the study of the dynamics of the overall MAS.

By using Demazeau’s decomposition one can briefly gives an order of the important com-
ponents in each approach. For the ACMAS approach the central component is the agent.
The interaction, organization and environment are defined from the agent’s perspective. In
the SCMAS the agents lose the dominant place and the organization, environment, interac-
tion become the central concepts. The SCMAS try to study the MAS by assuming minimal
knowledge and hypothesis on the agents’ internal models.

ACMAS

The illustrative example of this approach is the Belief, Desire, Intention (BDI) model of
the agents’ mental state proposed by A. Rao and M. Georgeff [Rao & Georgeff, 1995]. In
this model, the agents have three logical sets holding some cognitive predicates representing
believes, desires and intentions. These three sets represent the mentalistic model of the agent
that steers its behavior.

In ACMAS The interaction is defined from the agent’s mental model perspective. For in-
stance the KQML [Finin et al. , 1994], Arcol [Breiter & Sadek, 1996], FIPA ACL [FIPA, 2001]
are agent communication languages (ACLs) which semantics assumes that the interacting
agents follow a specific mental model such as the BDI model.

The organizational aspects of the MAS are also defined from the agent’s mental model
perspective. The cooperative problem solving (CPS) models developed by the ACMAS ap-
proach describes the cooperation and the joint actions of a group of agents by assuming the
complete access and knowledge of the agents’ mental states. For instance, Cohen and Levesque
have developed the joint intention model that specifies how a group of agents act together
by sharing certain mental beliefs about the cooperative actions [Levesque et al. , 1990]. The
Wooldridge-Jennings CPS model [Wooldridge & Jennings, 1994] is another illustrative exam-
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ple of this approach. This model is based on the joint intention theory and specifies the process
of the CPS by four-stages:

1. recognition: during this phase the agents recognize the potential for teamwork with
respect to a common goal. This implies that the agents share their goals and use the
same ontology to describe them.

2. team formation: in this phase the group of agents that share the same goals attempt
[Wooldridge & Jennings, 1994] to build a group of agents.

3. plan formation: during this phase the agents forming the group negotiate the plan of
actions to be conducted in order to achieve the team goals.

4. team action: during this phase the agents execute actions of the agreed plan. The
agents are also required to adapt some social conventions described in [Jennings, 1993]
to monitor their teamwork progress.

The ACMAS approach is suitable for controlled environments since it assumes a
lot of knowledge and hypotheses on the agents. For instance, H. Chen and T. Finin
[Chen & Finin, 2002] show how the constrains and hypotheses of the EAC make the ACMAS
approaches insufficient to guarantee the teamwork and coordination. In fact, the limitation of
perceptions, planning limitations and device mobility challenge completely the applicability
of the joint intention theory.

More generally, the failure of the ACMAS approach to address the EAC context can be
explained by the contradiction that exists within this approach. In fact, you cannot state
that the agents are autonomous on one hand and assumes how they function internally on the
other hand. In fact, as stated previously, it is the lack of knowledge and control means that
make the agents behaving as autonomous. So, the less an approach assumes how the agents
function internally, the more it is general and suitable to address open and uncontrollable
environments such as the EAC.

SCMAS

Within the SCMAS the focus is not the agent but the entire system. The organization and the
interaction are studied and described independently from the agent’s mental states. Hence, the
organization centered MAS (OCMAS) [Ferber et al. , 2003] tries to identify how to organize
the MAS system using organizational models that are independent from the mental states of
the agents. For instance, the AGR organizational model [Ferber & Gutknecht, 1998] proposed
by Ferber and Gutknecht specifies the organizational structure of a MAS without assuming
how the agents are built internally. In fact, the agents are abstracted as roles [Kendall, 1999]
that describe what function the agent is expected to perform in the system and not how this
function is performed. So, the concept of role allows to abstract the agents’ function and
to talk about them without manipulating them explicitly. As consequence, within the same
MAS heterogeneous agents built with different models can collaborate as soon as they share
the same interaction language.

Concerning the interaction, the SCMAS approach offers ACLs which semantics does not
depend on the mental model of the agents. This is illustrated for instance by the work of M.
Singh. We can mention the following statement taken from Singh’s paper [Singh, 1998]:

te
l-0

01
42

84
3,

 v
er

si
on

 1
 - 

23
 A

pr
 2

00
7



2.5 The Multi-Agent Systems Paradigm 45

“I am not convinced, however, that the existing work on ACLs, especially on
the semantics, is heading in the right direction. It appears to be repeating the
past mistake of emphasizing mental agency –the supposition that agents should be
understood primarily in terms of mental concepts, such as beliefs and intentions.
It is impossible to make such a semantics work for agents that must be autonomous
and heterogeneous: This approach supposes, in essence, that agents can read each
others minds. This supposition has never held for people, and for the same reason,
it will not hold for agents.”

In [Singh, 1998] M. Singh discusses the limitation of the ACMAS approach to define the
interaction between the agents in term of ACLs that are dependent on the mental states of
the autonomous agents and suggests to use the social context as the basis for the semantics of
ACLs.

P. Charlton and E. Mamdani [Charlton & Mamdani, 1999] show the limitations of the
mental agency based ACLs and how the social context and social policies are used within the
ACLs in order to specify the social commitments of the autonomous agents which ease the
coordination of the joint activities.

Still, in our knowledge there is not a general-purpose SCMAS ACL that has gained ac-
ceptance within the MASs community. In practice, KQML and FIPA-ACL are used within
the SCMAS, but the agents never implement their semantics. So, these interaction languages
are used more for their expressiveness to have human readable messages rather than messages
that affect the BDI mental states of the software agents.

2.5.4 The FIPA Proposition to Address the EAC

The Foundation for Intelligent Physical Agents (FIPA, www.fipa.org) is a standardization
organization promoting development and specification of agent technologies. The FIPA speci-
fications aim to make agent systems interoperable by defining a standardized agent interaction
language, namely the FIPA-ACL [FIPA, 2001], and an abstract architecture of the Agent Plat-
form (AP).

The FIPA AP is required to implement three capabilities:

� The Agent Management System (AMS): The AMS is responsible for agent creation
and deletion, maintenance of a directory service where every agent deployed on the AP
has to be registered (white pages), and the agent life-cycle management.

� The Agent Communication Channel (ACC): The ACC represents the communi-
cation medium used to exchange FIPA ACL messages between the agents. The routing
of FIPA ACL messages is based on the globally unique Agent Identifier (AID) and the
agent address. Hence, the ACC may deliver messages either to an agent deployed locally
within the same AP or contact the ACC of a remote AP that contains the agent.

� The Directory Facilitator (DF): The DF maintains a directory service where agents
deployed on the AP register the description of their services. Several DFs can be feder-
ated and the search of services is extended to all the federated DFs.

Currently there are several APs that implement the FIPA specifications:
JADE [Bellifemine et al. , 2003], JADE-LEAP [Berger et al. , 2003], FIPA-OS (fipa-
os.sourceforge.net), and MicroFIPA-OS [Laukkanen et al. , 2002a].
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Although the original FIPA specifications have addressed some aspects of the EAC context
such as the use of bit-efficient encoding of ACL messages to preserve the network bandwidth
[FIPA, 2002a] and the buffering of the messages to handle the intermittent nature of the
communication medium [FIPA, 2002b], there were several difficulties when adapting directly
the FIPA specifications for the EAC context.

In 2002, the FIPA has created the Ad Hoc Technical Committee3 (TC Ad Hoc). The
objective of the TC Ad Hoc is either to modify existing specifications or create new speci-
fications to ensure interoperability between FIPA-compliant APs in mobile ad hoc networks
(MANETs) that we have identified as the EAC context.

The JADE-LEAP [Berger et al. , 2003] project has already experimented the distribution
of a FIPA AP over several small devices such a phones, PDAs and computers. The idea
was to define several light containers running on the limited devices and a main container
holding the FIPA mandatory services such as the AMS and the DF. The main container runs
on a powerful device such as a personal computer (PC) and communicates with the other
containers using wireless network protocol such as GSM or GPRS. Still, the sub-containers do
not constitute a FIPA AP and thus are not interoperable with other FIPA-compliant platforms
when the communication medium is not available with the main container. In contrast to the
LEAP-JADE approach, the goal of the TC Ad Hoc is to specify an entire self-contained FIPA
compliant AP that runs in each device [Berger, 2002]. In fact, the JADE-LEAP approach is
limited since the communication link between the main container and the sub-containers are
not always available in the EAC context.

Probably the experiment of the FIPA standard with the EAC is a concrete example of
how the EAC context challenges the engineering assumptions. For instance, some minor
contradictions of the FIPA standard have been highlighted by the EAC constraints and have
been revised. In fact, the main goal of the FIPA is to make MASs interoperable; and for
this important results have been brought such as the FIPA-ACL, FIPA interaction protocols
set, FIPA semantic language (FIPA SL), and the integration of the ontologies in the software
engineering process. Still, the interoperability can be performed without specifying how to
manage the states of the agents and services. So, the contributions of the DF and AMS for
the interoperability are not clear.

For instance, the service discovery is a function that can be implemented in a customized
manner for each specific MAS. Furthermore, the service management model of the FIPA using
the DF and the federation of several DFs cannot be implemented efficiently in the EAC context
[Berger, 2002]. For this reason, in March, 2004 the TC Ad Hoc has changed the FIPA agent
management specification [FIPA, 2004] to consider the DF as an optional component.

The other problem revealed by the TC Ad Hoc is related on the semantics of the FIPA
ACL for group communication (multicast/broadcast). In fact, the semantics of the FIPA ACL
is defined between two identifiable agents. So, the communication between an agent and a
group of unknown agents has no semantical grounds for the FIPA ACL. The TC Ad Hoc
has offered an ad hoc solution by making a specific reserved name to broadcast messages to
the unknown agents. More generally, this problem can be related on the routing mechanism
used by the FIPA ACL and that is based on the AIDs. In fact, there are several methods for
routing the messages in the MASs that are independent from the exact identities of the agents.
For instance, MadKit [Gutknecht & Ferber, 2000a] uses an organizational routing mechanism.
The messages are delivered by roles and not by identities.

3The web page of this TC is: www.fipa.org/activities/ad hoc.html
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2.6 Conclusion 47

2.5.5 Advantages and Limitations of the MAS Paradigm to Address the
AEC

The major advantages of the agent-oriented software engineering (AOSE) are: the autonomy
of the software entities; the expressiveness of the interaction means to ease the interoperability
and coordination; and the natural modeling of the software systems as artificial societies of
agents.

Among the limitations of the AOSE for the EAC one can mention the following points:

� The lack of objective criterion to implement and guarantee the autonomy of the soft-
ware agents: MAS works often do not relate the theoretical and conceptual results and
the implementation of the MASs. We have proposed a specific interpretation of the
autonomy for the EAC context and how to implement it by guaranteeing the structural
integrity of the agents.

� The specification of the communication medium paradigm : the MAS paradigm tells
that the agents communicate and interact but without specifying which communication
model to use. Hence, the dominant approach considers the asynchronous paradigm as a
model of communication within MASs. To handle the constraints of the communication
medium within the EAC context, we suggest the use of the generative paradigm as the
model of communication.

� The deployment environment (DE) is not considered as first-class entity within MAS:
few works have considered the general study of the DE that holds the autonomous
agents. For this reason, in 2004 the Environments For Multi-agent Systems (E4MAS)
workshop has been proposed for the Autonomous Agents and Multi-Agents Systems4

(AAMAS) conference under the initiative of D. Weyns, V.D. Parunak and F. Michel.
The workshop has highlighted the importance of the DE to be considered as a first-class
entity in the MAS. In fact, the DE is not a simple passive container holding the agents;
it defines their interactions and thus affects the dynamics of the MAS. For this reason,
we have developed an algebraic model of the DE that is presented in Chapter 3.

2.6 Conclusion

The BB and MAS has been considered as relevant starting points for the engineering of
software systems in the EAC context. Still, only the interesting features of each paradigm
have been selected. For instance, the generative communication paradigm has been selected
from the BB paradigm, while the results on the software entities autonomy and the use of
high-level interaction means have been selected from the MAS paradigm.

Figure 2.7 presents how the rest of the thesis is organized:

� Chapter 3: This chapter presents the MIC∗ model of the DE where the autonomous
agents are deployed. The MIC∗ DE guarantees the internal integrity of the autonomous
agents while defining their interactions. MIC∗ offers the opportunity to compose on-the-
fly several DEs to model the EAC applications.

4The AAMAS conference is the leading conference that publishes the works on the different aspects of the

MAS. The AAMAS conference series can be found at this page: www.aamas-conference.org
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Figure 2.7: Contributions of the state of the art to our proposition and organization of the
following chapters.

� Chapter 4: This chapter is concerned with the interoperability of open systems from
a coordination point of view. Starting from the theory of coordination of Malone and
Crowston [Malone & Crowston, 1994] a dependency-based coordination framework is
presented in order to model coordination processes between distributed software enti-
ties. Furthermore, by using the Queue Petri Nets (QPNs), the coordination process is
monitored by the DE only by observing the conversations of the agents.

� Chapter 5: Finally, this chapter gathers the results of the previous chapters in an
operational engineering framework. This framework is based on the social metaphor.
Hence, an application within the EAC context is viewed as a self-contained open artificial
society of software agents that meets and interacts with other open societies. Some
applications developed using this engineering framework are presented and deployed in
a realistic simulator.
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Chapter 3

The MIC∗ Deployment

Environment

”Human Society is becoming increasingly dependant on integrated computer systems.
Development of technologies to cope requires a comprehensive, interdisciplinary development

of a theoretical base framework. Considered as systems, the interacting processes in their
domain must be recognised, analysed, and managed as multi-tool, multi-level, multi-agent

feedback systems.”
M.M. Lehman, taken from the talk given in the SOCE workshop [SOCE, 2000]

3.1 Introduction

In order to ensure that the software system actually follows the design requirements in an open
context, we split the global software system in two orthogonal dimensions: the autonomous
agents, representing the active interacting entities designed to achieve certain individual and
collective goals; and the deployment environment, representing a structured container that
holds these agents.

According to Russell and Norvig [Russell & Norvig, 1995] the environment is one of the
fundamental concepts in programming and designing MASs. However, there are still some
ambiguities on the definition of the environment. For instance, situated agents, such as agent-
based simulation, artificial life or robotics, consider the environment as the actual space where
agents are situated; perceive their vicinity; and access to the available resources. On the other
hand, agent-based software engineering considers the environment as the software components
surrounding the agents and offering them some computing facilities. The later definition is
referenced as the deployment environment (DE).

The goal of this chapter is to study the properties of the DE independently from the
agents themselves. In other words, this chapter identifies a general structure of a DE without
considering the models of the autonomous agents (SCMAS approach).
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50 Chapter 3 : The MIC∗ Deployment Environment

3.2 Motivations for the Explicit Representation of the Deploy-

ment Environment

3.2.1 Guaranteeing the Autonomy

Once the definition of the autonomy has been sketched (cf. §2.3.2, page 28), the problem
is to know how to implement it. In other words, are usual techniques such as concurrent
object sufficient to implement the autonomy? This question has been partially answered by
[Luck & d’Inverno, 1995] by introducing the concept of motivation. Hence, motivated agents
generate their goals by considering their motivations. Nevertheless, introducing motivations
in an agent seems to be just shifting the problem from who controls the agent’s goals, to who
controls the agent’s motivations. In fact, any external entity that has a full control of the
software structure representing an agent’s motivations controls the behavior of this agent.

The internal integrity of the agents has been considered as a sine qua none condition
to implement the autonomy (cf. §2.3.2, page 30). In fact, if the agent’s software structure
is either accessed or modified by another agent, the decisional processes and behaviors are
altered. For instance, if an external agent accesses the set of motivations of a motivated-
agent, this agent loses its autonomy. Consequently, the autonomous agent should not allow
any external agent to change its internal structure either by setting a feature to certain value
or by calling a side-effect method.

On the other hand, the agents are still interacting entities. So, the agents change the
perceptions of other agents. Since the perceptions of agents are part of their software structure,
this contradicts the internal integrity principle.

To avoid this contradiction, a non-agent entity is required [Gouäıch, 2003]. This entity is
in charge of achieving the interaction among the agents and is defined as the DE. The DE is
not an autonomous agent and is considered as an automatic software system. Consequently,
the rules of the DE are defined at once and are applied similarly to all the agents. This
does not mean that dynamic DEs cannot be constructed. However, any change of the rules
represents a new version of the DE. This result is particularly interesting to establish the
agent’s responsibility in an open and untrusted context. In fact, without this feature the
responsibility of the agents when they challenge the rules cannot be established as shown
hereafter.

3.2.2 Enabling the Identification of the Responsibility of the Autonomous
Agents

Biological and physical systems are examples of MASs that are separated in two dimensions:
the individuals (or agents) and the physical environment. Biological agents are subject to the
environmental rules. The agents do not modify the environmental rules; they have to deal with
them in order to achieve their goals. For instance, if a human agent’s goal is to fly, she/he will
never modify the physics law on gravity, but use other physics laws on aerodynamics in order
to achieve its goal. This analogy can be used in order to build consistent software systems.
In fact, the software system may have some predefined rules that guarantee its consistency.
Any deployed autonomous agent has to deal with these rules. Besides, the DE has to identify
the agents that challenge the rules. This defines the agent’s responsibility as being coherent
to the DE rules. To guarantee these points, the agents are not allowed to change directly
their environment. Their actions have to be discrete and explicitly represented as attempts
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3.3 The MIC∗ Model 51

of actions, namely influences [Ferber & Muller, 1996]. The DE defines how to react to these
influences. The influences that are not consistent with the DE rules are explicitly handled and
the emitting agent is considered as responsible for challenging the DE’s rules. Furthermore,
the agents cannot deny this responsibility since the DE is an automatic system that does not
modify its rules. In fact, if this was not the case, the agents may claim that they cannot
conform with the rules since they are arbitrarily changed.

3.2.3 Modeling On-the-fly Composition of the Software Systems

The on-the-fly composition is a fundamental characteristic of the EAC software systems. This
composition has to be explicitly modeled at the conceptual level and flexibly implemented at
the implementation level. In other words, one should know what is the result of the compo-
sition or decomposition of several software systems at any time. We suggest managing the
composition of the software systems by composing their DEs. On one hand, the composition
of several DEs builds a new DE holding all the software entities of the system. On the other
hand, the decomposition of a DE builds several independent sub-systems.

3.3 The MIC∗ Model

3.3.1 Intuitive Introduction to MIC∗

This section introduces informally the MIC∗ model starting from the BB paradigm and espe-
cially from the TS architectures.

out

in

Data Space

Figure 3.1: Presentation of a simple TS architecture.

We have shown in section [2.4.3, page 35] how TS architectures propose a generative
communication between the software entities. The entities communicate by depositing and
retrieving the information carriers, called tuples, in a shared and persistent data space (cf.
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52 Chapter 3 : The MIC∗ Deployment Environment

Figure 3.1). Within the MIC∗ model the information carriers are called interaction objects
(IOs) instead of tuples. We will see after that the IOs do not only represent the information
carriers but also the means of the interaction.

Data Space

A

B

Figure 3.2: The horizontal decomposition of the data space by agents.

The first problem revealed by section [2.4.4, page 37] is related to the structure of the data
space. To solve this problem, we suggest to split the data space horizontally such that each
software entity owns its proper region where to deposit and retrieve IOs (cf. Figure 3.2). This
structural decomposition solves the problem of the shaded actions since two different software
entities access different and independent regions.

The other decomposition is vertical and concerns the interaction spaces (cf. Figure 3.3).
In fact, it is interesting to gather the IOs that have a common sense within the same context,
namely the interaction space (IS). So, the software entities have not a total access to the entire
data space but only to some ISs. From a practical point of view the vertical decomposition
is also interesting since the search space is divided into small spaces and the effort to lookup
information and maintain consistency of the data space is optimized by applying the ’divide
and conquer’ principle.

By combining the vertical and horizontal decompositions, we arrive to a matrix structure
presented in Figure 3.4. The rows of this matrix are the software entities or agents; and the
columns are the ISs.

The interaction scheme of the MIC∗ model is completely different from the one presented
by the TS. In fact, the horizontal decomposition avoids accessing the IOs of other software
entities. So, the lookup mechanism using the anti-tuples cannot be used. In order to present
the interaction scheme of MIC∗, first let us present the structure of the IOs.

The IOs are closed under composition. This means that an aggregation of several IOs is
still an IO. Besides, within the aggregation of several IOs the order is not important. This
is suitable to model simultaneity of IOs since their order of arrival is not considered as an
additional information. Finally, we identify a special IO which is empty called the zero 0.
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3.3 The MIC∗ Model 53

Interaction Space

A

B

S

Interaction Space

T

Figure 3.3: The vertical decomposition of the data space by interaction spaces.

A

B

S T
A

B

S T

Matrix Structure

Figure 3.4: Integrating the horizontal and vertical decompositions to build a matrix structure.
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54 Chapter 3 : The MIC∗ Deployment Environment

The other difference between MIC∗ and TS concerns the unification of the IOs. In fact,
within a TS the information carriers are represented as tuples; while the means of interaction
are represented as anti-tuples. Within MIC∗, both of the information carriers and interaction
means are represented uniformly as IOs.

A

B

S T

Inbox Matrix

S T

Outbox Matrix

Figure 3.5: The static structure of the MIC∗ DE.

The TS does not define a place where to hold the interaction means and the result of the
interactions when the software entities are not explicitly requesting the interaction (cf. §2.4.4,
page 37). For this reason, we suggest to duplicate the matrix of MIC∗ as an inbox and outbox
matrix. The outbox matrix holds the IOs of the agents representing the: information carriers,
influences and interaction means. The inbox matrix holds the IOs that have been perceived
by the interaction means of the agents. The final structure presented in Figure 3.5 is known
as the static structure of MIC∗.

Now, we explore the dynamics of this static structure. In other words, we are interested
in identifying some evolutions of the static structure that have a special semantics within the
MAS paradigm.

The first identifiable evolution of the static structure is the interaction. The interaction is
conducted using the interaction functions that are locally defined within the context of an IS.
The interaction functions take a couple of IOs as argument, namely the sensor and effector,
and returns an IO, namely the interaction result. The interaction functions calculate the result
of the interaction of the effector on the sensor and the interaction result is then appended to
the inbox corresponding to the sensor.

Figure 3.6 presents a simple example. The MIC∗ DE holds three agents A, B and C.
All these agents are in the same IS named S. The agent A’s outbox within S contains an
IO representing a blue color; the agent B’s outbox within S contains an IO representing a
red color; and the agent C’s outbox within S contains an IO representing a camera sensitive
to only blue objects. If S contains an interaction function stating that the camera sensitive
to blue objects senses only the blue IOs then the evolution of the MIC∗ DE adds the blue
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3.3 The MIC∗ Model 55

A

B

S

Inbox Matrix

S

Outbox Matrix

C

A

B

S

Inbox Matrix

S

Outbox Matrix

C

Interaction

blue

red

blue

red

blue

blue
blue

Figure 3.6: The evolution of the DE that is interpreted as an interaction.

IO in the inbox of the agent C. The red IO does not interact with the agent C interaction
means. Moreover, since the means of interaction and the information carriers are uniformity
represented as IOs, one can easily imagine adding another IO that senses the camera instead
of the colors and consequently the observer can be observed.

A

S

Inbox Matrix

S

Outbox Matrix

C

A

S

Inbox Matrix

S

Outbox Matrix

C

Movement

blue

blue

blue

blue

T T

T T

Figure 3.7: The evolution of the DE that is interpreted as a movement.

Another evolution that has been identified concerns the movement of the IOs among
different ISs. It is a logical movement where the IOs simply disappear from their original IS
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56 Chapter 3 : The MIC∗ Deployment Environment

and appear within the destination IS (cf. Figure 3.7). Obviously, when the IOs appear in the
destination IS they can interact with other IOs that were already present.

The third evolution is related to the computation of the agents. In order to compute,
the agents retrieve their perceptions; deliberate internally and send influences reified as IOs
within the outbox matrix.

The composition of software systems is treated by the composition of their DEs. Thus,
the common ISs are shared and synchronized on some operations in order to offer a virtual
DE composed by the aggregation of the sub DEs. Thanks to the structure of the MIC∗ model
the number of synchronization operations is minimized. In fact, the synchronization occurs
only when calculating the interactions of the software entities. In this case, the interaction
means expressed as IOs are sent to the remote ISs and the interaction result is returned to
the initial IS. Consequently, the disconnections are gracefully handled since they do not imply
any management of the consistency of the local data space.

A

S

Inbox 
Matrix

Outbox
Matrix

A

S

Inbox Matrix Outbox Matrix

C

Composition

T

T V S T V

S T

C

T

Inbox 
Matrix

Outbox
Matrix

V T V

Decomposition

P = Q =

P+Q =

Figure 3.8: Example of the composition of two DEs P and Q.

Figure 3.8 presents an example of two systems P and Q. The system P contains agent A
and two ISs S and T. The system Q contains agent C and two ISs T and V. The composition
of P and Q leads to a DE composed by the agents A and C and the ISs S, T and V. The
agents A and C may interact in this composed DE since they are located in a common IS,
namely T. The decomposition of the global DE leads to the initial configuration of P and Q.
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3.3 The MIC∗ Model 57

3.3.2 Formalizing the Intuitions

The previous informal presentation of MIC∗ is concretely modeled in this section using simple
linear algebra tools. The definition of the MIC∗ static structure is as follows:

Definition 3.3.1. Let (O,+) be a commutative group; A and S two sets. The O elements
are called interaction objects; A represents the set of agents, S the set of interaction spaces.
The set of elements (oi,j)(i,j)∈A×S , where oi,j ∈ O, is represented by the following notation:
O(A×S).
The MIC∗ DE is defined as a structure composed of two matrices called the outbox and the
inbox: T = O(A×S) ×O(A×S). Each element t of T is represented as:

t =


[o1]a︸︷︷︸

(C)

...


s︸ ︷︷ ︸

(B)

· · ·


︸ ︷︷ ︸

(A)


[i1]a︸︷︷︸

(G)

...


s︸ ︷︷ ︸

(F)

· · ·


︸ ︷︷ ︸

(E)

(A) : the outbox matrix ; (B) : the interaction space ’s’ ; (C) : the outbox of agent ’a’ ; (E) :
the inbox matrix ; (F) : interaction space ’s’ ; (G) : the inbox of agent ’a’.

Interpretation 3.3.2. The MIC∗ structure T = O(A×S) × O(A×S) is composed by two
matrices that are described as follows:

1. The outbox matrix: the rows of this matrix represent the agents i ∈ A and the columns
represent the ISs j ∈ S. Each element of the matrix o(i,j) ∈ O is a representation of the
agent i in the IS j. This is the only way for an agent to exist and operate in the MAS.
So, the elements of this matrix model the means that enable an agent to perceive and
to influence the universe in a particular IS. Notice that the means used to perceive the
universe are distinguished from the result of the perception. The perception results are
placed in the inbox matrix. When o(i,j) = 0, the agent i neither influences nor perceives
the universe in the IS j: agent i does not exist in IS j.

2. The inbox matrix: the rows of this matrix represent agents i ∈ A and the columns
represent the ISs j ∈ S. Each element of the matrix o(i,j) ∈ O represents the result of
the perceptions of the agent i in the IS j.

Utilities Functions

Some useful functions are introduced in order to access some parts of T elements:

� [] : (T ×A×S) −→ T is a projection function. [](t, a, s) selects only the elements indexed
by the agent a and the interaction space s and sets all the rest to 0. The notation t[a, s]
is preferred to [](t, a, s). t[∗, s] and t[a, ∗] are abbreviations for the following expressions:

t[∗, s] =
∑
k∈A

t[k, s]

t[a, ∗] =
∑
k∈S

t[a, k]
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58 Chapter 3 : The MIC∗ Deployment Environment

� out : T −→ O(A×S) selects the outbox matrix of the MIC∗ element.

� in : T −→ O(A×S) selects the inbox matrix of the MIC∗ element.

� t ∈ T , out(t)j∈S ∈ O(A): (out(t))j selects the j column of the outbox.

� t ∈ T , in(t)j∈S ∈ O(A): (in(t))j selects the j column of the inbox.

These functions are extended to access the information about a particular agent a ∈ A
within a particular interaction space s ∈ S as follows:

� out(i∈A,j∈S) : T −→ O selects the outbox of the agent i in the interaction space j.

� in(i∈A,j∈S) : T −→ O selects the inbox of the agent i in the interaction space j.

Interpretation 3.3.3. out and in are tools to select particular components of MIC∗ elements
t ∈ T . These functions are extended to select a particular agent’s outbox and inbox within a
particular IS.

3.3.3 MIC∗ Elements as Algebraic Equations

To define formally the composition of MIC∗ elements it is interesting to have a linear represen-
tation. Still, before presenting this linear representation, we need to introduce formally some
structures and their properties. The first definition presents the formal definition of indexed
sequences.

Definition 3.3.4. Let G be a group and X a set. G(X) represents the set of indexed sequences
x = [xi]i∈X . The elements of the sequence x belong to G and are indexed by the elements of
X. Each index, element of X, is used only once in the sequence x.

Interpretation 3.3.5. The structure G(X) defines a mapping: G represents the values, and
the elements of X represent the keys. A key cannot be used to index more that one value.

Definition 3.3.6. Let G be a group and X a set; the natural sequence composition law, +,
of the G(X) structure is defined as follows:

+ : G(X) ×G(X) −→ G(X)

(x, y) 7→ z : ∀i ∈ X zi = xi + yi

Interpretation 3.3.7. In other words, we have defined a composition law between map tables.
The resulting map table is defined by the elements of the sub-tables, which are composed only
and only if they have the same key.

Proposition 3.3.8. If G is a group, then the structure (G(X),+) defines also a group. Besides,
if G is a commutative group then (G(X),+) is also a commutative group.

Proof. The proof of this proposition is quite simple. In fact, one has to check the following
properties to demonstrate that (G(X),+) is a group:
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3.3 The MIC∗ Model 59

� neutral element: the neutral element for G(X) is simply the sequence containing only
0G, the neutral element of the group G. This element is represented by 0G(X) .

∀x ∈ G(X) x + 0G(X) = [xi]i∈X + 0G(X)

= [xi + 0G]i∈X

= [xi]i∈X

= [0G + xi]i∈X

= 0G(X) + x

= x

� inverses: each element of the set G(X) has an opposite that is defined as follows:

∀ x ∈ G(X) x−1 : ∀j ∈ X x−1
j = −(xj)

One can easily check that:

∀ x ∈ G(X) x + x−1 = [xj ]j∈X + [(−x)j ]j∈X

= [(x +−x)j ]j∈X

= [(0G)j ]j∈X

= 0G(X)

� associativity:

∀ x, y, z ∈ G(X) (x + y) + z = [(xi + yi) + zi]i∈X

= [xi + (yi + zi)]i∈X

= x + (y + z)

The structure (G(X),+) has been proved to be a group. When G is commutative, one has
to check that (G(X),+) defines also a commutative group:

� commutativity:

∀ x, y ∈ G(X)x + y = [xi + yi]i∈X

= [yi + xi]i∈X

= y + x

So, when G is commutative group then, (G(X),+) is also a commutative group.

Definition 3.3.9. Let O be the commutative group of IOs and A the set of agents. O(A)

is defined as the set of sequences of IOs that are indexed by agents. We admit the following
notation, xp, to access an IO in a sequence x indexed by the agent p.

Corollary 3.3.10. O(A) defines a commutative group under the + law used in definition
3.3.6.

Example 3.3.1. Let A = {a, b, c, d} and O = (Z,+). In this case O(A) is defined as the set
of sequences of four number elements of Z that are indexed with the elements of A:

O(A) = {[(x)a, (y)b, (z)c, (v)d] : (x, y, z, v) ∈ Z4}

The sequence x = [(−1)a, (0)b, (1)c, (2)d] belongs to O(A) and one may retrieve a particular
interaction object by using elements of A as index. For instance, xd = 2.
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60 Chapter 3 : The MIC∗ Deployment Environment

Definition 3.3.11 (mapping interaction objects to agents). Let . (dot) be a law defined
between IOs set and the agents set as follows:

. : O ×A −→ O(A)

(e, p) 7→ o.p = x : ∀j ∈ A

{
xj = e, for j = p

xj = 0, for j 6= p.

Example 3.3.2. This example uses the same definition of O and A as example 3.3.1. Using
the . (dot) law, one can easily build elements of O(A). For instance x = (−1).(d) belongs to
O(A) and is defined as follows: x = [(0)a, (0)b, (0)c, (−1)d]. One can notice that the . (dot)
law is distributed over the +. For instance:

(3).(d) + (−2).(d) = [(0)a, (0)b, (0)c, (3)d] + [(0)a, (0)b, (0)c, (2)d]

= [(0)a, (0)b, (0)c, (2− 3)d]

= [(0)a, (0)b, (0)c, (−1)d]

= (−1).(d)

= (2− 3).(d)

Proposition 3.3.12. The . (dot) law is distributed on the + law:

∀(m,n, p) ∈ O ×O ×A : (m + n).p = m.p + n.p

Proof.

(m + n).p = [xj ]j∈A :

{
xj = m + n, for j = p

xj = 0, for j 6= p.

= [x′j ]j∈A + [x′′j ]j∈A :

{
x′j = m, x′′j = n for j = p

x′j = 0, x′′j = 0, for j 6= p.

= m.p + n.p

Definition 3.3.13. Let O be the commutative group of IOs; A the set of agents and S the
set of ISs. O(A)(S)

is defined as the set of sequences of elements of O(A) that are indexed by
interaction spaces. We admit the following notation, x(p,s), to access an interaction object in
a sequence x indexed by the agent p and the interaction space s.

Corollary 3.3.14. O(A)(S)
defines a commutative group under the + law defined in definition

3.3.6.

Proof. Since O(A) is a commutative group, then the structure O(A)(S)
is also a commutative

group according to proposition 3.3.8.

Example 3.3.3. In this example we use the following values for each set:

O = (Z,+)

A = {a, b}
S = {x, y}
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3.3 The MIC∗ Model 61

In this case O(A)(S)
represents sequences indexed by interaction spaces of sequences of

interaction objects indexed by agents:

O(A)(S)
= {[([(α1)a, (α2)b])x, ([(α3)a, (α4)b])y] : (α1, α2, α3, α4) ∈ Z}

x = [[(−1)a, (−2)b]x, [(−3)a, (−4)b]y] is an example of an element that belongs to O(A)(S)
. To

access the interaction object of the agent a located in the interaction space y one has to write
the following expression (xa)y = −3 (or x(a,y)).

Definition 3.3.15 (mapping agents to interaction spaces). Let @ (at) be a law defined be-
tween O(A) elements and interaction spaces as follows:

@ : O(A) × S −→ O(A)(S)

(t, s) 7→ t@s = x : ∀j ∈ S

{
xj = t, for j = s

xj = 0, for j 6= s.

Example 3.3.4. This example uses the same definition of O, A and S as example 3.3.3. We
consider the following expression that uses both of the . (dot) law and @ (at) law to build an
element belonging to O(A)(S)

:

((−3).(b))@(y) = ([(0)a, (−3)b])@(y)

= [[(0)a, (0)b]x, [(0)a, (−3)b]y]

As shown by this example, the elements of O(A)(S)
are sequences indexed by interaction

spaces, {x, y}, of other sequences containing interaction objects indexed by agents {a, b}.

Proposition 3.3.16. The @ law is distributed on + agents law:

∀(x, y, s) ∈ (O(A) ×O(A) × S) (x + y)@s = x@s + y@s

Proof. The proof of this proposition is very similar to the one presented for the distribution
of the . (dot) law on interaction objects.

Having these definitions, we are now able to translate any element of MIC∗ t ∈ T as a
system of equations defined by using a translation function ϑ as follows:

ϑ : T −→ O(A)(S) ×O(A)(S)

t 7→ ϑ(t) =

{
outbox:

∑
s∈S(

∑
p∈A outp,s(t).p)@s

inbox:
∑

s∈S(
∑

p∈A inp,s(t).p)@s

Proposition 3.3.17. ϑ is a bijective function.

Proof.
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62 Chapter 3 : The MIC∗ Deployment Environment

� ϑ is an onto application. From any linear expression it is possible to build trivially
an element that belongs to T . In fact, one has just to build the outbox and inbox
matrices and setting the values of their cells using the corresponding values in the linear
expression. Thanks to the associativity and distribution properties, one can write each
linear expression in this form:

∀p ∈ O(A)(S) ×O(A)(S)
, p =

{
outbox:

∑
j∈S(

∑
i∈A αi,j .i)@j

inbox:
∑

j∈S(
∑

i∈A βi,j .i)@j

The element, ϑ−1(p), is well defined such that:

ϑ−1(v) ∈ T : ∀(i, j) ∈ S ×A

{
out(i,j)(ϑ−1(p)) = x(i,j) = αi,j

in(i,j)(ϑ−1(p)) = y(i,j) = βi,j

Where, {
x =

∑
j∈S(

∑
i∈A αi,j .i)@j

y =
∑

j∈S(
∑

i∈A βi,j .i)@j

� ϑ is a one to one application:

∀t1, t2 ∈ T , ϑ(t1) = ϑ(t2) =⇒ ∀i, j ∈ A× S

{
out(i,j)(t1) = out(i,j)(t2)

in(i,j)(t1) = in(i,j)(t2)
=⇒ t1 = t2

Summary of the Algebraic Notations Properties

This is a summary of the introduced algebraic notations. x, y, z ∈ O are interaction objects;
a, b, c ∈ A are agents; and s, t, v ∈ S are interaction spaces.

Properties of MIC* Algebraic Objects:
Neutral elements 0.a = 0

0 + x.a = x.a + 0 = x.a

0@s = 0
0 + x.a@s = x.a@s + 0 = x.a@s

Inverse elements −(x.a) = (−x).a
−(x.a@s) = (−x).a@s

Commutativity of inter-
action objects under the
+ law

(x + y).a@s = (y + x).a@s

Associativity of interac-
tion objects

((x + y) + z).a@s = (x + (y + z)).a@s

Commutativity of
Agents under the + law

(x.a + y.b)@s = ((y.b + x.a)@s

Associativity of Agents
under the + law

((x.a + y.b) + z.c)@s = (x.a + (y.b + z.c))@s
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3.3 The MIC∗ Model 63

Properties of MIC* Algebraic Objects:
Commutativity of
Spaces under + law

(x.a)@s + (y.b)@t = (y.b)@t + (x.a)@s

Associativity of Spaces ((x.a)@s + (y.b)@t) + (z.c)@u

under + law = (x.a)@s + ((y.b)@t + (z.c)@u)
Distribution of Agents
on interaction objects

(x + y).p = (y).p + (x).p

Distribution of Spaces
on Agents

(x.a + y.b)@s = x.a@s + y.b@s

Example 3.3.5 (Illustrating the projections and linear notations). Let A = {a, b} be the set
of agents and S = {s, t} the set of interaction spaces. Let t1 be a MIC∗ element defined as
follows using the matrix notation:

t1 ∈ O(A×S) ×O(A×S)

t1 =
([

[o1]a
[o3]b

]
s

[
[o2]a
[o4]b

]
w

) ([
[i1]a
[i3]b

]
s

[
[i2]a
[i4]b

]
w

)

The defined projection functions give the following results for this element:

t1[a, s] =
([

[o1]a
[0]b

]
s

[
[0]a
[0]b

]
w

) ([
[i1]a
[0]b

]
s

[
[0]a
[0]b

]
w

)
t1[a, ∗] =

([
[o1]a
[0]b

]
s

[
[o2]a
[0]b

]
w

) ([
[i1]a
[0]b

]
s

[
[i2]a
[0]b

]
w

)
t1[∗, s] =

([
[o1]a
[o3]b

]
s

[
[0]a
[0]b

]
w

) ([
[i1]a
[i3]b

]
s

[
[0]a
[0]b

]
w

)
out(t1) =

([
[o1]a
[o3]b

]
s

[
[o2]a
[o4]b

]
w

)
outa,w(t1) = o2

outa,s(t1) = o1

outb,w(t1) = o4

outb,s(t1) = o3

in(t1) =
([

[i1]a
[i3]b

]
s

[
[i2]a
[i4]b

]
w

)
ina,w(t1) = i2

ina,s(t1) = i1

inb,w(t1) = i4

inb,s(t1) = i3

When using the linear notations, t1 is represented as:

t1 =
{

outbox: ((o1).a + (o3).b)@s + ((o2).a + (o4).b)@w

inbox: ((i1).a + (i3).b)@s + ((i2).a + (i4).b)@w

Example 3.3.6 (Illustrating the Composition of MIC∗ Elements). This example presents the
composition of MIC∗ elements. Let us suppose that two independent environments t1 ∈ T
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64 Chapter 3 : The MIC∗ Deployment Environment

and t2 ∈ T are defined as follows:

t1 =
([

[o1]a
[0]b

]
s

[
[0]a
[o2]b

]
w

) ([
[i1]a
[0]b

]
s

[
[0]a
[i2]b

]
w

)
t2 =

([
[o3]c

]
s

[
[0]c

]
w

[
[o4]c

]
v

) ([
[i3]c

]
s

[
[0]c

]
w

[
[i4]c

]
v

)
t1 contains two interaction spaces s and w and two agents a and b. t2 contains three

interaction spaces s, w, v and only one agent c.

By using the linear notations t1 and t2 are written as follows:

t1 =
{

outbox: o1.a@s + o2.b@w

inbox: i1.a@s + i2.b@w

t2 =
{

outbox: o3.c@s + o4.c@v

inbox: i3.c@s + i4.c@v

Now let us suppose that these two terms are composed. This is translated in the MIC∗

model as the composition under the + law:

t3 = t1 + t2

=
{

outbox: o1.a@s + o2.b@w + o3.c@s + o4.c@v

inbox: i1.a@s + i2.b@w + i3.c@s + i4.c@v

=
{

outbox: (o1.a + o3.c)@s + o2.b@w + o4.c@v

inbox: (i1.a + o3.c)@s + i2.b@w + i4.c@v

=

[o1]a
[0]b
[o3]c


s

 [0]a
[o2]b
[0]c


w

 [0]a
[0]b
[o4]c


v

 [i1]a
[0]b
[i3]c


s

 [0]a
[i2]b
[0]c


w

 [0]a
[0]b
[i4]c


v



The composed deployment environment t3 is made of all the interaction spaces and agents
found in the sub-environments. One can notice that when the agents are in the same interac-
tion space they are still located in the same interaction space in the composed environment.
So, they can interact using interaction mechanisms defined in section [3.3.4, page 66].

Example 3.3.7 (Illustrating the Decomposition of MIC∗ Environments). One can also con-
sider the disjunction of deployment environments. For instance, let us calculate the retrieval
of t2 from the composed environment t3 defined in the previous example.

t4 = t3 − t2

=
{

outbox: (o1.a + o3.c)@s + o2.b@w + o4.c@v − (o3.c@s + o4.c@v)
inbox: (i1.a + o3.c)@s + i2.b@w + i4.c@v − (i3.c@s + i4.c@v)

=
{

outbox: o1.a@s + o2.b@w

inbox: i1.a@s + i2.b@w

=
([

[o1]a
[0]b

]
s

[
[0]a
[o2]b

]
w

) ([
[i1]a
[0]b

]
s

[
[0]a
[i2]b

]
w

)
= t1
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3.3 The MIC∗ Model 65

This result is correct and shows that when the t2 leaves the composed environment, only
t1 remains.

Generating the Interaction Objects Commutative Group from a Simple Set

The structure of the interaction objects is very important in the definition of MIC∗. In fact,
the assumption that the interaction object set owns a structure of a commutative group has
been widely used in almost all the presented definitions. However, one may ask what happens
if the studied MAS does not present a ’natural’ structure of a commutative group for its
interaction objects (messages, pheromones and so on). The goal here is to show that starting
from any set that has no precise structure, one may define a formal structure of a commutative
group of interaction objects.

Definition 3.3.18. Let E be the interaction objects generator set. Let Z(E) be the set
of sequences of integers indexed by the elements of E. O[E] = (Z(E),+) is defined as the
interaction objects group generated by the set E.

Proof. Since Z is a commutative group, the structure (Z(E),+) is also a commutative group
under the + law defined in definition 3.3.6.

Definition 3.3.19. The construction function τ is defined among the generator set E and
the interaction object group O[E] as follows:

τ : E −→ O[E]

m 7→ τ(m) = x : ∀j ∈ G

{
xj = 1, for j = m

xj = 0, for j 6= m

When there is no ambiguity, the expression τ(m) is written simply as m.

Interpretation 3.3.20. The set E represents the elementary interaction objects or the atoms
that are used to build the more complex structure O[E]. O[E] represents simply a sequence
of integers that are indexed by the atoms; each value expresses the number of occurrence of
the atom in an interaction object element. This value may be negative. The construction
function τ builds a sequence that represents only one atom. A sequence that represents an
atom, sets the value of the element indexed by this atom to 1 and all other values are set to
0.

Example 3.3.8. Let G = {’a’, ’b’} be the generator set; ’a’ and ’b’ are considered as characters
(or integers if we consider their ASCII encoding values) and have not to be misinterpreted
with mathematical abstract variables. In this case, O[{’a’, ’b’}] represents the set of all words
written using these characters. Notices that since the interaction objects are assumed to be
commutative the word1 ’aabab’ is exactly the same as ’bbaaa’. In fact, both of these words
are equals to ((3)’a’, (2)’b’).

The elements of O[{’a’, ’b’}] can be manipulated in the same way as the commutative
groups elements are manipulated. For instance one may be interested in calculating the

1The complete writing of these expressions is τ(’a’) + τ(’a’) + τ(’b’) + τ(’a’) + τ(’b’) and τ(’b’) + τ(’b’) +

τ(’a’) + τ(’b’) + τ(’a’).
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66 Chapter 3 : The MIC∗ Deployment Environment

following expression:

’bā’ + ’aabab’− ’bbbaba’ = [(−1)’a’, (1)’b’] + [(3)’a’, (2)’b’)− ((2)’a’, (3)’b’]

= [(−1)’a’, (1)’b’] + [(3)’a’, (2)’b’) + ((−2)’a’, (−3)’b’]

= [(−1)’a’, (1)’b’] + [(3− 2)’a’, (2− 3)’b’]

= [(−1)’a’, (1)’b’] + [(1)’a’, (−1)’b’]

= [(0)’a’, (0)’b’]

= 0

3.3.4 The Dynamics of MIC∗

An element t ∈ T is an instantaneous snapshot of the DE state. Within all the functions
defined from T to T , MIC∗ considers three classes which have a special semantics for MASs:

Interaction (ϕ): Two agents are considered as interacting when the perceptions of an agent
are influenced by the influences of another. Consequently, the interaction modifies the
perception results of an agent (defined in the inbox) according to its perception means
and others influences (both defined in the outbox) within a defined IS. The set of all
interaction evolutions is represented as ϕ.

Movement (µ): The mobility of an agent is defined as the mobility of its IOs among different
ISs. During a movement no IO is created nor lost. In fact, this is an interesting feature
to prevent incoherent duplications by guaranteeing that an agent actually disappears
from its original IS and appears in its destination IS. The set of all movement evolutions
is represented by µ.

Computation (γ): The computation is an internal process of the autonomous agents. The
only way to observe that an agent has conducted a computation is when it changes
autonomously its outboxes within ISs. To avoid confusion between the computation
and movement, after a computation, the agents conserve their presence. In other words,
an agent is not allowed to appear (respectively to disappear) suddenly in an IS when
it was not present (respectively present) before the computation. Besides, the agents
are rational entities that change their emissions according to their perceptions. So, the
agent consumes its perceptions in order to make a computation. This is expressed in
MIC∗ by resetting the inbox of the computing agent to 0. The set of all computation
evolutions is represented by γ.

The core idea is that (i) the DE dynamics is discrete and (ii) any state of the DE is reached
from the initial state by a sequence of functions that may be of three classes: (M)ovement,
(I)nteraction, and (C)omputation (MIC∗).

The above informal descriptions of movement, interaction and computation classes of
evolution are formalised as follows:

Movement (µ)

Any movement evolution law is a function m ∈ µ defined on T −→ T that fulfils the following
requirements:
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3.3 The MIC∗ Model 67

1) m does not modify the inboxes :
in ◦m = in

2) m leaves globally invariant the outboxes of a given agent:

∀i ∈ A,
∑
j∈S

outi,j ◦m =
∑
j∈S

outi,j

3) The outboxes of an agent after movement depend only on the outboxes of the same process
before the movement :

∀t ∈ T ∀(i, j) ∈ A× S, outi,j ◦m(t) = outi,j ◦m(t[i, ∗])

4) A movement law, m, is the same for all agents:

∀t ∈ T , ∀j ∈ S, ∀i, i′ ∈ A, outi,j(t) = outi′,j(t)

⇒
outi,j(m(t)) = outi′,j(m(t)).

Interaction (ϕ)

Any interaction evolution law is a function f ∈ ϕ defined on T −→ T that fulfils the following
requirements:

1) f does not modify the outboxes :
out ◦ f = out

2) When an agent is not present in a particular interaction space, it cannot perceive any
interaction object:

∀t ∈ T ,∀i ∈ A,∀j ∈ S, outi,j(t) = 0 ⇒ ini,j(f(t)) = ini,j(t)

3) The inbox of an agent after the interaction depends only on the outboxes of the other
agents present in the same interaction space:

∀t ∈ T , ∀(i, j) ∈ A× S, ini,j ◦ f(t) = ini,j ◦ f(t[∗, j])

Computation (γ)

A computation evolution law is a function g ∈ γ defined on T −→ T that fulfils the following
requirements:

1) when an agent modifies one of its outboxes, its inbox is set to the empty interaction object
0:

∀ t ∈ T ,∀i ∈ A,
(
∃j ∈ S, outi,j ◦ g(t) 6= outi,j(t)

)
⇒ ini,j ◦ g(t) = 0

2) The outboxes of a particular agent depend only on the values of its inboxes and outboxes
before the computation:

∀t ∈ T , ∀(i, j) ∈ A× S, outi,j ◦ g(t) = outi,j ◦ g(t[i, ∗])
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68 Chapter 3 : The MIC∗ Deployment Environment

Finally, the MIC∗ DE is fully defined by giving the commutative group O of interaction
objects; the sets A and S representing the set of agents and interaction spaces; the set of
movements, interactions and computations evolution functions and an initial state of the DE
t0 ∈ T .

Example of Evolution Functions

The dynamics of MIC∗ is specified at a high-level. In fact, the dynamics does not specify
exactly what are the evolution functions but gives only some specifications in order to consider
an evolution function either as a movement, interaction or computation. In this section, we
define some specific evolution functions that meet the presented requirements. Other MASs
may have their own definition of the evolution functions and are still fitting the MIC∗ model,
if the specifications are met.

Example of Interaction Evolution: As an example of an interaction evolution of the
MIC∗ DE, we consider the evolutions that are defined by linear interaction functions between
the interaction objects. The interaction function is defined as follows:

k : O ×O → O
(s, e) 7→ k(s, r) = r

The parameters of the interaction function (s, r) are called respectively the sensor and the
effector. So, the k function calculates the result of the interaction of the effector on the sensor.

Having an interaction function k, one can define an operation between the vectors of
interaction objects as follows:

×k : OA ×OA → OA

(0, y) 7→ 0×k y = 0

x 6= 0, (x, y) 7→ x×k y = z : ∀i ∈ A, zi =
∑
v∈A

k(xi, yv)

The operation ×k simply builds a new vector by applying the interaction function k to
all the elements such that the i-th element of the result is given by the application of the
interaction function k to the i-th element of x (the sensor) and the elements of y (the effectors)

The evolution of a MIC∗ element t ∈ T according to an interaction function k within an
interaction space j ∈ S is defined as follows:

f(k,j) : T → T
t 7→ t′ = f(k,j)(t)

Such that:

out(t′) = out(t)

in(t′) = in(t) + ((out(t))j ×k (out(t))j)

The evolution function f(k,j) is a valid interaction evolution function since the specifications
presented in section [3.3.4, page 67] are satisfied. The implementation of MIC∗ uses the
interaction functions as described in the next section. Still, other implementations may use
other interaction evolutions of the DE.
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3.4 The Specification and Implementation of the MIC∗ Model 69

3.4 The Specification and Implementation of the MIC∗ Model

Figure 3.9: The agent classes and their relationships.

The MIC∗ framework follows the classification of Luck and d’Iverno
[Luck & d’Inverno, 1995] stating that the agents can be considered as an extension of
objects (cf. Figure 3.9). The autonomous agents are considered as special agents that have
a total control of their internal decisional process and may change their behaviour. Two
special types of autonomous agents are considered: the asynchronous agents and synchronous
agents. The asynchronous agents execute their actions in parallel, while synchronous
agents execute their actions sequentially. Ideally, the autonomous agents are considered as
asynchronous, but in some fields such as the agent-based simulation (ABS) and artificial
life (AL) this is impossible to achieve. In fact, within these fields an important number
of agents is used in order to simulate systems; their asynchronous execution would require
important computational resources that may be available only on specialised (and often
costly) computers. As a DE, the MIC∗ framework manages the two types of agents differently
since the time semantics is not the same for each class of application.

The main functionalities of the MIC∗ framework are : (i) populating the environment
with agents, (ii) managing the perception/action loop of agents, and (iii) managing on-the-fly
composition of several MIC∗ DEs.

3.4.1 Populating the Deployment Environment

As shown in Figure 3.10, the DE should offer some basic services to allow the agents to enter
and leave the MAS. A software agent may be present in several DEs and may continue in own
activities when leaving a particular DE. The agents interact only when they are defined on
the same DE.

Entering in the Deployment Environment:

The software agent sends a login request to enter the MIC∗ DE (cf. Figure 3.11). The login
message contains some confidential information identifying the agent. The DE checks the
identity of the incoming agent and acts following two cases:
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70 Chapter 3 : The MIC∗ Deployment Environment

Figure 3.10: Populating and leaving the deployment environment use-case.

Agent MIC* DE

LoginRequest

LoginResult

CheckLogin

Figure 3.11: The login process of an agent on the deployment environment.
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3.4 The Specification and Implementation of the MIC∗ Model 71

case 1 (successful login): when the login process is successful, the DE creates a locally
unique handle for the incoming agent. This handle identifies the agent and should be
included in all messages sent by this agent towards the DE.

case 2 (unsuccessful login): when the DE rejects the login request of the software agent,
an error message is sent and describes the reason of the failure.

When successful, this operation is similar to adding an agent row to the formal MIC∗

structure representing the DE.

Leaving the Deployment Environment

Agent MIC* DE

LogoutRequest

LogoutResult

ProcessLogout

Figure 3.12: The logout process of an agent from the DE.

As presented in Figure 3.12, the software agent leaves the DE by sending a logout message.
The DE frees all the retained computational resources and sends back an acknowledgement
message. When leaving the DE, the software agent is no longer visible to other agents. This
operation is similar to deleting the agent row from the MIC∗ formal structure representing
the DE.

3.4.2 The Perception/Deliberation/Influence Agent’s Loop

The software agents interact through the DE by exchanging interaction objects within inter-
action spaces. Consequently, the DE should offer some services such as (cf. Figure 3.13): (i)
the notification of a reception of a new interaction object (optional), (ii) retrieval of the inbox,
(iii) and emission of interaction objects in the DE. The perception/deliberation/influence loop
is a pattern of the agents’ behavior. MIC∗ defines the inbox and outbox of the agent within
the DE. A software agent has to proactively request its inbox (perception); compute internally
its reaction (deliberation); and emit new interaction objects in some interaction spaces (influ-
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72 Chapter 3 : The MIC∗ Deployment Environment

Figure 3.13: The agent interaction use case.

ence). When the software agent is temporary disconnected from the DE, it is still interacting
with other agents and may retrieve its inbox whenever possible.

Notification of Interactions

Agent MIC* DE

Interaction

NotificationInteraction

Figure 3.14: The DE sends a notification to an agent when its inbox is modified.
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3.4 The Specification and Implementation of the MIC∗ Model 73

The notification process, described in Figure 3.14, informs the software agent about the
modification of its inbox. This mechanism is optional and suitable for asynchronous agents.
It is activated only when the asynchronous agents explicitly desire to react immediately to
incoming interaction objects. When the agent is not reachable the DE simply ignores this
process.

Retrieving the Perceptions from the Deployment Environment

Agent MIC* DE

InboxRequest

InboxResult

GetAgentInbox

Figure 3.15: The software agent retrieves its inbox from the deployment environment by
sending an inbox request message.

The software agent retrieves its inbox by sending a request message as described in Figure
3.15. The inbox is a mapping of ISs to interaction objects. Only the non-empty inboxes are
delivered to the agent. The retrieved inboxes are set to the empty interaction object in the
DE.

Emitting Interaction Objects in the Deployment Environment

After the deliberation, the software agent emits interaction objects in the DE. This is done by
sending a mapping that links the ISs to the new outboxes (cf. Figure 3.16). This mechanism
is described by the activity diagram of Figure 3.17.

For asynchronous agents, the computation is immediately followed by an interaction evo-
lution inside each modified interaction space as presented by Figure 3.18. In the synchronous
mode, the interaction evolution is performed only when all the required synchronous agents
have computed (cf. Figure 3.18). This guarantees that all the synchronous agents perceive and
react correctly at the same logical time even if they are executed sequentially [Michel, 2004].
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74 Chapter 3 : The MIC∗ Deployment Environment

Agent MIC* DE

ComputationRequest

Acknowledgement 

CommitComputation

Figure 3.16: The software agent sets its outbox in the deployment environment by sending a
computation request.

GetComputationRequest

Consitency 
& Security

Test

Send Negative
Reply

Send Positif
Reply

yes

no

Figure 3.17: The computation activity diagram.
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3.4 The Specification and Implementation of the MIC∗ Model 75

GetComputationRequest

Consitency 
& Security

Test

Send Negative
Reply

Send Positif
Reply

yes

no

Calculate the 
interaction

Figure 3.18: The computation-interaction activity diagram for asynchronous agents.

Agent MIC* DE

MovementRequest

Acknowledgement 

CommitMovement

Figure 3.19: The software agent moves between interaction spaces by sending a movement
request.
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76 Chapter 3 : The MIC∗ Deployment Environment

GetMovementRequest

Consitency 
& Security

Test

Send Negative
Reply

Send Positif
Reply

yes

no

Figure 3.20: The movement activity diagram.

The Movement Among Interaction Spaces

The movement between the ISs is explicitly requested by the software agent by sending a
movement request (cf. Figure 3.19). After processing the movement, the DE sends back an
acknowledgement to the agent (cf. Figure 3.20).

3.4.3 The Composition of MIC∗ Deployment Environments

Figure 3.21: On the fly composition of MIC∗ DEs use case.

Thanks to the algebraic modeling of MIC∗, the on-the-fly composition is specified formally
and the software structures should implement correctly and efficiently this composition feature.

When a point-to-point communication link can be established among two DEs, their com-
position is initiated by one of the participants by sending a connect request as described in
Figure 3.22. The connect request includes the description of public interaction spaces that
may be shared. The receiver of the connect message replies positively when the composition
request is agreed and negatively otherwise.
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3.4 The Specification and Implementation of the MIC∗ Model 77

MIC* DE MIC* DE

ConnectRequest

ConnectReply

ProcessConnect

Figure 3.22: The connect activity diagram.

MIC* DE MIC* DE

DisconnectRequest

DisconnectReply

ProcessDisconnect

Figure 3.23: The disconnect activity diagram.
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78 Chapter 3 : The MIC∗ Deployment Environment

The decomposition of the DEs is performed by sending a disconnect request as described
in Figure 3.23. The disconnected DEs are independent and autonomous and do not share any
IS.

Despite the distribution, the connected DEs behave coherently and emulate a single global
DE. However some restrictions at the implementation level have been made in order to im-
plement the composition of the DEs:

� restriction on ISs: the DEs share their own public ISs. Consequently, the composition
does not create locally new ISs that were unknown before the composition;

� restriction on the movement of IOs: as a consequence of the previous restriction on ISs,
the movement of the IOs is defined only between local ISs. In other words, the movement
evolution cannot move an IO from a DE to another.

These restrictions solve some problems related to the resources of the devices running the
software system. In fat, the resources of the devices may be restricted and cannot handle
new ISs discovered at the run-time. Furthermore, there is not a clear strategy to manage the
incoming ISs and IOs when the DEs are no longer composed.

MIC* DE MIC* DE

RemoteInteractionRequest

CalculateInteraction

RemoteInteractionReply

Figure 3.24: The synchronization of the interactions between the composed DEs.

By assuming the presented restrictions which are coherent with the EAC assumptions, the
composed DEs have to synchronize only the interaction operations that occur on the shared
ISs in order to behave as a global coherent DE. Consequently, when an interaction is calculated
for a particular agent, this operation is calculated locally and forwarded to the remote DE
along with the value of the source agent’s outbox. The result of the interaction of the agent’s
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3.4 The Specification and Implementation of the MIC∗ Model 79

outbox with the remote agents is then returned and added to the source agent’s inbox. Since,
the addition of IOs is commutative, the order of these operations does not influence the final
result.

3.4.4 MIC∗ Packages and Classes

Figure 3.25: The packages of the MIC∗ implementation.

The MIC∗ packages are organized as follows (cf. Figure 3.25):

1. iobject : this package defines the classes implementing the IO concept.

2. type : in order to classify IOs a type mechanism is introduced by this package. Thanks to
the type information, the performances are improved significantly. In fact, the operators
that are the means to define the dynamics of MIC∗ uses the type information in order
to be executed only when the matching IOs are available.

3. operator: this package represents the operators that are defined to implement the
dynamics of MIC∗. The operators are classified in three categories:

� interaction category: two kind of operators are included in this category: the inter-
action operators and composition operators. The interaction operators represent
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80 Chapter 3 : The MIC∗ Deployment Environment

the interaction functions (cf. §3.3.4, page 68). The interaction operators take a
couple of IOs as argument and the returned result is also an IO: (x, y) 7→ z. By
convention, x is considered as the sensor, y is considered as the effector, and z as
the interaction result. The composition operators are introduced to define some
simplification rules among the IOs. In fact, by default MIC∗ implements the for-
mal composition operator, which builds formal sums, or multisets, of IOs. More
specific composition operators may be defined to calculate the result of the com-
position of IOs. For instance, let us suppose that the integers are used as IOs. By
default, the composition of two integers gives a multiset of integers (formal sum):
2 + 3 = ((2), (3)). One may introduce another composition operator, +Z, to calcu-
late the natural addition among the integers: 2 +Z 3 = 5. The actual definition of
the composition operators depends on the semantics of each MAS.

� movement category: the movement among ISs is modeled as the composition of
two operators: the movement-out operator and the movement-in operator. The
movement-out operator allows IOs to leave an IS. This operator takes as argument
an IO, x, and returns an IO y. x is the IO that wants to move outside the IS and y

is what actually goes outside the IO. On the other hand, the movement-in operator
is an operator that allows IOs entering inside an IS. The movement-in takes as
argument an IO and returns an IO: x 7→ y. x is what wants to enter inside the IS
and y is what actually enters inside the IS.

� control category: this category of operators allows the ISs to control the IOs that
are sent by the agents. For instance, the filter operator gives the IS the ability to
modify an IO sent by an agent. This operator takes as argument an IO and returns
another IO: x 7→ y. x is as the original IO and y is the alteration of x by the IS.

4. ispace: this package holds the classes that implement ISs. An IS holds the agents’
IOs. The ISs define also some operators. For instance, both the interaction and com-
position operators define the interaction among the IOs. Similarly, the movement-out
and movement-in operators describe the movements of IOs between the ISs. Finally, the
filter operator gives the IS the ability to control the IOs of the agents.

5. imatrix: This package defines the matrices of MIC∗.

6. mic: This package defines a single class representing the MIC∗ DE.

3.4.5 Classes Description

iobject package:

This package defines four classes (cf. Figure 3.26) that are described as follows:

1. InteractionObject: this is the base class of all IOs subclasses. This class is abstract
and consequently cannot be instantiated.

2. AtomicInteractionObject: the atomic IO represents a single IO. The atomic IO is
organized as a container of named and typed fields. The types that are supported by
the current implementation of MIC∗ are:

integer: representing the set of integers;

string : representing the set of sequence of characters;
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3.4 The Specification and Implementation of the MIC∗ Model 81

Figure 3.26: The IOs hierarchy of classes.

boolean: representing binary logical values;

byte: representing a 8-bits data structure;

float: representing real numbers;

The arrays, that represent ordered sequences of values, are also supported for each of
the described simple types. Each atomic IO is associated with a type that describes its
structure.

3. InteractionObjectMultiSet: this class represents the composition of the atomic IOs
under the + law. The elements of the multi-set are unordered and may be duplicated.
The empty multi-sets and the multi-sets containing only empty atomic interaction ob-
jects are considered equivalent to the zero 0.

4. InteractionObjectList: this class represents ordered list of atomic IOs. The empty
lists and lists containing only empty atomic interaction objects are considered equivalent
to the zero 0.

Package type

Figure 3.27: The type package hierarchy of classes.

The type is used in order to describe the internal structure of the IOs and to classify them.
The type package includes four classes (cf. Figure 3.27):

1. Type: this is the base class of all the other classes included in this package.
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82 Chapter 3 : The MIC∗ Deployment Environment

2. AtomicType: this class represents the type of an atomic IO. The atomic type can be
considered as the template from which the atomic IOs are instantiated. The atomic
type can inherit from different atomic types. All the fields of the super-types are defined
within the subtypes.

3. MultiSetType: this class represents the type of an InteractionObjectMultiSet as a
multi-set of AtomicType. Hence, the atomic types may be duplicated in the multi-set
and the elements are not ordered.

4. ListType: this class represents the type of an InteractionObjectList as an ordered
sequence of AtomicType. Hence, the atomic types may be duplicated in the sequence
and are ordered.

Package operator:

Figure 3.28: The class hierarchy of the operator package.

1. class Operator: the operator is a function taking its arguments from a domain and
returning a result defined on a co-domain.

2. class UnaryOperator: this class is a specialization of the Operator class and represents
the functions that take only one argument. This class is specialized by MovementOut-

Operator, MovementInOperator and FilterOperator classes.

3. class MovementOutOperator: this class represents the functions that move atomic IOs
outside ISs.

4. class MovementInOperator: this class represents the functions that move atomic IOs
inside ISs.

5. class FilterOperator: this class represents the functions that alter the atomic IOs
emitted by the agents.

6. class BinaryOperator: this class is a specialization of the Operator class and represents
the functions that take two arguments. This class is specialized by the Composition-

Operator and InteractionOperator.

7. class CompositionOperator: the atomic IOs may be composed to produce another
atomic IO.
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3.5 Building a Social Framework upon MIC∗ 83

8. class InteractionOperator: This class represents the base-class of all the interaction
operators.

ispace package:

� class InteractionSpace: this class allows the creation of new interaction spaces. Each
interaction space is identifiable by a unique identifier, UID, represented as sequence of
characters. Two interaction spaces with the same UID are supposed to be equivalent.
This means that they are defined with the same set of operators.

imatrix package:

� class InteractionMatrix: this class implements efficiently the matrix representation
of MIC∗. The elements of the interaction matrix are InteractionObjectMultiSet

instances.

mic package:

� class MIC: This class represents the DE. The DE holds two InteractionMatrix instances
representing the outboxMatrix and inboxMatrix.

The implementation of the MIC∗ model is available as an open source project at
sourceforge. The source code and binaries of MIC∗ are freely available at these pages:
mic.sourceforge.net and sourceforge.net/projects/mic.

3.5 Building a Social Framework upon MIC∗

MIC∗ only offers a generic and low level abstractions of a DE. To build real world applications,
one has to provide a higher-level engineering framework. This section presents a social frame-
work. The idea is that MAS designers only deal with social concepts which are automatically
translated to MIC∗ concepts.

3.5.1 Presentation of the Social Framework

The presented social framework is deeply inspired by the AGR model
[Ferber & Gutknecht, 1998]. The MadKit [Gutknecht & Ferber, 2000a] platform already
implements the AGR model; here we explore another implementation using only MIC∗

primitives.

The social abstractions presented by AGR are briefly described as follows:

� (A)gent: an agent may play one or several roles and may be member of one or several
groups;

� (G)roup: a group is a collection of roles and consequently a collection of agents that
play these roles. The interaction among the agents can occur only when they are located
within the same group;
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84 Chapter 3 : The MIC∗ Deployment Environment

� (R)ole: a role is an abstraction that represents a function or a service within the society;
agents playing the role fulfill the desired service.

Group Role Agent

Social Framework (AGR)

Interaction
Space

Interaction
Object Agent

MIC*

Figure 3.29: Mapping between AGR concepts and MIC∗ concepts.

At this stage, let us sketch a preliminary mapping between AGR and MIC∗. As shown
in Figure 3.29, the group concept may be modeled as an IS: the IS concept may be seen as
a logical location where a collection of agents interact. Besides, the agents may move across
groups; this is similar to moving across ISs. The agent concept of AGR naturally corresponds
to MIC∗ agents. Still, there is not a one to one mapping between these concepts. The role
concept is considered as an IO within MIC∗. In fact, when an agent plays a certain role,
it publishes an IO that describes itself as playing this role. Consequently, other agents can
identify its social function and interact with it. The implementation of the AGR model using
MIC∗ is explained in more detail in Table 3.2.

Two interaction schemes are considered for the social framework:

1. The role-level interaction schema: the messages are delivered to the agents only by
knowing their roles. This mechanism allows implementing one-to-many communications
and the discovery of agents’ identities by knowing only their roles.

2. The agent-level interaction schema: the messages are delivered to the agents by knowing
their exact identity. This mechanism implements one-to-one communications.

3.5.2 Implementation of the Social Framework

Interaction Objects

Figure 3.30 presents the types of IOs used in the social framework:
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3.5 Building a Social Framework upon MIC∗ 85

SocialMessage AgentMessage

IObject

Message SocialRole

AgentIdentifier

Authorisation

Figure 3.30: Type hierarchy of IOs used in the social framework.

� Message: the Message type represents IOs used to exchange information encoded as a
content. This is the base-type of all other interaction related types; it contains a single
field, content, that represents the exchanged information.

� SocialMessage: the SocialMessage type represents exchanged messages for the role-
level interaction schema. The fields of this type are: sender-role that represents the
role of the sender and receiver-role that represents the role of the receiver. This type
inherits the content field from the Message type.

� AgentMessage: the AgentMessage type represents exchanged messages at the agent-
level interaction schema. This type fields are: sender-agent-id that represents the
identity of the sender; receiver-agent-id that represents the identity of the receiver;
sender-role that represents the role of the sender; receiver-role that represents the
role of the receiver. This type inherits the content field from the Message type.

� SocialRole: the SocialRole type represents roles which are played by the agents. This
type defines only a single field role-id that represents the unique identifier of the role.

� AgentIdentifier: the AgentIdentifier type represents the identity of an agent. In
fact, since agents do not have access to the structure of others, they have to explicitly
publish their identity. This type defines only a single field agent-id that represents the
unique identifier of the agent; it also inherits the role-id field from the SocialRole

type.

� Authorisation: the Authorisation type is used to control group access using move-
ment operators. An agent is allowed to enter an IS by presenting the correct Authori-
sation instance. The Authorisation contains the name of the played role, namely the
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86 Chapter 3 : The MIC∗ Deployment Environment

played-role field; and the certificate field that represents a signature confirming
that the agent is allowed to play this role.

Interaction Operators

Two interaction operators are defined in order to model the interaction schemes:

� Role-level interaction operator: this operator is defined among SocialRole and
SocialMessage. A SocialRole interacts with a SocialMessage only and only if the
receiver role of the SocialMessage is the same as the role-id field of the SocialRole.
This is expressed algorithmically as:

1: function RoleLevelIOP::interaction(sensor,effector)
Require: sensor is instance of the SocialRole type
Require: effector is instance of the SocialMessage type
2: if sensor[’role-id’] == effector[’receiver-role’] then
3: return effector
4: else
5: return 0 . No interaction.
6: end if
7: end function

� Agent-level Interaction Operator: the agent-level interaction is defined between AgentI-

dentifier and AgentMessage. An AgentIdentifier interacts with an AgentMessage

only and only if the id of the receiver is the same as the id of the agent. This is
expressed algorithmically as follows:

1: function AgentLevelIOP::interaction(sensor,effector)
Require: sensor is instance of the AgentIdentifier type
Require: effector is instance of the AgentMessage type
2: if sensor[’agent-id’] == effector[’receiver-agent-id’] then
3: return effector
4: else
5: return 0 . No interaction.
6: end if
7: end function

Movement Operators

The groups are modeled as ISs. Consequently, each IS is associated with a set of roles. To
enter the IS, an agent has to play a role that belongs to this set. To realize these movements,
the group-entrance operator allows agents to enter inside an IS. The agents have to present an
Authorisation that describes the played role. On the other hand, the group-leaving operator
allows agents to leave the IS.
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3.5 Building a Social Framework upon MIC∗ 87

Interaction Spaces

Besides the default IS defined by MIC∗, each group is represented by an extension of MIC∗ IS,
namely the social interaction space. Each social IS is defined with a set of authorized roles;
the role-level and agent-level interaction operators; and the group-entrance and group-leaving
operators.

The Autonomous Agents

Figure 3.31: A single agent have several entries within the MIC∗ deployment environment:
an entry dedicated to sense the universe, i.e. the sensor entry; and an entry dedicated to affect
the universe, i.e. the effector entry.

Within MIC∗, the agents may have simultaneous activities. For instance, a single agent can
sense its surrounding environment and affect it simultaneously. To realize this simultaneity,
several MIC∗ agent entries are used. For instance, Figure 3.31 shows this schema where two
MIC∗ agent entries are associated to a single agent: the sensor entry and effector entry.

From the agent perspective, the sensor entry is dedicated for sensing the universe. Conse-
quently, IOs that perceive the universe are placed in the outbox matrix, and the result of their
interaction is placed in the inbox matrix. On the other hand, the effector entry is dedicated to
affect the universe; consequently, IOs to be perceived by other agents are placed in the outbox
matrix and, in this case, the inbox matrix is not used (marked with X in Figure 3.32). For
the MIC∗ environment, the agent’s sensor and effector entries are considered as independent
agents; the agent is responsible for making this couple of agents behaving as a single entity.
This seems similar to the Holonic approach that considers a set of agents as an single agent
[Parunak & Odell, 2001]; still, here we argue that a set of agents that have been conceived to
behave as a single entity can build a global agent.

To represent the fact that an agent plays several roles in groups, the mechanism presented
above is extended such that each agent is associated to an effector entry and zero or more
sensor entries. Each sensor entry represents a played role. Figure 3.32 gives an example
of an agent that plays three roles R1, R2 and R3. This agent has a single effector to send
messages, for instance this agent is sending three messages simultaneously m1,m2 and m3 in
three groups G1, G2 and G3. This agent plays simultaneously several roles within the same
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88 Chapter 3 : The MIC∗ Deployment Environment

Figure 3.32: A social autonomous agent owns an effector entry to affect the universe, and
several sensor entries representing its roles.

group: R1 and R3 in the group G1; and plays the same role in several groups: R3 in G1 and
G3.

3.5.3 Mapping Table between AGR and MIC∗

Finally, by considering the presented concepts, the complete mapping among the AGR con-
cepts and MIC∗ is described by Table 3.2
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3.5 Building a Social Framework upon MIC∗ 89

Table 3.2: Mapping between AGR concepts and commands to MIC∗.
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90 Chapter 3 : The MIC∗ Deployment Environment

3.6 Conclusion

This chapter has emphasizes on the important role played by the DE within MASs at the
implementation level. In fact, the DE guarantees the autonomy of the agents while it defines
their interactions. As an example of such DE, MIC∗ has been proposed.

The notion of DE clearly separates the concerns of MAS engineering. In fact, the engi-
neering of agents is completely separated from the engineering of DEs (SCMAS approach).
The DE is the common structure offered to different developers and authorities to deploy
autonomous agents and to make a global system which functions emerge from the interactions
of the autonomous individuals.

MIC∗ offers some interesting features such as the implementation of the internal integrity
for the agents; the generative interaction and the on-the-fly composition. These features
have provided the basis for engineering open software systems in complex and unpredictable
environments such as the EAC context.

The MIC∗ model has been implemented as a development library to help developers to
design and implement DEs based on MIC∗ principles. Besides, an additional library has also
been implemented to offer agents’ developers an easy way to implement autonomous agents
and to connect them to MIC∗ DEs.

The source code and binaries of these libraries are freely available at these pages:
mic.sourceforge.net and sourceforge.net/projects/mic.

By experimenting the engineering of software systems using the MIC∗ model, we have
noticed that the designers and developers have some difficulties in order to abstract their
systems directly using MIC∗. In order to hide the apparent complexity of the MIC∗ model, we
have proposed to build higher-level layers that are translated automatically to MIC∗ concepts.
The social framework is an example of this simplification effort. This framework is extended
and developed in chapter 5 to offer an entire integrated development environment (IDE) to
build software systems for the EAC context.

To meet the requirements of the EAC context, MIC∗ has to provide more elaborated
control and trust functions. Chapter 4 presents a coordination framework that is integrated
to MIC∗ in order to monitor the coordination protocols by only observing the conversations
of the agents. Hence, the agents that do not follow the coordination rules are immediately
identified as responsible for breaking the MAS consistency.

3.6.1 Acknowledgement

The initial reflections and algebraic models of the MIC∗ structure have been conducted in
conjunction with Dr.Yves Guiraud from the Laboratoire Géometrie, Topologie, Algèbre, Uni-
versité Montpellier 2. The formal structure of MIC∗ that has been presented in this chapter
is a personal improvement of the initial models.

te
l-0

01
42

84
3,

 v
er

si
on

 1
 - 

23
 A

pr
 2

00
7



Chapter 4

Coordinating the Autonomous

Agents

4.1 Introduction

The interoperability of open and autonomous systems is one of the fundamental features of
the EAC (cf. §2.3.3, page 30). In fact, the potential innovation of the EAC depends on the
ability of open and autonomous systems to interact in order to make emerge a new generation
of services and functionalities.

The interoperability does not concern only the sharing of information but concerns also
the execution of the joint activities that are distributed among autonomous systems. In fact,
the solutions that are presented nowadays in order to share knowledge and information are
incomplete if the context of the information exchange is not specified. For instance, the use
of a particular formalism, like RDF or XML, to represent information is not sufficient if some
important questions are not answered like the following: what communication protocol to use
in order to exchange the content of the messages? when to send the messages? how to handle
the errors and exceptions?

These questions are not related to the representation of the information, but to the activity
of exchanging the information that is considered as a joint activity between the interlocutors.

This chapter presents our proposition for the interoperability of the autonomous systems
within the EAC context. Our proposition suggests tackling the interoperability from the
coordination point of view.

Etymologically, the word ’coordinate’ is composed of two main words: (i) ’co’, which is used
to indicate that something is common and shared between different entities; and (ii) ordinate
which indicates the order of things. So, the coordination approach for the interoperability
suggests making a common and shared order of things between the entities in order to achieve
consistently a joint activity in which each participating entity tries to achieve its own goals.

From this general etymological analysis, we can already present informally our approach
for the interoperability. We suggest to make the autonomous systems sharing a common and
predefined order of the joint activities. This is known as establishing a coordination protocol.
Besides, we suggest that a special entity checks the consistency of the ongoing joint-activities
according to the specified coordination protocol. This entity is not allowed to challenge the
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92 Chapter 4 : Coordinating the Autonomous Agents

autonomy of the software entities. Consequently, it has to adopt an external observer posture
without interfering with the decisional processes and behaviors of the software entities.

The assumptions of the work presented in this chapter are as follows:

1. the considered system is a software system composed of either software or hardware
autonomous and interacting entities.

2. the communication among the software entities is represented as an explicit exchange of
data, or messages, through a communication medium.

3. the communication medium is assumed to have a FIFO (first in first out) model of
communication. This means that the messages emitted by an entity arrive with the
same order to destination. However, there is not a global order constraint on messages
that are emitted by two different entities (see the next point)

4. the communications and actions of the entities are not assumed to be synchronous. In
fact, several entities may be able to act at the same time and the communication medium
may not guarantee the order of messages that are emitted by different entities. These
are similar to the WAN assumptions as stated by Luca Cardelli [Cardelli, 1999].

5. the autonomy implies that the internal structure of the entities is never accessible nor
modifiable by external entities (cf. §2.3.2, page 28). The autonomy prevents also from
knowing how the software entities actually behave and achieve their goals. Only the
observable aspects of their computation are studied (SCMAS approach as presented in
section [2.5.3, page 43])

4.2 Backgrounds

Several works have addressed the coordination. To simplify the presentation of these works
four non-exclusive and non-exhaustive categories are sketched:

1. generalization efforts: the works of this category develop a general theory to unify all
the aspects of the coordination in a single framework. Malone and Crowston’s work
presented in section [4.2.1, page 93] is an example of this category.

2. activity centric: the works of this category are focused on the ’activity’ aspects of the
coordination. The leading question is to know what activity to execute and when execut-
ing it. This category is represented by the models and formalisms presented in section
[4.2.2, page 94].

3. implementation centric: the works of this category offer middlewares that implement
some generic coordination primitives. So, these primitives are implemented only once
and reused as patterns of coordination in the final applications. This category is repre-
sented by the works presented in section [4.2.3, page 95].

4. conversation centric: the works of this category are focused on the conversational aspect
of the coordination. The leading question is to know what message to send and when
to send it in order to coordinate the joint activities. This category is represented by the
works presented in section [4.2.4, page 96].
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4.2 Backgrounds 93

4.2.1 Generalized Study of the Coordination

Figure 4.1: Malone and Crowston categorization of the dependencies.

Malone and Crowston in [Malone & Crowston, 1994] have noticed that the coordination
has been addressed by several research fields such as informatics, economics, operational re-
search and organizational theory. All these fields have developed some similar ideas about
coordination. Starting from this fact, Malone and Crowston tried to develop a single unified
framework called the coordination theory. The coordination is then defined as managing the
dependencies between activities. In other words, the coordination offers the means to solve
the dependencies that inherently exist between different activities. To understand what is
coordination, one has to understand what are the dependencies that may exist among the
activities. Figure 4.1 shows the categorization of the dependencies proposed by Malone and
Crowston:

� shared resource: when several activities share some limited resources, a particular re-
source allocation strategy is needed in order to manage the conflicts. For instance,
to share the same execution unit between different processes, a particular scheduling
strategy is adopted by the operating system.

� producer/consumer relationship: this dependency represents the situations when an
activity produces something, let us call it a resource, that is used by another activity.
This relation implies necessarily the following sub-dependencies:

– prerequisite constraint: this dependency expresses the order that inherently exists
between the producing and the consuming activities. In fact, the consuming activity
cannot start until the producing activity has completed.

– transfer: the produced resource has to be transferred from the production point to
the consumption point. This dependency defines how the resource is transported
between the production and consumption points. For instance in informatics, when
the produced resources are information, the transfer dependency is resolved using
the communication protocols as a transportation mean.

– usability: the third dependency implied by the producer/consumer relationship is
the usability. In fact, the consumer should be able to correctly use the produced
resource. Standardization is a common way to solve this dependency. Hence, both
of the producer and the consumer agree on what are the requirements that make
the resource consumable. For instance, the syntax of messages and the semantics
of the commands are examples of standardization when transferring data between
software entities.
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94 Chapter 4 : Coordinating the Autonomous Agents

� simultaneity constraint: some activities are timely constrained, so they have to be exe-
cuted at the same time (or cannot occur at the same time). This dependency expresses
these temporal situations.

� task/subtask: this relation expresses the hierarchical decomposition of an activity in
several sub-activities. So, the main activity depends on its sub-activities and finishes
only when the sub-tasks are completed.

4.2.2 Formalisms to Express the Coordination Protocols

Several models and formalisms have been proposed to express coordination protocols. This
section gives an overview of these models:

� Software Engineering Methodologies: usually the software engineering methodologies
such as MERISE [Kettani et al. , 1998] and UML [OMG, 2003] include some graphical
and textual formalisms to specify the coordination protocols among the activities that
are executed by either concurrent or sequential programs. Generally, these methodolo-
gies do not provide their proper formalisms and models, but reuse other known for-
malisms such as the State Transition Diagrams, Flowchart, and Statecharts.

� State Transition Diagram: The state transition diagrams are simple finite state transition
automata that specify the states of a system and the transitions among these states. The
transitions are enabled by either external events, such as the reception of a message, or
tasks completion.

� Statecharts: the Statecharts formalism [Harel, 1987] is an extension of state transition
diagrams with three elements dealing with the hierarchy, concurrency and communica-
tion of the automata. This formalism has been used for the specification and design of
discrete-event systems such as distributed software systems and communication proto-
cols.

� Flowchart: the Flowchart shows the overall structure of the software system by tracing
the flow of information, activities and by highlighting the key processing and decisional
points. Besides, the physical media on which the data are inputted, outputted and
stored are represented explicitly.

� Process Algebra: this family of formal models (CSP [Hoare, 1985], CCS [Milner, 1989],
Pi calculus [Robin et al. , 1992], Ambient [Cardelli, 1999], Join calculus [Fournet, 1998])
implicitly expresses the coordination among the concurrent activities by synchronising
the communications among the processes. In fact, the order between the activities
is implicitly defined by the semantics of the algebraic operators and rewriting rules.
Consequently, the observed behavior is still an ordered execution of the concurrent tasks.

� Language of Temporal Ordering Specifications (LOTOS): this formalism is standard-
ised by the International Organization of Standardization (ISO) under the reference
ISO/IEC8807. LOTOS has been used to develop the Open Systems Interconnections
(OSI) specifications. In fact, the OSI specifications have to be understood and imple-
mented correctly by all the different software engineering actors around the world. The
LOTOS formalism is based on process algebra to express the implicit order and depen-
dencies among the activities. LOTOS allows also the definition of abstract data type
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4.2 Backgrounds 95

using the Act One formalism. The Act One formalism can be viewed as a way to solve
the usability dependency presented by Malone and Crowston.

� Petri Nets: this is a formal and graphical oriented formalism for the design, specification,
simulation and verification of concurrent systems. This formalism is presented in more
detail in Annex B and section [4.6.1, page 109].

� Specification and Description Language (SDL): the SDL is standardized by the Interna-
tional Telecommunication Union (ITU). The SDL coordination protocols are expressed
as extended finite state automata; they include also abstract data types described using
Act One.

� Extended State Transition language (ESTELLE): this is a formal description technique
standardized by the ISO. It is suitable for the specification of coordination protocols
among distributed software systems and was used to describe OSI services and proto-
cols. The ESTELLE specification is a hierarchy of communicating non-deterministic
state automata. By specifying the type of the communication, synchronous or asyn-
chronous, both of the dependencies and execution order are implicitly defined between
the automata in ESTELLE.

� Message Sequence Charts (MSCs): The MSCs [ITU, 1993] are graphical and textual
formalisms normalized by the ITU for the description and specification of interaction
protocols between different components. They are usually included within the SDL
specifications or used as sequence diagrams within the UML specifications. The MSCs
denotational semantics is expressed using an adaptation of the process algebras. This
helps in defining the partial order relations between the events occurring within the
MSC.

� High-Level Message Sequence Charts (HMSC): the HMSC is used to compose several
MSCs automata using sequence, parallel and alternative operators. These compositions
are given two different semantics within the HMSC: strong composition, where all the
events of a MSC must hold before executing the next MSC; and weak composition where
the events are executed whenever possible. The semantics of the HMSC is an extension
of the partial order defied by the MSCs and depends on the composition operators that
are used.

4.2.3 Architectures and Middlewares for Coordination

The (software systems) coordination community1 has also defined some coordination architec-
tures implementing the generic coordination primitives such as time barriers (or ’rendez-vous’)
and the producer/consumer relationships. The entities of the coordination architecture are:
the coordinables, representing entities that coordinate their actions; the coordination medium,
representing the medium used in order to coordinate the coordinables; and finally the coor-
dination laws that define how the coordination media reacts in response to the coordinables’
actions. A survey of the coordination architectures can be found in [Papadopoulos, 2000]; it
categorizes the coordination architectures in two main categories:

1The main conference of this community is the ’International Conference on Coordination Models and

Languages’, http://music.dsi.unifi.it/coordination.
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96 Chapter 4 : Coordinating the Autonomous Agents

� data driven: within the data-driven coordination models, the coordination medium is
represented as an addressable storage space shared between the coordinables. The coor-
dinables interact by storing and retrieving data structures from the shared data space.
The coordination laws define how the data structures are represented, stored and con-
sumed by the coordinables.

� control driven: within the control-driven coordination models, the coordination medium
is represented as a set of input/output communication ports that link the coordinables.
The coordination medium considers the coordinables as blackboxes and checks the events
occurring on their communication ports. These events are then propagated to other
coordinables following some specific coordination rules.

4.2.4 The Conversational Aspect of the Coordination

When the coordinables are distributed, the coordination necessarily implies communication.
So, the entities communicate by exchanging messages in order to resolve the dependencies
between their activities. When observing the exchanged messages among coordinables, an ex-
ternal observer notices that the structure of the conversation – defined as an ordered sequence
of messages – is steered by the underlying coordination protocol. Specifying this dialogue
structure is known as establishing a conversation protocol. Among the formalisms that are
used to specify conversation protocols, one can cite the followings: finite state machines (FSM),
as in works of [Barbuceanu & Fox, 1995][Barbuceanu & Lo, 2000][Martial, 1992]; state tran-
sition diagrams (STD), as in works of [König, 2003]; colored Petri Nets (CPN), as in works of
[Cost et al. , 2000][Fallah-Seghrouchni et al. , 1999].

4.2.5 Discussion

By observing the literature, it seems that the activity centric, conversational centric and
architecture centric works constitute blocks with some synergy among them. Still, there is
no established formal link between these categories and especially between the activity and
conversational aspects of the coordination. Malone and Crowston coordination theory is a
first step towards establishing such a unification. This chapter starts from their work in order
to define the Dependency-Based Coordination Model (DBCM). The DBCM includes some
concepts such as the roles and roles-cut in order to fit the MAS paradigm. The conversation
protocols are then defined formally as a sequence of messages that respect the constraint of
order imposed by the coordination protocol.

4.3 Intuitive Introduction to the Dependency-Based Coordi-

nation Model

The main goal of the coordination is to make autonomous software systems working together
in order to achieve some joint activities. We suggest that the autonomous software systems
share explicitly a common specification of joint activities. These specifications are expressed
as coordination protocols.

For instance in Figure 4.2, agents ’A’ and ’B’ agree to conform a specific coordination
protocol in order to build a house. At the execution time, each agent is expected to conform
its commitments and respects the order of the tasks described by the coordination protocol.
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4.3 Intuitive Introduction to the Dependency-Based Coordination Model 97

������������
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�����	
�

A B

B A

Figure 4.2: Simple example of a joint activity that is conducted after agreeing on a common
coordination protocol.

For instance, the agent ’B’ has to wait until that the agent ’A’ builds a wall to start the
painting activity. One can notice that on one hand the termination of a task may produce
resources that were not initially available. On the other hand, some tasks wait the availability
of some resources in order to start. In the presented example, the wall is produced by the
task of agent ’A’ and this resource is needed by agent ’B’ to start its task of painting.

������������

�	
�����	
�

A B B A

C
C

Figure 4.3: Introduction of a monitoring entity in order to check the consistency of the joint
activity according to the coordination protocol.
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98 Chapter 4 : Coordinating the Autonomous Agents

Since agents ’A’ and ’B’ are autonomous, their actions at the execution time may not be
consistent with the agreed coordination protocol. Consequently, the scheme of Figure 4.2 is
extended by the one presented in Figure 4.3 such that a particular monitoring entity ’C’ is
introduced. The role of this entity is to check if the actions of the autonomous agents are
consistent with their commitments.

In order to express coordination protocols, we introduce the dependency-based coordina-
tion model (DBCM). The DBCM is a formalism used to express coordination protocols only
with the producer/consumer relationships. The main concepts of this formalism are described
as follows:

� activities: an activity represents an atomic and indivisible task that starts when all the
consumable resources are present and completes in a limited time by producing other
resources.

� resources: a resource represents anything that may be consumed or produced by the
activities. Resources follow also a coherency constraint stating that any resource that
has been consumed disappears and any resource that has been produced appears within
the system.

� usability dependency: according to Malone and Crowston, each producer/consumer de-
pendency induces a usability dependency. The usability guarantees that the resource
is usable by the consuming activity after being produced by the producing activity.
Consequently, for each resource a control function is provided.

� roles: the functions of the agents are abstracted as roles. The roles are considered in
the DBCM in order to situate where the activities are executed during the coordination
process.

By using the DBCMs, the coordination protocols are graphically represented as directed
graphs (digraphs): activities are represented as rectangles, resources as ovals and roles are
represented as areas that contain tasks.

« Ping»

A B

Ping

Pong

Start

a0
a2

Ping Role Pong Role

a1

A B

Ping Role Pong Role

« Pong»

« Ping»

« Pong»

Figure 4.4: The Ping-Pong joint activity.
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4.3 Intuitive Introduction to the Dependency-Based Coordination Model 99

For instance, Figure 4.4 presents the coordination protocol that is shared among the agents
’A’ and ’B’ in order to play ping-pong. The coordination protocol is expressed as a digraph: a0,
a1 and a2 are the activities and Start, Ping and Pong are the resources. Activities are linked
to the resources by two kinds of arrow: the production arrow, that starts from an activity and
ends with a resource; the consumption arrow, that starts from a resource and ends with an
activity. The production arrow is interpreted as the production of a resource by an activity and
the consumption arrow is interpreted as a consumption of a resource by the activity. When
an activity produces several resources, this is interpreted as the simultaneous production of
all the resources. When an activity consumes several resources, all these resources have to be
available to start this activity. On the other hand, when a resource is produced by several
activities, every task that terminates produces this resource. When a resource is consumed
by several activities, this is interpreted as an exclusive choice and only one activity consumes
the resource.

The order relationship among the activities and resources is expressed by the coordina-
tion protocol. For instance, a0 < a1, a1 < a2 and a2 < a1; Start<Ping, Ping<Pong and
Pong<Ping. Activities are contained within roles. For instance, {a0, a1} ∈ PingRole and
{a2} ∈ PongRole. The resource Start is drawn using a double circle to indicate that this re-
source is initially available within the system. It is considered as an axiom of the coordination
protocol.

« Ping»

A B

Ping

Pong

Start

a0
a2

Ping Role Pong Role

a1

A B

Ping Role Pong Role

« Pong»

« Ping»

« Pong»

C C

«Ping» «Pong» «Ping» «Pong»

OK

Figure 4.5: Introducing the monitoring entity within the Ping-Pong example.

Now let us introduce the monitoring entity ’C’ in the presented example (cf. Figure 4.5).
The entity ’C’ is an external observer of the coordination process. Consequently, this entity
can observe only resources that are exchanged among agents ’A’ and ’B’. These resources
appear as an ordered sequence that represents the conversation among agents ’A’ and ’B’.
The monitoring entity ’C’ has to check the consistency of the conversation with regards to the
predefined coordination protocol. Consequently, the autonomy of agents ’A’ and ’B’ is not
challenged and as soon as a particular agent does not follow the coordination protocol, this
agent is identified and made responsible for breaking the coordination rules.

In order to check the consistency of conversations according to coordination protocols,
a formal link is made between the structure of the coordination protocol and the generated
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100 Chapter 4 : Coordinating the Autonomous Agents

conversations (cf. §4.5.2, page 103). In fact, as shown by Figure 4.5, one can notice intuitively
that the structure of the conversation is constrained and structurally defined by the coordi-
nation protocol. After establishing formally this link, the second point offers some practical
means in order to check the consistency of conversations in an incremental manner (cf. §4.6.1,
page 109).

4.4 Formal Definition of the Dependency-based Coordination

Model

4.4.1 Definition of the Dependency-based Coordination Model

The Dependency-Based Coordination Model (DBCM) is defined formally as follows:

Definition 4.4.1. The dependency-based coordination model is a four tuple G = (A,R, C, P ),
A = {a0, a1, ..., an} is a finite set of activity nodes (n ≥ 0), R = {r0, r1, ..., rm} is a finite set
of resource nodes (m ≥ 0). R∩A = ∅. C : A→ P(R) is defined as the consumption function,
a mapping from activity nodes to a set of resource nodes; P : A → P(R) is defined as the
production function, a mapping from activities nodes to a set of resources nodes.

When a resource node is consumed by several activities, this is interpreted as an exclusive
choice: only one activity may consume this resource. On the other hand, when an activity
produces several resources, this is interpreted as simultaneous and non-ordered production of
resources.

4.4.2 The Digraph Associated to the Dependency-Based Coordination
Model

For each DBCM, G = (A,R, C, P ), one can associate a digraph DG = (V ′, A′) that is built
as follows:

Definition 4.4.2. The digraph DG = (V ′, A′) associated to a dependency-based coordination
graph G = (A,R, C, P ) is defined as follows:

V ′ = A ∪R

∀ a ∈ A,∀r ∈ C(a) : (r, a) ∈ A′

∀ a ∈ A,∀r ∈ P (a) : (a, r) ∈ A′

The digraph is the graphical representation of the DBCM. The activities are represented
as rectangles and resources as ovals. The production and consumption relationships are rep-
resented as directed arrows.

Example 4.4.1. This example represents the coordination protocol of the ping-pong joint
activity. First, an initial activity, a0, starts the process by producing a ’ping’ resource; this
resource is consumed by the pong-activity (a2). a2 produces a ’pong’ resource that is consumed
by the ping-activity (a1). a1 produces a ’ping’ resource. The ping-pong coordination protocol
is formally defined as follows:
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4.4 Formal Definition of the Dependency-based Coordination Model 101

Gping-pong = (A,R, P,C), such that:

A = {a0, a1, a2}
R = {’start’, ’ping’, ’pong’}

P :


P (a0) = {’ping’}
P (a1) = {’pong’}
P (a2) = {’ping’}

C :


C(a0) = {’start’}
C(a1) = {’ping’}
C(a2) = {’pong’}

The digraph associated to Gping-pong is:

DGping-pong = (V ′, A′), such that:

V ′ = A ∪R

A′ = {(a0, ’ping’), (a1, ’pong’), (a2, ’ping’),

(’start’, a0), (’ping’, a1), (’pong’, a2)}

Figure 4.6: The digraph associated to the ping-pong coordination protocol.

The digraph is graphically represented by Figure 4.6. The ’start’ resource is an axiom and
thus drawn with a double circle. This means that at the initial state, this resource is available
within the system. This point is discussed in more detail in section [4.5.2, page 103].
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102 Chapter 4 : Coordinating the Autonomous Agents

4.4.3 Partitioning the Dependency-based Coordination Model

In a MAS the coordination process involves several distributed agents. To model this situation,
one can decompose the DBCM into several components representing the different sites where
the activities are executed. Each execution site represents a role because it delimits the set
of activities that a participant has to execute. In a sense, this represents its responsibilities
during the coordination process. The role decomposition in a DBCM is viewed as a particular
partitioning of the digraph. The roles have to be independent and thus do not share the same
activities.

Definition 4.4.3. Let G = (A,R, C, P ), be a coordination model, let D = {s0, s1, ..., sj}, j ≥
0 be the finite set of roles. A role decomposition associated to the coordination model G is a
mapping d : D → P(A) that associates to each role s ∈ D a set of activities such that:

∀x, y ∈ D ×D : x 6= y =⇒ d(x) ∩ d(y) = ∅⋃
x∈D

d(x) = A

The resources that are situated between the roles express the dependencies on resources
among the roles. This part of the digraph is defined as the roles-cut.

Definition 4.4.4. The roles-cut of a dependency-based coordination model G = (A,R, P,C),
is defined as the set of resources c ⊂ R such that each ressource links at least two acivities
that belongs to two different roles.

Example 4.4.2. As an example, let us consider the ping-pong coordination protocol
Gping-pong. The set of roles is D = {’Ping Role’, ’Pong Role’}. The role decomposition d

that is associated to Gping-pong is defined as follows:

d :

{
d(’Ping Role’) = {a0, a1}
d(’Pong Role’) = {a2}

Figure 4.7: The roles and roles-cut of the ’ping-pong’ coordination protocol.

The roles are graphically represented as areas that contain all the roles’ activities along
with the resources that are produced and consumed internally. The roles-cut is represented
using dashed lines (cf. Figure 4.7).
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4.5 The Generated Resource Patterns 103

4.5 The Generated Resource Patterns

4.5.1 Marked Resource Set

In order to define the structure of the resource patterns generated by a coordination protocol,
we need to define the marked resources set. This set represents simply resources which are
tagged with two values > (top) and ⊥ (bottom).

Definition 4.5.1. Let R be a set; the market set R′ associated to R is defined as follows:

R′ = R× {>,⊥}

R′ is partitioned in two disjoint sets R′ = R> ∪R⊥, where:

R⊥ = {(r,⊥), r ∈ R}
R> = {(r,>), r ∈ R}

To simplify the notations, the elements (r,>) ∈ R′ are simply written as r and the elements
(r,⊥) are represented as r̄.

|| : R′ → R is a function that removes the tag from a tagged element: |(r,>)| 7→ r and
|(r,⊥)| 7→ r.

4.5.2 The Structure of the Resource Patterns

The structure of the DBCM imposes some restrictions on the order and the number of the
produced resources. In fact, having some initial resources called the axioms, one can list the
set of activities that can be started. By executing these activities other resources are produced.
Again another set of activities can be started. The sequence of the produced resources defines
a resource pattern. Obviously, all the resource patterns always start by the axioms and then
each time a resource is produced this resource is appended to the pattern.

The structure of the resource patterns produced by the coordination protocol is completely
defined by a rewriting system where the simplification rules are extracted from the structure of
the DBCM itself. To reach this point, let us first define the structure of the resource patterns
generated by any set of simplification rules:

Definition 4.5.2. Let R be the set of resources, R′ its associated marked set and σ ⊆
P(R)×P(R) the set of simplification rules. The structure of the resource patterns generated
by σ is given by the rewriting relation σ→: R′∗ ×R′∗ defined as follows:

U0r1U1...riUiri+1Ui+1...rnUn
σ→ U0r̄1U1r̄2U2...r̄iUiUi+1...Un

⇔

{
∃({|r1|, .., |ri|},M) ∈ σ : {|ri+1|, .., |rn|} ⊆M

∀k ∈ [1..i], rk /∈ R⊥

For a set, R, the notation R∗ designates the set of ordered sequences, that can be empty,
of elements of R. (ri)i∈[1..n] ∈ R′ are tagged resources and (Uj)j∈[0..n] ∈ R′∗ are sequences,
that can be empty, of marked resources.
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104 Chapter 4 : Coordinating the Autonomous Agents

Interpretation 4.5.3. σ is the set of simplification rules. The interpretation of these
rules is as follows: ({xp}p∈[0..n], {xp}p∈[n+1..m]) ∈ σ means that the resources contained in
{xp}p∈[0..n] can produce the resources contained in {xp}p∈[n+1..m] (left-right interpretation).
Or ({xp}p∈[0..n], {xp}p∈[n+1..m]) ∈ σ means that the resources contained in {xp}p∈[n+1..m] con-
sume the resources contained in {xp}p∈[0..n] (right-left interpretation).

This models the implicit partial order relationship between the resources. Consequently, in
a resource pattern the elements of the set {xp}p∈[0..n] (no matter their order) appear necessarily
before the elements of {xp}p∈[n+1..m].

After the reduction:

� the resources that have been used in the left part of the reduction relation are marked
to avoid confusions. In fact, this ensures that these resources are used only once.

� the resources of the right part are removed from the sequence.

What is missing in Definition 4.1 is how the simplification rules set σ is built. This set is
constructed from the coordination protocol itself G = (A,R, P,C) as follows:

∀a ∈ A, (C(a), P (a)) ∈ σG (4.1)

Interpretation 4.5.4. Each activity of the DBCM defines a particular production rule of
the rewriting system since it consumes some resources and generates other resources. What
is intersting with the rewriting relation given in Definition 4.1 is the fact that the parallal
production and consumption of the resources is fully captured. In fact, when several resources
are produced or consumed by activities, it is not the absolute positions of the resources within
a resource pattern that is important for the validiy of the resource pattern but the relative
position of the resources.

a0

r0

r1

r4r3

r2

a1 a2

r6r5

r8r7 r10r9 r12r11 r14r13

a3 a4 a5 a6

Role 1

Role 2

Role 3

Figure 4.8: Example of a DBCM to express the relative order among the resources.
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4.5 The Generated Resource Patterns 105

For instance, Figure 4.8 presents a DBCM that is organized as a binary tree. The resource
pattern :

r0.r1.r2.r3.r4.r10.r5.r11.r12

is a valid pattern since it can be reduced to the axiom as follows:

r0.r1.r2.r3.r4.r10.r5.r11.r12
σ[a5]→ r0.r1.r2.r3.r4.r10.r̄5

σ[a2]→ r0.r1.r̄2.r3.r4.r10

σ[a4]→ r0.r1.r̄2.r3.r̄4

σ[a1]→ r0.r̄1.r̄2

σ[a0]→ r̄0

Now, if the positions of some resources are changed without challenging the relative order
imposed by the structure of the DBCM, then the resource pattern is still valid. For instance,
let us change the position of r2, r11 and r12 in the previous pattern as follows:

r0.r1.r3.r4.r10.r2.r5.r12.r11

This resource pattern is still valid and here is a reduction path:

r0.r1.r3.r4.r10.r2.r5.r12.r11
σ[a5]→ r0.r1.r3.r4.r10.r2.r̄5

σ[a2]→ r0.r1.r3.r4.r10.r̄2

σ[a4]→ r0.r1.r3.r̄4.r̄2

σ[a1]→ r0.r̄1.r̄2

σ[a0]→ r̄0

However, by changing the position of r11 and r5 as follows:

r0.r1.r2.r3.r4.r10.r11.r5.r12

This resource pattern is no more valid since one cannot observe the resource r11 before
r5. So, the resource r11 is never consumed by any simplification rule. For instance, this is an
attempt to reduce the previous pattern:

r0.r1.r2.r3.r4.r10.r11.r5.r12
σ[a5]→ r0.r1.r2.r3.r4.r10.r11.r̄5

σ[a2]→ r0.r1.r̄2.r3.r4.r10.r11

σ[a4]→ r0.r1.r̄2.r3.r̄4.r11

σ[a1]→ r0.r̄1.r̄2.r11

σ[a0]→ r̄0.r11

This pattern is not valid since r0.r11 is not the axiom of this DBCM.
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106 Chapter 4 : Coordinating the Autonomous Agents

It is worth noting that some resources were not considered in the presented pat-
terns. But, these patterns were considered as valid patterns. For instance, the resources:
r7, r8, r9, r6, r12, r13, r14 did not appear within the valid patterns. This is due to our as-
sumptions of work and our objective. In fact, the objective is to check the validity of the
coordination process during its excution. So, we have not to wait until the termination of the
coordination process to decide if the patterns are valid or not. But as soon as some resources
appear we have to decide, as observers, if the coordination process is invalid.

Finally, the set of all resource patterns generated by a particular DBCM given an axiom
is defined as:

Definition 4.5.5. Let G = (A,R, P,C) be the dependency-based coordination model. The
resource patterns set r patterns(G,x0) generated by a dependency-based coordination model G

and the axiom x0 ∈ R∗ is defined as follows:

∀u ∈ R∗, u ∈ r patterns(G,x0) ⇐⇒ ∃u′ ∈ R′∗ : u′
σG x0 ∧ |u′| = u

So, any sequence of resources that can be simplified to the axiom after a certain application
of the simplification rules is member of the generated resource patterns (in the right-left
interpretation). One can have a more natural interpretation. Any sequence of resources that
can be produced using the production rules starting from the axiom belongs to the set of
generated resource patterns (in the left-right interpretation).

Example 4.5.1. By applying the definition given in Equation 4.1, the set of simplification
rules of the ping-pong coordination protocol Gping-pong is defined as follows:

σGping-pong
= {({’start’}, {’ping’}), ({’ping’}, {’pong’}), ({’pong’}, {’ping’})}

The set of generated resource patterns r patterns(Gping-pong,start) is completely known and
Table 4.1 gives some examples of resource patterns and how they are reduced to the axiom
’start’.

Pattern ? ∈ r patterns(Gping-pong,start) Reduction path
start.ping yes start.ping σ→ ¯start

start.ping.pong yes start.ping.pong σ→ start. ¯ping
σ→ ¯start

start.ping.pong.ping yes start.ping.pong.ping
σ→ start.ping. ¯pong
σ→ start. ¯ping
σ→ ¯start

start.pong no start.pong (cannot be simplified)
start.ping.ping no start.ping.ping

σ→ ¯start.ping (cannot be simplified)

Table 4.1: Example of resource patterns of the ping-pong coordination model.

4.5.3 Recognizing Actual Resources by Using the Control Functions

First, let us distinguish between the resource nodes that are defined by the DBCM and the
actual resources that are exchanged among the coordinating entities. The resource nodes are
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4.5 The Generated Resource Patterns 107

abstractions defined in the DBCM to ’talk about’ the actual resources. The actual resources
are the actual ’things’ that are exchanged between the coordinating entities. In the context
of this work, the interaction objects set, O, is considered as the actual resources set.

The link between the resource nodes and actual resources is made by the control func-
tions2. A control function is a Boolean function that returns true when the actual resource
conforms the standard that has been established between the producer and consumer, and
false otherwise.

So, for each resource node a control function is associated in order to control if the ac-
tual resource corresponds to the resource node. Still, some resource nodes do not require an
exchange of actual resources. In fact, some resource nodes model a prerequisite relationship
among the activities without a concrete exchange of an actual resource. For these particu-
lar resource nodes, a particular value (null or zero) is associated as a control function. The
resource nodes that belong to the roles-cut must always be mapped to non-null control func-
tions. In fact, in a distributed system the communication between the distributed activities
always implies the explicit exchange of interaction object.

The resource recognition mapping, κ, is introduced as an assignment of control functions
to resource nodes in a DBCM:

Definition 4.5.6. Let G = (A,R, P,C) be a coordination model and O the set of actual
resources. The resource control mapping κ of the coordination model G is a function from
the set of resource nodes to the set of control functions or a null value:

κ : R→ (O → {>,⊥}) ∪ {0}

The roles-cut structure imposes that only the resources belonging to the role-cut are ob-
servable by an external observer. So, the mapping κ is said to satisfy the constraints of the
roles-cut c iff:

∀r ∈ R

{
κ(r) = 0 if r /∈ c

κ(r) 6= 0 if r ∈ c

The recognition of an actual resource sequence m = m0m1...mn ∈ O∗ according to a
resource nodes pattern p = r0r1...rm ∈ R∗ and a mapping κ is performed as follows:

1. each resource node in the resource pattern p is replaced by its associated control function
defined by κ. This produces a sequence of control functions f = f0f1...fj ∈ ((O →
{>,⊥}) ∪ {0})∗.

2. the sequence of functions is normalized by removing all the zero (or null) elements. The
normalized sequence is noted f ′ = ||f ||.

3. the sequence of functions ’is applied’ to the sequence of actual resources m. This is done
by replacing each i-th element of m (mi) by the application of the i-th function of f ′ to
mi. So, the result of this operation is a sequence of Boolean values.

2Malone and Crowston works have already introduced the concept of control function when they were

speaking about the usability dependency.
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108 Chapter 4 : Coordinating the Autonomous Agents

4. if the resulting sequence contains only > values, this means that the actual resources
sequence has been validated by the resource pattern and the recognition mapping κ;
otherwise, it has been invalided.

To simply the notations, the fact that a resource pattern p recognizes an actual resource
sequence m according to the mapping κ is noticed by a logical predicate: validate(p, c, κ).

For each pattern of resource nodes (that is element of R∗) and a mapping κ, we can
define the set of all actual resources (elements of O∗) which are recognized. Within the MAS
paradigm the O set is interpreted as interaction objects. So, the sequence of actual resources
is defined as a conversation and the set of all recognized conversations is defined as the set of
valid conversations.

Definition 4.5.7. Let O be the set of interaction objects; G = (A,R, P,C) a DBCM associ-
ated to the resource recognition mapping κ and a roles-cut d such that the mapping κ satisfies
the constraints of the roles-cut d. The set of valid conversations generated by G and the axiom
x0 ∈ R∗ is defined as the set of all the sequences of interaction objects that are validated by
at least one resource pattern of G according to the axiom x0:

∀c ∈ O∗, c ∈ conversations(G,κ,d,x0) ⇐⇒ ∃p ∈ r patterns(G,x0) : validate(p, c, κ)

Example 4.5.2. For this example, we assume that the set of actual resources contains two
binary values O = {0, 1}. The resources of Gping-pong are linked to this set by the following
mapping3 κ:

κ :


κ(start) 7→ 0

κ(ping) 7→ λ(x):(x = 0)

κ(pong) 7→ λ(x):(x = 1)

Now, let us follow the presented steps to show that the actual resources sequence, s =
0.1.0.1 is validated by the resource pattern r = ’start.ping.pong.ping.pong’.

1. each element of r is replaced by its associated recognition function:

f = κ(start).κ(ping).κ(pong).κ(ping).κ(pong)

= 0.λ(x) : (x = 0).λ(x) : (x = 1).λ(x) : (x = 0).λ(x) : (x = 1)

2. normalization of the recognition functions sequence: this is done by removing all the
zero elements from the sequence of functions:

||f || = λ(x) : (x = 0).λ(x) : (x = 1).λ(x) : (x = 0).λ(x) : (x = 1)

3. apply the sequence of recognition functions to the sequence of the actual resources:

||f ||(s) = λ(x) : (x = 0)(0).λ(x) : (x = 1)(1).λ(x) : (x = 0)(0).λ(x) : (x = 1)(1)

= (0 = 0).(1 = 1).(0 = 0).(1 = 1)

= >.>.>.>

4. we can conclude that the sequence s have been validated by the pattern r. Furthermore,
since the pattern r belongs to r patterns(Gping-pong,start), then the sequence of actual
resources s belongs to the valid conversations set defined by this coordination model.

3 The sign = has to be interpreted as the logical comparison.
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4.6 Validating the Conversations According to a Coordination Protocol 109

4.6 Validating the Conversations According to a Coordination

Protocol

The previous section has presented a formal link between the coordination model and the
generated conversations. Still, the presented results show only that this link exists and do not
give the means in order to decide if a conversation belongs or not to the valid conversations
of a coordination protocol. This section presents a method that uses the Queue Petri Nets
(QPN) in order to validate the conversations in an incremental manner.

4.6.1 Informal Presentation of Petri Nets

The Petri Net is a well-known formalism, invented by Carl Adam Petri, to express concurrent
activities. This formalism has already been used to express directly the conversation protocols
in several works (cf. §4.2.4, page 96). First, let us present informally the structure of a Petri
Net and give an extension used to validate the conversations.

The Petri Net is a digraph composed of transitions (graphically represented as rectangles);
places (graphically represented as circles); and tokens. The places contain zero or more tokens.
The transitions are linked to places by two kinds of arrows:

� production arrow: this arrow is directed from a transition to a place. When a transition is
fireable, the tokens are produced in each place linked to this transition by the production
arrows.

� consumption arrow: this arrow is directed from a transition to a place. A transition is
said to be fireable when all the places linked to this transition by a consumption arrow
contains at least one token. When the transition is fired, the tokens of consumption
places are decremented by one.

A more complete and detailed presentation of the Petri Net theory is given in Annex B.

4.6.2 The Queue Petri Net Theory

In order to validate the conversations among the agents, we have extended the original Petri
Net theory that is presented Annex B to define the Queue Petri Nets (QPN). The QPN is
a structure composed of a Petri Net and a queue of interaction objects. To be fireable, the
transitions of the QPN do not depend only on the tokens but also on the queue. When a
transition is fired, it consumes the tokens and one object found on the front of the queue. The
QPN are formally built by following the same steps as for simple Petri Nets.

Queue Petri-Net Structure

Definition 4.6.1. Let O be the set of interaction objects; O∗ the set of ordered sequences
of interaction objects. The Queue Petri Net structure is a six tuple C = {P, T, I, O, F, q},
P = {p1, p2, ..., pn} is a finite set of places n ≥ 0 and T = {t1, t2, ..., tm} is a finite set of
transitions m ≥ 0. P ∩ T = ∅. I : T → P∞ is defined as the input function, a mapping from
transitions to bags of places and O : T → P∞ is defined as the output function, a mapping
from transitions to bags of places; F : T → {0} ∪ (O → B), is defined as the message control
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110 Chapter 4 : Coordinating the Autonomous Agents

function, a mapping from transitions to control functions or zero; q ∈ O∗ is defined as the
message queue. That is an ordered sequence of elements belonging to O.

Queue Petri Net Marking

The marking of the QPN is similar to simple Petri Nets (see Annex B).

Execution Rules for QPN

The execution of the QPN is totally controlled by the tokens distributed over places and the
objects of the queue. The QPN executes by firing transitions. For the QPN, two kinds of
transitions are identified:

1. transitions that are associated to zero (or null) as control function: these transitions fire
as normal Petri Net transitions by consuming the tokens from their input places and
producing new tokens distributed over there output places.

2. transitions that are associated to non-null control functions: these transitions are enabled
only if there are enough tokens in their input places and the associated control function
validates the first object found in the queue. The firing of these transitions consumes
the tokens of the input places and produces new tokens in the output places. Besides,
the first object of the queue is removed.

Definition 4.6.2. Transition tj ∈ T in a marked Queue Petri Net C = (P, T, I, O, F, q) with
marking µ is enabled iff:

1. for all pi ∈ P :
µ(pi) ≥ #(pi, I(tj))

2. if F (tj) 6= 0 then:
F (tj)(front(q)) = >

Definition 4.6.3. Let tj be a fireable transition in a marked Queue Petri Net C =
(P, T, I, O, F, q) with the marking µ. The firing of this transition results in a new marking µ′

defined as follows:
µ′(pi) = µ(pi)−#(pi, I(tj)) + #(pi, O(tj))

And a new message queue q′ defined as follows:

q′ =

{
pop(q) , if F (tj) 6= 0

q , if F (tj) = 0

When there are no fireable transitions, the QPN is said to be dead.

Definition 4.6.4. The Queue Petri Net C = (P, T, I, O, F, q) with the marking µ is said
to have recognized its queue q if there is an execution path that leads to C ′: C  C ′ =
(P, T, I, O, F, q′) with a marking µ′ and where the queue q′ is empty.
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4.6 Validating the Conversations According to a Coordination Protocol 111

4.6.3 Building the QPN from the Coordination Protocol

The goal of this section is to present an algorithm that builds the QPN from a given DBCM.
Before presenting this algorithm, let us first define the block structure.

The Block Structure

Figure 4.9: The block structure composed of: an input place, an output place and a transition.

The block structure in a Petri Net is composed of two places and a transition: namely
the input and output place and the transition of the block. The input place is linked by a
production arrow to the block’s transition, and the output place is linked by a consumption
arrow to the transition of the block. Graphically, the block corresponds to the structure
illustrated in Figure 4.9.

Figure 4.10: Production relationship between a block and a transition.

Linking a block to a transition by a production relation means that the output place of
the block is linked with a production arrow to this transition (cf. Figure 4.10).
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112 Chapter 4 : Coordinating the Autonomous Agents

Figure 4.11: Consumption relationship between a block and a transition.

Similarly, linking a block to a transition by a consumption relation means that the input
place of the block is linked by a consumption arrow to this transition as presented in (cf.
Figure 4.11).

Algorithm to Build the QPN from the DBCM

Algorithm 1 presents how the QPN is built from the DBCM. This algorithm is described as
follows:

1. the coordination model G(A,R, P,C); the axiom x0; the roles-cut d; the control function
mapping κ are considered as the inputs of the algorithm. Besides, κ is assumed to satisfy
the constraints of the roles-cut d;

2. for each resource r ∈ R one has to :

(a) build its associated block identified as br;

(b) if the resource is an axiom then marks the input place of br with 1, otherwise the
marking of the block places is 0;

(c) if r ∈ d then:

i. associate to the transition of the block br the control function κ(r);

3. for each activity a ∈ A do:

(a) make a transition identified as ta;

(b) make a production links between ta and the blocks of resource found in P (a);

(c) make a consumption links between ta and the blocks of resource found in P (a);

4. return the built QPN as result;

Example 4.6.1. Algorithm 1 is applied to the ping-pong coordination protocol in order to
build the associated QPN. The parameters, G = (A,R, P,C), d and κ are similar to section
[4.5.2, page 108].
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4.6 Validating the Conversations According to a Coordination Protocol 113

Algorithm 1 Building the structure of the QPN from the DBCM coordination protocol
1: function FromCoordinationModel2QPN(cm,x0,d,κ) . cm

represents the coordination model structure, x0 the axiom of the coordination model,
d is the set of resources found in the roles-cut and κ represents a given recognition
functions mapping.

Require: satisfies roles-cut constraints(κ,d)
2: resource2block ← new map() . This is a mapping that links each resource node to

its block.
3: qpn← new QPN() . This is the QPN that is returned by this function.
4: for all r ∈ cm.getResourceNodes() do
5: b← new block(r)
6: if r ∈ x0 then
7: b.getInputPlace().setMarking(1)
8: else
9: b.getInputPlace().setMarking(0)

10: end if
11: if r ∈ d then
12: b.getTransition().setCrtlFunction(κ(r))
13: else
14: b.getInputPlace().setCrtlFunction(0)
15: end if
16: resource2block[r]← b

17: qpn.addBlock(b)
18: end for
19: for all a ∈ cm.getActivityNodes() do
20: t← new transition(a)
21: qpn.addSimpleTransition(t)
22: for all r ∈ cm.getProducedResources(a) do

qpn.makeBlockProductionLink(resource2block[r],t)
23: end for
24: for all r ∈ cm.getConsumedResources(a) do

qpn.makeBlockConsumptionLink(resource2block[r],t)
25: end for
26: end for
27: return qpn
28: end function
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114 Chapter 4 : Coordinating the Autonomous Agents

The resulting QPN is:

QPN = (P, T, I, O, F, q)

P = {p0, p1, p2, p3, p4, p5}
T = {t0, t1, t2, t3, t4, t5}

I =



I(t0) = {p0}
I(t1) = {p2}
I(t2) = {p4}
I(t3) = {p1}
I(t4) = {p3}
I(t5) = {p5}

O =



O(t0) = {p1}
O(t1) = {p3}
O(t2) = {p5}
O(t3) = {p2}
O(t4) = {p4}
O(t5) = {p2}

F =



F (t0) = 0

F (t1) = λ(x) : (x = 0);

F (t2) = λ(x) : (x = 1);

F (t3) = 0

F (t4) = 0

F (t5) = 0
q = empty sequence

The resulting QPN is presented in Figure 4.12. The figure shows also that all the axiom
elements have been initialized with a marking equals to 1. In fact, these resources are present
initially within the system. So, the QPN starts by firing the transitions that consume the
axiom places and then follows the execution rules presented in section [4.6.2, page 110].

4.6.4 Algorithm to Validate Conversations using the QPNs

The previous section has presented how the structure and the marking of the QPN are gener-
ated from a DBCM coordination protocol. The QPN implements the same order constraints
on the actual resources as in the coordination model. To recognize a conversation between
agents, the sequence of the exchanged messages are considered as the queue of the QPN. If
there is an execution path that empties the queue of the QPN, then the conversation is valid.

The control of the validity is performed incrementally. This means that the validity of
the conversation is checked each time a new message is exchanged among the coordinating
entities. Consequently, the invalid conversations that do not follow the order constraints of
the coordination protocol are detected since the occurrence of the first error.
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4.6 Validating the Conversations According to a Coordination Protocol 115

Figure 4.12: The QPN associated to the ping-pong coordination protocol.
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116 Chapter 4 : Coordinating the Autonomous Agents

This section presents a set of algorithms to validate incrementally the conversations. Sev-
eral QPNs may be used in this process. In fact, by following an execution path, a QPN may
offer different transitions that are fireable. This represents the different alternatives of the
QPN. Some of these transitions are not in a conflict. So, no matter which transition is fired
first, the final result is still the same. However, some of the transitions are conflicting and the
order of execution changes the final result. There are two conflicting situations:

� conflict on tokens: within classical Petri Nets transitions are conflicting when they
consume tokens from the same places;

� conflict on messages: within QPN another conflict is introduced. It concerns the message
queue. In fact, when the control functions associated to different transitions recognizes
the same message of the queue.

Each conflict situation represents an alternative of the execution path of the QPN. To
explore all the possible execution paths offered by a single QPN, different QPNs are used in
order to represent the alternatives resulting from the conflicts either on tokens or messages.
Consequently, when a QPN offers different alternatives, let us say n different alternatives,
then n − 1 QPN are created by ’cloning’ the current QPN and each of these QPNs fires a
particular transition.

Algorithm 2 Algorithm to validate incrementally a conversation according to a coordination
model
1: procedure ControlConversation(cm,x0,d,κ)
2: init qpn ← CoordinationModel2QPN(cm,x0,d,κ) . see Algorithm 1
3: qpn set ← { init qpn }
4: while m← GetNewExchangedMessage() do . Gets from the system the

observed message exchanged during the coordination process.
5: test← IsTheConversationValid(m,qpn set) . see Algorithm 3.
6: if ¬test then
7: RaiseException(”Invalid Conversation”)
8: end if
9: end while

10: end procedure

The inputs of Algorithm 2 are the coordination protocol, the axiom, the roles-cut and the
control function mapping. The first step, line 2, builds the QPN associated to the coordination
protocol using Algorithm 1. When a message has been observed (line 4) a call is made to
the function defined in Algorithm 3 in order to check if the conversation is still valid or not.
Notice that this function takes as argument the newly observed message and the set of QPNs
representing the state of the conversation. If the test fails, an exception is raised informing
that the conversation is no longer consistent with its related coordination protocol.

The function presented in Algorithm 3 takes as argument the newly observed message and
the set of QPNs. First, a copy is made of the QPNs set, line 3, to avoid confusion with the
loop of line 4. Each QPN is updated by appending its queue by the incoming message (line 5).
The QPN is then asked to validate the conversation using the function defined in Algorithm 4.
The QPN returns a Boolean value informing if the queue of the messages has been recognized
or not. Besides, the set of the QPNs is updated by inserting the new alternatives that have
been produced during the execution path. If at least one QPN has recognized its message
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4.6 Validating the Conversations According to a Coordination Protocol 117

Algorithm 3 IsTheConversationValid function used in Algorithm 2
1: function IsTheConversationValid(m,qpnset)
2: global result ← ⊥
3: qpnset copy ← qpnset . Make a copy of the set.
4: while (n← qpnset copy.getNextElement()) 6= 0 do
5: n.getQueue().append(m) . The queues of the QPNs are updated by appending

the newly observed message.
6: local result ←ValidateByThisQPN(n,qpnset) . see Algorithm 4.
7: global result ← global result ∨ local result
8: end while
9: if global result then

10: qpnset← qpnset copy . Update the state of the conversation
11: end if
12: return global result
13: end function

queue (line 7), the conversation is valid and a true Boolean value is returned. Otherwise a
false Boolean value is returned (line 2).

The function presented in Algorithm 4 checks the validity of the conversation according
to a given QPN and its alternatives. The initial QPN and the set of QPNs are taken as
argument of the function. The function asks the initial QPN to follow an execution path
until no fireable transitions are available (line 3). If the queue of the QPN has been emptied
during this process, this means that the sequence of messages has been recognized by the
QPN and consequently the conversation is valid (the true Boolean value is returned). On the
other hand, if the queue is not empty this means that the sequence of messages has not been
recognized and consequently the conversation is invalid (the false Boolean value is returned).
The alternatives that have been generated during the execution process are stored in the set
passed as parameter. If the QPN that was given as parameter of the function validates the
conversation and is not member of the global QPNs set, it is added to this set. On the other
hand, if it does not recognize the conversation and is member of the global QPNs set, it is
removed from this set. The function is then recursively applied to the alternatives (line 17).
When the initial QPN or at least one of its alternatives validate the conversation, a true
Boolean value is returned. Otherwise a false Boolean value is returned.

Validation and Limitations of the Presented Algorithms

The function presented in Algorithm 2 terminates only under some assumptions made on the
structure of the QPN generated from the coordination protocol. In fact, the generated QPN
should not contain any free cycle. A free cycle is a cyclic path found in the QPN where all the
transitions within this path do not depend on the queue. This means that all the transitions
of the cyclic path are associated with control functions equal to 0. This creates a problem
since the QPN, as for classical Petri Nets, can be always alive and does not reach a ’dead’
state. So, the statement of line 3 of Algorithm 4 does not terminate and consequently the
whole algorithm does not terminate. Therefore, the presented algorithms are well defined only
on coordination protocols that generate QPN without free cycles.

This restriction does not restraint the expressiveness of the DBCM coordination protocols.
In fact, the main goal of the DBCM is not to model the internal activities of roles but the
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118 Chapter 4 : Coordinating the Autonomous Agents

Algorithm 4 ValidateByThisQPN function used in Algorithm 3
1: function ValidateByThisQPN(n,qpns pool)
2: sub qpns ← {}
3: result ← n.validate(sub qpns) . The alternatives that are found during the execution

of the QPN are stored in the set ’sub qpns’.
4: if result then
5: . This QPN has recognized the conversation.
6: if n /∈ qpnset then
7: qpns pool.addElement(n)
8: end if
9: else

10: . This QPN has not recognized the conversation. It should be removed from the
pool of QPNs

11: if n ∈ qpnset then
12: qpns pool.removeElement(n)
13: end if
14: end if
15: for x ∈ sub qpns do
16: if x /∈ qpns pool then . [optimization]Avoids to call the function on the same

QPN structure and the same state several times.
17: sub result ← validateByThisQPN(x,qpns pool) . Recursive call to the

function.
18: end if
19: result = result ∨ sub result
20: end for
21: return result
22: end function
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4.6 Validating the Conversations According to a Coordination Protocol 119

relationships among the activities of the different roles. Since these relationships are expressed
by an exchange of resources through the roles-cut, this implies that the blocks corresponding
to the resources of the roles-cut are always associated to a non-zero recognition function. So,
the generated QPN does not contain free cycles.

Having this assumption on the structure of the generated QPN, one can prove that the
defined algorithms always terminate in a finite amount of time.

Proof. An algorithm that emulates the execution of a Petri Net (called also an exploration
algorithm) terminates in a limited time ⇐⇒ the graph of reachable states for this Petri Net,
given an initial marking, contains only finite paths. The graph of reachable states is a simple
digraph, where the nodes represent the different states of the Petri Net. The state of the Petri
Net is defined by the number of tokens found in each place. A directed arrow, labelled by a
transition, is made between two state nodes, if one can reach the state at the end of the arrow
from the state at the beginning of the arrow by firing the transition.

For the QPN, the state is not only defined by the marking of the places but also by the
queue of the actual resources. So, the nodes of the reachable states graph include the marking
and the state of the queue.

For any QPN, one can notice that, by following the paths in the reachable states graph,
the size of the queue remains either unchanged: this means that a standard transition has
been fired or decrease by one: this means that a transition associated to a non-null control
function has been fired.

So, the only way to find an infinite path in the reachable states graph of a QPN is to find
a path that does not modify the queue. But this is simply impossible in QPNs that do not
contain free cycles. In fact, each cycle in the QPN must have at least one transition that
modifies the state of the queue. This implies that the reachable states graph does not contain
infinite paths.

For instance, let us suppose that such infinite path, s = s0
t0→ s1 sn..., can be found in

the states graph associated to a QPN that does not contain free cycles. The fact that the QPN
does not contain free cycles means that there is not an infinite path that does not contain a
message consuming transition:

∀n ∈ N,∃m ∈ N,m > n :

{
s = s0 sn sm−1

tm−1→ sm...

F (tm−1) 6= 0
(4.2)

Since, the queue of the QPN is a finite sequence, there is surely a message consuming transition,
let say tk, that will empty the queue:

∃k ∈ N

{
s = s0 sk

tk→ sk+1...

The queue in the state sk+1 is empty.

By applying the result of equation 4.2, there is a fireable transition tk′ , k
′ > k that belongs

to the states path and that consumes a message from the queue. However, tk′ may not be
fireable since the queue remains empty after the state sk: this contradicts the fact that the
path is infinite.

Finally, since all the paths of the QPN state graph that does not contain free cycles is
finite, any exploration algorithm (such as algorithm 2), that follows these paths terminates in
a limited time.
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120 Chapter 4 : Coordinating the Autonomous Agents

4.7 Link between the Generated Resource Patterns and the

QPNs

[I have to complete this section with the proof to demonstrate that the Rewriting System and
the QPN are equivalent.]

4.8 The XML Representation of DBCM Coordination Proto-

cols

A specific DTD, presented in Annex D.1.1, defines an XML-based formalism to express the
coordination protocols. The elements of this DTD are described as follows:

� CoordinationGraph: this is the root element of any coordination protocol. This
element is composed of a sequence of ResourceNode; ActivityNode; ProductionLink;
ConsumptionLink and ControlFunction. Only one attribute is associated with this
element:

– name: this represents the name that is given to the coordination protocol.

� ResourceNode: This element represents the resource node. The attributes of this
element are:

– id: this attribute represents a unique identifier of the resource node;

– label: this attribute represents a textual description of the resource node;

– group: this attribute represents the role that is associated to the resource. If the
resource node belongs to the roles-cut, this field should contain ’roles-cut’ as value;

– axiom: when this attribute is set to ’true’ the resource node is considered as an
axiom of the coordination protocol;

– epsilon: when this attribute is set to ’true’ value, this means that a zero control
function is associated to the resource node; otherwise a control function is associated
to the resource node;

– control-function: this attribute represents a reference to the ControlFunction

element that defines the resource control function associated with this resource
node.

� ActivityNode: this element represents an activity node of the coordination protocol.
The attributes that are associated with this element are the following:

– id: this attribute represents a unique identifier of the activity node;

– label: this attribute represents a textual description of the activity node;

– group: this attribute represents the role that is associated to the activity. If the
activity node belongs to the ’roles-cut’, this field should contain ’roles-cut’ as value.

� ControlFunction: this element represents the control function that is associated to
a resource node in order to recognize the actual resources. This node encapsulates an
unparsed text section that includes the algorithmic definition of the control function
using a standard programming language 4. The attributes that are associated with this
element are the following:

4C++ has been considered for this work.
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4.8 The XML Representation of DBCM Coordination Protocols 121

– id: this attribute represents a unique identifier of the control function.

� ProductionLink: this element represents a production relationship among an Activ-

ityNode and a ResourceNode. The attributes that are associated with this element
are the following:

– resource: reference to ResourceNode element.

– activity: reference to ActivityNode element.

� ConsumptionLink: this element represents a consumption relationship among an Ac-

tivityNode and a ResourceNode. The attributes that are associated with this element
are the following:

– resource: reference to ResourceNode element.

– activity: reference to ActivityNode element.

To design the coordination protocols, an intuitive graphical editor has been developed. So,
the users have not to manipulate directly the XML descriptions of the coordination protocols,
but use simple graphical components. The editor offers some other tools such as free-cycles
detection and export coordination graphs to the XML format.

Some python scripts, cg2dot.py and cg2petrinetdot.py, have been developed in order
to transform the XML description of the coordination protocols into the coordination digraph
and the Petri Net graphical representation using the Graphviz graph drawing tool5.

Figure 4.13: The code generation process starting from the XML description of a coordination
model.

5 Graphviz is an open source graph drawing software developed by AT&T Labs. The web page of this tool

is www.research.att.com/sw/tools/graphviz
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122 Chapter 4 : Coordinating the Autonomous Agents

The XML description of the coordination protocols has also been used as an input for a
script that generates automatically the source code of the conversation controller written in
the C++ programming language. This process is illustrated by Figure 4.13. The user has
only to design the coordination protocol and to compile the generated source code into either
an executable program for test purposes or a library to be included as a component in other
systems. For instance as shown by section [4.9, page 122], the conversation controllers are
used within the MIC∗ DE in order to monitor the conversations of the agents according to
predefined coordination protocols.

4.9 Integrating the Coordination Framework within MIC∗

Chapter 3 has presented the MIC∗ DE. Within this model, the interaction is seen as a partic-
ular evolution law that modifies the inboxes of the agents according to the outboxes of other
agents found within a particular interaction space.

The results on coordination presented in this chapter are integrated to the MIC∗ DE by
considering the environmental dynamics. In fact, one can define an interaction law among the
interaction objects that validates the ongoing conversation before modifying the inboxes of
the perceiving agents. Consequently, the interaction among the agents is performed only and
only if the conversation is consistent with its coordination protocol. When the conversation
is invalid, the agent does not perceive any interaction object in its inbox. Furthermore, the
DE can establish the responsibility of the agent that has violated the established norm on
coordination.

The integration of the coordination into the MIC∗ framework can be done following two
approaches:

1. global control of the coordination process: within this approach the conversation is
monitored globally. So, the DE as an observer is assumed to maintain a global coherent
state of the conversation in order to check its validity. Section [4.9.1, page 122] explores
the advantages and limits of this approach.

2. local control of the coordination process: within this approach the DBCM coordination
graph is subdivided into several subparts representing the roles. The DE controls the
overall coordination process by controlling, independently, the coordination process of
each role. This approach is discussed in section [4.9.2, page 123].

4.9.1 Global and Centralized Control of the Coordination Process

This approach implies that the DE as an observer is able to observe the whole coordination
process and to maintain its state coherently. Conceptually, the composed DEs as shown in
Figure 4.14 share a common data space where the states of the ongoing conversations are
stored and retrieved. For instance, when the agent ’A’ that is deployed on the DE (1) sends
a message; the DE (1) retrieves the sate of the conversation; rebuild the set of QPNs using
the retrieved state and executes Algorithm 3. When the interaction is remotely performed in
the DE (2); this environment is also able to retrieve the state of the conversation and thus to
control its consistency. If the conversation is valid then the interaction can be performed (for
instance with agent ’B’). The state of the conversation is then updated in the shared data
space for future controls.
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4.9 Integrating the Coordination Framework within MIC∗ 123

shared data space

MIC*
(1)

MIC*
(2)

conversation-id state
194.49.105.01.123.41
194.49.105.01.123.42
194.49.105.01.123.43

{((p2,2)),((p3,1))}
{((p3,1))}

{((p0,1),(p7,1))}

composed environments

read/write   

iobject
conv-id 194.49.105.01.123.41
protocol-id fipa-request
performative
content

inform
(:price 10)

Agent 
(A)

Agent 
(B)

Figure 4.14: The global control of the coordination process implies a shared-memory to
manage the states of the conversations. This approach contradicts the assumptions made on
the properties of targeted distributed systems.

However this approach contradicts the assumptions of our work. In fact, the assumptions
that were previously made on the targeted software systems such as openness, dynamical
composition and locality of interactions made the maintenance of a globally shared memory
or data space impossible. So, this approach is usable only when there is a single closed DE
that cannot be composed with other environments.

4.9.2 Local and Decentralized Monitoring of the Coordination Process

To be consistent with our work assumptions, one has to provide a solution that does not
require sharing memories among the DEs (cf. Figure 4.15). So, the DE controls the validity
of the conversations of its local agents.

The global coordination graph is subdivided into several coordination sub-graphs. Each
sub-graph represents the coordination graph of a single role. The role sub-graph includes all
the activities of the role and their related produced and consumed resources. Besides, for
each produced resource found in the roles-cut the role coordination sub-graph models the fact
that this resource is consumed by another role’s activity by introducing a virtual activity.
Without these virtual activities, the generated QPN would have some problems since the
token of the produced resources are never decremented. Figure 4.16 shows how the ping-
pong coordination protocol is divided into coordination sub-graphs representing the ’ping’
and ’pong’ roles. Figure 4.17 shows the corresponding QPNs.

Obviously, the DEs have to implement some association mechanisms to join the distributed
parts of the coordination graph. For instance in Figure 4.16, the resource node ’Ping’ of the
coordination sub-graph (b) should be linked to the resource node ’Ping’ of the sub-graph
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124 Chapter 4 : Coordinating the Autonomous Agents

MIC*
(1)

MIC*
(2)

conversation-id state
194.49.105.01.123.41
194.49.105.01.123.42
194.49.105.01.123.43

{((p2,2))}
{((p3,1))}

{((p0,1),(p1,1))}

composed environments

read/write

iobject
conv-id 194.49.105.01.123.41
protocol-id fipa-request
performative
content

inform
(:price 10)

Agent 
(B)

conversation-id state
194.49.105.02.123.41
194.49.105.02.123.42
194.49.105.02.123.43

{((p2,2)),((p3,1))}
{((p3,1))}

{((p0,1),(p7,1))}

Agent 
(A)

read/write

Local independent data space Local independent data space

Figure 4.15: Decentralized control of the coordination process implies only the management
of local independent memories.

(a) Global CG

(c) Pong_Role CG

(b) Ping_Role CG

Figure 4.16: Example of the decomposition of the global coordination graph into several
coordination sub-graphs.
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4.9 Integrating the Coordination Framework within MIC∗ 125

(a) Global QPN

(c) Pong_Role QPN

(b) Ping_Role QPN

Figure 4.17: The QPN of the global coordination graph of Figure 4.16 and its decomposition
on roles.

(c). Without this association mechanism, the coordination sub-graphs that do not contain
the axiom resources are always ’dead’ as it is the case of the sub-graph (c). This association
is introduced later in the definition of the interaction operators that handles the interaction
among the interaction objects.

The CoordinationMessage type is introduced in order to include the fields describing the
used coordination protocol, namely the protocol-id field, and the unique identifier of the
conversation, namely the conversation-id field. Other fields used for routing the interaction
objects among the agents are also used such as the sender-role and receiver-role for
social-level routing and receiver-id, sender-id for agent-level routing (cf. §3.5.1, page 84).

The monitoring of the coordination process is performed in two phases. The first phase
concerns the emission of the interaction objects by agents. The question here is to know
whether the agent is allowed or not, depending on the state of the conversation, to emit an
interaction object. The second phase concerns the reception of the interaction objects. The
question here is to know whether an agent is allowed or not, depending on the state of the
conversation, to receive an interaction object.

Within the MIC∗ model, the control of interaction objects emitted by the agents is per-
formed using the filter operators (cf. §3.4.5, page 82). The filter operator is a unary function
that alters the interaction objects emitted by the agent. A special filter operator named
CoordinationFilter is defined on the following domain: CoordinationMessage → Coordi-

nationMessage. The algorithmic definition of this operator is presented in Algorithm 5.

This coordination filter takes as argument the CoordinationMessage interaction object.
The first step (lines 2 to 4) retrieves some useful information from the interaction object
such as: the conversation unique identifier, the identifier of the coordination protocol, and
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126 Chapter 4 : Coordinating the Autonomous Agents

IObject

Message

Coordination
Message

Figure 4.18: Introduction of the CoordinationMessage type in the type hierarchy of the
social framework.

Algorithm 5 Algorithmic definition of the filter function to control the emitted messages
from an agent during a coordination process.
1: function CoordinationComputationFilter(msg)
2: convID ← msg[’conversation-id’]
3: protoID ← msg[’protocol-id’]
4: roleID ← msg[’sender-role’]
5: if not knownProtocol(protoID) then
6: return 0
7: end if
8: conversation state ← getConvStateById(convID)
9: if conversation state = 0 then

10: conversation state ← getInitConvState(protoID, roleID)
11: end if
12: valid ← IsValidConversation(msg,conversation state)
13: if valid then
14: updateConversationState(convID,conversation state)
15: return msg

16: else
17: return 0
18: end if
19: end function
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4.9 Integrating the Coordination Framework within MIC∗ 127

the played role of the emitter. After this initialization phase, the operator checks if the
coordination protocol is registered within the interaction space (line 5); if not the operator
returns 0. This means that the computation of the agent has been canceled.

Obviously, the implementation provides a mechanism in order to inform the agent about
the reason of the failure. Line 8 retrieves the state of the conversation by its identifier. If the
conversation was not present in the local data space of the DE, this function returns a null
value. When a null value is returned, this is interpreted as the creation of a new coordination
process. So, a new initial conversation state is created by line 20.

To create the initial state of the conversation the name of the coordination protocol and
the role of the emitter are used. Notice that the state of the conversation is represented by
the set of QPNs generated from the coordination graph. Initially, this set contains only one
QPN.

Line 12 checks the validity of the conversation by considering its current state and the
incoming interaction object. When the conversation is validated, the conversation state para-
meter is modified (call by reference). Otherwise, this parameter is not changed.

If the conversation is validated, then the entry of this conversation is updated in the local
data space and the interaction object is returned. Otherwise an empty interaction object is
returned to the MIC∗ DE. When an empty interaction object is returned, MIC∗ does not
follow the computation evolution law by an interaction law. In other words, if an empty
interaction object is returned by the filter operator nothing happens and the state of the
DE is unchanged. On the other hand, if a non-zero interaction object is returned, the MIC∗

DE follows the computation of the agent by an interaction evolution law within the same
interaction space.

The second step checks whether an agent is authorized to receive the interaction object.
This is performed using the interaction operator: CoordinationInteractionOperator. This
operator is defined algorithmically by Algorithm 6. It takes as argument the sensor interaction
object an instance of SocialRole or AgentIdentifier type; and the effector interaction
object an instance of the CoordinationMessage type.

The initialization phase (line 2 to 7) retrieves some useful fields from the interaction
objects. Lines 8 to 17 check if the receiver’s sensor is able to perceive the sender’s effector

using only the routing information. If the sent message cannot be perceived by the sensor

at the routing level, the interaction function returns a zero. If the routing information are
correct then the interaction function gives the control to the coordination level.

The state of the conversation is retrieved from the local data space using the conversation
unique identifier (line 18). If the conversation was not present in the local data space, a new
conversation state is created for the role of the receiver.

The initial conversation state is the QPN generated from the sub-coordination graph of the
receiver’s role (line 20). Since, the supervision of the coordination process is performed in a
distributed manner, one needs to associate the sub-coordination graphs in order to rebuild the
original coordination graph. The joinRessources function performs this operation: it takes
as arguments the name of the coordination protocol, the emitter role, the receiver role and
the emitted interaction object. The joinRessources function checks the list of resources that
can be exchanged from the producer role to the consumer role and identifies the concerned
resource using the control functions. When the resource node has been identified, the input
place of the resource block is incremented by one. Consequently, the block of this resource
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128 Chapter 4 : Coordinating the Autonomous Agents

Algorithm 6 Algorithmic definition of the interaction function to control the reception of
messages during a coordination process.
1: function CoordinationInteractionOperator(sensor,effector)
2: convID ← effector[’conversation-id’]
3: protoID ← effector[’protocol-id’]
4: toRecvID ← effector[’receiver-agent-id’]
5: toRoleID ← effector[’receiver-role’]
6: senderRole ← effector[’receiver-role’]
7: recvRole ← sensor[’role-id’]
8: recvID ← sensor[’agent-identifier’] . If the interaction object is not an instance of

the AgentIdentifier type this returns a null value.
9: if toRoleID = recvRole then

10: if toRecvID != 0 then
11: if toRecvID != recvID then
12: return 0
13: end if
14: end if
15: else
16: return 0
17: end if
18: conversation state ← getConvStateById(convID)
19: if conversation state = 0 then
20: conversation state ← getInitConvState(protoID, roleID)
21: end if
22: conversation state← joinRessources(protoID,senderRole,recvRole,conversation state,effector)
23: valid ← IsValidConversation(effector,conversation state)
24: if valid then
25: updateConversationState(convID,conversation state)
26: return effector

27: else
28: return 0
29: end if
30: end function
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4.9 Integrating the Coordination Framework within MIC∗ 129

becomes fireable and can pop the interaction object from the queue of the QPN. The next
step is to check the validity of the conversation (line 23). If the conversation is valid then the
conversation state is updated in the local data space and the effector is returned as of the
interaction result; otherwise a zero is returned.

4.9.3 Complete Example of the Distributed Monitoring of the Coordination
Process

In order to show how the distributed monitoring of the coordination, we consider the ping-pong
example. We assume that the system is composed by the following elements:

� m1 is MIC∗ DE that contains an interaction space that represents the ’PingPong’ group.

� the ’PingPong’ interaction space contains all the operators described in the social frame-
work (cf. §3.5, page 83), the coordination interaction operator and the coordination
filter.

� m2 is MIC∗ DE that contains also the social interaction space ’PingPong’;

� m1 and m2 are composed.

� ping and pong agents: these agents are deployed respectively on m1 and m2 and play
respectively the ’Ping’ and ’Pong’ social roles.

Initially, the ping agent starts the coordination process by emitting the following interac-
tion object in the social interaction space ’PingPong’:

CoordinationMessage
protocol-id PingPongCoordinationProtocol
conversation-id 1000000F
sender-role PingRole
sender-id agent 01
receiver-role PongRole
content ’0’

Since the emitted interaction object is instance of the CoordinationMessage type, the
m1 DE applies the coordination filter presented in Algorithm 5. The ’PingPongCoordination-
Protocol’ is assumed to be a registered protocol within the interaction space, so the line 5 of
Algorithm 5 returns true.

However, the result of the function call in line 8 of Algorithm 5 is a null value since the
local data space of m1 does not contain any information about the conversation identified as
1000000F. So, the initial state of the sub-coordination graph corresponding to the ’PingRole’
is built. This initial state is returned by the function call of line 20, Algorithm 5. The
initial state contains only one QPN that corresponds to the coordination graph (b) in Figure
4.17. The queue of this QPN is appended with the interaction object and the validity of the
conversation is checked using Algorithm 3.

The result of this algorithm is presented in Figure 4.19. The conversation is valid since
the QPN has emptied the queue of messages. Consequently, the emitter agent has the right
to emit the coordination message. The filter operator returns the initial message as result and
stores the state of the conversation in m1 ’s local data space.
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130 Chapter 4 : Coordinating the Autonomous Agents

Figure 4.19: The initial and final state of the QPN associated to the ’PingRole’ sub-
coordination graph.

Since the filter operator has returned a non-zero interaction object, m1 follows the com-
putation evolution law by an interaction evolution law.

However, since no other agent is present locally in the interaction space, the interaction is
forwarded remotely to the peer environment m2. When m2 receives the request for the remote
interaction from m1, it tries to find an interaction operator with the matching types.

The coordination interaction operator is a good candidate since it satisfies the constraints
of types. So, a call is made to this operator to get the result of the interaction. The rout-
ing information of the coordination message are correct (lines 8–17 of Algorithm 6), so the
interaction operator passes to the coordination level.

Once again, the operator asks to get the state of the conversation using its identifier. But,
since the conversation has just started in m2 a null value is returned.

The initial state of the conversation is requested but this time it concerns the receiver role,
namely the ’PongRole’. The initial state corresponds to the graph (C) of Figure 4.17.

Before checking the validity of the conversation, the resources of the producer and consumer
roles are joined (line 22 of Algorithm 6). Figure 4.20 shows the result of the resource joining
mechanism for the QPN of the ’PingRole’ sub-coordination graph. The input place of the
’ping’ resource is incremented by one. In fact, the control function of the ’ping’ resource
recognizes the coordination interaction object with ’0’ as value of the ’content’ field.

The final step is to check the validity of the conversation (line 23 of Algorithm 6). The
initial and final states of the QPN are presented in Figure 4.21. The ping role sub-coordination
graph has validated the conversation, so the consumer role is able to receive the interaction
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4.9 Integrating the Coordination Framework within MIC∗ 131

Queue=[] Queue = []

JoinRessources
(
PingPongCoordinationProtocol
PingRole,
PongRole,
{qpn},
<<‘0’>>
)

Figure 4.20: Application of the resource joining algorithm between the PingRole and the Pon-
gRole. The control function of the resource ’ping’ has recognized the interaction object that
contains ’0’ as content. Consequently, the input place of this resource has been incremented
by one.

Figure 4.21: The initial and final state of the QPN corresponding to the ’PongRole’ sub-
coordination graph.

te
l-0

01
42

84
3,

 v
er

si
on

 1
 - 

23
 A

pr
 2

00
7



132 Chapter 4 : Coordinating the Autonomous Agents

object (line 23 of Algorithm 6). The state of the conversation is then stored in the local data
space.

4.10 Conclusion

In this chapter we have presented an approach to design coordination protocols and to check
their consistency by only monitoring the exchanged messages among the coordinating entities.
The formalism of the coordination protocol is based on the dependency relationship between
the activities and adapted to the MAS paradigm. This formalism is suitable to express par-
allel and simultaneous production or consumption of resources. The conversations that are
generated by a coordination protocol are formally defined and practically validated using the
QPNs. Consequently, by contrast to current MAS approaches, the structure of the conver-
sations among the agents is not explicitly given but derived directly from the coordination
protocol. The formalism to express the coordination protocols is independent on the number
of the roles that are implied on the coordination process. In fact, currently the coordination
protocols are generally expressed between exactly two roles. The DBCM can express the
coordination process between more than two roles.

The DE, which is considered as the coordination medium, is responsible for monitoring the
conversations according to the coordination protocols. Section [4.9, page 122] has presented
the integration between MIC∗ and the coordination framework. Using the DE as a mean to
control the coordination process has also been used in other works like in [Ricci et al. , 2004].
A. Ricci et al. suggest to define the DE as a set of artifacts that offer facilities to the agents.
Hence to coordinate their joint activities the agents use a coordination artifact. The Agent
Coordination Context (ACC) is then included in the coordination artifact to control the
actions of the agents before their injection within the TuCSon tuple space. This principle
is similar to the filter function that has been defined for the integration of the coordination
framework and the MIC∗ DE.

In order to use to results of this chapter the next chapter presents a practical engineering
framework aimed to design and build applications for the EAC context. This engineering
framework uses the social metaphor and considers the applications of the EAC context as open
and self-contained artificial societies of agents. The interoperability among the independent
artificial societies is tackled from the coordination point of view. Hence, the interface of an
artificial society is seen as the set of coordination protocols that this society defines to interact
with the external world. The consistency between the agents’ actions and the coordination
protocols is a non-negligible feature to protect each artificial society from the actions that
do not follow the established scheme of interoperability. Consequently, even if the artificial
societies are defined in an open and dynamical context, such as the EAC context, they are
still able to control and preserve the consistency of their design models at the run-time.
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Chapter 5

Building Open Software Systems as

Open Artificial Societies

”Il n’y a pas de recherche appliquée, mais des applications de la recherche”
Louis Pasteur.

5.1 Introduction

Since the early stages of DAI, distributed software systems have been intuitively considered as
artificial societies. For instance, M. Fox in [Fox, 1981] compares distributed software systems
to a human societies: in both of these systems autonomous individuals, that are rationally
bounded (cf. §2.5.1, page 38), interact and coordinate their actions to achieve some personal or
collective goals. To illustrate this sight, M. Fox describes the HEARSAY system as an organ-
ised artificial society of heterogeneous experts. These experts interact through a blackboard
architecture in order to achieve the systemic function that is the speech recognition.

Carl Hewitt, who has introduced the Actor model, has also been inspired by the social
metaphor. For instance, one can cite the following statement taken from Hewitt’s paper
[Hewitt, 1976b]:

“...we present an approach to modeling intelligence in terms of society of com-
municating knowledge-based problem solving experts.”

So, the actors are viewed as individuals that populate an artificial society and coordinate
their activities by exchanging messages. The accomplishment of the systemic functions is a
side effect of the interactions that hold between the actors.

These pioneer works have only introduced the idea of viewing distributed software systems
as artificial societies. Still, the organizational structure of artificial societies remains implicit.
In fact, there is not a clear separation of concern between the abstract level that organizes
the society and the concrete level that defines the individuals.

To illustrate this decomposition, let us consider the example of a factory. The factory is
a society that owns some systemic functions such as transforming some resources into goods
while respecting the environment and offering good conditions of work to the employees. To
achieve these functions, each individual owns its proper goals. An external observer of the
factory can observe only the individuals that work in the factory. The behaviors of these
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134 Chapter 5 : Building Open Software Systems as Open Artificial Societies

individuals can be explained only when considering the abstract level of the society that
organizes the concrete level in a way that helps to achieve the societal functions. For instance,
some individuals are organized in a supply chain in order to optimize the production of goods.
The interaction of the individuals is also organized in order to optimize the flow of information
and to protect some confidential data.

The MAS paradigm clearly distinguishes between the abstract and concrete levels. The
concrete level is the observable part of the society. Obviously, the elements of the concrete
level are steered and organised by the abstract level. The MAS paradigm has also provided
organizational abstractions to specify the organisation of the concrete level such as roles, goals,
groups, tasks, coordination and so on.

The discernment between the abstract and concrete levels has also separated the concerns
for the engineering of MASs. On one hand, the abstract level specifies the organizational
structure that organizes the artificial society. On the other hand, the concrete level is con-
cerned with the design and the implementation of the individuals that populate the artificial
society. The objective of this chapter is to present a practical engineering framework that
follows this decomposition of concerns. In this engineering framework we target the EAC
context by considering open software systems as open and interacting artificial societies. So,
the openness of the artificial society is explicitly handled at the abstract level. In other words,
each artificial society is aware about its openness and describes, at the organization level, how
it can interact and coordinate its actions with other open societies. Besides, the organiza-
tional specifications of the abstract level are translated automatically into software structures
that represents the social deployment environment. So, the consistency between the abstract
level and the concrete level is continuously controlled. This is an essential feature for the
EAC context to control that the actions of autonomous agents are consistent with the design
specifications of the artificial society.

The rest of the chapter is organized as follows: section [5.2, page 134] reviews existing
organizational models used to specify the organization level of MASs; in section [5.3, page
151] we present our proposition of an organizational model that targets the EAC context;
section [5.4, page 158] presents the translation of the organizational specifications into the
MIC∗ DE; section [5.5, page 160] presents a concrete application that has been entirely built
using the presented engineering framework; section [5.6, page 170] presents the simulation
platform that has been developed in order to experiment with EAC applications; section
[5.7, page 174] presents briefly an open project that aims to gather different services that
are deployed in the EAC simulation platform; finally, section [5.8, page 174] concludes the
chapter.

5.2 State of the Art

Several organizational models have been proposed for the specification of MASs. Most of these
models are provided within an engineering methodology1. This state of the art is concerned
only with the organizational models and does not describe the methodological aspects. The
organizational models are studied according to the following criteria:

� organizational topology: within an artificial society each individual is able to interact
with a certain number of other individuals. This defines its acquaintances and the

1An engineering methodology is a predefined sequence of tasks and documents steering the engineering

process.
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5.2 State of the Art 135

acquaintances of all the individuals define the topology of the organization. The topology
can be modeled as a directed graph where nodes represent the individuals and arrows
the acquaintance relationship. This criterion studies how the topology of the artificial
society is specified.

� responsibilities/functions of the individuals: the individuals populating the arti-
ficial society are autonomous agents. These agents are committed2 to accomplish some
functions within their society [Jennings, 1993]. Without this commitment, it is not pos-
sible to build a society that behaves coherently as a whole. This criterion studies how
the agents’ social functions are specified.

� coordination of the individuals: the individuals are aggregated in order to accom-
plish jointly functions that cannot be accomplished when the individuals are taken apart
(cf. §2.5.1, page 38). This criterion studies how the coordination of joint activities is
specified.

� openness of the artificial society: the term ’open’ is overloaded and used to indicate
different properties of a software system. To avoid ambiguities, in the rest of the chapter
the openness of a system refers to its ability to interact with external systems. This
interpretation contrasts with some interpretations found in the literature of MAS and
that relates the openness of a system as its ability to change its own structure by either
accepting or rejecting some elements (cf. §5.3.2, page 152). This criterion studies how
the organizational model specifies the openness of the artificial society.

5.2.1 AAII

AAII is an engineering methodology proposed by D. Kinny et al. in [Kinny et al. , 1996] for
building BDI MASs. AAII decomposes the MAS in two views:

1. external view: this view specifies the organizational structure of the artificial society in
term of roles and conversation protocols.

2. internal view: this view studies the internal architecture of the agents following the BDI
model.

Organizational Topology

The topology of the society is defined by the roles and their interdependencies. The conver-
sation protocols specify how to access the functions offered by each role.

Responsibilities/Functions of the Individuals

The role and interaction models express the functions of the individuals. To obtain these
models, AAII suggests the following steps:

1. identification of the main roles within the system.
2The commitment of an agent to implement a certain function does not imply necessary that this agent will

implement it actually. This is due to the autonomous property of agents (cf. §2.3.2, page 28).
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136 Chapter 5 : Building Open Software Systems as Open Artificial Societies

2. for each role one has to define the offered services and the interactions that are necessary
to offer these services.

3. for each identified service one has to express explicitly the implied interactions by specify-
ing the: (i) conversation protocols, (ii) activation events and (iii) some guard conditions
that guarantee the consistency of the system.

Coordination of the Individuals

The coordination of the joint activities is addressed from a conversational point of view (cf.
§4.2.4, page 96). In fact, the interaction model describes the conversation protocol used in
order to access each function offered by a role.

Openness of the Artificial Society

The AAII is focused on building closed BDI MASs and does not consider the openness of
MASs at the organizational level.

5.2.2 AGR/Aalaadin

Ferber and Gutknecht have proposed the Agent, Group, Role (AGR) model in
[Ferber & Gutknecht, 1998]. The MadKit platform [Gutknecht & Ferber, 2000b] was then de-
veloped as a framework to implement the AGR concepts. The main organizational concepts
of AGR are described as follows:

� group: the MAS is structured by the groups. A group is defined as a set of agents that
play specific roles. It is important to notice that the agents can interact only when they
belong to the same group.

� role: the role represents an abstraction of the function of an agent within a group.

� agent: the authors of the AGR model deliberately did not impose any constraint or
assumption on the internal structure of the agents. Historically, this was a major step
in order to separate the organizational aspects of MASs from the internal model of its
constituents.

Organizational Topology

The topology of the MAS is structured by the set of groups and roles. Indeed, each agent that
plays some roles is able to interact with the agents that play some roles that are member of
the same group.

Responsibilities/Functions of the Individuals

The role concept specifies the functions and responsibilities of the agents.

te
l-0

01
42

84
3,

 v
er

si
on

 1
 - 

23
 A

pr
 2

00
7



5.2 State of the Art 137

Coordination of the Individuals

AGR adopts a conversational view of the coordination. The interaction is defined among the
roles and conversation protocols describe the pattern of messages exchanged during a joint
activity.

Openness of the Artificial Society

While AGR does not explicitly address this issue at the organizational level, the MadKit
platform offers some services in order to distribute an artificial society among several sites or
to merge distributed artificial societies that are called communities.

5.2.3 AUML

AUML (Agent Unified Modeling Language) is an adaptation of the UML notations to the
MAS paradigm proposed by J. Odell et al. [Odell et al. , 2000]. The AUML notations and
especially the one concerning the conversation protocols have gained some acceptance by the
MAS community and are used in several agent-oriented software engineering methodologies.

Organizational Topology

The topology of the artificial society derives from the definition of the roles and their conver-
sation protocols.

Responsibilities/Functions of the Individuals

The functions and responsibilities of the individuals derive from the definition of their roles and
conversation protocols. Besides, the behavior of the agents can be specified using statecharts
and activity diagrams.

Coordination of the Individuals

AUML provides both a conversation and activity view of the coordination. In fact, the coordi-
nation of a joint-activity can be specified by a conversation protocol either using the sequence
diagrams or state charts. The coordination of a joint-activity can also be specified by the flow
of its activities using the UML coordination diagrams.

Openness of the Artificial Society

The openness of the artificial society is not explicitly addressed by AUML. However, AUML
conversation protocols can be used to define the interface of a MAS with the external world.
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138 Chapter 5 : Building Open Software Systems as Open Artificial Societies

5.2.4 CoMoMas

CoMoMas has been proposed by Glaser in [Glaser, 1996] as an extension of the CommonKADS
methodology [Schreiber et al. , 1994]. According to the state of the art presented by C. Iglesias
et al. [Iglesias et al. , 1999], this methodology defines the following models:

� the agent model: this is the central model of the methodology that specifies the agents’
architecture and knowledge.

� the expertise model: this model describes the cognitive and reactive competences of the
agents.

� the task model: this model describes the functional decomposition of the system in term
of a hierarchy of tasks.

� the cooperation model: this model describes the cooperation between the agents using
conflict resolution methods and cooperation means. This model defines the communi-
cation primitives, the conversation protocols and the ontology of conversations.

� the system model: this model defines the organizational aspects of the agent society
such as the roles.

� the design model: this model makes a synthesis of the specifications before the imple-
mentation of the system.

Organizational Topology

The system and cooperation models determine the topology of the artificial society since they
describe the individuals and their interdependencies.

Responsibilities/Functions of the Individuals

The functions of the individuals are specified by:

1. the agent model

2. the task model

3. the expertise model.

The expertise model presents the task allocation that specifies for each agent what task
to perform.

Coordination of the Individuals

The cooperation model uses the conversation protocols as a mean to resolve conflict among
interdependent roles.

Openness of the Artificial Society

The openness of the MAS is not addressed at the organization level by CoMoMas.
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5.2 State of the Art 139

5.2.5 GAIA

The GAIA [Wooldridge et al. , 2000][Zambonelli et al. , 2003] approach considers the MAS as
an organized society of agents. Each agent plays a specific role and interacts with other agents
using a predefined conversation protocol. The GAIA methodology concerns the engineering
phases starting from the collection of requirement until the detailed design without addressing
the implementation phase.

Figure 5.1: The GAIA engineering methodology phases [Zambonelli et al. , 2003].

The steps of the GAIA methodology are described as follows (cf. Figure 5.1):

� collection of requirements: during this phase all the necessary information concerning
the functionalities of the desired software system and of its environment are collected
and studied in order to prepare the analysis phase.

� analysis: during this phase the global MAS is subdivided into several sub-organizations
and the preliminary roles, environment and interaction models are sketched.

� architectural design: the preliminary models of the previous phase are refined during this
phase. The refinement process may imply the identification of new roles and interaction
protocols. The refined models establish the final organizational structure.

� detailed design: this phase describes in detail the model of the agents that implement
the described roles.
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140 Chapter 5 : Building Open Software Systems as Open Artificial Societies

Organizational Topology

The topology of the artificial society is defined in GAIA by the roles and their associated
conversation protocols. In fact, the conversation protocols are defined among couple of roles
and give the acquaintances of the agents.

Functions/Responsibilities of the Individuals

Within GAIA the functions of the individuals are captured by the roles.

Coordination of the Individuals

GAIA handles the coordination of the agents from a conversational point of view. So, in
order to coordinate their joint activities, the agents follow the conversation protocol that is
defined between their roles. The conversation protocol specifies the structure of the dialog
that holds among the agents. However, GAIA does not provide the formalism to describe the
conversation protocols. Only a proposition was made in [Zambonelli et al. , 2003] to use the
AUML sequence diagrams as a formalism to represent the conversation protocols.

Openness of the Artificial Society

The GAIA models do not express the openness of the artificial society at the organizational
level. In fact, the interaction is defined only among internal agents and the organizational
models do not explicitly specify how the artificial society interacts with the external world
and especially with other artificial societies.

5.2.6 MACE

The Multi-Agent Computing Environment (MACE) [Gasser et al. , 1987] is a pioneer multi-
agent platform developed by L. Gasser et al. as a testbed for DAI applications.

Organizational Topology

Within MACE the organizational model does not define the topology of the artificial society.
The topology it is determined either statically by the class of the agent or dynamically by
adding new acquaintances for the agent at runtime using an agent directory service.

Responsibilities/Functions of the Individuals

Each MACE agent owns a set of models about itself and other agents. The model of an agent
contains:

� general information: such as the name, class and the address of the agent.

� the played roles: MACE defines a role as follows:

“a role is an accepted shorthand for a set of expectations.”
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5.2 State of the Art 141

� the skills: representing the capabilities of the modeled agent to achieve some goals.

� the goals: representing what are the state of affairs that the modeled agent want to
reach.

� the plans: representing the sequence of actions that the agent has to follow in order to
achieve its goals.

Coordination of Individuals

The coordination of the joint activities is not treated at the abstract level within MACE. The
agents at the concrete level directly implement the coordination means.

Openness of the Artificial Society

MACE does not address the openness of the artificial society at the organizational level.

5.2.7 MaSE

The Multi-agent Systems Engineering (MaSE) is a software engineering methodology proposed
by M. Wood and S. Deloach in [Deloach, 2001][Wood & DeLoach, 2000].

Organisational Topology

The role and interaction models define the set of roles, their interdependencies and the con-
versation protocols that regulate the conversations among the agents. Consequently, the
acquaintances of the agents are completely defined by these models.

Responsibilities/Functions of the Individuals

MaSE uses the goals and roles to model the functions and responsibilities of the agents. The
analysis phase sketches the goals that are expected from the software system. The goals
are then organized hierarchically. The roles model is derived from the goals hierarchy and
expresses also the independences among the roles. Finally, the tasks model associates each
role with a set of goals to achieve.

Coordination of Individuals

The coordination of the individuals is addressed from a conversational point of view. Indeed,
the interaction model specifies the conversation protocols among the interdependent roles
using finite state automata.

Openness of the Artificial Society

The goal of MaSE is to entirely build a software system as an artificial society of agents. Still,
the software system is closed and the interactions with the external world are not explicitly
handled at the organizational level.
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142 Chapter 5 : Building Open Software Systems as Open Artificial Societies

5.2.8 MASSIVE

MASSIVE [Lind, 2000] is an engineering methodology based on the concepts of features and
views which are defined as follows:

� features: the features are divided in two categories:

1. features of the model: these features concern the design decisions, the constraints
that should be handled and the tests that should be performed;

2. features of the implementation: these features concern the properties of the software
components, particular equipments or a fragment of code.

MASSIVE models the system to be produced and its implementation as a collection of
features that are interconnected by labeled links. This is known as the features graph.

� views: the view is an abstraction of a set of features that are conceptually linked. It is
a semantic projection of the system’s features graph on a particular matter. The set of
all views define the system view of the software system.

The concepts of features and views are the basis of the aspect-oriented programming
(AOP). So, the MASSIVE approach gives a particular view using the AOP concepts that is
suitable for the MAS paradigm.

The MAS system views proposed by MASSIVE are composed by the following views:

1. task view: this view handles the functional aspects of the system. The system func-
tions are translated into a hierarchy of tasks. MASSIVE also models non-functional
requirement of the system in this view.

2. environment view: this view is composed of two sub-views: the environment view from
the developer perspective and the environment view from the agents perspective. In
fact, while the developer has a global view of the environment of the MAS; the software
agents have only a partial view of this environment.

3. roles view: MASSIVE defines the roles as the means that abstract the tasks. Conse-
quently, this view translates the tasks that were defined in the task view in term of
roles.

4. interaction view: this view analyses the communications that occur between the agents
and specifies them in term of conversation protocols.

5. social view: MASSIVE defines the society as a structured aggregation of entities that
have a common objective. This view studies the organizational aspect of the artificial
society.

6. architectural view: this view studies the software architecture that is used to implement
the MAS.

7. system view: this view captures the features that affect several views or the entire
system.
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5.2 State of the Art 143

Organizational Topology

The topology of the artificial society is specified in the interaction view. This view defines the
conversation protocols that establish the acquaintances of the agents.

Functions/Responsibilities of the Individuals

MASSIVE defines two levels of functions: the functions that are expressed during the require-
ment phase; and the internal functions of the system expressed as tasks. These tasks are then
mapped into roles in the role view.

Coordination of the Individuals

MASSIVE adopts a conversational point of view of the coordination. Indeed, the coordination
of joint activities is performed through the conversation protocols which are defined in the
interaction view.

Openness of the Artificial Society:

MASSIVE does not address the openness of the artificial society. This methodology is focused
on building closed software systems without considering the interaction with other artificial
societies.

5.2.9 MAS-CommonKADS

The MAS-CommonKADS [Iglesias et al. , 1996] is a software engineering methodology that
extends the CommonKADS [Schreiber et al. , 1994] for MASs modeling and design. This
MAS-CommonKADS defines the following models:

� agent model: this model specifies some characteristics of the agents such as their reason-
ing capabilities, services and hierarchy. This model also specifies the groups of agents.

� task model: this model describes the tasks carried out by the agents.

� organization model: this model describes both the organization where the MAS is inte-
grated and the organization of the artificial society of agents.

� coordination model: this model specifies the interactions that occur between the agents
and between the human users and the agents.

� design model: this model collects the previous models and defines three other sub-
models:

1. network design: this model specifies the properties of the communication medium
used by the agents.

2. agent design: this model selects the most suitable architecture to design and im-
plement the software agents.

3. platform design: this model selects the most suitable agent development platform.
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144 Chapter 5 : Building Open Software Systems as Open Artificial Societies

Organizational Topology

The organization model specifies the relationships among the agents. The coordination model
precisely describes these relationships and specifies the interactions that occur internally be-
tween the agents and the interactions that occur between the human users and agents.

Responsibilities/Functions of the Individuals

Within MAS-CommonKADS the functions of the individuals are specified by the task and by
the agent models. The tasks are decomposed following a top-down approach and described
by an and/or tree. The agent model describes the services offered by each agent in order to
achieve these tasks.

Coordination of Individuals

The coordination model specifies the conversation and coordination protocols using several
notations such as the MSC, event flow diagrams or SDL state diagrams.

Openness of the Artificial Society

MAS-CommonKADS addresses some aspects of the openness of the artificial society. In
fact, the interaction between the MAS and the human users are explicitly modeled in the
organization model. Still, interactions with other artificial societies are not represented.

5.2.10 MESSAGE

MESSAGE [Caire et al. , 2001] is a software engineering methodology that extends the UML
notations for MASs. The concepts of MESSAGE are classified in three categories: Concre-
teEntity, Activity, and MentalStateEntity.

The concepts of the ConcreteEntity category are:

� Agent: an agent is defined as an autonomous entity capable of performing some func-
tions. The functions of the agent are reified as services. MESSAGE uses the motivation
based definition of the autonomy that was presented in section [2.5.2, page 41]. The
agent’s motivations are represented as purposes. The purposes steer the agents’ behav-
iors to perform or not the services.

� Organization: the organization is defined as a group of agents that work together for
a common purpose. The structure of the organization is expressed through the power
relationships. The power relationship expresses a relationship between a superior and a
subordinate.

� Role: the role describes the external characteristics of an agent. It is similar to the
concept of the interface used within the OO framework.

� Resource: the resources represent all the non-autonomous and passive entities found in
the system.

The Activity category concepts are as follows:
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5.2 State of the Art 145

� Task: a task has a set of pairs of states describing the pre and post conditions. The
task is performed when the pre-conditions are valid. When a task is performed and
completed, the post-conditions are supposed to hold. The activities of the tasks are
represented as finite state automata using the UML activity diagrams.

� Interaction and InteractionProtocol: the interaction is defined by MESSAGE as a col-
lective action to: (i) reach a consistent view of some aspect of the problem domain; (ii)
agree terms of a service; (iii) exchange the results of one or more services. The interac-
tion protocol specifies the pattern of messages that are exchanged during the interaction
process.

The MentalStateEntity concept is:

� Goal: The goal associates an agent with a situation or a state. If the goal instance is
present in the agent’s mental state, then the agent intends to reach the situation or state
described by this goal.

Organizational Topology

The topology of the artificial society is expressed through the groups of agents, power rela-
tionships, and conversation protocols.

Responsibilities/Functions of the Individuals

The agents play one or several roles that determine the offered services. The goal of the agent
is then to fulfill its associated services by performing the associated tasks.

Coordination of Individuals

MESSAGE addresses the coordination from a conversational perspective. Consequently, the
coordination mechanisms are expressed as conversation protocols. Notice that MESSAGE
differs from SODA on the definition of the resources. In fact, contrary to SODA (cf. §5.2.12,
page 146), the interaction between the agents and resources is not described. The agents are
simply assumed to access the resources directly as in OO architectures.

Openness of the Artificial Society

MESSAGE does not address the openness of the artificial society at the organizational level.

5.2.11 PASSI

PASSI (Process for Agent Societies Specification and Implementation) is an engineering
methodology for designing and developing MASs using the concepts that derive from both
the OO and MAS paradigms. PASSI is composed by five models that are: system require-
ments model, agent society model, agent implementation model, code model, and deployment
model. Still, only the two first models are relevant for our study. These models are described
as follows:
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146 Chapter 5 : Building Open Software Systems as Open Artificial Societies

� system requirements model: this is an anthropomorphic model of the system require-
ments in terms of agency and purposes. This model is built according to the following
steps:

– domain description: this step presents a functional description of the system using
conventional UML use-case diagrams.

– agent identification: this step defines the functionalities of the agents as use-cases.

– role identification: this step explores the responsibilities of the agents using UML
sequence diagrams.

– task specification: this step specifies the capabilities of the agents by using the
UML activity diagrams.

� agent society model: this model specifies the interactions and dependencies among the
agents. This model is composed of the following components:

– ontology description: the knowledge ascribed to the agents and the pragmatics of
the conversation are specified by UML class diagrams.

– role description: the roles are specified by the list of tasks and conversation proto-
cols they involve.

– protocol description: the structure of each pragmatic conversation protocol is spec-
ified using UML sequence diagrams.

Organizational Topology

Within PASSI the topology of the artificial society is defined by the agent society model
through the roles description that details the communication capabilities and expresses the
dependencies among the roles.

Responsibilities/Functions of the Individuals

Within PASSI the functions of the individuals are specified by the roles and tasks.

Coordination of the Individuals

PASSI adopts a conversational view of the coordination. The conversation protocols are
specified by the agent society model.

Openness of the Artificial Society

PASSI does not address the openness of the artificial society at the organizational level.

5.2.12 SODA

The SODA (Societies in Open and Distributed Agent spaces) [Omicini, 2001] is an engineering
methodology complemented by a set of organizational models for the analysis and design of
Internet-based applications. This approach argues that the notion of the society should play
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5.2 State of the Art 147

a central role in agent-oriented software engineering and thus should be considered as a first-
class abstraction around which complex software systems are designed and built. SODA
distinguishes between the intra-agent aspects where the agents are studied as single entities
aware about their environment and social abilities and the inter-agent aspects where the
society and the environment on which it is embedded are designed and studied.

The SODA definition of the agent artificial societies: The agents are autonomous
individuals with social abilities. The behavior of the agents is not understandable outside
their social context. Similarly, the behavior of the overall society of the agents cannot be
expressed in terms of the behaviors of its composing agents when taken apart. So, to fully
understand a MAS, one has to consider both the individual aspects and the collective aspects
of the MAS. Besides, the society of the agents is not a simple aggregation of the individuals.
Some social rules and laws govern the agent interactions and drive the entire society towards
the accomplishment of its design goals.

Figure 5.2: The SODA engineering methodology phases and models [Omicini, 2001].

The phases and models of the SODA methodology are described as follows (cf. Figure
5.2):

1. analysis phase: during this phase the application domain is analyzed, studied and ex-
pressed in terms of the following models:

� role and group model: the elementary organizational concept used in SODA is the
task. The tasks are expressed in terms of: responsibilities they involve, competences
they require, and resources they depend upon. The responsibilities are defined
as the states of affairs that result from the task accomplishment. The tasks are
classified in two categories: individual tasks and social tasks. The individual tasks
require the competences of a single individual agent while social tasks require the
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148 Chapter 5 : Building Open Software Systems as Open Artificial Societies

competences and resources of a group of agents. Individual tasks are assigned to
roles. On the other hand, the social tasks are assigned to the groups.

� resource model: within SODA the agents are situated in an environment that
offers some resources. The concept of a resource is not formally defined, but it
can be viewed as an abstract service offered by the environment to the agents.
Each resource defines some access modes modeling the different ways in which the
service of the resource may be exploited by the roles. To use the resources some
permissions are granted to the roles and groups.

� interaction model: the interaction model of SODA is expressed by the conversation
protocols and interaction rules. The conversation protocols define how to access
both the services of roles and resources. The interaction rules regulate the conver-
sations among the roles within a group.

2. design phase: this phase translates the previously presented models to design models
that are:

� the agent model: SODA does not define a detailed model of the agents since this
is out of its scope. Only the observable behaviors are specified. This includes
the interactions with other roles and resources. The agent class model specifies the
tasks carried out by the agent, the set of permissions and the conversation protocols
associated to the roles. Additional information are provided during this phase like
the: cardinality, number of agents of the class; the location, either fixed for static
agents or variable for mobile agents; and the source which indicates if the agent
class is either local or imported in the case of a mobile agent.

� the society model: each social group is mapped into a society of agents. The agent
society is characterized by the social tasks it carries out, the set of permissions,
the participating social roles, and the interaction rules associated to the groups.
In order to implement the interaction rules, SODA societies are designed around
a coordination medium such as TuCSoN (cf. §2.4.3, page 36). The coordination
medium achieves the interactions among the entities.

� the environment model: the resources are mapped into infrastructure classes. An
infrastructure class is characterized by the services it offers, the resources access
modes, the permissions granted to roles and groups and the conversation protocols
defined to access the resources.

Organizational Topology

Within SODA the topology of the artificial society is determined by the set of roles, groups
and the conversation protocols associated to each role and resource. The interaction among
the roles is also governed by the interaction rules.

Responsibilities/Functions of the Individuals

Within SODA the functionalities of the individuals are modeled by the tasks. The tasks require
competences and depend on resources. Two types of tasks are identified in SODA: individual
tasks, which can be performed by a single agent; and social tasks that imply necessarily the
coordination of a group of agents.
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5.2 State of the Art 149

Coordination of Individuals

SODA adopts a conversational view of the coordination. In fact, a conversation protocol is
associated with the roles in order to accomplish their assigned social tasks. The conversation
protocols express the type and the order of the messages that should be sent when performing
the social task.

Openness of the Artificial Society

The SODA approach does not define clearly what is meant by the systemic openness. In this
chapter, we have given our own interpretation in section [5.3.2, page 152]. The organizational
model of SODA does not define explicitly the interaction with other artificial societies. How-
ever, since the agents are also able to interact with the resources that may be found outside the
artificial society this can be viewed as a property that make SODA societies open according
to our interpretation of the openness.

5.2.13 TROPOS

The TROPOS [Giunchiglia et al. , 2001a] [Giunchiglia et al. , 2001b] [Perini et al. , 2001] is a
software engineering methodology that considers the software system to be produced as an or-
ganized artificial society [Kolp et al. , 2002] [Fuxman et al. , 2001][Kolp & Mylopoulos, 2001]
that is integrated in a pre-established organization [Giorgini et al. , 2003]. The TROPOS
organizational concepts are derived from the i* model presented by E. Yu [Yu, 1995]. The
organizational concepts of TROPOS are as follows:

� actor: the actor represents a generalization of a physical or a software agent. The
behavior of an actor is determined by its role.

� goal: the goal represents a strategic objective of an actor. Two kinds of goals are
defined within TROPOS: concrete goals and informal goals. The concrete goals represent
quantifiable objectives that are determined during the design phase and assigned to the
actors. The informal goals represent non-functional recommendations that are expressed
during the design phase and that should be taken into account when building the software
system.

� dependence: an actor depends on another actor for the achievement of a goal, for the
execution of a plan or for the acquiring of a resource. So, this relationship is composed
of three attributes: the dependant, this is the actor that depends on the other actor;
the dependum, this is the matter of the dependence; and finally the dependee, that is
the actor that delivers the dependum to the dependant. The dependency relationship is
the elementary building block used within TROPOS to specify the organization of the
artificial society.

� plan: a plan represents a sequence of activities that should be executed in order to
achieve a particular goal.

� capability: the capability reifies the ability of an actor to define and to choose a plan in
order to fulfill a particular goal.

� belief: the belief reifies the knowledge of a particular actor about its surrounding envi-
ronment.
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150 Chapter 5 : Building Open Software Systems as Open Artificial Societies

Organizational Topology

The topology of the artificial society is implicitly defined by dependence relationships defined
among the actors. In fact, the depender and dependee have to interact in order to exchange
dependums. So, by collecting all the dependencies relationships defined among the actors, one
can rebuilt the acquaintances network of the artificial society.

Responsibilities/Functions of the Individuals

The functions of the individuals are reified by the concepts of goals. The goals can be decom-
posed in sub-goals using or/and trees. The goals are finally assigned to the actors.

Coordination of Individuals

The TROPOS coordination is implicitly defined by the dependencies relationships. These
dependencies are expressed among the actors and not among their activities as suggested
by Malone and Crowston (cf. §4.2.1, page 93). Still, the TROPOS dependencies only give
an indication about the coordination processes that will occur among the actors. TROPOS
suggests the use of AUML sequential diagrams to express the conversation protocol that is
used as a mean to solve dependencies on resources.

Openness of the Artificial Society

The idea of TROPOS is to build the software system as an organization that is integrated to a
pre-existing organization. So, TROPOS can be considered as handling explicitly the openness
of the artificial society at the organizational level.

5.2.14 Discussion

The state of the art review shows that there are several models for the specification of MASs as
artificial societies. Most of these organizational models share the same organizational concepts
with few differences on their definitions.

In most of the models the topology of the artificial society is expressed by the conversation
protocols that are defined between the roles and that express the mean to solve the interde-
pendencies among the roles. The notion of dependence among the roles is made explicit in
the TROPOS model.

The concept of role is central to make the organisational specifications of the MAS inde-
pendent from the agents. In fact, the role abstracts the functions of the agents. So, the role
expresses what is expected from the individual and does specify how the function is actually
implemented.

The coordination of the joint activities is expressed by using the conversation protocols.

The interesting point that is revealed by the state of the art is the fact that few organisa-
tional models express the openness of the artificial society using organisational abstractions.
The openness of the artificial society is a fundamental property for the EAC context (cf.
§2.3, page 24). Consequently, we need to develop an organisational model that provides some
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5.3 Organizational Model for Open Artificial Societies 151

organisational abstractions in order to specify MASs as self-contained3 and open artificial
societies.

5.3 Organizational Model for Open Artificial Societies

5.3.1 Proposition of an Organizational Model for (not yet open!) Artificial
Societies

After reviewing the sate of the art of existing organisational model for artificial agent societies,
we propose here a model that is suitable for self-contained and open MASs. This model is
adjusted to fit the concepts presented in the previous chapters concerning the deployment
environment (MIC∗) and the coordination framework. This model is not a new proposition,
but simply an adaptation of the concepts found in the state of art for the EAC context.

We follow the decomposition of the MAS artificial society in two levels: the abstract level
and the concrete level. The abstract level concerns the organisational model that rules the
individuals of the artificial society. The concrete level represents what is actually visible in
the artificial society, namely the autonomous agents or citizens of the artificial society.

The Abstract Level

The abstract level is composed of four elements:

1. organizational structure: the organizational structure specifies the topology of the
artificial society in terms of groups, roles and structural constraints.

� roles: the roles are abstractions of functions that are implemented by the citizens.
When playing a role, the citizen is committed to fulfill the associated functions and
to follow the associated coordination protocols. The social environment continu-
ously controls the consistency between the citizen commitments and its observed
actions.

� groups: the concept of group is introduced simply to create a context of interaction
among the roles. So, a group is a set of roles that are able to interact to execute a
joint activity.

� constraints: the constraints express the cardinality of groups and roles.

2. systemic functions: this represents the functions that the artificial society offers to
the external world. These functions are generally gathered in the requirements phase of
the engineering process and are independent from the fact that the developed software
system follows the MAS paradigm.

3. mapping the systemic functions on the organizational structure: the systemic
functions are mapped into the organizational structure by the concept of social task.
Each systemic function is translated into one or several social tasks. A social task
implies the participation of one or more social roles to be accomplished. Besides, these
roles must be defined in a social group in order to allow the agents playing these roles
to interact.

3Here the expression ’self-contained MAS’ means that the MAS defines a delimited system (cf. §2.2, page

19).
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152 Chapter 5 : Building Open Software Systems as Open Artificial Societies

4. coordination: for each social task a coordination protocol is associated to explain
clearly the coordination process of the joint activity. The used formalism to express the
coordination protocols is the BDCM presented in chapter 4.

The Concrete Level

This level represents the autonomous agents that belongs to the artificial society. The agents
are called the intracives or the internal citizens of the artificial society. It is important to
identify clearly the intracives from other agents that belong to other societies. Without this
property the artificial society cannot be considered as a delimited system since its frontiers
cannot be clearly established. The artificial society has to be a delimited system in order
to define its openness. Section [5.3.2, page 152] discusses this point more in detail. Each
autonomous agent plays one or more social roles. When an agent plays a certain role, it is
committed to fulfill all the implied social tasks and to follow their coordination protocols. If
an agent does not fulfill this requirement, the social environment should be able to identify
this as an inconsistent situation and to establish that the agent is responsible of challenging
the social model.

5.3.2 Opening the Organizational Model

Basic Elements of Open Systems

First, let us introduce a general framework (inspired from Physics) modelling our systemic
view. The first concept of this framework is the notion of absolute universe. The absolute
universe is the overall container; everything is defined inside this container and nothing exists
outside. Among the things that exist in the absolute universe, one may find delimited systems.
A delimited system is defined as a any composite of things that can be delimited with a clear
frontier. In other words, a delimited system is an aggregation of things that one may clearly
define its inside and its outside. The frontier between the outside and the inside is called
the interface. For a particular delimited system, the relative universe is defined as the set of
elements of the absolute universe except the system itself.

The interaction among the systems is defined as the process of exchanging influences that
change the internal state of the interacting systems. These influences pass necessarily through
the interface.

As shown by Figure 5.3 a closed system owns an interface that prohibits the influences from
getting inside or outside the system. Consequently, closed systems define interactions only
between their internal components and no interaction is defined with the relative universe.
The absolute universe can be seen as the biggest closed system and its relative universe is the
void.

An open system is a delimited system where the interface allows (particular) influences to
get in (get out from) the system (cf. Figure 5.4). Consequently, the open system can interact
with the elements of its relative universe.

The openness of a system also depends on the definition of its containing universe. For
instance, if we consider a simple universe composed of a human and of a pocket calculator (cf.
Figure 5.5), then the pocket calculator is an open system since it interacts with the human. In
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5.3 Organizational Model for Open Artificial Societies 153

Figure 5.3: Representation of a closed delimited system: the interface prohibits influences
from getting in/out the system. Closed systems do not interact with the elements of their
relative universe.

Figure 5.4: Representation of an open and delimited system: the interface allows influences
from getting in/out the system. Open systems interact with the elements of their relative
universe.

te
l-0

01
42

84
3,

 v
er

si
on

 1
 - 

23
 A

pr
 2

00
7



154 Chapter 5 : Building Open Software Systems as Open Artificial Societies

Figure 5.5: The systems containing the human and the calculator are open systems since
their interaction is possible and passes across their respective interface.

fact, the human may change the values of the digital circuits of the calculator by pressing the
keys and the calculator influences the perceptions of the human by displaying some results.

Now, let us take a universe composed of two calculators (cf. Figure 5.6): the calculators
are closed systems since there is no interaction defined among them. So, when talking about
an open system, one has to specify the exact context in which the openness property holds.
For instance, the FIPA platforms are open systems only if we consider the absolute universe
as the set of all platform following the FIPA specifications. But, when a FIPA platform is
placed in an absolute universe with systems that do not follow the FIPA specifications it is
considered as closed system since there is no interaction with the external world. This can
be generalized to agents. For instance, it is not sufficient to consider that an agent defines an
open system only when it is able to open a TCP/IP socket. One has to give more information
on the requirements that make this agent able to interact with other agents or systems. For
instance, by specifying the ontologies, languages, conversation protocols that are understood
by this agent.

The openness property has also been given another interpretation within the literature of
MASs. It is defined as the ability of a system to modify its internal structure dynamically
by adding or removing agents. This is very different from our approach. For instance, let us
consider an example of two systems ’A’ and ’B’. The system ’A’ is composed of two persons:
Lylia and Fabien. Lylia and Fabien are two persons that both speak French; so they can
interact. The system ’B’ is composed of a person, Melinda, who speaks Romanian. These
systems are closed since there is no interaction between them. Now, let us change dynamically
the structure of the system ’A’ by adding a new person, Christopher, who speaks also French
in system ’A’. This dynamical modification of the structure of the system ’A’ has not made
it an open system! In order to make these systems open, one has to add a bridge person
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5.3 Organizational Model for Open Artificial Societies 155

Figure 5.6: The calculators are no more open systems since there is not interaction defined
among them .

that speaks both French and Romanian. So, the openness of a system is more related on the
interaction capabilities of the elements composing it rather than its ability to dynamically
modify its internal structure. Consequently, for MASs it is not the number of agents of the
artificial society that determine the openness of the system but the interaction capabilities of
the agents found in the society to influence the external world or to capture the influences
from the external world. The next section shows how a ’bridge’ mechanism is introduced in
the artificial agent societies to define their openness.

Opening the Artificial Society

Section [5.3.1, page 151] has presented a proposition of an organizational model to specify
software systems as artificial societies of agents. To make this model open, we have introduced
the concept of interface role. The interface role is just like a classical role except the fact that it
is reserved for the individuals that do not belong to the artificial society, namely the extracives.
The extracives agents are individuals that may play interface roles within an artificial society
and interact with the intracives agents of this society. Consequently, the interaction is defined
between the inside and the outside of the artificial society.

The artificial society presented in Figure 5.7 follows an organizational structure composed
of a single group, ’group 1’, that is composed of two internal roles: ’role 1’ and ’role 2’. At
the concrete level two agents represent the intracives: ’agent 1’ and ’agent 2’. These agents
play respectively the ’role 1’ and ’role 2’. Since these agents belong to the same group, they
are able to interact. Obviously, this artificial society is a closed system since no interaction is
possible between the intracives and the external world.
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156 Chapter 5 : Building Open Software Systems as Open Artificial Societies

Figure 5.7: An example of a closed artificial society. The organizational structure is composed
of a single group, ’group 1’, and two internal roles: ’role 1’ and ’role 2’. Following this
organizational structure, ’agent 1’ and ’agent 2’ can interact internally within this system.
However, no interaction is possible with the external world.

Figure 5.8: Example of an open artificial society: by adding an interface role ’role 3’ to the
organizational structure defined in Figure 5.7, the intracives agents are able to interact with
an extracives agent: ’agent 3’. Consequently the artificial society is now open.
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5.3 Organizational Model for Open Artificial Societies 157

Now we add the interface role, ’role 3’, and the group ’group 3’ in the organizational
structure (cf. Figure 5.8). The interface role (represented by a grey rectangle) is defined for
the extracives agents. For instance, the ’agent 3’ does not belong to the artificial society but
this agent is able to play ’role 3’. Consequently, this extracives agent is able to interact with
’agent 1’ and the artificial society is now considered as an open system.

5.3.3 Overall Picture of the Organizational Model

artificial society

abstract level concrete level

organisational
structure

systemic 
functions

functional
 mapping

citizens

intracives extracives

group role constraints

internal
role

interface
role

social task

implied
roles

implemented
function

coordination
protocol

Figure 5.9: Concepts of the organizational model for the specification of open artificial soci-
eties for the EAC context.

The organizational model of open artificial societies is presented in Figure 5.9. The ar-
tificial society is divided in two parts: the concrete and abstract levels. The citizens define
the concrete level. These citizens are placed in two exclusive categories: the intracives and
extracives. The intracives agents are recognized as being part of the societal entity; while the
extracives are the agents that may exist in the society but do not belong to the societal entity.
The abstract level is the hidden part of the artificial society that regulates and organizes the
citizens. The abstract level is composed of the organizational structure, the systemic func-
tions and the mapping between the systemic functions and the organizational structure. The
organizational structure is given by the set of roles, groups and structural constraints. The
role defines the functions that are expected from an agent within its social environment. The
social role may be either an internal or interface role. The internal roles can be played only
by the intracives agents. The interface roles are played by the extracives agents. The groups
create a context for the interaction between the agents playing roles. The groups that contain
at least one interface role are considered as interface groups since they can contain extracives
agents. The structural constraints express the cardinality of the roles and groups within the
artificial society.
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158 Chapter 5 : Building Open Software Systems as Open Artificial Societies

The systemic functions express what are the functions expected from the entire software
system. These functions are then mapped to the organizational structure through the concept
of social task. The proposed model is focused only on collective functions and the functions
that do not imply the coordination of several individuals are not considered. The social tasks
imply the participation of a set of roles. This set of roles has to be included within a group to
allow the interaction of the agents. The coordination protocol describes how the participating
agents coordinate their activities in order to achieve the social tasks.

Using MIC∗ as a DE and the coordination framework described in chapter 4, we can
conclude that the abstract and concrete levels are consistent. In fact, the MIC∗ DE implements
the organizational structure of the artificial society and the coordination framework checks
the consistency of the conversations according to the established coordination protocols.

5.4 Translating the Organizational Model into MIC∗ Deploy-

ment Environment

The presented approach is similar to the SODA approach organisation:back:soda. The main
idea is to build/generate a DE that implements the organizational structure. While SODA
uses the tuple space coordination medium TuCSoN, we use the MIC∗ DE.

5.4.1 Translating the Organizational Structure

The organizational structure of the artificial society is defined by the set of groups and roles.
The translation of these concepts to MIC∗ has already been presented in section [3.5, page 83].
The groups are considered as interaction spaces. The groups that contain at least one interface
role are considered as public interaction spaces and can be shared between distributed MIC∗

DE when they are composed. The roles are considered as interaction objects. They represent
a certification to play a certain role within the artificial society. The structural constraints
are implemented by managing the number of certificates that are delivered to the agents.

5.4.2 Translating the Functional Mapping

The social framework presented in section [3.5, page 83] has not included the coordination of
social tasks. Social tasks are assigned to the groups and carried out by the agents playing these
roles. To check the consistency of the coordination protocols, we use the results presented
in section [4.9.2, page 123]. Consequently, each interaction space is associated with a set of
DBCMs that represent the coordination protocols of the social tasks assigned to the group.
The MIC∗ DE controls in a decentralized manner the consistency of the conversations among
the agents and the coordination protocol expressed for the social tasks.

5.4.3 Integrated Development Environment for the Specification of Open
Artificial Societies

To help developers to design and develop applications for the EAC context an integrated
development tool (IDE) has been developed4. This IDE is based on the organizational model

4The IDE is available for Windows platforms at: www.lirmm.fr/ gouaich/dev/ide/ide.zip
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5.4 Translating the Organizational Model into MIC∗ Deployment Environment 159

Figure 5.10: Screenshot of the IDE for the specifications of open artificial societies.
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160 Chapter 5 : Building Open Software Systems as Open Artificial Societies

presented in section [5.3.3, page 157] and presents the development of an application for the
EAC context as the development of an open and self-contained artificial society of agents.
The designer is offered five design views which are (cf. Figure 5.10):

1. systemic functions: this view presents the main functions that are expected from the
system. Generally, the development process starts by this view where a preliminary list
of systemic functions is gathered.

2. organisational view: this view specifies the organisational structure of the artificial so-
ciety in terms of roles, groups and structural constraints. The designer also indicates if
the roles have to be considered as internal roles or interface roles. The groups contain a
set of either internal or interface roles. The structural constraints are defined to indicate
the cardinality of the roles and the groups.

3. mapping view: this view maps the systemic functions on the organisational structure
by defining the social tasks. A social task is created to implement a certain systemic
function and is associated to a subset of roles that are contained in a predefined group.

4. coordination view: this view specifies the DBCM coordination protocols that are asso-
ciated with the social tasks. For each social task, the designer can graphically create a
DBCM between the roles associated to the task. By using the result of chapter 4, we
can conclude that the conversation protocol among the roles is completely defined.

5. interoperability view: this view manages the specification of the resources that were
specified by the DBCM coordination protocols. In fact, for each DBCM a control func-
tion is associated to the resources which are defined within the roles-cut.

The abstract level models of the artificial society can be exported to an XML represen-
tation. A specific python script, organisation2mic.py, automatically generates the source
code (C/C++) of the adequate MIC∗ DE. This code is ready for compilation and execution.
The developer has only to develop the behavior of the intracives agents. The intracives agents
are then deployed on the MIC∗ DE and the artificial society is ready to offer its functionalities
and to interact with other artificial societies.

5.5 Application: Ubiquitous Web

The Ubiquitous Web application emulates the use of the web for the EAC context. The
purpose of this section is to demonstrate how this application is developed using the proposed
organizational model.

Two different types of sub-systems compose the ubiquitous web: the ’web server’ and the
’web client’. This is similar to what can be observed in the Internet-based web. The ’web
server’ system is in charge of delivering html pages and replying to the client’s requests.
On the other hand, the ’web client’ system is in charge of translating the users’ action into
commands which are comprehensible by the web server system and correctly displaying the
html pages. The main difference between the Internet-web and the ubiquitous web is related
to the communication medium between the web servers and clients. In fact, within the EAC
context the web servers and web clients are no longer connected by a global communication
medium but with a local communication medium.
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5.5 Application: Ubiquitous Web 161

The next section presents the organizational specifications of the web server. The orga-
nizational specifications are then used in order to specify the web client system. Obviously,
the ubiquitous web application is defined only when both the web server and the web client
are composed. The composition of these systems is steered by a simulation platform which is
presented in section [5.6, page 170].

5.5.1 The ’Web Server’ Specifications

Systemic functions

The developed software system is aimed to emulate the navigation and the access of services
on the web for the EAC context. The systemic functions of the web server are as follows:

1. web navigation and the access to services: the ’web server’ system delivers the html

pages and forms.

2. discovery of services: the ’web server’ system is also responsible of delivering a human
readable description of the offered services and an access point where to find the actual
service provider.

Organizational Structure

Roles

1. WebServerRole: this is an internal role that responds to the requests of the agents
playing the role: WebClientRole. A WebClientRole requests either html pages or
a service. When requesting a service, the WebClientRole agent delivers the parame-
ters set by the user. The WebServerRole handles gracefully the following situations
by sending error messages to the WebClientRole:

� the requested html presentation does not exist.

� the requested service does not exist or the parameters are incorrect or insufficient.

2. WebClientRole: this is an interface role that represents the intermediary function
between the end user and the WebServerRole. The functions of this role are:

(a) request a particular html presentation from the WebServerRole.

(b) correctly layout the html presentation for the user.

(c) request services from the WebServerRole by sending the parameters of the ser-
vice as set by the end user.

3. ServiceDiscoveryServerRole: the function of this internal role is to deliver a human
readable description of the offered service and to deliver an access point where to contact
to the actual service provider.

4. ServiceDiscoveryClientRole: the main function of this interface role is to check the
presence of the ServiceDiscoveryServerRole agents and to retrieve their description
and access points.
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162 Chapter 5 : Building Open Software Systems as Open Artificial Societies

Groups

1. WebGroup: this group holds agents that play the WebClientRole and Web-

ServerRole roles.

2. ServiceDiscoveryGroup: this group holds agents that play ServiceDiscovery-

ServerRole and ServiceDiscoveryClientRole roles.

Structural Constraints The artificial society of the web server defines the roles and groups
with the following cardinalities:

� exactly one WebGroup is defined within the artificial society.

� exactly one ServiceDiscoveryGroup is defined within the artificial society.

� exactly one intracives agent is able to play WebServerRole within the WebGroup;

� exactly one intracives agent is able to play the ServiceDiscoveryServerRole within
the ServiceDiscoveryGroup group.

Mapping the Systemic Functions on the Organizational Structure

WebSocialActivity :

� The implemented function: the ’web navigation and service access’ function is imple-
mented by this social task.

� The roles and groups: this social task implies the participation of the WebClientRole

and WebServerRole roles and is associated to the WebGroup.

� Description: the WebSocialActivity represents the web-like navigation in the EAC
context. During this activity the WebServerRole delivers the rooms or error mes-
sages in response to the WebClientRole requests. The WebClientRole can either
request a room by its identifier; or request for an action given the parameters. Usu-
ally, these parameters are the inputs of an html form set by the end user. A room is
basically a complete directory containing html pages and images that is packed and
compressed. The room mechanism is used to minimize the communications between the
WebClientRole and WebServerRole. Thus, contrary to conventional Internet-web
where each html page and each image is separately requested, within the Ubiquitous

Web the WebServerRole sends a complete presentation. The html pages of a room
may contain the following items:

1. conventional html elements such as tables, images and so on.

2. hyperlinks to pages found in the same room.

3. hyperlinks to other rooms.

4. forms to request services from the WebServerRole.

The error messages are sent by the WebServerRole when the requests cannot be
performed. By convention, the WebClientRole starts the activity by requesting the
initial room identified by ’0’. This is like the conventional ’index.html’ in Internet based
web.
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5.5 Application: Ubiquitous Web 163

Figure 5.11: The coordination protocol of the WebActivity social task.

� Coordination Protocol:

The WebSocialActivity uses the coordination protocol represented graphically in
Figure 5.11. The control functions of the resource contained in the roles-cut are described
as follows:

R1: this resource node represents the request for the initial room. By convention, the
initial room is identified by ’0’. The actual syntax of this message is: (request

room 0).

R2: this resource node represents the response to the initial room request. The actual
resource of this node is represented by a string that follows this syntax: (room iden-
tifier Base64encoding). The room is the keyword specifying the message type; iden-
tifier is a token representing the room identifier; encoding represents the base-64 en-
coding of the room. In fact, the room directory is encapsulated in a single file (using
for instance the Unix-like tar command) and this file is then compressed following
the Gzip compression algorithm described by RFC 1950 [Deutsch & Gailly, 1996]
and RFC 1951 [Deutsch, 1996]. Finally, the compressed binary file is encoded us-
ing the Base64 encoding (RFC 2065 [Eastlake & Kaufman, 1997]) to transform the
binary data to ASCII characters.

R3: this is a request emitted by the client to get a specific room using its identifier.
The actual resource associated to this node is represented by a string that follows
this syntax: (request room identifier). The request and room are keywords and
identifier is a token representing the identifier of the requested room.

R4: this resource node represents a request to execute a service. The actual resource
that is associated to this resource node is represented by a string that follows this
syntax: (request action identifier parameter ). The request and action are
keywords; identifier is the name of the requested service; parameters is the encoding
of the parameters. The parameters are encoded following the specifications of
HTTP/1.1. Basically, this encoding is a sequence of pairs name=value. Some
special characters are reserved and are replaced by an encoding described by the
URL specification in RFC 1738 [Berners-Lee et al. , 1994].

R5: The specification of the (R5) resource is similar to the specification of (R2).

R6: this resource node corresponds to an error message sent by the server to the client.
The actual resource associated to this resource node is a string message that follows
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164 Chapter 5 : Building Open Software Systems as Open Artificial Societies

this syntax: (error description ). error is a keyword used to specify the type of
the message and description is a string that describes the reasons of the failure.

Some examples of conversations generated by this coordination protocol are presented in
Annex E, page ubiweb:conversation.

ServiceDiscoverySocialActivity:

� The implemented function: this social task implements the ’discovery of services’ sys-
temic function.

� Implied roles and social group: this activity implies the participation of the ServiceDis-

coveryClientRole and ServiceDiscoveryServerRole roles. It is associated with
the ServiceDiscoveryGroup.

� Description:

Thanks to this activity the clients retrieve a description of the offered services. For
each web service, a special agent playing the ServiceDiscoveryServerRole role is
in charge of advertising and informing the clients about the offered services.

Figure 5.12: The coordination protocol of the ServiceDiscoverySocialActivity social
task.

� Coordination Protocol: The coordination protocol of the ServiceDiscoverySo-

cialActivity is presented in Figure 5.12. The ServiceDiscoveryClientRole sends
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5.5 Application: Ubiquitous Web 165

a request to ServiceDiscoveryServerRole and waits a reply. The reply is either the
description of the service or an error message. The resources that are exchanged within
the roles-cut are described as follows:

R1: This resource represents the initial message sent by the ServiceDiscoveryClien-

tRole to retrieve the description of the service. The syntax of the message is:
(request-description).

R2: This resource contains the description of the service and its access point. The
syntax of the actual resource is: (service-description room agent-id). The
’service-description’ is the keyword to specify the type of message. The room is a
human readable description represented as a set of html pages. The room con-
tains some html pages and images presenting briefly to the end user the offered
services. The room is encapsulated, compressed and encoded as Base64 string.
The last part of the actual resource, agent-id, is the identity of the agent playing
the WebServerRole. Consequently, if the end user is interested by the offered
service, she/he can contact directly the web server using the coordination protocol
presented in the WebSocialActivity (cf. Figure 5.11).

R3: This resource represents the error cases. If the ServiceDiscoveryClientRole is
unable to give the description of the service, he/she sends a message of this syntax
(error description). The description is a string that explains the reason of the
failure.

Web Server Architecture

MIC* DE

ServiceDiscovery
ServerAgent

WebServerAgent

External 
world

Figure 5.13: The architecture and main components of the ’web server’.
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166 Chapter 5 : Building Open Software Systems as Open Artificial Societies

Figure 5.13 presents the components of the ’web server’:

� ServiceDiscoveryServerAgent: this agent is deployed on the MIC∗ DE and plays the
ServiceDiscoveryServerRole role within the ServiceDiscoveryGroup group.

� WebServerAgent: this agent is deployed on MIC∗ and plays the role of WebServer-

Role within the WebGroup social group.

� MIC∗ DE: this represents the DE that has been generated automatically from the or-
ganisational specifications of the ’web server’. This DE holds the autonomous agents
and is on-the-fly composed with other MIC∗ DE.

5.5.2 The ’Web Client’ Specifications

The ’web client’ system imports the organisational interface defined by the ’web server’ ar-
tificial society. Since the architecture of the ’web client’ is quite simple the organanisational
structre that is imported from the ’web server’ is not extended with new roles and groups.
Notice that in the imported organisational structure the interface roles become internal roles
and simarly the internal roles become interface roles within the ’web client’ system.

Organizational Structure

Roles

1. WebServerRole: this is an interface role that responds to the requests of the agents
playing the role: WebClientRole.

2. WebClientRole: this is an internal role that represents the intermediary function
between the end user and the WebServerRole.

3. ServiceDiscoveryServerRole: the function of this interface role is to deliver a hu-
man readable description of the offered service and to deliver an access point where to
contact the actual service provider.

4. ServiceDiscoveryClientRole: the main function of this internal role is to check the
presence of the ServiceDiscoveryServerRole agents and to retrieve their description
and access points.

Groups

1. WebGroup: this group holds agents that play the WebClientRole and Web-

ServerRole roles.

2. ServiceDiscoveryGroup: this group holds agents that play ServiceDiscovery-

ServerRole and ServiceDiscoveryClientRole roles.

Structural Constraints The artificial society of the web client defines the roles and groups
with the following cardinalities:

� exactly one WebGroup is defined within the artificial society.
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5.5 Application: Ubiquitous Web 167

� exactly one ServiceDiscoveryGroup is defined within the artificial society.

� several intracives agents are able to play WebClientRole within the WebGroup;

� exactly one intracives agent is able to play the ServiceDiscoveryClientRole within
the ServiceDiscoveryGroup group.

Mapping the Systemic Functions on the Organizational Structure

The mapping of the systemic functions to the organisational structure is directly imported
from the web server specifications as described in section [5.5.1, page 162].

Web Client Architecture

MIC* DE

ServiceDiscovery
ClientAgent

WebClientAgent

Service Directory
Frame

Web Browser 
Frame

External 
world

User Interface

Figure 5.14: The architecture and main components of the ’web client’.

Figure 5.14 presents the components of the ’web client’:

� UserInterface: this component represents a window-based user interface that contains
the service discovery frame and the web browser frames.

� ServiceDirectoryFrame: this frame presents a logical view of the discovered services
as a directory. When the user wants to interact with a particular service a WebClien-

tAgent is launched along with its associated WebBrowserFrame.

� ServiceDiscoveryAgent: this agent is deployed on the MIC∗ DE and plays the Ser-

viceDiscoveryClientRole role within the ServiceDiscoveryGroup group. When
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168 Chapter 5 : Building Open Software Systems as Open Artificial Societies

the user requests a service lookup, this agent uses the service discovery coordination
protocol in order to get information about all the accessible services. The list of ser-
vices is then returned to the ServiceDirectoryFrame to be displayed logically as a
directory.

� WebBrowserFrame: this class presents the html pages collected by the WebClien-

tAgent. The user requests are forwarded to the WebClientAgent.

� WebClientAgent: this agent is deployed on MIC∗ and plays the role of WebClien-

tRole within the WebGroup social group. This agent gets events, such as the sub-
mission of a form or a request for a specific room, from the WebBrowserFrame and
starts the corresponding coordination process with the peer agent that plays the Web-

ServerRole. The obtained results are returned to the WebBrowserFrame that
presents them to the user.

� MIC∗ DE: this represents the DE that has been generated automatically from the or-
ganisational specifications of the web client application. This DE holds the autonomous
agents and is on-the-fly composed with other MIC∗ DE.

Figure 5.15: The main frame of the web client user interface.

Figure 5.15 presents the user interface that appears when the user launches the ’web client’
application. The service directory frame is launched by clicking the appropriate menu.

When the service directory frame is launched (cf. Figure 5.16), the user may lookup for
the services that are in the vicinity. The number of services depends on the DEs that are
composed with the ’web client’ DE.

For instance, Figure 5.17 presents a situation where the service discovery agent has suc-
cessfully discovered a service. The left-side of the frame presents all the discovered services
as a directory. By selecting a particular service, the right-side of the frame displays its pre-
sentation to the user. By double-clicking the user is connected to the service through the
WebClientAgent. For instance, Figure 5.18 presents an example where the WebClientAgent
has retrieved the initial room that is displayed by the WebBrowserFrame.
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5.5 Application: Ubiquitous Web 169

Figure 5.16: The service directory frame is used by the user to search for the available
services .

Figure 5.17: Description of a discovered service.
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170 Chapter 5 : Building Open Software Systems as Open Artificial Societies

Figure 5.18: The initial room of the service is retrieved and displayed to the user. Now the
user is able to interact directly with the service.

5.6 The EAC Simulation Platform

5.6.1 Presentation of the Simulation Platform

In order to experiment with the developed applications, a simulation platform has been devel-
oped using computer games technologies. The goal of this simulation platform is to emulate
a physical world where the user, represented by its avatar, can move and interact with the
deployed services, represented also by their avatars. Within the virtual world each avatar
has a certain range where it can establish a local point-to-point communication link. So, the
simulation layer is in charge of firing two main events: connection event, when the avatars are
able to communicate; and disconnection event, when the avatars cannot communicate. No
further information is given to the upper layers about the location of the avatars. This makes
the simulation platform very realistic and its constraints similar to the EAC constraints.

5.6.2 Link between the Simulation Platform and the MIC∗ Layer

The upper layer that runs over the simulation layer is composed by the MIC∗ DEs. MIC∗ DEs
are represented in the simulated world by avatars: when the avatars’ communication areas
overlap, the corresponding MIC∗ DEs are composed; when the avatars communication areas
do not intersect, their corresponding MIC∗ DEs are disconnected (cf. Figure 5.19).

5.6.3 User Views in the Simulation Platform

The user has a ’First Person Shooter’ (FPS) perspective and can move within the virtual
world. Figure 5.20 shows an example of the FPS perspective. The user perceives the virtual
3D world as the real world and when moving she/he can interact with the different services.
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5.6 The EAC Simulation Platform 171

Figure 5.19: Link between the EAC simulation platform and the MIC∗ DEs. When the
avatars communication areas intersect in the virtual world, their corresponding MIC∗ envi-
ronments are composed. On the other hand, when the communication areas do not intersect,
the corresponding MIC∗ environments are decomposed. The composition and decomposition
events are commands defined by MIC∗ and sent through TPC/IP sockets.

Figure 5.20: The First-Person-Shooter (FPS) perspective of the user in the simulation
platform .
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172 Chapter 5 : Building Open Software Systems as Open Artificial Societies

The rectangle located in the top left corner of the interface defines the state of communication
link: when no service is in the vicinity of the user, the rectangle is filled with a red colour;
when some services are located in the vicinity of the user, but situated too far to establish
a communication link, this rectangle is filled with a yellow colour; finally, when the distance
between the user the service is sufficient to establish a communication link, this rectangle
is drawn with a green colour. Remember that the establishment of a direct point-to-point
communication link is the minimal requirement needed in order to compose the MIC∗ DEs.
When this communication link is broken the MIC∗ DEs are immediately decomposed.

Figure 5.21: The software service is represented within the virtual world as a building that
owns a communication area.

The services’ avatars are represented in the virtual world as buildings. Hence, as presented
in Figure 5.21, each software service is associated to a building and owns a communication
area where it can establish local communication links with the users’ avatars.

The description of the virtual world is given in a special description file. Figure 5.22 gives
an example of such a file. Each service is described by: its name; the host and port where
its corresponding deployment environment is listening to commands; 3D coordinates of the
service avatar in the virtual world. The simulator takes this file as an input and builds the
corresponding virtual world. The user is then able to move in this world and interact with
the services.

For example, Figure 5.23 presents a situation where the user enters the service building.
Since, a communication link can be established, the MIC∗ DEs of the user and the service are
composed. Consequently, the software agents located in both DEs can interact. When the user
leaves the building of the service, the MIC∗ DEs are decomposed immediately. Consequently,
the software agents located in these DEs cannot interact. Thanks to the on-the-fly composition
of MIC∗ DEs and to the generative communication paradigm, now we can show experimentally
that the EAC constraints on the communication media do not drastically disturb the software
systems.
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5.6 The EAC Simulation Platform 173

# world.txt simple example of wrold 3D description

# virtual services are specified by a line:

# <name> <host> <port> X Y Z

# name: is a token that should not contain blank characters

# host: is either an ip address or the host name where the

# service mic* deployment is running

# port: is the listening port of the MIC* deployment environment

# Y X Z: coordinate in the virtual 3D world.

#

# Comment lines are started by the ’#’ character

#<name> <host> <port> X Y Z

helloWorld 127.0.0.1 2001 1100 0 -4000

shop01 127.0.0.1 2002 1300 0 -4000

shop02 127.0.0.1 2003 -1100 0 -4000

tourism-info01 127.0.0.1 1235 1100 0 -900

train-station01 localhost 1236 -1100 0 -900

#end of the simple world

Figure 5.22: Description file of the virtual world. The simulator takes this file as an input
and positions correctly the services avatars using information on localisation. The simulator
also uses information about the host and port in order to send the ’connect’ or ’disconnect’
commands to the service’s deployment environment

Figure 5.23: The user is in an interaction with the service.
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174 Chapter 5 : Building Open Software Systems as Open Artificial Societies

5.7 The Virtual City Project

The goal of this experimental project is to experiment with EAC applications. The project
aims to build a virtual city where several services are deployed. Several different developers
develop the services using the engineering framework presented in this chapter. Each service
has also to request a virtual place within the virtual city. Currently, the services that have
been developed within the virtual city are the following:

� Train stations: this service represents a train station where the users can have informa-
tion about the available trains and can buy an electronic train ticket.

� Tourism information points: the virtual city contains a set of services that provide
description of the interesting sites. Hence, when a user is visiting the city, she/he may
get information about the visited site. Even if the site is located outside any coverage
of a global wireless network, the users are able to access this service only by using local
communication technologies.

� News: these services are located near bus and metro stations to allow users to read
electronic newspapers.

� Restaurants: this service has been provided to allow users to read the menu and to order
meals directly. The users have only to be placed in the restaurant, and by using this
application she/he can read the menu of the restaurant, order and pay the desired meal
directly.

� Shops and small businesses: a set of shops were developed in the virtual city. When the
user moves in the virtual city, she/he is able to see the catalogue of each shop. If the
user is interested in a particular item, she/he may buy it directly from the shop. This
is a very interesting example of the power of local communication technologies. In fact,
since the cost of a local communication facility is very insignificant. The EAC services
are more retained for big businesses and companies. Every small business and shop may
take part in the system without a heavy cost.

� Virtual university campus: each department of the virtual university campus is repre-
sented by a service that informs the students about the offered courses, administrative
information and the planning of the courses. Hence, by using their laptops the students
have access quickly to information they are seeking.

The virtual city is an open project and developers are free to imagine new set of ser-
vices to deploy. The developers are given a development kit with some examples to ease the
development of new services.

5.8 Conclusion

In this chapter we have presented an engineering framework based on the social metaphor
where the software systems are viewed as open and self-contained artificial societies that
interact with other societies through an organizational interface.

The organizational structure of the artificial society is given by the set of groups and roles
and the systemic functions are implemented by the social tasks. The coordination of each
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5.8 Conclusion 175

social task is specified using the DBCM that were presented in chapter 4. We have introduced
new organizational concepts such as the interface/internal roles and the intracives/extracives
agents in order to explicitly express the openness of the artificial society within the EAC
context.

The presented engineering framework offers the opportunity to non-expert persons to ben-
efit easily from the results presented in the previous chapters in order to build application
for the EAC context: while the engineering framework presents a social view of the software
systems, the link between this view and the MIC∗ model and the coordination framework is
still maintained. In fact, the social models of the software system are translated automati-
cally into specific MIC∗ DEs that implement the organizational structure and guarantee the
consistency of the conversations with regards to the coordination protocols.

The UbiquitousWeb is a realistic application that has been entirely developed using this
engineering framework. The simulation platform has offered the opportunity to experiment
with this application in a virtual world that offers the same characteristics as the physical
world were the EAC application would be deployed.

To extend this experiment, we have presented the virtual city project in order to experiment
how different engineers can offer open and interoperable services. Obviously, the next step
would be to deploy the developed services in the physical world using local communication
networking facilities.

From a practical point of view, we have experimented that the development time of EAC
applications has been significantly reduced. In fact, the engineering framework that we have
proposed is model driven and generates most of the source code of the application. Thus,
both of the development time and bugs are reduced.
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Chapter 6

Conclusion

6.1 Synthesis

In this thesis we have presented an approach for the design and implementation of open soft-
ware systems within the EAC context. The EAC context exhibits properties and features that
challenge our assumptions and way to think software systems. Consequently, these assump-
tions have to be revised in order to take into account the features and constraints of the EAC
context.

In chapter 2 we have selected three major criteria of the EAC that are relevant for the
engineering of open software systems. These criteria are as follows:

1. Constraints of the communication medium: the communication media used within
the EAC are different from the one used in classical distributed software systems such as
local area networks, wide area networks or centralized wireless networks. In fact, while
the classical communication media are centralized and quite reliable, the communica-
tion media within the EAC are local and appear spontaneously among the systems as
soon as some physical or logical conditions hold. When these conditions are unsatisfied
the communication media do no longer accomplish their functions. Consequently, the
communications are supposed to be intermittent. This property is no longer a problem
but an hypothesis of work.

2. Autonomy of the software entities and systems: within the EAC, the software
systems are considered as autonomous since we do not have enough knowledge and
control means to change directly their behaviors or to guess what are their actual goals.
Despite this fact, autonomous software systems should be able to interact and collaborate
with other systems without challenging their consistency.

3. Openness of the software systems: the EAC context can offer a new set of appli-
cations and innovative services only when considering the interaction capabilities of the
software systems. The openness of the software systems also implies that the systems
collaborate in a coherent manner. So, this introduces the problem of interoperability. We
have suggested addressing the interoperability of software systems by using coordination
means.
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178 Chapter 6 : Conclusion

The literature of software engineering already presents interesting approaches to deal with
the constraints and hypothesises of the EAC. For instance, the MAS and BB approaches have
been considered as relevant starting point for our work.

MASs are relevant for the EAC since they take care about the autonomy of software entities
at the conceptual level and offer some means for the interoperability of autonomous systems.
Still, the MAS approach suffers from the gap that exists among the conceptual considerations
and the implementation. For instance, while the autonomy is well studied and documented
at the conceptual level, few works provide objective criteria to use in order to implement
autonomy. We have suggested to consider the internal integrity as an objective criterion to
guarantee the autonomy of software entities. We have also mentioned the communication
paradigm to illustrate the gap between the conceptual considerations and the implementation
of the MASs. In fact, at the conceptual level the MAS paradigm states that the software
entities are communicating entities without providing any information on the paradigm to
use for the communication. At the implementation level most of current approaches use the
asynchronous communication paradigm without explicating that this is just a special case of
the communication among software entities and that other communication paradigms can also
be used. We have considered that the asynchronous communication paradigm is not suitable
to handle the constraints of the communication media within the EAC context and we have
preferred to use the generative communication paradigm.

The BB approach and the TS offer some good properties for the EAC context. In fact, these
approaches de facto uses a generative communication as a paradigm of communication between
software entities. The generative communication makes the communication process persistent
and thus independent from the disturbances of the communication media. The advantage of
the BB approach is not only limited to the generative communication. In fact, as illustrated by
the works developed around TuCSon TS and SODA, the interoperability of software systems
is also addressed from a coordination point of view and ’artifacts’ of coordination are defined
within the tuple centres to offer the software entities coordination means. Still, we have
mentioned that the TS-based approaches suffer from the lack of structure of the TS. This
lack of structure causes both conceptual and practical problems. At the conceptual level, the
lack of structure poses the problem of the adequacy between the autonomy of actions of the
entities and the TS. In fact, since the TS is a flat set that is shared similarly among all the
software entities, the shaded actions problem described in section [2.4.4, page 37] appears.
Practically, the lack of structure of the TS raises also some problems in order to specify and
to implement the on-the-fly composition of the software systems.

To solve the problems revealed by the state of the art analysis, we have presented the
MIC∗ model in chapter 3. MIC∗ is an algebraic model of an abstract infrastructure where
autonomous and interacting software entities are deployed. MIC∗ implements the internal
integrity criterion since the software agents do not have a direct access to the software structure
of other agents. In fact, the interactions are mediated by the MIC∗ DE.

By contrast to the TS, MIC∗ is structured horizontally by the agents and vertically by the
interaction spaces. Consequently, each agent can access only to a specific region of the DE: its
outboxes, where both the interaction means and influences are located, and its inboxes where
the perceptions are located. The means of interaction, influences and perceptions are unified
and reified as interaction objects.

Thanks to the algebraic modeling, the on-the-fly composition of software systems is for-
mally specified by the composition of the DEs. In other words, we are now able to get formally
the result of a composition of several MIC∗ DEs. At the implementation level the composition
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6.1 Synthesis 179

of MIC∗ deployment environments is also implemented and the composed MIC∗ environments
offer a virtual deployment environment that is consistent with the formal specifications.

The MIC∗ model has answered two main questions that are related to the constraints of the
communication medium by offering a generative communication and the autonomy of software
entities by implementing the internal integrity. The point that has not been addressed by the
MIC∗ model concerns the coordination between the autonomous agents.

The coordination theory of Malone and Crowston [Malone & Crowston, 1994] has con-
stituted the basis of the coordination framework presented in chapter 4. In this chapter, we
have presented the dependency-based coordination model (DBCM) to specify the coordination
protocols among a set of roles. The DBCM represents the set of activities, resources and con-
sumption/production relationships. This formalism is suitable to capture the parallel aspects
of a coordination process. Furthermore, we have formally provided the link between a DBCM
coordination protocol and its set of conversations. This contrast with current approach found
within the literature of MASs that specifies explicitly the conversations among the agents to
perform joint activities. In fact, only the coordination protocols expressed as DBCMs are
sufficient to specify the structure of the conversations that hold among the entities. Besides
we have also provided practical means in order to check the consistency of the conversation
according to the definition of a coordination protocol. For this reason we have extended the
definition of the Petri Nets to define the Queue Petri Nets (QPNs). Thanks to the QPNs
the consistency of the conversation and the coordination protocols are checked in incremental
manner. We have also presented some algorithms that show how the structure of the QPN is
generated from the DBCM coordination protocol.

Moreover, the integration of the coordination framework within MIC∗ has been performed
without contradicting the hypotheses of the EAC context. In fact, we have seen that the
centralized approach to check the consistency of the conversations was inconsistent with the
hypothesis of the EAC. For this reason, we have presented a decentralized approach that
checks only that each role that participates to the coordination process does not challenge
locally the order constraints imposed by the DBCM coordination protocol.

In chapter 5 we have presented a practical engineering framework for the design and the
implementation of software systems as open artificial societies. The open artificial society is
specified by an organizational model in which we have integrated the concepts of internal/ex-
ternal roles and intracives/extracives in order to reify explicitly the openness of software
systems. The coordination of the joint activities among the roles is specified using DBCMs.
The organizational specifications of the artificial society are then automatically translated to
a MIC∗ deployment environment that represents in this case the social deployment environ-
ment. The interoperability of different artificial societies is addressed by the coordination of
the joint activities that hold among these artificial societies.

To experiment with the developed applications and to validate experimentally the sound-
ness of the presented approaches, we have developed a simulation platform to represent the
EAC context. For instance, this simulation platform has offered the opportunity to experi-
ment with the Ubiquitous Web application that has been presented as a case study. The
Virtual City project is also experimented using this simulation platform.
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180 Chapter 6 : Conclusion

6.2 Summary of the Main Contributions

6.2.1 MAS

1. Considering the infrastructure of MASs as a first-class entity: the infrastructure
that surrounds the agents was not explicitly represented as a first-class entity at the
design and implementation levels within MASs. We have referred to this infrastructure
as the deployment environment. We have highlighted the important role played by the
deployment environment since it affects the dynamics of the whole MAS. In fact, as the
deployment environment implements the interaction among the agents, one has to know
explicitly the properties and constraints that the deployment environment imposes on
the interactions of these agents in order to capture the whole dynamics of the MAS.
The deployment environment also guarantees the internal integrity of the agents and
consequently their autonomy.

2. Filling the gap between conceptual considerations and the implementation
of the autonomy: the autonomy of agents is well studied and documented at the con-
ceptual level within MASs. Still, at the implementation levels few works have presented
objective criteria in order to either implement or guarantee the autonomy of software
entities. We have related the autonomy of software entities to lack of knowledge and
means to control their behaviors or predict directly their intentions. As consequence
to this interpretation of the autonomy, the internal integrity becomes a sine qua none
condition to guarantee the autonomy of software entities. Thanks to the identification
of the deployment environment as a first-class entity, the internal integrity of software
entities is guaranteed at the implementation level.

3. Identification of the responsibility of the autonomous agents: the identification
of the deployment environment within MASs has also allowed the identification of the
responsibilities of the autonomous agents. In fact, we cannot provide the agents the au-
tonomy of actions without establishing a referential to which we evaluate the consistency
of their actions. In other words, the more we consider the agents as autonomous entities,
the more we need to pay attention to their actions. We have suggested encapsulating
the rules and norms that specify the consistency of the MAS within the deployment
environment. The other consequence of the autonomy is always to consider the actions
of agents as attempt of actions or influences [Ferber & Muller, 1996]. The deployment
environment defines its owns reaction rules to the influences of the agents. For instance,
within the MIC∗ model the influences are reified as interaction objects and the deploy-
ment environment completely controls the agents’ influences before committing them.

4. Making the interaction process independent from the agents: the MIC∗ model
reifies the information carriers, influences and interaction means in a unified structure
that is the interaction objects structure. The shift that is made with this approach is
to consider the interaction not between the agents but between the interaction objects.
So, the interaction process is defined within the deployment environment independently
from the agents. This helps in the separation of concerns for the engineering of MASs.
In fact, deployment environments are engineered independently from the models and
structures of the agents. Furthermore, heterogeneous agents may be deployed on the
same deployment environment at least if they share the same ontology of interaction
objects.
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6.2 Summary of the Main Contributions 181

5. Separating the interaction time from the computation time: the MIC∗ model
clearly distinguishes between the computation time and the interaction time. During
the computation time, the agents emit influences, while during the interaction time the
deployment environment calculates the result of the interactions between the interaction
objects. This result has been particularly interesting for MASs with synchronous agents
as it is the case for agent-based simulations [Michel, 2004]. In fact, this property guar-
antees that the actions of the agents and perceptions are coherent during the simulation
process.

6. Structuring the interaction means of MAS : some MASs have taken the asynchro-
nous message passing paradigm as legacy from concurrent objects technologies without
questioning this hypothesis. We have abstracted the interactions of the MAS and defined
an abstract structure of interaction object. The structure of the interaction objects as
a commutative group closed by a composition law has helped for the formal definition
of the composition of several deployment environments.

6.2.2 BlackBoards & Tuple Spaces

1. Structuring the interaction medium and enabling their composition: the MIC∗

model structures the interaction medium contrary to classical TS approaches. The MIC∗

model is structured as inbox and outbox matrices that are divided horizontally by the
agents and vertically by the interaction spaces. This structure makes the interaction
medium consistent with the hypotheses that were made on the software entities. In fact,
each software entity has only access to a reserved region of the deployment environ-
ment. Furthermore, the structure of the MIC∗ deployment environment has helped in
implementing the on-the-fly composition of software systems. In fact, when the MIC∗

deployment environments are composed the synchronization occurs on shared interac-
tion spaces only for the calculation of the interactions of the software agents. Thanks
to the modeling of the interaction means as interaction objects, the perceptions of the
agents are calculated remotely by moving the interaction means. The decomposition of
the deployment environments is flexibly handled since it does not require any special
management.

2. Unification between the interaction means and information carriers: the TS
uses the tuples as information carriers and anti-tuples as interaction means to retrieve
the tuples from the interaction medium. We have unified the information carriers and
interaction means as interaction objects. Consequently, even when a software entity is
not explicitly requesting to extract an information from the interaction medium, it is still
interacting within the system. This property cannot be defined within TS architectures.
Besides, the unification of the interaction means and information carriers also offers a
high level of introspection and reflection. In fact, depending on the interaction rule that
is used, the same interaction object can be considered either as an interaction mean or
as an information carrier.

6.2.3 Coordination

1. Unified view of the coordination and conversation protocols: we have presented
an approach that unifies the coordination and conversation protocols. The coordination
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182 Chapter 6 : Conclusion

protocols are expressed as DBCM digraphs that represent the relationships among dif-
ferent roles in terms of activities that produce and consume resources. DBCMs are
particularly interesting to express the parallelism of activities during a coordination
process. Furthermore, the conversations that are generated by the DBCM coordination
protocol are defined formally as a rewriting system and recognized in practice by using
the Queue Petri Nets.

2. Checking the consistency between the conversation and coordination proto-
cols: we have presented both a formal link between the coordination and conversation
protocols and means to control the consistency of a conversation protocol with regards
to the DBCM. Besides, the monitoring of conversations is performed in a decentralized
manner that is consistent with the hypotheses stated on the EAC context.

6.2.4 Social Metaphor for the Engineering of EAC Applications

1. Using the social metaphor for the engineering of EAC applications: we have
used the social metaphor for building software systems as open artificial societies. The
organization of the open artificial societies is specified using classical organizational con-
cepts found in the literature of MASs. We have added new ideas such as the distinction
between the internal and interface roles and intracives and extracives agents in order
to model the artificial society as a self-contained system and to capture explicitly the
openness at the organizational level. We have presented a model driven approach. So,
the designer specifies the properties of the artificial society using an IDE and the spec-
ifications are then automatically translated into a MIC∗ deployment environment that
implements the organizational structure of the MAS and checks the consistency of the
conversations with regards to the established coordination protocols.

6.3 Perspectives

6.3.1 Grid Computing

GRID technologies support the sharing and coordinated use of interconnected resources in
dynamic virtual organizations. In the beginning, the focus was on computing power: the dy-
namic creation from geographically and organizationally distributed components of a virtual
computing system able to generate autonomously the service consisting of dynamically allo-
cated computing resources for heavy processes [Foster et al. , 2001]. In the beginning GRID
technologies were designed for advanced science and engineering oriented services consisting
mainly of processing power. Since then [Foster et al. , 2002] the ambition of GRID computing
has shifted its original goal to address any kind of electronic services such as those related to
interactive processes, as it is the case, for instance, of persistent transactions with distributed
Information Systems, e-Commerce and e-Learning applications, Ambient intelligence and so
on.

The main logical components of a GRID architecture are the following: computing ele-
ments, representing the computers and clusters that run users’ processes and jobs; storage
elements, that represent the storage space where temporary and persistent data are stored;
user interfaces, represent the services that permit to the final user to access and use the of-
fered resources of the GRID architecture; resource brokers, these are the central elements of a
GRID architecture that handle the users’ requests, allocate the desired resources and track the
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6.3 Perspectives 183

execution of the users’ requests and finally inform the users about the result of their requests;
information services, offering a ’yellow page’ service that informs about the available resources
and location within the GRID.

The current central debate on GRID technologies (GLOBUS OGSA/I [Alliance, n.d.a,
Alliance, n.d.b] and WSRF [Alliance, n.d.c]) concerns the most suitable architecture that hosts
two contradictory properties of distributed systems: their independence on the asynchronicity
of message exchange requiring a purely functional behaviour in order to avoid a heavy syn-
chronization control or the risk of unforeseeable failures and the need for modeling, deploying
and using persistent, stateful transactions (interactions, conversations). The MIC* model
represents a progress for a grounded solution for these concerns.

6.3.2 Multi-Agent Based Simulations

The MIC∗ framework has already been used as an infrastructure for agent based simulations.
The main advantage of using MIC∗ model in agent based simulation is the fact that this
model implements the influence/reaction principle [Ferber & Muller, 1996] and separates the
interaction time from the computation of the agents. It is interesting to extend the work
presented by F. Michel [Michel, 2004] in order to provide simulation oriented platforms that
are based on the MIC∗ model to experiment the implementation of large-scale and distributed
agent-based simulations.

6.3.3 Fault Tolerant Software Systems

Classical MASs approaches that do not provide a model of the deployment environment at
the design level and do not consider the deployment environment as a first-class entity at the
implementation level cannot capture all the parameters that characterize MASs. For instance,
the state of a FIPA-based MAS is not defined when a message is sent by agent and is traveling
across the infrastructure to reach its destination. Consequently, it is difficult to save the state
of the entire MAS in order to restart it later. MIC∗ defines clearly the state of the deployment
environment at any time. So, by knowing the states of the agents, the state of the entire MAS
is known and can be stored and used to restart the system in case of partial or total failure.
We are currently experimenting with a persistent implementation of MIC∗ the opportunity to
build fault tolerant MASs that can support either the failure of the agents or the failure of
the deployment environment.

6.3.4 Extending the Coordination Framework

We have presented a simple coordination framework that captures the flow of activities and
resources that exchanged among the different roles played by agents. This framework can be
extended in order to include other characteristics such as time constraints. Consequently, the
coordination protocol does not only express the order of resources but also expresses the which
is allocated for each activity to produce its resources. Again, the deployment environment
should be able to check the consistency of the coordination protocols and conversations that
occur between the agents.
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184 Chapter 6 : Conclusion

6.3.5 Development Environments and Tools to Build EAC Applications

We have presented a preliminary organizational model and an IDE to develop EAC appli-
cations as open artificial societies. We expect to have feedbacks from developers that have
experimented these tools to ameliorate the IDE and to provide an engineering methodology
to facilitate the engineering process of real world EAC applications.

6.4 General Conclusion

The EAC offers a real opportunity to develop innovative services and applications that meet
users’ needs and expectations in various domains. The added value of EAC services is the fact
that these services are no longer statically retained, as it is the case nowadays for Internet
grounded services, but they can be located everywhere in ubiquitous manner.

From a technical point of view, the EAC challenges different assumptions that we have on
software systems. In order to develop services and applications for the EAC context we have to
forget some of our assumptions that were legated from distributed software systems that have
been conceived for other technical contexts such as the LANs and WANs. So, the EAC has
to be considered as a new technical context where to build software systems. Understanding
the properties of this context is an essential point for the success of building innovative and
stable applications.

After establishing the main properties of the EAC context, it is important to develop
models and theories that are suitable to answer the EAC challenges. We have followed a formal
approach and produced the MIC∗ algebraic model to abstract the deployment environment
where the autonomous software entities interact. The formalisation is not the main objective
but a mean that will help us to understand and answer some of the challenges imposed by the
EAC. Consequently the applicability of the produced theories and models is very important.
This point distinguishes between the concerns of mathematicians and computer scientists:
while the former consider the development of models and theories as a core problem, the later
considers the development of models and theories as a mean to resolve other problems that
are more related to informatics. So, it is important to translate the models and theories to
software structures and prototypes in order to check their applicability.

Even if the computer scientists play sometimes the role of the mathematician, she/he has
to clearly understand the difference between its own role and the role of the mathematician.
In fact, if the mathematician has to be compared to a poet, the computer scientist is then
compared to the music composer that writes melodies for the poems and transforms them
into songs. It will be more or less difficult to write some melodies for certain poems but this
process is essential for the computer scientist.

On the other hand, it is not always easy to directly share formal models and theories
specially when these models are complex and involve some prior knowledge. So, the use of
metaphor helps in sharing knowledge and the diffusion of ideas. Still, the used metaphors have
not to be independent from models and theories. In fact, we have to make the correspondence
between the metaphor and the theories clear and explicit. For instance, in this thesis we
have presented both the social metaphor for the development of EAC applications and its
translation into MIC∗ and DBCM coordination protocols. So, the complexity of models and
theories can be hidden by the use of metaphors that simplify the views. This is done to take
into account an important factor of any activity that involves humans which is the human
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6.4 General Conclusion 185

factor. In fact, we have always to keep in mind that we are using computers, but as scientists
and engineers we are always communicating with other humans.
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Appendix A

Mathematical notations

� N: set of positive integers.

� Z: set of integers.

� B: the Boolean ring.

� ∅: empty set (containing no elements).

� {a, b, c}: a set containing three elements a, b, c.

� x ∈ X: x is an element of the set X.

� x /∈ X: x is not an element of the set X.

� A ⊂ X: the set A is a contained in X.

� X∗: the set or ordered sequences that can be empty built using elements of X.

� |A| : if A is a set then, |A| is the number of its elements.

� X −A: elements of X that are not contained in A.

� A1 ∪A2: union set of A1 and A2.

� { x | x such that ...}: set of elements x such that...

� ∃x : ...: exists an element x such that...

� ∀x ∈ X: for all element x in X.

� A×B: cartesian product of A and B: set of couples (a, b) with a ∈ A and b ∈ B.

� P(A): power set of A or the set of all the subsets of A.

� X∞: the multiset or bag of elements of X.

� #(x, P ): the cardinality of the element x in the bag P .

� (P )⇒ (Q): P implies Q.

� (S → T ): set of all functions defined from S to T .

� λ(x) : Q : lambda style definition of a function; Q represents the core of the function.
For instance λ(x) : (x− 1) is a function that takes an argument x and return x− 1.

186
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� V (K) : the set of sequences of elements of V that are indexed by the elements of K.

� [xi]i∈Y : sequence of elements that are indexed by the element of the set Y .

� a.P@S : the agent P has a as interaction object within the space S.

� G =< N, V >: a graph where N represents the set of nodes and V the set of vertexes.

� n+ : the set of successors of the node n within a graph.

� n− : the set of predecessors of the node n within a graph.

� u
σ→ u′ : u can be reduced to u′ using the relation σ.

� u
R
 u′ : it exists a path of reductions that simplifies u to n′.

� |u| if u is sequence of marked elements, then |u| represent the sequence u where the
elements are no longer marked.
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Appendix B

Formal definition of Petri-Net

Theory

B.1 MultiSet (Bag) Theory

The formal definition of Petri Net theory is based on the multiset theory, so this section
presents a brief introduction to the multiset theory and notations.

The multiset is a set for which repeated elements are considered. In fact, within the set
theory the repeated elements are considered only once. For instance, the set {1, 1, 3} is exactly
the same as the set {1, 3}. However, the multiset {1, 3} is different from the multiset {1, 1, 3}
since the cardinality of the element 1 differs. The cardinality of an element x in a multiset Q

is represented as #(x,Q). For instance: #(1, {1, 3}) = 1 and #(1, {1, 1, 3}) = 2.

We represent the multiset that is built from a set X as follows X∞. The multiset X∞

allows the repetition of the elements of X.

The classical operations that are defined for the sets such as union, intersection, inclusion
are naturally extended for the multiset by considering the cardinality of the elements. Here
some examples:

{1, 2} ∪ {1, 3, 4} = {1, 1, 2, 3, 4}
{1, 2} ∪ {1, 3, 4} = {1}

{1, 2} ⊂ {1, 1, 2, 3, 4}

B.2 Petri Net Structure

Definition B.2.1. Petri net structure is a four tuple C = {P, T, I, O}, P = {p1, p2, ..., pn}
is a finite set of places n ≥ 0 and T = {t1, t2, ..., tm} is a finite set of transitions m ≥ 0.
P ∪ T = ∅. I : T → P∞ is defined as the input function, a mapping from transitions to bags
of places and O : T → P∞ is defined as the output function, a mapping from transitions to
bags of places.

� A place pi is an input place of a transition ti if pi ∈ I(tj); pi is an output place if
pi ∈ O(tj) . The inputs and outputs of a transition are bags of places.
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B.3 Petri Net Markings 189

� Multiplicity of a place p for transition t is the number of occurrences of place p in input
or output transitions bag that is:

– Multiplicity of input place pi for transition tj #(pi, I(tj))

– Multiplicity of output place pi for transition tj #(pi, O(tj))

� Transition tj is an input of a place pi if pi is an output of pj . Transition tj is an output
of a place pi if pi is an input of tj .

Definition B.2.2. The definition of the output and input functions is extended for places as
follows: O : P → T∞ and I : P → T∞ such that:

� #(tj , I(pi)) = #(pi, O(tj))

� #(tj , O(pi)) = #(pi, I(tj))

B.3 Petri Net Markings

A marking µ is an assignment of tokens to the places.

Definition B.3.1. A marking µ of a Petri net C = (P, T, I,O is a function defined from the
set of places to the non negative integers N.

µ : P → N

A marked Petri net M = (C, µ) is a Petri net structure C = (P, T, I, O) and marking function
µ.

B.4 Execution Rules for Petri Nets

The execution of Petri net is totally controlled by tokens distributed over places. Petri net
executes by firing transitions. A transition fires by consuming tokens from its input places
and producing new tokens that are distributed to its output places. A transition is said to be
fireable if it is enabled. A transition is enabled if each of its input places has at least as many
tokens in it as arcs from the place to the transition.

Definition B.4.1. Transition tj ∈ T in a marked Petri net C = (P, T, I, O) with marking
µ is enabled if for all pi ∈ P :

µ(pi) ≥ #(pi, I(tj))

Definition B.4.2. Let tj be a fireable transition in a marked Petri net with marking µ. The
firing of this transition results in a new marking µ′ defined as follows:

µ′(pi) = µ(pi)−#(pi, I(tj)) + #(pi, O(tj))

When there are no fireable transitions the petri net is said to be dead.
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Appendix C

MIC∗ Message Headers

C.1 General Definition of the Message Structure

1 #ifndef __Message__
2 #define __Message__
3 /************************************************************************
4 * MIC* Library/Common Package
5 * Class: _Message
6 * Author: A. GOUAICH
7 * Version: £version£
8 * Description: Base class for messages
9 *

10 ************************************************************************/
11 #include "global.h"
12 #include <map>
13 #include <string>
14 #include <iostream>
15 using namespace std;
16 //IDs of Messages
17 const unsigned char PONG_MSG =0xFF;
18 const unsigned char REMOTE_INTERACTION_REQUEST_MSG =0x0F;
19 const unsigned char REMOTE_INTERACTION_REPLY_MSG =0x0E;
20 const unsigned char MOVEMENT_REQUEST_MSG =0x0D;
21 const unsigned char LOGOUT_MSG =0x0C;
22 const unsigned char LOGIN_MSG =0x0B;
23 const unsigned char LOGIN_RESULT_MSG =0x0A;
24 const unsigned char INBOX_REQUEST_MSG =0x09;
25 const unsigned char INBOX_REPLY_MSG =0x08;
26 const unsigned char DISCONNECT_REQUEST_MSG =0x07;
27 const unsigned char DISCONNECT_FROM_MSG =0x06;
28 const unsigned char CONNECTION_REQUEST_MSG =0x05;
29 const unsigned char CONNECTION_REPLY_MSG =0x04;
30 const unsigned char CONNECT_TO_MSG =0x03;
31 const unsigned char COMPUTATION_REQUEST_MSG =0x02;
32 const unsigned char AK_MSG =0x01;
33 const unsigned char PING_MSG =0x00;
34 //abstract Message Class
35 class _Message
36 {
37 //pretty printing
38 friend ostream& operator<<(ostream& output, const _Message& msg);
39 public:
40 //the type of the message
41 unsigned char message_type;
42 //constructor
43 _Message();
44 _Message(unsigned char type);
45 //destructor
46 ~_Message();
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C.2 Agent to MIC∗ Message Headers 191

47 virtual pair<char*, int> encode() = 0;
48 };
49 //function used to the decode the messages from binary encoding
50 _Message* decode(const pair<char*, int>&);
51 //internal type
52 typedef struct
53 {
54 unsigned char flag;
55 unsigned int length ;
56 char* content;
57 } message;
58 //function to serialize the messages.
59 pair<char*,int> serialize(message& msg);
60 //function to deserialize the messages.
61 message deserialize(const pair<char*,int>& res);
62 #endif

C.2 Agent to MIC∗ Message Headers

C.2.1 Login Request Message

1 #ifndef __LOGIN_H__
2 #define __LOGIN_H__
3 /************************************************************************
4 * MIC* Library/Common Package
5 * Class: LoginResult
6 * Author: A. GOUAICH
7 * Version: £version£
8 * Description: Message sent by the agent to MIC*
9 * to request to log into the deployment environment

10 ************************************************************************/
11

12 #include "Message.h"
13 #include <iostream>
14 using namespace std;
15

16 /**
17 * Login Message
18 **/
19

20 class Login: public _Message
21 {
22 //pretty printing
23 friend ostream& operator<<(ostream& output, const Login& login);
24 public:
25 //agent identity
26 string user_identity;
27 //passwd
28 string passwd;
29 //constr.
30 Login();
31 Login(string username, string passwd);
32 Login(pair<char*,int> coding);
33 virtual ~Login();
34 //code the msg
35 pair<char*, int> encode() ;
36 };
37

38 #endif

C.2.2 Login Reply Message
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192 Annex C : MIC∗ Message Headers

1 #ifndef __LOGIN__
2 #define __LOGIN__
3

4 /************************************************************************
5 * MIC* Library/Common Package
6 * Class: LoginResult
7 * Author: A. GOUAICH
8 * Version: £version£
9 * Description: Message sent by MIC* the agent to inform

10 * about the result of the login request.
11 ************************************************************************/
12

13 #include "Message.h"
14 #include <iostream>
15 using namespace std;
16

17 /**
18 * LoginResult Message
19 **/
20 class LoginResult: public _Message{
21 friend ostream& operator<<(ostream& output, const LoginResult& loginres);
22 public:
23 //login result
24 bool login_result;
25 //agent identity
26 string agent_entry;
27 //constr.
28 LoginResult();
29 LoginResult(bool result, string username);
30 LoginResult(pair<char*,int> coding);
31 virtual ~LoginResult();
32

33 //Ask to code the message
34 pair<char*, int> encode() ;
35 };
36

37 #endif

C.2.3 Logout Request Message

1 #ifndef __LOGOUT_H__
2 #define __LOGOUT_H__
3

4 /************************************************************************
5 * MIC* Library/Common Package
6 * Class: LogoutRequest
7 * Author: A. GOUAICH
8 * Version: £version£
9 * Description: Message sent an Agent to MIC* to request

10 * to logout.
11 ************************************************************************/
12

13 #include "Message.h"
14 #include <iostream>
15 using namespace std;
16

17 /**
18 * Logout Message
19 * parameters: agent_entry
20 *
21 **/
22

23 class LogoutRequest: public _Message
24 {
25 //pretty printing
26 friend ostream& operator<<(ostream& output, const Logout& login);
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C.2 Agent to MIC∗ Message Headers 193

27 public:
28 //Agent entry: agent identifier
29 string agent_entry;
30 //Default constructor
31 Logout();
32 //constructor with parameter
33 Logout(const string& id);
34 //Constructor from binary coding
35 Logout(const pair<char*,int>& coding);
36 //default desctructor
37 ~Logout();
38 //ask to encode the message
39 pair<char*, int> encode() ;
40 };
41

42 #endif

C.2.4 Inbox Request Message

1 #ifndef __INBOXREQUEST_H__
2 #define __INBOXREQUEST_H__
3 /************************************************************************
4 * MIC* Library/Common Package
5 * Class: InboxResult
6 * Author: A. GOUAICH
7 * Version: £version£
8 * Description: Message sent by the agent to MIC*
9 * to ask its inbox

10 ************************************************************************/
11 #include "Message.h"
12 #include <iostream>
13 using namespace std;
14

15 /**
16 * InboxRequest Message
17 **/
18

19 class InboxRequest: public _Message
20 {
21 //pretty printing
22 friend ostream& operator<<(ostream& output, const InboxRequest& InboxRequest);
23 public:
24 //agent identity
25 string aentry;
26 //constr.
27 InboxRequest();
28 InboxRequest(string aentry);
29 InboxRequest(pair<char*,int> coding);
30 ~InboxRequest();
31 //ask to code the msg
32 pair<char*, int> encode() ;
33 };
34 #endif

C.2.5 Inbox Reply Message

1 #ifndef __INBOX_REPLY_H__
2 #define __INBOX_REPLY_H__
3 /************************************************************************
4 * MIC* Library/Common Package
5 * Class: InboxReply
6 * Author: A. GOUAICH
7 * Version: £version£
8 * Description: Message sent by the agent to MIC*
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194 Annex C : MIC∗ Message Headers

9 * to request to log into the deployment environment
10 ************************************************************************/
11 #include "Message.h"
12 #include "InteractionObjectMultiSet.h"
13 #include <iostream>
14 #include <map>
15 #include "Codec.h"
16 using namespace std;
17 /**
18 * InboxReply Message
19 **/
20

21 class InboxReply: public _Message
22 {
23 //pretty printing
24 friend ostream& operator<<(ostream& output, const InboxReply& comp);
25 public:
26 //agent identity
27 string aentry;
28 //the inbox mapping interaction space->{Interaction Object}
29 map<string,InteractionObjectMultiSet*> inbox;
30 InboxReply();
31 InboxReply(string aentry, map<string,InteractionObjectMultiSet*> inbox);
32 InboxReply(pair<char*,int> coding);
33 virtual ~InboxReply();
34 //codes the msg.
35 pair<char*, int> encode() ;
36 };
37

38 #endif

C.2.6 Movement Request Message

1 #ifndef __MOVEMENT_REQUEST_H__
2 #define __MOVEMENT_REQUEST_H__
3 /************************************************************************
4 * MIC* Library/Common Package
5 * Class: MovementRequest
6 * Author: A. GOUAICH
7 * Version: £version£
8 * Description: Message sent by an agent to MIC* to move
9 * its interaction objects between interaction space

10 ************************************************************************/
11 #include "Message.h"
12 #include <iostream>
13 using namespace std;
14

15 /**
16 * MovementRequest Message
17 **/
18

19 class MovementRequest: public _Message
20 {
21 //pretty printing
22 friend ostream& operator<<(ostream& output, const MovementRequest& login);
23 public:
24 //agent entry
25 string aentry;
26 //source
27 string source;
28 //destination
29 string destination;
30 //constr.
31 MovementRequest();
32 MovementRequest(const string& aentry,const string& source);
33 MovementRequest(const string& aentry,const string& source,const string& destination);
34 MovementRequest(pair<char*,int> coding);
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C.2 Agent to MIC∗ Message Headers 195

35 //destructor.
36 ~MovementRequest();
37 //codes the msg.
38 pair<char*, int> encode() ;
39 };
40 #endif

C.2.7 Movement Reply Message

C.2.8 Computation Request Message

1 #ifndef __COMPUTATION_H__
2 #define __COMPUTATION_H__
3

4 /************************************************************************
5 * MIC* Library/Common Package
6 * Class: ComputationRequest
7 * Author: A. GOUAICH
8 * Description: Message sent by the Agent to change its outboxes
9 * within the MIC* deployment environment.

10 ************************************************************************/
11 /*
12 *HEADERS
13 */
14 #include "Message.h"
15 #include "InteractionObjectMultiSet.h"
16 #include "Codec.h"
17 #include <iostream>
18 #include <map>
19 using namespace std;
20 /*
21 * END OF HEADERS
22 */
23

24 /**
25 * ComputationRequest Message
26 **/
27

28 class ComputationRequest: public _Message
29 {
30 //output method
31 friend ostream& operator<<(ostream& output, const Computation& comp);
32

33 public:
34 //entry: the agent identifier in the deployment environment
35 string entry;
36 //outbox: mapping between the interaction spaces and
37 //interction objects multiset
38 map<string,InteractionObjectMultiSet*> outbox;
39 //Default constructor
40 ComputationRequest();
41 //Constructor with parameters
42 ComputationRequest(string entry, map<string,InteractionObjectMultiSet*> outbox);
43 //Constructor from binary encoding
44 ComputationRequest(pair<char*,int> coding);
45 //Destructor
46 ~Computation();
47 //Encodes the message to binary data in order
48 //to be sent accross the network.
49 pair<char*, int> encode() ;
50 };
51

52 #endif
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196 Annex C : MIC∗ Message Headers

C.2.9 Computation Reply Message

1 #ifndef __COMPUTATION_REPLY_H__
2 #define __COMPUTATION_REPLY_H__
3

4 /************************************************************************
5 * MIC* Library/Common Package
6 * Class: ComputationRequest
7 * Author: A. GOUAICH
8 * Description: Message sent by the Agent to change its outboxes
9 * within the MIC* deployment environment.

10 ************************************************************************/
11 /*
12 *HEADERS
13 */
14 #include "Message.h"
15 #include "InteractionObjectMultiSet.h"
16 #include "Codec.h"
17 #include <iostream>
18 #include <map>
19 using namespace std;
20 /*
21 * END OF HEADERS
22 */
23

24 /**
25 * ComputationReply Message
26 **/
27

28 class ComputationReply: public _Message
29 {
30 //output method
31 friend ostream& operator<<(ostream& output, const Computation& comp);
32

33 public:
34 //entry: the agent identifier in the deployment environment
35 string entry;
36 //outbox: mapping between the interaction spaces and
37 //the result of the computation
38 map<string,bool> result;
39 //Default constructor
40 ComputationReply();
41 //Constructor with parameters
42 ComputationReply(string entry, map<string,bool> outbox);
43 //Constructor from binary encoding
44 ComputationReply(pair<char*,int> coding);
45 //Destructor
46 ~Computation();
47 //Encodes the message to binary data in order
48 //to be sent accross the network.
49 pair<char*, int> encode() ;
50 };
51

52 #endif

C.3 MIC∗ to MIC∗ Message Headers

C.3.1 Connection Request Message

1 #ifndef __ConnectionRequest_H__
2 #define __ConnectionRequest_H__
3

4 /************************************************************************
5 * MIC* Library/Common Package
6 * Class: ComputationRequest
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C.3 MIC∗ to MIC∗ Message Headers 197

7 * Author: A. GOUAICH
8 * Description: Message sent by a MIC* instance to another MIC*
9 * to request a composition.

10 ************************************************************************/
11

12 #include "Message.h"
13 #include <iostream>
14 #include <set>
15 using namespace std;
16

17 /**
18 * ConnectionRequest Message
19 *
20 * Parameters: login, password, hostname, port, spaces
21 *
22 **/
23

24 class ConnectionRequest: public _Message
25 {
26 //output method
27 friend ostream& operator<<(ostream& output, const ConnectionRequest& DisconnetFrom);
28 public:
29 //login for secured composition
30 string login;
31 //passwd for secured compositions
32 string passwd;
33 //the hostname
34 string hostname;
35 //int port
36 int port;
37 //set of string identifying public interaction spaces
38 set<string> spaces;
39 //Default constructor
40 ConnectionRequest();
41 //full parameters constr.
42 ConnectionRequest(string login, string passwd, string hostname, int port, const set<string

>& spaces);
43 //constructor from the binary data
44 ConnectionRequest(pair<char*,int> coding);
45 //Destructor
46 ~ConnectionRequest();
47

48 //Encodes the message to binary data in order
49 //to be sent accross the network.
50 pair<char*, int> encode() ;
51 };
52 #endif

C.3.2 Connection Reply Message

1 #ifndef __ConnectionReply_H__
2 #define __ConnectionReply_H__
3

4 /************************************************************************
5 * MIC* Library/Common Package
6 * Class: ComputationRequest
7 * Author: A. GOUAICH
8 * Description: Message sent by a MIC* instance to another MIC*
9 * to inform if the connection is accepted or not.

10 ************************************************************************/
11 /*
12 *HEADERS
13 */
14 #include "Message.h"
15 #include <iostream>
16 #include <set>
17 using namespace std;
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198 Annex C : MIC∗ Message Headers

18

19 /**
20 * ConnectionReply Message
21 * Parameters: login, passwd, result.
22 *
23 **/
24

25 class ConnectionReply: public _Message
26 {
27 friend ostream& operator<<(ostream& output, const ConnectionReply& DisconnetFrom);
28

29 public:
30 //login: used for secured compositions
31 string login;
32 //passwd: used for secured compositions
33 string passwd;
34 //the result of the connection
35 bool result;
36

37 //set of string identifying public interaction spaces
38 //that will be synchronized on interactions.
39 set<string> spaces;
40

41 //Default Constructor
42 ConnectionReply();
43

44 //full parameters constructor
45 ConnectionReply(string login, string passwd, bool result,const set<string>& spaces);
46

47 //Constructor from the binary encoding
48 ConnectionReply(pair<char*,int> coding);
49

50 //Destructor
51 ~ConnectionReply();
52

53 //Encodes the message to binary data in order
54 //to be sent accross the network.
55 pair<char*, int> encode() ;
56 };
57 #endif

C.3.3 Diconnection Request Message

1 #ifndef __DisconnectRequest_H__
2 #define __DisconnectRequest_H__
3 /************************************************************************
4 * MIC* Library/Common Package
5 * Class: DisconnetFrom
6 * Author: A. GOUAICH
7 * Version: £version£
8 * Description: Message sent by an instance of MIC* to another MIC*
9 * to disconnect from it

10 ************************************************************************/
11 #include "Message.h"
12 #include <iostream>
13 #include <set>
14 using namespace std;
15 /**
16 * DisconnectRequest Message
17 *
18 **/
19 class DisconnectRequest: public _Message
20 {
21 //pretty printing
22 friend ostream& operator<<(ostream& output, const DisconnectRequest& DisconnetFrom);
23 public:
24 //command login
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C.3 MIC∗ to MIC∗ Message Headers 199

25 string login;
26 //passwd
27 string passwd;
28 //local hostname
29 string hostname;
30 //int the remote port
31 int port;
32 DisconnectRequest();
33 DisconnectRequest(string login, string passwd, string hostname, int port);
34 DisconnectRequest(pair<char*,int> coding);
35 ~DisconnectRequest();
36 //codes the message
37 pair<char*, int> encode() ;
38 };
39 #endif
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Appendix D

DTD and XML Definitions

D.1 Dependency Based Coordination Model

D.1.1 DTD Definition

<!-- Coordination Model Formalism Definition -->
<!--
Definition of the XML formalism to express coordination models based

on producer/consumer relationships among activies.

CoordinationGraph: the overall structure

ResourceNode: represents the abstract resource representation in the

coordination graph.

ActivityNode: represents an activity in the coordination model.

ControlFunction: a boolean function that recognise the actual resources.

ProductionLink: Production relation among an activty and a resource.

ControlFunction: Consumption relation among an activty and a resource.

Author: GOUAICH Abdelakder, version 1.1, date 15/07/2004

-->

<!ELEMENT CoordinationGraph (
ResourceNode+,
ActivityNode+,
ProductionLink+,
ConsumptionLink+,
ControlFunction+
) >

<!ATTLIST CoordinationGraph name ID #REQUIRED>

<!ELEMENT ResourceNode EMPTY >
<!-- unique id of the resource-->
<!ATTLIST ResourceNode id ID #REQUIRED >
<!-- label used when drawing the digraph -->
<!ATTLIST ResourceNode label CDATA #REQUIRED>
<!-- tells if this resource node is an axiom or not-->
<!ATTLIST ResourceNode axiom (true|false) #REQUIRED>
<!-- tells if this resource node is mapped to a control function-->
<!ATTLIST ResourceNode epsilon (true|false) #REQUIRED>
<!ATTLIST ResourceNode group CDATA #REQUIRED >
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D.2 XML Formalism For the Specification of Open Artificial Societies 201

<!-- sets The control function of this resource.

If this resource is not an epsilon this attribute must be set-->
<!ATTLIST ResourceNode control_function IDREF #IMPLIED >
<!ELEMENT ActivityNode EMPTY >
<!-- unique id of the activity-->
<!ATTLIST ActivityNode id ID #REQUIRED >
<!-- label used when drawing the digraph -->
<!ATTLIST ActivityNode label CDATA #REQUIRED>
<!ATTLIST ActivityNode group CDATA #REQUIRED>

<!ELEMENT ControlFunction (#PCDATA) >
<!-- the code of the function in include in a CDATA section -->
<!-- name and id of the control function -->
<!ATTLIST ControlFunction name ID #REQUIRED>
<!ELEMENT ProductionLink EMPTY >
<!-- idref of the resource-->
<!ATTLIST ProductionLink resource IDREF #REQUIRED>
<!-- idref of the activity-->
<!ATTLIST ProductionLink activity IDREF #REQUIRED>
<!ELEMENT ConsumptionLink EMPTY >
<!-- idref of the resource-->
<!ATTLIST ConsumptionLink resource IDREF #REQUIRED>
<!-- idref of the activity-->
<!ATTLIST ConsumptionLink activity IDREF #REQUIRED>

D.1.2 Examples of Coordination patterns expressed using the XML repre-
sentation:

D.2 XML Formalism For the Specification of Open Artificial

Societies

<!-- AEC Application Specification -->
<!--

XML Formalism used for the specification of AEC applications

as open artificial societies.

Author: GOUAICH Abdelakder, version 1.1, date 15/09/2004

-->

<!--
The root element is the Project. The project is composed by two

subconcepts the ProjectInformation node and the OpenArtificialSociety node.

-->

<!ELEMENT Project (ProjectInformation,OpenArtificialSociety) >
<!-- name of the project -->
<!ATTLIST Project name CDATA #REQUIRED >
<!-- namespace of the project -->
<!ATTLIST Project namespace CDATA #REQUIRED >

<!-- Text description of the project-->
<!ELEMENT ProjectInformation (Description) >
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202 Annex D : DTD and XML Definitions

<!--
OpenArtificialSociety:

SystemicFunctionSet: set of functions that the system should implement.

SocialStructure: the structure of the artificial society.

SocialMapping: mapping between the social strtructure and the functions.

-->
<!ELEMENT OpenArtificialSociety (SystemicFunctionSet,SocialStructure,SocialMapping) >
<!ATTLIST OpenArtificialSociety name CDATA #REQUIRED >
<!ATTLIST OpenArtificialSociety namespace CDATA #REQUIRED >

<!-- SYSTEMIC FUNCTION -->
<!ELEMENT SystemicFunctionSet (SystemicFunction*) >
<!ELEMENT SystemicFunction (Description) >
<!-- Identification and name of the socialtask -->
<!ATTLIST SystemicFunction name CDATA #REQUIRED >
<!ATTLIST SystemicFunction id ID #REQUIRED >

<!-- SOCIAL STRUCTURE -->
<!ELEMENT SocialStructure (RoleSet,GroupSet,GroupRoleAssociationSet, Constraint) >

<!-- The role organisational concept-->
<!ELEMENT RoleSet (Role*) >
<!ELEMENT Role (Description) >
<!ATTLIST Role id ID #REQUIRED >
<!ATTLIST Role name CDATA #REQUIRED >
<!ATTLIST Role type (internal|interface) #REQUIRED >

<!-- The group concept: a group is a cllection of roles performing a social task-->
<!ELEMENT GroupSet (Group*) >
<!ELEMENT Group (Description) >
<!ATTLIST Group id ID #REQUIRED >
<!ATTLIST Group name CDATA #REQUIRED >

<!-- Association between the group and the role -->
<!ELEMENT GroupRoleAssociationSet (GroupRoleAssociation*) >
<!ELEMENT GroupRoleAssociation (Description) >
<!ATTLIST GroupRoleAssociation group_id IDREF #REQUIRED >
<!ATTLIST GroupRoleAssociation role_id IDREF #REQUIRED >

<!-- Constraint -->
<!ELEMENT Constraint (RoleConstraintSet,GroupConstraintSet, GroupRoleConstraintSet) >

<!-- Role Constraint -->
<!ELEMENT RoleConstraintSet (RoleConstraint*) >
<!ELEMENT RoleConstraint (Description) >
<!ATTLIST RoleConstraint role_id IDREF #REQUIRED >
<!ATTLIST RoleConstraint min_occ NMTOKEN #REQUIRED >
<!ATTLIST RoleConstraint max_occ NMTOKEN #REQUIRED >

<!-- Group Constraint -->
<!ELEMENT GroupConstraintSet (GroupConstraint*) >
<!ELEMENT GroupConstraint (Description) >
<!ATTLIST GroupConstraint group_id IDREF #REQUIRED >
<!ATTLIST GroupConstraint min_occ NMTOKEN #REQUIRED >
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D.2 XML Formalism For the Specification of Open Artificial Societies 203

<!ATTLIST GroupConstraint max_occ NMTOKEN #REQUIRED >

<!-- GroupRole Constraint -->
<!ELEMENT GroupRoleConstraintSet (GroupRoleConstraint*) >
<!ELEMENT GroupRoleConstraint (Description) >
<!ATTLIST GroupRoleConstraint group_id IDREF #REQUIRED>
<!ATTLIST GroupRoleConstraint role_id IDREF #REQUIRED>
<!ATTLIST GroupRoleConstraint min_occ NMTOKEN #REQUIRED>
<!ATTLIST GroupRoleConstraint max_occ NMTOKEN #REQUIRED>

<!-- Mapping between the social structure and the functions -->
<!ELEMENT SocialMapping (SocialTaskSet) >

<!-- SocialTask Collection concept -->
<!ELEMENT SocialTaskSet (SocialTask*) >
<!-- Social task concept -->

<!ELEMENT SocialTask (GroupAssignment, CoordinationProtocolSet) >
<!-- Identification and name of the socialtask -->
<!ATTLIST SocialTask name CDATA #REQUIRED >
<!ATTLIST SocialTask id ID #REQUIRED >
<!ATTLIST SocialTask implemented_functions IDREFS #REQUIRED >
<!ELEMENT GroupAssignment (RoleIDSet)>
<!ATTLIST GroupAssignment group_id IDREF #REQUIRED >

<!ELEMENT RoleIDSet (RoleID*) >
<!ELEMENT RoleID EMPTY>
<!ATTLIST RoleID role_id IDREF #REQUIRED >

<!-- Coordination protocol in order to resolve the social task-->
<!-- assigned to a roles that are in a social group -->
<!ELEMENT CoordinationProtocolSet (CoordinationProtocol*)>
<!ELEMENT CoordinationProtocol (Description,CoordinationGraph) >
<!ATTLIST CoordinationProtocol id ID #REQUIRED >
<!ATTLIST CoordinationProtocol name CDATA #REQUIRED >
<!ATTLIST CoordinationProtocol roles-id IDREFS #REQUIRED >
<!-- How to describe a coordination protocol-->

<!ELEMENT CoordinationGraph
(ActivitySet,ResourceSet,CoordinationGraphStructure,ControlFunctionSet)

>
<!-- Acticity -->
<!ELEMENT ActivitySet (Activity*) >
<!ELEMENT Activity (Description) >
<!ATTLIST Activity name CDATA #REQUIRED >
<!ATTLIST Activity id ID #REQUIRED >
<!ATTLIST Activity role-id IDREF #REQUIRED >

<!-- Resource -->
<!ELEMENT ResourceSet (Resource*) >
<!ELEMENT Resource (Description) >
<!ATTLIST Resource name CDATA #REQUIRED >
<!ATTLIST Resource id ID #REQUIRED >
<!ATTLIST Resource axiom (true|false) #IMPLIED >
<!ATTLIST Resource control_function IDREF #IMPLIED >
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204 Annex D : DTD and XML Definitions

<!-- CoordinationGraphStructure -->
<!ELEMENT CoordinationGraphStructure (ProductionLinkSet,ConsumptionLinkSet ) >

<!ELEMENT ProductionLinkSet (ProductionLink*) >
<!ELEMENT ConsumptionLinkSet (ConsumptionLink*) >

<!-- ProductionLink -->
<!ELEMENT ProductionLink EMPTY>
<!ATTLIST ProductionLink task-id IDREF #REQUIRED >
<!ATTLIST ProductionLink resource-id IDREF #REQUIRED >

<!-- ConsumptionLink -->
<!ELEMENT ConsumptionLink EMPTY>
<!ATTLIST ConsumptionLink task-id IDREF #REQUIRED >
<!ATTLIST ConsumptionLink resource-id IDREF #REQUIRED >

<!-- Description Concept -->
<!ELEMENT Description (#PCDATA)>

<!ELEMENT ControlFunctionSet (ControlFunction) >
<!ELEMENT ControlFunction (#PCDATA) >
<!ATTLIST ControlFunction id ID #REQUIRED >
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Appendix E

Testing the Conversations of the

Ubiquitous Web Application

This chapter presents a test application has been developed for the ubiquitous application
example. This application offers some arithmetic services such as the calculation of a sum,
multiplication and square root of numbers. The table presented below shows the messages
exchanged during a conversation (the first column), what the user actually sees displayed
(the second column), and the result of the protocol controller (the third column):

conversation output of the client agent result of the
protocol
controller

CoordinationMessage
conv-id 1000000F

proto-id WebSocialActivity

sender-role WebClientRole

receiver-
role

WebServerRole

content (request room

0)

no output correct

CoordinationMessage
conv-id 1000000F

proto-id WebSocialActivity

sender-role WebServerRole

receiver-
role

WebClientRole

content (room 0

[base64

encoding of

the room])

correct
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206 Annex E : Testing the Conversations of the Ubiquitous Web Application

CoordinationMessage
conv-id 1000000F

proto-id WebSocialActivity

sender-role WebClientRole

receiver-
role

WebServerRole

content (request room

services)

not changed correct

CoordinationMessage
conv-id 1000000F

proto-id WebSocialActivity

sender-role WebServerRole

receiver-
role

WebClientRole

content (room services

[base64

encoding of

the room])

correct

CoordinationMessage
conv-id 1000000F

proto-id WebSocialActivity

sender-role WebClientRole

receiver-
role

WebServerRole

content (request room

square-root-service)

not changed correct
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CoordinationMessage
conv-id 1000000F

proto-id WebSocialActivity

sender-role WebServerRole

receiver-
role

WebClientRole

content (room

square-root-service

[base64

encoding of

the room])

correct

CoordinationMessage
conv-id 1000000F

proto-id WebSocialActivity

sender-role WebClientRole

receiver-
role

WebServerRole

content (request

action

square-root

number=16 )

not changed correct

CoordinationMessage
conv-id 1000000F

proto-id WebSocialActivity

sender-role WebServerRole

receiver-
role

WebClientRole

content (room

square-root-result

[base64

encoding of

the room])

correct

(request room 0) not changed correct
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208 Annex E : Testing the Conversations of the Ubiquitous Web Application

CoordinationMessage
conv-id 1000000F

proto-id WebSocialActivity

sender-role WebClientRole

receiver-
role

WebServerRole

content (room 0

[base64

encoding of

the room])

correct
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Appendix F

Introduction to Networking

Technologies

Network technologies are communication media (cf. §2.2.1, page 22) which enable the com-
munication among software systems. The properties of the communication medium affect
considerably both the qualitative and quantitative properties of distributed software systems.
For instance L. Cardelli in [Cardelli, 1999] identifies the mentalistic images that software de-
signers have on the technological context of software systems. Three main mentalistic images
are presented by Cardelli: (i) the Local Area Network (LAN) image, (ii) the Wide Area Net-
work (WAN) image; (iii) and the Mobile computing image. Caredelli shows that there is a
correlation between the mentalistic image that is adopted and the properties of the software
system. Consequently, before studying software architectures and design paradigms, one has
to understand the lower-level considerations that result from the properties of communication
media.

This section gives a simple introduction to these technologies for readers who are not
familiar with this field. For further readings, the reader is forwarded to the Tannenbaum’s
book [S.Tanenbaum, 1989].

F.1 The OSI Model

The International Standardisation Organisation (ISO) has proposed a generic network ar-
chitecture for the Open Systems Interconnection (OSI) [Day & Zimmerman, 1983]. The OSI
model is organized as seven hierarchical layers. Each layer offers services to upper-layers and
uses the services of sub-layers. The boundary between two layers is called an interface and
the set of conventions allowing same-level layers to communicate is called a protocol.

The OSI layers are presented in Figure F.1 and are described as follows:

1. Physical layer: The role of this layer is to transmit on the physical media signals that
encode information as data units (bits). The questions that are answered in this layer
are related to properties of the physical media such as the electrical signal’s voltage; the
temporal duration of a bit in microseconds; the pins’ format and order.

2. Data link layer: The role of this layer is to hide the physical properties of the trans-
mission media. In other words, this layer simulates a perfect connection to the network
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210 Annex F : Introduction to Networking Technologies

Application

Presentation

Session

Transport

Network

Link

Physical

7

2

3

4

5

6

1

Layers

Network

Link

Physical

Network

Link

Physical

Application

Presentation

Session

Transport

Application Protocol

Presentation Protocol

Session Protocol

Transport Protocol

System A System BRelay System

Figure F.1: The iso7498 network architecture.

layer. Unlike the physical layer, this layer interprets and recognizes the transmitted data
units namely the (frames). For instance, when an error occurs on a frame it is imme-
diately retransmitted without replication. The synchronization is another functionality
of this layer. Indeed, in an open system, a transmitter might emit more quickly than a
slow receiver. This causes the overloading of the receiver. To avoid this problem, some
flow management mechanisms are implemented by this layer.

3. Network layer: This layer delivers packets from the emitter to an identified receiver.
Again, some flow management mechanisms are used in order to control the traffic on
the network.

4. Transport layer: The main function of this layer is to split data of the application
into sub-units and to ensure that they arrive in the correct order.

5. Session layer: This layer allows different users on distinct machines to establish ses-
sions. Besides, some recovery points are introduced to avoid the complete retransmission
of data in case of failure.

6. Presentation layer: This layer allows the conversion of internal representation of data
into independent abstract representations. This layer can be also concerned with other
aspects such as compression and encryption.

7. Applications layer: The software entities using the lower layers can be placed in this
layer.
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F.2 How Does it Work? 211

Application

Presentation

Session

Transport

Network

Link

Physical

Host A

Application

Presentation

Session

Transport

Network

Link

Physical

Host B

Emitting
ProcessReceiving

Process Data

Data

Data

Data

Data

Data

Data

Bits

AH

PH

SH

TH

NH

DH DT

Signal

Figure F.2: Example of a data transmission[S.Tanenbaum, 1989].
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212 Annex F : Introduction to Networking Technologies

F.2 How Does it Work?

In order to have a more precise idea about the process of the OSI model, this paragraph
considers a simple data transmission that is illustrated in Figure F.2. The transmitter’s data
are delivered to the application layer, which adds an application header (AH). Then, both
data and application header are delivered to the presentation layer, which might transform
them (compression or encryption) and adds a presentation header (PH). This mechanism is
repeated recursively until the physical layer by adding the headers corresponding to each layer:
session (HS), transport (TH), network (NH) and data link (DH and DT). Finally, the physical
layer considers the whole data as a rough continuation of bits that are transmitted on the
physical medium as a signal.

The fundamental concept in the OSI model is the fact that same level protocols interact
horizontally using vertical flows. For instance, two transport protocols interact by using their
respective network layers, without being concerned with how the later layers will achieve
their services. The example cited in [S.Tanenbaum, 1989] considers a diplomat talking to his
counterparts in an international assembly. For that, the diplomat talks to his interpreter, who
communicates the message to other interpreters. The message is then translated into each of
the diplomat’s language. At this time, the diplomats’ level communication will be established.

F.3 Networking Technologies

F.3.1 TCP/IP

The American Defence Department (DOD) has developed the TCP/IP protocol stack in or-
der to interconnect various network technologies resulting from different manufacturers. This
has brought later the term of Internet as the INTERconnection of NETworks. The DOD
put forth recommendations on robustness and automatic error recovery. To answer these
recommendations, the TCP/IP architecture was decentralized and made flexible. This inno-
vating architecture will be a key for the Internet worldwide success. The IP protocol fills the
layer three in the OSI model [Day & Zimmerman, 1983]; it is responsible for packets routing
through the network’s nodes until a destination, identified by a single number1 known also as
the IP address. The TCP protocol is situated at level four in the OSI model. It is responsible
for error detection and recovery.

F.3.2 Mobile IP and IPv6

Mobile IP and IPV6 are IETF [IETF, 1986] standards. Mobile IP develops architecture and
protocol for device transparent mobility over sub-networks and different transmission media.
IPV6 is regarded as an extension of the IP protocol [Rakotonirainy, 1999]. IPV6 extends the
address field and introduces of the quality of service (QoS) for packet routing.

F.3.3 Bluetooth

Bluetooth is a short-range communication technology that was initially conceived to re-
place wire connections between various devices. Today, it is considered as the model

1This number called also the IP address is encoded on 32 bits for Ipv4 and 64bits for Ipv6.
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F.3 Networking Technologies 213

of short-range communication between various devices in a delimited geographical area
[Haartsen et al. , 1998]. The covering zone of a Bluetooth device varies between 10 meters,
with a 0 dbm as output power, and 100 meters, with 20 dbm as output power. Two types of
connections are defined by Bluetooth: a point-to-point connection, emulating a serial link; and
a point to multipoint connection, on a piconet network which can include up to 7 active de-
vices and 200 stationary devices [Kammann et al. , 2001]. Bluetooth specifications endeavor
to reduce the devices’ cost with the guarantee a certain robustness [Haartsen et al. , 1998] in
order to gain visibility in a market where the IrDA technology is already established.

F.3.4 Infrared Data Association (IrDA)

Information
Access Service

IrLMP

TinyTP

IrLAP

Framer/Driver

Physical Layer

Figure F.3: The IrDA protocol stack [Knutson & Folsom, 1999].

The Infrared Data Association (IrDA) [IRDA, 1994] was formed on June 1993. It suggests
a short-range communication standard using infrared signals. As shown in Figure F.3, the
IrDA protocol stack is composed of the following layers: the physical layer, composed of an
infrared transceiver propagating infrared signals in a cone ranging from 15 to 30 degrees;
the framer, which transforms the data into a hardware readable format; the driver, enabling
access to hardware services; the IrLAP (Link Access Protocol) is responsible for the discovery
of IrDA entities present in vicinity and negotiation of best transmission rate expressed in
bauds; the IrLMP (Link Protocol Manager) protocol deals with the multiplexing of several
communications on a single IrLAP connection. The TinyTP protocol is responsible for the
flow management, data segmentation and gathering; and the IAS (Information Access Service)
protocol, that is the minimal service required for all the IrDA devices, represents a registry
table where applications identify their services by a unique Link Service Access Point (LSAP).

Besides these elementary protocols, IrDA proposes other protocols to facilitate the devel-
opment of applications in a mobile environment. This package was proposed in 1997 and is
composed of four protocols presented in Figure F.4:

� IrOBEX: This protocol can be seen as an adaptation of the http protocol for the IrDA
environment. It is used for atomic exchange of objects between computers.

� IrCOMM: This protocol facilitates the integration of legacy systems that used COM
ports.
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214 Annex F : Introduction to Networking Technologies

IrOBEX

Ultra

IrCOMM

RTCON

IrMC

Figure F.4: Protocols of the IrMC.

� RTCONN (Real Time Transfer Protocol Control): This protocol is dedicated to the
transmission of data flow with temporal constraints.

� Ultra: This protocol is particularly adapted to small and very restricted devices. It
proposes a minimal set of functionalities for data exchange without maintaining the
connection between the devices.

F.3.5 IEEE 802.11

The 802.11 [IEEE, 1963] standard defines radio frequencies (RF) for physical and media access
layers of local area networks (LAN). Recently, IEEE 802.11 was considered also as a short-
range communication solution with the definition of the personal area networks (PAN) working
group.

F.3.6 HomeRF

The home radio frequency working group (HRFWG)[HomeRF, 2003] has developed the speci-
fications intended to introduce networks technologies into personal houses environments. The
whole house’s devices would be managed as a local area network using the radio frequencies
as a transmission media.

F.3.7 HiperLAN

The High Performance LAN (HiperLAN) standard family is developed by the working group
RES 10 (Radio operator Equipment and Systems) of the IETF [IETF, 1986]. It pro-
poses a standardization of the layers 1 and 2 in the OSI model [Day & Zimmerman, 1983]
to ensure compatibility between various heterogeneous equipments. The upper layers
are not concerned with the specifications and are left free for constructors specific needs
[Korhonen, 1999][Rajaniemi, 1999][Johnsson, 1999].

F.3.8 DECT

Digital Enhanced Cordless Telecommunication (DECT) is a standard developed by the tech-
nical committee Radio Equipment and Telecommunication(RES-03) of the ETSI [ETSI, 1992].
The offered services are described as follows:
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F.3 Networking Technologies 215

1. great capacity of access to the cellular network;

2. mobility of the equipment in the network;

3. robustness in hostile environments.

Protable
Part (PP)

DECT
Fixed  Part

(FP)

External network

Common Air
Interface

Figure F.5: DECT common radio interface.

As illustrated in Figure F.5, the DECT architecture is composed of a fixed part (FP) and
a portable part (PP); the basic standard takes into account only the specification of the air
interface between these two components.

F.3.9 Global System for Mobile Communication (GSM)

Global System for Mobile Communication (GSM) operates in 900 Hz, 1800 Hz and 1900 Hz
frequencies. It is in vogue in Europe and the Asia-Pacific area. The GSM is used by more
than 215 million people (October 1999 [Durlacher, 2003]) which represents more than 50% of
the users of mobile terminals.

F.3.10 HSCSD

High Speed Switched Circuit Dated (HSCSD) is a GSM based protocol. Theoretically, it can
transmit 4 times more than the GSM by using 4 data communication channels simultaneously.

F.3.11 GPRS

General Packet Radio operator Service (GPRS) is a switched packet protocol. It allows a
transmission of 115 kb/s. The major advantage of the GPRS, except its significant transmis-
sion rate, is the always-on connection mode. This mode connects a mobile terminal to the
network instantaneously, without establishing an explicit and expensive2.

F.3.12 EDGE

Enhanced Data Rate for Global Evolution (EDGE) is an evolution of the GPRS, which can
reach up to 384 kb/s. It is also regarded as a intermediate technology between the GPRS and
the UMTS.

2GSM connection establishment time is about 40 seconds
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216 Annex F : Introduction to Networking Technologies

Centralized Decentralized Hosts
communication communication Mobility

medium medium
TCP/IP yes no no

IPv6 yes no no
Mobile IP yes no yes
Bluetooth no yes yes

IrDA no yes yes
IEEE 802.11 yes yes yes

HomeRF no yes yes
DECT no yes yes
GSM yes no yes
GPRS yes no yes
EDGE yes no yes
UMTS yes no yes

Table F.1: Properties of network technologies

F.3.13 UMTS

Universal Mobile Telephony System (UMTS) is the third generation of mobile telephony sys-
tem. Often, the UMTS was associated the theoretical flow of 2 Mb/s. However, reaching this
flow in practice requires an important investment on the infrastructures. The real flow would
be only of 384 kbit/s at least up to 2005 [Durlacher, 2003].

F.3.14 Analysis of the Network Technologies

Table F.1 presents an overview of the presented technologies according to some features de-
scribed as follows:

� centralized communication medium: within centralized communication media the de-
vices are connected into a conceptually centralized network architecture. Generally,
centralized network architectures are expensive and imply some security and control
access policies.

� decentralized communication medium: within this model of communication media each
device is equipped with communication facilities allowing peer to peer connections. Gen-
erally, these architectures are low-cost and easy to manage.

� Hosts mobility: This criterion studies if the computer is still able to use the communi-
cation medium while moving. Physical mobility of hosts is an important feature since
mobility of computers implies necessarily mobility of the executed software systems and
hence enabling their ubiquity.

The values for each criterion range from: yes, no and n/a when the criterion is irrelevant for
a particular network technology.

From Table F.1 one can see that nowadays communication technologies are already offering
the opportunity to enable EAC applications. Three main classes of network technologies can
be identified:
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F.3 Networking Technologies 217

� Category 1: This category represents network technologies that do not handle the mo-
bility of devices and defines a centralized communication schema. This category is not
suitable for the EAC since the criteria of availability of services everywhere is hardly
achievable. TCP/IP and IPv6 fit in this category.

� Category 2: This category represents network technologies that handle the mobility of
devices and with a centralized communication schema. This category is suitable for
the EAC since the devices are still connected to the network while moving. However,
the high-cost of these architectures may limit their use. For instance, the Wireless
Application Protocol (WAP) was an unsuccessful commercial experiment in Europe.

� Category 3: This category represents network technologies that handle the mobility of
devices and with a decentralized communication schema. This category is suitable for the
EAC since the devices are still connected to the network while moving. However, they
imply a physical proximity among the computers. So, the set of applications developed
with these constraints may be limited.

For the development of EAC applications a hybrid communication medium that merges
the technologies of category 2 and 3 is needed. Hence, when computers are physically distant,
the centralized communication architecture is exploited and when the physical context of
computer allows establish a point-to-point communication link, the use of low-cost technologies
of category 3 is privileged.
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Résumé de la Thèse: Cette thèse présente des concepts, modèles et outils pour la
construction de systèmes informatiques dans le cadre des services électroniques disponibles
partout et n’importe quand (Everywhere Anytime Computing, AEC). Dans cette thèse nous
considérons qu’un cadre de conception et de développement dans le contexte de l’AEC doit
répondre aux points suivants: gestion de l’intermittance des communications, la composition
des systèmes, le respect de l’autonomie des entités, et l’interopérabilité. Pour répondre aux
trois premiers points le modèle algébrique d’infrastructure nommé Mouvement, Interaction,
Computation (MIC*) est proposé. L’autonomie des agents est garantie grâce à l’intégrité
structurelle. Le modèle d’interaction est persistant ce qui permet de s’affranchir des inter-
mittences du médium de communication. La composition des systèmes est réalisée par la
composition des environnements de déploiement. L’interopérabilité est abordée par la coor-
dination. Les protocoles de coordination sont représentés comme des graphes de dépendance.
Nous avons présenté le lien formel ainsi que le moyen concret pour valider des séquences de
ressources par rapport à un protocole de coordination donné. Finalement, nous proposons un
cadre de conception des systèmes informatiques dans le contexte de l’AEC où chaque système
est spécifié comme une société artificielle, peuplée d’agents autonomes, ouverte et interopérable
avec d’autres sociétés en coordonnant certaines activités. Nous avons pu implémenter et tester
nos approches grâce à une plate forme de simulation où un utilisateur peut naviguer à travers
un monde virtuel et interagir avec différents services.

Abstract: This thesis presents concepts, models and tools for the design and development
of software systems for the Everywhere Anytime Computing context. In fact, the technologi-
cal context of software systems is continuously evolving and nowadays the availability of small
communicating devices offers the opportunity to make the Everywhere, Anytime Computing
(EAC) a reality that naturally integrates our societies and economies. Up until now there
has not been an EAC solution that supports the many levels of design in a single framework.
This thesis produces such a framework that deals with: (i) the constraints of the communi-
cation medium in terms of intermittence of the communications; (ii) the management of the
on-the-fly composition and decomposition of the software systems; (iii) the autonomy of the
software entities and systems; (iv) and the management of the interoperability of the open
systems. To answer the first three points, we have introduced an algebraic model of a deploy-
ment environment holding the interacting and autonomous agents. This model is known as
Movement, Interaction, Calculus* (MIC*). The autonomy of the software agents is guaran-
teed since MIC* preserves their structural integrity. The interaction scheme within MIC* is
persistent and timely uncoupled. Consequently, the intermittent nature of the communication
media does not affect drastically the functioning of the systems. Finally, thanks to the alge-
braic modeling, the composition of MIC* deployment environments is formally specified and
concretely implemented. We have addressed the interoperability from a coordination point of
view. We propose a formalism to express coordination protocols as a graphs expressing the de-
pendencies on resources between the roles. Using this formalism, a formal link has been made,
using a rewriting system. Furthermore, using Queue Petri Nets we have offered a practical
mean to check the consistency between a coordination protocol and the conversations among
the agents. Finally, an engineering framework is proposed for the design and implementation
of applications within the AEC context as open artificial societies of autonomous agents. In
order to experiment with the suggested approaches, an AEC simulation platform has been
developed. The user can move within a virtual world where she/he can interact dynamically
with the services that are deployed.
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