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Abstract

This dissertation addresses the problem of planning and executing motions for a special
class of four-wheel robot with double steering axles: we call bi-steerable car a vehicle
capable of steering its rear wheels in function of the front steering angle. The differential
equations describing the control system set new problems of motion planning and con-
trol in mobile robotics. The methodology employed to solve these problems is framed
within the theory of Nonlinear Control and in particular differential flatness. The ob-
jective is to find state and control transformations, putting the system in normal forms
with structural properties convenient for control design purposes. This dissertation shows
first that the bi-steerable car is flat. For these systems, effective solutions can be found
in the literature and resort to the structural properties of the flat or linearizing output.
Notwithstanding, the major difficulty, and open problem in the general case, is to find
transformations yielding a flat output of the system. Hence we first establish theoretical
results framed in the theory of Pfaffian systems and in particular those concerned by
the Engel’s theorem. For such systems, we propose a systematic approach leading to a
necessary condition on the coordinates transformations yielding a linearizing output. We
apply this approach to the bi-steerable car. We consider the symmetries of our problem
in order to effectively compute a flat output. We make this result effective by proposing
the first complete motion planner for this kind of mechanical structure. We next establish
results in the framework of flatness and feedback linearization regarding the bi-steerable
car. This allowed us to fully linearize the system and to synthesize a simple control law
to solve the trajectory tracking problem. Experimental results validate these theoretical
issues.

Keywords:
Nonholonomic Motion Planning, Mobile Robotics, Double-steering axles vehicle
Differential flatness, Endogeneous feedback
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Introduction

1 Résumé

Cette thése porte sur les problémes de planification et d’exécution de mouvements pour
une classe de robots de type voiture sans essieu fixe. Nous définissons une voiture bi-
guidable comme un véhicule capable d’orienter ses roues arrieres en fonction de la com-
mande de braquage de l’essieu avant. Un tel systéme présente des avantages de manceu-
vrabilité accrue dans des espaces encombrés tels ceux rencontrés par les petits véhicules
urbains.

Plusieurs structures mécaniques, allant de la voiture conventionnelle aux systémes
tracteur-remorque, ont fait ’objet d’études approfondies sur la planification non-holonome
et la commande non-linéaire depuis le milieu des années 1980 ([Lau86], [Lat91a], [LC92],
[Lau98], [RFLM93a], [RFLM93b], [TMS95], [BTS95], [LSL99]). Des recherches menées
dans ces domaines ont permis de dégager des modeles formels pour ces robots conduisant
a des solutions efficaces d’un point de vue algorithmique. Nous trouvons ainsi dans la
littérature des solutions a des problémes de commande en boucle ouverte et de stabilisation
en boucle fermée pour certaines classes de systémes : nilpotents [LS93], chainés[MS93]
et plats [FLMRY5b]. Jusqu’a maintenant, la voiture bi-guidable n’a pas été étudiée avec
ces approches. En effet, la cinématique bi-guidable reléve d’une complexité nouvelle pour
laquelle aucune solution existante ne peut-étre appliquée directement.

Dans cette thése, nous proposons une approche basée sur la platitude différentielle
[FLMR95b]. Un systéme est dit plat si son comportement peut étre complétement décrit
par un nouvel ensemble de fonctions différentiellement indépendantes, appelé sortie plate
ou encore sortie linéarisante, elles-mémes fonction des variables constitutives du systeme
et de leurs dérivées. Toute trajectoire du systéme peut alors s’obtenir & partir de cet
ensemble de fonctions sans intégrer d’équations différentielles. Formellement, la platitude
se définit par une relation d’équivalence [Mar92]. Deux systémes F et G sont équivalents
s’il existe une correspondance biunivoque entre les trajectoires de F et celles de G. Par
définition, un systéme est plat s’il est équivalent & un ensemble de fonctions arbitraires.

Cette dissertation établi d’abord I’existence d’une sortie linéarisante pour la voiture
bi-guidable. La difficulté majeure est de transformer ce résultat d’existence en un résultat
effectif permettant de construire la sortie plate. En effet, nous montrons que le probléme
de trouver une sortie plate pour la voiture bi-guidable n’a pas une solution immédiate
et demande l'utilisation d’outils mathématiques tres sophistiqués ainsi qu'une approche
méthodique de calcul.

La question : “comment trouver la sortie plate?’ est ouverte dans le cas général.

ix



x Introduction

Quelques approches trouvées dans la littérature, concernant certains robots non-holonomes,
reposent sur ’analyse des équations extérieures décrivant les contraintes du systéme. Elles
correspondent & des formes différentielles de degré 1. Les outils d’analyse sont issus de
la théorie des systémes de Pfaff. En effet, les théoremes de Pfaff, d’Engel et de Goursat
donnent des conditions suffisantes pour établir I’existence de nouvelles coordonnées, dans
lesquelles il est possible de paramétrer de fagon arbitraire des solutions aux équations
extérieures. Il s’avere que la sortie plate d’un systeme de commande fait partie de ce nou-
vel ensemble de coordonnées. Or, malgré ces résultats, il n’existe pas dans la littérature
une démarche formelle de calcul explicite de cet ensemble ou de la sortie plate dans le cas
général.

Nous apportons une réponse concernant les systemes & deux entrées et quatre vari-
ables d’état appartenant & la classe des systemes d’Engel. Pour cette classe, nous pro-
posons une démarche systématique qui repose sur la démonstration du théoréme, aidant
au calcul d’une sortie plate.

Nous appliquons cette démarche pour calculer de maniére explicite la sortie plate
de la voiture bi-guidable. Nous rendons ce résultat opérationnel en proposant le premier
planificateur complet pour la voiture bi-guidable.

Nos travaux portent ensuite sur la stabilisation du systeme autour de la trajectoire
de référence. Dans le domaine de la commande non-linéaire, la platitude différentielle
a une interprétation par bouclage dynamique. Le lien entre équivalence et bouclage est
le suivant [Mar92]: si F et G sont deux systémes équivalents, il est possible de trouver
un bouclage dynamique particulier (dit bouclage endogéne') et un changement de coor-
données qui transforment F en G étendu par des intégrateurs purs. Dans ce sens, un
systéme plat est un systéme linéarisable par bouclage endogéne [FLMR99].

Dans ce contexte, nous menons une étude approfondie de la dynamique de la sortie
plate et trouvons de nouvelles relations complémentaires aux précédantes. Ces nouvelles
relations complétent 1’étude sur la platitude des robots bi-guidables et nous permettent
de linéariser le systeme.

Nous profitons de ces résultats pour stabiliser les trajectoires du robot en employ-
ant des méthodes issues de la théorie de la commande des systemes linéaires. Nous
synthétisons une loi de commande par retour d’état afin de résoudre le probléme du suivi
de la trajectoire de référence. Nous obtenons des résultats en simulation qui valident
notre approche.

Enfin, Nous poursuivons la validation de ces aspects théoriques dans une phase
d’expérimentation.

2 Contributions

Nos principales contributions se résument ainsi:

! Ce type de bouclage est appelé ainsi car il est “engendré” par les variables du systéme et leurs dérivées
(aucune variable exogéne au systéme est employée).



3. Plan du manuscrit xi

Nous montrons que la voiture bi-guidable est un systéme plat. Nous donnons une
condition nécessaire et suffisante sur la relation angle de braquage arriere-angle de
braquage avant pour garantir la platitude.

Nous proposons une démarche systématique pour calculer une sortie plate concernant
un systéme général d’Engel. La démarche aboutit & une condition nécessaire se
traduisant par deux équations différentielles partielles ou les inconnues sont les
transformations recherchées.

Nous résolvons le probléme complet de planification non-holonome pour la voiture bi-
guidable. A cette fin, nous utilisons la démarche proposée. Le calcul explicite de
la sortie plate profite des symétries du probléme en considérant les invariances par
translation rotation de la trajectoire dans le plan.

Nous établissons des résultats d’équivalence entre la voiture bi-guidable et un systeme
linéaire commandable et nous donnons la forme chainée du systéme bi-guidable.
Ces résultats permettent de résoudre le probléeme d’exécution de trajectoires pour
la voiture bi-guidable et ouvrent la possibilité de résoudre d’autres problemes de
stabilisation via la forme chainée.

3 Plan du manuscrit

CHAPITRE I

Dans un premier temps, nous proposons un état de I'art en matiere de planifica-
tion et commande de systemes non-holonomes. Ceci nous amene a présenter les points
essentiels de chaque domaine. En particulier, nous discutons quelques notions de com-
mandabilité, les méthodes de guidage (ou commande en boucle ouverte) trouvées dans la
littérature, ainsi que les problémes et solutions liés a la stabilisation en boucle fermée. 11
s’avere que des solutions efficaces d’un point de vue algorithmique peuvent étre trouvées,
lorsque les systémes étudiés appartiennent & certaines classes de systemes : nilpotents,
chainés et plats. Nous justifions le choix retenu (la platitude différentielle) pour résoudre
les problémes qui nous concernent. En effet, la platitude s’avere a la fois une méthode
formelle de classement de systémes linéarisables par bouclage endogene, ainsi qu’une
démarche élégante et puissante pour résoudre de maniére intégrale et simple des problemes
de commande en boucle ouverte et fermée.

CHAPITRE II
Dans ce deuxieéme chapitre, nous introduisons la cinématique du robot bi-guidable. Nous
montrons d’abord que le systéme est plat. A cette fin, nous utilisons des résultats con-
cernant le rang de l'algébre de Lie pour les systemes & deux entrées. Il s’agit ensuite de
convaincre le lecteur de ’'intérét de la platitude pour résoudre des probléemes de planifi-
cation. Nous proposons une étude comparative entre le robot bi-guidable et son “cousin”
le robot de type voiture conventionnelle. Nous rappelons les équations différentielles
décrivant leur cinématique, qui reposent sur des hypothéses de roulement sans glissement
([Lat91b],[LSLI8]). Malgré les proches similitudes entre I'une et l'autre, les résultats



xii Introduction

établis chez la voiture (reposant sur la platitude de celle-ci) sont loin de s’appliquer di-
rectement sur un robot bi-guidable pour résoudre la problématique qui nous concerne.
Cette discussion est présentée en fin de chapitre ou nous montrons que le probleme de
trouver une sortie plate pour le nouveau systeme est beaucoup plus complexe et demande
I'utilisation d’outils mathématiques tres sophistiqués ainsi qu'une approche méthodique
de calcul.

CHAPITRE II1

Nous abordons la partie centrale du sujet. Nous discutons d’abord un état de l'art sur
les méthodes employées dans la littérature pour résoudre des problémes de commande
en boucle ouverte pour certains robots non-holonomes. Ces méthodes reposent sur une
ré-paramétrisation de la variété différentielle. 11 s’agit de trouver des transformations de
I’état et de la commande, afin de mettre le systéme sous une forme dite normale. L’intérét
est qu’il est beaucoup plus simple, d’une part, d’étudier les solutions aux équations
différentielles décrivant le systéme, et d’autre part de synthétiser des controleurs pour
la commande. Le noyau dur de cette approche est constitué par le calcul explicite des
transformations requises.

La question : “comment trouver la sortie plate?’ est ouverte dans le cas général.
Nous proposons une démarche systématique pour le cas des systemes & deux entrées
et quatre variables d’état, qui repose sur la démonstration du théoréme d’Engel. Nous
aboutissons & une condition nécessaire donnant un ensemble d’équations différentielles
faisant intervenir les transformations du calcul de la sortie plate pour de tels systémes.

Nous appliquons cette démarche & la voiture bi-guidable. Nous trouvons une sortie
plate et les transformations inverses grace a I’exploitation des symétries du probléme et &
I'identification d’un repére tournant par rapport au robot. Ces symétries s’expriment par
les invariances de la planification et du suivi de trajectoires par translation et rotation
dans le plan. En prenant en compte ces invariances, il est possible de simplifier les calculs
en considérant un robot immobile. En effet, la seule variation importante concerne la
courbure de la trajectoire, qui ne dépend que de ’angle de braquage des roues.

Nous faisons ensuite une adaptation d’un planificateur local (ou méthode de guidage)
congu & origine pour des systémes chariot & remorque [SLLT97]. Ce planificateur lie deux
points de I'espace de configurations par une courbe suffisament lisse calculée dans 1’espace
plat. Afin de garantir la complétude du planificateur global, la méthode de guidage per-
met I'introduction d’un point de rebroussement vérifiant la propriété topologique (TP).
Schématiquement, un planificateur vérifie TP si, lorsque deux points de ’espace de
configurations (g1, ¢2) sont suffisament proches, c’est & dire qu’ils appartiennent & une
boule By, 4,, le chemin menant de ¢; & g2 reste & l'intérieur d’un voisinage contenant
By, 4,- L’adaptation consiste a introduire un point de rebroussement entrainant un chemin
symétrique entre deux points de 1'espace de configurations, tout en respectant TP. Nous
montrons par des simulations que cette approche résout le probleme de planification pour
la voiture bi-guidable d’une maniére plus efficace en termes de manoceuvres réalisées.

CHAPITRE IV
Le probléme de planification de chemins une fois résolu, nos travaux portent ensuite sur
la stabilisation du systéme autour d’une trajectoire de référence. Puisque le voiture bi-
guidable est un systéme plat, une solution naturelle consiste & exploiter les propriétés de
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la sortie plate.

Nous établissons des résultats d’équivalence entre la voiture bi-guidable et un systéme
linéaire commandable écrit sous sa forme canonique de Brunovsky ([Kai80]). En effet,
nous trouvons des transformations, complémentaires aux précédentes, par une étude ap-
profondie de la dynamique de la sortie plate. Ces relations établissent notamment le
lien entre la commande du robot et la commande du systéme équivalent exprimé en co-
ordonnées plates. Ces nouvelles relations completent 1’étude sur la platitude des robots
bi-guidables. Grace & elles, nous calculons de fagon explicite la forme chainée du systeme.
Ceci ouvre la possibilité d’explorer de nombreuses méthodes de stabilisation du robot en
un point.

Nous profitons de ces résultats pour calculer un bouclage linéarisant. Ainsi, nous
cherchons & stabiliser les trajectoires du robot en employant des méthodes issues de la
théorie de la commande des systémes linéaires. Nous synthétisons une loi de commande
par retour d’état afin de résoudre le probléeme du suivi de la trajectoire de référence. Nous
obtenons des résultats en simulation qui valident notre approche.

CHAPITRE V
Dans ce chapitre nous commencons par discuter I'incertitude présente, issue de I'incom-
plétude de nos modeles vis-a-vis d’un robot réel ([BDL199a], [BDL*99b], [LDBMOO]).
Nous présentons ensuite notre plateforme expérimentale, le robot Cycab. Nous pursuiv-
ons par I'introduction du systéme de localisation, indispensable pour réduire I'incertitude
relative & I’état courant de notre robot. Enfin nous discutons plusieurs résultats obtenus
au cours des expérimentations.

CHAPITRE VI
Nous concluons ce rapport en résumant nos principales contributions et discutons des pos-
sibles axes de recherche a poursuivre. En particulier nous soulignons la nécessite de pren-
dre davantage en compte ’incertitude liée & nos modeles ainsi que le besoin d’incorporer
dans Parchitecture de controle des comportements réactifs et des méthodes de planifica-
tion en ligne.
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Introduction

1 Context of our work

This dissertation is concerned about motion planning and execution issues for a four-
wheel vehicle with a double steering capability. We call bi-steerable car a vehicle capable
of deflecting its rear wheels in function of the front steering angle. To our knowledge,
our work is the first to tackle the motion planning and feedback linearization problems
introduced by this mechanical structure.

The motion planning issue in Robotics began to be formalized in the early 1980’s
[Lat91a]. The formalization of the problem relies on the notion of configuration space,
inspired from Mechanics. The configuration of a robot is the specification of the position
and orientation of every part of the robot with respect to a Cartesian reference frame
embedded in its workspace. The configuration space of a robot, denoted CS, is the space
of all its possible configurations. Each configuration of the robot is represented by a point
in CS. The geometric formulation of the problem considers the motion of rigid bodies
amidst obstacles in the three-dimensional Euclidean space. Some geometric relations
between the bodies may appear for a given robotic system; a typical example is a robot
manipulator composed of rigid links connected by joints. These relations are translated
into equations between the configuration parameters. They restrict the degrees of freedom
of the robot and are called holonomic kinematic constraints. Together with no-collision
constraints, imposed by the obstacles in the workspace, they yield forbidden (or non-free)
configurations. In this framework, the basic motion planning problem reduces to exploring
the free configuration space in order to find a connected path joining a start and a goal
configuration. Solutions to this problem resort to algorithmic geometry techniques. By
the mid 1980’s, the difficulty of the basic issue increases with the introduction of additional
constraints on the velocities of the configuration parameters ([Lau86]). Such constraints
are called nonholonomic. They define the allowable velocities of the system at each point
of CS. If the system is prevented from moving in some directions of CS, a natural question
is to know whether all possible configurations in CS are reachable? This turns out to be
a controllability question. Now the problem is not only geometric but requires additional
analysis tools coming from Nonlinear Control theory.

Motion planning is essentially an open-loop control task: a nominal trajectory is
computed off-line with a priori knowledge about the environment. The classical approach
in Robotics consists in following (or tracking) this trajectory as accurately as possible at
the execution phase. If we tried to perform this trajectory without taking care of the

xvil
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actual evolution of the robot, it is very likely that the resulting motion would not be
as expected: unconsidered factors at running time would make the robot deviate from
the nominal path. Feedback controllers, driven by the current task error, are intended
to overcome these problems so as to achieve some degree of robustness. This is why a
closed-loop (or feedback) control strategy is necessary at the execution phase in order to
achieve the task.

During the last two decades, there has been intensive research activity in Nonholo-
nomic Motion Planning (NMP) and control of wheeled mobile robots (e.g. see [LC92],
[Lau98]). Nonholonomic constraints arise typically in these robots owing to the rolling
contact between the wheels and the ground. Wheeled robots for which NMP and control
problems have been addressed are essentially of three kinds (see for instance [Lat91a,
[LCY2], [Lau98]): the cart or unicycle robot, the conventional car or bicycle model and
tractor-trailer systems of diverse structures ([RFLM93a], [RFLM93b], [TMS95], [BTS95],
[LSLY9]). More recently car-like robots with a double steering capability have gained
applicability?. This is probably due to the fact that the double-steering ability entails
advantages over conventional cars, both from dynamics and kinematics point of views
([Whi90]): improved dynamical stability, enhanced maneuverability and reduced swept
volume; even car manufacturers have been interested in rear wheel steering since the
1980’s ([SFS86]). However the bi-steerable system, as defined herein, has not been stud-
ied in the general case by the Robotics community, who begins to pay attention to the
challenges one needs to face ([Hem94], [WQO01]). In particular the motion planning and
control problems for this kind of vehicle have never been addressed in the general case.
Our work aims at bringing a contribution in this direction.

2 Problem and contribution

Basic to any control task is a formal representation of the mechanical device. Modeling
a nonholonomic robot involves differential equations describing the kinematics of the
system. These differential equations are parameterized by the control inputs of the device
and constitute the control system model. Solving motion planning problems, for instance,
means finding the sequence of inputs in time that steer the robot from the start to the
goal configuration. This might be a very difficult task in the general case due to the
nonlinear nature of the control system; it represents a typical problem of optimal control.

In this context, there exist some classes of systems whose properties allow to simplify
NMP and control problems to a great extent. Over the last decade, theoretical surveys in
Robotics and Nonlinear Control have yield criteria allowing for the classification of some
nonholonomic control systems. Two of these classes are differentially flat [FLMR95b,
FLMRY9] systems and those that can be put in the chained form [MS93]. They possess
structural properties leading to simple solutions of NMP and feedback control problems.
Indeed, there exist powerful methods ([LS93],[MS93], [TMS95]) to control the chained
form in order to drive the system exactly to the goal configuration. On the other hand,

%e.g. the “rCar” prototype of IEF (“Institut d’Electronique Fondamentale” of Paris-Sud University.)
and the Cycab robot at INRIA in France and NTU in Singapore.
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flat systems admit a new set of variables, called the flat or linearizing output. It contains
all the dynamical information of the original control system. This implies that we can
compute the trajectory of the original system from that of the flat output (and vice-
versa) without integrating any differential equation. It follows that flat outputs can be
used immediately for trajectory generation and tracking ([RFLM93a], [FLM*97], [LL97]).
Moreover, the properties of the linearizing output allow us to deal with a linear control
system. Since Linear Control theory offers a solid and complete framework for solving
closed-loop tasks, there is a great interest in exploring these properties.

In order to be able to exploit these properties, the original control system must
verify necessary and sufficient conditions allowing for its classification. In a second step,
coordinate transformations must be undertaken allowing either to obtain the chained form
or to find a flat output of the system. Finding these transformations is in fact the major
obstacle in exploiting the chained form or flatness and the literature includes very few
works on their effective computation ([MR94], [TMS95], [Pom97]).

The study of control models associated to car-like and tractor-trailer robots have
led to their complete characterization in terms of flatness and the chained form. The
kinematics of the bi-steerable car introduce a different complexity than the one found in
these robots. Our contribution concerns the following questions: what are the structural
properties of this new kind of kinematics? How to find the convenient transformations
yielding the flat coordinates or the chained form? And how can we exploit their properties
in order to solve motion planning and control issues regarding the bi-steerable robot?

After showing that the bi-steerable car is flat, we turned to the central question:
“how to compute a flat output for this system?’ In answering this question, we were
interested in a general formulation of the problem. We are therefore concerned by control
systems whose configuration space is of dimension 4 and which are subject to two non-
holonomic constraints. In this respect, we outline a systematic approach putting forward
the key steps to compute a particular flat output: one allowing to put the control system
in its chained form. The outcome is a necessary condition on the coordinate transfor-
mations required to obtain this flat output. Hopefully, the methodology will be helpful
in analyzing similar problems. This result is to our knowledge new. It allowed us to
compute a flat output for the general bi-steerable car, by considering the symmetries of
the problem, and thus to solve the motion planning issue for this kind of robot. The
properties of the flat output pushed us to investigate further into the relation between
the nonlinear bi-steerable kinematics and its underlying controllable linear system. The
outcome is the full linearization of the bi-steerable car, leading to a simple solution for
the trajectory tracking problem.

In view of these issues, the main contributions of our work are as follows:

o We show that the bi-steerable car is differentially flat. We give a necessary and sufficient
condition on the front-to-rear steering function f in order to guarantee flatness at
all points of CS C R*. This entails typically that for a linear front-to-rear coupling
function of the form f(¢) = k¢ we have that the system is flat for k # 1.

e We outline key steps to compute a flat output for a controllable control system of
dimension 4 subject to two nonholonomic constraints. The outcome is a necessary
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condition on the coordinate transformations required to obtain this flat output. The
condition translates into a pair of PDEs where the unknowns are the transformations
sought.

e We solve the complete motion planning problem for the bi-steerable car. To this end,
we apply the aforementioned methodology to find a set of flat coordinates for the
system. The effective computation of the flat output includes symmetry considera-
tions: we take into account the invariance of the problem with respect to Euclidean
transformations in the plane.

o We establish results between the bi-steerable car and its equivalent controllable linear
system, and give the explicit chained form of the bi-steerable robot. These results
allowed us to solve the trajectory tracking issue for the general bi-steerable car and
open the possibility to tackle other control tasks via the chained form.

To our knowledge, our work is the first to tackle motion planning and feedback
linearization issues for this kind of nonholonomic robot. The outline of the document
follows.

3 Document layout

CHAPTER I. In this chapter we introduce the formal framework of our work. We discuss
some relevant aspects about the state-of-the-art in motion planning and feedback control
of wheeled mobile robots. This chapter frames the theoretical aspects of our work which
come in Chapters II through IV.

CHAPTER II. In this chapter we introduce the bi-steerable robot. We firstly turn to
its kinematics model. We then establish some connections between typical approaches
for solving the path-planning problem in the context of flatness. This shows how the
solutions to the problem resort to the properties of the flat output. We then show that
the bi-steerable car is flat and discuss the core of the problem we need to face in finding
a flat output for the system. It soon appears, that the complexity of this new problem
resorts to advanced mathematical tools in order to address it effectively.

CHAPTER III. In this chapter we propose a systematic approach to find the transfor-
mations that send the original coordinates of a class of two-input control systems to its
flat coordinates. The explicit computation of this flat output for the general bi-steerable
system is then outlined. This allowed us to solve the path-planning problem for this kind
of robot, as illustrated with simulation results.
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CHAPTER IV. In this chapter we present equivalence issues concerning the bi-steerable
car. As a matter of fact flatness is defined through an equivalence relation ([Mar92]).
Two systems are said to be equivalent if it is possible to compute the trajectories of the
one from those of the other (and vice-versa) without solving any differential equation. In
this respect we find further flat transformations in order to establish the desired results.
This allowed us to address the exact linearization of the system and to explicitly give
its chained form. By linearizing the bi-steerable car, we tackle the closed-loop control
problem using Linear Control techniques as illustrated with simulation results.

CHAPTER V. In this chapter we address the experimental validation of our work. We
have conducted experimentations using a real bi-steerable platform, the Cycab robot of
the INRIA Rhone-Alpes. To this end, the robot requires essential localization abilities so
as to reduce the uncertainty associated to its current state. Accordingly, the robot must
rely on its proprioceptive and exteroceptive sensors. We shall introduce the localization
system used, based on an absolute localization scheme and an odometry module. The
experimental assessment of our work is given subsequently.

CHAPTER VI. We conclude by discussing the results and guidelines for future work.
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CHAPTER 1

Motion Planning and Control of
Nonholonomic Wheeled Robots

In this chapter we are interested in understanding the main issues in motion planning and
feedback control of nonholonomic wheeled robots'. The aim of this chapter is therefore to
give a literature review on these topics. This will allow us to justify the approach chosen:
the property of differential flatness to address both problems regarding the bi-steerable
car.

1 Introduction

Robotics as a research field constitutes a challenging framework for integrating and exper-
imenting constantly evolving concepts in engineering and science. One of the last frontiers
in robotics is the motion autonomy paradigm. In this framework, the capability to plan
actions has been considered as essential in achieving autonomous robots [Lat91b].

Basic to a motion planning task is a formal representation of the real mechanical
device. In modeling a robotic system, one must take into account the physical constraints
restricting its overall motion and/or the relative motion between its parts. Indeed, most
mechanical systems are subject to kinematic constraints, which may be classified in var-
ious ways. The simplest ones are holonomic kinematic constraints. They are expressed
by equations connecting the configuration variables. They describe geometric relations
between the bodies or parts of a given robotic system. Examples of systems subject
to holonomic constraints are the bead of an abacus sliding on the supporting wire, or
a robot manipulator composed of rigid links connected by joints. The motion planning
problem under these constraints is of a purely geometric nature: the aim is to join any two
end-points in CS through a connected clear (obstacle-free) path. This problem is known
as the piano mover?. The main difficulty concerns the analysis of the connectivity of

!There are indeed wheeled robots which are holonomic; e.g. omnidirectional robots like the
Nomadic™ robot.
2The situation of a piano mover is here illustrative of the geometric formulation of the problem. Indeed,
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the free configuration space CS; solutions to this problem resort to algorithmic geometry
techniques [Lat91b].

A different kind of kinematic constraints involves nonintegrable equations between
the derivatives of the configuration variables. These are known as nonholonomic con-
straints and define the allowable velocities at every point in CS. A typical example is a
rolling disc. The assumption that the disc rolls without slipping implies that there are
“forbidden” velocities during its motion: the disc is not allowed to slide orthogonally to
the tangential direction of its trajectory. If at every point in CS the system is prevented
from moving in some directions, a natural question is to know whether all possible config-
urations in CS are reachable? This turns out to be a controllability question, the answer
of which resorts to analysis tools from the theory of Control.

The links between Nonholonomic Motion Planning (NMP) and Control have been
formalized since the first studies about the subject ([Lau86], [Mur90]). The control model
of a nonholonomic robot involves differential equations describing the kinematics of the
system. These differential equations are parameterized by the control inputs of the device
and constitute the control system. Solving the motion planning problem means finding the
sequence of controls in time, steering the robot from the start to the goal configuration.
This might be a very difficult task in the general case due to the nonlinear nature of the
control system; it represents a typical problem of Optimal Control.

NMP is not only a geometric issue but turns out to be also an open-loop control
problem. This implies that the sole finding of a connected path between obstacle-free end-
points in CS does not a priori mean the mechanical system will reach its goal. The path
must be compatible with the kinematic constraints. The core of the problem is to steer
the system along a feasible path while keeping it away from the obstacles. Steering non-
holonomic systems in general is a difficult problem owing to their nonlinear character; its
analysis requires tools from Differential Geometry and Nonlinear Control. This accounts
for the research carried out during the last decade in this domain ([LC92], [Lau98]).

On the other hand, once a collision-free trajectory has been computed, there is a
second problem which consists in executing this one. The classical approach in Robotics
consists in following (or tracking) this trajectory as accurately as possible at the execution
phase. In the planning phase, the resulting commands are computed off-line, according
to a priori knowledge of the task and the state of the environment. If we tried to perform
this trajectory without taking care of the actual evolution of the robot, it is very likely
that the resulting motion would not be as expected: unmodeled events at running time
(e.g. occasional slipping of the wheels) would prevent the successful completion of the
task. In Automatic Control, feedback improves system performance even in the presence
of external disturbances and/or initial errors. To this end, real-time sensor measurements
are used to reconstruct the robot state. This information is fed-back to the controlling
input so as to undertake a suitable action. In this respect, the major concern is the
stability of the system; the problem is how to make the error, in the state of the robot,
converge to zero in a stable fashion. The closed-loop control of a nonholonomic robot
concerns the stabilization of a nonlinear system. This nonlinear character is, again, at

the task consists in finding the collision-free connected sequence of placements in the 3-dimensional space
of an object having 6-degrees of freedom (3 translations and 3 rotations).
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the basis of the difficulty of the problem.

In this context, there exist some classes of systems whose properties allow to sim-
plify NMP and feedback control problems to a great extent. These systems possess
structural properties that have been thoroughly studied and characterized over the last
decade ([LS93],[MS93], [FLMRI5b]). They allow to find effective solutions to open-loop
and closed-loop control problems.

What follows is our understanding of some relevant issues concerning NMP and
feedback control of wheeled robots. We are interested in addressing these problems for a
mechanical system showing a new kinematics, namely the bi-steerable car. Hence, as far
as NMP is concerned, we are particularly interested in discussing the control aspects (the
steering problem) rather than the algorithmic ones, including complexity issues (see for
instance [LSLYS8]).

We start by introducing elementary concepts in robotics such as configuration space
and kinematic constraints. We then discuss how nonholonomic constraints affect the mo-
tion planning problem; this will introduce fundamental notions concerning the controlla-
bility of nonlinear systems.

We move on to the core of NMP regarded as an open-loop control issue: how to
effectively steer the robot. We discuss how this problem may be solved using Optimal
Control techniques and by some special classes of control systems, including the chained
form and flatness. This will allow us to put forward how motion planning problems may
be effectively solved by resorting to the properties of these classes.

On the other hand, steering nonholonomic robots in the presence of obstacles rises
topological issues that need to be considered. Hence we briefly discuss a topological
property for some motion planners.

We finally discuss the state-of-the-art in closed-loop control of nonholonomic wheeled
robots. This will help in introducing further properties of flatness for trajectory tracking
purposes.

We conclude the chapter with a discussion on the integral character of differential
flatness for solving both open and closed-loop control problems. We will also show the
interest of flatness in connection with the chained form of control systems.

2 Configuration space and configuration variables

A configuration of a robot is the specification of the position an orientation of every part
of the robot with respect to a Cartesian reference frame embedded in its workspace. The
configuration space of a robot, denoted CS, is the space of all its possible configurations.
Hence each configuration of the robot is represented by a point in CS.

A typical representation of a point in CS consists in the vector of generalized coordi-
nates q = (¢1,42, - - - ,qn), where n is the dimension of CS. For example, the configuration
of a car-like robot is represented by a point q = (z,,y,,6). Here (z,,y,) are the coordi-
nates of a point of the robot (e.g the midpoint of the rear axle) in some Cartesian frame
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of the workspace. The third parameter # is the orientation of the main axis of the car
relatively to the z axis of the Cartesian frame.

The configuration space of a mechanical system made of rigid bodies is a smooth
manifold [Lat91b]. For instance, the configuration space of a two-dimensional rigid body
translating and rotating in R? is CS = R? x S', where S’ denotes the unit circle.

In general, the motions of a mechanical system are constrained in a particular way.
Typically, a system consisting in a sequence of rigid links connected by joints (e.g. robot
manipulators) induces geometric constraints on the configuration parameters. On the
other hand, a rolling contact for instance (e.g. a wheel on a surface) induces constraints
on the velocities of the configuration parameters. We introduce now these two kinds of
kinematic constraints which are at the origin of motion planning problems.

3 Kinematic constraints

3.1 Holonomic constraints

A holonomic constraint reduces the degrees of freedom of the mechanical system. It is
expressed by an equation relating the configuration variables and possibly time:

F(qt)=0 qe€cCs, (L.1)

Assuming that F' is smooth, it is possible to solve for one of the generalized coordinates
in function of the others and time. For many robotic practical applications the con-
straint (I.1) is time-independent; we shall focus our attention on these kind of constraints
throughout this dissertation.

Equation (I.1) defines a (n — 1)-dimensional submanifold of CS. It is in fact the
configuration space of the robot. The n — 1 remaining generalized coordinates represent
the independent degrees of freedom of the system. Hence a holonomic constraint reduces
the configuration space of the robot. In general, k& independent holonomic constraints

reduce the configuration space of a mechanical system to a sub-manifold of dimension
n — k.

Example: the pendulum

A simple example is a spherical pendulum in 3-dimensional (3D) space constrained
to remain at a fixed distance from the origin. The mathematical representation of such a
constraint is therefore:

2 +y?+22—R2=0.

Physically, the manifold on which the motion can be described is the sphere of radius R,
so the configuration space has been reduced to two dimensions: the surface of the sphere.
In this case the generalized coordinates may be two independent angles expressing the
position of a point on the sphere; i.e. q = (o, §) where a, 8 are say the latitude and the
longitude. O
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3.2 Nonholonomic constraints

A (time-independent) nonholonomic constraint is expressed as a nonintegrable equation
involving derivatives of the configuration variables:

G(a,q) =0 g€ TM, (L.2)

where TqM is the tangent space of CS at q. If the constraint is linear in the velocities
one can write:

G(a,q) =wl(q)-q= Zwi(q)qi =0 §eT M.

In the sequel, we shall consider only nonholonomic constraints of this kind. As we will
see, such a constraint reduces the space of velocities in CS by one dimension. It defines
a (n — 1)-dimensional subspace of the tangent space, specifying the velocities achievable
by the system at every point of CS. More generally, £ nonholonomic constraints define
a (n — k)-dimensional subspace of allowable velocities at every point of the configuration
space.

Typically, car-like robots are subject to this kind of constraints. Indeed, in the
utmost simplification the assumption is that there is a pure rolling contact (with no
slippage) between the surface of the road and the wheels. This contact precludes a lateral
displacement of the wheels. Thus the admissible velocities are restricted to those collinear
to the free rolling direction. At each point of the configuration space the constraints are
nonintegrable—i.e. they cannot be expressed in the form (I.1)—and for this reason are
called nonholonomic.

Example: the unicycle

A typical nonholonomic mobile robot is the two-wheel differential drive robot (usu-
ally stabilized with castors: additional self-oriented wheels). Its 2-dimensional (2D) rep-
resentation is shown in Figure I.1.(a).

The assumption that the wheels roll without slipping leads to a further simplifica-
tion: the so called unicycle model. In this model an imaginary wheel is placed at the
middle point of the wheels axle, noted R (see Figure 1.1). This amounts to consider a
disc of centre R rolling on the horizontal zy plane. The disc is constrained to move so
that its plane is always vertical.

The configuration space is CS = R? x §! (the position of the robot in the plane and
its orientation). One is free to chose any point belonging to the robot in order to represent
it in CS. For convenience we chose the point R and denote by (z,,y,) its coordinates in
the plane, with respect to a global reference frame. By denoting 8 the orientation of the
robot, a configuration in CS is given by the point q = (z,, yr,#). Furthermore, we denote
by (v,w) the linear and angular speeds of the robot. In this case, v corresponds to the
linear speed of R.

This time, coordinates (z,,y,) and @ are not anymore independent. They are con-
nected by the constraint of “rolling”: a change in the position of the point of contact,
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Figure I.1: (a) 2-D model of a simple nonholonomic wheeled robot and (b) its correspond-
ing 3D wunicycle model.

a) b)

between the disc and the ground, will induce a change in the orientation of the former.
However the constraint does not involve an equation between the coordinates as in (I.1).
Rather, it says that the point of contact is stationary—i.e. momentarily at rest—implying
that the constraint applies to the velocities of the coordinates. This means that, at any
point in CS, not all differential motions are admissible; in other words they are subject
to the following constraint:

sin(6)dz, — cos(f)dy, + 0d6 = 0, (1.3)

which is nonintegrable. Hence for any trajectory of this system, the velocity of R points
in the direction 8. The admissible velocities are those that verify the constraint (1.3). O

4 Nonholonomic motion planning as a control issue

We are now interested in understanding the motion planning problem under nonholonomy.

Roughly speaking, there are two constraints that must be addressed (either sep-
arately or simultaneously). The first one consists in avoiding the obstacles; this is a
geometric issue. The second one is the consideration of the nonholonomic constraints
imposed by the particular mechanical system.

More generally, NMP addresses two problems [LSL98]:

1. The decision problem: it consists in determining whether there exists a collision-
free admissible path.

2. The complete problem: if a this path actually exists, then it has to be computed.
Solutions to the complete problem are called exact methods. There are indeed ap-
prozimated methods, which give a solution up to a discretization of the configuration
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space, and probabilistic methods which give a solution with probability 1 provided
the computing time tends to infinity.

In order to address effectively NMP issues, the comprehension of how a nonholo-
nomic constraint of the form (I.3) affects the robot’s motion is of primary importance.
Given such an equality constraint, a first natural question is to know whether it is inte-
grable. For, if it is, we know that such a constraint reduces the configuration space. If it
is nonintegrable a second justified question is to know whether all possible configurations
in CS are accessible.

Both questions concern the decision problem and their answers are given by Dif-
ferential Geometry and Nonlinear Control. More precisely, a nonholonomic constraint
entails a certain robot kinematics. This kinematics is usually modeled by a set of dif-
ferential equations, whose free parameters are the control inputs of the system. Such
model defines a control system. Its controllability properties are better understood in the
differential geometric setting of nonlinear control theory.

We recall now some fundamental notions that will be of utility in the sequel. We
start with control systems without drift and then discuss basic controllability notions
regarding the decision problem. We end the section by discussing main obstacles towards
the complete issue. We assume the reader is acquainted with notions about vector fields,
Lie brackets, distributions, etc.. The unfamiliar reader may refer to Appendix A on page
140 for a brief recall on these and related concepts.

4.1 Driftless control systems

A nonlinear control system is usually a set of differential equations of the form
z=f(z,u) zeR" uelR",

where the manifold structure of CS is considered locally as R*. When the system is affine
in the controls one can write it as a weighted combination of vector fields:

& = fo(z) +urfu(@) + -+ um fn(2),

where each f; is a vector field defined on a open subset of R” and fj is called the drift.
In this case the controls u; correspond to accelerations or torques of the physical robot.

Systems without drift may appear when the controls are speeds instead of acceler-
ations. For motion planning purposes this is a fair assumption in most cases. Indeed, it
is not uncommon to find robots whose control architectures encompass low-level speed-
servoing loops. In this case we deal with kinematic models expressed as a driftless system

of the form:
m

&= ui(t) filz) zeR" (1.4)
i=1
At every point of the configuration space, the admissible vector fields define a vector space
A(z) C T, M of dimension m. The distribution

A = span{fi,..., fm}
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defines the system constraints in terms of admissible differential motions associated to
the vector fields {f1,..., fm}-

Example: kinematics model of the unicycle

Suppose that the controls of the system are the linear and angular speeds (v,w).
In this case, a point in CS is called the state of the robot. Let us note the state vector
z = (zr,yr,0). The kinematics model of the unicycle may be given by any weighted com-
bination of admissible vector fields—i.e. those associating to each configuration variable
a velocity verifying the constraint (I.3). Thus a typical example of kinematics model for
the unicycle is given by the following set of differential equations:

Ly cos(0) 0
Yr | =1 sin@) |v+| 0 |w. (I.5)
0 0 1

They verify the nonholonomic constraint (I.3).

Model (I.5) shows that the dimension of the space of achievable velocities at all z
is smaller than the dimension of the configuration space. Indeed, at every z € CS the
controls (v,w) stress respectively the two vector fields:

cos(0) 0
filz)=| sin(d) |, folz)=1] 0 |,
0 1

generating thus a 2-dimensional space. The distribution associated to system (I.5) is
A = span{fi, f2}. O

4.2 Nonholonomic constraints and the decision problem
4.2.1 Integrability of a nonholonomic constraint

Consider a nonholonomic equality constraint
F(z,2) =0 & €T,M.

For every z € CS, equation (4.2.1) determines a (n — 1)-distribution A(z), which is an
hyperplane included in the tangent space T, M.

The Frobenius theorem (see e.g. [BCG191]) gives a necessary and sufficient condi-
tion to determine if (4.2.1) is integrable. This one asserts that such an equality constraint
is integrable (or holonomic) if and only if the distribution (A), describing the system, is
closed under the Lie bracket operation. That is, any additional vector field generated by
bracketing between the original vector fields belongs to A (i.e. no further dimension is
added). A distribution verifying the Frobenius theorem is said to be involutive.

On the other hand, the question of whether a nonholonomic constraint reduces the
set of accessible configurations translates in a controllability issue. The control Lie algebra
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associated with a given distribution A, denoted by LA(A), is the smallest distribution
which contains A and is closed under the Lie bracket operation. A key issue in non-
holonomic motion planning concerns the study of LA(A), giving information about the
controllability of the system. We now review some important results.

4.2.2 Small-time controllability of driftless systems

Controllability of nonlinear systems has been studied for long (at least 6 decades). The
controllability problem arises when we ask whether two points of a given manifold M are
accessible from each other by trajectories tangent to a given distribution (defining the
system constraints)—e.g. see [BJR9S].

This question has been answered in a constructive manner, with several shaded
meanings, by different authors. We can for instance mention the pioneering work of
Chow [Cho39] who settled the so called Lie Algebra Rank Condition (LARC), defining
accessibility in the wider sense. The condition of Chow (taken from [BJR98]) reads:

Definition 4.1 (Chow’s condition—LARC) : For a given system (14), the vector
fields f1,..., fm and their iterated brackets [fi, f;], [[fi, f;], fx], etc. span the tangent space
T, M at every point of M.

A system satisfying this condition is said to be mazimally nonholonomic. For control
systems without drift there is a stronger accessibility concept (see e.g. [LSL98]):

Definition 4.2 (small-time controllability) A driftless system is locally controllable
from x if the set of points reachable from x by an admissible trajectory contains a neigh-
bourhood of x. It is small-time controllable from x if the set of points reachable from x
before a given time T contains a neighbourhood of = for any T.

Small-time controllability of driftless control systems states that it is possible to find a
trajectory from some point z° to any point contained in a neighborhood, little though
it would be, of .

A necessary and sufficient condition for small-time controllability is due to Suss-
mann and Jurdjevic [SJ72]. It says that symmetric® driftless systems are small-time
controllable if and only if the LARC condition is verified:

Theorem 4.1 ([SJ72]) A symmetric system without drift is small-time controllable from
z iff the rank of the vector space spanned by the family of vector fields f; together with all
their Lie brackets is n at .

Example: Lie algebra of the unicycle

3A symmetric driftless system is one for which the control domain is symmetric with respect to the
origin. This is the case of most mobile robots of the type car-like. One exception is the Dubins’ car[Dub57]
which does not admit backward motions.
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Counsider the unicycle kinematics model:

T, = wcos(f)
Yr = wvsin(6)
0 = w.

Let us analyse the Lie algebra associated to this system. The state vector is z =
(zr,yr,0) € R® and the associated distribution is

cos(6) 0
A = span{fi, fo}, fri(z)=| sin(@) |, fo(z)=1] 0
0 1
Computing the first brackets yields
sin(6)
(@) = U, @) = S21a(a) = T pofa) = | —cos(®) |
0

Now if we set Ey = span{fi, fo, f3}, it is readily verified that dim E5 = n = 3. Therefore,
the Lie algebra of the unicycle verifies LARC: the system is small-time controllable for
every r € R3.

We remark that g3 is the vector field corresponding to the (forbidden) direction of
motion, perpendicular to the main axis of the robot. O

The relevance of this theorem, to nonholonomic motion planning, becomes evident
in view of the following result [LSL9S8]: the decision problem for a nonholonomic system
is the same as the decision problem for the associated holonomic one (i.e it is decidable),
provided that the system is symmetric small-time controllable.

As a consequence, if a control system is symmetric small-time controllable then
the complete problem may be solved in a two-step approach. The first step is to find
any collision-free path between an initial and a final configuration for the unconstrained
(holonomic) system. If this collision-free path does not exist then we know that the
complete problem cannot be solved. Otherwise, the second step consists in approximating
this path, by steering the mechanical system between collision-free configurations. Thanks
to small-time controllability, it is possible to approximate the collision-free holonomic
path, no matter how close this path is to the obstacles.

4.3 From controllability to path planning: the complete problem

These results give answers to the decision problem for particular systems under nonholo-
nomic constraints. Unfortunately they do not solve the complete problem of effectively
producing a trajectory.

Furthermore, it is observed that nonholonomy arises typically when there are less
controls than configuration variables— i.e. m < m. For the car-like robot for instance
n =3 (z,y,0) and m = 2 (e.g. the linear and the angular speeds). As a consequence any
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path in the 3D configuration space is not necessarily an admissible path for the system.
An admissible trajectory is a continuous function, parameterized in time, defined on some
interval [0,7] to CS. An admissible path is the image of an admissible trajectory in CS.
The goal of nonholonomic motion planning is therefore to provide collision-free admissible
trajectories in the configuration space of the robot.

Computing an admissible trajectory in a single step may be a very difficult problem.
An alternative solution consists in translating the nonholonomic constraints into geometric
constraints (e.g. curvature) in order to find feasible paths. Then the problem consists
in transforming such a path into a trajectory. Transforming an admissible path into an
admissible trajectory is a classical problem in Optimal Control. This problem has been
investigated by the robotics community in the field of articulated manipulators [SHH92]
and in the case of tractor-trailer systems [Lam97].

A planner computing admissible paths irrespective of the obstacles is called a local
path planner or steering method. Its task is therefore, given any two points ¢; and gy
in CS free, to compute a feasible path between them. Today there is no algorithm that
guarantees any nonholonomic system to reach an accessible goal exactly. One might as
well say that steering the robot stills the major difficulty in NMP problems. The difficulty
stems from the intrinsic nonlinear nature of nonholonomic systems.

The following sections collect some results concerning steering methods for non-
holonomic wheeled robots. In a first time we will discuss the optimal control approach,
including some results regarding car-like robots. Subsequently, we shall introduce par-
ticular nonholonomic systems possessing specific structural properties. These particular
systems are of great interest because their properties have been well understood and char-
acterized. The interest is that many nonholonomic robots fall into one of these categories
for which there exist a few efficient motion planning and closed-loop control strategies.

5 Steering nonholonomic robots

5.1 Steering with optimal control
5.1.1 Introduction

Perhaps the most well-formulated method for finding trajectories of a general control
system is given by optimal control theory. By giving a cost to each trajectory, one can
limit the search to those trajectories which minimize the cost.

One of the most significant issues in optimal control is the Pontryagin’s Maximum
Principle (PMP)— see e.g [BJR98]. PMP gives a set of differential equations which are
satisfied by all eztremal curves (see below) of a cost functional®.

For a mechanical system, this cost functional involves the line integral of the La-

4A functional is a real valued function on a vector space, usually of functions.



12 Chapter I. Motion Planning and Control of Nonholonomic Wheeled Robots

grangian®. Indeed, it is important to realize that solutions to the Lagrange equation:

d (0L oL
(=)= o (I.6)
dt \ 0q J0q

solve an ezxtreme (or optimal) path problem between two points in the configuration space.

The problem can be stated as that of finding the path ¢(t) € R", t, < ¢ < 1, such that

the integral
t1

S= [ L(qt),q(t),t)dt (L.7)
to
is minimal. Extremal curves are those which render this integral stationary. The minima
of the cost functional belongs to this broader class of curves which play a central role in
optimal control.

The classical variational calculus studies the variation of this integral under pertur-
bations of the path ¢(¢). One substitutes the initial path ¢(¢) with the new path

ge(t) = q(t) + edq(2),

where dq(t) is an arbitrary vector-valued function on the segment [tg,#1].5 The “fun-
damental lemma” of the calculus of variations says that if the variation of the integral

(I.7) vanishes, then the Lagrange equation (I.6) is verified in the interval (tg,%1) (e.g. see
[Gol80)).

PMP is the generalization of the Lagrange’s problem of the calculus of variation.
Given a control system, PMP provides necessary conditions on the inputs (controls) that
minimize the cost functional.

5.1.2 Minimum-length paths for car-like robots

Finding optimal paths for nonholonomic robots is a difficult problem in the general case
(e.g. see [SB98| for a survey). Regarding car-like robots, the pioneering and seminal
efforts of Dubins [Dub57] and of Reeds & Shepp [RS90] were resumed later by some
authors (e.g. [BCL92]), using Optimal Control theory. It was found that the original
sufficient family of 48 optimal paths, proposed by Reeds & Shepp, could be reduced to
46 (the paths are combinations, including cusp points, of arc of circles of diverse length
with straight lines).

These results were later completed by [SLI6] to construct a synthesis (or network)
of optimal paths for the Reeds & Shepp car. In fact, PMP gives a local characterization of
optimal paths. Hence the authors resort to symmetry considerations and global geometric
constructions in order to build up solutions steering the robot from any point in CS to

5In Lagrangian mechanics one starts by writing down the Lagrangian of the system under study:
L =T — U, where T is the kinetic energy and U is the potential energy. Both are expressed in terms of
generalized coordinates (g,q¢) € R* x R".

5In classical mechanics the notation §q refers to a virtual (infinitesimal) displacement of a system. This
one corresponds to a change in the configuration of the system as the result of any arbitrary infinitesimal
change of the coordinates dg, consistent with the forces and constraints imposed on the system at the
given instant ¢ [Gol80].
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the origin. To this end, they determine domains from where the origin is attainable by
using members of the family of optimal paths. The boundaries of the domains can be
computed analytically. The observation that these domains may overlap led the authors
to make new partitions of the free space. These partitions define cells from where the
origin is attainable by a single optimal path. There are still however some regions for
which several equivalent solutions may be obtained. By choosing a particular solution in
those regions one can achieve a synthesis of optimal paths. This construction constituted
the first example of a regular synthesis for a nonholonomic system in a 3D space [SB98].

A similar procedure to construct such a synthesis was also applied to the Dubins’
car [SL96]. Regarding this system, [BCL94] were interested in the problem of optimal
paths when they control the angular acceleration of the car instead of its angular velocity.
They considered a bounded curvature derivative constraint and found that the shortest
paths are a concatenation of straight lines and of arcs of clothoids.

5.1.3 Discussion

Optimal steering methods like the aforementioned have been successfully used in some
nonholonomic motion planners (e.g. see [LITM94] for a pioneering work). Notwithstand-
ing, finding optimal paths for a given kinematics is a difficult problem. In some cases
though, it is possible to sacrifice optimality in the interests of finding reasonable paths in
an efficient way.

Over the last decade, theoretical surveys in Robotics and Nonlinear Control have
yield criteria allowing for the classification of some nonholonomic control systems. Sys-
tems pertaining to these classes possess structural properties allowing for effective solu-
tions of open-loop and closed-loop control issues. The solution process starts by iden-
tifying the class to which the control system belongs to. In a second step, coordinate
transformations must be undertaken allowing to obtain a “normal form” of the particular
class. The interest is that many properties of the original system can be elucidated by
using the normal form.

Amongst these classes, we find nilpotent, chained-form and flat systems. We con-
tinue this section by discussing how the steering issues can be solved for those control
systems belonging to any of these classes.

5.2 Steering nilpotent control systems

In linear algebra a nilpotent transformation is one with a power (degree of composition)
that is the zero map. In Nonlinear Control theory, a control system is nilpotent as soon
as the Lie products of the input vector fields vanish from some given length. Therefore, a
basis of vector fields {f1,..., fm} is nilpotent if there exists an integer k such that all Lie
products of length greater than k are zero; in that case k is called the order of nilpotency.

A distribution (or control system) is said to be nilpotentizable if one is able to find
a family of vector fields that span the distribution and generate a nilpotent Lie algebra
of finite dimension. It is feedback nilpotentizable if it can be made nilpotent by a feedback
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transformation.

One of the first exact steering methods for nilpotent systems is due to Lafferriere
and Sussmann [LS93]. We shall point out the major steps of the method in order to
illustrate the interest of transforming a control system into a nilpotent one.

Suppose a small-time controllable system X defined by vector fields f;(z) (i =
1,...,m; z € R") is given. The first step consists in defining a basis of the Lie algebra of
the system. An example of such a family of linearly independent vector fields is the P.
Hall basis (see also [MS93] for a few examples).

The approach of [LS93] starts by assuming a holonomic path is given. This path is
the desired motion for the extended system {f1,..., fm, fm+1,---> fr}. The {fmt1,.--, fr}
are higher order Lie brackets of the f;, chosen so that {f1,..., f,} span R” at all z and
such that they form a P. Hall basis.

The authors use then the Campbell-Hausdorff formula in combination with P. Hall
bases so as to decompose the desired motion in a suitable way. Loosely speaking, the
Campbell-Hausdorff formula describes the composition of flows as a single flow (e.g. see
[Lau93]):"

o™ o eTf2 — oThitTfa—5lf1,fal 4

It tells us how a nonholonomic system can reach any point in a neighborhood of a starting
point. It yields a method for explicitly computing paths in a neighborhood of a point.

Assuming that By, Bo,..., By is a P.Hall basis, the idea is to convert the desired
motion into a flow of the form

_ ,a1Bi+asBa+azBz+--
S = et P1ta2Br+a3lby ,

where the coefficients «; are the P. Hall coordinates of S. If the system is nilpotent, the
Campbell-Hausdorff formula yields an exact formulation of S.

The aim is to achieve this flow for the original (non-extended) system. To this end,
the authors propose an algorithm where the main idea is to solve separately for each expo-
nential factor, and then concatenate the results. The desired motion is achieved by choos-
ing piecewise constant inputs to generate the flow. Alternatively piecewise-polynomial
inputs, yielding a continuous control, allow also to achieve this flow.

The steering method of [LS93] is a general strategy for solving motion planning
problems for driftless systems. In the particular case of nilpotent systems the method
is exact. For systems that are not nilpotent, the authors consider an iterated utilization
of the algorithm. They consider the system as if it were nilpotent of order k& and a
neighborhood condition to stop the process as close to the goal as wanted.

True, when the system is not nilpotent, but is nilpotentizable, a challenging problem
is to find the appropriate transformations. In this respect, a particular class of nilpotent
systems corresponds to the chained form of nonlinear control systems. This “canonical”
form has aroused the interest of the Robotics and Automatic Control communities since
its introduction by Murray and Sastry [MS93]. In order to better understand the interest
of the chained form we shall discuss the work of [MS93].

"see Appendix A for a recall on flows.
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5.3 Chained form of control systems

In [MS93], the authors were interested first in steering a particular canonical form of first
and second order systems. A first order system is one for which the first level of brackets,
together with the input vector fields, span the tangent space at each configuration; in
classical mechanics such systems are called contact structures (e.g. the unicycle). Systems
of higher order are therefore those for which the number of brackets needed to span R"
is greater than 1 (e.g. the car-like robot).

Previous work by Brockett ([Bro81]) showed that the optimal controls to steer a
contact structure, between an arbitrary initial and final configuration, are sinusoids at
integrally related frequencies (i.e. 2m,2 - 2m,---,(m/2) - 2w). Based on this result, in
[MS93] the authors propose an algorithm to steer their canonical form using sinusoidal
inputs. The idea is to control in a first time the directions directly driven by the inputs,
so that the corresponding configuration variables are taken to their final value. Then by
iteratively applying sinusoidal controls at integrally related frequencies, it is possible to
steer the subsequent variables; and this, making the first ones to execute periodic cycles
(see example below).

In order to extend this algorithm to higher order canonical systems with maximal
growth, they next turned to a nilpotent form by using P. Hall bases. They soon realized
that it would be very difficult to use sinusoids to steer such systems in the general case.
Hence they focused on a special subclass of nilpotent systems, which they refer to as the
canonical chained form.

The chained form of a two-input nonholonomic control system is given by the fol-
lowing set of differential equations:

21 = U

z9 = U2

23 = Zzaul

Zn = Zn—1U1,

or in a more compact form:

z = g1(2)u1 + g2(2)uo,

where
0
g2(2) = 8—22
() = Dy O
g1i# B 821 z28Z3 anlazn

[MS93] showed that these systems could be steered using sinusoids at integrally
related frequencies and give sufficient conditions for finding a coordinate change and a
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static feedback® putting a nonholonomic system into its chained form.

Example: chained form of the unicycle

The unicycle may be put into the chained form. Indeed, let the state vector be
(z,y,0) and the control input be (v1,v3). The system equations read

z = wiycos(f)
= v sin(0)
é = 2.

Then the following coordinate change

zZ1T = X
zo = tan(f)
23 = Y
and the static feedback
U1
L cos(0)
vy = wugcos’(h),

put the system into the chained form:

2:'1 = Uu
Z2 = up
2'3 = Z22U1.

Straight computations allow to verify the claim.

Clearly, z; and zo may be steered independently to their final values at the cost of
letting 23 drift away from its initial value. Then if we apply sinusoidal inputs of the form
[MS93]:

up = asin(w-1t)
ug = pPceos(k-w-t),

with £ =1 and during a period T' = 27/w, a direct integration yields
21(T) = 2(0)
2(T) = 2(0)

Z3(T) == Z3(O)+%.

8A feedback is achieved when some information from the evolution of the state—or from the output
if only part of the state is measured—must return to the input. A static feedback is one for which this
information is memory-less; i.e. it does not depend on the dynamics of any other variable.
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By appropriately choosing «, 3 it is possible to steer z3 to its desired value while making
the other variables to perform a complete cycle.

In the general case one has [MS93]:

z1 (T) = 21 (0)

ze41(T) = 2k41(0)
ok s

Zk_|_2(T) = Zk_|_2 (O) + W

O

The study of chained systems has given rise to significant and ongoing research
particularly in the domain of feedback control (see Section 6.1.2). In the domain of
motion planning, we can mention the work of Tilbury [TMS95], who addressed the open-
loop control of the N-trailer (or general tractor-n-trailer) system. In this case, [TMS95]
proposes a single step steering approach, using sinusoidal inputs of the form

u; = ag+ ajsin(wt)
ug = by + by coswt + by cos 2wt + - -+ + by, 2 cos(m — 2)wt,

as well as piece-wise constant and polynomial inputs.

We shall also mention the work of Sekhavat [SLI8] who gave conditions for steering
chained systems, using sinusoids in constrained spaces accounting hence for small-time
controllability (see Section 5.5).

The chained form of control systems is closely related to flatness (the precise mean-
ing of this assertion will be given in section 7.3). For certain flat systems some practical
and efficient steering methods have been proposed in the literature. We discuss now this
particular class of nonlinear control systems.

5.4 Steering flat systems

Differential flatness (or flatness for short) finds its application niche in the theory of non-
linear control systems [Mar92]. In 1995, Fliess, Lévine, Martin and Rouchon introduced
the concept of flatness in a differential algebraic setting [FLMR95b]. In a later publica-
tion [FLMR99], the authors framed flatness within the setting of differential geometry.
In these papers, they discuss the fundamentals of flatness.

Loosely speaking, a system
= f(z,u) z€eR" ueR" (1.8)

is said to be differentially flat (or flat) if there exists a set of differentially independent
functions y = {y1, ..., ym} called the flat or linearizing output, such that:
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e the linearizing output can be expressed as a function of the system state x and the
derivatives of the controlling input u:

Y= h(w,u,u,...,u(k)).

e any system variable (state and control) can be expressed only from the elements of
the linearizing output and their successive derivatives:

T = A(:U’Q’ ""y(l))

u = B(y,, ay(l))

Thus it is possible to compute trajectories for system (I1.8) from y, without inte-
grating any differential equation; as the elements of y are free, any trajectory y = y(t)
determines a trajectory (z(t),u(t)) and vice-versa.

The striking advantage of flatness comes therefore from this fact: the trajectories of
the original control system can be computed from arbitrary time-laws of the free (uncon-
strained) components of the flat output; and this without solving any differential equation.
This property is what makes flatness attractive for motion planning purposes—i.e. for
the open-loop control of the system—especially when we are faced with complex systems.

One example of this concerns the work of Rouchon et al [RFLM93a]. In this note,
flatness was exploited as a useful property to plan paths for a mobile robot with n trailers.
For this system, the coordinates of the middle point of the nt* trailer axle are the lineariz-
ing outputs®. This means that any feasible path in the system configuration space R? x S*
can be deduced from any sufficiently smooth path followed by the trailer reference point
in the workspace (i.e. R?). Indeed, as soon as a smooth path for the trailer is obtained,
its absolute orientation is the direction of the tangent vector to the path and its relative
angle (w.r.t. the next trailer or the robot direction) can be deduced from the curvature
of the path [RFLM93a].

In chapter II, we shall discuss in more detail how motion planning problems have
been addressed using flatness. Suffice it to say for now, that flat outputs allow to use
parameterized curves (e.g. polynomials) so as to solve path planning problems. The only
constraints that apply are the initial and goal configurations and their derivatives.

The steering method of [RFLM93a] did not take into account the possibility to
provide cusp points—i.e. the possibility to execute maneuvers. Yet this aspect is of
particular importance in the presence of obstacles. Indeed, if the space to maneuver is
very cluttered, there is an evident interest in reaching locally (i.e. without too much
deviating from the current configuration) nearby configurations of the free space. Small-
time controllable robots in general allow for this local maneuvering capability. Exploring it
is essential in order to achieve a complete motion planner. In this case, obstacle avoidance
is a problem of a topological nature as discussed below.

9The utilization of the term output in the plural here means only that the set defining the linearizing
output contains more than one element.
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5.5 Steering with obstacles: topological considerations
5.5.1 Small-time controllability and topological issues

Recall a nonholonomic robot can directly move only in some directions. Hence taking
small-time controllability into account requires deep analysis. Indeed, two configurations
close to each other in the FEuclidean space may be at an infinite distance in the con-
figuration space; i.e. inaccessible the one from the other. This is due to the fact that
nonholonomic constraints partition the configuration space into disconnected submani-
folds. As a result, the topology in the configuration space may have little resemblance to
the one induced by the Riemannian metric in the Euclidean space. Holonomic systems
do not have this problem. Indeed, since any smooth path in the configuration space is an
admissible path in the Euclidean space, the topologies of both spaces remain the same:
the Riemannian distance is a natural one for both [Lau93]. For nonholonomic systems
the notion of distance in the configuration space becomes crucial. The analysis of the
motions of nonholonomic systems can lead to metrics inducing finer topologies. Once the
metric has been defined, the key issue is to analyse the nature of the associated topology.

The first work rising this problem comes from Laumond et al [LJTM94]. They used
the arc length of optimal paths for car-like robots in order to define a metric. A ball of
radius r corresponding to this metric is the set of all the points in the configuration space
reachable by a path of length (or cost) lesser than 7. This metric is sub-Riemannian.
Laumond et al show that the associated topology is the same as the Fuclidean one. This
fact entailed a topological property allowing to determine reachable sets in the presence
of obstacles by using optimal paths.

Later, Sekhavat and Laumond [SL98] proposed a more general topological property.
We recall now the main results.

5.5.2 Topological property

Let ¢ = (z1,z3,...,%,) be a point in the configuration space CS. Let d¢s be the following
distance over CS:

n
des(q1,92) = Z |z} — 7]
=1

where xf stands for the i-th coordinate of g;.

The set of configurations g2 such that des(g1,¢2) < € is denoted by B(qi, €); this is
the ball centered at g1 of radius e.

Let C be the set of feasible paths defined over an interval of the type [0,7]. A
steering function Steer is a mapping from CS x CS into C:

(q1,q2) — Steer(q1, q2)

where Steer is defined over the interval [0, T'], such that Steer(q1,2)(0) = g1, Steer(q1,¢2)(T) =
q2-
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Definition 5.1 (Topological Property [SL98]) Steer wverifies the topological prop-
erty iff:

Ve >0, 3In > 0, Y(q1,q2) € (CS)Q,
des(q1,q2) <n =Vt €[0,T], des(Steer(qi,q2)(t),q1) < €

This is a global property that not only takes into account small-time controllability
but also holds uniformly everywhere [LSLI8]. It says that for each neighborhood B(qi,€)
of a configuration ¢, there exists a neighborhood B(g1,7n) such that for every configuration
g2 € B(q1,7n), the path corresponding to Steer(qi,¢2)(t) remains within B(q1, €).

Now let us equip C with a metric d¢ between paths defined as follows. I'y and I'y
being two paths on [0, 1], dc(I'1,I'2) = maxc(o,1jdes (1 (), I2(t)). A sufficient condition
for a steering method to verify the topological property TP is given in [SLIS8]:

1. Steer must be continuous w.r.t. the topology associated with d¢ and

2. the path Steer(q,q) must be reduced to the point q.

One can find in the literature a few works addressing the motion planning issue in
the presence of obstacles (e.g. see [LSLIS8] for a comprehensive survey). In this context,
a general motion planning scheme (see Chapter III), taking into account the topological
property above, was applied to the tractor-trailer system: using a local planner based
on sinusoids [SL98], and another based on the flatness of the tractor-trailer [SLL™97],
[LSL99].
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6 Feedback control of nonholonomic systems

Up to this point, we have reviewed some specific ways of steering nonholonomic systems.
Motion (trajectory) planning and open-loop control are essentially synonyms as opposed
to feedback control. However, the planning and control phases are closely related during
the execution of a given task.

In general, a closed-loop controller results from the superposition of a feedback
action to a coherent open-loop (feedforward) term'. In the planning phase, the resulting
feedforward commands are computed off-line, according to a priori knowledge of the
motion task and the state of the environment. If we tried to perform this trajectory
without taking care of the actual evolution of the robot, unmodeled events at running
time (e.g. occasional slipping of the wheels or erroneous initial localization) would prevent
the successful completion of the task. Feedback controllers, driven by the current task
error, are therefore intended to overcome these problems so as to achieve some degree of
robustness. To this end, real-time sensor measurements are used to reconstruct the robot
state. This information is sent back to the controlling input so as to undertake a suitable
action. Thus feedback laws or compensators aim at computing the action best adapted
for a particular control task.

Control tasks usually encountered in Robotics fall into one of the following cate-
gories: stabilization about a point, path following and trajectory tracking. The nonlinear
nature of nonholonomic robots is at the origin of the main difficulty for synthesizing suit-
able feedback laws. The simplest problem in which this difficulty may be understood is the
stabilization to an equilibrium point. Paradoxically, in theoretical control this problem is
the hardest to solve regarding nonholonomic robots. It is also called the regulation or sta-
bility issue. It consists in making an equilibrium point of the system (conventionally the
origin) locally (or globally) asymptotically stable!!. There are indeed other control prob-
lems which are simpler than this one. In particular output stability (where there is a given
function y = h(z) and one wishes to make y(t) — 0 using suitable control actions) and
trajectory tracking (i.e. the problem of making y(t) follow a reference trajectory y*(¢)),
which can be seen as an output stability issue for an “error” signal e(t) = y(t) — y*(t).

The next sections make a literature review about feedback control strategies in
order to cope with the aforementioned control tasks. We first discuss main obstructions to
stabilize nonholonomic systems. Subsequently, we review solutions to the path following
and trajectory tracking problems regarding nonholonomic wheeled robots.

We should emphasize that the most important task to us, from an application
point of view, is trajectory tracking; more especially since we assume that a nominal pre-
computed trajectory from the planning phase will be given. Hence we should concentrate
much more our discussion on solutions to this rather than the other two problems.

However a feedback-like action may be achieved with only open-loop commands. Indeed, we may use
repeated open-loop phases re-planned at higher rates using new sensor data to gather information on the
actual state. In the limit, continuous sensing and re-planning leads to a feedback solution [DLOS98].

"see Appendix C page 154 for a brief recall on this terminology.
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6.1 Stabilization of nonholonomic control systems

A natural question in theoretical control concerns the possibility to extend results from
linear control theory to nonlinear systems. It is a well known fact that any linear control
system which is controllable can be asymptotically stabilized by means of continuous state
feedback laws [Kai80, Chapter 3]; that is, the open-loop property (controllability) implies
that the closed-loop one (stability) can be achieved. Research work in Nonlinear Control
has revealed that this is not any more the case for nonholonomic robots. This was shown
by Brockett [Bro83] who proved that nonholonomic systems fail to be (locally) stabilized
by means of smooth (or even continuous) static (time-invariant) state feedbacks.

Let us recall the condition given by Brockett.

6.1.1 Obstructions for stability

The problem of stabilization about the origin by means of a regular static state feedback
is the following. Given a control system

z = f(z,u), f(0,00=0 ze€R", ueR",

the problem is to find a feedback law

making the closed-loop system
& = f(z,k(z))

asymptotically stable about z = 0. One says that the feedback law k is regular if it is
smooth (or of class C*°) on R*\{0}[Son99].

The famous condition of Brockett for the existence of such a feedback law may be
restated as follows [Son99]:

Theorem 6.1 (Brockett [Bro83]) If there is a stabilizing feedback which is regular and
continuous at zero, then the map (z,u) — f(z,u) is open at zero.

In other words, the image f(z,u) contains a neighborhood of 0.

Nonholonomic systems fail to verify this condition as the cart example (unicycle
robot) shows. To illustrate this, consider a cart robot having a reference frame placed
at the middle point of the wheels axle. Its position in the plane and its orientation are
represented by the state vector (z1,z2,0). The controls (u1,us) are respectively the linear
and angular speeds. We have seen that the system dynamics may be modeled by:

1 = wuqcos(f)

T2 u1 sin(6)

é:’U/Q.
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Then the test fails, since there are no points of the form (0,e;,e2) that belong to
the image of the following map

R> = R®: (z1,,0,u1,up) — f(z,u) = (ug cos(d),u sin(h), us)

for 6 € (—7/2,7/2), unless &1 = 0.

More generally, it is impossible to continuously stabilize any system without drift
= fi(z)ur + - + fr(@)um

if m < n and rank [f1(0),..., fm(0)] = m (this includes all totally nonholonomic mechan-
ical systems) [Son99].

The stabilization of nonlinear systems in general is an active research area (see
e.g. [LS98] for a new approach on stability and [Cor98| for open problems on feedback
stabilization). The negative result given by Brockett is at the origin of work leading to
effective solutions to the problem. Let us discuss some of the current approaches.

6.1.2 Some approaches to the regulation problem

In view of the obstacle pointed out by Brockett, two solutions have been proposed to
solve the regulation problem under nonholonomic constraints.

On the one hand, early stabilizing controllers using discontinuous feedbacks were
discussed in Bloch et al[BMR90]. Canudas de Wit and Sgrdalen [CdWS92] proposed
piecewise continuous laws to stabilize unicycle robots.

On the other hand, an alternative solution to the stability problem consists in
using periodic time-varying feedbacks. Pioneering work in this field is due to Samson
[Sam91, SAA91b]. Furthermore, results obtained from Coron [Cor92, Cor94] showed that
driftless systems can be stabilized globally and asymptotically by means of time-varying
control laws.

A considerable amount of research in this direction has been published, particularly
regarding the chained form of control systems. Let us mention for instance the work
of Sgrdalen and Egeland [SO95]. They combined time-varying and non-smooth state
feedbacks to achieve a control law exponentially stabilizing a nonholonomic two-input
chained system of arbitrary dimension.

Samson proposed time-varying laws for linearized two-input chained systems [Sam95].
They achieve a polynomial asymptotic rate of convergence. To improve this, Morin and
Samson [MS97] use backstepping techniques (Lyapunov-based design of robust feedback
laws), achieving exponential stabilization with a lower-bound estimate of the asymptotic
rate of convergence.

We now discuss a probably more important problem from an application point of
view: the stabilization of mobile robots around a reference path.
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6.2 Path following and trajectory tracking
6.2.1 Path following

In the path following task the controller is given a geometric description of the desired
motion in the Cartesian space. This information is usually available through a path
parameter o, which can be in particular the arc length along the path. For this task,
one is only interested in the geometric gap between the robot and the path. Hence time
dependence is not relevant: the time evolution of the path parameter is usually free.
Accordingly, the command inputs can be arbitrarily scaled with respect to time without
changing the robot path. In this context, it is customary to set the input corresponding
to the robot forward velocity to an arbitrary constant or time-varying value. Hence the
other input (e.g. the angular velocity) is available for control. Thus the path following
problem consists in stabilizing to zero the geometric gap between the robot and the path.

Typical approaches consist in building controllers issued from a geometric analysis
of the problem (see e.g. [DLOS98]).

6.2.2 Trajectory tracking

On the other hand, a trajectory is a geometric path with an associated timing law. In the
trajectory tracking task the robot must follow the desired Cartesian path with a specific
velocity profile; in other words the problem is equivalent to tracking a robot moving
along the nominal path. In this case the objective is to stabilize an error in position and
orientation using the two control inputs.

Several approaches to this task can be found in the literature. Let us discuss some
of them.

Geometric approach The first closed-loop controllers, from [KKMN91] and [SAA91a,
rely on a geometric reasoning about the problem (in a very similar way to what is done
in the path following context).

In [KKMNO91], they introduce a Lyapunov function to determine the structure of the
controller. It stabilizes the error in position and orientation, with respect to a “reference”
robot moving with nominal linear and angular speeds. The controller can be used for
many nonholonomic mobile robots in the sense that it gives linear and angular control
speeds. Indeed, the authors assume intermediate blocks between the controller and the
robotic system. This allows for converting general speed commands into robot-specific
controls.

In [SAA91a] they propose a particular control law to stabilize a cart robot (unicycle)
around a reference trajectory. However, the feedback law may fit as well to other systems,
as it has been demonstrated in particular for the tractor-trailer robot HILARE [LSL99].

Tracking via linearization Another technique consists in linearizing the system either
approximatively or exactly.
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An example of a general control law issued from the former approach is [WTS92].
They first compute the linear approximation of the system about a point pertaining to
the trajectory. Then they propose a controller that locally exponentially stabilizes the
resulting linear time-varying system. The control law uses a linear state feedback, whose
construction involves an integral function, similar to the controllability matrix of the
linear system.

On the other hand, exact linearization is especially interesting in that the nonlinear
system may be actually considered as a linear one, with respect to different coordinates.
The idea is to search for state transformations and some kind of feedback in order to obtain
a linear system. This approach is known as feedback linearization. We shall discuss this
technique in more detail since our contribution concerns the ezact feedback linearization
of the bi-steerable car (see Chapter IV).

Feedback linearization approach Pioneering work on feedback linearization is due
to Sampei et al [STIN91]. They used coordinate transformation and time-scaling ([SF86])
techniques to linearize the tractor-trailer in order to make it track a straight line. The
approach consisted in studying the dynamics of the middle point of the rearmost (trailer)
axle. The idea was to parameterize the system dynamics with respect to the z coordinate
of that point instead of the time. The objective is to make the robot track a “running”
point traveling along the z axis. A linearizing coordinate transformation and a static
feedback entails a linear dynamics with respect to the coordinate z. Thus the authors
proposed some control laws ensuring the stability of the system for this particular case.

In the same order of ideas, dynamic feedbacks'? began to be explored also in the
early 1990’s with the work of d’Andréa-Novel, Bastin and Campion [dNBC92|. Their so-
lution was based on results from [JR80] (see Chapter IV). [dNBC92] proposed “lineariz-
ing outputs” and dynamic compensators in order to achieve full linearization of wheeled
mobile robots, including the car-like (tricycle model). This technique was also used in
[ANMS92], where dynamic compensation achieved full linearization of a rigid manipulator
having less controls than articulated joints. We shall discuss this technique in more detail
in Chapter IV, where the interest should become more clear.

In the general case, the problem of finding a dynamic feedback entailing full lin-
earization is a difficult one (see e.g. [CLM91], [MR94] for few significant results). However,
flatness characterizes a particular class of nonlinear systems that can be linearized by a
dynamic feedback called endogenous (meaning that the original—endogenous—variables
of the system are transformed without creation of new ezogenous variables).

An interesting observation, pointed out in [FLMR99], is that even if there are tight
links relating flatness and dynamic feedback linearization, the two concepts are distinct.
Indeed, flatness is a property of the trajectories of a system. It does not imply that the
system ought to be turned into a linear one. However, when a system is flat it implies
that its nonlinearity is well characterized and that this structure may be exploited in the
control design.

12Unlike static feedbacks, a dynamic feedback does depend on the evolution in time of some other
variable.
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In view of these results and those discussed regarding the motion planning problem,
it follows that the most useful properties of flatness and flat outputs are their immediate
utilization for trajectory generation and tracking. We shall discuss further this integral
character of flatness in Section 7.

Feedback linearization of nonholonomic robots The linearizability structure prop-
erties of flat systems has led to feedback strategies solving tracking problems for car-like
and tractor-trailer systems.

Exact feedback linearization of flat systems, including the tractor with n-trailers
and car-like robots, was first addressed in references [RFLM93a] and [FLMR95a]. Using
the same approach, the tracking problem was also solved for the general (off-hooked)
tractor-trailer and presented in [FLMT97].

In all these cases, the tracking problem is solved via endogenous feedback lineariza-
tion.

7 Conclusions and discussion

At this stage, we are ready to derive some conclusions and establish the grounds justifying
the approach we have chosen to solve our problem. We recall the problem we are interested
in is the following.

e How to plan and execute collision-free motions for a bi-steerable robot.

As far as this problem is concerned we now make some concluding remarks, issued
from our analysis of the state of the art.

7.1 Mobile robots found in the literature

To our knowledge, the nonholomic wheeled robots formally classified in Robotics (either as
nilpotent'?, chained or flat), until present, include: the unicycle robot, the car-like (which
could be seen as an extension of the latter), the single steering-tractor pulling multiple
trailers— STMT (an extension of the car-like robot), the multiple steering-tractors and
multiple trailers— MTMT (the most simple case of which is the fire truck [BTS95]), and
the single tractor and single off-hooked trailer— STSOT.

For those systems that do not classify in any of the structures previously discussed,
some research work has been done so as to find a nilpotent approximation for them. This
is for instance the case in [VLO97], where a constructive method for finding a nilpotent
approximation of the tractor with two off-hooked trailers is given.

Regarding double-steering vehicles, most of the research has focused on control
schemes, considering the dynamics of the wheels-ground contact [SFS86], [Whi90]. A

Bnilpotentizable
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path-following controller based on the kinematics of the center of mass was proposed in
[Hem94]. In [WQO1], a particular strategy is envisaged to compute the velocity profile
along a (a priori given) collision-free path for the center of mass.

7.2 Flatness: an integral approach to motion planning and control

Even if a general approach such as optimal control allows to solve many motion plan-
ning problems, a great majority of these has not a practical solution. However, many
(computationally) effective solutions exist for nilpotent, chained and flat systems.

In this context, flatness offers an integral approach to motion planning and feedback
control, in the sense that we can solve both steering and feedback control issues. Not only
that, but also we can view flat systems as a generalization of chained-form systems. The
following results reported in the literature account for this.

7.3 Flatness as a formal framework for system classification

The concept of flatness makes part of the research work aiming at characterizing non-
linear systems which are equivalent to linear ones by means of dynamic feedback (see
e.g. [FLMR99]). The question about equivalence of systems of differential equations has
gained in recent years considerable attention (see [W.F90], [NRM95] for two examples)
since the early results from Elie Cartan about absolute equivalence [Carl4]. Fliess and
co-workers introduced flatness [FLMR95b] through the notion of endogenous equivalence
[Mar92]. This general notion has provided a formalization framework of system classifi-
cation and linearization by a restricted kind of dynamic feedbacks called endogenous (see
Chapter IV). In this setting, the simplest class is made up of flat systems [FLMR99].
In particular, a flat system is linearizable by means of dynamic feedback and coordinate
change. In view of this, there is an elementary reason why we should address our problem
regarding of the bi-steerable car in the framework of flatness: a complete and formal
system classification can be achieved.

Fundamental work on flatness has turned around its characterization. Necessary
and sufficient conditions for flatness have been given by Rouchon [Rou94| and Martin and
Rouchon [MRY5], [MR94] for a wide range on nonlinear systems. In this latter reference,
an important result is a necessary and sufficient condition for two-input driftless systems
to be dynamic feedback linearizable and especially flat. A direct consequence of their
result is that such a system can be converted, around every point of a dense open subset,
into a chained-form system using only static feedback [MR94]. Extra regularity conditions
are given by Murray [Mur94], who gives a necessary and sufficient condition for putting
a two-input driftless system into chained form around a given point by static feedback.

Notwithstanding, the hard problem is to obtain the coordinate transformations
required either to find the flat output or to put the system in its chained form. For two
input driftless systems this problem is equivalent for either transformations. Indeed, the
chained form of a two-input driftless control system contains a single chain. Observing
this chain, one can notice that the trajectories of the first and last coordinates (z1(¢) and
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zr(t)) completely define all the state variables of the chained-form system: we only need
to differentiate these functions so as to find the subsequent “chained” coordinates. It
follows that z; and z, are the flat outputs of the system. As a consequence a coordinate
change transformation is completely defined by the first and last coordinates of the chain
as functions of the original coordinates.

7.4 Methodological tools

On the other hand, there is no unicity in the choice of the flat output and therefore there
are many possible transformations into chained form. Finding a flat output demands a
methodological approach. However, the literature includes very few works on the effective
computation of such transformations and this remains a difficult problem in general. The
rare contributions (e.g. [MR94], [TMS95], [Pom97]) resort to methodological tools from
the theory of Pfaffian systems [BCG191].'* Notwithstanding, in the majority of situations
a certain amount of physical insight about the system and guess work are required.

7.5 Concluding remarks and contributions

In this context, a classification effort of the bi-steerable system would prove to be useful.
Indeed, if we characterize the kinematics of the bi-steerable car, not only our understand-
ing of the system will increase, but also we open the possibility to solve our problem.
The questions we aim at answering are the following. What are the structural proper-
ties of the bi-steerable kinematics? How to find the convenient transformations yielding
the flat coordinates or the chained form? And how to exploit them so as to solve the
motion-planning and feedback control problems for such a system?

The purpose of the forthcoming chapters is therefore to introduce the kinematics of
the bi-steerable robot and to show that it is a differentially flat system. In this respect, we
shall point out the main difficulty in finding a flat output. It is our purpose to give some
methodological guidelines in order to compute a particular flat output for controllable
systems of dimension 4 and subject to 2 nonholomic constraints. In doing this, we will
show that taking into account symmetry considerations will be instrumental in finding a
flat output for the bi-steerable car. Moreover, further analysis will lead to equivalence
relations that will complete our survey on the flatness property of the system. All these
issues allowed us to solve our problem as we will show with simulations and experimental
results.

Remarks

Nonholonomic assumptions. One could expect that the modeling assumptions made
here— in particular the rolling without slippage— are valid to a certain extent. This at
least insofar as one is able to remain within the conditions for which these assumptions are

14 A Pfaffian system is a set, assumed to be of constant dimension, of linearly independent differential
equations. In mechanics, Pfaffian systems arise naturally from the kinematic constraints.
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plausible (e.g. low speed). Throughout this document therefore, we pretend to establish
results on models that, although remain far from the reality, allow for reasoning on prop-
erties that will have to be validated in an experimental phase. Thence the uncertainty
related to these models will have to be taken into account in a specific way (see Chapter
V).

Bounded curvature constraints for mobile robots. An additional kinematic con-
straint in mobile robots is when the turning radius is bounded. This induces constraints
on the curvature (and may be its derivatives) of the path followed by the robot. Typi-
cally car-like robots are subject to this kind of constraint, for the steering wheel is usually
subject to mechanical stops. This constraint may also apply for two-wheel drive robots
if it is not allowed to turn around the Z-axis.

Adding constraints of this kind increases the complexity of the path planning task
and in particular the formulation of the optimal paths under such constraints [SB98]. In
this respect, suboptimal solutions based on clothoids ([Sch98]) and in general using cubic
spirals ([KH89, KH97]) have been explored for the car-like robot. These efforts aimed
at increasing the tracking performance (avoiding the robot to stop) as well as reducing
slippage due to unwelcome curvature discontinuities.

We shall indeed consider bounded steering angles regarding our kinematic analysis
about the bi-steerable car. However we had not addressed the motion planning issue from
the point of view of the aforementioned references.
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CHAPTER 11

Introduction to the Bi-steerable
Kinematics

The purpose of this chapter is twofold. Firstly, the aim is to introduce the motivations
that aroused our interest for studying the bi-steerable kinematics, beyond the fact that
it is an innovative mechanical structure. To this end, we shall discuss the kinematical
properties of the bi-steerable system.

On the other hand, the material presented here should account for the solution we
propose for the complete motion planning and the feedback control problems, presented
in subsequent chapters. To this end, we first establish some connections between typical
approaches for solving the path-planning problem in the context of flatness. This shows
how the solutions to the problem resort to the properties of the flat output. A natural
question is thence to ask whether the bi-steerable system is flat and what is the flat
output. In this respect, we shall introduce the flatness property of the control system
associated to the kinematics model of the bi-steerable car. We then discuss first attempts
to find a flat output for this control system. This shall reveal that the problem is far from
being obvious, justifying a deeper analysis.

1 Introduction

During the last two decades, vehicles with double steering ability have aroused the at-
tention of several research groups. Amongst these, there are some researchers—including
car-constructor’s laboratories—particularly interested in vehicle response quality from a
dynamics dynamics point of view [SFS86, Whi90, Hem94, WQO01]. On the other hand,
prototype platforms showing double steering capability have been developed aiming at

exploring new ways of intelligent transportation systems!.

The fact that car constructors have been interested in the double steering feature

!Examples of these platforms are the Cycab robot, designed at INRIA in France, and the 7 — Car
prototype of IEF (Institut d'Electronique Fondamentale, Université Paris-Sud).

31
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indicates that the enhancements in the vehicle performance are substantial. But what
makes a bi-steerable car so attractive? How does it compare to a conventional car-like
robot? We will give some answers to these questions by turning to the geometric models
for these two vehicles. These models will lead our discussions throughout this dissertation.
Notwithstanding these models are great simplifications of the real systems, they allow for
a detailed analysis of their structural properties.

In this respect, we know the car-like robot is flat and that solutions to the motion
planning problem in the context of flatness resort to the properties of the flat output
[FLMR95b]. Motivated by the fact that the car-like and the bi-steerable kinematics are
seemingly close, a natural question is to ask whether the bi-steerable system is flat and
whether a flat output could be intuitively found. In this respect, we show the control
system associated to the bi-steerable kinematics is flat. This opens effectively the possi-
bility to exploit existing solutions to the motion planning and feedback control problems.
However in order to exploit these solutions, the flat output must be found. Hence we will
discuss first attempts in finding a flat output for the bi-steerable car. It soon appears that
the richer kinematics of the bi-steerable system entails further complexity in the analysis
of the problem and in the synthesis of its solution.

In the sequel we will also refer to the term bi-steerable by using the acronym BiS.

2 Kinematics of the conventional car-like robot

The car-like vehicle has been the canonical case-study in nonholonomic motion planning
and control research for the last two decades [Lat91b],[LSLIS].

Typically, the system moves with respect to a global Cartesian frame {X,Y, Z}.
The configuration space CS = R? x S! has local coordinates (z,,8), where (z,y) are
usually the coordinates of one of the middle points of an axle and @ is the heading of the
robot (i.e. the orientation of the body with respect to the X-axis). A typical geometric
representation for this kind of robot is given in Figure II.1.

This geometric model relies on results from classical mechanics. The latter tells
us that the perpendicular lines to the velocity vectors of all points of the solid should
coincide at a single point, namely the instantaneous gyration centre G. Hence, assuming
the system is moving in the plane X —Y with angular velocity 3 = 0-&, (where ||k,|| = 1),
the following relation holds for any point A pertaining to the solid:

Vi=0xGA= ||[Vi| = |val = 6] - |GA|. (IL.1)

At this stage, the reader may have noticed that, in order to have a unique intersection
point G, the front wheels must have different attitudes—i.e. different deviation angles.
This translates into a geometric relationship called the Alexander-Maddocks condition
[AM89]. However, for modeling purposes, the steering angle ¢ is assumed to be applied to
an imaginary wheel placed at point F'. Hence simplifying assumptions lead to consider this
steering angle ¢ equal to the median angle between the left and right wheels. Furthermore,
the rolling without slipping assumption makes the velocity vectors V, and Vs to “point”
in the direction collinear to each imaginary wheel respectively. As a consequence, a
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Figure II.1: The geometric model of a car-like robot

typical variation of the geometric construction II.1 is the so called “bicycle” (as opposed
to unicycle) model, where the analysis is focused on these two imaginary wheels.

Figure II.1 agrees with the modeling of the nonholonomic constraints imposed by
the rear and front wheels. Thus from this geometric construction and from classical
mechanics results one can derive the kinematics model of the system. This is a customary
practice in many references, where the motion kinematics of the car-like robot is given by
well-known systems of differential equations (e.g see [Lat91b]). We recall now the car-like
kinematics models.

Typical geometric constructions allow for placing a robot reference frame either at
point R or F. Hence the controls of the robot are usually the steering angle ¢ and the
linear speed of either points R (vg) or F' (vr). A further assumption is that the steering
angle ¢ is bounded. In this respect, typical range values for ¢ are | — 7/2,7/2].

In this setting, the kinematics model of this vehicle is given by system (II.2), when
the robot reference frame is placed at point R:

Tr = wvg-cos(f)
Yr = vg-sin(f) (I1.2)
0' = UVpgr- taIgtp)

If now we place the robot reference frame at point F' the system becomes (II.3):

Tp = wp-cos(f+ )
Yr = wvp-sin(0 + @) (I1.3)
tan(y)

0 = 'UF'T.
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3 Kinematics of the Bi-Steerable car

Let us now turn to the kinematics of a BiS-car. We proceed in a similar way than for the
car-like case.

Figure I1.2 represents the geometric model of a BiS-car. This geometric construction
is inspired from the one presented in [BGMPGY99] for a particular bi-steerable car, where
the function f is a constant of proportionality—i.e. f(¢) = k- ¢. Geometric model I1.2
will be our support throughout the discussion below.

Figure I1.2: Kinematics of a BiS-car

Making the same assumptions of no slippage of the wheels, the orientations of the
velocities of points R and F' are respectively given by the rear and front steering angles.
Hence, we deduce the position of the instantaneous turning center of the solid, represented
by the point G. We call H the orthogonal projection of G on the main axis of the vehicle.
The reader should keep in mind this point as we will come back to it in Section 5.

From the geometric representation of Figure I1.2 we have the following algebraic
expressions:

tan () (11.4)

RH = —HF - 2aU©)
RH+HF =1L

which give:

RH — _[ - csle)sin(f(p))
sin(e—f(¥)) (115)

== 1 cos(f(g))sin(p)
HF =L =G5, 7))

where L is the distance between the back and front axles, also called the longitudinal
wheels base.
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These expressions allow us to find relations for p; and pr, distances of points R
and F respectively to point G:

pr =L+ |te R
sin(o— f (¢
pe = L+ |S5Ule)_| (T1.6)

sin(o—f(¢))

Again, equation (II.1) from classical mechanics leads to:

Pr

. v v
= 102l Ty ) = o 22—
Pr

~_cos(yp)
" s (f (@) (T-)

Assuming furthermore that the steering angle is bounded within | — /2, 7/2[, these
relations enable us to establish the kinematic model of the bi-steerable robot. With a
reference frame located at the mid point of the rear axle (point R) we have:

Tr = wg-cos(0+ f(p))

Yr = vg-sin(0+ f(p)) (IL.8)
0 = Ugr-: ‘SH}J(ﬁ—;SJ(“g?)) .

Alternatively, the kinematics model of the BiS-car with a reference frame located
at point F is:

r = wvp-cos(f+ @)
Yr = vp-sin(d+ ) (IL.9)
0 = v, e 1)

L-cos(f(¥)) -

Notice the close similarity between models (I1.8)—(I1.9) and (II.2)-(IL.3).

We will come back to this issue in Section 5. For now, let us concentrate on the
improvements of the bi-steerable kinematics compared to those of the conventional car.
This will account for the growing interest in favour of the former against the latter.

4 Maneuverability enhancements in BiS-cars

The possibility to steer the rear wheels as a function of the front wheels entails two kinds
of rear-to-front wheel attitudes: deflection in an opposite or similar direction as shown in
Figure I1.3. The convenience of having either attitude at the rear wheels stems from an
increased maneuverability. A brief explanation of the reasons behind this assertion may
be given here.

The maneuverability enhancements may be studied from a dynamics or a kinematics
standpoint. Even though the kinematics point of view is more in connection with motion
planning concerns, the dynamics point of view shows how rear wheel steering changes the
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(a) Opposite rear-to-front attitude (b) Similar rear-to-front attitude

Figure I1.3: Two possible rear wheels steering directions with respect to front steering.

vehicle response at low and high speeds (e.g. see [Whi90]). In this respect, some surveys
(e.g. [SFS86], [Whi90]) are illustrative of both the benefits and technical difficulties of
rear wheel steering, either alone or in combination with front steering.

We shall start by discussing the advantages of double steering and outline some of
the underlying problems from a dynamics point of view.

4.1 Double steering from a dynamics point of view

Vehicles in motion generally have a small lateral velocity component instead of moving
exactly forward. The side-slip angle is the resulting small angle between a vehicle’s
longitudinal axis and its velocity vector in the plane of the road. Likewise, each tire has
a slip angle, between its free rolling direction and its actual velocity vector, associated
with a lateral force from the road surface (e.g. see [SCMO02]). For low levels of lateral
acceleration, lateral motion of a tire occurs by deformation as it rolls. The resulting
lateral tire forces produce a total lateral force and a yawing on the vehicle.

The interest shown in the double steering by some research groups has yield compre-
hensive insight about the dynamics response of vehicles having this mechanical feature.
For instance, when an “opposite-deflection” rear wheel steering (RWS) mechanism is
considered, the response of the vehicle differs significantly from the front wheel steering
(FWS) response at low speeds [Whi90]. This is because the RWS vehicle must first move
opposite to the desired steering direction in order to perform a turn; this reverse action is
the cause of the unique transient characteristics of RWS vehicles. However, as the speed
increases, the reverse action part of the RWS response becomes smaller in magnitude and
shorter in time relative to the overall vehicle response [Whi90].

On the other hand, some of the advantages of coordinated double steering (i.e.
bi-steerable as we have defined it) against FWS are discussed by Sano et al [SFS86].
One significant advantage is illustrated in Figure I1.4 showing steady-states of a turning
maneuver for a conventional FWS car and for a bi-steerable car.

Parts (a) and (b) of the figure show the dynamics of the motion of a conventional
front-steering car. At very low speeds the assumptions of rolling without slipping lead to
the motion model (a). The small angle 8 (exaggerated in the figure) giving the alignment
of the vehicle to its path of motion is the side-slip angle. At high speeds (see part (b) of
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Gl
(c) Bi-steerable robot at low speed. (d) Bi-steerable robot at high speed.

Figure I1.4: One advantage of using rear steering angles as a function of the front steering controls
according to a dynamics analysis made by [SFS86]. (a) and (b): The car-like robot at low and high speeds
respectively. The body is said to slip at angle 8. (c) and (d): The bi-steerable kinematics could lead,
if controlled appropriately, to the elimination of the side-slip angle of the body yielding a faster lateral
response. The explanation is in the text.

the figure) the forces involved are larger. Dynamics of the tire-ground contact impose to
each wheel a side-slip angle a. The vehicle centre of gravity is said to slip with angle S.

To appreciate the interest of the double steering capability, the analysis should turn
to the transient behaviour of the vehicle— i.e. what happens between the moment the
steering angle is applied and the steady-states. Refer to Figure I11.4.(b), where the series
of events before the car starts turning have been labeled from 1 to 8.

In fact, the vehicle motions can be divided into two parts according to [SFS86]. The
first part corresponds to the rotation around the vehicle centre of gravity c.g. (event series
from 1 to 4). This rotation corresponds to a yaw acceleration response in the presence
of a force due to the change in the direction of the steering wheels. Indeed, to make the
tire generate a lateral force, a side-slip angle is needed. The slip angle a; results from
forces brought about by the vehicle inertia and friction. Once this slip angle has settled
the lateral force F) creates a moment about the centre of gravity. Hence the rotation
(yaw) occurs in the early stages of the whole series due to the moment created by F; (see
Figure I1.4 part (b)).
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The second part of the whole motion is the revolution around the instantaneous
turning centre G2, which occurs in the latter stages of the whole series (event series from
5 to 8). Indeed, because of the yaw acceleration response, the rear wheels are eventually
subject to a lateral force inducing a slip angle a2. Depending on the road conditions (the
friction coefficient) and the tire dynamics (e.g. speed), the rear slip angle ay generates
a lateral force F,. Both forces F; and F» bring about a centripetal force on the body
resulting in vehicle turn.

In summary, before settling down to a steady-state revolution, the following steps
occur (see Figure II.4 part (b)):

1. The vehicle steers its front wheels.
2. This generates a slip angle al.

This in turn produces a lateral force F'1,

- W

causing the vehicle to rotate around its center of gravity.
The body slips with a side-slip angle .
In response to the yaw moment, the rear wheels slip at angle a2.

This causes a lateral force F2,

[ B R

joining force F'1 in the generation of a centripetal force making the vehicle turn
around point G2.

Thus the vehicle rotation around the center of gravity corresponds to yaw responses,
while the revolution around the turning center (G2) corresponds to lateral acceleration
responses. Since the angular acceleration of the vehicle around its center of gravity is
related to its body yaw inertia, the larger the body side-slip angle is needed, the longer
the delay before the vehicle is settled in the steady-state turning (see [SF'S86] for details).

In their survey [SFS86], Sano et al. show, that if the rear wheels are controlled in
an appropriate manner, the body side-slip angle (8) can be kept at zero in a steady-state.
In this case the vehicle rotation around the center of gravity is no longer needed. Figures
I1.4 (c) and (d) illustrate this. The vehicle can start turning the moment the steering
input is operated, reducing hence the delay in lateral acceleration response to steering.

A key parameter in the analysis of [SFS86] is the steer angle ratio of rear to front
wheel k = %. The authors suggest a few mechanical arrangements and a control
function to determine the rear steering angle in function of the front one. The idea is to
be able to switch from “similar” to “opposite” deflections in function of the amplitude of
the steering angle of the front wheel as depicted in Figure II.5. This method makes also
natural assumptions about the speed of the vehicle: i.e. the fact that at high speeds the
amplitude of the steering angle is rather small, contrary to low speeds where the angles

are likely to be large.

Sano et al. present interesting simulations and experiments with real vehicles
equipped with a mechanical coupling between the front and the rear wheels. This coupling
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steer angle

front wheel-—_

steering wheel angle

rear wheel

Figure I1.5: The controlling function, according to Sano et al [SFS86], in order to determine preor =
k- Pfront-

follows a relation @reqr = k@ front, with —1 < k < 0.6. Their results show for instance
that a lane change is better negotiated (more accurately? and with greater stability) when
k>0.3.

These surveys are illustrative of the maneuverability enhancements from a dynamics
standpoint. As far as motion planning is concerned, most of the analysis is done from the
kinematics point of view. In this case there are also non-trivial advantages that we shall
discuss next.

4.2 Double steering from a kinematics point of view

The possibility of deflecting the rear wheels in an opposite direction regarding the front
steering angle leads to an increased maneuverability in cumbersome spaces. To illustrate
this, consider the application of the same steering controls to the conventional car and to
the BiS-car, to perform a simple parking maneuver as the one shown in Figure I1.6. It is
clear that the BiS-robot shows a higher penetration ability.

In this case of opposite deflection between rear and front wheels, the higher ma-
neuverability is owing to the reduced turning radius of the BiS-vehicle compared to that
of the car-like robot. Indeed, comparing their geometric representations (see Figures I1.1
and I1.2), we see that for a given steering angle ¢, the instantaneous turning radius of
the car (i.e. the distance GR) is greater than its counterpart for the BiS-car (i.e. the
distance GH):

v

o Leos(w) L _ Loos(y) cos(f()
Chear = “intp) 2 255 = —Ga(o — f(9)

Figure I1.7 shows the corresponding geometric construction.

2The subjects of the experiments where asked to maintain the car in the middle of the lane at 80km/h.
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0.5 T

car-like robot —

bi—steerable car

starting point

-3 =25 -2 -1.5 -1 -0.5 0 0.5

Figure I1.6: Bi-steerable car’s maneuverability characteristics: Simulated traces of the point (zr,yr)
using models (11.2) and (II.8). These traces are obtained when applying the same typical commands, for
a parallel parking maneuver, to a conventional car-like robot (top track) and to a BiS-car for which the
rear-front coupling relation is a constant of proportionality held to 0.7(bottom track).
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Figure II.7: Bi-steerable car’s maneuverability characteristics: The turning radius is reduced owing to
the deflection of the rear wheels while maintaining the front wheel steered.

As a consequence we have that the turning speed of the BiS-vehicle is greater than
that of the car for a given value of ¢.

Another major consequence is that the sweeping volume of the solid in motion is
also reduced. This not also enhances the maneuverability in cluttered environments but
also reduces the risk of collision. To appreciate this better consider Figure I1.8 showing
the sweeping volumes of a car-like robot (filled polygon) and that of a BiS-car (unfilled
polygon) when performing a parking maneuver.
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(c) Superposed sweeping volumes

(b) Bi-steerable robot sweeping volume

Figure I1.8: (a) and (b): Sweeping volumes for car-like and bi-steerable robots respectively, when
applying hypothetical maximum steering angles. The assumption is the same curvature radius can be
achieved for both systems. The car-like instantaneous gyration centre is aligned with the rear ends of
the vehicle, while that of the BiS-car is aligned with middle points of the body. Both robots have the
same dimension. (c): When superposing both volumes, it can be readily seen the weeping volume of the
conventional car is larger than that of the bi-steerable car.

5 Introduction to the path planning issue and flatness

5.1 Introduction

In view of all these advantages it is not surprising to find experimental platforms in
some research laboratories around the world® and real vehicles (e.g. see [WQ01]) showing
double steering kinematics. It would be worth to know whether a general solution could
be found aiming at the motion autonomy paradigm, at least for the bi-steerable system as
we have defined it. In this respect, the path planning issue is the first obstacle to address.

Solutions to the motion planning problem in the context of flatness resort to the
properties of the flat output [FLMR95b]. The most simple example illustrating these
properties is the car-like robot. In order to introduce the reader to the advantages of
flatness for planning paths, we will present in this section the case study of the conven-

3ibid.(V
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tional car-like robot. The aim is to give some “landmarks” hopefully useful throughout
Chapters III and IV.

5.2 Flatness in car-like robots

System dynamics Let us recall the kinematics model of the car-like robot:

Zr = wg-cos(f
Yr = wg-sin(0) (I1.10)
9‘ = Ugr- tanétp) .

The rolling contact between the surface of the road and the wheels of the vehicle
leads to nonholonomic constraints. For the car-like robot the velocity of point R must
be tangent to the main axis of the car. This translates into the following nonholonomic
constraint, which may be obtained by eliminating the control speed in equation (II.10):

—Zpsin(f) + yr cos(f) =0 (I1.11)

The left hand side of equation (II.11) is called a differential 1-form®*, defined at
a point ¢ := (zg,ygr,0) € CS:

w(q)(f) = —dzgsin(f) + dyx cos(d) + 0d6 € R. (I1.12)

The notation used is on purpose. What this equality says is that at a given point ¢, the
1-form (I1.12) is a linear function mapping a tangent vector f € T, M (the tangent space
at q) to R

Thus equation (II.11) has the following geometric interpretation. At every point g,
equation (II.11) defines a hyperplane of T, M. This hyperplane contains all tangent vectors
verifying (I1.11) and hence defines a distribution A(q) of dimension 2. This distribution is
precisely the one associated to the control system of (I1.10). Therefore, finding solutions
of (IL.11) is equivalent to solve (II.10).

In fact, looking for solutions to (II.11) instead of (I1.10) is actually more convenient.
This comes from the fact that powerful analysis tools are at our disposal in the theory of
Pfaffian systems. We shall come back to this idea in the following chapter. For now, the
reader should keep in mind that the path planning problem can be solved using either
approach.

Flat output of the system Back to the car-like robot, equation (II.11) suggests that
if we knew the motion of point R in time, we would be able to directly obtain from the
first derivatives of (zg,yz) the orientation of the vehicle: tan(f) = gz/%r. Further-
more, if during the motion of point R we also knew the second derivatives of (zz,yz),
we would obtain the front-steering angle. Indeed, from equations (II.2) we have that
tan(p) = LO/vg.

“See Appendix B on page 148 for a recall on 1-forms.
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From these observations we conclude that all the variables of system (II.2) can be
obtained directly from z, vz and their successive derivatives. Therefore, to any 2D curve
(zg(t),yr(t)) corresponds (locally) a unique 3D trajectory (zg(t),yr(y),0(t)) with a set
of controls (vg, ¢).

Flatness and motion planning The property shown by point R in the car-like robot
example can be found in other physical systems; e.g. the inverted pendulum in a plane,
the ideal vertical take-off aircraft, the induction motor and the mobile robot with trailers
[FLMR99, RFLM93b, MR96]. The formalization of this property leads to the concept of
differential flatness, firstly introduced by Fliess and co-workers in [FLMR95b].

The striking advantage of flatness for planning a path from an initial configuration
gi to a final configuration gy should be now clear. In the car-like example, a flat output is
the point R so that y = (y1,y2) = (zr,yr). Since y1 and ys are differentially independent
(i.e. not related by any differential equation), it is possible to employ arbitrary curves
for y1(t) and y2(t) in the flat-output space (e.g. parameterized polynomials) in order to
connect 1; and y; having only initial and final constraints on their time derivatives—i.e.
those imposed at the initial and final conditions (g;, g, ¢i, 4y, - - - ). Hence, the problem of
finding a path in the 3-dimensional configuration space can be equivalently solved in the
2-dimensional flat space.

5.3 Is the bi-steerable car flat?

The compelling question is: can we apply these results to the BiS-car?

The close similitude between kinematic models of the car—equation (I1.10)—and
the BiS-car:
gr = wvr-cos(d+ f(p))

Yyr = vr-sin(0+ f(e)) (I1.13)
) , sin(e—f(¢))
0 = Ur L-cos(p)

reasonably leads to the conjecture that both systems share common properties. To verify
this, we shall answer a first question: is the BiS-car flat?

Hence in the following section we investigate the differential flatness of the bi-
steerable car.

6 Conditions of flatness for the BiS-car

We now proceed to show the bi-steerable car is flat and will give necessary conditions
on the function f(p) for this. We assume the reader is already acquainted with notions
about differential geometry and nonlinear control systems (i.e. vector fields, Lie brackets,
distributions, etc.). Again, the unfamiliar reader may refer to Appendix A on page 140
for a brief recall on these and related concepts.



44 Chapter I1. Introduction to the Bi-Steerable Kinematics

Notice that, like almost any car-like platform, our system has a bounded steering
angle, so that —% < ¢ < 7 [n]. For the same reason, the function f(y) must be chosen
so that it does not reach this bound at the rear wheels and in particular, f(¢) # 7 [n] .

Therefore, in the sequel we assume that

cos(p) # 0

and

cos(f(p)) # 0.

6.1 Conditions for two-input driftless systems

In order to study the flatness of the bi-steerable car, we will focus on its control system.
Hence we add ¢ to the configuration vector, considering its derivative as the second control
of the robot.

To alleviate notation in this section, we will denote by X = (z,y,0,¢) the state
vector, with 6 the orientation of the robot, ¢ the front steering angle and z, y the Cartesian
coordinates of R (see Figure I1.2). Therefore the configuration space (or the state space
in control theory) of the bi-steerable car is CS = R? x (S1)2.

In this setting the bi-steerable system dynamics is given by the following driftless
control system with 4 states and 2 inputs:

cos(0 + f(¢))

&
y sin(0 + £(¢))

i | = smesen [vH w. (%)
¢

L cos(yp)

_ o o o

Furthermore, to avoid confusion between the function f(p) and the usual vector field
notation, we denote the two driving vector fields of (2) by:

cos(0 + f(¢))

sin(0 + f(y))
Vi(X) = | sine—f(e)) , Vo(X) =
L Cfg(w)

(I.14)

_ o O O

For such a system, there exists a necessary and sufficient condition of flatness given
by Rouchon [MR94]:

Theorem 6.1 ([MR94]) A system without drift in n states and 2 controls (n > 2) is
flat iff for i = 0,...,n — 2, the vector spaces E;(X) spanned by the system vector fields
and their Lie brackets of length less than or equal to i, satisfy at all points: dim F;(X)
=1i+2.

We give now some precisions about this theorem. Using the Lie bracket operator
recursively on the input vector fields {V1,---,V;,}, one can associate a sequence E; of
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distributions to a system defined by some distribution A = span {Vi,---,V;,}. To this
end, one sets:

A = Ey = span{V1,--- , V1,

and the next distributions are defined as:
Einn=E +[E,E], i=12,...,

where [FE;, E;] is the short notation for all possible bracketings between vector fields of F;.
The sequence of F; is called a filtration of A.

Hence Theorem 6.1 states that a driftless system with two inputs is flat iff:

- E; are regular distributions: which means that the vector space F;(X) has the same
dimension for all X,

- The dimension of FE; increases by one and exactly one at each bracketing until reaching
the dimension of the system.

In the case of the bi-steerable control system, the growth of the filtration of Ej
is clearly dependent on the choice of the function f(y). In the next section, we use
the Theorem 6.1 to get a necessary and sufficient condition on f for the flatness of the
bi-steerable car.

Remark 6.1 Flatness implies strong accessibility and hence controllability
[FLMRY95b]. Typically in our case, a system verifying Theorem 6.1 verifies the Lie Algebra
Rank Condition (LARC) implying controllability. The converse is in general not true.

6.2 Necessary and sufficient condition on f(¢) for flatness

Let us introduce some notation that will be used thoroughly in the sequel. For any scalar
function of the unique variable ¢, A(¢), we note A’(yp) its derivative with respect to . In
particular, f’(¢) denotes the derivative of f with respect to ¢.

The system vector fields are Vi and Vo— see (I1.14). Computing the successive Lie
brackets of the vector fields that will be of our use and letting

£(p) = (1 - f(p)) cos(p — f(i)c)(:;s(;o +sin(p — () Sinw’

we get:

—1(9)sin(8 + £(9))
V) =W nlx) = | 7@ Cog((z)+ £(#))
0
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sin(0 + f(¢))

Va(X) = [Vi, Va](X) = £() —COS(9O+f(¢))

0

cos(6 + f(¢))

_ Plo)sin(e—f(9)) | sin(@+ f(e))
L cos(9) 0

0
sin(6 + f(¢))

V(X) = i) = —pe) | T
0
cos(f + f(9)) 0
2 | sin(@+ £(#)) 0
_f (¢) 0 + §I(¢)
0 0
Or in vector field notation:
Va(X) = [, Vil(X) = —f(@)sin(6+ ())& + [(p) cos(@+ f(0) 2 +E(0) L
Va(X) = Vi, Val(X) = (&(p)sin(8 + f()) — Lot o) cos(o + £())) 2
— (&0 cos(6 + £()) + Lol sin(9 + f(0))) &
(X0 = [V, Vl(X) = (=£(p)sin@ + 1)) = J'(p)? cos(6 + f(9)) 3
+ (1) cos(0+ £(9)) = () sin0 + 1(9)) 3

According to Theorem 6.1, the system is flat iff:
- dim Ey(X) = span{V1(X), V2(X)} =2
- dim Ey(X) = span{V1(X), Va(X),V3(X)} =3
- dim E(X) = span{Vi(X),--- ,V5(X)} =4
for all X.

Let us verify this by first considering the case of the configurations where

f(p) =0.

e Case f’(¢) =0 In this case one can check easily that

cos(0+ f(p)  2LDsin(@+f(¢) 0
V1 Va Vs Valp(p)=0 = sin(0 + £(¢)) CLOE({sgp) cos(0+ f(p)) O

= o O O

sin(p—1(p)) 0 cos £(p)
L cos(yp) Lcos? ¢
0 0 0
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and that the determinant of this matrix is non zero (indeed, by assumption cos(y) # 0
and cos f(¢) # 0). Therefore the system clearly respects the condition of Theorem 6.1 at
points where f’(¢) = 0.

Thus from now on we assume

We have:
e dim Ey =2 This is obvious.

e dim E; =3 One can check that
MVI+ Vo + AV =0 <

AM=X=0 and A3f’(p) =0 and A3&(yp) =

Since we are in a case where f’(¢) # 0 we also have A3 = 0 and therefore (V7, V3, V3)(X)
is a free family for any configuration X.

e dim E; = 4 The distribution F5 has two vector fields (V4 and V5) more than E;
of dimension 3. The dimension of F5 included in the tangent bundle of the CS cannot
exceed dim CS = 4. Therefore we just have to check that at any point X, at least one of
the two vectors V4(X), V5(X) does not belong to Ey = span{Vy,Va,V3}. Let us consider
successively the case of V4 and V5.

One can show that:
MV 4+ Vo + X3V + M4V, =0 <

M - e O) po)n, =
F(©)As — £(0) A
s1n(c50 (())))\1 +E(p)Ay =
Ao =

whose discriminant function is:

Ai(p) = f(0)? cos () + cos®(f (1)) — 2f°(¥) cos(p) cos(f () cos(¢ — f(w)).  (IL.15)

Then we show that for any configuration where f’(p) # 0 the following statement

S O o O

AMVI+H Vo + 3V +MVi=0&= =0 V:

is equivalent to:

A1 (p) #£ 0.

In the same way,

AMVI+H Vo +A3V3+ A5V =0 <—
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M — F(9)2hs -
F(e)As + ()5

D )+ €(0) s+ €(9)As
A2

Il
o o oo

and we show that there is a function

Ag(p) = f7 () + 2 ()* tan(f (@) — 2f () tan(p) (TL.16)

such that for any configuration X where f’(¢) # 0,
dim Ey(X) =4 <= Ay(p) # 0.
Thus we can state the following Proposition.
Proposition 6.1 Given a Bi-steerable car (X) with a characteristic function f between
the rear and the front steering angle.

The system is flat iff f is such that, for any front steering angle @,

Ai(p) #0 or As(p) #0,

with A1 and Ay including f and defined respectively in equations (I1.15) and (I1.16).

Example

Consider linear functions f of the form

flp) =kp, keR

Then we have:
A1(p) = k2 cos?(p) + cos?(ky) — 2k cos ¢ cos kp cos(p — k)

and
As(p) = 2k% tan(ky) — 2k tan(yp).

One can check that

Ao(p) =0 < FKk?tan(kp) = k tan(p)
< ke{0,1,-1} or ¢ =0,

since the tan function is a strictly increasing bijection.

Let us investigate each case. If K = 0 then A;(¢) = 1. Therefore, Proposition 6.1
implies that the system is flat as expected since this is the case of the conventional car-like
robot. If k = —1 then A;(p) = 0 <= cos2p = —1 <= ¢ = 7 [27], which is against our
assumption. Then again, Proposition 6.1 implies that the system is flat. For the case
k=1, Ai(p) = A2(p) = 0 and from Proposition 6.1, the system is not flat as expected
since this system is not even controllable. Indeed, it corresponds to a bi-steerable car for
which the front and rear steering angles are always equal: the system can only perform
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translations without ever being able to change its orientation. Finally for ¢ = 0, one can
check easily that A;(0) = 0 <= k = 1. To summarize, the only case where there is a ¢
such that A1(p) = As(p) =0 is when k = 1. O

Therefore, Proposition 6.1 implies the following result:

Corollary 6.1 Given a Bi-steerable car (X) with a linear relation (of factor k) between
the rear and the front steering angle, the system is flat for all k # 1.

7 Finding a flat output: what is the problem?

Up to this point we have set necessary and sufficient conditions for a bi-steerable system
to be flat. We now turn to the next compelling question: What is the flat output?

The intention of this section is to show that the problem is not so straight forward
as seemingly appears from the close similitude between the car-like and the bi-steerable
systems.

7.1 Getting insight into the problem

Let us recall the car-like robot kinematics—equations (I1.17) and Figure I1.9 below—and
the bi-steerable kinematics—equations (II.18) and Figure II.10:

Tr = wg-cos(0)
Yr = wg-sin(0) (I1.17)
) tan(p)




50 Chapter II. Introduction to the Bi-Steerable Kinematics

Figure I1.10: Kinematics of a BiS-car

Tr = v cos(0+ f(p))

yr = vg-sin(0+ f(p)) (11.18)
) . sin(p—f(p))
0 = Ur L-cos(p) -

Comparing equations (I1.18) with equations (I1.17), a different complexity arises from
the bi-steerable car’s model: the BiS-robot has an intrinsic tight coupling between the
configuration variable 6 and the control variable ¢.

When trying to use the point R coordinates as the linearizing output, this tight
coupling makes it impossible to deduce 6 and ¢ from z(t),yx(t), which therefore do not
seem to be the flat outputs for the BiS-car.

Looking at other nonholonomic systems, the following constant may be observed:
If we consider the case of a classical tractor with n-trailers, the linearizing outputs are the
coordinates of R the middle point of the axle of the last trailer. Just as for the car-like
robot, the velocity vector of R directly yields the orientation of the last trailer. If we
consider the case of more complex systems, such as the tractor-trailer with off-axle hitch
(see [RFLM93b]), the linearizing outputs correspond to the Cartesian coordinates of a
virtual point which position changes with respect to the robot body but which velocity is
again parallel to some characteristic orientation of the system5.

Therefore, a natural first guess for the BiS-car’s linearizing output is a point whose
velocity is parallel to the BiS-car main axis. We show that the projection H of the
instantaneous center of rotation G on the main axis of the BiS-car has such a characteristic
(see Figure I1.10), even if the relative position of H to the robot changes along the
trajectory as equations (IL.5), rewritten here, show (e.g. see Figure I1.11):

5 Actually this orientation is that of the straight line passing by the middle points of tractor and trailer
wheel axles.
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S 1 cos(p)sin(f())
RH = —L - =507
5 _ 1 . cos(f(p))-sin(y)
HF =L - =30 70)

(1.19)

“G()

Figure II.11: Relative motion of the orthogonal projection on the main axis of the robot of the instan-
taneous point of rotation G.

Indeed, consider the absolute reference frame [R,] and the reference frame [R]
attached to the robot. Then for the point H, classical mechanics gives:

—

Vira(H) = Vig(H) + Vig, /= (H),

where ﬁRa] (H) (resp. V‘[RC](H)) is H’s velocity in the absolute (resp. BiS-car’s)
frame and ‘7[720 /R.)(H) is the dragging velocity of the frame [R.] in [R,] at the point H.

Actually, V'[Rc /Ra](H) corresponds to the absolute velocity of H if it were fixed in [R]
(which means fixed with respect to the BiS-car).

Thus classical mechanics gives:
GH L iy = Vig, /g, (H) = (0, NGH) // il

In other respects, the relative motion of H with respect to the Cycab is always along its
main axis. Therefore :

Vi (H) /] Virejra)(H) /] Vira (H) /] g

Which implies that for any trajectory of the robot and at any point, the bi-steerable car
is parallel to the curve followed by H in the plane.
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Therefore, the curve followed by H gives some incomplete informations on the robot
position and an exact information (through its tangent) on the robot orientation but it
is not enough to fully determine the position of the robot, ¢ and the inputs. Notice that
in the case of a car-like robot(i.e. f(¢) = —ky, k = 0), H position is fixed with respect
to the robot for any ¢ and (zy,ys) do represent the flat outputs of the car. However, for
the general bi-steerable car, the position of H moves on the main axis of the robot when
¢ varies (see Equation (I1.19)). This is the main reason why we cannot prove that z4,yy
are the linearizing outputs.

7.2 Simplistic path planner for a BiS-car

Notice however, that for a given ¢ = ¢, the position of H on the main axis is fixed, so
the point H follows an arc of circle whose curvature is:

__sin(po — f(%0))
™ L cos g cos(f (o))

Hence, the motion of the BiS-car for a constant ¢ is equivalent to the one of a unicycle
situated on the main axis of the robot at a distance RH from the rear axle, following
a curve with a constant curvature xy. This observation could be exploited, even if it
means to over-constrain the system, by building a restricted class of path planners for the
BiS-car by applying (e.g. see [SH00]) Dubins’ work [Dub57] or Reeds and Shepp’s work
[RS90] to the virtual unicycle described above.

8 Summary and conclusions

In this chapter we have introduced the kinematics of the general bi-steerable car. We
have established connections between this system and the car-like robot, pointing out the
main advantages of the former over the latter. These advantages account for the interest
of studying the bi-steerable kinematics from a robotics point of view.

Regarding the car-like robot and tractor with n-trailer systems, elegant solutions
to the motion planning and control problems have been found by exploiting their flatness
property. Motivated by the close similarities between the car-like and the bi-steerable
systems, we wanted to know whether the latter is flat and whether we could find an
intuitive flat output.

In this respect, we have given a condition of differential flatness ([MR94]) for the bi-
steerable car. This condition led eventually to a necessary condition on the front-to-rear
steering function f in order to guarantee flatness at all points of CS C R*. Typically, for
a linear front-to-rear coupling function of the form f(¢) = k¢ we have that the system is
flat for k& # 1.

The further complexity of the bi-steerable system pushed us to search for hypo-
thetical solutions to the problem of finding a flat output. These solutions were basically
explored by using a linear geometric approach. However this shed no light on plausible
flat outputs.
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As a matter of fact the core of the problem we have to address is finding relations
between variables of the robot and some “output variables”. The latter should be (a
priori) the coordinates of some point of the 2D-space. This set of coordinates, together
with its time-derivatives, should give us sufficient information in order to recover the state
and controls of the system.

The problem stated in this way turned ourselves to sophisticated mathematical
tools to search for a solution using a differential geometric approach. Hence the following
chapter discusses the problem and its solution, leading to the explicit computation of
feasible paths for the general bi-steerable system.



54

Chapter I1. Introduction to the Bi-Steerable Kinematics




CHAPTER II1

Engel normal form and path
planning for the BiS-car

In this chapter we solve the path planning problem for the bi-steerable car. To this end
we needed to find a flat output for the system. It is our aim to show how to compute a
set of transformations, sending the original system coordinates to a particular set of flat
coordinates, namely those that put the system in its chained form.

In answering the question “how to compute a flat output for the bi-steerable car?”,
we were interested in a general formulation of the problem. We were interested in finding a
flat output for a driftless control distribution of dimension 2 in R*. Hence our contribution
is resumed as follows:

e We consider small-time controllable driftless systems, whose states live in R* and sub-
ject to 2 nonholonomic constraints. For such systems we outline a systematic ap-
proach and give a necessary condition to compute the flat output allowing to put
the system in its chained form.

e We solve the complete path planning problem for the bi-steerable car. Indeed, we apply
the methodology to find a set of flat coordinates for the bi-steerable car. This flat
output allowed us to solve for the first time the complete path planning problem for
this kind of mechanical structure, as shown by simulation results.

1 Introduction

The problem we want to solve in this chapter may be stated as follows. Suppose that the
system is defined by a set differential equations of the form:

z=g(z,u) (z,u) € R" x R™.

The general open loop control problem is to find a trajectory (z(t),u(t)) steering the
system from an intial state x; at ¢t = 0 to a final state z; at t = T. When the system

55
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is controllable there is an infinite number of possible trajectories and hence of controls
allowing for the achievement of the transition. Choosing amongst these trajectories is a
basic problem in (optimal) control theory, where the aim is to look for those controls that
minimize a certain criteria.

Alternatively, the problem may be addressed from a geometric point of view. In-
stead of focusing on the directions in which the system is allowed to move—i.e. the
driving vector fields corresponding to the degrees of freedom of the system—we turn to
the analysis of the system defined by its nonholonomic constraints. For, suppose that the
system constraints are a set of differential equations of the form

a(z,dz) = 0. (ITL.1)

Instead of looking for optimal solutions in the control space of the system, we look for
a way to parameterize integral curves solving the system of differential equations (III.1),
defining the kinematic constraints of the system. This is the subject of the present chapter.

The results obtained in this chapter concern the theory of exterior differential sys-
tems [BCG191], particularly Pfaffian (which will be defined in section 2).

Roughly speaking, a Pfaffian system is a finite collection of (exterior) differential
equations

a1 =0,...,as =0, (I11.2)

where each «; is a linear 1-form!. In 1814-15 Pfaff pioneered in this field by studying
solutions to a single equation @ = 0 ([BCG191]).

Typically, such exterior equations arise in mechanical systems subject to kinematic
constraints. For instance, s nonholonomic constraints in mobile robots give rise to an
exterior differential system of the form (III.2).

Today, the theory of Pfaffian systems gathers an important number of powerful
theorems characterizing systems which can be put in a normal form by a change of coor-
dinates. A normal form corresponds to a different representation of the original exterior
equations, expressed with respect to a new coordinate chart that needs to be found. The
interest of the normal form is that several important properties of the original system can
be elucidated (e.g. linearizability properties). Moreover, solutions to the normal form
can be obtained from arbitrary functions. Indeed, amidst the new coordinates, there is a
subset to which arbitrary functions can be assigned. In fact, this subset represents a flat
output of the original system. Complete solutions are then found by successive differenti-
ation of the functions. By computing the inverse transformations, it is possible to derive
solutions for the original system of equations.

Notwithstanding the powerful results from the theory, the major difficulty is still to
find the appropriate transformations for the coordinate change. In this respect, finding
the flat output of any control system in the general case is a (very) difficult problem. A
systematic approach to solve it would consist in establishing the required computations in
order to find the coordinate change in the general case. This is a very ambitious objective

'see Appendix B for a brief recall.



1. Introduction 57

and to our knowledge there are barely a few methodologies aiming at formalizing the
steps to undertake for particular classes of systems.

The rare contributions in this direction concern mainly a few approaches developing
the powerful machinery of Pfaffian systems. In the robotics field one example is [TMS95].
In that paper, the authors are interested in studying the path planning problem for the
general tractor with n-trailers system. They present an algorithm for finding a family
of transformations putting the nonholonomic constraints of the system into the so called
Goursat normal form. The Goursat’s normal form is in fact the dual of the chained form
of (s+2)-dimensional control systems, where s is the number of nonholonomic constraints.
Hence the path planning problem of the general tractor with n-trailers is solved for the
chained system as it was discussed in Chapter I (see [TMS95] for details).

The algorithm presented in [TMS95] relies on the theorems of Pfaff, Engel and
Goursat giving sufficient conditions for finding the required transformations. However,
the explicit computation of these transformations remained a guess work [TMS95].

Another example, this time in theoretical Control, concerns a specific class of con-
trol systems [Pom97]. In that paper, the author gives necessary and sufficient conditions
for the existence of linearizing outputs for such general systems with drift. They lead
to Partial Differential Equations (PDE) that the pair of linearizing outputs must satisfy.
However, the PDEs for a general system of this class leads to overwhelming computa-
tions of compatibility conditions. Hence the author proposes to use the infinitesimal
Brunovsky form [Pom97] that allows to write different, more tractable, PDEs coming
from an integrability condition for one forms: the unknowns are then some coefficients of
transformations that act on pairs of differential forms instead of the linearizing outputs
themselves. The interest is that solutions to this second set of PDEs yield a linearizing
basis of one-forms, and, it is proved that, the first differentials of the flat outputs are
always linear combinations of the elements of the basis.

Another work is [FLM97]. In that paper the authors mention how they relied
upon the work of [MR94] (see section 2) to find the flat output for linearising the general
tractor pulling an off-hooked trailer. The method used to compute the flat output included
considerations on the invariance of the problem leading to an elliptic integral. Since in
this case the codistribution is 2-dimensional, the flat-output construction was inspired
from the study of Engel form systems (which are defined in section 2).

Our contribution follows this direction. The aim of our work is to outline a sys-
tematic approach for the explicit computation of a particular flat output for a “general”
codistribution of dimension 2. By “general” we mean that the codistribution should
verify Engel’s conditions as will be explained in section 2. Indeed, the flat output we
shall look for yields a system of nonholonomic constraints written in Engel normal form,
corresponding to the chained form of 2-dimensional distributions. As a result we give a
necessary condition on the transformations required in order to obtain this flat output.
This translates into a set of PDEs which, to our knowledge, constitute a new result.

The approach yields a methodology susceptible of being applied to any system
verifying Engel’s conditions. This is in particular the case of the bi-steerable car, for which
we compute a flat output. To reach our goal, symmetry considerations are instrumental in
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the construction of the transformations sought. Indeed, we will see in the next chapter how
the concept of flatness derives actually from the general notion of endogenous equivalence,
where symmetry plays as well an important role.

Moreover, we show how this flat output allowed us to adapt the local planner
[SLL*97], originally designed for tractor-trailer systems, in order to compute feasible
paths verifying the topological property introduced in Chapter I (section 5.5). We then
integrate the steering method into a global path-planning scheme ([LSL99])—i.e. taking
into account the obstacles—yielding the first complete path planner for a bi-steerable
system.

In the following sections, we shall start by pointing out few concepts on Pfaffian
systems. Together with Appendix B, these concepts should suffice to understand the
systematic approach for computing the flat output in the general (Engel) case. Then
we apply the approach to the specific case of the bi-steerable car, for which we give a
flat output. We finally show how this flat output allowed us to solve the path planning
problem for the bi-steerable car.

2 Pfaffian systems

Recall (see Appendix B) that an exterior differential system can be viewed (pointwise) as
a system of exterior equations on T, M:

a;=0,...,0,=0

where each «; € QF(M) is a smooth k-form. A solution to an exterior differential system
is any submanifold N of M which satisfies

o;(z)|r,n =0

forallz € N and all i € {1,...,s}.

Definition 2.1 An exterior differential system of the form
ap=a=...=a;,=0

where each a; are independent 1-forms on a n-dimensional manifold is called a Pfaffian
system of dimension s.

Definition 2.2 A set of linearly independent 1-forms aq,...,as in the neighbourhood
of a point is said to satisfy the Frobenius condition if one of the following equivalent
conditions hold:

1. da; is a linear combination of aq,...,as.
2. dayNag N---Nag =0 for1 <i<s.

3. da; =377_10; A aj for some forms 0; € Q(M).
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When dq; is a linear combination of a1, ..., a, the following expression is frequently used
do; =0moday,...,as 1 <i<s

where the mod operation is implicitly performed over the algebraic ideal generated by the
«;; in other words if

S
I={weQM)|lw= Zﬁi A a; for some 6; € Q(M)}.
i=1

then we write
do; =0 mod I.

Theorem 2.1 (Frobenius theorem for codistributions) Let I be an algebraic ideal
generated by the independent 1-forms oy, ..., 0s—pn_m such that the Frobenius condition is
satisfied. Then in a neighbourhood of x there is a coordinate system y1,...,yn such that
I is generated by dym+1,---,dyn

A proof can be found in [BCGT91].

The Frobenius theorem shows that a completely integrable system takes a very
simple form upon a proper choice of local coordinates. It actually gives a “normal form”
of a completely integrable system; i.e. the system can be written locally as

d’ym+1 == e :dyn :0
in a suitable coordinate system. The maximal integral manifolds are

Ym+1 = const,--- ,y, = const,

and are therefore of dimension m. We say that the system defines a foliation, of dimension
m and codimension n — m, of which these submanifolds are leaves.

When the system is not completely integrable (as nonholonomic ones), one is in-
terested in studying the integral manifolds of the codistribution defined by the system
constraints. In this respect, normal forms allow us to elucidate several important prop-
erties of the system, and in particular of its solutions (or integral manifolds).

We shall concentrate ourselves in the Engel form, which concerns codistributions
of codimension 2 (more precisely s = 2 and n = 4). But before, we need to introduce
additional notions as follows.

Let M be a manifold, with local coordinates x, on which a driftless system
m
S:d=) filz)u
i=1

is defined.

To the independent set of vector fields {f1,..., fn} is naturally associated a distri-
bution and also a codistribution {f1,..., f}* on M.
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Given 1-forms w; € Q' (M) such that {f1,..., fm}* = {wi,...,Ws—n_m}, & can be
equivalently defined as the solution of the Pfaffian system:

wi=0,...,ws=0

To each driftless system is associated a derived flag which is the set of ideals
105 . 5%

such that
10 = {wi,...,ws}

is the ideal generated by w;’s and

10D = {n e 1U) : dyp =0 mod I}

Definition 2.3 The rank of a form w is an integer r defined by (dw)” Aw # 0 and
(dw)™ Aw =0.

We are now ready to state the theorem of Engel and conclude this section.

Theorem 2.1 (Engel) Let I be a two dimensional codistribution
I = {wl, (4)2}
of four variables. If the derived flag satisfies

dimIM =1

dimI® =0 (IIL3)

then there exists coordinates yi1,yo,ys, ya such that I may be written in normal form:

I = {dys — yadyi,dys — yady: } (TT1.4)

As a matter of fact the Engel normal form may be written as (e.g. see [BCG191]):
I={dy —y'de,dy’ —v"dx},

with local coordinates x,v,%’,y"”. The interest of the Engel normal form should be now
clear. If a system is put into Engel normal form, then the “general solution” is visibly
given by

Yy = f(.’E), yl = fl(a")’ y” = f”(!E),
where f(z) is an arbitrary function of z. In this case, “general solution” means a solution
for which dz # 0.2 Clearly, a flat output corresponds to the pair {z,y}.

With these elements, we are ready to discuss a systematic approach leading to the
computation of this flat output.

20One says that dz is an independence condition.
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The solution proposed is inspired from the work of Martin and Rouchon [MR94].
In that note, the authors show that a 2-input driftless system is flat if, and only if, the
associated Pfaffian system is a contact system. Moreover, they indicate how to compute
the flat output via the Pfaff normal form of the differential form generating the last non
zero system of the derived flag.

Since the Pfaffian system associated to the bi-steerable car contains two equations
and four variables, finding the flat-output consists in finding the change of coordinates
associated to its Engel normal form.

The work presented in the following section aims at bringing a contribution in this
direction, namely by lemma 3.1 [SRHO1]|. The lemma states a necessary condition on the
transformations required to send the original coordinates of a 2-dimensional codistribution
to its flat coordinates yielding the Engel normal form.

3 Flat output of an Engel system

3.1 Preliminary discussion

Consider a manifold M of dimension 4 and a Pfaffian system on M defined by:
wi =0 we=0 (IT1.5)

where wy,we € QY(M) are independent 1-forms. It has been shown [MR94] that such a
system is flat if and only if its derived flag satisfies (II1.3). Indeed, the derived flag (IIL.3)
is precisely the dual of the filtration

Ei+1 :EZ—I—[E’hE’L]a ©1=1,2,3
constructed in Chapter II (section 6).

Notice that other possibilities for the derived flag (dimI®) = 2 or dimI(V =
1, dimI®® = 1) correspond to a non controllable system (e.g. from the Lie Algebra,
Rank Condition) and each instance of the problem is actually equivalent to a system of
lower dimension.

If we consider the Engel form (II1.4) of the system (II1.5), (y1,y4) are clearly the
flat outputs of the system. Indeed in {yi,¥2,ys,ys} coordinates, the system (II1.5) can
be equivalently written in the chained form:

Y1 = u1
Y2 = u2
Ys = Yau1
Ya = Y3ui

where obviously all variables of the system can be obtained from (yi,y4) and their deriva-
tives.

Now generally, w; and ws are not expressed in the {y;} coordinates. Therefore, in
order to take a practical benefit of flatness we have to compute the coordinates change
which put the system into Engel form and explicitly obtain the flat output expressions.
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The main point to compute the coordinates change {z;} — {y;} is to notice that
the Engel form of the system is adapted to the derived flag (see the proof of the Engel
theorem [BCG191]). One says that a basis of one-forms {«;} is adapted to the derived
flag if

I(Z) = {041, e ,Ot(si)}

where s; is a strictly decreasing sequence of integers. In other words, an adapted basis
is one in which the derived systems are calculated by dropping elements from the end of
the basis.

Therefore, for Engel systems:

W = {dys — ysdy, }.

Notice that any one-form 7 belonging to I(!) can be expressed as a linear combina-
tion of elements {dy;,dys} of the new basis. Moreover, any one-form generating I(!) in
the original basis {dz1, dzo, dz3,dz4} is collinear to the one-form: dys —ysdy;. These two
facts are instrumental in establishing a condition for the coordinate change. We discuss
now a systematic approach leading to the condition.

3.2 Computing the flat output of an Engel differential system

Let us compute a 1-form of I in the original system coordinates (z1,22,23,24) of a
point z € M, in which {w;,ws} are expressed. Given {dz1,dzs,dx3,dz,} the associated
basis of Q!(M), there are scalar functions ¢ on M such that:

4
wi =Y Oidr; i=1,2 (I11.6)
7j=1

For n € Q1:
nEI(l):>77€I and dn=0mod I

Therefore there are scalar functions «; on M such that:
N = aiwi + asws (II1.7)
which implies

dn = doi ANwi+ ardwi + das A wo + asdwo

= qidwi + asdws mod I (ITL.8)

Now from (III.6):

4
dw; =Y dOi Adz;  i=1,2
j=1

and expressing d9§- in {dz;} basis using their partial derivatives one gets:

00: 9o
1<j<k<a Ok Ti
<j<k<
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Since w; and wy are independent, from (II1.6) one can express two of the Q!(M) basis
vectors in function of wi, we and the other vectors. Without loss of generality, assume
those basis vectors are dz1,dxs, (I11.6) leads to:

dr, = ﬁéd:vg + Bidzy mod {w1,ws}

dzo = Bidxs + Bidzs mod {wy,ws}

where ﬂg ’s are scalar functions: M — R involving only Of’s. Injecting these expressions
in (II1.9), the exterior product properties give:

dwi = Mdzg ANdzy mod {wi,wa}

dwy = Aodzs Ndzry mod {wi,wa}

where A1, Ao are computable functions of 0{ ’s and their partial derivatives. Therefore
(I11.8) becomes:
dn = (a1 M1 + agAe)dzs Adry mod I

Therefore a sufficient condition for 7 to belong to I() is:
aiA +aghg =0

Hence, from equation (IIL.7):

4
n= /\le - /\1w2 = Z(/\erl — )\19j2)d{17j (IH.lO)
j=1

is a 1-form of I") and therefore collinear to dys — ysdy;. Via the above computations, we
have the explicit expression of 7 in z-coordinates:

n = fidz1 + fodzs + fsdrs + fidzy

where the f;’s are known z functions. Since n A dn # 0, there exist ¢ # j such that the
differential form f;dz; + fjdz; has a rank > 1. Assume that f; and fo are such functions.
Now set

y1 = P'(z) yu=P'(z)
Then:

4 PZ
j=1

Again since dy; and dy4 are independent and 7 is collinear to dy4 — ysdy:, for x3, x4 fixed,
the mapping (z1,72) — (y1,%4) is bijective. Set (Q', Q?) its inverse:

1 = Q' (y1,Y1,3,74) T2 = Q*(y1,v4, T3, T4)
Thus dz; and dzy are linear combinations of dy;, dy4, dzs and dz4 and 7 reads:

n = g1dy1 + gadys + f3dzs + fadzs
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where fs, f1 are known functions of (Q', Q?,z3,x4) and of the partial derivatives of the
Q" with respect to z3 and z4:

Q" 8Q2
fa=Ff+f o2 T frg

and

1 2
fi= f4+f18Q +f28Q

Therefore we have the following lemma:

Lemma 3.1 Assume that n, the differential form generating IM | reads
n = fidzy + fodze + fsdrs + fadzy
where the f; are known x-functions with f1 and fo non zero independent x-functions. The
coordinates change giving the flat outputs (y1,y4) takes the form
Iy = Ql(y1,y4,w3,x4) T2 = QQ(y1,y4,:v3,w4)

where the unknown functions Q' and Q? are solution of the quasi-linear first order partial
differential systems:

1 2

f3+f18Q -|-f28Q3 0
1 2

f4+f18Q +f28Q =0

In the next section we study the specific case of the bi-steerable car and show the
explicit computation of the flat output. This calculating process uses the necessary con-
dition of Lemma 3.1. Further computations leading to the flat output include symmetry
considerations in a similar way to [RFLM93b], where the computation of the flat output
of the general—off-hooked— one-trailer system led to an elliptic integral.

As a matter of fact, the analysis of the invariance of the system under Euclidean
transformations in the plane (e.g. translations and rotations) is instrumental in the
construction of the transformations sought.

4 Flat output for the BiS-car

We recall that the notation A’(p) implies that X is a scalar function of the unique variable
@ and X(p) is its derivative with respect to @. Moreover, we denote by A*) the total
derivative of A of order k. For an arbitrary angle « let us denote by i, the unitary vector
of direction a and by %. the unitary vector of direction o + 5

We recall that we represent a configuration of the system by a point (z,y, 8, @) of the
manifold M = R%x(S')? (of dimension 4)3. In this case, z,y are the Cartesian coordinates
of the middle point of the front axle (point F' in Figure II1.1),  is the orientation of the
car in the absolute reference frame and ¢ is the angle of the front wheels with respect to
the car (see Figure IIL.1).

3Notice that one could eventually take CS C R* instead of a subset of M.
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Figure III.1: Kinematics of a BiS-car

The kinematic constraints imposed on the system are due to the rolling without
slipping of the wheels which means that the instantaneous velocity of each wheel is parallel
to its orientation:

{ jeos(d + ) —@sin(@+¢) = 0
1y cos(0 4 f(p)) — Zpsin(@ + f(p)) = 0

with (z,,y,) being the coordinates of point R, the middle point of the rear axle.

4.1 Systematic approach (Lemma 3.1)
The equivalent Pfaffian system on M is I(©) = {w;,wy} with:

w; = cos(f+ p)dy —sin(0 + ¢)dz
wo = cos(@+ f(p))dy —sin(@ + f(p))dz — Lcos(f(p))dd (II1.11)

where L is the longitudinal wheels base. From Chapter II-section 6, we know the derived
flag of the bi-steerable car satisfies the Engel’s conditions. Hence it can be put into the
Engel normal form.

Therefore, we know that the derived flag of system (II1.11) leads to a one-dimensional
ideal:
IW ={n e 10 : dyp = 0mod IV} c 1),

Then if we set 7, a generator of I(1):

N = piw1 + pawe

we have
dn = (dHI Awi + dus A wg) +p1dwy + podws.

~ 7

=0mod I(0)
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Hence the condition for n € I(V) reads

p1dwi + padws = 0. (HI.12)
Back to our system we have:
dwi = —sin(0@+ ¢)(d0 + dp) A dy
—cos(0 + ¢)(dO + dp) A dz
dwy = —sin(@+ f(9))(d + f'(¢)dp) Ndy
—cos(@ + f(v))(dO + f(p)dp) A dx

+Lsin(f(9))f’(p)dp A d6,

and later on, using (II1.11) to express dz and dy in function of df, w, wy, we get

—LXi(p) (0)
dw1 = ———"—dONdp modlI
" sin(e - ()
dwy = Bt 2 1C) PO de mod IV,

sin(p — f())
with

A(p) = cos(f(y))
Aa(p) = cos(p)f ().

Then, to verify (II1.12) one can set ;3 = —A2 and pe = A1 so we obtain

n = &(0,p)dr — &2(0, p)dy — LA1 () cos(f(p))do (II1.13)

where

£1(0,0) = Xa(p)sin(@+ @) — Ai(p) sin(0 + f(y))
£2(0,0) = Xa(p)cos(0+ ) — Ai(p) cos(0 + f(p)).

Then we know that if we find variables y; and ys such that at each point p =
{x’ y7 0’ (P}:
1 = ki(p)dy1 + k2 (p)dys

for some scalar functions ki, ko then v,y are the flat outputs.

On the other hand, one can prove that for our system the flat outputs are only
function of the state variables [MR95]. Considering our specific system and the symmetry
of the problem (invariance with respect to the translations and rotations of the car) it is
sound to consider (y1,y2) as the Cartesian coordinates of a point whose relative position
with respect to the robot does not depend on the position and the orientation of the
vehicle. Let us call such a general point H, whose Cartesian coordinates (zy,yy) are
the flat output. Therefore the coordinates of H in the vehicle frame can be expressed as
follows (see Figure II1.2):
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YR g

fIf"R X

Figure II1.2: Kinematics model of a bi-steerable car showing the coordinates of the flat output (point
H) with respect to the reference frame of the robot placed at point F.

( :Z; ) - ( ZZ ) - ( ng ) +P(%) ( Z;)j((g)) ) +Q(p) ( Cii:(lg) ) (ITL.14)

with P and @ the unknown functions that we have to determine.

By computing dz,dy in function of dy;,dys,df,dyp from (II1.14) and substituting
them in the expression of 1 above we get the set of PDE of the Lemma 3.1.

£2(0, ) (P(p) sin(6) + Q(¢) cos(0) )

+£1(0, ) (P () cos(0) — Q(e) sin(0) ) (ITL.15)
—XMLcos(f(p) =0

Q'(¢)(£1(8, ¢) sin(6) + &2(0, @) cos(0) ) = 0
These results can also be obtained by directly applying the lemma 3.1 to equations (II1.13)
and (II1.14).

After some simplifications all coordinates but ¢ disappear in the PDE and we get:

P(p)[cos* () f (o ) — cos?(f())]
+Q(¢p)[cos(p) sin(p) f(p) — cos(f(p)) sin(f(¢))] (II1.17)
—Lcos?(f(p)) =0

P’ (¢p)[cos (i) sin(e) f*(p) — cos(f () sin(f ()]
+Q()[cos? () f(p) — cos*(f(¢))] =0 (ITL.18)

It is now possible to look for solutions to this system of PDE. Indeed, by differenti-
ating equation (I11.17) we can express P’ in function of Q and Q’. Then substituting in
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(IT1.18) yields a first order ordinary differential equation, whose solutions may be found
by using standard techniques (e.g. using the method of the variation of the constant to
obtain Q). Thence we would get P and y1, yo.

However, from a practical point of view, such a solution is not yet quite satisfactory.
Indeed, Q will be computed through a double (enclosed) numerical integration which gives
no hint on how to compute the inverse transformation—i.e. the expressions of the original
coordinates in function of the flat output and its derivatives.

Looking closer at (II11.17) and (III.18), an interesting observation can be made. This
is the subject of the following section.

4.2 Further computations: the turning frame
Let us define the vector:

t'=cos(p) f () lig+p — cos(f (1)) lg f(p)-

It is a combination of a vector parallel to the front wheel and a second one parallel to the
rear wheel. Refer to Figure I11.3. Expressing ¢ and FH in the world’s frame we get:

Figure II1.3: Frames and coordinates.

FH = P(p)ip+ Qp)if
t = Alp)ip + Blp)iy
with
Alp) = cos®(p)f () — cos®(f())
B(p) = cos(p)sin(p)f’(p) — cos(f(p))sin(f(y))
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Notice that with these definitions, equations (II1.17) and (II1.18) read:

{ P(p)Alp) + Q(p)B(p) — Leos?(f(¢)) =0 (I11.19)
P(9)B(p) + Q'(p)Alp) =0
Thus equations (II1.19) have the following geometric interpretation:
FH -1= Lcos®(f(¢)) (I11.20)
df;—H //E (II1.21)
P R,

In other words (II1.19) tell us that there is a moving vector in the robot’s frame that
conveys information both on the position of H relative to the robot and on its motion
as the wheels turn. Indeed ¢ varies in function of ¢ and 6, however the projection of
H(y1,12) on t is known— equation (IT1.20). Moreover, as we have seen, the position of
H with respect to the car is only function of ¢ and its infinitesimal variation in the car
frame [Ry] is parallel to ¢ for any ¢— equation (I11.21). This shows the interest of the
vector 1.

It seems therefore more interesting to express H in the frame attached to .

With the following notations:

B(p) = (G, T) = tan™" % (II1.22)

FH = Miig + N,
one can prove using (II1.20) and (III.21) that
L cos®(f(¢))

M) = —=5 CENE0 (I11.23)
and
N'(@) + M(p)B'(p) =0 (IT1.24)
which yields:
_ ¥ Leos’(f(w) (B (u)A(u) — A(w)B(w))
N(p) = /0 W)+ B d (I11.25)

Thus the projection of the problem in the turning frame attached to £ allows us to
have tractable expressions of the H coordinates. Typically M(¢p) is expressed analytically
and N (y) is the primitive of a simple expression. Therefore we have:

Qp) = Mlp)sin(B(p)) + N(p) cos(B(¢)) '

Hence injecting (I11.26) into (I11.14) yields the expressions of the flat output (y1,y2)
in function of the system variables (z,y, 0, ¢).



70 Chapter I11. Engel normal form and path planning for the BiS-car

4.3 Inverse expressions

The formulation of the problem in the new frame associated to the vector  also allows
for the computation of the original coordinates (z,y, 8, ¢) in function of the flat outputs
and their derivatives.

Counsidering the invariance of the problem, one can prove that the curvature s of
the curve followed by H during the motion is only function of ¢. Then we can compute
the relation x(¢) by considering the case where the car does not move and only turns its
wheels at a speed ¢ =1 (i.e ¢ = t) inducing a motion of H.

Therefore, in this specific case, the absolute velocity of H is equal to its relative
velocity with respect to the car. This velocity is (P’(¢), Q' (¢)) and has an angle 3(¢)
relatively to the car— see (II1.21).

To carry on the computations of P’, Q’, we differentiate hence equations (I11.26)
with respect to ¢ and take into account equation (II1.24). This gives

P(p) = (M(p) =B (p)N(p))cos(B(p))
Q(p) = (M(p) =B ()N (p))sin(B(y))

On the other hand, the curvature is defined as the variation of the angle of the
tangent vector to the curve in function of the arc length along the curve. Hence we have

B (¥)

K(p) =

which in our case gives:

o B(y)
"= K = - AN (HL.27)

where,

det (4D 4@
e At y0) (II1.28)

(] + )"

is the curvature of the path described by the flat output having a regular parameterization;
i.e. such that the denominator is different from zero.

On the other hand, by Engel’s theorem we know that 7 is collinear to a one-form:

dys — g3dy;.

Let us express n in function of dy; and dy». To this end, we differentiate expression
(IT1.14) and inject it in (III.13) so as to eliminate dz,dy. After simplification—using
(IT1.15) and (II1.16)—we get

n=%&(0,p)dyr — &2(0,0)dys
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Since 7 € I, on the codistribution defining our system, we have

@ — fl(gaw)
dyr  &(0,¢)

And now, functions &; and & may be rewritten as:

§1(0,9) = —L/ A*(p) + B*(p) sin(6 + B(p))

£2(0,0) = —L\/A%(p) + B2(p) cos(8 + B(p))-

n=0=

Therefore, if we let v to be the orientation of the velocity vector of H (see Figure
IT1.2) we have the following useful result:

d
v = (0+ B(¢)) [£n] = tan~" <ﬂ> . (I11.29)
dy1
The usefulness of (IT11.29) will be better appreciated in Chapter IV. Notice however
that this equation gives us valuable information relating 6, ¢ and (dy1, dys).

Hence by knowing the curve yi(t),y2(t) of the flat outputs during the motion we
can compute ¢(t) through (t) (by inverting the expression K(¢)). Then from S(p), and
the orientation y of the velocity of H, we get the orientation of the robot 8. Finally, we
compute z,y, using (II1.14).

5 Qualitative behaviour of the flat output

The graphs included at the end of the chapter show the behaviour of the flat output for
a rear-to-front coupling function f(¢) = k¢ and for some —1 < k < 1.

Figure II1.11 shows the behaviour of coordinate functions P(y) and Q(y) for some
k < 0. Notice that k¥ = 0 is the car-like robot (i.e. P(p) = —L, Vy) and as k moves
towards —1 the coordinate P moves from point R to point F' and settles at a constant
value —%L w.r.t. this last point.

We wanted to observe as well the behaviour of the flat coordinates when k& > 0,
which means that the front and rear wheels turn to the same side. Figure I11.13 shows the
equivalent graph of Figure I11.12 for some positive k. One can observe that the relative
motion of P with respect to the point F is considerably faster than in the previous case
and in the opposite direction with respect to point R— the car-like case (see Figure I11.14).

On the other hand one can also appreciate that, irrespective of the sign of k, the
coordinate Q(¢) moves very little with respect to the longitudinal axis of the vehicle.
However one should keep in mind that Q also intervenes by its derivative, and it is
evident that its motion velocity with respect to ¢ may be important at some points.
Interesting to observe as well is the fact that the curve of Q(y) flattens out less for &£ > 0
than for £ < 0 in the neighbourhood of ¢ = 0 as shown in Figure I1I.14.

We then turned to the characteristic angle () which behaviour is shown in Fig-
ure I11.15. Notice that the dynamics of § are more important when k£ > 0.
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Finally the curvature k as a function of p— relation (II1.27) —is depicted in Fig-
ure I11.16. An interesting observation is that the function tan(y), that is the curvature
function for the car-like robot, appears as a “symmetry axis” of curvature functions
(IT1.27) with opposite sign in k.

Remark 5.1 [ts is possible to show that the expression (II1.27) is undetermined at ¢ = 0.
However the computation of the limits (i.e. at 0— and at 0+ ) gives

lim, - K(p) = limy,or K(p) = 0.

Remark 5.2 For functions f(¢) = k¢ where —1 < k < 1, Maple simulations indicate
that the function (IIL.27) has asymptotic behaviour around values of ¢ = (5 + ¢€) for
—0.1 < e < 0. We found no explanation justifying this phenomenon.

These two remarks should indicate that it is possible to find a “better” flat output,
since there is no unicity in this choice. We shall remark that it is yet difficult to find
one flat output. However, this obviously opens the possibility for further research in this
direction.

Notwithstanding these remarks, the results obtained during simulations show the
validity of the approach as discussed in the next section.

6 Path planning for the BiS-car

We show now that the flat output introduced in this chapter may help in the computation
of feasible paths for the general bi-steerable car. To this end we introduce first the motion
planner we have used and subsequently we present simulation results showing feasible
paths for the BiS-car.

6.1 Introduction to the motion planner

It is known (see e.g. [Lau98]) that it is possible to plan collision-free paths for small-time
controllable nonholonomic robots in two steps: firstly, one can compute a collision-free
geometric path irrespective of the nonholonomic constraints; secondly one can approxi-
mate this path in different ways, taking into account the specific kinematic constraints of
the robot, by using different local planners.

A first version of this motion planning scheme was presented in [LJTM94]. The
whole planner relied upon a local planner computing optimal paths for car-like robots
and was successfully applied to the robot HILARE at LAAS.

This scheme was generalised in [SL98] by substituting the optimality of the steering
method with a weaker constraint. The completeness of the planner was ensured by a local
planner taking into account the small-time controllability of the system. This means that
the local planner verified the topological property (TP) introduced in Chapter I:
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Definition 6.1 (Topological Property [SL98])

Let ¢ = (z1,%2,...,%,) be a point in the configuration space CS. Let decs be the
following distance over CS:

n
des(q1,92) = Z |z — 7]
i=1

The set of configurations qo such that des(q1,q2) < € is denoted by B(qi1,€); this is
the ball centered at q1 of radius €.

Let C be the set of feasible paths defined over an interval of the type [0,T]. A steering
function is a mapping from CS x CS into C:

(q11 q2) — SteeT(CIb q2)

where Steer is defined over the interval [0,T], such that Steer(q1,q2)(0) = g1, Steer(qi,q2)(T) =
q2-
Then, Steer verifies the topological property iff:

Ve >0, 3n > 0, Y(q1, q2) € (CS)?,
des(q1,92) <n =Vt € [0,T], des(Steer(qi,q2)(t),q1) <€
m

This general scheme was applied to the tractor-trailer system using a local planner
based on sinusoidal inputs [SL98]. It has also been implemented with another local planner
([SLL*97]) based on the flatness of the tractor-trailer [LSL99].

Even if the steering method [SLLT97] aimed at tractor-trailer systems, it is pos-
sible to adapt the approach to the bi-steerable car. This stems from the fact that the
representation of a point in the flat space is equivalent for both systems. Indeed, recall
that (roughly speaking) for the bi-steerable car the following information is required: the
plane-coordinates of the flat output (z4,yy), the angle v giving the orientation of the
velocity vector of the flat output, and the curvature k giving the steering angle ¢. In
the case of the tractor-trailer system the flat output are the coordinates of the middle
point of the rarest trailer [RFLM93a]. The corresponding variables for v and « in that
case yield respectively information about the orientation of the last trailer and about the
relative orientation between the latter and subsequent trailers.

Hence we have adapted the motion planning scheme [LSL99] so as to be able to
compute feasible paths for the bi-steerable car. In this respect, we shall briefly discuss
the steering method [SLLT97] and outline a further modification we made.

6.2 Steering method for flat systems verifying TP

The local planner proposed in [SLLT97] was conceived to steer tractor-trailer systems
by exploiting their flatness. We now discuss the principle of this local planner (see Fig-
ure I11.4).
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Figure II1.4: Local planner for a flat system, as proposed by [SLL*97], respecting the topological
property.

Given two configurations in CS, ¢q1 and ¢o, the approach consists first in finding
the corresponding flat points and then a curve between these two points. The constraints
imposed to the curve at these end-points include the coordinates of these points (i.e. their
position M := (z,y) in the plane) as well as the curvature x and the orientation of the
velocity vector of the flat output (that we will call for convenience ). Hence g; (resp. g¢2)
intrinsically defines a curvature and a tangential orientation at Mj(resp. Ms). The aim
is to compute a parameterized curve Cy, 4,(t) such that Cy, 4,(t = 0) = (21,91, K1,71) and

Car,q2(t = 1) = (@2, Y2, K2, 72)-

The parameters (x;, yi, i, V), where i = {1,2}, define at each ending point M; a
canonical curve Cg;(t) with constant £ = «; and whose tangent vector at M; has orientation
;. Hence this canonical curve may be either a circle or a straight line. The idea is then
to interpolate the canonical curves as follows:

Car,02(8) = (t)Cy, () + (1 — (t))Cy, (2) (I11.30)

with a(t) being a polynome whose degree and coefficients are so that the conditions on
Cqr,q-(t) at end points (i.e. at ¢ = 0 and ¢ = 1) are met (e.g. tangency conditions and
continuity of x; see [SLL197] for details).

Since the end objective is to join points ¢; and g2 by paths verifying TP, a cusp
point (forcing a change in the direction of motion) may prove to be necessary to reach
lateral neighbors without leaving a vicinity of ¢;. Thus the cusp point must be chosen
according to the intuitive idea that: the closer the points to each other, the shorter the
path joining them. This notion entails the following consequence: if both corresponding
points M7 and My lie on the same canonical curve then the interpolation process (I11.30)
should yield exactly this canonical curve.

According to TP, if ¢; and ¢o are “sufficiently” close to each other—i.e. they lie
within a ball B(q;,n)—then Cg, 4,(t) remains within a ball B(gi,€e). To construct the
planner, [SLL"97] aimed first at finding the set of points reachable from ¢; without a
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cusp and such that for all ¢ € B(q1,7), Cq intersects this set. This set turns out to be a
sort of cone Ky, (see Figure II1.4) starting from ¢; and developing around C,, [SLL™97].

The idea is the following: provided g1 and ¢o are sufficiently close to each other, if
one can follow a path starting from ¢; without leaving the ball B(q1, €), then one can reach
the intersection g4,y between this path and the canonical curve associated to go without
leaving B(q1,€). Henceforth one can reach g2 from gceyp by simply following the canonical
curve of the former, since this curve introduces small local changes in the configuration
variables. Accordingly, TP is verified since Cy, 4,(t) will remain within B(g, €).

Therefore, by construction of K, we have that 3n such that Vg € B(q1,7), Cq
intersects K4, without leaving the ball B(qi,€). Hence if ¢o € B(qi,7), there is a cusp
point ¢.,sp within the intersection of Ky, and C4,. Henceforth, it is possible to reach
deusp from ¢ and then follow Cg, from gcysp down to go without leaving B(gi,€). This is
depicted in Figure I11.4 (see [SLLT97] for details).

6.3 Our contribution: symmetrical local planner

Seeking to improve performance we have modified the local planner above by choosing
another cusp point as follows.

As a matter of fact the cusp point shown in Figure I11.4 corresponds to a path going
from gq; to go. Equivalently, another cusp point on C; may be found if one decided to
travel from g2 to q;. Assume that we call g,,,, the first cusp point on Cy, and ¢q1,,,, the
equivalently obtained counterpart on C,;,. Hence we have chosen to interpolate between
these points in order to define a new cusp point between ¢; and go. This new cusp point
Geusp 15 shown in Figure IIL5.

The new planner so built respects TP. The proof follows.

B

B(ql ) 26)

Figure ITL.5: Modification to the local planner allowing for a symmetrical cusp point and respecting
the topological property.

From the design of the local planner ([SLL97]) we know that the following assertion
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holds:
Ve, 3n such that Vgy € CS, Vg € B(qo,n), CqN Ky, # 0

and we have a way for choosing gcysp in this intersection.

Let d(-,-) be the Euclidean distance. If d(q1,¢2) < n then

CQI nICQZ ;é @ = qlcusp € ICQQ
CQZ N ICQI # @ = chusp € ,C‘Il

It follows that

qlcusp € Cq1 - ICQI = qlcusp € ICQI n ICQZ
Deusy €Coo C gy = 2,4, € Kgg NKg,-

On the other hand, let us remind that the structure of a cone Ky, is such that any segment
linking any point of the cone to any point of its main axis C,; remains inside the cone.
This entails that

[qlcusp’ q2cusp] € }CQI n }CQZ

Now chose any point geusp € [q1.y4p5 G2eusp)- L€t us define Cq,,, 4, as the curve obtained
by interpolation (III.30) between the canonical curves respectively associated to geysp and
g2- Then by construction ([SLLT97]) we have:

C C B(q17 6) and C(Icusp,q2 C B(QQa 6)5

q1,4cusp

and since

CCI17Q2 = CqI’CIcusp o CQCusp’q2’

we conclude that
Ve > 0, 3n > Osuch thatVqi, Vg2 € B(q1,n), Cq1,qo C Blqi,2¢).

This is illustrated in Figure II1.5. O

What we have shown is that the new way of choosing gcysp leads to a planner that
still respects TP.

In this way we have achieved the following improvements. Firstly, we have turned
the local planner into a symmetrical one—i.e. in either direction: ¢; — g2 or g2 — 1
the planner computes the same path. Secondly, we avoid to execute the second half of
the path by following an arc of circle (which was not necessarily optimal). Finally, the
interest is that we use one cusp point for two interpolations instead of one. Hence if the
topology of CS allows for it, this enhances the capability to reach a final point by using
fewer cusps.

As mentioned we adapted the motion planning scheme [LSL99] by using this new
local planner, based on the flat output we have computed for the bi-steerable car. In this
respect, it constitutes the first complete path planning scheme for a bi-steerable robot.
In the following section we present simulation results validating the claim.
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6.4 Simulation results

The flat output introduced in this chapter allowed us for computing feasible paths for the
bi-steerable car as demonstrated by the simulations performed using the motion planning
scheme discussed above. Essentially, the motion planner first builds a collision-free holo-
nomic path using the Random Path Planning RPP [BL91] approach. Then, this path is
approximated by a sequence of collision-free feasible paths computed by the new steering
method as proposed in section 6.3. Roughly speaking, the algorithm consists in trying
first to connect the initial and final configurations through a feasible (collision-free) path.
If this attempt fails, the program picks up the final configuration and an intermediate con-
figuration, selected randomly amongst those created during the holonomic search. Hence
the local planner computes the corresponding (collision-free) path in the flat space. Fi-
nally, the resulting path is smoothed. From this path it is possible to compute a feasible
trajectory for the robot (this will be discussed in the forthcoming chapter).

We have conducted simulations with a rear steering function f(¢) = k- ¢. Fig-
ure II1.6 shows an elementary path computed by the steering method as proposed by
[SLL'97] (left image) and the resulting path using the cusp-point modification as pro-
posed in section 6.3.

Figure II1.6: Left: Elementary path with a cusp point as proposed in Figure I11.4; Right: The corre-
sponding path when the cusp point is computed as shown in Figure II1.5

The reduction of the number of maneuvers using the new approach to compute the
cusp point is validated as shown in Figure II1.7.

Figure II1.7: The difference in maneuvering using “old” (left side) cusp points (46 paths) against “new”
(right side) cusp points (16 paths) without smoothing.

The new local planner was integrated in the global planning scheme. Figure III.8
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shows the maneuvering enhancements induced by the bi-steerable capability (right image)
against the conventional car-like robot (left image). The difference between negative
against positive rear deflection of the wheels with respect to the front steering angle is
depicted in Figures II1.9 and II1.10. Notice that the maneuvering capacity is reduced
with positive rear deflection but larger (wide-open) turns are achieved— i.e. paths with
a minor curvature derivative are obtained.
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Figure IT1.8: Smoothed feasible paths for a car-like robot (left image) f(p) = k-, k = 0 and a BiS-car
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Figure II1.9: Maneuvering ability with negative (left) and positive (right) steering with |k| = 0.3.

Figure II1.10: Feasible paths with negative (left) and positive (right) rear steering angle (|k| = 0.3).

7 Conclusions

In this chapter the problem of finding the flat output of the bi-steerable car was addressed
from a differential geometric point of view. The idea was to look for a way to parame-
terize integral curves solving the system of differential equations, defining the kinematic

constraints.

For mobile robots, exterior differential equations arise directly from the nonholo-
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nomic constraints. Hence the problem was formalized in the setting of Pfaffian systems.
The theory of Pfaffian systems allows to characterize those systems which can be put in
a normal form by a change of coordinates. The normal form corresponds to a different
representation of the original system, expressed with respect to a new set of coordinates.
The flat output of the system belongs to this new set. Solutions to the normal form can
be obtained from arbitrary functions assigned to the flat output. The original system
integral sub-manifolds are then obtained from inverse coordinate transformations.

Since the Pfaffian system associated to the bi-steerable car contains two equations
and four variables, finding the flat-output consisted in finding the change of coordinates
associated to its Engel normal form. However, the literature includes very few works on
the effective computation of such normal form and the flat output.

The work presented in this chapter aimed at bringing a contribution in this direction.
We give a necessary condition based on a set of PDE, allowing to find the flat coordinate
transformations in order to write a 2-dimensional codistribution in its Engel normal form.

We applied the methodology for explicitly computing the flat output of the bi-
steerable car. By inspection of the PDE resulting from the systematic approach and
some symmetry considerations, the clue was to spot a turning frame with respect to the
reference frame of the robot, so that computable expressions of the flat output followed.
Symmetry considerations again led subsequently to the inverse expressions allowing us
to compute the state variables of the robot from the flat output and a number of its
derivatives.

This flat output allowed us to compute feasible paths between points of the free
configuration space. In this sense it constitutes half the way to the solution of the motion
planning and control of the bi-steerable car. However, the path planner introduced in this
chapter constitutes the first planner for a bi-steerable system with general rear steering
function f(¢y).

In the following chapter we will address the second half of the problem and in par-
ticular we will address the equivalence issue. Indeed, a nonlinear flat system is equivalent
to a linear controllable one by a special class of dynamic feedback [FLMR95b]. We will
have therefore to switch to the theory of control of nonlinear systems where flatness plays
a fundamental role.
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Figure III.11: Flat coordinates P(p)and Q(y) when f(p) = kp, k < 0 and L = 1. We remark that
when k = 0 and k = —1 the coordinate Q(¢) in both cases coincides.
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Figure IT1.13: Q(y) in function of P(¢p) for -3 < ¢ < 5 when k > 0.
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Figure II1.14: Flat coordinates P(p)and Q(yp) when f(p) = kg, k>0, L= 1.
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Figure II1.15: Characteristic angle B(¢) when f(¢) = k¢ —1 < k < 1. We remark that 3 is around 7
indicating that the flat output is “behind” the point F'; in other words, the same values of coordinates
P(p) and Q(y) with opposite sign would have been obtained if the reference frame of the robot had been
placed at point R, in which case 8 varies in a neighbourhood of 0.
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Figure IT1.16: s = K(p). Notice that the function tan(yp) is practically a “symmetry axis” between
curvatures for £ > 0 and £ < 0.
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CHAPTER 1V

Endogenous Equivalence and
Linearization of the BiS-car

Up to this point we have been able to compute feasible geometric paths for the general
bi-steerable system. The aim of this chapter is to provide means for planning trajectories
and synthesizing feedback control laws. In this respect our contribution is as follows:

e We establish results concerning the equivalence between the bi-steerable car and its
underlying controllable linear system. In particular the linearizing feedback and the
explicit formulation of the chained form of the system are deduced.

e We solve the trajectory tracking issue for the general bi-steerable car, by stabilizing
its equivalent linear system, and have opened the possibility to solve the regulation
problem by formulating explicitly its chained form [HS03]. To our knowledge, our
work is the first to tackle these problems regarding bi-steerable systems.

1 Introduction

The subject of this chapter is the analysis of the bi-steerable system structure as a non-
linear control system. The end objective is to synthesize a feedback control law (or com-
pensator) allowing us to perform trajectory tracking. In general, the problem may stated
as follows: given the nonlinear control system

z = f(xa U’)a
whose output function
y = A=)

follows a particular trajectory y(¢), compute the trajectory (z(t),u(t)) for ¢ > 0 (knowing
that the output’s behaviour is influenced by the input through z). In other words we are
facing an inversion problem whose solution involves the design of a feedback control law.

87
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In general, every nonlinear system is a particular case when looking for solutions
to any control task. In Nonlinear Control it is therefore desirable to provide means for
classifying control systems, allowing to give them a normal form of special interest. This
normal form allows us to elucidate several important properties of the system, and in
particular to synthesize feedback laws adapted to the control task [Isi95].

A particular normal form of special interest is the so called Brunovsky canonical
form of linear systems (see [Kai80] for a comprehensive description of canonical forms for
linear systems). A linear system written in this form consists in a chain of pure integrators
as shown in Figure IV.2. A nonlinear control system potentially transformable into a linear
one by means of feedback is said to be feedback linearizable.

v =2Zn Zn 23 22 21=y
—f ——---— [ - [ —

Figure IV.1: Brunovsky canonical form of a linear control system.

Feedback linearization is a powerful tool in nonlinear control and has received con-
siderable attention during the last 30 years (see for instance [JR80], [Isi95], [MR94],
[Pom97]). The interest is twofold. Firstly, from a mathematical viewpoint (system the-
ory) there is an interest for the classification of nonlinear systems under feedback transfor-
mations so that the problem is to characterize those nonlinear systems which are feedback
equivalent to linear ones. On the other hand, if one is able to compensate nonlinearities by
feedback then the modified system possesses all control properties of its linear equivalent
and linear control theory can be used in order to study it and(or) to achieve the desired
control properties.

Flatness is the outcome of research aiming at characterizing nonlinear systems which
are equivalent to linear ones, by means of a restricted class of dynamic feedbacks called
endogenous ([FLMR99]). In this respect [Mar92] and [FLMR95b] introduce the notion of
endogenous equivalence, providing a framework to the study of system classification and
linearization via this kind of feedbacks (see section 3).

In this chapter we are interested in going more deeply into the differential flatness
of the bi-steerable car. On one hand, the aim is to establish the equivalence between
the system and its underlying linear structure. On the other hand, we aim at finding
means to synthesize a control law allowing us to stabilize the system trajectories around
a nominal reference.

The fact is that both problems have been partially solved with the results obtained
in the previous chapter. Indeed, we have already found coordinates allowing us to param-
eterize solutions of the differential equations, defining the system constraints, for given
initial conditions. In other words we have established up to this point results concerning
state-space transformations only. However, in the setting of flatness, equivalence between
any two systems F' and G entails a one-to-one correspondence between the trajectories
of F' and those of G (see section 3). Hence we shall further investigate the dynamics of
both the flat output and the bi-steerable systems, in order to set trajectories equivalence
results. In support to our analysis, we shall rely on results established by [Mar92] and
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[FLMR99].

On the other hand, stabilizing trajectories is a control design problem involving
some kind of feedback which solution depends on the type of system and the trade-offs
between stability and robustness. Since the bi-steerable car is flat, a natural solution to
the problem is to exploit the properties of the linearizing output. In this respect, we shall
find the equivalent linear system of the bi-steerable car in order to synthesize a feedback
control law. The chapter is structured as follows.

We start by introducing the formulation of the feedback linearization problem in
general and giving a brief recall on exact state feedback linearization in section 2. This
will lay down the grounds required to understand the principle of dynamic feedback
linearization discussed in section 3. Then in section 4 we introduce the methodology
followed in order to achieve our goals. Hence equivalence results concerning the BiS-
car are presented in section 5. These results allowed us also to compute the explicit
formulation of the chained form of the system. The interest in the latter stems from the
possibility to use results found in the growing literature about the control of nonholonomic
systems put in this form (see e.g. [MS97]). We move on to section 6 where we discuss
two possible ways for computing the linearizing feedback. As a consequence, we deduce
a feedback control law allowing for trajectory tracking. Finally in section 7 we show
by simulation results that the linearization of the BiS-car allows us to stabilize the 4-
dimensional system trajectories.

Throughout all the chapter we will use notations and definitions found in the Ap-
pendix A.

2 Introduction to feedback linearization

2.1 General notions

We start this section by formulating the problem of feedback linearization in the general
case (see e.g. [CLM89], [MR94]).

The problem of feedback linearization of a (smooth) control system
T=f ('T ) u)

defined on an open subset X x U of R® x R™ consists in finding a (smooth) dynamic
feedback (or dynamic compensator)

u = a(z,z,v)

= b(z,z,v)
defined on an open subset X x Z x V of X x RP x R? such that the closed-loop system

z = f(.T,CL(.’B,Z,’U))

= b(z,z,v)

is diffeomorphic on X X Z to a controllable linear system.
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To be precise, one says that the system is linearizable at a point (z°,u°) if X is
a neighbourhood of z° and a(X,Z,V) is a neighbourhood of u°. And say that it is
linearizable if it is linearizable at every point of a dense subset of X x U. Clearly, when a
system is linearizable at a point, it is linearizable on a neighbourhood of that point. The
following example (taken from [MR94]) should be illustrative.

Example

Consider the driftless nonlinear control system

j)l = Ul

.’tg = U2

T3 = Tou

It is linearizable using the feedback
2:’1 = 1
U, = 21
V2 — T2 U1
Uy = —
<1

and the diffeomorphism

(@1, 2, 23, 21) = & == (&1,&2,63,&4) = (w1, 21,3, T2 21)

Indeed, one can check that, in the new coordinates, the system becomes:

&§ o= &
& = v
& = &
€ = vy

which is obviously linear. Hence the system is linearizable only at points (z°,u°) such
that u9 # 0. In particular the system is not linearizable at equilibrium points. O

Remark that the assumption is that the state z of the system is available for mea-
surements, and we let the input of the system to depend on this state and, possibly, on
external reference signals.

Back to our problem definition, if the value of the control at time ¢ depends only
on the values, at the same instant of time, of the state z and of the external reference
input, then the control is said to be a Static State Feedback Control. This translates into
dim{z} = 0; i.e. the feedback is memoryless and hence can be viewed as a particular case.
Otherwise, as is the case of the example above, we say that a Dynamic State Feedback
Control is implemented.

In terms of characterization of the problem, the simplest case concerns the static
one. From a theoretical viewpoint, the problem of static feedback linearization was solved
by Jakubczyk and Respondek [JR80]. This led to a complete characterization of those
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nonlinear systems which can be transformed into a linear system by means of state space
diffeomorphisms

§ = o(z)
and static feedback.
Perhaps a brief review concerning the underlying concepts leading to the solution
of the static feedback linearization problem can be of utility in understanding the steps
discussed further ahead in this chapter. In what follows, we shall therefore discuss funda-

mental notions and few nonlinear control techniques in order to achieve full linearization
of a general nonlinear system, via state static feedback.

2.2 Static state feedback linearization

In this situation dim{z} = 0. The point of departure of the whole analysis is the notion
of relative degree of the system [Isi95].

2.2.1 Relative degree of a nonlinear control system

The nonlinear control system
= f(z)+g(z)u (IV.1)
with output
y = Alz)

has relative degree r at point z° if:

(i) LyLiA(x) = 0 for all x in a neighborhood of 2° and all £ <r —1
(ii) L,L7'h(z°) # 0.

Interesting remarks from [Isi95] elucidate this notion. In particular, let us suppose that
at some time t° the system is at state z(t°) = 2°. Assume we want to calculate the value
of y(t) and of its derivatives with respect to time y(¥)(¢) for k = 1,2,... at t = #°. It is
worth noticing that the relative degree r is exactly equal to the number of times one has
to differentiate the output y(t) = A(z(¢)) at time ¢ = ¢° in order to have the value u(¢°)
of the input explicitly appearing.

This implies that if no relative degree is found for any k£ > 0, the Taylor series
expansion of y(t) at the point ¢ = ¢° takes the form

=3 i
which means that y(¢) is a function depending only on the initial state and not on the
input.
As a matter of fact, it can be shown (see e.g. [Isi95]), that the functions

A(x°), Ly\(z°), ... ,L;_l/\(a:(’)
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are linearly independent and hence can be used in order to define, at least partially, a
local coordinates transformation around z°.

In this setting, linearization results follow easily as discussed next.

2.2.2 Coordinate transformation and static feedback

In the ideal case the relative degree 7 = n and hence one can obtain a fully linearized
system. We will show next how to perform the linearization. In fact, the methodology
is constructive and outlines the linearization process in the “general case”; that is, when
the suitable “output function” has been obtained.

In view of the discussion of the previous section, it is possible to define, locally
around z°, a coordinate transformation taking the form

£ =0(x) = ($1(2), ¢2(2), ..., $r(2)) = (Mx), LA (@), - .-, LT A ().

The linearization is henceforth realized as follows. First notice that

d§y  Oddx _
G omdt LyA(z(t)) = &(t)-
Furthermore, as a consequence of r = n:
Lo DM@ + LI Aa(0)ud) (Iv.2)

so that in ¢ coordinates one has &, = b(¢) + a(&)u, with a(¢) nonsingular by definition
(recall that the analysis is done around z° where L,L}™'A(z) # 0).

Hence the system (IV.1) will be described, after coordinate change, by equations of
the form

5:1 = &
& = &
én—l = fn
& = b)) +aldu
Suppose now that one chooses the following state feedback control law
1
u=——=(—b(&) +v Iv.3
e ) (Iv.3)

which is obtained by inversion of (IV.3) after setting &, = v. We have the right to do this
since, locally around £° = ®(z°), a(§) = a(®(z)) # 0. Notice that in original coordinates,

the feedback reads: )

T LI A=)

Thus we have constructed a feedback of the form

U (=LiA(z) +v),

(=b(®(z)) +v) = a(z) + B(z)v. (IV.4)
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with 8 nonsingular.

Therefore system (IV.1), after coordinate change and static feedback, becomes the
following linear and controllable system in Brunovsky canonical form—i.e. a chain of n
integrators:

& = &
& = &
e (IV.5)
étnfl = En
&n = 0

Notice that the linearization is full; that is, the dimension of the state-space in £
coordinates is the same as that of the original control system, and therefore we say that
ezact linearization is achieved.

A compelling question is to ask under which conditions the above transformations
can be undertaken. The following section states necessary and sufficient conditions for
exact static state feedback linearization for a single-input single-output nonlinear control
system!.

2.3 Conditions for exact static state feedback linearization
Theorem 2.1 ([JR80]) Suppose a system
= f(z)+g(z)u (IV.6)

is given. The State Space Ezxact Linearization Problem (SELP) is solvable near a point
z° (i.e. there exists an “output” function A(x) for which the system has relative degree n
at °) if and only if the following conditions are satisfied

(i) the matriz [g(z°) ad;g(z°) ... ad} *g(z°) ad} 'g(z°)] has rank n,

(ii) the distribution D = span{g,ad;g,...,ad; g} is involutive near z°.

It is worth remarking that the condition (%) has the following interesting interpreta-
tion. Suppose the vector field f(z) has an equilibrium at z° = 0. The linear approzimation
of the system (IV.6) at x = 0 reads:

i = Az + Bu,

where of
A= [%] - B = ¢(0).

"We will just recall established results for a single-input single output system, since the solution for
the multiple-input multiple-output problem, under certain conditions, follows easily (see e.g. [Isi95]).
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It can be shown (e.g. see [Isi95]) that condition (i) of Theorem 2.1 (written at z° = 0) is
equivalent to the condition

rank(B,AB,...,A"'B) = n.

That is, (¢) implies that a necessary condition for the solution of (SELP) is that the linear
approximation of the nonlinear control system must be controllable at z = 0.

At this stage, a last remark about the implication of theorem 2.1 is imperative. If
(ii) holds the distribution D is involutive. By the Frobenius theorem (e.g. see Appendix
A) the system is integrable. In the general (multi-dimensional) case, the equivalent con-
dition applies to the filtration of the system’s distribution (see [Isi95, Theorem 5.2.3,
p-233]). Accordingly, we can conclude that nonholonomic systems (and generally those
systems which do not verify the conditions above?), are not (fully) static state feedback
linearizable.

What this implies is that, for such systems, it is however possible to linearize a
subsystem at the expense of leaving the remaining part of the system nonlinear. In this
respect, there exist many important results in the literature of theoretical control (see e.g.
[Isi95], [CLM91]) addressing this and related problems, such as input-output decoupling
(i.e. in a multiple-input multiple-output system each output channel is only affected by
a single input), and full linearization via dynamic feedback.

In what follows, we shall discuss few results on dynamic feedback linearization in
order to introduce the benefits of flatness in this context.

3 Feedback linearization, flatness and equivalence

3.1 Dynamic feedback linearization
3.1.1 Full linearization via dynamic compensation

As anticipated, full linearization via state static feedback cannot be achieved for non-
holonomic systems in general. This is because the integrability condition is not satisfied.
In other words, we can not conclude on the existence of an “output function” yielding
a relative degree r = n. The rather fundamental subtlety is that the relative degree is
invariant under static feedback and state space transformations [Isi95]. The idea is there-
fore to resort to dynamic feedbacks in order to achieve the required relative degree. The
following discussion about the work of [ANBC92] illustrates the point.

One of the first results concerning this technique, applied in the robotics field, is due
to d’Andréa-Novel, Bastin and Campion [dNBC92]. In order to achieve full linearization
of wheeled mobile robots, including the car-like (tricycle model), [INBC92] proposed,
based on results from [JR80], “linearizing outputs” and dynamic compensators of the

20r simply systems verifying the conditions but for which the relative degree is r < n
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form

u = a(z,z)+ p(z,2)v
= a(z,z)+b(z, z)v.

B being a nonsingular matrix and v an auxiliary input.

The authors consider 3 kinds of robots whose dynamical models were systems with
drift, described by smooth vector fields of the form:

m
DI a'::f(:c)—l—Zgi(x)ui z € R" uecR™.
=1

The principle of the approach was very similar to what we have discussed above in the
sense that suitable output functions yield the relative degree required. Hence the first
step consisted in choosing output functions

yZ:)\l(w)’ IL:]-a >, T

and then apply the dynamic extension algorithm [DM85] (e.g. see [Isi95]) on ¥ and y;. A
brief digression is necessary at this stage in order to explain this algorithm.

Dynamic Extension Algorithm This algorithm finds its origins in the structure algo-
rithm [Sil69, Hir79]. The idea is to delay the appearance of some inputs (or combination
of inputs) to higher derivatives of the output, hoping with this that new inputs will show
up in a decoupled manner—i.e. such that the output has full rank with respect to the
inputs. The delay consists in adding integrators to those inputs (or combination of in-
puts) of which the output is fully dependent. Adding integrators in this way amounts to
consider the dynamics of a new system driven by an auxiliary input and having its own
state. To illustrate this, consider an example where a 2-input (u1,u2) system is assumed
to have state z, and a 2-dimensional output function y = (y1,y2) whose first derivative
depends only on u;. An integrator, driven by the auxiliary input v, is added to w1 so
that the new extended state becomes (z, () and now the output has full rank with respect
to (ul, ’LLQ).

U1
¢ Ul Y1
— [ > —
v2 u2 Y2
! -

Figure IV.2: Dynamical Extension Algorithm in a simple case (taken from [Isi95]).

Back to the work of [dNBC92], the method consisted in applying the algorithm to
y; in order to have a decoupled system of the form:

y](gpk) = W, k:]-’ , M,
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where y,(ci) denotes the (i)-th derivative of y; with respect to time, p, is the relative degree
of ¥ and w,, is the new auxiliary input. The decoupled system is such that each output
is only affected by a single control input.

In order to get full linearization, a 7n.-dimensional extended system is required.
Here, n, is the dimension of the original system plus the number of added integrators and
is such that:

This example shows the interest of using dynamic feedbacks looking for full lin-
earization. As for static feedbacks, in theoretical control the objective is to give conditions
under which general systems may be linearized. Let us discuss some significant results
about this subject.

3.1.2 Conditions for dynamic feedback linearization

In contrast to the static case, characterization of dynamic feedback linearization is still
an open problem in the general case [MR94]. Notwithstanding, we have at our disposal a
certain number of significant results.

Let us cite for instance [CLM89]. In that note, the authors showed that for single-
input (general) control systems static and dynamic feedback linearizability are equivalent.
Moreover, they showed that a driftless nonlinear control system is never linearizable at
an equilibrium point, since its linear approximation is not controllable. Later, the same
authors gave in [CLM91] sufficient conditions for dynamic feedback linearization of con-
trol systems with drift, by using and dynamic compensators and extended state space
diffeomorphisms (e.g. see the example above):

§= (I>(:13, Z)

By the mid 1990’s [MR94] recast the formulation of the problem using maps with
some adequate properties rather than feedbacks. The outcome was a sufficient condition
on the derived flag for feedback linearization of driftless control systems. Basically, if the
driftless system states live in R" and the inputs are defined on R™, the condition says
that if the derived flag satisfies dim I*(z) = n —m — k for k = 0,...,n — m then the
system is feedback linearizable. The condition proved also to be necessary in the 2 input
case.

As a direct result in this case, systems verifying the flag condition are flat and can be
put into the chained form by static (and invertible) feedback [MR94]. The chained form
is interesting because it may be used as a local model for a linearizable driftless system
around a singular point, such as an equilibrium point, where the linear approximation is
not controllable.

All these results account for the importance conferred to the problem of feedback
linearization. Notwithstanding, this problem may be seen as part of a more fundamental
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issue which concerns system equivalence and system classification. In this respect, flatness
has played a fundamental role as discussed in the following section.

3.2 Feedback linearization, system equivalence and classification

As a matter of fact, static-state feedbacks and diffeomorphisms provide us with a natural
transformation group preserving the state manifold [FLMR99], [MR94]. Two systems
are said to be equivalent with respect to this group if they can be transformed into each
other by some element of the group. The concept of a group, arises from the algebraic
abstraction of the notion of symmetry (e.g. see [Lan86]). Symmetry is a notion common
to algebra and geometry, where an important example is SO(2): the group of rotations in
the plane. In the theory of differential equations, the symmetry group of a system is the
largest local (i.e. expressed in local coordinates) group of transformations acting on the
independent and dependent variables of the system, with the property that it transforms
solutions of the system to other solutions. Moreover, the system of differential equations

is invariant under some local group transformations (in particular the prolonged group)?
[O1v93].

As far as dynamic feedbacks are concerned, there are few results (e.g. see [W.F90],
[NRM95]) linking dynamic feedback linearization with the notion of absolute equivalence
from Elie Cartan [Carl4]. However, in the general case there are simple examples that
show the corresponding transformation may not be one-to-one and hence dynamic feed-
backs do not form a group [FLMRY9]; therefore equivalence results cannot be established.

In this context, the general notion of endogenous equivalence ([Mar92],[FLMRI5b])
has provided a formalization framework of system classification and linearization by a
restricted class of dynamic feedbacks called endogenous: two systems F' and G are equiv-
alent if there is a bijective correspondence between the trajectories of F' and those of G.
Moreover, if F' and G are two equivalent systems, one can find an endogenous dynamic
feedback and a diffeomorphism which transforms F' into G extended by pure integrators
(see section 4).

In particular, a flat system is linearizable by means of dynamic feedback and coor-
dinate change. By definition, a control system is flat if it is equivalent, in the previous
sense, to a system without dynamics, described by a collection of independent variables,
the flat output, having the same number of components as the number of control vari-
ables [FLMRY9]. Besides, linear controllable systems with the same number of inputs are
proved (see the latter reference) to be equivalent, in this sense, to such system without
dynamics. Hence dynamic feedback linearization results are deduced.

Moreover, the linearization is exact and since the feedback is endogenous it is invert-
ible ([MR94]), except probably at singular points. The main property of an endogenous
feedback is to be reversible up to pure integrators. This means that equivalence by endoge-
nous feedback respects many important properties of the system such as controllability
and linearizability [Mar92].

In view of this discussion, there is a fundamental reason why we should address

3See section 4.1 for the notion of prolongation.
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the feedback linearization problem of the bi-steerable car in the framework of flatness: a
complete and formal system classification may be done. Before we address this problem,
namely the equivalence issue concerning the bi-steerable car, we shall lay down first the
methodological grounds that guided our work. This is the subject of the following section.

4 Endogenous equivalence

We need to give first formal definitions of additional concepts and introduce some notation
required later . Most of the following definitions can be found in [Olv93].

4.1 Prolongation and jets

Given a smooth real-valued function A(z) = A(z1,...,zp) of p independent variables,
there are
_(p+Ek-1\_(ptk-1)!
Pk = k ~ Kl(p - 1)
different k-th order partial derivatives of A\. The multi-index notation
k
A\ (x) M=) )

0xj,0zj, - - - 0xj,

stands for the partial derivative of A\ of order k, with respect to the j-th variable; where
J = (j1,-.-,Jk) is an unordered k-tuple of integers, with entries 1 < j; < p indicating
which derivatives are being taken. More generally, if A : X — U is a smooth function
from X C RP to U C RY, so u = A(z) = (Ai(z),...,A¢()), there are g - p; numbers
uG = 05\ () needed to represent all the different k-th order derivatives of the components
of \ at a point . We let Uy, = R?P* be the Euclidean space of this dimension, endowed
with coordinates u§ corresponding to o = 1,...,¢, and all multi-indices J = (j1,- .., jk)
of order k. Furthermore set U,y = U X Uy X -+ X Uy, to be the Cartesian product space,
whose coordinates represent all the derivatives of functions u = A(z) of all orders from 0
to n.

Given a smooth function u = A(z), so A : X — U, there is an induced function
Up) = prM\(z) € U(n), called the n-th prolongation of A, which is defined by the equa-
tions
uG = 0y Ao ().

Thus pr(™\ is a function from X to the space U(n), and for each z in X, pr("))\(x) is a
vector whose entries represent the values of A and all its derivatives up to order n at the
point . For instance, consider the case p = 2,¢ = 1 and n = 2, with X having coordinates
in R%: (z1,72) = (7,y) and U C R a single coordinate u. Then we have

0N 0N A PA 9%

2 . . —
pr( ))\(.Z',y) = (u,uz,uy,um,uwy,uyy) = ( ; %, 8—y, W’ ma—w)
The total space X x U, whose coordinates represent the independent variables, the

dependent variables and the derivatives of the dependent variables up to order n is called
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the n-th order jet space of the underlying space X x U. The n-th prolongation pr{™ \(z)
is also known as the n-jet of .

With these preliminary notions, we are ready to introduce the differential geometric
framework necessary to the generalization of the notion of endogenous equivalence.

4.2 Vector fields in infinite-dimensional differential geometry

In order to be able to say that transformations by dynamic feedback (a priori of unknown
dimension) are “diffeomorphisms”, there is a necessity to develop a convenient framework
for manipulating functions and other objects, which depend on a finite but not a priori
fixed number of variables. Typically, we need to consider a new set of coordinates possibly
made up with an unbound number of derivatives of u (i.e. the control). This implies to
work in the infinite jet space of U, with an arbitrarily big, but a priori unknown, number of
jets of u. This enables the formalization of the bijective relations between the trajectories
of two equivalent systems (see section 4.4).

We proceed now to lay down the notion of a system in an infinite coordinate set
according to [FLMR99].

Consider the dynamics
z = g(z,u) (Iv.7)

where g is smooth on an open subset X xU C R* x R™, x is the state and u is the control
input.

The integral curves of (IV.7) are described by smooth functions ¢ — (z(t),u(t)),
parameterized by initial conditions only; that is, initial conditions of the form: (4 =

To, Uy, Ug, * * * uW ...). where the derivatives of u of any order at time ¢ = 0 are noted
’ b ’ bl () ’
ul" with p > 0.

The original coordinates (z,u) are thus completed by the infinite sequence of coor-
dinates ¢ = (z,u,u, ..., u® .)€ X x U x R®, where R® = R™ x R™ x - - - denotes
the product of a countably infinite number of copies of R™.

In this context, a smooth function is a function smoothly depending on a finite (but
arbitrary) number of coordinates. Then if we prolong the original vector field g as

G(C) = (g(.’IJ,U),’l.J,,ﬁ,, v )

(IV.7) reads

Hence the following definition.

Definition 4.1 A classic system is a pair (X X U x R®, G) where G is a smooth vector
field on X x U x RS
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4.3 Notations

We introduce now notations thoroughly used in the sequel.

We note u := (u,u(l), . ,u(")) to design u and its derivatives up to order v > 0,
a “sufficiently big” integer (i.e. arbitrarily big but a priori unknown). U := U x U x
- x U, CR™ x--- xR designs v + 1 copies of R with v arbitrarily big. Moreover, we
introduce a notation that will be useful in writing vector field prolongations: z = (z, ) =
(z,u,uV, ... uM) for v arbitrarily big. Suppose a given system & = g(x, ), we note §
the prolonged system g(,):

T = g(x, ’U’)
W) = w
where the state is the vector (z,u, ... ,u(”)) and the input is w = u(**Y. Hence we also

write

i = §(& w).

. . 77 1 oA _
Typically, for a mapping A defined on X x U C R" x (R™)"*! we denote 2 f =

Yo %fi and %u(kﬂ) =", aa();“) ugkﬂ). We design by A its prolongation (or total
7 - ul

derivative) with respect to ¢ so that X = D)\ g = L\, where D stands for the total
derivative:
ON <~ O\
Dhx=2"+)"

—
or — ouk)

Finally let us recall the notations introduced in the previous Chapter: ) (resp.
@(y1) is the unitary vector in the direction (.) (resp. the direction (.) + 5); for any
real-valued function, depending on the unique variable ¢: F(¢), we note 0F(¢)/0¢ as
F(p).

We can finally proceed to lay down the methodological grounds of our work.

4.4 Endogenous feedback equivalence

Suppose a system & = g(x,ﬂ_), defined on X x U, with X x U C R* x (R™)k+1, Denote
by N a point (z,u) of X x U. Suppose another system § = h(y,v) defined on Y’ x V' C
RP x (R™)k+1 and denote by P a point (y,v) of Y x V.

The following definition concerns the core of the notion of endogenous equivalence
and of flatness.

Definition 4.2 (Endogenous feedback equivalence [Mar92]) Two systems g and h
are equivalent at (No, Py) zf_ there exists four analytical mappings ¢ : Y xV — R?,
¢ X XU >R, §:YXV R a: X xU — R"™ such that Ny = (¢(P),6(F)),
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Py = (¢(No), @(Ny)) and for all (z,y,u,9) € X xY x U x V,

= Qp(qS(:E,ﬂ),@(I,ﬂ)) (IVS)

= (¢(z,n),(z,u)) (IV.9)

v = a($(y,),d(y, 7)) (Iv.11)
h(¢(z,a),a(z,a)) = D(]ﬁ-g?(w,ﬂ), (Iv.12)
9($(y,9),0(y,9)) = D -h(y, ). (Iv.13)

Two systems g and h are equivalent if there exist points (No, Py) such that g and h
are equivalent in (Ny, P).

In other words, if (z(t),u(t)) is a trajectory of g then ($(z(t),u(t)), @(z(t),u(t))) is
a trajectory of h; moreover, there is a unique trajectory (y(t),v(t)) of h such that
(z(t), u(t)) = (¥(y(t),(t)), (y(t),v(t))) and vice-versa [Mar92].

On the other hand, the following theorem will help us to establish the actions to be
undertaken in order to achieve our goal (linearization of the BiS-car).

Theorem 4.1 ([FLMR99]) Consider two systems (X x U x R®,G) and (Y x V x
R, H), respectively describing the dynamics

z = g¢g(z,u), (z,u)e X xUCR'xR" (Iv.14)
= h(y,v), (y,v)€eYxVCR xR (IV.15)

Assume that systems (X xU xR G) and (Y x V xR®, H) are differentially equivalent.
Then, s = m and there exists an endogenous dynamic feedback

u = o(z,z,w)
= a(z,z,w) z€ZCR? (IV.16)

such that the closed-loop system (IV.14)-(IV.16) is diffeomorphic to (IV.15) prolonged by
sufficiently many integrators.

Where “(IV.15) prolonged by sufficiently many integrators” means:

v = g(y,v)
o = oM
iD= L@

o) = .
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or, using notations defined above
y=9(9,w) (IV.17)

According to theorem 4.1, in order to achieve our goal, we ought to find a dynamics
of the form (IV.15), which should be proven to be equivalent to (IV.18). Subsequently,
we shall compute the (endogenous) feedback (IV.16) allowing for the dynamics (IV.15)
to be put into form (IV.17). This is what we will discuss in detail in what follows.

5 Equivalence issues for the BiS-car

5.1 Preliminaries

Recall that assuming that ¢ €] — 7, Z[, then for a robot reference frame placed at point
F (see Figure IV.3), the 2-input driftless control system of a BiS-car is:

Tp = wvpcos(0+ @)
Yr = vUr 5111(0 ®)
5 o F) (IV.18)

7 :wtp

where F(yp) = %. We write system dynamics (IV.18) in the more convenient
form:

i=g(z,u) (,u) € X xU CR xR?, (2z)

where* © = (zr,yr, 0, ) is the state of the robot (i.e. position, orientation and front
steering angle) and u = (vr, wy,) is the control input (i.e. the linear and the front-steering
speeds).

Figure IV.3: Bi-steerable car model showing the flat output (point H) with respect to the reference
frame of the robot placed at point F.

4Lower case letters without index stand for vector variables.
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The results established so far tell us that a flat output y = (y1,y2) of the system
are the coordinates of a point H in the world’s Cartesian frame Py := (z4,yn) = (y1,2),
computed as a function of the state as follows (see Figure IV.3):

Py = Pp + P(p)iig + Q(¢)iys (IV.19)

where P(p) and Q(p) are coordinate functions relative to the robot’s reference frame:

Ple) = M(p)cos(B() — N(9)sin(5(0)) v.20)
Q(p) = M(yp)sin(B(y)) + N(p) cos(B(¢)) '
with
M(p) = L cos®(f(y)) _
(A%(p) + B?(0))2
N(p) = _/‘” L cos?(f (u)) (B’ (u)A(u) — ;4’(’&)3(%)) du
0 (A%(u) + B2%(u))?
and B(o)
— tan—1 2\¥)
Moreover, P’ and Q’ are given by:
Plp) = (Mlg) - B(o)IN(9)) cos(8(s) v
Qp) = (M (@) — B ()N (¢))sin(B(¢))

Conversely, £ can be found from y and a finite number of its derivatives. More
precisely, if one knows the flat output’s velocity along the path it describes

v = arctan (y2/y1) (Iv.23)

and the curvature of the path

det (4D 4@
K= et (7, y) (IV.24)

(T + b)

then one can obtain the state of the robot as follows:

{ =K ()
0 =~ —B(p) (IV.25)
Prp = Py — P(p)is — Q(p)tgL
where
B’ (p)
M (@) = B ()N (p)

These expressions are formal relations between z and y together with its derivatives

k= K(p) =

(IV.26)

up to order 2.
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On the other hand, since y is the flat output, its control system dynamics is simply
given by
y=h(y,v)=v (y,v) €Y xU C R x R?, (2p)

with v = (v1,v2) being arbitrary functions of time.

In what follows, we shall find new expressions allowing to establish the equivalence
relations from Definition 4.2. The point is that our current results (IV.19) and (IV.25)
entail two mappings, fore-shadowing the transformations (IV.10) and (IV.8) respectively:

(IV19) = o(z) =
UV2) > $u.o) s (IV.27)

with v = 1; i.e. 7= (v,0(1).

Intuitively, in order to prove that (X,) is equivalent to (3;), we shall look into the
flat output dynamics in order to formally establish those and the other transformations;
ie. (IV.9) and (IV.11). Moreover we shall prove also that the differential equivalence
relations (IV.12) and (IV.13) hold. Furthermore we will find new relations that will be
instrumental in the proof of equivalence:

sin(fp — ) = —-MF IV 98
cos(p — B) = /\/é’f (1v-28)

This is the purpose of the following section. We start by establishing results concerning
differential equivalence—i.e. relations (IV.12) and (IV.13)-—and then the endoge-
nous transformations—i.e. mappings (IV.8)-(IV.11).

5.2 Differential equivalence
To alleviate notation, in the sequel we will drop the explicit dependence on ¢ in functions
that depend only on this variable (i.e. all functions introduced in section 5.1).

We will first assume that x follows the flow of g and investigate the behaviour of .
We will refer to the bi-steerable car when saying system dynamics and to the flat output
when saying flat dynamics.

5.2.1 Flat output controls such that D¢ - g(z,u) = h(d(z), a(z,u))

The assumption here is that x follows the flow of g.

Differentiating equation (IV.19) with respect to time yields

[;}{ = DQS(J)) . g(.’l),’u,) = UFﬂ(0+(p) + ('PﬁgJ_ - Q’ljo)e + (’P’ﬂg + Q’ﬂgJ_)w(p

where we have insisted in the fact that z follows the flow of (X,). In this equation we can
distinguish two terms. The first term is the transport velocity of point H:

—

(PH)transp = 'UFH(9+<p) + (Piigr — Qﬁg)e
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The second term is the relative speed of point H with respect to the robot:
(Pr)rer = (Pg + Q”J@J.)w(p

Notice that this relative term is completely controlled by the steering command.

Since z follows the flow of g we can express the angular speed of the robot 6 with
respect to the speed control v, and ¢ (see system (IV.18)). Then projecting into directions
(g, Uy1) we have that

Py = (vpei () + weP") g + (vre2(p) + wp Q') gL,

with:
e1(p) = cos(p) — QF(p)

e2(¢p) S_irz(w)f:r)ff(@
_ sin(p—f(p
F() = Teosi(9))

From (IV.23) and (IV.25), the velocity of the flat output is collinear to a vector of
direction

7 =6+ B(0). (IV.29)

Thus let us define a direct reference frame, attached to point F: [R] e (i@, U.1), so that

expressing the flat output dynamics with respect to this frame yields

Py = [vr(cos(p — B) — NF) + wo(M’ — BNz,
+vplsin(e — B) + MFli, L

where (¢ — f8) is the angle subtended between the velocity vector of F (Vi) and
the velocity vector of H (V) (see Figure IV.3), and where M, N are defined in equation
(IV.20).

Therefore, from equation (IV.22) and the expression above, we obtain
1Pall = va (1V.30)
= vp[cos(p — B) = NF) + wyM’ — B’N]
This gives the first of the new relations (IV.28):
sin(p — B) = —MF
Alternatively, we can explore equation (IV.29) in the following way.
§=0+p¢.

But ¥ = k+/ y% + 95 = Kvy. Since again, we are differentiating v along g we have that
¢ = w, and 6 = vy F. Therefore we obtain a second expression for v:

VpF + wyf’

= (IV.31)

1Prll = v =
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Equating (IV.30) and (IV.31) yields the second of the new relations (IV.28):

cos(p — B) = %

We have now at our disposal two possible expressions relating the open-loop controls
of the robot to the control input of the flat output: (IV.31) and (IV.30). Since v = (v1,v9)
is an arbitrary function of time, it suffices to set:

() ety = WEESP (e ) e

so that when z follows the flow of (2;), y follows the flow of (£;). In other words, by
setting a(z,u) as we did we have that

D¢ ' g(a:,u) = h’(¢(‘7")a a(w,u))

This proves that (IV.12) holds. We are now interested in the inverse analysis as
explained next.

5.2.2 Bi-steerable car controls such that Dvy - h(y,v) = g(¢¥(y,0),0(y, 7))

The assumption here is that y follows the flow of h.

(y,v) with respect to the

We shall now differentiate the mapping (IV.25): z = ,
= K~!(k), where & is defined by

flow of (£5). The reader should keep in mind that ¢
(IV.24). Thus
dk 1 ds 1

T A KK (r)  dt K(p)

%) ~ v, v, v?).

Then . 4
0 = gv—¢op
= kvyg — @B = Kvyg — ¢f.

where v = tan™! (g—f) Finally
Pp = Py — (Piys — Qilp)0 — (P'ip + Qs )w,

Therefore, if we want ¢ to follow the bi-steerable system dynamics then we just

need to set
_ dse 1

YT @K ()

The same argument applies for 8 which gives

0 =vpF = Kvyg —wyf.

Henceforth we just need to set
Kvy — wyf’
F

Vp =
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with vy given by (IV.22).

Therefore, the open-loop controls of the robot in function of the trajectory of point
H are given by the mapping

ds 1
(&) =swo={ o
Up

(IV.33)
Kvg —wy B’
F
It remains therefore to show that (z,yr) are also consistent with the flow of g.

Let us differentiate the mapping 1 (IV.25) with respect to time

Py = Py — (Piigs — Qil)(Kvy — ¢B7) — (P'ilg + QUilgr) .
Projecting in [R], = (i, 4,1 ) gives

Pr = ity — (Kuw @ — $(P' + QF)lesly — 55,2] — (KvwP + @(Q + PB)leays + 5o1t,]
where the notation c¢g = cos(f), sg = sin(ff) was employed.

After a few manipulations using expressions above, we find

Pr = vgily — (Kvgh — M), — (KvgM — pMB),.

Again, if we want z to follow the flow of () we just need to set

dk 1

¢ T @K k) Y
Kvy = 7=0-¢f =vpF —wpf’
in order to obtain

Pp = Vgly — [Vp FN — wp(M’ — BN, — vpMFii,.1.
If vy is actually controlled as given by (IV.32) we obtain

. oo M’
Zpcos(y) + ypsin(y) = ’UF]:F

—Zpsin(y) + yrcos(y) = —vpMF

and finally, after substituting the new relations (IV.28), we get

x.F -

vp cos(f + )
Urp Sin(9 + QD)

?)F_

Therefore we can conclude that the mappings 1 (IV.25) and § (IV.33) entail the differential
equivalence:

D¢ ' h(ya ’5) = g(¢(ya 17)’ 6(ya IE))
and thus the claim that (IV.13) holds is proved.
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5.3 Endogenous transformations

This case is a bit more delicate. Indeed, the equivalence implies that we must be able to
go from one point, say Ny, of the trajectory of G to a point, say Py, of the trajectory of
H and, from Py, we shall be able to come back to exactly the same original point Nj.

It is clear that in order to recover the state and controls of the robot, we need the
derivatives of the flat output up to order 3 (mapping ¢ requires drk/dt). To prove the
equivalence we should proceed by steps.

5.3.1 Endogenous transformation z = 9(¢(z), a(zr,a))

First we shall argue that, as z follows the flow of g, the prolongations of mapping (IV.32)—
giving the further derivatives of y—must induce an overall consistency in the flat output
state, thus inducing the desired results in the robot state. Indeed, the first prolongation
of a reads

a(z,u) = oM (z,u,u) = vV,

Therefore, if = follows g then, in order to have D¢ - g(z,u) = h(¢(z), a(z,u)) we must set
v1) such that
det (v, v
K= W = K(p),

which entails

Plo((2), ol u), ol (z,0)) = K7 () = K71 (K(9)) = .
where 1|, stands for the restriction of 1 to ¢.
On the other hand v is ruled by (IV.32). Hence

mn*(@)=0+ﬂwx

U1

and therefore
V2

Ylo(p(x), a(z,w)) = tan (_

U1

)—mnlwnza

with @ = (@, &) and @ = (u,u). It remains to recover (zz,yr). From (IV.19) and (IV.25),
it should be now evident that

T = ¢(¢($)a d(.’E,'U,))
5.3.2 Endogenous transformation y = ¢(¢(y,v),d(y,v))

This one is trivial from the composition of mappings (IV.19) o (IV.25):

Y= ¢(¢(ya v, U(l)))



5. Equivalence issues for the BiS-car 109

5.3.3 Endogenous transformation u = d(a(z,u))
If £ = g(z,u), following the same arguments than in section 5.3.1, we must have
r = K(p)
and the second prolongation of «
a(z,u) = a? (z,u,u, i) = v?,

must be such that
dk/dt ~ k ('u, v(l),vm) = wek ().
And therefore
0w, (K, ds/dt) = w,,
so that the result for v, follows from (IV.32) and (IV.33).

5.3.4 Endogenous transformation v = a(9(y, ), d(y, 7))

Here y = h(y,v) so that from (IV.33) we have the results for u. Moreover, from (IV.25)
we get ¢ = K (k). Now,

09,80, =y (S o))

and hence

V2

(W (y, 7), 0(y, 7)) = ( 1 ) —y

These results allow us to claim that:

Claim 5.1 According to the Definition 4.2, systems (£;) and (X1,) are endogenous equiv-
alent.

This conclusion is more vivid when depicted as in Figure IV.4 showing that, when v
is excited, if (y(t),v(t)) is a trajectory of g, there is a unique corresponding trajectory
(z(t),u(t)) of f. The converse is also true.

We finally state a last, but not least, result regarding equivalence. In the following
section we give the explicit chained form of the bi-steerable car.

5.4 Chained form of the bi-steerable car

As pointed out in [MR94], a 2-input driftless system that is linearizable by dynamic
feedback can be converted, around every point of a dense open subset, into a chained
system ([MS93]) using only static feedback.
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Y, o | 9(z:) z ¢, y |h(y,v)|! Y. state

Flat System

Figure IV.4: Endogenous equivalence between systems g(x,u) (Z;) and h(y,v) (Z5). The continuous
lines show the “active” flow when the control input v is excited; i.e. the effect of u is discarded as shown
by the discontinuous lines.

In view of this result, and as a corollary of the mappings just defined, we propose
the formulation of the chained form of the bi-steerable car. Indeed, the endogenous
transformations previously discussed allow us to derive the static feedback transformations
giving the chained form of a bi-steerable car, by using the reference frame [R] -

The interest stems from the possibility to use results found in the growing literature
about point-stabilization of nonholonomic systems put in this form (see e.g. [MS97].

The equivalent chained form of the bi-steerable system (IV.18)

21 = U
2.:2 = U9
23 = Zzouy
Z4 = Z3u2

can be obtained from the following coordinates change:

z1 = gy
2z = K/cos(y)?
z3 = tan(y)
24 = Ym
together with the static feedback:
up = wvgcos(y)

up = K’/ cos(y)?wy, + 3K?sin(y)/ cos(v)® vy

where K is the curvature defined by equation (IV.26), v = € + 5(¢) and vy is given by
either (IV.30) or (IV.31).

A proof follows.

First notice that, in flat coordinates, the bi-steerable control system reads with

respect to [R],:
Ty = wvgcos(y)

Unr = vgsin(y) (Iv.34)

¥ = vgk
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where vy is function of the control inputs of the robot (v, w,,) as stated by either (IV.30)
or (IV.31). Hence the first equation of the chained form is simply obtained by setting

u; = vy cos(7y)
so that 21 = 25 = u;.
Then (IV.34) becomes
J‘"H = U
Yy = uqtan(y)
YT UG

By next choosing z4 = y; we obtain
Z4 = Y = uq tan(y).

Hence we get 24 = z3u1 by choosing z3 = tan(+y); this gives

. 1 . K
22 = = ui.
3 cos(fy)27 cos(y)3 !
Thus we get 23 = zou; by choosing zo = ﬁ; then we have

9 = K’/ cos(7)? wy, + 3K? sin(y)/ cos(v)® v,

and hence Z9 = usg.
O

We are now interested in stabilizing system (IV.18) around a reference trajectory.
In doing so we explore the fact that, thanks to the flatness property, this system is dif-
feomorphic to a linear controllable one through endogenous dynamic feedback (Theorem
4.1 above). The following section presents the computation of such a feedback for the
general bi-steerable car allowing us to deal with a linear system.

6 Feedback linearization of the BiS-car
A direct result of Theorem 4.1 above and the mappings we have defined is that, since
(£;) is flat, there exists an endogenous® dynamic feedback
u = a(z,z,w)
= b(z,zw), (IV.35)
leading to the following closed-loop system:

yf’) = w1, yég) = w2

Smeaning that the original—endogenous—variables of the system are transformed without creation of
new ezogenous variables.
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with (wq,ws) = w arbitrary functions of time.

This corresponds to (Xj) prolonged by 2 pure integrators. We shall alternatively
write the linear system as:

where § = (y,v(1),v(?)) is the 6-dimensional state vector.

At this stage, two possible ways for computing the feedback may be envisaged. The
first would consist in following [FLMR99](Theorem 8). A second alternative is to use
nonlinear control techniques to compute this feedback. We shall discuss both ways.

6.1 Feedback linearization by computing an endogenous feedback

According to [FLMR99](Theorem 8), the feedback is constructed as follows.

Notice first that the mapping 9 (defined in section 5.3.1), under new notation,
reads:

T = ¢(g’ w)

and that from section 5.2.2 we have
9(®(§,w),8(F,w)) = h(F,w)
There is therefore a splitting of 7 such that the mapping

g K@) = @©),9) = (x,2)

is invertible; i.e. given z and some elements (z) of 7, it is possible to recover § completely.
Hence the feedback is obtained as follows [FLMR99]:

u = ?(K_l(x,z),w)
= ho(K (z,2),w)

where h is the projection of A corresponding to .

Clearly we have now all the transformations required to compute the feedback.
Indeed, one can verify that if one knows the state z and also the current values of z :=
{yg),y?)} C #,% then the mapping § = K !(z,z) can be computed from expressions
(IV.19), (IV.23) and (IV.24). With this and inputs (wi, ws) one can compute v, and %
to obtain the robot controls from (IV.33).

A second alternative is to use nonlinear control techniques to compute this feedback.
We discuss now this approach.

5Notice that from z and using (IV.30) we can compute yg). If we keep record of its evolution in time,
then we can compute yﬁ” by differences.
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6.2 Feedback linearization using nonlinear control techniques

As a matter of fact, the curvature (and hence ¢) of the curve described by the trajectory
of H is invariant with respect to Euclidean transformations in the plane. Due to this
symmetry property, it seems more convenient to chose the intrinsic parameters of the
curve, namely its arc length s and curvature (s), to describe the motion of H.

Hence let us denote by Cy the actual curve of H admitting a natural arc length
parameterization s. The curve Cy is defined by points Py: s — Pg(s) such that, by
definition of a natural parameterization, VPg(s) € Cy, ||dPg/ds|| = 1 (see for instance
[FLMR95al).

The utilization of the arc length, to parameterize the curve described by H, leads
naturally to the use of a Frenet reference frame (7,7) associated to the flat output and
admitting direct orientation such that 7 = i, as shown in Figure IV.5 below.

Figure IV.5: Frenet reference frame associated to the flat output when an arc-length parameterization
is used on the trajectory of H.

In this setting we have

d7/ds = kv, dv/ds= —kT.

Now consider a smooth mapping ¢ — s, = 0, (¢), yielding a new time scale so that

_ds

- E = élo'ra

(%7
where &1 = (STST is near to 1 when the actual trajectory of H is close to the reference
trajectory. Hence in the sequel derivations with respect to s,, denoted: (') = d/ds,—not

d 1d
Sr

to be confused with (")= 9/0p—yield the following rule: i~ = & &

In this setting, the open-loop controls of the robot in function of the trajectory of

point H read
. (dk ,
wg, = 61 g, (£> /IC

&1 0, —we(M’ = B'N)
cos(p—B) —NF
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and dynamics (IV.22) now reads

If we differentiate twice and let & = &] we obtain

- "

Py = (& — r%)T+ (36615 + 6?3—';)17 (IV.36)

Notice that this system is invertible with respect to (&, dx/ds) as soon as & # 0. Hence
the dynamic compensator in time

& = (m+rE)s,
& = &o,
vg = &0,
and the static feedback
de g —3KEG
s -8

where w1, w9 are the new inputs in the o, scale, linearize the system as (IV.36) becomes:

= R o
H = wW1iT + wal.

6.3 Discussion

Let us look closer at this latter result. As a matter of fact, in the previous development
we are applying the extended state space diffeomorphism

(ZE, &1, 52) =y = (¢($)a CY(.’L‘, u)a 04(.’1,‘, u, ’U,))
defining the 6-dimensional vector § = (71, 92) as the new state, with ¢; = (ygo),ygl),y?))
fori =1,2.

From the inversion of (IV.36) we obtain the linearizing feedback which can be
written in the following form (compare with (IV.4)):

(& )=am+sm ().

ds

Notice that the new controls in time are obtained easily from the following scalar products:

) . (IV.37)

/~
g g
N
N———
|
7N
SRS
N =~
& &
N—
Il
7N
T
CIc
AN 1]

Hence each output channel becomes a chain of two integrators and we have a con-
trollable linear system of the form:

: | Aa 0 | Bag O w1
y—[ 0 Aﬂ]y—k[ 0 Bcg]<w2) (Iv.38)

A B




7. Trajectory tracking using a linear control law 115

where the canonical matrices A, and Bg;, 2 = 1,2 read as follows

010 0
A, = 0 01 ’ B = 0 ’
000 1

Figure IV.6 below illustrates the linearizing feedback and the equivalent linear con-
trollable system.

input

: | -
W la+Bw Aw:®4y(3) d |, Y d |l Y

. linearizing feedback

a)

> Flat System ‘{I’—yb state

b v=e[ L
Kl Kl mma bl

Figure IV.6: a) Linearizing feedback; b) Equivalent linear controllable system (IV.38) in Brunovsky
form.

7 Trajectory tracking using a linear control law

We now explore the linear structure of system (IV.38) in order to stabilize trajectories of
(IV.18). To achieve this goal we will use standard linear control techniques as discussed
below.

7.1 The control law

From (IV.37) we see that the auxiliary input w is obtained from y(® which is actually
the controlling input.

For a real system, one can be sure that in the presence of a reference trajectory y*
there will be an error between this and the actual trajectory y of the system. What we
are looking for therefore is to stabilize the error e = (y — y*). From system (IV.38), the

error dynamics reads _
é = Aé+ By®. (IV.39)

Therefore, from Linear Control theory we know that we can close the loop, at a
second step, to stabilize the reference trajectory y* with the control law:
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o= ()= )15 = 1(5)
w9 y;(?’) 0 K, €9

K; = (kio, ki, ki2) i=1,2.

where

Thus the control law reads:

2
wi =) =S ki (0 - 6)D) =12 (IV.40)
j=0
and the coefficients k; ; must be chosen in order that the linear time invariant error
dynamics

2
e =3 kel  i=1,2
§=0

with ) = (y@ - (y;-")(j)>, is stable.

1 )
In other words, we are searching to stabilize the trajectory of y, including its deriva-
tives up to order 3, by means of a feed-forward reference term (y;“)(3) as (exciting) input

(3)__

modified by weighted correcting error terms e, see Figure IV.7.

W)®, v

o ,B,?;@g;

L

-K

Figure IV.7: Feedback control law for the equivalent linearized system.

It is now clear what kind of reference trajectory is required as discussed next.

7.2 From feasible paths to feasible trajectories

We recall that the outcome of the local planner introduced in Chapter III is a feasible
path. A feasible path corresponds to a geometric-parameterized curve (e.g. a curve
parameterized by arc-length) whose course-speed may have been chosen arbitrarily. The
problem that concerns us here is the transformation of such a path into a trajectory: i.e.
finding a timing-law for the path.

The question on how to compute a parameter morphism in order to achieve a time-
optimal speed profile along a given path has been already addressed in the literature.
The problem is of algorithmic nature. Indeed, it is not possible to compute an optimal
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profile without being able to foresee the curvature constraints imposed by the path and,
at the same time, take into account dynamic constraints: linear and yaw acceleration
limits for instance. This re-parameterization of the curve is therefore a key stage in
obtaining a feasible trajectory (accounting for the dynamic constraints) from a feasible
path (accounting for the kinematic constraints).

We have seen in sections 6.2 and 7.1 that the choice of an arc length parameterization
conveniently accounts for geometric invariance and for natural parameterizations of the
curve. In particular we saw that if C, is the actual curve of H admitting a natural arc
length parameterization s, then YPg(s) € Cy, ||[dPg/ds|| = 1. In practice however this
might not be the case so one could ask simply for a regular parameterization ¢t — s = o ()
such that ||dPg/ds|| # 0 for all s.

In these respects, we have relied upon the work of [LSL99] in order to compute the
aforementioned re-parameterization, taking into account speed and acceleration bounds.
The input of the algorithm are the velocity bounds together with the linear and yaw
acceleration limits of the robot and the feasible path in the flat space. The outcome is
hence a time-sampled curve in the configuration space together with a set of nominal or
reference controls.

The work of [LSL99] was conceived for tractor-n-trailer systems for which the flat
output coincides with a physical point of the robot. In our case, instead of obtaining the
reference trajectory and controls for the robot we had to yield the reference trajectory of
the flat output— that is, the nominal values of (y1,y2) and their successive derivatives
up to order 3. Indeed, we aim at stabilizing system (IV.38), for which a reference path is
given, by using the control law (IV.40).

We now discuss the simulation results obtained.

7.3 Simulation results

We take up notations defined in Section 5.
In a first time a re-parameterization of the reference curve Cy, of H is computed
from [LSL99]. In this case a regular parameterization

t— o,(t)

is used.

In order to cope with this and to be able to apply all the machinery developed in
Section 7.1 we will define an auxiliary control variable
_ dP, Hr
~ do,

€1,

as the reference speed of H along Py, in the o, scale.

In this case
_ dPy

Vg = F = fldm
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where & = % is near to &;, when the actual trajectory of H is close to the reference

trajectory. An example of this is shown in Figure (IV.8) below.

dPy /do,

1.6 T

T T
&1 control
&1 reference

08
0.6 -
04

02

0 10 20 30 40 50 60 70
(sec.) dt=50ms.

Figure IV.8: Simulation of typical control and reference curves for the flat output (point H) during a
simple forward motion.

Notice that the control law (IV.40) will be applied for each channel of (IV.39):
éi=Anéi+Baw i=1,2

where we remind that

010 0
A;,=10011], Bgy=1|0
0 00 1

For each output channel, the feedback control law (IV.40) is a matrix of the form

0 1 0
Fg=A,;-BsK;=| 0 o0 1
—ki —ky —ks

In order for this feedback to be stable, the matrix Fg must be Hurwitz. This implies
that the eigen values of Fp must have negative real parts. The eigen values of Fp are
obtained from its characteristic polynomial:

1 1 1
detOM3 — Fg) = N + ks 2+ kol + k1 = A+ =) A+ ) (A + ).
d do ds

The gains of the closed-loop system, k; ; (¢ = 1,2 j = 1,2), are therefore set by identifica-

tion with the coefficients of this characteristic polynomial with eigen-values {d—ll, %, % .

Thus we have:

1

ko= dydads

b L 1 1

2 = ds dids | dydy
1 1 1

ks = —+-—+—
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and f(p) = —¢ (series d—f), showing respectively: the actual and reference curves for H; the state 6§

during the execution and the state ¢ (bounded to the physical limitations of the real robot). In both
simulation series we set an error of 7/6 in 6 and of 5% in the parameter L. In series (a)—(c) the initial
error in 2y and yp is of 0.5m. In series (d)—(f) this error is of 1.5m.

For simulations we set d; = 0.610, do = d1/1.5 and d3 = d3/1.5 for both forward
(6, > 0) and backward (&, < 0) motions. For all poles, the frequency is 20Hz.

Figures IV.9.a-1V.9.f show simulation results when introducing an initial error in
the configuration space and a model error through the parameter L (the distance between
the front and rear wheels). The arrows at starting points indicate the direction of the
motion. Notice that even if the initial error in the first series is smaller than in the second
one, the control is more sensitive in the case where f(¢) = —0.6¢. This is due to the
fact that the relative velocity of the flat output (function of P’; Q’) is higher in the first
than in the second case. Indeed, when f(¢) = —¢ the flat output is the same as that of
a car with a non-steerable rear wheel placed at %L of [FR]. Hence the stabilization is
(relatively) easier.

8 Conclusions

Flatness characterizes nonlinear control systems which are equivalent to linear ones, by
means of a restricted class of dynamic feedbacks called endogenous ([FLMR99]). In this
respect the notion of endogenous equivalence provides a framework to the study of system
classification and linearization via this class of feedbacks. In this setting, two systems
F and G are equivalent if there is a bijective correspondence between the trajectories of
F and those of G. Moreover, if F' and G are two equivalent systems, one can find an
endogenous dynamic feedback and a diffeomorphism which transforms F' into G extended
by pure integrators.
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In this chapter we were interested in two issues: first, we established endogenous
equivalence results regarding the bi-steerable system; second, we found means to syn-
thesize a control law allowing us to stabilize the system trajectories around a nominal
reference. To this end, we found the relations between the flat output dynamics and
the robot controls. This led subsequently to complementary relations allowing to prove
the differential equivalence between the bi-steerable car and the flat output dynamics
extended by two integrators. As a consequence, we have tackled the trajectory track-
ing problem for the general bi-steerable car by finding its equivalent linear controllable
system.

As a corollary of these results, it was possible to find the explicit chained form
of the bi-steerable system, opening the possibility to use state-of-the art stabilization
techniques for nonholonomic systems put into this form. In particular, time-varying
point-stabilization techniques can be used.

The theoretical aspects were validated in simulation.

The next chapter addresses the integration of the results obtained, namely a com-
plete motion planning and execution control scheme.



CHAPTER V

Experimental Issues

In this chapter we aim at an experimental validation of the integral approach of flatness to
motion planning and feedback control of a real bi-steerable car. To this end, the building
blocks introduced up this point, namely the motion planner and control law, need to be
completed with a third element. This one must take into account the real character of the
physical world and the robot: proprioceptive and exteroceptive perception of the system’s
real state are needed.

1 Introduction

At this stage, we are at the crossroads between the modeling of and the real system itself.
What this implies is that the formal representations of a real bi-steerable system used up
this point are ineluctably incomplete: our models do not correspond to reality. Indeed,
the models we have introduced in previous chapters stem from simplifying assumptions
of the reality, and hence hide many variables of the physical system.

The incompleteness issue sets us the following question: to what extent our the-
oretical results can be applied to the real system? Accordingly, we are interested in
validating experimentally the results obtained in simulation. In the setting of probabilis-
tic (Bayesian) inference and learning, recent work [BDL199a], [BDL"99b], [LDBMOO0] has
shown that incompleteness (the mismatch between models and reality) can be translated
into uncertainty. Therefore the question about how to cope with the uncertainty when
dealing with a real robot is inescapable.

In Robotics, there are many ways in which uncertainty may be taken into ac-
count: from low-level reactiveness, going through environment-perception modeling to
task/mission reconfiguration. For instance, at the motion planning level, a classic way
to deal with the uncertainty related to the environment is to grow the obstacles and the
robot; this aims at reducing the risk of collision at the execution time. Notwithstanding,
the incompleteness of our models makes that our (model-based) computations (e.g. robot
commands) will still introduce errors during the execution. These errors translate into

121
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deviations from the expected (nominal) motion, thus preventing the robot from fulfilling
the task as planned.

In this respect, we have seen that the control law, introduced in the previous chap-
ter, takes into account certain deviations from the nominal parameters of the robot and
trajectory. However the control law needs to know the error between the nominal tra-
jectory and the actual state of the robot. Hence the robot requires essential localization
abilities. Accordingly, the robot must rely on its proprioceptive and exteroceptive sensors
in order to reduce the uncertainty about its current state in the environment. In this
chapter we shall discuss this problem and our experimental results.

In a first time, we introduce in section 2 our experimental bi-steerable platform.
This will allow us to better understand the motivations of the global (exteroceptive) lo-
calization system. This one is the work of [PS02], who designed and implemented a robust
absolute localization system introduced in section 3.1. Aiming at further robustifying the
localization system, we designed an odometry (proprioceptive) localization module for
the bi-steerable car. However, in the interests of consistency, we decided to take the
discussion of the odometry module, together with its uncertainty propagation model, to
Appendix D. The experimental assessment of our work is thence given in Section 4.

2 Experimental bi-steerable platform

The Cycab robot (see Figure V.1) is for the moment proposed as an academic platform
in research laboratories such as INRIA in France and NTU in Singapore. It is however
intended to be part of a new public transportation system based on small electric vehicles
specifically designed for zones of limited access to regular automobiles.

Figure V.1: The INRIA Rhéne-Alpes’ Cycab robot.

The Cycab has diverse original characteristics: low profile platform allowing to
adapt multiple sorts of cabins for different applications; distributed control architecture
via a, CAN bus, interfacing sensors and actuators in a modular fashion; ergonomic manual
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control through a joystick; wire-less Ethernet link for communications with an eventual
remote host; and on-board human-machine interface through a touch-screen and key-
board.

The particular characteristic which concerns us here is its bi-steerable capability.
Making a little history, there exist two generations of Cycab robots:

e The first generation concerned a bi-steerable platform with a real mechanical link be-
tween the rear wheels and the front wheels. This mechanical link is such that
flp) = —0.7p. As a matter of fact the choice of the constant was not a design
parameter—i.e. the objective was to have a bi-steerable platform no matter of the
actual rear-to-front relation. Thus the rear-to-front factor was identified later by
calibration procedures [BGMPG99].

e A second generation is a platform with a rear-to-front link realised by software—i.e.
rear = [(@front) With f arbitrarily set by software.

The Cycab is endowed with modest computational capacity. Notwithstanding we
could validate experimentally the first steps towards motion autonomy; namely the motion
planning and trajectory tracking abilities that have been discussed in previous chapters.
To this end however, and in view of the incompleteness of the models we used, the
uncertainty dimension must be taken into account. Therefore we shall now discuss a
third essential building block in any architecture of an autonomous robot: the localization
system.

3 Localization system

The localization system we aimed at for our experiments is based on a global (abso-
lute) SLAM (Simultaneous Localization and Map-building) method [PS02] and a self-
localization odometry module.

Owing to the dimensions of our robot and of the environment, the SLAM approach
allowed us to have a reliable and robust localization system. Notwithstanding its re-
markable performance, we wanted to rely as well on a self-localization module based on
odometry. The interest for this is justified in cluttered environments. Indeed, the occlu-
sion of landmarks in such environments prevents from global localization, in which case,
it would be of great interest to trust as long as possible on the odometry itself.

Therefore we first introduce the absolute localization system. This will allow us to
subsequently discuss the interest of the odometry module.

3.1 Localization system (I): exteroceptive localization

In order to carry on safe experiments we needed a robust exteroceptive localization system.
We have used the work of [PS02] for this purpose.
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The objective was to generate a map which could be used for localization dur-
ing motion planning and execution. The specification of the system included reliability,
accuracy and flexibility. What follows gives an overview on how these goals were reached.

Localization by detection of natural features in the environment is often subject
to failure and not very accurate. In order to ensure reliability, it was decided to install
artificial landmarks in the environment leading to an accurate detection. Hence the
artificial landmarks are cylinders covered with reflector sheets, specially designed for our
Sick laser range-finder. They are easy to detect, and can be localized with great accuracy
(see below). Figure V.2 shows the Cycab, its laser sensor and the landmarks.

Landmarks ,,’._.f
Sick 2D laseg -
range finder &7

Cycab robot

Figure V.2: Cycab robot and landmarks

The Cycab robot is the size of a golf cab, capable of attaining up to 30Km/h. Its
“natural” environment is the car-park area of the INRIA Rhone-Alpes (about 10000m?).
Hence it was decided to equip the environment with non permanent beacons in order
to keep flexibility. Consequently, the localization system ought to be able to learn the
current state of the car-park area using SLAM— Simultaneous Localization And Mapping
—methods. However, the beacons—even though they are easy to detect—are not signed.
Therefore, the problem of robust matching (between new observations and the current
map) had to be handled simultaneously with the map building and localization problems.
[PS02] proposes a robust algorithm called SMLAM (Simultaneous Matching Localization
And Mapping), based on invariant features (e.g. distance between landmarks and angles
between three of them) and graph theory tools.

Owing to the accuracy of the laser range-finder, to the good choice of the land-
marks, and to the strength of the SLAM methods, the accuracy of the localization system
was evaluated to the following value: about 10 centimeters in position and 2 degrees in
orientation (see [PS02] for more details about the way these values were evaluated).

3.2 Localization system (II): Odometry for a BiS-car

Notwithstanding the remarkable performance of this absolute localization system, we
sought to robustify it even more by means of an odometry module. In this respect,
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odometry is necessary for two main reasons:

e Odometry is at the heart of uncertainty estimations when data fusion is performed
with exteroceptive sensors;

e A reasonably accurate odometer may alleviate momentarily from computations
(possibly heavy) for absolute localization; this is particularly true when for some
reason absolute position readings are unavailable (e.g. occlusion of landmarks), in
which case it would be of great interest to trust as long as possible on the odometry
itself.

On the other hand, modeling odometry for a BiS-robot sets challenges that are not
encountered in typical (non-steerable) mobile robots for which many work has been done.
Let us mention for instance the work of [Wan88]. He proposed an odometry model for
the rear axle of a car-like robot, together with its associated general uncertainty model
under Gaussian hypothesis. Another pioneering work is due to [BF95]. They introduced
a methodology yielding a benchmark test in order to calibrate systematic errors for dif-
ferential drive robots. Systematic errors are observable on rectangular closed trajectories
by solving geometric relationships. Finally, [CK97] resumed the odometry of [Wan88] by
proposing a similar model and a closed-form for the propagation of uncertainty.

Odometry (dead-reckoning) is a basic localization system which is at the lowest
levels of a control architecture. One can say that it is a low level sensor whose position
predictions are model based.

Odometry aims at predicting the robot position and orientation (or heading) from
proprioceptive measurements. Typically, encoders on two separated wheels are used to
indicate both incremental change in heading (through their difference) as well as incre-
mental distance traveled (through their average). This is known as differential heading
odometry. Other variants combine information on the differential distance traveled in con-
junction with a measure of the heading of the robot by means of a compass or through a
gyroscope (measuring the speed of the change in heading).

Whatever the technique used, we are necessarily driven to make modeling choices
involving ourselves in a design process. The outcome is an odometry model which is
inevitably (though fortunately) a great simplification of the real system and hence is in-
complete. This incomplete character may translate into some a priori knowledge about
the “quality” of the model, but can be quantified by the notion of uncertainty [LDBMO0O].
Furthermore, the model contains parameters, related to the physical robot, that partici-
pate in the overall uncertainty about odometry predictions. Hence we are also driven to
identify the nature of the uncertainty and the way we will treat it.

In order to keep the overall consistency of our dissertation, we discuss a possible
odometry model for the bi-steerable car, together with its corresponding uncertainty
model, in Appendix D.

We now address the last part of this chapter. What follows is the experimental phase
concerning our work. In particular we shall discuss the integration of the computational
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blocks required to validate the theoretical developments, regarding the flatness of the
bi-steerable car.

4 Motion planning and trajectory execution settings

4.1 Obstacle map and user-planner interface
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Figure V.3: Obstacle map evolution from [PS02]: Experimental images during the obstacle/landmarks
map-building phase. The vehicle is driven within the car-park area as long as needed. Simultaneously,
the laser range sensor is used to detect the landmarks to build-up the localization map.

The global localisation system introduced in Section 3.1 provides also a map of
observed obstacles in order to plan safe paths. To achieve this goal, an occupancy grid
was built on the environment. This structure gives informations correlated with the
probability that a given place is occupied by an obstacle.

Both maps (landmarks and obstacle) are built online, in real-time, by the robot dur-
ing the environment-exploration phase. Figure V.3 shows how the obstacle map evolves
while we are exploring the environment. This map is made of small patches which are
added according to the need of the application. In this way, the map can be extended in
any direction, as long as memory is available. Once the map-building phase has finished,
the obstacle map is converted into a pixmap and passed to the Motion Planning stage.

On the other hand, the User-Planner interface in the Cycab is achieved through
a touch-screen superposed to a 640 x 480 pixels LCD display. The display may be used
in text mode or graphics mode by direct access to video memory (by using SVGA-lib).
Additionally, the keyboard can be used for the entrance of data.

The interface is used to display the current position of the robot within its environ-
ment and to capture the goal position entered by the user. These positions together with
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the obstacle map is passed to the motion planner. The output path is then displayed
allowing the user to validate the path or start a new search.

Figure V.4 shows the outcome of the motion planner introduced in Chapter 6 using
an obstacle map generated as described above.
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Figure V.4: Simulated path computed by the motion planner in a work-station using a real obstacle
map generated by the previously described map-building stage. The obstacles are grown as well as the
robot before computing the path.

Finally, the reference trajectory is generated using the regular parameterization of
the path discussed in Chapter IV (Section 7.2) and the user is requested to accept to start
the execution of the trajectory.

The control law, introduced in Chapter IV (section 7), is then used to track the
nominal trajectory as discussed next.

4.2 Experimental results

We tested the integration of these modules in the Cycab robot. The aim was to validate
the flatness approach to motion planning and control of the BiS-car and to get insight
into the limitations of the whole motion scheme.

During the experiments the front-to-back steering function was set to f(¢) = —¢
and the speed of the robot was limited to 1.5ms~!. The gains of the closed-loop system,
ki j, were set by identification with the coefficients of a characteristic polynomial with
eigen-values {d%, e dg} We have set d; = 1.40 for forward motions and d; = 1.41 for
backward motions, do = d1/1.5,d3 = d2/1.5. For all poles, the frequency is 20Hz.

The computation power on-board the Cycab is a Pentium I 233MHz running a
RedHat™ Linux system. All programs were written in C/C++ language. The control
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]

Figure V.5: An experimental setting showing from left top to bottom right: The arbitrary placing
of the landmarks; the manual driving phase for landmark and obstacle map-building; the obstacle map
generated together with the current position of the robot as seen on the LCD display; the capture of the
goal position given by the user by means of the touch-screen; the reference path found by the motion
planner; the execution of the maneuver using the linear control law (IV.40); and the executed trajectory
recovered after the experiment.
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Figure V.6: Parking maneuver experimental setting: a) Reference curve for point H and actual curves
for this point and for the robot (i.e. point F'); b) Reference and actual curves of the steering angle control
¢ (the control system is sensible at cusp points inducing “peaks”); c¢) Reference and actual orientation of
the robot 6.
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rate of the robot was fixed at 50ms. The throughput rate of the laser range-finder is
limited to 140ms'; therefore the control system relies momentarily in odometry readings.

Figure V.5 is a set of pictures showing a complete application integrating the map-
building & localization system together with the motion planning and control schemes
based on flatness of the BiS-car.
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Figure V.7: Singularities at cusp points due to the fact that vx = 0. The phenomenon is produced in
the linearizing feedback by the undetermination of the derivative of the curvature (dx/ds) at these points.

Figure V.6 shows the evolution of the flat output and the robot during a short
parking maneuver. A couple of remarks may be done regarding these curves. The con-
troller is able to track the reference curves for the 4-dimensional state (z,y,,0). The
performance of the controller is of good quality if we consider that the speed of the robot
is low. The peaking phenomenon shown for the steering angle is intrinsic to the feedback
linearization at cusp points. This is better appreciated in Figure V.7.

Finally, Figure V.8 shows another parking maneuver. Incidentally, during the ex-
perimentation there was an error in the localization system described in Section 3.1. The
control law was able to stabilize the robot though, showing to be robust against sensor
noise.

5 Conclusions

The computation capacity on-board our experimental platform allowed us to validate the
theoretical approach regarding the flatness property of the bi-steerable car. The technical
developments discussed allowed us to successfully integrate a basic application, represent-
ing the first step towards motion autonomy of this new kind of transportation system
[HPS*03]. Taking further steps requires work regarding the safety and robustness of the

!This rate is fair enough for our needs, even though we could use a real-time driver.
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Figure V.8: Experimental curves showing the flat output during the execution of a parking maneuver
(the fat arrow shows the starting point). Incidentally there was an error in the localization system
“introducing a jump” in the robot’s position. The system was able to remain stable though.

execution accounting further for uncertainty issues and for a dynamical environment. In
particular, obstacle avoidance techniques and dynamic planning ([LSSL02]) ought to be
integrated in the future as well as formal verification issues in the software architecture
(e.g. using Orccad[SEKR91] development tool).



CHAPTER VI

Conclusions

1 Concluding Remarks

The work reported in this dissertation is at the crossroads of nonholonomic motion plan-
ning and feedback control. We have been interested in studying a recent double-steering
nonholonomic robot allowing for exceptional maneuverability capacities. We call bi-
steerable car a vehicle capable of steering its rear wheels in function of the front steering
angle.

The study presented in this dissertation is original in the sense that characterizes
the kinematics of the bi-steerable car which had not been studied in the literature. Indeed,
the robotics community begins to pay attention to the motion planning problem for this
kind of robot. To our knowledge, we have presented the first path planner for a general
bi-steerable car and the first full state control based on feedback linearization. To this
end we explored the properties of differentially flat systems and in particular of the flat
(or linearizing) output.

In a first time, we were interested in solving the complete motion planning problem
for the bi-steerable car using flatness. This faced us with the difficulty of finding the
flat output. The problem was formalized in the setting of Pfaffian systems. The theory
of Pfaffian systems gathers an important number of powerful theorems characterizing
systems which can be put in a normal form with respect to a new set of coordinates. The
flat output of the system belongs to this new set. Since the Pfaffian system associated
to the bi-steerable car contains two equations and four variables, finding the flat-output
consists in computing the change of coordinates associated to its Engel normal form.
The Engel normal form is the dual of the chained form of a four-state, two-input control
distribution. Notwithstanding the powerful results from the theory of Pfaffian systems,
the major obstacle is still to find the appropriate transformations for the coordinate
change.

On the other hand, we were interested in exploring the properties of the linearizing
output for feedback control purposes. This led us to the theory of feedback linearization
in Nonlinear Control. In this context, flatness characterizes nonlinear control systems
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which are equivalent to linear controllable ones, by means of a restricted class of dynamic
feedbacks called endogenous. In this respect the notion of endogenous equivalence pro-
vides a framework to the study of system classification and linearization via this class of
feedbacks. Since Linear Control theory offers a solid and complete framework for solving
closed-loop tasks, we were interested in exploring these properties to solve the trajectory
tracking problem.

The details of our contribution are as follows.

We first introduced the kinematics of the general bi-steerable robot and showed that it
belongs to the class of nonlinear systems known as differentially flat. In particular we
have given a necessary and sufficient condition on the front-to-rear steering function
f in order to guarantee flatness at all points of CS C R*. This entails typically that
for a linear front-to-rear coupling function of the form f(p) = k¢ we have that the
system is flat for k& # 1.

We outline key steps for the explicit computation of the flat output for a codistribution
of dimension 2, verifying the Engel’s conditions. The outcome is a necessary con-
dition on the coordinate transformations required to obtain this flat output. The
condition translates into a pair of PDEs where the unknowns are the transformations
sought.

We applied this condition to the bi-steerable system. By exploring the PDEs and the
invariance of the problem, with respect to Euclidean transformations in the plane,
we found the flat output of the bi-steerable car.

This allowed us to adapt a local planner originally conceived for tractor-trailer systems
[SLL*97]. The adaptation led to a symmetrical planner, verifying the Topological
Property [SL98] and therefore taking into account the small-time controllability of
the system. The steering method thus obtained was subsequently introduced in the
frame of a general path-planning scheme [LJTM94, SLL197, LSL99].

We completed the set of mappings allowing to prove the endogenous equivalence be-
tween the bi-steerable car and the flat output dynamics extended by two integra-
tors. As a corollary of these results, we give the chained form of the bi-steerable car,
opening the possibility to explore point-stabilization techniques. Finally, we have
tackled the trajectory tracking problem for the general bi-steerable car by stabilizing
its equivalent linear controllable system.

To our knowledge our work is the first to address motion planning and feedback lin-
earization issues regarding bi-steerable robots. Simulation and experimental results have
demonstrated the effectiveness and limitations of the approach. There are still open
questions and thus we propose some guidelines for future work as follows.

2 Open questions and guidelines for future work

The advantages of the bi-steerable over the single front-steering system have been made
patent in theoretical surveys in vehicle design and dynamic control. One may wonder
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about the technical implementation problems or the economical factors that have pre-
vented the car manufacturers from commercially launching standard models of the sort.
However it is not unlikely that the double steering capability will gain even more applica-
bility. In this respect, more research work needs to be done in order to get further insight
into the technical issues.

In this respect, we can mention a few guidelines.

1. More experimentations need to be done in order to further evaluate the approach
reported in this dissertation. In this respect, other front-to-rear functions should be
explored (e.g. a rear angle varying sinusoidally with respect to the front steering).

2. What are the optimal paths for the bi-steerable car? In view of the advantages and
applications of this kind of mechanical structure, this question is interesting though
remains difficult to address.

3. Independent control of the rear steering angle yields a 5-state 3-input system. The
system is seemingly flat ([MR95]).

(a) What is the flat output? In this respect, more general and tractable method-
ological tools are required. The possibility to characterize symmetries in a
more general framework should be a promising research direction.

(b) How to use the additional degree of freedom? In this sense, exploring sev-
eral combinations of rear-to-front control schemes may yield interesting results
(from an application point of view: e.g. car parking). In this framework, a
probabilistic approach to motion planning including a random choice on f(¢p)
could be considered.

4. The solutions proposed in this dissertation for the planning and feedback control
problems of the bi-steerable car show the utility of flatness. They shed light on
some of the properties of the models used. There is however a big gap between
these models and the real system. In this respect more robust control strategies
remain to be explored as well as new Al techniques aiming at autonomous vehicles
of this class. In this respect, a deeper analysis of the system dynamics stills the
major obstacle in developing robust control methods.
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APPENDIX A

Nonlinear control systems

Introduction

No one would deny that mathematics is the fundamental tool of any scientist or engineer
looking for insight into a new problem at hand—this is an evidence for biologists of
today looking for modeling phenomena of microscopic life. As far as the study of the
bi-steerable system is concerned, nonlinear control systems and differential geometry are
the formal frames within which we should lead the discussions developed throughout this
dissertation.

A-1 Preliminary notions

Before giving the definitions of some concepts used throughout this document, let us give
some preliminary notions that might be of utility, at least for the reader unfamiliar with
the material presented here. Let us start this introductory Section with a statement that
we found in [Lan86] about what one understands as formal: A list of rules or of axioms
or of methods of proof which can be applied without attention to the “meaning” but
which give results which do have the correct interpretation. Thus this Section is basically
“informal” (most of the material presented here can be found in [Lan86, Chapters VI and
VII)).

A-1.1 Tangent spaces, cotangent spaces and vector fields

Consider two functions z = ¢(¢) and y = h(t) describing the motion of a point in the
plane. If these functions have continuous derivatives, giving values x,y in the set U € R?
where the function z = f(z,y) also has two continuous first partial derivatives, then
z = f(g(t), h(t)) is a function of (suitable values of) ¢ with the continuous derivative

dz_az% 875%

U ama Tayar (A-1)
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This chain rule has several different aspects.
First, think of dz = (dz/dt)dt as an infinitesimal change in z, caused by the (equally)
infinitesimal change dt in ¢. Then, multiplying (A-1) by dt and canceling gives

0z 0z
= — —dy. A-2
dz g dz + By dy (A-2)

This expression is called the total differential of z due to the infinitesimal changes dz and
dy.

Starting from a point xg,yo with finite changes  — zy and y — yo, the formula (A-2)
suggests a linear approximation z — zy to the change in z:

= (%)0 (o — 0) + (g—y)o (v — o). (4-3)

In the chain rule (A-1), dz/dt can be regarded as an ”inner product” of two ”vectors”,

as follows
dz [0z Oz dz dy
a=(oa) (&%) (A4

The first factor on the right is called the gradient of z = f(xz,y); it is defined at
each point of the plane, and is written

0z 0Oz
o= (5 5) - (A5)

This vector “points” in the direction of the maximum rate of increase of the function
f, and has that rate as length. The function f determines one such vector at each point
of the plane. At each point, all such vectors for all f form a two-dimensional vector space,
called the cotangent space attached to the plane at that point!.

The second vector in the product (A-4) depends on the functions z = ¢(t) and
y = h(t). They describe a continuous path passing through point g, yo; such a path is
called a parametrized curve. Such a curve is the trajectory of the moving point. At time
to, where © = zy, and y = yg, the velocity of this moving point is the second factor of

(A-4)

(55), =W

It is called the tangent vector of the path at the point. All the tangent vectors to the
trajectories through the point (zg,yp) form a two-dimensional space, called the tangent
space Ty to the plane at this point?.

!Notice that a basis for such vector space, in this particular case, is {dzx,dy}.

Notice, that a basis for this vector space is {%, % .
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The “product” (A-4) is a real-valued function of two vectors, one from each space.
This function is linear in each vector when the other is held constant, so is said to be
bilinear. As a matter of fact, the cotangent space is dual to the tangent space.

On the other hand, every smooth function f has a gradient Vf as in (A-5). In
particular the coordinates z and y are smooth functions, with gradients Vz = (1,0) an
Vy = (0,1). Hence every gradient can be expressed at each point as a linear combination
of these two gradients, in the form

Vf= (g—j:) V4 (%) Vy.

Except for notation, this is just the definition

of of
df == )d —= | dy.
= (ae) ()
of the total differential. Thus the differential, born as an infinitesimal, may be defined to
be the gradient Vf — a vector in the cotangent space.

The tangent vector at tg to the path g(¢), h(t) also determines the usual tangent line to
the path, with the parametric equations

z —z9 =g (to)(t —t0), y—yo="h(t)(t~to), (A-6)
where zg = g(t9) and yo = h(tp).

The chain rule (A-1) also has a 3-dimensional interpretation. The function z =
f(x,y) represents a height z above (or below) the point (z,y) in the plane, and so may
be pictured by a smooth surface S at these heights above some portion of the plane. The
tangent plane 7w to this surface at a point p = (¢, 0,20 = f(Z0,¥0)) is by definition
the plane (if there is one) containing all the tangent lines at p to all the smooth curves
on S passing through p. Such a smooth trajectory is given by z — ¢(t), y = h(t) and
z = f(g(t),h(t)); its tangent line at p is given by the parametric equation (A-6) plus the
corresponding equation for z:

22 = (%)0 (t — o). (A7)

But equations (A-6) and (A-7) together satisfy the linear equation (A-3) for the
approximate change z — 2z in z. This linear equation (A-3) represents a plane in 3-space;
since it is satisfied by (A-6) and (A-7) for any curve g(t), h(t), f(g(t),h(t)) of S, it must
be the tangent plane to the surface S.

In this way, the chain rule combines ideas from geometry (tangent planes), from
mechanics (velocity vectors), from calculus (linear approximation), and from algebra (dual
spaces). It gives meaning to the “total differential”.

Some of these ideas are more vivid in pictures. Thus gradients of a function f(z,y)
defined in the whole (z,y)-plane give a vector at each point in the plane —hence a vector
field in the plane (Figure A-1.a). Alternatively the loci where f(z,y) = constant give the
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family of curves in the plane — the contour lines for f (Figure A-1.b). When f is smooth
the gradient vectors, if non-zero, are orthogonal to the contour lines; for topography, they
represent the direction of fastest ascent.

P
//;'//
S T

a.) A vector field

b.) Contour lines

Figure A-1: A vector field and contour lines such that f(z,y) is constant.

A-1.2 Space, Motion and Differential geometry

Space and motion are closely tied, from physics to physical exercise. Perceptions of space
and of motions in space have led mathematicians to describe a wide variety of formal
geometrical structures. In Euclidean geometry, the phenomena of space is analyzed in
terms of lines, triangles, angles, and congruence; in brief such a geometry is primar-
ily linear. Other geometrical phenomena involve curved lines in the plane or twisted
curves and curved surfaces in three-dimensional space. By approximating these curves
by straight lines, the methods of calculus come into play, leading to the subject of dif-
ferential geometry. One important concept in differential geometry is curvature. The
resulting elementary methods of analyzing curvature lead inevitably to a study of the
intrinsic geometry of surfaces.

A smooth path (that is, a parameterized curve) in the z,y plane is given by a pair
of smooth functions

z=g(t), y=nh() (A-8)

defined for some interval of the real parameter ¢. The tangent vector at any point p =
(g(to), h(to)) of the path is the vector

(9' (o), B (t0)) (A-9)
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in the tangent space T}, of the plane at that point. If the tangent vector is never zero, the
path is said to be regular. The parameter ¢ can be changed, say to u = k(t), provided the
smooth function k has k'(t) # 0 throughout the interval in ¢. Such a change alters the
length of the tangent vector (A-9) but not its direction—and gives the same set of points
(z,y). This collection of points is the curve traced out by the path (A-8).

One first wants the length of such curve. To measure the length from ¢; to to we
have

/t 02 4 K ()2 2dt = / (da + dy?)'/2. (A-10)

1

The length s from ¢; up to ¢ is then the integral

¢
s =/ (dz? + dy?)'/?; (A-11)
¢

1

then s determines ¢, so one may use this arc length s as a parameter in place of ¢. The
differential of this arc length s is then given by the quadratic expression

ds® = dz? + dy?; (A-12)

it is the Pythagorean theorem in infinitesimal form.

For curvature, the circle provides a typical example. The smaller the radius, the
greater the curvature. Here one defines the curvature of a circle to be kK = 1/r. For a
general curve the natural approach is then to approximate the curve at each point p by a
circle through that point. It is the limiting curvature of a circle, passing at points p and
two neighbor points p’ and p”, called the osculating circle, that defines the curvature of
the given curve at point p. From this description as a limit, one can obtain an analytic
formula giving the curvature x at each point as a function of the parameter value ¢ at
that point:

_ gk — K0
(9 ®7 + W (0P)P

(A-13)

Here we assumed a regular parameterization, as defined above, so that the denominator
is never zero.

The arc length s, measured from some starting point, provides an intrinsic parame-
ter, and the curvature k at each point is more naturally expressed as a function k = k(s)
of the arc length s up to that point.

Now in view of the “intrinsic” geometric definition of arc length and of curvature,
these quantities are said to be Euclidean invariants of the curve, in the sense that they
are unaltered by rotation and translation transformations.

In brief, the lines, circles and planes of elementary Euclidean geometry can be used
to approximate the curves (and later the surfaces) in space, thereby making the ideas of
calculus apply in a geometric context.
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A-2 Differential geometry concepts

A-2.1 Manifolds

The following definitions are taken from several references including [Lat91b], [Olv93] and
[T5i95).

Continuous map Let EF and F be two topological spaces. A map f : F — F is
continuous iff the inverse image of any open set (in the topology of F) is an open set (in
the topology of FE).

Homeomorphism Let f: X CR* - Y C R™ be a map between two subsets of two
topological spaces. It is a homeomorphism if f is bijective and continuous (or C%), and
the inverse map f~! : Y — X is also continuous (in the subspace topologies of X and Y).
X and Y are said to be homeomorphic if such a map exists.

Diffeomorphism Let f: X C R* -+ Y C R™ be a map between two subsets of two
Euclidean spaces. It is a diffeomorphism (resp. a C" diffeomorphism) if f is bijective
and, f and the inverse map f ! :Y — X are differentiable (resp. C") (in the subspace
topologies of X and Y). X and Y are said to be diffeomorphic if such a map exists.

Manifold A topological space M is a manifold if every point £ € M has an open
neighborhood homeomorphic to an open ball of R”, for some n independent of x. The
number 7 is the dimension of the manifold.

Roughly speaking, and as far as the material presented here is concerned, a manifold
may be seen (at least locally) as an open subset of the Euclidean space [Olv93].

A-2.2 Tangent space and tangent bundle

Tangent space Suppose C' is a smooth curve on a manifold M, parameterized by
o : I — M, where I is a subinterval of R. In local coordinates x = (z1,...,%m), C is
given by m smooth functions o(g) = (o1(¢),...,0m(e)) of the real variable . At each
point & = o(g) of C the curve has a tangent vector, namely the derivative

The collection of all tangent vectors to all possible curves passing through a given
point z in M is called the tangent space to M at z, and is denoted by T, M.
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Tangent bundle The collection of all tangent spaces corresponding to all points z in
M is called the tangent bundle of M, denoted by

TM = U T, M.
TxEM

If M is of dimension m, then T'M is of dimension 2m.

A-2.3 Vector fields, distributions and integral curves

Vector field A wvector field f is a function on M that assigns a tangent vector f(z) €
Ty M to each point x € M, with f(z) varying smoothly from point to point. In local
coordinates, a vector field is a column vector

fH(=)
flz) = : ;
fm(z)

where each f*(z) is a smooth function of z.

If M is an m-dimensional manifold, then T, M is an m-dimensional vector space,
with

0/0z1,...,0/0%n,

providing a basis for T, M in the given local coordinates (z1, ..., z,,). Hence an alternative
notation for a vector field f is as follows:

0 0

f@) = fl(2) 5+ )5+ + f(2)

0x1 0x9 0z, .

Distribution Suppose now an independent set of vector fields {fi,..., fm}. To this
set is naturally associated a distribution on M. A distribution A(z), z € M is the
subspace of T, M which is spanned by the tangent vectors assigned at z by the vector
fields {f1, ..., fm}. Thus the dimension of the distribution at z is defined by the dimension
of the vector space

A(x) = span{fi(a), .., fu(®)} C TuM.

A distribution is therefore identified by a set of vector fields, say {f1,-.., fm}; when
the explicit dependence on the point is dropped, the alternative notation is used

A = span{fi,..., fm}

to denote the assignment as a whole.
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Integral curve An integral curve of a vector field f is a smooth parameterized curve
x = o(e) whose tangent vector at any point coincides with the value of f at the same
point:

() = f(o(e))

for all e. In local coordinates, z = o(¢) = (01(€),...,om(€)) must be a solution to the
autonomous system of ordinary differential equations

dx.; .

dlg’ = fi(z), i=1,...,m, (A-14)

where f(z) are the coefficients of f at . For fi(x) smooth, the standard existence and
uniqueness theorems for systems of ordinary differential equations guarantee that there
is a unique solution to (A-14) for each set of initial data

a(0) = z°. (A-15)
This in turn implies the existence of a unique mazimal integral curve o : I — M

passing through a given point 20 = ¢(0) € M, where “maximal” means that it is not
contained in any longer integral curve.

Figure A-2: Vector field and integral curve on a manifold.

A-2.4 Flows

If f is a vector field, we denote by ¥(e,z) the parameterized maximal integral curve
passing through z in M at ¢ = 0 and call ¥ the flow generated by f (see Figure A-2).
Thus for each z € M, and ¢ in some interval I, containing 0, ¥(e,z) will be a point
on the integral curve passing through z in M. The flow of a vector field has the basic
properties:

U, ¥(e,x) =¥ (d+e,2), z€M,

for all §,e € R such that both sides of the equation are defined,
U(0,z) =z,
and

2 9(e,7) = F(¥(e,2)
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Let us introduce the following notation:
Ny = (e, z)
Hence the above properties can be restated as

O+ — 00 gleN)

whenever defined,
Ny =g,

and

d & 3
%[e( Na) = f(eN )

for all z € M.

The most important operation on vector fields is their Lie bracket or commutator.
The next definition is a coordinate-free one.

A-2.5 Lie brackets

For vector fields f defined on M and for smooth functions A : M — R

FO) = SAEDa)

for all z € M.

Definition If f and g are vector fields on M, then their Lie bracket [f, g] is the unique
vector field satisfying

[f:9](A) = f(g(A)) —g(f(N))
for all smooth functions A : M — R.

The following theorem gives a geometric interpretation of the Lie bracket of two
vector fields (see Figure A-3).

Theorem A-2.1 ([Olv93]) Let f and g be smooth vector fields on a manifold M. for
each € M, the commutator

P(e,z) = el VN (-VEN (Ve o(VED

defines a smooth curve for sufficiently small € > 0. The Lie bracket [f, g|(z) is the tangent
vector to this curve at the end-point ¥(0,z) = z:

_ 4
a de e=0+

(£, 9](x) ¥l ).
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Figure A-3: Geometric interpretation of the Lie bracket of two vector fields (taken from
[O1v93]).

Lie derivative in local coordinates Let A be a real valued function and f be a vector
field, both defined on a subset U of R". The Lie derivative of A along f is noted L;\ and
has the usual definition

L;A(z) Z 8%

at each = of U.
When the operation is repeated, e.g. along another vector field g, we have
O(LA
i

If the operation is repeated k times along the same vector field, we write Li\ and the
following recursion formula is used

L,L\e) =

(Lt N

LiA@) = S22 f (o)

with LIA(z) = A(z).

Lie bracket in local coordinates Let f and g be two vector fields, both defined on a
subset U of R". The Lie bracket is the new vector field noted [f, g] and defined as

20)@) = 2 () ~ W gfa

at each z of U, and where 22 and 2L denote the Jacobian matrices of the mappings g
’ ox ox g

and f respectively.

Repeated bracketing is possible and is noted [f, [f, . .., [f, g]]] which has the following
alternative notation

adyg(z) = [f, ad; ' g)(z)
for any k > 1, setting ad}g(z) = g(=).
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A-3 Elements of control systems classification

We now give some elements of classification of nonlinear control systems. These elements
help in the formalisation of some system properties—e.g. controllability.

Lie product length Given vector fields {fi,..., fm}, the length of a Lie product is
recursively defined as:

I(fi)=1 i=1,....m
I([4, B]) = 1(4) +1(B),

where A and B are themselves Lie products.

Regular systems Let A = span{fi,..., fm} be a distribution associated to a nonlinear
control system of the form:

m
P m:Zuz(t)fZ(ac) zeR" ueR™.
i=1

Define F; = A and
E,=F;_ {1+ [El,Ei—l] (’L =2,3,.. .),

where
[E1, Ei_1] = span{[f,g] : f € E1, g € E;_1}.

The set of all F;’s is called a filtration associated with A. At every point x € R", each
E;(z) defines a linear subspace of the tangent space spanned by the driving (input) vector
fields {f1,.--, fm}, plus the vector fields generated by taking up to i — 1 Lie brackets. A
filtration is said to be regular at a point z° if

rank E;(z) = rank E;(z°) Vz € X,

where X C R” is a neighborhood of z°. A singular point is one for which the above
equality does not hold, in which case the filtration is singular at that point. A system is
said to be regular if the corresponding filtration is regular.

Degree of nonholonomy During the construction of a regular filtration, E; either
gains or maintains dimension, in which case the construction stops. If rank E;;; #
rank FE;, then rank E;1q1 > rank E;. Clearly, rank E; < n. If a filtration is regular, then
there exists an integer p < n such that E,_1 # E, = E, ;1 = ---. The integer p is referred
to as the degree of nonholonomy of the system. It corresponds to the minimal length of

the Lie bracket required to span the tangent space?.

3Formally it should be distinguished between the degree of nonholonomy at regular and singular points.
The degree of nonholonomy of the system would corresponds therefore to the upper bound of all degrees
of nonholonomy defined locally[LSL98].
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Growth and relative growth vectors It is sometimes useful to record the dimension
of each F;. Thus, suppose that p is the degree of nonholonomy of the system at a point
z and assume we have k nonholonomic equality constraints. The growth vector r € ZP at
z is defined as the sequence r := (rq,...,rp), where r; = (n — k) <ry <r, =n and

ri = rank E;(z).

The relative growth vector o € ZP is defined as: o; = r; — r;_1 and r9 := 0. For a
distribution with finite rank, it is possible to compute for every step an upper bound of
this parameter. If at each step ¢ is equal to this upper bound then the system is said to
have mazimum growth.

Frobenius Theorem Recall that at a point z of the manifold M, the distribution A(z)
is the subspace of T, M which is spanned by the tangent vectors assigned at z by vector
fields fi,..., f4- The dimension of the distribution at a point is defined as the dimension
of the subspace A(z). A vector field f belongs to a distribution A if f(z) € A(z) for all
TeEM.

A distribution A is called involutive if given any two vector fields f1 and f2 belonging
to the distribution, their Lie bracket also belongs to the distribution, i.e.

fi,foe A= [fi,fol €A

A distribution is called integrable if there exists a submanifold NV of M such that the
tangent space of N at = equals A(z). The submanifold N is called the integral manifold
of the distribution A.

Theorem A-3.1 (Frobenius theorem for distributions) A distribution A(z) is in-
tegrable if and only if it is involutive.
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Exterior differential systems

We will mention few concepts about exterior differential systems. For a complete presen-
tation of the required material we refer the reader to [BCG91].

Preliminary notions

Tensors

Definition B-0.1 Let (V,R) denote a finite dimensional vector space over R. The dual
space associated with (V,R) is defined as the space of all linear mappings f : V — R. The
dual space of V is denoted as V* and the elements of V* are called covectors. V* is a
vector space over R with dim (V*) = dim (V') for the operations of addition and scalar
multiplication defined by:

(a+B)(v) = av)+p(v)
(ca)(v) = c-afv)

Furthermore, if {v1,...,v,} is a set of basis vectors for V, then the set of linear functions
¢V >R 1<14 < n, defined by:

iy JO=ifi#]
¢(UJ)_{1:7:f’i:j
form a basis of V* called the dual basis.

A multi-linear function T : V¥ — R is called a covariant tensor of order k or simply a
k-tensor. The set of all k—tensors on V is denoted £*(V). Note that £(V) = V*, the
dual space of V. Therefore, we can think of covariant tensors as generalized covectors.

Definition B-0.2 Let f be an arbitrary k-tensor on V. If o is a permutation of {1,...,k},
we define f° by the equation

fovr, k) = Fvoys -+ Va(r))
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Since f is linear in each of its variables, so is f°. The tensor f is said to be symmetric
if f = f€ for each elementary permutation e, and it is said to be alternating if f = —f¢
for every elementary permutation e.

We denote the set of all alternating k-tensors on V by A¥(V*). We have L1(V) =
AL(V*) = V* and we define A°(V*) = R.

Ideals

Definition B-0.3 Given an algebra (V,®), a subspace W C V is called an algebraic
ideal if x e W, y € V implies that t Oy and yOz € W.

Definition B-0.4 Let (V,®) be an algebra, and I C V an ideal. Two vectors z,y € V
are said to be equivalent mod I if and only if x —y € I. This equivalence is denoted

z=ymodl

k-forms The dual space of T, M at each z € M is called the cotangent space to a
manifold M at x and is denoted by Ty M. The collection of all cotangent spaces,

T™* = || T;M
zeEM
is called the cotangent bundle. Similarly, we can form the bundles
oM = | LA T M)
TeEM

AF(M) = | AR (T M)
reEM

Tensor fields are constructed on a manifold M by assigning to each point z of the
manifold a tensor. A k—tensor field on M is a section of £¥(V), i.e. a function w assigning
to every x € M a k—tensor w(zx) € L¥(T,M). At some point z € M, w(z) is a function
mapping k-tuples of tangent vectors of T, M to R, that is w(z)(f', f%,...,f*) € Ris
a multi-linear function of tangent vectors f!, f%,...,f¥ € M. In particular, if w is a
section of A¥(M) then w is called a differential form of order k or a k—form on M. In
this case, w(z) is an alternating k—tensor € A¥(T; M) at each point x € M. The space
of all k—forms will be denoted by QF(M) and the space of all forms on M is simply

QM) :=Q°M) @ --- @ Q" (M)

Exterior derivative and wedge product

Exterior derivative Recall that a O-form on a manifold M is a function A : M — R.
The differential d\ of a 0-form ) is defined pointwise as the 1-form

d)‘(x)(fz) = fw()‘)
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It acts on a vector field f, to give the directional derivative of XA in the direction of f, at
z.

Let (z1,...,y) be local coordinate functions around a point x € M. Then
0 0
Or,’ 7 Ozy

is a basis for T, M.

Consider the differentials of the coordinate functions

dzi(z)(fz) = fa(@i)

By evaluating these differentials at the basis tangent vectors of T,, M we obtain

LN f0=ifi#]
di(@) (Gg;) = 0 = { 1=ifi=j

(i.e. for any point z and any tangent vector v € T, M, if {v!,... 4"} are coordinates for
v at z, then dzy(z)(v) = v*). Therefore the dz;(x) are the dual basis of T, M. Using this
basis, we have now that for a O-form

More generally, the differentiation is then defined as an operator transforming a k-form
into a (k + 1)-form.
d: QF (M) — Q1 (M)

Wedge product On Q(M), the space of the differential forms on M, one defines a
wedge product A such that for a k-form w and a p-form a, w A a is a (k + p)-form. The
wedge product is associative, distributive and skew-commutative: o A w = (—1)*Pw A .

It allows us to simply define a basis for all QF(M) using a coordinate system of M.

Indeed, given such a chart {z1,...,2,} on M, any k-form w can be expressed as :

w = Z Oiy,...indziy A ... Ndz;,

1<i1<..<<n

where 6;’s are 0-forms (i.e scalar functions on M) and dz;’s the 1-forms associated to the
coordinate system.

Moreover, the differentiation of w is defined as:

do= Y dby,. i Ndzi, A Nda,
1<i1<... < <n
where
N
d0i1,___,ik = M, forl1<ii<...<ip; <n
6.’1,']'

=1
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We say that a k-form is of class C* (or smooth) if and only if the functions 6;, . ;, are
of class C* (or smooth).

The following theorem resumes the above notions and some important properties
of the differential operator.

Theorem B-0.2 Let M be a manifold and let x € M. Then the exterior derivative is the
unique linear operator

d: QF(M) = QFFL(M)

for k >0, that satisfies,
1. If o is a 0-form, then do is the I-form
da(z)(fz) = fola)
2. If w; € QF(M), wy € QY(M) then

d(w1 N 0.)2) = dwi N\ ws + (—1)kw1 A dws

3. For every form w, d(dw) = 0.

Distributions and codistributions

Distributions Recall that a distribution A(z), z € M is the subspace of T, M which
is spanned by the tangent vectors assigned at z by the vector fields {fi,..., fq4} and is
denoted by A(z) = span{fi(z),..., fa(z)}. Alternatively, when the explicit dependence
on the point is dropped, we write

A = span{fi,..., fa}-

A distribution is called integrable if there exists a submanifold N of M such that the
tangent space of N at = equals A(z). The submanifold N is called the integral manifold
of the distribution.

Codistributions Similarly, one can assign to each point £ € M a set of 1-forms. The
span of these 1-forms at each point will be a subspace of the cotangent space Ty M. This
assignment is called a codistribution and is denoted by O(z) = span{wi(z),...,wq(z)}
or alternatively:

O = span{wi,...,wq}-

There is a notion of duality between codistributions and distributions. Given a distri-
bution A, for each z in a neighborhood X, consider all the 1-forms which pointwise
annihilate all vectors in A(z):

At (z) = span{w(z) € TiM : w(z)(f) =0, Vf € A(z)}.
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At (z) is a subspace of T M and is therefore a codistribution. We call A the annihilator
or dual of A.

Conversely, given a codistribution ©, we construct the dual distribution pointwise
as
01 (z) = span{v € Ty M : w(z)(v) =0, Yw(z) € Qx)}.

If N is an integral manifold of a distribution A and v is a vector in the distribution A
at a point x (and consequently in T, M), then for any o € A+, a(z)(v) = 0. This must
also be true for any integral curve of the distribution. Therefore given a codistribution
© = span{wi,...,ws}, an integral curve of the codistribution is a curve ¢(t) whose tangent
d(t) at each point satisfies, for i = 1,...,s:

wi(e(t))(d'(t)) = 0.

Exterior differential systems

Exterior algebra and ideals The space of all forms on a manifold M,
QM) =M ®---® Q" (M)

together with the wedge product is called the exterior algebra on M.

Algebraic ideal An algebraic ideal I is a subspace such that if
a€l, thenaANp eI forany B € QM).
An ideal I C Q(M) is said to be closed with respect to exterior differentiation if f
ac€l=dael

An algebraic ideal which is closed with respect to exterior differentiation is called a dif-
ferential ideal.

A finite collection of forms, ¥ := {a;,...,ax} generates an algebraic ideal
K
Iy ={w e QM) |w= ZOZ- ANa; for some 0; € Q(M)}.
i=1

We can also talk about the differential ideal Zy; generated by 3.

Exterior differential system

Definition B-0.5 An exterior differential system is a finite collection of equations

a1 =0,...,a,=0
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where each a; € QF(M) is a smooth k-form. A solution to an exsterior differential system
is any submanifold N of M which satisfies

a,-(w)|TmN =0

for allz € N and alli € {1,...,r}.

The following theorem allows us to either work with the generators of an ideal or with
the ideal itself.

Theorem B-0.3 Given an exterior differential system
ar=0,...,ax =0

and the corresponding differential ideal Iy, generated by the collection of forms
Y=A{a,...,ax}.

An integral submanifold N of M solves the system of exterior equations if f it also solves
the equation ™ = 0 for every m € Ix.
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Basics on Stability Analysis

Modern control theory relies strongly on the state-space analysis approach. We recall
here some of the principles and tools related to this approach.

State variables and state space

The state of a dynamic system is a set of variables (called state variables) such that
the knowledge of these variables at t = tg, together with the knowledge of the input for
t > to, completely determines the behavior of the system for any time t > to[Oga90]. The
state variables is hence the n-tuple (z1,z2,...,z,) of variables needed to fully describe
the system. Note that state variables are not necessarily measurable physical quantities.
Note also that if you have a dynamical system whose output depends on time and input,
it must involve elements that memorize the values of the input as a function of time. Since
integrators in continuous-time control systems serve as memory devices, the outputs of
such integrators can be considered as the variables that define the internal state of the
dynamical system. In this case, the outputs of the integrators serve as state variables.

All the possible values of the state variables (21,2, ..., zy) define an n-dimensional
space whose coordinate axes consist of the z; axes i € (1,2,...,n). At any time, the set
(x1,23,...,7,) defines a single point in the State space and hence x = (z1,z3,...,7,)"

is a vector in this space, called the State vector.

State-space equations

A dynamical system is frequently modeled by a set of linear (or nonlinear) differential
equations, relating the behavior of the output to the input as a function of time. Since
state variables “memorize” the internal state of the system, it is possible to express the
dynamics of the system as a set of differential equations relating the dynamics of the state
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and the output to the actual state, the input and possibly the time'. Mathematically, if
the input of the system is represented by a vector (multiple input) u, the output is the
vector (multiple output) y and the the state vector is x, then the following expressions
define control systems in state-space regarding linear autonomous systems (we will not
focus on time-varying systems) :

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

—~

where A is the state matrix, B is the input matrix, C is the output matrix and D
is the direct transmission matrix.

Nonlinear autonomous control systems are modeled:
x = f(x,u)

Stability

The definitions, theorems and ideas discussed in this section are borrowed from [Kha96].
Equilibrium point:

Definition C-0.1 The equilibrium point © =0 of £ = f(x) is -
e stable if, for each ¢ > 0, there is 6 = d(€) > 0 such that :

[2(0) [<d=[=()l[<eVEi>0
o unstable if not stable.

o asymptotically stable if it is stable and § can be chosen such that :
I 2(0) 1< 8 = Jim 2(t) = 0

This definition states clearly the concept of stability around the origin: if the trajec-
tories of the system start at a neighborhood ¢ (possibly function of €) of the equilibrium
point, then they remain within a certain ball of radius € containing this equilibrium point,
and our system is said to be stable. Asymptotic stability is a stronger condition since we
force the system not only to remain within the ball defined by e but also to converge to
the equilibrium point in the long run.

Lyapunov Stability : Consider the following autonomous system :

i= () (C-1)

!This is the difference between time-invariant and time-varying systems, for which the dependence on
time of the internal state is explicit.
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where z € R” and f is smooth. Suppose (C-1) admits a stability (or equilibrium) point.
We are interested in determining the stability of (C-1) without computing its actual
solutions (i.e. without solving the system). In 1892, Lyapunov showed that it is possible
to find functions whose behavior along trajectories of (C-1) enable us to derive conclusions
about its stability.

Theorem C-0.4 (Lyapunov) Let x = 0 be an equilibrium point for (C-1) and U C R"
be a domain containing x = 0. Let V : U — R be a continuously differentiable function,
such that :

V(0) =0 and V(z) >0 in U — {0} (C-2)

Vi) <0inU (C-3)

Then, x = 0 is stable. Moreover if

V(z) <0inU (C-4)
then x = 0 is asymptotically stable.
where p oV
V(z) = %V(w) = oz (z)

A continuously differentiable function satisfying C-2 and C-3 is called a Lyapunov func-
tion?. The set of points z such that V(z) = 0 define a surface V (z) = ¢ called a Lyapunov
surface or level surface. The condition V<0 implies that when a trajectory crosses a
Lyapunov surface it moves inside the set Q. = {z € R"|V(z) < ¢} and can never come
out again. Moreover, if V< 0, the trajectory moves from one Lyapunov surface to an
inner Lyapunov surface with a smaller ¢, showing that V(z) = ¢ shrinks to the origin as
time progresses (see Figure C-1).

A function V is said to be positive definite(resp. negative definite) if Vo € R”
V(x) > O(resp. V(x) < 0). It is said to be positive semidefinite(resp. negative
semidefinite) if Vz € R” V(x) > O(resp. V(x) < 0).

Suitable Lyapunov function candidates are quadratic functions of the form :
n n
V(z) =27 Pz = Z Zpijwiwj
i=1 j=1

where P is a real symmetric positive definite matrix.

2A more rigurous definition may involve “comparison functions” of the class Koo, @ : Rt — RT
which are continuous, strictly increasing, unbounded and satisfy a(0) = 0. Thence the definition may be
completed by the following sentence:

Ja, B € Ko, a(lz]) < V(z) < B(|z|) Vz € R".
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Figure C-1: Level surfaces of a Lyapunov function (i.e. set of points z such that V(z) = 0) where
c1<cz2<cs

There is no methodology in finding a Lyapunov function for any particular problem.
It is a trial and error approach, apart from the energy equations that can be formulated
for electrical or mechanical systems. This is also reinforced by the fact that the conditions
in the theorem are only sufficient, since failure of a Lyapunov function candidate to satisfy
the conditions for stability or asymptotic stability does not mean that the equilibrium
point is not stable or asymptotically stable.

Asymptotic stability is an important problem in control theory. Its proof may
be particularly difficult. When the origin is asymptotically stable, we are interested in
knowing how far can we go from it in order to keep the stability properties of the system.
We define thus a region of attraction also referred to as the attraction domain. Suppose
that ¢(t,z) is the solution of (C-1) passing by x at ¢ = 0. The region of attraction is
therefore defined as the set of all points  such that lim;_, o, ¢(t,z) = 0.

Trying to find such a domain analytically might be very difficult. It is however
possible to estimate it using Lyapunov functions satisfying conditions of asymptotic sta-
bility of theorem C-0.4 and such that the sets Q. = {z € R"|V(z) < ¢} are bounded and
contained in U. For, if these conditions are met, we know that every trajectory starting
inside €2, remains in ), and approaches the origin as t — oo. Thus €2, is an estimate of
the region of attraction®. Even more importantly is that if this region is proved to be R”,
we say that the system is globally asymptotically stable.

The next theorem formalizes the conditions for global asymptotic stability:

Theorem C-0.5 (Barbashin-Krasovskii) Let z = 0 be an equilibrium point for (C-1).
Let V : R" — R be a continuous differentiable function such that

V(0)=0and V(z) >0, VYz#0 (C-5)
|z ||— 00 =V(z) > (C-6)
V(z) <0, Yzr#0 (C-7)

then x = 0 is globally asymptotically stable.

3Better estimations of this region may be found in advanced stability analysis methods (see [Kha96]).
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Lyapunov Stability for Time-invariant Linear Systems : The next theorem
applies to linear time-invariant systems:

Theorem C-0.6 (taken from [Kha96]) The equilibrium point x = 0 of the linear
time-invariant system : & = Ax is stable if and only if all eigenvalues \; of A satisfy
Re(X;) < 0 and every eigenvalue with Re(\;) = 0 has an associated Jordan block of order
one. The equilibrium point © = 0 is (globally) asymptotically stable if and only if all
eigenvalues of A satisfy Re(\;) < 0.

When all eigenvalues of A satisfy Re()\;) < 0, A is called a Hurwitz matriz.

Asymptotic stability can alternatively be investigated using Lyapunov’s method.
Recall that a candidate Lyapunov function is:

V(z) =z’ Px

where P is a real symmetric positive definite matrix. The derivative of V along the
trajectories of the linear system # = Az is given by:

V(z)= —2TQx
where Q is a symmetric matrix defined by:

PA+ATP=—-Q (C-8)

In analyzing the stability of £ = Az we would need to chose a positive definite
matrix P and then check for the negative definiteness of V(x) It is however possible to
undertake the reverse procedure, that is, to chose () as a real symmetric positive definite
matrix and solve (C-8) for P. If (C-8) has a positive definite solution, we can then
conclude that the origin is asymptotically stable :

Theorem C-0.7 A matriz A is a stability matriz; that is, ReX; < 0 for all eigenvalues
of A, if and only if for any given positive definite matriz @, there is a positive definite
matriz P that satisfies the Lyapunov equation (C-8). Moreover, if A is a stability matriz,
then P is the unique solution of (C-8).

Lyapunov Stability of time-invariant Non-linear Autonomous Systems :
The next theorem applies to non-linear systems of the form & = f(z) :

Theorem C-0.8 (Lyapunov’s indirect method) Let x = 0 be an equilibrium point
for the non-linear system :

i = f(z)

where f : D — R" is continuously differentiable and D is a neighborhood of the
origin. Let
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_of
A= %(I) =0

Then,

1. The origin is asymptotically stable if Re()\;) < 0 for all eigenvalues of A.

2. The origin is unstable if Re(\;) > 0 for one or more of the eigenvalues of A.
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Preliminary Study on the
Bi-steerable Odometry

In this appendix, we propose a model for the odometry of the bi-steerable robot and a
“general” model for dealing with the uncertainty. By “general” we mean that the model
can be particularised under specific assumptions, regarding the nature of the uncertainty
in the odometry model. To this end, we use a Bayesian formalism. Hence we give a
general description! of the uncertainty of our odometry model. For our purposes, we use
the methodology of Lebeltel [LDBMO0] as a design tool.

Let us start by discussing elements to take into consideration when designing the
odometry of a bi-steerable car ([HPS02]). The assumption is that the robot is equipped
with either absolute or relative encoders in the four wheels.

D-1 Modeling odometry for a BiS-car: a few considerations

Standard Differential Heading odometry results ([Wan88], [CK97]) cannot be applied
directly to the bi-steerable robot, for there is no fixed axle in this case. Hence we discuss
some modeling choices for an axle with steering wheels, for odometry purposes.

D-1.1 Modeling an axle with steerable wheels for odometry

According to the rolling compatibility conditions given by Alexander-Maddocks [AM89],
when the wheels are steered each one turns a different amount. Hence the mechanical
design of a steering axle is such that each wheel has different attitude as soon as the
steering wheel turns. Consequently the axle has a single instantaneous centre of gyration
and describes an exact circle when turning (see Figure D-1.a).

At this stage geometric modeling choices can be made. If we tried to compute

'"Here description has a precise meaning as pointed out further in the text.
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the arc length AS (described by the middle of the axle) we would probably improve the
accuracy of the odometry at the cost of increased complexity. However, it is not sure that
the required information to compute AS would be available. Indeed, the control input
usually considered is the rotation angle of the steering wheel. If we wanted to make exact
computations, we would need the exact values of angles ¢; and 9, which may not be
available. For instance, as far as our robot is concerned we do not have this information.
In fact, the actual robot is controlled through a single steering command (like for a
mechanical steering wheel). Thus the assumption that the actual system corresponds to
the one depicted in Figure D-1.b seems a reasonable one for modeling purposes. For this
reason, we decided to look for a trade-off between accuracy and low complexity in the
following way.

d
a= (a1 +a2)/2

Figure D-1: a) Mechanical steering capability of a BiS-car; b) Geometric model for kinematics study:
a single steering angle o = (a1 + a2)/2 is assumed; c) Alternative modeling for odometry purposes: we
make the axle to pivot round the middle point as soon as the steering angle is applied. Thus the wheels
base becomes B cos(a) < B.

We have seen that for the study of the kinematics of the vehicle the modeling choice
was as shown in Figure D-1.b. This could be a first choice if the relations linking the
wheels’ speeds to the kinematics of point R are known.

For our odometry purposes, we decided to keep this choice but with a different
geometrical interpretation: we pivot the steering axle round the middle point. This leads
naturally to a differential heading odometry model, entailing a “shortening” of the axle
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(see [HPS02]):

z; = xi_1+ AScos(ai_1 + 0;—1 + LA0)
Yi = Yi—1+ ASsin(a;_1 +0;—1 + 5A0) (D-1)
0; = 0,1+ A0

Indeed, the original wheels base B becomes B cos(a) as represented in Figure D-1.c.
This is the model used during the experiments reported in Chapter V.

This model can be justified in the following way. In fact, one can imagine that the
virtual wheels (Figure D-1.c) will describe exactly the same trace than the “real” wheels
(Figure D-1.b) but shifted back—i.e. they start and stop sooner. Moreover, if we assume
that our actual mechanical system corresponds to (Figure D-1.b), then the traces S, Jl
of these wheels are exactly equal to those of the virtual wheels. Thus it makes sense to
perform computations with (Figure D-1.c) using actual data coming from the robot.

We now discuss an uncertainty propagation model for odometry. In order to keep
our study independent of the odometry modeling choices, the following section aims at
establishing an error propagation model for a general odometry function.

D-2 Uncertainty model as a joint probability distribution

D-2.1 Introduction

When designing a dead-reckoning sensor, it is important to account for its accuracy (i.e.
how much the sensor reading—mean value—is close to the true value; usually issued from
a more accurate instrument) and precision (i.e. the statistical deviation (or uncertainty)
from the mean sensor reading). In this respect, the Robotics community has dedicated
considerable effort in addressing questions of how errors should be represented and how
they can be eliminated through calibration [Wan88], [BF95], [CK97], [BTNO99]. How-
ever, more fundamental questions that begin to be addressed concern the nature of the
errors and of the uncertainty.

Regarding accuracy in odometry, analytical solutions for navigational error propa-
gation are proposed in [Kel01]. The analysis focus on the general solution to the linearized
dynamics of the odometry model. This method can be used to determine the accuracy of
the target system, when comparing the approximate linearized results to exact numerical
solutions.

On the other hand, recent work in AI applied to robot perception and control,
have addressed the uncertainty issue in the setting of Bayesian inference and learning
[BDL"99a]. In this framework, the notion of uncertainty stems from a fundamental prob-
lem: any model representing the real (physical) system is incomplete by nature. A simple
illustration of this statement is the following. When we look at the modeling process
depicted in Figures D-1.(a) to (c) above, elementary questions arise: how much do we
know about any of the models with respect to the real system? Can we render this knowl-



162 Appendix D

edge computable? Faced with these questions, Bessiere et al account for the utilization
of probabilities to formally translate incompleteness into uncertainty [BDL199b]. The
theoretical foundations rely in the maximum entropy principle. The core of the approach
is based on the description paradigm. Formally, a description is the joint probability
distribution, determined upon a priori knowledge and experimental data, of a set of vari-
ables. In this respect, Lebeltel proposes a methodology for Bayesian robot programming,
that has been shown to be also effective for designing model based sensors [LDBMO0O0].

Besides the modeling of uncertainty, we are interested in propagating it along time
and eventually reduce it. In order to cope with this task, a common agreement is to
embrace estimation theory and in particular filtering techniques. Filtering concerns the
propagation in time of the uncertainty about the state in function of the uncertainty of
the model and its parameters. The process consists in confronting predicted information
about the state of the robot, at the time new information is obtained via observations.

In the presence of statistical knowledge about some of the variables, the filtering
process resorts to Bayesian calculus. The aim is to compute the a posteriori probabil-
ity distribution (or density function) of the state in function of the a priori estimated
distribution (i.e. from the previous iteration) and current observations. The result is a
density function accounting for the global uncertainty of the state at a precise instant in
time. The general approach usually involves the computation of an integral encompassing
the joint probability distribution of all the variables. In this case, the estimation of the
state may lead to very difficult computational problems (e.g. see [MMBO00]). However, if
the system is linear and assumed to be Gaussian, it is possible to use the Kalman Filter
(KF) [Kal60]; the advantage being the possibility to compute analytically the sought dis-
tribution and to obtain an optimal estimate of the state. If the system is nonlinear, as
in the majority of real situations, the linearization of the model leads to a sub-optimal
estimation process known as the Extended Kalman Filter (EKF).

As for any measurement instrument, the known sources of uncertainty are assimi-
lated to what we call systematic errors— i.e. quantifiable and hence susceptible of being
calibrated. Other sources (spurious and hence very difficult to assess) account for what
are called non-systematic errors. Typically, sensor models are calibrated by identifying
the statistical information of the parameters encompassing uncertainty (systematic er-
rors). Eventually, some exteroceptive sensor is used in order to reduce the cumulation of
uncertainty due to systematic and non-systematic errors.

In this section we propose to use the methodology of Lebeltel [LDBMO00] (see below)
as tool for obtaining a Bayesian uncertainty model for a general odometry model. We
shall justify this choice once we would have introduced the methodology.

D-2.2 Design methodology

The methodology employed is the one presented in [LDBMO00], but somehow adapted for
the design of the uncertainty model for odometry. We summarize here the main steps:

1. Specification of the variables: In a first-degree analysis the variables come di-
rectly from the odometry model. However, the set of variables could increase ar-
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bitrarily with new a priori knowledge. The complete specification of the variables
requires following the next steps:

(a) The definition of the variables and their respective validity domains.

(b) The ezplicit statement of interdependence relationships between the variables
by means of conditional probability distributions. This step allows to simplify
the joint probability distribution according to our assumptions.

(c) The formulation of a probabilistic question that will be eventually used (see
point 3 below). The “question” is the target probability distribution. It in-
volves some unknown variables and others whose values are observed at the
time the question is asked. The reason to define the question at this stage is
that the uncertainty of some variables can be neglected. Indeed, as the ques-
tion may involve the observation of some variables, at the time the question is
asked, the uncertainty of those variables is meaningless and therefore useless.

(d) The specification of the parametric forms of the uncertainty related to each
variable. This reflects the specific knowledge (subjective or statistical) we
have about the system under assessment.

2. Identification of the parameters The parameters of the forms above must be
defined according to either the a priori knowledge of the designer or from a set of
experimental data enabling its identification.

3. Utilization Once the set of variables has been defined and the parametric forms
have been identified we have a completely defined description. Hence it is possible
now to interrogate this description by means of the probabilistic question. The
answer is therefore a new probability distribution on our target variables.

A few reasons can be given here to justify the approach for our purposes. First, the
Bayesian formalism enables natural expansions for data fusion purposes, aiming at global
localization systems (e.g. see [TFBDO01]). Second, the methodology of Lebeltel allows
for a clear statement of independence assumptions explicitly reflected in the uncertainty
model. Finally, we think that the methodology and the Bayesian formalism allow for a
common discussion framework and for a certain kind of traceability. By this we mean
that we are able to come back to the assumptions that originated the model; in other
words we can confront the assumptions we made to a new situation or knowledge about
our system.

We are now ready to discuss the application of this design process to the case of a
general odometry model for the bi-steerable car.

D-3 Uncertainty model for the odometry

We are looking for a tractable expression defining the uncertainty model of a general
odometry model
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X; = f(Xi1,P) (D-2)

where P are the model parameters. Let us apply the above methodology.

1. Variables specification:
(a) Definition:

We shall assume that the robot is equipped with digital encoders allowing for reading
the relative position of the wheels (i.e. its rolling displacement) and their absolute
orientation. This seems a sound assumption since it is not uncommon to find low-
cost relative encoders mounted on each wheel, and a single, more expensive, absolute
encoder at the steering shaft. We adopt the usual convention that counter clock-
wise deflections induce positive readings. Moreover, we assume that we are dealing
with a 4-wheel drive robot. Hence a typical configuration is that each wheel encoder
is placed at the motor shaft followed by speed-reduction gears coupling the wheel
to the motor (see Figure D-2).

ot ]
-

Encoder Gear ratio

Wheel
Figure D-2: Typical configuration assumed for our system

Let us call k,(resp. k;) the resolution of the right(resp. left) wheel encoder (in
pulses/revolution); E = (E,, Ej, ) the vector of encoder readings containing re-
spectively the right and left encoder values (in pulses) and the steering encoder (in
radians); let D, (resp. D;) be the diameter of the right (resp. left) wheel (in meters)
and N, (resp. N;) be the right (resp. left) wheel-to-motor gear ratio.

We thus have that each gain of wheel encoder, in meters per pulse (m./pulse), is

given by
7T'DT ﬂ'Dl

B N’r ' k'r, Nl . kl
Then the length of the path AS and the angular displacement Af, between two
samples, in equations (D-2) are given by

Cr Cl = (D'3)

AS = G By ;‘ GEy

E, — (E
Af = < Bcos(o% l’

We thus have the following set of variables:
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State the state vector X =(z,y,0)
Sensor | the encoders vector E = (E,, E;, )
System | the robot’s parameters vector | A = (¢, (;, B)

Equations (D-2) express the dynamics of the state as a function of these vectors;
that is:
Xi = f(Xi-1, Ei, A)

We therefore know that the description is given, using Bayes rules, by the joint
probability density

P (Xs X 1B A) = p(Xio1) p (Bi| Xio1) p (A X1 E3) p (X5 X1 E5A) (D-5)

Description (D-5) can be simplified under certain assumptions. At this stage, it is
possible to formulate in an explicit way conditional independence hypothesis so as
to simplify the model.

(b)Independence hypothesis:

We will assume that the state and the encoder readings are statistically independent;
that is: current values from the encoders are uncorrelated to the previous position
of the robot. Furthermore, the variables A concern only the characteristics of the
robot components. Hence they are uncorrelated to the actual reading of the encoders
and do not depend on the position of the robot. Under these hypothesis, the joint
probability distribution (D-5) can be re-written as

p(XiXi1EA) = p(Xi—1) p (Ei) p (A) p (Xi| Xi—1 E; A) (D-6)

At this stage, it is possible to elucidate the physical meaning of (D-6). In fact,
equation (D-6) involves systematic errors coming from p(E), representing the error
induced by the encoders? and from p(A), which is the uncertainty associated to the
parameters of the robot (encoder gains).

(c)Probabilistic question: the general uncertainty model

Now we shall set the question we are interested in. In fact this question will consti-
tute the uncertainty propagation model of the odometry (D-2).

The probability distribution we are interested in, during the utilisation of the odom-
etry model, is the following.

p(E;) [ [p(Xi1)p(A) p(Xi| Xi 1 E;A) dX;_1 dA
p(E;)

/ / p(Xi1) p(A) p (X Xi1 FiA) dX;_y dA (D-7)

p(XilEi) =

p(Xi|Ei)

A few comments about this probability distribution follow. Notice that the question
reads: what is the density function of the current position of the robot, knowing the

*Typically, the constructor gives the resolution of the encoder from which it is possible to compute a
quantization error.
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value of the encoder readings at iteration 1?. The answer reads: the probability
distribution sought is given by all possible values taken by the cumulated uncertainty
p(X;—1), by all possible values of the robot parameters given by p(A) and, for each of
these values, by the probability distribution p (X;|X;—1FEA), associated to odometric
predictions given by f(X;_1,E,A)—i.e. model (D-2). We shall precise that the
distribution p (X;_1) contains the cumulated uncertainty since the beginning of the
process and until the previous iteration. Hence we shorten notation and write:
p(X;_1), instead of p(X;_1|E;_1,...,Fp). This implies in turn that the question-
answer process during the robot’s motion, can be viewed as a Markov chain. What
we mean is that, at each iteration 4, the result of the question (i.e. p(X;|E;)) is
inserted iteratively into the next one so as to compute a new answer.

Equation (D-7) is therefore the general uncertainty propagation model of the odom-
etry model (D-2) under the aforementioned hypothesis.

(d)Parametric forms:

Typically at this stage, Gaussian parametric forms may be assumed. Indeed, the
maximum entropy principle leads naturally to this kind of probability distributions
as the number of data increases. As a consequence, the propagated uncertainty is
usually seen as an ellipsoidal growing around the mean state of the robot. Moreover,
Gaussian distributions together with a linear system (or its linearization) allow to
use the computational efficient Kalman Filter so as to propagate the uncertainty.
Notwithstanding, Gaussian and linear hypothesis may be over constraining assump-
tions. Yet another possibility is to use particle filters. They allow to avoid the
Gaussian and linear assumptions, but resort to numerical integrations yielding ap-
proximative results [AMGCO02].

In order to illustrate this step, we will assume Gaussian hypothesis. True, Gaussian
hypothesis leads to a Normal distribution. It will remain always Normal if the
following conditions are met

e It is initialized to a Normal distribution.

e The model of the system is linear (or linearized).

e All the other distributions are Normal.

Initialization implies that the distribution starts with some valid (arbitrarily set)
parameters.

In what follows the notation herein will be used:

p(X) = NOTmal(Xa)%a 2]X)a

which stands for a (multivariate) Normal distribution on the variable x, centered
around a mean value (or first moment) x and with a covariance matrix (or second
moment) 3, .

Mathematically, if the dimension of x is n, we have
1
(2m) 3 /det(Ty)

exp 30T (R)T

Normal(x, X, Xy) =
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We are now ready to give the parametric forms of the necessary distributions.

p(Xi_1)

If we assume that X;_; is Normally distributed, the parametric form is:

A~

p(Xic1) = Normal(X;—1,X;-1,%x, ,)- (D-8)

X'Z-_l may be for instance the most likely value for X;_; and X x, , is the a posterior:
uncertainty of the whole process, which becomes the a priori uncertainty in the next
step.

Notice that the choice of a Normal distribution assumes an a priori knowledge about
the initial position of the robot and its associated uncertainty.?

p(4)

This distribution stems from the fact that the actual diameter of the wheels as well
as the actual wheels base cannot be known exactly. We shall assume hence that
the encoder gains have a Gaussian distribution whose parameters can be eventually
characterized. Thus we have:

p(A) = Normal(4A,A,%,), (D-9)
where A := ({,,{, B) and
oé 0 0
Yopi= 0 O'gl 0
0 0 o3

is the covariance matrix of A.
p(X;| X1 E;A)

This is the uncertainty associated to the next odometric prediction. Again we
consider Gaussian hypothesis to have:

p(X;|Xi1E;A) = Normal(X;, f(Xi—1, Ei, A), Xy), (D-10)
where ¥ is the following covariance matrix:
Yr=%x,_, +Ja-Sa-J5, (D-11)
with J4 = 0f /0A.

2. Parameter identification

It should be clear now that we only need to characterize the parameters of the
normal distribution p(A) above—i.e. we need to find A and ¥ 4 through a calibration

3 Another choice could have been a Uniform distribution. This case corresponds to the problem of the
“kidnaped robot”, where there is no a priori knowledge about the starting position.
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process. Indeed, for £x, , we just need to give an initial value (typically a Dirac
pulse is assumed if the initial position is given) and let the filtering process (in this
case the EKF) compute its subsequent values.

Utilization of the question

Once all the parametric forms have been identified we have a completely defined
description. Hence it is possible now to ask our probabilistic question; that is, we
may now compute the distribution (D-7). As the robot moves, a new mean value
X; is computed from model (D-2), and a new uncertainty matrix ¥, is obtained
from (D-T7).
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Résumé

Cette thése porte sur les problémes de planification et d’exécution de tra-
jectoires pour une classe de robots de type voiture sans essieu fixe. Nous
définissons une voiture bi-guidable comme un véhicule capable d’orienter ses
roues arriéres en fonction de 1’angle de braquage avant. Les équations diffé-
rentielles décrivant un tel systéme posent de nouveaux problémes de com-
mande en robotique mobile. Nous abordons ces problémes dans le cadre
de la platitude différentielle. Un systéeme est dit plat si son comportement
peut étre complétement décrit par un ensemble de variables différentiellement
indépendantes, appelé sortie plate ou sortie linéarisante, elles-mémes fonction
des variables du systéme et de leurs dérivées : toute trajectoire du systéme
peut s’obtenir & partir de cet ensemble de fonctions sans intégrer d’équations
différentielles. Pour ces systémes, il existe dans la littérature des solutions
efficaces profitant des propriétés de la sortie plate. Afin d’exploiter ces so-
lutions, cette dissertation établi d’abord ’existence d’une sortie linéarisante
pour la voiture bi-guidable. La difficulté majeure, question ouverte dans le
cas général, est de transformer ce résultat d’existence en un résultat effec-
tif permettant de construire la sortie plate. Nous proposons une démarche
systématique dans le cadre de la théorie des systemes de Pfaff, aidant au cal-
cul d’une sortie linéarisante pour un systéme vérifiant les conditions d’Engel.
Nous appliquons cette démarche a la voiture bi-guidable afin de résoudre
le probleme de planification non-holonome. Nous nous intéressons ensuite
au suivi de trajectoires ou la commande en boucle fermée. Dans ce con-
texte, la platitude implique la linéarisation par bouclage dynamique. Nous
établissons des résultats permettant de calculer ce bouclage pour la voiture
bi-guidable. Nous synthétisons une loi de commande pour systémes linéaires
afin de résoudre le probleme d’exécution des trajectoires. Enfin, nous mon-
trons la validité de ces résultats théoriques par des expérimentations menées
sur un véhicule électrique réel 4 double essieu orientable. Cette thése contient
un résumé étendu en frangais, le contenu principal étant en anglais.

Mots clés :
Planification non-holonome, robotique mobile, véhicule & deux essieux
commandables, platitude différentielle, bouclage endogéne.



