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CHAPITRE 1

Introduction et présentation des résultats

Au sein d’un probleme statistique, le statisticien peut disposer d’une large batterie
d’estimateurs (estimateurs a noyaux, estimateurs par projection, estimateurs par moindres
carrés (pénalisés ou non), etc). Sous différentes hypotheses sur le modele, I'une de ces
procédures pourra étre plus performante que les autres. Ces hypotheses, faites a priori,
n’ont aucune raison d’étre réellement vérifiées. Nous aimerions pouvoir profiter des qualités
propres de ces estimateurs, tout en faisant le moins d’hypotheses possible sur le modele. Ce
genre de problémes est connu sous le nom de probléme d’adaptation. Les méthodes étudiées
dans cette these peuvent étre utilisées pour résoudre ce genre de problemes. Pour éviter
ces hypotheses, nous pouvons aussi changer de problématique en cherchant a construire
une procédure faisant approximativement aussi bien que la meilleure parmi un ensemble de
procédures de base donnée a priori. C’est le paradigme que nous nous proposons d’étudier
ici.

Le principal travail de cette these porte sur 1’étude des méthodes d’agrégation
sous ’hypothése de marge (cf. [83] 81, 80, 38]). Nous avons mis en avant que ’hypothese
de marge améliore les vitesses d’agrégation qui peuvent s’approcher de 1/n, ou n est la
taille de I’échantillon.

Un autre résultat de cette theése montre que certaines méthodes de minimisation
du risque empirique pénalisé sont sous-optimales quand le risque est convexe, méme
sous I’hypothese de marge (cf. [85] [84]). Contrairement aux procédures d’agrégation a poids
exponentiels, ces méthodes n’arrivent pas a profiter de la marge du modele.

Ensuite, nous avons appliqué les méthodes d’agrégation a la résolution de quelques
problémes d’adaptation. Dans une premiere application, nous construisons des procédures
a la fois adaptatives au parameétre de marge et au parameétre de complexité
par agrégation d’estimateurs & vecteurs de support (cf. [82]). Nous avons ensuite appliqué
les méthodes d’agrégation dans les problemes d’estimation de densités et de fonctions de
régression. En agrégeant seulement logn estimateurs par ondelette seuillés, nous avons
obtenu un estimateur adaptatif sur tous les espaces de Besov sans perte de vi-
tesse logarithmique (cf.[38]). Une autre application des méthodes d’agrégation a été de
répondre positivement & une conjecture de Stone dans le modele du ”single index” (cf.
[56]). En adoptant un point de vue différent des méthodes habituellement utilisées dans ce
modele (c’est-a-dire en s’adaptant a 'index plutot qu’en I'estimant), nous avons construit
une procédure atteignant la vitesse conjecturée par Stone (sans perte de vitesse
logarithmique telle qu’on 'observait chez les estimateurs construits jusqu’ici).

Une derniere contribution apportée par cette these a été de proposer une approche du
contrdle du biais en classification par I'introduction d’espaces de regles de prédiction
parcimonieuses (cf. [79]). Des vitesses minimax ont été obtenues sur ces modeles et une
méthode d’agrégation a donné une version adaptative de ces procédures d’estimation.
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1. Probléeme d’agrégation

1.1. Problématique de l’agrégation. Soit (Z,.A) un espace probabilisable, P ’en-
semble des mesures de probabilité sur cet espace et F' : P — F une fonction sur P a
valeurs dans un espace vectoriel F. Considérons Z, une variable aléatoire a valeurs dans
(Z,A) de mesure de probabilité m. Nous souhaitons estimer F'(7) & partir de n observations
Z1i,...,2, de la variable Z. La qualité d’estimation d’un élément f € F est mesurée par
un risque de la forme :

A(f) = EQ(Z, f)).
ou @ : Z x F — R est une fonction de perte. Dans la majorité des cas, F/(7) minimise
A(-) sur F. Notons A* le minimum mingcr A(f). La différence A(f) — A* est appelée
I’exceés de risque de f € F. Pour un estimateur fn, la quantité A( fn) est prise égale a
E[Q(Z, fn)’ZIa s Zn]-

Plusieurs problemes de I’estimation non-paramétrique peuvent s’écrire dans ce cadre.

Exemple 1 : le probléeme de régression. Soit Z = X x R, ou (X,7) est un
espace mesurable, et Z = (X,Y’) un couple de variables aléatoires sur Z, de distribution de
probabilité 7, tel que X prend ses valeurs dans X et Y prend ses valeurs dans R. Supposons
que l’espérance conditionnelle de Y par rapport a X existe. Nous souhaitons estimer la
fonction de régression de Y en fonction de X :

ff(x)=E[Y|X =z], Vz € X.

En général, la variable Y n’est pas une fonction exacte de X. Ce probléme peut étre
considéré comme un probleme d’estimation avec bruit. En tout point X, la sortie Y est
concentrée autour de E [Y|X] & un bruit additif pres ¢ de moyenne nulle. Le modele de
régression peut alors s’écrire sous la forme :

Y =E[Y|X] + .

Soit F l’ensemble de toutes les fonctions mesurables de X dans R. La norme d’une
fonction f dans L2(X, 7T, PX), ou PX est la distribution de la marginale X, est définie par
HfH%Q(PX) = [y f*(z)dP* (). Considérons la fonction de perte :

Q(z,y). f) = (y — fx))?,
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1. PROBLEME D’AGREGATION

définie pour tout (z,y) € X x Ret f € F. Le théoréme de Pythagore donne
A() =EQUX.Y). N =1IF* — FBagpx, +E[C7]-

La fonction de régression f* minimise A(-) sur F et A* = E[¢?].

Exemple 2 : le probleme d’estimation de densité. Notons 7 la mesure de proba-
bilité de Z. Supposons 7 absolument continue par rapport a une mesure connue 4 et notons
f* une version de la densité de m par rapport a cette mesure. Considérons F ’ensemble de
toutes les fonctions de densité sur (Z, A, u) et la fonction de perte

Q(z, f) = —log f(2),

définie pour tout z € Z et f € F. Nous avons
A =BIQ(Z.P = K (1) = [ loar(2)in(a)

o K(f*|f) = [zlog(f*(2)/f(2))dm(2) est la divergence de Kullback-Leibler entre f* et f.
La fonction de densité f* minimise A(-) sur F et A* = — [ log(f*(2))dn ().

Prenons la distance quadratique pour fonction de perte. Dans ce cas F est ’ensemble
de toutes les fonctions de carré intégrable L?(Z, A, u). Pour la fonction de perte

Q. f) = /Z P~ 21(2),

définie pour tout z € Z et f € F, le risque d’un élément f € F est donné par
A(f) = EIQ(Z, )] = I = FI2ag — /Z (F*(2))%du(2).

La fonction de densité f* minimise A(-) sur F et A* = — [ (f*(2))*du(z).

Exemple 3 : le probleme de classification. Soit (X',7) un espace mesurable.
Supposons Z = X x {—1,1} muni d’une mesure de probabilité inconnue 7. Considérons
une variable aléatoire Z = (X,Y) a valeurs dans Z de mesure de probabilité 7. Notons
par F l’ensemble des fonctions mesurables de X sur R. Soit ¢ une fonction de R dans R.
Pour tout f € F le ¢p—risque de f est défini par A?(f) = E[Q((X,Y), f)], ou la fonction
de perte est donnée par

pour tout (z,y) € X x {—1,1}. La plupart du temps, un minimiseur f du ¢—risque A®
sur F ou son signe est égal a la régle de Bayes (cf. [130]). C’est la regle de prédiction

minimisant la fonction de perte Ay 4t 490 on $o(2) = T (,<p) est la fonction de perte
usuelle de classification (cf. [47]). La régle de Bayes est définie par

(1.1) oo () = sign(2n(z) — 1),
oun(z) =PY =1|X =z|,Vz € X et sign(z) = 20,9 — 1,Vz € R. Pour les estimateurs a
vecteurs de support (SVM), la fonction de perte est la perte chanriere

#1(2) = max(0,1 — 2),Vz € R.

Le risque associé est noté A;. Certaines fonctions de perte utilisées en classification vérifient
I’hypothese de convexité suivante (cf. |75, [84]) :

DEFINITION 1.1. Soit 8 > 0. Une fonction ¢ : R — R deux fois différentiable est dite
B—conveze sur [—1,1] si

(1.2) |6/ (2)]* < B¢ (x), Vo € [-1,1].
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CHAPTER 1. INTRODUCTION ET PRESENTATION DES RESULTATS

Nous présentons maintenant la problématique de 'agrégation de type ”sélection de
modele” dans le cadre général.

Etant donné Fy = {f1, -, fm} un dictionnaire de M éléments de F et
n observations i.i.d. Z1,...,Z,, nous souhaitons construire un estimateur
fn dont Pexces de risque moyen E[A(f,) — A*] est aussi petit que celui de
I'oracle minger, A(f)—A* a un résidu pres. De tels estimateurs sont appellées
agrégats ou méthodes d’agrégation.

Les éléments fi,..., far de Fo sont aussi appelés ”estimateurs faibles”. Ils peuvent,
par exemple, étre construits a partir d’'un échantillon préliminaire (considéré gelé) ou
étre les éléments d’un réseau minimal du modele, ou le début d’une base, ou des objets
simples comme des indicateurs de demi-espace. Par exemple, pour le probléme de sélection
de modele, nous disposons de M modeles. Pour chacun d’entre eux, nous construisons
un estimateur. Au lieu de prendre toutes les observations pour la construction de ces
estimateurs, nous utilisons seulement les m premieres : Z1, . .., Z,,. Cette phase d’estimation
fournit M estimateurs f;(nl),..., f&M). Passons ensuite a la phase d’apprentissage : les
(n — m) observations restantes Z,+1, ..., Z, sont utilisées pour agréger ces estimateurs.
Par indépendance des observations, nous pouvons supposer que 1’échantillon utilisé lors de
la phase d’estimation est gelé. Les estimateurs de base sont ainsi considérés comme des
éléments non-aléatoires de F et plutdt que de travailler avec (n — m) observations, nous
supposons disposer de n observations.

Concretement, nous souhaitons obtenir des inégalités d’oracle, c’est-a-dire des
inégalités de la forme

(1.3) E[A(f,) — A") < C min A(f) = A"+ (n, 1)

ou C > 1 est une constante et y(n, M) > 0 est appelé vitesse d’agrégation. Les
applications statistiques de ce type d’inégalité sont par exemple :

i) Obtenir les vitesses de convergence de certains estimateurs.

ii) Résoudre des problemes d’adaptation.
iii) Imiter la meilleure procédure parmi les M estimateurs de base aussi bien que possible.
Pour les deux premiers problemes i) et ii), une inégalité d’oracle ou C' > 1 est suffisante.

En revanche, pour le troisieme probleme, nous avons besoin de considérer des inégalités
d’oracle exactes (cf. Définition [1.1] ci-dessous et la discussion dans [81]), c’est-a-dire des
inégalités du type ouC =1.

Le cadre d’estimation considéré permet d’avoir acces a un risque empirique, donné
par la quantité

() == 32 QZ 1),
i=1

C’est une mesure de 'erreur commise par 'estimateur f sur les observations 7, ..., Z,.
Ce critere empirique est a la base de la construction des méthodes d’agrégation. Dans le
cadre de cette theése, nous avons principalement travaillé sur les procédures d’agrégation
ci-dessous.
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1. PROBLEME D’AGREGATION

La méthode d’agrégation la plus utilisée est appelée la procédure de minimisation
du risque empirique (MRE) sur Fy. Elle est définie par

(1.4) FIMRE) ¢ Arg min A, (f).
feFo

La méthode d’agrégation principalement étudiée dans cette these est celle d’agrégation
avec poids exponentiels (APE) (cf. [87, 5] 10, 63, 119, 37]). Elle est définie par

ef n
(1.5) I = ST Wi (0,
feFo
(n)

ol les poids exponentiels wy.’ (f) sont donnés par :

o™ exp (—nT An(f))
(1.6) v ) = e (T An(g))’

oit T~! > 0 est un parametre appelé ”température” (en référence aux mesures de Gibbs).

vVf e Fo,

Il existe une version récursive de la méthode précédente. Nous allons I'appeller procédure
d’agrégation cumulée avec poids exponentiels (ACPE) (cf. [33, B34, 35, 125] 126,
127]). Elle est définie par :

ACPE (APE)
(1.7) Z B,
u flgATPE) est construit de la méme maniére que dans 1} a partir des k premieres
observations Zi, ..., Z; pour le parametre de température 7! c’est-a-dire :
(APE) ) s exp (—=TkA(f))
f w ( 7 ol ’UJ (f) = 5 \V/f € fO-
kTS 2 TS S em e (CTHA(9))

A chacune de ces méthodes d’agrégation, nous pouvons associer associée une version
pénalisée. Pour la méthode MRE, I'idée de la pénalisation est bien connue (cf. [11],[92], [93]).
La méthode d’agrégation par minimisation du risque empirique pénalisé (MREp)
est définie par :

(1.8) FOMEED) € Arg min [An<f) + pen(f)},

ol pen est une pénalité indépendante de 1’échantillon. Pour un apercu exhaustif des
méthodes de ce genre, nous renvoyons le lecteur a [13] 22] 23, [90]. Des versions pénalisées
des méthodes APE et ACPE peuvent étre aussi proposées (cf. [87] et référence dans cet
article).

Pour comparer ces procédures, [I14] a introduit une notion d’optimalité pour les
méthodes d’agrégation. Cette définition a été donnée en régression gaussienne. Elle se
généralise de maniére évidente aux autres modeles statistiques (voir [102] pour 'estimation
de densité). Dans cette these, nous utilisons cette notion généralisée (cf. [38]) qui a la forme
suivante.

DEFINITION 1.1. Nous appellons vitesse optimale d’agrégation une suite d deux
indices (y(n, M) : n, M € N), sl existe deux constantes absolues Cy et Cy telles que les
deux inégalités suivantes sont satisfaites.

(1) Pour tout sous-ensemble fini Fo de F a M éléments, il existe une statistique fn
telle que, quelle que soit la distribution de probabilité sous-jacente w, on a pour
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CHAPTER 1. INTRODUCTION ET PRESENTATION DES RESULTATS

tout n > 1,

(1.9) E[A(f,) = 4]  min (A(f) = A") + Cry(n. D).
0
(2) I existe un ensemble fini Fo a M éléments dans F tel que, pour toute statistique
fn, il existe une mesure de probabilité 7, telle que pour tout n > 1

E [A(f2) — A'] = min (A() = 4% + Car(n, M),

De plus, quand ces deux inégalités sont satisfaites, on dit que la procédure fn, apparaissant
dans @), est une procédure optimale d’agrégation.

1.2. Historique des principaux résultats obtenus en agrégation. Nemirovski
(cf. [98]) a introduit le cadre général de I’étude des méthodes d’agrégation en statistique
non-paramétrique. Il a formulé les trois problemes d’agrégation : le probleme d’agrégation
de type ”sélection de modele” (MS), le probleme d’agrégation convexe (C) et le probléeme
d’agrégation linéaire (L). Etant donné un dictionnaire Fp, Pobjectif de (MS), comme
nous 'avons déja énoncé, est de construire une méthode d’agrégation qui a un risque
proche de celui de l'oracle minscr, A(f). L'objectif de (C) est de fournir une procédure
ayant le risque proche de celui de l'oracle convexe minscc, A(f), o Cy est I'enveloppe
convexe de Fy. Finalement, le probleme (L) vise & produire des procédures atteignant le
risque de I'oracle linéaire minyscp, A(f), out Lo est 'espace linéaire engendré par Fy. La
plus grande partie de la littérature sur les méthodes d’agrégation concerne le probleme
(MS) (cf. [125], [35] [126] 59, 120, 87, 17, 127, 27, 28|, 129], 26| [75]) et le probleme (C) (cf.
[74, 98, [125], 126, (78| 127 [7, 102}, 26, [73, [77, 101]). Quant au probleme d’agrégation linéaire,
il a principalement été étudié dans [98], 102, 26], 10T].

Tsybakov (cf. [I14]) a formalisé la notion de vitesse optimale d’agrégation pour les trois
types d’agrégation dans I'esprit de la Définition (qui traite seulement ici de I’agrégation
(MS)). Cette notion fournit un cadre de comparaison des méthodes d’agrégation aussi utile
que le cadre minimax pour la mise en compétition des estimateurs. Il a obtenu les vitesses
d’agrégation optimales dans le modele de régression gaussienne. Nous les rappelons dans le
tableau suivant :

vitesse optimale (MS) (log M)/n
M/n si M < /n
vitesse optimale (C) 1 1/2
(H log[M/ /7 + 1]) siM>n
vitesse optimale (L) M/n

La méthode d’agrégation ACPE atteint la vitesse d’agrégation (MS). Un agrégat, obtenu par
projection sur 'espace linéaire engendré par le dictionnaire Fy, atteint la vitesse optimale
d’agrégation (L). Enfin, un agrégat composite des deux agrégats précédents atteint la
vitesse optimale d’agrégation (C).

Dans [7] 'auteur étudie une méthode d’agrégation pour le probleme d’agrégation
convexe dans le modele de régression. Cette étude se fait dans le cadre PAC-Bayésien ("PAC”
vient de Probablement Approximativement Correct). D’autres procédures d’agrégation,
comme la méthode MDL (”Minimum Description Length”) de Barron et Cover (cf. [12] et
[129]) ont été développées dans ce cadre.
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Dans [87], les auteurs utilisent la totalité de I’échantillon pour construire plusieurs
estimateurs par projection et des poids exponentiels qui leurs sont associés. L’agrégat ainsi
obtenu satisfait une inégalité d’oracle avec une vitesse d’agrégation en (log M)/n, ou M
est le nombre d’estimateurs par projection construits. Contrairement au protocole habituel,
aucune découpe de I’échantillon n’est nécessaire pour obtenir ce résultat.

2. Vitesses rapides de classification sous I’hypothése de marge

Dans [123], 124, [47], des résultats de borne inférieure ont fait apparaitre la vitesse
n~Y2 comme une vitesse maximale de classification. C’est-a-dire une vitesse en dessous de
laquelle on ne peut pas construire de classifieur plus rapide.

Néanmoins, Mammen et Tsybakov (cf. [91]), pour le probléme d’analyse discriminante,
ont proposé une hypothese — autre qu'une hypothese de complexité — qui permet d’améliorer
les vitesses de convergence. Tsybakov (cf. [I16]) a ensuite proposé une hypothese similaire
dans le cadre de la classification. Elle peut s’énoncer sous deux formes équivalentes données
ici :

Hypothése de marge en classification :

— Il existe un parametre a > 0 et une constante ¢ > 0 tels que

P[12n(X) — 1| < t] < ct®,V0 < t < 1/2.

— Il existe un parametre x > 1 et une constante C' > 0 tels que pour toute fonction
f:X+—{-1,1},0ona

(1.10) E[If(X) = f*(X)]] < C(Ao(f) — A5)"/". (HM)(~)
Les parametres « et k vérifient la relation suivante :
1
_ o (k=1 quand a = 0).
!

Sous cette hypotheése et une hypothese de complexité, Tsybakov [I16] a proposé des
estimateurs atteignant des vitesses rapides, c’est-a-dire des vitesses de convergence au
dela de n=1/2.

Massart et Nédélec [94] ont étudié le comportement d’un estimateur obtenu par mini-
misation du risque empirique sur des classes de dimension de Vapnik Chervonenkis finie et
sous I’hypothése de marge introduite par Tsybakov. Ils ont obtenu la vitesse de classification
suivante :

(1.11) (V(l—i—log(n/V)))ﬁ’
n
quand la regle de Bayes f* appartient a une classe de VC-dimension finie V. Ils ont donné
une borne inférieure, pour k = 1, qui correspond a la vitesse , a un logarithme pres.
Les résultats de convergence des estimateurs SVM obtenus par Scovel et Steinwart
[109, 108] ont été donnés sous ’hypotheése de marge. En y ajoutant certaines hypotheses de
complexité, ils ont obtenu des vitesses de convergence rapides pour les estimateurs SVM.
Pour des classifieurs par substitution, Audibert et Tsybakov (cf. [114]) ont aussi obtenu
des vitesses rapides minimax.
D’autres vitesses rapides de convergence ont été obtenues dans [112) [77, [§]. Dans [§],
I’auteur a étudié la vitesse de convergence d’un estimateur de la forme sous I’hypothese
de marge classique, ainsi que pour ’hypothése de marge suivante :

¢ (Ao(f) — ADYR <P[F(X) # [*(X)] < O (Ao(f) — AVEVf = X s {~1,1}.
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L’hypothése de marge a été introduite dans le cadre du probléme de classification. Son
extension au cadre plus général décrit au paragraphe est la suivante (cf. [3§]).

Hypothése de marge (HM) : La mesure de probabilité m vérifie ’hypothése de marge
(HM)(k,c, Fo), pour k > 1,¢ > 0 et Foy un sous-ensemble de F si

(1.12) E[(Q(Z, f) — Q(Z, f*))’] < c(A(f) — A%)'/",Vf € F.

Le modele de régression pour la perte L2(PX) et le modele d’estimation de densité pour
la perte Kullback-Leibler et la perte L? vérifient I'inégalité avec k = 1. Le modele
de classification pour des pertes non strictement convexes (comme la perte usuelle ou la
perte charniere utilisée pour les SVM), ne vérifie pas cette inégalité. L’hypothese (HM)
doit donc étre faite dans le modele de classification si ’on souhaite pouvoir atteindre des
vitesses de convergence ou d’agrégation aussi rapides que dans les modeles de régression
ou d’estimation de densité.

3. Travaux de thése

Un théoreme classique (cf. le "no-free-lunch Theorem” du chapitre 7 de [47]) montre que,
sans hypothese de complexité, nous ne pouvons pas construire une regle de classification
qui converge a une vitesse donnée vers la regle de Bayes quel que soit le modele. 11 faut alors
faire recours a des mesures de la complexité d’un modele qui sont, entre autres, la dimension
de Vapnik Chervonenkis (cf. [47]), Uentropie (cf. [123, [124]), les complexités de Rademacher
(cf. [77]). Nous pouvons aussi éviter ces hypotheéses en changeant d’objectif. Pour cela, nous
nous placons dans le cadre des méthodes d’agrégation. Dans cette problématique, aucune
hypothese de complexité n’est requise.

Parallelement, les hypotheses de marge se sont développées en apprentissage statistique.
Sous ces hypotheses, des régles de classification atteignent des vitesses rapides de conver-
gence, comme on ’a déja discuté dans le paragraphe [2| Les principaux problemes liés a
I’hypothese de marge sont les suivants : le premier probleme est ’adaptation a ce parametre
en simultané avec le parametre de complexité. En effet, le parametre de marge est aussi
inconnu (au vu des données) que le parametre de complexité du modele. Le deuxieme
probleme est d’étudier le comportement des méthodes d’agrégation sous ’hypothese de
marge. Concreétement, nous savons qu’il est plus facile d’estimer sous I’hypothése de marge,
la question est donc : est-il plus facile d’agréger sous l’hypothése de marge ?

Dans cette these, une notion plus générale d’hypotheése de marge est proposée (cf.
(1.12)). Elle permet de comprendre pourquoi la classification est, en un sens, plus difficile
que l'estimation de densité ou la prédiction en régression. On verra plus tard que ceci est
du a la relation entre le biais et la variance décrite par le parametre de marge. La valeur
du parametre x détermine, dans certains modeles, la vitesse optimale d’agrégation, qui est
parfois (log M)/n alors que, dans d’autres modeles, elle est /(log M)/n. Le lien entre le
parametre de marge et la convexité de la perte est établi dans cette these (cf. [84]). En
régression, les fonctions de perte sont généralement convexes, voire strictement convexes,
alors qu’en classification, la fonction de perte la plus naturelle n’est pas continue. D’autre
part, en classification pour des fonctions de perte f—convexes (cf. ), I’hypothese de
marge est naturellement satisfaite avec un parametre de marge égal a4 1 (le cas le plus
favorable de ’hypothese de marge), ce qui explique la vitesse d’agrégation rapide (log M)/n
et les vitesses d’estimation paramétriques en 1/n. Le parameétre de marge fait alors le
lien entre la vitesse minimax d’estimation (ou la vitesse optimale d’agrégation)
et la convexité de la fonction de perte.
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Une autre contribution de cette these a été de démontrer que les méthodes classiques
de sélection de modele par minimisation du risque empirique pénalisé sont sous-optimales
alors que les méthodes d’agrégation a poids exponentiels atteignent la vitesse optimale
d’agrégation.

Nous avons ensuite utilisé les méthodes d’agrégation a poids exponentiels pour résoudre
quelques problemes d’adaptation. Le but d’une méthode d’agrégation est de faire aussi bien
que le meilleur estimateur d’un ensemble d’estimateurs de base et cela, sans aucune hy-
pothese de complexité sur le modele. Ensuite, pour le probleme d’estimation, une hypothese
de complexité sur le modele est nécessaire. Les techniques d’agrégation, étant libres de toute
hypothese de complexité, elles peuvent s’appliquer pour résoudre des problemes d’adapta-
tion. Pour cela, il suffit de prendre pour estimateurs faibles, des estimateurs construits en
connaissant le parametre de complexité, pour différentes valeurs de ce parametre.

3.1. Vitesses optimales d’agrégation sous 1I’hypothése de marge. Donnons
d’abord quelques résultats principaux de cette these concernant les vitesses optimales
d’agrégation sous I’hypothese de marge et un résumé des chapitres traitant de ce sujet.

Dans le cadre général introduit dans le paragraphe nous obtenons une inégalité
d’oracle exacte de la forme , dont la vitesse d’agrégation est donnée par la quantité
suivante :

(1.13)

n n

: " s _r
7(n M) B <m1nf€7-'o(A(f)—A ) logM> si minfe]_-o (A(f) _ A*) > (10gM>2m i

K

2k—1 .
(%) " sinon,

ol k > 1 est le parametre de marge (cf. [38]).

THEOREME 1.1. Soit Fo = {f1,..., fm} un sous-ensemble de F. Supposons que la
probabilité sous-jacente  satisfait ’hypothése (HM)(k,c, Fy) pour un k > 1,¢ > 0 et que la
perte vérifie |Q(Z, f) — Q(Z, f*)| < K p.s., pour tout f € Fy, ot K > 1 est une constante.

ﬁ(LMRE)

la procédure de minimisation du risque empirique fp = satisfait

(1.14) B[A(f) — A7 < min (A(f;) = A7) + C(n, M),
J=1

ot y(n, M) est donné dans et C > 0 est une constante.
De plus, si Q(z,-) est convere pour w-presque tout z € Z, alors la procédure avec poids

f,(LAPE) satisfait linégalité d’oracle .

exponentiels fn =

De cette inégalité d’oracle exacte, des inégalités d’oracle, dans les cadres usuels de 1’es-
timation non-paramétriqueon, peuvent étre déduites. En régression bornée, nous obtenons
le corollaire suivant :

COROLLAIRE~1.1. Soit fi,..., fa des fonctions de X dans [0,1]. Les procédures f, =
f(MRE t fn= fy(LAPE) vérifient, pour tout € > 0,
logM

en

B[l f* = fallf2(px)] < (1 +€) [ tnin (1F* = £ill22px)) + C
Dans le modele d’estimation de densité, nous obtenons le corollaire suivant :

COROLLAIRE 1.2. Supposons que la fonction de densité a estimer f* est bornée par
B > 1. Soient f1,..., f;m des fonctions bornées par B. Considérons f, qui correspond
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indépendamment a la procédure MRE ou a la procédure APE. Pour tout € > 0, nous avons

log M

Bl = fallZen] < 1+ 6) min (1f* = fillZa) + C— =

En classification, pour la perte charniere ¢; et la perte usuelle ¢y, le corollaire suivant
est déduit du Théoreme 0.1

COROLLAIRE 1.3. Soient k > 1 et F = {f1,..., far} une famille de fonctions d valeurs
dans [—1,1]. Notons C ’enveloppe conveze de F. Supposons que m satisfait I’hypothése de

marge (HM)(k) (cf. ). Les agrégats f, = FAPE) 4y, fn = ﬁ(LMRE) satisfont pour tous

entiers n, M et tout a > 0 les inégalités suivantes

logM)%ﬁl

n

E |:A1(,}En) - Aﬂ <(1+a) mi(Ijl(Al(f) — A7) +C(a) (

fe

ot Ay est le risque correspondant a la perte charniére et C(a) > 0 est une constante.
Pour le risque de Bayes de classification Ay, la procédure MRE vérifie

logM>2:1

E [Ao(7) - 45) < (14 ) min(4a() - 49 + Cla) (

Nous n’avons pas besoin d’hypothese de marge dans le cas de 'estimation de densité
et de régression (cf. corollaires et [9.2)), car pour ces deux modeles le parametre de
marge vaut naturellement x = 1. En revanche, pour la classification, le vitesse d’agrégation
dépend du parametre de marge et varie entre

log M log M
\/ o8 (pour k = +00) et &(pour k=1).
n n

Le probleme de classification permet de considérer plusieurs types de convexité pour
la fonction de perte. Nous avons introduit une échelle continue de fonctions de perte
pour étudier le comportement de la vitesse optimale d’agrégation en fonction de la perte.
Considérons l’ensemble {¢;, : h > 0} de fonctions de perte données par

¢ (:p)—{ he1(z) + (1= h)go(z) H0<h<1
B e if h> 1,

pour tout = € R, ou ¢g est la fonction de perte 0 — 1 et ¢1 est la perte charniere.

(1.15)

F1c. 1. Exemples de fonctions de perte de la famille {¢;, : h > 0} pour
h =0 (perte 0 — 1), h =2/3, h = 1 (perte charniére) et h = 2.

Nous avons choisi cet ensemble de fonctions de perte pour sa représentativité des
différents types de convexité. Pour tout h > 1, ¢, est [p—convexe sur [—1,1] pour un
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B e (2h —1)2/(2(h — 1)) > 2, pour h = 1 la fonction de perte est linéaire (c’est la perte

charniére) et pour h < 1, ¢ n’est pas convexe.
Pour le cas h > 1, 'hypothese de marge est naturellement satisfaite avec le parametre de
marge k = 1. Nous obtenons alors comme vitesse optimale d’agrégation pour les fonctions

de perte ¢y, :
log M

( vitesse rapide d’agrégation).
Pour le cas h < 1, ’hypothese de marge n’est pas satisfaite, ce qui explique la faible vitesse
d’agrégation

log M

vitesse lente d’agrégation).
greg
n

Néanmoins, sous ’hypothese de marge de parametre de marge x, nous obtenons la vitesse
d’agrégation . Pour l'optimalité de cette vitesse d’agrégation, nous avons donné des
théoreémes de borne inférieure (cf. [81], [84]). Cependant il reste toujours possible que la
vitesse optimal d’agrégation sous I’hypothése de marge soit

log M\ 571

Si tel était le cas, la procédure MRE ne serait pas une procédure optimale d’agrégation (cf.
[84]). Ce probléeme reste encore ouvert.

Donnons maintenant le descriptif des résultats sur ce sujet par chapitre.

Chapitre 2| : Dans ce chapitre (cf. [80]), nous montrons que la vitesse optimale
d’agrégation dans le modele de densité pour la divergence de Kullback-Leibler est

log M

n
La procédure d’agrégation atteignant cette vitesse est ’agrégat ACPE introduit en .
Des inégalités de borne inférieure sont données pour la perte en variation totale et la perte
Hellinger (elles sont probablement optimales).

Chapitre: Ce travail [81] porte sur Poptimalité des procédures d’agrégation introduites
en , et dans le modele de classification, sous 'hypothese de marge, pour la
perte usuelle et la perte charniere.

Premierement, sans hypothese de marge, les trois procédures sont optimales et atteignent

la vitesse optimale d’agrégation
log M

)

n
pour la perte charniere. Pour la perte usuelle, la vitesse optimale d’agrégation est aussi

\/(log M) /n, et la procédure MRE li est une procédure optimale d’agrégation.
Sous I'hypothese de marge, la vitesse d’agrégation est donnée en Un résultat de

type borne inférieure concernant 'optimalité de cette vitesse d’agrégation est donné.
Chapitre [5] : Ce travail porte sur le probleme d’agrégation convexe en régression. Etant
donné un dictionnaire de M fonctions, la vitesse optimale d’agrégation convexe est (cf.

paragraphe

1 1/2
M/n si M < +/n et (Elog[M/\/ﬁ—i—l}) si M > +/n.

Dans ce chapitre, nous montrons que, sous une hypothese géométrique (disant que les
estimateurs faibles sont dans un demi-cone), nous pouvons construire une procédure qui
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imite la meilleure combinaison convexe a la vitesse
log M

n
Cette vitesse est habituellement la vitesse optimale d’agrégation pour le probleme de (MS)
agrégation (cf. paragraphe [1.2)). Nous obtenons donc une amélioration de la vitesse due a
la condition géométrique.

3.2. Sous-optimalité des méthodes de minimisation du risque empirique
pénalisé. Dans les modeles a forte marge (k = 1), les procédures de minimisation du
risque empirique pénalisé n’arrivent pas a atteindre la vitesse optimale d’agrégation

log M

n
Concretement, des exemples d’estimateurs faibles et de lois sous-jacentes sont exhibés pour
lesquels ces procédures ne peuvent pas imiter l'oracle a la vitesse plus rapide que

log M

n
Par conséquent, en estimation de densité, en régression et en classification (pour des
fonctions de perte f—convexes), il est préférable d’utiliser des procédures d’agrégation a
poids exponentiels plutot que les méthodes usuelles de minimisation du risque empirique
pénalisé pour construire des procédures adaptatives. Ces résultats sont donnés dans le
chapitre [4] (cf. [84]).

Chapitre [4f : Dans [75], il est prouvé que la méthode d’agrégation ACPE (cf.
pour un parametre de température 7! convenablement choisi peut atteindre la vitesse

d’agrégation
log M

n
dans des modeles ayant une certaine propriété de convexité sur le risque. Dans ce chapitre
nous montrons, sous certaines hypotheéses sur la pénalité, que la méthode MREp (cf. [1.8])
ne peut pas imiter I'oracle a la vitesse plus rapide que

log M

n
Cette méthode n’est par conséquent pas optimale.

Nous avons fait ressortir le phénomene suivant : pour I’échelle de fonctions de perte
, la vitesse optimale d’agrégation est +/(log M)/n pour les pertes ¢ ou h < 1. Elle
est atteinte par la procédure MRE. Pour la perte charniere (h = 1), la vitesse optimale
d’agrégation est atteinte par les trois procédures MRE, APE et ACPE. Pour les fonctions
de perte ¢y avec h > 1, nous obtenons la vitesse rapide d’agrégation (log M) /n, atteinte
par la procédure ACPE. Dans ce cas, la procédure MREp (et donc aussi MRE) ne peut pas
atteindre cette vitesse optimale d’agrégation, puisque nous avons exhibé un exemple pour
lequel cette méthode ne peut pas imiter l'oracle a la vitesse plus rapide que 4/ (log M) /n.

Dans le chapitre |4l d’autres arguments concernant I’optimalité de la vitesse d’agrégation
définie dans sont donnés.

Ce chapitre met en exergue le lien étroit entre la convexité de la perte et la possibilité
d’agréger a la vitesse rapide (log M)/n, par 'intermédiaire du paramétre de marge.

Le tableau suivant rappelle les principaux résultats obtenus sur l'optimalité des
méthodes d’agrégation dans le cadre de la classification sous 'hypothese de marge. Pour
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cela, I’échelle continue de fonctions de perte {¢p, h > 0} (cf. (1.15))) est prise pour ensemble
de fonctions tests.

Fonction de perte ¢p, h=0 O0<h<l1 h=1 h>1
perte 0-1 perte charniere perte 3 — convexe

Hypothese de marge non automatiquement satisfaite automatiquement vérifiée

(v = +00) (r=1)
Vitesse optimale (cf.[1.13) sous (HM)(k) (log M)/n
d’agrégation (conjecture)
Procédure optimale ERM ERM ou AEW CAEW
d’agrégation (conjecture) (conjecture)
MRE ou MREp Optimale (conjecture) Sous-optimale
APE ? ‘ Optimale optimale (conjecture)
ACPE ? Optimale

3.3. Vitesses rapides de classification pour des régles de Bayes parcimo-
nieuses. Le chapitre [6] rassemble des résultats d’approximation en classification. Une
grande différence entre le modele de classification et ceux de régression et d’estimation de
densités réside dans le fait qu’en classification, le statisticien ne cherche pas a approcher le
meilleur prédicteur possible (la regle de Bayes). Une telle approximation dans les classes
habituelles de régularité, utilisées en régression et estimation de densités, n’est pas sensé
dans le modele de classification.

Nous avons proposé une autre approche en considérant des classes de fonctions a valeurs
dans {—1,1} pouvant étre approchées en norme L? par des objets paramétriques dont les
valeurs appartiennent également & {—1,1}. Sous des hypothéses sur la marge et le design
du modele, le risque de Bayes en classification est équivalent au risque L?. Nous avons
obtenu des vitesses minimax sur ces classes, atteintes par des ”estimateurs par projection”
sur ces espaces. Ces estimateurs se sont avérés étre des arbres dyadiques.

Les classes de fonctions introduites sont dans le méme esprit que les ellipsoides de
Sobolev mis a part le fait qu’elles ne contiennent que des fonctions & valeurs dans {—1,1} et
sont plutot a envisager comme une classe d’arbres dyadiques possédant une représentation
parcimonieuse.

De plus, I'utilisation d’une méthode d’agrégation a poids exponentiel a donné une
version adaptative de ces estimateurs. L’estimateur ainsi obtenu peut s’interpréter comme
réalisant une procédure multi-échelle dans le méme esprit que les estimateurs par projection
en régression et en estimation de densité.

3.4. Applications aux modeles concréts. Chapitre [7]: Dans ce chapitre (cf.[82]),
nous utilisons la méthode d’agrégation introduite dans pour construire des estimateurs
implémentables et adaptatifs a la fois au parametre de marge et a celui de complexité. Nous
proposons une construction d’estimateurs SVM adaptatifs, en agrégeant des estimateurs
faibles SVM par la méthode d’agrégation APE.

Les parametres de marge et de complexité sont inconnus en pratique alors, pour profiter
de grandes marges ou d’une faible complexité du modele, nous devons étre capable de
construire des estimateurs indépendants de ces parametres, apprenant aussi vite que des
procédures ayant acces a ces parametres. La procédure proposée dans ce chapitre est
implémentable et réalise cet objectif.
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Nous avons ensuite utilisé la méthode introduite en pour I'agrégation d’estimateurs
proposés par [116]. Elle fournit un estimateur adaptatif, plus simple que celui utilisé dans
[116], atteignant la vitesse minimax d’estimation, (contrairement au résultat de [116], qui
souffrait d’une perte de vitesse logarithmique lors de la phase d’adaptation). Un résultat
similaire utilisant une autre méthode a été obtenu dans [77].

Chapitre [8|: Dans ce chapitre (cf. Chapter , nous montrons que la vitesse otpimale
d’agrégation sous hypothese de marge pour des inégalités d’oracle non exactes (cf. pour
C >1) est

log M\ 7=t
(=)
Nous avons ensuite utilisé cette inégalité d’oracle, satisfaite par la méthode APE (définie
en , pour construire des estimateurs en agrégeant des classifieurs ” par substitution”,
c’est-a-dire de la forme :
fol@) = sign(2n(x) — 1),

ol 7 varie dans un e—réseau de l'espace de Holder pour la norme infinie et pour un e
convenablement choisi. L’estimateur ainsi construit est minimax. Nous avons utilisé une
deuxieme fois I'inégalité d’oracle de ce chapitre pour rendre adaptatif, en la complexité et
la marge, ces estimateurs. Le désavantage de la méthode de construction de cet estimateur
est qu’elle nécessite de connaltre un réseau optimal des classes de Holder pour la norme
L et d’agréger un grand nombre d’estimateurs faibles (il y en a un nombre exponentiel
en n). Cette méthode est donc difficilement implémentable dans la pratique. Pour résoudre
ce probleme, nous avons utilisé une troisieme fois I'inégalité d’oracle démontrée dans ce
chapitre pour agréger des classifieurs par substitution, ou 'estimateur de la fonction de
régression est un estimateur par polynoémes locaux donc implémentable. Finalement, cette
derniere procédure fournit un estimateur implémentable minimax et adaptatif en la marge
et la régularité.

Chapitre [9] : Dans ce chapitre réalisé en collaboration avec Christophe Chesneau
(cf.[38]), I'inégalité d’oracle du Théoreme [9.1] et ses deux Corollaires (cf. Corollaires [9.1] et
sont prouvés. Ces résultats, en densité et régression, ont permis d’obtenir la vitesse de
convergence d’un estimateur obtenu par agrégation d’estimateurs par ondelettes seuillés.
Cet estimateur est minimax adaptatif en la régularité sur tous les espaces de Besov. De plus,
cette procédure est implémentable car ne requiert que ’agrégation de logn estimateurs.

Chapitre [10]: Dans ce chapitre, nous répondons positivement a une conjecture de Stone,
posée en 1982 dans [110]. C’est un travail commun avec Stéphane Gaiffas.

La problématique est la suivante. Placons nous dans le modeéle de régression gaussienne

Y = f1(X) +o(X)C,

oti ¢ est un bruit gaussien centré, réduit et indépendant de X, f* : R — R est la fonction
de régression introduite dans le paragraphe et 0 : RY — R est une fonction vérifiant
0 <09 <0o(X) <o as.. La variable aléatoire Y est a valeurs réelles et X est une variable
aléatoire & valeurs dans R?. L’hypothese principale de ce chapitre est de supposer qu’il
existe une direction § € Sy_1, ott Sy_1 est la sphere unité de R?, telle que

f*(@) = g(¢'x),Vz € RY,

ou la fonction g : R — R, généralement appelée fonction de lien, est inconnue ainsi que le
vecteur 6. Ceci est une hypothese de réduction de dimension appelée hypotheése du ”single
index”. Supposons ensuite, que g est a—Holdérienne (ceci est ’hypothese de complexité
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du chapitre). La vitesse minimax dans ce modele (sans 'hypotheése du ”single-index”) est
n—20/Qatd) o f est a—Holdérienne. Elle est done d’autant moins rapide que la dimension
d est grande. La conjecture de Stone consiste a prouver qu’il existe un estimateur fn de
f* ayant une vitesse de convergence aussi rapide que dans un modéle uni-dimensionnel
(d = 1), c’est-a-dire tel que son risque quadratique vérifie

~ _ 2a
(1.16) E[l|fn = f*|[32(px)] < Cn” 7.

La plupart des articles dans ce domaine proposent d’estimer le vecteur inconnu 6 et
d’utiliser la valeur estimée pour construire un estimateur uni-dimensionnel de g. L’approche
que nous introduisons dans ce chapitre est de s’adapter en 6 plutot que de I'estimer. Pour cela
nous avons agrégé des estimateurs par polynémes locaux unidimensionnels dans plusieures
directions formant une grille de la sphere S;_1. Nous montrons une inégalité d’oracle
satisfaite par une méthode d’agrégation avec poids exponentiels dépendant d’un parametre
de température. Cette inégalité d’oracle montre que cet agrégat s’adapte automatiquement
en la direction. Parallelement, pour une grille assez fine en la régularité «, cette procédure
s’adapte aussi a la régularité. La vitesse obtenue par cet estimateur est la vitesse minimax
prédite par Stone donnée en

Des résultats de simulation montrent les meilleures performances des méthodes d’agrégation
a poids exponentiels par rapport aux méthodes de minimisation du risque empirique. Dans
le modele du ”single index”, nous avons obtenu le graphique suivant, montrant 1’évolution
du risque quadratique de l'agrégat (en ordonnée) en fonction du parametre de température.
Pour une température proche de zéro, 'agrégat est une moyenne uniforme des estimateurs
de base. Pour des grandes températures, 'agrégat est la méthode d’agrégation MRE.

0020
|

MISE
0.015
|

0.010
|

Fic. 2. Risque quadratique de ’agrégat en fonction de l'inverse de la
température T' > 0 (écart-type en ligne pointillée). Pout 7' = 0, nous avons
le risque quadratique de I'agrégat a poids uniformes. Asymptotiquement,
quand T — +o00, on obtient le risque quadratique de ’ERM.

Le minimum atteint par cette fonction, nous permet de conjecturer ’existence d’une
température optimale pour laquelle le risque quadratique de I'agrégat APE est minimale.
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CHAPTER 2

Lower Bounds and Aggregation in Density Estimation

In this chapter we prove the optimality of an aggregation procedure. We prove lower
bounds for aggregation of model selection type of M density estimators for the Kullback-
Leibler divergence (KL), the Hellinger’s distance and the Li-distance. The lower bound,
with respect to the KL distance, can be achieved by the on-line type estimate suggested,
among others, by [125]. Combining these results, we state that log M /n is an optimal rate
of aggregation in the sense of [I14], where n is the sample size.

Contents
(1. Introductionl 29
5 Mo dehnh 1 . 1 31
8. Lower boundsl 32
[4.  Upper bounds| 35

The material of this chapter has been published in the Journal of Machine Learning
Research (cf. [80]).

1. Introduction

Let (X, .A) be a measurable space and v be a o-finite measure on (X, A). Let D, =
(Xq,...,X,) be a sample of n i.i.d. observations drawn from an unknown probability of
density f on X with respect to v. Consider the estimation of f from D,,.

Suppose that we have M > 2 different estimators f1, ..., far of f. [33], [125], [98], [74],
[114] and[35] have studied the problem of model selection type aggregation. It consists in
construction of a new estimator fn (called aggregate) which is approximatively at least
as good as the best among fl, ey fM. In most of these papers, this problem is solved by
using a kind of cross-validation procedure. Namely, the aggregation is based on splitting
the sample in two independent subsamples D}, and Dl2 of sizes m and [ respectively, where
m > [ and m + [ = n. The size of the first subsample has to be greater than the one of
the second because it is used for the true estimation, that is for the construction of the
M estimators fl, ceey fM. The second subsample is used for the adaptation step of the
procedure, that is for the construction of an aggregate frn, which has to mimic, in a certain
sense, the behavior of the best among the estimators fl Thus, fn is measurable w.r.t.
the whole sample D,, unlike the first estimators fi, ..., fas. Actually, [98] and [74] did
not focus on model selection type aggregation. These papers give a bigger picture about
the general topic of procedure aggregation and [125] complemented their results. [114]
improved these results and formulated the three types of aggregation problems (cf. [114]).
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CHAPTER 2. LOWER BOUNDS AND AGGREGATION IN DENSITY ESTIMATION

One can suggest different aggregation procedures and the question is how to look for an
optimal one. A way to define optimality in aggregation in a minimax sense for a regression
problem is suggested in [114]. Based on the same principle we can define optimality
for density aggregation. In this chapter we will not consider the sample splitting and
concentrate only on the adaptation step, i.e. on the construction of aggregates (followmg
[98], [74], [114]). Thus, the first subsample is fixed and instead of estimators fi,..., far,

we have fixed functions fi,..., fas. Rather than working with a part of the initial sample
we will use, for notational simplicity, the whole sample D,, of size n instead of a subsample
D?.

l

The aim of this chapter is to prove the optimality, in the sense of [I14], of the aggregation
method proposed by Yang, for the estimation of a density on (R, \) where X is the Lebesgue
measure on R?. This procedure is a convex aggregation with weights which can be seen
in two different ways. Yang’s point of view is to express these weights in function of the
likelihood of the model, namely

M
(2.1) Falx) =Y 0\ fi(x), Vrex,

where the weights are o™ = (n+1)71 > ko wj(-k) and

J
(2.2) w® = 15(X1) - £5(X) k=1,...,n and w® = i

S TN A oM
And the second point of view is to write these weights as exponential ones, as used in [10],
[35], [63], [26], [72] and Chapter |7} for different statistical models. Define the empirical
Kullback-Leibler loss K, (f) = —(1/n) > 1 log f(X;) (keeping only the term independent
of the underlying density to estimate) for all density f. We can rewrite these weights as
exponential weights:

OB GV 101)) BV .

T i exp(—kEw(f)

Most of the results on convergence properties of aggregation methods are obtained
for the regression and the gaussian white noise models. Nevertheless, [33], 35], [48], [125],
[130] and [102] have explored the performances of aggregation procedures in the density
estimation framework. Most of them have established upper bounds for some procedure
and do not deal with the problem of optimality of their procedures. [98], [74] and [125] state
lower bounds for aggregation procedure in the regression setup. To our knowledge, lower
bounds for the performance of aggregation methods in density estimation are available

only in [I02]. Their results are obtained with respect to the mean squared risk. [33] and
[125] construct procedures and give convergence rates w.r.t. the KL loss. One aim of this
chapter is to prove optimality of one of these procedures w.r.t. the KL loss. Lower bounds
w.r.t. the Hellinger’s distance and L;-distance (stated in Section and some results of [17]
and [48] (recalled in Section [4]) suggest that the rates of convergence obtained in Theorem
and are optimal in the sense given in Definition In fact, an approximate bound
can be achieved, if we allow the leading term in the RHS of the oracle inequality (i.e. in
the upper bound) to be multiplied by a constant greater than one.

The chapter is organized as follows. In Section [2| we give a Definition of optimality,
for a rate of aggregation and for an aggregation procedure, and our main results. Lower
bounds, for different loss functions, are given in Section [3] In Section [ we recall a result
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of [125] about an exact oracle inequality satisfied by the aggregation procedure introduced

in (21).
2. Main definition and main results

To evaluate the accuracy of a density estimator we use the Kullback-leibler (KL)
divergence, the Hellinger’s distance and the L;-distance as loss functions. The KL divergence
is defined for all densities f, g w.r.t. a o—finite measure v on a space X', by

[y log (g) fdv if Py < Py;
—+00 otherwise,

K(f\g)Z{

where Py (respectively P;) denotes the probability distribution of density f (respectively
g) w.r.t. v. Hellinger’s distance is defined for all non-negative measurable functions f and
g by

H(f.9) = |V - Vi,

where the Ly-norm is defined by || f]l2 = ([ fQ(x)dy(as))l/2 for all functions f € La(X,v).
The L1-distance is defined for all measurable functions f and g by

o(f,g) = /X f — gldv.

The main goal of this chapter is to find optimal rate of aggregation in the sense of the
definition given below. This definition is an analog, for the density estimation problem, of

the one in [114] for the regression problem.

DEFINITION 2.1. Take M > 2 an integer, F a set of densities on (X, A,v) and Fy a set
of functions on X with values in R such that F C Fy. Let d be a loss function on the set
Fo- A sequence of positive numbers (¢n(M))nen+ is called optimal rate of aggregation
of M functions in (Fy,F) w.r.t. the loss d if :

(i) There exists a constant C' < oo, depending only on Fo,F and d, such that for all

functions f1,..., far in Fo there exists an estimator fn (aggregate) of f such that
(2.3 sup [ [d(f. )] = win, d(F,£)] < Cv(an), vn e
fer i=1,....M
(i) There exist some functions fi,..., far in Fo and ¢ > 0 a constant independent of M
such that for all estimators f, of f,
(2.4) sup [Ef (s, f)| = min_d(f, fi)} > (M), Vn €N,
fer i=1,....M

Moreover, when the inequalities and are satisfied, we say that the procedure fn,
appearing in , s an optimal aggregation procedure w.r.t. the loss d.

Let A > 1 be a given number. In this chapter we are interested in the estimation of
densities lying in
(2.5) F(A) = {densities bounded by A}
and, depending on the used loss function, we aggregate functions in Fy which can be:

(1) Frx(A) = {densities bounded by A} for KL divergence,
(2) Fu(A) = {non-negative measurable functions bounded by A} for Hellinger’s dis-
tance,
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(3) Fy(A) = {measurable functions bounded by A} for the L;-distance.

The main result of this chapter, obtained by using Theorem and assertion (2.6)) of
Theorem is the following Theorem.

THEOREM 2.1. Let A > 1. Let M and n be two integers such thatlog M < 16(min(1, A—
1))2n. The sequence
log M
1/’n(M) =
is an optimal rate of aggregation of M functions in (Fx(A), F(A)) (introduced in (2.5))
w.r.t. the KL divergence loss. Moreover, the aggregation procedure with exponential weights,
defined in , achieves this rate. So, this procedure is an optimal aggregation procedure
w.r.t. the KL-loss.

Moreover, if we allow the leading term ”"min;—; s d(f, fi)”, in the upper bound and
the lower bound of Definition to be multiplied by a constant greater than one, then
the rate (¢, (M))nen+ is said "near optimal rate of aggregation”. Observing Theorem
and the result of [48] (recalled at the end of Section , the rates obtained in Theorems

and 2.4} .
log M\ 2
n

are near optimal rates of aggregation for the Hellinger’s distance and the Li-distance to

the power ¢, where ¢ > 0.

3. Lower bounds

To prove lower bounds of type ([2.4) we use the following lemma on minimax lower
bounds which can be obtained by combining Theorems 2.2 and 2.5 in [IT5]. We say that d
is a semi-distance on O if d is symmetric, satisfies the triangle inequality and d(6,6) = 0.

LEMMA 2.1. Let d be a semi-distance on the set of all densities on (X, A,v) and w
be a non-decreasing function defined on Ry which is not identically 0. Let (1n)nen be
a sequence of positive numbers. Let C be a finite set of densities on (X, A,v) such that
card(C) =M > 2,

Vf,g€C, f#g=d(f g) >4, >0,
and the KL divergences K(PJ?"|P§®”), between the product probability measures correspond-
ing to densities f and g respectively, satisfy, for some fy € C,

Vf e, K(PP"|PR") < (1/16)log(M).
Then,

inf sup By [w(ey 'd(fu, £))] > e,
fn feC
where inffn denotes the infimum over all estimators based on a sample of size n from an

unknown distribution with density f and c¢1 > 0 is an absolute constant.

Now, we give a lower bound of the form (2.4) for the three different loss functions
introduced in the beginning of the section. Lower bounds are given in the problem of
estimation of a density on R?, namely we have X = R? and v is the Lebesgue measure on
R
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THEOREM 2.2. Let M be an integer greater than 2, A > 1 and ¢ > 0 be two numbers.
We have for all integers n such that log M < 16(min (1, A — 1))%n

. P . log M a/2

swp inf sup By [H(fo, £)7] = min H(f;, f)7] > ,
frofME€FH(A) fo fEF(A) i=L..M

where ¢ is a positive constant which depends only on A and q. The sets F(A) and Fr(A)
are defined in when X =R and the infimum is taken over all the estimators based

on a sample of size n.

Proof : For all densities f1,..., fas bounded by A we have,

sup inf sup {Ef [H(fn,f)q} — min H(fj,f)q] >inf  sup Ey [H(fn,f)q] .
frofM€FH(A) fn fEF(A) J=le M o JE{fr nfrr}
Thus, to prove Theorem 1, it suffices to find M appropriate densities bounded by A and
to apply Lemma 1 with a suitable rate.

We consider D the smallest integer such that 2P/8 > M and A = {0,1}7.

set hj(y) = h(y—(j—1)/D) for all y € R, where h(y) = (L/D)g(Dy) and g(y) =
Wo,1/9)(y) — W1 j21)(y) for all y € R and L > 0 will be chosen later. We consider

f5( )—]IOl]d 1—|—Z(5h xl , Vx:(xl,...,xd)eRd,

for all § = (61,...,0p) € A. We take L such that L < Dmin(1, A — 1) thus, for all § € A,
f5 is a density bounded by A. We choose our densities fi,..., fas in B = {fs:0 € A},
but we do not take all of the densities of B (because they are too close to each other),
but only a subset of B, indexed by a separated set (this is a set where all the points are
separated from each other by a given distance) of A for the Hamming distance defined

by p(6t,6%) = Zf;l I(8} # 62) for all 61 = (01,...6%),62 = (0%,...,6%) € A. Since

Jg hdX = 0, we have
D % 2
» / 11(5} # 67) (1 —4/1 +hj(x)> da
i
j=1""D

= 2p(6t,6%) /Ol/D <1 -1+ h(a;)) dz,

for all 6! = (61,...,05),0% = (0%,...,6%) € A. On the other hand the function p(z) =
l—az?—/1 + 7, Wherea = 873/2is convex on [ 1,1] and we have |h(z)| < L/D < 1 so, ac-
cording to Jensen, fo o(h(z))dz > ¢ (fo ) Therefore fol/D (1 —/1+ h(az)) dr >

a Ol/D h?(x)dx = (aL?)/D3, and we have

H?(f51, f52)

2aL

H*(fs1, f52) > p(6h,6%),

for all 6,02 € A. According to Varshamov-Gilbert, cf. [T15, p. 89] or [68], there exists a
D /8-separated set, called Np /g, on A for the Hamming distance such that its cardinal is
higher than 2°/8 and (0,...,0) € Np/g. On the separated set Np /g we have,

v, 6% € Npjg, H? >LL2
,0°€ Npyg, (f51>f52)f4D2
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In order to apply Lemma [2.1] we need to control the KL divergences too. Since we
have taken Np g such that (0,...,0) € Np/g, we can control the KL divergences w.r.t. Fy,
the Lebesgue measure on |0, 1]d. We denote by Pjs the probability of density fs w.r.t. the
Lebesgue’s measure on R?, for all § € A. We have,

KPR = [ low (o) (@)

D
= nZﬁ/D log (14 d;h;(x)) (1 + 65hi(x)) dz

j=1" D
D 1/D
= a0 ) [ s+ n)a+ @),
j=1 0
for all § = (01,...,0p) € Np/g. Since Vu > —1,log(1 + u) < u, we have,
D 1/D 1/D nl?
K(PFMPE™) <n | Y 6, / (14 h(z))h(z)ds < nD/ h2(z)dx = o
0 0

=1

Since log M < 16(min (1, A — 1))?n, we can take L such that (nL?)/D? = log(M)/16
and still having L < Dmin(1, A —1). Thus, for L = (D/4)\/log(M)/n, we have for all
clements 61,02 in Np s, H?(f51, f52) > (o/64)(log(M)/n) and V6 € Np 5, K(PZ"|Py™) <
(1/16) log(M).

Applying Lemma 1 when d is H, the Hellinger’s distance, with M density functions
fi,...,fmin {f5 RS ND/S} where fi = 1y 1)« and the increasing function w(u) = u4, we
get the result.

|

REMARK 2.1. The construction of the family of densities {f5 10 € ND/S} s in the
same spirit as the lower bound of [I1]|], [102]. But, as compared to [102], we consider
a different problem (model selection aggregation) and as compared to [11])], we study in
a different context (density estimation). Also, our risk function is different from those
considered in these papers.

Now, we give a lower bound for KL divergence. We have the same result as for square
of Hellinger’s distance.

THEOREM 2.3. Let M > 2 be an integer, A > 1 and ¢ > 0. We have, for any integer n
such that log M < 16(min(1, 4 — 1))%n,

. [ 2 \\q ) " log M\ !
(26) s il swp By [(K(fIf)7] = min (K(f]f;))] = ¢ ,
flvvfMej:K(A) f’n fGF(A) L J7177M | n
and
. [ - . | log M\ ¢
@1 s it swp |E [0 - min (K1) zc( : ) ,
f1ofMEFK(A) fn fFEF(A) L j=1,..M J n

where ¢ is a positive constant which depends only on A. The sets F(A) and Fx(A) are
defined in for X =R<.

Proof : Proof of the inequality (2.7]) of Theorem is similar to the one for (2.6]). Since
we have for all densities f and g,

K(flg) = H*(f.9),
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[a proof is given in [IT5] p. 73], it suffices to note that, if f1,..., fas are densities bounded
by A then,

up ot s |8y [(KU10)] - min, (0100

frys fMEFK(A) fn fEF(A T

- IJIcif fE{fsltlp,fM} [ f [(K(ﬂfn))q” = ljrcif fE{fsllvlpJM} [Ef [HQq(f’ fn)” ’

to get the result by applying Theorem
|
With the same method as Theorem 1, we get the result below for the L;-distance.

THEOREM 2.4. Let M > 2 be an integer, A > 1 and ¢ > 0. We have for any integers
n such that log M < 16(min(1, 4 — 1))%n

R loc M a/2
sup inf sup [Ef [o(f, £2)7] — min_ (. fm} > ( 8 )

Fros JMEF(A) fn fEF(A) J=t. M n
where ¢ is a positive constant which depends only on A. The sets F(A) and F,(A) are
defined in for X = R4,

Proof : The only difference with Theorem [2.2]is in the control of the distances. With the
same notations as the proof of Theorem we have,

1/D
oo S) = [ (@) = f@lde = 06", | @iz = o667,
for all 6',6% € A. Thus, for L = (D/4)\/log(M)/n and Np g, the D /8-separated set of A
introduced in the proof of Theorem we have,
log(M
v(for, fs2) = 3 qu(l )
Therefore, by applying Lemma 1 to the Lj-distance with M densities fi,..., fas in
{f5 10 € ND/S} where fi = qjgj¢ and the increasing function w(u) = u?, we get the
result.

1
, V§',6° € Npjg and K(PP"|P&™) < g loa(M), V€A

4. Upper bounds

In this section we use an argument in [I125] (see also [35]) to show that the rate of
the lower bound of Theorem [2.3]is an optimal rate of aggregation with respect to the KL
loss. We use an aggregate constructed by Yang (defined in ) to attain this rate. An
upper bound of the type is stated in the following Theorem. Remark that Theorem
holds in a general framework of a measurable space (X,.A) endowed with a o-finite
measure v.

THEOREM 2.5 (Yang). Let X1,..., X, be n observations of a probability measure on
(X, A) of density f with respect to v. Let fi,..., fm be M densities on (X, A,v). The
aggregate fy, introduced in (m satisfies, for any underlying density f,

08 By [ (1F)] < min, K717y + 2S00,

Proof : Proof follows the line of [125], although he does not state the result in the
form li for convenience we reproduce the argument here. We define fi(z; X (k)) =
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ijlw fi(x), Yk =1,...,n (where wj(»k) is defined in and z*) = (x1,...,z;) for
all k € Nand z1,...,2; € X) and fo(2; X0) = (1/M) Y12, fj(x) for all z € X. Thus,
we have
1 -
Fr; XB).
n+1 Pt

Fla; X)) =

Let f be a density on (X, .A,v). We have

(2 k+1
ZEf[ f’fk} = Z/Xkﬂ < k+1) ) Hf v (21, )

frlzrin

n+1
B An+1 <Z log ( ( xk+1 >> H f .%'Z dV n+1)(x17 v 7$n+1)

f E\TE4+157 ())

_ f(.T1) f(xn-‘rl s, (n+1)
B /X“+1 8 <HZO Fr(wrsr; ®) )) H flaar® (@1, ),

but [Ti_g fr(zrir;2®) = (1/M) Zj]\/il fi(@1) .o fi(Tns1), Vor, .., 2pgr € X thus,

B f(x1) ... f(@ng1) T 2 dp @0t (o .
ZEf [ (#1) } B /X"H 8 <z\142]]\11 fj(aﬁ1)...fj(mn+1)> 11_11 e et

moreover x — log(1/x) is a decreasing function so,

ZEf[ f’fk}

. f(@1) .- f(@nt1) T N\ 7,,2(n+1)
= Ay, {/Xm toe <A14 f(wn) fj(xn+1)> Z.I:Il Jladv e o ns)
f(@1) .. f(zns1) nH+1 (n+1)
= el TH%M{/XHH og (fj(f'?l) fi(Tnt1) ) : fle s smn)

finally we have,

(2.9) ZEf [K(f1f0)] <log M+ (n+1) _inf K(f1f;).

EARA)

On the other hand we have,

; f(@ni1) s ©(n+1)
By (K1) = [ o (= [] f@d™ D@, . wni),

n+1 Zk:O fk (.’En+1; :E(k)) i=1

and z — log(1/x) is convex, thus,

(2.10) [(f!fn]_ ZEf[ (F15)] -

Theorem |2 - 5| follows by combining (2.9) and -
[
Birgé constructs estimators, called T-estimators (the "T” is for ”test”), which are
adaptive in aggregation selection model of M estimators with a residual proportional at
(log M/ n)q/ ? when Hellinger and L;-distances are used to evaluate the quality of estimation
(cf. [I7]). But it does not give an optimal result as Yang, because there is a constant greater
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than 1 in front of the main term min;—; s d?(f, fi) where d is the Hellinger distance or
the L; distance. Nevertheless, observing the proof of Theorem and we can obtain

log]\/.l')q/2

i=1,... n

sp ot sup B a7, fY] - Co) pin, a(5)7] = e
where d is the Hellinger or L;-distance, ¢ > 0 and A > 1. The constant C(q) can be chosen
equal to the one appearing in the following Theorem. The same residual appears in this

lower bound and in the upper bounds of Theorem so we can say that

log M\ 9/
n

is near optimal rate of aggregation w.r.t. the Hellinger distance or the L;-distance to the
power g, in the sense given at the end of Section [2l We recall Birgé’s results in the following

Theorem.

THEOREM 2.6 (Birgé). If we have n observations of a probability measure of density
f wrt. v and fi,..., fa densities on (X, A,v), then there exists an estimator f, (
T-estimator) such that for any underlying density f and g > 0, we have

E, [H(f, fn)q} < C(q) <jrf},i_?MH(f’ i)+ (loiM>Q/2) |

and for the Li-distance we can construct an estimator fn which satisfies :

By [o(f, ] < C) (_minMv(f, e (P M)”) ,

j_lw"’

where C(q) > 0 is a constant depending only on q.

Another result, which can be found in [48], states that the minimum distance estimate
proposed by Yatracos (1985) (cf. [48, p. 59]) achieves the same aggregation rate as in
Theorem for the L;-distance with ¢ = 1. Namely, for all f, f1,..., far € F(A),

F I
]Ef [U(ﬁ fn)i| <3 minMU(f’ fj) + ogM’

7=1,..., n

where fn is the estimator of Yatracos defined by

1 n
/Af— n;H{XieA}

f = arg min sup
! Fe{firmfi) AcA

and A= {{z: fi(z) > fj(x)}: 1 <4,j < M}.

)
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CHAPTER 3

Optimal Rates of Aggregation in Classification

In the same spirit as [I14], we define the optimality of an aggregation procedure in
the problem of classification. Using an aggregate with exponential weights, we obtain
an optimal rate of convex aggregation for the hinge risk under the margin assumption.
Moreover we obtain an optimal rate of model selection aggregation under the margin
assumption for the excess Bayes risk.
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[4. Optimal Rates of MS-Aggregation for the Excess Risk.| 46
.__Proofs. 47

The material of this chapter is an article accepted for publication in the journal
Bernoulli (cf. [81]).

1. Introduction.

Let (X, .A) be a measurable space. We consider a random variable (X,Y) on X' x{—1,1}

with probability distribution denoted by 7. Denote by PX the marginal of 7 on X and by
def

n(z) = P(Y = 1|X = z) the conditional probability function of ¥ = 1 knowing that X = x.
We have n i.i.d. observations of the couple (X,Y’) denoted by D,, = ((X;,Yi))i=1,...n. The
aim is to predict the output label Y for any input X in X from the observations D,,.

We recall some usual notation introduced for the classification framework. A pre-
diction rule is a measurable function f : X — {—1,1}. The misclassification error
associated with f is

R(f) = B(Y # f(X)).
It is well known (see, e.g., [47]) that
. * *
g B = R(P) = B,
where the prediction rule f*, called the Bayes rule, is defined by

£ (x) & sign(2n(z) — 1),vz € X.
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CHAPTER 3. OPTIMAL RATES OF AGGREGATION IN CLASSIFICATION

The minimal risk R* is called the Bayes risk. A classifier is a function, fn = fn(X ,Dy),
measurable with respect to D, and X with valuesin {—1, 1}, that assigns to the sample D,, a
prediction rule f,,(., Dy) : X — {—1,1}. A key characteristic of f, is the generalization

error E[R(f,)], where

R(fa) € P(Y # fu(X)|Dy).

The aim of statistical learning is to construct a classifier f,, such that E[R(f,)] is as close
to R* as possible. Accuracy of a classifier f,, is measured by the value E[R( fn) — R*] called
excess Bayes risk of f,. We say that the classifier f, learns with the convergence rate
(n), where (1(n))nen is a decreasing sequence, if there exists an absolute constant C' > 0
such that for any integer n, E[R(f,) — R*] < C¥(n).

Theorem 7.2 of [47] shows that no classifier can learn with a given convergence rate
for arbitrary underlying probability distribution 7. To achieve rates of convergence, we
need a complexity assumption on the set which the Bayes rule f* belongs to. For instance
[123, 124] provide examples of classifiers learning with a given convergence rate under
complexity assumptions. These rates can not be faster than n=1/2 (cf. [47]). Nevertheless,
they can be as fast as n~! if we add a control on the behavior of the conditional probability
function n at the level 1/2 (the distance |n(-) — 1/2| is sometimes called the margin). The
papers [91], for the problem of discriminant analysis, which is close to our classification
problem, and [I16] have introduced the following assumption
(MA) Margin (or low noise) assumption. The probability distribution ™ on the space
X x {—1,1} satisfies MA (k) with 1 < k < +o0 if there exists co > 0 such that,

(3.1) E[|f(X) — f*(X)|] < co (R(f) — R)V",

for any measurable function f with values in {—1,1}.
According to [116] and [22], this assumption is equivalent to a control on the margin given
by

P[I2n(X) — 1| <t] <t VO <t < 1.
Several example of fast rates, i.e. rates faster than n=1/2, can be found in [19] [109] 108,
92, [04], 93] and [9].

The aim of this chapter is the following:

(1) We define a concept of optimality for aggregation procedures in classification.

(2) We introduce several aggregation procedures in classification and obtain exact
oracle inequalities for their risks.

(3) We prove lower bounds and show optimality of the suggested procedures and
derive optimal rates of aggregation under the margin assumption.

The chapter is organized as follows. In Section [2] we introduce definitions and the
procedures which are used throughout the chapter. Section [3| contains oracle inequalities
for our aggregation procedures w.r.t. the excess hinge risk. Section [4] contains similar
results for the excess Bayes risk. Proofs are postponed in Section

2. Definitions and Procedures.

2.1. Loss functions. The quality of a classifier is often measured by a convex sur-
rogate ¢ for the classification loss ([41} 54, 89, [55], 25, [14], 15]). Let us introduce some
notations. Take ¢ a measurable function from R to R. The risk associated with the loss
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2. DEFINITIONS AND PROCEDURES.

function ¢ is called the ¢—risk and is defined by
def
AC(f) = Elo(Y £(X))],

where f : X — R is a measurable function. The empirical ¢—risk is defined by
A9 LS gipcx)
" i

and we denote by A®* the infimum over all real valued functions inf FAX—R A(¢)( f)-
Classifiers obtained by minimization of the empirical ¢—risk, for different convex losses,

have been proved to have very good statistical properties (cf. [89, 20} 130, 109, 108] and

[15]). A wide variety of classification methods in machine learning are based on this idea,

in particular, on using the convex loss ¢(x) def max(1 — z,0), associated with support
vector machines ([41 [104]), called the hinge-loss. The corresponding risk is called the
hinge risk and is defined by

def
A(f) = E[max(1 -Y f(X),0)],
for any measurable function f : X — R and the optimal hinge risk is defined by
def .
2 A* = £ A(f).
(3:2) pant A

It is easy to check that the Bayes rule f* attains the infimum in (3.2) and
(3.3) R(f)— R* < A(f) — A%,

for any measurable function f with values in R (cf. [88] and generalizations in [130]
and [I5]), where we extend the definition of R to the class of real valued functions by
R(f) = R(sign(f)). Thus, minimization of the excess hinge risk, A(f) — A*, provides a
reasonable alternative for minimization of the excess Bayes risk, R(f) — R*.

2.2. Aggregation Procedures. Now, we introduce the problem of aggregation and
the aggregation procedures which will be studied in this chapter.

Suppose that we have M > 2 different classifiers fl, ey fM taking values in {—1,1}.
The problem of model selection type aggregation, as studied in [98] [125], 34} 35, [114], consists
in construction of a new classifier fn (called aggregate) which mimics approximatively the
best classifier among fl, ey fM. In most of these papers the aggregation is based on
splitting of the sample in two independent subsamples D} and D12 of sizes m and [
respectively, where m + | = n. The first subsample D}, is used to construct the classifiers
fl, ey fM and the second subsample Dl2 is used to aggregate them, i.e., to construct a
new classifier that mimics in a certain sense the behavior of the best among the classifiers
fii=1,...,M.

In this chapter we will not consider the sample splitting and concentrate only on the
construction of aggregates (following [74], 114, [I7, 27]). Thus, the first subsample is fixed
and instead of classifiers fl, ceey fM, we have fixed prediction rules f1,..., fas. Rather than
working with a part of the initial sample we will suppose, for notational simplicity, that
the whole sample D,, of size n is used for the aggregation step instead of a subsample Dlz.

Let F = {f1,..., fum} be a finite set of real-valued functions, where M > 2. An
aggregate is a real valued statistic of the form

o= w1,

ferF
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CHAPTER 3. OPTIMAL RATES OF AGGREGATION IN CLASSIFICATION

where the weights (w(™(f)) jer satisfy
w™(f) >0 and Z w™(f) =1.
fer

Let ¢ be a convex loss for classification. The Empirical Risk Minimization aggregate
(ERM) is defined by the weights

, VfeF
0 for other f € F. /

f(ERM)

{ 1 for one f € F such that Aﬁﬁ”(f) = minger A#) (9),

The ERM aggregate is denoted by
The averaged ERM aggregate is defined by the weights

w(m(f):{ YN AP () = minger AD(0), yp e g

. 9
0 otherwise,

where N is the number of functions in F minimizing the empirical ¢—risk. The averaged
ERM aggregate is denoted by f(AERM)

The Aggregation with Exponential Weights aggregate (AEW) is defined by the weights
exp (—nA#)(f))
S yerexp (—na(g))

The AEW aggregate is denoted by f (ABW),
The cumulative AEW aggregate is an on-line procedure defined by the weights

l n exp (—kA,(j))(f))
> 3erexp (kAL (9))

The cumulative AEW aggregate is denoted by fnCAEW)

When F is a class of prediction rules, intuitively, the AEW aggregate is more robust
than the ERM aggregate w.r.t. the problem of overfitting. If the classifier with smallest
empirical risk is overfitted, i.e., it fits too much to the observations, then the ERM aggregate
will be overfitted. But, if other classifiers in F are good classifiers, the aggregate with
exponential weights will consider their ”opinions” in the final decision procedure and these

(3.4) w™ (f) = , VfeF.

, VfeF.

opinions can balance with the opinion of the overfitted classifier in F which can be false
because of its overfitting property. The ERM only considers the ”opinion” of the classifier
with the smallest risk, whereas the AEW takes into account all the opinions of the classifiers
in the set F. Moreover, the AEW aggregate does not need any minimization algorithm
contrarily to the ERM aggregate.

The exponential weights, defined in , can be found in several situations. First, one
can check that the solution of the following minimization problem

M
(3.5) mm(Z)\A (f) +EZ)\ logAj: Y A < 1A =0,5=1,. M),
7j=1
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3. OPTIMAL RATES OF CONVEX AGGREGATION FOR THE HINGE RISK.

for all € > 0, is

(@) (¢
exp (_An E(fg))
A= L Vj=1,..., M.
S e (_An E(fk>>

Thus, for € = 1/n, we find the exponential weights used for the AEW aggregate. Second,

these weights can also be found in the theory of prediction of individual sequences, cf.
[119].

2.3. Optimal Rates of Aggregation. In the same spirit as in [I14], where the
regression problem is treated, we introduce a concept of optimality for an aggregation
procedure and for rates of aggregation, in the classification framework. Our aim is to prove
that the aggregates introduced above are optimal in the following sense. All the results are
given under the margin assumption. We denote by P, the set of all probability measures
mon X x {—1,1} satisfying MA(k).

DEFINITION 3.1. Let ¢ be a loss function. The remainder term ~y(n, M, k,F,m) is
called optimal rate of model selection type aggregation (MS-aggregation) for
the ¢—risk, if the two following inequalities hold:

(i) VF = {f1,..., fm}, there exists a statistic fn, depending on F, such that V' € Py,
Vn > 1,

(36)  E[AV(f) ~A®] <min (4€)(f) - A9) + Cir(n M., F o).
S

(ii) 3F = {f1,..., far} such that for any statistic f,, 3Im € Pe, ¥n > 1
(37 E[AV(f) ~A®] > min (49)(f) - A9) + Coy(n. M., F o).
€

Here, Cy and Cy are positive constants which may depend on k. Moreover, when these two
inequalities are satisfied, we say that the procedure f,, appearing in , is an optimal
MS-aggregate for the ¢—risk. If C denotes the convex hull of F and if (3.6) and
are satisfied with minge r (A(¢)(f) — A(¢)*) replaced by min e (A(¢)(f) — A(¢)*) then, we
say that v(n, M,k,F,7) is an optimal rate of convex aggregation type for the
¢—risk and f, is an optimal convex aggregation procedure for the ¢—risk.

In [I14], the optimal rate of aggregation depends only on M and n. In our case the
residual term may be a function of the underlying probability measure 7, of the class F
and of the margin parameter x. Remark that, without any margin assumption, we obtain
\/(log M) /n for residual, which is free from 7w and F. Under the margin assumption we
got a residual term dependent of m and F and it should be interpreted as a normalizing
factor in the ratio

E [A(¢)(fn) _A(qﬁ)*] — min e (A(¢)(f) —A(¢)*)
v(n, M, K, F,) ’

and in that case our definition does not imply the uniqueness of the residual.

3. Optimal Rates of Convex Aggregation for the Hinge Risk.

Take M functions fi,..., far with values in [—1,1]. Consider the convex hull C =
Conv(fi,...,fum). We want to mimic the best function in C using the hinge risk and
working under the margin assumption. We first introduce a margin assumption w.r.t. the
hinge loss.
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CHAPTER 3. OPTIMAL RATES OF AGGREGATION IN CLASSIFICATION

(MAH) Margin (or low noise) assumption for hinge-risk. The probability distribu-
tion w on the space X x {—1,1} satisfies the margin assumption for hinge-risk MAH (k)
with parameter 1 < k < +o0o if there exists ¢ > 0 such that,

(3.8) E[|f(X) = f1(X)]] < c(A(f) — A",
for any function f on X with values in [—1,1].

PROPOSITION 3.1. The assumption MAH(k) is equivalent to the margin assumption
MA(k).

In what follows we will assume that MA (k) holds and thus also MAH(x) holds.

The AEW aggregate of M functions fi,..., fay with values in [—1, 1], introduced in
(3.4) for a general loss, has a simple form, for the case of the hinge loss, given by
(3.9)

n
exp - Y (X .
frn = Zw (f;)f;, where w™(f;) = —; (2 1n’fj( i) . Vi=1,...,M
>ok—18xp (X Yife(Xi))

In Theorems 1 and [3.2] we state the optimality of our aggregates in the sense of

Definition [B.11

THEOREM 3.1 (Oracle inequality). Let k > 1. We assume that w satisfies MA (k).
We denote by C the convex hull of a finite set F of functions fi,..., far with values in
[—1,1]. Let fn be either of the four aggregates introduced in Section . Then, for any
integers M > 3,n > 1, f,, satisfies the following inequality

E [A(fn) - A*} < min(A(f)—A*)+C \/minfec(A(f) -

fec n

A*)% log M n log M 2+—1
n

where C' = 32(6V537cV 16(2c+1/3)) for the ERM, AERM and AEW aggregates with k > 1

and ¢ > 0 is the constant in (3.8) and C' = 32(6 V 537c vV 16(2c+1/3))(2V (26 — 1) /(k — 1)

for the CAEW aggregate with k > 1. For k = 1 the CAEW aggregate satisfies

fec n n

REMARK 3.1. The hinge loss is linear on [—1,1]|, thus, MS-aggregation or convex
aggregation of functions with values in [—1,1] are identical problems. Namely, we have
3.10 min A(f) = min A(f).

(3.10) min A(f) = min A()

THEOREM 3.2 (Lower bound). Let k > 1, M, n be two integers such that 2logy M < n.
We assume that the input space X is infinite. There exists an absolute constant C' > 0,
depending only on k and ¢, and a set of prediction rules F = {f1,..., far} such that for
any real-valued procedure f,, there exists a probability measure 7 satisfying MA(k) for
which

E [A(fn) — A*] > min(A(f)—A")+C \/(minfec A(f) — A*)% log M N (10g M) T

fec n n

where C = ¢ (4e)~12726(s=1)/(25=1) (1og 2) =%/ (2=1) gnd ¢ > 0 is the constant in (@
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Combining the exact oracle inequality of Theorem [3.1 and the lower bound of Theorem
B:2] we see that the residual

(3.11) \/(minfec A(f) — A)x log M N (logM) ) |

n n

is an optimal rate of convex aggregation of M functions with values in [—1,1] for the
hinge-loss. Moreover, for any real valued function f, we have max(1 — yy(f(z)),0) <
max (1l —yf(x),0) for all y € {—1,1} and = € X, thus

(3.12) A((f)) — A* < A(f) — A, where ¥(z) = max(—1,min(z, 1)), VzeR.
Thus, by aggregating ¥ (f1),...,¥(fm), it is easy to check that
\/ (minger AGH()) = A)Flog M (1og M) o

n n

is an optimal rate of model-selection aggregation of M real valued functions fi,..., fir
w.r.t. the hinge loss. In both cases, the aggregate with exponential weights as well as
ERM and AERM attain these optimal rates and the CAEW aggregate attains the optimal
rate if k > 1. Applications and learning properties of the AEW procedure can be found in
Chapters m and |8 (in particular, adaptive SVM classifiers are constructed by aggregating
only (logn)? SVM estimators). In Theorem the AEW procedure satisfies an exact
oracle inequality with an optimal residual term whereas in Chapters [7] and [§] the oracle
inequalities satisfied by the AEW procedure are not exact (there is a multiplying factor
greater than 1 in front of the bias term) and in Chapter [7| the residual is not optimal. In
Chapter [8] it is proved that for any finite set F of functions f1,..., far with values in
[—1,1] and any € > 0, there exists an absolute constant C(e) > 0, such that, for C the
convex hull of F,

313) BG4 < 0 mipa) - a0+ o ()T

This oracle inequality is good enough for several applications (see the examples in Chapter
. Nevertheless, can be easily deduced from Theorem using Lemma and
may be inefficient to construct adaptive estimators with exact constant (because of the
factor greater than 1 in front of minyscc(A(f) — A*)). Moreover, oracle inequalities with a
factor greater than 1 in front of the oracle minycc(A(f) — A*) do not characterize the real
behavior of the used technique of aggregation. For instance, for any strictly convex loss ¢,
the ERM procedure satisfies, (cf. Chapter E[),

(3.14) E [A<¢>( FEERADY — A<¢>>*} < (14 ) min(AD (1) — AO") 4 () B
ferF n

But, it has been recently proved in [85], that the ERM procedure can not mimic the oracle
faster than +/(log M)/n, whereas, for strictly convex losses, the CAEW procedure can
mimic the oracle at the rate (log M)/n (cf. [75]). Thus, for strictly convex losses, it is
better to use aggregation procedure with exponential weights than ERM (or even penalized
ERM procedures (cf. in Chapter ) to mimic the oracle. Non-exact oracle inequalities
of the form cannot tell us which procedure is better to use, since, both ERM and
CAEW procedures satisfy this inequality.

It is interesting to note that the rate of aggregation depends on both the class F
and 7 through the term minyec A(f) — A*. This is different from the regression problem
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(cf. [114]), where the optimal aggregation rates depends only on M and n. Three cases
can be considered, where M(F,m) denotes mingec(A(f) — A*) and M may depend on n:

(1) EM(F,m)<a (%) > for an absolute constant a > 0, then the hinge risk

of our aggregates attains minycc A(f) — A* with the rate (logTM) m’ which can
be log M /n in the case k = 1.

(2) Ifa (%) < M(F,m) <b, for some constants a,b > 0, then our aggregates

mimic the best prediction rule in C with a rate slower than (%) > but faster
than ((log M) /n)Y/2.

(3) If M(F,xw) > a > 0, where a > 0 is a constant, then the rate of aggregation is

log M
n

We can explain this behavior by the fact that not only x but also min¢ce A(f)—A* measures
the difficulty of classification. For instance, in the extreme case where minycc A(f)—A* =0,

, as in the case of no margin assumption.

which means that C contains the Bayes rule, we have the fastest rate logTM ' In the

worst cases, which are realized when x tends to oo or mingec(A(f) — A*) > a > 0, where

a > 0 is an absolute constant, the optimal rate of aggregation is the slow rate logn M

4. Optimal Rates of MS-Aggregation for the Excess Risk.

Now, we provide oracle inequalities and lower bounds for the excess Bayes risk. First,
we can deduce from Theorem and "almost optimal rates of aggregation’ for the
excess Bayes risk achieved by the AEW aggregate. Second, using the ERM aggregate, we
obtain optimal rates of model selection aggregation for the excess Bayes risk.

Using inequality , we can derive from Theorem an oracle inequality for the
excess Bayes risk. The lower bound is obtained using the same proof as in Theorem

COROLLARY 3.1. Let F ={f1,..., fm} be a finite set of prediction rules for an integer
M >3 and k > 1. We assume that m satisfies MA (k). Denote by fn either the ERM
or the AERM or the AEW aggregate. Then, fn satisfies for any number a > 0 and any
integer n
(3.15)

E [R(fn) - R*} <2(1+a) —m_iflM(R(fj) — R+ |C+ (02“/a)1/(2“_1)} <10g]\4> 1 ’

j=1,..., n

where C' = 32(6 V 537c V 16(2¢ + 1/3)). The CAEW aggregate satisfies the same inequality

with C = 32(6 V 537c Vv 16(2¢ +1/3))(2V (26 —1)/(k — 1) when k > 1. For k =1 the

CAEW aggregate satisfies where we need to multiply the residual by logn.
Moreover there exists a finite set of prediction rules F = {f1,..., far} such that for

any classifier f,, there exists a probability measure © on X x {—1,1} satisfying MA(k),

such that for anyn > 1,a > 0,

E[R(fx) — R*] > 2(1 +a) %1}1 (R(f) — R*) + C(a) <10gM> 21 |

where C'(a) > 0 is a constant depending only on a.
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Due to Corollary

log M Tl
n

is an almost optimal rate of MS-aggregation for the excess risk and the AEW aggregate
achieves this rate. The word ”almost” is here because minscr (R(f) — R*) is multiplied
by a constant greater than 1.

Oracle inequality is not exact since the minimal excess risk over F is multiplied
by the constant 2(1 4+ a) > 1. This is not the case while using the ERM aggregate as
explained in the following Theorem.

THEOREM 3.3. Let k > 1. We assume that 7 satisfies MA (k). We denote by F =
{fi,--., fum} a set of prediction rules. The ERM aggregate over F satisfies for any integer
n>1

minfGF(R(f) - R*)% log M n (logM) Py
n n )

Mmﬂmwwkggmmfm%v¢

where C' = 32(6 V 537¢o V 16(2co + 1/3)) and ¢y is the constant appearing in MA (k).

Using Lemma we can deduce the results of [64] from Theorem Oracle inequal-
ities under MA(k) have already been stated in [93] (cf. [22]), but the obtained remainder
term is worse than the one obtained in Theorem [3.3]

According to Definition [3.1I} combining Theorem and the following Theorem, the
rate

¢ngmm—mﬁMM+l%Mzﬁ
n n
is an optimal rate of MS-aggregation w.r.t. the excess Bayes risk. The ERM aggregate

achieves this rate.

THEOREM 3.4 (Lower bound). Let M > 3 and n be two integers such that 2loge M <
n and kK > 1. Assume that X is infinite. There exists an absolute constant C > 0 and a
set of prediction rules F = {f1,..., fu} such that for any procedure f, with values in R,
there exists a probability measure 7 satisfying MA (k) for which

n n

E [R(f,) — R*] > min(R(f)—R*)+C \/(minfef R(f) — R*)~log M <1OgM> =7\

feF
where C = co®(4e) =127 25(=D/2r=1) (109 2)=#/(25=1) gnd ¢y is the constant appearing in
MA (k).
5. Proofs.

Proof of Proposition Since for any function f from X to {—1,1} we have
2(R(f) — R*) = A(f) — A%, then, MA(k) is implied by MAH (k).

Assume that MA (k) holds. We first explore the case k > 1, then, MA (k) implies that
there exists a constant ¢; > 0 such that P (|2n(X) — 1| < t) < ¢t/ for any t > 0 (cf.
[22]). Let f from X to [—1,1]. We have, for any ¢ > 0,

A(f) = A" =E[12n(X) = 1If(X) = f(X)]] = ¢E [|f(X) = (X)) Tap(x) 124
> t(E[f(X) = (XN = 2P ([2n(X) — 1] <)) > ¢ (E [ (X) = (X1 = 201t1/(“‘1)) :
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For ty = ((r = 1)/(21%))"'E[| f(X) = f*(X)[]"™", we obtain

A(f) = A" > (5 = 1)/2e1s)" s E[IF(X) = f1XON"
For the case k = 1, MA(1) implies that there exists h > 0 such that [2n(X) — 1| > h

a.s.. Indeed, if for any N € N*, there exists Ay € A such that PX(Ay) > 0 and
12n(x) — 1| < N1, Va € Ay, then, for

—f*(x) ifzeAn
Intw) = { f*(z)  otherwise,
we obtain R(fy) — R* < 2PX(Ax)/N and E[|fn(X) — f*(X)|] = 2PX(Ay), and there is
no constant cg > 0 such that PX(Ay) < cgPX(Ay)/N for all N € N*. So, assumption
MA(1) does not hold if no h > 0 satisfies |2n(X) — 1| > h a.s.. Thus, for any f from X to
[—1,1], we have A(f) — A" = E[12(X) — 1[|f(X) — f*(X)]] > hE[[£(X) — /*(X)]].
Proof of Theorem Cf. proof of Theorem [9.1] in Chapter [9]
Proof of Theorem Let a be a positive number and f1, ..., fasr be M prediction
rules. Using , we have, for any finite set F of M real valued functions,
(3.16)
inf sup (E [A(fn) - A*} —(14a) min (A(f)—A*)) > inf sup E [A(fn) - A*] ,

fn TEPs f€Conv(F) fn TEPy
Fre{fr,fu}

where Conv(F) is the set made of all the convex combinations of elements in F. Let N be
an integer such that 2V=1 < M, xq,...,2n be N distinct points of X and w be a positive
number satisfying (N — 1)w < 1. Denote by P¥ the probability measure on X such that
PX({z;})=w, forj=1,...,N—1and PX({zy}) =1 — (N —1)w. We consider the cube
Q={-1,1}""1 Let 0<h < 1. Forall ¢ = (01,...,0n_1) € Q we consider

[ (I405h)/2 ifx=x,...,2N-1,
Mo () = { 1 if z =xpN.

For all 0 € Q we denote by 7, the probability measure on X x {—1,1} having P¥X for
marginal on X and 7, for conditional probability function.

Assume that £ > 1. We have P (|2n,(X) — 1| <t) = (N — 1)wilj<; for any 0 < ¢ < 1.
Thus, if we assume that (N — 1)w < hY =D then P (|21, (X) — 1| < t) < /(=1 for all
0 <t < 1. Thus, according to [116], 7, belongs to P,.

We denote by p the Hamming distance on Q. Let 0,0’ € Q such that p(o,o’

= 1.
Denote by H the Hellinger’s distance. Since H? (ﬂ?” ®”) = 2(1 — (1 H? (1, Ty /2) )

and
N-1

H?* (T, Tgt) = w <\/n0(xj)—\/ng/(xj)>2+<\/1 — na(xj)—\/l — ngl(xj))Q =2w(1—v1— h?),

Jj=1

Xn

then, the Hellinger’s distance between the measures 72" and W?,” satisfies

H? (a8 28 = 2(1—(1—w(1—\/1—h2))">.

Take w and h such that w(1—v/1— k%) < n~' Then, H? (75", 75") < B =2(1—e!) <
2 for any integer n.
Let 0 € Q and f, be an estimator with values in [—1, 1] (according to 1} we consider

only estimators in [—1,1]). Using MA(k), we have, conditionally to the observations D,,
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and for m = 7y,

K

Afa) = A% = (B, [1fa(X) = FXI])" 2 (ew)® | D Fula) = )

Taking here the expectations, we find EW%A(]?”) - A*} > (cw) By, {(Zjv:_ll | fu () — oj\)ﬁ} .

Using Jensen’s inequality and Lemma we obtain

(3.17) inf sup ( [ (fn) — D > (cw)” <N — 1>"i

fn 0€Q 4e2

Take now w = (nh?)~!, N = [logM/log?2], h = (n_l[logM/logQ])('{_l)/(%_l).
Replace w and N in by there values, thus, from , there exist fi,..., far (the
2V=1 first ones are sign(2n, — 1) for o €  and any choice for the M — 2¥~! remaining
ones) such that for any procedure f,, there exists a probability measure 7 satisf};ing
MA (), such that E [A(fn) - A*} — (14 a)minj—y_(A(f;) — A%) > Co (WTM) a
where Cy = ¢*(4e) 127 2r(k=1)/(2r=1) (]og 2)—#/(2s=1)

Moreover, according to Lemma we have

A(f) = A%)* log M.
amin(A(f) — A7) + 2 <1ognM) m\/ minsec )+ log

fec 2 n
Thus,

_k 1
E [A(fn) . A*:| > mln(A(f)—A*)—F@ <10gM> 2k—1 n /721(11/”00\/(140 — A*)n logM
fec 2 n n

For k = 1, we take h = 1/2. Then [2n,(X) — 1| > 1/2 a.s. so m, €MA(1). It suffices
then to take w = 4/n and N = [log M/log2]| to obtain the result.

Proof of Corollary The result follows from Theorems [3.1] and [3:2] Usmg the
fact that for any prediction rule f we have A(f)— A* = 2(R(f) — R*), inequality (3.3)) and
Lemmam 3.1, for any a > 0, with t = a(A¢ — A*) and v = (C?(log M) /n)"/ (2~ l)a_l/(Q“ 1
we obtain the result.

Proof of Theorem [3.3} Cf. proof of Theorem [9.1] in Chapter [9

Proof of Theorem [3.4} For all prediction rules f1, ooy fmr, we have

sup inf sup (]E [R(fn) - R*} —(14+a) min (R(g;) — R*)) >inf sup E [R(fn) - R*} .

GlrsgM fn TEP, Jj=1..M fn TEPy
Fe{fiynfu}

Consider the set of probability measures {7, 0 € Q} introduced in the proof of Theorem

Assume that x > 1. Since for any o € ) and any classifier fn, we have, by using
MA (),
K

N-1
Ex, [R(fa) = RB] 2 (cw)Be, | | 3 1) = ail | |
j=1

using Jensen’s inequality and Lemma we obtain

1]{1fi1618< [ (fn) — ]) > (cow)” <]\;e_21>n
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k—1
By taking w = (nh?)™', N = [logM/log2], h = (n ![log M/log2])?~', there
exist f1,..., far (the 2V~ first ones are sign(2n, — 1) for ¢ € © and any choice for the
M — 2¥~1 remaining ones) such that for any procedure f,, there exists a probability

measure 7 satisfying MA(k), such that E [R(fn) - R*} — (1 + a)minj—_m(R(f;) —

RY) = Co (R5M) 77 where Gy = 6" (de) 1272801/ (log 2) =/ (+=1). Moreover,
according to Lemma we have

. ey, Co (log M n \/mlnfe_’]:R R*) logM
a?g}(R(f) R*) + 2( > > 1\/al/"Cy/2

The case k = 1 is treated in the same way as in the proof of Theorem [3.2]

LEMMA 3.1. Let v,t > 0 and k > 1. The concavity of the logarithm yields

2k—1

t+v>t2f<v 26 .

LEMMA 3.2. Let f be a function from X to [—1,1] and m a probability measure on
X x {=1,1} satisfying MA(k), for a k > 1. Denote by V the symbol of variance. We have

V(Y (FOO=17(X)) < (A=A and V(Ty s <0 Ty p-(x)z0 ) < e(R(F)—R)™

LEMMA 3.3. Let {P,/w € Q} be a set of probability measures on a measurable space
(X, A), indexed by the cube Q = {0,1}™ . Denote by E,, the expectation under P, and by
p the Hamming distance on Q. Assume that

Yw,w' € Q/p(w,w’) =1, H*(P,,Py) < a < 2,
then
" m a2
inf E E 0; — w; >—<1——).
bl wed = g = wil| = 2

Proof. Obviously, we can replace inf ;g 1jm by (1/2) inf 40,13 since for all w € {0, 1}
and w € [0, 1] there exists w € {0,1} (for instance the projection of w on {0, 1}) such that
|w — w| > (1/2)|w — w|. Then, we use Theorem 2.10 p.103 of [114].
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CHAPTER 4

Suboptimality of Penalized Empirical Risk Minimization

Let f € F be an object to estimate and Fy C F be a subset with cardinality M. For
instance the elements in Fy may have been constructed with preliminary observations
which are throughout the chapter assumed to be frozen. The elements in Fy are considered
as non-random. Given a loss function, we want to construct a procedure which mimics at
the best possible rate the best procedure in Fy. This fastest rate is called optimal rate of
aggregation. In this chapter, we prove that, in several estimation problems (classification
under margin assumption for different losses, density estimation and regression), the
usual penalized (or structural) Empirical Risk Minimization (ERM) procedures cannot
achieve this optimal rate of aggregation. On the other hand, in those cases, aggregation
procedures with exponential weights attain the optimal rate of aggregation. Moreover, we
prove that quality of aggregation of the ERM procedure depends on both the margin and
approximation quality of the model.

Contents
1. Introductionl 51
[L.1. Framework] 51
|1.2.  Aggregation Procedures and Optimality.| 52
2. Classification Under Margin Assumption.| 54
2.1. Optimal Rates of Aggregation Under the Margin Assumption.| 55
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| Margin Assumption.| 57
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[6. Direct suboptimality of pERM in regression and density |
[ estimation. 60
6. Discussion and Open Problems.| 61
[.__Proofsl 63
8. Appendix.| 77

The material of this chapter combines a paper accepted for publication in COLTO07
and a paper submitted for publication.

1. Introduction

1.1. Framework. Let (Z,7) a measurable space. Denote by P the set of all proba-
bility measures on (Z,7). Let F be a function on P with values in an algebra F. Let Z
be a random variable with values in Z and denote by 7 its probability measure. Let D,
be a sample of n i.i.d. observations Z1, ..., Z, having the common probability measure 7.
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CHAPTER 4. SUBOPTIMALITY OF PENALIZED ERM

The probability measure 7 is unknown. Our aim is to estimate F'(7) from the observations
D,,. Consider a loss function @ : Z x F —— R, and the corresponding average loss

AN CEQZ 1),

where E denotes the expectation. If the minimum over all f in F

def .
A* < A
min (f)

is achieved by at least one function, we denote by f* a minimizer in F. In this chapter we
will assume that mingcr A(f) is achievable.

In most of the cases f* will be equal to our target F(m). We don’t know the risk A,
since 7 is not available to the statistician. Thus, we minimize the empirical version of A
constructed from the observations D,,, i.e.

(@.1) A5 25"
=1

Now, we introduce an assumption which improves the quality of estimation and of
aggregation in our framework. This assumption has been first introduced by [91], for
the problem of discriminant analysis, and [116], for the classification problem. With this
assumption, fast rates of convergence can be achieved, for instance, in classification problem
(cf. [116], [109]).

Margin Assumption(MA): The probability measure 7 satisfies the margin assump-
tion MA(k,c,Fy), where k> 1,¢> 0 and Fy is a subset of F if

(4.2) E(Q(Z, f) — Q(Z, [))?] < e(A(f) — AV Vf € Fy.

In the regression setup on X x R, where X is a measurable space, with the L? risk
w.r.t. the probability measure of the design on X (cf. Example 1, Section 1.1 of Chapter
1), it is easy to see that any probability distribution 7 on X x R satisfies the margin
assumption MA (1,1, F), where F is the set of all square integrable functions from X" to R.
In density estimation with the integrated square risk (cf. Example 2, Section 1.1 of Chapter
1) with the densities a.s. bounded by a constant B > 1, satisfy the margin assumption
MA(1,16B?, Fg) where Fp is the set of all non-negative functions f € L?(Z,7, ) bounded
by B.

The margin assumption is linked to the convexity of the underlying loss. In density
and regression estimation it is naturally satisfied with the best margin parameter k = 1,
but, for non-convex loss (for instance in classification) this assumption is an additional
restriction.

1.2. Aggregation Procedures and Optimality. We work with the notation intro-
duced at the beginning of the previous subsection. Our framework is the same as the one
considered, among others, in [98| [35] [75], 125] [126] 127]. We have a family Fy of M “weak
estimators” fi,..., far € F and the goal is to construct an estimator, based on a sample
D,, of nii.d. observations Z1,...,Z, of Z, which has a risk close to the one of the oracle,
that is minger, (A(f) — A*). Those weak estimators could have been constructed from a
preliminary set of observations or they can be the first M functions of a basis or simple
objects like decision stumps. The problem is to find a strategy which mimics as fast as
we can the best element in Fy. Such a strategy can then be used to construct efficient
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adaptive estimators (cf. [98] and Chapters |§| and . In this chapter we consider four
different aggregation strategies.

The most well known one is the Empirical Risk Minimization (ERM) procedure over
Fo, defined by

(4.3) FUERM) ¢ Arg min A, (f),
fE€Fo
and the penalized Empirical Risk Minimization (pERM) procedures given by
(4.4) FWERMD € Arg min (An(f) + pen(f)),
f€Fo

where pen(+) is some penalty function (cf.,e.g., [92],[93]).

A selector is an aggregate with values in the family Fy. Penalized ERM and ERM
procedures are examples of selectors.

Aggregation with Exponential Weights (AEW) procedure over Fy is defined by

(4.5) ISP =S Wiy,
feFo

where 3 > 0 is a parameter called the temperature and the exponential weights w(ﬁn)( f) are
defined by

exp (—nf 1 An(f))
> ger, €Xp (—nB7 An(g))’

Cumulative Aggregation with Exponential Weights (CAEW) procedure is defined by

(4 7) C’AEW Z f (AEW)
. k.3 s

(4.6) wi’(f) = Vf € Fo.

where f,g%EW) is constructed as in 1' with the sample Z1,..., Z of size k and with the
temperature parameter 3 > 0. Namely,

S(AEW) (k) where w®(f) = _ P (=67 kAL(S))
k.8 —%wﬁ (f>f7 he ewﬂ (f)_ defeXp(—ﬂ_lkAk(g))’

Since there are many different ways to combine the weak estimators, we consider the

VfelF.

following definition, which is inspired by the one given in [I14] for the regression model.
This definition provides a way to compare aggregation strategies.

DEFINITION 4.1. The remainder term ~y(n, M) is called optimal rate of aggregation,
if the two following inequalities hold.
(1) For any finite set Fo of M elements in F, there exists a statistic fn such that for

any underlying probability measure ™ and any integer n > 1,

(4.8) E[A(f,) = A] < min (A(f) — A%) + Cry(n. D).

(2) There exists a finite set Fo of M elements in F such that for any statistic fy,
there exists a probability distribution 7, such that for anyn > 1

(4.9) E[A(f,) = A%] = min (A(f) = A") + Cary(n, M),

Here, Cq and Cy are absolute positive constants. Moreover, when these two inequalities are
satisfied, we say that the procedure f,, appearing in @, is an optimal aggregation
procedure.
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The aim of this chapter is to obtain the optimal rate of aggregation in several situations
and to prove that the ERM and certain penalized ERM procedures cannot achieve the
optimal rate when the loss function has some convexity property.

The chapter is organized as follows. In the three following sections, we explore,
respectively, the classification under the margin assumption setup for different loss functions,
the gaussian regression and the density estimation frameworks. In Section [6] we discuss
the results. All the proofs are postponed to Section [7]

2. Classification Under Margin Assumption.

Consider the problem of binary classification. Let (X,.A) be a measurable space.
Consider a couple (X,Y) of random variables where X takes its values in X and Y is a
random label taking values in {—1,1}. We denote by 7 the probability distribution of
(X,Y). For any function ¢ : R — R, define the ¢—risk of a real valued classifier f on X
by

A?(f) = E[p(Y f(X))).
Comparing with the notation of the previous section we have Z = X x {—1,1} and

Many different losses have been discussed in the literature along the last decade (cf.
[411, 541, 89, 55 25]), for instance:

do(r) = Mz<p) classical loss or 0 — 1 loss
¢1(r) = max(0,1 — x) hinge loss (SVM loss)
x +— logy(1 + exp(—z)) logit-boosting loss

x — exp(—x) exponential boosting loss
r— (1 —2)? squared loss
x — max(0,1 — z)? 2-norm soft margin loss.

In particular, we are interested in losses having the following convexity property (cf. [75]
for examples).

DEFINITION 4.2. Let ¢ : R — R be a function and 8 be a non-negative number. We

say that ¢ is f—convex on [—1,1] when
[¢/(2)]* < B¢ (), Wz < 1.

For example, logit-boosting loss is (e/log2)—convex, exponential boosting loss is
e—convex, squared and 2—norm soft margin losses are 2—convex.

There are some links with the usual concepts of convexity. We recall the definition of
these concepts (cf. [I03]). Let ¢ : [-1,1] — R be a function. If

Plazr + (1 — a)zz) < ag(z1) + (1 — a)d(x2),

for all z1 # x9 in [—1, 1], then, ¢ is called a strictly convex function on [—1,1]. If there is a
constant ¢ > 0 such that for any z1,z9 € [—1,1],

Bl + (1= a)zs) < ad(er) + (1= a)o(w2) — yeall - s — 2P,

then, f is called a strongly convez function on [—1,1].

PROPOSITION 4.1. Let ¢ : R —— R be a twice differentiable function. If ¢ is strongly
convezx then, there exists B > 0, such that ¢ is B-convex. Moreover, the constant function
is 0-conver but not strictly convex and the function x +—— (z + 1)3/3 — (z + 1) is strictly
convez on [—1,1] but not f—convex for any 3 > 0.
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We denote by fJ a function from & to R which minimizes A?(.) over the set of real-

valued functions. We denote by A%* def A?( f3) the minimal ¢—risk. In many interesting

cases studied in the literature, either f$ or its sign are equal to the Bayes classifier
[ (@) = sign(2n(z) — 1),

where 7 is the conditional probability function x — P(Y = 1|X = z) defined on X'. The
Bayes classifier f* is a minimizer of the ¢g—risk (cf. [47]) and is the best classifier that we
want to mimic.

To understand how behaves the optimal rate of aggregation depending on the loss
function we introduce a “continuous scale” of loss functions indexed by a non-negative
number h:

{0 g

where ¢q is the 0 — 1 loss and ¢; is the Hinge loss.

Vr € R,

_h=1
- __h=2/3

FIGURE 1. Examples of loss functions. The solid line is for h = 0 (the
0 — 1 loss), the dashed line is for h = 2/3, the dashed-dotted line is for
h =1 (the hinge loss), the dotted line is for h = 2.

This set of losses is representative enough since it describes different types of convexity:

for any h > 1, ¢p, is f—convex on [—1,1] with § > f (2h — 1)2/(2(h — 1)) > 2, for

h =1 the loss is linear and for h < 1, ¢y, is non-convex. For h > 0, we consider

An(f) S AP (f), fr E fy, and A AP = A% (f).
We have
(4.11) filz) = { J;,]((;ﬁ)_l Hoshsl o er
S(h=T) h>1,

2.1. Optimal Rates of Aggregation Under the Margin Assumption. In the
classification setup the margin assumption (cf. ) has the following form.
(¢p—MA) ¢—Margin (or low noise) assumption. The probability distribution © on the
space X x {—1,1} satisfies the p—margin assumption (p—MA)(k) with margin parameter
1 <k < 400 if there ewists cy > 0 such that,

(4.12) E [(6(Y £(X)) = 6(Y [3(X))?] < e (4°(f) - A¢*)1/H’

for all measurable functions f with values in [—1,1].
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We first start with a proposition dealing with the ¢—margin assumption.

PROPOSITION 4.2. For any 0 < h < 1 and k > 1, (pp—MA)(k) is equivalent to
(po—MA) (k). For any h > 1, (¢p-MA)(1) is satisfied.

We denote by P, the set of all probability distributions 7 on X x {—1, 1} satisfying
the usual margin assumption (¢o—MA)(k) of [116].

THEOREM 4.1. Let h > 0, kK > 1 be two numbers and M > 2 be an integer. We assume
that X is infinite.

If h < 1, then there exists a family Fo of M classifiers fi,..., far with values in
{—1,1} such that for any statistic f, there exists a probability distribution ™ € P, such
that mingcr, (An(f) — Ay) =0 and

B [A(f) = 43] 2 min (An(f) - A7) + Co(E2) T,

feFo

for any integer n > 1.
If h <1 and k > 1, then there exists a family Fo = {f1,..., f;} of M classifiers with
values in {—1,1} such that for any statistic f, there exists a probability distribution ™ € Py

such that minge r, (An(f) — A;) > C(logTM) w1

(4.13) E[An(fn) — A}] = min (An(f) — A7) +

f€Fo n

((mmfefmh(f) _ A logM> i

for any integer n > 1.
If h > 1, there exists a family Fo = {f1,..., fm} of M classifiers with values in {—1,1}
such that for any statistic f, there exists a probability distribution © on X x {—1,1} such

that
3 X . N log M
E [An(F) — Ai] = min (4n(/) - 47) + C22,

for any integer n > 1.

For any probability measure m on X x {—1,1}, any loss function ¢, any set Fy of
functions from X to [—1, 1] with cardinality M and any margin parameter £ > 1, consider
the rate of aggregation

1 1/2 K
B(fommlgM> if B(F, Chk
0,7, ¢) >
7(“7M7/‘67-7:0,7T7¢) - ( '61: Pin
(h;}anM) = otherwise,

where B(Fo, 7, ¢) denotes the bias term minscr (A(f) — A*) and 51 and [, are positive
constants depending only on ¢. It is proved, in Chapter [J] that, if ¢ is a bounded function
from [—1,1] to R and if the underlying probability measure 7 satisfies p—MA(k), then the

Empirical Risk Minimization procedure f,, = ffRM satisfies, for any family Fy of functions
fi,..., far with values in [—1,1],
(4.14) E[A(fy) — A% < in (A?(f) = A%*) + v(n, M, k, Fo, , ).

€70

Moreover, it is proved in Chapter [J that if ¢ is convex, then the CAEW procedure
fn = fCEW with temperature parameter 3 = 1 and the AEW procedure f, = fAEW

n

n
satisfy (4.14)). Besides, corollary 4.4 of [75] provides the following result. If ¢ is f—convex

Page 56
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for a positive number 3, then the CAEW procedure with temperature parameter (3, satisfies
(415) E[AY(FOAP) — A%] < min (4°(f) - A%) + B8
’ feFo n

Remark that the last result, does not require a margin assumption. This can be explained
by the fact that, for h > 1, assumption ¢p—MA(1) is automatically satisfied.

Thus, if we allow the residual term of aggregation to depend on the bias term B(Fy, 7, ¢),
in the same spirit as in Chapter (3| we find that h — R(n, M, k, Fo, 7, ¢p,), where
log M

I5] if ¢ is f—convex
(4.16) R(n, M. i, Fo, m, ¢) = { 7(7:M,/€,f0,71’,¢) otherwise,
is an optimal rate of aggregation for the scale of loss functions (¢p)n>0. Nevertheless, the
lower bound construction worked out in Theorem cannot guarantee that the optimal
rate of aggregation for 0 < h <1 is actually not

log M\ 571

Indeed, the lower bound obtained in , is constructed on the distribution 7 such that the
bias term B(Fo, 7, $) equals to ((log M)/n)"/(2=1) so, the residual term defined in is,
up to a constant factor, equal to ((log M)/n)*/ %=1 Nevertheless, if v(n, M, k, Fo, 7, ¢4)
is not the optimal rate of aggregation for 0 < h < 1, then the ERM procedure cannot be
the optimal aggregation procedure (cf. Theorem below).

2.2. Suboptimality of Penalized ERM Procedures in Classification under
Margin Assumption. In this Section we prove a lower bound under the margin as-
sumption for any selector and we give a more precise lower bound for penalized ERM
procedures.

THEOREM 4.2. Let M > 2 be an integer, kK > 1 be a real number, X be infinite and
¢ : R+ R be a loss function such that ag def d(—1) — ¢(1) > 0. There exists a family Fo
of M classifiers with values in {—1,1} satisfying the following.

Let f,, be a selector with values in Fy. Assume that \/(log M)/n < 1/2. There exists

a probability measure ™ € Py, and an absolute constant Cs > 0 such that f, satisfies

(4.17) E [A¢(fn) - Aj{’] > min (A¢(f) - Af) + Cg(logM> BT

Consider the penalized ERM procedure fﬁERM associated with F, defined by
RPN € Argmin(A7(f) + pen(f))

where the penalty function pen(-) satisfies |pen(f)| < Cy/(logM)/n,Vf € F, with 0 <
C < V/2/3. Assume that 11887 C2M9C? log M < n. If Kk > 1 then, there exists a probability
measure m € Py, and an absolute constant Cy > 0 such that the penalized ERM procedure

pERM satisfies

log M

(4.18) E [ AY(fRP) — A2) > min (4°(7) - A2) + G

REMARK 4.1. Inspection of the proof shows that Theorem [{.9 is valid for any family
Fo of classifiers fi,..., far, with values in {—1,1}, such that there exist points x1, ..., Tom

in X satisfying {(fi(z;),..., fu(z;)):j=1,....24} = {-1,1}M.
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REMARK 4.2. If we use a penalty function such that |pen(f)| < yn=Y2.Vf € Fo,
where v > 0 is an absolute constant (i.e. 0 < C < y(log M)~/2), then the condition
“(33760)2(2r M3%C* log M) < n” of Theorem is equivalent to “n greater than a constant”.

REMARK 4.3. It has been observed in [22] that several model selection methods can be
described in the following way: for each pair of functions (fx, fx'), a threshold 7(k, k', Dy,)
18 built and the function fi is favored with respect to the function fir if

AL (fr) — AL(fiw) < 7(k, K, Dy).

In the penalization setting, the threshold (k, k', D,,) is given by 7(k, k', Dy,) = pen(fx) —
pen(fx). In the setting of Theorem if we select f, = fi. such that for any k €
{1,..., M},

AG(fn) — AL(fi) < 7(k, k, Dy),
and if the threshold satisfies T(k, k', D,) < C+/(log M)/n,¥k, k' € {1,..., M}, then f,
satisfies for the same class Foy and probability measure w as in Theorem .

REMARK 4.4. It has been proved in chapter 14 of [{7] that no selector (that is a statistic
with values in Fy) can mimic the oracle with rates faster than ((log M)/n)"/? for the 0 — 1
loss function. Similar bounds in a less general form have been obtained earlier in [118, [106].
In Theorem[].2, we show that this is still the case for the pERM procedure even if we work
under the ¢o—margin assumption with margin parameter k > 1.

Theorem states that the ERM procedure (and even penalized ERM procedures)
cannot mimic the best classifier in Fy with rate faster than ((log M)/n)'/? if the basis
classifiers in Fy are different enough and under a very mild assumption on the loss. If
there is no margin assumption (which corresponds to the case Kk = +00), the result of
Theorem can be easily deduced from the lower bound in Chapter 7 of [47]. The main
message of Theorem is that such a negative statement remains true even under the
margin assumption MA(k). Selectors aggregates cannot mimic the oracle faster than
((log M)/n)'/? in general. Under MA(x), they cannot mimic the best classifier in Fy with
rates faster than ((log M)/n)*/ (=1 (which is greater than (log M)/n when x > 1).

We know, according to [75], that the CAEW procedure mimics the best classifier in F
at the rate (log M)/n if the loss is 3—convex (cf. [£.15)). This and Theorem [4.2] show that
penalized ERM procedures are suboptimal aggregation procedures when the loss function
is B—convex. In particular, if one wants to construct adaptive classifiers, then it is better
in the rate to consider aggregation procedures with exponential weights.

Remark that, when h < 1, even if we assume that (¢,—MA)(x) holds then, the ERM
procedure cannot achieve the rate ((log M)/ n)%%l in general. To achieve such a rate, we
need to assume that the bias minscx (An(f) — A7) is not greater than ((log M)/n)TA11
Thus, the behavior of the ERM depends on both the margin and the approximation of the
model.

3. Gaussian Regression Framework.

Take Z = R? and let Z = (X,Y) be a couple of random variables on Z = R x R such
that
Y = f(X) + o€,
where ( is a standard gaussian random variable independent of X and ¢ > 0. We consider
the prediction of Y given X. The best prediction using the quadratic loss is the regression
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function
ff(X)=E[Y|X].
We want to estimate f* w.r.t. the L?(P¥X)—risk, where P¥ is the marginal probability

distribution of X. Recall that the norm in L?(P¥) is defined by || f| L2(px) = (f f2dpPX)1/2,
The loss function is defined by

for any (z,y) € X x R and f € F. Pythagora’s theorem yields

A(F) =E[QUX,Y), Al = If* = fllf2px) + E[¢?].

Hence, f* is a minimizer of A(f) and A* = E[¢?].
According to [I14], the optimal rate of aggregation in our gaussian regression setup is

log M

n
This rate is achieved by the CAEW procedure with suitably chosen temperature parameter
B (ct.[75]). This fast rate of aggregation can be explained by the fact that the intrinsic
margin parameter in the gaussian regression setup under the L?(PX)—risk is equal to 1,
which is the best case for the margin parameter.

In the following theorem we prove that selectors (like usual penalized ERM procedures)
cannot achieve this rate and thus are suboptimal aggregation procedures, as compared to
the aggregation methods with exponential weights.

THEOREM 4.3. Let M > 2 be an integer. In the gaussian regression model describe
above with X = [0,1], there exists a family Fo of M functions fi,..., far such that for
any selector f,, there exists a probability measure w of (X,Y") on [0,1] x R with regression
function f* of Y given X satisfying

log M

B (1= £V = g (15 = S lsom) + O/ =55

for any integer n > 1 and where C5 > 0 is an absolute constant.

A similar result is given in [86] for the bounded regression framework. The authors

1/2

proved that a selector cannot mimic the oracle faster than n~"/¢. Here, our bound is sharp,

since there is the factor v/log M in the bound. The same factor appears in the upper bound
for ERM.

4. Density Estimation Framework.

Let (Z,7,p) be a measurable space. Let Z be a random variable with values in Z and
denote by m its probability distribution. We assume that 7 is absolutely continuous w.r.t.
to p and denote by f* a version of the density of m w.r.t. pu. Consider the set F of all
density functions on (Z,7, ) and the loss function

Q(Z7f) = —1ng(2>7
defined for any z € Z and f € F. We have

A =BQUZN) = K(°15)~ [ 1o8(f*(2))dn(2)
where K (f*|f) is the Kullback-Leibler divergence between f* and f. Thus, f* is a minimizer
of A(f) and A* = — [, log(f*(2))dn(z).
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Instead of using the Kullback-Leibler loss, one can use the quadratic loss. For this
setup, consider F = L?(u) = e L*(Z,T,p). Define the loss function

(4.20) Q) = [ Pdu=21)
for any z € Z and f € F. We have, for any f € F,

AN =ERZ N = 11— fllF2 — /Z(f*(Z))zdu(Z).
Thus, f* is a minimizer of A(f) and A* = — [,(f*(2))%du(z).

THEOREM 4.4. Let M > 2 be an integer. For the setup of density estimation problem
with Z = [0, 1], there exists a family Fo of M functions fi,..., far such that for any
selector fn there exists a probability measure © on [0, 1] with density function f* w.r.t. the
Lebesgue measure on [0,1] satisfying

E [I1fu - £12] = min (17 - £13) + 0y 22,
J€Fo

n

and

B [K(7uls")] > min (K(/177)) + oy 52,

n
for any integer n > 1 such that \/(log M)/(2n) < 2.

Combining [75] and the result of Chapter [2 the optimal rate of aggregation for this
estimation problem is

log M
n
and the CAEW procedure with suitable choice of temperature parameter ( attains this
rate of aggregation. Theorem [£.4] shows that this rate cannot be achieved by the penalized
ERM procedure.

5. Direct suboptimality of pERM in regression and density estimation.

The following theorems can be deduced from Theorem and [£.4] However, they can
be proven directly without using results from the minimax theory due to the special form
of the ERM and pERM procedures. We give the corresponding proofs in Section [7}

THEOREM 4.5. Let M > 2 be an integer. In the gaussian regression model described
above with X = [0, 1], there exists a family Fo of M functions f1,..., far and a probability
measure w such that the penalized ERM procedure

rpERM .
ES € Arg win (An(f) +pen(f)),

where [pen(f)| < C+/(log M)/n,Yf € Fo, and 0 < C < o /(4v/2¢*) is an absolute constant,
satisfies

7 " log M
E 1757 = P lapn)| = min (1F = Fllagex)) + O/ =

for any integer n > 1 such that 2n~1log[(M — 1)(M — 2)] < 1/4 where Cs is an absolute
constant and c* is the constant in Sudakov’s minoration (cf. Theorem [4.8 below).

THEOREM 4.6. Let M > 2 be an integer. For the setup of density estimation problem
with Z2 = [0,1], there exists a family Fo of M functions fi,..., far and a probability
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measure © such that the penalized ERM procedure w.r.t. the L? loss,

feFo

fPERM ¢ Arg min /Rf2(93)d$ - % ; f(Xi) + pen(f))

where |pen(f)| < C+/(log M)/n,¥f € Fo, and 0 < C < /2/3 is an absolute constant,
satisfies

N . ) . log M
E[IF57 — £13) > min (11 — 7°1B) + Oy =5

and for the penalized ERM procedure w.r.t. the Kullback-Leibler loss:

FREFM € Arg min ( /—Zlogf ) + pen(f))

feFo

f 1
B [KGEER1)] = i (27157 + 05N

for any integer n > 1 such that C\/(log M)/n < 1/2 where C3 is an absolute constant.

we have

6. Discussion and Open Problems.

Here we discuss the results of this chapter concerning classification.
We recall the following definition

1/2 _Kk
<w> i B(Fo, 1) > (11200 ) 5

K

2k—1 .
(M> " otherwise,

V(nvMa’%afOﬂﬂ(b) =

where B(Fo, ¢, w) denotes the bias min ez, (A?(f) — A%*) . The following table summarizes
results on optimal rates of aggregation in classification.

Loss function ¢y, h=0 O<h<l1 h=1 h>1
0 — 1loss Hinge loss [B— convex losses
Margin Assumption Not automatically satisfied Automatically satisfied
(k = 400) with k =1
Optimal rate of y(n, M, k, Fo,m, ¢n) (log M)/n
aggregation (conjecture)
Optimal aggregation ERM ERM or AEW CAEW
procedure (conjecture) (conjecture)
‘ ERM or pERM ‘ Optimal (conjecture) ‘ Suboptimal ‘
‘ AEW ‘ ? ‘ Optimal (conjecture) ‘ Optimal (conjecture) ‘
\ CAEW \ ? \ Optimal \

Table 1. Optimal rate of aggregation, optimal aggregation procedures and margin assumption for the
continuous scale of loss functions of Figure
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It is easy to see that CAEW is optimal when ¢, is the Hinge loss and when the margin
parameter k is strictly greater than 1 and in the case where x = 1 the CAEW procedure
achieves the optimal rate of aggregation up to a logarithmic factor (cf. Chapter . In the
case h > 1, the loss function is convex, so that

- Z AF) < )

and less observatlons are used for the construction of f FAEW) ,1 <k <n-—1, than for the
construction of f AEW)  We can therefore expect the (bh—risk of fé%EW) to be smaller

than the ¢p—risk of f(AEW for all 1 <k <n —1 and hence smaller than the ¢p—risk of
f(C’AEW)

n76

is smaller than (log M)/n. Next, it is easy to get from (4.14) that, we have for any convex
loss ¢ and all € > 0

. Moreover, according to (4.14]), AEW is optimal when h > 1 and when the bias

BLAY(FEW) — 4% < (1+ ) min(4%(f) — 4%%) + © 222

Thus, the AEW procedure is likely to be optimal for loss functions ¢y, with A > 1.

We just proved that the ERM procedure is optimal only for non-convex losses (except
for the borderline case of the hinge loss). But, in those cases, the implementation of the
ERM procedure requires the minimization of a function which is not convex, thus this
procedure is computationally hard and is sometimes not efficient from a practical point
of view. Actually, convex surrogate for the 0 — 1 loss have been introduced to avoid the
minimization of non-convex functionals. Thus, the ERM procedure is theoretically optimal
only for non-convex losses but in that case it is practically inefficient and it is practically
efficient only for the cases where ERM is theoretically suboptimal.

If we assume that the conjectures of Table 1 are true, the Hinge loss is really hinge for
three different reasons. For losses "between“ the hinge loss and the 0 — 1 loss, we have:

e the intrinsic margin parameter is Kk = 400,
e an optimal aggregation procedure is the ERM,
e the optimal rate of aggregation depends both on the margin parameter and on
the approximation property of the class Fy (through its bias).
For losses “ over” the Hinge loss (h > 1), we have:
e the intrinsic margin parameter is k = 1,
e an optimal aggregation procedure is CAEW and the ERM is suboptimal
e the optimal rate of aggregation is the fast aggregation rate (log M)/n.

Moreover for the hinge loss we get, by linearity
min A — A =min A — A}
min A1 (£) — A} = min 4i(f) - A,

where C is the convex hull of F. Thus, for the particular case of the hinge loss, “model
selection” aggregation and “convex” aggregation are identical problems (cf. Chapter [3| for
more details).

The intrinsic margin parameter is a very good characterization of the ”difficulty “ of a
model. For model with an intrinsic margin parameter x = 1 (density estimation, regression,
classification w.r.t. f—convex losses), we can, under a complexity assumption achieve rates
of convergence as fast as approximately 1/n, and we can aggregate as fast as (log M) /n.
But, for models with an intrinsic margin parameter k = +oo (classification w.r.t. a non
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B—convex loss), we cannot expect convergence rates faster than n~Y2 and aggregation
rates faster than /(log M)/n. Nevertheless, for models with “bad” intrinsic margin, we
can assume to work under an additional margin assumption with a margin parameter
1 < k < 400. Under this assumption we can achieve, in these models, the fast convergence
rate approaching n~! (under an additive complexity assumption) and v(n, M, k, F, T, ¢)
for aggregation rate. In the aggregation case we can see that a complexity assumption
is needed if we want to benefit from the margin assumption. Otherwise the bias term is
greater than an absolute constant in general and thus, the aggregation rate is \/(log M) /n
like in the case of no margin assumption. Finally, we can see that the margin parameter is
strongly related to the convexity of the loss function of the model (cf. Proposition .
This may give an explanation why convexity is so important here.

7. Proofs.

Proof of Proposition If ¢ is strongly convex then, there exists a > 0 such that
¢"(x) > a. To complete the proof, it suffices to remark that ¢’ is bounded on [—1,1].

LEMMA 4.1. Let ¢ : R — Ry be a loss function. For any f,g from X to {—1,1}, we
have

AP(f) = A%(g) = ag(Ao(f) — Ao(g)) where ag = ¢(—1) — ¢(1).
Proof: We have
E[p(Y f(X))[X] = E[¢(Y)[X]Tfx)=1 + E[o(=Y) [ X]TLf(x)=—1
= [p(Wn(X) + ¢(—1)(1 — n(X))]Lsx)=1 + [S(=D)n(X) + ¢(1) (1 — (X)) Lpx)=—1-
Thus,
Elp(Y f(X))|X] = Elp(Yg(X))|X]

Proof of Proposition Let 0 < h <1 and k > 1. Assume that (¢9o—MA)(k)
holds. Let f be a function defined on X with values in [—1,1]. By convexity and ,
we have

E[(¢n(Y £(X)) = ¢n(Y f1(X)))?] < RE[(¢1(Y F(X)) = d1(Y [*(X)))?]
+(1 = h)E[(¢o(Y f(X)) = ¢o(Y f*(X)))?]-
According to Proposition [3.1] of Chapter [3] (¢1—MA)(x) is satisfied. So, using (¢o—MA)(x),
(¢p1—MA) () and concavity of z — z/*
E[(¢n(Y F(X)) = (Y [r(X))] < her(Ai(f) = ADY" + (1= h)eo(Ao(f) — 45)"/"
< max(co, c1)(Ap(f) — ALY~

we obtain

Thus, (¢p—MA)(k) holds.
Assume that (¢,—MA)(k) holds. Let f be a function defined on X with values
in [—-1,1]. We want to prove that (¢op—MA)(x) holds. Taking g = sign(f) we have
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d0(Yg(X)) = ¢o(Y f(X)) thus we can assume that f takes its values in {—1,1}. We have
An(f) = A, = (1+ 1) (Ao(f) — Ap)

and
E[(6n(Y F(X)) = on(Y (X)) = (1 -+ WE[(60(Y F(X) — do(¥ i (X)))?].

So, (po—MA)(r) holds.
Let A > 1 be a real number and f be a real valued function defined on X. We have

An(f) = A, = (h = DE[(f(X) = f5(X))?]
and
[On(@) — on(y)| < 2h+ )|z —yl, V]|, |y| <max(1,1/(2(h - 1))).
So, we have

E [(on(Y (X)) = on(Y [5(X))?] < (2h+1)E[(f(X) — f5(X))?]
2
< D (- a).
Thus, (¢,—MA)(1) is satisfied.
[ ]
Proof of Theorem Let 0<h<1andx>1.

For any real valued function f we have A;(f) — A} > Ao(f) — A§ (cf. [130]) and for
any prediction rule f we have A;(f) — A} = 2(Ao(f) — Af). Hence, we have

sup inf sup (]E [Ah(fn) - Aﬂ — min_(An(fj) - AZ))

Frofar fo wEPs Hv--wM(
> sup inf sup (E[4,(fu) - 45] = min (4,(f) - 43)),
froefrr fn mEPK Jj=1...M
where supy, -~ denotes the supremum over all prediction rules fi,..., far and inf in is
the infimum over all statistics constructed with n observations in our model.

We consider an integer N such that 2V~1 < M, 2N —1 different points of X denoted by
Tly.. TN, Yl,---,YN—1 and a positive number w such that 1 > 2(N — 1)w. We denote by
PX the probability measure on X such that PX({z;}) = PX({y;}) =wforj=1,...,N—1
and PX({xy}) =1 —2(N — 1)w. We consider the cube 2 = {—1,1}¥~1 and a number
0 < bh < 1. For all ¢ € () we consider

1+o0ih)/2 frx=x1,...,2§8N-1,Y1,---,YN-1
770(3?) — ( J )/ . B .
1 if v =apn.
For all o € Q we denote by 7, the probability measure on X x {—1,1} where PX is the
marginal on X and 7, the a conditional probability function of ¥ knowing X. The Bayes
rules associated to 7, is
@) =14 % ifz=21,...,ZN-1,Y1,-- -, UN-1
g 1 ifx=ayN. '

Assume that £ > 1. We have P (|2n,(X) — 1| < t) = 2(N — 1)wlly<; for any 0 < ¢ < 1.

Thus, if we assume that 2(N — 1)w < 01/ (v=1)  where 0 is a positive number, then
P (|120,(X) — 1] < t) < 6t for all 0 < t < 1. Thus, according to [I16] and Chapter
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7, belongs to P, with
def 2

€0 = o = (k —1)0r1 (ﬁi1>ﬁ'

We denote by p the Hamming distance on Q. Let 0,0’ € Q such that p(c,0’) = 1.
Then, the Hellinger’s distance between the measures 7™ and 71'?,” satisfies

H? (n8", 727) 2( (1 - 2w(1 — /1 b%))

Take w and h such that 2w(1 — /1 —1. Then, H? (
for any integer n.

& a8 <21 —e) <2
Let fn be a real-valued statistic. Since only the sign of a classifier is taken into account
in the ¢o—risk, w.l.o.g. we assume that f, takes its values in {—1, 1}.
Let o be in Q. Assume that the underlying probability distribution 7 of the i.i.d.
observations D,, is m,. Since m, belongs to P,, we have, conditionally to the observations
Dy,

K

Ao(Fa) = 45 = (65 En, (11200 = £X)1]) = (") | 3 1fules) = o
j=1
Taking here the expectation, we obtain
A N-1 "
Ex, |Ao(fa) = 4] = (c5"w)"Ex, Falay) = o
j=1
Using Jensen’s inequality and Lemma (p. [77)), we obtain:
A N -1 K
it s (B, [Aof) - 43]) = (B0
fn me{ns:0€Q} 2cpe

Take now N = [log M/log?2], h = (N — 1)/(n6))* /1 and w = (2nh?)~1. We
have

N - 1>n/<2re—1>

n

inf  sup (E% [Ao( ) — A;;D > co(m,e)(

fn me{ns:0€Q}

)

where

2k—2
o 0) B <92n—1 )K)
(. 6) = depe? )
For k = 1, we take h = 1/2, then |2n,(X) — 1| > 1/2 a.s. so 1, € P1. It suffices then to
take w = 2/n and N = [log M/ log 2] to get

o N-1
inf  sup Er, [Ao(fn) — A5l ) = Co(1,1 ,
fn WE{WJ:UGQ}( [ 0( ) 0}) 0( ) n
for Co(1,1) = (2¢2)~1
For the case min ez, (Ao(f) — Aj) = 0 we take Fo = {f5 : 0 € Q} and 6 = 1, then,

sup inf sup <E [Ao(fn) AO] — min (Ao(f) — AS))

{fh 7fM} fn TE€Pk fejh

> inf  swp B [Ag(fa) - 45] = Colm, 1) (

fn we{ms:0€N}

log M) K/(2k—1)
- .
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For the case minscr (Ao(f) — Af) > C(%)m and k > 1, we consider for any
o€,

oj ifx=z,...,28_1,
fo@) =4 o5 Ho—yr..yn
1 if v = ap.

For any o), 63 € Q, we have under T o(2) s

K

—1
Ao(fg(l)) - A(); = 2(N — 1)f]w = f2~r—1

(N — 1)/‘»/(25*1)'

Thus, for Fy = {fs : 0 € Q}, we have

sup inf sup <E
FO:{flr":f]W} fTL TEPk

> inf  sup <E [Ao(fn) - AS} —min(Ao(fs) — AS))

fn me{ns:0€N} oeQ

—

Aol ) = 45] = min (Aa() - 45))

feFo

A%

(Co(k,0) — (92”;11)(Nn— 1> o

- (minfef(AO(f) — AH)VR(N — 1)>1/2

where we chose

2r—1

O e N i

r—1 _K
We have minsez, (Ao(f) — Af) = 65" (M) =T 4

sup inf sup <E [AO(fn) - AS} — min (Ag(f) — AE';))
Fo={f1,-sfrr} frn TEPK feFo

S (minfefO(AO(f) - Az‘))l/“ logM)l/2
- n

For the case h > 1, we consider an integer N such that 2¥~! < M, N — 1 different
points z1,...,xy of X and a positive number w such that (N — 1)w < 1. We denote
by PX the probability measure on X such that PX ({z;}) = w for j = 1,..., N — 1 and
PX({zn}) =1— (N — 1)w. Denote by Q the cube {—1,1}¥~1. For any 0 € Q and h > 1,
we consider the conditional probability function 7, in two different cases. If 2(h — 1) <1

we take
(z) = (1+20;(h—1))/2 ifx=a,..., 281
o) = 2(h—1) if z =xp,

and if 2(h — 1) > 1 we take
. (1—|—0'j)/2 ifr=xz,...,zN_1
o (@) = { 1 if x = xp.

For all o € Q we denote by 7, the probability measure on X x {—1,1} with the marginal
PX on X and the conditional probability function 7, of ¥ knowing X.
Consider
B 1 if2(h—1) <1 N f ooy =21, a8
plh) = { Ah—1)"" if2h—1)>1 M9 = { 1 ifz=azy.

Page 66



7. PROOFS.

A minimizer of the ¢p—risk when the underlying distribution is 7, is given by
% def 277 (.%') —1 *
fh,o‘ é 25(7h_1) :p(h‘)ga(w)? Va er
for any h > 1 and o € (.

When we choose {f; , : 0 € Q} for the set F = {f1,..., fu} of basis functions, we
obtain

sup infsup <IE [Ah(fn) - Aﬂ — min_(Ax(fj) — A;;))
{f1,sfr} fo wEP j=1,...M

>inf  sup (E {Ah(fn) - AZD :
fn TEP:
f;ze{f;:‘a:oeﬂ}
Let o be an element of Q. Under the probability distribution 7., we have Ap(f) — A} =
(h—DE[(f(X) — f;:’U(X))Q], for any real-valued function f on X'. Thus, for a real valued

estimator fn based on D,,, we have
~ N_l ~
Ap(fa) = 45, = (h=Dw Y (fulay) = p(h)oy)*.
j=1

We consider the projection function ¢, (x) = ¥(x/p(h)) for any x € X, where (y) =
max(—1,min(1,y)),Vy € R. We have

N—-1
Eo[An(fa) — A}] > 1)) Eo(¥n(fa(z))) — p(h)o;)?
7j=1
N—-1 A
> w(h—1)(p(h)? Y Eo(y(fala;)) — ;)2
j=1

Y

dw(h —1)(p(h))*  inf Eo -
w(h—1(p(h))* | _inf  maxE, Z 65 — 05|,
where the infimum inf; g ;v-1 is taken over all estimators 6 based on one observation
from the statistical experience {7€"|c € Q} and with values in [0, 1]V 1.

For any 0,0’ € Q such that p(o,0’) = 1, the Hellinger’s distance between the measures

@n and WS” satisfies

s

o on —emy _ ] 2(1- (=201 = VTZRR)) i 2(h—1) <1
("7 = 1—(1—2w(l— 3/4))n) if2(h—1)>1

We take
[ @n(h-1)?) if2(h-1)<1
v 8n~! if 2(h — 1) > 1.

Thus, we have for any o, 0’ € Q such that p(o,0’) =1,
H? (7", 75 < 2(1 - e_l).
To complete the proof we apply Lemma [4.2] (p. [77) with N = [(log M)/n].
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Proof of Theorem [4.2; Consider Fy a family of classifiers fi,..., fas, with values in
{—1, 1}, such that there exist 2M points x1, ...,z in X satisfying {(f1(z;),..., fa(z;)) :
j=1,...2M = {11 s

Consider the lexicographic order on Sy;:

(=1,..., 1) < (=1,..., -1, 1) g (=1,...,—1,1,-1) < ... < (1,...,1).

Take j in {1,...,2™} and denote by x; the element in {z1,...,zom} such that the vector
(fi(a}),. .., far(2})) is the j—th element of Sy for the lexicographic order. We denote
by ¢ the bijection between Sy and {z1,...,zonm } such that the value of ¢ at the j—th
element of Sy is x;
Sy or on {z1,...,x9m . Without any assumption on the space X', we consider, in what
follows, functions and probability measures on Sy;. Remark that for the bijection ¢ we

By using the bijection ¢ we can work independently either on the set

have
filp(x) =27, Vo= (2',...,2M) e Sy, Vje{l,..., M}.
With a slight abuse of notation, we still denote by F the set of functions fi, ..., fas defined
by fi(x) =9, for any j =1,..., M.
First remark that for any f, g from X to {—1,1}, using

E[p(Y f(X))|X] = E[¢(Y)| XU rx)=1) + E[p(=Y ) XL 5(x)=—1),

we have

Elo(Y (X)) X] = E[p(Y g(X))|X] = ag(1/2 = n(X))(f(X) — 9(X)).
Hence, we obtain A?(f) — A®(g) = ay(Ao(f) — Ao(g)). So, we have for any j = 1,..., M,
AP(f) = A°(f7) = ag(Ao(f;) — A7)-

Moreover, for any f : Spr — {—1,1} we have A%(f) = ¢(1) + a¢A2°(f) and ay > 0 by

assumption, hence,
SRR € Argmin(A7(f) + pen(/)).

Thus, it suffices to prove Theorem when the loss function ¢ is the classical 0 — 1 loss
function ¢yg.

We denote by Spry1 theset {—1,1}M*1and by X°,..., XM M+1 independent random
variables with values in {—1,1} such that X is distributed according to a Bernoulli B(w, 1)
with parameter w (that is P(X? = 1) = w and P(X? = —1) = 1 — w) and the M other
variables X!, ..., XM are distributed according to a Bernoulli B(1/2,1). The parameter
0 < w < 1 will be chosen wisely in what follows.

For any j € {1,..., M}, we consider the probability distribution 7; = (PX ;0 of
a couple of random variables (X,Y) with values in Sy;41 x {—1,1}, where P¥ is the
probability distribution on Sy of X = (X9,...,XM) and nU)(z) is the regression
function at the point z € Spr41, of Y = 1 knowing that X = z, given by

1 if =1
N (z) =< 1/24+h/2 ifa®=—-129=-1 , Vo= (2" . .. 2M) e Sy,
1/2+h ifa0 = —1,27 =1
where h > 0 is a parameter chosen wisely in what follows. The Bayes rule f*, associated
with the distribution 7; = (PX,n\9)), is identically equal to 1 on Sy 1.
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If the probability distribution of (X,Y’) is m; for a j € {1,..., M} then, for any
0 <t <1, we have P[|2n(X) — 1| <t] < (1 — w)lp<;. Now, we take

1
1—w=h+T,

then, we have P[|2n(X) — 1| <] < 7T and so m; € Px.

We extend the definition of the f;’s to the set Syr41 by fi(z) = 2’ for any x =
(20, ..., 2M) € Spry1 and j =1,..., M. Consider F = {f1,..., fur}. Assume that (X,Y)
is distributed according to 7; for a j € {1,..., M}. For any k € {1,..., M} and k # j, we
have

M)~ Ay = Y (@)~ 1/20lfela) - 1K = = DLW 0

€SN 41
and the excess risk of f; is given by Ao(f;) — Ay = (1 — w)h/4 + w/2. Thus, we have
min Aof) — 45 = Ao(f) — A5 = (1= whh/4+ w/2.

First, we prove the lower bound for any selector. Let fn be a selector with values in F.
If the underlying probability measure is 7; for a j € {1,..., M} then,

M
B [Ao(f) — 45) = S (Aolfe) ~ 475" (o =
k=1
= min(do(f) — A5) + "o 2

where Eg ) denotes the expectation w.r.t. the observations D,, when (X,Y) is distributed

according to 7;. Hence, we have
. - . h(1 —w) . 5 .
) AR A s AT ) ®n
lgljf&{En [Ao(fn) — Ag] gcrgg(/lo(f) Ag)y = —— ﬁfé}%ﬁ " [fn # Jl,
where the infimum inf 4, 18 taken over all tests valued in {1,..., M} constructed from one
observation in the model (Spyr41 X {—1,1}, AX T, {m1,...,mp})®", where T is the natural
o—algebra on {—1,1}. Moreover, for any j € {1,..., M}, we have
h2
K(#@®nadony < "
(w1 < Ja—h — oy

where K (P|Q) is the Kullback-Leibler divergence between P and @ (that is [ log(dP/dQ)dP
if P << @ and +oo otherwise). Thus, if we apply Lemma (p- with h =
((log M) /n)=D/25=1) e obtain the result.

Second, we prove the lower bound for the pERM procedure fn = ~£ERM. Now, we
assume that the probability distribution of (X,Y) is mj; and we take
log M\ %+
(4.21) h = (02&) =
n

We have E[Aq(f,) — Af] = ?Iéi;__l(Ao(f) —Ap) + h(18_w)IP’[fn # fur). Now, we upper bound
P[fn = fu], conditionally to ¥ = (Y1,...,Y,). We have
P(fn = fu|Y]
= PVj=1,....M =1, A% (fu) + pen(far) < A% (f;) + pen(f;)|V]
= PVj=1....M—Luvy <vj+n(pen(f;) —pen(fu)) V],
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CHAPTER 4. SUBOPTIMALITY OF PENALIZED ERM

where v; = Z?:l ]I(YiX.j<0)’vj =1,...,M and X; = (Xg)jzo,...,M € Syy1,Vi=1,....,n
Moreover, the coordinates Xij,i =1,...,n;5 =0,...,M are independent, Y1,...,Y,, are
independent of X7, i =1,...,n;5 =1,...,M — 1 and |pen(f;)| < R/ =1, .. M.
So, we have

n M-1
Plfo=ful¥] = Y Pl = kY] [ Plk < v+ n(pen(f;) — pen(far))|V]
k=0 j=1

M-—1
[var = K|

IN
NE
~
—

Plk < vy + 2nh“/(”*1>\y])

IN
~
N
S
A
=
<

|+ (P[k < v + 20k =Dy
where
ko= [uMyy]—thﬂ/Wl)

72 <2 ah o N 14 /=1 (h/2 —1/2)
3 gp = T hU/(=1)(3h/4 — 1/2)

II(Yi=1)> — 2pht/(F= 1),

Using Einmahl and Masson’s concentration inequality (cf. [53]), we obtain
Plrar < K|Y] < exp(—2nh2</ (=1,

Using Berry-Esséen’s theorem (cf. p.471 in [16]), the fact that ) is independent of
(X;1<i<n1<j<M-1)and k> n/2 — 9k (1) /4, we get

n/2— e .
f/z L < 6pet f]<<1>(6h Vn) + f

where ® stands for the standard normal distribution function. Thus, we have
(4.22) E[Ao(fu) = 4] > min(4o(f) — 4)

1—w)h M-1
+(8w) (1 — exp(—2nh?/ (=) _ (<I>(6h”/(""1)\/ﬁ) + 66/\/6) )
Next, for any a > 0, by the elementary properties of the tails of normal distribution,

we have

+eo a 2
4.23 1-®(a exp(—t%/2 —_—e /%
(4.23) \/27T / p(—t/2)dt \/ 27 (a? + 1)
Besides, we have for 0 < C' < 1/2/6 (a modification for C' = 0 is obvious) and the condition
(3376C)2(2m M36C° log M) < n, thus, if we replace h by its value given in (4.21)) and if we

apply (4.23) with a = 16C+/log M, then we obtain

(4.24) (@(Gh“/(“—1>\/ﬁ)+66/¢ﬁ) B

Plk < vy 4 2nh"1|Y] <P [

M1-18C? L 66(M — 1)}
18C/2mlog M vn '
Combining (4.22)) and (4.24)), we obtain the result with Cy = (C/4) (1 — exp(—8C?) —

exp(~1/(36Cv/27T0g2)) ) > 0

<exp|-
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Proof of Theorem We consider a random variable X uniformly distributed on
[0,1] and its dyadic representation:

+oo
(4.25) X =) xWak
k=1
where (X*) : k > 1) is a sequence of i.i.d. random variables following a Bernoulli B(1/2, 1)
with parameter 1/2. The random variable X is the design of the regression model worked
out here.
We consider h > 0, which will be chosen wisely in what follows, and the following

. 2h if2U) =1
fi(@) = { b if o) —

for any j = 1,..., M and where z has ;> ()27 with a:(J € {0, 1}, for dyadic decom-
position.

We consider the following dictionary Fo = {fi,..., far} where

fi(x) =229 —1,¥j =1,..., M.

We denote by P; the probability measure of (X,Y") taking values in [0, 1] x R, such that

X is uniformly distributed on [0,1] and Y = f(*].)(X ) + €, where € is a standard gaussian

random variable independent of X.
For any k,j =1,..., M, we have

@l e 15h% —2h+2] k=]

regression functions

Let fn be a selector with values in the dictionary Fy constructed from the sample
D,, made of n i.i.d. observations (X1,Y7),...,(Xpn,Ys) of (X,Y). We denote by EY
the expectation w.r.t. the sample D, when (X,Y) is distributed according to P;. Let
je{l,..., M}, we have

Eﬁf)[\lfn—f{j)!\iz(pxﬂ _1<mk1<nMka (*j)H%Q(PX)

M
= Mk = 5|22y BE" [ = fi] = (1/2)[5h* — 2k + 2]

k=1
= (1/2)[5h* — 2h + 2][1 = PE"[f,, = f]] + (1/2)[5h* + 2/PE" [f, # f)]
*P(Xm[fn # il

On the other side, the Kullback-Leibler divergence between IP’?”, foraje{2,...,M},
and PY" satisfies
2
onimony T e . 12 __nh
KB = 21105 — fiylBaosy = "o
Thus, if we take
log M
h pu—
8n '

according to Lemma (p. , we have

. ® rs )
lﬁflgl%%lpj "[fn # fi1 = 1/8,
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where inf o denotes the infimum over all selectors with values in F;. Then, for a selector
fn there exists j € {1,..., M} such that

log

Eg)["fn_fé)"%Q(PX)]_lgglMka HL2 (PX) = 1@ 16 N

Proof of Theorem We consider M density functions on [0, 1] given by

e[ 32 ifzl) =1
f(j>(x>—{ 12 if o) =0

for any x € [0,1] having /2 ()27, with 20) € {0, 1}, for dyadic decomposition, and
we denote by IP; the probability measure on [0, 1] with density function f(*j) w.r.t. the
Lebesgue measure on [0, 1]. We consider the dictionary Fo = {f1,..., far} such that

1+h ifz0) =1
fk(m){ 1—h ifx(j):(] Vke{l,...,M}

for any z = Zk 1 21277 € [0,1] and for a h > 0 chosen wisely in what follows.
For any k,j € {1,..., M}, we have

a2 ) s|(/2=h)?+(1/2+ 02| ifk#j
e f(j)HQ_{ 2[ (1/2 — h)? ] if k= j.

We denote by inf 2 the infimum over all selector with values in Fy. We have

* 1121 . *‘ 21 _ps Qnr ¢ .
(126) inf e [EQ(1F, = 5 8] - min 15— £5, 8] = hinf max P57(Fo # £
Moreover, the Kullback-Leibler divergence between ]P’;gm and IP’?", foraje{2,...,M},

satisfies
nh?

— h2’
Thus, taking h = (1/4)+/(log M')/(2n) < 1/2 and applying Lemmau (p. . in for
the set {IP’?“ :j=1,..., M}, we complete the proof for the case of the L? loss.

For the case of the Kullback-Leibler loss, we have for any k,j € {1,..., M},

Kiplpy = (U2os(/3) 4307 itk
) (1/2)[log(4/3) — hlog3 + 2h%] if k = j.
Then, using the same arguments than previously, we complete the proof for this case.

Proof of Theorem We consider a random variable X uniformly distributed on
[0,1] and its dyadic representation:

K(PP"[PY") = nK (PF"|PY™) < 1

—+00
(4.27) X=> xWkak

where (X®*) : k > 1) is a sequence of i.i.d. random variables following a Bernoulli B(1/2,1)
with parameter 1/2. The random variable X is the design of the regression model worked
out here. For the regression function we take

. o2h if M) =1
(4.28) / (i)_{ hooif 2 =0,

Page 72



7. PROOFS.

k

where z has the dyadic decomposition z = Zk 1 z*)2=F and

C Jlog M
4 n

We consider the set Fo = {f1,..., far} of basis functions
(4.29) fi(x) =229 —1, vje{1,...,M},

where we consider the dyadic decomposition of 2 € [0, 1] given by z = 32 2(F27%  where
z®) € {0,1},Vk > 1.
Forany j=1,..., M — 1,

* k 1
A = A = fi = Fl2qon) = 5[5’12 + 2]

h =

and 1

Thus we have

min_ A(f;) — A* = A(fu) — A* = (1/2)[5h* — 2h + 2].

j=1,...M
For
N 1 <&
pERM : - )2
FRPM € Arg min (- D% = £(X0) +pen(f)).
we have
(4.30) Elll fn — £*llz2(0.1p] = jmin [1f; = Fllr2qoy) + 2hPfn # fu]

Now, we upper bound IP’[fn = fu]. We have
Plfo=fu] =PVj=1,....M — 1, Ay(fur) + pen(fM> An(f;) + pen(f;)]

. 1 n n
= IP’le,...,M—l,ﬁ;(n—fM( EY fi(X

+vn(pen(f;) — pen(far))]
< PVj=1,...,M—1,Ny > N;

L ~hoon g gy 305 o C
+U\/ﬁ;2(ei € 1)+2(e 1) — a\/logM],

where for any j=1,..., M

)

1 & ) ) )
N;j = — Z Cifi] and € = 2X;7 —1
\/ﬁ =1

It is easy to check that Ni,..., Njs are M normalized standard gaussian random variables
uncorrelated (but non independent).
Next, denote by e the family of Rademacher variables (e, Uy = 1,...,n,5=1,...,M).

We have for any 2C/o < v < (2v/2¢*) (¢* is given in Theorem 4 ,
Plf, = fu] < E[]P’[NM > _max N, —QC/J\/logM]e]}
Jj=1,....M—

(4.31) < P[Ny > —vy/log M +E[ max 1Nj]e]]
j _

=1,...

HE{IP’[]E[, max Njlg — max lez(y—QC/o)\/long]].

j=1,....M—1 Jj=1,....M—
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Remark that, conditionally to €, the vector (Ny,..., Nay/—1) is a linear transform of the
gaussian vector ((1,...,(,). Hence, (Ny,..., Ny—1) is a gaussian vector (conditionally to
€). Then, we can use the gaussian concentration Theorem (cf. [93]), to obtain the following
inequality for the second term of the RHS in :
(4.32)
P[E[j:1ma]}>\</[_1 Njle] — jzlmai(/[_l N; > (v —2C/0)\/log M|e] < exp(—(C/o —~/2)*log M).
Remark that we used E[Nf\e] =1lforany j=1,...,M — 1.

For the first term in the RHS of , we have

]P’[NM > —’y\/logM—i—E[. max Nj\eﬂ

Ay

(4.33) < ]P’[NM > ~27/log M + B[ _max le]]
P{—V\/logM—i—E[. nax 1Nj]Z]E[' max 1Nj]e]
=100 - J=15. -
Next, we lower bound E[max;—; . a—1 Nj]. Since (Ni,...,Npy—1) is a gaussian vector

(conditionally to €) and for any k # j € {1,..., M}, we have

1<, :
E[(Ni = Nl = 2 3 (6 = )’
i=1
then, according to Sudakov’s lower bound Theorem (cf. Theorem in Section , there

exits an absolute constant ¢* > 0, such that

n

* mi LS (b _ )y2) /2
4.34 E N, — S — € log M.
(@3 B[ _max N> min (S - d?)) T Vioe

:17"'7
J =1

Thus, we have

« NN 1/2
(4.35) cE[jzl?%_ljvj]EE[WG{TH}M 1}( Z (k) ) }AogM.

Moreover, using that /= > 2/v/2,Vz € [0,2], we have

(4.36) E[k#e{xlmnM_l} (; 3 () — ) N> va(i-E [?fé‘izn:ék)f?)b-
i=1 i=1

Besides, using a maximal inequality (cf. Theorem in Section [8) and 2n~!log[(M —
1)(M —2)] <1/4, we have

0] < (2 -2 <L
(4.37) [1}12% Ze } < (n log[(M — 1)(M 2)]) <3
Remark that we used Hoeﬁding’s inequality to obtain E[exp(s£U*))] < exp(s?/(4n)),Vs > 0,
where ¢0F) = 1 Z (k) ), Then, combining equations (]4.35[), (14.36 and 4.37[), we

i=1¢ €

obtain

* 1> 1/2'
C'E[_max  Nj] > ((log M)/2)

Then, using this inequality in the first RHS of (4.33) and the usual inequality on the tail of
a gaussian random variable (remark that Njs is a standard gaussian variable), we obtain:

]P’[ v > —2vy/log M  + IE _jnax le]]§]P’{NM2((C*\/§)*1—27)\/log7M]

30y
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(4.38) < IP[NM > ((¢*V2) ™! — 2y)/log M]
< e~ (V)7 - 29)2(log M) /2).

Remark that, we used 2v/2¢*y < 1. For the second term in 1' we use the concentration
inequality of Theorem [£.7] of Section [§] to obtain

(4.39) E[P[—yx/logMjLE[, max  N] > E[_max 1Njye]yeﬂ < exp(—12/4),
J=15.- - J=1, -

where we used the concentration inequality of Theorem and inequality (4.34]) to obtain

0 < E[maxj—1, -1 Njle] < /2log M.
Finally, combining (4.31)), (4.38]), (4.33), (4.32)) in the initial inequality (4.31]), we obtain

Plfn = fu] < exp(—2(2C —7)*log M)
+exp (= ((€V2)™! = 29)(log M) /2) + exp(—?/4)
We complete the proof by using this inequality in (4.30)).

Proof of Theorem We consider a random variable X uniformly distributed on
[0,1] and its dyadic representation:

+oo
(4.40) X =) xWak

k=1
where (X*) : k > 1) is a sequence of i.i.d. random variables following a Bernoulli B(1/2, 1)
with parameter 1/2. In the density estimation setup we have n i.i.d. observations of the
random variable X. Hence, the density function to estimate is

(4.41) Fi) €1, v e (0,1
We consider the set of basis density functions Fy = {f1,..., f;}, where, for any
je{l,...,M —1},
[ 3/2 if 20) =1
(1.2 e ={ s 0 s

where we consider the dyadic decomposition of 2 € [0,1] given by z = S5 2(F)27%  where
z®) € {0,1},Vk > 1. For j = M, we consider

[ 3/2—h ifz®) =1
(4.43) fM(x)_{ 1/24+h if ) =0
where x has the dyadic decomposition x = Eﬁ;’ol M2~k and

h:l llogM.
2 n

First, we explore the case when the loss is the L2—norm. For any j =1,...,M — 1,

A(f) = A =I5 = 20, = 1/4
and
A(fm) = A" = (| far = 20 = (1/2 = 1)
Thus we have

jmin A(f) = A" = A(far) = A" = (1/2 = h)”.
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For
fﬁERMEArg mm /f2 dx——Zf ) + pen( ))
we have

E[||fn — Fleeqoapl = mln ||f] 2oy + (B = WP fn # fur]

Now, we upper bound IP’[fn = fM}. We have

Plfn=fu] = PNj=1,...,M—1,A(fu)+pen(far) < An(f;) + pen(f;)]
= PVj=1,...,M —1,vy < vj+n(pen(f;) — pen(fum))],
where v; = Y"1, XZ-(j),Vj =1,...,M. Moreover, (XZ'(j))jzl,...,M;i:L..‘,n are i.i.d. B(1/2,1)

and |pen(f;)| < h,,Vj =1,..., M. So using the same arguments as in the proof of Theorem
we have
P(f, = far] = Plvas > K] + (Plr < (1 —2h)k + 2nh])"
where we choose k = 2nh. Using Hoeffding’s inequality for binomial variables, we have
Plvar > 2nh] < exp(—2nh?).
Using the normal approximation Theorem (cf. Theorem in Section , we get
264
2y/n’
where @ is the standard normal distribution function. We complete the proof with the
same arguments as in the proof of Theorem

Second, with the same notation as in the L? case, we have for the Kullback-Leibler
divergence case, for any j =1,..., M — 1,

A(fj) = A" = K(fjlf7) = (1/2)log(4/3)

Pl < (1 —2h)k + 2nh] < ®(8hy/n) +

and
A(fm) — A" = K(fulf*) = (1/2)1og(4/3) + en,
where ¢, = (1/2) log (1 — (h(4+ 4h))/[(3 — 2h)(1 + 2h)]). Thus we have

min A(f;) — AT = A(far) — A" = (1/2)og(4/3) + €.
j=1,....M

For
rpERM _
5 € Arg min /R - g log f(X;) + pen(f))

f€Fo —

we have

EIK(falf)) = min K1) = enPlfn # fu]
Now, we upper bound IP’[fn = fu]. We have

Plfn=fu] = PNj=1,...,M—1,A.(fu)+pen(fur) < An(f;) + pen(f;)]
= PVj=1,...,M —1,vp < vj+n(pen(f;) — pen(fu))]

“ - 20nh
B[y xY < 3o a0+ 2]

IN
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where v; = =Y log[(1/2 — h)Xi(j) +1],¥j =1,..., M. Moreover, (Xi(j))j:17,,.7M;i:1’.,,,n

are i.i.d. B(1/2,1) and |pen(f;)| < h,,Vj=1,..., M. So using the same arguments as in
the proof of Theorem [4.2 we have

Plfa = fur] = Bloar > K+ (Blor < (1~ 20)F +20h]) "~

where we take k = nh. We complete the proof with the same arguments as in the previous
case.

8. Appendix.

The following Lemma is used to establish the lower bounds. It is a slightly different
version of the Assouad’s Lemma (cf. [115]).

LEMMA 4.2. Let (X, A) be a measurable space. Consider a set of probability { P, /w € Q}
indezxed by the cube Q = {0,1}™. Denote by E,, the expectation under P,,. Let 6 > 1 be a
number. Assume that:

Yw,w' € Q/p(w,w’) =1, H*(P,,Py) < a < 2,

then we have
m

inf max[E Wi —wil’ | >m273702 — a)?
Bef0,1)m we ; by —wil"| 2 ( )
where the infimum inf e 1jm is taken over all estimator based on an observation from the

statistical experience { P, /w € Q} and with values in [0, 1]™.

Proof: Let & = (1, ...,0n) be an estimator with values in [0, 1]™, we have:
m 1 m
~ 0 ~ 0
maxE, |3 [&; - wj| o 2 B [ D105 — wjl
j=1 we j=1

25 (5 5 el
J

j= weQw;j=1 weQw;=0

Each term of the sum over j are lower bounded in the same way. Let see the case of the
term 7 = m. We have

< oo+ Y )Ew[mm—wmﬂ

wEQwm=1 WER:wm=0

= Z E(wl,..l,wm,l,l) [|"Dm - 1‘9} +IE(wl,...,wm,l,O) |:’d)m|9}
(W1 yeeerwm—1)€{0,1}m—1

= / (1 - d)m(iv))edp(wl,...,wm,l,l)(x) +/ djm(x)gdp(wl,...,wm,l,O) (‘T)
(@1yewm_1)€f0,1}m—1 7 X X

Thus, if p is a measure on (&, A) which dominates P, .. 1) and Pe, .. o) then
we obtain

( DY )Ew[mm—wmﬂ

wWEQ:wm=1  WEQ:wm=0
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- > /X [(1—@m(:c))"fm,...,wm,l,l)(x)+a)m(x)9 Forom1.0)(@) ] du(z),

(W1 yeeeywm—1)€{0,1}m—1

where f,, . wn_1,1) and f 0, 10 are one version of the density of the probability
measures P, o, 1) and P, o, 0) with respect to p. Since for all a € [0,1],a,b € R
we have (1 — a)%a + a®b > 2% min(a, b), we get:

( DY )Ew[\@mwmﬂ

wEQ:wm=1  we:wm=0

P ! /X min (foron 1) (@) + Forn o r.0)(2)) dpa(z)
= 21—92m—1 /min(dp(wl,.,.,wm1,1)7dP(w1,...,wm1,0))

> ol=09m=1  min / min(dP,, dP,,).
w,w’ €N
plww)=1

We complete the proof with Le Cam’s inequality (cf., for instance, [115] p.73) which states
that for all probabilities P and (), we have

/min(dP, Q) > % (1 _ HQ(?Q)Y.
[ |

THEOREM 4.7 (Einmahl and Mason (cf. [53])). Let Z1,. .., Z, ben independent positive
random variables such that E[ZZQ] <o%Vi=1,...,n. Then, we have, for any 6 > 0,

P[En: Zi —E[Z] < —né} < exp(—nd?/(202)).
1=1

THEOREM 4.8 (Sudakov (cf. [93])). There exists an absolute constant ¢* > 0 such that
for any integer M, any centered gaussian vector X = (X1,...,Xn) in RM, we have,

c'E[ max X;] > ey/log M,

1<j<M
where € = min [E[(Xi XM £ el ,M}} .

THEOREM 4.9 (Maximal inequality (cf. [93])). Let Yi,...,Yy be M random variables
satisfying Elexp(sY;)] < exp((s?0?)/2) for any integer j and any s > 0. Then, we have

E[ max Y] < o+/log M.

1<j<m 7
THEOREM 4.10 (Berry-Esséen (cf. page 471 in [16])). Suppose that (X;)ien is a sequence
of i.i.d. random variables with mean p and variance o® > 0. Then, for all n,
n L _ 13
ov/n 4 o3\/n
We use the following lemma to prove the weakness of selector aggregates. A proof can
be found p. 84 in [115].

sup
teR
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8. APPENDIX.

LEMMA 4.3. Let Py,...,Py be M probability measures on a measurable space (Z,T)
M

1
satisfying i ZK(IPH]PH) < alog M, where 0 < a < 1/8. We have

J=1
~ v M o
inf . N>V (1 90— =
it e B0 7002 g (1202 g 5)

where the infimum inf 3 1s taken over all tests qg with values in {1,..., M} constructed from
one observation in the statistical model (Z,7T ,{P1,...,Pay}).
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CHAPTER 5

Convex Aggregation under Positive Covariance Assumption

We prove a convex oracle inequality with a rate of aggregation equals to %. This
rate is faster than the standard optimal rate of convex aggregation which is (cf. [114])
M/n if M < /n and /(log(1 + M/y/n)/n) otherwise. Here, we obtain the optimal rate
of Model Selection aggregation logTM. This result is obtained under a positive covariance

assumption of the estimators to aggregate. It means that, when estimators are positively
correlated, it is as easy to mimic the best convex combination of these estimators as to
mimic the best of them.

Contents
(1. _Introductionl 81
2. Convex Aggregation Oracle Inequality.| 82

1. Introduction

Let (X,Y) be a random variable on X x R. Denote by 7 the probability distribution
of (X,Y) and by PX the marginal of X. Consider the norm

1112y = ( /X rf<x>|2dPX<x>)1/2,

defined for any f € L2(PX). In the regression framework, we want to estimate the
regression function
n(zx) =E[Y|X =z],Vz € X,

from a sample of n i.i.d. observations of the couple (X,Y’). We denote these observations
by D,, = ((Xi,Y:))1<i<n. Usually, the variable Y is not an exact function of X. Given is
an input X € X', we are not able to predict the exact value of the output Y € R. This
issue can be seen in the regression framework as a noised estimation. It means that in each
spot X of the input set, the predicted label Y is concentrated around E [Y'|X] up to an
additional noise with null mean. Denote this noise by (. It is equal to the real random
variable Y — E [Y'|X]. The regression model can be written as

Y =E[Y|X]+ (.
In this chapter we study a convex aggregation procedure under an geometric assumption.
For this problem, we consider M measurable functions 7y,...,ny from X to R, usually

called weak estimators. Our aim is to mimic the best combination of them where coefficients
of this combination are taken in a bounded subset H™ of RM. For instance, if HM = AM
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where
M
AM = (A, A/ A =0, N =1,
j=1
we speak about convex aggregation problem.

2. Convex Aggregation Oracle Inequality.

We introduce the following notation
M

nA:ZAjnjv V)\ERM.

j=1

We consider the following aggregation procedure s, defined by the weights

~

5.1 Ap €A in R,
(5.1) rg min Fn ()
where
1 n
() = = > (Vi —no(X,))?
R (o) ”izl( 10(X:))

is the empirical risk of 7, for any measurable function 7y from X to R.
We give an oracle inequality satisfied by the procedure 5,

THEOREM 5.1. In the regression framework Y = n(X) 4+ o(X)( , where X € X and
¢ are independent variables. Let F = {n1,...,nm} be a set of functions from X to R.
Assume that
o There exists B > 0 such that ||n||so, ||Njllcc < B for all1 < j < M.

Then the aggregation procedure defined in satisfies for any a > 0 and for any bounded
subset HM of RM :

. 2(1 + a)? log M
By, ~llap)) < (1+a) min o3+ 20 B imzfgn|a<xi><i|2]+cm/ s

na 1,y
Moreover, if we have the positive covariance assumption
e Forany j,k=1,....M, E[(n;(X) —n(X))(n(X) —n(X))] > 0.
and if we only consider subsets HM of (R.)™ (that is for positive coefficients), then the
aggregation procedure defined in satisfies for any a > 0 and for any bounded subset
HY of (Ry)M:
2(1 4 a)? log M
uIE ‘max |o(X;)G|*|+Co i .
e

a =1,...,n

Elllns,, =nll72(px)) < (1+a) min [ln=nl[fapx)+

If ¢ is gaussian centered with square deviation equals to 1 and if there exists o2 such
that 0(X)? < 0? a.s. then E [maxj—1..n |0(X;)G[?] < 20%logn.

If ¢ is bounded by L > 0 (cf. this is called the bounded regression) and if there exists
o2 such that 0(X)? < 0? a.s., we have E [maxizl.,.m |0(XZ-)Q-\2] < (oL).

REMARK 5.1. Assumption on the covariance of estimators can be replace by

Epx[(n; —n)(m — ) Epx[(ny —n)(mw —n)] > 0,V4, k. j' K =1,....M

which means that 01, ...,nyv are on the same "side” w.r.t. 1. Rudely speaking, n;’s belong
to half a cone with vertex n in L*(PX).
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2. CONVEX AGGREGATION ORACLE INEQUALITY.

Proof of Theorem For any measurable real-valued functions f,g from X,
consider

£l =~ ZF )and < fg>n=— Zf X;)

and for any real vector € = (61, ..., €n) € R™ consider

n

1
<6f>a= > eaf(Xi).

i=1
For any measurable real-valued function f from X we have

1f =l = Ru(f) = Ru(n) +2 <N, f =0 >,

where N denote the random vector (o(X1)C1,...,0(X,)¢,) of the noises.
Denote by C the set of all ny where A € H™. Let 77 be in C. We have for any a > 0,

||775\n - 77||%2(PX)
=llns,, = llZzpxy + (L4 a) |2 < Nyms =1 >0 +Ra(ns,) — Ra(n) = |Ing, — n\lﬂ
S(l + a’)(Rn(ﬁ) - Rn(n))

45 |l =il a(px) + 20+ a) < Nomg = >0 ~(1+ o)l — 7]
no€C

Moreover, for any measurable real valued function 77 on X, we have E [R,, () — Rn(n)] =
Hﬁ - 77”%2(13)() ThllS,

IE||775\n - 77||%2(PX) <(1+a) Afélé%{ [y — 77H2L2(pX)

+ E

sup [||770—77HL2 px)yT2(1+a) <N,ng—n>p —(1+a)|lno —nl!i]] :
no€C

LEMMA 5.1. Under the positive covariance assumption we have
E lsup (1170 = nll32pix) + 201 + @) < Nyo = 5 > —(1+ )0 — n!lﬂ]
no€C

log M

na =1,...,n

L2 ta)’y {max |U(Xi)g@ e

Proof: We have

E[ sup [llmo —nllFa(px) + 20+ ) < Nomo —n >0 ~(1+a)l o — il
no€C

<E

a
sup 2(1+a) <N, —n >, —§||770 - nlli]
noeC

+E

2 —|— a
sup (|10 = nllZ2(pxy = —5—lm0 — nH2]
no€C

Moreover for any ng € C,

a a
2(1+a) <Ny =0 >n =5l =nlli < 2(1+a)2|lno—=nlln| < N ha(n0) >n | =5 lIno=nllz,
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where

_mo=n_ _
hn(ng) = { lmo—nlln if [[no —nlln # 0 ‘
0 otherwise

Using inequality 2|xy| < (a/2)2% + (2/a)y? which holds for any scalar z,y, we get:

a 2(1+ a)?
2(1+a)lno = nllal < N, An(m0) >n | = Sllmo =il < (a) < N, hn(10) >7 -
Since ||(hn(10)(X1), - -, hn(10)(Xn))|[3 = n, we have
2 1 2 1 2
E [sup < N, hy(no) >5 —E |sup <N,0>°| = —E | max |o(X;)G]
no€C n 6eS2 n |i=1,..n

where S2 is the set of all unit vectors of (R™, ||.||2) and < .,. > is the usual inner product
of (R, [].[l2)-

Let Wo = (w1, ..., wyr) be a vector in HM and denote by 79 the combination Z;‘il w;n;.
Since w; > 0,Vj =1,..., M, we have
9 2 —|— a 9 .
[Im0 — 77”1;2(13)() — o =l = WeZWo < sup  Z[[Wolla < Co sup  Zj,
1<k j<M 1<k,j<M

where Cj is a bound for H™ and (Z1.j)1<k,j<m is given by

zk,jszgkm () PX (dx) ”“ng

and g =n —n for any k =1,..., M. Hence,

< CoE[ sup  Z ;.
1<k,j<M

E lsup |10 — TIH%Q(PX) —
no€C

Denote by PX the distribution of X. For any real-valued function ¢ defined on X, denote by
PXg the expectation E(g(X)) and P g its empirical version. Since for all j,k =1,..., M,
PXgg; > 0 we have for any § > 0

5ia 26 + aPX gy,
P [ngkgj - = Piokg; > 5] = [Pnggj ~ Bl = T |

We apply Bernstein’s concentration inequality to obtain

20 + aPnggj}

X X
P [P 9k9; — Py 9rgj > "t a

< exp (— 3n(20 + aP~ grg;)? )
6(2 + a)2PXglg7 + 8(2 + a) B%(26 + aPX gxg;)
There exists a constant C; > 0 depending only on a, B such that for all 0 < § < 2(4+a)B?
and all 0 < j,k < M, we have
3n(26 + aPX gg;)?
6(2 + a)?PX gig7 + 8(2 + a) B2(20 + aPX gxg;)

Using the union bound, for all positive number u, we have

> (4.

E| sup Z; < E

1<k, j<M

sup Zkvj(ﬂsup1<k,j<lw Zi,j<u + ]IsuP1<k,j<M Zk,jzu)
1<k, j<M - -
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+oo
< 2u+/ P
u

Denote by u(M) the unique solution of X = (M?/2)exp(—X), we get log M < u(M) <
2log M. Take u such that nCiu = p(M) then we obtain

1<k,j<M 1

M2
sup  Zpj > 0| do < 2u+ Fexp(—Clu)

2+4+a 4 log M
E —|]? - —n|2] < = .
;gg!\f al g W=l = 5=,
|
LEMMA 5.2. Without any covariance assumption we have
E [suré [H??o = nllZapxy + 201+ a) <Nymg =1 >n —(1+a)||no — n!\i}]
US
1+a 2 log M
< QE [.max ’U(X,)<z|:| +CQH &
na 1=1,....n n
Proof: We have
E | sup [ — nljagpx) +2(1+ ) < Noo =1 > ~(1-+ a)llm —nui]]
ULIS
<E |sup 2(1+a) <N,no —n > —allno — nlli]
no€C
2 2
+E | sup [|no — nll72pxy = llno — an]
no€C
Like in Lemma we have
1+a)?
21+ a) < Noo > —allm —nlls < L2 < N by ) 2,
thus,
1+a)?
E [sup 2(1 +a) < N,ny —n >, —al|ln — n[\%] < uIE {max ]J(XZ-)QP] )
no€C an i=1,...n
Let Wy = (w1, ..., wyr) be a vector in HM and denote by 79 the combination Z;‘il w;n;.
We have

1m0 = nlI22(pxy = llno = nlla = W§ZWo < [|Z]]ocl[Woll2 < CollZ] oo,
where Cj is a bound for HM | Z is the random matrix (Z1.j)1<k,j<m With
1 n
Zyj = /ng(ﬁf)gj(x)PX(dx) - > ge(Xi)g; (Xi)
i=1
and g = np —n for any k =1,..., M. Hence,

E

sup |[no — 1l[72(px) = |lno = nll7 | < CoE[l|Z]]oc].

no€C

Denote by PX the distribution of X. For any real-valued function g defined on X,
denote by PXg the expectation E(¢g(X)) and P.Xg its empirical version. Using Bernstein’s
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concentration inequality, we have for any 0 < § < 32582

52 52
IP“Pnggijfgkgﬂ 25] §26Xp< i ) < 2exp <n>

 2PXg2g%? +2B%/3
Using the union bound, for all positive number u, we have

ElllZllc] < E[Zloc(Mjiz)jo<u + Tjjz)jc>u)]

oo 108B2M* nu?

Denote by (M) the unique solution of X = M? exp(—X), we get log M < (M) < 2log M.
Take u such that nu? = 54B2?u(M) then we obtain

IN

E

log M
sup [l — nll72(px) = llmo = nlla| < 8BVE4/——.

no€C

In the gaussian case, we have for any 6 > 0

P [.max = 5] < nP[|¢1] > 6] < nfwm.
i=1...,n T S

Thus, for any u > 0,

2 2
E |:anlfnfn ’Cl| :| < E |:anl7a}fn ‘CZ| (]Imaxizl ,,,,, n G2 <u + ]Imaxizl ,,,,, n \Ci|QZU)
2n /+°° exp(—4/2) < o+ 4n exp(—u/2)
il APATE 2] wt PN
T Ju NZ) - s Vu

Denote by u(M) the unique solution of X3 = ﬁ exp(—X?), we get 1/(logn)/2 < u(M) <

VIogn. Take u such that (u/2)%/? = p(M) then we obtain

< 2u+

E [inax \U(XZ-)QQ} < 20%logn.

=1,...,
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CHAPTER 6

Classification with Minimax Fast Rates for Classes of Bayes
Rules with Sparse Representation

We study the behavior of an adaptive estimator for classification problem on [0,1]%,
considering piecewise constant classifiers on a dyadic, regular grid. We consider classes
of classifier functions that satisfy certain conditions regarding their coefficients when
developed over the (overcomplete) basis of indicator functions of dyadic cubes of [0, 1]¢
and these coefficients are restricted to values in {—1,0,1}. Lower bounds on the minimax
rates of convergence over these classes are established when the underlying marginal of the
design is comparable to the Lebesgue measure. An upper bound for the performance of
the estimator is derived, which is shown to match the lower bound (up to a logarithmic
factor).
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1. Introductionl 89
[2. Classes of Bayes Rules with Sparse Representation.| 92
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2.2, Related works and main results. 94
2.3. Class of Bayes rules.| 95
3. Rates of Convergence over 7Y under (SMA)| 97
[3.1.  Approximation Result| 97
[3.2.  Fstimation Resultl 98
[3.3.  Optimality]| 98
[3.4.  Rates of Convergence for Different Classes of Prediction Rules| 99
[3.5.  Adaptation to the complexity.| 100
[4. Discussion| 101
5.__Proofs 103

The material of this chapter is an article accepted for publication in the journal
Electronic Journal of Statistics (cf. [79]).

1. Introduction

Denote by D,, = (X;,Yi)i<i<n n i.i.d. observations of a couple (X,Y) of random
variables with values in [0, 1]¢ x {—1,1}. Denote by 7 the probability distribution of (X, Y).
We want to construct measurable functions which associate a label y € {—1,1} to each
point 2 of [0,1]%. Such functions are called prediction rules. The quality of a prediction
rule f is given by the value

R(f) =P(f(X) #Y)
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called misclassification error of f. It is well known (e.g. [47]) that there exists an optimal
prediction rule which attains the minimum of R over all measurable functions with values
in {—1,1}. It is called the Bayes rule and it is defined by

[ () = sign(2n(x) — 1),
where 71 is the conditional probability function of Y =1 knowing X defined by
n(z) =P(Y =1|X = x).

The value
R* = R(f") = min R(f)

is known as the Bayes risk. The aim of classification is to construct a prediction rule, using
the observations D,,, with a risk as close to R* as possible. Such a construction is called a
classifier. Performance of a classifier f, is measured by the value

Ex(fn) = EW[R(fn) - R*]
called excess risk of fn. In this case R(f,) = P(fu(X) # Y|D,) and E. denotes the
expectation w.r.t. D,, when the probability distribution of (X;,Y;)is 7w forany i =1,...,n.
Consider (¢(n))nen a decreasing sequence of positive numbers. We say that a classifier fn
learns at the convergence rate ¢(n), if there exists an absolute constant C' > 0 such that
for any integer n,

EA[R(f,) - B] < Co(n).

We introduce a loss function on the set of all prediction rules:

d=(f,9) = |R(f) — R(g)-

This loss function is a semi-distance (it is symmetric, satisfies the triangle inequality and
d(f, f) =0). For all classifiers f,, it is linked to the excess risk by

Ex(fn) = Exldr(fu, 7)),

where the RHS is the risk of fn associated with the loss d.

Theorem 7.2 of [47] shows that no classifier can learn with a given convergence rate
for arbitrary underlying probability distribution 7. To achieve rates of convergence, we
need a complexity assumption on the set which the Bayes rule f* belongs to. For instance,
[123, 124] provide examples of classifiers learning, with a given convergence rate, under
complexity assumptions on the set of conditional probability functions. Other rates of
convergence have been obtained under the assumption that the Bayes rule belongs to a
class of prediction rules with a finite dimension of Vapnik and Chervonenkis (cf.[47]). In
both cases, the problem of a direct approximation of f* is not treated. In the first case, the
problem of approximation of f* is shifted to the problem of approximation of the regression
function 7. In fact, if f denote the plug-in rule I;;>1/2, where 7 is a function with values
in [0, 1] then, we have

(6.1) d=(f, f7) < 2E[[7(X) — n(X)]]

Thus, under smoothness assumption on the conditional function 7, we can control the
approximation term. However, global smoothness assumptions on 7 are somehow too
restrictive for the estimation of f* since the behavior of n away from the decision boundary
{x €[0,1]¢ : n(z) = 1/2} has no effect on the estimation of f*. In the second case, the
approximation term equals to zero, since it is assumed that the Bayes rule belongs to a
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class with a finite VC dimension and so we don’t need to approach the Bayes rule by a
simpler object.

Many authors pointed out the need for developing a suitable approximation theory for
classification. Given a model C of prediction rules, it is written in p.34 in [22]: “estimating
the model bias min¢cc(R(f) — R*) seems to be beyond the reach of our understanding. In
fact, estimating R* is known to be a difficult statistical problem, see [47] and [5].” In [20],
question on the control of the approximation error for a class of models in the boosting
framework is asked. In this chapter, it is assumed that the Bayes rule belongs to the
model and form of distribution satisfying such condition is explored. Another related
work is [89], where, under general conditions, it can be guaranteed that the approximation
error converges to zero for some specific models. In [I16], the author examines classes
that are indexed by a complexity exponent that reflects the smoothness of the Bayes
decision boundary. An argument of entropy is then used to upper bound the bias term. A
generalization of these classes is given in [105]. Finally, on the general topic of approximation
theory in classification we want to mention the recent work of [107].

The main difficulty of a direct approximation of f* is the dependence of the loss d;
on 7. Given a model P (a set of probability measures on [0,1]¢ x {—1,1}) with a known
complexity, we want to be able to construct a decreasing family (F¢)eso of classes of
prediction rules, such that we have an approximation result of the form:

(6.2) Vi = (PX,n) € P,Ye > 0,3f. € Fo: dr(fe, f*) <,

where P¥ is the marginal distribution of 7 on [0,1]¢ and f* = Sign(2n — 1) is the Bayes
rule, associated with the regression function n of 7. In fact, we want the classes F, to be
parametric, such that, for the estimation problem, we just have to estimate a parametric
object in a class F,, for a well chosen €, (generally obtained by a trade-off between the
bias/approximation term and the variance term, coming from the estimation of the best
¢, approaching f*).

We upper bound the loss d;, but, we still work directly with the approximation of f*.

parametric object in F,

For a prediction rule f we have

(6.3) dr(f, 7)) = E[120(X) — UL roxy2p- 0] < /2 = o1 px)y.-

In order to get a distribution-free loss function, we assume that the following assumption
holds. This assumption is close to assuming that the marginal distribution of X is the
Lebesgue measure on [0, 1]9.

(A1) The marginal P~ is absolutely continuous w.r.t. the Lebesque measure g and there
exist two constants 0 < a < A < +o0 such that a < dPX(z)/d\g < A, Vzx € [0,1]%.

The behavior of the regression function 7 near the level 1/2 is a key characteristic of
the classification’s quality (cf. e.g. [116]). In fact, the closest is 7 to 1/2, the more difficult
is the classification problem. Here, we work under the following assumption introduced by
[94].

Strong Margin Assumption (SMA): There exists an absolute constant 0 < A < 1 such
that:

P(2n(X)—1| > h) =1.
Under assumptions (A1) and (SMA) we have, for any prediction rule f,

ah * * A *
S I = o < &l 1) < S = P llaow-
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Thus, estimation of f* w.r.t. the loss d, is the same as estimation w.r.t. the L;(\g)—norm,
where )g is the Lebesgue measure on [0, 1]%.

The chapter is organized as follows. In the next section, we introduce a class of functions,
with values in {—1, 1}, developed in a fundamental system of L2([0, 1]%). Section s devoted
to the approximation and the estimation of Bayes rules having a sparse representation in
this system. In Section [4 we discuss this approach. Proofs are postponed to Section

2. Classes of Bayes Rules with Sparse Representation.

In this section, we introduce a class of prediction rules. For that, we consider two
different representations of prediction rules.

The first way is to represent a prediction rule as an infinite dyadic tree. An infinite
dyadic decision tree is defined as a partitioning of the hypercube [0, 1]% obtained by cutting
in half perpendicular to one of the axis coordinates, then cutting recursively the two pieces
obtained in half again, and so on. Most of the time, finite dyadic trees are considered (cf.
[21] and [I05]). It means that the previous constructions stop at an arbitrary point along
every branches. For a survey on decision trees we refer to [96]. Here, we consider also
infinite dyadic trees.

The other way is more “analytic”. Namely, we consider the representation of prediction
rules in a fundamental system of L2([0,1]¢, \q) (that is a countable family of functions
such that all their finite linear combinations is dense in L2([0,1]%, \g)), inherited from the
Haar basis, and control the number of non-zero coefficients (which can take values —1,0, 1
in this case).

2.1. Analytic representation of decision trees. First we consider a fundamental
system of L2([0,1]¢, \4). We consider a sequence of partitions of [0,1]? by setting for any
integer 7,

() _ () ()
) =B x...x B,
where k is the multi-index
k= (ki,...,kqg) € Iy(j) = {0,1,...,27 —1}4,
and for any integer j and any k € {1,...,2/ — 1},
k k+1) ipq_ j
B0) _ { 37 %57) fk=0,...,27 -2
) =

[2]2;1, 1] fh=2—1

We consider the family & = ( l({j) jeNke Id(j)> where

qbl((]) — ]IIlij)’ Vj eNke Li(]))

where M4 denotes the indicator of a set A. The set S is a fundamental system of
L2([0,1]%, A\q). This is the class of indicators of the dyadic sets of [0, 1]%.

Formal definition of the classes F(®: We consider the class F(@ of functions
f:10,1]¢ — {—1,1} defined by

+00
f= Z Z al(f)gzbl(g),)\d — a.s., where al((]) e {-1,0,1}.
J=0kel4(4)
In what follows, we use the vocabulary appearing in the wavelet literature. The index

7 3¢ of al({j ) and (;51(3 ) is called “level of frequency”.
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Writing convention (W): Since S is not an orthogonal basis of L2([0,1]%, \q), the
expansion of f w.r.t. this system is not unique. Therefore, to avoid any ambiguity,
we define an unique writing for any mapping f in F@ by taking a(j € {—1,1} with
preferences for low frequenmes when it is possible. Roughly speaking, for f € F@ denoted
by f = Zkeld(g ak qb Ad — a.s. where al(() € {-1,0,1}. This conventlon means

that, we construct A € {-1,0,1},7 € Nk € I;(j), such that: if there exists J € N and

k € I;(J) such that for all kK" € I;(J + 1) satisfying qﬁk )¢k,+1) # 0 we have af(‘,”l) =1,

(J+1) 0, instead

then we take A1(< ) = 1 and the other 2¢ coeficients of higher frequency A,
of having these 2¢ coefficients equal to 1, and the same convention holds for —1 Moreover
if we have Ai‘]‘)) # 0 then A%{‘,]) =0 for all J > Jy and K’ € 1;(J) satisfying ¢ (bk, # 0.
We can describe a mapping f € F@ satisfying this convention by using an infinite
dyadic decision tree. Each node corresponds to a coefficient Al((‘]). The root is Agg?...,o)' If a

(J)

node, describing the coefficient A,”’, equals to 1 or —1 then, it has no branches, otherwise it
has 2¢ branches, corresponding to the 24 coefficients at the following frequency, describing
the coeflicients Al((‘/”l) satisfying qS qS(JH # 0. At the end, all the leaves of the tree
equal to 1 or —1, and the depth of a leaf is the frequency of the associated coefficient. The
writing convention says that a node cannot have all his leaves equal to 1 together (or —1).
In this case we write this mapping by putting a 1 at the node (or —1). In what follows
we say that a function f € F(@ satisfies the writing convention (W) when f is written
in S using the writing convention described in this paragraph. Remark that, this writing
convention is not an assumption on the function since we can write all f € F(@ using this
convention.

We can avoid the problem of the non-uniqueness of the expansion of a function in the
overcomplete system S. For instance, by using the wavelet tensor product of the Haar
basis (cf. [95]), we obtain an orthonormal wavelet basis of L?(]0,1]%). In that case the
link with dyadic decision trees is much more complicated and the obtained results are not
easily interpretable.

It is easy to see that all measurable functions from [0,1]¢ to {—1,1} cannot be rep-
resented in this way. A simple example is given by the following construction. Consider
(gr)k>1 an enumeration of the rational numbers of (0,1). Denote by A the union, over
k € N, of the open balls B(qy, 2_(k+1)). This is a dense open set of Lebesgue measure
bounded by 1/2. The prediction rule f = 214 — 1 cannot be written in the fundamental
system S using coefficients with values in {—1,0,1} (f ¢ F(1)). Nevertheless, under a mild
assumption (cf. the following definition) a prediction rule belongs to F(@).

DEFINITION 6.1. Let A be a Borel subset of [0,1]%. We say that A is almost every-
where open if there exists an open subset O of [0,1]% such that \g(AAO) = 0, where g
is the Lebesque measure on [0,1]% and AAO is the symmetric difference.

THEOREM 6.1. Let ) be a function from [0,1]% to [0,1]. We consider
1 ifn(x) >1/2
i) ={ =l

-1 otherwise.

We assume that {n > 1/2} and {n < 1/2} are almost everywhere open. Thus, there exists
g € F9 such that g = fnsAa — a.s..

For instance, if A\g(0{n = 1/2}) = 0 and, either 7 is Ag-almost everywhere continuous
(it means that there exists an open subset of [0, 1]d with a Lebesgue measure equals to
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1 such that 71 is continuous on this open subset) or if  is A\y—almost everywhere equal
to a continuous function, then f, € F (@), Moreover, the Lebesgue measure satisfies the
property of regularity, which says that for any Borel B € [0, 1]¢ and any € > 0, there exists
a compact subset K and an open subset O such that K C A C O and \;(O — K) < e.
Hence, one can easily check that for any measurable function f from [0,1]? to {—1,1} and
any € > 0, there exists a function g € F@ such that A\g({z € [0,1]? : f(z) # g(x)}) < e.
Thus, F@ is dense in L?()\g) intersected with the set of all measurable functions from
[0,1]% to {—1,1}.

2.2. Related works and main results. The best known decision tree algorithms
are CART (cf. [24]) and C4.5 (cf. [100]). These methods use a growing and pruning
algorithm. First, a large tree is grown by splitting recursively nodes along coordinates axes
according to an “impurity” criterion. Next, this tree is pruned using a penalty function.
Penalties are usually based on standard complexity regularization like the square root of
the size of the tree. Spatially adaptive penalties depend not only on the complexity of the
tree, but also on the spatial distribution of training samples. More recent constructions of
decision trees have been proposed in [105] and [21]. In [105], the authors consider, in the
multi-class framework, dyadic decision trees and exhibit near-minimax rates of convergence
by considering spatial adaptive penalties. They obtained rates of convergence over classes
of prediction functions having a complexity defined in the same spirit as [91] and [116]. In
[21], a general framework is worked out including classification for different loss functions.
The authors select among a set of dyadic trees having a finite depth, the best tree realizing
an optimal trade-off between the empirical risk and a penalty term. Here, the penalty
term is proportional to the number of leaves in the tree. They obtained oracle inequalities
and derived rates of convergence in the regression setup under a regularity assumption on
the underlying regression function to estimate. Rates of convergence, for the classification
problem, are not derived from these oracle inequalities, since, they do not treat the bias
term.

Our estimation procedure does not provide an algorithm in the same spirit as these
previous works. The main reason is that, we obtain results under the assumption on
the marginal distribution given by (A1l). This assumption allows us to work at a given
“frequency” and we do not need a multi-scale construction of the dyadic tree as in the
previous related work. Once the optimal frequency obtained (by trade off), the estimation
procedure is a regular histogram rule as considered in Chapter 9 of [47].

The present work focuses on the control of the approximation term and the introduction
of classes of prediction rules having different complexities and approximation qualities. As
we shall see, one crucial difference of our estimator is that it is able to deal with infinite
trees. Such infinite trees can be considered since we control the bias term. Nevertheless,
when the complexity parameter a (associated with the concept of complexity that we
consider), is unknown we use a multi-scale approach to construct an adaptive procedure.
This procedure learns with the rate

logn\1-«
()

for any complexity parameter «. This multi-scale classifier is the following: we split the

(1)

sample in two subsamples Dy;,’, containing the first m observations, and DZ(Z), the (= n—m)

last ones. We use D%) to construct a family of classifiers fé{ ) for different frequency levels

Jelo,J (")], for an integer J(™ chosen later. For instance f,S? ) is the classifier which makes
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2. CLASSES OF BAYES RULES WITH SPARSE REPRESENTATION.

a majority vote in the cell ISO), f,S% ) is the classifier making a majority vote in each cell
Il(j), for k € I;(1) of the partition S = {Il(j),k € I4(1)} of [0,1]¢, etc.. Subsample Dl(2)
is used to construct exponential weights wy) (cf. Chapter Ei The weight wf]l) is associated
with the basic classifier fr(n‘]), for any J € [0, J (”)}. Finally, the procedure that we propose
is the sign of the convex combination

Jn)

(6.4) Ju=> w15,
J=1

An interesting fact is that, we can consider the set S, introduced in Subsection as
a dictionary of basic functions. Considering prediction rules as linear combinations of the
functions in this dictionary with coefficients in {—1,0, 1} (using the convention of writing
(W)), we obtain that, the LASSO estimator (cf. [113]) is given, in this framework, by

Arg mafo]If y—i-’yZ]a ,

feF@ n

()

where f = Z %0 ke L) ak qSk , Ad — a.s. Since the coefficients a,’’ take their values in

{—1,0,1}, the l;-type penalty . \ak | is exactly the number of leaves of the dyadic tree
associated with the prediction rule f. Thus, LASSO estimator, in this framework and for
the dictionary S, is the same as the estimator considered in [21].

2.3. Class of Bayes rules. Now, we define a model for the Bayes rule by taking a
subset of F(@. For all functions w defined on N and with values in N, we consider f&d),
the class for Bayes rules, composed of all prediction rules f which can be written, using

the previous writing convention (W), by
+w . .
YT
J=0kely(5)
where al(g) € {-1,0,1} and

card{keld(j) 0);&0} w(j), VjeN.

The class f&d) depends on the choice of the function w. If w is too small then the class
F i poor. That is the subject of the following Proposition

PROPOSITION 6.1. Let w be a mapping from N to N such that w(0) > 1. The two
following assertions are equivalent:

. d
(i) Fi # (Mg e}
(it) 3727 27 Yw(j) = 1.
This proposition is strongly connected to the Kraft inequality from coding theory (see
e.g. [42]).
If w is too large then, the approximation of the model .E(Ud), by a parametric model will

be impossible. That is why we give a particular look on the class of functions introduced
in the following Definition

Page 95



CHAPTER 6. CLASSES OF BAYES RULES WITH SPARSE REPRESENTATION

DEFINITION 6.2. Let w be a mapping from N to N. If w satisfies
+oo

(65 > U <o

24
J=0

then, we say that fq(fl) is a L1 —ellipsoid of prediction rules.

We say that fud) is a “L'—ellipsoid” for a function w satisfying , because , the
sequence (w(j));jen belongs to a L'—ellipsoid of NV, with sequence of radius (24);cn.
Moreover, Definition can be linked to the definition of a L'—ellipsoid for real valued
functions, since we have a kind of basis, given by S, and we have a control on coefficients
which increases with the frequency. Control on coefficients, given by , is close to the
one for coefficients of a real valued function in a L'—ellipsoid of Sobolev, since it deals

with the quality of approximation of the class ]-'ﬁ,d) by a parametric model.

REMARK 6.1. A L'—ellipsoid of prediction rules is made of ”sparse” prediction rules.
In fact, for f € J—:S,d) with w satisfying , the number of non-zero coefficients in the
decomposition of f (using the writing convention (W)), at a given frequency, becomes
small as the frequency grows. That is the reason why .7-"1(;[) can be called a sparse class of
prediction rules.

Next, we provide examples of functions satisfying . Classes fqgjd) associated with
these functions are used in what follows as statistical models. We first define the minimal
infinite class of prediction rules Féd) which is the class F4 when w = w(()d) where w(()d) 0)=1
and w(()d) (j) = 2% —1, for all j > 1. To understand why this class is important we introduce
a concept of local oscillation of a prediction rule. This concept defines a kind of “regularity
for functions with values in {—1,1}. For f a function from [0,1]¢ to {—1,1} in F@ we
consider the writing of f in the fundamental system introduced in Section [3.1] with writing
convention (W):

9

400
f= Z Z al((j)gbl((j),)\d — a.s..

J=0kelq(jy)
Let J € N and k € I;(J). We say that Il({‘]) is a low oscillating block of f when f
has exactly 2% — 1 non-zero coefficients, in this block, at each level of frequencies greater
than J + 1. In this case we say that f has a low oscillating block of frequency J.
Remark that, if f has an oscillating block of frequency .J, then f has an oscillating block of
frequency J', for all J’ > J. The function class féd) is made of all prediction rules with one

oscillating block at level 1 and of the indicator function Tjg yja. If we have w(jo) < w(()d) (Jo)

for one jp > 1 and w(j) = w[()d) (j) for j # jo then the associated class Fl(ud) contains only

the indicator function X ;ja, that is the reason why we say that ]—"éd) is "minimal”.

Nevertheless, the following proposition shows that }"éd) is a rich class of prediction
rules from a combinatorial point of view. We recall some quantities which measure a
combinatorial richness of a class of prediction rules (cf. [47]). For any class F of prediction

rules from [0, 1]¢ to {—1, 1}, we consider

N(F,(z1,...,2m)) = card ({(f(x1),..., f(zm)): f € F})

where 1,..., 2, € [0,1]¢ and m € N,

S(F,m) = max (N(}", (T1yev oy @) 1 T1y oy Ty € [0, l]d)
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and the VC-dimension of F is
VC(F) =min(m € N: S(F,m) #2™).

. j . .
Consider z; = (%, 2j1+1,...,2]-%), for any j € N. For any integer m, we have

N (]—"éd), (1,...,2m)) = 2™. Hence, the following proposition holds.
PROPOSITION 6.2. The class of prediction rules féd) has an infinite VC-dimension.

Every class fqgjd) such that w > w(()d) has an infinite V C-dimension (since Fqud) - fl(ucf)
when w < w'’), which is the case for the following classes.
We denote by F I(éi ), for a K € N*| the class .E(Ud) of prediction rules where w is equal
to the function y
@, J 29 ifj<K,
wi () = { 24K otherwise.

This class is called the truncated class of level K.

We consider exponential classes. These sets of prediction rules are denoted by (gd),

(d)

where 0 < a < 1, and are equal to qujd) when w = wy’ and

(d)( N 2di ' if j < N(d)(a)
o’ [2997]  otherwise ’

where N @ (a) = inf (N € N : [242N] > 24 — 1) that is for N(@ () = [log(2?—1)/(dalog 2)].
The classes féd), f[(?) and ]:O(éd) are examples of L'—ellipsoid of prediction rules.

w

REMARK 6.2. Other sets of prediction rules are described by the classes Ffud) where w
is from N to N and satisfies

w(j)
Zaj 2dj SL’
Jj=1

where (aj)j>1 is an increasing sequence of positive numbers.

3. Rates of Convergence over F under (SMA)

3.1. Approximation Result. Let w be a function from N to N and A > 1. We
denote by P, 4 the set of all probability measures 7 on [0, 1]¢ x {—1, 1} such that the Bayes
rules f*, associated with 7, belongs to f&d) and the marginal of  on [0, 1]¢ is absolutely
continuous and a version of its Lebesgue density is upper bounded by A. The following
theorem can be seen as an approximation theorem for the Bayes rules w.r.t. the loss d;
uniformly in 7 € Py, a.

THEOREM 6.2 (Approximation theorem). Let f&d) be a L' —ellipsoid of prediction rules.

We have:
Ve >0,3J eN:Vr € Pya,3fe= Y. B¢
kelg(Je)
where Bl(i‘k) € {-1,1} and
dﬂ(f*v fe) <k,

where f* is the Bayes rule associated to w. For example, J. can be the smallest integer J
satisfying Z;;OEH 2= (j) < ¢/A.
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Theorem [6.2] is the first step to prove an estimation theorem using a trade-off between
a bias term and a variance term. We write

gfr(fn) = ]Eﬂ[dﬂ(fTL?f*)] < En[dﬂ(fmfe)] + drr(faf*)-

Since f. belongs to a parametric model we expect to have a control of the variance term
Er[dr( fns fo)], depending on the dimension of the parametric model which is linked to the
quality of the approximation in the bias term. Remark that, no assumption on the quality
of the classification problem (like an assumption on the margin) is required to obtain
Theorem Only assumption on the “number of oscillations’)’ of f* is used. Theorem

deals with approximation of functions in the L!—ellipsoid J—:S,d by functions with values in

{—1,1} and no estimation issues are considered.

3.2. Estimation Result. We consider the following class of estimators indexed by
the frequency rank J € N:

(6.6) =3 A0,
kely(J)
where coefficients are defined by

A _ 13X e 7\ and Nt > N
k —1 otherwise,

where, for any k € Ic(lj)’ we consider NIEJ)JF = Card {z 1 X; € Il((‘]) and Y; = 1} and NIEJ)f =

Card {i: X; € ) and v; = ~1}.

To obtain a good control of the variance term, we need to assure a good quality of
the estimation problem. Therefore, estimation results are obtained in Theorem under
(SMA) assumption. Nevertheless, (SMA) assumption is not enough to assure any rate of
convergence (cf. chapter 7 of [47] or corollary [6.1] at the end of section [3.3]). We have to
define a model for n or f* with a finite complexity. Here we assume that the underlying
Bayes rule f*, associated with 7, belongs to a L'—ellipsoid of prediction rules.

THEOREM 6.3 (Estimation theorem). Let Fqgjd) be a L'—ellipsoid of prediction rules.
Let 7 be a probability measure on [0,1]% x {—1,1} satisfying assumptions (A1) and (SMA),
and such that the Bayes rule belongs to f&d). The excess risk of the classifier fT(LJ‘) satisfies:

Ve >0, Ex(f{)) = Ealda(f{, )] < (1+ A)e + exp (—na(l - exp(~h?/2))27"),

where J. is the smallest integer satisfying Zjioiﬂ 2=YWw(j) < e/A. Parameters a, A
appear in Assumption (A1) and h is used in (SMA).

3.3. Optimality. This section is devoted to the optimality, in a minimax sense, of

estimation in the classification models ]ig,d). Let 0 <h<1,0<a<1< A< 400 and

w a mapping from N to N. We denote by P, 1 4.4 the set of all probability measures
7= (PX,n) on [0,1]% x {~1,1} such that

(1) The marginal P¥ satisfies (A1).

(2) The Assumption (SMA) is satisfied.

(3) The Bayes rule f*, associated with 7, belongs to @,

We apply a version of the Assouad Lemma to lower bound the risk over Py j 4, 4.

THEOREM 6.4. Let w be a function from N to N such that
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(i) w(0) > 1 and ¥j > 1, w(j)>2¢-1
(i) Vi > 1, w(j—1)>2"%(j).
We have for any n € N,
inf sup E(fa) = Con™! (w((logn/(dlog2)] +1) = (2 - 1)),

fn 71'67)111,h,a,14
where Co = (h/8) exp (—(1 —V1- h2)>. Moreover, if w(j) > 2¢,¥j > 1 then

H}f sup gﬂ(fn) > C'Onil-
fn ﬂ'elpw,h,a,A
REMARK 6.3. For a function w satisfying assumptions of Theorem and under
(SMA), we cannot expect a convergence rate faster than 1/n, which is the usual lower
bound for the classification problem under (SMA).

We can deduce Theorem 7.1 of [47] from our Theorem We denote by P; the class
of all probability measures on [0, 1]% x {—1,1} such that the marginal distribution P¥X is \g
(the Lebesgue probability distribution on [0, 1]¢) and (SMA) is satisfied with the margin
h = 1. The case "h = 1” is equivalent to R* = 0.

COROLLARY 6.1. For any integer n we have

p 1
inf sup £(fn) = .
fn mEP1L 8e
It means that no classifier can achieve any rate of convergence in the classification
models P;.

3.4. Rates of Convergence for Different Classes of Prediction Rules. In this
section we apply results stated in Theorem and Theorem to different L'—ellipsoid
classes ]—757) introduced at the end of Section [2| We give rates of convergence and lower

bounds for these models. Using notation introduced in Section 2| and Subsection we

consider the following models. For w = w&?) we denote by PKC-I) the set of probability

measures P (q and by Pc(yd) for the exponential case w = w&d).
Wy h,a,A

THEOREM 6.5. For the truncated class f[(f-l), we have

logn

sup gﬂ(féJn(K))) < CK,h,a,A ’
WEP;?) n
where Cg paa > 0 is depending only on K, h,a, A. For the lower bound, there exists
Co,K h,a,A > 0 depending only on K, h,a, A such that, for alln € N,
inf sup Ex(fn) > Coxpaan .
fn 7r679§<d>

For the exponential class ]:éd) where 0 < a < 1, we have for any integer n

l—a
logn
n > ’

(6.7 sup £ ) < Clan
<Pl e
where C! , 4 > 0 . For the lower bound, there exists C{, , , , 4 > 0 depending only on
a, h,a, A such that, for allm € N,

inf sup &r(fn) > C’(’)’mh’a,An_Ha.
fn 7r€7>éd)
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The order of Ju(a) and Jo(K) is [log (an/(2%1logn)) /(dlog?2)], up to a multiplying
constant.

A remarkable point is that the class Fl(g) has an infinite VC-dimension (cf. Proposition
. Nevertheless, the rate logn/n is achieved in this model. Existence of classes of rules
with infinite VC dimension that are consistent when the marginal distribution of the design
X is without atoms has been remarked in [47].

3.5. Adaptation to the complexity. In this section we provide an adaptive esti-

(Jn(a))

mator for the exponential classes. The estimator fn
the complexity parameter «, since

, appearing in 1’ depends on

log(A/ (€21~ — 1)))

In(@) = d(l1 —a)log?2

and e, = (logn/(nC))'~%, where C = a(1 — e "*/2)2-4(A-1(2d0~) _ 1))/(1~o) Iy
practice, we do not have access to this parameter. Thus, it is important to construct
an estimator free from this parameter and which can learn at the near-optimal rate
((logn)/n)! =% if the underlying probability distribution belongs to FO for any «. This is
the problem of adaptation to the complexity parameter a.

To construct an adaptive estimator, we use an aggregation procedure. We split the

(1)

sample in two parts. Denote by D,,” the subsample containing the first m observations

and Dl(2) the one containing the I(= n —m) last ones. Subsample D%) is used to construct

classifiers fy(nj ) for different frequency levels J € [0, J (”)], for an integer J(™ chosen later.

Subsample Dﬁ) is used to construct the exponential weights of our aggregation procedure
8)

(cf. Chapter [8)). We aggregate the basis classifiers ﬁ(ﬁ] ), Jell,J (”)], by the procedure

Jn)
(6.8) fo= Y w D,
J=1
where
n A(J)
exp (i i1 Yifm (X5)
(6.9) wl) = ( i ) VI =1,... W,

(n) J)
S5 exp (S Vil ()
The classifier that we propose is
(6.10) fn = Sign(fn)'

THEOREM 6.6. Assume that J™ is greater than (logn)? and choose | = [n/logn[ for
the learning sample size. For any o € (0,1), we have, for n large enough,

~ logn\ 1™

(6.11) sup () < 6Chnan (E1)
71'673((;1) n
where Ca haA > 0 has been introduced in Theorem .

The classifier fn does not assume the knowledge of the parameter « neither of a, A, h.
Thus, it is also adaptive to the parameters a, A and h.

REMARK 6.4. We may compare our method with the ERM type aggregate defined by

n

fn € Arg min . Z Tpx)v7) -
FEUR S5 Y i=me

Page 100



4. DISCUSSION

This aggregate also satisfies , if we replace fn by fn (cf. Chapter @) The difference
is that the aggregate uses a multi-scale approach (it associates a weight to each

frequency), whereas the adaptive classifier f, selects the best “empirical frequency”.

The other way to extend our approach deals with the problem of choice of the geometry
by taking S as fundamental system. One possible solution is to consider classifiers ”adaptive
to the geometry”. Using an adaptive procedure, for instance the same as in (6.8)), we can
construct classifiers adaptive to the "rotation” and ”translation”. Consider, for example,
the dyadic partition of [0, 1]? at the frequency level .J,,. We can construct classifiers using
the same procedure as but for partitions obtained by translation of the dyadic partition
by the vector (ny/(277logn),na/ (277 logn)), where ni,ns =0, ..., [logn]. We can do the
same thing by aggregating classifiers obtained by the procedure for partitions obtained
by rotation of center (1/2,1/2) with angle ngm/(2logn), where ng =0, ..., [logn], of the
initial dyadic partition. In this heuristic we don’t discuss about the way to solve problems
near the boundary of [0,1]%.

4. Discussion

In this chapter we start by considering a model of prediction rules. Then, we provide an
approximation theorem for these models. The form of object approaching the Bayes rule
in these models leads to a particular form of estimators (here the histogram estimators).
Finally, the way the estimator depends on the complexity of the underlying model (here
the level of frequency) impose a way to construct adaptive estimators. As we can see
everything depends on the starting model we consider. In this section we discuss the
representation and the estimation of prediction rules lying in these models in simple cases.

For the one-dimensional case, another point of view is to consider f* € L?(]0,1]) and
to develop f* in an orthonormal wavelet basis of L?([0, 1]). Namely,

271

AW
JEN k=0
where a,(gj) = fol f*(x)w,(gj)(a:)da: for any j € Nand k = 0,...,2/ — 1. For the control of the
bias term we assume that the family of coefficients (a,gj),j €N, k=0,...,2/ — 1) belongs

to our L'—ellipsoid. But this point of view leads to functional analysis and estimation
issues. First problem: which functions with values in {—1,1} have wavelet coefficients
in our L!—ellipsoid and which wavelet basis is more adapted to our problem (maybe the
Haar basis)? Second problem: which kind of estimators could be used for the estimation
of these coefficients? As we can see, the main problem is that there is no approximation
theory for functions with values in {—1,1}. We do not know how to approach, in L?([0,1]),
measurable functions with values in {—1,1} by ”parametric” functions with values in
{=1,1}. Methods developed in this chapter may be seen as a first step in this direction.
We can generalize this approach to functions with values in Z. When functions take values
in R, for instance in the regression problem, usual approximation theory is used to obtain
a control on the bias term. Finally, remark that functions with values in {—1,1} can be
approximated by real-valued (possibly smooth) functions; this is for example what is used
for SVM or boosting. In those cases, control of the approximation term is still an open
question (cf. [109] and [89]).

In considering the classification problem over the square [0,1]2, a classifier has to be
able to approach, for instance, the “simple” Bayes rule f; which is equal to 1 inside C,
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where C is a disc inside [0, 1], and —1 outside C. In our framework, two questions need to
be considered:

e What is the representation of a simple function f; in our fundamental system,
using only coefficients with values in {—1,0,1} and with the writing convention
(W)?

e Is the estimate f,(LJ"), where J,, = [log (an/(2%logn)) /(dlog?2)] is the frequency
rank appearing in Theorem a good classifier when the underlying probability
measure yields f7 as Bayes rule?

At a first glance, our point of view is not the right way to estimate f7. In this regular
case (the boundary is an infinite differentiable curve), the direct estimation of the boundary
is a better approach. The main reason is that a 2-dimensional estimation problem becomes
a 1-dimensional problem. Such reduction of dimension makes the estimation easier (in
passing, our approach is specifically good in the 1-dimensional case, since the notion of
boundary does not exist in this case). Nevertheless, our approach is applicable for the
estimation of such functions (cf. Theorem [6.7). Actually, a direct estimation of the
boundary reduces the dimension but there is a loss of observations since observations far
from the boundary are not used by this estimation point of view. This may explain why
our approach is applicable. Denote by

N(A, € ||]lsc) =min (N : Jz1,..., 2N € R?:AC Uj»vleoo(a:j,e))

the e—covering number of a subset A of [0, 1]?, w.r.t. the infinity norm of R2. For example,
the circle C = {(z,y) € R? : (z — 1/2)? + (y — 1/2)? = (1/4)?} satisfies N'(C, €, ||.||oc) <
(m/4)e~!. For any set A of [0,1]%, denote by A the boundary of A.

THEOREM 6.7. Let A be a subset of [0,1]? such that N'(OA, ¢, ||.||c) < (€), for any
€ > 0, where ¢ is a decreasing function on R with values in R satisfying €25(e) — 0
when € — 0. Consider the prediction rule f4 =214 — 1. For any € > 0, denote by €q the
greatest positive number satisfying §(eg)ed < e. There exists a prediction rule constructed
in the fundamental system S at the frequency rank Je, with coefficients in {—1,1} denoted

by
Je Je
feo E ( 0) L( 0)’

kEIQ(JEO)
with Je, = |log(1/€y)/log2] such that

[feo = fallLrng) < 36e.

For instance, there exists a function f,, written in the fundamental system S at the
frequency level J,, = [log(4n/(mlogn))/log2], which approaches the prediction rule f3
with a L'(\g) error upper bounded by 36(log n)/n. This frequency level is, up to a constant
factor, the same as the one appearing in Theorem[6.5] In a more general way, any prediction
rule with a boundary having a finite perimeter (for instance polygons) is approached by a
function written in the fundamental system at the same frequency rank J, and the same
order of L'()\2) error (logn)/n. Remark that for this frequency level .J,,, we have to estimate

n/logn coefficients. Estimations of one coefficient al(;]”), for k € I5(J,), depends on the

number of observation in the square Il(j"). The probability that no observation ”falls”

in Il((‘]") is smaller than n~'. Thus, number of coefficient estimated with no observations
is small compared to the order of approximation (logn)/n and is taken into account in
the variance term. Now, the problem is about finding an L'—ellipsoid of prediction rules
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such that for any integer n the approximation function f,, belongs to such a ball. This
problem depends on the geometry of the boundary set dA. It arises naturally since we
chose a particular geometry for our partition: dyadic partitions of the space [0, 1]¢, and
we have to pay a price for this choice which has been made independently of the type of
functions to estimate. But, this choice of geometry is, in our case, the same as the choice
of a wavelet basis, for instance, in the density estimation problem. Depending on the type
of Bayes rules we have to estimate, a special partition can be considered. For example
our "dyadic approach” is very well adapted for the estimation of Bayes rules associated
with chessboard (with the value 1 for black square and —1 for white square). This kind of
Bayes rules are very badly estimated by classification procedures estimating the boundary
since most of these procedures require regularity assumptions which are not fulfilled in the
case of chessboards. In the general case, the ideal choice of the geometry is adapted to the
particular geometry induced by the measure p on [0,1]%, defined by

H(A) = /A 2(x) — 1P (dx),

for any measurable set A C [0,1]?. Namely, we do not need a good resolution of the
partition for the regions of [0, 1]% with a low pu—probability. However, we need a sharper
resolution for regions with a high pu—probability. In our case (under assumptions (A1)
and (SMA)), the measure p is equivalent to the Lebesgue measure. Thus, we do not need
different resolution for different areas of the square [0, 1]¢.

We can extend our approach in several ways. Consider the dyadic partition of [0, 1]d
with frequency J,,. Instead of choosing 1 or —1 for each square of this partition (like in
our approach), we can do a least square regression in each cell of the partition. Inside a
cell Il((‘]”), where k € I;(J,), we can compute the line minimizing

n

Z(f(X’L) - }/;)211()(2'611(5"))’

i=1
where f is taken in the set of all indicators of half spaces of [0,1]¢ intersecting Il({‘]"). Of
course, depending on the number of observations inside the cell Il((‘]”) we can consider
bigger classes of indicators than the one made of the indicators of half spaces. Our classifier

is close to the histogram estimator in density or regression framework, which has been
extended to smoother procedures.

5. Proofs

In all the proofs, we use the analytical representation of the predictions rules to underly
the similarity with the techniques used in the wavelet literature. Nevertheless, these proofs
can be obtained by using the dyadic decision tree representation.

Proof of Theorem Since {n > 1/2} is almost everywhere open there exists an
open subset O of [0,1]% such that A\g({n > 1/2}A0O) = 0. If O is the empty set then take
g = —1, otherwise, for all x € O denote by Z, the biggest subset Il((j ) for j€Nandk € I;(j)
such that = € Il((j ) and Il((j ) C O. Remark that 7, exists because O is open. We can see that
for any y € Z, we have 7, = 7, thus, (Z, : € O) is a partition of O. We denote by Ip a
subset of index (7, k), where j € N, k € I4(j) such that {O, : z € O} = {I,gj) 1 (4,k) € In}.
For any (j,k) € Ip we take al((j) =1.
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Take O; an open subset A\g-almost everywhere equal to {n < 1/2}. If Oy is the empty

set then take g = 1. Otherwise, consider the set of index Ip, built in the same way as
previously. For any (j,k) € Ip, we take al(g) =—1.

For any (j,k) ¢ 1o U Ip,, we take ag) = 0. Consider

=3 Y .
7=0kelq(4)
It is easy to check that the function g belongs to F(@| satisfies the writing convention (W)
and, for Ag—almost x € [0,1]%, g(z) = f,(x).
Proof of Proposition Assume that F5 # {Ipje}- Take f € F {T,13}-
Consider the writing of f in the system S using the convention (W),
P IR
JENKkeT,(5)
where ag) € {—1,0,1} for any j € N,k € I4(j). Consider bg) = \af{j)] for any j € Nk €
I4(j7). Consider fo =3 cn D ker, () bl((])qbl((]). Remark that the function fo € F@ but does
not satisfy the writing convention (W). We have fo = T yj¢ a.s.. For any j € N we have

(6.12) card {k € Iy(j) : b # 0} = card {k € Iy(j) : al?) # 0} .

Moreover, one coefficient bg ) # 0 contributes to fill a cell of Lebesgue measure 2~% among
the hypercube [0, 1]%. Since the mass total of [0, 1]¢ is 1, we have

(6.13) 1=Y 2 %card {k e I,(j) : b 0} :
JEN
Moreover, f € F@ thus, for any j € N,
w(j) > card {k € 1i(5): ag) + 0} .
We obtain the second assertion of Proposition by using the last inequality and both of

the assertions (6.12)) and (6.13)).

Assume that j:(f 2=%(j) > 1. For any integer j # 0, denote by Ind(j) the set
of indexes {(j,k) : k € I;(j)}. We use the lexicographic order of N?*! to order sets of
indexes. Take Ind, (1) the family of the first w(1) elements of Ind(1). Denote by Ind,(2)
the family made of the first w(1) elements of Ind(1) and add, at the end of this family
in the correct order, the first w(2) elements (2,k) of Ind(2) such that qbl((l,)QSI(f) = 0 for
any (1,k’) € Indy(1),..., for the step j, construct the family Ind,(j) made of all the
elements of Ind,,(j — 1) in the same order and add at the end of this family the indexes
(4, k) of Ind(j) among the first w(j) elements of Ind(j) such that gbl((‘/])gzbl(f) = 0 for any
(J,k') € Ind,, (5 — 1). If there is no more indexes satisfying this condition then, we stop
the construction, otherwise, we go on. Denote by Ind the final family obtained by this
construction (Ind can be finite or infinite). Then, we enumerate the indexes of Ind by
(J1,k1) < (J2, ko) < ---. For the first (j1,k;) € Ind take al(jll) =1, for the second element

(j2, ko) € T take al((j;) = —1l,etc. . Consider the function

F=3 3 el

JENkely(j)
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If the construction stops at a given iteration N then f takes its values in {—1,1} and the
writing convention (W) is fulfilled since every cells Il(( 7 such that ak 75 0 has a neighboring
cell associated to a coefficient non equals to 0 with an opposite value. Otherwise, for any
integer j # 0, the number of coefficient al((‘), for k € I4(j), non equals to 0 is w(j) and the
total mass of cells I(]) such that al({] #0118 Y N2 2= % card {k e 1(5) : ak) # O} which is
greater or equal to 1 by assumption. Thus, all the hypercube is filled by cells associated
with coefficients non equal to 0. So f takes its values in {—1,1} and the writing convention
(W) is fulfilled since every cells Il(j ) such that ak) # 0 has a neighboring cell associated
with a coeflicient non equals to 0 with an opposite value. Moreover f is not ]I[Oy]_]d.

Proof of Theorem Let m = (PX,n) be a probability measure on [0, 1] x {—1,1}
in Py 4. Denote by f* a Bayes rule associated with 7 (for example f* = sign(2n —1)) .
We have

d=(f, 1) = (1/2)E[]2n(X) = 1| £(X) = F(X)]] < (A2)IIf = [T ller -
Let € > 0. Define by J. the smallest integer satisfying
+00 A
Z 2~ Mw(j) <
J:Je+1

We write f* in the fundamental system (qbl((] ), j > Je) using the convention of writing of
section Remark that, we start the expansion of f* at the level of frequency J. and
then, we use the writing convention (W) on the coefficients of this expansion. Namely, we

consider )
Je Je j j
Sooale )+ Y Y ooy
kely(Je) j=Je+1kely(5)
Next, we define the best approximation of f* at the frequency level J. by
(6.14) fo= Y B,
kely(Je)
where
(Je) 1 1fp(J6 >1/2
(615) Bk = .
—1 otherwise
and
(Jo) (Jo) dPX ()
(6.16) P =PY =1XeI ) = 77(:6)7],
7(Je) pPX (Il(c e))

for all k € I;(J¢). Note that, if AE(JE) # 0 then Al((‘k) = Bl((JE), moreover f* takes its values
in {—1,1}, thus ,we have

lfe-Fllogy = X /Iu SNAGIEES /m T

kGId(J kEId
< 2*dfe+1card {k € Iy(J.) : AU = 0}
< 2 Z 27 Yw(j) < 2¢/A.

j=Je+1
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|
Proof of Theorem Let 7 = (P%,n) be a probability measure on [0,1]? x {—1,1}
satisfying (A1), (SMA) and such that f* = sign(2n — 1), a Bayes classifier associated with
7, belongs to ffvd) (an L' —ellipsoid of Bayes rules).
Let € > 0 and J, the smallest integer satisfying Zjﬁi +127%w(j) < e/A. We decompose
the risk in the bias term and variance term:

EFL) = E [da(f1, £9)] < E [de(F7, f0)] + dalfer £7),
where f;({k) is introduced in and f. in .

Using the definition of J. and according to the approximation Theorem (Theorem ,
the bias term satisfies:

dﬂ(fev f*) <e
For the variance term we have (using the notations introduced in and (/6.15))):

: 1 . | i
B[d(70 2] = G[E[(e0- P00 <58 [ ih@ - A @l @)
2 2 [071]d
_ % 3 E[/(})|B£J€)—A§’E)ydPX
I'G
kelq(Je) k
A J)  a(de
YA Z EHBI(( )_Af( |
keld(Je)
A (J) _ 4(J)
< o > P(IB - A =2).
ke[d(*]e)

Now, we apply a concentration inequality in each cell of the dyadic partition (Il({Je) ke
I;(Je)). Let k € I4(J.). We introduce the following events:

ol = {Card{i e{l,....n}: X; e 11y :m},vme (0,...,n}

and

where NIEJE)JF and Nl((‘]e)_ have been defined in subsection We have
P(AY) = —1) = P(”° n Q) + P(Y)

and
PO o) = > PO N
m=1
= > Peadoy"Pey).
m=1
Moreover, if we denote by Z1, ..., Z, n i.i.d. random variables with a Bernoulli with

parameter p1(<‘]‘) for common probability distribution (we recall that pl(j‘) is introduced in

1j and is equal to P(Y = 1|X € Il(;]e))), we have for any m =1,...,n,

m 1 & 1
P |") = P (m Y 7 < 2) :
=1
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The concentration inequality of Hoeffding leads to

(6.17)
( ZZ > pl) 4 )gexp( 2mit?) and[P’( ZZ <pye — > < exp(—2mt?),
forallt>0andm:1,...,n

Denote by bl(je) the probability P(X € Il((‘]e)). If pl({Je) > 1/2, applying second inequality
of (6.17)) leads to

Je 2 (Je 2 (Je
P (1B — A7) = 2) = P(AL) = -1)

. 1 % Je Je n Je m JE n—m
< SELY gl - | (1) olma- i)
m=1 j=1
+ POy

< Xn: exp (—2m(py —1/2)%) < . ) By (1 — by

= (1-0P0 - exp(—20) ~1/2%))"
< exp (—na(l - exp(—2(p1((‘]6) — 1/2)2))2*”6) :

If pl(( J <1 /2 then, similar arguments used in the previous case and first inequality of

(6.17)) lead to
Je 4 (Je A
P(IBJ) - A|=2) = PA =1)
exp (—na(l - exp(=2(p") — 1/2)%))27%).

If p( ) — 1/2, we use P (]Bl((JE A1(< )] = ) < 1. Like in the proof of Theorem we

use the writing

IA

Z AJe)¢ke)+ Z Z

kely(Je) Jj=Je+1kely(y)

Since PX(n=1/2) =0, if Ak‘]‘ # 0 then p/ (Je) # 1/2. Thus, the variance term satisfies:
E |d(fas £2)]

< 2%( Z ]P)(‘Bl({Je)_A(Je 2)+ Z (B(JE _Al((Je),:2)>

kelg(Je) kelq(Je)
AU 20 AU
< A g exp ( —na(l — exp(—2(py (Je) —1/2)?))27%¢) + Ae
— 2dJ€ p p *
kEId(Je)
A0

If Al(c‘le) # 0 then n > 1/2 or n < 1/2 over the whole set Il((J‘), SO

1| dPX(x)
= o n(@ 2| px 7N
Z.* PX(L,7)

1 J.
)Q—Pi) ) —
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Moreover m satisfies P (|12n(X) — 1] > h) =1, so

2 Pk
We have shown that for all € > 0,

5(fn) = E[dw(fm f*)] < (1 + A)e + exp (—na(l — exp(—2(h/2)2))2*dJe) ,

where J. is the smallest integer satisfying Z] T 2= 4w (j) < €/A.

‘1 ()| >

N

|
Proof of Theorem |6.4, For all ¢ € N we consider G, a net of [0, 1]% defined by:

2k +1 2%y + 1
qu{( gl 7 g >:(k‘l,...,k:d)e{()’_“’gq_l}}

and the function 7, from [0, 1]% to G, such that n,(z) is the closest point of G, from z (in
the case of ex aequo, we choose the smallest point for the usual order on RY). Associated to
this grid, the partition X’(Q) XD o [0,1]¢ is defined by z,y € X’(Q) iff ng(z) = n4(y)

2dq
and we use a special indexation for this partition. Denote by 2’ (q) kg = (2;?11, e 2§;$1>

We say that $’,(€q1) oy = 93’1(6(27.”’,6,11 if

shd
nq—l( ,](;i)’ Lk )_<77(1 1( gz,...,k’d)

or

Ne-1(@'\0 ) = ng1 (@D ) and (k..o ka) < (K1, K g),

for the 1ex1cograph1cal order on N%. Thus, the partition (X a) j =1,...,2%) has an

increasing indexation according to the order of (2, (Q) d) for the order defined above.
This order take care of the previous partition by sphttmg blocks in the given right order
and, inside a block of a partition, we take the lexicographic order of N¢. We introduce
an other parameter m € {1,...,29%} and we define for all i = 1,...,m, Xi(q) = X’l(.q)
and Xéq) = [0,1)¢ — U?llz'\,’i(q). Parameters ¢ and m will be chosen later. We consider
W € [0,m™], chosen later, and define the function fx from [0,1]% to R by fx = W/Aa(X1)
(where )g is the Lebesgue measure on [0, 1]%) on &Y, ..., X, and (1 — mW)/Ag(Xo) on Xj.
We denote by PX the probability distribution on [0,1]? with the density fx w.r.t. the
Lebesgue measure. For all 0 = (01,...,0p,) € Q = {—1,1} we consider 7, defined, for
any = € [0, 1]¢, by

No(x) =

Lol freXj=1,...,m,
1 if x € Ap.

We have a set of probability measures {7, : ¢ € 2} on [0,1]% x {~1,1} indexed by the
hypercube 2 where PX is the marginal on [0, 1]? of 7, and 7, its conditional probability
function of ¥ = 1 given X. We denote by f the Bayes rule associated to m,, we have
fi(xz)=05ifz e Xjfor j=1,...,mand 1if x € Ap, for any o € Q.

Now we give conditions on ¢,m and W such that for all o in Q, 7, belongs to Py pq,4-
If we choose

(6.18) W =279
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then, fx = W[y (so PX << Xand Vz € [0,1]% a < dPX/d\(z) < A). We have clearly
12n(x) — 1| > h for any = € [0,1]%. We can see that f3 € FD for all o € {—1,1}™ iff
(q+1 ) > inf(x € 2N : x> m)
27 -1 if m < 24
inf(z € 29N : 2 >27%n) otherwise

| \Y

w(1)

| \%

if m < 24
mf € QdN x> 27%m) otherwise
1

w(0)

| V

Since we have w(0) = 1, w(j) > 2% —1 and w(j — 1) > w(j)/2% for all j > 1 then, f* € FD
for all o € Q2 iff

(6.19) w(g+1) > inf(z € 29N : z > m).

Take ¢, m and W such that (6.18)) and (6.19) are fulfilled then, {7, : o € Q} is a subset
of Py haa- Let o € 2 and f, be a classifier, we have

Ex, [R(fa) — R| = (1/2)Ex, [120,(X) = 1lIfu(X) = £5(X)]]
> (h/2)Ex, [|fn<X> - f::(X>|]

> (h/2)Ex, Z / Ful@) = 2 @IaP¥ @) + [ (o) = f3(@)1dP @)
Ui A dx
> (VD)) s, IRECE mm)]
i . dzx
> (Wh/2)Enx, ; o _/Xi fn(x) X ] .
We deduce that
R OE R ]

Now, we control the Hellinger distance between two nelghborlng probability measures.
Let p be the Hamming distance on Q. Let 0,0’ in  such that p(c,¢’) = 1. We have

H2(r" 78 = 2 <1— <1—H2(W;’7r"')>n>,

and a straightforward calculus leads to H?(m,,my) = 2W (1 —V1- h2>. If we have
W < 1/n then, H?(7%", 78") < B < 2 where 3 = 2 (1 —exp(l —v1— hZ)). One version

0' ) o'

of the Assouad Lemma (cf. [6] or Chapter [3)) yields

inf E-,
on€l-1,1m UG{ 11}m

We conclude that

2
(6.20) inf  sup & (fn) > Wh% <1 — > .

fn 71'67311),iL,a,1¢'1

Z o — o—z|] > (m/4) (1 - (8/2))°.
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Finally, we take ¢ = |logn/(dlog2)|, W =279 < 1/nand m = w (|logn/(dlog2)| +1)—
(2¢ —1). Next, replacing these values in (6.20]), we obtain
inf  sup  Ex(fn) > Con™! <w (llogn/(dlog?2)| + 1) — (2% — 1)) .
Jn T€Pw,h,a,A
where Cy = (h/8) exp (—(1 - m)) .
|
Proof of Corollary [6.1} It suffices to apply Theorem [6.4] to the function w defined
by w(j) = 2% for any integer j and a = A = 1 for P¥ = \,.
|
Proof of Theorem [6.5:
(1) If we assume that J. > K then Z] T4 deK (5) = (29K)/(2%(27 — 1)). We

take

5 |loe ((A295) /(e(2? — 1))

< dlog2
and €, the unique solution of (1 + A)en = exp(—nCey,), where C = a(l —
e~M?/2)(29 — 1)[A24E+D]~L . Thus, ¢, < (logn)/(Cn). For J(K) = J.,, we
have

logn

£ (f,(LJ”(K))) < Ckdha,A

for any integer n such that logn > 24K+ (2d 1)_1 and J,(K) > K, where
Ckdhan=2(1+A)/C.
If we have [logn/(dlog?2)| > 2 then w (|logn/(dlog2)| +1)—(2%—1) > 2%, so
we obtain the lower bound with the constant Cp ;¢ = 2¢C and if [logn/(dlog2)| >
K the constant can be Cy i = Cp(2¢5 — (24 — 1)).
(2) If we have J, > N@(qa), then 337 | 2-4y{? (j) < (2d(1-a)Je(2d(—a) _ 1))-1,
We take

Jj=Je+1

7= log(A/(e(2%0~*) —1)))
< d(1 — «a)log2 ’

Denote by €, the unique solution of (1 + A)e, = exp(—nCe%/(l_a)) where C' =
a(l — eM?/2)2-d( A1 (2d0~) _ 1))1/(1=2) We have ¢, < (logn/(nC))~®. For
Jn(a) = Je,, we have

(Tn() ( —l—A)A 2d l1—a logn l1—a
(f ) — 2d(1-a) _ 1 | a(1 — e h?/2) n '

For the lower bound we have for any integer n,

i]I%Lf ﬂzt;lzd) Ex(fn) > Comax (1,11_1 (2dno‘ — (27— 1))) .

|

Proof of Theorem Let a € (0,1). For n large enough, we have J™ > J,.(c).

Since the (SMA) assumption is equivalent to the margin assumption introduced by [91]

and [I16] with margin parameter equal to 1 (cf. proof of Proposition of Chapter [3)) we
have, according to Corollary [8.1] of Chapter

621)  ER()-R]<3 wmin ERGY) - R4 cleme/ W+ 1)
J=0,...,J (") n
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According to Theorem we have

o 1 -«

ER(fS) = B) < Chpan(—22)

Then, combining the last inequality, the fact that m < n/2 and (6.21]), we complete the
proof.

Proof of Theorem Let € > 0. Denote by ¢y the greatest positive number
satisfying d(eg)eg < e. Consider N(eg) = N(9A, €, ||.||oc) and 21, ..., 2y, € R? such
that A C UN(EO)B (z7,€0). Since 2770 > ¢y, only nine dyadic sets of frequency Jg, can
be used to cover a ball of radius €y for the infinity norm of R2. Thus, we only need 9N (¢o)
dyadic sets of frequency J, to cover dA. Consider the partition of [0, 1]? by dyadic sets
of frequency J,. Except on the 9N (¢y) dyadic sets used to cover the boundary 0A, the
prediction rule f4 is constant, equal to 1 or —1, on the other dyadic sets. Thus, by taking

= Ziﬁ; 10 ](C{E%Z ¢k{€22 where akJ %Z is equal to one value of f4 in the dyadic set I,gfgi,
we have

ero - fA||L1()\2) < 9N(€0)2_2J€0 < 365(60)63 < 36e.
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CHAPTER 7

Simultaneous Adaptation to the Margin and to Complexity
in Classification

We consider the problem of adaptation to the margin and to complexity in binary classi-
fication. We suggest an exponential weighting aggregation scheme. We use this aggregation
procedure to construct classifiers which adapt automatically to margin and complexity.
Two main examples are worked out in which adaptivity is achieved in frameworks proposed
by Scovel and Steinwart (2004, 2005) and Tsybakov (2004). Adaptive schemes, like ERM
or penalized ERM, usually involve a minimization step. It is not the case of our procedure.

Contents
(1. Introductionl 115
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The material of this chapter is an article accepted for publication in the Annals of
Statistics (cf. [82]).

1. Introduction

Let (X,.A) be a measurable space. Denote by D,, a sample ((X;,Y;))i=1,..n of iid.
random pairs of observations where X; € X and Y; € {—1,1}. Denote by 7 the joint
distribution of (X;,Y;) on X x {—1,1}, and PX the marginal distribution of X;. Let (X,Y)
be a random pair distributed according to m and independent of the data, and let the
component X of the pair be observed. The problem of statistical learning in classification
(pattern recognition) consists in predicting the corresponding value Y € {—1,1}.

A prediction rule is a measurable function f : X —— {—1,1}. The misclassification
error associated to f is

R(f) = B(Y # f(X)).
It is well known (see, e.g., Devroye, Gyorfi and Lugosi (1996)) that

mfin R(f) = R(f*) = R*, where f*(z) =sign(2n(z) —1)

and 7 is the a posteriori probability defined by
n(x) =P(Y =1|X = z),
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for all x € X (where sign(y) denotes the sign of y € R with the convention sign(0) = 1).
The prediction rule f* is called the Bayes rule and R* is called the Bayes risk. A classifier
is a function, f, = f,(X, D,), measurable with respect to D, and X with values in
{-=1,1}, that assigns to every sample D,, a prediction rule f,(.,D,) : X — {—1,1}. A
key characteristic of f,, is the generalization error E[R(f,)], where

The aim of statistical learning is to construct a classifier f,, such that E[R(f,)] is as close
to R* as possible. Accuracy of a classifier f,, is measured by the value E[R(f,)] — R* called
excess risk of fy,.

Classical approach due to Vapnik and Chervonenkis (see, e.g. Devroye, Gyorfi and
Lugosi (1996)) consists in searching for a classifier that minimizes the empirical risk

1 n
(7.1) Ru(f) = > Livifx)<o),
=1

over all prediction rules f in a source class F, where 14 denotes the indicator of the
set A. Minimizing the empirical risk is computationally intractable for many sets
F of classifiers, because this functional is neither convex nor continuous. Nevertheless,
we might base a tractable estimation procedure on minimization of a convex surrogate
¢ for the loss (Cortes and Vapnik (1995), Freund and Schapire (1997), Lugosi and Vay-
atis (2004), Friedman, Hastie and Tibshirani (2000), Bithlmann and Yu (2002)). It has
been recently shown that these classification methods often give classifiers with small
Bayes risk (Blanchard, Lugosi and Vayatis (2004), Scovel and Steinwart (2004, 2005)).
The main idea is that the sign of the minimizer of A (f) = E[¢(Y f(X))] the ¢-risk,
where ¢ is a convex loss function and f a real valued function, is in many cases equal to
the Bayes classifier f*. Therefore minimizing A#)( f) =131, o(Yif(X;)) the empirical
¢-risk and taking f, = sign(E},) where F},, € Argmin fer ASf)( f) leads to an approximation
for f*. Here, Argmingecr P(f), for a functional P, denotes the set of all f € F such that
P(f) =minscr P(f). Lugosi and Vayatis (2004), Blanchard, Lugosi and Vayatis (2004),
Zhang (2004), Scovel and Steinwart (2004, 2005) and Bartlett, Jordan and McAuliffe (2003)
give results on statistical properties of classifiers obtained by minimization of such a convex
risk. A wide variety of classification methods in machine learning are based on this idea,
in particular, on using the convex loss associated to support vector machines (Cortes and
Vapnik (1995), Scholkopf and Smola (2002)),

p(x) = (1 —x)4,
called the hinge-loss, where z, = max(0, z) denotes the positive part of z € R. Denote by
A(f) =E[Q1-Y f(X))4]
the hinge risk of f : X — R and set
(7.2) Af = ir}fA(f),
where the infimum is taken over all measurable functions f. We will call A* the optimal

hinge risk. One may verify that the Bayes rule f* attains the infimum in (7.2]) and
Lin (1999) and Zhang (2004) have shown that,

(7.3) R(f) = R < A(f) — A7,
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for all measurable functions f with values in R. Thus minimization of A(f) — A*, the
excess hinge risk, provides a reasonable alternative for minimization of excess risk.

The difficulty of classification is closely related to the behavior of the a posteriori
probability . Mammen and Tsybakov (1999), for the problem of discriminant analysis
which is close to our classification problem, and Tsybakov (2004) have introduced an
assumption on the closeness of 1 to 1/2, called margin assumption (or low noise assumption).
Under this assumption, the risk of a minimizer of the empirical risk over some fixed class F
converges to the minimum risk over the class with fast rates, namely faster than n='/2. In
fact, with no assumption on the joint distribution 7, the convergence rate of the excess risk
is not faster than n=1/2 (cf. Devroye et al. (1996)). However, under the margin assumption,
it can be as fast as n~!. Minimizing penalized empirical hinge risk, under this assumption,
also leads to fast convergence rates (Blanchard, Bousquet and Massart (2004), Scovel and
Steinwart (2004, 2005)). Massart (2000), Massart and Nédélec (2003) and Massart (2004)
also obtain results that can lead to fast rates in classification using penalized empirical risk
in a special case of low noise assumption. Audibert and Tsybakov (2005) show that fast
rates can be achieved for plug-in classifiers.

In this chapter we consider the problem of adaptive classification. Mammen and
Tsybakov (1999) have shown that fast rates depend on both the margin parameter k and
complexity p of the class of candidate sets for {z € X’ : n(x) > 1/2}. Their results were
non-adaptive supposing that x and p were known. Tsybakov (2004) suggested an adaptive
classifier that attains fast optimal rates, up to a logarithmic factor, without knowing
and p. Tsybakov and van de Geer (2005) suggest a penalized empirical risk minimization
classifier that adaptively attain, up to a logarithmic factor, the same fast optimal rates of
convergence. Tarigan and van de Geer (2004) extend this result to /;-penalized empirical
hinge risk minimization. Koltchinskii (2005) uses Rademacher averages to get similar result
without the logarithmic factor. Related works are those of Koltchinskii (2001), Koltchinskii
and Panchenko (2002), Lugosi and Wegkamp (2004).

Note that the existing papers on fast rates either suggest classifiers that can be easily
implementable but are non-adaptive, or adaptive schemes that are hard to apply in practice
and/or do not achieve the minimax rates (they pay a price for adaptivity). The aim of
the present chapter is to suggest and to analyze an exponential weighting aggregation
scheme which does not require any minimization step unlike others adaptation schemes
like ERM (Empirical Risk Minimization) or penalized ERM, and does not pay a price
for adaptivity. This scheme is used a first time to construct minimax adaptive classifiers
(cf. Theorem and a second time to construct easily implementable classifiers that are
adaptive simultaneously to complexity and to the margin parameters and that achieves
the fast rates.

The chapter is organized as follows. In Section 2 we prove an oracle inequality which
corresponds to the adaptation step of the procedure that we suggest. In Section 3 we apply
the oracle inequality to two types of classifiers one of which is constructed by minimization
on sieves (as in Tsybakov (2004)), and gives an adaptive classifier which attains fast
optimal rates without logarithmic factor, and the other one is based on the support vector
machines (SVM), following Scovel and Steinwart (2004, 2005). The later is realized as a
computationally feasible procedure and it adaptively attains fast rates of convergence. In
particular, we suggest a method of adaptive choice of the parameter of L1-SVM classifiers
with gaussian RBF kernels. Proofs are given in Section [4
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2. Oracle inequalities

In this section we give an oracle inequality showing that a specifically defined convex
combination of classifiers mimics the best classifier in a given finite set.

Suppose that we have M > 2 different classifiers fl, ey fM taking values in {—1,1}.
The problem of model selection type aggregation, as studied in Nemirovski (2000), Yang (1999),
Catoni (1997), Tsybakov (2003), consists in construction of a new classifier f, (called ag-
gregate) which is approximatively at least as good, with respect to the excess risk, as
the best among fi,..., far. In most of these papers the aggregation is based on splitting
of the sample in two independent subsamples D} and D12 of sizes m and [ respectively,
where m > [ and m + | = n. The first subsample D], is used to construct the classifiers
fl, e fyr and the second subsample D12 is used to aggregate them, i.e., to construct a
new classifier that mimics in a certain sense the behavior of the best among the classifiers
fi-

In this section we will not consider the sample splitting and concentrate only on the
construction of aggregates (following Nemirovski (2000), Juditsky and Nemirovski (2000),
Tsybakov (2003), Birgé (2004), Bunea, Tsybakov and Wegkamp (2004)). Thus, the first
subsample is fixed and instead of classifiers fl, R fM, we have fixed prediction rules
fi,..., far- Rather than working with a part of the initial sample we will suppose, for
notational simplicity, that the whole sample D,, of size n is used for the aggregation step
instead of a subsample DlZ.

Our procedure is using exponential weights. The idea of exponential weights is well
known, see, e.g., Augustin, Buckland and Burnham (1997), Yang (2000), Catoni (2001),
Hartigan (2002) and Barron and Leung (2004). This procedure has been widely used in
on-line prediction, see, e.g., Vovk (1990) and Lugosi and Cesa-Bianchi (2006). We consider
the following aggregate which is a convex combination with exponential weights of M

classifiers,
. M
(7.4) fo=> wi"
j=1
where
n exp ?: }/Zf Xz
(75) U)]( ) — N (Z ln J( )) , =1,...,
2ok exp (2o Yife(Xi))
Since f1, ..., far take their values in {—1,1}, we have,

T S exp (—nAa(fi)
for all j € {1,..., M}, where
1 n
(7.7) An(f) =~ D (1= Yif (X0)+
i=1
is the empirical analog of the hinge risk. Since A, (f;) = 2R, (f;) for all j =1,..., M,
these weights can be written in terms of the empirical risks of f;’s,
L exp(=2nRa(f)))
T S e (< 2nRn(fi))

L Vi=1,...,M.
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The aggregation procedure defined by with weights does not need any mini-
mization algorithm contrarily to the ERM procedure. Moreover, the following proposition
shows that this exponential weighting aggregation scheme has similar theoretical property
as the ERM procedure up to the residual (log M)/n. In what follows the aggregation
procedure defined by with exponential weights is called Aggregation procedure
with Exponential Weights and is denoted by AEW.

PROPOSITION 7.1. Let M > 2 be an integer, fi,..., far be M prediction rules on X.
For any integers n, the AEW procedure f, satisfies
; . log(M
(7.8) An(fa) € min Au(f) + gM)

Obviously, inequality is satisfied when fn is the ERM aggregate defined by
o €A iy
It is a convex combination of f;’s with weights w; =1 for one j € Argmin; R,(f;) and 0
otherwise.

We will use the following assumption (c¢f. Mammen and Tsybakov (1999), Tsy-
bakov (2004)) that will allow us to get fast learning rates for the classifiers that we
aggregate.

(MA1) Margin (or low noise) assumption. The probability distribution m on the space
X x{—1,1} satisfies the margin assumption (MA1)(k) with margin parameter 1 < k < 400
if there exists ¢ > 0 such that,

(7.9) E{|f(X) = f*(X)|} < c(R(f) — R)'/",
for all measurable functions f with values in {—1,1}.

We first give the following proposition which is valid not necessarily for the particular
choice of weights given in ((7.5)).

PROPOSITION 7.2. Let assumption (MA1)(k) hold with some 1 < k < +00. Assume
that there exist two positive numbers a > 1,b such that M > an®. Let wy, ..., wa be M
statistics measurable w.r.t. the sample Dy, such that w; > 0, for all j = 1,..., M,

and Z]J‘/il w;j = 1,(7%" — a.s.). Define fn = Zj]\il wjf;, where fi,...,fu are pre-
diction rules. There exists a constant Co > 0 (for instance, Cy = 10 + ca™ /() 4
a1 exp [(b(8c/6)2) Vv (((8¢/3) v 1) /b)ﬂ ) such that

(1= (log M)™/NE [A(fa) = A*| < B[Au(fa) = An(F)] + Con™ %7 (log M)/,
where f* is the Bayes rule.
As a consequence, we obtain the following oracle inequality.

THEOREM 7.1. Let assumption (MA1)(k) hold with some 1 < k < +00. Assume that
there exist two positive numbers a > 1,b such that M > an®. Let f, satisfying , for
instance the AEW or the ERM procedure. Then, f, satisfies

) 0aT/4
(710) E[R(f,) - R] < (1 + Wﬁ(ﬂ@) {szl}}??M (R(f;) — B*) + OOM} ,

for all integers n > 1, where Cy > 0 appears in Proposition[7.3
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REMARK 7.1. The factor 2 multiplying min;—,__a (R(f;) — R*) in is due to
the relation between the hinge excess risk and the usual excess risk (cf. inequality )
The hinge-loss is more adapted for our conver aggregate, since we have the same statement
without this factor, namely:

- og’/*
E|A(f2) - A" < (HM%*(M) { min (A(f;) - A*)+Com}.

Moreover, linearity of the hinge-loss on [—1,1] leads to

_min (A(f;) - A%) = min (A(f) - A7),

J=1..., feConv

where Conv is the convexr hull of the set {f; : j =1,...,M}. Therefore, the excess hinge
risk of fn is approximately the same as the one of the best convex combination of f;’s

REMARK 7.2. For a convez loss function ¢, consider the empirical ¢-risk A,(fs)(f). Our
proof implies that the aggregate

M exp (—nA£L¢)(fj))
9 (z) = w¢f~(x) with w? = ,
N N @)

satisfies the inequality with Aﬁ?’ in place of A,.

Vi=1,..., M,

We consider next a recursive analog of the aggregate . It is close to the one suggested
by Yang (2000) for the density aggregation under Kullback loss and by Catoni (2004) and
Bunea and Nobel (2005) for regression model with squared loss. It can be also viewed as a
particular instance of the mirror descent algorithm suggested in Juditsky, Nazin, Tsybakov
and Vayatis (2005). We consider

n M
(7.11) Jn = %ka = w;f;
k=1 j=1

where

1 3w = 1 zn: exp(—kAk(f;))

"= ! "= le\il exp(—kAg(f1))

forall j =1,..., M, where Ax(f) = (1/k) Zle(l —Yif(X;))+ is the empirical hinge risk
of f and wj(-k) is the weight defined in 1) for the first k observations. This aggregate
is especially useful for the on-line framework. The following theorem says that it has the
same theoretical properties as the aggregate ((7.4)).

(7.12) w; =

THEOREM 7.2. Let assumption (MA1)(k) hold with some 1 < k < +00. Assume that

there exist two positive numbers a > 1,b such that M > an®. Then the convex aggregate

fn defined by satisfies

. 2
E [R(fn) — R] < <1+lcwgl/4(]\4)> {23 min (R(f;) - )+007(n,m)log7/4(M)},

for all integers n > 1, where Cy > 0 appears in Proposition and y(n, k) is equal to
(26 —1)/(k—1))n" 2T if K > 1 and to (logn)/n if Kk = 1.

REMARK 7.3. For all k € {1,. — 1}, less observations are used to construct fk
than for the construction of fp, thus mtuztwely, we expect that f, will learn better than fj.
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In view of , fn is an average of aggregates whose performances are, a priori, worse
than those of fn, therefore its expected learning properties would be presumably worse than
those of fn An advantage of the aggregate f, is in its recursive construction, but the risk
behavior of fn seems to be better than that of f,. In fact, it is easy to see that Theorem
is satisfied for any aggregate f, = > orq wy, fr where wy, > 0 and S opeq wi = 1 with
v(n, k) = S.p_, wik ™ =D " and the remainder term is minimized for w; = 1 when j = n
and 0 elsewhere, that is for f, = fn

REMARK 7.4. In this section, we have only dealt with the aggregation step. But the
construction of classifiers has to take place prior to this step. This needs a split of the
sample as discussed at the beginning of this section. The main drawback of this method is
that only a part of the sample is used for the initial estimation. However, by using different
splits of the sample and taking the average of the aggregates associated with each of them,
we get a more balanced classifier which does not depend on a particular split. Since the
hinge loss is linear on [—1,1], we have the same result as Theorem and for an

average of aggregates of the form and , respectively, for averaging over different
splits of the sample.

3. Adaptation to the margin and to complexity

In Scovel and Steinwart (2004, 2005) and Tsybakov (2004) two concepts of complexity
are used. In this section we show that combining classifiers used by Tsybakov (2004) or
L1-SVM classifiers of Scovel and Steinwart (2004, 2005) with our aggregation method leads
to classifiers that are adaptive both to the margin parameter and to the complexity, in the
two cases. Results are established for the first method of aggregation defined in but
they are also valid for the recursive aggregate defined in .

We use a sample splitting to construct our aggregate. The first subsample D} =
(X1,Y1),...,(Xm,Ym)), where m = n — [ and [ = [an/logn] for a constant a > 0,
is implemented to construct classifiers and the second subsample Dl27 made of the [
last observations ((X;41, Ym+1),-- -, (Xn,Yn)), is implemented to aggregate them by the

procedure ([7.4)).

3.1. Adaptation in the framework of Tsybakov. Here we take X = R?. Intro-
duce the following pseudo-distance, and its empirical analogue, between the sets G, G’ C X:

1 n
da(G,G') = PX(GAG) , dao(G,G') = - Z Iix,eancr,
=1

where GAG' is the symmetric difference between sets G and G’. If ) is a class of subsets
of X, denote by Hp(Y,d,da) the §-entropy with bracketing of Y for the pseudo-distance
da (cf. van de Geer (2000) p.16). We say that ) has a complexity bound p > 0 if there
exists a constant A > 0 such that

Hp(V,8,da) < A5, Y0 < 6 < 1.

Various examples of classes ) having this property can be found in Dudley (1974), Ko-
rostelev and Tsybakov (1993), Mammen and Tsybakov (1995, 1999).

Let (G)) prmin<p<pmas P€ @ collection of classes of subsets of X', where G, has a complexity
bound p, for all pmin < p < Pmaz- This collection corresponds to an a priori knowledge
on 7 that the set G* = {z € X : n(z) > 1/2} lies in one of these classes (typically
we have G, C G, if p < p’). The aim of adaptation to the margin and complexity
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is to propose f, a classifier free from k and p such that, if 7 satisfies (MA1)(x) and
G* € G, then fn learns with the optimal rate n” kT (optimality has been established
in Mammen and Tsybakov (1999)), and this property holds for all values of x > 1 and
Pmin < P < Pmaz- Following Tsybakov (2004), we introduce the following assumption on
the collection (G,)p,im<p<pmas -
(A1) (Complexity Assumption). Assume that 0 < pmin < Pmaz < 1 and G,’s are
classes of subsets of X such that G, C Gy for pmin < p < p' < pmase and the class G,
has complezity bound p. For any integer n, we define pnj = pPmin + %(pmm — Pmin),
j=0,...,N(n), where N(n) satisfies Ajn” < N(n) < Agn®, for some finite b > b > 0
and Ao, Al > 0. Assume that for all n € N,

(i) for all j =0,...,N(n) there exists N an e-net on Gp,,; for the pseudo-distance

da or da.e, where € = ajniﬁw', a; >0 and max; a; < +o00,
(ii) N has a complexity bound pn,j, for j=0,...,N(n).
The first subsample D} is used to construct the ERM classifiers fi,(z) = 2Wy () — 1,

where G2, € Arg minGeN& R, (21g—1) forall j =0,...,N(m), and the second subsample
Dl2 is used to construct the exponential weights of the aggregation procedure,

exp (—ZA[”(J%D

0 ,
w;’ = ——, Vj=0,...,N(m),
TR exp (—1al(f))
where AU(f) = (1/1) Y1 (1 =Yif(Xi)), is the empirical hinge risk of f : X — R

based on the subsample Dlz. We consider
y N(m) B
(7.13) fulz) = 3" Wl fi(2), vaex.
j=0

The construction of f&’s does not depend on the margin parameter .

THEOREM 7.3. Let (Gp)pin<p<pmas D€ @ collection of classes satisfying Assumption
(A1). Then, the aggregate defined in satisfies

sup E [R(fn) - R*} < Cn_%fﬂ—l, Vn > 1,
TI'G'PR,p
for all 1 < k < 400 and all p € [pmin, Pmaz|, where C > 0 is a constant depending only
on a,b, V', A, Ao, Ay, Pmin, Pmaz and K, and Py, is the set of all probability measures ™ on
X x {—1,1} such that Assumption (MA1)(k) is satisfied and G* € G,,.

3.2. Adaptation in the framework of Scovel and Steinwart.

3.2.1. The case of a continuous kernel. Scovel and Steinwart (2005) have obtained fast
learning rates for SVM classifiers depending on three parameters, the margin parameter
0 < a < 400, the complexity exponent 0 < p < 2 and the approximation exponent
0 < 8 < 1. The margin assumption was first introduced in Mammen and Tsybakov (1999)
for the problem of discriminant analysis and in Tsybakov (2004) for the classification
problem, in the following way:

(MAZ2) Margin (or low noise) assumption. The probability distribution © on the space
X x{—1,1} satisfies the margin assumption (MAZ2)(ca) with margin parameter 0 < o < 400
if there exists cg > 0 such that

(7.14) P(12n(X) — 1] <t) < cot®, Vit > 0.
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As shown in Boucheron, Bousquet and Lugosi (2006), the margin assumptions (MA1)(k)
and (MA2)(«) are equivalent with £ = 42 for o > 0.

Let X be a compact metric space. Let H be a reproducing kernel Hilbert space (RKHS)
over X (see, e.g., Cristianini and Shawe-Taylor (2000), Scholkopf and Smola (2002)), By
its closed unit ball. Denote by N(BH,G, Lg(Pj()) the e-covering number of By w.r.t.
the canonical distance of Ly(P.X), the Lo-space w.r.t. the empirical measure, P:X, on
X1,...,Xp. Introduce the following assumptions as in Scovel and Steinwart (2005):

(A2) There exists ag > 0 and 0 < p < 2 such that for any integer n,
sup log N (BH,e, LQ(PK)) <ape?, Ve>D0,
Dne(Xx{-11})n

Note that the supremum is taken over all the samples of size n and the bound is assuming

for any n. Every RKHS satisfies (A2) with p = 2 (cf. Scovel et al. (2005)). We define the

approximation error function of the L1-SVM as a(\) def infrer (M| f13 + A(f)) — A*.

(A3) The RKHS H, approximates m with exponent 0 < 3 < 1, if there exists a constant
Co > 0 such that a(\) < Co\?, VA > 0.
Note that every RKHS approximates every probability measure with exponent § = 0
and the other extremal case 0 = 1 is equivalent to the fact that the Bayes classifier f*
belongs to the RKHS (cf. Scovel et al. (2005)). Furthermore, 3 > 1 only for probability
measures such that P (n(X) = 1/2) =1 (cf. Scovel et al. (2005)). If (A2) and (A3) hold,
the parameter (p, 3) can be considered as a complexity parameter characterizing 7 and H.
Let H be a RKHS with a continuous kernel on X" satisfying (A2) with a parameter
0 < p < 2. Define the L1-SVM classifier by

(7.15) for = sign(Fy) where £} € Argmin (\[£[f + An(f))
€

and A > 0 is called the regularization parameter. Assume that the probability measure
7 belongs to the set Q, g of all probability measures on X x {—1,1} satisfying (MA2)(«)
with > 0 and (A3) with a complexity parameter (p,3) where 0 < 5 < 1. It has been
shown in Scovel et al. (2005) that the L1-SVM classifier, fé‘%’ﬁ, where the regularization

—74((!-’_1) . . .
parameter is /\%’5 =n Qatpe+N(1+0)  satisfies the following excess risk bound: for any € > 0,

there exists C' > 0 depending only on «, p, 5 and € such that
Ay o, _ 48(a+1)
(7.16) E [R( P R < onT e e T > 1L
Remark that if 3 = 1, that is f* € H, then the learning rate in is (up to an ¢)
n =2t 1)/Qetpratd) which is a fast rate since 2(ar + 1) /(20 + pa + 4) € [1/2,1).

To construct the classifier f;z\%’ﬁ we need to know parameters a and § that are not
available in practice. Thus, it is important to construct a classifier, free from these
parameters, which has the same behavior as fﬁ\%ﬁ, if the underlying distribution 7 belongs
to Q4 3. Below we give such a construction.

Since the RKHS H is given, the implementation of the L1-SVM classifier f% only
requires the knowledge of the regularization parameter A\. Thus, to provide an easily
implementable procedure, using our aggregation method, it is natural to combine L1-SVM
classifiers constructed for different values of A in a finite grid. We now define such a
procedure.
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We consider the L1-SVM classifiers f,),‘l, defined in 1' for the subsample D} ., where
A lies in the grid
G =M =1"% e =1/2+ kA" k=0,...,[34/2]},

where we set A = [ with some by > 0. The subsample Dl2 is used to aggregate these
classifiers by the procedure (|7.4), namely

(7.17) Fo= Y wlf)
Aeg(l)
where
o e (S v exp (—1AU(f)))
UJ)\ = =

- Doneg() €XP (Z?:mﬂ Yif (Xz‘)> - >_xeg() eXP (—ZA[Z]( A%)) 7
and AU(f) = (1/1) i, 11 (1 = Yif (X0)) -

THEOREM 7.4. Let H be a RKHS with a continuous kernel on a compact metric space X
satisfying (A2) with a parameter 0 < p < 2. Let K be a compact subset of (0,+00) x (0, 1].

The classifier fy,, defined in , satisfies
48(a+1)

sup E [R(fn) — R*} < On~ @atpatn(iF5) +e
T€Qn,3
for all (o, B) € K and € > 0, where Qg is the set of all probability measures on X x {—1,1}
satisfying (MA2)(a) and (A2) with a complexity parameter (p,3) and C > 0 is a constant
depending only on €,p, K, a and by.

3.2.2. The case of the Gaussian RBF kernel. In this subsection we apply our aggre-
gation procedure to L1-SVM classifiers using Gaussian RBF kernel. Let X be the closed

1/2
unit ball of the space R% endowed with the Euclidean norm ||z|| = (Z?il xf) Vo =
(z1,...,24,) € R™. Gaussian RBF kernel is defined as K,(z,2') = exp (—o?||z — 2/||?)
for x,2' € X where o is a parameter and ¢! is called the width of the gaussian kernel.
The RKHS associated to K, is denoted by H,.
Scovel and Steinwart (2004) introduced the following assumption:

(GNA) Geometric noise assumption. There exist C; > 0 and v > 0 such that
T(X)?
t

B | 20(X) ~ 1lexp -

Here 7 is a function on X with values in R which measures the distance between a given

>:| < Clt%, Vvt > 0.

point z and the decision boundary, namely,

d(z,Go U G1), ifx e G_q,
T(z) = d(%,GQUG_l), if x € Gy,
0 otherwise,

for all z € X, where Gg = {z € X : n(z) = 1/2}, Gy = {z € X : n(x) > 1/2} and
G_1={z € X :n(x) <1/2}. Here d(x, A) denotes the Euclidean distance from a point x
to the set A. If 7 satisfies Assumption (GNA) for a v > 0, we say that = has a geometric
noise erponent -y.

The L1-SVM classifier associated to the gaussian RBF kernel with width ¢! and
regularization parameter A is defined by fT(LU’)‘) = sign(ﬁ,&o’)‘)) where is given by
with H = H,. Using the standard development related to SVM (cf. Scholkopf and

FT(LU,)\)
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Smola (2002)), we may write £l (z) = 0, CiK,(X;,x),Yz € X, where Cy, ..., C,, are
solutions of the following maximization problem

n n
ma 2 CiY; — CiCiKs (X, X;) ¢,
o§2ACiY§(§n*1 222 o g::l $Cllo (i, %)
that can be obtained using a standard quadratic programming software. According to
Scovel et al. (2004), if the probability measure m on X x {—1,1}, satisfies the margin
assumption (MA2)(«) with margin parameter 0 < o < +00 and Assumption (GNA) with
(Un T A7)
a geometric noise exponent v > 0, the classifier
and width are defined by

where regularization parameter

A1 ) )
a,y n 2+t 1f’Y§a2Jgé7 any a'y—;
An = _ 20D)(ed]) and o7 = (A7) GFDdo
n 2v(a+2)+3a+4  otherwise,
satisfies
,i+€ . at2
AL QLY QLY n 2v+1 lf,.yg
(7.18) = {R(f’gan ) _R*} <Oy ey 2
n  2y(at2)+3atd otherwise,

for all € > 0, where C' > 0 is a constant which depends only on «a,y and €. Remark that
fast rates are obtained only for 7 > (3a +4)/(2a).

To construct the classifier f AR
are not available in practice. Like in Subsection [3.2.1] we use our procedure to obtain a

classifier which is adaptive to the margin and to the geometric noise parameters. Our aim

we need to know parameters o and -y, which

is to provide an easily computable adaptive classifier. We propose the following method
based on a grid for (o, A). We consider the finite sets

P1 P2
M(l):{(¢l,p1,¢17p2):(m Z+ > 1752LAJ’p2:17’LA/2J}7
where we let A = (% for some by > 0, and

N W) = { (@100 Miw) = (171.07°) : (9, 0) € M)

We construct the family of classifiers ( plod) (0,A) € N(l) ) using the observations of
&

the subsample D}, and we aggregate them by the procedure (7.4

(7.19) fn = Z )\f(‘”‘
(o,\)eN (1)

) using DIQ, namely

where

exp (L ViV (X))
2 (o' N)eN (1) OXP (Z?:m—&-l Yifs ’X)(Xz‘)>

Denote by R, the set of all probability measures on X' x {—1, 1} satisfying both the
margin assumption (MA2)(a) with a margin parameter a > 0 and Assumption (GNA)
with a geometric noise exponent v > 0. Define U = {(a,7) € (0, +00)% : v > %2} and
U = {(a,7) € (0,400)? : v < 0%2 )

o _
(7.20) wih =

. Yo, \) e N(D).
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THEOREM 7.5. Let K be a compact subset of U and K' a compact subset of U'. The
aggregate fn, defined in , satisfies
S n TE e if (a,7) € K,
sup E [R( f) =R } <C e
TERa,~ n 2v(a+2)+3a+4 Zf (C%’Y) c K,

for all (a,y) € KUK’ and € > 0, where C > 0 depends only on ¢, K, K',a and by.

4. Proofs
LEMMA 7.1. For all positive v,t and all k >1: t+v > v%ti.

Proof. Since log is concave, we have log(ab) = (1/z)log(a®) + (1/y)log(b¥) <
log (a®/z + bY /y) for all positive numbers a,b and x,y such that 1/x + 1/y = 1, thus
ab < a®/x + Y /y. Lemma follows by applying this relation with a = /2% 2 =
2k and b = v(2—1)/(28),

Proof of Proposition Observe that (1—x)4 = 1—z for z < 1. Since an( ) <1
and Y; f;(X;) < 1foralli=1,...,nand j = 1,..., M, we have A, (f,) —Zj 1w An(fj)-
We have An(fj) = An(fjo) + % <log(w§-g)) - log(wgn))), for any j,j0 = 1,..., M, where
weights wj(»n) are defined in 1) by

() _ __exp(=ndn(f5))
w; = 37 )
2 k=16xp (—=nAn(f1))
(n)

and by multiplying the last equation by w; and summing up over j, we get

. log M
(7.21) An(fa) < min_ An(f)) + —2=.
j=1...,.M
w(™
Since log(w](-:)) < 0,Vjy = , M and Z — W, )log <1/JM> = K(w|u) > 0 where

K (w|u) denotes the Kullback-leibler divergence between the weights w = (w](-n)) j=1,. M
and uniform weights v = (1/M);j—1,m.

Proof of Pr0p051t10n - Denote by v = (log M)~ 1A g = 2’yn_ﬁ log? M and
Wy = (1= )(A(fa) = A%) = (An(fn) — An(f7)). We have:

E W] = E [Wh(Liw, <u) + Lw,>w)] < v+ E[Waliy, 5]
oo —+o00
— u+uIP’(Wn>u)+/ P(Wn>t)dt§2u+/ P(W, > t) dt.

u u
On the other hand (f;)=1,....m are prediction rules, so we have A(f;) = 2R(f;) and A,(f;) =
2R, (fj), (recall that A* = 2R*). Moreover we work in the linear part of the hinge-loss,
thus
M

P(Wn>t) = P Zw] AT) (1 =7) = (Au(fj) — An(f7))) >

< P (jr?axM (AU = 4 (1=2) = (4a(5) = A7) > )

yeens

M
ZIP’ (Z; > v (R(f;) — R*) +t/2),

IN

Page 126



4. PROOFS

for all t > u, where Z; = R(f;) — R* — (Rn(fj) — Rn(f*)) for all j =1,..., M(recall that
R, (f) is the empirical risk defined in (7.1)).

Let j € {1,...,M}. We can write Z; = (1/n)>." (E[G ;] — ¢,j) where ¢ ; =
Ly, £, (x)<0) — Ly p(x:)<0)- We have Gi,j] < 1 and, under the margin assumption, we have
V(&) < E( 12]) =E[f;(X) = (X)) <c(R(fj) — R*)l/'{ where V is the symbol of the
variance. By applying Bernstein’s inequality and Lemma 1 respectively, we get

n€2
P[Z; >¢€ < exp <_2C(R(fj) — Rx)/n +2e/3>

< exp|— n€2 + exp <_3n6) ,
N de(R(f;) — R*)Y" 4

for all € > 0. Denote by u; = u/2 + v(R(f;) — R*). After a standard calculation we get

400 +oo
/ P(Z; > 7 (R(f;) — RY) +£/2) dt = 2/ P(Z; > €)de < By + Bs,
u u]-
where )
By = delBU) =RV wa
n; 1c(R(f;) — Bo)
and

8 3nu;
Bgz?mexp<— 43).

Since R(f;) > R*, Lemmayields uj > v (R(fj) — R*)i (log M)%n_lp. For any

a > 0, the mapping x — (az) ! exp(—ax?) is decreasing on (0, +00) thus, we have,

4c _2s=1 72 k=2
B < log M)~ = ——(og(M)) = |.
< 2 og )5 e (- 21000 )

The mapping « —— (2/a) exp(—ax) is decreasing on (0,+00), for any a > 0 and u; >
~(log M)%fﬁ thus,

By < 3% exp <—?zn;€_—ll(log M)2> .

Since v = (log M)~Y/4, we have E(W,) < 4n~ 21 (log M)7/* + T} + T,, where

4Mc _Trn—d 3 Tr—4
T = W(logM} i exp <—46(logM) 2k )

and M
k—1
Ty = 5, &P (—(3/4)nm(log M)7/4> .
We have Ty < 6(log M)7/*/n for any integer M > 1. Moreover x/(2x — 1) < 1 for all

1 <k < +00, so we get T < 6n_2~%1(10g M)7/* for any integers n > 1 and M > 2.
Let B be a positive number. The inequality T) < Bn~ 21 (log M)"/* is equivalent to

o —2
22k — 1) %(log M)% —log M + 7ﬁ2/€ log(log M)] > log ((40/3)2(25—1) n) '

7;;;4 > % > 1forall 1 < k < 400 and M > an® for some positive

numbers a and b, there exists a constant B which depends only on a,b and ¢ (for instance
B = 4ca™ ") when n satisfies log(an®) > (b*(8¢/6)?) V ((8¢/3) V 1)?) such that T} <
Bn w1 (log M)7/4,

Since we have
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Proof of Theorem Let v = (log M)*1/4. Using , we have
E[(A(f)) = A7) (1= 9)] = (Alf) - A7)

= E[(A() = A7) (1= %) = (Aalf) = Aa()] +E [An(Fa) = An(fi0)

B [(A(7) —47) (1= 1) — (Au(Fa) — Aul)] + B2

For W,, defined in the beginning of the proof of Proposition [7.2] and f* the Bayes rule, we
have

IN

22) - (E[AG)] - A7) < min (A() - a9 4B+

According to Proposition E[W,] < Con~ 21 (log M)7/* where Cy > 0 is given in
Proposition Using (7.22) and (1 —~)~! <1+ 2y for any 0 < v < 1/2, we get
. 2 , log™/* (M)
— A¥| < - - ) AF =R S N
E [A(fn) A } < (1 + log1/4(M)) {j:rlmnM (A(fj)) — A +C T ERT)
We complete the proof by using inequality (7.3) and equality 2(R(f) — R*) = A(f)— A",

which holds for any prediction rule f.
Proof of Theorem Since fi’s take there values in [-1,1] and z — (1 — )4 is

linear on [—1, 1], we obtain A(f,) — A* = % pya (A(fk) — A*) . Applying Theorem

to every fk for Kk =1,...,n, then taking the average of the n oracle inequalities satisfied
by the fi for k =1,...,n and seeing that (1/n) S 7_, k~*/ (%1 < ~(n, k) we obtain

— * 2 . *
E [A(fn) —A ] < (1 + W) {j:rlan (A(fj) — A") + Cy(n, k) log7/4(M)} .

We complete the proof by the same argument as at the end of the previous proof.

Proof of Theorem Let pmin < p < pmaz and & > 1. Let pp, j, = min(pm,; :
Pmj > p). Since N(m) > Agmb, > C1Y, where C' > 0, using the oracle inequality, stated
in Theorem [7.1], we have, for 7 satisfying (MA1)(x),

E|R(f.) - B'|D},|

2 . A log7/4 N(m)
< - J )\ _ ¥ I R
< (1  logli N(m)> {%ﬁfﬁ(m) (B3 —R) +C it S

where C'is a positive number depending only on ¥/, a, A, and ¢. Taking the expectation
with respect to the subsample D,ln we have

: . oo/ Nim
E [R(fn) - R*} < (1 + logl/fj\f(rrn)) {QE [R(fgfb)) _ R*} + le;wiv(l))} '

It follows from Tsybakov (2004) that, the excess risk of f5 satisfies

sup E {R(fﬂ,f) - R*} < Cm 0T
TI'EPH,ij
where C'is a positive number depending only on A, ¢, K, pmin and ppq, (note that C' does
not depend on pj, ).
Moreover we have m > n (1 —a/log3 — 1/3), N(m) < Agm® < Agn® and | > an/logn,
so that there exists a constant C' depending only on a, Ay, Af), b, ', K, pmin and ppmee such
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that

(7.23) sup K [R(fn) - R*} <C {TL_ et 4 H_Tn—l(log n)11/4} .

7r€79~,pj0

Since pj, < p+ N(m)™t < p+ (A))"n(1 —a/log3 — 1/3)]_17/ there exists a constant

C depending only on a, A}, V', k, pmin and pme, such that for all integers n, n it <
Cn~ 751, Theorem follows directly from seeing that p > pmin > 0 and
Prp € 73,{7,”O since pj, > p.

Proof of Theorem Define 0 < amin < Qmaz < +00 and 0 < Bnin < 1
such that K C [min, Qmaz] X [Bmin, 1]. Let (ag, By) € K. We consider the function on
(0, 4+00) x (0,1] with values in (1/2,2), ¢(a, 8) = 4(a+1)/((2ac + par+4)(1 + 3)). We take
ko € {0,...,[3A/2] — 1} such that

DLk = 1/2 + koA™Y < ¢(ap, fo) < 1/2+ (ko + 1)A™L

For n greater than a constant depending only on K, p, by and a there exists &y € [min /2, Mmaz)
such that ¢(ao, 50) = ¢k, Since o — (e, fy) increases on RY, we have ay < ap. More-
over, we have |¢(a1, Bo) — ¢(ag, Bo)| > Alag — ag|, Yai, a2 € [Wmin/2, Qmaz), where A > 0
depends only on p and @ee. Thus |@y — ag] < (AA)~!. Since ag < oy we have
an,ﬁo - Qézoﬁoﬁ S0

Sup E[R(fn) - R*] < sup E[R<.fn) - R*]
ﬂ'egao,ﬁo ﬂ-egéo,ﬁo
Since [3A/2] > (3/2)i%, for 7 satisfying the margin assumption (MA2)(ag), Theorem
[Tl leads to

E[R(f,) - R|D}]

2 . N log”/*([3A/2])
= (1 - 1og1/4([3A/21)> {2539”&) (R(fm) —h ) + O G @ (0

for all integers n > 1, where Cy > 0 depends only on K, a and bg. Therefore, taking the
expectation w.r.t. the subsample D} we get

E|R(f,) - R <y (E [R(jto) — o] 4 175 log7/4(n)) ,

where A, = [=%k0 and C; > 0 depends only on K, a and b.

Set T': (0, +00) % (0, 1] — R* defined by I'(«r, 3) = B (c, B), V(cv, B) € (0, +00) x (0, 1].
According to Scovel et al. (2005), if 7 € Qg 3, then for all € > 0, there exists C' > 0 a
constant depending only on K, p and € such that,

E|R(fu™) = R*| < Cm oot

Remark that C' does not depend on &g and (g since (ao, Bo) € [Mmin/2, Omaz] X [Bmin, 1]
and that the constant multiplying the rate of convergence, stated in Scovel et al. (2005), is
uniformly bounded over («a, 3) belonging to a compact subset of (0, +o00) x (0, 1].

Let € > 0. Assume that 7 € Qq, 3, We have n(l —a/log3 —1/3) < m < n,
I > an/logn and I'(ap, By) < (aw + 1)/(aw + 2) < 1, therefore, there exist Cy,C4 > 0

depending only on a, by, K, p and € such that for any n greater than a constant depending
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only on Gpin, a and by

oc0+1

E [R(fn) _ R*] < Oy ( (@o,60)+€ 4 " dgt2 (10gn)11/4> < C’én_r(&o’ﬁo)+5

Moreover, I satisfies |T'(&g, B0) — (o, 30)] < BA™!, where B depends only on p and yn,
and (nBAil) N is upper bounded. This completes the proof.
ne

Proof of Theorem Let (ag,v) € K U K'. First assume that (ag,79) belongs
to K C U. We consider the set

S=A{(p,¥) € (0,1/2) x (1/2,1) : 2 —=2¢p — ¢ > 0}.
Each point of S is associated to a margin parameter (7.14]) and to a geometric noise

exponent by the following functions on S with values in (0, +00),

A —
o) = g and (e ) = £ -1

We take (p,9) € SN M(l) such that a(p,y) <
enough to ag, ¥(p, ) is close enough to vy and (¢,
Yo > (ap + 2)/(2ap) there exists a solution (g, 1) €

(7'24) { (?(90, w) = Qo
Ve, ¥) = -
For all integers n greater than a constant depending only on K,a and by, there exists
(pl,o,pg,o) S {1, Ce ,QLAJ} X {2, ceey LA/QJ} defined by
Pupro = min(@yy  Qrp > o) and Wy p, o = max(yp, : Yrp, < o) — A7
We have 2 — 29y, , — @1, > 0. Therefore (¢1p, o, Yip,,) € SN M(I). Define ag =
a(P1,p1.0> Vips, 0) and yg = '7(@1,1,1’0, T/Jl,pz,o)- Since (o, 1) satisfies , we have

ag, Y(p,¥) < v, alp,) is close
(o

> (a(p, ) +2)/(2a(p,1)). Since
of the system of equations

¥)
€S

—Qp 1+« —Q 1 1+«
il < _
Plipzo + *wo 0147 T 0 S 2ag 1 4 <¢“’10 2A> 2+ ao
and (ao/(2c0 + 4))(2A)*1 < A~1 thus
[o7)) 1+« _
1/}1,172,0 S _2a0 +4901,P1,0 + 2 + Oé(] S0 aO S O[()

With a similar argument, we have 1 p, , < (o + 1)@1p, o, that is 5o < 79. Now we show
that 5o > (a0 +2)/(2a0). Since (ap,v0) belongs to a compact, (¢o,%0) and (@1p; o5 Vipso)
belong to a compact subset of (0,1/2) x (1/2,1) for n greater than a constant depending
only on K, a,by. Thus, there exists A > 0, depending only on K, such that for n large
enough, we have
|ag — do| < AA™ and |y — 70| < AATE.

Denote by dx = d(0U, K), where OU is the boundary of U and d(A, B) denotes the
Euclidean distance between sets A and B. We have dx > 0 since K is a compact, U is
closed and K NoU = (). Set 0 < min < Cmaz < +00 and 0 < Vinin < Vmae < +00 such
that K C [@min, Qmaz] X [Ymin, Ymaz)- Define

Uy = {(a,7) € (0, +00)? 1 > 2p and v > (a — pu +2)/(2(a — )}

for p = min(amin/2,drx). We have K C U, so 9 > (ag — o + 2)/(2(ag — p)). Since
a — (a+2)/(2a) is decreasing, 7o > 70 — AA™! and oy < ap + AA™!, we have 79 >
B(ag) — AA™! where 3 is a positive function on (0, 2yn4.] defined by B(a) = (o — (u —

Page 130



4. PROOFS

AAY +2)/(2(a — (u — AA™Y))). We have |B(a1) — B(az)| > (20umaz) ~2|a1 — as| for all
a1, a2 € (0,200n0s). Therefore B(ap) — AA™! > B (ap + 44a2,,, A7) . Thus, for n greater

than a constant depending only on K, a and by we have 7y > (ap + 2)/(2a0).
Since ap < o and Yy < ¥, we have R~y C Rag,5, and

sup E [R(fn) - R*} < sup E [R(fn) - R*} .

WG’RQO”YO WER@O»’_YO
If 7 satisfies (MA2)(ap) then we get from Theorem [7.1
(7.25) E |R(fa) — R'ID}| <

2 . oA e log™/* (M (1))

(1 T oe " 210) m) {2 L in (R(fﬁnv N-R ) + Co i) ot } :
for all integers n > 1, where Co > 0 depends only on K, a and by and M () is the cardinality
of N'(m). Remark that M(l) > 12%0 /2, so we can apply Theorem

Let € > 0. Since M(1) < n?* and 7 > (@ + 2)/(2ap), taking expectations in
and using the result of Scovel et al. (2004), for o = Tliprpy and A\ = )‘lﬂ/’l,pz,o’ we
obtain
. _ agt1
sup E [R(fn) - R*] <C (m‘e(ao’WHE + 1 otz log7/4(n)) ,

T€R g0
where © : U — R is defined, for all (a,y) € U, by O(a,v) = (2y(a+1))/(2y(a+2)+3a+4)
and C > 0 depends only on a, by, K and €. Remark that the constant before the rate of
convergence in is uniformly bounded on every compact of «. We have ©(ag, ) <
O(ap,v0) < O(ap, 7o) +24AA71, m > n(1 —a/log3 —1/3) and (mQAA*l) o is upper

bounded, so there exists C; > 0 depending only on K, a,by such that m~—©(@0%) <
Cin~ @00 vy > 1.

Similar argument as at the end of the proof of Theorem [7.4| and the fact that ©(a,v) <
(o +1)/(a+2) for all (a,y) € U, leads to the result of the first part of Theorem

Let now (ag,v) € K'. Let o, > 0 be such that V(«a,v) € K',a < a),,.. Take
pro € {1,...,2[A]} such that ¢, , = min(gp : @1p > (290 +1)7" and p € 4N), where
4N is the set of all integers multiple of 4. For large values of n, p1 ¢ exists and p; o € 4N.
We denote by 49 € (0,+00) such that ¢, , = (2% + 1)1, we have 79 < v thus
Raono € Rap,50 and

sup E [R(fn) — R*} < sup E [R(fn) - R*} .
T€Rag 7o TE€Rag,70

If 7 satisfies the margin assumption with the margin parameter o then, using

Theorem we obtain, for any integer n > 1,

(7.26) E|R(f2) — R'IDY| <

2 . ; log™/* M (1)
1 .= 2 (o,\)\ _ px (105 W)
( +10g1/4(M(l))>{ (e NN () <R(fm ) R) T Co ag (a0 19

where C' > 0 appears in Proposition [7.2| and M (1) is the cardinality of N (I).
Let € > 0 and pa € {1,...,|A/2]} defined by p2p = p1,0/4 (note that p; o € 4N). We
have

1
_ T do(o+1)
Ulv‘Pl,pl’O - (Alywl,p2’0> :
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Since ¥ < (ap + 2)/(2ap), using the result ((7.18) of Scovel et al. (2004) we have, for
g = O-lﬁ"lvpl,o and \ = )\lvwl,pg,07

E[R(7) - BY| < Om~TO0%e,

where T : (0, +00) — R is the function defined by I'(y) = ~v/(2y + 1) for all v € (0, +oc0)
and C' > 0 depends only on a, by, K’ and €. Remark that, as in the first part of the proof,
we can uniformly bound the constant before the rate of convergence in on every
compact subset of U’. Since M (l) < n?b | taking the expectation, in , we find

~ - _ootl
sup E [R( fo) — R*} <C <m—”70)+6 4 w0 1og7/4(n)> :
WGRQO,-’YO

where C' > 0 depends only on a, by, K’ and e. Moreover |yo — 70| < 2(2,,. + 1)?A~! so
IT(50) — T(70)| < 2(20tmaz + 1)A™L. To achieve the proof we use same argument as for the
first part of the proof.
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CHAPTER 8

Optimal Oracle Inequality for Aggregation of Classifiers
under Low Noise Condition

We consider the problem of optimality, in a minimax sense, and adaptivity to the
margin and to regularity in binary classification. We prove an oracle inequality, under the
margin assumption (low noise condition), satisfied by an aggregation procedure which uses
exponential weights. This oracle inequality has an optimal residual: (log M /n)"/(25=1)
where k is the margin parameter, M the number of classifiers to aggregate and n the
number of observations. We use this inequality first to construct minimax classifiers under
margin and regularity assumptions and second to aggregate them to obtain a classifier
which is adaptive both to the margin and regularity. Moreover, by aggregating plug-in
classifiers (only logn), we provide an easily implementable classifier adaptive both to the
margin and to regularity.
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The material of this chapter has been published in COLT06 (cf. [83)]).

1. Introduction

Let (X,.A) be a measurable space. We consider a random variable (X,Y") with values
in X x {—1,1} and denote by 7 the distribution of (X,Y’). We denote by PX the marginal
of m on X and n(x) = P(Y = 1|X = z) the conditional probability function of ¥ =1 given
that X = . We denote by D, = (X;,Y;)i=1,...n, n i.i.d. observations of the couple (X,Y’).

We recall some usual notions introduced for the classification framework. A prediction
rule is a measurable function f: X —— {—1,1}. The misclassification error associated to
fis

R(f) =P # f(X)).
It is well known (see, e.g., [47]) that miny R(f) = R(f*) & R*, where the prediction rule
f* is called Bayes rule and is defined by

[ (z) = sign(2n(z) — 1).
The minimal risk R* is called the Bayes risk. A classifier is a function, f,, = fn(X ,Dy),

measurable with respect to D,, and X with values in {—1,1}, that assigns to the sample
D,, a prediction rule f,(.,D,) : X — {—1,1}. A key characteristic of f,, is the value of
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CHAPTER 8. OPTIMAL ORACLE INEQUALITY

generalization error E[R(f,)]. Here

The performance of a classifier f, is measured by the value E[R(f,) — R*] called the excess
risk of fn We say that the classifier fn learns with the convergence rate ¢(n), where
(¢(n))nen is a decreasing sequence, if there exists an absolute constant C' > 0 such that
for any integer n, E[R(f,) — R*] < C¢(n). Theorem 7.2 of [47] shows that no classifier can
learn with a given convergence rate for arbitrary underlying probability distribution 7.

In this chapter, we focus on entropy assumptions which allow us to work with finite
sieves. Hence, we first work with a finite model for f*: it means that we take a finite class
of prediction rules F = {f1,..., far}. Our aim is to construct a classifier fn which mimics
the best one of them w.r.t. to the excess risk and with an optimal residual. Namely, we
want to state an oracle inequality

(8.1) E[R(f)) - B] < a0 min(R(f) ~ B*) + C(M,n),

where ag > 1 and C' > 0 are some absolute constants and (M, n) is the residual. The
classical procedure, due to Vapnik and Chervonenkis (see, e.g. [47]), is to look for an ERM
classifier,i.e., the one which minimizes the empirical risk

1 n
(8.2) Ru(f) = > Lpviscxp=<oy
=1

over all prediction rules f in F, where I denotes the indicator of the set E. This
procedure leads to optimal theoretical results (see, e.g. Chapter 12 of [47]), but minimizing
the empirical risk is computationally intractable for sets F of classifiers with large
cardinality (often depending on the sample size n), because this risk is neither convex nor
continuous. Nevertheless, we might base a tractable estimation procedure on minimization
of a convex surrogate ¢ for the loss ( [89], [25], [22], [20], [109] and [108]). A wide variety
of classification methods in machine learning are based on this idea, in particular, on using
the convex loss associated to support vector machines ([41], [L04]),

¢($) = HlaX(O, 1- $),
called the hinge-loss. The risk associated to this loss is called the hinge risk and is defined
by
for all f: X — R. The optimal hinge risk is defined by
(8.3) A* = i?fA(f),

where the infimum is taken over all measurable functions f. The Bayes rule f* attains the
infimum in (8.3)) and, moreover, denoting by R(f) the misclassification error of sign(f) for
all measurable functions f with values in R, Zhang, cf. [130], has shown that,

(8.4) R(f) - R* <A(f) - A%,

for any real valued measurable function f. Thus, minimization of the excess hinge risk
A(f) — A* provides a reasonable alternative for minimization of the excess risk. In this
chapter, we provide a procedure which does not need any minimization step. We use a
convex combination of the given prediction rules, as explained in section
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2. ORACLE INEQUALITY

The difficulty of classification is closely related to the behavior of the conditional
probability function 7 near 1/2 (the random variable |n(X) — 1/2| is sometimes called the
theoretical margin). Tsybakov has introduced, in [I16], an assumption on the the margin,
called margin (or low noise) assumption,

(MA) Margin (or low noise) assumption. The probability distribution © on the space
X x {—1,1} satisfies the margin assumption MA (k) with margin parameter 1 < k < 400
if there exists cg > 0 such that,

(8.5) E{|f(X) - [*(X)|} <o (R(f) — R,

for all measurable functions f with values in {—1,1}.

Under this assumption, the risk of an ERM classifier over some fixed class F can converge
to the minimum risk over the class with fast rates, namely faster than n~'/2 (cf. [I16]). On
the other hand, with no margin assumption on the joint distribution 7 (but combinatorial
or complexity assumption on the class F), the convergence rate of the excess risk is not
faster than n=/2 (cf. [47]).

In this chapter, we suggest an easily implementable procedure of aggregation of classifiers
and prove the following results:

(1) We obtain an oracle inequality for our procedure and we use it to show that our
classifiers are adaptive both to the margin parameter (low noise exponent) and to
a complexity parameter.

(2) We generalize the lower bound inequality stated in Chapter 14 of [47], by intro-
ducing the margin assumption and deduce optimal rates of aggregation under low
noise assumption in the spirit of Tsybakov [114].

(3) We obtain classifiers with minimax fast rates of convergence on a Hélder class of
conditional probability functions 7 and under the margin assumption.

The chapter is organized as follows. In Section 2 we prove an oracle inequality for our
convex aggregate, with an optimal residual, which will be used in Section [3| to construct
minimax classifiers and to obtain adaptive classifiers by aggregation of them. Proofs are
given in Section

2. Oracle Inequality

We have M prediction rules f1,..., far. We want to mimic the best of them according
to the excess risk under the margin assumption. Our procedure is using exponential weights.
Similar constructions in other context can be found, e.g., in [10], [125], [35], [87], [119]
and Chapter Consider the following aggregate which is a convex combination with
exponential weights of M classifiers,

M
(8.6) fo=>"wl"g;,

j=1
where

i1 Yifi(Xi
(8.7) w = 7P (leln LX)y 4
> k=1 exP (2o Yife(Xi))

Since fi,..., fu take their values in {—1,1}, we have,
(8.5) L — P (=ndn(f;))

7o exp (—nAn(fr)
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CHAPTER 8. OPTIMAL ORACLE INEQUALITY

for all j € {1,..., M}, where
(5.9 An(f) = Y max(0,1 - Yif (X,)
i=1

is the empirical analog of the hinge risk. Since A, (f;) = 2R,(f;) for all j =1,..., M,
these weights can be written in terms of the empirical risks of f;’s,

L) = P (=2nRa(f))
T Sl exp (—2nR(fi)
Remark that, using the definition for the weights, we can aggregate functions with
values in R (like in theorem |[8.1) and not only functions with values in {—1,1}.
The aggregation procedure defined by with weights , that we can called
aggregation with exponential weights (AEW), can be compared to the ERM one. First, our
AEW method does not need any minimization algorithm contrarily to the ERM procedure.

yeeey

Second, the AEW is less sensitive to the over fitting problem. Intuitively, if the classifier
with smallest empirical risk is over fitted (it means that the classifier fits too much to the
observations) then the ERM procedure will be over fitted. But, if other classifiers in F are
good classifiers, our procedure will consider their ”opinions” in the final decision procedure
and these opinions can balance with the opinion of the over fitted classifier in F which can
be false because of its over fitting property. The ERM only considers the ”opinion” of the
classifier with the smallest risk, whereas the AEW takes into account all the opinions of the
classifiers in the set F. The AEW is more temperate contrarily to the ERM. Finally, the
following proposition shows that the AEW has similar theoretical property as the ERM
procedure up to the residual (log M)/n.

ProprosITION 8.1. Let M > 2 be an integer, f1,..., far be M real valued functions on
X. For any integers n, the aggregate defined in with weights fn satisfies
log(M)

An(fn) < minMAn(fi) + -

i=1,...,

The following theorem provides first an exact oracle inequality w.r.t. the hinge risk
satisfied by the AEW procedure and second shows its optimality among all aggregation
procedures. We deduce from it that, for a margin parameter x > 1 and a set of M functions
with values in [—-1,1], F ={f1,..., fm},

Y(F, 7 n, k) = \/minfef(A(f) — A*)x log M N <1ogM>2;‘1

n n

is an optimal rate of convex aggregation of M functions with values in [—1,1] w.r.t. the
hinge risk, in the sense of Chapter

THEOREM 8.1 (Oracle inequality and Lower bound). Let x > 1. We assume that
7 satisfies MA (k). We denote by C the convex hull of a finite set of functions with values
n[-1,1], F={f1,...,fm}. The AEW procedure, introduced in with weights (8.4
(remark that the form of the weights in allows to take real valued functions for the
[j’s), satisfies for any integer n > 1 the following inequality

E[A(fa) = 4] < min(A(f) = 4%) + Cor(F.m.m. ),

where Cy > 0 depends only on the constants k and cy appearing in MA (k).
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Moreover, there exists a set of prediction rules F = {f1,..., fa} such that for any
procedure f, with values in R, there exists a probability measure m satisfying MA (k) such
that for any integers M, n with log M < n we have

E [A(fn) — A"] 2 min(A(f) — 47) + Cor(F, m,m, w),
where C}, > 0 depends only on the constants k and co appearing in MA (k).

The hinge loss is linear on [—1, 1], thus, model selection aggregation or convex ag-
gregation are identical problems if we use the hinge risk and if we aggregate function
with values in [—1,1]. Namely, minscr A(f) = mingec A(f). Moreover, the result of
Theorem is obtained for the aggregation of functions with values in [—1,1] and
not only for prediction rules. In fact, only functions with values in [—1, 1] have to be
considered when we use the hinge loss since, for any real valued function f, we have
max (0,1 —yy(f(z))) <max(0,1 —yf(z)) for all z € X,y € {—1,1} where 9 is the projec-
tion on [—1, 1], thus, A(¢(f)) — A* < A(f) — A*. Remark that, under MA(k), there exists
¢ > 0 such that,E[|f(X) — f(X)]] < c(A(f) — A*)l/”for all functions f on X with values
n [—1,1] (cf. Chapter|3]) . The proof of Theorem is not given here by the lack of space.
It can be found in Chapter [3] Instead, we prove here the following slightly less general
result that we will be further used to construct adaptive minimax classifiers.

THEOREM 8.2. Let k > 1 and let F ={f1,..., fum} be a finite set of prediction rules
with M > 3. We denote by C the convex hull of F. We assume that w satisfies MA (k).
The aggregate defined in with the exponential weights (or ) satisfies for

any integers n, M and any a > 0 the following inequality

E [A(fn)—A*] < (1+a)1}1€icn(A(f) _A*)+C<lognM>2:_1,

where C' > 0 is a constant depending only on a.
COROLLARY 8.1. Let k > 1, M >3 and {fi1,..., fm} be a finite set of prediction rules.

We assume that w satisfies MA (k). The AEW procedure satisfies for any number a > 0
and any integers n, M the following inequality, with C' > 0 a constant depending only on a,

E[R(fn)—R*]gz(Ha) min (R(fj)—R*)JrC(loiM)?:l.

j=1,...M

We denote by P, the set of all probability measures on X x {—1,1} satisfying the
margin assumption MA(k). Combining Corollary and the following theorem, we get

that the residual .
log M\ 2=—1
n

is a near optimal rate of model selection aggregation in the sense of Chapter [3| when the

underlying probability measure 7w belongs to Py.

THEOREM 8.3. For any integers M and n satisfying M < exp(n), there exists M

prediction rules fi,..., far such that for any classifier f, and any a > 0, we have
R log M\ 2=-1
sup {E [R(fa) = R*] =201 +a) min (R(f;) - R*)} >0y ( o8 > ,
TEP,, j=1,...M n

where Cp = cg/(4622”("_1)/(2“_1)(log 2)”/(2“_1)).
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3. Adaptivity Both to the Margin and to Regularity.

In this section we give two applications of the oracle inequality stated in Corollary
First, we construct classifiers with minimax rates of convergence and second, we
obtain adaptive classifiers by aggregating the minimax ones. Following [9], we focus on the
regularity model where 7 belongs to the Hélder class.

For any multi-index s = (s1,...,54) € N? and any = = (1,...,24) € R? we define

+ ..

x
|s| = Z?Zl si,sl=s1l... 84\, 2% = 27" ...z} and ||z|| = (2} .+ 22)1/2. We denote by

851+'“+5d
dxyt..0x

Let 3 > 0. We denote by |3] the maximal integer that is strictly less than 3. For any
z € (0,1)% and any |3]-times continuously differentiable real valued function g on (0,1),

we denote by g, its Taylor polynomial of degree |3] at point x, namely,

a:(y) = > <3”/;!9:)81389(36)-
151<19)

For all L > 0 and 8 > 0. The (3,L,[0,1]%)—Hélder class of functions, denoted
by (8, L, [0,1]%), is the set of all real valued functions g on [0,1]¢ that are |3]-times
continuously differentiable on (0,1)¢ and satisfy, for any z,y € (0,1)?, the inequality

19(y) = 9:(y)| < Ll — yl|”.
A control of the complexity of Holder classes is given by Kolmogorov and Tikhomorov

(1961):
(8.10) N (2(6, L,[0,1]%), ¢, L([0, 1]d)) < A(B,d)e 5 Ve >0,

D? the differential operator

where the LHS is the e—entropy of the (3, L, [0, 1]¢)—Holder class w.r.t. to the norm in
L>([0,1]%)—and A(B,d) is a constant depending only on 3 and d.
If we want to use entropy assumptions on the set which 7 belongs to, we need to make
a link between PX and the Lebesgue measure, since the distance in is the L°°—norm
w.r.t. the Lebesgue measure. Therefore, introduce the following assumption:
(A1) The marginal distribution PX on X of 7 is absolutely continuous w.r.t. the Lebesque
measure \q on [0,1]%, and there exists a version of its density which is upper bounded by
Umax < OO.
We consider the following class of models. For all K > 1 and 8 > 0, we denote by P, g,
the set of all probability measures m on X x {—1,1}, such that
(1) MA(k) is satisfied.
(2) The marginal PX satisfies (A1).
(3) The conditional probability function 1 belongs to X(3, L, R%).
Now, we define the class of classifiers which attain the optimal rate of convergence, in
a minimax sense, over the models P, 3. Let kK > 1 and 8 > 0. For any € > 0, we denote
by 3e(8) an e-net on X(S, L, [0,1]%) for the L>°—norm, such that, its cardinal satisfies
log Card (2.(8)) < A(3,d)e=%8. We consider the AEW procedure defined in , over
the net X.(5) :

(8.11) ]que’ﬁ) = Z w(n)(fn)fm where fn(x) = 21[(?7(27)21/2) - L
77626(6)

THEOREM 8.4. Let Kk > 1 and 3 > 0. Let a; > 0 be an absolute constant and consider

_ B(rk—1)
€, = ain PO+ The aggregate (8.11) with € = €,, satisfies, for any m € Py g and
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any integer n > 1, the following inequality

flenB)y _ R ~FEED T
E [R<fn >—R] < Co(r, B, d)n P+,

where Co(k, 3,d) = 2 max (4(2coumax)”/(“_1), CA(p, d)%%l) (al)ﬁ \Y (al)_ﬁ(zim and C
is the constant appearing in Corollary[8.1]

Audibert and Tsybakov (cf. [9]) have shown the optimality, in a minimax sense, of the
rate obtained in theorem Note that this rate is a fast rate because it can approach

1/n when & is close to 1 and [ is large.

") needs the knowledge of k and 8 which are not

The construction of the classifier f,se
available in practice. Thus, we need to construct classifiers independent of these parameters
and which learn with the optimal rate n~8%/(8(2s=1)+d(s=1)) if the underlying probability

measure 7 belongs to P, g, for different values of x and 3. We now show that using the

procedure to aggregate the classifiers fy(f’ﬁ ), for different values of (e, 3) in a grid, the
oracle inequality of Corollary provides the result.
(1)

We use a split of the sample for the adaptation step. Denote by D,,” the subsample
containing the first m observations and Dl(2) the one containing the (= n —m) last ones.

Subsample D,(ﬁ) is used to construct classifiers f,(,i‘ﬁ ) for different values of (¢, 3) in a finite

grid. Subsample DZ(Q) is used to aggregate these classifiers by the procedure 1@} We take

l:{ i —‘ and m=n-—1I.
logn

Set A = logn. We consider a grid of values for (e, 3):
6) = {3y =m0 )00 = 3 ke (L LA2Ib € (1 AT ]
The classifier that we propose is the sign of
;CLLdp — Z w[l](ﬁgﬂ))ﬁgﬁ)’
(e:8)€G(n)

where ng”g ) = sign( ~7(,f”8 )) is the classifier associated to the aggregate fr(;ﬁ ) for any €,3 > 0

and weights wll (F') are the ones introduced in li constructed with the observations Dl(2)
for any F' € F(n) = {sign(ﬁgffﬂ)) :(6,8) € G(n)}:
Wer — exp (31 Vil (X5))
w(F) = - .
ZGE}'(n) exp (Zi:erl KJG(Xl))
The following Theorem shows that fﬁdp is adaptive both to the low noise exponent x and

to the complexity (or regularity) parameter (3, provided that (k, 3) belongs to a compact
subset of (1,400) x (0,+00).

THEOREM 8.5. Let K be a compact subset of (1, +00) x (0, +00). There ezists a constant
Cs3 > 0 that depends only on K and d such that for any integer n > 1, any (k,3) € K and
any ™ € P, g, we have,

Ex |R(f) - RY| < Cyn~ PG

Classifiers ﬁf"’ﬂ ), for €, given in Theorem and B > 0, are not easily implementable
since the cardinality of ¥, ((3) is an exponential of n. An alternative procedure which
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is easily implementable is to aggregate plug-in classifiers constructed in Audibert and
Tsybakov (cf. [9]).
We introduce the class of models 73,;7 3 composed of all the underlying probability

measures 7 such that:

(1) 7 satisfies the margin assumption MA(k).

(2) The conditional probability function n € X(8, L, [0, 1]%).

(3) The marginal distribution of X is supported on [0, 1]d and has a Lebesgue density

lower bounded and upper bounded by two constants.

THEOREM 8.6 (Audibert and Tsybakov (2005)). Let k > 1,8 > 0. The excess

risk of the plug-in classifier f,@ = 2H{ﬁ(@>>1/2} — 1 satisfies

~ Bk
sup E [R(f,gﬁ)) — R*| < Oyn” GO0EBFD
WEP;ﬂ

where ﬁ%ﬁ)(') is the locally polynomial estimator of n(-) of order || with bandwidth h =
1

n 28+d gnd C4 a positive constant.

In [9], it is shown that the rate nin)ﬁ(iZﬁH) is minimax over Py 4, if # < d(x —1). Remark
that the fast rate n~! can be achieved.

We aggregate classifiers ﬁgﬁ ) for different values of [ lying in a finite grid. Contrar-
ily to the previous example of adaptation, we only need to consider a grid for 3 since
féﬁ ) is already adaptive to x the margin parameter. We use a split of the sample to

construct our adaptive classifier: [ = [n/logn| and m = n — [. The training sample
D! = ((X1,Y1),. .., (X, Ym)) is used for the construction of the class of plug-in classifiers
F= { FB) 2 By = Akd%,k e{1,..., LA/2J}} , where A = logn.

The validation sample D? = ((Xy41, Yint1), - - -5 (Xn, Yn)) is used for the construction of
weights

VfelF.

w[l](f) _ exp (Z?zm;zi-l Kf(Xf)) ’
Y rer exp (i Yif (X3)
The classifier that we propose is i = sign(fa™), where fi = 3 jc 5 wl(f).

THEOREM 8.7. Let K be a compact subset of (1, +00) x (0, +00). There ezists a constant
C5 > 0 depending only on K and d such that for any integer n > 1, any (k, 8) € K, such
that 8 < d(k — 1), and any ™ € Péﬁ, we have,

E, [R(ngp) - R*} < Csn~ DG

Adaptive classifiers are obtained in Theorem ({8.5) and (8.7) by aggregation of only
logn classifiers. Other construction of adaptive classifiers can be found in Chapter [7] In
particular, adaptive SVM classifiers.

4. Proofs

Proof of Proposition Using the convexity of the hinge loss, we have A, ( fn) <
Zjﬂil w;An(f;). Denote by i = arg min;—y,.a An(fi), we have

An() = An(f) + - (1oa(u) ~ log(uw)

Page 140



4. PROOFS

forall i =1,..., M and by averaging over the w; we get :
- log(M
(5.12) Au(f) < min A, (5) + B,

1=1,...

where we used that Zé\il wj log (f;—&) > 0 since it is the Kullback-leibler divergence

between the weights w = (w;);=1,. m and uniform weights u = (M ~1);_;
Proof of Theorem Let a > 0. Using Proposition [8I] we have for any f € F
and for the Bayes rule f*:

-----

A(fa) = A = L+ a)(An(fa) = An(f*) + Alfn) — A" = (L + a)(An(fn) = Aa(f*))

< (14 a)(An(f) — An(F) + 1+ @) B 4 AR = A7 = (14 a)(An(F) — An(F)).

Taking the expectations, we get

E[A(f) - 4] < (1+a) min(A(f) ~ A%) + (1 +a)(log M)/n

E [A(fa) = A" = (1+ @)(An(fa) = Aa(F))] -
The following inequality follows from the linearity of the hinge loss on [—1, 1]:
Afa) = A" = L+ a)(An(fa) = An(f)) < max [A(f) = A" = (1 + a)(An(f) = An(F))]-
Thus, using Bernstein’s inequality, we have for all 0 < & < 4 + 2a :
P[A(fa) = A" = (1+ @)(An(fa) = An(f") = 8|

< SR - A () - n(7) 2 ST =)
feF
n(8+ a(A(f) — A*))?
< D e <_2(1 +a)2(A(f) — A9 /5 +2/3(1+ a) (6 + a(A(f) — A*>)> '

ferF
There exists a constant ¢; > 0 depending only on a such that for all 0 < § < 4+ 2a and all
f € F, we have
(0 +a(A(f) — A%))?
2(1 + a)2(A(f) — A)V/% +2/3(1 + a) (0 + a(A(f) — A*))

Thus, B [A(f,) — 47 = (1+ ) (An(fa) = An(*)) 2 8] < M exp(—nerd®= /7).

Observe that an integration by parts leads to f:oo exp (—bt®) dt < %,

a>1and a,b> 0, so for all u > 0, we get

Z 6152—1/,‘6'

for any

exp(—neciu?~ /")

E [A(J) = A" = (1 a)(An(fa) = An(7)] < 20+ M2

If we denote by (M) the unique solution of X = M exp(—X), we have log M/2 < u(M) <
log M. For u such that neju?~1/% = pu(M), we obtain the result.

Proof of Corollary We deduce Corollary from Theorem using that for
any prediction rule f we have A(f) — A* = 2(R(f) — R*) and applying Zhang’s inequality
A(g) — A* > (R(g) — R*) fulfilled by all g from X to R.

Proof of Theorem For all prediction rules f1,..., fas, we have
_min (R(f;) — R ))

sup inf sup (]E [R(fn) - R*} —-2(1+ a)j

Sy fm fr mEPK
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> inf sup (E [R(fn) - R*D .
fn w€Pe:f*€{f1,,fm}
Thus, we look for a set of cardinality not greater than M, of the worst probability
measures m € P, from our classification problem point of view and choose f1,..., far as
the corresponding Bayes rules.

Let N be an integer such that 2V=1 < M. Let z1,...,2zx be N distinct points of X.
Let 0 < w < 1/N. Denote by PX the probability measure on X such that PX({z;}) = w
forj=1,...,N—1and PX({xx}) = 1— (N —1)w. We consider the set of binary sequences
Q={-1,1}""1. Let 0 < h < 1. For all o € Q we consider

1+oh)/2 ifrx=x,...,25_1,
UU(J;):{ g i if x =xpn.
For all o € Q we denote by 7, the probability measure on X x {—1,1} with the marginal
PX on X and with the conditional probability function 7, of ¥ = 1 knowing X.

Assume that x > 1. We have P (|21, (X) — 1| <t) = (N — Dwl;<4y, V0 <t < 1. Thus,
if we assume that (N — 1)w < hY/#=1 then P (|21, (X) — 1] < t) < tV/=D for all t > 0,
and according to [116], 7, belongs to MA(k).

We denote by p the Hamming distance on Q (cf. [115] p.88). Let 0,0’ be such that
p(o,0’) = 1. We have

B2 (79", 7%1) = 2 (1 S (l—w(l-V1- h?))n) .

We take w and h such that w(1—v/1 — k%) < 1/n, thus, H? (75", 75") < 3 =2(1—-e') < 2

0./
for any integer n.
Let f,, be a classifier and o € Q. Using MA(k), we have

(Fis o))

By Jensen’s Lemma and Assouad’s Lemma (cf. [I15]) we obtain:

3 2 (o [~ o r(Fa-aer)

We obtain the result by taking w = (nh?)~!, N = [log M/log 2] and

o 1 [log M" a1
- \nl log2
For k = 1, we take h = 1/2, thus |2n,(X) — 1] > 1/2 a.s. so 7, €eMA(1) (cf.[116]).
Putting w = 4/n and N = [log M/ log 2], we obtain the result.

Proof of Theorem According to Theorem where we set a = 1, we have, for
any € > 0:

E., [R(fn) — R*} > (cow)"Er,

Er |[RU) - B| <4_min (R(fy) -

Let 7 be a function with values in [0, 1] and denote by f = I;>1/2 the plug-in classifier
associated. We have [2n — 1[T5, . < 2[fj — nl, thus:

R(f) = R* =E[12n(X) = Ul 5zp] = E[[29(X) = T jp- My

n

R+ C <log CardEE(ﬁ)> 71 .

poe(px) B [Mppe] < {120 = 1Tz g
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and assumption (A1) lead to

P

R(fg) = R* < (2coptmaz) 111 = nll ;210 1ja-

Hence, for any € > 0, we have

Ex [R( ~;)—R*] <D|eT + (e_d/ﬁ>2:—1 |

n

where D = max <4(200,umm)"‘/(“*1), CA(B, d)ﬁ) For the value

_ B(k—1)
€n, = a1n PRE-1+d(x-1) ,

we have

n

EW [R( ~€n) — R*} < Cln_W7

where C = 2D(al)ﬁ Y (al)_ﬁ

Proof of Theorem Consider the following function on (1,400) x (0, 4+00) with
values in (0,1/2): ( |
OBk —1

o 0) = B T = 1)
For any n greater than n; = ny(K), we have A™! < ¢(k,8) < [A/2] A~land A~ << A
for all (k, ) € K.

Let (ko,00) € K. For any n > nj, there exists ko € {1,...,[A/2] — 1} such that
Dk = koA™ < ¢(ko,Bo) < (ko + 1)A~! and py € {1,...,[A]? — 1} such that 3,, =
poA™h < o < (po + 1)A~!. Denote by fg, (-) the increasing function ¢(-, 3y,) from
(1,+00) to (0,1/2) and set

Ko;n = (fﬂpo)_l (Pro)-

There exists m = m(K) such that m|ko — kon| < |f3,, (ko) — f5,, (Ko )| < AL
Let m € Py, 3,- According to the oracle inequality of Corollary we have, conditionally
to the first subsample D} :

KQ
7 . ; log Card(G(n))\ 2701
Ex |R(fi%) — R*|D},| < 4 R(f{eP) — R* +C< :
RO - RIDL] <4 min (R - ) :
Using the definition of [ and Card(G(n)) < (logn)?3, there exists C' > 0 independent of n

such that for €2, = e;fko

B, [R(fo) - B7] < € (E o - ]+ () ) |

Moreover (3,, < [y and there exists a constant A, depending only on K, such that
ko < Ko+ AATL = ’i{),n’ hence, Py, 5, P“() Bro O(k0,,00)
multiplying constant. Thus 7 € 77,% o Boo and, according to Theorem we have

and € is equal to m~ up to a

E. [R(FH) — BY] < Gy, dym Vo),

where C1(K,d) = max (Ci(x, 8,d) : (r,8) € K) and 9 (r, 8) = gmetyiam=r- BY con-
struction, there exists Az = Ag(K,d) > 0 such that [¢(kg,,, Bp,) — (Ko, fo)| < A AL,

Az /logn

Moreover for any integer n we have n = exp(Az), which is a constant. We conclude
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that

n
where Co(K,d) > 0 is independent of n. We achieve the proof by observing that ¥ (kg, 5y) <
2k0—1"

F 4\ TiooT
Er [R( Sd”)—R*] < Cy(K,d) (n—wmo,ﬁo) . <log n> 0 )

Proof of Theorem We consider the following function on (1,400) x (0, +00)
with values in (0,1/2):

_ s
oA = e Eearay
For any n greater than n; = ni(K), we have min(x/(k — 1) : (x,8) € K)A™! < O(k, 3) <
|A/2] A~ max(k/(k — 1) : (k,8) € K), for all (k,3) € K.

Let (ko,B0) € K be such that 5y < (ko — 1)d. For any n > nq, there exists kg €
{1,...,|A/2| — 1} such that

Ko

A< (ko + 1)A
Ho_lk‘o _@(Ho,ﬁo)<ﬁo_1( 0o+1)

Let m € Py, 3,- According to the oracle inequality of Corollary we have, conditionally
to the first subsample D] :

o]
3 1 d Zrg—1
Er [R(F3®) - R*|D},| < 4min(R(f) - R") +C <0gcm(f)> 0T
fer l
Using the proof of Theorem [8.5{ we get that there exists C' > 0 independent of n such that

Er [R(fgdp) — R*} < C <E7r [R( ;(nﬁko)) _ R*} " <log2n)2'€zo—1>

n

Moreover (3, < o, hence, Py, g, € Pry,6,,- Thus, according to Theorem we have
E, [R(F,Efko)) - R*} < C4(K, dym—OWo:8ro),

where Cy(K,d) = max (Cy(k, 3,d) : (k,3) € K). We have |0 (ko, Bk,) — O (0, 5o)| < A1
by construction. Moreover n'/108n

= e for any integer n. We conclude that

7 ~ 2\ Zng T
Eﬂ— [R(F#dp) o R*:| < C4(K, d) (n@(’ioﬁo) i <10g n> 0 ) 7

n

where Cy(K, d) > 0 is independent of n. We achieve the proof by observing that ©(kq, 3p) <
%7 if /80 < (HO - 1)d
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CHAPTER 9

Adapting to unknown smoothness by aggregation of
thresholded Wavelet Estimators

We study the performances of an adaptive procedure based on a convex combination,
with data-driven weights, of term-by-term thresholded wavelet estimators. For the bounded
regression model, with random uniform design, and the nonparametric density model, we
show that the resulting estimator is optimal in the minimax sense over all Besov balls B, ,
for s > 1/p under the L? risk, without any logarithm factor.
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The material of this chapter is a joint work with Christophe Chesneau submitted for
publication (cf. [38]).

1. Introduction

Wayvelet shrinkage methods have been very successful in nonparametric function es-
timation. They provide estimators that are spatially adaptive and (near) optimal over
a wide range of function classes. Standard approaches are based on the term-by-term
thresholds. A well-known example is the hard thresholded estimator introduced by [50].
If we observe n statistical data and if the unknown function f has an expansion of the
form f =3":>" Bjkjr where {1, j,k} is a wavelet basis and (3;);x is the associ-
ated wavelet coeflicients, then the term-by-term wavelet thresholded method consists in
three steps. First, a linear step corresponding to the estimation of the coefficients 3;; by
some estimators Bj,k constructed from the data. Second, a non-linear step consisting in
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CHAPTER 9. MULTI-THRESHOLDING ESTIMATOR

a thresholded procedure TA(ﬂALk)H (18551225} where A = (};); is a positive sequence and
J,R1I="1]

T,\(ﬂAj7k) denotes a certain transformation of the ﬁjyk which may depend on A. Third, a
reconstruction step of the form f) = Zjeﬂn >k TA(ﬁj’k>H{‘Bj,k|2)\j}w‘j’k where €2, is a finite

set of integers depending on the number n of data. Naturally, the performances of f,\
strongly depend on the choice of the threshold A. For the standard statistical models
(regression, density,...), the most common choice is the universal threshold introduced by
[50]. It can be expressed in the form: A\* = (A}); where A} = cy/(logn)/n where ¢ > 0
denotes a large enough constant. In the literature, several techniques have been proposed
to determine the ’best’ adaptive threshold. There are, for instance, the RiskShrink and
SureShrink methods (see [49} 50]), the cross-validation methods (see [97], [121] and [69]),
the methods based on hypothesis tests (see [1] and [2]), the Lepski methods (see [71]) and
the Bayesian methods (see [40] and [3]). Most of them are described in detail in [97] and
[4].

In the present chapter, we propose to study the performances of an adaptive wavelet
estimator based on a convex combination of f}’s. In the framework of nonparametric
density estimation and bounded regression estimation with random uniform design, we
prove that, in some sense, it is at least as good as the term-by-term thresholded estimator
f>\ defined with the ’best’ threshold A. In particular, we show that this estimator is optimal,
in the minimax sense, over all Besov balls under the L? risk. The proof is based on a
non-adaptive minimax result proved by [46] and some powerful oracle inequality satisfied
by aggregation methods.

The exact oracle inequality of Section 2 is given in a general framework. Two ag-
gregation procedures satisfy this oracle inequality. The well known ERM (for Empirical
Risk Minimization) procedure (cf. [I17], [77] and references therein) and an exponential
weighting aggregation scheme, which has been studied, among others, by [87], [26] and in
the others chapters of this part. There is a recursive version of this scheme studied by [35],
[125], [72] and [75]. In the sequential prediction problem, weighted average predictions with
exponential weights have been widely studied (cf. e.g. [I19] and [37]). A result in Chapter
shows that the ERM procedure is suboptimal for strictly convex losses (which is the
case for density and regression estimation when the integrated squared risk is used). Thus,
in our case it is better to combine the f,\’s, for A lying in a grid, using the aggregation
procedure with exponential weights than using the ERM procedure. Moreover, from a
computation point of view the aggregation scheme with exponential weights does not
require any minimization step contrarily to the ERM procedure.

The chapter is organized as follows. Section 2 presents general oracle inequalities
satisfied by two aggregation methods. Section 3 describes the main procedure of the study
and investigates its minimax performances over Besov balls for the L? risk. All the proofs
are postponed in the last section.

2. Oracle Inequalities

2.1. Framework. Let (Z,7) a measurable space. Denote by P the set of all proba-
bility measures on (Z,7). Let F' be a function from P with values in an algebra F. Let Z
be a random variable with values in Z and denote by 7 its probability measure. Let D,, be
a family of n i.i.d. observations Z1, ..., Z, having the common probability measure 7. The
probability measure 7 is unknown. Our aim is to estimate F'(7) from the observations D,,.
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In our estimation problem, we assume that we have access to an ”empirical risk”. It
means that there exists @ : Z x F —— R such that the risk of an estimate f € F of F(x)
is of the form

A() ©EIQ(Z, /).
In what follows, we present several statistical problems which can be written in this way.
If the minimum over all f in F
s« def .
A = gcnelg A(f)

is achieved by at least one function, we denote by f* a minimizer in F. In this chapter we
will assume that min;c 7 A(f) is achievable, otherwise we replace f* by f», an element in
F satisfying A(f2) <infrer A(f) +n~ L.

In most of the cases f* will be equal to our aim F(m) up to some known additive
terms. We don’t know the risk A, since 7 is not available from the statistician, thus,
instead of minimizing A over F we consider an empirical version of A constructed from
the observations D,,. The main interest of such a framework is that we have access to an
empirical version of A(f) for any f € F. It is denoted by

91) A1) 250 ).
=1

We exhibit three statistical models having the previous form of estimation.

Bounded Regression: Take Z = X x [0,1], where (X,.A) is a measurable space,
Z = (X,Y) a couple of random variables on Z, with probability distribution 7, such that
X takes its values in X and Y takes its values in [0,1]. We assume that the conditional
expectation E[Y|X] exists. In the regression framework, we want to estimate the regression
function

[f(z)=E[Y|X =2z], Vz e X.

Usually, the variable Y is not an exact function of X. Given an input X € X, we are
not able to predict the exact value of the output Y € [0,1]. This issue can be seen in the
regression framework as a noised estimation. It means that at each spot X of the input
set, the predicted label Y is concentrated around E [Y'|X] up to an additional noise with
null mean denoted by (. The regression model can then be written as

Y =E[Y|X] + (.
Take F the set of all measurable functions from X" to [0, 1]. Define ||f H%Q( px) = [y f2apPX
for all functions f in L?(X, A, PX) where PX is the probability measure of X. Consider

for any (x,y) € X x R and f € F. Pythagore’s Theorem yields

A(f) =EQUX,Y), /)] = If* = fllj2px) + E[¢?].

Thus f* is a minimizer of A(f) and A* = E[¢?].

Density estimation: Let (Z,7, 1) be a measured space where p is a finite measure.
Let Z be a random variable with values in Z and denote by 7 its probability distribution.
We assume that 7 is absolutely continuous w.r.t. to g and denote by f* one version of the
density. Consider F the set of all density functions on (Z,7, ). We consider

Q(z, f) = —log f(2),
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for any z € Z and f € F. We have
A(f) =E[Q(Z, )] = K(f*|f) - /Zlog(f*(Z))dﬂ(Z)-

Thus, f* is a minimizer of A(f) and A* = — [ log(f*(z))dn(z).

Instead of using the Kullback-Leibler loss, one can use the quadratic loss. For this
setup, consider F the set L?(Z, T, 1) of all measurable functions with an integrated square.
Define

(9.3) Q. f) = /2 Pdu—2f(2),

for any z € Z and f € F. We have, for any f € F,
AU =BLQUZD) = If" = Mgy ~ [ (7" G)Pdutz).

Thus, f* is a minimizer of A(f) and A* = — [;(f*(2))%du(z).

Classification framework: Let (X, .A) be a measurable space. We assume that the
space Z = X x {—1,1} is endowed with an unknown probability measure 7. We consider
a random variable Z = (X,Y’) with values in Z with probability distribution 7. Denote
by F the set of all measurable functions from X to R. Let ¢ be a function from R to R.
For any f € F consider the ¢—risk, A(f) = E[Q((X,Y), f)], where the loss is given by
Q(z,y), f) = ¢(yf(x)) for any (z,y) € X x {—1,1}. Most of the time a minimizer f* of
the ¢—risk A over F or its sign is equal to the Bayes rule f*(x) = Sign(2n(z) — 1),Vx € X,
where n(z) =P(Y = 1|X = z) (cf. [130]).

In this chapter, we obtain an oracle inequality in the general framework described at
the beginning of this Subsection. Then, we use it in the density estimation and the bounded
regression frameworks. For applications of this oracle inequality in the classification setup,
we refer to Chapters [7] and

Now, we introduce an assumption which improve the quality of estimation in our frame-
work. This assumption has been first introduced by [91], for the problem of discriminant
analysis, and [116], for the classification problem. With this assumption, parametric rates
of convergence can be achieved, for instance, in the classification problem (cf. [116], [L09]).

Margin Assumption(MA): The probability measure 7 satisfies the margin assump-
tion MA(k,c, Fo), where k > 1,¢ > 0 and Fy is a subset of F if E[(Q(Z, f) —Q(Z, f*))?] <
c(A(f) — AR Vf € F.

In the bounded regression setup, it is easy to see that any probability distribution 7 on
X x [0, 1] naturally satisfies the margin assumption MA(1, 16, 1), where F; is the set of all
measurable functions from X to [0,1]. In density estimation with the integrated squared
risk, all probability measures 7 on (Z,7) absolutely continuous w.r.t. the measure p with
one version of its density a.s. bounded by a constant B > 1, satisfies the margin assumption
MA(1,16 B2, Fg) where Fp is the set of all non-negative function f € L?(Z, 7, u) bounded
by B.

The margin assumption is linked to the convexity of the underlying loss. In density and
regression estimation it is naturally satisfied with the better margin parameter x = 1, but,
for non-convex loss (for instance in classification) this assumption does not hold naturally
(cf. Chapter 4] for a discussion on the margin assumption and for examples of such losses).

2.2. Aggregation Procedures. Let’s work with the notations introduced in the
beginning of the previous Subsection. The aggregation framework considered, among
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others, by [74], [125], [35],[98], [114], [87], [I7] is the following: take JFy a finite subset of
F, our aim is to mimic (up to an additive residual) the best function in Fy w.r.t. the risk
A. For this, we consider two aggregation procedures.

The Aggregation with Exponential Weights aggregate (AEW) over Fy is defined by

(9.4) JEAE LY W (),
J€Fo
where the exponential weights w(™ (f) are defined by

n €Xp (_nAn(f))
(9:5) w(f) = :
de]—‘o €xp (_nAn(g))
We consider the Empirical Risk Minimization procedure (ERM) over Fy defined by

(9.6) JAERD € Arg min An(f).

Vf € Fo.

2.3. Oracle Inequalities. In this Subsection we state an exact oracle inequality
satisfied by the ERM procedure and the AEW procedure (in the convex case) in the
general framework of the beginning of Subsection From this exact oracle inequality we
deduce two other oracle inequalities in the density estimation and the bounded regression
framework. We introduce a quantity which is going to be our residual term in the exact
oracle inequality. We consider

1 1/2 K
BW?WW) if B(F <logM> 2h—1
0,7, Q) Z
f)/(n') M,H,f(),ﬂ',Q) - < 61: Pin
(10&%) o otherwise,

where B(Fy, 7, Q) denotes minger, (A(f) — A*), K > 1 is the margin parameter, 7 is the
underlying probability measure, @) is the loss function,

. (log2 3+/log2 1 1
(9.7) $1 = min ( , , , )
96cK’ 16K+/2 8(4c+ K/3)’ 576¢
and
e 3log2 1 051
(98) fz = min (8’ 32K 2(16c + K/3)" 2 )

where the constant ¢ > 0 appears in MA(k, ¢, Fo).

THEOREM 9.1. Consider the general framework introduced in the beginning of Subsection
(2.1 Let Fy denote a finite subset of M elements fi,..., fa in F, where M > 2 is an
integer. Assume that the underlying probability measure w satisfies the margin assumption
MA(k,e,Fo) for some k > 1,¢ > 0 and |Q(Z, f) — Q(Z, [*)| < K a.s., for any f € Fo,
where K > 1 4s a constant. The Empirical Risk Minimization procedure satisfies

E[A(f{PRM) — A7) < min (A(f;) = A7) + dy(n, M, &, Fo. 7, Q).
J=1L
Moreover, if f — Q(z, f) is convex for m-almost z € Z, then the AEW procedure

satisfies the same oracle inequality as the ERM procedure.

Now, we give two corollaries of Theorem [9.1] in the density estimation and bounded
regression framework.

COROLLARY 9.1. Consider the bounded regression setup. Let f1, ..., far be M functions
on X with values in [0,1]. Let f,, denote either the ERM or the AEW procedure. We have,
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for any € > 0,
4log M
eBan

E[||f* - fn|‘%2(pX)] <(1+¢ j:IElr}M(Hf* - fjHQL?(PX)) +
where (o is defined in where we take K equals to 4.

COROLLARY 9.2. Consider the density estimation framework. Assume that the under-
lying density function f* to estimate is bounded by B > 1. Let f1,..., far be M functions
bounded from above and below by B. Let fn denote either the ERM or the AEW procedure.
We have, for any e > 0,

09 ES — Falffagy) <A+ min (1F = lfFa) +

4log M
6,8277, ’

where P2 is defined in where we replace K by 2B%u(Z) + 4B.

In both of the last Corollaries, the ERM and the AEW procedures can both be used to
mimic the best f; among the f;’s. Nevertheless, from a computational point of view the
AEW procedure does not require any minimization step contrarily to the ERM procedure.
Moreover, from a theoretical point of view the ERM procedure can not mimic the best
fj among the f;’s as fast as the cumulative aggregate with exponential weights (it is an
average of AEW procedures). For a comparison between these procedures we refer to

Chapter [4

REMARK 9.1. The constants of aggregation multiplying the residual term in Theorem
and in both of the following Corollaries are very large and are certainly not optimal.
Nevertheless, this is a constant of aggregation and not a constant of estimation. It means
that when we use, for instance, the oracle inequality , to construct adaptive estimators,
the term (14 €)minj— (]| f* — fjH%Q(M)) is equal to (14 €)Cn~(28)/2s+) “yhere s is a
reqularity parameter. In that case, the constant of aggregation is divided by n, whereas the
constant of estimation C is divided by n=(29)/Zs+1) >~ =1 Moreover, They come from
the proof and does not appear in the simulations (cf. Section @

3. Multi-thresholding wavelet estimator

In the present section, we propose an adaptive estimator constructed from aggregation
techniques and wavelet thresholding methods. For the density model and the regression
model with uniform random design, we show that it is optimal in the minimax sense over
a wide range of function spaces.

3.1. Wavelets and Besov balls. We consider an orthonormal wavelet basis gen-
erated by dilation and translation of a compactly supported ”father” wavelet ¢ and a
compactly supported "mother” wavelet ¥. For the purposes of this chapter, we use the peri-
odized wavelets bases on the unit interval. Let ¢, = 21/2(29 x—k), Yik = 21/24p(29x—k) be
the elements of the wavelet basis and ¢%5"(x) = 37,7 ¢k (z—1), ¥y () = ZleZ i p(z—1),
there periodized versions, defined for any x € [0,1], j € Nand k € {0,...,27 —1}. There ex-
ists an integer 7 such that the collection ¢ defined by ¢ = { ie,:, k=0,..2"—1; ?j:, j=
Ty.y00, k=0,...,27 — 1} constitutes an orthonormal basis of L?([0,1]). In what follows,
the superscript ”per” will be suppressed from the notations for convenience. For any integer
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[ > 7, a square-integrable function f* on [0, 1] can be expanded into a wavelet series

2l—1 oo 271
Zalkdnk )+ DD Bistik(@)
j=l k=0
where a; = fol [*(2)¢;k(x)dz and B = fo z)Y; (z)dz. Further details on wavelet

theory can be found in [95] and [43].

Now, let us define the main function spaces of the study. Let M € (0,00), s € (0, N),
p € [l,00) and g € [1,00). Let us set 3,_1 1 = o, . We say that a function f* belongs to
the Besov balls By (M) if and only if the associated wavelet coefficients satisfy

- ; 21 1/p1a71/q
[ Z [2J(s+1/271/p)< Z Wj,k\p) } ] <M, if gell,00),
j k=0

j=7—1
with the usual modification if ¢ = co. We work with the Besov balls because of their

exceptional expressive power. For a particular choice of parameters s, p and ¢, they contain
the Holder and Sobolev balls (see [95]).

3.2. Term-by-term thresholded estimator. In this Subsection, we consider the
estimation of an unknown function f* in L?([0,1]) from a general situation. We only
assume to have n observations gathered in the data set D, from which we are able to
estimate the wavelet coefficients ajx and §; of f* in the basis (. We denote by &; and
Bj’k such estimates.

A term-by-term thresholded wavelet estimator is given by

27—1 Jj1 29—1
(9-10) (D) = Z drpdr(@) + > Toy(Bin)vin(e),
=71 k=0

where ji is an integer satisfying (n/logn) < 2/t < 2(n/logn), A = (Ar,...A},) is a vector of
positive integers and, for any u > 0, the operator T, is such that there exist two constants
C1,Cy > 0 satisfying, for any z,y € R,

(9.11) 1Tu(z) = y|* < Cr(min(y, Cou)® + |z — y[* L,y s0-14))-

The inequality holds for the hard thresholding rule T 4(z) = x 1, />,;, the soft
thresholding rule Y5 (2) = sign(z)(|z| — u) Mfjpi>uy (see [50], [51] and [46]) and the
non-negative garrote thresholding rule Y% (z) = (# — u?/x) Ty 50y (see [57]).

If we consider the minimax point of view over Besov balls under the integrated squared
risk, then [46] makes the conditions on &z, Bj,k and the threshold A such that the estimator
f (D, .) defined by is optimal for numerous statistical models. This result is recalled
in Theorem [9.2] below.

THEOREM 9.2 (Delyon and Juditsky (1996)). Let us consider the general statistical
framework described in the beginning of the present section. Assume that there exists a
constant C > 0 such that, for any j € {T—1,..., 51}, k € {0,...,27 — 1} and n large enough,
we have

(9.12) E(|ﬁ]k — ,Bjyk\‘l) < Cn~2, where we take Br—l,k = Gr
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and that there exist two constants C' > 0 and p, > 0 such that, for any a,j € {7,...,71},
k€ {0,...,27 — 1} and n large enough, we have

(9.13) P (2vlB — B4l = pov/a) < 027,

Let us consider the term-by-term thresholded estimator f'UjS (D, .) defined by with
the threshold

Vjs = (ps(J _j8)+)j:T7--~,j17
where js is an integer such that n*/(1+28) < 9is < ot/ (1+25)  Then, there exists a constant
C > 0 such that, for any p € [1,00], s € (1/p, N], q € [1,00] and n large enough, we have:

sup  E|fo,, (Dn,.) — £ 3agou] < Cn2/G40),
feBg (L)

The rate of convergence V,, = n~=2%/(1429) is minimax for numerous statistical models,
where s is a regularity parameter. For the density model and the regression model with
uniform design, we refer the reader to [46] for further details about the choice of the
estimator Bj,k and the value of the thresholding constant p,. Starting from this non-
adaptive result, we use aggregation methods to construct an adaptive estimator at least as
good in the minimax sense as fvjs (D, ).

3.3. Multi-thresholding estimator. Let us divide our observations D,, into two
disjoint subsamples D,,, of size m, made of the first m observations and D®, of size I,
made of the last remaining observations, where we take

l=1In/logn| and m =n —I.

The first subsample D,,, sometimes called ”training sample”, is used to construct a family
of estimators (in our case this is thresholded estimators) and the second subsample D®,
called the ”training sample”, is used to construct the weights of the aggregation procedure.
For a discussion on the sample splitting we refer to Chapter

DEFINITION 9.1. Let us consider the term-by-term thresholded estimator described in
. Assume that we want to estimate a function f* from [0,1] with values in [a,b].
Consider the projection function

(9.14) hap(y) = max(a, min(y, b)), Vy € R.

We define the multi-thresholding estimator f, : [0,1] — [a,b] at a point x € [0,1] by
the following aggregate

(9'15) fn(x) = Z w(l)<ha,b(fvu(Dma ')))ha,b(fvu(Dmax>)7

UGATL
where Ay, = {0,...,logn}, v, = (p(j — w)4)j=r,.j1,Vu € Ay, and p is a positive constant
depending on the model worked out and

exp (~1AO (o (o, (Dins ))))
5 en, e (—1AD (hay(fo, (Ds ) )

where AV(f) = T3 i1 Q(Zs, f) is the empirical risk constructed from the 1 last obser-
vations, for any function f and for the choice of a loss function @ depending on the model

considered (cf. and for examples).

w(l) (ha,b(fvu (Dma ))) =

, Yu € Ay,
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The multi-thresholding estimator f,, realizes a kind of ’adaptation to the threshold’ by
selecting the best threshold v,, for v describing the set A,,. Since we know that there exists
an element in A,, depending on the regularity of f* such that the non-adaptive estimator
fvu (D, .) is optimal in the minimax sense (see Theorem , the multi-thresholding
estimator is optimal independently of the regularity of f*. Moreover, the cardinality of
Ay, is only logn, thus the construction of fn does not require the construction of too many
estimators.

4. Performances of the multi-thresholding estimator

In this section we explore the minimax performances of the multi-thresholding estimator
defined in (9.15) under the L2([0,1]) risk over Besov balls in the density estimation and
the bounded regression with uniform random design models.

4.1. Density model. In the density estimation model, Theorem[9.3|below investigates
rates of convergence achieved by the multi-thresholding estimator (defined by (9.15])) under
the L2(]0,1]) risk over Besov balls.

THEOREM 9.3. Let us consider the problem of estimating f* from the density model.
Assume that there exists B > 1 such that the underlying density function f* to estimate is
bounded by B. Let us consider the multi-thresholding estimator defined in where we
take a = 0,b = B, p such that p*> > 4(log2)(8B + (8p/(3v2))(|¥ |l + B)) and

1< s 1 ¢
(9.16) Qg = " Z ¢4k (Xs), Bik = n Z%Z)j,k(Xi)-
i=1 i=1

Then, there exists a constant C' > 0 such that

sup E[an o f*H%?([O,l])] < Cn—QS/(2s+1)’
freBg (L)

for any p € [1,00], s € (p~1, N], q € [1,00] and integer n.

The rate of convergence V,, = n~2*/(1*2%) is minimax over B, ,(L). Further details
about the minimax rate of convergence over Besov balls under the L%([0,1]) risk for the
density model can be found in [46] and [62]. For further details about the density estimation
via adaptive wavelet thresholded estimators, see [52], [46] and [99]. See also [65] for a
practical study.

4.2. Bounded regression. In the framework of the bounded regression model with
uniform random design, Theorem below investigates the rate of convergence achieved
by the multi-thresholding estimator defined by (9.15) under the L?([0,1]) risk over Besov
balls.

THEOREM 9.4. Let us consider the problem of estimating the regression function f*
in the bounded regression model with random uniform design. Let us consider the multi-

thresholding estimator with p such that p* > 4(log2)(8 + (8p/(3v/2))([|¥]|ce + 1))
and

) 1 ; 1o
(9-17) Gk =— > Yidjs(X), Bio =~ Yithjs(X5).
i=1 i=1
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Then, there exists a constant C > 0 such that, for any p € [1,00], s € (p~1, N], q € [1, =]
and integer n, we have
sup E[an _ f*||%2([0’1])] < Cn_QS/(QSH)-
freB; (L)

The rate of convergence V, = n~2%/(42%) is minimax over By ,(L). The multi-
thresholding estimator has better minimax properties than several other wavelet estimators
developed in the literature. To the authors’s knowledge, the result obtained, for instance, by
the hard thresholded estimator (see [50]), by the global wavelet block thresholded estimator
(see [76]), by the localized wavelet block thresholded estimator (see [29, 32 [30], [61L [60],
[39] and [31]) and, in particular, the penalized Blockwise Stein method (see [36]) are worse
than the one obtained by the multi-thresholding estimator and stated in Theorems [9.3]
and This is because, on the difference of those works, we obtain the optimal rate of
convergence without any extra logarithm factor. In fact, the multi-thresholding estimator
has similar minimax performances than the empirical Bayes wavelet methods (see [128]
and [70]) and several term-by-term wavelet thresholded estimators defined with a random
threshold (see [71] and [I8]). Finally, it is important to mention that the multi-thresholding
estimator does not need any minimization step and is relatively easy to implement.

TABLE 1. Theoretical performances of some well known adaptive wavelet
estimators and of the multi-thresholding estimator.

Bpa(L) l<m<2 2<
Estimators -
‘ Hard thresholding H near optimal ‘ near optimal ‘
‘ Block thresholding H near optimal ‘ optimal ‘
‘ Multi-thresholding H optimal ‘ optimal ‘

In the table[l} 'near optimal’ means that the estimation procedure achieves the minimax
rate up to a logarithm factor.

5. Simulated Illustrations

This section illustrates the performances of the multi-thresholding estimator. Let
us consider the regression model with random uniform design and with the noise ( =
max(—2"1, min(N,271))o where o = 0,05 and N is a standard Gaussian variable. For the
simulations we take n = 2'3 observations.

Let us define the multi-thresholding estimator with

e the non-negative garrote thresholding operator T (z) = (m —u?/ m) Lfjz|zu}- The
reason why we chose this thresholding rule is that, for the universal threshold, it
provides better numerical and graphical result than the hard and soft thresholding
rules (cf. [57]).

e the wavelet basis 'sym8’ (Symlet 8, see for instance [43])

e the function f is 'Heavisine’,

f(z) = 3,3662 * [4sin(4rx) — sgn(x — 0,3) — sgn(0,72 — x)].
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5. SIMULATED ILLUSTRATIONS

e the estimators &;; and Bj,k defined by ,

e the thresholding constant p = /2.
In the simulation below, the multi-thresholding estimator is called Estimator Multi-NG,
(NG is for "nonnegative garotte”) and we use all the observations for the construction
of the estimators to aggregate and for the construction of the exponential weights. The
Estimator NG is the usual nonnegative garotte thresholding estimator taken with the

threshold

A= (Ar,.. s Ny, where \j = av24/(j/n),Vj € {7, ..., 1}
proposed by [52]. The resulting estimator is near optimal in the minimax sense over Besov
balls under the L? risk (cf. [57]). The multi-thresholding estimator is visually better

function F and Estimator Multi-NG

function f and Estimator NG

0.9 : 0.9
— = = — = 1
o8l Multi-NG || o8l A NG |
/ Y
0.7} 0.7} I,-"
f A P

f [\ / J\

0.6 { 0.6 Dol
! Ifl | ff W'
{ 1 III | .:I /] I'.' |
0.5 f | f 0.5 ! [ A
i \ { |';| \ /
/ \ f | '\ ]
0.4 / I 0.4 : v 1
I-'I I". \./I I I'::ﬁ b.'
0.3} f 0.3} \ 1
Vo L
\ ! Vo

0.2t 4 0.2t S
0.1 : 0.1 :

0 0.5 1 0 0.5 1

figure 1: Visual comparisons of the reconstructions of the Estimator Multi-NG and the
conventional Estimator NG.

than the usual nonnegative garotte thresholding estimator. The next figure shows the
repartition of the 'mass’ between the aggregated estimators.
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Weight w
0.45 T T : T T T

0.4+ 1

0.35F 4

0.3F 1

0.15F . 1

0.1

0.05F . ’ 1

figure 2: Spatial repartition of the weights w.

On figure [2] we can see a concentration of the weights around the estimator with
threshold v, where u = 6. Around this estimator there are five others estimators which
share most of the remaining mass. This figure shows how the multi-thresholding estimator
proceeds by concentrating around the best estimator among the f,, for u in A,,.

6. Proofs

Proof of Theorem We recall the notations of the general framework introduced
in the beginning of Subsection Consider a loss function @ : Z x F —— R, the risk
A(f) =E[Q(Z, f)], the minimum risk A* = minscr A(f), where we assume, w.l.o.g., that
it is achieved by an element f* in F and the empirical risk A, (f) = (1/n) >/, Q(Zi, f),
for any f € F. The following proof is a generalization of the proof of Theorem [3.1] in
Chapter

We first start by a ’linearization’ of the risk. Consider the convex set

M
C:{(Hl,...,HM):HjZOand Zajzl}

j=1

and define the following functions on C

M M
A0) N 0,A(f) and A,(0) 3" 0;A40(1))
j=1

j=1

which are linear versions of the risk A and its empirical version A,.
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Using the Lagrange method of optimization we find that the exponential weights

w (w™(f;))1<j<m are the unique solution of the minimization problem
LM
in (A,0)+=S 0:log6;: (61,....0 )
min ( <)+H;Jogj (61,....00) €C

where we use the convention 0log0 = 0. Take j € {1,...,M} such that A,(f;) =
min;—1,__a An(fj). The vector of exponential weights w satisfies

~ - log M
Anw) < Aueg) + =2,

where e; denotes the vector in C with 1 for j-th coordinate (and 0 elsewhere).
Let € > 0. Denote by A¢ the minimum mingee A(0). We consider the subset of C

Ddéf{QEC:fl(H)>flc+2e}.
Let x > 0. If
1[1 _A* _ (A _ *
W AO A O Ay e
9D A0) — A+ Ac — A* + 2+

then for any 6 € D, we have

(A(0) — A* + 2)
(Ac — A* + 2¢ + )

An(0) — An(f*) > A(9) — A* — > Ae — A + ¢,

because A(f) — A* > Ae — A* + 2¢. Hence,

P [inf (An(e) - An(f*)) <Ac— A"+ e]

0eD

A=A = (O - A
0eD Af) — A* +x Ac — A*+ 2+

(9.18) < P

Observe that a linear function achieves its maximum over a convex polygon at one of
the vertices of the polygon. Thus, for jo € {1,..., M} such that fl(ejo) =minj—y . m fl(ej)
(= minj—1__ar A(f;)), we have A(e;,) = mingec A(f). We obtain the last inequality by
linearity of A and the convexity of C. Let @ denotes either the exponential weights w or
e;. According to , we have

PRI ) ~ log M ~ log M
An() € min Aufe;) + <52 < Au(ey) + 25

So, if A(w) > A¢ +2¢ then 1 € D and thus, there exists § € D such that A, (0) — A,(f*) <
An(ejo) — An(f*) + (log M)/n. Hence, we have

P [[l(d}) > Ac + 26:| <P ng%[ln(g) — An(f) < Anesy) — An(f*) + lognM]

< : A _ * A A*
< IP[;?%A”(G) An(f*) < Ac A—i—e]

< plapdO =A=MY
bec Alf) - A" +a Ac— A* + 2+
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- ~ log M
HP | An(ej)) — An(f) > Ac — A" + € — Oi .
If we assume that
MO A~ (A0 - A e
oeC Af) — A* +x Ac — A* + 2+
then, there exists §(0) = (9;0), ... ,95\2)) € C, such that
AOO) — 4~ (A0) A e
A(BO) — A* 4z Ap — A*+ 2+

The linearity of A yields
AOO) — 4% — (A, (00) — A4, () _ T 0P TA) = A = (Au(f) = An(f))

= - 5 -
APO) - A+ S 0IAW) — A + o]
and since, for any numbers a1, ..., ap and positive numbers by, ..., by, we have

Zj]\/il aj a;
—— < max -1,

ij‘il b; ~ i=l..M b
then, we obtain

oy AU = A = (Aa(fy) = () ‘
j=1,...M A(fj) — A+ Ap, — A* +2e+ 2’

77777

Now, we use the relative concentration inequality of Lemma to obtain

A(f;) = A" = (Aulfy) — Au(f7)) €
P
L:I{{?’TM A(f;) — A* +x T Ay — A 42 ta
4c(Ap, — A* + 2+ x)2x/*5 n(ex)?
< M[1 - -
- < * n(ex)? P 4e(Ag, — A* + 2¢ + x)2xl/k

AK(Ag, — A* +2e + x) 3nex
M (1 0 - .
N ( * 3nex ) P ( AK(Ag, — A" + 2¢ + x))

Using the margin assumption MA(k, ¢, Fy) to upper bound the variance term and applying

Bernstein’s inequality, we get

PlAn(fi) = An(f?) 2 Ay — A" + e ]
n(e — (log M) /n)?
= exp <_2c<Afo — AR 4 (2K/3)(e — (log M)/n>> ’

for any € > (log M)/n. From now, we take z = Az, — A* + 2¢, then, for any (log M)/n <
€ < 1, we have

n(e — log M /n)? >
(Az, — A)M% + (2K/3)(e — (log M) /n)

16c(Ag, — A* 4 2¢)1/% ne?
M1 : —
+ ( * ne? P 16c(Ag, — A* + 2¢)1/s

8K 3ne
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If @ denotes e; then, A(w) = A(e;) = A(fEEM)). If 1 denotes the vector of exponential
weights w and if f — Q(z, f) is convex for w-almost z € Z, then, A(w) = A(w) >
A(f,SAEW)). If f — Q(z,f) is assumed to be convex for m-almost z € Z then, let f,
denote either the ERM procedure or the AEW procedure, otherwise, let f,, denote the
ERM procedure fT(LERM). We have for any 2(log M) /n < u < 1,

(919) E[A(fa) - Ar) SE [A(6) - Az| < 2u+2 / *[4(0) + M(Ty(e) + Ty(e))] de

u/2
where (€ — (log M) /n)?
n(e — (log n
Ti(e) = -
MO =\ " 5z, — )75+ RK/3)(e — (log M)/n>> |
16¢(Az, — A* + QE)I/K ne?
To(e) = |1 B
2(6) ( + > exp 160(14]—'0 —A* 26)1/.%

and

T3(e) = <1 + ;i) exp <_:;TIL;) .
We recall that (3 is defined in (9.7). Consider separately the following cases (C'1) and
(C2).
(C1) The case Az, — A* > ((log M) /(Byn))/ 2r=1),
Denote by p(M) the unique solution of pg = 3M exp(—pug). Then, clearly (log M)/2 <
u(M) < log M. Take u such that (n3iu?)/(Ax, — A*)/* = u(M). Using the definition of
case (1) and of u(M) we get u < Ax, — A*. Moreover, u > 4log M /n, then

1 (Axy—A*)/2 n(6/2)2
Ti(e)de < / exp (— > de
/W 1(e) 2 (e + K/6)(Ar, — A7)1/"

—i—/l exp (—TW> de.
(Ap,—A*)/2 (4C+K/3)61/“

Using Lemma [9.2 and the inequality u < Az, — A*, we obtain
1 *\1
8(4c+ K/3)(Ag, — A*)Y/~

an
Ti(e)de < _ '
PRI nu e 8<4c+K/3><AfO—A*>1/R>

We have 16¢(Ax, — A* + 2u) < nu? thus, using Lemma we get

/1 (Agy—A%)/2 e
Tr(e)de < 2/ ex (— )de
w/2 2< ) w/2 P 640(14}‘0 — fl*)l/"’i

1 2—-1/k
+2/ exp _ne de
(A]__O_A*)/Q 128¢

_ Ax\1/k 2
(9.21) < 2148¢(Ar, — AY) exp (- nu .
nu 2148¢(Ag, — A*)1/x
We have 16(3n)~! <u < Ag, — A*, thus,
! 16K (Ax, — A¥)V/% 3nu?
9.22 Ts(e)de < 0 — .
(9-22) /u/g e < AR e 16K (A, - )

From ((9.20)), (9.21]), (9.22) and (9.19)) we obtain

B Ar — AN\V/E 2
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AFpy—A*)/ " log M
nB1 ’

The definition of u leads to E | A(f,) — A]:O} < 4\/(

(C2)The case Axr, — A* < ((log M)/ (Byn))r/2s=1),
26—1)/k

We now choose u such that n8su = p(M), where p(M) denotes the unique
solution of yig = 3M exp(—po) and B is defined in (9.8). Using the definition of case (2)
and of p(M) we get u > Ax, — A* (since 81 > 202). Using the fact that v > 4log M/n
and Lemma [9.2] we have

! 2(16¢ + K/3) 3nu-1/x
2 T e A L —]
(9:23) /U/Q Qe < = P 560+ K/3)

We have u > (128¢/n)"/ (2= and using Lemma we obtain

1 256¢ nu2-1/x
9.24 Ts(e)de < ————— — .
(6-24) /u/Q 2(€)de < nut-1/x P 256¢

Since u > 16K /(3n) we have

1 16K 3nu?—1/s
2 T: < ——m0r - .
(9.25) /u/2 3(e)de < iy OXP T

From (9.23)), (9.24), (9.25)) and (9.19) we obtain

p (7nﬁ2u(2f€—1)/ﬁl)
nﬂgul—l/"’”

E[A(f) - Az) <20+ 6M

The definition of u yields E [A( fn) —A fo] <4 <1C7’f72/1> >*1 This completes the proof.

LEMMA 9.1. Consider the framework introduced in the beginning of Subsection[2.1]. Let
Fo=A{f1,.-., fu} be a finite subset of F. We assume that 7 satisfies MA(k,c,Fo), for
some k > 1,¢>0 and |Q(Z, f) — Q(Z, f*)| < K a.s., for any f € Fy, where K > 1 is a

constant. We have for any positive numbers t,x and any integer n

A(f) = An(f) = (A(S") = An(f7))
P[I}lea]}—'{ A(f)—A*+x >t}

dex/r n(tz)? 4K 3ntx
<M 1 — 1+ — —_ .
- (( * n(tw)2> P ( 40331/“) * ( * 3nt3:> P ( 4K )

Proof. We use a "peeling device”. Let > 0. For any integer j, we consider
Fi={feF:jx<A(f)— A* <(j+1)x}. Define the empirical process
A(f) = An(f) = (A(S7) = An(f7))
A(f) —A*+x '
Using Bernstein’s inequality and margin assumption MA(k, ¢, Fy) to upper bound the
variance term, we have

Zo(f) =

feF

P [masz(f) > t] < gp [maXZm(f) > t]
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“+00 .
nlt(j + 1)x]?
= M;OGXP ( T 26((j + D)) E + (2K /3)t(j + 1)g;>
= n(tz)2(j + 1)2 /s ) 3ntx
< (e (- e (— 640 5)
iz
<

M(e nt2g2-1/k te 3ntx )
Xp| —— xp | —
P Ac P\ 7K
+00 2..2-1/k
—FM/1 (exp (—%u2_1/”> + exp (—%u) )du.

Lemma [9.2] completes the proof.

LEMMA 9.2. Let « > 1 and a,b > 0. An integration by part yields
exp(—ba®)

“+o00
—bt*) dt <
/a exp ( )dt < aba®—1

Proof of Corollaries and In the bounded regression setup, any probability
distribution © on X x [0, 1] satisfies the margin assumption MA(1,16,F;), where F;
is the set of all measurable functions from X to [0,1]. In density estimation with the
integrated squared risk, any probability measure 7 on (Z,7), absolutely continuous w.r.t.
the measure p with one version of its density a.s. bounded by a constant B > 1, satisfies
the margin assumption MA(1,16B2%, Fg) where Fp is the set of all non-negative function
f € L?>(Z,7, ;) bounded by B. To complete the proof we use that for any € > 0,

(B(}"o, 7, Q) log M log M
pin Bane
and in both cases f — Q(z, f) is convex for any z € Z.

Proof of Theorem [9.3. We apply T heorem [9.2] with e = 1, to the multi-thresholding
estimator fn defined in ({9.15]). Since the density function f* to estimate takes its values in
[0, B], Card(Ay) = logn and m > n/2, we have, conditionally to the first subsample Dy,

Ell|f* = fall20.17) [Pl

1/2
) §6B(f077T7Q)+

) . 4(logn) log(logn)
" 2
< 27fr€1k11(||f = ho,B(fo. (Dm, Dlli20,1)) + Bom
. . 4(log n) log(logn)
x 2
< 21?61}&(”]0 *fvu(Dmv')HLQ([O,I]))jL ﬂZn ’

where hg g is the projection function introduced in and (3 is given in . Now, for
any s > 0, let us consider j, an integer in A, such that n!/(125) < 24s < 251/(14+25)  Gince
the estimators &;j and Bj,k defined by satisfy the inequalities (]9.12[) and (]9.13[),
Theorem implies that, for any p € [1, 0], s € (1/p, N], q € [1,¢] and n large enough,
we have

sup E[Hf—f*”%mo,uﬂ = sup E[E[Hf—f*”%?([o,u) | D]
freBg 4 (L) freBg 4(L)

4(logn) log(logn)

< 2 sup E[min(||f* = fo,(Dm,.)||? +
L B~ fo D i) L
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4(logn) log(logn)

< 2 sup  E[lf — fo,,(Dm, )|} +
J*eBy (L) . R ) Ban

< Cn725/(1+2s).

This completes the proof of Theorem [9.3]

Proof of Theorem The proof of Theorem [9.4] is similar to the proof of Theorem
We only need to prove that, for any j € {7, ...,j1} and k € {0, ...,27 — 1}, the estimators
& and Bj,k defined by satisfy the inequalities (]9.12[) and (]9.13[). First of all, let us
notice that the random variables Y1); 1 (X1), ..., Ya1; 1 (Xy) are i.i.d and that there m—th
moment, for m > 2, satisfies

E(|eo51(X0)[™) < [[$lI5 22727 DE(|ghy e (X1) ) = [l 227270,
For the first inequality (cf. inequality (9.12))), Rosenthal’s inequality (see [62] p.241])
yields, for any j € {7,...,j1},
E(1Bik = Bial) < COB(IVieh (X)) + n 2 [E( Vi1 (X0)[*)])
< O[Sl 5(n=?2 +n72%) < Cn2,

For second inequality (cf. inequality (9.13))), Bernstein’s inequality yields
2
pra

vl

P2Vl — Bial 2 pv/a) < 2exp ( ~ 802 +
where a € {7,...,j1}, p € (0,00),
M= V(X)) = Biklloo < 2721V ool lloo + 12 0,1
< 2V2(|glloe + 1) < 2Y2(n/ log m) ([ ¢l]oc + 1),

and 02 = E(|Y19;£(X1) — Bixl?) < E(|V19;.(X1)?) < [[Y]|A < 1. Since a < logn, we
complete the proof by seeing that for p large enough, we have

p*a

exp ( 802 + (8/3)Mp\/5/(2\/ﬁ))

S 2—4(1'
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CHAPTER 10

Optimal rates and adaptation in the single-index model
using aggregation

We want to recover the regression function in the single-index model. Using an aggre-
gation algorithm with local polynomial estimators, we answer in particular to Question 2
from Stone (1982) [110] on the optimal convergence rate within this model. The procedure
constructed here has strong adaptation properties: it adapts both to the smoothness of
the link function and to the unknown index. Moreover, the procedure locally adapts to
the distribution of the data, which allows to prove the results for a fairly general design.
The behavior of this algorithm is studied through numerical simulations. In particular, we
show empirically that it improves strongly empirical risk minimization.
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CHAPTER 10. AGGREGATION IN THE SINGLE-INDEX MODEL

1. Introduction

The single-index model is standard in statistical literature. It is widely used in sev-
eral fields, since it provides a simple trade-off between purely nonparametric and purely
parametric approaches. Moreover, it is well-known that it allows to deal with the so-called
“curse of dimensionality” phenomenon. Within the minimax theory, this phenomenon is
explained by the fact that the minimax rate linked to this model (which is multivariate,
in the sense that the number of explanatory variables is larger than 1) is the same as in
the univariate model. Indeed, if n is the sample size, the minimax rate over an isotropic
s-Holder ball is n~=2%/(2+4) for mean integrated square error (MISE) in the d-dimensional
regression model without the single-index constraint, while in the single-index model, this
rate is conjectured to be n~=2%/(25+1) by [110]. Hence, even for small values of d (larger
than 2), the dimension has a strong impact on the quality of estimation when no prior
assumption on the structure of the multivariate regression function is made. In this sense,
the single-index model provides a simple way to reduce the dimension of the problem.

Let (X,Y) € R? x R be a random variable satisfying

(10.1) Y =g(X) +o(X)e,

where ¢ is independent of X with law N(0,1) and where o(-) is such that o9 < 0(X) < o
a.s. for some g9 > 0 and a known o > 0. We denote by P the probability distribution
of (X,Y) and by Px the margin law in X or design law. In the single-index model, the
regression function as a particular structure. Indeed, we assume that g can be written has

(10.2) g(x) = f(9"x)
for all x € RY, where f : R — R is the link function and where the direction ¥ € R¢, or
indezx, belongs to the half-unit sphere

St ={veR?|[jv]2 =1 and v > 0},

where || - ||2 is the Euclidean norm over R%. The assumption 9 € Sﬁlr_l entails the unicity

of (f,9) in (10.2)) and thus the identifiability of the model. We assume that the available
data

(10.3) D, :=[(X;,Y;);1 <i<n]

is a sample of n i.i.d. copies of (X,Y") satisfying and . In this model, we can
focus on the estimation of the index 1 based on D,, when the link function f is unknown,
or we can focus on the estimation of the regression g when both f and ¢ are unknown. In
this chapter, we consider the latter problem. It is assumed below that f belongs to some
family of Holder balls, that is, we do not suppose its smoothness to be known.

Statistical literature on this model is wide. Among many other references, see [66]
for applications in econometrics, an application in medical science can be found in [122],
see also [44], [45] and the survey paper by [58]. For the estimation of the index, see for
instance [67]; for testing the parametric versus the nonparametric single-index assumption,
see [I11]. See also a chapter in [59] which is devoted to dimension reduction techniques
in the bounded regression model. While the literature on single-index modelling is vast,
several problems remain open. For instance, Question 2 from [I10] concerning the minimax

rate over Holder balls in model ([10.1)),(10.2) is still open.

This chapter provides new minimax results about the single-index model, which answer
in particular to latter question. Indeed, we prove that in model (10.1)),(10.2]), we can achieve
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2. CONSTRUCTION OF THE PROCEDURE

the rate n=25/(251) for a link function in a whole family of Hélder balls with smothness s,

see Theorem [10.1l The optimality of this rate is proved in Theorem To prove the
upper bound, we use an estimator which adapts both to the index parameter and to the
smoothness of the link function. This result is stated under fairly general assumptions on
the design, which include any “non-pathological” law for Px. Moreover, this estimator has
a nice “design-adaptation” property, since it does not depend within its construction on
Px.

2. Construction of the procedure

The procedure developed here for recovering the regression does not use a plugin
estimator by direct estimation of the index. Instead, it adapts to it, by aggregating several
univariate estimators based on projected samples

(10.4) Dp(v) = [(v X;,Y7),1 < i < ml,

where m < n, for several v in a lattice of Sﬂlr_l. This “adaptation to the direction” uses
a split of the sample, like in cross-validation for instance. We split the whole sample D,,
into a training sample
Dy, :=[(X;,Y:);1 <i <m)]
and a learning sample
D(m) =[(X;,Y);m+1<i<n].

The choice of the split size can be quite general (see Section [3|for details). In the numerical
study (conducted in Section [4| below), we consider simply m = 3n/4 (the learning sample
size is a quarter of the whole sample), which provides good results, but other splits can be
considered as well.

Using the training sample, we compute a family {3V ; A € A} of linear (or weak)
estimators of the regression g. Each of these estimators depend on a parameter A = (v, s)
which make them work based on the data “as if” the true underlying index were v and “as
if” the smoothness of the link function were s (in the Holder sense, see Section .

Then, using the learning sample, we compute a weight w(g) € [0, 1] for each g €
{GN; X € A}, satisfying Y oreA w(g™) = 1. These weights give a level of significance to
each weak estimator. Finally, the adaptive, or aggregated estimator, is simply the convex
combination of the weak estimators:

3= 3 (g
AEA

The family of weak estimators consists of univariate local polynomial estimators (LPE),

with a data-driven bandwidth that fits locally to the amount of data. In the next section

the parameter A = (v, s) is fixed and known, thus we contruct a univariate LPE based on
the sample D, (v) = [(Z;,Yi);1 <i<m]=[(v' X;,Y;);1<i < ml.

2.1. Weak estimators: univariate LPE. The LPE is standard in statistical lit-
erature, see for instance [115], among many others. The reason why we consider local
polynomials instead of some other method (like smoothing splines, for instance) is theoreti-
cal. It is linked with the fact that we need rate-optimal weak estimators under the general
design Assumption (D), so that the aggregated estimator is also rate-optimal. We construct
an estimator f of f based on i.i.d. copies [(Z;,Y;);1 <i < m] of a couple (Z,Y) € R x R
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CHAPTER 10. AGGREGATION IN THE SINGLE-INDEX MODEL

such that
(10.5) Y = f(Z) 4+ o(Z)e,

where € is standard Gaussian noise independent of Z, ¢ : R — [0g,01] C (0,+00) and
f € H(s,L) where H(s, L) is the set of s-Holderian functions such that

|f(LSJ)(Zl) _ f(LSJ)(ZQ)‘ < L|z — 22‘87L8J

for any 21,29 € R, where L > 0 and |s] stands for the largest integer smaller than s. This
Holder assumption is standard in nonparametric literature.

Let r € N and h > 0 be fixed. If z is fixed, we consider the polynomial P(th) € Pol,
(the set of real polynomials with degree at most r) which minimizes in P:

(10.6) (Y= P(Z; — Z)>21Ziel(z,h)7
=1

7

where I(z,h) := [z — h, z + h] and we define the LPE at z by
f(za h) = p(z,h)(z)

The polynomial P(th) is well-defined and unique when the symmetrical matrix Z,,(z, h)

with entries
m

1

- <Zz — z>a+b1
mPg[I(z,h)] — h Z;€1(z,h)

(10.7) (Zi(2,h))ap =

for (a,b) € {0,...,R}? is definite positive, where Pz is the empirical distribution of
(Zi)1<i<m, given by

_ 1 &
(10.8) PylA] = — z; 1.4

for any A C R. When Z,,(z, h) is degenerate, we simply take f(z,h) := 0. The tuning
parameter h > 0, which is called bandwidth, localizes the least square problem around
the point z in . Of course, the choice of h is of first importance in this estimation
method (as with any linear method). An important remark is then about the design law.
Indeed, the law of Z = v X varies with v strongly: even if Py is very simple (for instance
uniform over some subset of R? with positive Lebesgue measure), P,y can be “far” from
the uniform law, namely with a density that can vanish at the boundaries of its support,
or inside the support, see the examples in Figure [l This remark motivates the following
choice for the bandwidth.

If f € H(s,L) for known s and L, a “natural” bandwidth, which makes the balance
between the bias and the variance of the LPE is given by

(10.9) Hn(2) := argmin {zn > (mPZ[I(z, b))/ J

This bandwidth choice stabilizes the LPE, since it fits point-by-point to the local amount
of data. We consider then

(10.10) F(2) = f(z, Hn(2)),
for any z € R, which is in view of Theorem m (see Section [3]) a rate-optimal estimator

over H (s, L) in model ([10.5]).
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792
= density of Pyrx
791 /\
Py = uniform law density of Py x

on [—1,1]?

YN

density of Pyry

Px = uniform on the
union of discs

figure 1: Simple design examples

2.2. Adaptation by aggregation. If A := (v, s) is fixed, we consider the LPE f(V
given by (|10.10)), and we take
(10.11) IV(@) = ro(FV W ),

for any z € R? as an estimator of g, where 7g(f) := max(—Q, min(Q, f)) is the truncation
operator by @ > 0. The reason why we need to truncate the weak estimators is related to the
theoretical results concerning the aggregation procedure described below, see Theorem [10.4]
in Section |3} In order to adapt to the index ¥ and to the smoothness s of the link function,
we aggregate the weak estimators from the family { g™\ e A} with the following algorithm:
we take the convex combination

(10.12) g=>_ wggW
AEA
where for a function g € {g(*); A € A}, the weight is given by
_ €xXp ( - TR(m) (g))
>oaen €p (= TRy (3W))’

with a temperature parameter T' > 0 and

(10.13) w(g) :

(10.14) Rimy(@) == D, (Yi—g(Xy))%,

i=m-+1
which is the empirical least squares of g over the training sample (up to a division by the
sample size). The set of parameters A is given by A := S x G, where G is the grid with
step (logn)~! given by
(10.15) G = {Smim Smin + (logn) ™Y, smin + 2(logn) 7L, ..., smax}
The tuning parameters Spin and spmax correspond to the minimum and maximum “allowed”
smoothness for the link function: with this choice of G, the aggregated estimator converges
with the optimal rate for a link function in H(s, L) for any s € [Smin, Smax] 10 view of

Theorem The set S = 5’%71 is the regular lattice of the half unit-sphere Sﬁl;l with
step A. Namely, S’i_l is such that for any lattitude, any consecutive points in the same
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CHAPTER 10. AGGREGATION IN THE SINGLE-INDEX MODEL

lattitude have distance A (if d > 3, a couple of points in S’i‘l belongs to the same lattitude
if they have one common coordinate). The step is taken as

(1016) A = (TI, lOg 71)71/(25111in)7

which relies on the minimal allowed smoothness of the link function. For instance, if we
want the estimator to be adaptive over Holder classes of functions at least Lipschitz, we
take A = (nlogn)~1/2.

We can understand this algorithm in the following way: first, we compute the least
squares of each weak estimators. This is the most natural way of assessing the level of
significance of some estimator among the other ones. Then, we put a Gibbs law over the
set of weak estimators. The mass of each estimator relies on its least squares (over the
learning sample). Finally, the aggregate is simply the mean expected estimator according
to this law.

REMARK 10.1. This aggregation algorithm (with Gibbs weights) can be found in [87]
in the regression framework, for projection-type weak estimators. Iterative versions of this
algorithm can be found in [35)], [T2], [125]. This aggregation algorithm is also a simplified
version of the one from [T5]. Indeed, the algorithm proposed therein is a refinement of
a stochastic gradient descent, namely a so-called mirror descent in the dual space with
averaging, see [T5] and [72] for more details. It makes an extra summation of weights
relying to the cummulative least squares over the learning sample, that we do not make
here.

If T is small, the weights are close to the uniform law over the set of weak
estimators, and of course, the resulting aggregate is inaccurate. If T is large, only one
weight will equal 1, and the others equal to 0: in this situation, the aggregate is equal
to the estimator obtained by empirical risk minimization (ERM). This behavior can be
also explained by equation in the proof of Theorem Indeed, the exponential
weights realize an optimal tradeoff between the ERM procedure and the uniform
weights procedure. The parameter T is somehow a regularization parameter of this tradeoff.

The ERM already gives good results, but if 7" is chosen carefully, we expect to obtain an
estimator which outperforms the ERM. It has been proved theoretically in Chapter {4 that
the aggregate outperforms the ERM in the regression framework. This fact is confirmed by
the numerical study conducted in Section [ where the choice of T is done using a simple
leave-one-out cross-validation algorithm over the whole sample for aggregates obtained
with several T'. Namely, we consider the temperature

(10.17) T = argminz Z (YZ — 95)()(1’))2,

where g(_Ti) is the aggregated estimator ((10.12)) with temperature 7', based on the sample

D, =[(X;,Y;);j # i], and where 7 is some set of temperatures (in Section |4} we take
T =1{0.1,0.2,...,4.9,5}).

2.3. Reduction of the complexity of the algorithm. The procedure described
below requires the computation of the LPE for each parameter A € A := A x £ (in
the simulations, we do also a grid £ over the radius parameter L). Hence, there are
1S3 x |G| x |£] LPE to compute. Namely, this is (1/A)*~! x |G| x |£|, which equals,
if |G| = |£] =4 and A = (nlogn)~/? (as in the simulation, see Section [4)) to 1079 when
d = 2 and to 72722 when d = 3, which is much too large. Hence, the complexity of this
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2. CONSTRUCTION OF THE PROCEDURE

procedure must be reduced: we propose a recursive algorithm which improves strongly the
complexity of the estimator. Indeed, most of the coefficients w(g(’\)) are very close to zero
(see Figures[6] and [7] in Section [4) when A = (s,v) is such that v is “far” from the true index
9. Hence, these coefficients should not be computed at all, since the corresponding weak
estimators do not contribute to the aggregated estimator . Hence, the computation
of the lattice should be done iteratively, only around the coefficients which are significative
among the other ones. This is done with the following algorithm, which makes a preselection
of weak estimators to aggregate (B%~!(v,§) stands for the ball in (R?, || - ||2) centered at v
with radius 0 and R,,)(g) is given by )

(1) Define A = (nlogn)~/? and Ay = (2dlogn)~1/(2d=1),
(2) compute the lattice S = gg;l;
(3) find the point ¢ such that (3,0) = X\ = argmin,, Ry (gM);
(4) divide Ag by 2;
(5) put § = S% ' N B (5, 24/ DAy,
(6) stop if Ag < A, otherwise continue with step 3.

When the algorithm exits, S is a section of the lattice S”Zfl centered at ¢ with radius
24=1A, which contains (with a high probability) the points v € S’i_l corresponding to
the largest coefficients w(g")) where A = (v, s, L) € Syi*l x G x L. The aggegate is then
computed for a set of parameters A = § x G x L using with weights . The
parameter Ag is chosen so that the surface of B4~1(v, Ag) is Cy(2dlogn)~1/? for any d,
which gets larger with the dimension. Moreover, the number of iterations is O(logn),
thus the complexity is much smaller than the full aggregation algorithm. This procedure
gives nice empirical results, see Section [df We give a numerical illustration of the iterative
construction of S in Figure

figure 2: Iterative construction of S

REMARK 10.2. Most of the weak estimators {gN); X € A} are constructed with a sample
Dy, (v) where v is “far” from the true index V. Thus, most of these estimators are quite
inaccurate, and it is very unlikely to have overfitted estimation in {g™M; X € A} (with
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CHAPTER 10. AGGREGATION IN THE SINGLE-INDEX MODEL

respect to the true sample Dy, (). This is the reason why we do not add a penalization
term in Step 3 of the algorithm.

3. Main results

The error of estimation is measured with the L?(Py)-norm, defined by

ey = ([ farpatan) ™

where we recall that Px is the design law. We consider the set H?(s, L) := H(s,L) N
{f 1 Ifllcc :=sup, |f(x)| < Q}. Since we want the adaptive procedure to work whatever
VRS Sﬁlfl is, we need to work with as general assumptions on the law of 97 X as possible.
As mentioned in Section 2| even if Py is simple, Pyt can be quite complicated. The
following assumption generalizes the usual assumptions on random designs (when Px has
a density with respect to the Lebesgue measure) that can be met in literature, namely, we
do not assume that the design density is bounded away from zero, since even with very
simple designs, this assumption is not met (see Figure [1). We say that a real random
variable Z satisfies Assumption (D) if:

AsSUMPTION (D). There is a density p of Pz with respect to the Lebesgue measure
which is continuous. Moreover, we assume that
e L is compactly supported;
There is a finite number of z in the support of p such that u(z) = 0;
For any such z, there is an interval I, = [z — a,, z + b,] such that u is decreasing
over [z — ay, z| and increasing over [z, z + b,];
There is 3 > 0 and v > 0 such that

Py(I) > A1+
for any I, where |I| stands for the length of I.

This assumption includes any design with continuous density with respect to the
Lebesgue measure that can vanish at several points, but not faster than some power
function.

3.1. Upper and lower bounds. The next Theorem provides an upper bound for
the adaptive estimator constructed in Section [2 For the upper bound to hold, the tuning
parameters of the procedure must be as follows: T' > 0 can be arbitrary (for the proof of
the upper bound, but not in practice of course), the choice of the training sample size is
quite general: we consider

(10.18) m = [n(1 = £,)],

where [z] is the integral part of z, and where /,, is a positive sequence such that for all n,
(logn)~® < ¢, < 1 with a > 0. Note that in methods involving data splitting, the optimal
choice of the split size is open. The degree r of the LPE and the grid choice G must be
such that spax < 7+ 1. The upper bound below shows that the estimator converges with
the optimal rate for a link function in a whole family of Holder classes, and for any index.
In what follows, E™ stands for the expectation with respect to the joint law P™ of the
whole sample D,,.
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3. MAIN RESULTS

THEOREM 10.1. Let g be the aggregated estimator given by ((10.12)) with the weights (10.13]).
If for all ¥ € Sf'ffl, 9T X satisfies Assumption (D), we have

sup sup Ean - QH%Q(PX) < Cn728/(23+1)’

ves{ ! fEHR(s,L)
for any s € [Smin, Smax] when n is large enough, where we recall that g(-) = f(97-). The
constant C > 0 depends on o, L, Spin, Smax and Px only.

Note that g does not depend within its construction on the index 1, nor the smoothness
s of the link function f, nor the design law Px. In Theorem below, we prove in our
setting (when Assumption (D) holds on the design) that n=2%/(5*1 is indeed the minimax
rate for a link function in H(s, L) in the single-index model.

THEOREM 10.2. Let s,L,Q > 0 and ¥ € Sifl be such that 9T X satisfies Assump-
tion (D). We have
ir}f sup Ean . QH%Z(PX) > Cln—QS/(Zs-H)7
9 feHR(s,L)
where the infimum is taken among all estimators based on data from (10.1)),(10.2)), and
where C" > 0 is a constant depending on o, s, L and Pyt only.

Theorem and Theorem together entail that n=2/(25t1) ig the minimax rate
for the estimation of g in model ((10.1]) under the constraint (10.2) when the link function
belongs to an s-Holder class. It answers in particular to Question 2 from [110].

3.2. A new result for the LPE. In this section, we give upper bounds for the LPE
in the univariate regression model . Despite the fact that the literature about LPE
is wide, the Theorem below is new. It provides a minimax optimal upper bound for the
L?(Px)-integrated risk of the LPE over Holder balls under Assumption (D), which is a
general assumption for random designs (having a density with respect to the Lebesgue
measure). This generalization is important in the situation where the univariate explanatory
variables Z; are equal to 9" X; for some ¥ € Si‘l, like in the single-index model for instance,
see also Figure [T}

In this section, the smoothness s is supposed known and fixed, and we assume that the
degree r of the local polynomials satisfies r + 1 > s. First, we give an upper bound for the
pointwise risk conditionally on the design. Then, we derive from it an upper bound for the
L?(Py)-integrated risk, using standard tools from empirical process theory (see Appendix).
Here, E™ stands for the expectation with respect to the joint law P™ of the observations
[(Zi,Y:);1 <i < mj]. Let us define the matrix

Z(2) 1= L (2, Hp(2))

where Z,,(z,h) is given by (10.7) and H,,(z) is given by (10.9). Let us denote by (M)
the smallest eigenvalue of a matrix M and introduce Z1* := (Z1,...,Zp).

THEOREM 10.3. For any z € Supp Pz, let f(z) be given by (10.10). We have on the
event {\(Zm(2)) > 0}:

(10.19) sup  E™[(F(2) = ()21 27"] < 2N (Zun () L2 Hyn2)™.
feH(s,L)

Moreover, if Z satisfies Assumption (D), we have
(10.20) sup  E™[|l7q(f) = flTa(p,)] < Com /4D
FEHQ(s,L)
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for m large enough, where we recall that T¢ is the truncation operator by Q@ > 0 and where
Cy > 0 is a constant depending on s, Q, and Pz only.

REMARK 10.3. Note that while inequality (10.19)) in Theorem 1s stated over
{\NZn(2)) > 0}, which entails existence and unicity of a solution to the linear system ([10.6))
(this inequality is stated conditionally on the design), we only need Assumption (D) for

inequality (10.20)) to hold.

3.3. Oracle inequality. In this section, we provide an oracle inequality for the
aggregation algorithm with weights . This result, which is of independent
interest, is stated for a general finite set {g(V); X € A} of deterministic functions such that
13N ]|oe < Q for all A € A. These functions are for instance weak estimators computed with
the training sample (or frozen sample), which is independent of the learning sample. Let
D :=[(X;,Y;);1 <i < |DJ] (where |D| stands for the cardinality of D) be an i.i.d. sample
of (X,Y) from the multivariate regression model (10.1]), where no particular structure
like ((10.2) is assumed.

The aim of aggregation schemes is to mimic (up to an additive residual) the oracle
in {gM; X\ € A}. This aggregation framework has been considered, among others, by [I7],
[35], [74], [87], [98], [114] and [125].

THEOREM 10.4. The aggregation procedure § based on the learning sample D defined

by (10.12) and (10.13) satisfies

. = C'log |A|(log | D|)/?
EP§ = gll72(py) < (1 + a)min[g% — gl|72py.) + D]
for any a > 0, where |A| denotes the cardinality of A, where EP stands for the joint law of
D, and where C := 3[8Q*(1 + a)?/a + 4(6Q? + 202v/2)(1 + a) /3] + 2 + 1/T.

This theorem is a model-selection type oracle inequality for the aggregation procedure

given by (10.12) and (|10.13)). Sharper oracle inequalities for more general models can
be found in [75], where the algorithm used therein requires an extra summation, see

Remark 0.1l

REMARK 10.4. Inspection of the proof shows that the ERM (which is the estimator
minimizing the empirical risk R (g) == Y1 1 (Yi — g(X;))? over all g in {gM; e A})
satisfies the same oracle inequality of Theorem[10.]] as the exponential weighted average
scheme g. Nevertheless, it has been proved in Chapter[]] that the ERM is theoretically
suboptimal in this framework. The simulation study of Section|j| (especially Figures @
@ confirm this suboptimality.

4. Numerical illustrations

We implemented the procedure described in Section [2| using the R softwareﬂ In order
to increase computation speed, we implemented the computation of local polynomials and
the bandwidth selection in C language. We simulate samples from the single index
model ,. We consider Gaussian noise with variance

o= [ 3 FOTX)/(nx rsnr)]

1<i<n

where rsnr = 5. We consider the following link functions:

Lsee http://www.r-project.org/
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4. NUMERICAL ILLUSTRATIONS

e oscsine(w) = 4(x + 1) sin(47ra?),

e hardsine(z) = 2sin(1 + ) sin(2r2? + 1).
The simulations are done with a uniform design on [—1,1]¢, with dimensions d € {2, 3,4}
and we consider several indexes ¥ that makes Pyt not uniform.

In all the computations below, the parameters for the procedure are A = S x G x L
where S is computed using the algorithm described in Section [2.3/and where G = {1,2,3,4}
and £ = {0.1,0.5,1,1.5}. The degree of the local polynomials is r = 5. The learning sample
has size [n/4], and is chosen randomly in the whole sample. We do not use a jackknife
procedure (that is, the average of estimators obtained with several learning subsamples),
since the results are stable enough (at least when n > 100) when we consider only one
learning sample.

In Tables and Figures [3] [ [B] we show the mean MISE for 100 replications and
its standard deviation for several Gibbs temperatures, several sample sizes and indexes.
These results give the empirical proof that the aggregated estimator outperforms the ERM
(which is computed as the aggregated estimator with a large temperature 7' = 30) since
in each case, the aggregated estimator with cross-validated temperature (aggCVT, given
by , with 7 = {0.1,0.2,...,4.9,5}), has a MISE up to three times smaller than
the MISE of the ERM. Moreover, aggCVT is more stable than the ERM in view of the
standard deviations (in brackets). Note also that as expected, the dimension parameter has
no impact on the accuracy of estimation: the mises are barely the same when d = 2, 3, 4.

The aim of Figures [6] and [7]is to give an illustration of the aggregation phenomenon.
In these figures, we show the weights obtained for a single run, using the aggregation
procedure with the parameter set A = S4 1 x {3} x {1} (that is, s = 3 and L = 1 are fixed
and we do not use the reduction of complexity algorithm). These figures motivates indeed
the use the reduction of complexity algorithm, since only weights corresponding to a point
of S”Zfl which is close to the true index are significant (at least numerically). Finally, we
show typical realisations for several index functions, indexes and sample sizes in Figures

O [0, [T}

TABLE 1. Mise against the Gibbs temperature (f = hardsine, d =2, ¥ = (1/v/2,1/1/2).)

Temperature 0.1 0.5 0.7 1.0 1.5 2.0 ERM  aggCVT

n = 100 0.026 0.017 0.015 0.014 0.014 0.015 0.034 0.015
(.009) (.006) (.006) (.005) (.005) (.006) (.018) (.005)
n = 200 0.015 0.009 0.008 0.008 0.009 0.011 0.027 0.009
(.004) (.002) (.003) (.003) (.005) (.007) (.014) (.004)
n = 400 0.006 0.005 0.004 0.005 0.006 0.007 0.016 0.005

(.001) (.001) (.001) (.001) (.002) (.002) (.003) (.002)
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MISE

0.010 0.015 0.020 0.025 0.030

0.015
|

MISE
0.010
|

0.005
|

figure 3: MISE against the Gibbs temperature for f = hardsine, ¥ = (1/v/2,1//2),
n = 200,400 (solid line = mean of the MISE for 100 replications, dashed line = mean
MISE =+ standard deviation.)

TABLE 2. Mise against the Gibbs temperature (f = hardsine, d = 3,

9= (2/V14,1/V14,3/V14)).

Temperature 0.1 0.5 0.7 1.0 1.5 2.0 ERM  aggCVT
n = 100 0.029 0.021 0.019 0.018 0.017 0.018 0.037  0.020
(.011) (.008) (.008) (0.007) (.008) (.009) (.022)  (.008)
n = 200 0.016 0.010 0.010 0.009 0.009 0.010 0.026 0.010
(.005) (.003) (.003) (.002) (.002) (.003) (0.008) (.003)
n = 400 0.007 0.006 0.005 0.005 0.006 0.007 0.017  0.006
(.002) (.001) (.001) (.001) (.001) (.002) (.003)  (.001)

0.030
1

MISE
0.020

0.010
L

0.020
|

0.015
1

MISE

0.010
1

0.005
|

figure 4: MISE against the

Gibbs temperature for f
(2/v14,1/v/14,3/+/14), n = 200,400 (solid line = mean of the MISE for 100 replica-
tions, dashed line = mean MISE =+ standard deviation.)
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TABLE 3. Mise against the Gibbs temperature (f = hardsine, d = 4,

U= (1/\/77 _2/\/ﬁ’ 0’4/\/ﬁ))

Temperature 0.1 0.5 0.7 1.0 1.5 2.0 ERM aggCVT
n = 100 0.038 0.027 0.021 0.019 0.017 0.017 0.038 0.020
(.016) (.010) (.009) (.008) (.007) (.007) (.025) (.010)
n = 200 0.019 0.013 0.012 0.012 0.013 0.014 0.031 0.013
(.014) (.009) (.010) (.011) (.012) (.012) (.016) (.010)
n = 400 0.009 0.006 0.005 0.005 0.006 0.007 0.017 0.006
(.002) (.001) (.001) (.001) (.001) (.002) (.004) (.001)

0.04
1

0.03
1

MISE

0.01
1

0.00
L

figure 5: MISE against the
(2/v/14,1/+/14,3/+/14), n = 200, 400.

MISE

0.015 0.020
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0.010
1

0.005
L
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figure 6: Weights (for a single run) at each points of the lattice S\ for A = 0.03, ¥ =
(1/v/2,1/v/2) and T = 0.05,0.2,0.5,10 (from top to bottom and left to right).
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figure 7: Weights (for a single run) at each points of the lattice S% for A = 0.07, 9 = (0,0, 1),
and T' = 0.05,0.3,0.5,10 (from top to bottom and left to right).
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5. Proofs

Proof of Theorem First, we use Theorem The functions gV are given
by (10.11)). They are computed based on the training (or “frozen”) sample D,,,, which is
independent of the learning sample Dy,,. If E(™) denotes the integration with respect to
the joint law of Dy,,), we obtain using Theorem
Clog |A|(log [ Dy )"/

1 Dim)|
< (1+a)|gW = gl3apy) +o(n2/ D),
since log|A|(log |D m)])1/2/|D(m | < d(logn)3/>*7/(2mn) (see (10.18) and (10.16))), and
where A = (9,5) € A is such that || — 9|2 < A and |5] = |s| with s € [5,5 + (logn)~!].
By integration with respect to P™, we obtain
(10.21) B3 = 122 pyy < (14 @)E™ GV — g2y, + o(n~2/ 1),

The choice of X entails H9(s, L) ¢ H?(5, L) and
n285/(25+1) < g1/2,,=25/(25+1).

ENg = gllz(py) < (1 +a)minlg™ — gll72p,.) +
) < (Px)

Thus, together with (10.21]), the Theorem follows if we prove that

(10.22) sup EmHg(;\) _ QH%Z(PX) < O 25/(25H1)
FEHR(5,L)

for n large enough, where C' > 0. We cannot use directly Theorem [I0.3] to prove this, since
the weak estimator g works based on data Dy, () (see (10.4)) while the true index is 9.
In order to simplify notations, we replace the dependence upon A by ¥, since in the upper
bound , the estimator uses the “correct” smoothness parameter 5. We have

E™g" = gll72(pyy < 2(E™ V() = F@T) T2 (pyy + 1F@T) = FOT)F2py))
and using together (10.16)) and fact that f € H%(s, L) for s > 7, we obtain
1F@T) = FO )Ty < LQ/HUCH?PX(dx)AzT < C(nlogn)™.

Let us denote by Qg(-|X7") the joint law of (X;,Y:)i1<i<m from model (10.1) (when the
index is ) conditional on the (X;)i<i<m, which is given by

m o Tr:))2
Qo(dy™|zT) ;:H; . (_ (i 2f(19 22)) )dyi.

o emrm &P o(z;)
Under Q3(-|X7"), we have
S dQy (| XT)

Lx(9,9) i = ——————%

KOO Qs 17)

(lax) a0 X) - f@ 1o~ FOTX) - fF9TX0))?

- eXp(‘?_; o(X;) 5; o(X;)? )
Hence, if P denotes the joint law of (X1,..., X,,),

E™g? () — f@T )HLz(PX)
= [ [1870) = O B L2, 9)dQa (1K) PR
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(10.23) <C [ [IFDT) = TRy dQa1XT)APE

+4Q2//Lx(ﬂ,ﬁ)l{LX(ﬁ,ﬁ)EC}ng(.|X{n)dp)n(m’

where we decomposed the integrand over {Lx (9,7) > C} and {Lx(9,9) < C} for some
constant C' > 3, and where we used the fact that [|g ||s, || flleo < Q. Under Qz(-|X7), the
(Xi,Y;) have the same law as (X,Y") from model where the index is 1. Moreover, we
assumed that Py satisfies Assumption (D). Hence, Theorem entails that, uniformly
for f € H9(5, L),

[ 1FO@T) = 5Ty Q3 1XTAPR < 25355,
Moreover, the second term in the right hand side of (10.23)) is smaller than
_ o\ 12 - T

Using together (10.16)), the fact that f € H%(s, L) for s > 7, the fact that Py is compactly
supported and the fact that o(X) > o¢ a.s., we obtain

o= (fFOTX) — f(9TX;))?
2 ; o(X,)? )<t

[ Ex0.020501x7) < exo

Pg-a.s. when m is large enough. Moreover, we have with the same arguments
Qs [Lx(ﬂ,ﬁ) > C|Xm < o~ (log ©)?/2 < 45/ (2541)

for C large enough, where we use the standard Gaussian deviation P[N(0,b?) > a] <
exp(—a?/(2b?)). This concludes the proof of Theorem m O

Proof of Theorem [10.2l. We want to bound the minimax risk
(10.24) inf  sup E"/ (gn(z) — f('l?Tac))ZPX(d:):)
gn fEHR(s,L)

from below, where the infimum is taken among all estimators R — R based on data
from model - - We recall that 9 X satisfies Assumption (D). We consider
9@ 9@ in RY such that (9,93, ..., 9(4) is an orthogonal basis of R?. We denote by
O the matrix with columns 9,93, ... ,19(d). We define Y := OX = (Y(l), e ,Y(d)) and
Y= (Y@ .. YD) By a change of variable, we obtain

[, lanla) = £ )" i)
- / (62(071) — F(u™M))* Py (dy)

//Rd 1 ') = F™)* Pray o (dysly™M) o) (dy ™)
/ (Faly™) = £5D)) Py (dy),
where f,(y™) := [ §,(0 Pyd‘y(l)(dyQ\y )). Hence, if Z := 9" X, (10.24) is larger than
(10.25) s 5" [ (7,() - 1) Prld),
fn fEHR(s,L)
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where the infimum is taken among all estimators R — R based on data from model
with d = 1 (univariate regression). In order to bound from below, we use the
following Theorem, from [115], which is a standard tool for the proof of such a lower bound.
We say that 0 is a semi-distance on some set O if it is symmetric, if it satisfies the triangle
inequality and if 9(6,0) = 0 for any § € ©. We consider K(P|Q) := flog (48)dP the
Kullback-Leibler divergence between probability measures P and Q.

THEOREM 10.5. Let (©,0) be a set endowed with a semi-distance 0. We suppose that
{Py;0 € ©} is a family of probability measures on a measurable space (X, A) and that
(Un)neN 18 a sequence of positive numbers. If there exist {0y, ...,0p} C O, with M > 2,
such that

° 8(9],9k) > 2u, VOS] <k<M
o Py, <Py, V1<j<M,
7 e K(Pg|Fg) < alog M for some a € (0,1/8),

\/M «
léileelg Eg[(v, 8(9n,9)) ] > W (1 — 20— 2\/1og7M>7

where the infimum is taken among all estimators based on a sample of size n.

then

Let us define m := [con'/5t1 |, the largest integer smaller than con'/(?s*t1) where
co > 0. Let ¢ : R — [0,400) be a function in H?(s,1/2;R) with support in [~1/2,1/2].
We take h,, :=m~! and z; := (k — 1/2)/m for k € {1,...,m}. For w € Q:= {0,1}™, we

consider the functions

- Zwkgpk() where gpk() = Lhz@( ;LZk>'

We have

I£(10) ~ Fsw ||szz)—(zwk—wk/ [ouerpatan) "
k=

/ p(w, )L2h25+1/ @(U)Qdu’

S
where S, := Supp Pz — U.[a,,b.] (the union is over the z such that p(z) = 0, see Assump-
tion (D)), where p := min.cg, u(z) > 0 and where

m
- Z Loptus,
k=1

is the Hamming distance on €. Using a result of Varshamov-Gilbert (see [115]) we can
find a subset {w©®, ..., w1} of Q such that w(® = (0,...,0), p(w, w*) > m/8 for any
0<j<k<Mand M > om/8, Therefore, we have

1£Gi0) = FC0 ™) g2y > Do/ @D,

where D = ,ué/z fS o(u)?du/(8c3%) > 2 for ¢y small enough. Moreover,

M
1 k
ZK P” w(o))‘P w(k))) < Mo ONT~2 Z ||f ( ( ))”%Q(PZ)
k::l o0 k=1
< f”ngh%S“nsoH%m < alog M,
20
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where o := (L?||¢]13)/ (0?3 log 2) € (0,1/8) for ¢ small enough. The conclusion follows
from Theorem 105 O

Proof of Theorem We recall that R = |s]| is the largest integer smaller than
s, and that A\(M) stands for the smallest eigenvalue of a matrix M.

Proof of . First, we prove a bias-variance decomposition of the LPE at a fixed
point z € Supp Pz. This kind of result is commonplace, see for instance [115]. We introduce
the following weighted pseudo-inner product, for fixed z € R and h > 0, as

1 m
<f» 9>h = m ;f(zi)g(zi)lziel(z,h),

where we recall that I(z,h) = [z — h,z + h], and that Py is given by (10.8), and we
consider the associated pseudo-norm ||g||? := (g, g)n. We introduce the power functions
©0a() = ((- —z)/h)* for a € {0, ..., R}, which satisfy |pa|n < 1.

Note that the entries of the matrix Zy, = Z,(z, h) (see (10.7)) satisfy (Zy, (2, h))ap :=
(@a, po)n for (a,b) € {0,..., R}?. Hence, is equivalent to find P € Polg such that

(1026) <P7§0a>h = <Y7 §0a>h
for any a € {0,..., R}, where (Y, @), := (mPz[I(z,h)])) " Y27 Yie(Zi)1z,e1(5p)- In other
words, P is the projection of Y onto Polp with respect to the inner product (-,-);. For
e; :=(1,0,...,0) € RE*! we have

F(2) = f(2) = e 2, Zn(6 — 6)
whenever \(Z,,) > 0, where 0 is the coefficient vector of P and 6 is the coefficient vector
of the Taylor polynomial P of f at z with degree R. In view of ((10.26]):

(Zm(0 = 0))a = (P — Pywa)n = (Y — P,¢a)n,
thus Z,,(0 — 0)) = B+ V where (B)y := (f — P,0a)n and (V)4 := (6(-)€, a)n. The bias
term satisfies |e] Z' B| < (R + 1)Y2||Z,;1|||| B« Where for any a € {0,..., R}
(B)al < If = Pl < LW/ R

Let ZZ, be the matrix with entries (Z2,)ap := (0(-)¢a, 0 (-)pp)n. Since V is, conditionally

on Z™ = (Zy,...,Zm), centered Gaussian with covariance matrix (mPz[I(z,h)]) 127,
e] Z;1V is centered Gaussian with variance smaller than

(mPy[I(z,h)]) el Z:1 23 727 ey < o2 (mPy[1(z,h)]) " AN Zp)

where we used o(-) < 0. Hence, if Cg := (R +1)"/?/R!, we obtain
E™((f(2) = F)212T] < MZin(2, 1) "2 (CRLE® + o(mPy[I(2, h)])~1/?)?
for any z, and the bandwidth choice (10.9)) entails (10.19)).

Proof of ((10.20). Let us consider the sequence of positive curves h,,(-) defined as the
point-by-point solution to

(10.27) Lhpm(2)* =

o
(mPz[I(z, hin(2))])"/?
for all z € Supp Pz, where we recall I(z,h) = [z — h,z + h], and let us define

Tm(2) := Lhy,(2)°.
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The sequence hyy,(+) is the deterministic equivalent to the bandwidth H,(-) given by (10.9).
Indeed, with a large probability, H,,(-) and h,,(-) are close to each other in view of
Lemma below. Under Assumption (D) we have Pz[I] > ~|I|°F!, which entails
together with that

(10.28) b (2) < D~ Y/ (0F25+0)

uniformly for z € Supp Py, where D = (o /L)?/(1+2548) (n20+1)=1/(1+25+6)  Moreover, since
Pz has a continuous density p with respect to the Lebesgue measure, we have

(10.29) h(2) > Dm~ Y/ (1425)
uniformly for z € Supp Pz, where D = (/L)% (1429 (21,,) =1/ (25t We recall that Py
stands for the joint law of (Z1,...,Zn).

LeMMA 10.1. If Py satisfies Assumption (D), we have for any € € (0,1/2)
Hm(2)
han(2)

for m large enough, where o := 2s/(1+2s+ ) and D is a constant depending on o and L.

P?[ sup - 1‘ > e} < exp(—Dée*m®)

z€Supp(Pz)

The next lemma provides an uniform control on the smallest eigenvalue of Z,,(z) :=
Z (2, Hp(2)) under Assumption (D).

LEMMA 10.2. If Py satisfies Assumption (D), there exists A\g > 0 depending on (3 and
s only such that

m i 7 < < —Dm*
P7[ itk MZm(2)) < Ao] < exp(—Dm?),

form large enough, where o = 2s/(1+2s+/3), and D is a constant depending on ~y, 3,s, L, 0.

The proofs of the lemmas are given in Section [} We consider the event

—{ i p - Zpn(2)) > Ao} N {ZESSL}:)EPZ\Hm(z)/hm(z) —1] <€},

where € € (0,1/2). We have for any f € H%(s, L)

PZ dz
E™ {70 (F) — FIapy Lanc] < Ao / -
m z+hm(2)
m.Jof sy Pz dt
where we used together the definition of €,,(¢), (10.19) and (10.27). Let us denote
I := Supp Pz and let I,, be the intervals from Assumption (D). Using together the fact

that min,er_y,, 1., p(z) > 0 and (10.29)), we obtain

2
i PZ(dZ) < O'm2s/(2s 1),

Using the monoticity constraints from Assumptlon (D), we obtain

12 P(dz) - 02</2* w(z)dz +/Z*+bz* w(z)dz )
e T 2 = e T @ " e 70

0.2

< hm(Z)ile < Cm72s/(28+1)7
Iz*
hence E™[||q(f) — fH%Q(PZ 1o, < C'm~2%/2s+1) ymiformly for f € H9(s,L). Using
together Lemmas and we obtain E™[||ro(f) — fH%Q(Pz)lgm(e)c] = o(n=2s/@st1)),

and (10.20) follows. O
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Proof of Theorem In model (|10.1]), when the noise € is centered and such that
E(e?) = 1, the risk of a function g : R? — R is given by

A(9) = BI(Y = §(X))?] = Elo(X)*] + lg = gll72(p ).
where g is the regression function. Therefore, the excess risk satisfies
Alg) —A=llg - gH2L2(PX)7
where A := A(g) = E[0(X)?]. Let us introduce n := |D| the size of the learning sample,

and M := |A| the size of the dictionary of functions {gM; A € A}. The empirical risk of g
over the D = [(X;,Y;);1 < i < n]is given by

i=1
We begin with a linearization of these risks. We consider the convex set

C:= {(9,\))\61\ such that 6, > 0 and ZH,\ = 1},
AEA

and define the linearized risks on C
0) =Y _ 0A@GY), An(0) =) 0aAn(g™
AEA AEA
which are linear versions of the risk A and its empirical version A,,. The exponential

weights w = (wx)xea = (W(GM))ren are actually the unique solution of the minimization
problem

(10.30) min (A (0) + Z Orlogy | (6) € c)

AeA
where T" > 0 is the temperature parameter in the weights , and where we use
the convention 0log0 = 0. Let A € A be such that An(g(x)) = minyep A, (V). Since
Y xea Wy log (1/M) = K(w|u) > 0 where K(w|u) denotes the Kullback-Leibler diver-
gence between the weights w and the uniform weights u := (1/M)ca, we have together

with (T0.30):

where ey € C is the vector with 1 for the A\-th coordinate and 0 elsewhere. Let a > 0 and
Ay, = Ayn(g). For any A € A, we have

A(w) = A= (14 a)(An(w) — A,) + Aw) = A (1+ a)(A,(w) - A,)

< (1+a)(An(ex) = An) + (1 + “)loiiw

+ A(w) — A— (1 +a)(A,(w) — Ayp).

Page 187



CHAPTER 10. AGGREGATION IN THE SINGLE-INDEX MODEL

Let us denote by Fx the expectation with respect to Pk, the joint law of D for a noise €

which is bounded almost surely by K > 0. We have
- ~ log M

Ex[A(w) — A] < (1+a) min(An(ex) — An) + (1 +a)—7~

+ Ex[A(w) — A= (1+ a)(An(w) — Ap)].

Using the linearity of A on C, we obtain

A(w) = A= (1 + a)(Ap(w) — Ap) < max (4(g) = A = (1+a)(Au(g) = 4n)),

where Gy := {gM) ; A\ € A}. Then, using Bernstein inequality, we obtain for all § > 0
Pi[A(w) = A= (1+ a)(An(w) — 4,) > 3]

<Y Pe[Alg) ~ A (4n(g) - A 2 TTHAD A

geEGA tha
n(d+a(A(g) — A4)*(1+a)”"
= QGZQA P ( C8Q2(1+a)(A(g) — A) +2(6Q% + 20K)(5 + a(A(g) — A))/B)‘

Moreover, we have for any § > 0 and g € Gy,
A(g) — A))*(1 -1
2 (6 + alAlg) = A)%(1 +.a) - oK
8Q%(A(g) — A) +2(6Q*(1 +a) +20K)(d +a(A(g) — A))/3
where C(a, K) := (8Q*(1 + a)?/a+ 4(6Q* + 20 K)(1 + a)/3)71, thus
exp(—nC/(a, K)u)
nC(a, K)

If we denote by v4 the unique solution of v = A exp(—~), where A > 0, we have log A/2 <
v4 <log A. Thus, if we take u = vps/(nC(a, K)), we obtain

Ex [A(’UJ) —A—(1+a)(A,(w) - Ap)] <2u+ M

P [A(w) = A= (1 +a)(An(w) — An)] < G

By convexity of the risk, we have

Alw)—A> A(g) — A,

thus
log M

n )
where C; := (1 +a)(T~! 4 3C(a, K)™1). It remains to prove the result when the noise is
Gaussian. Let us denote €2, := maxj<;<y |€;|. For any K > 0, we have

Ex[g = gl72(py)) < (1 +a) min 1§ = gll72(pyy + Ci

E[Hg - g||%2(px)} = E[Hf] - QH%Z(PX)legOgK] + E[HfJ - 9||%2(PX)1EQO>K]
< Ex[19 — 9llf2(py)] +2Q° Plege > K]

For K = K, := 2(2logn)'/?, we obtain using standard results about the maximum of
Caussian vectors that P[e”, > K,] < P[¢%, — E[¢%] > (2logn)/?] < 1/n, which concludes
the proof of the Theorem. O
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6. Proof of the lemmas

Proof of Lemma Using together (10.9) and (10.27), if IS,(2) == [z — (1 +
hm(2), 2 + (1 + €)hy(2)] and I, (2) := I2,(2), we obtain for any € € (0,1/2):
{Hun(2) < (1+ hm(2)} = {1+ €)* Pz[I},(2)] > Pzlln(2)]}
S {A+ > Pzlln(2)] 2 Pz[In(2)]},

where we used the fact that € — Pz[If,(z)] is nondecreasing. Similarly, we have on the

other side

{Hm(2) > (1 = )hin(2)} D {(1 = ) Pz[In(2)] < Pz[In(2)]}-
Thus, if we consider the set of intervals
In= |J {Ia(2)},
z€Supp Pz

we obtain

Hin(2) Pyl1]
su —1‘26 C 4 su —1‘262.
{ zGSupEPZ hm(z) } {IEIIT),L PZ[I] / }
Using together (10.27) and ((10.28)), we obtain
(10.31) PzIn(2)] = 02/ (mL?hy(2)%) > Dm~BHD/(42546) . (-
Hence, if € := ¢(1+¢/2)/(e + 2), we have

{sup |[FH 1] > o) of sup LAI_LAD 5 rp2)

1€z, | Pz |1 €T, Py[I
Py[I] — Py[I
U{ sup Pall] = Poll) > 6@},{2/2}.

Hence, Theorem and the fact that the shatter coefficient satisfies S(Z,,, m) < m(m +
1)/2 (see Appendix) entails the Lemma. O

Proof of Lemma Let us denote Zy,(2) := Zy, (2, Hyn(2)) where Z,,, (2, h) is given

by (10.7) and H,,(z) is given by (10.9). Let us define the matrix Z,,(z) := Zm (2, hin(2))

where .
_ a+b
B Mas= ey 2o () M
=1

Step 1. Let us define for € € (0,1) the event
H,

m(2) — 1‘ < e} ﬂ{ sup
hm(z) z€Supp Py
For a matrix A, we denote [|Al|c := maxqp |[(A)ap

1Zin(2) = Zin(2) |0 < €.

Moreover, using Lemma we have PP [Q1(e)Y] < Cexp(—De*m®). Hence, on Q(e),
we have for any v € R?, [jv]js = 1

Pz|I(z, Hin(2))]
PoI G hom(2))] 1<}

Q(e) := { sup
z€Supp Pz

(€), we have

0 Zop (2)0 > 0 Zp (2)0 — €

uniformly for z € Supp Pyz.
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Step 2. We define the deterministic matrix Z(z) := Z(z, hy(2)) where
1 t — z\atb
Z = — P
( (Z7h’))a7b PZ[I(Z,h)] /[(27}1) ( h ) Z(dt)7

Ao := liminf,,, inf )\(Z(z,hm(z))).

z Supp Py

We prove that A9 > 0. Two cases can occur: either u(z) = 0 or p(z) > 0. We show that
in both cases, the liminf is positive. If u(z) > 0, the entries (Z(2, hn(2)))qp have limit
(1+(=1)2t%)/(2(a + b+ 1)), which defines a positive definite matrix. If j(z) = 0, we know
that the density u(-) of Pz behaves as the power function |-—z|%(*) around z for 8(z) € (0, ).
In this case, (Z(2, hm(2)))ap has limit (14 (=1)27)(B(z) +1)/(2(1 + a + b+ B(2))), which
defines also a definite positive matrix.

Step 3. We prove that

and

P7'[ sup Hzm(z) —Z(2)||o > € < exp(—DeQma).
z€Supp Pz

We consider the sets of nonnegative functions (we recall that I(z,h) = [z — h, z + h])

Fleven) .— U { (};m(j))all(z,hm(z))(')}v
2 even o2 om
U {55 et}
Pl S
plodd) . U {(%)al[zhm(z),z}(')}'
~€Supp Py

a odd and 0<a<2R
Writing I(z, h(2)) = [z — him(2), 2) U [2, 2 + hy(2)] when a + b is odd, and since

Pz[I(z, hin(2))] =2 Ef(Z1)
for any f € F := Fleven) FJ(FOdd) U FEOdd), we obtain
- s Soimy [(Z) = Ef(Z))]
Zn(2) — Z(2)|| 0o < sup == )
() ~ 2(2) ] < sup i
Hence, since x — x/(x + «) is increasing for any a > 0, and since a = Ef(Z;) >
Dm~B+D/(+2548) —. o (see (10.31))), we obtain
- | i1 f(Zi) — Ef(Z1)]
SUD | Zin(2) — Z(2) oo > €} € { sup IS
2€Supp Pz feF Qm + m Zizl f(Zz) + Ef(Zl)
Then, using Theorem m (note that any f € F' is non-negative), we obtain

PPl sup || Zm(2) — Z(2)||oo > €] < AEN:(ame/8, F, Z1)] exp ( — De?m?s/1F25+8)),
zE€Supp Pz

>e/2}.

Together with the inequality

(10.32) E[Ni(ome/8, F, Z7)] < D(apme)” tm!/ GstD)HE=1)/(2s+6)
(see the proof below), this entails the Lemma. O
Proof of (10.32)). It suffices to prove the inequality for F(¢Ve?) and a fixed a €

{0,...,2R}, since the proof is the same for FJ(rOdd) and F°Y We denote ()= ((-—
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)/ (2))* 17(2,hm(2))(*)- We prove the following statement
N(&F, | - lloo) < Detmt/@stD+(B-1)/(2s40)

which is stronger than (10.32]), where || - ||o is the uniform norm over the support of Py.
Let z, 21, 29 € Supp Pz. We have
Z2—21 22— 29
[f21(2) = £z (2)] < max(a, 1)| == = ——={1nup,

where hj := hy(2;) and I; := [z; — hj, z; + h;] for j = 1,2. Hence,

|h1 — ha| + |21 — 2]

— <
o) = (o) < 2 B

Using ([10.27)) together with a differentiation of z — hp,(2)2*Pz[I(z, hm(2))], we obtain
that

|hm(21) = hm(22)] <

hon (2)2 (2 — hn (2)) = (2 + b (2)))
(2502)/(mL) + hm(2)* " (12 = hn(2)) + (2 + hin(2)))

for any 21 < z2 in Supp p. This entails together with Assumption (D), (10.28) and (10.29):

sup
z1<2<22

|Zl _Z2|7

Hoo m\ 2s+5+1
|hm(21) — him(22)] < 25( L) BT (ﬁ) |21 — 22,

for any z; < z9 in Supp u. Hence,

1 -1
|f2’1(2) - f22(2)| < Dm25+1+25+5’21 - 22’7
which concludes the proof of (10.32]). O

7. Some tools form empirical process theory
Let A be a set of Borelean subsets of R. If 2} := (z1,...,z,) € R", we define
N(A,2?) = [{{z1,...,2,} N A|A € A}|
and we define the shatter coefficient

(10.33) S(A,n) = max N(A, (z1,...,25)).
xER™

For instance, if A is the set of all the intervals [a,b] with —oo < a < b < +00, we have
S(A,n) =n(n+1)/2.

Let Xi,..., X, be i.i.d. random variables with values in R, and let us define pu[A] :=
P(X; € A) and [in[A] :=n"1 3" | 1x,e4. The following inequalities for relative deviations
are due to Vapnik and Chervonenkis (1974), see for instance in [117].

THEOREM 10.6 (Vapnik and Chervonenkis (1974)). We have
P[ sup 1lA) = fin(4) > e] < 48(A, 2n) exp(—ne®/4)
AcA 1(A)
and

Ian(A) — M(A) 2
P[fxléa/m(/l) > e] < 45(A,2n) exp(—ne”/4)

where S4(2n) is the shatter coefficient of A defined by (10.33)).
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Let (X,7) be a measured space and F be a class of functions f: X — [-K, K|. Let
us fix p > 1 and 2" € X™. Define the semi-distance d,(f, g) between f and g by

1< 1/p
dylf:9) = (= DO1F () = gz
i=1
and denote by By(f,€) the d,-ball with center f and radius e. The e—covering number of
F w.r.t d, is defined as
Np(e, F,27) ==min (N |3f1,..., fn st. FC Uj]\ipr(fj,e)).
THEOREM 10.7 (Haussler (1992)). If F consists of functions f : X — [0, K], we have

B - LS F(x)| ) nae?
Pl T L T o 2 ¢ < MW/ F XD e ( ~ {5 ).
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Méthodes d’agrégation : optimalité et vitesses rapides.

Résumé : Le principal travail de cette thése porte sur ’étude des méthodes d’agrégation
sous ’hypothese de marge. Nous avons mis en avant que ’hypothese de marge améliore
les vitesses d’agrégation. Un autre résultat de cette thése montre que certaines méthodes
de minimisation du risque empirique pénalisé sont sous-optimales quand le risque est
convexe, méme sous '’hypothese de marge. Contrairement aux procédures d’agrégation a
poids exponentiels, ces méthodes n’arrivent pas a profiter de la marge du modele. Nous
avons ensuite appliqué les méthodes d’agrégation a la résolution de quelques problemes
d’adaptation. Une derniere contribution apportée dans cette these a été de proposer une
approche du controle du biais en classification par I'introduction d’espaces de regles de
prédiction parcimonieuses. Des vitesses minimax ont été obtenues pour ces modeles et une
méthode d’agrégation a donné une version adaptative de ces procédures d’estimation.

Mots-clés : Estimation non-paramétrique, classification, régression, estimation de densité,
adaptation, optimalité, réduction de dimension, vitesses minimax, inégalités d’oracle.

Aggregation procedures: optimality and fast rates.

Abstract: In this thesis we deal with aggregation procedures under the margin assump-
tion. We prove that the margin assumption improves the rate of aggregation. Another
contribution of this thesis is to show that some empirical risk minimization procedures are
suboptimal when the loss function is convex, even under the margin assumption. Contrarily
to some aggregation procedures with exponential weights, these model selection methods
cannot benefit from the large margin. Then, we apply aggregation methods to construct
adaptive estimators in several different problems. The final contribution of this thesis is
to purpose a new approach to the control of the bias term in classification by introducing
some spaces of sparse prediction rules. Minimax rates of convergence have been obtained
for these classes of functions and, by using an aggregation method, we provide an adaptive
version of these estimators.

Keywords: Non-parametric estimation, classification, regression, density estimation, adap-
tation, optimality, dimension reduction, minimax rates of convergence, oracle inequalities.

AMS Classification: Primary: 62G05. Secondary: 62H30, 68110, 62G07, 62G08, 68T05,
68Q32.
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