
HAL Id: tel-00150434
https://theses.hal.science/tel-00150434

Submitted on 30 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Macroscopic Freeway Modelling and Control.
Denis Jacquet

To cite this version:
Denis Jacquet. Macroscopic Freeway Modelling and Control.. Automatic. Institut National Polytech-
nique de Grenoble - INPG, 2006. English. �NNT : �. �tel-00150434�

https://theses.hal.science/tel-00150434
https://hal.archives-ouvertes.fr


Institut National Polytechnique de Grenoble

No. attribué par la bibliothèque

THESE

pour obtenir le grade de

DOCTEUR DE L’INPG

Spécialité : AUTOMATIQUE-PRODUCTIQUE

préparée au Laboratoire d’Automatique de Grenoble

dans le cadre de l’École Doctorale :

Électronique, Électrotechnique, Automatique, Traitement du Signal

présentée et soutenue publiquement par

Denis JACQUET

le 14 novembre 2006

Titre :

Modélisation Macroscopique du Trafic et Contrôle des Lois de

Conservation Non Linéaires Associées

Directeurs de thèse :

M. Carlos CANUDAS-DE-WIT (INP Grenoble)

M. Damien KOENIG (INP Grenoble)

JURY :

M. Didier GEORGES (INP Grenoble) Président

M. Georges BASTIN (Université Catholique de Louvain) Rapporteur

M. Pierre ROUCHON (École des Mines de Paris) Rapporteur

M. Roberto HOROWITZ (Université de Californie Berkeley) Examinateur

M. Jean-Patrick LEBACQUE (École Nationale des Ponts-et-Chaussées) Examinateur

M. Carlos CANUDAS-DE-WIT (INP Grenoble) Directeur de thèse

M. Damien KOENIG (INP Grenoble) Co-encadrant

te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7

http://tel.archives-ouvertes.fr/tel-00150434/fr/
http://hal.archives-ouvertes.fr


te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7



à mes parents.

Ainsi on peut dire que, de quelque manière que Dieu aurait créé le

monde, il aurait toujours été régulier et dans un certain ordre général.

Mais Dieu a choisi celui qui est le plus parfait, c’est-à-dire celui qui est

en même temps le plus simple en hypothèses et le plus riche en

phénomènes, comme pourrait être une ligne de géométrie dont la con-

struction serait aisée et les propriétés et effets seraient fort admirables et

d’une grande étendue.

Gottfried Wilhelm Leibniz (1646-1716),

Discours de métaphysique, VI, 1686.
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Introduction

Les problématiques de gestion du trafic

On observe dans les pays développés, mais aussi de plus en plus dans les pays en voie

de développement, une augmentation des situations de congestion qui ont un impact

important, tant au niveau économique que sociétal. Par exemple, le Urban Mobility

Report [Schrank & Lomax, 2004] mentionne pour les Etats-Unis un coût monétaire

équivalent de 63,2 milliards de dollars en 2002, correspondant à un total de 3,5 milliards

d’heures perdues dans les bouchons et à 5,7 milliards de gallons d’essence gaspillés. De

manière similaire, le Bureau of Transportation Statistics du département des transports

aux Etats-Unis a calculé un coût monétaire équivalent de 12,8 millions de dollars pour

la seule ville de Los Angeles en 2001.

En réponse à ces enjeux individuels et collectifs et dans l’objectif d’optimiser

l’utilisation des infrastructures existantes, la notion de Systèmes Intelligents de Trans-

port, connue dans sa traduction anglaise sous le nom de Intelligent Transportation Sys-

tems (ITS), a émergé dans les années 70-80. Ces systèmes proposent d’équiper les in-

frastructures et les véhicules de systèmes électroniques et de traitement de l’information

afin d’améliorer la performance des infrastructures ainsi que la sécurité, l’information et

le confort des usagers. Parmi les systèmes ITS utilisés aujourd’hui, on peut citer la pré-

diction des temps de parcours, le guidage dynamique par panneaux à messages variables,

le séquencement dynamique de la signalisation à certaines intersections, le contrôle par

feux tricolores de l’accès aux autoroutes ainsi que la variation dynamique des limites de

vitesse. Ces outils ayant démontré leur efficacité [Twin Cities Ramp Meter Evaluation

Report, 2001], de nombreux systèmes ITS sont aujourd’hui à l’étude, soit pour améliorer

des procédés existants soit pour en proposer de nouveaux. Dans le cas des autoroutes

et voies rapides urbaines, il est communément accepté que l’usage des infrastructures

peut encore être optimisé par des méthodes non invasives telles que le contrôle d’accès

dynamique et la régulation des limites de vitesse. Ces deux domaines nécessitent cepen-

dant encore des efforts en recherche et développement. En ce qui concerne le contrôle

d’accès, si des méthodes locales comme ALINEA [Papageorgiou, Haj-Salem & Middel-

ham, 1997] ont été développées et expérimentées en Californie, dans le Minnesota, aux

Pays-Bas et en Grande Bretagne, peu de résultats sont disponibles dans le cas coordonné,

potentiellement plus performant.
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Le contrôle d’accès est un exemple de système rentrant dans le formalisme capteur-

système-actionneur de l’automatique, comme représenté sur les Figures 1 et 2. Les

modèles macroscopiques de trafic peuvent être soit continus soit discrets et l’objectif

de commande peut être défini comme un critère à optimiser, tel que la distance totale

voyagée, ou la poursuite d’une trajectoire de référence. En ce qui concerne la partie

capteur, de nombreux réseaux routiers sont équipés de boucles magnétiques de comptage

comme représenté en Figure 2. Il permettent de mesurer le flux de véhicules [veh/h], sa

vitesse moyenne [km/h] et le taux d’occupation locale [%] qui est une image de la densité

[veh/km] à la longueur moyenne des véhicules près. Cependant, il est reconnu que leur

fiabilité est souvent discutable en raison de la vétusté des installations et de nouvelles

méthodes de mesure sont à l’étude. De plus, leur nombre et leur positionnement ne sont

pas toujours adaptés à des opérations de contrôle d’accès.

Définition du périmètre des travaux

Les travaux présentés dans ce document sont le résultat d’une thèse de doctorat effectuée

au Laboratoire d’Automatique de Grenoble d’octobre 2003 à septembre 2006 sous la

direction de Carlos Canudas de Wit, Directeur de Recherche au CNRS et Damien Koenig,

Maître de Conférence à l’INPG. Au cours de cette période, une collaboration étroite a

été établie avec les Universités de Californie de Berkeley et de San Diego où l’auteur a

effectué plusieurs séjours, en partie grâce au soutien du Fonds France Berkeley.

Nous nous intéressons dans cette thèse aux problèmes de modélisation et de com-

mande du trafic routier dans le cadre des autoroutes et voies rapides urbaines, l’objectif

étant de développer de nouvelles stratégies pour la gestion des congestions en utilisant

les méthodologies et les outils du contrôle. Cette approche, basée sur l’utilisation d’un

modèle dynamique, a fait ses preuves dans de nombreux domaines d’ingénierie où elle a

permis de mettre au point des algorithmes de commande performants et robustes. Pour

ces raisons, elle fut introduite dans les années 90 dans le domaine des transports et a

conduit à une activité importante de recherche dans les communautés du transport, des

mathématiques appliquées et du contrôle. Les problèmes de gestion du trafic autoroutier

auxquels nous nous intéressons dans cette thèse concernent :

1. le contrôle d’accès dynamique et coordonné où les flux d’entrée d’une autoroute

sont modulés pour améliorer la performance de l’infrastructure et diminuer les

temps de parcours,

2. l’estimation de données manquantes sur l’état du trafic, ce dernier étant classique-

ment mesuré par des boucles magnétiques de comptage placées sous le bitume,

3. la mise à jour d’informations d’origine-destination à l’aide des mesures de flux aux

entrées et sorties d’un réseau ainsi qu’à certains points intermédiaires.

Notre approche dans le traitement de ces problèmes de contrôle est plutôt théorique et

repose sur de nombreux travaux antérieurs en modélisation du trafic autoroutier, aussi

10
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Figure 1: Gauche : Principe du contrôle d’accès coordonné. Droite : boucle de comptage.

Figure 2: Formalisme capteur-système-actionneur de la commande.
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bien dans le domaine du transport que des mathématiques appliquées. Etant donné

la taille importante du système, qui est en général constitué de milliers de véhicules,

l’utilisation de modèles macroscopiques où le trafic est vu comme un continuum est

privilégié pour le développement des algorithmes de commande et d’estimation. A titre

d’exemple, la Figure 3 représente une abstraction de l’état du trafic le long d’une au-

toroute à l’aide d’une distribution spatiale de la densité des véhicules. Suivant les

phénomènes devant être reproduits, la précision souhaitée et le niveau de complexité

acceptable, il est possible de considérer les distributions d’autres grandeurs agrégées

telles que la vitesse moyenne et le flux des véhicules. De nombreux modèles de trafic

Figure 3: Abstraction macroscopique de l’état de congestion d’une autoroute.

ont été suggérés dans la littérature et ce secteur est toujours un sujet important de

recherche. Les algorithmes proposés dans cette thèse reposent sur trois des modèles les

plus acceptés aujourd’hui dans la littérature pour représenter la dynamique du trafic

: le modèle d’équilibre LWR [Lighthill & Whitham, 1955; Richards, 1956], le mod-

èle de non équilibre ARZ [Aw & Rascle, 2000; Zhang, 2002] et le modèle multi-classes

d’origine-destination MOD [Lebacque, 1996; Zhang & Jin, 2002]. Dans ces modèles,

l’évolution temporelle des grandeurs macroscopiques de densité, vitesse et flux est régie

par des systèmes d’équations aux dérivées partielles non-linéaires appelées lois de con-

servation [Lax, 1957; Bressan, 2000]. Une des spécificités de cette classe d’équation

est qu’elle génère des flots irréguliers dont l’analyse mathématique est récente. Par ex-

emple, la caractérisation des solutions pour les lois de conservation scalaires date des

années 70 [Kružkov, 1970; Bardos, LeRoux & Nedelec, 1979] alors que le cas des sys-

tèmes n’est pas encore totalement résolu, les avancées les plus récentes datant des années

2000 [Bressan, 2000]. Les trois caractéristiques importantes qui rendent la manipulation

de ces équations délicate sont décrites ci-après :

1. des discontinuités appelées ondes de choc [Hopf, 1950; Dafermos, 2000] peuvent se

développer et se propager le long des solutions, ce qui complique l’analyse [LeFloch,

2002; Bressan, 2000] et la simulation [LeVeque, 1992; Godlewski & Raviart, 1999]

de tels systèmes,

2. les conditions aux limites ne peuvent pas être appliquées pour tout temps en général

et sont uniquement proposées [Bardos et al., 1979; Dubois & LeFloch, 1988],

3. l’information se propage à vitesse finie [LeVeque, 1992] au travers d’ondes, ce qui

donne lieu à une région d’influence limitée et non déterminée a priori.

12
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Les deux approches retenues dans cette thèse pour contrôler les lois de conservation

décrivant l’évolution du trafic sont la commande optimale et une méthode de dissipa-

tion. La difficulté principale lors de l’application de la commande optimale aux modèles

macroscopiques de trafic est que le flot qu’ils génèrent est en général irrégulier, les ondes

de choc représentant la propagation des fronts de congestion. Il n’est donc pas évident,

a priori, que ces équations peuvent être linéarisées et permettent d’effectuer les calculs

de sensibilité nécessaires dans la méthode adjointe proposée dans [Lions, 1971]. Ce prob-

lème est résolu en montrant que cette méthode peut être généralisée moyennant quelques

aménagements au cas irrégulier des lois de conservation, et cela avec une transparence

remarquable. La solution proposée est basée sur un théorème d’intégration par parties

généralisé pour les flots irréguliers dans R2 et utilise la théorie de la mesure. Concer-

nant l’approche dissipative, la méthodologie proposée consiste à utiliser un schéma de

discrétisation approprié permettant de réduire la dimension du système et ainsi être en

mesure d’utiliser la théorie existante. En raison du caractère irrégulier des lois de con-

servation, les méthodes classiques telles que les différences finies ou les éléments finis

ne peuvent pas être utilisées car elles sont susceptibles de générer des instabilités ou de

donner des vitesses de propagation des chocs erronées [LeVeque, 1992]. Nous montrons

qu’un schéma hybride utilisant les méthodes de Godunov [Godunov, 1959] et de "Front

Tracking" [Holden, Holden & Hoegh-Krohn, 1988] permet de mettre une loi de conser-

vation scalaire sous la forme d’un système affine par morceaux, aussi appelé PWA pour

"PieceWise Affine" dans la littérature. Basé sur les méthodes proposées dans [Johansson

& Rantzer, 1998] et [Ferrari-Trecate, Cuzzola, Mignone & Morari, 2002], nous dévelop-

pons ensuite des algorithmes de contrôle en se fixant des objectifs de stabilisation, de

rejet de perturbation de type H∞ ou de régulation LQ (Linear Quadratic). La théorie

de la dissipativité appliquée aux systèmes PWA donne lieu à des Inégalités Matricielles

Linéaires ou LMI (Linear Matrix Inequalities) qui peuvent être résolues efficacement à

l’aide d’outils logiciels largement disponibles, dont la Matlab c© LMI Toolbox. Les méth-

odes de contrôle proposées dans cette thèse sont à l’état d’algorithmes expérimentaux. Ils

ont été implémentés dans l’environnement Matlab c© et testés en simulation sur des don-

nées réelles de trafic obtenues des Directions Départementales de l’Equipement (DDE)

de l’Isère et du Rhône.

Un des défis dans la présentation des travaux de cette thèse est d’introduire le lecteur

à la modélisation du trafic, aux systèmes de lois de conservation, à la commande optimale

des équations aux dérivées partielles et à la théorie de la dissipativité. Les probléma-

tiques de gestion des autoroutes et voies rapies constituent ainsi un cas exemplaire de la

convergence de l’ingénierie du trafic, des mathématiques appliquées et de la théorie du

contrôle.

Etat de l’art en modélisation et commande du trafic

En ce qui concerne les modèles de trafic, Lighthill, Whitham [Lighthill & Whitham, 1955]

et Richards [Richards, 1956] sont les premiers à avoir proposé d’utiliser une équation
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aux dérivées partielles, notée LWR, pour modéliser l’évolution de la densité du trafic

le long des autoroutes. Le seul paramètre de ce modèle est le diagramme fondamental

[Pipes, 1967] qui donne une relation empirique (en général concave) entre la densité ρ

[veh/km] et le flux φ [veh/h] en tout point. Ce modèle est bien maîtrisé depuis les

travaux de [Whitham, 1974; Lax, 1973], même en présence de conditions aux limites

[Bardos et al., 1979] et d’inhomogénéités dans les paramètres [Lebacque, 1996]. De

plus, plusieurs schémas numériques sont disponibles pour de telles équations, comme le

schéma de Godunov [Godunov, 1959]. Il faut souligner la large antériorité des travaux

concernant l’analyse du modèle LWR et de ces extensions dans la communauté du trans-

port, en particulier aux Etats-Unis [Michalopoulos, Stephanopoulos & Stephanopou-

los, 1981; Michalopoulos, Beskos & Lin, 1984; Bui, Nelson & Narasimhan, 1992] et en

France [Lebacque, 1984; Lebacque, 1996].

Plusieurs développements ont été proposés depuis. Dans [Payne, 1971], l’auteur pro-

pose un modèle avec une équation dynamique de vitesse mais il est fortement critiquée

dans [Daganzo, 1995b] en raison de la présence d’ondes se propageant à des vitesses plus

importantes que celles des véhicules, ce qui contredit l’anisotropie du trafic. Un schéma

numérique est donné dans [Leo & Pretty, 1992] pour ce modèle. Aw, Rascle [Aw & Ras-

cle, 2000] et Zhang [Zhang, 2002] ont ensuite proposé un modèle anisotrope, noté ARZ,

ne présentant pas ce type de problème. Certaines extensions de ce modèle sont données

dans [Greenberg, 2001; Aw, Klar, Materne & Rascle, 2002] et un schéma numérique de

type Godunov est proposé dans [Mammar, Lebacque & Haj-Salem, 2005].

Une extension naturelle de ces modèles est de considérer des interconnections de

liens modélisés par les équations LWR, ARZ ou MOD. Les travaux pionniers dans cette

voie pour le modèle LWR sont [Holden & Risebro, 1995] et [Lebacque, 1996] qui sont

poursuivis dans [M.Herty & Klar, 2003; Coclite, Garavello & Piccoli, 2005] du côté math-

ématiques appliquées et [Buisson, Lebacque & Lesort, 1996; Lebacque, 2003b; Lebacque

& Khoshyaran, 2005] du côté transport. D’autres modèles empiriques d’interconnections

sont fournis dans [Daganzo, 1995a; Jin & Zhang, 2003]. Le traitement des intersections

pour le modèle ARZ est étudié dans [Lebacque, Haj-Salem & Mammar, 2005], [Herty &

Rascle, 2006] et [Garavello & Piccoli, 2006b]. Enfin, des modèles d’interconnection ont

été proposés dans [Lebacque & Khoshyaran, 2002], [Garavello & Piccoli, 2005] et [Herty,

Kirchner & Moutari, 2006] pour le modèle MOD.

Une autre extension intéressante du modèle LWR consiste à désagréger la densité

totale en classes de véhicules comme proposé dans [Lebacque, 1996; Zhang & Jin, 2002;

Wong & Wong, 2002; Lebacque & Khoshyaran, 2002; Gavage & Colombo, 2003; Lebacque

& Khoshyaran, 2005]. Si ces classes sont les origines-destinations des véhicules présents

dans le réseau, ce modèle est appelé MOD pour "Multiclass Origin-Destination". Ce

type de modèle est approprié pour l’estimation des données d’origine-destination.

Enfin, Lebacque propose dans [Lebacque, 1997] une modification du modèle LWR où

les véhicules ont une accélération bornée, ce qui rend le modèle plus réaliste et fournit

une alternative au traitement des discontinuités.
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En ce qui concerne la commande du trafic, M. Papageorgiou a joué un rôle

prépondérant dans l’avènement des méthodologies du contrôle dans le secteur du trans-

port [Papageorgiou, 1983; Papageorgiou, 1984; Papageorgiou, 1990; Papageorgiou, Blos-

seville & Haj-Salem, 1990]. Il est aussi l’un des auteurs de la méthode ALINEA

de contrôle d’accès local [Papageorgiou, Blosseville & Haj-Salem, 1991] qui a été ex-

périmentée dans plusieurs pays [Papageorgiou et al., 1997]. Plusieurs autres méth-

odes de contrôle d’accès ont été proposées depuis, parmi lesquelles [Zhang & Levin-

son, 2004; Zhang, Ritchie & Jayakrishnan, 2001; Kotsialos & Papageorgiou, 2004; Gomes

& Horowitz, 2004; Sun & Horowitz, 2005]. Elles sont parfois associées à des straté-

gies de limitation variable de vitesse comme dans [Alessandri, Febbaro, Ferrara &

Punta, 1998; Hegyi, Schutter, Hellendoorn & van den Boom, 2002].

Contributions

La première partie de cette thèse traite de la modélisation macroscopique du trafic dans

l’objectif de développer des lois de commande applicables aux problèmes de la gestion

des autoroutes et des périphériques. Nous montrons, en nous appuyant sur la vaste

littérature à notre disposition, que les modèles LWR, ARZ et MOD peuvent être traités

de manière unifiée, en particulier en ce qui concerne les conditions aux limites et les

conditions d’interface pour les rampes d’accès et de sortie. Sur la base de cette analyse,

nous proposons une modélisation des conditions d’interface aux abords des singularités

sous la forme d’automates hybrides, ce qui permet de travailler avec des grandeurs de

la même dimension, en l’occurrence les variables de densité. Cette approche est adaptée

pour le traitement des problèmes de contrôle et d’optimisation, par exemple dans le cas

des calculs de sensibilité.

La deuxième partie concerne la commande de ces systèmes. Nous proposons dans un

premier temps une théorie générale pour les problèmes d’optimisation faisant intervenir

des lois de conservation puis appliquons les résultats obtenus aux problèmes de gestion du

trafic. Une des contributions de cette partie est la généralisation de la méthode du calcul

adjoint lorsque l’état du système est une fonction à variation bornée (BV ), comme c’est le

cas pour les modèles de trafic. Nous proposons également une méthodologie de synthèse

basée sur la dissipativité pour la commande et l’observation des versions discrétisées des

lois de conservation scalaires. Cette méthode est appliquée au contrôle d’accès et permet

d’obtenir des algorithmes en boucle-fermée, contrairement à l’approche par commande

optimale.

Les contributions scientifiques de cette thèse peuvent être résumées ainsi:

1. une formulation hybride des entrées/sorties pour les modèles LWR, ARZ et MOD,

2. une condition d’entropie pour les entrées/sorties avec le modèle LWR,

3. un schéma de discrétisation simplifié de type "CTM" pour le modèle ARZ,
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4. une méthode adjointe d’évaluation de gradients pour les lois de conservation,

5. un algorithme pratique d’optimisation pour le contrôle et l’observation des modèles

macroscopiques de trafic,

6. un algorithme boucle-fermée à base de dissipativité et de LMI pour les lois de

conservation scalaires avec une application au contrôle d’accès,

7. des simulations numériques des algorithmes de commande utilisant des données

réelles des périphériques de Grenoble et Lyon.

Cette thèse a donné lieu à la présentation des papiers de conférences suivants :

[1] D. Jacquet, J. Jaglin, D. Koenig and C. Canudas de Wit, Non-Local

Feedback Ramp Metering Controller Design, Proceedings of the 11th IFAC Sympo-

sium on Control in Transportation Systems (CTS), Delft, The Netherlands, 2006.

[2] D. Jacquet and Roberto Horowitz, Input Estimation in Interconnected

Systems of Conservation Laws, Application to OD Volume Update, Proceedings

of the 17th International Symposium on Mathematical Theory of Networks and

Systems (MTNS), Kyoto, Japan, 2006.

[3] D. Jacquet, M. Krstic and C. Canudas de Wit, Optimal Control of Scalar

One-Dimensional Conservation Laws, Proceedings of the 2005 American Control

Conference, Minneapolis, U.S.A., 2006.

[4] D. Koenig, D. Jacquet and S. Mammar, Delay-dependent H-infinity Ob-

server of Linear Delay Descriptor Systems, Proceedings of the 2005 American

Control Conference, Minneapolis, U.S.A., 2006.

[5] Jacquet, C. Canudas de Wit, and D. Koenig, Optimal Control of Sys-

tems of Conservation Laws and Application to Non-Equilibrium Traffic Control,

Proceedings of the 13th IFAC Workshop on Control Applications of Optimisation,

Cachan, France, 2006.

[6] Jacquet, C. Canudas de Wit, and D. Koenig, Traffic Control and Mon-

itoring with a Macroscopic Model in the Presence of Strong Congestion Waves,

Proceedings of the 44th Conference on Decision and Control & European Control

Conference, Sevilla, Spain, 2005.

[7] Jacquet, C. Canudas de Wit, and D. Koenig, Optimal Ramp Metering

Strategy with an Extended LWR Model: Analysis and Computational Methods, Pro-

ceedings of the 16th IFAC World Congress, Praha, Czech Republic, 2005.
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Résumé détaillé

Analyse phénoménologique du trafic

Les modèles de trafic étant jugés pour leur faculté à reproduire des phénomènes observés

sur les infrastructures routières en exploitation, une analyse préliminaire des données

fournies par les boucles de comptage s’impose. A cet effet, la Figure 4 donne un exemple

de la disposition des boucles de comptage sur la partie sud-est du périphérique de Lyon

ainsi qu’un exemple de la série temporelle de la vitesse moyenne pour l’un de ces capteurs

le 18 octobre 2005 entre 12h00 and 23h00. La baisse de vitesse observée autour de 18h00

est prévisible et correspond à la présence d’une congestion. La Figure 5 donne l’ensemble

des séries temporelles de vitesse pour les 8 boucles de comptage présentes sur les voies

principales de la section représentée en Figure 4. En dehors de quelques fluctuations

autour des limites de vitesse, le phénomène principal apparaissant sur la Figure 5 est

une baisse importante de vitesse dans une région correspondant à la présence d’une

congestion en fin d’après midi. Sur la base de cette observation, les caractéristiques

suivantes doivent retenir notre attention:

1. la baisse de vitesse apparaît d’abord de façon abrupte sur la station numéro 4,

2. elle se propage ensuite en arrière suivant un front de congestion brusque,

3. l’état fluide réapparaît à partir de la frontière amont et se propage en avant,

4. la partie aval à la station 4 est peu affectée durant la période de congestion.

Cette succession d’événements s’explique par la présence d’un goulot d’étranglement

entre les stations 4 et 5, du à une demande des rampes d’accès supérieure à la capacité

de l’infrastructure à cet endroit. De plus, la présence de plusieurs rampes d’accès et

de sortie dans cette région peut produire un effet de confusion sur les conducteurs qui

aggrave la situation. Si l’impact de ce type de congestion peut être minimisé en utilisant

une méthode de contrôle d’accès, il est primordial que les modèles servant à la mettre

en oeuvre prennent en compte ce type de phénomènes.

Les modèles macroscopiques de trafic

Le modèle LWR

Le modèle LWR proposé par Lighthill, Whitham [Lighthill & Whitham, 1955] et Richards

[Richards, 1956] est basé sur le principe de conservation des véhicules et l’hypothèse que

l’état du trafic suit une relation empirique φ = Φ(ρ) = ρV (ρ) entre la densité ρ et le

flux φ. Une telle fonction Φ(·), appelée diagramme fondamental dans la communauté du

transport, est représentée en Figure 6 pour le capteur identifié en Figure 4. Des expres-
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Figure 4: Configuration des boucles magnétiques de comptage (points noirs) le long du

périphérique sud-est de Lyon et série temporelle de la vitesse moyenne fournie par l’un

des capteurs (période d’échantillonnage de 1 minute).

Figure 5: Diagramme des séries temporelles de vitesse pour les 8 boucles présentes sur

les voies principales.
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Figure 6: Exemple de diagramme fondamental.

sions analytiques possibles de ce type de diagramme sont par exemple celles données par

les flux de Greenshield (GS) et Greenberg (GB) [Pipes, 1967]

ΦGS(ρ) = ρ.vf −
ρ2.vf

ρm

ΦGB(ρ) = ρ.vf ln

(
ρm

ρ

)

où vf est la vitesse libre observée lorsqu’il n’y a pas de congestion et ρm est la densité

maximale, définissant la capacité de stockage d’une section d’autoroute. En notant x

la variable spatiale, le principe de conservation des véhicules s’écrit pour tout intervalle

(xL, xR)

Evolution du nombre de voitures dans (xL, xR)

=
∑

Flux entrant en xL −
∑

Flux sortant en xR

Quelques manipulations élémentaires donnent le modèle LWR décrit par

∂tρ+ ∂xΦ(ρ) = 0 (LWR)

Cette équation appartient à la classe des équations aux dérivées partielles appelée lois

de conservation. Elles ont été abondamment étudiées dans la littérature mathématique

[Hopf, 1950; Lax, 1957; Kružkov, 1970; Bardos et al., 1979; LeFloch, 2002] et leurs

solutions sont connues pour développer des irrégularités appelées ondes de choc. De

plus, les résultats d’existence et d’unicité pour (LWR) donnés dans [Kružkov, 1970] sont

obtenus dans l’espace BV des fonctions à variations bornées [Evans, 1998], qui est une

variation de l’espace des fonctions C1 par morceaux. Les discontinuités, aussi appelées

ondes de choc et notées x = s(t), se propagent à une vitesse vérifiant la condition de

Rankine-Hugoniot [LeVeque, 1992]

ṡi(t)[ρ(si(t), t)] = [Φρ(si(t), t))] (RH)
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avec [ρ(si(t), t)] = ρ+
|x=si(t)

− ρ−|x=si(t)
= limx↓si(t) ρ(x, t) − limx↑si(t) ρ(x, t) le saut de

densité à x = si(t). Par ailleurs, seules les discontinuités vérifiant la condition d’entropie

de Lax [Lax, 1973]

Φ′
(
ρ−|x=si(t)

)
> ṡi(t) > Φ′

(
ρ+

|x=si(t)

)
(L)

sont admissibles. Les équations (RH) et (L) fournissent donc des informations pertinentes

qui caractérisent les solutions de (LWR).

Lorsque l’on considère un problème avec des conditions aux limites de la forme




∂tρ+ ∂xΦ(ρ) = g(x, ρ, u)

ρ(x, 0) = ρI(x)

ρ(0, t) = ρ0(t) and ρ(L, t) = ρL(t)

le seul résultat d’existence et d’unicité de la solution, donné dans [Bardos et al., 1979],

stipule que les traces ρ(0, t) et ρ(L, t) de la solution aux frontières vérifient

supk∈I(ρ(0,t),ρ0(t)) sign
(
ρ(0, t)− ρ0(t)

)(
Φ(ρ(0, t))− Φ(k)

)
= 0

infk∈I(ρ(L,t),ρL(t)) sign(ρ(L, t)− ρL(t))
(
Φ(ρ(L, t))− Φ(k)

)
= 0

(BLN)

avec I(a, b) = (min(a, b),max(a, b)). Dans l’hypothèse où Φ(ρ) est concave, ce qui est en

général le cas [Pipes, 1967], il est possible d’expliciter ces conditions (BLN) de diverses

manières. Pour la condition amont (la condition aval se comportant de façon similaire),

les formulations suivantes ont été proposées :

1. La formulation de LeFloch [LeFloch, 1988]




ρ(0, t) = ρ0(t) et Φ′(ρ0(t)) ≥ 0 ou

Φ′(ρ(0, t)) ≤ 0 et Φ′(ρ0(t)) ≤ 0 ou

Φ′(ρ(0, t)) ≤ 0,Φ′(ρ0(t)) ≥ 0 et Φ(ρ0(t)) ≥ Φ(ρ(0, t))

2. La formulation d’Osher [Osher, 1984]

φ0(t) =

{
infk∈[ρ0(t),ρI(0,t)] Φ(k) si ρ0(t) ≤ ρI(0, t)

supk∈[ρI(0,t),ρ0(t)] Φ(k) si ρI(0, t) < ρ0(t)

avec φ0(t) le flux au niveau de la frontière amont.

3. La formulation de Lebacque [Lebacque, 1996]

φ0(t) = min
{
D(ρ0(t)), S(ρI(0, t))

}

avec les fonctions d’offre et de demande données respectivement par

D(ρ) =

{
Φ(ρ) si Φ′(ρ) > 0

Φm si Φ′(ρ) ≤ 0
S(ρ) =

{
Φ(ρ) if Φ′(ρ) < 0

Φm if Φ′(ρ) ≥ 0

où Φm = max Φ(·).
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Le traitement des inhomogénéités (Figure 7) comme les rampes d’accès, les rampes

de sortie et les variations brutales de paramètres (changement du nombre de voies ou de

la limitation de vitesse) est plus compliqué. Ces éléments ponctuels donnent lieu à des

ρ0 ρLρ1 ρ2 ρ3 ρ4 ρ5

? ?

6 6β2 φ̂3 φ̂5
β4

- - - --
x1 x2 x3 x4 x5

Figure 7: Section d’autoroute avec entrées et sorties.

conditions d’interface qui peuvent être vues comme la combinaison de deux conditions

aux limites, avec un couplage dont la causalité reste à définir. Les deux hypothèses

naturelles s’appliquant aux interfaces sont :

1. Les conditions (BLN) s’appliquent à gauche et à droite des inhomogénéités.

2. La conservation du flux doit être assurée.

Il est connu que ces conditions ne sont cependant pas suffisantes pour rendre le problème

bien posé car elles ne permettent pas d’obtenir une solution unique. Nous proposons

dans cette thèse une condition d’entropie pour les interfaces qui s’écrit

Φ′
L(ρL) > 0 ou Φ′

R(ρR) ≤ 0 ou les deux

les indices L et R se rapportant respectivement aux grandeurs définies à gauche et à

droite. Cette condition permet en particulier de déterminer la solution analytique du

problème prototype de Riemann, i.e. avec une condition initiale constante par morceau.

Elle est identique à l’hypothèse de maximisation du flux d’interface qui est en général

utilisée dans cette situation, et qui peut sembler plus ou moins arbitraire au premier

abord.

Nous proposons également une interprétation hybride du comportement des rampes

d’accès et de sortie, cette interprétation étant issue de la résolution méthodique du

problème de Riemann correspondant. Par exemple, dans le cas d’une rampe d’accès

avec un flux φ̂(t) vérifiant φ̂(t) < S(ρR(t)), les 3 états discrets relatifs à son statut sont :

1. Libre (F): ρR(t) = Φ−l
(
Φ(ρL(t)) + φ̂(t)

)
avec Φ−l(·) l’inverse à gauche de Φ(·).

2. Congestionné (C): ρL(t) = Φ−r
(
Φ(ρR(t))− φ̂(t)

)
avec Φ−r(·) l’inverse à droite.

3. Découplé (D): ρR(t) = ρc et ρL(t) = Φ−r
(
Φm − φ̂(t)

)
.

On peut prouver que l’interface suit la machine d’état donnée en Figure 8. L’un des

intérêts de cette formulation est d’expliciter la causalité dans le transfert des conditions

aux limites. La transition F→ D s’opère lorsque

Φ(ρL(t)) + φ̂i > Φm

et correspond à l’apparition d’un bouchon dû à un goulot d’étranglement.
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D

F C

Upstream congestion wave

Downstream
free flow wave

On/off ramp
range default

wave

Downstream
free flow

wave

Upstream
congestionFree

flow flow
Congested

Decoupled flow

Saturated

on ramp flow

Figure 8: Machine d’état suivie par une interface avec rampe d’accès.

Le modèle ARZ

Le modèle ARZ proposé dans [Aw & Rascle, 2000; Zhang, 2002] s’écrit

∂t

(
ρ

y

)
+ ∂x

(
y + Φ(ρ)

(y + Φ(ρ)) y
ρ

)

︸ ︷︷ ︸
F (ρ,y)

=

(
0

− y
τ

)

(ARZ)

avec y = φ − Φ(ρ) le flux relatif comme introduit dans [Mammar et al., 2005] et τ un

paramètre de relaxation. L’intérêt de ce modèle est qu’il autorise des états du trafic qui

ne sont pas nécessairement sur le diagramme fondamental, comme c’est le cas pour les

données mesurées (Figure 6). De plus, les champs caractéristiques de (ARZ) ont pour

vitesse d’onde λ1 = v + ρV (ρ) et λ2 = v, montrant bien l’anisotropie du modèle, toute

perturbation se déplacant à une vitesse λ1 ou λ2 inférieure à celle du trafic. Un autre

intérêt du modèle ARZ est qu’il est possible de calculer une solution analytique de son

problème de Riemann, comme cela a été montré dans [Aw & Rascle, 2000; Lebacque

et al., 2005].

Selon [Dubois & LeFloch, 1988; Joseph & LeFloch, 1999], la condition aux limites en

x = 0 du modèle ARZ doit vérifier

u(0, t) ∈ Vup(uup(t)) =
{
w(0+,uup(t),u) : u ∈ R2

+

}

avec w(x/t,uup(t),u) la solution du problème de Riemann avec les états uup(t) et u

respectivement à gauche et à droite. Pour calculer les ensembles Vup(uup(t)), il faut

considérer les cinq configurations possibles de la solution du problème de Riemann,

identifiées par l’onde présente dans le champ "vraiment non linéaire" [Serre, 1996]: choc

se déplaçant en avant, onde de raréfaction se déplaçant en avant, choc se déplaçant
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en arrière, onde de raréfaction se déplaçant en arrière et raréfaction sonique. Nous

déterminons dans cette thèse les ensembles Vup(uup(t)) en fonction de uup(t).

Dans le cas inhomogène, [Lebacque et al., 2005] propose une formulation of-

fre/demande ingénieuse sous la forme d’un diagramme fondamental translaté lorsque

des inhomogénéités apparaissent dans les paramètres du modèle ARZ. Cette approche

peut être étendue au cas des rampes d’entrée et de sortie. Comme pour le modèle LWR,

nous proposons une formulation hybride des conditions d’interface correspondantes.

Le modèle MOD

Le modèle MOD [Zhang & Jin, 2002; Lebacque & Khoshyaran, 2002; Jin & Zhang, 2004]

pour "Multiclass Origin-Destination" s’écrit

∂tρ + ∂x

(
ρ V (|ρ|)

)
= 0

(MOD)

avec ρ = (ρ1, ..., ρNR)T le vecteur des densités désagrégées par route et V (ρ) le même

diagramme de vitesse que pour le modèle LWR. Les vitesses caractéristiques de (MOD)

sont données par [Zhang & Jin, 2002]





λ1(ρ) = V (|ρ|)
...

...

λNR−1(ρ) = V (|ρ|)
λNR(ρ) = V (|ρ|) + |ρ|V ′(|ρ|)

montrant que le modèle est anisotrope et que seul le NR-champ qui est "vraiment non

linéaire" [Serre, 1996] peut générer des ondes se propageant à des vitesses négatives.

Les conditions aux limites sont traitées de façon similaire au cas du modèle ARZ et

les ensembles Vup(uup(t)) sont déterminés dans cette thèse.

Le traitement des rampes d’accès et de sortie est un peu plus compliqué pour le

modèle MOD en raison des différences de taille entre les systèmes interconnectés. En

considérant une rampe d’accès du même type que celle représentée en Figure 9, les

principes de conservation du flux s’écrivent

{
φL1

R1
= φL2

R1

φL2
R2

= φ̂

De plus, en considérant que le diagramme de flux s’applique à l’interface, on obtient





φL1
R1

= Φ(ρL1
R1

) = ρL1
R1
V (ρL1

R1
)

φL2
R1

= ρL2
R1
V (ρL2

R1
+ ρL2

R2
)

φL2
R2

= ρL2
R2
V (ρL2

R1
+ ρL2

R2
)
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φ̂

ρL1

R1
ρL2

R1

ρL2

R2

Figure 9: Exemple de rampe d’accès pour le modèle MOD.

Une série de manipulation analytique de ces équations fournit des contraintes pour les

variables φL2
R1

, φL2
R1

, φL1
R1

et |ρL2|. Il est alors possible de montrer que les interfaces ayant

des rampes d’accès ou de sortie suivent une machine d’état similaire aux modèles LWR

et ARZ.

Méthodes numériques

De nombreux schémas numériques sont proposés dans la littérature pour simuler les

modèles LWR, ARZ et MOD. Nous utilisons dans cette thèse les schémas de type Go-

dunov [Godunov, 1959; LeVeque, 1992] qui sont réputés performants. Parmi les sché-

mas proposés dans la littérature, citons [Daganzo, 1994; Lebacque, 1996] et [Lebacque

et al., 2005] qui permettent respectivement de simuler les modèles LWR et ARZ, et ce

même en présence d’inhomogénéités dans les paramètres. Ces schémas ont été validés en

simulation sur des données réelles provenant du périphérique sud-est de Lyon en utilisant

la méthode offre/demande et la formulation sous forme d’automate hybride.

Sur la commande optimale des lois de conservation

Nous proposons dans cette thèse d’étendre la méthode adjointe développée dans

[Lions, 1971] pour la commande optimale des équations aux dérivées partielles aux flots

irréguliers générés par des lois de conservation. Cette méthode reposant sur une formule

d’intégration par parties, nous prouvons le théorème suivant qui s’applique aux champs

C1 par morceaux et BV .

Théorème 1 Soit Ω ⊂ R2 avec les composantes (x, t) un domaine ouvert et borné de

frontière ∂Ω Lipschitzienne et ayant ν pour normale unitaire, et soit u = (u1, u2) une

fonction BV (Ω,R2) ou C1 par morceaux avec Ns singularités Lipschitziennes notées

Γi ⊂ Ω et paramétrées par Γi = {(x, t) : x = si(t), t ∈ [tIi , t
F
i ]}. Alors , pour toute

fonction φ ∈ C1(R2), la formule suivante d’intégration par parties est vérifiée
∫

Ω

u · ∇φ dL2 = −
∫

Ω\∪iΓi
φ divu dL2 +

∫

∂Ω

u · ν φ dH1

+
Ns∑

i=1

∫ tFi

tIi

ṡi(t)[u2φ]|x=si(t)
− [u1φ]|x=si(t)

dt
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où L2 représente la mesure de Lebesgue de dimension 2 et H1 la mesure de Hausdorff de

dimension 1.

Le problème de commande optimale que nous traitons est de la forme

Min
yI ,u

J (y, s, u) = Jobs(y) + Js(s) + Jbar(u)

=
∫

Ω
P(y(x, t)) dxdt+

∑Ns
i=1

∫ T

ti
Qi(si(t)) dt+

∫ T

0
R(u(t)) dt

Avec





∂ty + ∂xf(y) = g(x, y, u)

y(x, t = 0) = yI(x)

y(0, t) ∼ y0(t) et y(L, t) ∼ yL(t)

yI ∈ BV (R) et u ∈ Uad

où Jobs(y) sert à influencer l’état distribué y, Js(s) sert à influencer la position des

ondes de choc s et Jbar(u) sert à contrôler la valeur de commande u = (u1, ..., uNu) et à

la restreindre par des méthodes de barrière [Boyd & Vandenberghe, 2004] à l’ensemble

convexe admissible Uad. Les conditions aux limites s’appliquent au sens faible et ne sont

pas toujours actives, d’où l’utilisation du symbole ∼.

Nous prouvons alors le théorème suivant:

Théorème 2 L’équation linéarisée autour de la trajectoire de référence (ȳ, ū) donnée

par 



∂tỹ + ∂x

(
f ′(ȳ)ỹ

)
= ∂yg(x, ȳ, ū)ỹ + ∂ug(x, ȳ, ū)ũ

ỹ(0, x) = ỹI

ỹ(t, 0) = 0 et ỹ(t, L) = 0

dans Ω = (0;L) × (0, T ) a une solution faible unique dans l’espace des mesures qui est

donnée par la formule

ỹ = ỹs +
Ns∑

i=1

κiδΓi

avec Γi = {(s̄i(t), t) : t ∈ [tIi , T ]} les Ns ondes de choc présentent dans ȳ, ỹs la solution

forte définie dans Ω\ ∪i Γi de l’équation aux dérivées partielles





∂tỹs + ∂x

(
f ′(ȳ)ỹs

)
= ∂yg(x, ȳ, ū)ỹs + ∂ug(x, ȳ, ū)ũ

ỹs|t=0 = ỹI

ỹs|x=0 = 0 et ỹs|x=L = 0

et κi, pour i = {1, . . . , Ns} la solution de l’équation différentielle ordinaire

{
dκi
dt

= κi∂yg(x, ȳ, ū)|x=s̄i(t)
− [f ′(ȳ)ỹs]|x=s̄i(t)

+ ˙̄si[ỹs]|x=s̄i(t)

κi(t
I
i ) = 0

où κi est lié au déplacement infinitésimal s̃i du choc i par κi = −s̃i[ȳ]|x=s̄i(t)
.
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En adoptant les notations




∂tỹs + ∂xα(x, t)ỹs = β(x, t)ỹs + γ(x, t)ũ

ỹs(x, 0) = ỹI , ỹs(0, t) = 0 et ỹs(L, t) = 0

κ̇i =β(s̄i(t), t)κi−[α(s̄i(t), t)ỹs(s̄i(t), t)]+ ˙̄si(t)[ỹs(s̄i(t), t)]

κi(0) = 0

pour la solution du problème linéarisé, nous en déduisons le théorème suivant:

Théorème 3 Les gradients de J (y, s, u) par rapport aux variables de décision u et yI

autour de la trajectoire de référence (ȳ, ū) sont donnés par

∇uJ = R′(ū) +

∫ L

0

γ(x, t)λ(x, t)dx

∇yIJ = λ(x, 0)

avec λ la solution de 



µ̇i = −β|x=s̄i(t)
µi +

Q′i(s̄i)
[ȳ]|x=s̄i(t)

µ(T ) = 0

λ−|x=s̄i(t)
= λ+

|x=s̄i(t)
= µi

−∂tλ− α(x, t)∂xλ = β(x, t)λ+ P ′(ȳ)

λ(x, T ) = 0

λ(0, t) = 0 et λ(L, t) = 0

Un résultat similaire est obtenu pour le cas des systèmes de lois de conservation.

Cependant, il ne permet pas de prendre en compte la sensibilité par rapport aux discon-

tinuités éventuellement présentes dans l’état.

Considérons à titre exemple le problème du contrôle d’accès pour un périphérique où

les variables de décision sont les taux de modulation des feux tricolores sur les rampes

d’accès, notés ui ∈ (0, 1), i = 1, ..., Nu. La distance totale voyagée étant un indicateur

de la performance de l’infrastructure, nous considérons le problème de sa maximisation,

noté

Min JVMT(φ) = −
∫ T

0

∫ L

0

φ(x, t) dxdt

auquel il faut ajouter le terme de barrière

Jbar(u) = − 1

M

Nu∑

i=1

∫ T

0

ln
(
ui(1− ui)

)
dt

pour chaque ui afin de s’assurer que ui ∈ (0, 1). Par ailleurs, le modèle LWR peut se

mettre sous la forme compacte

∂tρ+ ∂xΦ(ρ) =
Nu∑

i=1

δx̂i(x) ui(t) Ψi(ρ(x, t))−
Nβ∑

j=1

δx̌j(x) βj Φ(ρ(x, t))

︸ ︷︷ ︸
g(x,ρ,u)
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où Ψi(·) est une fonction de saturation qui vérifie

• Ψi(ξ) = φ̄i pour ξ ∈ (0, γ), où φ̄i est le flux maximal à la rampe i,

• Ψ′
i(·) ≤ 0 pour ξ ∈ (γ, ρm) étant donné que le flux d’entrée diminue avec la densité,

• Ψi(ρm) = 0 car aucun véhicule ne peut entrer à la densité maximale.

et limite le flux des rampes pour des valeurs élevées de la densité sur les voies principales.

En utilisant les résultats que nous avons établis pour la commande optimale des lois de

conservation, on peut montrer que

∇uJ =




−Ψ1(ρ̄(·, x̂1)) λ(·, x̂1)− 1
M

(
1
ū1
− 1

1−ū1

)

...

−ΨNu(ρ̄(·, x̂Nu)) λ(·, x̂Nu)− 1
M

(
1

ūNu
− 1

1−ūNu

)




où la variable adjointe λ est la solution de




−∂tλ− Φ′(ρ̄)∂xλ = Φ′(ρ̄) +
∑Nu

i=1 δx̂iūiΨ
′
i(ρ̄)λ−

∑Nw
i=1 δx̌iβiΦ

′(ρ̄)λ

λ(x, T ) = 0

λ(0, t) = 0 quand Φ′(ρ̄(0, t)) < 0

λ(L, t) = 0 quand Φ′(ρ̄(L, t)) > 0

λ|Γi
= 0 avec Γi = {(x, t) : [ρ̄(x, t)] 6= 0}

En utilisant un algorithme récursif tel que l’Algorithme 1 pour un problème avec

trois rampes d’accès pouvant être contrôlées, nous obtenons les résultats présentés sur les

Figures 3.1 et 3.2 qui montrent l’efficacité de la méthode. D’autres objectifs de commande

ainsi que des objectifs d’estimation peuvent être traités en modifiant l’expression du

critère J . De même, cette méthode a été utilisée de manière similaire pour le modèle ARZ

et pour le modèle MOD dans le cadre de l’estimation des données origines-destinations.

Sur la commande boucle fermée du modèle LWR

En utilisant les schémas de Godunov [Godunov, 1959] et de "Front Tracking" [Holden

et al., 1988], il est possible de mettre le modèle LWR sous la forme





ρk+1 = Aαkρk +Bαkuk +Wαkwk + aαk

αk = g(ρk, uk, wk)

ρk=0 = ρ0 et αk=0 = α0

où k est le temps, αk ∈ I = {1, ..., h} est un signal discret, ρk ∈ Rn l’état du système,

uk ∈ Rm la variable de contrôle (taux de modulation feux tricolores), wk ∈ Rp un

signal exogène connu de façon incertaine, et g(ρk, uk, wk) une loi de commutation. Un
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Algorithm 1 Algorithme de descente du gradient avec fonction barrière.

Require: ū := uinit ∈ (0, 1), ȳI = yinit
I , ε > 0

while |∇uJ +∇yIJ | > ε do

Résoudre le problème LWR avec ȳ with ū and ȳI

Calculer µi et λ solutions de l’équation adjointe

Calculer ũ = −∇uJ à l’aide de la formule de gradient

Mettre à jour la commande avec ū := ū+ t1ũ tel que u ∈ (0, 1)

end while
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Figure 3.1: Décroissance des coûts Jobs et J .
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Figure 3.2: Contrôle d’accès optimal et distribution de l’amélioration du flux.
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tel modèle, qui appartient à la famille des systèmes dits affines par morceaux ou PWA

(pour PieceWise Affine), a déjà été étudiée dans la communauté du contrôle [Johansson

& Rantzer, 1998; Ferrari-Trecate et al., 2002]. Nous montrons qu’il est possible, pour ces

systèmes, d’associer une Inégalité Matricielle Linéaire (LMI) aux objectifs de contrôle

suivants :

• la stabilisation,

• la stabilisation avec terme intégral,

• le rejet de perturbation H∞,

• la commande à coût quadratique garantie,

Nous appliquons cette méthode au problème de contrôle d’accès et interprétons les ré-

sultats obtenus par rapport à l’état de l’art de ce type de pratique.

Perspective

Les travaux présentés dans cette thèse permettent de mieux comprendre la dynamique

du trafic et proposent des méthodes génériques de commande et d’observation pour les

problèmes de gestion du trafic. Cependant, les outils développés se présentent sous

une forme académique et nécessitent encore un travail assez conséquent pour les rendre

opérationnels dans les années à venir.
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Part I

Macroscopic Freeway Traffic Models
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A poem is never finished, only abandoned.

Paul Valéry (1871-1945),

French author and Symbolist poet.
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Chapter 1

A Primer to Freeway Modelling and

Control

Intelligent transportation systems for freeways

In developed countries, increased travel time in congested sections a have dramatic eco-

nomic impact. For instance, the 2004 Urban Mobility Report [Schrank & Lomax, 2004]

reports an equivalent monetary cost of $63.2 billion in 2002 due to congestions in USA

with a calculated 3.5 billion hours of delay and 5.7 billion gallons of wasted fuel. Simi-

larly, the Bureau of Transportation Statistics (BTS), U.S. Department of Transportation,

claims that the single city of Los Angeles, which is one of the most congested area in the

world, suffered in 2001 of $12,837 millions of equivalent highway congestion cost with 52

hours of delay per person and 996 millions wasted fuel gallons.

As a partial response to the spread of congestion, Intelligent Transportation Systems

(ITS) have emerged in the 80′s and use recent advances in modelling, decision science and

information technologies to enhance the infrastructure efficiency while preserving safety

and to inform the users. ITS applications such as dynamic route guidance with variable

message panel, adaptive intersection traffic light sequencing and travel time prediction,

are now common in developed countries and have shown their efficiency.

This book is focused on freeway management application and do not treat the urban

case. After several failed attempts to equip vehicles with additional devices to develop

new traffic management strategies, it is commonly accepted that the infrastructure usage

should be optimized first through non-invasive methods. Freeway systems are usually

centrally monitored by a so-called Traffic Control Centers that informs authorities about

possible accidents and take decisions about possible deviations using variable message

panel. These Traffic Control Centers gets more and more sophisticated as shown on

Figure 1.1 where monitoring panels can managed hundreds of real-time videos and thou-

sands of traffic measurements along freeways.

Interesting freeway control applications such as ramp metering still requires some

development and it is a remarkable fact that control theory just begins to be used in
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Chapter 1. A Primer to Freeway Modelling and Control

Figure 1.1: Panels of the traffic control centre of Rhoon, Netherlands.

this strategic field. Ramp metering consists in controlling the flow of vehicles allowed to

enter the freeway at on-ramps by using traffic lights. This tool is already functioning in

some states in USA as in California and Minnesota as well as in Netherlands and UK.

Though local and static, existing installations have proven to improve freeway operation

by influencing the traffic both in time and space. Considering the well-known spatial

dependencies acting in freeways, it is reasonable to assume that the maximum benefits

can only be attained by traffic responsive and coordinated strategy that uses all of

the available data to compute the metering rates. For an immediate implementation,

this information can be obtained from inductive loops detectors embedded under the

pavement as shown on Figure 1.2.

Figure 1.3, which is an abstraction of the ramp metering setting introduced in Figure

1.2, clearly shows the system-sensor-actuator paradigm familiar in control theory. As

shown in Figure 1.3, the freeway system can be modelled by macroscopic traffic models

that may be either continuous or discrete. Based on such a model, the ramp metering

design problem consists in computing a controller that fulfils some specified control

objectives such that the trajectory optimality or the robust tracking of a predefined

reference.

Available measurements in traffic engineering

One of the main goals of traffic engineers is to observe the flow of vehicles along freeways

and to determine some patterns that appear to be repeated. Based on these experimental

evidences, they then look for a rational explanation and try to develop mathematical

models the reproduce the observed phenomena with reasonable accuracy.

Since the 70’, this methodology is facilitated by the wide spread of magnetic loop

detectors that measure at given locations the traffic flow [veh/h], the local average ve-

locity [km/h] and the local vehicle occupancy [%], which is related to the vehicle density

[veh/km] through the average vehicle length. A picture of such a magnetic loop sensor

is given in Figure 1.4. Nevertheless, the reliability of these loop detectors is discutable.

Most of installed detectors around the world are single loops that cannot measure the

velocity (contrary to newer double loops) and the occupancy measurement requires an

accurate calibration which often lead to some biases. Moreover, the oldness of many
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Chapter 1. A Primer to Freeway Modelling and Control

Figure 1.2: Principle of traffic responsive and coordinated ramp metering.

Figure 1.3: System-sensor-actuator control paradigm for freeway systems.
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Chapter 1. A Primer to Freeway Modelling and Control

Figure 1.4: Loop detector buried under the roadway.

installations and repetitive work activities on the pavement lead to a high proportion of

malfunctioning detectors, and thus to erroneous measurements. For instance, the Perfor-

mance Measurement System (website at http://pems.eecs.berkeley.edu), which records

all the loop detector data in the entire state of California, reports an average 20 % of

malfunctioning sensors. This constatation highlights the need of robust methods when

designing traffic control algorithms that relies on the loop measurements.

Figure 1.5 gives an example of the configuration of these loop detectors on the South-

Est beltway of Lyon, France along with a velocity time series for one of them.

Figure 1.5: Configuration of the loop detectors on the South-Est beltway of Lyon, France.

The black labelled boxes are the sensor locations and the plot shows the velocity time

series of a senor on October 18th, 2005 between 12:00 and 23:00. The velocity drop

around 18:00 comes form a congestion in the afternoon rush hours.

Concerning these experimental data, a phenomenological finding of historical impor-

tance is the existence of a relationship between the density ρ [veh/km] and the flow φ

[veh/h] at a given location. An example of this relation, called the fundamental diagram

[Pipes, 1967] in traffic engineering, is given in Figure 1.6 with the same sensor data as
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Chapter 1. A Primer to Freeway Modelling and Control

the one used in Figure 1.5. This fundamental diagram is an important feature of freeway

Figure 1.6: Example of a fundamental diagram with field data.

traffic theory as it was at the origin of the first traffic flow model proposed by Lighthill,

Whitham [Lighthill & Whitham, 1955] and Richards [Richards, 1956]. Freeway traffic

modelling has been a very active research field since then and there has been several

contributions in microscopic, macroscopic and mesoscopic modelling.

Modelling issues in traffic engineering

This thesis only deals with macroscopic models, which are more adapted for the design

of freeway management algorithms given the size of the system. Beside modelling traffic

propagation and congestion waves, one of the most important feature that should be

reproduced by these models is the capacity, which is the maximal admissible flow at a

given location. For instance, based on the field data of Figure 1.6, the capacity at this

sensor location is given by the maximum value of the fundamental diagram. This ca-

pacity, which is around 6500 veh/h for 3 lanes in Figure 1.6, is reached at an important

traffic state called the critical density, which is around 18% occupancy in Figure 1.6. An

other important modelling issue concerns on and off ramps where complicated dynam-

ical behaviors have been observed such as the onset of congestions and their backward

propagation, the capacity drop due to vehicle acceleration, the instantaneous breakdown

phenomena and the off-ramp queue spillback.

Macroscopic freeway models in the form of conservation laws have the property to

generate and propagate discontinuities. This feature, which is not classical in partial

differential equations, has been empirically observed as reported on Figure 1.7 with the

data from the South-Est beltway of Lyon, France. Note the backward propagation of the

congestion after its birth (black dot and connected line) and the forward propagation of

the free flow wave that removes the congestion (line without dot).
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Chapter 1. A Primer to Freeway Modelling and Control

Figure 1.7: Experimental evidence of shock waves and backward propagation.

State of the art in freeway modelling

Concerning freeway models, Lighthill, Whitham [Lighthill & Whitham, 1955] and

Richards [Richards, 1956] were the firsts to propose in the 50’s a scalar partial dif-

ferential equation to model crowed roads using an equilibrium flux function known as

the fundamental diagram [Pipes, 1967]. This model being a scalar conservation law, the

behavior of its solution is well understood [Whitham, 1974; Lax, 1973], even in the pres-

ence of boundary conditions [Bardos et al., 1979] and inhomogeneities in its parameters

[Lebacque, 1996]. Moreover, several numerical schemes may be used as the Godunov

scheme [LeVeque, 1992; Lebacque, 1996].

Many developments have been proposed since then. Payne proposed in [Payne, 1971]

a non-equilibrium model that allows the traffic to deviate from the fundamental diagram

as observed on field measurements. Based on the criticism of Daganzo in [Daganzo,

1995b] due to the presence of wave moving faster than the traffic in this model, Aw-Rascle

[Aw & Rascle, 2000] and Zhang [Zhang, 2002] proposed independently a 2-equation

model that corrects these deficiencies. The addition of a relaxation term in this model

can be found in [Greenberg, 2001] and its connection with a microscopic model in [Aw

et al., 2002].

A possible extension to the LWR model is to split the vehicle flow in partial flows, each

of them being related to a specific vehicle class as proposed in [Lebacque, 1996], [Zhang

& Jin, 2002] and [Gavage & Colombo, 2003] and [Wong & Wong, 2002]. An interesting

example is to consider the vehicle classes to be the origin-destination information of the

vehicles, making such model suitable for the origin-destination estimation problem.

A natural extension of these models is to consider an interconnection of homogeneous

links. When considering interconnection of conservation laws, A recent major step in this

direction is the wellposedness results obtained respectively in [Holden & Risebro, 1995;

M.Herty & Klar, 2003; Coclite et al., 2005] for the LWR model, in [Herty & Rascle, 2006;

Garavello & Piccoli, 2006b] for the ARZ model and in [Garavello & Piccoli, 2005; Herty,

Kirchner & Moutari, 2006] for the multiclass origin-destination model. In the above
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Chapter 1. A Primer to Freeway Modelling and Control

references, the treatment of the interface conditions requires a routing matrix and the

behavioral assumption that the flow should be maximized at the node. Other behavioral

approaches have been proposed in [Daganzo, 1995a; Jin & Zhang, 2003].

Finally, an interesting modification of the LWR model proposed in [Lebacque, 1997;

Lebacque, 2003b] is to bound the maximal vehicle acceleration to make 1th order models

more realistic.

State of the art in freeway control

Freeway traffic control is a recent field which started in the 70’s-80’s. M. Papageorgiou

plays a prominent role in the advent of the control methodology in traffic engineering

as can be seen in [Papageorgiou, 1983; Papageorgiou, 1984; Papageorgiou, 1990; Papa-

georgiou et al., 1990]. He is also one of the author of the local ramp metering algo-

rithm ALINEA [Papageorgiou et al., 1991; Papageorgiou et al., 1997] which have been

tested in several countries. Several other methods have been proposed for ramp metering

since then as in [Zhang & Levinson, 2004], [Zhang et al., 2001], [Kotsialos & Papageor-

giou, 2004] and [Sun & Horowitz, 2005]. Variable speed limit have been proposed as

well to control freeway, sometimes in coordination with ramp metering as proposed in

[Alessandri et al., 1998] and [Hegyi et al., 2002].

Active research groups in freeway modelling and control

Several communities worked or are currently working on the problems of traffic modelling

and control. We give below a non-exhaustive list of some laboratories and researchers

active in these fields, most of which we had relation with during this PhD.

In the traffic engineering community:

- INRETS, Arceuil, France:

Jean-Patrick Lebacque, Habib Haj-Salem.

- INRETS, Bron, France:

Jean-Baptiste Lesort, Christine Buisson, Ludovic Leclercq.

- Department of Civil Engineering, University of Minnesota, USA:

Panos Michalopoulos, Henry Liu.

- Department of Civil Engineering, University of California Berkeley, USA:

Carlos F. Daganzo, Michael Cassidy, Alexandre Bayen.

- Department of Civil Engineering, University of California Davis, USA:

Michael Zhang.

In the applied mathematics community:
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Chapter 1. A Primer to Freeway Modelling and Control

- Laboratoire Jean-Alexandre Dieudonné, Université de Nice, France:

Michel Rascle.

- Istituto per le Applicazioni del Calcolo (I.A.C.), Roma, Italy:

Benedetto Piccoli

- Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany:

Michael Herty.

- Dipartimento di Matematica, Università degli Studi di Brescia, Italy:

Rinaldo Colombo.

- Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano, Italy:

Mauro Garavello.

- Institut Camille Jordan, Université Claude Bernard, Lyon, France:

Sylvie Benzoni-Gavage.

In the control community:

- CESAME, Université Catholique de Louvain, Louvain-la-Neuve, Belgium:

Georges Bastin, Nicolas Haut.

- Department of Mechanical Engineering, University of California Berkeley, USA:

Roberto Horowitz, J.K. Hedrick, Gabriel Gomes, Xiaotan Sun.

- Department of Electrical Engineering, University of California Berkeley, USA:

Pravin Varaiya.

- Dynamic Systems and Simulation Laboratory, Technical University of Crete,

Greece:

Markos Papageorgiou.

- Laboratoire d’Automatique de Grenoble, France:

Denis Jacquet, Carlos Canudas de Wit, Damien Koenig.

Beside these institution, there are few transversal programs such as PATH in Cal-

ifornia, USA. PATH was established in 1986 and is administered by the Institute of

Transportation Studies (ITS) University of California, Berkeley, in collaboration with

Caltrans. PATH is a multi-disciplinary program with staff, faculty and students from

universities statewide, and cooperative projects with private industry, state and local

agencies, and non-profit institutions. Since its creation, PATH conducted researches in

automated highways, platooning, macroscopic and hybrid freeway modelling and ramp

metering to name a few. Check www.path.berkeley.edu for more information on this

program.
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The differential equations of the propagation of heat

express the most general conditions, and reduce the

physical questions to problems of pure analysis, and this

is the proper object of theory.

Jean Baptiste Joseph Fourier (1768-1830),

French mathematician and physicist.
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Chapter 2

The Lighthill-Whitham-Richards

equilibrium model

2.1 Theoretical fondations

The simplest continuous macroscopic freeway model, involving the density ρ only, is

the LWR model proposed initially by Lighthill, Whitham [Lighthill & Whitham, 1955]

and Richards [Richards, 1956]. It is based on the car conservation principle and the

constitutive assumption motivated by experimental data that vehicles tend to travel at

an equilibrium speed v = V (ρ) for all locations and all times. This relationship leads

to an equilibrium flow function Φ(ρ) = ρV (ρ) called the fundamental diagram in traffic

engineering and is classically assumed to be concave (i.e. Φ′′ = 2V ′ + ρV ′′ < 0). The

materials presented here may nevertheless be extended to non-concave cases under slight

modifications. Moreover, space-varying flow functions, i.e. φ(x, t) = Φ(x, ρ(x, t)) may be

used to model varying travel conditions along the freeway. Simple concave flow functions

proposed in the traffic literature are the Greenshield (GS) and Greenberg (GB) models

[Greenshields, 1935; Greenberg, 1959]

ΦGS(ρ) = ρ.vf −
ρ2.vf

ρm

ΦGB(ρ) = ρ.vf ln

(
ρm

ρ

)
(2.1.1)

where vf is the free flow speed and ρm the maximal density. Newell (NW) proposed in

[Newell, 1961] the concave flow function

ΦNW(ρ) = ρ.vf

[
1− exp

{
− λ

vf

{
1

ρ
− 1

ρm

}}]
(2.1.2)

with the additional parameter λ. These three functions share the property that they

can be derived from some car-following models under steady-state conditions. Daganzo

proposed in [Daganzo, 1994] a so-called cell transmission model using sending and re-

ceiving cells to model traffic propagation and shows its equivalence with the piecewise

affine flow function

ΦD(ρ) = min{vf .ρ, w.(ρm − ρ),Φm} (2.1.3)
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

where Φm is the maximal capacity also called capacity in transportation engineering.

Though concave, this flow diagram is not strictly concave and not smooth but fits well

traffic data in free flow. Other flow models have been proposed in the literature such as

ΦDCB(ρ) = ρ.vf

[
1− exp

(
1− exp

[
c
vf

(
ρm
ρ
− 1
)])]

[Castillo & Benitez, 1995]

ΦP(ρ) = ρ.vf exp
(
− 1

a

(
ρ
ρc

)a)
[Papageorgiou, 1990]

ΦUW(ρ) = ρ.vf exp
(
− ρ

ρc

)
[Underwood, 1961]

ΦPS(ρ) = ρ.vf

(
1− ρ

ρm

)a

[Pipes, 1967]

where c is the kinematic wave speed at ρm, ρc is the critical density at maximal flow and

a is a dimensionless shaping parameter.

Though there is some interest in seeking theoretical justifications for the different

flow diagrams, their main requirement is to fit the experimental data freeway models

are supposed to reproduce. For instance, Figure 2.1 shows some parameter fitting for

the Greenshield, Greenberg and Newell models with real field data. Two phenomena

can be noticed from these three flow diagrams. First, the parameters may loose their

physical meanings to fit the data, e.g. the low maximal density in the Greenshield case

and the high one in the Greenberg case. Second, some degrees of freedom seem to be

lacking to fit the data for the whole density range. As predictable and illustrated in

Figure 2.2, more sophisticated diagrams such as the one proposed by Del Castillo and

Papageorgiou fit the data a little better. An other option is to define a flow diagram that

is not parameterized to enhance the appearance of the fitting. In any case, an obvious

limitation of the flow diagrams is the spreading of data points in the congested region,

i.e. at large density.

The derivation of the LWR model is as following. Let x ⊂ R denotes the spa-

cial variable along an infinitely long homogeneous freeway. For any arbitrary section

(xL, xR) ⊂ R, the car conservation principle states that

Evolution of the number of vehicles in (xL, xR)

=
∑

Inflows at xL −
∑

Outflows at xR

(2.1.4)

which writes mathematically as

d

dt

∫ xR

xL

ρ(x, t) dx = Φ(ρ(xL, t))− Φ(ρ(xR, t)) ∀ (xL, xR) ⊂ R (2.1.5)

Assuming ρ and Φ(ρ) have derivatives in a sense to be defined later then

d

dt

∫ xR

xL

ρ(x, t) dx =

∫ xR

xL

∂tρ(x, t) dx

and

Φ(ρ(xL, t))− Φ(ρ(xR, t)) = −
∫ xR

xL

∂xρ(x, t) dx
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

Figure 2.1: Least square curve fitting of traffic measurements from the Lyon beltway

(France) with the Greenshield, Greenberg and Newell flow functions.

Figure 2.2: Least square curve fitting of traffic measurements from the Lyon beltway

(France) with the Papageorgiou and Del Castillo flow functions.
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

As (xL, xR) ⊂ (x0, xL) is arbitrary, the infinite family of balance equations (6.1.1) can

be transformed to the unique scalar LWR divergence equation

∂tρ+ ∂xΦ(ρ) = 0 (2.1.6)

Nonlinear hyperbolic equations of the form (2.1.6), also known as conservation laws,

are known to be difficult to solve, both theoretically and numerically. The main proper-

ties of the solutions to this class of equations is their ability to develop discontinuities,

called shock waves, in finite time [LeVeque, 1992] and the ubiquity of their boundary con-

ditions [Bardos et al., 1979]. Two approaches may be followed to analyse the solution of

conservation laws: either ρ is assumed to be piecewise-C1 or a function of bounded vari-

ations [Evans & Gariepy, 1991]. Though more sophisticated, this last framework should

be used [Kružkov, 1970; Bardos et al., 1979] to ensure rigorously the wellposedness of

initial boundary value problems involving scalar conservation laws.

2.2 Solution of the LWR Cauchy problem

The LWR Cauchy problem is the initial value problem

{
∂tρ+ ∂xΦ(ρ) = 0

ρ(x, 0) = ρI(x)
(2.2.1)

with ρI(x) the initial condition at time t = 0. In a Cauchy problem, the space domain

is considered infinite, which is obviously unphysical for freeways. Nevertheless, (2.2.1)

can be rewritten ∂tρ + Φ′(ρ)∂xΦ
′(ρ) = 0 which is a nonlinear advection equation with

wave speed Φ′(ρ). As this quantity is bounded, the finite propagation speed of the waves

involved in (2.2.1) justifies this simplification at the beginning to get some insight about

the solution locally. Two approaches are adopted to study (2.2.1), the first one using

the space of piecewise-C1 functions and the second using the space of functions with

bounded variations.

2.2.1 The piecewise-C1 approach

Let denote C1
P the space of piecewise-C1 functions and assume, without loss of generality,

that ρ has a single discontinuity along the curve parameterized by x = s(t) with s(t) a
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

Lipschitz function. If ρ ∈ C1
P in the balance law (6.1.1), we have on one hand

d

dt

∫ xR

xL

ρ(x, t) dx =

d

dt

[∫ s(t)

xL

ρ(x, t) dx+

∫ xR

s(t)

ρ(x, t) dx

]
=

ṡ(t)ρ(s(t)−, t) +

∫ s(t)

xL

∂tρ(x, t) dx− ṡ(t)ρ(s(t)+, t) +

∫ xR

s(t)

∂tρ(x, t) dx =

∫ xR

xL

∂tρ(x, t) dx− ṡ(t)[ρ(·, t)]s(t)

with ρ(s(t)−, t) and ρ(s(t)+, t) respectively the left and right limits in space of the solution

ρ along the discontinuity and [ρ(·, t)]s(t) = ρ(s(t)+, t) − ρ(s(t)−, t) the corresponding

jump value. On the other hand, with Φ(ρ) a C1 function, Φ(ρ(x, t)) is piecewise-C1 and

∂xΦ(ρ(x, t)) is the distribution

∂xΦ(ρ(x, t)) =
{
∂xΦ(ρ(x, t))

}
− [Φ(ρ(·, t))]s(t)δ(x− s(t))

where
{
∂xΦ(ρ(x, t))

}
is the usual piecewise-continuous derivative defined almost every-

where and δ(x − s(t)) the singular Dirac distribution defined along the discontinuity.

Consequently, we have

Φ(ρ(xL, t))− Φ(ρ(xR, t)) =

∫ xR

xL

−∂xΦ(ρ(x, t)) dx

=

∫ xR

xL

−
{
∂xΦ(ρ(x, t))

}
dx+ [Φ(ρ(·, t))]s(t)

The conservation principle of Equation (6.1.1) then leads to

{
∂tρ+ ∂xΦ(ρ) = 0 a.e.

ṡi(t)[ρ(si(t), t)] = [Φ(ρ(si(t), t))]
(2.2.2)

The second equation in (2.2.2) is known as the Rankine Hugoniot condition [LeVeque,

1992; Ansorge, 1990] and tells how discontinuities propagate when the left and right

densities differ. Equation (2.2.2) provides a way to construct a piecewise-C1 solution

to (6.1.1) using the method of characteristics [Evans, 1998] until some characteristics

intersect and then tracking the discontinuities using the Rankine-Hugoniot condition

given in Equation (2.2.2). Though the development above proves the existence of a

piecewise-C1 solution, its does not provide unicity. For a further analysis of the piecewise-

C1 setting, we refer to the works of Dafermos on generalized characteristics in [Dafermos,

1977a] and [Dafermos, 1977b].

2.2.2 The BV approach

Conservation laws being balance equations in the form of an infinite family of integral

equations, the functional space L1 of measurable functions seems natural to prove their
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

wellposedness. Unfortunately, L1 does not have the required compactness property and

the space BV of functions with Bounded Variations has been proven to be more appro-

priate since the seminar paper of Kružkov [Kružkov, 1970]. Few literature is available on

BV functions and we recommend [Federer, 1969], [Ziemer, 1989] and more specifically

[Evans & Gariepy, 1991] to the interested reader. Two equivalent definitions of a BV

function on an open set Ω are the followings.

Definition 2.2.1 u(x) ∈ BV (Ω) ⊂ L1(Ω) if its first order partial derivatives ∂xiu(x)

are Radon measures, i.e. if there exists Borel measures µi with |µi(K)| < ∞ for each

compact subset K ⊂ Ω, such that

−
∫

Ω

u(x)
∂φ(x)

∂xi

dx =

∫

Ω

φ(x) dµi ∀φ ∈ C1
0(Ω)

Definition 2.2.2 u(x) ∈ BV (Ω) ⊂ L1(Ω) if its total variation is bounded, i.e.

TV (u) = sup

{∫

Ω

u(x) divφ(x) dx : φ ∈ C1
0 (Ω,Rn), |φ| ≤ 1

}
<∞

The first definition shows that the first order (distributional) partial derivatives of a

BV function, as they appear in conservation laws, are Radon measures. The second

definition relies on the seminorm TV and it can be proven that the space BV is a

Banach space with the norm ||u||BV = TV (u) + ||u||L∞ . The interest of using the space

BV instead of L1 is that BV ∩ L∞ is compact, meaning that for an infinite sequence

of functions uε with ||uε||BV < ∞, we can extract a subsequence such that uε → u in

L1 with ||u||BV < ∞. This result, known as Helly’s theorem, is the most important

ingredient used in the wellposedness analysis of conservation laws with uε a sequence of

smooth approximations of u.

Wellposedness of scalar conservation laws have been studied in the mathematics

community in two frameworks: first using BV functions [Kružkov, 1970; Bardos et al.,

1979] and then using Young measures [Diperna, 1985; Szepessy, 1989], but we only restrict

to the BV setting here. The theory of generalized solutions as introduced by Kružkov in

[Kružkov, 1970] states that there exists a unique solution ρ ∈ BV (R×R+)
⋂
L∞(R×R+)

to the Cauchy problem (2.2.1) characterized by:

∀ k ∈ R, ∀ φ ∈ C2
0 , φ ≥ 0 , we have

∫

R+

∫

R

|ρ− k| ∂tφ+ sg(ρ− k)(Φ(ρ)− Φ(k)) ∂xφ dxdt+

∫

R

|ρI − k|φ|t=0 ≥ 0

(2.2.3)

with sg(·) the classical sign function defined by

sg(ξ) =





−1 , x < 0

0 , x = 0

1 , x > 0
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

Thought the infinite set of inequalities (2.2.3) seems unpractical, it provides (as demon-

strated in the appendix) all the information needed to characterize the unique generalized

solution.

Indeed, we have

1. By choosing successively k > sup ρ and k < inf ρ in (2.2.3), performing an inte-

gration by parts and using the fact that φ(−∞, t) = φ(∞, t) = φ(x,∞) = 0, we

obtain the so-called weak formulation
∫

R+

∫

R

ρ∂tφ+ Φ(ρ)∂xφ dxdt+

∫

R

ρIφ|t=0 = 0 ∀φ ∈ C2
0 (2.2.4)

Assuming the presence of a discontinuity and the existence of strong traces of ρ on

both sides of it, some integrations by parts in Equation (2.2.4) give the Rankine-

Hugoniot condition

ṡ =
Φ(ρ+)− Φ(ρ−)

ρ+ − ρ− (2.2.5)

as provided by the piecewise-C1 formulation. Note that the Rankine-Hugoniot

condition (2.2.5) can be rewritten

ṡ =
1

ρ+ − ρ−
∫ ρ+

ρ−
Φ′(ξ) dξ

meaning that the shock speed can be interpreted as the average of the charac-

teristics entering in the shock. An other interpretation is that there is a kind of

competition of the entering characteristics to decide of the shock speed.

2. Choosing ρ− ≤ k ≤ ρ+ along discontinuities gives the Oleinik entropy condition

[Olĕınik, 1964] that states that a shock wave is admissible if

Φ(v)− Φ(ρ−)

v − ρ− ≥ Φ(ρ+)− Φ(v)

ρ+ − v ∀ v ∈ Conv(ρ−, ρ+) (2.2.6)

with Conv(ρ−, ρ+) the convex set with extremities ρ− and ρ+. Equation (2.2.6)

gives immediately the more practical Lax condition [Lax, 1973]

Φ′(ρ−) ≥ ṡ ≥ Φ′(ρ+) (2.2.7)

meaning that the characteristics should go towards the shock to be admissible, a

rarefaction wave occurring otherwise. Note that for a concave flux function Φ(ρ) as

in traffic models, the Lax entropy condition writes simply ρ− ≤ ρ+. It means that

discontinuities are allowed to occur only when the vehicles experience an increase in

the density when crossing the shock. This is exactly what happens when reaching

a congestion on a freeway, implying immediate braking.

The entropy conditions (2.2.6) or (2.2.7) provided by the Kruzkov formulation dis-

criminate the possible discontinuities that are allowed to occur and enable to select the
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

unique physically meaningful solution to (2.1.6). This extra information with respect to

the piecewise-C1 formulation is of paramount importance as it is possible to construct

several piecewise-C1 weak solutions to the same Cauchy problem. We will see in chapter

6 that all the information given by the Kruzkov formulation, i.e. the weak formulation

(2.2.4), the Rankine-Hugoniot condition (2.2.5) and the Lax entropy condition (2.2.7),

is needed to solve optimal control problems involving conservation laws.

2.2.3 Solution representations

The method of characteristics

The method of characteristics [Evans, 1998] states that the solution of the LWR equation

(2.1.6) can be written ρ(ξ(t, x0), t) = σ(t, x0) where (ξ, σ) solves the ordinary differential

equation




ξ̇(t, x0) = Φ′(σ(t, x0)
)

σ̇(t, x0) = 0

ξ(0, x0) = x0

σ(0, x0) = ρI(x0)

⇒





ξ̇(t, x0) = Φ′(ρI(x0)
)

ξ(0, x0) = x0

σ(t, x0) = ρI(x0)

(2.2.8)

In this setting, the straight lines ξ(t, x0) are called the projected characteristics with

roots x0 and the density value ρ is constant along them. This method thus enables to

compute in time a candidate solution from the initial condition. Figure 2.3 illustrates

this method for the LWR model with a Greenshield flow function and highlights its limits

by showing overlapping projected characteristics that lead to a multivalued solution.

Figure 2.3: Left: initial density condition. Right: projected characteristics in space-time.

In contrast, Figure 2.4 illustrates how shock waves remove this ambiguity by correct-

ing the solution folding. Moreover, it shows why shocks are only allowed when projected

characteristics are crossing as expressed by the Lax entropy condition (2.2.7). Accompa-

nied with the Rankine-Hugoniot condition (2.2.5) and the Lax entropy condition (2.2.7),

the method of characteristics is thus still a valuable tool to get an idea of the solution.
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

Figure 2.4: Left: folding of the solution surface. Right: effect of a shock wave.

Using differential calculus operators

In this section, the LWR model is rewritten using some differential calculus operators

such as the gradient, the divergence and the curl. All of them use the classical nabla

operator given by

∇ =

(
∂x

∂t

)

and provide new interpretations of the freeway dynamics.

First, assuming that the density ρ is differentiable, the LWR model can be written

∂tρ+ ∂xΦ(ρ) = 0 ⇔
(

Φ′(ρ)

1

)
· ∇ρ = 0

which highlights the nonlinearity of the partial differential equation. It means that the

directional derivative of ρ is null along (Φ′(ρ), 1) so that ρ is constant along this direction.

However, this vector is unknown a priori as it requires the knowledge of ρ. We recognize

here the method of characteristics and note that this formulation is not valid across

shocks where the directional variation of ρ undergoes a step.

Let now consider the following compact writing for the LWR model

∂tρ+ ∂xΦ(ρ) = 0 ⇔ ∇ · ~G = 0

where the vector field ~G is given by

~G =

(
φ

ρ

)
=

(
Φ(ρ)

ρ

)
= ρ

(
V (ρ)

1

)
= ρ ~V (ρ)

We recognize a space-time incompressibility property meaning that the number of vehi-

cles is conserved. As a remark, it should be pointed out that freeways are not conservative

when considered lane by lane due to the lane changing done by some drivers. Neverthe-

less, freeways are conservative on the average when lanes are aggregated. In the same
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

spirit, the velocity field should not be associated to the vehicle trajectories but to the

average velocity of the multilane traffic.

An other interesting formulation of the LWR model is

∂tρ+ ∂xΦ(ρ) = 0 ⇔ ∇× ~F = 0

where

~F =

(
ρ

−φ

)
=

(
ρ

−Φ(ρ)

)
= ρ

(
1

−V (ρ)

)
= ρ ~V ⊥(ρ)

meaning that the vector field ~F is conservative, also called irrotational. This property

implies the followings

1.
∮
~F · d~s = 0 along closed space-time paths,

2.
∫
~F · d~V = 0, i.e. ~F and ~V are orthogonal,

3. There exists a scalar potential ψ such that ~F = ∇ψ and the identity ∇×∇ψ = 0

is its compatibility condition.

4. The vehicle flow is laminar, i.e. all the vehicles in a given layer of constant potential

will move to another layer a constant potential. An other interpretation of this

fact is that LWR traffic flows are First-In-First-Out (FIFO).

One interesting feature of the potential ψ is that

∫ B

A

~F dl = ψ(B)− ψ(A)

so that the integral of ~F along a path with extremities A = (xA, tA) and B = (xB, tB)

in the space-time domain can be expressed directly as the difference of the potential

between these 2 points. In particular, if t̂ = tA = tB and xB > xA, then the quantity

ψ(B) − ψ(A) =
∫ xB

xA
ρ(x, t̂) dx is the number of vehicles at time t̂ between x = xA and

x = xB. Similarly, if x̂ = xA = xB and tB > tA, then ψ(B)− ψ(A) = −
∫ tB

tA
φ(x̂, t) dt is

the inverse of the flow of vehicles at x = x̂ between times tA and tB. Finally, for paths

AB with tA < tB and xA < xB that are not aligned to the time or space coordinates,

a negative (respectively positive) difference ψ(B)− ψ(A) means that the average traffic

speed in the triangle (xA, tA) − (xB, tA) − (xB, tB) is larger (respectively smaller) than

the slope of the line linking A to B.

2.2.4 Cumulative variables and Hamilton-Jacobi equations

Let now show that the scalar potential ψ of the conservative vector field ~F = (ρ,−φ)

introduced in the previous section is linked to the cumulated vehicle variable given by

N(x, t) =

∫ x

0

ρ(ζ, t) dζ ⇔ ρ(x, t) = ∂xN(x, t)
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

As the time evolution of N(x, t) for a given x follows the flow conservation principle

∂tN(x, t) = φ0(t)− φ(x, t)

with φ0(t) the upstream flow and φ(x, t) = Φ(ρ(x, t)) in the LWR model, N(x, t) is

solution of the inhomogeneous Hamilton-Jacobi [Evans, 1998] equation

{
∂tN + Φ(∂xN) = φ0(t)

N(x, 0) =
∫ x

0
ρI(ζ) dζ

Setting for the scalar potential

ψ(x, t) = N(x, t)−
∫ t

0

φ0(τ) dτ (2.2.9)

we easily check that

∇ψ=

(
∂x

∂t

)[
N(x, t)−

∫ t

0

φ0(τ) dτ

]
=

(
∂xN(x, t)

∂tN(x, t)− φ0(t)

)
=

(
∂xN

−Φ(∂xN)

)
=

(
ρ

−Φ(ρ)

)

thus proving that∇ψ = ~F . Equation (2.2.9) tells that the potential ψ(x, t) is the number

of vehicles at time t in the stretch (0, x) minus the total number of vehicles that entered

at the upstream boundary x = 0 since t = 0. It easily follows from (2.2.9) that the scalar

potential ψ solves the homogeneous Hamilton-Jacobi equation

{
∂tψ + Φ(∂xψ) = 0

ψ(x, 0) =
∫ x

0
ρI(ζ) dζ

(2.2.10)

The method of characteristic can be used for any Hamilton-Jacobi equation [Evans,

1998] though it may lead to an ill-defined (multivalued) solution as in the case of conser-

vation laws. For (2.2.10), the method of characteristic tells that ψ(ξ(t, x0), t) = σ(t, x0)

and ∂xψ(ξ(t, x0), t) = η(t, x0) with ξ, σ and η the solutions of





η̇(t, x0) = 0

ξ̇(t, x0) = Φ′(η(t, x0)
)

σ̇(t, x0) = Φ′(η(t, x0)
)
η(t, x0)− Φ

(
η(t, x0)

)

η(0, x0) = ρI(x0)

ξ(0, x0) = x0

σ(0, x0) =
∫ x0

0
ρI(ζ) dζ

(2.2.11)

This system can be solved explicitly and gives





η(t, x0) = ρI(x0)

ξ(t, x0) = x0 + Φ′(ρI(x0)
)
.t

σ(t, x0) =
∫ x0

0
ρI(ζ) dζ +

(
Φ′(ρI(x0)

)
ρI(x0)− Φ

(
ρI(x0)

))
.t
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

We observe that the projected characteristics ξ(t, x0) are the same than for the associated

conservation law (2.2.8) but that the value of the solution σ(t, x0) evolves linearly in

time along them. The characteristic system (2.2.11) generates straight lines that may

intersect at the shock location as illustrated on Figure 2.5 (bottom-left), thus leading

to a multivalued solution. A selection principle is thus necessary to recover the physical

solution.

Figure 2.5: Top left: initial condition. Top right: solution with a shock. Bottom left:

solution of the Hamilton-Jacobi characteristic system. Bottom right: the upper envelop

as the physical solution to the Hamilton-Jacobi equation.

Hamilton-Jacobi equations such as (2.2.10) have a long history in the study of vari-

ational and optimal control problems. Their solutions were first studied in the con-

vex (or concave) case using the explicit Hopf-Lax formula that dates back to the 50’s

[Hopf, 1950; Lax, 1957]. As Φ(·) can be taken to be concave in the LWR model, we can

use the concave Hopf-Lax formula [Evans, 1998] given by

ψ(x, t) = max
y

{
t Φ∗

(
x− y
t

)
+

∫ y

0

ρI(ζ) dζ

}
(2.2.12)

with Φ∗(·) the concave Legendre transform of Φ(·) defined by

Φ∗(q) = inf
p∈R

{
q · p− Φ(p)

}
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

However, the domain of Φ(·) is restricted to (0, ρm) in the LWR model, which poses to

problem of defining the value of the flux function outside its domain. Figure 2.6 shows

3 possible extensions of the Greenshield flux function with their respective Legendre

transforms. However, there is no physical motivation for choosing one of them. Let

show that such a selection is actually not necessary.

The Legendre transform is a classical tool of convex (respectively concave) optimiza-

tion where is it used [Hiriart-Urruty & Lemaréchal, 1993] to analyze subdifferentials

(respectively superdifferentials). In the case of scalar concave functions, the superdiffer-

ential of f at x is the set ∂f(x) = {s ∈ R : f(x′) ≤ f(x) + s · (x′ − x), ∀ x′ ∈ R} and

we have 0 ∈ ∂f(x) when f attains a (possibly local) maximum at x. This property along

with the inversion property q ∈ ∂Φ(p) ⇔ p ∈ ∂Φ∗(q) enables to restrict the interval

of the maximization in (2.2.12) and to remove the need for an extension of Φ(·) over

R. Indeed, the Hopf-Lax formula (2.2.12) can be rewritten ψ(x, t) = T (y?) where the

function T (y) is defined by

T (y) = t Φ∗
(
x− y
t

)
+

∫ y

0

ρI(ζ) dζ (2.2.13)

and y? verifies T (y?) ≥ T (y) for all y ∈ R. Before showing that this last property gives a

condition on the domain of y?, note that y? is not unique when (x, t) belong to a "shock".

Nevertheless, all the possible values lead to the same end value for T (·). The second term

in (2.2.13) is differentiable almost everywhere, i.e. outside the discontinuities of ρI(·),
and its derivative is equal to ρI(y

?) at y?. We thus have

−ρI(y
?) ∈ ∂

{
tΦ∗

(
x− y
t

)}

y=y?
= −∂Φ∗

(
x− y?

t

)

We deduce that ρI(y
?) ∈ ∂Φ∗ (x−y?

t

)
, which translates with the inversion property to

x−y?

t
∈ ∂Φ(ρI(y

?)) and finally to x−y?

t
= Φ′(ρI(y

?)) as Φ(·) is differentiable. As we have

ρI(x) ∈ (0, ρm) and Φ′(·) is monotonically decreasing, we deduce the finite propagation

speed property y? ∈ (x − Φ′(0)t, x − Φ′(ρm)t). We conclude that the Hopf-Lax formula

(2.2.12) can be written more accurately

ψ(x, t) = max
y∈(x−Φ′(0)t,x−Φ′(ρm)t)

{
t Φ∗

(
x− y
t

)
+

∫ y

0

ρI(ζ) dζ

}
(2.2.14)

This gives some degrees of freedom for Φ∗(·) outside the bounds given above for y. Any

extension of Φ(·) is thus allowed as soon as it fulfills the concavity assumption. Φ∗(·)
becomes an equivalent class of functions for which a specific representative is obtained

from a specific representative of Φ(·).

For instance, the concave Legendre transform of the Greenshield function ΦGS(·) as

defined in (2.1.1) is

Φ∗
GS(q) = inf

p∈R

{
q · p− p.vf

(
1− p

ρm

)}
= − ρm

4vf

(q − vf )
2
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

Figure 2.6: Possible extensions of the domain of ΦGS(·). Up: natural quadratic ex-

tension. Middle: linear extension with continuous derivative. Down: natural domain

restriction for concave functions.
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

It is represented graphically in the upper right plot of Figure 2.6 and leads to the following

semi-explicit formula for the scalar potential

ψ(x, t) = max
y

{
−t ρm

4vf

(
x− y
t
− vf

)2

+

∫ y

0

ρI(ζ) dζ

}

For the trapezoidal flux function as defined in (2.1.3), the Legendre transform is

Φ∗
D(ρ) =





wρm−Φm
w

q − Φm if p ∈ (−w, 0)
Φm
vf
q − Φm if p ∈ (0, vf )

−∞ if ρ /∈ (−w, vf )

and is plotted in Figure 2.7.

Figure 2.7: The trapezoidal flux function and its Legendre transform.

We can now turn to the selection principle necessary when using the characteristic

method to defined the physical solution of the Hamilton-Jacobi Equation ( 2.2.10). In

the characteristic system (2.2.11), the equation σ̇ = Φ′(η)η − Φ(η) can be rewritten

{
σ̇ = uη − Φ(η)

u = Φ′(u)
(2.2.15)

which is equivalent to

σ̇ = inf
η∈R

{
uη − Φ(η)

}
= Φ∗(u)

as the second equation in (2.2.15) is equivalent to d
dη

(uη − Φ(η)) = 0. Moreover, the

characteristic speed u is given by u = ξ−x0

t
so σ̇ = Φ∗ ( ξ−x0

t

)
and

σ(t, x0) = t Φ∗
(
ξ − x0

t

)
+

∫ x0

0

ρI(ζ) dζ

which is very similar to (2.2.12). The characteristic system (2.2.11) leads to a multival-

ued solution when several characteristic roots xi for i ∈ I lead to the same projected

characteristic value ξ(t, xi) = ξ(t, xj) for (i, j) ∈ I2 at a given time. In that case, the

Hopf-Lax formula tells that the physical solution is selected by setting

ψ(ξ(t, xi), t) = max
i∈I

{
σ(t, xi)

}
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

The physical interpretation of this selection principle is that the LWR traffic flow evolves

such that the scalar potential ψ is maximized. As illustrated in Figure 2.5, the physical

solution (bottom-right) is selected as the upper envelop of the multivalued characteristic

surface (bottom-left). Note that this selection principle is consistent with the entropy

condition that states for concave flux functions that the density is larger downstream of

a shock that upstream of it. As shown on Figure 2.5, a considerable advantage of the

Hamilton-Jacobi equation with respect to the LWR conservation law is that its solution

is continuous, though possibly not differentiable at the corresponding shock locations.

Figure 2.8 (left) shows the solution of the scalar potential Ψ(x, t) for the same initial

condition than in Figure 2.5. The isocurves of ψ in Figure 2.8 (right) represent the

mean traffic velocity (lagrangian coordinates) as ∇ψ is orthogonal to ~V . We recall here

that this mean speed should not be associated to the vehicle trajectories for multilane

freeways. We note that the vehicles decelerate abruptly when reaching the shock curve.

Figure 2.8: Left: the potential surface ψ(x, t). Right: the contour plot of ψ.

In the traffic community, Newell introduced in [Newell, 1993] the so-called "cumula-

tive vehicle" surface A(x, t) and proposed a graphical method to determine the delays

using the accumulated flow signals and the freeway capacities only, without postulating

an equation of motion. Such an equation is nevertheless necessary to estimate the shock

locations which represents the end of the queues. As mentioned by Newell, traffic engi-

neers are often more familiar with the concept of cumulative flow than of instance density

at a given location. This observation leads to the expectation that traffic management

tools using cumulative vehicle variables will be easier to introduced in traffic operation

rooms. In [Newell, 1993], A(x, t) is defined as the solution of

{
∂tA− Φ(−∂xA) = 0

A(x, 0) = −
∫ x

0
ρI(ζ) dζ

so A(x, t) = −N(x, t) and A(x, t) is the scalar potential associated to the conservative

vector field ~FA = (−ρ, φ). Daganzo also showed in [Daganzo, 2005] that a variational

principle closely related to the Hamilton-Jacobi theory can be used to solve the LWR
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

problem. Note that from a traffic engineering perspective, the cumulated flow (the

integral of the flow measured by sensors) is usually taken to be zero at time t = 0.

Setting

B(x, t) = A(x, t) +

∫ x

0

ρI(ζ) dζ

we get {
∂tB − Φ(ρI(x)− ∂xB) = 0

B(x, 0) = 0

but this Hamilton-Jacobi equation is not convenient neither for analysis nor control.

In the general case of nonconcave flux functions, viscosity solutions were introduced

by Lions [Lions, 1982] in the 80’s and were retained as the correct physical way to defined

nonsmooth solutions. Nevertheless, we will not explore this situation here as traffic flux

diagrams are usually taken to be concave.

To conclude this section, the cumulated vehicle approach is appealing as it leads to

continuous solutions that are well defined by the theory of Hamilton-Jacobi equations.

Nevertheless, when dealing with real field data, one of its drawbacks is to integrate the

measurement errors in time as the model use cumulated variables. This is a serious

drawback as traffic data are classically of poor quality.

2.3 Treatment of boundary conditions

2.3.1 Formulation to ensure wellposedness

The first wellposedness result for conservation laws with boundary conditions was given

in [Bardos et al., 1979] based on an extension of Kruzkov’s theory and uses the so-called

BLN boundary entropy inequalities. The main feature of boundary conditions in conser-

vation laws is that they cannot be applied strongly for all time, implying that boundary

signals are proposed only. Moreover, the set on which they actually apply strongly can-

not be defined beforehand as it depends on the solution inside the computational domain.

Let consider the initial boundary value problem




∂tρ+ ∂xΦ(ρ) = g(x, ρ, u)

ρ(x, 0) = ρI(x)

ρ(0, t) ∼ ρ0(t) and ρ(L, t) ∼ ρL(t)

(2.3.1)

where g(x, ρ, u) is a regular source term and
(
ρ0(t), ρL(t)

)
are the boundary signals with

∼ meaning that they are only proposed and may not apply for all time. It is shown in

[Bardos et al., 1979] that Equation (2.3.1) is wellposed if the traces of the solution at

the boundaries, noted
(
ρ(0, t), ρ(L, t)

)
, satisfy

supk∈Conv(ρ(0,t),ρ0(t)) sign
(
ρ(0, t)− ρ0(t)

)(
Φ(ρ(0, t))− Φ(k)

)
= 0 (2.3.2)

infk∈Conv(ρ(L,t),ρL(t)) sign(ρ(L, t)− ρL(t))
(
Φ(ρ(L, t))− Φ(k)

)
= 0 (2.3.3)
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

where k is a scalar and Conv(a, b) is the convex set with extremities a and b, which can

be written Conv(a, b) =
(
min(a, b),max(a, b)

)
. Equations (2.3.2) and (2.3.3) are called

entropy inequalities as they come form the Kruzkov-like formulation

∫ ∞

0

∫ L

0

(
|ρ−k|∂tφ+sg(ρ−k)

(
Φ(ρ)−Φ(k)

)
∂xφ−sg(ρ−k)(x, ρ, u)φ

)
dxdt+

∫ L

0

|ρ0−k|φ(x, 0)dx

+

∫ ∞

0

(
sg(ρ0− k)

(
Φ(ρ(0, t)−Φ(k))

)
φ(0, t)− sg(ρL− k)

(
Φ(ρ(L, t)−Φ(k))

)
φ(L, t)

)
dt≥0

that characterizes the unique solution to (2.3.1).

2.3.2 Explicit formulation of the boundary conditions

If Equations (2.3.2) and (2.3.3) enables to prove the wellposedness of the initial bound-

ary value problem for scalar conservation laws, it does not provide an explicit formula

usable in applications. We propose below to recover the explicit solution behavior at the

boundary from these equations. For convenience, we focus on the upstream boundary

condition, the downstream boundary condition being analysed in the symmetrical way.

To do so, we consider a concave flow function Φ(·) with maximal flow Φm and critical

density ρc together with an arbitrary proposed upstream boundary condition ρ0. The

upstream trace γ0ρ is not known a priori and the cases ρ0 < ρc and ρ0 ≥ ρc are considered

separately in (2.3.2).

If Φ′(ρ0) > 0 at the upstream boundary

Φ′(ρ0) > 0 means that the characteristics emanating from the boundary go forwards. As

depicted on Figure 2.9, two cases should be considered depending on the possible values

of γ0ρ. We have:

ρ0

Φ(k)

γ0ρ ρ0

Φ(k)

γ0ρ

Figure 2.9: Possible configurations with Φ′(ρ0) > 0 at the upstream boundary.

Case 1: γ0ρ ≤ ρ0 so sign(γ0ρ− ρ0) = −1 and Equation (2.3.2) is equivalent to

supk∈(γ0ρ,ρ0) Φ(k)− Φ(γ0ρ) = 0
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

but

supk∈(γ0ρ,ρ0) Φ(k)− Φ(γ0ρ) = Φ(ρ0) for k = ρ0

which becomes 0 if γ0ρ = ρ0, i.e. if the boundary condition applies strongly.

Case 2: γ0ρ > ρ0 so sign(γ0ρ− ρ0) = 1 and Equation (2.3.2) is equivalent to

infk∈(ρ0,γ0ρ) Φ(k)− Φ(γ0ρ) = 0

We now have 2 possibilities,

• if Φ(γ0ρ) > Φ(ρ0) then

infk∈(ρ0,γ0ρ) Φ(k)− Φ(γ0ρ) = Φ(ρ0) for k = ρ0

which becomes 0 if γ0ρ = ρ0, i.e. if the boundary condition applies strongly.

• if Φ(γ0ρ) < Φ(ρ0) then

infk∈(ρ0,γ0ρ) Φ(k)− Φ(γ0ρ) = 0 for k = γ0ρ

independently of ρ0 so the trace γ0ρ is free and the boundary condition does

not apply strongly.

The applicability of the upstream boundary condition in the case Φ′(ρ0) > 0 is

summarized in Figure 2.9 where the black curves represent the region for γ0ρ where

the boundary condition ρ0 applies strongly whereas the gray curves represent the region

where it does not have any influence, i.e. γ0ρ is given by the inner solution. In Figure

2.9, the stripes represent the interval Conv(ρ0, γ0ρ).

If Φ′(ρ0) ≤ 0 at the upstream boundary

Φ′(ρ0) ≤ 0 means that the characteristics emanating from the boundary go backwards

so the boundary condition ρ0 never applies. Figure 2.10 depicts the 2 cases that should

be considered in that case. We have:

ρ0

Φ(k)

γ0ρ ρ0

Φ(k)

γ0ρ

Figure 2.10: Possible configurations with Φ′(ρ0) ≤ 0 at the upstream boundary.
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

Case 1: γ0ρ > ρ0 so sign(γ0ρ− ρ0) = 1 and Equation (2.3.2) is equivalent to

infk∈(ρ0,γ0ρ) Φ(k)− Φ(γ0ρ) = 0

but

infk∈(ρ0,γ0ρ) Φ(k)− Φ(γ0ρ) = 0 for k = γ0ρ

independently of ρ0 so the trace γ0ρ is free and no boundary condition applies.

Case 2: γ0ρ ≤ ρ0 so sign(γ0ρ− ρ0) = −1 and Equation (2.3.2) is equivalent to

supk∈(γ0ρ,ρ0) Φ(k)− Φ(γ0ρ) = 0

We now have 2 possibilities,

• if γ0ρ > ρc then

supk∈(γ0ρ,ρ0) Φ(k)− Φ(γ0ρ) = 0 for k = γ0ρ

independently of ρ0 so the trace γ0ρ is free and no boundary condition applies.

• if γ0ρ ≤ ρc then

supk∈(γ0ρ,ρ0) Φ(k)− Φ(γ0ρ) = Φ(ρc) = Φm for k = ρc

which becomes 0 if γ0ρ = ρc, i.e. if the boundary flow is maximal.

The applicability of the upstream boundary condition is the case Φ′(ρ0) ≤ 0 is sum-

marized in Figure 2.10. In any case, the proposed upstream boundary condition never

applies strongly. The dark gray curves in Figure 2.10 show the admissible values for γ0ρ

which is given by the inner solution, except in the case marked by a gray dot where the

maximal flow Φm applies.

Case of the downstream boundary

The case of the downstream boundary is similar and is not treated here as the boundary

layer behavior is symmetrical to the one studies in details for the upstream boundary.
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

2.3.3 Alternative formulations

LeFloch’s formulation

In [LeFloch, 1988], the author proposes the following equivalent formulation for the

applicability of the boundary conditions when Φ(·) is concave





ρ(0, t) = ρ0(t) and Φ′(ρ0(t)) ≥ 0

Φ′(ρ(0, t)) ≤ 0 and Φ′(ρ0(t)) ≤ 0

Φ′(ρ(0, t)) ≤ 0,Φ′(ρ0(t)) ≥ 0 and Φ(ρ0(t)) ≥ Φ(ρ(0, t))

(2.3.4)





ρ(L, t) = ρL(t) and Φ′(ρL(t)) ≤ 0

Φ′(ρ(L, t)) ≥ 0 and Φ′(ρL(t)) ≥ 0

Φ′(ρ(L, t)) ≥ 0,Φ′(ρL(t)) ≤ 0 and Φ(ρL(t)) ≥ Φ(ρ(L, t))

(2.3.5)

Though not explicit, this formulation informs on the behavior of the boundary layer. In

the first case, the boundary condition applies strongly whereas it has no effect in the two

other cases, either because the characteristics leave the computational domain as in the

second case or because the shocks are not allowed to enter as in the third case.

As noticed in [LeFloch, 1988], the boundary signals can be modified to simplify the

boundary behavior described above. Let consider first the upstream boundary with the

proposed boundary signal ρ0(t). If Φ′(ρ0) ≤ 0 then the associated characteristics go

backwards and the boundary condition will never apply. One consequence is that ρ0(t)

may be replaced by

ρ̃0(t) =

{
ρ0(t) if Φ′(ρ0) > 0

ρc(t) if Φ′(ρ0) ≤ 0

with ρc the critical density corresponding to maximal flow. An example of such a modi-

fication is given in Figure 2.11 for illustration.

ρ

ρm

ρc

ρ0(t)

ρ̃0(t)

t

Figure 2.11: Modified boundary signal ρ̃0 for ρ0.

The upstream boundary value behavior then becomes

either γ0ρ = ρ̃0 either (Φ′(γ0ρ) ≤ 0 and Φ(γ0ρ) ≤ Φ(ρ̃0))
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

Similarly, the downstream boundary data may be changed to

ρ̃L =

{
ρL if Φ′(ρL) < 0

ρc if Φ′(ρL) ≥ 0

leading to the admissible downstream boundary values

either γLρ = ρ̃L either (Φ′(γLρ) ≥ 0 and Φ(γLρ) ≥ Φ(ρ̃L))

The Riemann problem formulation

A Riemann problem [LeVeque, 1992; Evans, 1998] for a conservation law is a Cauchy

problem with an initial condition given by 2 constant initial states separated by a single

discontinuity. Riemann problems can be solved analytically (see the appendix) for scalar

conservation laws and give rise to self-similar solutions of the form ρ(x, t) = ρ(x/t). In

the boundary condition framework, the equivalent Riemann problem for the upstream

boundary writes {
ρ(x, 0) = ρI , for x > 0 and t = 0

ρ0(t) = ρ0 , for x = 0 and t > 0
(2.3.6)

Due to the self-similarity property, the flux Φ(ρ(0, t)) is constant along x = 0 and is

equal to its value Φ0 at t = 0. Moreover, as ρ(0, t) is necessarily between ρ0 and ρI ,

we have sign
(
ρ(0, t) − ρ0

)
= sign

(
ρI − ρ0

)
. From Equation (2.3.2), the upstream BLN

boundary entropy inequality writes, with Conv(a, b) =
(
min(a, b),max(a, b)

)
,

supk∈Conv(ρI ,ρ0) sign
(
ρI − ρ0

)(
Φ0 − Φ(k)

)
= 0

m

sign
(
ρI − ρ0

)
Φ0 = infk∈Conv(ρI ,ρ0)sign

(
ρI − ρ0

)
Φ(k)

The upstream boundary flux is thus given by [Osher, 1984]

Φ0 =

{
infk∈[ρ0,ρI ] Φ(k) if ρ0 ≤ ρI

supk∈[ρI ,ρ0] Φ(k) if ρI < ρ0

Similarly, for the downstream Riemann problem

{
ρ(x, 0) = ρI , for x < L and t = 0

ρL(t) = ρL , for x = L and t > 0
(2.3.7)

the BLN condition writes

infk∈I(ρI ,ρL) sign
(
ρI − ρL

)(
ΦL − Φ(k)

)
= 0

m

sign
(
ρI − ρL

)
ΦL = supk∈I(ρI ,ρL)sign

(
ρI − ρL

)
Φ(k)
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

which gives

ΦL =

{
supk∈[ρL,ρI ]

Φ(k) if ρL ≤ ρI

infk∈[ρI ,ρL] Φ(k) if ρI < ρL

The boundary Riemann problems solved above thus gives an explicit formulation of

the boundary fluxes for constant initial and boundary data. Such formulae are interesting

when designing numerical schemes as they often require the interface flux only.

The demand/supply formulation

In [Lebacque, 1996; Lebacque & Khoshyaran, 2005], the author uses a demand/supply

paradigm to model boundary behaviors. Similarly to the modification of the boundary

signals given in [LeFloch, 1988], the proposed upstream boundary flow is given, for a

concave flux function Φ(ρ), by the so-called demand function

D(ρ0) =

{
Φ(ρ0) if Φ′(ρ0) > 0

Φm if Φ′(ρ0) ≤ 0

and the proposed downstream flow is given by the so-called supply function

S(ρL) =

{
Φ(ρL) if Φ′(ρL) < 0

Φm if Φ′(ρL) ≥ 0

where Φm is the maximal flow. Figure 2.12 shows an example of the demand and supply

functions for the quadratic Greenshield model.

ρc

Φm

ρ0

ρc

Φm

ρL

Figure 2.12: Demand (left) and supply (right) functions respectively for the upstream

and downstream boundaries.

In this framework introduced in [Lebacque, 1996], the upstream boundary flow of the

boundary Riemann problem (2.3.6) is given by

Φ0 = min
{
D(ρ0), S(ρI)

}

whereas the downstream boundary flow of the Riemann problem (2.3.7) is given by

ΦL = min
{
D(ρI), S(ρL)

}
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

The great interest of the demand/supply formulation is to be equivalent [Lebacque,

2003a; Lebacque & Khoshyaran, 2005] to the BLN formulation introduced above, though

being much simpler. This feature have important practical implications when dealing

with numerical schemes to simulate the LWR model.

Boundary conditions of Hamilton-Jacobi equations

We recall that the scalar potential ψ(x, t) defined by

ψ(x, t) =

∫ x

0

ρ(ζ) dζ −
∫ t

0

φ0(τ) dτ

which fulfills

∇ψ =

(
ρ

−Φ(ρ)

)

is solution of the homogeneous Hamilton-Jacobi equation
{
∂tψ + Φ(∂xψ) = 0

ψ(x, 0) =
∫ x

0
ρI(ζ) dζ

As discussed in the Cauchy problem section, this Hamilton-Jacobi equation can be solved

using a combination of the method of characteristics and a selection principle that keeps

the upper envelop as the physical solution. In this framework, it is always possible to

add a boundary value or specify the value of ψ(x, t) along a path {(x, t) : x = p(t)}, i.e.

a virtual inner boundary. This last feature is indeed interesting to model accidents or a

slow vehicle that constrains the traffic along its trajectory.

Assuming that the vehicle flows is measured upstream and downstream of a freeway

section with coordinates x ∈ (0, L), the specification of these boundary conditions for

the scalar potential ψ(x, t) writes simply




∂tψ + Φ(∂xψ) = 0

ψ(x, 0) =
∫ x

0
ρI(ζ) dζ

ψ(0, t) = −
∫ t

0
φ0(τ) dτ

ψ(L, t) = −
∫ t

0
φL(τ) dτ

with φ0(t) and φL(t) the boundary flows. Written in the cumulated vehicle variable

N(x, t), this equation becomes




∂tN + Φ(∂xN) = φ0(t)

N(x, 0) =
∫ x

0
ρI(ζ) dζ

ψ(0, t) = 0

ψ(L, t) =
∫ t

0
φ0(τ)− φL(τ) dτ

These initial boundary value problems can be solved by computing the characteristics

from the initial and boundary conditions and then by selecting the minimum value when

projected characteristics are crossing.
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

2.4 Modelling of on/off-ramps

We focus in this section on the solution of the LWR model in the presence of pointwise

inhomogeneities created by on and off ramps as well as abrupt changes in the parameter

values. An on-ramp is an exogenous flow contribution due to incoming vehicles. This

flow may come directly from the demand and its merging with the mainlane traffic or

from a metered on-ramp where the inflow is controlled by storing vehicles in the ramp.

Off-ramps give rise to a negative flow contribution as vehicles exit the mainlane. This

leaving flow can be considered absolutely or as a split ratio of the main lane flow. As

shown latter, too large on/off ramp flows may not be applicable. Figure 2.13 gives an

example of a freeway with 5 links, 2 on-ramps with ramp flows φ̂3 and φ̂5 and 2 off-ramps

with splitting ratios β2 and β4.

ρ0 ρLρ1 ρ2 ρ3 ρ4 ρ5

? ?

6 6β2 φ̂3 φ̂5
β4

- - - --
x1 x2 x3 x4 x5

Figure 2.13: Freeway section with on/off-ramps.

In this framework, 3 possible kinds of interfaces are possible:

• Through interfaces: they are interfaces without any on or off ramp. The flow

is thus transmitted directly from one link to the next one, possibly with different

flux functions.

• On-ramp interfaces: these interfaces contain an on-ramp. Experimental mea-

surements (See Figure 2.14) show that an on-ramp may become a bottleneck and

creates a congestion wave that propagate upstream. We show below that the pro-

posed models share the same feature. The flow contribution of the ith on-ramp is

noted φ̂i(t).

• Off-ramp interfaces: these interfaces contain an off-ramp. As shown later, a

sufficiently large off-ramp flow may introduce a free flow in the downstream link

though the upstream link stays congested. The flow contribution of the ith off-ramp

is given either by its absolute flow φ̌i(t) or by the split ratio βi(t) that describes

the proportion of vehicles leaving the freeway.

Figure 2.14 shows an example of the velocity time series for a sequence of loop

detectors installed along a section of the South-Est beltway for Lyon, France. These

data were measured during the afternoon rush hours and illustrate the formation and

propagation of congestions. Sensor 4, which is installed just before an on-ramp is the

first one to measure a velocity decrease, thus informing of the onset of a congestion and
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

making this on-ramp an active bottleneck. This velocity decrease is then measured on

sensors 3, 2 and 1, showing that the congestion wave is propagating upstream. Later,

a free flow wave emanates from the upstream boundary and travels forwards until the

active bottleneck, thus removing completely the congestion. Models of on/off-ramps

should be able to reproduce this type of behavior to be valid and useful for control

applications.

Figure 2.14: Velocity measurements along the South-Est beltway for Lyon, France.

The modelling of through interfaces have already been treated in the literature using

the demand/supply paradigm as in [Daganzo, 1994], [Lebacque, 1996] and [Herty &

Rascle, 2006]. We focus in this section on on/off-ramps, their particularity being to

have a net flow contribution that is usually smaller than the main lane flow. Moreover,

we assume that the fundamental diagrams are identical on the left and right of the

inhomogeneity, though slight modifications enable to treat more general cases. Five

approaches are discussed to model on/off-ramps using respectively discontinuous flux

functions, switched interface conditions, the demand/supply paradigm [Daganzo, 1994;

Lebacque, 1996; Lebacque & Khoshyaran, 2005], the networked approach [Holden &

Risebro, 1995] and singular source terms. Our contributions on this topic concerns

the approaches using the discontinuous flux, the switched formulation and the source

term. Using the discontinuous flux approach, we provide an entropy condition for the

on/off-ramps in order select the unique physical solution when such inhomogeneities are

present. Analyzing rigorously the Riemann problem with this entropy condition, we

introduce the switched formulation based on the 4 interface states respectively called

the free, congested, decoupled and saturated states. The free and congested states are

somewhat classical and occur in homogeneous links too. The decoupled state appears

when an on-ramp becomes a bottleneck or an off-ramp frees a congested state. Finally,

the saturated state may appear at on-ramps when the inflow is too large to be handled

or at off-ramps when more vehicles try to be removed than possible. Based on these

4 states, the interface condition is shown to follow a finite state machine, making the
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

LWR model with interfaces an hybrid system. Finally, the singular source approach is

interesting as it provides a geometric interpretation of the solution using the concept of

generalized characteristics.

2.4.1 Using discontinuous flux functions

We restrict our attention to the on-ramp case here, the off-ramp situation being treated

similarly. Let consider an on-ramp interface with a ramp flow φ̂i(t) > 0 connecting 2

links with an identical concave flux function Φ(·). One way to model this on-ramp is to

consider, as represented on Figure 2.15, a discontinuous flow function of the from

Φ̂(x, t, ρ) = Φ(ρ) +H(−x)φ̂i(t) (2.4.1)

where H(·) is the Heaviside distribution. This formulation leads to the conservation law

∂tρ+ ∂xΦ̂(x, t, ρ) = 0 (2.4.2)

which is equivalent to the LWR model in both link as

for x > 0 : ∂tρ+ ∂xΦ(ρ) = 0

for x < 0 : ∂tρ+ ∂x

(
Φ(ρ) + φ̂i(t)

)
= ∂tρ+ ∂xΦ(ρ) = 0

Figure 2.15: Interconnected links through an on-ramp.

Given the finite speed of wave propagation in conservation laws, we can restrict our

attention to a local analysis near the interface and forget about the boundary conditions

in our analysis. The 2 following theorems are proven in the appendix and generalize

Kruzkov’s theory [Kružkov, 1970] in the case of a discontinuous flux function as given in

(2.4.1).
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

Theorem 2.4.1 Given the initial condition ρI ∈ BV (R+ × R) ∩ L∞(R+ × R) and a

concave flux function Φ(·), the Cauchy problem with (2.4.2) admits an entropy solution

ρ ∈ BV (R+ × R) ∩ L∞(R+ × R) satisfying the following entropy inequalities: ∀k ∈ R,

∀φ ∈ C2
0(R+ × R) with φ ≥ 0,

∫

R+

∫

R

(
|ρ− k|∂tφ+ sign(ρ− k)

(
Φ(ρ)− Φ(k)

)
∂xφ
)
dxdt

+

∫

R+

φ̂i(t)φ(0, t) dt+

∫

R

|ρI − k|φ(x, 0) dx ≥ 0 (2.4.3)

Note that theorem 2.4.1 only provides the existence of such an entropy solution. Though

uniqueness can be obtained, it is not necessary here as the entropy inequalities (2.4.3)

turns out to be enough to compute the unique solution of the Riemann problem. In

particular, (2.4.3) gives the entropy condition stated in the next theorem.

Theorem 2.4.2 Let ρl
i be the left upstream boundary value for the ith link and ρr

i−1

be the right downstream boundary value for the link labelled i − 1 as in Figure 2.13.

Then, a weak solution of (2.4.2) verifying the entropy inequalities (2.4.3) also verifies

the following local characterizations:

- Rankine-Hugoniot condition:

Φ(ρl
i) = Φ(ρr

i−1) + φ̂i(t)

- Entropy condition:

Φ′(ρl
i) > 0 or Φ′(ρl

i) ≤ 0 or both

The Rankine-Hugoniot condition is exactly the flow conservation principle and the en-

tropy condition enables to select the only physical solution when there is a lack of unique-

ness. This condition will prove to be useful when solving the Riemann problem and have

thus important practical consequences when designing numerical schemes. It will be

used in the next section to give a switched interpretation of the on-ramp interface be-

havior. One consequence of this entropy condition is that characteristics cannot emanate

from both sides of an inhomogeneity so that an interface cannot provide two boundary

conditions ex-nihilo.

2.4.2 Using switched interface conditions

An other way to model on/off ramps in freeways is to consider a concatenation of ho-

mogeneous LWR links interconnected through interface conditions. This approach shifts

the modelling difficulty to the generalization from boundary conditions to interface con-

ditions, where boundary values are coupled with the ramp flow rather than depending

on predefined exogenous signals. Let consider first the on-ramp case. The switched

interface approach relies on the two following assumptions:
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

1. the flow conservation applies at interfaces, i.e.

Φ(ρl
i) = Φ(ρr

i−1) + φ̂i(t) (2.4.4)

2. the boundary values should satisfy the BLN condition [Bardos et al., 1979].

Note that Equation (2.4.4) is not enough to describe the interface behavior as Φ(·) is

not invertible and has finite range [0,Φm]. Moreover, (2.4.4) does not embedded any

causality, i.e. it does not tell which boundary value set the other. The main ingredients

to remove these inconsistencies is to look at the characteristic orientations near the in-

terfaces to provide the causality (an incoming characteristic provides a boundary value

whereas an outgoing characteristic ask for a boundary value) and to extend Equation

(2.4.4) to ensure its solvability. The rigorous formulation of the switched interface formu-

lation relies on the solution of the Riemann problem when an on-ramp is present. This

approach is treated in the appendix and we only gives the conclusion of this analysis

here. Moreover, we assume that feasible ramp flows are considered only. This condition

writes φ̂i ≤ Φ(ρl
i) and means that the ramp flow leads to the jam density in the upstream

link in the worst case. The case φ̂i > Φ(ρl
i) would mean that the ramp flow cannot be

accommodated in the current condition as there is too less room in the downstream

link to absorb the ramp flow. Let introduce a finite state machine where the on-ramp

interface may be in 3 possible states:

1. free: This state corresponds to the situation where a free flow is crossing the

interface and

ρl
i = Φ−l

(
Φ(ρr

i−1) + φ̂i

)
(2.4.5)

with Φ−l(·) the left inverse of Φ(·). The free state typically occurs when both

boundaries are undercritical, i.e. ρr
i−1 ≤ ρc and ρl

i ≤ ρc, and the interface does

not act as a bottleneck, i.e. Φ(ρr
i−1) + φ̂i < Φm. This state applies as well when a

congestion wave reach the interface from downstream but is not strong enough to

unfree the upstream link.

2. congested: This state corresponds to the situation where a congested flow is

crossing the interface and

ρr
i−1 = Φ−r

(
Φ(ρl

i)− φ̂i

)
(2.4.6)

with Φ−r(·) the right inverse of Φ(·). Note that this last equation should be replaced

by ρr
i−1 = Φ−r

(
max{Φ(ρl

i) − φ̂i, 0}
)

if unfeasible ramp flows are allowed. This

would imply that ρr
i−1 = ρm when φ̂i > Φ(ρl

i) and the extra vehicles are stored

on the onramp. The congested state typically occurs when both boundaries are

overcritical, i.e. ρr
i−1 > ρc and ρl

i ≥ ρc or when an upstream free flow wave reaches

the interface but does not manage to free the downstream link.

3. decoupled: This state corresponds to the situation where the interface is a bot-

tleneck and {
ρl

i = ρc

ρr
i−1 = Φ−r

(
Φm − φ̂i

) (2.4.7)
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

So the upstream boundary is congested (i.e. ρr
i−1 > ρc) whereas the downstream

boundary is at the sonic point (ρl
i = ρc).

In states free and congested, the on-ramp flow is respectively advected downstream and

upstream whereas in state decoupled, the flow is maximal downstream of the on-ramp

and the ramp flow is advected upstream through a congestion wave. Note that this

situation decouples the 2 links as no characteristic cross the interface. Moreover, it leads

to a jump discontinuity that is not entropic as the right boundary value ρl
i = ρc is smaller

than left boundary value ρr
i−1 = Φ−r

(
Φm − φ̂i

)
≥ ρc.

The switched interface condition then takes the form of the Finite State Machine

(FSM) as represented in Figure 2.16. In this FSM (see the appendix), the dashed tran-

sitions correspond to some shocks crossing the interface independently of the ramp flow.

On the contrary, the black transition from the free state to the decoupled state is due to

the ramp flow and have its origin in the range default of the flux function in Equation

(2.4.5). This transition thus corresponds to an onramp flow that is large enough to

perturb the mainlane state and create a congestion that propagates upstream. The gray

transition from the congested state only occurs for an unfeasible onramp flow. In this

situation, a range default occurs in Equation (2.4.6). It corresponds to a ramp flow that

is too large to be absorbed, thus leading to a queuing of the extra vehicles at the ramp.

For illustration purpose, Figures 2.17 and 2.18 illustrate the FSM behavior for an

onramp by showing how boundary values ρr
i−1 < ρc and ρl

i > ρc are transmitted at the

interface. Figure 2.17 illustrates the free and the decoupled cases whereas Figure 2.18

illustrates the congested case. We refer the reader to the appendix for more details on

how the on-ramp interface behavior can be deduced rigorously from the solutions of a

set of Riemann problems.

Figure 2.19 shows a trajectory of a LWR model with one on-ramp and virtual initial,

boundary and ramp flow data. We recognize the switched dynamics of the on-ramp

interface which is initially free, then decoupled due to the large ramp flow and then free

again thanks to a free flow wave moving from the upstream boundary.

A similar FSM can be built for off-ramps where the flow conservation principle writes

Φ(ρl
i) =

(
1− βi(t)

)
Φ(ρr

i−1)

and the possible states of the interface are

1. free:

ρl
i = Φ−l

((
1− βi(t)

)
Φ(ρr

i−1)
)

(2.4.8)

2. congested:

ρr
i−1 = Φ−r

(
Φ(ρl

i)(
1− βi(t)

)
)

(2.4.9)
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

D

F C

Upstream congestion wave

Downstream
free flow wave

On/off ramp
range default

wave

Downstream
free flow

wave

Upstream
congestionFree

flow flow
Congested

Decoupled flow

Saturated

on ramp flow

Figure 2.16: FSM of an on-ramp interface.

Upstream flow Φ(ρr
i−1)

Downstream flow Φ(ρl
i)

ρc

Φm

ρ

Φ

φ̂i(t)

ρr

i−1

ρr

i−1 ρl

i

ρl

i
ρr

i−1

free congesteddecoupled

Figure 2.17: The black density computation corresponds to a free flow and the gray

computation to a transition to decoupled flow due to the finite range of Φ(·).
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

Upstream flow Φ(ρr
i−1

)

Downstream flow Φ(ρl
i)

ρc

Φm

ρ

Φ

φ̂i(t)

ρr

i−1ρl

i

congested saturated

ρm(φ̂i)

Figure 2.18: Density computation for a congested flow.

Figure 2.19: A trajectory of a LWR model with an on-ramp.
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

3. decoupled: {
ρl

i =
(
1− βi(t)

)
Φm

ρr
i−1 = ρc

(2.4.10)

For off-ramps, the upstream link is congested and the downstream link is free in

the decoupled state.

A FSM similar to the one represented in Figure 2.16 applies in the offramp case. In this

situation, the decoupled state occurs when the offramp flow is small enough the free the

traffic downstream of the ramp.

2.4.3 Using the demand/supply paradigm

In [Lebacque, 1996], the author uses a demand/supply paradigm similar to [Daganzo,

1994] in order to model freeway inhomogeneities such as a change in the number of lanes

or in the maximal velocity. In this setting, the demand function at the downstream

boundary of link i− 1 is defined by the nondecreasing modification of the flux function

and writes

D(ρr
i−1) =

{
Φ(ρr

i−1) for ρr
i−1 ∈ (0, ρc)

Φm for ρr
i−1 ∈ (ρc, ρm)

On the other hand, the supply function at the upstream boundary of link i is defined as

the nonincreasing modification of the flux function and writes

S(ρl
i) =

{
Φm for ρl

i ∈ (0, ρc)

Φ(ρl
i) for ρl

i ∈ (ρc, ρm)

In the demand/supply paradigm for link interconnections, the interface flow is computed

by the min formula

φi−1,i = min
{
D(ρr

i−1), S(ρl
i)
}

The validity of this approach can be shown as following. With the above definitions,

the characteristics of the demand function D(ρr
i−1) always have nonnegative speeds

whereas the characteristics of supply function S(ρl
i) always have nonpositive speeds.

This modification of the boundary conditions, which is very similar to the one proposed

in [LeFloch, 1988], does not modify the solution of the initial boundary value problem

of links i− 1 and i. The min formula is then a way to ensure that the flow conservation

is fulfilled while removing the possible range default problems. However, it gives the

boundary flow but not the density values applying at the boundaries. Note that this

demand/supply method can be used without any modification when the flow diagrams

are different upstream and downstream of the interface [Lebacque, 1996], which makes

this approach very efficient for numerical simulations.

In the case of an on-ramp with inflow φ̂i, the demand function is modified by

Dφ̂i(ρr
i−1) =

{
Φ(ρr

i−1) + φ̂i for ρr
i−1 ∈ (0, ρc)

Φm + φ̂i for ρr
i−1 ∈ (ρc, ρm)
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

and the interface flow decomes

φi−1,i = min
{
Dφ̂i(ρr

i−1), S(ρl
i)
}

Note that when S(ρl
i) < φ̂i, the interface flow φi−1,i is lower than φ̂i, meaning that some

vehicles are stored on the on-ramp. In the case of an off-ramp with split ratio βi, the

demand function is modified by

Dβi(ρr
i−1) =

{ (
1− βi) Φ(ρr

i−1) for ρr
i−1 ∈ (0, ρc)(

1− βi) Φm for ρr
i−1 ∈ (ρc, ρm)

and the min formula becomes

φi−1,i = min
{
Dβi(ρr

i−1), S(ρl
i)
}

Figure (2.20) shows the shapes of the demand and supply functions for an on-ramp

and an off-ramp. The possible status of the on-ramp are F , D, C and S respectively

for free, decoupled, congested and saturated and they are F , D and C for the off-ramp.

It can be shown that the demand/supply formulation gives the same solution than the

explicit Riemann solution.

6

-

Dφ̂i

S

F D C S

φ

ρ

Dβi

S

F D C

ρ

φ

Figure 2.20: Demand/supply paradigm for on-ramps (left) and off-ramps (right).

2.4.4 Using a concatenation of homogeneous links

In [Coclite et al., 2005], the authors analyse a network of LWR links and prove its

wellposedness with some additional assumptions for the node behavior. Due to the finite

wave propagation in conservation laws, the analysis of a single node is not restrictive.

The authors define the node dynamics with
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

• a set of n + m links with densities ρi on intervals (ai, bi) and flow functions Φi(·)
where i = 1, ..., n identifies incoming links whereas i = n + 1, ..., n + m identifies

outgoing links,

• a fixed traffic distribution matrix A = {αji}i=1,...,n
j=n+1,...,n+m satisfying

∑
j αji = 1 which

describes the ratio of vehicle that drives from link i to link j.

The weak solution at a junction is defined by the set of densities ρi verifying

n+m∑

i=1

∫ ∞

0

∫ bi

ai

(ρi∂tφi + Φi(ρi)∂xφi) dxdt = 0

for every φi ∈ C1
0 (R) smooth across the junction, i.e.

φi(bi, 0) = φj(ai, 0) and ∂xφi(bi, 0) = ∂xφj(ai, 0)

for i = 1, ..., n and i = n + 1, ..., n +m. A direct consequence is the Rankine-Hugoniot

condition that writes
n∑

i=1

Φi(φi(bi, t)) =
n+m∑

j=n+1

Φj(φj(aj, t))

With the assumptions

• Φj(φj(aj, t)) =
∑n

i=1 αjiΦi(φi(bi, t)) for j = n+ 1, ..., n+m,

• ∑n
i=1 Φi(φi(bi, t)) is maximal,

the authors proved in [Coclite et al., 2005] that the networked LWR model has a

unique entropy solution. One particularity of this approach is that the condition∑n
i=1 Φi(φi(bi, t)) is maximal should be added without any traffic engineering justifi-

cation. We note that the discontinuous flux function formulation analyzed in a previous

section enforces such a flow maximization at an onramp interface without mentioning it

explicitly in the modelling assumptions.

2.4.5 Using a singular source term

To extent the LWR model and model on/off-ramps, we can come back to its original

integral formulation. Let consider a restricted section with an on-ramp as the one repre-

sented of Figure 2.21. By adopting a macroscopic point of view, all lanes are abstracted

as a unique aggregated lane and the merging area (dark gray) is abstracted as a point.

The principle of vehicle conservation then writes

d

dt

∫ xR

xL

ρ(t, x)dx = Φ(ρ(t, xL))− Φ(ρ(t, xR)) + φ̂i(t) (2.4.11)
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

x̂i

φ̂i(t)

Φ
(

ρ(t, xR)
)

Φ
(

ρ(t, xL)
)

xL xR

Figure 2.21: Real (down) and abstracted (up) section with one on-ramp.

which can be rewritten like in the homogeneous situation as
∫ xR

xL

∂tρ(t, x)dx =

∫ xR

xL

(
− ∂xΦ(ρ(t, x)) + δ(x− x̂i)φ̂i(t)

)
dx (2.4.12)

with δ(x−x̂i) the Dirac distribution centered at x̂i. Equation (2.4.12) easily generalizes to

several inflows φ̂i(t) at x̂i and outflows φ̌i(t) at x̌i and can be rewritten in the divergence

form

∂tρ(t, x) + ∂xΦ(ρ(t, x)) =
Non∑

i=1

δ(x− x̂i)φ̂i(t) +

Noff∑

i=1

δ(x− x̌i)φ̌i(t) (2.4.13)

We note that in any neighborhood without ramp, this traffic model is strictly equivalent

to the LWR model. Using the method of generalized characteristics [Dafermos, 1977b], it

can be show that (2.4.13) have a solution similar to the one obtained in the discontinuous

flux function and the switched frameworks. For the reader convenience, this analysis can

be found in the appendix.

2.4.6 Using cumulated variables and Hamilton-Jacobi equations

As discussed in the boundary condition section, the method of characteristics allows to

force the scalar potential ψ(x, t) to assume a specified value along a given space-time

curve. The Hamilton-Jacobi equation ∂tψ + Φ(∂xψ) = 0 then enables to compute the

solution of ψ(x, t) forward in time from the initial and boundary conditions by using the

method of characteristics and the upper envelop selection principle.

When reaching an on-ramp at x = x̂i with flow φ̂i(t), either from upstream for free

flow or from downstream for congested flow, the potential ψ(x, t) is modified at the

interface such that {
∂tψ(x+

i , t) = ∂tψ(x−i , t)− φ̂i(t)

∂tψ(x+
i , t) ≥ −Φm

with Φm the capacity in the downstream link. If the first equation can easily be integrated

and gives ψ(x+
i , t) = ψ(x−i , t)−

∫ t

0
φ̂i(τ) dτ , the second one is more tricky. The cumulative
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Chapter 2. The Lighthill-Whitham-Richards equilibrium model

vehicle approach is thus usable for free and congested traffic but is not convenient when

the traffic is in the decoupled state.
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It is the simple hypotheses of which one must be most

wary, because these are the ones that have the most

chances of passing unnoticed.

Henri Poincaré (1854-1912),

French mathematician, theoretical physicists and

philosopher of science.
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Chapter 3

The Aw-Rascle-Zhang

non-equilibrium model

3.1 Origin and wave system of the ARZ model

There exists mainly two classes of non-equilibrium traffic models for which a second

variable is added to the density in order to take into account the observed discrepancies

between the measurements and the fundamental diagram. The first one, proposed in

[Payne, 1971], is called the Payne-Whitham (PW) model and is very similar to the more

recent model developed in [Zhang, 1998]. These models, developed in analogy with the

gas dynamics, were severely criticized in [Daganzo, 1995b] as small perturbations in the

traffic stream may travel faster than the vehicles, implying that drivers may be influenced

by the traffic behind them. In response to these obvious limitations, [Aw & Rascle, 2000]

and [Zhang, 2002] proposed independently an anisotropic model called the Aw-Rascle-

Zhang (ARZ) model, which has been completed with a relaxation term in [Greenberg,

2001]. As a consequence, we restrict our study of non-equilibrium traffic models to

the ARZ model as it does not suffer of the isotropy limitation, it has been the subject

of many recent studies [Haut & Bastin, 2005; Lebacque et al., 2005; Herty & Rascle,

2006; Herty, Moutari & Rascle, 2006; Garavello & Piccoli, 2006a] and is potentially more

representative of the traffic behavior in congestions. A theoretical interest of the ARZ

model is to be a Temple class [Temple, 1983] system of conservation laws for which

more results are available [Colombo & Groli, 2004; Ancona & Coclite, 2005] than for

general nonlinear systems. Moreover, an important property of the ARZ model is that

its Riemann problem (a Cauchy problem with a piecewise constant initial condition) can

be solved analytically [Aw & Rascle, 2000; Lebacque et al., 2005], enabling the direct

use of the Godunov scheme [Godunov, 1959; Godlewski & Raviart, 1996] to compute

efficiently its numerical solution.
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Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

3.1.1 Motivations of the ARZ model

In its general form, the ARZ model takes the form

{
∂tρ+ ∂x(ρv) = 0

∂t

(
v+P (ρ)

)
+v∂x

(
v+P (ρ)

)
= V (ρ)−v

τ

(3.1.1)

with ρ(x, t) the vehicle density, v(x, t) the vehicle velocity, P (ρ) a so-called pressure

term, V (ρ) = Φ(ρ)/ρ the equilibrium velocity profile and τ a relaxation parameter. For

different pressure terms P (ρ), we get

1. the Aw-Rascle model [Aw & Rascle, 2000] for P (ρ) = ργ, γ > 0,

2. the Zhang model [Zhang, 2002] for P (ρ) = −V (ρ).

The conservative counterpart of (3.1.1) writes

∂t

(
ρ

y

)
+ ∂x

(
y − ρP (ρ)
y2

ρ
− yP (ρ)

)
=

(
0

Φ(ρ)−y+ρP (ρ)
τ

)
(3.1.2)

with ρ and y = ρ(v+P (ρ)) the conserved variables leading to φ = φ(ρ, y) = y−ρP (ρ). We

now assume, as proposed in [Zhang, 2002], that P (ρ) = −V (ρ) and following [Lebacque

et al., 2005], we define the relative speed variable by I = v − V (ρ). In this situation, a

physical interpretation of the so-called relative flow variable y = ρ(v−V (ρ)) = φ−Φ(ρ)

is to be the discrepancy between the current traffic flow and the flow given by the

fundamental diagram at the current traffic density. This variable is represented on

Figure 3.1 for a specific data point along with other experimental data. The second

equation in (3.1.1) rewrites with the relative speed variable as follows

∂tI + v∂xI = −I
τ

⇔ İ = −I
τ

meaning that the relative speed I is advected freely at the vehicle velocity for an infinite

reaction time τ = ∞ and decreases exponentially to 0 with rate 1/τ along the vehicle

trajectories for finite reaction times. For this reason, the variable I is called a Lagrangian

marker as it characterize the vehicles in the traffic stream. With P (ρ) = −V (ρ), Equation

(3.1.2) becomes

∂t

(
ρ

y

)
+ ∂x

(
y + Φ(ρ)

(y + Φ(ρ)) y
ρ

)

︸ ︷︷ ︸
F (ρ,y)

=

(
0

− y
τ

)
(3.1.3)

with F (ρ, y) the flux vector in the conserved variables ρ− y. Note that the choice of the

conserved variables have a direct influence on the irregular solution of a conservation law

as a nonlinear change of variables may modify the shock speed given by the Rankine-

Hugoniot condition [LeVeque, 1992].
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Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

Figure 3.1: Physical interpretation of the y variable.

3.1.2 Wave system of the ARZ model

The analysis of the wave system of the ARZ model can be found in [Aw & Rascle, 2000]

and [Lebacque et al., 2005].

Eigenstructure

The Jacobian matrix of F (ρ, y), as defined in Equation (3.1.3), is given by

A(ρ, y) = DF (ρ, y) =

(
Φ′(ρ) 1

Φ′(ρ)y
ρ
− (y + Φ(ρ)) y

ρ2

2y+Φ(ρ)
ρ

)

Solving det(DF (ρ, y)− λI) = 0, we get the characteristic speeds

λ1(ρ, y) =
y

ρ
+ Φ′(ρ) λ2(ρ, y) =

y + Φ(ρ)

ρ

which, expressed in the phase plane (ρ, v) = (ρ, (y + Φ(ρ))/ρ), gives

λ1(ρ, v) = v + ρV ′(ρ) ≤ v λ2(ρ, v) = v

showing that the model is anisotropic as all wave speeds are smaller or equal to the

traffic stream average velocity v. An interesting relationship is

λ1(ρ, v) = v + ρV ′(ρ) = (v − V (ρ)) + V (ρ) + ρV ′(ρ) = (v − V (ρ)) + Φ′(ρ)

meaning that λ1(ρ, v) is equal to the LWR characteristic speed Φ′(ρ) plus the relative

velocity I = v − V (ρ). The right eigenvectors are defined by DF (ρ, y)ri = λiri. With

85

te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7



Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

the notation ri = (ai, bi)
T , the first row of DF (ρ, y)ri = λri gives for the first field

b1 =
y

ρ
a1

so that possible choices are

r1 =

(
1
y
ρ

)
for a1 = 1 or r1 =

(
ρ

y

)
for a1 = ρ

Similarly, for the second filed, we get

b2 =
(y + Φ(ρ)

ρ
− Φ′(ρ)

)
a1

so that a possible choice is

r2 =

(
ρ

y + Φ(ρ)− ρΦ′(ρ)

)
=

(
ρ

y − ρ2V ′(ρ)

)
for a1 = ρ

Elementary waves

Two classes of waves are present in the ARZ model: the 1-waves for the first field and

the 2-waves for the second field that propagate respectively at speed λ1 and λ2 in smooth

regions. As explained in [Lax, 1973], the 1-field may develop shock and rarefaction waves

as it is genuinely nonlinear, i.e. ∇λ1 · r1(ρ, y) 6= 0 whereas the 2-field may only generate

contact discontinuities as it is linearly degenerate, i.e. ∇λ2 · r2(ρ, y) = 0. Moreover,

as λ1 ≤ v and λ2 = v, 1-waves always have a speed smaller or equal to the traffic

velocity whereas 2-waves are always contact discontinuities propagating at the traffic

speed. Let now consider the wave interconnection between a constant left state (ρ−, y−)

and a constant right state (ρ+, y+). Due to the wave speeds discussed above, the left

state (ρ−, y−) is always connected by a 1-wave to an intermediate state (ρ0, y0), itself

connected by a 2-wave to the right state (ρ+, y+). The relationships between (ρ−, y−)

and (ρ0, y0) on one hand and (ρ0, y0) and (ρ+, y+) on the other hand are given by the

following analysis of elementary waves.

• Shock waves in the 1-field:

A shock wave with speed σ connects (ρ−, y−) to (ρ0, y0) if both states belong to

the same Hugoniot locus [LeVeque, 1992] given by

σ

[
ρ

y

]
=

[
y + Φ(ρ)

(y + Φ(ρ))y/ρ

]
(3.1.4)

Basic manipulations to remove σ from (3.1.4) give the 1-shock jump condition

y0

ρ0

=
y−
ρ−

(3.1.5)
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Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

meaning that the relative velocity I = v − V (ρ) is conserved across a shock wave

and that the Hugoniot locus in the ρ − v plane is given by the shifted velocity

diagram v0 = c + V (ρ0) where c = v− − V (ρ−). Moreover, plugging (3.1.5) in

(3.1.4) gives the shock speed

σ =
Φ(ρ0)− Φ(ρ−)

ρ0 − ρ−
+

y−
ρ−︸︷︷︸
I

(3.1.6)

showing that the shock speed in the ARZ model is increased by the relative speed

I compared to the LWR model.

• Rarefaction waves in the 1-field:

The rarefaction curve connecting (ρ−, y−) to (ρ0, y0) in the 1-field can be described

parametrically by (ρ(ξ), y(ξ)), which is solution of the ordinary differential equation

(
ρ̇

ẏ

)
=

r1(ρ, y)

∇λ1 · r1(ρ, y)
with

(
ρ(0)

y(0)

)
=

(
ρ−

y−

)

Taking r1 =

(
ρ

y

)
, we have ∇λ1 · r1(ρ, y) = ρΦ′′

e(ρ) and deduce easily

{
ρ̇ = 1/Φ′′

e(ρ)

ẏ = y/(ρΦ′′
e(ρ))

The condition for (ρ−, y−) to be connected to (ρ0, y0) by a 1-rarefaction wave is

ẏ

y
=
ρ̇

ρ
⇔ y

ρ
= constant ⇔ y0

ρ0

=
y−
ρ−

(3.1.7)

We deduce again that the relative velocity I = y/ρ = v − V (ρ) is conserved along

1-rarefaction waves and that the rarefaction curve is again the shifted velocity

diagram v0 = c + V (ρ0) with c = v− − V (ρ−). As the Hugoniot locus and the

rarefaction curves coincide, the ARZ model is a Temple class system [Temple, 1983].

• Contact discontinuities in the 2-field:

Concerning the contact wave in the 2-field, the second eigenvalue is conserved

across the discontinuity, implying that the velocity is conserved across these dis-

continuities, i.e.

λ2(ρ0, y0) = λ2(ρ+, y+) ⇔ v0 = v+ ⇔ y0 + Φ(ρ0)

ρ0

=
y+ + Φ(ρ+)

ρ+

(3.1.8)
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Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

3.1.3 Analytical solution of the ARZ Riemann problem

States involved in the solution of the Riemann problem

A Riemann problem is a Cauchy problem with the piecewise constant initial data

(ρ, v) =

{
(ρ−, y−) for x ≤ 0

(ρ+, y+) for x > 0

Riemann problems are known to give rise to self-similar solutions of the form

(
ρ(x, t), y(x, t)

)
=
(
ρ(x/t), y(x/t)

)

and they can be solved analytically in the scalar case whereas systems usually require

an approximate solver as the Roe average method [LeVeque, 1992]. It is a remarkable

fact that the Riemann problem of the ARZ model can be solved analytically as for scalar

equations, a nice property that will be useful when designing numerical schemes such as

the Godunov method [LeVeque, 1992]. Throughout this section, we assume that Φ(ρ) is

strictly concave, which is realistic according to the traffic measurements shown in Figure

3.1. Moreover, for notational convenience, it is often simpler to state the results in the

ρ − v plane when solving the Riemann problem. To compute the intermediate state

(ρ0, v0) connecting (ρ−, v−) and (ρ+, v+), Equations (3.1.5), (3.1.7) and (3.1.8) give

v0 − V (ρ0) = v− − V (ρ−) and v0 = v+

which enables to conclude that

{
v0 = v+

ρ0 = V −1(v+ − v− + V (ρ−))
(3.1.9)

leading to the intermediate relative flow y0 = ρ0(v0− V (ρ0)). As explained in [Mammar

et al., 2005], the mapping V −1(·) may need to be extended to ensure that (3.1.9) always

have a solution. To do so, we assume V −1(ξ) = 0 for ξ > max V (·) and V −1(ξ) = ρm for

ξ < 0. With this convention proposed in [Mammar et al., 2005], the Riemann problem

of the ARZ model can always be solved analytically.

Elementary wave interconnections in the LWR Riemann problem

The next step is to determine what kind of elementary waves are connecting the states

(ρ−, v−) and (ρ0, v0) involved in the 1-wave. The Lax entropy condition [Lax, 1973]

states that a 1-shock occurs when λ1(ρ−, v−) > λ1(ρ0, v0) whereas a 1-rarefaction wave
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Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

develops if λ1(ρ−, v−) ≤ λ1(ρ0, v0). For the 1-shock case, this condition can be rewritten

λ1(ρ−, v−) > λ1(ρ0, v0)

m
v− + ρ−V

′(ρ−) > v0 + ρ0V
′(ρ0)

m
V (ρ−) + ρ−V

′(ρ−) > V (ρ0) + ρ0V
′(ρ0)

m
Φ′(ρ−) > Φ′(ρ0)

(3.1.10)

where we used the fact that v−−V (ρ−) = v0−V (ρ0) across 1-waves to go from line two

to three. We conclude that a 1-shock occurs when Φ′(ρ−) > Φ′(ρ0) and a 1-rarefaction

occurs otherwise. Moreover, with the assumption that Φ(ρ) is strictly concave, Φ′(ρ) is

monotonic decreasing, leading to the equivalent condition:

• if ρ− < ρ0, then a 1-shock occurs with shock speed σ given by Equation (3.1.6),

• if ρ− > ρ0, then a 1-rarefaction wave occurs with minimal and maximal wave

speeds λ1(ρ−, v−) and λ1(ρ0, v0) respectively,

• if ρ− = ρ0, which is the case when v− = v+ = v0 from Equation (3.1.9), then no

intermediate state is needed and the solution of the Riemann problem is trivial.

Surprisingly, these conditions are very similar to the entropy condition for the LWR

model where the right state is replaced by the intermediate state (ρ0, v0). This feature

shows the close connection between the ARZ model and the LWR model.

3.2 Treatment of boundary conditions

We consider in this section the upstream case only, the downstream case being treated

similarly. As mentioned in [Joseph & LeFloch, 1999], it is a remarkable fact to notice

that there is still no unified understanding for the treatment of boundary conditions

for systems of conservation laws. We propose here to use the formulation of [Dubois &

LeFloch, 1988] where the Dirichlet boundary condition u(0, t) = uup(t) = (ρup(t), yup(t))

is replaced by the weaker

u(0, t) ∈ Vup(uup(t)) =
{
w(0+,uup(t),u) : u ∈ R2

+

}
(3.2.1)

where Vup(uup(t)) is an admissible set of boundary values that depends on the proposed

boundary signal uup(t). One option discussed in [Dubois & LeFloch, 1988] is to rely

on the self-similar solution w(x/t,uup(t),u) of the Riemann problem with left and right

states uup(t) and u(0, t) respectively to define the set Vup(uup(t)). Note that uup(t) ∈
Vup(uup(t)) but is not reduced to it.
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Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

To compute Vup(uup(t)), all the possible cases should be considered in the underlying

Riemann problem. A quick analysis shows that there are at most 5 possible cases as

shown in Figure 3.2, each case being identified by the wave present in the genuinely non-

linear field: forward shock, forward rarefaction, backward shock, backward rarefaction

and sonic rarefaction.

Figure 3.2: Possible wave patterns for the ARZ Riemann problem.

We refer to Figure 3.3 for an explanation of the set Vup(uup(t)). The set of vanishing

1-wave speed λ1(ρ, v) = 0 is given by v = −ρV ′(ρ) and is taken to be a straight line by

assuming without restriction a linear velocity diagram V (ρ), which ease the exposition.

S and R denote respectively the shock and rarefaction curves whose expressions are both

given by the translated fundamental diagram v = (vup−V (ρup))+V (ρ). Nevertheless, S
is on the side of decreasing λ1 whereas R is on the side of increasing λ1 with respect to

the boundary signal uup(t). The gray curves are the admissible boundary values and the

striped sets correspond to the different boundary behaviors depending on u(0, t). Note

that the striped sets are oriented horizontally as the speed v is constant along 2-waves.

When λ1(uup(t)) > 0, the region with horizontal stripes corresponds to a rarefaction wave

with all positive 1-wave speeds, the region with oblique stipes to a shock with positive

speed and the one with vertical stripes to a shock with negative speed, implying that the

inner intermediate state applies at the boundary in that case. In Figure 3.3, ρ? is the

density value at which the shock speed σ = σLWR+I vanishes. When λ1(uup(t)) ≤ 0, the

gray circle on the rarefaction curve corresponds to a sonic rarefaction wave and occurs

in the horizontal stripe set. The region with oblique stipes corresponds to a rarefaction

wave with all negative speeds and the one with vertical stripes to a shock with negative

speed. In both cases λ1(uup(t)) > 0 and λ1(uup(t)) ≤ 0, we note that either the boundary

signal uup(t) applies, either the intermediate state previously noted ρ0 for the Riemann

problem applies.

The downstream boundary case is slightly different as the wave patterns of Figure 3.2

are not symmetrical. Nevertheless, the same approach can be used to determine the set

Vdo(udo(t)). In practice, boundary conditions are implemented numerically using ghost

cells or a supply/demand paradigm similar to the one used for the LWR model.
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Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

Figure 3.3: Left: Admissible boundary values when λ1(uup(t)) > 0. Right: Admissible

boundary values when λ1(uup(t)) ≤ 0.

3.3 Modelling of on/off-ramps

3.3.1 Solution of the Riemann problem

We consider on-ramps only in this section as off-ramps behave similarly. Moreover, we

assume without restriction that the fundamental diagrams are identical on both sides

of the ramp. Related problems have been treated in [Lebacque et al., 2005] for discon-

tinuous fundamental diagrams and in [Herty & Rascle, 2006] for networked ARZ links.

We consider here an on-ramp with an incoming flow φ̂ separating 2 links respectively

with boundary values uR = (ρR, yR) and uL = (ρL, yL). As shown in the wave system

analysis and the boundary condition analysis, an intermediate state uM = (ρM , yM) ap-

pears at the boundary of the second link and is connected to the state uR by a 2-wave

propagating at speed v. One consequence is that uL and uM are the actual boundary

values that should be connected through additional compatible waves. In particular,

a static wave that fulfills the flow conservation principle should be incorporated at the

ramp location with u− and u+ denoting respectively the traces of the solution upstream

and downstream of it. Depending on the solution of the associated Riemann problem,

we can have u− = uL or u+ = uM or neither of these situations when the onramp is a

bottleneck.

The fundamental assumption for the transmission of the boundary conditions is that

the Lagrangian marker I = y/ρ = v − V (ρ) is conserved across on-ramps, which means

that incoming vehicles adapt to the mainlane relative velocity. With our notations, the
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Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

conserved relative speed is IL and we get the boundary flows

ρ−v− = Φ(ρ−) + ILρ− and ρ+v+ = Φ(ρ+) + ILρ+

With the modified fundamental diagram ΦI(ρ) = Φ(ρ) + Iρ as defined in [Lebacque

et al., 2005], the flow conservation principle ρ−v− = ρ+v+ + φ̂ at the onramp writes

ΦIL(ρ+) = ΦIL(ρ−) + φ̂

with u− connected or equal to uL and u− connected or equal to uR. To solve this wave

interconnection problem, we first note that the 1-wave speed is directly related to the

slope of the modified diagram as Φ′
I(ρ) = λ1(ρ, I). There is thus an interest in defining

the demand and supply functions as in the LWR model. Second, the ARZ shock speed

given by (3.1.6) can be visualized graphically on the modified diagram ΦI(ρ) as it is

equal to the slope of the straight line connecting the involved states as for the LWR

model. Note as well that uM can be computed easily from uR as it is at the intersection

of ΦI(ρ) with the straight line connecting uR to the origin. These remarks along with

the classical assumption that the interface flow should be maximized when there is an

ambiguity enable to compute the solution of the Riemann problem. In particular, it

should be noticed that two 1-waves can be present in some situations as for the LWR

model in the decoupled case.

Solving the ARZ Riemann problem consists in considering all the possible values

for uL and uR and then determine a valid set of waves that enable the interconnection

of uL to uR through intermediate states. The only qualitative difference between the

Riemann problem solutions for the LWR and the ARZ model is that the ARZ model has

an additional 2-wave that always propagate faster than the other waves. Based on this

fact, the cases to be considered for the ARZ Riemann problem are exactly the same than

for the LWR, except that the modified fundamental diagram ΦI(ρ) should be considered

instead of Φ(ρ). Moreover, uM plays the role of the right state in the LWR model and

is computed directly from uR. As the rigorous solution of the LWR Riemann problem

is given in the appendix and is similar for the ARZ model, we only provide here three

representative solutions of the ARZ Riemann problem as depicted on Figures 3.4, 3.5

and 3.6. As for the LWR model, there exists an upper bound on the feasible ramp flow

that depends both on the upstream state through IL and the downstream state through

the intermediate state ρM .

3.3.2 The demand/supply paradigm

Following [Lebacque et al., 2005], let define the modified critical density ρ?
c =

argmax ΦIL(ρ) and the modified maximal flow Φ?
m = max ΦIL(ρ). Then, still following
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Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

ΦIL
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2-wave
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uL u+

Figure 3.4: Free interface.
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Figure 3.5: Congested interface.
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Figure 3.6: Decoupled interface.

93

te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7



Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

[Lebacque et al., 2005], the modified demand and supply functions can be defined by

DIL(ρ) =

{
ΦIL(ρ) + φ̂ if ρ ≤ ρ?

c

Φ?
m + φ̂ if ρ > ρ?

c

SIL(ρ) =

{
ΦIL(ρ) if ρ ≥ ρ?

c

Φ?
m if ρ < ρ?

c

It can be shown that the flow immediately downstream of the ramp location in the

Riemann problem can be computed with the simple formula [Lebacque et al., 2005]

Fρ = min
{
DI(ρL), SI(ρM)

}

where the notation Fρ was used to show that this formula provides the interface flux for

the conserved variable ρ. Similarly, we have Fy = ρvIL = FρIL giving immediately the

interface flux for the conserved variable y. Fρ can then be used to recover the values

of the traces u− and u+ using the left and right inverses of PhiIL(ρ). Though this

formulation is very useful for numerical schemes, it is sometime preferable to express the

transmission of the boundary conditions in the original variables like ρ and y. This kind

of formulation is for instance necessary to compute the sensitivity at onramps.

3.3.3 The switched formulation

We now introduce an interface finite state machine similar to the one used for the LWR

model. To do so, 4 states should be defined in the general case, which can be reduced

to 3 if we assumed that the ramp are always feasible. For all cases, only the density has

to be provided as the velocity can be deduced from

v∗ =
ΦIL(ρ∗)

ρ∗
= V (ρ∗) + IL where ∗ = L, −, + or M.

Similarly, the conserved variable y can be deduced from

y∗ = ρ∗IL where ∗ = L, −, + or M.

The 4 possible states are the followings:

1. Free. In this state, the left boundary condition is transmitted downstream so that

u− = uL and ρ+ = Φ−l
IL

(ΦIL(ρL) + φ̂) with Φ−l
IL

(·) the left inverse of ΦI1(·).

2. Congested: In this state, the right boundary condition is transmitted upstream so

that u+ = uM and ρ− = Φ−r
IL

(ΦIL(ρM)− φ̂) with Φ−r
IL

(·) the right inverse of ΦI1(·).

3. Decoupled. In this state, no boundary value set the other and the 2 links can be

virtually disconnected. We have ρ+ = ρ?
c and ρ− = Φ−r

IL
(Φ?

m − φ̂).

4. Saturated. This situation occurs when ρM and φ̂ are large enough such that the

ramp flow is not feasible, i.e. there is no solution ρ to ΦIL(ρM) = ΦIL(ρ) + φ̂.
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Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

Similarly to the LWR model, the transition from Free to Decoupled happens when

ΦIL(ρL) + φ̂ > Φ?
m which again leads to a range default. As a consequence, the same

kind of Finite State Machine (FSM) as depicted on Figures 3.7 applies for an onramp

interface modelled by the ARZ model. Figure 3.8 shows how these different cases should

be interpreted in the ρ− ρv phase plane for the free, decoupled and congested situations.
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Figure 3.7: Finite state machine applying at onramps for the ARZ model.
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Chapter 3. The Aw-Rascle-Zhang non-equilibrium model

Figure 3.8: Flow arbitration at onramps for the ARZ model.
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What is simple is false, what is not is unusable.

Paul Valéry (1871-1945),

French author and Symbolist poet.
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Chapter 4

The Multiclass Origin-Destination

model

4.1 Origin and analysis of the Cauchy problem

4.1.1 Motivations of the MOD model

An extension of the LWR model proposed in [Daganzo, 1995a], [Lebacque, 1996], [Zhang

& Jin, 2002] [Gavage & Colombo, 2003], [Garavello & Piccoli, 2005], [Herty, Kirchner

& Moutari, 2006] and [Wong & Wong, 2002] is to consider that the aggregated traffic

stream can be decomposed in classes, each class identifying a specificity of the vehicles

such as the destination, the path or the vehicle/driver category. The classes considered

here are the origin-destination of the vehicles, the targeted application being dynamic

assignments and the estimation of origin-destination matrices using a dynamical traffic

model.

For illustration purpose, let consider the small freeway section of Figure 4.1 where

time series of the traffic counts are plotted for every entries and exits of the network in

addition to a plot of the decreasing velocity diagram V (ρ). The goal of the multiclass

model studied here is understand and reproduce the dynamics occurring in the links as-

suming that the origin-destination data are available. In this setting, a direct application

is to track the vehicles based on their origin-destination in order to evaluate the delay

suffered by the different classes. As mentioned before, an other targeted application ap-

plication is to use an optimization algorithm to update recursively the origin-destination

matrix based of a previous guess using the traffic counts only.

Figure 4.2 provides an abstraction of the network depicted on Figure 4.1. The model

is made of a set of origins and destinations, connected by homogeneous links supporting

the different possible routes. In this network, the origin-destination data is given by

signals α1 and α2 that are in the interval (0, 1).

Let consider an homogeneous link where the vehicles are tagged by their route iden-
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Chapter 4. The Multiclass Origin-Destination model

Figure 4.1: Simple network with some vehicle counts and a velocity diagram. Real field

data from the South-Est beltway of Lyon, France.

tified by an origin and a destination. The aggregated density is thus decomposed in NR

partial densities noted ρ1, ..., ρNR . As a vehicle route is not know by the other vehicles,

we can assume that the traffic speed depends only on the aggregated density as in the

LWR model, i.e.

v(x, t) = V

(
NR∑

k=1

ρi(x, t)

)
(4.1.1)

This assumption gives for route i the flow φi = ρiv and the car conservation principle

implies the NR conservation laws ∂tρi+∂xφi = 0. This model can be rewritten compactly

as the system of nonlinear conservation laws

∂tρ + ∂x

(
ρ V (|ρ|)

)
= 0 (4.1.2)

where ρ = (ρ1, ..., ρNR)T is the model state and |ρ| = ∑NR
k=1 ρi.

The quasi-linear form of this system of conservation laws writes

∂tρ + A
(
ρ
)
∂xρ = 0 A(ρ) = V (|ρ|)INR + V ′(|ρLj |) 1Nj · ρ (4.1.3)

with INR the identity matrix of size NR, 1NR the row vector of size NR filled with ones

and · the Kronecker product.
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Chapter 4. The Multiclass Origin-Destination model

L1 L2 L3

φ̂R1

φ̂R2

φ̂3

φ̂4

φ̌R3

φ̌R4

φ̌R1

φ̌R2

α1

(1 − α1)

φ̂1

α2

(1 − α2)

φ̂2

O1

O2

φ̌2

φ̌1

D1

D2

R1

R2

R3

R4

Figure 4.2: Abstraction of the simple network of figure 4.1.

4.1.2 Wave system of the MOD model

Eigenstructure

The nature and structure of the wave system of Equation (4.1.2) is characterized by the

following items [Bressan, 2000]:

• Characteristic velocities, i.e. eigenvalues of A(ρ)





λ1(ρ) = V (|ρ|)
...

...
λNR−1(ρ) = V (|ρ|)
λNR(ρ) = V (|ρ|) + |ρ|V ′(|ρ|)

(4.1.4)

Note that the multiclass model is not strictly hyperbolic because it has NR − 1

identical characteristic speed.

• Matrix Tr(ρ) of right eigenvectors of A(ρ)

Tr(ρ) =



| |
r1 · · · rNR

| |


 =




−1 −1 · · · −1 ρ1

ρNR

0 0 · · · 1 ρ2

ρNR
...

... �
...

...
0 1 · · · 0

ρNR−1

ρNR

1 0 · · · 0 1




(4.1.5)

• Matrix Tl(ρ) of left eigenvectors of A(ρ)

Tl(ρ) =



| |
l1 · · · lNR
| |


 =




−ρNR
ρ1

−ρNR−1

ρ1
· · · −ρ2

ρ1
1

0 0 · · · 1 1
...

... �
...

...
0 1 · · · 0 1

1 0 · · · 0 1




(4.1.6)

• Characteristic fields: 1 genuinely nonlinear field with wave speed λNR , i.e. ∇λNR ·
rNR 6= 0, and NR − 1 linearly degenerate fields with common wave speed V (|ρ|),
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Chapter 4. The Multiclass Origin-Destination model

i.e. ∇λNk · rNk = 0, for k = 1, ..., NR − 1. The NR − 1 first characteristic fields may

develop contact discontinuities that propagate at the traffic speed V (|ρ|) whereas

the last field (corresponding to the underlying LWR model) may develop shock

waves and rarefaction waves propagating slower that the traffic as λNj ≤ V (|ρ|).

• Riemann invariants wk(ρ) satisfying ∂twk(ρ) + λk(ρ)wk(ρ) = 0





w1(ρ) = ρ2

ρ1

...
...

wNR−1(ρ) =
ρNR
ρ1

wNR(ρ) = V (|ρ|)

(4.1.7)

Note that, as λk(ρ) = V (|ρ|) for k = 1, ...NR− 1, the level curves of the traffic ratios

wk(ρ) for k = 1, ...NR − 1 are the vehicle trajectories as already noted in [Zhang &

Jin, 2002].

Due to the solution of the Riemann problem discussed later, the left and right state

are denoted respectively ρ0 and ρ+ for contact discontinuities and ρ− and ρ0 for shock

and rarefaction waves.

Elementary waves

• Shock waves:

The Hugoniot curve connecting the left state ρ− to the right state ρ0 through a

shock wave is given by

ρ0V (|ρ0|)− ρ−V (|ρ−|) = σ(ρ0 − ρ−) (4.1.8)

Summing all rows in Equation (4.1.8), the genuinely nonlinear field develops shock

waves having a speed identical to the one present in the LWR model

σ =
|ρ0|V (|ρ0|)− |ρ−|V (|ρ−|)

|ρ0| − |ρ−| (4.1.9)

Multiplying (4.1.8) by (|ρ0| − |ρ−)/(|ρ0||ρ−|) and using (4.1.9), the left and right

states verify
ρ0

|ρ0| =
ρ−

|ρ−| (4.1.10)

meaning that the traffic composition and thus the density ratio is conserved along

shock waves. A shock wave is allowed in the genuinely nonlinear field if it satisfies

the Lax entropy condition [Lax, 1973] given by λNj (ρ
−) > σ > λNj (ρ

0). As in

the LWR model, this condition rewrites |ρ−| < |ρ0| if the velocity function V (·) is

strictly decreasing.
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Chapter 4. The Multiclass Origin-Destination model

• Rarefaction waves:

A rarefaction wave develops when λNj (ρ
−) ≤ λNj (ρ

0) and the curve connecting the
2 states is given by the ordinary differential equation

ρ̇ =
rNR(ρ)

∇λNR(ρ) · rNR(ρ)
=

ρ

|ρ|
(
2V ′(|ρ|) + |ρ|V ′′(|ρ|)

) with ρ(0) = ρ−

It implies ρk/|ρ| = ρ−k /|ρ−|, meaning that the density ratios are conserved along

rarefaction waves as for shock curves.

As Hugoniot locus and rarefaction curves are coinciding straight lines, the multi-

class model is a Temple class system [Temple, 1982].

• Contact discontinuities:

The NR − 1 first fields can develop contact discontinuities only with wave speed

V (|ρ+|) = V (|ρ0|). The left and right states thus satisfy |ρ+| = |ρ0|, meaning that

the total density is conserved along contact discontinuities.

4.2 Treatment of boundary conditions

Boundary conditions are treated similarly than in the ARZ model. Again, the upstream

boundary condition writes

ρ(0, t) ∈ Vup(ρup) =
{
w(0+,ρup,ρ) : ρ ∈ R2

+, |ρ| < ρm

}

for a 2-class model with possible waves given in Figure 4.3. We refer to Figure 4.3 for the

graphical solution of VUp(ρ
L2
up) where S and R denote the shock and rarefaction curves

given by straight lines. The ρm dashed lines delimits the allowable states whereas the

ρc dashed lines identifies where λNR changes sign. The gray curves are the admissible

boundary values and the striped sets identify different boundary behaviors depending

on ρ(0, t).

4.3 Modelling of on/off-ramps

The problem is rather non-standard here as each boundary condition depends on the

inner state of the interconnected link rather than on a predefined independent bound-

ary signal. For this reason, these boundary conditions are termed interface conditions.

Moreover, the sizes of the system of conservation laws on both sides of the interface are

different.

The simplified on-ramp and off-ramp interfaces with 2 links L1 and L2 depicted

on Figure 4.4 are used for our analysis as the other classes in larger systems can be

aggregated while conserving the traffic composition. In this section, all the density

notations refer to the traces of the variable at the interface. For instance, ρL2
R1

is the
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Chapter 4. The Multiclass Origin-Destination model

Figure 4.3: Left: Admissible boundary values when |ρup| ≤ ρc. The region with hori-

zontal stripes corresponds to a shock with negative speed, the region with oblique stipes

to a shock with positive speed and the one with vertical stripes to a rarefaction wave

with all positive speeds. Right: Admissible boundary values when |ρup| ≤ ρc. The gray

circle on the ρc dashed line corresponds to a sonic rarefaction wave occurring in the

region with vertical stripes. The region with horizontal stripes corresponds to a shock

with negative speed and the one with oblique stipes to a rarefaction with all negative

speeds.

upstream boundary condition of the density for route R1 in the downstream link L2.

When only one route is present in a link, Φ(ρ) = ρV (ρ) denotes the flow in this link. We

first analyse on-ramps and then off-ramps which behave similarly.

φ̂

ρL1

R1
ρL2

R1

ρL2

R2

φ̌

ρL2

R1
ρL1

R1

ρL1

R2

Figure 4.4: Two class on-ramp (left) and off-ramp (right) interfaces.

The assumptions for the on-ramp behavior are:

1. The density-flow relationships apply at the boundaries:





φL1
R1

= Φ(ρL1
R1

) = ρL1
R1
V (ρL1

R1
)

φL2
R1

= ρL2
R1
V (ρL2

R1
+ ρL2

R2
)

φL2
R2

= ρL2
R2
V (ρL2

R1
+ ρL2

R2
)

(4.3.1)
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Chapter 4. The Multiclass Origin-Destination model

2. The flow conservation principle applies at the interface:
{
φL1

R1
= φL2

R1

φL2
R2

= φ̂
(4.3.2)

For definiteness but without loss of generality, we assume that the following linear

velocity relationship, known as the Greenshield model [Pipes, 1967], applies

V (ρ) = vf

(
1− ρ

ρm

)
(4.3.3)

where the free velocity and maximal density parameters are taken to be vf = 100 km/h

and ρm = 80 veh/km when necessary.

We show below that the set of Equations (4.3.1) and (4.3.2) involve, for a given on-

ramp flow φ̂, some constraints on the traces of the densities at both sides of the interface.

These constraints are then used with the applicability of the boundary variable to decide

what boundary conditions apply in L1 and L2.

4.3.1 Constraints on the boundary values at on-ramps

The flow conservation for route R2 writes ρL2
R2
V (ρL2

R1
+ ρL2

R2
) = φ̂ and can be solved for ρL2

R1
,

leading to the relationship plotted in Figure 4.5 whose analytical expression is

ρL2
R1

= θφ̂(ρ
L2
R2

) = ρm − ρL2
R2
− φ̂ ρm

ρL2
R2
vf

(4.3.4)

Note that the map θφ̂(·) has a domain defined by

Domain
{
θφ̂(·)

}
= [ρL2

R2
, ρ̄L2

R2
] =


ρmvf ±

√
ρmvf(ρmvf − 4φ̂)

2vf




where ρL2

R2
is the minimal density able to realize the ramp flow φ̂ whereas ρ̄L2

R2
is the

maximal density to ensure feasible densities smaller than ρm.

Using this map θφ̂(·), the flow conservation equation for route R1 writes

φL1
R1

= φL2
R1

= ρL2
R1
V (ρL2

R1
+ ρL2

R2
) = ρL2

R1
V (θφ̂(ρ

L2
R2

) + ρL2
R2

)

providing the relationship plotted in Figure 4.6 with analytical expression

φL1
R1

=φL2
R1

=ηφ̂(ρ
L2
R2

)=
−ρm φ̂2 + ρL2

R2
φ̂ vf(ρm − ρL2

R2
)

vf(ρL2
R2

)2
(4.3.5)

An other useful constraint is the relationship between ρL2
R2

and the total density |ρL2 |
plotted in Figure 4.7, whose analytical expression is

|ρL2 | = ρL2
R2

+ θφ̂(ρ
L2
R2

) = ρm −
φ̂ ρm

ρL2
R2
vf

(4.3.6)
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Chapter 4. The Multiclass Origin-Destination model

Figure 4.5: Functions ρL2
R1

= θφ̂(ρ
L2
R2

) for φ̂ ∈ [100, 1900] with its domain and range. The

black curve corresponds to φ̂ = 300.

4.3.2 The on-ramp switched behavior

Based on the previous discussions concerning the density constraints and the causality

of the boundary conditions at interfaces, the 3 following situations may occur:

1. Forward. When ρL1
R1
≤ ρc and ρL2

R1
+ ρL2

R2
≤ ρc, the upstream boundary condition

should be transmitted downstream as all Riemann invariants and shock/rarefaction

waves have positive speed. If φL1
R1
≤max ηφ̂(·), the upstream demand can be met

and the applying boundary conditions in link L2 are given by ρL2
R2

= η−l

φ̂
(φL1

R1
) and

ρL2
R1

= θφ̂(ρL2
R2

), the left branch inverse of ηφ̂(·) being given by

η−l

φ̂
(φL1

R1
) =

φ̂ρmvf −
√
φ̂2ρmvf (ρmvf − 4(φ̂+ φL1

R1
))

2vf (φ̂+ φL1
R1

)

2. Decoupled. When φL1
R1
>max ηφ̂(·) in the Forward situation, the upstream boundary

condition could be transmitted but saturation occurs as the on-ramp flow is too

large. It leads to the decoupled case where the maximal flow offer φL1
R1

= max ηφ̂(·)
applies, giving the downstream and upstream boundary conditions ρL1

R1
= Φ−r(φL1

R1
),

ρL2
R2

= argmax ηφ̂(·) and ρL2
R1

= θφ̂(ρL2
R2

) with le right inverse of Φ(·)

Φ−r(φ) =
ρmvf +

√
ρmvf (ρmvf − 4φ)

2vf
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Chapter 4. The Multiclass Origin-Destination model

Figure 4.6: Functions φL1
R1

= φL2
R1

= ηφ̂(ρ
L2
R2

) for φ̂ ∈ [100, 1900] with its domain and

range. The black curve corresponds to φ̂ = 300.

This situation which leads to ρL1
R1

> ρc and ρL2
R1

+ ρL2
R2

= ρc is called decoupled as

there is no transmission of boundary conditions and the knowledge of φ̂ is enough

to set all the boundary conditions.

3. Backward. When ρL2
R1

+ρL2
R2
≥ ρc and ρL1

R1
≥ ρc, the downstream boundary condition

is transmitted upstream. As |ρL2| is provided by the inner solution and ξφ̂(ρL2
R2

)

is monotonic, we get that ρL2
R2

= ξ−1

φ̂
(|ρL2|), ρL2

R1
= θφ̂(ρL2

R2
) and ρL1

R1
= Φ−r(ηφ̂(ρL2

R2
))

where the inverse of ξφ̂(·) writes

ξ−1

φ̂
(|ρL2|) =

φ̂ρm

vf (ρm − |ρL2|)
Note the coherence with the LWR model as we have

ρL1
R1

= Φ−r
(
ηφ̂

(
ξ−1

φ̂
(|ρL2|)

))
= Φ−r

(
(Φ(|ρL2|)− φ̂

)

4. Shocked. This case is of secondary importance and occurs when ρL1
R1
≤ ρc and

ρL2
R1

+ρL2
R2
≥ ρc, leading to apparently incompatible boundary values. This situation

corresponds to the propagation of a shock wave through the interface and is inde-

pendent of the value of the on-ramp flow. If |Φ′(ρL2
R1

+ ρL2
R2

)| < |Φ′(ρL1
R1

)|, the shock

moves forward and the forward situation applies. If |Φ′(ρL2
R1

+ ρL2
R2

)| > |Φ′(ρL1
R1

)|, the

shock moves backward and the backward situation applies.

The finite state machine depicted in Figure 4.8 summarizes the on-ramp interface

behavior and demonstrates the hybrid dynamics of the inhomogeneous multiclass model.

Simulations provided at the end of the paper illustrate the switching of this finite state

machine.
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Chapter 4. The Multiclass Origin-Destination model

Figure 4.7: Functions |ρL2| = ξφ̂(ρ
L2
R2

) for φ̂ ∈ [100, 1900] with its domain and range. The

black curve corresponds to φ̂ = 300.

4.3.3 Cases of off-ramps and larger systems

The same kind of density-flow relationship and flow conservation principle applies at

off-ramps, leading to {
ρL1

R1
= θφ̌(ρ

L1
R2

)

φL1
R1

= φL2
R1

= ηφ̌(ρ
L1
R2

)
(4.3.7)

with maps θ.(·) and η.(·) identical to the one presented for the on-ramp case. The causality

have some similarity too and is summarized below:

1. Backward. If ρL2
R1
≥ ρc, ρL1

R1
+ ρL1

R2
≥ ρc and φL2

R1
≤ max ηφ̌(·), the boundary condition

is transmitted upstream with ρL1
R2

= η−r
φ̌

(φL2
R1

) and ρL1
R1

= θφ̌(ρL1
R2

).

2. Decoupled. When φL2
R1

> max ηφ̌(·) in the backward situation, the maximal possible

demand is met by setting φL1
R1

= φL2
R1

= max ηφ̌(·), leading to ρL2
R1

= Φ−l(φL2
R1

), ρL1
R2

=

argmax ηφ̌(·) and ρL1
R1

= θφ̌(ρL1
R2

). This case corresponds to a large off-ramp flow that

frees the downstream traffic, decoupling the 2 links.

3. Forward. If ρL1
R1

+ρL1
R2
≤ ρc and ρL2

R1
≤ ρc, all characteristic speeds are positive so the

upstream boundary condition is transferred downwards with ρL2
R1

= Φ−l(ηφ̌(ρL1
R2

))

and it sets the off-ramp flow to φ̌ = ρL1
R2
.V (|ρL1|).

4. Shocked. If we have ρL1
R1

+ ρL1
R2
≤ ρc and ρL2

R1
≥ ρc, then a shock wave cross the

interface and |Φ′(ρL1
R1

+ ρL1
R2

)| < |Φ′(ρL2
R1

)| leads to the backward situation whereas
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Chapter 4. The Multiclass Origin-Destination model

�
ρL1

R1
≤ρc

ρL2

R1
+ρL2

R2
≤ρc

⇒ � ρL2

R2
= η−l

φ̂
(φL1

R1
)

ρL2

R1
= θφ̂(ρL2

R2
)

Free
φL1

R1
≤max η

φ̂
(·)

�� � ρL1

R1
= Φ−r(φL1

R1
)

ρL2

R2
= argmax ηφ̂(·)

ρL2

R1
= θφ̂(ρL2

R2
)

Decoupled

�
ρL2

R1
+ ρL2

R2
≥ρc

ρL1

R1
≥ρc

⇒

��� �� ρL2

R2
= ξ−1

φ̂
(|ρL2|)

ρL2

R1
= θφ̂(ρL2

R2
)

ρL1

R1
= Φ−r(ηφ̂(ρL2

R2
))

Congested

φL1

R1
>max η

φ̂
(·)

downstream upstream
free wave congestion wave

downstream
free wave

upstream congestion wave

Figure 4.8: Finite state machine defining the on-ramp interface behavior.

|Φ′(ρL1
R1

+ ρL1
R2

)| > |Φ′(ρL2
R1

)| to the forward situation.

The treatment of general multi-class interface conditions is as follow. The basic as-

sumption is that the traffic composition is conserved at the interfaces which is motivated

by the fact that each class behaves similarly as they all have the same velocity function.

Consequently, the transmission of the main lane and the ramp interface conditions can

be done by treating the aggregated problem as in Figure 4.4 and then redistributing the

densities according to the same flow ratio, which is equivalent to the density ratio here

as
φ

Lj
Ri

|φLj | =
ρ

Lj
Ri

|ρLj |

109

te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7



An expert is a man who has made all the mistakes,

which can be made, in a very narrow field.

Niels Henrik David Bohr (1885-1962),

Danish chemist.
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Chapter 5

Numerical schemes for macroscopic

freeway models

As conservation laws generate irregular flows, they cannot be integrated numerically

using standard methods such as finite differences or finite elements, which are known to

generate instabilities and/or wrong shock speeds [LeVeque, 1992]. Among the numerical

schemes suitable for scalar and systems of conservation laws [LeVeque, 1992; Godlewski

& Raviart, 1996], the Godunov method [Godunov, 1959] is a good option as it is a first

order scheme, it predicts correctly the propagation of shock waves, is devoid of oscillating

behavior and has a nice physical interpretation. In this method, the computational

domain is decomposed into cells and the state is assumed to be constant in each of

them. As shown in Figure 5.1, it leads to a piecewise approximation of the state, whose

x

ρ

x8x7x6x5x4x3x2x1x0

Local Riemann Problem

Figure 5.1: Piecewise constant approximation of the state.

evolution can be computed for small time horizons if we know the solution of the Cauchy

problems with piecewise constant initial data

ρI(x) =

{
ρ− for x < 0

ρ+ for x > 0
(5.0.1)
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Chapter 5. Numerical schemes for macroscopic freeway models

Problems such as (5.0.1) are called Riemann problems in the literature and can be

solved analytically for scalar conservation laws [LeVeque, 1992]. In the case of sys-

tems, an approximate Riemann solver such as the Roe average method [Godlewski &

Raviart, 1996; LeVeque, 1992] is usually necessary as no analytical solution is available

in general. Surprisingly, the Riemann problems for the Aw-Rascle-Zhang (ARZ) and the

Multiclass-Origin-Destination (MOD) models, which have both been analyzed in the pre-

vious chapters, can be solve analytically as already mentioned in [Mammar et al., 2005]

and [Zhang & Jin, 2002]. The Godunov scheme, which consists in solving a succession of

local Riemann problems, is thus an attractive method for simulating macroscopic traffic

models and have been used extensively in the transportation community. As shown in

this chapter, the Riemann solvers for the LWR, ARZ and MOD models are very similar,

which ease the numerical implementation of these models.

5.1 Numerical scheme for the LWR model

5.1.1 The Godunov scheme for LWR links

With space and time cells of size ∆xi and ∆t and indexed by i and n respectively, the

Godunov [Godunov, 1959] time stepping for the LWR model writes

ρn+1
i = ρn

i +
∆t

∆xi

(
Φnum(ρn

i−1, ρ
n
i )− Φnum(ρn

i , ρ
n
i+1)
)

(5.1.1)

with Φnum(ρ−, ρ+) the numerical flux associated to the interface having density values

ρ− and ρ+ respectively on the left and right. The numerical flux Φnum(ρ−, ρ+) is given

by

Φnum(ρ−, ρ+) = Φ(ρ∗) (5.1.2)

with ρ∗ the value of the solution to the Riemann problem (5.0.1) at the interface location.

Thanks to the self-similarity [LeVeque, 1992] property of the solution to (5.0.1), i.e.

ρ(x, t) = ρ(x/t), ρ∗ can be computed analytically and is given by Table 5.1.

Φ′(ρ+) ≥ 0 Φ′(ρ+) < 0

Φ′(ρ−) ≥ 0 ρ∗ = ρ− ρ∗ =

{
ρ− if Φ(ρ+)−Φ(ρ−)

ρ+−ρ−
> 0

ρ+ otherwise

Φ′(ρ−) < 0 ρ∗ = argmax
{
Φ(·)

}
ρ∗ = ρ+

Table 5.1: Analytical solution of the Riemann problem (5.0.1).

Proving (5.1.2) consists in analyzing each possibility in Table 5.1, where Φ′(ρ) gives

the orientation of the characteristics, and tracking if the involved wave have positive

of negative speed. When Φ′(ρ−) < 0 and Φ′(ρ+) < 0, all the characteristics move

backwards and thus ρ∗ = ρ+. Similarly, all characteristics move forwards for Φ′(ρ−) ≥ 0

and Φ′(ρ+) ≥ 0 and ρ∗ = ρ−. When Φ′(ρ−) ≥ 0 and Φ′(ρ+) < 0, a shock occurs and
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Chapter 5. Numerical schemes for macroscopic freeway models

the sign of the shock speed is used to decide the value of ρ∗. Finally, Φ′(ρ−) < 0 and

Φ′(ρ+) ≥ 0 gives a rarefaction wave that crosses the origin. In this case, called the sonic

point, the maximal flow applies [LeVeque, 1992].

For stability reasons, the time and space cell size should verify the so-called CFL

condition [LeVeque, 1992]

∆x ≤ ∆t cmax

with cmax the maximal celerity given by

cmax = max
ρ

Φ′(ρ)

5.1.2 Numerical treatment of boundary conditions

Case of density boundary conditions

Few literature is available about the numerical treatment of boundary conditions, a

notable exception being [Kröner, 1997]. The solution of the Riemann problem at the

upstream boundary with boundary condition ρ0(t) should verify the following discrete

version of the so-called BLN boundary entropy condition introduced in [Bardos et al.,

1979]

sign(ρn
1 − ρn

0 )ΦBUp
num(ρn

0 , ρ
n
1 ) = min

k∈In
sign(ρn

1 − ρn
0 )Φ(k)

with Φ
BUp
num(ρn

0 , ρ
n
1 ) the numerical boundary flux applying between time n and n+1 and In

the interval delimited by ρn
0 and ρn

1 where ρn
0 is the proposed boundary value density and

ρn
1 is the density of the first cell. More explicitly, the solution of the Riemann problem

at the upstream boundary can be rewritten

ΦBUp
num(ρn

0 , ρ
n
1 ) =

{
infk∈[ρn0 ,ρn1 ] Φ(k) if ρn

0 < ρn
1

supk∈[ρn1 ,ρn0 ] Φ(k) if ρn
1 < ρn

0

Similarly, at the downstream boundary, the numerical boundary flux writes

ΦBDo
num(ρn

N , ρ
n
L) =

{
supk∈[ρnL,ρnN ] Φ(k) if ρn

L < ρn
N

infk∈[ρnN ,ρnL] Φ(k) if ρn
N < ρn

L

with ρn
L the proposed downstream boundary density and ρn

N the density in the last cell.

With the following demand/supply functions introduced by [Lebacque, 1996] for con-

cave flux functions

D(ρ) =

{
Φ(ρ) if ρ < ρc

Φm if ρ ≥ ρc

and S(ρ) =

{
Φm if ρ < ρc

Φ(ρ) if ρ ≥ ρc

(5.1.3)

with ρc such that Φ′(ρc) = 0, these boundary fluxes become simply

ΦBUp
num(ρn

0 , ρ
n
1 ) = min

{
D(ρn

0 ) , S(ρn
1 )
}

ΦBDo
num(ρn

N , ρ
n
L) = min

{
D(ρn

N) , S(ρn
L)
}

113

te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7



Chapter 5. Numerical schemes for macroscopic freeway models

Case of flow boundary conditions

If densities are often considered to be the boundary conditions as in [Bardos et al., 1979],

we may want to specify the boundary flows φ0(t) and φL(t) instead, which may be more

natural in some cases. Nevertheless, careless manipulation of the Godunov scheme in

this situation may lead to nonphysical numerical results.

Let consider the downstream boundary x = L. When a flow φL(t) is specified, it is as-

sumed to belong to the supply curve in the demand/supply paradigm [Lebacque, 1996].

Consequently, even if the traffic stream is in free flow, a small flow φL(t) will be in-

terpreted as a congested flow, possibly leading to backward congestion waves. To re-

move this inconsistency, the downstream flow signal φL(t) should be pre-treated us-

ing the density information ρL(t). In accordance with the demand/supply paradigm of

[Lebacque, 1996], the boundary signal φL(t) is modified as

φ̃L(t) =

{
φL(t) if ρL(t) > ρc

Φm(t) if ρL(t) ≤ ρc

Similarly, the upstream flow condition is modified according to

φ̃0(t) =

{
φ0(t) if ρ0(t) < ρc

Φm(t) if ρ0(t) ≥ ρc

Flows φ̃0 and φ̃L can then be used directly in the Godunov time stepping (5.1.1).

5.1.3 Numerical treatment of on/off-ramps

The 2 easiest ways to implement interface conditions occurring at on/off-ramps are the

demand/supply and the switched interface formulation. The demand/supply paradigm

is somehow easier to implement here as the Godunov scheme only uses interface flows in

its time stepping. Nevertheless, for control purposes, we may want to keep track of the

switches, making the switched formulation interesting too. An other option presented

here is to solve analytically the Riemann problem for all possible cases.

Using the demand/supply paradigm

In the demand/supply paradigm [Lebacque, 1996], the demand and supply functions are

defined according to (5.1.3). With an on-ramp with flow φ̂i between cells i and i + 1,

the flow entering cell i+ 1 writes

Φ̂i+1(ρ
n
i , ρ

n
i+1, φ̂

n
i ) = min

{
D(ρn

i ) + φ̂n
i , S(ρn

i+1)
}

leading to a leaving from cell i of Φ̂i(ρ
n
i , ρ

n
i+1, φ̂

n
i ) = Φ̂i+1(ρ

n
i , ρ

n
i+1, φ̂

n
i ) − φ̂n

i . Note that

Φ̂i+1(ρ
n
i , ρ

n
i+1, φ̂

n
i ) < φ̂n

i if S(ρn
i+1) < φ̂n

i , meaning that some vehicles are queuing at the
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Chapter 5. Numerical schemes for macroscopic freeway models

on-ramp. Similarly, for an off-ramp with splitting ratio βi between cells i and i+ 1, the

flow entering cell i+ 1 is

Φ̌i+1(ρ
n
i , ρ

n
i+1, β

n
i ) = min

{
(1− βn

i ) D(ρn
i ) , S(ρn

i+1)
}

and Φ̂i(ρ
n
i , ρ

n
i+1, β

n
i ) = Φ̂i+1(ρ

n
i , ρ

n
i+1, β

n
i )/(1 − βn

i ). Note that with a triangular flux

function of the form

Φ(ρ) = min{vρ, w(ρm − ρ)}
as proposed in [Daganzo, 1994], these formulae simplify to

Φ̂i+1(ρ
n
i , ρ

n
i+1, φ̂

n
i ) = min

{
vρn

i + φ̂n
i , w(ρm − ρn

i+1)
}

Φ̌i+1(ρ
n
i , ρ

n
i+1, β

n
i ) = min

{
(1− βn

i ) vρn
i , w(ρm − ρn

i+1)
}

Using the switched formulation

The switched formulation consists in identifying the interface status and then transmit-

ting the boundary conditions accordingly. We get for an on-ramp with variables ρn
i , ρn

i+1

and φ̂i the following behavior:

- Free:

if ρn
i ≤ ρc, ρ

n
i+1 ≤ ρc and Φ(ρn

i ) + φ̂i ≤ Φm,

then ρn
i+1 = Φ−l(Φ(ρn

i ) + φ̂i) with Φ−l(·) the left inverse.

- Free but decoupling:

if ρn
i ≤ ρc, ρ

n
i+1 ≤ ρc and Φ(ρn

i ) + φ̂i > Φm,

then ρn
i+1 = ρc and ρn

i = Φ−r(Φm − φ̂i) with Φr(·) the right inverse.

- Decoupled:

if ρn
i ≥ ρc, ρ

n
i+1 = ρc,

then ρn
i = Φ−r(Φm − φ̂i).

- Congested:

if ρn
i > ρc, ρ

n
i+1 > ρc and Φ(ρn

i+1) ≥ φ̂i,

then ρn
i = Φ−r(Φ(ρn

i+1)− φ̂i).

- Saturated:

if ρn
i > ρc, ρ

n
i+1 > ρc and Φ(ρn

i+1) < φ̂i,

then φ̂i = Φ(ρn
i+1) and ρn+1

i = ρm.

This state is usually assumed not to occur.

- Congestion passing:

if ρn
i ≤ ρc, ρ

n
i+1 > ρc and Φ(ρn

i ) + φ̂i > Φ(ρn
i+1),

then ρn
i = Φ−r(Φ(ρn

i+1)− φ̂i).
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Chapter 5. Numerical schemes for macroscopic freeway models

- Freeing wave passing:

if ρn
i ≤ ρc, ρ

n
i+1 > ρc and Φ(ρn

i ) + φ̂i < Φ(ρn
i+1),

then ρn
i+1 = Φ−l(Φ(ρn

i ) + φ̂i).

In a Godunov scheme, the boundary conditions are first set at each time step accord-

ing to the above results and a standard time stepping is then performed in each link,

keeping these boundary values constant. The saturate case corresponds to an on-ramp

flow that would lead to a density above the maximal density in the upstream link if ap-

plied. The only possible alternative is to limit this flow to an acceptable value that gives

the maximal density. As the consequence, the upstream flow is null and the vehicles are

queuing in the upstream link. Nevertheless, this state is usually assumed not to occur.

Moreover, note that the case ρn
i > ρc and ρn

i+1 < ρc is not considered as it never occurs

if not in the initial condition from the entropy condition.

Using the analytical solution of the Riemann problem

An other interesting option for the numerical treatment of on/off-ramps is to solve the

corresponding Riemann problem (5.0.1) for all possible values of the involved variables,

i.e. ρ−, ρ+, φ̂ and β. This approach is similar to the one used for Table 5.1 but leads to

15 possible cases in the on-ramp case. We refer the reader to the appendix Justification

of the switched formulation for the on-ramp behavior where all these cases are treated

rigorously. An approach was introduced in [Lebacque, 1996] for the LWR model with

inhomogeneous parameters. The Godunov scheme can then be used transparently using

the analytical Riemann solver proposed in this appendix.

5.1.4 The cell transmission model

The Cell Transmission Model (CTM) proposed in [Daganzo, 1994] can be viewed as a

Godunov discretization where the flow function Φ(·) is assumed to be triangular (or

trapezoidal) with maximal flow qm, slope v > 0 for the free flow speed and slope −w < 0

for the congestion wave speed, as represented on figure 5.2. In this framework, the

Godunov scheme becomes

ρi(k + 1) = ρi(k) +
∆t

∆xi

(qi − qi+1)

with the interface flow qi between the cells i − 1 and i is given by the de-

mand/supply/saturation relationship

qi = min
{
vρi−1, w(ρm − ρi), qm

}
(5.1.4)

As a consequence, 3 modes are possible for a cell interface: the free mode when the

demand of cell i− 1 can be satisfied (qi = vρi−1), the congestion mode when the supply

of cell i limits the interface flow (qi = w(ρm − ρi)) and the saturation mode when the

infrastructure flow limit is reached (qi = qm).
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Chapter 5. Numerical schemes for macroscopic freeway models

ρ

Q(ρ)

v.ρi−1 w(ρm − ρi)

v w 0 5 10 15 20 25 30 35 40 45 50
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1500

2000

rho
i−1

rho
i

q

Figure 5.2: Daganzo triangular flow function.

Following this approach, the CTM can be extended to handle on/off ramps with the

same demand/supply/saturation paradigm. To do so, we denote q−i the flow leaving cell

i−1, q+
i the flow entering in cell i, ri the on-ramp flow and βi the off-ramp exit ratio when

present. Using q+
i = q−i + ri and q+

i ≤ qm for on-ramps and q+
i = (1−βi)q

−
i and q−i ≤ qm

for off-ramps, we get the ramp behaviors given in Table 5.2 which are represented as

diagrams in Figure 5.3. This table describes a Finite State Machine (FSM) where the

ρ

Q(ρ)

v.ρi−1

w(ρm−ρi)
1−β

v
w

1−β

v.ρi−1

qm

w

Figure 5.3: Daganzo-like ramp flow function for on (left) and off (right) ramps.

first column identifies the mode given in the second column and the last column describes

the interface behavior in that mode. In this setting, the integration scheme should be

slightly modified and becomes

ρi(k + 1) = ρi(k) +
∆t

∆xi

(q+
i − q−i+1)

Two approaches can be used to model the boundary conditions. If the density signals

are provided at the boundaries, ghost cells set to the boundary values are inserted before

the first cell and after the last one. The above FSM is then used as for standard cells. If

the flow signals qDo(k) and qDo(k) are provided at the boundaries, then table 5.3 is used

to compute the values of q1(k) and qN+1(k).
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Chapter 5. Numerical schemes for macroscopic freeway models

Through interface

Condition Mode Interface flow

v.ρi−1(k) ≤ w(ρm − ρi(k)) Free qi(k) = qi(k)− = qi(k)+ = v.ρi−1(k)

v.ρi−1(k) > w(ρm − ρi(k)) Congested qi(k) = qi(k)− = qi(k)+ = w(ρm − ρi(k))

On-ramp interface

Condition Mode Interface flow

v.ρi−1(k) + ri(k) ≤ w(ρm − ρi(k)) < qm Free
qi(k)− = v.ρi−1(k)

qi(k)+ = v.ρi−1(k) + r(k)

qm > v.ρi−1(k) + ri(k) > w(ρm − ρi(k)) Congested
qi(k)− = w(ρm − ρi(k))− r(k)

qi(k)+ = w(ρm − ρi(k))

v.ρi−1(k) + ri(k) > qm Decoupled
qi(k)− = qm − r(k)

qi(k)+ = qm

Off-ramp interface

Condition Mode Interface flow

(1− βi(k))v.ρi−1(k) ≤ w(ρm − ρi(k)) ≤ qm Free
qi(k)− = v.ρi−1(k)

qi(k)+ = (1− βi(k))v.ρi−1(k)

qm ≥ (1− βi(k))v.ρi−1(k) > w(ρm − ρi(k)) Congested
qi(k)− = w(ρm−ρi(k))

1−βi
qi(k)+ = w(ρm − ρi(k))

qm(1− βi(k)) < w(ρm − ρi(k)) Decoupled
qi(k)− = qm
qi(k)+ = (1− β)qm

Table 5.2: Behavior of CTM through, on-ramp and off-ramp interfaces.

Upstream boundary

Condition Mode Upstream boundary flow

qUp(k) ≥ w(ρm − ρi(k)) Free q1(k) = qUp(k)

qUp(k) < w(ρm − ρi(k)) Congested q1(k) = w(ρm − ρi(k))

Downstream boundary

Condition Mode Downstream boundary flow

v.ρi−1(k) ≥ qDo(k) Free qNc+1(k) = v.ρNc(k)

v.ρi−1(k) < qDo(k) Congested qNc+1(k) = qDo(k)

Table 5.3: Boundary behaviors for the CTM model.
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Chapter 5. Numerical schemes for macroscopic freeway models

5.1.5 Simulation example

In this section, we simulate the section of the South-Est beltway of Lyon, France as

depicted on Figure 5.4. From the measurements, we clearly see that the on-ramp close

to the counting station number 4 is responsible of a congestion that propagates upstream

until the boundary. The first step in applying the numerical methods described above

Figure 5.4: Section of the South-Est beltway of Lyon, France used in the study case.

is to estimate the parameters of the model. To do so, we rely on the experimental

measurements of the fundament diagrams from the counting stations numbered 1 to 8

as given in Figure 5.5. The identified CTM parameters for each counting station are

Figure 5.5: Measurements used to identify the model parameters.
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Chapter 5. Numerical schemes for macroscopic freeway models

1 : [v, w, ρc, φm] = [75, 35, 92, NA]

2 : [v, w, ρc, φm] = [82, 32, 105, NA]

3 : [v, w, ρc, φm] = [85, 35, 85, 6350]

4 : [v, w, ρc, φm] = [75, 25, 95, 6200]

5 : [v, w, ρc, φm] = [75, NA,NA,NA]

6 : [v, w, ρc, φm] = [78, NA,NA,NA]

7 : [v, w, ρc, φm] = [78, NA,NA,NA]

8 : [v, w, ρc, φm] = [81, NA,NA,NA]

with NA meaning that the corresponding parameters is irrelevant. Note that triangular

fluxes are used for 1 and 2, making the parameter φm irrelevant. No congestion is

observed on stations 5, 6, 7, 8. As a consequence, no critical density, congestion wave

speed and maximal flow can be identified. These parameters are interpolated linearly

between counting stations, giving rise to a flux tube represented in Figure 5.6. Providing

Figure 5.6: Flux tube coming from the spacial dependance of the fundamental diagram.

interpolated initial and boundary conditions along with the measured ramp flow, the

internal state is computed with the CTM scheme. Figures 5.7 and 5.8 show the simulation

result respectively for the density and the velocity along with the measured data. We

see that the model predict the congestion quite accurately.
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Chapter 5. Numerical schemes for macroscopic freeway models

Figure 5.7: Comparaison of the simulated and observed density.

Figure 5.8: Comparaison of the simulated and observed velocity.

5.2 Numerical scheme for the ARZ model

5.2.1 The Godunov method for ARZ links

The Godunov method can be used for systems of conservation laws such as the ARZ

model as in [Mammar et al., 2005; Lebacque et al., 2005]. It recursively approximates

the state by a piecewise constant function and solves a series of Riemann problem to

determine the state of the next time iteration. With the system of conservation laws

∂tu + ∂xF(u) = 0

the Godunov scheme takes the form

un+1
i = un

i +
∆t

∆x

(
F(un

i−1/2)− F(un
i+1/2)

)

where un
i+1/2 is the solution of the Riemann problem at the origin with left and right

data un
i and un

i+1 respectively. To use the Godunov scheme, un
i−1/2 and un

i+1/2 should be

computed only making simplified Riemann solver as the one before sufficient.
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Chapter 5. Numerical schemes for macroscopic freeway models

In the case of systems, the CFL condition writes

∆x ≤ ∆t cmax

with cmax the maximal wave speed given by

cmax = max
i,ρ

λi(u)

where λi(u) are the eigenvalues of F(u).

In using the Godunov method to numerically solve the ARZ model, we are only

interested by the value of the Riemann problem solution at the initial discontinuity

location x = 0, denoted (ρR, vR). We describe below some simplifications that can be

done to give a simplified analytical Riemann solver with ρ− and ρ+ the left and right

states in the initial condition.

1. Case of shocks: A 1-shock occurs when Φ′
e(ρ−) > Φ′

e(ρ0), which is equivalent to

ρ− < ρ0 with Φe(ρ) a strict concave function. Moreover, this strict concavity and

the fact that ρ− < ρ0 imply

Φ′
e(ρ0) <

Φe(ρ0)− Φe(ρ−)

ρ0 − ρ−
< Φ′

e(ρ−)

Using
y0

ρ0

= v0 − Ve(ρ0) = v− − Ve(ρ−)

and

σ =
Φe(ρ0)− Φe(ρ−)

ρ0 − ρ−
+
y0

ρ0

(5.2.1)

we obtain

Φ′
e(ρ0) + v0 − Ve(ρ0) < σ < Φ′

e(ρ−) + v− − Ve(ρ−)

m
v0 + ρ0V

′
e (ρ0) < σ < v− + ρ−V

′
e (ρ−)

m
λ1(ρ0, v0) < σ < λ1(ρ−, v−)

We conclude that in the case of shocks, the value of (ρR, vR) can be determined by

examining the signs of λ1(ρ0, v0) and λ1(ρ−, v−) only.

2. Case of sonic rarefaction waves: When λ1(ρ−, y−) < 0 < λ1(ρ0, y0), the fan gener-

ated by the rarefaction wave spreads across the origin. The traffic state at x = 0,

called the sonic point, is denoted (ρ∗, y∗) and solves λ1(ρ∗, y∗) = 0. This sonic state

verifies in the ρ− v variables

{
λ1(ρ∗, y∗) = v∗ + ρ∗.V

′
e (ρ∗) = 0 as it is the sonic point

v∗ − Ve(ρ∗) = v− − Ve(ρ−) as it is on the rarefaction curve
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Chapter 5. Numerical schemes for macroscopic freeway models

We conclude that ρ∗ solves

Ve(ρ∗) + ρ∗V
′
e (ρ∗) + v− − Ve(ρ−) = 0

which gives {
Φ′

e(ρ∗) = −(v− − Ve(ρ−))

v∗ = Ve(ρ∗) + (v− − Ve(ρ−))
(5.2.2)

It is interesting to make a parallel with the LWR model for which Φ′
e(ρ∗) = 0.

3. Case of non-sonic rarefaction waves: The minimal speed in a rarefaction wave

is λ1(ρ−, v−) whereas the maximal speed is λ1(ρ0, v0). When λ1(ρ−, v−) ≥ 0 or

λ1(ρ0, v0) ≤ 0, the value of (ρR, vR) can again be determined by examining the

signs of λ1(ρ0, v0) and λ1(ρ−, v−) only.

The analytical solution of the simplified Riemann problem is summarized in table 5.4

and can be used directly in a Godunov scheme.

λ1(ρ−, y−) ≥ 0 λ1(ρ−, y−) < 0

λ1(ρ0, y0) ≥ 0 (ρR, vR) = (ρ−, y−) (ρR, vR) = (ρ∗, y∗) with (5.2.2)

λ1(ρ0, y0) < 0 (ρR, vR) =

{
(ρ−, y−) if σ > 0

(ρ0, y0) if σ < 0
with (5.2.1) (ρR, vR) = (ρ0, y0)

Table 5.4: Simplified solution of the Riemann problem

5.2.2 The demand/supply formulation for ARZ links

We propose in this section a demand/supply paradigm which proven to be a powerful

tool for the LWR model [Lebacque, 1996]. The notions of demand and supply were first

proposed for the ARZ model in [Lebacque et al., 2005] and [Herty & Rascle, 2006]. Using

the notations

Φ(ρ) = ρV (ρ)

I = v − V (ρ)

y = ρI

φ = ρv = y + φ(ρ)

let rewrite the ARZ flux function

F (ρ, v) =

(
F (ρ, v)

G(ρ, v)

)
=

(
ρv

ρv(v − V (ρ))

)
(5.2.3)

and consider the Riemann problem with initial condition (5.0.1). Due to the conservation

of the relative speed in the whole region x < vt including x = 0, the relative velocity

variable I = I− = I0 can be considered as a constant parameter which only depends on

the initial condition. As G(ρ, v) = F (ρ, v)(v − V (ρ)) in (5.2.3), we deduce that G(ρ, v)
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Chapter 5. Numerical schemes for macroscopic freeway models

can be computed immediately from F (ρ, v) in the region x < vt. As in [Lebacque

et al., 2005], let introduce the modified fundamental diagram

Φ̂(ρ) = Φ(ρ) + I−ρ (5.2.4)

in x < vt, implying that F1(ρ, v) = ρv = Φ̂(ρ) = F1(ρ) in this region. Still following

[Lebacque et al., 2005], let define the demand function

D(ρ) =

{
Φ̂(ρ) if ρ ≤ ρc

Φ̂m if ρ > ρc

(5.2.5)

and an supply of supply function

S(ρ) =

{
Φ̂m if ρ ≤ ρc

Φ̂(ρ) if ρ > ρc

(5.2.6)

with ρc = argmax Φ̂(ρ) and Φ̂m = max Φ̂(ρ). Figure 5.9 shows an example of demand

and supply functions. From their definition, the corresponding modified fundamental

diagram is defined as the concave envelop of these 2 concave functions.

Demand

ρ̂c

Φ̂m

ρ

Φ̂(ρ) = Φ(ρ) + Iρ

Supply

I

Figure 5.9: Modified fundamental diagram and demand/supply functions.

One of the main step in formulating a Cell Transmission Model as in [Daganzo, 1994]

for the ARZ model is to prove the following theorem

Theorem 5.2.1 Let (ρ−, I−) and (ρ+, I+) be respectively the left and right state of a

Riemann problem for the ARZ model. Then the flux at the initial discontinuity location

is constant for all t > 0 and is given with notations (5.2.3) by

F (ρ−, ρ0) = min
{
D(ρ−), S(ρ0)

}
(5.2.7)
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Chapter 5. Numerical schemes for macroscopic freeway models

and

G(ρ−, ρ0, I−) = F (ρ−, ρ0) I− (5.2.8)

with

ρ0 = V −1(I+ + V (ρ+)− I−) (5.2.9)

Proof. As shown in Table 5.4, λ1(ρ) = Φ′(ρ) + I− = Φ̂′(ρ), which is the slope of the

modified fundamental diagram Φ̂(ρ), plays a fundamental role in defining the solution of

the Riemann problem. The proof of Theorem 5.2.1 consists in analysing the 4 possible

cases in Table 5.4 and showing that Equation (5.2.7) is always fulfilled with Equation

(5.2.9) giving the intermediate state. Equation (5.2.9) is then immediately deduced from

(5.2.3).

- The case λ1(ρ−) < 0 and λ1(ρ0) < 0 implies that ρ− > ρc and ρ0 > ρc. From (5.2.5)

and (5.2.6), F (ρ−, ρ0) = min{D(ρ−), S(ρ0)} = S(ρ0) = Φ̂(ρ0) which equivalent to

the solution ρR = ρ0 given by Table 5.4.

- The case λ1(ρ−) ≥ 0 and λ1(ρ0) ≥ 0 is similar but with ρ− ≤ ρc and ρ0 ≤ ρc

and leads respectively to F (ρ−, ρ0) = D(ρ−) = Φ̂(ρ−) and ρR = ρ− from Equation

(5.2.7) and Table 5.4.

- The case λ1(ρ−) ≥ 0 and λ1(ρ0) < 0 implies that ρ− ≤ ρc and ρ0 > ρc leading

to D(ρ−) = Φ̂(ρ−) and S(ρ0) = Φ̂(ρ0). According to Table 5.4, this case gives

rise to a shock where the shock speed corresponds to the slope of the straight

line connecting (ρ−, Φ̂(ρ−)) and (ρ0, Φ̂(ρ0)). As a consequence, σ < 0, which gives

ρR = ρ0 in Table 5.4, implies Φ̂(ρ−) > Φ̂(ρ0) so F (ρ−, ρ0) = Φ̂(ρ0) according to

(5.2.7), which is the correct result. Similarly, σ ≥ 0 gives respectively ρR = ρ− and

F (ρ−, ρ0) = Φ̂(ρ−) according to Table 5.4 and Equation (5.2.7) as Φ̂(ρ−) ≤ Φ̂(ρ0)

in this case.

- The case λ1(ρ−) < 0 and λ1(ρ0) ≥ 0 implies that ρ− ≥ ρc and ρ0 < ρc and

thus lead to D(ρ−) = S(ρ+) = Φ̂m. Equation (5.2.7) then gives F (ρ−, ρ0) = Φ̂m,

meaning that the flow is maximal at the original discontinuity location. This claim

is verified by Table 5.4 and Equation (5.2.2) which imply that Φ′(ρR) + I− = 0

which is equivalent to Φ̂(ρR) = Φ̂m.

�

A direct consequence of Theorem 5.2.1 is that the Godunov scheme can be imple-

mented with

F n
i−1 = min

{
D
(
ρn

i−1

)
, S
(
V −1(In

i + V (ρn
i )− In

i−1)
)}

(5.2.10)

F n
i = min

{
D
(
ρn

i−1

)
, S
(
V −1(In

i + V (ρn
i )− In

i−1)
)}

(5.2.11)

ρn+1
i = ρn

i +
∆t

∆x

(
F n

i−1 − F n
i

)
(5.2.12)

yn+1
i = yn

i +
∆t

∆x

(
F n

i−1I
n
i−1 − F n

i I
n
i

)
(5.2.13)
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Chapter 5. Numerical schemes for macroscopic freeway models

where F n
i is the flow leaving cell i.

This demand/supply paradigm extends in a straightforward way when an on-ramp

or an off-ramp is present at the interface.

5.2.3 ARZ Cell Transmission Models

With a triangular fundamental diagram

We now turn to the special case where the fundamental diagram is assumed to be a

triangular function as represented in Figure 5.10. Compared to experimental data, this

assumption does not appear to be too restrictive in most cases, thus justifying this

assumption. As in [Daganzo, 1994] and using the same terminology, the parameters of

this fundamental diagram are the free flow speed vf , the congestion wave speed w and

the maximal density ρm. The triangular flow diagram of Figure 5.10 can be written

6

- ρ

Φ(ρ)

ρc ρm

vf w

Figure 5.10: Triangular flow diagram.

Φ(ρ) = min
{
vfρ , w(ρm − ρ)

}

which leads, according to (5.2.4), to the modified fundamental diagram

Φ̂(ρ) = min
{
vfρ+ I−ρ , w(ρm − ρ) + I−ρ

}

when consider a Riemann problem with initial condition (5.0.1). Similarly, the demand

and supply functions in (5.2.5) and (5.2.6) become

D(ρ−) = min
{
vfρ− + I−ρ− , Φ̂m

}
and S(ρ0) = min

{
w(ρm − ρ0) + I−ρ0 , Φ̂m

}

Using theorem 5.2.1, we conclude that

F (ρ−, ρ0) = min
{
vfρ− + I−ρ− , w(ρm − ρ0) + I−ρ0 , Φ̂m

}

giving the 3 following possible states for the interface
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Chapter 5. Numerical schemes for macroscopic freeway models

free if F (ρ−, ρ0) = vfρ− + I−ρ−

congested if F (ρ−, ρ0) = w(ρm − ρ0) + I−ρ0

decoupled if F (ρ−, ρ0) = Φ̂m

Due to the triangular nature of the fundamental diagram, the velocity function can

be written

V (ρ) =
Φ(ρ)

ρ
= min

{
vf ,

w(ρm − ρ)
ρ

}

which gives for v ∈ [0, vf ] the inverse mapping

V −1(v) =
wρm

w + v

Plugging this formula of V −1(·) in the intermediate state equation, we get

ρ0 =
wρm

w + I+ + V (ρ+)− I−
= max

{
wρm

w + I+ + vf − I−
,

wρmρ+

wρ+ + I+ρ+ + w(ρm − ρ+)− I−ρ+

}

To summarize, the Cell Transmission Model for the ARZ model in the ρ−I variables

is given by the set of equations

Sn
i = max

{
wρm

w + In
i + vf − In

i−1

,
wρmρ

n
i

wρn
i + In

i ρ
n
i + w(ρm − ρn

i )− In
i−1ρ

n
i

}
(5.2.14)

Sn
i+1 = max

{
wρm

w+In
i+1+vf−In

i

,
wρmρ

n
i+1

wρn
i+1+I

n
i+1ρ

n
i+1+w(ρm − ρn

i+1)−In
i ρ

n
i

}
(5.2.15)

F n
i−1 = min

{
vfρ

n
i−1 + In

i−1ρ
n
i−1 , S

n
i , Φ̂m

}
(5.2.16)

F n
i = min

{
vfρ

n
i + In

i ρ
n
i , S

n
i+1 , Φ̂m

}
(5.2.17)

ρn+1
i = ρn

i +
∆t

∆x

(
F n

i−1 − F n
i

)
(5.2.18)

yn+1
i = yn

i +
∆t

∆x

(
F n

i−1I
n
i−1 − F n

i I
n
i

)
(5.2.19)

With a quadratic fundamental diagram

The main difference of the ARZ-CTM using a triangular fundamental diagram with

its LWR counterpart [Daganzo, 1994] is that some nonlinear operations are involved

in (5.2.14), (5.2.14) and (5.2.19) in addition to the min/max operations. An important

consequence is that relaxations of optimization problems involving the ARZ-CTM would

not lead to linear programming as in [Gomes & Horowitz, 2006] for the LWR case. One

potential possibility to remove this nonlinearity would be to assume an affine velocity

function

V (ρ) = vf

(
1− ρ

ρm

)
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Chapter 5. Numerical schemes for macroscopic freeway models

known as the Greenshield model [Pipes, 1967], leading to the linear inverse

V −1(v) = ρm

(
1− v

vf

)

Nevertheless, the flow function Φ(ρ) = ρV (ρ) loose its piecewise affine property in this

case and becomes the quadratic function

Φ(ρ) = ρvf −
vf

ρm

ρ2

The CTM equations then become

Sn
i =
−ρmI

n
i + vfρ

n
i + ρmI

n
i−1

vf

(5.2.20)

Sn
i+1 =

−ρmI
n
i+1 + vfρ

n
i+1 + ρmI

n
i

vf

(5.2.21)

F n
i−1 = min

{
D(ρn

i−1) , S(ρn
i )
}

(5.2.22)

F n
i = min

{
D(ρn

i ) , S(ρn
i+1)

}
(5.2.23)

ρn+1
i = ρn

i +
∆t

∆x

(
F n

i−1 − F n
i

)
(5.2.24)

yn+1
i = yn

i +
∆t

∆x

(
F n

i−1I
n
i−1 − F n

i I
n
i

)
(5.2.25)

Optimization problems involving this model still need to use nonlinear programming

but all the constraints are clearly either linear, either bilinear, either convex in this

situations.

With an hybrid fundamental diagram

Finally, we propose an hybrid formulation where the velocity function writes

V (ρ) = min{vf , z(ρm − ρ)}

leading to the fundamental diagram

Φ(ρ) = min{vfρ, z(ρmρ− ρ2)}
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Chapter 5. Numerical schemes for macroscopic freeway models

The interest of this formulation is to remove some nonlinearities in the Cell Transmission

Model, which writes in that case

Sn
i =
−ρmI

n
i + vfρ

n
i + ρmI

n
i−1

vf

(5.2.26)

Sn
i+1 =

−ρmI
n
i+1 + vfρ

n
i+1 + ρmI

n
i

vf

(5.2.27)

F n
i−1 = min

{
vfρ

n
i−1 + I−ρ

n
i−1 , S(ρn

i )
}

(5.2.28)

F n
i = min

{
vfρ

n
i + I−ρ

n
i , S(ρn

i+1)
}

(5.2.29)

ρn+1
i = ρn

i +
∆t

∆x

(
F n

i−1 − F n
i

)
(5.2.30)

yn+1
i = yn

i +
∆t

∆x

(
F n

i−1I
n
i−1 − F n

i I
n
i

)
(5.2.31)

5.3 Numerical scheme for the MOD model

5.3.1 The Godunov scheme

We propose to use again the Godunov scheme to simulate the MOD model. To this end,

let consider the Riemann problem with initial condition

ρ(x, 0) =

{
ρ− if x < 0

ρ+ if x ≥ 0

As shown in the analysis of the wave system, λNR(ρ) ≤ λk(ρ) for k = 1, ..., Nr and

thus contact discontinuities always propagate faster than the shock or rarefaction waves.

As a consequence, the left state ρ− is always connected to an intermediate state ρ0

by a 1-wave, itself connected to the right state by a superposition of NR − 1 contact

discontinuities. As illustrated on Figure 5.11, the following interconnection of elementary

waves are possible

|ρ+| ≥ |ρ−| : ρ− −[shock]→ ρ0 −[contact]→ ρ+

|ρ+| < |ρ−| : ρ− −[raref.]→ ρ0 −[contact]→ ρ+

with the intermediate state ρ0 components given by

ρ0
k = ρ−

k

|ρ+|
|ρ−|

Thanks to this analytical solution of the Riemann problem, the Godunov method

[Godlewski & Raviart, 1996] can be used to integrate numerically the MOD model. For

an homogeneous link, the spacial domain is decomposed in N cells indexed by i and the
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Chapter 5. Numerical schemes for macroscopic freeway models

Figure 5.11: Wave interconnection in the solution of the Riemann problem.

time domain in M cells indexed by n. The time stepping of the Godunov scheme writes

in this case

ρn+1
i = ρn

i +
∆t

∆x

(
F (ρn

i−1,ρ
n
i )− F (ρn

i ,ρ
n
i+1)
)

with F (ρ−,ρ+) the numerical flow function corresponding to the solution of the Riemann

problem with left and right states ρ− and ρ+ respectively. Let define the aggregated flow

function

f(ρ) = |ρ|V (|ρ|)
the shock speed function

σ(ρL,ρR) = (f(ρR)− f(ρL))/(|ρR| − |ρL|)

and the aggregated celerity function

c(ρ) = V (|ρ|) + |ρ|V ′(|ρ|)

As for the LWR and the ARZ models, the numerical flux function F (ρ−,ρ+) can be

written F (ρ−,ρ+) = f(ρ∗) with the interface state ρ∗ given by the table

If c(ρL) > 0 c(ρL) ≤ 0

c(ρR) ≥ 0 ρ∗ = ρL ρ∗ = ρL.ρc/|ρL|
c(ρR) < 0 ρ∗ =

(

ρL if σ(ρL, ρR) > 0

ρM if σ(ρL, ρR) < 0
ρ∗ = ρM

where ρc is the critical density corresponding to maximal flow, i.e. f ′(ρc) = 0, and ρM

is the intermediate state of the corresponding Riemann problem.

In the MOD model, the on and off ramp are implemented using the switched interface

formulation.

5.3.2 Simulation examples

We provide in Figure 5.12 a simulation example that illustrate the dynamical behavior

of the multiclass model in the presence of one on-ramp and one off-ramp. The top
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Chapter 5. Numerical schemes for macroscopic freeway models

Figure 5.12: Simulation of a simple network with one on-ramp and one off-ramp in the

Forward case only.

curve is the aggregated density whereas the other curves are affected to the different

routes. We restrict to the Forward case only both at the on-ramp and the off-ramp.

As a consequence, we observe the forward propagation of all density waves. Note the

discontinuities at the ramp locations and the birth and then propagation of a shock wave

(smoothed due to the numerical integration).
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Chapter 5. Numerical schemes for macroscopic freeway models

132

te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7



Part II

Control of Conservation Laws

and Traffic Applications
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A mathematician is a device for turning coffee into theorems.

Paul Erdös (1913-1996),

Hungarian famously eccentric mathematician.
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Chapter 5. Numerical schemes for macroscopic freeway models
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Chapter 6

Optimal Control of Distributed

Conservation Laws

As discussed in the first chapters, macroscopic freeway models are hyperbolic partial

differential equation, implying that information propagates at a finite speed in these sys-

tems. This physical argument motivates the use of receding horizon techniques as local

control actions have a spacial influence that increases with time. A sufficiently long pre-

diction horizon thus allows to control a relevant portion of the spacial domain. This chap-

ter addresses this problem and presents an optimization-based receding horizon strategy

with applications in ramp metering, missing data reconstruction and origin-destination

volume estimation. Given the smoothness usually required to design optimization al-

gorithms, the irregularity of the solutions to conservation laws apparently forbids the

immediate use of classical techniques such as linearization, adjoint calculus and gradient

computation. We show in this chapter that they indeed extend quite straightforwardly

at the price of some acceptable complications. This remarkable fact enables to treat both

the scalar and the system cases in a unified way with respect to the theory developed

for more regular systems. Before presenting how conservation law trajectories can be

optimized, we briefly introduce several physical systems for which the general theory can

be applied.

6.1 Physical systems modelled by conservation laws

For systems where the state is composed of distributed quantities

y(x, t) = (y1(x, t), ..., ym(x, t)) ∈ R

along a one-dimensional manifold x ∈ R, the conservation principle states that the

evolution of each aggregated conserved quantity in any arbitrary region (xL, xR) ⊂ R
depends only on the flows at the boundaries and the contribution of exogenous flows.

In physical systems, a constitutive relationships f(y) = (f1(y), ..., fm(y)) are used to

express the flows at x in terms of the conserved quantities y at the same location. The
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Chapter 6. Optimal Control of Distributed Conservation Laws

exogenous flows are assumed to have the form g(x, y, u) = (g1(x, y, u), ..., gm(x, y, u))

with u a finite dimensional control variable. In 1-dimension, systems considered in this

chapter are driven by nonlinear balance equations of the vector form

d

dt

∫ xR

xL

y(x, t) dx = f(y(xL, t))− f(y(xR, t)) +

∫ xR

xL

g(x, y, u) dx , ∀ (xL, xR) ⊂ R
(6.1.1)

with the initial condition y(x, t) = yI(x). If Equation (6.1.1) is to be considered on a

bounded domain (x, t) ∈ Ω = (0, L) × (0, T ) as in all practical problems, appropriate

boundary conditions should be provided at x = 0 and x = L, either in the form of the

flow signals f0(t) and fL(t) or the conserved quantity signals y0(t) and yL(t). Note that

Equation 6.1.1 is an infinite set of integral equations so that the state only requires to

be locally measurable, i.e. in y ∈ L1
loc().

In 1-dimension and under appropriate assumptions, the basic manipulations

d

dt

∫ xR

xL

y(x, t) dx =

∫ xR

xL

∂ty(x, t) dx and f(y(xL, t))−f(y(xR, t)) =−
∫ xR

xL

∂xy(x, t) dx

transforms Equation (6.1.1) in the unique divergence form partial differential equation





∂ty + ∂xf(y) = g(x, y, u)

y(x, t = 0) = yI(x)

y(0, t) = y0(t) and y(L, t) = yL(t)

(6.1.2)

In the scalar case, Equation (6.1.2) can be rewritten

divt,x

(
y

f(y)

)
= g(x, y, u) ⇔

(
f ′(y)

1

)
· ∇t,xy = g(x, y, u) (6.1.3)

showing that the directional derivative of y along (f ′(y), 1) is locally equal to the contri-

bution of the source term, thus recovering the method of characteristics [Evans, 1998].

We recall that the main difficulties in analyzing conservation laws are:

Gradient catastrophe Partial differential equations can be analyzed using the method

of characteristics [Evans, 1998], which constructs solutions of (6.1.3) by computing

a family of integral curves (called projected characteristics) that are tangent to

(f ′(y), 1) and along which the source term is integrated. For nonlinear conservation

laws such as (6.1.3), this method fails to provide a solution for all times as these

characteristics may intersect in finite time, even for smooth initial and boundary

conditions. It can be shown that characteristic crossings correspond to gradient

catastrophes [Lax, 1973; LeFloch, 2002] where ∂xy →∞.

Overprescribed boundary conditions Specifying explicit Dirichlet boundary condi-

tions at x = 0 and x = L for quasi-linear equations such as (6.1.3) generally leads

to ill-posed initial boundary value problems [Bardos et al., 1979]. The reason is

that enforcing the boundary condition when characteristics leave the computational
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Chapter 6. Optimal Control of Distributed Conservation Laws

domain would lead to an overprescribed boundary value. Note that characteris-

tics cannot be defined beforehand in (6.1.3) as (f ′(y), 1) depends on y, making

the analytical treatment of boundary conditions tedious for nonlinear conservation

laws.

We give below several examples of physical system modelled by conservation laws:

• An unperturbed fluid simply transported by itself with velocity y(x, t) leads to the

well-known Burgers equation

∂ty + ∂x

(
y2

2

)
= 0

• An homogeneous freeway section with vehicle density ρ and flow function Φ(ρ)

may be modelled by the Lighthill-Whitham-Richards (LWR) equation [Lighthill &

Whitham, 1955]

∂tρ+ ∂xΦ(ρ) = 0

• An incompressible two-phase immiscible flow in a porous medium like oil and water

in petroleum engineering satisfies the Buckley-Leverett equation [LeVeque, 1992]

∂ty + ∂x

(
y2

y2 + a(1− y2)2

)
= 0

with y the reduced water saturation in petroleum applications.

• Any Hamilton-Jacobi [Melikyan, 1998] equation ∂tz + H(∂xz) = 0 can be trans-

formed to the conservation law ∂ty+ ∂xH(y) = 0 by setting y = ∂xz. For instance,

the curve S(t) = {(x, v(x, t)) ∈ R2} delimiting a burning region y ≤ v(x, t) verifies

∂ty + ∂x(−c
√

1 + y2) = 0 (6.1.4)

with y = ∂xv and c the burning speed.

• The Euler equation for compressible gaz dynamics [Dafermos, 2000] writes

∂t




ρ

ρv

e


+ ∂x




ρv

ρv2 + p

(e+ p)v


 = 0 (6.1.5)

• The shallow water equations with topography B(x, y), which may model open air

channels or Tsunamis [George & LeVeque, 2006], writes





∂th+ ∂x(hu) + ∂y(hv) = 0

∂t(hu) + ∂x(hu
2 + 1

2
gh) + ∂y(huv) = −gh∂xB(x, y)

∂t(hv) + ∂x(huv) + ∂y(hv
2 + 1

2
gh) = −gh∂yB(x, y)

(6.1.6)
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Chapter 6. Optimal Control of Distributed Conservation Laws

• Non-equilibrium traffic can be modelled by the Payne model [Payne, 1971]

{
∂tρ+ ∂x(ρv) = 0

∂tv + v∂xv + c2

ρ
∂xρ = V (ρ)−v

τ

(6.1.7)

or the Aw-Rascle-Zhang model [Aw & Rascle, 2000; Zhang, 2002]

{
∂tρ+ ∂x(ρv) = 0

∂t

(
v + P (ρ)

)
+ v∂x

(
v + P (ρ)

)
= V (ρ)−v

τ

(6.1.8)

with ρ and v respectively the traffic density and velocity, V (ρ) the equilibrium

velocity and P (ρ) a pressure term.

• Magneto-hydrodynamic (MHD) systems as plasma can be modelled by

∂t




ρ

ρu

B

E




+ ∂x




ρu

ρuu + I((p+ 1
2
B2)−BB)

uB−Bu

(E + p+ 1
2
B2)u−B(u ·B)




= 0 (6.1.9)

• Acoustic propagation in an heterogeneous medium verifies

∂tp(x, t) +K(x)∂xu(x, t) = 0

ρ(x)∂tu(x, t) + ∂xp(x, t) = 0
(6.1.10)

with ρ the density, K the bulk modulus, u the velocity and p the pressure.

• The kinetic formulation of chromatography systems for Langmuir isotherms writes

[James, Peng & Perthame, 1995]

∂tui + ∂x
kiui

D
= 0 (6.1.11)

with 1 ≤ i ≤ N , 0 < k1 < ... < kN and D = 1 + u1 + ...+ uN .

• The dynamics of a nonlinear elastic string can be modelled by

∂t

(
u

v

)
+ ∂x

(
v

T

)
= 0 (6.1.12)

where u is tangent to the string, −v is the velocity of a string element and T is

the tension with the stress-stain relation of the form T = T(u) = T (|u|)u/|u|.
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Chapter 6. Optimal Control of Distributed Conservation Laws

6.2 The general adjoint-based optimization method

The optimal control theory of partial differential equations was initiated in the early 70’s

by Pierre Louis Lions with his seminal book [Lions, 1971]. The proposed approached

consists in computing the necessary conditions of optimality in the form of the system

equation, an adjoint equation of the same kind and a vanishing first variation condition.

This analytic approach that was successfully applied to linear elliptic, parabolic and

second order hyperbolic equations can be extended to nonlinear systems using gradient-

based recursive algorithms. An abondent literature is available on this method with

applications in airfoil design ([Jameson, 1995], [Jameson, 2003], [Jameson, Martinelli &

Pierce, 1998]), fluid steering ([Bewley, Temam & Ziane, 2000], [Hinze & Kunisch, 2001],

[Collis, Ghayour, Heinkenschloss, Ulbrichf & Ulbrich, 2002], [Ghattas & Bark, 1997]),

gaz steering [Giles & Pierce, 2001], control of water wave ([Sanders & Katopodes, 2000],

[Chen & Georges, 1999]), air traffic control ([Bayen, Raffard & Tomlin, 2004]) and many

others. We present in this section an overview of the adjoint-based optimization method

and refer the reader to the appendix for the notations and the notions of functional

analysis.

Let consider the following abstract Banach space optimization problem

Min
y∈Y

Jobs(y)

Subj. to





C(y, u) = 0

u ∈ Uad

(6.2.1)

where Jobs(y) is the cost function, C(y, u) is the implicit dynamical system equation, y

is the system state living in Y and u is the control variable living in the constrained set

Uad ⊂ U . The constrained set Uad is assumed to be a convex and to be defined by a set

of inequalities fi(u) ≥ 0 with i = 1, ..., Ni.

The constraint Uad is classically handled using a barrier technique [Boyd & Vanden-

berghe, 2004] that moves the constraint to the objective function at the cost of requiring

some iterations to find the solution of the original problem. Following this approach, let

consider the new optimization problem

Min
y∈Y
u∈U

J (y, u)

Subj. to C(y, u) = 0

(6.2.2)

where J (y, u) = Jobs(y) + Jbar(u) is the generalized cost function and u ∈ U is now

free. In the barrier technique, the inequalities fi(u) ≥ 0 are replaced by the terms
1
M

∫
log(fi(u)) included in Jbar(u) to ensure that u ∈ Uad. Then, solving (6.2.2) for

different values of M as M →∞ leads to the solution of the original problem (6.2.1).

We assume here the existence of all the manipulated mathematical objects, a more

rigorous approach being followed later in the applications of interest. Assuming that
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Chapter 6. Optimal Control of Distributed Conservation Laws

there exists ȳ and ū such that C(ȳ, ū) = 0, that C is continuously Fréchet differentiable

in neighborhoods of ȳ and ū and that DyC[ȳ, ū] is continuously invertible, the implicit

function theorem states that y = y(u) locally. Moreover, the sensitivity operator Duy[ū]

is the unique solution of

DyC[y(ū), ū] ◦Duy[ū] +DuC[y(ū), ū] = 0 (6.2.3)

Under a uniqueness assumption of y with respect to u, which is given by the wellposedness

of the system equation C(y, u) = 0, Problem (6.2.2) can be replaced by the equivalent

reduced problem

Min
u∈U

Jred(u) , J (y(u), u)

Assuming Jred(u) is Fréchet differentiable, the necessary conditions for (y∗, u∗) to be

optimal are {
C(y∗, u∗) = 0

DuJred[u
∗] = 0

(6.2.4)

with 0 ∈ L(U) the null operator. The Chain rule then gives

〈DuJred[ū], ũ〉U∗,U = 〈DuJ [ȳ, ū], ũ〉U∗,U + 〈DyJ [ȳ, ū], Duy[ū](ũ)〉Y∗,Y
with Duy[ū] ∈ L(U ,Y) the solution to the sensitivity equation (6.2.3). Using its adjoint

Duy[ū]
?, we obtain

〈DuJred[ū], ũ〉U∗,U = 〈DuJ [ȳ, ū], ũ〉U∗,U + 〈Duy[ū]
? ◦DyJ [ȳ, ū], ũ〉U∗,U

From Equation (6.2.3), we deduce that

Duy[ū]
? = −DuC[ȳ, ū]? ◦

(
DyC[ȳ, ū]?

)−1

leading to the gradient formula

DuJred[ū] = DuJ [ȳ, ū]−DuC[ȳ, ū]? ◦DyC[ȳ, ū]−? ◦DyJ [ȳ, ū]

To simplify the computation, the adjoint variable λ = −DyC[ȳ, ū]−? ◦DyJ [ȳ, ū] is intro-

duced, splitting the derivative computation in two steps

DyC[ȳ, ū]?λ = −DyJ [ȳ, ū] (6.2.5)

DuJred[ū] = DuC[ȳ, ū]?λ+DuJ [ȳ, ū] (6.2.6)

and giving an alternative to (6.2.4). Indeed, the necessary conditions for (y∗, u∗) to be

optimal is that there exists an adjoint variable λ∗ such that




C(y∗, u∗) = 0 (SE)

DyC[y∗, u∗]?λ∗ = −DyJ [y∗, u∗] (AE)

DuC[y∗, u∗]?λ∗ +DuJ [y∗, u∗] = 0 (DE)

(6.2.7)

where SE stands for State Equation, AE for Adjoint Equation and DE for Decision

Equation. Solving the optimality system (6.2.7) analytically is in general hopeless and
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Chapter 6. Optimal Control of Distributed Conservation Laws

the alternative is to develop an iterative gradient-based method that convergences to u∗.

From the Riesz representation theorem, if U is an Hilbert space, the gradient ∇uJred[u]

can be identified with the Fréchet derivative DuJred[u] given in (6.2.6). Nevertheless, as

the gradient expression depends on the definition of the inner product in general, the

inner product definition can be viewed as a design parameter. The adjoint method can

thus be used to compute the gradient ∇uJred[u] of the cost functional with reasonable

effort. Moreover, it can be shown that the adjoint variable λ corresponds to the Lagrange

multiplier of the optimization problem.

If infinite dimensional computations were possible, Algorithm 2 could be used to solve

(6.2.2) iteratively. Nevertheless, as the computations in Y , U and Y ∗ cannot be done

by a computer, numerical approximations are unavoidable. Note that this method only

provides a local minimum in general and may fail to converge if Uad is not compact.

Algorithm 2 General steepest descent algorithm with barrier iterations.
Require: u := uinit ∈ Uad, M := Minit > 0, εi > 0, εo > 0, ∆M > 0

while Jbar(u)/Jobs(ρ) > εo do

while ‖∇uJred‖ > εi do

Compute y := y(u), λ := λ(y)

Update u := u− t∇uJred, t ∈ (0, 1) such that u ∈ Uad

end while

M := M.∆M

end while

6.3 Preliminaries

The main technical ingredients of the adjoint method are the linearization of the system

dynamics and the integrations by parts used to compute the adjoint operator. Due

to the irregularity of the flows generated by conservation laws, these equations cannot

be linearized in the classical sense in general. The next section relates the different

solutions proposed in the mathematical community to get around this complication.

Next, we provide some generalizations of the integration by parts for piecewise-C 1 and

BV fields. These formula are restricted to R2 as 1-dimensional conservation laws will be

treated only.

6.3.1 Linearization of conservation laws

6.3.2 Integration by parts for piecewise-C1 fields

As shown in [Dafermos, 1977b] using the method of Generalized Characteristics, the flow

generated by conservation laws can be considered to be piecewise-C1 practically. Though

143

te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7



Chapter 6. Optimal Control of Distributed Conservation Laws

not suited for the wellposedness analysis of such equations, the following integration by

parts formula is given for this functional space.

Theorem 6.3.1 (Integration by parts for piecewise-C1 fields in R2) Let Ω ⊂ R2

with components (x, t) be an open and bounded domain with Lipschitz boundary ∂Ω and

let u : Ω→ R2 be piecewise-C1 with singularities in both components occurring along Ns

continuously differentiable curves Γi ⊂ Ω parameterized by Γi = {(x, t) : x = si(t), t ∈
[tIi , t

F
i ]}. With u = (u1, u2), φ ∈ C1(R2) and ν the outward normal to ∂Ω, the following

integration by parts formula applies
∫

Ω

u · ∇φ dL2 = −
∫

Ω\∪iΓi
φ divu dL2 +

∫

∂Ω

u · ν φ dH1

+
Ns∑

i=1

∫ tFi

tIi

ṡi(t)[u2φ]|x=si(t)
− [u1φ]|x=si(t)

dt (6.3.1)

where [ξ]|x=si(t)
= limx↓si(t) ξ − limx↑si(t) is the jump in ξ at (si(t), t) ∈ Γi.

Proof. Let first decompose Ω into N distinct subsets Ωj with boundaries ∂Ωj such that

the restrictions of u to Ωj are C1. As the Lebesgue measure is unchanged when the

integration domain is modified by a set of measure 0, we can write

∫

Ω

u · ∇φ dL2 =
N∑

j=1

∫

Ωj

u · ∇φ dL2

Applying a standard integration by parts on Ωj gives
∫

Ωj

u · ∇φ dL2 = −
∫

Ωj

φ divu dL2 +

∫

∂Ωj

u · νj φ dH1

with νj the normal vector to ∂Ωj. The third term in the above equation have contribu-

tions coming either from a virtual boundary ∂Ωj where u is C1, a portion of ∂Ω or a

portion of a curve Γi. In the first case, the contributions annihilate when summing over

all Ωi. In the second case, the contribution writes simply
∫

∂Ωj∩∂Ω

u · ν φ dH1

The third case requires more analysis and is treated as follows. A tangent vector to Γi

being (ṡi(t) 1), a normal vector to Γi writes (−1 ṡi(t)). If this vector is an outward

normal to Ωj, the contribution is

∫

∂Ωj∩Γi

1√
1 + ṡi(t)2

(
−1

ṡi(t)

)
(
u φ
)+

dH1 =

∫ tFi

tIi

(
−1

ṡi(t)

)
(
u φ
)+

dt

with
(
u φ
)+

= limx↓si(t)
(
u φ
)
. If the vector (−1 ṡi(t)) is an inward normal to Ωj, then

the contribution is

∫

∂Ωj∩Γi

1√
1 + ṡi(t)2

(
−1

ṡi(t)

)
(
− u φ

)−
dH1 =

∫ tFi

tIi

(
−1

ṡi(t)

)
(
− u φ

)−
dt
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Chapter 6. Optimal Control of Distributed Conservation Laws

with
(
u φ
)−

= limx↑si(t)
(
u φ
)
.

Summing the contributions for all subsets Ωj gives the theorem. �

6.3.3 Integration by parts for BV fields

As the wellposedness of conservation laws ([Kružkov, 1970],[Bressan, Crasta & Piccoli,

2000]) was established in the space BV of functions with bounded variations, we propose

below a version of the integration by parts formula that can be used in the computation

of adjoint operators. This result is quite general as BV functions are differentiable in

essentially the weakest measure theoretic sense. We refer the reader to the appendix and

[Evans & Gariepy, 1991] for more details about this functional space.

Theorem 6.3.2 (Integration by parts for BV fields in Rn) Let Ω ⊂ Rn be open

and bounded with Lipschitz boundary ∂Ω and u ∈ BV (Ω,Rn). Then, with φ ∈ C1(Rn),

the following integration by parts formula applies

∫

Ω

u · ∇φ dLn = −
∫

Ω\∪iΓi
φ divu dLn +

∫

∂Ω

u · ν φ dHn−1 −
n∑

i=1

∫

Ω

φ d[Dxiui]s

where [Dxiui]s is the singular part associated to the scalar measure [Dxiui].

Proof. The Green-Gauss theorem (see appendix) states that,
∫

Ω

u divφ dLn = −
∫

Ω

φ · d[Du] +

∫

∂Ω

(φ · ν) Tu dHn−1

for all u ∈ BV (Ω) and φ ∈ C1(Rn,Rn) with T : BV (Ω) → L1(∂Ω,Hn−1) the trace

operator and [Du] the vector measure for the gradient of u. Let take u = (u1, ..., un)

with ui ∈ BV (Ω) and φ ∈ C1(Rn). Taking ψ = (0, ..., φ, ..., 0) with the ith component

being the only non vanishing entry, the Green-Gauss theorem gives
∫

Ω

ui divψ dLn =

∫

Ω

ui ∂xiφ dLn = −
∫

Ω

φ d[Dxiui] +

∫

∂Ω

(φ νi) Tui dHn−1

Repeating the same procedure for all i and summing give
∫

Ω

u · ∇φ dLn = −
∫

Ω

φ d[Divu] +

∫

∂Ω

Tu · ν φ dHn−1

where the measure [Divu] is given by

[Divu] =
n∑

i=1

[Dxiui] =
n∑

i=1

[Dxiui]ac +
n∑

i=1

[Dxiui]s

The fact that [Dxiui]ac = Ln � ∂xiui implies

∫

Ω

φ
n∑

i=1

d[Dxiui]ac =

∫

Ω\∪iΓi
φ

n∑

i=1

∂xiui dLn =

∫

Ω\∪iΓi
φ divu dLn
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Chapter 6. Optimal Control of Distributed Conservation Laws

leading to ∫

Ω

φ d[Divu] =

∫

Ω\∪iΓi
φ divu dLn +

n∑

i=1

∫

Ω

φ d[Dxiui]s

For notational purpose, omitting the trace operator when evaluating the boundary con-

ditions gives the theorem. �

We give below a version in R2 suitable for 1-dimensional conservation laws.

Theorem 6.3.3 (Integration by parts for BV fields in R2) Let Ω ⊂ R2 with com-

ponents (x, t) be open and bounded with Lipschitz boundary ∂Ω and let u = (u1, u2) ∈
BV (Ω,R2) have singularities along Ns Lipschitz curves Γi ⊂ Ω parameterized by

Γi = {(x, t) : x = si(t), t ∈ [tIi , t
F
i ]}. Then, with φ ∈ C1(R2) and ν the outward

normal to ∂Ω, the following integration by parts formula applies

∫

Ω

u · ∇φ dL2 = −
∫

Ω\∪iΓi
φ divu dL2 +

∫

∂Ω

u · ν φ dH1

+
Ns∑

i=1

∫ tFi

tIi

ṡi(t)[u2φ]|x=si(t)
− [u1φ]|x=si(t)

dt (6.3.2)

Proof. A structural property of BV functions [DiPerna, 1975; DiPerna, 1979] is that,

if u ∈ BV (Ω), then the domain Ω ∈ R2 is a disjoint union of

• an open set A of points of approximate continuity, i.e.

x ∈ A ⇔ ∃ ū ∈ R : lim
r→0

1

r2

∫

B(x,r)

|u(y)− ū|dy = 0

• a closed set Γ, which is an at most countable union of Lipschitz surfaces of dimen-

sion n−1, of points of approximate jump discontinuity with distinguished direction

ν, i.e.

x ∈ Γ ⇔ ∃ ū− 6= ū+ : lim
r→0

1

r2

∫

B(x,r)∩{y:(y−x)·±ν≥0}
|u(y)− ū±|dy = 0

• and a closed set I with vanishing H1 measure of irregular points so that Ω =

A ∪ Γ ∪ I.

This structure enables the disjoint decomposition Ω =
⋃N

j=1 Ωj where u is continuous on

all Ωj, implying [Dxiui]s = 0 for all i over all Ωj. The remaining of the proof follows the

piecewise-C1 case using the trace operator and noting that the set I is never taken into

account as it has vanishing H1 measure. �

From the above theorems, BV fields are very similar to piecewise-C1 fields when

applying integrations by parts. For this reason, piecewise-C1 functions and measure

theoretically piecewise-C1 measures will be treated similarly throughout the book.
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Chapter 6. Optimal Control of Distributed Conservation Laws

6.4 Optimal control of scalar conservation laws

6.4.1 Problem formulation

In this section, we consider the class of 1-dimensional scalar conservation laws on Ω =

(0, L)× (0, T ) where x ∈ (0, L) is a bounded spacial domain and t ∈ (0, T ) a finite time

horizon. They take the form





∂ty + ∂xf(y) = g(x, y, u)

y(x, t = 0) = yI(x)

y(0, t) = y0(t) and y(L, t) = yL(t)

(6.4.1)

where y(x, t) ∈ BV (Ω) is the system state, u(t) ∈ U is a finite dimensional control

variable, f : R→ R a smooth flux function and g : R×BV (Ω)×U a source term. Note

that we restrict to problems where the control affects the system evolution through the

source term only. We recall that y may have Ns curves of discontinuity parameterized

by Γi = {(x, t) : x = si(t), t ∈ [tIi , t
F
i ]} where s(t) = (s1(t), ..., sNs(t)) is the vector of

shock locations at time t.

Coming back the notations adopted in section 6.2 dealing with the general adjoint

method, Equation (6.4.1) corresponds to the operator

C : Y × U →M

C(y, u) = ∂ty + ∂xf(y)− g(x, y, u)

with

Y = {y ∈ BV (Ω) : y(x, t = 0) = yI(x), y(0, t) = y0(t) and y(L, t) = yL(t)}

andM the space of signed Radon measures.

The class of optimal control problems we are considering is

Min
yI ,u

J (y, s, u) = Jobs(y) + Js(s) + Jbar(u)

=
∫

Ω
P(y(x, t)) dxdt+

∑Ns
i=1

∫ T

ti
Qi(si(t)) dt+

∫ T

0
R(u(t)) dt

Subj. to





∂ty + ∂xf(y) = g(x, y, u)

y(x, t = 0) = yI(x)

y(0, t) = y0(t) and y(L, t) = yL(t)

yI ∈ BV (R) and u ∈ Uad

(6.4.2)

where Jobs(y) weights the value of the distributed state y, Js(s) weights the shock loca-

tions s and Jbar(u) weights the control variable u = (u1, ..., uNu). In (6.4.2), the decision

variables are the initial condition yI and the control variable u present in the source term,

allowing to treat control and estimation problems in a unified way. Convex constraints
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Chapter 6. Optimal Control of Distributed Conservation Laws

on u are handled by introducing standard barrier terms [Boyd & Vandenberghe, 2004] in

Jbar(u) to restrict the control variable to the admissible subset Uad ⊂ U . A nonstandard

feature of Problem (6.4.2) is the possible weights on the shock locations to take into

account the shock sensitivities with respect to the decision variables.

6.4.2 Linearization of scalar conservation laws

This section is dedicated to the study of the first variation of (6.4.1). The equation

fulfilled by the perturbed initial condition, control and distributed state is given with

unchanged boundary conditions and an explicit formula is proposed for its measure

solution.

Theorem 6.4.1 (Linearization of scalar conservation laws) The linearized dy-

namics of (6.4.1) along the reference trajectory (ȳI , ū, ȳ) with perturbations (ỹI , ũ, ỹ)

is given by 



∂tỹ + ∂x

(
f ′(ȳ)ỹ

)
= ∂yg(x, ȳ, ū)ỹ + ∂ug(x, ȳ, ū)ũ

ỹ(0, x) = ỹI

ỹ(t, 0) = 0 and ỹ(t, L) = 0

(6.4.3)

interpreted in the weak sense as for (6.4.1).

Proof. The perturbed control u = ū + ũ and initial condition yI = ȳI + ỹI lead to a

perturbed state y = ȳ+ ỹ where (ū, ȳ) and (u, y) should verify (6.4.1). As (6.4.1) should

be interpreted in the weak sense, we have

∫

Ω

y∂tφ+ f(y)∂xφ+ g(x, y, u)φ dxdt+

∫

(0,L)

yIφ|t=0
dx = 0

+

∫

(0,T )

(
y0φ|x=0

− yLφ|x=L

)
dx = 0

for all φ ∈ C1(Ω) with φ|t=T = 0. Replacing u = ū + ũ and y = ȳ + ỹ in the above

equation, taking the Taylor expansion of f and g and removing the nonlinear terms that

vanish as ũ→ 0, ỹI → 0 and ỹ → 0, we obtain (6.4.3) in its weak form. �

remark 6.4.1 Note that it makes sense that the first variation of a nonlinear conser-

vation law is itself a conservation law as the conservation principle should always be

fulfilled. Nevertheless, care should be taken in the analysis of (6.4.3) as its coefficients

are discontinuous at the shock locations in the reference trajectory.

Linear transport equations such as (6.4.3) have been proven to have a unique measure

valued solution in [Poupaud & Rascle, 1997] without needing any entropy condition.

Other possible alternatives are the space of distributions of the Sobolev space H−1 as

solutions to (6.4.3) are composed to a piecewise-C1 field and singular measures centered

at every shock locations in the reference trajectory.
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Chapter 6. Optimal Control of Distributed Conservation Laws

Theorem 6.4.2 Equation (6.4.3) has a unique weak solution in the space of measures

or distributions given by

ỹ = ỹs +
Ns∑

i=1

κiδΓi (6.4.4)

with Γi = {(s̄i(t), t) : t ∈ [tIi , T ]} the Ns shock curves present in ȳ, ỹs the strong solution,

defined in Ω\ ∪i Γi, of the partial differential equation

(DE)

( IC )

(BC)





∂tỹs + ∂x

(
f ′(ȳ)ỹs

)
= ∂yg(x, ȳ, ū)ỹs + ∂ug(x, ȳ, ū)ũ

ỹs|t=0 = ỹI

ỹs|x=0 = 0 and ỹs|x=L = 0 when applicable

(6.4.5)

and κi, for i = {1, . . . , Ns}, the solutions of the ordinary differential equations

(DE)

( IC )

{
dκi
dt

= κi∂yg(x, ȳ, ū)|x=s̄i(t)
− [f ′(ȳ)ỹs]|x=s̄i(t)

+ ˙̄si[ỹs]|x=s̄i(t)

κi(t
I
i ) = 0

(6.4.6)

where κi is linked to the shock displacement s̃i by κi = −s̃i[ȳ]|x=s̄i(t)
.

Proof. The main ingredient of the proof is to use the integration by parts of theo-

rem 6.3.1 or theorem 6.3.3 that apply respectively to piecewise-C1 and BV fields. No

distinction is made here as they propose the same formula.

Assuming that ỹ is piecewise-C1, Equation (6.4.3) writes in the weak sense

∫

Ω

(
f ′(ȳ)ỹ

ỹ

)
· ∇φ dxdt+

∫

Ω

(
∂yg(x, ȳ, ū)ỹ + ∂ug(x, ȳ, ū)ũ

)
φ dxdt

+

∫

(0,L)

ỹIφ|t=0
dx = 0

with φ ∈ C1(Ω) and φ(x, t = T ) = 0. Applying an integration by parts gives

∫

Ω\∪iΓi

(
− ∂tỹ − ∂x

(
f ′(ȳ)ỹ

)
+ ∂yg(x, ȳ, ū)ỹ + ∂ug(x, ȳ, ū)ũ

)
φ dxdt

∫

(0,L)

(
ỹI − ỹ|t=0

)
φ|t=0

dx+
Ns∑

i=1

∫ T

tIi

(
˙̄s[ỹ]|x=s̄i(t)

− [f ′(ȳ)ỹ]|x=s̄i(t)

)
φ|x=s̄i(t)

dt

where we used the fact that φ is continuous and vanishes at t = T . If ỹ is the strong

solution of (6.4.3) in Ω\ ∪i Γi, the first and last terms are set to 0 and the only way

to cancel the remaining terms is to assume that ỹ is the superposition of a piecewise-

C1 field and some singular measures defined on the set ∪iΓi as in (6.4.4). The same

solution structure have been proposed in [Bardos & Pironneau, 2003] and [Godlewski &

Raviart, 1999] using different approaches.

Plugging this solution structure

ỹ(x, t) = ỹs(x, t) +
Ns∑

i=1

κi(t) δ(x = s̄i(t))
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Chapter 6. Optimal Control of Distributed Conservation Laws

into the weak form of (6.4.3) and applying an integration by part on the piecewise-C1

field ỹs leads to

∫

Ω\∪iΓi

(
− ∂tỹs − ∂x

(
f ′(ȳ)ỹs

)
+ ∂yg(x, ȳ, ū)ỹs + ∂ug(x, ȳ, ū)ũ

)
φ dxdt

+

∫

(0,L)

(
ỹI−ỹs|t=0

)
φ|t=0

dx+
Ns∑

i=1

∫ T

tIi

(
˙̄s[ỹs]|x=s̄i(t)

−[f ′(ȳ)ỹs]|x=s̄i(t)

)
φ|x=s̄i(t)

dt

+

∫

Ω

Ns∑

i=1

κiδΓi
(
∂tφ+ f ′(ȳ)∂xφ+ ∂yg(x, ȳ, ū)φ

)
dxdt

Setting ỹs to be the strong solution of (6.4.3) in Ω\∪i Γi as in (6.4.5) set the first 2 terms

to 0. On the other hand, the last term can be rewritten as follows

∫

Ω

Ns∑

i=1

κiδΓi

(
∂tφ+ f ′(ȳ)∂xφ+ ∂yg(x, ȳ, ū)φ

)
dxdt = (6.4.7)

Ns∑

i=1

∫ T

tIi

κi

(
∂tφ+ f ′(ȳ)∂xφ+ ∂yg(x, ȳ, ū)φ

)
|x=s̄i(t)

dt = (6.4.8)

Ns∑

i=1

∫ T

tIi

κi

(
d

dt
φ|x=s̄i(t)

+ ∂yg(x, ȳ, ū)|x=s̄i(t)
φ|x=s̄i(t)

)
dt = (6.4.9)

Ns∑

i=1

∫ T

tIi

(
− dκi

dt
+ κi ∂yg(x, ȳ, ū)|x=s̄i(t)

)
φ|x=s̄i(t)

dt+ κi|
t=tI

i

φ|
x=s̄i(t

I
i

)
(6.4.10)

where the full derivative d
dt
φ|x=s̄i(t)

of φ along Γi is given by

d

dt
φ|x=s̄i(t)

= ∂tφ|x=s̄i(t)
+ f ′(ȳ)|x=s̄i(t)

∂xφ|x=s̄i(t)
= ∂tφ|x=s̄i(t)

+ ˙̄si∂xφ|x=s̄i(t)

If the pointwise values ȳ at x = s̄i(t) are not well defined a priori, the curves Γi constitute

regular discontinuities of the field f ′(ȳ) according to Filippov’s theory [Filippov, 1988].

As a consequence and following [Dafermos, 1977b], setting f ′(ȳ) = ˙̄si whenever x = s̄i(t)

enables to define such pointwise values while giving the same generalized characteristics

ξ(t), which are continuous curves solving ξ̇ = f ′(ȳ) and sliding along Γi when reached.

Adding all the terms defined on the curves Γi gives

Ns∑

i=1

∫ T

tIi

(
−dκi

dt
+κi∂yg(x, ȳ, ū)|x=s̄i(t)

+ ˙̄s[ỹs]|x=s̄i(t)
−[f ′(ȳ)ỹs]|x=s̄i(t)

)
φ|x=s̄i(t)

dt

+
Ns∑

i=1

κi|
t=tI

i

φ|
x=s̄i(t

I
i

)
= 0

which is verified by the set of ordinary differential equations (6.4.6).

The interpretation of the κi are as follows. Let consider without restriction a reference

solution of the form ȳ = ȳ1 + (ȳ2− ȳ1)H(x− s̄(t)) where ȳ1 and ȳ2 are two C1 functions
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Chapter 6. Optimal Control of Distributed Conservation Laws

and H(·) is the Heaviside distribution. A differentiation in the sense of distributions tells

that infinitesimal perturbations write

ỹ = ỹ1 + (ỹ2 − ỹ1)H(x− s̄(t))− s̃(ȳ2 − ȳ1)δ(x− s̄(t))

with s̃i the infinitesimal discontinuity displacement. We conclude that the singular part

of ỹ is defined by κi = −s̃i[ȳ]|x=s̄i(t)
, thus informing on the shock sensitivities. �

The following important remarks should be made here.

remark 6.4.2 For practical purpose, the solution of (6.4.5) should be computed first,

for instance using the method of characteristics or any suited numerical scheme as it is

interpreted in the strong sense in Ω\(∪iΓi). Then, the κi are deduced from (6.4.6) using

the solution ỹs computed in the previous step.

remark 6.4.3 Even if (6.4.3) has a unique solution, ȳ ∈ BV (Ω) whereas ỹ ∈M. As a

consequence, y = ȳ + ỹ is not necessarily in BV (Ω), in particular if shocks are present

in ȳ. This fact prevents Equation (6.4.3) to be called a linearization in the usual sense.

remark 6.4.4 The formula given in theorem 6.4.2 enables to recover the results proposed

in [Bardos & Pironneau, 2003] for the homogeneous burgers equation, i.e. f(y) = y2/2

and g(x, y, u) = 0, where yI is only allowed to vary in a parametric manner. Moreover,

it is coherent with the results presented in [Bouchut & James, 1998], [Bouchut & James,

1999] and [Godlewski & Raviart, 1999] as well.

6.4.3 Adjoint equation of scalar linear conservation laws

We now turn to the computation of the adjoint operator of (6.4.3), which is needed in

the adjoint method. To simplify the exposition, let set




α(x, t) = f ′(ȳ)

β(x, t) = ∂yg(x, ȳ, ū)

γ(x, t) = ∂ug(x, ȳ, ū)

(6.4.11)

underlining the fact that the coefficients involved in (6.4.3) are only space and time

varying constant fields, possibly discontinuous. With these notations, the linearized

dynamics rewrites




∂tỹs + ∂xα(x, t)ỹs = β(x, t)ỹs + γ(x, t)ũ

ỹs(x, 0) = ỹI , ỹs(0, t) = 0 and ỹs(L, t) = 0 when applicable

κ̇i =β(s̄i(t), t)κi−[α(s̄i(t), t)ỹs(s̄i(t), t)]+ ˙̄si(t)[ỹs(s̄i(t), t)]

κi(0) = 0

(6.4.12)

The following theorem applies.
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Chapter 6. Optimal Control of Distributed Conservation Laws

Theorem 6.4.3 The adjoint equation of the linear transport equation (6.4.12) without

control action, i.e. ũ = 0, is given by

(DEODE)

(FCODE)

(SIC)

(DEPDE)

(FCPDE)

(BCPDE)





µ̇i = −β|x=s̄i(t)
µi

µ(T ) = 0

λ−|x=s̄i(t)
= λ+

|x=s̄i(t)
= µi

−∂tλ− α(x, t)∂xλ = β(x, t)λ

λ(x, T ) = 0

λ(0, t) = 0 and λ(L, t) = 0 when applicable

(6.4.13)

Proof. Defining two dual variables µ(t) = (µ1(t), . . . , µNs(t)) and λ(x, t), respectively

for κ(t) = (κ1(t), . . . , κNs(t)) and ỹs, the adjoint identity writes
〈
λ, (6.4.5)DE

〉
+
〈
µ, (6.4.6)DE

〉
=
〈
ADJ1(λ), ỹs

〉
+
〈
ADJ2(µ), κ

〉

with ADJ1(λ) and ADJ2(µ) two adjoint operators to be defined with possibly additional

constraints on λ and µ and 〈·, ·〉 the duality pairing. Using an integration by parts, we

get
∫

Ω

λ
(
∂tỹs + ∂x(αỹs)− βỹs

)
dxdt

+
Ns∑

i=1

∫ T

ti

µi

(
κ̇i−β|x=s̄i(t)

κi+[αỹs]|x=s̄i(t)
− ˙̄si(t)[ỹs]|x=s̄i(t)

)
dt =

∫

Ω\∪iΓi
ỹs

(
− ∂tλ− α∂xλ− βλ

)
dxdt+

∫ L

0

λỹs

∣∣T
0
dx+

∫ T

0

λα(x, t)ỹs

∣∣L
0
dt

+
Ns∑

i=1

∫ T

ti

(
−[λαỹs]|x=s̄i(t)

+ ˙̄si(t)[λỹs]|x=s̄i(t)

)
dt+

Ns∑

i=1

∫ T

ti

−κi

(
µ̇i+β|x=s̄i(t)

µi

)
dt

+
Ns∑

i=1

µiκi

∣∣T
ti

+
Ns∑

i=1

∫ T

ti

(
[µiαỹs]|x=s̄i(t)

− ˙̄si(t)[µiỹs]|x=s̄i(t)

)
dt

Rearranging and identifying gives the theorem. �

remark 6.4.5 In the adjoint equation (6.4.13), (DEODE) and (FCODE) are respectively

the dynamical equation and the final condition associated to the ordinary differential

equations, (DEPDE), (FCPDE) and (BCPDE) are respectively the dynamical equation, the

final condition and the boundary conditions associated to the partial differential equation

and (SIC) are the shock interface conditions that link the two dynamical equations.

remark 6.4.6 The reverse initial boundary value problem (6.4.13) is well posed as

boundary data on ∂Ω and inside Ω are only prescribed when characteristics enter the

domain or leave shock curves.

remark 6.4.7 For practical purposes, (DEODE) should be solved first with final condition

(FCODE). Then, the shock interface condition (SIC) provide additional boundary data

along with (FCPDE) and (BCPDE) to solve (DEPDE).
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Chapter 6. Optimal Control of Distributed Conservation Laws

6.4.4 Adjoint-based gradient evaluation for scalar equations

The following theorem applies to evaluate gradients of the cost functional involved in

optimal control problems such as (6.4.2).

Theorem 6.4.4 The gradients of J (y, s, u) in (6.4.2) with respect to the decision vari-

ables u and yI in problem and along the reference trajectory (ȳ, ū) are given by

∇uJ = R′(ū) +

∫ L

0

γ(x, t)λ(x, t)dx (6.4.14)

∇yIJ = λ(x, 0) (6.4.15)

with λ the solution of

(DEODE)

(FCODE)

(SIC)

(DEPDE)

(FCPDE)

(BCPDE)





µ̇i = −β|x=s̄i(t)
µi +

Q′i(s̄i)
[ȳ]|x=s̄i(t)

µ(T ) = 0

λ−|x=s̄i(t)
= λ+

|x=s̄i(t)
= µi

−∂tλ− α(x, t)∂xλ = β(x, t)λ+ P ′(ȳ)

λ(x, T ) = 0

λ(0, t) = 0 and λ(L, t) = 0 when applicable

(6.4.16)

Proof. The proof is very similar to the one used to compute the adjoint operator of

scalar linear conservation laws.

On one hand, the first variation of J (y, s, u) around the reference trajectory (ȳ, s̄, ū)

and with perturbations (ỹ, s̃, ũ) is

J̃ =
∫
Ω
P ′(ȳ)ỹ +

∑Ns
i=1

∫ T

ti
Q′

i(s̄i)s̃i +
∫ T

0
R′(ū)ũ

=
∫
Ω
P ′(ȳ)ỹ −∑Ns

i=1

∫ T

ti
Q′

i(s̄i)
κi

[ȳ]|Γi
+
∫ T

0
R′(ū)ũ

(6.4.17)

One the other hand, dual calculus using integration by parts gives
∫

Ω

λ
(
∂tỹs + ∂x(αỹs)− βỹs − γũ

)
dxdt

+
Ns∑

i=1

∫ T

ti

µi

(
κ̇i−β|x=s̄i(t)

κi+[αỹs]|x=s̄i(t)
− ˙̄si(t)[ỹs]|x=s̄i(t)

)
dt =

∫

Ω\ ∪i Γi

ỹs

(
−∂tλ−α∂xλ−βλ

)
︸ ︷︷ ︸ dxdt−

∫

Ω

γλũ dxdt+

∫ L

0

λỹs

∣∣T
0
dx+

∫ T

0

λα(x, t)ỹs

∣∣L
0
dt

+
Ns∑

i=1

∫ T

ti

(
−[λαỹs]|x=s̄i(t)

+ ˙̄si(t)[λỹs]|x=s̄i(t)

)
dt+

Ns∑

i=1

∫ T

ti
−κi

(
µ̇i+β|x=s̄i(t)

µi

)

︸ ︷︷ ︸
dt

+
Ns∑

i=1

µiκi

∣∣T
ti

+
Ns∑

i=1

∫ T

ti

(
[µiαỹs]|x=s̄i(t)

− ˙̄si(t)[µiỹs]|x=s̄i(t)

)
dt = 0
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Chapter 6. Optimal Control of Distributed Conservation Laws

where the above equation vanished as ỹs and κi satisfy the linearized dynamics given by

(6.4.5) and (6.4.6). Identifying the terms underlined by brackets to the ones in Equation

(6.4.17) leads to the theorem. �

As the original optimal control problem is nonlinear, we propose to use algorithm

3 to seek iteratively for a local minimum of (6.4.2). When barrier functions [Boyd &

Vandenberghe, 2004] are used in (6.4.2), an additional loop should be added in algorithm

3 to iterate on the barrier parameter.

Algorithm 3 General steepest descent algorithm with barrier iterations.

Require: ū := uinit ∈ Uad, ȳI = yinit
I , ε > 0

while |∇uJ +∇yIJ | > ε do

Solve for ȳ with ū and ȳI using (6.4.1)

Compute µi from (DEODE) and (DEODE) in (6.4.16)

Compute λ from (DEPDE), (FCPDE), (BCPDE) and (SIC) in (6.4.16)

Compute ũ = −∇uJ and ỹI = −∇yIJ from (6.4.14) and (6.4.15)

Update ū := ū+ t1ũ and ȳI := ȳI + t2ỹI with t1 ∈ (0, 1) such that u ∈ Uad

end while

As the solution of (6.4.1) and the evaluations of ∇uJ and ∇yIJ in theorem 6.4.3

require to solve some partial and ordinary differential equations, numerical integration

methods are unavoidable. We propose to use the 1st order Godunov scheme [LeVeque,

1992] for conservation laws, the 1st order upwind-downwind method [LeVeque, 1992] for

the adjoint equation and the simple euler scheme for the ordinary differential equations.

As the number Ns of shocks in the reference trajectory cannot be determined beforehand

and may vary during the interactive process of gradient descent used in algorithm 3,

a numerical shock detection procedure should be used. With convex or concave flux

function, which is the case in traffic flow models for example, the shocks present in the

solution always have the same jump sign, i.e. [y] ≥ 0 and [y] ≤ 0 respectively for the

concave and convex cases. As a consequence, a large gradient seeking method is enough

as large gradients in the solution will develop in shock making this approach robust

enough.

An interesting interpretation, called here the marginal cost interpretation, of the

adjoint based gradient evaluation is the following. P ′(ȳ) and Q′(s̄i) are used to trigger

the adjoint variables where improvements are possible in the cost function. Then, the

adjoint variables are transported backwards in time with the adjoint equation until

reaching a region where some decision variables are available. In this interpretation,

the fact that µ(t = T ) = 0, λ(x, T ) = 0, λ(0, t) = 0 and λ(L, t) = 0 make sense as no

improvement may come from the final condition of the fixed boundary value. Moreover,

the coupling between µ and λ given by (SIC) in (6.4.16) enables the shock sensitivity to

be incorporated in the gradient computation. Such coupling is thus necessary to take

into account the influence of the decision variables on the shock locations.
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Chapter 6. Optimal Control of Distributed Conservation Laws

6.4.5 Simulation experiments with the Burgers equation

The Burgers equation is often used as a basic example when dealing with scalar conser-

vation laws as it is simple and contains all the properties of this class of equations such

as shocks, rarefaction waves and weak formulations of the boundary conditions.

Solution of the linearized Burgers equation

Let consider for illustration purpose the Burgers equation given by





∂ty + ∂x

(
y2

2

)
= 0 in (0, 1)× (0, 1)

y(x, t = 0) = yI(x) in (0, 1)

y(0, t) = y0(x) and y(L, t) = yL(x) in (0, 1)

(6.4.18)

Following (6.4.3), its first variation is





∂tỹ + ∂x (ȳỹ) = 0 in (0, 1)× (0, 1)

ỹ(x, t = 0) = ỹI(x) in (0, 1)

ỹ(0, t) = 0 and ỹ(L, t) = 0 in (0, 1)

(6.4.19)

whose solution, according to (6.4.4), (6.4.5) and (6.4.6) can be written

ỹ = ỹs +
∑

κiδΓi (6.4.20)

with





∂tỹs + ∂x (ȳỹs) = 0 in (0, 1)× (0, 1)\ ∪i Γi

ỹs(x, t = 0) = ỹI(x) in (0, 1)

ỹs(0, t) = 0 and ỹs(L, t) = 0 in (0, 1)

κ̇i = −[ȳỹs] + ˙̄s[ỹs] in (tIi , 1)

κi(0) = 0

(6.4.21)

which have some similarities with the results presented in [Bardos & Pironneau, 2003].

To illustrate the behavior of the linearized Burgers equation with a single shock,

let consider the following initial and boundary data for the reference and perturbed

trajectories 



yI = 0.5− 0.7 H(x− 0.5) + 0.4 sin(2πx)

y0(t) = 0.5 and yL(t) = −0.2

ỹI = 0.1 sin(πx)

(6.4.22)

Results are given in the Figures 6.1, 6.2 and 6.3 where we note the good matching

(Figure 6.3) between the computed and measured values of κ which is linked to the shock

displacement by κ = −s̃ [y]x=s(t).
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Chapter 6. Optimal Control of Distributed Conservation Laws

Figure 6.1: Left: solution of the homogeneous Burgers equation (6.4.18). Right: differ-

ence between the perturbed y(ȳI + ỹI) and unperturbed y(ȳI) solutions.
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Figure 6.2: Left: regular part ỹs. Right: 1st order approximation with ỹs only.

Optimal control of the Burgers equation

Let consider the source controlled Burgers equation





∂ty + ∂x

(
y2

2

)
= δ̃ 1

3
u in (0, 1)× (0, 1)

y(x, t = 0) = yI(x) in (0, 1)

y(0, t) = y0(x) and y(L, t) = yL(x) in (0, 1)

(6.4.23)

where δ̃ 1
3

is the following approximation of the Dirac measure

δ̃ 1
3
(x) =

1

π

ε

ε2 + (x− 1/3)2
∈ C∞ , ε > 0 (6.4.24)

Let consider the following optimal control problem

Min
y

∫ 1

0

∫ 1

0
1
2
y2dxdt+

Ns∑
i=1

∫ T

ti

1
2
(si(t)−L)2dt+ 1

M

∫ T

0
ln((u−umin)(umax−u))dt

Subj. to (6.4.23)

(6.4.25)
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Chapter 6. Optimal Control of Distributed Conservation Laws
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Kappa computed

Figure 6.3: Comparaison of the measured and computed values of κ.

where the first term of the cost functional is used to steer the state to 0, the second to

move possible shocks as forward as possible and the last one to force the control variable

u to take its values in (umin, umax) with M the barrier parameter.

With the notations introduced in the last section where (ȳI , ȳ, ū) is a reference tra-

jectory for (6.4.23), we have





α = f ′(ȳ) = ȳ

β = ∂yg = 0

γ = ∂ug = δ̃ 1
3

P ′(ȳ) = ȳ

Q′
i(s̄i) = s̄i(t)− L
R′(ū) = − 1

M

(
1

ū−umin
− 1

umax−ū

)

which leads, following (6.4.16), to the adjoint equation





µ̇i = s̄i(t)−L
[ȳ]|x=s̄i(t)

µ(T ) = 0

λ−(s̄i(t), t) = λ+(s̄i(t), t) = µi

−∂tλ− ȳ∂xλ = ȳ

λ(x, T ) = 0

λ(0, t) = 0 and λ(L, t) = 0 when applicable

(6.4.26)
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Chapter 6. Optimal Control of Distributed Conservation Laws

and, following (6.4.14) and (6.4.15), to the gradient formulae

∇uJ =

∫ L

0

δ̃ 1
3
(x, t)λ(x, t) dx− 1

M

(
1

ū− umin

− 1

umax − ū

)

∇yIJ = λ(x, 0)

As a numerical example, we consider the same initial and boundary data as is (6.4.22)

where the initial condition is assumed to be fixed, i.e. ỹI = 0 and the control variable

is initially zero. The results are as follow. Before the optimization, u = 0 and the

solution is depicted in Figure 6.1. After the first gradient iteration, the cost is reduced

from 0.7203 to 0.6569 and Figure 6.4 shows the corresponding adjoint variable λ and

new control variable u. Figure 6.5 shows the new solution with the new control and the

difference between the updated and the non-updated states after one gradient iteration.

The spike that can be observed on (6.5) is a numerical approximation of the singular

measure present in the solution of the linearized dynamics.

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

Figure 6.4: Left: solution of the distributed adjoint variable λ with reference trajectory

computed from data (6.4.22). Right: new control after one gradient iteration.

Figure 6.5: Left: updated state. Right: difference between the updated and the non-

updated states.
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Chapter 6. Optimal Control of Distributed Conservation Laws

6.5 Optimal control of systems of conservation laws

We follow in this section the same program as in section 6.4 but for systems of conserva-

tion laws. As could be expected, the results are less powerful in this case as the available

knowledge is thinner for systems.

6.5.1 Problem formulation

We consider in this section systems of m conservation laws on a bounded domain Ω =

(0, L)× (0, T ) taking the form





∂ty + ∂xf(y) = g(x,y,u)

y(x, t = 0) = yI(x)

y(0, t) = y0(t) and y(L, t) = yL(t)

(6.5.1)

with y ∈ BV (Ω,Rm) the system state, u ∈ U the control signal, f a smooth vector flux

function and g a vector source term. As in the scalar case, only control variables in the

source term are considered.

Based (6.5.1), the class of optimal control problems we are considering is

Min
yI ,u

J (y,u) = Jobs(y) + Jbar(u)

=
∫

Ω
P(y) dxdt+

∫ T

0
R(u(t)) dt

Subj. to





∂ty + ∂xf(y) = g(x,y,u)

y(x, t = 0) = yI(x)

y(0, t) = y0(t) and y(L, t) = yL(t)

yI ∈ BV (R,Rm) and u ∈ Uad

(6.5.2)

where Jobs(y) define the objective on the distributed state variable y and Jbar(u) embed

some barrier functions [Boyd & Vandenberghe, 2004] to ensure u ∈ Uad.

The program to solve Problem (6.5.2) is similar to the one followed in section 6.4.

First, we perform a linearization of (6.5.2). Then, we compute the adjoint system, taking

into account the piecewise-C1 structure of the solution. Finally, the adjoint identity is

used to evaluate gradients of the cost functional J (y,u) with respect to the decision

variables yI and u. Note that the shock locations are not taken into account in the

objective function of (6.5.2) contrary to the scalar case.
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Chapter 6. Optimal Control of Distributed Conservation Laws

6.5.2 First variation of systems of conservation laws

Theorem 6.5.1 (Linearization of systems of conservation laws) The linearized

dynamics of the system of conservation laws (6.5.1) is given by





∂tỹ + ∂x (Df(ȳ)ỹ) = Dyg(x, ȳ, ū)ỹ +Dug(x, ȳ, ū)ũ

ỹ(0, x) = 0

ỹ(0, t) = 0 and ỹ(L, t) = 0

(6.5.3)

and is wellposed.

Proof. As in the scalar case, the perturbed variables u = ū + ũ and y = ȳ + ỹ are

plugged in the weak formulation of the conservation law (6.5.1) and the nonlinear terms

are removed after some Taylor expansions. The wellposedness of (6.5.3) is established

in [Poupaud & Rascle, 1997] and its solution may have singular measures where the

reference trajectory ȳ have discontinuities. �

remark 6.5.1 The homogeneous boundary conditions in (6.5.3) apply only when nec-

essary, i.e. when there are some incoming characteristics computed form the eigen-

value decomposition of Df(ȳ) as in classical linear conservation laws [Godlewski &

Raviart, 1996].

6.5.3 Adjoint equation of system of linear conservation laws

Theorem 6.5.2 The adjoint equation of the linear system of transport equation (6.5.3)

without control action, i.e. ũ = 0, is given by




−∂tλ−Df(ȳ)T∂xλ = Dyg(ȳ, ū)Tλ

λ(x, T ) = 0

λ(0, t) = 0 and λ(L, t) = 0 when applicable

λ|x=s̄i(t)
= 0

(6.5.4)

Proof. The adjoint operator PDE?(λ) = 0 of (6.5.3) with λ the adjoint variable is com-

puted using the adjoint identity 〈λ,PDE(y)〉 = 〈PDE?(λ), y〉 where 〈·, ·〉 is the duality

pairing. Using several integration by parts for measure theoretically piecewise-C 1 field,

we get

〈λ, ∂tỹ + ∂x (Df(ȳ)ỹ)−Dyg(ȳ, ū)ỹ〉 =
〈
ỹ,−∂tλ−Df(ȳ)T∂xλ−Dyg(ȳ, ū)Tλ

〉
+
∫ L

0
λT ỹ

∣∣T
0
dx+

∫ T

0

λTDf(ȳ)ỹ
∣∣L
0
dt

︸ ︷︷ ︸
+
∑Ns

i=1

∫ T

tIi
ṡi

[
λT (ỹ −Df(ȳ)ỹ)

]
|x=si(t)

dt

(6.5.5)

Let call −∂tλ − Df(ȳ)T∂xλ = Dyg(ȳ, ū)Tλ the adjoint equation. To remove the

underbraced term in (6.5.5), the applicability of the boundary conditions should be
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Chapter 6. Optimal Control of Distributed Conservation Laws

studied both for the linearized dynamics (6.5.3) and the adjoint equation and we refer to

[Godlewski & Raviart, 1996] for further details on this topic. In non-conservative form,

these equations can be rewritten ∂tỹ +Df(ȳ)∂xỹ = Sy for the linearized dynamics and

∂τλ −Df(ȳ)T∂xλ = Sλ for the adjoint equation with Sy and Sλ some source terms and

τ = −t the reversed time. In any case, the source terms does not modify the applicability

of the boundary conditions and can be forgotten.

Let noteDf(ȳ) = TΛT−1 the eigenvalue decomposition ofDf(ȳ). The splitting of the

operator Λ = Λ− + Λ+ in its negative and positive eigenvalues tells which characteristic

variable can be assigned at the boundaries. Using this operator spitting, we can write

λTDf(ȳ)ỹ = λTTΛT−1ỹ = λTTΛ−T−1ỹ + λTTΛ+T−1ỹ

We only treat the case x = 0 here, the treatment of the other boundary being sim-

ilar. As homogeneous boundary conditions apply to the linearized equation, we have

Λ+T−1ỹ|x=0 = 0 where Λ+ selects the appropriate entering characteristic variables. The

remaining term for x = 0 in the underbraced term of (6.5.5) becomes

λ|x=0

TDf(ȳ)ỹ|x=0
= λ|x=0

TTΛ−T−1ỹ|x=0
= ỹ|x=0

TT−T Λ−T Tλ|x=0

Let note −Df(ȳ)T = PΠP−1. With appropriate eigenvalue ordering and eigenvector

normalization, we have Π = −Λ, implying Π− = Λ+, Π+ = Λ− and T T = P−1. Setting

homogeneous boundary conditions to the reversed time adjoint equation implies

Π+P−1λ|x=0 = Λ−T Tλ|x=0 = 0

and leads to λTDf(ȳ)ỹ = 0 at x = 0. The same procedure applies to x = L and

we conclude that homogeneous boundary conditions in the adjoint equation set the

underbraced term in (6.5.5) to 0. Moreover, this analysis shows that the subsets of

(0, T ) where the boundary conditions are active for the linearized and adjoint equations

are complementary.

To conclude the proof, we note that setting λ(x, T ) = 0 and λ(s̄i(t), t) = 0 along all

shock curves present in ȳ remove all the terms in the left hand side of (6.5.5) except the

adjoint equation. �

6.5.4 Adjoint-based gradient evaluation for systems

Theorem 6.5.3 The gradients of J (y,u) in (6.5.2) with respect to the decision vari-

ables yI and u and along the reference trajectory (ū, ȳ) are

∇uJ (ū, ȳ) = R′(ū) +Dus(ȳ,ū)?λ (6.5.6)

∇uIJ (ū, ȳ) = λ(x, 0) (6.5.7)

with the adjoint variable λ defined by




−∂tλ−Df(ȳ)T∂xλ = Dyg(ȳ, ū)Tλ+ g′(ȳ)

λ(x, T ) = 0

λ(0, t) = 0 and λ(L, t) = 0 when applicable

λ|x=s̄i(t)
= 0

(6.5.8)
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Chapter 6. Optimal Control of Distributed Conservation Laws

Proof. On one hand, the first variation of the cost functional in (6.5.2) writes

J̃ =

∫

Ω

P ′(ȳ) dxdt+

∫ T

0

R′(ū)ũ dt (6.5.9)

On the other hand, the adjoint identity applied to the linearized dynamics (6.5.3) with

control action ũ implies

∫

Ω

λ (∂tỹ + ∂x (Df(ȳ)ỹ)−Dyg(ȳ, ū)ỹ −Dug(ȳ, ū)ũ) dxdt =

∫

Ω

ỹ
(
−∂tλ−Df(ȳ)T∂xλ−Dyg(ȳ, ū)Tλ

)
dxdt−

∫ T

0

ũTDug(ȳ,ū)?λ dt

+

∫ L

0

λT ỹ
∣∣T
0
dx+

∫ T

0

λTDf(ȳ)ỹ
∣∣L
0
dt+

Ns∑

i=1

∫ T

tIi

ṡi

[
λT(ỹ−Df(ȳ)ỹ)

]
|
x = si(t)
dt = 0

Setting

−∂tλ−Df(ȳ)T∂xλ−Dyg(ȳ, ū)Tλ = P ′(ȳ)

with the same boundary conditions than the adjoint equation (6.5.4) and identifying

with J̃ in (6.5.9) gives the theorem. �

remark 6.5.2 In the gradient formula (6.5.6), Dug(ȳ,ū)? = Dug(ȳ,ū)T for smooth ma-

trices Dug(ȳ,ū). When Dirac distributions are present in Dug(ȳ,ū), then Dus(ȳ,ū)? is

the transpose of Dus(ȳ,ū) where Dirac distributions are replaced by pointwise evaluations.
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Pure mathematicians sometimes are satisfied with showing that the non-

existence of a solution implies a logical contradiction, while engineers might

consider a numerical result as the only reasonable goal. Such one sided

views seem to reflect human limitations rather than objective values. In itself

mathematics is an indivisible organism uniting theoretical contemplation and

active application.

Richard Courant (1888-1972),

German-American mathematician.

in Variational Methods for the solution of problems of equilibrium and

vibrations, Bulletin of American Mathematical Society, 49, 1943.
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Chapter 7

Optimal Control Applications in

Freeway Management

Three freeway management applications are discussed in this chapter, the ramp metering

problem, the missing data estimation problem and the origin-destination estimation

problem. The optimal control theory developed in the previous chapter is successively

applied to these 3 problems, showing the generality of the approach. Several simulation

experiments are provided to illustrate the effectiveness of the optimal control method

and analyse its limitations or drawbacks.

7.1 Practical considerations

Taking into account the real time constraint and the adaptation requirement of real

applications, the gradient evaluation methods proposed in (6.4) and (6.5) respectively

for scalar and system of nonlinear conservation laws can be used in at least two ways:

• Receding horizon: At time t, ∇uJ is used iteratively to find the local minimum

of the optimal control problem on the finite time horizon [t, t + T1]. Then the

optimal control strategy u∗ is applied in the time window [t, t+ T2] with T2 ≤ T1.

At time t+ T2, the same procedure is repeated.

• Instantaneous control: At time t, ∇uJ is computed for an horizon T and the

updated control u[t,t+T ] = u[t−T,t] − ∇uJ with respect to a first guess is applied

instantaneously.

Note that both of these methods are inherently open-loop in the control terminology.

Though receding horizon techniques may be used to emulate feedback, we prefer to use

these strategies for optimal trajectory generation and then use a feedback controller to

robustly track these references.

165

te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7



Chapter 7. Optimal Control Applications in Freeway Management

7.2 The ramp metering problem

Meaningful objectives in the design of ramp metering strategies are

• maximize the Vehicle-Miles-Travelled (VMT), i.e.

Min JVMT(φ) = −
∫ T

0

∫ L

0

φ(x, t) dxdt (7.2.1)

• minimize the Total-Travel-Time (TTT), i.e.

Min JTTT(ρ) =

∫ T

0

∫ L

0

ρ(x, t) dxdt (7.2.2)

In the ramp metering problem, the initial condition is assumed to be known and the only

decision variables are the metering rates ui, i = 1, ..., Nu that control the flow allowed to

enter the freeway at Nu on-ramps.

We propose below 3 control designs respectively for the LWR model, the Payne model

and the ARZ model, all of them using the VMT objective. In all cases, the metering

rates ui are constrained to be in the interval (0, 1), value 0 corresponding to a constant

red light, 1 to a constant green light and intermediate values to modulations of these 2

states. The constraint ui ∈ (0, 1) is handled by the classical barrier term

Jbar(u) = − 1

M

Nu∑

i=1

∫ T

0

ln
(
ui(1− ui)

)
dt (7.2.3)

whose an example is given in Figure 7.1 for several values of M .

Figure 7.1: Barrier term 1
M

ln
(
ui(1− ui)

)
with M = {1, 2, 10, 100}.

In the ramp metering application, the contributions of on/off-ramps are modelled by

a source term such that
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Chapter 7. Optimal Control Applications in Freeway Management

• on-ramp flows are proportional to metering rates ui,

• on-ramp flows are smoothly saturated by the main lane density,

• the density on the mainlane is always less than the maximal density ρm,

• off-ramp flows are modelled by a splitting ratio βi ∈ (0, 1).

To fulfil these requirements, the ith on-ramp flow φ̂i at x = x̂i is written

φ̂i(t) = ui(t) Ψi(ρ(x̂i, t)) (7.2.4)

with Ψi(·) a smooth saturation function, as the one depicted in Figure 7.2, that limits

the on-ramp flow for large mainlane densities. Some properties that should be fulfilled

by the map Ψi(·) are

• Ψi(ξ) = φ̄i for ξ ∈ (0, γ), where φ̄i is the maximal possible on-ramp flow,

• Ψ′
i(·) ≤ 0 as the allowed on-ramp flow decreases with the mainlane density,

• Ψi(ρm) = 0 as no vehicle is allowed to enter at maximal mainlane density.

ρ(t, x̂i)

Ψi(ρ(t, x̂i))

ρm

max ramp flow

0

unsaturated saturated

Figure 7.2: Smooth saturation at on-ramp i.

The jth off-ramp flow φ̌j at x = x̌j is written

φ̌j(t) = βj(t) φ(x̌j, t) (7.2.5)

with φ(x̌j, t) = Φ(ρ(x̌j, t)) is the case of the LWR model.

With Nu on-ramps and Nβ off-ramps, the density source term gρ writes

gρ(x, ρ, u) =
Nu∑

i=1

δx̂i(x) ui(t) Ψi(ρ(x, t))−
Nβ∑

j=1

δx̌j(x) βj φ(x, t) (7.2.6)

where δx̂i(x) and δx̌i(x) set the spacial influence of the on/off-ramps. The distributions

δx̂i and δx̌i can be considered either to be Dirac measures or smooth approximations of

them to avoid possible yet unresolved wellposedness issues for some models.
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Chapter 7. Optimal Control Applications in Freeway Management

7.2.1 With the LWR model

With the source term (7.2.6), the LWR model writes

∂tρ+ ∂xΦ(ρ) =
Nu∑

i=1

δx̂i(x) ui(t) Ψi(ρ(x, t))−
Nβ∑

j=1

δx̌j(x) βj Φ(ρ(x, t))

︸ ︷︷ ︸
g(x,ρ,u)

(7.2.7)

completed by the initial condition ρI(x) and the boundary signals ρ0(t) and ρL(t). To

apply the adjoint method described in the previous chapter to the VMT optimization

problem (7.2.1), the following derivatives, along the reference trajectory (ρ̄, ū), are needed

DρΦ(ρ) = Φ′(ρ)

Dρg[x, ρ̄, ū] =
Nu∑

i=1

δx̂i ūiΨ
′
i(ρ̄)−

Nβ∑

i=j

δx̌jβjΦ
′(ρ̄)

Dug[x, ρ̄, ū] =
(
δx̂1Ψ1(ρ̄), ..., δx̂Nu

ΨNu(ρ̄)
)

DρJ [ρ̄, ū] = DρJVMT[ρ̄] = −Φ′(ρ)

DuJ [ρ̄, ū] = DuJbar[ū] = − 1

M

(
1

ū1

− 1

1− ū1

, ...,
1

ūNu

− 1

1− ūNu

)

The gradient of the VMT objective (7.2.1) with the barrier term (7.2.3) is

∇uJ =




−Ψ1(ρ̄(·, x̂1)) λ(·, x̂1)− 1
M

(
1
ū1
− 1

1−ū1

)

...

−ΨNu(ρ̄(·, x̂Nu)) λ(·, x̂Nu)− 1
M

(
1

ūNu
− 1

1−ūNu

)


 (7.2.8)

where the adjoint variable λ is solution of the adjoint equation




−∂tλ− Φ′(ρ̄)∂xλ = Φ′(ρ̄) +
∑Nu

i=1 δx̂iūiΨ
′
i(ρ̄)λ−

∑Nw
i=1 δx̌iβiΦ

′(ρ̄)λ

λ(x, T ) = 0

λ(0, t) = 0 when Φ′(ρ̄(0, t)) < 0

λ(L, t) = 0 when Φ′(ρ̄(L, t)) > 0

λ|Γi
= 0 with Γi = {(x, t) : [ρ̄(x, t)] 6= 0}

(7.2.9)

For a practical implementation, the spacial domain is discretized in N cells of length

∆x and the time horizon discretized with period ∆t. The Godunov scheme can be used

to simulate the LWR model (7.2.7), the source term being integrated with a simple Euler

method. Concerning the adjoint equation, we propose the following backwards hybrid

upwind/downwind scheme [LeVeque, 1992]

λn−1
i = λn

i +
∆t

∆x
Φ′ (ρn

i )

{
λn

i − λn
i−1 if Φ′(ρn

i ) < 0

λn
i+1 − λn

i if Φ′(ρn
i ) > 0

+ ∆t
[
Φ′ (ρn

i ) + un
δ̂(i)

Ψ′
δ̂(i)

(ρn
i )λn

i − βn
δ̌(i)

Φ′(ρn
i )λn

i

]
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Chapter 7. Optimal Control Applications in Freeway Management

where δ̂ and δ̌ map cell indices to on/off-ramp indices when applicable. Both schemes

require ∆x/∆t > max |Φ′(ρ)| to have a stable convective part and a Runge-Kutta method

may be necessary to stabilize the source terms. With ι(i) the cell index corresponding

to the ith on-ramp, the numerical gradient for the VMT objective is evaluated as

(∇uiJ )n = −Ψi

(
ρn

ι(i)

)
λn

ι(i) − 1
M

(
1

un
ι(i)
− 1

1−un
ι(i)

)

We propose to include this gradient evaluation method in the steepest descent nu-

merical scheme presented in Algorithm 4, which solves (7.2.1) iteratively with the LWR

model (7.2.7) and the barrier function (7.2.3).

Algorithm 4 Steepest descent algorithm to solve the ramp metering problem with the

LWR model and constraints on the metering rate.

Require: ui := uinit
i ∈ (0, 1), M := Minit, εi, εo, ∆M

while Jbar(u)/Jobs(ρ) > εo do

while ‖∇uJ ‖ > εi do

Compute ρ from (7.2.7)

Compute λ from (7.2.9)

Compute ∇uiJ from (7.2.8)

Update ui := ui − t∇uiJaug, t ∈ (0, 1) such that u ∈ (0, 1)

end while

M := M.∆M

end while

We now give 2 simulation experiments that illustrate the effectiveness of the approach.

Let consider first the virtual network of 12 km depicted in Figure 7.3. A time horizon

Counting stations

u1

u2

u3

d1

Traffic light

Figure 7.3: Virtual freeway considered for illustration.

of 1.5 hours at the beginning of the afternoon rush hours is considered with real field

initial and boundary data courtesy of DDE Isère. The Greenshield model is used for

the flux function Φ(·) with parameters vf =109 km/h and ρm =75 veh/km obtained by

least square fitting using these data. Figure 7.7 shows the iterations of the observation

and augmented costs where the steps in J are due to the iterations in the barrier
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Chapter 7. Optimal Control Applications in Freeway Management

parameter M . An improvement of around 10 % is observed on Jobs which is relevant

for traffic management applications. Figure 7.5 shows the 3 optimal on-ramp flows and

the distributed flow improvement in the computational domain (0, L)× (0, T ). We note

that the metering rates are decreased when the afternoon congestion builds up. Finally,

Table 7.1 gives the simulation parameters and results.

simulation parameters

Number of space points 150 for 12 km

Number of time points 2700 for 1.5 h

Total number of points 675000

vf form least square fitting of ΦGS 109 km/h

ρm form least square fitting of ΦGS 75 veh/km

Optimization computational time 35 s

Number of outer iterates 12

Last relative Jobs variation 5.6695e-007

Last relative J variation -2.3012e-005

Last Jbar -0.4661

Last Jobs -1.1870e+005

Table 7.1: Simulation parameters.

In the second experiment, we consider a section of Grenoble (France) beltway as

depicted on Figure 7.6. with real field data courtesy of DDE Isère.

Figures 7.7 and 7.8 shows the optimization results for a time horizon of 1.5 hour at

the beginning of the afternoon rush hours. Again, the metering rates decrease (Figure

7.8) to cope with the congestion but as shown on Figure 7.7, the improvement is only of

few percents (between 1 % and 2 %) in that case.

From the above experiments, the following comments can be made

1. The proposed optimization method is effective as a decrease in the cost functional

is observed and the control variable is kept in its admissible set in both cases.

2. The improvement obtained by this method depends highly on the freeway state

before optimization. As notice in the second experiment, the improvement may

be small and no guarantee can be given on a lower bound of it. Nevertheless, this

shortcoming is not dependent on the method as a traffic state can be very close to

the optimal without performing any optimization.

3. A weakness of the proposed method is that it requires the knowledge of the initial

condition ρI and the boundary conditions ρup and ρdo, the optimum being possibly

quite sensitive to these partially unknown data. Receding horizon techniques may

help to avoid propagation of errors in the estimates of ρI , ρup and ρdo. In addition,

performing an a priori defined maximum number of steps in the gradient descent

may avoid over-optimization with erroneous data.
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−1.08

−1.06
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0 10 20 30 40 50 60 70
−4

−3.5

−3

−2.5
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−1
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Jobs

J
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Figure 7.4: Decreases int the costs Jobs and J .

φ̂1

φ̂3

φ̂2

t

SpaceTime

*
Y

Figure 7.5: Optimal metering rates and distributed flow improvement in time and space.
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β3u3

u1

u2

β1

β4

β2

u4

Counting stations

Traffic light

i

x

x̂1

x̂2

x̂3

x̂4

x̌1

x̌2

x̌3
x̌4

5

1

2

3
4

ρup(t)

ρdo(t)

Figure 7.6: Beltway of Grenoble (France) considered for the study case.

7.2.2 With the Payne model

The Payne model [Payne, 1971] with the source term discussed above writes

∂t

(
ρ

φ

)
+ ∂x

(
φ

φ2

ρ
+ c2ρ

)
=

(∑Nu
i=1 δx̂iuiΨi(ρ)−

∑Nβ
i=1 δx̌iβiφ

Φ(ρ)−φ
τ

)
(7.2.10)

with ρ and φ = ρv the conserved variables and c, τ and Φ(·) the model parameters.

For this model, the linearized dynamics writes





Df(ρ̄, φ̄) =

(
0 1

c2 − φ̄2

ρ̄2
2φ̄
ρ̄

)

Dyg(ρ̄, φ̄, ū) =

(∑
δx̂i ūiΨ

′
i(ρ̄) −

∑
δx̌iβi

Φ′(ρ̄)
τ

− 1
τ

)

Dug(ρ̄, φ̄, ū) =

(
δx̂1Ψ1(ρ̄) · · · δx̂Nu

ΨNu(ρ̄)

0 · · · 0

)

Using the results stated above, the gradient evaluation of the VMT objective with

the barrier term (7.2.3) writes

∇uiJVMT = Ψi(ρ̄(x̂i, t))λ1(x̂i, t)−
1

M

(
1

ūi

− 1

1− ūi

)
(7.2.11)
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Chapter 7. Optimal Control Applications in Freeway Management

Jr

Jaug

Iterations

Figure 7.7: Reduction of the costs Jr and Jaug
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Figure 7.8: Optimal on-ramp flows before and after optimization.
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Chapter 7. Optimal Control Applications in Freeway Management

with λ = (λ1 λ2) the adjoint variable, solution of the adjoint equation





−∂tλ1 −
(
c2 − φ̄2

ρ̄2

)
∂xλ2 =

∑
δx̂iūiΨ

′
i(ρ̄)λ1 + Φ′(ρ̄)

τ
λ2

−∂tλ2 − ∂xλ1 − 2φ̄
ρ̄
∂xλ2 = −∑ δx̌iβiλ1 − 1

τ
λ2 − 1

λ1(x, T ) = 0 and λ2(x, T ) = 0

λ1(0, t) = 0, λ1(L, t) = 0, λ2(0, t) = 0 and λ2(L, t) = 0

λ1|Γi
= 0 and λ2|Γi

= 0 with Γi = {(x, t) : [ρ̄(x, t)] 6= 0}

(7.2.12)

Equation (7.2.12) is a linear hyperbolic system that can be solved numerically using

the schemes proposed in [Godlewski & Raviart, 1996]. The gradient keeps the same

form as (7.2.11) for the TTT objective and only the source term in the adjoint equations

(7.2.12) is slightly modified as g′ = (−1 0)T in the TTT case.

We now focus on the numerical implementation of the optimization scheme. Several

specific methods have been proposed to integrate systems of conservation laws such as

(7.2.10) and we propose to use the Roe average method [Bermudez & Vazquez, 1994] for

the Payne model. The time stepping of the Roe average method is given by

yn+1
i = yn

i −
∆t

∆x

(
f̃(yn

i ,y
n
i+1)− f̃(yn

i−1,y
n
i )
)

+ ∆t g̃(yn
i−1,y

n
i ,y

n
i+1)

with f̃(·) the numerical flux given by

f̃(yn
i,y

n
i+1)=

1

2

(
f(ỹi+1/2)− |Df(ỹi+1/2)|(yi+1 − yi)

)

and g̃(·) the numerical source term given by

g̃(yn
i−1,y

n
i ,y

n
i+1) =

1

2

(
I +Df(ỹi−1/2)|Df(ỹi−1/2)|

)gn
i−1 + gn

i

2

+
1

2

(
I −Df(ỹi+1/2)|Df(ỹi+1/2)|

)gn
i + gn

i+1

2

where |A| = T diag(|λi|) T−1 with A = TΛT−1 and ỹi+1/2 is the Roe average at the cell

interface i/i+ 1 given, for the Payne model, by




ρ̃i+1/2 =
√
ρiρi+1

ṽi+1/2 =
√

ρivi+
√

ρi+1vi+1√
ρi+

√
ρi+1

φ̃i+1/2 = ρ̃i+1/2ṽi+1/2

Concerning the backwards in time linear adjoint equation (7.2.12), we propose to use

the upwind method

λn−1
i = λn

i −
∆t

∆x

(
−Df(ȳn

i )T
)+

(λn
i − λn

i−1)

− ∆t

∆x

(
−Df(ȳn

i )T
)−

(λn
i+1 − λn

i ) + ∆t Sλ (7.2.13)
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Chapter 7. Optimal Control Applications in Freeway Management

where A+ = TΛ+T−1, A− = TΛ−T−1 and Sλ is the adjoint equation source term. The

boundary conditions of the adjoint system are implemented using ghost cells set to 0,

their applicability being directly handled by the discretization methods.

We provide below a simulation example with the VMT objective for a single on-ramp

that creates a congestion with a constant inflow of 400 veh/h during 5 min on a 5 km

freeway section. The optimizer gives the flow improvement depicted in Figure 7.9 with

the ramp flow of Figure 7.10 computed in 20 iterations. The new metering rate releases

slowly the vehicle and enables to delay the flow drop upstream of the on-ramp. The

improvement is rather local in space due to the finite speed of propagation.

Figure 7.9: Initial (left) and optimized (right) flows with 20 iterations.

Figure 7.10: Optimized control (left) and Jobs (right).

7.2.3 With the ARZ model

The ARZ model introduced in [Aw & Rascle, 2000] and [Zhang, 2002] with the density

source term (7.2.6) writes

∂t

(
ρ

ω

)
+ ∂x

(
ω − ρP (ρ)

ω2

ρ
− ωP (ρ)

)
=

(∑Nu
i=1 δx̂iuiΨi(ρ)−

∑Nβ
i=1 δx̌iβi(ω − ρP (ρ))

Φ(ρ)−ω+ρP (ρ)
τ

)
(7.2.14)
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Chapter 7. Optimal Control Applications in Freeway Management

with ρ and ω = ρ(v + P (ρ)) the conserved variables, leading to the dependant flow

variable φ = φ(ρ, ω) = ω− ρP (ρ). The parameters of the ARZ model are the relaxation

term τ and the term P (·), which is taken to be −V (ρ) in [Zhang, 2002].

The linearized dynamics of the ARZ model writes





Df(ρ̄, ω̄) =

(
−P (ρ̄)− ρ̄P ′(ρ̄) 1

− ω̄2

ρ̄2 − ω̄P ′(ρ̄) 2ω̄
ρ̄
− P (ρ̄)

)

Dyg(ρ̄, ω̄, ū) =

(∑
δx̂i ūiΨ

′(ρ̄)−∑ δx̌iβi(−P (ρ̄)− ρP ′(ρ̄)) −∑ δx̌iβi
Φ′(ρ̄)+P (ρ̄)+ρ̄P ′(ρ̄)

τ − 1
τ

)

Dug(ρ̄, ω̄, ū) =

(
δx̂1Ψ1(ρ̄) · · · δx̂Nu

ΨNu(ρ̄)

0 · · · 0

)

leading to a VMT gradient with barrier term (7.2.3) given by

∇uiJVMT = Ψi(ρ̄(x̂i, t))λ1(x̂i, t)−
1

M

(
1

ūi

− 1

1− ūi

)
(7.2.15)

where the ARZ adjoint system is





−∂tλ1 +
(
P (ρ̄) + ρ̄P ′(ρ̄)

)
∂xλ1 +

(
ω̄2

ρ̄2 + ω̄P ′(ρ̄)
)
∂xλ2 =

∑
δx̂iūiΨ

′(ρ̄)λ1 −
∑
δx̌iβi(−P (ρ̄)− ρP ′(ρ̄))λ1

+ Φ′(ρ̄)+P (ρ̄)+ρ̄P ′(ρ̄)
τ

λ2 − P (ρ̄)− ρ̄P (ρ̄)

−∂tλ2 − ∂xλ1 −
(

2ω̄
ρ̄
− P (ρ̄)

)
∂xλ2 = −∑ δx̌iβiλ1 − 1

τ
λ2 − 1

λ1(x, T ) = 0 and λ2(x, T ) = 0

λ1(0, t) = 0, λ1(L, t) = 0, λ2(0, t) = 0 and λ2(L, t) = 0

λ1|Γi
= 0 and λ2|Γi

= 0 with Γi = {(x, t) : [ρ̄(x, t)] 6= 0}

(7.2.16)

The gradient keeps the same form as (7.2.15) for the TTT objective and only the

source term in the adjoint equations (7.2.16) is slightly modified as g′ = (−1 0)T in the

this case. For the numerical implementation of the optimization method, we propose to

use the Godunov scheme for the ARZ equation and the upwind scheme (7.2.13) for the

backwards in time linear adjoint equation (7.2.16).

7.3 The missing data reconstruction problem

Using the LWR model, let consider in this section the problem of estimating the current

traffic state ρ(0, x) based on the density measurements ξi(t) with t ∈ (−T, 0) given by a

set of sensor (loop detectors) installed at a finite set of locations {x̃i}Nmi=1. As nonlinear

conservation laws are not invertible (cannot be integrated backwards) due to the entropy
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Chapter 7. Optimal Control Applications in Freeway Management

condition, iterations on the final condition of the time horizon (−T, 0) would not be valid

to estimate ρ(0, x). The alternative is to search for the initial condition that minimizes

the square error at the sensor locations and then to deduce the final state form the

one-to-one correspondance provided by the state equation.

In the state estimation problem, the on-ramp flows φ̂ and off-ramp flows φ̌ are as-

sumed to be measured and the decision equation is the initial condition ρI . The corre-

sponding optimization problem writes

Min
ρI

Jobs(ρ) =
∑Nm

i
1
2

∫ T

0
(ρ(·, x̃i)− ξi)2 =

∑Nm
i

1
2

∫ T

0

∫ L

0
δx̃i(ρ− ξi)2

Subj. to





∂tρ+ ∂xΦ(ρ) =
∑

i δx̂iφ̂−
∑

j δx̌jβjφ̌

ρ(0, x) = ρI(x)

ρ(0, t) = ρ0(t) and ρ(L, t) = ρL(t)

(7.3.1)

Using the adjoint based gradient evaluation method, we deduce

∇ρIJobs = λ(x, 0) (7.3.2)

with λ the solution of the adjoint equation




−∂tλ− Φ′(ρ̄)∂xλ = δx̃i(ρ− ξi)
λ(x, T ) = 0

λ(0, t) = 0 when Φ′(ρ̄(0, t)) < 0

λ(L, t) = 0 when Φ′(ρ̄(L, t)) > 0

λ|Γi
= 0 with Γi = {(x, t) : [ρ̄(x, t)] 6= 0}

(7.3.3)

The marginal cost interpretation gives some insight on the limitations of the method.

As characteristics linking the sensor locations to the initial condition in (−T, 0) are the

only ones to provide information in the descent method, a lack of such characteristics

would lead to a poor estimation. Nevertheless, this is a structural limitation of the

system that cannot be overcome by any method.

Algorithm 5 is proposed to compute numerically a local optimal of Problem (7.3.1)

and is used in a numerical experiment conducted for the freeway of Figure 7.6 with 5

sensors. Figure 7.11 shows the congestion wave created by the initial condition and the

residual error in the trajectory with the estimated initial condition. Figure 7.12 shows

the good estimation property of the method when compared to a linear interpolation

between available data. An improvement of 90 % is obtained on the cost function Jobs.

7.4 The origin-destination estimation problem

In this section, it is proposed to use a Prediction Error Minimization (PEM) method to

estimate the Origin-Destination flows on a stretch of freeway. Though no node are present
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Chapter 7. Optimal Control Applications in Freeway Management

Algorithm 5 Steepest descent algorithm for the missing data reconstruction problem.

Require: ρI := ρinit
I ∈ (0, ρm), ε

while ‖∇ρIJo‖ > ε do

Compute ρ from (7.3.1)

Compute λ from (7.3.3)

Compute ∇ρIJobs from (7.3.2)

Update ρI := ρI −∇ρIJobs

end while

ρ

Time
Space

ρ

Time
Space

Figure 7.11: Left: actual density distribution to be estimated with sensor data (black

lines). Right: residual error after optimization.

ρ

Space

Jo

Iterations

Figure 7.12: Left: estimated initial condition (dashed: actual, plain: estimated, dot:

linear interpolation of measurements). Right: evolution of the cost function Jobs.
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Chapter 7. Optimal Control Applications in Freeway Management

in this case, we call this problem the OD matrix estimation. To simplify the exposition of

the problem and its solution, we restrict to the treatment of the small network depicted

in Figure 7.13 using the multiclass model presented in a previous chapter where free flow

is assumed all along the freeway. In this model, we recall that the traffic state is the

L1 L2 L3

φ̂R1

φ̂R2

φ̂3

φ̂4

φ̌R3

φ̌R4

φ̌R1

φ̌R2

α1

(1 − α1)

φ̂1

α2

(1 − α2)

φ̂2

O1

O2

φ̌2

φ̌1

D1

D2

R1

R2

R3

R4

Figure 7.13: Network used for illustration.

vector ρ of partial flows tagged with their Origin-Destination information. The free flow

assumption is not true in general and the traffic may be free, i.e. (|ρ| < ρc), or congested,

i.e. (|ρ| < ρc), both in a time and space varying way. The 2 main consequences of such

behavior are:

1. The interface conditions modelling the on/off-ramps vary with time following a

finite state machine (FSM). In the general case, the sensitivity analysis should

follow this FSM.

2. The actuated and observed boundaries may vary in time, leading to difficulties in

the problem setting and the treatment of boundary conditions.

With the free flow assumption, the OD estimation objective weighting the deviation

of the predicted and measured flows writes

Min
α1,α2

J (ρL2 ,ρL3) =

T∫

0

1

2

[
(γDoρ

L3
R1

+ γDoρ
L3
R3

)V (γDo|ρL3 |)− φ̌1

]2

+
1

2

[
(γDoρ

L2
R2

+ γDoρ
L2
R4

)V (γDo|ρL2|)− φ̌2

]2
(7.4.1)
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Chapter 7. Optimal Control Applications in Freeway Management

with the constraints

Subj. to



∂tρ
L1 + ∂xf(ρ

L1) = 0

∂tρ
L2 + ∂xf(ρ

L2) = 0

∂tρ
L3 + ∂xf(ρ

L3) = 0

ρL1(t=0)=ρL1
I , ρL2(t=0)=ρL2

I , ρL3(t=0)=ρL3
I

γUpρ
L1
R1

= α1Φ
−l(φ̂1) and γUpρ

L1
R2

= (1− α1)Φ
−l(φ̂1)

γUpρ
L2
R1

=I φ̂2

R1
(γDoρ

L1)

=
γDoρ

L1
R1

γDo|ρL1 | θφ̂2

(
η−l

φ̂2

(
γDo|ρL1|V (γDo|ρL1|)

))

γUpρ
L2
R2

=I φ̂2

R2
(γDoρ

L1)

=
γDoρ

L1
R2

γDo|ρL1 | θφ̂2

(
η−l

φ̂2

(
γDo|ρL1|V (γDo|ρL1|)

))

γUpρ
L2
R3

=I φ̂2

R3
(γDoρ

L1, α2)

=α2 η
−l

φ̂2

(
γDo|ρL1 |V (γDo|ρL1 |)

)

γUpρ
L2
R4

=I φ̂2

R4
(γDoρ

L1, α2)

=(1−α2) η
−l

φ̂2

(
γDo|ρL1|V (γDo|ρL1|)

)

γUpρ
L3
R1

=I φ̌2

R1
(γDoρ

L2)

=
γDoρ

L2
R1

γDoρ
L2
R1

+γDoρ
L2
R3

Φ−l
(
ηφ̌2

(
γDoρ

L2
R2

+ γDoρ
L2
R4

))

γUpρ
L3
R3

=I φ̌2

R3
(γDoρ

L2)

=
γDoρ

L2
R3

γDoρ
L2
R1

+γDoρ
L2
R3

Φ−l
(
ηφ̌2

(
γDoρ

L2
R2

+ γDoρ
L2
R4

))

α1 ∈ (0, 1) and α2 ∈ (0, 1)

(7.4.2)

where γUp and γDo are the trace operators for the upstream and downstream boundaries

respectively. In the free flow case, φ̂1 and φ̂2 are the actuated boundaries whereas φ̌1

and φ̌2 are the observed boundaries. As we can see, writing all the interface conditions

is tedious, even for such a small network.
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Chapter 7. Optimal Control Applications in Freeway Management

The linearized dynamics of (7.4.2) writes formally




∂tρ̃
L1 + ∂x

(
Df(ρ̄L1)ρ̃L1

)
= 0

∂tρ̃
L2 + ∂x

(
Df(ρ̄L2)ρ̃L2

)
= 0

∂tρ̃
L3 + ∂x

(
Df(ρ̄L3)ρ̃

)
= 0

ρ̃L1(t=0)= 0, ρ̃L2(t=0)= 0, ρ̃L3(t=0)= 0

γUpρ̃L1
=

(
Φ−l(φ̂1)

−Φ−l(φ̂1)

)
α̃1

γUpρ̃L2
=




∇I φ̂2

R1
(γDoρ̄

L1)

∇I φ̂2

R2
(γDoρ̄L1)

∇ρI
φ̂2

R3
(γDoρ̄

L1, ᾱ2)

∇ρI
φ̂2

R4
(γDoρ̄

L1, ᾱ2)



γDoρ̃

L1+




0

0

∇αI
φ̂2

R3
(γDoρ̄

L1, ᾱ2)

∇αI
φ̂2

R4
(γDoρ̄

L1, ᾱ2)



α̃2

γUpρ̃L3
=

(
∇I φ̌2

R1
(γDoρ̄

L2)

∇I φ̌2

R1
(γDoρ̄

L2)

)
γDoρ̃

L2

Due to the complex expression of some gradients in the above equation, numerical dif-

ferentiation may be needed to ease practical implementations. Nevertheless, these com-

putations only need to be done one time.

The OD estimation problem requires some more analysis that the general case studied

before due to the multiple boundary conditions. The first variation of the cost functional

(7.4.1) writes

J̃ =

∫ T

0

(
∇ρ

L3J (γDoρ̄
L3) γDoρ̃

L3 +∇ρ
L2J (γDoρ̄

L2) γDoρ̃
L2

)
dt (7.4.3)

We now introduce 3 adjoint variables λ1, λ2, λ3 and compute the adjoint system as

following

0 =< λ1, ∂tρ̃
L1 + ∂x

(
Df(ρ̄L1)ρ̃L1

)
>

+ < λ2, ∂tρ̃
L2 + ∂x

(
Df(ρ̄L2)ρ̃L2

)
>

+ < λ3, ∂tρ̃
L3 + ∂x

(
Df(ρ̄L3)ρ̃

)
>

=< ρ̃L1 ,−∂tλ1 −Df(ρ̄L1)T∂xλ1 > +

∫ Do

Up

[λ1
Tρ̃L1 ]T0 dx

+ < ρ̃L1 ,−∂tλ2 −Df(ρ̄L2)T∂xλ2 > +

∫ Do

Up

[λ2
Tρ̃L2 ]T0 dx

+ < ρ̃L1 ,−∂tλ3 −Df(ρ̄L3)T∂xλ3 > +

∫ Do

Up

[λ3
Tρ̃L3 ]T0 dx

+

∫ T

0

[λT
1Df(ρ̄L1)ρ̃L1 ]Do

Updt+

∫ T

0

[λT
2Df(ρ̄L2)ρ̃L2 ]Do

Updt

+

∫ T

0

[λT
3Df(ρ̄L3)ρ̃L3 ]Do

Updt+
3∑

k=1

∑

Γi

∫ T

ti

σiλΓi
T[ρ̃Lk−Df(ρ̄Lk)ρ̃Lk]Γidt
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Chapter 7. Optimal Control Applications in Freeway Management

Setting all the gray variables to 0 leads to a linear hyperbolic initial boundary value

problem where the boundary values are coupled through

∫ T

0

(
− γUpλ

T
1 Df(γUpρ̄

L1)γUpρ̃
L1+ γDoλ

T
3 Df(γDoρ̄

L3)γDoρ̃
L3

+ (γDoλ
T

1 Df(γDoρ̄
L1)γDoρ̃

L1 − γUpλ
T

2 Df(γUpρ̄
L2)γUpρ̃

L2)

+ (γDoλ
T

2 Df(γDoρ̄
L2) γDoρ̃

L2 − γUpλ
T

3 Df(γUpρ̄
L3) γUpρ̃

L3)
)
dt = 0

Noting γUpρ̃
L1 = B0/1α̃1, γUpρ̃

L2 = A1/2γDoρ̃
L1 + B1/2α̃2 and γUpρ̃

L3 = A2/3γDoρ̃
L2 , we can

write

0 =

∫ T

0

−γUpλ
T

1 Df(γUpρ̄
L1)B0/1α̃1 − γUpλ

T
2 Df(γUpρ̄

L2)B1/2 α̃2

+
(
γDoλ

T
1 Df(γDoρ̄

L1)− γUpλ
T

2 Df(γUpρ̄
L2)A1/2

)

︸ ︷︷ ︸
= 0

γDoρ̃
L1

+
(
γDoλ

T
2 Df(γDoρ̄

L2)− γUpλ
T

3 Df(γUpρ̄
L3)A2/3

)

︸ ︷︷ ︸
= ∇

ρ
L2

J (γDoρ̄
L2)

γDoρ̃
L2

+ γDoλ
T

3 Df(ρ̄L3)︸ ︷︷ ︸
= ∇

ρ
L3

J (γDoρ̄
L3)

γDoρ̃
L3

So J̃=<γUpλ T
1 Df(ρ̄L1)B0/1, α̃1>+<γUpλ T

2 Df(ρ̄L2)B1/2, α̃2> and the gradients of the opti-

mization problem (7.4.1)-(7.4.2) become
{
∇α1J̃= γUpλ

T
1 Df(γUpρ̄

L1) B0/1

∇α2J̃= γUpλ
T

2 Df(γUpρ̄
L2) B1/2

(7.4.4)

with λ1 and λ2 the solutions of the adjoint equation




−∂tλ1 −Df(ρ̄L1)T∂xλ1 = 0

−∂tλ2 −Df(ρ̄L2)T∂xλ2 = 0

−∂tλ3 −Df(ρ̄L3)T∂xλ3 = 0

λ1(x, T ) = λ2(x, T ) = λ3(x, T ) = 0

γDoλ
T
3 = ∇ρ

L3J (γDoρ̄
L3)Df(γDoρ̄

L3)−1

γDoλ
T
2 =

(
γUpλ

T
3Df(ρ̄L3)A2/3 +∇ρ

L2J (γDoρ̄
L2)
)
Df(γDoρ̄

L2)−1

γDoλ
T
1 = γUpλ

T
2Df(γUpρ̄

L2)A1/2Df(γDoρ̄
L1)−1

(7.4.5)

Note that to completely solve the OD estimation problem and remove the

free flow assumption, these computations should be done for every possible

free/congested/decoupled configuration.

Based on the gradient evaluation formula given above, the following iterative opti-

mization method is proposed to update an OD matrix based on the on/off-ramps vehicle

counts:
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Chapter 7. Optimal Control Applications in Freeway Management

1. A first guess is given for the decision variables αk(t).

2. The model (7.4.2) is exited using the current decision variables and the measured

flows through a set of actuated boundaries ensuring the wellposedness of the initial

boundary value problem. This prediction provides some computed values at the

observed boundaries, which are the duals of the actuated boundaries.

3. The gradients (7.4.4) are computed using the adjoint equation (7.4.5).

4. A steepest descent method modify the decision variables to decrease the cost.

5. The previous steps are repeated iteratively until a local minimum is reached.
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Thus, be it understood, to demonstrate a theorem, it is

neither necessary nor even advantageous to know what

it means.

Henri Poincaré (1854-1912),

French mathematician, theoretical physicists and

philosopher of science.
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Chapter 8

Dissipativity Methods for Feedback

Control of Freeways

In this chapter, a new methodology is proposed to design feedback controllers that

stabilize one-dimensional scalar conservation laws such as the LWR freeway model. The

control problem we address can be formulated as follows: how to design a feedback

controller that uses pointwise inflows along the spacial domain to track a reference for

the internal distributed state? We restrict here to conservation laws with a concave flux

function, which is not restrictive for the LWR model.

Very few attempts have been made to stabilize conservation laws using feedback con-

trol. The main reasons are the following. First, contrary to linear finite dimensional

systems, there is no constructive method to design controllers for nonlinear infinite di-

mensional systems. Second, the presence of shock waves complicates the design as it leads

to irregular states which are not common in the standard analysis. Design methodolo-

gies for partial differential equations can be organized in 2 classes: the first one consists

in designing a controller for the infinite dimensional system directly whereas the sec-

ond consists in discretizing the equation and then use finite dimensional techniques to

compute the controller. Available contributions in the direct design approach for hy-

perbolic partial differential equations are [de Halleux, Prieur, Coron, d’Andréa Novel &

Bastin, 2003] and [Coron, d’Andréa Novel & Bastin, 2004] where the authors proposed

a feedback controller for open channels. Nevertheless, they considered smooth solutions

only, thus removing the difficulty due to the presence of shock waves. In [Krstic, 1999],

the author proposed a feedback design for the Burgers equation with a small viscosity

parameter. However, as the control law is inversely proportional to this parameters,

this approach would lead to a blow up of the control action in the inviscid case. On

the other hand, many contributions are available concerning the design of controllers for

finite dimensional discretizations of partial differential equations. For instance, [Balogh

& Krstic, 2004] proposed a controller for parabolic partial differential equations based

on a finite difference approximation. However, such an approach cannot be applied to

hyperbolic equations as finite difference schemes are not valid for this class of equations,

mainly because of the presence of shock waves. We propose in this chapter a specific Go-
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

dunov discretization scheme [LeVeque, 1992] that can be used for conservation laws and

lead to a valid finite dimensional approximation. The particularity of the obtained finite

dimensional model is to be a switched affine system which is not the case for parabolic

or elliptic equations. Other discretization methods could be used as the Lax-Friedrichs

scheme [LeVeque, 1992] but it would lead to a nonlinear discrete system for which no

constructive control methods are available.

Specific schemes such as the Godunov method [Godunov, 1959], which is an efficient

first order method, can be used to discretize conservation laws but they do not lead to

a closed-form expression in general. An other useful tool is the front tracking method

[Holden et al., 1988] which uses a piecewise affine approximation of the nonlinear flux

function and track all the elementary waves to compute an approximate solution of

a conservation law. Combining these two schemes leads to a discrete piecewise affine

(PWA) system suitable for controller design. Several constructive methods have been

proposed in [Johansson & Rantzer, 1998] and [Cuzzola & Morari, 2002; P. Biswas &

Morari, 2005] to compute a set of static feedback gains that can be used in a switched

controller structure to stabilize PWA systems. This methodology leads to a set of Linear

Matrix Inequalities (LMI) parameterized with the controller gain that can be solved

efficiently using widely available softwares. The originality of our approach is thus to use

a specific discretization scheme that transforms the original partial differential equation

into a discrete PWA system and then use transparently control methods for this class

of systems. As an illustrative example, we perform a controller design for the ramp

metering application when one on-ramp can be actuated only. The cases of coordinated

ramp metering and stabilization of ramp queues are left for further investigation but can

be treated in this setting as well.

Based on the CTM model of [Daganzo, 1994], a switched formulation with a discrete

state associated to each cell was introduced in [Gomes & Horowitz, 2003] and [Munoz,

Sun, Horowitz & Alvarez, 2003; Munoz, Sun, Horowitz & Alvarez, 2006] for control and

estimation purposes. To reduced the complexity which grows exponentially with the

system size, the discrete state was allowed to take a small number of values in [Munoz

et al., 2003; Munoz et al., 2006] by assuming that only one shock front was present along

the considered freeway section. Following the numerical schemes described earlier, our

model associates the discrete states to the cell interfaces and the discrete state space is

allowed to be as large as needed. Several techniques will be discussed later to reduce this

space to its minimum in order to maintain the complexity of feedback controller design

at a reasonable level.
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

8.1 Piecewise affine approximation of the LWR model

8.1.1 The homogeneous case

Let consider first the homogeneous LWR model which writes

∂tρ+ ∂xΦ(ρ) = 0

The Godunov scheme [LeVeque, 1992] for the LWR model, with space and time dis-

cretization ∆xi and ∆t respectively, writes

ρi[k + 1] = ρi[k] +
∆t

∆xi

(Φn(ρi−1[k], ρi[k])− Φn(ρi[k], ρi+1[k])) (8.1.1)

where i = 1, ..., N is the space index, k = 1, ...,M the time index and Φn(ρL, ρR) is the

numerical flux function given by the solution of the Riemann problem with left and right

initial states ρL and ρR. The analytical solution for Φn(ρL, ρR) is known [LeVeque, 1992]

and can be written Φn(ρL, ρR) = Φ(ρ∗) with ρ∗ given by

Φ′(ρR) ≥ 0 Φ′(ρR) < 0

Φ′(ρL) ≥ 0 ρ∗ = ρL ρ∗=

{
ρL if Φ(ρR)−Φ(ρL)

ρR−ρL
> 0

ρR otherwise

Φ′(ρL) < 0 ρ∗=argmax Φ(·) ρ∗ = ρR

As the numerical computations should be done on a bounded spacial domain, two bound-

ary signal ρ0[k] and ρN+1[k] are assumed to be known and to apply in ghost cells indexed

by i = 0 and i = N + 1. The same technique as above is then used to compute the

boundary fluxes by assuming that the fundamental diagrams parameters are identical in

cells i = 0 and i = 1 as well as in cells i = 0 and i = 1. The Godunov scheme can thus

be written in the form of the switched nonlinear system

{
ρk+1 = fαk(ρk)

αk = g(ρk)

where ρk = (ρ1[k], ...ρn[k]) is the continuous state and αk = (α0[k], ..., αN [k]) is a discrete

state that determines the behavior of the cell interfaces in the time interval k to k + 1.

The discrete state αk only depends on the continuous state ρk at time k through the

nonlinear function g(·) which tells which entry should be selected in the above table for

each interface. In this switched formulation, the dynamics fαk(·) of the continuous state

depends on the current configuration αk and is determined by the time stepping given

in Equation (8.1.1).

We now show how this switched nonlinear system can be put in the more convenient

form of a piecewise affine (PWA) system. We restrict here to concave flux functions as
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

we are interested in freeway traffic models. Every piecewise affine approximation of a

concave function Φ(·) can be written

ΦPWA(ρ) = min {aiρ+ bi}i=1,...,p

where ai and bi are two sets of p reals defining the approximation. We assume that

am = 0 so that bm is the maximal flow. Figure 8.1 gives an example of such a piecewise

affine approximation f̃(·) for a concave function f(·).

f(·)

f̃(·)

a2y + b2

y

Figure 8.1: Piecewise affine approximation of a concave flux function f .

Combining the Godunov scheme with a piecewise affine approximation of the flux

function Φ(ρ), the proposed discretization scheme for the homogeneous LWR model

becomes Equation (8.1.1) with the numerical flux function given by

Φn(ρL, ρR) = min { a1 ρL+b1 , ... , am−1 ρL+bm−1 , bm , am+1 ρR+bm+1 , ... , ap ρR+bp }
(8.1.2)

Note that Equations (8.1.1) and (8.1.2) generalize the CTM discretization proposed in

[Daganzo, 1994] and discussed in the chapter Numerical schemes for macroscopic freeway

models. With αk = (α0[k], ..., αN [k]) selecting which entry in (8.1.2) applies in the time

interval [k, k + 1] for each cell interface, this formulation can easily be put in the form

of the piecewise affine system

{
ρk+1 = Aαkρk + aαk

αk = g(ρk)

Explicit expressions of the matrices Aαk are given later for the ramp metering appli-

cation. Note that, in practice, the discrete state αk does not suffer of chartering as it is

often constant and varies slowly when a congestion or free flow wave is traveling along

the freeway section.
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

8.1.2 The inhomogeneous case

As a macroscopic approach was selected to model homogeneous links, ramps are ab-

stracted by pointwise flow contributions as illustrated on Figure 8.2. In this setting,

Figure 8.2: Abstraction of onramps and offramps by pointwise inhomogeneities.

the freeway is decomposed in a series of cells interconnected through interfaces that can

be with an onramp, with an offramp or without any ramp, as depicted on Figure 8.3.

Moreover, the inhomogeneities in the flux function parameters can be handled and these

changes should occur at the cell interfaces. In this discretization, i = 1, ..., N is the

ii − 1 i + 1

Φ
−

i
Φ

+

i+1
Φ

−

i−1 Φ
+

i

ri, siri−1, si−1

∆xi

Figure 8.3: Decomposition of the freeway in cells.

cell index and ∆i the length of the ith cell. ri and si are respectively the onramp and

offramp flows at the interface between cells i and i+1. For notational convenience, these

flows are added to all interfaces and set to 0 when not present. In particular, ri and

si cannot be both nonzero for the same index i. With a time step of ∆t, the Godunov

discretization writes

ρi[k + 1] = ρi[k] + ∆i

(
Φ+

i [k] − Φ−
i [k]

)
(8.1.3)

with ρi[k] the density in cell i at time k, Φ+
i [k] the flow entering in cell i between time

k and k + 1, Φ−
i [k] the flow leaving cell i between time k and k + 1, and ∆i = ∆t/∆xi
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

a discretization parameter. Note that, contrary to the classical Godunov discretization,

the flows at the left and right of the interfaces should be differentiated due to the possible

presence of an onramp or an offramp. Indeed, the flow conservation implies

Φ+
i [k] = Φ−

i−1[k] + ri−1[k]− si−1[k] (8.1.4)

For the inhomogeneous LWR model, we restrict to trapezoidal fundamental diagram

Φi(ρi) for each cell i as depicted in Figure 8.4. This trapezoidal flux function is rather

standard in the transportation community [Daganzo, 1994] and seems to be an acceptable

approximation with respect to field data. The parameters of this fundamental diagram

are vi, wi, ρ̄i and Φ̄i which are respectively the free flow speed, the congestion wave

speed, the maximal density and the maximal flow, also called capacity, for cell i.

Φ̄i

Φi(ρi)

ρi

vi wi

ρ̄i

Figure 8.4: Trapezoidal fundamental diagram.

Following [Lebacque, 1996], we define the demand function for cell i− 1 by

Di−1[k] = min
{
vi−1ρi−1[k] + ri−1[k]− si−1[k] , Φ̄i−1 + ri−1[k]− si−1[k]

}
(8.1.5)

which tells how much vehicles want to enter the next cell between time k and k + 1. It

is computed as the flow of leaving vehicles from cell i− 1 plus the possible onramp flow

and minus the possible offramp flow if present at the interface between cells i− 1 and i.

Similarly, the supply function for cell i is defined by

Si[k] = min
{
wi(ρ̄i − ρi[k]) , Φ̄i

}
(8.1.6)

and tells how much vehicles can enter cell i between time k and k + 1 given the current

congestion status of this cell. Following [Lebacque, 1996], the interface flow is then given

by the formula

Φ+
i [k] = min

{
Di−1[k] , Si[k]

}
(8.1.7)

which is equivalent to the Godunov formulation. Plugging (8.1.5) and (8.1.6) in (8.1.9),

we finally get

Φ+
i [k] = min

{
vi−1ρi−1[k]+ri−1[k]−si−1[k] , wi(ρ̄i−ρi[k]) , Φ̄i−1 +ri−1[k]−si−1[k] , Φ̄i

}

(8.1.8)
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

The flow conservation given by Equation (8.1.4) then gives

Φ−
i−1[k] = min

{
vi−1ρi−1[k] , wi(ρ̄i−ρi[k])−ri−1[k]+si−1[k] , Φ̄i−1 , Φ̄i−ri−1[k]+si−1[k]

}

(8.1.9)

To get a positive flow Φ+
i [k], it is assumed that the flow si−1[k] is always smaller than

vi−1ρi−1[k] and Φ̄i−1 and that ρi[k] is always smaller than ρ̄i. This first assumption

means that the offramp flow si[k] should be feasible in the sense that no more vehicles

are removed than available or than the capacity. In practice, si[k] should be checked to

fulfill this constraint at time k before being applied. If it is not the case, it is set to the

maximal feasible value. The second assumption ρi[k] ≤ ρ̄i is classical in freeway models

and is not restrictive. To get a positive flow Φ−
i−1[k], it is assumed than ri−1[k] is always

smaller than Φ̄i and w(ρ̄i − ρi[k]). The capacity constraint ri−1[k] ≤ Φ̄i is classical and

not restrictive. The constraint ri−1[k] ≤ w(ρ̄i−ρi[k]) means that the onramp flow should

be feasible in the sense that no more vehicles can be discharged from an onramp than

the maximal available room on the mainlane. Again, ri−1[k] should be checked to fulfill

these constraints before being applied in the numerical scheme. Nevertheless, practical

situations usually not suffer of such constraint violations.

In equations (8.1.8) and (8.1.9), each selection of a specific item in the minimum

formula have a physical meaning. For instance, in the case of Φ+
i [k], the selection of

vi−1ρi−1[k]+ri−1[k]−si−1[k] means that a free flow is crossing the interface whereas the

selection of wi(ρ̄i−ρi[k]) means that a congested flow is crossing it due to a shortage of

supply in cell i. The selection of Φ̄i−1+ri−1[k]−si−1[k] means that the flow leaving cell

i − 1 reaches its maximal value, i.e. the upstream capacity, whereas the selection of Φ̄i

means that the flow entering cell i reaches the downstream capacity due to an excess

of demand. This last situation typically occurs when an onramp becomes a bottleneck.

We can thus associate a discrete state αi[k] to each interface telling in which state is the

interface between times k and k + 1. The values that can be taken by αi[k] are

F: when free flow is selected,

C: when congested flow is selected,

Dd: when the maximal decoupling demand is selected,

Ds: when the maximal decoupling supply is selected.

Note that we assumed that the upstream capacity Φ̄i−1 can be different from the

downstream capacity Φ̄i in general, thus creating 2 possible decoupling discrete states

Dd and Ds. Nevertheless, these 2 states can often be merged into a unique decoupled

state D as when no ramp is present at the interface, i.e. ri[k] = si[k] = 0 or when the

fundamental diagrams have identical capacities upstream and downstream, i.e. when

Φ̄i−1 = Φ̄i. In these cases, there are only 3 terms in (8.1.8) and (8.1.9) and the 2 states

Dd and Ds are replaced by a single state D. Nevertheless, there are some situations when

these 2 decoupling states should be considered independently, typically when the capacity

is different upstream and downstream of an onramp or an offramp. Such situations

occurs when the number of lanes are different upstream and downstream of a ramp. For
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

instance, on-ramps have sometimes an additional lane downstream of it that may end

further by merging with the mainlane.

For a discretization in N cells, two virtual cells indexed respectively by 0 and N + 1

can be added for the upstream and downstream boundary conditions. In this situation,

the interfaces are numbered from 0 to N , interface i being the leaving interface of cell i.

If the boundary conditions are given in the form of the density signals ρ0[k] and ρN+1[k],

respectively for the upstream and downstream boundaries, then the numerical fluxes at

these interfaces are given by

Φ+
1 [k] = min

{
v1ρ0[k], S1[k]

}
= min

{
v1ρ0[k], wi(ρ̄1 − ρ1[k]), Φ̄1

}
(8.1.10)

and

Φ+
N [k] = min

{
DN [k], wN(ρ̄N − ρN+1[k])

}
= min

{
vNρN [k], wN(ρ̄N − ρN+1[k]), Φ̄N

}

(8.1.11)

Note that we assumed in (8.1.10) and (8.1.11) that the fundamental diagram parameters

are the same in the virtual boundary cells and in the neighboring cells, which is reason-

able. The possible values of α0[k] at the upstream boundary are F, C and Ds whereas

the possible values of αN+1[k] at the downstream boundary are F, C and Dd.

We now turn to the piecewise affine formulation of the discretized model in the

inhomogeneous case. To do so, the onramp flows ri[k] will be assumed to be control

signals as the targeted application is ramp metering. On the other hand, the offramp

flows si[k] and the boundary signals ρ0[k] and ρN [k] will be considered as exogenous

signals possibly subject to measurement or prediction errors. To ease the writing of the

different involved matrices, let define the following describing functions:

• F(α) = 1 when α = F and 0 otherwise,

• C(α) = 1 when α = C and 0 otherwise,

• Dd(α) = 1 when α = Dd and 0 otherwise,

• Ds(α) = 1 when α = Ds and 0 otherwise.

With these definitions, combining (8.1.3), (8.1.8) and (8.1.9) gives for the inner cells

indexed by i = 2, ..., N − 1

ρi[k + 1] = ρi[k] + F(αi−1[k])∆ivi−1ρi−1[k] + F(αi−1[k])∆iri−1[k]− F(αi−1[k])∆isi−1[k]

+ C(αi−1[k])∆iwi(ρ̄i−ρi[k]) + Dd(αi−1[k])∆iΦ̄i−1 + Dd(αi−1[k])∆iri−1[k]

−Dd(αi−1[k])∆isi−1[k] + Ds(αi−1[k])∆iΦ̄i − F(αi[k])∆iviρi[k]

−C(αi[k])∆iwi+1(ρ̄i+1 − ρi+1[k]) + C(αi[k])∆iri[k]−C(αi[k])∆isi[k]

−Dd(αi[k])∆iΦ̄i −Ds(αi[k])∆iΦ̄i+1 + Ds(αi[k])∆iri[k]

−Ds(αi[k])∆isi[k]
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

Which can be rearranged in the vector formulation

ρi[k + 1] =

[
F(αi−1[k])∆ivi−1

∣∣∣1−C(αi−1[k])∆iwi − F(αi[k])∆ivi

∣∣∣C(αi[k])∆iwi+1

]



ρi−1[k]

ρi[k]

ρi+1[k]




+
[
F(αi−1[k])∆i + Dd(αi−1[k])∆i

∣∣∣C(αi[k])∆i + Ds(αi[k])∆i

] [ri−1[k]

ri[k]

]

+
[
− F(αi−1[k])∆i −Dd(αi−1[k])∆i

∣∣∣−C(αi[k])∆i −Ds(αi[k])∆i

] [si−1[k]

si[k]

]

+ C(αi−1[k])∆iwiρ̄i−C(αi[k])∆iwi+1ρ̄i+1+Dd(αi−1[k])∆iΦ̄i−1

+
(
Ds(αi−1[k])−Dd(αi[k])

)
∆iΦ̄i−Ds(αi[k])∆iΦ̄i+1

This formulation is slightly modified for the upstream boundary i = 1 where we have

ρ1[k + 1] =

[
1−C(α0[k])∆1w1 − F(α1[k])∆1v1

∣∣∣C(α1[k])∆1w2

] [ρ1[k]

ρ2[k]

]

+
[
C(α1[k])∆1 + Ds(α1[k])∆1

][
r1[k]

]

+
[
−C(α1[k])∆1 −Ds(α1[k])∆1

][
s1[k]

]

+
[
F(α0[k])∆1v1

][
ρ0[k]

]

+ C(α0[k])∆1w1ρ̄1−C(α1[k])∆1w2ρ̄2+
(
Ds(α0[k])−Dd(α1[k])

)
∆1Φ̄1−Ds(α1[k])∆1Φ̄2

Similarly, for the downstream boundary i = N , we have

ρN [k + 1] =

[
F(αN−1[k])∆NvN−1

∣∣∣1−C(αN−1[k])∆NwN − F(αN [k])∆NvN

] [ρN−1[k]

ρN [k]

]

+
[
F(αN−1[k])∆N + Dd(αN−1[k])∆N

][
rN−1[k]

]

+
[
− F(αN−1[k])∆N −Dd(αN−1[k])∆N

][
sN−1[k]

]

+
[
C(αN [k])∆NwN

][
ρN+1[k]

]

+ C(αN−1[k])∆NwN ρ̄N−C(αN [k])∆NwN ρ̄N +Dd(αN−1[k])∆N Φ̄N−1

+
(
Ds(αN−1[k])−Dd(αN [k])

)
∆N Φ̄N

Using the above equations, the discretized LWR model can be written in the form of
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

the following piecewise affine system

{
ρk+1 = Aαkρk +Bαkuk +Wαkwk + aαk

αk = g(ρk, uk, wk)
(8.1.12)

where ρk = (ρ1[k], ..., ρN [k]) is the density state, uk = (r1[k], ..., rm[k]) is the control vari-

ables consisting of the metered onramp flows and wk = (ρ0[k], s1[k], ..., sN−1[k], ρN+1[k])

is a vector of measured exogenous signals composed of the boundary densities and the

offramp flows. αk = (α0[k], ..., αN+1[k]) is the concatenated discrete state and is com-

puted according to the switching rule g(ρk, uk, wk) which basically select which entry

should be selected in the minimum formulas (8.1.8) and (8.1.9). The matrices Aαk , Bαk ,

Wαk and the vector aαk define the state space representation for the evolution of the

continuous variable ρ[k], which is valid for the time interval k to k + 1. One interest of

the PWA formulation is that an explicit formulation of the involved data Aαk , Bαk , Wαk

and aαk can be computed a priori as soon as the subset of αk that may occur is known.

In practice, the possible value taken by αk depends on the waves allowed to propagate

in the freeway section. As possible scenarios are often reduced for a specific section, the

set of possible αk can often be reduced to a reasonable number of discrete states. In this

situation, the involved matrix data can be computed a priori and automatically thanks

to the vector formulations presented above. Explicit formulations of these data will be

given later in the case of the local ramp metering application. The PWA formulation

(8.1.12) is extensively used in the next section to perform the controller design.

8.2 Feedback Controller Designs

As shown in the previous section, one-dimensional scalar conservation laws can be put,

after discretization and piecewise linearization, in the form of the piecewise affine system

given in Equation (8.1.12). It can be shown that the discrete system (8.1.12) is always

open-loop stable for the LWR model as it has eigenvalues smaller or equal to 1. Moreover,

some states are not controllable or observable due to the transport phenomenon and the

partial actuation and measurement. Such phenomena was already mentioned in [Munoz

et al., 2003] and [Munoz et al., 2006].

8.2.1 Background on PWA system stabilization

Let consider the PWA system with state-space equation




ρk+1 = Aαkρk +Bαkuk +Wαkwk + aαk

αk = g(ρk, uk, wk)

ρk=0 = ρ0 and αk=0 = α0

(8.2.1)

where αk ∈ I = {1, ..., h} is the piecewise constant discrete state relabeled for notational

convenience, ρk ∈ Rn the continuous state, uk ∈ Rm the control variable and wk ∈ Rp
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

an exogenous signal subject to perturbations. The discrete state αk depends on the

switching rule g(ρk, uk, wk) that sets the active matrices

Aαk ∈{A1, ..., Ah}, Bαk ∈{B1, ..., Bh}, Wαk ∈{W1, ...,Wh}, aαk ∈{a1, ..., ah}

Let consider a predefined reference ūk computed for instance by the optimal control

strategies presented in a previous chapter. This control reference, along with the esti-

mated disturbances w̄k, gives rise through the freeway dynamics (8.2.1) to the density

reference ρ̄k which we would like to track. This reference design leads to an a priori

switching sequence denoted ᾱk. With (ūk, ρ̄k, w̄k) known in advance, we make the some-

what strong assumption that the reference and actual switching sequences are identical,

i.e. αk = ᾱk, which leads to the continuous state error dynamics

ρ̃k+1 = Aαk ρ̃k +Bαk ũk +Wαkw̃k (8.2.2)

with ρ̃k = ρk− ρ̄k, ũk = uk− ūk and w̃k = wk− w̄k. Let consider the problem of designing

a switched piecewise linear full state controller of the form ũk = Kαk ρ̃k. Plugging this

expression into (8.2.2) gives, with Παk = Aαk+BαkKαk , the following closed loop equation

{
ρ̃k+1 = Παk ρ̃k +Wαkw̃k

αk = g(ρ̄k + ρ̃k, ūk + ũk, w̄k + w̃k)
(8.2.3)

So Equation (8.2.3) is composed of a switched linear system along with a discrete state

αk that is assumed to be measured in real time.

Before going further, let first come back to the identical sequence assumption αk = ᾱk

and see what would happen if αk 6= ᾱk. As ᾱk is computed a priori, this situation may

happen for instance if the control action does not manage to follow the reference quickly

enough or if a strong disturbance enters in the system. As will be seen later, αk being

available in real time, the controller Kαk that applies at time k is a stabilizing controller

for subsystem (Aαk , Bαk ,Wαk , aαk). Moreover, the family of controllers Ki is designed

such that the switched controller gain Kαk ensure the stability of the closed loop system

when αk+1 6= αk. Now, is αk 6= ᾱk then we have

ρ̄k+1 = Aᾱk ρ̄k +Bᾱk ūk +Wᾱkw̄k + aᾱk

ρk+1 = Aαkρk +Bαkuk +Wαkwk + aαk

which gives

ρ̃k+1 = Aαkρk − Aᾱk ρ̄k +Bαkuk −Bᾱk ūk +Wαkwk −Wᾱkw̄k + aαk − āαk

Adding (Aαk − Aαk)ρ̄k + (Bαk −Bαk)ūk + (Wαk −Wαk)w̄k to the right hand side gives

ρ̃k+1 = Aαk ρ̃k +Bαk ũk +Wαkw̃k + (Aαk ρ̄k +Bαk ūk +Wαkw̄k + aαk − āαk)

We thus obtain a formulation similar to Equation (8.2.3) with an additional perturbation

term that depends on the current configuration αk and the predefined reference signals
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

(ρ̄k, ūk, w̄k, āαk). If we can design a set of controller gains Ki such that (8.2.3) is asymp-

totically stable, then the additional perturbation entering the above equation should not

destabilize the system if it is nonzero on a finite time interval.

We now give some definition for passive systems. The discrete-time PWA system

(8.2.3) is said to be strictly passive with supply rate W : Rq × Rp → R if there exists a

non negative storage function V : I × Rn → R with V (·, 0) = 0 such that the following

dissipation inequality holds

∀ w, ∀ k, ∆Vk = Vk+1 − Vk < W (ρ̃k, w̃k) (8.2.4)

where Vk = V (αk, ρ̃k), whose an equivalent useful formulation is

∀ w, ∀ N, ∀ x0, VN+1 − V0 <
N∑

k=0

W (ρ̃k, w̃k)

The following supply rates are classical and define different control objectives

W∞ = γ2w̃T
k w̃k − ρ̃T

k ρ̃k

WG2 = w̃T
k w̃k

WLQ = W2 = −ρ̃T
kQρ̃k

W∞ defines the H∞ perturbation attenuation criteria, WG2 the so-called generalized H2

performance criteria and WLQ the LQ performance criteria, whose special case Q = I

corresponds to the H2 norm.

For PWA systems, a candidate storage function that depends only on the internal

states αk and ρ̃k is the piecewise quadratic (PWQ) Lyapunov function

Vk = V (αk, ρ̃k) = ρ̃T
kPαk ρ̃k with Pi > 0 and P T

i = Pi

where the matrices Pi are considered symmetric without loss of generality. The decrease

∆Vk = Vk+1 − Vk in the storage function along the system trajectory then writes

∆Vk= V (αk+1, ρ̃k+1)− V (αk, ρ̃k)

= ρ̃T
k+1Pαk+1

ρ̃k+1 − ρ̃T
kPαk ρ̃k

= (ρ̃T
k ΠT

αk
+w̃T

kW
T
αk

)Pαk+1
(Παk ρ̃k+Wαkw̃k)−ρ̃T

kPαk ρ̃k

=

(
ρ̃k

w̃k

)T(
ΠT

αk
Pαk+1

Παk−Pαk ΠT
αk
Pαk+1

Wαk

W T
αk
Pαk+1

Παk W T
αk
Pαk+1

Wαk

)(
ρ̃k

w̃k

)
(8.2.5)

which simplifies without uncertainties, i.e. w̃k = 0 to

∆Vk = ρ̃T
k (ΠT

αk
Pαk+1

Παk − Pαk)ρ̃k

We can now proceed to the controller designs.
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

8.2.2 State Feedback Stabilization Without Uncertainties

A sufficient condition of global stability for the PWA system (8.2.3) without uncertain-

ties, i.e. w̃k = 0, is that ∆V (αk, ρ̃k) is negative definite along the system trajectories.

Considering all the possible discrete state trajectories in Equation (8.2.5), i.e. either

αk+1 = αk or αk+1 6= αk when a transition occurs, global stability is obtained if one can

find a set of symmetric positive definite matrices Pi and constant vector gains Ki such

that the following set of LMIs are satisfied

Pi − ΠT
i PjΠi > 0 , ∀ i→ j (8.2.6)

Such set of matrices can be found with the following theorem.

Theorem 8.2.1 If there exists symmetric positive definite matrices Qi = QT
i > 0 and

matrices Ui of appropriate dimension satisfying the set of Linear Matrix Inequalities

(LMI) (
Qi ?

AiQi +BiUi Qj

)
> 0 ∀ (i, j) ∈ T (8.2.7)

for all possible transitions T of the discrete state αk then the state ρ̃ converges globally

towards the origin with the piecewise linear static feedback gains Ki = UiQ
−1
i .

Proof. We multiply by P−1
i from the left and right in (8.2.6) to get by congruence

P−1
i − P−1

i ΠT
i PjΠiP

−1
i > 0

which develops as

P−1
i − P−1

i (AT
i +KT

i B
T
i )Pj(Ai +BiKi)P

−1
i > 0

Making the change of variables Qi = P−1
i and Ui = KiP

−1
i , we get with (P−1

i )T = P−1
i

Qi − (QiA
T
i + UT

i B
T
i )Q−1

j (AiQi +BiUi) > 0

The schur complement finally gives the theorem. �

The feasibility problem for the set of LMIs (8.2.7) requires all the pairs (Ai, Bi) to be

stabilisable and can be solved efficiently with the Matlab LMI toolbox. Note that the

size of the LMI constraint (8.2.7) depends directly on the number of transitions (i, j)

considered in the set T . If we may be tempted to choose T = I×I for its exhaustibility,

diminishing the cardinal of T reduces the size of the problem and thus its complexity

along with its conservativeness. Such a reduction is possible when the PWA system

comes from the discretization of a conservation law as we known that only some waves

are allowed in these equations, and thus some transitions (i, j) in T , due to the entropy

condition. Equation (8.2.7) is a feasibility problem and may well have no solution, a

problem shared by many LMI based design methodologies. Moreover, (8.2.7) does not

ensure any performance for the closed loop system besides stability. This issues will be

treated later with the H∞ and the LQ designs.
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

8.2.3 Integral Action Without Uncertainties

Integral action for disturbance rejection is obtained setting

ũk+1 = ũk + hvk and vk = Kαk ρ̃k

with h a free design parameter. The extended system becomes
(
ρ̃

ũ

)

k+1

=

(
Aαk Bαk

0 I

)(
ρ̃

ũ

)

k

+

(
0

hI

)
vk

Theorem 8.2.1 can be used directly, replacing

Ai by

(
Ai Bi

0 I

)
and Bi by

(
0

hI

)

8.2.4 H∞ synthesis for perturbation attenuation

In this section, some robustness requirements are added to the control problem. We

consider here an H∞ problem which consists in minimizing or bounding to a predefined

value γ the system gain between ||w̃k||2 and ||ρ̃k||2 so that the influence of the exogenous

signal w on the state ρ is controlled.

The supply rate W∞ can be written in the matrix form

W∞(ρ̃k, w̃k) = γ2w̃T
k w̃k − ρ̃T

k ρ̃k

=

(
ρ̃k

w̃k

)T(
−I 0

0 γ2I

)(
ρ̃k

w̃k

)

Applying the S-procedure to the passivity inequality (8.2.4) with the Lyapunov func-

tion difference with uncertainties (8.2.5), we get the classical Bounded Real Lemma

which states that ||ρ̃k||2 < γ||w̃k||2 is equivalent to
(

ΠT
αk
Pαk+1

Παk − Pαk + I ΠT
αk
Pαk+1

Wαk

W T
αk
Pαk+1

Παk W T
αk
Pαk+1

Wαk − γ2I

)
< 0 (8.2.8)

We have the following theorem for the H∞ synthesis.

Theorem 8.2.2 The attenuation ||ρ̃k||2 < γ||w̃k||2 is realized by the family of static

feedback gains Ki for all signal w̃k in l2 if one can find matrices Qi = QT
i > 0 and Ri of

suitable dimension such that


Qi ? ? ?

0 γ2I ? ?

AiQi +BiRi Wi Qj ?

Qi 0 0 I


 > 0 ∀ (i, j) ∈ T

with T the set of possible transitions. The feedback gains are given by Ki = UiQ
−1
i .
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

Proof. By congruence of (8.2.8) with diag(P−1
k , I) and by setting Qk = P−1

k , we have
(
QkΠT

k Pk+1ΠkQk−Qk+QT
kQk QkΠT

k Pk+1Wk

W T
k Pk+1ΠkQk W T

k Pk+1Wk−γ2I

)
<0

which can be rewritten

−
(

ΠkQk Wk

Qk 0

)T (
Pk+1 0

0 I

)(
ΠkQk Wk

Qk 0

)
+

(
Qk 0

0 γ2I

)
> 0

The Schur complement Lemma then gives the equivalent LMI



Qk 0 QkΠ
T
k Qk

0 γ2I W T
k 0

ΠkQk Wk Qk+1 0

Qk 0 0 I



> 0

Setting Uk = KkQk, the nonlinear term becomes ΠkQk = AkQk + BkUk, giving the

theorem. �

8.2.5 Generalized H2

The generalized H2 norm sup
||z||l∞
||w||l2

can be bounded by γ if we can find a Lyapunov

function such that {
∆Vk < w̃T

k w̃k

ρ̃T
k ρ̃k < γVk

(8.2.9)

which leads by summation on k = 0, ..., N to the inequality VN+1 − V0 < ||w̃||l2(0,N).

Assuming that V0 = 0 and using ρ̃T
N+1ρ̃N+1 < γVN+1, we get

ρ̃T
N+1ρ̃N+1 < γ||w||l2(0,N)

Equation (8.2.9) can be transformed to the set of LMIs

(
P CT

C γI

)
> 0




−Qj ? ?

AjQj +BiYj −Qi ?

0 BT
j −I


 < 0 for all (i, j) ∈ T

The controller gains are then given by Ki = YiQ
−1
i .

8.2.6 Guaranteed Cost LQ Control without Uncertainties

In this section, an LMI condition is provided to synthesize a static state feedback con-

troller for the unperturbed system that guarantees a upper bound for the LQ cost func-

tional

J =
∞∑

k=0

ρ̃T
kQρ̃k + ũT

kRũk ≤ Jm
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

where Q and R are positive definite symmetric matrices, R weighting the control energy.

If we can find a control Lyapunov function Vk that satisfies

∆Vk = Vk+1 − Vk < −(ρ̃T
kQρ̃k + ũT

kRũk)

then simple summation for k = 0, ...,∞ gives with V∞ = 0

J < V0

Considering again a piecewise quadratic Lyapunov function Vk = ρ̃T
kPαk ρ̃k, then ∆Vk

writes for the discrete state transition i→ j

∆Vk = ρ̃T
k (ΠT

i PjΠi − Pi)ρk < ρT
k (−Q−KT

i RKi)ρ̃k

which is equivalent to the matrix inequality

ΠT
i PjΠi − Pi +Q+KT

i RKi < 0

Linearization is then done as following. Left and right multiplying by P −1
i = Si gives

SiΠ
T
i PjΠiSi − Si + SiQSi + SiK

T
i RKiSi < 0

which rewrites

Si −




ΠiSi

Si

KiSi




T 


Pj ? ?

0 Q ?

0 0 R







ΠiSi

Si

KiSi


 > 0

Using the Schur complement with the linearizing change of variables

ΠiSi = AiSi +BiKiSi = AiSi +BiUi

we get 


Si ? ? ?

AiSi +BiUi Sj ? ?

Si 0 Q−1 ?

Ui 0 0 R−1




for all (i, j) ∈ T

Knowing the initial condition ρ̃I , the upper bound Jm can be optimized by solving

the problem min ρ̃T
I Pα0 ρ̃I , which is a linear cost function, subject to the above set of

LMIs.

8.2.7 Strategies to reduce the discrete state space

One drawback of the proposed approach is that the set of possible transitions T N for

a problem with N cells is usually very large, even for n small. Indeed, there are N +

1 interfaces for N cells, each of them being able to take the 3 possible values F, C

and D if there is no situations where D should be decomposed in Dd and Ds. We

thus have a cardinal Card(T N) = 3N+1 which grows exponentially with N , making the

approach untractable even for reasonable values of N . The following table illustrates

this unmanageable increase of complexity:
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

N Card(T N)

1 9

2 27

3 81

4 243

5 729

6 2187

7 6561

Nevertheless, this complexity can be largely decreased by using the following arguments:

- First triangular fundamental diagrams are often used for freeway models as in

[Munoz et al., 2003; Munoz et al., 2006]. In doing so, all interfaces without a

ramp have only 2 possible states called free for F and congested to C. Triangular

fundamental diagrams thus reduce the size of Card(T N) or allow for more cells in

homogeneous links for the same level of complexity.

- Using the entropy condition for the LWR model, only some waves are allowed which

restrains the set of possible transitions from Card(T N) to Card(T N
R ) < Card(T N)

with T N
R the set of realizable transitions. If this method enable a sharp reduction

of the number of possibilities, this set T N
R is difficult to compute a priori when

several onramps and offramps are present.

- To overcome the difficulty of getting an exhaustive description of T N
R , we can

restrict to a specific scenario. Though quite restrictive, this approach is reasonable

as the traffic evolution is often the same on a given freeway section, except in the

case of unpredictable situtations like an accident. This approach leads to a set T N
S

with Card(T N
S ) < Card(T N

R ).

- The last possibilities is to restrict the time horizon on which the feedback controller

should stabilize the traffic, leading to a set of possible transitions T N
M with M the

time steps taken into account. Doing so reduces dramatically the size of the sets

Card(T N
R ) and Card(T N

S ) but requires to solve some sets of LMI online before each

new time horizon.

8.3 Application to ramp metering

Based on the theory presented in the previous sections, we propose a feedback ramp

metering strategy which is potentially more effective than local version of [Papageorgiou

et al., 1997] as more sensor data are used and no a-priori controller structure is given.
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

8.3.1 Traffic Model used for the experiment

We propose here to use a simple model where the fundamental diagram is assumed to be

triangular. Moreover, the parameters of this flux functions are assumed to be constant

along the considered stretch of freeway. By approximating the concave flux function by

2 affine branches as represented on Figure 8.5 the discretized LWR model can be put in

the form of a PWA system like Equation (8.1.12) similar to the CTM model proposed in

[Daganzo, 1994] and close to the switched model proposed in [Munoz et al., 2003; Munoz

et al., 2006]. In the fundamental diagram of Figure 8.5, ρm is the maximal density, φm

is the maximal flow, v > 0 is the slope for the free flow wave speed and w < 0 is the

slope for the the congestion wave speed.

Figure 8.5: Concave fundamental diagram with traffic data from Lyon Est beltway.

8.3.2 Proposed controller structure and study case

The proposed controller structure is presented in Figure 8.6. r̄ and ρ̄ are respectively

the on-ramp flow and density references which are provided by an other method such as

the optimization routine proposed in [Jacquet, Canudas de Wit & Koenig, 2005]. The

needed measurements in this architecture are the mainlane densities ρ in each cell, the

boundary densities (ρUp, ρDo), the exit ratios β and the actual on-ramp flows r. Based

on these measurement, the current discrete state α and the current tracking error ρ̃ can

be computed and feed to the controller that generates in real time the correction term r̃

leading to the applied metering rates r.

The quantities ρUp, ρDo and β are partially known exogenous signals that can be

subject to substantial errors. In addition, the freeway model is approximate and its

parameters v, w and ρm are necessarily uncertain. The control objective is thus to

ensure that the regulation ρ̃→ 0 follows some performance criteria and is robust to the

various uncertainties present in the control loop. As discussed in the previous sections, a
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

Freeway

Discrete state

Controller

+

+

-
r̄

-





ρUp

ρDo

β





?? ?

+

-

�

ρ̄
�

r ρ

�

-

�
α

ρ̃

r̃

Figure 8.6: Block diagram for controlling a freeway section.

piecewise linear state feedback controller can be used to fulfill this objective. A potential

drawback of such approach is the combinatorics implied by the interface discrete state

that may lead to very large LMIs that may fail to have a solution or can be untractable.

Let consider as a study case the 2.83 km section of the South-Est beltway of Lyon,

France, which is depicted in Figure 8.7. This section is composed of one on-ramp,

one off-ramp along with three homogeneous links and is equipped with four inductive

mainlane sensors and one sensor for each on and off ramps. As shown in this figure, the

velocity time series plotted between 11am and 11pm for the upstream and downstream

boundaries can be used to conclude that the only on-ramp present in the section is

responsible of the congestion that propagates upstream. Moreover, this pattern appears

repeatedly, motivating the use of a ramp metering algorithm in this situation, the goal

being to modulate the on-ramp inflow to eliminate or at least reduce the congestion.

Having identified the bottleneck on Lyon’s South-Est beltway, the freeway is mod-

elled as a concatenation of 3 homogeneous links interconnected through an on-ramp

and an off-ramp. The first link is divided into two cells so that the congestion wave

propagation can be observed and the other two links are modelled by a single cell. We

obtain a model with 4 cells as represented on 8.8, leading to a 5 state discrete variable

α(k) = (α0(k), α1(k), α2(k), α3(k), α4(k)). The boundary data and the off-ramp flow are

provided by the measurements at the corresponding inductive loops. Moreover, all the

cell densities are assumed available in the feedback controller design in our simulation.

As mentioned above, the possible discrete state transitions should be identified before

the design. The on-ramp responsible of the congestion being on the third interface, the

possible transitions are given by

(F, F, F, F, F ) � (F, F,D, F, F )

(F, F,D, F, F ) � (F,C,D, F, F )

(F,D,C, F, F ) � (D,D,C, F, F )

The freeway being initially in free flow, the considered transitions are the only one that
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

Figure 8.7: Freeway section treated in the example where the arrow indicates the traffic

direction and the gray dots the locations of the labelled inductive loops. The plotted

velocity time series on 18/10/2005 from 11am and 11pm show that the on-ramp with

the shaded label is responsible of the congestion.

r β

ρ1 ρ2 ρ3 ρ4ρUp ρDo

α0 α4α3α2α1

Figure 8.8: Abstracted network for the considered link.

are allowed in the LWR model. For instance, the state space matrices of FFDFF are

explicitly given by

A(CCDFF )=




1−w1c1 w2c1 0 0

0 1−w2c2 0 0

0 0 1−v3c3 0

0 0 v3c4 1−v4c4




B(CCDFF )=




0

c2

0

0




W (CCDFF )=




0 0 0

0 0 0

0 0 0

−c4 0 0



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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

a(CCDFF ) =




c1w1ρm1 − c1w2ρm2

c2w2ρm2 − c2Φm3

c3Φm3

0




and similar matrices are computed for all of the 4 considered discrete states.

The LMIs for the stabilizing controller have been coded in the Matlab LMI Control

Toolbox. These LMIs being feasible for the Lyon beltway study case, we were able to

compute the feedback gains that stabilize the freeway error dynamics. The choice of

a suitable density reference is an important task that should not be underestimated.

Though the critical density corresponds to the maximal flow, it should not be taken as

the reference as it may lead to unrealistically large on-ramp queues. Instead, the freeway

should be allowed to be partially congested due to the unavoidable excess demand. This

objective is met by requiring a minimum on-ramp flow that keeps ramp queues at a

reasonable level. The simulations shown below have a minimal on-ramp flow of 1100

veh/h which leads to a maximal queue of around 350 vehicles at the on-ramp.

Figure 8.9 shows the efficiency of the feedback method with a simulation from 3:30pm

to 10pm with a congestion from 5:30pm to 8pm. Figure 8.10 shows the demand and the

resulting on-ramp queue. As can be expected, reducing the minimum on-ramp flow in

the reference increases the peak ramp queue. The computed feedback gains are provided

in Figure 8.11 for all discrete states.

Figure 8.9: Comparison of the density time series at cells 1, 2, 3 and 4 without (left) and

with (right) ramp metering when a minimum of 1100 veh/h is required at the on-ramp.

An interesting observation is that the obtained feedback gains are local, implying

that local algorithm such as ALINEA [Papageorgiou et al., 1991] are sufficient when a

single on-ramp is metered. Moreover, as the dominant coefficient moves from the cell

downstream of the ramp to the one upstream of it depending on the discrete state, a

switched version of ALINEA as the one proposed in [Sun & Horowitz, 2005] should be

considered in local ramp metering strategies. It is a remarkable fact to arrive to this
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

Figure 8.10: Demand (left) and queue length (right) with 1100 veh/h allowed.

conclusion, which is intuitive to some extend, as no local structure is set a priori in the

LMI formulation.
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

Figure 8.11: Feedback gains of the 4 cells for the discrete state FFFFF (top), FFDFF ,

FCDFF and CCDFF (bottom).
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A pupil from whom nothing is ever demanded that he

cannot do, never does all he can.

John Stuart Mill (1806-1873),

English philosopher and political economist.
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Conclusion and perspectives

The first contribution of this book is to provide a unified analytical and numerical treat-

ment of 3 traffic model: the Lighthill-Whitham-Richards (LWR) model, the Aw-Rascle-

Zhang (ARZ) model and the Multiclass Origin-Destination (MOD) model. These models

do not have the same level of complexity and one of them should generally be preferred

for a specific application. These three models have been studied in the mathematical

community too as in [Garavello & Piccoli, 2006b] and we strongly believe that they will

be the building blocks of forthcoming freeway control and monitoring algorithms.

The second contribution of this book is to propose two methodologies, respectively

based on the optimal control theory and the dissipatedly theory, to control freeway

systems. These methods have proven to be relatively easy to implement and the proposed

simulation results are encouraging for further investigation and field tests.

The freeway management applications treated in the book rely heavily on the avail-

ability of trafic measurement along the freeway as provided in many places by inductive

loop detectors. Nowadays, image processing provides an alternative technique to obtain

these traffic data and several tests have been conducted around the world, with some

datasets now available. For instance, on dataset maintained by the Federal HighWay

Administration (FHWA) in USA consists of all vehicle trajectories along a 800 meters

stretch of th Interstate 80 Eastbound. These trajectories, along with the vehicle class, the

vehicle length, the space/time headway and much more are extracted from the recordings

of 6 cameras mounted on top of a building neighboring the I80 in Emerville, California

close to Berkeley. Figure 8.12 is a map of the monitored section and Figure 8.13 gives

an example of the image processing required to extract the valuable information. The

availability of the vehicle trajectories open new perspectives in freeway traffic modelling,

both from the microscopic and the macroscopic viewpoints. For instance, they may be

used to calibrate or validate existing traffic models base of this ground truth, to develop

lane changing models, stop and go wave model, capacity drop models, instantaneous

breakdown models as well as more realistic on/off-ramp models. For instance, the vehi-

cle trajectories for lane 4 depicted on Figure 8.14 show how small perturbations can lead

to the backward propagation of congestion waves. This phenomenon is not taken into

account in purely macroscopic models and these data may help to improve existing mod-

els. Similarly, Figure 8.15-left shows smooth traffic perturbed by a lane-changing, which

lead later to a stopped traffic upstream of the perturbation. Similarly, Figure 8.15-right

shows the upstream propagation of stop and go waves that we all have experienced on
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

crowed freeways!

Figure 8.12: Aerial picture and map of Emerville testbed (courtesy of FHWA).

Figure 8.13: Two video frames and the reconstituted traffic picture (courtesy of FHWA).
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Chapter 8. Dissipativity Methods for Feedback Control of Freeways

Figure 8.14: Example of vehicle trajectories on lane 4 (courtesy of FHWA).

Figure 8.15: Example of stop and go waves (courtesy of FHWA).
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Appendix A

Notations

A a set

\ set difference

⋃
set union

⋂
set intersection

Ω a subset of Rn

∂Ω the boundary of Ω

X a functional space

L(X ,Y) space of linear mappings from X to Y

L(X ) space of linear functionals L(X ,R)

X ∗ dual of X , i.e. X ∗ = L(X )

〈A, f〉X ∗,X duality pairing for A ∈ L(X )

〈f1, f2〉X scalar product
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Appendix A. Notations

· scalar product in euclidian spaces

A? adjoint operator of operator A

DA Fréchet derivative of A

DA[ f̄ ] Fréchet derivative of A at f̄

DA[ f̄ ]( f̃ ) Fréchet differential of A at f̄ in direction f̃

V ⊂⊂ U V compactly contained in U

Ln n−dimensional Lebesgue measure

Hn n−dimensional Hausdorff measure

µ � f measure with density f with respect to measure µ

ν � µ ν absolutely continuous with respect to µ

ν ⊥ µ ν and µ are mutually singular

Ck
0 (Ω,Rn) space of k−times continuously differentiable functions f : Ω→

Rn with compact support

Ck
0 (Ω) space of functionals Ck

0 (Ω,R)

BV (Ω) space of functions with bounded variations on Ω

[Df ] vector measure for the gradient of f ∈ BV (Ω)

[Df ]ac absolutely continuous part of [Df ]
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Appendix A. Notations

[Df ]s singular part of [Df ]

f− left limit of f ∈ BV (R)

f+ right limit of f ∈ BV (R)

Tf trace of f ∈ BV (Ω)

δΓ Dirac measure supported by the set Γ

A > 0 positive definiteness of matrix A

Conv(a, b) Convex set of R with extremities a ∈ R and b ∈ R

(
A B

? D

)
symmetric matrix

(
A B

BT D

)

ρ, v, φ Density, velocity and flow of the traffic stream

I, y Relative velocity and relative flow

u State vector for scalar equations, e.g. u = ρ

u State vector for systems, e.g. u = (ρ, y)

u− and u+ State value on the left and right of a single shock

u−|x=si(t)
=u−(si(t), t) State value at the left of the shock x = si(t)

Φ(·) Concave flux function

ρc Critical density such that Φ′(ρc) = 0
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Appendix A. Notations

ρm Maximal density such that Φ(ρm) = 0 and ρm 6= 0

D(·) Demand for the flux function Φ(·)

S(·) Supply for the flux function Φ(·)

Dϕ(·) Demand for flux function Φ(·) with exogenous flow ϕ

Φi, Di, D
ϕi
i , Si Flux, demand and supply functions for link i or cell i

ΦI(·) Modified flux function with relative velocity I

DI(·), SI(·) Modified demand and supply functions

DI,ϕ(·) Modified demand function with exogenous flow ϕ

ΦI
i , D

I
i , D

I,ϕi
i , SI

i Modified flux, demands and supply for link i or cell i

ρL, ρR, ρ−, ρ+, ρ0, ρM States involved in a Riemann problem

Φnum(·, ·) Numerical flux function

Φϕ
num(·, ·) Numerical flux function with exogenous flow ϕ

∆xi Length of cell i

∆t Discretization time period

un
i ,u

n
i State value in cell i at time n∆t in numerical schemes

ui[k] State value in cell i at discrete time k for control
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Appendix B

Mathematical background

This appendix gives a brief review of some tools from functional analysis, conservation

theory and linear algebra used throughout the book. The treatment of the material pre-

sented here is by no means complete and we refer the interested readers to the mentioned

literature for further details.

B.1 Functional analysis

We refer the reader to [Lax, 2002] for all the functional analysis notions introduced in

this section. The definitions and theorems presented here are mainly used in the optimal

control chapter.

Definition B.1.1 (Dual of a Banach space) Given a Banach space X , the dual

space X ∗ = L(X ) is the set of all bounded linear functionals defined on X .

Definition B.1.2 (Duality pairing) Let x ∈ X with X being a Banach space and let

f ∈ X ∗ = L(X ), then the duality pairing is defined by

f(x) = 〈f, x〉X ∗,X

Definition B.1.3 (Adjoint operator) Given an operator A ∈ L(X ,Y) with X and Y
two Banach spaces, the adjoint operator A? ∈ L(Y∗,X ∗) is given by the duality identity

〈y,A(x)〉Y∗,Y = 〈A?(y), x〉X ∗,X ∀ x ∈ X and y ∈ Y∗

Definition B.1.4 (Inner product in Hilbert spaces) If X is an Hilbert space (a

Banach space with an inner product) then X ∗ = X and the duality pairing is equiva-

lent to the inner product, i.e. 〈f, x〉X ∗,X = 〈f, x〉X .
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Appendix B. Mathematical background

Definition B.1.5 (Fréchet derivative) Let X and Y be Banach spaces, f : X → Y
be an operator and x0 ∈ X . If there exists Dxf [x0] ∈ L(X ,Y), such that:

lim
‖δx‖X→0

‖f(x0 + δx)− f(x0)−Dxf [x0](δx)‖Y
‖δx‖X

= 0

then f is Fréchet differentiable at x0 and Dxf [x0] is called the Fréchet derivative of f at

x0. If f has a Fréchet derivative at x0, it is unique and f is continuous at x0.

For a real valued function f : X → R, Dxf [x0] ∈ X ∗ = L(X ) and verifies

lim
‖δx‖X→0

f(x0 + δx)− f(x0)− 〈Dxf [x0], δx〉X ∗,X
‖δx‖X

= 0

which is equivalent to the Taylor expansion

f(x0 + δx) = f(x0) + 〈Dxf [x0], δx〉X ∗,X +R(δx) with lim
‖δx‖X→0

R(δx) = 0

Theorem B.1.1 (Implicit function theorem) Let Y, U be Banach spaces and let

C : Y × U → W. Assume that there exists ȳ and ū belonging respectively to the open

neighborhoods Oȳ ∈ Y and Oū ∈ U such that C(ȳ, ū) = 0. If C is continuously Fréchet-

differentiable on Oȳ×Oū and if the partial Fréchet-derivative DyC[ȳ, ū] is bijective, then

there exists a neighborhood Õū ⊂ Oū and a continuously differentiable function defined

by y : Õū → Y such that C(y(u), u) = 0 for all u ∈ Õū. The Fréchet derivative of y(u)

with respect to u exists and is given as the solution of

DyC(y(u), u) ◦Duy(u) +DuC(y(u), u) = 0

Theorem B.1.2 (Riesz representation theorem) Let X be a Hilbert space with dual

X = X ∗. For each f ∈ X ∗, there is a unique xf ∈ X such that 〈f, x〉X ∗,X = 〈xf , x〉X for

all x ∈ X . In addition ‖xf‖X = ‖f‖X ∗.

B.2 Measure theory

A measure is a mathematical object that affects a size to sets and subsets, generalizing the

concept of length. The main application of measure theory is the Lebesgue integration

which is much more powerful than the Riemann integration. We tried in this section to

keep the semantic complexity to its minimum and refer the interested reader to [Evans

& Gariepy, 1991] for more information.

Definition B.2.1 (Measures) Let X denote a set and 2X the collection of subsets of

X. A mapping µ : 2X → [0,∞] is called a measure on X if

• µ(∅) = 0
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Appendix B. Mathematical background

• µ(A) ≤∑∞
k=1 µ(Ak) whenever A ⊂ ⋃∞

k=1Ak

The set of measures in noted M.

Definition B.2.2 (Measurable sets) A set A ⊂ X is µ-measurable if for each set

B ⊂ X, we have

µ(A) = µ(B ∩ A) + µ(B\A)

Definition B.2.3 (Measurable functions) A function f : X → Y is called µ-

measurable if for each open set U ⊂ Y , f−1(U) is µ-measurable.

Definition B.2.4 (Borel sets) A Borel set is a set which may be obtained as the result

of not more than a countable number of operations of union and intersection of closed

and open sets in a topological space. In Rn, the class B of Borel sets is the smallest

collection of sets that includes the open and closed sets such that if Ei are in B, then so

are
⋃∞

i=1Ei,
⋂∞

i=1Ei and Rn\Ei.

Definition B.2.5 (Borel measures) A Borel measure is a measure µ : B → R where

B is the class of Borel sets. For a Borel measure µ, all continuous functions are mea-

surable. The set of Borel measures in noted MB.

Definition B.2.6 (Measure properties) A Borel measure µ is said to be:

• inner regular if

µ(A) = sup
K⊂⊂A

µ(K)

• outer regular if

µ(A) = inf
A⊂⊂K

µ(K)

• regular if it is inner regular and outer regular,

• locally finite if every point has a neighborhood of finite measure,

• finite if µ(K) <∞ for each compact K ⊂ Rn.

with K ⊂⊂ A meaning that K is compactly contained in A.

Definition B.2.7 (Radon measures) A Radon measure is a regular Borel measure

that is finite on compact sets. The set of Radon measures is noted MR. On a locally

compact Hausdorff space, Radon measures corresponds to positive linear functionals on

the space of continuous functions with compact support, i.e. MR = C∗
0 = L(C0). As a

consequence, for all L : C0(Ω)→ R, there exist µ ∈MR such that for all f ∈ C0(Ω)

L(f) =

∫

Ω

f dµ
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Appendix B. Mathematical background

Example B.2.1

Examples of Radon measure are the Dirac measure on any toplogical space

as well as the Gaussian and Lebesgue measure on Euclidean space. The

counting measure on Euclidean space is an example of a measure that is not

a Radon measure, since it is not locally finite.

Definition B.2.8 (Absolutely continuous measures) The measure ν is absolutely

continuous with respect to µ, written ν � µ, provided µ(A) = 0 implies ν(A) = 0 for all

A ⊂ Rn.

Definition B.2.9 (Mutually singular measures) The measures ν and µ are mutu-

ally singular, written ν ⊥ µ, if there exists a Borel subset B ⊂ Rn such that

µ(Rn −B) = ν(B) = 0

B.3 BV functions

Practically speaking, BV functions are measure theoretically C1 with jumps along mea-

sure theoretically C1 surfaces. The space BV of functions with bounded variations can

be defined in at least 2 different but equivalent ways. We restrict here to real valued func-

tions of the form u : Ω→ R where Ω ∈ Rn is open and bounded. For more information

on this topic, we recommend [Evans & Gariepy, 1991] an [Ziemer, 1989].

Definition B.3.1 (BV functions) u(x) ∈ BV (Ω) ⊂ L1(Ω) if its first order partial

distributional derivatives [Dxiu] are Radon measures, i.e. if there exists locally finite

Borel measures [Dxiu] with |[Dxi ](K)| <∞ for each compact subset K ⊂ Ω, such that

−
∫

Ω

u(x)
∂φ(x)

∂xi

dx =

∫

Ω

φ(x) d[Dxiu] ∀φ ∈ C1
0 (Ω)

An alternative definition is that

−
∫

Ω

u(x)divφ(x) dx =

∫

Ω

φ(x) d[Du] ∀φ ∈ C1
0 (Ω)

with [Du] the vector valued measure for the gradient of u.

Definition B.3.2 (Total variation of BV functions) u(x) ∈ BV (Ω) ⊂ L1(Ω) if its

total variation is bounded, i.e.

TV (u) = sup

{∫

Ω

u(x) divφ(x) dx : φ ∈ C1
0 (Ω,Rn), |φ| ≤ 1

}
<∞
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Appendix B. Mathematical background

Theorem B.3.1 (Lebesgue decomposition theorem for BV fields) The vector

valued measure [Du] for the gradient of u ∈ BV (Ω) may be decomposed as follow

[Du] = [Du]ac + [Du]s = Ln � Df + [Du]s

where Df ∈ L1(Ω,Rn) is the density of the absolutely continuous part [Du]ac and [Du]s
is the singular part with respect to the Lebesgue measure.

Example B.3.1

W 1,p
loc (Ω)  BVloc(Ω) for 1 ≤ p ≤ ∞ and u(x) ∈ BVloc(Ω) belongs to the

Sobolev spaceW 1,p
loc (Ω) if and only if u ∈ Lp

loc(Ω), [Du]s = 0 andDu ∈ Lp
loc(Ω).

Thus, one property of BV functions that are not Sobolev functions is to have

a non vanishing singular part [Du]s.

Theorem B.3.2 (Compactness of BV ) Let Ω ⊂ Rn be open and bounded with Lip-

schitz boundary ∂Ω and let take ||u||BV = ||u||L1 + TV (u) as a norm for BV . Assume

{uk}∞k=1 is a sequence of BV (Ω) satisfying

sup
k
||uk||BV (Ω) <∞

Then there exists a subsequence {ukj}∞j=1 and u ∈ BV (Ω) such that

ukj → u in L1(Ω) as j →∞

Theorem B.3.3 (Trace operator for BV fields) Let Ω be open and bounded with

Lipschitz boundary ∂Ω. There exists a bounded linear mapping

T : BV (Ω)→ L1(∂Ω,Hn−1)

such that ∫

Ω

u divφ dx = −
∫

Ω

φ · d[Du] +

∫

∂Ω

(φ · ν) Tu dHn−1

for all u ∈ BV (Ω) and φ ∈ C1(Rn,Rn). The function Tu, which is defined up to a set

of Hn−1-measure 0 is called the trace of u on ∂Ω and can be interpreted as the boundary

value of u at ∂Ω. Indeed, for Hn−1 almost every x ∈ ∂Ω, we have

Tu(x) = lim
r→0

1

|B(x, r) ∩ Ω|

∫

B(x,r)∩Ω

f dy

B.4 Kružkov theory for scalar conservation laws

We give in this section a brief overview of the wellposedness theory for scalar conservation

laws. In addition to the original papers [Kružkov, 1970] and [Bardos et al., 1979], we

recommend [Serre, 1996], [LeFloch, 2002], [LeVeque, 1992] and [Bressan, 2000].
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Appendix B. Mathematical background

Definition B.4.1 (Scalar conservation law IBVP) An initial boundary value prob-

lem (IBVP) on Ω = (0, L) × (0,∞) involving the scalar conservation law with flux

function f ∈ C2 and source term g ∈ C2 writes





∂ty + ∂xf(x, y) = g(x, y)

y(x, 0) = yI(x)

y(0, t) ∼ y0(t) and y(L, t) ∼ yL(t)

(B.4.1)

where the symbol ∼ means that the boundary conditions are only proposed and may not

apply for some time intervals.

Theorem B.4.1 (Kružkov generalized solution) Problem (B.4.1) admits a unique

generalized solution y ∈ BV (Ω) ∩ L∞(Ω) characterized by the infinite set of inequalities

∫ ∞

0

∫ L

0

(
|y−k|∂tφ+sg(y−k)

(
f(x, y)−f(x, k)

)
∂xφ−sg(y−k)

(
g(x, y)−∂xf(x, k)

)
φ
)
dxdt

+

∫ ∞

0

(
sg(y0 − k)

(
f(y(0, t)− f(k))

)
φ(0, t)− sg(yL − k)

(
f(y(L, t)− f(k))

)
φ(L, t)

)
dt

+

∫ L

0

|y0 − k|φ(x, 0) dx ≥ 0

(B.4.2)

for all k ∈ R and for all φ ∈ C2(Ω) with φ ≥ 0 and limt→∞ φ = 0. The complete proof

of this theorem can be found in [Kružkov, 1970] and [Bardos et al., 1979].

Lemma B.4.2 (Shock conditions) Let Γ = {(x, t) : x = s(t), t ∈ [tI , tF ]} be a

discontinuity of y ∈ BV (Ω)∩L∞(Ω) solution of (B.4.1) according to (B.4.2). Let define

y− = limx↑s(t) y(x, t) and y+ = limx↓s(t) y(x, t) respectively the left and right traces of y

along Γ. Then, we have

- The Rankine-Hugoniot condition:

ṡ(t) =
d

dt
s(t) =

f(y+)− f(y−)

y+ − y−

- The Olĕınik entropy condition:

f(y+)− f(y−)

y+ − y− ≤ f(k)− f(y−)

k − y−

for all k ∈ R.

- The Lax entropy condition:

f ′(y+) ≤ ṡ ≤ f ′(y−)

222

te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7



Appendix B. Mathematical background

remark B.4.1 A geometric interpretation of the Olĕınik entropy condition is that a

discontinuity between y− and y+ is allowed to propagate if the graph of f is below (re-

spectively above) the line connecting y− and y+ when y+ ≤ y− (respectively y− ≤ y+).

A geometric interpretation of the Lax entropy condition is that the characteristic lines,

which have slope f ′(y), should be oriented towards the shock curve on the immediate left

and right of it.

Proof. Let O ⊂ Ω be a neighborhood of the curve Γ and let consider the decomposition
O = O1 ∪ Γ ∪ O2 where the solution y is assumed to be C1 on O1 and O2. From the
Kružkov characterization (B.4.2) with φ ∈ C2

0(O), an integration by parts gives

∫ ∞

0

∫

O1

(
∂t|y − k|+ ∂xsg(y − k)

(
f(x, y)− f(x, k)

)
− sg(y − k)

(
g(x, y)− ∂xf(x, k)

))
φ dxdt

+

∫ ∞

0

∫

O2

(
∂t|y − k|+ ∂xsg(y − k)

(
f(x, y)− f(x, k)

)
− sg(y − k)

(
g(x, y)− ∂xf(x, k)

))
φ dxdt

+

∫

Γ

(
|y−−k| − |y+−k|

)
ηt +

(
sg(y−−k)(f(u−)−f(k))− sg(y+−k)(f(u+)−f(k))

)
ηx

)
φ dΓ ≥ 0

where (ηx, ηt) is the outward normal to the open set O1. By taking the special test

function φε(x, t) = θ(t)σε
Γ(x) with θ(t) ∈ C2, σε

Γ(x) ∈ C2 and σε
Γ(x) = 1 in the interval

(s(t)− ε, s(t) + ε) and 0 elsewhere, we get with ε→ 0

−
(
|y−−k| − |y+−k|

)
ṡ+

(
sg(y−−k)(f(u−)−f(k))− sg(y+−k)(f(u+)−f(k))

)
≥ 0

as (1,−ṡ) is collinear to and has the same orientation than (ηx, ηt). Taking successively

k > max(y−, y+) and k < min(y−, y+), we get

f(y+)− f(y−) ≤ ṡ(y+ − y−) ≤ f(y+)− f(y−)

which is the Rankine-Hugoniot condition. Now, taking k between y− and y+, we get

sg(y+ − y−)(y+ + y− − 2k)ṡ ≥ sg(y+ − y−)(f(y+) + f(y−)− 2f(k))

which rewrites using simple manipulations and the fact that f(y+)−f(y−) = ṡ(y+−y−)

sg(y+ − y−)(y+ − y− + 2y− − 2k)f(y+)− f(y−)

≥ sg(y+ − y−)(y+ − y−)(f(y+)− f(y−) + 2f(y−)− 2f(k))

Simple cancellations and dividing by 2 leads to

(
f(y+)− f(y−)

)
(y− − k) +

(
f(k)− f(y−)

)
(y+ − k) ≥ 0

with gives the Olĕınik entropy condition by dividing by (y+−y−)(k−u−) ≥ 0. Half of the

Lax entropy condition is immediate by taking k ↑ y− in the Olĕınik entropy condition.

The other half follows using simple manipulations of the Olĕınik entropy condition and

then k ↓ y+. �
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Appendix B. Mathematical background

Definition B.4.2 (Riemann problem for scalar conservation laws) A Riemann

problem for the scalar conservation law

∂ty + ∂xf(y) = 0 (B.4.3)

is a Cauchy problem with the piecewise constant initial condition

y(x, 0) =

{
y− , x < 0

y+ , x > 0
(B.4.4)

Lemma B.4.3 (Solution of the Riemann problem with concave flux) The Rie-

mann problem (B.4.3) with a concave flux function f and initial data (B.4.4) has a

self-similar (i.e. y(x,t)=y(x/t)) analytical solution given by

- if y− ≤ y+

y(x, t) =





y− , x ≤
(

f(y+)−f(y−)
y+−y−

)
t

y+ , x >
(

f(y+)−f(y−)
y+−y−

)
t

(B.4.5)

- if y− > y+

y(x, t) =





y− , x ≤ f ′(y−) t

f ′−1(x/t) , f ′(y−) t < x < f ′(y+) t

y+ , x ≥ f ′(y+) t

(B.4.6)

(B.4.5) and (B.4.6) are respectively called a shock and a rarefaction wave.

B.5 Linear algebra

Definition B.5.1 (Schur complement) Consider the block matrice

M =

(
A B

C D

)

with matrices A, B, C and D respectively of size p× p, p× q, q × p and q × q. If D is

invertible, the Schur complement with respect to D writes

A−BD−1C

Similarly, if A is invertible, the Schur complement with respect to A writes

D − CA−1B

Definition B.5.2 (Positive definiteness) A square matrix A is said to be positive

definite if xTAx > 0 for all x.

Theorem B.5.1 (Positive definiteness and Schur complement) The nonlinear

matrix inequalities A−BD−1C > 0 and A−BD−1C > 0 and equivalent to
(
A B

C D

)
> 0
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Appendix C

Entropy inequalities for on-ramps

In this appendix, we prove 2 theorems related to the Cauchy problem that involves the

pointwise on-ramp model

∂tρ+ ∂xΦ̂(x, t, ρ) = 0 (C.0.1)

where Φ̂(x, t, ρ) is the discontinuous flux function

Φ̂(x, t, ρ) = Φ(ρ) +H(−x)φ̂i(t)

Kruzkov’s theory [Kružkov, 1970] cannot be applied directly to Equation (C.0.1) as

the flux function is not continuously differentiable. Nevertheless, inspired from [Seguin

& Vovelle, 2003], which itself relies heavily on [Temple, 1982] and [Towers, 2000], we

can prove the following theorems that extends quite transparently Kruzkov’s theory.

Moreover, the second theorem provides an entropy condition that should be verified at

x = 0 and enables to select the unique physical solution is some Riemann problems.

Theorem C.0.1 Given the initial condition ρI ∈ BV (R+ × R) ∩ L∞(R+ × R) and a

concave flux function Φ(·), the Cauchy problem with (C.0.1) admits an entropy solution

ρ ∈ BV (R+ × R) ∩ L∞(R+ × R) satisfying the following entropy inequalities: ∀k ∈ R,

∀φ ∈ C2
0 (R+ × R) with φ ≥ 0,

∫

R+

∫

R

(
|ρ− k|∂tφ+ sign(ρ− k)

(
Φ(ρ)− Φ(k)

)
∂xφ
)
dxdt

+

∫

R+

φ̂i(t)φ(0, t) dt+

∫

R

|ρI − k|φ(x, 0) dx ≥ 0 (C.0.2)

Proof. Let consider a regularization of Equation (C.0.1) with Hε(·) a smooth monotone

non-increasing functions, as depicted on Figure C.1, verifying

Hε(x) =





0 , x ≤ −ε
1 , x ≥ ε

∈ [0, 1] , x ∈ [−ε, ε]
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Appendix C. Entropy inequalities for on-ramps

Hε(−x)

x

−ε ε

Figure C.1: Regularized Heaviside distribution.

In that setting, Kruzkov’s theory [Kružkov, 1970] applies to the Cauchy problem

{
∂tρ+ ∂xΦ̂ε(x, t, ρ) = 0

ρε(x, 0) = ρI(x)
(C.0.3)

with the regularized flow function given by

Φ̂ε(x, t, ρ) = Φ(ρ) +Hε(−x)φ̂i(t)

Consequently, Problem (C.0.3) admits a unique entropy condition ρε ∈ BV ∩ L∞ char-

acterized (see appendix) by the entropy inequalities: ∀k ∈ R, ∀φ ∈ C2
0 (R+ × R), φ ≥ 0,

∫

R+

∫

R

(
|ρε − k|∂tφ+ sign(ρε − k)

(
Φ̂ε(t, x, ρε)− Φ̂ε(t, x, k)

)
∂xφ

− sign(ρε − k)∂xΦ̂ε(t, x, k)φ
)
dxdt+

∫

R

|ρI − k|φ(x, 0) dx ≥ 0

which can be rewritten

∫

R+

∫

R

(
|ρε − k|∂tφ+ Ψ(ρε, k)∂xφ+ sign(ρε − k)H ′

ε(−x)φ̂i(t)φ
)
dxdt

+

∫

R

|ρI − k|φ(x, 0) dx ≥ 0 (C.0.4)

with the so-called entropy flux given by

Ψ(ρε, k) = sign(ρε − k)
(
Φ̂ε(t, x, ρε)− Φ̂ε(t, x, k)

)

= sign(ρε − k)
(
Φ(ρε)− Φ(k)

)

The inequalities given in (C.0.4) means that the measure

∂t|ρε − k|+ ∂xΨ(ρε, k)− sign(ρε − k)H ′
ε(−x)φ̂i(t) ≤ 0

is non positive and thus bounded for all ε > 0. As ρε ∈ BV ∩ L∞, ∂tρε is a Radon

measure, ∂t|ρε − k| is a bounded measure. Moreover, TV
(
Hε(−x)φ̂i(t)

)
≤ φ̂i(t) ensures
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Appendix C. Entropy inequalities for on-ramps

that sign(ρε−k)H ′
ε(−x)φ̂i(t) is a bounded measure as well. We conclude that ∂xΨ(ρε, k)

is a bounded measure and then Ψ(ρε, k) is a BV function with ||Ψ(ρε, k)||BV uniformly

bounded for all ε > 0. Using Helly’s theorem then ensures that a subsequence of Ψ(ρε, k)

converges strongly in L1 thanks to the compactness property of BV .

We now use the fact that Φ(·) is concave and so has a unique maximum, implying

that the function Ψ(·, ρc) is monotonically decreasing as depicted on Figure C.2. The

fact that Ψ(·, ρc) is invertible with continuous inverse then ensures that a subsequence of

ρε converges to ρ ∈ BV . The function Ψ(·, ρc) is called a Temple function and was first

used in [Temple, 1982] to prove the wellposedness of a nonstrictly hyperbolic conservation

law. It was used in [Towers, 2000] to prove the wellposedness of a conservation law with

discontinuous flux function.

ρε

Ψ(ρε, ρc)

Φ(ρε)

Figure C.2: Temple function used in the proof.

We now show that every limit ρ of a subsequence of ρε verify the entropy inequalities

(C.0.2). First, as a subsequence of ρε converges in L1 to ρ, we have |ρε−k| → |ρ−k| and

Ψ(ρε, k) → Ψ(ρ, k) in L1 in Equation (C.0.4). For the third term of Equation (C.0.4),

we have

∫

R+

∫

R

sign(ρε − k)H ′
ε(−x)φ̂i(t)φ dxdt ≤

∫

R+

∫

R

|H ′
ε(−x)|φ̂i(t)φ dxdt
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Appendix C. Entropy inequalities for on-ramps

As |sign(ρε − k)| ≤ 1. Now, Hε(−x) being monotonically decreasing, we conclude

∫

R+

∫

R

|H ′
ε(−x)|φ̂i(t)φ dxdt = −

∫

R+

∫

R

H ′
ε(−x)φ̂i(t)φ dxdt

=

∫

R+

∫

R

Hε(−x)φ̂i(t)∂xφ dxdt

−−→
ε→0

∫

R+

∫

R

H(−x)φ̂i(t)∂xφ dxdt

=

∫

R+

∫

R

δ(x)φ̂i(t)φ dxdt

=

∫

R+

φ̂i(t)φ(0, t) dt

which gives the entropy inequalities (C.0.2) given in the theorem. As the solution ρε of

the regularized problem (C.0.3) is compact in L1 and has at least one adherence value ρ

which verifies (C.0.2), we conclude that there exists at least one solution to (C.0.1) with

initial data in BV that verifies the entropy inequalities (C.0.2). Theorem C.0.1 do not

provide the uniqueness of ρ but (C.0.2) turns out to be enough to compute the unique

possible solution to the Riemann problems associated to (C.0.1). �

As for the homogeneous situation, choosing adequate test functions give the following

Rankine-Hugoniot and entropy conditions.

Theorem C.0.2 Let ρ− = limx↑0 ρ and ρ+ = limx↓0 ρ be the traces of ρ ∈ BV at x = 0.

A weak solution of (C.0.1) verifying the entropy inequalities (C.0.2) also verifies the

following local characterizations:

- Rankine-Hugoniot condition:

Φ(ρ+) = Φ(ρ−) + φ̂i(t)

- Entropy condition:

Φ′(ρ−) > 0 or Φ′(ρ+) ≤ 0 or both

Proof. A weak solution of (C.0.1) satisfies

∫

R+

∫

R

(
ρ∂tφ+ Φ̂(x, t, ρ)∂xφ

)
dxdt−

∫

R

ρIφ(x, 0) dt = 0 for all φ ∈ C2
0 (R× R+)

Let consider the small neighborhood O of R×R+ near the line x = 0, sufficiently small

that ρ is smooth in O, except on {x = 0}. Taking test functions φ ∈ C2
0(O), the weak

formulation gives

∫ ∫

O\{x=0}

(
∂tρφ+ ∂xΦ̂(x, t, ρ)φ

)
dxdt+ Φ̂(x, t, ρ+)− Φ̂(x, t, ρ−) = 0
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Appendix C. Entropy inequalities for on-ramps

For sufficiently small O, ρ solves (C.0.1) strongly in O\{x = 0} and the remaining term

is Φ̂(x, t, ρ+)− Φ̂(x, t, ρ−) = 0, which writes explicitly

Φ(ρ+) = Φ(ρ−) + φ̂i(t)

and thus gives the Rankine-Hugoniot condition of the theorem. Note that this condition

is no more that the flow conservation principle at x = 0.

To prove the entropy condition, let consider, as depicted in Figure C.3, a smooth

cut-off function σε(x) which is monotonically increasing for x ≤ 0 and monotonically

decreasing for x ≥ 0. Such a function σε(x) ∈ C2
0 (R) can be defined by

σε(x) =





0 , |x| ≥ 2ε

1 , |x| ≤ ε

∈ [0, 1] , ε < |x| < 2ε

σε(x)

x

−2ε 2ε−ε ε

Figure C.3: Example of a cut-off function.

By choosing the test function φ in (C.0.2) to be φε = θ(t)σε(x) with θ(t) ∈ C2
0 (R)

and θ(t) ≥ 0, we get

∫

R+

∫

R

(
|ρ− k|∂tθ

′(t)σε(x) + Ψ(ρ, k)θ(t)σ′
ε(x)

)
dxdt

+

∫

R+

φ̂i(t)θ(t)σε(0) dt+

∫

R

|ρI − k|θ(0)σε(x) dx ≥ 0

with Ψ(ρ, k) = sign(ρ− k)
(
Φ(ρ)− Φ(k)

)
. Now, making ε→ 0, we obtain

∫

R+

(
Ψ(ρ−, k)−Ψ(ρ+, k) + φ̂i(t)

)
θ(t) dxdt ≥ 0

which is equivalent to

Ψ(ρ−, k)−Ψ(ρ+, k) + φ̂i(t) ≥ 0

Taking k = ρc and using the Rankine-Hugoniot condition φ̂i(t) = Φ(ρ+)−Φ(ρ−), we get

(
Ψ(ρ−, ρc)− Φ(ρ−)

)
−
(
Ψ(ρ+, ρc)− Φ(ρ+)

)
≥ 0
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Appendix C. Entropy inequalities for on-ramps

Let consider the new Temple-like function Υ(ρ) defined by Υ(ρ) = Ψ(ρ, ρc) − Φ(ρ), as

depicted on Figure C.4. The last inequality becomes

Υ(ρ−) ≥ Υ(ρ+) (C.0.5)

ρ

Υ(ρ) = Ψ(ρ, ρc) − Φ(ρ)

Φ(ρ)

Ψ(ρ, ρc)

ρc

Figure C.4: Temple-like function Υ(ρ).

We now proceed by contradiction. Let assume that Φ′(ρ−) ≤ 0 and Φ′(ρ+) > 0.

Then, necessarily ρ− ≥ ρc and ρ+ < ρc so Υ(ρ−) < Υ(ρ+), which contradict (C.0.5).

The theorem follows. �
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Appendix D

Switched formulation for onramps

We propose in this section to completely solve the Riemann problem with initial data

ρ− for x < 0 and ρ+ for x ≥ 0 when an on-ramp with inflow φ̂ is present at x = 0. To

do so, we do not have an other choice than considering all the possible situations for the

different values of ρ−, ρ+ and φ̂.

D.1 Admissible boundary values

First, we determine all the admissible boundary values for the cases ρ− < ρc, ρ
− > ρc,

ρ+ < ρc and ρ+ > ρc. Figure D.1 gives a compact representation of these admissible

ρ

φ

Φ(ρ+)

Φ̂(ρ−, φ̂)

ρ+
m

ρc ρm

Figure D.1: Sets of admissible boundary values for all configurations.

sets for these 4 cases, the 2 fundamental diagrams being Φ(ρ) for the downstream link

and Φ̂(ρ) = Φ(ρ) + φ̂ for the upstream link. In Figure D.1, the dots are the proposed

boundary conditions for the upstream link (on Φ̂(ρ−, φ̂)) and the downstream link (on

Φ(ρ+)) and the stripes as well as the isolated dots are the sets of admissible boundary

values according to the BLN formulation [Bardos et al., 1979]. The proposed boundary
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Appendix D. Switched formulation for onramps

values and admissible sets are drawn below the fundamental diagrams for densities below

ρc and above them for densities above ρc.

D.2 Analytical solution of the Riemann problem

We adopt the following methodology to compute the solution to the Riemann problem.

First, ρ− is swept in the interval (0, ρm) with φ̂ a positive constant. then, ρ+ is swept in

(0, ρm) and we deduce all the possible wave interactions. Each case is then labelled with

a letter in a box and a circled number, the letter being related to the value of ρ− and

the number to the value of ρ+. To simplify the exposition, all the possible wave patterns

are given in the graphical form.

A Ê FR

A Ë FS

A Ì FS

A Í BS
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Appendix D. Switched formulation for onramps

A Î S

B Ê D

B Ë BS

B Ì S

C Ê D
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Appendix D. Switched formulation for onramps

C Ë BS

C Ì S

D Ê D

D Ë BS

D Ì BR
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Appendix D. Switched formulation for onramps

D Í S

We conclude that there is 15 possibilities in total when solving an on-ramp interface

problem. All these wave patterns are summarized in Figure D.2 and Table D.1, which

are more convenient for the remaining analysis.

ρ

φ

Φ(ρ+)

Φ̂(ρ−, φ̂)

ρ+
m

ρc ρm

ρ−

Ê Ë Ì Í Î

A

ρ

φ

Φ(ρ+)

Φ̂(ρ−, φ̂)

ρ+
m

ρc ρm

ρ−

Ê Ë Ì

B

ρ

φ

Φ(ρ+)

Φ̂(ρ−, φ̂)

ρ+
m

ρc ρm

ρ−

Ê Ë Ì

C

ρ

φ

Φ(ρ+)

Φ̂(ρ−, φ̂)

ρ+
m

ρc ρm

ρ−

Ê Ë ÍÌ

D

Figure D.2: Possible situations when solving the Riemann problem at interfaces with

an on-ramp. Each plot corresponds to a representative value of ρ− and each number

represents a region where the value of ρ+ gives a specific solution.

The situations
[

C , Ê
]

and
[

D , Ê
]

cannot occur in normal conditions as they

correspond to a congested state upstream of the ramp and a free state downstream of

it. Such situations can only be obtained if the vehicles are not allowed to enter freely in

the next freeway section, which is not realistic.

The remaining states can be classified in the following 4 groups:

- Free:
[

A , Ê
]
,
[

A , Ë
]

and
[

A , Ì
]

correspond to a situation where
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Appendix D. Switched formulation for onramps

A Ê

{
ρ+ < ρc

Φ(ρ+) < Φ̂(ρ−, φ̂)
FR

ρ− < ρc Ë

{
ρ+ < ρc

Φ(ρ+) > Φ̂(ρ−, φ̂)
FS

Φ̂(ρ−, φ̂) < Φm Ì

{
ρ+

m > ρ+ > ρc

Φ(ρ+) > Φ̂(ρ−, φ̂)
FS

Í

{
ρ+

m > ρ+ > ρc

Φ(ρ+) < Φ̂(ρ−, φ̂)
BS

Î ρ+ > ρ+
m S

B Ê ρ+ < ρc D

ρ− < ρc Ë ρ+
m > ρ+ > ρc BS

Φ̂(ρ−, φ̂) > Φm Ì ρ+ > ρ+
m S

C Ê ρ+ < ρc D

ρ− > ρc Ë ρ+
m > ρ+ > ρc BS

Φ̂(ρ−, φ̂) > Φm Ì ρ+ > ρ+
m S

D Ê ρ+ < ρc D

ρ− > ρc Ë

{
ρ+

m > ρ+ > ρc

Φ(ρ+) < Φ̂(ρ−, φ̂)
BS

Φ̂(ρ−, φ̂) < Φm Ì

{
ρ+

m > ρ+ > ρc

Φ(ρ+) > Φ̂(ρ−, φ̂)
BR

Í ρ+ > ρ+
m S

Table D.1: Possible wave patterns for the Riemann problem of an onramp interface.

236

te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7



Appendix D. Switched formulation for onramps

the upstream boundary condition is transferred downstream according to the rela-

tionship ρ+ = Φ−l
(
Φ(ρ−) + φ̂

)
with Φ−l(·) the left inverse of Φ(·).

- Congested:
[

A , Í
]
,
[

B , Ë
]
,
[

C , Ë
]
,
[

D , Ë
]

and
[

D , Ì
]

correspond to a situation where the downstream boundary condition is transferred

upstream according to ρ− = Φ−r
(
Φ(ρ+)− φ̂

)
with Φ−r(·) the right inverse of Φ(·).

- Decoupled:
[

B , Ê
]

corresponds to a ramp flow that is large enough to create

a congestion wave. This situation typically occurs when the on-ramp becomes a

bottleneck. In this situation, the maximal flow crosses the interface with ρ+ = ρc

and ρ− = Φ−r
(
Φm − φ̂

)
. The term decoupled is proposed here as there is no

transmission (causality) of the boundary values in this case. As a consequence, the

2 links can be virtually disconnected without modifying the solution.

- Saturated:
[

A , Î
]
,
[

B , Ì
]
,
[

C , Ì
]

and
[

D , Í
]

correspond to

a situation where the prescribed on-ramp flow φ̂ is not realizable as Φ(ρ+) < φ̂.

In this case, φ̂ is decreased to Φ(ρ+) by storing vehicles on the ramp, leading to

ρ− = ρm. It can be noted that this modification is the only one that preserves

the conservation of vehicles. However, the onramp flows are usually assumed to be

feasible, which removes the Saturated state.

Going further, the on-ramp interface behavior can be put in the form of a Finite

State Machine (FSM) revealing the hybrid nature of the LWR model. In this FSM, the

states are F, C, D and S respectively for Free, Congested, Decoupled and Saturated

and transitions occur when the boundary values ρ− and ρ+ cross some prescribed values,

possibly depending on the ramp flow. The Riemann problem solutions given in Table

D.1 provide the following possible transitions:

- F → F:
[

A , Ê
]
,
[

A , Ë
]

and
[

A , Ì
]
.

- F → C:
[

A , Í
]

and
[

B , Ë
]
.

- F → D:
[

B , Ê
]
.

- D → D:
[

B , Ê
]
.

- D → F:
[

A , Ë
]
.

- D → C:
[

D , Ë
]
.

- D → S:
[

D , Í
]
.

- S → C:
[

D , Ì
]
.
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Appendix D. Switched formulation for onramps

- F → S:
[

A , Î
]

and
[

B , Ì
]
.

- C → C:
[

A , Í
]
,
[

C , Ë
]
,
[

D , Ë
]

and
[

D , Ì
]
.

- C → F:
[

A , Ì
]
.

- C → S:
[

C , Ì
]
,
[

D , Í
]
.

Note that some Riemann problem solution can be affected to several transition. For

instance, if
[

A , Ì
]

occurs when in the F state, it means that the congestion wave

that came from downstream was not strong enough the put the upstream link in a

congested state. On the other side, if
[

A , Ì
]

occurs when in the C state, it

means that a free flow wave came from upstream and is strong enough to free the traffic

downstream. Moreover, note that S is an intermediate state where a queue builds up

at the on-ramp and leads to C. This queue can be taken into account by adding its

length as a continuous state in S, its evolution being modelled by a simple integrator.

Nevertheless, we generally assume that the state S never occurs.

For this reason, the state S is often not mentioned explicitly in the book.

The switched interface model presented above can then be put in the form of the

Finite State Machine given in Figure D.3. The off-ramp case can be treated in a similar

way, leading to a FSM which is very similar to the one given in Figure D.3.
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Appendix D. Switched formulation for onramps

F C

D

S

Figure D.3: Finite State Machine modelling the on-ramp interface behavior.
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Appendix E

Analysis of the LWR model with a

singular source term

E.1 The method of generalized characteristics

We recall that the LWR model with a singular source term is

∂tρ(t, x) + ∂xΦ(ρ(t, x)) =
Non∑

i=1

δ(x− x̂i)φ̂i(t) +

Noff∑

j=1

δ(x− x̌j)φ̌j(t) (E.1.1)

Let analyse this model using the method of generalized characteristics introduced in

[Dafermos, 1977b]. The homogeneous LWR model on x ∈ (0, L) writes in quasi-linear

form

∂tρ(t, x) + Φ′(ρ(t, x))∂xρ(t, x) = 0 (E.1.2)

It can be partially solved by the method of characteristics [Evans, 1998] which states

that ρ(ξ(t, x0), t) = σ(t, x0) where (ξ, σ) solves the ordinary differential equation





ξ̇(t, x0) = Φ′(σ(t, x0)
)

σ̇(t, x0) = 0

ξ(0, x0) = x0

σ(0, x0) = yI(x0)

(E.1.3)

with t the independent variable and x0 ∈ (0, L) parameterizing the initial condition.

Assuming that the solution ρ is piecewise-C1, then the product Φ′(ρ(t, x))∂xρ(t, x) in

(E.1.2) is not well-defined in general as it may involves a Dirac measure and a discon-

tinuous function at the jump locations. To overcome this difficulty and allow the use

of the characteristic method, the author of [Dafermos, 1977b] introduced the concept

of generalized characteristics and showed that (E.1.3) is still valid if interpreted in the

sense of Filippov [Filippov, 1988] when the right side of (E.1.3) is irregular. For the ho-

mogeneous LWR model (E.1.2), it is shown in [Dafermos, 1977b] that the characteristics
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Appendix E. Analysis of the LWR model with a singular source term

ξ(t, x0) are Lipschitz curves with corners when reaching a shock wave. Outside shocks,

they are straight lines as mentioned in [Ansorge, 1990].

Let now consider the Charatheodory ordinary differential equation [Filippov, 1988]





ξ̇(t, x0)
.
= Φ′(ρI(x0

)

σ̇(t, x0)
.
=
∑Non

i=1 δ(ξ(t, x0)− x̂i)φ̂i(t) +
∑Noff

j=1 δ(ξ(t, x0)− x̌j)φ̌j(t)

ξ(0, x0)= x0

σ(0, x0)= ρI(x0)

(E.1.4)

where the symbol
.
= means that the left and right hand sides are equals almost every-

where due to the possible presence of discontinuous terms or singular measures. Setting

σ(t, x0) = ρ(ξ(t, x0), t) , we get

σ̇(t, x0) =
d

dt
ρ(ξ(t, x0), t) = ∂tρ(ξ(t, x0), t) + ξ̇(t, x0)∂xρ(ξ(t, x0), t)

= ∂tρ(ξ(t, x0), t) + Φ′(σ(t, x0)
)
∂xρ(ξ(t, x0), t)

=
Non∑

i=1

δ(ξ(t, x0)− x̂i)φ̂i(t) +

Noff∑

j=1

δ(ξ(t, x0)− x̌j)φ̌j(t)

Following the method developed in [Filippov, 1988] and [Dafermos, 1977b], the ordinary

differential equation (E.1.4) has a unique continuous solution for all x0 even if it is

defined almost everywhere and has an irregular right hand side. The local characteristic

behavior is analysed in a subset (x, t) ∈ (xL, xR)×(t−, t+) where ξ(t, x0) is assumed to be

a piecewise straight line with a corner at the on-ramp location, as represented on Figure

E.1. In particular, this local analysis enables to consider one on-ramp only and analyse

its local behavior. Two cases are considered in the analysis, the case of monotonic wave

6

-

x = x̂

x

t

I
(xL, xR)× (t−, t+)

ρ+

ρ−

�
φ(t)

Figure E.1: Restricted region with a ramp.

propagation when the characteristic crosses the on-ramp and the case of reflexive wave

propagation then the characteristic is reflected at the on-ramp.
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Appendix E. Analysis of the LWR model with a singular source term

E.2 Case of monotonic wave propagation

We consider in this section the special case (represented on Figure E.1) where ξ(t, x0) is

monotonic and invertible.To solve (E.1.4), a regularization of the problem is considered.

Let set δε(x) = 1
ε
g
(

x
ε

)
with ε > 0 and g(x) ∈ C∞(R) satisfying

1. g(x) = 0 for |x| ≥ 1

2. g(x) ≥ 0

3.
∫ 1

−1
g(x)dx = 1

Then δε(x) approximates the Dirac distribution, i.e. limε↓0 δε(x) = δ(x), and we have the

regularized Heaviside distribution

Hε(x) =

∫ ∞

−∞
δε(s)ds

with the inherited properties

1. Hε(x) = 0 for x ≤ ε

2. Hε(x) = 1 for x ≥ ε

3. sup
R
|Hε(x)| = 1

Regularizing the problem consist in replacing δ(·) by δε(·) in Equation (E.1.4) to get

{
ξ̇(t, x0) = Φ′(σ(t, x0)

)

σ̇(t, x0) = δε(ξ(t, x0)− x̂)φ(t)
(E.2.1)

In that case, we choose xL < ξ(t−) < x̂− ε and xR > ξ(t+) > x̂− ε for the local analysis.

For ε small enough, we consider that no shock occurs in (xL, xR)× (t−, t+), leading to a

solution as represented in figure E.2. Multiplying the first and the second equations in

x

t

2ε

x = ξε(t, x0)

x = ξ(t, x0)

x̂x0

Figure E.2: Regularized problem close to the interface.
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Appendix E. Analysis of the LWR model with a singular source term

(E.2.1) and integrating between t− and t+, we get

I =

∫ t+

t−
Φ′(σ(t, x0)

)
σ̇(t, x0)dt =

∫ t+

t−
δε(ξ(t, x0)− x̂)ξ̇(t, x0)φ(t)dt

The left side gives

I = Φ
(
σ(t+, x0)

)
−Φ
(
σ(t−, x0)

)

and the right side gives

I =

∫ ξ(t+,x0)

ξ(t−,x0)

δε(s− x̂)φ(ξ−1(s, x0))ds

=
[
Hε(s− x̂)φ(ξ−1(s, x0))

]ξ(t+,x0)

ξ(t−,x0)
−
∫ ξ(t+,x0)

ξ(t−,x0)

Hε(s− x̂)
dφ(ξ−1(s, x0))

ds
ds

= φ(t+)−
∫ x̂+ε

x̂−ε

Hε(s− x̂)
dφ(ξ−1(s, x0))

ds
ds−

∫ ξ(t+,x0)

x̂+ε

d
(
φ(ξ−1(s, x0))

)

= φ(ξ−1(x̂+ ε, x0)) +

∫ x̂+ε

x̂−ε

Hε(s− x̂)φ̇(ξ−1(s, x0))ds

with the last term verifying

∫ x̂+ε

x̂−ε

|Hε(s− x̂)φ̇(ξ−1(s, x0))|ds ≤ 2ε sup
s∈(−ε,ε)

|φ̇(ξ−1(x̂+ s, x0))|

Making ε→ 0, (xL, xR)× (t−, t+) becomes an infinitely small neighborhood around the

interface and with φ(t) Lipschitz, we get

Φ
(
σ(t+, x0)

)
= Φ

(
σ(t−, x0)

)
+ φ(ξ−1(x̂, x0))

which is exactly the flow balance at the on-ramp interface. A closer look shows that the

map Φ(·) is locally invertible in the special case of monotonic wave propagation, which

explains the result. As in the strong formulation, the characteristics may intersect after

crossing the interface, leading to a classical shock.

Note that distributional calculus cannot be used here as σ̇Φ′(σ) is the product of a

measure with a discontinuous function, which is ill-defined in distribution theory. More-

over, we could be tempted to use the identity

δ(ξ(t, x0)− x̂) =
δ(t− ξ−1(x̂, x0))

|ξ̇(ξ−1(x̂, x0))|

but again, it is the same kind of product and ξ̇(ξ−1(x̂)) is not defined.

E.3 Case of reflexive wave propagation

Let consider a freeway which is in free flow upstream to an on-ramp at the initial con-

dition. Such a case is illustrated in Figure E.3. As time evolves, a characteristic may be
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Appendix E. Analysis of the LWR model with a singular source term

x

t

ε

x = ξε(t, x0)

x = ξ(t, x0)

x̂x0

Figure E.3: Regularized problem close to the interface.

reflected if the on-ramp flow exceeds the flow that can be transmitted downstream, i.e.

the capacity. Note that we do not consider the interaction between characteristics and

consider each characteristic as if it was isolated.

We consider again a regularized problem as represented in Figure E.3. If a charac-

teristic is reflected then there must be a time t̃(ε) when

ξ̇(t̃(ε), x0) = 0 ⇔ Φ′(σ(t̃(ε), x0)) = 0 ⇔ Φ(σ(t̃(ε), x0)) = Φm

So, formally, as ε → 0, we have t̃(ε) → t̃ and ξ(t̃(ε), x0) → x̂. We can thus assume

reasonably that Φ(ρ(x̂, t)) = Φm constitute the boundary condition for the downstream

domain.

The flow conservation principle then tells that Φ(ρ+) = max Φ(·)− φ̂(t) with ρ+ the

downstream state when the characteristic goes forward at the initial condition.

For illustration, we provide below some simulation of the aforementioned situations.

Figure E.4 shows the characteristics ξ and the density values σ for different values of

the regularizing parameter ε in the monotonic wave propagation case. We can see the

numerical convergence towards the physical solution. Figure E.5 shows the same vari-

ables in a reflexive wave propagation case where we can observe again the numerical

convergence towards the physical solution. Figure E.6 shows the birth and propagation

of a shock wave at an on-ramp and its dissipation through a rarefaction wave when the in

flow vanishes. This figure illustrates how a shock generates upstream as characteristics

intersect.
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Appendix E. Analysis of the LWR model with a singular source term

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
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22

24

26

28

30

32

34
density variable

Figure E.4: Regularized problem for the forward monotonic propagation case.
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Figure E.5: Regularized problem convergence for the forward reflective propagation case.
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Appendix E. Analysis of the LWR model with a singular source term

Figure E.6: Example of the birth of a shock and its dissipation when the inflow stops.

247

te
l-0

01
50

43
4,

 v
er

si
on

 1
 - 

30
 M

ay
 2

00
7



Appendix E. Analysis of the LWR model with a singular source term
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Résumé : Cette thèse traite de la modélisation des infrastructures autoroutières et de

leur gestion par des méthodes de régulation telles que le contrôle d’accès. L’approche

retenue est macroscopique et conduit à des modèles distribués sous forme d’équations

aux dérivées partielles non linéaires. Nous apportons plusieurs éclairages sur l’analyse et

la résolution de ces modèles (condition d’entropie pour les rampes d’accès, discrétisation

simplifiée) et proposons une interprétation hybride des inhomogénéités (conditions

aux limites, rampes d’accès et de sorties, variations brutales des paramètres) adaptée

aux problèmes de contrôle. Deux nouvelles méthodologies calculatoires sont ensuite

introduites pour concevoir des contrôleurs dynamiques s’appliquant à la gestion du

trafic. La première est formulée comme un problème de commande optimale en boucle

ouverte et nécessite l’adaptation de la méthode adjointe traditionnelle en raison de

l’irrégularité des solutions. La seconde repose sur une discrétisation sous la forme d’un

système affine commuté et une synthèse boucle fermée utilisant la dissipativité et les

inégalités matricielles linéaires.

Mots clefs : modèles macroscopiques de trafic, contrôle d’accès coordonné, sys-

tèmes de lois de conservation, contrôle optimal des systèmes distribués, systèmes affines

par morceaux, dissipativité des systèmes commutés, inégalités matricielles linéaires.

Macroscopic Freeway Modelling and Control.

Abstract: This PhD thesis deals with the issue of modelling and controlling freeway

systems. The macroscopic approach is adopted and gives rise to distributed models

represented by nonlinear partial differential equations. We provide several improvements

in the analysis of these models (entropy inequality, simplified numerical schemes) and

propose an hybrid formulation for the inhomogeneities (boundary conditions, on and

off ramps and abrupt parameter changes) that suits controller design tasks. Based on

these models, two computational control methodologies are introduced to conceive new

dynamic ramp metering strategies. The first one follows an optimal control formulation

and requires some extensions of the classical adjoint method due to the solution

irregularity. The second one relies on a discretization scheme that leads to a piecewise

affine system and uses dissipativity theory along with linear matrix inequalities to

compute feedback controllers.

Keywords : macroscopic freeway models, coordinated ramp metering, nonlinear

systems of conservation laws, optimal control of distributed systems, piecewise affine

systems, dissipativity of switched systems, linear matrix inequalities.

Discipline : Automatique-Productique

Laboratoire d’Automatique de Grenoble - ENSIEG - BP 46, 38402 Saint-Martin d’Hères, FRANCE.
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