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Abstract

During the last decade, “intelligent” environments augtedrby multiple sensors, including
cameras, microphones, and interaction devices have ehtdtdecomputer observation of hu-
man activity. In order to detect and respond to human agtigicontext model describing the
environment, its users and their activities must be maiethi In this thesis, context is repre-
sented by situation models. A situation is a kind of statedesd by a number of characteristic
roles and relations. A role is played by an entity and erstitin be in relations. An entity refers
to a person or object. A situation model can be defined ancem@hted by experts. Two exam-
ple implementations of this kind are presented in this gié¢$owever, human behavior evolves
over time. A situation model must be constructed and adagpt¢oimatically. This thesis ad-
dresses the problem by proposing a framework for the autoraeduisition and evolution of
different layers of a situation model. Different learningtmods are proposed as part of this
framework. The situation model serves as frame and suppotiié different methods, permit-
ting to stay in an intuitive declarative framework. The filsger of the framework concerns
role learning and detection. Bayesian classifier, suppertor machines (SVMs) and a novel
hybrid classifier combining SVMs and Bayesian classifierpesented and compared. Based
on the results of role detection, a method for unsupervigedt®n discovery is then proposed.
This method takes a multimodal observation stream as inpliganerates a first segmentation
into distinct observation sequences as output. This seti@mand associated situation labels
given by an expert or user are the input for supervised soiu&arning. A supervised situation
learning scheme is proposed. This scheme can be applieffisiedi learner classes, generating
a situation representation for each situation label andc®d observation sequences. Based
on the learned situation model, a method for the integratfomser preferences is presented.
This method adapts the learned situation model by spligihgations according to user feed-
back given on executed system services. The methods ofaheetvork have been evaluated
separately on data sets coming from different augmenteidogmaents. The complete frame-
work has been integrated into an intelligent home envirartmehe implementation has been
evaluated and the obtained results validate the propogedaqh.

Keywords: context modeling, situation model, deterministic and pimhstic implementa-
tion of situation models, automatic acquisition and evolubf situation models, role detection,
unsupervised situation discovery, supervised situagamling scheme, situation split.
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Chapter 1

Introduction

Ubiquitous computing94] integrates computation into every-day environments. fEono-
logical progress of the last decade has enabled compuleszaces equipped with multiple
sensor arrays, including microphones or cameras, andpteuftuman-computer interaction de-
vices. An early example is the Intelligent Roo&8], a conference room augmented by several
cameras, video projectors and displays as well as audieeand microphones (Figutel).

:“’ﬁ Pointing Camcras

f\

Displays

«—

Wireless
Microphone

\ / Receiver

Tracking Cameras

Figure 1.1: A simplified layout of the Intelligent Room at MAI Lab (picture from 4])

Smart home environment&7] and even complete apartments equipped with multiple senso
[35] have been realized. The major goal of these augmentedoaimants is to enable devices
to sense changes in the environment and to automaticallyssetd on these changes. A main
focus is sensing and responding to human activity. Humasrachust be identified and their
current activity needs to be recognized. Addressing thd tiger at the correct moment, while




Chapter 1. Introduction

perceiving his correct activity, is essential for correatrfan-computer interaction in augmented
environments.

1.1 Problem Definition

Augmented “intelligent” environments have enabled the potar observation of human (in-
ter)action within the environment. The analysis of (indetjons of two or more individuals is
of particular interest here because it provides infornmadilbout social context and relations and
it further enables computer systems to follow and antieaiman (inter)action. The latter is a
difficult task given the fact that human activity is situatidependentd0] and does not neces-
sarily follow plans. Computerized spaces and their deviegsire this situational information,
i.e. context 1], to respond correctly to human activity. In order to becoroatext-aware,
computer systems must thus maintain a model describingriieoement, its occupants and
their activities. In order for user to trust these systengstesn reasoning and behavior must,
however, be kept transparent for the users. A human undeisée context model is hence
essential, representing user behavior and needs as wghtassservice execution.

User Application

Top-down
specification and
implementation

by a human
W

: Sensors+Actuators

Figure 1.2: Top-down manual specification and implemeonadi a context model

Experts normally define and implement context models aaegrtb the needs of users and
application (Figurel.2). Based on user needs and envisaged application, a humareeng
specifies and implements the context model. Sensor pevosptcontext model and system
services to be provided are associated manually.
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[ Starts recording ( Someone enters
meets\ durin/
P before
[ Lecturer speaks |
/wets mee%
[ Asking question )

before &

New slide ™% Stoprecording )
before /

during

Figure 1.3: Wide-angle camera image of a lecture in the atinghier at INRIA Rhone-Alpes
(left) and a corresponding hand-crafted context modelgimfof a situation graph) (right)

Figurel.3shows an example of such a top-down implementation. The-amgge camera view
of a lecture and a corresponding context model in form of @wasibn graph are depicted (see
chapte# for details). The context model has been defined and implesddry engineers know-
ing the needs of users and application. The sensor perospie associated to the situations
manually.

Human behavior evolves over time. New activities and seées@merge in an intelligent envi-
ronment, others disappear. New services must be integrdatetthe environment, while obsolete
services should be deleted. A fixed context model is thus uffitent. Experts normally de-
fine, implement and adapt context models according to chgnweds of users and application.
However, experts are expensive and not always availableedter, the environment’s intelli-
gence lies in its ability to adapt its operation to accomni@tize users. The research challenge
is thus to develop machine learning methods for this proaes&ing it possible to automat-
ically acquire and evolve context models reflecting userabim and needs in an intelligent
environment (Figurd..4).

We can distinguish two different motivations for learnirantext models:

1. Knowledge engineering (acquisition of a context model)

2. User preferences integration (adaptation of a contexieto

A key requirement for context-aware intelligent enviromiseis the automatic acquisition and
evolution of an intuitive, comprehensible context models&d on computer observation of the
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environment, this context model must first be constructeduasmatically as possible using
machine learning methods (knowledge engineering), whalgiisg transparent for the user. The
user then should be able to integrate his preferences iistotdel, and adapt it constantly ac-
cording to the evolution of his behavior and needs (uselepeetces integration). Intelligibility
[12] of the context model and the reasoning process is impoirtaorder to permit the users to
trust the system.

User Application
Integration of User Preferences [
Situation Split *
User

Bottom-up, | ﬁ

Supervised Situation Learning

automatic

acquisition ﬁ
i,
and | Unsupervised Situation Extraction ‘ (@&
evolution <.
Enginesr

‘ Eole Detection per Entity

6)

il Sensors+Actuators

Figure 1.4: Bottum-up automatic acquisition and evolutba context model

1.2 Approach

The proposed approach addresses the problem by providingediigible framework for ac-
quiring and evolving a context model, callesduation model The methods proposed as part
of this framework acquire different layers of the situatimodel, with different levels of su-
pervision. The situation model serves as frame and suppotihé different learning methods,
permitting to stay in an intuitive declarative framework.

The situation model and the underlying concepts are metivay models of human perception
of behavior in an augmented environment. Human behavioessribed by a finite number of
states, calledituations These situations are characterized by entities playimgcpéar roles

and being in relation within the environment. Figur® gives an example of a situation model
for a lecture room. The situations “empty”, “lecture” anduthence” are characterized by the
roles “lecturer” and “audience” as well as the relation ‘®@meAs”. The situation model has
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Context Lecture

Lecturer{Entityl)
Audience(Entity2)
Entityl NotSameads Entity2

Audience

Audience(Entityi)

Figure 1.5: Example of a simple situation model for a lecturem. Empty, Audience and
Lecture are the available situationlsecturer, Audienceare the available roles amdbtSameAs
the available relation

been used to implement different applications like an aattrcameraman, or an interaction
group detector.

Figurel.6illustrates the framework for acquiring and evolving aaitan model. First, roles are
learned and detected based on collected data labeled byart.eSituations are then extracted
in an unsupervised manner from observation data. The ¢égtrattuation segments can then be
used to learn situation labels with user or expert input. rfEiselting situation model can finally
be evolved according to user feedback using the situatilin sp

Integration of User Preferences f
Situation Split

17

‘ Supervised Situation Learning ‘

7

‘ Tnsupervised Situation Extraction

17

‘ Eole Detection per Entity ‘

Figure 1.6: Framework for automatic acquisition and evofuof a situation model

Role learning and detection is based on event streams. €kesestreams contain the available
entities as well as their properties. An acceptance test fole is constructed by learning a role
label from these entity event streams. Role labels refeh¢oatbstract events necessary for
role assignment. For this, we compare methods based on a&iBaydassifier, support vector
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machines (SVMs) and a novel hybrid classifier combining Bayemethods and SVMs.

The unsupervised extraction of situations is based on arstcé multimodal observations. The
method that we propose detects change in the observatiwitbdieon by measuring the Jeffrey
divergence between adjacent histograms of observatidreselobservation distributions are
represented by histograms containing the frequency oétbbservations. To separate distinct
distributions of observations, two adjacent windows aicefsbm the beginning to the end of the
meeting recording, while constantly calculating the &sffidivergence between the histograms
generated from the observations within these windows. Heexs the sliding adjacent windows
is varied generating several Jeffrey divergence curves. pdaks of the resulting curves are
detected using successive robust mean estimation. Theteldjgeaks are merged and filtered
with respect to their height and window size. The retainemkpare finally used to select the
best model, i.e. the best allocation of observation distiiims for the given recording. This
allocation corresponds to a first unsupervised segmentatithe situations.

Segments of observations and the provided situation laelshe input for supervised situa-
tion learning. A supervised learning scheme iterates oiffarent classes of learners and the
associated parameterization in order to acquire a repws®anfor each situation label. The
best representation for each situation label is retainbds@ representations can then be used
to detect the situations and to construct the corresporsiingtion model.

The input for the integration of user preferences is a lehfoe predefined) situation model
along with user feedback from prior use. The feedback isrge executed system services
(associated to situations). An algorithmic method addmsassociations between system ser-
vices and situations according to the given feedback. lessary, a situation is split into sub-
situations, refining the perception of the system. The ssp&tions of the new sub-situations
are learned by using the supervised situation learningsehe

1.3 Evaluation and Results

The methods that we propose for acquiring and evolving sttnanodels have been integrated
into a complete system for an intelligent home environm&hé implementation is based on a
3D tracking system that creates and tracks targets in tiresdée extracted targets are used to
detect individual roles per entity. Observations are gateerbased on the role values of several
entities. These observations are the input for unsupehsgaation extraction. The results of
the extraction process are used for supervised situateoniley. The learned situation model
is then the basis for the integration of user preferencesagsociating and changing system
services with user feedback.

We have conducted two different evaluations (Figir@. A first evaluation was designed to




1.4. Thesis Outline

Integration of User Preferences f
Situation Split

1T

Supervised Situation Learning

1T

Tnzupervised Situation Extraction

TT Evaluation A  Evaluation B

ERaole Detection per Entity

Figure 1.7: Different parts of the implementation and tleegluation: role detection per entity,
unsupervised situation extraction, supervised situdgaming and integration of user prefer-
ences

analyze the effects of automatic situation extraction anmesvised situation learning for situ-
ation recognition. A second evaluation was then used talatdithe combination of the three
methods: unsupervised situation extraction, superviseat®n learning and integration of user
preferences.

The results of these evaluations validate our approachrfasralerstandable framework for
acquiring and evolving situation models. The results offitst evaluation show that unsuper-
vised situation extraction and multi-person observatienggation are beneficial for situation
recognition. The results of the second evaluation indidad the integration of the different
methods into an intelligent home environment system isilidasEven though the results are
encouraging, the error rates are still excessive. Furthpravements in detection and learning
algorithms are necessary in order to provide a reliableegyshat could be accepted by a user
in his daily life.

1.4 Thesis Outline

We give below an overview of the remainder of this thesis.

Chapter 2 analyses and defines the problem of this thesis with respdbetliterature. “In-
telligent” environments are defined as environments aug¢gadenith multiple sensors and in-
teraction devices, including cameras, microphones, atielovprojectors. Several examples of
intelligent environments are presented including smdited, smart home environments and
smart classrooms. The problem of context-aware servicplgup motivated and discussed.
In order to provide unobtrusive, proactive services, amaged environment must be aware
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of what the humans are doing in the environment and in whigttesd human actions take
place. Context refers not only to location information, tau&ny information that characterizes
a situation related to the interaction between humansiagtign and surrounding environment.
Context is further particular to each occasion of activityotion; the scope of contextual fea-
tures is redefined dynamically. In order for users to trusirstext-aware system, a user should
be able to understand and scrutinize the context reprégentand reasoning of the system.
Human behavior evolves over time. A context model must alsbve in order to accommodate
the changing needs of the users. Instead of hiring a teamgiriesr to keep the context model
of an augmented environment up to date, the environmeifitrtsest be adaptive. The research
challenge is to develop machine learning methods for tlosgss, making it possible to auto-
matically acquire and evolve context models reflecting be&avior and needs in an intelligent
environment. Two different motivations for learning coxitenodels are distinguished: Knowl-
edge engineering (acquisition of a context model) and Ussfepences (adaptation of a context
model). Knowledge engineering refers to building up a canteodel and context-aware sys-
tem from collected data. User preferences refer to the upglatocess, integrating changing
user preferences into an existing context model and syssamg user computer interaction. A
user preferences approach can include a knowledge engigsgep to set up an initial context
model. Several examples for learning context are then ptedeand compared with regard to
their comprehensibility for the user and their adaptivitydescription of the contributions of
this thesis to the problem concludes this chapter.

Chapter 3 proposes an abstract model for representing and perceigimgxt in augmented en-
vironments. First, the relationship between context anddiuactivity is discussed. According
to the obtained insights, a context model should describesed-world motivated by applica-
tion and user needs, be suitable and intuitive to providéaggbions to the user, and focus on
human relations and activities rather than environmeninggst Following these conclusions,
the situation model is defined. A situation is a form of stdtaracterized by a set of roles and
relations. Roles involve only one entity, describing itB\aty. An entity can be a person, place
or object considered to be relevant to user and applicafiarentity is observed to “play” a
role. Relations are defined as predicate functions on desatities, describing the relationship
or interaction between entities playing roles. A situatetwork is defined as a composition of
situations that share the same set of roles and relatioressifimtion model can be interfaced
with perceptual components of an augmented environmenbdRetion processes for roles and
relations are proposed. These recognition processestarprieted as acceptance tests applied
to the properties of relevant entities. Acceptance testsoles are applied to the properties of
all available entities in order to determine their role gssient. Acceptance tests for relations
are applied to the properties of entities already assigoedlés (“playing roles”). An accep-
tance test is based on events sent by perceptual compoEgatgs concern entities and their
properties. An acceptance test can be divided into tworeiffiephases: 1) filtering and 2) roles
and relation assignment. A filter is applied to the raw engignt stream in order to extract
more abstract events that reduce the dimension of the data.aRd relation assignment takes
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these abstract events as input and generates the corr@spooles and relations. An example
implementation of acceptance tests for the lecture scerspresented.

Chapter 4 details two possible “top-down” implementations of theiation model and gives an
example for each implementation. Situations and the uyigrbbstract concepts can be inter-
preted as finite-state machines. The finite-state machipkmentation influences the control
flow and how perceptions, coded as events, are finally useshtardreted to activate situations.
First, a deterministic implementation of situation modslpresented. This implementation is
based on Petri nets implementing the situations of the mdded implementation has been
used to implement an automatic cameraman. The automatieraamn is context-aware se-
lecting at every time, based on the current situation theagate camera to provide images.
The automatic cameraman has been successfully evaluaf@obAbilistic implementation of
situation models is further proposed. This implementaisdmased on hidden Markov models.
The states of the hidden Markov model represent the sitgtibhe implementation has been
used to implement a real-time detector for interaction gsoa’he objective was to detect the
split and merge of small groups during a meeting. The prapdséector has been successfully
evaluated. The choice of the implementation depends orpiblecation that is envisaged. Petri
nets can implement all Allen temporal operators, in paldicthose describing parallelism.
However, Petri nets can not model erroneous perceptionsiacertain situations (uncertain
expectations of perceptions for a situation and unceritiatson transitions). Hidden Markov
models are less rich in modeling temporal constraints (miqadar parallelism), but HMMs
permit to model erroneous input and uncertain situations.

Chapter 5 explores several methods for learning role acceptance fBsése methods are part
of the framework for the automatic acquisition and evoluid situation models. A role accep-
tance test is divided into a filtering phase and role andioglassignment. The filtering phase
is considered to be the key process, isolating abstractemecessary to activate a role. These
abstract events fuse and filter event streams coming froceptral components. The event
streams contain the available entities as well as theirgstigs. Three methods for learning dif-
ferent role labels from entity event streams are preseRtel@.labels refer to the abstract events
necessary for role assignment. The proposed methods &@ tas Bayesian classifier, support
vector machines (SVMs) and a hybrid classifier combininge3&én methods and SVMs. The
three methods have been evaluated on data sets recorde@uy@a@nted home environment.
The data sets were based on events created by a video traglstegn and contained five dif-
ferent role labels: “walking”, “standing”, “sitting”, “iteraction with table”, and “lying”. SVMs
outperformed the Bayesian classifier when recognizingethele labels. In order to measure
the performance to detect unseen role classes, each reldhabbeen excluded once from the
learning data. SVMs, Bayesian classifier and hybrid clagdifave been compared with regard
to the identification of the data associated to the excluditlabel. The hybrid classifier out-
performed the Bayesian classifier and the SVMs when idengfynseen roles, showing that
the proposed combination of generative and discriminaigénods is beneficial.
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Chapter 6 proposes a method for the unsupervised extraction of gtsmfrom multimodal
observations. The method is part of the framework for theraatic acquisition and evolu-
tion of situation models. The unsupervised situation discp has been applied to the field of
automatic analysis of small group meetings. The proposeitiodedetects changes in small
group configuration and activity based on measuring theeletfivergence between adjacent
histograms of observations. 14§], the authors showed that different meeting activities] an
especially different group configurations, have particdiatributions of speech activity. This
can be extended to distributions of multimodal observatiocoming from multi-sensory input.
These distributions are represented by histograms comdgihe frequency of these observa-
tions. To separate distinct distributions of observatian® adjacent windows are slid from
the beginning to the end of the meeting recording, while tantyy calculating the Jeffrey di-
vergence between the histograms generated from the obises/avithin these windows. The
size of the sliding adjacent windows is varied generativgis Jeffrey divergence curves. The
peaks of the resulting curves are detected using succeebivst mean estimation. The detected
peaks are merged and filtered with respect to their heightivemdiow size. The retained peaks
are finally used to select the best model, i.e. the best gibycaf observation distributions for
the given meeting recording. The method has been tested @sHinrt small group meeting
recordings, a seminar recording and a cocktail party mgeéoording. The short small group
meeting recordings and the seminar recording were baseddin,avhile the cocktail party
meeting recording included audio and video. The obtaingthsatation results are very good;
the audiovisual segmentation of the cocktail party meeatungerforms the pure video and pure
audio segmentations.

Chapter 7 addresses the supervised learning of situation. The peojaigorithm is part of the
framework for the automatic acquisition and evolution ¢digtion models. Supervised situation
learning is based on the segments of observations extrhgtadsupervised situation discov-
ery for each situation. Each segment corresponds to oratisitiu An expert or user provides
situation labels for each of these segments. Two or more &etgean have the same situation
label. The notion of learner is introduced as a learning oaktihat generates a situation rep-
resentation for a given segment of observations. ExamgleEsamer classes are expectation-
maximization(EM) algorithm (with hidden Markov models apresentations), or ID3 (with
decision trees as representations). An instance of thedeatass corresponds to a specific
parameterization of the learner (e.g. the number of statedbé HMMs to be learned). The pro-
posed situation acquisition algorithm produces or leamepeesentation for each situation from
given segments and the associated situation labels byintgi@/er possible learner classes and
learner instances. The objective is to find the represemistihat are the most discriminative
with regard to the given segments and associated situathmld, i.e. that maximize the ratio
of between-situation distance and within-situation dis&a(Fisher’s criterion). The proposed
supervised situation learning scheme is general and caddmel to many different learners
and applications. The proposed algorithm has been apmi@dvideo surveillance task. The
CAVIAR video clips have been used for evaluation and shofed#ht situations: “walking”,
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1.4. Thesis Outline

“browsing”, “fighting”, “waiting” and “object left”. Each wdeo is associated with an XML file
describing for each frame the entities and their properfigsse files have been created manu-
ally. The expectation maximization algorithm has been wsektarner class to create a HMM
representation for each situation based on the obsergatiaine XML files. The obtained re-
sults for situation recognition based on the learned remtasions are good.

Chapter 8 explores a method for evolving an initial situation modethwiiser feedback. The
proposed method is part of the framework for the automatigisttion and evolution of situ-
ation models. The initial situation model can either be pfeed by a human engineer or be
constructed automatically by the methods proposed in eh&pand 7. The learning process
must then adapt the situation model according to feedbaandiy the user on executed sys-
tem services. The proposed algorithm focuses on the adaptdtthe situations as well as the
situation network and the associated system services.nfhg to the algorithm is an initial
situation network along with feedback from prior use. Thedigack concerns the correction,
deletion and preservation of system services. The propagedthm tries first to adapt the sys-
tem services directly by changing the association betweeat®ns and services. In a second
step, if the feedback indicates that the concerned situaiooo general, the algorithm splits
the situation into sub-situations. The determination efc¢haracteristic observations describing
the sub-situations is interpreted as classification prablehe service labels of the training ex-
amples correspond to the class labels. The supervisedrigaatheme of chaptétis then used
to learn these class labels (corresponding to the subtisihisd from observation sequences.
The proposed algorithm has been tested in an augmented effld®nment. An initial situa-
tion network describing office activity has been defined byan engineer. Two new services
(turn-on and turn-off of the music player) have been colyectegrated into the situation model
based on supervisor feedback. Conceptual learning algasiFind-S and Candidate Elimina-
tion as well as decision tree algorithm ID3 have been usedaaaér classes (in the supervised
learning scheme) in order to learn the new sub-situations.

Chapter 9 describes the implementation and evaluation of the comflamework for acquir-
ing and evolving situation models. The proposed methodsdier recognition, unsupervised
situation discovery, supervised situation learning ategration of user preferences have been
integrated into an augmented home environment. This systéonbuild up automatically and
to evolve a situation model for human behavior in the scehe.perceptions of the system are
based on a 3D visual tracking system as well as speech aneémainsbund detection. Users wear
head set microphones in the environment. Role detectioonducted on the target properties
provided by the 3D tracker. Multimodal observations areegated based on role, speech and
ambient sound detection. An initial situation model for Behavior in the scene is constructed
using the segmentation of basic situations and the supehesrning of situation labels. The
resulting initial situation model is then evolved accoglio user preferences using feedback.
Two different evaluations have been conducted. A first estédan concerned unsupervised sit-
uation extraction and supervised situation learning. @d\wnall scenarios showing different
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situations like “presentation” or “siesta” were record€de recordings have been presegmented
automatically. The recognition rate of the situations senarios with and without automatic
presegmention has been investigated. A second evaluaiimremed the combination of the
three methods: unsupervised situation extraction, sugeghsituation learning and integration
of user preferences. Therefore, 3 (longer) scenarios vee@ded showing several situations
like “aperitif”, “playing game” or “presentation”. The recdings have first been automatically
segmented. Then, the extracted segments have been labdlgrbaituations have been learned.
Finally, the learned situation model has been evolved wsttr teedback. The recognition rate
of the labeled as well as of the added situation (via sitnadjalit) has been investigated. The
obtained results validate the approach for a frameworkdtoraatic acquisition and evolution
of situation models.

Chapter 10 summarizes and concludes this thesis. The main contrifmitbthis thesis are de-
scribed including probabilistic implementation of sitieatmodels, role learning and detection,
supervised learning scheme and situation split.

12



Chapter 2

Definition and Analysis of the Problem

This chapter aims at defining the problem of this thesis wadpect to the literature. First, the
notion of augmented or “intelligent” environment is defirmad illustrated by several exam-
ples. The key concepts of context-awareness and proagtvers behavior are motivated and
discussed. Then, the problem of learning context modelgakmmed. Several existing learning
approaches are compared with respect to their intelligfahd adaptability. A short overview

of the contributions of this thesis to the problem concluitieschapter.

2.1 Augmented “Intelligent” Environments

In the 1980s and early 1990s, Xerox PARC researcher MarkéNdmsveloped the concept of
ubiquitous computing, following the principle that:

“The most profound technologies are those that disappdey Weave them-
selves into the fabric of everyday life until they are ingiguishable from it.” P4]

The integration of computing devises into every-day emuments has been one of the predom-
inant trends over the last decade. Cell phones, PDAs andpajaimputers as well as WLAN
networks have become part of almost every household. T@nd gnablesomputer-everywhere
environments. These environments are augmented with pfeuliensors and interaction de-
vices. Coen34] defines the term of “intelligent” environments as “spaces/hich computation

is seamlessly used to enhance ordinary activity”. The obgcs to make computers not only
user-friendly but also invisible to the user. Interactiomvthem should be in terms of forms
that people are naturally comfortable with.

13
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One of the very first intelligent environments, thntelligent Roon{33], has been realized at
MIT Al Laboratory. The Intelligent Room is laid out like andinary conference room, with a
large table surrounded by chairs (Fig@r&). Mounted at various places in the conference area
are twelve video cameras, which are used by computer visisteisis. Two video projectors,
several video displays as well as audio devices and wireés®phones further augment the
environment. The objective of the Intelligent Room was tpakment with different forms of
natural, multimodal human-computer interaction (HCl)idgmwhat is traditionally considered
non-computational office activity. Numerous computeramsispeech and gesture recognition
systems are used to detect what inhabitants are doing amtjsay

:b Pointing Camcras

4-\

Displays

<«

Wireless
Microphone
U Receiver
f

Tracking Cameras

Figure 2.1: A simplified layout of the Intelligent Room at MAI Lab (picture from 4])

A similar office environment has also been developed at INRh®ne-Alpes. The SmartOffice
[60] comprises a whiteboard area and a large office desk condplétie a computer workstation
in the center of the room. 50 sensors (cameras and microphand three actuators (a video
projector and two speakers) are installed within the emvitent. The MagicBoardbf] is the
main “actuator” for the SmartOffice, letting users combirggatdl and physical information on
the whiteboard. Mobile and wide-angle cameras permit tieeofisomputer vision recognition
systems. Eight microphones distributed across the ceadliagised for speech recognition. The
objective was to monitor the user in order to anticipate uistntions and to augment the
environment in order to communicate useful information.

At XRCE, an intelligent workplace environment has beenizedl[6]. The intelligent workplace
environment is laid out like a normal individual workplacemprising a desktop computer, a
PDA device and an office telephone. The environment is autgdemith PC and phone usage
sensors, PDA location and ambient sound sensors as well Baaiser feedback form. The

14



2.1. Augmented “Intelligent” Environments

PDA form was used by the users to give feedback on their cuoféoe activity. The objective
of the intelligent workplace at XRCE was to sense individoffice activity and to provide
sensed information to other users (e.g. in order to derigsipte availability).

Mozer [67] developed one of the first intelligent home environmenthatUniversity of Col-
orado. The Adaptive House has been implemented in an aesidence that was renovated in
1992, at which time the infrastructure needed for the ptojes incorporated into the house.
The home laboratory is equipped with an array of over 75 gsnabich provide informa-
tion about the environmental conditions that are moniterégimperature, ambient light levels,
sound, motion, door and window openings — and actuatorsivaldhe furnace, space heaters,
water heater, lighting units, and ceiling fans. The obyectf the Adaptive House was to make
life more comfortable for inhabitants and to conserve enatghe same time. By using inferred
occupancy and usage patterns in the home, the Adaptive Hoaise¢o adjust automatically
room heating, water heating and room illumination. ExpB#nsing and recognition of human
activities in the house was not the focus of the Adaptive lddu®ject.

The EasyLiving Project42] at Microsoft Research was concerned with the development o
an architecture and suitable technologies for intelligeaxhe environments. The focus of Ea-
syLiving laid on technologies for middleware (to facilgadlistributed computing), geometric
world knowledge and modeling (to provide location-baseutext), perception (to collect in-
formation about environment state) as well as service attstn and description. Input devices
can include an active badge system, cameras, wall switahdssensitive floor tiles. Output de-
vices can include home entertainment systems, wall-mduhsplays, speakers, and lightening.
Stereo computer vision tracking is used to derive the loocatif people in the environment as
well as to maintain their identity while they are moving anduRadio-frequency (RF) wireless-
LAN-enabled mobile devices are located based on the sigreadgth of known infrastructure
access points. A geometric world model is used to derivehéa relationship between enti-
ties in the environment. The location is used to infer a p@ssimtent or activity based on his
or her position. The objective of EasyLiving was to enableidgl PC-focused user activities
to move from a fixed desktop into the environment as a wholeei@éintelligent space appli-
cations like movable desktop sessions or location-bas&lbneentrol have been implemented.

The MavHome Project3b] developed a smart home environment at the University oa3et
Arlington. The MavHome acts as an autonomous intelligeehaghat perceives its environ-
ment through the use of sensors, and can act upon the enwrditinmough the use of actuators.
Perception is managed through light, humidity, tempegatsimoke, gas, infrared motion, and
switch sensors deployed in the environment. Main actuam@she control of lightening and
blinds, water heater, different video and screen displagsnkler and VCR. Location-based
media control and tracking is also provided. The objectias w0 manage the home automati-
cally in a way that maximizes productivity and comfort of iihabitants, minimizes the costs
of operating the home, and ensures the maximum securityediidme and collected/personal
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Figure 2.2: Layout of the augmented home environmMavHomeat University of Texas at
Arlington (picture from pP9))

data.

At MIT Media Lab, Bobick et al. 16] constructed an early example of an intelligent entertain-
ment environment. The KidsRoom was a perceptually-baseekactive, narrative playspace
for children. The environment, which resembles a childsdrédroom, uses two large back-
projected video screens, four speakers, theatrical lingidg three video cameras, and a micro-
phone array to perceive and to interact with the childrermf@ater-vision algorithms on the
video images of the scene are used to identify the activisewéral children. Constant tracking
of the positions of up to four children and a strong story eahare used to limit the number
possible children’s activities. Images, music, narratiaght, and sound effects generated by
the system guide the children through the story. The stréony sontext defines the possible
children’s activities at the actual state of the play andappropriate reactions to be taken by
the system. The objective of the KidsRoom was to explore &sigeh of interactive spaces and
to develop suitable computer vision techniques.

The eClass Projec?] (formerly known as Classroom 2000 Project) concerned éveldpment

of an intelligent education environment at Georgia Teche Ploject constructed a prototype
classroom environment and the necessary software infcdste to seamlessly capture much of
the rich interaction that occurs in a typical universitytiege. The classroom is augmented with
single audio-video stream recording facilities, elecitomhiteboards, and personal pen-based
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interfaces. Further, software and WWW access facilitateraatic capture and content-based
access of multimedia information in the educational sgtfirhe objective of the eClass Project
was to automate the capture of individual and group activithe classroom and to provide an
easily accessible interface that integrates this infolonabgether.

Smart classroom

10, @
Camera ‘\I Display

Lecture recording

Figure 2.3: Overview of th8mart Classrooraystem at Tsinghua University (picture fro88])

The Smart Classroom Proje&d] constructed an intelligent classroom environment atJisiua
University. The augmented classroom has two wall-sizeggtoy screens, one on the front wall
and the other on a side wall, and several cameras that areyaejh the environment (Figure
2.3). Additional cameras are installed on the computers of terstudents. The teacher wears
a wireless headset microphone to capture his or her speetbudhsensitive board further
enhances the room. Voice-recognition, computer visiohrtggies and activity recognition are
used to permit the simultaneous instruction of local andatenstudents. The objective of the
Smart Classroom Project was to seamlessly integrate deleation and traditional classroom
activities. The system turns a physical classroom into aingerface for tele-education.

This section has presented different examples of inteitigewvironments in the domains of
workplace, housing and education. These augmented envanots involve various research
disciplines, ranging from computer science, over sociainse to psychology. In computer sci-
ence, ubiquitous or pervasive computidg]integrates computing into these environments, no-
madic computing%8] mobilizes computing devices, and ambient intelliger®@ helps mak-
ing these environments smart(er). In the field of ambierdligence, we consider sensing and
responding to human and environmental context to be a keyrieéor achieving augmented
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intelligent environments. The following section definesl aliscusses the terntontextand
context-awarenesss well agproactiveservices that context-aware systems supply.

2.2 Context-Aware Services: towards unobtrusive, proactie
system behavior

In 1996, Weiser and Browr®p] introduced the notion ofalm technologydescribed as:

“If computers are everywhere they better stay out of the \way that means
designing them so that the people being shared by the corspeteain serene and
in control.”

Computing systems should “stay out of the way”, while prawgpuseful and enriching services.
In the context of smart environments and smart artifactgjt3tet al. B9] distinguish two types

of service behavior: system-oriented, importunate sneagrand people-oriented, empower-
ing smartness. System-oriented, importunate smartnesgesthe environment to take certain
self-directed actions, while people-oriented, empovgesimartness focuses on empowering the
users to make decisions and take responsible actions.

System-oriented, yet unobtrusive smartness constitutegjar challenge as it addresses two
important issues:

1. sensing, and recognizing user behavior, needs andsntent

2. while keeping the user informed and in control.

The system services are to be supplied without interruptieguser’s current task and activity.
In addition, they should be predictable for the user (pplecof least surprise?]). These ser-
vices will not replace human-computer interaction itsel€®use depending on the complexity
of the current task of the user, deriving user behaviorinta needs may be too difficult. The
main purpose is to reduce the communication workload of see when working on his tasks.
Obviously necessary actions may be automated and so thearseroncentrate on essential
work and human-computer interaction tasks.

The automatic supply of system services is addressed betheproactive system behavior
Salovaara and Oulasvirt87] outline that:
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“... the concept proactive refers to two critical featurédsacsystem: 1) that
the system is working on behalf of (or pro) the user, and 2pksng initiative
autonomously, without user’s explicit command.”

Proactive systems are thus acting on their own initiativdbehalf of the user. Schmid8f]
extends this notion to implicit human computer interactf#Cl). iHCI is the interaction of
a human with the environment and with artifacts which is arteeaccomplish a goal. Within
this process the system acquires implicit input from the aed may present implicit output to
the user. Implicit input are actions and behavior of humarsch are done to achieve a goal
and are not primarily regarded as interaction with a compingt captured, recognized and
interpreted by a computer system as input. Implicit outputat directly related to an explicit
input and is seamlessly integrated with the environmenthedask of the user.

Actions and behavior of humans, captured, recognized darpireted by a computer system are
the input and basis for iIHCI. The computer systems must hbaaavare of what the humans
are doing in the environment and determine the context ickvhuman actions take place. This
issue is normally addressed by the term context-aware ctngpu

The word context is composed of “con” (with) and “text” anders thus to the meaning that
must be inferred from adjacent text. Winogr&d|[refers to context as a shared reference frame
of ideas and objects that are suggested by a text. Contegbissensual space, called “common
ground” [31], that establishes a framework for communication basedhames experience.
Such a shared framework provides a collection of roles aladisas with which to organize
meaning for a phrase.

Schilit and Theimer§4] first defined the term context-awareness by:

“location information [that] enables software to adaptadmg to its location
of use, the collection of nearby people and objects, as weh@changes to those
objects over time”

This definition is particularly useful for mobile computirggplications. An example is the
context-aware tourist guide system proposed by Cheveral ¢27]. The system combines
mobile computing technologies with a wireless infrastuoetto present visitors to the city of
Lancaster (UK) with information tailored to both their pensl and environmental contexts.

However, more complex context-aware computing applicatioeed to be built on notions of
context that encompass more than only location informd&&n87]. Pascoe T2] defines con-
text as a subset of physical and conceptual states of ihteraparticular entity. This definition
has sufficient generality to apply to a system that recogrizenan actions and behavior. Dey
[41] reviews definitions of context and provides a definition ohtext as any information that
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characterizes a situation related to the interaction batweuimans, application and the sur-
rounding environment. Situation refers here to the curstate of the environment. Context
specifies the elements that must be observed to model aiGituAn entity refers to a person,
place, or object that is considered relevant to the intemadtetween a user and an application,
including the user and applications themseh&<p].

Recent definitions of context-awareness go even furtherefipidg context as part of a never
ending evolution process of interaction in an augmented@mment. Coutaz et al3B] observe
hence that:

“Context is not simply the state of a predefined environmeitit & fixed set
of interaction resources. It's part of a process of intenacivith an ever-changing
environment composed of reconfigurable, migratory, diated, and multiscale re-
sources.”

Social and interactional aspects of context must also naeb&ected. Individual behavior may
not be the correct unit of analysis. Evidence shows thattad®o of the variance in human be-
havior may be attributable to non-linguistic social con{éd]. Dourish [44] further highlights
the interactional nature of context. Contextuality is atiehal property that holds between
objects and activities. Context is particular to each adocesf activity or action; the scope of
contextual features is redefined dynamically. Context tgusi a fixed part of the environment,
but context arises from human activity.

Some scientists claim, however, that context-awarenegalrworld applications is simply im-
possible. An exhaustive enumeration of the set of existongextual states of the environment
seems difficult 2]. Lueg [63] even states that “context-aware artifacts are far fromdpable
to recognize situation”. Further, we cannot always knowalhnformation determines a spe-
cific contextual state. As consequence, determining whighrapriate action should be taken
by the system autonomously seems imposstitg Erickson 7] summarizes that “computers
are good at gathering information, humans are good at réziagncontext and determining
what is appropriate”. Human should hence be kept in the oblaiop, and context-aware com-
puting should rather do visualization of contextual infatran than recognition and reasoning
on human intentions.

One strategy to respond to these critics is to provide fegdtmathe user about the reasoning of
the system. Cheverst et a9 propose the term comprehensibility to suggest that the*caa
look through the outer covering (e.g. glass box) to exanedriner workings of the device”.
The motivation is that users fear the lack of knowledge of twdtane computing system is
doing, or that something is being done ’behind their backk’Bellotti and Edwards12] go
further by defining the term intelligibility by:
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“Context-aware systems that seek to act upon what they affeut context
must be able to represent to their users what they know, heywhow it, and what
they are doing about it.”

The term scrutability further refers to the ability of a usemterrogate her user model in order
to understand the system’s behavior. Kay et%@l] flescribe this process as:

“ ...when the user wants to know why systems are performintpes are or
what the user model believes about them, they should be aldertitinize the
model and the associated personalization processes.”

The issue of comprehensibility and scrutability is clogehated to the issue of control over the
system. Kay et alq7] see scrutability as a foundation for user control over @easization. The
user needs to be able to understand what the system is doohglso be able to overrule system
decisions and processes if necessary. Cheverst 28pmgntion the obvious motivation: people
often want to perform a non-standard action in a given cdntagure2.4 relates scrutability
and system/user control in a two-dimensional design spifferent augmented environments
approaches, presented in sectoh are plotted into this design space.

Barkhuus and Deyl[0] report on findings from a study in the context of a mobile scen
where they investigated the relationship between useraicgmd service automation. In their
particular setting, mobile phone users were willing to gipecontrol in exchange for services
such as tracking the location of friends or recommendatforearby restaurants at lunch time.
Although their study relied on the participants to imagineit usage patterns if such a service
was available, one of their main findings was that users wdimgvto give up control if the
benefits (i.e. the convenience or added value) of doing sdghs

If users are willing to give up control for a number of systeanvices, this implies that they
trust the automation process of the system. Mo® Ehows that the usage of an automated and
context-aware system will be optimal if the user’s trustesponds to the objective trustworthi-
ness of the system. Trustworthiness refers here to themsysiebility. This process is called
calibration of trust[59]. Figure2.5illustrates the problem. Human trust and trustworthindss o
the system should ideally cover the same range of serviceaenWust exceeds system capa-
bilities, this leads to misuse of the system (overtrust)ewhuman trust is lower than system
capabilities, this leads to disuse of the system (distrB&gent user studies indicate further that
perceived system usability has a significant effect on usst in a systemd1].

One might also want to consider the cost and consequencegarhated action execution. In
particular, if we trust in a system, and the system is saicttoeliable, on which basis system
decisions for actions executions need to be done ? This dspeh course, on the action to
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be automated and the criticity of the environment. For a halsenvironment, Bardram et al.
[9] summarize that “the triggering of a context-awarenes®aatepends upon the accuracy of
the sensed context information, the degree to which you kmbat action to take in a certain
situation, and the consequence of performing this action.”

The automating companion agent is still not an everydayekigerience. Sensing, recognizing
human behavior, and automating services are currentharesessues. This thesis will focus
on the modeling and sensing aspects of context-awarer@ssolmodel, and in particular how

to acquire and adapt context models, which will constitbeeliackbone of (future) automated
service supply.

2.3 Learning Context Models

Human behavior evolves over time. New activities and seéesamerge in an intelligent en-
vironment, others disappear. New services need to be atwjinto the environment, while
obsolete services need to be deleted. To cope with thesgebaacontext-aware system needs
to evolve by adapting its contextual representation ofus@d environment, i.e. its context
model. These adaptations can be done by experts knowingicigamser needs and sensor per-
ceptions of the system. If you were very rich, you might cdasihiring a full-time team of
engineers to customize your intelligent environment arkegp it up to date. Moze#g[/] state,
however, that an intelligent environment must itself beptita. The environment’s intelligence
lies rather in its ability to adapt its operation to accommatedhe users. The research challenge
is to develop machine learning methods for this process,jnmgak possible to automatically
acquire and evolve context models reflecting user behamnaeds in an intelligent environ-
ment.

We can distinguish two different motivations for learnirantext models:

1. Knowledge engineering (acquisition of a context model)

2. User preferences (adaptation of a context model)

Knowledge engineering refers to building up a context maahel context-aware system from
collected data. The acquisition process is data-drivenhased on recorded observations of the
environment; adapting or evolving the model is not fores@ée aim is to discharge a human
engineer when setting up and customizing a context modedarusers and environment. User
preferences refer to the updating process, integratinggihg user preferences into an existing
context model and system using user computer interactiomsek preferences approach can
include a knowledge engineering step to set up an initialexdmnmodel.
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Why is the automatic acquisition and adaptation of high-leel context models difficult?
From the machine learning point of view, the acquisition addptation of high-level models
reflecting human behavior is already non-trivial. Howegensidering the adaptation of context
in the framework of a whole system (including different &3ethe problem becomes very
challenging. Learning approaches normally assume thathumahavior is coherent and stable
over time. Further, the variation of behavior should notdielarge between users (allowing to
integrate this in user preferences). In practical appboat we saw, however, that humans tend
to appropriate new technical devices and environmetfsdither by misusing them (e.g. by
using coffee cups as entrance badd&®)[or by adapting their own behavior to the behavior
of the system. When the system now constantly adapts to hbeteavior and needs, will user
and system be capable of reaching a fix point (stable stabégond28])? And how can the user
trust such a system that constantly adapts, making it iniplest® foresee its actions (trust in
automation problemd9])?

Unfortunately, there is no general solution to these diffiquestions concerning the usability
of adaptive systems. Our focus here is to propose and gigstlifferent methods for acquiring
and evolving context models and their application.

Several approaches have been proposed concerning thetnedif user behavior from sen-
sor perceptions in the environment. Human behavior is dsmbover a longer period of time
using different sensors deployed in the augmented envieohrMachine learning methods are
applied to these sensors recordings in order to build up (addte) a user model. The learned
user model can then be used to automate system servicesstivigdish approaches that con-
struct a user model from data (pure knowledge engineerimgjjlzose that construandevolve
such a model (user preferences integration).

Mozer [67] uses different sensor recordings (motion, room tempesgatvater temperature,
illumination) of an intelligent home environment to constr and forecast the states of a user
model. Various predictors attempt to derive the curreresitthe environment, based on sensor
recordings, and forecast future states of human behavideienvironment. These predictors
have been implemented using neural networks. Based omtamnd predicted states, the system
automates air heating, lighting, ventilation, and watextimg from the learned user models. The
user models are intended to be constantly adapted to cltang@r behavior and preferences.

Youngblood et al. 99] propose a layered approach based on prediction, data gniand de-
cision making components. Based on recordings of diffesensors (light, humidity, tempera-
ture, smoke, gas, infrared motion, and switch sensors) sugmented home environment, an
Active-LeZi algorithm based component predicts inhaliitsetions and behavior. A data min-
ing component then abstracts inhabitant activity to epsdtat represent the current user task.
A hidden Markov model based decision making component @saichich action can be auto-
mated based on extracted abstract episodes. Possibleaisiosnare the control of lightening
and blinds, water heater, different video and screen dispiprinkler and VCR. The system is
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2.3. Learning Context Models

to adapt to changing user preferences and behavior by adafstiiearned user models.

Mayrhofer [64] proposes an architecture for context prediction. The aito iconstruct clusters

from recorded low-level contextual feature data (like bdath, microphone etc.) using various
clustering methods. These cluster models are then useddapuser behavior, i.e. trajectories
within the learned cluster networks. Different methodsdinistering and trajectory prediction
are evaluated. The proposed approach is intended to beinajam. changing user behavior
will lead to an evolution of the learned models.

Clarkson B2] describes a wearable system with a video camera and a rhiznep capable of
distinguishing coarse locations and user situations. éhddarkov models provide an unsuper-
vised clustering of video and audio data recordings. Deffeuser locations and situations like
“home”, “at work”, or “restaurant” are isolated and thenagnized based on this clustering.
The approach aims at constructing human behavior modais éiata; no evolution of these

models is foreseen.

Mayrhofer 4] and Clarkson 32] focus on the clustering of human activity observations and
the prediction of sequences of human behavior (based oe thesters). These approaches are
without any input of supervisor knowledge or user feedbadtkis no human activity recogni-
tion and interpretation is done. A comparison with humaivagtperception is mainly done

a posteriori, showing that a correlation between isolaledters and situation perceived by
humans is possible. Moze8T] and Youngblood et al.g9] focus rather on the association of
system actions to sensor perceptions. The aim is the dis@iion of different system actions
or services with regard to the sensing and prediction of muacévity patterns. Human behav-
ior is neither modeled nor recognized. All these approacdieggect the issue of intelligibility
because they are completely constructed from sensor dédtauwviany human knowledge in-
put (e.g. activity labels). Thus no understandable contextel is generated. A user can not
understand the model and reasoning process of these systems

Many approaches for the explicit recognition of human étgtiiave been proposed in recent
years. The idea is to learn and recognize predefined humiaityaletbels from recorded sensor
data. Most of this work is based on visual informati@i,[81, 10( or audio information 18]
using statistical models for learning and recognition (artigular hidden Markov models).
However, most work does not attempt to acquire a high-lemelext model of human behavior,
but again tries to associate sensor values to (predefingdyaclasses. The main focus is laid
on classification of basic human activities or scenariobavit considering a richer contextual
description.

Some approaches attempt though to provide a more detaikdgsarand representation of

human activities. Bayesian methods, in particular Bayesgtworks, seek to model the rela-

tionship between pertinent observation variables. In soases, this can lead to a more under-
standable representation of human activity.
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Muehlenbrock et al.g8] propose a system for office activity learning and recognitiased on
Bayesian classifiers. The user gives feedback about hierdwactivities and the corresponding
availabilities. A naive Bayesian classifier is used to leaser activity and availability from
sensor data (keyboard and phone usage, PDA location and Ribfeat sound sensors, and
co-location sensors) according to the given feedback. &begnition results can be provided
to the users, augmented with location and reasoning détaded on the probabilities of the
classifier. Although the recognition is mainly based onexikd sensor data, the user model
can constantly be updated with new sensor data as the useeswiio the system.

The Lumiere Projectd5] at Microsoft Research was initiated with the goal of depalg meth-
ods and an architecture for reasoning about the goals am$ mésoftware users as they work
with software. The realized systems (e.g. the Microsoft@@fAAssistant) aim at providing assis-
tance to the user according to made observations. At thé didanmiere are Bayesian models
that capture the uncertain relationships between the goalsieeds of a user and observations
about program state, sequences of user actions over tirdeyards in a user’s query. The
Bayesian models used for modeling and reasoning about ebawvior are based on a large
amount of recorded example data as well as feedback fronrtexdéne constructed models
identify a number of (understandable) pertinent variakli&s task history or assistance his-
tory), their reasoning is, however, not obvious to the uBee. models are automatically adapted
to behavior and preferences of the users as they work witkytsiem.

Eagle and Pentlandtf] propose a prototype system for sensing complex sociaésBystThe
system is based on data recordings from mobile phones. Toenation collected from the
mobile phones includes call logs, bluetooth devices in jpndy, cell tower IDs, application
usage and phone status (such as charging and idle). A hiddesolMmodel permits to recog-
nize three different situations (home, work, and otheredasn the collected information and
time (hour, day of the week). Further, a Gaussian mixtureehddtects proximity patterns of
users and correlates them with the type of relationship |3iels for the model come from user
surveys. The results are an estimation of social relatipssind networks.

Zhang et al. 107 propose a two-layered framework for modeling and recaggimdividual
and group actions in meetings. A first layer detects indigidactions like “writing” or “speak-
ing” from individual audio and video recordings using hiddglarkov models. The second
group layer fuses the individual output of the first layer adl\as group audio and video fea-
tures (coming from projector screen and white-board). Tutput of the second layer are group
actions like “discussion”, “monologue”, “note-taking’r {presentation”. The second layer is
also based on HMMs and detects the group actions in a supdrmanner. An unsupervised
segmentation of group actions in the second layer has a&o fr@posed]01]. The objective
of approach is the offline analysis of multimodal meetingordings and the construction of
the corresponding models (knowledge engineering). Theiesmfjmodels are evaluated, but not
evolved according to changing user preferences and behavio
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2.3. Learning Context Models

The approaches proposed by Muehlenbrock e6&], Horvitz et al. p5] as well as Eagle and
Pentland §5] are based on a more elaborated representation of humaityadthe relationship
between (partially) understandable observation varsaBlenodeled and explicit human activity
labels are learned. However, the employed representaifdnisnan activity and context are not
based on a human understandable model and framework. hgand reasoning process stay
further “in the black box”. Zhang et al1p2 propose a framework that acquires two layers of
individual and group activity labels, but no adaptationt@ model to changing human behavior
is foreseen.

high intelligibility

&

Group action modeling
[Zhang et al., 2006]

Lumiere XRCE Intelligent Office Reality mining
[Horvitz et al., 1998] [Andreoli et al., 2003] [Eagle and Pentland, 2006]
User Knowledge
preferences engineering

MavHome
[Cook et al., 2003]

Life patterns
[Clarkson, 2002]

Context prediction
[Mayrhofer, 2004]

Adaptive House

k4
[Mozer, 1998]

low intelligibility

Figure 2.6: Two-dimensional design space spanning adgpdind intelligibility dimensions

Figure2.6 summarizes the approaches presented in this section wiind¢o their intelligibil-

ity and adaptivity. Intelligibility refers to the comprem&bility of representation and learning
process as well as whether a possible model adaptation stgfbenunderstood by the user.
Adaptivity refers to our distinction of the motivations dfet adaptation process: knowledge
engineering refers to the construction of a model from réedrdata, while user preferences
address the integration of changes into an existing moaeé that a user preferences approach
can include a knowledge engineering step (in order to sehupi@al model to be evolved).
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2.4 Contributions of this thesis

A key requirement for context-aware intelligent enviromtseis to be able to build up and
evolve an intuitive, comprehensible context model. Thistegt model needs first to be con-
structed as automatically as possible using machine legmethods, while staying transparent
for the user. The user then should be able to integrate hisrpreces into this model, and adapt
it constantly according to the evolution of his behavior aeéds. A context-aware intelligent
environment with these capacities would be situated in fhy@euleft corner of the graph in
Figure2.6.

This thesis addresses the issue by providing an intelegramework for acquiring and evolving

a context model, callesituation modelThe methods proposed as part of this framework acquire
different layers of the situation model, with different és of supervision. The situation model
serves as frame and support for the different learning nasthmermitting to stay in an intuitive
declarative framework.

The situation model and the underlying concepts are metivay the human perception of
behavior in an augmented environment. Human behavior isritbesl by a finite number of
states, called situations. These situations are chaizedepy entities playing particular roles
and being in relation within the environment.

Situations and the underlying concept of roles are acqtiiced collected data. Different meth-

ods are proposed for learning roles. Further, a method fsupgrvised situation discovery is
described. A supervised situation learning scheme coegpliéie knowledge engineering part
of this thesis.

A method for integrating user preferences into a situatiodehis also proposed. This method
is based on the split of a situation into sub-situations ating to feedback from the user,
permitting to personalize a constructed situation model.
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Chapter 3

Modeling and Perceiving Context - the
Situation Model

The aim of this chapter is to propose an abstract model emabiiodeling and perception of
context in augmented environments. The proposed situatimatel is based and motivated by
the perception of human activity. In the following, we willdi discuss the relationship between
context and human activity. Then, based on the derived aesiweis, we will define our situation
model and the underlying concepts. The interface with getu@ components and the necessary
recognition processes are further described and illestry an example implementation in a
lecture room.

3.1 Context and Human Activity

Given its centrality to context-aware computing, the noid context has been much debated.
Some scientists claim indeed that real context-awaresess intractable problem. Greenberg
argues for example that it is difficult or even impossible tumerate the set of all contex-
tual states that exisbp]. Further, he says that we cannot know which contextualrmédion
determines the actual state within this set. Given this tdgrecise information, a system can-
not state which possible appropriate action to be takenddfitian, Lueg claims that today’s
context-aware artifacts are far from being able to recagthe situation of a use6§]. Intelli-
gibility and accountability can help alleviating this ptetn; they become, however, intractable
when applied to real-world problems (could we interpretssemeadings and interpretations of
an intelligent mobile robot that has not our perception efworld?). Erickson finally argues
that computers are good at gathering information, humang@od at recognizing context and
determining what is appropriate, so he concludes to keemhanm the control loop and to let
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context-aware computing rather do visualization thariieidl intelligence 7).

Given these critics, one might think that context-awarsraa®l context-aware applications are
seemingly impossible to realize. However, many approabhage been implemented success-
fully in recent years1, 19, 27] . What have these successful approaches in common? First of
all, none of these approaches attempts to model the whollel wath all possible contextual
states. Most approaches focus on a specific application peeaif&c domain, making thus a
closed-world assumption. In this closed world, they are abimodel all necessary contextual
states to provide services to the user. Depending on thécapph and domain, recognizing
these contextual states is reduced to a technical issuflikxample object or person recogni-
tion. Further, it is much easier to give explanation for thetates to the user when we are in a
closed world where the number of contextual states is lunite

One importantissue is, however, in what detail these coraerre applications can capture the
complexity of social context. The majority of documentedtext-aware applications only use
identity and location in their attempts to capture userm@mment changed][27]. An example

is the intelligent tourist guide system b3 providing visitors with context-aware information
and guidance. Even though these approaches produced gadtsré has been argued that
more complex social situations would require context-anapplications that are built on no-
tions of context relying on more than only locatid&b[ 87]. Schilit et al. B5] observed hence
that:

“Context encompasses more than just the user’s locatiaause other things
of interest are also mobile and changing. Context includggihg, noise level,
network connectivity, communication costs, communicati@andwidth, and even
the social situation; e.g., whether you are with your manageith a co-worker.”

The limitation of contextual cues when modeling human extgons and behavior risks re-
ducing the usefulness of context-aware applications. @fs®E again many problems can be
considered as technical issues like signal processingegmsbor person/object recognition.
However, the omission of social aspects in context modédiagonsiderable problem. Context-
aware computing research typically assumes context to benvadf information that is delin-
eable, stable, and separable from activity. Addressingtbblem of social aspects in context
modeling, Dourish44] proposes an interactional view of context where contexiniderstood
as something relational, dynamic, occasioned, and arisem fiuman activity. Thus context is
not something that describes a setting or configurationit imisomething that people do.

30



3.2. Defining Concepts: Role, Relation, Situation and SibmaNetwork

3.2 Defining Concepts: Role, Relation, Situation and Situa-
tion Network

Following the conclusions about context and human (se@&ity a context model should:

e describe a closed-world motivated by the application doraaid the needs of the user,
e be suitable and intuitive to provide explanations to the,use

e focus on human relations and activities when describingec@mather than environment
settings.

How can context be modeled in context-aware approaches?

Dey [4]] defines context as “any information that can be used to chexiae the situation of an
entity”. An entity can be a person, place or object considleetevant to user and application.
Loke [62] states that situation and activity are, however, not sftangeable, and activity can
be considered as a type of contextual information which @anded to characterize a situation.
Dey defines situation further as “description of the stafeslevant entities”. Situation is thus a
temporal state within context. Allen’s temporal operafdy$] can be used to describe relation-
ships between situations. Crowley et &9 introduce then the concepts of role and relation in
order to characterize a situation. Roles involve only ortgyeglescribing its activity. An entity

is observed to “play” a role. Relations are defined as préegliftanctions on several entities,
describing the relationship or interaction between estifilaying roles. Acceptance tests deter-
mine whether a particular entity plays a role or whether sdwantities are in relation. These
acceptance tests associates roles and relations witlantlentities. In the following, we detail
the definitions of role, relation, situation and situatietwork.

Situationsare a form of state defined over observations. A situatioefimdd using a predicate
expression. The logical functions that make up this exjpasare defined in terms of a set of
roles and relations. Situations in the context model ar@ected by arcs that represent events.
Events correspond to changes in the assignment of entitiedds, or changes in the relation
between entities.

A context [37, 39] is a composition of situations that share the same set esrahd relations.
A context can be seen as a network of situations defined in anconstate space. A change
in the relation between entities, or a change in the assighofentities to roles is represented
as a change in situation. Such changes in situation cotgstituimportant class of events that
we call Situation-Events. Situation-Events are data driiédhe system is able to interpret and
respond to them using the context model.
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The concept of rolés a subtle (but important) tool for simplifying the netwasksituations. A

role is an abstract entity that is able to perform certaitoast Roles are “played” by entities
within a situation. Assignment of an entity to a role regsitieat the entity passes an acceptance
test. In our framework, the relatiotisat define a situation are defined with respect to roles, and
applied to entities that pass the test for the relevant roles

Context: Lecture Room

Lecturer
Audience
Lecturer NotSameAs Audience

Audience

Audience

Empty =
Audience == SwitchOnLight
Lecture == SwitchOnProjector

Figure 3.1: Example of a simple context model for a lectumemdEmpty, AudienceandLec-
ture are the available situationisecturer, Audienceare the available roles amdbtSameAthe
available relation. SwitchOnLighSwitchOnProjectoare system services

For example, in a lecture situation, at any instant, onegoepgays the role of the “lecturer”
while the other persons play the role of “audience” (Fig8r®. “Lecturer” and “audience”
share the “notSameAs” relation, i.e. the entities playhmggydorresponding roles are different.

The mapping between entities and roles is not bijective. @rmaore entities may play a role.
An entity may play several roles. The assignment of entitiesles may (and often will) change
dynamically. Such changes provide the basis for an impbctass of events: role-events. Role
events signal a change in assignment of an entity to a rategr¢ghan a change in situation.

Human behavior within the environment can be described layiptsA script corresponds to a
sequence of situations in the situation network reflectungé&n behavior in the scene. However,
scripts in a situation network are not necessarily linear.
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3.3 Interface with Perceptual Components

The situation model receives both events and streams frooepieial components (Figuge?).
A stream is an ordered sequence of entities with propefficemterpret the stream, the situation
modeling system must apply a test to the properties to da@terwhich relations and roles apply.

Services

A
Ewvents for Services

Situation Model

Context
Model
Layer

Role, Relation Assignments

F Y

Streams,
Events

Perceptual Components

Figure 3.2: Situation Model and its interface with perce@pttomponents and events

Events from perceptual components denote a change in $tateentity. In this case, a logical
test for a role or relation has been migrated to, and impleeadoy, the perceptual component.
The situation model needs only note and react to the event.

3.4 Recognition Processes: Acceptance Tests for Roles and
Relations

The recognition processes for roles and relations arepreagrd as acceptance tests applied to
the properties of relevant entities. Acceptance testsdiesrare applied to the properties of all
available entities in order to determine their role assigntnAcceptance tests for relations are
applied to the properties of entities already assignedl&s@playing a role”). Thus the search
space for relation acceptance test is limited by the aVailabtities playing roles (Figur&.3).

In the first section of this chapter, we describe the genesigeh of recognition processes as
acceptance tests based on events. The second sectiontpr@sexample implementation of
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Relation]:
EntipvRel 1, praperties
EntinrRel12, properties

Relationl:
EntioyRel21, praperties
EntinyR el 22, praperties

Relation Acceptance Tests

Rolel:
EntityR11, properiies
EntityrR 12, praperties

Role2:
EntiyR 21, properias
EntityR.22, properiies

T

Role Acceptance Tests

Entityl, properties
Enfity2, properties

Figure 3.3: Role acceptance tests are applied to all alaitatiities, while relation acceptance
tests are applied to entities playing roles

acceptance tests for a lecture scenario.

3.4.1 Acceptance Tests based on Events

An acceptance test is based on events sent by perceptuaboentp. Events concern entities
and their properties. Acceptance tests take these evenaasnd generate role and/or relation
assignments of entities as output. Thus acceptance tedfiseaconnectors between the context
model layer and the perceptual components.

An acceptance test can be divided into two different phalgdiitering and 2) role and relation
assignment (Figurd.4). The filtering phase concerns the raw entity event streamergéed by
perceptual components. A filtex applied to this stream in order to extract more abstraenisy
that reduce the dimension of the data. The second phasernorgsole and relation assignment
takes abstract events as input and generates the corr@spoolgs and relations. The filtering
phase can be integrated into perceptual components, weilete, relation assignment is part
of the context model layer.

For example, a perceptual component tracking objects inovichages may send events of
the form (PositiorEntity X Y), whereEntity denotes the entity identifier and Y the entity’s
position. To apply an acceptance test, the constant stréamtity events is first parsed for
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Situation Model

Context Model i
Layer Role, Relation Events
) ) ™
Role, relation assignment
7'y
Abstract Events
Acceptance
- Test
Filter
Perceptual 4
Components Entities, Properfies
_/
Entity Event Stream

Figure 3.4: Acceptance test as connector between per¢eptmaonents and context model

particular entity property values, Y (filtering). Abstract events like (Ente®egionOfinterest
Entity) indicating particular interest zones of entities are senble, relation assignment. Roles
and relations can then be determined for the availablaentising the abstract events from one
or several filters.

3.4.2 Example Implementation of Acceptance Tests for the lature Sce-
nario

In the Lecture room context example, we are concerned witsopeentities and their location
in regions of interest. We will assume that a perceptual aomept tracks moving objects in the
video images of the scene (for example by using image baakgreubtraction). The resulting
event stream contains the entity identifier as well as théyeposition in the video images
(PositionEntity X Y). We assume that this component can determine whetheieitiestt object

is a person or not (for example by using skin color detectiootier features). The result is an
abstract event indicating whether an entity identifier heenbdetected as person or not (Person
Entity). As tracking and detection has to be in real-time, the filgefor regions of interest as
well as person detection is integrated into this comporégufe3.6).

Figure 3.5 shows the filtered interest zones (in violet): one interesteznext to the board
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Figure 3.5: Interest zones (violet) for the lecture scenari

(“LectureArea”), three zones around the tables and chéhwsd{enceArea”). The perceptual
component tracks the entities in the scene. If the entitgraerdr leaves a region of interest, an
abstract event of the form (enters <Region-ID> <Entity>)exits <Region-ID> <Entity>) is
sent respectively. When the entity leaves the scene a newt isveent to the situation model
(ExitScene <Entity>). If the perceptual component loo$esedntity, an abstract event will be
sent of the form: (Lost <Entity>).

g !

Role, Relation Assignments

/'y L
Acceptance & Gainay | e n T B ® T
Tests ' (ExitScene E) exits RID E) !

' Lost E) |

' Position Person '

| Filtering Detection |

" i Perceptual

AN T ! P
i ? E >C0mp0nents
! Entity EXY !
I

i Tracker '

' 1

' |

Figure 3.6: Perceptual component for the lecture scenario

Figure3.1lindicates the necessary roles and relations for the lestgpario. We can identify
the roledecturer, audienceand the relatioNotSameAs

The abstract events that will be sent to the role, relatisigasnent are:
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(NewEntity <Entity>)
(ExitScene <Entity>)

(Lost <Entity>)

(Person <Entity>)

(enters LectureArea <Entity>)
(exits LectureArea <Entity>)
(enters AudienceArea <Entity>)

(exits AudienceArea <Entity>)

Using these abstract events, we can define the followingitonsg and actions for role, relation
assignment:

Role:Lecturer

Conditions Action

{(Person <Entity>), Lecturer(<Entity>))
(enters LectureArea <Entity>)}

{(exits LectureArea <Entity>)}, —Lecturer(<Entity>)
{(ExitScene <Entity>)},

{(Lost <Entity>)}

Role: Audience

Conditions Action

{(Person <Entity>), Audience(<Entity>))
,(enters AudienceArea <Entity>)}

{(exits AudienceArea <Entity>)}, —Audience(<Entity>))
{(ExitScene <Entity>)},

{(Lost <Entity>)}

Relation:NotSameAs

Conditions Action

{<Entity>#<Entity2>} NotSameAs(<Entity>,<Entity2>)
{<Entity>=<Entity2>} —NotSameAs(<Entity>, <Entity2>)
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Note that the condition of the relatiddotSameAss only applied to entities that have been
selected by the role acceptance tests, i.e. that are “glagies”. The test for (in)equality be-
tween two entities used as the condition ostSameAsan be done by comparing the entity
identifiers.

Further note that a role or relation is only activated/dgated by the respective conditions. If
no conditions hold, the last state (“true” or “false”) of ttwde/relation assignment is maintained.
This is important to provide stability to the system.

3.5 Conclusions

In this chapter, we provided an ontology and architecturaerfodeling context. A finite state
machine, the situation model, is constructed accordinggmeeds of contextual and perceptual
information of the services. Events and entities are cdelbyeperceptual components. Recog-
nition processes are used to assign entities to roles aattbred. A recognition process is inter-
preted as an acceptance tests applied on entities. Thigtance test is based on abstract entity
events filtered from entity events streams. Roles and oglsittan be combined to situations.
These situations are connected to form a graph. The factitbabodel is a finite state machine
provides stability and reduces fluctuations. Services cawige their functionality according
to the situation state of the model. A top-down configurabbthe perceptual components ac-
cording to the needs of the services is possible. This tapaddtering adjusts the parameters
of the perceptual components using state information froennmhodel as well as information
from the services.
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Implementation and Evaluation of
Situation Models

User Application

Top-down
specification and
implementation

by a human
W

: Sensors+Actuators

This chapter addresses the top-down specification and mgpiation of situation models.
Based on user needs and envisaged application, a humareengpecifies and implements
the situation model and associates sensor perceptionsy/atairsservices to the situations. In
the following, a deterministic and a probabilistic implemegion of situation models are pre-
sented.

Situations and the underlying abstract concepts can bgpneted as finite-state machines. The
finite-state machine implementation influences the coffitval and how perceptions, coded as
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events, are finally used and interpreted to activate sgoatiWWe present a deterministic and
a probabilistic implementation of situation models. Théd®ainistic implementation is based
on Petri Nets, while the probabilistic implementation is&@ on hidden Markov models. The
choice of the implementation depends on the applicationsrenvisaged. An example is given
for each implementation in the following sections.

4.1 Deterministic Implementation: Petri Nets

We begin this section with an informal review of Petri netee Wen describe how Petri nets
are used to implement a situation network representing tegbmodel and how to evaluate a
script.

4.1.1 Petri Nets

A Petri net is a graphical mathematical tool used to modebkdyinal systems with discrete
inputs, outputs and states. Such models have first been ddiynBetri [74]. A Petri net is an
oriented graph, composed of arcs and two categories of nptieses and transitions). Places
are the state variables of the system containing zero oriiygasumber of marks. Transitions
model the system evolution and are connedteth placesto places. A transition is valid if all
the “from” places have at least one mark. When a valid traosis fired: one mark is removed
from every “from” place and one mark is added to every “to"ga@laOnly one transition can be
fired at a time. A more formal definition of Petri nets is givgnNdurata [70].

Finite-state machines like situation models can be egemiBl represented by a subclass of Petri
nets [70]. Several extensions of Petri nets have been proposed. {@nero is thesynchronized
Petri net A synchronized Petri net is a Petri net wighrentsassociated to each transition. A
transition can now be fired if it is valid and the correspogdivent has been triggered (Figure
4.1).

4.1.2 Implementation and Script Evaluation using Petri Nes

A context model is defined by a network of situations. The eations between the situations
are temporal constraints based on Allen’s temporal opes$th Eventsndicate state changes

of the concepts (activity, roles, or relations) descrilsitgations. A situation change is triggered
by these events. For instance, consider two situations &B5arsuch that S2 meets S1 (Figure
4.2). To trigger a change from the current situation S1 to sibmab2, we need to observe at
least two events:
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Before After

Figure 4.1: Synchronized Petri net with places S1, S2, S3randition T1 triggered by event
E

1. afirst event invalidating the situation Sil(alidS1), followed by

2. a second event validating situation $2:(:dS2) .

e
| s1 | S2 |

meets

Figure 4.2: A small context : S2 meets S1

This example can be directly represented as a synchroneteichet (Figuret.3). We associate
a situation to every place. The situation is active if theratileast one mark in the corresponding
place: we are currently in situation S1.

f’/;;\w ﬂ ‘/;2\‘
< i

ol

Figure 4.3: Synchronized Petri net implementation of thetext

In a “standard” Petri net, the transition between S1 and Sfuismatically fired as soon as
S1is active. We need to control this transition based on #énegptual events coming from the
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environment. This transition control is managed using taedition event of the synchronized
Petri net. We generate this transition evénhbnly when Situation S1 is no more valid and
Situation S2 becomes valid (as seen in subsedtibri):

T = =ValidS1A ValidS2

More generally, the event functidh of a transition is the conjunction of a function associated
to the place before the transition and a function assoctatéte place after the transition. We
will call those two functions respectivelyreT and PostT. We have:

T = PreT N PostT

PreT corresponds to what we airrently observingn the environmentPostT indicates
what the systenshould expedio see next based on the context model.

This short example showed how to transform the “meet” operato a corresponding synchro-
nized Petri net. This transformation can be done for all theAllen operators as summarized
in Table4.1 (see BQ] for details).

Note that Petri nets are very well adapted for implementihgaBon models containing paral-
lelism. As shown in Tabld.1, all Allen temporal operators can be implemented by Pets.ne
However, Petri nets are not suitable for applications witlorgeous perceptions or uncertain
perception expectations.
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4.1. Deterministic Implementation: Petri Nets

| Allen operator| Petri net | Transition function

meets { T = =ValidS1 A ValidS?2

N
before @ﬂ H. /JH@ { T1 = -ValidS1
T2

MTl T2 = ValidS2
Sfl‘4> *’(Llinsp«‘ack’:‘
_} ’ NA I | PostT1 = ValidS1
overlaps — . T2 = ValidS2
i Nonspee 2l T3 = ~ValidS1

PreT4 = -ValidS2

tart PostT1 = ValidS1 A ValidS2
starts PreT?2 = -ValidS1
PreT3 = -ValidS2
equals PostT1 = ValidS1 A ValidS?2
PreT2 = -ValidS1 A =V alidS2
PostT1 = ValidS2
during T2 = ValidS1
T3 = -ValidS1
PreT4 = -ValidS?2
finish NATI PostT1 = ValidS1
inishes o / PostT2 = ValidS?2
7 4 Mﬁ PreT3 = -ValidS1 A =V alidS2

Table 4.1: Synchronized Petri nets for the Allen operatdhe:“Unspec” place stands for an
unspecified situation, which means that we do not model wingtitthappen
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4.1.3 Example : Automatic Cameraman

The automatic cameramanq] is an audio-video recording system that automaticallyreés

a lecture. The lecture room is equipped with multiple camearad microphones. The system is
context-aware selecting at every time, based on the cusiattion, the appropriate camera to
provide images (Figuré.4).

Stratégie et objectifs

1. Présence en ligne pour tous les cours.

Figure 4.4: Different camera images recorded by the auicroatneraman system

The available actions at®tart recordingFilming the whole roomFilming the lecturerFilming
the audiencandFilming the slidesThe situation list is :

¢ Init — start recording and filming the whole room.

e The lecturer speaks: filming the lecturer.

e Someone in the audience asks a questiofiming the audience.

There is a new slide- filming the new slide.

Someone enters the room filming the whole room.
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4.1. Deterministic Implementation: Petri Nets

The lecture is an alternation of “lecturer speaking” anddiance asking a question”. “New
slide” and “someone entering the room” can happen in pardlke situation network is given
in Figure4.5, the corresponding Petri net is given in Figdré.

f Starts recording f Someone enters

meets\ dur V

before
Lecturer speaks
\‘ - ~ \ before
meets mee%
" Asking question
before
New slide ™ Sstop recording

before

Figure 4.5: Situation network of the automatic cameramaiesy

Code generation is done by automatically transforming ymetsronized Petri net into a cor-
responding program in Jess (s&@][for details). JessHf] is an expert system programming
environment (facts database with forward chaining rul€kg input of the generated program
are facts based on events describing state changes of theptsr{roles and relations hele)
The output are the current situation and the associateolhés]i

This approach recorded a four day seminar on “Language tofpyi’ and “Language, Cog-
nition, and Evolution” #0], which was held on the premises of the FORUM20@&4] [in
Barcelona. The automatic cameraman has also been useatd sexl broadcast real lectures
in the amphitheater at INRIA Rhone-Alpes (example imagesbeaseen in Figuré.4).

IActivity, roles, and relations are reconstructed from datavided by perceptual components (video tracker,
speech activity detectors, etc.)
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= <
,/ l A

/ S5
Lecturer
spesks
Someone  enters
theroom
Audience asks

: New slide

Figure 4.6: Petri net of the automatic cameraman system
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4.2. Probabilistic Implementation: Hidden Markov Models

4.1.4 Experimental results

Table4.2 shows the confusion matrix for two hours of recording. A grduruth dataset has
been produced by manually annotating the situations onitte@vThe three situations are :

e Slides :a new slide is projected on the screen
e Speaker the speaker is talking or answering a question

e Audience someone in the audience is asking a question

The lines of the matrix contain the detection results, wthke columns contain the expected
response.

Slides Speaker Audience

Slides 0.96 0.04 0.0
Speaker 0.0 0.89 0.11
Audience 0.37 0.05 0.58

Table 4.2: Confusion matrix

We have obtained a recognition rate of 93.7%. As the contebtdrchination is deterministic,
this confusion matrix mainly shows the robustness of theeugiohg perception algorithms
(the speech activity and the “new slide” detector). In th& lane of the matrix, we can see
that there is a big confusion between “audience asking atignésand “new slide”. Indeed,
when someone starts answering a question, at the same tame,dften seeking for slides
in his presentation. This example illustrates that in soasecdeterministic approach can be
advantageously replaced by more fuzzy ones.

We have also made an informal survey after broadcastingetttares in the amphitheater at
INRIA. Remote spectators could access two streams : a fiestratprovided by a fix camera and
a stream provided by our automatic cameraman. They all peefehe automatic cameraman
stream, allowing them to better understand the presentatio

4.2 Probabilistic Implementation: Hidden Markov Models

A probabilistic implementation of the situation model igitates uncertainty values into the
model. These uncertainty values can both refer to confidealkues for events and to a less
rigid representation of situation and situation transi$io
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Chapter 4. Implementation and Evaluation of Situation Mede

The situation model is a finite-state machine. The naturalcehfor a probabilistic implemen-
tation is then a probabilistic finite-state machi®é€][ A probabilistic finite-state machine is a
probabilistic automaton (PFA) defined over a finite alphabef language is a subset df . A
PFA defines a stochastic language, which is a probabilityibigion over>_". The distribution
must verify:

Z Probability(x) = 1

zey
A formal definition of PFA can be found ir9f].

4.2.1 Hidden Markov Models

A hidden Markov model (HMM) 79 is a stochastic process where the evolution is managed
by states. The series of states constitute a Markov chaichaginot directly observable. Such

a chain is said to be “hidden”. Each state of the model geeerah observation. Only the
observations are visible. A more formal definition of an HM#/given by Rabinerq9]. The

two following propositions holdg2):

Proposition 1: Given a PFA A withm transitions andProbability(¢) = 0 (e-transitions are
not allowed), there exists an HMM/ with at mostm states such that the stochastic
languageD,, of M is equal to the stochastic languafg of A.

Proposition 2: Given an HMM M with n states, there exists a PEA with at mostn states
such that the stochastic langualg of A is equal to the stochastic languabe; of M.

As we are only interested in PFA withogttransitions, i.e. PFA the transitions of which are
triggered by events, language-equivalent HMMs can be wsedglement PFA.

4.2.2 Implementation and Script Evaluation using Hidden Makov Mod-
els

The situations of a context model can be implemented by #itesbf a HMM.Eventsndicat-
ing state changes of the concepts (activity, roles, oricgla) generate the observations for the
HMM. A state (situation) is characterized by a particulasiability distribution of these obser-
vations. The activation of a new situation (state) is thusmheined by the transition probability
from the current state to this new state as well as by the pilityaof the given observations
in this new state. The connections in the situation netwoekrapresented by non-zero tran-
sition probability values. The observation probabilitgtdbutions for the situations as well as
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4.2. Probabilistic Implementation: Hidden Markov Models

the transition probabilities between the situations nedektspecified (or learned) when imple-
menting a situation model. We are interested in three basigd@ms:

1. Given a sequence of observations (based on events) atdhiasi model implemented
by a HMM, how to choose the corresponding state sequencafisih sequence)? This
includes the determination of the (most likely) currenigtton and the determination of
likely following situations.

2. Given a sequence of observations (based on events) ahcaacsi model implemented
by a HMM, how to compute the probability of the observatiogusnce, given the model?
This corresponds to the likelihood of the situation modekgx on the given events).

3. How to adjust the HMM model parameters? This correspoodsdjusting probability
distributions of situations based on given event data.

Rabiner [/9] gives several solutions to these problems. The Viterbortlgm is used to deter-
mine the most probable state sequence, given a HMM and anvalisa sequence (Problem 1).
The probability of a HMM, given an observation sequence limoomputed using the Forward-
Backward algorithm (Problem 2). The expectation-maxittidtra(EM) Baum-Welch algorithm
adjusts the HMM model parameters, given observation sexgsgiProblem 3).

Note that the HMM implementation of a situation model is jzattarly suitable for applications
that deal with erroneous perceptions as well as situatioaisare characterized by a partic-
ular frequency of events. A HMM implementation is, howevess suitable for representing
parallelism (not all Allen operators can thus be represkhtea classical HMM).

4.2.3 Example : Detection of Interaction Groups

This example addresses the problem of detecting changiegaotion group configurations in
a smart environment. During a meeting, participants camfone big group working on the
same task, or they can split into subgroups doing indepéridsks in parallel. Our objective
is to determine the current small group configuration, i.eows interacting with whom and
thus which interaction groups are formed. As we focus onalartieraction, one group has a
minimum size of two individuals (assuming that isolatedwatlials do not speak). The speech
of each meeting participant is recorded using a lapel mhlaoap. An automatic speech detector
[48] parses this multi-channel audio input and detects whichgyeant stops and starts speak-
ing. We admit the use of lapel microphones in order to min@rdarrelation errors of speech
activity of different participants, i.e. speech of pagint A is detected as speech of participant
B.
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' (ABCD) ' (AB)(CD)
meets /

meets

" (AC)BD) <, (AD)BC)
\ meets /

Figure 4.7: Situation model for a meeting of 4 participan{8AC, D

The proposed approach is based on a HMM implementation afghtext model. The obser-
vations of the HMM are a discretization of speech activitgrag sent by the automatic speech
detector. Figurd.7 shows the situation network for a meeting with 4 particigaiach possible
interaction group configuration is represented by one tinar hese situations are transformed

to the states of a HMM (Figuré.8).
_____________ (AB)(CD) .

Se”

_____________ (AD)(BC) '

—————— 3 High transition probability

—————————————— » Low transition probability

Figure 4.8: States of the HMM implementation of the situati@odel for a meeting of 4 partic-
ipants A, B, C, D

The probability distributions of the different states apedfied based on conversational hy-
potheses. These conversational hypotheses assume thah spihin an interaction group is
more regulated than speech between distinct interactmunpgr The transition probabilities be-
tween the states are set to a very low level in order to stabilie detection of state changes
assuming hence that group changes occur in reasonablesd@&tagietect different group con-
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figurations, we apply the Viterbi algorithm (solution to Blem 1 in sectiort.2.2 to the flow
of arriving observations.

_

Figure 4.9: Example of a configuration of 2 groups of 2 pgpacits

4.2.4 Experimental results

To evaluate, we recorded three small group meetings withticjpants (Figuret.9). Using the
HMM detector, we obtained a total recognition rate for theBmroup configurations of 84.8
% [18]. Table4.3 shows the confusion matrix for the 3 experiments. This matdlicates for
each group configuration the correct and wrong detections.lifies of the matrix contain the
detection results, while the columns contain the expeasgpanse.

(ABCD) (AB)(CD) (AC)(BD) (AD)(CB)

(ABCD)  0.88 0.03 0.06 0.03
(AB)(CD)  0.08 0.87 0.05 0.00
(AC)(BD)  0.22 0.01 0.77 0.00
(AD)(CB)  0.04 0.04 0.08 0.84

Table 4.3: Confusion matrix

Figure4.10gives an overview of the detection of group configurationsrdawme. The lines of
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the chart correspond to different group configurations. dd@inuous line indicates the correct
group configuration expected as detection result.

The results are encouraging and tend to validate the cati@nal hypotheses to distinguish
interaction groups. The Viterbi algorithm executed on lobgervation sequences is quite robust
to wrong detections of the speech activity detector. Howewveninimum number of correct
speech activity detections is necessary, as the methes i@h the information of who speaks
at which moment. The use of lapel microphones made it passiblimit wrong detections
as these microphones are attached to a particular persdrii{as should only detect his/her
speech).

Figure 4.10: Ground truth (red) and detection (green) ofugroonfigurations over time for
Experiment 1 (upper left, duration: 9 min. 22 sec.), Expeni2 (upper right, duration: 15
min. 16 sec.) and Experiment 3 (bottom, 16min. 19sec.). @rythxis, O corresponds to the
group (ABCD), 1 to (AB)(CD), 2 to (AC)(BC), and 3 to (AD)(BC)

4.3 Conclusions

This chapter described two different implementations fierdituation model representing con-
text: a deterministic one based on Petri nets and a probfbitine based on hidden Markov
models. Both approaches have been applied to real worldgmsbwith success: an automatic
cameraman system (Petri nets) and an interaction grougtdeif@MMs) have been imple-

mented. Each implementation is well adapted for particapgolications. Petri nets can imple-
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ment all Allen temporal operators, in particular those désuog parallelism. However, Petri
nets can not model erroneous perceptions and uncertaatisits (uncertain expectations of
perceptions for a situation and uncertain situation tteors). Hidden Markov models are less
rich in modeling temporal constraints (in particular pkelgdm), but HMMs permit to model
erroneous input and uncertain situations. Thus the chditeeomplementation depends on the
application that is envisaged.
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Chapter 5

Learning Role Acceptance Tests

Integration of User Preferences f
Situation Split

1T

| Supervised Situation Learning ‘

1T

| Tnsupervised Situation Extraction

17

| Eole Detection per Entity |

This chapter addresses the learning of role acceptance st proposed methods consti-
tute the first layer of the framework for acquiring and evotysituation models. As we saw
in section3.4.1, a role acceptance test is divided into a filtering phase ateand relation
assignment. The filtering phase is considered to be the k&geps, isolating abstract events
necessary to activate a role. These abstract events fusiitan@vent streams coming from
perceptual components. The event streams contain thelbladntities as well as their proper-
ties. In the following, we will first present three methods l@arning different role labels from
entity event streams. Role labels refer to the abstractsvetessary for role assignment. The
proposed methods are based on a Bayesian classifier, swpptat machines (SVMs) and a
hybrid classifier combining Bayesian methods and SVMs. Tineet proposed methods have
been evaluated on data sets based on event streams conmng ffideo tracking system in an
augmented home environment (see also lecture scenaribsestiori3.4.2. Augmented home
environment, video tracking system, employed role labets r@corded data sets will also be
presented.
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5.1 Method

By using machine learning methods, our system is to find aedion between the sensed in-
formation (entity properties per observation frame) amdrttes as perceived and labeled by the
supervisor. We are focusing particularly on Bayesian nethbecause they are well adapted to
deal with erroneous sensor data and they have proven to he imsmany application domains,
in particular computer vision/[L, 81, 10q. In the following, we will present three methods: a
Bayesian classifier, support vector machines and a noveichglassifier for identifying unseen
roles.

5.1.1 Bayesian Classifier

We first use a generative learning method to model and leardata. On the basis of the sensor
data and the associated role labels, we seek to learn a pisti@blassifier for relevant roles.
The proposed Bayesian classifier is similar to classifievp@sed by Ribeiro and Santos-Victor
[81] and Muehlenbrock et al6f]. The classification is done framewise, i.e. the classifikes
the entity properties of one observation frame as input @ameates the role prediction for the
frame as output.

We seek to determine the rotg, . with the maximum a posteriori (MAP) probability, given
the entity property sef’ (equations.).

ryap = argmax P(r|T) (5.1)
Pl = S 52)

We apply Bayesian theorem (equatisr2) and we further assume that the prior probabilities
P(r) for the roles are equal for each frame. As the constant deraior can be eliminated
because of the argmax, we get (equabtads).

rayap = argmax P(T'|r) (5.3)

We model P(T'|r) for each role as multidimensional Gaussian mixture distidm estimated

by running EM algorithm 14] on the learning data. The initial number of Gaussians in the
mixture is set to a high value (in the evaluation: 128); Gaeusswith too weak contribution to
the mixture are successively eliminated.
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5.1.2 Support Vector Machines

In order to further improve recognition results, we use arihsinative learning method to
classify our data. Support vector machines (SVMs), B6] are well-known to be a powerful
discriminative learning method. As for the Bayesian clissithe classification is done frame-
wise, i.e. the SVMs take the entity properties of one obgemwdrame as input and generate
the role prediction for the frame as output. SVMs classifyadarough determination of a set of
support vectors, through minimization of the average eflfioe support vectors are members of
the set of training inputs that outline a hyperplane in feapace. Thig-dimensional hyper-
plane, wheré is the number of features of the input vectors, defines thadany between the
different classes. The classification task is simply to mheitee on which side of the hyperplane
the testing vectors reside.

Figure 5.1: SVM classifier hyperplane and margins for a ingiiset of two classes and)

Given a training set of instance-label pafrs, y;),7 = 1..l wherez; € ®" andy; € {1,—1}
(two class problem), the support vector machines requasdkution of the following optimiza-
tion problem:

l
Lnglﬁl %wTw - CZ & subject to yiwlo(x) +b)>1—6&, &>0 (5.4)
” i=1

Here training vectors; are mapped into a higher (maybe infinite) dimensional spachd
function ¢. Then the SVM finds a linear separating hyperplane with thgimma margin in
this higher dimensional space (Figsel). C' > 0 is the penalty parameter of the error term.
K(z;,x;) = ¢(x;)T ¢(x;) is called the kernel function. Though new kernels are beioggsed
by researchers, there are four basic kernels:

e Linear:K(v;,z;) = alx;
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e Polynomial:K (z;, z;) = (yalz; +r)4, v >0
e Radial basis function (RBFJ (z;, 7;) = exp(—||z; — x;||),7 > 0

e Sigmoid: K (z;, z;) = tanh(yx] z; + 1)

v, r andd are kernel parameters. For multi-class classification ne-against-one” classifica-
tion for each of the k classes can be doﬁ@é‘—l) classifiers are then generated to train the data,
where each training vector is compared against two difterkxsses and the error (between the
separating hyperplane margin) is minimized. The classifioaof the testing data is accom-
plished by a voting strategy, where the winner of each bisarngparison increments a counter.
The class with the highest counter value after all classes baen compared is selected.

5.1.3 Hybrid Classifier for Identifying Unseen Roles

As we will see in sectio®.2, SVMs are a discriminative classification method that odgwens
the generative Bayesian classifier for particular data stwever, SVMs do not provide reli-
able information about whether or not a new data item may beremt with the training data
sets. Although there are probabilistic SVM&], the generated probabilities only refer to the
distribution within the trained classes. Unseen data sackrang target detections or new role
classes cannot be identified. These data will be attribidezhé of the existing classes. The
Bayesian classifier is a generative classification methatgénerates a model for the training
data, providing a possible probability output for each natadtem. A hybrid classifier com-
bines the strong points of each method: the probabilistiputof the Bayesian classifier and
the discriminative power of the SVMs. First approaches tmhsa classifier have been applied
to text-independent speaker identificatiei®][ The focus, however, was on classification of
trained speakers; unseen classes/data have not beenearedsid

In the following, we propose a hybrid classifier combiningyBsian methods for identifying
unseen data and SVMs for classifying seen data. We will coengp&@ method with an extended
Bayesian classifier and classical SVMs. The architectutkeo€lassifiers can be seen in Figure
5.2

In subsectiorb.1.1 we used equatioh.3to determine the class of a new data item. We mod-
eled P(T|r) for each role as multidimensional Gaussian mixture distidm estimated by EM.
We have extended this by modeling additionallyl") as multidimensional Gaussian mixture
distribution estimated by EMP(T") makes it possible to estimate the probability for a new data
item to be generated from the training data set model. Byguaitinreshold on this probability
value, we can determine whether the new data item is paredétrned classes or whether it is
unseen data (e.g. wrong detections or new class). The tiidestin be automatically estimated
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T = (Entity Properties)

v v

P(T) > threshold [ leeen P(T) > threshold [ Whseen

\ ik \ Al h 4
Bayesian SVMs SVMs
Classifi
asstier l class l class
lclass
A) Ext Bayesian Classifier B) Hybrid Classifier C) Support Vector M.

Figure 5.2: Extended Bayesian classifier, hybrid classiiner support vector machines

from the training data sets (based on minimal probabilitgath items of the classes). The hy-
brid classifier (Figuré.2 B) combines the estimation @f(7") (generative model) with SVMs
trained on the classes. If a data item is determined to be datan the SVMs determine the
class of this item. For evaluation, we compare the hybridsifeer with an extended Bayesian
classifier (Figures.2 A) and classical SVMs (Figurg.2 C). The extended Bayesian classifier
combines the estimation @f(7") with a classical Bayesian classifier. We want to show that the
hybrid classifier outperforms both a purely Bayesian cfeessand a purely SVM approach.

5.2 Evaluation and Results

In this section, we will evaluate the proposed classifiersaweral data sets. The data sets are the
recorded properties of targets (entities) detected by @ovichcking system in a smart environ-
ment In the following, we will first present the smart home ieswment where the recordings
took place as well as the video tracking system. Then, therded data sets and role values
will be described. Finally, the results of the differentsddiers will be depicted.

5.2.1 Smart Home Environment

The experiments described in this section are performedlabaratory mockup of a living
room environment in a smart home. The environment contasnsadl table surrounded by three
armchairs and one couch (Figuse8 left). Microphone arrays and video cameras are mounted
on all walls in the environment. In this paper we concentaai¢he use of a single wide-angle
video camera mounted in a corner of the smart room (FiguBeight) opposite the couch.
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Figure 5.3: Map of our Smart Room (left), wide-angle cameeanshown in gray (right)

The wide-angle camera observes the environment (Figewith a frame rate between 15
and 20 images per second. A real-time robust tracking sydetatts and tracks targets in the
video imagesZ?4, 103.

Figure 5.4: The Smart Room environment as seen by the wide aamera

5.2.2 Video Tracking System

The video tracking system employs a supervisory contrédietynamically control the selec-
tion of processing modules and the parameters used for gsimce(Figures.5). This system
employs a library of pixel level detection operations toedétand track blobs at video rate.
In our smart environment, adaptive background subtracsiarsed to detect and track moving
users in the environment. A central supervisor is used tptgat@cessing parameters so as to
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maintain reliable real-time tracking. Within a detectienél targets can be detected by energy
measurements based on background subtraction or intensityalized color histograms.

f N
& a N r m N
Robust tracking Target detection
Prediction e—( Target — @I‘em'on
new targefs regions
4‘ __________ _{-__L__l 1Background ;
Update [+ (/ng,. -ef Detection
\ A \ v
) . XML description
Supervisor
|8 J

Figure 5.5: Architecture of the robust tracking system

The robust tracking module is a form of Kalman filt86] operating on the list of current targets.
For each target a search region and a Gaussian mask centetkd most likely position is
determined using a linear prediction from the previous ie@gpixel level detection algorithm
is executed with the search region, and the detected pirelhan multiplied by the Gaussian
mask. The first moment of this product provides a new estifwaitthe target position, while
the eigenvectors of the second moment provide positiomt@i®n and width, and height.

/N

2nd |
/
angle|

\.| /

Figure 5.6: Target properties returned by the system

The video tracking system returns a vector of propertiesetmh video frame. Each vector
contains the position, size and orientation of one targetated and tracked by the system. The
returned properties for each target are top positiony) of the bounding ellipse, the radius of
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the first and second axis of the ellipse and the angle desgriibie orientation of the ellipse
(Figure 5.6). Additional features including velocity, speed or eneagn also be determined
from the target tracking process.

5.2.3 Individual Role Values

”

The five elementary roles that we want to recognize in thisuew®n are: “walking”, “stand-

M

ing”, “sitting”, “interaction with table” and “lying” (Figure5.7).

Figure 5.7: Individual roles (from left to right): “walkirig“standing”, “sitting”, “interaction
with table” and “lying”

5.2.4 Data Sets

In order to develop and evaluate the recognition processeomded 8 short video sequences in
the environment. During these sequences, one or sevenatinals played different elementary
roles in the smart room. The number of frames and the numldiffefent roles played during
the sequences are indicated in Tabl& The overall distribution of the different roles in the
data sets is depicted in TalBe2

The roles played by the individuals in the video sequencgs baen hand labeled for use in
learning and evaluation. The labeling process assignsdabeél to each target detected by the
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Sequence No. frames No. Role labels
1352
6186
4446
4684
4027
4477
3067
3147
Total 30885

O~NO O A~ WN P
o1 o101 0101 0101~

o1

Table 5.1: Video sequence recordings

robust tracking system for each frame. The labeler had tksipiity of assigning a “no role”
label if a detected target did not appear to play any of thedieenentary roles. Thus, each of
the 8 data sets contains a list of target propeftieg, first radius, second radius, angle) and
the associated role label.

Video Sequence Walking (%) Standing (%) Sitting (%) Intablé (%) Lying (%)

1 0.79 0.03 0.11 0.00 0.08
2 0.14 0.06 0.48 0.24 0.08
3 0.14 0.09 0.40 0.24 0.12
4 0.14 0.08 0.50 0.18 0.10
5 0.17 0.09 0.46 0.18 0.11
6 0.19 0.12 0.42 0.16 0.10
7 0.13 0.12 0.50 0.15 0.11
8 0.15 0.09 0.48 0.19 0.09
Total 0.18 0.09 0.45 0.19 0.10
Table 5.2: Distribution of the different role labels in thatd sets
5.2.5 Results

Bayesian classifier, support vector machines and hybrgkifiar have been evaluated on the
data sets described in subsectio®.4 First, we will present the results of the Bayesian clagsifie
and the support vector machines. We evaluate the recogrofiall role values using cross-

validation. Then, the results of the hybrid classifier widl Bescribed. Here, we evaluate the
recognition/identification of new role values (classeg)eded from learning. We compare the
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performance of an extended Bayesian classifier, the hytagsifier and classical SVMs for
this task of identifying unseen role values.

Bayesian Classifier

We evaluated the Bayesian classifier on the video sequeccsliegs (Tablé.1) using 8-fold
cross-validation. Each sequence has been used for testoeg while learning the model with
the 7 remaining sequences. The average classificatiorigesul be seen in form of confusion
matrices in Tabl&.3 Table5.4and Tables.5.

Walking Standing Sitting Inter. table Lying
Walking  0.8015 0.1536  0.033 0.0089 0.003
Standing  0.4809 0.4611 0.0349 0.0217 0.0013
Sitting 0.0704 0.0221 0.7385 0.0833 0.0856
Inter. table  0.0324  0.0257 0.1163  0.8207  0.0049
Lying 0.0006 0.0013 0.1405 0.0005 0.8571

Class TP rate FPrate Precision Recall F-measure
Walking | 0.8015 0.0967 0.6889 0.8015 0.7359
Standing | 0.4611 0.0476 0.4732 0.4611 0.4474

Sitting 0.7385 0.082 0.8403 0.7385 0.7845

Inter. table| 0.8208 0.0605 0.7636 0.8208 0.7827

Lying 0.8571 0.0378 0.7113 0.8571 0.764

Total 0.7358 0.0649 0.6955 0.7358 0.7029

Table 5.3: Confusion matrix and information retrieval istats for Bayesian classifier with
T=(X,Y)

We evaluated three different target (entity) property et$he first set was the positiol, Y

in the image. The results are good (Tabl8) showing that the position in the environment is
discriminating for individual roles. Position is, howeyveery dependent on environment config-
uration, e.g. couch and chair localization. Thereforesteond target set wasst, 2nd, angle),
which only contains information on the form of the ellipselarot its position. The results (Ta-
ble 5.4) are quite similar to those obtained for the position.

The combination of the first and second target property (S€t%", angle, 1st, 2nd) gives the
best results (TablB.5). In general, ambiguous roles like “sitting” and “interiact with table”
or in particular “walking” and “standing” are difficult to sliinguish for each frame (even for a
human supervisor!), which leads to numerous wrong claasibics.

The overall results of the Bayesian classifier can be sedreifeft column of Tabl&.9.
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Walking Standing Sitting Inter. table Lying
Walking 0.8077 0.1552 0.0172 0.0093 0.0105
Standing 0.5403 0.3967 0.0376 0.019 0.0064
Sitting 0.0678 0.024 0.7668 0.1133 0.0281
Inter. table 0.0455  0.0257 0.1329 0.7668 0.0291
Lying 0.0176  0.0086 0.0442 0.0216 0.908
Class | TPrate FPrate Precision Recall F-measure
Walking | 0.8077 0.1066 0.6781 0.8077 0.7311
Standing | 0.3967 0.051 0.4195 0.3967 0.39
Sitting 0.7668 0.0655 0.8603 0.7668 0.8086
Inter. table| 0.7667 0.0789 0.7154 0.7667 0.7341
Lying 0.9079 0.0247 0.8202 0.9079 0.8545
Total 0.7292 0.0653 0.6987 0.7292 0.7037

Table 5.4: Confusion matrix and information retrieval istits for Bayesian classifier with

T = (1st,2nd, angle)

Walking Standing Sitting Inter. table Lying
Walking 0.9335 0.0499 0.0154 0.0008 0.0004
Standing 0.6759 0.2738 0.0393 0.0106 0.0004
Sitting 0.0882 0.0169 0.7757 0.1046 0.0145
Inter. table  0.014 0.0248 0.154 0.8073 0
Lying 0.0142 0.0051 0.0202 0.0053 0.9553
Class TP rate FPrate Precision Recall F-measure
Walking | 0.9336 0.127 0.7019 0.9336 0.7966
Standing | 0.2739 0.0231 0.3959 0.2739 0.3156
Sitting 0.7757 0.0679 0.8543 0.7757 0.8109
Inter. table| 0.8074 0.0701 0.7304 0.8074 0.7606
Lying 0.9553 0.0044 0.9582 0.9553 0.9561
Total 0.7492 0.0585 0.7281 0.7492 0.7280

Table 5.5: Confusion matrix and information retrieval stats for Bayesian classifier with

T = (X,Y, 1st, 2nd, angle)
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Support Vector Machines

Like the Bayesian classifier, the SVMs have been evaluatdti@rideo sequence recordings
(Table5.1) using 8-fold cross-validation. A radial basis functiorrk@ (see subsectioh 1.2
with C' = 11.0 and~ = 11.0 showed good results for our training data. The LIBSVM lilgrar
[26] has been used for implementation and evaluation.

Walking Standing Sitting Inter. table Lying
Walking  0.8198 0.0824 0.0732  0.0206 0.004
Standing 0.6035 0.2884 0.0793  0.0288 0
Sitting 0.0293 0.0005 0.8471  0.0593 0.0638
Inter. table  0.0014 0.0014 0.1661 0.8275 0.0036
Lying 0 0 0.1422 0 0.8578

Class TP rate FPrate Precision Recall F-measure
Walking 0.82 0.0813 0.7001 0.82 0.7489
Standing | 0.2882 0.025 0.5922 0.2882 0.3333

Sitting 0.8472 0.1198 0.8046 0.8472 0.8183

Inter. table| 0.8276 0.0495 0.8101 0.8276 0.811

Lying 0.8579 0.0296 0.7959 0.8579 0.815

Total 0.7282 0.0610 0.7406 0.7282 0.7053

Table 5.6: Confusion matrix and information retrieval stits for SVMs with7 = (X, Y)

Again we evaluated the three different target (entity) prop sets7 = (X,Y),

T = (1st,2nd,angle) andT = (X,Y, 1st,2nd, angle). As for the Bayesian classifier, the
results for the position (Tabk.6) and the form of the ellipse (Tab&7) are quite similar. The
combination of target property setX’, Y') and(1st, 2nd, angle) produced best results (Table
5.8). As for Bayesian classifier, the ambiguity of roles, in martar between “walking” and
“standing”, persists, resulting in a reduced precision'fzalking” and a poor recall for “stand-
ing”.
The overall classification results of the 8-fold cross-daition for the SVMs are depicted in the
right column of Table5.9. Both SVM and the Bayesian Classification are applied fraisew
That is, the target properties for each frame are used toupeod role label, independent of
values in other frames. Because the SVM is a discriminatiethod, it optimizes classification
between the given/trained classes, outperforming the B8ayelassifier. However, SVM does
not learn the structure for a given data set, but only bordetsmargins between classes. As
a result, with the SVM it is difficult or impossible to rejechseen test data (“garbage”) or to
discover new classes of roles.
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Walking Standing Sitting Inter. table Lying
Walking  0.8522  0.0923 0.0342 0.0145 0.0068
Standing  0.7701  0.0923 0.1091 0.0237  0.0048
Sitting 0.0514 0.0042 0.8536 0.0756  0.0153
Inter. table 0.0083  0.0053 0.2044 0.757 0.025
Lying 0.0071  0.0004 0.0917 0.0181 0.8827

Class TP rate FPrate Precision Recall F-measure

Walking | 0.8523 0.1147 0.6732 0.8523 0.7444
Standing | 0.0923 0.0271 0.353 0.0923 0.1423
Sitting 0.8536 0.1155 0.8091 0.8536  0.8282
Inter. table| 0.7569 0.0555 0.7829 0.7569 0.7624
Lying 0.8827 0.0155 0.8869 0.8827 0.8758

Total 0.6876 0.0657 0.7010 0.6876 0.6706

Table 5.7: Confusion matrix and information retrieval istits for SVMs with T' =
(1st,2nd, angle)

Walking Standing Sitting Inter. table Lying
Walking  0.8999 0.0849 0.0131 0 0.0022
Standing 0.5438 0.4066 0.0418  0.0069 0.001
Sitting 0.0425 0.008 0.8851 0.0396  0.0248
Inter. table 0.0066  0.0049 0.1346  0.8539 0
Lying 0.0049 0.0005 0.0269 0 0.9676

Class TP rate FPrate Precision Recall F-measure

Walking | 0.8999 0.0834 0.7398 0.8999 0.8079
Standing | 0.4067 0.0264 0.6086 0.4067 0.4529
Sitting 0.885 0.0628 0.8765 0.885 0.8802
Inter. table| 0.854 0.0271 0.8782 0.854 0.8632
Lying 0.9676 0.0054 0.9538 0.9676 0.9583

Total 0.8026 0.0410 0.8114 0.8026 0.7925

Table 5.8: Confusion matrix and information retrieval istits for SVMs with T' =
(X, Y, 1st, 2nd, angle)
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Bayesian Classifier SVMs

XY Mean 76.959 78.5537
Std. dev. 4.689 3.9751

1st,2nd,angle Mean 76.9107 78.1124
Std. dev. 3.9349 4.6881

X,Y,1st,2nd,angle  Mean 81.5024 86.1033
Std. dev. 1.4583 2.7573

Table 5.9: Overall recognition rates (in percent) for Bage<lassifier and SVMs

Hybrid Classifier

We evaluated the three different classifiers proposed isestiton5.1.30n the video sequence
recordings (Tablé&.1) using 8-fold cross-validation. In order to test the classs on unseen
data, we excluded each class once from the training data Haits resulted in5 « 8 = 40
test runs. The obtained overall results for the classifiexglapicted in Tabl®.1Q The hybrid
classifier outperforms the extended Bayesian classifietten8VMs for the complete data sets.

Ext. Bayesian Classifier Hybrid Classifier SVMs
Mean 75.2157 77.8555 71.0088
Std. dev. 5.4840 6.3881 8.3958

Table 5.10: Overall recognition rates (in percent) for egied Bayesian classifier, hybrid clas-
sifier and SVMs withl" = (X, Y, 1st, 2nd, angle)

Table5.11shows the information retrieval statistics of the role skssthat have been excluded
from training for the hybrid classifier. These results aenitical for the extended Bayesian clas-
sifier because the detection of the unseen classes by theljiligbvalues ofP(7") is common
for both classifiers. As the classical SVMs are not traineddiect the unseen classes, the TP
rate, FP rate, precision, recall and F-measure are zerovislsSThe detection results for the
unseen activities “standing” and “interacting with tabde mediocre. From an activity point
of view, both classes overlap with more frequent classealkiwg” and “sitting” respectively),
which explains detection errors. A distinct role class likeng” is, however, very well recog-
nized as unseen. The overall rates indicate that the agpoaacbe used to identify unseen role
classes.
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Class TP rate FPrate Precision Recall F-measure
Walking | 0.7374 0.1356 0.6481 0.7374 0.6763
Standing | 0.0108 0.001 0.3938 0.0108 0.0208

Sitting 0.7467 0.2677 0.6576 0.7467 0.6713

Inter. table| 0.5336 0.1217 0.6845 0.5336 0.5867

Lying 0.8476 0.0631 0.6557 0.8476 0.723

Total 0.5752 0.1178 0.6079 0.5752 0.5356

Table 5.11: Information retrieval statistics of the unseeles for the hybrid classifier with
T = (X,Y, 1st, 2nd, angle)

5.3 Conclusions

In this chapter, we presented an approach for learning aswynézing individual roles. The
approach is part of a framework for acquiring a high-leveiteat model for human behavior
in augmented environments. Role recognition is the baoklwdrihis framework as roles are
necessary for determining relations between entitieseotisituation and scenario. The pro-
posed methods for role learning and recognition are a Bagyeadassifier and support vector
machines. In order to detect unseen role classes, a hylaggifier has then been proposed
combining generative Bayesian methods and discrimin&ifgls.

The proposed methods have been tested and evaluated intehemar environment. A robust
tracking system was used to create and track targets ém)titi wide-angle camera images of
the scene. Bayesian classifier and support vector machawestkeen applied to the extracted
target propertie$ X, Y, 1st radius, 2nd radius, angle) in order to learn and detect individual
target role classes “walking”, “standing”, “sitting”, “ieracting with table”, “lying”. The eval-
uation of both classifiers on recorded data sets showed gsnits. Support vector machines
outperformed the Bayesian classifier. In order to detectemsole classes, the hybrid classifier
has been applied to the recorded data sets. The obtaineallaletection results for unseen
classes in the recorded data sets are good. The hybridfidassitperformed the Bayesian clas-
sifier and the SVMs when identifying unseen roles, showirag the proposed combination of
generative and discriminative methods is beneficial.

Future work may concern an improvement of the recognitioe far roles. A first step is to
integrate additional features into the entity propertg s€aking the example of a target track-
ing system in a smart home environment, position of face atl$, derived by skin color
detector, velocity, speed and background subtractiorggmeay be prospective candidates. Ve-
locity, speed and energy estimation need also to be addeavadil like to mention that, in
order to optimize role recognition, it is sometimes usetutéduce the number of classes to
be recognized and to treat some classes “manually”. Thisgeaally the case when a class
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label is badly recognized in an automatic manner (perhapstainsufficient learning data),
but some entity property values can easily be specified byngmeer in order to detect the
concerned class. For example, an engineer may specify anadiand a maximal distance from
the center of the table in order to recognize “interactingpwable”. Entity properties like speed
may also be specified manually in order to recognize “walkifipe advantage is a reduction
of the amount of learning data that is necessary for a legraligorithm like SVMs in order

to learn correctly all class labels. As the amount of avé@lddarning data is normally limited,
a reduction of the number of classes and manual specificatisnme “difficult” classes can

largely improve the overall recognition rates. Subsec@dh2will give an example of such a
manual specification of some class labels.

In the following chapters, we will pass to the next step:iézy and recognizing situations.
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Chapter 6

Unsupervised Situation Discovery

Integration of User Preferences f
Situation Split

1T

‘ Supervised Situation Learning ‘

it

| Tnsupervised Situation Extraction

1T

‘ Eole Detection per Entity ‘

This chapter addresses the unsupervised discovery ofisitsdrom multimodal observation.
The proposed method constitutes the second layer of theetvank for acquiring and evolving
situation models. Multimodal observation generation isdshon the entity end role detection
processes (chapt®). The properties associated to each entity and the rolg®glay these
entities are used to generate multimodal observationsuoram activity in the scene. We as-
sume here a constant sampling rate for these observatibafjective of situation discovery
is the offline segmentation of the incoming multimodal okkagon stream. Each segment cor-
responds then to a temporal interval containing the mulishobservations of one situation.
These segments can later serve as input for superviseti@itigarning.

The unsupervised method proposed in this chapter has basgndd and tested in the field
of automatic analysis of small group meetings. Automatalysis of small group meetings is
an emerging field of research for speech, video and multilnedanologies. In general, the
group and its members are defined in advance. The objectivengo recognize particular key
actions executed by group membe8§][or to analyze the type of meeting in a global man-
ner [23]. However, the detection of dependencies between indalgdand their membership in
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one or several groups is not considered. Analyzing largeuatsoof data from recordings of
interactions enables the reconstruction of social netsvfiska number of individuals30]. The
detection and analysis of conversations is then necesBagyautomatic detection of conver-
sations using mutual informatioi]], in order to determine who speaks and when, requires a
significantly long duration for each conversation. Littlenk has been done on the analysis of
changing small group configuration and activity. Aoki et[8].have presented a user study of
a system determining and supporting interaction groupsiiawaiospace. The system uses a
naive Bayesian classifier to determine the interaction gemnfiguration. However, the focus
of the paper is laid on the user study, no detection resuttpaasented. Inlg] (and briefly in
sectiond.?), a real-time detector for small group configurations of #ipgants has been pro-
posed. The detector takes speech activity events of megdirigipants as input. The meeting
situations describing the possible group configuration® lHeeen defined in advance (Figure
6.1).

' (ABCD) ' (AB)(CD)
meets

,/"

meets meets

| (ACQ)BD) <, (AD)BC)
_ meets y

Figure 6.1: Situation model describing possible group gométions for a meeting of 4 indi-
viduals A, B, C, D

However, a predefinition of meeting situations (aslig [c5]) is not always possible in advance,
especially when dealing with an increasing number of pigditts and informal meetings. Thus
we propose an unsupervised method for detecting small graagiing configurations and ac-
tivities from a stream of multimodal observations. Thistfsegmentation can be used as input
for classification and detection of activities. The prombseethod detects changes in small
group configuration and activity based on measuring theeletfivergence between adjacent
histograms of observations. 14§, the authors showed that different meeting activitiesl an
especially different group configurations, have particdiatributions of speech activity. This
can be extended to distributions of multimodal observatiooming from multi-sensory input.
These distributions are represented by histograms camdgihe frequency of these observa-
tions. To separate distinct distributions of observatian® adjacent windows are slid from
the beginning to the end of the meeting recording, while tatly calculating the Jeffrey di-
vergence between the histograms generated from the olisesvavithin these windows. The
size of the sliding adjacent windows is varied generativgis Jeffrey divergence curves. The
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peaks of the resulting curves are detected using succeebivst mean estimation. The detected
peaks are merged and filtered with respect to their heightvamdiow size. The retained peaks
are finally used to select the best model, i.e. the best gibycaf observation distributions for
the given meeting recording.

The method has been tested on observation recordings of #ingeeFive speech activity
recordings of short small group meetings with 4 participaone speech activity recording
of a seminar with 5 participants and a audiovisual obsermatecording of a cocktail party
meeting with 5 participants. The approach showed promigaglts for all meeting recordings.

6.1 Method

A novel method based on the calculation of the Jeffrey dmecg between histograms of ob-
servations is presented. These observations are a disdreti of events coming from multi-
sensory input. The observations are generated with a cursdenpling rate depending on the
sampling rates of the sensors.

6.1.1 Observation Distributions

In [18], the authors stated that the distribution of the differgpgech activity observations is
discriminating for group configurations in small group nilegs. It is further assumed that in
small group meetings distinct group configurations andsaiets have distinct distributions of
multimodal observations. The objective of the proposed@ggh is hence to separate these
distinct distributions, in order to identify distinct srhateeting configurations and activities.
Because the observations are discrete and unordered (&-dingensional discrete code) and
there is no a priori observation distribution, histogrameswsed to represent observation distri-
butions. A histogram is calculated for an observation wim¢ice. the observations between two
distinct time points in the meeting recording) and contdiresfrequency of each observation
code within this window.

p(x q(x
Jpa = D_p()-log p(x>(+q)<x> () - log p(x><+q><m> (6.1)
reX T2 2

The Jeffrey divergenc&’p] is a numerically stable and symmetric form of the Kullbdakbler
divergence between histograms. Equatohindicates the formula to calculate the Jeffrey di-
vergence between two histograpandq. The setX contains the bins of the histograms. The
valuep(z) refers to the empirical probability of the observation assted to bin.
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Jeffrey divergence curve (histogram windows size=4000 obs.)
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Figure 6.2: Small Group Meeting 5: Jeffrey divergence betwistograms of sliding adjacent
windows of 4000, 8000 and 12000 speech activity observat{6dsec, 2min 8sec and 3min
12sec)
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The Jeffrey divergence may be used to separate differeenadison distributions by calculat-
ing the divergence between the histograms of two adjacesdrgation windows. With this ap-
proach, two adjacent observation windows are slid from #ggriming to the end of the recorded
meetings, and the Jeffrey divergence is computed for easitiggn. The result is a divergence
curve of adjacent histograms (Figle).

The peaks of the Jeffrey divergence curve can be used totdd#tanges in the observation
distribution of a meeting recording. The peaks of the cumadgate high divergence values,
i.e. a big difference between the adjacent histograms atitha point. The size of the adjacent
windows determines the exactitude of the divergence measnt. The larger the window size,
the less peaks has the curve. However, peaks of larger wisi@s are less precise than those
of smaller window sizes.

As the observations are generated with a fixed samplingaatebservation window size used
for the calculation of a histogram corresponds to a tempatatval. Different window sizes

cover thus the detection of activities with different disas. As we do not want to have a
strong a priori concerning the duration of activities andugr configurations, we apply our
method to several different window sizes. The choice oféh&mmdow sizes is fixed by the

minimal duration of the activities that we expect. For srgatlup meetings, we fixed a minimal
duration between 64sec and 4min 16sec, which corresporadwitodow size of between 4000
and 16000 audio observations.

6.1.2 Peak Detection

To detect the peaks of the Jeffrey divergence curve, sugeasdbust mean estimation is used.
Robust mean estimation detects the dominant peak of theyelfivergence curve. Successive
robust mean estimation applies the robust mean estimatimegs several times to the curve in
order to isolate all peaks. In the following, we will first déthe robust mean estimation process
and the associated equations. Then, successive robustestaaation will be described.

Robust mean estimation has first been used by Qian ét#ld locate the center position of a
dominant face in skin color filtered images. The idea is touate iteratively a trimmed mean
for the filtered pixels of the image. The trimmed mean comegrpwards the dominant skin
color blob in the image.
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Step 1. Compute mean p and standard deviation o
based on all the polints of the Jeffrey
curve.

Step 2. Let up(0)=u and 0O(0)=max (o, mindev).

Step 3. Compute trimmed mean p(k+I) and deviation
O(k+1) based on points within the
interval [u(k)-o(k), p(k)+o(k)].

Step 4. Repeat Step 3 until |p(k+i)-p(k)| < «<.

Denote the converged mean as u* and the
converged deviation &%.

Step 5. Set the dominant peak position p* to the
position of the maximum within the
interval [p*=8%, u™+&7].

Figure 6.3: Robust mean estimation process detecting admipeak of the Jeffrey divergence
curve

Figure 6.3 describes the robust mean estimation process to deteciothaant peak of the
Jeffrey divergence curve. The first step of robust mean esitomis to calculate global mean
and standard deviatianfor the Jeffrey divergence curve using equatiérisand6.3.

tvAax

Z t- Jh[t—size,t],h[t,t-‘:—size] (62)

t=tpin

ILL:

<yl =

tMAX

Z (t - :u)z ’ Jh[t—size,t},h[t,t—&-size} (63)

t=tpin

<yl =

N taax
J = Z Jh[tfsize,t},h[t,t+size} (64)

t=tpmiIn

Jnji—size,t] hlt,t+size] FETETS to the Jeffrey divergence between the adjacentgnestus of sizeyize

at time pointt. Both equations are normalized by the sum of all Jeffrey rdieece values
(equatior6.4). In the second and third step, a new trimmed me@nt+ 1) and deviatior (k+1)
are calculated based on the Jeffrey curve values within stedard) deviation around the
previous (global) mean. This process is repeated untilriherted mean converges (Step 4).
The maximum within the last interval is set to be the domirmadk of the Jeffrey divergence
curve.

To detect all peaks of the Jeffrey divergence curve, thegbimean estimation process is suc-
cessively applied (Figuré.4). After each robust mean estimation, the found dominank pea
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Step 1. Detect dominant peak p* using robust mean
estimation.

Step 2. Erase points within peak window [p*-&%,
u*+56*] from Jeffrey divergence curve.

Step 3. Repeat Steps 1 and 2 until

< T .

h[p*—.vize,p*],h[p*,p*Jrsize] n J with

Tnrax

- 1
J= 1 ZJ Ht—sizet], K[t,t+size] *
Loy =Lyt =ty

Figure 6.4: Successive robust mean estimation processtibgt¢he peaks of the Jeffrey diver-
gence curve

is erased (Step 2). This process is repeated while the lseijhsolated peaks are above the
average height of the curve (Step 3).

6.1.3 Merging and Filtering Peaks from Different Window Sizes

Peak detection is conducted for a fixed histogram window, sizethe size of the adjacent
observation windows used for calculating the histogranesla¢o be specified for the successive
robust mean estimation process (subsedidnd).

Peak detection using successive robust mean estimatibsgstion6.1.2 is conducted for
Jeffrey curves with different histogram window sizes. Thiedow size refers to the observation
window used for calculating the histograms. Figérashows example Jeffrey curves for three
different observation window sizes. We see that some peaksetected for several curves,
while others are specific for one particular window size. tden to determine which peaks
to choose for segmenting the multimodal observation rengrdve need first to merge peaks
appearing at several window sizes and to filter these peaktiyavith respect to their window
size and peak height.

Merging peaks

To merge peaks appearing at several histogram window sizeiseed to calculate the distance
between these peaks. Fig@® proposes a normalized distance measure between peaks of dif
ferent window sizes. The (temporal) distance between ta@pes normalized by the minimum

of the involved histogram window sizes. The resulting ndrpea distance measures the degree
of overlap between the histogram windows.
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Figure 6.5: Normalized distance dist between two peaks;, p; of Jeffrey curves with differ-
ent window sizesize, sizey

To merge two peaks, the histogram windows on both sides gbelags must overlap, i.e. the
normalized distance must be less than 1.0. The positioneofdsulting merged peak is deter-
mined by the position of the highest peak that has been merged

Filtering peaks

The resulting peaks are filtered by measuring peak qual@latiRe peak height and number of
votes are introduced as quality measures. The relative Ipgigkt is the Jeffrey curve value of
the peak point normalized by the maximum value of the Jeffrgye (with the same window
size). A peak needs to have a relative peak height betweear@l®.6 to be retained. The
number of votes of a peak is the number of peaks that have besgethto form this peak. A
number of 2 votes are necessary for a peak to be retained.

Merging and filtering operate on the positions and featufébedetected peaks, i.e. in a lo-
cal context. In order to determine the best allocation ofolation distributions for a given
recording, we need to search for the best combination oféh&gpretained by the merging and
filtering process. This global search process is catiedel selection

6.1.4 Model Selection

Model selection is a global search process that aims atrdeterg the best allocation of obser-
vation distributions for a given recording. The input is tis€ of peaks retained by the merging
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and filtering process. The output is the combination thatimepes the divergence between the
distinct observation distributions of the recording. Wewase that the best allocation of obser-
vation distributions corresponds to maximizing the averdigergence between the observation
distributions.

To search for the best model for a given recording, all pdsgibak combinations are examined,
i.e. each peak of the final peak list is both included and eleduo the (final) model. For each
such peak combination, the average Jeffrey divergenceediitiograms between the peaks is
calculated. As the goal is to separate best the distinctredisen distributions of a recording,
the peak combination that maximizes the average divergeeteeen the peak histograms is
accepted as the best model for the given recording.

Data size (nb obs) 34619
/‘
position rel. peak value window size votes
13340.0 0.74 12000.0 5.0
Part A < 17430.0 1.0 65000.0 9.0
30510.0 1.0 4000.0 3.0
(-
searching for kest model ... 8 combinaticns:
Part B < 0 (0.58) :17430 30510
1 (0.48) :13340 17430 30610
2 (0.43) 13340 30810
\_ 3 (0.27) :17430

Figure 6.6: Small Group Meeting 1: Output of the algorithm

Figure 6.6 shows an example output of the model selection algorithnt. Raf the figure
indicates the resulting peaks of the merging and filterimgess. Four peaks have been retained,
which means that x 4 = 16 possible peak combinations must be examined. Part B lists th
eight best peak combinations (sorted by descending avdedfyey divergence) that have been
found by the model selection process. Model 0 would have lse@atted, corresponding to
a segmentation of the recording at positidig30, 30610 and an average Jeffrey divergence
between the three segmentdais.

6.2 Evaluation and Results

To evaluate our approach, 5 short small group meetings €stibe6.2.2, one seminar (sub-
section6.2.3 and a cocktail party meeting (subsecti®2.4 have been recorded. The group
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Chapter 6. Unsupervised Situation Discovery

configurations and activities of these meetings have berd labeled. The result of the pro-
posed approach is the peak combination separating besttithigyadistributions for each meet-
ing recording. The intervals between the peaks are intergpras segments of distinct group
configuration and activity. Thesp, aap and Q measures (described in subsect®f.]) are
used for the evaluation of these segments with regard tcatbeddd group configurations and

activities.

6.2.1 Segment Quality Measure

The timestamps and durations of the (correct) group cordtgurs and activities have been
hand labeled. As the proposed method is unsupervised, et dorrespondence between de-
tected segments and hand labeled activities cannot be meda@ig. by using confusion ma-
trices) because the unsupervised segmentation processidbassign any labels to the found

segments.

e

lN‘S ]-Na
aSp=_ pg-xngo aap=7 po'xno'
NZI: NJZI: SRR

O = \Jasp X aap

with
ny =  total number of observations in segment i by activity j
e =  total mimber of observations in segment i
ne =  total number of observations of activity j
N, = total number of activities
N; = total number of segments
N = total number of observations
N 2
a n
— i
Pu=2"r
J=1 nj'o
N 2
5 HU
Py=2 7
i=1 no_}'

Figure 6.7: Average segment puritysp), average activity puritydap) and the overall criterion

Q
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In order to measure segment quality, we use the three megsuneosed by Zhang et al.(1]:
average segment purity{p), average activity puritydap) and the overall criteriod) (Figure
6.7). asp, aap and ) measure the quality of the segmentation based on purityeofdtind
segments and labeled segments. dfiemeasures the purity of one segment with regard to the
labeled activities, i.e. thesp indicates how well one segment is limited to only one activit
The aap measures the purity of one activity with regard to the detdsegments, i.e. thewp
indicates to which extent one labeled activity correspdoasly one detected segment. Tije
criterion is an overall evaluation criterion combiniagp andaap.

asp, aap and @) values are comprised betweérand 1, where larger values indicate better
guality. In the ideal case (one segment for each labelediggtiasp = aap = 1 and@ = 1.

6.2.2 Short Small Group Meetings

Figure 6.8: Interaction group configurations for the smediup meetings of 4 individuals

Five short meetings (duration: between 9 min. 14 sec. andih618 sec.) with 4 participants
have been recorded. The speech of each individual was extosing a lapel microphone. The
use of lapel microphones has been admitted in order to meimaorrelation errors of speech
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Chapter 6. Unsupervised Situation Discovery

activity of different individuals, i.e. speech of individUA is detected as speech of individual
B. A real-time speech activity detectdt(, 91] generated binary observation values (speaking,
not speaking) for each individual that is recorded. Thesatyiobservations were combined to
a 1-dimensional discrete observation code. The generatde @ompriseg” different values,
wheren is the number of recorded individuals. For the five short mgstwith 4 individuals,
the resulting observation code hzs= 16 values comprised betwe®mand15. The automatic
speech detector has a sampling rate of 62.5 Hz, which camelspto the generation of one
observation every 16 milliseconds.

The individuals formed different interaction groups dgrthe meetings (Figure.8). The num-
ber and order of group configurations, i.e. who will spealhiwihom, was fixed in advance for
the experiments. The timestamps and durations of the growiigcirations were, however, not
predefined and changed spontaneously. The individuals frer€¢o move and to discuss any
topic.

Figure6.9 shows the labeled group configurations for each small groesgtimg as well as the
segments detected by the proposed approach. Babiledicates theisp, aap and( values for
each meeting as well as the average of these values for atingeeUnlike meeting record-
ings 1, 4 and 5, recordings 2 and 3 contain numerous wrongB@esivity detections caused
by correlation errors and microphone malfunctions, whixpl@&ns lowerasp and () values.
However, the overall results of the proposed approach arxegaod; the averagé® value is
0.85.

Duration asp aap Q
Meetingl 9m114s 0.94 0.93 0.93
Meeting2 10m1l4s 0.68 0.99 0.82
Meeting3 16m1lls 0.66 0.86 0.75
Meeting4 14m47s 0.78 0.91 0.85
Meeting5 16m12s 0.93 0.92 0.92

Average 0.80 0.92 0.85

Table 6.1:asp, aap and(@ values for the small group meetings
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Small Group Meeting 1 Small Group Meeting 2
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Figure 6.9: Meeting 1-5: group configurations and their ci&te
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6.2.3 Seminar

A seminar (duration: 25 min. 2 sec.) with 5 participants hasrbrecorded. As for the small
group meetings, the speech of the participants was recarsiag lapel microphones. The au-
tomatic speech detector provided the speech activity sasens (speaking, not speaking) for
each individual. These observations were combined to aareéson code with2® different
values comprised betwe@rand31. The activities during the seminar were “discussion in $mal
groups” (D1), “presentation” (P), “questions” (Q) and “dission in small groups” (D2). Fig-
ure 6.10shows the labeled activities for the seminar as well as tgesats detected by the
proposed approach. Tal#e? indicates theisp, aap and( value. The results of the automatic
segmentation are very good; the obtaidgdalue is 0.90.

Seminar

] D2

D1

Activities

51

Detection

Figure 6.10: Seminar: activities and their detection

Duration asp aap Q
Seminar 25m2s 0.88 0.91 0.90

Table 6.2:asp, aap and( values for the seminar
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L o

Figure 6.11: Wide-angle camera image of INRIA Rhone-Alpasaace hall with three targets
being tracked (above) and the corresponding target positom the hall map after applying
a homography (below). White rectangles in the camera imagevg) indicate the detection
zones used by the visual tracker for creating new targets
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6.2.4 Cocktail Party Meeting

A cocktail party meeting (duration: 30 min. 26 sec.) with Stgdpants has been recorded in
the entrance hall of INRIA Rhéne-Alpes. The recording wadtimadal, including audio and
video information. The speech of the participants was @using headset microphones. A
wide-angle camera filmed the scene and a visual trackingmsystovided targets corresponding
to individuals or small groups (Figugl1labove). Our method has been applied to the audio,
video and audiovisual information of the recording.

The audio of each individual has been recorded using lapgbmpinones. As for the small group
meetings and the seminar, the audio channels of the diffémpel microphones have been
analyzed by a speech activity detector providing binargspectivity observations (speaking,
not speaking) for each individual. These binary values aralined to an audio observation
code @° = 32 values between 0 and 31) generated every 16 milliseconds.

The visual tracking systen2{f]] is based on background subtraction and creates and traecks t
gets based on the video images of the wide-angle camera.eféeted targets may correspond
to individuals or small groups. The split and merge of thesgdts made it difficult to track
small interaction groups directly, in particular when naigtion groups are near to each other.
In order to generate visual observation codes, the positibthe targets need to be discretized.
First, the targets tracked by the visual tracking systene lieen mapped on the hall map using
a homography. A homography defines a relation between tweegsuch that to any point in
one figure corresponds one and only one point in the otheryi@edversa. Figur&.11 below
shows the three points on the hall map corresponding to tee thrgets currently tracked by the
visual tracking system (Figu®11labove). Then, a multidimensional EM clustering algorithm
[14] has been applied to all target positions on the hall map dsase¢he angle and the ratio
of first and second axis of the bounding ellipses of all taxgéhe EM algorithm was initially
run with a high number of possible clusters, while constaeliiminating those with too weak
contribution to the whole model. 27 clusters were identifedthe cocktail party recording.
Figure6.12indicates the positions of all targets (red dots on the hafpyas well as the clusters
learned by EM (small blue ellipses on the hall map). Finalig, visual observations are gener-
ated based on the dominant position clusters in the curidabv¥rame. The dominant position
clusters are the clusters of the EM model with the highedbadodity of having generated the
targets in the current video frame. The number of visual agi®ns is limited to the number
of clusters (here: 27). The appearance of a dominant clustevideo frame is counted as one
observation, thus augmenting the frequency of this clustdre histograms. The tracking sys-
tem has a frame rate of 16 frames per second, which corresgorttie generation of visual
observation codes every 62.5 milliseconds.

The histograms of the proposed approach are calculatedd@utdio observations coming from
the speech activity detector as well as for the visual olagiens coming from the visual tracker.
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F

]l .

Figure 6.12: Cocktail party: positions of all targets on ki@l map (red dots) and 27 position
clusters isolated by EM algorithm (small blue ellipses)

The fusion is done by simply summing the Jeffrey divergeralaes of the audio observation
histograms and the visual observation histograms. Sumthendeffrey divergence values of the
histograms from different modalities is an easy and efficiay to fuse multimodal information
because no data conversions or additional fusion calounlsire necessary.

The participants formed different interaction groups dgrihe cocktail party meeting. The in-
teraction group configurations were labeled. Figud8shows the labeled group configurations
as well as the segments detected by the proposed approaehpphoach has been applied to
the speech detector observations (FiguE3top left), the visual model observations (Figure
6.13top right), and both the speech detector and the visual muloksrvations (Figuré.13
bottom). Tables.3indicates the correspondingp, aap and( values. The results of the audio
segmentation were very good in the beginning of the coclaity, but degraded afterwards
due to less regulation in speech contributions of the ppéids and correlation errors of the
microphones.

Duration asp aap Q
Audio 30m26s 0.57 0.83 0.70
Video 30m26s 0.83 0.92 0.87
Audio+Video 30m26s 0.94 0.94 0.94

Table 6.3:asp, aap and( values for the cocktail party
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Coc ktail Party Meeting (audio) Cocktail Party Meeting (video)
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Figure 6.13: Cocktail party: group configurations and tkleitection based on audio, video and
audiovisual data

The results of the visual segmentation are very good becdtise fact that participants forming
an interaction group tend to separate from other interagfioups in the environment. However,
distinct interaction groups do not always separate in tve@@mment, which leads to detection
errors in the beginning of the meeting. The results of thensedation of both audio and video
are very good, outperforming the separate segmentatidres))value of the video and audio
segmentation is 0.94.
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6.3 Conclusions

This chapter proposed an approach for detecting small groofigurations and activities from
multimodal observations. The approach is based on an unsspeé method for segmenting
meeting observations coming from multiple sensors. THeaJedivergence between histograms
of meeting activity observations is calculated. The pedkhe® Jeffrey divergence curve are
used to separate distinct distributions of meeting agtioliservations. These distinct distribu-
tions can be interpreted as distinct segments of group amafign and activity. The correspon-
dence between the detected segments and labeled groupucatifigs and activities has been
measured for 7 small group recordings. The obtained reatdtpromising, in particular as the
method is completely unsupervised.

The fact that the proposed method is unsupervised is edlyesitvantageous when analyzing
meetings with an increasing number of participants (and fhassible group configurations)
and a priori unknown activities. The method then providessta §egmentation of a meeting,
separating distinct group configurations and activitidsese detected segments can be used
as input for learning and recognizing meeting situations @nbuild up a context model for
a meeting. Additional meeting information will then be nesary to disambiguate all situa-
tions. Head orientation, pointing gestures or interpesitdistances seem to be good indicators.
As described for the cocktail party meeting, the proposqaagch can easily be extended to
integrate further meeting information coming from differsensors.
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Chapter 7

Supervised Learning of Situations:
Injection of expert knowledge

Integration of User Preferences f
Situation Split

il

Supervized Situation Learning

il

‘ Tnzupervised Situation Extraction

1T

‘ Eole Detection per Entity ‘

This chapter addresses the supervised learning of sitigafidhe proposed method constitutes
the third layer of the framework for acquiring and evolvintation models. Supervised Situ-
ation learning is based on the segments extracted by unsspeisituation discovery (chapter
6) for each situation. An expert provides situation labetsgfach of these segments. The objec-
tive is then to learn a representation for each situatiomfgoven segments of observations and
the associated situation labels. The learned situatioeseptations and constructed situation
model can later be adapted according to user feedback.

A situation is a temporal state describing activities ardti@ns of detected entities (persons)
in an augmented environment. Perceptual information ftoedifferent sensors in the environ-
ment is associated to the situations. The different sibnatare connected within a network. A
path in this network describes behavior in the scene. Syse&gwices to provide can be associ-
ated to the different situations in the network.
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To the best of our knowledge, the research work on situaaming and recognition has just

begun. Most of the existing applications construct theasituns manually and apply them to a

specific application in aad hocmanner. There is no systematic methodology. We aim at gplvin
two fundamental issues: learning and recognizing a saoatpresentation, and learning the
relationship between situations:

Representation of Situation

The input to the situation learning is sequences of perceptiofts associated taen situation
labels (n < n). Each sequence corresponds to one situation. Two or mquesees can have
the same situation label. The situation acquisition atgoriproduces or learns the situation
representations from the given perception sequences andiated labels. The output will be
the representation of each situation to be used for sitwagocognition. A supervised learning
methodology will be adopted. The graphical representaliostrating the abstract idea of this
process is shown in Figuie Ll We aim at finding a robust and discriminative represemédto
each situation. The difficulty in this process is to definechteria to measure the robustness
and discriminative power of the representation. One p&ssaily is to employ Fisher’s criterion
[50].

Pl | P2 | | Pn

Situation Acquisition Algorithm

]

Representation of each situation

Figure 7.1: Learning of situations

Recognition of Situation

Once the situation representation algorithm is developsmhgnition of situation can be pro-

ceeded. The testing perception sequences will go throtgditigin recognition. The situation in

the testing sequence will be recognized by comparing thatsiin representation for the testing
sequence and the reference situations.
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Context Understanding: Situation Relationship

Context is represented by a set of relationships betweeatghs. The system needs to be
trained with different categories of context (e.g. basedmatial or temporal relationships4])

in order to find the most appropriate situation relationsh{pnce the situations in the testing
sequences have been recognized, the relationships bethesnsituations, and thus context,
can be found.

In the following, we propose a Supervised Situation AcdigriAlgorithm taking perception
sequences as input and generating situation represergatoutput. The proposed generic
algorithm can be used with different learning methods andggdied to many different appli-
cations. An example application to a video surveillanck tapresented and evaluated.

7.1 Method

7.1.1 Supervised Situation Acquisition Algorithm

The objective of the situation acquisition algorithm is tadf|a representation for each situation
such that this representation is the most discriminativte végard to the given perception se-
guences (entity/role/relation values). Based on the quirafd=isher’s Criterion$0], we would
thus like to determine a representation for each situatich ghat the ratio of between-situation
distance and within-situation distance is maximized. Wesha

e m sequences associatedtagituation labelgm < n)
e Each sequence corresponds to one situation
e Two or more sequences can have the same situation label

e Each sequence contains entity/role/relation valuessdgerceptions, Py, P, ..., Py}

To convert a sequence of perceptions to a situation repessam we introduce the notion of

learnerL: { Py, P, ..., P,|k > 0} — situation representatiotry. The learner incorporates the
learning method taking the perception sequences as inguganerating a learned situation
representation as output. As the learning method and thergied situation representation are
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interchangeable, we can distinguish different learnessga corresponding to different learning
methods (e.g. hidden Markov model learners, decision gameérs etc.). An instance of each
learner class, i.e. a learner, corresponds to a particalanpeterization of the learning method
(e.g. EM learning a HMM with 5 states). The ratio of betweénation and within-situation
distance is defined for each learner class. A general ragds® be defined when comparing
different learner classes (step B of algorithm in Figér®. An example of a general ratio is
to calculate for each learner the ratio of the percentagesofgptions correctly classified as
not corresponding to the situation and the percentage @kepéons incorrectly classified as
corresponding to the situation.

A, For each learner class do:
d. {optimization step}
For each situation label do:
e Select learner/set of learners
¢ JApply learner to given percepticns
e. {validation step]
Calculate ratio of between-situaticon and within-
situation distance
f. Repeat a.-b. until cptimal ratic is cbtained

B. Choose learner class with best ratio of between-
situation and within-situation distance

Figure 7.2: Generic iterative situation acquisition altfon

The generic iterative algorithm for acquiring situatiopnesentations is designed and shown in
Figure7.2 It consists of an iteration over the available learnersgaswhich corresponds to the
use and evaluation of different learning methods. The clg@righm contains an optimization
step and a validation step. The optimization step first ceeaslearner or a set of successive
learners for each situation label. This choice can be doimg @exhaustive search over all learn-
ers of the class or following some criteria like gradientatgg-based algorithm or information
gain [66] . The chosen learner is applied to the perceptions of thatsin label, generating a
situation representation. Once a situation representétigenerated for each label, the valida-
tion step calculates the ratio of between-situation andinAsituation distance with respect to
the given perceptions and generated situation repregamaOptimization and validation step
are repeated until optimal ratio is obtained. Finally, wia@plying several learner classes, the
learner class with the best ratio is chosen. It is impor@apuint out that the proposed situation
acquisition algorithm is general (not like the currat hocanddomain specifi@pproaches).
We believe that it can be applied to most, if not all applicas.
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7.2 Evaluation and Results

In this section, we want to provide an example applicatiothefgeneric situation acquisition
algorithm and its evaluation. The application addressasiieg and recognizing situations for
video surveillance and is mainly based on computer visipatn.e. data coming from a real-
time tracking system and extracted features. Learning @oagnition are conducted per video
sequence. As hidden Markov models are well adapted forilggarnd representing tempo-
ral observation sequences, we used hidden Markov modelsdaning and representing the
situations.

7.2.1 Learning Situations for Video Surveillance

Figure 7.3: Four frames from a CAVIAR video clip

This example shows the application of the situation actjarsito video surveillance. The
CAVIAR video clips [25] are used for evaluation and show different situations (king”,

“browsing”, “fighting”, “waiting”, “object left”). Each vdeo is associated with an XML file
describing for each frame the entities with their positimoyement, role (“walker”, “browser”,
“none”, “fighter”, “leaving group”, “leaving victim”, “le&ing object”) and group information
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(binary value indicating whether an entity is in group nelatwith other entities). These files
were created manually and used asghmund truthof the videos. Figur&@.3shows four frames
from one of the CAVIAR video clips where two people are watkiforming a group, fighting
and running/leaving. Their roles are therefore “walkefighter”, “leaving group”, and “leaving
victim”. The “fighting” situation would for example involvihese roles consecutively played by
entities as well as the “group” relation.

Entities and roles provided by tlggound truthcan be acquired using the methods proposed in
chapter5. In the following, we will focus on the acquisition of the fdifent situations applying
the situation acquisition algorithm scheme. The perceptamnsist of the entity, role and group
values provided by the ground truth for the different siatabels.

A, For EM learner class do:
a. {optimization step}
For each situation label do:
e Select a number of states for EM training
e TLearn HMM parameters with EM
b. {validation step}

Calculate ratic of perception sequence probability
within and outside correct situation

c. Repeat a.-b. until cptimal ratic is cktained

Figure 7.4: Iterative situation acquisition algorithmngEM learner class

We choose hidden Markov models to represent the situatidmes.only learner class is thus
the expectation maximization algorithm (EM) for learningden Markov model parameters.
The instances of the class are the possible number of statke BIMM to learn. We use the
ratio of perception sequence probability within the carsgtuation (represented by HMM) and
perception probability outside the correct situation {esented by HMMs of other situations).
The iterative situation acquisition algorithm using EM @arher class is shown in Figured.

To evaluate, we use 114 perception sequences extractedHeo@AVIAR XML files. We did

a 3-fold cross-validation, using one third of the sequerfoegraining and two third of the
sequences for testing. The confusion matrix and informatgtrieval statistics as well as the
number of states of the HMMs learned for the different sitratabels are indicated in Table
7.1 The obtained average error is 6.22 %, with a standard dewiat 2.07 % P1].

The obtained results for situation recognition are bettantthose for role recognition (see
chapters). This can be explained by the fact that we assume low-leNetination (like roles
and relations) to be provided (e.g. by lower-level recagniprocesses or given ground truth),
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Walking Browsing Fighting Waiting Object left

Walking (3 states)  0.8889 0 0.0635 0.0476 0
Browsing (3 states) 0.1944  0.8056 0 0 0
Fighting (7 states) 0 0 0.9167 0.0833 0
Waiting (7 states) 0.0476 0 0.1429 0.8095 0
Object left (5 states) 0 0 0 0 1
Class TPrate FPrate Precision Recall F-measure
Walking (3 states) | 0.8889 0.0692 0.9446 0.8889  0.9147
Browsing (3 states) 0.8056 0 1 0.8056  0.8857

Fighting (7 states)| 0.9167 0.0695 0.6127 0.9167 0.7313
Waiting (7 states) | 0.8095 0.0444 0.8519 0.8095 0.8194

Object left (5 states 1 0 1 1 1
Total 0.8841 0.0366 0.8818 0.8841  0.8702

Table 7.1: Confusion matrix and information retrieval istits of the CAVIAR data sets, with
the number of states of the learned HMMs

which improves situation recognition results considgrablrther, role recognition refers to
the detection of activities of individuals for each framd)il situation recognition refers to
detecting activities of one or more individuals for framewsences. Of course, recognition per
frame sequence is more discriminative than framewise retiog. However, both recognition
processes are connected and can refer to similar actieitielfferent levels of elaborateness
(“walking” refers to a role (chaptés) as well as “walking” to a situation(chapt@)).

7.3 Conclusions

In this chapter, we proposed a generic Situation Acquisifitgorithm for supervised learning
of situations. The algorithm takes perception sequencgségtity/role/relation values) as well
as the associated situation labels as input and generataatios representation for each label.
As the proposed algorithm is a generic schema, the empl@atiihg methods as well as
the discrimination criteria are interchangeable. The pse algorithm has been applied with
success to a video surveillance task.
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Adapting to User Preferences

Integration of User Preferences /
Situation Split
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‘ Supervised Situation Learning ‘
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‘ Tnsupervised Situation Extraction
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‘ Eole Detection per Entity ‘

This chapter addresses the adaptation of an initial sitnatiodel to user preferences driven
by feedback on executed system services. The proposed dnahstitutes the last layer of the
framework for acquiring and evolving situation models. Thigal situation model can either
be predefined by a human engineer or be constructed autathabyg the methods proposed in
chapter6 and chapter. These methods are intended to be used for:

1. segmenting a multimodal observation stream

2. supervised learning of the situations based on extradisedrvation segments and expert
feedback

Once an initial situation model has been defined (or learribd)learning process must adapt
the situation model according to given feedback on the systervices. As in the chapters
before, we will focus on the adaptation of the situations el &s the situation network and the
associated system services.
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The input to the algorithm is a predefined situation netwdok@ with feedback from prior use.
We want to minimize the frequency with which the system afieappropriate services, while
minimizing disruption. This means that the feedback givethe system is to be minimal to
achieve the wanted changes of system services. We assutreefgbeson, denoted supervisor
in the following, is capable of specifying system serviaebeé executed by the system and that
his feedback is always consistent. The user himself or @ngigrson can act as this supervisor.
We distinguish three forms of supervisor feedback:

1. (Re)action correction: the service or (re)action exeduty the system is wrong and a
different service must be executed instead. The supergses the different system
(re)action as feedback to the system. This includes thewheee the supervisor wants
the system to execute a (re)action while the system doesaotie anything.

2. (Re)action deletion: the service executed by the systemrong and no system ser-
vice must be executed instead. The supervisor gives a plartire)action, the “erase”
(re)action, as feedback to the system.

3. (Re)action preservation: the service executed by themsys correct. The supervisor
does not give any information to the system. As we assumetibagupervisor is always
consistent, we can interpret the absence of his correctiopdgletions as positive feed-
back for the currently executed system (re)actions.

8.1 Method

Figure8.1shows an overview of the proposed algorithm. The input oigerithm is a prede-
fined situation network and feedback given by the superviBoe supervisor corrects, deletes
or preserves the service executed by the system while astinpserving a user in the envi-
ronment. Each correction, deletion, or preservation gegasra training example for the learn-
ing algorithm containing current situation, roles and tielas configuration, and the (correct)
service. The differences between the services given inrtieing examples and the services
provided in the predefined situation network will drive thiedent steps of the algorithm.

In the first step, the algorithm tries to directly modify trenaces associated to the situations
using the existing situation network. If serviéeis associated to situatid® and all training
examples indicate that serviBamust be executed insteadAfthenB is associated t8and the
association betweeh andSis deleted. If successful, the result is an adapted situaigwork
integrating the supervisor wishes. No situation split isgssary.
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Feedback Initial situation
network
v

Service adaptation Adapted situation
network

Situation split

|

Supervised Situation
Learning

Adapted situation
network

Figure 8.1: Overview of the different steps of the algorithm

In the second step, if the feedback indicates further treattmcerned situation is too general,
the algorithm splits the situation into sub-situationse ®ituation split is executed when the
supervisor perceives several situations (expressed @®raadisjunctive services in the train-

ing examples) while the predefined situation network onlscewes one situation (expressed
by one service). Thus the situation perceived by the preelgfaituation network may be too

general and the algorithm tries to split it in sub-situasiohhe observations (e.g. role, relations
configurations) of these sub-situations needs to be datedraccording to the given training

examples (see Splitting Situations).

Splitting Situations

When splitting situations, a number of training exampledidate different services for one
situation of the predefined situation network. Several sitdmations need to be created for these
services. We must determine the characteristic obsens(@.g. characteristic role, relation
configurations) in order to distinguish or detect these situmtions.

The determination of the characteristic observations @ftib-situations can be seen as classi-
fication problem. The service labels of the training exampln be interpreted as class labels.
For each class, we need to identify the characteristic @asens (e.g. characteristic role, rela-
tion configurations) necessary to detect the corresporsiibegituation (Figur8.2 above). We
assume that only one situation can be active at a time poainpénallelism) in order to keep
our learning problem manageable. The observation sequétice initial situation is then split
into sequential sub-sequences of observations corresgptalthe new sub-situations (Figure
8.2 below). The start and end points of these sub-sequencestam@nined by the time points
of the feedback on system service execution. For examplmitaad situation “working in of-
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Figure 8.2: Splitting situationsiit, is splitintoSit,,,Sit;, andSit,.; the observation sequence

7 (o)

- Stp--f-----S1p------p---Ste----

Sy used for constructing the situation representatiofiif is also split

fice” could be split into sub-situations “working on PC”, aging papers” and “being on the
phone”. The time points for the sub-sequences can be detednhy the feedback on the ser-
vices “switch on PC lamp”, “switch on music for reading”, atsivitch on phone recorder”.

Then, for each new sub-situation, we can determine or agetsrdiscriminative representation

based on the given observation sequence.

A, For each learner class do:
d. {optimization step}
For each situation label do:
e Select learner/set of learners

¢ JApply learner to given percepticns
e. {validation step]
Calculate ratio of between-situaticon and within-
situation distance
f. Repeat a.-b. until cptimal ratic is cbtained

B. Choose learner class with best ratio of between-
situation and within-situation distance

Figure 8.3: Generic iterative situation acquisition altfon
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The supervised learning scheme (Fig8t8) proposed in chapter can again be adopted to
associate observations to the new sub-situations. Thaihggalgorithms used as learner classes
can be exchanged. Possible learner classes include detis@learners, Bayesian classifiers,
hidden Markov models and others. Note that the situatiorn apt the associated situation
acquisition scheme are a methodology for integrating ussfepences. The proposed abstract
methodology has been tested with implementations base@meeptual learning algorithms
(Find-S and Candidate Elimination) and decision tree dlgorID3 (see sectioB.2) as well as
hidden Markov models (see chap8r

8.2 Evaluation and Results

Figure 8.4: Video image of the wide-angle camera of Smart®f#\ white box next to the door
is used for the creation of new targets (entities). One peisourrently tracked. Four presence
detection zones (chair, couch, board and table) of theitrgaystem are indicated

A situation model for office activity within the SmartOfficenaronment p0] of the PRIMA
group has been manually designed and implemented (F&8yen this environment, entities
are created and tracked by a robust tracking systeth The position of the created entities
determines several roles like “comes_in” or “works_on_REgure8.4). Additional roles are
determined by the login of an entity (person) to a computethan environment or specific
appointments marked in the agenda of the logged person. Adtesame_entity _as” relation
is used to distinguish entities in the environment. Theisesvof the system are based on the
control of the Linux music player and the projection of diffiet messages or presentations on
different surfaces in the environment.
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Figure 8.5: Situation model of the SmartOffice environmbnportant Situations arf80(empty
room),S1 (newcomer enters SmartOffic&§2 (Person connects/works on PGp (Connected
Person sits on couch) as®(Presentation in SmartOffice). Additional situations rééeagenda
information like having a scheduled meeting on campus @uidrking on PCS3, or sitting on
couchS6), or having a meeting in SmartOffice (while working on B@g, or sitting on couch

S7)

Because our SmartOffice situation model is defined by a finitaber of available roles and
relations, the situations within this model can be represeas a fixed-sized vector containing
one 0/1 value for each available role and several 0/1 valoesdch available relation. The
value 1 means that the corresponding role or relation islyvéide value O means that the role or
relation is not valid. As a relation is applied on entitieayphg roles, it is represented by one
1/0 value for each different role combination it can be agptio. A characteristic role, relation
configuration for one situation may contain blanks (“-”) foose roles or relations that are not
characteristic for this situation. A training example @ns a vector with specific values reflect-
ing the current role, relation configuration (observatjomken recording the training example
and the corresponding service (given by the supervisor)example, a training example based
on roles “comes_in”, “works_on_PC” and relation “not_sammetity as” would correspond to
a vector of2 + 3 = 5 0/1 values (two role values ar?él(?j—l) relation values) and the associated
service given as feedback.

We consider conceptual learning algorithms Find<s5,(chapter 2.4]) and Candidate Elimi-
nation (66, chapter 2.5]) as well as decision tree learning method L8 for learning the
representations of the new sub-situations.

The conceptual learning method Find-S constructs the npesific hypothesis for each service
based on the role, relation configurations (observation)e given training examples (Figure
8.6). The idea is to start with one training example and then tegdize the values (by putting

-") of this example in order to cover all other training exples for the concerned service. The
resulting hypotheses for the created sub-situations afberain, however, specific values for
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Figure 8.6: Splitting Situation using Find-S

the existence or non-existence of roles or relations thehat necessary or characteristic. As
a consequence, small variations in the role, relation cardigbn may not be covered by the
created sub-situations because their hypotheses aredoiicp

Training examples in Sit 1.

Roles, Relations  (Re)action Rol.,Rel. conf.  “Clags”

%3133 i} N (s Al (Sit 12)
0,0,0,1,0 Al " (1,0, --) A2 (Sit 1)

0 A2
D A2

Figure 8.7: Splitting Situation using Candidate Elimioati

To produce more general hypotheses for the sub-situatiemspnsider the conceptual learn-
ing algorithm Candidate Elimination. This algorithm camnsts the most specific and the most
general hypotheses for each service based on the rolepretainfigurations (observations) in
the given training examples. The most general hypothesemservice refer to the concepts
(role, relation values) that are shared by all training eplexs for this service, but not by the
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training examples of all other services. By combining theshg@neral hypotheses for each ser-
vice, we construct the representation, i.e. the role,imatonfiguration, for the corresponding
sub-situations (Figur8.7).

Both algorithms Find-S and Candidate Elimination have, éx@n, the restriction that they can
only find one conjunctive concept for each service, i.e. & tifaining examples indicate that a
service is to be executed in two different complementarg,r@lation configurations, Find-S
and Candidate Elimination will fail to construct severapbtheses (and thus sub-situations)
for this one service. This is due to the fact that neither @ilgm can construct disjunctive

hypotheses.

(0> R ')
s o)
(L=s e 01,---)
: (1’ 0= T2 T T )
Training exampies in Sit 1: Attributes: (a0,al a2,a3,a4)

Roles, Relations (Re)action
1,1,1,0,1) Al
(0,0,1,0,0 Al
(0,0,0,1,0) Al
(1,0,1,0,0) A2
(1,0,1,0,1) A2

Decision

Rol.,Rel. conf.  “Class”

0,- -~ -) Al (Sit 1a)
1,1,---) Al (Sit 1b)
(1,0,-,-,-) A2 (Sit 1¢)

Figure 8.8: Splitting Situation using ID3

We consider decision tree learning method ID3, in order tir@gk the limitation of conceptual

learning methods. The idea is to construct a decision traedhssifies the different services
found in the training examples of the initial situation (&ig8.8). The attributes of this decision

tree are the roles and relation values (0/1 values of thexed&ach leaf of the tree is labeled
with a service (class). The path from the root of the tree ®l#af gives the representation,
i.e. the characteristic role, relation configuration, floe tsub-situation to be created for this
(re)action. We can have several leaves with the same sewiteh corresponds to the creation
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of several sub-situations for this service (disjunctivpdtheses).

The learning algorithms run on data base tables containiegrasentation of the current situa-
tion network and the training examples. A control procesgijammed in the forward chaining
rule programming environment Je&€] is used to execute the situation network. This situation
network represented by rules is automatically generated the data base tables of the learning
algorithms. The supervisor feedback cannot be given whédeuser is acting in the environment
(i.e. while the control process is running). Thus the cdrgrocess and the learning algorithms
are run sequentially and not in parallel.

To evaluate our method, two experiments have been execuatde@redefined context model
of the SmartOffice environment (Figugb). The experiments have the same goal concern-
ing the evolution of the system services. The superviscggfeedback based on these goals
during the experiments. As we focus on the correct execuatidhe system services, we do a
cross-validation by adapting the predefined situation agtwsing the supervisor feedback of
the first experiment and by evaluating the second experioetite adapted situation network
(and inverse). The evaluation is done on the number of diyrelassified training examples,
i.e. correctly executed services, as well as on the revieth@fadaptations of the predefined
situation network.

Figure 8.9: Structural adaptations performed on the pnee@fsituation model of the SmartOf-
fice environment by the method. SituatidhsandS5have been split into sub-situations

The goal of both experiments was to integrate the correckdarand turn-off of the Linux
music player depending on the activities (=roles, relajai the user. The music player should
be switched on when a newcomer sits on the couch to have aarestswitched off when
the newcomer starts speaking or leaves the couch (concsitu@tion:S1). The music player
should similarly be switched on and off for a connected pe(soncerned situatiois5). Figure
8.9shows the adaptations of the two concerned situationstagentegration of the supervisor
feedback.S1 has been split into additional sub-situations integrasitgng down on couch
(S11), speaking on couclts(2 and leaving couch]10. S13is the sub-situation to which the
initial service ofS1lis associated. The additional sub-situationS®integrate leaving the couch
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(S50, sitting down on the couct861) and speaking on couclsb2.

A0 A8 A9
A0 0.6014 0.1884 0.2101
A8 0.25 0.75 0
A9 0.25 0 0.75

Class| TP rate FPrate Precision Recall F-measure
A0 | 0.6014 0.25 0.8704 0.6014 0.65
A8 0.75 0.0876 0.75 0.75 0.7286
A9 0.75 0.1178 0.7333 0.75 0.7302
Total | 0.7005 0.1518 0.7846 0.7005 0.7029

Table 8.1: Confusion matrix and information retrieval stits for Find-S

A0 A8 A9

A0 0.6232 0.1884 0.1884

A8 05 0.5 0

A9 0.625 0 0.375
Class| TP rate FPrate Precision Recall F-measure
A0 | 0.6232 0.5714 0.4637 0.6232  0.5317
A8 0.5 0.0876 0.6667 0.5 0.5556
A9 | 0.375 0.1006 0.6667 0.375  0.4675
Total | 0.4994 0.2532 0.5990 0.4994  0.5183

Table 8.2: Confusion matrix and information retrieval istats for Candidate Elimination

A0 A8 A9
A0 0.5985 0.1894 0.2121

A8 0 1 0
A9 0 0 1
Class| TP rate FPrate Precision Recall F-measure
A0 | 0.5985 0 1 0.5985 0.7134
A8 1 0.0881 0.8036 1 0.8901
A9 1 0.119 0.8 1 0.8889
Total | 0.8662 0.0690 0.8679 0.8662 0.8308

Table 8.3: Confusion matrix and information retrieval ist&ts for decision tree algorithm ID3

Table8.3 8.2and8.1show the results of the service execution in the form of ceislumatrices
and information retrieval statistics (A8 switches on thesmaplayer, A9 switches off the music
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player, and AO is the “do nothing” (re)action). In all expednts, the structural adaptation of the
situation network corresponds to the expected changexeduing the correct classification of

the training examples, i.e. the correct execution of theises, the decision tree algorithm (ID3)

gives the best results. The improved results of decisiaa dpmproach are due to the fact that
this algorithm supports disjunctive hypotheses. Howetver,decision tree algorithm tends to
construct too general hypotheses for the sub-situationshacan lead to several inappropriate
classifications. This is due to the fact that the decisioa #@lkgorithm prefers small trees to

large trees, which means that general hypotheses are netter specific hypotheses for the
sub-situations.

8.3 Conclusions

The method proposed in this chapter illustrates how a preekfjor learned) situation model
can be evolved from user side by giving feedback on systemcgeexecution. The method
relies on the situation split that creates sub-situati@msaf given initial situation. The mo-
ment for the split and the number of necessary sub-situaaoa determined by the feedback
given on system service execution. The generic situatiguiaition algorithm can be used to
learn the representations of the created sub-situatidms.pfoposed method has been tested
in an augmented office environment using Find-S, Candidateiriation and ID3 as learning
algorithms. An expert modeled the augmented office as atsituaetwork. This network is
adapted according to feedback given by a supervisor. Thdtsesbtained for the test cases
and employed learning algorithms are good, showing thaatiaptation of a given situation
model with feedback is possible. The system services debyehe human supervisor have
been correctly integrated into the situation network gtrree However, the precision of service
execution for the created sub-situations is still not higbwgh in order to be acceptable to
normal users.

Given feedback is sometimes not sufficient to decide whicptation must be done to the
situation network. Two different adaptations can covergame (optimal) number of training
examples (ambiguity of feedback). The two correspondifgasbn networks will, however,

not have the same meaning for the user/supervisor. A pessdhlition is the extension of the
learning to an interactive process. The learning systemveiify ambiguous choices by asking
the supervisor and the supervisor can intervene and cownieeh decisions of the learning
system are wrong. However, one major drawback of the prapossthod is that we assume
that supervisor feedback is (more or less) consistent, wisiciot always the case in reality.
Probabilistic or fuzzy learning algorithms can help toab¢e this drawback.
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Chapter 9

Integration and Experimental Evaluation

r 3
Integration of User Preferences /
Situation Split
< | Supervised Situation Learning ‘ >
| Tnsupervised Situation Extraction
| ERole Detection per Entity ‘
\ /

In this chapter, we will propose an integration of the meswelscribed in the precedent chapters
into a whole system for an intelligent home environments®yistem is to build up automati-
cally and to evolve a situation model for human behavior emdtene. An initial situation model
for the behavior in the scene in constructed using the segtien of basic situations (chap-
ter 6) and the supervised learning of situation labels (chapteFhe resulting initial situation
model is then evolved according to user preferences usedptek (chaptes). In the follow-
ing, we will first motivate the vision of a system for an inigént home by a short example
(section9.1). Then, we will describe our current implementation corsipig 3D tracking, role
detection and observation generation (sec8@). Finally, the conducted evaluations as well as
the obtained results are described.

9.1 Motivation: Bob’s dream...

Bob is dreaming of a new intelligent home. The new home pewiskrvices to make Bob’s
life easier and more convenient. Bob hopes to reduce alltéthinical stuff that he needs to

111



Chapter 9. Integration and Experimental Evaluation

switch on/off, regulate, configure, etc. His ideal envir@aminshould provide entertainment and
communication services with little or no configuration, piilag according to his preferences
with a minimum of disruption and feedback. Bob should onlgch#o indicate which service he

wants and the system should adapt accordingly.

Figure 9.1: Bob’s dream: an intelligent home anticipatirgreeds and wishes

For instance, Bob enjoys jazz music when he is eating on thehcdut he does not want to
be disturbed when eating with his girlfriend (Figu#el). Bob is willing to give feedback for
learning to the system by giving specific voice commandseretivironment or even, if needed,
by clicking on services to provide on his PDA.

To satisfy Bob, the environment needs to be equipped withaviand acoustic sensors. For
example, video cameras and a video tracking system and phicne array with speech detec-
tion and recognition can provide basic information aboub’Ba@urrent location and activity.
Of course, hand crafting of detection routines is not swdfitfor Bob’s dream as he wants the
system to evolve, constantly adapting to his preferencess & general model of the environ-
ment needs to be designed and then adapted according to lBaiesks. The situation model
has proved to be very useful for this task, being applied tooua problems and domainsl{]
and chapted).

A situation is a temporal state describing activities andti@ens of detected entities (persons)
in the environment. Perceptual information from the ddfersensors in the environment is
associated to the situations. The different situationsamected within a network. A path in
this network describes behavior in the scene. System ssrticprovide are associated to the
different situations in the network.

In order to build a situation model for Bob’s home, we startiman initial model describing
Bob’s very basic behavior. This model can be seen as defanftguration of the system for
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Bob sitting on
couch

Bob working
on PC

Bob sitting at
table

Figure 9.2: Initial situation model for Bob’s home

the environment, being general and providing little detétjure9.2 shows an example of such
a default situation model for Bob’s home. Normally, an expenstructs these models when
setting up the system within environment. However, expeurs are expensive for Bob. So an
expert should at least be aided by automatic processes.

Sensor
perceptions

Automatic Extraction of
Situations

Expert Supervised Situation Initial sitvation
Knowledge Learning network

Figure 9.3: Overview of the process of creating an initialation model

The schema of the process of creating an initial situatiodehis depicted in Figur®.3. Given
recorded sensor recordings of Bob’s activity in the enviment, the automatic extraction of
situations (chapteB) provides a first segmentation of sensor signals. We exjhieitaddition

of human expertise only for providing the situation labelsthe obtained segmentation. A su-
pervised learning scheme (chapi@iis used to associate the situation labels with the recorded
perceptions.The outputs of the supervised situation iegischeme are the situation represen-
tations for the initial situation network. The connectidregween the situations are constructed
by considering the recorded sensor perceptions and existinsitions between the detected
situations.

The initial situation model is, however, simple, with inicient detail about Bob’s preferences.
General situations, such as “Bob sitting on couch”, mustdimed to obtain sub-situations
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incorporating the preferred system services. A possikd@id situation model could look like
in Figure9.4.

Bab sitting on
couch “alone

Bab sitting on couch
» ’ “with others”
Bob working . Bob sitting at
on PC

table
Figure 9.4: Adapted situation model for Bob’s home

“Sitting on couch” has been split into “Sitting on couch +ae” and “Sitting on couch -with
others-". Sensor perceptions need to be associated to Wheutesituations. Bob is, however,
not interested in recruiting a system engineer implemgritie new sub-situations. This refin-
ing process, and in particular the association of sensaepéons to the new sub-situations,
should hence be as automatic as possible. The new subigiisiated thus to be learned from
recorded sensor perceptions as well as Bob’s given feedbachis voice or PDA) using ma-
chine learning methods. The schema of the adaptation peagsbe seen in FiguBe5. Bob’s
feedback and the initial situation network are the inpug; dltput is the adapted situation net-
work. The situation split proposed in chapt&ican be adopted to refine and learn the new
sub-situations. Once the sub-situations are learned ateeyserted into the whole network by
eliminating conflicts and erasing obsolete situations. fEselt is an adapted situation network
with new sub-situations integrating Bob’s preferences.

Bob’s feedback Initial situation
network
v

Service adaptation

'

Situation split

|

Supervised Situation
Learning

Adapted situation
network
Adapted situation
network

Figure 9.5: Overview of the process of integrating userli@e# into the initial situation model
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9.2 Implementation and Experimental Evaluation

In this section, we describe our current implementation el & evaluation and obtained re-
sults. The implementation is based on a 3D tracking systainciteates and tracks targets in
our smart home environment. The extracted target are usideteéot individual roles per entity

(subsectior®.2.2. Using the role values of several entities, observatioaganerated (subsec-
tion 9.2.3 that are the input for unsupervised situation extractidre results of the extraction

are used for supervised situation learning. The learnetsin model is then the basis for
the integration of user preferences, i.e. associating dadging services. We did 2 different
evaluations (Figuré.6).

Integration of User Preferences ¢ /\
Situation Split

1T

supervized Situation Learning

1T

Thnsupervised Situation Extraction v
TT Evaluation A  Ewvaluation B

Eole Detection per Entity

Figure 9.6: Different parts of the implementation and tleew@luation: role detection per entity
(chapter5), unsupervised situation extraction (chafgrsupervised situation learning (chapter
7) and integration of user preferences (chagjer

The aim of Evaluation A was to show the benefit of automatigagibn extraction and multi-
person observation fusion for situation recognition. Efi@re, we recorded several small sce-
narios showing different situations like “presentation”siesta”. The recordings have been
segmented using the method of chatand multi-person observations of situations have been
fused. We evaluate the recognition of the situations in tenarios with and without auto-
matic presegmention/multi-person observations as inpusdpervised situation learning. The
aim of Evaluation B was to show and validate the combinatioihe three methods: unsuper-
vised situation extraction (chapté), supervised situation learning (chap®@rand integration
of user preferences (chapt®y. Therefore, we recorded 3 (longer) scenarios showingrakve
situations like “aperitif”, “playing game” or “presentafi”. The recordings have first been au-
tomatically segmented. Then, the extracted segments tegrelabeled and the situations have
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been learned. Finally, the learned situation model has kegelved with user feedback. We
evaluate the recognition of the labeled as well as the adtieation (via situation split).

9.2.1 Smart Home Environment: 3D tracker and head set micropones

The experiments described in the following sections arenagerformed in our laboratory
mockup of a living room environment in a smart home (Figbi'® subsectiorb.2.7). We use
the wide-angle camera plus two other normal cameras moumted corners of the smart room
as well as the microphone arrays and head sets.

A 3D video tracking systemlf] detects and tracks entities (people) in the scene in new-t
using multiple cameras (Figuge?). The tracker itself is an instance of basic Bayesian reagon
[13]. The 3D position of each target is calculated by combinnagking results from several
2D trackers 24] running on the video images of each camera. Each couplereatietector is
running on a dedicated processor. All interprocess comeation is managed with an object
oriented middleware for service connectidib].

- (@ ek [Ocam..) (Jiceo..| & (cap.. | @ (Ror.. | Do | Dme. | Dmo. EWIQILIC]

Figure 9.7: 3D video tracking system fusing information @C3trackers to a 3D representation

The output of the 3D tracker are the position y, z) of each detected target as well as the
corresponding covariance matrix (3x3 matrix describirgftirm of the bounding ellipsoid of
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the target). Additionally, a velocity vectar can be calculated for each target.

The 3D video tracking system provides high tracking stghilihe generated 3D target posi-
tions correspond to real positions in the environment thatlwe compared to the position of
objects. The extracted target properties (covariancexneaéiocity) provided by the 3D tracker
are independent of the camera positions (after calibratfeurther, tracking is robust against
occlusions and against split and merge of targets.

The microphone array mounted against the wall of the smatt@ment is used for noise
detection. Based on the energy of the audio streams, wewlatewhether there is noise in the
environment or not (e.g. movement of objects on the table).

The people taking part in our experiments wear head set phomes. A real-time speech ac-
tivity detector RO, 91] analyses the audio stream of each head set microphone &rdhdees
whether the corresponding person speaks or not.

The association of the audio streams (microphone numbdhngtoorresponding entity (target)
generated by the 3D tracker is done at the beginning of eacindiag by a supervisor.

Ambient sound, speech detection and 3D tracking are synided. As the audio events have
a much higher frame rate (62.5 Hz) than video (up to 25 Hz), @desound events (no sound,
speech, noise) to each video frame (of each entity).

9.2.2 Role Detection per Entity

Role detection is conducted per entity and for each observétame. The input are the ex-
tracted properties of each target (positiany, =), covariance matrix (3x3 matrix) and speed
| v |) provided by the 3D tracking system. The output is one of tie labels (Figure®.11,
codes 1-13).

Entity properties

|
¥ ¥ ¥

[ ]
L d 1 { ! ! I} ‘ dist. 4 < threshold ‘

Sitting Standing  Lying EZETO low medium high T
yes no

Figure 9.8: Role detection process: SVMs (left), Targetesgeniddle), Distance to Interaction
Object (right)
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The role detection process consists of 3 parts (Figue The first part is similar to the SVM
method described in chapt&rThis first approach used SVMs as a black box learning method,
without considering specific target properties. From fiestults obtained in our smart home
environment, we concluded that, in order to optimize rogmition, we need to reduce the
number of classes as well as the target properties usedafsgifitation (see also sectiéi).
Additional classes are determined by using specific targgbegsties (speed, interaction dis-
tance) and expert knowledge (parts 2 and 3 of our approach).

Standing Lying Sitting

Figure 9.9: Basic individual roles “standing”, “lying” ariditting” detected by the SVMs

The first part of the process (Figu®es left) takes the covariance matrix values of each target
as input. Trained SVMs detect, based on these covariancesjaihe basic individual roles
“sitting”, “standing” and “lying“ (Figure9.9). As we limit our implementation to a fixed number
of role values, we only use SVMs and no hybrid classifier (teg).

The second part of the process (Fig9r8 middle) uses the speed vaIUe7 | of each target.
Based on empirical values in our smart environment, we can determine whether the speed
of the target isero, low, medium or high.

The third part of the process (FiguBe8 right) uses the positiofiz, y, z) of each target to
calculate the distance to an interaction object. In our ser@rironment, we are interested in
the interaction with a table at a known position (white tahl&igure5.4). So we calculate the
distanced between the target and the table in the environment. If tisisudce is approaching
zero (or below zero), the target is interacting with theeabl

The results of the different parts of the detection processambined to roles following the
schema in Figur8.1Q

9.2.3 Multimodal Observation Generation

Based on role detection results as well as the ambient scuhd@eech detection, we derive
multimodal observation codes for each entity created aackéd by the 3D tracking system.
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Postures Postures
Sitting Standing Lymg
Speed
Low Speed Low speed No Speed
No Speed ngh Speed No Speed High Speed Low E‘Speed
D1stances ’
Changmg Position Wal kmg Lymg Lying and
Gesturing
].mmoblle Gesturmg Immobile Gesturmg
Interacting Interacting and Gesturing Interacting Tnteracting and Gesturing

Figure 9.10: Schema describing the combination of basiwithgal role, speed and distance
values to roles (blue arrows refer to "no interaction diseawith table”, red arrows refer to
"interaction distance with table*)

sitting and interacting with table
sitting and gesturing

0 entity does not exi st

1 standi ng i mobil e

2 standing and interacting with table

3 standi ng and gesturing

4 standing and interacting with table (in novenent)
5 wal Ki ng

6 sitting

7

8

9

» sitting and interacting with table (in novenent)
10 : changing position while sitting

11 : lying

12 : lying and gesturing

13 : detection error

14-26 : entity is speaking

27-39 : there is noise in the environnent
40-52 : entity is speaking and there i s noise

Figure 9.11: Multimodal entity observation codes

119



Chapter 9. Integration and Experimental Evaluation

12 individual role values (Figur@.10 are derived for each entity by the role detection process.
Further, the ambient sound detector indicates whethee ikaroise in the environment or not.
The speech activity detector determines whether the coadesntity is speaking or not. This
multimodal information is fused to 53 observation codesdach entity (Figur®.11). Codes
1-13 (13 codes) are based on the role detection processe T3esodes are combined with
ambient sound detection (codes 27-39 and 40-52) and speésttidn per entity (codes 14-26
and 40-52). As ambient sound and speech detection retuanybialues?? 13 = 52 different
code values are necessary to represent role, ambient sadrgpaech detection. If we add an
observation code value for a non-existing entity (code @ get53 different observation code
values.

Fusion algorithm

Input: (a,b), 0 < a,b < mazxcoge

Step 1: if @ > b) {exchanget, b)},

Step 2code = 30" {(maxeoge+1)—i}+(b—a).

Figure 9.12: Fusion algorithm combining the role detectiatues(a, b) of two entities. For
maz..qe = 92, the resulting codes are between 0 and 1430

As we can have several persons involved in a situation, we teeise the multimodal codes
of several entities. We could simply combine the multimoelatity detection codes (for two
entities:53 x 53 = 2809 codes). However, the result is a high number of possiblergagen
values. Further, as we are interested in situation recogininany of these values are redundant.
For example, person A is lying and person B is sitting is aed#ht observation code as person
A is sitting and person B is lying, even though, from the pecse of activity recognition, the
situation is identical. Therefore, we employ the small dasalgorithm shown in Figur8.12
The idea is to attribute a code to the combination of two mgdtlal entity observation codes
(without considering their order). The resulting obseorattode fuses the observation codes
of two (or more) entities. In order to fuse the observatiodesoof more than two entities, the
fusion algorithm can be applied several times, fusing sssigely all entities.

We would like to mention that the fact that multimodal obsg¢ion code 0 (Figur®.11) cor-
responds to the non-existence of the entity implies thatreeigeed multi-person code (Figure
9.12 contains all generated lower codes. That is, if we gengi@texample, a two person code
for only one entity, the resulting code and the observatmieof the entity are identical. This
enables, for example, the comparison of one-person and-parkon observation codes.
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9.2.4 Evaluation A

Aperitif

-

Siesta Presentation Game

Figure 9.13: One person situations "individual work* ance®&ta“ (left side) and multi-person
situations "introduction®, "aperitif*, "presentation‘ral "game*

In this subsection, we aim at showing the benefit of autonpaéisegmentation and multi-person
observation fusion for situation learning and recognitibherefore, we made three different

recordings of each of the following situations: "siestan’individual working*, "aperitif*, "in-
troduction/address of welcome*, "presentation”, and ypig a game"“. "Introduction/address
of welcome*, "aperitif, "presentation” and "playing a gahinvolved two persons, while
"siesta” and "individual work* concerned only one persohgTrole detection values have been
generated as described in subsecBdh2 The sequences designated for learning are preseg-
mented (see method chap®&r i.e. only the segment containing the pure situation isldee
learning. This means that, for recordings containing omlg situation, disturbances at the be-
ginning and at the end of the recording are automaticallyored (see Figur®.14 for an
example). The supervised learning scheme (chaptes then used for learning the situation
representations from the sequences. We adopt hidden Markoels as unique learner class,
iterating over left-right hidden Markov models of state rhers between 8 and 16 (=parameters
of the class).

First, we did an evaluation on the situation detection fag parson only (role detection value
between 0 and 52). Situation recordings involving 2 peopleeghus two one-person sequences.
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Segmentations of recordings:
“Aperitif 1", "Aperitif 2", "Aperitif 3"

|||||||‘||||

|
I

Figure 9.14: Extracted segments for situation recordirfgsetitif 1”, "Aperitif 27, "Aperitif
3”. Segments at the beginning and at the end of the recordiiligse removed automatically

We did a 3-fold cross-validation, taking two third of the geqces as input for supervised
learning and the remaining third of the sequences as basisdognition. Tabl®.1and Table
9.3 show the results. The presegmentation improves the retmgmnesults for the one-person
recording sequences. In particular, "aperitif* and "garoah correctly be distinguished, while
some wrong detections between "introduction® and "presérdersist.

Additionally, we did an evaluation on the situation detewtfor two-person situations. There-
fore, we use the fusion algorithm proposed in subsec®@3 generating the multi-person
observation codes. We did again a 3-fold cross-validatiothe situation recognition after su-
pervised situation learning of the given observation segee. Tabl®.2and Table.4show the
results. The presegmentation also improves the recogmésults for the two-person record-
ings. As for the one-person situation detection, situati@peritif* and "game” can correctly
be distinguished with presegmentation. The two-persoembson fusion further eliminates
wrong detections between “aperitif” and “game”, resultinga correct situation recognition
rate of 100 % (Tabl®.4). The obtained results indicate that presegmentationtamusion of
individual role detection codes is beneficial when learrang recognizing situations involving
several persons.
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Siesta Individual Work. Aperitif Introduc. Presenter GamAudience

Siesta 1 0 0 0 0 0 0
Individual Work. 0 1 0 0 0 0 0
Aperitif 0 0 0.8333 0 0 0.1667 0
Introduc. 0 0 0 0.8333 0.1667 0 0
Presenter 0 0 0 0 1 0 0
Game 0 0 0 0 0 1 0
Audience 0 0 0 0 0 0 1
Class TPrate FPrate Precision Recall F-measure
Siesta 1 0 1 1 1
Individual Work. 1 0 1 1 1
Aperitif 0.8333 0 1 0.8333  0.8889
Introduc. 0.8333 0 1 0.8333  0.8889
Presenter 1 0.037 0.8333 1 0.8889
Game 1 0.0417 0.8889 1 0.9333
Audience 1 0 1 1 1
Total 0.9524 0.0112 0.9603 0.9524 0.9429

Table 9.1: Confusion matrix and information retrieval stiads for one-person situation detec-
tion without presegmentation. The total recognition rat83.33 %

Aperitif Introduc. Presentation Game

Aperitif 0.6667 0 0.3333 0
Introduc. 0 1 0 0
Presentation 0 0 1 0

Game 0 0 0 1

Class TP rate FPrate Precision Recall F-measure
Aperitif 0.6667 0 0.6667 0.6667 0.6667

Introduc. 1 0 1 1 1
Presentatior 1 0.1111 0.8333 1 0.8889
Game 1 0 1 1 1

Total 0.9167 0.0278 0.875 0.9167  0.8889

Table 9.2: Confusion matrix and information retrieval istats for two-person situation detec-
tion without presegmentation. The total recognition rat®1.67 %
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Siesta Individual Work Aperitif Introduc. Presenter Gameudfence

Siesta 1 0 0 0 0 0 0
Individual Work. 0 1 0 0 0 0 0
Aperitif 0 0 1 0 0 0 0
Introduc. 0 0 0 0.8333 0.1667 0 0
Presenter 0 0 0 0 1 0 0
Game 0 0 0 0 0 1 0
Audience 0 0 0 0 0 0 1
Class TPrate FPrate Precision Recall F-measure
Siesta 1 0 1 1 1
Individual Work. 1 0 1 1 1
Aperitif 1 0 1 1 1
Introduc. 0.8333 0 1 0.8333  0.8889
Presenter 1 0.037 0.8333 1 0.8889
Game 1 0 1 1 1
Audience 1 0 1 1 1
Total 0.9762 0.0053 0.9762 0.9762 0.9683

Table 9.3: Confusion matrix and information retrieval stiads for one-person situation detec-
tion with presegmentation. The total recognition rate i$96%6

Aperitif Introduc. Presentation Game

Aperitif 1 0 0 0

Introduc. 0 1 0 0
Presentation 0 0 1 0

Game 0 0 0 1

Class TPrate FPrate Precision Recall F-measure

Aperitif 1 0 1 1 1
Introduc. 1 0 1 1 1
Presentation 1 0 1 1 1
Game 1 0 1 1 1
Total 1 0 1 1 1

Table 9.4: Confusion matrix and information retrieval istats for two-person situation detec-
tion with presegmentation. The total recognition rate i8 %0
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9.2.5 Evaluation B

In this subsection, we intend to show and validate the coatiain of the three methods: un-
supervised situation extraction (chap®r supervised situation learning (chap®rand in-
tegration of user preferences (chapdgr Therefore, we evaluated the integral approach on 3
scenarios recorded in our smart home environment. The 8oenavolved up to 2 persons
doing different activities (situations: “introductiomldress of welcome”, “presentation”, “aper-
itif”, “playing a game”, “siesta’{1 person}) in the enviranent. The role detection values have
been generated as described in subse@i@r? using 3D tracker as well as noise and speech
detection (head set microphones). The role detection sdlaee then been fused to observation
codes as described in subsect.3

Scenario 1 Scenario 2

Aperitif Game | Presentation Siesta Game Presentation Aperitif Siesta

A ctivities
Activities

Detection

Detection

1 32 3 34 31 352 33 34 S8

Scenario 3

Presentation Game Aperitif S

A ctivities

Detection

21 82 23 24

Figure 9.15: Extracted situation segments and the cornepgground truthfor scenario 1 (Q
=0.68), scenario 2 (Q =0.95), scenario 3 (Q =0.74)

The first step of our proposed approach is to create thelisitization model. We extract the
situations from the sensor perceptions, i.e. the obsenstgenerated for the targets in the
scene using our automatic segmentor (cha@teFhe automatically extracted segments and the
ground truthfor the scenarios are depicted in Fig@&5 The overall segmentation exactitude
(@ (subsectior6.2.]) is best for scenario 2. This can be explained by the facttbi®aalgorithm
has difficulties to distinguish ground truth segments “gaared “aperitif”. In scenario 1 and
scenario 3, “game” and “aperitif” are detected as one segrBecause in scenario 2, “playing
game” and “aperitif” are separated by “presentation”, €esgments can be correctly detected.
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Situation Recognition Rate
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Figure 9.16: Recognition rate of situations “introductiofpresentation”, “group activity”
(="aperitif” or “game”) and “siesta” for different recogimon window sizes

The supervised learning scheme (chapters applied on the detected segments. As expert
knowledge, we inject the situation labels: “introductiptgresentation”, “group activity” (="aper-
itif” or “game”), “siesta”. We will adopt hidden Markov modtkeas unique learner class, iterating
over left-right hidden Markov models of state numbers betw8 and 16 (=parameters of the
class). To evaluate, we did 3-fold cross-validation, tgkime detected segments + expert labels
of 2 scenarios as input for learning and the third scenarixaass for recognition. As our system
should be as responsive as possible, we evaluated differedow sizes used for recognition.
The obtained situation recognition rates are depictedgniie9.16 If we limit the observation
time provided for recognition to 10 seconds (i.e. 250 franité & frame rate of 25 frames/sec),
we get a recognition rate of 88.58 % (Tal8l&). The recognition rate of “siesta” is poor due
to the fact that in two of the three scenario recordings wrtargets have been created and
detected when a person lay down on the couch, resulting istardance of the existing target
properties.

We have now learned an initial situation model with the gitres “introduction”, “group activ-
ity”, “presentation” and “siesta”. In order to integratesupreferences into this model, a user
can give feedback to our system. The feedback is recordedsmuttiated to the particular frame
when it has been given. The initially learned model is thespaeld according to this feedback
(chapterB). For our scenarios, we want to integrate the following e,

e S1: Introduction= normal light and no music
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Introduction Group Activity Presentation Siesta

Introduction 0.9766 0 0 0.0234
Group Activity 0 1 0 0
Presentation 0.032 0.027 0.8372 0.1037
Siesta 0.224 0.0093 0.3204 0.4463
Class TP rate FPrate Precision Recall F-measure
Introduction | 0.9766 0.0552 0.6362 0.9766 0.7073
Group Activity 1 0.0154 0.9871 1 0.9934

Presentation | 0.8372 0.0159 0.958 0.8372  0.8848
Siesta 0.4463 0.0392 0.8064 0.4463  0.4426
Total 0.815 0.0314 0.8469 0.815 0.757

Table 9.5: Confusion matrix and information retrieval istats for each situation (observation
window size=250). The overall situation recognition rat&8.58 %

S2: Aperitif= dimmed light and jazz music

S3: Game=- normal light and pop music

S4: Presentatios> dimmed light and no music

S5: Siesta=- dimmed light and yoga music

The user gives one feedback indicating the correspondingcseduring each situation. As
the initial situation model does not contain any situats@nvice associations, S1, S4 and S5
can then be simply associated to the corresponding sitgtleor S2 and S3, there is only
one situation “group activity” which is too general in orderassociate both distinct services.
This situation needs thus to be split into sub-situatiorte Tearned situation representation
for “group activity” (here: a HMM) is erased and two distirsstuation representations (here:
HMMSs) for “aperitif” and “game” are learned. The observatsonecessary to learn these sit-
uations are taken around the time points when the user gaveotinesponding feedback. The
size of the observation window used for learning the new stuations can be varied. The
situation recognition rates for different learning windsizes are depicted in Figugel7 We
evaluated three different window sizes used for recogmitgb0, 500 and 1000 observations),
corresponding to the three indicated curves. The largergbegnition window size, the bet-
ter the total situation recognition rate. Thus recognitiates for window size 1000 are higher
than for window sizes 250 and 500. However, the curves ineliteat a larger learning window
size does not always result in a better recognition rate.t@taé situation recognition rate can
even drop with a larger learning window size. This is due ®ftict that the best recognition
results are obtained when the learning window contains armar of observation data being
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characteristic for the concerned situation and a minimufiicséign® observations, i.e. wrong
detections or observations corresponding to other sttngtiT he resulting situation recognition
curve tends upwards, but it contains local peaks correspgrid a learning window size with
a good tradeoff between characteristic and foreign obsens For our scenario recordings,
such a local peak is at a learning window size of 400, i.e. 43@wvations around the feedback
time points to learn “aperitif” and “game”. The obtaineduks of the 3-fold cross validation
for recognition window sizes 250, 500 and 1000 are detari€thbles9.6, 9.7 and9.8.

Situation Recognition Rate
100
95 THT
?90 e e IS 1 b
EBS 1 E L1 1 it ERal
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; AT ik AT ——rec. window size=250
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Figure 9.17: Recognition rate of situations “introductiotpresentation”, “aperitif”, “game”

(after split) and “siesta” for different learning windowess. The three curves are for 250, 500
and 1000 observations (recognition window size)
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Introduction Aperitif Game Presentation Siesta

Introduction 0.9743 0 0 0 0.0257
Aperitif 0 0.697 0.2985 0 0.0045
Game 0 0.0088 0.9912 0 0
Presentation 0.0361 0 0.0262 0.8378 0.0999
Siesta 0.224 0 0 0.3297 0.4463

Class TP rate FPrate Precision Recall F-measure
Introduction| 0.9743 0.0586 0.6275 0.9743 0.7009
Aperitif 0.697 0.0042 0.9774 0.697 0.7959
Game 0.9912 0.0875 0.8062 0.9912 0.8823
Presentation 0.8378 0.0172 0.957 0.8378 0.8845
Siesta 0.4463 0.0412 0.8035 0.4463 0.4433
Total 0.7893 0.0417 0.8343 0.7893 0.7414

Table 9.6: Confusion matrix and information retrieval istats for each situation (observation
window size=250) after the split of “group activity”. The mdow size for learning the new
sub-situations is 400. The overall situation recognitiate is 81.86 %

Introduction Aperitif Game Presentation Siesta

Introduction 1 0 0 0 0
Aperitif 0 0.6476 0.3524 0 0
Game 0 0 1 0 0
Presentation 0.0026 0 0 0.9002 0.0972
Siesta 0.2175 0 0 0.3333 0.4491
Class TP rate FPrate Precision Recall F-measure
Introduction 1 0.044 0.6535 1 0.6666
Aperitif 0.6476 0 1 0.6476  0.7604
Game 1 0.092 0.7996 1 0.8806

Presentation 0.9002 0.0002 0.9995 0.9002  0.9452
Siesta 0.4491 0.0414 0.4917 04491 0.4421
Total 0.7994 0.0355 0.7889 0.7994 0.739

Table 9.7: Confusion matrix and information retrieval stids for each situation (observation
window size=500) after the split of “group activity”. The mdow size for learning the new
sub-situations is 400. The overall situation recognitiate is 84.27 %
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Introduction Aperitif Game Presentation Siesta

Introduction 1 0 0 0 0
Aperitif 0 0.8246 0.1754 0 0
Game 0 0 1 0 0
Presentation 0 0 0 1 0
Siesta 0.1889 0 0 0.3343 0.4768
Class TPrate FPrate Precision Recall F-measure
Introduction 1 0.034 0.6672 1 0.6678
Aperitif 0.8246 0 1 0.8246 0.881
Game 1 0.0487 0.9336 1 0.9631
Presentation 1 0.0004 0.999 1 0.9995
Siesta 0.4768 0 0.6667 0.4768 0.534
Total 0.8603 0.0166 0.8533 0.8603 0.8091

Table 9.8: Confusion matrix and information retrieval istats for each situation (observation
window size=1000) after the split of “group activity”. Thendow size for learning the new
sub-situations is 400. The overall situation recognitiae is 89.62 %
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9.3 Conclusions

In this chapter, we combined and integrated different naghmpoposed in the precedent chap-
ters (chapteb,6,7,8) for learning and evolving situation models. To evaluag¥esal scenarios
have been recorded in our smart home environment. A 3D tigaystem created and tracked
entities in the scene, while a microphone array detecteseremd head sets microphones were
used to detect speech of individuals. Different individi@dé values have been detected and
fused to multi-person observation codes. A first evaluatgvaluation A) has been conducted
on the recognition of learned situations with and withoubaatic presegmentation (chapter
6). The results showed that both the automatic presegmentatid the fusion of role values
to multi-person observation codes are beneficial for sanatcognition. A second evaluation
was conducted for validating the integration of the différ@ethods (chapt€; 7 and8). The re-
sults indicate that the integration of the different methodo an intelligent home environment
system is possible.

Although the obtained results are encouraging, the reaaizaf Bob’s dream (sectiof.1) of

an intelligent home anticipating his needs and desiresligastaway. First products that Bob
could buy in his local computer store and install himselfrasemature enough. First, the sen-
sors necessary for a reliable sensing of Bob’s activitiestl too invasive. Multiple cameras,
microphones or other sensors must be installed and caibnaBob’s home. These are still not
auto-installing and not easy to use. Second, even thoughresults are encouraging, the error
rates are still too high. Further improvements in deteciot learning algorithms are necessary
in order to provide a reliable system that could be accepyeBdb in his daily life. One way
to alleviate this is to provide explanations to Bob. Whemesioccur (and corresponding sys-
tem explanations are good), Bob could understand and ¢omeng system perceptions and
reasoning himself.
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Chapter 10

Conclusion and Perspective

We showed that modeling context is necessary when we waehgesand respond correctly to
human activity in intelligent environments. However, itifficult (or even impossible) to model
all possible contextual states reflecting human activityhim scene. Further, not all possible
contextual cues can be sensed and integrated into a convebel "As consequence, to realize
functioning context-aware applications, we need to assamsed world, modeling hence
only human activity that is essential for correct systemavedr and services. The situation
model is proposed as intuitive declarative representaifotontext, providing both a simple
mean for describing human (inter)actions and a powerfulftwsomplementation. Two possible
implementations of the situation model have been presemddllustrated by two functioning
applications: an automatic cameraman and an interactmupgitetector.

In order to cope with changing user behavior and environsjantintelligent environment must
be able to evolve and acquire new models for human behavioveker, automatic acquisition
and adaptation to changing human behavior in an intelliganironment is a non-trivial prob-
lem. On the one hand, there is the problem of usability of adagystems and on the other
hand, of course, the problem of learning abstract modelsiafdm activity. Our objective here
was to propose several methods that are part of an intddigibmework for acquiring and
evolving context models. The situation model serves asdrand support for these methods.
First, we described several methods for learning indiVidoias from observation data. There-
fore, a Bayesian classifier, support vector machines andachglassifier have been presented
and evaluated. Further, we proposed a method for the unsspdrsegmentation of possible
situations from a stream of observations. This method has beccessfully experimented with
several (multimodal) data sets and applications. Then,nesegnted a third method construct-
ing situation representations for given situation labeld perception segments. The CAVIAR
data sets have been used to evaluate the method. A last netblves a predefined situation
network with feedback on system behavior (i.e. the proviledem services). This method has
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been tested in the PRIMA SmartOffice environment. Finallg, proposed methods have been
integrated into a whole system for acquiring and evolvirigagion models in an intelligent
home environment. Experimental results are encouragingieder, the error rates are still too
high for being acceptable to users.

To conclude, we can say that learning abstract models refiglcttman behavior is a hard prob-
lem. There are already many different models and implenientaproposed for representing
context. These models are normally adapted to a specificidand application. Evolving and

acquiring such a context model automatically entails amewere rigorous adjustment to a
specific domain, application and learning algorithm in ofdeobtain satisfying results. There
is no universal approach. However, we aimed at proposingradwork of different learning

methods that have been successfully applied and that aeel basour situation model defined
in the first part of this thesis.

10.1 Contributions

This thesis aims at providing a novel intuitive framework &zquiring and evolving situation
models in intelligent environments. Contributions are madthe areas of context modeling
and implementation and learning of context models.

In the area of situation modeling and implementation:

Probabilistic Implementation of Situation Models Different implementations of situation mod-
els are presented. A novel probabilistic implementaticseldeaon hidden Markov models
(HMMs) is proposed. Each state of the HMM represents onatsim. A real-time inter-
action group detector has been realized and evaluated tihgpgoposed implementation.

Contributions in the area of situation model learning fookiedge engineering concern:

Role Learning and Detection Bayesian classifier and support vector machines are tested a
evaluated for the task of role learning and detection frodewidata. A novel hybrid clas-
sifier is proposed, combining both methods. The hybrid dias®utperformed support
vector machines and Bayesian classifier when learning nesamroles from our data
sets.

Unsupervised Situation DiscoveryA novel method for the unsupervised extraction of situa-
tions from multimodal observations is proposed and evatlian different multimodal
data sets from meetings.
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Supervised Situation Learning SchemeA supervised learning scheme is proposed to learn
situation representations. The scheme is to be very germrahitting to use different
parameterizations and learner classes. A first evaluatidh@CAVIAR project data sets
produced good results.

Contributions in the area of situation model learning fagrysreferences integration are:

Situation Split A novel algorithmic method for integrating user prefereirgo a given situa-
tion model is proposed. The user gives feedback on execyséels services. The method
refines system perceptions by splitting too general sitnatinto sub-situations.

A major contribution of this thesis is thiategration of the proposed methods into a whole
system for acquiring and evolving situation models in aelligent home environment. The
whole system has beeauniccessfully tested and evaluated

10.2 Perspectives

This thesis aimed at constructing a first framework for lesgmuman behavior and needs from
observation and feedback in order to provide context-as@méaces. Several problems still need
to be addressed:

Error Rates If we aim at providing unobtrusive system behavior, the erates of recognition
and learning algorithms are still too high. Apart from penmatly improving these algo-
rithms, we can try to limit the action space of the system. Sawtions are less critical
and disruptive than others and can be automated with higher mtes in recognition
algorithms.

Generation of Explanations We provide a first approach for intuitive modeling and reasgn
about context. The layers of the framework are motivatediinyraan understandable rep-
resentation of context. Even though the reasoning pro@@sbe easily tracked between
these layers, no explicit explanations are generated ®u#er. Such explanations are
especially important when errors occur. We need to find arbtinsive way to provide
the user with these explanations within the environmeng. Jénerated explanations may
also be linked with system control, permitting the user teravie system decisions.

Controllability and Human-Computer Interaction The user must be kept in control. Even
though our framework and the learning algorithms are basearointuitive context
model, the user might want to take direct control of the wisylstem. In this case, an
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important issue is how to visualize contextual informaiiman intuitive manner and how
to enable the user to control system services easily anautitiigh learning effort. Inter-

face design and type of (explicit) human-computer inteéoacinust carefully be chosen
according to the expert level of the user and the physicdlgaration of the environment.

Interruptability and Action Cost Concerning unobtrusive service supply, we need to be aware

of the disruptive power of each service. Disruptive powéeneto the capacity of inter-

rupting current user task or even current human-humanacitien. A service or system
action can be disruptive even if the service is pertinener&fore, the interruptability of

the users must be derived. Based on this information, “castl’ benefit of each service
must be estimated and balanced before service execution.
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