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Abstract

During the last decade, “intelligent” environments augmented by multiple sensors, including
cameras, microphones, and interaction devices have enabled the computer observation of hu-
man activity. In order to detect and respond to human activity, a context model describing the
environment, its users and their activities must be maintained. In this thesis, context is repre-
sented by situation models. A situation is a kind of state described by a number of characteristic
roles and relations. A role is played by an entity and entities can be in relations. An entity refers
to a person or object. A situation model can be defined and implemented by experts. Two exam-
ple implementations of this kind are presented in this thesis. However, human behavior evolves
over time. A situation model must be constructed and adaptedautomatically. This thesis ad-
dresses the problem by proposing a framework for the automatic acquisition and evolution of
different layers of a situation model. Different learning methods are proposed as part of this
framework. The situation model serves as frame and support for the different methods, permit-
ting to stay in an intuitive declarative framework. The firstlayer of the framework concerns
role learning and detection. Bayesian classifier, support vector machines (SVMs) and a novel
hybrid classifier combining SVMs and Bayesian classifier arepresented and compared. Based
on the results of role detection, a method for unsupervised situation discovery is then proposed.
This method takes a multimodal observation stream as input and generates a first segmentation
into distinct observation sequences as output. This segmentation and associated situation labels
given by an expert or user are the input for supervised situation learning. A supervised situation
learning scheme is proposed. This scheme can be applied to different learner classes, generating
a situation representation for each situation label and associated observation sequences. Based
on the learned situation model, a method for the integrationof user preferences is presented.
This method adapts the learned situation model by splittingsituations according to user feed-
back given on executed system services. The methods of the framework have been evaluated
separately on data sets coming from different augmented environments. The complete frame-
work has been integrated into an intelligent home environment. The implementation has been
evaluated and the obtained results validate the proposed approach.

Keywords: context modeling, situation model, deterministic and probabilistic implementa-
tion of situation models, automatic acquisition and evolution of situation models, role detection,
unsupervised situation discovery, supervised situation learning scheme, situation split.
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Chapter 1

Introduction

Ubiquitous computing [94] integrates computation into every-day environments. Thetechno-
logical progress of the last decade has enabled computerized spaces equipped with multiple
sensor arrays, including microphones or cameras, and multiple human-computer interaction de-
vices. An early example is the Intelligent Room [33], a conference room augmented by several
cameras, video projectors and displays as well as audio devices and microphones (Figure1.1).

Figure 1.1: A simplified layout of the Intelligent Room at MITAI Lab (picture from [34])

Smart home environments [22] and even complete apartments equipped with multiple sensors
[35] have been realized. The major goal of these augmented environments is to enable devices
to sense changes in the environment and to automatically actbased on these changes. A main
focus is sensing and responding to human activity. Human actors must be identified and their
current activity needs to be recognized. Addressing the right user at the correct moment, while
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Chapter 1. Introduction

perceiving his correct activity, is essential for correct human-computer interaction in augmented
environments.

1.1 Problem Definition

Augmented “intelligent” environments have enabled the computer observation of human (in-
ter)action within the environment. The analysis of (inter)actions of two or more individuals is
of particular interest here because it provides information about social context and relations and
it further enables computer systems to follow and anticipate human (inter)action. The latter is a
difficult task given the fact that human activity is situation dependent [90] and does not neces-
sarily follow plans. Computerized spaces and their devicesrequire this situational information,
i.e. context [41], to respond correctly to human activity. In order to becomecontext-aware,
computer systems must thus maintain a model describing the environment, its occupants and
their activities. In order for user to trust these systems, system reasoning and behavior must,
however, be kept transparent for the users. A human understandable context model is hence
essential, representing user behavior and needs as well as system service execution.

Figure 1.2: Top-down manual specification and implementation of a context model

Experts normally define and implement context models according to the needs of users and
application (Figure1.2). Based on user needs and envisaged application, a human engineer
specifies and implements the context model. Sensor perceptions, context model and system
services to be provided are associated manually.

2



1.1. Problem Definition

Figure 1.3: Wide-angle camera image of a lecture in the amphitheater at INRIA Rhône-Alpes
(left) and a corresponding hand-crafted context model (in form of a situation graph) (right)

Figure1.3shows an example of such a top-down implementation. The wide-angle camera view
of a lecture and a corresponding context model in form of a situation graph are depicted (see
chapter4 for details). The context model has been defined and implemented by engineers know-
ing the needs of users and application. The sensor perceptions are associated to the situations
manually.

Human behavior evolves over time. New activities and scenarios emerge in an intelligent envi-
ronment, others disappear. New services must be integratedinto the environment, while obsolete
services should be deleted. A fixed context model is thus not sufficient. Experts normally de-
fine, implement and adapt context models according to changing needs of users and application.
However, experts are expensive and not always available. Moreover, the environment’s intelli-
gence lies in its ability to adapt its operation to accommodate the users. The research challenge
is thus to develop machine learning methods for this process, making it possible to automat-
ically acquire and evolve context models reflecting user behavior and needs in an intelligent
environment (Figure1.4).

We can distinguish two different motivations for learning context models:

1. Knowledge engineering (acquisition of a context model)

2. User preferences integration (adaptation of a context model)

A key requirement for context-aware intelligent environments is the automatic acquisition and
evolution of an intuitive, comprehensible context model. Based on computer observation of the

3



Chapter 1. Introduction

environment, this context model must first be constructed asautomatically as possible using
machine learning methods (knowledge engineering), while staying transparent for the user. The
user then should be able to integrate his preferences into this model, and adapt it constantly ac-
cording to the evolution of his behavior and needs (user preferences integration). Intelligibility
[12] of the context model and the reasoning process is importantin order to permit the users to
trust the system.

Figure 1.4: Bottum-up automatic acquisition and evolutionof a context model

1.2 Approach

The proposed approach addresses the problem by providing anintelligible framework for ac-
quiring and evolving a context model, calledsituation model. The methods proposed as part
of this framework acquire different layers of the situationmodel, with different levels of su-
pervision. The situation model serves as frame and support for the different learning methods,
permitting to stay in an intuitive declarative framework.

The situation model and the underlying concepts are motivated by models of human perception
of behavior in an augmented environment. Human behavior is described by a finite number of
states, calledsituations. These situations are characterized by entities playing particular roles
and being in relation within the environment. Figure1.5gives an example of a situation model
for a lecture room. The situations “empty”, “lecture” and “audience” are characterized by the
roles “lecturer” and “audience” as well as the relation “notSameAs”. The situation model has

4



1.2. Approach

Figure 1.5: Example of a simple situation model for a lectureroom. Empty, Audience and
Lecture are the available situations.Lecturer, Audienceare the available roles andNotSameAs
the available relation

been used to implement different applications like an automatic cameraman, or an interaction
group detector.

Figure1.6illustrates the framework for acquiring and evolving a situation model. First, roles are
learned and detected based on collected data labeled by an expert. Situations are then extracted
in an unsupervised manner from observation data. The extracted situation segments can then be
used to learn situation labels with user or expert input. Theresulting situation model can finally
be evolved according to user feedback using the situation split.

Figure 1.6: Framework for automatic acquisition and evolution of a situation model

Role learning and detection is based on event streams. Theseevent streams contain the available
entities as well as their properties. An acceptance test fora role is constructed by learning a role
label from these entity event streams. Role labels refer to the abstract events necessary for
role assignment. For this, we compare methods based on a Bayesian classifier, support vector

5



Chapter 1. Introduction

machines (SVMs) and a novel hybrid classifier combining Bayesian methods and SVMs.

The unsupervised extraction of situations is based on a stream of multimodal observations. The
method that we propose detects change in the observation distribution by measuring the Jeffrey
divergence between adjacent histograms of observations. These observation distributions are
represented by histograms containing the frequency of these observations. To separate distinct
distributions of observations, two adjacent windows are slid from the beginning to the end of the
meeting recording, while constantly calculating the Jeffrey divergence between the histograms
generated from the observations within these windows. The size of the sliding adjacent windows
is varied generating several Jeffrey divergence curves. The peaks of the resulting curves are
detected using successive robust mean estimation. The detected peaks are merged and filtered
with respect to their height and window size. The retained peaks are finally used to select the
best model, i.e. the best allocation of observation distributions for the given recording. This
allocation corresponds to a first unsupervised segmentation of the situations.

Segments of observations and the provided situation labelsare the input for supervised situa-
tion learning. A supervised learning scheme iterates over different classes of learners and the
associated parameterization in order to acquire a representation for each situation label. The
best representation for each situation label is retained. These representations can then be used
to detect the situations and to construct the correspondingsituation model.

The input for the integration of user preferences is a learned (or predefined) situation model
along with user feedback from prior use. The feedback is given on executed system services
(associated to situations). An algorithmic method adapts the associations between system ser-
vices and situations according to the given feedback. If necessary, a situation is split into sub-
situations, refining the perception of the system. The representations of the new sub-situations
are learned by using the supervised situation learning scheme.

1.3 Evaluation and Results

The methods that we propose for acquiring and evolving situation models have been integrated
into a complete system for an intelligent home environment.The implementation is based on a
3D tracking system that creates and tracks targets in the scene. The extracted targets are used to
detect individual roles per entity. Observations are generated based on the role values of several
entities. These observations are the input for unsupervised situation extraction. The results of
the extraction process are used for supervised situation learning. The learned situation model
is then the basis for the integration of user preferences, i.e. associating and changing system
services with user feedback.

We have conducted two different evaluations (Figure1.7). A first evaluation was designed to

6



1.4. Thesis Outline

Figure 1.7: Different parts of the implementation and theirevaluation: role detection per entity,
unsupervised situation extraction, supervised situationlearning and integration of user prefer-
ences

analyze the effects of automatic situation extraction and supervised situation learning for situ-
ation recognition. A second evaluation was then used to validate the combination of the three
methods: unsupervised situation extraction, supervised situation learning and integration of user
preferences.

The results of these evaluations validate our approach for an understandable framework for
acquiring and evolving situation models. The results of thefirst evaluation show that unsuper-
vised situation extraction and multi-person observation generation are beneficial for situation
recognition. The results of the second evaluation indicatethat the integration of the different
methods into an intelligent home environment system is feasible. Even though the results are
encouraging, the error rates are still excessive. Further improvements in detection and learning
algorithms are necessary in order to provide a reliable system that could be accepted by a user
in his daily life.

1.4 Thesis Outline

We give below an overview of the remainder of this thesis.

Chapter 2 analyses and defines the problem of this thesis with respect to the literature. “In-
telligent” environments are defined as environments augmented with multiple sensors and in-
teraction devices, including cameras, microphones, and video projectors. Several examples of
intelligent environments are presented including smart offices, smart home environments and
smart classrooms. The problem of context-aware service supply is motivated and discussed.
In order to provide unobtrusive, proactive services, an augmented environment must be aware

7



Chapter 1. Introduction

of what the humans are doing in the environment and in which context human actions take
place. Context refers not only to location information, butto any information that characterizes
a situation related to the interaction between humans, application and surrounding environment.
Context is further particular to each occasion of activity or action; the scope of contextual fea-
tures is redefined dynamically. In order for users to trust a context-aware system, a user should
be able to understand and scrutinize the context representation and reasoning of the system.
Human behavior evolves over time. A context model must also evolve in order to accommodate
the changing needs of the users. Instead of hiring a team of engineer to keep the context model
of an augmented environment up to date, the environment itself must be adaptive. The research
challenge is to develop machine learning methods for this process, making it possible to auto-
matically acquire and evolve context models reflecting userbehavior and needs in an intelligent
environment. Two different motivations for learning context models are distinguished: Knowl-
edge engineering (acquisition of a context model) and User preferences (adaptation of a context
model). Knowledge engineering refers to building up a context model and context-aware sys-
tem from collected data. User preferences refer to the updating process, integrating changing
user preferences into an existing context model and system using user computer interaction. A
user preferences approach can include a knowledge engineering step to set up an initial context
model. Several examples for learning context are then presented and compared with regard to
their comprehensibility for the user and their adaptivity.A description of the contributions of
this thesis to the problem concludes this chapter.

Chapter 3 proposes an abstract model for representing and perceivingcontext in augmented en-
vironments. First, the relationship between context and human activity is discussed. According
to the obtained insights, a context model should describe a closed-world motivated by applica-
tion and user needs, be suitable and intuitive to provide explanations to the user, and focus on
human relations and activities rather than environment settings. Following these conclusions,
the situation model is defined. A situation is a form of state characterized by a set of roles and
relations. Roles involve only one entity, describing its activity. An entity can be a person, place
or object considered to be relevant to user and application.An entity is observed to “play” a
role. Relations are defined as predicate functions on several entities, describing the relationship
or interaction between entities playing roles. A situationnetwork is defined as a composition of
situations that share the same set of roles and relations. The situation model can be interfaced
with perceptual components of an augmented environment. Recognition processes for roles and
relations are proposed. These recognition processes are interpreted as acceptance tests applied
to the properties of relevant entities. Acceptance tests for roles are applied to the properties of
all available entities in order to determine their role assignment. Acceptance tests for relations
are applied to the properties of entities already assigned to roles (“playing roles”). An accep-
tance test is based on events sent by perceptual components.Events concern entities and their
properties. An acceptance test can be divided into two different phases: 1) filtering and 2) roles
and relation assignment. A filter is applied to the raw entityevent stream in order to extract
more abstract events that reduce the dimension of the data. Role and relation assignment takes

8



1.4. Thesis Outline

these abstract events as input and generates the corresponding roles and relations. An example
implementation of acceptance tests for the lecture scenario is presented.

Chapter 4 details two possible “top-down” implementations of the situation model and gives an
example for each implementation. Situations and the underlying abstract concepts can be inter-
preted as finite-state machines. The finite-state machine implementation influences the control
flow and how perceptions, coded as events, are finally used andinterpreted to activate situations.
First, a deterministic implementation of situation modelsis presented. This implementation is
based on Petri nets implementing the situations of the model. The implementation has been
used to implement an automatic cameraman. The automatic cameraman is context-aware se-
lecting at every time, based on the current situation the appropriate camera to provide images.
The automatic cameraman has been successfully evaluated. Aprobabilistic implementation of
situation models is further proposed. This implementationis based on hidden Markov models.
The states of the hidden Markov model represent the situations. The implementation has been
used to implement a real-time detector for interaction groups. The objective was to detect the
split and merge of small groups during a meeting. The proposed detector has been successfully
evaluated. The choice of the implementation depends on the application that is envisaged. Petri
nets can implement all Allen temporal operators, in particular those describing parallelism.
However, Petri nets can not model erroneous perceptions anduncertain situations (uncertain
expectations of perceptions for a situation and uncertain situation transitions). Hidden Markov
models are less rich in modeling temporal constraints (in particular parallelism), but HMMs
permit to model erroneous input and uncertain situations.

Chapter 5 explores several methods for learning role acceptance tests. These methods are part
of the framework for the automatic acquisition and evolution of situation models. A role accep-
tance test is divided into a filtering phase and role and relation assignment. The filtering phase
is considered to be the key process, isolating abstract events necessary to activate a role. These
abstract events fuse and filter event streams coming from perceptual components. The event
streams contain the available entities as well as their properties. Three methods for learning dif-
ferent role labels from entity event streams are presented.Role labels refer to the abstract events
necessary for role assignment. The proposed methods are based on a Bayesian classifier, support
vector machines (SVMs) and a hybrid classifier combining Bayesian methods and SVMs. The
three methods have been evaluated on data sets recorded in anaugmented home environment.
The data sets were based on events created by a video trackingsystem and contained five dif-
ferent role labels: “walking”, “standing”, “sitting”, “interaction with table”, and “lying”. SVMs
outperformed the Bayesian classifier when recognizing these role labels. In order to measure
the performance to detect unseen role classes, each role label has been excluded once from the
learning data. SVMs, Bayesian classifier and hybrid classifier have been compared with regard
to the identification of the data associated to the excluded role label. The hybrid classifier out-
performed the Bayesian classifier and the SVMs when identifying unseen roles, showing that
the proposed combination of generative and discriminativemethods is beneficial.

9



Chapter 1. Introduction

Chapter 6 proposes a method for the unsupervised extraction of situations from multimodal
observations. The method is part of the framework for the automatic acquisition and evolu-
tion of situation models. The unsupervised situation discovery has been applied to the field of
automatic analysis of small group meetings. The proposed method detects changes in small
group configuration and activity based on measuring the Jeffrey divergence between adjacent
histograms of observations. In [18], the authors showed that different meeting activities, and
especially different group configurations, have particular distributions of speech activity. This
can be extended to distributions of multimodal observations coming from multi-sensory input.
These distributions are represented by histograms containing the frequency of these observa-
tions. To separate distinct distributions of observations, two adjacent windows are slid from
the beginning to the end of the meeting recording, while constantly calculating the Jeffrey di-
vergence between the histograms generated from the observations within these windows. The
size of the sliding adjacent windows is varied generating several Jeffrey divergence curves. The
peaks of the resulting curves are detected using successiverobust mean estimation. The detected
peaks are merged and filtered with respect to their height andwindow size. The retained peaks
are finally used to select the best model, i.e. the best allocation of observation distributions for
the given meeting recording. The method has been tested on five short small group meeting
recordings, a seminar recording and a cocktail party meeting recording. The short small group
meeting recordings and the seminar recording were based on audio, while the cocktail party
meeting recording included audio and video. The obtained segmentation results are very good;
the audiovisual segmentation of the cocktail party meetingoutperforms the pure video and pure
audio segmentations.

Chapter 7 addresses the supervised learning of situation. The proposed algorithm is part of the
framework for the automatic acquisition and evolution of situation models. Supervised situation
learning is based on the segments of observations extractedby unsupervised situation discov-
ery for each situation. Each segment corresponds to one situation. An expert or user provides
situation labels for each of these segments. Two or more segments can have the same situation
label. The notion of learner is introduced as a learning method that generates a situation rep-
resentation for a given segment of observations. Examples of learner classes are expectation-
maximization(EM) algorithm (with hidden Markov models as representations), or ID3 (with
decision trees as representations). An instance of the learner class corresponds to a specific
parameterization of the learner (e.g. the number of states for the HMMs to be learned). The pro-
posed situation acquisition algorithm produces or learns arepresentation for each situation from
given segments and the associated situation labels by iterating over possible learner classes and
learner instances. The objective is to find the representations that are the most discriminative
with regard to the given segments and associated situation labels, i.e. that maximize the ratio
of between-situation distance and within-situation distance (Fisher’s criterion). The proposed
supervised situation learning scheme is general and can be adapted to many different learners
and applications. The proposed algorithm has been applied to a video surveillance task. The
CAVIAR video clips have been used for evaluation and show different situations: “walking”,
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“browsing”, “fighting”, “waiting” and “object left”. Each video is associated with an XML file
describing for each frame the entities and their properties. These files have been created manu-
ally. The expectation maximization algorithm has been usedas learner class to create a HMM
representation for each situation based on the observations in the XML files. The obtained re-
sults for situation recognition based on the learned representations are good.

Chapter 8 explores a method for evolving an initial situation model with user feedback. The
proposed method is part of the framework for the automatic acquisition and evolution of situ-
ation models. The initial situation model can either be predefined by a human engineer or be
constructed automatically by the methods proposed in chapter 6 and7. The learning process
must then adapt the situation model according to feedback given by the user on executed sys-
tem services. The proposed algorithm focuses on the adaptation of the situations as well as the
situation network and the associated system services. The input to the algorithm is an initial
situation network along with feedback from prior use. The feedback concerns the correction,
deletion and preservation of system services. The proposedalgorithm tries first to adapt the sys-
tem services directly by changing the association between situations and services. In a second
step, if the feedback indicates that the concerned situation is too general, the algorithm splits
the situation into sub-situations. The determination of the characteristic observations describing
the sub-situations is interpreted as classification problem. The service labels of the training ex-
amples correspond to the class labels. The supervised learning scheme of chapter7 is then used
to learn these class labels (corresponding to the sub-situations) from observation sequences.
The proposed algorithm has been tested in an augmented officeenvironment. An initial situa-
tion network describing office activity has been defined by a human engineer. Two new services
(turn-on and turn-off of the music player) have been correctly integrated into the situation model
based on supervisor feedback. Conceptual learning algorithms Find-S and Candidate Elimina-
tion as well as decision tree algorithm ID3 have been used as learner classes (in the supervised
learning scheme) in order to learn the new sub-situations.

Chapter 9 describes the implementation and evaluation of the complete framework for acquir-
ing and evolving situation models. The proposed methods forrole recognition, unsupervised
situation discovery, supervised situation learning and integration of user preferences have been
integrated into an augmented home environment. This systemis to build up automatically and
to evolve a situation model for human behavior in the scene. The perceptions of the system are
based on a 3D visual tracking system as well as speech and ambient sound detection. Users wear
head set microphones in the environment. Role detection is conducted on the target properties
provided by the 3D tracker. Multimodal observations are generated based on role, speech and
ambient sound detection. An initial situation model for thebehavior in the scene is constructed
using the segmentation of basic situations and the supervised learning of situation labels. The
resulting initial situation model is then evolved according to user preferences using feedback.
Two different evaluations have been conducted. A first evaluation concerned unsupervised sit-
uation extraction and supervised situation learning. Several small scenarios showing different
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situations like “presentation” or “siesta” were recorded.The recordings have been presegmented
automatically. The recognition rate of the situations in the scenarios with and without automatic
presegmention has been investigated. A second evaluation concerned the combination of the
three methods: unsupervised situation extraction, supervised situation learning and integration
of user preferences. Therefore, 3 (longer) scenarios were recorded showing several situations
like “aperitif”, “playing game” or “presentation”. The recordings have first been automatically
segmented. Then, the extracted segments have been labeled and the situations have been learned.
Finally, the learned situation model has been evolved with user feedback. The recognition rate
of the labeled as well as of the added situation (via situation split) has been investigated. The
obtained results validate the approach for a framework for automatic acquisition and evolution
of situation models.

Chapter 10summarizes and concludes this thesis. The main contributions of this thesis are de-
scribed including probabilistic implementation of situation models, role learning and detection,
supervised learning scheme and situation split.
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Chapter 2

Definition and Analysis of the Problem

This chapter aims at defining the problem of this thesis with respect to the literature. First, the
notion of augmented or “intelligent” environment is definedand illustrated by several exam-
ples. The key concepts of context-awareness and proactive system behavior are motivated and
discussed. Then, the problem of learning context models is explained. Several existing learning
approaches are compared with respect to their intelligibility and adaptability. A short overview
of the contributions of this thesis to the problem concludesthis chapter.

2.1 Augmented “Intelligent” Environments

In the 1980s and early 1990s, Xerox PARC researcher Mark Weiser developed the concept of
ubiquitous computing, following the principle that:

“The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from it.” [94]

The integration of computing devises into every-day environments has been one of the predom-
inant trends over the last decade. Cell phones, PDAs and laptop computers as well as WLAN
networks have become part of almost every household. This trend enablescomputer-everywhere
environments. These environments are augmented with multiple sensors and interaction de-
vices. Coen [34] defines the term of “intelligent” environments as “spaces in which computation
is seamlessly used to enhance ordinary activity”. The objective is to make computers not only
user-friendly but also invisible to the user. Interaction with them should be in terms of forms
that people are naturally comfortable with.
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One of the very first intelligent environments, theIntelligent Room[33], has been realized at
MIT AI Laboratory. The Intelligent Room is laid out like an ordinary conference room, with a
large table surrounded by chairs (Figure2.1). Mounted at various places in the conference area
are twelve video cameras, which are used by computer vision systems. Two video projectors,
several video displays as well as audio devices and wirelessmicrophones further augment the
environment. The objective of the Intelligent Room was to experiment with different forms of
natural, multimodal human-computer interaction (HCI) during what is traditionally considered
non-computational office activity. Numerous computer vision, speech and gesture recognition
systems are used to detect what inhabitants are doing and saying.

Figure 2.1: A simplified layout of the Intelligent Room at MITAI Lab (picture from [34])

A similar office environment has also been developed at INRIARhône-Alpes. The SmartOffice
[60] comprises a whiteboard area and a large office desk completed with a computer workstation
in the center of the room. 50 sensors (cameras and microphones) and three actuators (a video
projector and two speakers) are installed within the environment. The MagicBoard [53] is the
main “actuator” for the SmartOffice, letting users combine digital and physical information on
the whiteboard. Mobile and wide-angle cameras permit the use of computer vision recognition
systems. Eight microphones distributed across the ceilingare used for speech recognition. The
objective was to monitor the user in order to anticipate userintentions and to augment the
environment in order to communicate useful information.

At XRCE, an intelligent workplace environment has been realized [6]. The intelligent workplace
environment is laid out like a normal individual workplace,comprising a desktop computer, a
PDA device and an office telephone. The environment is augmented with PC and phone usage
sensors, PDA location and ambient sound sensors as well as a PDA user feedback form. The
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PDA form was used by the users to give feedback on their current office activity. The objective
of the intelligent workplace at XRCE was to sense individualoffice activity and to provide
sensed information to other users (e.g. in order to derive possible availability).

Mozer [67] developed one of the first intelligent home environments atthe University of Col-
orado. The Adaptive House has been implemented in an actual residence that was renovated in
1992, at which time the infrastructure needed for the project was incorporated into the house.
The home laboratory is equipped with an array of over 75 sensors which provide informa-
tion about the environmental conditions that are monitored– temperature, ambient light levels,
sound, motion, door and window openings – and actuators to control the furnace, space heaters,
water heater, lighting units, and ceiling fans. The objective of the Adaptive House was to make
life more comfortable for inhabitants and to conserve energy at the same time. By using inferred
occupancy and usage patterns in the home, the Adaptive Housewas to adjust automatically
room heating, water heating and room illumination. Explicit Sensing and recognition of human
activities in the house was not the focus of the Adaptive House Project.

The EasyLiving Project [22] at Microsoft Research was concerned with the development of
an architecture and suitable technologies for intelligenthome environments. The focus of Ea-
syLiving laid on technologies for middleware (to facilitate distributed computing), geometric
world knowledge and modeling (to provide location-based context), perception (to collect in-
formation about environment state) as well as service abstraction and description. Input devices
can include an active badge system, cameras, wall switches,and sensitive floor tiles. Output de-
vices can include home entertainment systems, wall-mounted displays, speakers, and lightening.
Stereo computer vision tracking is used to derive the location of people in the environment as
well as to maintain their identity while they are moving around. Radio-frequency (RF) wireless-
LAN-enabled mobile devices are located based on the signal strength of known infrastructure
access points. A geometric world model is used to derive the spatial relationship between enti-
ties in the environment. The location is used to infer a person’s intent or activity based on his
or her position. The objective of EasyLiving was to enable typical PC-focused user activities
to move from a fixed desktop into the environment as a whole. Several intelligent space appli-
cations like movable desktop sessions or location-based media control have been implemented.

The MavHome Project [35] developed a smart home environment at the University of Texas at
Arlington. The MavHome acts as an autonomous intelligent agent that perceives its environ-
ment through the use of sensors, and can act upon the environment through the use of actuators.
Perception is managed through light, humidity, temperature, smoke, gas, infrared motion, and
switch sensors deployed in the environment. Main actuatorsare the control of lightening and
blinds, water heater, different video and screen displays,sprinkler and VCR. Location-based
media control and tracking is also provided. The objective was to manage the home automati-
cally in a way that maximizes productivity and comfort of itsinhabitants, minimizes the costs
of operating the home, and ensures the maximum security of the home and collected/personal
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Figure 2.2: Layout of the augmented home environmentMavHomeat University of Texas at
Arlington (picture from [99])

data.

At MIT Media Lab, Bobick et al. [16] constructed an early example of an intelligent entertain-
ment environment. The KidsRoom was a perceptually-based, interactive, narrative playspace
for children. The environment, which resembles a children’s bedroom, uses two large back-
projected video screens, four speakers, theatrical lightening, three video cameras, and a micro-
phone array to perceive and to interact with the children. Computer-vision algorithms on the
video images of the scene are used to identify the activity ofseveral children. Constant tracking
of the positions of up to four children and a strong story context are used to limit the number
possible children’s activities. Images, music, narration, light, and sound effects generated by
the system guide the children through the story. The strong story context defines the possible
children’s activities at the actual state of the play and theappropriate reactions to be taken by
the system. The objective of the KidsRoom was to explore the design of interactive spaces and
to develop suitable computer vision techniques.

The eClass Project [2] (formerly known as Classroom 2000 Project) concerned the development
of an intelligent education environment at Georgia Tech. The project constructed a prototype
classroom environment and the necessary software infrastructure to seamlessly capture much of
the rich interaction that occurs in a typical university lecture. The classroom is augmented with
single audio-video stream recording facilities, electronic whiteboards, and personal pen-based
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interfaces. Further, software and WWW access facilitate automatic capture and content-based
access of multimedia information in the educational setting. The objective of the eClass Project
was to automate the capture of individual and group activityin the classroom and to provide an
easily accessible interface that integrates this information together.

Figure 2.3: Overview of theSmart Classroomsystem at Tsinghua University (picture from [88])

The Smart Classroom Project [98] constructed an intelligent classroom environment at Tsinghua
University. The augmented classroom has two wall-size projector screens, one on the front wall
and the other on a side wall, and several cameras that are deployed in the environment (Figure
2.3). Additional cameras are installed on the computers of remote students. The teacher wears
a wireless headset microphone to capture his or her speech. Atouchsensitive board further
enhances the room. Voice-recognition, computer vision techniques and activity recognition are
used to permit the simultaneous instruction of local and remote students. The objective of the
Smart Classroom Project was to seamlessly integrate tele-education and traditional classroom
activities. The system turns a physical classroom into a user interface for tele-education.

This section has presented different examples of intelligent environments in the domains of
workplace, housing and education. These augmented environments involve various research
disciplines, ranging from computer science, over social science to psychology. In computer sci-
ence, ubiquitous or pervasive computing [83] integrates computing into these environments, no-
madic computing [58] mobilizes computing devices, and ambient intelligence [86] helps mak-
ing these environments smart(er). In the field of ambient intelligence, we consider sensing and
responding to human and environmental context to be a key feature for achieving augmented
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intelligent environments. The following section defines and discusses the termscontextand
context-awarenessas well asproactiveservices that context-aware systems supply.

2.2 Context-Aware Services: towards unobtrusive, proactive
system behavior

In 1996, Weiser and Brown [95] introduced the notion ofcalm technology, described as:

“If computers are everywhere they better stay out of the way,and that means
designing them so that the people being shared by the computers remain serene and
in control.”

Computing systems should “stay out of the way”, while providing useful and enriching services.
In the context of smart environments and smart artifacts, Streitz et al. [89] distinguish two types
of service behavior: system-oriented, importunate smartness and people-oriented, empower-
ing smartness. System-oriented, importunate smartness enables the environment to take certain
self-directed actions, while people-oriented, empowering smartness focuses on empowering the
users to make decisions and take responsible actions.

System-oriented, yet unobtrusive smartness constitutes amajor challenge as it addresses two
important issues:

1. sensing, and recognizing user behavior, needs and intents,

2. while keeping the user informed and in control.

The system services are to be supplied without interruptingthe user’s current task and activity.
In addition, they should be predictable for the user (principle of least surprise [7]). These ser-
vices will not replace human-computer interaction itself because depending on the complexity
of the current task of the user, deriving user behavior, intent, or needs may be too difficult. The
main purpose is to reduce the communication workload of the user when working on his tasks.
Obviously necessary actions may be automated and so the usercan concentrate on essential
work and human-computer interaction tasks.

The automatic supply of system services is addressed by the term proactive system behavior.
Salovaara and Oulasvirta [82] outline that:
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“... the concept proactive refers to two critical features of a system: 1) that
the system is working on behalf of (or pro) the user, and 2) is taking initiative
autonomously, without user’s explicit command.”

Proactive systems are thus acting on their own initiative onbehalf of the user. Schmidt [86]
extends this notion to implicit human computer interaction(iHCI). iHCI is the interaction of
a human with the environment and with artifacts which is aimed to accomplish a goal. Within
this process the system acquires implicit input from the user and may present implicit output to
the user. Implicit input are actions and behavior of humans,which are done to achieve a goal
and are not primarily regarded as interaction with a computer, but captured, recognized and
interpreted by a computer system as input. Implicit output is not directly related to an explicit
input and is seamlessly integrated with the environment andthe task of the user.

Actions and behavior of humans, captured, recognized and interpreted by a computer system are
the input and basis for iHCI. The computer systems must hencebe aware of what the humans
are doing in the environment and determine the context in which human actions take place. This
issue is normally addressed by the term context-aware computing.

The word context is composed of “con” (with) and “text” and refers thus to the meaning that
must be inferred from adjacent text. Winograd [97] refers to context as a shared reference frame
of ideas and objects that are suggested by a text. Context is aconsensual space, called “common
ground” [31], that establishes a framework for communication based on shared experience.
Such a shared framework provides a collection of roles and relations with which to organize
meaning for a phrase.

Schilit and Theimer [84] first defined the term context-awareness by:

“location information [that] enables software to adapt according to its location
of use, the collection of nearby people and objects, as well as the changes to those
objects over time”

This definition is particularly useful for mobile computingapplications. An example is the
context-aware tourist guide system proposed by Cheverst etal. [27]. The system combines
mobile computing technologies with a wireless infrastructure to present visitors to the city of
Lancaster (UK) with information tailored to both their personal and environmental contexts.

However, more complex context-aware computing applications need to be built on notions of
context that encompass more than only location information[85, 87]. Pascoe [72] defines con-
text as a subset of physical and conceptual states of interest to a particular entity. This definition
has sufficient generality to apply to a system that recognizes human actions and behavior. Dey
[41] reviews definitions of context and provides a definition of context as any information that
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characterizes a situation related to the interaction between humans, application and the sur-
rounding environment. Situation refers here to the currentstate of the environment. Context
specifies the elements that must be observed to model a situation. An entity refers to a person,
place, or object that is considered relevant to the interaction between a user and an application,
including the user and applications themselves [3, 42].

Recent definitions of context-awareness go even further by defining context as part of a never
ending evolution process of interaction in an augmented environment. Coutaz et al. [38] observe
hence that:

“Context is not simply the state of a predefined environment with a fixed set
of interaction resources. It’s part of a process of interacting with an ever-changing
environment composed of reconfigurable, migratory, distributed, and multiscale re-
sources.”

Social and interactional aspects of context must also not beneglected. Individual behavior may
not be the correct unit of analysis. Evidence shows that about 40 % of the variance in human be-
havior may be attributable to non-linguistic social context [73]. Dourish [44] further highlights
the interactional nature of context. Contextuality is a relational property that holds between
objects and activities. Context is particular to each occasion of activity or action; the scope of
contextual features is redefined dynamically. Context is not just a fixed part of the environment,
but context arises from human activity.

Some scientists claim, however, that context-awareness inreal-world applications is simply im-
possible. An exhaustive enumeration of the set of existing contextual states of the environment
seems difficult [52]. Lueg [63] even states that “context-aware artifacts are far from being able
to recognize situation”. Further, we cannot always know which information determines a spe-
cific contextual state. As consequence, determining which appropriate action should be taken
by the system autonomously seems impossible [52]. Erickson [47] summarizes that “computers
are good at gathering information, humans are good at recognizing context and determining
what is appropriate”. Human should hence be kept in the control loop, and context-aware com-
puting should rather do visualization of contextual information than recognition and reasoning
on human intentions.

One strategy to respond to these critics is to provide feedback to the user about the reasoning of
the system. Cheverst et al. [29] propose the term comprehensibility to suggest that the user “can
look through the outer covering (e.g. glass box) to examine the inner workings of the device”.
The motivation is that users fear the lack of knowledge of what some computing system is
doing, or that something is being done ’behind their backs’ [1]. Bellotti and Edwards [12] go
further by defining the term intelligibility by:
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“Context-aware systems that seek to act upon what they inferabout context
must be able to represent to their users what they know, how they know it, and what
they are doing about it.”

The term scrutability further refers to the ability of a userto interrogate her user model in order
to understand the system’s behavior. Kay et al. [57] describe this process as:

“ ...when the user wants to know why systems are performing asthey are or
what the user model believes about them, they should be able to scrutinize the
model and the associated personalization processes.”

The issue of comprehensibility and scrutability is closelyrelated to the issue of control over the
system. Kay et al. [57] see scrutability as a foundation for user control over personalization. The
user needs to be able to understand what the system is doing, and also be able to overrule system
decisions and processes if necessary. Cheverst et al. [28] mention the obvious motivation: people
often want to perform a non-standard action in a given context. Figure2.4 relates scrutability
and system/user control in a two-dimensional design space.Different augmented environments
approaches, presented in section2.1, are plotted into this design space.

Barkhuus and Dey [10] report on findings from a study in the context of a mobile scenario,
where they investigated the relationship between user control and service automation. In their
particular setting, mobile phone users were willing to giveup control in exchange for services
such as tracking the location of friends or recommendation of nearby restaurants at lunch time.
Although their study relied on the participants to imagine their usage patterns if such a service
was available, one of their main findings was that users were willing to give up control if the
benefits (i.e. the convenience or added value) of doing so washigh.

If users are willing to give up control for a number of system services, this implies that they
trust the automation process of the system. Muir [69] shows that the usage of an automated and
context-aware system will be optimal if the user’s trust corresponds to the objective trustworthi-
ness of the system. Trustworthiness refers here to the system reliability. This process is called
calibration of trust[59]. Figure2.5 illustrates the problem. Human trust and trustworthiness of
the system should ideally cover the same range of services. When trust exceeds system capa-
bilities, this leads to misuse of the system (overtrust). When human trust is lower than system
capabilities, this leads to disuse of the system (distrust). Recent user studies indicate further that
perceived system usability has a significant effect on user trust in a system [61].

One might also want to consider the cost and consequences of automated action execution. In
particular, if we trust in a system, and the system is said to be reliable, on which basis system
decisions for actions executions need to be done ? This depends, of course, on the action to
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Figure 2.4: Two-dimensional design space spanning controland scrutability dimensions
(adapted from [29])

Figure 2.5: The relationship among calibration, resolution, and automation capability in defin-
ing appropriate trust in automation. Overtrust may lead to misuse and distrust may lead to disuse
(taken from [59])
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be automated and the criticity of the environment. For a hospital environment, Bardram et al.
[9] summarize that “the triggering of a context-awareness action depends upon the accuracy of
the sensed context information, the degree to which you knowwhat action to take in a certain
situation, and the consequence of performing this action.”

The automating companion agent is still not an everyday lifeexperience. Sensing, recognizing
human behavior, and automating services are currently research issues. This thesis will focus
on the modeling and sensing aspects of context-awareness: how to model, and in particular how
to acquire and adapt context models, which will constitute the backbone of (future) automated
service supply.

2.3 Learning Context Models

Human behavior evolves over time. New activities and scenarios emerge in an intelligent en-
vironment, others disappear. New services need to be integrated into the environment, while
obsolete services need to be deleted. To cope with these changes, a context-aware system needs
to evolve by adapting its contextual representation of users and environment, i.e. its context
model. These adaptations can be done by experts knowing changing user needs and sensor per-
ceptions of the system. If you were very rich, you might consider hiring a full-time team of
engineers to customize your intelligent environment and tokeep it up to date. Mozer [67] state,
however, that an intelligent environment must itself be adaptive. The environment’s intelligence
lies rather in its ability to adapt its operation to accommodate the users. The research challenge
is to develop machine learning methods for this process, making it possible to automatically
acquire and evolve context models reflecting user behavior and needs in an intelligent environ-
ment.

We can distinguish two different motivations for learning context models:

1. Knowledge engineering (acquisition of a context model)

2. User preferences (adaptation of a context model)

Knowledge engineering refers to building up a context modeland context-aware system from
collected data. The acquisition process is data-driven, i.e. based on recorded observations of the
environment; adapting or evolving the model is not foreseen. The aim is to discharge a human
engineer when setting up and customizing a context model fornew users and environment. User
preferences refer to the updating process, integrating changing user preferences into an existing
context model and system using user computer interaction. Auser preferences approach can
include a knowledge engineering step to set up an initial context model.
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Why is the automatic acquisition and adaptation of high-level context models difficult?
From the machine learning point of view, the acquisition andadaptation of high-level models
reflecting human behavior is already non-trivial. However,considering the adaptation of context
in the framework of a whole system (including different users), the problem becomes very
challenging. Learning approaches normally assume that human behavior is coherent and stable
over time. Further, the variation of behavior should not be too large between users (allowing to
integrate this in user preferences). In practical applications, we saw, however, that humans tend
to appropriate new technical devices and environments [43] either by misusing them (e.g. by
using coffee cups as entrance badges [86]) or by adapting their own behavior to the behavior
of the system. When the system now constantly adapts to humanbehavior and needs, will user
and system be capable of reaching a fix point (stable state problem [28])? And how can the user
trust such a system that constantly adapts, making it impossible to foresee its actions (trust in
automation problem [59])?

Unfortunately, there is no general solution to these difficult questions concerning the usability
of adaptive systems. Our focus here is to propose and illustrate different methods for acquiring
and evolving context models and their application.

Several approaches have been proposed concerning the prediction of user behavior from sen-
sor perceptions in the environment. Human behavior is recorded over a longer period of time
using different sensors deployed in the augmented environment. Machine learning methods are
applied to these sensors recordings in order to build up (andupdate) a user model. The learned
user model can then be used to automate system services. We distinguish approaches that con-
struct a user model from data (pure knowledge engineering) and those that constructandevolve
such a model (user preferences integration).

Mozer [67] uses different sensor recordings (motion, room temperature, water temperature,
illumination) of an intelligent home environment to construct and forecast the states of a user
model. Various predictors attempt to derive the current state of the environment, based on sensor
recordings, and forecast future states of human behavior inthe environment. These predictors
have been implemented using neural networks. Based on current and predicted states, the system
automates air heating, lighting, ventilation, and water heating from the learned user models. The
user models are intended to be constantly adapted to changing user behavior and preferences.

Youngblood et al. [99] propose a layered approach based on prediction, data mining, and de-
cision making components. Based on recordings of differentsensors (light, humidity, tempera-
ture, smoke, gas, infrared motion, and switch sensors) in anaugmented home environment, an
Active-LeZi algorithm based component predicts inhabitant actions and behavior. A data min-
ing component then abstracts inhabitant activity to episodes that represent the current user task.
A hidden Markov model based decision making component decides which action can be auto-
mated based on extracted abstract episodes. Possible automations are the control of lightening
and blinds, water heater, different video and screen displays, sprinkler and VCR. The system is
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to adapt to changing user preferences and behavior by adapting its learned user models.

Mayrhofer [64] proposes an architecture for context prediction. The aim is to construct clusters
from recorded low-level contextual feature data (like bluetooth, microphone etc.) using various
clustering methods. These cluster models are then used to predict user behavior, i.e. trajectories
within the learned cluster networks. Different methods forclustering and trajectory prediction
are evaluated. The proposed approach is intended to be adaptive, i.e. changing user behavior
will lead to an evolution of the learned models.

Clarkson [32] describes a wearable system with a video camera and a microphone, capable of
distinguishing coarse locations and user situations. Hidden Markov models provide an unsuper-
vised clustering of video and audio data recordings. Different user locations and situations like
“home”, “at work”, or “restaurant” are isolated and then recognized based on this clustering.
The approach aims at constructing human behavior models from data; no evolution of these
models is foreseen.

Mayrhofer [64] and Clarkson [32] focus on the clustering of human activity observations and
the prediction of sequences of human behavior (based on these clusters). These approaches are
without any input of supervisor knowledge or user feedback.Thus no human activity recogni-
tion and interpretation is done. A comparison with human activity perception is mainly done
a posteriori, showing that a correlation between isolated clusters and situation perceived by
humans is possible. Mozer [67] and Youngblood et al. [99] focus rather on the association of
system actions to sensor perceptions. The aim is the discrimination of different system actions
or services with regard to the sensing and prediction of human activity patterns. Human behav-
ior is neither modeled nor recognized. All these approachesneglect the issue of intelligibility
because they are completely constructed from sensor data without any human knowledge in-
put (e.g. activity labels). Thus no understandable contextmodel is generated. A user can not
understand the model and reasoning process of these systems.

Many approaches for the explicit recognition of human activity have been proposed in recent
years. The idea is to learn and recognize predefined human activity labels from recorded sensor
data. Most of this work is based on visual information [71, 81, 100] or audio information [18]
using statistical models for learning and recognition (in particular hidden Markov models).
However, most work does not attempt to acquire a high-level context model of human behavior,
but again tries to associate sensor values to (predefined) activity classes. The main focus is laid
on classification of basic human activities or scenarios without considering a richer contextual
description.

Some approaches attempt though to provide a more detailed analysis and representation of
human activities. Bayesian methods, in particular Bayesian networks, seek to model the rela-
tionship between pertinent observation variables. In somecases, this can lead to a more under-
standable representation of human activity.
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Muehlenbrock et al. [68] propose a system for office activity learning and recognition based on
Bayesian classifiers. The user gives feedback about his current activities and the corresponding
availabilities. A naive Bayesian classifier is used to learnuser activity and availability from
sensor data (keyboard and phone usage, PDA location and PDA ambient sound sensors, and
co-location sensors) according to the given feedback. The recognition results can be provided
to the users, augmented with location and reasoning detailsbased on the probabilities of the
classifier. Although the recognition is mainly based on collected sensor data, the user model
can constantly be updated with new sensor data as the users work with the system.

The Lumiere Project [55] at Microsoft Research was initiated with the goal of developing meth-
ods and an architecture for reasoning about the goals and needs of software users as they work
with software. The realized systems (e.g. the Microsoft Office Assistant) aim at providing assis-
tance to the user according to made observations. At the heart of Lumiere are Bayesian models
that capture the uncertain relationships between the goalsand needs of a user and observations
about program state, sequences of user actions over time, and words in a user’s query. The
Bayesian models used for modeling and reasoning about user behavior are based on a large
amount of recorded example data as well as feedback from experts. The constructed models
identify a number of (understandable) pertinent variables(like task history or assistance his-
tory), their reasoning is, however, not obvious to the user.The models are automatically adapted
to behavior and preferences of the users as they work with thesystem.

Eagle and Pentland [45] propose a prototype system for sensing complex social systems. The
system is based on data recordings from mobile phones. The information collected from the
mobile phones includes call logs, bluetooth devices in proximity, cell tower IDs, application
usage and phone status (such as charging and idle). A hidden Markov model permits to recog-
nize three different situations (home, work, and other) based on the collected information and
time (hour, day of the week). Further, a Gaussian mixture model detects proximity patterns of
users and correlates them with the type of relationship. Thelabels for the model come from user
surveys. The results are an estimation of social relationships and networks.

Zhang et al. [102] propose a two-layered framework for modeling and recognizing individual
and group actions in meetings. A first layer detects individual actions like “writing” or “speak-
ing” from individual audio and video recordings using hidden Markov models. The second
group layer fuses the individual output of the first layer as well as group audio and video fea-
tures (coming from projector screen and white-board). The output of the second layer are group
actions like “discussion”, “monologue”, “note-taking”, or “presentation”. The second layer is
also based on HMMs and detects the group actions in a supervised manner. An unsupervised
segmentation of group actions in the second layer has also been proposed [101]. The objective
of approach is the offline analysis of multimodal meeting recordings and the construction of
the corresponding models (knowledge engineering). The acquired models are evaluated, but not
evolved according to changing user preferences and behavior.
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The approaches proposed by Muehlenbrock et al. [68], Horvitz et al. [55] as well as Eagle and
Pentland [45] are based on a more elaborated representation of human activity. The relationship
between (partially) understandable observation variables is modeled and explicit human activity
labels are learned. However, the employed representationsof human activity and context are not
based on a human understandable model and framework. Learning and reasoning process stay
further “in the black box”. Zhang et al. [102] propose a framework that acquires two layers of
individual and group activity labels, but no adaptation of the model to changing human behavior
is foreseen.

Figure 2.6: Two-dimensional design space spanning adaptivity and intelligibility dimensions

Figure2.6summarizes the approaches presented in this section with regard to their intelligibil-
ity and adaptivity. Intelligibility refers to the comprehensibility of representation and learning
process as well as whether a possible model adaptation step may be understood by the user.
Adaptivity refers to our distinction of the motivations of the adaptation process: knowledge
engineering refers to the construction of a model from recorded data, while user preferences
address the integration of changes into an existing model. Note that a user preferences approach
can include a knowledge engineering step (in order to set up an initial model to be evolved).
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2.4 Contributions of this thesis

A key requirement for context-aware intelligent environments is to be able to build up and
evolve an intuitive, comprehensible context model. This context model needs first to be con-
structed as automatically as possible using machine learning methods, while staying transparent
for the user. The user then should be able to integrate his preferences into this model, and adapt
it constantly according to the evolution of his behavior andneeds. A context-aware intelligent
environment with these capacities would be situated in the upper left corner of the graph in
Figure2.6.

This thesis addresses the issue by providing an intelligible framework for acquiring and evolving
a context model, calledsituation model. The methods proposed as part of this framework acquire
different layers of the situation model, with different levels of supervision. The situation model
serves as frame and support for the different learning methods, permitting to stay in an intuitive
declarative framework.

The situation model and the underlying concepts are motivated by the human perception of
behavior in an augmented environment. Human behavior is described by a finite number of
states, called situations. These situations are characterized by entities playing particular roles
and being in relation within the environment.

Situations and the underlying concept of roles are acquiredfrom collected data. Different meth-
ods are proposed for learning roles. Further, a method for unsupervised situation discovery is
described. A supervised situation learning scheme completes the knowledge engineering part
of this thesis.

A method for integrating user preferences into a situation model is also proposed. This method
is based on the split of a situation into sub-situations according to feedback from the user,
permitting to personalize a constructed situation model.
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Chapter 3

Modeling and Perceiving Context - the
Situation Model

The aim of this chapter is to propose an abstract model enabling modeling and perception of
context in augmented environments. The proposed situationmodel is based and motivated by
the perception of human activity. In the following, we will first discuss the relationship between
context and human activity. Then, based on the derived conclusions, we will define our situation
model and the underlying concepts. The interface with perceptual components and the necessary
recognition processes are further described and illustrated by an example implementation in a
lecture room.

3.1 Context and Human Activity

Given its centrality to context-aware computing, the notion of context has been much debated.
Some scientists claim indeed that real context-awareness is an intractable problem. Greenberg
argues for example that it is difficult or even impossible to enumerate the set of all contex-
tual states that exist [52]. Further, he says that we cannot know which contextual information
determines the actual state within this set. Given this lackof precise information, a system can-
not state which possible appropriate action to be taken. In addition, Lueg claims that today’s
context-aware artifacts are far from being able to recognize the situation of a user [63]. Intelli-
gibility and accountability can help alleviating this problem; they become, however, intractable
when applied to real-world problems (could we interpret sensor readings and interpretations of
an intelligent mobile robot that has not our perception of the world?). Erickson finally argues
that computers are good at gathering information, humans are good at recognizing context and
determining what is appropriate, so he concludes to keep humans in the control loop and to let
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context-aware computing rather do visualization than artificial intelligence [47].

Given these critics, one might think that context-awareness and context-aware applications are
seemingly impossible to realize. However, many approacheshave been implemented success-
fully in recent years [1, 19, 27] . What have these successful approaches in common? First of
all, none of these approaches attempts to model the whole world with all possible contextual
states. Most approaches focus on a specific application in a specific domain, making thus a
closed-world assumption. In this closed world, they are able to model all necessary contextual
states to provide services to the user. Depending on the application and domain, recognizing
these contextual states is reduced to a technical issue likefor example object or person recogni-
tion. Further, it is much easier to give explanation for these states to the user when we are in a
closed world where the number of contextual states is limited.

One important issue is, however, in what detail these context-aware applications can capture the
complexity of social context. The majority of documented context-aware applications only use
identity and location in their attempts to capture user environment changes [1, 27]. An example
is the intelligent tourist guide system by [27] providing visitors with context-aware information
and guidance. Even though these approaches produced good results, it has been argued that
more complex social situations would require context-aware applications that are built on no-
tions of context relying on more than only location [85, 87]. Schilit et al. [85] observed hence
that:

“Context encompasses more than just the user’s location, because other things
of interest are also mobile and changing. Context includes lighting, noise level,
network connectivity, communication costs, communication bandwidth, and even
the social situation; e.g., whether you are with your manager or with a co-worker.”

The limitation of contextual cues when modeling human interactions and behavior risks re-
ducing the usefulness of context-aware applications. Of course, again many problems can be
considered as technical issues like signal processing problems or person/object recognition.
However, the omission of social aspects in context modelingis a considerable problem. Context-
aware computing research typically assumes context to be a form of information that is delin-
eable, stable, and separable from activity. Addressing theproblem of social aspects in context
modeling, Dourish [44] proposes an interactional view of context where context isunderstood
as something relational, dynamic, occasioned, and arisen from human activity. Thus context is
not something that describes a setting or configuration, butit is something that people do.
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3.2 Defining Concepts: Role, Relation, Situation and Situa-
tion Network

Following the conclusions about context and human (section3.1), a context model should:

• describe a closed-world motivated by the application domain and the needs of the user,

• be suitable and intuitive to provide explanations to the user,

• focus on human relations and activities when describing context rather than environment
settings.

How can context be modeled in context-aware approaches?
Dey [41] defines context as “any information that can be used to characterize the situation of an
entity”. An entity can be a person, place or object considered relevant to user and application.
Loke [62] states that situation and activity are, however, not interchangeable, and activity can
be considered as a type of contextual information which can be used to characterize a situation.
Dey defines situation further as “description of the states of relevant entities”. Situation is thus a
temporal state within context. Allen’s temporal operators[4, 5] can be used to describe relation-
ships between situations. Crowley et al. [39] introduce then the concepts of role and relation in
order to characterize a situation. Roles involve only one entity, describing its activity. An entity
is observed to “play” a role. Relations are defined as predicate functions on several entities,
describing the relationship or interaction between entities playing roles. Acceptance tests deter-
mine whether a particular entity plays a role or whether several entities are in relation. These
acceptance tests associates roles and relations with relevant entities. In the following, we detail
the definitions of role, relation, situation and situation network.

Situationsare a form of state defined over observations. A situation is defined using a predicate
expression. The logical functions that make up this expression are defined in terms of a set of
roles and relations. Situations in the context model are connected by arcs that represent events.
Events correspond to changes in the assignment of entities to roles, or changes in the relation
between entities.

A context [37, 39] is a composition of situations that share the same set of roles and relations.
A context can be seen as a network of situations defined in a common state space. A change
in the relation between entities, or a change in the assignment of entities to roles is represented
as a change in situation. Such changes in situation constitute an important class of events that
we call Situation-Events. Situation-Events are data driven. The system is able to interpret and
respond to them using the context model.
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The concept of roleis a subtle (but important) tool for simplifying the networkof situations. A
role is an abstract entity that is able to perform certain actions. Roles are “played” by entities
within a situation. Assignment of an entity to a role requires that the entity passes an acceptance
test. In our framework, the relationsthat define a situation are defined with respect to roles, and
applied to entities that pass the test for the relevant roles.

Figure 3.1: Example of a simple context model for a lecture room.Empty, AudienceandLec-
ture are the available situations.Lecturer, Audienceare the available roles andNotSameAsthe
available relation. SwitchOnLight, SwitchOnProjectorare system services

For example, in a lecture situation, at any instant, one person plays the role of the “lecturer”
while the other persons play the role of “audience” (Figure3.1). “Lecturer” and “audience”
share the “notSameAs” relation, i.e. the entities playing the corresponding roles are different.

The mapping between entities and roles is not bijective. Oneor more entities may play a role.
An entity may play several roles. The assignment of entitiesto roles may (and often will) change
dynamically. Such changes provide the basis for an important class of events: role-events. Role
events signal a change in assignment of an entity to a role, rather than a change in situation.

Human behavior within the environment can be described by a script. A script corresponds to a
sequence of situations in the situation network reflecting human behavior in the scene. However,
scripts in a situation network are not necessarily linear.
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3.3 Interface with Perceptual Components

The situation model receives both events and streams from perceptual components (Figure3.2).
A stream is an ordered sequence of entities with properties.To interpret the stream, the situation
modeling system must apply a test to the properties to determine which relations and roles apply.

Figure 3.2: Situation Model and its interface with perceptual components and events

Events from perceptual components denote a change in state of an entity. In this case, a logical
test for a role or relation has been migrated to, and implemented by, the perceptual component.
The situation model needs only note and react to the event.

3.4 Recognition Processes: Acceptance Tests for Roles and
Relations

The recognition processes for roles and relations are interpreted as acceptance tests applied to
the properties of relevant entities. Acceptance tests for roles are applied to the properties of all
available entities in order to determine their role assignment. Acceptance tests for relations are
applied to the properties of entities already assigned to roles (“playing a role”). Thus the search
space for relation acceptance test is limited by the available entities playing roles (Figure3.3).

In the first section of this chapter, we describe the general design of recognition processes as
acceptance tests based on events. The second section presents an example implementation of
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Figure 3.3: Role acceptance tests are applied to all available entities, while relation acceptance
tests are applied to entities playing roles

acceptance tests for a lecture scenario.

3.4.1 Acceptance Tests based on Events

An acceptance test is based on events sent by perceptual components. Events concern entities
and their properties. Acceptance tests take these events asinput and generate role and/or relation
assignments of entities as output. Thus acceptance tests are the connectors between the context
model layer and the perceptual components.

An acceptance test can be divided into two different phases:1) filtering and 2) role and relation
assignment (Figure3.4). The filtering phase concerns the raw entity event stream generated by
perceptual components. A filteris applied to this stream in order to extract more abstract events
that reduce the dimension of the data. The second phase concerning role and relation assignment
takes abstract events as input and generates the corresponding roles and relations. The filtering
phase can be integrated into perceptual components, while the role, relation assignment is part
of the context model layer.

For example, a perceptual component tracking objects in video images may send events of
the form (PositionEntity X Y), whereEntity denotes the entity identifier andX, Y the entity’s
position. To apply an acceptance test, the constant stream of entity events is first parsed for
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Figure 3.4: Acceptance test as connector between perceptual components and context model

particular entity property valuesX, Y (filtering). Abstract events like (EntersRegionOfInterest
Entity) indicating particular interest zones of entities are sentto role, relation assignment. Roles
and relations can then be determined for the available entities using the abstract events from one
or several filters.

3.4.2 Example Implementation of Acceptance Tests for the Lecture Sce-
nario

In the Lecture room context example, we are concerned with person-entities and their location
in regions of interest. We will assume that a perceptual component tracks moving objects in the
video images of the scene (for example by using image background subtraction). The resulting
event stream contains the entity identifier as well as the entity position in the video images
(PositionEntity X Y). We assume that this component can determine whether the tracked object
is a person or not (for example by using skin color detection or other features). The result is an
abstract event indicating whether an entity identifier has been detected as person or not (Person
Entity). As tracking and detection has to be in real-time, the filtering for regions of interest as
well as person detection is integrated into this component (Figure3.6).

Figure 3.5 shows the filtered interest zones (in violet): one interest zone next to the board
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Figure 3.5: Interest zones (violet) for the lecture scenario

(“LectureArea”), three zones around the tables and chairs (“AudienceArea”). The perceptual
component tracks the entities in the scene. If the entity enters or leaves a region of interest, an
abstract event of the form (enters <Region-ID> <Entity>) or(exits <Region-ID> <Entity>) is
sent respectively. When the entity leaves the scene a new event is sent to the situation model
(ExitScene <Entity>). If the perceptual component looses the entity, an abstract event will be
sent of the form: (Lost <Entity>).

Figure 3.6: Perceptual component for the lecture scenario

Figure3.1 indicates the necessary roles and relations for the lecturescenario. We can identify
the roleslecturer, audienceand the relationNotSameAs.

The abstract events that will be sent to the role, relation assignment are:
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(NewEntity <Entity>)

(ExitScene <Entity>)

(Lost <Entity>)

(Person <Entity>)

(enters LectureArea <Entity>)

(exits LectureArea <Entity>)

(enters AudienceArea <Entity>)

(exits AudienceArea <Entity>)

Using these abstract events, we can define the following conditions and actions for role, relation
assignment:

Role:Lecturer
Conditions Action
{(Person <Entity>), Lecturer(<Entity>))
(enters LectureArea <Entity>)}
{(exits LectureArea <Entity>)}, ¬Lecturer(<Entity>)
{(ExitScene <Entity>)},
{(Lost <Entity>)}

Role:Audience
Conditions Action
{(Person <Entity>), Audience(<Entity>))
,(enters AudienceArea <Entity>)}
{(exits AudienceArea <Entity>)}, ¬Audience(<Entity>))
{(ExitScene <Entity>)},
{(Lost <Entity>)}

Relation:NotSameAs
Conditions Action
{<Entity> 6=<Entity2>} NotSameAs(<Entity>,<Entity2>)
{<Entity>=<Entity2>} ¬NotSameAs(<Entity>, <Entity2>)
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Note that the condition of the relationNotSameAsis only applied to entities that have been
selected by the role acceptance tests, i.e. that are “playing roles”. The test for (in)equality be-
tween two entities used as the condition forNotSameAscan be done by comparing the entity
identifiers.

Further note that a role or relation is only activated/deactivated by the respective conditions. If
no conditions hold, the last state (“true” or “false”) of therole/relation assignment is maintained.
This is important to provide stability to the system.

3.5 Conclusions

In this chapter, we provided an ontology and architecture for modeling context. A finite state
machine, the situation model, is constructed according to the needs of contextual and perceptual
information of the services. Events and entities are created by perceptual components. Recog-
nition processes are used to assign entities to roles and relations. A recognition process is inter-
preted as an acceptance tests applied on entities. This acceptance test is based on abstract entity
events filtered from entity events streams. Roles and relations can be combined to situations.
These situations are connected to form a graph. The fact thatthe model is a finite state machine
provides stability and reduces fluctuations. Services can provide their functionality according
to the situation state of the model. A top-down configurationof the perceptual components ac-
cording to the needs of the services is possible. This top-down filtering adjusts the parameters
of the perceptual components using state information from the model as well as information
from the services.

38



Chapter 4

Implementation and Evaluation of
Situation Models

This chapter addresses the top-down specification and implementation of situation models.
Based on user needs and envisaged application, a human engineer specifies and implements
the situation model and associates sensor perceptions and system services to the situations. In
the following, a deterministic and a probabilistic implementation of situation models are pre-
sented.

Situations and the underlying abstract concepts can be interpreted as finite-state machines. The
finite-state machine implementation influences the controlflow and how perceptions, coded as
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events, are finally used and interpreted to activate situations. We present a deterministic and
a probabilistic implementation of situation models. The deterministic implementation is based
on Petri Nets, while the probabilistic implementation is based on hidden Markov models. The
choice of the implementation depends on the application that is envisaged. An example is given
for each implementation in the following sections.

4.1 Deterministic Implementation: Petri Nets

We begin this section with an informal review of Petri nets. We then describe how Petri nets
are used to implement a situation network representing a context model and how to evaluate a
script.

4.1.1 Petri Nets

A Petri net is a graphical mathematical tool used to model dynamical systems with discrete
inputs, outputs and states. Such models have first been defined by Petri [74]. A Petri net is an
oriented graph, composed of arcs and two categories of nodes(places and transitions). Places
are the state variables of the system containing zero or a positive number of marks. Transitions
model the system evolution and are connectedfrom placesto places. A transition is valid if all
the “from” places have at least one mark. When a valid transition is fired: one mark is removed
from every “from” place and one mark is added to every “to” place. Only one transition can be
fired at a time. A more formal definition of Petri nets is given by Murata [70].

Finite-state machines like situation models can be equivalently represented by a subclass of Petri
nets [70]. Several extensions of Petri nets have been proposed. One of them is thesynchronized
Petri net. A synchronized Petri net is a Petri net witheventsassociated to each transition. A
transition can now be fired if it is valid and the corresponding event has been triggered (Figure
4.1).

4.1.2 Implementation and Script Evaluation using Petri Nets

A context model is defined by a network of situations. The connections between the situations
are temporal constraints based on Allen’s temporal operators [4]. Eventsindicate state changes
of the concepts (activity, roles, or relations) describingsituations. A situation change is triggered
by these events. For instance, consider two situations S1 and S2 such that S2 meets S1 (Figure
4.2). To trigger a change from the current situation S1 to situation S2, we need to observe at
least two events:
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Figure 4.1: Synchronized Petri net with places S1, S2, S3 andtransition T1 triggered by event
E

1. a first event invalidating the situation S1 (¬V alidS1), followed by

2. a second event validating situation S2 (V alidS2) .

Figure 4.2: A small context : S2 meets S1

This example can be directly represented as a synchronized Petri net (Figure4.3). We associate
a situation to every place. The situation is active if there is at least one mark in the corresponding
place: we are currently in situation S1.

Figure 4.3: Synchronized Petri net implementation of the context

In a “standard” Petri net, the transition between S1 and S2 isautomatically fired as soon as
S1 is active. We need to control this transition based on the perceptual events coming from the
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environment. This transition control is managed using the transition event of the synchronized
Petri net. We generate this transition eventT only when Situation S1 is no more valid and
Situation S2 becomes valid (as seen in subsection4.1.1):

T = ¬ValidS1∧ ValidS2

More generally, the event functionT of a transition is the conjunction of a function associated
to the place before the transition and a function associatedto the place after the transition. We
will call those two functions respectivelyPreT andPostT . We have:

T = PreT ∧ PostT

PreT corresponds to what we arecurrently observingin the environment.PostT indicates
what the systemshould expectto see next based on the context model.

This short example showed how to transform the “meet” operator into a corresponding synchro-
nized Petri net. This transformation can be done for all the other Allen operators as summarized
in Table4.1(see [80] for details).

Note that Petri nets are very well adapted for implementing situation models containing paral-
lelism. As shown in Table4.1, all Allen temporal operators can be implemented by Petri nets.
However, Petri nets are not suitable for applications with erroneous perceptions or uncertain
perception expectations.
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Allen operator Petri net Transition function

meets {
T = ¬V alidS1 ∧ V alidS2

before
{

T1 = ¬V alidS1
T2 = V alidS2

overlaps






PostT1 = V alidS1
T2 = V alidS2
T3 = ¬V alidS1
PreT4 = ¬V alidS2

starts





PostT1 = V alidS1 ∧ V alidS2

PreT2 = ¬V alidS1

PreT3 = ¬V alidS2

equals
{

PostT1 = V alidS1 ∧ V alidS2

PreT2 = ¬V alidS1 ∧ ¬V alidS2

during






PostT1 = V alidS2

T2 = V alidS1

T3 = ¬V alidS1

PreT4 = ¬V alidS2

finishes






PostT1 = V alidS1
PostT2 = V alidS2
PreT3 = ¬V alidS1 ∧ ¬V alidS2

Table 4.1: Synchronized Petri nets for the Allen operators :the “Unspec” place stands for an
unspecified situation, which means that we do not model what might happen
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4.1.3 Example : Automatic Cameraman

The automatic cameraman [48] is an audio-video recording system that automatically records
a lecture. The lecture room is equipped with multiple cameras and microphones. The system is
context-aware selecting at every time, based on the currentsituation, the appropriate camera to
provide images (Figure4.4).

Figure 4.4: Different camera images recorded by the automatic cameraman system

The available actions areStart recording, Filming the whole room, Filming the lecturer, Filming
the audienceandFilming the slides. The situation list is :

• Init → start recording and filming the whole room.

• The lecturer speaks→ filming the lecturer.

• Someone in the audience asks a question→ filming the audience.

• There is a new slide→ filming the new slide.

• Someone enters the room→ filming the whole room.
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The lecture is an alternation of “lecturer speaking” and “audience asking a question”. “New
slide” and “someone entering the room” can happen in parallel. The situation network is given
in Figure4.5, the corresponding Petri net is given in Figure4.6.

Figure 4.5: Situation network of the automatic cameraman system

Code generation is done by automatically transforming the synchronized Petri net into a cor-
responding program in Jess (see [80] for details). Jess [56] is an expert system programming
environment (facts database with forward chaining rules).The input of the generated program
are facts based on events describing state changes of the concepts (roles and relations here)1.
The output are the current situation and the associated action(s).

This approach recorded a four day seminar on “Language Technology” and “Language, Cog-
nition, and Evolution” [40], which was held on the premises of the FORUM2004 [51] in
Barcelona. The automatic cameraman has also been used to record and broadcast real lectures
in the amphitheater at INRIA Rhône-Alpes (example images can be seen in Figure4.4).

1Activity, roles, and relations are reconstructed from dataprovided by perceptual components (video tracker,
speech activity detectors, etc.)
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Figure 4.6: Petri net of the automatic cameraman system
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4.1.4 Experimental results

Table4.2 shows the confusion matrix for two hours of recording. A ground truth dataset has
been produced by manually annotating the situations on the video. The three situations are :

• Slides :a new slide is projected on the screen

• Speaker :the speaker is talking or answering a question

• Audience :someone in the audience is asking a question

The lines of the matrix contain the detection results, whilethe columns contain the expected
response.

Slides Speaker Audience
Slides 0.96 0.04 0.0

Speaker 0.0 0.89 0.11
Audience 0.37 0.05 0.58

Table 4.2: Confusion matrix

We have obtained a recognition rate of 93.7%. As the context determination is deterministic,
this confusion matrix mainly shows the robustness of the underlying perception algorithms
(the speech activity and the “new slide” detector). In the last line of the matrix, we can see
that there is a big confusion between “audience asking a question” and “new slide”. Indeed,
when someone starts answering a question, at the same time, he is often seeking for slides
in his presentation. This example illustrates that in some case, deterministic approach can be
advantageously replaced by more fuzzy ones.

We have also made an informal survey after broadcasting the lectures in the amphitheater at
INRIA. Remote spectators could access two streams : a first stream provided by a fix camera and
a stream provided by our automatic cameraman. They all preferred the automatic cameraman
stream, allowing them to better understand the presentation.

4.2 Probabilistic Implementation: Hidden Markov Models

A probabilistic implementation of the situation model integrates uncertainty values into the
model. These uncertainty values can both refer to confidencevalues for events and to a less
rigid representation of situation and situation transitions.
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The situation model is a finite-state machine. The natural choice for a probabilistic implemen-
tation is then a probabilistic finite-state machine [93]. A probabilistic finite-state machine is a
probabilistic automaton (PFA) defined over a finite alphabet

∑
. A language is a subset of

∑
∗. A

PFA defines a stochastic language, which is a probability distribution over
∑

∗. The distribution
must verify: ∑

x∈
P

∗

Probability(x) = 1

A formal definition of PFA can be found in [93].

4.2.1 Hidden Markov Models

A hidden Markov model (HMM) [79] is a stochastic process where the evolution is managed
by states. The series of states constitute a Markov chain which is not directly observable. Such
a chain is said to be “hidden”. Each state of the model generates an observation. Only the
observations are visible. A more formal definition of an HMM is given by Rabiner [79]. The
two following propositions hold [92]:

Proposition 1: Given a PFA A withm transitions andProbability(ε) = 0 (ε-transitions are
not allowed), there exists an HMMM with at mostm states such that the stochastic
languageDM of M is equal to the stochastic languageDA of A.

Proposition 2: Given an HMMM with n states, there exists a PFAA with at mostn states
such that the stochastic languageDA of A is equal to the stochastic languageDM of M .

As we are only interested in PFA withoutε-transitions, i.e. PFA the transitions of which are
triggered by events, language-equivalent HMMs can be used to implement PFA.

4.2.2 Implementation and Script Evaluation using Hidden Markov Mod-
els

The situations of a context model can be implemented by the states of a HMM.Eventsindicat-
ing state changes of the concepts (activity, roles, or relations) generate the observations for the
HMM. A state (situation) is characterized by a particular probability distribution of these obser-
vations. The activation of a new situation (state) is thus determined by the transition probability
from the current state to this new state as well as by the probability of the given observations
in this new state. The connections in the situation network are represented by non-zero tran-
sition probability values. The observation probability distributions for the situations as well as
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the transition probabilities between the situations need to be specified (or learned) when imple-
menting a situation model. We are interested in three basic problems:

1. Given a sequence of observations (based on events) and a situation model implemented
by a HMM, how to choose the corresponding state sequence (situation sequence)? This
includes the determination of the (most likely) current situation and the determination of
likely following situations.

2. Given a sequence of observations (based on events) and a situation model implemented
by a HMM, how to compute the probability of the observation sequence, given the model?
This corresponds to the likelihood of the situation model (based on the given events).

3. How to adjust the HMM model parameters? This corresponds to adjusting probability
distributions of situations based on given event data.

Rabiner [79] gives several solutions to these problems. The Viterbi algorithm is used to deter-
mine the most probable state sequence, given a HMM and an observation sequence (Problem 1).
The probability of a HMM, given an observation sequence, canbe computed using the Forward-
Backward algorithm (Problem 2). The expectation-maximization (EM) Baum-Welch algorithm
adjusts the HMM model parameters, given observation sequences (Problem 3).

Note that the HMM implementation of a situation model is particularly suitable for applications
that deal with erroneous perceptions as well as situations that are characterized by a partic-
ular frequency of events. A HMM implementation is, however,less suitable for representing
parallelism (not all Allen operators can thus be represented by a classical HMM).

4.2.3 Example : Detection of Interaction Groups

This example addresses the problem of detecting changing interaction group configurations in
a smart environment. During a meeting, participants can form one big group working on the
same task, or they can split into subgroups doing independent tasks in parallel. Our objective
is to determine the current small group configuration, i.e. who is interacting with whom and
thus which interaction groups are formed. As we focus on verbal interaction, one group has a
minimum size of two individuals (assuming that isolated individuals do not speak). The speech
of each meeting participant is recorded using a lapel microphone. An automatic speech detector
[48] parses this multi-channel audio input and detects which participant stops and starts speak-
ing. We admit the use of lapel microphones in order to minimize correlation errors of speech
activity of different participants, i.e. speech of participant A is detected as speech of participant
B.
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Figure 4.7: Situation model for a meeting of 4 participants A, B, C, D

The proposed approach is based on a HMM implementation of thecontext model. The obser-
vations of the HMM are a discretization of speech activity events sent by the automatic speech
detector. Figure4.7shows the situation network for a meeting with 4 participants. Each possible
interaction group configuration is represented by one situation. These situations are transformed
to the states of a HMM (Figure4.8).

Figure 4.8: States of the HMM implementation of the situation model for a meeting of 4 partic-
ipants A, B, C, D

The probability distributions of the different states are specified based on conversational hy-
potheses. These conversational hypotheses assume that speech within an interaction group is
more regulated than speech between distinct interaction groups. The transition probabilities be-
tween the states are set to a very low level in order to stabilize the detection of state changes
assuming hence that group changes occur in reasonable delays. To detect different group con-
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figurations, we apply the Viterbi algorithm (solution to Problem 1 in section4.2.2) to the flow
of arriving observations.

Figure 4.9: Example of a configuration of 2 groups of 2 participants

4.2.4 Experimental results

To evaluate, we recorded three small group meetings with 4 participants (Figure4.9). Using the
HMM detector, we obtained a total recognition rate for the small group configurations of 84.8
% [18]. Table4.3 shows the confusion matrix for the 3 experiments. This matrix indicates for
each group configuration the correct and wrong detections. The lines of the matrix contain the
detection results, while the columns contain the expected response.

(ABCD) (AB)(CD) (AC)(BD) (AD)(CB)
(ABCD) 0.88 0.03 0.06 0.03

(AB)(CD) 0.08 0.87 0.05 0.00
(AC)(BD) 0.22 0.01 0.77 0.00
(AD)(CB) 0.04 0.04 0.08 0.84

Table 4.3: Confusion matrix

Figure4.10gives an overview of the detection of group configurations over time. The lines of

51



Chapter 4. Implementation and Evaluation of Situation Models

the chart correspond to different group configurations. Thecontinuous line indicates the correct
group configuration expected as detection result.

The results are encouraging and tend to validate the conversational hypotheses to distinguish
interaction groups. The Viterbi algorithm executed on longobservation sequences is quite robust
to wrong detections of the speech activity detector. However, a minimum number of correct
speech activity detections is necessary, as the method relies on the information of who speaks
at which moment. The use of lapel microphones made it possible to limit wrong detections
as these microphones are attached to a particular person (and thus should only detect his/her
speech).

Figure 4.10: Ground truth (red) and detection (green) of group configurations over time for
Experiment 1 (upper left, duration: 9 min. 22 sec.), Experiment 2 (upper right, duration: 15
min. 16 sec.) and Experiment 3 (bottom, 16min. 19sec.). On the y-axis, 0 corresponds to the
group (ABCD), 1 to (AB)(CD), 2 to (AC)(BC), and 3 to (AD)(BC)

4.3 Conclusions

This chapter described two different implementations for the situation model representing con-
text: a deterministic one based on Petri nets and a probabilistic one based on hidden Markov
models. Both approaches have been applied to real world problems with success: an automatic
cameraman system (Petri nets) and an interaction group detector (HMMs) have been imple-
mented. Each implementation is well adapted for particularapplications. Petri nets can imple-
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ment all Allen temporal operators, in particular those describing parallelism. However, Petri
nets can not model erroneous perceptions and uncertain situations (uncertain expectations of
perceptions for a situation and uncertain situation transitions). Hidden Markov models are less
rich in modeling temporal constraints (in particular parallelism), but HMMs permit to model
erroneous input and uncertain situations. Thus the choice of the implementation depends on the
application that is envisaged.
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Chapter 5

Learning Role Acceptance Tests

This chapter addresses the learning of role acceptance tests. The proposed methods consti-
tute the first layer of the framework for acquiring and evolving situation models. As we saw
in section3.4.1, a role acceptance test is divided into a filtering phase and role and relation
assignment. The filtering phase is considered to be the key process, isolating abstract events
necessary to activate a role. These abstract events fuse andfilter event streams coming from
perceptual components. The event streams contain the available entities as well as their proper-
ties. In the following, we will first present three methods for learning different role labels from
entity event streams. Role labels refer to the abstract events necessary for role assignment. The
proposed methods are based on a Bayesian classifier, supportvector machines (SVMs) and a
hybrid classifier combining Bayesian methods and SVMs. The three proposed methods have
been evaluated on data sets based on event streams coming from a video tracking system in an
augmented home environment (see also lecture scenario in subsection3.4.2). Augmented home
environment, video tracking system, employed role labels and recorded data sets will also be
presented.
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5.1 Method

By using machine learning methods, our system is to find a connection between the sensed in-
formation (entity properties per observation frame) and the roles as perceived and labeled by the
supervisor. We are focusing particularly on Bayesian methods, because they are well adapted to
deal with erroneous sensor data and they have proven to be useful in many application domains,
in particular computer vision [71, 81, 100]. In the following, we will present three methods: a
Bayesian classifier, support vector machines and a novel hybrid classifier for identifying unseen
roles.

5.1.1 Bayesian Classifier

We first use a generative learning method to model and learn our data. On the basis of the sensor
data and the associated role labels, we seek to learn a probabilistic classifier for relevant roles.
The proposed Bayesian classifier is similar to classifiers proposed by Ribeiro and Santos-Victor
[81] and Muehlenbrock et al. [68]. The classification is done framewise, i.e. the classifier takes
the entity properties of one observation frame as input and generates the role prediction for the
frame as output.

We seek to determine the rolerMAP with the maximum a posteriori (MAP) probability, given
the entity property setT (equation5.1).

rMAP = argmax
r

P (r|T ) (5.1)

P (r|T ) =
P (T |r)P (r)

P (T )
(5.2)

We apply Bayesian theorem (equation5.2) and we further assume that the prior probabilities
P (r) for the roles are equal for each frame. As the constant denominator can be eliminated
because of the argmax, we get (equation5.3).

rMAP = argmax
r

P (T |r) (5.3)

We modelP (T |r) for each role as multidimensional Gaussian mixture distribution estimated
by running EM algorithm [14] on the learning data. The initial number of Gaussians in the
mixture is set to a high value (in the evaluation: 128); Gaussians with too weak contribution to
the mixture are successively eliminated.
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5.1.2 Support Vector Machines

In order to further improve recognition results, we use a discriminative learning method to
classify our data. Support vector machines (SVMs) [17, 36] are well-known to be a powerful
discriminative learning method. As for the Bayesian classifier, the classification is done frame-
wise, i.e. the SVMs take the entity properties of one observation frame as input and generate
the role prediction for the frame as output. SVMs classify data through determination of a set of
support vectors, through minimization of the average error. The support vectors are members of
the set of training inputs that outline a hyperplane in feature space. Thisl-dimensional hyper-
plane, wherel is the number of features of the input vectors, defines the boundary between the
different classes. The classification task is simply to determine on which side of the hyperplane
the testing vectors reside.

Figure 5.1: SVM classifier hyperplane and margins for a training set of two classes (△ and�)

Given a training set of instance-label pairs(xi, yi), i = 1..l wherexi ∈ ℜn andyi ∈ {1,−1}
(two class problem), the support vector machines require the solution of the following optimiza-
tion problem:

min
ω,b,ξ

1

2
ωTω + C

l∑

i=1

ξi subject to yi(ω
T φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0 (5.4)

Here training vectorsxi are mapped into a higher (maybe infinite) dimensional space by the
function φ. Then the SVM finds a linear separating hyperplane with the maximal margin in
this higher dimensional space (Figure5.1). C > 0 is the penalty parameter of the error term.
K(xi, xj) = φ(xi)

T φ(xj) is called the kernel function. Though new kernels are being proposed
by researchers, there are four basic kernels:

• Linear:K(xi, xj) = xT
i xj
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• Polynomial:K(xi, xj) = (γxT
i xj + r)d, γ > 0

• Radial basis function (RBF):K(xi, xj) = exp(−γ‖xi − xj‖), γ > 0

• Sigmoid:K(xi, xj) = tanh(γxT
i xj + r)

γ, r andd are kernel parameters. For multi-class classification, a “one-against-one” classifica-
tion for each of the k classes can be done.K(K−1)

2
classifiers are then generated to train the data,

where each training vector is compared against two different classes and the error (between the
separating hyperplane margin) is minimized. The classification of the testing data is accom-
plished by a voting strategy, where the winner of each binarycomparison increments a counter.
The class with the highest counter value after all classes have been compared is selected.

5.1.3 Hybrid Classifier for Identifying Unseen Roles

As we will see in section5.2, SVMs are a discriminative classification method that outperforms
the generative Bayesian classifier for particular data sets. However, SVMs do not provide reli-
able information about whether or not a new data item may be coherent with the training data
sets. Although there are probabilistic SVMs [75], the generated probabilities only refer to the
distribution within the trained classes. Unseen data such as wrong target detections or new role
classes cannot be identified. These data will be attributed to one of the existing classes. The
Bayesian classifier is a generative classification method that generates a model for the training
data, providing a possible probability output for each new data item. A hybrid classifier com-
bines the strong points of each method: the probabilistic output of the Bayesian classifier and
the discriminative power of the SVMs. First approaches for such a classifier have been applied
to text-independent speaker identification [49]. The focus, however, was on classification of
trained speakers; unseen classes/data have not been considered.

In the following, we propose a hybrid classifier combining Bayesian methods for identifying
unseen data and SVMs for classifying seen data. We will compare the method with an extended
Bayesian classifier and classical SVMs. The architecture ofthe classifiers can be seen in Figure
5.2.

In subsection5.1.1, we used equation5.3 to determine the class of a new data item. We mod-
eledP (T |r) for each role as multidimensional Gaussian mixture distribution estimated by EM.
We have extended this by modeling additionallyP (T ) as multidimensional Gaussian mixture
distribution estimated by EM.P (T ) makes it possible to estimate the probability for a new data
item to be generated from the training data set model. By using a threshold on this probability
value, we can determine whether the new data item is part of the learned classes or whether it is
unseen data (e.g. wrong detections or new class). The threshold can be automatically estimated
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Figure 5.2: Extended Bayesian classifier, hybrid classifierand support vector machines

from the training data sets (based on minimal probability ofdata items of the classes). The hy-
brid classifier (Figure5.2 B) combines the estimation ofP (T ) (generative model) with SVMs
trained on the classes. If a data item is determined to be seendata, the SVMs determine the
class of this item. For evaluation, we compare the hybrid classifier with an extended Bayesian
classifier (Figure5.2 A) and classical SVMs (Figure5.2 C). The extended Bayesian classifier
combines the estimation ofP (T ) with a classical Bayesian classifier. We want to show that the
hybrid classifier outperforms both a purely Bayesian classifier and a purely SVM approach.

5.2 Evaluation and Results

In this section, we will evaluate the proposed classifiers onseveral data sets. The data sets are the
recorded properties of targets (entities) detected by a video tracking system in a smart environ-
ment In the following, we will first present the smart home environment where the recordings
took place as well as the video tracking system. Then, the recorded data sets and role values
will be described. Finally, the results of the different classifiers will be depicted.

5.2.1 Smart Home Environment

The experiments described in this section are performed in alaboratory mockup of a living
room environment in a smart home. The environment contains asmall table surrounded by three
armchairs and one couch (Figure5.3 left). Microphone arrays and video cameras are mounted
on all walls in the environment. In this paper we concentrateon the use of a single wide-angle
video camera mounted in a corner of the smart room (Figure5.3right) opposite the couch.
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Figure 5.3: Map of our Smart Room (left), wide-angle camera view shown in gray (right)

The wide-angle camera observes the environment (Figure5.4) with a frame rate between 15
and 20 images per second. A real-time robust tracking systemdetects and tracks targets in the
video images [24, 103].

Figure 5.4: The Smart Room environment as seen by the wide angle camera

5.2.2 Video Tracking System

The video tracking system employs a supervisory controllerto dynamically control the selec-
tion of processing modules and the parameters used for processing (Figure5.5). This system
employs a library of pixel level detection operations to detect and track blobs at video rate.
In our smart environment, adaptive background subtractionis used to detect and track moving
users in the environment. A central supervisor is used to adapt processing parameters so as to
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maintain reliable real-time tracking. Within a detection level targets can be detected by energy
measurements based on background subtraction or intensitynormalized color histograms.

Figure 5.5: Architecture of the robust tracking system

The robust tracking module is a form of Kalman filter [96] operating on the list of current targets.
For each target a search region and a Gaussian mask centered on the most likely position is
determined using a linear prediction from the previous image. A pixel level detection algorithm
is executed with the search region, and the detected pixels are then multiplied by the Gaussian
mask. The first moment of this product provides a new estimatefor the target position, while
the eigenvectors of the second moment provide position orientation and width, and height.

Figure 5.6: Target properties returned by the system

The video tracking system returns a vector of properties foreach video frame. Each vector
contains the position, size and orientation of one target detected and tracked by the system. The
returned properties for each target are top position(x, y) of the bounding ellipse, the radius of
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the first and second axis of the ellipse and the angle describing the orientation of the ellipse
(Figure5.6). Additional features including velocity, speed or energycan also be determined
from the target tracking process.

5.2.3 Individual Role Values

The five elementary roles that we want to recognize in this evaluation are: “walking”, “stand-
ing”, “sitting”, “interaction with table” and “lying” (Figure5.7).

Figure 5.7: Individual roles (from left to right): “walking”, “standing”, “sitting”, “interaction
with table” and “lying”

5.2.4 Data Sets

In order to develop and evaluate the recognition process, werecorded 8 short video sequences in
the environment. During these sequences, one or several individuals played different elementary
roles in the smart room. The number of frames and the number ofdifferent roles played during
the sequences are indicated in Table5.1. The overall distribution of the different roles in the
data sets is depicted in Table5.2.

The roles played by the individuals in the video sequences have been hand labeled for use in
learning and evaluation. The labeling process assigns a role label to each target detected by the
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Sequence No. frames No. Role labels
1 1352 4
2 6186 5
3 4446 5
4 4684 5
5 4027 5
6 4477 5
7 3067 5
8 3147 5
Total 30885 5

Table 5.1: Video sequence recordings

robust tracking system for each frame. The labeler had the possibility of assigning a “no role”
label if a detected target did not appear to play any of the fiveelementary roles. Thus, each of
the 8 data sets contains a list of target properties(x, y, first radius, second radius, angle) and
the associated role label.

Video Sequence Walking (%) Standing (%) Sitting (%) Inter. table (%) Lying (%)
1 0.79 0.03 0.11 0.00 0.08
2 0.14 0.06 0.48 0.24 0.08
3 0.14 0.09 0.40 0.24 0.12
4 0.14 0.08 0.50 0.18 0.10
5 0.17 0.09 0.46 0.18 0.11
6 0.19 0.12 0.42 0.16 0.10
7 0.13 0.12 0.50 0.15 0.11
8 0.15 0.09 0.48 0.19 0.09
Total 0.18 0.09 0.45 0.19 0.10

Table 5.2: Distribution of the different role labels in the data sets

5.2.5 Results

Bayesian classifier, support vector machines and hybrid classifier have been evaluated on the
data sets described in subsection5.2.4. First, we will present the results of the Bayesian classifier
and the support vector machines. We evaluate the recognition of all role values using cross-
validation. Then, the results of the hybrid classifier will be described. Here, we evaluate the
recognition/identification of new role values (classes) excluded from learning. We compare the
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performance of an extended Bayesian classifier, the hybrid classifier and classical SVMs for
this task of identifying unseen role values.

Bayesian Classifier

We evaluated the Bayesian classifier on the video sequence recordings (Table5.1) using 8-fold
cross-validation. Each sequence has been used for testing once, while learning the model with
the 7 remaining sequences. The average classification results can be seen in form of confusion
matrices in Table5.3, Table5.4and Table5.5.

Walking Standing Sitting Inter. table Lying
Walking 0.8015 0.1536 0.033 0.0089 0.003
Standing 0.4809 0.4611 0.0349 0.0217 0.0013
Sitting 0.0704 0.0221 0.7385 0.0833 0.0856

Inter. table 0.0324 0.0257 0.1163 0.8207 0.0049
Lying 0.0006 0.0013 0.1405 0.0005 0.8571

Class TP rate FP rate Precision Recall F-measure
Walking 0.8015 0.0967 0.6889 0.8015 0.7359
Standing 0.4611 0.0476 0.4732 0.4611 0.4474
Sitting 0.7385 0.082 0.8403 0.7385 0.7845

Inter. table 0.8208 0.0605 0.7636 0.8208 0.7827
Lying 0.8571 0.0378 0.7113 0.8571 0.764
Total 0.7358 0.0649 0.6955 0.7358 0.7029

Table 5.3: Confusion matrix and information retrieval statistics for Bayesian classifier with
T = (X, Y )

We evaluated three different target (entity) property setsT . The first set was the positionX, Y

in the image. The results are good (Table5.3) showing that the position in the environment is
discriminating for individual roles. Position is, however, very dependent on environment config-
uration, e.g. couch and chair localization. Therefore, thesecond target set was(1st, 2nd, angle),
which only contains information on the form of the ellipse and not its position. The results (Ta-
ble5.4) are quite similar to those obtained for the position.

The combination of the first and second target property sets(X, Y, angle, 1st, 2nd) gives the
best results (Table5.5). In general, ambiguous roles like “sitting” and “interacting with table”
or in particular “walking” and “standing” are difficult to distinguish for each frame (even for a
human supervisor!), which leads to numerous wrong classifications.

The overall results of the Bayesian classifier can be seen in the left column of Table5.9.
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Walking Standing Sitting Inter. table Lying
Walking 0.8077 0.1552 0.0172 0.0093 0.0105
Standing 0.5403 0.3967 0.0376 0.019 0.0064
Sitting 0.0678 0.024 0.7668 0.1133 0.0281

Inter. table 0.0455 0.0257 0.1329 0.7668 0.0291
Lying 0.0176 0.0086 0.0442 0.0216 0.908

Class TP rate FP rate Precision Recall F-measure
Walking 0.8077 0.1066 0.6781 0.8077 0.7311
Standing 0.3967 0.051 0.4195 0.3967 0.39
Sitting 0.7668 0.0655 0.8603 0.7668 0.8086

Inter. table 0.7667 0.0789 0.7154 0.7667 0.7341
Lying 0.9079 0.0247 0.8202 0.9079 0.8545
Total 0.7292 0.0653 0.6987 0.7292 0.7037

Table 5.4: Confusion matrix and information retrieval statistics for Bayesian classifier with
T = (1st, 2nd, angle)

Walking Standing Sitting Inter. table Lying
Walking 0.9335 0.0499 0.0154 0.0008 0.0004
Standing 0.6759 0.2738 0.0393 0.0106 0.0004
Sitting 0.0882 0.0169 0.7757 0.1046 0.0145

Inter. table 0.014 0.0248 0.154 0.8073 0
Lying 0.0142 0.0051 0.0202 0.0053 0.9553

Class TP rate FP rate Precision Recall F-measure
Walking 0.9336 0.127 0.7019 0.9336 0.7966
Standing 0.2739 0.0231 0.3959 0.2739 0.3156
Sitting 0.7757 0.0679 0.8543 0.7757 0.8109

Inter. table 0.8074 0.0701 0.7304 0.8074 0.7606
Lying 0.9553 0.0044 0.9582 0.9553 0.9561
Total 0.7492 0.0585 0.7281 0.7492 0.7280

Table 5.5: Confusion matrix and information retrieval statistics for Bayesian classifier with
T = (X, Y, 1st, 2nd, angle)

65



Chapter 5. Learning Role Acceptance Tests

Support Vector Machines

Like the Bayesian classifier, the SVMs have been evaluated onthe video sequence recordings
(Table5.1) using 8-fold cross-validation. A radial basis function kernel (see subsection5.1.2)
with C = 11.0 andγ = 11.0 showed good results for our training data. The LIBSVM library
[26] has been used for implementation and evaluation.

Walking Standing Sitting Inter. table Lying
Walking 0.8198 0.0824 0.0732 0.0206 0.004
Standing 0.6035 0.2884 0.0793 0.0288 0
Sitting 0.0293 0.0005 0.8471 0.0593 0.0638

Inter. table 0.0014 0.0014 0.1661 0.8275 0.0036
Lying 0 0 0.1422 0 0.8578

Class TP rate FP rate Precision Recall F-measure
Walking 0.82 0.0813 0.7001 0.82 0.7489
Standing 0.2882 0.025 0.5922 0.2882 0.3333
Sitting 0.8472 0.1198 0.8046 0.8472 0.8183

Inter. table 0.8276 0.0495 0.8101 0.8276 0.811
Lying 0.8579 0.0296 0.7959 0.8579 0.815
Total 0.7282 0.0610 0.7406 0.7282 0.7053

Table 5.6: Confusion matrix and information retrieval statistics for SVMs withT = (X, Y )

Again we evaluated the three different target (entity) property sets T = (X, Y ),
T = (1st, 2nd, angle) andT = (X, Y, 1st, 2nd, angle). As for the Bayesian classifier, the
results for the position (Table5.6) and the form of the ellipse (Table5.7) are quite similar. The
combination of target property sets(X, Y ) and(1st, 2nd, angle) produced best results (Table
5.8). As for Bayesian classifier, the ambiguity of roles, in particular between “walking” and
“standing”, persists, resulting in a reduced precision for“walking” and a poor recall for “stand-
ing”.

The overall classification results of the 8-fold cross-validation for the SVMs are depicted in the
right column of Table5.9. Both SVM and the Bayesian Classification are applied framewise.
That is, the target properties for each frame are used to produce a role label, independent of
values in other frames. Because the SVM is a discriminative method, it optimizes classification
between the given/trained classes, outperforming the Bayesian classifier. However, SVM does
not learn the structure for a given data set, but only bordersand margins between classes. As
a result, with the SVM it is difficult or impossible to reject unseen test data (“garbage”) or to
discover new classes of roles.
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Walking Standing Sitting Inter. table Lying
Walking 0.8522 0.0923 0.0342 0.0145 0.0068
Standing 0.7701 0.0923 0.1091 0.0237 0.0048
Sitting 0.0514 0.0042 0.8536 0.0756 0.0153

Inter. table 0.0083 0.0053 0.2044 0.757 0.025
Lying 0.0071 0.0004 0.0917 0.0181 0.8827

Class TP rate FP rate Precision Recall F-measure
Walking 0.8523 0.1147 0.6732 0.8523 0.7444
Standing 0.0923 0.0271 0.353 0.0923 0.1423
Sitting 0.8536 0.1155 0.8091 0.8536 0.8282

Inter. table 0.7569 0.0555 0.7829 0.7569 0.7624
Lying 0.8827 0.0155 0.8869 0.8827 0.8758
Total 0.6876 0.0657 0.7010 0.6876 0.6706

Table 5.7: Confusion matrix and information retrieval statistics for SVMs with T =
(1st, 2nd, angle)

Walking Standing Sitting Inter. table Lying
Walking 0.8999 0.0849 0.0131 0 0.0022
Standing 0.5438 0.4066 0.0418 0.0069 0.001
Sitting 0.0425 0.008 0.8851 0.0396 0.0248

Inter. table 0.0066 0.0049 0.1346 0.8539 0
Lying 0.0049 0.0005 0.0269 0 0.9676

Class TP rate FP rate Precision Recall F-measure
Walking 0.8999 0.0834 0.7398 0.8999 0.8079
Standing 0.4067 0.0264 0.6086 0.4067 0.4529
Sitting 0.885 0.0628 0.8765 0.885 0.8802

Inter. table 0.854 0.0271 0.8782 0.854 0.8632
Lying 0.9676 0.0054 0.9538 0.9676 0.9583
Total 0.8026 0.0410 0.8114 0.8026 0.7925

Table 5.8: Confusion matrix and information retrieval statistics for SVMs with T =
(X, Y, 1st, 2nd, angle)
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Bayesian Classifier SVMs
X,Y Mean 76.959 78.5537

Std. dev. 4.689 3.9751
1st,2nd,angle Mean 76.9107 78.1124

Std. dev. 3.9349 4.6881
X,Y,1st,2nd,angle Mean 81.5024 86.1033

Std. dev. 1.4583 2.7573

Table 5.9: Overall recognition rates (in percent) for Bayesian classifier and SVMs

Hybrid Classifier

We evaluated the three different classifiers proposed in subsection5.1.3on the video sequence
recordings (Table5.1) using 8-fold cross-validation. In order to test the classifiers on unseen
data, we excluded each class once from the training data sets. This resulted in5 ∗ 8 = 40
test runs. The obtained overall results for the classifiers are depicted in Table5.10. The hybrid
classifier outperforms the extended Bayesian classifier andthe SVMs for the complete data sets.

Ext. Bayesian Classifier Hybrid Classifier SVMs
Mean 75.2157 77.8555 71.0088
Std. dev. 5.4840 6.3881 8.3958

Table 5.10: Overall recognition rates (in percent) for extended Bayesian classifier, hybrid clas-
sifier and SVMs withT = (X, Y, 1st, 2nd, angle)

Table5.11shows the information retrieval statistics of the role classes that have been excluded
from training for the hybrid classifier. These results are identical for the extended Bayesian clas-
sifier because the detection of the unseen classes by the probability values ofP (T ) is common
for both classifiers. As the classical SVMs are not trained todetect the unseen classes, the TP
rate, FP rate, precision, recall and F-measure are zero for SVMs. The detection results for the
unseen activities “standing” and “interacting with table”are mediocre. From an activity point
of view, both classes overlap with more frequent classes (“walking” and “sitting” respectively),
which explains detection errors. A distinct role class like“lying” is, however, very well recog-
nized as unseen. The overall rates indicate that the approach can be used to identify unseen role
classes.
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Class TP rate FP rate Precision Recall F-measure
Walking 0.7374 0.1356 0.6481 0.7374 0.6763
Standing 0.0108 0.001 0.3938 0.0108 0.0208
Sitting 0.7467 0.2677 0.6576 0.7467 0.6713

Inter. table 0.5336 0.1217 0.6845 0.5336 0.5867
Lying 0.8476 0.0631 0.6557 0.8476 0.723
Total 0.5752 0.1178 0.6079 0.5752 0.5356

Table 5.11: Information retrieval statistics of the unseenroles for the hybrid classifier with
T = (X, Y, 1st, 2nd, angle)

5.3 Conclusions

In this chapter, we presented an approach for learning and recognizing individual roles. The
approach is part of a framework for acquiring a high-level context model for human behavior
in augmented environments. Role recognition is the backbone of this framework as roles are
necessary for determining relations between entities, current situation and scenario. The pro-
posed methods for role learning and recognition are a Bayesian classifier and support vector
machines. In order to detect unseen role classes, a hybrid classifier has then been proposed
combining generative Bayesian methods and discriminativeSVMs.

The proposed methods have been tested and evaluated in a smart home environment. A robust
tracking system was used to create and track targets (entities) in wide-angle camera images of
the scene. Bayesian classifier and support vector machines have been applied to the extracted
target properties(X, Y, 1st radius, 2nd radius, angle) in order to learn and detect individual
target role classes “walking”, “standing”, “sitting”, “interacting with table”, “lying”. The eval-
uation of both classifiers on recorded data sets showed good results. Support vector machines
outperformed the Bayesian classifier. In order to detect unseen role classes, the hybrid classifier
has been applied to the recorded data sets. The obtained overall detection results for unseen
classes in the recorded data sets are good. The hybrid classifier outperformed the Bayesian clas-
sifier and the SVMs when identifying unseen roles, showing that the proposed combination of
generative and discriminative methods is beneficial.

Future work may concern an improvement of the recognition rate for roles. A first step is to
integrate additional features into the entity property sets. Taking the example of a target track-
ing system in a smart home environment, position of face and hands, derived by skin color
detector, velocity, speed and background subtraction energy may be prospective candidates. Ve-
locity, speed and energy estimation need also to be added. Wewould like to mention that, in
order to optimize role recognition, it is sometimes useful to reduce the number of classes to
be recognized and to treat some classes “manually”. This is especially the case when a class
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label is badly recognized in an automatic manner (perhaps due to insufficient learning data),
but some entity property values can easily be specified by an engineer in order to detect the
concerned class. For example, an engineer may specify a minimal and a maximal distance from
the center of the table in order to recognize “interacting with table”. Entity properties like speed
may also be specified manually in order to recognize “walking”. The advantage is a reduction
of the amount of learning data that is necessary for a learning algorithm like SVMs in order
to learn correctly all class labels. As the amount of available learning data is normally limited,
a reduction of the number of classes and manual specificationof some “difficult” classes can
largely improve the overall recognition rates. Subsection9.2.2will give an example of such a
manual specification of some class labels.

In the following chapters, we will pass to the next step: learning and recognizing situations.
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Chapter 6

Unsupervised Situation Discovery

This chapter addresses the unsupervised discovery of situations from multimodal observation.
The proposed method constitutes the second layer of the framework for acquiring and evolving
situation models. Multimodal observation generation is based on the entity end role detection
processes (chapter5). The properties associated to each entity and the roles played by these
entities are used to generate multimodal observations for human activity in the scene. We as-
sume here a constant sampling rate for these observations. The objective of situation discovery
is the offline segmentation of the incoming multimodal observation stream. Each segment cor-
responds then to a temporal interval containing the multimodal observations of one situation.
These segments can later serve as input for supervised situation learning.

The unsupervised method proposed in this chapter has been designed and tested in the field
of automatic analysis of small group meetings. Automatic analysis of small group meetings is
an emerging field of research for speech, video and multimodal technologies. In general, the
group and its members are defined in advance. The objective isthen to recognize particular key
actions executed by group members [65] or to analyze the type of meeting in a global man-
ner [23]. However, the detection of dependencies between individuals and their membership in
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one or several groups is not considered. Analyzing large amounts of data from recordings of
interactions enables the reconstruction of social networks for a number of individuals [30]. The
detection and analysis of conversations is then necessary.The automatic detection of conver-
sations using mutual information [11], in order to determine who speaks and when, requires a
significantly long duration for each conversation. Little work has been done on the analysis of
changing small group configuration and activity. Aoki et al.[8] have presented a user study of
a system determining and supporting interaction groups in an audiospace. The system uses a
naive Bayesian classifier to determine the interaction group configuration. However, the focus
of the paper is laid on the user study, no detection results are presented. In [18] (and briefly in
section4.2), a real-time detector for small group configurations of 4 participants has been pro-
posed. The detector takes speech activity events of meetingparticipants as input. The meeting
situations describing the possible group configurations have been defined in advance (Figure
6.1).

Figure 6.1: Situation model describing possible group configurations for a meeting of 4 indi-
viduals A, B, C, D

However, a predefinition of meeting situations (as in [18, 65]) is not always possible in advance,
especially when dealing with an increasing number of participants and informal meetings. Thus
we propose an unsupervised method for detecting small groupmeeting configurations and ac-
tivities from a stream of multimodal observations. This first segmentation can be used as input
for classification and detection of activities. The proposed method detects changes in small
group configuration and activity based on measuring the Jeffrey divergence between adjacent
histograms of observations. In [18], the authors showed that different meeting activities, and
especially different group configurations, have particular distributions of speech activity. This
can be extended to distributions of multimodal observations coming from multi-sensory input.
These distributions are represented by histograms containing the frequency of these observa-
tions. To separate distinct distributions of observations, two adjacent windows are slid from
the beginning to the end of the meeting recording, while constantly calculating the Jeffrey di-
vergence between the histograms generated from the observations within these windows. The
size of the sliding adjacent windows is varied generating several Jeffrey divergence curves. The
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peaks of the resulting curves are detected using successiverobust mean estimation. The detected
peaks are merged and filtered with respect to their height andwindow size. The retained peaks
are finally used to select the best model, i.e. the best allocation of observation distributions for
the given meeting recording.

The method has been tested on observation recordings of 7 meetings. Five speech activity
recordings of short small group meetings with 4 participants, one speech activity recording
of a seminar with 5 participants and a audiovisual observation recording of a cocktail party
meeting with 5 participants. The approach showed promisingresults for all meeting recordings.

6.1 Method

A novel method based on the calculation of the Jeffrey divergence between histograms of ob-
servations is presented. These observations are a discretization of events coming from multi-
sensory input. The observations are generated with a constant sampling rate depending on the
sampling rates of the sensors.

6.1.1 Observation Distributions

In [18], the authors stated that the distribution of the differentspeech activity observations is
discriminating for group configurations in small group meetings. It is further assumed that in
small group meetings distinct group configurations and activities have distinct distributions of
multimodal observations. The objective of the proposed approach is hence to separate these
distinct distributions, in order to identify distinct small meeting configurations and activities.
Because the observations are discrete and unordered (e.g. a1-dimensional discrete code) and
there is no a priori observation distribution, histograms are used to represent observation distri-
butions. A histogram is calculated for an observation window (i.e. the observations between two
distinct time points in the meeting recording) and containsthe frequency of each observation
code within this window.

Jp,q =
∑

x∈X

p(x) · log
p(x)

p(x)+q(x)
2

+ q(x) · log
q(x)

p(x)+q(x)
2

(6.1)

The Jeffrey divergence [76] is a numerically stable and symmetric form of the Kullback-Leibler
divergence between histograms. Equation6.1 indicates the formula to calculate the Jeffrey di-
vergence between two histogramsp andq. The setX contains the bins of the histograms. The
valuep(x) refers to the empirical probability of the observation associated to binx.
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Figure 6.2: Small Group Meeting 5: Jeffrey divergence between histograms of sliding adjacent
windows of 4000, 8000 and 12000 speech activity observations (64sec, 2min 8sec and 3min
12sec)
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The Jeffrey divergence may be used to separate different observation distributions by calculat-
ing the divergence between the histograms of two adjacent observation windows. With this ap-
proach, two adjacent observation windows are slid from the beginning to the end of the recorded
meetings, and the Jeffrey divergence is computed for each position. The result is a divergence
curve of adjacent histograms (Figure6.2).

The peaks of the Jeffrey divergence curve can be used to detect changes in the observation
distribution of a meeting recording. The peaks of the curvesindicate high divergence values,
i.e. a big difference between the adjacent histograms at that time point. The size of the adjacent
windows determines the exactitude of the divergence measurement. The larger the window size,
the less peaks has the curve. However, peaks of larger windowsizes are less precise than those
of smaller window sizes.

As the observations are generated with a fixed sampling rate,an observation window size used
for the calculation of a histogram corresponds to a temporalinterval. Different window sizes
cover thus the detection of activities with different durations. As we do not want to have a
strong a priori concerning the duration of activities and group configurations, we apply our
method to several different window sizes. The choice of these window sizes is fixed by the
minimal duration of the activities that we expect. For smallgroup meetings, we fixed a minimal
duration between 64sec and 4min 16sec, which corresponds toa window size of between 4000
and 16000 audio observations.

6.1.2 Peak Detection

To detect the peaks of the Jeffrey divergence curve, successive robust mean estimation is used.
Robust mean estimation detects the dominant peak of the Jeffrey divergence curve. Successive
robust mean estimation applies the robust mean estimation process several times to the curve in
order to isolate all peaks. In the following, we will first detail the robust mean estimation process
and the associated equations. Then, successive robust meanestimation will be described.

Robust mean estimation has first been used by Qian et al. [77] to locate the center position of a
dominant face in skin color filtered images. The idea is to calculate iteratively a trimmed mean
for the filtered pixels of the image. The trimmed mean converges towards the dominant skin
color blob in the image.
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Figure 6.3: Robust mean estimation process detecting a dominant peak of the Jeffrey divergence
curve

Figure 6.3 describes the robust mean estimation process to detect the dominant peak of the
Jeffrey divergence curve. The first step of robust mean estimation is to calculate global meanµ
and standard deviationσ for the Jeffrey divergence curve using equations6.2and6.3.

µ =
1

Ĵ

tMAX∑

t=tMIN

t · Jh[t−size,t],h[t,t+size] (6.2)

σ =

√√√√ 1

Ĵ

tMAX∑

t=tMIN

(t − µ)2 · Jh[t−size,t],h[t,t+size] (6.3)

Ĵ =

tMAX∑

t=tMIN

Jh[t−size,t],h[t,t+size] (6.4)

Jh[t−size,t],h[t,t+size] refers to the Jeffrey divergence between the adjacent histograms of sizesize
at time pointt. Both equations are normalized by the sum of all Jeffrey divergence values
(equation6.4). In the second and third step, a new trimmed meanµ(k+1) and deviationδ(k+1)
are calculated based on the Jeffrey curve values within the (standard) deviation around the
previous (global) mean. This process is repeated until the trimmed mean converges (Step 4).
The maximum within the last interval is set to be the dominantpeak of the Jeffrey divergence
curve.

To detect all peaks of the Jeffrey divergence curve, the robust mean estimation process is suc-
cessively applied (Figure6.4). After each robust mean estimation, the found dominant peak
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Figure 6.4: Successive robust mean estimation process detecting the peaks of the Jeffrey diver-
gence curve

is erased (Step 2). This process is repeated while the heights of isolated peaks are above the
average height of the curve (Step 3).

6.1.3 Merging and Filtering Peaks from Different Window Sizes

Peak detection is conducted for a fixed histogram window size, i.e. the size of the adjacent
observation windows used for calculating the histograms needs to be specified for the successive
robust mean estimation process (subsection6.1.2).

Peak detection using successive robust mean estimation (subsection6.1.2) is conducted for
Jeffrey curves with different histogram window sizes. The window size refers to the observation
window used for calculating the histograms. Figure6.2shows example Jeffrey curves for three
different observation window sizes. We see that some peaks are detected for several curves,
while others are specific for one particular window size. In order to determine which peaks
to choose for segmenting the multimodal observation recording, we need first to merge peaks
appearing at several window sizes and to filter these peaks locally with respect to their window
size and peak height.

Merging peaks

To merge peaks appearing at several histogram window sizes,we need to calculate the distance
between these peaks. Figure6.5proposes a normalized distance measure between peaks of dif-
ferent window sizes. The (temporal) distance between two peaks is normalized by the minimum
of the involved histogram window sizes. The resulting normalized distance measures the degree
of overlap between the histogram windows.
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Figure 6.5: Normalized distancen_dist between two peaksp∗1, p∗2 of Jeffrey curves with differ-
ent window sizessize1, size2

To merge two peaks, the histogram windows on both sides of thepeaks must overlap, i.e. the
normalized distance must be less than 1.0. The position of the resulting merged peak is deter-
mined by the position of the highest peak that has been merged.

Filtering peaks

The resulting peaks are filtered by measuring peak quality. Relative peak height and number of
votes are introduced as quality measures. The relative peakheight is the Jeffrey curve value of
the peak point normalized by the maximum value of the Jeffreycurve (with the same window
size). A peak needs to have a relative peak height between 0.5and 0.6 to be retained. The
number of votes of a peak is the number of peaks that have been merged to form this peak. A
number of 2 votes are necessary for a peak to be retained.

Merging and filtering operate on the positions and features of the detected peaks, i.e. in a lo-
cal context. In order to determine the best allocation of observation distributions for a given
recording, we need to search for the best combination of the peaks retained by the merging and
filtering process. This global search process is calledmodel selection.

6.1.4 Model Selection

Model selection is a global search process that aims at determining the best allocation of obser-
vation distributions for a given recording. The input is thelist of peaks retained by the merging
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and filtering process. The output is the combination that maximizes the divergence between the
distinct observation distributions of the recording. We assume that the best allocation of obser-
vation distributions corresponds to maximizing the average divergence between the observation
distributions.

To search for the best model for a given recording, all possible peak combinations are examined,
i.e. each peak of the final peak list is both included and excluded to the (final) model. For each
such peak combination, the average Jeffrey divergence of the histograms between the peaks is
calculated. As the goal is to separate best the distinct observation distributions of a recording,
the peak combination that maximizes the average divergencebetween the peak histograms is
accepted as the best model for the given recording.

Figure 6.6: Small Group Meeting 1: Output of the algorithm

Figure 6.6 shows an example output of the model selection algorithm. Part A of the figure
indicates the resulting peaks of the merging and filtering process. Four peaks have been retained,
which means that4 ∗ 4 = 16 possible peak combinations must be examined. Part B lists the
eight best peak combinations (sorted by descending averageJeffrey divergence) that have been
found by the model selection process. Model 0 would have beenselected, corresponding to
a segmentation of the recording at positions17430, 30610 and an average Jeffrey divergence
between the three segments of0.58.

6.2 Evaluation and Results

To evaluate our approach, 5 short small group meetings (subsection6.2.2), one seminar (sub-
section6.2.3) and a cocktail party meeting (subsection6.2.4) have been recorded. The group
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configurations and activities of these meetings have been hand labeled. The result of the pro-
posed approach is the peak combination separating best the activity distributions for each meet-
ing recording. The intervals between the peaks are interpreted as segments of distinct group
configuration and activity. Theasp, aap andQ measures (described in subsection6.2.1) are
used for the evaluation of these segments with regard to the labeled group configurations and
activities.

6.2.1 Segment Quality Measure

The timestamps and durations of the (correct) group configurations and activities have been
hand labeled. As the proposed method is unsupervised, the direct correspondence between de-
tected segments and hand labeled activities cannot be measured (e.g. by using confusion ma-
trices) because the unsupervised segmentation process does not assign any labels to the found
segments.

Figure 6.7: Average segment purity (asp), average activity purity (aap) and the overall criterion
Q
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In order to measure segment quality, we use the three measures proposed by Zhang et al. [101]:
average segment purity (asp), average activity purity (aap) and the overall criterionQ (Figure
6.7). asp, aap andQ measure the quality of the segmentation based on purity of the found
segments and labeled segments. Theasp measures the purity of one segment with regard to the
labeled activities, i.e. theasp indicates how well one segment is limited to only one activity.
Theaap measures the purity of one activity with regard to the detected segments, i.e. theaap

indicates to which extent one labeled activity correspondsto only one detected segment. TheQ

criterion is an overall evaluation criterion combiningasp andaap.

asp, aap and Q values are comprised between0 and 1, where larger values indicate better
quality. In the ideal case (one segment for each labeled activity), asp = aap = 1 andQ = 1.

6.2.2 Short Small Group Meetings

Figure 6.8: Interaction group configurations for the small group meetings of 4 individuals

Five short meetings (duration: between 9 min. 14 sec. and 16 min. 12 sec.) with 4 participants
have been recorded. The speech of each individual was recorded using a lapel microphone. The
use of lapel microphones has been admitted in order to minimize correlation errors of speech
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activity of different individuals, i.e. speech of individual A is detected as speech of individual
B. A real-time speech activity detector [20, 91] generated binary observation values (speaking,
not speaking) for each individual that is recorded. These binary observations were combined to
a 1-dimensional discrete observation code. The generated code comprises2n different values,
wheren is the number of recorded individuals. For the five short meetings with 4 individuals,
the resulting observation code has24 = 16 values comprised between0 and15. The automatic
speech detector has a sampling rate of 62.5 Hz, which corresponds to the generation of one
observation every 16 milliseconds.

The individuals formed different interaction groups during the meetings (Figure6.8). The num-
ber and order of group configurations, i.e. who will speak with whom, was fixed in advance for
the experiments. The timestamps and durations of the group configurations were, however, not
predefined and changed spontaneously. The individuals werefree to move and to discuss any
topic.

Figure6.9shows the labeled group configurations for each small group meeting as well as the
segments detected by the proposed approach. Table6.1indicates theasp, aap andQ values for
each meeting as well as the average of these values for all meetings. Unlike meeting record-
ings 1, 4 and 5, recordings 2 and 3 contain numerous wrong speech activity detections caused
by correlation errors and microphone malfunctions, which explains lowerasp andQ values.
However, the overall results of the proposed approach are very good; the averageQ value is
0.85.

Duration asp aap Q
Meeting 1 9m 14s 0.94 0.93 0.93
Meeting 2 10m 14s 0.68 0.99 0.82
Meeting 3 16m 11s 0.66 0.86 0.75
Meeting 4 14m 47s 0.78 0.91 0.85
Meeting 5 16m 12s 0.93 0.92 0.92

Average 0.80 0.92 0.85

Table 6.1:asp, aap andQ values for the small group meetings
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Figure 6.9: Meeting 1-5: group configurations and their detection
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6.2.3 Seminar

A seminar (duration: 25 min. 2 sec.) with 5 participants has been recorded. As for the small
group meetings, the speech of the participants was recordedusing lapel microphones. The au-
tomatic speech detector provided the speech activity observations (speaking, not speaking) for
each individual. These observations were combined to an observation code with25 different
values comprised between0 and31. The activities during the seminar were “discussion in small
groups” (D1), “presentation” (P), “questions” (Q) and “discussion in small groups” (D2). Fig-
ure 6.10shows the labeled activities for the seminar as well as the segments detected by the
proposed approach. Table6.2 indicates theasp, aap andQ value. The results of the automatic
segmentation are very good; the obtainedQ value is 0.90.

Figure 6.10: Seminar: activities and their detection

Duration asp aap Q
Seminar 25m 2s 0.88 0.91 0.90

Table 6.2:asp, aap andQ values for the seminar
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Figure 6.11: Wide-angle camera image of INRIA Rhône-Alpes entrance hall with three targets
being tracked (above) and the corresponding target positions on the hall map after applying
a homography (below). White rectangles in the camera image (above) indicate the detection
zones used by the visual tracker for creating new targets
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6.2.4 Cocktail Party Meeting

A cocktail party meeting (duration: 30 min. 26 sec.) with 5 participants has been recorded in
the entrance hall of INRIA Rhône-Alpes. The recording was multimodal, including audio and
video information. The speech of the participants was recorded using headset microphones. A
wide-angle camera filmed the scene and a visual tracking system provided targets corresponding
to individuals or small groups (Figure6.11above). Our method has been applied to the audio,
video and audiovisual information of the recording.

The audio of each individual has been recorded using lapel microphones. As for the small group
meetings and the seminar, the audio channels of the different lapel microphones have been
analyzed by a speech activity detector providing binary speech activity observations (speaking,
not speaking) for each individual. These binary values are combined to an audio observation
code (25 = 32 values between 0 and 31) generated every 16 milliseconds.

The visual tracking system [24] is based on background subtraction and creates and tracks tar-
gets based on the video images of the wide-angle camera. The detected targets may correspond
to individuals or small groups. The split and merge of these targets made it difficult to track
small interaction groups directly, in particular when interaction groups are near to each other.
In order to generate visual observation codes, the positions of the targets need to be discretized.
First, the targets tracked by the visual tracking system have been mapped on the hall map using
a homography. A homography defines a relation between two figures, such that to any point in
one figure corresponds one and only one point in the other, andvice versa. Figure6.11below
shows the three points on the hall map corresponding to the three targets currently tracked by the
visual tracking system (Figure6.11above). Then, a multidimensional EM clustering algorithm
[14] has been applied to all target positions on the hall map as well as the angle and the ratio
of first and second axis of the bounding ellipses of all targets. The EM algorithm was initially
run with a high number of possible clusters, while constantly eliminating those with too weak
contribution to the whole model. 27 clusters were identifiedfor the cocktail party recording.
Figure6.12indicates the positions of all targets (red dots on the hall map) as well as the clusters
learned by EM (small blue ellipses on the hall map). Finally,the visual observations are gener-
ated based on the dominant position clusters in the current video frame. The dominant position
clusters are the clusters of the EM model with the highest probability of having generated the
targets in the current video frame. The number of visual observations is limited to the number
of clusters (here: 27). The appearance of a dominant clusterin a video frame is counted as one
observation, thus augmenting the frequency of this clusterin the histograms. The tracking sys-
tem has a frame rate of 16 frames per second, which corresponds to the generation of visual
observation codes every 62.5 milliseconds.

The histograms of the proposed approach are calculated for the audio observations coming from
the speech activity detector as well as for the visual observations coming from the visual tracker.
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Figure 6.12: Cocktail party: positions of all targets on thehall map (red dots) and 27 position
clusters isolated by EM algorithm (small blue ellipses)

The fusion is done by simply summing the Jeffrey divergence values of the audio observation
histograms and the visual observation histograms. Summingthe Jeffrey divergence values of the
histograms from different modalities is an easy and efficient way to fuse multimodal information
because no data conversions or additional fusion calculations are necessary.

The participants formed different interaction groups during the cocktail party meeting. The in-
teraction group configurations were labeled. Figure6.13shows the labeled group configurations
as well as the segments detected by the proposed approach. The approach has been applied to
the speech detector observations (Figure6.13top left), the visual model observations (Figure
6.13 top right), and both the speech detector and the visual modelobservations (Figure6.13
bottom). Table6.3 indicates the correspondingasp, aap andQ values. The results of the audio
segmentation were very good in the beginning of the cocktailparty, but degraded afterwards
due to less regulation in speech contributions of the participants and correlation errors of the
microphones.

Duration asp aap Q
Audio 30m 26s 0.57 0.83 0.70
Video 30m 26s 0.83 0.92 0.87

Audio+Video 30m 26s 0.94 0.94 0.94

Table 6.3:asp, aap andQ values for the cocktail party
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Figure 6.13: Cocktail party: group configurations and theirdetection based on audio, video and
audiovisual data

The results of the visual segmentation are very good becauseof the fact that participants forming
an interaction group tend to separate from other interaction groups in the environment. However,
distinct interaction groups do not always separate in the environment, which leads to detection
errors in the beginning of the meeting. The results of the segmentation of both audio and video
are very good, outperforming the separate segmentations. TheQ value of the video and audio
segmentation is 0.94.
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6.3 Conclusions

This chapter proposed an approach for detecting small groupconfigurations and activities from
multimodal observations. The approach is based on an unsupervised method for segmenting
meeting observations coming from multiple sensors. The Jeffrey divergence between histograms
of meeting activity observations is calculated. The peaks of the Jeffrey divergence curve are
used to separate distinct distributions of meeting activity observations. These distinct distribu-
tions can be interpreted as distinct segments of group configuration and activity. The correspon-
dence between the detected segments and labeled group configurations and activities has been
measured for 7 small group recordings. The obtained resultsare promising, in particular as the
method is completely unsupervised.

The fact that the proposed method is unsupervised is especially advantageous when analyzing
meetings with an increasing number of participants (and thus possible group configurations)
and a priori unknown activities. The method then provides a first segmentation of a meeting,
separating distinct group configurations and activities. These detected segments can be used
as input for learning and recognizing meeting situations and to build up a context model for
a meeting. Additional meeting information will then be necessary to disambiguate all situa-
tions. Head orientation, pointing gestures or interpersonal distances seem to be good indicators.
As described for the cocktail party meeting, the proposed approach can easily be extended to
integrate further meeting information coming from different sensors.
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Chapter 7

Supervised Learning of Situations:
injection of expert knowledge

This chapter addresses the supervised learning of situations. The proposed method constitutes
the third layer of the framework for acquiring and evolving situation models. Supervised Situ-
ation learning is based on the segments extracted by unsupervised situation discovery (chapter
6) for each situation. An expert provides situation labels for each of these segments. The objec-
tive is then to learn a representation for each situation from given segments of observations and
the associated situation labels. The learned situation representations and constructed situation
model can later be adapted according to user feedback.

A situation is a temporal state describing activities and relations of detected entities (persons)
in an augmented environment. Perceptual information from the different sensors in the environ-
ment is associated to the situations. The different situations are connected within a network. A
path in this network describes behavior in the scene. Systemservices to provide can be associ-
ated to the different situations in the network.
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To the best of our knowledge, the research work on situation learning and recognition has just
begun. Most of the existing applications construct the situations manually and apply them to a
specific application in anad hocmanner. There is no systematic methodology. We aim at solving
two fundamental issues: learning and recognizing a situation representation, and learning the
relationship between situations:

Representation of Situation

The input to the situation learning isn sequences of perceptionsPi associated tom situation
labels (m ≤ n). Each sequence corresponds to one situation. Two or more sequences can have
the same situation label. The situation acquisition algorithm produces or learns the situation
representations from the given perception sequences and associated labels. The output will be
the representation of each situation to be used for situation recognition. A supervised learning
methodology will be adopted. The graphical representationillustrating the abstract idea of this
process is shown in Figure7.1. We aim at finding a robust and discriminative representation for
each situation. The difficulty in this process is to define thecriteria to measure the robustness
and discriminative power of the representation. One possible way is to employ Fisher’s criterion
[50].

Figure 7.1: Learning of situations

Recognition of Situation

Once the situation representation algorithm is developed,recognition of situation can be pro-
ceeded. The testing perception sequences will go through situation recognition. The situation in
the testing sequence will be recognized by comparing the situation representation for the testing
sequence and the reference situations.
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Context Understanding: Situation Relationship

Context is represented by a set of relationships between situations. The system needs to be
trained with different categories of context (e.g. based onspatial or temporal relationships [54])
in order to find the most appropriate situation relationships. Once the situations in the testing
sequences have been recognized, the relationships betweenthese situations, and thus context,
can be found.

In the following, we propose a Supervised Situation Acquisition Algorithm taking perception
sequences as input and generating situation representations as output. The proposed generic
algorithm can be used with different learning methods and beapplied to many different appli-
cations. An example application to a video surveillance task is presented and evaluated.

7.1 Method

7.1.1 Supervised Situation Acquisition Algorithm

The objective of the situation acquisition algorithm is to find a representation for each situation
such that this representation is the most discriminative with regard to the given perception se-
quences (entity/role/relation values). Based on the concept of Fisher’s Criterion [50], we would
thus like to determine a representation for each situation such that the ratio of between-situation
distance and within-situation distance is maximized. We have:

• m sequences associated ton situation labels(m ≤ n)

• Each sequence corresponds to one situation

• Two or more sequences can have the same situation label

• Each sequence contains entity/role/relation values, called perceptions,{P1, P2, ..., Pk}

To convert a sequence of perceptions to a situation representation, we introduce the notion of
learnerL: {P1, P2, ..., Pk|k > 0} 7→ situation representationS. The learner incorporates the
learning method taking the perception sequences as input and generating a learned situation
representation as output. As the learning method and the generated situation representation are
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interchangeable, we can distinguish different learner classes corresponding to different learning
methods (e.g. hidden Markov model learners, decision tree learners etc.). An instance of each
learner class, i.e. a learner, corresponds to a particular parameterization of the learning method
(e.g. EM learning a HMM with 5 states). The ratio of between-situation and within-situation
distance is defined for each learner class. A general ratio needs to be defined when comparing
different learner classes (step B of algorithm in Figure7.2). An example of a general ratio is
to calculate for each learner the ratio of the percentage of perceptions correctly classified as
not corresponding to the situation and the percentage of perceptions incorrectly classified as
corresponding to the situation.

Figure 7.2: Generic iterative situation acquisition algorithm

The generic iterative algorithm for acquiring situation representations is designed and shown in
Figure7.2. It consists of an iteration over the available learner classes, which corresponds to the
use and evaluation of different learning methods. The core algorithm contains an optimization
step and a validation step. The optimization step first chooses a learner or a set of successive
learners for each situation label. This choice can be done using exhaustive search over all learn-
ers of the class or following some criteria like gradient descent-based algorithm or information
gain [66] . The chosen learner is applied to the perceptions of the situation label, generating a
situation representation. Once a situation representation is generated for each label, the valida-
tion step calculates the ratio of between-situation and within-situation distance with respect to
the given perceptions and generated situation representations. Optimization and validation step
are repeated until optimal ratio is obtained. Finally, whenapplying several learner classes, the
learner class with the best ratio is chosen. It is important to point out that the proposed situation
acquisition algorithm is general (not like the currentad hocanddomain specificapproaches).
We believe that it can be applied to most, if not all applications.
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7.2 Evaluation and Results

In this section, we want to provide an example application ofthe generic situation acquisition
algorithm and its evaluation. The application addresses learning and recognizing situations for
video surveillance and is mainly based on computer vision input, i.e. data coming from a real-
time tracking system and extracted features. Learning and recognition are conducted per video
sequence. As hidden Markov models are well adapted for learning and representing tempo-
ral observation sequences, we used hidden Markov models forlearning and representing the
situations.

7.2.1 Learning Situations for Video Surveillance

Figure 7.3: Four frames from a CAVIAR video clip

This example shows the application of the situation acquisition to video surveillance. The
CAVIAR video clips [25] are used for evaluation and show different situations (“walking”,
“browsing”, “fighting”, “waiting”, “object left”). Each video is associated with an XML file
describing for each frame the entities with their position,movement, role (“walker”, “browser”,
“none”, “fighter”, “leaving group”, “leaving victim”, “leaving object”) and group information
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(binary value indicating whether an entity is in group relation with other entities). These files
were created manually and used as theground truthof the videos. Figure7.3shows four frames
from one of the CAVIAR video clips where two people are walking, forming a group, fighting
and running/leaving. Their roles are therefore “walker”, “fighter”, “leaving group”, and “leaving
victim”. The “fighting” situation would for example involvethese roles consecutively played by
entities as well as the “group” relation.

Entities and roles provided by theground truthcan be acquired using the methods proposed in
chapter5. In the following, we will focus on the acquisition of the different situations applying
the situation acquisition algorithm scheme. The perceptions consist of the entity, role and group
values provided by the ground truth for the different situation labels.

Figure 7.4: Iterative situation acquisition algorithm using EM learner class

We choose hidden Markov models to represent the situations.The only learner class is thus
the expectation maximization algorithm (EM) for learning hidden Markov model parameters.
The instances of the class are the possible number of states of the HMM to learn. We use the
ratio of perception sequence probability within the correct situation (represented by HMM) and
perception probability outside the correct situation (represented by HMMs of other situations).
The iterative situation acquisition algorithm using EM as learner class is shown in Figure7.4.

To evaluate, we use 114 perception sequences extracted fromthe CAVIAR XML files. We did
a 3-fold cross-validation, using one third of the sequencesfor training and two third of the
sequences for testing. The confusion matrix and information retrieval statistics as well as the
number of states of the HMMs learned for the different situation labels are indicated in Table
7.1. The obtained average error is 6.22 %, with a standard deviation of 2.07 % [21].

The obtained results for situation recognition are better than those for role recognition (see
chapter5). This can be explained by the fact that we assume low-level information (like roles
and relations) to be provided (e.g. by lower-level recognition processes or given ground truth),
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Walking Browsing Fighting Waiting Object left
Walking (3 states) 0.8889 0 0.0635 0.0476 0
Browsing (3 states) 0.1944 0.8056 0 0 0
Fighting (7 states) 0 0 0.9167 0.0833 0
Waiting (7 states) 0.0476 0 0.1429 0.8095 0

Object left (5 states) 0 0 0 0 1

Class TP rate FP rate Precision Recall F-measure
Walking (3 states) 0.8889 0.0692 0.9446 0.8889 0.9147
Browsing (3 states) 0.8056 0 1 0.8056 0.8857
Fighting (7 states) 0.9167 0.0695 0.6127 0.9167 0.7313
Waiting (7 states) 0.8095 0.0444 0.8519 0.8095 0.8194

Object left (5 states) 1 0 1 1 1
Total 0.8841 0.0366 0.8818 0.8841 0.8702

Table 7.1: Confusion matrix and information retrieval statistics of the CAVIAR data sets, with
the number of states of the learned HMMs

which improves situation recognition results considerably. Further, role recognition refers to
the detection of activities of individuals for each frame, while situation recognition refers to
detecting activities of one or more individuals for frame sequences. Of course, recognition per
frame sequence is more discriminative than framewise recognition. However, both recognition
processes are connected and can refer to similar activitieson different levels of elaborateness
(“walking” refers to a role (chapter5) as well as “walking” to a situation(chapter7)).

7.3 Conclusions

In this chapter, we proposed a generic Situation Acquisition Algorithm for supervised learning
of situations. The algorithm takes perception sequences (e.g. entity/role/relation values) as well
as the associated situation labels as input and generates a situation representation for each label.
As the proposed algorithm is a generic schema, the employed learning methods as well as
the discrimination criteria are interchangeable. The proposed algorithm has been applied with
success to a video surveillance task.
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Chapter 8

Adapting to User Preferences

This chapter addresses the adaptation of an initial situation model to user preferences driven
by feedback on executed system services. The proposed method constitutes the last layer of the
framework for acquiring and evolving situation models. Theinitial situation model can either
be predefined by a human engineer or be constructed automatically by the methods proposed in
chapter6 and chapter7. These methods are intended to be used for:

1. segmenting a multimodal observation stream

2. supervised learning of the situations based on extractedobservation segments and expert
feedback

Once an initial situation model has been defined (or learned), the learning process must adapt
the situation model according to given feedback on the system services. As in the chapters
before, we will focus on the adaptation of the situations as well as the situation network and the
associated system services.
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The input to the algorithm is a predefined situation network along with feedback from prior use.
We want to minimize the frequency with which the system offers inappropriate services, while
minimizing disruption. This means that the feedback given to the system is to be minimal to
achieve the wanted changes of system services. We assume that a person, denoted supervisor
in the following, is capable of specifying system services to be executed by the system and that
his feedback is always consistent. The user himself or another person can act as this supervisor.
We distinguish three forms of supervisor feedback:

1. (Re)action correction: the service or (re)action executed by the system is wrong and a
different service must be executed instead. The supervisorgives the different system
(re)action as feedback to the system. This includes the casewhere the supervisor wants
the system to execute a (re)action while the system does not execute anything.

2. (Re)action deletion: the service executed by the system is wrong and no system ser-
vice must be executed instead. The supervisor gives a particular (re)action, the “erase”
(re)action, as feedback to the system.

3. (Re)action preservation: the service executed by the system is correct. The supervisor
does not give any information to the system. As we assume thatthe supervisor is always
consistent, we can interpret the absence of his correctionsor deletions as positive feed-
back for the currently executed system (re)actions.

8.1 Method

Figure8.1shows an overview of the proposed algorithm. The input of thealgorithm is a prede-
fined situation network and feedback given by the supervisor. The supervisor corrects, deletes
or preserves the service executed by the system while actingor observing a user in the envi-
ronment. Each correction, deletion, or preservation generates a training example for the learn-
ing algorithm containing current situation, roles and relations configuration, and the (correct)
service. The differences between the services given in the training examples and the services
provided in the predefined situation network will drive the different steps of the algorithm.

In the first step, the algorithm tries to directly modify the services associated to the situations
using the existing situation network. If serviceA is associated to situationS, and all training
examples indicate that serviceB must be executed instead ofA, thenB is associated toSand the
association betweenA andS is deleted. If successful, the result is an adapted situation network
integrating the supervisor wishes. No situation split is necessary.
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Figure 8.1: Overview of the different steps of the algorithm

In the second step, if the feedback indicates further that the concerned situation is too general,
the algorithm splits the situation into sub-situations. The situation split is executed when the
supervisor perceives several situations (expressed by several disjunctive services in the train-
ing examples) while the predefined situation network only perceives one situation (expressed
by one service). Thus the situation perceived by the predefined situation network may be too
general and the algorithm tries to split it in sub-situations. The observations (e.g. role, relations
configurations) of these sub-situations needs to be determined according to the given training
examples (see Splitting Situations).

Splitting Situations

When splitting situations, a number of training examples indicate different services for one
situation of the predefined situation network. Several sub-situations need to be created for these
services. We must determine the characteristic observations (e.g. characteristic role, relation
configurations) in order to distinguish or detect these sub-situations.

The determination of the characteristic observations of the sub-situations can be seen as classi-
fication problem. The service labels of the training examples can be interpreted as class labels.
For each class, we need to identify the characteristic observations (e.g. characteristic role, rela-
tion configurations) necessary to detect the correspondingsub-situation (Figure8.2above). We
assume that only one situation can be active at a time point (no parallelism) in order to keep
our learning problem manageable. The observation sequenceof the initial situation is then split
into sequential sub-sequences of observations corresponding to the new sub-situations (Figure
8.2 below). The start and end points of these sub-sequences are determined by the time points
of the feedback on system service execution. For example, aninitial situation “working in of-
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Figure 8.2: Splitting situations:Sit1 is split intoSit1a,Sit1b andSit1c; the observation sequence
S1 used for constructing the situation representation ofSit1 is also split

fice” could be split into sub-situations “working on PC”, “reading papers” and “being on the
phone”. The time points for the sub-sequences can be determined by the feedback on the ser-
vices “switch on PC lamp”, “switch on music for reading”, and“switch on phone recorder”.
Then, for each new sub-situation, we can determine or construct a discriminative representation
based on the given observation sequence.

Figure 8.3: Generic iterative situation acquisition algorithm
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The supervised learning scheme (Figure8.3) proposed in chapter7 can again be adopted to
associate observations to the new sub-situations. The learning algorithms used as learner classes
can be exchanged. Possible learner classes include decision tree learners, Bayesian classifiers,
hidden Markov models and others. Note that the situation split and the associated situation
acquisition scheme are a methodology for integrating user preferences. The proposed abstract
methodology has been tested with implementations based on conceptual learning algorithms
(Find-S and Candidate Elimination) and decision tree algorithm ID3 (see section8.2) as well as
hidden Markov models (see chapter9).

8.2 Evaluation and Results

Figure 8.4: Video image of the wide-angle camera of SmartOffice. A white box next to the door
is used for the creation of new targets (entities). One person is currently tracked. Four presence
detection zones (chair, couch, board and table) of the tracking system are indicated

A situation model for office activity within the SmartOffice environment [60] of the PRIMA
group has been manually designed and implemented (Figure8.5). In this environment, entities
are created and tracked by a robust tracking system [24]. The position of the created entities
determines several roles like “comes_in” or “works_on_PC”(Figure8.4). Additional roles are
determined by the login of an entity (person) to a computer inthe environment or specific
appointments marked in the agenda of the logged person. The “not_same_entity_as” relation
is used to distinguish entities in the environment. The services of the system are based on the
control of the Linux music player and the projection of different messages or presentations on
different surfaces in the environment.
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Figure 8.5: Situation model of the SmartOffice environment.Important Situations areS0(empty
room),S1 (newcomer enters SmartOffice),S2 (Person connects/works on PC),S5 (Connected
Person sits on couch) andS8(Presentation in SmartOffice). Additional situations refer to agenda
information like having a scheduled meeting on campus (while working on PCS3, or sitting on
couchS6), or having a meeting in SmartOffice (while working on PCS4, or sitting on couch
S7)

Because our SmartOffice situation model is defined by a finite number of available roles and
relations, the situations within this model can be represented as a fixed-sized vector containing
one 0/1 value for each available role and several 0/1 values for each available relation. The
value 1 means that the corresponding role or relation is valid; the value 0 means that the role or
relation is not valid. As a relation is applied on entities playing roles, it is represented by one
1/0 value for each different role combination it can be applied to. A characteristic role, relation
configuration for one situation may contain blanks (“-”) forthose roles or relations that are not
characteristic for this situation. A training example contains a vector with specific values reflect-
ing the current role, relation configuration (observations) when recording the training example
and the corresponding service (given by the supervisor). For example, a training example based
on roles “comes_in”, “works_on_PC” and relation “not_same_entity_as” would correspond to
a vector of2 + 3 = 5 0/1 values (two role values and2∗(2+1)

2
relation values) and the associated

service given as feedback.

We consider conceptual learning algorithms Find-S ([66, chapter 2.4]) and Candidate Elimi-
nation ([66, chapter 2.5]) as well as decision tree learning method ID3 [78] for learning the
representations of the new sub-situations.

The conceptual learning method Find-S constructs the most specific hypothesis for each service
based on the role, relation configurations (observations) in the given training examples (Figure
8.6). The idea is to start with one training example and then to generalize the values (by putting
“-”) of this example in order to cover all other training examples for the concerned service. The
resulting hypotheses for the created sub-situations oftencontain, however, specific values for
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Figure 8.6: Splitting Situation using Find-S

the existence or non-existence of roles or relations that are not necessary or characteristic. As
a consequence, small variations in the role, relation configuration may not be covered by the
created sub-situations because their hypotheses are too specific.

Figure 8.7: Splitting Situation using Candidate Elimination

To produce more general hypotheses for the sub-situations,we consider the conceptual learn-
ing algorithm Candidate Elimination. This algorithm constructs the most specific and the most
general hypotheses for each service based on the role, relation configurations (observations) in
the given training examples. The most general hypotheses for one service refer to the concepts
(role, relation values) that are shared by all training examples for this service, but not by the
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training examples of all other services. By combining the most general hypotheses for each ser-
vice, we construct the representation, i.e. the role, relation configuration, for the corresponding
sub-situations (Figure8.7).

Both algorithms Find-S and Candidate Elimination have, however, the restriction that they can
only find one conjunctive concept for each service, i.e. if the training examples indicate that a
service is to be executed in two different complementary role, relation configurations, Find-S
and Candidate Elimination will fail to construct several hypotheses (and thus sub-situations)
for this one service. This is due to the fact that neither algorithm can construct disjunctive
hypotheses.

Figure 8.8: Splitting Situation using ID3

We consider decision tree learning method ID3, in order to address the limitation of conceptual
learning methods. The idea is to construct a decision tree that classifies the different services
found in the training examples of the initial situation (Figure8.8). The attributes of this decision
tree are the roles and relation values (0/1 values of the vector). Each leaf of the tree is labeled
with a service (class). The path from the root of the tree to the leaf gives the representation,
i.e. the characteristic role, relation configuration, for the sub-situation to be created for this
(re)action. We can have several leaves with the same service, which corresponds to the creation
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of several sub-situations for this service (disjunctive hypotheses).

The learning algorithms run on data base tables containing arepresentation of the current situa-
tion network and the training examples. A control process programmed in the forward chaining
rule programming environment Jess [56] is used to execute the situation network. This situation
network represented by rules is automatically generated from the data base tables of the learning
algorithms. The supervisor feedback cannot be given while the user is acting in the environment
(i.e. while the control process is running). Thus the control process and the learning algorithms
are run sequentially and not in parallel.

To evaluate our method, two experiments have been executed on the predefined context model
of the SmartOffice environment (Figure8.5). The experiments have the same goal concern-
ing the evolution of the system services. The supervisor gives feedback based on these goals
during the experiments. As we focus on the correct executionof the system services, we do a
cross-validation by adapting the predefined situation network using the supervisor feedback of
the first experiment and by evaluating the second experimenton the adapted situation network
(and inverse). The evaluation is done on the number of correctly classified training examples,
i.e. correctly executed services, as well as on the review ofthe adaptations of the predefined
situation network.

Figure 8.9: Structural adaptations performed on the predefined situation model of the SmartOf-
fice environment by the method. SituationsS1andS5have been split into sub-situations

The goal of both experiments was to integrate the correct turn-on and turn-off of the Linux
music player depending on the activities (=roles, relations) of the user. The music player should
be switched on when a newcomer sits on the couch to have a rest,and switched off when
the newcomer starts speaking or leaves the couch (concernedsituation:S1). The music player
should similarly be switched on and off for a connected person (concerned situation:S5). Figure
8.9shows the adaptations of the two concerned situations afterthe integration of the supervisor
feedback.S1 has been split into additional sub-situations integratingsitting down on couch
(S11), speaking on couch (S12) and leaving couch (S10). S13is the sub-situation to which the
initial service ofS1is associated. The additional sub-situations ofS5integrate leaving the couch
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(S50), sitting down on the couch (S51) and speaking on couch (S52).

A0 A8 A9
A0 0.6014 0.1884 0.2101
A8 0.25 0.75 0
A9 0.25 0 0.75

Class TP rate FP rate Precision Recall F-measure
A0 0.6014 0.25 0.8704 0.6014 0.65
A8 0.75 0.0876 0.75 0.75 0.7286
A9 0.75 0.1178 0.7333 0.75 0.7302

Total 0.7005 0.1518 0.7846 0.7005 0.7029

Table 8.1: Confusion matrix and information retrieval statistics for Find-S

A0 A8 A9
A0 0.6232 0.1884 0.1884
A8 0.5 0.5 0
A9 0.625 0 0.375

Class TP rate FP rate Precision Recall F-measure
A0 0.6232 0.5714 0.4637 0.6232 0.5317
A8 0.5 0.0876 0.6667 0.5 0.5556
A9 0.375 0.1006 0.6667 0.375 0.4675

Total 0.4994 0.2532 0.5990 0.4994 0.5183

Table 8.2: Confusion matrix and information retrieval statistics for Candidate Elimination

A0 A8 A9
A0 0.5985 0.1894 0.2121
A8 0 1 0
A9 0 0 1

Class TP rate FP rate Precision Recall F-measure
A0 0.5985 0 1 0.5985 0.7134
A8 1 0.0881 0.8036 1 0.8901
A9 1 0.119 0.8 1 0.8889

Total 0.8662 0.0690 0.8679 0.8662 0.8308

Table 8.3: Confusion matrix and information retrieval statistics for decision tree algorithm ID3

Table8.3, 8.2and8.1show the results of the service execution in the form of confusion matrices
and information retrieval statistics (A8 switches on the music player, A9 switches off the music

108



8.3. Conclusions

player, and A0 is the “do nothing” (re)action). In all experiments, the structural adaptation of the
situation network corresponds to the expected changes. Concerning the correct classification of
the training examples, i.e. the correct execution of the services, the decision tree algorithm (ID3)
gives the best results. The improved results of decision tree approach are due to the fact that
this algorithm supports disjunctive hypotheses. However,the decision tree algorithm tends to
construct too general hypotheses for the sub-situations, which can lead to several inappropriate
classifications. This is due to the fact that the decision tree algorithm prefers small trees to
large trees, which means that general hypotheses are preferred to specific hypotheses for the
sub-situations.

8.3 Conclusions

The method proposed in this chapter illustrates how a predefined (or learned) situation model
can be evolved from user side by giving feedback on system service execution. The method
relies on the situation split that creates sub-situations for a given initial situation. The mo-
ment for the split and the number of necessary sub-situations are determined by the feedback
given on system service execution. The generic situation acquisition algorithm can be used to
learn the representations of the created sub-situations. The proposed method has been tested
in an augmented office environment using Find-S, Candidate Elimination and ID3 as learning
algorithms. An expert modeled the augmented office as a situation network. This network is
adapted according to feedback given by a supervisor. The results obtained for the test cases
and employed learning algorithms are good, showing that theadaptation of a given situation
model with feedback is possible. The system services desired by the human supervisor have
been correctly integrated into the situation network structure. However, the precision of service
execution for the created sub-situations is still not high enough in order to be acceptable to
normal users.

Given feedback is sometimes not sufficient to decide which adaptation must be done to the
situation network. Two different adaptations can cover thesame (optimal) number of training
examples (ambiguity of feedback). The two corresponding situation networks will, however,
not have the same meaning for the user/supervisor. A possible solution is the extension of the
learning to an interactive process. The learning system will verify ambiguous choices by asking
the supervisor and the supervisor can intervene and correctwhen decisions of the learning
system are wrong. However, one major drawback of the proposed method is that we assume
that supervisor feedback is (more or less) consistent, which is not always the case in reality.
Probabilistic or fuzzy learning algorithms can help to alleviate this drawback.
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Chapter 9

Integration and Experimental Evaluation

In this chapter, we will propose an integration of the methods described in the precedent chapters
into a whole system for an intelligent home environment. This system is to build up automati-
cally and to evolve a situation model for human behavior in the scene. An initial situation model
for the behavior in the scene in constructed using the segmentation of basic situations (chap-
ter 6) and the supervised learning of situation labels (chapter7). The resulting initial situation
model is then evolved according to user preferences using feedback (chapter8). In the follow-
ing, we will first motivate the vision of a system for an intelligent home by a short example
(section9.1). Then, we will describe our current implementation comprising 3D tracking, role
detection and observation generation (section9.2). Finally, the conducted evaluations as well as
the obtained results are described.

9.1 Motivation: Bob’s dream...

Bob is dreaming of a new intelligent home. The new home provides services to make Bob’s
life easier and more convenient. Bob hopes to reduce all thattechnical stuff that he needs to
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switch on/off, regulate, configure, etc. His ideal environment should provide entertainment and
communication services with little or no configuration, adapting according to his preferences
with a minimum of disruption and feedback. Bob should only need to indicate which service he
wants and the system should adapt accordingly.

Figure 9.1: Bob’s dream: an intelligent home anticipating his needs and wishes

For instance, Bob enjoys jazz music when he is eating on the couch, but he does not want to
be disturbed when eating with his girlfriend (Figure9.1). Bob is willing to give feedback for
learning to the system by giving specific voice commands in the environment or even, if needed,
by clicking on services to provide on his PDA.

To satisfy Bob, the environment needs to be equipped with visual and acoustic sensors. For
example, video cameras and a video tracking system and microphone array with speech detec-
tion and recognition can provide basic information about Bob’s current location and activity.
Of course, hand crafting of detection routines is not sufficient for Bob’s dream as he wants the
system to evolve, constantly adapting to his preferences. Thus a general model of the environ-
ment needs to be designed and then adapted according to Bob’sremarks. The situation model
has proved to be very useful for this task, being applied to various problems and domains ([19]
and chapter4).

A situation is a temporal state describing activities and relations of detected entities (persons)
in the environment. Perceptual information from the different sensors in the environment is
associated to the situations. The different situations areconnected within a network. A path in
this network describes behavior in the scene. System services to provide are associated to the
different situations in the network.

In order to build a situation model for Bob’s home, we start with an initial model describing
Bob’s very basic behavior. This model can be seen as default configuration of the system for
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Figure 9.2: Initial situation model for Bob’s home

the environment, being general and providing little detail. Figure9.2shows an example of such
a default situation model for Bob’s home. Normally, an expert constructs these models when
setting up the system within environment. However, expert hours are expensive for Bob. So an
expert should at least be aided by automatic processes.

Figure 9.3: Overview of the process of creating an initial situation model

The schema of the process of creating an initial situation model is depicted in Figure9.3. Given
recorded sensor recordings of Bob’s activity in the environment, the automatic extraction of
situations (chapter6) provides a first segmentation of sensor signals. We exploitthe addition
of human expertise only for providing the situation labels for the obtained segmentation. A su-
pervised learning scheme (chapter7) is used to associate the situation labels with the recorded
perceptions.The outputs of the supervised situation learning scheme are the situation represen-
tations for the initial situation network. The connectionsbetween the situations are constructed
by considering the recorded sensor perceptions and existing transitions between the detected
situations.

The initial situation model is, however, simple, with insufficient detail about Bob’s preferences.
General situations, such as “Bob sitting on couch”, must be refined to obtain sub-situations
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incorporating the preferred system services. A possible adapted situation model could look like
in Figure9.4.

Figure 9.4: Adapted situation model for Bob’s home

“Sitting on couch” has been split into “Sitting on couch -alone-” and “Sitting on couch -with
others-”. Sensor perceptions need to be associated to the new sub-situations. Bob is, however,
not interested in recruiting a system engineer implementing the new sub-situations. This refin-
ing process, and in particular the association of sensor perceptions to the new sub-situations,
should hence be as automatic as possible. The new sub-situations need thus to be learned from
recorded sensor perceptions as well as Bob’s given feedback(via his voice or PDA) using ma-
chine learning methods. The schema of the adaptation process can be seen in Figure9.5. Bob’s
feedback and the initial situation network are the input; the output is the adapted situation net-
work. The situation split proposed in chapter8 can be adopted to refine and learn the new
sub-situations. Once the sub-situations are learned, theyare inserted into the whole network by
eliminating conflicts and erasing obsolete situations. Theresult is an adapted situation network
with new sub-situations integrating Bob’s preferences.

Figure 9.5: Overview of the process of integrating user feedback into the initial situation model
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9.2 Implementation and Experimental Evaluation

In this section, we describe our current implementation as well as evaluation and obtained re-
sults. The implementation is based on a 3D tracking system that creates and tracks targets in
our smart home environment. The extracted target are used todetect individual roles per entity
(subsection9.2.2). Using the role values of several entities, observations are generated (subsec-
tion 9.2.3) that are the input for unsupervised situation extraction.The results of the extraction
are used for supervised situation learning. The learned situation model is then the basis for
the integration of user preferences, i.e. associating and changing services. We did 2 different
evaluations (Figure9.6).

Figure 9.6: Different parts of the implementation and theirevaluation: role detection per entity
(chapter5), unsupervised situation extraction (chapter6), supervised situation learning (chapter
7) and integration of user preferences (chapter8)

The aim of Evaluation A was to show the benefit of automatic situation extraction and multi-
person observation fusion for situation recognition. Therefore, we recorded several small sce-
narios showing different situations like “presentation” or “siesta”. The recordings have been
segmented using the method of chapter6 and multi-person observations of situations have been
fused. We evaluate the recognition of the situations in the scenarios with and without auto-
matic presegmention/multi-person observations as input for supervised situation learning. The
aim of Evaluation B was to show and validate the combination of the three methods: unsuper-
vised situation extraction (chapter6), supervised situation learning (chapter7) and integration
of user preferences (chapter8). Therefore, we recorded 3 (longer) scenarios showing several
situations like “aperitif”, “playing game” or “presentation”. The recordings have first been au-
tomatically segmented. Then, the extracted segments have been labeled and the situations have
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been learned. Finally, the learned situation model has beenevolved with user feedback. We
evaluate the recognition of the labeled as well as the added situation (via situation split).

9.2.1 Smart Home Environment: 3D tracker and head set microphones

The experiments described in the following sections are again performed in our laboratory
mockup of a living room environment in a smart home (Figure5.3, subsection5.2.1). We use
the wide-angle camera plus two other normal cameras mountedin the corners of the smart room
as well as the microphone arrays and head sets.

A 3D video tracking system [15] detects and tracks entities (people) in the scene in real-time
using multiple cameras (Figure9.7). The tracker itself is an instance of basic Bayesian reasoning
[13]. The 3D position of each target is calculated by combining tracking results from several
2D trackers [24] running on the video images of each camera. Each couple camera-detector is
running on a dedicated processor. All interprocess communication is managed with an object
oriented middleware for service connection [46].

Figure 9.7: 3D video tracking system fusing information of 32D trackers to a 3D representation

The output of the 3D tracker are the position(x, y, z) of each detected target as well as the
corresponding covariance matrix (3x3 matrix describing the form of the bounding ellipsoid of
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the target). Additionally, a velocity vector
→

v can be calculated for each target.

The 3D video tracking system provides high tracking stability. The generated 3D target posi-
tions correspond to real positions in the environment that can be compared to the position of
objects. The extracted target properties (covariance matrix, velocity) provided by the 3D tracker
are independent of the camera positions (after calibration). Further, tracking is robust against
occlusions and against split and merge of targets.

The microphone array mounted against the wall of the smart environment is used for noise
detection. Based on the energy of the audio streams, we determine whether there is noise in the
environment or not (e.g. movement of objects on the table).

The people taking part in our experiments wear head set microphones. A real-time speech ac-
tivity detector [20, 91] analyses the audio stream of each head set microphone and determines
whether the corresponding person speaks or not.

The association of the audio streams (microphone number) tothe corresponding entity (target)
generated by the 3D tracker is done at the beginning of each recording by a supervisor.

Ambient sound, speech detection and 3D tracking are synchronized. As the audio events have
a much higher frame rate (62.5 Hz) than video (up to 25 Hz), we add sound events (no sound,
speech, noise) to each video frame (of each entity).

9.2.2 Role Detection per Entity

Role detection is conducted per entity and for each observation frame. The input are the ex-
tracted properties of each target (position(x, y, z), covariance matrix (3x3 matrix) and speed
|

→

v |) provided by the 3D tracking system. The output is one of the role labels (Figure9.11,
codes 1-13).

Figure 9.8: Role detection process: SVMs (left), Target Speed (middle), Distance to Interaction
Object (right)
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The role detection process consists of 3 parts (Figure9.8). The first part is similar to the SVM
method described in chapter5. This first approach used SVMs as a black box learning method,
without considering specific target properties. From first results obtained in our smart home
environment, we concluded that, in order to optimize role recognition, we need to reduce the
number of classes as well as the target properties used for classification (see also section5.3).
Additional classes are determined by using specific target properties (speed, interaction dis-
tance) and expert knowledge (parts 2 and 3 of our approach).

Figure 9.9: Basic individual roles “standing”, “lying” and“sitting” detected by the SVMs

The first part of the process (Figure9.8 left) takes the covariance matrix values of each target
as input. Trained SVMs detect, based on these covariance values, the basic individual roles
“sitting”, “standing” and “lying“ (Figure9.9). As we limit our implementation to a fixed number
of role values, we only use SVMs and no hybrid classifier (chapter5).

The second part of the process (Figure9.8 middle) uses the speed value|
→

v | of each target.
Based on empirical values in our smart environment, we can then determine whether the speed
of the target iszero, low, medium or high.

The third part of the process (Figure9.8 right) uses the position(x, y, z) of each target to
calculate the distance to an interaction object. In our smart environment, we are interested in
the interaction with a table at a known position (white tablein Figure5.4). So we calculate the
distanced between the target and the table in the environment. If this distance is approaching
zero (or below zero), the target is interacting with the table.

The results of the different parts of the detection process are combined to roles following the
schema in Figure9.10.

9.2.3 Multimodal Observation Generation

Based on role detection results as well as the ambient sound and speech detection, we derive
multimodal observation codes for each entity created and tracked by the 3D tracking system.
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Figure 9.10: Schema describing the combination of basic individual role, speed and distance
values to roles (blue arrows refer to ”no interaction distance with table“, red arrows refer to
”interaction distance with table“)

0 : entity does not exist
1 : standing immobile
2 : standing and interacting with table
3 : standing and gesturing
4 : standing and interacting with table (in movement)
5 : walking
6 : sitting
7 : sitting and interacting with table
8 : sitting and gesturing
9 : sitting and interacting with table (in movement)
10 : changing position while sitting
11 : lying
12 : lying and gesturing
13 : detection error

14-26 : entity is speaking
27-39 : there is noise in the environment
40-52 : entity is speaking and there is noise

Figure 9.11: Multimodal entity observation codes
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12 individual role values (Figure9.10) are derived for each entity by the role detection process.
Further, the ambient sound detector indicates whether there is noise in the environment or not.
The speech activity detector determines whether the concerned entity is speaking or not. This
multimodal information is fused to 53 observation codes foreach entity (Figure9.11). Codes
1-13 (13 codes) are based on the role detection process. These 13 codes are combined with
ambient sound detection (codes 27-39 and 40-52) and speech detection per entity (codes 14-26
and 40-52). As ambient sound and speech detection return binary values,22 ∗ 13 = 52 different
code values are necessary to represent role, ambient sound and speech detection. If we add an
observation code value for a non-existing entity (code 0), we get53 different observation code
values.

Fusion algorithm

Input: (a, b), 0 ≤ a, b ≤ maxcode

Step 1: if (a > b) {exchange(a, b)},

Step 2:code =
∑

a−1

i=0
{(maxcode+1)−i}+(b−a).

Figure 9.12: Fusion algorithm combining the role detectionvalues(a, b) of two entities. For
maxcode = 52, the resulting codes are between 0 and 1430

As we can have several persons involved in a situation, we need to fuse the multimodal codes
of several entities. We could simply combine the multimodalentity detection codes (for two
entities:53 ∗ 53 = 2809 codes). However, the result is a high number of possible observation
values. Further, as we are interested in situation recognition, many of these values are redundant.
For example, person A is lying and person B is sitting is a different observation code as person
A is sitting and person B is lying, even though, from the perspective of activity recognition, the
situation is identical. Therefore, we employ the small fusion algorithm shown in Figure9.12.
The idea is to attribute a code to the combination of two multimodal entity observation codes
(without considering their order). The resulting observation code fuses the observation codes
of two (or more) entities. In order to fuse the observation codes of more than two entities, the
fusion algorithm can be applied several times, fusing successively all entities.

We would like to mention that the fact that multimodal observation code 0 (Figure9.11) cor-
responds to the non-existence of the entity implies that a generated multi-person code (Figure
9.12) contains all generated lower codes. That is, if we generate, for example, a two person code
for only one entity, the resulting code and the observation code of the entity are identical. This
enables, for example, the comparison of one-person and multi-person observation codes.
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9.2.4 Evaluation A

Figure 9.13: One person situations ”individual work“ and ”siesta“ (left side) and multi-person
situations ”introduction“, ”aperitif“, ”presentation“ and ”game“

In this subsection, we aim at showing the benefit of automaticpresegmentation and multi-person
observation fusion for situation learning and recognition. Therefore, we made three different
recordings of each of the following situations: ”siesta“, ”an individual working“, ”aperitif“, ”in-
troduction/address of welcome“, ”presentation“, and ”playing a game“. ”Introduction/address
of welcome“, ”aperitif“, ”presentation“ and ”playing a game“ involved two persons, while
”siesta“ and ”individual work“ concerned only one person. The role detection values have been
generated as described in subsection9.2.2. The sequences designated for learning are preseg-
mented (see method chapter6), i.e. only the segment containing the pure situation is used for
learning. This means that, for recordings containing only one situation, disturbances at the be-
ginning and at the end of the recording are automatically removed (see Figure9.14 for an
example). The supervised learning scheme (chapter7) is then used for learning the situation
representations from the sequences. We adopt hidden Markovmodels as unique learner class,
iterating over left-right hidden Markov models of state numbers between 8 and 16 (=parameters
of the class).

First, we did an evaluation on the situation detection for one person only (role detection value
between 0 and 52). Situation recordings involving 2 people gave thus two one-person sequences.
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Figure 9.14: Extracted segments for situation recordings ”Aperitif 1”, ”Aperitif 2”, ”Aperitif
3”. Segments at the beginning and at the end of the recordingswill be removed automatically

We did a 3-fold cross-validation, taking two third of the sequences as input for supervised
learning and the remaining third of the sequences as basis for recognition. Table9.1and Table
9.3 show the results. The presegmentation improves the recognition results for the one-person
recording sequences. In particular, ”aperitif“ and ”game“can correctly be distinguished, while
some wrong detections between ”introduction“ and ”presenter“ persist.

Additionally, we did an evaluation on the situation detection for two-person situations. There-
fore, we use the fusion algorithm proposed in subsection9.2.3, generating the multi-person
observation codes. We did again a 3-fold cross-validation on the situation recognition after su-
pervised situation learning of the given observation sequences. Table9.2and Table9.4show the
results. The presegmentation also improves the recognition results for the two-person record-
ings. As for the one-person situation detection, situations ”aperitif“ and ”game” can correctly
be distinguished with presegmentation. The two-person observation fusion further eliminates
wrong detections between “aperitif” and “game”, resultingin a correct situation recognition
rate of 100 % (Table9.4). The obtained results indicate that presegmentation and the fusion of
individual role detection codes is beneficial when learningand recognizing situations involving
several persons.
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Siesta Individual Work. Aperitif Introduc. Presenter GameAudience
Siesta 1 0 0 0 0 0 0

Individual Work. 0 1 0 0 0 0 0
Aperitif 0 0 0.8333 0 0 0.1667 0
Introduc. 0 0 0 0.8333 0.1667 0 0
Presenter 0 0 0 0 1 0 0

Game 0 0 0 0 0 1 0
Audience 0 0 0 0 0 0 1

Class TP rate FP rate Precision Recall F-measure
Siesta 1 0 1 1 1

Individual Work. 1 0 1 1 1
Aperitif 0.8333 0 1 0.8333 0.8889
Introduc. 0.8333 0 1 0.8333 0.8889
Presenter 1 0.037 0.8333 1 0.8889

Game 1 0.0417 0.8889 1 0.9333
Audience 1 0 1 1 1

Total 0.9524 0.0112 0.9603 0.9524 0.9429

Table 9.1: Confusion matrix and information retrieval statistics for one-person situation detec-
tion without presegmentation. The total recognition rate is 93.33 %

Aperitif Introduc. Presentation Game
Aperitif 0.6667 0 0.3333 0
Introduc. 0 1 0 0

Presentation 0 0 1 0
Game 0 0 0 1

Class TP rate FP rate Precision Recall F-measure
Aperitif 0.6667 0 0.6667 0.6667 0.6667
Introduc. 1 0 1 1 1

Presentation 1 0.1111 0.8333 1 0.8889
Game 1 0 1 1 1
Total 0.9167 0.0278 0.875 0.9167 0.8889

Table 9.2: Confusion matrix and information retrieval statistics for two-person situation detec-
tion without presegmentation. The total recognition rate is 91.67 %
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Siesta Individual Work Aperitif Introduc. Presenter Game Audience
Siesta 1 0 0 0 0 0 0

Individual Work. 0 1 0 0 0 0 0
Aperitif 0 0 1 0 0 0 0
Introduc. 0 0 0 0.8333 0.1667 0 0
Presenter 0 0 0 0 1 0 0

Game 0 0 0 0 0 1 0
Audience 0 0 0 0 0 0 1

Class TP rate FP rate Precision Recall F-measure
Siesta 1 0 1 1 1

Individual Work. 1 0 1 1 1
Aperitif 1 0 1 1 1
Introduc. 0.8333 0 1 0.8333 0.8889
Presenter 1 0.037 0.8333 1 0.8889

Game 1 0 1 1 1
Audience 1 0 1 1 1

Total 0.9762 0.0053 0.9762 0.9762 0.9683

Table 9.3: Confusion matrix and information retrieval statistics for one-person situation detec-
tion with presegmentation. The total recognition rate is 96.67 %

Aperitif Introduc. Presentation Game
Aperitif 1 0 0 0
Introduc. 0 1 0 0

Presentation 0 0 1 0
Game 0 0 0 1

Class TP rate FP rate Precision Recall F-measure
Aperitif 1 0 1 1 1
Introduc. 1 0 1 1 1

Presentation 1 0 1 1 1
Game 1 0 1 1 1
Total 1 0 1 1 1

Table 9.4: Confusion matrix and information retrieval statistics for two-person situation detec-
tion with presegmentation. The total recognition rate is 100 %
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9.2.5 Evaluation B

In this subsection, we intend to show and validate the combination of the three methods: un-
supervised situation extraction (chapter6), supervised situation learning (chapter7) and in-
tegration of user preferences (chapter8). Therefore, we evaluated the integral approach on 3
scenarios recorded in our smart home environment. The scenarios involved up to 2 persons
doing different activities (situations: “introduction/address of welcome”, “presentation”, “aper-
itif”, “playing a game”, “siesta”{1 person}) in the environment. The role detection values have
been generated as described in subsection9.2.2using 3D tracker as well as noise and speech
detection (head set microphones). The role detection values have then been fused to observation
codes as described in subsection9.2.3.

Figure 9.15: Extracted situation segments and the correspondingground truthfor scenario 1 (Q
= 0.68), scenario 2 (Q = 0.95), scenario 3 (Q = 0.74)

The first step of our proposed approach is to create the initial situation model. We extract the
situations from the sensor perceptions, i.e. the observations generated for the targets in the
scene using our automatic segmentor (chapter6). The automatically extracted segments and the
ground truthfor the scenarios are depicted in Figure9.15. The overall segmentation exactitude
Q (subsection6.2.1) is best for scenario 2. This can be explained by the fact thatthe algorithm
has difficulties to distinguish ground truth segments “game” and “aperitif”. In scenario 1 and
scenario 3, “game” and “aperitif” are detected as one segment. Because in scenario 2, “playing
game” and “aperitif” are separated by “presentation”, these segments can be correctly detected.
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Figure 9.16: Recognition rate of situations “introduction”, “presentation”, “group activity”
(=“aperitif” or “game”) and “siesta” for different recognition window sizes

The supervised learning scheme (chapter7) is applied on the detected segments. As expert
knowledge, we inject the situation labels: “introduction”, “presentation”, “group activity” (=“aper-
itif” or “game”), “siesta”. We will adopt hidden Markov models as unique learner class, iterating
over left-right hidden Markov models of state numbers between 8 and 16 (=parameters of the
class). To evaluate, we did 3-fold cross-validation, taking the detected segments + expert labels
of 2 scenarios as input for learning and the third scenario asbasis for recognition. As our system
should be as responsive as possible, we evaluated differentwindow sizes used for recognition.
The obtained situation recognition rates are depicted in Figure9.16. If we limit the observation
time provided for recognition to 10 seconds (i.e. 250 frame with a frame rate of 25 frames/sec),
we get a recognition rate of 88.58 % (Table9.5). The recognition rate of “siesta” is poor due
to the fact that in two of the three scenario recordings wrongtargets have been created and
detected when a person lay down on the couch, resulting in a disturbance of the existing target
properties.

We have now learned an initial situation model with the situations “introduction”, “group activ-
ity”, “presentation” and “siesta”. In order to integrate user preferences into this model, a user
can give feedback to our system. The feedback is recorded andassociated to the particular frame
when it has been given. The initially learned model is then adapted according to this feedback
(chapter8). For our scenarios, we want to integrate the following services:

• S1: Introduction⇒ normal light and no music
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Introduction Group Activity Presentation Siesta
Introduction 0.9766 0 0 0.0234

Group Activity 0 1 0 0
Presentation 0.032 0.027 0.8372 0.1037

Siesta 0.224 0.0093 0.3204 0.4463

Class TP rate FP rate Precision Recall F-measure
Introduction 0.9766 0.0552 0.6362 0.9766 0.7073

Group Activity 1 0.0154 0.9871 1 0.9934
Presentation 0.8372 0.0159 0.958 0.8372 0.8848

Siesta 0.4463 0.0392 0.8064 0.4463 0.4426
Total 0.815 0.0314 0.8469 0.815 0.757

Table 9.5: Confusion matrix and information retrieval statistics for each situation (observation
window size=250). The overall situation recognition rate is 88.58 %

• S2: Aperitif⇒ dimmed light and jazz music

• S3: Game⇒ normal light and pop music

• S4: Presentation⇒ dimmed light and no music

• S5: Siesta⇒ dimmed light and yoga music

The user gives one feedback indicating the corresponding service during each situation. As
the initial situation model does not contain any situation-service associations, S1, S4 and S5
can then be simply associated to the corresponding situations. For S2 and S3, there is only
one situation “group activity” which is too general in orderto associate both distinct services.
This situation needs thus to be split into sub-situations. The learned situation representation
for “group activity” (here: a HMM) is erased and two distinctsituation representations (here:
HMMs) for “aperitif” and “game” are learned. The observations necessary to learn these sit-
uations are taken around the time points when the user gave the corresponding feedback. The
size of the observation window used for learning the new sub-situations can be varied. The
situation recognition rates for different learning windowsizes are depicted in Figure9.17. We
evaluated three different window sizes used for recognition (250, 500 and 1000 observations),
corresponding to the three indicated curves. The larger therecognition window size, the bet-
ter the total situation recognition rate. Thus recognitionrates for window size 1000 are higher
than for window sizes 250 and 500. However, the curves indicate that a larger learning window
size does not always result in a better recognition rate. Thetotal situation recognition rate can
even drop with a larger learning window size. This is due to the fact that the best recognition
results are obtained when the learning window contains a maximum of observation data being
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characteristic for the concerned situation and a minimum of“foreign“ observations, i.e. wrong
detections or observations corresponding to other situations. The resulting situation recognition
curve tends upwards, but it contains local peaks corresponding to a learning window size with
a good tradeoff between characteristic and foreign observations. For our scenario recordings,
such a local peak is at a learning window size of 400, i.e. 400 observations around the feedback
time points to learn “aperitif” and “game”. The obtained results of the 3-fold cross validation
for recognition window sizes 250, 500 and 1000 are detailed in Tables9.6, 9.7and9.8.

Figure 9.17: Recognition rate of situations “introduction”, “presentation”, “aperitif”, “game”
(after split) and “siesta” for different learning window sizes. The three curves are for 250, 500
and 1000 observations (recognition window size)
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Introduction Aperitif Game Presentation Siesta
Introduction 0.9743 0 0 0 0.0257

Aperitif 0 0.697 0.2985 0 0.0045
Game 0 0.0088 0.9912 0 0

Presentation 0.0361 0 0.0262 0.8378 0.0999
Siesta 0.224 0 0 0.3297 0.4463

Class TP rate FP rate Precision Recall F-measure
Introduction 0.9743 0.0586 0.6275 0.9743 0.7009

Aperitif 0.697 0.0042 0.9774 0.697 0.7959
Game 0.9912 0.0875 0.8062 0.9912 0.8823

Presentation 0.8378 0.0172 0.957 0.8378 0.8845
Siesta 0.4463 0.0412 0.8035 0.4463 0.4433
Total 0.7893 0.0417 0.8343 0.7893 0.7414

Table 9.6: Confusion matrix and information retrieval statistics for each situation (observation
window size=250) after the split of “group activity”. The window size for learning the new
sub-situations is 400. The overall situation recognition rate is 81.86 %

Introduction Aperitif Game Presentation Siesta
Introduction 1 0 0 0 0

Aperitif 0 0.6476 0.3524 0 0
Game 0 0 1 0 0

Presentation 0.0026 0 0 0.9002 0.0972
Siesta 0.2175 0 0 0.3333 0.4491

Class TP rate FP rate Precision Recall F-measure
Introduction 1 0.044 0.6535 1 0.6666

Aperitif 0.6476 0 1 0.6476 0.7604
Game 1 0.092 0.7996 1 0.8806

Presentation 0.9002 0.0002 0.9995 0.9002 0.9452
Siesta 0.4491 0.0414 0.4917 0.4491 0.4421
Total 0.7994 0.0355 0.7889 0.7994 0.739

Table 9.7: Confusion matrix and information retrieval statistics for each situation (observation
window size=500) after the split of “group activity”. The window size for learning the new
sub-situations is 400. The overall situation recognition rate is 84.27 %
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Introduction Aperitif Game Presentation Siesta
Introduction 1 0 0 0 0

Aperitif 0 0.8246 0.1754 0 0
Game 0 0 1 0 0

Presentation 0 0 0 1 0
Siesta 0.1889 0 0 0.3343 0.4768

Class TP rate FP rate Precision Recall F-measure
Introduction 1 0.034 0.6672 1 0.6678

Aperitif 0.8246 0 1 0.8246 0.881
Game 1 0.0487 0.9336 1 0.9631

Presentation 1 0.0004 0.999 1 0.9995
Siesta 0.4768 0 0.6667 0.4768 0.534
Total 0.8603 0.0166 0.8533 0.8603 0.8091

Table 9.8: Confusion matrix and information retrieval statistics for each situation (observation
window size=1000) after the split of “group activity”. The window size for learning the new
sub-situations is 400. The overall situation recognition rate is 89.62 %
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9.3 Conclusions

In this chapter, we combined and integrated different methods proposed in the precedent chap-
ters (chapter5,6,7,8) for learning and evolving situation models. To evaluate, several scenarios
have been recorded in our smart home environment. A 3D tracking system created and tracked
entities in the scene, while a microphone array detected noise and head sets microphones were
used to detect speech of individuals. Different individualrole values have been detected and
fused to multi-person observation codes. A first evaluation(evaluation A) has been conducted
on the recognition of learned situations with and without automatic presegmentation (chapter
6). The results showed that both the automatic presegmentation and the fusion of role values
to multi-person observation codes are beneficial for situation recognition. A second evaluation
was conducted for validating the integration of the different methods (chapter6,7 and8). The re-
sults indicate that the integration of the different methods into an intelligent home environment
system is possible.

Although the obtained results are encouraging, the realization of Bob’s dream (section9.1) of
an intelligent home anticipating his needs and desires is still far away. First products that Bob
could buy in his local computer store and install himself arenot mature enough. First, the sen-
sors necessary for a reliable sensing of Bob’s activities are still too invasive. Multiple cameras,
microphones or other sensors must be installed and calibrated in Bob’s home. These are still not
auto-installing and not easy to use. Second, even though ourresults are encouraging, the error
rates are still too high. Further improvements in detectionand learning algorithms are necessary
in order to provide a reliable system that could be accepted by Bob in his daily life. One way
to alleviate this is to provide explanations to Bob. When errors occur (and corresponding sys-
tem explanations are good), Bob could understand and correct wrong system perceptions and
reasoning himself.
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Chapter 10

Conclusion and Perspective

We showed that modeling context is necessary when we want to sense and respond correctly to
human activity in intelligent environments. However, it isdifficult (or even impossible) to model
all possible contextual states reflecting human activity inthe scene. Further, not all possible
contextual cues can be sensed and integrated into a context model. As consequence, to realize
functioning context-aware applications, we need to assumea closed world, modeling hence
only human activity that is essential for correct system behavior and services. The situation
model is proposed as intuitive declarative representationof context, providing both a simple
mean for describing human (inter)actions and a powerful tool for implementation. Two possible
implementations of the situation model have been presentedand illustrated by two functioning
applications: an automatic cameraman and an interaction group detector.

In order to cope with changing user behavior and environments, an intelligent environment must
be able to evolve and acquire new models for human behavior. However, automatic acquisition
and adaptation to changing human behavior in an intelligentenvironment is a non-trivial prob-
lem. On the one hand, there is the problem of usability of adaptive systems and on the other
hand, of course, the problem of learning abstract models of human activity. Our objective here
was to propose several methods that are part of an intelligible framework for acquiring and
evolving context models. The situation model serves as frame and support for these methods.
First, we described several methods for learning individual roles from observation data. There-
fore, a Bayesian classifier, support vector machines and a hybrid classifier have been presented
and evaluated. Further, we proposed a method for the unsupervised segmentation of possible
situations from a stream of observations. This method has been successfully experimented with
several (multimodal) data sets and applications. Then, we presented a third method construct-
ing situation representations for given situation labels and perception segments. The CAVIAR
data sets have been used to evaluate the method. A last methodevolves a predefined situation
network with feedback on system behavior (i.e. the providedsystem services). This method has
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been tested in the PRIMA SmartOffice environment. Finally, the proposed methods have been
integrated into a whole system for acquiring and evolving situation models in an intelligent
home environment. Experimental results are encouraging. However, the error rates are still too
high for being acceptable to users.

To conclude, we can say that learning abstract models reflecting human behavior is a hard prob-
lem. There are already many different models and implementations proposed for representing
context. These models are normally adapted to a specific domain and application. Evolving and
acquiring such a context model automatically entails an even more rigorous adjustment to a
specific domain, application and learning algorithm in order to obtain satisfying results. There
is no universal approach. However, we aimed at proposing a framework of different learning
methods that have been successfully applied and that are based on our situation model defined
in the first part of this thesis.

10.1 Contributions

This thesis aims at providing a novel intuitive framework for acquiring and evolving situation
models in intelligent environments. Contributions are made in the areas of context modeling
and implementation and learning of context models.

In the area of situation modeling and implementation:

Probabilistic Implementation of Situation Models Different implementations of situation mod-
els are presented. A novel probabilistic implementation based on hidden Markov models
(HMMs) is proposed. Each state of the HMM represents one situation. A real-time inter-
action group detector has been realized and evaluated usingthe proposed implementation.

Contributions in the area of situation model learning for knowledge engineering concern:

Role Learning and Detection Bayesian classifier and support vector machines are tested and
evaluated for the task of role learning and detection from video data. A novel hybrid clas-
sifier is proposed, combining both methods. The hybrid classifier outperformed support
vector machines and Bayesian classifier when learning new unseen roles from our data
sets.

Unsupervised Situation DiscoveryA novel method for the unsupervised extraction of situa-
tions from multimodal observations is proposed and evaluated on different multimodal
data sets from meetings.
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Supervised Situation Learning SchemeA supervised learning scheme is proposed to learn
situation representations. The scheme is to be very general, permitting to use different
parameterizations and learner classes. A first evaluation on the CAVIAR project data sets
produced good results.

Contributions in the area of situation model learning for user preferences integration are:

Situation Split A novel algorithmic method for integrating user preferences into a given situa-
tion model is proposed. The user gives feedback on executed system services. The method
refines system perceptions by splitting too general situations into sub-situations.

A major contribution of this thesis is theintegrationof the proposed methods into a whole
system for acquiring and evolving situation models in an intelligent home environment. The
whole system has beensuccessfully tested and evaluated.

10.2 Perspectives

This thesis aimed at constructing a first framework for learning human behavior and needs from
observation and feedback in order to provide context-awareservices. Several problems still need
to be addressed:

Error Rates If we aim at providing unobtrusive system behavior, the error rates of recognition
and learning algorithms are still too high. Apart from permanently improving these algo-
rithms, we can try to limit the action space of the system. Some actions are less critical
and disruptive than others and can be automated with higher error rates in recognition
algorithms.

Generation of Explanations We provide a first approach for intuitive modeling and reasoning
about context. The layers of the framework are motivated by ahuman understandable rep-
resentation of context. Even though the reasoning process can be easily tracked between
these layers, no explicit explanations are generated for the user. Such explanations are
especially important when errors occur. We need to find an unobtrusive way to provide
the user with these explanations within the environment. The generated explanations may
also be linked with system control, permitting the user to overrule system decisions.

Controllability and Human-Computer Interaction The user must be kept in control. Even
though our framework and the learning algorithms are based on an intuitive context
model, the user might want to take direct control of the wholesystem. In this case, an
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important issue is how to visualize contextual informationin an intuitive manner and how
to enable the user to control system services easily and without high learning effort. Inter-
face design and type of (explicit) human-computer interaction must carefully be chosen
according to the expert level of the user and the physical configuration of the environment.

Interruptability and Action Cost Concerning unobtrusive service supply, we need to be aware
of the disruptive power of each service. Disruptive power refers to the capacity of inter-
rupting current user task or even current human-human interaction. A service or system
action can be disruptive even if the service is pertinent. Therefore, the interruptability of
the users must be derived. Based on this information, “cost”and benefit of each service
must be estimated and balanced before service execution.
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