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Augmented “Intelligent” Environments

• Augmented “Intelligent” environment or smart environment

“a physical worldphysical world that is richly and invisibly interwoven with sensorsinterwoven with sensors, 

actuatorsactuators, displays, and computational elements, embedded seamlessly embedded seamlessly 

in the everyday objects of our livesin the everyday objects of our lives, and connected through a continuous 

network“ [Cook2004]

• Smart Home Environments 

[Mozer1998] [Cook2003]

• Smart Classrooms 

[Abowd1996] [Xie2001]

• Smart Office Environments 

[Coen1998] [LeGal2001]
picture from [Coen1998]
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Context-Aware Services

• Proactive system behavior

“... the concept proactive refers to two critical features of a system: 1) that 

the system is working on behalf of (or pro) the useron behalf of (or pro) the user, and 2) is taking taking 

initiative autonomouslyinitiative autonomously, without user’s explicit command.” 

[Salovaara2004]

• Context is Key [Coutaz2005]

“Context informs both recognition and mappinginforms both recognition and mapping (onto available services) by 

providing a structured, unified view of the worldstructured, unified view of the world in which the system 

operates.” [Coutaz2005]

• Intelligibility [Bellotti2001]  � (transparent) context model

“Context-aware systems that seek to act upon what they infer about context 

must be able to represent to their users what they know, how themust be able to represent to their users what they know, how they know y know 

itit, and what they are doing about itwhat they are doing about it.” [Bellotti2001]
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Context-Aware Services

Automatic cameraman [Reignier2007]
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Learning Context-Models (1/2)

But:

• Human behavior evolves over time

• New services / user preferences emerge, others disappear

⇒ acquire and adapt context models using machine learning 

methods

Two motivations for learning context models:

• Knowledge engineering (“offline” acquisition of context model from data)

• User preferences (“online” adaptation / evolving a context model)
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Learning Context-Models (2/2) 

Knowledge 

engineering  

User 

preferences 

low intelligibility 

high intelligibility 

XRCE Intelligent Office 
[Andreoli et al., 2003] 

 

Adaptive House 
[Mozer, 1998] 

 

MavHome 
[Cook et al., 2003] 

 
Context prediction 
[Mayrhofer, 2004] 

Lumiere 
[Horvitz et al., 1998] 

Group action modeling 
[Zhang et al., 2006] 

 
Reality mining 

[Eagle and Pentland, 2006] 

Life patterns 
[Clarkson, 2002] 

Our approach
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Defining concepts

• Context is “any information that can be used to characterize the 

situation of an entity” [Dey2001] 

• Situation = temporal state within context, defined by roles and

relations [Crowley2002]

• Role is “played” by an entity that passes the role acceptance test

• Relation is applied to several entities that pass the test for the 

relevant roles

• System service is associated to a situation
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Example: Lecture scenario

Empty

No entity.  No role.  No relation.
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Example: Lecture scenario

Audience

Roles: ParticipantParticipant
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Example: Lecture scenario

Lecture

Roles: ParticipantParticipant

Relations: 

Participant Participant NotSameAsNotSameAs LecturerLecturer

, LecturerLecturer

≠

Service association:

Lecture =>
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Example: Lecture scenario

Empty

No entity.  No role.  No relation.

Audience

Roles: ParticipantParticipant

Lecture

Roles: ParticipantParticipant

Relations: 

Participant Participant NotSameAsNotSameAs LecturerLecturer

, LecturerLecturer

Service associations: Lecture =>
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Constructing Situation Models:

Manual Design Our Approach

User Application

Sensors+Actuators

Top-down 

specification and 

implementation 

by a human 

engineer

User Application

Sensors+Actuators

Top-down 

specification and 

implementation 

by a human 

engineer

 
User Application 

Sensors+Actuators 

Role Detection per Entity 

Unsupervised Situation Extraction 

Supervised Situation Learning 

Integration of User Preferences / 

Situation Split 

User 

Engineer 

Bottom-up, 

automatic 

acquisition 

and 

evolution 
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Role Detection and Learning (1/4)

• T = (Entity properties)    � role label

• Method: 

• Framewise classification of entity properties

• Classifiers trained on learning data (labeled by a human)
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Role Detection and Learning (2/4)

• Bayesian Classifier [Ribeiro2005] [Mühlenbrock2004]

•

• P(T | r) - multidimensional Gaussian mixture estimated from learning 

data using Expectation-Maximization (EM) [Bilmes1998]

T| r)P
TP

r)P(r)TP
TrPr

r

leequiprobabrP

rr
MAP (maxarg

)(

|(
maxarg)|(maxarg

)(

===

+ Creates a model for the learning data sets, permitting to identify wrong 

detections / unseen classes
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Role Detection and Learning (3/4)

• Support Vector Machines (SVMs) [Cortes1995]

• Discriminative method

• Estimate a hyperplane in a multidimensional space

• Radial basis function kernel

• Multi-class classification

+ High discriminative power

− No model for learning data sets � no identification of wrong detections / 

unseen classes
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Role Detection and Learning (4/4)

• Hybrid Classifier [Brdiczka2007]

• Combines Bayesian methods + SVMs for detecting unseen role labels
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Evaluation and Results (1/3)

• Video Tracking System creates entities + properties

• 5 role labels: 

• “walking”, “standing”, “sitting”, “interacting with table” and “lying down”
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Evaluation and Results (2/3)

• 8 video sequences (30885 video frames)

• Detection of 5 role labels 

• 8-fold cross-validation: learn from 7 sequences, test 1

• Bayesian classifier, SVMs (5 classes)

Bayesian Classifier SVMs

Mean 0,8150 0,8610

Std. dev. 0,0146 0,0276
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Evaluation and Results (3/3)

• Detection of unseen role labels

• Exclusion of each role label once from learning (“unseen” class)

• 8-fold cross-validation: learn from 7 sequences, test 1

• 5*8 = 40 test runs

“walking”(0), “standing”(1), “sitting”(2), ”interacting with table”(3), “lying down”(4)

SVMs Bayesian Classifier Hybrid Classifier

Mean 0,7101 0,7523 0,7786

Std. dev. 0,0840 0,0550 0,0639

Class % in data sets TP rate FP rate Precision Recall F-measure

0 18% 0,7374 0,1356 0,6481 0,7374 0,6763

1 9% 0,0108 0,001 0,3938 0,0108 0,0208

2 45% 0,7467 0,2677 0,6576 0,7467 0,6713

3 19% 0,5336 0,1217 0,6845 0,5336 0,5867

4 10% 0,8476 0,0631 0,6557 0,8476 0,723

Total 100% 0,5752 0,1178 0,6079 0,5752 0,5356
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Motivation: Small Group Meetings

• Goal: isolate different Meeting Situations 

• Based on observation streams

• Unsupervised, without assigning any labels

(ABCD)

Discussion Presentation Questions
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Method: Observation Distributions

• Observations are generated with a constant sampling rate from multi-

sensory input 

• Histograms represent observation distributions (obs. window)

• Jeffrey divergence between two histograms p, q

H
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Method: Jeffrey Divergence Curve (1/2)

• Slide two adjacent histograms from the beginning to the end of a recording, 

while calculating Jeffrey divergence
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Method: Jeffrey Divergence Curve (2/2)

• multi-scale analysis: Jeffrey divergence curves for different window sizes

• 4000-16000 observations (between 64sec and 4min 16sec)

Jeffrey divergence curve (histogram windows size=12000 obs.)
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Jeffrey divergence curve (histogram windows size=4000 obs.)
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Method: Peak Detection

• Robust Mean Estimation [Qian1998]

• Successive Robust Mean Estimation [Brdiczka2005]

• Find successively all local maxima (peaks) of the curve
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Method: Merging + Filtering Peaks

• Merge peaks

• Normalized distance n_dist < 1.0

• Filter peaks

• Relative peak height > 0.5

• Votes > 2

size2 size2

size1 size1

p2
*

p1
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),(_
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Method: Model Selection

• Model selection

• Global search process, combining all detected peaks

• Goal: find best allocation of observation distributions

• Criterion: maximize average Jeffrey divergence between combined peaks

 Data size (nb obs) = 34619 

 

position  rel. peak value window size  votes 

13340.0   0.74   12000.0  5.0 

17430.0   1.0     6000.0  9.0 

30610.0   1.0     4000.0  3.0 

 

 

searching for best model ... 8 combinations: 

 

0 (0.58) :17430 30610  

1 (0.48) :13340 17430 30610  

2 (0.43) :13340 30610  
3 (0.27) :17430 

Retained 

Peaks 

Model 

Selection 
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Evaluation and Results: 

Segment Quality Measures [Zhang2004]

∑
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with 
nij  = total number of observations  Na = total number of activities 

in segment i by activity j 

ni● = total number of observations  Ns = total number of segments 

in segment i 

n●j = total number of observations  N  = total number of observations 
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, , 

• asp = average segment purity

• indicates how well one segment is limited to only one activity

• aap = average activity purity

• indicates to which extent one activity corresponds to only one segment

• Q: overall criterion



34

34

Evaluation and Results: Seminar (1/2)

• Seminar

• 5 pers; 25 min. 2 sec.

• lapel microphones + speech activity detection

Speech Activity DetectionObservation 
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Evaluation and Results: Seminar (2/2)

Seminar

S1

D1

S2

PR

S3

QS D2

S4

D
e
te
c
ti
o
n
  
  
  
  
  
 A
c
ti
v
it
ie
s
  
  
  

• Seminar

• Situations: discussion in small groups (D1), presentation (PR),

questions (QS), discussion in small groups (D2)

asp aap Q

Seminar 0.88 0.91 0.90
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Evaluation and Results: Multimodal Cocktail 

Party (1/2)

• Cocktailparty meeting

• 5 pers; 30 min. 26 sec.

• Wide-angle camera + video tracker

• Lapel microphones + speech activity detection
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Evaluation and Results: Multimodal Cocktail 

Party (2/2)
Cocktail Party Meeting (audio)
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Supervised Situation Acquisition Algorithm 

(1/2)

• n observation sequences   associated to   m situation labels (m≤n)

• Each sequence corresponds to one situation

• Two or more sequences can have the same situation label
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Supervised Situation Acquisition Algorithm 

(2/2)

• learner L: {P1, P2, …, Pk | k > 0 } � situation representation S

 A. For each learner class do: 
a. {optimization step} 

 For each situation label do: 

• Select learner/set of learners 

• Apply learner to given observations 

b. {validation step} 

Calculate quality of obtained situation 

representations 

c. Repeat a.-b. until best quality is obtained 

 

B. Choose learner class with best quality of situation 

representations 
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Supervised Situation Acquisition Algorithm 

(2/2)

-- Iterate over learner classes --

 A. For each learner class do: 
a. {optimization step} 

 For each situation label do: 

• Select learner/set of learners 

• Apply learner to given observations 

b. {validation step} 

Calculate quality of obtained situation 

representations 

c. Repeat a.-b. until best quality is obtained 

 

B. Choose learner class with best quality of situation 

representations 
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Supervised Situation Acquisition Algorithm 

(2/2)

-- Iterate over situation labels to be learned --

 A. For each learner class do: 
a. {optimization step} 

 For each situation label do: 

• Select learner/set of learners 

• Apply learner to given observations 

b. {validation step} 

Calculate quality of obtained situation 

representations 

c. Repeat a.-b. until best quality is obtained 

 

B. Choose learner class with best quality of situation 

representations 
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Supervised Situation Acquisition Algorithm 

(2/2)

• Quality measure – principle: maximize the distance between the means of 
the classes while minimizing the variance within each class [Fisher1938]

A. For each learner class do: 

a. {optimization step} 

 For each situation label do: 

• Select learner/set of learners 

• Apply learner to given observations 

b. {validation step} 

Calculate quality of obtained situation 

representations 

c. Repeat a.-b. until best quality is obtained 

 

B. Choose learner class with best quality of situation 

representations  
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Evaluation and Results: CAVIAR video clips

(1/2)

• 114 sequences extracted from CAVIAR video clips

• 5 situations

• “walking”, “browsing”, “fighting”, “waiting”, “object left”

• Observations = entity, role and group values from annotated XML files
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Evaluation and Results: CAVIAR video clips

(2/2)

• hidden Markov models [Rabiner1989] as situation representation
• EM algorithm is only learner class

• Set of learners / learner parameters = number of states of the HMM

• 3-fold cross-validation: 1/3 for learning, 2/3 for testing
• Average error: 6.22 %, standard deviation 2.07 %

Ratio of observation 

probability within and 

outside correct situation

 A. For EM learner class do: 
a. {optimization step} 

 For each situation label do: 

• Select a number of states for EM training 

• Learn HMM parameters with EM 

b. {validation step} 

Calculate quality measure: 

∑ ∑

∑
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jk SLi
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c. Repeat a.-b. until best quality is obtained 
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Situation Split (1/2)

• Feedback: Service correction /  deletion / preservation

Oliver

entering 

office
=> 

Oliver entering 

office on Monday

Oliver entering 

office on Tuesday

=> 

=> 

Oliver

entering 

office
=> +
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Situation Split (2/2)

• different disjunctive 

services for one situation 

� situation split

• supervised situation 

acquisition algorithm for 

learning sub-situations

S1c 

S1b 

S1a 

S1 

Sit 1 

Sit 1a 

Sit 1b Split 

Sit 1c 
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Evaluation and Results: SmartOffice

• Predefined/learned context model for SmartOffice

• Goal: integrating the music player service into the model

• Decision Tree (ID3 [Quinlan1986]) for learning sub-situations
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Evaluation and Results: SmartOffice

• 2-fold cross-validation: 1 recording for learning, 1 for testing

"do nothing" music ON music OFF

"do nothing" 0.5985 0.1894 0.2121

music ON 0 1 0

music OFF 0 0 1
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Smart Home Environment

• 3D tracking system creates and tracks entities
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Multimodal observation of the scene

• role detection per entity 

• using SVMs,     

target speed and 

interaction distance
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Multimodal observation of the scene

• head set microphones + speech activity detection

• ambient sound detection

• multimodal entity observation codes:

0  : entity does not exist

1  : standing immobile

2  : standing and interacting with table

3  : standing and gesturing

4  : standing and interacting with table (in movement)

5  : walking

6  : sitting

7  : sitting and interacting with table

8  : sitting and gesturing

9  : sitting and interacting with table (in movement)

10 : changing position while sitting 

11 : lying down

12 : lying down and gesturing

13 : detection error

14-26 : entity is speaking

27-39 : there is noise in the environment

40-52 : entity is speaking and there is noise
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Evaluation B (1/5)

 

Evaluation B 

Role Detection per Entity 

Unsupervised Situation Extraction 

Supervised Situation Learning 

Integration of User Preferences / 

Situation Split 
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Evaluation B (2/5)

• 3 scenarios recordings

• Situations: “introduction”, “aperitif”, 

“siesta”, “presentation”, 

“game”

• “online” in-scenario situation recognition

Siesta

AperitifIntroduction

GamePresentation
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Q = 0.68

Evaluation B (3/5)

• Unsupervised situation discovery

Scenario 1

S1

I

S2

Aperitif Game Presentation

S3 S4
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Scenario 2

I

S1

Game

S2

Presentation

S3 S4

Aperitif Siesta

S5
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Scenario 3

I

S1

Presentation

S2

Game

S3

Aperitif S

S4
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Evaluation B (4/5)

• Supervised situation learning        

• 4 situations: “introduction”, “presentation”, “siesta” and “group activity”

• 3-fold cross-validation: 2 scenarios for learning, 1 scenario for testing

• EM as learner class

• HMMs (8-16 states) Situation Recognition Rate
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Evaluation B (5/5)

• Integration of user preferences

• Split “group activity” and learn new sub-situations “aperitif” and “game”

Situation Recognition Rate
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Outline

I. Introduction and Problem Definition

II. Situation Model

III. Learning Role Acceptance Tests

IV. Unsupervised Situation Discovery

V. Supervised Learning of Situations

VI. Adapting to User Preferences

VII. Integration and Experimental Evaluation

VIII.VIII. Conclusion and PerspectivesConclusion and Perspectives
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User Application 

Sensors+Actuators 

Role Detection per Entity 

Unsupervised Situation Extraction 

Supervised Situation Learning 

Integration of User Preferences / 

Situation Split 

User 

Engineer 

Conclusion and Perspectives (1/2)

• Contributions of this thesis

• Implementations of situation model

• Situation split

• Supervised situation learning scheme 

• Unsupervised situation discovery

• Role learning and detection
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Conclusion and Perspectives (2/2)

• Error rates

• automate uncritical/non-disruptive actions

• Generation of explanations

• Explain system errors, link with system control

• Controllability and human-computer interaction

• Keep user in control

• Visualize contextual information in an intuitive manner

• Interruptability and action cost [Bardram2006]
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Thank you for your attention !

Remarks ? Questions ?
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