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Darwin College

A dissertation submitted for the degree of

Doctor of Philosophy

at the University of Cambridge

March, 2007





Abstract

Atomic-Scale Interface Magnetism for Spintronics

by Jean-Baptiste Laloë

Recognising that the characterisation of actual interfaces in magnetic mul-
tilayer systems will provide valuable insight for the integration of spintronics
in practical devices, a study of interface effects in various structures is pre-
sented. Magnetometry measurements are performed for a range of Fe thick-
nesses (0.4 - 23 nm) grown by molecular beam epitaxy on GaAs and InAs
substrates in order to determine the factors governing the evolution of the
magnetic moment of epitaxial Fe grown on a zinc-blende semiconductor. A
greater reduction of the Fe magnetic moment is observed for films grown on
InAs as compared to GaAs, as the Fe films reach a bulk-like moment (within
10% deviation) at a thickness of ∼5.2 nm and ∼2.2 nm, respectively. From
this direct comparative study it is concluded that interface and interdiffusion
effects are the dominant mechanisms influencing the value of the magnetic
moment for ultra-thin Fe films on GaAs and InAs. Spin injection at this
interface is performed, by detecting optical polarisation in the oblique Hanle
geometry from a Fe/AlGaAs/GaAs spin-light emitting diode structure. The
electrical and magnetic properties of the system are presented, and a ∼1% in-
jection polarisation at room temperature, rising to ∼4% at 77 K is reported.
A study of the deposition and growth of MgO thin (3 - 39 nm) films in con-
junction with magnetic layers is also performed. Crystallinity of MgO grown
on GaAs is obtained, and epitaxial growth of Fe and Co on MgO is demon-
strated. Polarised neutron reflectivity results again indicate a slight decrease
in Fe and Co magnetic moments due to interfacial oxide layers. MgO is also
incorporated in a pseudo-spin-valve structure which demonstrates epitaxy-
induced magneto-crystalline anisotropy. It is concluded that the interface
quality is a critical parameter for spintronic devices. Atomic-scale defects
and intermixing in real samples mean that current theoretical estimates of
∼100% injection efficiency in perfect systems remain unattainable. However
by increasing atomic-level structural control of interfaces, a substantial in-
crease in efficiency might be achieved, similarly to the recent breakthrough
in tunnelling magneto-resistance ratios which have reached 1000%.
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Chapter 1

Introduction

1.1 Magneto-Static Phenomena

1.1.1 Magnetic Moments

Magnetism is one of the oldest phenomena in the history of natural science. The

fundamental object in magnetism is the magnetic moment which in a classical

picture can be equated to a current loop. If there is a current I around a van-

ishingly small oriented loop of area dS, then the magnetic moment dµ is given

by [1]:

dµ = IdS, (1.1)

and the magnetic moment has units of A.m2. For a loop of finite size, we cal-

culate the magnetic moment by summing up the moments from the contained

infinitesimal loops, by integrating equation 1.1:

µ =
∫

dµ = I

∫
dS. (1.2)

In atoms, the magnetic moment µ associated with an orbiting electron lies

along the same direction as the angular momentum L of that electron and is

proportional to it as µ= γL, where γ is a constant known as the gyromagnetic

ratio. A magnetic moment in an external field will have energy E = − µ·B, so

in order to minimise this energy there will be a torque on the magnetic moment.

As the magnetic moment is associated with the angular momentum, and because

torque is equal to the rate of change of angular momentum, we can write

1
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dµ

dt
= γµ × B, (1.3)

indicating that the change in µ is perpendicular to both µ and B, thus the

magnetic field causes the direction of µ to precess around B.

Magnetic materials are materials which are magnetised to some extent by a

magnetic field. When a magnetic material is magnetised uniformly the intensity

of the magnetisation is given by the sum of all the magnetic moments in the ma-

terial. Thus the concept of magnetisation is an ensemble of elementary magnetic

moments.

1.1.2 Magnetic Disorder and Order

Various materials exhibit different magnetic behaviours and states of order. Phys-

ical formalism for each of these can be found in references [1] and [2], and will

not be repeated here, but we will present an overview and description of these

magnetic states.

Diamagnetism and Paramagnetism

Diamagnetism means a feeble magnetism which occurs in a material containing

no atomic magnetic moments, and has a small negative magnetic susceptibility1.

The mechanism by which the magnetisation is induced opposite to the magnetic

field is the acceleration of the orbital electrons by electromagnetic induction

caused by the penetration of the external field into the orbit. According to

Lenz’s law, the magnetic flux produced by this acceleration of an orbital electron

is always opposite to the change in the external magnetic field [2].

Paramagnetism is a feeble magnetism which exhibits a positive susceptibility.

Paramagnetic behaviour is found in materials that contain magnetic atoms or

ions that are widely separated so that they exhibit no appreciable interaction

with each other. Without an applied magnetic field, these magnetic moments

point in random directions because the magnetic moments in neighbouring atoms

interact only very weakly, to the point where they can be assumed to be inde-

pendent. However, applying an external field aligns the moments to a degree

1The magnetic susceptibility, χ, is the degree of magnetisation of a material in response to
an applied magnetic field: M = χH where M is the magnetisation and H the applied field.
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Material TC (K)
Fe 1043
Co 1394
Ni 631
Gd 289

MnSb 587
EuO 70
EuS 16.5

Table 1.1: (from [1]) Curie temperature, TC , of some common ferromagnets.

determined by the strength of the applied field. Although an increase in the

magnetic field will tend to line up the spins (moments), an increase in temper-

ature will randomise them. The paramagnetic effect is generally much stronger

than the diamagnetic effect, although the diamagnetism is always present as a

weak negative contribution.

Ferromagnetism

A ferromagnet has a spontaneous magnetisation, even in the absence of an ap-

plied field. All the magnetic moments lie along a single unique direction2. The

mechanism for the appearance of ferromagnetism was first clarified in 1907 by

Pierre Weiss. He assumed that in a ferromagnetic material there exists an ef-

fective molecular field, Bmf , considered to align the neighbouring spins parallel

to one another because the dominant exchange interactions are positive. In the

Weiss model, the ferromagnet is treated as a paramagnet placed in a magnetic

field B + Bmf . At low temperatures, the moments can be aligned by the internal

molecular field, even without any applied external field, and the magnetic order

is self-sustaining. As the temperature is raised, thermal fluctuations begin to de-

stroy the magnetisation and at a critical temperature the order will be destroyed.

The temperature at which this transition occurs is the Curie Temperature, TC .

The idea of the molecular field is only a convenient image to explain the

ordering in a ferromagnet. Such a magneto-static effect would require fields of

∼ 103 T within the material. In fact, thirty year after Weiss, Heisenberg showed

2More precisely in no external field there is a uniform magnetisation direction in separate
domains in the material.
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that it was the exchange interaction, which is a purely electro-static effect and

involves large Coulomb energies, which is responsible for the ‘large’ molecular

field.

Antiferromagnetism

In antiferromagnetism, neighbouring spins are aligned antiparallel to each other

so that their magnetic moments cancel. In this case the exchange interaction is

negative, so it is favourable for nearest-neighbour magnetic moments to lie an-

tiparallel to one another. Therefore an antiferromagnet produces no spontaneous

magnetisation and shows only a feeble magnetism.

In this case, when an external field is applied in the direction along the spin

axis, the spins experience no torque as they are already saturated in that direc-

tion, and the susceptibility is ∼ 0 (at 0 K). In the case of non-zero temperature

but remaining in the antiferromagnetic regime3, the thermal fluctuations de-

crease the molecular field at both anti-parallel sublattices, and the applied field

will enhance the magnetisation in one direction, and reduce it in the other. If in-

stead an external field is applied perpendicular to the spontaneous magnetisation

direction, the moments in both directions will tilt slightly so that a component

of magnetisation is produced along the applied field direction, and this effect is

nearly independent of temperature.

1.2 Magneto-Electronics: Spintronics

In addition to their mass and electric charge, electrons have an intrinsic quan-

tity of angular momentum called spin. Devices which rely on an electron’s spin

to perform their functions form the foundation of spin-electronics, or spintron-

ics. Information processing technology classically relies on charge-based devices,

which have produced today’s million-transistor microchips, but as the industry

requires further miniaturisation conventional devices are reaching their limits

both from a fundamental and technical point of view. Adding the spin degree

of freedom to conventional electronic devices or using the spin alone has the po-

tential advantages of non-volatility, increased data processing speed, decreased

3The transition temperature at which antiferromagnetism disappears is know as the Néel
temperature, TN .
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Figure 1.1: Increase of hard drive areal storage density, showing the 35 million ×
increase in storage density since 1957, and the increase in the compound annual growth
rate (CGR) with the development of MR heads. Source: Hitachi GST.

electrical power consumption, and increased integration densities [3, 4].

Magnetism has always been important for information storage, with the earli-

est hard drives using inductive heads, and the second generation using magneto-

resistance (MR) effects4 to read and write data stored in magnetic domains.

With the requirement for ever-increasing storage capacity, and read/write access

speeds, the storage industry rapidly integrated MR read heads in hard drives,

with anisotropic magneto-resistance (AMR) heads in the early 1990’s, and gi-

ant magneto-resistance (GMR) heads by 2000. Nowadays, tunnelling magneto-

resistance (TMR) heads are being used in commercially available high-capacity

hard drives. Figure 1.1 shows the increase in areal storage density with the

integration of MR heads in hard drives.

Alongside hard drive technology, recent years have seen the integration of

magnetic storage elements in random access memory (RAM) with the develop-

ment of magnetic random access memory (MRAM). An MRAM cell is made

of two ferromagnetic contacts separated by a thin insulating layer. One of the

ferromagnets is pinned to a given direction, and the other is free to rotate in

an external field. The MR effect measured when switching between parallel and

anti-parallel alignments of the two layers allows for the coding of bits in each cell.

4MR: A change in resistance caused by a magnetic field.
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Figure 1.2: (from [6]) Schematic of a spin-FET. Injected electrons rotate because of the
magnetic field created by the spin-orbit interaction induced by the applied gate voltage
electric field.

An MRAM chip is a grid of such cells which can each be selectively read and writ-

ten. One great advantage of MRAM over conventional RAM is its non-volatility,

meaning that information can be retained in the absence power input.

Major challenges in the field of spintronics that are currently being addressed

by experiment and theory include the optimisation of electron spin lifetimes, the

detection of spin coherence, the transport of spin-polarised carriers, and the ma-

nipulation of both electron and nuclear spins in solid state materials. An under-

standing of the fundamental aspects of the control of the spin degree of freedom

in semiconductors and heterostructures will lead to novel high-performance spin-

based electronics with great potential. A common example of such a device is

the spin-field effect transistor (FET), as proposed by Datta and Das in 1990 [5].

This has ferromagnetic source and drain contacts, separated by a narrow semi-

conducting channel. The source injects spin-polarised electrons into the channel

and this spin current flows easily is it reaches the drain unaltered. A voltage

applied to the gate electrode however, produces an electric field which causes

the spins of the fast-moving electrons to precess, or rotate. The polarised drain

therefore impedes the spin current depending on how far the spins have been

rotated. Flipping the spins (thus controlling the current flow) requires much less

energy and is much faster than the operation of conventional FETs. A schematic

of a spin-FET is shown in figure 1.2.

A number of challenges lie ahead before the implementation of a spin-FET

in a real device. However the progress toward understanding and implementing
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the spin degree of freedom in metallic multilayers and semiconductors is gaining

momentum as more research seeks to address individual obstacles associated with

these novel ideas. A considerable impact on the storage industry and further

potential applications in biology and chemistry promises that the emerging field

of spintronics will provide fundamental new advances in both pure and applied

science and technology for years to come.

1.3 Motivation: Interface Magnetism

The quality of the interface in spintronic devices is a critical parameter in thin

film magnetic multilayers. Throughout this work, we study the effects of dis-

order, defects and intermixing at interfaces. These are found to have drastic

consequences on magnetic and structural properties in multilayers.

Spintronics requires spin transport at room temperature (RT) across an inter-

face or barrier. It is clear that the structural and magnetic order on the atomic

scale at the interface are central to the efficiency of spintronic devices. Better

control and understanding of such interfaces will allow for the improvement of

MR ratios and spin injection and detection efficiency. With the adoption of TMR

and more specifically the use of highly ordered MgO barriers, it has become clear

that atomic order at interfaces is central to increased MR ratios. Indeed the

progress from amorphous AlOx to ordered or epitaxial MgO barriers has seen

increase of the TMR ratio by over an order of magnitude. Simulations in perfect

systems with abrupt interfaces have predicted the TMR ratios to increase further,

as compared to current experimental results. Theoretical studies of spin injection

from a ferromagnet into a semiconductor across ideal interfaces also predict ex-

tremely high injection polarisations surpassing all current experimental results.

This is due to imperfection at the interfaces. In a real sample, roughness, inter-

mixing, and lattice mismatch effects will be hugely detrimental to coherent spin

injection.

The aim of this work is therefore to characterise real interfaces in magnetic

multilayer systems, which will provide us with valuable insight for the integration

of spintronics in practical devices.
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1.4 Overview of the Thesis

This thesis presents a study of the challenges associated with thin film and in-

terfacial magnetism. Each chapter can be taken as a stand-alone addressing a

specific aspect of these obstacles, though they all complete each other and con-

tribute to the general understanding of the issue.

Chapter 1: Introduction We present a brief background of the fields of mag-

netism and spintronics, and an overview of the thesis.

Chapter 2: GaAs Surfaces and Spin-Valve Structures In this review chap-

ter, we present the fundamental properties of GaAs crystals and surfaces,

and the initial aspects of Fe growth on GaAs. We also review growth and

studies of epitaxial spin-valve structures.

Chapter 3: Experimental Techniques Here we briefly describe some main

experimental methods we have used throughout the course of this project.

Chapter 4: Fe Magnetic Moment on GaAs, InAs In this chapter we present

a study of the evolution of the Fe magnetic moment on GaAs and InAs,

and describe the factors affecting it at ultra-low coverages.

Chapter 5: Electro-Luminescence The electro-luminescence experiment is a

means of studying and detecting spin injection into a semiconductor. Here

an overview of the theory and method is presented, as well as experimental

characterisation results.

Chapter 6: MgO Growth and Applications Here we present details of the

growth of MgO, and its integration in heterostructures for various device

applications.

Chapter 7: Summary and Outlook In this concluding chapter we summarise

the results from each aspect of our work and look ahead to ideas for future

experiments which these results lead us to.

Sample Notations and Temperature Units

Throughout this thesis the order of growth of multilayers is written from the top

surface to the substrate. Namely Au/Fe/GaAs(100) is a GaAs(100) substrate on
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which we would have grown an Fe layer, and then a Au layer (cap). Throughout

the thesis we have cited temperatures in ◦C and K. We have used K for low

temperatures (≤ room temperature) and ◦C for higher temperatures. The pro-

portions of chemical solutions such as etchants are given by volume. For example

HCl:H2O (1:4) indicates 4 volumes of water per volume of HCl.





Chapter 2

GaAs Surface Reconstructions

for Fe Growth and Epitaxial

Spin-Valve Structures

Introduction and Outline

Epitaxy in magnetic heterostructures and multilayers has long been of interest,

both for fundamental research purposes and for device applications. Indeed, epi-

taxial films and structures can be used as powerful tools to explore fundamental

aspects of thin and ultrathin magnetic layers such as growth modes, interfaces

and magnetic anisotropies. In this review chapter, we will firstly present the

preparation methods of GaAs surfaces for epitaxial growth, including an overview

of the various surface reconstructions. Then we will briefly discuss the growth of

epitaxial Fe on GaAs. As we will see, this system has recently generated huge

interest for spintronic device applications, with the interface being key to suc-

cessful operation. We will then shift our interest to multilayers, and specifically

epitaxial spin-valve structures, their growth and magnetic properties.

11
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Figure 2.1: (from [9]) The GaAs unit cell, zincblende structure displaying the two (Ga
and As) fcc sublattices, displaced by a quarter of the body diagonal.

2.1 Surface Reconstructions of GaAs(100)

2.1.1 Overview of GaAs

The rapidly growing use of GaAs in discrete devices, integrated circuits, opto-

electronics, digital applications and alongside magnetic materials creates huge

demand for single-crystal substrates of this material. Researchers have known the

advantages of GaAs (as compared to Si) for decades, and the ability to produce

semi-insulating substrates allows true monolithic circuit and device integration

[7, 8].

Crystal Structure

A crystal is an object of high symmetry, ideally an infinite repetition of a three-

dimensional building block. In the case of GaAs, this building block is a cubic

Bravais lattice, more specifically two face centred cubic (fcc) lattices of Ga and As

which are mutually penetrating, and shifted relative to each other by a quarter

of the body diagonal, thus forming the zincblende structure. This lattice belongs

to the tetrahedral phases. That is, each atom is surrounded by four equidistant

nearest neighbours, which lie at the corners of a tetrahedron. The structure and

tetrahedron are shown in figure 2.1. The lattice constant of undoped GaAs at

RT is a = 5.653 Å, and its density is ρ = 5.317 g.cm−3.
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Crystal Planes

From the unit GaAs cell we can establish the basic crystal planes of GaAs. In

the GaAs(100) surface, each As atom has two bonds with the Ga lattice below,

the other two being free. The (110) plane contains the same number of Ga and

As atoms, each atom having one bond with the layer below. Atoms on the (111)

surface have three bonds with the Ga or As1 atoms in the layers below, and

the fourth is free [8]. However, we will see that this basic approach of the sur-

face atoms and bonds is over-simplified, when we address surface reconstructions

below.

Electronic Properties and Energy-Band Structure

Very briefly, GaAs is a direct band-gap semiconductor, with a band gap at room

temperature of EG = 1.42 eV. GaAs can be doped n- or p-type, with e.g. Si

or Be atoms, respectively, and we note that impurities or crystal defects can

introduce intra-band levels. A surface is naturally a location where the lattice

is discontinuous, and where various oxides of Ga and As are present, as well as

the possibility of elemental As [10]. In addition to this, numerous surface defects

will cause ‘surface states’. Unlike SiO2 for the case of Si surfaces, there seems to

be no dielectric material that passivates GaAs surfaces in a manner satisfactory

to device fabrication [11].

2.1.2 Ex situ Surface Preparation and Cleaning

Production of semiconductor devices places a high premium on uniformity and

yield. Therefore both cleaning and cleanliness are important matters to the semi-

conductor industry. This means removing contaminants from the wafer before

processing or growth, and cleanliness refers to maintaining the level of cleanliness

already present. Here we will briefly overview ex situ cleaning techniques.

Organic solvents are effective in removing oils, greases and organic materials

such as photo-resist. These include acetone, ethanol and isopropanol. The debris

removed by the solvent accumulates in the solvent, so the liquid must be rinsed

or blown off.
1Of the eight planes in the {111} family for GaAs, four contain only Ga atoms, and the other

four are comprised entirely of As atoms.
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Wet etching is the use of liquid etchants to remove material. This has three

main purposes, which are to polish, form patterns, and enable visualisation of

defects or damages [12]. Wet etches will have characteristics such as anisotropic

etching with respect to certain crystallographic orientations, and are usually

based on oxidation of the Ga present. This means that the etchant solution will

have an oxidising agent to oxidise the Ga, and a complexing agent and dilutant

to form a compound with the oxide, and remove it. The most popular etchant

system for GaAs consists of sulfuric acid, hydrogen peroxide, and water. We have

used H2SO4 : H202 : H2O (1:8:80) to etch GaAs, at a rate of ∼ 80 Å/s [13]. Wet

etching will depend on parameters such as agitation, temperature, time (if the

layers of solution close to the etched surface become depleted of the molecules, in

the absence of agitation) and, as we have mentioned before, on crystallographic

orientation [8].

Dry etching has an advantage over wet-etching that it offers substantial direc-

tionality. The lateral etch rates in dry etching are close to zero, so undercutting

of masking patterns can be greatly reduced. Dry etching techniques use a gas,

generally in the form of a plasma, for etching. The techniques commonly used in

GaAs processing include plasma etching, reactive ion etching, reactive ion beam

etching, and ion milling. The first three processes are similar, using an acceler-

ated plasma of a selected gas to efficiently volatilise the layer to be etched. Ion

milling is a purely physical process in which energetic inert ions are delivered to

the surface in a uniform directional beam.

2.1.3 In situ Substrate Cleaning and Surface Reconstructions

The ideal GaAs(100) surface is terminated (the topmost layer) by either Ga or

As atoms. Experimentally, growth and cleaning conditions yield up to seven

different reconstructions of the surface. Practically, these reconstructions are

obtainable by varying the substrate temperature, or the Ga to As ratio during

growth. In situ cleaning of a substrate in an ultra-high vacuum (UHV) chamber

will include annealing steps, as well as ion sputtering, which will both have effects

on the GaAs surface.
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Ar+ ion Sputtering of GaAs

Sputtering is an in situ cleaning step involving bombardment of a surface with

high-energy ions. Inert Ar+ ions are usually used in the case of GaAs. Pechman

et al. studied the effect of Ar+ sputtering of GaAs at a range of temperatures [14].

This study was performed on GaAs(110) rather than GaAs(100), but explores

surface layer defects and disorder created by the sputtering, which would be

similar on both surfaces2. Pechman et al. [14] find that the bombardment of

GaAs with Ar+ atoms at normal incidence creates layer defects that generally

span one or two unit cells. The state of the semiconductor (SC) surface after

sputtering at various beam energies and temperatures was studied using scanning

tunnelling microscope (STM).

Images following room temperature sputtering with low-energy (300 eV) ions

indicated that some material ejected from pits by ion impact remained on the

surface as adatoms. However, the adatoms produced by sputtering at 600 ≤ T ≤
775 K were mobile, and thermal effects promoted local healing. In addition to

this, with continued material removal from the topmost layer, additional vacancy

sites can be produced in the newly exposed layer, leading to multilayer erosion,

and roughening of the surface. Wang et al. [16] have shown that the sputtering

yield for normal incidence bombardment of GaAs depends weakly on ion energy,

but the vacancy size produced by individual ions averages 4-6 atoms at 3000 eV

instead of 2-4 atoms at 300 eV. Multilayer erosion studies at 3000 eV revealed

that sputtering leads to surface roughening below 775 K, but we also remember

that As desorbs above 800 K, even without induced surface disorder [17].

Annealing and Surface Reconstructions of GaAs(100)

When the surface of a semiconductor is allowed to relax at high temperature, it

can lower its total energy by forming dimers [18]. The (100) surface of GaAs is of

intrinsic interest because it is known to manifest various surface reconstructions

depending on the surface composition. Several recent STM studies have tried to

catalogue the various surface reconstructions of GaAs(100), and establish their

occurrence as a function of parameters such as substrate temperature and Ga to

2Gillingham [15] presents STM images of the (100) surface after sputtering and annealing
treatments.



16 CHAPTER 2. GAAS SURFACES AND SPIN-VALVE STRUCTURES

As flux ratio during growth [19–22]. Despite its conceptually simple operation

principle, STM can resolve local electronic structures on an atomic scale with

little damage or interference with the sample [23]. Coupled with low-energy

electron diffraction (LEED) and/or reflection high-energy electron diffraction

(RHEED), STM is thus an ideal tool to investigate the atomic structure of GaAs

surface reconstructions.

The notations used to differentiate amongst surface reconstructions e.g. (1×
1) or (2× 4), represent the change in period of the surface symmetry, or surface

density. For instance the (2 × 4) reconstruction of GaAs(100) is so labelled

because the unit cell is 2 periods long in the (011) direction, and 4 periods long

in the (011) direction.

Biegelsen et al. [19] present a survey of reconstructions obtained by cooling

the substrate after GaAs growth to a range temperatures, and varying the As or

Ga flux while doing so. They thus obtain and identify various surface reconstruc-

tions, and also suggest ball-and-stick models of surface atom placement for each

reconstruction. They report to obtain a c(4 × 4) surface by cooling the grown

GaAs epilayer to 300◦C in either As4 or As2 flux, then moving the sample to

UHV. They note in passing that the dimers observed in this c(4× 4) reconstruc-

tion are aligned perpendicular to the As dimers observed in the well-documented

c(2×8) surface, sometimes also named (2×4). This c(2×8) surface was prepared

by cooling the as-grown samples to 500◦C in the As flux, and then quenching in

UHV. Attempts to obtain the (1 × 6) surface were made by annealing c(2 × 8)

surfaces to 600◦C for 5 minutes in vacuum. In fact, the STM images showed

considerable ordering in the 2× direction, and the unit cell appears to be (2×6).

The surface cell is apparently two As dimers and four missing As dimers stacked

along the ×6 direction. Finally, the authors report on a Ga-rich c(8× 2) surface,

reported to have almost no surface-bonded As, obtained by annealing the sam-

ples at 690◦C in UHV. We note that the subunit for this surface reconstruction

is a (4× 2) which consists of two Ga-Ga dimers adjacent to one another and two

missing dimers.

Behrend et al. [20] investigate the transition from the As-rich to the Ga-rich

phases in the reconstruction phase diagram. From an initial (2×4) As stabilised

surface, Ga-rich surfaces are shown to appear through post-growth annealing.

No significant change to the reconstruction is observed after a 5 minute anneal
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Figure 2.2: Ball-and-stick models for the GaAs(100)-c(4× 4) surface reconstruction, as
suggested by (a) Xue et al. [22]; (b) Larsen et al. [24]; and (c) Sauvage-Simkin et al.
[25].

at 610◦C in UHV, but when increasing the time and temperature of the heat

treatment to 15 minutes with a ramp from 610◦C to 640◦C , a clear (4 × 6)

pattern appears, as observed by RHEED. Interestingly, the STM images reveal

a domain structure with (2× 6) As-terminated and (4× 2) Ga-terminated areas

co-existing. This is why such a reconstruction is sometimes referred to as a

pseudo- or P (4× 6), as it is not an intrinsic reconstruction.

More recently, Xue et al. [22] have confirmed the existence of this P (4 × 6)

reconstruction, but they have also explored the formation of a ‘genuine’, (4× 6)

surface reconstruction, the G(4 × 6). The ‘genuine’ (4 × 6) phase is uniquely

characterised by an array of large oval protrusions located at each corner of the

unit cell, as observed by STM. These are Ga clusters, which sit in between the

Ga dimers. It is not specified how this reconstruction was obtained, though it

is understood to be very difficult to stabilise, with a single missing-atom defect

causing a transition back to the (4× 2) sub-unit.

Xue et al. [22] also explore the As-rich reconstructions previously mentioned.

In particular, the authors present an overview of the three known phases of the

(2 × 4) reconstructions, denoted α, β, and γ, each with specific As coverage.

They also suggest further ball-and-stick models for the c(4 × 4) reconstruction,

and compare theirs to previous suggestions, as shown in figure 2.2.

Finally, from a theoretical viewpoint, pseudo-potential calculations have been

made for a number of these surface reconstructions. For example, Srivastava et al.

present ab initio pseudo-potential calculations for equilibrium atomic geometry
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and chemical bonding on the As-terminated β2(2×4) surface [21]. One particular

finding in this case is that there are two distinct Ga-As bond lengths between

the first and the second layers, due to the presence of both threefold and fourfold

coordinated Ga atoms in the second layer.

2.2 Epitaxy and Magnetism of Fe/GaAs

Successful epitaxial growth of Fe on GaAs(100) was first reported by Waldrop

and Grant, in 1979 [26]. They report room-temperature growth on an Ar+-ion

sputtered and then annealed substrate. Since then there have been numerous

reports and studies of this system, also for growth for low (<100◦C) and high

(>300◦C) temperatures. It is widely accepted that the epitaxial growth is at-

tributed to the fact that the lattice constant of α-Fe (2.866 Å) is almost half

of that of GaAs (5.653 Å)3, yielding a misfit of 1.4% in cube-on-cube epitaxy,

provided the doubling of the Fe lattice periodicity compared to that of the GaAs.

Wastlbauer and Bland [27] have produced a detailed review of the properties

of ultrathin epitaxial Fe films on GaAs(100). We will therefore not repeat their

work, but discuss the effect of the reconstruction on the growth, evolution of the

anisotropies, and then the spin dynamics at the Fe/GaAs interface.

2.2.1 Influence of the Surface Reconstruction on Fe Growth

Due to the differences in number and arrangement of surface atoms, it is not

surprising that surface reconstructions have a significant effect on the initial

growth morphology of Fe on GaAs(100).

The first STM study of sub-monolayer Fe grown on GaAs was presented

by Takeshita et al. [28]. At RT, they found that on As-rich c(4 × 4), Fe forms

small round clusters whose diameter of roughly 15 Å does not change appreciably

when the coverage increases from 0.4 to 0.8 ML. They suggest that these clusters

nucleate at specific positions within the basis of the reconstruction. They also

demonstrated that the size of the Fe clusters is strongly dependent on the GaAs

reconstruction by growing on Te-stabilised (2 × 1) surfaces, where the size and

distribution of the clusters was not uniform.
3In bulk Fe, the body-centred cubic (bcc) α phase is the only stable phase between RT and

910◦C, and it also offers the smallest lattice mismatch to GaAs.
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Keedler et al. [29] studied the magnetic and structural properties of epitaxial

Fe films grown at 175◦C on both the (2× 4) and c(4× 4) reconstructions. As a

note, we now know that interdiffusion at the interface will be increased at such a

growth temperature. Both of these reconstructions consist of aligned As dimers,

but they are parallel to [011] and [011] on (2 × 4) and c(4 × 4), respectively.

However the c(4 × 4) does not display a long-range row-like structure, but is

spatially isotropic [27]. On (2 × 4), Fe is found to adsorb predominately on the

As dimers on the surface for sub-monolayer coverages, forming local Fe3As2 and

Fe2As clusters. Compared to this, Fe atoms on the c(4× 4) surface are found to

accumulate in fewer, but larger, two-dimensional islands. Similarly to Takeshita

et al. [28] at RT, no structural anisotropy was detected in the growing of the

Fe film. As these two studies were performed at different temperatures, we can

conclude that the shape of the Fe islands on the c(4 × 4) surface is not very

sensitive to temperature.

Moosbühler et al. [30] and Ionescu et al. [31] study the growth of Fe on

Ga-rich surfaces, namely the (4 × 2) and (2 × 6) reconstructions. These also

present a pronounced row-like structure, though less pronounced than the above

As-rich surfaces. Nonetheless, the STM data shows that the resulting three-

dimensional (3D) islands are predominately arranged parallel to the direction

given by the substrate reconstruction. Ionescu et al. [31] report that from a

nominal coverage of 0.1 ML, the Fe starts to cluster solely atop the As rows4.

After deposition of 0.3 ML Fe, the Fe clusters are still predominately on the top

of the As rows, but a few have moved to the underlying top Ga dimer layer. The

authors note that the reconstruction of the GaAs at this stage appears to still

be intact, surrounding the Fe clusters. The main parameters of the Fe islands on

GaAs(100)-(2 × 6) are shown in figure 2.3. We note in particular that at ∼0.4

ML the slope of the height becomes nearly constant, and that the island density

remains almost constant from 0.3 to 0.6 ML. From then on, the coalescence of

islands reduces their density by increasing the island size. This work further

proposes a model for the initial nucleation at 0.3 ML, and suggests the formation

of Fe2As seed crystals for bcc Fe growth.

4We note that the (2× 6) reconstruction is Ga-rich, but As-terminated.
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Figure 2.3: (from [31]) The island (a) size; (b) area; (c) height; and (d) density as a
function of nominal coverage, for the growth of Fe on GaAs(100)-(2× 6). The lines are
guides to the eye.
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2.2.2 Theoretical Studies of Fe/GaAs

Fe growth on GaAs has also attracted some theoretical interest. Indeed, sev-

eral groups have attempted to model the system and interface from a chemical,

electronic, and magnetic point of view.

Hong et al. [32] investigated the electronic and magnetic structure of Fe

atoms grown on a GaAs(100) surface using the full potential linearised augmented

plane wave method. The aim of this simulation is to enlighten the reason for

the significantly reduced magnetic moment of Fe grown on GaAs(100). They

calculate the physical properties at the interface by calculating the total energies

of the systems for half and full monolayer coverage. In this study, any surface

relaxation and reconstruction were not allowed and the Fe atoms were assumed

to sit on the As (Ga) sites for the half monolayer on the Ga- (As-) terminated

surface. For the full monolayer the other type of atom was added. Hong et

al. [32] conclude that the outward diffusion of As atoms toward the surface is

responsible for the local antiferromagnetism at the Fe/GaAs interface, and the

probable reason for the reduction of the magnetic moment.

Erwin et al. [33] use density-functional theory to describe the initial stages

of Fe film growth on GaAs(100), focusing on the interplay between chemistry

and magnetism at the surface. The authors take two complimentary approaches,

by studying the behaviour of single Fe adatoms deposited on GaAs and also the

interface structure of complete Fe films at coverages up to several monolayers.

Their study suggests four generic features that may play an important role.

Namely:

• At sub-monolayer coverages, a strong chemical interaction between Fe and

substrate atoms leads to substantial adsorption and intermixing. This in-

teraction is strong enough to break surface Ga-Ga and Ga-As bonds to

form Fe-As bonds;

• Between 1 and 2 ML coverage a crossover occurs from a preference for an

intermixed film to an abrupt interface. This arises from the competition

between maximising the coordination of the Fe atoms and minimising the

amount of excess interfacial Fe. For Fe films of 2 ML and more the latter

effect dominates and sharper interfaces become energetically preferred;
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• Ga and As adlayers dramatically reduce the formation energies of Fe films.

This is a stabilising effect that occurs for both Ga- and As- terminated

interfaces, and both intermixed and abrupt interfaces;

• And these three generic features imply a fourth, which is the diffusion of

Ga or As atoms liberated from the interface to migrate to the surface of

the Fe film.

We note that Erwin et al. [33] state that these four conclusions apply to all

GaAs reconstructions they considered.

2.2.3 Magnetic Anisotropies of Epitaxial Fe/GaAs

Magnetic anisotropy is determined by minimising the free energy per unit volume

with respect to the magnetisation direction cosines. Different contributions to

the total energy have to be added: magneto-crystalline anisotropy, demagnetising

field energy (shape anisotropy), magneto-elastic coupling energy, etc. In thin

films additional surface and interface, or strain dependent corrections are often

included in order to take account of deviations from the bulk [34, 35]. Thin films

of Fe grown on GaAs(100) display a remarkable and unexpected in-plane uniaxial

magnetic anisotropy with a [011] easy axis. This is dramatically different from

the cubic magnetic anisotropy of bulk Fe, which has 〈001〉 easy axes. The switch

from the uniaxial to cubic anisotropy occurs between 50 and 60 ML coverage of

Fe [36, 37]. There have been several studies of this uniaxial magnetic anisotropy,

in attempts to determine its origins and the parameters affecting it.

Moosbühler et al. [30] approach the uniaxial anisotropy from a geometric

point of view, and establish the link, if any, between the surface reconstruction

and symmetry and the magnetic anisotropy. They grew epitaxial Fe films on

the (4× 2) and (2× 6) Ga-rich reconstructions. These two reconstructions have

terminating atomic rows running in perpendicular directions with respect to each

other: [011] for (4× 2), and [011] for the case of the (2× 6) surface. Moosbühler

et al. [30] grew Fe on a surface with both co-existing reconstructions present,

and repeatedly imaged the same region by STM. As previously stated, they find

that the deposited Fe atoms arrange following the surface reconstruction rows.

The authors performed the magnetic characterisation using magneto-optical Kerr
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effect (MOKE) measurements. They determine the anisotropy constants versus

the Fe thickness for both reconstructions, and find that while the fourfold terms

are identical for both reconstructions, the uniaxial constants are slightly different

(10%), but only for the thinnest films (<10 ML). After assessing contributions

from the Fe/GaAs and Au/Fe interfaces however, Moosbühler et al. [30] con-

clude that the magnetic anisotropy of Fe/GaAs(100) is not directly related to

the specific surface reconstruction, though the exact atomic configuration at the

interface needs to be further elucidated in order to understand the microscopic

origin of the uniaxial anisotropy.

Thomas et al. [38] performed a grazing incidence X-ray diffraction study of

epitaxial Fe ultrathin (1.5 - 13 nm) films on GaAs(100), revealing anisotropies

of both domain shape and strain. With this range of thickness, the experiments

cross the magnetic anisotropy transition, which was easily verified with MOKE

measurements. The authors performed grazing incidence reciprocal space map-

ping to determine the in-plane coherent domain size and strain information.

They find that for their thinnest (1.5 nm) sample, the Fe is perfectly pseudomor-

phic with the GaAs substrate, as the diffuse layer and sharp substrate peaks are

super-imposed. For their thickest sample (13 nm) however, the maximum of the

Fe peak has shifted away from the substrate peak, indicating that the Fe has re-

laxed at that thickness. They find that below 2 nm the Fe film is pseudomorphic,

but above 2 nm anisotropic relaxation takes place, the film being more relaxed

along [011] than along [011]. The coherent domain study revealed that the in-

plane size is anisotropic, being elongated along the [011] direction for thicknesses

below 3 nm, and along the [011] direction above that thickness. Thomas et al.

[38] concluded that considerable strain and shape anisotropies exist in Fe films,

with the interfacial effect being the principle contributor to the observed uniax-

ial magnetic anisotropy for thin films, and the strain anisotropy the main factor

responsible for the reversal of the anisotropy at high Fe thickness.

Finally, Zhai et al. [39] studied the evolution of the magnetic anisotropy

in epitaxial Fe by ferromagnetic resonance (FMR), for both the in-plane and

perpendicular cases, but only for film thicknesses from 4 to 33 ML. They first

confirm the uniaxial anisotropies previously established. Also, they find that for

t ≥ 5.2 ML the FMR curves become asymmetrical, thus requiring an additional

term with fourfold anisotropy to fit. When the film thickness reaches 18 ML
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Figure 2.4: (from [39]) Various anisotropy constants for Fe/GaAs(100) as a function of
film thickness. K‖2 and K1 are the uniaxial and cubic anisotropy constants, respectively.
K⊥2,4 are the perpendicular anisotropy constants.

the in-plane magnetic anisotropy of fourfold symmetry is clearly seen, and it

increases with thickness. As bulk Fe is of bcc structure, Zhai et al. [39] reasonably

assume that the anisotropy of fourfold symmetry indicates the appearance of

cubic anisotropy. For the case of perpendicular anisotropy, the authors find a

very strong anisotropy constant for low thickness, which decreases with increasing

film thickness. Various anisotropy constants are summarised in figure 2.4. Here

we see that the in-plane uniaxial anisotropy constant (K‖2) is as high as 59×104

erg/cm3 for the film thickness of 4.1 ML, and decreases with increasing film

thickness, reaching 12 × 104 erg/cm3 for the 33 ML film. However the authors

note the decrease in the slope of K‖2 versus thickness, which indicates that the

uniaxial anisotropy originates from the magneto-elastic interaction due to the

strain at the interface. Thus, it decreases with increasing thickness due to lattice

relaxation. The cubic magnetic anisotropy K1 appears after 8.4 ML and its

strength increases with film thickness, indicating the formation of a ferromagnetic

continuous film. For their thickest sample (t = 33 ML), the cubic anisotropy

constant reaches 28.2×104 erg/cm3, which is about 60% of the value of bulk bcc

Fe.

2.2.4 Spin Dynamics in Ultra-Thin Fe/GaAs

The system of Fe/GaAs(100) is an ideal model to study the magnetism of nano-

particles with controlled anisotropies close to or at the boundary between super-
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paramagnetism and ferromagnetism. This transition for the Fe/GaAs system has

been reported to occur at a thickness of ∼4 ML [36]. This transition is related

to the three-dimensional growth mode of the Fe. At low coverages, we have seen

that the Fe forms clusters on the substrate surface which grow in size with the

deposition of more material. At a certain cluster size, short range ferromagnetic

order is established within each of these clusters, though they still do not corre-

late. This is the superparamagnetic phase. At the critical thickness, the clusters

coalesce and the system devolves into the ferromagnetic phase.

Steinmuller et al. [40, 41] have studied spin dynamics in ultrathin Fe/GaAs

at the superparamagnetic/ferromagnetic (SP/FM) phase transition. They used a

combination of in situ MOKE, STM and in situ Brillouin light scattering (BLS)

measurements on samples in the range of 3.2-20 ML to probe the static and

dynamic magnetic response of the system directly after deposition. STM imaging

was performed to verify the growth mode, and coalescence of the Fe film in the

FM regime, already observable for a thickness of 3.9 ML (dc ' 3.8 ML). The

BLS measurements show a significant decrease in spin wave frequency as well

as a sharp increase in spin wave line-width with decreasing thickness in a very

narrow thickness region (∼0.4 ML) close to dc. This indicates the clear influence

of spin fluctuations in the vicinity of the phase transition. In the SP regime spin

wave modes are still observed but with a frequency close to that of the uniform

cluster mode. However there are indications of a propagating mode, so they are

attributed to spin waves propagating from cluster to cluster, mediated by dipolar

interactions.

2.3 Epitaxial Spin-Valve Structures

Introduction and Outline

Heterostructures such as Fe/GaAs have numerous research applications for spin-

tronic devices. Magnetic multilayers however are already being used in vari-

ous device applications, and have great importance in storage technology. The

knowledge and understanding of magnetic multilayers is a strong motivation in

constant attempts to increase storage capacity, reliability and speed. In this sec-

tion we will present an overview of epitaxial spin-valve (SV) structures. These
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Figure 2.5: (from [48]) Schematic of a Co/Cu/Co trilayer, and illustration of the GMR
effect. When a bias voltage is applied between the two Co layers, the spin up and down
electrons in Coleft form two independent current channels to travel across the trilayer.
Due to the potential barrier between the Co and Cu electrons, the spin down electrons
are scattered back at the first interface, independent of the relative magnetisation ori-
entations between the two Co layers. The spin up electrons in Coleft have much less
difficulty to reach Coright when the magnetisation of the two Co layers are parallel, as
compared to the anti-parallel case. As a result, the resistance of the trilayer is minimum
(maximum) when the magnetisation of the two Co layers are parallel (antiparallel).

are typically magnetic layers separated by a thin non-magnetic spacer.

Two such magnetic layers will interact through the mechanism known as in-

terlayer exchange coupling. This is the coupling mechanism of nuclear magnetic

moments or localised inner d shell electron spins in a metal by means of an inter-

action through the conduction electrons, and is described by Ruderman-Kittel-

Kasuya-Yosida (RKKY) theory [42–45]. Perhaps the most significant application

of the RKKY theory has been to the theory of GMR, which was first observed by

Baibich et al. in 1988 [46]. GMR is generally described as interplay between spin

dependent scattering in successive magnetic layers. The condition for this inter-

play is that the individual layer must be small compared to the electron mean

free path. Conduction electrons flowing through a metal may collide with obsta-

cles within the material and change direction. These obstacles include interfaces

and defects in the sample, and vibrations of the crystal lattice (phonons) or of

the electron spins in magnetic materials (magnons). Such scattering events cause

electrical resistance, and so the more obstacles a sample contains, the higher its

resistance will be [47].

MR occurs when an external magnetic field changes the scattering within the
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material. The source of GMR is ‘spin-dependent’ scattering through magnetic

layers. Depending on the magnetisation direction a magnetic metal layer will

scatter carriers with ‘up’ or ‘down’ carriers, but not to the same extent. This is

illustrated in figure 2.5, where we see that in the antiparallel case the electrical

resistance is much higher because all of the conduction electrons will be scattered

heavily, if not by one interface, then the next. In order to maximise the GMR

response, it is necessary to somehow stabilise an antiparallel alignment between

the FM layers. Spin valves offer a suitable way of doing this, for instance by

having one magnetically ‘hard’ reference and one magnetically ‘soft’ free layer,

where the free layer may be rotated by an external field, while the reference layer

remains pinned in some way.

In this section we will present an overview of work on the structural and mag-

netic characteristics of epitaxial spin valves. We will also present some dynamic

magnetic studies, and report on recent work on mirror domains in SV structures.

2.3.1 Structural & Magnetic Studies of Epitaxial Spin Valves

Growth and Structural Properties

Ercole and Samad [47, 49] studied very similar SV structures grown by molecular

beam epitaxy (MBE) in UHV. These were Co/Cu/FeNi structures grown on a

Cu buffer layer on a Si(100) substrate. The growth of a thick (∼50 nm) Cu

buffer layer allows the fcc structure to be grown epitaxially on Hf-passivated

Si substrates. These multilayers follow the epitaxial relation: Co(100)[001]‖
Cu(100)[001]‖ FeNi(100)[001]‖ Si(100)[011]. Lew et al. [50] grew a similar SV

structure on GaAs(100), but depositing the Co layer first. They had NiFe/Cu/

Co/GaAs(100), and the epitaxial relation: NiFe(100)[001]‖Cu(100)[001]‖Co(100)

[011]‖GaAs(100)[011], thus the Cu and NiFe layers were rotated by 45◦ in-plane

with respect to the Co [001] axis.

In all of these cases, structural characterisation was performed in situ by

Auger electron spectroscopy (AES) and RHEED. AES probes surface atomic

species, and although spectra taken on the substrate showed traces of C and

O peaks, these disappeared soon after the growth of the buffer or first layer.

RHEED images of the substrate and each layer confirm epitaxy throughout the

whole sample. In the case of the GaAs substrate, the RHEED patterns indicate
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Figure 2.6: (from [50]) Hysteresis behaviour measured by MOKE magnetometry along
the four principal axes of a SV with structure Cu/NiFe/Cu/Co/GaAs(100).

stabilisation of the bcc phase of Co(100), and fcc growth (after rotation) of the

Cu spacer and NiFe top layer.

Magnetic Properties

The magnetic properties of SV samples have been studied using several methods,

including MOKE, BLS, and PNR.

MOKE Typical MOKE magnetometry measurements of an epitaxial SV struc-

ture are shown in figure 2.6. The sharp switching and plateau regions are consis-

tent with ideal SV behaviour, showing the switching of one, then the second FM

layer. These MOKE loops reveal the presence of a fourfold cubic anisotropy, but

a twofold uniaxial anisotropy also occurs. In this case, the uniaxial anisotropy

is induced by the Co/GaAs interface. MOKE loops for the samples grown on Si

do not display this uniaxial anisotropy, but only the fourfold cubic behaviour.

BLS Ercole et al. [49, 51] determined the relevant magnetic anisotropy fields

of an epitaxial Co/Cu/FeNi SV on Si(100) substrate by BLS. The BLS data was

fitted to a spin-wave theory assuming uncoupled magnetic layers, and calibrating

layer thickness with PNR results. Thus, Ercole et al. [49, 51] were able to deter-

mine the cubic anisotropy constant, the in-plane uniaxial anisotropy constant,

the effective demagnetising field, and the magnetisation of each FM layer. They
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find that the anisotropy in the Co layer is predominately fourfold in character,

and anisotropy constants provide further evidence of the high quality of the layer,

as compared to values from the literature. Finally, low-temperature BLS on this

sample revealed the presence of anti-ferromagnetic Co oxide, and the exchange

coupling between this and the FM layer resulted in an increase in the spin wave

frequency.

PNR The anisotropies of epitaxial SV samples are of mixed fourfold and twofold

symmetry, which complicates their switching behaviour. PNR can provide the

layer-dependent moments and allows vector magnetometry to determine the rel-

ative orientation of the layer magnetisation.

Bland et al. [52] used PNR combined with SQUID magnetometry to deter-

mine the interface and interior moments for each of the ultra-thin FeNi and Co

layers in an epitaxial Co/Cu/FeNi SV structure. Upon fitting the data, they

tried to fit the nominal structure but also used a model in which additional in-

termixed interface layers were introduced. They find that although the nominal

model reproduces the features of the PNR data well in the low wave-vector range,

it is not consistent with the total moment measured by SQUID magnetometry.

With the interface model however, the fit closely reproduces all the features of

the data very well. This was also the case for low temperature (1.5 K) PNR

data. The interface regions are found to extend over a thickness of 9-11 Å, and

to have significantly lower effective magnetisation than the corresponding values

expected for FeNi and Co layers, which is consistent with chemical intermixing.

In continuation with this sample, Bland et al. [52] measured spin asymmetry

spectra as a function of the relative layer magnetisation. This was done by

applying a saturating field of 3 kOe in one direction, then reducing the field to 50

Oe, which is enough to switch the FeNi layer but not the Co layer magnetisation.

This 50 Oe field was then rotated for measurements in the parallel, anti-parallel,

and perpendicular cases. The spin asymmetry data display dramatic variations

according to the direction of the applied field, and the fits follow the data closely,

indicating that the FeNi magnetisation indeed rotates as a single domain to

become aligned parallel to the applied field, and that to a good approximation

the Co layer is unchanged, thus exhibiting real SV behaviour.

Patel et al. [53] took PNR measurements on an epitaxial SV which was also
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also a Co/Cu/NiFe structure. They took PNR spectra for both the parallel and

anti-parallel cases and fitted the data to obtain layer properties such as thickness

and roughness, but also the magnetic moments of the thin films. Patel et al.

[53] and Samad [47] observe a slightly reduced moment of the Co layer, which

they attribute to intermixing. As above, their PNR fits were only poor when

no intermixing was allowed, but greatly improved when 5 Å of FeNiCu or CoCu

were introduced (in the fit) between the FM layers and the buffer and spacer,

and between the Co layer and Cu cap.

2.3.2 Dynamic Hysteresis Behaviour in Epitaxial Spin Valves

Over the past decade, the dynamics of magnetisation reversal has attracted sig-

nificant attention as a test of universality hypotheses, and scale-invariant descrip-

tions of the energy loss per cycle as a function of external parameters. Several

theories and models have tried to establish the relation between the hysteresis

loop and these parameters, which are usually the applied field strength, frequency,

and temperature. A number of experiments5 have been performed to describe

the dynamics of magnetisation reversal in various systems, but critical values

obtained both in situ and ex situ significantly differ for different materials and

different dynamical regimes. These discrepancies could be attributed to different

measurement methods or to intrinsic differences in the dynamic response of the

sample.

In order to test the universality of dynamic scaling behaviour in FM ultrathin

films and to clarify the effect of magnetic anisotropy strength on the dynamic

hysteresis scaling, Lee et al. [54, 55] studied fcc epitaxial NiFe and Co grown on

Cu/Si(100). They take advantage of the striking difference in the cubic magneto-

crystalline anisotropy fields, which differ by more than one order of magnitude,

and study the behaviour of both layers in one SV sample. A further motivation

in using an epitaxial SV sample is that it allows them to directly compare the

dynamic reversal behaviour for ultrathin films deposited on the same substrate,

with the same fcc structures, and under the same growth conditions. This largely

eliminates uncertainties due to intrinsic differences associated with the substrate

or growth conditions.

5cf. references 1-7 in reference [54].
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Lee et al. [54, 55] study the reversal dynamics of their epitaxial SV, and

compare it to the dynamic response of single NiFe and Co epitaxial layers. They

find that the single NiFe and Co layers do exhibit different scaling behaviours

as a function of sweep rate, and so expect distinct scaling behaviour in the case

of the SV sample. At low sweep rates, the SV displays ‘double switching’, but

this behaviour gradually becomes less clear as the sweep rate increases. The

behaviour transforms to ‘single switching’ when the rate reaches ∼154 kOe/sec.

This, and a similar transformation observed in a double SV sample, indicates a

different dynamic response of the NiFe and Co layers to a time-varying magnetic

field. Hence the authors conclude that the dynamic response to field sweep rate

is dependent upon the magnetic anisotropy strength.

2.3.3 Mirror Domain Structures in Epitaxial Spin Valves

Several types of the interlayer coupling between two FM layers across a non-

magnetic layer have been studied, both theoretically and experimentally. For

metallic spacer layers, oscillatory interlayer exchange coupling has been observed,

and for insulating materials a weak interlayer exchange coupling has also been

reported6. Thomas et al. [57] address the influence of magneto-static coupling

associated with the presence of domain walls in magnetic layers. They note that

non-uniformity in a magnetised layer containing for instance a domain wall or

vortex (e.g. during magnetisation reversal) induces stray fields which could give

rise to coupling between the layers.

Lew et al. [56] investigated the effect of these domain wall stray fields, and

the possible pinning effects that these might induce. To probe this pinning effect

one of the magnetic layers in the sample must be magnetically hard and able to

provide magnetically stable domains, and the other layer must be relatively soft

towards the pinning field that arise from the hard layer. As high-quality films

with low interface roughness are essential to minimise the effects of roughness-

induced magneto-static coupling, the authors chose an epitaxial SV structure for

this study.

Lew et al. [56] present GMR minor loops taken for different values of min-

imum applied field, but without ever completely switching the Co layer. As

6cf. references 1-4 in reference [56], and references 1-4 in reference [57].
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Figure 2.7: (from [56]) GMR loop of an epitaxial NiFe/Cu/Co SV, and schematics
of magnetisation directions. Mirror domain structures as shown in schematic (iv) are
induced in the structure at point G.

explained previously, the maximum and minimum resistance values correspond

to the parallel and anti-parallel configurations, respectively. One notable feature

which they observe is a drop in the resistance to its absolute minimum during the

reversal of the NiFe layer. This is illustrated in figure 2.7, at point G. Starting

from point A, where the magnetisation of the two FM layers are parallel, the ap-

plied field was then reduced to a negative value, where the soft NiFe layer began

to switch, at B. By the time C is reached, the NiFe has become anti-parallel to

the Co, explaining the rise in resistance. As the minimum applied field is slightly

larger than the nucleation field of the Co at D, the magnetisation reversal is

about to begin and a reverse domain evolves, at E, whereupon the magnetisation

of the two layers are no longer completely anti-parallel, so the resistance value is

decreased. The amount of this decrease depends on the fraction of the evolved

reverse Co domains. As the field is increased again towards F, the NiFe mag-

netisation begins to switch, by evolving reverse domains, and at G the resistance

suddenly drops to its minimum value. This is due to the formation of a unique

parallel configuration in the tri-layer. This has both the NiFe and Co domains

with the same magnetisation directions, perfectly mirroring each other. When

the NiFe develops into a single domain state at H the unique configuration is

lost but the two FM layers are still partially anti-parallel to each other (as the

Co remains in domains) so the resistance value increases again, until I, where
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the Co magnetisation switches back to a single domain state, in the direction

of the applied field, thus creating the parallel configuration again. By varying

the minimum applied field, the authors observed different fractions of reverse Co

domains, each yielding specific resistance decreases at the position of point E.

However, they always observed the reduction to the minimum (at G) during the

NiFe reversal.

Lew et al. [56] also observe the pinning due to domains in the Co layer

through MOKE magnetometry, and by varying the minimum applied field. In

this case, they observe two-step switching of the NiFe, as it is trapped by the

pinning field created by the Co domain walls. Here again, they are able to switch

increasing fractions of the Co film, and observe their proportion by the position

of the step in the NiFe switching. However, they find that the domain wall

width being dependent on anisotropies and material stiffness, the mirror domain

behaviour does not occur in e.g. fcc Co-based SV samples. In conclusion, they

have observed long-range domain wall pinning through a thick spacer layer, which

is induced by mirror domain configurations in certain SV structures.

Conclusion and Outlook

In this chapter, we have presented an overview of past and current work with

epitaxial samples. In the case of the Fe/GaAs system, there have been numerous

experimental and theoretical studies, which provide a useful insight into magnetic

properties, such as the evolution of the anisotropies and spin dynamics at very

low coverage. These will be critical in device applications where interface mor-

phological effects might govern important parameters such as the spin injection

efficiency.

We have also reviewed epitaxial spin valve structures, presented their struc-

tural and magnetic properties. Spin valve structures are already widely used in

devices such as hard-drive read heads, but due to production requirements these

are polycrystalline at best. Epitaxial spin valves however provide a excellent sys-

tem in which to investigate fundamental properties of ultra-thin magnetic film

behaviour.

When growing and studying such heterostructures and multilayers, we will

have to consider the various fundamental effects and properties described here.





Chapter 3

Experimental Techniques

Introduction and Outline

In this chapter we will present an overview of the principle experimental tech-

niques used throughout the course of work for this thesis. Further specific meth-

ods will be briefly described as necessary in each of the following chapters. Here

we will focus on the ultra-high vacuum chamber system, magneto-optical Kerr ef-

fect magnetometry, and the X-ray techniques which we used several times during

our work.

3.1 The Ultra-High Vacuum System

3.1.1 Overview of UHV

Reasons for UHV

Ultra-High Vacuum is the pressure regime characterised by pressures below 10−8

mbar. At such pressures, the mean free path of a molecule inside the chamber is

much larger than the chamber size (>1 km), and there are less than 1010 mole-

cules per cm3 in the chamber. Gas molecules will collide with the chamber walls

many times before colliding with each other, therefore almost all interactions

take place at the various surfaces inside the chamber.

Any experiment requiring collision-free environments or clean surfaces will

necessitate UHV. Such applications include electron microscopes, evaporation

and coating, and materials testing for space. In our case, for epitaxial growths

35
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and interface studies, we require a sample surface which is clean and known.

The need for UHV arises from the time required for a monolayer to form on a

surface at that pressure. At 10−9 mbar, this is calculated as being ∼2000 seconds;

about half an hour [58]. In general, this time is longer than the time required

to take a measurement, thus allowing us to probe clean surfaces, and obtain the

highest-quality interfaces.

Obtaining UHV Pressures

Cleanliness and Choice of Materials in the Chamber The attainment of

UHV conditions is a delicate task. Careful design of the chamber and pumping

channels is required, and only certain materials with low vapour pressure such

as stainless steel and ceramics should be used in the chamber. During use, it

is common to chill the chamber walls to cryogenic temperatures, in order to

further reduce outgassing. Special seals at windows and flanges should be used

to prevent leakage. These all-metal seals consist of two knife edges cutting into a

soft Cu gasket, and can in theory maintain pressures down to 10−12 mbar. When

the chamber is pumped down after being exposed to air, it must be baked at

∼200◦C for several hours to remove water and/or hydrocarbons adsorbed to the

walls. It is critical to avoid all traces of hydrocarbons, including skin oils from a

fingerprint in the chamber, and hence to always wear gloves when handling UHV

equipment.

Pumping Techniques The pressure inside a vacuum chamber will be a bal-

ance between the pumping speed and the leak/outgassing rates. High pumping

speeds are necessary as small leaks are unavoidable. Any material will tend to

outgas, and also the chamber walls are often permeable, to a certain extent, to the

lighter constituents of the atmosphere. There is no single vacuum pump which

can operate from atmospheric pressure down to UHV. Therefore, the required

pumping capacity and speed will be achieved through multiple vacuum pumps

in series and/or parallel. In our system, the first stage of pumping is achieved

by a rotary pump, which backs a diffusion pump. An ion pump and titanium

sublimation pump are also used in the UHV pressure regime.

Rotary pumps are the most common mechanical pumps. The simplest design

of these is a circular rotor rotating inside a larger circular cavity, with the narrow
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space between the moving and stationary parts being sealed by oil. Spring-loaded

blades slightly off-centre create two cavities of different volumes, and this system

forces gas out of the pump with each rotation. Rotary pumps are often used

as backing pumps. The ultimate pressure for rotary pumps is typically ∼ 10−4

mbar, which is an easily sufficient roughening pressure before high-vacuum pumps

can take over.

With no moving parts, the diffusion or vapour-jet pump is one of the most

reliable designs of high-vacuum pumps. A diffusion pump can operate from pres-

sures of ∼ 10−2 mbar and into the UHV pressure regime. The typical diffusion

pump consists of a vertical body fitted with a boiler at the bottom and cooling

coils around the top two thirds. In operation, a vapour of oil is created by elec-

trical heating and this is ejected through a nozzle down against the water-cooled

walls of the pump body. Gas molecules in the vapour jet are given downward

momentum. The gas-vapour mixture travels downwards, and the vacuum oil is

condensed on the cooled walls. The gas molecules continue their path downwards

where they are removed by the mechanical backing pump. The condensed oil

vapour returns to the boiler and is re-vaporised for the following cycle [58]. One

major disadvantage of diffusion pumps is the tendency to back-stream oil into

the vacuum chamber. This oil can contaminate surfaces inside the chamber or

upon contact with hot filaments or electrical discharges may result in carbona-

ceous or siliceous deposits. Often cold traps and baffles are used to minimise

back-streaming, although this results in some loss of pumping ability [45].

Ion pumps are also very reliable as they have no moving parts. However

their operating range only begins at pressures > 10−8 mbar. Electrons trapped

in a magnetic field and accelerated in between an anode and cathode ionise gas

molecules by collision. This generates both an electron and a positive ion. The

ions are accelerated to the cathodes, typically made from a chemically reactive

metal such as titanium, and are neutralised. The electron produced in the original

collision contributes to ionising further gas molecules.

Sublimation pumps are also ‘getter’ pumps, which trap gas molecules on

reactive surfaces. These deposit a film of metal on selected surfaces, either con-

tinuously or periodically. Titanium is the preferred metal, and is deposited by

sublimation from a high-temperature filament source. The removal of gas by

a sublimation pump involves a process of chemisorption on a titanium surface.
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The probability of a reactive gas atom or molecule being adsorbed on first im-

pact on an atomically clean titanium surface is between 0.1 and 1, depending on

the particular gas [58]. The upper pressure limit for operation of a sublimation

pump is defined by the time necessary to form an absorbed monolayer, and they

become ineffective at pressures ? 10−4 mbar.

Measurements of Vacuum

Similarly to pumps, no single gauge can measure pressures ranging from at-

mospheric to UHV. In our chamber, we use a Piriani gauge at roughening pres-

sures and an ion gauge in the UHV regime.

A Piriani gauge is an indirect measure of the pressure, as it does not measure

the pressure directly, but a change in the property of the surrounding gas. In the

case of a Piriani gauge, a sensing filament producing heat is surrounded by the

gas to be measured. As the pressure changes, the thermal conductivity changes,

thus varying the temperature of the sensing filament, which then can be related

to the pressure.

Also an indirect measure of vacuum, ionisation gauges are the most sensitive

gauges for very low pressures. In ion gauges, thermionic emission generates

electrons, which collide with gas atoms and generate positive ions. The ions

are attracted to a biased collector electrode, and the current in the collector is

proportional to the rate of ionisation, which is a function of the pressure in the

system. Hence, measuring the collector current gives the gas pressure [45].

3.1.2 The ‘Big’ Chamber

Overview

The UHV chamber described here and used for the work carried out in this

thesis is usually referred to as the ‘Big’ chamber in the Thin Film Magnetism

and Materials (TFMM) group. Two views from either side of the chamber are

shown in figure 3.1. Here we see the extensions of the chamber, which include

evaporators, LEED, RHEED, an attached STM chamber, and also MOKE and

BLS windows. The chamber contains a magnet capable of producing a 2 kOe

field in situ.
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Figure 3.1: The ‘Big’ chamber. The aluminium foil insulation wrapping is used in the
baking cycles.

The Manipulator and Sample Holder

The manipulator and sample holder are central to the use of the chamber. A

rotation around the vertical axis of the chamber allows us to direct the sample

surface to face any of the evaporators or instruments. The second rotation capa-

bility, in the plane of the sample, enables orientation-dependence of all the in situ

characterisation measurements. Both of these are controlled by mechanical feed-

throughs at the top of the chamber (figure 3.1). The large manipulator flange

also contains several electrical feedthroughs, for sample heating, temperature

measurement, and also a mass-spectrometer.

The sample holder is a copper block on which we attach the substrate with

tantalum clamps. We usually insert a thin tantalum sheet in between a semicon-

ductor substrate and the copper sample holder to avoid any segregation of Cu

into the semiconductor during heating cycles. In order to insert a sample into the

UHV chamber without venting it to air, the prepared sample holder and sample

are first loaded into a load-lock, which has a small volume and can be pumped

down from atmospheric pressure to ∼ 10−9 mbar within ∼2 hours. Once the

pressure in this transfer arm is low enough, we open a gate valve to the chamber,

and although this causes a pressure spike, the chamber recovers in a few hours.

With the transfer arm valve open, we can slide the sample onto the manipulator,
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where we secure it by screwing it on a thread stub.

Substrate heating is achieved in two stages. Running a current through a

tungsten filament surrounding the sample holder stub on the manipulator will

bring the copper block up to ∼200◦C. This is the temperature at which we usually

originally degas the sample holder and substrate. In order to reach annealing

temperatures, we can apply a positive high voltage to the sample holder. This

will accelerate electrons from the hot filament and create an electron-beam to

the sample holder. This enables us to reach temperatures of up to ∼600◦C.

3.1.3 Sample Growth

Evaporators

Similarly to the sample heating, the evaporators heat the source material using an

electron beam, whereby a high-voltage accelerates electrons from a hot filament

to the source. When heated, certain materials will melt and then evaporate, but

others will sublimate directly from the solid to gaseous state. This is the case for

e.g. Fe, Co, and Cr. For such materials, the high voltage can be applied directly

to the source. This is usually a high-purity (99.99+%) rod or flake of the source

material which is connected to the high-voltage feedthrough of the evaporator.

In the case where the material initially melts, we must use a crucible, or boat,

to heat up and contain the molten metal. Such materials are e.g. Cu and Au.

The crucibles for these evaporators have to be machined from a metal (in order

to accelerate the electrons) and it must have a significantly higher melting point

than the material we want to evaporate. Crucibles are typically machined from

Mo or Ta. Evaporation from a crucible also enables us to grow semiconductors

and insulators, as we have done with Si and MgO.

The enormous heat produced by an evaporator will be detrimental to the

pressure in the vacuum chamber. As we have discussed, heating walls and com-

ponents in UHV will cause them to outgas more. Therefore each evaporator is

enclosed in a water-cooled shield. This has two purposes, in containing the heat,

and also directing the evaporation flux towards the sample.
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Growth Rate

The evaporation rate can be controlled by varying the high-voltage applied to

the source material or its crucible. In order to quantify the flux rate, we first

direct it onto a quartz microbalance crystal. A frequency counter connected to

this displays the oscillation frequency of the crystal. As material is deposited,

the crystal mass increases, and the oscillation frequency drops. Using previously

established calibration tables,1 we are able to determine and control the rate of

evaporation of the material, and hence estimate the time required to reach the

desired thickness. Unfortunately, with the current set-up of the manipulator and

sample holder, it is not possible for us to grow the film and calibrate on the quartz

crystal at the same time, as the substrate and microbalance are back-to-back.

Therefore, we must establish the rate, expose the substrate for a determined

length of time, and re-calibrate the rate after deposition.

The error in this system can be quite large, especially in two cases. Firstly,

if we want a very slow growth or if the evaporated material has a low density,

the calibration using the frequency counter lacks accuracy. Indeed, if a drop of

several Hz takes several minutes, we require an extensive calibration time. The

second case where this method proves inaccurate is for thicker films, requiring

long growth periods. In this case, variations of the evaporation flux will cause the

actual thickness to differ from what is sought. In order to minimise this effect,

we often check the evaporation rate mid-growth for thicker films.

Growth on a Patterned Substrate

In addition to films, we have also grown layers on polymethyl methacrylate

acrylic (PMMA)-patterned GaAs substrates. PMMA used as a resist can be

patterned by electron beam, deep ultra-violet light, or X-rays. Exposure to these

creates chain scission in the PMMA, and enables subsequent selective removal

of the exposed area by a chemical developer. PMMA allows for extremely high

resolution patterns to be made [45].

In order to control the eventual contamination of the chamber during the

evaporation on a PMMA-patterned substrate, we monitored the ion gauge pres-

1These were established by atomic force microscope (AFM) and X-ray reflectivity (XRR)
measurements.
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Figure 3.2: Sample ]20.03.2006 ; Growth on a PMMA-patterned substrate. Evolution
of the (a) substrate temperature; (b) ion pump current; and (c) ion gauge pressure
reading. The final point at 34:05 hours is taken the morning after the growth.

sure closely, as well as the partial pressures of residual gases throughout the

growth. In our case, the substrate had been patterned by electron-beam, and

had therefore already been exposed to vacuum, but the heat generated by the

evaporators and the material flux could potentially release the acrylic into the

chamber.

The data collected during this growth is shown in figures 3.2 and 3.3. We

note that in both of these figures, the final point at 34:05 hours corresponds to

data taken the morning following the growth, after the chamber had recovered

overnight. As one concern was the heating, and degradation of the PMMA,

we did not thermally treat the substrate prior to the growth. Furthermore, we

monitored the substrate temperature during the entire growth process. As we

see in figure 3.2(a), the substrate temperature rises only slightly to 24.5◦C due

to the evaporators’ heat.

The pressure variations throughout the growth recorded by the ion pump,

ion gauge, and mass spectrometer follow each other closely. The two peaks
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Figure 3.3: Sample ]20.03.2006 ; Partial pressures of selected residual gases during a
growth on a PMMA-patterned substrate, as indicated by the mass spectrometer readings.
The final point at 34:05 hours is taken the morning after the growth.
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Figure 3.4: SEM image of an anti-dot array in a Hall bar. The dot size is 100 nm, and the
film is 3 nm Au/30 nm Co/GaAs. SEM image courtesy of Tiejun Meng, Semiconductor
Physics Group, Cambridge.

present correspond to the switching on of the Co and Au evaporators. In the

first instance, upon being heated the source material will outgas water and air

trapped in the source. In this case, we see from the mass spectrometer readings

in figure 3.3 that N2 or CO2 are the dominant gases which are being released.

We also see that the outgassing of the Au source is significantly stronger than

that of the Co rod. This is due in part to the chemical properties and softness

of Au, but also the aforementioned fact that Au melts before evaporating, thus

enabling it to trap and release more gas bubbles than in the case of sublimation.

As soon as the evaporator is switched off, the source stops outgassing, and the

chamber rapidly recovers to its base pressure in the 10−10 mbar range.

For this specific sample, we grew a 30 nm Co layer and capped it with 3

nm Au. The pattern was a 30 µm × 10 µm Hall bar with an anti-dot array,

with features in the PMMA pattern as small as 100 nm. Liftoff for such small

features was not always successful for the whole Hall bar, and depends on the

PMMA thickness and electron-beam exposure. A scanning electron microscope

(SEM) image of a successful liftoff region is shown in figure 3.4. Our conclusions

regarding the chamber were that the growth on a PMMA-coated substrate did

not affect the vacuum or contaminate the chamber.
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3.1.4 In situ Characterisation

A surface can be defined as a boundary between materials and a vacuum. Nowa-

days, a wide variety of diffraction, spectroscopy, and microscopy techniques are

available for the characterisation of thin films and surfaces. Here we will present

the techniques of RHEED and LEED, which we used in situ to characterise our

surfaces and films.

The origin of diffraction patterns from a crystal are most easily understood by

the use of a reciprocal space lattice and the Ewald sphere construction. If a 3D

crystal is defined by the primitive vectors a, b, and c, we have the corresponding

reciprocal lattice defined by a∗, b∗, and c∗. For an incident plane wave with

wave vector k0, there will be a set of diffracted waves from the crystal with

wave vector k′ defined by k′ − k0 = g, where g is a reciprocal space vector (i.e.

g = ha∗ + kb∗ + lc∗, where h, k, l are integers). This defines the condition for

diffraction maxima, and is a statement of the normal Laue diffraction conditions.

The diffracted beams in the backward direction are referred to as Bragg maxima,

and in the forward direction as Laue maxima [59].

Reflection High-Energy Electron Diffraction

RHEED was first used by Miyake in 1937 and has since then been widely applied

to monitor thin films during and after deposition. Figure 3.5 shows the scattering

geometry of RHEED. The incident electron beam strikes the sample surface at

a grazing angle of 1-3◦. The electron beam energy can range from a few keV to

1000 keV, though in our system we always set the beam energy to 12-15 keV.

The electrons then diffract onto a phosphorescent screen positioned opposite the

electron gun. On this screen we can observe and capture the diffraction pattern,

which might be spots, streaks, or half-rings.

There are several possible sources for producing streaks perpendicular to the

surface on RHEED patterns. The first is the small penetration depth of the

beam into the crystal surface, which is equivalent to sampling a thin sheet crystal

which is thin in the direction nearly perpendicular to the incident beam. The

other source is surface morphology and disorder, which produce reflections that

do not fall on the position of Bragg maxima. Finally, the curvature of the Ewald

sphere for electron energies of a few tens of keV is significant, also giving rise to
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Figure 3.5: Schematic of RHEED apparatus and diffraction from a crystal surface.
The angle of incidence θ is usually constrained to a few degrees in order to limit the
penetration of the electrons into the bulk.

streaks in the RHEED pattern [60].

Low-Energy Electron Diffraction

LEED electrons are at a much lower energy than those used in RHEED, typically

80 − 150 eV. These are accelerated to the sample surface and back-scattered

through a series of grids. The scattered electrons may have been elastically or

inelastically scattered, though only the former are used in the case of LEED. A

schematic of the LEED apparatus is shown in figure 3.6, where we see the three

detection grids. The first grid is at the potential of the sample (earthed), but the

second is held at a potential close to the beam voltage so that only elastically

scattered electrons can pass through it. The inelastically scattered lower-energy

electrons are stopped. The final grid may be positively charged to accelerate

the accepted electrons onto the fluorescent screen, which will also be held at a

high voltage ∼5 kV to allow for the excitation of the phosphor. We note that

in LEED, the electrons diffract off the surface layer almost exclusively, due to

their low energy, and so do not provide information on the bulk structure of the

crystal, but can be very powerful to recognise surface crystallography e.g. surface

reconstructions [59, 61].

Magnetic Characterisation

As we have mentioned above, our UHV chamber contains a magnet capable of

applying a 2 kOe field in the plane of the sample. This enables us to perform
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Figure 3.6: Schematic of LEED apparatus. The potential of the second grid is held
close to the beam voltage so that only elastically scattered electrons can pass through
it.

in situ magnetic characterisation measurements at the different growth steps of

samples. The two in situ techniques we have used in our UHV chamber are

MOKE and BLS.

In situ MOKE The principles of MOKE will be discussed in detail in section

3.2.1 below. The basis of the experiment lies in the detection of polarisation

rotation of light due to the magnetisation of a reflective surface. The laser,

focussing and polarising optics, and detector are all on the outside of the chamber.

All we require is for the beam to be reflected off the sample surface inside the

chamber. This is done through the UHV viewports seen in figure 3.1, which

specifically angle out from the magnet gap position at the manipulator.

There are two main challenges when taking MOKE measurements on a sample

in a UHV chamber. The first, as with any optical set-up, concerns the alignment.

As it sits in the chamber, the sample can be rotated in three dimensions, but its

movement is still very limited as it must remain in the magnet gap, and the beam

must be reflected through the viewport. The second obstacle regards the conser-

vation of the beam polarisation as it passes through the UHV viewports. Typical
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UHV viewports are glass sealed in the UHV flange mounting. Unfortunately this

seal can produce an uneven force throughout the viewport. In addition to this,

upon tightening the flange to the chamber we may also induce uneven forces in

the viewport. This stress will not damage the glass, but may have depolarisation

effects on passing light by introducing stray birefringence.

In situ BLS BLS requires the collection of back-scattered light from the sam-

ple. For the in situ set-up, the beam enters the chamber through a lens and

viewport mounted on bellows (unfortunately wrapped in Al foil in figure 3.1).

The lens on the bellows allow us to focus the incident beam onto the sample and

collect the back-scattered light. The energy shift of the back-scattered light is

then detected and determined ex situ.

3.2 Magnetic Characterisation

3.2.1 Magneto-Optical Kerr Effect Magnetometry

Our understanding of magneto-optical effects is historically rooted in the work of

Michael Faraday (in 1846) and of Rev. John Kerr (in 1877), who were the first

to study the influence of magnetised media on the polarisation of transmitted

and reflected light, respectively. The surface-MOKE effect made its debut as

an experimental technique to study magnetism in 1985, when it was first used

to detect ferromagnetic hysteresis loops from epitaxial Fe deposited on Au(100)

[62].

Theoretical Formalism

Macroscopically, the Kerr effect can be described by off-diagonal terms in the

dielectric tensor ε. In the case where the incident light and magnetisation are

both along the surface normal, we have:

ε = N2


1 iQ 0

−iQ 1 0

0 0 1

 , (3.1)
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where N is the refractive index and Q is the magneto-optical constant (Voigt

constant) of the medium. The light entering the magnetised medium can be

decomposed into beams that contain exclusively left- or right-circularly polarised

modes. Different indices of refraction n are assigned to these two modes and we

have:

n = N(1± gQ), (3.2)

where g is the direction cosine between the propagation vector of the light k

and the magnetisation direction M. The two circular modes travel with different

velocities, attenuate differently, and upon emerging from the medium in reflection

they recombine to yield a rotated axis of polarisation.

On a microscopic level, MOKE is a consequence of the interaction between

the electro-magnetic wave comprising the light and the electrons in the medium.

The electrons in the material are coupled to the internal magnetic field which

leads to a change of the electro-magnetic wave. The following formalism of the

magneto-optical (MO) effect is based on [63] and [64].

Let us first consider the case of a single layer and light travelling from medium

1 into medium 2, where the xy-plane is the boundary between the two media.

Expressed in terms of the electric fields of the incident (i) and reflected (r) waves

we have:

F =


Ex

Ey

Hx

Hy

 = AP = A


E

(i)
s

E
(i)
p

E
(r)
s

E
(i)
p

 , (3.3)

where Ex, Ey and Hx, Hy are the tangential components of the light’s electric

and magnetic fields, respectively. The 4×4 matrix A which connects the column

vectors F and P is called the medium boundary matrix. The elements of A are

constructed from the geometric angles of the problem and from the N and Q

values of the medium. The boundary condition across the single boundary in the

2-medium case requires:

A1P1 = A2P2. (3.4)

If there is more than one boundary, the wave propagation inside the medium
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at a penetration depth z from the interface is described using the medium prop-

agation matrix D, and we can write

P2(z = 0) = D2(z)P2(z). (3.5)

If we consider a multilayer system of l layers, noting i the initial medium,

and f the final layer, or the substrate. For the l layers we have:

AiPi =
l∏

m=1

(AmDmA−1
m )AfPf , (3.6)

which we can reformulate as Pi = MPf with

M = A−1
i

∏
m

AmDmA−1
m Af ≡

(
G H

I J

)
, (3.7)

and the 2 × 2 matrices G and I can be used to obtain the Fresnel transmission

and reflection coefficients t and r, as:

G−1 =

(
tss tsp

tps tpp

)
and IG−1 =

(
rss rsp

rps rpp

)
. (3.8)

Finally, the Kerr rotation φ′ and ellipticity φ′′ for s- and p- polarised light

can be expressed as:

φs = φ′
s + iφ′′

s = rps/rss and φp = −φ′
p + iφ′′

p = rsp/rpp. (3.9)

Details of the matrices A and D are given in reference [64].

Experimental Details

There are three geometries which are most commonly used for MOKE, illustrated

in figure 3.7. These are the longitudinal, transverse, and polar geometries. In

the longitudinal geometry, the film magnetisation lies in-plane, and parallel to

the plane of incidence of the light. The field is also in-plane for the transverse

geometry, however the magnetisation is now perpendicular to the plane of inci-

dence. Finally, in the polar geometry the film magnetisation is along the surface

normal. In theory the magnetisation can be in any arbitrary direction, but these
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Figure 3.7: Geometries for MOKE measurements: (a) longitudinal; (b) transverse; and
(c) polar.

three geometries simplify the algebra in describing the interaction. Further sim-

plification is realised by considering only p- or s-polarised light, for which the

polarisation vector is in the plane of incidence or perpendicular to it, respec-

tively.

We used a stabilised Melles-Griot
TM

HeNe laser operating at 632.8 nm. A

schematic of the set-up is shown in figure 3.8. The laser light is already linearly

polarised but we enhanced the degree of polarisation, and hence the s-component

selectivity, by passing it through a first polariser P1. The light is then focussed

on the sample, and the reflection passes through a second polariser P2 before

being focussed on a photodiode. The sample sits in between the pole-pieces of

an electro-magnet capable of producing a 2 kOe field, and can be rotated in the

field.

In the longitudinal and polar geometries, the magnetisation of the sample

surface changes the polarisation of the reflected light2. In these cases, the film

magnetisation gives rise to a modulation of the p-component of the reflected

light. In our experiments, polariser P2 is rotated 0.5-1◦ away from the extinction

point (P1 and P2 crossed) in order to maximise the signal-to-noise ratio. Indeed,

it has been shown that the quantity ∆I/I, which is the difference in intensity

between the light amplitudes for opposite magnetisation divided by the average

amplitude, peaks at a very small angle ∼1◦[66].

2In the transverse geometry there is no change in the polarisation of the reflected light as
there is no component of the light propagating along the magnetisation direction. Transverse
MOKE involves only a small change in the reflectivity, hence the intensity of the reflected beam,
upon magnetisation reversal for p-polarised light [62, 65].
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Figure 3.8: Schematic of the longitudinal MOKE set-up. The sample can be rotated in
the field.

3.2.2 PNR and SQUID

The following overview of the PNR technique is adapted from Polarized Neutrons

by Williams [67]. The method of measuring the critical reflection of polarised

neutrons to obtain information on the depth profile of surface magnetism was pi-

oneered at the Argonne National Laboratory by Felcher in 1981. An evaluation

of the neutron reflectivity of a surface at angles slightly greater that the critical

angle θc provides a very sensitive probe to the way that the refractive index n

changes as a function of its distance z from the surface. For polarised neutrons

and magnetic materials, n takes two values, one for polarised neutrons parallel,

and one for polarised neutrons antiparallel to the direction of the magnetic in-

duction in the material. Knowing this we can determine the two distinct spin

reflectivities, which are finite and detectable at glancing angles of incidence.

A SQUID is formed from a superconducting loop containing at least one

Josephson junction3. If the loop encloses some magnetic flux, there must be

some circulating current because it is superconducting. This current consists of

3Josephson Effect: Current flow across two weakly coupled superconductors, separated by a
very thin insulating barrier, for example.
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Figure 3.9: Illustration of Bragg’s law of diffraction from a crystal with inter-plane
spacing d. Constructive interference occurs when AB + BC = nλ.

Cooper pairs4 whose wave functions form standing waves around the ring. There

is a phase discontinuity across the junction, which is a function of the current

flowing and hence of the magnetic flux [68].

3.3 X-Ray Diffraction and Reflectivity

X-rays are made by accelerating electrons from a W filament onto a target which

is usually Cu. This process is very inefficient, generating mostly heat, some white

radiation, but also some radiation at a characteristic wavelength, typically Cu

Kα for which λ = 1.5418 Å. X-ray diffraction (XRD) and XRR are powerful

tools to determine the crystal structure and layer properties in thin film samples.

XRD can provide information on crystalline orientation and XRR will yield layer

thickness and roughness data. We have used both of these techniques to char-

acterise samples throughout the course of this work. All of these measurements

were performed on a Philips X’Pert Pro
TM

high-resolution diffractometer at the

Department of Materials Science and Metallurgy, University of Cambridge. Here

we will present an overview of the principles of XRD and XRR.

3.3.1 X-Ray Diffraction

Bragg’s law, illustrated in figure 3.9, is the condition for constructive interference

from a series of planes, and can be expressed by the simple relation:

4Cooper electron pairs: Bound pairs of electrons with boson-like behaviour to which super-
conductivity is attributed.
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2d sin θ = nλ, (3.10)

where d is the interlayer spacing, θ is the angle of incidence, λ is the incident

wavelength, and n is an integer. Thus, by varying the incident angle5 θ, we can

determine the interlayer spacing.

There are three diffraction peak properties that will provide information on

the measured sample. These are the position, intensity, and profile, commonly

referred to as the ‘P-I-P’. All three of these are dependent on the instrumental

parameters but also various properties of the sample, and each can be useful in

different applications of XRD.

Peak Position A peak occurs at a point of constructive interference. As we

have seen, the peak position is controlled by the repeat distance in the sample,

and the wavelength. Determination of the peak position will therefore be useful in

applications such as the determination of lattice parameters, phase identification

and film strain. In high-quality films or super-lattices it is also possible to extract

thickness information from fringe peaks.

Peak Intensity The peak intensity is related to the structure factor. This is

a mathematical description of how the crystal scatters incident radiation, which

depends on the hkl Miller indices of a given reflection. The intensity also depends

on the type and position of atoms, and the amount of the sample in the path of the

X-ray beam. The intensity will provide information on the chemical composition,

crystallinity and crystalline defects of the sample.

Peak Profile Finally, the peak profile or width is inversely proportional to

the crystallite size, or the dimension Dhkl, perpendicular to the hkl plane6. If

this is very small the peaks will broaden. The peak profile is determined by the

sample perfection, and provides information on the crystallinity, crystallite size

and crystalline defects.

5In Laue diffraction, the wavelength λ is varied, at fixed θ.
6The Debye-Scherrer equation: Dhkl = Kλ

β sin θ
, where K is usually taken as 1, and β is the

width of the peak, in radians.
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3.3.2 X-Ray Reflectivity

XRR is an extension of optical reflectivity to the X-ray domain. In the ideal case

we consider specular reflections from a surface and multilayer. That is, the angle

of reflection is the same as the angle of incidence. The XRR signal is collected

as both angles are varied simultaneously.

One of the simplest formulas describing theoretically expected reflectivity

from ideally smooth, sharp, and structureless interfaces was derived by Augustin-

Jean Fresnel in the early 19th century and is known as Fresnel reflectivity. For

angles of incidence above that of total reflection, the intensity of the specularly

reflected beam is given by:

R =
∣∣∣∣n1 sin θ1 − n2 sin θ2

n1 sin θ1 + n2 sin θ2

∣∣∣∣2 , (3.11)

where n1,2 are the refractive indices in the first and second media, and θ1,2 are the

angles of propagation away from the plane of the sample. This can be extended

to many interfaces, or simplified to the case of one layer, where we can consider

the path difference to determine the occurrence of constructive interference, thus

leading to an expression for the thickness t, as will be given below (equation

3.12).

XRR is highly sensitive to electron density changes and gradients irrespective

of crystallinity [69]. Fitting XRR scan data enables us to extract information

on thicknesses, interface roughness amplitudes, and densities of single and multi-

layered samples. Figure 3.10 shows a simulation of an XRR scan of a 50 nm

Fe layer grown on GaAs, and capped with 5 nm Au. There are three main

features to be noted. Firstly, the critical angle, at (a), whose position yields the

average electron density. The second feature is the spacing of the interference

fringes, the Kiessig fringes. This will enable us to calculate the thickness, t, of

the corresponding layer. We can accurately estimate t by using the relation:

t =
λ

2∆α
, (3.12)

where ∆α is the fringe spacing. As we see, the fringe spacing is inversely propor-

tional to the layer thickness. In figure 3.10 we can identify the two oscillations

corresponding to (b) the thick Fe layer, and (c) the thin Au cap. Finally, the
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Figure 3.10: Example of calculated XRR data. In this case the sample is 5 nm Au/50
nm Fe/GaAs. The roughness amplitude for each of the interfaces and surface was set to
5 Å. (a) the critical angle; (b) Kiessig fringes from the Fe layer; and (c) Kiessig fringes
from the Au cap.

roughness of each interface can also be extracted from XRR data. This can be

deduced from the amplitude of oscillation of the Kiessig fringes, and also the

decay of the signal. Interface roughness reduces the specularly reflected inten-

sity; the ‘missing’ intensity is scattered in different directions than that of the

detector, and hence the count rate decreases.



Chapter 4

Fe/GaAs and Fe/InAs

Magnetic Moment

Abstract

We present magnetometry data for a range of Fe thicknesses (0.4 - 23

nm) grown on GaAs and InAs substrates in order to determine the

factors governing the evolution of the magnetic moment of epitaxial

Fe grown on a zinc-blende semiconductor. In this comparative study,

all the samples on both substrates were grown under the same con-

ditions. We observe a greater reduction of the Fe magnetic moment

for films grown on InAs as compared to GaAs. We conclude that the

growth conditions, in particular interface and interdiffusion effects, are

the dominant mechanisms influencing the value of the magnetic moment

for ultra-thin Fe films on GaAs and InAs.

Introduction and Outline

The pioneering of magnetic materials deposition on semiconductors in the 1980’s

opened new avenues of research and device possibilities [34]. Since then, ferro-

magnet/semiconductor (FM/SC) heterostructures such as Fe/GaAs and Fe/InAs

have attracted considerable attention due to their possible application in future

magneto-electronic devices. Such devices make use of the spin of the electron

in addition to its charge, the token example being the spin-polarised transistor,
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proposed by Datta and Das in 1990 [5]. Much of the current research on thin

magnetic films has focussed on the Fe/SC system, and in particular the Fe/GaAs

system [36, 70–74]. However, it has become apparent that the interface between

the SC and FM layer in these spintronic devices is crucial to their potential

uses. Indeed the quality of this interface, and specifically morphological and in-

terdiffusion effects may drastically affect ultra-thin magnetic films grown on SC

substrates [31].

We carried out a comparative study of the two systems Fe/GaAs(100) and

the closely related Fe/InAs(100) [75, 76] to determine the evolution of the Fe

magnetic moment as a function of thickness. First we will briefly discuss the

preparation of the substrates and growth of the epitaxial Fe layers. Then we will

present structural and magnetic characterisation data for the range of samples,

using both in situ and ex situ methods. Finally we will present our conclusions

on the evolution of the Fe magnetic moment on GaAs and InAs as a function

of thickness, interpret the data trends and compare ours to previous work and

results [77, 78].

4.1 Growth and In situ Characterisation

4.1.1 Substrate Preparation and Sample Growth

The GaAs substrates we used for this study were prepared with an undoped GaAs

buffer-layer in a separate SC UHV MBE chamber, and As-capped before transfer

into our metals deposition chamber described in chapter 3. After loading, we first

degassed the As-capped substrates and sample holder at 200◦C for 2 hours. Then

the temperature was raised to ∼420-480◦C for 20 minutes to desorb the As cap,

and ensure the arsenic was pumped out of the chamber. In the final surface

preparation step we increased the temperature to ∼550◦C for 1 hour, to obtain

a clean and ordered GaAs(100)-P(4×6) reconstructed surface.

For the InAs substrates we used commercial ‘epi-ready’ wafers n-doped with

sulfur (n ≈ 1018 cm−3). These did not have an InAs buffer layer or As-cap,

so required wet-etch preparation before loading into the UHV chamber. The

wet-etch procedure included an acetone ultrasonic bath, isopropanol and then

deionised water rinse. We then cleaned the substrate in an oxygen plasma etch
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Figure 4.1: LEED patterns from: (a) GaAs substrate exhibiting the P(4×6) reconstruc-
tion; (b) 0.4 nm Fe/GaAs; (c) InAs substrate exhibiting a c(8×2) reconstruction; and
(d) 1.3 nm Fe/InAs.

for 30 seconds, before dipping them in HCl:H2O (1:4) solution for 30 seconds to

etch the native oxide layer. We then rinsed the substrates in deionised water

and isopropanol again, and loaded them as quickly as possible in the vacuum

chamber. After loading, we also degassed the substrates and sample holder at

200◦C for 2 hours, and then annealed them at ∼500◦C for 1 hour, to obtain a

clean and ordered InAs(100)-c(8×2) reconstructed surface.

We grew the ultra-thin (thickness ranging from 0.4 to 23 nm) Fe films epi-

taxially at RT in the UHV MBE system described in chapter 3, from the tip of a

high-purity (99.99+%) Fe rod. The base pressure in the chamber was ∼3×10−10

mbar, and the pressure during growth was kept below 3×10−9 mbar, with a de-

position rate of ∼1 ML/minute for the Fe. After the Fe growth, we capped each

sample with either Au or Cr, in order to protect the Fe layer from oxidation

and degradation upon exposing it to air. The thickness of the capping layer was

always above 3 nm. We usually grew a thick (∼ 10-15 nm) Au cap so that it

would be very different to the Fe layer’s thickness, and subsequently ease the

fitting of the XRR and PNR data.

4.1.2 In situ Characterisation

Once the substrate was loaded and the surface was cleaned and ready for growth,

we controlled its quality in situ using LEED and RHEED. Representative LEED

patterns of the GaAs and InAs substrates are show in figure 4.1(a) and (c),

respectively. Due to the relatively high annealing temperatures of the substrates

and the volatility of surface As, we expect a Ga-rich surface, verified by the

observed GaAs(100)-P(4×6) reconstruction. The same applies for the surface As
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Figure 4.2: RHEED patterns from (a) GaAs(100) substrate; (b) 1.1 nm Fe/GaAs; (c)
InAs(100) substrate; and (d) 5 nm Fe/InAs.

atoms of the InAs, though in addition to this we also expect In clustering at

the surface [79]. Finally, the high content of S dopant atoms lead us to expect

the c(8×2) surface reconstruction, which we observe in figure 4.1(c). Figures

4.1(b) and (d) show the first visible LEED patterns from the (thinnest) grown

Fe film. The faint spots we observe for the growth on both substrates are already

indicative of the emerging body-centred tetragonal (bct) (strained bcc) structure

of the Fe films. The fact that a pattern is visible for such a low thickness and

coverage of Fe (< 0.5 nm) suggests a flat Fe film surface. We note however

that there was no visible LEED pattern for the thinnest (0.6 nm) Fe film on

InAs(100). The larger lattice mismatch between Fe and InAs (-5.37%) disfavours

early stage epitaxy at RT and therefore requires thicker films as compared to

Fe/GaAs (lattice mismatch of 1.36%).

We also monitored the surface quality of the substrates prior to growth using

RHEED. Whereas the LEED provides valuable information regarding surface

reconstructions, the RHEED allows one to gauge the roughness of a surface, due

to the low incidence angle of the incident electron beam. Representative RHEED

results are shown in figure 4.2. Again, figures 4.2(a) and (c) show the patterns

for the substrates prior to growth, where we observe Kikuchi arcs and even sharp

spots on the second Laue ring, indicative of smooth and long-range ordered

crystalline surfaces. Figures 4.2(b) and (d) show RHEED patterns from Fe/GaAs

and Fe/InAs films, indicating smooth and epitaxial films, in agreement with the

LEED results. As previously mentioned, after the in situ characterisation and

growth we capped the samples with Au or Cr to protect the magnetic layers

before removing them from the UHV chamber.
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4.2 Ex situ Characterisation

4.2.1 Thickness and Roughness through XRR

We performed further structural characterisation ex situ by XRR. This confirmed

that the Fe/SC interfaces were very sharp, and provided an additional calibration

for the thickness of the Fe films, to complement the quartz microbalance readings

used during the deposition (cf. chapter 3). Figure 4.3 presents two of these XRR

scans, which are representative for all samples. Fits to the data provide values for

the thickness and roughness of the heterostructures. For these fits, the Fe atomic

density was kept constant at its bulk value, while the density of the capping

layer was allowed to vary slightly, to account for oxidation (of the Cr) and/or

the possibility of imperfect epitaxial growth. Assuming reacted interface layers

[70, 76] and/or oxidised capping layers [80] did not change the fits significantly,

suggesting that they cannot be distinguished from our stated errors for the Fe

thickness and roughness [81], and only add unnecessary parameters to the fits.

The thickness values we obtained from the XRR scans and fits were in general

agreement with the calibration from the growths of the samples. However we

found that for very thin films, the number of fringes on the XRR scan (inversely

proportional to film thickness) was sometimes too small to allow us to deduce an

accurate value for the thickness. For the thicker films we sometimes came across

slight discrepancies between the nominal thickness and the XRR fit result, which

we attribute to variations of the MBE flux during the evaporation of Fe. With

a slow deposition rate of ∼1 ML/min, a typical Fe film (e.g. 15 nm) would take

us slightly over an hour to evaporate.

The roughness amplitude values for the Fe/SC interfaces were ∼0.3 ± 0.2 nm

for Fe/GaAs, and∼0.6± 0.2 nm in the case of Fe/InAs. The roughness amplitude

between the magnetic layer and Au or Cr capping layer was estimated as ∼0.5

± 0.2 nm. These values remained fairly similar for the whole range of samples.

We attribute the larger roughness at the Fe/InAs interface (as compared to the

Fe/GaAs case) to two main reasons. Firstly, we note that our InAs(100) were not

As-capped, and therefore presented a potentially lower-quality surface to grow

Fe on, despite the various etching and preparation steps detailed in section 4.1.1

above. In addition to this, the higher lattice mismatch for the case of Fe/InAs

is expected to lead to more defects and strain relaxation sites, and hence greater
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Figure 4.3: Low-angle XRR measurements and fits of (a) 5.2 nm Au/15.9 nm
Fe/GaAs(100); and (b) 7.3 nm Cr/1.3 nm Fe/InAs(100). The fits assume bulk den-
sity for the Fe.
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Figure 4.4: MOKE loops of (a) 0.4 nm; (b) 0.6 nm; and (c) 1.5 nm thick Fe layers on
GaAs(100), with the field applied in-plane along 3 directions.

roughness at the interface.

4.2.2 Magnetic Characterisation

We conducted magnetic characterisation of the films using vector MOKE mea-

surements, PNR and SQUID measurements at RT (SQUID also at low temper-

atures).

We took longitudinal MOKE measurements along three in-plane axes to de-

termine the saturation fields, magnetic anisotropies and the magnetic state of the

different heterostructures. The results for the thinnest films on GaAs and InAs

are shown in figures 4.4 and 4.5, respectively. These showed that the thinnest Fe

films (0.4 ± 0.2 nm) on GaAs were still in a superparamagnetic state. Similarly,

three axes in-plane MOKE results for the Fe/InAs films show that films of thick-

ness 0.6 ± 0.2 nm and below are still in a superparamagnetic state [41, 71, 75].

As we actually expect a 0.6 nm Fe film on InAs to have switched to a FM state

[75], we deduce that our thinnest film must be at least 0.1 nm thinner than the

nominal growth thickness.

The anisotropies for the cases of both substrates were verified to switch from
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Figure 4.5: MOKE loops of (a) 0.6 nm; (b) 1.3 nm; and (c) 1.5 nm thick Fe layers on
InAs(100), with the field applied in-plane along 3 directions.

uniaxial to cubic with increasing thickness. This occurs after ∼50 ML ≈7.2 nm in

the case of GaAs [36, 37]. The in-plane uniaxial magnetic easy axis for Fe/GaAs

is along the [011] direction, with the hard axis along the [011] direction. This

uniaxial anisotropy can be seen emerging in figure 4.4. For Fe/InAs however the

switch from uniaxial to cubic anisotropy happens earlier, at ∼12 ML ≈1.7 nm

[82]. In this case, as shown in figure 4.5, the uniaxial magnetic in-plane easy axis

is along the [011] direction, with the uniaxial hard axis along the [011] direction.

PNR allows us to simultaneously determine the magnetic moments, as well as

thicknesses and interface roughnesses, which can also be determined by XRR. We

also performed SQUID magnetometry measurements to estimate the magnetic

moment of some of our films. Representative SQUID loops for this study are

shown in figure 4.6. As the SQUID is sensitive to the total magnetisation of the

sample rather than to the atomic moment, we used the XRR thickness calibration

to calculate the volume of the deposited Fe for each sample, and estimate the

magnetic moment per atom. We used the PNR measurements combined with

the SQUID/XRR data to determine the value of the magnetic moment of the

Fe films and thereby the evolution of the Fe magnetic moment with thickness at
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Figure 4.6: SQUID loops of a Fe/InAs(100) film, of nominal thickness 2.2 nm, taken at
(a) 10 K; and (b) 293 K. XRR revealed that the Fe film was in fact 1.5 ± 0.2 nm.

RT.

4.3 Results and Discussion

4.3.1 Evolution of the Magnetic Moment

Figure 4.7 shows a compilation of our experimental results, obtained from PNR

and SQUID/XRR results. The fits correspond to a power law (insets in the fig-

ure) used to approximate the evolution of the magnetic moment with thickness,

which includes a bulk and a surface term. The green horizontal lines repre-

sent the bulk magnetic moment of Fe at RT. For comparison, we include the

magnetic moment values estimated previously by other groups for both types of

heterostructures [71–74, 76, 83–85]. It must be noted that some of these values

from the literature are extrapolated to RT, or the samples were grown under

slightly different conditions to ours. We conclude from our and other groups’

results that the interface drastically affects the magnetic moment of ultra-thin

Fe layers.

For the RT growth of Fe, we chose the Ga-rich P(4×6) reconstructed GaAs(100)

and In-rich c(8×2) InAs(100) surfaces, to avoid excessive As segregation into the

Fe films. It has been shown that for Fe/GaAs(100) heterostructures that Ga

tends to segregate into the Fe films but remains close to the interface for thick-
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Figure 4.7: The magnetic moment µB/atom vs. thickness for (a) Fe/GaAs(100); and
(b) Fe/InAs(100). The horizontal green lines represent the bulk magnetic moment of
Fe at RT, and the fits are simulations to our data. For comparison, we also present
magnetic moment values estimated by other research groups. Insets: the power-law fits
to our data. At very low coverages, the magnetic moment value goes to zero due to
magnetically inactive compound layers (see main text).
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nesses above 0.4 nm, and does not float on the surface for RT grown films [70].

In contrast, indium has a low solubility in Fe and therefore a small amount of

In tends to float besides the As on the Fe surface. Also, from the fainter LEED

patterns of thin Fe/InAs, we deduce that the InAs(100) surfaces were rougher

than the GaAs(100) surfaces, despite being equally well ordered. This transpired

in the XRR results, which indicated that the average roughness for the Fe/GaAs

samples was 0.1 - 0.3 ± 0.2 nm, for the whole thickness range, whereas the XRR

fits yielded roughness amplitude values of 0.4 - 0.6 ± 0.2 nm for the case of

Fe/InAs. These correspond to ∼2 and ∼4 ML of Fe, respectively. We believe

that an epitaxial InAs buffer layer, protected by an As cap for transfer would im-

prove the roughness of the InAs substrates. It is also possible that a post-anneal

or a high temperature growth (e.g. 175◦C [86]) may improve the crystallinity

of the ultra-thin Fe layers on InAs, but this would also result in increased in-

terdiffusion between the Fe and the substrate [87]. In fact we expect this to be

the case for both GaAs and InAs, and it is not desirable for spintronic device

applications.

The fit shown in figure 4.7 is a fit to our data only, and established from a

constant bulk term and a thickness-dependence surface term [78]. This fit was

made with two assumptions, namely that the Fe magnetic moment is zero at

zero coverage; and the Fe magnetic moment reaches its bulk value1 either when

the Curie temperature, TC , reaches 1040.2 K, or the film thickness approaches

infinity. An expression for the TC of Fe grown on GaAs(100)is given by Bensch

et al. for tFe > 0.358 nm [71]:

TC(tFe) ≈ (
tFe

0.358 [nm]
− 1)0.837K. (4.1)

The power law fit to our data is, in units of µB/atom is:

µRT
Fe/GaAs(tFe) ≈

0 tFe ≤ 0.21 nm

−0.471
tFe

+ 2.18 tFe > 0.21 nm.
(4.2)

The same assumptions were made for the case of Fe/InAs, which leads to the

following power-law fit:

1Bulk Fe magnetic moment at RT ≈ 2.18 µB/atom.
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µRT
Fe/InAs(tFe) ≈

0 tFe ≤ 0.52 nm

−1.1439
tFe

+ 2.18 tFe > 0.52 nm,
(4.3)

again in units of µB/atom. The value of the magnetic moment is zero until a

certain coverage is reached. This is calculated as being 0.21 nm (' 1.5 ML Fe)

and 0.52 nm (' 3.6 ML Fe) for the cases of Fe/GaAs(100) and Fe/InAs(100),

respectively. This corresponds to the formation of magnetically inactive, or ‘dead’

layers. Only above these thickness values does the Fe film form in a bcc structure

(in fact a bct structure at first). Prior to this, the Fe merely constitutes part of an

underlying intermixed layer (e.g. Fe2As). We note that this thickness of 1.5 ML

for the case of Fe/GaAs corresponds exactly to the thickness of the Fe2As ‘seed’

crystal layer as suggested by an STM study of this system [31]. Unfortunately

there is no similarly precise STM study of intermixing for the case of Fe/InAs,

though there are reports of distorted Fe growth and intermixing between the FM

and SC for coverages below 5 ML [86, 88].

Comparison of the two fits reveals that the Fe moment decreases faster with

decreasing thickness in the case of Fe/InAs. There are several interplaying mech-

anisms that govern the magnitude of the total magnetic moment at a given thick-

ness at RT. Firstly, the Curie temperature depends on the film thickness due

to the size effects and is below RT for coverages below ∼0.5 nm [71, 75]. We

also observe this in our MOKE results, which show that the thinnest films are

not yet in a ferromagnetic state. Secondly, it seems that at low coverages the

interface roughness can have a particularly large effect, possibly overwhelming

an enhancement of the total magnetic moment at the interface due to the sym-

metry breaking. In addition to this, an increased Fe/SC interface surface due to

roughness favours interdiffusion of the present atomic species. Interdiffusion in

general leads to a decrease of the magnetic moment and in the worst case, for

films grown at high temperatures, to the presence of thicker magnetically ‘dead’

layers or ‘half-magnetisation’ phases [70]. Compared to this, we expect the strain

induced by the pseudo-morphic growth of the Fe films on the SC to have only

a small influence on the magnetic moment due to the volume changes in the

distorted bct Fe cell, as compared to bulk bcc Fe [89]. In addition, this influence

is reduced as soon as the films begin to relax to their bulk lattice parameters.
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Finally, the reduction of symmetry at the interface can lead to an enhancement of

the total magnetic moment, as suggested by the results of Claydon et al. [73, 85],

in particular of the orbital moment component at a coverage just above the onset

of ferromagnetic order. This orbital contribution, however, is counterbalanced

by the reduction of the moment due to roughness or interdiffusion, as indicated

by our results.

4.4 Conclusions and Future Work

In conclusion, we have studied and characterised Fe films grown at RT by MBE

on GaAs and InAs substrates in order to determine the factors governing the

evolution of the magnetic moment of epitaxial Fe grown on a zinc-blende SC

substrate. We observe a greater reduction of the Fe magnetic moment for films

grown on InAs as compared to GaAs, and the Fe films reach a bulk-like moment

(within 10% deviation) at a thickness of ∼2.2 nm and ∼5.2 nm on GaAs and

InAs, respectively. We conclude that the substrate quality and preparation,

growth conditions, and in particular interface and interdiffusion effects are the

dominant mechanisms influencing the value of the magnetic moment for ultra-

thin Fe films on GaAs and InAs.

Further work on this study could focus on two aspects that arose from our

experiments and the literature. Firstly one could further investigate the effect

of the capping layer on the Fe moment. The oxidation of a Cr cap [80] could

affect the measured moment of an ultra-thin Fe film. Also, a possible reduction

of the magnetic moment at the Fe/SC interface may be compensated by an

enhancement at the Au/Fe interface [90]. Following this still, we could investigate

the influence of buffer layers on the Fe/SC system, for instance by having a Fe/1

ML Au/SC sample configuration. Another aspect that would be of interest is to

focus more specifically on the evolution of the moment for the thickness range

near the SP/FM transition. Finally, we could naturally extend and repeat the

study for other FM metals commonly used in device applications.
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Chapter 5

Spin Injection and

Electro-Luminescence

Abstract

Spin injection is performed from an Fe contact into a semiconductor

AlGaAs/GaAs QW structure. We present electrical, magnetic and spin

injection characterisation of such spin-LEDs. We report a ∼1% spin

injection efficiency at RT, increasing to ∼4% at 77 K, as detected by

optical polarisation in the oblique Hanle geometry.

Introduction and Outline

In recent years the emerging field of spin electronics, or spintronics, has captured

the attention of many research groups around the world. Spintronic devices use

the intrinsic electron property of spin, rather than charge. The token example

of such a device is the spin field effect transistor, proposed by Datta and Das in

1990 [5]. The basic concept of such a device sees spin-polarised electrons injected

from a source electrode, and detected electrically or optically at a drain electrode.

The device therefore relies on spin injection, spin manipulation (or control), and

spin detection.

In this chapter, we will examine the injection and optical detection of spin-

polarised electrons into a SC. We will start by presenting the theory and back-

ground of the experiment, including previous relevant work. We will then de-

71
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tail the sample preparation and set-up we used for this experiment, and finally

present results, discuss the outcomes of our current work and possibilities for

further investigation.

5.1 Theory and Background

5.1.1 Principle and Theoretical Introduction

Optical Spin Orientation

Optical spin orientation provides a basis for quantifying spin injection in a pow-

erful approach to research studies of spin transport. Optical spin orientation was

first demonstrated in 1968 by Lampel, where the spin polarisation was detected

using nuclear magnetic resonance [91]. Subsequently, the optical detection of

spin oriented electrons in semiconductors was carried out by several groups, with

Pierce and Meier developing an approach for optically detecting spin-oriented

photo-electrons emitted from GaAs [92].

Figure 5.1 shows a schematic band structure for GaAs, and the allowed transi-

tions for circularly polarised light in GaAs. In GaAs, the valence band maximum

and the conduction band minimum are at the Γ-point, the centre of the Brillouin

zone (k = 0), with an energy gap Eg = 1.42 eV at RT. As a direct band gap

semiconductor, the only transition induced by a photon of energy hν occurs at

Γ. The valence band (p-symmetry) splits into four-fold degenerate P3/2 states

at Γ8, and two-fold degenerate P1/2 states, which lie at and energy ∆=0.34 eV

below P3/2, at Γ7. The P3/2 band consists of two-fold degenerate bands, which

are the heavy hole and light hole sub-bands. The conduction band (s-symmetry)

is two-fold degenerate S1/2 at Γ6. This is shown in figure 5.1(a). When circularly

polarised light with an energy of hν = Eg illuminates GaAs, electrons are excited

from the P3/2 to the S1/2 bands. According to the selection rule (∆mj = ±1),

two transitions for each photon helicity (left and right circular polarisation) are

possible. However the relative transition probabilities for light (mj = ±1/2) and

heavy (mj = ±3/2) holes are different, resulting in a net spin polarisation of

excited electrons in the GaAs [92, 93]. This is illustrated in figure 5.1(b), where

we see that for instance if electrons are excited only from the valence band max-

imum by circularly polarised light, three times more carriers are excited from
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Figure 5.1: (from [92]). (a) E-k diagram of the energy bands near k = 0 for GaAs, which
shows the energy gap (Eg = 1.42 eV) for both heavy and light holes, and the spin-orbit
splitting ∆ of the valence bands. (b) The allowed transitions for σ+ (∆mj = 1) and
σ− (∆mj = −1) circularly polarised light, shown by solid and dashed lines, respectively.
The circled numbers represent the relative transition probabilities.

mj = ±3/2 than from mj = ±1/2. So in theory, a maximum polarisation of 50%

for the resulting carriers1 can be expected for σ+ or σ− excitation.

In the case of the electro-luminescence, these selection rules obviously still ap-

ply, and we are only reversing the experimental method. Now, injected polarised

carriers will emit, upon recombination with holes, different proportions of left

and right circularly polarised light. This polarisation of the light then provides

information on the polarisation of the injected carriers at their recombination

point.

Emission from GaAs Bulk and Quantum Wells

Under uniaxial deformation, the four-fold degeneracy at the top of the valence

band is lifted, and the coupling between angular momentum and quasi-momentum2

for states near the top of the band is destroyed. The direction of the quantisation

is now not determined by the quasi-momentum, but by the axis of deformation,

so that states are defined by the projection of the angular momentum on this

1 3−1
3+1

= 2
4

= 50%
2The energy spectrum and coefficients of the light and heavy hole bands are found by solv-

ing the equation: ĤχM = εµχM , where χM is a column of coefficients χMµ , and Ĥ is the
Hamiltonian of Luttinger. By solving this using a spherical approximation, it is found that the
coefficients χMµ(k) depend only on the direction of k [94].
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Figure 5.2: (after [95]) Electro-luminescence spectra from a Fe/GaAs QW spin-LED for
selected values of applied magnetic field at 4.2 K, but also showing the relative positions
of the heavy- and light-hole features obtained from photo-reflectivity measurements (B =
0). The feature near 1.515 eV is attributed to recombination in the bulk GaAs.

axis. The influence of this deformation is essential for states with energies less

than the deformational splitting3, ∆E, at k = 0, and changes the selection rules

for optical transitions.

As stated, the heavy-hole (hh) and light-hole (lh) band splitting is typically

several meV even in shallow quantum wells, which is much larger than the ther-

mal energy at low temperature, so that the lh states are at higher energy and are

not occupied. In this case, only the hh participate in the radiative recombination

process. This is illustrated in figure 5.2, where Jonker et al. measured lumines-

cence from a 15 nm GaAs quantum well (QW), and we see that they only detected

emission from photons with energy corresponding to the c-hh recombination [95].

We note PEL = (I+− I−)/(I+ + I−) where I+,− are the intensities of the two

3for GaAs ∆E ' 10 meV/kBar [94].
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helicities of circular polarised light, which links the luminescence and the net

circular polarisation of the detected light. We can also establish PEL = αS · ẑ,
where ẑ is the direction of observation, and α = 2 for luminescence from a QW,

but α = 1 for bulk systems, due to the deformation or strain in the crystal.

Electron Spin Dynamics

The general spin state, or average electron spin, S, is related to the experimentally

accessible magnetic moment via the relation

µ = gµBS, (5.1)

where g is the Landé g-factor, and µB is the Bohr magneton. The orientation

and magnitude of S will in turn depend on the applied magnetic field Bapp and

the electron spin lifetime:

Ts = (τ−1
s + τ−1)−1, (5.2)

where τ−1
s is the rate of electron-spin relaxation (scattering), and τ−1 is the rate

of electron-hole recombination. We define the electron spin immediately after

injection into the QW as S0. Spin relaxation that occurs before the electrons

recombine with holes reduces its initial value S0 to its steady-state value S. In

addition, the spins will precess about Bapp whenever Bapp × S 6= 0. The angle

through which the spin precesses is determined by the product ΩTs, of the Larmor

angular frequency and the electron spin lifetime, with Ω = g∗µBBapp/~, where

g∗ is the effective electron g factor. Typically one will have Ω ∼ 1010 Hz at 5

kG and Ts ∼ 200 ps, giving ΩTs > 2π. Combining these processes of injection,

precession, relaxation, and recombination, we can define a rate equation that

describes the dynamics of the electron spin in the QW [96]:

dS
dt

= Ω× S− S
τs
− S− S0

τ
. (5.3)

The electro-luminescence is a steady-state measurement, thus we can set

dS/dt = 0, and solve equation 5.3 for S. For convenience we define the charac-

teristic magnetic field B1/2 = ~/(g∗µBTs) at which ΩB1/2
Ts = 1. We can then

write the steady-state solution:
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S = η
B2

1/2S0 + (S0 ·Bapp)Bapp + B1/2(Bapp × S0)

B2
1/2 + B2

app

, (5.4)

where η = 1/(1+ τ/τs) [94, 96]. Equation 5.4 is the general equation for electron

spin dynamics in GaAs under steady-state conditions. For the experiment we

will discuss here, the sample lies in the x − y plane, and the z component Sz

of S is detected by the circular polarisation of the luminescence PEL, and S0 is

injected from a ferromagnetic metallic contact.

5.1.2 Theories of Spin Injection

Diffusion and Tunnelling, and the Conductivity Mismatch

Schmidt et al. suggested that there may be a fundamental obstacle to achieving

efficient spin transmission across a FM/SC interface via a diffusive process, due

to the conductivity mismatch between the FM and SC [97] (see also chapter 6,

section 6.3). A simple picture of this is advanced by Bland et al. [93], where

they show that as the conductivity of the FM is much larger than that of the SC,

only a small fraction of the electrons in the FM can enter into the SC, and the

number of electrons entering is almost the same for both spin channels. A more

thorough description of this system involving the spin-dependent electro-chemical

potentials of the materials confirms this simplified picture.

The solution to this problem was advanced by Rashba [98] and Smith et

al. [99], and it involved moving away from diffusive transport, and toward a

tunnelling regime. A tunnelling interface or barrier can cause spin-filtering by

providing single-step coherent tunnelling of the carriers. This is achieved by

designing a sufficiently high and narrow barrier, which will allow the spins to

tunnel into the conduction band of the SC.

Injection through a Schottky Barrier

A Schottky barrier at a FM/SC interface can produce such a tunnelling interface.

The electrical spin injection at a Schottky contact has been extensively studied,

and was reviewed by Albrecht and Smith in 2002 [100]. Here, they address

issues such as the band bending and depletion regions in real structures. One

aspect of this study addresses the doping profile of the Schottky barrier, which
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Figure 5.3: (a) (from [100]) Energy diagram of a Schottky contact including the pos-
sibility of a narrow, highly-doped tunnelling region near the interface (dashed portion
of the conduction band profile). (b) Modelled band energy diagrams for various n-type
doping of GaAs, simulated at 77 K.

spin-selective injection is very sensitive to. They conclude that a heavily-doped

region near the interface can be used to reduce the effective energy barrier and

form a spin-selective tunnel barrier to a FM contact, while not increasing the

depletion width in the SC. The doping profile should be chosen so that the

potential drop in the depletion region is as small as possible, and they also note

that the tunnelling region must have a significant interface resistance.

A suggested Schottky barrier junction is shown in figure 5.3(a), where the

total barrier eφb is divided into two parts which are a tunnelling region with

barrier height eφt, and an effective Schottky built-in barrier height eVbi. The po-

tential drop in the depletion region consists of this effective Schottky barrier plus

the applied reverse bias eVR. We used the SC heterostructure band modelling

program HETMOD to model Schottky barriers with different doping concentra-

tions, for the simple case of 500 Å of n-type GaAs. These are shown in figure

5.3(b), where we see that as the doping concentration is increased, the Schottky

barrier becomes sharper, which would be more favourable to tunnelling. Finally,

a note on the depletion layer width, which is defined by:

W =
√

2εS

qND
(Vbi − V ), (5.5)

where εS is the static dielectric constant, ND is the doping density, and Vbi is

the built-in potential across the depletion layer. For GaAs, εS = 13.1 × ε0,
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and Vbi ≈ 1.3 eV. At zero bias, W is estimated to be in the range 3.4 to 34

nm (ND = 1019 cm−3 and ND = 1017 cm−3, respectively). When W is large,

the electron tunnelling process is reduced due to the wide tunnel barrier, while

tunnelling does not occur for very small W because of tunnel barrier breakdown

[93].

Injection into Non-Magnetic Metals

Injection of spins into non-magnetic metals (NM) has also been addressed theo-

retically. The approach for such a study is typically to define a contact resistance,

rC , and the two characteristic resistances, rN and rF , each given by the ratio of

the spin diffusion length and the effective bulk conductivity in the corresponding

region. Then, as above, all quantities such as the electro-chemical potential and

current density must be continuous across the junction. The theoretical deriva-

tion of this FM/NM contact was performed and reviewed by Žutić et al. [101].

This derivation can be readily extended to the FM/NM/FM case of a spin-valve

structure, again by setting continuity of parameters across both interfaces.

5.1.3 Spin Depolarisation in Semiconductors

Spin relaxation and spin dephasing are processes of great importance to spin-

tronics. The fact that non-equilibrium spins in metals and semiconductors live

relatively long, allowing for spin-encoded information to travel macroscopic dis-

tances, is what makes spintronics a viable option for technology. Here we will

discuss three major physical phenomenon which lead to the loss of spin polari-

sation in carriers. These are the Elliot-Yafet (EY), D’yakonov-Perel’ (DP), and

Bir-Aronov-Pikus (BAP) mechanisms [101, 102].

The Elliot-Yafet Mechanism

In 1954, Elliot was the first to point out that carrier spins can relax via ordinary

momentum scattering if the lattice ions induce spin-orbit coupling in the electron

wave-function [103]. In the presence of the coupling, the exact Bloch state is not

a spin eigenstate but a superposition of them. This induces a finite probability

for spin flip when the spatial part of the electron wave-function experiences a

transition through scattering, even if the involved interaction is spin-independent.
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Momentum scattering is typically caused by impurities (at low T ) and phonons

(at high T ). A systematic calculation of the phonon-induced spin lifetime from

the known band and phonon structure was developed by Yafet in reference [104] in

1963. We will not reproduce this here, but note that the EY mechanism depends

greatly on the doping concentration in the semiconductor and the temperature.

The D’yakonov-Perel’ Mechanism

In GaAs, the inversion symmetry is broken by the presence of two atoms in

the Bravais lattice. Without inversion symmetry the momentum states of the

spin-up and spin-down electrons are not degenerate, i.e. Ek↑ 6= Ek↓. Spin

splittings induced by this inversion asymmetry can be described by introducing

a k-dependent magnetic field, around which electron spins precess with Larmor

frequency, Ω(k). Since the magnitude and the direction of k changes in an

uncontrolled way due to electron scattering with impurities and excitations, the

DP mechanism contributes to spin relaxation [102, 105]. In this mechanism,

the spins experience dephasing between momentum collisions as they experience

precession about the k-dependent field.

In two-dimensional SC systems, e.g. quantum wells and heterostructures,

the structural inversion asymmetry also contributes to the DP mechanism. This

leads to different spin relaxation times depending on the relative orientations of

the spins with respect to the crystal planes. In (100) quantum wells, the life-time

of a spin parallel to the plane is twice that of the spin perpendicular to the plane

[101].

The Bir-Aronov-Pikus Mechanism

The electron spin-flip transition is also made possible by electron-hole scattering

via exchange and annihilation interactions. This was first shown by Bir et al.

[106], and is especially strong in p-type SC due to high hole concentrations.

Dominant Mechanisms in Various Semiconductors

All three of these mechanisms co-exist in the III-V SC we are interested in.

However, in general one will dominate over the others, depending on internal

parameters such as the doping and impurity concentrations, and also external
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parameters such as temperature. Song and Kim looked at the three mechanisms

and presented the dominant one as a function of temperature and doping con-

centration for both n-and p-type GaAs, InAs, GaSb, and InSb [102]. They find

that the EY mechanism is dominant in all four cases only at very low temper-

atures (T < 8 K) in n-type SC, and the DP mechanism dominates above that

temperature, for all studied doping concentrations. The DP mechanism is also

dominant in p-type SC, but in general only at low (NA > 1016 cm−3) acceptor

concentration, above which the BAP mechanism becomes dominant.

Hyperfine Interaction

The hyperfine interaction is the magnetic interaction between the magnetic mo-

ments of the electrons and nuclei. This provides an important mechanism for

ensemble spin dephasing, and single-spin decoherence of localised electrons. This

weak interaction is a means to couple electron and nuclear spins in a controlled

way [96, 101].

5.1.4 Spin Injection Predictions at the Fe/SC Interfaces

There have been a number of theoretical studies of the Fe/GaAs and Fe/InAs

interfaces due to their relevance to spintronic devices. Simulations have tried

to predict the exact spin polarisation at the interfaces. Although these models

usually ignore the slight lattice mismatch between the Fe and substrate, there

are attempts to include the effects of intermixing using models such as the one

shown in figure 5.4. Here, Vutukuri et al. [107] investigate the possibility of

coherent spin injection across an Fe/GaAs interface by using band-structure

codes in a Fe/GaAs/Fe trilayer. These simulations still use an idealised system,

but they find that Bloch states only of certain symmetries are able to progress

through such an interface, thus enabling spin-filtering. Indeed, the ∆1 symmetry

of bulk Fe majority-spin state near the Fermi energy EF matches that of bulk

GaAs band-edge states, while the symmetry of the Fe minority-spin does not.

This is schematically shown in figure 5.5, and results in preferential transmis-

sion of majority-spin electrons from the Fe injector. Furthermore, as was also

pointed out by Vutukuri et al. [107], the ∆1 symmetry state (Fe majority-spin

band) decays relatively slowly in GaAs, while the states of ∆2′ and ∆5 symmetry
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Figure 5.4: (from [107]) Modelled interfaces for Fe/GaAs/Fe structure. (a) Atomically
abrupt interface; (b) partially intermixed, with one Fe atom filling a GaAs vacancy site;
and (c) fully intermixed, with 2 Fe atoms filling GaAs vacancy sites.

(Fe minority-spin bands) decay much more quickly, suppressing transmission of

minority-spin carriers.

Wunnicke et al. [109] agree that the process of spin injection is to a large

extent determined by the symmetries of the band structure. They also consider

spin injection through an Fe/GaAs interface, in the hot ‘ballistic’ regime and in

the diffusive regime. Polarisations of nearly 100% are predicted, again due to

the absence of minority ∆1 states in the Fe. Further simulations of lower-energy

electrons, performed with and without a (Schottky) tunnel barrier, also yield

such huge polarisation predictions. The authors admit that interface disorder in

a real system would reduce this spin polarisation, though unfortunately they do

not quantify this effect.

Very similar reasoning is applied by Zweirzycki et al. for the case of Fe/InAs

[108]. The Fe/InAs interface forms an ohmic contact, where no Schottky barrier

is formed. In this study, we note that the authors did take into consideration

the lattice mismatch present, and assumed distorted bct unit cells for the Fe

at the interface. Again, enormous polarisation values (>85%) are predicted in

the ballistic regime due to the band structure of the Fe majority and minor-
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Figure 5.5: (from [108, 109]) Energy band structures of (a) Fe minority-spin states; (b)
Fe majority-spin states; (c) InAs states; and (d) GaAs states.

ity spin states. Moving towards a more realistic case, Zweirzycki et al. [108]

introduced symmetry breaking at the interface, and calculated the interface re-

sistance for transport of the majority and minority spin states. They find that a

large difference in these resistance values is entirely suppressed as soon as they

simulate ∼10% atomic substitution at the interface. This disorder opens new

transport channels which are symmetry-forbidden for specular interfaces. Thus

they conclude that strongly spin-selective transport should be possible through

an Fe/InAs interface, providing that the sample is grown epitaxially and with a

very high degree of perfection.

Moving away from simulations, several studies have looked at real Fe/SC

interfaces, and the formation of interfacial mixing layers. Lépine et al. report

on deliberately-formed Fe3GaAs at the Fe/GaAs interface [110]. In an attempt

to form thermally stable compounds on GaAs, these were made by deposition of

fairly thick (20-80 nm) Fe layers on GaAs, and post-annealing the film at 480-

500◦C for 10 minutes. XRD and transmission electron microscopy (TEM) reveal

the presence of Fe3GaAs, but also Fe2As crystals at the interface, with some

overall crystallinity though not perfect epitaxy. We note that the estimated

magnetic moment per Fe atom for films of this compound was equal to 1.2 ±
0.1µB/atomFe.

Zega et al. treated Fe films grown on AlGaAs with a low temperature anneal
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at 200◦C for 10 minutes [111]. High-resolution-TEM images reveal an interfacial

region, which is reduced from 0.7 nm before the anneal to 0.5 nm afterwards.

Following on from the above, the authors also discuss the possible presence of

an Fe3GaAs layer at the interface, but conclude that this compound does not

occur in this case and establish that a partially intermixed interface is a more

accurate representation of the sample. By applying models of abrupt, partially

intermixed and fully intermixed interfaces, Zega et al. [111] find that while there

is no significant change in the ∆1 decay rate for the first two cases, the fully

intermixed model points to a significantly faster ∆1 decay, suggesting lower spin

polarisation of the injected carriers.

For the case of Fe/InAs, Yoh et al. published TEM images of the interface

for such samples grown at 23◦C and 175◦C [87]. Although these show that the

sample grown at 175◦C suffers from more interface reaction, this effect is not

quantified. The authors also report highly-efficient spin injection from the Fe

contact directly into p-InAs, though they do not report on the effect of the

intermixing layer in the sample grown at high-temperature.

These simulations and research support our concern over the intermixing of

the atomic species present for Fe/SC systems. We note in particular reports

of the presence of Fe3GaAs compounds without annealing treatments [112], as

well as the mention of the formation of anti-ferromagnetic [113] Fe2As crystals.

Once more we found that much less research has been published for the case of

Fe/InAs as compared to the well-documented Fe/GaAs case. Using substrate

preparation methods and MBE growth of epitaxial Fe, we hope to obtain an

interface that might be as close as possible to the ideal, abrupt case, but it is

clear that intermixing in a real sample is unavoidable.

5.1.5 Previous Work

The electro-luminescence (EL) spin-injection measurement is one that is wide-

spread, and currently performed by many research groups around the world.

Here we will present a brief overview of work by other groups in recent years,

after a quick look at the various geometries used in the EL experiment.
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Note about Experimental Geometries

There are several different geometries that provide information about the spin

polarisation of a polarised current. These are all shown schematically in figure

5.6.

The Faraday Geometry In the Faraday geometry, the magnetic field is ap-

plied parallel to the direction of light propagation (figure 5.6(a)). Sz is simply

the component of S0 along ẑ, scaled by η, which characterises longitudinal spin

relaxation prior to recombination (equation 5.4). In the Faraday geometry, we

note that Bapp must be large enough to rotate S0 out of plane, typically Bapp ≥ 2

T for Fe.

The Oblique Hanle Geometry In the oblique Hanle geometry, shown in

figure 5.6(b), the field is applied at a small angle out of plane, but with its in-

plane projection along the magnetic easy axis of the sample. In this geometry,

S precesses about Bapp after injection. For higher values of applied field, the

electron spin makes several rotations before radiative recombination takes place

and the average electron spin is aligned along the applied oblique magnetic field,

so S will have a non-zero perpendicular component Sz, which results in circular

polarisation of the applied light [114].

The Voigt Geometry and the Hard-Axis Geometry In the Voigt geome-

try, spin polarised carriers are optically pumped in the SC by circularly polarised

light at energy near the SC band edge. This geometry is sketched in figure 5.6(c),

with the magnetic field applied entirely in-plane, and the optically injected spin

is entirely along the direction of laser propagation.

In the Hard-axis geometry, the field is again applied entirely in plane, but

along the magnetic hard axis direction. Now, S0 rotates in-plane as a function

of Bapp, and S precesses about Bapp after injection.

Injection from a Semi-Magnetic SC

Spin injection from a magnetic SC is one approach that has attracted consid-

erable experimental interest. In such a system, the obstacle of the conductivity
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Figure 5.6: (from [96]) Different measurement geometries for the EL experiment. (a)
Faraday geometry; (b) Oblique (Hanle) easy axis geometry; (c) Optical pumping Voigt
geometry; and (d) Hard axis geometry. The injected spin direction is along S0, the
applied field is along Bapp, and the detected component of steady-state spin is Sz. In
all the cases, the observation direction is in the z direction.
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mismatch is lifted entirely, as the contact is from one SC to another. However,

diluted- or semi-magnetic SC only exhibit FM behaviour at low temperatures.

There are continuous efforts to increase the Curie temperature of such materials,

but at present they remain FM only well below RT, which is a severe disadvantage

in terms of integration into devices.

Fielderling et al. [115] report on the injection of a spin-polarised current from

a BexMnyZn1−x−ySe spin aligner, and into a AlGaAs/GaAs QW light emitting

diode (LED) structure. BexMnyZn1−x−ySe is very well suited for spin injection

into GaAs, as its lattice parameter can be matched to that of GaAs (by varying

Mn concentration), thus allowing for high-quality interfaces. In this system, elec-

trons can be injected at low energy, close to the bottom of the GaAs conduction

band. Fielderling et al. [115] report optical polarisation of nearly 43% at low

temperature (<5 K).

Jonker et al. [95] report a similar value of 50% optical polarisation, upon

injection from a Zn1−xMnxSe layer, again on a AlGaAs/GaAs LED structure.

Their measured EL spectra at 4.2 K, also obtained in the Faraday geometry,

are shown in figure 5.2 in section 5.1.1 above, where we see a clear difference

in the intensity of left and right circularly polarised light as the applied field is

increased.

Injection from a Ferromagnetic Metallic Contact

Zhu et al. [116] deposited a 20 nm Fe layer on a p-i-n LED structure comprising

two In0.2Ga0.8As QWs buried in GaAs. They measure the polarisation of light

in the Faraday geometry, and report values of ∼2% optical polarisation at 25 K

once the applied magnetic field is large enough to align the spins entirely out of

plane. Zhu et al. [116] note that the detected optical polarisation due to spin

injection is super-imposed on the Zeeman splitting-induced spin alignment in the

GaAs.

Hanbicki et al. [117] also report the on presence of Zeeman splitting in data

obtained in the Faraday geometry at 4.5 K. Again, they used a p-i-n LED, but

here with a GaAs QW buried in AlGaAs barriers. The field dependence of their

results is shown in figure 5.7, where we see that the sign of Pcirc changes as the Fe

magnetisation is reversed. We note that the contribution of the Zeeman splitting



5.1. THEORY AND BACKGROUND 87

Figure 5.7: (from [117]) Field dependence of Pcirc (circles) and the out-of-plane com-
ponent of the Fe film magnetisation (dashed line), all obtained at T = 4.5 K. The open
triangles show the measured contribution due to Faraday rotation in the Fe film.
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has been subtracted in this data, and hence they report 13% optical polarisation

from spin injection.

Injection through a Tunnelling Barrier

In addition to the Schottky barrier formed at a Fe/n-GaAs interface, several

groups have inserted artificial oxide barriers, AlOx and MgO, in attempts to

increase spin injection efficiency.

Motsnyi et al. [114, 118] studied spin injection from a CoFe layer through

a thin AlOx barrier (post-oxidation of a sputter-deposited Al layer) into an Al-

GaAs/GaAs LED structure, in the oblique Hanle geometry. They also performed

a photo-excitation measurement with linearly polarised light in order to separate

the influence of the magnetic circular dichroism4 (MCD) contribution to their

signal. Motsnyi et al. [114, 118] report an optical polarisation value of 2.3% at

80 K.

Parkin et al. [119–121] investigated spin injection into a SC through an MgO

barrier grown by sputter deposition. These studies were all done with CoFe in-

jectors grown on AlGaAs/GaAs LED structures, but with a thin (∼3 nm) MgO

tunnel barrier inserted between the FM and SC. They perform their measure-

ments in the Faraday geometry at a range of temperatures, and report optical

polarisation of 57% and 47% at 100 K and 290 K, respectively [119]. Noting that

the detected polarisation strongly depends on the spin and electron-hole lifetimes

in the QW, they establish the temperature dependence of these lifetimes, and

their influence on the optical polarisation. This leads to the conclusion that the

actual spin injection efficiency from the CoFe contact through the tunnel barrier

and into the SC only exhibits a very small temperature dependence, from ∼10

K to RT [120]. Finally, Wang et al. [121] increase the spin injection efficiency

through an MgO barrier by post-annealing treatment. Fully grown samples,

including the tunnel barrier and FM injector, were annealed for 1 hour at tem-

perature steps of 300◦C, 340◦C, and 400◦C. Such thermal treatment is likely to

improve the MgO interfaces, as well as the quality of the CoFe injector. After

the annealing treatment, the optical polarisation was seen to increase from 43%

to 55% at 100 K.
4The difference in the transmission of the left and right circularly polarised light through a

FM layer.
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5.2 Experimental Methods

5.2.1 Growth and Processing

Semiconductor LED Design and Growth

Efficient light emission from the semiconductor part of the sample is obviously

crucial to the basic success of the EL experiment. Considering this, spin injection

efficiency, and spin lifetimes as discussed above, several guidelines emerge for the

design of an efficient spin-LED.

All the spin-LEDs are p-i-n structures including an intrinsic QW buried in

between a p- and n-doped layers on either side of it. As we want injected carriers

to tunnel through a Schottky contact formed at the interface, the n-doped side

will always be at the surface. The p bulk underlayers and substrate provide the

holes necessary for the carrier recombination. The density profile of the n layer

is an important factor in the sample design. Indeed, as we have seen above, this

will determine the width and sharpness of the Schottky barrier, hence greatly

influencing tunnelling properties, and also the width of the depletion layer. The

depletion layer width needs to be considered when deciding on the over-layer

thickness, and position of the QW.

The QW is formed by choosing SCs with slightly different band gaps. For

example, a GaAs QW will be created in between AlGaAs regions, and an InGaAs

QW can be buried in GaAs. The QW design and placement will be paramount

in determining carrier capture efficiency. In general, we find that the design of an

ideal spin-LED is a matter of trade-offs. For instance, having a higher Al-content

in the AlGaAs barriers will increase the well depth, and thus carrier capture,

but the added Al will contribute to spin depolarisation through impurities as

discussed above.

The spin-LEDs were grown by MBE on commercial ‘epi-ready’ p-GaAs(100)

wafers. The following describes the typical procedure for the growth of a GaAs

QW buried in AlGaAs barriers. After degassing the substrate and holder, we

grew a thick (500 nm) p-type buffer layer of GaAs on the substrate to provide a

clean, ordered surface. Growth of p-AlGaAs followed, but prior to QW growth,

we grew 15 nm i -AlGaAs in order to avoid dopant contamination into the i -GaAs

QW. This i -AlGaAs layer was repeated after QW growth, before growing the
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Layer Material Etchant Concentration
Au Au etch (KI) 1:10 (in H2O)
Fe HNO3:HCl:H2O 1:25:400

GaAs, AlGaAs H2SO4:H2O2:H2O 1:8:80

Table 5.1: Etchants for spin-LED processing.

n-AlGaAs overlayer. The dopants used were Be and Si, for p- and n-doping,

respectively. Finally, the sample was cooled down (from 660◦C during the SC

evaporations) and capped with As to avoid oxidation and contamination prior to

being removed from the UHV chamber into air.

Ferromagnetic Injector Deposition

We cut the SC substrate into 10 mm × 10 mm squares, and transferred them

into our UHV metals chamber. The growth of the injector (e.g. Fe) and Au cap

was performed in the UHV chamber system described in chapter 3. This followed

the same procedure as for the Fe/GaAs samples, which is detailed in chapter 4.

Sample Processing

The spin-LED structures and Fe films required processing into diodes to which

electrical contacts could be made. This required chemical wet-etching of the film

into pillars, and the evaporation of contact pads.

We performed the processing in a clean-room environment, where a multi-

level mask was used to etch mesas into the films. The cycle of spinning resist,

hardening it, exposing through a mask layer, and evaporating the contact was

repeated for each mask layer. The mask set used is shown in figure 5.8. The

etchants and their concentrations used for each layer are summarised in table

5.1.

To create the back contact, we etched both metallic layers away, and the

semiconductor layers past the QW into the p-doped region. Then we evaporated

an InZn alloy, and annealed it to 180◦C for 10 minutes in order to decrease the

resistance of the ohmic contact. In some cases we used a AuBe back contact, but

the InZn was preferred due to the toxicity of BeO. For the top contacts, we first

evaporated 20 nm of Ti and then 50-100 nm Au on the Au cap of the sample.
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Figure 5.8: Mask set for spin-LEDs. The three layers correspond to (a) InZn back-
contacts; (b) light-emitting regions (10, 20, and 30 µ m wide); and (c) Au/Ti top con-
tacts. (d) are alignment marks for each layer of the mask set.

The Ti is necessary for the Au contact pad to stick to the sample, and we capped

it with Au as the electrical contact would be through a Au wire, and to avoid

oxidation.

The arrays of spin-LEDs were then separated in groups of 12 devices, which

were set into a chip holder package with silver epoxy. Each device top contact

was wire-bonded to a separate channel, as were the pairs of back contacts which

were common to all 12 devices.

5.2.2 Optical Set-Up

We then loaded the chip package into an Oxford Instruments MicrostatHe
TM

cryostat with optical access, and connected the device to the electrical feed-

throughs. The sample and cold finger were thermally insulated by a vacuum of

∼ 10−4 mbar. We mounted the cryostat so that the sample would sit in between

the pole pieces of a Lakeshore
TM

EM7 electro-magnet, alongside a Hall probe.

We were able to rotate the cryostat in the applied field, in order to vary the

aforementioned Hanle angle.

A collector lens gathered the emitted light, which we focussed onto a Mead-

owlark Optics
TM

variable retardation waveplate (VRW). The beam then passed
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Figure 5.9: Schematic of the EL set-up. Light emitted by the spin-LED is collected,
then passes through a variable waveplate, linear polariser, and is detected at a given
energy (wavelength) by a photo-multiplier tube.

through a linear polariser, and we used two mirrors to bounce the light down to

the level of the detector. We detected the light intensity at a given wavelength

using an Oriel Instruments
TM

monochromator, and a Hamamatsu Photonics
TM

cooled photo-multiplier tube unit. The background counts we could hope for with

this detection system were of the order of > 10 photon counts per second (cps).

We controlled each of the components and collected our data using National In-

struments’ Labview
TM

interface program. A schematic of the set-up we used for

this experiment is shown in figure 5.9.

The VRW is a liquid crystal device of which the retardation can be continu-

ously varied from 0λ to λ through a small applied voltage, for an optical range

of 650 - 950 nm. We can set and store two voltage (retardation) outputs on

the VWR controller which can then be alternated, again through the Labview

interface. Using calibration curves and artificially-created circularly polarised

light, we set these two outputs to 1/4λ and 3/4λ retardation, with the fast axis

of the waveplate being at 45◦ from vertical. Therefore, circularly polarised light

passing through the VRW will be changed to linearly polarised light, with the

polarisation plane either vertical or horizontal, depending on the chirality of the

incident light. By setting a vertical linear polariser at the output of the VRW,

we therefore selectively pass one chirality, and block the other.
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Figure 5.10: Room Temperature and Low temperature current-voltage characteristics
of a spin-LED QW structure.

5.3 Results and Discussion

5.3.1 Electrical Characterisation and Light Emission

The first characterisation we performed on each LED was a current-voltage mea-

surement. This enabled us to verify the diode-like behaviour of each device.

Indeed, we often found that one or several of the devices on each chip was not

suitable for further measurements, due to short- or open-circuit characteristics.

The occurrence of such devices is unavoidable, perhaps caused by defects or

pinholes in the films, which also influence the processing.

I-V curves measured for a film are shown in figure 5.10, for temperatures of

4.6 and 300 K. This sample had not been patterned at the time of the mea-

surement, but only contacted with a Au pad and AuBe back contact. There

are several phenomena governing the current through the Schottky barrier and

LED. Thermionic emission at a Schottky metal-SC interface assumes that elec-

trons with an energy larger than that of the top of the barrier will cross it,

provided they move towards the barrier [122]. The thermionic emission current

density scales with the square of the temperature. In addition to this, as the
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Figure 5.11: Luminescence and current as a function of applied bias voltage, taken at
RT, and λ = 856 nm. Inset: Spectrum of emission as a function of wavelength.

sample is cooled, the band gap in the semiconductor (in this case in the GaAs

QW) increases, and hence the current is reduced at a given bias. Furthermore,

we expect a slight increase in the Schottky barrier height as the temperature

decreases. The result of this is the shift toward higher voltages of the I-V curves,

as seen in the graph. We also note that this particular device displayed good

Schottky-like behaviour, with very little reverse bias (leakage) current.

The amount of emitted light depends on the number of carriers present and

recombining, and therefore on the current. This is displayed in figure 5.11, where

we measured the current and light emission at a specific wavelength as a function

of the applied bias voltage. As we see, the emitted light follows the current

through the device very closely. Indeed a plot of the luminescence as a function

of the current (not shown) reveals a linear dependence above a ‘switch-on’ current

value.

The inset of figure 5.11 shows a spectrum of emission for this device. It should
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Figure 5.12: Evolution of the EL as a function of temperature, taken in constant voltage
mode, V = 2.0 V. The first curve (black squares) is taken at 79 K, and the final one
(crosses) at RT. Note the wavelength is a focus on the area of interest, and the vertical
scale is logarithmic. The wavelength step ∆λ is 2 nm.

be noted that this is plotted against the detected wavelength, and not the energy

of emission. This was a RT measurement, and the peak of emission corresponds

to recombination in the QW. As we see, the QW in this device provides very

good capture of the electrons, as we see no emission from the bulk GaAs or

AlGaAs barriers at RT for this sample. The slight asymmetry of the emission

spectrum is due to slightly higher energy carriers also being able to recombine

and emit from the well, whereas the cut-off for the low energy carriers (high λ)

is sharper.

5.3.2 Luminescence Temperature Dependence

We have already mentioned the shift in band gap, and hence current, EL intensity,

and wavelength upon varying the temperature of a spin-LED. This is displayed

in figure 5.12, where we have measured the emission spectrum as a function

of temperature, at constant voltage. This sample was the same as that of the
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previous data shown (C2346 emitter with an Fe injector), but we processed it

down to square mesas, and the data shown is from a 240 µm square pillar5.

The first thing we notice about this graph is the change in intensity. Run-

ning the measurement at 2.0 V, the current largely influenced by the change in

temperature, and this in turn affects the light intensity. If we consider the curves

shown in figure 5.10, the current passing through the device drops from ∼6.5 mA

to ∼1.75 mA as the temperature is decreased6. Again, as illustrated in figure

5.11, this dramatically affects light emission, and indeed we note an 80× increase

in the peak of emission as we warm the sample to RT, in constant voltage mode.

The second feature related to the temperature change is the shift in wave-

length (energy) of the emission. Once more, this is due to the bang gap EG of

the GaAs increasing with temperature. Indeed we have:

EG = 1.519− 5.405× 10−4 × T 2

(T + 204)
eV, (5.6)

where T is the temperature in K (0 < T < 1000) [123]. Therefore, as we see in

figure 5.12, the emission shifts to a lower wavelength with decreasing temperature.

The final feature in this figure is the appearance of the additional peak, at

lower energies, only visible for temperatures below ∼200 K. This peak corre-

sponds to emission from the bulk GaAs. As the temperature rises to RT, this

peak shifts to higher wavelengths (1.42 eV ∼= 874 nm), becomes a ‘shoulder’ in

the QW peak, and eventually is completely absorbed by the main peak.

5.3.3 Magnetic Properties

The magnetic behaviour of each FM injector film was characterised using MOKE

magnetometry. This would allow us to quickly verify the quality and epitaxy of

the film, which usually displayed the expected uniaxial anisotropy of Fe/GaAs

in the thin-film regime. However, it was not obvious what effect the patterning

would have on the magnetisation dynamics. Indeed, this would introduce shape

anisotropies, and probably pinning sites at edges and corners.

In order to measure the effect of the pattering, we used a Neoark
TM

imaging

5The mask used for this processing was not the one shown in figure 5.8, but simply one of
square mesas of different sizes.

6We note that the temperature in figure 5.10 was taken down to 4.6 K, but only to 79 K for
the case of figure 5.12.
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Kerr microscope. This is based upon the same principle as MOKE magnetometry

(chapter 3), whereby the rotation of the incident light upon reflection provides

information about the magnetisation of the surface. In the case of the microscope,

a CCD camera captures the changes of intensity over an area of the sample at

each stage during an external field sweep.

Images from a patterned sample are shown in figure 5.13. The first image

(a) is the negative saturation state, where a large field is applied in the negative

direction, and the last one (h) is the positive saturation state. Images (b)-(g)

show the magnetisation reversal steps in between these two saturation cases. The

contrast and various regions visible in these images are indicative of different

surface magnetisation states.

Even for a very small field applied in the positive direction ((b) 0.90 Oe), we

see the appearance of a reverse domain, at the corner of the emitter and contact

regions. As the field increases at images (c) and (d), this domain expands along

the edge, and a second reverse domain appears also along the edge. At point

(e) we see that the whole emitter region has switched magnetisation, but not yet

the entire contact pad. This happens at (f) and (g), but is a two-step process.

Indeed, the circled region in image (f) shows a boundary between two differently

aligned domains, as we see through the contrast difference in the image. This

corresponds to a 90◦ domain in the contact pad. The MOKE magnetometry on

this un-patterned sample showed two-step switching (inset in figure 5.13). This

indicates the brief formation of a perpendicular domain during the magnetisation

switching.

The Kerr microscope and MOKE data provide indications of the magnetisa-

tion dynamics in the patterned LEDs. We see that the switching in the emitter

region is dominated by the shape anisotropy, as edges and angles provide nucle-

ation sites for domain walls. However, in the contact pad, which is 100 µm× 200

µm, the film’s own anisotropy still dominates the switching.

5.3.4 Optical Polarisation

Optical polarisation data is shown in figure 5.14. This is taken at room tempera-

ture, from sample ]C2543-M79, which is an InGaAs QW in GaAs barriers, with

a 5 nm Fe injector. A particularity about this specific sample is that it was in
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Figure 5.13: Magnetic switching in a patterned spin-LED. The applied field values are
(a) -20.82 Oe; (b) 0.90 Oe; (c) 2.32 Oe; (d) 2.61 Oe; (e) 2.74 Oe; (f) 3.04 Oe; (g) 3.42
Oe; and (h) 21.22 Oe. Inset: MOKE loop for the un-patterned film.
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situ transferred (in UHV) directly from the SC growth chamber to the metals

growth chamber, without an As-cap.

The optical polarisation as a function of applied field shown here can be fitted

by re-writing equation 5.4 for the Sz component, and for the case of electrical

injection, where we have [118]:

Sz = S0Y · Ts

τ
·
(B/B1/2)2 · cos ϕ · sinϕ

1 + (B/B1/2)2
, (5.7)

where Ts, τ and B1/2 are as defined previously, and ϕ is the Hanle angle of the

applied field. The fit to the data using this equation is also shown in figure

5.14. From this fit, we are able to extract the value of B1/2, and hence TS

(B−1
1/2 = g∗µBTS/~). In this case, we have TS = 75 ps. Using known values of

τ for this system [13], we can then determine the injected polarisation at the

interface, which we established as Π ≈ 1%, at RT.

We also collected field-dependent optical polarisation data on an identical

wafer which had been As-capped and ex situ transferred to our UHV evaporation

chamber. As previously, the As-cap was then desorbed in UHV in preparation for

the Fe growth. Optical polarisation values obtained at RT for this sample were

identical within errors to the ones for the above ]C2543-M79, thus indicating

that ex situ transferral of As-capped spin-LED substrates provides a suitable

way of transporting substrates, and is not detrimental to the SC surface or device

interfaces.

Upon cooling the sample, we expect the injected polarisation to increase. The

first reason for this is that recombination paths from e.g. C donor impurities in

the QW will be reduced. As we cool the SC we also reduce the contribution of

lattice phonons to the emission of light. Thus we expect a signal of emission

further dominated by the recombination of interest in the QW. In addition

to this the effect of scattering mechanisms as discussed above decreases with

temperature. In our QW the DP mechanism dominates spin scattering. In

this regime, the spin relaxation time is inversely proportional to the momentum

relaxation time, and to the cube of the temperature [102].

We cooled the above (in situ transferred) sample to 77 K, and repeated the

measurement of the optical polarisation as a function of field, shown in figure

5.15. We observed an increase of the optical polarisation, which reached ∼0.4%
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Figure 5.14: EL polarisation and Hanle fit to the data. The sample is an InGaAs QW
in GaAs barriers, with an Fe injector. This particular sample was in situ transferred
directly from the SC growth chamber to a metals growth chamber for Fe deposition.



5.3. RESULTS AND DISCUSSION 101

Figure 5.15: EL 77 K polarisation and Hanle fit to the data. The sample is the same
in situ transferred one as in figure 5.14, an InGaAs QW in GaAs barriers, with an Fe
injector.
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at a field of 8 kG, whereas we had measured ∼0.25% at RT. We can follow the

same formalism as above to fit the data and determine the injected polarisation.

However in this case we do not have a measurement of the value of τ . Using the

same value for τ we calculate an injected polarisation Π ≈ 2%. If we estimate

that τ increases by 30% to 200 ps [94, 124], the calculated injected polarisation

value rises to ∼ 4%.

5.4 Conclusions and Future Work

We have presented the theory of spin injection and detection into a semicon-

ductor. Electrical characterisation and light-emission temperature dependence

of spin-LED samples contribute to the understanding of this delicate system.

The magnetic properties of individual devices also provide valuable insight on

the dynamics of the patterned magnetic layers in this experiment. This work on

EL and spin injection is still in a developmental stage. We have detected ∼1%

spin injection at an Fe/GaAs interface at RT, and ∼2-4% at 77 K. These values

however does not yet compete with current reports of spin injection at room

temperature, which are approaching 20%.

It is clear that our system and experimental set-up is very fragile. Small opti-

cal misalignments can cause a huge drop in the detected intensity, or induce arti-

ficial optical polarisations which can be much larger than our real spin-injection

signal. The experimental set-up is constantly being assessed in order to improve

the accurate detection of spin injection, and reduce the systematic errors which

can mask the effects of spin injection. Current work includes temperature and

bias dependence studies of optical polarisation. Applied bias voltage determines

the current flow and naturally affects the band structure bending of the device.

In order to further study the effect of the Schottky barrier we could for instance

devise a contact configuration through which we apply a separate bias voltage to

the Schottky barrier and to the p-i-n structure. This would induce two current

channels, presumably one of which would be spin-filtered and the other not, but

could provide insight on spin-selective transport at the interface. Following from

our work in chapter 4 on interface roughness and interdiffusion, we could inves-

tigate how these affect spin injection. This could be done either by artificially

roughening the surface in situ e.g. by Ar+ sputtering, or by post-annealing the
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grown films for various lengths of time at a range of temperatures. To comple-

ment the EL experiment, we could also perform the reverse, photon-excitation

measurement on the same sample. As we have mentioned above, in this experi-

ment a spin-dependent current is detected upon optical excitation by circularly

polarised light. Finally, the implementation of thin tunnelling barriers such as

MgO (see chapter 6) to improve spin-selective transport is a promising route to

improving the efficiency of spin-LEDs.
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Chapter 6

MgO Growth and Applications

Abstract

We present the deposition of MgO thin (3 - 39 nm) films grown by MBE

and sputtering. We characterise these films using RHEED and X-ray

techniques, report crystallinity of MgO grown on GaAs, and demon-

strate the epitaxial growth of MgO on Fe, and Fe, Co on MgO. Using

PNR, we study the effect of MgO on thin magnetic films and observe

a decrease in the magnetic moment of these films due to interfacial

oxide layers. We also incorporate MgO in a pseudo-spin-valve system

where we demonstrate epitaxy-induced magneto-crystalline anisotropy.

Finally, we integrate MgO as a buffer layer in a semiconductor/iron

garnet optical isolator.

Introduction and Outline

Magnesium Oxide, MgO, has generated a wide scientific interest in recent years

due to its potential applications in numerous varied areas. In conjunction with

thin magnetic films, it opens possibilities for numerous technological applica-

tions such as catalysis, electron spin polarimetry, epitaxy, magnetic recording,

and spintronic devices. Tremendous progress has already been made to TMR ra-

tios upon the transition from amorphous AlOx barriers to oriented MgO layers.

Indeed, in early reports the TMR of MgO-based samples has more than quadru-

pled compared to the Al2O3 case [125], and these have now reached values of

105
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Figure 6.1: (from [128]) The MgO unit cell, rocksalt structure displaying the two (Mg
and O) fcc sublattices.

200-300% [126, 127].

In this section we will focus on the fundamental aspects of the growth of

samples on MgO substrates as well as the growth of MgO spacer and tunnelling

layers. We then discuss the growth mode, and more specifically overview the

properties of the Fe/MgO and Co/MgO interfaces. Then we will consider the

effect of an MgO barrier on Fe and Co layers grown on a semiconductor sub-

strate. Following that we will study a pseudo-spin-valve (PSV) structure, with

an MgO tunnel barrier, and also grown on an MgO substrate. Finally, we will ex-

pand on another use of MgO in a semiconductor and magneto-optical waveguide

integrated device.

6.1 The Growth of MgO

6.1.1 Introduction and Previous Work

MgO, also known as periclase, is a cubic material in the NaCl, or rocksalt struc-

ture. This consists of two fcc sublattices of Mg and O, each displaced with respect

to the other by half a lattice parameter along the [100] direction (see figure 6.1).

As we have mentioned, the growth of MgO has generated a lot of interest in

recent years, but also in the past, since the early 1990’s. In the first instance, we

will report on the growth of MgO on a GaAs surface. There are several aspects

to the growth of MgO on GaAs that must be considered. These are:

• Substrate surface preparation, ex situ and in situ

• Growth Method
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• Growth Temperature

• Growth Rate

• Sample Cooling Rate

Substrate surface preparation methods vary throughout the literature, but

all aim to produce a clean and oriented GaAs surface prior to the MgO growth.

These preparation recipes usually include an ex situ wet etch before loading

the substrate into a vacuum chamber, and then a sputter or heat dry etch in

situ. These steps are to desorb the native oxide layer of the GaAs. Tarsa et al.

[129] investigated the effect of a native oxide layer on the MgO/GaAs growth.

In this study, they compared chemically treated and antimony-passivated GaAs

substrates, and the resultant quality of the MgO layer. The chemically treated

substrates were degreased and then etched in NH4OH:H2O2:H2O (35:15:70) and

HCl:H2O (1:1) solutions to remove polishing damage and residual surface oxides.

These were then rinsed for 3 minutes in de-ionised water so as to form a uni-

form, protective native oxide layer prior to exposure to air, and loading in the

vacuum chamber. The Sb-passivated substrates had a 20 nm layer of Sb grown

directly onto a GaAs buffer layer in situ. From this study, it was established

that the orientation of the MgO films depends sensitively upon the treatment of

the GaAs(100) prior to growth. The Sb-passivated substrates were found to pro-

vide an appropriate template for the growth of highly oriented MgO(100) films.

Growth of MgO on a rough but oxide-free GaAs surface resulted in polycrys-

talline growth, and finally, a remnant native oxide layer appeared to serve as a

directional template for MgO(111) films on GaAs(100).

The aim of substrate surface preparation is naturally to provide a seed for

epitaxial growth of MgO on GaAs. The epitaxial relation, however, between

GaAs and MgO is not straightforward. Reports indicate that 4 unit cells of MgO

will sit on 3 of GaAs. Indeed with aMgO = 4.21 Å, we find that 3aGaAs/4aMgO =

1.00724. The is illustrated in figure 6.2, where it was found that for certain growth

conditions (in particular temperature) the quoted (110) orientation of MgO grew

on GaAs(100). However, it is not certain that this orientation is the only possible

one to obtain single-crystal, or at least highly oriented MgO. Indeed claims of

MgO(100)‖GaAs(100) have also been made [131, 132].
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Figure 6.2: (from [130]) Top view of (a) the MgO(110) and (b) the GaAs(100) planes,
showing that a superlattice cell made of 4 MgO unit cells has almost the same dimensions
as a cell made of 3 GaAs unit cells. aGaAs = 5.653 Å; aMgO = 4.21 Å

This difference in the quality and orientation of the MgO layer will also

depend on the growth method, growth rate, and substrate temperature during

growth. Again, a wide range of techniques are reported for the growth of MgO on

GaAs. Several groups report epitaxial MgO from pulsed laser deposition (PLD)

directly from an MgO target [129, 132–134]. PLD growth was also reported

from a Mg target, in an ambient oxygen atmosphere [135, 136]. A Mg target

and oxygen background atmosphere was also used in radio frequency (RF) mag-

netron sputtering by Hsu et al. [137]. In addition to sputtering techniques,

several groups have obtained high-quality MgO layers from e-beam growth, ei-

ther directly from high-purity MgO [130, 131, 138], or from a Mg source in an

O2 background atmosphere [138].

Each of these growth methods have specific optimal deposition rates. As is

true for generic high-quality layer evaporation, the growth rate should be ∼1

ML/min, in order to favour ordered deposition. For MgO growth, particularly

Mg evaporation in an O2 background atmosphere, the growth rate needs to be

further calibrated in order to guarantee stoichiometric growth of MgO in the

specific ambient O2 partial pressure.

As well as the optimum growth method, earlier published results have differ-
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ent opinions on the optimum growth temperature for epitaxy of the MgO layer.

The substrate temperature will have a large effect on the orientation of the film

[130], but consensus shows that elevated temperatures ranging from 400◦C to

650◦C are preferred. It must be noted, though, that when GaAs is heated much

above 500◦C in the absence of arsenic flux, non-equilibrium Langmuir evapora-

tion has been observed, resulting in significant roughening of the surface due to

As depletion and Ga clustering [17, 139].

Finally, the cooling rate of the sample and newly-grown MgO layer is the last

parameter in the growth of MgO. Indeed a fast cooling rate may induce strain,

and displacements in the MgO lattice. Reports are less precise about the optimal

cooling rate, but it must be understood that controlled cooling e.g. ∼10◦C/min

should be preferred over rapid and large temperature variations [137].

In attempts to grow our own high-quality MgO layers, we have tried MBE

growth from a MgO source, MBE from a Mg source in an O2 atmosphere, and

sputter deposition, directly from a magnesium oxide target.

6.1.2 MBE Growth from an MgO Source

In the first instance we grew MgO layers directly from an MgO source. We

loaded high-purity MgO crystals in an evaporator in the UHV growth chamber

described in chapter 3. MgO being an insulator, the source crystals had to be

loaded in a metallic crucible, to allow for the acceleration of electrons towards

the source. The crucible for this evaporator was made of molybdenum, chosen

due to its elevated melting temperature. However, this evaporator geometry has

an obvious drawback in that the heat generated by the accelerated electrons onto

the crucible must then be efficiently transmitted to the source crystals.

MgO evaporation was achieved though, at a rate of approximately 1 ML per

minute. The power required for this evaporation was very large, with emission

currents in the range of 70 mA, which also caused the pressure to rise to ∼
5.0× 10−9 mbar.

Characterisation measurements on a sample grown by this method are shown

in figure 6.3. On the RHEED pattern of the GaAs(100) substrate (a) we observe

sharp streaky spots, even distinguish a reconstruction of the surface, and Kikuchi

arcs, indicative of a highly ordered, and smooth surface. These show that the
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Figure 6.3: Sample ]01.07.2005, grown at 450◦C, nominally 32 nm MgO on GaAs(100)
waveguide substrate. (a) RHEED pattern of the substrate; (b) RHEED pattern after
MgO growth; and (c) XRR measurement on the sample.

semiconductor surface is clean and ordered, hence should be suitable for epitaxial

growth of MgO. However, we see on the RHEED pattern of the MgO layer (b)

that the growth has resulted in a polycrystalline film, yielding a distinctive ring-

like diffraction pattern. The quality of the film and interfaces was checked using

XRR, shown in figure 6.3(c). As discussed in chapter 3, the fringes on the

reflection pattern allow us to determine the thickness of the film, and the decay

can be fitted to provide the roughness of the interfaces. In this case, we have

fitted the data to an MgO film 34.2 nm thick, and with interface and surface

roughnesses of 1.7 nm and 1.3 nm, respectively.

Although we tried a range of growth temperatures (from RT to 600◦C)

and various substrate preparation methods, we never achieved single crystalline

growth of MgO on GaAs using this evaporation technique. As previously men-

tioned, one possible reason for this is the sub-optimal heat transfer from the

crucible to the isolating source crystals. This might mean that the source mate-

rial is not heating up uniformly, or not degassing effectively. Also, it was noted

upon removing the evaporator from the chamber, the large amount of power

required to evaporate the MgO caused softening or perhaps evaporation of the
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crucible itself, thus leading to potential Mo impurities in the MgO films. We

know though that there were only very few - if any - of these, as the density of

the film remained close to that of bulk MgO, according to the XRR fits.

6.1.3 MBE Growth from a Mg Source

We also attempted to grow MgO layers using Mg evaporation in an O2 back-

ground atmosphere. These growths were inspired by the technique of Tegenkamp

et al. [140]. We again used the UHV growth chamber described in chapter 3,

in which we loaded high-purity (99.9+%) Mg metal in a Mo crucible. Mg has

a low melting point (650◦C), but is fairly soft, and is very chemically active.

This means that it will react easily in air, and therefore will require thorough

degassing after loading in the chamber.

The growth of MgO layers using this method is a multi-step process. In

the first instance we grew a very thin (∼ 4 ML) Mg layer on the clean GaAs

substrate. Once this was done, we interrupted the growth, and exposed the film

to an oxygen partial pressure of 2× 10−6 mbar for 2 minutes, and then annealed

it at 400◦C for 15 minutes. There are two reasons for this first layer. Firstly, as

discussed previously, the quality of the GaAs surface is crucial for growth of an

ordered layer. Therefore it is necessary to avoid exposing the bare GaAs surface

to oxygen, so it was necessary to deposit the 4 ML of Mg first, which would then

be completely and stoichiometrically oxidised upon exposure to the oxygen. The

reason for the anneal step is to favour the formation of a crystalline structure in

the film, as a seed for further epitaxial growth.

After this initial deposition of Mg, we cooled the samples down to ∼ 150 −
200◦C for further Mg evaporation, in an ambient oxygen atmosphere. For the

growth of thicker MgO layers, it is largely preferable to oxidise the Mg atoms

during the growth process, rather than attempting to oxidise layers or clusters

of metal after the fact [141]. As long as the Mg evaporation rate is not too high,

this should allow for fully oxidised MgO films. The best stoichiometry of MgO

is believed to be obtained with an oxygen partial pressure of ∼ 3 × 10−7 mbar

and a deposition rate of 1 ML/min [140].

MgO films deposited using this method were not found to be perfectly epi-

taxial, but exhibited some orientation. The fact that MgO is an insulator causes
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some difficulty to take LEED patterns from these samples. Indeed, the low-energy

incident electrons perpendicular to the surface cause the sample to charge up,

which tends to prevent elastic scattering from the crystal1. Unfortunately the

RHEED system was inoperative when these samples were grown. Therefore, we

relied on ex situ characterisation methods, in this case XRR, XRD and MOKE,

as described in chapter 3. The MOKE results will be shown and discussed in

section 6.3 below.

Figure 6.4(a) is an XRR scan of sample ]12.09.2006, which was nominally

26 nm of MgO grown on a GaAs(100) substrate. The fit to the XRR scan gives

us several results. XRR measures changes in layer densities only (not crystal

structure or atomic species present). The fit shown is for a layer density of 3.3

g/cm3, which is very close to the actual density of bulk MgO (3.58 g/cm3). In

addition to this, the XRR fit yields the roughnesses of the interface and film.

These are found to be under a nanometre (∼ 7 Å) at the MgO/GaAs interface,

and the MgO film has a roughness of 1.2 nm. Finally, the XRR also provides a

thickness measurement, which in this case was determined to being 14.4 nm. The

inconsistency between this and the nominal growth thickness is very large in this

particular case, due to inaccuracy during the growth calibration and variations

of the evaporation rate during deposition.

The XRD results shown in figure 6.4(b) display two features which are of

interest to us. The first one is the stand-alone broad peak around 2θ = 39◦. This

can be identified as an MgO diffraction peak. It is slightly shifted compared to

the expected peak position, but we are certain that it is a layer peak and not

a substrate peak, due to the width (full width at half maximum '0.9◦). The

second feature in the graph is the shoulder in GaAs peak, around 2θ = 43.5◦.

This peak could be an a Mg peak, though again this is not conclusive for this

sample. These two deductions and the mismatch of the peaks indicate that

perhaps we have not reached the ideal stoichiometric conditions for the growth

of MgO using this method, though the appearance of the peaks is an encouraging

1There are two main strategies to overcome this. The first is to have a sufficient number of
defects in the insulator which provide carriers such that a small conductivity results, though
the disadvantage is that one studies a modified version of the oxide. The other possibility is to
deposit a thin film of the oxide on a conducting substrate, which would give enough (tunnelling)
conductivity for electron diffraction but in this case we may not really be studying the surface
properties of the real bulk material.
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Figure 6.4: Sample ]12.09.2006, nominally 26 nm MgO on GaAs(100), by Mg evapo-
ration in O2 background. (a) XRR scan; and (b) XRD 2θ/ω scan.
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start.

6.1.4 Sputter deposition

The final deposition technique that we attempted was sputter deposition. In this

case we used RF magnetron sputtering, in which an Ar plasma oscillates at a

determined AC frequency (typically 13.56 MHz). Electrons in the plasma gather

additional energy from this oscillation, which results in further ionisation by the

high-energy tail of the electron energy distribution. This then produces a higher

ion current at the same applied power than in simple DC mode. Another key

advantage of RF sputtering is that the cathode receives no net current from the

plasma. The incident ions from one part of the RF cycle are compensated for by

the incident ions from the other part of the cycle. In a sense, the cathode and

anode switch places once each RF cycle, resulting in no net current or charging

[58]. This also makes it possible to sputter insulating materials. This sputter de-

position was done on a CEVP Gamma 1000M commercially designed sputtering

system, with a base pressure of 3− 8× 10−9 mbar. The Ar plasma pressure was

2 mbar during deposition. In the first instance, we had to grow several samples

with a shadow mask obscuring an area on the sample, so that the step could

be measured using an AFM, yielding a thickness calibration. Following this we

were able to grow accurate thin layers fairly easily. The quality of the MgO layers

grown by this method will be discussed briefly in section 6.5 below.

6.2 Fe/MgO and Co/MgO Interface properties

The highest quality structures and devices are single-crystal samples. However,

as we have seen for the growth of MgO on GaAs, epitaxy is not always easily

obtained. In this section we will briefly move away from semiconductors, and

study the growth, and interfaces of magnetic layers (Fe and Co) directly on an

MgO substrate. The magnetic properties2 of these layers will be addressed below

2We attempted to determine the onset of ferromagnetism and the magnetic anisotropies of
ultra-thin Fe and Co films grown on MgO, with an in situ MOKE experiment of layer-by-layer
deposition on MgO(100). However we found that for such thin coverages of magnetic metals,
and including the fact that MgO is transparent, the polarisation of the reflected laser beam
was lost, most likely through dispersion in the substrate crystal, thus no Kerr rotation could be
measured.
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aMgO = 4.211 Å
aFe,bcc = 2.866 Å a45◦

Fe,bcc =
√

2× (aFe,bcc) = 4.054 Å aMgO

a45◦
Fe,bcc

= 1.039

aCo,bcc = 2.827 Å a45◦
Co,bcc =

√
2× (aCo,bcc) = 3.999 Å aMgO

a45◦
Co,bcc

= 1.053

Table 6.1: Lattice parameters for the growth of Fe and Co on MgO(100).

in the context of the PSV sample below (section 6.4).

Epitaxial growth of Fe and Co on MgO(100) is reasonably straightforward,

despite requiring a 45◦ in-plane rotation [142, 143]. Thus we have Fe(100)[011]‖
MgO(100)[001], and the direct equivalent for the case of Co. The lattice para-

meters demonstrating this epitaxial relation are shown in table 6.1. We see that

there is a 3.9% and 5.3% lattice mismatch for the epitaxial growths of Fe(100)

and Co(100), respectively, on MgO(100).

6.2.1 Fe on MgO

There have been several studies, both experimental and theoretical, of the Fe/MgO

interface [144–150]. In addition to the aforementioned epitaxial relation, a LEED

and AES study determined that the Fe atoms of the first deposited layer onto a

clean MgO surface sit atop the O atoms [145]. The literature, however, is not

definite on the formation and presence of an FeO layer at this interface. It has

been reported [151], but also rejected [148]. The root of this discrepancy is not

very well determined, though it has been suggested that the presence of C im-

purities on the substrate surface could lead to various degrees of reaction with

oxygen atoms present. However, we believe that due to the presence of oxygen

atoms at the surface and the affinity of Fe to bond with O, it is likely that Fe

and O will react in this system. There is virtually no diffusion of Fe into the

MgO for growth temperatures up to 350◦C , but for high temperature growth

(600◦C), interdiffusion occurs and Fe is present in an oxidised state [146].

Structural defects introduced by the slight lattice mismatch are also a poten-

tial issue for the growth of high-quality Fe films on MgO. Di Bona et al. [144]

study a 10 ML (≈1.4 nm) Fe film grown on an MgO(100) substrate. As ex-

pected, they find that the 10 ML film has a bct distorted structure. Annealing
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the film up to 300◦C improved its crystalline quality while maintaining it in the

bct structure, and higher annealing temperature (400-500◦C) resulted in islands,

which were able to relax to a bcc structure. Upon growing thicker Fe layers, and

not necessarily annealing them at such high temperatures, it is established that

the film relaxes to its bcc structure, with bct and bcc domains co-existing [145],

always due to the slight lattice mismatch between the two materials. Finally,

Vassent et al. [146] study the complementary growth of MgO on Fe(100). The

conclusions of their study are similar for the ultra-thin regime of the MgO film

(pseudo-morphic growth for t<4-5 ML), but for a thicker layer they find the relief

of the misfit strain occurs via a dislocation along the direction of the MgO{110}
plane.

6.2.2 Co on MgO

The growth of Co on MgO(100) is much less documented than that of Fe. As

we have previously mentioned, we expect Co to grow in the bcc structure in

the first instance on MgO(100) due to the favourable epitaxial relations upon a

45◦ in-plane rotation (table 6.1). Sicot et al. [147] performed an X-ray Photoe-

mission Spectra (XPS) study of the interface, and detected no evidence of CoO

formation. However, Sicot et al. [147] were not able to extend their study to high

temperatures due to the presence of an Fe buffer layer in their samples. As with

Fe, we expect the presence of O to affect the Co film, in particular at elevated

temperatures.

6.2.3 Interface Tunnelling Properties

The theory of spin-dependent tunnelling through a thin MgO barrier is of direct

interest for numerous device applications requiring high MR (briefly introduced in

section 6.4). Ab initio calculations predict large TMR values in single-crystalline

magnetic tunnel junctions, for both Fe/MgO/Fe [149, 152] and Co/MgO/Co

[143]. The theoretical calculations are driven by the different tunnelling mech-

anisms for the majority and minority spin channels in single crystal junctions.

The symmetry of the Bloch states at the Fermi level and the symmetry-related

decay of the evanescent states in the barrier layer are different for the majority

and minority electrons, thus leading to a difference in conductance of the two spin
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channels from a FM, and hence the large TMR. In addition to this, however,

the tunnelling conductance is affected by interfacial effects, such as scattering

and resonance effects [153]. Unfortunately, these theoretical studies do not fully

address the consequences of such interfacial effects. It is usually assumed that

the structure is fully and perfectly epitaxial, neglecting even the lattice mismatch

at the interface. Butler et al. [149] discuss briefly the interfacial states and tun-

nelling through interface resonance states, though the details of this are beyond

the scope of this thesis.

Xu et al. [154] performed a systematic, quantitative study of the effect

of disorder on the MR of an idealised FeCo/vacuum/FeCo magnetic tunnel

junction (MTJ) system. They find that disorder at the interfaces will have two

effects. The first is to destroy the point group symmetry for states with ∆1

symmetry, and thus the surface state with that symmetry. The second effect of

roughness is simply a reduction of the barrier width, therefore an enhancement

of the conductance, which depends exponentially on the barrier width. Xu et al.

[154] consider these two competing effects and conclude that the current reported

experimental TMR values of a few hundred percent (200-300% [126, 127]) are

still in the roughness/disorder-limited regime.

The effect of interface scattering mechanisms on tunnelling properties has not

yet been well quantised. However, the extremely high predicted TMR ratios in

the theoretical calculations above provide motivation to fabricate such a structure

experimentally. Epitaxial growth of samples in a UHV chamber will result in the

cleanest possible interfaces. The slight lattice strain will naturally remain, but

clean surfaces are obtainable and it is possible to minimise interdiffusion effects,

thus leading to a real device as close as possible to the ideal model.

6.3 MgO as a Tunnelling Barrier

6.3.1 The Impedance Mismatch Obstacle

In the late nineties it became apparent that spin injection into a semiconduc-

tor using a magnetic semiconductor was more efficient than using a metallic

ferromagnetic injector [115]. One explanation for this was first put forward by

Schmidt et al. in 2000 [97]. The fundamental obstacle for efficient spin injection
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from a FM metal was identified as being the impedance mismatch between the

FM metal and the semiconductor. Schmidt et al. [97] indeed found that in the

diffusive transport regime, only a current with small spin-polarisation can be

injected into a SC even if the conductivities of the SC and FM are equal.

A theoretical solution for this problem was advanced simultaneously by Rashba

[98] and Smith et al. [99]. Moving away from the diffusive regime, a tunnelling

interface or barrier would act as a spin-selector, and greatly enhance the spin

injection efficiency. MgO is again of current interest for this use as a tunnel

barrier in spin-injection devices. Along with the quality of the interfaces and

barrier, as discussed above in section 6.2, the oxide layer itself may affect the

magnetic properties of the injector. In the case of a spin-injection structure such

as Fe/MgO/GaAs(100), for instance, the spin-polarisation at the interface is a

critical parameter for device performance [155], and therefore it is important that

the magnetic moment of the magnetic film is not affected by the presence of the

oxide layer. This will also be the case for MTJ structures, where the oxide barrier

may have damaging effects on the magnetic layers [126, 127].

Following a similar study for AlOx barriers [90], in order to characterise the

effect of the MgO tunnel barrier on the FM injector, we have grown three sam-

ples, varying the MgO film thickness and the FM injector, all on a GaAs(100)

substrate. These were 5 nm Fe injector with 1.5 and 2.8 nm MgO barriers, and

a third sample of 5 nm Co FM layer with a 1.5 nm MgO barrier. All three bar-

rier samples were grown using Mg evaporation in an O2 background (see section

6.1.3) in the UHV MBE chamber, and Au-capped before unloading them from

the chamber.

6.3.2 Interface Roughness and MgO Crystallinity

We first characterised the samples ex situ using XRR, in order to obtain estimates

for the thicknesses and interface roughness amplitudes of each layer. The XRR

results are summarised in table 6.2, and a representative result and fit to the

data are shown in figure 6.5. We notice slight discrepancies between the nominal

and estimated thicknesses for the barrier layers as well as the FM layers. The

explanation for this is the instability in the rate of evaporation, particularly of

the Mg, but also for such thicknesses the XRR fit loses accuracy due to the
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Layer Material t ±0.1 (nm) ρ ±0.1 (nm)
]20.09.2006 GaAs n/a 0.91

MgO 2.83 0.89
Fe 5.93 0.86
Au 7.34 0.73

]28.09.2006 GaAs n/a 0.36
MgO 1.29 0.36
Fe 6.22 0.72
Au 8.60 0.77

]30.09.2006 GaAs n/a 0.99
MgO 1.35 0.45
Co 6.60 0.64
Au 6.16 0.75

Table 6.2: Summary of XRR simulation fit results, yielding thickness, t, and interface
roughness amplitude, ρ, of each layer, for the MgO tunnel barrier study samples.

small number of Kiessig fringes detected in the low-angle incidence range of

the measurement. Of notable interest for our purposes though is the roughness

amplitude for each sample layer. The XRR fit indicates that despite a fairly

poor GaAs surface in two cases, the MgO layer and subsequent FM layer had

reasonably low interface roughnesses.

As we were unable to take LEED or RHEED patterns (in situ) for these

samples, we had to rely on ex situ measurements to characterise the crystallinity

of the layers. We decided not to attempt XRD scans as the MgO layers were

so thin, but turned directly to MOKE magnetometry. Performing MOKE with

various field orientations (in-plane) would be an indication as to whether or

not the FM films displayed any magneto-crystalline anisotropy. The magneto-

crystalline anisotropy reflects the crystalline structure of an epitaxial film, so in

this case such an anisotropy would be a demonstration of crystalline order. The

MOKE loops for two of these samples are shown in figures 6.6 and 6.7.

Sample ]20.09.2006 has a 2.8 nm MgO barrier. As we see in figure 6.6, the

loops taken with four applied field directions are not identical, which immediately

indicates a crystallinity of the Fe film. Upon further examination, and taking into

consideration the applied field direction, this film displays a uni-axial anisotropy.

Indeed, the MOKE loops show what tends to be an easy axis with the field along

the [011] direction, and a hard axis with the field applied perpendicular to that,
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Figure 6.5: Sample ]30.09.2006, nominally Au cap, 5 nm Co, 1.5 nm MgO on
GaAs(100); MgO barrier grown by Mg evaporation in O2 background. XRR data (blue)
and fit (red). The fit parameters are summarised in table 6.2

along the [011] direction. Furthermore, the two other loops, at 45◦ to these, are

very similar to each other, both displaying an intermediate switching behaviour.

This is not the behaviour we expect from an epitaxial Fe film on epitax-

ial MgO, which is a cubic anisotropy, with four-fold symmetry. However, this

anisotropic behaviour is suspiciously similar to that of Fe grown direction on

GaAs(100). Indeed for such a system and ultra-thin Fe, we expect this uni-axial

anisotropy. This makes it quite difficult to establish what has happened with this

film. 2.8 nm of MgO corresponds to a layer ∼13 ML thick, therefore we expect

that to entirely cover the GaAs surface, hence the surprising presence of this uni-

axial anisotropy. However, we notice that the roughness of this substrate and

of the MgO barrier was quite high, both ∼0.9nm, which would have been quite

detrimental to the quality and crystallinity of the subsequent Fe layer. One ex-

planation would be that the Fe film has relaxed into crystalline order during the

growth. From an initially polycrystalline growth, epitaxy might have occurred

in the latter stages of the Fe growth. This might have been helped or brought on

by the fact that following the MgO growth, the substrate temperature was still

slightly above 100◦C at the start of the Fe growth. Therefore, we might have

an initially polycrystalline film that then relaxes into order, and thus displays a
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Figure 6.6: Sample ]20.09.2006, nominally Au cap, 5 nm Fe, 2.8 nm MgO on GaAs(100);
MgO barrier grown by Mg evaporation in O2 background atmosphere. MOKE loops for
the specified field orientations.

strain-induced uni-axial anisotropy.

Figure 6.7 shows the MOKE loops measured on sample ]28.09.2006, which is

a thinner (nominally 1.5 nm) MgO barrier, but otherwise grown under the same

conditions, and with the same Fe layer. These MOKE loops do not display the

same uni-axial anisotropy, but rather a cubic anisotropy. Indeed we see that the

loops can be paired up as easy and hard axes, with loops in a pair corresponding

to perpendicular field directions. In addition to this there are a few minor features

which we notice. Namely the ‘double switching’ in loop (a) which indicates that

the magnetisation is switching from a parallel, to perpendicular, and then to anti-

parallel alignment in two distinct steps. This two-step switching is not present

in loop (b), but its shape is still characteristic of an easy axis of magnetisation

switching. The double switching and such a square easy axis loop are indicative

of a highly crystalline FM layer. Furthermore, the cubic anisotropy is confirmed

by the two perpendicular hard-axis loops (c) and (d), which show a rotation of

the magnetisation of the layer and then a jump. In addition to this, the direction
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Figure 6.7: Sample ]28.09.2006, nominally Au cap, 5 nm Fe, 1.5 nm MgO on GaAs(100);
MgO barrier grown by Mg evaporation in O2 background atmosphere. MOKE loops for
the specified field orientations.

of the Fe anisotropy corresponds to that which we expect, for growth on MgO,

considering the 45◦ in-plane rotation of the Fe lattice upon the MgO lattice (see

details in section 6.4), thus further demonstrating the crystallinity of the film.

We note that for this sample the roughness amplitude of the substrate surface

and Fe/MgO interface were low, at ∼0.3 nm, which would be very favourable to

high-quality crystalline growths.

The fact that the Fe films display anisotropies for these two samples is in-

dicative of their partial epitaxy, which in turn means that the MgO barrier was

crystalline, and hence a suitable seed for epitaxial growth. However, the results

presented for these samples are not consistent for what are nearly identical sam-

ples. Furthermore, we performed MOKE measurements on the third sample (not

shown) and found that the loops in all four applied field directions were iden-

tical, hence pointing to a polycrystalline Co layer. We believe that the Fe and

Co evaporations and growths are fairly well controlled, unlike the MgO growth,

which was still in a development stage. The reason for the difference in the qual-
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Sample FM Layer t (nm) ρ (nm) Magn. Moment (µB)
]20.09.2006 Fe 5.1 ± 0.4 0.9 ± 0.1 2.06 ± 0.03
]28.09.2006 Fe 4.9 ± 0.3 0.7 ± 0.1 2.10 ± 0.02
]30.09.2006 Co 7.1 ± 0.9 0.4 ± 0.1 1.6 ± 0.1

Table 6.3: Summary of PNR fit results for the FM layers in the MgO barrier samples,
showing the best fit parameters for the thickness, t, roughness, ρ, and magnetic moment.

ity of these layers is a lack of control of the evaporation rate of Mg during the

MgO deposition. Rapid changes in this rate will lead to poor stoichiometry and

crystallinity of the barrier layer.

6.3.3 Polarized Neutron Study of Barrier Samples

As we have seen, PNR is a very powerful technique enabling us to determine

structural and magnetic properties of samples simultaneously. We performed

PNR on our three MgO tunnel barrier samples. Fits to the data provided values

for layer thickness, roughness and atomic density to complement the XRR results,

and in addition to this an estimate of the magnetic moment of the FM layer.

A sample of our PNR data and fits is shown in figure 6.8. This shows the

up- and down-spin reflectivities, and the spin-asymmetry for sample ]20.09.2006.

The spin-asymmetry is simply the difference between the normalised spin-up and

spin-down signals, from which it is possible to extract the magnetic moment. In

order to obtain the best physically accurate fits to the PNR data, we initially

started the fitting using the above XRR results, and required consistency between

the two reflectivity techniques. Once a suitable fit was obtained we could then

begin to slightly vary the magnetic moment of the FM layer, and the atomic

densities of the barrier and Au cap. As in chapter 4, we allowed the Au cap

density to vary from its bulk value to account for the possibility of imperfect

epitaxial growth of the cap. Finally, fitting the spin-asymmetry allowed us to

refine the determined magnetic moment value.

The results of the fits are summarised in tables 6.3 and 6.4. We note con-

sistency with the XRR results for the thickness and roughness amplitude values

within the errors of the two measurements. Two features which stand out are the

decrease of the magnetic moments of the FM layers, and of the atomic density
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Figure 6.8: Sample ]20.09.2006, nominally Au cap, 5 nm Fe, 1.5 nm MgO on GaAs(100);
MgO barrier grown by Mg evaporation in O2 background atmosphere. Normalised PNR
intensity measurement and fits to (a) spin-up and spin-down reflectivities; and (b) spin-
asymmetry data.
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Sample t (nm) ρ (nm) N (1028 m−3)
]20.09.2006 2.8 ± 0.2 0.8 ± 0.1 8.2 ± 0.4
]28.09.2006 1.1 ± 0.1 0.3 ± 0.1 8.7 ± 0.4
]30.09.2006 1.2 ± 0.2 0.9 ± 0.1 8.3 ± 0.5

Table 6.4: Summary of PNR fit results for the MgO barriers, showing the best fit
parameters for the thickness, t, roughness, ρ, and atomic density, N .

of the MgO tunnelling barriers3.

We observe a slight decrease of the magnetic moment in all three samples

from the theoretical values of 2.2 and 1.8 µB for Fe and Co, respectively. Simi-

larly to the argument of chapter 4, we attribute this to interface roughness and

interdiffusion. In these cases, we have a formation of FeO or CoO at the inter-

face between the MgO tunnelling barrier and the FM layer. This intermixing

is enhanced due to interface roughness, which increases the contact surface area

between the two layers.

The variation in the atomic density of the MgO barriers is indicative of non-

stoichiometric growth of MgO. As we have seen (section 6.1.3), our growth of

MgO by Mg deposition in an O2 background atmosphere was not yet sufficiently

optimised to yield epitaxial and perfectly stoichiometric films. The decrease in

atomic density indicates Mg-rich layers, thus lack of O2 present during growth,

due to the large fluctuations (increase) of the Mg evaporation rate.

MgO Barriers Conclusion

MgO barriers are a very promising route to solving the impedance mismatch

obstacle at a FM/SC interface. We must not however neglect the quality of the

layers and interfaces, which can greatly affect magnetic properties, and dramat-

ically alter transport properties.

3Bulk value: NMgO = 10.71× 1028 m−3.
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6.4 Co/MgO/Fe Pseudo-Spin-Valve

6.4.1 Motivation: Magnetic Tunnel Junctions

Magnetic tunnel junctions, consisting of two ferromagnetic electrodes separated

by an insulating layer (tunnel barrier) exhibit magneto-resistance at room tem-

perature. MTJs are arguably the most promising route to developing high-

performance MRAM, magnetic sensors, and novel spintronic devices due to the

high achievable signal-to-noise ratio. These devices rely on the MR ratio of the

multilayer, defined as:
∆R

RP
=

(RAP −RP )
RP

(6.1)

where RP and RAP are the junction resistance when the magnetisation of the

two electrodes are aligned in the parallel and anti-parallel states, respectively

[156].

Therefore, it is obvious that controlled and independent switching of the two

FM layers is crucial to efficient operation of MRAM or such devices. Large TMR

values of up to 70% at RT have been reported using amorphous AlOx [157],

but recent research reports ∼200% TMR using highly oriented MgO barriers

[126, 127]. This MR ratio is constantly being improved as the growth meth-

ods are developing, and has been theoretically predicted to reach 1000% for an

Fe/MgO/Fe system [149, 152], and even higher for a Co/MgO/Co MTJ [143].

6.4.2 MBE Growth and Structural Characterisation

We have grown a PSV structure on an oriented MgO substrate in the UHV growth

chamber described in chapter 3, and using e-beam evaporation from an MgO

source (see section 6.1.2). UHV MBE enables us to grow clean and crystalline

multilayer structures. The PSV was based upon a Co/MgO/Fe trilayer, without

anti-ferromagnetic material, so essentially two free magnetic layers (see inset in

figure 6.10). It is clear that the quality of each layer and of the oxide barrier

is paramount to achieving high MR ratios. Furthermore, a single crystal MgO

tunnelling layer provides the necessary seeding for an epitaxial top electrode,

which then enables us to control its magnetisation state independently of the

bottom FM layer.

As we have seen, epitaxial relations link the growths of Fe/MgO and Co/MgO
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Layer Thickness (nm) Roughness (nm)
MgO (substrate) n/a 0.3± 0.1
Fe (bottom electrode) 4.4± 0.1 0.2± 0.1

MgO (tunnel barrier) 3.2± 0.1 0.5± 0.1
Co (top electrode) 7.7± 0.1 0.6± 0.1

Table 6.5: Summary of XRR fit results for the MgO-based PSV.

upon a 45◦ in-plane rotation, with Fe(100)[011]‖MgO(100)[001] [142]. In order to

achieve epitaxy and obtain smooth interfaces we grew this sample at high temper-

ature (T = 200◦C) and in the best pressure conditions (pgrowth = 3×10−9 mbar).

We were able to verify the epitaxy of the structure in situ by RHEED. Figure

6.9 shows the RHEED patterns of the substrate and each subsequently grown

layer, for three orientations. Kikuchi arcs on the substrate patterns, and distinct

spots and streaks for each layer confirm the single-crystal growth throughout the

entire multi-layer structure.

We performed further interface characterisation ex situ using XRR. The

resultant diffraction and a fit to the data are shown in figure 6.10. The fit

to the XRR data provides thickness and roughness values for each layer, as

summarised in table 6.5. The XRR fit confirms that all the interfaces were

extremely smooth. As expected, the MgO tunnel barrier had a slightly higher

roughness than the substrate and Fe layer, for the reasons explained in section

6.1.2, and this roughness was then carried through to the Co top electrode.

6.4.3 Magnetic Characterisation: Independent Switching and

Polarized Neutron Reflectivity

Knowing that both layers were epitaxial, we wanted to verify independent switch-

ing, and check the easy axes directions for the layers. This was done using vector

MOKE magnetometry, and the loops for four crystal directions are shown in

figure 6.11. Indeed these show independent switching of both FM layers and in-

dicate that the easy axes (sharpest switching) tend to be at 45◦ to the e.g. (010)

crystal orientation of the edge of the (cubic) MgO substrate. This confirms the

magneto-crystalline anisotropy of both FM electrodes. By delicately varying the

range of field sweep, we were also able to observe minor loops for the structure,
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Figure 6.9: RHEED patterns for the substrate and each layer of the PSV sample, along
three directions. (a) MgO Substrate; (b) Fe layer; (c) MgO barrier; and (d) Co layer.
The thicknesses indicated are nominal.
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Figure 6.10: XRR results for the PSV Structure. Inset : Schematic diagram of the
sample.

in which we only switched the Fe layer (not shown).

The fact that the layers were switching independently indicated that they

were not pinhole-coupled magnetically. In addition to this, we wanted to further

characterise the MgO barrier by verifying that it was indeed epitaxial and insu-

lating. We performed AMR measurements. The AMR effect manifests itself as

a difference in resistivity depending on the direction of the current with respect

to the spontaneous magnetisation [158].

We performed AMR measurements using a collinear 4-point probe system,

simply lowered to contact the (Au cap of the) sample. We applied a constant

current across the outer probes and measured the change in voltage across the

two inner probes while sweeping an external magnetic field, thus yielding a mea-

surement of the resistivity as a function of magnetisation. We applied the field

in the plane of the sample, and applied the current parallel to the direction of

the magnetic field.

The AMR results are shown in figure 6.12. First of all, and quantitatively, we

observe that the Co layer displays a ∼1% AMR ratio. Qualitatively we notice the

two different shapes of the curves, which can be paired up with perpendicular
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Figure 6.11: MOKE loops for the PSV structure. The field was applied in the plane of
the sample, along four directions.
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Figure 6.12: AMR results for the PSV Structure. The field was applied in the plane of
the sample, and the current was parallel to the direction of the field.
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Figure 6.13: Bringing together figures 6.11 and 6.12, we observe the correspondence
of the switching field of the Co top electrode observed in the (a) AMR curve; and (b)
MOKE loop.

applied field directions: H‖[001],[010] and H‖[011],[011]. The sharp spike ob-

served in figures 6.12(c) and (d) is characteristic of an easy axis switch. Indeed,

the magnetisation of the layer is jumping, rather than rotating, to the antipar-

allel orientation extremely rapidly at the saturation field strength. However the

v-shape curve in figures 6.12(a) and (b) indicates that the magnetisation in the

sample is rotating in plane in order to reach the antiparallel alignment, which

is indicative of a hard axis of magnetisation for the layer. These AMR results

allow us to complement the MOKE data, thus verifying the expected four-fold

anisotropy of the Co film grown on MgO [159].

As we have mentioned above, the AMR data was taken using a contact probe

set-up. The fact that the AMR data only shows single peaks indicates that we

are only running the current through the (Au cap and) Co layer, as the resistivity

is not affected by the Fe layer’s switching. This further confirms that we have

an insulating tunnel barrier and we are able to selectively probe only this top

electrode. This is further displayed in figure 6.13, where we see the position of the
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Layer t (nm) ρ (nm) Magn. Moment (µB) N (1028 m−3)
Fe 4.1 ± 0.3 0.2 ± 0.1 1.91 ± 0.06 8.49†

MgO 3.6 ± 0.3 0.5 ± 0.1 0† 9.10 ± 0.16
Co 8.3 ± 0.4 0.6 ± 0.1 1.43 ± 0.02 8.99†

Table 6.6: Summary of PNR fit results for the MgO-based PSV, showing the best fit
parameters for the thickness, t, roughness, ρ, magnetic moment, µB , and atomic density,
N , for the relevant layers. A † indicates that the parameter was not fitted (kept to 0 or
to the bulk value).

AMR peaks correspond to the steps in the MOKE loops, within field calibration

error on the two set-ups.

In order to further characterise the magnetic properties of the individual FM

layers, we performed PNR on this multilayer sample. Again, fitting the PNR

data can provide us with layer-specific magnetic and structural information. The

data and fits to the data are shown in figure 6.14, and the best fit parameters

are summarised in table 6.6.

As it was the case for the barrier samples (section 6.3), we notice two fea-

tures in the fit parameters, which are again a decrease in the FM layers’ magnetic

moment, and a slight decrease in the atomic density of the MgO tunnel barrier.

This time, however, the decrease in the atomic density is not caused by non-

stoichiometric growth (evaporation directly from an MgO crystal) but only by

slightly imperfect epitaxial growth. We note that the deviation from the bulk

value is less than that of the case of Mg evaporation in an O2 background at-

mosphere.

In the case of the magnetic moments of the Fe and Co layer, the deviation

from the theoretical bulk values is larger than that for the barrier samples above.

We again attribute this to interdiffusion at the interfaces in the sample, and the

formation of interfacial FeO and CoO inter-layers. In particular the Fe layer is

grown on and covered by MgO, which potentially doubles the amount of interfa-

cial oxidation.

PSV Conclusion and Further Work

In conclusion for this section, we have grown a high-quality pseudo-spin valve

structure by UHV MBE. The structure was fully crystalline, with smooth inter-
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Figure 6.14: Normalised PNR intensity measurement and fits to (a) spin-up and spin-
down reflectivities; and (b) spin-asymmetry data for the MgO-based PSV sample.
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faces throughout. We have demonstrated epitaxy-induced magneto-crystalline

anisotropy and in consequence controlled independent switching of two ferro-

magnetic layers in a MTJ structure. Future work on such devices will include

transport characterisation measurements, with the current perpendicular to the

plane, in order to measure the TMR ratio through the epitaxial MgO barrier.

6.5 MgO as a Buffer Layer in a Monolithic-Integrated

Device

Thin MgO layers have another useful application as a buffer layer. We studied

and used this property of MgO in the context of a collaboration project with the

Universities of Glasgow and Salford, titled Monolithic-Integrated Optical Devices

containing Magneto-Optic Elements.

6.5.1 Overview of the Monolithic-Integrated Devices Project

Laser sources can suffer instabilities when placed within an optical system due

to the injection noise caused by light being reflected back into the laser cavity

[160]. Currently, in order to avoid this instability, bulk optical isolators are

incorporated between laser sources and connected optical elements. The assembly

of individual components in a bulk isolator is a complex process that significantly

increases cost and reduces yield. Consequently, the prospect of a monolithically

integrated optical-isolator has attracted considerable interest. The underlying

difficulty to achieve this is that the magneto-optic response of conventional III-

V semiconductors such as GaAs is extremely small, requiring the application

of an impractically large magnetic field in order to elicit a significant response.

Some of the issues and potential solutions were reviewed by Hutchings [161].

The approach that this collaboration project was to take was based on extending

the Faraday rotation technique used in bulk magneto-optic devices. The key

feature of such an isolator is the non-reciprocal nature of the Faraday effect,

which imparts the same rotation sense to the polarisation in both directions of

propagation. Therefore a MO crystal placed in between two linear polarisers at

45◦ to each other will constitute an isolator, if the MO crystal imparts a 45◦

rotation to the polarisation of the light. The rotation of light in the forward
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Figure 6.15: (from [162]) Isolator structure for the rib waveguide. A nonreciprocal phase
shift is generated in waveguide MO films by the application of a transverse magnetic field
to the waveguide axis. Light propagation is along the z direction.

direction is parallel to and is passed by the output polariser, but in the backward

direction it is orthogonal to the first polariser and is subsequently blocked [162].

There are two possible implementations to achieve non-reciprocal behaviour

in integrated planar devices. The first uses the magneto-optic Kerr effect with

a transverse magnetic (TM)-guided mode and an applied transverse magnetic

field and at the core-cladding interface. We considered implementing this with

a ferromagnetic metallic layer but initial simulations indicated that the optical

losses would be prohibitive. The second approach uses Faraday rotation, which

allows the use of transverse electric (TE)-gain in conventional semiconductor

wafer structures and is the approach which was undertaken in this collaboration

project.

The transfer of the non-reciprocal Faraday rotation principles to a planar,

SC wave-guide geometry raises a number of inherent difficulties. Firstly, the

guided-wave structure introduces a birefringence which limits the coherence of

the polarisation conversion due to Faraday rotation. Secondly, although polari-

sation selectivity can be routinely incorporated for TE- or TM-modes, it is not

straightforward for other polarisation angles. However, the integrated device

devised in collaboration with Glasgow and Salford implemented this, and was

based on incorporating an effective wave-plate with an asymmetric waveguide

to provide a reciprocal polarisation rotation [161, 163]. The basic design of the

waveguide isolator structure is shown in figure 6.15.
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6.5.2 Magneto-Optic Layer Deposition

The magneto-optic material that we used was an yttrium-iron oxide garnet,

often referred to as YIG, with chemical composition Y3Fe5O12. This alloy is

known to have a very high Faraday rotation, even for thin films, and a low op-

tical absorption for the near-infrared wavelengths. The Verdet constant is addi-

tionally enhanced for the communication wavelengths with Cerium substitution:

Ce1Y2Fe5O12 (Ce:YIG). Experimentally, there are several approaches to the de-

position of YIG. It has been grown by PLD [164, 165], RF-sputtering [166–169],

metal-oxide chemical vapour deposition [170], and MBE co-evaporation of Y and

Fe in an oxygen background has also been suggested. Each of these comes with

its own difficulties in terms of getting the film quality and layer stoichiometry

correct.

At first we considered MBE co-evaporation, but were faced with several diffi-

culties, including the challenge of correctly dosing the two evaporators and the O2

background pressure for stoichiometry, and keeping the evaporation rates stable

for extended periods of time (up to several hours for thick layers). It therefore

proved much more straightforward to sputter our magneto-optic layers directly

from a Ce1Y2Fe5O12 target. This should yield the correct composition for the

film and, with accurate control of deposition rate and conditions, a smooth film

and interface. We did not expect the crystallinity of the Ce:YIG deposited by

RF-sputtering to be perfect upon deposition, as we were sputtering at room tem-

perature in the first instance. However, previous research [166, 168] and a study

carried out at Glasgow on our samples indicated that improvements in crys-

tallinity, and subsequent enhancement of the Verdet coefficient, can be obtained

through post-annealing of the films.

6.5.3 MgO as a Buffer Layer

We note that the annealing temperature range for the Ce:YIG films was 750-

950◦C, which is one of the reasons for requiring an inert buffer layer. Indeed at

such temperatures we expect large amounts of undesirable As interdiffusion from

the substrate into the MO layer [133]. In the case of high-temperature growth,

Langmuir evaporation of As at these temperatures would result in considerable

roughening of the GaAs surface, and As migration leads to intermixing in the SC
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Figure 6.16: Sample SPUT]07.10.2005, nominally 100 nm Ce:YIG/8 nm
MgO/GaAs(100). TEM image of a sputtered Ce:YIG/MgO/GaAs wave-guide sample.
TEM image courtesy of Dr. Ian MacLaren, University of Glasgow.

waveguide, and is detrimental to the quantum wells. However, high-quality MgO

layers as thin as 4.5 nm grown on GaAs have been demonstrated to adequately

protect the GaAs and preserve the integrity of the quantum well at temperatures

in excess of 800◦C [167]. Furthermore, in the case of growth in an O2 background,

the oxygen-rich ambient atmosphere and high growth temperature would lead to

rapid oxidation of the GaAs substrate surface [131].

The second reason for the MgO buffer layer is that it offers an appropriate

lattice matching between the SC surface and the Ce:YIG. With aY IG = 12.376

Å, and aGaAs = 5.654 Å there is a very large lattice mismatch between the SC

and the MO layer. However, the insertion of an intermediate MgO layer provided

an appropriate seed for crystallinity of the MO film [170]. And as we have seen

above, GaAs and MgO are also epitaxially linked. Therefore a potentially high-

quality MgO buffer layer may provide a route to approaching the crystalline

Verdet constant values for the Ce:YIG.

The crystallinity of our UHV MBE-grown MgO layers was discussed in sec-

tions 6.1.2 and 6.1.3, but not that of the samples grown by sputter deposition.

We unfortunately do not have XRD data for these layers. Figure 6.16 shows

a TEM image of a sample we grew entirely in our sputtering chamber without

removal from the vacuum. Due to a problem with the sample holder heat source
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at the time of deposition, this sample was grown at only 150◦C. The TEM image

was taken directly after deposition, before any annealing treatment. Therefore

the Ce:YIG layer is amorphous, as expected. The MgO buffer layer however

already displayed indications of crystalline growth. In addition to this the TEM

showed very sharp interfaces for this sample.

6.6 MgO: Conclusions and Further Work

We have shown and explored from a fundamental point of view how magnesium

oxide layers can be useful for device applications. As previously stated, there

is currently huge interest and research towards incorporating MgO layers into

electronic and spintronic devices. However it is clearly emerging that high-quality

MgO layers are necessary for practical applications.

Therefore it is crucial to understand and control as best we can the interface

dynamics in MgO-based samples. These include epitaxy, growth mode, and of

course interdiffusion effects. As we have shown, such effects and parameters are

paramount to the role of the MgO, as well as affecting neighbouring layers such

as ferromagnetic contacts. Finally, as we have seen in our work on the wave-

guide project, high-quality MgO can lead the way to incorporating further exotic

materials to semiconductor-based devices.

Further work on the growth and use of MgO will focus on optimising the

growth to obtain fully epitaxial layers and barriers on a variety of substrates.

This might be done by redesigning the MgO source evaporator geometry in order

to better heat and degas the source crystal, or in the case of the growth in oxygen

background modifying the Mg evaporator to gain better control of the deposition

rate. We have seen that growth by sputtering already produces high-quality MgO

films, which provides an opportunity to use more complex materials and explore

coverage and thickness effects. This enables us to fairly easily design and produce

various samples in order to guide further studies of fully epitaxial samples grown

in the MBE chamber. Such samples will be of great interest for spintronics

research, both in terms of magneto-resistance and spin injection and detection

into a semiconductor-based device.
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Chapter 7

Summary and Outlook

Experimental Progress

During the course of this work, we have developed and improved several pieces of

apparatus and experimental techniques. The UHV chamber itself is in constant

need of repairs and maintenance, and whenever possible we took these opportu-

nities to improve and update the system. In addition to this, we experimented

and developed the growth of MgO by MBE, both from an MgO source, and from

Mg in an O2 background. We were able to include MgO layers in thin epitaxial

multilayer structures.

The EL set-up was nearly entirely redesigned during the course of this Ph.D.

We switched to the oblique Hanle geometry, introduced low-temperature capa-

bility, and improved the optical polarisation detection.

Fe/GaAs and Fe/InAs

After magnetic and structural characterisation of ultrathin epitaxial Fe films

grown on GaAs and InAs, we have established that interface and interdiffusion

effects are the dominant mechanisms which influence the value of the magnetic

moment in these films. Substrate surface roughness increases intermixing of

the atomic species present, and we suggest the formation of non-ferromagnetic

compounds at the interface contributes to the decrease of the magnetic moment.

141
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Spintronics and Electro-Luminescence

We have used the EL experiment to probe spin-states of carriers in semicon-

ductor structures. We have characterised our spin-LED structures electrically

and presented their magnetic behaviour. We have detected a small optical po-

larisation of the light emitted by our spin-LEDs, which indicates a ∼1% spin

injection polarisation at RT. This value increases to ∼4% at 77 K. We note

that the polarisation detected from an in situ and ex situ transferred sample are

near-identical.

MgO Growth and Applications

We have grown and characterised thin MgO buffer and tunnelling layers. Such

layers currently generate huge interest in device applications, where MgO is being

integrated in magnetic multilayers. We have not obtained completely epitaxial

MgO on GaAs, though we have seen some indications of emerging crystallinity.

We have studied the influence of an MgO tunnelling barrier on thin FM films,

and report a slight decrease in the magnetic moment of such films, which we

attribute to interface roughness and subsequent oxidation of the FM layers. We

also presented the growth and characterisation of an MgO-based PSV structure,

and demonstrated epitaxy-induced magneto-crystalline anisotropy, and in con-

sequence independent switching of the two FM electrodes. We also report on a

decrease of the ferromagnetic contacts’ magnetic moments in this structure, due

to interfacial oxide layers. Finally, we have developed the integration of MgO as

a buffer layer in a monolithic device.

Conclusions

From these experiments, we deduce that the interface quality is a critical pa-

rameter in thin film magnetic multilayers. Disorder, defects and intermixing at

interfaces have drastic consequences on magnetic and structural properties. Epi-

taxy requires atomically ordered surfaces, and will be destroyed by defects on

the substrate or layer surface. Intermixing of the atomic species present during

growth is unavoidable to a certain extent. Indeed, high-energy (hot) atoms inci-
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dent on a surface will potentially dislocate substrate atoms in the formation of

its own bonds. Molecular beam epitaxy and in situ surface treatment in UHV

aim to provide us with such clean templates for epitaxial growth, which has

allowed us to demonstrate epitaxy-induced magneto-crystalline anisotropy in a

ferromagnetic film.

As we have seen, roughness amplitude of an interface, which increases the

surface area in contact at the interface, contributes to the intermixing. The effects

of roughness and intermixing are naturally most important at low coverages,

where the proportion of intermixed film is large. We have seen in the Fe/SC

magnetic moment study that the films regain their bulk-like magnetic moment as

the film thickness increases. In the case of the FM/MgO layers, the PNR results

again indicated a slight decrease in the magnetic moment of the Fe and Co layers

despite relatively thick layers. This was attributed to increased intermixing and

subsequent e.g. FeO interlayers due to the greater roughness amplitude in this

system as compared to the Fe/SC one.

In addition to affecting magnetic and structural properties, defects and dis-

order at a surface can change the electrical transport properties at an interface.

We have seen this to be the case in spin-LEDs, where certain devices contain-

ing defects or pinholes displayed short- or open-circuit behaviour instead of the

expected diode-like characteristics from the Schottky contact. Furthermore, im-

purities at the interface are hugely detrimental to spin injection efficiencies as

predicted in ideal FM/SC junctions. It has also been shown in MgO-based de-

vice simulations that any interface impurities or defects will destroy the potential

spin-filtering effects.

Future Work

Any insight into fundamental properties of physical systems will always raise

further questions and open new avenues of research. Following on from this

project, we can imagine new experiments exploring these fundamental properties

but also device integration and applications.

Although the task of realising a perfect single atomic layer interface seems

impossible, we could attempt to optimise growth systems to obtain the highest

quality real samples. These could include varying growth conditions such as tem-
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perature, but also for instance inserting inert buffer layers in multilayer systems.

A thin Au layer between Fe and GaAs may reduce intermixing without being

detrimental to the epitaxy of the Fe film. As MgO becomes more commonly

used, it would be useful to gain further insight on the evolution of the structural

and magnetic properties of ferromagnetic contacts grown on MgO, for instance

with a systematic thickness-dependence study. And as we have seen, crystalline

MgO could be used as a buffer and protective layer for more complex compounds

such as iron garnets.

The integration of epitaxial films in commercial devices such as computer

memory elements and hard drive read heads could potentially have a huge im-

pact on their efficiency. However, the challenge of realising an epitaxial multi-

layer is incompatible with the low-cost and mass production requirements of the

industries. Therefore, it seems essential to fully characterise real interfaces, in-

cluding interdiffusion and intermixing effects, and defects in magnetic multilayer

systems. Ultimately, detailed studies such as those carried out in the course of

this project will be critical in understanding how the interface properties in fer-

romagnetic multilayer structures can be engineered to be efficiently integrated in

commercially available devices.
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3D three-dimensional

AES Auger electron spectroscopy

AFM atomic force microscope

AMR anisotropic magneto-resistance

BAP Bir-Aronov-Pikus

bcc body-centred cubic

bct body-centred tetragonal

BLS Brillouin light scattering

CCD charge-coupled device

cps counts per second

DP D’yakonov-Perel’

EL electro-luminescence

EY Elliot-Yafet

fcc face centred cubic

FET field effect transistor

FM ferromagnet

GMR giant magneto-resistance

LED light emitting diode

LEED low-energy electron diffraction

LT low temperature
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MCD magnetic circular dichroism

MBE molecular beam epitaxy

MO magneto-optical

MOKE magneto-optical Kerr effect

MR magneto-resistance

MRAM magnetic random access memory

MTJ magnetic tunnel junction

PLD pulsed laser deposition

PMMA polymethyl methacrylate acrylic

PNR polarised neutron reflectivity

PSV pseudo-spin-valve

QW quantum well

RF radio frequency

RHEED reflection high-energy electron diffraction

RT room temperature

SC semiconductor

SEM scanning electron microscope

SP superparamagnetic

SQUID superconducting quantum interference device

STM scanning tunnelling microscope

SV spin-valve

TE transverse electric

TEM transmission electron microscopy

TFMM Thin Film Magnetism and Materials

TM transverse magnetic

TMR tunnelling magneto-resistance

UHV ultra-high vacuum
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VRW variable retardation waveplate

XRD X-ray diffraction

XRR X-ray reflectivity

YIG yttrium-iron garnet
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