Un microlaboratoire électrophorétique pour l'étude du couplage entre transport et cinétique chimique : application à la réaction d'hybridation d'oligonucléotides

André Estévez Torres

9 juillet 2007

Département de chimie, École normale supérieure, Directeur : Ludovic JULLIEN

Goal

 $1 \text{ cell} = 10^5 \text{ chemical species}$

Large concentration range -miRNA 10-10⁴ copies D.P. Bartel Cell 2004 - ATP 10⁷ (1 mM)

Need of powerful tools for Analytical Chemistry

selective and fast

Selectivity in analytical chemistry

Issue: select a species inside a mixture

2 strategies: Improve existing strategies - Spectroscopy Affinity separations (K)

Develop new selection strategies: reactivity (k₁, k₂)

Selecting on kinetics

Resonance

A chemical reaction...
$$A_i + B = \frac{k_1^i}{k_2^i} C_i$$

$$u(t) = u\cos(\omega t)$$

Response always maximum

Focus on diffusion (D)

L. Jullien, A. Lemarchand, H. Lemarchand, J. Chem. Phys., 2000

Quantifying diffusion

Two main approaches:

1. Fluctuations near equilibrium: FCS

- 2. Relaxation of out-of-equilibrium concentration profile
 - FRAP D. Axelrod *et al*, *Biophys. J.*, **1976**
 - Injection

Controlling diffusion: electrodiffusion

azo dye

D maximum when:

$$k_1[\alpha - CD] = k_2 = \frac{\omega}{2}$$

Initial condition:

Alcor D, Croquette V, Jullien L, Lemarchand A, PNAS, 2004

Outline

- 1. DNA hybridization reaction
- 2. A functional microlaboratory
- 3. A powerful tool to analyze dynamics

DNA point mutations (SNP)

DNA chips rely on thermodynamics

Slow (10-1h) Liu, Quake, Angew.Chem., 2006 Weak observable (intensity)

Electrodiffusion rely on kinetics

Fast (seconds) Reliable observable (distance)

Important parameters:

Reaction dynamics: k_1 , k_2

Transport dynamics: μ_A , μ_C , D_A , D_C

$$D_{disp} = E^2 \left(\mu_A - \mu_C\right)^2 \frac{k_1 k_2}{(k_1 + k_2)^3} \left[\frac{1}{2\left(1 + \frac{\omega^2}{(k_1 + k_2)^2}\right)}\right]$$

Dynamics of DNA oligonucleotides

1. Easy predicted kinetics
$$\begin{bmatrix} K \text{ can be calculated} & J. SantaLucia Jr. PNAS 1998 \\ k_1 \text{ set by salt} & A.P. Williams et al Biochemistry 1991 \\ k_2 = k_1/K \end{bmatrix}$$

2. Problem: k₁ independent of sequence (nucleation mechanism) D.Pörschke, M. Eigen J. Mol. Biol **1971**

3. Problem: Electrophoretic mobility independent of length (free draining) N. Stellwagen *et al Biochemistry* 2003

4. Easy to have $D_A \neq D_C$ (changing length)

Results: control of kinetics

1. An oligonucleotide bank with widespread kinetics
$$\begin{cases} k_1 & (10^4 - 10^6 \text{ M}^{-1} \text{ s}^{-1}) \\ k_2 & (10^2 - 10^{-4} \text{ s}^{-1}) \end{cases}$$

2. k₁ might depend on sequence but slow dynamics

A. Bourdoncle, A. Estévez-Torres et al. JACS 2006

Results: mobility reduction

3. Electrophoretic mobility can be tuned $\mu_A \neq \mu_C$

Very good dynamic model: k_1, k_2 , D and μ can be modulated

Experimental constraints

10 µm – 100 µm

Need of microfluidics

Outline

- 1. DNA hybridization reaction
- 2. A functional microlaboratory
- 3. A powerful tool to analyze dynamics

Initial condition: 1D

non-stationary

Initial condition: 2D

Cross-field generation

L. R. Huang et al. Int. Elect. Dev. Meet. Tech. Digest, 2001

D. C. Schwartz C.R. Cantor Cell 1984

A versatile 2D electrophoretic device

A. Estévez-Torres et al Anal. Chem. submitted

Solved issues

Reduction of pillar density

 $D = 150 \pm 10 \ \mu m^2 s^{-1}$ Pillars induce dispersion

 $D = 100 \pm 10 \ \mu m^2 s^{-1}$

Filling protocol avoid collapsing:

- 1. Plasma treatment
- 2. Chip heating for capillary force reduction
- 3. Vacuum pumping

Observation set-up

Stationary electrophoretic device

Velocity field homogeneity

$$\vec{v} = (\mu + \mu_{EO}(x, y, z))\vec{E}(x, y, z)$$

Electric field must be uniform

Electric field homogeneity

Simulations with Finite Element Methods

Electroosmosis homogeneity

$$\vec{v} = (\mu + \underline{\mu_{EO}(x,y,z)})\vec{E}$$

electroosmosis :

→Taylor dispersion

Electroosmosis homogeneity

Electroosmosis must be controlled

Electroosmosis control medium

• 1% Agarose

- Null hydrodynamic flow
- But limited lifetime of the chip

• 0.1% PDMA (polydimethylacrylamide):

- Dynamic coating
- Controlled electroosmosis

May allow to work with uncharged species

Taylor dispersion?

We designed a time-based control experiment:

Taylor dispersion?

We designed a time-based control experiment:

D1 = D2 ---- Total absence of Taylor dispersion

A functional 2D electrophoresis chip

Constant and alternative electric field in 2D

Diffusion analysis by Fourier Transform

$$\frac{\partial A}{\partial t} = D \frac{\partial^2 A}{\partial y^2}$$

$$\frac{\partial \tilde{A}}{\partial t} = -Dq_n^2 \tilde{A}$$

$$\tilde{A} = \tilde{A}_0 e^{-Dq_n^2 t}$$

$$\tilde{A} = \tilde{A}_0 e^{-\frac{D}{v_x}q_n^2 x}$$

- Independent of initial condition
- Monoexponential fits

Before illumination correction

After illumination correction

D independent of Fourier mode

Fourier mode is $[m^{-1}]$ $q_n = \frac{2\pi n}{L}$ $\frac{n \mid (q_n)^{-1} \ (\mu m)}{1 \mid 140}$

20

Fourier analysis is multiscale

7

Validation of D measurement

D (10⁻¹² m² s⁻¹)

	Fluorescein	ssDNA	dsDNA
		(105 bases)	(1200 bp)
Stationary	310 ± 24	39 ± 4	3.8 ± 0.7
Non-stationary	320 ± 20	40 ± 2	4.2 ± 0.3
\mathbf{FCS}	350 ± 70	44 ± 5	_

Large M_w range: 10²-10⁶ g mol⁻¹

A. Estévez-Torres et al Anal. Chem. submitted

Outline

- 1. DNA hybridization reaction
- 2. A functional microlaboratory
- 3. A powerful tool to analyze dynamics

Dynamics of a reacting mixture

Finding the good time window

$$t = x/v_x$$

Analysis of a binary mixture

Thermodynamic library screening

SNP detection

- -20 seconds
- -1 pmol
- Without matrix

A. Estévez-Torres et al. Proc. µTAS 2007

	k₁ (10 ⁵ M ⁻¹ s ⁻¹)	k ₂ (s ⁻¹)	K (10 ⁵)
On chip measurements	1.2 ± 0.3	0.33 ± 0.05	4 ± 1
Independent measurements	1.9 ± 0.1	0.38 ± 0.01	3.4 ± 0.6

Good understanding of the physical phenomenon

A. Estévez-Torres et al. JACS, submitted

Conclusion

+

An interesting concept Electrodiffusion A biotechnological issue SNP detection in DNA

1. A chemical system with controllable dynamics

- An oligonucleotide database with controlled k₁, k₂
- An easy-to-use mobility reduction strategy (cholesteryl-triton)
- A quadruplex molecular beacon tunes k₁ with sequence

Conclusion

+

A biotechnological issue SNP detection in DNA

1. A chemical system with controllable dynamics

- Electric fields in 2D
- Thermostated
- Electroosmosis control

Conclusion

Perspectives

• Electrodiffusion experiment ready to be performed

 Electric field + temperature modulation ---> oriented motion (Thomas Barilero)

Thanks to

Jonathan Garel	Jérôme Wong-Ng	
Antoine Diguet	Didier Chatenay	Patrick La Rizza
Sara Fernandez	Jacques Goulpeau	José Quintas da Silva
Adrien Georges	Jérémy Weber	

Nathalie, Chouaha, Jean-Bernard, Pierre, Thomas, Isabelle, Matthieu, Elise, David, Francesco, Adrien, Etienne, Odile, Sandrine, Damien, Emmanuelle