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Abstract

The main subject of this thesis is motion prediction. The problem is approachedfrom the hy-
pothesis that the dynamic and kinematic properties of objects such as pedestrian and vehicles
do not suffice to predict their motion in the long term. Instead, the work presented here, in-
scribes itself in a new family of approaches which assume that, in a given environment, objects
do not move at random, but engage in “typical motion patterns”, which may belearned and then
used to predict motion on the basis of sensor data. In this context, this thesis focuses in three
fundamental questions: modeling, learning and prediction.

Modeling. This thesis is based on Hidden Markov Models, a probabilistic framework, which
is used as a discrete approximation to represent the continuous state-space in which motion takes
place. The main originality of the approach lies in modeling explicitly the intentions which are
at the origin of “typical motion patterns”. This is achieved through the using of an extended
space, which adds the state that the object intends to reach to the other “classic” state variables,
such as position or velocity.

Learning. The main problem of existing approaches lies in the separation of model learning
and utilization in two distinct stages: in a first phase, the model is learned fromdata; then, it is
used to predict. This principle is difficult to apply to real situations, becauseit requires at least
one example of every possible typical pattern to be available during the learning phase.

To address this problem, this thesis proposes a novel extension to Hidden Markov Models
which allows simultaneous learning and utilization of the model. This extension incrementally
builds a topological map – representing the model’s structure – and reestimatesthe model’s
parameters. The approach is intended to be general, and it could be usedin other application
domains such as gesture recognition or automatic landmark extraction.

Prediction. In this context, prediction is carried on by using exact Bayesian inference algo-
rithms, which are able to work in real time thanks to the properties of the structure which has
been learned. In particular, the time complexity of inference is reduced from O(N2) to O(N)
with respect to the number of discrete states in the system.

All of the results obtained on this thesis have been implemented and validated with experi-
ments, using both real and simulated data. Real data has been obtained on twodifferent visual
tracking systems: one installed over a parking lot, and the other installed at INRIA’s entry hall.
For synthetic data, a simulator has been developed in order to facilitate the conduction of con-
trolled tests and the study of larger environments than for real data.
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Extended Abstract in French

Chapitre 1 : Introduction

La planification des mouvements pour des environnements dynamiques est undomaine de recherche
très actif. En raison du fait que le problème est NP-complet, la plupart des efforts de recherche se
sont concentrés sur le développement des mécanismes pour gérer cette complexité. Néanmoins,
il y a un autre aspect critique du problème qui souvent a été négligé : les algorithmes de planifica-
tion ont besoin de connaître d’avance les mouvements des objets qui peuplent l’environnement.
Étant donné que, dans la pratique, cette information n’est que très rarement disponible, cela im-
plique la nécessité de recourir à l’utilisation de techniques de prédiction pourobtenir, à partir
des informations recueillies en utilisant des capteurs tels que des radars etdes systèmes de suivi,
une estimation de l’état futur des objets.

Jusqu’à récemment, la plupart des techniques de prédiction que l’on trouve dans la littérature
se sont basées sur des modèles cinématiques ou dynamiques qui décrivent l’évolution de l’état
des objets par rapport au temps quand ils sont soumis à un contrôle donné (ex. accélération).
Ces approches procèdent, d’abord, pour estimer l’état actuel de l’objet à l’aide des techniques
telles que le filtre de Kalman, après, elles appliquent l’estimation ainsi obtenue aux équations de
mouvement pour obtenir des prédictions.

Même si ces techniques sont capables de produire de très bonnes prédictions à court terme,
leur performance se dégrade rapidement quand elles essayent de “voir” plus loin dans le futur.
Cela est spécialement vrai dans le cas des humains, véhicules, robots, animaux et autres objets,
qui sont capables de modifier leurs trajectoires en fonction de facteurs tels que leurs perceptions,
leur état interne, et leurs intentions, qui ne sont pas décris par leurs propriétés cinématiques ou
dynamiques.

Cette situation a motivé l’émergence, dans la dernière décennie, d’une nouvelle famille
d’approches basées dans l’idée que, dans un environnement donné, les objets ont tendance à
suivre des mouvements “typiques” qui dépendent de la nature de l’environnement, ainsi que de
la nature des objets eux-mêmes. Ces approches opèrent en deux étapesdistinctes :

1. Apprentissage : observer les objets dans l’environnement pour identifier et construire des
modèles des mouvements typiques.

2. Prédiction : utiliser les modèles appris pour prédire l’état futur d’un objet donné.

D’un autre côté, toutes ces approches partagent aussi un inconvénient : ils opèrent dans
un schéma séquentiel que nous appelons “apprendre puis prédire” dans lequel l’apprentissage
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s’effectue avant l’utilisation et il est réalisé qu’une seule fois. Cela implique de façon implicite
l’hypothèse que, dans l’ensemble des données utilisées pour l’apprentissage, il existe au moins
un exemple de chaque comportement à apprendre. Dans la pratique, cette hypothèse est très
difficile à vérifier à cause de la grande diversité des comportements qu’il est possible d’observer
même dans les environnements les plus simples. Dans cette thèse, nous proposons l’utilisation
alternative d’une approche de type “apprendre et prédire” où l’apprentissage et la prédiction sont
réalisés de façon parallèle.

1.2 Description du problème

Une approche de prédiction des mouvements basée dans l’apprentissageest constituée, au moins,
de trois composantes:

1. Un modèle de mouvement décrivant comme l’état de l’objet évolue à mesureque le temps
passe, sachant que l’objet est en train d’exécuter un mouvement typique donné.

2. Un algorithme d’apprentissage, qui spécifie comment les paramètres du modèle sont cal-
culés à partir des données.

3. Un algorithme de prédiction détaillant l’utilisation des modèles appris pour prédire les
mouvements futurs.

1.2.1 Modélisation des mouvements en utilisant des Modèles de Markov Cachés

Nous avons choisi l’utilisation des “Modèles de Markov Cachés” (MMC) pour modéliser les
mouvements des objets. Les MMC son un outil probabiliste qui permet de représenter de façon
explicite l’incertitude qui est inhérente à tout processus de prédiction. UnMMC peut être vu
comme un graphe décrivant un processus où les noeuds correspondent à des états discrets et les
arêtes représentent la probabilité que le processus passe d’un état à l’autre. Une particularité des
MMC est que les transitions ont lieu de façon aléatoire, en suivant une distribution de probabilité
donnée.

1.2.2 Défis

Pour pouvoir implémenter de façon efficace une approche “apprendreet prédire” en utilisant des
MMC, il est nécessaire de résoudre les points suivants :

1. Apprendre les paramètres des distributions de probabilité du MMC.

2. Apprendre la structure (topologie du graphe) du MMC.

3. Réaliser l’apprentissage de façon incrémentale (une seule observation à la fois).

4. Réaliser l’apprentissage et l’inférence en temps réel (24 Hz pour une caméra vidéo).

Ces problèmes sont difficiles à résoudre ensemble, car, malgré l’existence des techniques
pour l’apprentissage des paramètres et de la structure, il n’existe pas de technique capable de
faire les deux à la fois, de façon incrémentale et en temps réel.

x



1.3 Contributions

La contribution principale de cette thèse est une technique de type “apprendre et prédire” basée
sur une extension des MMC, proposée par nous. Cette extension reçoitle nom de “Modèles de
Markov Cachés Grandissants” (MMCG) et sa particularité principale estque les paramètres et
le nombre d’états ne sont pas fixés sinon qu’ils évoluent continuellement, aufur et à mesure que
plus d’observations sont disponibles. Même si les MMCG ont été formulés dans le contexte de
la prédiction des mouvements, il faut noter qu’ils ont été conçus comme une approche générale,
pouvant être appliqués dans tous les cas ou les MMC conventionnels sontutilisés comme une
approximation discrète pour modéliser un processus continu.

Pour pouvoir appliquer les MMCG à la prédiction des mouvements, on a pris la décision de
modéliser les mouvements en utilisant un espace augmenté, qui ajoute l’état quel’objet prétend
atteindre aux autres variables d’état classiques telles que la position et la vitesse.

En utilisant ensemble les MMCG et l’état augmenté, on a développé une nouvelle technique
de prédiction des mouvements, ayant les avantages suivants par rapport aux autres techniques
basées sur MMC dans la littérature :

1. Les paramètres du modèle aussi bien que ça structure sont estimés en utilisant un algo-
rithme incrémental.

2. L’algorithme d’apprentissage est non supervisé et il est défini en termes des paramètres
intuitifs.

3. La structure apprise ne consiste pas d’un ensemble de “trajectoires typiques” isolées, mais
elle représente les comportements en termes de buts, ou destinations qu’un objet prétend
atteindre.

4. Même si la structure apprise est plus riche que dans d’autres approches, elle reste assez
simple pour permettre l’utilisation d’algorithmes exacts d’inférence.

Chapitre 2 : Modèles probabilistes

Ce chapitre est une introduction générale aux concepts des probabilités et des modèles proba-
bilistes.

Notre travail se place dans le contexte des théories du raisonnement plausible développés
par Jaynes, elles constituent une extension de la logique classique introduisant les probabilités
comme un mécanisme d’inférence.

2.2 De la logique aux probabilités

2.2.1 Propositions logiques

On va travailler sur des propositions logiques pouvant être vraies ou fausses. Ces propositions
peuvent être manipulées en utilisant des opérateurs booléens :

xi



• L’opérateurAND, dénoté par un espace ou, dans le cas des variables indexées, par des
indices séparés par deux points.

• L’opérateurOR, qui sera représenté avec le symbole+.

• L’opérateurNOT, indiqué par le symbole¬.

2.2.2 Probabilité d’une proposition

Parfois, il n’est pas possible de déterminer de façon concluante si unepropositionA est vraie ou
fausse, mais on peut avoir des raisons pour croire que l’une de ces valeurs est plus vraisemblable
que l’autre. Nous exprimons ce genre de connaissance comme la probabilitéconditionnelle de
la valeur deA sachant nos connaissances préalablesπ.

Règles quantitatives pour les propositions. Les règles quantitatives permettent de manipuler
les probabilités pour réaliser l’inférence, de façon semblable à ce qu’onfait avec les opérateurs
booléens.

Règle du produit
P(A B ) = P(A )P(B | A ) = P(B )P(A | B ) (1)

Règle de la normalisation
P(A )+P(¬A ) = 1 (2)

Règle de l’addition

P(A +B | C ) = P(A | C )+P(B | C )−P(A B | C ) (3)

2.2.3 Variables

Jusqu’ici, nous avons seulement parlé des propositions logiques, mais, fréquemment, nous
voulons aussi raisonner en termes de variables – appelées aussi variables aléatoires – qui représen-
tent les facteurs relevants d’un problème donné. Une variable discrèteV a un domaine associe
Dv, qui est l’ensemble des valeurs que cette variable peut prendre.

Une fois les variables définies, il est possible de les utiliser pour formuler des propositions
logiques. Dans ce document, ces propositions seront indiquées en les entourant par des crochets,
ainsi[V = 1] dénote la proposition logique “la valeur deV est 1”.

Règles quantitatives pour les variables. Comme pour les propositions, il est aussi possible
de manipuler les variables à l’aide des règles quantitatives. Étant donné qu’il y a des différences
entre les variables à domaine continu et les variables à domaine discret, on définit les règles
selon le cas.

• Variables discrètes

xii



– Règle du produit.

P(A B) = P(A)P(B | A) = P(B)P(A | B) (4)

– Règle de la normalisation.

∑
A

P(A) = 1 (5)

• Variables continues

– Règle du produit.

P(A B) = P(A)P(B | A) = P(B)P(A | B) (6)

– Règle de la normalisation.
Z ∞

−∞
g(A)dA= 1 (7)

Autres identités utiles.

Règle de la marginalisation

∑
B

P(A B) = ∑
B

P(B)P(A | B) = P(A) (cas discrét) (8)

Z ∞

−∞
P(A B)dB=

Z ∞

−∞
P(B)P(A | B)dB= P(A) (cas continu) (9)

Règle de Bayes

P(A | B) =
P(B | A)P(A)

P(B)
=

P(B | A)P(A)

∑AP(B | A)P(A)
(cas discrét) (10)

P(A | B) =
P(B | A)P(A)

P(B)
=

P(B | A)P(A)
R ∞
−∞ P(B | A)P(A)dA

(cas continu) (11)

2.2.4 Décomposition de la probabilité conjointe

L’utilisation des règles quantitatives n’est pas limitée au cas de deux variables : du fait que le
produit de deux variables aléatoires est aussi une variable aléatoire, les règles sont applicables à
un nombre arbitraire de variables.

Les dépendances entre les variables sont dénotées formellement par leur probabilité con-
jointe, et la façon ou elle se décompose comme un produit de probabilités plus simples grâce à
l’utilisation de la règle du produit.

Après avoir choisi une décomposition, il est possible de simplifier encore plus la prob-
abilité conjointe sur la base des hypothèses d’indépendance conditionnelle. Ces hypothèses
s’appliquent quand nous considérons qu’une variableV1 ne proportionne pas d’informations
additionnelles par rapport à une variableV2 si la valeur d’une troisième variableV3 est connue.
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2.2.5 Inférence

Les règles que nous avons décrites peuvent être utilisées pour définir un modèle qui décrit un
phénomène ou processus quelconque ; un tel modèle probabiliste doit êtrespécifié en énumérant
les variables qui le composent et ces domaines correspondants, ainsi que la décomposition de la
conjointe utilisée.

L’application principale des modèles probabilistes est l’inférence : trouver les valeurs des
variables inconnues en fonction des variables dont on connaît la valeur– l’évidence – à travers
de l’application de la règle de Bayes.

Étant donné que l’inférence bayésienne est NP-difficile, il est nécessaire de trouver des solu-
tions pour réduire la complexité. Cela peut se faire, par exemple, en appliquant des hypothèses
d’indépendance conditionnelle, ou des algorithmes approximatifs d’inférence.

2.2.6 Formes paramétriques

Jusqu’ici, nous n’avons pas expliqué comment les probabilités qui conforment la conjointe son
définies. Dans ce document, ces probabilités seront choisies parmi quelques distributions élé-
mentaires qui s’expriment en fonction d’un certain nombre de paramètres et qu’on appelle donc
“formes paramétriques”.

• Distribution uniforme

P([V = vi ]) = UV(vi) =
1

|DV |
,∀vi ∈ DV (12)

• Tableaux de probabilité conditionnelle

P([A = i] | [B = j] [C = k]) = Ti, j,k

• Distribution gaussienne

P([V = vi ]) = G(vi ; µ, Σ) (13)

= |2πΣ|−1/2exp

[

−
1
2
(V −µ)TΣ−1(V −µ)

]

(14)

2.2.7 Apprentissage

Après la définition du modèle probabiliste, il est nécessaire d’assigner des valeurs aux paramètres
de chaque distribution élémentaire dans la décomposition. Même si cela peut être fait à la main,
il est aussi possible d’apprendre (estimer) les valeurs des paramètresà partir des données expéri-
mentales.

Le cas le plus simple est celui des variables discrètes ou les probabilités sont calculées en
estimant la fréquence avec laquelle les différentes valeurs des variablesapparaissent dans les
données. Pour cela, on peut utiliser des techniques telles que les a prioride Dirichlet ou la loi de
succession de Laplace.
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Une situation plus difficile, est quand les données sont bruitées et il est, donc, impossible
de connaître avec certitude la vraie valeur des variables. Dans ce cas, lasolution la plus utilisée
consiste à appliquer l’algorithme Expectation-Maximization qui consiste basiquement à utiliser
des expectations sur le nombre de fois qu’une valeur quelconque a été observée dans les données
d’apprentissage.

2.3 Le filtre de Bayes

Cette section introduit le filtre de Bayes, un outil probabiliste qui est à la basedes approches
décrites dans les chapitres 4 et 5. L’objective du filtre de Bayes est de calculer une estimation
probabiliste de l’état actuel d’un système dynamique - qui n’est pas directement observable,
donc “caché” – à partir d’une séquence d’observations.

2.3.1 Modèle probabiliste

Variables. Le filtre de Bayes s’exprime en fonction de deux types de variables :

St L’état du système au moment t.

Ot L’observation obtenue au moment t.

Étant un modèle abstrait, le filtre de Bayes ne fait aucune hypothèse quantà la nature discrète
ou continue des variables d’état et d’observation. Ces hypothèses sont faites pour des spéciali-
sations du filtre de Bayes telles que le filtre de Kalman ou les Modèles de MarkovCachés.

Décomposition. La probabilité conjointe pour le filtre de Bayes est définie sur la base de deux
hypothèses d’indépendance conditionnelle :

1. Sachant l’état, les observations sont indépendantes les unes des autres:

P(Ot | O1:t−1 S1:t) = P(Ot | St) (15)

2. Sachant l’état précédent, les états antérieurs n’apportent aucuneconnaissancee addition-
nelle par rapport à l’état actuel:

P(St | S1:t−1) =

{
P(S1) for t = 1
P(St | St−1) otherwise

(16)

Et la distribution conjointe est :

P(S1:T O1:T) = P(S1)P(O1 | S1)
T

∏
t=1

P(St | St−1)P(Ot | St) (17)
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2.3.2 Formes paramétriques

Le filtre de Bayes ne définit aucune forme paramétrique et, en conséquence, aucun mécanisme
d’apprentissage.

2.3.3 Inférence

L’une des principales utilisations des filtres de Bayes est de répondre à laquestion probabiliste
P(St+H | O1:t). Le cas le plus commun est le filtrage (H = 0), mais la prédiction (H > 0) et le
lissage (H < 0) sont aussi des opérations réalisées fréquemment.

Le filtre de Bayes a une propriété que contribue énormément à sa popularité, le filtrage peut
s’effectuer de façon très efficace en utilisant l’expression suivante:

P(St | O1:t) =
1
Z

P(Ot | St) ∑
St−1

[P(St | St−1)P(St−1 | O1:t−1)] (18)

Si nous définissons récursivementP(St−1) = P(St−1 | O1:t−1), il est possible de décrire un
filtre de Bayes avec seulement trois variables, ce qui donne l’expression suivante.

P(St−1 St Ot) = P(St−1)P(St | St−1)P(Ot | St) (19)

2.3.4 Spécialisations du filtre de Bayes

Il existe plusieurs spécialisations du filtre de Bayes, trois des plus populaires sont : le filtre de
Kalman (variables continues), les Modèles de Markov Cachés (variablesd’état discrètes), et le
filtre à particules (approximation par echantillonage).

Chapitre 3 : Prédiction des mouvements intentionnels

Les approches basiques de prédiction de mouvements sont basées sur ce que Dennett appelle
“l’attitude physique” envers l’objet : ils essayent d’expliquer et prédire le comportement des
objets en termes de ses propriétés physiques et des lois de la physique. Néanmoins, une telle
approche ne peut être appliqué à des objets qu’on peut considérer comme “rationnels” tels que
des piétons ou des véhicules, dans ce cas, le comportement peut être mieuxexpliqué en prenant
“l’attitude intentionnelle” envers l’objet, qui consiste à essayer de reproduire le processus de
raisonnement qui détermine les actions de l’objet. Malheureusement, l’automatisation d’un tel
processus est au-delà de nos capacités actuelles.

Récemment, une nouvelle famille d’approches situées à mi-chemin entre les deux“atti-
tudes” a émergé. L’idée de base de ces approches est que, dans un environnement donné, les
comportements des objets peuvent être observés de façon consistante, donc il suffit d’observer
ces comportements pour les apprendre et ensuite les utiliser pour prédire.

Dans ce chapitre, nous examinons les approches de cette dernière famille,en les décom-
posant en trois catégories :

1. Trajectoires prototype.
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2. Modèles d’état discrets.

3. Autres représentations.

En particulier, nous nous intéressons à étudier comment les approches dechaqu’une de ces
catégories résolvent trois problèmes :

1. Représentation.

2. Apprentissage.

3. Prédiction.

3.2 Une note à propos de la sémantique

Dans ce document, nous allons faire une distinction entre un “comportement” et un “mouve-
ment” typiques. Le premier décrit ce que l’objet est en train d’effectuer en prenant l’attitude
intentionnelle envers lui (ex. l’objet va au toilette), pendant que le deuxièmeconsiste en une
description mathématique des mouvements effectués (ex. une série de positions dans le monde).

3.3 Trajectoires prototype.

Les approches de cette catégorie cherchent à réunir des trajectoires similaires en groupes (clus-
ters) qui correspondent à des mouvements typiques. Après, pour chaqu’un de ces groupes, une
seule trajectoire est calculée et utilisée pour représenter le groupe entier, et donc, le mouvement
typique.

3.3.1 Représentation

Les trajectoires prototype sont souvent représentées comme des séquences de points dans l’espace
continu des états. La plupart des approches ne modélisent pas le temps de façon explicite, et elles
font l’hypothèse que les points de la séquence sont régulièrement distribués dans le temps. Par-
fois, une mesure de la “largeur” du groupe fait aussi partie de la représentation, par exemple en
[Makris and Ellis, 2002, Junejo et al., 2004, Vasquez and Fraichard, 2004].

3.3.2 Apprentissage

Les trajectoires prototype sont obtenues à l’aide d’algorithmes classiquesde clustering [voir
Kaufman and Rousseeuw, 1989, Jain et al., 1999]. Il y a trois problèmes à résoudre : a) déter-
miner le nombre de groupes, b) trouver les groupes ; et c) construire lestrajectoires prototype à
partir des groupes. Nous avons identifié deux façons différentes de résoudre ces problèmes en
fonction des algorithmes de clustering utilisés.
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Algorithmes basés sur des modèles.Les algorithmes basés sur des modèles doivent leur nom
au fait qu’ils ne représentent pas explicitement les groupes, mais, à la place, ils essayent de
trouver un nombre réduit de modèles qui représentent au mieux les données par rapport à une
mesure globale d’optimalité. Dans le cas des trajectoires, ces modèles correspondent directe-
ment aux trajectoires prototype dont nous avons parlé, donc elles sont calculées directement par
l’algorithme de clustéring.

L’inconvénient le plus important de ces algorithmes est qu’ils nécessitent de connaître a pri-
ori le nombre de groupes qu’il faut trouver, ce qui présente le nouveau problème de l’estimation
de ce nombre. La plupart des approches de prédiction supposent quece nombre est connu [ex.
Hu et al., 2004a]. Mais il existe certaines approches qui sont capables d’estimer ce nombre à
partir d’une estimation initiale [ex.Bennewitz et al., 2002].

Algorithmes deux a deux. Les algorithmes deux à deux se basent dans l’utilisation d’une
mesure de similarité (ex. distance euclidienne) qui est utilisée pour comparerdes éléments deux
à deux et décider s’ils appartiennent au même groupe. La sortie de ce processus consiste en
ensembles d’éléments, ce que, dans le cas qui nos occupe, implique la nécessité de calculer la
trajectoire prototype pour chaque groupe après la finalisation du clustering. D’un autre côté, ce
type d’algorithmes a l’avantage de calculer de façon automatique le nombre degroupes.

Exemples de techniques de modélisation et prédiction de mouvements basées sur ce type
d’algorithme sont [Makris and Ellis, 2002, Buzan et al., 2004, Junejo et al., 2004].

3.3.3 Prédiction

La prédiction pour cette catégorie d’approches consiste principalement àtrouver la trajectoire
prototype qui correspond au mieux à une séquence partiale d’observations ; et à utiliser cette
trajectoire comme une prédiction du mouvement future.

Ces approches souffrent de deux inconvénients : a) seulement des trajectoires qui ont été
observées peuvent être prédites ; et b) elles ont une représentation déterministe du temps et de
l’évolution de l’état, ce qui réduit leur utilité pour prédire les états futurs de l’objet.

3.4 Modèles d’état discret

Ces approches se basent sur l’utilisation d’un modèle discret comme un outilapproximatif
d’analyse pour des mouvements continus. À la base de ces approches, on trouve les chaînes
de Markov, qui modélisent le temps comme une variable discrète, et représentent l’espace avec
un nombre fini d’états discrets.

Les chaînes de Markov, néanmoins sont relativement peu utilisées pour laprédiction des
mouvements [ex.Tadokoro et al., 1995, J. Rittscher and Stein, 2003], les techniques préférées
sont des dérivations du filtre de Bayes telles que les Modèles de Markov Cachés.

3.4.1 Représentation

Les mouvements typiques sont souvent représentés de deux façons différentes : a) en utilisant un
seul MMC pour tous les comportements [Walter et al., 1999]; b) en utilisant un MMC différent
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pour chaque comportement [Makris and Ellis, 2002, Bennewitz et al., 2002]. Dans les deux cas,
les trajectoires typiques sont représentées en appliquant des contraintes à la structure des MMC,
pour construire des graphes en forme des chaînes.

3.4.2 Apprentissage

Le problème de l’apprentissage pour ces approches se compose de deux sous-tâches : a) l’apprentissage
de la structure ; et b) l’apprentissage des paramètres du modèle.

Apprentissage de la structure. Malgré l’existence de plusieurs algorithmes d’apprentissage
de structure pour des modèles d’état discret [ex.Stolcke and Omohundro, 1993, Friedman, 1997,
Brand, 1998], ils sont peu utilisés dans le contexte de l’apprentissage des mouvements typiques.
Une exception notable est le travail de [Brand and Kettnaker, 2000]. À la place, la structure est,
soit fixée à priori, soit estimée en utilisant des mécanismes ad hoc.

Le plus populaire de ces mécanismes est l’utilisation des techniques d’apprentissage utilisées
pour déterminer des trajectoires prototype, et ensuite transformer ces dernières dans un modèle
d’état discret [ex.Bennewitz et al., 2002, Koller-Meier and Van Gool, 2001, Makris and Ellis,
2002]. D’autres approches incluent des techniques hiérarchiques [Minnen and Wren, 2004] ou
l’utilisation d’une carte de l’environnement [Liao et al., 2003].

Apprentissage des paramètres. L’approche la plus répandue pour l’apprentissage des paramètres
est l’utilisation de l’algorithme de Baum-Welch [ex.Makris and Ellis, 2002, Liao et al., 2003].
Autres auteurs fixent les paramètres par rapport à leurs connaissances sur la façon dans laquelle
les objets se deplacent [Bennewitz et al., 2005].

3.4.3 Prédiction

Dans cette catégorie d’approches, les mouvements sont prédits en utilisantl’inférence bayési-
enne. On peut aussi bien trouver des approches qu’utilisent l’inférence exacte [Brand and Kettnaker,
2000] que des techniques approximatives telles que les filtres à particules [Walter et al., 1999,
Koller-Meier and Van Gool, 2001].

3.5 Autres Approches

3.5.1 Réseaux de neurones

On trouve aussi des approches qui se basent sur l’utilisation de plusieurs couches de réseaux
de neurones pour représenter les mouvements typiques. Fréquemment [ex. Johnson and Hogg,
1995, Sumpter and Bulpitt, 2000], on trouve trois couches avec les fonctions suivantes : a) dis-
crétisation de l’espace ; b) description des trajectoires ; c) classification des comportements.
Autres auteurs [Hu et al., 2004b] proposent des diverses modifications a ce modèle de base.
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3.5.2 Approches orientées aux buts

Ces approches [Dee and Hogg, 2004, Foka and Trahanias, 2002, Bruce and Gordon, 2004] se
caractérisent pour représenter les comportements en termes des endroitsque les objets préten-
dent atteindre “les buts”. Donc, ils doivent apprendre ces buts à partirdes données disponibles.
Une fois les buts appris, les trajectoires sont prédites en utilisant un algorithme qui calcule le
chemin que l’objet va parcourir pour arriver à son but à partir de sa position actuelle.

3.5.3 Autres

Une approche différente a été proposée par [Kruse and Wahl, 1998]. Ils modélisent les mouve-
ments en termes de sous trajectoires qui s’enchaînent de manière probabiliste pour former des
trajectoires typiques.

Chapitre 4 : Modèles de Markov Cachés

Ce chapitre est une introduction aux Modèles de Markov Cachés (MMC),qui constituent la
base de cette thèse. On présente si bien la partie “classique” de la théorie,que le sujet moins
standardisé de l’apprentissage de structure.

4.2 Modèle probabiliste

Les Modèles de Markov Cachés sont une spécialisation du filtre de Bayespour des variables
d’état discrètes et des variables d’observation discrètes et continues. Nous avons privilégié la
discussion des variables d’observation continues parce qu’elles sontmieux adaptées à notre
problème.

4.2.1 Variables

Comme pour la version récursive du filtre de Bayes, un MMC peut être défini en fonction de
trois variables :

St , St−1. L’état actuel et l’état précèdent, qui sont des entiers dans l’intervalle[1,N].

Ot . L’observation actuelle, qui est un vecteur dansR
M.

4.2.2 Décomposition

La décomposition est la même que pour le filtre de Bayes :

P(St−1 St Ot) = P(St−1)P(St | St−1)P(Ot | St) (20)

Où la probabilité a priori pour l’état est calculée récursivement :

P(St−1) = P(St−1 | O1:t−1) (21)
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4.2.3 Formes paramétriques

Les MMC font une hypothèse d’indépendance conditionnelle en plus parrapport au filtre de
Bayes : les probabilités d’observation et de transition sont considéréescomme étant station-
naires, c’est-à-dire, indépendantes du temps.

P(Oi | Si) = P(O j | Sj) ∀ i, j ∈ {1, · · · ,T} (22)

P(Si | Si−1) = P(Sj | Sj−1) ∀ i, j ∈ {2, · · · ,T} (23)

Cette hypothèse permet de définir les formes paramétriques sans prendreen compte le temps
:

• P([S1 = i]) = πi . L’a priori sur l’état.

• P([St = j] | [St−1 = i]) = ai, j . Les probabilités de transition.

• P(Ot | [St = i]) = G(Ot ; µi , σi). Les probabilités d’observation.

Nous allons dénoter l’ensemble des paramètres d’un MMC par:λ = {π,A,b}.

4.3 Inférence

Les tâches d’inférence peuvent être classifiées en deux types : a) l’inférence en ligne, qui
s’actualise chaque fois qu’une nouvelle observation est disponible ; etb) l’inférence hors ligne
qui traite des séquences entières d’observations.

4.3.1 Inférence en ligne

La clé pour l’inférence en ligne est la mise à jour de l’estimation de l’état. À partirde là,
l’inférence se réalise en utilisant cette estimation comme a priori, et en appliquant l’inférence
bayésienne.

Filtrage. Le nom du filtrage vient du fait qu’il filtre le bruit des estimations pour ainsi estimer
l’état du système. Le filtrage se réalise en appliquant l’expression suivante :

P(St | O1:t) =

1

Z
P(Ot | St)

︸ ︷︷ ︸

∑
St−1

[P(St | St−1)P(St−1 | O1:t−1)]

︸ ︷︷ ︸

update prediction

(24)

La complexité du filtrage estO(N2).
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Prédiction. Prédire l’état futur consiste, basiquement, en prendre l’estimation de l’étatactuel
et la propager dans le futur pour un nombre fini de pas de tempsH, connu comme l’horizon
temporel.

P(St+H | O1:t) = ∑
St+H−1

[P(St+H | St+H−1)P(St+H−1 | O1:t)] (25)

La complexité de la prédiction estO(TN2).

4.3.2 Inférence hors ligne

En vue du fait que l’inférence hors ligne travaille sur l’espace de toutes les séquences possi-
ble d’états ayant une longueur donnéeT, il semblerait que le coût de l’inférence devrait avoir
une complexité exponentielle. Heureusement, l’utilisation de techniques de programmation dy-
namique permet de réduire la complexité de l’inférence àO(TN2).

L’algorithme “forward-backward”. L’idée de cet algorithme est d’utiliser des techniques
de programmation dynamique pour éviter les computations redondantes liées à l’application
répétitive de la règle de marginalisation pour réaliser l’inférence. Il calcule deux ensembles
différents de variables qui peuvent ensuite être utilisés directement pourrépondre des questions
probabilistes. L’intérêt de l’utilisation de ces variables vient du fait que leurs algorithmes de
calcul sont d’ordreO(N2).

Probabilité “forward”

αt(i) =

[
N

∑
j=1

αt( j)P([St = i] | [St−1 = j])

]

P(Ot | [St = i]) (26)

Probabilité “backward”

βt(i) =
N

∑
j=1

P([St+1 = j] | [St = i])P(Ot+1 | [St+1 = j])βt+1( j) (27)

Lissage. Le lissage est similaire au filtrage, mais il prend en compte la séquence entière
d’observations pour estimer l’état pour un instant donné. Les estimations ainsi obtenues sont
plus précises qu’avec le filtrage.

Le lissage se réalise en utilisant les probabilités “forward” et “backward” :

P([St = i] | O1:T) =
1
pO

αt(i)βt(i) (28)

Proche du lissage est le calcul de la probabilité d’une transition connaissant une séquence
d’observations :

P([St−1 = i] [St = j] | O1:T) =
αt−1(i)P([St = j] | [St−1 = j])P(Ot | [St = j])βt( j)

pO
(29)
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L’algorithme de Viterbi. L’algorithme de Viterbi répond à la question “quelle est la séquence
d’états qui correspond avec la plus grande probabilité à une séquenced’observations donnée?”
Essentiellement, l’algorithme de Viterbi est identique au calcul des probabilités“forward”, mais
en remplaçant l’addition par un opérateur de maximisation :

δt( j) = max
i

[δt−1(i)P([St = j] | [St−1 = i])]P(Ot | [St = j]) (30)

Ouδt( j) représente la vraisemblance maximum d’observer la séquence partielle d’observations
O1:t et d’être dans l’étatj à l’instantt. L’algorithme garde aussi, pour chaque instantt et chaque
état j, l’état précèdentψt( j) qui mène aj avec probabilité maximum.

Classification. La classification consiste à choisir parmi plusieurs MMC, celui qui correspond
le mieux à une séquence d’observations donnée.

4.3.3 Stabilité numérique

A l’heure d’implémenter des MMC dans des ordinateurs, il est fréquent de trouver des problèmes
de stabilité numérique pendant l’exécution des algorithmes de Viterbi et “forward-backward”.
Ces problèmes viennent des multiplications de longues séries de valeurs pluspetites que 1, ce
qui vite dépasse la capacité de représentation de la machine. La solution à ceproblème dépend
de l’algorithme en question :

Algorithme de Viterbi: utiliser des logarithmes des probabilités et des sommations a la place
des probabilités et des multiplications.

Algorithme “forward-backward”: multiplier les probabilités pour chaque pas de temps par
un facteur d’échelle, calculé comme :

ct =
1

∑N
i=1 αt(i)

(31)

4.4 Apprentissage des paramètres

La technique standard pour réaliser l’apprentissage des paramètres d’un MMC est l’algorithme
Baum-Welch.

4.4.1 L’algorithme de Baum-Welch

Cette section décrit l’algorithme de Baum-Welch, qui est détaillé dans le chapitre correspondant.
Le principe de cet algorithme est l’utilisation des probabilités forward et backward pour re-
estimer les paramètres du modèle à partir d’une estimation précédente. L’algorithme Baum-
Welch est, en fait, une spécialisation de l’algorithme Expectation-Maximization.
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4.4.2 Algorithmes incrémentaux

Dans cette section nous survolons les deux variantes incrémentales de l’algorithme Baum-Welch,
proposées par [Neal and Hinton, 1998] et par [Singer and Warmuth, 1996].

4.5 Structure des transitions

Jusqu’à maintenant, nous avons considéré des modèles complètement connectés ou ergodiques,
oú chaque état peut être atteint depuis n’importe quel autre état dans un seul pas du temps.
Toutefois, dans certaines applications, il est mieux d’appliquer des contraintes en interdisant
certaines de ces transitions ; quand on fait cela, on dit que l’on fixe la structure, ou la topologie
du MMC. Dans la pratique, le choix d’une topologie se réalise en fixant à zéro la valeur de
certains éléments de la matrice de transition.

Une situation intéressante arrive quand la matrice de transition se compose principalement
de zéros (matrice creuse). Dans ce cas, il est possible d’utiliser des représentations plus perfor-
mantes qu’une matrice, si bien en termes de stockage qu’en temps de traitement.

En plus d’améliorer la performance, le choix d’une structure a aussi desrépercussions sur la
qualité de l’inférence [Brand, 1998, Freitag and McCallum, 2000, Binsztok and Artières, 2005]
et accélère l’apprentissage en réduisant le nombre de paramètres à êtreappris.

4.6 Apprentissage de la structure

Dans cette section, nous décrivons de manière sommaire les différentes familles d’approches
pour faire l’apprentissage de structures.

4.6.1 Algorithmes de recherche locale

Ces approches [Friedman, 1997] partent d’une structure relativement simple, et procèdent en
ajoutant des noeuds ou des arêtes jusqu’à l’obtention d’un modèle “optimale” par rapport à une
critère donné.

4.6.2 Algorithmes « state merging »

Les algorithmes “state merging” [Stolcke and Omohundro, 1994, Seymore et al., 1999] fonc-
tionnent dans le sens inverse des algorithmes précédents : ils partent d’une structure complexe et,
après, ils la simplifient en fusionnant des états. À chaque itération de l’algorithme, la meilleure
fusion est déterminée et le processus continue ainsi de suite, jusqu’à l’obtention d’un modèle
“optimale”.

4.6.3 Autres Algorithmes

On trouve aussi d’autres approches dans la littérature, telles que [Brand, 1998, Vasko et al., 1997,
Lockwood and Blanchet, 1993, Freitag and McCallum, 2000]. Nous les décrivons avec plus de
détail dans le chapitre correspondant.
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Chapitre 5 : Modèles de Markov Cachés Grandissants

On a montré dans la première partie de cette thèse, que les Modèles de MarkovCachés con-
stituent un puissant outil probabiliste. Néanmoins, pour pouvoir les appliquer à notre problème,
il est nécessaire de disposer d’algorithmes incrémentaux d’apprentissage de la structure et des
paramètres qui soient capables de fonctionner en temps réel.

Ce chapitre introduit la solution que nous proposons, qui est aussi la principale contribution
de cette thèse : les Modèles de Markov Cachés Grandissants. Ils peuvent être décrits comme des
MMC qui évoluent au cours du temps, et dont le nombre d’états, la topologie, et les paramètres
des distributions de probabilité sont mises à jour chaque fois qu’une séquence d’observations est
disponible.

Nous supposons que l’espace ou les objets évoluent a été discrétisé dans un nombre finit de
régions discrètes, et chaqu’une de ces régions est représentée par un état discret dans le MMC.

L’intuition de base derrière notre approche est que la structure du MMC doit ressembler
à celle de l’environnement : les transitions sont permises seulement quand les régions corre-
spondantes sont voisines. Donc, l’apprentissage de la structure consiste à estimer la meilleure
discrétisation possible de l’espace et en identifier les régions voisines. Nous avons attaqué ce
problème en construisant une carte topologique de l’environnement. Pourl’apprentissage des
paramètres, nous nous sommes basés sur l’approche proposée par [Neal and Hinton, 1998] et
nous l’avons adapté pour gérer les changements dans la cardinalité des états et les observations
continues.

5.2 La carte topologique

La carte topologique est une représentation discrète de l’espace des états qui prend la forme d’un
graphe, dont les noeuds représentent des régions discrètes et les arêtes indiquent que les régions
correspondantes sont contiguës : il est possible de se déplacer de façon continue d’une région à
l’autre sans passer à travers d’aucune autre région.

Même si l’idée de carte topologique peut être facilement appliquée à les grillesrégulières,
il est généralement accepté que des représentations dites ’dynamiques’ou ’adaptatives’ - qui
discrétisent l’espace de façon irrégulière pour représenter au mieux un ensemble de données -
sont plus performantes en termes de ressources.

Pour notre travail, nous avons choisi d’utiliser une famille d’approches -les réseaux topologiques
[Martinetz and Schulten, 1991]- qui permettent d’obtenir des cartes topologiques en utilisant des
algorithmes d’apprentissage incrémentaux.

5.3 Quantisation vectorielle et réseaux topologiques

À la base, les réseaux topologiques peuvent être vus comme des algorithmespour la quantisa-
tion vectorielle. Cette dernière consiste à représenter une variétéD-dimensionnelle continue en
utilisant un ensemble fini de vecteurs de référenceD−dimensionnels. Un pointx de la variété
est représenté en utilisant le vecteur de référence le plus prochec, par rapport à une mesure de
distance donnéed(x,y).
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Le but de la quantisation vectorielle est de minimiser la distance moyenne, ou distorsion,
entre les points qui appartiennent à la variété et les vecteurs de référence correspondants.

E =
K

∑
i=1

Z

x∈V i

d(x,ci)P(x)dx (32)

Cela peut se faire aussi en prenant des échantillons appartenant à la variété :

Ê =
1
|X|

K

∑
i=1

∑
x j∈V i

d(x j ,ci) (33)

La plus populaire des approches de quantisation vectorielle est l’algorithmek-means [Lloyd,
1957, Linde et al., 1980], dont il existe aussi une version incrémentale [MacQueen, 1967]. D’un
autre côté, cet algorithme à deux problèmes importants : a) le nombre de vecteurs de référence
doit être connu a priori ; et b) il est très sensible à l’initialisation.

Un des algorithmes alternatifs sont les réseaux auto organisés de Kohonen [Kohonen, 1995],
la principale innovation de cette approche est que, quand un vecteur d’entrée (échantillon de
la variété) est traité, seulement le vecteur de référence le plus proche etses voisins sont mis à
jour. Ces voisins sont indiqués de façon explicite, comme des liens ou des arêtes qui forment un
réseau, et définissent une topologie.

5.3.1 Réseaux topologiques

Les réseaux topologiques développent l’idée des réseaux de Kohonen en apportant deux nou-
velles capacités : a) des vecteurs de référence (noeuds) peuvent être crées pendant l’apprentissage
; et b) la structure du réseau est aussi apprise en ajoutant/éliminant des arêtes dans le réseau.

Parmi les divers réseaux topologiques existants [Martinetz and Schulten, 1991, Fritzke, 1995,
Marsland et al., 2002], nous avons choisi la carte topologique instantanée de Jockusch et Ritter.

5.4 La carte topologique instantanée

La carte topologique instantanée (CTI) [Jockusch and Ritter, 1999] présente deux avantages par
rapport aux autres réseaux topologiques : a) elle est capable de gérer des données corrélées dans
le temps ; et b) il a un nombre réduit de paramètres ayant une claire interprétation physique ; en
plus, il ne demande pas des connaissances a priori par rapport à la topologie ou la taille de la
variété - dans notre cas, l’espace où les objets se deplacent - qui doit être apprise.

L’algorithme se base dans l’utilisation d’une mesure de distance, qui, dans notre cas, est
celle de Mahalanobis.

5.4.1 Définitions

L’algorithme construit de façon incrémentale un ensemble de noeuds, et unensemble d’arêtes
qui connectent ces noeuds. L’entrée de l’algorithme consiste en des vecteurs d’entrée qui, dans
cette thèse, vont être identifiés aux observations fournies par les capteurs.

Associé à chaque noeud, il y a un vecteur de poids.
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L’ensemble des autres noeuds auxquels un noeud donné est connectépar des arêtes est appelé
son voisinage.

5.4.2 Algorithme

La CTI a seulement trois paramètres :

La matrice de covariance (Σ). Utilisée pour calculer la distance de Mahalanobis.

Le seuil d’insertion (τ). Définisse la distance moyenne entre noeuds.

Le taux de lissage (ε). Régule la vitesse d’adaptation des vecteurs de référence..

L’algorithme est détaillé dans le chapitre correspondant. Il peut être décomposé en quatre
pas :

Appariement. Trouve les deux noeuds les plus proches au vecteur d’entrée.

Adaptation des poids. Le noeud le plus proche est déplacé vers le vecteur d’entrée d’accord au
facteur de lissage choisi

Adaptation des arêtes.Créé une arête entre les deux noeuds les plus proches s’il n’existait pas
auparavant. Il peut éventuellement effacer d’autres arêtes s’ils sont redondants.

Adaptation des noeuds.Créé des nouveaux noeuds (et les arêtes correspondants) si le vecteur
d’entrée est trop éloigné du reste du réseau. Il peut aussi effacerdes arêtes s’ils sont
redondants.

5.4.3 Propriétés

Convergence.La CTI, n’a pas des propriétés strictes de convergence vers un minimum local de
la distorsion. Il est possible, par contre, de montrer que :

Ê ≤ τ (34)

Nombre d’arêtes. [Dwyer, 1989] a montré que dans la plupart des cas, le nombre d’arêtes pour
une CTI dépende de façon linéaire du nombre de noeuds dans la carte, et que cela est
indépendant de la dimension de l’espace en question.

Complexité. La CTI a été conçue pour l’apprentissage incrémental, la complexité temporellede
l’algorithme de mise à jour est deO(N), et cela peut être réduit en utilisant des techniques
hiérarchiques d’indexation de l’espace comme les R-Trees et ses extensions [Guttman,
1984, Beckmann et al., 1990].
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5.5 Modèle probabiliste

Dans cette section, nous expliquons comment intégrer la CTI pour apprendre la structure d’un
MMC. Nous présentons aussi la façon ou nous avons modifié l’apprentissage des paramètres
pour prendre en compte une structure évolutive. Comme pour les MMC on vadécrire notre
approche comme un modèle probabiliste.

5.5.1 Variables

La seule différence a ce niveau entre les MMC et les MMCG est que le domaine de la variable
d’état change à mesure que le temps avance. Mise à part cela, les deux modèles utilisent les
mêmes variables.

• St ,St−1, L’état actuel et l’état précèdent, qui sont des entiers dans l’intervalle [1,Sk], ouSk

est le nombre d’état dans la structure aprèsk pas de temps.

• Ot , L’observation actuelle, qui est un vecteur dansR
D.

5.5.2 Décomposition

La décomposition est aussi la même que pour les MMC :

P(St−1 St Ot) = P(St−1)P(St | St−1)P(Ot | St) (35)

5.5.3 Formes paramétriques

Les formes paramétriques des MMCG sont aussi fondamentalement les mêmesque pour les
MMC, mais la manière ou ces paramètres sont stockées est différente.

• P(St). L’a priori sur l’état est aussi une multinomiale, mais à la place de stocker lesprob-
abilités directement dans un vecteur nous stockons les SSE (voir sec.4.4) pour calculer
ces probabilités. Les probabilités seront calculées directement sur ces valeurs.:

P(St = i) =
πi

∑St
πSt

(36)

• P(Ot | St). À différence des MMC toutes les gaussiennes des probabilités d’observation
vont avoir la même covarianceΣ:

P(Ot | St = i) = G(Ot ; µi , Σ) (37)

• P(St | St−1). Comme pour l’a priori, nous allons stocker des SSE dans la matrice de
transition :

P(St = j | St−1 = i) =
ai, j

∑St ,St−1
aSt−1,St

(38)
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5.6 Inférence

L’inférence dans les MMCG est exactement la même que pour les MMC.

5.7 Apprentissage de la structure et des paramètres

L’algorithme d’apprentissage est la particularité la plus importante des MMCG.L’algorithme
alterne entre deux activités, la mise à jour de la carte topologique, et l’estimationdes paramètres
des distributions de probabilité.

L’algorithme, détaillé dans le chapitre correspondant, a les paramètres suivants :

Valeur par défaut de l’a priori sur les états (π0). Utilisé pour initialiser l’a priori quand des
nouveaux états sont créés.

Valeur par défaut des transitions (a0). Utilisé pour initialiser les probabilités de transition quand
des nouveaux arêtes sont créés.

Matrice de covariance (Σ). Elle est utilisée pour calculer la distance de Mahalanobis dans la
CTI et pour toutes les gaussiennes des probabilités d’observation.

Seuil d’insertion, et taux de lissage (τ), (ε). Utilisées par la CTI.

L’algorithme, qu’utilise des séquences complètes d’observations comme entrées, se décom-
pose en trois parties :

Mise à jour de la carte topologique. En utilisant toutes les observations de la séquence.

Mise à jour de la structure du MMCG. Des états et transitions sont ajoutés ou effacés pour
refléter la structure de la CTI.

Mise à jour des paramètres.Applique une version incrémentale de l’algorithme Baum-Welch.

Chapitre 6 : Apprentissage et prédiction des mouvements avec MMCG

Ce chapitre se concentre sur l’application des MMCG à la prédiction des mouvements de pié-
tons et de véhicules. Notre hypothèse de base est que les objets se déplacent en fonction de leur
intention d’atteindre un état particulier (leur but). En conséquence, nousmodélisons le mouve-
ment de l’objet en fonction d’un vecteur d’état augmenté qui est composéde deux ensembles de
variables décrivant son état actuel et celui qu’il prétend atteindre.

Une conséquence de ce choix de modélisation est que les mouvements typiques ne corre-
spondent plus à des trajectoires, mais a l’ensemble des chemins qu’un objetpeut emprunter pour
arriver à un but donné.
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6.2 Modèle probabiliste

Jusqu’à maintenant, nous avons supposé que les observations nécessaires à l’inférence et l’apprentissage
sont fournies par les capteurs à chaque pas de temps. Dans notre application, cette hypothèse
n’est pas toujours vraie, au moins dans le cas des buts. En effet, la position d’un objet est ob-
servable tout le temps, mais la destination, par définition, seulement peut être observée à la fin
d’une trajectoire.

Cette section décrit comment utiliser des MMCG pour créer des modèles de mouvement, et
comment gérer les observations “manquantes” qui correspondent auxbuts.

6.2.1 Variables

Nous allons considérer notre modèle probabiliste à deux niveaux. Dans leniveau le plus général,
notre modèle se comporte comme un MMCG ordinaire, et l’espace augmenté n’est pas dif-
férent d’une autre définition quelconque d’état. Mais, dans un niveauplus bas, nous voulons
faire la distinction entre l’état actuel et l’état but, donc nous allons décomposer les variables
d’observation dans une composante actuelleO′

t et une composante butO′′
t . Cela donne les vari-

ables suivantes :

• St ,St−1, l’état augmenté actuel et l’état augmenté précédent, qui sont des entiers dans
l’intervalle [1,Sk], ouSk est le nombre d’états dans la structure aprèsk pas de temps..

• Ot , l’observation actuelle, qui est un vecteur dansR
2D. Comme on a expliqué avant, les

observations se décomposent en deuxOt = [O′
t ,O

′′
t ].

6.2.2 Décomposition

Au plus haut niveau, la décomposition est la même que pour les MMCG :

P(St−1 St Ot) = P(St−1)P(St | St−1)P(Ot | St) (39)

Mais dans le niveau inférieur, les observations représentent l’occurrence conjointe de ses
composantes : actuel et but.

P(Ot | St) = P(O′
t O′′

t | St) (40)

Nous faisons l’hypothèse que les deux composantes sont indépendantes si l’état actuel est
connu :

P(O′
t O′′

t | St) = P(O′
t | St)P(O′′

t | St) (41)

Donc, nous obtenons la décomposition suivante :

P(St−1 St O′
t O′′

t ) = P(St−1)P(St | St−1)P(O′
t | St)P(O′′

t | St) (42)
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6.2.3 Formes paramétriques

Les formes paramétriques sont les mêmes que pour les MMCG, mais dans le casdes probabilités
d’observation on fixe des contraintes supplémentaires :

• P(St). Pareil que pour les MMCG.

• P(Ot | St). Grâce à notre hypothèse d’indépendance conditionnelle, nous pouvons écrire
les probabilités d’observation comme un produit de probabilités :P(O′

t O′′
t | St) = P(O′

t |
St)P(O′′

t | St) . Si nous définissons ces probabilités comme :

P(O′
t | [St = i]) = G(O′

t ; µ′i , Σ′) (43)

et:

P(O′′
t | [St = i]) =

{
UO′′

t
if O′′

t is not available
G(O′′

t ; µ′′i , Σ′′) otherwise
(44)

Et notant queP(Ot | St) est soit un produit de gaussiennes, soit le produit d’une constante
pour une gaussienne, nous pouvons réécrire cette probabilité comme uneseule gaussienne
:

P(Ot | [St = i]) =
1
Z

G(Ot ; µi , Σ) (45)

ouµi = [µ′i ,µ
′′
i ], etΣ est une matrice diagonale en blocs :

Σ =

[
Σ′ 0
0 Σ′′

]

(46)

etZ est une constante de normalisation.

• P(St | St−1). Pareil que pour les MMCG.

6.3 Inférence

L’inférence est la même que pour les MMC.

6.4 Apprentissage de la structure et des paramètres

L’apprentissage se réalise de façon standard en utilisant l’algorithme7. Il est, cependant, néces-
saire de prétraiter les séquences d’observations reçues pour ajouterla dernière observation de la
séquence à chaque vecteur d’observation.
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6.5 Exemple d’apprentissage : environnement unidimensionnel

6.6 Comparaison avec des approches existantes

Dans cette section nous comparons notre approche avec d’autres techniques existantes basées
sur des modèles à états discrets, qui, en contraste avec nous, utilisent destrajectoires typiques
pour définir la structure du modèle.

Redondance. Un premier problème de l’utilisation des trajectoires typiques vient du fait que
les structures résultantes ne partagent pas des états. Un exemple de cette situation est montré
dans la figure6.6. Il y a deux trajectoires typiques différentes (fig.6.6(a)) qui sont représentées
dans la structure comme deux chaînes séparées (fig.6.6(b)). Notre approche, par contre, produit
un modèle plus compact (fig.6.6(c)).

Combinaisons de comportements. Dans les approches basées sur des trajectoires typiques,
les transitions entre comportements “différents” ne sont pas permises, en conséquence, le modèle
n’est pas capable d’expliquer des mouvements constitués de “morceaux”des comportements
déjà appris. Un exemple de ce problème est montré dans la fig.6.7.

Sémantique. Un problème plus profond est lié à la sémantique des trajectoires typiques. Elles
sont définies en termes de similarités, distances, ou d’autres mesures géométriques ou statis-
tiques, sans jamais parler des causes qui sont à l’origine du mouvement. Dans d’autres mots,
elles n’essaient pas de répondre à la question cruciale “pour quoi les trajectoires sont-elles typ-
iques ?”, question qui, de notre point de vue, faut répondre pour construire des vrais modèles
génératifs du mouvement. D’un autre côté, nous sommes conscients que la modélisation des
causes est très difficile dans le cas des êtres humains parce que cela implique se mettre à la place
de la personne dont on est en train de prédire les mouvements. Nous considérons que, même
si notre approche est loin d’être un modèle intentionnel satisfaisant, il se rapproche plus d’une
explication causale des mouvements, grâce au fait qu’il est basé sur un modèle des intentions -
même si ce modèle est grossier.

Chapitre 7: Plateforme expérimentale

Toutes les expériences qui ont été conduites dans cette thèse sont basées sur des ensembles des
données qui ont été collectés dans trois environnements différents : le hall d’entrée de l’INRIA,
le parking de l’INRIA et un parking dans l’université de Leeds. On a aussi utilisé des données
synthétiques pour compléter nos expériences.

7.2 Hall d’entrée de l’INRIA

Le premier environnement que nous avons étudié est le hall d’entrée du bâtiment de l’INRIA
Rhône-Alpes, qui est un environnement relativement ouvert qui contient des lieux “intéressants”
tels qu’un bureau d’accueil, une cafétéria, des bornes d’information et plusieurs portes qui don-
nent accès aux différentes sections du laboratoire.
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Pour recueillir les informations concernant aux piétons qui transitent dans cet environnement,
on a utilisé un système de suivi visuel d’objets connecté à une caméra vidéoinstallée dans un
des coins du hall. On a aussi développé un simulateur de cet environnement pour réaliser des
expériences dans lesquelles nous connaissons les variables.

7.2.1 Le système de suivi

Le système de suivi que nous avons utilisé a été développé par l’équipe Prima du laboratoire
GRAVIR. Ce système détecte et suit des objets mobiles dans un flux vidéo venant d’une caméra.
Les informations proportionnées par le système sont la position et la taille des objets, dans le
repère de l’image de la caméra. Ces informations sont en suite projetées dans le repère global,
avant d’être utilisées dans notre algorithme. La chaîne complète de traitement est conformée par
les éléments suivants :

1. Caméra et système de suivi. Produisent, à partir des images vidéo, des estimations de la
position et de la taille des objets, exprimées dans le repère de la caméra.

2. Correction de la distorsion et projection homographique. Pour pouvoirprojeter les infor-
mations dans le repère global, il faut d’abord éliminer la distorsion induite parl’utilisation
des lentilles à grand angle. Après, la projection se réalise en utilisant une matrice d’homographie
préalablement calculée.

3. Association des données. Pour améliorer les résultats, on a appliqué unfiltre JPDA (Joint
Probabilistic Data Association) sur les données projetées, de façon à minimiserle nombre
de cas où le système de suivi “coupe” en plusieurs trajectoires les données correspondantes
à un seul objet.

7.2.2 Le Simulateur

Le simulateur que nous avons développé est basé sur l’idée de “points decontrôle” qui représen-
tent des lieux importants dans l’environnement tels que le bureau d’accueilou les bornes d’information.

Basés sur ces points de contrôle, nous avons défini un certain nombre de trajectoires typ-
iques, définies comme une liste des points de contrôle à traverser. Pour simuler une trajec-
toire, une trajectoire typique est sélectionnée au hasard et les observations correspondantes sont
générées en utilisant un processus d’interpolation auquel on ajoute du bruit.

7.2.3 Les Données

Nous avons recueilli des données pendant une semaine en des moments différents de la journée.
Le nombre des trajectoires que nous avons obtenues après avoir filtré celles qui étaient trop
longues (plus de 250 observations) ou trop courtes (moins de 50) est de2048.

Mis à part le filtrage que nous avons mentionné, les séquences d’observations récupérées
n’ont subi aucun posttraitement. En conséquence, on compte plusieurs trajectoires “anomales”
parmi cet ensemble de données. Ces trajectoires anomales correspondent à des erreurs de suivi,
et elles ne représentent pas des mouvements réels (ou, au moins, des trajectoires complètes).
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Ces problèmes ne sont pas présents dans les données synthétiques, que nous pouvons produire à
souhait.

7.3 Le parking de l’université de Leeds

Le deuxième environnement que nous avons considéré est un parking dans l’université de Leeds.
À différence du hall, on peut trouver deux types d’objets dans cet environnement (véhicules et
piétons), une autre différence est que cet environnement est plus structuré, au moins dans le cas
des voitures.

Les données ont été recueillies en utilisant un système de suivi différentde celui utilisé dans
le hall, mais la différence la plus importante est que ces données ont été traitées manuellement
pour corriger les erreurs de suivi. Approximativement 20% des trajectoires ont été altérées de
cette façon dont certaines ont été complètement suivies à la main.

7.4 Le simulateur du parking de l’INRIA

En raison des difficultés que nous avons trouvées pour obtenir des données, nous avons décidé
de continuer le développement de notre simulateur pour pouvoir ainsi disposer d’une plateforme
expérimentale permettant de faire des expériences contrôlées et de travailler avec des environ-
nements plus grands qu’avec les données réelles.

Nous avons donc produit un simulateur du parking de l’INRIA qui permetde simuler les
mouvements des piétons et des véhicules en prenant en compte aussi des vitesses.

Chapitre 8 : Résultats expérimentaux

Nous avons réalisé des expériences extensives avec notre approche en utilisant les données
décrites dans le chapitre7. Nous nous sommes concentrés dans les questions suivantes :

1. Performance de l’apprentissage.

2. Exactitude des prédictions.

3. Fonctionnement en temps réel.

4. Généralité.

Ce chapitre présente les expériences que nous avons réalisées pour répondre à ces questions.

8.2 Exemples

Cette section présente informellement quelques exemples du fonctionnement de notre approche
sans en discuter les détails techniques.
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8.2.1 Le hall d’entrée

8.2.2 Le parking de Leeds

8.2.3 Le parking de l’INRIA

8.3 Résultats quantitatifs

Dans cette section, nous présentons les résultats que nous avons obtenus en étudiant nos ques-
tions.

8.3.1 Sélection des paramètres

Pour étudier la sensibilité de notre approche aux changements dans les paramètres, nous avons
utilisé six ensembles de paramètres.

Dans tous les cas, nous avons utilisé des covariances sphériques pourles variables d’état.
Pour chaque ensemble de données, les valeurs ont été fixées de la façon suivante : le pre-

mier ensemble de paramètres est une estimation proposée par une personne. Les ensembles
“Low CV” et “High CV” correspondent à des valeurs inferieures et superieures des covariances,
respectivement ; les ensembles “Low IT” et “High IT” fonctionnent de façon analogue pour le
coefficient d’insertion ; le dernier ensemble des paramètres est le meilleur que nous avons trouvé
par rapport à sa parcimonie et exactitude, et, dans tous les cas, il a été obtenu par essai et erreur.

8.3.2 Mesure de l’exactitude de la prédiction

La mesure la plus commune pour des approches probabilistes est la vraisemblance des données
ou des approximations telles que le BIC (Bayesian Information Criterion). Néanmoins pour
notre problème particulier, cette métrique a l’inconvénient de ne pas avoir une interprétation
géométrique. Intuitivement, nous voudrions connaître la distance entre l’état prédit et le réel.
Donc, nous avons préféré de mesurer la performance de notre approche en termes de l’erreur
moyenne, calculée comme l’expectation de la distance entre la prédiction pour un horizon tem-
porel donnéH et l’observation effectiveOt+H .

〈E〉 = ∑
i∈S

P([St+H = i] | O1:t)‖Ot+H −µi‖
1/2 (47)

Pour un seul pas de temps. Cela peut être généralisé à un ensemble de données complet,
contenantK séquences d’observations.

〈E〉 =
1
K

K

∑
k=1

1
Tk−H

Tk−H

∑
t=1

∑
i∈S

P([St+H = i] | Ok
1:t)‖Ok

t+H −µi‖
1/2 (48)

Une autre différence par rapport a l’approche standard en apprentissage automatique, est que,
à la place d’utiliser deux ensembles de données pour nos expériences - l’un pour l’apprentissage,
l’autre pour la prédiction - nous avons utilisé un seul ensemble de données. Cela est possible, car
l’apprentissage est réalisé juste après la prédiction, et de ce fait, chaque séquence d’observations
est, effectivement, “inconnue” quand la prédiction a lieu.
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Le reste de ce chapitre est dédié à la présentation des résultats quantitatifs obtenus avec les
différents ensembles de donées.

8.3.3 Données réelles du hall d’entrée

8.3.4 Données synthétiques du hall d’entrée

8.3.5 Données du parking de Leeds

8.3.6 Données du parking de l’INRIA

Chapitre 9: Conclusions et perspectives

Dans ce chapitre, nous récapitulons la situation générale des approchesde prédiction basées sur
les mouvements typiques et rappelons nos contributions. Après, nous étudions les perspectives
de notre travail.

9.2 Perspectives et extensions possibles

Nous voyons deux directions principales dans lesquelles les travaux présentés dans cette thèse
peuvent se développer. La première consiste à explorer des extensionsvers des niveaux plus
hauts d’abstraction, spécifiquement en prenant en compte les interactionsqui peuvent arriver
entre des objets mobiles. La deuxième consiste à améliorer le bas niveau pouraugmenter la
robustesse de notre approche face aux limitations des systèmes de suivi et des capteurs actuels.

9.2.1 Extensions de haut niveau

Notre approche ne prend pas en compte la possibilité qu’un objet modifie sa trajectoire en
réponse aux mouvements d’un autre objet. Un premier pas dans cette direction pourrait être
de considérer les objets semi-statiques que l’on trouve dans un environnement. Ces objets se
caractérisent par le fait qu’ils ne peuvent pas se déplacer librement, maispeuvent adopter un de
deux états possibles (blockage/non blockage). C’est le cas, par exemple, des portes, qui peu-
vent être soit ouvertes, soit fermées, ou des places de parking, qui peuvent être soit libres, soit
occupées. Nous illustrons comment ces objets peuvent être pris en compte,en introduisant la
notion d’état occupé dans notre modèle.

Un défi beaucoup plus ambitieux est celui de prendre en compte les interactions entre des
objets complètement dynamiques. Dans la base, cela requiert de modéliser l’état conjoint de tous
les objets qui occupent l’environnement, ce qui est manifestement non faisable. Nous esquissons
deux directions possibles: soit en ayant recours à des techniques quidécomposent l’état conjoint
[Brand et al., 1997, Gong and Xiang, 2003], soit en intégrant notre approche avec des techniques
d’analyse de scènes [Oliver et al., 2000].

9.2.3 Extensions de bas niveau

Comme la plupart des approches basées sur des comportements typiques, lanôtre repose sur
l’hypothèse qu’on dispose d’un système de suivi pratiquement sans failles. Seulement, comme
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nous l’avons montré dans le chapitre7, cette hypothèse n’est pas vérifiée dans la pratique.
Nous voyons deux stratégies pour résoudre ce problème, la première est de développer des

systèmes de diagnostic qui nous permettent de filtrer les trajectoires “défectueuses” [Hu et al.,
2006]; l’autre est d’essayer d’améliorer le suivi en utilisant des comportements appris [Liao et al.,
2003, Bennewitz et al., 2005].
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Chapter 1

Introduction

Life is a series of collisions with the future

JOSEORTEGA Y GASSET

1.1 Motivation

Motion planning for dynamic environments is a very active research domain inrobotics. Owing
to the fact that the problem is NP-Hard [Reif and Sharir, 1985], most research efforts have been
directed towards coping with planning complexity.

There is, however, another critical aspect of the problem which is oftenoverlooked: motion
planning algorithms need to know in advance how the objects that populate the environment
will move. In practice, this knowledge is seldom available, making it necessary to resort to
prediction: gathering information about moving objects through a sensor device (eg radar, vi-
sual tracker, laser scanner) and then feeding this information into a mathematical model of the
object’s motion in order to obtain an estimation of its future state (egposition, velocity).

Until recently, most motion prediction techniques have been based on kinematicor dynamic
models that describe how the state of an object evolves over time when it is subject to a given
control (egacceleration) (cf. [Zhu, 1990]). These approaches proceed by estimating the state,
using techniques such as the Kalman Filter [Kalman, 1960], and then applying the estimate to
its motion equations in order to get state predictions.

Although these techniques are able to produce very good short-term predictions, their per-
formance degrades quickly as they try to see further away in the future. This is especially true
for humans, vehicles, robots, animals and the like, which are able to modify their trajectory ac-
cording to factors (egperception, internal state, intentions, etc.) which are not described by their
kinematic or dynamic properties.

To address this issue, a different family of approaches has emerged in the last decade. It
is based on the idea that, for a given environment, moving objects tend to followtypical mo-
tion patterns that depend on the objects’ nature and the structure of the environment. These
approaches operate in two stages:
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1. Learning stage:observe the moving objects in the workspace in order to identify and
build representations of typical motion patterns.

2. Prediction stage:use the learned typical motion patterns to predict the future motion of a
given object.

Thus, learning consists in observing a given environment in order to construct a represen-
tation of every possible motion pattern. But, how long should we observe the environment in
order to construct such a “library” of motion patterns? Given the enormous number of possible
behaviors the humans may exhibit in all but the simplest environments, there is not a simple
answer. This raises an important problem of most current learning techniques [Hu et al., 2004a,
Bennewitz et al., 2005, Wang et al., 2006]: they use a "learn then predict" approach, meaning
that the system goes through a learning stage where it is presented with an example data set from
which it builds its pattern models. Then, the models are "frozen" and the system goes into the
prediction stage.

The problem with this approach is that it makes the implicit assumption that there is enough
information in the example data set to build a representation of every possible motion pattern,
which, as we have shown, is a difficult condition to guarantee. This thesis proposes a solution
to this problem: alearn and predictapproach, where learning and prediction take place in a
continuous and parallel fashion, making it possible to refine knowledge onthe basis of the same
observations that are used to predict motion as it happens.

1.2 Problem description

It will be assumed hereafter that the input of a learning based algorithm consists of a series of
discrete observations (ie sensor readings) describing the motion of objects in a given environ-
ment; most of the time, we will consider observations to consist of position information in the
form of coordinates in the plan, nevertheless, sometimes they also include other information like
velocity, size, orientation, confidence, etc.

In addition to this information, it is assumed that observations are arranged insequences
O1:T = {O1, · · · ,OT} such that every sequence describes the trajectory of a single object since it
observed for the first time until it leaves the environment or stops moving. For example, in the
case of a visual tracker, observation sequences will correspond to complete tracks, from creation
until deletion.

A complete learning-based approach, includes the following components:

A motion pattern modeldescribing, how the object’s state evolves as time passes, considering
that it is engaged in a given motion pattern.

A learning algorithm specifying how the model’s parameters should be estimated from col-
lected data. For a “learn and predict” approach, this should ideally comprise the ability to
create or delete motion pattern models as learning progresses.

A prediction algorithm prescribing the use of learned models and observations to predict fu-
ture motion. More precisely it should answer the following question: given our current
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knowledge and the whole history of observations for an object up to the present timet,
what will be its state at timet +H?

Since uncertainty is inherent to prediction, it seems sensible to use a probabilistic frame-
work and to model motion patterns as stochastic processes. Thus, we havebased this thesis
on Hidden Markov Models [Rabiner, 1990], a probabilistic approach which is very popular in
the literature of “learn then predict” approaches [eg Walter et al., 1999, Makris and Ellis, 2002,
Bennewitz et al., 2005] due, at least in part, to the existence of efficient inference and learning
algorithms. Nevertheless, the application of Hidden Markov Models (HMM) toa “learn and
predict” approach, poses additional problems which, as we will see in the next section, are not
solved by classical algorithms.

1.2.1 Modeling motion with Hidden Markov Models

A Hidden Markov Model may be viewed as a graph (fig.1.1), where nodes represent discrete
states (egplaces in the environment) and edges represent transitions. The topology of this graph
(ie its edges) and its cardinality (ie number of states) are often called themodel’s structure. The
model assumes that the state of an object is not accessible in a direct fashion, instead, there is an
observation probability, attached to every state, describing the probability of obtaining a given
observation, supposing that the object is in that state. Transitions are notdeterministic either,
but occur according to atransition probability, attached to every edge on the graph. Transition
and observation probabilities are often represented as multinomial and Gaussian probabilities,
respectively, the set of all the multinomial and Gaussian parameters are known together as the
model’s parameters.

1

2

3

P(Ot | St = 1)

P(Ot | St = 2)

P(Ot | St = 3)

P(St =
2 |

St−
1
= 1)

P(St = 3 | St−1 = 1)

Figure 1.1: A basic three-state HMM, with transition probabilities attached to edges and obser-
vation probabilities attached to nodes.

HMM based motion prediction approaches in the literature model motion patterns as typical
trajectories, which, in HMMs are represented as chains (ie order-two graphs) with directed
edges going only in one direction (fig.1.2). Every such graph constitutes an individual HMM
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[eg Walter et al., 1999]; or, alternatively, they may be represented as a single HMM conformed
by many non-connected chains [eg Bennewitz et al., 2005].

Figure 1.2: An HMM structure for a parking environment, where motion patterns are represented
as non connected chains (order 2 subgraphs) (only a few motion patterns are displayed).

1.2.2 Challenges

When using HMMs as motion models there are actually two learning tasks to be accomplished:
a) learn the graph structure, and b) estimate the parameters of the different probability distribu-
tions. In most cases, they are roughly equivalent toidentifyingandrepresentingmotion patterns,
respectively.

The standard learning technique for HMMs is the Baum-Welch algorithmBaum et al.[1970]
– a specialization of the well known Expectation Maximization algorithm [Dempster et al.,
1977] – unfortunately, it is a parameter-only learning algorithm which assumes that the model’s
structure is knowna priori. Moreover, in its classical form, the algorithm is not applicable to
a “learn and predict” approach, because it is designed for off-line use, processing data in batch
mode.

Although structure-learning and incremental extensions of the Baum-Welchalgorithm exist
[Friedman, 1997, Singer and Warmuth, 1996], an algorithm that is able to perform both of them
is still needed in order to enable an HMM based “learn and predict” approach. Moreover, the
algorithm should be able to work inreal timewhich, in this context, means delivering predictions
in the time elapsed between two sensor readings.

Prediction in HMMs consists in applying Bayesian inference to update a probabilistic belief
(ie the belief state) of the object’s state with newly gathered observations, and then to project
it into the future. This may be done very efficiently on an observation by observation basis,
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however, depending on the HMM’s structure, inference may not be fast enough to enable real-
time use, and it is necessary to apply approximate methods [eg Walter et al., 1999].

Another problem comes from the fact that, in real life, persons often change their mind while
moving, leading to trajectories which are highly atypical and, at the same time, are composed by
well known sub-behaviors. The problem with most current approaches is that they are not able
to deal with this “mixed patterns” because typical trajectories are supposedto be completely
independent. This leads to bad generalization, since a new motion pattern should be learned
for every such case, which is problematic because will not represent actual behaviors, but an
atypical motion which is unlikely to observe again.

1.3 Contributions

The main contribution of this thesis is a “learn and predict” technique based ona proposed
extension of Hidden Markov Models, called Growing Hidden Markov Models (GHMM). They
differ from conventional HMMs in the fact that the model structure and parameters are not
fixed, but evolve continuously, as more observations are available. Thisis possible thanks to
the integration of a topology learning network [Jockusch and Ritter, 1999] – which is used to
learn the structure – and an incremental parameter learning algorithm inspired on the work of
Neal and Hinton[1998] into a fully unsupervised learning technique.

Even if they have been formulated in the context of motion prediction, GHMMs are intended
to be applicable to all the cases in which standard HMMs are used as a discrete approximation
to model a process having a continuous state space.

In order to apply GHMMs to the motion prediction problem, we have taken a different
approach from other HMM based techniques, which – as explained above – are based in the
concept of typical trajectories. Instead, we have chosen to model motion interms of the object’s
intended destination (ie its goal), which, in our approach, becomes part of an extended state
vector, along with the other state variables such as pose and velocity.

By using together GHMMs and the extended state, we have developed a novel motion pre-
diction technique, which has the following differences with respect to otherHMM-based ap-
proaches:

• The model’s parameters and structure are estimated using an incremental algorithm, which
is a necessary condition for a true “learn and predict” approach.

• The learning algorithm is fully unsupervised, and it is defined in terms of intuitive param-
eters, which do not require any prior knowledge about the environmentor the number of
possible motion patterns.

• The learned HMM structure does not consists of unconnected chains representing ‘typ-
ical trajectories’ corresponding to geometrically similar observation sequences. Instead,
motion is modeled in terms of goals. This not only enables richer motion pattern repre-
sentations, but also has the advantage of being an explicit – although rough – model of the
object’s intentions.
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• In spite of being richer than in other approaches, the learned HMM structure is still simple
enough to enable the use of exact inference in real time, even for large environments and
high-dimensional spaces: in most cases, the number of edges grows linearly with the
number of discrete states in the model.

1.4 Overview of the rest of this thesis

Part One: Background

Chapter 2. This chapter introduces the basic mathematical notions of probabilities and infer-
ence which are fundamental for the rest of this thesis.

Part Two: State of the art

Chapter 3. This chapter is a review of the literature of learning-based motion models and their
application to prediction. It proposes a classification of motion models, analyzes existing
techniques, and discusses outstanding issues on intentional motion prediction, making em-
phasis in problems related to discrete space-state representations such asHidden Markov
Models.

Chapter 4. Since most of our work is based on Hidden Markov Models, we have consecrated
one chapter to this probabilistic tool. In it, we discuss common inference tasks like filter-
ing, smoothing and prediction; and present an overview of existing parameter and struc-
ture learning algorithms.

Part Three: Proposed approach

Chapter 5. This chapter introduces Growing Hidden Markov Models, our proposedHMM ex-
tension for continuous parameter and structure learning. It introduces the concept of a
topological map and provides an overview of Vector Quantization and Topology Repre-
senting Networks, before presenting the Instantaneous Topological Map(ITM). It then
formalizes Growing Hidden Markov Models, and explains how the ITM algorithm is in-
tegrated into an incremental structure and parameter learning algorithm.

Chapter 6. This chapter explains the application of GHMMs to predict the motion of vehicles
and pedestrians. It explains the reasons and advantages of using an extended state vec-
tor and describes how it is integrated into the model. Finally, it compares our proposed
approach against other HMM-based techniques in the literature.

Part Four: Experiments and Applications

Chapter 7. This chapter presents the different experimental platforms used in this thesis as well
as the respective data sets.
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Chapter 8 This chapter presents the qualitative and quantitative results that we have obtained
from the application of our GHMM based motion prediction technique to the data sets
described in the precedent chapter.

Part Five: Conclusions

Chapter 9. Finally, this chapter summarizes this thesis and analyzes our contributions. Then, it
presents our conclusions and reviews some of the possibilities for future work.
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Part I

Background
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Chapter 2

Probabilistic Models

- How do you know?
- All those movies had happy endings.
- All?
- Most.
- That cuts down the probability - he told her, smug.

THOMAS PYNCHON

The crying of lot 49

2.1 Overview

Probabilities and Bayesian models – in particular the Bayes filter – will play a rather predominant
role in what is to follow, so that it seems advisable to begin with a summary introduction to the
subject. This chapter is strongly based onLebeltel[1999], the interested reader is also invited to
consult the works ofStone et al.[1999] andThrun et al.[2005] for a more thorough explanation
of the concepts presented here.

We place ourselves in the framework of the theory of plausible reasoning developed by
Jaynes[1995] “probability as logic”; an extension of classical logic which introduces probabil-
ities as a way to perform inference. One of the key aspects of this theory isits interpretation of
probabilities as describing the degree of certainty that it is possible to have about a particular
phenomenon given the available knowledge. Thissubjectiveapproach is a significant departure
from the classicfrequentistpoint of view, which sees probabilities as an inherent property of the
phenomenon.

The basis of Jaynes work is a theorem proposed byCox[1946], who first stated a number of
desiderata defining the concept of plausibility for a reasonable agent. From there, he showed that
the only way to manipulate this notion while staying true to the original desiderata is by using
the mathematical concept of probabilities. This result is crucial for a “scientifically respectable
theory of inference”1: although estimating probabilities is subjective because it depends on the

1[Jaynes, 1995, p.39]
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agent’s knowledge, given the same knowledge, two different agents should estimate the same
probabilities if they are rational.

2.2 From logic to probabilities

2.2.1 Logic Propositions

We will work with classic logic propositions which may be either true or false. These propo-
sitions will be denoted using capital calligraphic characters. Propositions may be manipulated
using Boolean operators.

• Logical AND. We will denote the logical product, or conjunction, by listing propositions
together, separated by spaces, for exampleA B means “bothA and B are true”. Some-
times, for the sake of clarity, we will use a comma to indicate conjunction (eg “A ,B ”).
Finally, as a notational convenience, we will use colon-separated sub indices to denote the
conjunction of variables with consecutive indexes (eg A1:t = A1, · · · ,A t).

• Logical OR. Logical disjunction will always be denoted by using a plus sign, henceA +B
means “at least one ofA or B is true”.

• Negation. Negation will be denoted by the symbol¬, therefore¬A means “A is not true”.

2.2.2 Probability of a proposition

Sometimes, we do not know if a particular propositionA is true or not, but we still have reasons
(egprior knowledge or evidence) that make us believe that one of those values is more likely than
the other. We express this using the notationP(A | π) which is read “the conditional probability
of A givenour former knowledgeπ”. Since – under the subjective interpretation – probabilities
are always estimated on the basis of former knowledge, it does not make sense to simply write
P(A ) or “probability of A ”. That said, we will systematically omit the specification of former
knowledgeπ, but it should be noted that this is only a notational shortcut.

Quantitative rules for propositions

Quantitative rules are mathematical identities used to manipulate proposition probabilities in
order to perform inference, in a similar fashion to what we do with Boolean operators.

The product rule The product rule relates the probability of the logical productA B to the
individual probabilities ofA andB :

P(A B ) = P(A )P(B | A ) = P(B )P(A | B ) (2.1)
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The normalization rule The normalization rule expresses the relationship between the prob-
ability of a proposition and that of its negation.

P(A )+P(¬A ) = 1 (2.2)

The sum rule Just as in classical logic it is possible to construct every possible logical ex-
pression using only negation and conjunction, two identities – the product and the normalization
rules – are used to derive all possible probabilistic computations. One of therules which is
possible to obtain from (2.1) and (2.2) is the sum rule:

P(A +B | C ) = P(A | C )+P(B | C )−P(A B | C ) (2.3)

2.2.3 Variables

Until now, we have only talked in terms of logical propositions but, most often,we want to
reason in terms of variables (also called random variables) which represent the relevant features
of a given problem. A discrete variableV has an associated domainDV = {v1, · · · ,vK}, which
is the set ofK values which this variable may take. The variable may only have a single value at
the same time, and the value should be inDV .

Let us suppose that we want to model the result of throwing a die, representing the output
by a discrete variableV having a domainDV = {1, · · · ,6}. We may associate a logic proposition
with every possible output:

V1 ≡[V = 1]

...

V6 ≡[V = 6]

These propositions are bothexhaustiveandmutually exclusive.

V1 + · · ·+V6 = 1(exhaustive)

V iV j = 0 ∀i, j
∣
∣ i 6= j (mutually exclusive)

We may now use the obtained propositions to define probabilities, for example,the proba-
bility of obtaining a 6 may be writtenP(V6), alternatively, we may explicitly enclose the propo-
sition with square bracketsP([V = 6]).

If we have two variablesV1 andV2 whose respective domains areDV1 = {v1
1, · · · ,v

1
N} and

DV2 = {v2
1, · · · ,v

2
M}, we may describeN×M mutually exclusive elementary propositions:
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V 1
1 V

2
1 ,V 1

1 V
2
2 , · · · ,V 1

1 V
2
N

V 1
2 V

2
1 ,V 1

2 V
2
2 , · · · ,V 1

2 V
2
N

...

V 1
MV

2
1 ,V 1

MV
2
2 , · · · ,V 1

MV
2
N

Each of theseN×M propositions may be interpreted as follows:

V 1
i V

2
j ≡ [V1 = v1

i ][V
2 = v2

j ]

“The value ofV1 is v1
i and the value ofV2 is v2

j ”

Since these propositions are both exhaustive and mutually exclusive, the conjunctionV1 V2

is itself a new random variable.

Quantitative rules for discrete variables

Whereas there are some differences between variables with discrete andreal domains, we will
treat them individually. For discrete variables, the product rule is:

∀ i ∈ DA, j ∈ DB

P([A = i] [B = j]) = P([A = i])P([B = j] | [A = i])

= P([B = j])P([A = i] | [B = j])

(2.4)

In this document, we will use the variable name alone (ie without square brackets) to denote
theentireprobability distribution. Hence the above expression may be noted with the following
shortcut:

P(A B) = P(A)P(B | A) = P(B)P(A | B) (2.5)

In general, the probability of the conjunction of two or more variables is calleda Joint
Probability Distribution (JPD). The factorization of the JPD into simpler probabilities is called
adecomposition.

The normalization rule may at first look somewhat different from (2.2). Intuitively, both of
them may be regarded as stating that the sum of the probabilities for all the possible cases is one:

∑
i∈DA

P([A = i]) = 1 (2.6)

Again, this may be written:

∑
A

P(A) = 1 (2.7)
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Quantitative rules for continuous variables

Of course, many problems are defined in terms of variables having a continuous domain. In this
case, probabilities are defined by assuming that there is a Probability DensityFunction (PDF)
g(A) which defines the probability of an interval:

P([a < A≤ b]) =
Z b

A=a
g(A)dA (2.8)

For continuous variables, the product rule is the same that in (2.5):

P(A B) = P(A)P(B | A) = P(B)P(A | B) (2.9)

And the normalization rule becomes:
Z ∞

−∞
g(A)dA= 1 (2.10)

Other useful identities

A very useful identity involving variables is thetheorem of total probability, also known as the
marginalization rule:

∑
B

P(A B) = ∑
B

P(B)P(A | B) = P(A) (discrete case) (2.11)

Z ∞

−∞
P(A B)dB=

Z ∞

−∞
P(B)P(A | B)dB= P(A) (continuous case) (2.12)

Equally important is the so calledBayes rule, which establish the relationship between the
“forward probability” P(A | B) and its “inverse”P(B | A), this is particularly useful in inverse
problems, where the parameters of a model need to be estimated from data:

P(A | B) =
P(B | A)P(A)

P(B)
=

P(B | A)P(A)

∑AP(B | A)P(A)
(discrete case) (2.13)

P(A | B) =
P(B | A)P(A)

P(B)
=

P(B | A)P(A)
R ∞
−∞ P(B | A)P(A)dA

(continuous case) (2.14)

It is important to note that, since the denominator does not depend onA

P(A | B) ∝ P(B | A)P(A) (2.15)

and the proportionality coefficient may be deduced from the marginalization rule.
The Bayes rule may be seen as a mechanism to compute (ie infer) the probability of a variable

A, whose value we ignore, at the light of a variableB, whose value is known. The known variable
is often called theevidence, the termP(A | B) is called the posterior probability or simply the
posteriorand the termP(A) is called the prior probability or simply theprior. Finally, the term
P(B | A) is often calleddata likelihood2.

2There is a lot more to say about Bayes rule. For example, the importanceof priors and their use to describe
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2.2.4 JPD Decomposition and conditional independence

The use of the quantitative rules is not limited to the case of two variables: sincethe product of
two or more random variables is itself a random variable, it is possible to apply the rules to an
arbitrary number of variables.

The dependencies between different variables are formally denoted bytheir joint probability,
and the way it is decomposed into simpler probability distributions by applying the product rule.
For example, for the case of three variables

{
V1,V2,V3

}
there are 13 possible decompositions

of the JPD:

P(V1,V2,V3) = P(V1)P(V2 V3 | V1)

= P(V2)P(V1 V3 | V2)

= P(V3)P(V1 V2 |V3)

= P(V1 V2)P(V3 |V1 V2)

= P(V1 V3)P(V2 |V1 V3)

= P(V2 V3)P(V1 |V2 V3)

= P(V1)P(V2 |V1)P(V3 |V1 V2)

= P(V1)P(V3 |V1)P(V2 |V1 V3)

= P(V2)P(V1 |V2)P(V3 |V1 V2)

= P(V2)P(V3 |V2)P(V1 |V2 V3)

= P(V3)P(V1 |V3)P(V2 |V1 V3)

= P(V3)P(V2 |V3)P(V1 |V2 V3)

These 13 factorizations are equivalent from a mathematical point of view,however, by
choosing a particular decomposition, we express our knowledge about the structure of variable
dependence, as related to a particular problem or application.

After choosing a decomposition, further simplification is possible on the basis of conditional
independenceassumptions, which apply whenever we consider that the variableV1 does not
provide additional information about a variableV2 if a third variableV3 is known:

P(V1 V2 V3) = P(V1)P(V2 |V1)P(V3 |V1 V2)

= P(V1)P(V2 |V1)P(V3 |V1)

These assumptions are based on knowledge about the variables’ semantics, they may also
be introduced to simplify, even if they are not necessarily true. Anyway, conditional indepen-
dence assumptions are critical for tractability since they permit to reduce the dimensionality and,
therefore, the complexity of the distributions which conform the JPD.

former knowledge is a source of debate between frequentists and bayesians (eg subjectivists). However, such a
discussion is beyond the scope of this thesis.
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2.2.5 Inference

The rules we have described so far may be used to put together a model which describes some
phenomenon or process; such a probabilistic model is specified by enumerating the variables –
and their domains – which are considered to be relevant to the phenomenon being modeled, as
well as the corresponding JPD decomposition.

The main application of probabilistic models is inference: finding out the valuesof unknown
variables on the basis of known variables (ie evidence) through the application of the Bayes rule.
More formally, inference consists in finding the probability distribution of a set of variables
εr (ie researched variables) on the basis of another set of variablesεk, whose value we know
(ie evidence), eventually disregarding the values of a third group of variables εi (ie ignored
variables). We define a probabilistic question as any expression having the form:

P(Xk · · · Xl | [Xm = xm] · · · [Xn = xn]) (2.16)

Whereεr =
{

Xk, · · · ,Xl
}
6= ∅, εk = {Xm, · · · ,Xn} andεi = {Xo, · · · ,Xp} is the set of vari-

ables that do not belong to neitherεr nor εk.
Knowing the JPD, it is possible to answer any probabilistic question of the form (2.16) by

first applying the product rule (2.1):

P(Xk · · · Xl | [Xm = xm] · · · [Xn = xn]) =
P(Xk · · · Xl [Xm = xm] · · · [Xn = xn])

P([Xm = xm] · · · [Xn = xn])
(2.17)

And then expressing the numerator and the denominator in terms of the JPD by applying the
marginalization rule (2.12):

· · · =
∑

Xo···Xp
P(Xk · · · Xl [Xm = xm] · · · [Xn = xn] Xo · · · Xp)

∑
Xk···Xl

Xo···Xp

P(Xk · · · Xl [Xm = xm] · · · [Xn = xn] Xo · · · Xp)
(2.18)

As Cooper[1990] has demonstrated, Bayesian inference is NP-hard; this explains the impor-
tance of conditional independence assumptions, which render the problem tractable by allowing
further simplifications. Another way to cope with complexity is by using specially tailored in-
ference algorithms which exploit specific features of a model; it is also possible to trade-off
accuracy against complexity by using approximate inference algorithms. Some examples of
these algorithms will be given in §2.3.

2.2.6 Parametric forms

Up to this moment, we have not really explained how the simpler probability distributions that
compose the JPD are defined; indeed, a complete probabilistic model description should spec-
ify how these probabilities are represented. Throughout this thesis, these probabilities will be
chosen amongst a few elementary distributions, which are defined in terms ofa number of pa-
rameters, and hence are also known asparametric forms.
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Uniform Distribution

The uniform distribution (notedUV) represents the fact that all the values in the domain of a
variableV are equiprobable. In general, it is only well defined for discrete variables:

P([V = vi ]) = UV(vi) =
1

|DV |
,∀vi ∈ DV (2.19)

The only parameter of this distribution is the cardinality of the variable’s domain|DV |.

Conditional Probability Table

Conditional probabilities on discrete variables may be represented as a Conditional Probabil-
ity Table (CPT), which lists the probabilities that the variables on the left side ofthe bar may
take depending on the evidence variables. for example, ifa, b andc are all binary variables
(ie Da,Db,Dc ∈ {0,1}), the probability ofa givenb andc is represented with a 2×2×2 tablet
whose individual elements will be represented with comma-separated sub indices:

P([A = i] | [B = j] [C = k]) = Ti, j,k

In general a conditional probability distribution consisting ofN variables{V1, · · · ,VN} will
correspond to aN dimensional CPT with|DV1|× · · ·× |DVN | elements or parameters.

Gaussian distribution

For continuous variables will be often use the multivariate Gaussian (or Normal) probability
distribution, which has the following form3:

P([V = vi ]) = G(vi ; µ, Σ) (2.20)

= |2πΣ|−1/2exp

[

−
1
2
(V −µ)TΣ−1(V −µ)

]

(2.21)

whereµ is the mean vector,Σ is aD×D positive semidefinite matrix calledcovariance matrix
andvi ,µ∈ R

D. The mean and covariance matrix4 constitute the Gaussian’s parameters.

2.2.7 Learning

Besides the definition of the probabilistic model itself, it is necessary to assignvalues to the
parameters (eg mean value and covariance) of every elementary probability distribution in the
decomposition. Although this may be done manually, it is also possible to learn (ie estimate) the
parameters’ values from data.

3Strictly speaking, the expression presented here does not denote a probability since, as it may be seen in eq.
(2.8), continuous probability distributions are only defined for intervals. However, it is common in the literature to
refer to PDFs as probabilities [eg Thrun et al., 2005], which is what we will do in this document.

4In the scalar (unidimensional) case, the covariance is called simply variance.
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For discrete variables, in its simplest form, learning consists in computing the frequencies at
which different variable’s values occur in data, this is done by counting.So, if we have only one
variableV with domainDV :

P([V = vi ]) =
C([V = vi ])

∑V C(V)
(2.22)

whereC(A ) stands for the number of cases in data where propositionA is true. This is known as
a maximum likelihoodestimate, since it maximizes data likelihood without taking into account
any prior on the distribution ofV. A problem with this approach is that, when a learning case
does not appear in data, the corresponding probability becomes zero. This disregards the – very
frequent – situation in which data is not exhaustive,ie it does not contain an example of every
possible value ofV. The problem may be solved by using Dirichlet priors, that is, pre assigning
countsαi to every valuevi in DV :

P([V = vi ]) =
C([V = vi ]))+αi

∑v j∈DV
C([V = v j ])+α j

(2.23)

the particular case in which allαi = 1, becomes equal to a uniform in the absence of data; it is
known as Laplace’s law of succession:

P([V = vi ]) =
C([V = vi ])+1

∑V C(V)+1
(2.24)

Laplace’s law may be generalized to learn an arbitrary conditional probability:

P([V1 = v1] · · · [Vk = vk] | [V l = vl ] · · · [Vm = vm])

=
C([V1 = v1] · · · [Vk = vk] [V l = vl ] · · · [Vm = vm])+1

∑
V1,··· ,Vk

C(V1 · · · Vk [V l = vl ] · · · [Vm = vm])+1
(2.25)

In many real situations, data is not available for some of the variables in the model, which are
then said to behidden. The standard solution is the use of the Expectation-Maximization (EM)
algorithm [Dempster et al., 1977], which starts with some initial (often random) estimate of the
parameters and then uses inference to compute the expected number of counts – called Expected
Sufficient Statistics (ESS) – which are then treated as though they were observed and used to
re-estimate the parameters. This two steps are iterated until some convergence criterion is met.

Another – and much more challenging – learning problem is conditional structure learning,
which consists in estimating from data the best JPD decomposition and conditional indepen-
dence assumptions. The general approach is to evaluate different decompositions using a scoring
function and choose the one which obtains the best score.

Since the literature in learning probabilistic models is huge, we will not further discuss
general methods in this chapter5. Instead, in chapter4 we will do a more thorough review of the
learning algorithms that apply to the particular probabilistic model upon which wehave based
our work: Hidden Markov Models.

5See [Heckerman, 1995, Murphy, 2002] for good introductions to the subject.
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2.3 The Bayes filter

We will conclude this chapter by introducing the Bayes filter, which is used to study dynamic
systems and constitutes the basic probabilistic framework for chapters4 and5.

The objective of the Bayes filter is to find a probabilistic estimate of the currentstate of a
dynamic system – which is assumed to be “hidden",ie not directly observable – given a sequence
of observations gathered every time step until the present moment.

The main advantage of using a probabilistic framework such as the Bayes filter is that it
allows to take into account the different sources of uncertainty that participate in the process,
such as:

• The limited precision of the sensors used to obtain observations.

• The variability of observations due to unknown factors (observation noise).

• The incompleteness of the model.

2.3.1 Probabilistic Model

Variables

The Bayes filter works with two types of variables6:

• St , the state of the system at timet. The exact meaning of this variable depends on the
particular application, in general, it may be seen as the set of system features which are
relevant to the problem and have an influence in the future. Since this workdeals mostly
with object motion, we will frequently assume that the state is the object’s pose, although
the specific variables that constitute the state may vary with the context and include addi-
tional features such as velocity. This will be explicitly stated in the text.

• Ot , the observation gathered at timet. Observations provide indirect indications about the
state of the system. In this thesis, we will assume that observations come from sensors
which “observe” a given environment, such as laser scanners and video trackers.

The Bayes filter is an abstract model which do not makes any assumption about the nature
(ie discrete or continuous) of the state and observation variables. Such assumptions are made
by concrete specializations of the Bayes filters, such as the Kalman Filter (continuous state and
observations) or Hidden Markov models (discrete state, discrete/continuous observations).

Decomposition

A Bayes filter defines a joint probability distribution onO1:T andS1:T on the basis of two condi-
tional independence assumptions:

6Here, we are providing the definition ofStone et al.[1999], which is different from the one given byThrun et al.
[2005] in that the later includes a third set of variables describing actions or controls.
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1. Individual observationsOt are independent of all other variables given the current stateSt :

P(Ot | O1:t−1 S1:t) = P(Ot | St) (2.26)

In generalP(Ot | St) is calledobservation probabilityor sensor model. It models the rela-
tionship between states and sensor readings, taking into account such factors as accuracy
and sensor noise.

2. The current state depends only on the previous one, former states donot provide any
further information. This is also known as the order oneMarkov hypothesis:

P(St | S1:t−1) =

{
P(S1) for t = 1
P(St | St−1) otherwise

(2.27)

The probabilityP(St | St−1) is called thetransition probabilityor system model. The
probability P(S0) which describes the initial state in the absence of any observations is
called thestate prior.

These assumptions lead to the following decomposition of the Bayes filter:

P(S1:T O1:T) = P(S1)P(O1 | S1)
T

∏
t=1

P(St | St−1)P(Ot | St) (2.28)

2.3.2 Parametric forms

The Bayes filter does not define any parametric forms and, consequently, no parameter identifi-
cation mechanism. This is left out to specializations.

2.3.3 Inference

One of the main uses of Bayes filters is to answer the probabilistic questionP(St+H | O1:t); what
is the state probability distribution for timet + H, knowing all the observations up to timet?
The most common case is filtering (H = 0) which estimates the current state. However, it is also
frequent to perform prediction (H > 0) or smoothing (H < 0).

The Bayes filter has a very useful property that largely contributes to its interest: filtering
may be efficiently computed by incorporating the last observationOt into the last state estimate
using the following formula:

P(St | O1:t) =
1
Z

P(Ot | St) ∑
St−1

[P(St | St−1)P(St−1 | O1:t−1)] (2.29)

where, by convention,Z is a normalization constant which ensures that probabilities sum to one
over all possible values forSt .

If we define recursivelyP(St−1) = P(St−1 | O1:t−1), it is possible to describe a Bayes filter
in terms of only three variables:St−1,St andOt , leading to the following decomposition:
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P(St−1 St Ot) = P(St−1)P(St | St−1)P(Ot | St) (2.30)

Where the state posterior of the previous time step is used as the prior for the current time
and is often calledbelief stateThrun et al.[2005].

Under this formulation, the Bayes filter is described in terms of a local model, which de-
scribes the state’s evolution during a single time step. For notational convenience, in the rest of
this thesis we are only going to describe such local models, noting that they always describe a
single time step of the global model (2.29).

2.3.4 Specializations of the Bayes filter

Different choices of variable domains and parametric forms for the Bayesfilter, give place to
different filtering techniques. For example, Kalman Filters [Kalman, 1960] make the following
hypotheses:

• State and observation variables are both continuous.

• The three probabilities in the decomposition are Gaussians.

• Both the evolution of the system state and the dependence between the systemand the
observation variables are described by linear functions.

Other popular specializations of the Bayes filter are Hidden Markov Models– which will be
reviewed in detail in chapter4 – and particle filters [Arulampalam et al., 2002], which represent
probabilities using discrete samples, and allow for fast approximated inference. Particle filters
will not be further discussed in this thesis.

2.4 Discussion

In this chapter we introduced the basic mathematical tools needed for understanding the follow-
ing chapters. We have briefly presented the use of probabilities as a modeling and inference tool
which allows the explicit representation of uncertainties.

We discussed the basic rules used to manipulate probabilities –ie the product and normal-
ization rules – as well as some very useful derived rules –ie the sum and marginalization rules.
We explained the components of a probabilistic model: the variables, joint probability decom-
position and the parametric forms. We presented the Bayes rule and the fundamental role it
plays in inference. We described the use and principles behind learning algorithms, in particular
the importance of counting as a means of estimating probabilities. We have also introduced the
Bayes filter and explained the variables that constitute it: state and observations.
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State of the Art
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Chapter 3

Intentional Motion Prediction

Here is how it works: first you decide to treat the
object whose behavior is to be predicted as a
rational agent; then you figure out what beliefs that
agent ought to have, given its place in the world and
its purpose. Then you figure out what desires it
ought to have, on the same considerations, and
finally you predict that this rational agent will act to
further its goals in the light of its beliefs. A little
practical reasoning from the chosen set of beliefs
and desires will in most instances yield a decision
about what the agent ought to do; that is what you
predict the agent will do.

DANIEL DENNETT

The Intentional Stance

3.1 Overview

In the epigraph,Dennett[1987] describes how most humans would try to predict another hu-
mans’ motion if asked to: if we accept that a moving object is rational and that he is able to
move at will – we take theintentional stancetowards him – then it follows that the best way to
predict its motion is to try to emulate its rational process,eg “the car is slowing down because
he wants to park in the free place at the left”. But designing a computer program capable of
performing such emulation in a general fashion is beyond our current capabilities.

Instead, most intentional motion prediction approaches adopt what Dennet calls thephysical
stance1: they try to explain – and predict – the object’s behavior in terms of its physical proper-
ties and the laws of physics. This implies the use of kinematic and dynamic models describing
the objects’ motion as the evolution of its state (eg its position, speed and orientation) over time
when it is subject to a control (egacceleration).

1It is important to note that the physical and intentional stances stand in opposite ends of a continuum instead of
describing mutually exclusive views.
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However, this approach faces at least three problems: a) the currentobject’s state is not di-
rectly known, instead, it is necessary to estimate it from observations gathered through sensors
which have a limited precision and are subject to noise; b) kinematic and dynamicmodels are
inevitably incomplete, because, in order to be general, they deliberately disregard a number of
factors that influence motion (eg road conditions, wind); and c) although objects following in-
tentional motion certainly obey physical laws, they are able to change their control dynamically
(egsteering angle, braking), hence to predict motion, it is necessary to predict the control that
the object will apply.

The first problem may be addressed by using continuous Bayes filters such as the Kalman
Filter [Kalman, 1960] and its extensions [eg Rao, 1996, Julier and Uhlmann, 1997]. However,
this does not solve the other two problems, and, when applied to pedestrian and vehicles, motion
prediction approaches based on Kalman filters [eg Han and Veloso, 1997, Rosales and Sclaroff,
1998, R.Madhavan and Schlenoff, 2003] produce predictions which are sound only during a
short time interval – also known as itstime horizon– or which are only applicable to highly struc-
tured environments. The same happens to approaches based on regression analysis [eg Elnagar and Gupta,
1998, Yu and Su, 2003, Liu et al., 2004], which have the additional drawback of producing de-
terministic predictions, thus being unable to represent the uncertainty that is inherent to the
prediction process.

More recently, another family of approaches has emerged, based on anidea which is closer to
the intentional stance: they assume that, in a given environment, objects do not move at random
but often engage in typical behaviours or motion patterns. Therefore, ifthese motion patterns
are known, it is possible to use them as motion models in order to predict motion.

This solves the third problem, since now it is only necessary to identify the motionpattern
that the object is following, instead of predicting the applied control; indeed,it is not longer
necessary to model controls. In addition, most of these approaches address the second problem
by means of a probabilistic representation, where the inherent incompleteness of the model is
reflected as uncertainty.

We will hereafter refer to this last family of approaches as “pattern basedmotion models”2.
This chapter is a review of the related literature, it is structured according to asub-classification
of these approaches in three categories, depending on how they represent motion patterns:

1. Trajectory Prototypes. As their name suggests, these approaches model motion patterns
using a trajectory prototype (ie typical example) for every motion pattern.

2. Discrete state-space Models. This models are based onMarkov chains, where time pro-
gresses as discrete steps and, at every time step, the objects’ state evolves by going from
one state to another according to a given transition probability.

3. Other representations. Here we will discuss those approaches that do not fit into the other
categories.

For every category of approaches, we are particularly interested in studying how they answer
three questions:

2As opposed to “kinematic" or “dynamic" motion models
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1. Representation. How are motion patterns described mathematically?

2. Learning. How are the model’s parameters estimated from data?

3. Prediction. When an object is moving, what is the process that transforms observations
into predictions?3

Throughout this chapter, when needed, we will base our discussion onthe imaginary office
environment depicted in fig.3.1, where some pedestrian trajectories have been collected and
are used as input for the different techniques discussed here. In thisexample, trajectory data is
assumed to consist of noisy measurements of a person’s pose, evenly sampled in time.
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Figure 3.1: Raw trajectory data of people in an office environment.

After presenting existing approaches, we will conclude with a discussion of relevant global
trends and issues in the field.

3.2 A note on semantics

Until now, we have indistinctly used the terms “behavior” and “motion pattern”,this coincides
with most of the reviewed works, which do not agree on a standard definition of these concepts.
Henceforth, we will consider that a behavior describes what an objectis doing by taking the
intentional stance towards the object, while a pattern is the motion that may be observed when
the object is involved in a particular behavior. We will illustrate this distinction with an example:

3We have decided to include in this review several approaches that do notspecifically address the prediction
question, but apply learning algorithms to build motion models, which, at least in theory, could be used to predict
motion.

27



Let us imagine two persons in a hall, the first one is reading a bulletin board, while the second
one is waiting for someone. From the persons’ perspective these are twocompletely different
behaviors, however, they produce very similar motion patterns: the persons do not move during
a long time.

This distinction is important. At first sight it seems that, since the patterns are similar, they
may be described by the same motion model. But this will lead us to dismiss a crucial difference:
the “reading behavior” only happens in the bulletin board’s neighborhood, while the “waiting
behavior” may occur anywhere in the hall. As a consequence, our modelwill fail to represent
the fact that it is much more likely to observe a motionless person near the bulletinboard than
elsewhere.

This is related to the notion of state. Most of the techniques that we have reviewed assume
that the state variables represent only physical properties of an objectsuch as its pose or velocity.
Nonetheless, other representations are possible, as in [Oliver et al., 2000], where states have
higher level semantics and objects may be in a “waiting” or a “fleeing” state and, therefore, are
closer to modeling behavior.

3.3 Trajectory Prototypes

Approaches in this category work by grouping similar trajectories in clusters(fig. 3.2) – which
correspond to typical motion patterns – then, for every cluster, a single trajectory prototype is
obtained and used to represent the entire cluster and, in consequence,the corresponding motion
pattern.
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Figure 3.2: Trajectory prototypes for the office environment.
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3.3.1 Representation

Typical trajectories are often represented as a sequence of points in thecontinuous state-space.
Most approaches do not model the time variable explicitly and assume that the points in the
sequence are regularly spaced in time.

Sometimes, a measure of the “width” of the cluster is also included in the representation
(fig. 3.3). For example,Makris and Ellis[2001] construct a “path model" by including a deter-
ministic measure of the width for every point in the trajectory, a similar measure has been used
by Junejo et al.[2004]. Vasquez and Fraichard[2004] propose a probabilistic model in which
the width of the trajectory is represented as the variance of the distance between the trajectories
that belong to the same cluster. Another probabilistic model of width has been proposed by
Bennewitz et al.[2002], they model every point of the trajectory prototype as a Gaussian and
assume that all such Gaussians have the same covariance matrix.

3.3.2 Learning

Trajectory prototypes are obtained using classical clustering algorithms [seeKaufman and Rousseeuw,
1989, Jain et al., 1999]. The problems to be solved by a learning algorithm are basically three:
a) determining the number of clusters to be found; b) finding clusters; and c) building trajectory
prototypes from clusters, including, if necessary, the width representation.

There are many different classification schemes of clustering (eghard vs. soft, deterministic
vs. stochastic, seeJain et al.[1999]) here, we will distinguish betweenmodel based clustering
algorithms, which work by deriving a set of prototype vectors; andpairwise clustering algo-
rithms, which partition data into disjoint sets or clusters by performing pairwise comparisons
between data elements. The interest of this classification is that algorithms of different cate-
gories provide different solutions to the three problems that we have mentioned above.

Model based algorithms

Model based algorithms have the advantage that trajectory prototypes arefound as a part of
the clustering process. They also have interesting theoretical propertiessince they are built by
optimizing a global measure (egdata likelihood).

However, they need to knowa priori the number of clusters – thus, of motion patterns –
to be found, meaning that this number should be estimated somehow. Some approaches just
ignore this problem, for example,Hu et al.[2004b] assume that the number of clusters is known
and use a custom self organizing network to cluster trajectories. Others propose greedy search
techniques, like,Bennewitz et al.[2002] which estimate the number of models by using the EM
algorithm [Dempster et al., 1977] to cluster data using an initial guess of the number of clusters,
and then adding or deleting clusters in order to maximize data likelihood, rerunning EM after
every addition.

An issue with model based clustering is that most algorithms assume that their input consists
of vectors of equal length, which is problematic because trajectory lengthsmay vary greatly. The
most frequent solution [eg Hu et al., 2004b] is to resample trajectories in order to normalize their
length. Unfortunately, this interferes with the assumption that the points in trajectory prototypes
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are even spaced in time, and some temporal information is lost in the process. An alternative
has been proposed in [Bennewitz et al., 2002], it consists in normalizing all the trajectories in
the data set to the length of the longest trajectory by padding the end of shorter trajectories with
copies of its last position; this may be interpreted as an object which stops moving, but is still
detected for a while.

Pairwise Clustering

Pairwise clustering algorithms are based on the use of a dissimilarity measure (eg Euclidean
distance) which is used to compare two data elements (ie trajectories). The value of the measure
is high if the elements are very different and zero if they are equal. Data elements are processed
in pairs and the dissimilarity measure is used to decide if elements belong to the same cluster.
The clustering process produces groups of data elements, but no cluster representation. This is
equivalent to adding a label to every element, indicating the group to whom it belongs. When
compared with model based clustering algorithms, these approaches have the advantage that
they are able to determine the number of clusters. On the other hand, since they are based in
a local pairwise measure, it is not possible to guarantee that they satisfy a global optimality
criterion.

In order to use pairwise clustering to learn motion patterns, it is necessary tochoose a clus-
tering algorithm, a dissimilarity measure and to device a mechanism to compute a cluster repre-
sentation.

A popular pairwise clustering algorithm is Hierarchical Clustering [King, 1967], Makris and Ellis
[2001] used it in conjunction with a maximum inter-point distance; whileBuzan et al.[2004]
used longest common subsequence (LCSS) as similarity measure; andVasquez and Fraichard
[2004], used a continuous version of Euclidean distance.

The use of graph cut algorithms [Boykov and Kolmogorov, 2004] has also been explored by
Junejo et al.[2004], using the Hausdorff distance as dissimilarity measure. A custom pairwise
algorithm has been proposed byWang et al.[2006] based on a distance criterion augmented with
a measure of confidence for observations, which permits to represent sensor noise and limited
precision.

Once that clustering has been performed, the average trajectory for each cluster is computed
and used to represent the cluster. Then, the cluster width may be computed either probabilisti-
cally – by computing a cluster variance [Vasquez and Fraichard, 2004] – or deterministically, by
defining a cluster “envelope” [eg Junejo et al., 2004] which is obtained from the trajectories in
the cluster that are farthest away from the average (fig.3.3).

3.3.3 Prediction

Prediction using trajectory prototypes consists basically in finding the clusterwhich best cor-
responds to a partially observed trajectory – often using the same dissimilarity measure that
has been used to cluster – and using that cluster’s representation as a prediction of future mo-
tion. A variant has been proposed byVasquez and Fraichard[2004] which returns a probability
distribution on all the clusters according to their similarity.
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average trajectory

envelope

Figure 3.3: Example of average trajectory and deterministic envelope.

While these approaches have the advantage of being very coherent in the long-term – which,
in theory, allows for very long time-horizons – they suffer from two importantdrawbacks: only
trajectories that have been observed may be predicted; and, most important, they have a strictly
deterministic representation of time, the predicted state for an object at timet corresponds to
the t-th element of the trajectory prototype, which is too restrictive, given that velocities often
vary between objects even if they are engaged in the same behavior. The problem becomes
even more severe when trajectories are resampled to normalize their length. As a consequence,
uncertainties may be handled only at the trajectory level, in other words, if themotion pattern
that the object is following is known, these algorithms will provide a deterministic prediction of
the state.

A solution to the last problem is to transform trajectory prototypes into state-space models,
it will be discussed in §3.4.

3.4 Discrete state-space models

As their name indicates, these approaches are based on the use of a discrete model as an ap-
proximate analysis tool for continuous motion. The basis of discrete state-space approaches are
Markov chains, which represent time as a discrete variable and model motionin terms of a finite
number of discrete states. Transitions between states depend on a transitionprobability, which
follows the Markov assumption, namely that, knowing the present state, the future and past
states are independent. Markov chains may be represented by a directedgraph, whose edges are
labeled with the probability of going from one state to another in a single time step (fig. 3.4).

Markov chains, however, fail to model the uncertainty related to sensors, and only a few mo-
tion prediction techniques use them (eg Tadokoro et al.[1995], J. Rittscher and Stein[2003]).
Observation uncertainty is specifically addressed by using discrete Bayes filters (cf.2.3), which
augment Markov chains by assuming that the state is not directly observableand should be
inferred from sensor readings orobservationsto which they are related by an observation proba-
bility. One of the most popular discrete Bayes filters are Hidden Markov Models (HMM), which
we have briefly described in the introduction and will be discussed in detail inchapter4.
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Figure 3.4: Discrete state-space model for the office environment (transition directions are not
depicted).

Most of the techniques presented in this section are based on the HMM framework. How-
ever, they are also applicable to other discrete state-space models unless noted otherwise.

3.4.1 Representation

As explained in chapter1, there are mainly two ways to represent multiple behaviors using
HMMs:

One approach (eg Makris and Ellis[2002], Bennewitz et al.[2005]) is to represent all the
motion patterns using a single Hidden Markov Model, where different patterns share no states
and correspond to non connected components in the graph representation of the model; the other
approach (egWalter et al.[1999]) is to use a different HMM per motion pattern and model the
belief as a mixture, where the mixing variable represents the probability that a particular HMM
is the “good” model. In fact, the former solution may be seen as a special case of the latter,
where the mixing variable is always uniform.

Closely related to motion pattern representation is the concept of structure, which may be
regarded as defining the transition graph by choosing a number of states and selecting which
state transitions are considered to be possible.

3.4.2 Learning

Learning state-space based motion pattern representations, may be decomposed in two subtasks:
a) learning the structure –ie the topology – of the underlying transition graph; and b) learning
the parameters,ie the transition probabilities associated with every edge of the graph, and the
observation probabilities describing how observations are related to states. Sometimes also a
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prior on the state is also learnt, but often it is assumed to be uniform [eg Walter et al., 1999,
Bennewitz et al., 2005].

Structure Learning

Despite the existence of several structure learning algorithms for state-space models [eg Stolcke and Omohundro,
1994, Friedman, 1997, Brand, 1998], they are seldom used in the context of motion pattern
learning. A notable exception is the work byBrand and Kettnaker[2000] which uses an en-
tropic structure estimator that will be described in more detail in §4.6. Instead, structure is either
fixeda priori or estimated using custom mechanisms.

One of such mechanisms is the use of trajectory prototype learning techniques in order to
identify both the number and the form of motion patterns, and then transformingthose proto-
types into a state-space model. A good example is the approach proposed byBennewitz et al.
[2005], they obtain trajectory prototypes using EM as explained in §3.3, then they transform
those prototypes into an HMM whose parameters are not learned, but deterministically assigned
on the basis of domain knowledge and a number of assumptions about how objects move. Both
[Koller-Meier and Van Gool, 2001] and [Makris and Ellis, 2002] combine trajectory prototypes
and state-space models in a similar way, but the later also incorporates parameter learning into
the algorithm.

Minnen and Wren[2004] present an algorithm which performs hierarchical decomposition
of data to find structure at many levels of detail. The decomposition is performed by constructing
a binary tree where each node contains two HMMs. The HMMs are used to classify data into
two subclasses, corresponding to the node’s sub trees. Classified datais sent to the respective
sub tree and the bifurcation process continues until no further decomposition is possible.

An approach that integrates knowledge about the environment has beenproposed byLiao et al.
[2003], they use information on the static features of the environment to compute a Voronoi
graph, which is then used to define the structure of a custom state-space model.

Parameter Learning

Having determined a structure, parameter learning may be performed by standard means using
the Baum-Welch algorithm [Baum et al., 1970], which is a specialization of the well known Ex-
pectation Maximization algorithm [Dempster et al., 1977]. This is the case ofMakris and Ellis
[2002] andLiao et al.[2003]. Other authors prefer to determine parameters’ values using custom
procedures.Bennewitz et al.[2005] model observation probabilities as Gaussians, all having the
same covariance; while transition probabilities are computed analytically underthe hypothesis
that objects speeds follow a Gaussian distribution.

3.4.3 Prediction

In state-space models, motion is predicted using Bayesian inference. Sincethe model structure is
determinant in the complexity of inference, it is possible to find approaches that use either exact
inference (egBrand and Kettnaker[2000]), or approximate inference methods, such as particle
filters [Arulampalam et al., 2002] (egWalter et al.[1999], Koller-Meier and Van Gool[2001]).
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3.4.4 Other state-space models

Several extensions of Hidden Markov Models have also been used forrepresenting intentional
motion, here we will provide an overview.

Pentland and Liu[1999] have proposed Markov Dynamic Models (MDM) which, concep-
tually are exactly like HMMs, except that the nodes of the graph represent controls (eg accel-
eration) and not the object’s pose. Instead of state observations, MDM track the object with a
Kalman filter and use the innovation (ie prediction error) of the filter as observations. Although
they have shown that MDMs outperform HMMs in recognition tasks, it is difficult to use them
to predict state since there is no pose representation.

Bui et al.[2002] have proposed Abstract Hidden Markov Models (AHMM), which are ahi-
erarchical extension of HMMs that allow to represent motion at differentlevels of detail (egmet-
ric, room, building, etc.) and integrate the concept of policy (ie plan), which may be regarded as
the equivalent of a motion pattern; a two-level AHMM has been applied to intentional motion
by Osentoski et al.[2004], using EM to learn the model’s parameters. One of the advantages of
AHMMs over HMMs is that they are able to provide good mid-term predictions even if they are
wrong at the long-term, for example, they may accurately predict that a person is going towards
the room’s door even if they wrongly predict that the final destination is the kitchen. Never-
theless, unsupervised learning with AHMMs is challenging, mainly because of the difficulty of
automatically finding a good (ie semantically sound) hierarchic decomposition of the space into
regions.

All the approaches we have mentioned until now make the hypothesis that, when there is
more than one object in the environment, their motion is independent, thus ignoring object in-
teraction. This problem has been studied byBrand et al.[1997] by means of an HMM extension
called Coupled Hidden Markov Models (CHMM), which represents the jointstate of all objects.
The main drawback of this approach is that the number of possible interactions grows exponen-
tially with the number of interacting objects. This has motivated the work ofGong and Xiang
[2003], Xiang and Gong[2006] which have proposed Dynamically-multi-linked Hidden Markov
Models (DML-HMM), which are based on the idea that interactions should be modeled only
when it is highly likely that they exist.

A different direction has been taken byOliver et al. [2000], they use CHMMs to model
interaction behaviors between pairs of objects (egapproach, meet and continue together) without
modeling the environment at all. Behaviors are defined prior to learning andtrained on labelled
data. This approach has been proved to very successful in explaininghuman behavior; however,
since there is no pose representation, it is not applicable to motion prediction.

3.5 Other Approaches

3.5.1 Neural network based approaches

Johnson and Hogg[1995], and Sumpter and Bulpitt[2000] have proposed similar approaches
based on multilayer neural networks: the first layer is used to discretize thespace by using a
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Self-organizing network to perform Vector Quantization (VQ)4 so that every unit (ie neuron)
in this layer corresponds to a discrete state. In order to obtain the pattern representation, both
approaches use an additional layer of “leaky neurons” , one for every discrete state. These
leaky neurons turn “on” when an object passes through the corresponding state and their output
decays slowly afterwards. As a result, the leaky neuron layer keeps a “trace” of the trajectory
after the object’s motion has ended; this trace (ie the activation values of the leaky neurons) is
used to represent the learned pattern. Finally, different patterns are classified using a third layer
of neurons, which performs VQ on the whole output vector of the secondlayer,ie the values of
all the leaky neurons.

Hu et al.[2004a] eliminate the leaky network layer by adding lateral connections between
the units in the state layer in order to account for the temporal relationships between them.

A drawback which is common to all these approaches is that they assume that the number of
motion patterns to be represented is knowna priori, which implies a fair amount of knowledge
about environment. A hybrid approach, which does not share this problem, has been proposed by
Stauffer and Grimson[2000]: instead of the leaky neuron layer, they represent motion patterns
using a co-occurrence matrixC where every elementci, j corresponds to the probability that an
object passes through statesi and j given that it is engaged in a motion pattern.

A different neural network approach has been explored byChang and Song[1997], they
train a multilayer perceptron to predict motion on single motion patterns, obtaining good results,
however, they do not deal explicitly with more than one motion pattern.

Neural network based approaches, have a performance which is comparable with that of
discrete state-space models, as may be seen in the results obtained byHu et al.[2004a]. On the
downside, these approaches do not represent uncertainty in an explicit fashion, and, in the best
of cases, rely in ad-hoc procedures to produce a probabilistic output.

3.5.2 Goal oriented approaches

Dee and Hogg[2004] proposed an approach which takes the intentional stance towards the mo-
tion. They model motion as being motivated by the desire of the object (ie the agent), to move to
explicit places (ie goals) in the environment. The originality of the approach resides in the fact
that the agent’s beliefs are taken into account by modeling the world from theagent’s perspec-
tive (egmay the agent see the object?). This makes it, to our knowledge, the only approach of
this type to model the agent’s perception. From there, motion is modeled on the basis of a cost
model by assuming that the object will always take the cheapest path to its goal unless some-
thing happen. However, although this is interesting for scene interpretation(ie if the object did
not take the cheapest path, then something happened), it seems less useful for motion prediction
because of its relatively simple and deterministic motion model. Also, the approachassumes
that the general structure of the environment is knowna priori.

4This may be also regarded as performing clustering analysis. As a matterof fact, from an operative point
of view, both approaches are very similar: they group data in a certain number of groups so that some error of
distortion function is minimized. Their main difference is that, while cluster analysis focuses in finding clusters
in multidimensional data, vector quantization aims to find the best representation of a given data set that may be
obtained with a reduced number of elements.
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Foka and Trahanias[2002] have also modeled motion in terms of goals, they predict motion
in terms of a simple geometric method which does not take the environment into account. A
similar approach has been proposed inBruce and Gordon[2004] where the geometric method
is complemented with a stochastic motion model.

3.5.3 Other

Kruse et al.[1996, 1997], Kruse and Wahl[1998] have developed a technique where motion
is represented by line segments where the object is supposed to move at uniform speed and
transitions do not occur between states, but between line segments.

3.6 Discussion

This chapter has provided a general review of the area of pattern based motion models. Now
we would like to draw some general conclusions about existing techniques,in view of solving
the main objective of this thesis: building a “learn and predict” motion prediction technique to
improve autonomous navigation.

3.6.1 General issues

Here, we discuss some issues that are general to all pattern based motion models. When relevant,
we will discuss how different approaches deal with them, focusing mainly inthe difference
between trajectory prototypes and state-space models.

Incremental learning

First of all, a “learn and predict” approach should be incremental. This means that it should
verify three properties [Langley, 1995]:

• It should process data elements one by one.

• It should not reprocess any previous data element.

• It should retain only one main knowledge structure in memory.

The main reason for this requirement is efficiency. Using a batch algorithm would mean
storing the complete history of observation sequences, and processing itafter every trajectory
has observed. This is ineffective and not well suited for continuous processing in real-time.

Representing uncertainty

In order to plan its trajectory, an autonomous vehicle needs to know in advance the state of the
different obstacles that are present in the environment. At the same time, since uncertainty is
inherent to prediction, a deterministic output would have little chances to be trueand, at best, a
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limited utility. The alternative is to explicitly represent the uncertainty by using a probabilistic
representation.

Since state-based approaches are built on probabilistic models they are ideal candidates
as motion prediction approaches. Trajectory prototypes, on the other hand, are determinis-
tic models. Even when they are complemented with a variance as in [Bennewitz et al., 2002,
Vasquez and Fraichard, 2004] so that they are able to model spatial uncertainty, they still fail to
model the temporal uncertainty which is related to the fact that in real environments, objects not
only do not move at the same speed but, most of the time, their speeds vary as they move.

Discovering new motion patterns

An incremental pattern learning approach should be able to identify when anobject is involved
in an unknown behavior and to create a new pattern model in consequence. This is, in general,
difficult to implement for state-space models, since it involves the capacity to create dynamically
new states and the valid connections between them, which is equivalent to incremental structure
learning, which, as we will show in chapter4, is a difficult problem.

Approaches based on trajectory prototypes seem to be better suited for the task. Even if most
of the current approaches are designed to work off-line, it seems feasible to implement an incre-
mental trajectory clustering approach. The same may be said about goal-oriented approaches,
such as [Foka and Trahanias, 2002] and [Dee and Hogg, 2004].

Representing interaction between moving objects

A good part of human behavior involves interacting with other humans: two persons who find
themselves face to face in a corridor will move in order to avoid each other, aman may go faster
in order to join a friend who is walking just in front of him, etc.

But dealing with interactions between objects is complex. Modeling interactions with a
state-space model implies representing the joint state of all the objects that may be simultane-
ously present in a scene. If we haveN discrete states andM moving objects, this means learning
and storing the probabilities ofO(NM) possible interactions, which quickly becomes intractable.

Therefore, discrete states modeled by approaches such as [Brand et al., 1997, Oliver et al.,
2000] do not represent places in the space, but a limited number –ie two or three – of high-level
behaviors such asavoidingor meeting. This means that these techniques may not be directly
used to predict the physical state of an object. However, it would be interesting to study how
they may be integrated with other techniques in order to obtain such a prediction.

Besides some very general remarks in chapter9, this problem is not addressed in this thesis.

On-board sensors

Practically all the techniques that we have reviewed in this chapter assume that there is some
kind of global sensor providing information about the motion of all the objectsthat move in the
environment. Learning and modeling intentional motion using on-board sensors is a much more
difficult problem that is beyond the scope of this thesis.
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3.6.2 State-space model issues

As we have mentioned before, approaches based on trajectory prototypes are not well suited
to produce probabilistic state predictions. As a matter of fact, our previous works on motion
prediction [Vasquez and Fraichard, 2004] were based on this kind of approaches. We were able
to obtain a probability distribution representing our belief about the motion patternthat the object
is actually following. But we also wanted to have a probabilistic representationof the state even
when the “right” trajectory is known with certainty. The idea was to take into account the limited
precision of our model as well as the differences between real trajectories which are represented
by the same prototype. This ultimately lead us to the use of discrete state-space models and to
the approach presented in this thesis. This section discusses some issues which are exclusive to
this family of approaches.

Even when the semantics of discrete states are clear, and they are assumedto represent places
in the environment, it is possible to construct different space representations which fall into two
wide categories5: a)metricrepresentations, where states represent points in the space, generally
represented as a set of coordinates; andtopologicalrepresentations, where the states represent
only a few interesting places which often possess a high-level semantic connotation (egkitchen,
corridor) and which are connected together by some notion of adjacencywhich is frequently
represented with a graph (fig.3.5).

Even though topological representations may be seen as a particular caseof metric repre-
sentations – after all, a metric representation also encodes “interesting places” and their spatial
relations – it is frequent to talk of a topological representation when the statevariable has a low
cardinality. For navigation purposes, metric representations provide moreprecise and useful in-
formation. At the same time, they imply a higher number of states, thus, higher computational
complexity.
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Figure 3.5: A topological representation of the office environment

5 See [Filliat, 2001] for an extended analysis of these alternatives.
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A related subject is that of automatically finding a “good” space decomposition. Answering
this involves a finding a compromise between precision and computational complexity, because
both augment with the number of states.Thrun et al.[2005] distinguish two types of approaches
to decompose the space: a)staticdecompositions such as grids, which partition the environment
without taking into account how objects move in it; and b)dynamicapproaches, which adapt
to observed motion, performing finer decomposition on areas where objectsmove and coarser
decomposition elsewhere. Although static approaches are easier to implement,they are wasteful
on computational resources because they partition the space even in places where no activity
takes place. Moreover, due to the “curse of dimensionality”6, the problem worsens with the
number of dimensions in the space (egposition, velocity, size). An example of the difference on
these approaches is shown in fig.3.6.
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Figure 3.6: Comparison between static and dynamic decompositions. Notice howthe dynamic
decomposition produces a better representation of the data (grey dots) using less than a third of
the discrete elements of the grid approach.

6 This term, first employed byBellman[1961], refers to the exponential growth of the hypervolume of a space,
when new dimensions are added; and how it demands a similar increase on the number discrete elements needed to
represent the space.
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Chapter 4

Hidden Markov Models

Carr. - ... your name isn’t Jack, it’s Tristan.
Tzara. -No, it isn’t, it’s Jack.
Carr. - You have always told me it was Tristan. I
have introduced you to everyone as Tristan. You
answer to the name of Tristan. Your notoriety at the
Meieri Bar is firmly associated with the name
Tristan. It is perfectly absurd saying your name isn’t
Tristan.
Tzara. -Well, my name is Tristan in the Meieri Bar
and Jack in the library, and the ticket was issued in
the library.

SIR TOM STOPPARD

Travesties

4.1 Overview

This thesis is based on the use of Hidden Markov Models as motion models, which, as we have
seen in chapter3, are probably the most popular technique in the literature of pattern based mo-
tion prediction. This chapter provides the reader with a broad introduction tothis probabilistic
framework. Sections4.2 through4.4 present what may be considered as the “classic” theory
on HMMs. Readers already familiar with HMMs may safely skip these sections and proceed
directly to section4.5 and the rest of this chapter, where we discuss structure learning, a dif-
ficult problem for which no standard algorithm exists yet, in spite of the existence of several
approaches in the literature.

4.2 Probabilistic Model

Hidden Markov Models (HMMs) are a specialization of the Bayes filter for discrete state vari-
ables, while it does not constrain the form of observation variables, which may be either discrete
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[Rabiner, 1990] or continuous [Juang et al., 1986]. Although most of the theory for both types of
observation variables is the same, some implementation differences exist (egparametric forms,
learning algorithm). Here, we have privileged the discussion of continuous observation HMMs
because they are better suited to our particular problem.

4.2.1 Variables

Since we are going to use a local model (see §2.3.3), an HMM may be defined in terms of three
variables:

• St ,St−1, the current and previous states, which are discrete variables with valueSt ,St−1 ∈
{1, · · · ,N} for a fixedN.

• Ot , the observation variable, which is a multidimensional vector inR
M.

4.2.2 Decomposition

The decomposition is the same than for the Bayes filter:

P(St−1 St Ot) = P(St−1)P(St | St−1)P(Ot | St) (4.1)

Where the state prior is computed recursively:

P(St−1) = P(St−1 | O1:t−1) (4.2)

4.2.3 Parametric forms

Hidden Markov Models make an additional conditional independence assumption with respect
to the standard Bayes filter: both the observation and the transition probabilities are considered
to bestationary, that is, independent of time:

P(Oi | Si) = P(O j | Sj) ∀ i, j ∈ {1, · · · ,T} (4.3)

P(Si | Si−1) = P(Sj | Sj−1) ∀ i, j ∈ {2, · · · ,T} (4.4)

This hypothesis makes it possible to define the parametric forms of the JPD probabilities
without taking time into account:

• P([S1 = i]) = πi . The state prior is stored as a a vectorπ = {π1, · · · ,πN} where each
element represents the prior probability for the corresponding state.

• P([St = j] | [St−1 = i]) = ai, j . Transition probabilities are represented with aN×N transi-
tion matrix Awhere each elementai, j represents the probability of reaching the statej in
the next time step given that the system is already in statei.
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• P(Ot | [St = i]) = G(Ot ; µi , σi). The observation probability is represented by a Gaussian
distribution for every state. The set of all the Gaussians’ parameters aredenoted asb =
{(µ1,σ2

1), · · · ,(µN,σ2
N)}1.

We denote the whole set of parameters for an HMM byλ = {π,A,b}.

4.2.4 Example: the broken air conditioning system

We will illustrate the process of defining a continuous observation HMM with a simple exam-
ple2. Let us suppose that we have an air conditioning system which may be in oneof two settings:
“fresh” and “cold”; due to an internal malfunction, the system switches randomly between them
once a day according to the following rules:

1. If the current setting is “fresh", it may change to “cold” with probability 0.8, or stay as it
is with probability 0.2.

2. If the current setting is “cold”, it may change to “fresh” with probability 0.9, or stay as it
is with probability 0.1.

These rules are presented as a graph in fig.4.1:

fresh cold

0.9

0.8

0.2 0.1

Figure 4.1: Transition graph of the air conditioning example.

Supposing that – according to its setting – the machine regulated the room temperature to
two different and well defined temperatures, it would be trivial to infer directly the state by
measuring their values; unfortunately, this is not the case, and the results of applying one setting
or the other are rather approximative. They may be described probabilistically as follows: when
the machine is in the “fresh” setting, the temperature has a mean value of 20◦ Celsius and a
variance of 25. For the “cold” setting, the mean temperature is 15◦ Celsius and the variance is
16.

Representing this system as an HMM is straightforward. First, we define thedomains of the
state (ie setting) and observation (ie room temperature) variables:

DSt = {1,2} where 1 stands for “fresh” and 2 for “cold"

DOt = R

1 An extension of this idea known as mixtures of Gaussian densities, is also frequently used to approximate
aribtrarily shaped observation probabilities, see [Juang et al., 1986] for further explanation.

2This has been inspired on an example of discrete observation HMMs whichappears in [Manning and Schutze,
1999].
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then, we fix the parameters’ values. First we assign the state prior by assuming that, the first day,
both settings are equiprobable:

π = [0.5,0.5]

Transition probabilities are filled according to the specification:

A =

[
0.2 0.8
0.9 0.1

]

Similarly for the parameters of the observation probability:

b = {(20,25),(15,16)}

We have now a complete HMM definition. Of course, we would like to use it to answer
questions about the behavior of the system, which is the subject of the following section.

4.3 Inference

Inference tasks on HMMs may be classified in: a) on-line inference, which takes place as the
system evolves, every time that a new observation is available; and b) off-line inference, whose
input consists of complete observation sequences and, therefore, is performed after the observed
phenomenon has finished. The distinction is important because most off-lineinference tasks are
based on a dynamic programming technique called the forward-backward algorithm which will
be introduced in §4.3.2.

4.3.1 On-line inference

On-line inference tasks are particularly useful for applications like navigation, where it is neces-
sary to take decisions while objects are moving. The key to on-line inferencelies in maintaining
the belief state, from there, inference may be performed in terms of the localmodel by using the
belief state as a prior and applying Bayesian inference.

State Filtering.

As explained in §2.3.3, state filtering is one of the most common probabilistic questions for
Bayes filters – thus, for HMMs – the name comes from the fact that its purpose is to “filter out”
observation noise in order to estimate the system state. It is done using expression (4.5), which
is conceptually divided in two steps: a)predictionwhich projects the current belief state one
time step into the future; and b)update, which improves the estimation by integrating the last
obtained observation:
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P(St | O1:t) =

1

Z
P(Ot | St)

︸ ︷︷ ︸

∑
St−1

[P(St | St−1)P(St−1 | O1:t−1)]

︸ ︷︷ ︸

update prediction

(4.5)

Prediction is the most computationally expensive step, typically, this operation involves it-
erating through theN possible transitions for every state, hence, its time complexity isO(N2).
However, as we will show later, the complexity of the prediction step may be reduced by impos-
ing constraints on the structure of the transition matrix.

Prediction.

Predicting the future state consists basically in, taking the belief state and then propagating it
ahead in time, it may be regarded as filtering without the update step (eq. (4.6)). Given that it
is necessary to iterate through every time step up toH – also known as thetime horizon– the
algorithm’s complexity isO(HN2).

P(St+H | O1:t) = ∑
St+H−1

[P(St+H | St+H−1)P(St+H−1 | O1:t)] (4.6)

Example

Continuing with our example, let us suppose that we want to perform filtering toestimate the
state of our AC machine from temperature readings. The first day, we geta temperature reading
of 23.05◦, so, we compute forS1 = 1:

P([S1 = 1] | [O1 = 23.05]) = P([O1 = 23.05] | [S1 = 1])P([S1 = 1])

=
1
Z1

G(23.05; 20, 25)π1

=
1
Z1

[0.066][0.5]

=
0.033

Z1

this is a special situation becauset = 1 and we do not have previous observations of the system’s
state. Thus, instead of applying the prediction step, we just use the state prior P([S1 = 1]).

Now, we compute forS1 = 2:

P([S1 = 2] | [O1 = 23.05]) = P([O1 = 23.05] | [S1 = 2])P([S1 = 2])

=
1
Z1

G(23.05; 15, 16)π2

=
1
Z1

[0.013][0.5]

=
0.007

Z1
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substituting the value of the normalizing variableZ1 = 0.033+ 0.007= 0.040, we obtain the
following probabilities.

P([S1 = 1] | [O1 = 23.05]) = 0.83

P([S1 = 2] | [O1 = 23.05]) = 0.17

These probabilities constitute the belief state fort = 1, which may be written as a vector:

Ŝ1 = [0.83,0.17]

The second day, we measure again the temperature, now getting a reading of 17.5◦. We
proceed in an analogous fashion to estimate the system state forS2 = 1:

P([S2 = 1] | [O1 = 23.05] [O2 = 17.5])

= P([O2 = 17.5] | [S2 = 1])∑
S1

P([S2 = 1] | S1)P(S1 | [O1 = 23.05])

=
1
Z2

×G(17.5; 20, 25)[a1,1×0.83+a2,1×0.17]

=
1
Z2

×0.070× [0.2×0.83+0.9×0.17]

=
0.022

Z2

and forS2 = 2:

P([S2 = 2] | [O1 = 23.05] [O2 = 17.5])

= P([O2 = 17.5] | [S2 = 2])∑
S1

P([S2 = 2] | S1)P(S1 | [O1 = 23.05])

=
1
Z2

×G(17.5; 15, 16)[a1,2×0.83+a2,2×0.17]

=
1
Z2

×0.082× [0.8×0.83+0.1×0.17]

=
0.056

Z2

again, we substituteZ2 = 0.022+0.056= 0.078 to obtain the belief state:

Ŝ2 = [0.28,0.72]

Notice that every filtering step requires only to process the preceding beliefstate, instead or
iterating through all the sequence of observations from 1 up tot.
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Now, we would like to predict the system’s state for day 4. First, we predict for t = 3:

P([S3 = 1] | O1:2) = ∑
S2

P([S3 = 1] | S2)P(S2 | O1:2)

= a1,1×0.28+a2,1×0.72

= 0.70

P([S3 = 2] | O1:2) = ∑
S2

P([S3 = 2] | S2)P(S2 | O1:2)

= a1,2×0.28+a2,2×0.72

= 0.3

where the belief statêS2 constitutes the starting point of the prediction process. Then we com-
pute fort = 4:

P([S4 = 1] | O1:2) = ∑
S3

P([S4 = 1] | S3)P(S3 | O1:2)

= a1,1×0.7+a2,1×0.3

= 0.41

P([S4 = 2] | O1:2) = ∑
S3

P([S4 = 2] | S3)P(S3 | O1:2)

= a1,2×0.7+a2,2×0.3

= 0.59

The process continues like this for any given time horizonH.

4.3.2 Off-line inference

Off-line inference receives its name from the fact that, it answers questions about whole ob-
servation/state sequences and, in consequence, it takes place after thelast observation has been
collected. Examples of offline inference tasks are learning, diagnosis and classification.

Since off-line inference tasks process all theT observations in a sequence, it seems that
the cost of inference should grow exponentially with respect to the length of the sequence.
Fortunately, this is not the case: thanks to the use of dynamic programming, it is possible to
perform exact inference inO(TN2).

The forward-backward algorithm.

This algorithm, proposed byBaum et al.[1970], applies dynamic programming techniques to
avoid the redundant computations involved in repetitively applying marginalization to perform
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inference (see §2.2.5). It works by precomputing two sets of probabilities (ie forward and back-
ward) and storing their values in memory. Then, the probabilistic questions are answered by
reformulating inference in terms of these variables. Since they are precomputed, most marginal-
ization operations are replaced by memory accesses whose cost is constant; thus significantly
reducing the number of operations required to perform inference.

Forward probabilitiesαt(i) = P(O1:t [St = i] | λ) are computed recursively using the follow-
ing expression:

αt(i) =

[
N

∑
j=1

αt( j)P([St = i] | [St−1 = j])

]

P(Ot | [St = i]) (4.7)

This leads to an efficient algorithm (alg.1) which computes forward probabilities sequen-
tially, in a similar fashion to state filtering: for every time step, the algorithm iterates through all
the states, and, for every state, it iterates through all its predecessors.The whole computation
takesO(TN2) calculations. Fig.4.2 illustrates the process on our example HMM.

P([S3 = 1] | [S2 = 2])

α3(1)

O1 O2 O3

1

1

2

2 3

State

Time

fresh

cold

Figure 4.2: Computing forward probabilities for our example.

The use of forward probabilities to perform inference is very well illustrated by a question
that appears often in HMM related problems: what is the probability of a complete observation
sequence given the model parameters?3

A naive solution to this problem consists in marginalizing over all the state variablesS1, · · · ,ST ,
which is equivalent to enumerating all the possible state sequences of lengthT:

P(O1:T | λ) = ∑
S1,··· ,ST

P(S1)P(S2 | S1)P(Ot | S2) · · ·P(ST | ST−1)P(OT | ST) (4.8)

Using this equation, the computation ofP(O1:T | λ) has anO(NT) complexity, which, in

3If we see the HMM as a generative model – a probabilistic automaton which produces observations – this may
be interpreted as the probability that the observation sequence has been produced by the HMM.
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most cases, is clearly unfeasible. Fortunately this probability may be computedmuch more
efficiently using forward probabilities by observing that, by definition:

P(O1:T | λ) =
N

∑
i=1

P(O1:T ,ST = i | λ)

=
N

∑
i=1

αT(i)

(4.9)

Taking into account the cost of computing allαt(i), we find thatO(TN2) calculations are
necessary to compute the observation probability using (4.9). A huge simplification with respect
to theO(NT) computations required by (4.8).

Backward probabilitiesβt(i) = P(Ot+1:T | [St = i] λ), are also computed recursively:

βt(i) =
N

∑
j=1

P([St+1 = j] | [St = i])P(Ot+1 | [St+1 = j])βt+1( j) (4.10)

however, there is an important difference with respect to forward probabilities, backward prob-
abilities depend on thenexttime step, hence, they should be computed in inverse order, starting
from the last observation (which explains their name). This computation implies aproblem:
while, in the case of forward probabilities, the state prior is used to initialize the process, noth-
ing similar may be done fort = T. The standard algorithm (alg.2) solves this by arbitrarily
settingβT(i) = 1.

Examples of the use of backward probabilities to perform inference aresmoothing(see next
section) and parameter learning (§4.4).

Algorithm 1 : Forward_algorithm(O1:T ,λ)

input : An observation sequenceO1:T

HMM parametersλ = {π,b,A}
output : Forward Probabilitiesαt(i)

begin1

for i = 1 to N do2

α1(i) = P([S1 = i])P(O1 | [S1 = i])3

end4

for t = 2 to T do5

for j = 1 to N do6

αt( j) =
[

∑N
i=1 αt(i)P([St = j] | [St−1 = i])

]
P(Ot | [St = j])7

end8

end9

end10

return all αt(i)11
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Algorithm 2 : Backward_algorithm(O1:T ,λ)

input : An observation sequenceO1:T

HMM parametersλ = {π,b,A}
output : Backward probabilitiesβt(i)

begin1

for i = 1 to N do2

βT(i) = 13

end4

for t = T −1 down to1 do5

for i = 1 to N do6

βt(i) = ∑N
j=1P([St+1 = j] | [St = i])P(Ot+1 | [St+1 = j])βt+1( j)7

end8

end9

end10

return all βt(i)11

Smoothing

In some situations, it is possible to obtain a better state estimation if the complete observation
sequence is available. This is calledsmoothingand, as we will see, is very important for learning
(§4.4).

Smoothing is computed with the forward-backward probabilities:

P([St = i] | O1:T) =
1
pO

αt(i)βt(i) (4.11)

Closely related to smoothing and also useful for learning is the probability of astate transi-
tion given a sequence of observations:

P([St−1 = i] [St = j] | O1:T) =
αt−1(i)P([St = j] | [St−1 = j])P(Ot | [St = j])βt( j)

pO
(4.12)

Viterbi decoding.

As a consequence of the state being hidden, a single sequence of observations may correspond to
many different state sequences. A question that is often posed to HMMs is “what is the sequence
of states which most likely corresponds to a sequence of observations?", which is also called the
best explanationof the observation sequence. It is answered by maximizing the joint probability
arg maxS1:T

P(S1:T | O1:T), that may be computed very efficiently with theViterbi algorithm(alg.
3) [Viterbi, 1967, Forney, 1973].

Essentially, the Viterbi algorithm is identical to the forward algorithm except that the sum-
mation in eq. (4.7) is replaced by a maximum operation, according to the following recursion:
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δt( j) = max
i

[δt−1(i)P([St = j] | [St−1 = i])]P(Ot | [St = j]) (4.13)

Whereδt( j) represents the maximum likelihood of observing the partial observation se-
quenceO1:t and being in statej at timet. The algorithm also stores, for every timet and statej,
the preceding stateψt( j) which has lead toj with maximum probability:

ψt( j) = arg max
i

{δt−1P([St = j] | [St−1 = i])} (4.14)

When the values for the last time step have been computed, the algorithm computes the
best path by finding the state which maximizesS∗T = arg maxj ψT( j), and then backtracking
according to the predecessor array:S∗T−1 = ψT(S∗T) and so on.

Algorithm 3 : Viterbi(O1:T ,λ)

input : An observation sequenceO1:T

HMM parametersλ = {π,b,A}
output: Most likely state sequenceS∗1:T

begin1

for i = 1 to N do2

δ1(i) = P([S1 = i])P(O1 | [S1 = i])3

ψ1(i) = 04

end5

for t = 2 to T do6

for j = 1 to N do7

δt( j) = max
i∈{1,··· ,N}

[δt−1(i)P([St = j] | [St−1 = i])]P(Ot | [St = j])
8

ψt( j) = arg max
i∈{1,··· ,N}

[δt−1(i)P([St = j] | [St−1 = i])]
9

end10

end11

S∗T = arg max
i∈{1,··· ,N}

[δT(i)]
12

for t = T −1 down to1 do13

S∗t = ψt+1(S∗t+1)14

end15

return S∗1:T16

end17

Example

Returning to our example, let us suppose that we have a sequence of temperature readings for
five consecutive daysO1:5 = {23.05,17.5,18.8,21.22,24.32} and that we need to know which
sequence of states is more likely to correspond to that sequence. For this,we apply Viterbi’s
algorithm: first, we apply expressions (4.13) and (4.14) to compute the following table:
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t prior 1 2 3 4 5
Ot 23.05 17.50 18.80 21.22 24.32
δt( f resh) 0.5 1.32e-2 7.42e-5 9.63e-6 5.95e-8 1.80e-09
δt(cold) 0.5 2.62e-3 3.45e-4 1.50e-6 9.14e-8 1.25e-10
ψt( f resh) fresh cold cold cold
ψt(cold) fresh fresh fresh fresh

Then, we remark thatS5 = f resh is the argument that maximizesδ5(S5), hence, we assign
S∗5 = f resh. From there, we backtrack:S∗4 = ψ5( f resh) = cold, and so on down tot = 1. At the
end, we obtain the following maximum likelihood sequence:

S∗1:5 = { f resh,cold, f resh,cold, f resh}

Classification

Another useful question consists in choosing between several HMMs, representing different
classes of state sequences. This is a common situation, for example, in speech recognition tasks,
where every word is encoded as a different HMM.

Classification consists in finding the HMM which is more likely to correspond to a given
observation sequence. Often, this is done by applying a maximum likelihood criterion, which
means that the decision is taken using the output of eq. (4.9) to select the model. Nevertheless,
other classification criteria may also be applied, we will discuss them in §4.6.

4.3.3 Numerical stability and HMM scaling

When implementing HMMs in computers, numerical precision problems may become an issue
during the execution of the Viterbi and forward-backward algorithms. The reason is that these
algorithms multiply very long sequences of numbers which are smaller than 1; and the small
values that result may exceed the machine representation capabilities. This situation may be
observed in our example for the Viterbi algorithm (§4.3.2), where values become appreciably
small, even for a very short sequence of observations.

Solutions to this problem vary according to the algorithm:

Viterbi Algorithm. Since the viterbi algorithm operates on the probability maxima for each
state, the problem is solved by using log probabilities. Hence, multiplications become
additions, which are much easily handled by standard machine floating point representa-
tions.

Forward-backward Algorithms. Whereas the forward and backward algorithms perform both
multiplications and sums on probabilities, applying logarithms is not a viable solution.
Several solutions exist [eg Minka, 1999, Mann, 2006], perhaps the most popular is the
one described byRabiner[1990], which consists in multiplying forward probabilities by
scaling coefficientsin order to keep them in the dynamic range of the machine. These
coefficients are computed by normalizing the forward probabilities for every time value:
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ct =
1

∑N
i=1 αt(i)

(4.15)

So that the scaled forward probabilities are:

ᾱt(i) = ctαt(i) (4.16)

The same set of coefficients that have been computed forαt are also used to scaled Back-
ward probabilities:

β̄t(i) = ctβt(i) (4.17)

4.4 Parameter Learning

Let us have learning data in the form ofK observation sequencesO = {O1, · · · ,OK},Ok =
{

Ok
1, · · · ,O

k
Tk

}
. Supposing that the state is observable, it is straightforward to obtain a maxi-

mum likelihood estimate of the model’s parameters by counting (cf. §2.2.7):

πi =
∑K

k=1 C([Sk
1 = i])

∑K
k=1 ∑N

n=1 C([Sk
1 = n])

∀ i ∈ {1, · · · ,N} (4.18)

µi =
∑K

k=1 ∑Tk
t=1C([Sk

t = i]) Ok
t

∑K
k=1 ∑Tk

t=1 C([Sk
t = i])

∀ i ∈ {1, · · · ,N} (4.19)

σ2
i =

∑K
k=1 ∑Tk

t=1C([Sk
t = i]) (Ok

t −µi)
2

∑K
k=1 ∑Tk

t=1 C([Sk
t = i])

∀ i ∈ {1, · · · ,N} (4.20)

ai, j =
∑K

k=1 ∑Tk−1
t=1 C([Sk

t = i] [Sk
t+1 = j])

∑K
k=1 ∑Tk−1

t=1 C([Sk
t = i])

∀ i, j ∈ {1, · · · ,N} (4.21)

Unfortunately, state is hidden, which means that counting may not be used. The standard
solution is a specialization of the Expectation-Maximization algorithm [Dempster et al., 1977]
known as the Baum-Welch algorithm.

4.4.1 The Baum-Welch Algorithm

This algorithm, originally introduced byBaum et al.[1970] to estimate parameters on a single
sequence of discrete observations, was later extended for multiple observation sequences by
Levinson et al.[1983] and for continuous observations byJuang et al.[1986].

The basic idea of the Baum-Welch algorithm is to estimateP(S1:T | Ok) using inference and
to use the expected event counts as Expected Sufficient Statistics ESS to obtain a new estimate
of the model’s parameters. This may be regarded as replacing the count functions that appear
in eq. (4.18) to (4.21) by their corresponding probabilities, inferred from the current model
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Algorithm 4 : Baum_Welch(O1:K ,λ)

input : A set of observation sequencesO1:K

Initial estimate of HMM parametersλ
output : HMM parametersλ = {π,b,A}

begin1

converged= f alse2

while not convergeddo3

Compute forward (αk
t ) and backward (βk

t ) probabilities as well as probabilitypOk4

of every observation sequenceOk

for i ∈ {1, · · · ,N} do5

π̄i =
∑K

k=1
1

p
Ok

αk
1(i) βk

1(i)

K6

µ̄i =
∑K

k=1
1

p
Ok

∑
Tk
t=1 αk

t (i) βk
t (i) Ok

t

∑K
k=1

1
p
Ok

∑
Tk
t=1 αk

t (i) βk
t (i)7

σ̄2
i =

∑K
k=1

1
p
Ok

∑
Tk
t=1 αk

t (i) βk
t (i) (Ok

t −µi)
2

∑K
k=1

1
p
Ok

∑
Tk
t=1 αk

t (i) βk
t (i)8

for j ∈ {1, · · · ,N} do9

āi, j =
∑K

k=1
1

p
Ok

∑
Tk
t=2 αk

t−1(i)P([St= j|[St−1=i] λ)P(Ok
t |[St= j] λ)βk

t ( j)

∑K
k=1

1
p
Ok

∑
Tk
t=2 αk

t−1(i)β
k
t−1(i)10

end11

end12

if λ = {π̄, Ā, b̄,} then13

converged= true14

end15

else16

λ = {π̄, Ā, b̄,}17

end18

end19

end20

parametersλ and observation sequenceOk. For the sake of efficiency, inference is performed
using forward-backward probabilities.

Since expected counts and model parameters are interdependent, the computation is iterated.
As shown byBaum et al.[1970] the algorithm is guaranteed to converge to a local maximum of
data likelihood.

Analysis

The algorithm makes extensive use of the forward-backward probabilities in lines6 through10:

• Line 6 computes the state prior using the expected counts, which are calculated using
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(4.11):

π̄i =
∑K

k=1P([S1 = i] | Ok λ)

∑K
k=1 ∑S1

P(S1 | Ok λ)
=

∑K
k=1

1
pOk

αk
t (i) βk

t (i)

K
(4.22)

• Lines7 and8 also use the expected counts, obtained with (4.11) to compute the observa-
tion probability mean values and covariances:

µ̄i =
∑K

k=1 ∑Tk
t=1P([St = i] | Ok λ) Ok

t

∑K
k=1 ∑Tk

t=1P([St = i] | Ok λ)
=

∑K
k=1

1
pOk

∑Tk
t=1 αk

t (i) βk
t (i) Ok

t

∑K
k=1

1
pOk

∑Tk
t=1 αk

t (i) βk
t (i)

(4.23)

σ̄2
i =

∑K
k=1 ∑Tk

t=1P([St = i] | Ok λ) (Ok
t −µi)

2

∑K
k=1 ∑Tk

t=1P([St = i] | Ok λ)
=

∑K
k=1

1
pOk

∑Tk
t=1 αk

t (i) βk
t (i) (Ok

t −µi)
2

∑K
k=1

1
pOk

∑Tk
t=1 αk

t (i) βk
t (i)

(4.24)

• Line 10computes the expected transition counts using (4.12) an uses it to estimate transi-
tion probabilities:

āi, j =
∑K

k=1 ∑Tk
t=2P([St−1 = i] [St = j] | Okλ)

∑K
k=1 ∑Tk

t=2P([St−1 = i] | Okλ)

=
∑K

k=1
1

pOk
∑Tk

t=2 αk
t−1(i)P([St = j | [St−1 = i] λ)P(Ok

t | [St = j] λ)βk
t ( j)

∑K
k=1

1
pOk

∑Tk
t=2 αk

t−1(i)β
k
t−1(i)

(4.25)

Since the forward-backward probabilities are computed only once, and then stored in a table,
the cost of computing the state prior and observation probabilities ifO(N|O|) where|O| is the
total number of observations in training data; in a similar way, the cost of computing the transi-
tion probability isO(N2|O|). However, these costs may be considerably reduced by restricting
the model’s structure, which is the subject of sections4.5and4.6.

4.4.2 Incremental algorithms

A number of incremental versions of the Baum-Welch algorithm exist in the literature.Neal and Hinton
[1998] propose a simple modification, called incremental EM, which, instead of summingover
all the observation sequences in the data set in lines6 through4.25, processes only one sequence
at a time. This is justified by the fact that, since the initial values of the expected counts are as-
sumed to be inaccurate, it is best to update them as soon as possible. The algorithm stores the
sum of the expected counts for all the probability distributions, and, in the case of HMMs, it is
guaranteed to converge to a local maxima of data likelihood.

Another approach has been proposed bySinger and Warmuth[1996]. Instead of storing
expected counts and maximizing the data likelihoodP(Ok

1:Tk
| λt), they maximize an alternative

objective functionF(λ), which penalizes large changes in parameters:
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F(λt+1) = λP(Ok
1:Tk

| λt)−d(λt ,λt+1) (4.26)

whered(λt ,λt+1) is a measure of the difference between the current and the reestimated
parameters.

4.5 Transition structure

Until now, in all our complexity computations for inference and learning algorithms, we have
considered a fully connected orergodicHMM (fig. 4.3(a)) where every state may be reached
from any other state in a single time step. As we have seen in §4.3.1, this implies the need to
iterate throughN2 possible transitions when computing the prediction step. For some applica-
tions, however, a better representation may be built by assuming that certaintransitions are not
possible. This is equivalent to constraining the structure of the transition matrix by forcing the
value of a subset of theai, j elements to be zero. This is often called thestructureor topologyof
the HMM, and, even if they are somewhat related, it should not be confused with the structure
of a Bayes network.

More formally, we define the structureΦ of an HMM as the specification of the number
of statesN and the subset of elements inA such thatai, j = 0. In other words,Φ specifies
the cardinality of the state variable and a subset of forbidden transitions and leaves all other
transitions unspecified (but constrained to be strictly positive). A complete model specification
consists of the model’s structure and parametersM = {Φ,λ}.

One of the most popular HMM structures are called left-right models (fig.4.3(b)). Their
fundamental property is that their transitions coefficients obey the followingconstraint:

ai, j = 0 ∀ j < i (4.27)

It is easier to visualize the HMMs structure as a graph (fig.4.3), where nodes represent
states and for everyai, j 6= 0 there is a directed edge fromi to j indicating that that transition is
allowed. In this case, statej is said to be aneighborof statei.

(a) ergodic (b) left-right

Figure 4.3: Examples of HMM topologies. Both the transition matrix and the corresponding
graph are shown.

56



Of course, other topologies than ergodic or left-right models may be imagined.An interest-
ing case is whenA is composed primarily by zeroes (ie sparse). In those cases, it is more efficient
to represent the transition matrix as an array of linked lists, one list per state (ie a transition list).
Each linked list stores the neighbors of the corresponding state (fig.4.4). This representation is
not only more compact, it allows to compute the prediction step of filtering inO(E) whereE is
the number of non-zero elements in the transition matrix.

1

2

3

4

1 γ1,1

2 γ2,2

3 γ3,3

4 γ4,4

2 γ1,2

3 γ2,3

4 γ3,4

Figure 4.4: A linked list representation of fig.4.3(b)

The performance gain may be illustrated by an example. Let us have a 5×5 grid, where
every cell represents a state. By only allowing transitions between cells having a common edge
4, we reduce the number of possible transitions from 1252 = 15625 for an ergodic model to just
80 for the 4-neighborhood criterion (fig.4.5).

Figure 4.5: A 5×5 grid (dotted blue lines) and the corresponding non directed topology graph
(solid green lines) assuming 4-neighborhood.

Defining a non-ergodic topology for the model does not only lead to increased time and
memory efficiency, but also influences the quality of inference [cf.Brand, 1998, Freitag and McCallum,
2000, Binsztok and Artières, 2005] and accelerates learning by reducing the number of parame-
ters. But, how to choose the best structure for a given application or problem? It seems natural
to do the same as for the models parameters and to learn the structure from data, which is the
topic of the following section.

4This is called 4-neighborhood, because every cell which is not in the border has exactly four neighbors under
this criterion
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4.6 Structure Learning

A good starting point to illustrate structure learning is to consider the full Bayesian learning
problem, which consists in computing the posterior probability of the model given the data:

P(M | O) =
P(O |M )P(M )

P(O)
(4.28)

But P(M | O) gives the joint posterior of the structure and the parameters, and we are inter-
ested in the posterior probability of the structure alone. Thus, we marginalizeover the space of
all possible parameters:

P(Φ | O) =
P(Φ)P(O | Φ)

P(O)
(4.29)

=
P(Φ)

R

λ P(λ | Φ)P(O | Φ λ)dλ
P(O)

(4.30)

Which gives us a probability distribution over all the possible structures. However, computing
the full probability distribution is almost never done in practice. Instead, learning is performed
by finding a Maximuma Posteriori (MAP) estimate of the structure,ie the single model that
maximizes eq. (4.30).

Although it is tempting to simplify further and apply a Maximum Likelihood criterion by
assuming thatP(M ) is uniform, Maximum Likelihood (ML) estimation suffers from a bias to-
wards complex models which renders it unusable for structure learning5: it is trivial to construct
a maximum likelihood structure by representing every observation inO with a different discrete
state.

Hence, it is necessary to maximize eq.4.30, which is difficult, because no closed form solu-
tion for the integral is knownMurphy[2002]; a common workaround is to use an approximation
of the integral’s value known as the Bayes Information Criterion (BIC) [Schwarz, 1978], which
is expressed as a log-likelihood:

logP(O | Φ) ≈ BIC(O,Φ, λ̂) = logP(O | Φ λ̂)−
d
2

log|O| (4.31)

Whereλ̂ is the maximum likelihood estimate of the parameters given the current structure
– obtained, for example, using the Baum-Welch algorithm;d is the number of free parameters
in the model; and|O| is the number of observations in training data. The first term is just data
likelihood (4.9) and the second one may be understood as a penalty for model complexity. The
BIC converges asymptotically to the log data likelihood as|O| grows.

Taking logarithms in (4.30) and replacing logP(O | Φ) by the BIC, we obtain:

logP(Φ | O) ≈ logP(Φ)+BIC(O,Φ, λ̂)− logP(O) (4.32)

5Maximum likelihood has also been subject to more fundamental critics concerning its semantic and mathematical
soundness [Irony and Singpurwalla, 1997]
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Hence, the learning problem becomes that of maximizing (4.32) instead of (4.30). In gen-
eral, the term logP(O) is also excluded from the maximization because it does not depend on
the structure. A further simplification is to assume a flat prior for the structureP(Φ), given
that complexity is already penalized by the BIC. Thus, in many approaches,just the BIC is
maximized.

Maybe the most important difficulty in structure learning lies in the huge size of the space
of structures. Even for a fixed number of statesN, the number of possible adjacency matrices is
O(2N2

). This makes it necessary to restrict the structure to a smaller family of graphs(eg trees,
directed acyclic graphs) [eg Pearl, 1988, Meila et al., 2001]; an alternative is to conduct an
heuristic based search in structure space.

4.6.1 Local search algorithms

Due to the complexity of structure estimation, instead of using a global algorithm tomaximize
(4.32), a local search is often conducted, where the algorithm starts with an initialguess ofΦ
and then searches in itsneighborhoodfor structures having a higher BIC. Neighbors are ob-
tained by applying simple operators toΦ such as adding, deleting or reversing an edge (fig.4.6).
Depending on the algorithm, one or more of those structures are selected and the process is
iterated.

Figure 4.6: Local structure search: neighbors are found by adding or removing nodes and edges.

Despite the use of approximations like the BIC, local search strategies are still expensive,
mainly because the EM (Baum-Welch) algorithm must be run for every candidate structure.
This has motivated a different approach proposed byFriedman[1997]: instead of running the
EM algorithm inside the search procedure, the search is performed insideEM (alg. 5). This is
known asStructural EM.

The key to structural EM lies in steps7 and8. The estimation of̂λ′ is performed by updating
λ̂ according to the difference betweenΦ andΦ′, which, as we mentioned above, consists of a
small change such as and added or deleted edge. Hence, it is not necessary to run the whole
Baum-Welch algorithm for every neighbor, but only for the one that gets the best BIC score in
every iteration. The algorithm is guaranteed to converge to a local maximum ofthe BIC score.
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Algorithm 5 : Structural_EM(O1:K ,λ,Φ)

input : A set of observation sequencesO1:K

Initial estimate of HMM parametersλ
Initial structure estimateΦ

output : HMM parametersλ = {π,b,A}
HMM StructureΦ

begin1

converged= f alse2

while not convergeddo3

Improveλ using EM4

for each neighborΦ′ of Φ do5

Compute expected counts forΦ′ usingΦ andλ ; /* Structural E-Step */6

Computêλ′ using the expected counts7

ComputeBIC(O1:K ,Φ′, λ̂′)8

end9

Φ∗ = arg maxΦ′ BIC(O1:K ,Φ′)10

if BIC(O1:K ,Φ∗, λ̂′) > BIC(O1:K ,Φ,λ) then11

Φ = Φ′ ; /* Structural M-Step */12

λ = λ̂′13

end14

else15

converged= true16

end17

end18

end19

4.6.2 State merging algorithms

State merging algorithms [Stolcke and Omohundro, 1994, Seymore et al., 1999, Binsztok and Artières,
2005] work by applying heuristics which are very similar to agglomerative clustering. First, they
assume that every observation inO corresponds to a different state, and assigns a probability of
one to edges connecting states corresponding to consecutive observations and zero to all others.
The result of this step is a maximum likelihood model, but which is overly complex and do not
generalize at all.

From there, the algorithm builds a more simple – and general – model by mergingstates
(see fig.4.7). At every iteration, the algorithm searches for the merging which gives the highest
increase on the posterior (4.30) and it stops when no further increase is detected.

In order to reestimate the model parameters, model merging uses a simplified version of
the Baum-Welch algorithm, which only reestimates the parameters for the most probable path –
which is computed using the Viterbi algorithm – instead than for the whole model; thus reduc-
ing computation time at the expense of optimality. However, experimental results seem to be
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Figure 4.7: Merging statesb ande produces statebe. Notice how the probabilities associated to
incoming edges are summed, while those associated to outgoing edges are renormalized.

comparable to those obtained using Baum-Welch.
Model merging is able to estimate the number of statesN in an intuitive fashion. Moreover, it

seems possible to adapt it to work incrementally. On the downside, model merging is too sensible
to differences in temporal alignment and it has been mostly tested on applicationshaving discrete
observations.

4.6.3 Other algorithms

Another interesting approach has been proposed byBrand[1998], instead of searching or build-
ing the structure, he transforms the Baum-Welch algorithm into a MAP estimation procedure
called Entropic-EM by incorporating an entropic prior in the computation of thenew parame-
ters. This prior favors informative values (those that are near from zero or one) when training
data is scant, but converges to the conventional maximum likelihood estimation estimate as more
observations are available. The result of using this MAP criterion is that irrelevant parameters
are driven asymptotically to zero. After Entropic-EM learning, edges or states which are con-
sidered not informative are trimmed from the structure.

A somewhat similar idea has been proposed byVasko et al.[1997]. They first train a fully
connected HMM using Baum-Welch. From there, they iteratively remove transitions or states
from the model. Since the fully connected model has maximum data likelihood, every itera-
tion decreases it. The chosen structure is the simplest one before a substantial decrease in the
likelihood.

The idea of starting with a very simple model to which new nodes and transitions are added
during learning – hence, incrementing data likelihood – has also been explored by a number
of authorsLockwood and Blanchet[1993], Freitag and McCallum[2000], but these approaches
are not general, since they all apply domain-specific knowledge.

4.7 Discussion

In this chapter we explained the basic concepts regarding Hidden MarkovModels. We pre-
sented the probabilistic model: variables, JPD and parametric forms, making emphasis in con-
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tinuous observation HMMs. We also presented the “classic” inference and learning algorithms
for HMMs, showing that maintaining the belief state constitutes the basis for inference. Cor-
respondingly, we illustrated the use of dynamic programming to perform efficient off-line in-
ference. We outlined the use of the Baum-Welch algorithm, which, basically consists in using
off-line learning to compute the ESS which are necessary to estimate the model’sparameters.
Finally, we have introduced the problem of structure learning, and presented an overview of the
existing approaches.

We would like to conclude with some reflections about the use of HMMs in the context
of pattern based motion prediction. As we have seen in chapter3, HMMs are very popular in
the literature of pattern based motion prediction, but, what are the reasons of this popularity?
indeed, there are many reasons: First, HMMs are a discrete model, which makes them simpler
to manipulate than a continuous representation. Moreover, the existence ofefficient and well
tested algorithms for inference and learning makes their application straightforward.

On the other hand, in spite of the efficiency of existing algorithms, the computational cost of
inference on conventional ergodic Hidden Markov Models grows with thesquare of the number
of discrete states in the model; which makes it too complex to scale their use to problems which
require hundreds or even thousands of states and huge data sets.

There exist at least three ways to address this problem: a) using hierarchical representations
such as Abstract Hidden Markov ModelsBui et al.[2002] which decompose the problem using
a divide and conquer strategy; b) defining simpler transition structures which, at the same time
reduce the algorithmic complexity and provide a better representation of motion; and c) using
approximate inference tools like particle filters [Arulampalam et al., 2002].

The problem becomes even harder when learning gets involved. Even in the off-line case,
learning is difficult for hierarchical approaches because they rely onsemantic information (egdoors,
rooms, buildings) which is considerably hard to learn with an unsupervisedalgorithm. On the
other hand, approximate inference tools are not necessary, providedthat learned structures are
simple enough to allow real-time inference.

Recapitulating, for a working “learn and predict” approach based on HMMs, we want a
learning algorithm that satisfies the following conditions:

1. Both parameters and structure should be learned.

2. Learning should be incremental.

3. The learnt structure should be both meaningful and simple enough to allowinference in
real-time.

Despite the existence of incremental extensions of the Baum-Welch and of structure learning
algorithms, for the best of our knowledge there exists only one algorithm – state merging – which
is able to simultaneously learn the parametersand the structure of an HMM in an incremental
way. Unfortunately, there is no guarantee that the structures obtained byapplying model merging
will be simple and semantically sound. Therefore, in order to fulfill the third condition, a new
learning algorithm is needed, which is the subject of chapter5.
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Part III

Proposed Approach
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Chapter 5

Growing Hidden Markov Models

It’s all to do with the training: you can do a lot if
you’re properly trained

QUEEN ELIZABETH II
Television documentary

5.1 Overview

As we have shown during the first part of this thesis, Hidden Markov Models constitute a pow-
erful probabilistic tool. Nevertheless, in order to be able to apply them to the problem studied
in this thesis, it is necessary to device incremental parameter and structure learning algorithms
which are able to work in real time. Moreover, as we have explained at the end of chapter4, we
require the learnt structures to be both simple and meaningful.

This chapter introduces our proposed solution – and the main contribution of this thesis –
Growing Hidden Markov Models (GHMM). They may be described as time-evolving HMMs
with continuous observation variables, where the number of states, topology and probability
parameters are updated every time that an observation sequence is available.

Our approach focuses in the utilization of HMMs as an approximate inference tool for con-
tinuous state spaces. We assume that the continuous state space is discretized into a finite number
of regions, and that every such region is represented by a discrete state in the HMM. Second,
we assume that state evolves continuously. A third assumption is that observations produced by
states which are near from each other are also near from each other. It is important to note that,
although this assumptions somewhat restrict the applicability of our approach; they are shared
by a large number of problems, at least in robotics [cf.Thrun et al., 2005].

The key intuition behind GHMMs, is that the structure of the HMM should reflect the spatial
structure of the state space discretization, where transitions between statesare only allowed if the
corresponding regions are neighbors. Hence, structure learning consists basically in estimating
the best space discretization from data and identifying neighboring regions. We have addressed
this problem by building atopological mapof the environment.
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For parameter learning, we basically have adapted the approach proposed byNeal and Hinton
[1998] in order to deal with variable state cardinality and continuous observations.

The following section introduces the notion of topological map and explains its relationship
with the HMM structure. Then we will discuss Vector Quantization and Topology Represent-
ing Networks, in order to introduce the concrete algorithm which we have used, the Instanta-
neous Topological Map. Next, we will provide a formal description of Growing Hidden Markov
Models, explaining how the topological map is integrated into the incremental structure and
parameter learning algorithm.

5.2 The topological map

The topological map is a discrete representation of the state-space in the form of a graph, where
nodes represent discrete regions and edges indicate that the regions which correspond to the
linked nodes are contiguous,ie it is possible to move continuously between them without passing
through any other region1.

We will illustrate the concept with a simple grid discretization of a two dimensional space
(fig. 5.1(a)). The corresponding topological map will have one node for every cellin the grid,
and edges between cells that share a border.

The state is assumed to evolve in a continuous – in the mathematical sense – fashion in
space. Thus, if we plot its trajectory, it should inevitably pass through cellsborders as it goes
from one discrete region to another (fig.5.1(b)). Since, by definition, there is one edge for every
border, it follows that the best approximation (fig.5.1(c)) to any possible continuous trajectory
may be built using only edges that are already in the graph2.

(a) grid and graph (b) trajectory in space(c) trajectory in the
graph

(d) an obstacle

Figure 5.1: a) Example of a discretization of space into a grid of rectangularcells (blue dotted
lines), and the corresponding topological map representation (green dots and solid lines); b) a
continuous trajectory; c) the same trajectory represented as a succession of nodes and edges in
the map; and d) an obstacle (gray rectangle) and the corresponding topological map.

1It is important to note that, for us, a topological map is essentially a metric representation in which neighborhood
is represented explicitly. This differs from the concept of a topological map we have discussed in §3.6.2, which have
a coarser representation often based on higher level semantics [eg Kuipers, 1998]

2For the sake of simplicity, in this example we assume it is not possible to move indiagonal passing exactly
through a corner.
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Often the process evolves in a small manifold of the state space. For example,moving ob-
jects tend to pass frequently through some regions (eg corridors) while completely bypassing
others (egobstacles). This may not be captured by grids and other static space decompositions,
because they are chosen in advance. Therefore, the whole space is represented, with the conse-
quent waste of computational resources (see §3.4).

It would be preferable to discretize space according to observed data inorder to approximate
the actual manifold in which state evolves so that “forbidden” regions of thespace are not rep-
resented (see fig.5.1(d)). This poses the problem of how to perform this discretization and, at
the same time, identify neighbor regions in an efficient way. Moreover, the solution should be
incremental.

Fortunately, there exists a family of tools which deals precisely with this problems: Topology-
representing networks (TRN) [Martinetz and Schulten, 1991]. They incrementally build a topo-
logical map by iterating through two steps a) partition space in discrete regionsusing Vector
Quantization and b) find pairs of neighbor regions and link their respective centers. They are the
subject of the next section.

5.3 Vector Quantization and Topology Representing Networks

Vector quantization is a data compression technique originally developed in thecontext of signal
processing but widely used in very diverse technical domains. The ideaof vector quantization
is to encode a continuousD-dimensional input data manifoldM by employing a finite setC =
{c1, · · · ,cK} of referenceD-dimensional vectors. A pointx of the manifold is represented using
the element ofC which is closest to it according to a given distance measured(x,ci), such as the
square error, or the Euclidean distance.

This procedure induces an implicit partition of the manifold in a number of subregions

V j = {x∈ M
∣
∣ d(x−c j) ≤ d(x−ci)∀i} (5.1)

called Voronoi regions, such that every input vector that is inside a Voronoi regionV j is de-
scribed by the corresponding reference vectorc j .

The goal of a vector quantization algorithm is to find values for the reference values in order
to minimize the mean quantization error, also known as thedistortion:

E =
K

∑
i=1

Z

x∈V i

d(x,ci)P(x)dx (5.2)

Since, in most cases, the form of the manifold is unknown, the error may notbe computed
directly, instead, it is estimated from a data set consisting of|X| samples, or input vectors:

Ê =
1
|X|

K

∑
i=1

∑
x j∈V i

d(x j ,ci) (5.3)

which assumes a uniform prior over input vectors.
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Reference Vectors

Input Vectors

Voronoi Region

Figure 5.2: Example of a partition in Voronoi regions: there are some 2-dimensional input
vectors (red crosses). Reference vectors are represented by bigpoints and Voronoi regions are
indicated by blue boundary lines, the set of all those boundaries is called aVoronoi graph.

The most widely used vector quantization algorithm is the k-means or Lloyd algorithm
[Lloyd, 1957, Linde et al., 1980], which may be regarded as a version of the Expectation-
Maximization algorithm, where a hard ownership criterion is used (ie every data element is
assigned to one cluster only).

Although standard k-means is guaranteed to converge to a local minimum of thedistortion,
it has a number of drawbacks: a) the number of reference vectors to befound should be known
a priori; b) the quality of the output is highly dependent on initialization; c) the fact that it is a
batch algorithm makes it too expensive for very big data sets.

Even if the last drawback has been addressed byMacQueen[1967], who proposed an incre-
mental version of the algorithm – known as on-line k-means – the other two problems remain
difficult and have motivated the research of alternative vector quantization approaches.

One of such approaches, which is particularly interesting, is the use of Kohonen Networks,
or Self-organizing map (SOM) [Kohonen, 1995]. The main difference between the SOM and
other classic vector quantization algorithms is that, in the SOM, there are links between ref-
erence vectors (or units, as they are known in the SOM jargon) so that they form a network.
Links describe a neighborhood relationship between units and define a topology over the entire
network. This topology is defineda priori to form a chain – for a one dimension Kohonen map
– or a grid – for the two dimensional case.

In addition to vector quantization, the SOM learning algorithm ensures that, after learning,
points that are close in the input data manifoldM will be associated to the same unit, or to
units which are close in the chain or grid. Hence, network links effectivelyencode additional
information – called a topographical mapping – on the similarity of the represented input data.
This additional information is useful in applications such as motion planning [Krose and Eecen,
1994], and speech processing [Kohonen, 1988]. Moreover, SOMs have been shown to reduce
the initialization problem of k-means [Bacao et al., 2005].

However, Kohonen networks introduce a new problem: to obtain an optimal topographical
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mapping and minimize the quantization error, it is necessary that the topology ofthe network
matches that of the represented manifold. In the case of Kohonen networks this requires prior
knowledge about the topological structure of the manifold, which is often unavailable. This
problem has motivated the proposal of a new family of approaches knownas Topology Rep-
resenting Networks, which are able to learn the manifold’s structure while performing vector
quantization.

5.3.1 Topology Representing Networks

Topology Representing Networks are based on the idea of connecting neighbor Voronoi regions
– eg regions with a common border – with edges, called delaunay’s edges. The set of all edges
constitutes the dual of the Voronoi graph and is known as the Delaunay’striangulation (fig.5.3).

Delaunay Links

Figure 5.3: Voronoi graph (blue) and delaunay triangulation (green).

TRNs represent the network’s topology with a subset of the Delaunay’striangulation. The
edges are learned by using the competitive hebbian rule – also known as hebbian learning –
proposed byMartinetz and Schulten[1991], which consists in creating a new edge between two
units every time that, for a given input, they are the two closest units to that input and they are
not already linked (fig.5.4).

Although the first TRNs in the literature [eg Martinetz and Schulten, 1991]. worked only
with a fixed number of units, later approaches, such as the Growing Neural Gas (GNG) [Fritzke,
1995], and the Grow When Required (GWR) Networks [Marsland et al., 2002], evolved as adap-
tive structures which are able to insert or even delete units during learning.

A common feature of these TRNs is that they adapt reference vectors by applying constant
factors (ie learning rates) meaning that convergence to a minimum of distortion is not guaran-
teed, but this is not necessarily a drawback, since it allows the network to learn permanently.
Indeed, this characteristic allows the network to show an adaptive behavior, since it is able to
“forget” what it has learned in the past.

The advantages and drawbacks of adaptive TRNs, when compared to conventional k-means
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Input Nearest unit

Second nearest

New edge

Figure 5.4: Hebbian learning

or EM vector quantization approaches may be summarized as follows:

Advantages

1. They use incremental learning algorithms, thus, they may be applied to verylarge data
sets or to on-line learning from data streams.

2. They do not require any prior knowledge on the number of reference vectors.

3. Due to their growth mechanism, which uses observation data to initialize new state repre-
sentations, they are quite robust to initialization condition problems.

4. They are able to learn the data manifold’s topology, even when it is mixed (eg it contains
one, two and three dimensional submanifolds).

5. They are assumed to be a plausible model of how biological entities process information
[cf Martinetz and Schulten, 1991].

Drawbacks

1. They do not converge to a minimum of distortion (5.3) but, at best, oscillate continuously
around one.

2. Lacking or incomplete formal theories about convergence and stability.

From our point of view, the drawbacks of TRN are largely compensated by their advantages,
which explains our decision of using a TRN – the Instantaneous Topological Map – as the basis
for our learning algorithm. It will be described in detail in the following section.
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5.4 The Instantaneous Topological Map

We have chosen the Instantaneous Topological Map (ITM) ofJockusch and Ritter[1999] as the
basis of our algorithms based on two reasons. First, the ITM algorithm – as opposed to GNG
and GWR – is designed from the beginning to deal with data which is correlatedin time, such
as trajectories. The second reason is that the algorithm has a reduced set of parameters having
clear physical meaning, moreover, no prior knowledge about the topology or the size of the
state-space are required in order to select the algorithm’s parameters.

The algorithm works on the basis of a distance measure, which, in our case, is the Maha-
lanobis distance, instead of the more classic Euclidean distance.

We will now provide some basic definitions before going into a detailed description of the
algorithm.

5.4.1 Definitions

The ITM algorithm builds incrementally a setU of nodes, and a setL of edges connecting
nodes. The input of the algorithm consist of input vectors which, in the context of this thesis,
we identify with the observationsOt which constitute the input of an HMM.

Associated with every nodei there is a reference vector or weightwi , as described in §5.3.
An edge between nodesi and j will be denoted as(i, j). Moreover, edges are not directed,

thus, it holds that(i, j) ≡ ( j, i). A useful concept is theneighborhoodof a nodei, which is the
set of all nodes to whichi is linked:

N (i) = { j ∈ U
∣
∣ (i, j) ∈ L } (5.4)

Last, we will introduce the Mahalanobis distance which will be used as distance criterion in
the algorithm. It is defined in terms of a covariance matrixΣ as:

d2
Σ(u,v) = (u−v)TΣ−1(u−v) (5.5)

We have preferred its use over the Euclidean distance because of the following reasons:

1. It permits to take into account the correlations between the different dimensions of state
space.

2. It is more general than Euclidean distance, and includes it as a particular case.

3. It is scale-invariant.

4. Since the observation probabilities are Gaussians, it makes sense to takeinto account the
Gaussian’s covariance to build the topological map.

5.4.2 Algorithm

The ITM algorithm has three main goals: minimizing the distortion, finding the numberof nodes
N, and finding the edges that define the topologyL . The algorithm has only three parameters:
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Algorithm 6 : ITM-Update(Ot ,Σ,τ,ε : U ,L )

input :
Input vectorOt

Covariance matrixΣ
Insertion Thresholdτ
Smoothing factorε

modifies:
Topological map nodesU
Topological map edgesL

begin1

b = arg mini∈U d2
Σ(wi ,Ot) ; /* Determine the best unit */2

s= arg mini∈U \b d2
Σ(wi ,Ot) ; /* Determine the second best unit */3

wb = wb + ε(Ot −wb) ; /* Weight adaptation */4

if s /∈ N (b) and d2
Σ(wb,ws) < 4τ then5

L = L ∪{(b,s)} ; /* Create the link */6

end7

for i ∈ N (b) do8

w̄b,i = (wi +wb)/29

if d2
Σ(w̄b,i ,ws) < d2

Σ(w̄b,i ,wi) and d2
Σ(wb,wi) > 1 then10

L = L \ (b, i) ; /* Delete link (b, i) */11

if N (i) = /0 then U = U \ i ; /* Remove node i as well */12

end13

end14

w̄b,s,=(ws+wb)/215

if (d2
Σ(w̄b,s,ws) < d2

Σ(w̄b,s,Ot) or d2
Σ(ws,Ot) > 4τ) and d2

Σ(wb,Ot) > τ then16

U = U ∪{r} ; /* Create a new node */17

wr = Ot18

if d2
Σ(wb,wr) < 4τ then L = L ∪{(b, r)} ; /* Connect nodes r and b */19

if d2
Σ(wb,ws) < τ then U = U \s ; /* Remove s */20

end21

end22

Covariance Matrix (Σ). It is used to compute the Mahalanobis distance.

Insertion Threshold (τ). It may be regarded as the average radius of a discrete region, in terms
of the Mahalanobis distance.

Smoothing Rate (ε). It regulates the rate at which reference vectors are adapted.

The algorithm starts having two connected nodes, whose weights may be initialized at ran-
dom or, from example, taking the values of the two first observations. Thecore of the algorithm
is the update procedure, which adapts the network for a single observation Ot , the procedure
may be conceptually separated in four steps:
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Matching. Steps2 and3 find the best and second best nodes, with respect to the Mahalanobis
distance. The covariance matrix is assumed to be the same for all nodes. Thisis the
most expensive step of the algorithm, because of its dependence on the number of nodes.
Nevertheless, since the dependency is linear, the algorithm is well suited form most real-
time demands even for a large number of nodes.

Weight adaptation. Step4 smooths the learnt weights according to the smoothing coefficient
ε. Jockusch and Rittermention that this parameter may be set to zero without affecting
the overall performance of the network in a significant way.

Edge adaptation. Steps5 through14 perform competitive hebbian learning to insert a new
Delaunay edge between the best and the second best units. Here we have made a slight
modification of the normal ITM algorithm by allowing edge creation only if it is relatively
short. If, after the creation of the new edge, other edges become invalid Delaunay, they
are deleted, eventually leading to the deletion of nodes with no remaining edges. This
contrasts with other TRNs, which rely on ad-hoc procedures to destroy invalid Delaunay
edges.

Node adaptation. Steps15 through21are responsible of inserting a new node when the obser-
vation is considered to be ill-represented. As a consequence of node creation, the second
best node may be deleted if it is redundant, that is, if it is too close tob (fig. 5.5). As in
the case of edge adaptation, we have slightly modified the original ITM algorithm to limit
the length of the edges created in this step.

Figure 5.5: ITM Node adaptation. A node is created when it falls in the light bluezone, this
may be followed by the deletion of the second best node if it inside the light green zone.

The combined effect of edge and node adaptation is that network nodes are uniformly ar-
ranged in such a way that the average distance between two neighboring nodes isτ. This imposes
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a limit on the minimum quantization error that may be achieved by the ITM algorithm. Indeed,
the covariance and insertion threshold together may be regarded as describing the maximum
resolution, or precision which may be attained while discretizing the space. This also means
that the number of nodes in the network will depend onΣ andτ.

It should be noted that, since node distribution is regular, the reference vectors learned by
the ITM algorithm are not disseminated according to the observation prior, which is a well
known property of the GNG algorithm, where node density is roughly proportional to P(Ot).
At the same time, this does not constitute a particularly desirable property whenapproximating
continuous state spaces; in fact, often the most informative states are also least probable, thus,
it makes sense to represent different regions of space with the same precision, in spite of the
relative probability of observing something inside them, as long as this probability is greater
than zero.

5.4.3 Properties

Convergence

One theoretical drawback of the ITM algorithm is that strict convergenceto a local minimum of
the distortion is not verified. The reason is that the algorithm, like other Topology Representing
Networks, uses a constant learning rate, which leads to models which, instead of converging,
keep oscillating around local minima.

However, in the case of ITM it is possible to establish a theoretical upper limit tothe distor-
tion, based on the fact that the algorithm guarantees that the maximum Mahalanobis distance to
an observation will be equal or inferior toτ.

From (5.3):

Ê =
1
|O|

K

∑
i=1

∑
Ot∈V i

d2
Σ(Ot ,wi) (5.6)

where |O| is the number of input vectors or observations in training data. But, since every
observation belongs to only one Voronoi region andd2

Σ(Ot ,wi) ≤ τ, we know that:

Ê ≤ τ (5.7)

Number of edges

As we have stated at the beginning of this chapter, we want the learnt structure – thus, the
topological map – to be both simple and meaningful. We have seen that the topological map is a
subset of the Delaunay triangulation, which has a simple interpretation in terms of neighborhood,
and seems plausible when partitioning a continuous space into discrete regions.

But, what about simplicity? it turns out that the upper bound on the number ofedges is
the same than for the Delaunay triangulation, which, for reference vectors in R

2, the number of
edges isO(N) because the triangulation’s edges and vertices form a planar graph [Aurenhammer,
1991]. However, for higher-dimensional spaces things seem less promising,for exampleDewdney and Vranch

74



[1977] have proved that the upper bound for the size of a Delaunay triangulation in R
3 is O(N2),

which is equivalent to a fully connected graph.
On the other hand,Dwyer [1989] has demonstrated that the expected size of the Delaunay

triangulation in anyd-dimensional space isO(N), supposing that the reference vectors are drawn
uniformly from the unit sphere. This result indicates that high-dimensionalDelaunay triangula-
tions will be small (O(N)) in most practical situations [cf.Aurenhammer and Klein, 2000].

Complexity

The ITM algorithm is designed from the ground up for incremental learning. It processes obser-
vations in a one by one basis. The time complexity of the update algorithm isO(N). Moreover,
since the most expensive operation is the matching step, it seems feasible to improve the effi-
ciency of the algorithm by using a hierarchical space indexing techniques, like R-trees and their
extensions [eg Guttman, 1984, Beckmann et al., 1990].

5.5 Probabilistic Model

As we have seen, the ITM algorithm, is able to produce find a simple and semantically sound
topological map by incrementally processing observations. This seems to fulfill most of our
requirements for the structure.

In this section we explain, how our algorithm integrates the ITM algorithm to learn the
structure of the HMM. We will also explain how we have modified parameter learning in order
to accommodate for an ever evolving structure. As in the case of the HMM, wewill present the
approach as a probabilistic model.

5.5.1 Variables

The only difference at this level between GHMMs and HMM is that the domain of the state
variable changes as time passes. Besides that, both models use the same variables:

• St ,St−1, defining the current and previous states, respectively. The domain ofboth vari-
ables varies with time and is represented bySk, which is the set of discrete states in the
GHMM structure afterk observation sequences have been processed.

• Ot , which describes the current observation. Observations are assumedto be continuous
vectors inR

D, whereD is the dimensionality of the continuous state space.

5.5.2 Decomposition

The form of the JPD is also the same than for hidden Markov models:

P(St−1 St Ot) = P(St−1)P(St | St−1)P(Ot | St) (5.8)
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5.5.3 Parametric forms

Although the parametric forms are basically same than for HMMs, the way that parameters are
stored is different in GHMMs:

• P(St). Like in HMMs, the state prior is represented by a multinomial probability distribu-
tion. However, instead of directly storing probabilities in the parameter vectorπ, we will
store the ESS for computing those probabilities. In this case, they consist ofthe cumulated
sum of the expected counts (see §4.4). This means thatP(St) should be now computed in
terms of the ESS by normalizing the counts:

P(St = i) =
πi

∑St
πSt

(5.9)

• P(Ot |St). All observation probability Gaussians are assumed to have the same covariance
Σ. Hence, the observation probability parameters consists exclusively of the Gaussian
mean valuesbi = µi and the observation probability is computed with:

P(Ot | St = i) = G(Ot ; µi , Σ) (5.10)

• P(St | St−1). As for the state prior, instead of storing transition probabilities directly, we
store the ESS as the cumulated sum of the expected counts inA. Hence, a normalization
is also needed to computeP(St | St−1):

P(St = j | St−1 = i) =
ai, j

∑St−1
aSt−1,St

(5.11)

The reason for storing the cumulated sums inA andπ is to allow the incremental computa-
tion of the probabilities. Supposing that probabilities were stored directly, it would be necessary
to take into account the fact that stored probabilities represent all of the already processed obser-
vation sequences, while the current expectation of the number of counts has been computed on
the basis of just one – the last – observation sequence. Thus some kind ofdecreasing learning
rate would be necessary to achieve convergence.

5.6 Inference

Since GHMMs are HMMs, they may answer the same probabilistic questions (see §4.3). For
convenience, we will review in this section the two basic questions that shouldbe answered in
the context of motion prediction: filtering and prediction.

Filtering is performed in order to update the belief state of an object on the basis of an
observation. This is done using expression (4.5) which we copy here:

P(St | O1:t) =
1
Z

P(Ot | St) ∑
St−1

[P(St | St−1)P(St−1 | O1:t−1)]
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WhereP(St−1 | Ot−1) is the belief state calculated in the previous time step.
Having estimated the current state, the future stateH time steps ahead from the present is

computed with:

P(St+H | Ot) = ∑
St+H−1

P(St+H | St+H−1)P(St+H−1 | Ot) (5.12)

5.7 Structure and Parameter Learning

The main difference between conventional HMMs and GHMMs lies in the learning algorithm
(see alg.7), which iterates through two steps: a) updating the topological map of the space;
and b) using the Baum-Welch mechanism to update the parameters of the state prior and the
transition probability. Regarding the incremental aspect of the algorithm, it is worth noting
that the input of the algorithm consists of complete observation sequences,thus, learning is
performed only when such a sequence is available and not for every observation.

The algorithm maintains a topological map consisting of a node list (U ), an edge list (L ) and
the node weights (W ). From the map, observation probabilities are obtained by using the node
weights as the mean values of the Gaussians and assuming a fixed covarianceΣ. Then transition
structure is updated from the ITM edge list, and the parameters of the transition and state prior
probabilities are recomputed using the sum of the expected counts3.

The learning algorithm has the following parameters:

State prior counter default value (π0). This value is used to initialize the state prior table when
a new state (node) is created, it works as a “pseudocount”, much in the same way that
Dirichlet priors (see §2.2.7).

Transition counter default value (a0). It is analogous toπo but it applies to transition proba-
bilities.

Covariance Matrix (Σ). All the Gaussians which define the observation probability are as-
sumed to have the same covariance matrix. It is also this covariance that is used for
the ITM algorithm.

Insertion Threshold (τ). This is one of the parameters of the ITM algorithm, it determines –
together with the covariance – the resolution of the discretization, as described in §5.4

Smoothing Rate (ε). As explained in §5.4, ε determines the rate of at which node weights adapt
to new data.

The algorithm is decomposed in three parts:

Topological map update. Lines2 - 4 use the ITM algorithm as a subroutine to update the topo-
logical map. It should be noted that later steps of the algorithm (lines5- 19) will need

3Indeed, this may be seen as an application of incremental EM to learn the prior and transition probabilities. The
interested reader is referred to [Neal and Hinton, 1998] for a more thorough discussion of this technique.
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to know which nodes and edges have been created and removed; henceit is necessary to
modify ITM_updateto store these in a temporary structures. An interesting observation
is that, although this step is relatively expensive (O(TN)) it is possible to update the map
immediately after receiving every observation. Moreover, if learning is performed in par-
allel with filtering or prediction, the code may be interleaved in the state filtering cycle,
thus, further reducing computation time.

HMM topology update. Lines5 through19 update the GHMM structure to reflect that of the
topological map. It is interesting to note that, if a linked list (cf. §4.5) is used to represent
the transition matrixA, then assigning 0 toγi, j is equivalent to deleting the corresponding
element from the list, which enhances both memory and time efficiency. An important
remark is that, when a new state is created, a self-transition is added to the structure. This
self transition, allows representing situations in which the state does not changes between
consecutive time steps. This does not necessarily mean that the continuousstate of the
object has not changed, but only that it is still in the same discrete region than in the
preceding time step.

Parameter update. The observation probability parameters are updated by copying the weights
of topological map tob. On the other hand,π andA are updated using forward-backward
probabilities to compute the expected values as in Baum-Welch.

5.7.1 Learning the covariance

One possible extension of the learning algorithm would be to learn the individual covariance
matrices of the observation probabilities. As a matter of fact, efficient incremental algorithms
exist to perform this computation [eg Li et al., 2003, Igel et al., 2006]. However, since the co-
variances are used to compute the Mahalanobis distance, using theses algorithms would modify
the ITM algorithm, with the following consequences:

• Since the distance criterion would not be uniform for all the space, it is notsure that
the properties of the ITM algorithm will still hold. Hence, further mathematical analysis
would be needed to ensure it.

• Due to the fact that the observations that have been already associated toa node in the
ITM determine its covariance matrix and, thus, the dimensions of its Voronoi regions, it is
possible to fall in a situation where the covariance matrix becomes progressively smaller
as time passes.

Some measures may be taken to tackle this problems, for example, it is possible to use a
fixed covariance matrix for the ITM algorithm and to learn different covariances for the HMM.
However, due to time limitations, we were not able to perform a deeper exploration of these
alternatives.
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5.8 Discussion

This chapter presented a novel extension of HMMs: Growing Hidden Markov Models, which
mainly differs from the standard technique in the fact that the model structure is not fixed,
but evolves continuously as more observations are available. Our approach is applicable to
those cases in which a Hidden Markov Model is used as a discrete approximation to model a
continuous state process.

The main insight behind GHMMs is that, since discrete states are obtained by discretizing
the state-space in regions, allowed transitions should be allowed only between neighbor regions.
Hence, the problem of structure learning becomes that of building a topological map, by dis-
cretizing the continuous state space into discrete regions and identifying neighboring regions.
In our approach, this is done by applying the Instantaneous TopologicalMap, a Topology Rep-
resenting Network which is well suited for correlated data such as trajectories. By integrating
the ITM algorithm with incremental parameter learning, we have been able to build a learning
approach which fulfills the three requirements that we have defined at the end of chapter4:

1. The algorithm learns both the parameters and the structure of the HMM.

2. The algorithm is incremental.

3. The learnt structure has an intuitive meaning, and it is simple enough to allowexact infer-
ence in real time.

Having presented GHMMs, we are now ready to explain how they may be used in the context
of motion prediction, which is the subject of the following chapter.
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Algorithm 7 : HMM-Update(O1:T ,Σ,τ,ε : U ,L ,W ,λ)

input :
Observation sequenceO1:T

Covariance matrixΣ
Insertion Thresholdτ
Smoothing factorε

modifies:
Topological map nodesU
Topological map edgesL
Topological map weightsW
HMM parametersλ = {π,b,A}

begin1

for t ∈ {1, · · · ,T} do /* Update the ITM */2

EnhancedITM_update(Ot)3

end4

for every new node i∈ U do5

πi = π0 ; /* initialize prior */6

ai,i = a0 ; /* initialize self-transitions */7

end8

for every node i that has been removed fromU do /* remove priors */9

πi = 010

end11

for every new edge(i, j) ∈ L do /* initialize transitions */12

ai, j = a013

a j,i = a014

end15

for every edge(i, j) that has been removed fromL do /* remove transitions */16

ai, j = 017

a j,i = 018

end19

for i ∈ U do /* update mean values from the ITM */20

µi = wi21

σi = Σ22

end23

Precompute forward (αi), backward (βi) and joint observation probabilities (pO) for24

the observation sequenceO1:T

for i ∈ U do /* incremental Baum-Welch */25

πi = πi +
αt(i) βt(i)

POK26

for j ∈ N (i) do27

ai, j = ai, j +
∑T

t=2 αt−1(i)p([St= j|[St−1=i] λ)p(Ot |[St= j] λ)βt( j)

∑T
t=2 αt−1(i)βt−1(i)28

end29

end30

end31
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Chapter 6

Learning and Predicting Motion with
GHMMs

– Would you tell me, please, which way I ought to
go from here?
– That depends a good deal on where you want to
get to – said the Cat.
– I don’t much care where– said Alice.
– Then it doesn’t matter which way you go – said
the Cat.

LEWIS CARROLL

Alice’s adventures in wonderland

6.1 Overview

In chapter5, we have presented GHMMs from a general perspective. In contrast, this chapter
focuses on the application of GHMMs as a tool which we use to predict the motion of pedestrians
and vehicles. Therefore, the issues addressed here – as well as theirrespective solutions – are
specific to this application and they probably may not be generalized to other domains.

Our application is based on the assumption that people and vehicles move in function of their
intention to reach a particular state (ie its goal): a car moves in a car park in order to stop at a
parking place, a person walks in an office with the intention to reach his desk, etc. Accordingly,
we model the object’s motion in terms of an extended state vector which is composed of two set
of variables describing itscurrentandintendedstates, respectively.

An important difference between our approach and other HMM based techniques is that
motion patterns are not defined in terms of typical trajectories. Instead, theyare determined by
the object’s goal: two objects are involved in the same motion pattern if they intend toreach
the same state. Under this interpretation, a motion pattern may be interpreted as theset of paths
which lead to a given goal1. As a consequence of this interpretation, the representation of motion

1Indeed, our representation bears some resemblance to Markov Decision Processes [Howard, 1960,
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patterns is no longer restricted to chains as illustrated in fig.6.1.

Figure 6.1: Example of a motion pattern defined in terms of a goal (orange node)

This chapter is organized as follows: in section6.2, we explain how the extended state
integrates with GHMMs to represent motion patterns. Section6.3discusses the use of our model
to predict motion, and how, thanks to the extended state, it is possible to predict the state that an
object intends to reach as a side effect of updating the belief state. In section 6.4 we describe
the particularities of learning in the context of this application. In section6.5 we illustrate our
approach using an example. Then, in section6.6, we compare our approach against existing
HMM based approaches. Finally, we present our concluding remarks for this chapter in section
6.7.

6.2 Probabilistic Model

Strictly speaking, our proposed motion model is a standard GHMM which may bemanipulated
using the techniques that we have already described in5. However, our definition of an extended
state in terms of the current object’s state and its goal2 has implications that need to be analyzed
in detail.

Until now, we have assumed that observations coming from sensors are available at every
time step. In this application, this assumption is not always true: while it still holds for the
current object state, it is no longer true in the case of goals.

In effect, by definition, the goal that an object aims to reach may not be observed – either
directly or indirectly – until the object has reached it, that is, when its trajectory has ended. On
the other hand, this situation does not arise in the case of learning becauseit takes complete
trajectories as input, meaning that the last observation for every trajectoryis known and, there-
fore, that goal observations (ie the last observation of a sequence) are available for the learning
algorithm.

This section describes how GHMMs are used to build motion models using our extended
state definition, it also details how to cope with goal observations, which, as we have shown, are
only available at the end of an observation sequence.

Cassandra et al., 1996], a popular probabilistic planning tool.
2Hereafter, we will use the terms “intended state” and “goal” interchangeably. Also, unless noted otherwise, we

will assume that the current and intended states are points in space, nevertheless, it should be noted that other state
definitions are also possible (egposition, velocity, size).
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6.2.1 Variables

In the context of this application, we would like to consider our probabilistic model at two
different levels. At the higher, more general level, our model behavesjust like a conventional
GHMM and the extended state is not different from other state definitions. At a lower level,
we want to distinguish between the current and the intended state, thence, we will decompose
the observation variable into a current component – denoted asO′

t – and an intended, or goal
component – denoted asO′′

t . This results in the following variables:

• St ,St−1, defining the current and previousaugmentedstates, respectively. These variables
take values inSk, which, as described previously, is the set of model’s states afterk trajec-
tories have been processed.

• Ot , which describes the current observation. Observations are assumedto be continuous
vectors inR

2D, whereD is the dimensionality of the standard state variable. As explained
above, observations are decomposed in two components representing thecurrent and the
intended state:Ot = [O′

t ,O
′′
t ].

6.2.2 Decomposition

At the higher level, the JPD decomposition is the same as for GHMMs:

P(St−1 St Ot) = P(St−1)P(St | St−1)P(Ot | St) (6.1)

However, at the lower level, observation variables actually represent the joint occurrence
of their current and intended components, which implies that observation probability may be
rewritten in terms of these components.

P(Ot | St) = P(O′
t O′′

t | St) (6.2)

we will assume that the current and intended components of the observations are conditionally
independent given the current state:

P(O′
t O′′

t | St) = P(O′
t | St)P(O′′

t | St) (6.3)

which permits us to rewrite the JPD in terms of the components of the observation variable:

P(St−1 St O′
t O′′

t ) = P(St−1)P(St | St−1)P(O′
t | St)P(O′′

t | St) (6.4)

6.2.3 Parametric forms

The parametric forms are essentially the same that for GHMMs (see chapter5), with some added
restrictions for the covariance of the observation probability:

• P(St). Will be represented as a multinomial, computed on the basis of the sum of expected
counts stored in a vectorπ.
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• P(Ot | St). Due to our conditional independence assumption, the observation probability
is written as a product of probabilitiesP(O′

t O′′
t | St) = P(O′

t | St)P(O′′
t | St). Let us define

those probabilities as:

P(O′
t | [St = i]) = G(O′

t ; µ′i , Σ′) (6.5)

and:

P(O′′
t | [St = i]) =

{
UO′′

t
if O′′

t is not available
G(O′′

t ; µ′′i , Σ′′) otherwise
(6.6)

whereµ′i andµ′′i are the mean values of the current state and the goal for statei; andΣ′ and
Σ′′ are the respective values of the covariance matrix for all the states.

By noting thatP(Ot | St) is either a product of Gaussians, or a product of a constant and a
Gaussian, we may it write this probability as a single Gaussian:

P(Ot | [St = i]) =
1
Z

G(Ot ; µi , Σ) (6.7)

whereµi = [µ′i ,µ
′′
i ], andΣ is a a block diagonal matrix3 having the form:

Σ =

[
Σ′ 0
0 Σ′′

]

(6.8)

And Z is a normalization variable, which permits to compute the uniform on the goal
component using the same Gaussian representation. This is done by assigning the same
value (egzero) toO′′

t whenever goal observations are not available, which is equivalent to
a multiplication by a constant, and – when normalized – becomes effectively equivalent
to a uniform.

• P(St | St−1). Finally, transition probabilities are storedA in the normal way for GHMMs,
ie as the sum of the expected counts for the transitions.

6.3 Inference

We predict motion using the same two steps we have already explained for GHMMs, that we
transcribe here for convenience. First, the belief state is reestimated:

P(St | Ot) =
1
Z

P(Ot | St) ∑
St−1

P(St | St−1)P(St−1 | Ot−1) (6.9)

3A block diagonal matrix is a square diagonal matrix in which the diagonal elements are square matrices of any
size and the off-diagonal elements are zero.
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it should be noted that, since goal observations are not available during prediction, observation
probabilities are computed using exp. (6.2), which only takes into account the current state:

P(Ot | [St = i]) =
1
Z

G([O′
t ,0]; µi , Σ) (6.10)

Then, the extended state is propagated to the required time horizonH:

P(St+H | Ot) = ∑
St+H−1

P(St+H St+H−1)P(St+H−1 | Ot) (6.11)

It is important to highlight the fact that the result of prediction is a probability distribution
over discrete states. Sometimes, we are interested in knowing the probability ofa particular
point in continuous state space, for example, in the context of motion planning. This may be
seen as the probability that a given state is observed in the future, and may be computed from
the predicted state as follows:

P(Ot+H | Ot) =
1
Z ∑

St+H

P(St+H | Ot)P(Ot+H | St+H) (6.12)

6.4 Structure and Parameter Learning

By introducing the intended goal into the state variable, we have obtained a state variable which
is a good approximation to acompletestate4. This makes it possible to apply algorithm7 and
perform parameter and structure learning in a straightforward fashion.

Thus, besides selecting the algorithm’s parameters, the only additional task that should be
performed is to preprocess trajectory data in order to include goal observations, before feeding
it into the learning algorithm. For every input sequence of observationsO1:T = {O1, · · · ,OT},
theaugmentedobservation sequencēO1:T is obtained by appending the last observation of the
sequence to every observation vectorŌ1:T = {[O1,OT ], · · · , [OT ,OT ]}.

This is similar to a supervised learning algorithm, where input data contains a label that
identifies the motion pattern that has been executed by the object.

6.5 Learning example: a Unidimensional Environment

In this section, we will illustrate with an example the process of applying our GHMM based
technique to a problem. Let use have the unidimensional environment depicted in fig.6.2, where
objects go from pointA (x = −5m) to pointB (x = 5m) or vice versa as indicated by the green
and blue arrows. We assume that the probability of observing motion in one sense or the other
is the same. Furthermore, we consider that objects move at 1m/s and observations about the
environment are sampled every second.

4A state is considered to becompleteif it is the best predictor of the future ,ie knowing the state, no prior variables
may influence the evolution of future states [cf.Thrun et al., 2005]
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Figure 6.2: Example unidimensional environment. Objects move fromA to B (blue) or fromB
to A (green).

6.5.1 Defining the state

It seems natural to start by defining the meaning of the state variable. A sensible choice is to
assume that discrete states will represent the object’s position. Thus, the extended state will be
a two dimensional variable, meaning that for every discrete statei there will be an associated
reference vectorwi = [xi ,x′i ], wherexi represents the object’s current position andx′i represents
the intended position.

6.5.2 Choosing the parameters of the learning algorithm

From the fact that the velocity at which objects move in the environment is 1m/s, and that ob-
servations are sampled every second, we know that objects may move 1 m atevery time step.
Therefore, we decide that 1 m is an adequate ’step size’ for the current state, and we set the
variance to the be the square of the step ’radius’Σ′ = [0.52]. With respect to goals, we may be
somewhat more flexible, and assume that two trajectories whose last states are within 2 m of
each other are indeed attaining the same goal, hence we set the intended statevariance to be
Σ′′ = [12].

For this particular case, we will set the insertion threshold to beτ = 1, because our assump-
tions about the discretization size have already been encoded in the covariances. An alternative
would be, for example, to increase the threshold and decrease the covariances. We do not want
the initially found states to be smoothed, hence, we set the smoothing factorε to zero.

We have now set all the parameters of our algorithm. It is very important to remark that we
have not made any assumptions about the number of goals in the environment,the number of
typical trajectories, or the size of the environments. Instead, we have used only our knowledge
about the sensors (ie sampling rate), the objects dynamics (ie velocity) and the semantics of the
state space (ie unidimensional positions). Therefore, these parameters may be applied toany
unidimensional environment having the same kind of objects and sensors.

6.5.3 Learned model

Let us assume that, when objects go fromA to B, the corresponding observation sequence is:

O1:11 = {−5,−4,−3,−2,−1,0,1,2,3,4,5} (6.13)

Of course, in most real situations, the observations will not be evenly spaced like these,
because of the combined effect of noise, the sampling time, etc. But, we wantto keep this
example as simple as possible.
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Now, we build the extended observation sequence, by appending the lastobservation in the
sequence to every individual observation:

Ō1:11 = {[−5,5], [−4,5], [−3,5], [−2,5], [−1,5], [0,5], [1,5], [2,5], [3,5], [4,5], [5,5]} (6.14)

If we plot the points in the sequence, and draw the respective Voronoi regions and Delaunay
edges, we will obtain something like fig.6.3.

-1-2-3-4-5 54321

x

0

x’

-5

5

Figure 6.3: Extended observation sequence plot and Voronoi Diagram.Voronoi region’s borders
are depicted in blue and Delaunay links in green.x andx′ axes are not at the same scale.

As we see, Delaunay edges5 form a unidimensional manifold, which is a good representation
of the structure of the input pattern. Our algorithm will add two transition probabilities for every
Delaunay edge, and one self transition by node. So, after processing the extended observation
sequence with the learning algorithm, we would obtain the GHMM illustrated in fig.6.4.

In the figure, the transitions which have the strongest probabilities are those which advance
the object towardsB, while the probabilities of staying in the same state are lesser, and those of
going backwards are close to zero. We may be tempted to remove those backward probabilities
since, after all, they do not seem to encode any useful information, but we should remember
that those edges were added before estimating the parameters, so it would not be possible to not
include them without additional knowledge.

On the other hand, these low probability transitions only imply a linear increment inthe
complexity of the model and, due to their low probabilities they do not significantlyaffect the
quality of prediction. Therefore, we considered that studying a mechanism to remove them is
hardly justified.

Let us assume that now, we observe the trajectory of an object which goes fromB to A, and
the corresponding observation sequence is:

O1:11 = {5,4,3,2,1,0,−1,−2,−3,−4,−5} (6.15)

5In this example, all Voronoi regions are infinite due to the fact that observations are all aligned over the same
straight line – we say of this points that they are not ingeneral position[cf. Guy, 1989] – hence, all borders are
parallel. In normal circumstances, they would be slightly misaligned, so that the borders would cut each other thus
defining finite regions.
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Figure 6.4: Learned GHMM after processing one kind of observation sequence. The size and
color of the arrows represent the probability.x andx′ axes are not at the same scale.

We may proceed as above, using our algorithm to update the model. At the endwe will
obtain the GHMM which is displayed in fig.6.5.
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Figure 6.5: Learned GHMM after processing the two kinds of observationsequences. The size
and color of the arrows represent the probability.x andx′ axes are not at the same scale.

It is worth noting that, if we had allowed transitions for all the edges in the Delaunay trian-
gulation, there would be edges joining both patterns. They are not there because our algorithm
forbids the creation of links which are much longer than the insertion threshold.

As we have shown in this example, our algorithm has obtained a good representation of
both motion patterns, without making any assumption about the number of typicaltrajectories
or discrete states in the model. We will not discuss prediction because it is performed using ex-
actly the same procedure than for conventional HMMs/GHMMs, except for the use of extended
observations.
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6.6 Comparison with existing HMM Based Approaches

One of the primary goals of this thesis was to develop a “learn and predict” approach, thus,
the main difference between our approach and other HMM based motion prediction techniques
is our incremental learning algorithm, however, this is not the only difference, we have also
made a different set of hypotheses and modeling choices with respect to most approaches in the
literature, which justifies a comparison in terms of this choices.

The two most important differences in our model with respect to other approaches are:

• We model motion patterns in terms of the intended state, while the ’standard’ approach6

is to consider that motion patterns correspond to “typical trajectories”.

• While other approaches constrain the structure of a motion pattern to be a chain, our
definition allows network-like structures, containing bifurcations and joiningpaths.

These two differences are relevant because they help to improve or solve on two problems
related to the use of chains as typical trajectories.

Model Redundancy

A first problem that arises from the representation of motion in terms of typical trajectories
comes from the fact that structures representing different motion patterns do not share states,
which leads to redundant models. A simple example of this situation is illustrated in fig. 6.6.
There are two similar typical trajectories (blue and green), which would be represented as two
independent chains (fig.6.6(b)) by applying the standard criterion. However, since both typical
trajectories end in the same state and most of the intermediate positions are very similar, our
algorithm would have produced something similar to fig.6.6(c)which is a much more compact
representation having the same expressivity.

(a) Typical Trajectories (b) Chains

Split

(c) GHMM

Figure 6.6: Shared state representation: Two typical trajectories (blue and green, left image)
may be represented using two chain-like substructures (center). An alternative (left) is to use a
single structure where the states shared by both structures (orange) appear just once.

An interesting situation arises when the occurrence probabilities for the different typical tra-
jectories are not the same. Let us suppose that, in the above’s example, thefrequency with which
the upper trajectory (green) is observed, is much higher than that of the lower one (blue). If we

6There are other goal oriented approaches in the literature (cf. §3.5.2) but here we are only considering state
space models.
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use chain-like structures, we may represent this by assigning a higher prior probability to the
upper chain; unfortunately, most existing approaches assume an uniform prior, thus neglecting
this information. By using our approach, the difference in frequencies would be encoded in the
outgoing transition probabilities of the split point in fig.6.6(c), where the object “chooses” to
follow one path or the other.

Despite the advantages of sharing the state, it seems reasonable to ask if thefact of aug-
menting the state space dimensionality will not lead to an indiscriminate increase in thenumber
of nodes in the Growing Hidden Markov Models (GHMM), thus affecting theapplicability of
this approach. The answer is no – at least when compared with typical trajectories approaches
– because, in those approaches, two trajectories having different final states will, most likely, be
represented as two different typical trajectories, thus leading to an increment in the number of
nodes in the HMM which is, in the best case, equivalent to our approach.

A weakness that our algorithm shares with other approaches is its assumption that input
trajectories have been correctly identified and segmented in a previous step.As we will see in
chapters7 and8, this is not always the case, resulting in the addition of nodes for non-existent
behaviors.

Pattern “Pieces”

When chains are used, transitions between different structures are not allowed, hence, the model
is not able to explain motion patterns which are composed of “pieces” of existing patterns, thus
ignoring valuable information which is already available. An example of this problem is depicted
in fig. 6.7.

A

(a) Typical Trajectories

A

(b) Chain-like

A

(c) GHMM

Figure 6.7: Example of a situation where pattern “pieces” may be recombined toexplain new
behavior.

Model semantics

A deeper issue comes from the semantics of this “typical trajectories”. Theyare always defined
in terms of similarity, distance or other geometrical or statistical criteria without any reference
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to the actualcausesor factors that motivate motion. Therefore, these approaches do not address
the crucial question “why are trajectories typical?” which – from our pointof view – needs to be
answered in order to produce truly generative models of motion. On the other hand, modeling
motion causes is difficult in the case of people, because it implies taking the intentional stance
towards moving objects. We consider that, although our approach is far from being a satisfying
intentional model, it stands closer to a causal explanation of motion due to the fact that it is
based on a rough model of intentions.

6.7 Discussion

In this chapter we presented the application of Growing Hidden Markov Models to learn and
predict human motion. Our application is based on the hypothesis that motion is mainly deter-
mined by the object’s intention to reach a particular state. We have explained how this intention
is explicitly modeled by extending the definition of state in order to accommodate notonly the
current physical state of the object, but also the intended one.

We explained the particularities that should be taken into account to include theextended
state into the GHMM formalism. We also provided a simple example of how a concreteproblem
may be solved using the proposed approach, and illustrated how no assumptions need to be made
about the number of discrete states or the number of motion patterns to be learned.

We have compared our approach against other motion prediction techniques based on HMMs,
explaining how our proposal leads to improvements in the compactness and thegenerality of the
model.

Recapitulating, the technique we have presented:

• Is able to learn the structure and the parameters incrementally.

• Works on simple parameters which work on assumption about the dynamics of the objects
and the capacities of the sensors, without requiring prior knowledge on the size of the
environment or the number of motion patterns that objects execute in it.

• Produces models which are both rich and conceptually sound.

This concludes the exposition of the theoretic aspects of our work. The next part of this
thesis is dedicated to the experiments we have performed to evaluate our approach.
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Part IV

Experiments
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Chapter 7

Experimental Platform

7.1 Overview

All of the experiments that we will present in this thesis are based on observation sequences
which have been gathered on three different environments: the INRIA entry hall, the INRIA’s
parking, and a parking lot at Leeds University. One of the major difficulties we have faced during
our research has been the acquisition of data coming from real sensors, hence, we have resorted
to the use of synthetic data in order to complement our real data sets.

This chapter presents the three environments and discusses the obtention of the related data
sets.

7.2 INRIA entry hall.

6

3

2
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1

4

(a) video view

6

32

5

1

4

(b) floor plan

Figure 7.1: Inria’s main lobby and some landmarks:1) directory post, 2) front desk, 3) coffee
area, 4) auditorium entrance, 5) entry stairs, 6) directory post.

The INRIA entry hall (fig.7.1) features the main entrance to the building, two information
directory posts, the front desk, a coffee area and a number of doorsleading to various halls,
rooms and auditoriums. This environment is the heart of the institute, all the personnel passes
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through it at some point of the day for a reason or another (going in or out, coffee break, attending
a lecture, etc.)

The most interesting feature of this environment is that it is – mostly – an open space.
Since the environment’s landmarks (eg front desk, doors) condition the way people moves, this
environment may not be considered as completely unstructured. On the other hand, it is still
very different from parking lots where the paths – at least for the vehicles – are made explicit by
visual cues (egfloor markings) and physical obstacles (egsidewalks).

On this environment we have obtained both real data coming from a tracker system, and
synthetic data generated with a simulator. We will explain both cases in the rest of this section.

7.2.1 The visual tracker

camera
visual

tracker

distortion

correction
projection

video stream

position

and size

(image)
data set

position

and size

(plan)

Figure 7.2: Architecture of the visual tracking system (top). An observation sequence presented
in the image (bottom-left), and its projection in the floor plan of the environment (bottom-right).

To gather observations about the motion performed in the entry hall, we haveused a visual
tracking system for one camera mounted in a corner. The tracker has been developed by Gravir’s
team Prima and is described inCaporossi et al.[2004]. The system detects and tracks moving
objects in a video stream coming from the camera. The collected information consists of the
position and size (ie width and height) of the moving object in image’s coordinates. This in-
formation is then projected into the floor plan of the environment. The data flow of the overall
system is depicted in Fig.7.2. It features the detector-tracker, a module to correct the distortion
of the video camera, and a final module to project the information on the floor (ie the world
plan). These modules are detailed in the upcoming paragraphs.

Camera and Tracker

A single wide-angle camera mounted over one of the lobby’s corners is used. The camera is
directly connected to the host computer. The tracker processes raw datacoming from the camera
and outputs data consisting of sets of observations, (ie frames), that the tracker sends at regular
time steps. Every observation consists of an identification number (ID), thex andy coordinates
of the moving object’s gravity center in the image coordinate system, the width andheight of the
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object’s bounding box and the orientation of this bounding box. Thus, a trajectory is represented
as a sequence of such observations from track creation until termination.

Distortion correction and homographic projection

Due to the use of a wide-angle lens, the image is subject to heavy distortion, which must be
corrected before projecting the image into the world coordinate system. We have used four-
coefficient distortion correction as described inZhang[2000].

A side-effect of the undistortion technique we have used is that a part ofthe image is clipped,
thus reducing the portion of the environment which may be observed. On theother hand, the
part that is lost corresponds to those places that are farther away from the camera (see fig.7.3),
where tracking performance is bad anyway.

(a) original (b) undistorted

Figure 7.3: Distortion correction on hall images. The effect is noticeable in the curvature of the
left white line which appears in both images. Remark that a part of the originalimage is lost in
the process

The corrected target gravity centers are multiplied by a precalculated homography matrix in
order to project them into the world plane. It is worth noting that – most often –the target’s center
corresponds to a point which is located higher than the floor level, thus an error is introduced by
projecting it into the floor. However, as the error is consistent for targetsof similar height, we
have decided that it is acceptable at this stage of our work.

Data Association

Due to the fact that we have an environment where there are multiple objects moving at the same
time, the tracker does not always keep the ID of an object for all of its trajectory, which is a re-
quirement for our approach. Hence, in order to improve ID keeping, wepost-process projected
data applying the Joint Probabilistic Data Association (JPDA) algorithmBar-Shalom and Fortmann
[1988] the fact of applying the algorithm on the world coordinate system helps to calibrate and
improve the results of the tracking algorithm.
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7.2.2 The simulator

The simulator we have developed relies upon a number of control points representing “‘places
of interest” of the environment such as the doors, the front desk, etc.

Based upon this set of control points, a set of typical motions patterns hasbeen defined.
Each motion pattern consists of a sequence of control points to be traversed.

A trajectory is simulated in the following way: first, a motion pattern is randomly chosen.
This motion pattern provides an ordered list of control points to which some Gaussian noise is
added. Finally, motion between two control points in the list is simulated using discrete, even-
size steps in in the direction of the next control point, corrupted with Gaussian noise. Switching
from one control point to the next one is done when the distance to the current control point is
below a predefined threshold. We have assumed a frame rate of 10Hz for our simulation. This
process will be explained further when talking about Inria’s Parking environment.

7.2.3 Data sets

We have collected real data during a week at different moments of the day,obtaining more than
3000 observation sequences. After filtering those sequences which where too short (less than 50
observations) or too long (more than 250) we kept a total of 2048 sequences, which are shown
in fig. 7.4(a). For the sake of comparison, a set of 2000 synthetic sequences is presented in fig.
7.4(b).

(a) real

(b) synthetic

Figure 7.4: Hall data sets.

A first thing to notice is that trajectories in real data are sharply cut at the right and upper-
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Figure 7.5: Anomalous trajectories.

right. This is a consequence of clipping during distortion correction (see §7.2.1). Conversely,
synthetic data covers most of the floor plan.

As we might expect, synthetic data looks much more ordered and uniform thanits real coun-
terpart. However, this difference does not only come from the richer set of motions that humans
may execute, but also from a number of sensor limitations. For example, some trajectories seem
to pass through the front desk, which is probably due to tracking problems.

A problem which has more important consequences for our approach is posed by “anoma-
lous" trajectories (fig.7.5) which are due to tracking errors and do not correspond to real motion,
or at least to complete motions. The problem is that these trajectories should not be used for
learning, but they may not be automatically filtered because they are very hard to characterize.
This seems to be a limitation of most current visual tracking systems, and most reported experi-
ments on pattern based motion models use data sets which were corrected by hand [eg Hu et al.,
2004b, Dee and Hogg, 2004]. In contrast, we have decided to keep data “as is”. We are aware
that this will degrade the quality of our results for this data set, neverthelesswe consider that
it is worthwhile to test our approach against these conditions which, unfortunately, seem to be
common to most current visual trackers.

A final difference between both data sets which is worth of notice is that there were some
landmarks in the real environment that were not taken into account in the simulation. Two
examples are the front desk and the door which is located near the bottom left corner of the floor
plan.

7.3 Leeds parking data

The second experimental environment used in this thesis is a parking lot located at the University
of Leeds1. This environment has at least two important differences when comparedwith the IN-
RIA’s entry hall: first, it is populated by two types of moving objects (vehiclesand pedestrians);
and second, at least for vehicles, it is more structured than the hall environment.

1We would like to thank Hannah Dee and the University of Leeds for letting us use this data set.
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The conditions on which data has been captured also differ from the hall environment. The
video input has been captured by a camera located high above the parking, hence, a wide area
is covered and the projective distortion is less pronounced than in the hall. As a matter of fact,
we have decided to conduct our experiments in the image plane, thus eliminating the need for
distortion correction and projection into the ground plane.

The tracking system used on this environment [Magee, 2004] is also different from the one
already presented, but the main difference is that the trajectories have been hand-edited to correct
problems like those we have discussed in the previous section. An indicator of the magnitude of
this work is that approximately 20% of the 269 trajectories in the data set have been altered in
some way, and some have been entirely tracked by hand [Dee, 2005].

Unfortunately, the reliability of this data set has a cost, and the number of trajectories in
this data set is reduced. As a consequence, several behaviors are observed only once, hence,
although they are learned, there are no more examples of the same motion pattern to evaluate
the quality of the learned pattern.

The complete data set is depicted in fig.7.6.

Figure 7.6: Leeds data set.

7.4 INRIA parking data

Due to the difficulty in acquiring data, we have decided – in addition to the real data sets that
we have discussed above – to develop further our trajectory simulator (see §7.2.2) to dispose
of a more thorough experimental testbed. This allows us to test particular situations without
the logistic difficulties posed by executing scripted actions in a real environment as the INRIA’s
parking. It is also a practical way of generating big volumes of testing data which is free of the
problems that are common to tracking systems.

In order to run a simulation, a graph-like structure should be defined (fig.7.7). Nodes of
the graph represent control points with an associated speed and positionvariance. They also
have flags indicating whether they are the start or end points of a trajectory(or none). Nodes are
connected by links, which indicate the possibility to go from one node to another.
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Figure 7.7: The trajectory simulator. Circled arrows represent control points: arrow size and
color correspond to position variance and speed, respectively.

Once this graph has been defined, the simulator works by choosing at random a start and
an endpoint (according to the corresponding flags), and then obtaininga sequence of nodes by
finding the shortest path between the start and the end point. For every node in the sequence,
a point is generated by adding Gaussian noise to the node’s position. Finally, the trajectory is
generated by applying spline interpolation to the point sequence and subsampling it according
to the simulated sampling rate and object’s speed. As for the entry hall simulations, we have
assumed a frame rate of 10Hz.

Fig. 7.8 shows an example trajectory data set obtained from the configuration shownin
fig. 7.7.

7.5 Discussion

In this chapter we have presented the different environments and data acquisition platforms that
we have used for our experimental work. For the case of real data, wehave illustrated the
difficulties that arise in the use of visual trackers as input systems for ourapproach and we have
illustrated how some of these difficulties may be addressed. We have also explained our choice
of using also synthetic data in our experiments.

The following table resumes the data acquisition platforms we have discussed inthis chapter.
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Figure 7.8: Synthetic parking data set, from the model displayed in fig.7.7

Abbreviation Environment Type Observation Object’s speed Trajectories
IHR INRIA’s Hall real x,y variable 2,048
IHS INRIA’s Hall synthetic x,y constant as needed
LP Leeds’ Parking real x,y variable 269
IP INRIA’s Parking synthetic x,y,x′,y′ variable as needed

Every one of these combinations has interesting features which make them worth of analysis.
We have two very different real data sets; one (IHR) consists on the raw output of the tracking
system, covering a relatively small area, the other one (LP) has been manually cleaned, and
covers a wide area, having two types of moving objects.

Synthetic data has also interesting differences. Hall data (IHS) comes from a small set of
prototypes and all the objects are assumed to move at the same speed. Parking data, on the other
hand, may correspond to very big number of prototypes and assumes thatobjects with variable
speed. This last data set is also the only one to include richer observations, which include the
object’s speed. This makes it useful to test how our approach works onhigher dimensional
spaces.

As a concluding remark for this chapter, we will like to note that some tracking related
problems have yet to be solved – or improved upon – in order to automatically produce the kind
of data that our approach requires as input. In particular, we should stress the fact that robust
data association – keeping a single identifier for an object while it is presentin the environment
– is indispensable for our approach to work.
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Chapter 8

Experimental Results

First you guess. Don’t laugh, this is the most
important step. Then you compute the
consequences. Compare the consequences to
experience. If it disagrees with experience, the
guess is wrong. In that simple statement is the key
to science. It doesn’t matter how beautiful your
guess is or how smart you are or what your name is.
If it disagrees with experience, it’s wrong.

RICHARD FEYNMAN

From a PBS Show

8.1 Overview

We have thoroughly tested our approach on the input data sets presentedin chapter7. Most of
our experiments have been centered around the following key questions:

1. Learning performance.Does learning produce “appropriate” motion models? does it
converge?

2. Prediction accuracy.How close are predicted states to real observed motion?

3. Real-time applicability.Are learning and prediction fast enough to work at camera rate?

4. Generality. Is our approach general enough for general motion prediction? (eg cyclic
motion, higher-dimensional states).

The objective of this chapter is to present our experimental work on answering these ques-
tions. We will start by explaining some implementation issues, as well as discussing examples
of the application of our approach to the different data sets. Then we will continue by providing
numerical measurements of the behavior of our approach as related to ourkey questions, and
close the chapter with a general discussion of our results.
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8.2 Examples

In this section we present some examples of our approach at work in the different environments,
without going into more technical details such as choosing the algorithm’s parameters or data
preprocessing.

8.2.1 The INRIA hall

Figure8.2shows a typical example of the prediction process using the IHR data set. Itconsists
of a set of images arranged in columns and rows. Rows correspond to different values oft.

The left column shows the mean value of the predicted states for different timehorizons
going fromH = 1 to H = 15, whereH represents the number of time steps to look ahead in the
future. These mean values are displayed as points colored from blue (for H = 1) to green (for
H = 15).

The center column shows the probability of observing a particular state forH = 15, it has
been computed by applying eq. (6.12) to the cells of a regular grid. Since the augmented state is
4-dimensional at least, we have chosen to project the probability over the current position plane,
thus not showing the predicted goal.

The right column displays the current (H = 0) estimated goal. Similarly than for the center
column, we have applied eq. (6.12) to the cells of a regular grid, but this time we have projected
the probability over the intended position (goal) plane.

Images in the three columns share some elements (see fig.8.1): a) the complete sequence
of observations up to the currentt, which is depicted as a series of red points; b) the current
state and goal estimations, or expected values, which are pictured as red and yellow ellipses,
representing the probability covariance.

ObservationsState estimation

Prediction means

Goal estimation

Figure 8.1: Common elements in prediction example images.

The images fort = 1 are interesting because of several reasons. When observing the envi-
ronment, the person seems to “appear” in the middle of the hall, which is neither an entry/exit
point nor a place where people stops for a while. This is a typical situation on this data set, and
is due to the track initialization scheme used by the visual tracker.

Also noteworthy is the fact that, even having a single observation, the estimated probability
for some goals (right image) is already high. At the same time, these goals are at opposed
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sides of the environment, which seems reasonable: since only one observation is available and
– for this data set – it does not include velocity, there is not enough information yet to infer the
persons’ direction. This is reflected in the roughly bimodal form of the predicted state (middle
image). This also explains why the prediction means in the left image are centered on the
persons’ position.

In rows t = 5 andt = 8 it is possible to observe two parallel situations: the decrease of the
estimated right goal probability and the emergence of a bimodal state predictioncorresponding
to the two left goals. At this moment, prediction means are also clearly orientated tothe left.

At t = 11 the right goal has completely disappeared, and the same is starting to happen to
the lower left goal. Att = 15 the final goal has been clearly identified, and the prediction means
may be effectively regarded as the predicted trajectory which, in fact, is very close to the actual
one followed by the object until it reaches its destination att = 44. Indeed, in this case, the
output of prediction algorithm closely resembles Kalman filter-based prediction once the goal
has been identified.

8.2.2 Leeds data

Figure8.3 show an example prediction sequence on the LP data set. Instead of describing the
process in detail, we will focus on the difference with respect to the previous example.

A first contrast to notice is that predicted states atH = 15 seem to be considerably closer to
the current object position. The reason is that, in this data set, objects move very slowly with
respect to the size of the image.

Another distinctness of this data set is that it includes two types of moving objects (ie pedes-
trians and vehicles). Since these objects follow different motion patterns, this has considerable
influence in the prediction process. For example, fort = 1, we may see that there are two highly
probable goals. This is interesting because they correspond to a pedestrian’s destination (the
building entrance) and a vehicle’s destination (a lane’s end). As the vehicle moves further, it
becomes quickly associated with a vehicles’ motion pattern and, byt = 82 the only two goals
with a significant probability correspond to vehicles’ destinations.

Also worth of notice is the fact that observations for this data set are expressed in camera
coordinates, instead of referred to a floor plan. It is even possible to perceive the effect of the
projective distortion: as the object gets closer to the camera, the gap between the predicted state
and the object estimated position seems to increase.

8.2.3 INRIA parking data

Our final prediction example is based on the IP data set which, besides being synthetic, has the
distinctive feature of including velocities in the observations. The corresponding images are
displayed in fig.8.4.

Something that makes this example stand apart from the others is the bigger number of goals
in the environment. This is patent, for example, in rowt = 38, where goals having a significant
probability roughly cover half of the environment. Of course, this situation changes as the car
continues to move and byt = 49, there are only two zones having a high probability of being the
goal.
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(a) t = 1

(b) t = 5

(c) t = 8

(d) t = 11

(e) t = 15

(f) t = 25

(g) t = 44

(h) structure

Figure 8.2: Prediction example. Hall environment–real data (IHR).
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(a) t = 10

(b) t = 30

(c) t = 82

(d) t = 110

(e) t = 148

(f) structure

Figure 8.3: Prediction example (Leeds environment).
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(a) t = 38

(b) t = 49

(c) t = 60

(d) t = 98

(e) t = 120

(f) structure

Figure 8.4: Prediction example (parking environment).
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Having so many possible goals also influences the shape of the predicted state probability,
which may become quite irregular, as fort = 49. This irregularity is also an indicator that a
big number of alternative hypotheses that are being taken into account, which is unavoidable
without additional information such as the free or occupied status of parking places.

Something that may not be appreciated in the images is that predictions are made interms of
the full state. This means that velocity information is also taken into account in order to increase
the selectivity of the model.

8.3 Quantitative Results

In this section, we present the results of the experiments we have carried out in order to answer
our key questions.

8.3.1 Parameter selection

For the purpose of studying the sensibility of our approach to parameter changes, we have used
six sets of parameters in all our experiments, as described by the following table:

Data Set Units Parameter Set Threshold σpos σvel σgoal

IHR decimeters

Guess 4 15 – 25
Low CV 4 12 – 20
High CV 4 20 – 30
Log IT 3 15 – 25
High IT 6 15 – 25
Best 9 12 – 20

IHS decimeters

Guess 4 15 – 25
Low CV 4 12 – 20
High CV 4 20 – 30
Low IT 3 15 – 25
High IT 6 15 – 25
Best 9 12 – 20

LP pixels

Guess 4 10 – 20
Low CV 4 7 – 10
High CV 4 12 – 20
Low IT 3 10 – 20
High IT 6 10 – 20
Best 9 7 – 20

IP meters

Guess 4 2 0.04 5
Low CV 4 1.5 0.04 3
High CV 4 3 0.04 6
Low IT 3 2 0.04 5
High IT 6 2 0.04 5
Best 9 1.5 0.04 4
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In all cases, we have assumed spherical covariances for the state variables, hence the table
only displays the corresponding standard deviation. In other words, for the IP data set, the
covariance matrix has the form:

Σ =











σ2
pos 0 0 0 0 0
0 σ2

pos 0 0 0 0
0 0 σ2

vel 0 0 0
0 0 0 σ2

vel 0 0
0 0 0 0 σ2

goal 0
0 0 0 0 0 σ2

goal











And, for all other data sets:

Σ =







σ2
pos 0 0 0
0 σ2

pos 0 0
0 0 σ2

goal 0
0 0 0 σ2

goal







For every data set, parameters were fixed as follows: the first parameterset corresponds to
an initial guess; the “Low CV” and “High CV” parameters correspond to smaller and bigger
covariance values, respectively; the “Low IT” and “High IT” do the same thing for the insertion
threshold; the last parameter set is the best one we have found with respect to its parsimony and
prediction accuracy, in all cases it was obtained by trial-and-error over several combinations of
insertion threshold and covariance values.

8.3.2 Measuring prediction accuracy

A common performance metric for probabilistic approaches is the maximum data likelihood or
approximations like the BIC (see §4.6). However, for our particular application, this metric has
the drawback of not having any geometric interpretation. Intuitively, we would like to know
how far was the predicted state from the real one. Hence, we have preferred tomeasure the
performance of our algorithm in terms of the average error, computed as the expected distance
between the prediction for a time horizonH and the effective observationOt+H .

〈E〉 = ∑
i∈S

P([St+H = i] | O1:t)‖Ot+H −µi‖
1/2 (8.1)

for a single time step. This measure may be generalized for a complete data set containingK
observation sequences:

〈E〉 =
1
K

K

∑
k=1

1
Tk−H

Tk−H

∑
t=1

∑
i∈S

P([St+H = i] | Ok
1:t)‖Ok

t+H −µi‖
1/2 (8.2)

It is worth noting that, as opposed to the standard approach in machine learning of conduct-
ing tests using a “learning” and a “testing” data sets, the experiments we havepresented here
will use only a single data set. The reason is that, since learning takes place after prediction,
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there is no need to such separation: every observation sequence is “unknown” when prediction
takes place.

8.3.3 Hall real data (IHR)

For this data set we have performed some minimal preprocessing. In additionto the Joint Prob-
abilistic Data Association (JPDA) filtering we have already discussed in §7.2.1, we have sub-
sampled data by using only one out of three observations as input for ouralgorithm. The reason
is that the position change that may be observed for pedestrians at full camera rate is far smaller
than the detection noise: even assuming a relatively high mean speed of 5Km/h, the position
change between two consecutive frames at 24f rames/s is about only 6cm. Building a model
with the required resolution would be very expensive with only marginal benefits, if any, due to
the high noise/signal ratio.

Fig. 8.5displays the behavior of our algorithm on a subset of 500 trajectories forthe different
parameter sets listed in §8.3.1. The left graph displays the evolution of the average mean error
with respect to the number of trajectories that have been processed. Thegraph on the right shows
the evolution of the number of edges in the model, as a measure of the model’s size.
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Figure 8.5: Parameter sensibility (IHR data set)

A first thing to notice is that higher covariance values lead to a reduced number of edges at
the cost of an increased error measure. This is a natural consequence of the fact that the “grain”
of the discretization is in part determined by the covariance. Respectively,lower values for this
parameter reduce the error measure, but increase the model’s size. It also appears that changes
in the covariance are roughly proportional to changes in the number of edges.

However, the insertion threshold behaves less predictably, in particular inthe case of higher
values, which does not seem to affect the error measure considerably. This suggests that the
model’s size may be decreased without sacrificing accuracy by using relatively high insertion
thresholds. In fact, the best parameter set has been obtained by simply increasing the inser-
tion threshold of the low covariance parameter set, obtaining a comparable performance while
dividing the model size by two.
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The rest of our analysis for this data set will focus on results obtained withthe best parame-
ters. Fig.8.6(a)shows the evolution of both the model’s size and the average error as a function
of the number of processed trajectories. The first thing that may be noticedis that the model
seems to be overfitting data. While the mean error starts to decrease very slowly after about 150
trajectories have been processed, the number of edges is still increasingat an almost constant
rate. In other words, the model’s growth has no important repercussionson prediction accuracy.
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Figure 8.6: Error and computation times for the best parameters (IHR data set). Please take note
that computation times are given per-observation.

After investigating the reasons for this effect, we have found out that themain cause is the
trajectory splitting phenomenon already discussed in §7.2.3. Basically, observation sequences
corresponding to single actual trajectories are being identified as independent, shorter trajecto-
ries. As a consequence, our algorithm identifies the ends of these smaller trajectories as goals
and increasing the number of nodes and edges in the model accordingly. As we will see, this
conclusion is supported by the results obtained with the other data sets, whichare not subject to
trajectory splitting.

In our opinion, this is one of the most significant problems faced by learningbased motion
prediction. Nevertheless, the importance of this problem has not been adequately highlighted
by the existing literature. As a matter of fact, practically all the body of experimental work
we have reviewed consists either of relatively small data sets obtained through more accurate
(eg laser) sensors [eg Bennewitz et al., 2005] or has been preprocessed by humans [eg Dee,
2005, Hu et al., 2004b]. We will discuss this problem further at the end of this chapter and in
chapter9.

Fig. 8.6(b) shows a plot of the time taken by prediction and learning with respect to the
number of trajectories that have been already processed, the number ofedges is also plotted
as a reference. Times are given per-observation, hence, in the caseof learning, they should
be multiplied by the length of the observation sequence, which for this data setwas 50 on the
average. As it may be expected, the increase in processing time has the sameform than the
model’s growth. Since, as explained above, the model is too big, prediction istoo slow for real
time with about 0.2 seconds per observation in the worst case.

On the other hand, learning, in the worst case, took about 40 ms per observation, which
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multiplied by the average 50 observations per trajectory gives a learning time of 2 seconds per
trajectory, which we think is acceptable, given that learning takes place once the object has
stopped moving.

Finally, we may observe that around the 330th trajectory, there is a sharp spike in processing
times. This situation, which we will also observe in the other data sets, has beencaused by some
unrelated process which has been executed concurrently with our tests thus reducing available
CPU time for our task.

8.3.4 Hall synthetic data (IHS)

In contrast with real hall data, this data set has not required a subsampling step since we have
simulated a frame rate of 10 Hz. As for real data, we have processed a data set consisting of 500
trajectories, using the same set of parameters listed in §8.3.1.

Fig. 8.7 shows the parameter sensibility analysis for this data set where, as it may be ex-
pected, relative differences between parameter sets behave in a very similar manner to what
has been described for real data. On the other hand, both the mean error and model size are
considerably smaller.
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Figure 8.7: Parameter sensibility (IHS data set)

The differences with respect to the real data set become more evident when analyzing the
evolution of the model’s size and the average error (fig.8.8(a)). The overfitting phenomenon
observed on real data is not observable here, and the model size seemsto converge together with
the number of edges.

As for computation times (fig.8.8(b)), we may observe that, again, the general form of
the curve tends to follow that of the model size. This similarity notwithstanding, there is an
important difference in the range of the curve. Now prediction time per observation is below
40 ms most of the time, with exceptions corresponding to reduced CPU time due to multitasking.
This is suitable even for full camera frame rate operation at 24 Hz.

The same time improvement is observed in the case of learning times, with the same average
trajectory length of 50 observations, now it takes only about 0.5 s to learn anew trajectory.
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Figure 8.8: Error and computation times for the best parameters (IHS data set)

8.3.5 Leeds parking data (LP)

This data set has at least four features that make it very different from hall data: there are two
different kinds of objects (vehicles and pedestrians) moving at very different speeds; prediction
takes place on the image coordinate system; the number of available trajectoriesis limited; and,
finally, there are some trajectories which correspond to motion patterns that have been observed
just once. All these factors lead are reflected in the corresponding experimental results.

For this data set we have again performed a one out of three subsampling,for the same
reasons already explained for data set IHR. However, if only cars were presented on the scene,
it would be possible to go without subsampling, since cars move much faster than pedestrians.

As shown in fig.8.9, parameter sensibility works similarly to the other experiments even if
“Low COV” parameters seem to produce a slightly more important model size increase than in
previous cases.
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Figure 8.9: Parameter sensibility (LP data set)
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The growth in model size and the error evolution with respect to processedtrajectories (fig.
8.10(a)) were distinctive. There seems to be an overall convergence processcombined with
sudden stair-like increases in both model size and average error (see for example the graph at
100, 160 and 250 processed trajectories). Actually, these increases correspond to the unique
motion patterns that we have mentioned above.
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Figure 8.10: Error and computation times for the best parameters (LP data set)

As for previous cases, learning and prediction processing times increase according to the
growth in model size. Moreover, even in the worst case, prediction doesnot take more than 25 ms
per observation, which is almost the double than normal camera frame rate. As for learning, it
has always been less than 1 s per trajectory.

8.3.6 Inria parking data (IP)

This last data set presents has two distinctive features: observations include velocities, meaning
that the learnt structure occupies a six-dimensional manifold; and a big setof possible destina-
tions, with about 90 parking places. As we will see, our algorithm performssurprisingly well,
taking into account this added complexity.

In the parameter sensibility graphs in fig.8.11we see that, in general, the algorithm behaves
as normal, but for this data set the best parameter set has produced the smallest model – by a
small margin – while having the second best average error.

Given the size of the data set and its features, it was surprising to find outthat the error
evolution and growth (fig.8.12(a)) in model size performed that well, with a final number of
edges below 1500 despite the big number of goals (compare with the IHS). Webelieve that the
main reason for this reduced size is that, due to the environment’s structure,trajectories leading
to goals in the same area tend to share a considerable number of states.

Because of the moderated model size, time performance was correct, with a prediction time
of little less than 60 ms, and an average learning time of about 3 seconds after500 processed
trajectories. Even if prediction times are slightly slower than camera frame rate,we think that
these are very good results, taking into account the characteristics of thisdata set.
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Figure 8.11: Parameter sensibility (IP dataset)
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Figure 8.12: Error and computation times for the best parameters (IP data set)

8.4 Modeling motion with cycles

A question that has been often posed to us is how our approach deals with motion patterns
containing cycles. As an example, let us imagine an 800 m track running event, where runners
have to go two times around the circuit in order to finish the race. It is evidentthat the situations
at 395 and 795 meters are very different, in the first one, the competitor willcontinue to run for
another turn, while in the second one it will stop after five meters. Since our motion prediction
approach as it is defined, only distinguishes discrete states in terms of their position and speed,
it is not able to deal with this situation, resulting in equiprobable predictions of stopping and
continuing at both 395 and 795 meters.

Although this example may seem contrived, this situation arises frequently forother kinds of
motion, for example for gesture recognition. Here, we propose a simple solution to this problem:
including the time variablet in observations. To illustrate this, we have prepared a synthetic data
set consisting of two symmetric motion patterns presenting several nested cycles (see fig.8.13).
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The only difference between both of them is that one always turns to the left and the other one
to the right.

Figure 8.13: Example of cyclic trajectory. The time axis goes from 0 to 450. Notice how it
always turns to the right, the other pattern is similar, but it only has left turns.

Of course, including thetimevariable on observations implies augmenting the observation
covariance matrix, for our example it has the form:

Σ =









σ2
pos 0 0 0 0
0 σ2

pos 0 0 0
0 0 σ2

goal 0 0
0 0 0 σ2

goal 0
0 0 0 0 σ2

t









Without going into the parameter details, fig.8.14illustrates our algorithm working in this
data set, here the structure for the two motion patterns may be clearly seen at the bottom, where
gray corresponds to left turns and green to right ones.

Notice how object’s positions fort = 20, t = 60 andt = 100 are very similar. Nevertheless
predictions are clearly different. Att = 20 the object has not even turned, hence, the estimated
probability for both goals practically the same. After one turn, att = 20, the algorithm has
identified the left turning motion pattern, and it predicts that the object will still perform one
more small turn. Finally, att = 100 the algorithm recognizes that the object has performed two
small turns and thus predicts that the object will continue to follow the big one.

As our example shows, by simply redefining observations, our algorithm is able to deal with
cyclic motion patterns without further modifications. Moreover, moderated temporal misalign-
ments may be easily dealt with by increasing the value ofσt .
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(a) t = 1

(b) t = 20

(c) t = 60

(d) t = 100

(e) structure

Figure 8.14: Prediction example for the cycle data set.
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8.5 Discussion

In this chapter, we presented the results of applying our learn and predict approach to the data
sets introduced in chapter7, with the intention of studying four points: a) the performance of
the learning algorithm; b) the accuracy of the obtained predictions; c) the real time applicability
of the whole approach; and d) the generality of our approach and its applicability to data sets
having higher dimensions, or containing cyclic motion.

We illustrated with examples how our algorithm behaves on the different environments, il-
lustrating along the way some of the problems which arose in the implementation. We explained
the need for a performance measure, and proposed the average prediction error to evaluate our
algorithm. Finally, we presented the quantitative results we have obtained using different sets of
parameters for every data set.

The somewhat bad results that we have obtained with the “raw” IHR data set,highlight an
important problem of our approach, which is shared by similar techniques inthe literature: the
assumption of having a reliable sensor layer, which is able to robustly solve the data association
problem and, thus, output complete observations sequences. Unfortunately – at least in the
case of visual trackers – this condition is not met by current systems, makingit necessary to
investigate ways to relax this assumption, which, from our point of view, is a primordial direction
for future work.

On the other hand, we believe that the results we have obtained with the other data sets show
that, when complete trajectories are available, our algorithm is able to learn motionpatterns and
produce accurate predictions in real or near real-time, even for higherdimensional state spaces
and for cyclic behaviors.
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Part V

Conclusion
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis we focused on the problem of predicting motion of mobile objects which are able
to modify their trajectories at will, as is the case for persons, vehicles and thelike. Our work
builds upon a family of approaches which are based on the idea that, for a given environment,
objects follow typical motion patterns which may be observed consistently.

As discussed in ch.3, most of these approaches operate in alearn then predictfashion
[eg Walter et al., 1999, Makris and Ellis, 2002]: first, they learn motion patterns from sensor
data, then, after learning has been performed, they predict further motion on the basis of learned
patterns. As we have shown, this has a number of drawbacks, the most important being the
inability to improve acquired knowledge when a previously unknown motion pattern is observed.

In contrast, we have aimed to find an approach with the capability of continuously refine its
knowledge using the same observations that constitute the input for prediction. We have decided
to base our work on Hidden Markov Model, a probabilistic framework, which is very popular in
the literature [eg Koller-Meier and Van Gool, 2001, Bennewitz et al., 2005]. However, unlike
these approaches – which rely on clustering algorithms to identify motion patterns – we have set
to integrate the whole learning process into an HMM parameter and structure learning algorithm.

Our approach if based on the idea that a single HMM may represent multiple motionpat-
terns by defining an appropriate graph structure. This idea is already present in other approaches,
where different motion patterns correspond to different non-connected components of the HMM
structure. Therefore, learning motion patterns may be seen as an HMM structure learning prob-
lem, with the additional constraint of working incrementally, due to our learn and predict re-
quirements.

Unfortunately, as we have shown in ch.4, no structure learning algorithm in the literature
seems to be fit to our problem. This has led us to develop a novel incremental HMM structure
and parameter learning algorithm.

The main difficulty behind incremental structure learning on HMMs comes fromthe huge
size of the space of possible structures, which renders search-based approaches unpractical for
our purposes. Hence, we have taken a different approach, since,in our case, an HMM is just a
discrete approximation of a continuous phenomenon, it is possible to impose constraints to the
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HMM structure according to the topological properties of continuous state evolution.
Given that HMM states correspond to discrete regions on the state space,it follows that

continuous motion may only progress by traversing neighboring regions, which significantly
limits the number of possible transitions between states. This observation has suggested the use
of a topology learning network known as the Instantaneous Topological Map to learn the HMMs
topology. For this network, learning is both incremental and adaptive, hence, our structure
learning algorithm also has this properties.

Of course, a complete HMM learning algorithm should also estimate the model’s parameters,
thus, we have interleaved our topology learning algorithm with an incrementalHMM parameter
learning algorithm based on the one proposed byNeal and Hinton[1998]. This results in a
general procedure for learning the structure and parameters of an HMM, which is presented in
ch. 5. In contrast with traditional HMMs, the number of discrete states on the modelchanges
with time – mostly growing – thus the name “Growing Hidden Markov Models”.

As we show, GHMMs, are well suited for the common case in which the model is used
as an approximate inference tool for continuous state spaces. However, in order to apply them
successfully to the motion prediction problem, further assumptions should be made. We have
explained the problem in6 and proposed a solution: integrating the final state of the object
into the state vector. Since this information is available during learning this may be regarded as
a semi-supervised learning approach, in which the final destination or goal constitutes a class
label.

We have implemented our approach and demonstrated with experiments on realand syn-
thetic data ( chapters7 and8) that our approach:

• Is able to learn motion patterns and represent them by incrementally adapting the structure
of the GHMM.

• Is able to perform state estimation, as well as prediction for an arbitrary time horizon,
using a probabilistic belief representation.

• Is able to perform early identification of an object’s destination.

• It is able to perform both learning and prediction in real time even on complex environ-
ments and situations.

• Is defined in terms of intuitive parameters which do not require prior knowledge on the
form of the environment or the number of motion patterns to be learned.

We consider that these results are encouraging, however, we are aware that pattern based
motion prediction techniques are still at a very early state. In consequence, during our experi-
ments and – in general – our research, we have found several areasfor improvement, which will
be discussed on the next section.

9.2 Future work and possible extensions

We see two general directions to extend the work presented in this thesis. The first one consists
in extending the approach at a high-level of abstraction, specifically by taking into account
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the possible interactions between objects. The second one consists in improving the low-level,
making the approach more robust to the limitations of current video trackers and sensors in
general.

9.2.1 High-level extensions

Currently, our approach does not take into account the possibility that anobjects modifies its
trajectory in response to the motion of another object. Here, we will discuss how our approach
may be extended to handle some specific situations of this type.

A situation which is relatively simple to represent in our approach is the case where there
are semi-static obstacles in the environment,ie objects which are not able to move freely, but
may be in one of two possible states (eg ’block’ or ’not block’) which condition the choice of
paths that other object may follow. This is the case, for example, of doors,which may be either
’open’ or ’closed’, or parking places, which may be either ’free’ or ’occupied’.

Assuming that the information on the state of these obstacles is available via a sensor, ex-
tending inference is relatively simple. The key idea is that, when an object is isin a ’block’ state,
it hinders other object’s access to certain states. We will illustrate this idea on the T-shaped en-
vironment presented in fig.9.1(a).

A B

C

Door

(a) Environment

A B

C

occ(door)

(b) HMM structure

Figure 9.1: Example of an environment with a semi-static obstacle (door). Thestructure assumes
that motion starts from point “A"

A simple HMM structure for this environment is presented in fig.9.1(b). When the door is
closed, it “occupies" the grayed-out state. Although in our example thereis only one such state,
in general we will use the notationocc(obstacle) to denote the set of states that a static object
occupies when it is in its block state.

In order to perform inference, we augment our model with a variableSdoor∈ {open,closed},
indicating the state of the door, modifying the JPD as follows:

P(St St−1 Ot Sdoor) = P(St−1 Sdoor)P(St | St−1 Sdoor)P(Ot | St Sdoor) (9.1)

Since, when the door is closed, no object can be at theocc(door), it follows that:
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P(St−1 Sdoor) =

{
0 if St−1 ∈ occ(door),Sdoor = closed
P(St−1) otherwise

(9.2)

For analogous reasons, transitions to an occupied state are forbidden:

P(St | St−1 Sdoor) =

{
0 if St ∈ occ(door),Sdoor = closed
P(St | St−1) otherwise

(9.3)

and there is a null probability that an observation comes from an occupied state:

P(Ot | St Sdoor) =

{
0 if St ∈ occ(door),Sdoor = closed
P(Ot | St) otherwise

(9.4)

These definitions may be easily extended for multiple semi-static objects, and used to per-
form inference using standard methods. Information about semi-static objects may be supplied
by an expert, but fully unsupervised learning becomes considerably harder: not only it is neces-
sary to identify semi-static objects, but also the states their block.

A much more challenging extension, would be taking into account interactions between
fully dynamic objects. Normally, this would imply modeling the joint state of all the objects
that are present in the environment at the same time, but this is clearly intractable. Instead, we
believe that it would be interesting to investigate how to integrate factored solutions, like CHMM
[Brand et al., 1997] or DML-HMM [ Gong and Xiang, 2003, Xiang and Gong, 2006].

Another alternative would be to integrate our approach with behavioral models like the one
proposed byOliver et al.[2000], which produce high level inferences like “object x is approach-
ing object y", but are unable to produce metric information which is useful for motion planning.
It would be very interesting to adapt our structure learning to provide a ’metric layer’ for this
kind of approaches.

9.2.2 Low-level extensions

As most pattern based approaches, our approach is based on the assumption that input is avail-
able in the form of complete observation sequences for every object. Nevertheless, as discussed
in chapter7, this assumption does not hold in practice, at least when using visual trackers. As a
consequence, many motion patterns which do not always correspond to the actual object behav-
ior are learned, unnecessarily increasing the model’s size and significantly affecting prediction
accuracy. This problem has been addressed in the literature by implementing“anomaly detec-
tion” algorithms [eg Hu et al., 2006] to filter out abnormal trajectories, unfortunately, they rely
on having complete data sets and are designed to work in batch mode.

We believe that it would be better to explore ways to increase the robustnessof pattern based
approaches by relaxing this “complete trajectory" assumption. We think that, in order to achieve
this, it will be necessary to get closer to the tracking system. A possibility is to study means to
integrate our approach into the prediction step of the tracker.

Indeed, some steps have been already taken in this direction. Two noteworthy examples are:
[Liao et al., 2003] andBennewitz et al.[2005]. However, there is still a lot of work to do: the
first approach assumes that a map of the environment is knowna priori, while the second one
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assumes that the learning if performed on “complete trajectories” which is a circular problem,
unless a more reliable sensor (ega laser scanner) is used for learning.
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Appendix A

Notation and Abbreviations

Here, we present a summary of the notation and abbreviations that we haveused throughout
this document. We have also adopted the standard convention of denoting random variables as
capital letters, and values as lower-case letters. For logical propositions, we have used capital
calligraphic characters, or expressions enclosed between brackets.When defining parametric
forms, or working with linear algebra, vectors are represented as lowercase letters to distinguish
them from matrices, which are always capitalized.

List of Symbols

C(A ) The number (count) of cases in which the propositionA is true in experimen-
tal data.

DV The domain ofV.

G(V; µ, Σ) The gaussian distribution onV, with meanµ and covarianceΣ.

Ot The observation corresponding to timet.

St The state of the object/system at times.

t The current discrete time step.

UV The uniform probability distribution onV ’s domain.

List of Acronyms

AHMM . . . . . . . . Abstract Hidden Markov Modelspage 33

BIC . . . . . . . . . . . Bayes Information Criterionpage 58

CHMM . . . . . . . . Coupled Hidden Markov Modelspage 34

CPT . . . . . . . . . . . Conditional Probability Tablepage 18
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DML-HMM . . . Dynamically-multi-linked Hidden Markov Models page 34

EM . . . . . . . . . . . . Expectation-Maximizationpage 19

ESS . . . . . . . . . . . Expected Sufficient Statisticspage 19

GHMM . . . . . . . . Growing Hidden Markov Modelspage 90

GNG . . . . . . . . . . Growing Neural Gaspage 70

GWR . . . . . . . . . . Grow When Requiredpage 70

HMM . . . . . . . . . Hidden Markov Models page 31

ITM . . . . . . . . . . . Instantaneous Topological Mappage 70

JPD . . . . . . . . . . . Joint Probability Distributionpage 14

JPDA . . . . . . . . . . Joint Probabilistic Data Associationpage 111

MAP . . . . . . . . . . Maximuma Posteriori page 58

MDM . . . . . . . . . Markov Dynamic Models page 33

ML . . . . . . . . . . . . Maximum Likelihood page 58

PDF . . . . . . . . . . . Probability Density Functionpage 14

SOM . . . . . . . . . . Self-organizing mappage 68

TRN. . . . . . . . . . . Topology-representing networkspage 67

VQ . . . . . . . . . . . . Vector Quantizationpage 34
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