N

N

Incremental Learning for Motion Prediction of
Pedestrians and Vehicles

Dizan Alejandro Vasquez Govea

» To cite this version:

Dizan Alejandro Vasquez Govea. Incremental Learning for Motion Prediction of Pedestrians and
Vehicles. Modeling and Simulation. Institut National Polytechnique de Grenoble - INPG, 2007.
English. NNT: . tel-00155274

HAL Id: tel-00155274
https://theses.hal.science/tel-00155274
Submitted on 16 Jun 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00155274
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

N© attribué par la bibliotheéque
N I

THESE
pour obtenir le grade deOCTEUR DE LINPG
Spécialité : « Imagerie, Vision, Robotique »

préparée au laboratoire Gravir dans le cadréfmle Doctorale « Mathématiques, Sciences
et Technologies de I'Information, Informatique »

préparée et soutenue publiguement par
Alejandro Dizan Vasquez Govea

le 13 Février 2007

Titre :

Incremental Learning for Motion Prediction of
Pedestrians and Vehicles

sous la direction de Christian Laugier et Thierry Fraichard

JURY
M. Augustin Lux Président
M. Roland Siegwart Rapporteur
M. Michel Devy Rapporteur
M. Wolfram Burgard Examinateur
M. Hiromichi Yanagihara Examinateur
M. Olivier Aycard Examinateur
M. Christian Laugier Directeur de these
M. Thierry Fraichard Co-directeur de thése

To Lota, my son, for being unpredictable

Abstract

The main subject of this thesis is motion prediction. The problem is approdiradhe hy-

pothesis that the dynamic and kinematic properties of objects such as @edastl vehicles
do not suffice to predict their motion in the long term. Instead, the work ptedéhere, in-
scribes itself in a new family of approaches which assume that, in a givémement, objects
do not move at random, but engage in “typical motion patterns”, which mégadoeed and then
used to predict motion on the basis of sensor data. In this context, this thesges§ in three
fundamental questions: modeling, learning and prediction.

Modeling. This thesis is based on Hidden Markov Models, a probabilistic framewdricghw
is used as a discrete approximation to represent the continuous stagarswach motion takes
place. The main originality of the approach lies in modeling explicitly the intentionshwdre

at the origin of “typical motion patterns”. This is achieved through the usingnoextended
space, which adds the state that the object intends to reach to the othsic*citete variables,
such as position or velocity.

Learning. The main problem of existing approaches lies in the separation of modeingarn
and utilization in two distinct stages: in a first phase, the model is learneddaday then, it is
used to predict. This principle is difficult to apply to real situations, bec@useguires at least
one example of every possible typical pattern to be available during thergannase.

To address this problem, this thesis proposes a novel extension to HidaldowModels
which allows simultaneous learning and utilization of the model. This extensioanverrtally
builds a topological map — representing the model’s structure — and reestithatesodel’s
parameters. The approach is intended to be general, and it could benustbér application
domains such as gesture recognition or automatic landmark extraction.

Prediction. In this context, prediction is carried on by using exact Bayesian inferatgn-
rithms, which are able to work in real time thanks to the properties of the steuatbich has
been learned. In particular, the time complexity of inference is reduced @(N?) to O(N)
with respect to the number of discrete states in the system.

All of the results obtained on this thesis have been implemented and validatedkpétt-e
ments, using both real and simulated data. Real data has been obtaineddffiergat visual
tracking systems: one installed over a parking lot, and the other installedRdE\entry hall.
For synthetic data, a simulator has been developed in order to facilitate theatmm of con-
trolled tests and the study of larger environments than for real data.

Acknowledgements

First of all, I would like to thank Christian Laugier and Thierry Fraichard, timgsis directors,
for their guidance, their support, and for bearing with my — sometimes — idiogtjo work
methods.

| would like to thank the members of my jury; in particular Roland Siegwart anchidlic
Devy, my reviewers, who took the time and energy to point out my erroroamssions. My
thanks also go to my examiners Wolfram Burgard, Hiromichi YanagiharaCdivier Aycard
for the interest they manifested on my work. | want to thank Augustin Lukésroring me by
presiding my jury.

I'd also like to thank all of my colleagues at team eMotion with whom | had thespiea
of working over the years. Special thanks go to Thiago Bellardi andsthgo Martinelli for
carefully reading my manuscript and for the many corrections and stiggeshey made.

| am very grateful to Hannah Dee from the University of Leeds for kiralgwing me to
use her data.

I would like to thank Fernando Ramos, whose help and advice are at thengin of this
adventure.

And last, but not least, | want to express all my gratitude to Barbara, niggrafor her sup-
port, friendship, and for her enormous patience during all this periadktiiou Babalucalas!

Contents

List of Figures v
Extended Abstract in French ¢
1 Introduction 1
1.1 Motivation. 1
1.2 Problemdescription. 2
1.2.1 Modeling motion with Hidden Markov Models 3
1.22 Challenges. e 4
1.3 Contributions. e 5
1.4 Overview of therestofthisthesis 6
| Background 9
2 Probabilistic Models 11
2.1 OVEIVIEW . . . o o e e e s e e e e e e 11
2.2 From logic to probabilities. 12
2.2.1 LogicPropositions. e 12
2.2.2 Probability ofa proposition., 12
223 Variables. 13
2.2.4 JPD Decomposition and conditional independence. 16
225 Inference. 17
226 Parametricforms o 17
22.7 Learning 18
2.3 TheBayesfilter. 20
2.3.1 ProbabilistcModel oL 20
2.3.2 Parametricforms 21
2.3.3 Inference. 21
2.3.4 Specializations of the Bayesfilter. 22
2.4 DISCUSSION o e e e 22

3

State of the Art
Intentional Motion Prediction
3.1 OVEIVIEW . . . o o e e
3.2 AnoteonsemantiCs.
3.3 Trajectory Prototypes e
3.3.1 Representation
3.3.2 Learning e e e
3.3.3 Prediction
3.4 Discrete state-spacemodels o L.
3.4.1 Representation
342 Learning
3.4.3 Prediction
3.4.4 Otherstate-spacemodels
3.5 OtherApproaches.
3.5.1 Neural network based approaches
3.5.2 Goalorientedapproaches
353 Other. e
3.6 DISCUSSION o
3.6.1 Generalissues.
3.6.2 State-spacemodelissues oL
Hidden Markov Models
4.1 OVEIVIEW . . v o v e e e e e e e e e e e e
4.2 ProbabilisticModel.
42,1 Variables. e
4.2.2 Decomposition.
4.2.3 Parametricforms L
4.2.4 Example: the broken air conditioning system
4.3 Inference
4.3.1 On-lineinference
4.3.2 Offslineinference oo
4.3.3 Numerical stabilityand HMM scaling
4.4 ParameterLearning e e
4.4.1 The Baum-Welch Algorithm
4.4.2 Incremental algorithms.
4.5 Transitionstructure e e
4.6 StructureLearning. e e
4.6.1 Localsearchalgorithms
4.6.2 State merging algorithms.
4.6.3 Otheralgorithms.
4.7 DISCUSSION o e

23

25
25
27
28
28
29
31
31
31
32
33

33
34
34
35
35
35
36
37

5

Proposed Approach

Growing Hidden Markov Models
5.1 OVEIVIEW o e e e
5.2 Thetopologicalmap.
5.3 Vector Quantization and Topology Representing Networks.
5.3.1 Topology Representing Networks.
5.4 The Instantaneous Topological Map.
541 Definitions
5.4.2 Algorithm. e e
5.4.3 Properties e e e
5.5 Probabilistic Model.
55.1 Variables.
5.5.2 Decomposition.
5.5.3 Parametricforms L
56 Inference
5.7 Structure and ParameterLearning. oL
5.7.1 Learningthecovariance
5.8 DISCUSSION o o i

Learning and Predicting Motion with GHMMs
6.1 OVEIrVIEW o e
6.2 ProbabilisticModel.
6.2.1 Variables.
6.2.2 Decomposition.
6.2.3 Parametricforms o
6.3 Inference e
6.4 Structure and ParameterLearning.
6.5 Learning example: a Unidimensional Environment
6.5.1 Definingthestate.
6.5.2 Choosing the parameters of the learning algorithm
6.5.3 Learnedmodel
6.6 Comparison with existing HMM Based Approaches.
6.7 DISCUSSION ot e e

Experiments

Experimental Platform

7.1 OVEIVIEW ot e s e e e e e e e e e e e e e e e

7.2 INRIAentryhall. e
7.2.1 Thevisualtracker.
7.2.2 Thesimulator
7.23 Datasets. e

63

65
65
66

67
69
70

71
71
74
75
75
75
75
76
77
78
78

81
81
82
83
83
83
84

85
85
86
86
86
89
91

93

7.3 Leedsparkingdata 99
7.4 INRIAparkingdata. 100
7.5 DISCUSSION e 101
8 Experimental Results 103
8.1 OVEIVIEW o e e 103
8.2 Examples. 104
8.2.1 ThelINRIAhhall. 104
8.22 Leedsdata. 105
8.2.3 INRIAparkingdata 105
8.3 Quantitative Results. 109
8.3.1 Parameterselection. o 109
8.3.2 Measuring predictionaccuracy. 110
8.3.3 Hallrealdata(IHR) 111
8.3.4 Hallsyntheticdata(IHS) 113
8.3.5 Leedsparkingdata(LP) 114
8.3.6 Inriaparkingdata(IP). 115
8.4 Modeling motionwithcycles 116
8.5 DISCUSSION e 119
V Conclusion 121
9 Conclusions and Future Work 123
9.1 Conclusions. e e e e 123
9.2 Future work and possible extensions L. 124
9.2.1 High-levelextensions. 125
9.2.2 Low-levelextensions o 126
A Notation and Abbreviations 129
Bibliography 131

List of Figures

1.1
1.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2

A basic three-state HMM o
An HMM structure for a parking environment.

Raw trajectory data of people in an office environment..
Trajectory prototypes for the office environment..
Example of average trajectory and deterministic envelope..
Discrete state-space model for the office environment.
A topological representation of the office environment.
Comparison between static and dynamic decompositions

Transition graph of the air conditioning example..
Computing forward probabilities for ourexample.
Examples of HMM topologies.o ..
Example of a sparse matrix storedasalinked list
S5x5gridtopology
Local structure searching. i
Example of modelmerging

Graph-like representation of space discretization
VOrONOI FEQIONS. . .« . v v v e e e e e e e e e e e
Voronoi graph (blue) and delaunay triangulation (green).
Hebbianlearning. o
ITM Node adaptation

Example of a motion pattern defined in terms of a goal (orange nade). . .
Example unidimensional environment.
Extended observation sequence plot and Voronoi Diagram.
Learned GHMM after processing one kind of observation sequence. . . .
Learned GHMM after processing the two kinds of observation segsgen . .
Shared state representation
Example of patternpieces. e

Inria’s main lobby and some landmarks.
The visual trackingsystem e

\Y

7.3 Distortion correctionon hallimages..
7.4 Halldatasets. e
7.5 Anomaloustrajectories.. e
7.6 Leedsdatasel..
7.7 Thetrajectorysimulatar.
7.8 Syntheticparkingdataset

8.1 Common elements in prediction exampleimages..
8.2 Prediction example. Hall environment-realdata (IHR).
8.3 Prediction example (Leeds environment)..
8.4 Prediction example (parking environment)..
8.5 Parameter sensibility (IHR dataset).
8.6 Error and computation times for the best parameters (IHR data set). . . .
8.7 Parameter sensibility (IHS dataset).
8.8 Error and computation times for the best parameters (IHS data set). . . .
8.9 Parameter sensibility (LPdataset).
8.10 Error and computation times for the best parameters (LP data.set)
8.11 Parameter sensibility (IPdataset)
8.12 Error and computation times for the best parameters (IP data set).
8.13 Example of cyclictrajectory.
8.14 Prediction example for the cycledataset..

9.1 Example of an environment with a semi-static obstacle (door)..

Vi

List of Algorithms

NOoO o WDNPRE

Forward_algorithm(O1.1,A) o o o 49
Backward algorithm(O-1,A) o o o o 50
Viterbi(Ol;T,)\) 51
BaumWelcHOY W A) 54
Structural EM(OYK A, @) 60
ITM-Updat€Or, 2, T,€: U, L) « « « v v o e e e e e e e e e e e e e e e e 72
HMM-UpdatgO1 1,2, T,€: U, L, W, A) o v v o v e i e e e e e e e e e e e 80

vii

viii

Extended Abstract in French

Chapitre 1 : Introduction

La planification des mouvements pour des environnements dynamiquesiestaime de recherche
trés actif. En raison du fait que le probléme est NP-complet, la pluparfidessele recherche se
sont concentrés sur le développement des mécanismes pour géreocgitexité. Néanmoins,
ily a un autre aspect critique du probléme qui souvent a été négligé : taglatges de planifica-
tion ont besoin de connaitre d’avance les mouvements des objets quirgdigoi@ronnement.
Etant donné que, dans la pratique, cette information n’est que trés rardisonible, cela im-
plique la nécessité de recourir a l'utilisation de techniques de prédictiongienir, & partir
des informations recueillies en utilisant des capteurs tels que des radasssyistémes de suivi,
une estimation de I'état futur des objets.

Jusqu’arécemment, la plupart des techniques de prédiction que 'or tlang la littérature
se sont basées sur des modéles cinématiques ou dynamiques quindéénradution de I'état
des objets par rapport au temps quand ils sont soumis a un contréle donrec¢élération).
Ces approches procedent, d’abord, pour estimer I'état actuel detl@dliaide des techniques
telles que le filtre de Kalman, aprés, elles appliquent I'estimation ainsi obtemégaations de
mouvement pour obtenir des prédictions.

Méme si ces techniques sont capables de produire de trés bonnietigmédh court terme,
leur performance se dégrade rapidement quand elles essayentrdgly® loin dans le futur.
Cela est spécialement vrai dans le cas des humains, véhicules, rofioisya et autres objets,
qui sont capables de modifier leurs trajectoires en fonction de factésicaieleurs perceptions,
leur état interne, et leurs intentions, qui ne sont pas décris par leypsdgiés cinématiques ou
dynamiques.

Cette situation a motivé I'émergence, dans la derniére décennie, d’'unelieofamille
d’approches basées dans l'idée que, dans un environnement, desdjets ont tendance a
suivre des mouvements “typiques” qui dépendent de la nature de bemément, ainsi que de
la nature des objets eux-mémes. Ces approches operent en dewdéttipetes :

1. Apprentissage : observer les objets dans I'environnement poifieleet construire des
modéles des mouvements typiques.

2. Prédiction : utiliser les modéles appris pour prédire I'état futur d'untatgené.

D’un autre c6té, toutes ces approches partagent aussi un incamvénie opérent dans
un schéma séquentiel que nous appelons “apprendre puis prédieledpmel I'apprentissage

iX

s’effectue avant I'utilisation et il est réalisé qu’une seule fois. Cela impldgifacon implicite
I'hypothése que, dans I'ensemble des données utilisées pour I'appagatjsl existe au moins
un exemple de chaque comportement a apprendre. Dans la pratique,ypeitecke est tres
difficile a vérifier a cause de la grande diversité des comportements giLfibssible d’observer
méme dans les environnements les plus simples. Dans cette thése, nousmsdpdisation
alternative d’'une approche de type “apprendre et prédire” our@ayissage et la prédiction sont
réalisés de facon paralléle.

1.2 Description du probléeme

Une approche de prédiction des mouvements basée dans I'apprentissamyestituée, au moins,
de trois composantes:

1. Un modéle de mouvement décrivant comme ['état de I'objet évolue a mgseite temps
passe, sachant que 'objet est en train d’exécuter un mouvementeygpigqume.

2. Un algorithme d’apprentissage, qui spécifie comment les paramétresddliensont cal-
culés a partir des données.

3. Un algorithme de prédiction détaillant I'utilisation des modéles appris pouirprées
mouvements futurs.
1.2.1 Modélisation des mouvements en utilisant des Modéles de Markoa€hés

Nous avons choisi I'utilisation des “Modéles de Markov Cachés” (MMGYmpmodéliser les
mouvements des objets. Les MMC son un outil probabiliste qui permet deseaypier de facon
explicite I'incertitude qui est inhérente a tout processus de prédictionMME peut étre vu
comme un graphe décrivant un processus ou les noeuds corregpardes états discrets et les
arétes représentent la probabilité que le processus passe d'un aétdiex [Une particularité des
MMC est que les transitions ont lieu de fagon aléatoire, en suivant utnivdi®n de probabilité
donnée.

1.2.2 Défis

Pour pouvoir implémenter de facon efficace une approche “apprendrédire” en utilisant des
MMC, il est nécessaire de résoudre les points suivants :

1. Apprendre les parameétres des distributions de probabilité du MMC.

2. Apprendre la structure (topologie du graphe) du MMC.

3. Réaliser I'apprentissage de facon incrémentale (une seule obse#ifois).

4. Réaliser I'apprentissage et I'inférence en temps réel (24 Hz peucaméra vidéo).

Ces problémes sont difficiles a résoudre ensemble, car, malgré I'exastescechniques
pour I'apprentissage des parametres et de la structure, il n’existeepastthique capable de
faire les deux a la fois, de fagcon incrémentale et en temps réel.

X

1.3 Contributions

La contribution principale de cette these est une technique de type “@ppretprédire” basée
sur une extension des MMC, proposée par nous. Cette extensionleagoih de “Modéles de
Markov Cachés Grandissants” (MMCG) et sa particularité principalgusties paramétres et
le nombre d’états ne sont pas fixés sinon qu’ils évoluent continuellemefol; euia mesure que
plus d’observations sont disponibles. Méme si les MMCG ont été formalés le contexte de
la prédiction des mouvements, il faut noter qu’ils ont été congus comme pnecéye générale,
pouvant étre appliqués dans tous les cas ou les MMC conventionnelstdisés comme une
approximation discréte pour modéliser un processus continu.

Pour pouvoir appliquer les MMCG a la prédiction des mouvements, on a prgisiah de
modéliser les mouvements en utilisant un espace augmenté, qui ajoute I'éfabgpigrétend
atteindre aux autres variables d'état classiques telles que la position eskevite

En utilisant ensemble les MMCG et I'état augmenté, on a développé unelleaeetnique
de prédiction des mouvements, ayant les avantages suivants par rppautres techniques
basées sur MMC dans la littérature :

1. Les parametres du modele aussi bien que ¢a structure sont estimés ant utiliglgo-
rithme incrémental.

2. Lalgorithme d’apprentissage est non supervisé et il est définiraretedes parametres
intuitifs.

3. Lastructure apprise ne consiste pas d’'un ensemble de “trajectoiigsagpisolées, mais
elle représente les comportements en termes de buts, ou destinations detwprétend
atteindre.

4, Méme si la structure apprise est plus riche que dans d’'autres appradle reste assez
simple pour permettre I'utilisation d’algorithmes exacts d’inférence.

Chapitre 2 : Modeles probabilistes

Ce chapitre est une introduction générale aux concepts des probaltiilités modéles proba-
bilistes.

Notre travail se place dans le contexte des théories du raisonnemernblelaléveloppés
par Jaynes, elles constituent une extension de la logique classique isarttdas probabilités
comme un mécanisme d’inférence.

2.2 De la logique aux probabilités
2.2.1 Propositions logiques

On va travailler sur des propositions logiques pouvant étre vraies sadauCes propositions
peuvent étre manipulées en utilisant des opérateurs booléens :

Xi

e L'opérateurAND, dénoté par un espace ou, dans le cas des variables indexéess par de
indices séparés par deux points.

e L'opérateurOR, qui sera représenté avec le symbele

e L'opérateurNOT, indiqué par le symbole.

2.2.2 Probabilité d’une proposition

Parfois, il n’est pas possible de déterminer de facon concluante prapesition est vraie ou
fausse, mais on peut avoir des raisons pour croire que I'une deleess/ast plus vraisemblable
que l'autre. Nous exprimons ce genre de connaissance comme la prolatitii§onnelle de
la valeur dez sachant nos connaissances préalatules

Reégles quantitatives pour les propositions. Les régles quantitatives permettent de manipuler
les probabilités pour réaliser I'inférence, de fagcon semblable a ce (pitcavec les opérateurs
booléens.

Régle du produit

P(a3)=P(2)P(3 [4)=P(3)P(a|3) D
Regle de la normalisation
P(a)+P(-a)=1)
Régle de I'addition
Pa+s|c)=Pa|c)+P(B|c)-P(as|c) ©)

2.2.3 Variables

Jusgu'ici, nous avons seulement parlé des propositions logiques, maisemment, nous
voulons aussi raisonner en termes de variables — appelées aussegaaléatoires — qui représen-
tent les facteurs relevants d’un probléme donné. Une variable distiien domaine associe
Dy, qui est 'ensemble des valeurs que cette variable peut prendre.

Une fois les variables définies, il est possible de les utiliser pour formakepobpositions
logiques. Dans ce document, ces propositions seront indiquées etdesaahpar des crochets,
ainsi[V = 1] dénote la proposition logique “la valeur Weest 1”.

Régles quantitatives pour les variables. Comme pour les propositions, il est aussi possible
de manipuler les variables a I'aide des régles quantitatives. Etant dofiingagdes différences
entre les variables a domaine continu et les variables a domaine discretfiranleg regles
selon le cas.

e Variables discretes

Xii

— Reégle du produit.

P(AB) =P(A)P(B|A) =P(B)P(A|B) (4)
— Reégle de la normalisation.
;P(A) =1 (5)
e Variables continues
— Reégle du produit.
P(AB) =P(A)P(B|A) =P(B)P(A|B) (6)
— Reégle de la normalisation. .
| omda-1 ™
Autres identités utiles.
Regle de la marginalisation
gP (AB) = gP P(A|B)=P(A) (cas discrét) (8)
/ P(AB)dB= / P(B)P(A | B)dB= P(A) (cas continu) (9)
Regle de Bayes
P(BIA)P(A) P(B|AP(A) I
P(A|B) = P ~PBAPA) (cas discrét) (10)
_P(B[AP(A) _ P(BIAPA) -
P(A|B) = P(B) — [°.P(B| AP(A/dA (cas continu) (11)

2.2.4 Décomposition de la probabilité conjointe

L'utilisation des regles quantitatives n’est pas limitée au cas de deux variabie fait que le
produit de deux variables aléatoires est aussi une variable aléatsiregles sont applicables a
un nombre arbitraire de variables.

Les dépendances entre les variables sont dénotées formellementrpamoleabilité con-
jointe, et la fagon ou elle se décompose comme un produit de probabilitéspplesgrace a
I'utilisation de la régle du produit.

Aprés avoir choisi une décomposition, il est possible de simplifier endorel@ prob-
abilité conjointe sur la base des hypothéses d’'indépendance condition@alke hypotheses
s’appliquent quand nous considérons qu’une varidgdene proportionne pas d’'informations
additionnelles par rapport a une variakl2 si la valeur d’'une troisieme variable8 est connue.

Xiii

2.2.5 Inférence

Les regles que nous avons décrites peuvent étre utilisées pour dafimiodele qui décrit un
phénoméne ou processus quelconque ; un tel modéle probabiliste dejiétié en énumérant
les variables qui le composent et ces domaines correspondants leataidgcomposition de la
conjointe utilisée.

L'application principale des modeles probabilistes est I'inférence : trol@gevaleurs des
variables inconnues en fonction des variables dont on connait la val&widence — a travers
de l'application de la régle de Bayes.

Etant donné que l'inférence bayésienne est NP-difficile, il est séaesde trouver des solu-
tions pour réduire la complexité. Cela peut se faire, par exemple, en agpiides hypotheses
d’'indépendance conditionnelle, ou des algorithmes approximatifs d’imdére

2.2.6 Formes paramétriques

Jusqu’ici, nous n'avons pas expliqué comment les probabilités quicoaft la conjointe son
définies. Dans ce document, ces probabilités seront choisies parmugsi@igtributions élé-
mentaires qui s’expriment en fonction d’'un certain nombre de paramémesoa appelle donc
“formes paramétriques”.

e Distribution uniforme

P<[v=vi1>=uv<vi>=mlv|,wi €Dy (12)

e Tableaux de probabilité conditionnelle

e Distribution gaussienne
PV =v]) =G(vi; i Z) (13)

= |orz| H2exp| (v WSV 4 (14)

2.2.7 Apprentissage

Apres la définition du modele probabiliste, il est nécessaire d’assigaeatirs aux parameétres
de chaque distribution élémentaire dans la décomposition. Méme si cela pdaitéirla main,

il est aussi possible d’apprendre (estimer) les valeurs des para@@@es des données expéri-
mentales.

Le cas le plus simple est celui des variables discrétes ou les probabilitésatmriées en
estimant la fréquence avec laquelle les différentes valeurs des varigiplagissent dans les
données. Pour cela, on peut utiliser des techniques telles que les aeririchlet ou la loi de
succession de Laplace.

b\

Une situation plus difficile, est quand les données sont bruitées et ilast, anpossible
de connaitre avec certitude la vraie valeur des variables. Dans ce sakijtlan la plus utilisée
consiste a appliquer I'algorithme Expectation-Maximization qui consiste basignt a utiliser
des expectations sur le nombre de fois qu’une valeur quelconque sé@é&bdans les données
d’apprentissage.

2.3 Le filtre de Bayes

Cette section introduit le filtre de Bayes, un outil probabiliste qui est a la es@pproches
décrites dans les chapitres 4 et 5. L'objective du filtre de Bayes estldgl@r une estimation
probabiliste de I'état actuel d’'un systéme dynamique - qui n'est pasteiinent observable,
donc “caché” — a partir d’'une séquence d'observations.

2.3.1 Modele probabiliste
Variables. Le filtre de Bayes s’exprime en fonction de deux types de variables :

S L'état du systeme au moment t.
O; L'observation obtenue au moment t.
Etant un modéle abstrait, le filtre de Bayes ne fait aucune hypothéseijaardture discréte

ou continue des variables d’état et d'observation. Ces hypothesefages pour des spéciali-
sations du filtre de Bayes telles que le filtre de Kalman ou les Modeéles de M@dahés.

Décomposition. La probabilité conjointe pour le filtre de Bayes est définie sur la base de deu
hypotheses d’indépendance conditionnelle :

1. Sachant I'état, les observations sont indépendantes les unegrdss au

P(O; | O1t-1Sit) =P(O | S) (15)

2. Sachant I'état précédent, les états antérieurs n'apportent aconnaissancee addition-
nelle par rapport a I'état actuel:

[P(&) fort=1
P& [Sit-1) = { P(S|S.1) otherwise (16)
Et la distribution conjointe est :
T
P(Sut Our) =P(S)P(01| &) F!P(S |S-1)P(C | S) 17)
t=

XV

2.3.2 Formes paramétriques

Le filtre de Bayes ne définit aucune forme paramétrique et, en consgjErcun mécanisme
d’apprentissage.

2.3.3 Inférence

L'une des principales utilisations des filtres de Bayes est de répondiguadéion probabiliste
P(S+H | O11). Le cas le plus commun est le filtragd & 0), mais la prédictionH > 0) et le
lissage H < 0) sont aussi des opérations réalisées frequemment.

Le filtre de Bayes a une propriété que contribue énormément a sa popUediiltéage peut
s’effectuer de facon trés efficace en utilisant I'expression suivante

1
P(& [O11) = S P(C | S)g [P(S[S-1)P(S-1] O11-1)] (18)
-1

Si nous définissons récursivemdéiS_1) = P(S-1 | O11-1), il est possible de décrire un
filtre de Bayes avec seulement trois variables, ce qui donne I'expnessivante.

P(§180)=P(& 1)P(&|S1)P(O [S) (19)

2.3.4 Spécialisations du filtre de Bayes

Il existe plusieurs spécialisations du filtre de Bayes, trois des plus pogaikont : le filtre de
Kalman (variables continues), les Modéles de Markov Cachés (varidiétied discretes), et le
filtre & particules (approximation par echantillonage).

Chapitre 3 : Prédiction des mouvements intentionnels

Les approches basiques de prédiction de mouvements sont baséegyser Rennett appelle
“l'attitude physique” envers l'objet : ils essayent d’expliquer et prédé comportement des
objets en termes de ses propriétés physiques et des lois de la physiguemadigs, une telle
approche ne peut étre appliqué a des objets qu’on peut considérerectrationnels” tels que
des piétons ou des vehicules, dans ce cas, le comportement peut étrexpikyxe en prenant
“l'attitude intentionnelle” envers I'objet, qui consiste a essayer de reprede processus de
raisonnement qui détermine les actions de 'objet. Malheureusement, I'digatitan d’un tel
processus est au-dela de nos capacités actuelles.

Récemment, une nouvelle famille d’approches situées a mi-chemin entre lesadiux
tudes” a émergé. L'idée de base de ces approches est que, damdgroanrement donné, les
comportements des objets peuvent étre observés de fagon consistacté,suiffit d’observer
ces comportements pour les apprendre et ensuite les utiliser pour prédire.

Dans ce chapitre, nous examinons les approches de cette derniere famiks, décom-
posant en trois catégories :

1. Trajectoires prototype.

XVi

2. Modeéles d’état discrets.

3. Autres représentations.

En particulier, nous nous intéressons a étudier comment les approctieaqiéune de ces
catégories résolvent trois problémes :

1. Représentation.
2. Apprentissage.

3. Prédiction.

3.2 Une note a propos de la sémantique

Dans ce document, nous allons faire une distinction entre un “comportentem”“enouve-

ment” typiques. Le premier décrit ce que I'objet est en train d’effectagorenant I'attitude
intentionnelle envers lui (ex. I'objet va au toilette), pendant que le deux@msiste en une
description mathématique des mouvements effectués (ex. une série de pakitisiie monde).

3.3 Trajectoires prototype.

Les approches de cette catégorie cherchent a réunir des trajecimitagas en groupes (clus-
ters) qui correspondent a des mouvements typiques. Aprés, par'chale ces groupes, une
seule trajectoire est calculée et utilisée pour représenter le groupe endienc, le mouvement
typique.

3.3.1 Représentation

Les trajectoires prototype sont souvent représentées comme descExde points dans I'espace
continu des états. La plupart des approches ne modélisent pas le terapsrdexplicite, et elles
font I'hypothése que les points de la séquence sont régulierementuistdlans le temps. Par-
fois, une mesure de la “largeur” du groupe fait aussi partie de lageptation, par exemple en
[Makris and Ellis 2002 Junejo et a].2004 Vasquez and Fraichard004.

3.3.2 Apprentissage

Les trajectoires prototype sont obtenues a I'aide d’algorithmes classitguekistering [voir
Kaufman and Roussee w989 Jain et al, 1999. Il y a trois problémes a résoudre : a) déter-
miner le nombre de groupes, b) trouver les groupes ; et c) construtr@jestoires prototype a
partir des groupes. Nous avons identifié deux facons différenteSsdedre ces problémes en
fonction des algorithmes de clustering utilisés.

XVii

Algorithmes basés sur des modéles.Les algorithmes basés sur des modéles doivent leur nom
au fait gu'ils ne représentent pas explicitement les groupes, mais, a B pjlessayent de
trouver un nombre réduit de modéles qui représentent au mieux lesefopagérapport a une
mesure globale d’optimalité. Dans le cas des trajectoires, ces modélegpoadest directe-
ment aux trajectoires prototype dont nous avons parlé, donc ellesaonlées directement par
I'algorithme de clustéring.

L'inconvénient le plus important de ces algorithmes est qu’ils nécessigertrthaitre a pri-
ori le nombre de groupes qu’il faut trouver, ce qui présente le ranupeobléme de I'estimation
de ce nombre. La plupart des approches de prédiction supposece qeenbre est connu [ex.
Hu et al, 20043. Mais il existe certaines approches qui sont capables d’estimer cera@nb
partir d’'une estimation initiale [ex3ennewiiz et a].2007.

Algorithmes deux a deux. Les algorithmes deux a deux se basent dans l'utilisation d’'une
mesure de similarité (ex. distance euclidienne) qui est utilisée pour congesréféments deux
a deux et décider s'ils appartiennent au méme groupe. La sortie de @espus consiste en
ensembles d’'éléments, ce que, dans le cas qui nos occupe, impliquedaitééde calculer la
trajectoire prototype pour chaque groupe apres la finalisation du clust&ian autre coté, ce
type d’algorithmes a I'avantage de calculer de facon automatique le nompgreujges.

Exemples de techniques de modélisation et prédiction de mouvements baséesyqme
d’algorithme sontlf/akris and Ellis 2002, Buzan et al.2004, Junejo et a].2004.

3.3.3 Prédiction

La prédiction pour cette catégorie d’approches consiste principalentemi\ér la trajectoire
prototype qui correspond au mieux a une séquence partiale d'otieasvaet a utiliser cette
trajectoire comme une prédiction du mouvement future.

Ces approches souffrent de deux inconvénients : a) seulemenifiEsdires qui ont été
observées peuvent étre prédites ; et b) elles ont une représentétiéomichiste du temps et de
I’évolution de I'état, ce qui réduit leur utilité pour prédire les états futurs olejét.

3.4 Modéles d’'état discret

Ces approches se basent sur l'utilisation d’un modéle discret comme urapptibximatif
d’analyse pour des mouvements continus. A la base de ces approohesyve les chaines
de Markov, qui modélisent le temps comme une variable discréete, et refggskespace avec
un nombre fini d’états discrets.

Les chaines de Markov, néanmoins sont relativement peu utilisées pprédiation des
mouvements [exTadokoro et al.1995 J. Rittscher and Steji200d, les techniques préférées
sont des dérivations du filtre de Bayes telles que les Modéles de Madahe€.

3.4.1 Représentation

Les mouvements typiques sont souvent représentés de deux fagérenddfs : a) en utilisant un
seul MMC pour tous les comportement&{lier et al, 1999; b) en utilisant un MMC différent

XViii

pour chaque comportemerit fikris and Ellis 2002 Bennewitz et a].2007. Dans les deux cas,
les trajectoires typiques sont représentées en appliquant des costédimtructure des MMC,
pour construire des graphes en forme des chaines.

3.4.2 Apprentissage

Le probléme de I'apprentissage pour ces approches se composexd®dsidiaches : a) I'apprentissage
de la structure ; et b) I'apprentissage des parametres du modele.

Apprentissage de la structure. Malgré I'existence de plusieurs algorithmes d’apprentissage
de structure pour des modéles d'état discretfexicke and Omohundy@993 Friedman 1997,
Brand 1999, ils sont peu utilisés dans le contexte de I'apprentissage des mouvementges/piq
Une exception notable est le travail defind and Kettnake200(. A la place, la structure est,
soit fixée a priori, soit estimée en utilisant des mécanismes ad hoc.

Le plus populaire de ces mécanismes est |'utilisation des techniques ditippage utilisées
pour déterminer des trajectoires prototype, et ensuite transformer rreérde dans un modele
d’'état discret [exBennewitz et al.2002, Koller-Meier and Van Gogl2001, Makris and Ellis
2007. D’autres approches incluent des techniques hiérarchiquesign and \Wren2004 ou
I'utilisation d’'une carte de I'environnementipo et al, 2003.

Apprentissage des parameétres. L'approche la plus répandue pour I'apprentissage des parameétres
est l'utilisation de I'algorithme de Baum-Welch [exlakris and Ellis 2002, Liao et al, 2003.

Autres auteurs fixent les parameétres par rapport a leurs connassanda facon dans laquelle

les objets se deplacerit¢nnewiiz et a].2009.

3.4.3 Prédiction

Dans cette catégorie d’approches, les mouvements sont prédits en uliligarénce bayési-
enne. On peut aussi bien trouver des approches qu'utilisent I'mférexactetfrand and Kettnaker
200 que des techniques approximatives telles que les filtres a particites[et al, 1999
Koller-Meier and Van Gogl2001].

3.5 Autres Approches
3.5.1 Réseaux de neurones

On trouve aussi des approches qui se basent sur I'utilisation de phisieuches de réseaux
de neurones pour représenter les mouvements typiques. Fréquemmentifeson and Hogg
1995 Sumpter and Bulpi;i200(, on trouve trois couches avec les fonctions suivantes : a) dis-
crétisation de I'espace ; b) description des trajectoires ; c) classificagi@rtamportements.
Autres auteursHu et al, 20041 proposent des diverses modifications a ce modéle de base.

XiX

3.5.2 Approches orientées aux buts

Ces approchedJee and Hogg2004 Foka and TrahaniaR002 Bruce and Gordon2004 se
caractérisent pour représenter les comportements en termes des endrdés objets préten-
dent atteindre “les buts”. Donc, ils doivent apprendre ces buts a gagidonnées disponibles.
Une fois les buts appris, les trajectoires sont prédites en utilisant un atgerdhi calcule le
chemin que I'objet va parcourir pour arriver a son but a partir de saipo actuelle.

3.5.3 Autres

Une approche différente a été proposée pganfe and Wahl1999. lls modélisent les mouve-
ments en termes de sous trajectoires qui s’enchainent de maniere prababilisformer des
trajectoires typiques.

Chapitre 4 : Modeles de Markov Cachés

Ce chapitre est une introduction aux Modéles de Markov Cachés (MNIZ);onstituent la
base de cette these. On présente si bien la partie “classique” de la tlogerie, sujet moins
standardisé de I'apprentissage de structure.

4.2 Modele probabiliste

Les Modeles de Markov Cachés sont une spécialisation du filtre de Bayegles variables
d’état discretes et des variables d’observation discrétes et contibeoes avons privilégié la
discussion des variables d'observation continues parce qu’ellestienk adaptées a notre
probleme.

4.2.1 Variables

Comme pour la version récursive du filtre de Bayes, un MMC peut étraidgfifonction de
trois variables :

S, S-1. Létat actuel et I'état précédent, qui sont des entiers dans l'interiialg.

O;. L'observation actuelle, qui est un vecteur d&is$.

4.2.2 Décomposition

La décomposition est la méme que pour le filtre de Bayes :

P(§-1§O) =P(S-1)P(§|S-1)P(O: [S) (20)

Ou la probabilité a priori pour I'état est calculée récursivement :
P(§-1) =P(S-1|O11-1) (21)

XX

4.2.3 Formes paramétriques

Les MMC font une hypothese d'indépendance conditionnelle en plusapaort au filtre de
Bayes : les probabilités d’observation et de transition sont considéoesie étant station-
naires, c’'est-a-dire, indépendantes du temps.

PO |S)=POj|S) Vi, je{l,---,T} (22)
P(S|S-1)=P(S§|S-1) Vi, je{2,---,T} (23)

Cette hypothése permet de définir les formes paramétriques sans meicdrapte le temps

e P([S; =i]) =m. L'a priori sur 'état.
e P([S =]]|[S-1=1]) = &_j. Les probabilités de transition.

e P(O; | [§ =i]) =G(O; W, 0i). Les probabilités d’observation.

Nous allons dénoter 'ensemble des paramétres d’'un MMCXpar{t, A, b}.

4.3 Inférence

Les taches d'inférence peuvent étre classifiées en deux types : féydhioe en ligne, qui
s'actualise chaque fois qu’une nouvelle observation est disponible) ;I'aiférence hors ligne
qui traite des séquences entiéres d'observations.

4.3.1 Inférence en ligne

La clé pour l'inférence en ligne est la mise a jour de I'estimation de I'état. A paetira,
l'inférence se réalise en utilisant cette estimation comme a priori, et en applitjo&rence
bayésienne.

Filtrage. Le nom du filtrage vient du fait qu'il filtre le bruit des estimations pour aistineer
I'état du systéme. Le filtrage se réalise en appliquant I'expressionngeiva

; POIS) 3 [P(S|S-2)P(S-1 | Ose-)

——
update prediction

P(§[O11) = (24)

La complexité du filtrage e€d(N?).

XXi

Prédiction. Prédire I'état futur consiste, basiquement, en prendre I'estimation ded@&ia!
et la propager dans le futur pour un nombre fini de pas de témponnu comme I'horizon
temporel.

P(St+[O1t) = > [P(S+t | S+r-1)P(S+H-1] O1y)] (25)

SiH-1

La complexité de la prédiction e&{(T N?).

4.3.2 Inférence hors ligne

En vue du fait que I'inférence hors ligne travaille sur I'espace de toutesdgquences possi-
ble d'états ayant une longueur donniégil semblerait que le colt de l'inférence devrait avoir
une complexité exponentielle. Heureusement, I'utilisation de techniques gpnmation dy-
namique permet de réduire la complexité de l'inférenC &N?).

L'algorithme “forward-backward”. L'idée de cet algorithme est d'utiliser des techniques
de programmation dynamique pour éviter les computations redondantes liégsplcétion
répétitive de la régle de marginalisation pour réaliser l'inférence. Il taldaux ensembles
différents de variables qui peuvent ensuite étre utilisés directementémmdre des questions
probabilistes. Lintérét de I'utilisation de ces variables vient du fait queslalgorithmes de
calcul sont d’ordreéD(N?).

Probabilité “forward”
ar(i) = | Y a(DP(S =] [[S-1= 1] | PO | [=1]) (26)

Probabilité “backward”

N
Be(i) = le([Sm: 118 =1P(Otsa | [S4a = 1])Brea(]) (27)
=

Lissage. Le lissage est similaire au filtrage, mais il prend en compte la séquence entiére
d’observations pour estimer I'état pour un instant donné. Les estimatiosisobtenues sont
plus précises qu’avec le filtrage.

Le lissage se réalise en utilisant les probabilités “forward” et “backivard

P([S =] | Our) = ploatmrst(i) (28)

Proche du lissage est le calcul de la probabilité d’une transition conntissa séquence
d’observations :

a1 ()P([S=J] | [S-1= PO | [S = j])Bt(])
Po

P([S-1=1][S=]]|Owut) = (29)

XXIi

L'algorithme de Viterbi. L'algorithme de Viterbi répond a la question “quelle est la séquence
d’états qui correspond avec la plus grande probabilité a une ségdehservations donnée?”
Essentiellement, I'algorithme de Viterbi est identique au calcul des probabitit@sard”, mais

en remplacant I'addition par un opérateur de maximisation :

& (j) = max[&-1(HP([S = j] | [S-1 =]D]PO [[§ =]]) (30)

Oud;(j) représente la vraisemblance maximum d’observer la séquence partiebe/ations
01 et d’étre dans I'état a I'instantt. L'algorithme garde aussi, pour chaque instagitchaque
étatj, I'état précédendy (j) qui mene g avec probabilité maximum.

Classification. La classification consiste a choisir parmi plusieurs MMC, celui qui cpoed
le mieux a une séquence d’observations donnée.

4.3.3 Stabilité numérique

Al'heure d'implémenter des MMC dans des ordinateurs, il est fréquestrodver des problemes
de stabilité numérique pendant I'exécution des algorithmes de Viterbi etvdfdrbackward”.
Ces problémes viennent des multiplications de longues séries de valeupefitas que 1, ce
qui vite dépasse la capacité de représentation de la machine. La solutipnadbigeane dépend
de l'algorithme en question :

Algorithme de Viterbi: utiliser des logarithmes des probabilités et des sommations a la place
des probabilités et des multiplications.

Algorithme “forward-backward”: multiplier les probabilités pour chaque pas de temps par
un facteur d’échelle, calculé comme :

_ 1
N o)

Ct (31)

4.4 Apprentissage des parametres

La technigue standard pour réaliser I'apprentissage des paramemeIBfIC est I'algorithme
Baum-Welch.

4.4.1 L'algorithme de Baum-Welch

Cette section décrit I'algorithme de Baum-Welch, qui est détaillé dans le ahapitrespondant.
Le principe de cet algorithme est I'utilisation des probabilités forward ekwaid pour re-
estimer les paramétres du modéle a partir d’'une estimation précédente. ittedgoBaum-
Welch est, en fait, une spécialisation de I'algorithme Expectation-Maximization.

XXiii

4.4.2 Algorithmes incrémentaux

Dans cette section nous survolons les deux variantes incrémentales dethahg Baum-Welch,
proposées panjeal and Hinton1999 et par [Singer and WarmuihL994.

4.5 Structure des transitions

Jusgu’a maintenant, nous avons considéré des modeles completemeutésimu ergodiques,
ol chaque état peut étre atteint depuis n'importe quel autre état darsulupas du temps.
Toutefois, dans certaines applications, il est mieux d’appliquer desabates en interdisant
certaines de ces transitions ; quand on fait cela, on dit que I'on fixe letstey ou la topologie
du MMC. Dans la pratique, le choix d’'une topologie se réalise en fixant@ laévaleur de

certains éléments de la matrice de transition.

Une situation intéressante arrive quand la matrice de transition se compuspglement
de zéros (matrice creuse). Dans ce cas, il est possible d'utiliser pléseatations plus perfor-
mantes qu’une matrice, si bien en termes de stockage qu’en temps de traitement.

En plus d’améliorer la performance, le choix d’une structure a ausségescussions sur la
qualité de l'inférenceBrand 1998 Freitag and McCallun200Q Binsztok and Artieres2005
et accélere I'apprentissage en réduisant le nombre de paramétresppétse

4.6 Apprentissage de la structure

Dans cette section, nous décrivons de maniére sommaire les différemiéiesfal’approches
pour faire I'apprentissage de structures.

4.6.1 Algorithmes de recherche locale

Ces approches-fiedman 1997 partent d’'une structure relativement simple, et procedent en
ajoutant des noeuds ou des arétes jusqu’a I'obtention d’'un modéle “optipaaleapport a une
critére donné.

4.6.2 Algorithmes « state merging »

Les algorithmes “state merging’S[olcke and Omohundyd 994 Seymore et a/.1999 fonc-
tionnent dans le sens inverse des algorithmes précédents : ils partemsttucture complexe et,
apres, ils la simplifient en fusionnant des états. A chaque itération de ithiger, la meilleure
fusion est déterminée et le processus continue ainsi de suite, jusdoat@ntimn d’un modéle
“optimale”.

4.6.3 Autres Algorithmes

On trouve aussi d’autres approches dans la littérature, telle§qued 1998 Vasko et al, 1997,
Lockwood and Blanchefl993 Freitag and McCallug200(. Nous les décrivons avec plus de
détail dans le chapitre correspondant.

XXIV

Chapitre 5 : Modéles de Markov Cachés Grandissants

On a montré dans la premiére partie de cette these, que les Modeles de dadtwds con-
stituent un puissant outil probabiliste. Néanmoins, pour pouvoir les agplignotre probléme,
il est nécessaire de disposer d’'algorithmes incrémentaux d’apprgetidsda structure et des
parameétres qui soient capables de fonctionner en temps réel.

Ce chapitre introduit la solution que nous proposons, qui est aussnt@gale contribution
de cette thése : les Modéles de Markov Cachés Grandissants. lls pétreatécrits comme des
MMC qui évoluent au cours du temps, et dont le nombre d’états, la topoletjies parameétres
des distributions de probabilité sont mises a jour chaque fois qu'unersggid®bservations est
disponible.

Nous supposons que I'espace ou les objets évoluent a été discréssgndaombre finit de
régions discretes, et chaqu’une de ces régions est représentéedqiat discret dans le MMC.

L'intuition de base derriere notre approche est que la structure du MMCressembler
a celle de I'environnement : les transitions sont permises seulement quarégiens corre-
spondantes sont voisines. Donc, I'apprentissage de la structuristecagstimer la meilleure
discrétisation possible de I'espace et en identifier les régions voisinass &Nons attaqué ce
probléme en construisant une carte topologique de I'environnement.|'Bppirentissage des
parameétres, nous nous sommes basés sur I'approche proposékpasnr{d Hinton 1994 et
nous I'avons adapté pour gérer les changements dans la cardinalitaidest é&s observations
continues.

5.2 La carte topologique

La carte topologique est une représentation discréte de I'espacedapéfaend la forme d’'un
graphe, dont les noeuds représentent des régions discretesrétéssadiquent que les régions
correspondantes sont contigués : il est possible de se déplaceodectmtinue d’'une région a
l'autre sans passer a travers d’aucune autre région.

Méme si I'idée de carte topologique peut étre facilement appliquée a les géitjakeres,
il est généralement accepté que des représentations dites 'dynanmiquesiaptatives’ - qui
discrétisent I'espace de facon irréguliére pour représenter au miearsemble de données -
sont plus performantes en termes de ressources.

Pour notre travail, nous avons choisi d'utiliser une famille d’approclessréseaux topologiques
[Martinetz and Schultgri991- qui permettent d’obtenir des cartes topologiques en utilisant des
algorithmes d’apprentissage incrémentaux.

5.3 Quantisation vectorielle et réseaux topologiques

A la base, les réseaux topologiques peuvent étre vus comme des algoyiiumés quantisa-
tion vectorielle. Cette derniére consiste a représenter une vBriéiédensionnelle continue en
utilisant un ensemble fini de vecteurs de référedealimensionnels. Un point de la variété
est représenté en utilisant le vecteur de référence le plus peoplae rapport a une mesure de
distance donnéeé(x,y).

XXV

Le but de la quantisation vectorielle est de minimiser la distance moyenne, orsidisfo
entre les points qui appartiennent a la variété et les vecteurs de eE@@mespondants.

K
E= ZL d(x,c)P(x)dx (32)
i= XEV
Cela peut se faire aussi en prenant des échantillons appartenatrégté v
. 1 K
E=— d(Xj,Ci) (33)
‘X’ iZlng‘Vi

La plus populaire des approches de quantisation vectorielle est I'algoitmaans [loyd,
1957 Linde et al, 198(, dont il existe aussi une version incrémentalafQueen1967. D'un
autre coté, cet algorithme a deux problémes importants : a) le nombre dersatgaéférence
doit étre connu a priori ; et b) il est trés sensible a l'initialisation.

Un des algorithmes alternatifs sont les réseaux auto organisés de Kdkonenen 1994,
la principale innovation de cette approche est que, quand un vecteuré#géechantillon de
la variété) est traité, seulement le vecteur de référence le plus proshe ebisins sont mis a
jour. Ces voisins sont indiqués de facon explicite, comme des liens ouétes gui forment un
réseau, et définissent une topologie.

5.3.1 Réseaux topologiques

Les réseaux topologiques développent l'idée des réseaux de Kokongpportant deux nou-

velles capacités : a) des vecteurs de référence (noeuds) petigaméés pendant 'apprentissage

; et b) la structure du réseau est aussi apprise en ajoutant/éliminamétessdans le réseau.
Parmiles divers réseaux topologiques existarits{inetz and Schulterd 997, Fritzke, 1995

Marsland et al.2007, nous avons choisi la carte topologique instantanée de Jockusch et Ritte

5.4 La carte topologique instantanée

La carte topologique instantanée (CTIpfkusch and Rittel999 présente deux avantages par
rapport aux autres réseaux topologiques : a) elle est capable delgéonnées corrélées dans
le temps ; et b) il a un nombre réduit de paramétres ayant une claire ingignéohysique ; en
plus, il ne demande pas des connaissances a priori par rapport alagiepou la taille de la
variété - dans notre cas, I'espace ou les objets se deplacent - quird@pgrise.

L'algorithme se base dans l'utilisation d’'une mesure de distance, qui, ddres cas, est
celle de Mahalanobis.

5.4.1 Définitions

L'algorithme construit de fagon incrémentale un ensemble de noeuds,estsemble d’arétes
qui connectent ces noeuds. L'entrée de I'algorithme consiste en desixgd’entrée qui, dans
cette thése, vont étre identifiés aux observations fournies par les @pteu

Associé a chaque noeud, il y a un vecteur de poids.

XXVi

L'ensemble des autres noeuds auxquels un noeud donné est cqraralsé arétes est appelé
son voisinage.

5.4.2 Algorithme

La CTl a seulement trois parametres :

La matrice de covariance). Utilisée pour calculer la distance de Mahalanobis.
Le seuil d’insertion (1). Définisse la distance moyenne entre noeuds.

Le taux de lissage). Régule la vitesse d’adaptation des vecteurs de référence..

L'algorithme est détaillé dans le chapitre correspondant. Il peut étrentgmsé en quatre
pas :

Appariement. Trouve les deux noeuds les plus proches au vecteur d’entrée.

Adaptation des poids. Le noeud le plus proche est déplacé vers le vecteur d’entrée débagor
facteur de lissage choisi

Adaptation des arétes.Créé une aréte entre les deux noeuds les plus proches s'il n'exisait pa
auparavant. Il peut éventuellement effacer d’autres arétes s’ilseondants.

Adaptation des noeuds.Créé des nouveaux noeuds (et les arétes correspondants) si l& vecte
d’entrée est trop éloigné du reste du réseau. Il peut aussi effesearétes s'ils sont
redondants.

5.4.3 Propriétés

Convergence.La CTI, n’a pas des propriétés strictes de convergence vers un minincahak
la distorsion. Il est possible, par contre, de montrer que :

E<t (34)

Nombre d'arétes. [Dwyer, 1989 a montré que dans la plupart des cas, le nombre d’arétes pour
une CTI dépende de facon linéaire du nombre de noeuds dans la ¢agte eela est
indépendant de la dimension de I'espace en question.

Complexité. La CTl a été congue pour I'apprentissage incrémental, la complexité tempeelle
I'algorithme de mise & jour est d&N), et cela peut étre réduit en utilisant des techniques
hiérarchiques d’indexation de I'espace comme les R-Trees et sesiertefisuiimarn
1984 Beckmann et a].1990Q.

XXVil

5.5 Modéle probabiliste

Dans cette section, nous expliquons comment intégrer la CTI pour apprenstructure d’'un
MMC. Nous présentons aussi la facon ou nous avons modifié I'apmagésdes paramétres
pour prendre en compte une structure évolutive. Comme pour les MMC deécrie notre
approche comme un modéle probabiliste.

5.5.1 Variables

La seule différence a ce niveau entre les MMC et les MMCG est que leiderda la variable
d’état change a mesure que le temps avance. Mise a part cela, les degbesnatdisent les
mémes variables.

e §,S 1, L'état actuel et I'état précédent, qui sont des entiers dans l'iftefMaS], ou S
est le nombre d’état dans la structure agreas de temps.

e O, L'observation actuelle, qui est un vecteur da@s

5.5.2 Décomposition

La décomposition est aussi la méme que pour les MMC :
P(§-180) =P(S-1)P(§[S-1)P(O [S) (35)

5.5.3 Formes paramétriques

Les formes paramétriques des MMCG sont aussi fondamentalement les mé@enpsur les
MMC, mais la maniere ou ces parametres sont stockées est différente.

e P(S). L'a priori sur I'état est aussi une multinomiale, mais a la place de stockerdés
abilités directement dans un vecteur nous stockons les SSE (voi# g@our calculer
ces probabilités. Les probabilités seront calculées directement sualeessv:

W
25Ty

e P(O;|S). A différence des MMC toutes les gaussiennes des probabilités diattiser
vont avoir la méme covariance

P(S =) (36)

P(O | S =i)=G(Or; 1, %) (37)
e P(S |S-1). Comme pour I'a priori, nous allons stocker des SSE dans la matrice de
transition :
. . 4 j
PE=ilSa=i)=c——— (38)
25518515

XXViii

5.6 Inférence

L'inférence dans les MMCG est exactement la méme que pour les MMC.

5.7 Apprentissage de la structure et des parametres

L'algorithme d'apprentissage est la particularité la plus importante des MM@(giorithme
alterne entre deux activités, la mise a jour de la carte topologique, et I'estindasgrarametres
des distributions de probabilité.

L'algorithme, détaillé dans le chapitre correspondant, a les paramétvastsui

Valeur par défaut de I'a priori sur les états (1p). Utilisé pour initialiser I'a priori quand des
nouveaux états sont crées.

Valeur par défaut des transitions (@g). Utilisé pour initialiser les probabilités de transition quand
des nouveaux arétes sont créés.

Matrice de covariance g). Elle est utilisée pour calculer la distance de Mahalanobis dans la
CTlI et pour toutes les gaussiennes des probabilités d’observation.

Seuil d’insertion, et taux de lissageT), (¢). Utilisées parla CTI.

L'algorithme, qu'utilise des séquences complétes d’observations comnéegnge décom-
pose en trois parties :

Mise a jour de la carte topologique. En utilisant toutes les observations de la séquence.

Mise a jour de la structure du MMCG. Des états et transitions sont ajoutés ou effacés pour
refléter la structure de la CTI.

Mise a jour des parametres. Applique une version incrémentale de I'algorithme Baum-Welch.

Chapitre 6 : Apprentissage et prédiction des mouvements avec MMCG

Ce chapitre se concentre sur I'application des MMCG a la prédiction des meus de pié-
tons et de véhicules. Notre hypothése de base est que les objets sedéptafonction de leur
intention d’atteindre un état particulier (leur but). En conséquence, modglisons le mouve-
ment de l'objet en fonction d’un vecteur d’état augmenté qui est congmdéux ensembles de
variables décrivant son état actuel et celui qu’il prétend atteindre.

Une conséquence de ce choix de modélisation est que les mouvementssymeoemre-
spondent plus a des trajectoires, mais a I'ensemble des chemins qu’upeljetprunter pour
arriver & un but donné.

XXiX

6.2 Modéle probabiliste

Jusgu’a maintenant, nous avons suppose que les observationsiréseskinférence et I'apprentissage
sont fournies par les capteurs a chaque pas de temps. Dans notratapplicette hypothése
n’'est pas toujours vraie, au moins dans le cas des buts. En effet, la pabitioobjet est ob-
servable tout le temps, mais la destination, par définition, seulement peubstiwée a la fin
d’une trajectoire.

Cette section décrit comment utiliser des MMCG pour créer des modéles dementy et
comment gérer les observations “manquantes” qui correspondebtiggix

6.2.1 Variables

Nous allons considérer notre modeéle probabiliste a deux niveaux. Daive#ai le plus général,
notre modéle se comporte comme un MMCG ordinaire, et 'espace augmestépa dif-
férent d’'une autre définition quelconque d’'état. Mais, dans un nipikaibas, nous voulons
faire la distinction entre I'état actuel et I'état but, donc nous allons déceerdes variables
d’observation dans une composante actugjlet une composante b@’. Cela donne les vari-
ables suivantes :

e S,S ;, I'état augmenté actuel et I'état augmenté précédent, qui sont desseddies
I'intervalle [1,S], ou S est le nombre d’états dans la structure afrgas de temps..

e O, I'observation actuelle, qui est un vecteur d&. Comme on a expliqué avant, les
observations se décomposent en déux [Of, Of'].

6.2.2 Décomposition

Au plus haut niveau, la décomposition est la méme que pour les MMCG :

P(§-1§ Q) =P(S§-1)P(§ | S-1)P(O: [§) (39)

Mais dans le niveau inférieur, les observations représentent l'aswe conjointe de ses
composantes : actuel et but.

P(Oi|S)=P(O O |S) (40)

Nous faisons I'hypothése que les deux composantes sont indépendabdtat actuel est
connu :

P(O{ O |8) =P(0 | S)P(O] [S) (41)

Donc, nous obtenons la décomposition suivante :
P(S-1S O O) =P(S-1)P(§ | S-1)P(O{ | §)P(TY | S) (42)

XXX

6.2.3 Formes paramétriques

Les formes paramétriques sont les mémes que pour les MMCG, mais dandds pasbabilités
d’'observation on fixe des contraintes supplémentaires :

e P(S). Pareil que pour les MMCG.

e P(O; | §). Grace a notre hypothése d’indépendance conditionnelle, nousmmeedre
les probabilités d’'observation comme un produit de probabilit®g; Of | S) = P(Q] |
S)P(O/ | S) . Sinous définissons ces probabilités comme :

P(O{ | [S =1]) = G(Op; 1,) (43)
et:

Uor if O is not available

P(O{/ ‘ [S = I]) = { G(O{/; ”1_//7 Z//) otherwise (44)

Et notant qudP(O; |) est soit un produit de gaussiennes, soit le produit d’'une constante
pour une gaussienne, nous pouvons réécrire cette probabilité commeuwagaussienne

POy | (S =i)) = 36(Ox i, 3) (45)

ou = [M, '], etZ est une matrice diagonale en blocs :

> 0
5 [0 z,,] (46)

etZ est une constante de normalisation.

e P(S|S-1). Pareil que pour les MMCG.

6.3 Inférence

L'inférence est la méme que pour les MMC.

6.4 Apprentissage de la structure et des parametres

L'apprentissage se réalise de fagon standard en utilisant I'algorithithest, cependant, néces-
saire de prétraiter les séquences d’'observations recues pour dgalgeniére observation de la
séquence a chaque vecteur d'observation.

XXXI

6.5 Exemple d’apprentissage : environnement unidimensiorei
6.6 Comparaison avec des approches existantes

Dans cette section nous comparons notre approche avec d’autrefsjteshexistantes basées
sur des modéles a états discrets, qui, en contraste avec nous, utiliseajatdeires typiques
pour définir la structure du modéle.

Redondance. Un premier probleme de l'utilisation des trajectoires typiques vient du fait que
les structures résultantes ne partagent pas des états. Un exemple diuetite £st montré
dans la figures.6. 1l y a deux trajectoires typiques différentes (fig6(a) qui sont représentées
dans la structure comme deux chaines séparées$ @igp). Notre approche, par contre, produit
un modéle plus compact (fig.6(c).

Combinaisons de comportements. Dans les approches basées sur des trajectoires typiques,
les transitions entre comportements “différents” ne sont pas permisemséquence, le modele
n'est pas capable d'expliquer des mouvements constitués de “morcdaspcomportements
déja appris. Un exemple de ce probléeme est montré dans lafig.

Sémantique. Un probleme plus profond est lié a la sémantique des trajectoires typiques. Elle
sont définies en termes de similarités, distances, ou d'autres mesuredrighmaéou statis-
tiques, sans jamais parler des causes qui sont a l'origine du mouvemard.d@atres mots,
elles n'essaient pas de répondre a la question cruciale “pour quoajesttires sont-elles typ-
iques ?”, question qui, de notre point de vue, faut répondre postreore des vrais modéles
génératifs du mouvement. D’un autre c6té, nous sommes conscients quedbsatah des
causes est tres difficile dans le cas des étres humains parce que celagrsgligattre a la place
de la personne dont on est en train de prédire les mouvements. Nougécons que, méme
si notre approche est loin d’étre un modeéle intentionnel satisfaisant, dippeache plus d’'une
explication causale des mouvements, grace au fait qu'il est basé surdétenaes intentions -
méme si ce modele est grossier.

Chapitre 7: Plateforme expérimentale

Toutes les expériences qui ont été conduites dans cette thése s@s fiasées ensembles des
données qui ont été collectés dans trois environnements différentslt déeinérée de I'INRIA,

le parking de 'INRIA et un parking dans l'université de Leeds. On ssautilisé des données
synthétiques pour compléter nos expériences.

7.2 Hall d’entrée de I'INRIA

Le premier environnement que nous avons étudié est le hall d’entréatidoent de 'INRIA
Rhéne-Alpes, qui est un environnement relativement ouvert qtiestres lieux “intéressants”
tels qu’un bureau d’accueil, une cafétéria, des bornes d’'informatiplugieurs portes qui don-
nent acces aux différentes sections du laboratoire.

XXXil

Pour recueillir les informations concernant aux piétons qui transitestaimenvironnement,
on a utilisé un systéme de suivi visuel d’objets connecté a une camérainglalbée dans un
des coins du hall. On a aussi développé un simulateur de cet enviroringoueméaliser des
expériences dans lesquelles nous connaissons les variables.

7.2.1 Le systéme de suivi

Le systeme de suivi que nous avons utilisé a été développé par I'équipa € laboratoire
GRAVIR. Ce systéme détecte et suit des objets mobiles dans un flux vidéotwnne caméra.
Les informations proportionnées par le systéme sont la position et la taillebgs,alans le
repére de I'image de la caméra. Ces informations sont en suite projetéele dapere global,
avant d’'étre utilisées dans notre algorithme. La chaine compléte de traitesheoh®rmée par
les éléments suivants :

1. Caméra et systeme de suivi. Produisent, & partir des images vidéatidegtions de la
position et de la taille des objets, exprimées dans le repére de la caméra.

2. Correction de la distorsion et projection homographique. Pour poprajiter les infor-
mations dans le repere global, il faut d’abord éliminer la distorsion induiteytdisation
des lentilles a grand angle. Apreés, la projection se réalise en utilisant uneeéitomographie
préalablement calculée.

3. Association des données. Pour améliorer les résultats, on a appligjliseulPDA (Joint
Probabilistic Data Association) sur les données projetées, de facon a mirlemsenbre
de cas ou le systéme de suivi “coupe” en plusieurs trajectoires leseoogespondantes
a un seul objet.

7.2.2 Le Simulateur

Le simulateur que nous avons développé est basé sur l'idée de “porustiéle” qui représen-

tent des lieux importants dans I'environnement tels que le bureau d’aoadeg bornes d’information.
Basés sur ces points de contrdle, nous avons défini un certain nomln&jeattoires typ-

iques, définies comme une liste des points de contrble a traverser. Pourrsimel&ajec-

toire, une trajectoire typique est sélectionnée au hasard et les obses\@iroespondantes sont

générées en utilisant un processus d’interpolation auquel on ajouteitiu b

7.2.3 Les Données

Nous avons recueilli des données pendant une semaine en des moniérdantdifie la journée.
Le nombre des trajectoires que nous avons obtenues apres avoir fie que étaient trop
longues (plus de 250 observations) ou trop courtes (moins de 50) 28t8e

Mis a part le filtrage que nous avons mentionné, les séquences d'atisesvrécupérées
n’ont subi aucun posttraitement. En conséquence, on compte plusaertdires “anomales”
parmi cet ensemble de données. Ces trajectoires anomales correg@odds erreurs de suivi,
et elles ne représentent pas des mouvements réels (ou, au moins, dsiteajeompletes).

XXXili

Ces problemes ne sont pas présents dans les données synthétiguesjsjpouvons produire a
souhait.

7.3 Le parking de l'université de Leeds

Le deuxiéme environnement que nous avons considéré est un pazkisguhiversité de Leeds.
A différence du hall, on peut trouver deux types d’objets dans céta@mement (véhicules et
piétons), une autre différence est que cet environnement est plotisé;, au moins dans le cas
des voitures.

Les données ont été recueillies en utilisant un systéme de suivi diftfgeatiui utilisé dans
le hall, mais la différence la plus importante est que ces données ont étéstradéaellement
pour corriger les erreurs de suivi. Approximativement 20% des trajestont été altérées de
cette fagon dont certaines ont été completement suivies a la main.

7.4 Le simulateur du parking de I'INRIA

En raison des difficultés que nous avons trouvées pour obtenir dagemmous avons décidé
de continuer le développement de notre simulateur pour pouvoir ainssgispaine plateforme
expérimentale permettant de faire des expériences controlées et diketravac des environ-
nements plus grands qu'avec les données réelles.

Nous avons donc produit un simulateur du parking de I'INRIA qui perdeesimuler les
mouvements des piétons et des véhicules en prenant en compte ausEsiesy

Chapitre 8 : Résultats expérimentaux

Nous avons réalisé des expériences extensives avec notre approaltilisant les données
décrites dans le chapitie Nous nous sommes concentrés dans les questions suivantes :

1. Performance de I'apprentissage.
2. Exactitude des prédictions.

3. Fonctionnement en temps réel.
4. Généralité.

Ce chapitre présente les expériences que nous avons réaliséesgumare a ces questions.

8.2 Exemples

Cette section présente informellement quelques exemples du fonctionnesesitelapproche
sans en discuter les détails techniques.

XXXIV

8.2.1 Le hall d’entrée

8.2.2 Le parking de Leeds
8.2.3 Le parking de I'INRIA
8.3 Résultats quantitatifs

Dans cette section, nous présentons les résultats que nous avons @ntésudiant nos ques-
tions.

8.3.1 Sélection des parametres

Pour étudier la sensibilité de notre approche aux changements dansde®pas, nous avons
utilisé six ensembles de parametres.

Dans tous les cas, nous avons utilisé des covariances sphériquésspaarniables d’état.

Pour chaque ensemble de données, les valeurs ont été fixées denladagmte : le pre-
mier ensemble de parameétres est une estimation proposée par une pelsenemsembles
“Low CV” et “High CV” correspondent a des valeurs inferieuresugierieures des covariances,
respectivement ; les ensembles “Low IT” et “High IT” fonctionnent dedn analogue pour le
coefficient d’insertion ; le dernier ensemble des parametres est le meiliemogs avons trouvé
par rapport a sa parcimonie et exactitude, et, dans tous les cas, il deé phr essai et erreur.

8.3.2 Mesure de I'exactitude de la prédiction

La mesure la plus commune pour des approches probabilistes est la viaiseenies données
ou des approximations telles que le BIC (Bayesian Information Criterionjanidéins pour
notre probléme particulier, cette métrique a l'inconvénient de ne pas awimterprétation
géomeétrique. Intuitivement, nous voudrions connaitre la distance entrefdiétit et le réel.
Donc, nous avons préféré de mesurer la performance de notrechppen termes de I'erreur
moyenne, calculée comme I'expectation de la distance entre la prédictionmpbarimon tem-
porel donnéH et I'observation effectivé, .

(E) =S P([S+n =1] | O10)||Or 1 — /2 (47)
ies
Pour un seul pas de temps. Cela peut étre généralisé a un ensemblenéesdoomplet,
contenanK séquences d’observations.

E- L3 TS P il OOk 2 48)
K& Th—H t; = ’ B

Une autre différence par rapport a I'approche standard en apgs&ge automatique, est que,
a la place d'utiliser deux ensembles de données pour nos expériengepelir 'apprentissage,
l'autre pour la prédiction - nous avons utilisé un seul ensemble de darBékesest possible, car
'apprentissage est réalisé juste apres la prédiction, et de ce fait,ecbé@quence d’observations
est, effectivement, “inconnue” quand la prédiction a lieu.

XXXV

Le reste de ce chapitre est dédié a la présentation des résultats quanbtatiisscavec les
différents ensembles de donées.

8.3.3 Données réelles du hall d’entrée

8.3.4 Données synthétiques du hall d’entrée
8.3.5 Données du parking de Leeds

8.3.6 Données du parking de I'INRIA

Chapitre 9: Conclusions et perspectives

Dans ce chapitre, nous récapitulons la situation générale des appdecghesiiction basées sur
les mouvements typigues et rappelons nos contributions. Apres, nolimnétles perspectives
de notre travail.

9.2 Perspectives et extensions possibles

Nous voyons deux directions principales dans lesquelles les travasenpéé dans cette theése
peuvent se développer. La premiére consiste a explorer des extemsisrdes niveaux plus
hauts d'abstraction, spécifiguement en prenant en compte les interagtiopsuvent arriver
entre des objets mobiles. La deuxiéme consiste a améliorer le bas niveaaugooenter la
robustesse de notre approche face aux limitations des systémes dé¢ das/capteurs actuels.

9.2.1 Extensions de haut niveau

Notre approche ne prend pas en compte la possibilité qu'un objet modifi@jeatdire en
réponse aux mouvements d’'un autre objet. Un premier pas dans cette difgotioait étre
de considérer les objets semi-statiques que I'on trouve dans un envitenheCes objets se
caractérisent par le fait qu'ils ne peuvent pas se déplacer librementpeaisnt adopter un de
deux états possibles (blockage/non blockage). C’est le cas, par lexatap portes, qui peu-
vent étre soit ouvertes, soit fermées, ou des places de parkingeuanemt étre soit libres, soit
occupées. Nous illustrons comment ces objets peuvent étre pris en cemfné&oduisant la
notion d'état occupé dans notre modele.

Un défi beaucoup plus ambitieux est celui de prendre en compte les intesaetitre des
objets complétement dynamiques. Dans la base, cela requiert de modékgeolrgoint de tous
les objets qui occupent I'environnement, ce qui est manifestement isabl@ Nous esquissons
deux directions possibles: soit en ayant recours a des techniquadsogmnposent I'état conjoint
[Brand et al, 1997 Gong and Xiang2003, soit en intégrant notre approche avec des techniques
d’analyse de scene8|iver et al, 2004.

9.2.3 Extensions de bas niveau

Comme la plupart des approches basées sur des comportements typiquigse f@pose sur
I'hypothése qu’on dispose d’'un systeme de suivi pratiquement siles f&&eulement, comme

XXXVi

nous I'avons montré dans le chapiftecette hypothése n’est pas vérifiée dans la pratique.

Nous voyons deux stratégies pour résoudre ce probléme, la premiéie a@ésvelopper des
systemes de diagnostic qui nous permettent de filtrer les trajectoires tideifees” [Hu et al,
2004; l'autre est d’essayer d’améliorer le suivi en utilisant des comportésragapris [iao et al,
2003 Bennewitz et a].2009.

XXXVii

XXXVili

Chapter 1

Introduction

Life is a series of collisions with the future

JOSEORTEGA Y GASSET

1.1 Motivation

Motion planning for dynamic environments is a very active research domaibatics. Owing
to the fact that the problem is NP-Hari@qif and Sharir1985, most research efforts have been
directed towards coping with planning complexity.

There is, however, another critical aspect of the problem which is ofterlooked: motion
planning algorithms need to know in advance how the objects that populatevinenenent
will move. In practice, this knowledge is seldom available, making it necgdearesort to
prediction: gathering information about moving objects through a sensaredfeg radar, vi-
sual tracker, laser scanner) and then feeding this information into a matbainnaodel of the
object’s motion in order to obtain an estimation of its future staeggpsition, velocity).

Until recently, most motion prediction techniques have been based on kinemdyinamic
models that describe how the state of an object evolves over time when ijégisida given
control gacceleration) (cf. Zhu, 199(). These approaches proceed by estimating the state,
using techniques such as the Kalman Filtéal[nan 196(], and then applying the estimate to
its motion equations in order to get state predictions.

Although these techniques are able to produce very good short-tedictes, their per-
formance degrades quickly as they try to see further away in the futinis.isTespecially true
for humans, vehicles, robots, animals and the like, which are able to modifytrijectory ac-
cording to factorségperception, internal state, intentions, etc.) which are not describediby the
kinematic or dynamic properties.

To address this issue, a different family of approaches has emergee lasthdecade. It
is based on the idea that, for a given environment, moving objects tend to fiyjioeal mo-
tion patterns that depend on the objects’ nature and the structure of tinenement. These
approaches operate in two stages:

1. Learning stage:observe the moving objects in the workspace in order to identify and
build representations of typical motion patterns.

2. Prediction stageuse the learned typical motion patterns to predict the future motion of a
given object.

Thus, learning consists in observing a given environment in order tstrean a represen-
tation of every possible motion pattern. But, how long should we observenthieement in
order to construct such a “library” of motion patterns? Given the enosmamber of possible
behaviors the humans may exhibit in all but the simplest environments, theot éssimple
answer. This raises an important problem of most current learningitpes[Hu et al, 20043
Bennewitz et a].2005 Wang et al, 2004: they use a "learn then predict" approach, meaning
that the system goes through a learning stage where it is presented witdnaple data set from
which it builds its pattern models. Then, the models are "frozen" and thensygies into the
prediction stage.

The problem with this approach is that it makes the implicit assumption that therelgle
information in the example data set to build a representation of every possitinrpattern,
which, as we have shown, is a difficult condition to guarantee. This thegmges a solution
to this problem: dearn and predictapproach, where learning and prediction take place in a
continuous and parallel fashion, making it possible to refine knowledgeednasis of the same
observations that are used to predict motion as it happens.

1.2 Problem description

It will be assumed hereafter that the input of a learning based algoritinsists of a series of
discrete observationge(sensor readings) describing the motion of objects in a given environ-
ment; most of the time, we will consider observations to consist of positionnreton in the
form of coordinates in the plan, nevertheless, sometimes they also incliederdgdrmation like
velocity, size, orientation, confidence, etc.

In addition to this information, it is assumed that observations are arrangsetjirences
O11 ={04,---,07} such that every sequence describes the trajectory of a single objeeitsin
observed for the first time until it leaves the environment or stops movingeXample, in the
case of a visual tracker, observation sequences will correspondiplete tracks, from creation
until deletion.

A complete learning-based approach, includes the following components:

A motion pattern modeldescribing, how the object’s state evolves as time passes, considering
that it is engaged in a given motion pattern.

A learning algorithm specifying how the model’'s parameters should be estimated from col-
lected data. For a “learn and predict” approach, this should ideally coenesability to
create or delete motion pattern models as learning progresses.

A prediction algorithm prescribing the use of learned models and observations to predict fu-
ture motion. More precisely it should answer the following question: giwencarrent

2

knowledge and the whole history of observations for an object up to #gsept timd,
what will be its state at time+ H?

Since uncertainty is inherent to prediction, it seems sensible to use a pisittafsrame-
work and to model motion patterns as stochastic processes. Thus, wedsae this thesis
on Hidden Markov ModelsRabiney 199(], a probabilistic approach which is very popular in
the literature of “learn then predict” approacheg [WValter et al, 1999 Makris and Ellis 2002,
Bennewitz et a].2004 due, at least in part, to the existence of efficient inference and lgarnin
algorithms. Nevertheless, the application of Hidden Markov Models (HMMj ttearn and
predict” approach, poses additional problems which, as we will see inetktesaction, are not
solved by classical algorithms.

1.2.1 Modeling motion with Hidden Markov Models

A Hidden Markov Model may be viewed as a graph (figl), where nodes represent discrete
states égplaces in the environment) and edges represent transitions. The topbtbgg/graph

(ie its edges) and its cardinalitig(lnumber of states) are often called thedel’s structureThe
model assumes that the state of an object is not accessible in a direchfassiead, there is an
observation probabilityattached to every state, describing the probability of obtaining a given
observation, supposing that the object is in that state. Transitions adetavministic either,

but occur according to @ansition probability attached to every edge on the graph. Transition
and observation probabilities are often represented as multinomial andi@apsobabilities,
respectively, the set of all the multinomial and Gaussian parameters anm kogether as the
model’s parameters

Figure 1.1: A basic three-state HMM, with transition probabilities attached teseagd obser-
vation probabilities attached to nodes.

HMM based motion prediction approaches in the literature model motion pattetyscal
trajectories which, in HMMs are represented as chaiimes drder-two graphs) with directed
edges going only in one direction (fifj.2). Every such graph constitutes an individual HMM

3

[eg Walter et al, 1999; or, alternatively, they may be represented as a single HMM conformed
by many non-connected chaireg[Bennewitz et al.2009.

Figure 1.2: An HMM structure for a parking environment, where motion padtare represented
as non connected chains (order 2 subgraphs) (only a few motion padierdisplayed).

1.2.2 Challenges

When using HMMs as motion models there are actually two learning tasks to bmplished:
a) learn the graph structure, and b) estimate the parameters of the diffevbability distribu-
tions. In most cases, they are roughly equivalemémtifyingandrepresentingnotion patterns,
respectively.

The standard learning technique for HMMs is the Baum-Welch algorithom et al[197(

— a specialization of the well known Expectation Maximization algorithinefipster et a/.
1977 — unfortunately, it is a parameter-only learning algorithm which assuméghthanodel’s
structure is knowra priori. Moreover, in its classical form, the algorithm is not applicable to
a “learn and predict” approach, because it is designed for off-lise processing data in batch
mode.

Although structure-learning and incremental extensions of the Baum-\&kjohithm exist
[Friedman 1997 Singer and WarmuiH.994, an algorithm that is able to perform both of them
is still needed in order to enable an HMM based “learn and predict” apprdsloreover, the
algorithm should be able to work ieal timewhich, in this context, means delivering predictions
in the time elapsed between two sensor readings.

Prediction in HMMs consists in applying Bayesian inference to update apilidtic belief
(ie the belief state) of the object’s state with newly gathered observations, anddtproject
it into the future. This may be done very efficiently on an observation bgmhton basis,

4

however, depending on the HMM's structure, inference may not lesfamigh to enable real-
time use, and it is necessary to apply approximate methagds\lier et al, 1999.

Another problem comes from the fact that, in real life, persons oftengghtiheir mind while
moving, leading to trajectories which are highly atypical and, at the same timeparposed by
well known sub-behaviors. The problem with most current appraaishinat they are not able
to deal with this “mixed patterns” because typical trajectories are supgodeel completely
independent. This leads to bad generalization, since a new motion pattedd deodearned
for every such case, which is problematic because will not represandléehaviors, but an
atypical motion which is unlikely to observe again.

1.3 Contributions

The main contribution of this thesis is a “learn and predict” technique basea ppoposed
extension of Hidden Markov Models, called Growing Hidden Markov Med&HMM). They
differ from conventional HMMs in the fact that the model structure anchipeters are not
fixed, but evolve continuously, as more observations are available. isTpsssible thanks to
the integration of a topology learning networlofkusch and Ritted 999 — which is used to
learn the structure — and an incremental parameter learning algorithm thepirhe work of
Neal and Hintor[1999 into a fully unsupervised learning technique.

Even if they have been formulated in the context of motion prediction, GHM¥&lg#ended
to be applicable to all the cases in which standard HMMs are used as aali@ppeoximation
to model a process having a continuous state space.

In order to apply GHMMs to the motion prediction problem, we have taken areliite
approach from other HMM based techniques, which — as explaineceabave based in the
concept of typical trajectories. Instead, we have chosen to model motiemis of the object’s
intended destinationd its goal), which, in our approach, becomes part of an extended state
vector, along with the other state variables such as pose and velocity.

By using together GHMMs and the extended state, we have developeaknmation pre-
diction technique, which has the following differences with respect to diiMkM-based ap-
proaches:

e The model’s parameters and structure are estimated using an incremernigi@gehich
is a necessary condition for a true “learn and predict” approach.

e The learning algorithm is fully unsupervised, and it is defined in terms of inéugaram-
eters, which do not require any prior knowledge about the environorehte number of
possible motion patterns.

e The learned HMM structure does not consists of unconnected chairesenting ‘typ-
ical trajectories’ corresponding to geometrically similar observation segserinstead,
motion is modeled in terms of goals. This not only enables richer motion pattem rep
sentations, but also has the advantage of being an explicit — althoudh-+augdel of the
object’s intentions.

¢ In spite of being richer than in other approaches, the learned HMM stauiststill simple
enough to enable the use of exact inference in real time, even for lavgeraments and
high-dimensional spaces: in most cases, the number of edges growdylwéh the
number of discrete states in the model.

1.4 Overview of the rest of this thesis

Part One: Background

Chapter 2. This chapter introduces the basic mathematical notions of probabilities amd infe
ence which are fundamental for the rest of this thesis.

Part Two: State of the art

Chapter 3. This chapter is a review of the literature of learning-based motion models aind th
application to prediction. It proposes a classification of motion models, asmbpasting
techniques, and discusses outstanding issues on intentional motion preaiziong em-
phasis in problems related to discrete space-state representations sliddeasMarkov
Models.

Chapter 4. Since most of our work is based on Hidden Markov Models, we haveecoated
one chapter to this probabilistic tool. In it, we discuss common inference tagkl tig-
ing, smoothing and prediction; and present an overview of existing paeased struc-
ture learning algorithms.

Part Three: Proposed approach

Chapter 5. This chapter introduces Growing Hidden Markov Models, our propéHdil ex-
tension for continuous parameter and structure learning. It introdueesoticept of a
topological map and provides an overview of Vector Quantization andl@dgpdrepre-
senting Networks, before presenting the Instantaneous Topological(IWis}). It then
formalizes Growing Hidden Markov Models, and explains how the ITM allgor is in-
tegrated into an incremental structure and parameter learning algorithm.

Chapter 6. This chapter explains the application of GHMMs to predict the motion of vehicles
and pedestrians. It explains the reasons and advantages of usirtgadeel state vec-
tor and describes how it is integrated into the model. Finally, it compares opoged
approach against other HMM-based techniques in the literature.

Part Four: Experiments and Applications

Chapter 7. This chapter presents the different experimental platforms used in this &sasell
as the respective data sets.

Chapter 8 This chapter presents the qualitative and quantitative results that we biameeul
from the application of our GHMM based motion prediction technique to the adta s
described in the precedent chapter.

Part Five: Conclusions

Chapter 9. Finally, this chapter summarizes this thesis and analyzes our contributioss, iTh
presents our conclusions and reviews some of the possibilities for futute w

Part |

Background

Chapter 2

Probabilistic Models

- How do you know?

- All those movies had happy endings.

- All?

- Most.

- That cuts down the probability - he told her, smug.

THOMAS PYNCHON
The crying of lot 49

2.1 Overview

Probabilities and Bayesian models —in particular the Bayes filter — will play arptedominant
role in what is to follow, so that it seems advisable to begin with a summary inttioduo the
subject. This chapter is strongly based.@eliel[1999, the interested reader is also invited to
consult the works oftone et al[1999 and Thrun et al[2004 for a more thorough explanation
of the concepts presented here.

We place ourselves in the framework of the theory of plausible reasornelaped by
Jayneqd 1999 “probability as logic”; an extension of classical logic which introducesabil-
ities as a way to perform inference. One of the key aspects of this theibsyiriserpretation of
probabilities as describing the degree of certainty that it is possible to e a particular
phenomenon given the available knowledge. Bhibjectiveapproach is a significant departure
from the classidrequentisipoint of view, which sees probabilities as an inherent property of the
phenomenon.

The basis of Jaynes work is a theorem propose@dy[1944, who first stated a number of
desiderata defining the concept of plausibility for a reasonable ageamh there, he showed that
the only way to manipulate this notion while staying true to the original desideratausibg
the mathematical concept of probabilities. This result is crucial for a “stiwaily respectable
theory of inference® although estimating probabilities is subjective because it depends on the

1[Jaynes1995 p.39]

11

agent’'s knowledge, given the same knowledge, two different ageatddshstimate the same
probabilities if they are rational.

2.2 From logic to probabilities

2.2.1 Logic Propositions

We will work with classic logic propositions which may be either true or falseesehpropo-
sitions will be denoted using capital calligraphic characters. Propositiogdmananipulated
using Boolean operators.

e Logical AND We will denote the logical product, or conjunction, by listing propositions
together, separated by spaces, for examgae means “botha and 3 are true”. Some-
times, for the sake of clarity, we will use a comma to indicate conjuncegn“(@,3").
Finally, as a notational convenience, we will use colon-separated sige$to denote the
conjunction of variables with consecutive indexeg (411 = 41, -, 4t).

e Logical OR Logical disjunction will always be denoted by using a plus sign, hene¢es
means “at least one of or 3 is true”.

e Negation Negation will be denoted by the symbe| therefore-2 means % is not true”.

2.2.2 Probability of a proposition

Sometimes, we do not know if a particular propositioiis true or not, but we still have reasons
(egprior knowledge or evidence) that make us believe that one of thosesvalomre likely than
the other. We express this using the notatgm | 1) which is read “the conditional probability
of 4 givenour former knowledget’. Since — under the subjective interpretation — probabilities
are always estimated on the basis of former knowledge, it does not mase teesimply write
P(a) or “probability of 2”. That said, we will systematically omit the specification of former
knowledgert, but it should be noted that this is only a notational shortcut.

Quantitative rules for propositions

Quantitative rules are mathematical identities used to manipulate propositiorbjitasain
order to perform inference, in a similar fashion to what we do with Boolgeemaiors.

The product rule The product rule relates the probability of the logical prodacs to the
individual probabilities ofa and3:

P(a 8)=P(a)P(8|a)=P(3)P(a|3) (2.1)

12

The normalization rule The normalization rule expresses the relationship between the prob-
ability of a proposition and that of its negation.

P(a)+P(-a)=1 (2.2)

The sum rule Just as in classical logic it is possible to construct every possible logieal e
pression using only negation and conjunction, two identities — the prodd¢hamormalization
rules — are used to derive all possible probabilistic computations. One oblde which is
possible to obtain from(1) and @.2) is the sum rule:

Pa+3|c)=Pa|c)+P(B|c)—P(a3|c) (2.3)

2.2.3 Variables

Until now, we have only talked in terms of logical propositions but, most ofteswant to
reason in terms of variables (also called random variables) which eyiriee relevant features
of a given problem. A discrete variablehas an associated domdyxy = {vi,---,Vvk }, which
is the set oK values which this variable may take. The variable may only have a single alue a
the same time, and the value should b®in

Let us suppose that we want to model the result of throwing a die, iaqtieg the output
by a discrete variabe having a domaiy = {1,---,6}. We may associate a logic proposition
with every possible output:

V1 E[V = 1]

Vs =|V = 6
These propositions are botithaustiveandmutually exclusive

V1+---+ Vs = 1(exhaustive)
1,9 =0Vi, j | i # j(mutually exclusive)

We may now use the obtained propositions to define probabilities, for exathplproba-
bility of obtaining a 6 may be writteR(1%), alternatively, we may explicitly enclose the propo-
sition with square bracke®(|V = 6]).

If we have two variabley! andV? whose respective domains dg: = {vi,--- v} and
Dy2 = {v%, - V&1, we may describ& x M mutually exclusive elementary propositions:

13

fVllfVlzv {V11{V227 Tty (VllfVl\%
1,,2 2y1,,2 1,,2
Vo Vi, VyVs, -, V3 VN

(Vhal-q/].za (VI\%{VZZV o 7(VI\%{VI\%
Each of thes® x M propositions may be interpreted as follows:

vivi= NV =v]Vi=V]

“The value ofv! is v andthe value o2 is v&”

Since these propositions are both exhaustive and mutually exclusivarjumctionV?! V2
is itself a new random variable.

Quantitative rules for discrete variables

Whereas there are some differences between variables with discreteahddmains, we will
treat them individually. For discrete variables, the product rule is:

VieDa, jeDg
P(A=i][B=]j]) =P(A=i)P(B=j]|[A=Ii]) (2.4)
=P(B=JDP(A=i][[B=]])
In this document, we will use the variable name aldeevithout square brackets) to denote

theentire probability distribution. Hence the above expression may be noted with theviotjo
shortcut:

P(AB) =P(A)P(B|A) =P(B)P(A|B) (2.5)

In general, the probability of the conjunction of two or more variables is calldwint
Probability Distribution (JPD). The factorization of the JPD into simpler praiias is called
adecomposition

The normalization rule may at first look somewhat different fré®); Intuitively, both of
them may be regarded as stating that the sum of the probabilities for all thibleasases is one:

> P(A=i)=1 (2.6)

Again, this may be written:

ZP(A) =1 2.7)

14

Quantitative rules for continuous variables

Of course, many problems are defined in terms of variables having a consid@main. In this
case, probabilities are defined by assuming that there is a Probability DEnsityion (PDF)
g(A) which defines the probability of an interval:

b
P(la<A<b]) = /A:ag(A)dA 2.8)

For continuous variables, the product rule is the same that i (

P(AB)=P(A)P(B|A) =P(B)P(A|B) (2.9)
And the normalization rule becomes:

/w g(A)dA= 1 (2.10)

Other useful identities

A very useful identity involving variables is thteorem of total probabilityalso known as the
marginalization rule

gP (AB) = gP P(A|B)=P(A) (discrete case) (2.11)

/ P(AB)dB= / P(B)P(A|B)dB=P(A) (continuous case) (2.12)

Equally important is the so calldBayes rule which establish the relationship between the
“forward probability” P(A | B) and its “inverse”P(B | A), this is particularly useful in inverse
problems, where the parameters of a model need to be estimated from data:

P(A|B) = P<B|’3(Aé)P (A) = (BE’;A A)<A(?A) (discrete case) (2.13)
P(A|B) = P<B|’3(Aé;D(A) == P(EISB‘ \AA?)P((A?)dA (continuous case) (2.14)

It is important to note that, since the denominator does not depeAd on

P(A|B) OP(B|AP(A) (2.15)
and the proportionality coefficient may be deduced from the marginalizailen r
The Bayes rule may be seen as a mechanism to comipinés) the probability of a variable
A, whose value we ignore, at the light of a variaBlavhose value is known. The known variable
is often called theevidencethe termP(A | B) is called the posterior probability or simply the
posteriorand the ternP(A) is called the prior probability or simply tharior. Finally, the term
P(B|A) is often calleddata likelihood-

2There is a lot more to say about Bayes rule. For example, the importdrpréors and their use to describe

15

2.2.4 JPD Decomposition and conditional independence

The use of the quantitative rules is not limited to the case of two variables: thiageoduct of
two or more random variables is itself a random variable, it is possible to apphulbs to an
arbitrary number of variables.

The dependencies between different variables are formally denotéeibjoint probability,
and the way it is decomposed into simpler probability distributions by applyingrdtiupt rule.
For example, for the case of three variab{&sl,vz,v3} there are 13 possible decompositions
of the JPD:

PV v2Z V3 =pPvhpPv2ve| vl
V2)P(VIV3 | v?)
V3P(VIVZ|V?)

viv3)pve|viv?)
viv3)pv2|viv?)
VZ2V3P(V| V2 Ve
vhrvZ vhpv3 | viv
vhpv3 | vhpv2|viv
VPV vaP(v3 | viv
V2PV | V2PV v2Vv3
)P(%)P(\
)P()P(

2
3
2

V3PV V3)P(V2 | ViVE

P
P
P
P
P
P
P
P
P
P
PV3P(V2 | V3PV V23

(
(
(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)

These 13 factorizations are equivalent from a mathematical point of Viewgver, by
choosing a particular decomposition, we express our knowledge almsirtitture of variable
dependence, as related to a particular problem or application.

After choosing a decomposition, further simplification is possible on the basaditional
independencassumptions, which apply whenever we consider that the variabldoes not
provide additional information about a variabé if a third variableV? is known:

PViv2v3) =pPVvhHPVv2 | vhPv3 | Vviv?)
=P(VHP(V? [VHP(V3 V1)

These assumptions are based on knowledge about the variables’ sentheiicmay also
be introduced to simplify, even if they are not necessarily true. Anywayditional indepen-
dence assumptions are critical for tractability since they permit to reducémiemsionality and,
therefore, the complexity of the distributions which conform the JPD.

former knowledge is a source of debate between frequentists andidayeg subjectivists). However, such a
discussion is beyond the scope of this thesis.

16

2.2.5 Inference

The rules we have described so far may be used to put together a madeldelscribes some
phenomenon or process; such a probabilistic model is specified by eatingethe variables —
and their domains — which are considered to be relevant to the phenomeingmiodeled, as
well as the corresponding JPD decomposition.

The main application of probabilistic models is inference: finding out the vaiuasknown
variables on the basis of known variablasdvidence) through the application of the Bayes rule.
More formally, inference consists in finding the probability distribution of ticfevariables
& (ie researched variables) on the basis of another set of varighlegose value we know
(ie evidence), eventually disregarding the values of a third group of Jasab (ie ignored
variables). We define a probabilistic question as any expression hawiffigrth:

PXK oo X XM= XM - X" = XT) (2.16)

Whereg, = {X¥,.-- X'} £ &, g = {X™,--- X"} andgj = {X°,---,XP} is the set of vari-
ables that do not belong to neithegrnor g.

Knowing the JPD, it is possible to answer any probabilistic question of tme (@r16) by
first applying the product rule2(1):

P(Xk .o X! [Xm:Xm] [Xn:Xn])
P =] - [X7 = xT]

POXK o XXM =X . XN =) = (2.17)

And then expressing the numerator and the denominator in terms of the JPPIping the
marginalization ruleZ.12):

5 PXK o X XM= XM . X =X XO - XP)
_ X0.TXP
B z P(kal [Xm:Xm] [Xn:Xn] XOXp) (218)
XK.
X0...XP

As Coope[199(has demonstrated, Bayesian inference is NP-hard; this explains the impor
tance of conditional independence assumptions, which render the prolletable by allowing
further simplifications. Another way to cope with complexity is by using speciailgred in-
ference algorithms which exploit specific features of a model; it is alsoilfes® trade-off
accuracy against complexity by using approximate inference algorithmsie @samples of
these algorithms will be given in&.3.

2.2.6 Parametric forms

Up to this moment, we have not really explained how the simpler probability distriisiticat
compose the JPD are defined; indeed, a complete probabilistic model tieacshmould spec-
ify how these probabilities are represented. Throughout this thesig fnebabilities will be
chosen amongst a few elementary distributions, which are defined in teransushber of pa-
rameters, and hence are also knowpasmetric forms

17

Uniform Distribution

The uniform distribution (notedly) represents the fact that all the values in the domain of a
variableV are equiprobable. In general, it is only well defined for discrete viasab

P([V=Vi])=Uv(vi)=|DlV,vVi € Dy (2.19)

The only parameter of this distribution is the cardinality of the variable’s domijnh

Conditional Probability Table

Conditional probabilities on discrete variables may be represented asditiGoal Probabil-
ity Table (CPT), which lists the probabilities that the variables on the left sidkeobar may
take depending on the evidence variables. for examplg, ifandc are all binary variables
(ie D4, Dy, Dc € {0,1}), the probability ofa givenb andc is represented with a:22 x 2 tablet
whose individual elements will be represented with comma-separated soésnd

P(A=i]|[B=]][C=K]) =Tk
In general a conditional probability distribution consisting\b¥ariables{V?',--- VN1 will
correspond to & dimensional CPT withDy1| x --- x |Dyn| elements or parameters.
Gaussian distribution

For continuous variables will be often use the multivariate Gaussian (an&lpiprobability
distribution, which has the following forfn

PV =w]) =G(vi; i, 2) (2.20)
1
= [2nz] M 2exp| S (V WV —) (2.21)
wherep is the mean vectob, is aD x D positive semidefinite matrix callecbvariance matrix
andv;,u € RP. The mean and covariance mafroonstitute the Gaussian’s parameters.

2.2.7 Learning

Besides the definition of the probabilistic model itself, it is necessary to asaiges to the
parametersgg mean value and covariance) of every elementary probability distribution in the
decomposition. Although this may be done manually, it is also possible to leastimate) the
parameters’ values from data.

3strictly speaking, the expression presented here does not denotbabititg since, as it may be seen in eq.
(2.8), continuous probability distributions are only defined for intervals. Hewgt is common in the literature to
refer to PDFs as probabilitiesd Thrun et al, 2005, which is what we will do in this document.

4In the scalar (unidimensional) case, the covariance is called simply warian

18

For discrete variables, in its simplest form, learning consists in computinggfedncies at
which different variable’s values occur in data, this is done by coungiogif we have only one
variableV with domainDy :

C(lV =w])

PV =) == &) (2.22)
whereC(4) stands for the number of cases in data where propositistrue. This is known as
amaximum likelihoodestimate, since it maximizes data likelihood without taking into account
any prior on the distribution o¥. A problem with this approach is that, when a learning case
does not appear in data, the corresponding probability becomes tesdi3regards the — very
frequent — situation in which data is not exhaustiedt does not contain an example of every
possible value o¥. The problem may be solved by using Dirichlet priors, that is, pre assignin
countsa; to every valuey; in Dy:

_ C(v=w])+ai
a 2 veDy C(V =vj]) +aj

the particular case in which all; = 1, becomes equal to a uniform in the absence of data; it is
known as Laplace’s law of succession:

P([V =vi) (2.23)

_C(V=v])+1
SvC(V)+1
Laplace’s law may be generalized to learn an arbitrary conditional piliipab

(2.24)

PIVE= VY] - V=V [V =] - V= Vi)
_C(VE=V e VRV V=V V=) +1 (2.25)
- Y C(VI... VKNI =V] ... VM=y])+1
Vl,-~-,Vk

In many real situations, data is not available for some of the variables in thel mddch are
then said to béidden The standard solution is the use of the Expectation-Maximization (EM)
algorithm [Dempster et 21977, which starts with some initial (often random) estimate of the
parameters and then uses inference to compute the expected numbertsfccailed Expected
Sufficient Statistics (ESS) — which are then treated as though they wezevetisand used to
re-estimate the parameters. This two steps are iterated until some coneecgarion is met.

Another — and much more challenging — learning problem is conditional steuletarning,
which consists in estimating from data the best JPD decomposition and conlditidepen-
dence assumptions. The general approach is to evaluate differentpesitions using a scoring
function and choose the one which obtains the best score.

Since the literature in learning probabilistic models is huge, we will not furtisouds
general methods in this chaptemstead, in chaptef we will do a more thorough review of the
learning algorithms that apply to the particular probabilistic model upon whichave based
our work: Hidden Markov Models

5See Heckerman1995 Murphy, 2007 for good introductions to the subject.

19

2.3 The Bayes filter

We will conclude this chapter by introducing the Bayes filter, which is useduaysdynamic
systems and constitutes the basic probabilistic framework for chaptarg5s.

The objective of the Bayes filter is to find a probabilistic estimate of the custate of a
dynamic system —which is assumed to be “hidd@ipot directly observable — given a sequence
of observations gathered every time step until the present moment.

The main advantage of using a probabilistic framework such as the Bayessfitteat it
allows to take into account the different sources of uncertainty that jpeatgcin the process,
such as:

e The limited precision of the sensors used to obtain observations.
e The variability of observations due to unknown factors (observatiorehois

e The incompleteness of the model.

2.3.1 Probabilistic Model
Variables

The Bayes filter works with two types of variables

e S, the state of the system at time The exact meaning of this variable depends on the
particular application, in general, it may be seen as the set of systemefeathich are
relevant to the problem and have an influence in the future. Since thisdeaitk mostly
with object motion, we will frequently assume that the state is the object’s piisevgh
the specific variables that constitute the state may vary with the context anderaxiidli-
tional features such as velocity. This will be explicitly stated in the text.

e O, the observation gathered at titneéDbservations provide indirect indications about the
state of the system. In this thesis, we will assume that observations comednsors
which “observe” a given environment, such as laser scanners aed trackers.

The Bayes filter is an abstract model which do not makes any assumptiohthbaature
(ie discrete or continuous) of the state and observation variables. Suahgsis are made
by concrete specializations of the Bayes filters, such as the Kalman Filtein{gous state and
observations) or Hidden Markov models (discrete state, discrete/conimliservations).

Decomposition

A Bayes filter defines a joint probability distribution @+ andS; .+ on the basis of two condi-
tional independence assumptions:

SHere, we are providing the definition 8fone et al[1999, which is different from the one given byhrun et al.
[200 in that the later includes a third set of variables describing actions oraientr

20

1. Individual observation® are independent of all other variables given the current State

P(G; | O1t-1 S1t) =P(O: | §) (2.26)

In generaP(C; | §) is calledobservation probabilityr sensor modellt models the rela-
tionship between states and sensor readings, taking into account starls & accuracy
and sensor noise.

2. The current state depends only on the previous one, former statest ¢gwovide any
further information. This is also known as the order derkov hypothesis

P(S1) fort=1

P(S ’ Sl:tfl) = { P(S | Sfl) otherwise (227)

The probabilityP(S | S-1) is called thetransition probabilityor system model The
probability P(S) which describes the initial state in the absence of any observations is
called thestate prior.

These assumptions lead to the following decomposition of the Bayes filter:
T
P(Sit Our) =P(S)P(01] §1) HP(S |S-1)P(C |]) (2.28)

t

2.3.2 Parametric forms

The Bayes filter does not define any parametric forms and, consequengigrameter identifi-
cation mechanism. This is left out to specializations.

2.3.3 Inference

One of the main uses of Bayes filters is to answer the probabilistic quéXtiry | O11); what
is the state probability distribution for tinte+ H, knowing all the observations up to tini@
The most common case is filtering & 0) which estimates the current state. However, it is also
frequent to perform predictiorH > 0) or smoothingfl < 0).

The Bayes filter has a very useful property that largely contributes totégeist: filtering
may be efficiently computed by incorporating the last observafiointo the last state estimate
using the following formula:

1
P(SOx) = ZP(Q1 S) 3 [P(S | S-1)P(S-1| Ora-1) (2.29)
-1
where, by conventior, is a normalization constant which ensures that probabilities sum to one
over all possible values f&.
If we define recursivel\P(S_1) = P(S-1 | O1t-1), it is possible to describe a Bayes filter
in terms of only three variable§ 1,5 andQ;, leading to the following decomposition:

21

P(§-1S Q) =P(S§-1)P(§ |S-1)P(C: | S) (2.30)

Where the state posterior of the previous time step is used as the prior farrthatdime
and is often calledbelief statel hrun et al[2004.

Under this formulation, the Bayes filter is described in terms of a local modethwde-
scribes the state’s evolution during a single time step. For notational coneenia the rest of
this thesis we are only going to describe such local models, noting that taysatlescribe a
single time step of the global modé&l.29).

2.3.4 Specializations of the Bayes filter

Different choices of variable domains and parametric forms for the Bfilyes give place to
different filtering techniques. For example, Kalman Filtetsl[nan 1960 make the following
hypotheses:

e State and observation variables are both continuous.
e The three probabilities in the decomposition are Gaussians.

e Both the evolution of the system state and the dependence between the agstdine
observation variables are described by linear functions.

Other popular specializations of the Bayes filter are Hidden Markov Medelsich will be
reviewed in detail in chapter— and patrticle filters4rulampalam et a).2007, which represent
probabilities using discrete samples, and allow for fast approximated mcierdParticle filters
will not be further discussed in this thesis.

2.4 Discussion

In this chapter we introduced the basic mathematical tools needed for tarabng the follow-
ing chapters. We have briefly presented the use of probabilities as a ngpaetinnference tool
which allows the explicit representation of uncertainties.

We discussed the basic rules used to manipulate probabiliieethe product and normal-
ization rules — as well as some very useful derived rulesthe sum and marginalization rules.
We explained the components of a probabilistic model: the variables, joinalpitip decom-
position and the parametric forms. We presented the Bayes rule and trarfenthl role it
plays in inference. We described the use and principles behind leatgoritlams, in particular
the importance of counting as a means of estimating probabilities. We have atshioed the
Bayes filter and explained the variables that constitute it: state and obsesvatio

22

Part |l

State of the Art

23

Chapter 3

Intentional Motion Prediction

Here is how it works: first you decide to treat the
object whose behavior is to be predicted as a
rational agent; then you figure out what beliefs that
agent ought to have, given its place in the world and
its purpose. Then you figure out what desires it
ought to have, on the same considerations, and
finally you predict that this rational agent will act to
further its goals in the light of its beliefs. A little
practical reasoning from the chosen set of beliefs
and desires will in most instances yield a decision
about what the agent ought to do; that is what you
predict the agent will do.

DANIEL DENNETT
The Intentional Stance

3.1 Overview

In the epigraphPenneti[1987 describes how most humans would try to predict another hu-
mans’ motion if asked to: if we accept that a moving object is rational and th& Able to
move at will — we take théntentional stancéowards him — then it follows that the best way to
predict its motion is to try to emulate its rational procesgp;the car is slowing down because
he wants to park in the free place at the left”. But designing a computergrogapable of
performing such emulation in a general fashion is beyond our currpabddies.

Instead, most intentional motion prediction approaches adopt what Deadlssthephysical
stancé: they try to explain — and predict — the object’s behavior in terms of its phlysioper-
ties and the laws of physics. This implies the use of kinematic and dynamic modelshitey
the objects’ motion as the evolution of its staggifs position, speed and orientation) over time
when it is subject to a controk@acceleration).

1t is important to note that the physical and intentional stances stand irsigpends of a continuum instead of
describing mutually exclusive views.

25

However, this approach faces at least three problems: a) the caobjest’s state is not di-
rectly known, instead, it is necessary to estimate it from observationsrgdttfeough sensors
which have a limited precision and are subject to noise; b) kinematic and dynamdiiels are
inevitably incomplete, because, in order to be general, they deliberatedgdisra number of
factors that influence motiore¢ road conditions, wind); and c) although objects following in-
tentional motion certainly obey physical laws, they are able to change theinotdynamically
(egsteering angle, braking), hence to predict motion, it is necessary tptied control that
the object will apply.

The first problem may be addressed by using continuous Bayes filigisasuhe Kalman
Filter [Kalman 196(and its extensionsey Rag 1996 Julier and Uhlmann1997. However,
this does not solve the other two problems, and, when applied to pedesitiaglzcles, motion
prediction approaches based on Kalman filtegstfian and Velospl 997, Rosales and Sclargff
1998 R.Madhavan and Schlenpf200 produce predictions which are sound only during a
short time interval — also known as tise horizon- or which are only applicable to highly struc-
tured environments. The same happens to approaches based osioagaralysisgg Elnagar and Gupia
199§ Yu and S 2003 Liu et al, 2004, which have the additional drawback of producing de-
terministic predictions, thus being unable to represent the uncertainty thdieeemt to the
prediction process.

More recently, another family of approaches has emerged, basedassamhich is closer to
the intentional stance: they assume that, in a given environment, objects$ mhoveat random
but often engage in typical behaviours or motion patterns. Therefotlggse motion patterns
are known, it is possible to use them as motion models in order to predict motion.

This solves the third problem, since now it is only necessary to identify the mpéitiarn
that the object is following, instead of predicting the applied control; indéedd,not longer
necessary to model controls. In addition, most of these approachessadie second problem
by means of a probabilistic representation, where the inherent incompstehthe model is
reflected as uncertainty.

We will hereafter refer to this last family of approaches as “pattern basxzidn models?.
This chapter is a review of the related literature, it is structured accordingub-alassification
of these approaches in three categories, depending on how theyaejnmgotion patterns:

1. Trajectory PrototypesAs their name suggests, these approaches model motion patterns
using a trajectory prototypég(typical example) for every motion pattern.

2. Discrete state-space Model$his models are based dharkov chainswhere time pro-
gresses as discrete steps and, at every time step, the objects’ stats byajaeng from
one state to another according to a given transition probability.

3. Other representationdHere we will discuss those approaches that do not fit into the other
categories.

For every category of approaches, we are particularly interesteddyistuhow they answer
three questions:

2As opposed to “kinematic” or “dynamic” motion models

26

1. RepresentationHow are motion patterns described mathematically?
2. Learning How are the model’s parameters estimated from data?

3. Prediction When an object is moving, what is the process that transforms obsewatio
into predictions?

Throughout this chapter, when needed, we will base our discussitdreamaginary office
environment depicted in fig3.1, where some pedestrian trajectories have been collected and
are used as input for the different techniques discussed here. kextmsple, trajectory data is
assumed to consist of noisy measurements of a person’s pose, evaplgdan time.

Book shelf

Figure 3.1: Raw trajectory data of people in an office environment.

After presenting existing approaches, we will conclude with a discussiozievant global
trends and issues in the field.

3.2 A note on semantics

Until now, we have indistinctly used the terms “behavior” and “motion patteims, coincides
with most of the reviewed works, which do not agree on a standard defimtithese concepts.
Henceforth, we will consider that a behavior describes what an oilgjelding by taking the
intentional stance towards the object, while a pattern is the motion that may beebséen
the objectis involved in a particular behavior. We will illustrate this distinction witlkexeample:

3We have decided to include in this review several approaches that dspeoifically address the prediction

question, but apply learning algorithms to build motion models, which, at iedakeory, could be used to predict
motion.

27

Let us imagine two persons in a hall, the first one is reading a bulletin bohiig, tve second
one is waiting for someone. From the persons’ perspective these ampuletely different

behaviors, however, they produce very similar motion patterns: themsedsonot move during
along time.

This distinction is important. At first sight it seems that, since the patterns are isithést
may be described by the same motion model. But this will lead us to dismiss a ciitfetartte:
the “reading behavior” only happens in the bulletin board’s neighborhatile the “waiting
behavior” may occur anywhere in the hall. As a consequence, our malti&il to represent

the fact that it is much more likely to observe a motionless person near the bblbetid than
elsewhere.

This is related to the notion of state. Most of the techniques that we havevesl/essume
that the state variables represent only physical properties of an shytas its pose or velocity.
Nonetheless, other representations are possible, &slire[et al, 200(, where states have
higher level semantics and objects may be in a “waiting” or a “fleeing” statethacefore, are
closer to modeling behavior.

3.3 Trajectory Prototypes

Approaches in this category work by grouping similar trajectories in clugfigrs3.2) — which
correspond to typical motion patterns — then, for every cluster, a singéetivay prototype is
obtained and used to represent the entire cluster and, in consedirencesresponding motion
pattern.

Book shelf
Book shelf

Figure 3.2: Trajectory prototypes for the office environment.

28

3.3.1 Representation

Typical trajectories are often represented as a sequence of pointsdorttieuous state-space.
Most approaches do not model the time variable explicitly and assume thaoitits m the
sequence are regularly spaced in time.

Sometimes, a measure of the “width” of the cluster is also included in the repatsa
(fig. 3.3). For exampleMakris and Ellis[2007] construct a “path model" by including a deter-
ministic measure of the width for every point in the trajectory, a similar meassreden used
by Junejo et al[2004. Vasquez and Fraicha@004 propose a probabilistic model in which
the width of the trajectory is represented as the variance of the distancedvetiae trajectories
that belong to the same cluster. Another probabilistic model of width has bheeosed by
Bennewitz et al[2007, they model every point of the trajectory prototype as a Gaussian and
assume that all such Gaussians have the same covariance matrix.

3.3.2 Learning

Trajectory prototypes are obtained using classical clustering algoritlemsdsifman and Rousseeyw
1989 Jain et al, 1999. The problems to be solved by a learning algorithm are basically three:
a) determining the number of clusters to be found; b) finding clusters;)amndalding trajectory
prototypes from clusters, including, if necessary, the width represamta

There are many different classification schemes of clusteegbdrd vs. soft, deterministic
vs. stochastic, se@in et al[1999) here, we will distinguish betweemodel based clustering
algorithms which work by deriving a set of prototype vectors; grarwise clustering algo-
rithms, which partition data into disjoint sets or clusters by performing pairwise cosgres
between data elements. The interest of this classification is that algorithmdesedifcate-
gories provide different solutions to the three problems that we have medtabove.

Model based algorithms

Model based algorithms have the advantage that trajectory prototypésuaet as a part of
the clustering process. They also have interesting theoretical propartesthey are built by
optimizing a global measuregdata likelihood).

However, they need to knowa priori the number of clusters — thus, of motion patterns —
to be found, meaning that this number should be estimated somehow. Somachgsrqust
ignore this problem, for examplelu et al.[2004] assume that the number of clusters is known
and use a custom self organizing network to cluster trajectories. Otlmyegw greedy search
techniques, likeBennewiiz et al[2007 which estimate the number of models by using the EM
algorithm Dempster et 2/ 1977 to cluster data using an initial guess of the number of clusters,
and then adding or deleting clusters in order to maximize data likelihood, rieguiM after
every addition.

An issue with model based clustering is that most algorithms assume that théicomsists
of vectors of equal length, which is problematic because trajectory lengthvary greatly. The
most frequent solutioreg Hu et al, 20041 is to resample trajectories in order to normalize their
length. Unfortunately, this interferes with the assumption that the points intivajgurototypes

29

are even spaced in time, and some temporal information is lost in the processtefnative
has been proposed iB¢nnewitz et al.2007, it consists in normalizing all the trajectories in
the data set to the length of the longest trajectory by padding the end ¢éistiajectories with
copies of its last position; this may be interpreted as an object which stops gnéwihis still
detected for a while.

Pairwise Clustering

Pairwise clustering algorithms are based on the use of a dissimilarity meagLEeiqlidean
distance) which is used to compare two data elemémtsajectories). The value of the measure
is high if the elements are very different and zero if they are equal. Dateeals are processed
in pairs and the dissimilarity measure is used to decide if elements belong to thelsatae ¢
The clustering process produces groups of data elements, but no ctsentation. This is
equivalent to adding a label to every element, indicating the group to whoetoihdps. When
compared with model based clustering algorithms, these approaches baadvintage that
they are able to determine the number of clusters. On the other hand, sipaaheased in
a local pairwise measure, it is not possible to guarantee that they satisdpa gptimality
criterion.

In order to use pairwise clustering to learn motion patterns, it is necesselnptse a clus-
tering algorithm, a dissimilarity measure and to device a mechanism to compute a idpste
sentation.

A popular pairwise clustering algorithm is Hierarchical Clusteritg, 1967, Makris and Ellis
[2001] used it in conjunction with a maximum inter-point distance; whilezan et al[2004
used longest common subsequence (LCSS) as similarity measurefanadez and Fraichard
[2004, used a continuous version of Euclidean distance.

The use of graph cut algorithms¢ykov and Kolmogoroy2004 has also been explored by
Junejo et al[2004], using the Hausdorff distance as dissimilarity measure. A custom pairwise
algorithm has been proposed Wiang et al[2006 based on a distance criterion augmented with
a measure of confidence for observations, which permits to repremesdrsnoise and limited
precision.

Once that clustering has been performed, the average trajectorycfockeater is computed
and used to represent the cluster. Then, the cluster width may be comph&rdeobabilisti-
cally — by computing a cluster variancessquez and Fraichard004 — or deterministically, by
defining a cluster “envelopeef Junejo et a}.2004 which is obtained from the trajectories in
the cluster that are farthest away from the average3fig).

3.3.3 Prediction

Prediction using trajectory prototypes consists basically in finding the clustieh best cor-
responds to a partially observed trajectory — often using the same dissimilagiguneethat
has been used to cluster — and using that cluster’s representationedicign of future mo-
tion. A variant has been proposed Wiysquez and Fraicha{@004 which returns a probability
distribution on all the clusters according to their similarity.

30

envelope

average trajectory

Figure 3.3: Example of average trajectory and deterministic envelope.

While these approaches have the advantage of being very coheremtonghterm — which,
in theory, allows for very long time-horizons — they suffer from two importmaivbacks: only
trajectories that have been observed may be predicted; and, most inipibrégrrhave a strictly
deterministic representation of time, the predicted state for an object at woreesponds to
thet-th element of the trajectory prototype, which is too restrictive, given thktcities often
vary between objects even if they are engaged in the same behavior. rdlsienp becomes
even more severe when trajectories are resampled to normalize their lesgilcohsequence,
uncertainties may be handled only at the trajectory level, in other words, mdten pattern
that the object is following is known, these algorithms will provide a determinisédiption of
the state.

A solution to the last problem is to transform trajectory prototypes into stateesmodels,
it will be discussed in 8.4.

3.4 Discrete state-space models

As their name indicates, these approaches are based on the use ottedisndel as an ap-
proximate analysis tool for continuous motion. The basis of discrete state-spproaches are
Markov chains, which represent time as a discrete variable and model nroteyms of a finite
number of discrete states. Transitions between states depend on a trasitiahility, which
follows the Markov assumption, namely that, knowing the present state, tines fand past
states are independent. Markov chains may be represented by a dgegiadwhose edges are
labeled with the probability of going from one state to another in a single time ste3.@).

Markov chains, however, fail to model the uncertainty related to seresodonly a few mo-
tion prediction techniques use theeg(ladokoro et al[1999, J. Rittscher and Stei[2003).
Observation uncertainty is specifically addressed by using discretes Bages (cf.2.3), which
augment Markov chains by assuming that the state is not directly obsemsadblshould be
inferred from sensor readings abservationso which they are related by an observation proba-
bility. One of the most popular discrete Bayes filters are Hidden Markoveléa¢gHMM), which
we have briefly described in the introduction and will be discussed in detetildpter4.

31

4

Book shelf

Book shelf

Figure 3.4: Discrete state-space model for the office environmentiftoendirections are not
depicted).

Most of the techniques presented in this section are based on the HMMwtakneHow-
ever, they are also applicable to other discrete state-space models wtésbstherwise.

3.4.1 Representation

As explained in chaptet, there are mainly two ways to represent multiple behaviors using
HMMs:

One approacheg Makris and Ellis[200], Bennewitz et al[2009) is to represent all the
motion patterns using a single Hidden Markov Model, where different pattenare no states
and correspond to non connected components in the graph represeotatie model; the other
approachég\Walter et al[1999) is to use a different HMM per motion pattern and model the
belief as a mixture, where the mixing variable represents the probability traatieytar HMM
is the “good” model. In fact, the former solution may be seen as a specrmlofdke latter,
where the mixing variable is always uniform.

Closely related to motion pattern representation is the concept of structhoich) may be
regarded as defining the transition graph by choosing a number of stateskecting which
state transitions are considered to be possible.

3.4.2 Learning

Learning state-space based motion pattern representations, may be deedmmgwo subtasks:

a) learning the structure ie the topology — of the underlying transition graph; and b) learning
the parameterse the transition probabilities associated with every edge of the graph, and the
observation probabilities describing how observations are related to.s@besetimes also a

32

prior on the state is also learnt, but often it is assumed to be unifegmi/falter et al, 1999
Bennewitz et a}.2004.

Structure Learning

Despite the existence of several structure learning algorithms for state-spdelsdg Stolcke and Omohundyo
1994 Friedman 1997 Brand 1999, they are seldom used in the context of motion pattern
learning. A notable exception is the work Byand and Kettnake[200(which uses an en-
tropic structure estimator that will be described in more detaili®.8nstead, structure is either
fixed a priori or estimated using custom mechanisms.

One of such mechanisms is the use of trajectory prototype learning techriigoeder to
identify both the number and the form of motion patterns, and then transfotimisg proto-
types into a state-space model. A good example is the approach proposed bywitz et al.
[2001, they obtain trajectory prototypes using EM as explained3r88then they transform
those prototypes into an HMM whose parameters are not learned, bundestically assigned
on the basis of domain knowledge and a number of assumptions about jemisobove. Both
[Koller-Meier and Van Gogl2001] and [Miakris and Ellis 200 combine trajectory prototypes
and state-space models in a similar way, but the later also incorporates parbraming into
the algorithm.

Minnen and Wrerf2004 present an algorithm which performs hierarchical decomposition
of data to find structure at many levels of detail. The decomposition is perfidogneonstructing
a binary tree where each node contains two HMMs. The HMMs are usdddsify data into
two subclasses, corresponding to the node’s sub trees. Classifield datd to the respective
sub tree and the bifurcation process continues until no further decdaiopas possible.

An approach that integrates knowledge about the environment hapiogesed by izo et al.
[2003, they use information on the static features of the environment to computecadio
graph, which is then used to define the structure of a custom state-spdeé mo

Parameter Learning

Having determined a structure, parameter learning may be performed bkataneans using

the Baum-Welch algorithm={aum et al. 197(], which is a specialization of the well known Ex-
pectation Maximization algorithni[empster et 8).1977. This is the case of/akris and Ellis
[200 andLiao et al.[2003]. Other authors prefer to determine parameters’ values using custom
proceduresBennewiiz et al[2009 model observation probabilities as Gaussians, all having the
same covariance; while transition probabilities are computed analytically timelérypothesis

that objects speeds follow a Gaussian distribution.

3.4.3 Prediction

In state-space models, motion is predicted using Bayesian inference ti&moedel structure is
determinant in the complexity of inference, it is possible to find approachesse either exact
inference égBrand and Kettnakd200(), or approximate inference methods, such as particle
filters [Arulampalam et a).2009 (egWalter et al[1999, Koller-Meier and Van GooJ2001)).

33

3.4.4 Other state-space models

Several extensions of Hidden Markov Models have also been usedpfasenting intentional
motion, here we will provide an overview.

Pentland and L1999 have proposed Markov Dynamic Models (MDM) which, concep-
tually are exactly like HMMs, except that the nodes of the graph represerrols égaccel-
eration) and not the object’s pose. Instead of state observations, Ml tine object with a
Kalman filter and use the innovatioie prediction error) of the filter as observations. Although
they have shown that MDMs outperform HMMs in recognition tasks, it isalifito use them
to predict state since there is no pose representation.

Bui et al.[200] have proposed Abstract Hidden Markov Models (AHMM), which ate-a
erarchical extension of HMMs that allow to represent motion at diffdesels of detail egmet-
ric, room, building, etc.) and integrate the concept of polieyp(an), which may be regarded as
the equivalent of a motion pattern; a two-level AHMM has been applied totiotead motion
by Osentoski et al[2004, using EM to learn the model’'s parameters. One of the advantages of
AHMMs over HMM s is that they are able to provide good mid-term predictimes éf they are
wrong at the long-term, for example, they may accurately predict thatsapés going towards
the room’s door even if they wrongly predict that the final destination is ituldn. Never-
theless, unsupervised learning with AHMMs is challenging, mainly becduse dlifficulty of
automatically finding a goodg semantically sound) hierarchic decomposition of the space into
regions.

All the approaches we have mentioned until now make the hypothesis that, tivre is
more than one object in the environment, their motion is independent, thus igraiject in-
teraction. This problem has been studied2vynd et al[1997] by means of an HMM extension
called Coupled Hidden Markov Models (CHMM), which represents the giate of all objects.
The main drawback of this approach is that the number of possible interagtiows exponen-
tially with the number of interacting objects. This has motivated the workafig and Xiang
[2009, Xiang and Gon2004 which have proposed Dynamically-multi-linked Hidden Markov
Models (DML-HMM), which are based on the idea that interactions shoaldhbdeled only
when it is highly likely that they exist.

A different direction has been taken lyiver et al.[200(, they use CHMMs to model
interaction behaviors between pairs of objeetsapproach, meet and continue together) without
modeling the environment at all. Behaviors are defined prior to learningraiméd on labelled
data. This approach has been proved to very successful in explaimingn behavior; however,
since there is no pose representation, it is not applicable to motion prediction.

3.5 Other Approaches

3.5.1 Neural network based approaches

Johnson and HogfL994, and Sumpter and Bulpitf200(have proposed similar approaches
based on multilayer neural networks: the first layer is used to discretizeptiee by using a

34

Self-organizing network to perform Vector Quantization (V@) that every unitié neuron)

in this layer corresponds to a discrete state. In order to obtain the pateaseatation, both
approaches use an additional layer of “leaky neurons” , one fawyaliecrete state. These
leaky neurons turn “on” when an object passes through the comdsppstate and their output
decays slowly afterwards. As a result, the leaky neuron layer keefpace™ of the trajectory
after the object’s motion has ended; this traieetife activation values of the leaky neurons) is
used to represent the learned pattern. Finally, different patternsaasgfied using a third layer
of neurons, which performs VQ on the whole output vector of the selzym,ie the values of
all the leaky neurons.

Hu et al.[20044 eliminate the leaky network layer by adding lateral connections between
the units in the state layer in order to account for the temporal relationsHipsdrethem.

A drawback which is common to all these approaches is that they assumeethantber of
motion patterns to be represented is knawpriori, which implies a fair amount of knowledge
about environment. A hybrid approach, which does not share thisggnpbas been proposed by
Stauffer and Grimso[200(Q: instead of the leaky neuron layer, they represent motion patterns
using a co-occurrence matitxwhere every elemerg ; corresponds to the probability that an
object passes through statemnd | given that it is engaged in a motion pattern.

A different neural network approach has been explored_bying and Son{1997, they
train a multilayer perceptron to predict motion on single motion patterns, obtainodjrgsults,
however, they do not deal explicitly with more than one motion pattern.

Neural network based approaches, have a performance which isacaioig with that of
discrete state-space models, as may be seen in the results obtaifed:byl.[20044. On the
downside, these approaches do not represent uncertainty in anteggkion, and, in the best
of cases, rely in ad-hoc procedures to produce a probabilistic output.

3.5.2 Goal oriented approaches

Dee and Hog2004 proposed an approach which takes the intentional stance towards the mo-
tion. They model motion as being motivated by the desire of the obgtttd agent), to move to
explicit places ig goals) in the environment. The originality of the approach resides in the fact
that the agent’s beliefs are taken into account by modeling the world fromget's perspec-
tive (egmay the agent see the object?). This makes it, to our knowledge, the onbaappof

this type to model the agent’s perception. From there, motion is modeled ongiseoba cost
model by assuming that the object will always take the cheapest path to itargess some-
thing happen. However, although this is interesting for scene interpretaidrihe object did

not take the cheapest path, then something happened), it seems lesfousedtion prediction
because of its relatively simple and deterministic motion model. Also, the appasacimes
that the general structure of the environment is knewvgmiori.

4This may be also regarded as performing clustering analysis. As a moéttect, from an operative point
of view, both approaches are very similar: they group data in a certaimb@uof groups so that some error of
distortion function is minimized. Their main difference is that, while clusteryaig focuses in finding clusters
in multidimensional data, vector quantization aims to find the best repréisentd a given data set that may be
obtained with a reduced number of elements.

35

Foka and Trahanig2007 have also modeled motion in terms of goals, they predict motion
in terms of a simple geometric method which does not take the environment intonac@
similar approach has been proposedinice and Gordoi2004 where the geometric method
is complemented with a stochastic motion model.

3.5.3 Other

Kruse et al.[1996 1997, Kruse and Wah[1999 have developed a technique where motion
is represented by line segments where the object is supposed to moveoamusiifeed and
transitions do not occur between states, but between line segments.

3.6 Discussion

This chapter has provided a general review of the area of patterd bastion models. Now
we would like to draw some general conclusions about existing technigueigw of solving

the main objective of this thesis: building a “learn and predict” motion predicticnnigue to
improve autonomous navigation.

3.6.1 General issues

Here, we discuss some issues that are general to all pattern based matals.riidhen relevant,
we will discuss how different approaches deal with them, focusing mainthendifference
between trajectory prototypes and state-space models.

Incremental learning

First of all, a “learn and predict” approach should be incremental. Thisye#et it should
verify three properties.[angley, 1994:

e It should process data elements one by one.

e It should not reprocess any previous data element.

e |t should retain only one main knowledge structure in memory.

The main reason for this requirement is efficiency. Using a batch algoritbaidwmean
storing the complete history of observation sequences, and procesaftey ievery trajectory
has observed. This is ineffective and not well suited for continuoosgssing in real-time.

Representing uncertainty

In order to plan its trajectory, an autonomous vehicle needs to know in e€ltha state of the
different obstacles that are present in the environment. At the same tiroe,sicertainty is
inherent to prediction, a deterministic output would have little chances to bamdieat best, a

36

limited utility. The alternative is to explicitly represent the uncertainty by usingoaagnilistic
representation.

Since state-based approaches are built on probabilistic models they afeadeidates
as motion prediction approaches. Trajectory prototypes, on the othdr hea determinis-
tic models. Even when they are complemented with a variance a@simpwitz et al.2002,
Vasquez and Fraicharéd004 so that they are able to model spatial uncertainty, they still fail to
model the temporal uncertainty which is related to the fact that in real emaénts, objects not
only do not move at the same speed but, most of the time, their speeds vagy asabe.

Discovering new motion patterns

An incremental pattern learning approach should be able to identify whehjeaat is involved
in an unknown behavior and to create a new pattern model in consequenisés, in general,
difficult to implement for state-space models, since it involves the capacitgabecdynamically
new states and the valid connections between them, which is equivalentdmaraal structure
learning, which, as we will show in chaptéris a difficult problem.

Approaches based on trajectory prototypes seem to be better suited faskh Even if most
of the current approaches are designed to work off-line, it seeraibfedo implement an incre-
mental trajectory clustering approach. The same may be said about goakdrapproaches,
such asffoka and Trahania2004 and [Dee and Hogg2004.

Representing interaction between moving objects

A good part of human behavior involves interacting with other humans: twsops who find
themselves face to face in a corridor will move in order to avoid each otheanamay go faster
in order to join a friend who is walking just in front of him, etc.

But dealing with interactions between objects is complex. Modeling interactigisawv
state-space model implies representing the joint state of all the objects thatensayudtane-
ously present in a scene. If we haNaliscrete states arld moving objects, this means learning
and storing the probabilities @(NM) possible interactions, which quickly becomes intractable.

Therefore, discrete states modeled by approaches sucirasd[et al, 1997, Oliver et al,
2000 do not represent places in the space, but a limited numbetweo or three — of high-level
behaviors such aavoidingor meeting This means that these techniques may not be directly
used to predict the physical state of an object. However, it would be stitegeto study how
they may be integrated with other techniques in order to obtain such a prediction

Besides some very general remarks in chapténis problem is not addressed in this thesis.

On-board sensors

Practically all the techniques that we have reviewed in this chapter assutriedf&is some
kind of global sensor providing information about the motion of all the objisetsmove in the
environment. Learning and modeling intentional motion using on-board eissomuch more
difficult problem that is beyond the scope of this thesis.

37

3.6.2 State-space model issues

As we have mentioned before, approaches based on trajectory pestcyp not well suited

to produce probabilistic state predictions. As a matter of fact, our previoukswon motion
prediction [Vasquez and Fraichard004 were based on this kind of approaches. We were able
to obtain a probability distribution representing our belief about the motion pdtigtthe object

is actually following. But we also wanted to have a probabilistic representatitdre state even
when the “right” trajectory is known with certainty. The idea was to take intoawctthe limited
precision of our model as well as the differences between real tragstohich are represented
by the same prototype. This ultimately lead us to the use of discrete state-spdels amd to
the approach presented in this thesis. This section discusses some isgiear® exclusive to
this family of approaches.

Even when the semantics of discrete states are clear, and they are atstepegsent places
in the environment, it is possible to construct different space repreggrgavhich fall into two
wide categories a) metricrepresentations, where states represent points in the space, generally
represented as a set of coordinates; @pelogicalrepresentations, where the states represent
only a few interesting places which often possess a high-level semantiotedion g€gkitchen,
corridor) and which are connected together by some notion of adjasenich is frequently
represented with a graph (f&35).

Even though topological representations may be seen as a particulasfcastric repre-
sentations — after all, a metric representation also encodes “interesting’macktheir spatial
relations — it is frequent to talk of a topological representation when the\stetble has a low
cardinality. For navigation purposes, metric representations providepnecese and useful in-
formation. At the same time, they imply a higher number of states, thus, higheutatopal
complexity.

Office 1 Office 2

Book shelf

Door 1 Door 2:
Corridor
Door 3
Tabl
Meeting
Room
(a) Environment (b) topological repre-

sentation

Figure 3.5: A topological representation of the office environment

5 See [illiat, 2007 for an extended analysis of these alternatives.

38

A related subject is that of automatically finding a “good” space decomposhieswering
this involves a finding a compromise between precision and computational cdtyddecause
both augment with the number of statésrun et al[200] distinguish two types of approaches
to decompose the space:stticdecompositions such as grids, which partition the environment
without taking into account how objects move in it; anddghamicapproaches, which adapt
to observed motion, performing finer decomposition on areas where ohjeets and coarser
decomposition elsewhere. Although static approaches are easier to impldragiate wasteful
on computational resources because they partition the space even is plaee no activity
takes place. Moreover, due to the “curse of dimensiondlitifie problem worsens with the
number of dimensions in the spa@gposition, velocity, size). An example of the difference on

these approaches is shown in 3ig.

Book shelf

| Baok shelf ”
| Bqok she \fl

Desk
o
%
s
1 Book shelf Desk
. s

i L
a i

Table

(a) static (168 elements) (b) dynamic (54 elements)

Figure 3.6: Comparison between static and dynamic decompositions. Noticéan@dalynamic
decomposition produces a better representation of the data (grey dots)ass than a third of

the discrete elements of the grid approach.

6 This term, first employed bellman[1961], refers to the exponential growth of the hypervolume of a space,
when new dimensions are added; and how it demands a similar incneéise mumber discrete elements needed to

represent the space.

39

40

Chapter 4

Hidden Markov Models

Carr. - ... your name isn't Jack, it's Tristan.

Tzara. -No, itisn't, it's Jack.

Carr. - You have always told me it was Tristan. |
have introduced you to everyone as Tristan. You
answer to the name of Tristan. Your notoriety at the
Meieri Bar is firmly associated with the name
Tristan. Itis perfectly absurd saying your name isn’t
Tristan.

Tzara. -Well, my name is Tristan in the Meieri Bar
and Jack in the library, and the ticket was issued in
the library.

SIR TOM STOPPARD
Travesties

4.1 Overview

This thesis is based on the use of Hidden Markov Models as motion model$,\abieve have
seen in chapted, are probably the most popular technique in the literature of pattern based mo
tion prediction. This chapter provides the reader with a broad introductitiggrobabilistic
framework. Sectiong.2 through4.4 present what may be considered as the “classic” theory
on HMMs. Readers already familiar with HMMs may safely skip these sectindgeoceed
directly to section4.5 and the rest of this chapter, where we discuss structure learning, a dif-
ficult problem for which no standard algorithm exists yet, in spite of the exist®f several
approaches in the literature.

4.2 Probabilistic Model

Hidden Markov Models (HMMs) are a specialization of the Bayes filter fecrette state vari-
ables, while it does not constrain the form of observation variables hwhay be either discrete

41

[Rabiney199Q or continuous Juang et a).1984. Although most of the theory for both types of
observation variables is the same, some implementation differencesegqistraémetric forms,
learning algorithm). Here, we have privileged the discussion of contgabservation HMMs
because they are better suited to our particular problem.

421 Variables

Since we are going to use a local model (s28), an HMM may be defined in terms of three
variables:

e 5,5 1, the current and previous states, which are discrete variables with§afie; €
{1,---,N} for a fixedN.

e O, the observation variable, which is a multidimensional vectd'th

4.2.2 Decomposition

The decomposition is the same than for the Bayes filter:

P(§-1§O) =P(S-1)P(§|S-1)P(O [S) (4.1)

Where the state prior is computed recursively:
P(§-1) =P(S-1/011-1) (4.2)

4.2.3 Parametric forms

Hidden Markov Models make an additional conditional independencergtgn with respect
to the standard Bayes filter: both the observation and the transition probalaliéeonsidered
to bestationary that is, independent of time:

PO |S)=P(Oj|S) Vi, je{l,---,T} (4.3)
P(S|S-1)=P(S|S-1) Vi, je{2,---,T} (4.4)

This hypothesis makes it possible to define the parametric forms of the JPBhirtes
without taking time into account:

e P([Sy =i]) = . The state prior is stored as a a vector {1y,---,Tiy} where each
element represents the prior probability for the corresponding state.

e P([S =j]|[S-1=1]) =& ;. Transition probabilities are represented with & N transi-
tion matrix Awhere each elemeat ; represents the probability of reaching the staite
the next time step given that the system is already in state

42

e P(O | [S =1]) =G(O; W, 0;). The observation probability is represented by a Gaussian

distribution for every state. The set of all the Gaussians’ parametedeaged ab =
{(Ula G%)’ Tty (UNa Gﬁl)}l'

We denote the whole set of parameters for an HMMby {1t A, b}.

4.2.4 Example: the broken air conditioning system

We will illustrate the process of defining a continuous observation HMM witlrgple exam-
ple?. Let us suppose that we have an air conditioning system which may be @i tmesettings:
“fresh” and “cold”; due to an internal malfunction, the system switchadoaly between them
once a day according to the following rules:

1. If the current setting is “fresh”, it may change to “cold” with probabilitg,0or stay as it
is with probability 0.2.

2. If the current setting is “cold”, it may change to “fresh” with probabilit® Oor stay as it
is with probability 0.1.

These rules are presented as a graph infig.

0.8

Figure 4.1: Transition graph of the air conditioning example.

Supposing that — according to its setting — the machine regulated the room &tuneeo
two different and well defined temperatures, it would be trivial to infeediy the state by
measuring their values; unfortunately, this is not the case, and the refsaislping one setting
or the other are rather approximative. They may be described probahllists follows: when
the machine is in the “fresh” setting, the temperature has a mean valu¢ @e2§ius and a
variance of 25. For the “cold” setting, the mean temperature iSCHEisius and the variance is
16.

Representing this system as an HMM is straightforward. First, we defirgothains of the
state {e setting) and observatioie(room temperature) variables:

Ds ={1,2} where 1 stands for “fresh” and 2 for “cold"
Do =R

1 An extension of this idea known as mixtures of Gaussian densities, is @goeintly used to approximate
aribtrarily shaped observation probabilities, séesng et a).1984 for further explanation.

2This has been inspired on an example of discrete observation HMMs ahjwéars inlflanning and Schutze
1999.

43

then, we fix the parameters’ values. First we assign the state prior byisgsthat, the first day,
both settings are equiprobable:

= [0.5,0.5]

Transition probabilities are filled according to the specification:

02 08
A= [0.9 o.1]

Similarly for the parameters of the observation probability:

b= {(20,25),(15,16)}

We have now a complete HMM definition. Of course, we would like to use it tevans
guestions about the behavior of the system, which is the subject of the ifajj@ection.

4.3 Inference

Inference tasks on HMMs may be classified in: a) on-line inference,htiaices place as the
system evolves, every time that a new observation is available; and Ineffiference, whose
input consists of complete observation sequences and, thereforefpisyped after the observed
phenomenon has finished. The distinction is important because most afifénence tasks are
based on a dynamic programming technique called the forward-backigarittam which will
be introduced in 8.3.2

4.3.1 On-line inference

On-line inference tasks are particularly useful for applications like r@diag, where it is neces-
sary to take decisions while objects are moving. The key to on-line infefiesda maintaining
the belief state, from there, inference may be performed in terms of thenhmzi#| by using the
belief state as a prior and applying Bayesian inference.

State Filtering.

As explained in 8.3.3 state filtering is one of the most common probabilistic questions for
Bayes filters — thus, for HMMs — the name comes from the fact that its peiipds “filter out”
observation noise in order to estimate the system state. It is done usings®pré.5), which

is conceptually divided in two steps: pjedictionwhich projects the current belief state one
time step into the future; and bijpdate which improves the estimation by integrating the last
obtained observation:

44

1
7 PG| S) g [P(S | S-1)P(S-1] O11-1)]
N—— . ~
update prediction
Prediction is the most computationally expensive step, typically, this operatiolvés it-
erating through thé possible transitions for every state, hence, its time complexig(i¢?).
However, as we will show later, the complexity of the prediction step may heeztby impos-
ing constraints on the structure of the transition matrix.

P(§ |Owt) = (4.5)

Prediction.

Predicting the future state consists basically in, taking the belief state and rihysigpting it
ahead in time, it may be regarded as filtering without the update step4&9). Given that it
is necessary to iterate through every time step ud te also known as théme horizon- the
algorithm’s complexity iSO(HN?).

P(St+[011) = > [P(S+H | Sr-1)P(S+H-1] O1y)] (4.6)

SiH-1

Example

Continuing with our example, let us suppose that we want to perform filteriegtionate the
state of our AC machine from temperature readings. The first day, waetgetperature reading
of 23.05, so, we compute fog = 1:

P([S1=1] | [0, =2309)=P([01=2305 | [S = 1])P([S1=1))
1

= —G(2305; 20 25m
Z;

~ L0066/05
Z;
~0.033
=
this is a special situation because 1 and we do not have previous observations of the system’s

state. Thus, instead of applying the prediction step, we just use the statep8p= 1]).
Now, we compute fof = 2:

P([S1=2] | [01=2309)=P([01=2305 | [S1=2))P([S1=2))
= leG(23.05; 15 16)™m

1
= 5001308

~ 0007
-~

45

substituting the value of the normalizing variale= 0.033+ 0.007 = 0.040, we obtain the
following probabilities.

P([Sy =1] | [0y = 23.05]) = 0.83
P([SL=2] | [01 =2305) =0.17

These probabilities constitute the belief statetferl, which may be written as a vector:

§ =1[0.83,0.17)

The second day, we measure again the temperature, now getting a rebding o We
proceed in an analogous fashion to estimate the system st&g-fot:

P([S; = 1] | [0; = 23.05] [0, = 17.5))
=P([02=175] | [$ =1]) g P(&£=1]|S)P(S | [O1=2305)

1
= o~ % G(175; 20 25)[ay1 x 0.83+ 21 x 0.17)
2

1
=X 0.070x [0.2x 0.83+0.9 x 0.17]
2

0022
s

and forS, = 2:

P([S = 2] | [O1 = 23.05] [0, = 17.5])
=P([02=175] | [$ =2]) g P([S=2]|S)P(S | [01 =2305))

1
= o~ % G(175; 15 16)[ar2 x 0.83+ a2 x 0.17)
2

1
=X 0.082x [0.8 x 0.83+0.1 x 0.17]
2

0056
-

again, we substituté, = 0.022+ 0.056= 0.078 to obtain the belief state:

~

$ =1(0.28.0.72]

Notice that every filtering step requires only to process the preceding belief instead or
iterating through all the sequence of observations from 1 tp to

46

Now, we would like to predict the system’s state for day 4. First, we predidt+ 3:

P([SS=1]|O12) = gp([% =1] | $)P($ | O12)

=ag1 X 0.28+ a1 X 0.72
=0.70

P([S=2]|Ow2) = ;P([Ss =2 | $)P(£|012)

=ap2 X 0.28+ a2 X 0.72
=0.3

where the belief stat, constitutes the starting point of the prediction process. Then we com-
pute fort = 4:

P(&=1][O12) = gp([& =1]| $)P(S] O12)

=a11 X O.7+&2’1 x 0.3
=041

P(& =2 O12) = gp([& =2]| $)P(S] O12)

=az2 X O.7+a2’2 x 0.3
=0.59

The process continues like this for any given time horikon

4.3.2 Off-line inference

Off-line inference receives its name from the fact that, it answerstigmssabout whole ob-
servation/state sequences and, in consequence, it takes place dfist tieservation has been
collected. Examples of offline inference tasks are learning, diagnadislassification.

Since off-line inference tasks process all theobservations in a sequence, it seems that
the cost of inference should grow exponentially with respect to the lengtheosequence.
Fortunately, this is not the case: thanks to the use of dynamic programming,o$s&fe to
perform exact inference i®(T N?).

The forward-backward algorithm.

This algorithm, proposed bgaum et al [197(], applies dynamic programming technigues to
avoid the redundant computations involved in repetitively applying margiti@aizéo perform

a7

inference (see®2.5. It works by precomputing two sets of probabilitiés forward and back-
ward) and storing their values in memory. Then, the probabilistic questi@enarawered by
reformulating inference in terms of these variables. Since they are prededypnost marginal-
ization operations are replaced by memory accesses whose cost imtothata significantly
reducing the number of operations required to perform inference.

Forward probabilitiesa (i) = P(O11 [S =] | A) are computed recursively using the follow-
ing expression:

a(i) = | > a(DP(S =] [S-2=)| PO [=1]) (4.7)

This leads to an efficient algorithm (ald) which computes forward probabilities sequen-
tially, in a similar fashion to state filtering: for every time step, the algorithm iteratesi¢in all
the states, and, for every state, it iterates through all its predece3$msvhole computation
takesO(T N?) calculations. Fig4.2illustrates the process on our example HMM.

» Time

Figure 4.2: Computing forward probabilities for our example.

The use of forward probabilities to perform inference is very well illustldby a question
that appears often in HMM related problems: what is the probability of a caepleservation
sequence given the model parametérs?

A naive solution to this problem consists in marginalizing over all the state Vasigh- - - , Sr,
which is equivalent to enumerating all the possible state sequences of Tength

POTIN=_F PSIP(SISIPO) P(Sr [S-gPOT IS (49)

Using this equation, the computation BfO1.1 | A) has anO(NT) complexity, which, in

3If we see the HMM as a generative model — a probabilistic automaton whazfupes observations — this may
be interpreted as the probability that the observation sequence hasrbdanqul by the HMM.

48

most cases, is clearly unfeasible. Fortunately this probability may be computeld more
efficiently using forward probabilities by observing that, by definition:

N
P(OxT | A) = 3 P(OurSr =i [N)

N
= -ZlaT(i)

Taking into account the cost of computing all(i), we find thatO(T N?) calculations are
necessary to compute the observation probability ugir)).(A huge simplification with respect
to theO(NT) computations required byt ().

Backward probabilitie$; (i) = P(Or17 | [S =] A), are also computed recursively:

(4.9)

N
Be(i) = le([st+l = j] | [S =1DP(Ot+1 | [S+1= i])Brsa(]) (4.10)
=

however, there is an important difference with respect to forwardgtitibes, backward prob-
abilities depend on theexttime step, hence, they should be computed in inverse order, starting
from the last observation (which explains their name). This computation implgEstdem:
while, in the case of forward probabilities, the state prior is used to initializertheeps, noth-
ing similar may be done far= T. The standard algorithm (alg?) solves this by arbitrarily
settingBr (i) = 1.

Examples of the use of backward probabilities to perform inferencerao®thingsee next
section) and parameter learningt(&).

Algorithm 1: Forward_algorithm(Os.1,A)
input : An observation sequen® 1
HMM parameters\ = {11 b, A}
output : Forward Probabilities (i)

1 begin

2 fori=1toNdo

3 ay(i) = P([S, = i))P(Oy | [Sy =)

4 end

5 fort =2to T do

6 for j=1toNdo

7 ar(j) = [sNyoe()P(S =] | [S-1=1))] POt | [S = §))
8 end

9 end

10 end
11 return all ai(i)

49

Algorithm 2 : Backward algorithm(O1.1,A)

input : An observation sequen€g; 7
HMM parameters\ = {1, b, A}
output : Backward probabilitie$ (i)

1 begin

2 fori=1toNdo

3 BT(I) =1

4 end

5 fort =T —1down tol do

6 fori=1toNdo

7 Bu(i) = 3N P(1S 1= 11 [S =)P(Orr1 | [Se1= i])Brsali)
8 end

9 end

10 end
11 return all B(i)

Smoothing

In some situations, it is possible to obtain a better state estimation if the completeatioser
sequence is available. This is calledoothingand, as we will see, is very important for learning
(84.4).

Smoothing is computed with the forward-backward probabilities:

P([S =] | Our) = ;Oata)&(i) (4.11)

Closely related to smoothing and also useful for learning is the probabilitystafta transi-
tion given a sequence of observations:

a1 ()P([S=j]|[S-1=)P0 |[S = i])B(])
Po

P(S-1=i][8=]]|Owr) = (4.12)

Viterbi decoding.

As a consequence of the state being hidden, a single sequence ebtibssrmay correspond to
many different state sequences. A question that is often posed to HMM& & i's the sequence
of states which most likely corresponds to a sequence of observatioviseh is also called the
best explanationf the observation sequence. Itis answered by maximizing the joint pitidypab
arg max . P(Syt | Ov7), that may be computed very efficiently with thigerbi algorithm(alg.
3) [Viterbi, 1967, Forney 1973.

Essentially, the Viterbi algorithm is identical to the forward algorithm excegit tite sum-
mation in eq. 4.7) is replaced by a maximum operation, according to the following recursion:

50

&(j) = max(d-1()P([S = j] [[S-1 = DIPO [[§ = j]) (4.13)

Where & (j) represents the maximum likelihood of observing the partial observation se-
quenceD1 and being in staté at timet. The algorithm also stores, for every tirhand state,
the preceding statg; (j) which has lead tg with maximum probability:

U(j) = afgima>(5t—1p([$ =jll[S-1=1])} (4.14)

When the values for the last time step have been computed, the algorithm certipaite
best path by finding the state which maximizgis= arg max Y (j), and then backtracking
according to the predecessor arr&y: ; = Y7(S;) and so on.

Algorithm 3: Viterbi(Oy.1,A)
input : An observation sequencés -t
HMM parameters\ = {11 b, A}
output: Most likely state sequencsf

1 begin

2 fori=1toNdo

3 01(i) =P([S = i))P(O1 | [SL =1])

4 lIJ]_(I) =0

5 end

6 fort =2to T do

7 for j=1toNdo

. &(1)=_max 8 1()P(S =[] |18+ =1)JP(O] S =)

() = arg maxd,_1()P(1S =] | [S-1 =1])

9 ie{1,--,N}

10 end

11 end
St = arg maxdy (i)

12 ie{1- N}

13 for t =T —1down toldo
14 S =W 1(§11)

15 end
16 return /¢
17 end

Example

Returning to our example, let us suppose that we have a sequence ofdempeeadings for
five consecutive day®;.5 = {23.05,17.5,18.8,21.22 24.32} and that we need to know which
sequence of states is more likely to correspond to that sequence. Fawahagply Viterbi's
algorithm: first, we apply expression$.{3 and @.14) to compute the following table:

51

t prior 1 2 3 4 5
O 23.05| 17.50| 18.80| 21.22 24.32
& (fresh 0.5| 1.32e-2| 7.42e-5| 9.63e-6| 5.95e-8| 1.80e-09
o (cold) 0.5| 2.62e-3| 3.45e-4| 1.50e-6| 9.14e-8| 1.25e-10
Wi (fresh fresh cold cold cold
Y (cold) fresh| fresh| fresh fresh

Then, we remark thes = freshis the argument that maximizég(Ss), hence, we assign
S = fresh From there, we backtracl§, = is(fresh) = cold, and so on down to= 1. At the
end, we obtain the following maximum likelihood sequence:

S5 = { freshcold, freshcold, fresh}

Classification

Another useful question consists in choosing between several HMipsesenting different
classes of state sequences. This is a common situation, for example, ih spEEgmition tasks,
where every word is encoded as a different HMM.

Classification consists in finding the HMM which is more likely to correspond tiveng
observation sequence. Often, this is done by applying a maximum likelihdedam, which
means that the decision is taken using the output of £§) {0 select the model. Nevertheless,
other classification criteria may also be applied, we will discuss them.ih §

4.3.3 Numerical stability and HMM scaling

When implementing HMMs in computers, numerical precision problems may beaoissue
during the execution of the Viterbi and forward-backward algorithmse fHason is that these
algorithms multiply very long sequences of numbers which are smaller tharditharsmall
values that result may exceed the machine representation capabilities. itliai®s may be
observed in our example for the Viterbi algorithmt(8.2, where values become appreciably
small, even for a very short sequence of observations.

Solutions to this problem vary according to the algorithm:

Viterbi Algorithm. Since the viterbi algorithm operates on the probability maxima for each
state, the problem is solved by using log probabilities. Hence, multiplicatiorerzec
additions, which are much easily handled by standard machine floating ppneisenta-
tions.

Forward-backward Algorithms. Whereas the forward and backward algorithms perform both
multiplications and sums on probabilities, applying logarithms is not a viable solution.
Several solutions exisefy Minka, 1999 Mann, 2004, perhaps the most popular is the
one described bizabiner[199(, which consists in multiplying forward probabilities by
scaling coefficientin order to keep them in the dynamic range of the machine. These
coefficients are computed by normalizing the forward probabilities foryetme value:

52

1

GC=——— (4.15)
SRpou(i)
So that the scaled forward probabilities are:
(i) = cra (i) (4.16)

The same set of coefficients that have been computeai fare also used to scaled Back-
ward probabilities:

Be(i) = aife(i) (4.17)

4.4 Parameter Learning

Let us have learning data in the form Kf observation sequenc& = {O%,-.. ,OK}, O =
{ij--- ,O-"rk}. Supposing that the state is observable, it is straightforward to obtain a maxi-
mum likelihood estimate of the model's parameters by counting @2.9:

K o
" - zﬁikiﬁ‘j([cgég; i)n}) Vie{l--- N} (4.18)
K Tk . K
" B z;_ﬁilztzg(c[is{: l—])i]? vie{l N} (4.19)
of - D2z O =1) (OF) Yie (L N} (4.20)

SEa 3 CS =)
o _darstCE=iEa =) g 401
) S st C(g =) bIe{tooN @2y

Unfortunately, state is hidden, which means that counting may not be us$edstdndard
solution is a specialization of the Expectation-Maximization algorithrarfipster et a/.1977]
known as the Baum-Welch algorithm.

4.4.1 The Baum-Welch Algorithm

This algorithm, originally introduced bgaum et al[197(to estimate parameters on a single
sequence of discrete observations, was later extended for multiplevatigsersequences by
Levinson et al[1983 and for continuous observations byang et al[1984.

The basic idea of the Baum-Welch algorithm is to estinit® 7 | Ok) using inference and
to use the expected event counts as Expected Sufficient Statistics ES8itoaobew estimate
of the model’s parameters. This may be regarded as replacing the cogtibfis that appear
in eq. @.19 to (4.21) by their corresponding probabilities, inferred from the current model

53

Algorithm 4 : Baum Welci{OK))
input : A set of observation sequend@$®

Initial estimate of HMM parameters
output : HMM parameters\ = {11 b, A}

1 begin

2 converged= false

3 while not convergedio

4 Compute forwarddk) and backward@) probabilities as well as probabilityox
of every observation sequenc¥

5 forie{1,---,N} do
A = zL%@(i) BX(0)

_ sl mE ol Bl O
7 B T ek B

52 _ Termy B0 GO OF w2
8 ! 21 gl o) BEG)

for je{1,---,N} do

_ Sl sal s ()P(S=ilIS =i MPOKIS=]] MRK()

10 &= St ﬁ Z:izatl(i)ﬁhl(i)
11 end
12 end
13 if A= {TLA b, } then
14 converged=true
15 end
16 else
17 A={mAb,}
18 end
19 end
20 end

parameters\ and observation sequen@¥. For the sake of efficiency, inference is performed
using forward-backward probabilities.

Since expected counts and model parameters are interdependent, thiatmmn|is iterated.
As shown byBaum et al[197(the algorithm is guaranteed to converge to a local maximum of
data likelihood.
Analysis

The algorithm makes extensive use of the forward-backward probabiliticnes6 through10:

e Line 6 computes the state prior using the expected counts, which are calculatgd usin

54

(4.1D):

K1 k(i) RK(
z zk PS =] OKA) 21 pg 0t (1) Br(D) (422
Ske1Ys P(SL [OKA) K
e Lines7 and8 also use the expected counts, obtained withh1) to compute the observa-
tion probability mean values and covariances:

s P(S =il O OF Tk gy S at(D) B() Of
Zk:th:l ([=1i]| OkA) zrlep%)k e ak(i) BE()

".; |

(4.23)

52 _ SRS P(S =] | ON) (O{‘—pi)z Skeips p " S 10‘t() BY(i) (OF —)2
| SE S P(S =] | Ok Sk o Zeka af () BEG)

(4.24)

e Line 10 computes the expected transition counts usin@jd) an uses it to estimate transi-
tion probabilities:
St P(S 1 =1][S =]| ON)
Sk 3PS =1] | O
SHa e 3o (OP(S = i | [S-2=1] MP(OK| [= j] MBK()
Sk p " S o 5 (DB 4 (1)

aj=
(4.25)

Since the forward-backward probabilities are computed only once, andstbred in a table,
the cost of computing the state prior and observation probabiliti@NfO|) where|QO| is the
total number of observations in training data; in a similar way, the cost of ctngpilne transi-
tion probability isO(N?|O|). However, these costs may be considerably reduced by restricting
the model’s structure, which is the subject of sectidrizand4.6.

4.4.2 Incremental algorithms

A number of incremental versions of the Baum-Welch algorithm exist in thetiitexg\ eal and Hinton
[1999 propose a simple modification, called incremental EM, which, instead of sumoneg
all the observation sequences in the data set in Briesough4.25 processes only one sequence
at a time. This is justified by the fact that, since the initial values of the expeotetdsare as-
sumed to be inaccurate, it is best to update them as soon as possible. dritbralgtores the
sum of the expected counts for all the probability distributions, and, in tbe cBHMMs, it is
guaranteed to converge to a local maxima of data likelihood.

Another approach has been proposedshyger and Warmutlf199€. Instead of storing
expected counts and maximizing the data likelih@$@%.;. | A'), they maximize an alternative
objective functiorF (A), which penalizes large changes in parameters:

55

FA™™) = AP(Ofr | AY) —d(A', A" (4.26)

whered(A',A**1) is a measure of the difference between the current and the reestimated
parameters.

4.5 Transition structure

Until now, in all our complexity computations for inference and learning algors, we have
considered a fully connected ergodicHMM (fig. 4.3(a) where every state may be reached
from any other state in a single time step. As we have seed.B % this implies the need to
iterate throughN? possible transitions when computing the prediction step. For some applica-
tions, however, a better representation may be built by assuming that deatasitions are not
possible. This is equivalent to constraining the structure of the transitioixrbgtforcing the
value of a subset of tha ; elements to be zero. This is often called strictureor topologyof
the HMM, and, even if they are somewhat related, it should not be cedfw#h the structure
of a Bayes network.

More formally, we define the structue of an HMM as the specification of the number
of statesN and the subset of elements Asuch thata; ; = 0. In other words,® specifies
the cardinality of the state variable and a subset of forbidden transitiahteawves all other
transitions unspecified (but constrained to be strictly positive). A completehspecification
consists of the model’s structure and parametérs- {®,A}.

One of the most popular HMM structures are called left-right models @ig(b)). Their
fundamental property is that their transitions coefficients obey the follosongtraint:

8,=0 Vj<i (4.27)

It is easier to visualize the HMMs structure as a graph (fig3), where nodes represent
states and for everg; j # O there is a directed edge fronto j indicating that that transition is
allowed. In this case, stajds said to be aeighborof statei.

Vi Vi Vs Y V., v.0 0
C=l Yo VeVt r= 0 %0
Vi Voo Vi Vo 00 v,v,
Vi Voo Voo Vi 000 v
(a) ergodic (b) left-right

Figure 4.3: Examples of HMM topologies. Both the transition matrix and the sporaling
graph are shown.

56

Of course, other topologies than ergodic or left-right models may be imaghrethterest-
ing case is wheA is composed primarily by zeroeig 6parse). In those cases, it is more efficient
to represent the transition matrix as an array of linked lists, one list per ma#rénsition list).
Each linked list stores the neighbors of the corresponding statel(fig. This representation is
not only more compact, it allows to compute the prediction step of filterir@(B) whereE is
the number of non-zero elements in the transition matrix.

Lo gihl 2] 2 |
e EI T e 1 TR
sl e el
1 i

Figure 4.4: A linked list representation of fig.3(b)

The performance gain may be illustrated by an example. Let us have&adsid, where
every cell represents a state. By only allowing transitions between celtsghacommon edge
4, we reduce the number of possible transitions from?£235625 for an ergodic model to just
80 for the 4-neighborhood criterion (fig.5).

Figure 4.5: A 5x 5 grid (dotted blue lines) and the corresponding non directed topologi gra
(solid green lines) assuming 4-neighborhood.

Defining a non-ergodic topology for the model does not only lead to iseckéime and
memory efficiency, but also influences the quality of inferencedcind 1998 Freitag and McCallumn
2000 Binsztok and Artieres2004 and accelerates learning by reducing the number of parame-
ters. But, how to choose the best structure for a given application bilgmn@ It seems natural
to do the same as for the models parameters and to learn the structure fronvidekais the
topic of the following section.

4This is called 4-neighborhood, because every cell which is not in thgebdras exactly four neighbors under
this criterion

57

4.6 Structure Learning

A good starting point to illustrate structure learning is to consider the full Sapelearning
problem, which consists in computing the posterior probability of the modehdhe data:

PO[ar)P(a1)

PO |0) === 54

(4.28)

But P(a7 | O) gives the joint posterior of the structure and the parameters, and weerre in
ested in the posterior probability of the structure alone. Thus, we margimsi&ehe space of
all possible parameters:

P(®|0O) = FW)PFE(CS;'@ (4.29)
_ P(®) P\ | ®)P(O | D A)dA
= A P(0) (4.30)

Which gives us a probability distribution over all the possible structuresveader, computing
the full probability distribution is almost never done in practice. Insteadniegiis performed
by finding a Maximuma Posteriori(MAP) estimate of the structurée the single model that
maximizes eq.4.30).

Although it is tempting to simplify further and apply a Maximum Likelihood criterion by
assuming thaP(a7) is uniform, Maximum Likelihood (ML) estimation suffers from a bias to-
wards complex models which renders it unusable for structure ledrritng trivial to construct
a maximum likelihood structure by representing every observati@wiith a different discrete
state.

Hence, it is necessary to maximize dg30, which is difficult, because no closed form solu-
tion for the integral is knowniurphy[2004; a common workaround is to use an approximation
of the integral’s value known as the Bayes Information Criterion (BEZ)warz 197¢, which
is expressed as a log-likelihood:

logP(O | ®) ~ BIC(O,®,A) = logP(O | ® A) — g log|O| (4.31)

Where is the maximum likelihood estimate of the parameters given the current structure
— obtained, for example, using the Baum-Welch algoritkdns the number of free parameters
in the model; andO| is the number of observations in training data. The first term is just data
likelihood (4.9) and the second one may be understood as a penalty for model complédadty. T
BIC converges asymptotically to the log data likelihood@sgrows.

Taking logarithms in4.30) and replacing lo§(O | @) by the BIC, we obtain:

logP(® | O) ~ logP(®) + BIC(O,®,) — logP(O) (4.32)

SMaximum likelihood has also been subject to more fundamental criticeeoing its semantic and mathematical
soundnessljony and Singpurwallgl997

58

Hence, the learning problem becomes that of maximizin@4 instead of 4.30). In gen-
eral, the term lo@(O) is also excluded from the maximization because it does not depend on
the structure. A further simplification is to assume a flat prior for the strudgg®), given
that complexity is already penalized by the BIC. Thus, in many approagiesthe BIC is
maximized.

Maybe the most important difficulty in structure learning lies in the huge sizeeo§place
of structures. Even for a fixed number of stateghe number of possible adjacency matrices is
O(ZNZ). This makes it necessary to restrict the structure to a smaller family of g(eptrses,
directed acyclic graphske§ Pear| 1988 Meila et al, 2001]; an alternative is to conduct an
heuristic based search in structure space.

4.6.1 Local search algorithms

Due to the complexity of structure estimation, instead of using a global algoritmaxamize
(4.32), a local search is often conducted, where the algorithm starts with an guigsls ofd
and then searches in iteeighborhoodfor structures having a higher BIC. Neighbors are ob-
tained by applying simple operatorsdosuch as adding, deleting or reversing an edge4fig).
Depending on the algorithm, one or more of those structures are selectddeaprocess is

iterated.
290 0 S
0+—0

Figure 4.6: Local structure search: neighbors are found by addiregroving nodes and edges.

Despite the use of approximations like the BIC, local search strategiesilaexgensive,
mainly because the EM (Baum-Welch) algorithm must be run for every caredgtructure.
This has motivated a different approach proposed-bydman[1997: instead of running the
EM algorithm inside the search procedure, the search is performed EBldalg. 5). This is
known asStructural EM
_ The key to structural EM lies in stegsand8. The estimation ok’ is performed by updating
A according to the difference betweénand®’, which, as we mentioned above, consists of a
small change such as and added or deleted edge. Hence, it is nadargdesrun the whole
Baum-Welch algorithm for every neighbor, but only for the one that getdést BIC score in
every iteration. The algorithm is guaranteed to converge to a local maximtime &1C score.

59

Algorithm 5: Structural EM(OYK A, @)

input : A set of observation sequenc@$®
Initial estimate of HMM parameters
Initial structure estimaté

output : HMM parameters\ = {1, b, A}
HMM Structure®

1 begin

2 converged= false

3 while not convergedio

4 ImproveA using EM

5 for each neighbor’ of ® do

6 Compute expected counts fof using® andA ;/* Structural E-Step */
;

8

9

Computefx’ using the expected counts
ComputeBIC(OYK, @' \)

end
10 ®* = arg may, BIC(OYK @)
1 if BIC(OLK,®*,\') > BIC(O'X ®,\) then
12 d=0q; /* Structural M Step */
13 A=M
14 end
15 else
16 converged=true
17 end
18 end
19 end

4.6.2 State merging algorithms

State merging algorithmsjolcke and Omohundy®994 Seymore et aJ1999 Binsztok and Artiergs
2009 work by applying heuristics which are very similar to agglomerative clusgeifirst, they
assume that every observationdrcorresponds to a different state, and assigns a probability of
one to edges connecting states corresponding to consecutive diosereand zero to all others.
The result of this step is a maximum likelihood model, but which is overly compldxdamot
generalize at all.

From there, the algorithm builds a more simple — and general — model by mestgites
(see fig.4.7). At every iteration, the algorithm searches for the merging which givesithest
increase on the posteriot.30 and it stops when no further increase is detected.

In order to reestimate the model parameters, model merging uses a simpliaohveir
the Baum-Welch algorithm, which only reestimates the parameters for the mbabyegath —
which is computed using the Viterbi algorithm — instead than for the whole moded;réduc-
ing computation time at the expense of optimality. However, experimental reselts © be

60

(a) before (b) after

Figure 4.7: Merging statdsande produces statbe. Notice how the probabilities associated to
incoming edges are summed, while those associated to outgoing edgeangatzed.

comparable to those obtained using Baum-Welch.

Model merging is able to estimate the number of stitésan intuitive fashion. Moreover, it
seems possible to adapt it to work incrementally. On the downside, model méer¢mo sensible
to differences in temporal alignment and it has been mostly tested on applidsiang discrete
observations.

4.6.3 Other algorithms

Another interesting approach has been proposedbyd[199], instead of searching or build-
ing the structure, he transforms the Baum-Welch algorithm into a MAP estimatomeqgure

called Entropic-EM by incorporating an entropic prior in the computation ohthwe parame-

ters. This prior favors informative values (those that are near from @eone) when training
data is scant, but converges to the conventional maximum likelihood estimdiibasas more
observations are available. The result of using this MAP criterion is treleuant parameters
are driven asymptotically to zero. After Entropic-EM learning, edgedaies which are con-
sidered not informative are trimmed from the structure.

A somewhat similar idea has been proposed/ayko et al[1997. They first train a fully
connected HMM using Baum-Welch. From there, they iteratively removeitrans or states
from the model. Since the fully connected model has maximum data likelihood; #eea-
tion decreases it. The chosen structure is the simplest one before ansabsicrease in the
likelihood.

The idea of starting with a very simple model to which new nodes and transitierzsided
during learning — hence, incrementing data likelihood — has also been exfigra number
of authors_ockwood and Blanchdt999, Freitag and McCallunp200(, but these approaches
are not general, since they all apply domain-specific knowledge.

4.7 Discussion

In this chapter we explained the basic concepts regarding Hidden Matkadels. We pre-
sented the probabilistic model: variables, JPD and parametric forms, makirigasism con-

61

tinuous observation HMMs. We also presented the “classic” inferengéeamnning algorithms
for HMMs, showing that maintaining the belief state constitutes the basis faeimfe. Cor-
respondingly, we illustrated the use of dynamic programming to performiegffioff-line in-
ference. We outlined the use of the Baum-Welch algorithm, which, basicallsists in using
off-line learning to compute the ESS which are necessary to estimate the mualelrseters.
Finally, we have introduced the problem of structure learning, and pies$an overview of the
existing approaches.

We would like to conclude with some reflections about the use of HMMs in thé&exkbn
of pattern based motion prediction. As we have seen in ch&ptdMMs are very popular in
the literature of pattern based motion prediction, but, what are the reakdmis popularity?
indeed, there are many reasons: First, HMMs are a discrete model, whies itteem simpler
to manipulate than a continuous representation. Moreover, the existeefiicent and well
tested algorithms for inference and learning makes their application straightfh

On the other hand, in spite of the efficiency of existing algorithms, the compghtiost of
inference on conventional ergodic Hidden Markov Models grows wittsthuare of the number
of discrete states in the model; which makes it too complex to scale their use terpsalvhich
require hundreds or even thousands of states and huge data sets.

There exist at least three ways to address this problem: a) using hieelrepresentations
such as Abstract Hidden Markov Modéisii et al.[200Z7 which decompose the problem using
a divide and conquer strategy; b) defining simpler transition structurehwét the same time
reduce the algorithmic complexity and provide a better representation of motidrg)aising
approximate inference tools like particle filters-iIlampalam et a).2007.

The problem becomes even harder when learning gets involved. Evea affiline case,
learning is difficult for hierarchical approaches because they rebgorantic informationggdoors,
rooms, buildings) which is considerably hard to learn with an unsupersiggdithm. On the
other hand, approximate inference tools are not necessary, prahael@arned structures are
simple enough to allow real-time inference.

Recapitulating, for a working “learn and predict” approach based orMdMve want a
learning algorithm that satisfies the following conditions:

1. Both parameters and structure should be learned.
2. Learning should be incremental.

3. The learnt structure should be both meaningful and simple enough toiaflengnce in
real-time.

Despite the existence of incremental extensions of the Baum-Welch andaifisérlearning
algorithms, for the best of our knowledge there exists only one algorittiate-merging — which
is able to simultaneously learn the parameterd the structure of an HMM in an incremental
way. Unfortunately, there is no guarantee that the structures obtairsgbhyng model merging
will be simple and semantically sound. Therefore, in order to fulfill the thimdd@mn, a new
learning algorithm is needed, which is the subject of chapter

62

Part Il

Proposed Approach

63

Chapter 5

Growing Hidden Markov Models

It's all to do with the training: you can do a lot if
you're properly trained

QUEEN ELIZABETH Il
Television documentary

5.1 Overview

As we have shown during the first part of this thesis, Hidden Markovd¥#odonstitute a pow-
erful probabilistic tool. Nevertheless, in order to be able to apply them torthie@gmn studied
in this thesis, it is necessary to device incremental parameter and struetuni@dealgorithms
which are able to work in real time. Moreover, as we have explained anthefechaptert, we
require the learnt structures to be both simple and meaningful.

This chapter introduces our proposed solution — and the main contributiomsdahésis —
Growing Hidden Markov Models (GHMM). They may be described as tinwvavyg HMMs
with continuous observation variables, where the number of states, tgpafmhprobability
parameters are updated every time that an observation sequence idavailab

Our approach focuses in the utilization of HMMs as an approximate infererd for con-
tinuous state spaces. We assume that the continuous state space is disatetafnite number
of regions, and that every such region is represented by a discretarstae HMM. Second,
we assume that state evolves continuously. A third assumption is that diimesyaroduced by
states which are near from each other are also near from each ¢ikeémportant to note that,
although this assumptions somewhat restrict the applicability of our apprtfeshare shared
by a large number of problems, at least in robotics [¢fiun et al, 2009.

The key intuition behind GHMMs, is that the structure of the HMM should réflee spatial
structure of the state space discretization, where transitions betweerastadedy allowed if the
corresponding regions are neighbors. Hence, structure learnirsist®basically in estimating
the best space discretization from data and identifying neighboring iegiga have addressed
this problem by building #opological mapof the environment.

65

For parameter learning, we basically have adapted the approach @ddpds=al and Hinton
[1999 in order to deal with variable state cardinality and continuous observations

The following section introduces the notion of topological map and explainsl@gonship
with the HMM structure. Then we will discuss Vector Quantization and TopoRgpresent-
ing Networks, in order to introduce the concrete algorithm which we hagd,ubke Instanta-
neous Topological Map. Next, we will provide a formal description ofvdng Hidden Markov
Models, explaining how the topological map is integrated into the incrementafsteuand
parameter learning algorithm.

5.2 The topological map

The topological map is a discrete representation of the state-space inrtheffargraph, where
nodes represent discrete regions and edges indicate that the redjimhscarrespond to the
linked nodes are contiguousiit is possible to move continuously between them without passing
through any other regidn

We will illustrate the concept with a simple grid discretization of a two dimensioradesp
(fig. 5.1(a). The corresponding topological map will have one node for everyircdiie grid,
and edges between cells that share a border.

The state is assumed to evolve in a continuous — in the mathematical sense # fashio
space. Thus, if we plot its trajectory, it should inevitably pass through beliders as it goes
from one discrete region to another (fig1(b). Since, by definition, there is one edge for every
border, it follows that the best approximation (fig.(c) to any possible continuous trajectory
may be built using only edges that are already in the ¢raph

(a) grid and graph (b) trajectory in space(c) trajectory in the (d) an obstacle
graph

Figure 5.1: a) Example of a discretization of space into a grid of rectangeilliar(blue dotted

lines), and the corresponding topological map representation (gregrmmld solid lines); b) a
continuous trajectory; c) the same trajectory represented as a suacessmles and edges in
the map; and d) an obstacle (gray rectangle) and the correspondingdicabmap.

Litis important to note that, for us, a topological map is essentially a metrieseptation in which neighborhood
is represented explicitly. This differs from the concept of a topologiag me have discussed i3%.2 which have
a coarser representation often based on higher level semagicsi[pers 1999

2For the sake of simplicity, in this example we assume it is not possible to madiagonal passing exactly
through a corner.

66

Often the process evolves in a small manifold of the state space. For exanagpieg ob-
jects tend to pass frequently through some regi@gscorridors) while completely bypassing
others égobstacles). This may not be captured by grids and other static spacaulesitions,
because they are chosen in advance. Therefore, the whole spapeesented, with the conse-
guent waste of computational resources (s&€)8

It would be preferable to discretize space according to observed dat@danto approximate
the actual manifold in which state evolves so that “forbidden” regions o$plage are not rep-
resented (see figp.1(d). This poses the problem of how to perform this discretization and, at
the same time, identify neighbor regions in an efficient way. Moreover,dhgien should be
incremental.

Fortunately, there exists a family of tools which deals precisely with this probléop®logy-
representing networks (TRN)/artinetz and Schultgri997]. They incrementally build a topo-
logical map by iterating through two steps a) partition space in discrete regging Vector
Quantization and b) find pairs of neighbor regions and link their resgectinters. They are the
subject of the next section.

5.3 Vector Quantization and Topology Representing Networks

Vector quantization is a data compression technique originally developeddoriext of signal
processing but widely used in very diverse technical domains. Theoideézctor quantization
is to encode a continuoud-dimensional input data manifold by employing a finite se€ =
{c1,---,ck} of referenceD-dimensional vectors. A pointof the manifold is represented using
the element o€ which is closest to it according to a given distance mead(xg;), such as the
square error, or the Euclidean distance.

This procedure induces an implicit partition of the manifold in a number of gidme

Vj ={xeM |d(x—cj) <d(x—c)Vi} (5.1)

called Voronoi regions, such that every input vector that is inside andrregion?; is de-
scribed by the corresponding reference vecjor

The goal of a vector quantization algorithm is to find values for the refergalues in order
to minimize the mean quantization error, also known agtbtortion

K
E= i; e d(x,ci)P(x)dx (5.2)

Since, in most cases, the form of the manifold is unknown, the error malyencomputed
directly, instead, it is estimated from a data set consistirg p§amples, or input vectors:

K
E= \><1|Zl Z d(xj, i) (5.3)

EVi

which assumes a uniform prior over input vectors.

67

Reference Vectors

Input Vectors |

Voronoi Region —]

Figure 5.2: Example of a partition in Voronoi regions: there are some 2-diimaal input
vectors (red crosses). Reference vectors are represented pgibig and Voronoi regions are
indicated by blue boundary lines, the set of all those boundaries is cali@aaoi graph.

The most widely used vector quantization algorithm is the k-means or Lloydithigo
[Lloyd, 1957 Linde et al, 1980, which may be regarded as a version of the Expectation-
Maximization algorithm, where a hard ownership criterion is udecdeyery data element is
assigned to one cluster only).

Although standard k-means is guaranteed to converge to a local minimumadistbgion,
it has a number of drawbacks: a) the number of reference vectorsféaibé should be known
a priori; b) the quality of the output is highly dependent on initialization; c) the fadtiths a
batch algorithm makes it too expensive for very big data sets.

Even if the last drawback has been addresseidbyQueer[1967, who proposed an incre-
mental version of the algorithm — known as on-line k-means — the other tviepns remain
difficult and have motivated the research of alternative vector quantizagiproaches.

One of such approaches, which is particularly interesting, is the usetariem Networks,
or Self-organizing map (SOM¥phonen 1995. The main difference between the SOM and
other classic vector quantization algorithms is that, in the SOM, there are linkedme ref-
erence vectors (or units, as they are known in the SOM jargon) so thafdim a network.
Links describe a neighborhood relationship between units and definelaggmver the entire
network. This topology is definea priori to form a chain — for a one dimension Kohonen map
— or a grid — for the two dimensional case.

In addition to vector quantization, the SOM learning algorithm ensures that,l@érning,
points that are close in the input data manifdddwill be associated to the same unit, or to
units which are close in the chain or grid. Hence, network links effectigalyode additional
information — called a topographical mapping — on the similarity of the represeniat data.
This additional information is useful in applications such as motion plantiingse and Eecgn
1994, and speech processingd{honen 1989. Moreover, SOMs have been shown to reduce
the initialization problem of k-mean&fcao et a}.2004.

However, Kohonen networks introduce a new problem: to obtain an optimagjtaphical

68

mapping and minimize the quantization error, it is necessary that the topoldgg oetwork
matches that of the represented manifold. In the case of Kohonen nettiiskequires prior
knowledge about the topological structure of the manifold, which is ofteavailable. This
problem has motivated the proposal of a new family of approaches kasvifopology Rep-
resenting Networks, which are able to learn the manifold’s structure whiferpgng vector
quantization.

5.3.1 Topology Representing Networks

Topology Representing Networks are based on the idea of connectgithoe Voronoi regions
— egregions with a common border — with edges, called delaunay’s edgesefbtal edges
constitutes the dual of the Voronoi graph and is known as the Delautnayigulation (fig.5.3).

Delaunay Links

Figure 5.3: Voronoi graph (blue) and delaunay triangulation (green).

TRNSs represent the network’s topology with a subset of the Delautrdgrgyulation. The
edges are learned by using the competitive hebbian rule — also knowrbkigmdearning —
proposed by/artinetz and Schulte[ilL991], which consists in creating a new edge between two
units every time that, for a given input, they are the two closest units to thatamgolithey are
not already linked (fig5.4).

Although the first TRNs in the literatur@d Martinetz and Schultgrii9971]. worked only
with a fixed number of units, later approaches, such as the Growing Neasg GNG) [ritzke,
1994, and the Grow When Required (GWR) Networks{rsland et a|.2007, evolved as adap-
tive structures which are able to insert or even delete units during learning

A common feature of these TRNs is that they adapt reference vectogpbyiray constant
factors (e learning rates) meaning that convergence to a minimum of distortion is nadrguar
teed, but this is not necessarily a drawback, since it allows the networkno permanently.
Indeed, this characteristic allows the network to show an adaptive behsawioe it is able to
“forget” what it has learned in the past.

The advantages and drawbacks of adaptive TRNs, when compareavientional k-means

69

o
® Input Nearest unit
Second nearest + ./
(J New edge ®
(J

Figure 5.4: Hebbian learning

or EM vector quantization approaches may be summarized as follows:

Advantages

1. They use incremental learning algorithms, thus, they may be applied tdavgeydata
sets or to on-line learning from data streams.

2. They do not require any prior knowledge on the number of refergactors.

3. Due to their growth mechanism, which uses observation data to initialize newegbae-
sentations, they are quite robust to initialization condition problems.

4. They are able to learn the data manifold’s topology, even when it is mégtidontains
one, two and three dimensional submanifolds).

5. They are assumed to be a plausible model of how biological entities primdesmation
[cf Martinetz and Schulteri991.

Drawbacks

1. They do not converge to a minimum of distortiédn3d) but, at best, oscillate continuously
around one.

2. Lacking or incomplete formal theories about convergence and stability.

From our point of view, the drawbacks of TRN are largely compensatéldir advantages,
which explains our decision of using a TRN — the Instantaneous Topolddaa— as the basis
for our learning algorithm. It will be described in detail in the following section

70

5.4 The Instantaneous Topological Map

We have chosen the Instantaneous Topological Map (ITMpokusch and Rittd1999 as the
basis of our algorithms based on two reasons. First, the ITM algorithm p@ssed to GNG
and GWR - is designed from the beginning to deal with data which is corratatede, such
as trajectories. The second reason is that the algorithm has a redticéghaeameters having
clear physical meaning, moreover, no prior knowledge about the topaoghe size of the
state-space are required in order to select the algorithm’s parameters.

The algorithm works on the basis of a distance measure, which, in ourisgdbe Maha-
lanobis distance, instead of the more classic Euclidean distance.

We will now provide some basic definitions before going into a detailed deigoripf the
algorithm.

5.4.1 Definitions

The ITM algorithm builds incrementally a set of nodes, and a set of edges connecting
nodes. The input of the algorithm consist of input vectors which, in times® of this thesis,
we identify with the observationS; which constitute the input of an HMM.

Associated with every nodédhere is a reference vector or weight as described in83.

An edge between nodésind j will be denoted asi, j). Moreover, edges are not directed,
thus, it holds thati, j) = (j,i). A useful concept is thaeighborhoodf a nodei, which is the
set of all nodes to whichis linked:

A()={jeu|(,jec} (5.4)

Last, we will introduce the Mahalanobis distance which will be used as distaiterion in
the algorithm. It is defined in terms of a covariance mafrixs:

dZ(u,v) = (u—v)TZ Y (u—v) (5.5)

We have preferred its use over the Euclidean distance because olloiérfg reasons:

1. It permits to take into account the correlations between the different diorenof state
space.

2. Itis more general than Euclidean distance, and includes it as a partaska
3. Itis scale-invariant.
4. Since the observation probabilities are Gaussians, it makes sense itttdekecount the

Gaussian’s covariance to build the topological map.

5.4.2 Algorithm

The ITM algorithm has three main goals: minimizing the distortion, finding the nuotherdes
N, and finding the edges that define the topolagylhe algorithm has only three parameters:

71

Algorithm 6: ITM-Updatd O, 2, 1,8 U, L)
input

Input vectorQ;

Covariance matrix

Insertion Threshold

Smoothing factoe
modifies

Topological map nodew

Topological map edges

1 begin

2 b = arg min_,, d2(w,0) ; [* Determine the best unit */
3 S=arg MinNcq\p dZ(w;,0r) ; /* Determine the second best unit */
4 Wp = Wh + (O —Wp) ; /* \\ei ght adaptation */
5 if s¢ a((b) and d(wb,ws) < 4t then

6 £ =rU{(bs9)}; [* Create the link */
7 end

g foriea(b)do

9 Wh, = (Wi +Wp)/2

10 if d2(Wh,i, Ws) < d2(Whj, W) and c(wp, wi) > 1 then

11 £=1r\(b)i); [* Delete link (b,i) */
12 if AL(i)=0then u =u\i; /* Remove node i as well */
13 end

14 end

16 if (d2(Whs,Ws) < d2(Whs,Or) Or dZ(ws, O) > 41) and (Wp, Or) > T then

17 U=uU{r}; /* Create a new node */
18 w, = G

19 if d2(Wp, W) < 4tthen £ =, U{(b,r)}; /* Connect nodes r and b */
20 if d2(wp,Ws) < Tthen u = u\s; /* Remove s */
21 end

22 end

Covariance Matrix (). Itis used to compute the Mahalanobis distance.

Insertion Threshold (1). It may be regarded as the average radius of a discrete region, in terms
of the Mahalanobis distance.

Smoothing Rate €). It regulates the rate at which reference vectors are adapted.

The algorithm starts having two connected nodes, whose weights may be iediatizan-
dom or, from example, taking the values of the two first observationscoteof the algorithm
is the update procedure, which adapts the network for a single obser@tithe procedure
may be conceptually separated in four steps:

72

Matching. Steps2 and3 find the best and second best nodes, with respect to the Mahalanobis
distance. The covariance matrix is assumed to be the same for all nodesis Ties
most expensive step of the algorithm, because of its dependence omtbemaf nodes.
Nevertheless, since the dependency is linear, the algorithm is well suitadhfost real-
time demands even for a large number of nodes.

Weight adaptation. Step4 smooths the learnt weights according to the smoothing coefficient
€. Jockusch and Rittemention that this parameter may be set to zero without affecting
the overall performance of the network in a significant way.

Edge adaptation. Steps5 through 14 perform competitive hebbian learning to insert a new
Delaunay edge between the best and the second best units. Hereavadde a slight
modification of the normal ITM algorithm by allowing edge creation only if it is tigkly
short. If, after the creation of the new edge, other edges become invelizditay, they
are deleted, eventually leading to the deletion of nodes with no remaining.edpes
contrasts with other TRNs, which rely on ad-hoc procedures to destvalidrDelaunay
edges.

Node adaptation. Stepsl5through21 are responsible of inserting a new node when the obser-
vation is considered to be ill-represented. As a consequence of neat#oaor, the second
best node may be deleted if it is redundant, that is, if it is too cloge(fig. 5.5). As in
the case of edge adaptation, we have slightly modified the original ITM algotdHimit
the length of the edges created in this step.

\ creation
| | zone

Figure 5.5: ITM Node adaptation. A node is created when it falls in the light btuee, this
may be followed by the deletion of the second best node if it inside the lighhgrene.

The combined effect of edge and node adaptation is that network noglesigormly ar-
ranged in such a way that the average distance between two neighbodiegisr. This imposes

73

a limit on the minimum quantization error that may be achieved by the ITM algorithdeeih,

the covariance and insertion threshold together may be regarded abidgsthe maximum
resolution, or precision which may be attained while discretizing the spacds.aldo means
that the number of nodes in the network will dependzcamdr.

It should be noted that, since node distribution is regular, the refereuters learned by
the ITM algorithm are not disseminated according to the observation pridghws a well
known property of the GNG algorithm, where node density is roughly ptapml to P(Oy).
At the same time, this does not constitute a particularly desirable propertyapipeoximating
continuous state spaces; in fact, often the most informative states areastsprigbable, thus,
it makes sense to represent different regions of space with the samisiqguiein spite of the
relative probability of observing something inside them, as long as this pititpad greater
than zero.

5.4.3 Properties
Convergence

One theoretical drawback of the ITM algorithm is that strict convergémedocal minimum of
the distortion is not verified. The reason is that the algorithm, like other Tggdkepresenting
Networks, uses a constant learning rate, which leads to models whichadrnsteonverging,
keep oscillating around local minima.

However, in the case of ITM it is possible to establish a theoretical upper lirthietdistor-
tion, based on the fact that the algorithm guarantees that the maximum Malhialdistance to
an observation will be equal or inferior to

From 6.3):

K
=153, 3 douw) 58)

Orev

where|Q] is the number of input vectors or observations in training data. But, sines ev
observation belongs to only one Voronoi region ag@o, w;) < T, we know that:

E<t (5.7)

Number of edges

As we have stated at the beginning of this chapter, we want the learntus&'ue thus, the
topological map — to be both simple and meaningful. We have seen that the ticpblogp is a
subset of the Delaunay triangulation, which has a simple interpretation in térmagbborhood,
and seems plausible when partitioning a continuous space into discretestegion
But, what about simplicity? it turns out that the upper bound on the numbedgés is
the same than for the Delaunay triangulation, which, for reference waatd?, the number of
edges i©O(N) because the triangulation’s edges and vertices form a planar graphhammer
1991]. However, for higher-dimensional spaces things seem less pronfisirexampleDewdney and Vranch

74

[1977 have proved that the upper bound for the size of a Delaunay triangulati®® is O(N?),
which is equivalent to a fully connected graph.

On the other handywyer [1989 has demonstrated that the expected size of the Delaunay
triangulation in anyd-dimensional space 3(N), supposing that the reference vectors are drawn
uniformly from the unit sphere. This result indicates that high-dimensiDe&unay triangula-
tions will be small O(N)) in most practical situations [churenhammer and Klejr2004.

Complexity

The ITM algorithm is designed from the ground up for incremental learringocesses obser-
vations in a one by one basis. The time complexity of the update algorit@tNg. Moreover,
since the most expensive operation is the matching step, it seems feasible dvdrtipr effi-
ciency of the algorithm by using a hierarchical space indexing technitjgefR-trees and their
extensionsgg Guttman 1984 Beckmann et a/.199(.

5.5 Probabilistic Model

As we have seen, the ITM algorithm, is able to produce find a simple and seailgngicund
topological map by incrementally processing observations. This seems tbrmua§t of our
requirements for the structure.

In this section we explain, how our algorithm integrates the ITM algorithm tanldae
structure of the HMM. We will also explain how we have modified parameteniiegin order
to accommodate for an ever evolving structure. As in the case of the HMMilveresent the
approach as a probabilistic model.

5.5.1 \Variables

The only difference at this level between GHMMs and HMM is that the dombihe state
variable changes as time passes. Besides that, both models use the sdntesvaria

e 5,5 1, defining the current and previous states, respectively. The doméaiotiofvari-
ables varies with time and is representedsRywhich is the set of discrete states in the
GHMM structure aftek observation sequences have been processed.

e O, which describes the current observation. Observations are assoredontinuous
vectors inRP, whereD is the dimensionality of the continuous state space.

5.5.2 Decomposition

The form of the JPD is also the same than for hidden Markov models:

P(§-1SO)=P(S-1)P(§|S-1)P(C: | S) (5.8)

75

5.5.3 Parametric forms

Although the parametric forms are basically same than for HMMs, the way #énabteters are
stored is different in GHMMs:

e P(S). Like in HMMs, the state prior is represented by a multinomial probability distribu-
tion. However, instead of directly storing probabilities in the parameter vectoe will
store the ESS for computing those probabilities. In this case, they condist@imulated
sum of the expected counts (sek4. This means tha®(S) should be now computed in
terms of the ESS by normalizing the counts:

T§

P& =1= 25T

(5.9)

e P(O; | S). All observation probability Gaussians are assumed to have the same&ooear
>. Hence, the observation probability parameters consists exclusivelye dbdlussian
mean value$; = |4 and the observation probability is computed with:

P(O|§ =)= G(Ox; . %) (5.10)

e P(S|S-1). As for the state prior, instead of storing transition probabilities directly, we
store the ESS as the cumulated sum of the expected couaAtdHence, a hormalization
is also needed to compuS | S_1):

a’I/J

P(S — i =
(S : |S ! I) 2519518

(5.11)

The reason for storing the cumulated sum#iandrtis to allow the incremental computa-
tion of the probabilities. Supposing that probabilities were stored directlypuldvbe necessary
to take into account the fact that stored probabilities represent all ofréreedg processed obser-
vation sequences, while the current expectation of the number of coamtselen computed on
the basis of just one — the last — observation sequence. Thus some kiadreésing learning
rate would be necessary to achieve convergence.

5.6 Inference

Since GHMMs are HMMs, they may answer the same probabilistic questioag{s®. For
convenience, we will review in this section the two basic questions that sheuwdiswered in
the context of motion prediction: filtering and prediction.

Filtering is performed in order to update the belief state of an object on the bfan
observation. This is done using expressidrbwhich we copy here:

P(S 1010 = 7P(QS) 3 PSS PS4 |Oues)

1

76

WhereP(S_1 | O_1) is the belief state calculated in the previous time step.
Having estimated the current state, the future dtatéme steps ahead from the present is
computed with:

P(St+[O) = 5 P(S+H|SH-1)P(S+H-1]| Q) (5.12)

SiH-1

5.7 Structure and Parameter Learning

The main difference between conventional HMMs and GHMMs lies in the ilegmgorithm
(see alg.7), which iterates through two steps: a) updating the topological map of thee;spa
and b) using the Baum-Welch mechanism to update the parameters of the statngdrthe
transition probability. Regarding the incremental aspect of the algorithm, ibithwoting
that the input of the algorithm consists of complete observation sequethcess,learning is
performed only when such a sequence is available and not for eveeywaiion.

The algorithm maintains a topological map consisting of a nodedi¥té&n edge list£) and
the node weights’). From the map, observation probabilities are obtained by using the node
weights as the mean values of the Gaussians and assuming a fixed c@&ri&hen transition
structure is updated from the ITM edge list, and the parameters of the traresitibstate prior
probabilities are recomputed using the sum of the expected counts

The learning algorithm has the following parameters:

State prior counter default value (p). This value is used to initialize the state prior table when
a new state (node) is created, it works as a “pseudocount”, much in e way that
Dirichlet priors (see 8.2.7).

Transition counter default value (ag). It is analogous tat, but it applies to transition proba-
bilities.

Covariance Matrix (Z). All the Gaussians which define the observation probability are as-
sumed to have the same covariance matrix. It is also this covariance thatigouse
the ITM algorithm.

Insertion Threshold (t). This is one of the parameters of the ITM algorithm, it determines —
together with the covariance — the resolution of the discretization, as deddnilg.4

Smoothing Rate €). As explained in §.4, € determines the rate of at which node weights adapt
to new data.

The algorithm is decomposed in three parts:

Topological map update. Lines2 - 4 use the ITM algorithm as a subroutine to update the topo-
logical map. It should be noted that later steps of the algorithm (kre®) will need

3Indeed, this may be seen as an application of incremental EM to learnithepd transition probabilities. The
interested reader is referred todal and Hinton1999 for a more thorough discussion of this technique.

77

to know which nodes and edges have been created and removed;tismaressary to
modify ITM_updateto store these in a temporary structures. An interesting observation
is that, although this step is relatively expensi@TN)) it is possible to update the map
immediately after receiving every observation. Moreover, if learning iopmed in par-

allel with filtering or prediction, the code may be interleaved in the state filteriotpcy
thus, further reducing computation time.

HMM topology update. Lines5 through19 update the GHMM structure to reflect that of the
topological map. Itis interesting to note that, if a linked list (c4.5) is used to represent
the transition matri, then assigning O tg j is equivalent to deleting the corresponding
element from the list, which enhances both memory and time efficiency. An inmborta
remark is that, when a new state is created, a self-transition is added to tharstr his
self transition, allows representing situations in which the state does naehbetween
consecutive time steps. This does not necessarily mean that the contstatmusf the
object has not changed, but only that it is still in the same discrete regionirihne
preceding time step.

Parameter update. The observation probability parameters are updated by copying the weights
of topological map td. On the other handyandA are updated using forward-backward
probabilities to compute the expected values as in Baum-Welch.

5.7.1 Learning the covariance

One possible extension of the learning algorithm would be to learn the indivadariance
matrices of the observation probabilities. As a matter of fact, efficient inarexhalgorithms

exist to perform this computatiorq Li et al., 2003 lgel et al, 2004. However, since the co-
variances are used to compute the Mahalanobis distance, using thesgsrayaould modify

the ITM algorithm, with the following consequences:

e Since the distance criterion would not be uniform for all the space, it issacg that
the properties of the ITM algorithm will still hold. Hence, further mathematicallysis
would be needed to ensure it.

e Due to the fact that the observations that have been already associatewde in the
ITM determine its covariance matrix and, thus, the dimensions of its Vorogmins, it is
possible to fall in a situation where the covariance matrix becomes progelyssinaller
as time passes.

Some measures may be taken to tackle this problems, for example, it is possibedo u
fixed covariance matrix for the ITM algorithm and to learn different c@arares for the HMM.
However, due to time limitations, we were not able to perform a deeper exploraf these
alternatives.

78

5.8 Discussion

This chapter presented a novel extension of HMMs: Growing Hidderkd4aodels, which
mainly differs from the standard technique in the fact that the model steuggunot fixed,
but evolves continuously as more observations are available. Ouragbpi® applicable to
those cases in which a Hidden Markov Model is used as a discrete appatamn to model a
continuous state process.

The main insight behind GHMMs is that, since discrete states are obtaineddogtidisig
the state-space in regions, allowed transitions should be allowed only Imeteegbor regions.
Hence, the problem of structure learning becomes that of building a tdapalagap, by dis-
cretizing the continuous state space into discrete regions and identifyingooeiigg regions.
In our approach, this is done by applying the Instantaneous Topoldgayal a Topology Rep-
resenting Network which is well suited for correlated data such as traijestdBy integrating
the ITM algorithm with incremental parameter learning, we have been ablaltbablearning
approach which fulfills the three requirements that we have defined ahthef ehapted:

1. The algorithm learns both the parameters and the structure of the HMM.
2. The algorithm is incremental.

3. The learnt structure has an intuitive meaning, and it is simple enough toextkt infer-
ence in real time.

Having presented GHMMs, we are now ready to explain how they may loeuiige context
of motion prediction, which is the subject of the following chapter.

79

Algorithm 7 : HMM-UpdatgO1.1,%,T,€: U, L, W ,A)

input

Observation sequen€®; 1
Covariance matriz
Insertion Threshold
Smoothing factoe

modifies

Topological map nodew
Topological map edges
Topological map weightsy
HMM parameters\ = {11 b, A}

1 begin
2 forte{l,---,T}do [* Update the | TM */
3 EnhancedI T Mupdat&Oy)
4 end
5 for every new noded¢ ¢ do
6 T =T0, [* initialize prior */
7 aj=ag; [* initialize self-transitions */
8 end
9 for every node i that has been removed frantdo [* remove priors */
10 =0
11 end
12 for every new edgé, j) € £ do [* initialize transitions */
13 a,j=4ao
14 aji =3ag
15 end
16 for every edgéi, j) that has been removed fromdo /* remove transitions */
17 gj=0
18 ajj=0
19 end
20 for i€ u do /* update mean val ues fromthe | TM */
21 =W
22 oj=2
23 end
24 Precompute forwardx), backward 3;) and joint observation probabilitiepg) for
the observation sequenCg.t
25 forie u do I* incremental Baum \\lch */
26 TG =T§ + %
27 for j € a((i) do
T L e . _
- aj=a,+ EtzzaH(l)p([Sz—tTilz[iillal)]BtAjf((i)Or\[S—ﬂ MB(i)
29 end
30 end
31 end

@
(en)

Chapter 6

Learning and Predicting Motion with
GHMMs

— Would you tell me, please, which way | ought to
go from here?

— That depends a good deal on where you want to
get to — said the Cat.

— I don’t much care where— said Alice.

— Then it doesn’t matter which way you go — said
the Cat.

LEwIS CARROLL
Alice’s adventures in wonderland

6.1 Overview

In chapter5, we have presented GHMMs from a general perspective. In conthnés chapter
focuses on the application of GHMMs as a tool which we use to predict the maftisedestrians
and vehicles. Therefore, the issues addressed here — as well agsjpeictive solutions — are
specific to this application and they probably may not be generalized to atheids.

Our application is based on the assumption that people and vehicles movetiofiiof their
intention to reach a particular state {ts goal): a car moves in a car park in order to stop at a
parking place, a person walks in an office with the intention to reach his d&skAccordingly,
we model the object’s motion in terms of an extended state vector which is cothpioseo set
of variables describing itsurrentandintendedstates, respectively.

An important difference between our approach and other HMM baséuhitpees is that
motion patterns are not defined in terms of typical trajectories. Insteadatbayetermined by
the object’s goal: two objects are involved in the same motion pattern if they interehoh
the same state. Under this interpretation, a motion pattern may be interpretegasdhpaths
which lead to a given goal As a consequence of this interpretation, the representation of motion

lindeed, our representation bears some resemblance to Markoviddedfsocesses Howard 1960

81

patterns is no longer restricted to chains as illustrated ir6fiy.

o * e

o 00— ./F’HO

.\L./

Figure 6.1: Example of a motion pattern defined in terms of a goal (orang® nod

This chapter is organized as follows: in secti®r, we explain how the extended state
integrates with GHMMSs to represent motion patterns. Se@iBdiscusses the use of our model
to predict motion, and how, thanks to the extended state, it is possible totgredgtate that an
object intends to reach as a side effect of updating the belief state. tlarséct we describe
the particularities of learning in the context of this application. In sedii@we illustrate our
approach using an example. Then, in sectiof) we compare our approach against existing
HMM based approaches. Finally, we present our concluding remarkki§ chapter in section
6.7.

6.2 Probabilistic Model

Strictly speaking, our proposed motion model is a standard GHMM which mayangoulated
using the techniques that we have already describBdHowever, our definition of an extended
state in terms of the current object’s state and itsgbas implications that need to be analyzed
in detail.

Until now, we have assumed that observations coming from sensorsail&bte at every
time step. In this application, this assumption is not always true: while it still haldshi
current object state, it is no longer true in the case of goals.

In effect, by definition, the goal that an object aims to reach may not bervdxd — either
directly or indirectly — until the object has reached it, that is, when its trajgttas ended. On
the other hand, this situation does not arise in the case of learning betéalees complete
trajectories as input, meaning that the last observation for every trajastiompwn and, there-
fore, that goal observationg(the last observation of a sequence) are available for the learning
algorithm.

This section describes how GHMMs are used to build motion models using temded
state definition, it also details how to cope with goal observations, whichedmwe shown, are
only available at the end of an observation sequence.

Cassandra et a/1996, a popular probabilistic planning tool.

2Hereafter, we will use the terms “intended state” and “goal” intercharslgealso, unless noted otherwise, we
will assume that the current and intended states are points in spacehe&®ss, it should be noted that other state
definitions are also possibledposition, velocity, size).

82

6.2.1 Variables

In the context of this application, we would like to consider our probabilistic ehad two
different levels. At the higher, more general level, our model behpstdike a conventional
GHMM and the extended state is not different from other state definitions I8wer level,
we want to distinguish between the current and the intended state, themedll Wwecompose
the observation variable into a current component — denoté®| asand an intended, or goal
component — denoted &'. This results in the following variables:

e 5,5 1, defining the current and previoasigmentedtates, respectively. These variables
take values iy, which, as described previously, is the set of model’s statesléfitejec-
tories have been processed.

e O, which describes the current observation. Observations are assoredontinuous
vectors inR?P, whereD is the dimensionality of the standard state variable. As explained
above, observations are decomposed in two components representiugrérg and the
intended state®; = [Of, Of'].

6.2.2 Decomposition

At the higher level, the JPD decomposition is the same as for GHMMs:

P(§-1§O) =P(S-1)P(§ | S-1)P(O: [§) (6.1)

However, at the lower level, observation variables actually represerjoiht occurrence
of their current and intended components, which implies that observatatalpitity may be
rewritten in terms of these components.

P(C1|§) =P(O O | S) (6.2)

we will assume that the current and intended components of the obsesvat®nonditionally
independent given the current state:

PO O | 8) =P(Ot | S)P(O! | S) (6.3)
which permits us to rewrite the JPD in terms of the components of the observatiable:

P(S-18 0 Of) =P(§-1)P(S | S-1)P(O{ | S)P(TY |) (6.4)

6.2.3 Parametric forms

The parametric forms are essentially the same that for GHMMs (see cbaptéth some added
restrictions for the covariance of the observation probability:

e P(S). Will be represented as a multinomial, computed on the basis of the sum oteatpec
counts stored in a vectat

83

e P(O; | S). Due to our conditional independence assumption, the observationbiityba

6.3

is written as a product of probabilitié¥ O] O/ | §) = P(O[| S)P(O/ | S). Let us define
those probabilities as:

PO | [§ =1]) =G(O; K, ¥ (6.5)
and:

" o J Uy if O/ is not available
P(Ot | [S - I]) _{ G(q/; lJi//7 z//) otherwise (6-6)
wherep andy’ are the mean values of the current state and the goal fori statd>’ and
Y are the respective values of the covariance matrix for all the states.

By noting thatP(O; | §) is either a product of Gaussians, or a product of a constant and a
Gaussian, we may it write this probability as a single Gaussian:

POt |18 =1)) = 56(Ox i, 2) ©7)

wherey = [, 1¥'], andX is a a block diagonal matrbhaving the form:

2 0
Z_|:0 z//] (6.8)

And Z is a normalization variable, which permits to compute the uniform on the goal
component using the same Gaussian representation. This is done byrastignsame
value egzero) toO; whenever goal observations are not available, which is equivalent to
a multiplication by a constant, and — when normalized — becomes effectivelyatamni

to a uniform.

P(S | S-1). Finally, transition probabilities are storédn the normal way for GHMMs,
ie as the sum of the expected counts for the transitions.

Inference

We predict motion using the same two steps we have already explained foMsHtat we
transcribe here for convenience. First, the belief state is reestimated:

PISQ)=ZP(0|S) 3 P(S IS 0PS 1]0) (6.9)

3A block diagonal matrix is a square diagonal matrix in which the diagonaieiés are square matrices of any
size and the off-diagonal elements are zero.

84

it should be noted that, since goal observations are not available dugdi{on, observation
probabilities are computed using exp.4), which only takes into account the current state:

P(O: S =1)) = 5G(0L0]; 4, 7) (610

Then, the extended state is propagated to the required time héfizon

P&+ [0O) = > P(S+H StH-1)P(S+n-1] Or) (6.11)

SiH-1

It is important to highlight the fact that the result of prediction is a probabilisyridhution
over discrete states. Sometimes, we are interested in knowing the probabéitpaoticular
point in continuous state space, for example, in the context of motion planiiimg may be
seen as the probability that a given state is observed in the future, andentayriputed from
the predicted state as follows:

P(OLH 0 = 2 3 PISin| QPO Sin) (6.12)

6.4 Structure and Parameter Learning

By introducing the intended goal into the state variable, we have obtainettaatable which
is a good approximation to @mpletestaté. This makes it possible to apply algoritifrand
perform parameter and structure learning in a straightforward fashion.

Thus, besides selecting the algorithm’s parameters, the only additional tashtiuld be
performed is to preprocess trajectory data in order to include goalvaisers, before feeding
it into the learning algorithm. For every input sequence of observa@is= {O1,---,0r},
the augmentedbservation sequend®;.1 is obtained by appending the last observation of the
sequence to every observation vedrr = {[O1,Or],---,[O7,0O7]}.

This is similar to a supervised learning algorithm, where input data containsehthedi
identifies the motion pattern that has been executed by the object.

6.5 Learning example: a Unidimensional Environment

In this section, we will illustrate with an example the process of applying our GHMsed
technique to a problem. Let use have the unidimensional environment dkjpidig 6.2, where
objects go from poinA (x = —5m) to pointB (x = 5m) or vice versa as indicated by the green
and blue arrows. We assume that the probability of observing motion in oise se the other
is the same. Furthermore, we consider that objects movenathd observations about the
environment are sampled every second.

4A state is considered to m@mpletdf it is the best predictor of the futurée knowing the state, no prior variables
may influence the evolution of future states [Chrun et al, 2009

85

Figure 6.2: Example unidimensional environment. Objects move &kdmB (blue) or fromB
to A (green).

6.5.1 Defining the state

It seems natural to start by defining the meaning of the state variable. lgeclsoice is to
assume that discrete states will represent the object’s position. Thustémeled state will be
a two dimensional variable, meaning that for every discrete stiduere will be an associated
reference vectow; = [x;,X], wherex; represents the object’s current position ahcepresents
the intended position.

6.5.2 Choosing the parameters of the learning algorithm

From the fact that the velocity at which objects move in the environmentlis 4nd that ob-
servations are sampled every second, we know that objects may move dverytime step.
Therefore, we decide that 1 m is an adequate 'step size’ for the ¢tigtate, and we set the
variance to the be the square of the step 'radiis- [0.5%]. With respect to goals, we may be
somewhat more flexible, and assume that two trajectories whose last seatgghan 2 m of
each other are indeed attaining the same goal, hence we set the intendedr&ate to be
S/ — [12}.

For this particular case, we will set the insertion threshold to €l, because our assump-
tions about the discretization size have already been encoded in théaooes: An alternative
would be, for example, to increase the threshold and decrease theaooest We do not want
the initially found states to be smoothed, hence, we set the smoothing gdoteero.

We have now set all the parameters of our algorithm. It is very importantianiethat we
have not made any assumptions about the number of goals in the envirotimemgmber of
typical trajectories, or the size of the environments. Instead, we hadeombe our knowledge
about the sensorge(sampling rate), the objects dynami@s\(elocity) and the semantics of the
state spacei€ unidimensional positions). Therefore, these parameters may be apphbey to
unidimensional environment having the same kind of objects and sensors.

6.5.3 Learned model

Let us assume that, when objects go frAro B, the corresponding observation sequence is:

O111={-5,-4,-3,-2,-1,0,1,2,3,4,5} (6.13)

Of course, in most real situations, the observations will not be evenlgesdpike these,
because of the combined effect of noise, the sampling time, etc. But, wetaaeep this
example as simple as possible.

86

Now, we build the extended observation sequence, by appending tlubsesvation in the
sequence to every individual observation:

61:11 = {[_Sa 5]7 [_47 5}7 [_3a 5]7 [_27 5]7 [_17 5]7 [Ov 5]7 [la 5]? [27 5}3 [37 5]7 [45 5]7 [5> 5]} (6'14)

If we plot the points in the sequence, and draw the respective Voregiirrs and Delaunay
edges, we will obtain something like fi§.3.

IX'
O ©]

5

A

Figure 6.3: Extended observation sequence plot and Voronoi Diagf@mnoi region’s borders
are depicted in blue and Delaunay links in greeandx’ axes are not at the same scale.

As we see, Delaunay edgderm a unidimensional manifold, which is a good representation
of the structure of the input pattern. Our algorithm will add two transition abdhies for every
Delaunay edge, and one self transition by node. So, after processimxtdnded observation
sequence with the learning algorithm, we would obtain the GHMM illustrated 16 fig.

In the figure, the transitions which have the strongest probabilities are tnish advance
the object toward8, while the probabilities of staying in the same state are lesser, and those of
going backwards are close to zero. We may be tempted to remove thoseabadgkababilities
since, after all, they do not seem to encode any useful information, &hauld remember
that those edges were added before estimating the parameters, so it otduddoossible to not
include them without additional knowledge.

On the other hand, these low probability transitions only imply a linear incremeihiein
complexity of the model and, due to their low probabilities they do not significaftéct the
quality of prediction. Therefore, we considered that studying a meahnaeisemove them is
hardly justified.

Let us assume that now, we observe the trajectory of an object whichfigmeB to A, and
the corresponding observation sequence is:

01.11=1{5,4,3,2,1,0,—-1,-2,-3,—4,-5} (6.15)

5In this example, all Voronoi regions are infinite due to the fact that elasiens are all aligned over the same
straight line — we say of this points that they are nogéneral positioncf. Guy, 1989 — hence, all borders are
parallel. In normal circumstances, they would be slightly misaligned, sdhbaorders would cut each other thus
defining finite regions.

87

Figure 6.4: Learned GHMM after processing one kind of observatiqunesece. The size and
color of the arrows represent the probabilityandx’ axes are not at the same scale.

We may proceed as above, using our algorithm to update the model. At theeendll
obtain the GHMM which is displayed in fig..5.

Figure 6.5: Learned GHMM after processing the two kinds of observagoences. The size
and color of the arrows represent the probabilitgndx’ axes are not at the same scale.

It is worth noting that, if we had allowed transitions for all the edges in the Deatrian-
gulation, there would be edges joining both patterns. They are not theaeiseour algorithm
forbids the creation of links which are much longer than the insertion thicesho

As we have shown in this example, our algorithm has obtained a good eepasn of
both motion patterns, without making any assumption about the number of ty@iEsdtories
or discrete states in the model. We will not discuss prediction because ifagmped using ex-
actly the same procedure than for conventional HMMs/GHMMSs, excephéuse of extended
observations.

88

6.6 Comparison with existing HMM Based Approaches

One of the primary goals of this thesis was to develop a “learn and prediptbagh, thus,
the main difference between our approach and other HMM based motidictiwa techniques
is our incremental learning algorithm, however, this is not the only differeme have also
made a different set of hypotheses and modeling choices with respecst@pproaches in the
literature, which justifies a comparison in terms of this choices.

The two most important differences in our model with respect to other appes are:

e We model motion patterns in terms of the intended state, while the 'standaraaaypr
is to consider that motion patterns correspond to “typical trajectories”.

e While other approaches constrain the structure of a motion pattern to bera oba
definition allows network-like structures, containing bifurcations and joipiatis.

These two differences are relevant because they help to improve er@olwo problems
related to the use of chains as typical trajectories.

Model Redundancy

A first problem that arises from the representation of motion in terms of tlypiagctories
comes from the fact that structures representing different motion pattlermot share states,
which leads to redundant models. A simple example of this situation is illustrated i\ 6ig
There are two similar typical trajectories (blue and green), which woulepeesented as two
independent chains (fi§.6(b) by applying the standard criterion. However, since both typical
trajectories end in the same state and most of the intermediate positions arémity sur
algorithm would have produced something similar to igi(c)which is a much more compact
representation having the same expressivity.

Split

,,,,,,,,,,,,,,,,,,,,,,,,, P ~@—_ e

. - 8::333\.\ ././J;TQ;TS o0 *&‘\ ././’Q ~0—@

(a) Typical Trajectories (b) Chains (c) GHMM

Figure 6.6: Shared state representation: Two typical trajectories (btlgraen, left image)
may be represented using two chain-like substructures (center). Anaditer (left) is to use a
single structure where the states shared by both structures (orapge) st once.

An interesting situation arises when the occurrence probabilities for thezetitf typical tra-
jectories are not the same. Let us suppose that, in the above’s examiegtrency with which
the upper trajectory (green) is observed, is much higher than that ofwtlee tme (blue). If we

6There are other goal oriented approaches in the literature (8f5.8 but here we are only considering state
space models.

89

use chain-like structures, we may represent this by assigning a higheppolmability to the
upper chain; unfortunately, most existing approaches assume anmifar, thus neglecting
this information. By using our approach, the difference in frequencaddwe encoded in the
outgoing transition probabilities of the split point in fi§.6(c) where the object “chooses” to
follow one path or the other.

Despite the advantages of sharing the state, it seems reasonable to asladt thieaug-
menting the state space dimensionality will not lead to an indiscriminate increasenirttier
of nodes in the Growing Hidden Markov Models (GHMM), thus affecting dipplicability of
this approach. The answer is no — at least when compared with typicaittrégs approaches
— because, in those approaches, two trajectories having differelrgtites will, most likely, be
represented as two different typical trajectories, thus leading to amiecrtein the number of
nodes in the HMM which is, in the best case, equivalent to our approach.

A weakness that our algorithm shares with other approaches is its assuirtiattanput
trajectories have been correctly identified and segmented in a previousAsteye will see in
chapters/ and8, this is not always the case, resulting in the addition of nodes for noteakis
behaviors.

Pattern “Pieces”

When chains are used, transitions between different structurestaakoueed, hence, the model
is not able to explain motion patterns which are composed of “pieces” of exis#itierns, thus
ignoring valuable information which is already available. An example of thislprois depicted

in fig. 6.7.

A g—0

T I T4 g

(a) Typical Trajectories (b) Chain-like (c) GHMM

Figure 6.7: Example of a situation where pattern “pieces” may be recombireplain new
behavior.

Model semantics

A deeper issue comes from the semantics of this “typical trajectories”. digeglways defined
in terms of similarity, distance or other geometrical or statistical criteria withopteference

90

to the actuatauser factors that motivate motion. Therefore, these approaches do dratszd
the crucial question “why are trajectories typical?” which — from our pofrtiew — needs to be
answered in order to produce truly generative models of motion. On theledhe, modeling
motion causes is difficult in the case of people, because it implies taking théiamrstance
towards moving objects. We consider that, although our approach iofartfeing a satisfying
intentional model, it stands closer to a causal explanation of motion due todhthéa it is
based on a rough model of intentions.

6.7 Discussion

In this chapter we presented the application of Growing Hidden Markovdi4od learn and
predict human motion. Our application is based on the hypothesis that motion ily woheiier-
mined by the object’s intention to reach a particular state. We have explainethisantention
is explicitly modeled by extending the definition of state in order to accommodatnhothe
current physical state of the object, but also the intended one.

We explained the particularities that should be taken into account to includextieded
state into the GHMM formalism. We also provided a simple example of how a coniEm
may be solved using the proposed approach, and illustrated how no deswsmeed to be made
about the number of discrete states or the number of motion patterns to bedlearn

We have compared our approach against other motion prediction techigged on HMMs,
explaining how our proposal leads to improvements in the compactness agehirality of the
model.

Recapitulating, the technique we have presented:

e s able to learn the structure and the parameters incrementally.

e Works on simple parameters which work on assumption about the dynamiesaijjgcts
and the capacities of the sensors, without requiring prior knowledgeeositle of the
environment or the number of motion patterns that objects execute in it.

e Produces models which are both rich and conceptually sound.

This concludes the exposition of the theoretic aspects of our work. Tktepaet of this
thesis is dedicated to the experiments we have performed to evaluate cam&ppr

91

92

Part IV

Experiments

93

Chapter 7

Experimental Platform

7.1 Overview

All of the experiments that we will present in this thesis are based on aligEnsequences
which have been gathered on three different environments: the INRiA ball, the INRIA'S
parking, and a parking lot at Leeds University. One of the major difficaiitie have faced during
our research has been the acquisition of data coming from real segheonce, we have resorted
to the use of synthetic data in order to complement our real data sets.

This chapter presents the three environments and discusses the obtétitmretated data
sets.

7.2 INRIA entry hall.

I — gpw_t-
1

<@ o ® e\

o o
[E%ﬂ " iR ¢

(a) video view (b) floor plan

1

Figure 7.1: Inria’s main lobby and some landmarks:1) directory post, B} ftesk, 3) coffee
area, 4) auditorium entrance, 5) entry stairs, 6) directory post.

The INRIA entry hall (fig.7.1) features the main entrance to the building, two information
directory posts, the front desk, a coffee area and a number of tkamting to various halls,
rooms and auditoriums. This environment is the heart of the institute, all therpeel passes

95

through it at some point of the day for a reason or another (going intpcoffiee break, attending
a lecture, etc.)

The most interesting feature of this environment is that it is — mostly — an opesp
Since the environment’s landmarlkegfront desk, doors) condition the way people moves, this
environment may not be considered as completely unstructured. On thehatid it is still
very different from parking lots where the paths — at least for the \ehicare made explicit by
visual cueségfloor markings) and physical obstacleg éidewalks).

On this environment we have obtained both real data coming from a traggiens and
synthetic data generated with a simulator. We will explain both cases in the thig section.

7.2.1 The visual tracker

position position

and size and size
video stream visual (image) distortion (plan)
camera N projection > data set
tracker correction

Figure 7.2: Architecture of the visual tracking system (top). An obsenwaequence presented
in the image (bottom-left), and its projection in the floor plan of the environmettdim-right).

To gather observations about the motion performed in the entry hall, weusadea visual
tracking system for one camera mounted in a corner. The tracker has®esloped by Gravir's
team Prima and is described Greporossi et a[2004. The system detects and tracks moving
objects in a video stream coming from the camera. The collected informatiaistonf the
position and sizei¢ width and height) of the moving object in image’s coordinates. This in-
formation is then projected into the floor plan of the environment. The data fitknecverall
system is depicted in Fig..2 It features the detector-tracker, a module to correct the distortion
of the video camera, and a final module to project the information on the fl®dng world
plan). These modules are detailed in the upcoming paragraphs.

Camera and Tracker

A single wide-angle camera mounted over one of the lobby’s corners is Uidee camera is
directly connected to the host computer. The tracker processes raeodaiteg from the camera
and outputs data consisting of sets of observatiaadtgmes), that the tracker sends at regular
time steps. Every observation consists of an identification number (ID¥, dhey coordinates

of the moving object’s gravity center in the image coordinate system, the widtheagiat of the

96

object’s bounding box and the orientation of this bounding box. Thusjextoay is represented
as a sequence of such observations from track creation until termination.

Distortion correction and homographic projection

Due to the use of a wide-angle lens, the image is subject to heavy distorticeh mist be
corrected before projecting the image into the world coordinate system. Véeusad four-
coefficient distortion correction as describedZimang[200(.

A side-effect of the undistortion technique we have used is that a pdmt @hage is clipped,
thus reducing the portion of the environment which may be observed. Outliee hand, the
part that is lost corresponds to those places that are farther awayhecamera (see fig..3),
where tracking performance is bad anyway.

(a) original (b) undistorted

Figure 7.3: Distortion correction on hall images. The effect is noticeablesicuhvature of the
left white line which appears in both images. Remark that a part of the orignaale is lost in
the process

The corrected target gravity centers are multiplied by a precalculated mapiggmatrix in
order to project them into the world plane. Itis worth noting that — most oftle target’s center
corresponds to a point which is located higher than the floor level, thus@rigintroduced by
projecting it into the floor. However, as the error is consistent for targfesgmilar height, we
have decided that it is acceptable at this stage of our work.

Data Association

Due to the fact that we have an environment where there are multiple objedtsyadthe same
time, the tracker does not always keep the ID of an object for all of itsct@jg which is a re-
quirement for our approach. Hence, in order to improve ID keepingyesé&-process projected
data applying the Joint Probabilistic Data Association (JPDA) algorithmShalom and Fortmann
[1989 the fact of applying the algorithm on the world coordinate system helpsliterate and
improve the results of the tracking algorithm.

97

7.2.2 The simulator

The simulator we have developed relies upon a number of control poineseying
of interest” of the environment such as the doors, the front desk, etc.

Based upon this set of control points, a set of typical motions patternbdeas defined.
Each motion pattern consists of a sequence of control points to be trdverse

A trajectory is simulated in the following way: first, a motion pattern is randomly ehos
This motion pattern provides an ordered list of control points to which sonussemn noise is
added. Finally, motion between two control points in the list is simulated usingetis@ven-
size steps in in the direction of the next control point, corrupted with Gaussige. Switching
from one control point to the next one is done when the distance to thentwontrol point is
below a predefined threshold. We have assumed a frame ratédaff@®our simulation. This
process will be explained further when talking about Inria’s Parkingrenment.

places

7.2.3 Data sets

We have collected real data during a week at different moments of thelokayning more than
3000 observation sequences. After filtering those sequences whasie tdo short (less than 50
observations) or too long (more than 250) we kept a total of 2048 segagwhich are shown
in fig. 7.4(a) For the sake of comparison, a set of 2000 synthetic sequenceseasgem fig.
7.4(b)

(b) synthetic

Figure 7.4: Hall data sets.

A first thing to notice is that trajectories in real data are sharply cut at thé aigd upper-

98

%ﬁ E$ Ll HE # ﬁ?%? H# LLLLLLY HE
|

Figure 7.5: Anomalous trajectories.

right. This is a consequence of clipping during distortion correction (3e28. Conversely,
synthetic data covers most of the floor plan.

As we might expect, synthetic data looks much more ordered and unifornitstraal coun-
terpart. However, this difference does not only come from the rich@fgrotions that humans
may execute, but also from a number of sensor limitations. For example, sjgdries seem
to pass through the front desk, which is probably due to tracking problems

A problem which has more important consequences for our approadsésl oy “anoma-
lous" trajectories (fig7.5) which are due to tracking errors and do not correspond to real motion,
or at least to complete motions. The problem is that these trajectories shalld nsed for
learning, but they may not be automatically filtered because they are vetycheharacterize.
This seems to be a limitation of most current visual tracking systems, and rposte@ experi-
ments on pattern based motion models use data sets which were corrected fBgheu et al,
2004k Dee and Hogp2004. In contrast, we have decided to keep data “as is”. We are aware
that this will degrade the quality of our results for this data set, neverthelesonsider that
it is worthwhile to test our approach against these conditions which, tumiatiely, seem to be
common to most current visual trackers.

A final difference between both data sets which is worth of notice is thag there some
landmarks in the real environment that were not taken into account in thdasiomu Two
examples are the front desk and the door which is located near the bott@ortedr of the floor
plan.

7.3 Leeds parking data

The second experimental environment used in this thesis is a parking lt@datahe University
of Leeds. This environment has at least two important differences when compéttethe IN-
RIAs entry hall: first, it is populated by two types of moving objects (vehieled pedestrians);
and second, at least for vehicles, it is more structured than the halbament.

1we would like to thank Hannah Dee and the University of Leeds for lettingsashis data set.

99

The conditions on which data has been captured also differ from therivabament. The
video input has been captured by a camera located high above the pdrimg, a wide area
is covered and the projective distortion is less pronounced than in the tsad.ndatter of fact,
we have decided to conduct our experiments in the image plane, thus eliminainged for
distortion correction and projection into the ground plane.

The tracking system used on this environménafjeg 2004 is also different from the one
already presented, but the main difference is that the trajectories hewéaed-edited to correct
problems like those we have discussed in the previous section. An indi¢élb@r magnitude of
this work is that approximately 20% of the 269 trajectories in the data set lemreditered in
some way, and some have been entirely tracked by Haag P00T.

Unfortunately, the reliability of this data set has a cost, and the number oftoegs in
this data set is reduced. As a consequence, several behaviornssareen only once, hence,
although they are learned, there are no more examples of the same motion fmagealuate
the quality of the learned pattern.

The complete data set is depicted in figt.

Figure 7.6: Leeds data set.

7.4 INRIA parking data

Due to the difficulty in acquiring data, we have decided — in addition to the edal gkts that
we have discussed above — to develop further our trajectory simulawg{s&? to dispose
of a more thorough experimental testbed. This allows us to test particulatiGisiavithout

the logistic difficulties posed by executing scripted actions in a real environasehe INRIA's

parking. It is also a practical way of generating big volumes of testing daiehwvis free of the
problems that are common to tracking systems.

In order to run a simulation, a graph-like structure should be defined {fi§. Nodes of
the graph represent control points with an associated speed and pesitiance. They also
have flags indicating whether they are the start or end points of a trajéotargne). Nodes are
connected by links, which indicate the possibility to go from one node to anothe

100

Static Map: /homeNasquezg .|

Node
Name: |]

x [stzzznnnnm |]
e T

i 315
an =

s LF —

= — .
heea i se s s eooo’Uooo sa e
10 \ —

e

L CEEEL 0 CEE 4 GoaeEEREEEEEEEes -
s .ooc”@ 00000‘—‘0 .%. n|o[

EEERIIEEEEE .;.. o]
‘ D L T T T e P L LY

T LA LA NN [[RAAAAAT

LA IEIE] QG’GQOOO‘O

LAESE AR AR AR AE AR 3

e‘o

g
a1 D]
(Z]

Figure 7.7: The trajectory simulator. Circled arrows represent contriok§ arrow size and
color correspond to position variance and speed, respectively.

Once this graph has been defined, the simulator works by choosingdmimaa start and
an endpoint (according to the corresponding flags), and then obtarseguence of nodes by
finding the shortest path between the start and the end point. For ewégyimthe sequence,
a point is generated by adding Gaussian noise to the node’s position. Fihallyajectory is
generated by applying spline interpolation to the point sequence anchsplgg it according
to the simulated sampling rate and object’s speed. As for the entry hall simulatiertzave
assumed a frame rate ofH@.

Fig. 7.8 shows an example trajectory data set obtained from the configuration shown
fig. 7.7.

7.5 Discussion

In this chapter we have presented the different environments and datigiion platforms that
we have used for our experimental work. For the case of real datdyawe illustrated the
difficulties that arise in the use of visual trackers as input systems fappmach and we have
illustrated how some of these difficulties may be addressed. We have alamexiour choice
of using also synthetic data in our experiments.

The following table resumes the data acquisition platforms we have discugbésighapter.

101

Figure 7.8: Synthetic parking data set, from the model displayed ifi fig.

Abbreviation | Environment Type Observation | Object’s speed| Trajectories
IHR INRIA's Hall real X,y variable 2,048

IHS INRIASs Hall synthetic| x,y constant as needed
LP Leeds’ Parking | real X,y variable 269

P INRIAs Parking | synthetic| x,y,X,y variable as needed

Every one of these combinations has interesting features which make thémohanalysis.
We have two very different real data sets; one (IHR) consists on the@ugput of the tracking
system, covering a relatively small area, the other one (LP) has beeralyacieaned, and
covers a wide area, having two types of moving objects.

Synthetic data has also interesting differences. Hall data (IHS) comasafremall set of
prototypes and all the objects are assumed to move at the same speedy &atkijon the other
hand, may correspond to very big number of prototypes and assumebjbets with variable
speed. This last data set is also the only one to include richer observyatioics include the
object’s speed. This makes it useful to test how our approach worksgher dimensional
spaces.

As a concluding remark for this chapter, we will like to note that some trackehaied
problems have yet to be solved — or improved upon — in order to automaticatluge the kind
of data that our approach requires as input. In particular, we shoelslssiine fact that robust
data association — keeping a single identifier for an object while it is presém environment
—is indispensable for our approach to work.

102

Chapter 8

Experimental Results

First you guess. Don't laugh, this is the most
important step. Then you compute the
consequences. Compare the consequences to
experience. If it disagrees with experience, the
guess is wrong. In that simple statement is the key
to science. It doesn’t matter how beautiful your
guess is or how smart you are or what your name is.
If it disagrees with experience, it's wrong.

RICHARD FEYNMAN
From a PBS Show

8.1 Overview

We have thoroughly tested our approach on the input data sets preseoteghter7. Most of
our experiments have been centered around the following key questions:

1. Learning performance.Does learning produce “appropriate” motion models? does it
converge?

2. Prediction accuracyHow close are predicted states to real observed motion?
3. Real-time applicabilityAre learning and prediction fast enough to work at camera rate?

4. Generality. Is our approach general enough for general motion predictia@agyclic
motion, higher-dimensional states).

The objective of this chapter is to present our experimental work onexirsyvthese ques-
tions. We will start by explaining some implementation issues, as well as disguessamples
of the application of our approach to the different data sets. Then weamitircue by providing
numerical measurements of the behavior of our approach as related keyoguestions, and
close the chapter with a general discussion of our results.

103

8.2 Examples

In this section we present some examples of our approach at work in teeedifenvironments,
without going into more technical details such as choosing the algorithm’snesees or data
preprocessing.

8.2.1 The INRIA hall

Figure8.2 shows a typical example of the prediction process using the IHR data sendists
of a set of images arranged in columns and rows. Rows correspondiei@difvalues of.

The left column shows the mean value of the predicted states for differenttinimons
going fromH = 1 toH = 15, whereH represents the number of time steps to look ahead in the
future. These mean values are displayed as points colored from biud &ol) to green (for
H = 15).

The center column shows the probability of observing a particular statd forl5, it has
been computed by applying ed.{2 to the cells of a regular grid. Since the augmented state is
4-dimensional at least, we have chosen to project the probability oveuthent position plane,
thus not showing the predicted goal.

The right column displays the curreii & 0) estimated goal. Similarly than for the center
column, we have applied ecf.(L2 to the cells of a regular grid, but this time we have projected
the probability over the intended position (goal) plane.

Images in the three columns share some elements (seg.f)g.a) the complete sequence
of observations up to the currenhtwhich is depicted as a series of red points; b) the current
state and goal estimations, or expected values, which are pictured asdrgelw ellipses,
representing the probability covariance.

N Y e
Goal estimation l
Prediction means
" |
T L
TR,
State estimation Observations o b
| a1 R |

Figure 8.1: Common elements in prediction example images.

The images fot = 1 are interesting because of several reasons. When observingvthe en
ronment, the person seems to “appear” in the middle of the hall, which is nertheatey/exit
point nor a place where people stops for a while. This is a typical situation®ddla set, and
is due to the track initialization scheme used by the visual tracker.

Also noteworthy is the fact that, even having a single observation, the edtimateability
for some goals (right image) is already high. At the same time, these goal$ eppa@sed

104

sides of the environment, which seems reasonable: since only one aiiisers available and
— for this data set — it does not include velocity, there is not enough infamget to infer the

persons’ direction. This is reflected in the roughly bimodal form of thelipted state (middle
image). This also explains why the prediction means in the left image are ctmerthe

persons’ position.

In rowst =5 andt = 8 it is possible to observe two parallel situations: the decrease of the
estimated right goal probability and the emergence of a bimodal state predioti@sponding
to the two left goals. At this moment, prediction means are also clearly orientatiee! teft.

At t = 11 the right goal has completely disappeared, and the same is starting Enhapp
the lower left goal. At = 15 the final goal has been clearly identified, and the prediction means
may be effectively regarded as the predicted trajectory which, in facgrisclose to the actual
one followed by the object until it reaches its destinatiom at44. Indeed, in this case, the
output of prediction algorithm closely resembles Kalman filter-based predliotice the goal
has been identified.

8.2.2 Leeds data

Figure8.3 show an example prediction sequence on the LP data set. Instead dbidestire
process in detail, we will focus on the difference with respect to the pusvésample.

A first contrast to notice is that predicted stateblat 15 seem to be considerably closer to
the current object position. The reason is that, in this data set, objects ragvslewly with
respect to the size of the image.

Another distinctness of this data set is that it includes two types of movingtslfiepedes-
trians and vehicles). Since these objects follow different motion pattelisd)dh considerable
influence in the prediction process. For examplef ferl, we may see that there are two highly
probable goals. This is interesting because they correspond to a fedesestination (the
building entrance) and a vehicle’s destination (a lane’s end). As thelgahiaves further, it
becomes quickly associated with a vehicles’ motion pattern ant =82 the only two goals
with a significant probability correspond to vehicles’ destinations.

Also worth of notice is the fact that observations for this data set areesged in camera
coordinates, instead of referred to a floor plan. It is even possiblerteipe the effect of the
projective distortion: as the object gets closer to the camera, the gap betvegaredicted state
and the object estimated position seems to increase.

8.2.3 INRIA parking data

Our final prediction example is based on the IP data set which, besidesdyaitietic, has the
distinctive feature of including velocities in the observations. The coomdipg images are
displayed in fig.8.4.

Something that makes this example stand apart from the others is the biggesrraimbals
in the environment. This is patent, for example, in tow 38, where goals having a significant
probability roughly cover half of the environment. Of course, this situatltanges as the car
continues to move and liy= 49, there are only two zones having a high probability of being the
goal.

105

@t=1

(b) t=5

1
Y -::, :

(c)t=8

d) t=11

(e)t=15

al
t

(f) t=25

() t=44
¥
- —
S
1 s ea s
I a= ‘

(h;iitﬁgture

Figure 8.2: Prediction example. Hall environment-real data (IHR).

(@ t=10

(b) t=30

(c) t=82

(d) t=110

PN o
g <

(e) t=148

A

(f) structure

Figure 8.3: Prediction example (Leeds environment).

(a) t=38

(b) t=49

(c) t=60

(d) t=98

Figure 8.4: Prediction example (parking environment).

(f) structure

Having so many possible goals also influences the shape of the predid¢eegrstaability,
which may become quite irregular, as foe= 49. This irregularity is also an indicator that a
big number of alternative hypotheses that are being taken into accouict) islunavoidable
without additional information such as the free or occupied status of gppkates.

Something that may not be appreciated in the images is that predictions are nexdesiof
the full state. This means that velocity information is also taken into accound@r to increase
the selectivity of the model.

8.3 Quantitative Results

In this section, we present the results of the experiments we have cautiedarder to answer
our key questions.
8.3.1 Parameter selection

For the purpose of studying the sensibility of our approach to parametagel, we have used
six sets of parameters in all our experiments, as described by the folloviileg ta

Data Set| Units Parameter Set| Threshold | Opos | Ovel | Ogoal
Guess 4 15 - 25
Low CV 4 12 - 20
. High CV 4 20 | - 30
IHR decimeters Log IT 3 15 | o5
High IT 6 15 | - 25
Best 9 12 - 20
Guess 4 15 | - 25
Low CV 4 12 | - 20
. High CV 4 20 | - 30
IHS decimeters Low IT 3 15 | — o5
High IT 6 15 | - 25
Best 9 12 - 20
Guess 4 10 - 20
Low CV 4 7 - 10
. High CV 4 12 | - 20
LP pixels Low IT 3 10 |- |20
High IT 6 10 | - 20
Best 9 7 - 20
Guess 4 2 0.04| 5
Low CV 4 1.5 | 0.04|3
P meters High CV 4 3 0.04| 6
Low IT 3 2 0.04| 5
High IT 6 2 0.04| 5
Best 9 1.5 | 0.04| 4

109

In all cases, we have assumed spherical covariances for the stat@lesrhence the table
only displays the corresponding standard deviation. In other wordgh&lIP data set, the
covariance matrix has the form:

0% 0 0 0 0 0]
0 o% 0 0 0 0
s_|0 0 gy 0 o0 0
O 0 0 ¢, 0 O
0 0 0 0 &, O

[0 0 0 0 0 Oyl

And, for all other data sets:

0% 0 0 0

0 0% 0 0

S —
0 0 0% O
0 0 0 o2

goal

For every data set, parameters were fixed as follows: the first parase¢teorresponds to
an initial guess; the “Low CV” and “High CV” parameters correspond to smailtel bigger
covariance values, respectively; the “Low IT” and “High IT” do thensathing for the insertion
threshold; the last parameter set is the best one we have found witletressie parsimony and
prediction accuracy, in all cases it was obtained by trial-and-errarsmxgeral combinations of
insertion threshold and covariance values.

8.3.2 Measuring prediction accuracy

A common performance metric for probabilistic approaches is the maximum ddtadibe or
approximations like the BIC (seel®). However, for our particular application, this metric has
the drawback of not having any geometric interpretation. Intuitively, wealdvtike to know
how far was the predicted state from the real one. Hence, we have preferredasure the
performance of our algorithm in terms of the average error, computec axfiected distance
between the prediction for a time horizéhand the effective observatidd, .

(E) =5 P([S+n =] | O1)[[Orsm — 1|72 (8.1)
ies
for a single time step. This measure may be generalized for a complete dateis@hiogK
observation sequences:

B =15 LSS RS =] OO 2 (8.2)
Kklek—H t; _ +H 1t t+H :

les

It is worth noting that, as opposed to the standard approach in machinmggafrronduct-
ing tests using a “learning” and a “testing” data sets, the experiments wephesented here
will use only a single data set. The reason is that, since learning takes fiecpradiction,

110

there is no need to such separation: every observation sequenc&mWni when prediction
takes place.

8.3.3 Hall real data (IHR)

For this data set we have performed some minimal preprocessing. In additioaJoint Prob-
abilistic Data Association (JPDA) filtering we have already discussed ih.§ we have sub-
sampled data by using only one out of three observations as input faigarithm. The reason
is that the position change that may be observed for pedestrians athdlaaate is far smaller
than the detection noise: even assuming a relatively high mean spe&darghbthe position

change between two consecutive frames dirarmeg's is about only 6m Building a model

with the required resolution would be very expensive with only marginagfisnif any, due to

the high noise/signal ratio.

Fig. 8.5displays the behavior of our algorithm on a subset of 500 trajectori¢isdatifferent
parameter sets listed ir88.1 The left graph displays the evolution of the average mean error
with respect to the number of trajectories that have been processegdrafieon the right shows
the evolution of the number of edges in the model, as a measure of the model’s siz

Mean prediction error vs processed trajectories Model edges vs processed trajectories

W Guess
= LowIT
2 - | High IT

= LowCV

O High cv

Edges

1000 2000 3000 4000 5000

0
I
0

(a) mean error (b) model edges

Figure 8.5: Parameter sensibility (IHR data set)

A first thing to notice is that higher covariance values lead to a reducedetnuhiedges at
the cost of an increased error measure. This is a natural consequfghe fact that the “grain”
of the discretization is in part determined by the covariance. Respeciwely values for this
parameter reduce the error measure, but increase the model’s siz®. dppears that changes
in the covariance are roughly proportional to changes in the numbegeked

However, the insertion threshold behaves less predictably, in particulze tase of higher
values, which does not seem to affect the error measure considemdif/ suggests that the
model’s size may be decreased without sacrificing accuracy by usirityeglehigh insertion
thresholds. In fact, the best parameter set has been obtained by sinmelgsing the inser-
tion threshold of the low covariance parameter set, obtaining a comparafdenpence while
dividing the model size by two.

111

The rest of our analysis for this data set will focus on results obtainedtiatbest parame-
ters. Fig.8.6(a)shows the evolution of both the model’s size and the average error astefun
of the number of processed trajectories. The first thing that may be nagi¢kdt the model
seems to be overfitting data. While the mean error starts to decrease vesyaftewabout 150
trajectories have been processed, the number of edges is still increasingalmost constant
rate. In other words, the model’s growth has no important repercussiopiediction accuracy.

Model size and mean error Model size and inference times

W Error
B Edges

ervation (ms)

Edges
Edges

500 1000 1500 2000 2500 3000

Time per obs
500 1000 1500 2000 2500 3000

20
I

T
0

Figure 8.6: Error and computation times for the best parameters (IHR datRBase take note
that computation times are given per-observation.

After investigating the reasons for this effect, we have found out thantiia cause is the
trajectory splitting phenomenon already discussed7ir2 8 Basically, observation sequences
corresponding to single actual trajectories are being identified as indepeshorter trajecto-
ries. As a consequence, our algorithm identifies the ends of these snejbetdries as goals
and increasing the number of nodes and edges in the model accordirgylye Avill see, this
conclusion is supported by the results obtained with the other data sets,ariobt subject to
trajectory splitting.

In our opinion, this is one of the most significant problems faced by leatvaisgd motion
prediction. Nevertheless, the importance of this problem has not beguatdty highlighted
by the existing literature. As a matter of fact, practically all the body of experiahevork
we have reviewed consists either of relatively small data sets obtained thnooigg accurate
(eglaser) sensorsep Bennewitz et al.2005 or has been preprocessed by humasts Deg
2005 Hu et al, 2004H. We will discuss this problem further at the end of this chapter and in
chapter.

Fig. 8.6(b)shows a plot of the time taken by prediction and learning with respect to the
number of trajectories that have been already processed, the humbeges is also plotted
as a reference. Times are given per-observation, hence, in theitcksening, they should
be multiplied by the length of the observation sequence, which for this dateaseb0 on the
average. As it may be expected, the increase in processing time has théosantbkan the
model’s growth. Since, as explained above, the model is too big, prediction &ow for real
time with about 0.2 seconds per observation in the worst case.

On the other hand, learning, in the worst case, took about 40 ms pewatise, which

112

multiplied by the average 50 observations per trajectory gives a learning titlheexonds per
trajectory, which we think is acceptable, given that learning takes place the object has
stopped moving.

Finally, we may observe that around the 330th trajectory, there is a ghi&epiis processing
times. This situation, which we will also observe in the other data sets, has®esed by some
unrelated process which has been executed concurrently with our testethucing available
CPU time for our task.

8.3.4 Hall synthetic data (IHS)

In contrast with real hall data, this data set has not required a subsarsf#in since we have
simulated a frame rate of 10 Hz. As for real data, we have processed sed@onsisting of 500
trajectories, using the same set of parameters listed.B\ 8

Fig. 8.7 shows the parameter sensibility analysis for this data set where, as it may be e
pected, relative differences between parameter sets behave in aimday snanner to what
has been described for real data. On the other hand, both the meaararmodel size are
considerably smaller.

Mean prediction error vs processed trajectories

60 70

W Guess
= LowIT
| High IT
= LowCV
O High cv
= Best

an Error

Me:
20 30 40 50

Edges

1000 1500

500

Model edges vs processed trajectories

(a) mean error (b) model edges

Figure 8.7: Parameter sensibility (IHS data set)

The differences with respect to the real data set become more evidentamalyzing the
evolution of the model’s size and the average error (8@(a). The overfitting phenomenon
observed on real data is not observable here, and the model sizeteammgerge together with
the number of edges.

As for computation times (fig8.8(b), we may observe that, again, the general form of
the curve tends to follow that of the model size. This similarity notwithstandinge tisean
important difference in the range of the curve. Now prediction time perreasen is below
40 ms most of the time, with exceptions corresponding to reduced CPU time duéitasking.
This is suitable even for full camera frame rate operation at 24 Hz.

The same time improvement is observed in the case of learning times, with the ssnageav
trajectory length of 50 observations, now it takes only about 0.5 s to leaewdrajectory.

113

Mean Error

Model size and mean error

m Error
®m Edges I—/_Jd_/f

600 800

400
Edges

Time per observation (ms)

60 80 100

40

Model size and inference times

B Edges
= Prediction

B Learning time

600 800

400
Edges

0 100 200 300 400 500 0 100 200 300 400 500

Trajectories Trajectories

Figure 8.8: Error and computation times for the best parameters (IHS dpata se

8.3.5 Leeds parking data (LP)

This data set has at least four features that make it very differemt fiadl data: there are two
different kinds of objects (vehicles and pedestrians) moving at vefgrdift speeds; prediction
takes place on the image coordinate system; the number of available trajeisttineted; and,
finally, there are some trajectories which correspond to motion patternsatvebben observed
just once. All these factors lead are reflected in the correspondiragimgntal results.

For this data set we have again performed a one out of three subsaniptiiige same
reasons already explained for data set IHR. However, if only cars presented on the scene,
it would be possible to go without subsampling, since cars move much fastepékastrians.

As shown in fig.8.9, parameter sensibility works similarly to the other experiments even if
“Low COV” parameters seem to produce a slightly more important model sizedse than in
previous cases.

Mean Error

Mean prediction error vs processed trajectories

W Guess
= LowIT
| High IT
3 LowCV
O High CV
® Best

50 100 150 200 250

Trajectories

(a) mean error

Edges

Model edges vs processed trajectories

W Guess
= LowIT
| High IT
= LowCV

O High CV
= Best

100 150 200 250

Trajectories

(b) model edges

Figure 8.9: Parameter sensibility (LP data set)

114

The growth in model size and the error evolution with respect to processsgedtories (fig.
8.10(a) were distinctive. There seems to be an overall convergence prooptsned with
sudden stair-like increases in both model size and average error(sexample the graph at
100, 160 and 250 processed trajectories). Actually, these increagespond to the unique
motion patterns that we have mentioned above.

Model size and mean error Model size and inference times

T
800

W Error
| Edges ~

T
600

T
400

10 15 20 25 30 35
A
Edges

Edg:
Time per observation (ms)

Figure 8.10: Error and computation times for the best parameters (LP data se

As for previous cases, learning and prediction processing times ieceeasrding to the
growth in model size. Moreover, even in the worst case, predictionrimi¢ake more than 25 ms
per observation, which is almost the double than normal camera frame rafer karning, it
has always been less than 1 s per trajectory.

8.3.6 Inria parking data (IP)

This last data set presents has two distinctive features: observatitudeiivelocities, meaning
that the learnt structure occupies a six-dimensional manifold; and a bid pessible destina-
tions, with about 90 parking places. As we will see, our algorithm perfaungrisingly well,
taking into account this added complexity.

In the parameter sensibility graphs in fg§y11we see that, in general, the algorithm behaves
as normal, but for this data set the best parameter set has producedaifessmodel — by a
small margin — while having the second best average error.

Given the size of the data set and its features, it was surprising to finthatuthe error
evolution and growth (fig.8.12(a) in model size performed that well, with a final number of
edges below 1500 despite the big number of goals (compare with the IHS)eMdge that the
main reason for this reduced size is that, due to the environment'’s structjeetories leading
to goals in the same area tend to share a considerable number of states.

Because of the moderated model size, time performance was correct, widtietion time
of little less than 60 ms, and an average learning time of about 3 second$@0t@rocessed
trajectories. Even if prediction times are slightly slower than camera framewatthink that
these are very good results, taking into account the characteristics dathiset.

115

Mean prediction error vs processed trajectories Model edges vs processed trajectories

W Guess W Guess
© m LowIT m LowIT
| High IT | High IT
3 LowCV = LowCV

4000
I

0 | O High CV O High CV
 Best

= Best

3000

Mean Error
Edges

2000

1000
I

0 100 200 300 400 500 0 100 200 300 400 500

Trajectories Trajectories

(a) mean error (b) model edges

Figure 8.11: Parameter sensibility (IP dataset)

Model size and mean error Model size and inference times

T
1500
T
1500

W Eror — B Edges
® Edges o W Prediction
B Learmning ll+e

T
1000
T
1000

Mean Error
Edges

Edges
Time per observation (ms)
T
500

0 100 200 300 400 500 0 100 200 300 400 500

Trajectories Trajectories

Figure 8.12: Error and computation times for the best parameters (IP data se

8.4 Modeling motion with cycles

A question that has been often posed to us is how our approach deals witin rpatterns
containing cycles. As an example, let us imagine an 800 m track running, eviegre runners
have to go two times around the circuit in order to finish the race. It is evilahthe situations
at 395 and 795 meters are very different, in the first one, the competitocamitinue to run for
another turn, while in the second one it will stop after five meters. Since otiomorediction
approach as it is defined, only distinguishes discrete states in terms ofdk#iop and speed,
it is not able to deal with this situation, resulting in equiprobable predictionsopipgng and
continuing at both 395 and 795 meters.

Although this example may seem contrived, this situation arises frequentyhier kinds of
motion, for example for gesture recognition. Here, we propose a simpliéosola this problem:
including the time variablein observations. To illustrate this, we have prepared a synthetic data
set consisting of two symmetric motion patterns presenting several nested (see fig8.13).

116

The only difference between both of them is that one always turns to thenefthe other one
to the right.

Figure 8.13: Example of cyclic trajectory. The time axis goes from 0 to 45Qtic&ldow it
always turns to the right, the other pattern is similar, but it only has left turns.

Of course, including théme variable on observations implies augmenting the observation
covariance matrix, for our example it has the form:

0% 0 0 0 0
0 0% 0 0 0
s=| 0 0 diy 0 0
0 0 0 0%y O
0

0O 0 0 a?

Without going into the parameter details, fig)14illustrates our algorithm working in this
data set, here the structure for the two motion patterns may be clearly seerbattdm, where
gray corresponds to left turns and green to right ones.

Notice how object’s positions far= 20,t = 60 andt = 100 are very similar. Nevertheless
predictions are clearly different. At= 20 the object has not even turned, hence, the estimated
probability for both goals practically the same. After one turnt at20, the algorithm has
identified the left turning motion pattern, and it predicts that the object will stitiqpe one
more small turn. Finally, at= 100 the algorithm recognizes that the object has performed two
small turns and thus predicts that the object will continue to follow the big one.

As our example shows, by simply redefining observations, our algorithbiéd@deal with
cyclic motion patterns without further modifications. Moreover, moderateddeshmisalign-
ments may be easily dealt with by increasing the value; of

117

(@t=1

(b) t=20

(d) t=100

118

(e) structure

Figure 8.14: Prediction example for the cycle data set.

8.5 Discussion

In this chapter, we presented the results of applying our learn and peggicoach to the data
sets introduced in chaptér with the intention of studying four points: a) the performance of
the learning algorithm; b) the accuracy of the obtained predictions; ¢) éhéme applicability
of the whole approach; and d) the generality of our approach and itealpifity to data sets
having higher dimensions, or containing cyclic motion.

We illustrated with examples how our algorithm behaves on the differentcemagnts, il-
lustrating along the way some of the problems which arose in the implementatiorxplaeed
the need for a performance measure, and proposed the averageigmestror to evaluate our
algorithm. Finally, we presented the quantitative results we have obtainegldierent sets of
parameters for every data set.

The somewhat bad results that we have obtained with the “raw” IHR dathigbtight an
important problem of our approach, which is shared by similar techniquibe iliterature: the
assumption of having a reliable sensor layer, which is able to robustly s@dath association
problem and, thus, output complete observations sequences. Ufletiur at least in the
case of visual trackers — this condition is not met by current systems, mekiegessary to
investigate ways to relax this assumption, which, from our point of view, igx@gpdial direction
for future work.

On the other hand, we believe that the results we have obtained with the atasets show
that, when complete trajectories are available, our algorithm is able to learn matienns and
produce accurate predictions in real or near real-time, even for héjimensional state spaces
and for cyclic behaviors.

119

120

Part V

Conclusion

121

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis we focused on the problem of predicting motion of mobile objedtdweaine able
to modify their trajectories at will, as is the case for persons, vehicles arkéreOur work
builds upon a family of approaches which are based on the idea that, feeragnvironment,
objects follow typical motion patterns which may be observed consistently.

As discussed in ch.3, most of these approaches operate itean then predictfashion
[eg Walter et al, 1999 Makris and Ellis 2007: first, they learn motion patterns from sensor
data, then, after learning has been performed, they predict furthermustithe basis of learned
patterns. As we have shown, this has a number of drawbacks, the mostanigeeing the
inability to improve acquired knowledge when a previously unknown motionmpa®bserved.

In contrast, we have aimed to find an approach with the capability of conshumfine its
knowledge using the same observations that constitute the input for pradifehave decided
to base our work on Hidden Markov Model, a probabilistic framework, Wiosery popular in
the literature ¢g Koller-Meier and Van Gogl2001, Bennewitz et a.2004. However, unlike
these approaches — which rely on clustering algorithms to identify motion patteve have set
to integrate the whole learning process into an HMM parameter and strucunelg algorithm.

Our approach if based on the idea that a single HMM may represent multiple npation
terns by defining an appropriate graph structure. This idea is alreadgmtrin other approaches,
where different motion patterns correspond to different non-caerdemmponents of the HMM
structure. Therefore, learning motion patterns may be seen as an HMdtLsérlearning prob-
lem, with the additional constraint of working incrementally, due to our leathpedict re-
quirements.

Unfortunately, as we have shown in ch. no structure learning algorithm in the literature
seems to be fit to our problem. This has led us to develop a novel incremevitdidtructure
and parameter learning algorithm.

The main difficulty behind incremental structure learning on HMMs comes fi@rhuge
size of the space of possible structures, which renders searcti-dy@seaches unpractical for
our purposes. Hence, we have taken a different approach, ginmey, case, an HMM is just a
discrete approximation of a continuous phenomenon, it is possible to impostaints to the

123

HMM structure according to the topological properties of continuous staletn.

Given that HMM states correspond to discrete regions on the state sp&aiws that
continuous motion may only progress by traversing neighboring regionighvsignificantly
limits the number of possible transitions between states. This observationguestad the use
of atopology learning network known as the Instantaneous TopologiapltMlearn the HMMs
topology. For this network, learning is both incremental and adaptivesehawur structure
learning algorithm also has this properties.

Of course, a complete HMM learning algorithm should also estimate the modedimpters,
thus, we have interleaved our topology learning algorithm with an incremidM& parameter
learning algorithm based on the one proposed\layl and Hintor[199]. This results in a
general procedure for learning the structure and parameters of @, MiMich is presented in
ch. 5. In contrast with traditional HMMs, the number of discrete states on the nobdelges
with time — mostly growing — thus the name “Growing Hidden Markov Models”.

As we show, GHMMs, are well suited for the common case in which the modedad u
as an approximate inference tool for continuous state spaces. Howeoeder to apply them
successfully to the motion prediction problem, further assumptions should te. riige have
explained the problem i6 and proposed a solution: integrating the final state of the object
into the state vector. Since this information is available during learning this maggheded as
a semi-supervised learning approach, in which the final destination bcgostitutes a class
label.

We have implemented our approach and demonstrated with experiments @mdesIn-
thetic data (chaptersand8) that our approach:

e s able to learn motion patterns and represent them by incrementally adagtstg.itture
of the GHMM.

e Is able to perform state estimation, as well as prediction for an arbitrary timzoho
using a probabilistic belief representation.

e Is able to perform early identification of an object’s destination.

e It is able to perform both learning and prediction in real time even on compiexoa-
ments and situations.

¢ |s defined in terms of intuitive parameters which do not require prior kreilydeon the
form of the environment or the number of motion patterns to be learned.

We consider that these results are encouraging, however, we are that pattern based
motion prediction techniques are still at a very early state. In consequemgeg our experi-
ments and — in general — our research, we have found severafar@aprovement, which will
be discussed on the next section.

9.2 Future work and possible extensions

We see two general directions to extend the work presented in this thesifirsifone consists
in extending the approach at a high-level of abstraction, specifically kigganto account

124

the possible interactions between objects. The second one consists inimggiey low-level,
making the approach more robust to the limitations of current video trackersensors in
general.

9.2.1 High-level extensions

Currently, our approach does not take into account the possibility thabjcets modifies its
trajectory in response to the motion of another object. Here, we will disawgohr approach
may be extended to handle some specific situations of this type.

A situation which is relatively simple to represent in our approach is the chseevthere
are semi-static obstacles in the environménbjects which are not able to move freely, but
may be in one of two possible statesgy(block’ or 'not block’) which condition the choice of
paths that other object may follow. This is the case, for example, of dabish may be either
'open’ or 'closed’, or parking places, which may be either 'free’ @ccupied’.

Assuming that the information on the state of these obstacles is available viaa, 6
tending inference is relatively simple. The key idea is that, when an objedhiaiblock’ state,
it hinders other object’s access to certain states. We will illustrate this ideadighaped en-
vironment presented in fi§.1(a)

occ(door)

A Door A B
C C
(a) Environment (b) HMM structure

Figure 9.1: Example of an environment with a semi-static obstacle (doorkstiit@ure assumes
that motion starts from point “A"

A simple HMM structure for this environment is presented in #id.(b) When the door is
closed, it “occupies” the grayed-out state. Although in our example themy one such state,
in general we will use the notatiarcg obstacle to denote the set of states that a static object
occupies when it is in its block state.

In order to perform inference, we augment our model with a vari&hlg € {openclosed;,
indicating the state of the door, modifying the JPD as follows:

P(S St—l Ot Sjoor) = P(S—l Sdoor)P(S ’ S—l Sdoor) P(Ot ‘ St Sdoor) (9-1)

Since, when the door is closed, no object can be abtisgloor), it follows that:

125

[0 ifS_1 € ocqdoor), Syoor = closed
P(Sfl S:lOOI‘) - { P(Sfl) otherwise (92)
For analogous reasons, transitions to an occupied state are forbidden:
[0 if S € ocqdoor), Syeor = closed
P(S | Sfl SﬁOOI‘) — { P(S | Sfl) Otherwise (93)
and there is a null probability that an observation comes from an occuited s
[0 if S € ocadoor), Sy0or = closed
P(OUIS Soor) = { P(O;|S) otherwise (9.4)

These definitions may be easily extended for multiple semi-static objects, athdouger-
form inference using standard methods. Information about semi-statict®bj@ay be supplied
by an expert, but fully unsupervised learning becomes considerataghanot only it is neces-
sary to identify semi-static objects, but also the states their block.

A much more challenging extension, would be taking into account interactietvgebn
fully dynamic objects. Normally, this would imply modeling the joint state of all the dbkjec
that are present in the environment at the same time, but this is clearly inteadtadiead, we
believe that it would be interesting to investigate how to integrate factored swulike CHMM
[Brand et al, 1997 or DML-HMM [Gong and Xiang2003 Xiang and Gong2004.

Another alternative would be to integrate our approach with behavioratlmndile the one
proposed byDliver et al.[200(, which produce high level inferences like “object x is approach-
ing object y", but are unable to produce metric information which is usefuhition planning.

It would be very interesting to adapt our structure learning to provide &ierlayer’ for this
kind of approaches.

9.2.2 Low-level extensions

As most pattern based approaches, our approach is based on tgpti@suhat input is avail-
able in the form of complete observation sequences for every objecerideless, as discussed
in chapter7, this assumption does not hold in practice, at least when using visuatisadks a
consequence, many motion patterns which do not always corresporeddotttal object behav-
ior are learned, unnecessarily increasing the model’s size and sigtiifia#fecting prediction
accuracy. This problem has been addressed in the literature by implem&mtorgaly detec-
tion” algorithms g Hu et al, 20049 to filter out abnormal trajectories, unfortunately, they rely
on having complete data sets and are designed to work in batch mode.

We believe that it would be better to explore ways to increase the robustinesstsern based
approaches by relaxing this “complete trajectory" assumption. We think thatjén t achieve
this, it will be necessary to get closer to the tracking system. A possibility is tly steans to
integrate our approach into the prediction step of the tracker.

Indeed, some steps have been already taken in this direction. Two nthtgwramples are:
[Liao et al, 2003 and Bennewitz et al[2005. However, there is still a lot of work to do: the
first approach assumes that a map of the environment is kiageviori, while the second one

126

assumes that the learning if performed on “complete trajectories” which is@aniproblem,
unless a more reliable senseg@ laser scanner) is used for learning.

127

128

Appendix A

Notation and Abbreviations

Here, we present a summary of the notation and abbreviations that waused@éhroughout
this document. We have also adopted the standard convention of denatifigrraariables as
capital letters, and values as lower-case letters. For logical propositiensave used capital
calligraphic characters, or expressions enclosed between bratketmn defining parametric
forms, or working with linear algebra, vectors are represented as agerletters to distinguish
them from matrices, which are always capitalized.

List of Symbols

C(a) The number (count) of cases in which the propositiois true in experimen-
tal data.

Dy The domain oV.

GV; W) The gaussian distribution oh, with meanu and covarianc&.

O The observation corresponding to tifte

S The state of the object/system at tise

t The current discrete time step.

Uy The uniform probability distribution o’s domain.

List of Acronyms

AHMM........ Abstract Hidden Markov Models page 33
BIC........... Bayes Information Criterionpage 58
CHMM........ Coupled Hidden Markov Modelspage 34
CPT........... Conditional Probability Tablgpage 18

129

DML-HMM ... Dynamically-multi-linked Hidden Markov Models page 34

EM............ Expectation-Maximizationpage 19
ESS........... Expected Sufficient Statistigsage 19
GHMM........ Growing Hidden Markov Models page 90
GNG.......... Growing Neural Gaspage 70
GWR.......... Grow When Requiredpage 70

HMM Hidden Markov Models page 31
ITM........... Instantaneous Topological Mapage 70
JPD........... Joint Probability Distributionpage 14
JPDA.......... Joint Probabilistic Data Associatiopage 111
MAP Maximuma Posteriori page 58

MDM Markov Dynamic Models page 33
ML............ Maximum Likelihood page 58
PDF........... Probability Density Functiorpage 14
SOM.......... Self-organizing mappage 68
TRN........... Topology-representing networkpage 67
VOQ ..ot Vector Quantizationpage 34

130

Bibliography

S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on partitterdifor on-line
non-linear/non-gaussian bayesian trackiligEE Transactions on Signal Processjrif(2):
174-188, feb 2002.

F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geordatdcstructureACM
Computing Surveys (CSUR3(3):345-405, 1991.

F. Aurenhammer and R. Kleinoronoi diagramschapter V, pages 201-290. Elsevier Science
Publishing, 2000.

F. Bacao, V. Lobo, and M. Painho. Self-organizing maps as substitut&sreans clustering.
In In Proc. of the Int. Conf. on Computer Scienpages 476-483, Atlanta (US), May 2005.

Y. Bar-Shalom and T. E. Fortmanfitacking and data associatioNumber 179 in Mathematics
in science and engineering. Academic Press, Boston;London, 1988.

L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique @gegurr the sta-
tistical analysis of probabilistic functions of markov chainghe Annals of Mathematical
Statistics41(1):164-171, 1970.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The &*-ap efficient and robust
access method for points and rectanglesPioc. of the 1990 ACM SIGMOD Int. Conf. on
Management of dajgpages 322—-331, Atlantic City (US), 1990. ACM Press.

R. Bellman.Adaptive control processes: a guided to&rinceton University Press, 1961.

M. Bennewitz, W. Burgard, and S. Thrun. Learning motion patterns ofques for mobile
service robots. IrProc. of the IEEE Int. Conf. On Robotics and Automatipages 3601—
3606, Washington, USA, 2002.

M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun. Learning motidiepas of people for
compliant robot motion.Internationl Journal of Robotics Researc?4(1):31-48, January
2005.

H. Binsztok and T. Artiéres. Learning model structure from data: aricgtion to on-line
handwriting. Electronic Letter on Computer Vision and Image AnalyiS{&), 2005.

131

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/mawfédgorithms
for energy minimization in visionEEE Trans. on Pattern Analysis and Machine Intelligence
26(9):1124-1137, 2004. ISSN 0162-8828.

M. Brand. Structure learning in conditional probability models via an entnopar and param-
eter extinction. Technical report, MERL a Mitsubishi Electric Researdfotatory, 1998.

M. Brand and V. Kettnaker. Discovery and segmentation of activities inovitEEE Transac-
tions on Pattern Analysis and Machine Intelligen22(8):844—-851, 2000.

M. Brand, N. Oliver, and A. Pentland. Coupled hidden markov modelsdonplex action
recognition. Inin Proc. of the 1997 Conf. on Computer Vision and Pattern Recognition
pages 994-999, San Juan (PR), 1997.

A. Bruce and G. Gordon. Better motion prediction for people-trackingprtre. of the IEEE Int.
Conf. on Robotics and Automatiodew Orleans, US, April 2004.

H. Bui, S. Venkatesh, and G. West. Policy recognition in the abstract mid@egkov models.
Journal of Artificial Intelligence Research7:451-499, 2002.

D. Buzan, S. Sclaroff, and G. Kollios. Extraction and clustering of motigedtaries on video.
In Proc. of the Int. Conf. on Pattern Recognitjaddambridge, UK, 2004.

A. Caporossi, D. Hall, P. Reignier, and J. Crowley. Robust visuakingcfrom dynamic con-
trol of processing. Irinternational Workshop on Performance Evaluation of Tracking and
Surveillance pages 23-31, Prague (CZ), May 2004.

A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under tai®y: discrete bayesian
models for mobile-robotnavigation. pages 963-972, Osaka (JP), 1996.

C. C. Chang and K.-T. Song. Environment prediction for a mobile robotdyramic environ-
ment. IEEE Transactions on Robotics and Automatih8(6):862—872, 1997.

G. F. Cooper. The computational complexity of probabilistic inference usaygsian belief
networks.Atrtificial Intelligence 42(2-3):393-405, 1990.

R. T. Cox. Probability, frequency and reasonable expectatfomerican Journal of Physics
(14):1-13, 1946.

H. Dee and D. Hogg. Detecting inexplicable behaviouiniRroceedings of the British Machine
Vision Conferencegpages 49-55, Kingston (UK), 2004.

H.-M. Dee. Explaining Visible BehaviourPhD thesis, University of Leeds, 2005.

N. Dempster, A.and Laird, , and D. Rubin. Maximum likelihood from incompletendia the
EM algorithm. Journal of the Royal Statistical Socie8(1):1-38, 1977. Series B.

D. C. Dennett.The Intentional Stancélhe MIT Press/Bradford Books, Cambridge (US), 1987.

132

A. K. Dewdney and J. K. Vranch. A convex partition of r 3 with applicatitmsrum’s problem
and knuth’s post-office problentitilitas Math, 12:193-199, 1977.

R. A. Dwyer. Higher-dimensional Voronoi diagrams in linear expected tilA€M Press New
York, NY, USA, 1989.

A. Elnagar and K. K. Gupta. Motion prediction of moving objects based daregressive
model. IEEE Transaction on Systems, Man and Cybernetics, Pa28£6):803-810, 1998.

D. Filliat. Cartographie et estimation globale de la position pour un robot mobile aut@no
PhD thesis, Université Paris 6, December 2001.

A. F. Foka and P. E. Trahanias. Predictive autonomous robot navigatioln Proc of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systestume 1, pages 490-495, Lausanne
(CH), October 2002.

G. D. Forney. The viterbi algorithnProceedings of the IEEB1(3):268-278, 1973.

D. Freitag and A. McCallum. Information extraction with hmm structures leabyestochastic
optimization. InProc. of the Seventeenth Nat. Conf. on Artificial Intelligence and Twelfth
Conf. on Innovative Applications of Artificial Intelligencpages 584-589, Austin, Texas,
USA, July 2000. AAAI Press / The MIT Press.

N. Friedman. Learning belief networks in the presence of missing valwkbkidden variables.
In Proc. of the Fourteenth International Conference on Machine Learrpages 125-133,
1997.

B. Fritzke. A growing neural gas network learns topologi@slvances in Neural Information
Processing System$995.

S. Gong and T. Xiang. Recognition of group activities using dynamic fmibséc networks. In
In Proceedings of the Ninth IEEE International Conference on Compdseon, volume 2,
pages 742-749, Washington (US), 2003.

A. Guttman. R-trees: a dynamic index structure for spatial searchirigroln of the 1984 ACM
SIGMOD Int. Conf. on Management of dafmges 47-57, Boston (US), 1984. ACM Press.

R. K. Guy. Unsolved problems come of ag&éhe American Mathematical Monthl96(10):
903-909, 1989.

K. Han and M. Veloso. Physical model based multi-objects tracking ardigpien in robosoc-
cer. InWorking notes of the AAAI 1997 Fall Symposium on Model-directed Aotons
SystemsBoston (US), November 1997.

D. Heckerman. A tutorial on learning with bayesian networks. TechniepbR MSR-TR-95-
06, Microsoft Research, Redmond (US), 1995.

R. A. Howard.Dynamic Programming and Markov Proce$8IT Press, Cambridge (US), 1960.

133

W. Hu, D. Xie, and T. Tan. A hierarchical self-organizing approamhiéarning the patterns of
motion trajectorieslEEE Transactions on Neural Networkib(1):135-144, 2004a.

W. Hu, D. Xie, T. Tieniu, and S. Maybank. Learning activity patternsgéirzzy self-organizing
neural network. IEEE Trans. on Systems, Man and Cybernet®4(3):1618-1626, June
2004b.

W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. A system fortéag statistical motion
patternsIEEE Transactions on Pattern Analysis and Machine Intellige28¢9):1450-1464,
September 2006.

C. lgel, T. Suttorp, and N. Hansen. A computational efficient cova@anatrix update and a
(1+1)-cma for evolution strategies. Rroc. of the 8th annual conf. on Genetic and Evolution-
ary Computationpages 453-460. ACM Press New York, NY, USA, 2006.

T. Irony and N. Singpurwalla. Noninformative priors do not exist: A d&sion with jose m.
bernardo.Journal of Statistical Infererence and Plannijr@b:159-189, 1997.

A. H. J. Rittscher, A. Blake and G. Stein. Mathematical modelling of animate dadtianal
motion. Philosophical transactions-Royal Society of London. Biological s&gr358(1431):
475-490, 2003.

A. Jain, M. Murty, and P. Flynn. Data clustering: A revie’ldCM Computing SurveyS81:
265-322, September 1999.

E. T. Jaynes. Probability theory- the logic of science. Unpublished neaptisavailable at http:
bayes.wustl.edu, 1995.

J. Jockusch and H. Ritter. An instantaneous topological map for comtedtitauli. InIn Proc.
of the International Joint Conference on Neural Networkadume 1, pages 529-534, Wash-
ington (US), July 1999.

N. Johnson and D. Hogg. Learning the distribution of object trajectasiesvient recognition. In
Proc. of the British Machine Vision Conferene®lume 2, pages 583-592, September 1995.

B.-H. Juang, S. E. Levinson, and M. M. Sondhi. Maximum likelihood estimdtiomultivariate
mixture observations of markov chain$EEE Transactions on Information Theor§2(2):
307-309, March 1986.

S. Julier and J. Uhlmann. A new extension of the kalman filter to nonlineanmsgst&In Int.
Symp. Aerospace/Defense Sensing, Simul. and Cor@déndo (US), 1997.

l. Junejo, O. Javed, and M. Shah. Multi feature path modeling for videceglance. InProc.
of the 17th conference of the International Conference on Pattern Réwg(ICPR) pages
716-719, 2004.

R. Kalman. A new approach to linear filtering and prediction problerdsurnal of Basic
Engineering 82:35-45, 1960.

134

L. Kaufman and P. J. Rousseeuwinding Groups in Data: An Introduction to Cluster Analysis
Wiley Series In Probability And Mathematical Statistics. John Wiley and Sons,1889.

B. King. Step-wise clustering procedure®urnal of the American Statistical Associati@&9:
86-101, 1967.

T. Kohonen. The 'neural’ phonetic typewritaomputey 21(3):11-22, 1988. ISSN 0018-9162.
doi: http://dx.doi.org/10.1109/2.28.

T. Kohonen. Self-Organizing Mapsvolume 30 ofSpringer Series in Information Sciences
Springer, Berlin, Heidelberg, 1995. (Second Extended Edition 1997).

E. B. Koller-Meier and L. Van Gool. Modeling and recognition of human axtiesing a stochas-
tic approach. Ir2nd European Workshop on Advanced Video-Surveillance Syst@mston,
UK, September 2001.

B. J. A. Krose and M. Eecen. A self-organizing representation afarespace for mobile robot
navigation. Inin Proc. of the IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems
volume 1, pages 9-14, Munich (GR), 1994.

E. Kruse and F. Wahl. Camera-based observation of obstacle motions/@statistical data for
mobile robot motion planning. Im Proc. of the IEEE Int. Conf. on Robotics and Automation
pages 662—-667, Leuven (BE), May 1998.

E. Kruse, R. Gutsche, and F. Wahl. Estimation of collision probabilities in mymanviron-
ments for path planning with minimum collision probability. BRroc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systeipages 1288—-1295, 1996.

E. Kruse, R. Gusche, and F. M. Wahl. Acquisition of statistical motion pattermdynamic
environments and their application to mobile robot motion plannin@rérc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systempages 713—-717, Grenoble, France, 1997.

B. Kuipers. A hierarchy of qualitative representations for spaoecture Notes in Computer
Science1404:337-350, 1998.

P. Langley.Learning in Humans and Machines: Towards an Interdisciplinary Lesgiscience
chapter Order effects in incremental learning. Pergamon, 1995.

O. Lebeltel.Programmation Bayéssiene des Rob@4sD thesis, Institut National Polytechnique
de Grenoble, 1999.

S. E. Levinson, L. Rabiner, and M. M. Sondhi. An introduction to the appbo of the theory
of probabilistic functions of a markov process to automatic speech recagniigll System
Technical Journgl62(4):1035-1074, 1983.

Y. Li, L.-Q. Xu, J. Morphett, and R. Jacobs. An integrated algorithm ofdénmental and robust
pca. InProc. of the Int. Conf. on Image Processinglume 1, pages 245-248, 2003.

135

L. Liao, D. Fox, J. Hightower, H. Kautz, and D. Schulz. Voronoi tiagk Location estimation
using sparse and noisy sensor dataPtoc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systemd.as Vegas, US, 2003.

Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer desieEE Transactions
on CommunicationsCOM-28:84-95, 1980.

P. X. Liu, M. Meng, and C. Hu. On-line data-driven fuzzy clustering vefplications to real-
time robotic tracking. 112004 IEEE Int. Conf. on Robotics and Automatipages 5039-5044,
New Orleans, USA, April 2004.

S. P. Lloyd. Least squares quantization in pcm’s. Bell Telephone badroes Paper, 1957.

P. Lockwood and M. Blanchet. An algorithm for the dynamic inferenceidfién markov
models (dihmm). Irin Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Praogss
volume 2, Minneapolis, US, April 1993.

J. MacQueen. Some methods for classification and analysis of multivarggevations. In L. L.
Cam and J. Neyman, editor8roceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probabilityvolume 1, pages 281-297. University of California Press, 1967.

D. Magee. Tracking multiple vehicles using foreground, backgroukdsaape modeldmage
and Vision Computing22:143-155, 2004.

D. Makris and T. Ellis. Finding paths in video sequencestoc. of the British Machine Vision
Conferencepages 263-272, 2001.

D. Makris and T. Ellis. Spatial and probabilistic modelling of pedestrian kiehain Proc. of
the British Machine Vision Conferengeages 557-566, Cardiff, UK, 2002.

T. Mann. Numerically stable hidden markov model implementation. An HMM scalitagigl,
2006.

C. D. Manning and H. Schutzd-oundations of Statistical Natural Language Processiige
MIT Press, Cambridge (US), 1999.

S. Marsland, J. Shapiro, and U. Nehmzow. A self-organizing netwatkgitows when required.
Neural Networks2002.

T. Martinetz and K. Schulten. A “neural-gas” network learns topologiéstificial Neural
Networks 1:397-402, 1991.

M. Meila, M. I. Jordan, and L. P. Kaelbling. Learning with mixtures of trelirnal of Machine
Learning Researchl(1):1-48, 2001.

T. P. Minka. From hidden markov models to linear dynamical systems. Tedhejoort, MIT,
1999.

136

D. C. Minnen and C. R. Wren. Finding temporal patterns by data decompodititn Proc. of
the Sixth IEEE Int. Conf. on Automatic Face and Gesture Recognition, 288zkes 608—613,
2004.

K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and LearriddD
thesis, University of California, Berkeley (USA), 2002.

R. M. Neal and G. E. Hinton. A new view of the em algorithm that justifies imenetal, sparse
and other variants. In M. I. Jordan, editbearning in Graphical Modelspages 355-368.
Kluwer Academic Publishers, 1998.

N. M. Oliver, B. Rosario, and A. P. Pentland. A bayesian computer visystem for modeling
human interactiondEEE Transactions on Pattern Analysis and Machine Intellige22¢8):
831-843, August 2000.

S. Osentoski, V. Manfredi, and S. Mahadevan. Learning hierarahiodels of activity. InProc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Syst&esdai, Japan, 2004.

J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible imferdvior-
gan Kauffman, 1988.

A. Pentland and A. Liu. Modeling and prediction of human behaviwural Computation11
(1):229-242, 1999.

L. R. Rabiner. A tutorial on hidden markov models and selected applicaticme#ch recogni-
tion. Readings in speech recognitiqgmages 267—-296, 1990.

R. P. N. Rao. Robust kalman filters for prediction, recognition, and d{earn
ing. Technical Report TR645, The University of Rochester, 1996. RLU
citeseer.ist.psu.edu/rao96robust.htm .

J. Reif and M. Sharir. Motion planning in the presence of moving obstatheSymp. on the
Foundations of Computer Sciengages 144-154, Portland, US, October 1985.

R.Madhavan and C. Schlenoff. Moving object prediction for off-reatbnomous navigation.
In Proceedings of the SPIE Aerosense Confere@ckando, FL (USA), 2003.

R. Rosales and S. Sclaroff. Improved tracking of multiple humans with trajegtediction and
occlusion modeling. IREEE CVPR Workshop on the Interpretation of Visual Motid®98.

G. Schwarz. Estimating the dimension of a moddie Annals of Statistic6(2):461-464, 1978.

K. Seymore, A. McCallum, and R. Rosenfeld. Learning hidden markov hsbdesture for in-
formation extraction. IMAAI 99 Workshop on Machine Learning for Information Extraction
Orlando, US, 1999.

Y. Singer and M. K. Warmuth. Training algorithms for hidden markov modelsgusittropy
based distance functions. Advances in Neural Information Processing Systems 9, NIPS
pages 641-647, Denver, CO (USA) December 2-5, 1996, 1996 RvH3s.

137

citeseer.ist.psu.edu/rao96robust.html

C. Stauffer and E. Grimson. Learning patterns of activity using real-tinc&itrg. IEEE Trans-
actions on Pattern Analysis and Machine Intelligen2®(8):747—757, August 2000.

A. Stolcke and S. Omohundro. Hidden markov model induction by bayesidelmterging. In
S. J. Hanson, J. D. Cowan, and C. L. Giles, editdibsances in Neural Information Process-
ing Systemsvolume 5, pages 11-18, Denver, USA, 1993. Morgan Kaufmann Mgdeo,
CA.

A. Stolcke and S. M. Omohundro. Best-first model merging fr hidden nvamkadel induction.
Technical Report TR-94-003, International Computer Science Instidgekeley, US, 1994
1994.

L. Stone, C. Barlow, and T. CorwirBayesian Multiple Target Trackingirtech House, 1999.

N. Sumpter and A. Bulpitt. Learning spatio-temporal patterns for predictijgct behaviour.
Image and Vision Computind8(9):697-704, 2000.

S. Tadokoro, M. Hayashi, Y. Manabe, Y. Nakami, and T. Takamori. Muogi@nner of mobile
robots which avoid moving human obstacles on the basis of stochastic predittitEEE
International Conference on Systems, Man and Cyberngtarges 3286—3291, 1995.

S. Thrun, W. Burgard, and D. FoRrobabilistic RoboticsMIT Press, 2005.

R. C. Vasko, A. El-Jaroudi, J. Boston, and T. E. Rudy. Hidden markodel topology esti-
mation to characterize the dynamic structure of repetitive lifting datén Rroc. of the 19th
Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Socjgdges 1725—
1728, Chicago, US, October 1997.

D. Vasquez and T. Fraichard. Motion prediction for moving objects: a statispproach. In
Proc. of the IEEE Int. Conf. on Robotics and Automatipages 3931-3936, New Orleans,
LA (US), April 2004. URLht tp://emotion.inrial pes.fr/bi benmotion/ 2004/ VF04.

A. J. Viterbi. Error bounds for convolutional codes and an asymptoticgtimum decoding
algorithm. IEEE Transactions on Information Theoiy{-13(2):260-269, April 1967.

M. Walter, A. Psarrow, and S. Gong. Learning prior and observatigmented density models
for behaviour recognition. IfProc. of the British Machine Vision Conferengages 23-32,
1999.

X. Wang, K. Tieu, and E. Grimson. Learning semantic models by traject@lysia. Technical
report, Massachussets Institute of Technology, 2006.

T. Xiang and S. Gong. Beyond tracking: Modelling activity and undedstanbehaviour.In-
ternational Journal of Computer Visip2006.

H. Yu and T. Su. Destination driven motion planning via obstacle motion prediatidrmulti-
state path repaidournal of Intelligent and Robotic Syste36(2):149-173, February 2003.

138

http://emotion.inrialpes.fr/bibemotion/2004/VF04

Z. Zhang. A flexible new technique for camera calibratioleEE Transactions on Pattern
Analysis and Machine Intelligenc22(11):1330-1334, 2000.

Q. Zhu. A stochastic algorithm for obstacle motion prediction in visual guiel@aficobot mo-
tion. The IEEE International Conference on Systems Enginegpiages 216—-219, 1990.

139

140

	Abstract
	Acknowledgements
	List of Figures
	Extended Abstract in French
	Introduction
	Motivation
	Problem description
	Modeling motion with Hidden Markov Models
	Challenges

	Contributions
	Overview of the rest of this thesis

	I Background
	Probabilistic Models
	Overview
	From logic to probabilities
	Logic Propositions
	Probability of a proposition
	Variables
	JPD Decomposition and conditional independence
	Inference
	Parametric forms
	Learning

	The Bayes filter
	Probabilistic Model
	Parametric forms
	Inference
	Specializations of the Bayes filter

	Discussion

	II State of the Art
	Intentional Motion Prediction
	Overview
	A note on semantics
	Trajectory Prototypes
	Representation
	Learning
	Prediction

	Discrete state-space models
	Representation
	Learning
	Prediction
	Other state-space models

	Other Approaches
	Neural network based approaches
	Goal oriented approaches
	Other

	Discussion
	General issues
	State-space model issues

	Hidden Markov Models
	Overview
	Probabilistic Model
	Variables
	Decomposition
	Parametric forms
	Example: the broken air conditioning system

	Inference
	On-line inference
	Off-line inference
	Numerical stability and HMM scaling

	Parameter Learning
	The Baum-Welch Algorithm
	Incremental algorithms

	Transition structure
	Structure Learning
	Local search algorithms
	State merging algorithms
	Other algorithms

	Discussion

	III Proposed Approach
	Growing Hidden Markov Models
	Overview
	The topological map
	Vector Quantization and Topology Representing Networks
	Topology Representing Networks

	The Instantaneous Topological Map
	Definitions
	Algorithm
	Properties

	Probabilistic Model
	Variables
	Decomposition
	Parametric forms

	Inference
	Structure and Parameter Learning
	Learning the covariance

	Discussion

	Learning and Predicting Motion with GHMMs
	Overview
	Probabilistic Model
	Variables
	Decomposition
	Parametric forms

	Inference
	Structure and Parameter Learning
	Learning example: a Unidimensional Environment
	Defining the state
	Choosing the parameters of the learning algorithm
	Learned model

	Comparison with existing HMM Based Approaches
	Discussion

	IV Experiments
	Experimental Platform
	Overview
	INRIA entry hall.
	The visual tracker
	The simulator
	Data sets

	Leeds parking data
	INRIA parking data
	Discussion

	Experimental Results
	Overview
	Examples
	The INRIA hall
	Leeds data
	INRIA parking data

	Quantitative Results
	Parameter selection
	Measuring prediction accuracy
	Hall real data (IHR)
	Hall synthetic data (IHS)
	Leeds parking data (LP)
	Inria parking data (IP)

	Modeling motion with cycles
	Discussion

	V Conclusion
	Conclusions and Future Work
	Conclusions
	Future work and possible extensions
	High-level extensions
	Low-level extensions

	Notation and Abbreviations
	Bibliography

