
HAL Id: tel-00155301
https://theses.hal.science/tel-00155301

Submitted on 18 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and Analyzing Systems Biology Using
Process Algebra

Min Zhang

To cite this version:
Min Zhang. Modelling and Analyzing Systems Biology Using Process Algebra. Modeling and Simu-
lation. Université Paris-Diderot - Paris VII, 2007. English. �NNT : �. �tel-00155301�

https://theses.hal.science/tel-00155301
https://hal.archives-ouvertes.fr
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Abstract

The focus of this thesis is on modelling and analyzing systems biology using
process algebra. We apply three process calculi into systems biology: the �-calculus
and a variant, the I�-calculus; the �-calculus and its finer-grained language, the
m�-calculus; and the bigraphical reactive systems.

There are three parts of my thesis. In Chapter 3 of the thesis we introduce the sig-
nal transduction with aberrance. A new extension of the �-calculus, the I�-calculus,
is introduced to model signal transduction with aberrance. The calculus is obtained
by adding two aberrant actions into the �-calculus. It is well-defined and biologi-
cally visible.

The I�-calculus shows its expressive capability. However, one may need to
record more information about its terms in the process of simulation, especially in
the simulation of aberrant biochemical processes. Therefore, two auxiliary systems,
a tag system and a typing system, are introduced to help understanding the I�-
calculus model. The tag system is more intuitive. But it may be redundant in the
recordings of information of terms. The simple typing system, however, is enough
to deal with it. We show that the tag system is equal to the typing system in terms
of expressive power.

In Chapter 4 of the thesis we propose a rigorous account of self-assembly in
the protein-protein language, �-calculus introduced by Vincent Danos and Cosimo
Laneve. We make use of reversible rules to embed the �-calculus into a finer-grained
language, the m�-calculus. We prove that this simulation is correct mathematically.

In Chapter 5 of the thesis we use bigraphs to model and analyze systems biology.
First we give an example to show how to model the biochemical processes using
Bigraphical reactive systems (BRSs for short). We take the normal ras activation as our
instance. Then the expressive power of the bigraphical models is discussed. We in-
dicate how the �-calculus, the protein-protein language, can be translated into BRSs
by one example, which indicates that BRSs can be a suitable model in biological
studying as well.

In summary, we give three process calculi to model systems biology. We extend
the �-calculus to model the aberrant signal transduction; prove the correctness of
self-assembly in �-calculus; and make an attempt of modelling ras activation using
BRSs. These results lay out some foundations for future interdisciplinary study of
systems biology and process algebra. They also highlight the robustness of process
algebra in modelling and analyzing systems biology.
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Main Notations

Below are the important notations used in this thesis, with the section number of
their first appearance.

Metavariables
a; b; � � � actions 2.1.1
fn(�) free names 2.2.1
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0 inaction 2.1.1
� prefix 2.1.1
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S reaction systems 2.2.1
�;�; � � � environments 3.5.1
I; J; � � � interfaces 2.3.1
K constant 3.3.1
Kb~ac constant application 3.3.1
ia; ib; � � � tags of actions 3.4.1
IP ; IQ; � � � tags of processes 3.4.1
M;N; � � � terms 3.5.1
[[R]]g graphic-on-sites 4.3.1

K; L; � � � controls 5.1.1
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Miscellaneous symbols
x sucide capability 3.3.1
] propagation capability 3.3.1
] disjoint union 3.4.1
r �-reactions 4.3.1
[[ � ]]m translation from � to m� 4.3.1
✷ bigraphs 5.1.1

Relations
�! reduction rule 2.1.1
� growth relation 2.2.1
�!� �-transition 2.2.1
j= matching 2.2.1
` type assertions 3.5.1
� signal ordering 4.3.1
⇋ reversible translations 4.3.1
� structural congruence 2.1.1
�!c translation relation 4.4
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Chapter 1

Introduction

Concurrency theory, as an area of research in computer science, emerged in the
early seventies of the last century. It is concerned with the modelling and verifica-
tion of concurrent systems which can be viewed as a collection of sequential pro-
cesses, possibly running on different processors, that interact and exchange results
with each other and with the external environment [RDN96]. Process algebra (or pro-
cess calculi) is a subarea in concurrency theory. Origins are traced back to the early
eighties of the twentieth century, and developments since that time are surveyed
in [Bae04]. Process algebra is an algebraic approach to the study of concurrent pro-
cesses. Its tools are algebraic languages for the specification of processes and the
formulation of statements about them, together with calculi for the verification of
these statements.

Systems biology [Kit01] is the study of an organism, viewed as an integrated and
interacting network of genes, proteins and biochemical reactions which give rise to
life. Instead of analyzing individual components or aspects of the organism, such as
sugar metabolism or a cell nucleus, systems biologists focus on all the components
and the interactions among them, all as part of one system [Wol]. These interactions
are ultimately responsible for an organisms and functions. For example, the im-
mune system is not the result of a single mechanism or gene. Rather the interactions
of numerous genes, proteins, mechanisms and the organisms external environment,
produce immune responses to fight infections and diseases.

Due to the nature of biological systems and concurrent systems, several authors
have argued that process calculi could be the right abstraction to support dynamic
bioinformatics and open new scenarios in the computer science and biology re-
search [Car04e, Car05a, Car05b, DL04, RS, RS02].

1.1 Background

Systems biology has become more and more popular in the last few years. Sys-
tems biology is systems-level understanding of biological systems that takes into ac-
count complex interactions of gene, protein, and cell elements [BB01, MM87]. It aims

1



to integrate high-throughput biological studies to understand how biological sys-
tems function by studying the relationships and interactions between various parts
of a biological system [LBZ+00a, LMF+00] (e.g. metabolic pathways, organelles,
cells, physiological systems, organisms etc.)

In short, systems biology is defined as an approach to biology where organisms
and biological processes should be analyzed and described in terms of their compo-
nents and their interactions in a framework of mathematical models.

Systems biology begins with the insight that biological processes must be un-
derstood in terms of the components that participate in the processes, and that the
complexity of biological systems makes it difficult to understand the workings of
the system by simple qualitative arguments. Mathematically strict models must be
formulated. This is required both in order to be able to capture the actual behavior of
the system with acceptable precision, but also to be able to analyze the fundamental
behavior of the system [Pri05].

There exist some models of the whole system so far. The models may be very
simple (Boolean on/off) [RV90, PRS98], or very complex (including detailed de-
scriptions of interactions at a molecular level) [Pau01, Pau02]. The important issue
is that it should be possible to analyze the model, either by some mathematical ap-
proach, or to simulate it, in order to evaluate its correspondence with the observed
facts.

As we mentioned, one important goal of systems biology is to understand life
processes in sufficient detail to make predictions about their behavior. How to do
it? A general biomolecular system is made up of bio-components which are taken as
computational devices. The whole system achieves its function by the interactions
among these components. All of these characteristics are analogous to the properties
of process algebra.

The term process algebra was coined in 1984 by Bergstra and Klop [BK84]. A pro-
cess algebra is a structure in the sense of universal algebra that satisfies a particular
set of axioms. It offers description techniques to model a complex computing sys-
tem, which is involving communicating and concurrently executing components.
It mixes the areas of computer science and discrete maths, including system de-
sign notations, logic, concurrency theory, specification and verification, operational
semantics, algorithms, complexity theory, and, of course, algebra. It develops a be-
haviorial theory of computing processes and allows for description and verification
techniques in the same formal system.

CCS (Calculus of Communicating Systems) [Mil89], CSP (Communicating Se-
quential Processes) [Hoa85] and ACP (Algebra of Communicating Processes) [BK84,
BK92], were proposed in the 1980’s for describing and analyzing concurrent sys-
tems, and became the most successful process algebras. All of them were built
around the central idea of interaction or communication between processes. In these
formalisms, complex systems are built from simple subcomponents structurally, by
a small set of primitive operators.
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CCS [Mil80, Mil89] considers the problems caused by non-determinism. CSP
[Hoa85] does away completely with global variables, and adopts the message pass-
ing paradigm of communication.

The limitation of these traditional process algebras is that they are not able to
effectively specify mobile systems, i.e., systems with a dynamically changing con-
figuration of communication links .

Milner, Parrow and Walker developed the �-calculus [Mil99, MPW92] on the ba-
sis of CCS, which achieves mobility by a powerful name-passing mechanism. The
�-calculus [SW01] aims at the challenge of defining an underlying model, with a
small number of basic concepts, in terms of which interactional behavior can be rig-
orously described.

In a word, the �-calculus includes the syntax which attempts to systemize de-
scriptive grammar and the semantics which offer explanations of systematic rela-
tionship. The dynamic is introduced into the �-calculus by allowing dynamic cre-
ation of processes and for names to be passed among different processes, which is
also one of the reasons why the �-calculus is a suitable model for systems biology.

A variant of the �-calculus, called the stochastic �-calculus [Pri95] is developed
to be applied in the biological domain [Reg01, PC]. It essentially selects the enabled
action to be performed according to the Gillespie algorithm [Gil76, Gil77] devel-
oped to simulate chemical reactions. Preliminary results in this field have been ob-
tained in modelling a set of interesting biological systems and some analysis and
simulation have been carried out [RSS00, RSS01, PRSS01, Reg01].

Applying existing calculi defined with computer systems to systems biology is a
common strategy. However, some researchers have adopted the opposite strategy.
They have defined calculi which come from biology so that they are better suited
to modelling, analyzing and simulating living systems, for instance, see [Car04a,
Car04b, Car04c, Car04d, DL04]. Then we can apply the new family of calculi to
computer systems to see whether the bio-mimetic approach can further inspire and
enhance our comprehension of how computer artificial systems can be modelled,
designed and implemented.

The �-calculus [DL04, DK03] is one kind of these process calculi. It aims at ideal-
izing protein-protein interactions, essentially as a particular restricted kind of graph
rewriting operating on graphs-on-sites. Biological reactions are modelled by two
kinds of rewriting rules: one is monotonic and the other is antimonotonic. The for-
mer represents complexation, and the latter represents decomplexation.

Bigraphical reactive systems (BRSs for short) is a model for computer systems with
mobile placing and linking [JM04, Mil01a, Mil01b, Mil05a, Mil05b, Mil]. It aims to
unify calculi such as the �-calculus, Petri nets [Mil04] and so on. It models spatial
activity as well.

BRSs are graphical models of computation which capture the properties of local-
ity and connectivity [JM03, JM04]. They are reconfigurable as well since the nodes in
graphs may represent a great variety of computational objects.
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1.2 Objectives of Thesis

This thesis focuses on modelling and analyzing of systems biology. It is very
important to make abstractions for modelling and analyzing the dynamic evolution
of the systems in time and space. That is, we need a behavioral theory of biomolec-
ular systems. As we have seen, computer and biomolecular systems have some
resemblance. For example, they both start from a small set of elementary compo-
nents. Computers are networked to perform larger and larger computations, and
cells form multicelluar organisms. Therefore, we believe that we can find an appro-
priate computing model to deal with the biomolecular systems.

In research of systems biology, the basic studying approach is described by the
following steps;

• to build a model of biological system;

• to perform experiments to test this model;

• to modify this model according to the results of experiments;

• to use this model.

Since concurrent processes are analogous to biological processes , it is worthy of
making an attempt for modelling systems biology using processes calculi.

In this thesis, we apply three process calculi into systems biology.

(1) The �-calculus is suitable to model various molecular systems, including tran-
scriptional circuits, signal transduction and metabolic pathways etc. [RS]. How-
ever, the modelling of cases with aberrance in molecular systems was not con-
sidered so far. We extend this calculus by adding two aberrant actions into
the �-calculus. The new calculus, called the I�-calculus, is applied to model
aberrant biochemical processes. Actually, to study the aberrant biochemical
processes is important. For example, aberrant signal transduction is the cause
of many diseases challenged by modern medicine, including cancers, inflam-
matory diseases, cardiovascular disease and neuropsychiatric disorders.

We use the following techniques for investigation in this thesis.

(a) To make an abstraction from the real biological system using our language.
As the other processes calculi, our model should include a syntax, a se-
mantics and satisfy some algebraic properties.

(b) To introduce auxiliary systems to help understand the model.
Besides making the model more clear, we hope that such auxiliary sys-
tems will be useful to prove much stronger properties in the future study,
for example, the qualitative analysis, as well.

(c) Our model should be dynamic, i.e. it should be evolutive in view of deeper
studying.
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(2) The �-calculus is a protein-protein language introduced by Vincent Danos [DK03].
We focus on its property of self-assembly. Self-Assembly is a very important
property in biology. It is a method of integration in which the components
spontaneously assemble, typically by bouncing around in a solution or gas
phase until a stable structure of minimum energy is reached. The �-calculus
captures this property by means of a translation into a finer-grained language,
the m�-calculus [DL04].

In this thesis, we mainly study the correctness of self-assembly.

(a) The graphical explanation of the monotonic protocol of integration:
the graphical explanation makes it easier to understand how to divide
one biochemical reaction into several basic reactions (or integrate one bio-
chemical reaction from several basic reactions).

(2) The proof of correctness:
we have to prove that the translation process implements higher-level
reactions correctly by means of the simple, local interactions of the m�-
calculus. To prove it, we need to know its mathematical structure and
properties.

(3) Bigraphical reactive systems (BRSs for short) were first introduced by Robin Milner
etc. [JM03, JM04, Mil, Mil05b, Mil05a, Mil04]. The bigraphical model aims at
offering further generality both in the treatment of mobility and in behavioral
theory. Therefore, BRSs can be applied into systems biology. As a general
model, it not only has general properties of models, but also has its particular
properties.

We give one biological example to show the expressive power of the bigraph-
ical models in this thesis.

We argue that processes calculi can provide the much-needed abstraction for
biomolecular systems. Based on the studying of these three process calculi in this
thesis, we know:

(1) process calculi can be used to model biomolecular systems;

(2) process calculi can simulate the behavior of biomolecular systems;

(3) each process calculus can capture special properties of biomolecular systems;

(4) there exists one general model which includes the other models of the other
process calculi;

(5) our models are configurable, extensible according to the different needs of bio-
logical studying.
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1.3 Some Provisos

In this thesis, we make some tacit assumptions about our models. Actually the
real biomolecular systems are very complicated. Our goal is to grasp some special
properties of biomolecular systems. If the model is too complicated, we cannot get
any good properties. So we need to simplify our theoretical models. The level of
abstraction in the models are different. For example, the �-calculus is based on
the level of functional domains of proteins, the �-calculus id based on the level of
proteins, and BRSs are based on different levels according to our assumptions.

In this thesis, we follow some principles in order to simplify models.

(1) Decision of the level of modelling: this is the first step of modelling.
For example, if we work at the level of the functional domains of proteins,
our biological reactions are reactions of domains; if we work at the level of
proteins, our biological reactions are those of proteins; if we work at the level
of complexes, our biological reactions are those of complexes.

(2) Simplification of components: once we decide some kind of units as the level
of modelling, we take them as primitive processes. We ignore or simplify the
smaller units which are lower than this level. We also ignore the other parts in
larger units except primitive processes.
For example, if proteins are taken as primitive processes, we won’t consider
the amino acids which constitute proteins; if the domains of proteins are taken
as primitive processes, we regard a protein as a group of its domains. If we
focus on complexes of proteins, we regard a complex as a group of proteins,
regardless of the domains of proteins.

(3) Simplification of reactions: the reactions in biomolecular systems are taken as
the binding (or interactions) of computing processes.
For example, in the �-calculus, we take monotonic reactions as bindings of so-
lutions; in the I�-calculus, we take reactions as interactions between processes;
in BRSs, we take reactions as the change of bigraphs.

(4) We do not consider the factors of environments, including the temperature,
consistency, time and so on. We just consider the possibility of reactions be-
tween two (or more) of entities.

1.4 Outline of the Thesis

The material presented in Chapter 2 is meant to prepare the technical develop-
ment in the rest of the thesis. We introduce some basic notions about process calculi,
with the �-calculus , the �-calculus and bigraphs as our templates. We then focus on
the biochemical process; we review signal transduction.
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In Chapter 3, we introduce a calculus for formal molecular processes. We focus
on the signal transduction with aberrance. The model for normal signal transduc-
tion is in [RSS00] [RSS01]. An extended calculus, I�-calculus, is given to model the
signal transduction with aberrance. The calculus is obtained by adding two aberrant
actions into the �-calculus. It is well-defined and biologically visible.

The I�-calculus shows its capability of description. However, one may need to
record more information about its terms in the process of simulation, especially, in
the simulation of aberrant biochemical processes. Therefore, two auxiliary systems,
a tag system and a typing system are introduced to help understand the I�-calculus
model. The tag system is easy to understand, more intuitive. But it would be re-
dundant in the recordings of information of terms. The typing system, however, is
simple enough to deal with it.

In the end of this chapter, we show that the tag system is equal to the typing
system in terms of expressive power.

In Chapter 4, we introduce the language for formal proteins, �-calculus. In the
�-calculus, reactions are modelled at the proteins level. The �-model is well-defined
and biological visible. A finer-grained language, m�-calculus, is introduced as well.
In the m�-calculus, reactions are restricted to at most binary interactions.

Self-assembly is an important property in biology. In the �-calculus, we propose
propose a rigorous account of self-assembly. We construct one monotonic reversible
protocol to embed the ka-calculus into a finer-grained language, the mka-calculus.
Some mathematical properties are discussed. We prove that this simulation is cor-
rect mathematically.

In Chapter 5, we recall the basic informal notions of bigraphical reactive sys-
tems [JM04, JM03]. The example of ras activation is given, which shows that the
description capability of bigraphical reactive systems is powerful.

We can use this general model it based on our practical needs. On the one hand,
we can model different objects as bigraphs. For instance, we can take proteins as
bigraphs if we need to study; we also can take the proteins as nodes if we need to
know more about proteins. On the other hand, we can simplify our model. For
instance, as one goal of experiments, we just want to know the connection among
the proteins, we can only consider the link graph, while if we want to know the
information of locality of reactants, we can consider the place graph.

As we have mentioned, bigraphical reactive systems are a general model. And
some process calculi can be translated into it. In the end of this chapter, we illustrate
through an example how the �-calculus, the protein-protein language, can be trans-
lated into BRSs, which shows that the bigraphical reactive system is suitable model
in biological studying as well.

In Chapter 6, we summarize the contributions of this thesis and discuss some
directions for potential future work.

Provenance of the material This thesis is partially based on published material
(mainly in Chapter 3). The presentation of the I�-calculus which is for describing
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the aberrant signal transduction appeared in [ZLF04]; the simple typing system on
this calculus with its properties appeared in [ZLF05]; and an analysis of a biological
property for an aberrant signal (the aberrant protein ras) in this calculus appeared
in [ZLF06].
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Chapter 2

Preliminaries

This chapter introduces some basic notions about process calculi. Process calculi
are our language tools to model systems biology. They are used in the following
chapters. For more details, see [MPW92, Mil99, DL04, JM04]. Some knowledge
about signal transduction in systems biology is introduced as well. Especially, we
introduce the well-studied signal transduction, RTK-MAPK. Activation of the pro-
tein ras will be our main biological example in this thesis. For more details about
signal transduction, see [LBZ+00b, Pta02, VV95, Wol, Kit01].

2.1 The �-calculus

The �-calculus is a mathematical model of processes whose interconnections
change as they interact. We call these processes that change their interconnections
structure when they execute mobile processes. A program in this calculus specifies a
community of interacting processes.

Intuitively, each computational process is defined by its potential communica-
tion activities and may be composed in sequence or in parallel with other processes.
Communication occurs via channels, denoted by their names, that represent atomic
access capabilities. Computation is modelled as synchronous binary communica-
tion between processes over their channels. The only content of messages transmit-
ted in communication is channel name or tuples of channel names, which may be
used for further communication.

2.1.1 The �-calculus: Definitions

We presuppose that an infinite set N of names is given. Formally, the �-calculus
consists of three components:

• A syntax for writing formal descriptions of a concurrent system;

• An operational semantics consisting of reduction rules, which describe the po-
tential changes of the system induced by communication.
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• A set of congruence laws that determine when two syntactic expressions are
equivalent.

Processes evolve by performing actions. The capabilities for actions are expressed
via Prefixes.

Definition 2.1 (Syntax) Prefixes and processes of the �-calculus are given by

� ::= ab j a(x) j a j a
P ::= 0 j �:P j P1 + P2 j (P1jP2) j (�x)P

In prefixes, ab expresses the action to send the name b via the name a; and a(x)
expresses the action to receive any name via a; a expresses the communication on
channel name a; and a expresses the communication on co-name a.

We give a brief interpretation of processes. 0 is inaction; it does nothing. The
process �:P has a single capability �, moreover, the process P cannot proceed until
the capability � has been exercised. The capabilities of the sum P1 + P2 are those of
P1 together with those of P2. When a sum exercised one of its capabilities, the others
are rendered void. In the composition (P1 j P2), the components P1 and P2 can
proceed independently and can interact via shared names. In the restriction (�x)P ,
the scope of name x is restricted to P .

Definition 2.2 (Structural congruence) Structural congruence, �, is the smallest con-
gruence on processes that satisfies axioms as follows;

P j Q � Q j P
(P j Q) j R � P j (Q j R)

P +Q � Q+ P
(P +Q) +R � P + (Q+R)

(�a)0 � 0
(�a)(�b)P � (�b)(�a)P

((�a)P ) j Q � (�a)(P j Q) if a 62 fn(Q)

Definition 2.3 (Semantics) Reduction rules, �!, are defined by Table. 2.1.

The rule Com-N(communication-names) deals with the interaction in which one
sends a message with a channel while the other receives a message with the same
channel so that they have an interaction.The rule Com-SN(communication-single
name) deals with the interaction on the same channel so that they have an inter-
action though there is nothing to send. The reduction rules are closed under sum-
mation (the rule Sum), composition (the rule Comp), restriction (the rule Res) and
structural congruence (the rule Stc).
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Com-N
(a(b):Q+R1) j (a(x):P +R2)

��! QjPfb=xg
Com-SN

(a:Q+R1) j (a:P +R2)
��! Q j P

P�!P 0
Sum P +Q�!P 0

P�!P 0
Comp

P j Q�!P 0 j Q
P�!P 0

Res (�a)P�!(�a)P 0
Q � P; P�!P 0; P 0 � Q0

Stc Q�!Q0

Table 2.1: Reduction rules.

2.1.2 A Simple Example

We give a simple example to illustrate reduction rules. Consider the following
process Q ;

Q = (a(x):b(y):0 + dv:0) j ct:0 j aw:c(z):bu:0
So, we have Q ��! ��! ��! 0 j 0 j 0 � 0. See Table 2.2.

Com-N
(a(x):b(y):0 + dv:0) j aw:c(z):bu:0 ��! b(y):0 j c(z):bu:0

Com
(a(x):b(y):0 + dv:0) j ct:0 j aw:c(z):bu:0 ��! b(y):0 j ct:0 j c(z):bu:0

Com-N
ct:0 j c(z):bu:0 ��! 0 j bu:0

Com
b(y):0 j ct:0 j c(z):bu:0 ��! b(y):0 j 0 j bu:0

Com-N
b(y):0 j bu:0 ��! 0 j 0

Com
b(y):0 j 0 j bu:0 ��! 0 j 0 j 0

Table 2.2: The reduction of Q.

2.2 The �-calculus

The �-calculus was introduced by Vincent Danos and Cosimo Laneve. [DL04]
It is a language of formal proteins. Reactions are modelled at proteins level, bonds
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are represented by means of shared names, and reactions are required to satisfy a
requirement of monotonicity or antimonotonicity. In this section, we briefly introduce
basic notions about the �-calculus.

2.2.1 The �-calculus: Definitions

We assume an infinite countable set P of protein names, an infinite countable set
E of edge names. We take a signature map s from P to natural numbers N.

Let A;B; � � � range over protein names and x; y; � � � range over edge names. For
each protein name A, s(A) is the number of sites of A, and for any 1 6 i 6 s(A), the
pair (A; i) will accordingly be called a site of A.

An interface is a partial map from N to E + fh; vg usually ranged over by �, � and
similar symbols. The domain and range of an interface � will be respectively de-
noted by dom(�) and ran(�), and the set of names free in �, written fn(�), is obtained
as ran(�) \ E . We will only ever deal with interfaces with finite domain. The empty
interface will be denoted ∅.

Definition 2.4 (Solutions) Solutions of �-calculus are defined as follows:

S ::= 0 j A(�) j S; S j (new x)(S)
Intuitively, the constructs of the �-calculus solutions have the following mean-

ing: 0 is the empty solution. The protein A(�) with A 2 P and � an interface with
domain s(A) is the primitive solution. A group of solutions S; S 0 is a complex of
simple ones. In the restriction solution (new x)(S) with x 2 E , the new operator
”new” is a binder and S is the scope of the binder (new x).

The set fn(S) of free names is defined inductively as follows;

fn(0) � ∅

fn(A(�)) � fn(�)
fn(S; S 0) � fn(S) [ fn(S 0)

fn((x)(S)) � fn(S)nfxg
Next we introduce an equivalence relation between solutions, called the struc-

tural congruence.

Definition 2.5 Structural congruence, written�, is the least equivalence closed under syn-
tactic constructions, containing �-equivalence (injective renaming of bound variables), tak-
ing “;” to be associative (as the choice of symbol suggests) and commutative, with 0 as
neutral element, and satisfying the scope laws:

(x)(y)(S) � (y)(x)(S);
(x)(S) � S when x 62 fn(S);

(x)(S); S0 � (x)(S; S0) when x 62 fn(S0):
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x 2 ex
create ex ` { � {x

hv–switch ex ` �{ � { vh–switchex ` { � �{ex \ fn(�) = ∅
reflex ex ` � � �

ex ` � � � ex ` �0 � �0
sumex ` �+ �0 � � + �0

Table 2.3: The growth relation

We now construct the growth relation on partial interfaces. This relation is param-
eterized by a set of names, written ex below, which represent edges grown out by a
reaction. It is written � and is defined inductively by the clauses given in Table 2.3.

Similarly, we can extend the growth relation to groups of pre-proteins (A(�) is a
pre-protein if � is a partial interface of A, namely, dom(�) � s(A).) as shown in Table
2.4.

nil ex ` 0 � 0

ex ` S � T ex ` � � � dom(�) � s(A)
groupex ` S; A(�) � T; A(�)ex ` S � T fn(�) � ex dom(�) = s(A)

synthex ` S � T; A(�)

Table 2.4: Extended growth relation

Definition 2.6 (graph-likeness) A solution S is said to be graph-like if:
— free names occur at most twice in S;
— binders in S bind either zero or two occurrences.

Definition 2.7 (Connectedness) We define inductively when a term is connected:
— A(�) is connected;
— if S is connected so is (x)(S);
— if S and S0 are connected and fn(S) \ fn(S0) 6= ∅ then S; S0 is connected;
— if S is connected and S � T then T is connected.

Definition 2.8 Let [[ � ]]g be the following function from graph-like solutions to graphs with
sites:

1. [[A(�)]]g is the graph with a single node labeled A, sites in f1; : : : ; s(A)g, bound sites
k being labeled by �(k), and free sites being in the state prescribed by �;
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2. [[S; S0]]g is the union graph of [[S]]g and [[S0]]g, with sites labeled with the same name
being connected by an edge, and their common name erased;

3. [[(x)(S)]]g is [[S]]g.

Definition 2.9 (Reactions) Let L, R be two pre-solutions,

• L ! (ex)R is said to be a monotonic reaction if:
— ex ` L � R,
— both L and (ex)R are graph-like,
— and R is connected.

• (ex)L ! R is said to be an anti-monotonic reaction if:
— its dual R ! (ex)L is monotonic.

A reaction which is either monotonic or antimonotonic is called a biological reaction and L

and R are referred to respectively as its reactant and product.

Definition 2.10 (matching) Given a monotonic reaction L ! (ex)R, with:
— L = A1(�1); : : : ; An(�n)
— and R = A1(�1); : : : ; Am(�m),
one says that a pair of solutions S, T matches L ! (ex)R, written S; T j= L ! (ex)R, if
there exists a renaming r and partial interfaces �1, . . . , �m such that:

1. for all i, r(ex) \ fn(�i) = ∅,

2. S = A1(r � �1 + �1); : : : ; An(r � �n + �n)
and T = (r(ex))(A1(r � �1 + �1); : : : ; Am(r � �m + �m)).

Matching is defined by symmetry for anti-monotonic rules, that is S; T j= (ex)L ! R if and
only if T; S j= R ! (ex)L.

Definition 2.11 Let R be a set of biological reactions, the associated R-system is the pair
(S;!), where S is the set of solutions and !�, called the transition relation, is the least
binary relation over S such that:

S;T j= L !� (ex)R 2 R
mon

S !� T

S;T j= (ex)L !� R 2 R
antimon

S !� T

S !� T
new

(x)(S)!� (x)(T)
S !� T group

S; S0 !� T; S0

S � S0 S0 !� T0 T0 � T
struct

S !� T

In the rest of the thesis, we call solutions in the �-calculus �-solutions, which are
different from solutions in the m�-calculus (m�-solutions)(see Chapter 4.2)).
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2.2.2 Simple Examples

We use ovals to represent proteins; the rings on the ovals to represent free sites;
dots with links to represent bounded sites. The links with names x, y represent
edges connecting two sites.

Figure 2.1: A monotonic �-reaction.

Example 1 Fig. 2.1 shows a monotonic �-reaction. The monotonic �-reaction in
Fig. 2.1 creates a new edge y. The formal expression can be written as follows:

A(1x + 2); B(1x + 2); C(1)! (z)(A(1x + 2); B(1x + 2z); C(1z))

Figure 2.2: An antimonotonic �-reaction.

Example 2 Fig. 2.2 shows an antimonotonic �-reaction. The antimonotonic �-
reaction in Fig. 2.2 dismisses the edge y. The formal expression can be written as
follows:

(xy)A(1x + 2); B(1x + 2y); C(1y)! (x)(A(1x + 2); B(1x + 2); C(1))

Example 3 Fig. 2.3 shows a �-reaction. The formal expression can be written as
follows:

A(1x + 2); B(1x + 2); C(1)! (y)(A(1 + 2); B(1 + 2y); C(1y))
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Figure 2.3: A �-reaction.

Figure 2.4: The decomposition of the �-reaction in Fig. 2.3.

In fact, this �-reaction can be decomposed as a monotonic �-reaction followed
by an antimonotonic �-reaction 2.4.

A(1x + 2); B(1x + 2); C(1)! (y)(A(1x + 2); B(1x + 2y); C(1y))

(x)A(1x + 2y); B(1x + 2y); C(1)! (A(1 + 2); B(1 + 2y); C(1y))

Because the intermediate product which this decomposition is making explicit
connected, it seems reasonable to consider the sequence as a synchronous composi-
tion.

Figure 2.5: An edge-flipping �-reaction.

Example 4 Fig. 2.5 shows an edge-flipping �-reaction. The formal expression can
be written as follows:

A(1x + 2y); B(1x + 2); C(1y)! (z)(A(1x + 2); B(1x + 2z); C(1z))
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It is different from Example 3. Since there is no free site for C to bind with B,
this reaction only is decomposed as an antimonotonic �-reaction and a monotonic
one 2.6.

Figure 2.6: The decomposition of an edge-flipping �-reaction in Fig. 2.5.

A(1x + 2y); B(1x + 2); C(1y)! (A(1x + 2); B(1x + 2); C(1))

A(1x + 2); B(1x + 2); C(1)! (z)(A(1x + 2); B(1x + 2z); C(1z))

We notice that there is no intermediate product which is connected.

2.3 Bigraphical Reactive Systems

Bigraphical reactive systems (BRSs) were introduced by Robin Milner and Ole H�gh
Jensen [JM03, JM04]. A bigraphical reactive system involves bigraphs; it also allows
bigraphs to configure themselves. BRSs are graphical models of computation in
which both locality and connectivity are prominent. Actually, BRSs aim to provide
a uniform way to model spatially distributed systems that both compute and com-
municate.

2.3.1 Bigraphs

A bigraph, just as its name implies, involves two graphs. One is the place graph
in which the nesting of nodes represents locality. The other is the link graph in which
the edges connect nodes.

Bigraphs have the following features . First, nodes may occur inside other nodes
in bigraphs, so a bigraph has depth. Second, nodes have ports that may be connected
by links, so a bigraph has connectivity. So far, we have two kinds of structure in
bigraphs, place graphs and link graphs. A Place graph is the nesting structure of nodes.
A Link graph is the linked structure of links which is independent of locality.

Bigraphs have another feature, that is, the notion of holes. The holes in bigraphs
denote places at which other bigraphs can be inserted.

Bigraphs are taken as arrows of one kind of precategory. Actually, every bigraph
is parametric in general. It has inner faces (written as I) with its parameter(s) and
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outer faces (written as J) indicating kinds of hole(s) in which it, in turn, may be
replaced.

Definition 2.12 (Interface) Interfaces have the form < m;
!
X;X >, where m is the depth

(the number of sites), X is the set of names, and
!
X= (X0; X1; :::Xm�1) is a vector of m

disjoint subsets of X indicating the local names associated with each site. Names in X but

not in
!
X are global names.

In Fig 2.7, I =< 3; < fug; fvg >; fu; vg >. Since there are trees in which only
three bigragph can be inserted, m = 3. Since there are two local names u and v
on two holes respectively. There is no inner name any more,

!
X=< fug; fvg > and

X = fu; vg. J =< 1; < ∅ >; fx; y; zg >. Since it can be inserted in the bigger bigraph
as a bigraph, m = 1. Since three names x,y and z are free names which can be used

to link to another bigraph, X = fx; y; zg and
!
X=< ∅ > because there is no local

name.

Figure 2.7: A simple bigraph.

Bigraph is a map from innerface I to outerface J. I and J are interfaces defined in
Definition 2.12.

For instance, in Fig 2.7, this bigraph is represented formally as;
G :< 3; < fug; fvg >; fu; vg >�!< 1; < ∅ >; fx; y; zg >

2.3.2 A Simple Example

Fig 2.7 shows a simple bigraph. Each node is assigned a control, such as K, L,
G and M, which tell us what bigraphical reactive system kind of node it is. Each
control has an arity, a finite ordinal. For instance, the control K has arity two. The
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Figure 2.8: The place graph and the link graph.

names x and y denote links which allow a bigraph to be linked into larger bigraph.
The grey box represents a hole where another bigraph may be inserted.

As we have mentioned, this bigraph can be divided into two graphs, the place
graph and the link graph; see Fig. 2.8. The place graph and the link graph share a
node set, but are otherwise independent structures.

2.4 Systems Biology

In this section, we give an informal introduction to signal introduction from the
view of biology. Then the well-studied signal transduction, RTK-MAPK, in which
the protein ras is activated, is introduced informally. The activation of the protein
ras will be taken as our main example in the following chapters.

2.4.1 Signal Transduction

Signal transduction is a biological system at the cellular level. It refers to the
movement of signals from outside the cell to inside. The movement of signals can
be simple, like that associated with receptor molecules of the acetylcholine class:
receptors that constitute channels which, upon ligand interaction, allow signals to
be passed in the form of small ion movement, either into or out of the cell. These
ion movements result in changes in the electrical potential of the cells that, in turn,
propagate the signal along the cell. More complex signal transduction involves the
coupling of ligand-receptor interactions to many intracellular events. These events
include phosphorylations by tyrosine kinases and (or) serine (threonine) kinases.
Protein phosphorylations change enzyme activities and protein conformations. The
eventual outcome is an alteration in cellular activity and changes in the program of
genes expressed within the responding cells.
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Signal transducing receptors are of three general classes:

(1) Receptors that penetrate the membrane and have intrinsic enzymatic activity.
Receptors that have intrinsic enzymatic activity include those that are tyro-
sine kinases, tyrosine phosphatases, guanylate cyclases and serine (threonine)
kinases. Receptors with intrinsic tyrosine kinase activity are capable of au-
tophosphorylation as well as phosphorylation of other substrates.
Additionally, several families of receptors lack intrinsic enzyme activity, yet
are coupled to intracellular tyrosine kinases by direct protein-protein interac-
tions .

(2) Receptors that are coupled, inside the cell, to GTP-binding and hydrolyzing pro-
teins (termed G-proteins). Receptors of the class that interact with G-proteins
all have a structure that is characterized by seven transmembrane spanning
domains. These receptors are termed serpentine receptors.

(3) Receptors that are found intracellularly and upon ligand binding migrate to the
nucleus where the ligand-receptor complex directly affects gene transcription.

In this section, we focus on a well-studied signal transduction, the RTK-MAPK
pathway.

We denote Receptor Tyrosine Kinases as RTKs. Proteins encoding RTKs contain
four major domains:

• an extracellular ligand binding domain.

• an intracellular tyrosine kinase domain.

• an intracellular regulatory domain.

• a transmembrane domain.

RTK proteins are classified into families based upon structural features in their ex-
tracellular portions (as well as the presence or absence of a kinase insert) which
include the cysteine rich domains, immunoglobulin-like domains, leucine-rich do-
mains, Kringle domains, cadherin domains, fibronectin type III repeats, discoidin
I-like domains, acidic domains, and EGF-like domains. Based upon the presence of
these various extracellular domains the RTKs have been sub-divided into at least 14
different families.

Many receptors that have intrinsic tyrosine kinase activity as well as the tyrosine
kinases that are associated with cell surface receptors contain tyrosines residues, that
upon phosphorylation, interact with other proteins of the signaling cascade. These
other proteins contain a domain of amino acid sequences that are homologous to a
domain first identified in the c-Src proto-oncogene. These domains are termed SH2
domains. Another conserved protein-protein interaction domain identified in many
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signal transduction proteins is related to a third domain in c-Src identified as the
SH3 domain.

The interactions of SH2 domain containing proteins with RTKs or receptor as-
sociated tyrosine kinases lead to tyrosine phosphorylation of the SH2 containing
proteins. The result of the phosphorylation of SH2 containing proteins that have
enzymatic activity is an alteration (either positively or negatively) in that activity.

MAPKs were identified by virtue of their activation in response to growth fac-
tor stimulation of cells in culture, hence the name mitogen activated protein kinases.
MAPKs are also called ERKs for extracellular-signal regulated kinases. Maximal
MAPK activity requires that both tyrosine and threonine residues are phosphory-
lated. This indicates that MAP kinases act as switch kinases that transmit informa-
tion of increased intracellular tyrosine phosphorylation to that of serine/threonine
phosphorylation.

MAPKs are, however, not the direct substrates for RTKs nor receptor associ-
ated tyrosine kinases but are in fact activated by an additional class of kinases
termed MAP kinase kinases (MAPK kinases) and MAPK kinase kinases (MAPKK ki-
nases). One of the MAPK kinases has been identified as the proto-oncogenic ser-
ine/threonine kinase, RAF. Another MAPK kinases which are activated by RAF
have been identified as MEK1 and ERK1. Next this cascade culminates in acti-
vation of the threonine and tyrosine protein kinase,ERK ( MAPK). Activated ERK
translocates to the nucleus, where it phosphorylates and activates transcription fac-
tors, such as AP-1, leading to the novo gene expression.

2.4.2 The Graphical Expression of RTK-MAPK

In this section, we give a coarse description of signal transduction, RTK-MAPK.
That is to say, it is described from protein level, not its domains (e.g. domain SH2,
SH3 etc.). Interactions are represented among proteins not domains of proteins.

In brief, the RTK-MAPK pathway is composed of 14 kinds of proteins. These
bind and form complexes, modify certain residues on their counterparts (mostly
by phosphorylation and dephosphorylation), change their confirmation and activ-
ity, and translocate between different cellular compartments (cytosol, nucleus and
membrane). A change in gene expression patterns is the end result computed by
this network of interactions. Fig. 2.9 [RSS00] is the graphical expression of signal
transduction RTK-MAPK.

An informal description is as follows;
A protein ligand molecule (GF) with two identical domains is a protein (outside sig-
nal) which will be sent to signal transduction, RTK-MAPK. It binds two receptor ty-
rosine kinase (RTK) molecules on their extracellular part. The bound receptors form
a dineric complex, and cross-phosphorylate and activate the protein tyrosine kinase
in their intracellular part. The activated receptor can phosphorylate various targets,
including its own tyrosine. The phosphorylated tyrosine is identified and bound by
an adaptor molecule, SHC. A series of protein-protein binding events follows, lead-
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Figure 2.9: Signal Transduction RTK-MAPK.

ing to the formation of a protein complex SHC-GRB2, SOS and ras at the receptor
intracellular side. Within this complex, the SOS protein activates the ras protein,
which in turn recruits the serine threonine protein kinase, RAF to the membrane,
where it is subsequently phosphorylated and activated. A cascade of phosphoryla-
tions or activations follows, from RAF to MEK1 to ERK1. This cascade culminates in
activation of the threonine and tyrosine protein kinase, ERK. Activated ERK translo-
cates to the nucleus, where it phosphorylates and activates transcription factors,
such as AP-1, leading to the novo gene expression.
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Chapter 3

A Calculus For Formal Molecular
Processes

In this chapter, we study how to model signal transduction by using process
algebra. We consider mainly the case of signal transduction with aberrance. We
provide a tag system and a simple typing system to mark aberrance. We prove that
the tag system is equivalent to the simple typing system in the capability of labelling
the existence of aberrance.

This chapter is organized as follows. First we recall some basic principles for
modelling signal transduction using process algebra. In Section 3.2, we briefly re-
call the simple process of signal transduction with aberrance. In Section 3.3, we
define the I�-calculus which is a variant of the �-calculus. The calculus is obtained
by adding two aberrant actions into the �-calculus. In Section 3.4 and Section 3.5,
we introduce a tag system and a simple typing system respectively based on the
I�-calculus. Some properties of these two systems are discussed. In Section 3.6,
we compare the tag system and the simple typing system and prove that they are
equivalent in the capability of labelling existence of aberrance.

3.1 Basic Principles for the Model

Biomolecular processes are responsible for most of information processing in liv-
ing cells. They are carried out by networks of interacting protein molecules. Systems
biology aims to study systems consisting of these biomolecular processes. However
the dynamic nature of these systems, their complexity, high connectivity and mod-
ularity further complicate this task. So we need novel approaches to study them.
Formal approaches are thought to be feasible in studying of systems biology.

In the opinion of Aviv Regev etc. [RSS01], an appropriate formal approach for
studying biomolecular processes should fulfill certain goals:

• It could provide a unifying view of dynamic behaviors it underlies. Preferably,
this representation will be biologically visible, i.e. it should correspond well to
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informal concepts and ideas of molecular biology.

• The formally represented data should be amenable to computer execution and
analysis. Thus, the dynamic behavior of the system could be followed by sim-
ulation studies, including mutational analysis and simulated evolution. Alter-
natively, the system’s behavior may be formally verified.

• The formal approach should facilitate comparative studies of a system’s struc-
ture, dynamics and function within and between species.

• The formalism should be scalable and modularized to higher levels of organi-
zation.

Process algebras, which allow us to represent and analyze dynamic computational
systems, seem appropriate formal approaches which satisfy the goals above.

Comparing to other methods, such as continuous mass-action differential equa-
tions, discrete Monte-Carlo simulations or Petri nets, the �-calculus, one of the
process algebras, represents molecular systems as mobile communicating systems
which are both highly detailed and biologically visible.

Aviv Regev etc. show that the �-calculus is suitable for modelling various molec-
ular systems, including transcriptional circuits, metabolic pathways and signal trans-
duction networks [RSS01]. For example, the �-calculus representations of signal
transduction unify dynamic behavior and function of pathways with molecular de-
tails that underly their behavior. They provide a comprehensive model of signal
transduction. The �-calculus programs are amenable to computer analysis and ex-
ecution, analogous to mutational manipulation and experimentation, as well as to
formal comparison and verification.

At the modelling level, within the particular framework of the �-calculus, we set
five principles for this correspondence.

First, as our primitive process, we choose the functional signaling domain. We call
the set of elements (amino acids for example) which have the similar function in a
molecule a functional domain. A molecule can have several functional domains since
it has different functions. To capture the functional and structural independence of
domains in signaling molecules, a molecule is modelled as the composition of do-
mains, a complex is modelled as the composition of molecules, and a more compli-
cated complex is modelled as the composition of simple complexes. For example, in
the well-studied signal transduction, RTK-MAPK, we view such signal transduction
as a process.

RTK MAPK ::= Free ligand j � � � j RTKs j ras j � � � (3.1)

where the molecule Free ligand, the complex of some receptor tyrosine kinases
(RTKs), the protein molecule ras etc. form the components of RTK-MAPK.
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The complex is composed of several molecules, each of which is modelled as a
process as well. For example,

RTKs ::= RTK 1 j RTK 2 j � � � (3.2)

The complex of RTKs is composed of several receptors tyrosine kinases (denoted
as RTK1,RTK2, � � � ).

A protein molecule is composed of several domains, each of which is modelled
as a process as well.

Free ligand ::= Free binding domain j Free extracell domain (3.3)

Since Free ligand has two domains which have different functions, we can think that
the molecule Free ligand is composed of these two domains.

Second, we model the motifs and residues of domains as communication chan-
nels that construct a process. Motifs and residues are interacting portions of a do-
main but are not independently functional, just as channel names are communica-
tion ports of the process, but are not processes in their own right. For example, we
take the residue ligand binding of the domain Free ligand domain of the protein
Free ligand as the channel name,

Free binding domain ::= ligand binding: � � � (3.4)

Free extracell domain ::= ligand binding: � � � (3.5)

In biological reactions, two molecules (or two domains) interact with each other
based on their structural and chemical complementarity. Two complementary mo-
tifs are denoted by a global name and co-name pair, for example, ligand binding
and ligand binding in (3.4),(3.5).

Third, molecular interaction and modification are modelled as communication
and the subsequent change of channel names. Different types of molecular changes,
such as chemical modification, conformation changes, or binding, affect further in-
teraction in an analogous manner to the change in communication capabilities fol-
lowing channel names passing in mobile systems. These residues as channels and
interaction as communication, yield a model of the molecular realm which is both
highly visible and detailed. For example,

Free ligand domain j Free extracell domain ��! � � � (3.6)

Two processes Free ligand domain and Free extracell domain make an interac-
tion by the name ligand binding and co-name ligand binding (3.6).

Fourth, mutually exclusive interactions are summed together, by +. Biochem-
ical interaction events may occur in sequence, in parallel with other independent
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occurrences, or in a mutually exclusive, competitive fashion. For instance,

Free extracell domain ::= ligand binding :trk binding : � � �
+antagonist binding (3.7)

A sequence of interactions in which a molecule may participate is denoted by means
of a prefix operator.

Finally, a pathway is not merely a bag of molecules and their domains. It is
composed of defined compartments. First, parallel domains of a single molecule
are linked together by a single backbone. Then, distinct multi-molecular complexes
form. Finally, molecules are separated into higher-order cellular compartments. In
all three cases molecules which share a common compartment may interact with
each other, while molecules excluded from the compartment may not. We repre-
sent compartments by restricted communication scopes. For instance, a receptors
tyrosine kinase (RTK ) of the complex RTK s can be denoted as follows;

RTK ::= �(backbone)(Extracell domain j
Transmem domain j Intracell domain) (3.8)

In the models presented in this thesis, we will comply with these principles.

3.2 Signal Transduction with Aberrance

Signal transduction is the key to uncover the wild growth of cells. When the
whole signal transduction works perfectly, decisions of growth and death of cells
are also made by rule and line. When some signals mutate aberrantly, the growth of
a cell is not controlled anymore by growth factors outside.

Two kinds of mechanisms are changed in signal transduction with aberrance.
One is that some aberrant proteins make the cell release growth factors into the en-
vironment. These factors can stimulate the cell which sets them free, and make it
grow. In fact, one normal protein makes the release growth factors into the envi-
ronment. These factors will stimulate some other protein, and make it grow. In this
way, the growth of one protein depends on growth factors from other proteins, not
growth factors from itself.

The other mechanism is aberrance of the ras protein. The normal ras protein in
the inactive state is waiting for the signal. It is activated when it receives the signal,
and then sends the signal to the other proteins. After that, it could be inactivated
to return the initial state. This kind of inactivity ensures that the cell just can send
finitely many signals at a time.

An aberrant ras protein has some difference with a normal ras protein. The aber-
rant ras protein can be activated and send a signal to the others, just as a normal
ras protein. The aberrant ras protein however cannot be inactivated any more. That
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means, it will be always in the active state and always send the signal to the others,
even when there is no real signal coming.

A biochemical process is like a team which works well. They trust each other.
A protein will make the decision to send signals if and only if it receives necessary
signals. It just checks signals it receives but doesn’t care signals his father receives.

For instance, in Fig. 3.1, proteins A1, A2, B1, B2, C are in normal state. When
the whole process proceeds normally, proteins B1 and B2 receive signals (SA1 and
SA2) from proteins A1 and A2 respectively and send signals (SB1 and SB2 ) to the
protein C. When C receives all the signals (SB1 and SB2 ), it sends the signal SC to
the new one. When the proteinB2 is in the aberrant state (we denote the aberrantB2
as B0

2), it can also send the signal SB2 to C though there is no signal SA2 (in Fig. 3.1,
the dashed arrow from A2 to B0

2 represents no signal from A2 to B0
2). The protein C

makes the decision to continue just by checking signals SB1 and SB2 . It doesn’t care
whether the signal SA2 actually occurred.

Formally, we take the whole biochemical process as a graph (e.g. Fig. 3.1). Sup-
pose that S and P are boolean functions from proteins. S(C) = T means the protein
C sends all the signals to the next ones successfully, and S(C) = F means that some
signals fail to be sent. P (C) = T means that the protein C receives all the signals
from its predecessors successfully, and P (C) = F means that some signals fail to be
received.

Proposition 3.1 If a protein C is normal, then
P (C) = T , S(C) = T

PROOF: Assume that P (C) = T , that is to say, the protein C receives all necessary
signals form his predecessors, then C could send signals to the next ones since C
is in the normal state. On the other hand, if P (C) = F , because C is in the normal
state, it cannot send signals to the next ones, then S(C) = F .

For a protein C, if it satisfies P (C) = F but S(C) = T , then C is in the aberrant
state. The corollary is from proposition 3.4.

3.3 The Interference �-calculus

The �-calculus has been applied to model biochemical networks. In these ap-
plications the modelling is done without considerations to exceptions. In order to
describe more complex biochemical systems, the I�-calculus, the Interference pi cal-
culus, is introduced for description of signal transduction with aberrance. The cal-
culus is obtained by adding aberrant actions into the �-calculus

3.3.1 The Interference �-calculus: Definition

In process algebra, processes evolve by performing actions. Actions capabilities
are introduced by prefix capabilities. In the I�-calculus, we introduce two capabili-
ties in addition to prefixes defined by the �-calculus.
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Figure 3.1: Normal States and Aberrant States.

Let a; b; � � � range over names. We also define two symbols x and ] to represent
the aberrance capability. Here x represents the suicide capability and ] the propa-
gation capability. When a process has the suicide capability, it terminates its action
immediately. And when a process has the propagation capability, it will duplicate
its action infinitely.

Definition 3.1 (Prefix) The prefixes of I�-calculus are defined as follows:

�0 ::= a(b) j a(x) j a j a �i ::= �0 j x(�) j ](�)
where � ::= �0 j �0:�.

The syntactic category �0 is like in the �-calculus [SW01]. The category � stands for
sequences of �-calculus capabilities. Finally the category �i allows for aberrant ca-
pabilities in addition to the normal ones. The two aberrance are relative to sequences
of normal capabilities.

Definition 3.2 (Process) The I�-calculus processes are defined as follows:

P ::= 0 j �i:P j �i:P + �0
i:P

0 j P jP 0 j (�a)P
Hence the syntax of I�-calculus is the same as that of �-calculus except for its

richer set of capabilities.

The standard �-calculus [Mil89] defines replication. In [SW01], it is shown that
any process involving recursive definitions is representable using replication, and,
conversely, that replication is redundant in the presence of recursion. In our lan-
guage, to model the biological processes more naturally, we choose recursion in-
stead of replication.

28



To give recursive definitions of processes, we introduce process constants, ranged
by K, and add two new forms. First, we have recursive definitions of the form

K △= (~x):P
where fn(P ) � ~x. Secondly, we have a new form of process, the constant application,

Kb~ac
We refer to Kb~ac as an instance of the process constant K.

The structural congruence � is the least equivalent relation on closed processes
that satisfies the following equalities:

P j Q � Q j P
(P j Q) j R � P j (Q j R)

P +Q � Q+ P
(P +Q) +R � P + (Q+R)

(�a)0 � 0
(�a)(�b)P � (�b)(�a)P

((�a)P ) j Q � (�a)(P j Q) if a 62 fn(()Q)

The reaction relation, introduced initially by Robin Milner [Mil89], is a concise ac-
count of computation in the �-calculus. In addition to the well-known interaction
rule (Com-N), our reaction relation also includes two new rules about reactions with
aberrance (Pre-x and Pre-]).

� is used to represent the silent action. � stands for actions, � , ], and x.

x(�):P x�! 0 Pre-x ; ](�):P ]�! �:](�):P Pre-] ;

(a(b):Q+R1) j (a(x):P +R2)
��! QjPfb=xg Com-N;

(a:Q+R1) j (a:P +R2)
��! Q j P Com-SN

P ��! P 0
P +Q ��! P 0 Sum;

P ��! P 0
P j Q ��! P 0 j Q Comp;

P ��!P 0
(�a)P ��!(�a)P 0 (� 6= a) Res;

Q � P P ��!P 0 P 0 � Q0
Q ��!Q0 Stc.

Kb~ac �! Pf~a=~xg (K △= (~x):P ) R-Const

Table 3.1: Reaction rules of I�-calculus.

The first two rules deal with reactions with aberrance: the former says that the
resulting process is terminated; the latter declares that the resulting process may
duplicate its action infinitely. The following rules are like in the �-calculus. The last
rule is for constant applications. For example, assume that the constant A0 is defined
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as follows,
A0

△= (x; y; z):(x(u):A1bx; uc+ y(w):A0bx; y; wc)
The instance A0ba; b; cc can be applied the rule R-Const.

A0ba; b; cc �! (a(u):A1ba; uc+ b(w):A0ba; b; wc)

3.3.2 A Model about ras Activation

In order to illustrate the use of our calculus, we consider an example in signal
transduction pathway with aberrance. We focus our attention on the well-studied
RTK-MAPK pathway. In biology, pathways of molecule interactions provide com-
munication between the cell membrane and intracellular endpoints, leading to some
change in the cell. Here we choose a small yet important part, ras activation, for ex-
planation.

Fig. 3.2 gives an example of ras activation of the signal transduction pathway,
RTK-MAPK (in Fig. 3.2, the protein ras is denoted as RAS). At the normal state, the
protein-to-protein interactions bring the protein SOS close to the membrane, where
the protein ras can be activated. The protein SOS activates the protein ras by ex-
changing ras’s GDP with GTP. More precisely, growth factor and cytokine activa-
tion of many tyrosine kinase and kinase-linked receptors recruits many proteins to
the plasma membrane including ras-specific guanine nucleotide releasing proteins
GNRP. Under the influence of a GNRP, ras proteins bind GTP, resulting in activation
of the ras signal. Active ras interacts the next protein RAF in this signal transduc-
tion. After that, the protein GAP inactivates the active protein ras and makes it in
the initial state, the inactive state.

Within the framework of the I�-calculus, we comply with the principles we men-
tioned in Section 3.1. Aviv Regev etc. have given the representation of normal RTK-
MAPK using the �-calculus [RSS00, RSS01].

The interpretation of ras in the I�-calculus can be done in the following manner:
The system defined in (3.9) is a collection of concurrently operating molecules, seen

RAS

GDP

RAS

GTP

GNRP

GTP

GDP

GAP

Pi

SOS

INACTIVE

ACTIVE

Figure 3.2: ras Activation
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as processes with potential behavior.

Sys ::= ras j SOS j GAP j RAF (3.9)

where Sys is the abbreviation of our system. It includes four main proteins: ras, SOS,
GAP, RAF. This system, in fact, is the subsystem of (3.2).

A protein molecule is composed of several domains, each of which is modelled
as a process as well. In (3.10) through (3.13) the detailed I�-calculus programs for
proteins ras, SOS, RAF and GAP are given:

ras ::= INASWI I j INASWI II (3.10)

SOS ::= S SH3 BS j S GNEF (3.11)

RAF ::= R Nt j R ACT BS j R M BS
j INA R Ct j R ATP BS (3.12)

GAP ::= sg(c ras):c ras(gdp):GAP (3.13)

(3.10) says that ras is composed of two domains INASWI I and INASWI II. We
use ”IN” to record the fact that two domains are in the inactive state. The protein
SOS has two domains S SH3 and S GNEF where the domain S GNEF participates in
interactions of our system Sys, and the other domain S SH3 does not. Similarly, only
the domain R Nt of the protein RAF participates in interactions of our system Sys.
The function of the protein GAP is to sends the residue GDP to the protein ras. So we
can take it as one domain. (3.13) says chemical components sg, c ras, gdp compose
of the protein GAP where gdp (i.e GDP in Fig. 3.2) is the chemical component which
makes the protein ras stay in the inactive state.

The molecules (or domains) interact with each other based on their structural
and chemical complementarity. Interaction is accomplished by motifs and residues
that constitute a domain. These are viewed as channels or communication ports of
the molecule:

INASWI I ::= bbone :ACTSWI I (3.14)

INASWI II ::= sg(rs 1):rs 1(x):ACTSWI II (3.15)

S GNEF ::= bbone :S GNEF j sg(c ras):c ras(gtp):S GNEF (3.16)

In (3.16), the motif bbone is the abbreviation of backbone which is the interacting
portion of the domain S GNEF. The residue gtp (i.e GTP in Fig. 3.2) is the chemical
component which makes the protein ras stay in the active state. In (3.15), the motif sg
of the domain INASWI II is the complementary of the motif sg of the protein GAP.
In (3.14), the motif bbone is the complementary of the motif bbone of the domain
S GNEF.

Hence, the following interactions are possible:

INASWI I j S GNEF ��! ACTSWI I j S GNEF j ::: (3.17)

INASWI II j S GNEF
��!� ACTSWI II [gtp=x] j S GNEF j ::: (3.18)
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The interaction (3.17) shows that the domain INASWI I of ras is activated by the
domain of S GNEF of SOS . The interaction (3.18) shows that the domain INASWI II
of ras is activated by the domain S GNEF of SOS by passing the residue gtp. Hence
the protein ras is activated.

The detailed I� programs for the domains,ACTSWI I ,ACTSWI II of the pro-
tein ras and the domain R Nt of RAF are defined in (3.19) through (3.21):

ACTSWI I ::= s(rs 2):rs 2:bbone :INASWI I (3.19)

ACTSWI II ::= sg(r swi 1):r swi 1(x):bbone :INASWI II (3.20)

R Nt ::= s(c ras):c ras :ACTR Nt (3.21)

(3.19) says that the domain ACTSWI I can interact with another domain which
has the complementary motif s.

The processes so defined have the following interactions:

ACTSWI I j R Nt �!� bbone :INASWI I j ACTR Nt (3.22)

ACTSWI II j GAP �!� bbone :INASWI II [gtp=x] j GAP (3.23)

bbone :INASWI I j bbone :INASWI II �! INASWI I j INASWI II (3.24)

During the process of ras activation, the interaction (3.22) occurs firstly, then in-
teractions (3.23) and (3.24) occur. (3.22) says that the domain ACTSWI I of ras
interacts with the domain R Nt of RAF , that is to say, the protein ras sends some
signal to the protein RAF. (3.23) says that GAP inactivates the domain ACTSWI II
of ras by passing the residue GDP. (3.24) says that the domains of ras interact with
each other and that ras rollbacks to the initial inactivated state. One process of ras
activation is over. Then the protein ras will wait another signal from the protein
SOS, and begin the next activation.

When ras mutates aberrantly, it does not have any effect on the ras’s binding
with GTP but will reduce the activity of the GTP hydrolase of ras and lower its
hydrolysis of GTP greatly; in the meantime ras will be kept in an active state, that is,
the protein ras keeps activating the molecule, inducing the continual effect of signal
transduction, which results in cell proliferation and tumor malignancy.

During the process with aberrance, the protein GAP looses its capability of send-
ing the residue GDP to the protein ras. The structure and chemistry of the motif sg
of GAP are changed, and it cannot be complementary to the motif sg of the domain
ACTSWI II of the protein ras. (3.25) defines the I� representation of GAP in the
aberrant state.

GAP ::= x(sg(c ras)):c ras(gdp):GAP (3.25)

GAP �! 0 (3.26)

ACTSWI II j GAP = ACTSWI II j 0 (3.27)

(3.26) shows that GAP loses its function and does nothing, meaning that it cannot
inactivate the domain ACTSWI II of ras. Then the interaction (3.24) will not occur,
that is to say, the protein ras will always stay in active state.
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During the process with aberrance, the domain ACTSWI I of the protein ras
duplicates its capability of sending signals to the domain R Nt of the protein RAF
by interactions. Now ACTSWI I can be written as follows;

ACTSWI I ::= ](s(rs 2):rs 2):bbone :INASWI I

Hence, the following interactions are possible:

ACTSWI I j R Nt ��!�
](s(rs 2):rs 2):bbone :INASWI I
j ACTR Nt (3.28)

The interaction (3.28) says that the domain ](s(rs 2):rs 2):bbone :INASWI I al-
ways has the capability of sending signals to the domain R Nt which has the com-
plemental motif s. The interaction (3.24) never occurs.

In the �-calculus, it is a little difficult to represent the lost of capability and the
propagation of some capabilities. Hence, the �-model could not easily describe this
aberrant case. I�-calculus, on the contrary, can describe it quite precisely but simply.

3.4 The I�-calculus with a Tag System

Even in one aberrant biomolecular process, there are some proteins are aberrant
while the others are normal. If all the proteins have some additional information
about their states (normal or aberrant) in a formal model, the whole model will be
clearer. Therefore, the idea of giving a tag to each protein for informing its state
(normal or aberrant) is spontaneous.

In this section, we introduce such a tag system to make the model of the I�-
calculus clearer.

3.4.1 A Tag System

We assume a set R
+ = fi : i � 0g for tags. Let ia, ib, � � � range over tags.

The syntax of the I�-calculus is modified as follows: we write a pair hi�i; �ii
instead of the prefix �i, where i�i 2 R

+ is the tag of �i. When �i = �0, i�i > 0 is
the tag of �0; when �i = x(�) or �i = ](�), i�i = 0. As we have mentioned, � is the
collection of some �0s. For example, � = �10:�20 , we define the tag of � as a set of tags
of �10 and �20 , that is, I� = fi�10 ; i�20g.

The expression of a process is also a pair hIP ; P i where IP is the tag of the process
P . The tag of one process is defined inductively by the following rules(Table 3.2).

We use the symbol ] to denote multiset union. For example, let A = fa; b; c; dg
and B = fb; c; e; fg, then A ]B = fa; b; c; d; b; c; e; fg.

We write
1]
n=1

IP , IP ] IP ] � � � .
Let Ki = ~xi:Pi be constants, where i = 1; 2; : : : ; n. We use fK to represent

(K1;K2; : : : ;Kn), and eP to represent (P1; P2; : : : ; Pn). The expression ”Let fK =eP in Ki” means Ki = ~xi:Pi. We denote this expression as let .
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For each recursive process P , we define an environment � mapping the constants
that appear free in P to sets of tags. Let fKng be a set if free constants in P . Define
the tag of the process P :

IP;� = �(fKng) ] IPrfKng
Next we compute the tag of a recursive process, that is, the tag of the expression

let . We define a function F on sets of tags.
F (J1; J2; : : : Jn) = IeP ;�0

where �0 extends � with �0(K1) = J1; �0(K2) = J2; : : : ; �0(Kn) = Jn.

Proposition 3.2 (The Least Fixed Point) The function F defined above has the least fixed
point.

PROOF: According to the least fixed point theorem, we just need to prove F is
continuous, that is, F reverses increasing chains. Suppose that eJ = (J1; J2; : : : ; Jn),fJ 0 = (J 01; J 02; : : : ; J 0n). eJ � fJ 0 if and only if Ji � J 0i, where i = 1; 2; : : : ; n. We have
F ( eJ) = IeP ;�0 = (�0(K1) ] IP1rfK1g; �0(K2) ] IP2rfK2g; : : : ; �0(Kn) ] IPnrfKng) = (J1 ]
IP1rfK1g; J2 ] IP2rfK2g; : : : ; Jn ] IPnrfKng) � (J 01 ] IP1rfK1g; J 02 ] IP2rfK2g; : : : ; J 0n ]
IPnrfKng) = F (fJ 0).

So the least fixed point of the functionF is the sup of f∅; F (∅); F 2(∅); : : : ; F n(∅); : : :g.
We compute it as follows:
F (∅) = IeP ;�0=(]IP1rfK1g; : : : ;]IPnrfKng)
F 2(∅) = IeP ;�00= (

2]
m=1

IP1rfK1g; : : : ;
2]

m=1
IPnrfKng)� � �

F n(∅) = IeP ;�n= (
n]

m=1
IP1rfK1g; : : : ;

n]
m=1

IPnrfKng)

� � �
Therefore the least fixed point of F is

lfp(F ) = (
1]

m=1
IP1rfK1g; : : : ;

1]
m=1

IPnrfKng)
4= (I1; I2; : : : ; In)

According to Proposition 3.2, for the expression let , Ilet ;� = Ii =
1]

m=1
IPirfKig.

Especially, when a process P has no free constants K, IP = IP;∅, where ∅ is an
empty environment.

Example 1 Let K0 = (x; y):(x(y):K0bx; yc). The process P is a constant application,
that is, P = K0ba; bc. According to the rule Const-t, the tag of the process P is:

IP =
1]
n=1

IPrfK0g;� =
1]
n=1

I(a(b):0) =
1]
n=1

fiag
The last part of this derivation can be justified according to rules 0-t, N-t.

Example 2 Let K0 = (x; y):(x(y):K0bx; yc+K1bx; u; vc). The process P is a constant
application, that is, P = K0ba; bc. According to the rule Const-t, the tag of the
process P is:

IP =
1]
n=1

IPrfK0g;� =
1]
n=1

I(a(b):0+K1ba;u;vc) =
1]
n=1

(fiag ] IK1ba;u;vc)
The last part of this derivation can be justified according to rule sum-t.
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P = 0
IP = ∅

0-t
P = �0:Q

IP = fi�0g ] IQ
N-t

P = x(�):Q
IP = f0g x-t P = ](�):Q

IP =
1]
n=1

(f0g ] I�) ] IQ
]-t

P = Q+R
IP = IQ ] IR

Sum-t
P = QjR

IP = IQ ] IR
Com-t

P = (�x)Q
IP = IQ

Res-t
P = Kbeac
IP = IP;�

(K △= ~x:P ) Cons-t

Table 3.2: Tags of processes.

Let IP , IQ be the tags of the processes P and Q. We define

hIP ; P i � hIQ; Qi , P � Q & IP = IQ

Since we have reaction rules of I�-calculus (see Table 3.1), we can assign tags to
a reaction rule P �! Q. These ”dynamic tags” can be computed by Table 3.3.

We write P �!I Q if P �! Q and I is the tag of this derivation according to
Table 3.3.
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f0g r f0g = ∅
Pre-§;

1]
n=1

(f0g ] fi�ig) ] IP r f0g = fi�ig ] IP ] 1]
n=1

(f0g ] fi�ig) ] IP
Pre-];

(fixg ] IQ ] IR1) ] (fixg ] IP ] IR2) r (fixg ] IR1 ] IR2) = IQ ] IP
Com-N;

(fixg ] IQ ] IR1) ] (fixg ] IP ] IR2) r (fixg ] IR1 ] IR2) = IQ ] IP
Com-SN;

IP r fiyg = IP 0
IP ] IQ) r fiyg ] IQ = IP 0

Sum;
IP r fiyg = IP 0

IP ] IQ r fiyg = IP 0 ] IQ
Com;

IQ = IP IP r fixg = IP 0 IP 0 = IQ0
IQ r fixg = IQ0

Str;

IP [~a=~x] = IP;�
K △= ~x:P R-const.

Table 3.3: Tags for reduction rules.
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Proposition 3.3 If P �!I Q, then IP r I = IQ.

PROOF: According to Table 3.3, we check tags of processes as follows:

(1) Assume that x(�):P x�! 0 by the rule Pre-x, where I = f0g. The tag of the
process x(�):P is f0g by rule x-t in Table 3.2. Then we have f0g r f0g = ∅,
where ∅ is the tag of the process 0.

(2) Assume that ](�):P ]�! �:](�):P by the rule Pre-], where I = f0g. The tag of the

process ](�):P is
1]
n=1

(f0g ] I�) ] IP . Then we have
1]
n=1

(f0g ] I�) ] IP r f0g =
I� ] 1]

n=2
(f0g ] I�)] IP , where I� ] 1]

n=2
(f0g ] fI�g)] IP is the tag of the process

�:](�):P .

(3) Assume that (a(b):Q+R1) j (a(x):P +R2)
��! QjPfb=xg by rule Com-N, where

I = fiag ] fiag ] IR1 ] IR2 . The tag of the process (a(b):Q+R1) j (a(x):P +R2)
is (fiag ] IQ ] IR1) ] (fiag ] IP ] IR2). We have (fiag ] IQ ] IR1) ] (fiag ] IP ]
IR2)r (fiag] fiag] IR1 ] IR2) = IQ ] IP , where IQ ] IP is the tag of the process
QjPfb=xg.

(4) Assume that (a:Q+R1) j (a:P +R2)
��! QjP by rule Con-SN, where I = fiag ]fiag ] IR1 ] IR2 . The tag of the process (a:Q + R1) j (a:P + R2) is (fiag ] IQ ]

IR1) ] (fiag ] IP ] IR2). We have (fiag ] IQ ] IR1) ] (fiag ] IP ] IR2) r (fiag ]fiag ] IR1 ] IR2) = IQ ] IP , where IQ ] IP is the tag of the process QjP .

(5) In the rule Sum, suppose that for the reaction P �!I P 0, IP rI = IP 0 , then for the
reaction P +Q �!I 0 P 0, where I 0 = I ] IQ, we have (IP ] IQ) r (I ] IQ) = IP 0 .

(6) In the rule Com, suppose that for the reaction P �!I P 0, IP r I = IP 0 , then for
the reaction P jQ �!I 0 P 0, where I 0 = I , we have (IP ] IQ) r I = IP 0 ] IQ.

(7) In the rule Res, suppose that for the reaction P �!I P 0, IP r I = IP 0 , then for the
reaction (�a)P �!I 0 (�a)P 0, where I 0 = I , we have IP r I 0 = IP 0 .

(8) In the rule Comp, suppose that IQ = IP , IQ0 = IP 0 and for the reaction P �!I P 0,
IP r I = IP 0 , then for the reaction Q �!I 0 Q0, where I 0 = I , we have IQ r I 0 =
IQ0 .

(9) Assume that for the recursive process K △= ~x:P , Kb~ac �! Pf~a=~xg by the rule
R-Const. It is trivial to prove.

In Section 3.3.2, we have given an example to show how to model an aberrant
signal transduction using the I�-calculus. We can annotate this example using the
I�-calculus with the tag system. In the new model, we give a tag for each motif
and residue, then according to the rules in Table 3.2, we give the tag of each domain
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and process, which makes the model clearer since we have the state of each action
and each process. If a prefix has tag 0, then it is in aberrant state; if 0 belongs to
the tag of one process, then this process has aberrant actions. For any biomolecular
interaction, the change of tags of processes (reactant and products) follows the rules
of Table 3.3. Hence, we can check the existing aberrance, using the tag system of the
I�-calculus. See Appendix A.

3.4.2 Tag Systems for Quantitative Analysis?

In Section 3.4.1, tags are just numbers which have not any meaning. We distin-
guish the aberrant processes and normal ones by checking the number 0 is in tags
of processes or not.

In fact, the occurrence of aberrance is affected by temperature, environment, and
concentration, etc. Naturally, if our tags come from biological results, that is, tags are
gotten by some biological rules, then we want the tags to reflect this information. For
example, suppose that the proteinA is in the normal state when the temperature is in
some interval [n;m] in the environment. When the real environmental temperature
is far away from this interval, the protein A will be in aberrant state. Based on this
case, we can express it as tags formally:

For each motif or residue a, the tag ia of a can be defined as a function from
temperatures to R

+ = fi : i � 0g:

ia(l) =

8><>: 0 n � l � m
n� l l � n
l�m m � l

For a slightly more complicated example, we may want to account for the fact
that the temperature interval [n;m] at which the protein A is in the normal state
can change according to time, that is to say, n, m; are functions of time instead of
constants. At time t0, when the temperature is in the interval [n(t0);m(t0)] in the
environment, the protein A is in the normal state. Hence, the tag ia of a can be
modified as follows:

ia(l; t0) =

8><>: 0 n(t0) � l � m(t0)
n(t0)� l l � n(t0)
l�m(t0) m(t0) � l

In this thesis, we just gave the simple modification of tag systems. We believe
that richer tags systems will allow to record more information on the reactants of
the biological processes, and hence will allow to account for quantitative aspects of
systems biology in the framework of process calculi.
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3.5 The I�-calculus with a Typing System

In this section, we introduce a simple typing system for the I�-calculus, with the
similar aim to make the model of I�-calculus easier to understand.

3.5.1 A Typing System

As we have mentioned, for a biochemical network with aberrance, we hope to
know what is brought on by aberrance. So in the I�-calculus, we need to control the
information flow when modelling an aberrant biochemical network. This section
describes rules for controlling information flow in the I�-calculus. There are several
ways of formalizing those ideas, like the tag system introduced in Section 3.4. Here
we embody them in a typing system for the I�-calculus.

In order to represent the aberrance of signal transduction we classify signals into
three classes:

• A Normal signal is one that takes part in the normal processes.

• An Aberrant signal is one that takes part in the aberrant processes.

• An Unknown signal could be any signal.

To simplify we define a reflexive order relation <: among these three classes:

Normal <: Unknown;
Aberrant <: Unknown.

A name � is denoted as environment, and P as processes. The typed system has
three kinds of assertions:

• “` � well formed” means that the environment � is well-formed.

• “� ` a : T” means that the name a is of the class T in �.

• “� ` P : Ok” means that the process P typechecks in the environment �.

Typing rules are given under an environment �. An environment is a list of
distinct names with associated classifications.

Definition 3.3 (Typed Environment) Typed environments are given by the following rules:

` ∅ well formed
Environment Empty

` � well formed ;M 62 �
` �;M : T well formed Environment Name

Having defined the environments, one can define rules for terms and processes.
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Definition 3.4 (Terms) The rules for terms of typing system are as follows:

� `M : T T <: R
� `M : R

Level Subsumption

` � well formed M : T in �
� ` a : T Level Name

The rule Level Subsumption says that a term of level Normal or Aberrant has level
Unknown as well.

Definition 3.5 (Processes) The rules for typing processes are as follows:

� ` a : Normal � ` b : Normal � ` P : Ok
� ` a(b):P : Ok T-out

� ` a : Normal � ` x : Unknown � ` P : Ok
� ` a(x):P : Ok T-in

� ` a : Normal � ` P : Ok
� ` a:P : Ok T-sout

� ` a : Normal � ` P : Ok
� ` a:P : Ok T-sin

� ` a : Aberrant � ` b : Normal � ` P : Ok
� ` x(a(b):�):P : Ok T-kout

� ` a : Aberrant � ` x : Unknown � ` P : Ok
� ` x(a(x):�):P : Ok T-kin

� ` a : Aberrant � ` P : Ok
� ` x(a:�):P : Ok T-ksout

� ` a : Aberrant � ` P : Ok
� ` x(a:�):P : Ok T-ksin

� ` a : Aberrant � ` P : Ok
� ` ](a:�):P : Ok

T-psin

� ` a : Aberrant � ` b : Normal � ` P : Ok
� ` ](a(b):�):P : Ok

T-pout

� ` a : Aberrant � ` x : Unknown � ` P : Ok
� ` ](a(x):�):P : Ok

T-pin

� ` a : Aberrant � ` P : Ok
� ` ](a:�):P : Ok

T-psout
� ` P : Ok Q � P

� ` Q : Ok T-stc

` � well formed
� ` 0 : Ok T-nil

�; a : Normal ` P : Ok, a 62 dom(�)
� ` (�a)P : Ok T-res

�; a : Aberrant ` P : Ok, a 62 dom(�)
� ` (�a)P : Ok T-ares
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� ` P [~a=~x; 0=K] : Ok
� ` Kb~ac : Ok K △= ~x:P T-const

� ` P : Ok � ` Q : Ok
� ` P j Q : Ok T-com

� ` P : Ok � ` Q : Ok
� ` P +Q : Ok T-sum

� ` x : Unknown � ` b : Normal � ` P : Ok
� ` Pfb=xg : Ok T-Sub

The original idea of this simple typing system is from [Aba99].

We give some properties about this simple typing system. The details of proofs
are given in Appendix B.

Proposition 3.4 (Strengthening) Assume that the name m is not free in the process P
and that n 6= m. The following properties hold:

• If �;m : T ` N : S, then also � ` n : S.

• If �;m : T ` P : Ok, then also � ` P : Ok.

Proposition 3.4 enables us to condense an environment, moving out the decla-
ration of a name that is not used.

Proposition 3.5 (Weakening) Assume that m is not defined in the environment �. The
following properties hold:

• If � ` n : S, then �;m : T ` n : S.

• If � ` P : Ok, then �;m : T ` P : Ok.

Proposition 3.5 declares that anything that can be proved in a given environment
can also be proved with more assumptions.

Proposition 3.6 Assume that ` � well formed and that names in dom(�) are all normal .
Then the following properties hold:

• If m is a name and m 2 dom(�), then � ` m : Normal.

• if P is a process with fn(P ) [ fv(P ) � dom(�), then � ` P : ok.

Proposition 3.6 says that a name is defined in an environment, then the name is of
the class T in the environment; if names of one process are defined in an environ-
ment, then the process P typechecks in the environment.
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3.5.2 A Simple Example

As we know, the typing system extracts information that is useful for reasoning
about the behavior of programs. In this section, we still take ras activation (Sec-
tion 3.3.2) as our basic example. We add a type for each motif and residue. Our
example is type checked according to the typing rules.

Let � be an environment, where some names are Unknown levels:

xINASWI II : Unknown ; xACTSWI II : Unknown ; :

Bound names with their Normal levels:

c rasGAP : Normal ; c rasS GNEF : Normal ; c rasR Nt : Normal
gdpGAP : Normal ; bbone INASWI I : Normal ; sg INASWI II : Normal ;

rs 1INASWI II : Normal ; bboneS GNEF : Normal ; sgS GNEF : Normal ;
gtpS GNEF : Normal rs 2ACTSWI I : Normal ; bboneACTSWI I : Normal ;

sgACTSWI II : Normal ; bboneASCTWI II : Normal ; r swi 1ACTSWI II : Normal ;
sR Nt : Normal :

Bound names with there Aberrant levels:

sACTSWI I : Aberrant ; sgGAP : Aberrant :

The subscript of a name represents the domain to which the name belongs.
According to Section 3.3.2, domains INSWI I and INASWI II of the protein ras

are actually recursive processes:

INASWI I ::= bbone :](s(rs 2):rs 2):bbone :INASWI I (3.29)

INASWI II ::= sg(rs 1):rs 1(x):sg(r swi 1):
r swi 1(x):bbone :INASWI II (3.30)

Since

� ` bbone INASWI I : Normal ; sACTSWI I : Aberrant ;
rs 2ACTSWI I : Normal ; bboneACTSWI I : Normal

for the domain INASWI I (3.29), applying rules T-nil, T-sin, T-pout, T-sout, and
T-const in turn, we prove it as follows:

` � well formed
� ` 0 : Ok T-nil

� ` bboneACTSWI I : Normal � ` 0 : Ok
� ` bbone :0 : Ok T-sin

42



� ` sACTSWI I : Aberrant � ` rs 2ACTSWI I : Normal � ` bbone :0 : Ok
� ` ](s(rs 2):rs 2):bbone :0 : Ok

T-pin

� ` bbone INASWI I : Normal � ` ](s(rs 2):rs 2):bbone :0 : Ok
� ` bbone :](s(rs 2):rs 2):bbone :0 : Ok T-sin

� ` bbone :](s(rs 2):rs 2):bbone :0 : Ok
� ` INASWI I : Ok T-const

Since

� ` sg INASWI II : Normal; rs 1INASWI II : Normal ;
xINASWI itII : Unknown ; sgACTSWI II : Normal ;
r swi 1ACTSWI II : Normal ; xACTSWI II : Normal
bboneACTSWI II : Normal

for the domain INASWI II (3.30), applying rules T-nil, T-sout, T-in, T-out, T-in, T-
out and T-const in turn, we prove it as follows:

` � well formed
� ` 0 : Ok T-nil

� ` bboneACTSWI II : Normal � ` 0 : Ok
� ` bbone :0 : Ok T-sout

� ` r swi 1ACTSWI II : Normal
� ` xACTSWI II : Unknown

� ` bbone :0 : Ok
� ` r swi 1(x):bbone :0 : Ok T-in

� ` sgACTSWI II : Normal
� ` r swi 1ACTSWI II : Normal
� ` r swi 1(x):bbone :0 : Ok

� ` sg(r swi 1):r swi 1(x):bbone :0 : Ok T-out
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� ` rs 1INASWI II : Normal
� ` xINASWI II : Unknown

� ` sg(r swi 1):r swi 1(x):bbone :0 : Ok
� ` rs 1(x):sg(r swi 1):r swi 1(x):bbone :0 : Ok T-in

� ` sg INASWI II : Normal ,
� ` rs 1INASWI II : Normal ,

� ` rs 1(x):sg(r swi 1):r swi 1(x):bbone :0 : Ok
� ` sg(rs 1):rs 1(x):sg(r swi 1):r swi 1(x):bbone :0 : Ok T-out

� ` sg(rs 1):rs 1(x):sg(r swi 1):r swi 1(x):bbone :0 : Ok
E ` INASWI II : Ok T-const

Hence, � ` ras = INASWI I j INASWI II : Ok.

Only the functional domain S GNEF of the protein SOS takes part in our system.
It is represented as a recursive process in Section 3.3.2.

S GNEF = bbone :S GNEF j sg(c ras):c ras(gtp):S GNEF
Since

� ` bboneS GNEF : Normal ; sgS GNEF : Normal ;
c rasS GNEF : Normal ; gtpS GNEF : Normal

applying rules T-nil, T-sin, T-out T-in, T-com and T-const, we prove it as follows:

` � well formed
� ` 0 : Ok T-nil

� ` bboneS GNEF : Normal � ` 0 : Ok
� ` bbone :0 : Ok T-sin

� ` c rasS GNEF : Normal � ` gtpS GNEF : Normal � ` 0 : Ok
� ` (cras(gtp):0 : Ok T-out
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� ` sgS GNEF : Normal � ` c rasS GNEF : Normal � ` (cras(gtp):0 : Ok
� ` sg(c ras):(cras(gtp):0 : Ok T-in

� ` bbone :0 : Ok � ` sg(c ras).(� ` cras(gtp):0 : Ok
� ` bbone :0 j sg(c ras):(cras(gtp):0 : Ok T-com

� ` bbone :0 j sg(c ras):(cras(gtp):0 : Ok
� ` S GNEF : Ok T-const

Only the functional domain R Nt of the protein RAF takes part in our system. It
is represented in Section 3.3.2 as follows:

R Nt = s(c ras):c ras :ACTR Nt
Since

E ` sR Nt : Normal; c rasR Nt : Normal
where the domain ACTR Nt does not take part in our system, and we assume that
the environment � has ACTR Nt : Ok.

applying rules T-sin, T-in, we prove it as follows:

c rasR Nt : itNormal � ` ACTR Nt : Ok
� ` c ras :ACTR Nt : Ok T-sin

sR Nt : Normal c rasR Nt : Normal � ` ACTR Nt : Ok
� ` s(c ras):c ras :ACTR Nt : Ok T-in

Hence, � ` R Nt : Ok

The protein GAP is represented as a recursive process in Section 3.3.2.
GAP = x(sg(c ras):c ras(gdp)):GAP

Since
� ` sgGAP : Aberrant ; c rasGAP : Normal ; gdpGAP : Normal

applying rules T-nil, T-kin and T-const, we prove it as follows:

` � well formed
� ` 0 : Ok T-nil
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� ` sgGAP : Aberrant � ` c rasGAP : Normal � ` 0 : Ok
� ` x(sg(c itras):c ras(gdp):0 : Ok T-kin

� ` x(sg(c itras):c ras(gdp):0 : Ok
� ` GAP : Ok T-const

In our system
Sys = ras j SOS j RAF j GAP

the domain S SH3 BS of the protein SOS , domainsR ACT BS , R M BS , INA R Ct ,
and R ATP BS of the protein RAF do not take part in our system. We assume
that the environment � has S SH3 BS : Ok, R ACT BS : Ok, R M BS : Ok,
INA R Ct : Ok, and R ATP BS : Ok.

Therefore, it is easy to find that E ` Sys : Ok by rule T-Com.

3.6 Comparing Tags and Types

In Section 3.4 and Section 3.5, we have given a tag system and a typing system,
which help us to understand the I�-calculus. In this section, we compare these
two systems and show that the tag system is equal to the typing system in terms of
expressive power.

Every term has a tag in the tag system. A tag for a term and a set of tags for
a process allow us record states of the whole biochemical process. We can use the
language of set theory to record the process. It is natural and simple to understand.
For instance,

A ::= a:b:0
a has the tag ia, b has the tag ib, 0 has the tag ∅. Then A has the tag fia; ibg.

We find, however, when a biochemical process is very complex, we have to take
a large amount of space to record its tag. The tag of the process could be a large
set containing all the tags of all the terms. Actually, in the qualitative analysis of
biochemical processes, we don’t care what is the tag. We just want to know what
happens with the aberrant ones, therefore, in the tag of the process. Of course, we
believe that tags are important in the quantitative analysis.

The strong points of the typing system are obvious. As the other type systems,
this typing system for I�-calculus is useful for several reasons:

(1) to detect programming errors statically;
For example, the following errors in the process P can be found by our simple
typing system:

(a) When � ` a : Normal , P has the form of x(�):Q or ](�):Q.
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(b) When � ` a : Aberrant , P has the form of �0:Q.

where �0 = a(b) j a(x) j a j a, and � = �0 j �.

(2) to extract information that is useful for reasoning about the behavior of pro-
grams;

(3) to improve the efficiency of code generated by a compiler;

(4) to make programs easier to understand.

Specially, comparing to the tag system, this typing system is much simpler. For
instance, taking

A ::= a:b:0
again, we have that a : normal; b : normal; 0 : ok ` A : ok. The process A is checked
simply which it is enough to help our simulation. Of course, if we want to analyze
the biochemical process quantitatively, this simple typing system is not enough.

Although these two systems have their shortcomings and strong points respec-
tively, they are equal in terms of expressive power.

Proposition 3.7 (Signal checking) Let ia be the tag of the name a. Then

• ia = 0 if and only if a : Aberrant;

• ia > 0 if and only if a : Normal.

The proof of this proposition is trivial by the definition of tags.
Now, we bring out the key theorem of this chapter, presented as follows. We

relate the tag system and the typing system by proving that they both capture the
presence of an aberrant component in the system.

Theorem 3.1 (Correspondence) Let IP be the tag of P . If � ` P : Ok, the following
statements are equivalent:
(a) 0 2 IP
(b) P has a subprocess of the form x(�):Q or ](�):Q
(c) There is a typing judgement � ` P : Ok such that in the proof of this typing judgement
there is a proof of a judgement of the form �0 ` m : Aberrant

Proof: It is easy to prove that if P has a subprocess of the form x(�):Q or ](�):Q, then
0 2 IP .

Suppose that 0 2 IP . According to Table 3.2, (b) is proved.
Next we prove that (b) is equal to (c). Suppose that P has a subprocess of the

form x(�):Q or ](�):Q. It suffices to consider the following cases:
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(1) Case x(�):Q. Since � ` x(�):Q : Ok, this assertion must be established through
rules T -kout, T -kin, T -ksout, and T -ksin. Then there is a name m in � such
that � ` m : Aberrant.

(2) Case ](�):Q. Since � ` ](�):Q : Ok, this assertion must be established through
rules T -pout, T -pin, T -psout, or T -psin. Then there is a name m in � such that
� ` m : Aberrant.

(3) Case R0 + R. Since � ` R0 + R : Ok, this assertion must be established through
the rule T-Sum. Then we have � ` R0 : Ok and � ` R : Ok. Because R0 +R has
a subprocess of the form x(�):Q or ](�):Q, we have R0 or R has a subprocess
of the form x(�):Q or ](�):Q. Without loss of generality, we consider R0 has a
subprocess of the form x(�):Q. Then there is a name m in R0 such that �0 ` m :
Aberrant by assumption, of course, m 2 R0 + R and �0 ` m : Aberrant. Case
R0 j R is similar to prove.

(4) Case a constant application (P = Kb~ac) for a recursive definition (K △= ~x:P 0).
Since � ` P : Ok, this assertion must be established through the rule T-Const.
Then we have � ` P 0[~a=~x; 0=K] : Ok. Because P has the form of x(�):Q or
](�):Q, that is, P 0[~a=~x; 0=K] has the form of x(�):Q or ](�):Q. By assumption,
there is a name m in P 0[~a=~x; 0=K], of course in P , such that �0 ` m : Aberrant.

Next we prove the converse. It also suffices to consider the following cases:

(1) The base case is that P is the form of x(�):Q or ](�):Q by the rules T -kout, T -kin,
T -ksout, T -ksin, T -pout, T -pin, T -psout, and T -psin. Then (b) is proved.

(2) Assume that P is the form of R0 +R and processes R0 and R satisfy the property
(c). Since � ` P : Ok, that is � ` R0 + R : Ok, we have � ` R0 : Ok, and
� ` R : Ok. Because there is a term m 2 P such that �0 ` m : Aberrant,
we can know that m 2 R0 or m 2 R such that � ` m : Aberrant. Without
loss of generality, we consider m 2 R0. From the assumption, we know R0
has the subprocess of the form of x(�):Q or ](�):Q, then of course, P has the
subprocess of the form of x(�):Q or ](�):Q. The case that P is the form of Q j R
is similar to discuss.

(3) Assume that P is a constant application (P = Kb~ac) for a recursive definition

( K △= ~x:P 0) and P 0[~a=~x; 0=K] satisfies the property (c). Since � ` P : Ok, it
must be that � ` P 0[~a=~x; 0=K] : Ok by the rule T-Const. If there is a name
m 2 P such that �0 ` m : Aberrant, we can know that m 2 P 0[~a=~x; 0=K]. Then
P 0[~a=~x; 0=K] has the subprocess of the form of x(�):Q or ](�):Q by assumption.
That is P has the subprocess of the form of x(�):Q or ](�):Q.

With our brief typing system, we can verify the aberrant ST pathways without
complex tags.
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Chapter 4

A Language for Formal Proteins

In this chapter, we study a language for formal proteins, the �-calculus. We
consider the problem of self-assembly which we formalize in terms of a translation
from the �-calculus (playing the role of a coarse-grained language) to a finer-grained
(sub)language, the m�-calculus. The mathematical properties of self-assembly are
discussed. The correctness of this translation is proved using these properties.

The contents of this chapter are organized as follows. In Section 4.1 we give a
�-model of ras activation. In Section 4.2, we recall some basic notions about the m�-
calculus. In Section 4.3 we introduce the property self-assembly. The graphic expla-
nation of the reversible and non reversible rules of translation from the �-calculus
to the m�-calculus is given. In Section 4.4 we show some mathematical properties
of self-assembly, including confluence, strong normalization. The correctness of this
translation is proved using these mathematical properties.

4.1 The �-model of ras Activation

In Section 2.2.1, we have recalled some basic notions of the �-calculus. In this
section, we give an example to show how to model the process of ras activation
using the �-calculus.

The process of ras activation was introduced in Section 3.3.2. Here we denote
proteins as primitive proteins; complexes of proteins as solutions; and residues of
functional domains as sites of proteins. Reactions for activation are denoted by
monotonic reactions, and reactions for inactivation are denoted by antimonotonic
reactions.

First, the protein ras is activated by the protein SOS (reaction (4.1)).

ras(bbone + sg + rs 1 + bbone2);SOS(bbone + sg + c ras) �!
(xy1y2)(ras(bbonex + sgy1 + rs 1y2 + bbone2);

SOS(bbonex + sgy1 + c rasy2)) (4.1)
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Different from the example in Section 3.3.2, we do not denote functional domains
in proteins. Actually, in reaction (4.1), bbone is the residue of one functional domain
(INASWI I) and sg, rs 1, bbone2 belong to the other domain (INASWI II ) in the
protein ras. Reaction (4.1) says that the domain INASWI I of the protein ras is
activated by the binding of bbone, and the other domain INASWI II is activated by
bindings of sg, rs 1. Then the protein ras is activated.

Reaction (4.2) shows how the activated protein ras activates the next protein RAF.
The protein RAF is activated by binding sites s, rs 2 of the protein ras with sites s,
c ras of the protein RAF.

ras(bbonex + sgy1 + rs 1y2 + s+ rs 2);RAF (s+ c ras) �!
(z1z2)(ras(bbonex + sgy1 + rs 1y2 + sz1 + rs 2z2);RAF (sz1 + c rasz2)) (4.2)

Reaction (4.3) says that when the protein GAP takes part in the reactions, the
activated protein ras begins to loose its activity. This reaction is taken by unbinding
sites sg, rs 1 of the protein ras from sites of sg, c ras of the protein SOS.

(y1y2)(ras(bbonex + sgy1 + rs 1y2 + bbone2);
SOS(bbonex + sgy1 + c rasy2);GAP(sg + c ras) �!

(ras(bbonex + sg + rs 1 + bbone2);
SOS(bbonex + sg + c ras);GAP(sg + c ras)) (4.3)

Reaction (4.4) says that the protein ras goes back to the initial state, that is, the
inactive state. The process of ras activation is over.

(x)(ras(bbonex + sg + rs 1 + bbone2);SOS(bbonex)) �!
ras(bbone + sg + rs 1 + bbone2);SOS(bbone) (4.4)

This example is simple yet biologically visible. We simplify complicated biolog-
ical reactions and only use the binding or unbinding to represent reactions, which
capture the information about which proteins take part in the reactions though we
omit details of reactions.

4.2 The m�-calculus

The m�-calculus is a finer-gained language which describes a less idealized for-
mal biology. The syntax of the m�-calculus is the same as the �-calculus discussed
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in Section 2.2.1 except for group names, and the semantics of the reaction rules in the
m�-calculus are more restricted.

We call basic components in them�-calculus agents. We assume an infinite count-
able set P of agents names, an infinite countable set E of edge names and an infinite
countable set G of group names. Edge and group names are supposed to be disjoint.
We take the same signature map s from P to natural numbers N as in �-calculus.

Let A;B; � � � range over protein names, x; y; � � � range over edge names, and r,
r0,� � � range over group names. For each agent name A, s(A) is the number of sites
of A, and for any 1 6 i 6 s(A), each pair (A; i) will accordingly be called a site of A.

An extended interface, is a finite map from N to (E + G + fh; vg)� N, ranged over
by � and similar symbols. The integer part of �(i) is referred to as a log.

An agent is a pair writtenA(�) withA 2 P and � an extended interface defined on
s(A). Solutions are built as in Section 2.2. All concepts about the edges is extended
to the edges and group names. For instance, interval extrusion S; (x)(S0) � (x)(S; S0)
applies both for x in E and G, with the usual side-condition that x 62 fn(S).

For example, for an agent A, if s(A) = 3, and �(1) = x; 1, �(2) = r; 2 and �(3) =
h; 0, then one may simply write A(1x;1 + 2r;2 + �30). We will also indulge sometimes
in not writing a log when it is 0, so that for instance C(1x;4 + 2r + 3) will stand
for C(1x;4 + 2r;0 + 30). A convenient consequence of this notational abuse is that
�-proteins become a particular case of m�-agents.

In the m�-calculus, group names are used as the means to built transient coop-
erative structures in our low-level systems. Logs are the additional information on
sites. They are used to effect that the agent can log what’s up on this connection.
The logs can be forgotten by means of the following projection map:

({x;n)� = {x ({r;n)� = ({v;n)� = {v ({h;n)� = {h

This projection extends in the obvious way to interfaces, agents and solutions.

Definition 4.1 (Interaction) Let L,R, be two m�-solutions, L �! R is said to be an
interaction if:
— both L and R consist of at most two agents
—fn(L) � fn(R)
— L does not contain any ”�” on group names

Definition 4.2 (Monotonic Interaction) Anm�-interactionL �! R is said to be mono-
tonic (resp. anti-monotonic) if its projection (L)� �! (R)� is a monotonic (resp. anti-
monotonic) �-reaction.

Thus, in the m�-calculus we consider only interactions which are simple and
close to biological interactions. These interactions are taken as atomic events. And
they can encode a given higher level reaction.
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4.3 The Self-assembly Protocol for the �-calculus

Self-assembly is a very important property in biology. It is a method of integration
in which components spontaneously assemble, typically by bouncing around in a
solution or gas phase until a stable structure of minimum energy is reached. Self-
assembly is crucial to the assembly of bio-molecular nano-technologies, and is thus
a promising method for assembling atomically precise devices. Components in self-
assembled structures find their appropriate location based solely on their structural
properties (or chemical properties in the case of atomic or molecular self-assembly).
Self-assembly is by no means limited to molecules or the nano-scale and can be
carried out on just about any scale, making it a powerful bottom-up method.

In our specific case, we can synthesize processes given a higher level description
in the �-calculus. For each of interacting proteins, in a purely decentralized way
and with binary synchronization as the only means of communication, proteins are
going to behave according to the original higher level description.

4.3.1 The Monotonic Protocol

The purpose of this subsection is to decompose a �-reaction in the m�-calculus:
given a �-reaction r, one wants to define an associated family, [[r]]m, ofm�-interactions
capable of simulating r in a sense that will be made precise below.

We follow a protocol that gradually recruits reactants and constructs the prod-
ucts by the only means of binary and unary interactions. Hence, we need some
statically predetermined structure in which we can know which agents may or may
not be managed in one step in the protocol.

Definition 1 (Micro-scenario) Let r = L ! (ex)R be a monotonic �-reaction, a micro-
scenario for r is a triple (Fr; Tr; init) such that:
— Fr is (isomorphic to) an acyclic orientation of [[R]]g, called a flow graph;
— Tr is a tree spanning Fr;
— init, also written init(Fr), is the common root of Fr and Tr;
— and init belongs to [[L]]g (up to the isomorphism above).

We have some remarks on micro-scenario.

(1) We assume that Fr is an oriented graph-with-sites with integers as nodes. For
different �-reactions, their micro-scenarios are chosen to use disjoint set of
nodes. In this way, when agents are recruited and handed a node of Fr, they
can identify which global �-reaction they take part in, and what role they have
in it.

(2) Such micro-scenarios always exist [DL04]. There always is a micro-scenario for
any given monotonic �-reaction: since [[R]]g is connected by monotonicity, any
node of [[L]]g can be chosen as the root and one could even assume Tr to be
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depth-first. Because any connected graph admits an acyclic orientation which
can be obtained, for instance, by choosing an arbitrary root, constructing a
depth-first tree spanning the graph, and directing all remaining edges accord-
ing to the tree ordering.

(3) We suppose that [[R]]g doesnt have loops. In fact, there could be loops in [[R]]g,
that is edges from a node to itself. The techniques described here adapt very
easily to this case, since loops are purely local to a node.

(4) The micro-scenario is not unique. We could do with more than one initiator, with-
out a spanning tree, etc [?]. Even in the restricted kind of micro-scenarios that
we are considering, there is room for different choices.

(5) The spanning tree Tr serves as a way of imposing a ”parental priority” between
the contacts in our protocol. We will give explanation later.

The graph Fr can be decided as a map over sites, defined as follows:

Fr(a; i) = (b; j) if (a; i); (b; j) are connected in FrFr(a; i) = ? if (a; i) is free in Fr

We write F?
r

for the inverse of Fr.
Intuitively, a site is an output if it belongs to the domain of Fr, and an input

if it belongs to the range of Fr. In other words, a site (a; i) is called an output if
Fr(a; i) 6= ? and an input if F?

r
(a; i) 6= ?.

Definition 2 (input/output interfaces) For n 2 N, a 2 Fr and ex a tuple indexed over
the set of inputs (resp. outputs) of a and with values in E , we define the input (resp. output)
interfaces:

^ex;na :=
X

fi j F?
r
(a;i) 6=?g

ixi;n

_ex;na :=
X

fi j Fr(a;i) 6=?g
ixi;n

These interfaces will serve us to denote the fact that all input (or output) parts
bear a certain log n.

A protein with name A is translated as an agent of the same name but with one
more auxiliary site, written �:

[[A(�)]]m = A(�+ �):

This translation extends to �-solutions and likewise, if S is a �-solution, we write
[[S]]m to denote its translation. That special site � is used to log what little additional
information one needs, that is the role of A in a given reaction (i.e. to which node
it corresponds in Fr) and a group name identifying uniquely the current attempted
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high-level reaction. To ease reading, we have systematically abbreviated A(�r;a + �)
as Ar;a(�) and also made use of the notation for input and output interfaces intro-
duced above.

Thereafter and for the rest of the paper, we suppose that it is given a monotonic
�-reaction L �!� (�x)R, a choice of micro-scenarios has been made.

The monotonic protocol consists in a first phase of recruitment and a subsequent
phase of completion. Recruitment begins with a signal sent by a specific agent called
the initiator. Then one sends and propagates two kinds of signals: forward signals
to recruit the necessary reactants, and backward signals to report success back to the
initiator. At the end of this first phase, the initiator knows that the global �-reaction
can be completed, and in the completion phase, this information is propagated to
the other reactants.

F?
r
(a; ) = ?

init
A(△v +_ex) ⇋ (r)(Ar;a(△v;1 +_ex;0a ))

Tr(a; i) = (b; j); y 2 fn(r)
FC1

Ar;a(^ex;1a + iy;0); B(jy + _ez) ⇋ Ar;a(^ex;1a + iy;1); Br;b(jy;1 + _ez;0b )

Tr(a; i) = (b; j); y 62 fn(r); b 2 L
FC2

Ar;a(^ex;1a + iv;0); B(jv + _ez) ⇋ (y)(Ar;a(^ex;1a + iy;1); Br;b(jy;1 + _ez;0b ))

Tr(a; i) = (b; j); y 62 fn(r); b 2 R r L
FC3

Ar;a(^ex;1a + iv;0) ⇋ (y)(Ar;a(^ex;1a + iy;1); Br;b(^exry;0
b + jy;1 + _e0;zb ))

T c
r
(a; i) = (b; j); x 2 fn(r)

LC1

Ar;a(^ey;1a + ix;0); Br;b(jx;0 + _ez;0b ) ⇋ Ar;a(^ey;1a + ix;1); Br;b(jx;1 + _ez;0b )

T c
r
(a; i) = (b; j); x 62 fn(r)

LC2

Ar;a(^ey;1a + iv;0); Br;b(jv;0 + _ez;0b ) ⇋ (x)(Ar;a(^ey;1a + ix;1); Br;b(jx;1 + _ez;0b ))

Table 4.1: ⇃↾01
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Fr(a; i) = (b; j)
R

Ar;a(^ex;1a + iy;1); Br;b(jy;1 + _ez;2b ) ⇋ Ar;a(^ex;1a + iy;2); Br;b(jy;2 + _ez;2b )

Table 4.2: ⇃↾12

F?
r
(a; ) = ?"12; #20 phase-shift

Ar;a(△v;1 +_ex;2a )! Ar;a(△v;3 +_ex;2a )

Fr(a; i) = (b; j)
propagation

Ar;a(^ex;3a + iy;2); Br;b(jy;2 + _ez;2b )! Ar;a(^ex;3a + iy;3); Br;b(jy;3 + _ez;2b )

Table 4.3: ⇃23

exit
Ar;a(^ex;3a + _ey;3a )! A(^ex + _ey)

Table 4.4: Exit

We give some explanation for the protocol as follows:

(1) Table 4.1 includes the rule initiation (init for short), first contacts (FC1,FC2, FC3),
and late contacts (LC1, LC2). Table 4.2 includes the rule response (R for short).
Table 4.3 includes the rule phase-shift (ps for short) and the rule propagation.
Table 4.4 includes the rule exit.

(2) The graphical explanation of the protocol will be given in the next section.

(3) The spanning tree Tr assures that only the parent according to Tr is allowed to
wake a child and recruit it, while all the other reactants have to use further in-
teractions. Some self-deadlocks may happen if we do not do this. For instance,
given a monotonic �-reaction and a solution as follows:

t = A(1x + 2); B(1x + 2); C(1 + 2)!
(yz)(A(1x + 2y); B(1x + 2z); C(1y + 2z))

T = (xyz)(A(1x + 2); B(1x + 2); C(1 + 2); C(1 + 2))

if there is no priority between contacts, then A and B might recruit distinct Cs
in T, and so, in some sense, the recruitment defeats itself all alone.

Hence, if we have a tree to sort out who is doing the first contact, and who is
not, then the problem is solved.
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(4) Reversible rules before the rule phase-shift give the group the ability to escape
deadlocks. Agents can test whether they can take a step backward without
inconsistencies.

4.3.2 A Graphical Explanation of the Protocol

In this section, we give a graphical description of this protocol, which we hope
make it easier to understand.

We use ovals to represent proteins; arrows # with names to represent the binding
from one output of one protein to one input of another protein; the box to represent
the group r. When the arrow # is included into the box completely, it says the log
of this site is 1, otherwise, the log is 0. The symbol " represents the feedback respec-
tively, that is , the logs of the correlative input and output are 2. Similarly, the log on
site is 3 when there are three arrows #"#.

Figure 4.1: The Rule init.

Figure 4.2: The Rule FC1.

A is the initial protein, so it has not inputs. The rule init (Fig. 4.1) says, as the
initial protein, A makes a group (r) to begin to recruit the next proteins.

The rule FC1 (Fig. 4.2) says that when all inputs of the protein A are recruited
into the group r, A can recruit a new protein B through one of its outputs.

The difference between the rule FC2 (Fig. 4.3) and the rule FC1, is that the protein
A and B have not connection on sites before the recruitment in the rule FC2.
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Figure 4.3: The Rule FC2.

Figure 4.4: The Rule FC3..

The difference between the rule FC3 (Fig. 4.4) and the rules FC1 and FC2, is that
the recruited protein B is new in the rule FC3.

The difference between the rules LC1, LC2 (Fig. 4.5 and Fig. 4.6) and the rules
FC1,FC2 is the protein B has already been recruited through one of its other input
ports in the rules LC1, LC2.

The rule R (Fig. 4.7) says that, when all outputs of the protein B have received
the feedback, the B can propagate it to its input sites.

The rule phase-shift (Fig. 4.8) says that, when the initial protein A receives all
the feedback from his outputs, it can initiate the succeeding phase of sending a suc-
cessful message to all the proteins which have been recruited.

The rule propagation (Fig. 4.9) says that, when the protein B receives the suc-
cessful message from inputs, he will send it to the next proteins from his outputs.

The rule exit (Fig. 4.10) says that, the proteins which take part in the reaction
exit when the recruitment is over, which is witnessed by the fact that all input and
output sites have the new log 3 (new #"# in the figure).
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Figure 4.5: The Rule LC1..

Figure 4.6: The Rule LC2..

Figure 4.7: The Rule R.
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Figure 4.8: The Rule phase-shift.

Figure 4.9: The Rule propagation.

Figure 4.10: The Rule Exists.
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4.4 Mathematical Properties of Self-assembly

In this section, we discuss mathematical properties of self-assembly, which cul-
minate in the proof of the correctness of self-assembly.

In the monotonic protocol, we denote the set of forward rules before the rule
phase-shift (ps for short) as pre-ps (i.e. all forward rules in Table 4.1 and Table 4.2)
and the set of backward rules as pre-ps�1 (i.e. all backward rules in Table 4.1 and
Table 4.2); denote the set of rules after the rule ps as post-ps (i.e. all rules in Table 4.3
and Table 4.4 except for the rule ps). The binary relation�!c on m�-solutions is the
union of pre-ps�1 and post-ps.

Definition 4.3 In the m�-calculus, let R be a set of biological reactions, the associated
R-system is the pair (S;!m�), where S is the set of m�-solutions and !m�, called the
transition relation, is the least binary relation over S such that:

S;T j= L !m� (ex)R 2 R
mon

S !m� T

S;T j= (ex)L !m� R 2 R
antimon

S !m� T

S !m� T
new

(x)(S)!m� (x)(T)
S !m� T group

S; S0 !m� T; S0

S � S0 S0 !m� T0 T0 � T
struct

S !m� T

We shall use the following notation: If T is a solution, then T r denotes the sub-
solution consisting of all the proteins of T of group r.

Definition 4.4 Consider the following properties of a solution T :

INVp Logs 1 and 2 come in pairs, i.e. if one input site i named x has log n, then the corre-
sponding output site j named x has log n.

INV0 If log 0 occurs on some protein of T of group r, then at least one log 1 appears on a
protein of that group.

INV1 If log 1 occurs on some output of a protein of T , then all inputs of that protein have
log 1.

INV2 1. If log 2 appears on an output of a protein of T , then no input of that protein has
log 0

2. if log 2 appears on an input of of a protein of T , then all outputs of that protein
have log 2.

INV3 If log 3 occurs on some protein of T of group r, then no log 0 nor 1 appear on any
protein of that group.

We write T j= INV if T satisfies all these conditions.
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Lemma 4.1 Let S be �-solution. [[S]]m j= INV .

PROOF: This property holds vacuouly since [[S]]m j= INV has no logs.

Lemma 4.2 For any �-solution S and m�-solution T , we have:
(([[S]]m; T ) j=INV ) =) (T j=INV)

PROOF: The statement follows obviously from the observation that the invariants
concern only the proteins engaged in a group.

Lemma 4.3 1. If T1 �!m� T , and T1 j= INV , then T j= INV ;

2. T1 �!c T , and T1 j= INV , then T j= INV

PROOF: The statement follows easily from the following observations (we consider
each invariant in turn):

INVp All the rules (in either direction for the reversible ones) but init, phase � shift
and exit are about replacing simulatneously the (identical) logs at the two ends
of an edge by a nw log. So the invariant is maintained. The three remaining
rules do not make any changes to logs 2 or 1 of edges.

INV0 All the redexes have at least one log 1,2, or 3.

INV2 One checks easily that all the proteins which are appear in the rules and belong
to a group either have no output 2 or have no output 0, except possibly protein
B in rule R (in either sense) or propagation, but no 0 is introduced on the other
side, so the invariant is preserved.

INV3 The set of proteins of group r on the left or on the right side of each rule of
groups ⇃↾01 and ⇃↾12 has at least one log 1 or 0, hence INV3 says that log 3 does
not appear on those proteins (and does not appear either on the left hand site of
init). Since no 3 is introduced by these rules (in either direction), the invariant
is maintained vacuously. The remaining (irreversible) rules do not introduce
any logs 0 or 1, hence they preserve the invariant.

INV1 One checks easily that all the proteins which are appear in the rules and belong
to a group either have all their input logs at 1 or have not output log at 1 (for
rule propagation, we use the fact that INV3 is satisfied (this is the reason why
we treat this case last).

Corollary 4.1 If [[S]]m �!�
m� T , then T j= INV .

PROOF: By lemmas 4.1 and 4.3.

Lemma 4.4 If T j= INV , and T is a normal form (NF for short) with respect to �!c,
then T is the form of [[S]]m, where S is a �-solution.
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PROOF:
If T is not the form of [[S]]m, then it has at least one log 0, 1, 2, or 3. We show that

T contains a redex.

(1) Suppose T has one log 3 in some group r. Suppose first that there is no log
2 in T r. Then the protein where this log occurs cannot have logs 1,0, nor 2:
hence all its logs are 3 and this protein can exit. If some log 2 appears, take a
minimal one, which by INVp is on an output of some protein A. By INV3 and
minimality, all the inputs of A must be 3. Hence we can apply the propagation
rule.

(2) Suppose that T has no log 3 and at least one log 2. Take a minimal such 2, which
by INVp is on an output of some protein A while the other end of the edge has
also log 2 and is on an input of some protein B, Then INV2 guarantees that
all input sites of A have log 1 (no 0 nor 3, nor 2 by minimality), and that all
outputs of B have log 2: hence there is a R redex.

(1) Suppose that T has no log 3 nor 2, but at least one log 1. Take a maximal such 1.
There are two cases.

• This 1 is on the input of the root. Then the root is an init�1 redex, since
all its output logs are 0 by maximality and assumption.

• Otherwise, by INVp this log 1 is on an intput of some protein B while the
other end of the edge is on on output site of some protein A. Then INV1
guarantees that all input sites of A have log 1. On the ther hand all output
sites of B have log 0 (by maximality and assumption). Hence A;B form a
redex for one of the FC�1 or LC�1 rules.

(0) Hence we know that all logs, if any, are 0. But this contradicts INV0.

Lemma 4.5 (Strong Normalization) The reduction system�!c is strongly normalizing.

PROOF: Let T be a solution, with ni occurrences of log i (i = 0; 1; 2; 3). We set

�(T ) = p0n0 + p1n1 + p2n2 + p3n3

for some natural numbers p0; p1; p2; p3 such that 0 < p0 < p1 < p2 > p3 > 0 It is easily
checket that if T �!c T 0 then �(T 0) < �(T ), and strong normailization follows.

Lemma 4.6 (Local Confluence) The reduction system �!c is locally confluent.

PROOF:
Let T �!c T 0

1 and T �!c T 0
2, where the respective reductions involve subso-

lutions T1 and T2, respectively. The local confluence property is obvious if T1 and
T2 are disjoint subsolutions. Hence we concentrate our intention on the possible
overlappings. Then all the proteins of T1 and T2 bear the same group name: this
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follows immediately from the fact that this property holds in T1 and T2 separately,
and from the overlapping. Hence we may restrict our attention to the case when the
two reductions take place in the simulation of the same macro-reduction step.

Corollary 4.2 (Confluence) The reduction system �!c is confluent.

PROOF: This corollary is from lemma 4.5 and lemma 4.6.

Lemma 4.7 Let S be a �-solution and T be am�-solution. If [[S]]m�!c
�T , then [[S]]m = T .

PROOF: Because all logs of [[S]]m are 0, we cannot fire any reduction rule. From
[[S]]m�!c

�T , we have [[S]]m = T .

Corollary 4.3 Let S and S 0 be �-solutions, if [[S]]m�!c
�[[S 0]]m, then S = S 0.

PROOF: According to lemma 4.7. we have [[S]]m = [[S 0]]m. Then S = S 0.
By the corollary 4.1, lemma 4.4 and lemma 4.6,

Lemma 4.8 For any m�-solution T which satisfies [[S]]m �!�
m� T , there exists an unique

�-solution which is denoted as T c and called the clean-up of T such that T �!�
c [[T c]]m.

PROOF: Assume that there exist two �-solutions S; S 0 such that T �!�
c [[S]]m and

T �!�
c [[S 0]]m. By corollary 6, there is a m� solution T 0 such that [[S]]m �!�

c T 0
and [[S 0]]m �!�

c T 0. We have [[S]]m = T 0 = [[S 0]]m by lemma 4.7. And S = S 0 by
corollary 4.3.

Lemma 4.9 If T1 j= INV and T1 �!ps T , then T c
1 �!� T c.

PROOF: The rule of ps is applied on its root proteinA in the �-reaction L �!� (�x)R
with the group name r and the alias a. Since the invariants, we take T1 contains the
proteins of L with the group name r such that their logs are 2. Suppose that T11 is
the form of these proteins. We write T1 = T11; T 0. We can apply the rules of pre-
ps�1, T11 �!�

c [[L]]m. Similarly, we write T = T 1; T 0 and T11 �!ps T 1. We have
T 1 �!�

c [[(�x)R]]m by applying the rules of post-ps.
Finally, we have ;

T1 = T11; T 0 �!�
c [[L]]m; T

0 �!�
c [[L]]m; [[T

0c]]
hence T1c = L; T 0c.

T = T 1; T 0 �!�
c [[(�x)R]]m; T

0 �!�
c [[(�x)R]]m; [[T

0c]]
hence T1c = (�x)R; T 0c. According to corollary 4.2, T 0 j= INV . Then the last part of
these two derivations can be justified. So we have T1c �!� T c.

About the notion clear-up, we have the following proposition;

Lemma 4.10 If [[S]]m �!�
m� T , then S �!�

� T c.
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PROOF: To proof this proposition, we reduce on the depth of [[S]]m �!�
m� T .

If T = [[S]]m, it it trivial since [[S]]cm = S. If [[S]]m �!�
m� T1 �!m� T , and suppose

that S �!�
� T c

1 , it is sufficient to consider the following two cases;
(1) T1 �!m� T by the rule except the rule ps. In this case, we have T c

1 = T c since
�!c is confluent and normal form.
(2) T1 �!ps T . Then by the lemma 4.9, T1c �!� T c according to the supposition,
we have S �!�

� T c
1 �!� T c.

Theorem 4.1 (Correctness) Suppose that T is the m�-solution and S is the � solution. If
[[S]]m�!�

m�T , then there exists a � solution S 0 such that S�!�
�S 0 and T�!�

c [[S 0]]m.

PROOF:
Let S 0 be T c. By lemma 4.10, we prove our theorem. We prove it by induction for

the steps of m�-reactions.
The base case is that [[S]]m = T . Let S 0 = S. It is trivial to prove.
The second case is that [[S]] �!m� T . Let S 0 = S. Because all the logs of [[S]] are 0,

we get T only by firing one m�-reaction rule before phase shift.Then we can fire the
reversible rule from T to [[S]], that is , T �!c [[S]].

If T1�!m�T , and T1 satisfies the correctness( that is, assume that if [[S]]�!m�
�T1,

then there exists a � solution S 0
1 such that S�!�

�S 0 and T�!c
�[[S 0

1]].), by induction,
we need consider the two cases as follows;
(1) If T1 fires one of rules before phase shift, then T can fires the reversible rule before
phase shift to T1 respectively, that is, T �!c T1�!c

�S 0
1.

(2) If T1 fires one of rules after phase shift, that is T1 �!c T , and by induction,
T1�!c

�[[s01]], then according to corollary 4, there exists a m�-solution T 0 such that
T�!c

�T 0 and [[S 0
1]]�!c

�T 0. According to lemma 5, T 0 = [[S 0
1]]. So T�!c

�[[S 0
1]]. There-

fore T satisfies the correctness.

Corollary 4.4 Let S and S 0 be �-solutions, if [[S]]m�!m�
�[[S 0]]m, then S�!�

�S 0.

PROOF: By theorem 4.1, there exists a �- solution S 00 such that S�!�
�S 00 and

[[S 0]]m�!c
�[[S 00]]m. By corollary , S 0 = S 00.
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Chapter 5

A More General System

In this chapter, we study a more general system, bigraphical reactive systems
(BRSs). We choose one biological example as our example to show the expressive
power of the BRSs. Translating �-reactions to bigraphical reactions, we show infor-
mally that the BRSs are more general systems.

The contents of this chapter are organized as follows. In Section 5.1, we discuss
the dynamics of BRSs. In Section 5.2, we choose the protein ras activation as an
example to show the expressive power of the BRSs. In Section 5.3, we translate �-
reactions to bigraphical reactions to show informally that the BRSs are more general
systems.

5.1 The Dynamics in Bigraphical Reactive Systems

In Section 2.3, we have recalled basic notions of bigraphical reactive systems
informally. In this section, we continue discussing the dynamics of BRSs.

5.1.1 The Dynamics of Bigraphs

The dynamics of bigraphs is dedicated to reconfigurations of bigraphs [JM04].
They depend upon both structural components; and there are one or more reaction
rules to support them. Each such rule has a redex and reactum. The redex is a precon-
dition for a reaction, represented by a pattern of nesting and linkage; the reactum
is a postcondition indicating how the reaction will change that pattern. Places at
which reactions may occur are determined by controls. A control K has three states
as follows;
—A control K may be atomic, meaning that nothing may be nested within a K-node;
—A control K may be active, meaning that reactions may occur within a K-node;
—A control K may be passive, meaning that a control K must be destroyed before its
inhabitant nodes can react.

A control K is called non-atomic if it is active or passive.
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A reaction is modelled as communication and the subsequent change of channel
names and nodes.

Figure 5.1: The communication rule.

Fig. 5.1 shows a typical communication rule of the �-calculus;
xy:P j x(z):Q �! P j Qfy=zg

The rule above says that the process xy:P can send name y via the name x while
the other process x(z):Q receives this name y via the same name x.

In bigraphical expressions, we take boxes as bigraphs, grey boxes as holes where
other bigraphs can be inserted, ovals denoted by controls as nodes, thin lines de-
noted by names as links, rings as binding ports.

In formal graphical expressions of bigraphs, we have some notions for expres-
sion.

• We use Nxy to represent the node with the control N has two ports linked by x
and y.

• We use the symbol jj to separate the bigraphs in the redex or the reactum, for
example, R1 jj R2 represents the redex in Fig. 5.1.

• We use the complex of nodes and holes with their ports to represent bigraphs,
for example, we use Sendxy✷ to represent the bigraph R1.

• We use j to represent the separation of nodes or links in one bigraph. For
example the expression NxjMy says that in one bigraph, there exist two nodes
N and M which have ports linked by x and y respectively.

According our notions, the formal graphical expression of Fig. 5.1 is as follows;

Sendxy✷ jj Getx(z)✷ �! ✷ jj xjfy=zg✷ (5.1)
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In Fig. 5.1, R1 and R2 are the redex before communication, R0
1 and R0

2 are reactum
after communication. We write the redex of communication as a pair R1 jj R2 the
reactum as a pair R0

1 jj R0
2. The node (the oval in R1), with the control Send, has two

ports which are linked by x and y respectively. The node (the oval in R2), with the
control Get, has two ports as well; one is linked by x, and the other is the binding
port which is linked with other nodes or holes. (In Fig. 5.1, we use a ring to indicate
a binding port.) After the reaction, since nodes with controls Send and Get are
destroyed, the common name x is unattached in the reactum. The expression fy=zg
is represented by a curving link.

Hence, the process x(y):P is represented as R1 in Fig. 5.1, and as Sendxy✷ in the
formal graphical expression (5.1). The process x(y):Q is represented as R2 in Fig. 5.1,
and as Getx(z)✷ in the formal graphical expression (5.1). After communication, the
process P is represented as a bigraph R0

1 in Fig. 5.1, and as ✷ in the formal graphical
expression (5.1). The process Q[y=z] is represented as a bigraph R0

2 in Fig. 5.1, and
as x j fy=zg✷ in the formal graphical expression (5.1).

As Robin Milner etc. mentioned [JM04], rules in the �-calculus, the ambient calcu-
lus etc., for instance, a reaction rule of the asynchronous �-calculus, a reaction rule
for replication and a reaction rule for summation in the �-calculus, some reaction
rules in the ambient calculus, can be translated into BRSs.

5.1.2 The Dynamics of Place Graphs and Link Graphs

Since a bigraph is represented as a combination of two independent mathemati-
cal structures: a place graph and a link graph, we can discuss the dynamics of place
graphs and link graphs respectively. That is to say, a reaction rule of bigraphs is
represented as a combination of a reaction rule of link graphs and a reaction rule of
place graphs. This kind of separability of bigraphs can simplify our models. Accord-
ing to our practical goals, we can choose place-graphical models or link-graphical
models.

We use 4 to represent the bigraphs (we take bigraphs as roots), r to represent
the hole (e.g. grey boxes in bigraphs), � to represent nodes, and edges represent the
inclusion relation of bigraphs, nodes and holes.

Fig. 5.2 shows the reaction rule of place graphs taking place in Fig 5.1.
In Fig. 5.2, ”R1 4” represents the bigraph R1 in Fig. 5.1. ”R2 4” represents the

bigraph R2 in Fig. 5.1. ”�” on the left represents the node with the control Send of
R1 in Fig. 5.1. ”�” on the right represents the node with the control Get of R2 in
Fig. 5.1. The ”r” linked with the left ”�” (Send) is the hole (the grey box) of the oval
in bigraph R1 in Fig. 5.1. The ”r” linked with the right ”�” (Get) is the hole (the grey
box) of the oval in bigraph R2 in Fig. 5.1. The edge from ”R1 4” to the ”�” on the left
says that the node (Send) � belongs to the bigraph R1 in Fig. 5.1. Fig. 5.2 declares the
inclusion relation of bigraphs, nodes and holes in Fig 5.1: the bigraph R1 has a node
with control send, this node has a hole; the bigraph R2 has a node with control Get,
this node has a hole. After communication, the bigraph R0

1 hasn’t nodes any more
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Figure 5.2: The dynamics of place graphs..

and has a hole. the bigraph R0
1 also has one hole.

Figure 5.3: The dynamics of link graphs..

Fig. 5.3 shows the reaction rule of link graphs. It records the track of links in the
reaction of Fig. 5.1. The link graph shares the same set of nodes and holes with the
place graph. In fig. 5.3, the ” � ” on the left still represents the node with the control
Send in the bigraph R1 in Fig. 5.1. It has two links x and y, and x is also connected
to the right node ( the node with the control Get in the bigraph R2 in Fig. 5.1). The
r on the left is the hole of the node with control Send in the bigraph R1 in Fig. 5.1.
Since there is no link between the node with the control Send and its hole in the
bigraph R1 in Fig. 5.1, there is no link between the left r and the left ”�” in Fig. 5.3.
Comparing to the left r, the right r is linked with the right ”�” since there is one
link between the node with the control Get and its hole in the bigraph R2 in Fig. 5.1.
After communication, the link y is connected to the hole in the bigraphR2 in Fig. 5.1.
The link x is independent.

5.2 A Bigraphical Model of ras Activation

In this section, we still choose ras activation as our example (see 3.2) to show the
expressive power of the BRSs.

In this model, we give some explanations as follows: first, in formal bigraphical
expressions, we use the notation introduced in Section 5.1.1.
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Sys := RAS jj SOS jj RAF jj GAP
Figure 5.4: The bigraphical representation of the system.

Second, in bigraphical expressions, we use the notation introduced in Section 5.1.1.
Third, from the angle of modelling, we take proteins and their functional do-

mains as bigraphs, components residues of domains as links. Nodes with controls
are suppositional, that is, there is no direct respondence in biology, they just make it
easier to understand the biochemical process.

Finally, molecular interactions and modification are modelled as communication
and the subsequent change of names and nodes.

As mentioned in Section 3.3.2, the whole system consists of four proteins (ras,
SOS, RAF and GAP).

Fig. 5.4 shows the system as a bigraph in which there are four subbigraphs rep-
resenting four kinds of proteins. The grey boxes represent their domains (subsubbi-
graphs) respectively. (Here we only give domains which take part in this system.)

Next we use reaction rules in BRSs to model biological reactions.
Fig. 5.5 and Fig. 5.6 show how the protein SOS activates the protein ras. It is

implemented in two steps. One is the reaction between one domain (S GNEF ) of
SOS and one domain (INASWI I) of ras. The other is the reaction between the
domain (S GNEF ) of SOS and the other domain (INASWI II) of ras. N i denotes
nodes in formal graphical expressions.

In Fig. 5.5, the node N1 in the bigraph INASWI I has the common link bbone
with the node N2 in the bigraph S GNEF . After the reaction, nodes N1 and N2 are
destroyed and the link bbone is unattached.

In Fig. 5.6, the node N1 in the bigraph INASWI II has the common link sg with
the node N3 in the bigraph S GNEF . After one reaction, nodes N1 and N2 are
destroyed and the link sg are unattached. The link rs 1 is sent to the node N4 in
the bigraph S GNEF . Since there is the common link rs 1 between nodes N2 and
N4, there is one reaction which sends the link gdp from the node N4 in the bigraph
S GNEF to the node N2 in the bigraph ACTSWI II .

Fig. 5.7 shows the reaction between the domain ACTSWI I of ras and the do-
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N1
bbone✷ jj (N2

bbone✷ j N3
sg(c ras)(N4

c ras(gtp)✷)) �! ✷ jj (bbone j ✷ j N3
sg(c ras)(N4

c ras(gtp)✷))

Figure 5.5: Ras Activation-1.

main R Nt of RAF. It shows how the protein ras activates the next protein RAF in
the signal transduction RTK-MAPK.

In fig. 5.7, the node N1 in the bigraph ACTSWI I has the common link s with
the nodeN4 in the bigraphR Nt . After one reaction, nodesN1 andN4 are destroyed
and the link rs 2 is sent to the node N5. Since nodes N2 and N5 have common link
rs 2, there is another reaction in which nodes N2 and N5 become destroyed and the
link rs 2 is unattached.

Fig. 5.8 and Fig. 5.9 show the inactivation of the active protein ras. After the
reaction showed in Fig. 5.7, the protein ras is inactivated by the protein GAP. Fig. 5.8
shows the reaction between the domain (ACTSWII II) of ras and GAP.

In Fig. 5.8, the nodeN1 in the bigraphACTSWI II has the common link sg with
the nodeN4 in the bigraphGAP , so there is a reaction. After reaction, nodesN1 and
N4 are destroyed and the link r swi 1 is sent to the node N5. Since nodes N2 and N5

have the common link r swi 1, a reaction is possible in which nodes N2 and N5 are
destroyed and the link gdp is sent to the node N3 in the bigraph bbone :INASWI II .

Fig. 5.9 shows the reaction between the domains (bbone :INASWI I and bbone :
INASWI II) of ras. It shows that the protein ras returns to the initial inactive state.

In our model, we separate the whole proceeding of ras activation into several
reaction rules (from Fig. 5.5 to Fig. 5.9). We represent each protein or domain as a
bigraph. Actually, according to our requirement, we can choose different biological
objects as bigraphs. For example, we can take a complex as a bigraph, which makes
the whole model simpler.

On the other hand, we also can separate each reaction rule in BRSs into two reac-
tion rules in place graphs and link graphs respectively. The place-graphical model
and the link-graphical model of ras activation are shown in Appendix A.2.
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N1
sg(rs 1)(N

2
rs 1(x)✷) jj (N4

sg(c ras)(N5
c ras(gtp)✷) j N3

bbone✷) �!
N2

rs 1(x)✷ jj sg j N5
[rs 1=c ras](gtp)✷ j N3

bbone✷ �!
rs 1 j [gtp=x]✷ jj (sg j ✷ j N3

bbone✷)

Figure 5.6: Ras Activation-2.
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(N1
s(rs 2)(N

2
rs 2(N

3
bbone✷)) jj N4

s(c ras)(N
5
c ras✷) �! N2

rs 2(N
3
bbone✷) jj (s j N5

[rs 2=c itras]✷)
�! N3

bbone✷ jj (rs 2 j s j ✷)

Figure 5.7: Signal Transfer.
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N1
sg(r swi 1)(N

2
r swi 1(x)(N

3
bbone✷)) jj N4

sg(c ras)(N
5
c ras(gdp)✷) �!

N2
r swi 1(x)(N

3
bbone✷) jj (sg j N5

[r swi 1=c ras](gdp)✷) �!
N3

[gdp=t]bbone✷ jj (r swi 1 j sg j ✷)

Figure 5.8: ras inactivation-1.
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(N1
bbone✷ jj N2

[gdp=z]bbone✷ �! (bbone j ✷) jj [gdp=z]✷
Figure 5.9: ras inactivation-2.

74



5.3 An Example

Bigraphs are graphical structures. The �-calculus introduced in Chapter 4 ideal-
izes protein-protein reactions. Strictly speaking, it is some kind of graphical rewrit-
ing operating on graphs-on-site. It has a graphical structure as well.

It is easy to translate �-reactions to bigraphical reactions. We take solutions as
bigraphs, proteins as nodes, sites of proteins as ports, and bindings as links. For
instance, we consider a monotonic �-reaction as follows;

A(1x + 2); B(1x + 2); C(1)! (y)(A(1x + 2); B(1x + 2y); C(1y)) (5.2)

This monotonic �-reaction (5.2) says that, when the site 1 of the protein A binds
to the site 1 of the protein B via the name x, the site 2 of the protein B will bind to
the site 1 of the protein C via the name y.

 

A  B  C  

x  

A
 

B  C  

x  

y  

Figure 5.10: A �-reaction.

Fig. 5.10 shows how to represent such a reaction in BRSs. We take proteins A, B,
and C as nodes in a bigraph, and sites of proteins as ports of nodes in the bigraph.
The edge x connecting sites of proteins is represented as a link in the bigraph. The
monotonic �-reaction is actually the generation of a new link y in bigraphical reac-
tion. The formal bigraphical expression of Fig. 5.10 is:

Ax j Bx j C �! Ax j Bxy j Cy
This example gives us an evidence that the �-calculus can be translated into the

bigraphical reactive system.
Remarkably, this example is very simple. It gives us an evidence that �-calculus

can be translated in this way into the bigraphical reactive system.
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Chapter 6

Conclusions and Future Work

In this thesis, we have studied three process calculi to model systems biology.
We extended the �-calculus to model the aberrant signal transduction; proved the
correctness of self-assembly in �-calculus; and made an attempt of modelling ras
activation using BRSs. These results lay out some foundations for future studies of
systems biology and process algebra. They also highlight the robustness of process
algebra in modelling and analyzing systems biology.

In the rest of this chapter we discuss possible future work, including several
problems that have been left open.

Generalization of Results In Chapter 3, the I�-calculus was obtained by
adding two aberrant actions (the suicide action x and the propagation action ]) to
the �-calculus. Does there only exist these two kinds of aberrance in biology? Or
could other aberrance be represented by these two actions? We don’t know yet.
Our motivation started from one detailed case, the aberrant protein ras activation
in signal transduction. Compared with computer systems, biological systems are so
complicated that our model cannot verify all of them.

In Chapter 4, biological reactions are represented by way of binding or unbind-
ing in �-calculus. We focused on the monotonic or antimonotonic reactions, which
have been proved to have good mathematical properties. We did not find a good
way to deal with other more complicated reactions so far.

In a word, we have the following challenges:

• A list for general features of systems biology? The summary of features of
systems biology is necessary because our models stem from these properties.

• A general model for biological processes with aberrance? The I�-calculus is
the first step. On the one hand, since systems biology has various parts, for
instance, metabolic pathways, organelles, cells, physiological systems, organ-
isms and so on, we should find appropriate models for these parts respectively.
Then we shall try to unify them. On the other hand, maybe the I� calculus is
the one that can unify the others. It needs to be proved.

77



• A model for general biological systems? Since BRSs aim to unify the existing
process algebras, it may be that model. But this needs future study.

In future work, we would like to go beyond case studies, and we are looking for
generalization of results.

Models for quantitative analysis All models in this thesis are for qualitative anal-
ysis. They capture the relations among components in biological system. Quantita-
tive analysis is another very important direction in systems biology. We can know
more accurately relation among the components and the relation with the environ-
ment outside by quantitative analysis. Aviv Regev etc. have taken the Stochasitic �-
calculus as a quantitatively analytic model to model signal transduction RTK-MAPK
and have got some useful results.

The models we designed lack of quantitative analysis. In Chapter 3, we intro-
duced a tag system as an auxiliary system to the I�-calculus. The tag system is
based on set theory. And tags can represent quantitative information. So we believe
that the tag system will be useful in the quantitative analysis.

As one direction in future work, we need to get hold of some points as follows:

• Objects. We cannot analyze quantitatively all the elements in one model. But
we can focus on one or some of them. For instance, Aviv Regev etc. focus
on effect of concentration of proteins in the model of stochastic �-calculus.
Temperature, the number of molecules , intensity of pressure, etc. should be
considered if necessary.

• Method. We believe that there exist many other models to make quantitative
analysis, other than the tag system. Simplicity and feasibility will be an im-
portant criterion.

• Results. Results of models should be consistent with results of biology. This is
also the criterion to evaluate our models.

The theoretical development of models Deeper studying of models is necessary.
The algebraic properties of models enrich the theory of models themselves. How-
ever, when focusing on models for systems biology, those properties which can ver-
ify properties of systems biology are more important. The use of formal and algo-
rithmic approaches has greatly accelerated progress in the sequence and structure
branches of biology. Adopting a common representation language for biochemi-
cal processes may similarly accelerate progress in understanding their function and
evolution.

So far, we just considered the expressive power of models. We ensured our
model can describe the biological process. For models themselves, we know that
the �-calculus, the �-calculus and BRSs have rich good algebraic properties. How
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to transfer this in the systems biology? That is to say, how do we ensure some bio-
logical properties using these algebraic properties?

Biological properties in systems biology are different from our computing mod-
els; for example, (1) complicated concurrence;(2) enormous entities;(3) the indeter-
mination of factors. All of these are our obstacles in future work.

Implementation of Models The implementation of models is another future re-
search direction. Aviv Regev etc. have developed a computer application, called
PiFCP. PiFCP is based on the Logix system, which implements Flat Concurrent Pro-
log. Our research opens up new possibilities in the study of biochemical systems
. However, there are no related automatic tools yet. Designing and implementing
such a tool will be our next work.
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Appendix A

Some Additional Examples

A.1 The I�-model with the Tag System about the Pro-

tein ras

In Section 3.3.2, we have used the I�-calculus to model the protein ras activation.
Here we revisit this example with the tag system. Tags of motifs and residues show
that motifs and residues are normal or aberrant, and tags of proteins help to justify
whether there exit aberrant components in proteins. By the respective change of
tags in reduction rules, it is clearer to know the movement of aberrant components
during the process of ras activation.

A.1.1 The Normal State of ras

First, the system is defined in A.1

< ISys;Sys > ::= < Iras ; ras >j< ISOS;SOS >j< IGAP ;GAP >
j< IRAF ;RAF > (A.1)

where the tag of the system is:

ISys ::= Iras ] ISOS ] IGAP ] IRAF (A.2)

The four proteins, ras, SOS, GAP, RAF, in this system are given through (A.3)
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to (A.6)

< Iras; ras > ::= < IINASWI I ; INASWI I >
j< IINASWI II ; INASWI II > (A.3)

< ISOS;SOS > ::= <IS SH3 BS; S SH3 BS>j<IS GNEF ; S GNEF > (A.4)

< IRAF ;RAF > ::= < IR Nt; R Nt >j< IR ACT BS; R ACT BS >
j< IR M BS; R M BS >j< IINA R Ct; INA R Ct >
j< IR ATP BS; R ATP BS > (A.5)

< IGAP ;GAP > ::= < isg; sg(c ras) > : < ic ras; c ras(gdp) > :
< IGAP ; GAP > (A.6)

Respectively, the tags are given as follows:

Iras ::= IINASWI I ] IINASWI II (A.7)

ISOS ::= IS SH3 BS ] IS GNEF (A.8)

IRAF ::= IR Nt ] IR ACT BS ] IR M BS ] IINA R Ct ] IR ATP BS (A.9)

IGAP ::=
1]
n=1

(fisg; ic rasg) (A.10)

Since GAP is represented by a recursive process in our model, by the rule t-const
in Table 3.2, the tag of GAP is (A.10).

(A.3) shows that the protein ras has two domains which are represented as fol-
lows:

< IINASWI I ; INASWI I > ::= < ibbone; bbone > : < is; s(rs 2) > :
< irs 2; rs 2 > : < ibbone; bbone > :
< IINASWI I ; INASWI I > (A.11)

< IINASWI II ; INASWI II > ::= < isg; sg(rs 1) > : < irs 1; rs 1(x) > :
<isg; sg(r swi 1)>:<ir swi 1;
r swi 1(x)> : < ibbone; bbone > :
< IINACTSWI II ; INACTSWI II > (A.12)

where domains INASWI I and INASWI II are recursive processes. Then the tags
are given in (A.13) and (A.14).

IINASWI I ::=
1]
n=1

fibbone; is; irs 2; ibboneg (A.13)

IINASWI II ::=
1]
n=1

fisg; irs 1; isg; ir swi 1; ibboneg (A.14)

The domain S GNEF of the protein SOS is represented in (A.15):

< IS GNEF ; S GNEF > ::= < ibbone; bbone > : < IS GNEF ; S GNEF >j
< isg; sg(c ras) > : < ic ras; c ras(gtp) > :
< IS GNEF ; S GNEF > (A.15)
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where the respective tag is in A.16.

IS GNEF ::=
1]
n=1

(fibg ] (fisg; ; ic ras; g)
=

1]
n=1

fib; isg; ; ic ras; g (A.16)

The domain R Nt of RAF is defined in (A.17):

< IR Nt; R Nt > ::= < is; s(c ras) > : < ic; c ras > :
< IACTR Nt; ACTR Nt > (A.17)

The respective tag is in (A.18).

IR Nt = fis; ic rasg ] IACTR Nt (A.18)

The protein SOS activates the protein ras. There are two steps: one is that the
domain bbone :S GNEF of the protein SOS interacts with the domain INASWI I
of the protein ras, the other is that the domain sg(c ras):c ras(gtp):S GENF of the
protein SOS interacts with the domain INASWI II of the protein ras. Then the
following interactions are possible:

< IINASWI I ; INASWI I >j< IS GNEF ; S GNEF >
�I1�!

< is; s(rs 2): < irs 2; rs 2 > : < ibbone ; bbone > :
< IINASWI I ; INASWI I >j< IS GNEF ; S GNEF >j ::: (A.19)

< IINASWI II ; INASWI II >j< IS DNEF ; S GNEF >
�I2�! �I3�!

< isg ; sg(r swi 1): < ir swi 1; r swi 1(x) > : < ibbone ; bbone > :
< IINASWI II ; INASWI II >j< IS GNEF ; S GNEF >j ::: (A.20)

Where

I1 = fibbone ; ibboneg (A.21)

I2 = fisg ; isgg (A.22)

I3 = fir swi 1; ic rasg (A.23)

According to Table 3.3, the change of tags in interactions follows some rules.
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1]
n=1

fibbone; is; irs 2; ibboneg ] 1]
n=1

fibbone ; isg; ; ic ras; gr fibbone ; ibboneg
=

fis; irs 2; ibbone; isg; ; ic ras; g ] 1]
n=2

fibbone; is; irs 2; ibboneg ] 1]
n=2

fibbone ; isg; ; ic ras; g
=1]

n=1
fibbone; is; irs 2; ibboneg ] 1]

n=1
fibbone ; isg; ; ic ras; g (A.24)

1]
n=1

fisg; irs 1; isg; ir swi 1; ibboneg ] 1]
n=1

fibbone ; isg; ic ras; gr fisg ; isg ; ir swi 1; ic rasg
=

fisg; irs 1; ibbone; ibboneg ] 1]
n=2

fisg; irs 1; isg; ir swi 1; ibboneg ] 1]
n=2

fibbone ; isg; ic ras; g
=1]

n=1
fisg; irs 1; isg; ir swi 1; ibboneg ] 1]

n=1
fibbone ; isg; ic ras; g (A.25)

After interactions (A.19) and (A.20), the protein ras is activated and interact with
the new protein RAF. In fact, it is the interaction between the domain s(rs 2):rs 2:
bbone :INASWI I of the protein ras and the domain R Nt of the protein RAF.

< is; s(rs 2): < irs 2; rs 2 > : < ibbone ; bbone > :
< IINASWI I ; INASWI I >j< IR Nt ; R Nt > ��!�

< ibbone ; bbone > :
< IINASWI I ; INASWI I >j< IACTR Nt ;ACTR Nt > (A.26)

Respectively, the change of tags in the interaction( A.26) is as follows:

fis; irs 2; ibboneg ] 1]
n=1

fibbone; is; irs 2; ibboneg ] fis; ic rasg ] IACTR Nt

rfis; irs 2; is; ic rasg =

fibboneg ] 1]
n=1

fibbone; is; irs 2; ibboneg ] IACTR Nt (A.27)

Next, the protein GAP inactivates the protein ras, then the protein ras comes back
to the initial state, that is, the inactive state. The detailed I�-programme of this
inactivation is as follows:

< isg ; sg(r swi 1): < ir swi 1; r swi 1(x) > : < ibbone ; bbone > :
< IINASWI II ; INASWI II >j< IGAP ;GAP > ��!�

< ibbone ; bbone > : < IINASWI II ; INASWI II >j< IGAP ;GAP > (A.28)

The protein GAP actually interacts with one domain sg(r swi 1):r swi 1(x):bbone :
INASWI II of the active protein ras (A.28). Then the domain bbone :INASWI II
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interacts with another domain bbone :INASWI I of the protein ras (A.29), which the
protein ras would be in inactive state.

< ibbone ; bbone >:< IINASWI I ; INASWI I >j< ibbone ; bbone >:
<IINASWI II ; INASWI II > ��!<IINASWI I ; INASWI I >

j<IINASWI II ; INASWI II > (A.29)

(A.30) and (A.31) show the relations of tags with respect to reactions (A.28) and
(A.29) respectively.

1]
n=1

fisg; irs 1; isg; ir swi 1; ibboneg ] 1]
n=1

fisg; ic rasgr fisg; ir swi 1; isg; ic rasg =

fisg; irs 1; ibboneg ] 1]
n=2

fisg; irs 1; isg; ir swi 1; ibboneg ] 1]
n=2

fisg; ic rasg =
1]
n=2

fisg; irs 1; isg; ir swi 1; ibboneg ] 1]
n=2

fisg; ic rasg (A.30)

fibboneg ] 1]
n=1

fibbone; is; irs 2; ibboneg]
fibboneg ] 1]

n=1
fisg; irs 1; isg; ir swi 1; ibbonegr fibbone ; ibboneg =

1]
n=1

fibbone; is; irs 2; ibboneg ] 1]
n=1

fisg; irs 1; isg; ir swi 1; ibboneg (A.31)

From (A.24), (A.25), (A.27) , (A.30), (A.31), we observe that, during the process
of activation of the protein ras, 0 never occurs in the tag of the system (Sys).

A.1.2 The Aberrant State of ras

When ras mutates aberrantly, (A.32) defines the I� representation of GAP in the
aberrant state. (A.36) shows that GAP loses its function and does nothing, meaning
that it cannot inactivate the domain sg(r swi 1):r swi 1(x):bbone :INASWI II of
ras.

< I 0GAP ;GAP > ::= < 0; x(sg(c ras)) > : < ic ras ; c ras(gdp) > :
< I 0GAP ; GAP > (A.32)

I 0GAP ::= f0g (A.33)

< I 0GAP ;GAP > �! < ∅; 0 > (A.34)

I 0GAP r f0g = ∅ (A.35)

The aberrant protein ras has the aberrant domain INASWI I :

< I 0INASWI I ; INASWI I > ::= <ibbone; bbone>:<0; ](s(rs 2):rs 2)>:<ibbone;
bbone >:<I 0INASWI I ; INASWI I > (A.36)

I 0INASWI I ::= fibboneg ] 1]
n=1

f0; is; irs 2g (A.37)
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Hence, the interactions (A.28)and (A.29)cannot happen. While the interaction (A.26)
is changed as follows:

< 0; ](s(rs 2): < irs 2; rs 2) > : < ibbone ; bbone > :
< I 0INASWI I ; INASWI I >j< IR Nt ; R Nt > ��!�

< 0; ](s(rs 2): < irs 2; rs 2) > : < ibbone ; bbone > :
< I 0INASWI I ; INASWI I >j< IACTR Nt ;ACTR Nt > (A.38)

1]
n=1

f0; is; irs 2g ] (fis; ic rasg ] IACTR Nt) r f0; is; irs 2; is; ic rasg =
1]
n=1

f0; is; irs 2g ] IACTR Nt (A.39)

We can find, on one hand, 0 occurs in the tag of the system which says that
aberrance exits in the system. On the other hand, only one 0 is in the tag of GAP
which says that GAP has the suicide capability, and unlimited 0s are in the tag of
INASWI I which says that INASWI I has the propagation capability. We cannot
check whether INASWI I has the suicide capability or not only by the tag system.

A.2 The Link and Place Graphical Model of ras Activa-

tion

In this section, we give the link graphical and place graphical model of ras acti-
vation, respectively. The reaction rules of BRSs in Section 5.2 are combinations of
reaction rules of link graphs and reaction rules of place graphs.

According to Fig. 5.4, the place graph of the system is shown in Fig. A.1.

Figure A.1: The place graph of the system.

The system in Fig. A.1 includes four bigraphs (proteins).
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Fig. A.2 and Fig. A.3 are the place graphs and the link graphs when the protein
SOS activates the protein ras.

In Fig. A.2, the place graph says that the domain INASWI I has one subdomain
(”r”) which is controlled by one node N1 (”�”), and the domain S GNEF has two
subdomains in which one is controlled by nodes N2 and the other is controlled by
nodes N3 and N4. After the reaction, nodes N1 and N2 are destroyed.

The link graph says that, before the reaction, nodes N1 and N2 are bounded by
bbone . After the reaction, since nodes N1 and N2 are destroyed, the link bbone
becomes independent.

In Fig. A.3, the place graph says that the domain INASWI II has one subdo-
main (”r”) which is controlled by nodes N1 and N2, and the domain S GNEF has
two subdomains in which one is controlled by node N3 and the other is controlled
by nodes N4 and N5. After two reactions, nodes N1, N2, N4 and N5 are destroyed.

The link graph says that, before the reaction, nodes N1 and N4 are bounded by
sg . After one reaction, since nodes N1 and N2 are destroyed, the link sg is indepen-
dent and the link rs 1 is sent to the node N5 by the link c ras . Then nodes N2 and
N5 have the common link c ras . After the other reaction, the link gtp is sent to the
subdomain (the left ”r”) by the link x. Nodes N2 and N5 are destroyed and the link
rs 1 becomes independent.

In the bigraphical example of ras activation, reaction rules of place graphs show
the occurrences of biological reactions, and link graphs show the direction of biolog-
ical reactions. In other words, reaction rules of place graphs ensure the occurrence
of biological reactions, while reaction rules of link graphs describe how biological
reactions occur.

Fig. A.4 are reactions that the activated ras sends the signal to the next protein
RAF in place graphs and in the link graphs respectively.

In Fig. A.4, the place graph says that the domainACTSWI I has one subdomain
controlled by three nodes N1, N2 and N3, and the domain R Rt has one subdomain
controlled by two nodes N4 and N5. After two reactions, nodes N1, N2, N4 and N5

are destroyed.

The link graph says that nodes N1 and N4 have the common link s and there is
one reaction such that N1 and N4 are destroyed, the link s is independent, and the
link rs 2 is sent to the node N5 by the link c ras . So there is another reaction such
since nodes N2 and N5 have the common link rs 2. After the second reaction, nodes
N2 and N5 are destroyed and the link rs 2 becomes independent.

Fig. A.5 and Fig. A.6 are the reactions showing how the activated ras returns back
to the initial inactive state in place graphs and in link graphs respectively.

In Fig. A.5, the place graph says that, the domain ACTSWI II has one subdo-
main controlled by nodes N1, N2 and N3, and the domain GAP has one subdomain
controlled by nodes N4 and N5. After two reactions, nodes N1, N2, N4 and N5 are
destroyed.

The link graph says that, nodes N1 and N4 have the common link sg and there
is a reaction such that the link r swi 1 is sent to the node N5 by the link c ras . Then
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Figure A.2: The place graph and the link graph of ras activation-1.

since nodes N2 and N5 have the common link r swi 1, there is another reaction such
that the link gdp is sent to the node N3 by the link x. During the two reactions, nodes
N1, N4, N2 and N5 are destroyed and links sg and r swi 1 are independent.

In Fig. A.6, the place graph says that, the domain bbone :INASWI I has one sub-
domain controlled by one node N1, and the domain bbone :INASWI II [gtp=x] has
one subdomain controlled by the node N2. After reaction, the node N1 is destroyed
while the node N2 becomes active. The link graph says that, one reaction occurs
since nodes N1 and N2 have the common link bbone . After the reaction, the node
N1 is destroyed and the link bbone becomes independent.
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Figure A.3: The place graph and the link graph of ras activation-2.

Figure A.4: The place graph and the link graph of signal transfer.

89



Figure A.5: The place graph and the link graph of ras inactivation-1.

Figure A.6: The place graph and the link graph of ras inactivation-2.
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Appendix B

Some Proofs in the Thesis

B.1 The Proof of Proposition 3.4

Proposition 3.3 [Strengthening] Assume that the termM is not free in the process
P and that N 6=M . The following properties hold:

(1) If �;M : T ` N : S, then also � ` N : S.

(2) If �;M : T ` P : Ok, then also � ` P : Ok.

Proof: (1) The judgement �;M : T ` N : S must be established through the rule
Level Term with ` �;M : T well formed , and N : S in �;M : T . Then the judgment
` �;M : T well formed must be established through the rule Environment Term
with ` � well formed . Because N 6= M , we have the fact that N : S in �. Hence we
have � ` N : S using the rule Level Term .

(2) The second proposition is obtained by induction over the structure of P .

(a) Case 0. The judgement �;M : T ` 0 : Ok must be established through the rule T-
nil with ` �;M : T well formed. The judgment ` �;M : T well formed must
be established through the rule Environment Term with ` � well formed.
So � ` 0 : Ok by the rule T-nil again.

(b) Case �i:P . The judgement �;M : T ` �i:P : Ok, must be established through
one of the rules (T -out, T -in, T -sout, T -sin, T -kout, T -kin, T -ksout, T -ksin,
T -pout, T -pin,T -psout and T -psin) with �;M : T ` a : R, (�;M : T ` b :
Normal or �;M : T ` x : Unknown), and �;M : T ` P : Ok, where R 2
fNormal;Aberrantg. By induction hypothesis we have � ` P : Ok. Hence we
have � ` �i:P : Ok also by one of the rules above.

(c) Case P j Q. The judgement �;M : T ` P j Q : Ok must be established through
the rule T -com with �;M : T ` P : Ok and �;M : T ` Q : Ok. By induction
hypothesis we have � ` P : Ok, and � ` Q : Ok, we have � ` P j Q : Ok also

91



by the rule T -com. Similarly, we can get the same results for P + Q using the
rule, T -sum.

(d) Case (�a)P . The judgement �;M : T ` (�a)P : Ok must be established through
one of rules T -res and T -ares with �;M : T; a : R ` P : Ok, where R 2
fNormal;Aberrantg By induction hypothesis we have �; a : R ` P : Ok, we
have � ` (�a)P : Ok using the rule T -res or T -ares again.

B.2 The Proof of Proposition 3.5

Proposition 3.4 [Weakening] Assume that M is not defined in the environment
�,

(1) If � ` N : S, then �;M : T ` N : S.

(2) If � ` P : Ok, then �;M : T ` P : Ok.

Proof: (1) The judgement � ` N : S must be established through the rule Level
Terms with ` � well formed, and N : S is in �. Because M is not defined in the
environment �, we have ` �;M : T well formed by the rule Environment Term.
Since N : S is in �, of course, N : S is in �, M : T , hence we have �, M : T ` N : S
using the rule Level Term.

(2) It is obtained by induction over the structure of P .

(a) Case 0. The judgement � ` 0 : Ok must be established through the rule T-
nil with ` � well formed. For M is not defined in the environment �, then
we have ` �, M : T well formed by the rule Environment Term. So �,
M : T ` 0 : Ok by the rule T-nil again.

(b) Case �i:P . The judgement � ` �i:P : Ok must be established through one of the
rules (T -out, T -in, T -sout, T -sin, T -kout, T -kin, T -ksout, T -ksin, T -pout, T -
pin, T -psout and T -psin) with � ` a : R, (� ` b : Normal or � ` x : Unknown)
and � ` P : Ok where R 2 fNormal;Aberrantg. By induction hypothesis we
have �, M : T ` P : Ok. Hence we have �, M : T ` �i:P : Ok also by the rules
above.

(c) Case P j Q. The judgement � ` P j Q : Ok must be established through the rule
T -com with � ` P : Ok and � ` Q : Ok. By induction hypothesis we have �,
M : T ` P : Ok, and �, M : T ` Q : Ok, then we have �, M : T ` P j Q : Ok
also by the rule T -com. Similarly, we can get the same results for P +Q using
the rule T -sum.

(d) Case (�a)P . The judgement � ` (�a)P : Ok must be established through one of
rules T -res and T -areswith �; a : R ` P : Ok, whereR 2 fNormal;Aberrantg.
By induction hypothesis we have �; a : Normal;M : T ` P : Ok, we have
�;M : T ` (�a)P : Ok also by the rule T -res or T -ares.

92



B.3 The Proof of Proposition 3.6

Proposition 3.5 Assume that ` � well formed and that terms in dom(�) are all
normal . Then the following properties hold:

(1) If M is a term and M 2 dom(�), then � `M : Normal.

(2) if P is a process with fn(P ) [ fv(P ) � dom(�), then � ` P : ok.

Proof: (1) The former proposition is obtained trivially by the rule Level Term .

(2) The latter proposition is obtained by induction over the structure of P .

(a) The base case is that � ` 0 : Ok by the rule T-nil.

(b) Case �i:Q where fn(�i:Q) [ fv(�i:Q) � dom(�). Then fn(Q) [ fv(Q) � dom(�).
By induction hypothesis we have � ` Q : Ok, hence we have � ` �i:Q : Ok
using one of the rules Level Subsumption, T -out, T -in, T -sout, T -sin, T -kout,
T -kin, T -ksout, T -ksin, T -pout, T -pin, T -psout, and T -psin.

(c) Case R j Q where fn(R j Q)[fv(R j Q) � dom(�). Then fn(R)[fv(R) � dom(�)
and fn(Q) [ fv(Q) � dom(�). By induction hypothesis we have � ` R : Ok,
and � ` Q : Ok, and hence we have � ` R j Q : Ok using the rule T -com.
Similarly, we can get the same result for P +Q using the rule T -sum.

(d) Case (�a)Q where fn((�a)Q) [ fv((�a)Q) � dom(�). If a 2 dom(�), then
fn(Q) [ fv(Q) � dom(�), where � can be written as �0; a : Normal and a 62
dom(�0). By induction hypothesis we have � ` P : Ok, that is, �0; a : Normal `
Q : Ok. We have �0 ` (�a)Q : Ok using the rule T -Res. By Proposition 3.5,
we have � ` (�a)Q : Ok. If a 62 dom(�), then fn(Q) [ fv(Q) � dom(�) [ fag.
From ` � well formed and a 62 dom(�), we get ` �; a : Normal well formed.
By induction hypothesis we have �; a : Normal ` Q : Ok, hence we have
� ` (�a)Q : Ok using the rule T -Res.
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[PRS98] Gh. Pǎun, G. Rozenberg, and A. Salomaa. Membrane computing with
external output. Technical Report 218, Turku Center for Computer
Science-TUCS Report, 1998.

[PRSS01] C. Priami, A. Regev, W. Silverman, and E. Shapiro. Application of a
stochastic name passing calculus to representation and simulation of
molecular processes. Information Processing Letters, 80:25–31, 2001.

[Pta92] M. Ptashne. A Genetic Switch: Phage � and Higher Organisms. Cell Press
and Blackwell Scientific Publications, Cambrige, 1992.

97



[Pta02] M. Ptashne. Genes and Signals. Cold Spring Harbor Laborary Press, 2002.

[RDN96] Scott A. Smolka Rocco De Nicola. Concurrency: Theory and practice.
ACM Computing Surveys, 28A, 1996.

[Reg01] A. Regev. Representation and simulation of molecular pathways in the
stochastic pi calculus. In Proceedings of the 2nd workshop on Computation
of Biochemical Pathways and Genetic Networks, 2001.

[RS] Aviv Regev and Ehud Shapiro. The �-calculus as an abstraction for
biomolecular systems. http://citeseer.ist.psu.edu/704367.html.

[RS02] Amitai Regev and Ehud Shapiro. Cells as computation. Nature, 149:343,
Sept. 2002.

[RSS00] A. Regev, W. Silverman, and E. Shapiro. Represent-
ing biomolecular processes with computer process alge-
bra: pi calculus programs of signal transduction pathways.
http://www.wisdom.weizmann.ac.il/ aviv/papers.htm, 2000.

[RSS01] A. Regev, W. Silverman, and E. Shapiro. Representation and simula-
tion of biochemical processes using the pi calculus process algebra. In
Proceedings of the Pacific Symposium of Biocomputing, volume 6, pages 459–
470, 2001.

[RV90] J. Reiniz and Vaisnys. Theoretical and experimental analysis of the
phage lambda genetic switch implies missing levels of cooperativity.
Journal of Theoretical Biology, 145:295–318, 1990.

[SW01] Davide Sangiorgi and David Walker. The �-calculus. Cambridge Press,
2001.

[VV95] D. Voet and J. G. Voet. Biochemistry. John Wiley and Sons, Inc., 1995.
sencond edition.

[Wol] Olaf Wolkenhauer. Systems Biology: Dynamic Pathway Modelling. To be
Published.

[ZLF04] Min Zhang, Guoqiang Li, and Yuxi Fu. Representation of signal trans-
duction with aberrance using the i� calculus. In Proceedings of 1st In-
ternational Symposium on Computational and Information Sciences, volume
3314 of Lecture Notes in Computer Science, pages 477–485, 2004.

[ZLF05] Min Zhang, Guoqiang Li, and Yuxi Fu. Typing aberrance in signal trans-
duction. In Proceedings of 1st International Conference on Natural Compu-
tation, volume 3612 of Lecture Notes in Computer Science, pages 668–677,
2005.

98



[ZLF06] Min Zhang, Guoqiang Li, and Yuxi Fu. Secrecy of signals by typing
in signal transduction. In Proceedings of 2st International Conference on
Natural Computation, volume 4222 of Lecture Notes in Computer Science,
pages 384–393, 2006.

99


