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IntrodutionDNA hairpins are moleules made of a single strand of DNA whih has two om-plementary sequenes of bases at its two ends. As a result the ends tend to bindto eah other to form a short piee of double stranded DNA, alled the stem of thehairpin. The remaining part of the strand makes a loop as shown on Fig. (1).DNA hairpins have a dual interest. First they play important roles in biology

Figure 1: shemati representation of a DNA hairpin on�guration [1℄.suh as the regulation of gene expression during transription [2℄. Seond, hairpinsprovide a model system to study the self-assembly proess that leads to the for-mation of the famous DNA double helix. This self-assembly an our in solutionsthat ontain a su�ient onentration of two omplementary DNA speies. But theproess is omplex beause the omplementary strands must �rst �nd eah otherin solution and then assemble. In a hairpin, the two parts that have to assembleare already attahed to eah other. Therefore the proess leading to their assemblyis simpler. Moreover, as explained later in the manusript hairpins an be studiedvery preisely in experiments using some �uoresent dyes [3℄. As a result aurateexperimental results on the assembly-dis-assembly of the stem an be olleted [4, 5℄.The goal of our study is to propose a suitable model for the equilibrium statistialphysis and kinetis of the losing and opening of DNA hairpins. As DNA hair-xi



Introdutionpins are fairly simple biologial moleules, their self-assembly in solution is a moretratable problem than either protein folding or DNA double helix formation and onean isolate more easily a plausible reation oordinate, whih is the end-to-end dis-tane. In partiular when one ompares their assembly to protein folding, one ouldthink that this task has already been ompleted. This is not the ase. Of oursesome studies have been performed [6, 7℄, and we shall review them in Chap. 2, butthey are phenomenologial and rely on many empirial parameters whih are di�-ult to evaluate quantitatively and have to be �tted on experimental results. Thedi�ulties are not restrited to the theoretial level. Even the experiments raisepuzzling questions beause the studies of Libhaber and oworkers [4℄ disagree onsome fundamental points with the measurements of Wallae et al. [8℄ and Ansari [6℄.All experiments agree qualitatively on the equilibrium thermodynamis properties.The melting temperature Tm dereases with the length of the loop and Tm is lowerfor a poly(A) than for a poly(T) loop. Disrepanies appear in the kineti studies.While all agree that the ativation energy for the opening is positive and does notdepend on the loop, di�erent experiments disagree on the properties of the losing.Libhaber and oworkers measure a small positive ativation energy of losing butWallae and Ansari �nd instead a negative ativation for losing. A areful analysisshows that the ontradition may be only apparent. First the experiments of Ansariet al [7℄ are made with very short loop (only 4 thymine bases T4) and a stem of6 base-pairs while Libhaber and oworkers [4℄ onsider muh longer loops (T12 toT30) and a shorter stem (5 base-pairs). The experiments of Wallae et al onsiderhairpins whih are similar to those studied by Libhaber and ollaborators (A30loop, and 5 base-pairs in the stem) but they have varied the solvent. In pure watertheir ativation energy for losing is mostly negative (in the highest range of thetemperature domain that has been investigated) but it beomes slightly positive atthe lowest temperatures (275K). With a solvent ontaining MGCl2 (20.10−3 mol/l)the ativation energy is weakly positive in the whole temperature range whih hasbeen studied. In their analysis of the disrepanies between their measurements andthose of the group of Libhaber, Ansari et al. invoke the possible role of misfoldedloops. They ould play a dominant role in the low temperature range (where positiveativation energies are found by Wallae; similarly all experiments of the Libhabergroup are performed signi�antly below Tm where traps by misfolded loops ouldplay a role). Wallae et al. assign the non-Arrhenius behavior that they observe tointrahain interations within the loop (the breaking of AA staking interations inthe loop).All these studies show that although rather omplete set of data on DNA hairpinsis available, those data are far from being properly understood. The studies byAnsari et al. [7, 6℄, are able to reah a reasonable �t of the experiments but at theexpense of a omplex loop model whih inludes a phenomenologial ooperativityparameter [7℄.Our aim in this work is to examine to what extend statistial physis an desribethe properties of DNA hairpins in terms of a basi model with the minimal amountxii



of ad-ho assumptions and parameters that an be related to the interation energiesbetween the elements that make the struture of the hairpin. We will of ourse haveto make some limitations, as disussed in this manusript, but this kind of approahan be fruitful for understanding some properties of DNA hairpins. For instane weshall see in Chap. 5 that a positive ativation energy for losing an be found evenfor a simple loop model.The �rst model that we have developed is a two dimensional lattie model withtwo parameters only [9℄. We model the favourable interation between omplemen-tary bases by a parameter d, and introdue a parameter of �exibility ǫ to take intoaount the rigidity of the strands. We show that we an reprodue qualitativelysome experimental results and we report on the role of the mismathes on the ther-modynamis and the kinetis of this system by omparing two models one withmismathes, the other without. This �rst model reveals its limits when quantitativeresults are sought in partiular beause the entropy of the system is not properlydesribed. So we have developed an another model, based on the same idea as the�rst one but some what more sophistiated. We divide the system into two parts,the loop and the stem. We apply for the loop the theory of polymers and for thestem we introdue the base pairing and staking interations following the work ofPeyrard, Bishop, Dauxois and Theodorakopoulos [10, 11℄, whih has been suessfulin desribing many aspets of DNA denaturation. Our approah involves only fun-damental entities relating either to the single-strand struture (polymer rigidity) orto H-bond and staking interations. The thermodynamis an be determined usingthe standard results of the statistial mehanis of systems in equilibrium betweentwo limit states and the kinetis an also be addressed within the framework of thereation rate theory for systems where it is possible to isolate a reation oordinate.We will show in this work that the model of the single strand that forms the loopis ruial to reprodue properly the experimental properties of hairpins. In otherwords hairpins are very sensitive systems to test simple models of single strandedDNA. The interest of the development of suh models is not only aademi beausesingle stranded DNA is losely related to RNA, whih plays a very important rolein biology, in partiular beause it an adopt omplex on�gurations whih ofteninlude hairpins.The �rst hapter of this thesis gives some general bakgrounds around the DNAmoleule and DNA hairpins. It also presents brie�y the previous works around thethermal denaturation of DNA. The seond hapter presents a review of some ex-perimental studies dealing with the problem of the self-assembly of single strandsof DNA. It also gives a brief review of the problem of protein folding. The thirdhapter deals with the di�erent polymer models ommonly used to model singlehains and that we have used for the modelling of the loop part of DNA hairpins.Finally, the fourth and the �fth hapters introdue and disuss the two models thatwe have developed in order to study the thermodynamis and the kinetis of DNAhairpins. xiii
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Chapter 1The DNA moleule and SingleStranded DNA, Hairpins
Contents1.1 The DNA moleule . . . . . . . . . . . . . . . . . . . . . . 31.1.1 DNA struture and onformation . . . . . . . . . . . . . . 41.1.2 DNA properties . . . . . . . . . . . . . . . . . . . . . . . . 71.1.3 DNA melting models . . . . . . . . . . . . . . . . . . . . . 101.2 Single stranded DNA . . . . . . . . . . . . . . . . . . . . . 141.2.1 How to get it? . . . . . . . . . . . . . . . . . . . . . . . . 141.2.2 Why is it interesting to study ssDNA and their hairpin form? 15
1.1 The DNA moleuleDesoxyribonulei aid (DNA) is the moleule whih ontains all the geneti infor-mation inside nuleotide sequenes alled genes. This moleule was found at thebeginning of 20th entury [12℄, but its struture has only been preised in the middleof the entury by Watson and Crik [13℄. DNA is inside the ore of eah ell in sev-eral forms. For example during the mitose whih is the ell division, DNA adoptsthe hromosomal form whereas for the rest of the time, the moleule is in the inter-phasi form. The geneti ode stored in DNA is expressed during omplex proessessuh as transription and repliation. It is important to notie that more than onemeter of DNA is ompated in the nuleus of eah ell whih has a diameter of 10−7m. Therefore DNA in the ell is not a linear moleule. 3



The DNA moleule and Single Stranded DNA, Hairpins1.1.1 DNA struture and onformationDNA is a very long helioidal polymer omposed of two hains whih are twistedaround eah other. Eah hain onsists of nuleotides linked by ovalent bonds. Inthe name desoxyribonulei aid we �nd nulei aid and desoxyribose. DNA is anulei aid beause this moleule is in the ore of eah ell and is an aid aordingto Bronstëd. More preisely, in the DNA moleule, monomers of eah hain aredesoxyribonuleotides. Two of them are purines: Adenosine and Guanosine formedby a �ve-atom yle plus a six-atom yle. The other two are pyrimidines: Cytosineand Thymine formed by a single yle of six atoms. A desoxyribonuleotide isomposed of three moleular parts:
• a yli sugar of �ve arbon atoms (desoxyribose)
• a purine base: Adenine or Guanine or a pyrimidine: Cytosine or Thymine
• and a phosphate linked to the sugar by a phosphoester bond.The sequenes of single bonds between suessive nuleotides give a �exibility tothe bakbone beause the rotation around a single bond is quite easy. However thehelioidal on�guration of the DNA restrits these rotations.Eah base is linked to the sugar-phosphate bakbone, by a ovalent bond (N-glyosidi bond) and the two nuleotidi hains are linked together by hydrogenbonds. These hydrogen bonds only exist between omplementary bases alled base-pairs: Guanine-Cytosine(G-C) and Adenine-Thymine(A-T). Therefore the doublehelix whih has a omplementary struture ontains the same information in thetwo strands twisted around eah other. Finally the sites where the bases are at-tahed to the bakbones are not exatly opposite on a diameter of the setion, sothat the helioidal struture of the DNA presents a minor and a major groove.Using the abbreviation of the bases one an easily desribe any nuleotide sequene,whih is also alled the primary struture. The geneti information is stored in theprimary sequene. The sequene is written in the diretion from 5'-end to the 3'-endof the sugar phosphate bakbone where 5' and 3' label two partiular arbon atomsof the sugar 5'-ACCGGTTA-3'OH as shown in Fig. (1.1), or simply, ACCGGTTA(whih is di�erent from the opposite sequene, ATTGGCCA) [14℄. In the nativeform, eah strand is oupled into a duplex or double helix with its omplementarystrands.Figure (1.2) gives some dimensions of the DNA omponents, Fig.(1.3) shows thedouble helix aording to Crik and Watson and Fig. (1.4) presents the pairingbetween omplementary bases.There are several onformations of the DNA double helix. The more harater-isti strutures are alled A,B and Z. A and B forms are right-handed helies whih4



1.1 The DNA moleule
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Figure 1.1: Numeration of the arbon-atomin the sugar [14℄.
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Figure 1.2: Shemati form of the doublehain.

Figure 1.3: The double helix of Crik andWatson [12℄. Figure 1.4: Pairing of omplementarybases [12℄.
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The DNA moleule and Single Stranded DNA, Hairpinsturn around their axis ounter-lokwise. The di�erene between these struturesis the position of the bases around the axis of the helix and the inlination of theplateau formed by the bases with this axis. In the B helix, the plateaus of the basesis tilted by approximately �fteen degrees with respet to the helix axis. Moreovereah base-pair turns about thirty six degrees around the helix axis ompared to theprevious base-pair. Thus, ten base-pairs are needed to get one full rotation. TheB on�guration is stable for approximately 92 % of relative humidity. While the Aform is stable for approximately 75 % of relative humidity and needs the preseneof ounter ions suh as sodium or potassium. A-T sequenes are prone to the Bon�guration. The distane between base-pairs along the helix axis is 0.34 nm for Bon�guration and it is not very di�erent for the A form. Another important form isthe Z on�guration whih is a left-handed helix. In this on�guration the monomerof the helioidal hain is the dinuleotide and not the nuleotide. Moreover there areno large grooves and the bakbone sugar-phosphate �zigzags� on the periphery ofthe helix. This onformation only exists in partiular onditions: high salt onen-trations, methylation of ytosines. Alternate sequenes of purines and pyrimidineshave a higher tendeny to adopt the Z on�guration. Figure (1.5) gives an idealizedrepresentation of the A,B and Z on�gurations.

Figure 1.5: A,B and Z form of the DNA double helix [12℄.
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1.1 The DNA moleule1.1.2 DNA propertiesThe stability of DNA results from various interations between atoms or groups ofatoms of the moleule and interations with the solvent, as for instane eletrostatiinterations between ations suh as magnesium and phosphates. Studies of theDNA [26, 15℄ reveal that its stability is essentially due to two types of interationbetween the bases:
• Interation between omplementary bases: hydrogen bonds link the yles ofthe two bases forming a pair
• Staking interation between base-pairs whih are due to hydrophobi inter-ations and overlap of the π-eletrons of the base plateausFinally it is important to note that the staking interation also exits between on-seutive bases of the same hain and is very important in the ase of single strandedDNA as we will show in the next setions.1.1.2.1 Repliation and TransriptionDNA is involved in two major events in biology: transription and repliation [14℄.For these to our the DNA double helix has to be untwisted or urved. The tran-sription is the opy of DNA into a messenger RNA that tells to the ell how to makea protein. DNA only unwinds over a short region, say 15-20 base-pairs, when mak-ing RNA. The bubble of unpaired bases an travel along the DNA very rapidly, atabout 100 base-pairs per seond. When DNA is opied into RNA, a opying enzymealled RNA polymerase attahes itself to one of the two DNA strands and arriesout the proess of opying DNA into RNA aording to the rules of Watson-Crikpairing. There is one di�erene between RNA and DNA: the Thymine of DNA isreplaed by the Urail in RNA. Using the proess alled translation, the nuleotidisequene of the RNA is read by group of three nuleotides, named triplets. Eahtriplet orresponds to a partiular amino aid and sequenes of amino aids deter-mine the proteins synthesized by the ell.The repliation is the proess by whih DNA is opied into another DNA moleulejust before a single ell divides into two ells. During this proess the DNA doublehelix has to open ompletely and an enzyme alled DNA polymerase arries outthe proess of opying DNA into DNA. Figures (1.6) and (1.7) give a shematirepresentation of repliation and transription of DNA.1.1.2.2 Melting of DNAThe two strands of a DNA moleule an be dissoiated into single polydeoxyri-bonuleotide strands (the proess is also alled denaturation or melting) by heat.7



The DNA moleule and Single Stranded DNA, Hairpins

Figure 1.6: Shemati representation ofrepliation of DNA [16℄. Figure 1.7: Shemati representation oftransription of DNA [17℄.It ours beause of the breaking of the hydrogen bonds between omplementarybases and the disruption of the base staking. Knowing how denaturation proeedsis important for understanding DNA repliation and manipulations of DNA in lab-oratory. Besides the denaturation due to a temperature inrease, the separation ofthe strands an also be aused by a number of physial fators suh as hange in saltonentration, pH or other fators. Melting of DNA by heat is a standard methodfor preparing "single-stranded DNA" (ssDNA).The denaturation of DNA ours over a narrow temperature range and auses anumber of physial hanges. For instane, the ultraviolet absorption at 260 nminreases. The simplest haraterization of DNA denaturation is via the meltingtemperature, Tm, the temperature at whih half the melting has taken plae. Tmdepends on DNA length, sequene, ioni environment, pH, et. Beause GC-pairsare linked by three hydrogen bonds, while AT-pairs only have two, the temperatureat whih a partiular DNA moleule "melts" usually will inrease with higher per-entage of GC-pairs. The relationship between melting temperature (Tm) and GContent for long DNA an be approximately desribed:
Tm = 69◦ + 0.41 × %(G + C). (1.1)8



1.1 The DNA moleuleThis equation emphasizes that GC-pairs are more stable than AT-pairs but it over-simpli�es the phenomenon. As the ordered regions of staked base-pairs in the DNAduplex are disrupted, the UV absorbane inreases. This di�erene in absorbanebetween the duplex and single strand states is due to an e�et alled hypohromiity.Hypohromiity (meaning "less olor") is the result of nearest neighbor base-pairinterations. When the DNA is in the duplex state (dsDNA), interations betweenbase-pairs derease the UV absorbane relative to that of single strands. When theDNA is in the single strand state the interations are muh weaker, due to the de-reased proximity, and the UV absorbane is higher than that in the duplex state.The pro�le of UV absorbane versus temperature is alled a melting urve; the mid-point of the transition determines the melting temperature, Tm. The dependeneof the melting temperature, Tm, on the salt onentration an be analyzed to yieldquantitative thermodynami data inluding ∆H , ∆G and ∆S for the transitionfrom duplex to single stranded DNA. Alternatively, one an get this information byanalyzing the whole melting urve.Thermodynami analyses of this type are done extensively in biohemistry researhlabs as well as in physis labs [18, 19, 20℄ partiularly those involved in nuleiaid struture determination. In addition to providing important information aboutthe onformational properties of either DNA or RNA sequenes (mismathed base-pairs and loops have distint e�ets on melting properties), thermodynami data forDNA are also important for several basi biohemial appliations. For example,information about Tm an be used to determine the minimum length of a oligonu-leotide probe needed to form a stable double helix with a target gene at a partiulartemperature. Figure (1.8) gives a example of a melting urve.

Figure 1.8: Melting urves example. The solution onditions were 10 nM sodiumphosphate, pH 7.0, 1.0 M sodium hloride and a strand onentration of 2µM . Theduplex sequenes are GCAAAGAC/GTCTTTGC, GCATAGAC/GTCTATGC, GCAGA-GAC/GTCTCTGC, and GCACAGAC/GTCTGTGC, with melting temperature of 33.7,30.6, 35.7, and 38.5 ◦C, respetively [18℄.
9



The DNA moleule and Single Stranded DNA, Hairpins1.1.3 DNA melting modelsDNA melting an be viewed as a phase transition in a one-dimensional system andit has attrated the attention of theoretiians for the last �fty years. Various modelshave been developed to study the opening of the double helix and its �utuationalopening. We introdue some of them in this setion beause they provide a basisfor a model for the stem of the hairpin.1.1.3.1 Mirosopi modelThis model may appear the most natural at a �rst sight beause it desribes themoleule at the atomi sale. It inludes all the interations between the atomsof the maromoleule and must take into aount the geometri onstraints in thethree dimensional spae. In this model di�erent types of interations have to beonsidered: eletrostati, Van der Waals, angular and dihedral energies. Biophysi-ists use this type of models in partiular to study the dynamis of proteins [21℄.The ommon expressions for the interations are the following:
• potential desribing the strething of ovalent bonds kbond(r−r0)

2 where kbondis a onstant, r the bond length and r0 the equilibrium length;
• potential of angular rigidity: kf(θ − θ0)

2, where kf is onstant and θ is thepolar angle between two onseutive bonds and θ0 the equilibrium value;
• potential of torsion( rotation around simple bonds): kg(1 + cosφ), where kg isa �xed parameter and φ is the rotational angle around a bond;
• Lennard-Jones potential: 4ǫ

[
(σ

r
)12 − (σ

r
)6
] for non-bonding interationsOne an easily imagine that this type of alulation needs a very long pu-time innumerial simulations. And suh a detailed study may not be relevant to study largeDNA onformational hanges. Indeed, the fast mirosopi displaements of atomsare not responsible of physial properties of the moleule at mesosale. We willome bak to this point in the seond part of this thesis. While mirosopi modelsan be useful to observe the dynamis of the moleule for a short time sale, theyannot be applied to study the melting transition itself, whih is a olletive e�etinvolving long segments of DNA on time sales whih are beyond the possibilities ofthe present omputers. This is even more obvious if one thinks that useful resultsfor the melting an only be provided by the statistis of many individual events andnot from a single moleular dynamis trajetory.1.1.3.2 Poland and Sheraga modelThe Poland-Sheraga model takes a ompletely opposite approah beause it triesto use the simplest possible desription of the moleule. It was introdued in 196610



1.1 The DNA moleuleby Poland and Sheraga [23, 24℄. The model is built upon an original idea byZimm [25℄. The model onsists of an alternating sequene (hain) of ordered andunordered states (loops), whih represent denaturing DNA in terms of a sequene ofdouble-stranded and single-stranded regions. In the original model [25℄, the base isassumed to exist in any of three states, bounded in the helix, unbound in free hainsor in unbound sequenes between two helioidal portions. The helioidal (ordered)sequenes are energetially favoured over the unbound states and the ontribution ofthe other two states is inluded in some phenomenologial parameters. The nule-ation of an ordered (helioidal) region ( a low-probability event ontrolled by a oop-erativity fator [25℄), is followed by helix growth, a high probability event ontrolledby the statistial weight w of the ordered (helioidal) state. Figure (1.9) illustratesthe Poland-Sheraga model shematially. The question whih is addressed is the
Figure 1.9: Shemati representation of the Poland-Sheraga model.possible �rst order phase transition in one dimensional system. Indeed, experimentsaround melting of DNA suggest that the transition is �rst order [26℄.For suh a simple model one an ompute the partition funtion Z and the frationof ordered states in a hain of N base-pairs given by

θ =
1

N

∂ ln Z

∂ ln w
, (1.2)where w is the statistial weight of an ordered state, whih is not at the end of the or-dered sequene. A phase transition ours if θ has a disontinuity with temperature.But this one-dimensional model would not have a phase transition unless additionalingredients are inluded. In fat the most deliate aspet of these Ising-like modellies in the evaluation of the entropy of a loop. It must be expliitly inluded beausethe model is not rih enough to desribe all the on�gurations of an open regionsine it uses a simple two-state variable. Poland and Sheraga asserted that thestatistial weight of a denaturated sequene of length l is given by the hange inentropy due to the added on�gurations arising from a loop of length 2l. This hasthe general form Asl

lc
for large l, where s is the entropy gain for the opening of asingle base-pair. As shown by Poland and Sheraga, the value of the exponent c isruial. No phase transition should our for c ≤ 1 and a �rst order transition arisesif c > 2. If 1 < c ≤ 2 a phase transition of higher order should our, although θ isontinuous at the transition. They �nd that c = d/2 for ideal random walks, where

d is the dimension, there is thus no transition at d ≤ 2 (c ≤ 1) and a ontinuous11



The DNA moleule and Single Stranded DNA, Hairpinstransition for 2 < d ≤ 4 (1 < c ≤ 2).Fisher [27℄ has derived the entropy of the denaturated loops modelled as self-avoidingwalks. Within this approah, the denaturation transition of DNA is ontinuous bothin two and three dimensions. Indeed, He �nds c = 1.46 for d = 2 and c ≈ 1.75 for
d = 3. The transition is thus sharper, but still ontinuous, in three dimensions.The proper alulation of c turns out to be a very di�ult problem whih has onlybeen solved reently. Kafri et al [28℄ and have shown that the DNA denaturationtransition ould be �rst order if the e�ets of exluded volume interation insidethe loop and with the rest of the hain is taken into aount. Assuming that theentropy is still given by the expression showed below, they evaluate the exponent cby onsidering the entropy of a loop of length 2l embedded in a hain of length 2L.Figure (1.10) gives a representation of a suh on�guration.They �nd a lower entropy yielding a larger value of the exponent c ≈ 2.115 whih
Figure 1.10: Topology of the loop embedded in a hain. The verties Vi orrespond tothe separation between bound and unbound states.gives a �rst order phase transition in dimension 3.Finally Blossey and Carlon [29℄ propose a reparametrizing of the helix nuleationparameters, reanalysing the data inluding the works of Kafri et al.Besides the need of many parameters, these models are not adapted to short DNAsegments and moreover they annot desribe intermediate states between losed andfully open. For instane one aspet whih is missing is the atual distane betweenthe strands. For hairpins this is also the distane between the two ends of the loop.This distane is very important to determine the properties of the loop. This is whywe have hosen a model whih inludes this distane.1.1.3.3 PBD modelThis model was introdued by Peyrard and Bishop in 1989 [10℄ and was improvedwith Dauxois in 1993 [11, 32℄. In this approah the moleule is supposed to belinear in one dimension, and its heliity is not taken into aount. Eah base-pair isrepresented by its strething y and has a mass m. The idea in this approah is to usea potential at the sale of the base. Hydrogen bonds between omplementary basesare modelled by a Morse potential and the oupling between onseutive base-pairsis either harmoni or nonlinear. In this last ase the oupling onstant dependson the state of the two base-pairs whih interat. The displaements along themoleule are not onsidered beause they are muh weaker than transverse ones.12



1.1 The DNA moleuleWe will ome bak to this model in muh more details in the seond part of thisthesis. The Hamiltonian of the system is given by (1.3)
H =

∑

n

[ p2
n

2m
+ W (yn, yn−1) + V (yn)

]
, (1.3)where:

pn = mdyn

dt

W (yn, yn−1) = K
2

[
1 + ρe−α(yn+yn−1)

]
(yn − yn−1)

2

V (yn) = D (e−ayn − 1)
2
,with, yn whih is the strething of the base-pair and K, ρ, α, D and a whih arepositive onstants. Figure (1.11) shows the di�erent interation potentials in thehain.
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Figure 1.11: Peyrard-Bishop model for DNA.
1.1.3.4 Helioidal ModelIn order to be more realisti, Simona Coo during her PhD [33℄ with Mihel Peyrard,and Maria Barbi developed a DNA helioidal model [34, 35℄.This model inorporatesthe heliity of the moleule [25, 36℄. Figure (1.12) shows a shemati representationof the model. This approah, like the previous model uses a Morse potential (Vm) forhydrogen bonds as well as a staking interation (Vs). Moreover there is a potential(Vb) whih represents the longitudinal vibration of the moleule whih is oupled tothe strething of the base-pairs beause the bakbone is assumed to be rigid. Indeed,to take into aount the heliity there is one more degree of freedom ompared tothe Peyrard-Bishop and Dauxois model. With the notations of Fig. (1.12), the13



The DNA moleule and Single Stranded DNA, Hairpinsexpressions of the potentials are:
Vm(rn, rn−1) = D

(
e−a(rn−R) − 1

)2

Vs(rn, rn−1) = Ee−b(rn+rn−1−2R) (rn − rn−1)
2

Vb(rn, rn−1, hn) = K (hn − H)2 ,

(1.4)with E, b, R, K and H whih are positive parameters. This model is more omplete

Figure 1.12: DNA Helioidal Model [33℄.than the PBD model and it is not neessary to introdue suh a omplexity for thease of DNA hairpins beause we are onsidering only very short stems. Taking intoaount the heliity is important for long DNA moleules where torsional energyan build up. For a short stem it an be easily released at the free end and thereforeit is not essential for the physis of the system.1.2 Single stranded DNA1.2.1 How to get it?A single stranded DNA is one of the two nuleotidi hains of the double helix. Inpriniple it is not di�ult to get a ssDNA. Single stranded DNA an be produedexperimentally by rapidly ooling heat-denatured DNA. Heating auses the strandsto separate and rapid ooling prevents renaturation. Bases in ssDNA also seem tostak to give heliity to the hain. There is a lot of researh [37, 38℄ to haraterizethe staking of bases in ssDNA. In DNA the staking interation between base-pairs is �a priori� di�erent from the ase of ssDNA at least for the intensity of theinteration. Figure (1.13) gives a shemati representation of a ssDNA. The interest14



1.2 Single stranded DNAof ssDNA also lies on its strong analogy with RNA whih plays a large role in biology.

Figure 1.13: Shemati representation of ssDNA.1.2.2 Why is it interesting to study ssDNA and their hairpinform?ssDNA an form hairpin-loop on�gurations whih are very interesting struturesfor physiists and biologists [41, 39, 40℄. As explained in the introdution, DNAhairpins are short nuleotide strands whih have, in their two terminating regions,omplementary bases whih an therefore self assemble to form a short double helixalled the stem of the hairpin. They an exist in two states, the open and the losedstate, and �utuate between the two, being mostly losed at low temperature andmostly open at high temperature. For biologists, regions of DNA moleule wherehairpin formation is possible, are believed to play a key role in DNA transpositionand in global regulation of gene expression [2℄. Moreover loop formation is a �rststep in the folding of the RNA moleule [14℄ and also serve as interation sites forproteins [42℄. DNA hairpins may provide very sensitive probes for short DNA se-quenes [43℄: a loop whih is omplementary to a sequene to reognise an selfassemble with it. It is proposed as an alternative to the DNA-hips [44℄. This15



The DNA moleule and Single Stranded DNA, Hairpinsprevents the hairpin from losing and it is deteted by �uoresene. The hairpinon�guration an be adopted by the moleular beaons whih are single strandedoligonuleotide omprising a probe sequene embedded within omplementary se-quenes that form the stem part of the hairpin. A �uorophore is ovalently attahedto one end of the oligonuleotide, and a quenher is ovalently attahed to the otherend. In the absene of target, the stem of the hairpin holds the �uorophore so loseto the quenher that �uoresene does not our. When this probe binds to itstarget, the rigidity of the probe-target duplex fores the stem to unwind, ausingthe separation of the �uorophore and the quenher and the restoration of the �uo-resene. This allows the detetion of probe-target.For the physiists hairpins provide a very simple system to study the self assem-bly of DNA with two piees of strand whih are maintained in the viinity of eahother for the assembly. Physial appliations of DNA hairpins are beginning to beonsidered. One remarkable example is the use of DNA hairpins to make memoryhips for omputers [45℄. These systems use the �uorophore/quenher method thatwe present in the next hapter to detet the opening of the hairpins and use a loallaser heating to ause their opening. To onstrut a memory, transitions betweenbistable states are generally required. The bistable states orrespond to a writtenstate and an unwritten state, respetively. The transition between bistable states isrealized by moleular reations bases on hairpin DNA. DNA moleular memory isomposed of two types of DNA: a hairpin DNA and a linear DNA. The hairpin atsas a memory moleule with a memory address, the linear DNA as a data moleulewith an address tag of the memory. Figure (1.14) gives a shemati representationof suh moleules. The loop region of memory DNA has a memory adress, whih is

Figure 1.14: Shemati representation of the memory DNA and the data DNA [45℄. (a)Memory DNA: a �uoresent dye TAMRA is attahed to the 5'-end and its quenher Dabylis attahed to the 3'-end. (b) Data DNA: a data DNA has a omplementary base sequeneof the loop and the 3'-stem of the memory DNA. () Data-omplementary DNA: a data-omplementary base sequenes of S and L, respetively.reognized by the data DNA. The address tag part of the data DNA is omposed of aomplementary base sequene of the loop and the 3'-stem of the memory DNA. Thismemory exploits a hybridization reation between the hairpin DNA and the linearDNA in memory addressing. Writing data on the memory is to make the linear16



1.2 Single stranded DNADNA hybridize with the hairpin DNA. The hairpin DNA hanges from a losed toan open struture when the data is written on the memory. In pratie the writingoperation follows a serie of operations: heating up a solution of memory DNA anddata DNA from room temperature TR (=25◦C) to the writing temperature TW thenooling it down from TW to TR. At TW the data DNA hybridizes with the memoryDNA beause the memory DNA opens and the memory-data DNA duplex is stable.Erasing data from the memory is to separate the linear DNA from the hairpin DNA.The hairpin DNA returns to the losed on�guration when the data is erased fromthe memory through a series of operations: heating up the solution from TR to theerasing temperature TE and ooling it down quikly from TE to TR. The duplex ofmemory DNA and data DNA is ompletely dissoiated at TE . The quik oolingallows the memory DNA to lose so that the data DNA an no longer aess to thememory DNA. Figures (1.15) and (1.16) gives a shemati view of the written andthe erasing proess. The moleular reations for addressing of a large amount of

Figure 1.15: Shemati representation of the writing proess [45℄. It is omposed of theheating from TR (room temperature) to TW (writing temperature) then ooling from TWto TR.DNA moleular memories based on hybridization between the address part of hair-pin DNA and the address tag of linear DNA proeed in parallel so that massivelyparallel addressing of a huge memory spae will be possible in priniple. There aresome problems and the most important one is that the data are not ompletelyerased during the erasing proedure whih is due to the fat that the ooling rateof erasing is not fast enough to separate the memory DNA and the data DNA.Figure (1.17) gives a shemati representation of hairpin-loop on�guration for a17



The DNA moleule and Single Stranded DNA, Hairpins

Figure 1.16: Shemati representation of the erasing proess [45℄. It is omposed of theheating from TR (room temperature) to TE(erasing temperature) then ooling quikly from
TE to TR.RNA (for ssDNA Uraile is replaed by Thymine). Modelling the �utuations of

Figure 1.17: Shemati representation of RNA loop.a hairpin is more hallenging than modelling the thermal denaturation of DNA fortwo reasons:18



1.2 Single stranded DNA
• the self assembly of a struture is not simply the reverse proess of its openingbeause the elements must �nd eah other in spae and then orient properlywith respet to eah other, before atually assembling in a �nal stage whih isthe only stage of the proess whih an be viewed as the reverse of the breaking;
• the time sales for the assembly an be very long (hundred of µs for instane),i.e. many orders of magnitude longer than the typial time sale of the miro-sopi dynamis of a maromoleule [46℄.
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Chapter 2Review of experimental properties ofDNA hairpins.
Contents2.1 Bulk �uoresene . . . . . . . . . . . . . . . . . . . . . . . . 212.1.1 Fluoresene Resonane Energy Transfer . . . . . . . . . . 212.1.2 Fluoresene Bulk measurements . . . . . . . . . . . . . . 232.2 Fluoresene Correlation Spetrosopy(FCS): Kinetis . 252.2.1 Experimental protool . . . . . . . . . . . . . . . . . . . . 262.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.3 Stati Absorbane measurements . . . . . . . . . . . . . . 292.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 292.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30In this setion we review some of the known experimental results [49, 50℄ of DNAhairpins and their analysis by the authors of the experiments. This will give us hintson the ingredients required to design a model and experimental fats against whihthis model an be tested.2.1 Bulk �uoresene2.1.1 Fluoresene Resonane Energy TransferFluoresene Resonane Energy Transfer (FRET) is a powerful tehnique for hara-terizing distane-dependent interations at a moleular sale [3℄. It is one of the fewtools available that is able to measure intermoleular and intramoleular distaneinterations both in-vivo and in-vitro.FRET involves the exitation of a donor �uorophore by inident light within its21



Review of experimental properties of DNA hairpins.absorption spetrum. This radiative absorption elevates the donor �uorophore to ahigher-energy exited state that would normally deay (return to the ground state)radiatively with a harateristi emission spetrum. If, however, another �uorophoremoleule (the aeptor) exists in proximity to the donor with its energy state hara-terized by an absorption spetrum that overlaps the emission spetrum of the donor,then the possibility of non-radiative energy transfer between donor and aeptor ex-ists. The radiationless energy transfer desribed above is mediated by dipole-dipoleinterations (Van der Waals fores) between the donor and aeptor �uorophoremoleules that vary as the inverse 6th power of distane between the two moleules.The rate of energy transfer from donor to aeptor, kF , is approximately [47℄:
kF ≈ KD

(r0

r

)6

, (2.1)where kD is the radiative deay rate of the donor �uorophore, or inverse of the�uoresene emission lifetime in the absene of the aeptor �uorophore (typially1-50 ns), r is the distane between the two moleules, and r0 is the �Förster distane�that haraterizes the 50 % e�ieny point of the energy transfer. The FRETe�ieny depends on the sixth power [47℄ of the distane between the two dyemoleules:
E =

1

1 +
(

r
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)6 . (2.2)FRET is suited to measuring hanges in distane on the order of the Förster distane,whih is typially 20 to 90 Å. This length sale is far below the Rayleigh-riterionresolution limit of an optial mirosope (typially 2500 Å for visible light at highnumerial aperture), thus illustrating the power of FRET for measuring extremelysmall distane interations.As an example, Fig. (2.1) shows the overlap of the yan �uoresent protein (CFP)emission spetrum and the yellow �uoresent protein (YFP) absorption spetrum;this pair supports a strong FRET interation. After energy transfer ours fromdonor to aeptor, the aeptor �uorophore is exited to its �uoresene emissionstate. Beause the observed rate of �uoresene emission from the aeptor is rate-limited by energy transfer from donor to aeptor, the quantitative measurementof FRET emission an therefore provide an inferred measurement of distane usingthe equation above. Aurate FRET determination generally involves omparisonof the donor and donor-aeptor �uoresene emission intensities in samples withand without the aeptor present. A ratio measurement is neessary beause, asFig. (2.1) demonstrates, there is typially overlap between the donor and aeptoremission spetra, thus making it di�ult to determine with a single measurementexatly what fration of the �uoresene measured with an aeptor emission �l-ter derives from only the aeptor. Fluoresene lifetime measurements providemore diret results for the energy transfer rate, are not suseptible to onentra-tion variations, and an be made using time domain or phase modulation lifetime22



2.1 Bulk �uoresene

Figure 2.1: Donor and aeptor absorption and emission spetra [3℄.measurement tehniques. These types of measurement an also provide informationregarding onformational hanges due to moleular interations.This tehnique was used by the group of Libhaber [4℄ and others [48℄ to study DNAhairpin-loops and their onformational �utuations. We present the thermodynamiresults obtained by the group of Libhaber in the next setion.2.1.2 Fluoresene Bulk measurements2.1.2.1 Measurement prinipleDNA hairpin-loops are supposed to be in equilibrium between two states: the openstate and the losed state. This equilibrium is haraterized by an equilibriumonstant and rates of opening and losing. In a more omplex view one an imaginea transition state between the losed and the open on�guration. Figure (2.2) givesa shemati representation of the equilibrium. In the experiments arried by the

Figure 2.2: Shemati representation of the two states [4℄.group of Libhaber, they used moleular beaons whih are oligonuleotides apable23



Review of experimental properties of DNA hairpins.of forming a hairpin loop with a �uorophore and a quenher attahed to the twoends of the stem. The onformational state is diretly reported by its �uoreseneaording to the FRET priniple: in the losed state the �uorophore is quenhed bythe quenher and the moleule is not �uoresent; in the open state the �uorophoreand the quenher are far apart and the beaon is �uoresent. The sequenes of theDNA hairpin-loop under study were 5'-CCCAA-(N)n-TTGGG-3' with varying loopbeing alternatively (T)12, (T)16, (T)30, or (A)21. By monitoring the �uoresene Ias a funtion of the temperature T they an dedue the normalized �uoresene:
f(T ) =

I(T ) − Ic

I0 − Ic
, (2.3)where I0 is the �uoresene of the open beaons and Ic is the �uoresene of thelosed beaons. This quantity measures the perentage of open hairpins at a giventemperature. Then the equilibrium onstant is given by

K(T ) =
f(T )

1 − f(T )
. (2.4)It is linked to hemial rates of opening and losing whih are essential to deal withthe onformational �utuations of the struture (kinetis).

K(T ) =
k−(T )

k+(T )
. (2.5)The derivation of Eq. (2.5) is presented in Chap. 42.1.2.2 ResultsThe �rst interesting result is the shape of the melting urves and the dependeneof the melting temperature with the length and the nature of the sequene of theloop. The melting temperature Tm of the struture is de�ned as the temperaturewhere losing and opening rates are equal, i.e. K(Tm) = 1 or f = 0.5. Figure (2.3)ompares melting urves for a series of poly(A) and poly(T) hairpins. We an notietwo important points. First, for poly(A) and poly(T), the melting temperature de-reases with the length of the loop and the deay is most signi�ant for Poly(A). Onepossibility is that the entropi e�et produes onstraints or fores at the beginningof the stem and indues the opening of the moleule. We will disuss more preiselythe relation between the loop length and Tm in Chap. 5 where we analyse the re-sults of our model. Seond for a same length of the loop the melting temperature ishigher for poly(T) than poly(A). The authors argue that the base staking is at theorigin of the di�erene from poly(A) to poly(T). Therefore the modelling of stakinginteration in the loop or at least the rigidity of the loop is therefore very importantbeause it seems to explain how the sequene of ssDNA an a�ets the properties ofhairpins. In order to be more preise these authors performed experiments to �ndthe kineti properties of DNA hairpins using Fluoresene Correlation Spetrosopy.24



2.2 Fluoresene Correlation Spetrosopy(FCS): Kinetis

Figure 2.3: Normalized melting urves. Loop lengths(number of bases) are desribedby the symbols, ◦=8, 2=12, ×=12, △=16, +=21, and 3=30. Data are �t with asingle equilibrium mass ation law [4℄2.2 Fluoresene Correlation Spetrosopy(FCS): Ki-netisThe idea is to measure the auto-orrelation funtion whih re�ets the �utuationsof the emitted �uoresene. The problem is that the soures of �utuations in�uoresene are the di�usion of moleules in and out of the sampling volume andthe opening and losing of the seondary struture. Therefore two independentmeasurements were performed:1. measurements of the auto-orrelation funtion of the moleular beaons Gbeaconwhih ontains both di�usion and kinetis ontributions.2. Measurements of the auto-orrelation funtion Gcontrol from a sample for whihthe orrelation funtion onsists of the di�usion ontribution only. The ratio25



Review of experimental properties of DNA hairpins.of the two funtion gives the kinetis part and is linked to the sum of thekineti rates k− and k+.The theoretial form of the auto-orrelation funtion Gbeacon is a produt of a di�u-sion term and kineti term [4℄:
Gbeacon =

〈I(0)I(t)〉 − 〈I(0)〉2

〈I(0)〉2

= Gcontrol

(
1 +

1 − f

f
e−(k++k−)t

)
. (2.6)Therefore �tting the ratio Gbeacon/Gcontrol gives aess to the sum of the rates. Thenusing the �uoresene bulk measurements k− and k+ an be dedued.2.2.1 Experimental protoolA laser beam is foused onto the sample with an objetive lens and the emitted lightis olleted through the same objetive. It is then foused onto 25 µm diameterpinhole. Then the beam is divided in two by a beam-splitter ube and foused ontotwo Avalanhe photo-ounting modules. Finally the signals from these two detetorsare fed onto a orrelator and the ross-orrelation of the exited light is olleted.Figure (2.4) gives a shemati drawing of the experimental setup.

Figure 2.4: Shemati drawing of the experimental setup. S, sample; OB, objetivelens; DM, dihroi mirror; NF, noth �lter; PH, pinhole; BS, beam-splitter; APD,Avalanhe photo-ounting detetor; CORR, orrelator. [4℄2.2.2 ResultsFigure (2.5) gives the evolution of the rates of opening and losing versus tempera-ture for di�erent loop lengths.Figure (2.6) gives the evolution of the rates with temperature for the same loop26



2.2 Fluoresene Correlation Spetrosopy(FCS): Kinetis

Figure 2.5: Arrhenius plots of the opening rates (open symbols) and the losingrates (�lled symbols) of beaons with di�erent loop lengths: (T)12 (irles), (T)16(squares), (T)21 (diamonds), and (T)30 (triangles). The lines are exponential �ts tothe data [4℄.length but with a di�erent loop sequene, (A)21 and (T)21. First of all, rates ofopening and losing seem to follow an Arrhenius law. Indeed, the �tting of the ex-perimental points with an exponential k(T ) = k∞exp(−Ea/RT ) is onsistent withsuh a law. Therefore the ativation energies of opening and losing ould be de-dued. In a �rst approximation the opening rate is not a�eted by the length andthe nature of the loop. Consequently, the opening seems to be governed by the stemonly: strength of the base-pairs and staking interations in the double helix part.This �rst evidene is very important for the modelling and we will ome bak tothis point for quantitative omparison of the experimental and theoretial results.Seond, the ativation energy of losing for poly(T) is not a�eted by the length ofthe loop. Nevertheless the rate of losing is lower for bigger loops aording to theinrease of the loop entropy. Indeed bigger loops generates a bigger phase spae andthe meeting of the two ends of the ssDNA take more time. This indiates that thefree energy of a poly(T) loop is mostly entropi and the base staking does not seemto be very important in this ase. Nevertheless, Fig. (2.6) shows that the ativationenergies of losing for poly(A) and poly(T) are very di�erent and the ativationenergy of poly(A) is bigger than for poly(T). So, in poly(A) there is an additionalenthalpi term due to the base staking (perhaps also due to a bigger exluded vol-ume in poly(A)).Figure (2.7) shows the evolution of the ativation energy of losing with the looplengths for poly(A) and poly(T). In a �rst approximation the author of the studyonsider that the enthalpy of poly(T) does not depend on the loop length (−0.127



Review of experimental properties of DNA hairpins.

Figure 2.6: Comparison of the opening rates (opening symbols) and the losingrates (�lled symbols) for the beaons with loops of equal length but with di�erentsequene: (T)21 (irles) and (A)21 (squares). The lines are exponential �ts to thedata [4℄.

Figure 2.7: Closing enthalpy vs loop lengths (number of bases) of (◦) poly(A) and(•) poly(T) [37℄.kal.mol−1. base−1) but for poly(A) ∆Hc inreases with inreasing loop length(+0.5kal.mol−1.base−1). This on�rms two key points:1. the loop sequene dependene of the losing properties;2. a free energy mostly entropi for poly(T) but with an additional enthalpiterm for poly(A).28



2.3 Stati Absorbane measurementsAording to the Libhaber's group the energeti barrier of losing omes from adistortion of the loop and a nuleation of the �rst base-pair in the stem while thelinearity of ∆Hc with loop length in poly(A) re�ets the base staking energy inssDNA.All these results will help us in the design of a model for ssDNA. They give us ideasof the physial ingredients neessary to the modelling: hydrogen bonds + stakinginteration for the stem and rigidity + base staking in the loop.2.3 Stati Absorbane measurementsAnother type of measurement that an be used for hairpins is the ommon ab-sorbane tehnique. We present brie�y this tehnique as well as some results thatan be found in the literature [49℄ in partiular the results of Kuznetsov et al [6℄.We also present in this setion an interesting model developed by Kuznetsov et alwhih is in good agreement with absorbane results.2.3.1 ExperimentAs explained in Chap. 1, a DNA moleule is omposed of nulei aids whih absorbUV light around 265 nm. This absorption depends on the omposition and thestruture of nulei aids. The absorbane measurement is based on the Beer-Lambert law:
A = ǫ.l.c (2.7)Where ǫ is the moleular absorption oe�ient, l the distane of sample traversedby the UV-light and  the onentration of the system in the sample. The hangeof absorbane is diretly proportional to the amount of substane whih absorbsUV-light. Figure (2.8) gives a shemati representation of a possible experimentalmethod to measure absorbane. For DNA the losed and open forms have very dif-

Figure 2.8: Shemati representation of a spetrophotometer [6℄.ferent absorption oe�ients. Natural DNA, i.e. losed DNA, has a small value of ǫwhile single strands, or more preisely unstaked bases, have a muh higher ǫ. There-fore the opening of the stem of hairpins leads to a strong inrease in absorbane. In29



Review of experimental properties of DNA hairpins.their experiments, in order to inrease the sensitivity of the detetion, Kuznetsov etal, use a modi�ed form of DNA. They hange the base A in the base-pair A-T by2-aminopurine (2AP), a �uoresent analog of the Adenine whih absorbs at 266 nmand 330 nm. When the base-pair is formed there is no absorbane, so in the losedstate a hairpin does not absorb.2.3.2 AnalysisIn order to analyse their experiments, Kuznetsov et al introdue a very simple modelfor the hairpin whih has some similarities with the models that we disuss in detailsin the next hapter.The model [6℄ is based on the simple one dimensional Ising model that we presentedin Chap. 1 [23℄ (alled also Poland and Sheraga model) but with the improvementbrought by Benight and oworkers [26℄: the introdution of nearest-neighbor se-quene dependene in the staking interation. Of ourse this model is only validfor the stem. For the loop they used the wormlike hain model [51, 52℄ whih wewill present in more detail in the next hapter. To desribe the partition funtion ofthe system they need three parameters: si, the statistial weight for eah base-pair;
σ, the ooperativity parameter and wloop(n), the end-loop weighting funtion for aloop onsisting of n bases. The statistial weight orresponding to eah base-pairformation, si, depends on the type of base-pair A-T or G-C and interations withits neighbors, and inludes the stability from hydrogen bonding as well as stakinginterations:

si = e−
∆Gi
RT , (2.8)where

∆Gi = ∆Hi − T∆Si +
δGi−1,i + δGi,i+1

2
. (2.9)

∆H and ∆S are the enthalpy and the entropy hange, respetively, assoiated withbase-pair formation. δGi,i±1 are enthalpies assoiated to staking interations. Thestaking interation as well as base-pair formation are diretly inluded in enthalpiesand they do not deal with potential of interations whih ould explain the physialorigin of suh phenomena. The ooperativity is assoiated with the juntion betweenan intat and broken base-pair, and it depends on the spei� type of base-pairs atthe juntion. The form of the ooperativity parameter is the following:
σi,i+1 = 〈σ〉

1
2 e

δGi,i+1
2RT , (2.10)where 〈σ〉 is the average of the ten di�erent staking interations and the value istaken aording to Wartell and Benight's works [26℄. The base-pair at the juntionbetween the stem and the loop is always intat in their modelling (of ourse not inthe oil state) therefore the end-loop weighting funtion wloop(n) is proportional tothe probability of forming a loop with n bases (the end-to-end distane is therefore30



2.3 Stati Absorbane measurements�xed):
wloop(n) =

(
3

2πb2

) 3
2

Vrg(n)σloop(n), (2.11)where n is the number of bases in the loop, b = 2P is the statistial segment length(Kuhn's length), Vr is a harateristi reation volume within whih the bases atthe two ends of the loop an form hydrogen bonds, σloop(n) models the stabilizinginterations of the bases within the loop and between the loop and the stem, and�nally g(n) is the probability of forming a loop with n bases. Figure (2.9) gives ashemati representation of some mirostates of the model and the orrespondingstatistial weights are given in Eq. (2.12)

Figure 2.9: Shemati representation of some mirostates of the Kuznetsov et almodel. [6℄
za = 〈σ〉

1
2

(
Ns∏

i=1

si

)
wloop(N)

zb = σ1,2

(
Ns∏

i=2

si

)
wloop(N) (2.12)

zc = 〈σ〉
1
2

(
Ns−2∏

i=1

si

)
wloop(N + 4).To �t the abosorbane measurements they derive the fration of intat base-pairssummed over all the mirostates, θI(T ):

θI(T ) =
∑

j

nj

Ns

zj

Q(T )
, (2.13)31



Review of experimental properties of DNA hairpins.where Q(T ) is obtained by summing the statistial weights of all mirostates {j}and nj is the number of intat base-pairs in the jth mirostate.The absorbane melting pro�les at 266 nm an be expressed as :
A(T ) = θ(T )[AU(T ) − AL(T )] + AL(T ), (2.14)where AU(T ) and AL(T ) are the limiting baselines at high and low temperature,respetively and θ(T ) is the net fration of broken base-pairs whih is alulatedfrom Eq. (2.13) as

θ(T ) = 1 − θI(T ).We only give one result that shows that, with appropriate parameters, the model isin good agreement with the experimental results. Figure (2.10) shows the meltingpro�les of 5'-CGGATAA(TN)TTATCCG-3' with di�erent value of N and the �tsusing the model presented below. The most important weaknesses of this model are

Figure 2.10: Fits to the equilibrium melting pro�les. The symbols are normalizedabsorbane: •, N=4; �, N=8; N, N=12; the lines are the fration of broken base-pairs. ∆Gloop is the free energy of forming a loop losed by an A-T base-pair and isobtained by the model: red and blak urve is the test of di�erent σloop [6℄.the following:1. the stem does not ontain enough degrees of freedom and the end-to-end dis-tane of the loop is �xed.2. This model is too phenomenologial. Its parameters are hard to onnet withproperties of DNA hairpins. The staking is diretly inluded in an enthalpiterm and in the parameter σ.32



Chapter 3Review of some polymer and proteinmodels
Contents3.1 Polymer theory . . . . . . . . . . . . . . . . . . . . . . . . . 333.1.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . 333.1.2 Freely jointed hain . . . . . . . . . . . . . . . . . . . . . 343.1.3 Freely rotating hain . . . . . . . . . . . . . . . . . . . . . 373.1.4 Kratky-Porod hain . . . . . . . . . . . . . . . . . . . . . 413.1.5 Growth of a polymer hain . . . . . . . . . . . . . . . . . 453.2 Protein models . . . . . . . . . . . . . . . . . . . . . . . . . 493.2.1 Protein folding . . . . . . . . . . . . . . . . . . . . . . . . 493.2.2 Lattie models . . . . . . . . . . . . . . . . . . . . . . . . 50For hairpins the properties of the loop are important. In this hapter we reviewsome polymer models [53℄ that ould be used to desribe the loop. Another aspetof our study is the formation of the hairpin, i.e. the folding of the single strandof DNA to form the stem. This proess is qualitatively similar to the folding ofproteins in their biologially ative on�guration. This is why, in this hapter, wealso give a brief review of protein folding theory.3.1 Polymer theory3.1.1 IntrodutionSine the birth of the interdisiplinary studies approximately �fty years ago, poly-mer theory has known a high development for its appliation in hemial tehnologyas well as, of ourse, in biology. Indeed maromoleules play a key role in moleular33



Review of some polymer and protein modelsbiology with DNA, RNA and proteins. As one an imagine, polymers have omplexproperties due to their interation both inside the moleule and with the environ-ment, i.e. with the solvent and other idential moleules. In this hapter we willonentrate our attention on the equilibrium properties of polymers presenting threedi�erent models: the freely jointed hain, the freely rotating hain and �nally theKratky-Porod hain ( or worm like hain) [54℄. Dynamial properties of polymer insolution will not be onsidered in this thesis [53, 55℄ beause they are not neessaryfor our purpose.3.1.2 Freely jointed hainThe freely jointed hain (FJC) is the simplest model for a single polymer in solution.Eah monomer oupies a point in three or two dimensional spae. The onformationof the FJC is represented by the set of N+1 position vetors {Rn} ≡ (R0 . . .RN)de�ning the position of the nodes in spae. We an also de�ne the bond vetors thatonnet together these monomers {rn} ≡ (r1 . . . rN ), withrn = Rn −Rn−1, (3.1)for n=1. . .N.
R

r1

l

Figure 3.1: Freely jointed hain.To onstrut a probabilisti model for the polymer, we say that the node n mustbe at a distane b from the node n − 1, and eah diretion in spae has the sameprobability. Therefore the distribution for the bond vetor with, a onstant length
b, is the following:

Φ(r) =
1

4πb2
δ (|r| − b) . (3.2)34



3.1 Polymer theoryThis distribution is normalized to unity
∫

drΦ(r) = 1. (3.3)Sine the bond vetors rn are independent of eah other,
Φ(ri, rj) = Φ(ri)Φ(rj). (3.4)so that the joint probability distribution an be fatored into single bond vetorprobability distribution. For a hain of N bond vetors, the distribution funtion iswritten as
Ψ({rn}) =

N∏

n=1

Φ(rn). (3.5)Note that this is an unphysial model for a polymer sine it allows two monomers tobe arbitrarily lose to eah other: there is no �exluded volume� interation betweenany two monomers. Note also that onstruting the polymer hain with N bonds isequivalent to a random walk of N steps, whih is the other name of this model.3.1.2.1 End-to-end vetorWe are interested in ertain properties of this model. First, we want to know theproperties of the end-to-end distane of the polymer.R = RN −R0 =

N∑

n=1

rn. (3.6)To de�ne its statistial properties, we would like to know the moments of this quan-tity, in partiular 〈R〉 and 〈R2
〉. First, 〈R〉 =

∑N
n=1 〈rn〉 = 0 beause

〈rn〉 =

∫ rnΦ(rn)drn = 0. (3.7)There is no preferred diretion for any bond, so that the average is zero. Seond,〈R2
〉,

〈R2
〉

=

〈
N∑

i=1

N∑

j=1

ri · ri

〉

〈R2
〉

=

N∑

i,j=1

〈ri · rj〉

〈R2
〉

=

N∑

i=1

〈
|ri|2

〉
+

N∑

i6=j=1

〈ri · rj〉
〈R2

〉
= Nb2. (3.8)35



Review of some polymer and protein modelsAll of the ross terms vanish beause the distribution of the individual bonds arestatistially independent. There are N remaining terms, eah of them giving a fator
b2. Also, note that this implies that √〈R ·R〉 = R =

√
Nb, i.e. that the root meansquare end-to-end distane of a polymer grows as √N .3.1.2.2 End-to-end vetor distributionWe now onsider the statistial distribution of the end-to-end vetor of the FJCmodel. The probability distribution funtion G(R) of the end-to-end vetor is al-ulated using the distribution of the bonds:

G(R) =

∫
dr1

∫
dr2 · · ·

∫
drNδ

(R−
N∑

n=1

rn

)
Ψ({rn}), (3.9)whih is rewritten using the integral representation of the delta funtion as

G(R) =
1

(2π)3

∫
Ψ({rn)

∫ exp(−ik(R−
N∑

n=1

rn

))
dk N∏

i=1

drj

G(R) =
1

(2π)3

∫
e−ik·R N∏

n=1

(∫
1

4πb2
δ (|rn| − b) eik·rndrn

)
dk. (3.10)It is possible to evaluate the integral within the parentheses for eah n using polaroordinates with k pointing along the z diretion. We get

∫ ∞

0

1

4πb2
δ (|rn| − b) eik·rndrn =

sin kb

kb
. (3.11)Using Eq. (3.11), the expression (3.10) beomes

G(R) =
1

(2π)3

∫
e−ik·R(sin kb

kb

)N

dk. (3.12)So far the alulation is exat for all N . To proeed, we need to make an approxima-tion to evaluate the integral. We are interested in large N , sine we are interestedin long polymer hains. One an hek that limN→∞(sin kb/kb)N = 0 for all kb > 0.So the dominant part of the integral omes from the small values of kb. Thereforewe an use the fat that
sin kb

kb
≈ 1 − (kb)2

3!
≈ exp

(
−(kb)2

6

)
. (3.13)The distribution now beomes

G(R) =
1

(2π)3

∫
e−ik·Re−

k2b2N
6 dk. (3.14)36



3.1 Polymer theoryThe integral over k is a standard Gaussian integral [57℄ whih gives us
G(R) =

(
3

2πb2N

) 3
2

e−
3R2

2b2N . (3.15)We an notie that the probability distribution for the vetor R only depends onits length R and is Gaussian. Moreover the distribution (3.15) has the unrealistifeature that ||R|| an be larger than the maximum extended length Nb of the hainwhih is due to the approximation made in the alulations. Finally we an expressthe probability distribution of the end-to-end distane R using
G(R)dR = P (R)dR. (3.16)Therefore, replaing b by l,

P (R) = R2

√
2

π

(
3

2l2N

) 3
2

e−
3R2

2l2N . (3.17)Figure (3.2) gives a representation of P (R) for di�erent value of N and a �xed valueof l=6 Å whih approximately is the interbase distane in ssDNA.
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Figure 3.2: Probability distribution of the end to end distane of a freely jointed hain.3.1.3 Freely rotating hainA more realisti model to desribe hains without long-range-interations is thefreely rotating hain (FRC) [56℄. A drawing of a freely rotating hain is shown inFig. (3.3). The angle θ is �xed for eah segment; but eah segment an freely rotatealong the φ degree of freedom. The distribution funtion for the end-to-end vetor37



Review of some polymer and protein models

Figure 3.3: Freely rotating hain.R, is not known for the disrete ase but for very long hain this distribution tendsto a Gaussian funtion. Nevertheless with numerial simulation it is quite easy toget this distribution. It is interesting to derive 〈R2
〉 of suh a hain in order tointrodue the notion of persistene length [54℄.3.1.3.1 End-to-end vetorWe an write bak the expression of 〈R2

〉 as
〈R2

〉
=

N∑

i=1

〈r2
i

〉
+ 2

N∑

i=1

N−i∑

j=1

〈ri · ri+j〉 . (3.18)Thus a reursion relation is needed to alulate 〈ri · ri+j〉. The relationship is derivedby suessively projeting eah vetor ri onto the unit vetor along the diretion ofthe previous two vetors of the hain ri−1 and ri−2. Thereforeri = − cos φiri−2 + cos θ (1 + cosφi) ri−1 +
sin φi

l
ri−2 × ri−1, (3.19)where φ is the azimuthal rotation angle of the ith bond vetor relative to the previousone. It follows that ri · ri−2 = l2

(
cos2 θ − sin2 θ cos φi

)
. (3.20)38



3.1 Polymer theoryThe seond term in Eq. (3.20) averages to zero (integration over the azimuthalangle). Therefore
〈ri · ri−2〉 = l2 cos2 θ, (3.21)whih an be generalized as

〈ri · ri+j〉 = (cos θ)j−1 〈ri+j−1 · ri+j〉 = l2(cos θ)j

≡ l2e−
jl
λ , (3.22)where λ = −l/ ln cos θ is de�ned as the orrelation length. Putting Eq. (3.22)into Eq. (3.18) and after some standard algebrai manipulations, we obtain

〈R2
〉

= Nl2

(
1 + cos θ

1 − cos θ
− 2 cos θ

N

1 − (cos θ)N

(1 − cos θ)2

)
. (3.23)We learly see that when N beomes large Eq. (3.23) simpli�es into

〈R2
〉

= Nl2
1 + cos θ

1 − cos θ
, (3.24)whih shows that, as in the ase of the FJC, the end-to-end distane sales as √N .As Eq. (3.21) shows, the bonds are orrelated and the hain is said to have �sti�ness�.To haraterize how sti� the hain is, we have to �nd the �memory� of the hain.Let us suppose that the �rst segment of the hain points in the diretion u0. Weask, how does the end-to-end vetor of the hain R, orrelate with the originalorientation, u0? If R is on average along the same diretion as the original, thehain is very sti�. If not, it is more �exible. Thus, it is natural to evaluate

〈R · u0〉 =

〈R · r1

‖r1‖

〉

〈R · u0〉 =
1

l

N∑

i=1

〈r1 · ri〉

〈R · u0〉 = l
N∑

i=1

(cos θ)i−1

〈R · u0〉 = l
1 − (cos θ)N

1 − cos θ
. (3.25)In the limit of a long hain (only large N),

lim
N→∞

〈R · u0〉 ≡ lp =
l

1 − cos θ
, (3.26)where lp is alled the persistene length of the hain. This desribes the sti�ness inthe hain beause it desribes how long the orientation of the hain persists through39



Review of some polymer and protein modelsits length. Clearly, the smaller θ is, the sti�er the hain will be. A θ-value of zeroorresponds to a ompletely rigid rod [55℄. It is interesting to look at the ontinuumlimit de�ned by l → 0, N → ∞, Nl → L whih is onstant and θ → 0. We anwrite Eq (3.22) as
〈r0 · rN〉 = l2(cos θ)N

〈r0 · rN〉 = l2 exp (N ln (cos θ))

〈r0 · rN〉 = l2 exp

(
N

(
cos θ − 1 − (cos θ − 1)2

2
+ · · ·

))

〈r0 · rN〉 = l2 exp

(
−Nl

(
(1 − cos θ)

l
+

(1 − cos θ)2

2l
+ · · ·

))

〈r0 · rN〉 ≈ exp−Nl

lp
, (3.27)whih shows that the persistene length orresponds to the orrelation length of thehain in the ontinuum limit approximation only.3.1.3.2 End-to-end vetor distributionIt is not possible to derive an exat expression for the end-to-end vetor distributionfor all R and all N . Nevertheless as Eq. (3.24) shows, the end-to-end distanesales with √

N for large N . Therefore we an expet, aording to the entral limittheorem that the probability distribution of the end-to-end vetor to be Gaussian.In Ref. [54℄ it is shown that, in suh a limit, the harateristi funtion, whih is theFourier transform of the probability distribution, is Gaussian:
K(k) = exp−

(k2

6
Nl2

1 + cos θ

1 − cos θ

)
. (3.28)Therefore the probability distribution G(R) also is Gaussian for large N :

G(R) =
1

(2π)3

∫
K(k)e−ik·Rdk

G(R) =
1

8(πσ2
N )

3
2

exp− R2

4σ2
N

, (3.29)where σ2
N = Nl2

6
1+cosθ
1−cos θ

is the gyration radius of the polymer in suh a limit.Therefore the end-to-end probability distribution is
P (R) = 4πR2G(R) =

1

2
√

π

1

σN

(
R

σN

)2

e
− R2

4σ2
N . (3.30)In pratie we have to know when the approximation of large N is valid. For thatwe have ompared the real probability of the FRC simulated numerially and the40



3.1 Polymer theoryGaussian approximation. Figure (3.4) gives the omparison for two di�erent valuesof the polar angle and for di�erent values of the number of monomers. The lengthof one monomer is �xed to 6 Å, whih is the appropriate value for a DNA strand.(a) (b)
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Figure 3.4: Probability distribution of the Freely Rotating Chain for two values of
θ, (a): θ=120◦; (b): θ=45◦ and omparison with the Gaussian approximation. Thelength of one monomer is �xed to 6 Å.First of all, P (R) is not Gaussian for all N and for all θ. Indeed for a smallvalue of θ and N=10-20, the Gaussian approximation is not orret beause theGaussian approximation allows R to be larger than Nl and it is physially notpossible. Nevertheless for bigger values of N like 50 the Gaussian approximation isbetter and in these onditions we an use suh an approximation.Seond, for a large value of θ, the limit of large N is rapidly reahed. Indeed for
N=10 the probability distribution is approximately Gaussian and the greater N ,the best is the Gaussian approximation. Therefore the validity of the large N limitdepends on θ. If θ is large, the limit is reahed rapidly but if θ is small, bigger valuesof N are needed.We now understand why it is very di�ult to derive an exat expression of theend-to-end distane probability distribution for all N .3.1.4 Kratky-Porod hain3.1.4.1 An exat alulation of PN(r)We onsider the hain desribed by the Hamiltonian

H = −ǫ

N−1∑

j=1

(rj · rj+1 − l2
)
, (3.31)41



Review of some polymer and protein modelswhere l is the length of the segment. If we de�ne Xj = rj/l, whih is a unit vetor
H = ǫl2

N−1∑

j=1

(Xj ·Xj+1 − 1) . (3.32)The partition funtion of the hain is given by
ZN =

∫
dΩ1...dΩN

N−1∏

j=1

eb(Xj ·Xj+1−1), (3.33)with b = ǫl2/kBT and Ωj is the solid angle variation assoiated with a hange oforientation of vetor Xj. This system is formally analogous to a one-dimensionalHeisenberg hain in zero �eld studied in [58℄. Using polar oordinates, θj+1, φj+1referred to Xj as the polar axis, the integrals separate yielding
ZN =

∫
dΩ1

[
N−1∏

j=1

∫ π

θj+1=0

∫ 2π

φj+1=0

eb cos θj+1 sin θj+1dθj+1dφj+1

]
e−b(N−1)

ZN = 4π

[
2π

eb − e−b

b

]N−1

ZN = (4π)N

[
e−b sinh b

b

]N−1

. (3.34)Or if we introdue the modi�ed Bessel funtion of zeroth order i0(b) = sinh b/b,
ZN = (4π)N [e−bi0(b)

]N−1.A similar approah an be used to ompute the orrelation funtions whih give usthe persistene length.
Ck = 〈Xj ·Xj+k〉 = 〈X1 ·Xk+1〉 , (3.35)by setting j = 1 without loss of generality

Ck =
1

ZN

∫
dΩ1X1

∫
dΩ2e

−bX1·X2 ...

∫
dΩke

−bXk−1·Xk×
∫

dΩk+1Xk+1e
−bXk·Xk+1

∫
dΩk+2e

−bXk+1·Xk+2 × ...×
∫

dΩN−1e
−bXN−1·XN × e−(N−1)b. (3.36)The integrals over Ωk+2...ΩN−1 simplify with the orresponding integrals in ZN .Moreover we an use the relation for unit vetors

∫
dΩj+1Xj+1e

−bXj ·Xj+1 = 4πi1(b)Xj, (3.37)42



3.1 Polymer theorywhere
i1(b) =

b cosh b − sinh b

b2
, (3.38)whih an again be obtained by diret integration in polar angles [57℄.This allows us to get an expression of Ck by integrations whih involve suessivelyXk+1, Xk, ...X1. Eah one gives a fator i1(b).The result is

Ck = 〈X1 ·Xk+1〉 =

(
i1(b)

i0(b)

)k

. (3.39)Using the de�nition of the persistene length
Ck = 〈X1 ·Xk+1〉 = e−kl/lp , (3.40)we obtain the persistene length as

l

lp
= − ln

[
i1(b)

i0(b)

]
= − ln

(
coth b − 1

b

)
. (3.41)It is interesting to notie that, in the limit of large b (ǫ large or low temperature T )we get

lp =
l

ln
[
coth b − 1

b

] ≈ lb = l × ǫl2

kBT
, (3.42)whih is the result obtained with the worm like hain model [51℄, i.e. the ontinuumlimit of the Kratky-Porod hain.As explained in Chap. 5 to model the statistial physis of DNA hairpins, we needthe probability distribution funtion of the polymer PN(R), whih makes up thehairpin. For the Kratky-Porod hain its alulation is muh more omplex than fora Gaussian hain. Even in the ontinuum limit (WLC model) the exat expression isnot known. An approximate expression has been obtained by Wilhem and Frey [59℄.It reads

PN(R) = 4πR2 1

4πR2

κ

2
√

π

∞∑

n=1

1

κ (1 − R/L)3/2
exp

[
− (n − 1/2)2

κ (1 − R/L)

]
×

H2

(
n − 1/2√

κ (1 − R/L)

)
, (3.43)where L = Nl is the total length of the polymer, κ = ǫl3/kBTL is the rigidityoe�ient of the WLC.In the ase of the disrete Kratky-Porod hain the alulation is even harder andthe probability distribution PN(R) is not known analytially. However a ompu-tationally e�ient method for its aurate numerial alulation has reently been43



Review of some polymer and protein modelsproposed by N. Theodorakopoulos [60℄. As we use this method in our numerial al-ulations, we give the alulation in Appendix A. The Fourier transform of PN(R)is expressed as a matrix element of the N th produt of a matrix F as
PN(q) =

(
F N
)
00

, (3.44)where the elements Fll of the semi-in�nite matrix F are expressed as a �nite sum ofBessel funtions. (See Appendix A for their expression).In pratie the size of the matrix F has to be trunated to a �nite lmax. For a semi-�exible hain L >> lp (for instane N = 11 segments and a persistene length of 2segments) lmax=2 or 3 produes results whih an hardly be distinguished from theexat results produed by Monte Carlo simulations. For rigid hains L/lp = O(1),for instane for N = 10 and a persistene length of 5 segments, lmax = 4 is neessaryto get a good agreement with Monte Carlo simulations. These small values of lmaxprovide a rather e�ient numerial method to ompute PN(R) for the Kratky-Porodhain.3.1.4.2 E�etive Gaussian approahIn spite of its e�ieny and the moderate values of lmax whih are required, thealulation of PN(R) for a Kratky-Porod hain may beome quite long when wewant to san a large number of temperatures to obtain a urve for the opening asa funtion of temperature. This is why it is useful to have a faster approximatealulation.One possibility is to use an e�etive Gaussian approximation whih has a doubleinterest1. it is faster than the omplete Kratky-Porod alulation;2. for Gaussian hain we know an exat expression for the onditional probabilityfuntion S(r|R) whih enters into our hairpin alulation ( the S funtion ispresented in the next setion).The idea is to approximate PN(R) by the expression for a Gaussian hain thatwould lead to the persistene length that we alulated for the Kratky-Porod hainEq. (3.42). This is an be done with
P G

N (R) =
1

2
√

π

1

σN

(
R

σN

)2

e−R2/4σ2
N , (3.45)with σN = N

6
χl2 and χ = 1+coth b−1/b

1−coth b+1/b
. The orresponding onditional probability isgiven by Eq. (3.58) whih exatly veri�es Eq. (3.50).Figure (3.5) ompares the e�etive Gaussian approximation to the Kratky-Porodexpression. In the ase L/lp=5.9 the e�etive Gaussian approximation is rough (but44



3.1 Polymer theory
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Figure 3.5: Comparison of the e�etive Gaussian probability distribution funtionand the exat expression for N=10 and N=32. The parameters are T=300 K and
ǫ=0.0015 eV.Å−2.The blak urve orresponds to the e�etive Gaussian funtion.Left:N= 10 and right:N= 32nevertheless better than the WLC expression of Wilhem and Frey), but for L/lp=19one an notie that the e�etive Gaussian approximation beomes very good. There-fore, in our hairpin alulation for small values of N we use the full disrete KPdistribution and for higher values of N we use the e�etive Gaussian approxima-tion. Moreover in the ase of the Kratky-Porod hain, in any ase for our hairpinalulation we have to use for S(r|R) the Gaussian form.In order to determine to what extend this approximation modi�es the denaturationurves for hairpins (the alulation of suh urves is given in Chap. 5) we have om-pared suh urves for the two expressions P G

N (R) and P KP
N (R) as shown in Fig. (3.6).The di�erene between the two models for the loop are only pereptible for the short-est and fairly rigid loops (N = 12, ǫ=0.0022 eV.Å−2 giving lp=15.4 Å or L/lp=4.66).For larger loops (N = 24, i.e. L/lp=9.32) the denaturation urves omputed with

P G
N (R) or P KP

N (R) an hardly be distinguished.
3.1.5 Growth of a polymer hainLet us onsider an e�etive Gaussian hain with a given number of monomers N , andan end-to-end distane vetor R. Its end-to-end distane probability distribution isgiven by Eq. (3.30). We introdue at this stage a new variable de�ned as

σN =
Nl2

6
χ. (3.46)45
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Figure 3.6: Comparison between the melting urves obtained with the e�etiveGaussian and the exat expression of the probability distribution funtion for N=12and N=24. The parameters are (see hapter 5 for their signi�ation) D=0.090 eV,
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χ = 1 (FJC)

χ = 1+cos θ
1−cos θ

(FRC)

χ = 1+coth b−1/b
1−coth b+1/b

(KP),

(3.47)if we use an approximate desription for the FRC and the KP model. Suppose thatthe hain grows by the addition of one monomer at eah end. Let the additionalsegments at the two ends be represented by the vetors ∆1, ∆2, respetively. Thenew end-to-end distane vetor would then be r = R+∆1 −∆2. The unnormalizedprobability for the growth at eah end by a vetor ∆i will be proportional to
e
− 3|∆i|

2

2χl2 . (3.48)We would like to derive the funtion S(r|R) suh as S(r|R)dr is the onditionalprobability that, if the end-to-end distane of the polymer hain of N monomersis equal to R, the end-to-end distane of a hain of N + 2 monomers, i.e. whereone monomer have been added at eah end, will be in the range (r, r + dr). It isnormalized to unity ∫ ∞

0

drS(r|R) = 1 ∀R. (3.49)Furthermore, it satis�es
∫ ∞

0

dRPN(R)S(r|R) = PN+2(r) ∀r, N, (3.50)46



3.1 Polymer theoryby de�nition. We shall see in Chap. 5 that this onditional probability is useful toalulate the partition funtion of a DNA hairpin.The funtion S(r|R) is de�ned by
S(r|R) = Ar2

∫
dΩr

∫
d∆1

∫
d∆2e

−∆2
1+∆2

2
τ2 δ (r − R −∆1 + ∆2) , (3.51)where τ = 2χl2

3
and A is a normalization fator. The �rst integral is over all orienta-tions of the vetor r, and the other two are meant over all spae. The normalizationonstant will be spei�ed at the end of the alulation. The r2 fator appears be-ause we only want the norm of r to fall in the spei� range. The integral over ∆2an be done trivially. Abbreviating r − R = ρ, we obtain

S(r|R) = Ar2

∫
dΩr

∫ ∞

0

d∆1∆
2
1

∫ 1

−1

dµe−
∆2

1
τ2 e−

∆2
1+ρ2−2ρ∆1µ

τ2 , (3.52)where
µ =

ρ.∆1

ρ∆
. (3.53)We are omitting a 2π fator from integration over the azimuthal angle of ∆1 beausethis only hanges the normalization. Performing the dµ integration, we get

S(r|R) = Ar2

∫
dΩr

1

ρ
e−

ρ2

τ2

∫ ∞

0

d∆1∆1e
− 2∆2

1
τ2 sinh

(
2ρ∆

τ 2

)
, (3.54)where we have again omitted onstant fators to be �xed by normalization.Using the de�nite integral

J(a, b) =

∫ ∞

0

dx xe−ax2

sinh bx =
b

2a

(
π

a

1
2

)
e

b2

4a , (3.55)we an do the integration over ∆2. Reintroduing ρ = r − R

S(r|R) = Ar2

∫
dξe−

r2+R2−2rRξ

2τ2 , (3.56)where now
ξ =

r.R

rR
. (3.57)Finally, performing the integration over dξ, and using Eq. (3.49) that �xes theonstant A, we get

S(r|R) =

(
3

πχl2

) 1
2 r

R
sinh

(
3rR

2χl2

)
e
− 3

4
r2+R2

χl2 . (3.58)One an show, that the funtion S(r|R) satis�es Eq. (3.50) with PN(R) given byEq. (3.30) but it is slightly tedious. This equation assumes that PN(R) is Gaussian.47



Review of some polymer and protein modelsAs we disussed above it is not always the ase. Sine we intend to use the onditionalprobability S(r|R) in our hairpin alulations, it is useful to examine the error thatit introdues when it is applied to a polymer whih is not Gaussian suh as the FRCor the KP hain. Let us ompare PN+2(r) given by the exat polymer model andits value obtained with (3.50) where PN(R) is also desribed by the exat polymermodel (FRC of KP). As we an see, for small values of N , the alulation of
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Figure 3.7: Comparison of PN+2(r) obtained using Eq. (3.50) and the real form withthe FRC. The length of one monomer is �xed to 6 Å, and θ=45◦. The blak urverepresents PN(r), the red urve is for the exat PN+2(r) and the blue one is obtainedusing Eq. (3.50). Left: N=12 and right: N=30.
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Figure 3.8: Comparison of PN+2(r) obtained using Eq. (3.50) and the real form withthe KP hain. The length of one monomer is �xed to 6 Åand ǫ=0.0020 eV.Å−2. Theblak urve represents PN(r), the red urve is for the exat PN+2(r) and the blueone is obtained using Eq. (3.50). Left: N = 12 and Right: N = 30.
PN+2(r) using Eq. (3.50) is not orret beause PN(r) is not Gaussian. Neverthelessfor N = 30 the �growth� of the polymer is orretly reprodued by the S funtion. In48



3.2 Protein modelsa more general way, we an say that better the Gaussian approximation for PN(r),the better the result obtained by Eq. (3.50), whih is of ourse natural sine (3.50)is exat in the Gaussian ase.3.2 Protein models3.2.1 Protein foldingThe formation of a DNA hairpin from a single strand of DNA is qualitatively sim-ilar to the folding of the amino-aid hain of a protein. The partiular amino-aidsequene (or "primary struture") of a protein predisposes it to fold into its nativeonformation or onformations [61℄. Many proteins do so spontaneously during orafter their synthesis inside ells. While these maromoleules may be seen as "foldingthemselves," in fat their folding depends a great deal on the harateristis of theirsurrounding solution, inluding the identity of the primary solvent (either water orlipid inside ells), the onentration of salts, the temperature, and moleular haper-ones. For the most part, sientists have been able to study many idential moleulesfolding together. It appears that in transitioning to the native state, a given aminoaid sequene always takes roughly the same route and proeeds through roughlythe same number of fundamental intermediates.The essential fat of folding, however, remains that the amino aid sequene of eahprotein ontains the information that spei�es both the native struture and thepathway to attain that state: folding is a spontaneous proess. The passage of thefolded state is mainly guided by Van der Waals fores and entropi ontributions tothe Gibbs free energy: an inrease in entropy is ahieved by moving the hydrophobiparts of the protein inwards, and the hydrophili ones outwards [62℄. During thefolding proess, the number of hydrogen bonds does not hange appreiably, beausefor every internal hydrogen bond in the protein, a hydrogen bond of the unfoldedprotein with the aqueous medium has to be broken.The entire duration of the folding proess varies dramatially depending on theprotein of interest. The slowest folding proteins require many minutes or hours tofold, primarily due to steri hindranes. However, small proteins, with lengths of ahundred or so amino aids, typially fold on time sales of milliseonds. The veryfastest known protein folding reations are omplete within a few miroseonds.The Levinthal paradox, proposed by Levinthal in 1969 [21℄, states that, if a proteinwere to fold by sequentially sampling all possible onformations, it would take anastronomial amount of time to do so, even if the onformations were sampled ata rapid rate (on the nanoseond or pioseond sale). Based upon the observationthat proteins fold muh faster than this, Levinthal then proposed that a randomonformational searh does not our in folding, and the protein must, therefore,fold by following a pre-determined path.Folding and unfolding rates also depend on environment onditions like temperature,solvent visosity, pH and more. The folding proess an also be slowed down (and49



Review of some polymer and protein modelsthe unfolding sped up) by applying mehanial fores, as revealed by single-moleuleexperiments.The study of protein folding has been greatly advaned, in reent years by the de-velopment of fast, time-resolved tehniques [63℄. These are experimental methodsfor rapidly triggering the folding of a sample of unfolded protein, and then observingthe resulting dynamis. Fast tehniques in widespread use inlude ultrafast mixingof solutions, photohemial methods, and laser temperature jump spetrosopy. ForDNA hairpins the formation of the hairpin is similar to the folding, but, thanks tothe use of FRET we have seen that the kinetis an be measured.The protein folding phenomenon was largely an experimental endeavor until thegroundbreaking formulation of the Energy Landsape theory by Bryngelson andWolynes in the late 1980's [64℄. The theory introdued the priniple of minimalfrustration, whih asserts that evolutionary seletion has designed the amino aidsequenes of natural proteins so that interations between side hains largely favorthe moleule's aquisition of the folded state. Interations that do not favor fold-ing are seleted against, although some residual frustration is expeted to exist. Aonsequene of these evolutionarily designed sequenes is that proteins are generallythought to have globally "funneled energy landsapes" (oined by Onuhi) that arelargely direted towards the native state. This "folding funnel" landsape allowsthe protein to fold to the native state through any of a large number of pathwaysand intermediates, rather than being restrited to a single mehanism. The theoryis supported by omputational simulations [67℄, [68℄ of model proteins and has beenused to improve methods for protein struture predition and design. Ab initio teh-niques for omputational protein struture predition employ simulations of proteinfolding to determine the protein's �nal folded shape.3.2.2 Lattie modelsLattie proteins are highly simpli�ed omputer models of proteins [66℄, [69℄ whihare used to investigate protein folding. Beause proteins are suh large moleules,ontaining hundreds or thousands of atoms, it is not possible with urrent tehnol-ogy to simulate more than a few miroseonds of their behaviour in all-atom detail.Hene real proteins annot be folded on a omputer. Lattie proteins [65℄, however,are simpli�ed in two ways: the amino aids are modelled as single "beads" ratherthan modelling every atom, and the beads are restrited to a rigid (usually ubi)lattie. This simpli�ation means they an fold to their energy minima in a timequik enough to be simulated. Lattie proteins are made to resemble real proteinsby introduing an energy funtion, a set of onditions whih speify the energy ofinteration between neighbouring beads, usually taken to be those oupying adja-ent lattie sites. The energy funtion mimis the interations between amino aidsin real proteins, whih inlude steri, hydrophobi and hydrogen bonding e�ets.The beads are divided into types, and the energy funtion spei�es the interations50



3.2 Protein modelsdepending on the bead type, just as di�erent types of amino aid interat di�er-ently. Lattie protein models were studied in the last seventies to gain a deeperunderstanding of the Levinthal paradox. The main advantage of lattie models overmore detailed ones is that in many ases their whole onformational spae an beexamined. However, even for suh simple models the number of possible onforma-tions is growing very quikly as the size of the polymer inreases. For example, onthe square lattie, a 18-mer has 5808335 di�erent onformations unrelated by sym-metries. Simply enumerating them is triky in the above ase, while in the 49-merase it is out of reah (there are ≈ 1020 of them). However as shown by Go [70℄ andhis ollaborators, starting form a random onformation, the 49-mer an reah itsground state, that, is its lowest energy on�guration, within a few thousands stepsof a Monte Carlo simulation, as long as the energy surfae is de�ned as follows.First, the lowest energy, ompat 7x7 onformation, is hosen a priori. Figure (3.9)gives a shemati representation of the ompat onformation of the 49-mer on thesquare lattie. Then, for all pairs of monomers whih are lose neighbours in this

Figure 3.9: A ompat onformation of the 49-mer on the square lattie [21℄.on�gurations, the ontat energy is assumed to be attrative, while for all othersit is not. So, when the ground-state is at the bottom of a deep funnel on the energysurfae, then it is quite easy for a �exible polymer to �nd its way and reah it trougha random searh biased by the average energy gradient. However, even if the funnelpiture is nowadays the preferred view for understanding the folding proess, thereis no indiation that protein energy surfaes are as funneled and as deep as in theGo model.Another popular lattie models, the HP model, features just two bead types - hy-drophobi (H) and polar (P) - and mimis the hydrophobi e�et by speifying a51



Review of some polymer and protein modelsnegative (favourable) interation between H beads [21℄. For any sequene in anypartiular struture, an energy an be rapidly alulated from the energy funtion.For the simple HP model, this is simply an enumeration of all the ontats betweenH residues that are adjaent in the struture, but not in the hain.Most researhers onsider a lattie protein sequene protein-like only if it possessesa single struture with an energeti state lower than in any other struture. This isthe energeti ground state, or native state. The relative positions of the beads in thenative state onstitute the lattie protein's tertiary struture. By varying the energyfuntion and the bead sequene of the hain (the primary struture), e�ets on thenative state struture and the kinetis (rate) of folding an be explored, and thismay provide insights into the folding of real proteins. In partiular, lattie modelshave been used to investigate the energy landsapes of proteins, i.e. the variation oftheir internal free energy as a funtion of onformation.
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Chapter 4A two dimensional lattie model
Contents4.1 Self assembly of DNA hairpins . . . . . . . . . . . . . . . 554.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.1.2 Metropolis-Monte Carlo sheme . . . . . . . . . . . . . . . 574.2 Equilibrium properties of the opening-losing transition 594.2.1 The transition in the absene of mismath . . . . . . . . . 594.2.2 Role of the mismathes . . . . . . . . . . . . . . . . . . . 624.3 Kinetis of the opening and losing . . . . . . . . . . . . . 634.1 Self assembly of DNA hairpins4.1.1 ModelAs we explained in Chap. 2, a �uorophore and a quenher an be used to monitorthe two limiting onformations of ssDNA. We propose here a very simple modelwhih allows us to desribe suh an equilibrium. Our hairpin model is inspiredby the lattie models whih have been used to study protein folding [65℄. It is alattie model so that only disrete motions are allowed, thus it annot desribe thetrue dynamis of the hairpin. Instead we use a Monte-Carlo dynamis where themoves are disrete and determined by their probability at the temperature of thesimulation, depending on their energy ost or gain. To arry suh a alulationwe only have to speify the energy of the model in eah on�guration. As a �rstapproah to this problem we deided to hoose the simplest underlying lattie, aplanar square lattie. This hoie of model restrits the number of aessible stateswith respet to a more omplex three-dimensional lattie, but, as disussed below, itintrodues some limitations on the ability of the model to desribe atual hairpins.The energy of the DNA strand is assumed to depend on two terms only, a bending55



A two dimensional lattie model

Figure 4.1: Two on�gurations of the hairpin model in a lattie. The DNA strandis indiated by the thik line on the lattie. The hydrogen bonds are marked by thethik bonds onneting two points of the stand, and the shaded orners representthe bending energy ontributions. The left ase orresponds to the perfet losing,while the right �gure shows an example of a mismathed partial losing.energy whih appears when two onseutive segments are at some angle, and theenergy of the base-pairs whih an form in the stem. The total number of nuleotidesin the DNA strand is denoted by N . The number of nuleotides whih an formthe stem is denoted by ns. In order to speify the kind of pairing allowed in thestem, eah nuleotide of the stem, denoted by index j is a�eted of a �type� tj . Onlytwo nuleotides having the same �type� are allowed to form a base-pair by hydrogenbonding. Thus, rather that atually speifying the type of a base (A, T, G, C) wespeify the type of pairing that it an form. The energy of the model is written as
E = nAEA +

1

2

ns∑

j=1

ns∑

j′=1

e(j, j′) (4.1)
e(j, j′) = δ(tj − tj′)δ(djj′ − 1)a(j)a(j′)EHB(tj), (4.2)where

• nA is the number of angles in the DNA strand on the lattie, and EA is a pos-itive model parameter giving the energy osts of a bent. In some alulations,
EA may be di�erent for a bent in the stem or in the loop.

• e(j, j′) is the pairing energy between nuleotides j and j′ of the stem. Thefator δ(tj − tj′) enfores the ondition that the two nuleotides should be ofthe same �type�, δ(djj′ − 1) indiates that the pairing is only possible if thetwo nuleotides are adjaent on the lattie. The fators a(j) and a(j′) areequal to 1 only if the nuleotide is available for pairing, i.e. if it is not alreadyinvolved in another pair. Otherwise the pairing is not formed and they are56



4.1 Self assembly of DNA hairpinsset to 0. They are neessary beause some geometries of the hain ould puta nuleotide in a position adjaent to two sites oupied by nuleotides of thesame type. Finally EHB(tj) is the pairing energy for nuleotides of type tj . Itis a negative quantity, whih means that the pairing is favourable beause itlowers the energy of the hairpin.We studied this model using Monte Carlo simulations in the same spirit as thestudies performed on lattie models of proteins, i.e. we generate a random walk of theDNA hain on the lattie with the ondition that the system should be in thermalequilibrium at temperature T . A on�guration of energy E must therefore have aprobability proportional to exp(−E/T ), where T is measured in units of energy. Ifthe moves are seleted in order to stay as lose as possible to the atual motion of apolymer in a �uid, the method an even be used to study dynamial e�ets with a�titious time sale whih is simply given by the number of Monte Carlo steps [72℄.For this reason we seleted only loal motions of the hain. On the two-dimensionalsquare lattie, there are only three suh motions: the hange of the angle betweenthe two segments at one end of the hain, the �ipping of a orner of a lattieell with respet to the diagonal of the ell and a rank mehanism. Figure (4.2)gives a representation of these displaements. If it does not lead to a lash with
(a)                                        (b)                                                            (c)

Figure 4.2: three possible motions: (a), �ipping of a orner of a lattie ell withrespet to the diagonal of the ell; (b) rank mehanism; (), hange of the anglebetween the two segments at one end of the hain.another part of the hain, an attempted motion is aepted with probability P =
min[exp(−∆E/T ), 1], where ∆E = E2 − E1 is the di�erene between the energyafter and before the move, using a standard Metropolis algorithm.4.1.2 Metropolis-Monte Carlo shemeWe are interested in the thermodynamis and the kinetis of the system, and we stud-ied them with the Monte Carlo-Metropolis sheme [72℄. This tehnique is frequentlyused for equilibrium properties nevertheless we also use it for kinetis assuming thatloal displaements give a dynami with time sales proportional to reality. When57



A two dimensional lattie modelwe are interested in the statistial properties, we have to determine the partitionfuntion of the system, whih is in the disrete ase:
Z =

∑

i

exp(−βU(i)), (4.3)where the sum is over all the on�guration of the system. In pratie, the numberof on�guration in too large and it not possible to determine this sum numerially.We have the same problem for the alulation of integrals in the ontinuous ase.Therefore we need spei� methods to estimate these integrals. Monte Carlo al-gorithm onsists in replaing the alulation of an integral by a disrete sum overpoints whih are judiiously distributed. Indeed, one does not have to alulate thevalue of the integral where the integrand is negligible. Thus, we an determine ina reasonable number of step the value of the integral. Let us ome bak to theproblem of statistial mehanis. We assume that we �x the temperature to T . Weare often interested in the determination of averages quantities suh as:
〈A〉 =

∑
i Ai exp(−βUi)

Z
. (4.4)In Eq. (4.4) we an see:

Pi =
exp(−βUi)

Z
. (4.5)This quantity de�nes the probability of the on�guration of energy Ui at equilibrium.If we an generate on�gurations with this weight, then the average of A will beestimated by

〈A〉 ≃ 1

Nr

Nr∑

i

Ai. (4.6)So with the Monte Carlo method we an estimate the average of A if we an generateon�gurations with the equilibrium probability. Therefore, the problem onsists indetermining a method that generates a stohasti dynami in order to get the equi-librium distribution. Then, the averages will simply be done by the relation (4.6).In 1953, to generate suh a stohasti dynamis, Metropolis, Rosenbluth and Teller,proposed a method based on the detailed balane relation (in the anonial ensembleand at equilibrium):
W (j → i)P e

j = W (i → j)P e
i , (4.7)where W (i → j) is a transition probability of the state i to the state j and P e

i is theequilibrium probability of the state i whih is given by Eq. (4.5). We an rewriterelation (4.7) as:
P e

i

P e
j

=
W (j → i)

W (i → j)
= e−β(U(i)−U(j)). (4.8)Therefore the system will onverge to the equilibrium state if at eah transition ofa state i to a state j the transition probabilities obey the relation (4.8). We only58



4.2 Equilibrium properties of the opening-losing transitionhave to �nd a simple expression for the transition probability W . The hoie ofMetropolis et al whih gives the Monte Carlo-Metropolis algorithm is the following:
W (i → j) =

{
1, U(j) − U(i) ≤ 0
e−β(U(j)−U(i)), U(j) − U(i) > 0.

(4.9)A possible algorithm to implement it is:1. We generate a state j from state i using a deterministi rule or a randomproess2. We alulate ∆U = U(j) − U(i).3. • If ∆U ≤ 0, then W (i → j) = 1 and we keep the new state j.
• If ∆U > 0, then W (i → j) = e−β∆U and we pik a number r randomlyin the interval [0,1℄. We keep the state j if r ≤ e−β∆U , or we rejet it ifnot.4. We ome bak to the beginning of the proedure in 1.Using this sheme, the system reahes its equilibrium state after a number of stepthat is di�ult to estimate �a priori�. In pratie the number of steps is hosen largeenough to observe steady state values of the observed quantities averaged over alarge number of individual steps. After that, we repeat the proedure with a di�erentinitial ondition and another set of random numbers to get averages or equilibriumprobability distributions from di�erent realizations. Finally new algorithms based onMonte Carlo sheme [73℄ have been introdued to allow the study of bigger systems.4.2 Equilibrium properties of the opening-losingtransition4.2.1 The transition in the absene of mismathLet us onsider �rst the equilibrium properties of DNA hairpins in the simple asewhen they an only lose with a orret mathing of the bases in the stem. Thiswould be the ase if the base sequene in the stem forbids any mismath. In orderto ompare with experimental results [4℄ we onsidered the ase of a stem having5 base-pairs (ns = 5). Sine there are only 4 types of bases, at least one has toappear twie in the stem. Thus the Watson-Crik pairing rules allow at least onemismathed pairing, but it may be very unfavourable beause, if it ourred, theother bases of the stem would not be paired and may even experiene some steri59



A two dimensional lattie modelhindrane. In the model it is easy to stritly forbid any mismathed losing by us-ing a sequene ti = {1, 2, 3, 4, 5} where all base-pairs have di�erent types. Besidesthis ondition, in our alulations we gave same energy EHB = −1 to all types ofbase-pairs. This value sets the energy sale, and thus the temperature sale. Withthese parameters, the model does not attempt to mimi any real DNA hairpin, butit is designed to stay as simple as possible in order to exhibit the basi mehanismsthat govern the hairpin properties.Figure (4.3) shows the variation of the number of hydrogen-bonded base-pairs ver-

Figure 4.3: Variation versus temperature of the number of hydrogen-bonded pairsin the stem for hairpins of di�erent lengths N , in the absene of mismathes.sus temperature for hains having di�erent numbers N of nuleotides. The numberof nuleotides in the loop is N − 10 sine the stem is always made of two segmentsof 5 nuleotides. In these alulations, the bending energy EA has been set to
EA = 0.02, and it has the same value along the whole DNA strand. The resultshave been obtained with di�erent initial onditions: we start either from a losedhairpin or a random oil. Eah point in the �gure is an average of 100 alulationswith di�erent sets of random numbers to generate the initial onditions and thestohasti motions of the hains on the lattie, eah alulation involving between
4 108 and 8 108 Monte Carlo steps (depending on temperature and hain length).The �rst 2 107 steps are disarded in the analysis to allow the model to equilibratingto the seleted temperature. For T ≥ 0.15 a good equilibration is ahieved, whileresults at lower temperatures show some dependene on the initial onditions be-ause an equilibrium state has not been reahed. This is why they are not shown inFig. (4.3).As expeted, when temperature inreases we observe a fairly sharp derease of thenumber of hydrogen-bonded base-pairs. It orresponds to the opening of the hair-pin, whih ours over a temperature range of about 0.2 energy units, around theso-alled �melting temperature� Tm ≈ 0.35, whih is well below to the temperature60



4.2 Equilibrium properties of the opening-losing transition
T = 1 orresponding to the binding energy of a base-pair. This indiates that theentropy gain provided by the opening of the hairpin ontributes to lower the freeenergy barrier for opening. Inreasing the length of the loop lowers Tm, in agreementwith the experiments [4℄. It also makes the transition sharper, whih is not observedin the experiments.

Figure 4.4: E�et of the rigidity of the loop on the opening of the hairpin: variationversus temperature of the number of hydrogen-bonded pairs in the stem for loopswith di�erent bending energies EA = 0.02 and 0.60, in the absene of mismathes.In the stem the bending energy has been set to EA = 0.02 for both alulations.The two sets of points for EA = 0.6 (rosses and squares) have been obtained intwo independent alulations, with di�erent sets of temperatures and di�erent initialonditions. The rosses show results obtained with a losed hairpin initial ondition,while the squares have been obtained with random initial onditions. Eah point onthis �gure is an averaging over 100 sets of initial onditions and random numbers.The role of the rigidity of the loop an be tested by hanging the value of thebending energy EA for all the bends in the loop, without hanging its value in thestem. Figure (4.4) shows that a more rigid loop leads to an opening at lower temper-ature, in agreement with the experimental observations [4℄. However the variationof Tm given by the model appears to very small, and moreover, as disussed below,the e�et of the rigidity of the loop on the thermodynamis of the hairpin is notorretly desribed in our model. This points out some limitations of the simpli�edmodel, although a quantitative omparison with the experiments is di�ult beause,in the experiments, the rigidity was varied by hanging the bases from T to A. Thelarger purine bases A are assumed to give a higher rigidity to the strand but thisould only be related to the variation of EA by extensive all-atom numerial simula-tions [1℄. Moreover, the role of base staking in the loop is ertainly more omplexthan the simple hange of the rigidity of the hain that our simpli�ed model andesribe. 61



A two dimensional lattie model4.2.2 Role of the mismathesOne feature of DNA hairpins is that, unless they have a spei�ally designed se-quene, they may lose with a wrong pairing in the stem (see �gure (4.1)). Theseimperfet, mismathed, losings have a higher energy that the perfetly losed hair-pin, but they an be very long-lived.

Figure 4.5: Comparison of melting urves with and without mismathes. The meanvalue 〈d〉 of the distane between the �rst and last nuleotide is plotted versustemperature. The hain has N = 20 nuleotides, with EHB = −1 for all base-pairs ofthe stem, Ea = 0.02. The squares show data without mismath (ti = {1, 2, 3, 4, 5}),while the irles and rosses show data with mismathes (ti = {1, 1, 1, 1, 1}). In thisase two sets of alulations have been performed. The irles have been obtainedwith 8 108 Monte Carlo steps, while the rosses involve only 4 108 Monte Carlo steps.For T > 0.25 the two sets give idential results, but, at low T , a smaller number ofMonte-Caro steps slightly a�ets the results.They a�et the opening-losing transition as shown in Fig. (4.5) whih omparesthe melting urves in the presene and in the absene of mismathes. In order toallow mismathes, the sequene of bases of the stem has been set to ti = {1, 1, 1, 1, 1},i.e. all base-pairs are of the same type so that many mismathed pairings are possible,with 1,2,3,4 hydrogen-bonded base-pairs. In this ase we show the mean value 〈d〉of the distane between the �rst and last nuleotide of the hain rather than thenumber of hydrogen-bonded stem base pairs beause 〈d〉 provides a more ompletepiture of the on�guration of the hairpin.On Fig. (4.5), the ase without mismath shows a smooth melting urve, similarto the results of Fig. (4.3). In the low temperature domain where the hairpin islosed, 〈d〉 is larger than the value 〈d〉 = 1 that ould be expeted from a statiimage of the losed hairpin beause there are �utuations. They are partiularlyimportant at the free end of the stem, as shematised on Fig. (4.6).When mismathes are allowed, the urve 〈d(T )〉 shows a fairly sharp kink around
T = 0.215, and then an inrease, qualitatively similar to ases without mismath,62



4.3 Kinetis of the opening and losingbut ourring however more smoothly and at higher temperature. The kink, whihorresponds to a jump of 〈d〉 of about one unit, is due to the formation of a mis-mathed losing where only 4 base-pairs of the stem are formed (Fig. (4.6), rightpart). As temperature is raised further, the number of paired bases in the stemkeeps dereasing, but, as there are many more possibilities for binding than in theno-mismath ase, the opening of the hairpin is more gradual.
Figure 4.6: Shemati plot of the �utuations of the free end of the hain in aperfetly losed state (left) and in a mismathed state (right).4.3 Kinetis of the opening and losingUp to now we spoke of the opening transition of the hairpin as if the hairpin shouldbe losed at low T and open at high T . It is atually more omplex beause, in asmall system like the hairpin, a phase transition between two states does not exist.Atually we always have a equilibrium between the open form O and the losed form
C

C
ko

⇄
kcl

O , (4.10)whih an be studied like a hemial equilibrium rather than a phase transition.At low T the equilibrium is displaed towards losing and at high T it is displaedtowards opening.This suggests that the methods of hemial kinetis an be used to analyse thedynamis of the �utuations of the hairpin. Let us onsider that the hairpin is atwo-state system. This is obviously an approximation whih beomes very rudewhen mismathes are allowed sine, in this ase, the hairpin an also exist in someintermediate states where it is inompletely losed. In the absene of mismath, thetwo-state piture is a satisfatory approximation, as shown in Fig. (4.7). This �gureshows the histogram of the distane d between the two ends of the hains, and thehistogram of the number of hydrogen-bonded base-pairs at temperature T = 0.36 fora model without mismath with N = 50. This temperature is lose to the meltingtemperature Tm for this model, and the histograms learly show the oexistene oftwo populations of states: (i) an open state, where there are no hydrogen-bondedpairs in the stem, whih orresponds to the hump for d > 5 on Fig. (4.7-a), (ii) a63



A two dimensional lattie modellosed state orresponding to the sharp maximum for d < 4 in Fig. (4.7-a) and tothe existene of 2 to 5 hydrogen-bonded base-pairs in Fig (4.7-b) (with a maximumat 4, due to the opening �utuations at the end of the stem as disussed above andshematised in Fig. (4.6), left).(a) (b)

Figure 4.7: Normalised histograms of the distane d between the two ends of thehain (a), and number of hydrogen bonds (b) for a hairpin with N = 50 and nomismathes, at temperature T = 0.36. This temperature is lose to the openingtemperature Tm of this hairpin. Model parameters EHB = −1, Ea = 0.02. Thehistograms show the oexistene of two populations: one population of ompletelyopen hairpins (large values of d and 0 hydrogen bonds) and a population of losedhairpins in whih some of the hydrogen bonds are formed, the highest probabilitybeing with 4 hydrogen bonds formed.The two-state piture allows us to write standard kineti equations for the pop-ulations [C] and [O] of the losed and open states as
d[C]

dt
= −ko[C] + kcl[O] (4.11)

d[O]

dt
= +ko[C] − kcl[O] , (4.12)where ko and kcl are the kineti onstants for the opening and losing events respe-tively. This system has the solution

[C](t) =
C0ko

ko + kcl
e−(ko+kcl)t +

C0kcl

ko + kcl
, (4.13)where C0 is the value of [C] at time t = 0. This shows that, if we start from a pop-ulation of losed hairpins, we expet it to deay exponentially with a harateristitime τ = 1/(ko + kcl) until an equilibrium is reahed with

[O]

[C]
=

ko

kcl
= Ke , (4.14)64



4.3 Kinetis of the opening and losingwhere Ke is the equilibrium onstant.Therefore, if we follow the evolution of the population of losed hairpins in aMonte Carlo simulation whih starts from C0 losed on�gurations, we an deter-mine separately τ (from the deay of the losed population) and Ke from the �nalequilibrium state, so that we an determine the kineti onstants for opening andlosing, given by
ko =

1

τ

1

1 + Ke
kcl =

1

τ

Ke

1 + Ke
. (4.15)

Figure 4.8: Arrhenius plot of the kineti onstants kop (open symbols) and kcl (losedsymbols) versus 1/T for a model without mismath, N = 50, EHB = −1, Ea = 0.02.The time unit is a Monte Carlo step. The lines are least square �ts of the points(full lines for opening state de�ned by d > 4, and dashed lines for opening de�nedby the absene of hydrogen bonded base pairs).Figure (4.8) shows the results of suh an analysis for a ase without mismathes.The open/losed state of the hain was measured with two di�erent riteria: fromthe distane d between the two ends (a value d > 4 is onsidered as an open state)or from the number of hydrogen-bonded base-pairs (an open state must not haveany bound base-pair). Both give very similar results, in agreement with the abovedisussion of Fig. (4.7) whih shows that both riteria an be used to separatebetween the open and losed states. When they are plotted in logarithmi saleversus 1/T , the kineti onstants are well �tted by straight lines, whih allows us tode�ne ativation energies Eo and Ecl for the opening and losing events by
ko = Koe

−Eo/T kcl = Kcle
−Ecl/T . (4.16)The �ts of Fig. (4.8) give Eo = 6.3 and Ecl = 2.5. Figure (4.8) is very similar to the�gures showing ko and kcl whih an be obtained experimentally [4℄ (see �gure (2.5)).The experiments also �nd an opening ativation energy muh larger than the losing65



A two dimensional lattie modelenergy. The experimental ratio Eo/Ecl is even larger than the ratio that we derivefrom our model. Owing to the simpliity of the model, it would be meaningless totry to adjust parameters to get the experimental ratio. What is more interestingis the meaning of this result Eo ≫ Ecl, whih an be related to the need to breakthe hydrogen bonds linking the base-pairs to open the hairpin, while the kineti ofthe losing is dominated by entropi e�ets beause it ours when the two sides ofthe stem managed to reah the orret spatial position after a random walk in theon�guration spae.Experiments show that the opening kinetis is almost insensitive to the lengthof the loop, while the losing slows down signi�antly when the length of the loopinreases (kcl dereases) while its ativation energy does not depend on the lengthof the loop. The model on�rms that the ativation energies do not vary when wehange N , but it only �nds a very small variation of kcl as a funtion of N , ontraryto the experiments. This points out one of its severe limitations: the entropy ofthe loop is not su�iently well desribed when its motions are onstrained on atwo-dimensional square lattie. This limitation also appears when we study thee�et of the rigidity of the loop. As notied above, the e�et is very small and toobtain some notieable in�uene of the rigidity, we have to inrease the bendingenergy very signi�antly, for instane up to EA = 0.6 (�gure 4.4). In this asethe ativations energies beome Eo = 5.5 and Ecl = 2.5, i.e. the opening ativationenergy is redued by about 12 % and the losing energy is only weakly a�eted, whilethe experiments found a large inrease of the losing ativation energy and almost nohange for Eo . This shows that, for this study, our model does not orretly desribethe experiment. Besides an inorret desription of entropi e�ets in the model,that we already mentioned above, other phenomena ould enter, and partiularlya possible role of the mismathes in the experimental sequene. While the modelstritly forbids mismathes, in the experiments, hanging the bases in the loop from
A to T modi�es the possible mismathes.As one ould expet, the kinetis of the hairpin �utuations is strongly a�eted bythe presene of mismathes. The two-state approah is no longer valid. Mismathedstates are open if we de�ne them in terms of the distane between the ends but stillshow many hydrogen-bonded base-pairs. Although the time evolution of the losedstates is no longer a simple exponential deay, an approximate �t by an exponentialgives the order of magnitude of the harateristi time τ . Figure (4.9) shows thevalues of τ determined with two de�nitions of an open state: (i) a state where thedistane of the two ends of the hain is d > 2, (ii) a state where all the hydrogenbonds linking the bases in the stem have been broken. Figure (4.9) shows that thelifetime of losed hairpins de�ned aording to these riteria vary by several orders ofmagnitude. This is not surprising beause a hairpin whih is losed in a mismathedstate may be ounted for open for the �rst riterion (d > 2) but losed with respetto the seond one sine some of its base-pairs are hydrogen bonded. In this ase theabove analysis to alulate ko and kcl loses its meaning.66



4.3 Kinetis of the opening and losing

Figure 4.9: Logarithmi plot of the harateristi time for opening τ versus 1/Tfor a ase with mismathes. The squares (�tted by the full line) orrespond to ade�nition of the opening from the distane of the two ends (d > 2) and the rosses(�tted by the dashed line) de�ne opening by the absene of any hydrogen-bondedbase-pair. The time unit is a Monte Carlo step.The role of the mismathes in the experimental studies of moleular beaons[4℄ has not been investigated so that we annot ompare the results of the modelwith experimental data. Although the sequene used in [37℄ ould in priniple allowwrong losing, there were ertainly muh less likely than in our study where allbase-pairs of the stem are the same. Moreover, studies using a �uorophore and aquenher are only probing the distane d between the ends of the hain, so that theyare not sensitive to wrong losings. For suh a study the hairpin is still a two-statesystem.
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PBD-Polymer model for DNA Hairpinssimpli�ed model but is nevertheless muh riher, in partiular regarding the mod-elling of the loop, whih plays a large role in the properties of DNA hairpins. Asimple view of DNA hairpins an onsider them as a single short polymer with hy-drogen bonds as well as base-pair staking between the two ends of the hain. Sothe idea is to ombine models of polymers with the PBD-model for the double helix.Our model is based in this point of view. We have hosen to divide the model ofthe hairpin in two parts:
• the loop formed by a sequene of idential bases whih is treated as a simplepolymer, in pratie made of a single type of base, A or T.
• The stem whih is an extension of the two ends of the loop (with a poly-mer behaviour) but with additional interations aording to the pairing ofomplementary monomers or bases (given by the PBD-model).In pratie we onstrut our model beginning from the simplest loop whih is asequene of A or T-bases, i.e. an homogeneous polymer. The loop is modelled by apolymer hain in three dimensions. One major question of our study is what is theappropriate model for the loop? We will examine it in detail in this hapter but atthis level, we an already make some omments that set the framework of our study.We have tested the three di�erent polymer models that we have presented in theChap. 3. The FJC is the simplest but we an expet it to be oversimpli�ed beausethe experiments show that the staking interation of the bases inside the loop isimportant regarding the physial properties of the hairpin. Fixing the value of θ inthe FRC ould perhaps model in some sense the staking interation and the rigidityeven if the rotation around the bond is free beause, as we have shown in Chap. 3,the value of θ determines the persistene length of the hain, i.e. its rigidity. Thusthis model deserves an investigation. The Kratky-Porod model whih seems to be agood model for the modelling of long DNA hains ould be a good andidate for theloop beause it inludes a parameter whih represents the rigidity of the hain. Thequestion is to know whether this model remains orret for single hain where thepersistene length is very di�erent from that of double stranded DNA for whih itwas experimentally tested, and for short hains less than ten times the persistenelength.As we are interested in a very short stem, it is not neessary to take into aountthe heliity of the DNA moleule [33℄, [34℄. As for the previous model, the goal is to�nd thermodynamis and kinetis properties of this system [37℄, [4℄. Before doingthat, we will study separately a short stem in order to see the di�erene with thein�nite ase and it will also give us the qualitative properties of this part on theomplete system. Figure (5.1) gives a shemati representation of the model.
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5.2 Study of the stem
R=y+d

M=5

m=1        2       3        4        5

n=1  

n=2
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n=8n=9

n=10

N=10

r=y1+d

Figure 5.1: Plot of the model to de�ne some notations. Index m=1· · ·M will be usedfor the stem base-pairs. Index n=1...N+1 will be used for the bases in the loop. Note wehave 2M+N-1 bases in total. The variables ym are the strething of the base pairs ym = 0means that the distane between the bases is d=10Å, whih is the value that we use forthe equilibrium distane of bases in a pair. The variable r will be used for the variation ofthe distane between the two bases at the end of the hairpin, i.e. r=y1+d. The variable Ris the distane between the two ends of the loop. Therefore R=yM+d.5.2 Study of the stemIn this part we study the stem with the ondition that the two strands are on�nedbeause we must keep in mind that we have the loop whih limits their separation.In pratie we will impose this ondition through the potential V (y). In order toillustrate the transfer integral method we have hosen a very simple version of thePBD-model whih allows analytial alulations. Figure (5.2) gives a shematirepresentation of the model of the stem.
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r R
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Potential V(y)

Figure 5.2: Shemati representation of the stem.The harateristis of the stem are the following:
• The displaements along the hain are not onsidered beause their amplitudeis muh smaller than the perpendiular ones [32℄. The transverse displaementsare represented by un and vn for the two bases. 71



PBD-Polymer model for DNA Hairpins
• The oupling between two onseutive bases is harmoni.
• To model the ombined e�et of the hydrogen bond, the repulsive part of thephosphate as well as the e�et of the solvent, we put an e�etive potential. ThePBD-model uses a Morse potential. In this setion we use a simpler squarepotential shown on Fig. (5.3). It has qualitatively the shape that we anexpet for the interation within a base-pair of the stem. The well desribesthe binding of the bases. The plateau orresponds to the open state. But thebases are on�ned to a �nite distane by the loop. This e�et is desribed bythe in�nite barrier at distane L.

y

−D

L

V(y)

Figure 5.3: Shemati representation of the potential V(y) where y is the strething of thehydrogen bonds between the bases. The in�nite wall at y=0 means that the bases annotoverlap, while the in�nite wall at y=L omes from the maximum separation of the strands,limited by the length of the loop.
Therefore, the Hamiltonian of the model is:

H =
∑

n

[
1

2
m
(
u̇n

2 + v̇n
2
)

+
1

2
K
[
(un − un−1)

2 + (vn − vn−1)
2]+ V (un − vn)

]
,(5.1)where the three terms represent the kineti energy of the transverse vibrations, thepotential energy of the hain and the bonds onneting bases in pairs, respetively.

m is the mass of a base and K, the spring onstant. This Hamiltonian an be usedfor various alulations [10℄, [11℄, [19℄ but here we are interested in the statistialmehanis only. It is onvenient to introdue new variables xn and yn linked to un72



5.2 Study of the stemand vn by:
xn =

1√
2
(un + vn)

yn =
1√
2
(un − vn).The Hamiltonian takes the following form:

H =
∑

n

[
1

2
mẋn

2 +
1

2
K (xn − xn−1)

2

]
+
∑

n

[
1

2
mẏn

2 +
1

2
K (yn − yn−1)

2

]
+ V (yn)

H = Hx + Hy. (5.2)We immediately see that the Hamiltonian is divided in two parts: Hx desribes theharmoni enter of mass motion and Hy ontains all the anharmoniities expressedin V (yn). In the next setion, we will fous our attention on Hy only beause it isthis part of the Hamiltonian that ontains the physis of the hairpin opening beauseit is the variable yn that desribes the opening or the losing of a base-pair.5.2.1 Partition funtionIn statistial physis, if we are able to derive the partition funtion of a system, thenwe get all the thermodynami quantities. The problem is that we must sum overall the on�gurations and it is generally impossible. That's why numerial approx-imations like Monte Carlo Metropolis sheme or other more sophistiated methodsare sometimes used [72℄. Here we present an exat analytial alulation of thepartition funtion for a �nite homogeneous stem. In the ase of a non homogeneousstem numerial alulation are neessary [71℄.The partition funtion that we have to alulate is the following:
Zs =

∫ N∏

i=1

dyidpie
−β

P

i

p2
i

2m e−β[
P

i V (yi)+
PN

i=2
K
2

(yi−yi−1)
2]. (5.3)The momentum part in the partition funtion gives:

Zsp =

(
2πm

β

)N
2

.To go further in the alulation, we introdue the eigenfuntions and eigenvalues ofthe non symmetri transfer integral operator:
∫

dyi−1e
−β(K

2
(yi−yi−1)

2+V (yi))φR
k (yi−1) = e−βǫkφR

k (yi) (5.4)
∫

dyi−1e
−β(K

2
(yi−yi−1)2+V (yi−1))φL

k (yi−1) = e−βǫkφL
k (yi), (5.5)73



PBD-Polymer model for DNA Hairpinswith:
∫

dyφR
k (y)φL

k (y) = 1 (5.6)
∑

k

φR
k (y)φL

k (x) = δ(x − y) (5.7)
φL

k (y) = eβV (x)φR
k (y). (5.8)Now it is onvenient to use the identity:

∫
drδ(r − y1) = 1.Therefore we an introdue this integral in the partition funtion without hanginganything:

Zs = Zsp

∫ N∏

i=2

dyie
−β[

PN
i V (yi)+

PN
i=3

K
2

(yi−yi−1)
2]

∫
dy1

∫
dr δ(r − y1)e

−β(V (y1)+ K
2

(y2−y1)
2).Using Eq. (5.7), we get:

Zs = Zsp

∫
dr
∑

k

φR
k (r)

∫ N∏

i=2

dyie
−β[

PN
i=2 V (yi)+

PN
i=3

K
2

(yi−yi−1)2]

∫
dy1e

−β(V (y1)+ K
2

(y2−y1)
2)φL

k (y1)
︸ ︷︷ ︸

e−βǫkφL
k
(y2)

.Then we an perform the same integration over the variables y2 to yN−1:
Zs = Zsp

∑

k

e−β(N−1)ǫk

∫
drφR

k (r)

∫
dyNe−βV (yN )φL

k (yN).Finally using Eq. (5.8) we get the following expression for the partition funtion:
Zs =

(
2πm

β

)N
2 ∑

k

e−β(N−1)ǫk

[∫
dyφR

k (y)

]2

. (5.9)Thus if we are able to �nd the eigenstates and the eigenvalues of the transfer integraloperator, we an ompute the thermodynami quantities suh as the free energy, theentropy and the heat apaity.74



5.2 Study of the stem5.2.2 Transfer integral in the ontinuum medium approxima-tionIf we use the ontinuum medium approximation it is possible to get the eigenfun-tions and the eigenvalues that we need. Due to the Gaussian funtion in the transferintegral operator exp (−βK(yi − yi−1)
2/2), the kernel takes very small values exeptin the viinity of yi. Consequently we an perform a Taylor expansion of φR

k (yi−1)around yi and then integrate over yi−1:
e−βǫkφR

k (yi) =

∫
dyi−1e

−β(K
2

(yi−yi−1)2+V (yi))φR
k (yi−1)

= e−βV (yi)

∫
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(yi−yi−1)2φR
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= e−βV (yi)
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dy2
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2 + · · ·
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∂
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√
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βK
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= e−βV (yi)
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+ · · ·
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√
2π
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(
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1
2βK
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)
φR

k (yi).Indeed, we reognize the expansion of an exponential. Putting e = 1
2β

ln
(

βK
2π

),
α = 1

2β2K
and Ek = ǫk − e we get the following Shrödinger equation:

−α
d2φR

k (y)

dy2
+ V (y)φR

k (y) = Ekφ
R
k (y). (5.10)Consequently �nding the eigenfuntions and eigenvalues is equivalent to solvinga Shrödinger equation for a partile in the potential V (y). The solution of thisequation is quite easy to derive and we will only give the result here. We mustonsider two ases, one for Ek < 0 and the other for Ek > 0.Bound states: -D < E < 0 In the solution of the Shrödinger equation inthe book of Peyrard and Dauxois [74℄ with a similar potential, but without therestrition y<L, we see that a loalized ground state exists only under a temperature

T∞
m = 2a

√
2KD

πkb
. In our ase L & 100a, whih means that the onstraint y<L does nothange qualitatively the results, although the system now has a disrete spetrumfor all E. When the partile is in the well, it lies in a loalized ground state, whihexists for T < Tm with Tm ≈ T∞

m . 75



PBD-Polymer model for DNA HairpinsOne an show that the ground state has the following form:
φR

0 (y) =






A0 sin k0y 0 ≤ y ≤ a,

A0
sink0a

sinh ρ0(L−a)
sinh ρ0 (L − a) a < y ≤ L.

(5.11)With k2
0 = D+E0

α
and ρ2

0 = −E0

α
. One must be areful for the normalisation. Indeedthe orret normalisation is given by the Eq. (5.6). So that we have:

1

A2
0

=
e−βD

k0

[
k0a − sin k0a cos k0a

]

+
sin2 k0a

ρ0

[
coth ρ0 (l − a) − ρ0 (L − a)

sinh2 ρ0 (L − a)

]
. (5.12)The eigenvalue E0 is solution of the equation :

tan k0a = −k0

ρ0
tanh ρ0 (L − a). (5.13)In pratie we solve this equation numerially.Extended states: E>0 As the potential V (y) goes to in�nity for y > L, we geta in�nite but disrete number of eigenfuntions. Indeed, the on�ning aspet of thepotential leads to a quantization of the eigenvalues. In this ase, the eigenfuntionsare given by :

φR
n (y) =





An sin kny 0 ≤ y ≤ a,

An
sinkna

sink′
n(L−a)

sin k
′

n (L − a) a < y ≤ L.
(5.14)With k2

n = D+En

α
and k

′2
n = En

α
. The ondition of normalisation gives the An :

1

A2
n

=
e−βD

kn

[
kna − sin kna cos kna

]

+
sin2 kna

k′

n

[
cot k

′

n (L − a) − k
′

n (L − a)

sin2 k′

n (L − a)

]
. (5.15)And the eigenvalues are given by :

tan kna = −kn

k′

n

tan k
′

n (L − a). (5.16)In this ase we also �nd the solutions numerially. Figures (5.4) and (5.5) give someeigenfuntions for T < Tm and the evolution versus temperature of the eigenstatesorresponding to the lowest eigenvalues versus temperature.76



5.2 Study of the stem

Figure 5.4: Representation of eigenfuntions.
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Figure 5.5: Evolution of the eigenvalues as a funtion of temperature.Now we have the eigenfuntions and eigenvalues neessary to ompute the partitionfuntion of the stem.5.2.3 ResultsFree energy and Entropy Using the expression of the partition funtion andthe relation F (T ) = −kbT ln Zs we an ompute the total free energy of the stem.77



PBD-Polymer model for DNA Hairpins
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Figure 5.6: Free energy of a �nite stem.The parameters are the following: D=4; a=0.1,K=6 and N=5 in arbitrary unitsAnd the derivative of the free energy determines the evolution of the entropy of thesystem with temperature.

0,2 0,3 0,4 0,5
T

-60

-50

-40

-30

-20

-10

0

-d
F/

dT

Figure 5.7: Temperature variation of the entropy of the stem. The parameters are thefollowing: D=4, a=0.1, K=6 and N=5 in arbitrary units
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5.2 Study of the stemThe graphi of the entropy does not show a transition beause there is no dison-tinuity or angular point in the free energy. The entropy grows ontinuously withthe temperature but there is nevertheless a temperature range in whih the entropyinreases faster. It orresponds to the temperature domain in whih the systemhanges form losed to open. Instead of a transition, for the �nite system that weonsider here, we an expet the oexistene of losed and open state with a gradualshift from a mostly losed to a mostly open situation. To verify this hypothesis wean selet a �reation oordinate� and ompute the free energy versus this oordi-nate. For the hairpin the appropriate oordinate is r, the strething of the base-pairthat terminates the hairpin. This parameter is appropriate beause it is relatedto the experiments that use FRET to detet the variation of distane between a�uorophore and a quenher.Free energy as a funtion of r Let us alulate this new quantity whih willbe very important for the study of the hairpin. We must alulate the partitionfuntion for a given r. The derivation is quite similar to the previous alulation.So we have to integrate e−βHs over all the variables of the stem exepted the �rstvariable y1. That is equivalent to integrating over the �rst variable y1 but puttingalso a delta funtion δ(r − y1). Therefore the partition funtion is given by:
Zs(r) = Zsp

∫ N∏

i=2

dyie
−β[

PN
i V (yi)+

PN
i=3

K
2

(yi−yi−1)2]
∫

dy1δ(r−y1)e
−β(V (y1)+ K

2
(y2−y1)

2).Then we perform the same alulation as for Zs introduing the eigenstates of thetransfer integral operator and �nally we get:
Zs(r) =

(
2πm

β

)N
2 ∑

k

e−β(N−1)ǫkφR
k (r)

∫
dyφR

k (y). (5.17)In pratie the summation over k is trunated to the 100 lowest values of ǫ beausethe other ontributions are negligible. Consequently we an easily ompute the freeenergy landsape Fs,T (r) = −kbT lnZsr. Figure (5.8) gives the evolution of the freeenergy landsape of the stem as a funtion of temperature.We get a free energy with a well for a small value of r, whih represents the losedon�guration, and a large plateau for higher value of r whih represents the openon�gurations. The fat that we have a plateau omes from the form of the poten-tial V (y). The shape of the free energy F (r) indiates that only one state is reallystable, the losed state. But due to the large plateau, states with large r will alsobe populated at any temperature. And when T inreases their weight will inrease79



PBD-Polymer model for DNA Hairpins
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Figure 5.8: Free energy landsape for di�erent temperature.beause the depth of the well orresponding to the losed state dereases. There-fore the free energy F (r) shows that the stem opens gradually when temperatureinreases. However for the stem alone we annot speak of a transition sine only onestable state exists. The expression of Z(r) allows us to ompute the mean value of
r versus T , whih is a measure of the opening of the double stranded DNA. Notiethat the value of 〈r〉 involves the summation over all eigenstates (in pratie 100).On the ontrary in the limit N → ∞ the sum is dominated by the lowest eigenvalue
ǫ0. It is interesting to evaluate the in�uene of the exited states ǫk (k > 0) on themean distane of the �rst base-pair 〈r〉. The expression of 〈r〉 is given by

〈r〉 =

∫
dr rZs(r)∫
drZs(r)

. (5.18)Figure (5.9) shows 〈r〉 alulated with respetively 1 term (ǫ0 only), 2, 5, 10 termsin the summation.
With one term we note sharp rise of 〈r〉 while the transition appears smootherwhen we inlude additional terms. This is beause the summation restrited to thelowest term orresponds to the thermodynami limit for whih a true transitionwould exist (at least in the limit L → ∞) while the introdution of the extraterms allow us to properly take into aount the �nite size of the stem. The simplesquare potential that we have hosen is onvenient for this study beause we anget the eigenfuntions of the transfer operator in an analyti form. For L → ∞ andthe Morse potential of the PBD-model an analytial expression exists (but is verytedious to manipulate and leads to numerial di�ulties) but for a �nite L, onlythe numerial approah would have been possible if we had not hosen the simplesquare potential.80



5.3 The omplete system

0,2 0,3 0,4 0,5 0,6 0,7 0,8
T

0

1

2

3

4

5

<
r>

Figure 5.9: In�uene of the exited states on the mean distane of the �rst base-pair.The parameters are D=4, a=0.1, L=10 and K=6 in arbitrary units. •: one term; �: twoterms; ⋄: �ve terms and △: ten terms in the summation.To onlude, we have seen that the study of a �nite stem requires several eigenstatesand with the simple version of the PBD-model it is quite easy to alulate them.Nevertheless, we know that to be more realisti we have to use the omplete versionof the PBD-model that we have presented in Chap. 1 with a non linear stakingand a Morse potential. Indeed, the work on the DNA moleule has shown thatthe staking is more important when two onseutive base-pairs are losed than oneintat and the other broken. To take this into aount the PBD-model inludes a nonlinear staking given by W in Eq. (1.3). Moreover the potential whih harateriseshydrogen bonds is the Morse potential. The oupling in the Hamiltonian of thestem given by Eq. (5.2) (without the Hx) is now replaed by Eq. (1.3). In thease of the omplete model we annot use the transfer integral method beause itis di�ult to �nd all the eigenstates and eigenvalues of the transfer operator. Anumerial alulation of the eigenstates ould be possible but, even this approah istehnially di�ult due to over�ows and numerial auray problems. Moreover,the approximation of ontinuous media is not orret for small hains as it is shownin Ref. [32℄. For these reasons we have used a diret numerial integration of thepartition funtion for the omplete system. We present our alulation in the nextsetion.5.3 The omplete systemNow we an ome bak to the problem of the hairpin. The goal is to �nd thepartition funtion of the system in order to get the free energy landsape. Withthis quantity we will be able to �nd thermodynamis and kinetis properties andompare them to the experimental ones. 81



PBD-Polymer model for DNA Hairpins5.3.1 Partition funtionAs experiments probe the opening of hairpins by using a �uorophore/quenher sys-tem whih is sensitive to the distane between the ends of the hairpin, it is usefulto ompute the partition funtion of the system for a given distane r between thetwo ends of the hain as we did for the stem in the previous setion. Therefore weintrodue a delta funtion in the alulation of the partition funtion as we havedone for the stem only. In order to see how we onstrut our partition funtion let'sbegin by a system without staking interation and hydrogen bonds, i.e a polymeralone.First of all the partition funtion for a given end-to-end distane rM = R is linkedto the end-to-end probability distribution
PN(rM) =

∫ ∏
N dαNδ

(
‖
∑N−1

i=1 ri‖ − rM

)
e−β HN (αN )

∫ ∏
N dαNe−βHN (αN )

=
ZN(R)

Ztot
N

. (5.19)Where N is the number of monomers, {αN}, the generi variables of the loop and
HN , the Hamiltonian of the loop. In order to build the partition funtion of thehairpin we shall start from the redued partition funtion of the loop made of Nmonomers ZN(rM), where rM is the distane between the ends of the loop whihis also the distane between the two bases making the last base-pair of the stem,whih is at the end of the loop (see Fig. (5.1)). Then we shall extend the loop byadding the segments forming the stem. In a �rst step let us ignore the staking andMorse potential interations whih are spei� to the stem and only onsider thepolymer made by the DNA strand. When we add one base-pair to the stem we addtwo segments to the polymer. The extended loop with N + 2 monomers has nowthe distane rM−1 between its ends. So that its restrited partition funtion is

ZN+2(rM−1) = PN+2(rM−1)Z
tot
N+2. (5.20)But the probability PN+2(rM−1) an be expressed as a funtion of PN (rM) if weintrodue the onditional probability S(ρ′|ρ) that if a polymer has the distane ρbetween its ends, the polymer with two additional monomers has the distane ρ′between its ends as shematized on Fig. (5.10).

ρ ρ’Figure 5.10: Shemati representation of the growth of the polymer.
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5.3 The omplete systemThis onditional probability funtion an in priniple be alulated if we have amodel for the polymer. We have shown in Chap. 3 how it an be obtained for ane�etive Gaussian model.With this funtion we an express PN+2(r) in term of PN(R) as
PN+2(ρ

′) =

∫
dρS(ρ′|ρ)PN(ρ), (5.21)or, in the ontext of our alulation

PN+2(rM−1) =

∫
drMS(rM−1|rM)PN(rM), (5.22)whih gives the redued partition funtion for a stem with two base-pairs as

ZN+2(rM−1) = Ztot
N+2

∫
drMS(rM−1|rM)PN(rM). (5.23)The same proess an be repeated if we add the third base-pair in the stem. From

ZN+4(rM−2) = PN+4(rM−2)Z
tot
N+4

= Ztot
N+4

∫
drM−1S(rM−2|rM−1)PN(rM−1), (5.24)we get

ZN+4(rM−2) = Ztot
N+4

∫
drM−1 drM S(rM−2|rM−1)S(rM−1|rM)PN(rM). (5.25)We an ontinue the proess until we have added (M −1) base-pairs to the one thatis next to the loop, in order to get the omplete stem, with M base-pairs, whihorresponds to the total of (N + 2(M − 1)) monomers in the polymer forming thehairpin.We get the redued partition funtion

ZN+2(M−1) = Ztot
N+2(M−1)

∫ + ∞

0

dr

M∏

i=2

S(ri−1|ri)PN(rM). (5.26)Up to now we have ignored the ontribution of the Morse potential and stakinginteration. Let us now examine how it enters.Consider again the loop alone with its terminal base-pair. Due to the Morse potential
V (rM), the probability PN(rM) must be multiplied by e−βV (rM ). Its redued partitionfuntion is then

ZN(rM) = e−βV (rM ) PN (rM)Ztot
N . (5.27)When we add one base-pair, i.e. two monomers we add one staking interation

W (rM−1, rM) and one Morse potential V (rM). So that Eq. (5.20) beomes
ZN+2(rM−1) = Ztot

N+2

e−βV (rM−1)

∫
drM e−β(W (rM−1,rM )+V (rM ))S(rM−1|rM)PN(rM). (5.28)83



PBD-Polymer model for DNA HairpinsThis shows that, in our previous alulation we an formally replae S(ri−1|ri) by
S(ri−1|ri) → S(ri−1|ri) exp (−β (V (ri) + W (ri−1, ri))) , (5.29)and multiply the �nal result by the e−βV term orresponding to the base-pair los-ing the system. Therefore the redued partition funtion of the hairpin with theinterations in the stem is �nally given by

Z(r) =Zloop(N+2(M−1))e
−βV (r1)×

∫ +∞

0

M∏

i=2

dri

M∏

i=2

S(ri−1|ri)e
−β[V (ri)+W (ri−1,ri)]PN(rM), (5.30)where ri = yi + d aording to the notations of Fig. (5.1). Note also that r = r1 and

R = rM in these notations. V and W have the following expressions





V (ri) = D
[
(exp (−α (ri − d)) − 1)2 − 1

]
,

W (ri, ri+1) = K
2

[1 + ρ exp (−δ (ri + ri−1 − 2d))] (ri − ri−1)
2 .

(5.31)5.3.2 Free Energy and EntropyIt is interesting to see the form of the total free energy as well as the entropy of thesystem. The free energy is given by
F (T ) = −kBT lnZ, (5.32)where Z is obtained by integrating Z(r) over r

Z =

∫
drZ(r). (5.33)And the entropy S(T ) is given by the �rst derivative of F

S(T ) = −∂F

∂T
. (5.34)Of ourse the expressions of F and S depend on the model of the loop we are usingthrough PN(R). However the behavior of the temperature evolution of F and S staysqualitatively the same for di�erent loop models. Figure (5.11) gives the evolutionof F (T ) and S(T ) with temperature for the FRC model and without the growth ofthe polymer (S≡1).We an see a hange of the slope in the free energy around 310 K whih ould bede�ned as the melting temperature. The entropy pro�le shows a sharp inrease whenthe system goes from the losed state to the open one by inreasing the temperature.To be more preise we have to derive melting urves as well as rates of opening andlosing for di�erent parameters of the model and di�erent loop models. Before doingthat we present the derivation of the rates of opening and losing in the ase of anequilibrium between the open and the losed state with a transition state betweenthe two.84



5.3 The omplete system
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Figure 5.11: Example of free energy pro�le and entropy with the FRC model forthe loop.The parameters of the stem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ = 0.35, ρ = 5, θ = 45◦ and N=21. Left: Free energy. Right: Entropy alulatedby S(T ) = ∂F

∂T5.3.3 Kinetis: theoretial preditionsIn order to study the kinetis of the opening-losing �utuations, we view them fromthe point of view of a hemial equilibrium between two states (C losed, O open)separated by a transition state (T) as shematized on Fig. (5.12)
k1

k−1

k2

k−2
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Figure 5.13: Example of a free energy pro�le obtained with S ≡1 and a loop modeled bythe FRC. The parameters are the following: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ=0.35, ρ=5, θ=45◦ and N=21.Here k1, k−1, k2 and k−2 designate the kineti onstants. Let us denote by C with85



PBD-Polymer model for DNA Hairpinsindies C, T, O the onentrations of the di�erent speies. Therefore we have
ĊC = −k1CC + k−1CT

ĊT = − (k−1 + k2) CT + k1CC + k−2CO (5.35)
ĊO = −k−2CO + k2CT .We then assume that the onentration of the transition state stays onstant. Thisis the quasi-stationary state approximation:

ĊT = 0. (5.36)Then we get
CT =

k1CC + k−2CO

k−1 + k2
. (5.37)Now if we insert Eq. (5.37) in (5.35) we get

ĊC = −k1CC + k−1
k1CC + k−2CO

k−1 + k2

= − k1k2

k−1 + k2
CC +

k−1k−2

k−1 + k2
CO

ĊC = −kfCC + kbCO, (5.38)where kf and kb are the rates of opening and losing, respetively, we would liketo derive. The assumption (5.36) amounts to assuming k−1 + k2 >> kb, kf , whihmeans that the stationary state for T is reahed beause the time sales for goingin and out of the transition state are shorter than the time sales to open or lose.Moreover
ĊC + ĊO = 0, (5.39)and at the equilibrium ĊC = ĊO = 0, so that

C̄C

C̄O

=
kb

kf
=

k1k−2

k−1k2
. (5.40)Finally we obtain

k−1
f = k−1

1 +
C̄C

C̄O

k−1
−2 (5.41)

k−1
b = k−1

−2 +
C̄O

C̄F

k−1
1 . (5.42)The ratio in Eq. (5.46) is given by thermodynamis

C̄C

C̄O

=
ZC

ZO

. (5.43)86



5.3 The omplete systemThe opening-losing of a hairpin is a omplex proess involving many degrees offreedom but in the spirit of our equilibrium thermodynamis alulation, it is naturalto introdue a reation oordinate r, whih is the distane between the ends of thehairpin.In this spirit, we an onsider that the system is evolving on a one-dimensional freeenergy surfae, whih has the qualitative shape shown in Fig. (5.13). The losed andopen states are minimum of this surfae F (r) and the transition state orrespondsto the maximum. We an selet the origin so that the transition state is at r = 0.In term of the free energy F (r) the partition funtions for the losed and the openstates are
ZC =

∫ 0

−∞
dre−βF (r) (5.44)

ZO =

∫ ∞

0

dre−βF (r), (5.45)and the kinetis of the opening-losing �utuations is an evolution on this free energysurfae, whih an be desribed by a Fokker-Plank formalism. Therefore we haveto derive the expression of k1 and k−2 to get the rates of opening and losing.To do that we suppose that the system di�uses on the one dimensional e�etivepotential and we would like to know the mean passage time [75℄ for the systemwhih is in one of the two wells to go in the other one through the barrier. If we all
P (r) the probability distribution, i.e. P (r)dr is the probability of the system to bein the range [r, r + dr], it obeys to the usual Fokker-Plank equation:

{
∂P
∂t

= −∂j(r)
∂r

j(r) = −D(r)
[

∂P
∂r

+ βF ′P
]
.

(5.46)We assume some boundary onditions assoiated to our problem:
• Re�eting boundary also to the left: r → −∞: limr→−∞ j(r, t) = 0 ∀ t. Inpratie we use a hard ore at r=9.7 Å.
• Absorbing boundary in r = rmax: j(rmax, t) = ΛP (rmax, t) with Λ → +∞whih means that one it has passes the maximum the system evolves to theseond minimum.The mean �rst passage time is given by [76℄

τ =

∫ +∞

0

dt

∫ rmax

−∞
drP (r, t). (5.47)First of all let's integrate Eq. (5.46) over r:

∫ r′

−∞

∂P (r, t)

∂t
dr = −j(r′, t), 87



PBD-Polymer model for DNA Hairpinsso that
j(rmax, t) = ΛP (rmax, t) = −

∫ rmax

−∞

∂P (r, t)

∂t
dr. (5.48)Using Eq. (5.46), we also get

∫ r′

−∞

∂P (r, t)

∂t
dr = D(r′)

[
∂P

∂r′
+ βF ′P

]

= D(r′)eβF ∂

∂r′
(
eβF P

)
. (5.49)Now we an integrate (5.49) over r′

∫ rmax

R

dr′
∂

∂r′
(
eβF P

)
=

∫ rmax

R

dr′

D(r′)e−βF

∫ r′

−∞
dR′∂P (R′, t)

∂t

eβF (rmax)P (rmax, t) − eβF (R)P (R, t) =

∫ rmax

R

dr′

D(r′)e−βF

∫ r′

−∞
dR′∂P (R′, t)

∂t
. (5.50)Putting Eq. (5.48) in Eq. (5.50)

P (R, t) = − e−βF (R)

e−βF (rmax)

1

Λ

∫ rmax

−∞
dR′∂P (R′, t)

∂t
−

e−βF (R)

∫ rmax

R

dr′

D(r′)e−βF

∫ r′

−∞
dR′∂P (R′, t)

∂t
, (5.51)and putting

p0(R) =
e−βF (X)

∫ rmax

−∞ dRe−βF (R)
,with ∫ rmax

−∞ p0(R) dR = 1, we get
P (R, t) = − P0(R)

P0(rmax)

1

Λ

∫ rmax

−∞
dR′∂P (R′, t)

∂t
−

P0(R)

∫ rmax

R

dr′

D(r′)P0(r′)

∫ r′

−∞
dR′∂P (R′, t)

∂t
. (5.52)Now let us integrate Eq. (5.52) over R and t whih is exatly the de�nition of τ thatwe are looking for

τ =

∫ ∞

0

dt

∫ rmax

−∞
dR P (R, t)

τ =
1

ΛP0(rmax)

∫ rmax

−∞
dyP (y, 0)+

∫ rmax

−∞
dxP0(x)

∫ rmax

x

dr

D(r)P0(r)

∫ r

−∞
dyP (y, 0) (5.53)88



5.3 The omplete systemwhere we have assumed that limt→+∞ P (y, t) = 0 ∀ y. At t = 0 let us assume thatthe system is at the thermodynami equilibrium, so that P (y, 0) = P0(y), then
τ =

1

ΛP0(rmax)
+

∫ rmax

−∞
dxP0(x)

∫ rmax

x

dr

D(r)P0(r)

∫ r

−∞
dyP0(y)

=
1

ΛP0(rmax)
+

∫ rmax

−∞
dxP0(x)

∫ rmax

x

drH(r)

=
1

ΛP0(rmax)
+

∫ rmax

−∞
dxP0(x)

∫ rmax

−∞
drH(r)Θ(r − x)

=
1

ΛP0(rmax)
+

∫ rmax

−∞
drH(r)

∫ r

−∞
dxP0(x)

=
1

ΛP0(rmax)
+

∫ rmax

−∞
dr

1

D(r)P0(r)

∫ r

−∞
dyP0(y)

∫ r

−∞
dxP0(x)

τ =
1

ΛP0(rmax)
+

∫ rmax

−∞
dr

1

D(r)P0(r)

(∫ r

−∞
dxP0(x)

)
, (5.54)where Θ(x) is the Heaviside funtion. Finally, taking Λ → +∞, we get





τ =
∫ rmax

−∞
dr

D(r)P0(r)
I2(r)

I(r) =
∫ r

−∞ dxP0(x).

(5.55)Now we an apply the expression of τ to our speial ase
k−1

1 = τCT =

∫ rT

−∞
dr

I2
C(r)

D(r)P
(C)
0 (r)

, (5.56)with
IC(r) =

∫ r

−∞
dxP

(F )
0 (x),and

P
(F )
0 (r) =

e−βF (r)

ZC

∀ r < rT .We also need the expression of k−1
−2

k−1
−2 = τOT =

∫ ∞

rT

dr
I2
O(r)

D(r)P
(O)
0 (r)

, (5.57)with
IO(r) =

∫ ∞

r

dxP
(O)
0 (x),and

P
(O)
0 (r) =

e−βF (r)

ZO

∀ r > rT . 89



PBD-Polymer model for DNA HairpinsTherefore
k−1

f =

∫ rT

−∞
dr

I2
C(r)

D(r)P
(C)
0 (r)

+
ZC

ZO

∫ ∞

rT

dr
I2
O(r)

D(r)P
(O)
0 (r)

k−1
f = ZC

(∫ rT

−∞

dr

ZC

I2
C(r)

D(r)P
(C)
0 (r)

+

∫ ∞

rT

dr

ZO

I2
O(r)

D(r)P
(O)
0 (r)

)

k−1
f = ZC

∫ +∞

−∞
dr

eβF (r)I2(r)

D(r)
, (5.58)with

I(r) =






∫ r

−∞ dxe−βF (x)

ZC
∀ r < rT

∫ +∞
r

dxe−βF (x)

ZO
∀ r > rT .

(5.59)Finally k−1
b = ZO

ZC
k−1

f . In order to avoid numerial problems during integrations wetransform Eq. (5.58) as
k−1

f = ZC

∫ +∞

−∞
dr

e−βF (r)J2(r)

D(r)
, (5.60)with

J(r) =





∫ r

−∞ dxe−β(F (x)−F (r))

ZC
∀ r < rT

∫ +∞
r

dxe−β(F (x)−F (r))

ZO
∀ r > rT .

(5.61)5.4 Case of S≡1In order to get a �rst idea of the behavior of the hairpin, it is onvenient to startfrom a zeroth-order approximation in whih the stem and the loop are deoupled inthe alulation. This an be obtained if we set S ≡1 in the general expression (5.29).This approximation simply replaes e−βV (rM ) by e−βV (rM )PN(rM) in the expressionfor the stem alone. Stritly speaking this is not orret beause the transformationgives an expression of Z(r) whih does not have the expeted dimension for a reduedpartition funtion. We nevertheless introdue this approximation as a preparationfor the disussion of the omplete alulation of Setion 5, keeping in mind that itan only give the general behavior of Z(r), up to a fator. In this ase, the reduedpartition funtion is given by
Z(r) = e−βU(r)

∫ M−1∏

i=2

dri

∫
drMPN(rM)T (rM − d, rM−1) · · ·T (r2, r − d), (5.62)where T (ri, ri−1) = exp (−β [V (ri) + W (ri, ri−1)]) and U(r) = V (r − d).90



5.4 Case of S≡15.4.1 ThermodynamisThe free energy landsape F (r) = −kbT ln Z(r), with Z(r) de�ned by (5.54) hasthe shape plotted in Fig. (5.13).It is interesting to ompare this �gure to Fig. (5.9) for the stem alone. In thepresene of the loop besides, the deep minimum around r=10 Å, we have a seondminimum for large values of r. One an understand its presene in term of theentropy of the loop. The idea is similar to rubber elastiity. When the loop isstrethed it an only oupy a small number of onformations and thus has a lowerentropy. When r inreases the loop an aess many on�gurations and its entropyinreases, hene dereasing the free energy. But whatever the loop model, too lowvalues of r also lead to a penalty in free energy. For the Kratky-Porod hain modelthe penalty is energeti, while for the FRC very low values of r again redue thenumber of on�gurations or are even not aessible. This explains why, when rdereases below r2 the free energy raises gain to a maximum for r = rc before thelarge drop at r = r1 whih is due to the large energy gain when the hydrogen bondsin the stem are formed.This shape of the urve F (r) justi�es the image of the two-state system that wehave used for the kinetis. Those states are the losed state for r ≈ r1 and the openstate for r ≈ r2. In the view of a hemial equilibrium between the two states, onean de�ne an equilibrium onstant
Keq =

PO

PC

. (5.63)Where, PO, and PC are the probabilities to be open or losed, respetively. Wede�ne the probabilities by
PO =

∫ +∞
rc

drZ(r)
∫ +∞
0

drZ(r)
, (5.64)and PC + P0 = 1. The parameter rc is the value of the reation oordinate atthe maximum of the free energy (transition state) between the two wells whihorresponds to the open and the losed state. Then the melting urves whih areequivalent to the normalized �uoresene measured in the experiments are given by

PO. Indeed, we have
f =

Keq

1 + Keq
=

PO

PC

1 + PO

PC

= PO. (5.65)Let us now give a �rst qualitative view of the properties of the hairpin as a funtionof the model parameters. A more quantitative piture will be given for S 6= 1 butthis �rst approah is useful to get an idea of the separate in�uene of the loop andstem. 91



PBD-Polymer model for DNA Hairpins5.4.1.1 Role of the loopFRC model First of all we propose to ompare the melting urve obtained fora stem of �ve base-pairs and with and without loop to see its e�et. Figure (5.14)gives suh a omparison.
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Figure 5.14: Melting urve obtained for a stem of �ve base-pairs with and without a loop.The loop is desribed by the FRC model. The blak urve orresponds to the stem alone.We see that the stem tends to open at lower temperatures in presene of the loopwhih is due to the additional entropy brought by the loop. Therefore Tm is smallerfor the hairpin than for a stem alone. Moreover the transition is a bit sharper inthe ase of the hairpin but this is not a strong e�et. The results are summarizedin the next table
Tm

∆P
∆T

Tmstem 350 3.9stem+loop 325 3.1where we indiate the melting temperature and the quantity ∆P
∆T

Tm whih is a di-mensionless measure of the slope at Tm, multiplied by Tm to get a dimensionlessquantity. It measures the width of the transition.In order to study the e�et of the loop in more details, we now present the resultsobtained by varying the properties of the loop. Figure (5.15) and (5.16) give themelting urves for di�erent loop lengths as well as the evolution of Tm for two dif-ferent �xed angles θ. First of all, for the two values of θ the melting temperature
Tm dereases with the loop length. The derease is most important for θ = 60◦. Tmvaries from 350 K to 323 K for N going from 12 to 30 but for θ = 45◦, ∆Tm=15K only. Seondly, for the same value of the loop length, Tm dereases with dereas-ing θ. Theses results are in qualitative agreement with some of the experimental92



5.4 Case of S≡1results. Indeed Tm is smaller for Poly(A) than Poly(T) for the same loop length.The staking interation whih is expeted to be more important in the ase of A-sequene is equivalent to smaller values of θ beause it maintains the hain morerigid. Moreover, the larger the loop length, the larger the entropy, whih tends todestabilize the hairpin on�guration. However the model is not fully satisfatorybeause the observed variation ∆Tm of the melting temperature is larger for poly(A) than poly(T) whih is not the results given by the model. We must also notiethat the width of the transition given by the model is about 100 K whih is muhlarger than in the experiments.
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Figure 5.15: Melting urves with the FRC model: θ = 45◦. The parameters of thestem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, θ = 45◦. Left:Melting pro�les, ◦: N=12; �: N=16; ⋄: N=21; △: N=30. Right: evolution of the meltingtemperature with N. ◦: theoretial results, line: linear �tting.
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Figure 5.16: Melting urves with the FRC model: θ = 60◦. The parameters of thestem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, θ = 60◦. Left:Melting pro�les, ◦: N=12; �: N=16; ⋄: N=21; △: N=30. Right: evolution of the meltingtemperature with N. ◦: theoretial results, red line: linear �tting. 93



PBD-Polymer model for DNA HairpinsDisrete Kratky-Porod hain If we hange the model of the loop, it is inter-esting to see the hange in the thermodynamis. Let us now onsider the disreteversion of the Kratky-Porod hain as we presented in Chap. 3 whih inludes anadditional energeti ontribution in the probability distribution of the end-to-enddistane. Figures (5.17) and (5.18) give the melting pro�les and the melting tem-perature Tm for di�erent loop lengths and for two di�erent values of the rigidityparameter ǫ.
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Figure 5.17: Melting urves with the Kratky-Porod hain: ǫ=0.0019 eV.Å−2. The pa-rameters of the stem are: D=0.102 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5,
ǫ=0.0019 eV.Å−2. Left: Melting pro�les, •: N=12; �: N=16; ⋄: N=21; △: N=30. Right:evolution of the melting temperature with N. ◦: theoretial results, line: linear �tting.
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ǫ=0.0040 eV.Å−2. Left: Melting pro�les, •: N=12; �: N=16; ⋄: N=21; △: N=30. Right:evolution of the melting temperature with N. ◦: theoretial results.For ǫ=0.0019.eV.Å−2 we �nd the orret tendeny: Tm dereases with the lengthof the loop as in the ase of the FRC and the experiments. Tm varies from 325 K94



5.4 Case of S≡1to 299 K for N going from 12 to 30 whih is omparable to the experimental re-sults. However for ǫ=0.0040 eV.Å−2, we obtain something quite surprising beausethe evolution of Tm as a funtion of N is not monotonous. Indeed, for N goingfrom 12 to 21 Tm inreases and for N higher than 21 it dereases. As ǫ is large,the probability to form small loops, whih are neessary to form hydrogen bonds inthe stem, is very small. Consequently the phase spae orresponding to the losedon�guration is smaller. But when we inrease the number of monomers in the loop,even if ǫ is large, the tendeny to get a losed loop is higher, whih allows the for-mation of base-pairs in the stem. To see this e�et, Fig. (5.19) gives the end-to-endprobability distribution of the Kratky-Porod hain for di�erent loop lengths and fortwo di�erent values of ǫ.For ǫ=0.0019 eV.Å−2, near the equilibrium distane of the hydrogen bonds (10 Å
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Figure 5.19: Plot of the probability distribution of the Kratky-Porod hain. Left:T=330K, ǫ=0.0019 eV.Å−2; blak: N=12; red: N=16; green: N=21; blue: N=30. Right: T=275K, ǫ=0.0040 eV.Å−2; blak: N=12; red: N=16; green: N=21; blue: N=30approximately), for smaller N we get a larger end-to-end probability that tends tostabilize the hairpin on�guration. On the ontrary, for the ase of ǫ=0.0040 eV.Å−2there is an inversion of this phenomenon for N < 21. For N < 21, reduing N re-dues the value of the end-to-end probability distribution for small R, whereas for
N > 21, reduing N inreases the end-to-end probability distribution at R small.That explains the evolution of Tm as a funtion of N .5.4.1.2 Role of the stemLet us now study the e�et of the stem parameters on the properties of the hair-pins. Figure (5.20) gives the evolution of the melting urves with the hange of Dand k, and Fig. (5.21) shows the same quantity but with the hange of α and ρ.First when we inrease the value of D, whih is the depth of the Morse potential,the losed onformation is more stable and the transition to the open state takesplae at higher temperatures as expeted beause the thermal �utuations must be95



PBD-Polymer model for DNA Hairpinslarge enough to allow the system to overome the free energy barrier representedin Fig. (5.12). Seond, when we hange the value of k, we a�et the rigidity of thestem and the larger k, the larger the rigidity. Then, as for the stem alone, the losedon�guration is more stable for larger values of k and the equilibrium is shifted tohigher temperatures. Only the kineti results will tell us if this evolution should beattributed to entropi or energeti e�ets. The value of ρ has a small e�et on themelting pro�les beause we onsider short stems suh as the �ve base-pairs stem.This is di�erent from the e�et of ρ on the double stranded DNA. For long doublehelies large values of ρ lead to a large entropy inrease when some regions are onthe plateau of the Morse potential, and thereby lead to a sharper transition. Finallywe see that the bigger the width of the Morse potential (small values of a), the largerthe melting temperature Tm. When we inrease the width of the Morse potential,we also inrease the width of the �rst well of the free energy landsape whih repre-sent the losed on�guration. Thus the losed onformation is more stable and thesystem again needs more thermal �utuations to open. In fat we �nd qualitativelythe same in�uene of the parameters on Tm as in the long dsDNA with a squarepotential and a linear staking: Tm ∼
√

kD
α

. To �nish with this part we also give the
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Figure 5.20: E�et of D and k on the melting urve. The parameters are the follow-ing: α=6.9 Å−1, δ = 0.35, ρ = 5, θ = 60◦, N=21. Left: E�et of d, k=0.025 eV.Å−2;
•: D=0.09 eV; �: D=0.107 eV; ⋄: D=0.13 eV. Right: E�et of k, D=0.107 eV; •k=0.013 eV.Å−2; � k=0.025 eV.Å−2; ⋄ k=0.050 eV.Å−2.in�uene of ǫ as well as the in�uene of D on the melting pro�les with the Kratky-Porod hain in Fig. (5.22). For the in�uene of D we get the same dependene asin the FRC ase. Moreover, the e�et of ǫ is omparable to the e�et of θ in FRC,the bigger the value of ǫ, the smaller Tm. Therefore when we inrease the rigidity,the hairpin is subjeted to fores from the loop part whih tend to destabilize it.5.4.2 KinetisLet us disuss the kineti results for the two models of the loop that we studied.96



5.4 Case of S≡1
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Figure 5.21: E�et of α and ρ on the melting urve. The parameters are the following:D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, θ = 60◦. Left: E�et of α, •:
α=4.0 Å−1, ; �: α=5 Å−1; ⋄: α=6.9 Å−1. Right: E�et of ρ, •: ρ = 2; �: ρ=5; ⋄: ρ=10.
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Figure 5.22: E�et of ǫ and D on the melting pro�les. The parameters are:k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, N=21. Left: D=0.102 eV; •:
ǫ=0.0010 eV.Å−2 ; �: ǫ=0.0019 eV.Å−2 ; ⋄: ǫ=0.0040 eV.Å−2 . Right: ǫ0.0019 eV.Å−2; •:D=0.09 eV; �: D=0.102 eV; ⋄: D=0.13 eV5.4.2.1 FRC modelThe e�ets of the length of the loop and of the θ angle of the FRC model are shownon Fig. (5.23) whih displays the kineti onstants kop and kcl versus temperaturein a semi-logarithmi plot.The main points whih appear on the urves are the followings1. the variation of both onstants is linear on this plot, showing that they obeyArrhenius laws

kop ≈ e
− Eop

kBT and kcl ≈ e
− Ecl

kBT . (5.66)
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Figure 5.23: Rates of opening and losing with the FRC model in an Arrhenius plot.Open and losed symbols represent the rates of opening and losing, respetively. Theparameters are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. Left:θ = 45◦;
•: N=12; �: N=16; ⋄: N=21; △: N=30. Right: N=21; blak: θ = 45◦, red:θ = 60◦2. Changing the loop parameters (loop length N and θ angle of the FRC model)does not a�et the kinetis of the opening. This means that the opening isonly determined by the stem in this model.3. The opening ativation energy Eop is positive, i.e. the transition state has ahigher energy than the losed one, in agreement with the experiments. This isonsistent with point (2) beause Eop an be viewed as the energy neessaryto break the base-pairing in the stem.4. The losing ativation energy is negative. This implies that the energy of thetransition state is lower than the energy of the open state. There is neverthelessa free energy barrier for losing, but it an only ome from entropy e�ets.Going from the open to the transition state leads to an energy gain, whihmust be attributed to the stem beause the freely rotating hain model of theloop has no energeti ontribution. This is on�rmed by the independeneof the slope Ecl from the hange of the loop parameters N or θ. But theentropy of the open state is muh higher than the entropy of the transitionstate beause the open loop an explore a muh larger domain of the phasespae.Fig. (5.23) shows that longer loops lead to longer losing times (smaller kcl). Thisis onsistent with the entropi role of the loop. Longer loop lengths inrease thephase spae aessible to the system and the time that it needs to explore this phasespae before reahing the transition state. The role of θ an also be understood inthe same framework. When we inrease θ the loop is less onstrained when it formsthe transition state. It an form this losed state in more manners than when θ is98



5.4 Case of S≡1lower, i.e. it has a higher entropy at the transition state. As a result the losing rateis higher for larger values of θ. The variation of kop and kcl with other parameterson�rms the onlusions that we have drawn from the study of N and θ.As shown in Fig. (5.24) a variation of D and k has little e�et on the losing ratebeause losing is mostly ontrolled by the entropy of the loop. On the ontrary
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Figure 5.24: E�et of D and k on the kinetis with the FRC model in an Arrheniusplot. Open and losed symbols represent the rates of opening and losing, respetively.The parameters are: α=6.9 Å−1, δ = 0.35, ρ = 5, N=21. Left: k=0.025 eV.Å−2; •:D=0.009 eV; �: D=0.107 eV; ⋄: D=0.130 eV. Right: D=0.107 eV; •: k=0.013 eV.Å−2; �:k=0.025 eV.Å−2; ⋄: k=0.050 eV.Å−2the variation of D and k signi�antly in�uenes the opening whih is ontrolled bythe stem. Raising D inreases the depth of the free energy well assoiated to thelosed state. Therefore it inreases Eop and slows down the opening. Changing kwe notie only a very small e�et on Eop. This seems surprising beause k entersinto an energeti term in the stem and therefore we would expet it to play a rolein the opening. We will ome bak to this point in the omplete alulation (S 6= 1)but we an antiipate on this disussion by notiing that the oupling along theDNA strand is weak. Most of the energeti ontribution lies in the Morse potential,i.e. in the ontribution of D. But k has nevertheless an entropi role. Inreasing kdereases the opening rate. This an be understood beause the opening of the stemgives more freedom to its omponents to �utuate. Therefore there is an entropygain. This entropy gain is smaller when k inreases beause the relative motions ofthe elements of the stem are more onstrained. This explains why opening is slowerfor larger k.5.4.2.2 Disrete Kratky-Porod hainFigures (5.25) and (5.26) show the kineti results for the Kratky-Porod model ofthe loop. They on�rm and omplete the analysis that we made from the FRCmodel. As for the FRC model we see that a hange of the parameters of the loopmainly a�ets losing (Fig. 5.25). The main di�erene is that the losing ativation99
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Figure 5.25: Rates of opening and losing with the Kratky-Porod hain in an Arrheniusplot. Open and losed symbols represent the rates of opening and losing, respetively.The parameters are: D=0.102 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. Left:variations as a funtion of the loop size N, ǫ=0.0019 eV.Å−2 ; •: N=12; �: N=16; ⋄:N=21; △: N=30 Right: for a �xed loop size , N=21 variations as a funtion of the looprigidity; •: ǫ=0.0010 eV.Å−2; �: ǫ=0.0019 eV.Å−2; ⋄: ǫ=0.0040 eV.Å−2energy is now positive, in agreement with some experimental results. This anbe understood beause, due to the ǫ-term in the Hamiltonian of the Kratky-Porodhain, there is now an energeti ost for losing. Inreasing ǫ osts more energy forlosing (kcl dereases). The e�et of ǫ is however more subtle beause, as shown onFig. (5.25) the Arrhenius plots for di�erent values of ǫ show almost parallel urves.This indiates that Ecl is not simply proportional to ǫ. The losing rate is stillstrongly a�eted by entropi e�ets, whih also depend on ǫ. Therefore the rigidityparameter plays a double role, i.e. an enthalpi and an entropi e�et. The lastpoint is very interesting beause it shows that the Kratky-Porod hain ould be agood andidate for the modelling of the loop, i.e. it ould allow the di�erening ofpoly(T) and poly(A) as the experiments point out.Finally, Fig. (5.26) gives the variation of the kineti rates as a funtion of D and kwith the Kratky-Porod hain. The e�ets are exatly the same as in the FRC aseand we arrive at the same onlusion that the stem only a�ets the physis of theopening.This �rst part allows us to understand qualitatively the e�ets of the di�erent pa-rameters of the model.5.5 Complete alulation: S 6= 1We now use the omplete alulation of the partition funtion. The alulation ofthe partition funtion involves therefore the onditional probability S(r|R) that,if a polymer of N segments has the distane R between its ends, the polymer of
N + 2 segments has the end-to-end distane r. This funtion should depend on the100
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Figure 5.26: E�et of D and k on the kinetis with the Kratky-Porod hain in an Ar-rhenius plot. Open and losed symbols represent the rates of opening and losing, respe-tively. The parameters are: α=6.9 Å−1, δ = 0.35, ρ = 5, ǫ = 0.0019 eV.−2, N=21. Left:k=0.025 eV.Å−2; •: D=0.09 eV; � D=0.102 eV; ⋄: D=0.130 eV. Right: k=0.025 eV.Å−2;
•: k=0.013 eV.Å−2 ; �: k=0.025 eV.Å−2 ; ⋄: k=0.050 eV.Å−2.polymer model but we an only get its analytial expression in the ase of a Gaussianpolymer. We have disussed this point in Setion (3.1.5) and we have shown thatwe an evaluate S(r|R) with an e�etive Gaussian model whih provides a goodapproximation for the FRC and the Kratky-Porod polymer models. In this setionwe use this e�etive Gaussian approximation of S(r|R) and we examine in a morequantitative way the various points that we disussed in the previous setion.5.5.1 Thermodynamis5.5.1.1 FRC modelFirst of all, it is interesting to look at the di�erene between the ase S ≡1 and theomplete alulation whih ouples the loop and the stem in the polymer model.Figure (5.27) shows that there is not a big di�erene between the two alulations.Although the ase of S 6=1 adds entropy in stem, the on�nement of the part of thepolymer making the stem by the Morse potential and staking interation does notallow large �utuations within the stem as soon as at least one base-pair is made.This partiularly true for a short stem. Taking into aount the onditional proba-bility S(r|R) is important for the internal onsisteny of the alulation but it onlybrings small quantitative hanges in the results. Inluding S(r|R) properly, as wedo in this setion, would probably beome more important for hairpins with a verylong stem (20 base-pairs or more) beause it would be able to form open bubbleswith a large entropy. The next table gives the width of the melting urve, measuredby ∆P

∆T
Tm de�ned in Setion (5.4.1.1), and ompares it with the experimental valuefor poly(T). 101
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Figure 5.27: Comparison of the melting urves with S ≡1 and S 6=1 and with the FRCmodel: θ = 60◦.The parameters of the stem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ = 0.35, ρ = 5, θ = 60◦. The blak olour is for the ase of S ≡1. Left: Melting pro�les,
◦: N=12; �: N=30. Right: evolution of the melting temperature as a funtion of N. ◦:
S 6=1, square: S ≡1.N S = 1, ∆P

∆T
Tm S 6= 1, ∆P

∆T
Tm Exp, Poly(T)12 3.6 3.7 1116 3.7 3.8 1121 3.7 3.8 1130 3.9 4.0 11We an notie that the introdution of S(r|R) in the alulation has a very smalle�et on the width. Whatever the theoretial approah, the alulation gives awidth of the melting urves whih is signi�antly higher than the experiments. It isone important weakness of our alulation and we will ome bak to this point inthe disussion of our work. Using the FRC model we have adjusted our parametersin order to ompare the results given by the model and the experimental ones ina quantitative way. We have used the following approah to hose the parametersand study the validity of the model. We use the experimental results for poly(T) asthe referene. We look for the parameter set that give the best �t of these resultsas a funtion of the loop size N . Then we onsider the ase of poly(A). In thisase, as all stem parameters have been �xed by the poly(T) study, we only haveone free parameter (θ or ǫ, depending on the polymer model). Figure (5.28) showsmelting urves obtained with two di�erent sets of parameters. Both give the meltingtemperature found in experiments for a poly(T) loop of 12 bases. The di�erenelies in the variation of Tm as a funtion of the loop length N and this di�ereneallows us to hoose the optimal set of parameters as shown in Fig. (5.29). Indeedthe best �t of the blak urve whih represents the experimental results for poly(T)is provided by the red urve obtained with D=0.112 eV, θ=50◦, k=0.025 eV.Å−2,

α=6.9 Å−1, δ=0.35 and ρ=5.102
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Figure 5.28: Melting urves equivalent to poly(T) with the FRC model.The parametersof the stem are:k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. Left: Melting pro�les,D=0.112 eV, θ = 50◦,◦: N=12: �: N=16; ⋄: N=21; △: N=30. Right: melting pro�les,D=0.119 eV, θ = 45◦; ◦: N=12; �: N=16; ⋄: N=21; △: N=30.
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Figure 5.29: Variation of Tm as a funtion of the loop length N for di�erent sets of param-eters. ◦: experimental results for poly(T); �: D=0.112 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ = 0.35, ρ = 5, θ = 50◦; ⋄: D=0.119 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5,
θ = 45◦; △: D=0.100 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, θ = 64◦One these parameters have been �xed let us onsider the poly(A) ase. Forthe FRC model we an only selet θ. As mentioned before the staking interationis larger in the ase of a poly(A) loop, and we model that by a derease of θ. Asfor the ase S ≡ 1, this leads to a lowering of Tm in agreement with experiments.Figure (5.30) gives the results obtained with θ=48◦ and the same stem parametersas for the poly(T) ase. We also show the omparison of the melting temperaturevariation as a funtion of N with the experimental results.We an see that we are able to reprodue quantitatively the variation of Tm as afuntion of the loop length for poly(A) putting θ = 48◦. Tm varies from 326 K for
N=12 to 304 K for N=30 in agreement with experimental results. Nevertheless thewidth of the transition stays to large as the next table shows. Between experiments103
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Figure 5.30: Melting urves equivalent to poly(A) with the FRC model.The parametersof the stem are: D=0.112 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, θ = 48◦. Left:Melting pro�les, ◦: N=12; �: N=16; ⋄: N=21; △: N=30. Right: evolution of the meltingtemperature with N. blak: theoretial results, red: experimental data.and our alulation we a have a di�erene of a fator two for the poly(A) ase anda fator three for the poly(T) ase. The question is to understand why we get suha di�erene and if we an do something to improve this aspet. To help us in thisdisussion we present in the next setion the same study with the Krakty-Porodhain model. N θ = 50◦, ∆P
∆T

Tm θ = 48◦, ∆P
∆T

Tm Poly(T) Poly(A)12 3.6 3.7 11 916 3.7 3.8 11 8.521 3.7 3.8 11 8.530 3.9 4.0 11 7.5To omplete the study with the FRC model for the loop, we give the evolutionof Tm and of the width of the transition as a funtion of D, α and k, the depthof the Morse potential, the width of the Morse potential and the rigidity of thestem, respetively. Figure (5.31) shows the variation of Tm as a funtion of D.We an notie that Tm inreases linearly with D. In the ase of a single verylong stem treated in the approximation of ontinuum media, one an �nd that Tminreases with the square root of D using the PBD-model. To properly desribethe experimental properties of hairpins we must use a small value of the ouplingonstant k. This is onsistent with the experimental observations on DNA whihshow that a single base-pair an break without breaking the neighbours. This meansthat the ontinuum limit approximation is not valid for DNA. Most of the energywhen the stem opens omes from the pairing of the bases and this is why Tm dependslinearly on D. The disreteness of the stem is very important and it is why we havenot used the transfer integral method presented at the beginning of the hapter.Moreover, the kineti results for S ≡1 on�rm that the ativation energy of opening104
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Figure 5.31: E�et of the depth of the Morse potential on the melting pro�les with theFRC modelling.The parameters of the stem are: k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35,
ρ = 5, θ = 50◦ and N=21. Left: Melting pro�les, •: D=0.08 eV; �: D=0.09 eV; ⋄:D=0.10 eV; △: D=0.11 eV, ×: D=0.12 eV. Right: evolution of the melting temperaturewith D. blak •: theoretial results, red line: linear �tting.only omes from D and not from k. Therefore it is not surprising to �nd suh alinear dependene of Tm with D. Nevertheless, as the next table shows, the widthof the transition is not signi�antly a�eted by the variation of D.D (eV) S 6= 1, ∆P

∆T
Tm0.08 3.50.09 3.90.10 3.80.11 3.80.12 3.9This shows us that the depth of the Morse potential serves as the �tting of themelting temperature by hanging the depth of the �rst well of the redued freeenergy only. Let us now examine the e�et of the width of the Morse potentialon the thermodynamis presented in Fig. (5.32). As in the ase S ≡1, the larger

α, the smaller the melting temperature Tm. The region that represents the losedon�guration in the free energy pro�le is redued when we inrease α. Although it ismore di�ult to overome the barrier between the losed and the open state (kinetie�ets), the equilibrium is nevertheless displaed to the open state with the inreaseof α beause the volume of the phase spae orresponding to a losed state dereases.Moreover the width of the transition is slightly a�eted by the hange of α and asone an expet the smaller the width of the Morse potential, the smaller the widthof the transition. 105
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Figure 5.32: E�et of the width of the Morse potential on the melting pro�les with theFRC model. The parameters of the stem are: D=0.112 eV, k=0.025 eV.Å−2, δ = 0.35,
ρ = 5, θ = 50◦ and N=21. Left: Melting pro�les, •: α=4.0 Å−1; �: α=5.0 Å−1; ⋄:
α=6.0 Å−1; △: α=7.5 Å−1. Right: evolution of the melting temperature with α.a (Å−1) S 6= 1, ∆P

∆T
Tm4 3.45 3.56 3.87.5 4.1Finally, Fig. (5.33) gives the evolution of the melting pro�les as a funtion of k.When we inrease k we also inrease the melting temperature Tm but we slightly
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Figure 5.33: E�et of the rigidity of the stem on the melting pro�les with the FRCmodel.The parameters of the stem are: D=0.112 eV, α=6.9 Å−1, δ = 0.35, ρ = 5,
θ = 50◦ and N=21. Left: Melting pro�les, •: k=0.010 eV.Å−2; �: k=0.020 eV.Å−2;
⋄: k=0.040 eV.Å−2; △: k=0.060 eV.Å−2. Right: evolution of the melting temperaturewith k.derease the width of the transition from the losed to the open state. The losed106



5.5 Complete alulation: S 6= 1on�guration is stabilized by the ooperative e�ets whih are more important when
k inreases. As the stem is omposed of �ve base-pairs only, the e�et of k is lessimportant than in the ase of a very long stem. Indeed in the ase of a very longstem, in the approximation of ontinuous medium, T ∝

√
k but here the dependeneis weaker. k(eV.Å−2) S 6= 1, ∆P

∆T
Tm0.01 4.10.020 40.040 3.80.06 3.7As for the ase S ≡1, we now present the thermodynamis obtained with the Kratky-Porod hain. As mentioned before, this polymer model presents the advantage ofhaving an expliit energeti term in the probability distribution.5.5.1.2 Disrete Kratky-Porod modelIt is interesting to see the e�et of the S funtion in the ase of the Kratky-Porodhain for the loop. Figure (5.34) gives the omparison of the two alulations. In
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Figure 5.34: Comparison of the melting urves with S ≡1 and S 6=1 and with theKratky-Porod model: ǫ = 0.0019 eV.Å−2 .The parameters of the stem are: D=0.102 eV,k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. The blak olor is for the ase of S ≡1.Left: Melting pro�les, ◦: N=12; �: N=30. Right: evolution of the melting temperatureas a funtion of N . ◦: S 6=1, �: S ≡1. The urves orrespond to a linear �tting.the ase of the KP model, the e�et of the S funtion is more important than forthe FRC polymer. Indeed, Tm hanges from 325 K to 312 K for N=12 when weintrodue the S funtion. We annot say that it is only due to entropi e�etsbeause the KP hain ontains energeti ontributions, but we an say that the
S funtion tends to destabilize the losed on�guration. The next table gives thehange of the width of the transition with and without the S funtion. 107



PBD-Polymer model for DNA Hairpins
N S ≡1, ∆P

∆T
Tm S 6= 1, ∆P

∆T
Tm12 3.3 3.230 4.1 3.7As we an see, the width of the transition seems to be slightly larger in the preseneof the S funtion but the hange is not signi�ant enough to allow a quantitativeomparison with experiments. Moreover we have seen that the evolution of Tm asa funtion of N is not monotonous for ǫ=0.0040 eV.Å−2. It is interesting now tosee what happens when we put the S funtion. To give a quantitative ompari-son, Fig. (5.35) shows the evolution of Tm(S ≡ 1, N) − Tm(S ≡ 1, N = 12) and

Tm(S 6= 1, N) − Tm(S 6= 1, N = 12) as a funtion of N .
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Figure 5.35: Variation of Tm as a funtion of N with and without the S funtion. Theblak urve represents Tm(S ≡ 1, N) − Tm(S ≡ 1,N = 12) and the red one is for Tm(S 6=
1, N) − Tm(S 6= 1, N = 12).We an notie that we get the same tendeny with and without the S funtion.The maximum of the urve stays around N=21 whih shows us that the growthof the loop inside the stem represented by the S funtion has no e�et on thismaximum. Therefore this maximum is only governed by the evolution of the end-to-end probability distribution with N .As we have done before we now give the omparison of the experimental resultswith our model in the ase of the KP modelling for the loop in order to determinewhih is the best loop model. Figure (5.36) shows the melting urves obtainedfor ǫ=0.0018 eV.Å−2 whih orresponds to a persistene length equal to 12.3 Å.The right graphi gives the omparison of the evolution of Tm as a funtion of Nobtained experimentally for the poly(T) and obtained in our simulation. We ansee that our results are in semi-quantitative agreement with the experiments sine
Tm varies from 333 K for N=12 to 305 K for N=30 whih is omparable to theexperimental ase where Tm goes from 332 K to 314 K for the same variation of
N . Our main problem stays in the width of the transition whih is really too largeompared to the experiments as shown in the next table.108



5.5 Complete alulation: S 6= 1
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Figure 5.36: Melting urves equivalent to poly(T) with the KP model.The parametersof the stem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, ǫ =
0.0018 eV.Å−2. Left: Melting pro�les, •: N=12; �: N=16; ⋄: N=21; △: N=30. Right:evolution of the melting temperature as a funtion of N . blak: theoretial results, red:experimental data.

N ǫ=0.0018 eV.Å−2, ∆P
∆T

Tm Poly(T), ∆P
∆T

Tm12 3.2 1116 3.4 1121 3.45 1130 3.8 11The parameter ǫ represents the rigidity of the hain as mentioned before. The rigidityfor the poly(A) loops is larger than the poly(T) beause the staking interation ismost important with A-bases. Therefore in order to model the di�erene betweenpoly(T) and poly(A) we have inreased the value of ǫ and we have adjusted ourvalue to get Tm whih agree with experiments. Figure (5.37) gives the meltingurves obtained with ǫ=0.00195 eV.Å−2 whih orresponds to a persistene lengthequal to 13.5 Å. We an see that Tm goes from 327 K for N=12 to 300 K for N=30whih is omparable to the experimental result where ∆Tm is equal to 22 K for thesame variation of N and with Tm equal to 326 K for N=12. Nevertheless we still�nd larger transitions than the experimental ase as shown in the next table.
N ǫ=0.00195 eV.Å−2, ∆P

∆T
Tm Poly(A), ∆P

∆T
Tm12 3.25 916 3.45 8.521 3.6 8.530 3.8 7.5One an notie that to model the di�erene between poly(T) and poly(A) we do notneed to signi�antly hange the value of the persistene length. We will ome bakto this point in the disussion setion after the presentation of the kineti results.To omplete this part we give the evolution of the melting pro�les with the hange109



PBD-Polymer model for DNA Hairpins
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Figure 5.37: Melting urves equivalent to poly(T) with the KP model.The parametersof the stem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, ǫ =
0.00195 eV.Å−2. Left: Melting pro�les, •: N=12; �: N=16; ⋄: N=21; △: N=30. Right:evolution of the melting temperature as a funtion of N. blak: theoretial results, red:experimental data.of D. Figure (5.38) shows suh an evolution. We �nd a linear evolution, as for the
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Figure 5.38: E�et of the depth of the Morse potential on the melting pro�les with theKP model.The parameters of the stem are: k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5,
ǫ0.0018 eV.Å−2 and N=21. Left: Melting pro�les, ◦: D=0.08 eV; �: D=0.09 eV; ⋄:D=0.10 eV; △: D=0.11 eV, ×: D=0.12 eV. Right: evolution of the melting temperaturewith D. blak ◦: theoretial results, red line: linear �tting.FRC loop model whih is not really surprising. Moreover, as the next table shows,the width of the transition is not signi�antly a�eted by the variation of D.110



5.5 Complete alulation: S 6= 1D (eV) S 6= 1, ∆P
∆T

Tm0.08 3.40.09 3.30.10 3.50.11 3.40.12 3.4After dealing with the thermodynamis of the model we propose to study the kinetisand ompare our results to the experimental ones.5.5.2 Kinetis5.5.2.1 FRC modelLet us �rst ompare the kineti result obtained with and without S in one partiularase to see if there is a signi�ant di�erene. Figure (5.39) gives suh a omparison.
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Figure 5.39: Comparison of the kineti rates with and without S with the FRC model inan Arrhenius plot. Open and losed symbols represent the rates of opening and losing,respetively. The parameters are the following: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ=0.35, ρ=5, θ = 60◦ and N=21. Blak: S ≡1. Red: S 6=1.As we an show there is no pereptible di�erene between the two alulations. Evenif the ase S ≡1 is oneptually not satisfatory, it gives quite orret results. Asdisussed for the FRC ase, this omes from the fat that the stem is on�ned bythe Morse potential, so that the e�et of the polymer part in the stem is small.Let us now ompare the kinetis obtained by the model and the experiments. Theparameters have been seleted by the thermodynami studies so that we annot doany �tting at this level.Figure (5.40) gives the rates of opening and losing for di�erent loop lengths and111



PBD-Polymer model for DNA Hairpins

3 3,2 3,4 3,6 3,8 4
1000/T

1e-06

1e-05

0,0001

k op
, k

cl

2,5 3 3,5 4
1000/T

1e-06

1e-05

0,0001

0,001

0,01

k op
, k

cl

Figure 5.40: Rates of opening and losing with the FRC model in an Arrhenius plot.Open and losed symbols represent the rates of losing and opening, respetively. Theparameters are: D=0.112 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. Left: θ = 50◦;
•: N=12; �: N=16; ⋄: N=21; △: N=30. Right: N=21, blak: θ = 50◦, red:θ = 48◦for θ = 50◦ and 48◦. For the FRC model it is not possible to do a quantitativeomparison of the theoretial results and the experimental ones, beause, �rstly weget negative ativation energies for losing whih is not the ase of experiments andseondly we have a fator approximately three between the ativation energy ofopening obtained with our model and obtained in the experiments. Moreover thekinetis is only marginally modi�ed when θ is varied in the range whih orretlymodels the di�erene between poly(A) and poly(T) in the thermodynamis. How-ever, as in the experiments, the inrease of the loop length tends to derease therate of losing and it does not a�et the rate of opening. As mentioned before whenwe inrease the loop length, the available phase spae is then bigger, therefore thehairpin takes more time to lose.The theoretial results as well as the experimental ones onerning the kinetis withthe FRC model are summarized in the next table.

Eop, model Ecl, model Eop, exp Ecl, expPoly(T) 11.5 -0.33 32 3.4Poly(A) 11.5 -0.33 32 17.4As we an see in the table our model does not provide a quantitative agreement withexperiments for the kinetis. This shows us that the single stranded DNA is notonly a simple polymer. We will ome bak to this point after presenting the kinetisobtained with the Kratky-Porod hain whih is a more realisti polymer model.To omplete this setion, we present the evolution of the ativation energies as afuntion of D, k and α. Figure (5.41) gives the rates of opening and losing with
N=21 for di�erent values of D.
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5.5 Complete alulation: S 6= 1
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Figure 5.41: E�et of D on the kinetis with the FRC model in an Arrhenius plot. Openand losed symbols represent the rates of opening and losing, respetively. The parametersare the following: k=0.025 eV.Å−2, α=6.9 Å−1, δ=0.35, ρ=5, θ = 50◦ and N=21. Ratesof opening:◦: D=0.08 eV; +: D=0.09 eV; ⋄: D=0.10 eV; △: D=0.11 eV; �: D=0.12 eV.Rates of losing: •: D=0.08 eV; �: D=0.12 eV.First of all, we an notie that the rates of opening and losing are well desribed byan Arrhenius law even if we hange the width of the Morse potential D. Moreoverwe an see that the losing is not really a�eted by the hange of D as the ase of
S ≡1 whih shows us that the losing is almost governed by the loop part of thehairpin. Moreover, when we inrease D, we also inrease the ativation energy ofopening Eop. Figure (5.42) gives the evolution of the ativation energy of openingas a funtion of D. The red urve represents 5D in Kal.mol−1 units.
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Figure 5.42: Evolution of the ativation energy of opening as a funtion of D. The pa-rameters are the following: k=0.025 eV.Å−2, α=6.9 Å−1, δ=0.35, ρ=5, θ = 50◦ and N=21.The red urve represents 5×D in Kal.mol−1 units. ◦: theoretial results. The blue urveis a linear �tting.
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PBD-Polymer model for DNA HairpinsAs we an see, the variation of the ativation energy of opening as a funtion of D islinear. Moreover for a given value ofD, Eop is lose to M×D but it always stays lowerthan this value. As we also put staking interation in the stem we expet ativationenergies of opening of the order of M ×D plus something oming form the staking.On the ontrary, we get the reverse, here. Moreover if we look at Fig. (5.43), theativation energy of opening and losing are not signi�antly a�eted by k whihrepresents the fore of the staking interation and by α. Staking interations onlyhave an entropi e�et (the urves are only translated). Before onluding on the
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Figure 5.43: E�et of k and α on the kinetis with the FRC in an Arrhenius plot. Openand losed symbols represent the rates of losing and opening, respetively. The parametersare: D=0.112 eV, δ = 0.35, ρ = 5 and N=21. Left: α=6.9 Å−1; ◦: k=0.01 eV.Å−2; ⋄:k=0.02 eV.Å−2; ; △: k=0.04 eV.Å−2; �: k=0.06 eV.Å−2;. Right: k=0.025 eV.Å−2. ◦:
α=4.0 Å−1; ⋄: α=5.0 Å−1; △: α=6.0 Å−1; �: α=7.5 Å−1.kinetis let us examine the results obtained with the Kratky-Porod hain.5.5.2.2 Disrete Kratky-Porod modelFirst of all, as in the previous ase, let us begin by the omparison of one kineti re-sult obtained with and without S to see the in�uene of S. Figure (5.44) gives suha omparison. We an notie that the losing rate is not signi�antly a�eted by theuse of the omplete alulation and it is not so surprising beause, as we pointedout, the losing is mostly governed by the loop omposed of the N monomers andnot by the stem. Nevertheless, the opening is slightly a�eted by S whih tendsto slightly derease the opening ativation energy without hanging the entropy be-ause at high temperatures the two urves meet.Figure (5.45) gives the rates of opening and losing for two di�erent values of ǫ andfor di�erent values of the loop length N . We have used the parameters presentedin the setion thermodynamis, whih provide the optimal omparison with the ex-perimental results.114



5.5 Complete alulation: S 6= 1
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Figure 5.44: Comparison of the kineti rates with and without S with the KP model inan Arrhenius plot. Open and losed symbols represent the rates of opening and losing,respetively. The parameters are the following: D=0.102 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ=0.35, ρ=5, ǫ=0.0019 eV.Å−2. Blak: S ≡1. Red: S 6=1.
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Figure 5.45: Rates of opening and losing with the KP model in an Arrhenius plot. Openand losed symbols represent the rates of losing and opening, respetively. The parametersare: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. Left: ǫ=0.0018 eV.Å−2;
◦: N=12; �: N=16; ⋄: N=21; △: N=30. Right: N=21, blak: ǫ=0.0018 eV.Å−2, red:
ǫ=0.00195 eV.Å−2As for the FRC model the kineti of opening in not a�eted by the hange ofthe number of monomers in the loop. The opening ativation energy Eop is equal to0.43 eV (10 kal.mol−1) for D = 0.107 eV. Conerning the kineti of losing, we �ndthat the larger the number of monomers, the smaller the rate of losing. Indeed ifwe inrease the entropy of the loop by inreasing N , then the loop takes more timeto �nd the transition state in the phase spae. Nevertheless, the losing ativationenergy is not signi�antly a�eted by the hange of N . We �nd a losing ativationenergy Ecl equals to 0.04 eV (1 kal.mol−1). The next table gives the omparisonwith the experimental results. 115



PBD-Polymer model for DNA Hairpins
Eop, model Ecl, model Eop, exp Ecl, expPoly(T) 10 +1 32 3.4Poly(A) 10 +1 32 17.4We see that we are not able to get quantitative agreement between our results andthe experimental ones. Moreover if we inrease the value of ǫ whih gives us thedi�erene between poly(A) and poly(T) in the thermodynamis, we get almost nodi�erene in kinetis. This is in agreement with what we an see in literature wherethey laim that regarding the di�erene in the kinetis, the persistene length ofpoly(A) must be four times larger approximately than the poly(T) ase to reproduesuh a di�erene [7℄. But if we impose suh a hange in the persistene length inorder to get the orret kineti results, it is then the thermodynami results whihare wrong. This shows us that the single stranded DNA is not a simple polymer.To model it one must elaborate more omplex models. We will ome bak on thispoint in the onlusion beause this an important lesson learned from the analysisof DNA hairpins.5.5.3 DisussionsOur model allows us to derive thermodynamis and kinetis properties of DNA hair-pins. We �nd that the thermodynami results are in semi-quantitative agreementwith the experimental ones. Indeed, we get orret values of the melting temperature

Tm and a good dependene on the loop length. Moreover, the di�erene betweenpoly(A) and poly(T) an be reprodued by inreasing the rigidity of the loop. Nev-ertheless, we have shown that a slight hange of the rigidity is su�ient to get thehange of Tm. Therefore, the persistene length lp would be omparable for poly(A)and poly(T) in our study. We must point out that the transition width that we get isapproximately two times larger than expeted in experiments. It ould explain whywe only need a small hange of the rigidity parameter to get the orret variationof Tm.For the kinetis, we have supposed that the system di�uses in a free energy surfaethat we derive from the thermodynami study and we have derived the rates of open-ing and losing using the transition state theory and not only the Kramers'theory.At this stage we have �xed the di�usion oe�ient to a onstant. We �nd that thekinetis of opening does not depend on the loop properties as in the experiments.Moreover we get positive ativation energies of opening but the values di�er froma fator three from the results obtained by Libhaber. As we have shown, we aninrease Ea by inreasing D, whih is the depth of the Morse potential but it wouldalso hange Tm to values that do not agree with experiments.For the kinetis of losing the results are mixed. First of all, we are not able to getresults in quantitative agreement with experiments. Nevertheless we an bring someontributions to the debate of the sign on the ativation energy of losing that weraised in the introdution. First, we have shown that the Arrhenius law is only validat low temperatures, i.e. below the melting temperature Tm. Moreover we have seen116



5.5 Complete alulation: S 6= 1that it is possible to get negative or positive ativation energies of losing puttingor not energeti ontributions in the loop. But we now that the staking interationis important within the loop as Libhaber and oworker show in their study and itis more important in poly(A) loops. Therefore the model of the loop must inludeenergeti ontributions. In this hypothesis, we �nd a positive ativation energy oflosing. As mentioned in the introdution, in their analysis of their disrepany withthe experiments of the Libhaber group, Ansari et al. attribute the positive ativa-tion energy for losing to mismathes. While we are not able to give a quantitativeassessment of the e�et of mismathes beause we have not studied them, we anhowever show that mismathes are not a neessary ondition to get a positiveativation energy for losing. It an ome from the rigidity of the loop only.5.5.4 Beyond the PBD-model for the stemUp to now we have desribed the stem by the PBD-model whih has the interestof being fairly simple while desribing the melting properties of DNA to a goodauray as tested in some experiments [77℄. We have obtained interesting resultson the e�et of the loop but we are still faing quantitative disagreement withexperiments for the width of the melting transition. The model �nds that theopening of the hairpin extends on a muh broader range than in the experiments.This problem of the broad melting was also met in the �rst studies of the doublehelix thermal denaturation. For a long double helix (or in the limit of an in�nitedouble stranded DNA) the problem was solved by the introdution of the nonlinearstaking
W (yi, yi−1) =

K

2

[
1 + ρe−δ(yi+yi−1)

]
(yi − yi−1)

2 . (5.67)Its e�et is to inrease the entropy of the melted part of the helix with respet tothat of the losed part beause the oupling dereases when either one of the twobase-pairs is open.However the oupling never vanishes, even when yi, yi−1 are very large due to theonstant 1 in the expression. This is neessary in the PBD-model beause the DNAstrands do not break, even when the double helix is denaturated.In our hairpin model the staking interation does not have to desribe the ovalentbonds within the strands beause this part of the physis of the hairpin is desribedby the polymer model. Sine the staking potential only desribes the interationby the plateaus made by the bases, in partiular through the overlap of their π-eletrons, it is now aeptable to let the staking deay to 0 when the stem is fullyopen, as shematized in Fig. (5.46). To test the onsequenes of a omplete vanishingof the staking interation, we have onsidered the ase of the staking potential
W1(yi, yi−1) =

1

2
K1ρe−δ(yi−yi−1) (yi − yi−1)

2 , (5.68)117



PBD-Polymer model for DNA Hairpinsinstead of the potential W. To allow a omparison with our previous results we havehosen
K1ρ = K (1 + ρ) , (5.69)whih ensures that, for the losed stem, the staking is not modi�ed.

Figure 5.46: Shemati representation of the staking in the losed and the open on�g-uration. Left: losed stem, the base-pairs interat. Right: open stem, the position of thebases is random and their staking energy may vanishFigure (5.47) ompares melting urves obtained with staking desribed by W and
W1.
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Figure 5.47: Comparison of the melting urves and the energies obtained with two stakingpotentials W and W1. These alulations have been performed with a loop desribed bythe Kratky-Porod hain (e�etive Gaussian approximation). Left: melting urves. Right:energy. The blak olor orresponds to D=0.112 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ=0.35,
ρ=5, ǫ = 0.0019 eV.Å−2, N=24 and staking W . The red olor orresponds to D=0.170 eV,
k=0.030 eV.Å−2, staking desribed by W1 and idential others parameters.A staking potential W1 leads to a slightly sharper melting urve, whih is there-fore in better agreement with experiments, although the opening transition given by118



5.5 Complete alulation: S 6= 1the model is still broader than the observed transition. It should be notied that, inorder to preserve the melting temperature, when we use the staking potential W1we inrease signi�antly the depth of the Morse potential. As shown by Fig. (5.47)showing the energy versus temperature for the two ases of staking W and W1,using staking W1 leads to an energy inrease of 0.6 eV at the opening transition in-stead of 0.4 eV when we use the staking W. This higher value is in better agreementwith experimental measurements whih give approximately 34 kal/mol (1.47 eV)for hairpins with �ve base-pairs stem but still lower than the experimental values.
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ConlusionWe have presented a simple model for DNA hairpins whih ontains the main phys-ial ingredients, i.e. a polymer desribing the DNA strands and the main features ofthe stem, base pairing and staking. It allows us to understand the main features ofhairpin properties, in partiular the role played by the loop in the opening-losinghairpins:
• with respet to the stem alone, hairpins open at signi�antly lower temper-atures. We have shown that it an be understood in terms of entropy gainwhen the loop opens.
• larger loops derease the opening temperature even more, in agreement withexperiments.Kineti studies have been very useful to omplete our understanding beause:
• they give results separably on opening and losing; allowing us to analyse thedata more ompletely and in partiular determine what has to be attributedto the stem and what omes from the loop
• they also help us determining what omes form energeti or entropi e�ets inthe properties of hairpins.The model is suessful on some aspets:
• the e�et of the size of the loop,
• the orret order of magnitude for Eop, Ecl (in partiular positive ativationenergy for losing, while other models do not get this experimental feature),although our values are smaller than the experimental ones.But the model is still not fully satisfatory:
• the melting transition that we alulate is too broad, 123



Conlusion
• the variation of Tm versus N is smaller for more rigid loops than for softerones in our alulations while experiments show the ontrary.This indiates that some physial aspets are not properly desribed in our approah.Our results suggest that this problem annot be solved by improving the polymermodel beause we have used two very di�erent polymer models and they give thesame qualitative behavior. The FRC model has no energeti term in the loop whilethe Kratky-Porod model (or its ontinuous ounterpart the worm like hain) inludesa bending energy. The Kratky-Porod model is an improvement beause it an givea positive Ecl but it does not solve the quantitative disagreement that we notiedabove.The solution an neither ome from a simple improvement of the model for thestem. We have used the PBD-model but we have shown for instane that hangingdrastially the model for the staking by allowing the staking energy to vanishompletely in the open state narrowers slightly the melting transition but does notbring a major quantitative hange. However this attempt to improve the modelmight give a lue to improving the theoretial desription of DNA hairpins, beauseit suggests that an inrease in the entropy hange when the hairpin opens ouldbring the model loser to experiments. The simplifying assumptions that we havemade to establish the model are indeed leading to an underestimation of the entropy.The main restrition is that bases are desribed as points. This allowed us to use asimple polymer model for the strand of the stem and loop but it ignores the entropyassoiated to the �utuations of the orientation of the bases. When the stem isformed the bases have restrited motions, but when the pairing is broken the basesaquire a large orientational freedom whih is not desribed in our model. Similarly,for the loop the polymer model ompletely ignores the orientational �utuations ofthe bases. Moreover the properties of the loop ould be strongly a�eted by thetendeny of the bases, partiularly the large purines suh as A, to stak on eahother.Our results show that DNA hairpins are very good test to study the propertiesof DNA single strands. When this work started, our aim was to learn how todesribe DNA self assembly and we had in mind that the e�ort would have to befoused mainly on a orret desription of the stem. But as the study developed wegot evidene that a good model of the loop was ruial. Hairpins provide preiseexperimental results so that their models are submitted to strit testing. Obviouslywe have not fully sueeded in desribing DNA hairpins theoretially. We wouldhowever like to point out that the di�ulties appear when one tries to desribeall the experimental results (thermodynamis and kinetis, for various types ofloops poly(A) or poly(T) and various loop lengths). To our knowledge all previousattempts to model DNA hairpins have only onsidered some aspets when a subsetof the experimental results is onsidered. But, when they are onsidered on all theirfaets, DNA hairpins appear to be very omplex.The study shows that the desription of the loop plays a large role for the validityof a model. This is why we had to investigate di�erent possibilities.124



ConlusionAlthough they give interesting results none of the models is perfet and this studyshows that a DNA strand is not a simple polymer! On a very long sale (hundredsof bases) a WLC model might be enough. On a very small sale (2 or 3 bases) anysimpli�ed model is bound to fail due to the omplex geometry and interations ofthe element making the strand (phosphates, sugars, bases). The intermediate rangethat hairpins allow to study (10 to 30 or 50 bases) ould have been expeted to beapproximately desribed by the Kratky-Porod model whih is a disrete version ofthe ontinuous WL hain. Aording to our study this is probably the best polymermodel that one an use, but we have nevertheless shown that it is still not su�ientto desribe all the properties of the DNA strand forming the loop of a hairpin.
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SummaryDNA beaons are made of short single strands of DNA with terminal regions on-sisting of omplementary base sequenes. As a result, the two end-regions anself-assemble in a short DNA double helix, alled the stem, while the remaining en-tral part of the strand makes a loop. In this losed on�guration, the single strandhas the shape of a hairpin. Suh hairpin onformations are important in determin-ing the seondary struture of long single strands of DNA or RNA. A short singlestrand of DNA whih an form a hairpin beomes a so-alled � DNA beaon � whenone of its ends is attahed to a �uorophore while the seond end is attahed to aquenher. When the �uorophore and the quenher are within a few Angströms, the�uoresene is quenhed due to diret energy transfer from the �uorophore to thequenher. As a result, in a losed hairpin on�guration, the beaon is not �uores-ent, while in the open on�guration it beomes �uoresent. This property opensmany interesting appliations for moleular beaons in biology or physis. Biologi-al appliations use the possible assembly of the single strand whih forms the loopwith another DNA strand whih is omplementary to the sequene of the loop. Theassembly of a double helix replaing the single strand of the loop fores the openingof the hairpin, leading to a �uoresent signal. This tehnique provides very sensitiveprobes for sequenes whih are omplementary to the loop. In the same spirit ithas been suggested that DNA beaons ould be used in vivo to detet the singlestranded RNA whih is synthetized during the transription of genes. This opensthe possibility to reognise aner ells by targeting some genes whih are heavilytransribed in suh ells.For physis DNA beaons are very interesting too. They an for instane be used asthe basis of some devies suh as moleular memories read by the detetion of �uo-resene, or to perform moleular omputation. The most important aspet for ourpurpose is that moleular beaons allow aurate observations of the opening andlosing of DNA hairpins. The � melting pro�le � of the stem, indued by heating,an be reorded aurately versus temperature and the auto-orrelation funtion ofthe �uoresene an be used to extrat the kinetis of the opening/losing �utua-tions. Measurements have been made for di�erent loop lengths and di�erent basesin the loop, providing a omplete set of data whih an be used to understand whatgoverns the properties of DNA hairpins. This is the goal of this thesis. The analy-sis goes beyond the properties of hairpins themselves beause, as shown below, theresults are very sensitive to the properties of the loop. Therefore the omparison of127



Summaryexperimental data with the results of various models is a very sensitive test of ourability to model single strands of DNA. This is important in other related ontextssuh as the properties of RNA.We have developed two di�erent models in order to study the thermodynamis andthe kinetis of suh systems. The �rst one is a planar square lattie model inspiredby the lattie models whih have been used to study protein folding. The energy ofthe DNA strand depends on two terms only, a bending energy when two onseutivesegments form a right angle and the energy of the base-pair whih an form in thestem. Using Monte Carlo simulation, we ompute the equilibrium properties andthe kinetis of the system. The results obtained by this model are in qualitativeagreement with the experiments showing that the main properties of DNA hair-pin rely on very simple and general ideas. Nevertheless, the main weakness of themodel is that it does not have enough degrees of freedom, so that a quantitativeomparison with experiments is not possible. Therefore we have proposed anothermodel whih inludes the physial ingredients of the lattie model but without theonstraint of the lattie. It ombines polymer theory and the Peyrard-Bishop andDauxois (PBD) model of DNA melting. The model treats the hairpin as onsistingof two subsystems:
• the loop whih is modelled by a polymer
• the stem whih is modelled by the PBD + additional terms that take intoaount the growth of the loop inside the stem.With this approah we an ompare our results quantitatively with the experimentalones. We �nd a good agreement for the dependene of the melting temperaturewith the harateristis of the loop, i.e. the length and the nature of the sequene.Moreover the kineti results are in qualitative agreement with the experiments. We�nd that the kinetis of opening is governed by the stem only and that the rateof losing dereases with the length of the loop. However we are not able to geta quantitative agreement with experiments on all aspets. The temperature rangein whih the transition takes plae in the experiments is muh narrower than givenby the model, irrespetively of the model that we hoose for the loop. Althoughit sounds disappointing, this negative result is perhaps the most important in thethesis beause we show learly that a single strand of DNA annot be modelled as asimple polymer on a length sale of the order of a few tens of base-pairs, in spite ofthe laims in the literature that suh a piture is valid. Atually studies that laimthe validity of suh a desription either onsider muh longer segments over whihthe subtleties of DNA struture are averaged out, or only take into aount someaspets of the experimental results so that the disrepanies are hidden.
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ZusammenfassungDNA beaons bestehen aus kurzen DNA Einzelsträngen, die komplementäre Se-quenzen in den Regionen der zwei Enden aufweisen. Die Endregionen eines Einzel-strangs können aufgrund dieser Eigenshaft eine kurze DNA Doppelhelix bilden,die mit Stamm bezeihnet wird. Der verbleibende zentrale Teil des Strangs formteine Windung, den so genannten Loop. In dieser geshlossenen Anordnung bildetder Einzelstrang eine Hairpin-Struktur. Hairpins spielen eine besondere Rolle fürdie Bestimmung der Sekundärstruktur langer DNA- oder RNA-Einzelstränge. Einkurzer DNA Einzelstrang, der eine Hairpin-Struktur bilden kann, formt einen sogenannten DNA beaon, wenn ein Ende mit eine �uoreszierenden Marker und dasandere Ende mit einem Quenher versehen wird. Sind diese Marker nur wenigeAngström voneinander entfernt, so vershwindet die Fluoreszenz durh direkten En-ergietransfer vom �uoreszierenden Molekül zum Quenher. Folglih ist für einengeshlossenen Hairpin keine Fluoreszenz zu beobahten, sie tritt jedoh erneut auf,sobald das Molekül seine Struktur verändert. Diese Eigenshaft ermögliht denEinsatz molekularer beaons für zahlreihe Anwendungen in der Physik und Biolo-gie. Biologishe Anwendungen nutzen die Bildung von Komplexen, bestehend ausdem Einzelstrang, der den Loop beinhaltet, und einem weiteren komplementärenDNA Strang. Die Komplexbildung zu einer Doppelhelix erzwingt die Entfaltungdes Hairpins, und ein Fluoreszenzsignal wird messbar. In diesem Zusammenhangwurde erwogen, dass DNA beaons in vivo dazu verwendet werden könnten, umeinzelne RNA Stränge, die im Verlaufe der Transkription von Genen synthetisiertwerden, nahzuweisen. Auf diese Weise wäre es möglih, Krebszellen zu erkennen,indem man gezielt einige Gene beobahtet, die besonders oft in den Krebszellenentshlüsselt werden.Auh für die Physik sind DNA beaons von besonderem Interesse. Sie könnenbeispielsweise für das Auslesen molekularer Speihereinheiten oder für molekulareRehenvorgänge verwendet werden. Ihre herausragende Eigenshaft im Hinblik aufdas Thema der vorliegenden Arbeit ist ihre Fähigkeit, den Vorgang des Ö�nens unddes Shlieÿens von DNA Hairpins akkurat wiederzugeben. Eine "Shmelzkurve" desStamms, hervorgerufen durh Erhitzen, kann auf diese Weise gegen die Temperaturaufgetragen werden; die Autokorrelationsfunktion der Fluoreszenz ermögliht es,die Kinetik des Ö�nens/Shlieÿens zu bestimmen. Es existieren zahlreihe solherMessungen für untershiedlihe Loop-Längen und Sequenzen, sie bilden einen voll-ständigen Datensatz und können dazu verwendet werden, das Verständnis der Eigen-129



Zusammenfassungshaften von DNA Hairpins zu erweitern. Dies ist das Ziel der vorliegenden Arbeit.Die Untersuhungen in dieser Arbeit gehen über die Eigenshaften von Hairpinshinaus, da, wie im folgenden gezeigt wird, die Ergebnisse sehr wesentlih von denEigenshaften des Loops abhängen. Der Vergleih zwishen experimentellen Datenund den Ergebnissen untershiedliher Modelle ist daher ein emp�ndliher Test fürdas theoretishe Verständnis der Physik einzelner DNA Stränge. Dies shlieÿt Pro-bleme in anderen Bereihen, so zum Beispiel die Modellierung der Eigenshaften vonRNA, mitein.In dieser Arbeit werden zwei Modelle vorgestellt, die die Thermodynamik und dieKinetik solher Systeme untersuhen. Das erste Modell ist ein zweidimensionalesGittermodell, das auf den Gittermodellen für die Untersuhung der Proteinfaltungberuht. Die Energie des Einzelstrangs wird darin aus lediglih zwei Beiträgen bereh-net, einem Beitrag der Krümmungsenergie, die für zueinander rehtwinklig ange-ordnete Segmente auftritt, und einem Beitrag aus der Bindung von Basenpaaren,die den Stamm bilden. Mithilfe von Monte Carlo Simulationen können die Eigen-shaften im thermodynamishen Gleihgewiht und die Kinetik des Systems un-tersuht werden. Die Ergebnisse stimmen qualitativ mit experimentellen Beobah-tungen überein und zeigen, dass die wesentlihen Eigenshaften von DNA Hairpinsauf sehr einfahe theoretishe Überlegungen zurükgeführt werden können. Gleih-wohl liegt die Hauptshwähe dieses Modells in der geringen Anzahl von Freiheits-graden, so dass ein quantitativer Vergleih mit Experimenten niht möglih ist. Ausdiesem Grund wurde ein weiteres Modell entwikelt, das die physikalishen Eigen-shaften des Gittermodells berüksihtigt, jedoh auf die räumlihe Einshränkungdes Gitters verzihtet. Das Modell verknüpft Ideen aus der Polymertheorie mitdem Peyrard-Bishop-Dauxois (PBD) Modell für DNA Shmelzen, und unterteilt einHairpin Molekül in zwei Untersysteme:
• den Loop, der als Polymer modelliert wird,
• den Stamm, wiedergegeben durh das PBD Modell unter Verwendung zu-sätzliher Terme, die das Wahstum des Loops im Stamm mit in Betrahtziehen.Dieser neue Zugang ermögliht es, einen quantitativen Vergleih mit experi-mentell ermittelten Daten durhzuführen. Es zeigt sih, dass eine gute Überein-stimmung bezüglih der Abhängigkeit der Shmelztemperatur von den Eigenshaftendes Loops (Länge und Sequenz) erzielt wird. Ein weiteres Ergebnis ist der Befund,dass die Kinetik des Ö�nungsprozesses lediglih von den Eigenshaften des Stammsabhängt und die Rate des Shlieÿungsprozesses mit steigender Loop-Länge abn-immt. Dessen ungeahtet ist es niht möglih, eine quantitative Übereinstimmungmit allen experimentellen Beobahtungen zu erreihen. So ist das experimentellbestimmte Temperaturintervall, in dem der Übergang statt�ndet, deutlih kleinerals durh das Modell vorhergesagt, unabhängig von der genauen Modellierung des130



ZusammenfassungLoops. Obzwar diese Feststellung enttäushen mag, ist dieses negative Ergebnismögliherweise die zentrale Aussage der vorliegenden Arbeit: Auf der Längenskalavon wenigen Dutzend Basenpaaren kann DNA niht durh die klassishe Polymerthe-orie erfasst werden, imWiderspruh zu gegenteiligen Behauptungen in der Literatur.Tatsählih verwendet ein Teil der Studien, die zu solhen Behauptungen kommen,wesentlih längere Segmente, und die lokalen strukturellen Eigenshaften der DNAtreten aufgrund von Mittelung niht hervor. Der andere Teil der Studien shlieÿtexperimentelle Beobahtungen bereits in die Modellierung mitein, so dass die Ab-weihungen vom Polymerverhalten in den Ergebnissen niht o�ensihtlih werden.
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RésuméLes �DNA beaons� sont des moléules omposées de simple brins d'ADN dont lesdeux bouts ontiennent des bases omplémentaires et auxquels on attahe un �uo-rophore et un quenher. Ainsi, es deux extrémités peuvent s'assembler pour formerun bout de double hélie d'ADN que nous appelons �stem�, la partie entrale dubrin forme alors une sorte de boule. On appelle ette struture la on�gurationen �épingle à heveux�. Cette on�guration joue un r�le important dans la déter-mination de la struture seondaire des long brins d'ARN ou d'ADN. Lorsque le�uorophore et le quenher sont à proximité l'un de l'autre, 'est-à-dire quelques Å,la �uoresene est bloquée du fait d'un transfert diret d'énergie du �uorophore versle quenher. Don, dans la on�guration fermée, �l'épingle à heveux� n'est pas �uo-resente. Néanmoins, dans la on�guration dite ouverte où les deux extrémités sontdésappariées, la �uoresene réapparaît. Cette propriété permet un grand nombred'appliations des �moleular beaons� en Biologie et en Physique. En biologie, esmoléules ont été proposées omme une alternative aux pues à ADN. En e�et, sila séquene d'un simple brin d'ADN est omplémentaire de la séquene du brin for-mant la boule d'une �épingle à heveux�, il y a appariement entre ette séqueneet la boule. Cela implique une ouverture de �l'épingle à heveux�, ar la rigidité dudouble brin est bien plus grande que elle du simple brin d'ADN et la moléule de-vient alors �uoresente. Dans le même esprit, es moléules ont été proposées pourla détetion des ellules anéreuses en iblant l'ARN synthétisé par ertains gènesde es ellules. Pour les physiiens, es moléules sont également très intéressantes.Elles sont à la base de mémoires moléulaires. En e�et, la partie boule d'une�épingle à heveux� peut servir omme une mémoire où l'on stoke de l'informationen utilisant la omplémentarité des bases. Le proessus d'ériture ou d'e�aementest alors suivi par la mesure de �uoresene de es moléules. Pour notre travail,l'aspet le plus important est qu'elles représentent des systèmes simples permettantune étude détaillée de l'assemblage/désassemblage de la double hélie d'ADN. Lesourbes de dénaturation, qui représentent l'évolution de la �uoresene en fontionde la température ainsi que les fontions d'auto-orrélation de �uoresene peuventêtre mesurées très préisément, e qui permet d'extraire les propriétés thermody-namiques et inétiques de ette struture en �épingle à heveux�. Des mesures ontété faites ave di�érents types de bases et di�érentes longueurs de boule, don-nant ainsi un grand nombre de données. Ce sont es propriétés physiques qui nousintéressent dans ette thèse. La omparaison des résultats expérimentaux et des133



Résumérésultats obtenus par di�érents modèles est un exellent moyen pour tester notreapaité à modéliser les propriétés de l'ADN.Nous avons développé deux modèles di�érents pour étudier la thermodynamique etla inétique de es systèmes. Le premier est un modèle sur réseau inspiré des mod-èles sur réseau utilisés pour l'étude des repliements des protéines. Dans e modèle,l'énergie du simple brin d'ADN, dépend seulement de deux termes, un terme pour leoût énergétique assoié à un angle entre deux bases onséutives et un terme de gainénergétique pour la formation d'une paire de bases. A partir de simulations MonteCarlo, nous avons étudié les propriétés d'équilibre et la inétique du système. Lesrésultats obtenus à l'aide de e modèle sont en aord qualitatifs ave les résultatsexpérimentaux montrant ainsi que les prinipales propriétés des �épingles à heveux�sont gouvernées par des phénomènes physiques simples. Néanmoins, la prinipalefaiblesse de e modèle réside dans le manque de degrés de liberté qui ne permet donpas une omparaison quantitative ave les expérienes. Nous avons don élaboré unautre modèle qui inlut les ingrédients physiques du premier modèle mais sans laontrainte apportée par le réseau. Il ombine la théorie des polymères et le modèlede Peyrard-Bishop et Dauxois (PBD) pour la double hélie. Le système est alorsdivisé en deux sous-système:
• la boule qui est modélisée par un polymère,
• la partie double brin d'ADN qui est modélisée par le modèle PBD et omplétépar des termes pour tenir ompte de l'agrandissement de la boule le long dustem.Ave ette nouvelle approhe, nous sommes apable de omparer quantitativementnos résultats théoriques ave les résultats expérimentaux. Nous trouvons un bonaord pour la dépendane de la �température de transition� ave les aratéristiquesde la boule, à savoir, la longueur et la nature de la séquene. De plus, les résultatsde inétique sont en aord qualitatif ave les résultats expérimentaux. En e�et,nous trouvons que la inétique d'ouverture est déterminée par les propriétés du�stem� seulement et que la vitesse de fermeture déroît ave la longueur de la boule.Cependant, nous ne sommes pas apable d'obtenir une omparaison quantitativeomplète. Nous obtenons une largeur de transition environ deux fois plus grandeque elle obtenue dans les expérienes, indépendamment du modèle de boule. Aussisurprenant que ela puisse paraître, e résultat négatif est peut-être l'un des résultatsles plus important de e travail de thèse pare qu'il montre lairement qu'un simplebrin d'ADN ne peut pas être modélisé par un simple polymère à l'éhelle de quelquesdizaines de paires de bases, en dépit de e que dit la littérature portant sur e sujet.
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Appendix ACalulation of PN (R) for theKratky-Porod hainThis appendix explains the method proposed by N.Theodorakopoulos to omputethe probability distribution funtion of the end-to-end distane of a Kratky-Porodhain.Our alulation for the hairpin involves the probability distribution funtion forthe extension of the hain S(r|R). But for a hain like the Kratky-Porod hainwhih inludes an energy ontribution depending on the angle between segments, theprobability distribution of an (N + 1)th segment depends on the spatial orientationXN of the nth segment. This suggests that the appropriate distribution for theKratky-Porod hain is not
PN(R) =
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. (A.2)The probability distribution A.1 for the end-to-end vetor is related to P̃N (R;XN)by
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P̃N (R;XN) =
∑

lm

Q̃
(N)
lm (R)Ylm(ΩN ), (A.4)137



Calulation of PN(R) for the Kratky-Porod hainwhere the expansion oe�ients are de�ned as
Q̃

(N)
lm (R) =

∫
dΩN P̃N (R;XN)Y ∗

lm(ΩN ). (A.5)The end-to-end distribution funtion is obtained from the lowest oe�ient by
PN(R) =
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(N)
00 (R). (A.6)The idea of the alulation is to build PN(R) by gradually adding segments to aninitial segment. Therefore one needs to de�ne a reurrene relation
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, (A.9)whih an be expanded in terms of spherial harmonis
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, (A.11)expressed in terms of modi�ed Bessel funtions. With the spherial harmoni ex-pansion of φ, the angular integral of A.8 an be performed. The result is
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∗
l′m(Ωj). (A.14)As we are interested in the ase m′ = 0 beause we need Q̃

(N)
00 , Eq. (A.13) reduesto

Q̃
(N)
l′0 (R) =

∫
dq

(2π)3dr′eiq.(R−r′)×
∑

l

îl(b)f
(0)
ll′ (q)Q̃

(N)
l0 (r′), (A.15)where

f
(0)
ll′ (q) =

1

2

√
(2l + 1)(2l′ + 1)

∫ +1

−1

dµe−iqµPl(µ)Pl′(µ), (A.16)where Pl is a Legendre polynomial. In Fourier spae Eq. (A.15) beomes
Q̃

(N)
l′0 (q) =

∑

l

îl(b)f
(0)
ll′ (q)Q̃

(N)
l0 (q), (A.17)whih an be expressed in a matrix form by de�ning a vetor Q(N) and a symmetrimatrix F by

Q
(N)
l (q) =

√
îl(b)Q̃

(N)
l0 (q) (A.18)

Fll′(q) =

√
îl(b)̂il′(b)f

(0)
ll′ (q). (A.19)The reurrene relation is now Q(N+1) = FQ(N), (A.20)and the end-to-end distribution funtion is given by

PN(R) =
√

4πQ
(N)
0 (R). (A.21)The reurrene relation (A.20) provides the basis for the alulation of PN(R). Forthis one needs to start from N = 1

P̃1 (R;X1) =
1

4π
δ (R−X1) . (A.22)So that

P1(R) =

∫
dΩ1P̃1 (R;X1) =

1

4π
δ (R − 1) . (A.23)From the expansion of P̃1 (R;X1) we get

Q̃
(1)
lm(q) =

1√
4π

f
(0)
l0 (q)δm0, (A.24)139



Calulation of PN(R) for the Kratky-Porod hainor
Q

(1)
l =

1√
4π

Fl0. (A.25)Now with the reurrene relation we get
Q

(N)
l =

1√
4π

[FN
]
l0

. (A.26)Therefore the Fourier transform of the end-to-end distribution is given by
PN(q) =

[FN
]
00

. (A.27)If we know the matrix elements of F, we an then get PN(q) and PN(R) by inverseFourier transform. Their alulation is possible with the expansion
e−iqµ =

∞∑

k=0

(2k + 1)(−i)kjk(q)Pk(µ), (A.28)where the jk are the spherial Bessel funtions (e.g. j0(q) = sin q/q).Putting this expression into formula for f
(0)
ll′ (q), and using the integral formula forthe produt of three Legendre polynomials [60℄, it is possible to express the matrixelements of F as a �nite sum of Bessel funtions. (Eq.(31) in [60℄).

140



Appendix BThe Gaussian hain
B.1 Theoretial preditionsWe onsider the ase of a hain with monomer modelled by springs whih are ran-domly oriented and totally independent from eah other. Eah monomer has a �xedequilibrium length l0. We assume that the spring konstant K does not depend on
T and we onsider the ase l0 6= 0, ontrary to the ase usually presented in thelitterature. We will see even in suh a simple polymer model that the alulationsould be non trivial. Figure (B.1) gives a representation of the Gaussian hain.

R1

R2

R3

R4

RNFigure B.1: Modelling of the Gaussian hain.Using this model we an de�ne the energy of suh a hain, whih is in this purelyharmoni ase: 141



The Gaussian hain
U =

1

2
K

N∑

i=1

(‖Ri −Ri−1‖ − l0)
2

U =
1

2
K

N∑

i=1

(ri − l0)
2

(B.1)
We would like to alulate: 〈ri〉, 〈‖ri‖〉, 〈r2

i 〉, 〈(RN − R0)
2〉, the gyration radius R2

gand �nally 〈U〉. The same method ould be used to alulate other quantities.First of all 〈ri〉:
〈ri〉 =

∫ N∏

j=1

drj ri exp(−βK

2

N∑

j=1

(‖rj‖ − l0)
2)

∫ N∏

j=1

drj exp(−βK

2

N∑

j=1

(‖rj‖ − l0)
2)
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∫
dri ri exp(−βK

2
(‖ri‖ − l0)

2)
∫

dri exp(−βK

2
(‖ri‖ − l0)

2)

〈ri〉 = 0

(B.2)
This result is trivial beause in this model eah monomer is independent from theothers and randomly oriented.Let us now onsider 〈‖ri‖〉 :

〈‖ri‖〉 =

∫
dri ‖ri‖ exp(−βK

2
(‖ri‖ − l0)

2)
∫

dri exp(−βK

2
(‖ri‖ − l0)

2)

〈r〉 =

∫ ∞

0

dr r2 exp(−βK

2
(r − l0)

2)
∫ ∞

0

dr r exp(−βK

2
(r − l0)

2)

(B.3)
Due to the presene of l0, the alulation of the two previous integrals is not dim-mediate. Nevertheless one an easily show that:142



B.1 Theoretial preditions
Z1 =

∫ ∞

0

dr r exp(−βK

2
(r − l0)

2)
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1

βK
exp(−βK

2
l20) +

l0
2

√
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(
Erf(

1

2
l0
√
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(B.4)Where Erf is the error funtion [57℄. In the same way we have:
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)(βKl20 + 1

βK

) (B.5)Putting (B.4) and (B.5) in (B.3), we get:
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)) (B.6)In the same spirit we an alulate 〈r 2
i 〉:
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(B.7)
Using (B.4), (B.5) and usual integration methods we get:

〈
r2
〉

=
1

Z1

((2 + βKl20
(βK)2

)
exp(−βK

2
l20)+

l0
2

√
2π

βK

(
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1

2
l0
√

2βK) + 1
)(βKl20 + 3

βK

)) (B.8)We an now easily derive the mean end to end distane of the hain using the fatthat the monomers are independent from eah other: 143



The Gaussian hain
〈
(RN −R0)

2
〉

=
〈
((RN −RN−1) + (RN−1 −RN−2) + · · · + (R1 −R0))

2〉

〈
(RN −R0)

2〉 =
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i=1

〈r2
i

〉

〈
(RN −R0)

2〉 = N
〈
r2
〉

(B.9)
Therefore, we immediately have the expression of < U >:

〈U〉 =
1

2
K

N∑

i=1

〈
(rn − l0)

2〉

〈U〉 =
1

2
NK

(
l20 +

〈
r2
〉
− l0 〈r〉

)
(B.10)Before giving the expression of the gyration radius, let us notie that, if l0 ≡ 0, thenwe �nd the usual results for a harmoni system with two degrees of freedom:

〈r〉 =
1

2

√
2πkbT

K

〈
r2
〉

=
2kbT

K

〈U〉 = NkbT

(B.11)
Finally, we give the exat result of the radius gyration as well as its value in thelimit of big N:
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2N2

∑

n,m

〈
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〈
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2N2

∫ N

0

∫ N

0

|n − m|
〈
r2
〉

R2
g ≈ N

6

〈
r2
〉

(B.12)
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B.2 Monte Carlo simulationB.2 Monte Carlo simulationWe have developed a program whih models this Gaussian hain. In our simulationwe have hosen for simpliity K ≡ 1, l0 ≡ 1 and kb ≡ 1.We have used the Monte Carlo algorithm presented in hapter 4. Here we presentthe mean values obtained numerially and ompare it to the theoretial results. Onean notie that the numerial results are in total agreement with the theoretial ones.This valid a posteriori the theoretial expressions derived for suh quantities.
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