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Chapitre 1

Introduction

Le présent travail comporte deux parties. Dans la premiére partie, nous considérons
deux modéles stochastiques en milieux hétérogénes : la marche aléatoire unidimensionnelle
en milieu aléatoire et son analogue continu, la diffusion dans un potentiel aléatoire. L’étude
de certaines propriétés de ces processus fait 'objet de trois articles publiés ou soumis pour
publication, présentés dans les chapitres IT - TV.

e Chapitre II. On étudie le comportement asymptotique d’une diffusion dans un po-
tentiel asymptotiquement stable en recherchant en particulier des lois du logarithme
itéré pour différentes fonctionnelles du processus. Les résultats obtenus se transcrivent
également pour le modeéle discret de la marche aléatoire en milieu aléatoire.

e Chapitre III. On caractérise les différents régimes de transience d’une diffusion dans
un potentiel de type Lévy sans sauts positifs. On met en évidence, pour la diffusion, un
comportement analogue & celui observé, dans le cas transient, pour la marche aléatoire

en milieu aléatoire.

e Chapitre IV. On présente, dans ce court chapitre, un exemple de diffusion tran-
siente dans un potentiel stable avec dérive. Le processus a, dans ce cas, une vitesse
de déplacement d’ordre logarithmique qui contraste avec les régimes polynomiaux
habituellement observés.

La seconde partie de la thése est consacrée & un autre modéle stochastique introduit
récemment : la marche multi-excitée. L’étude de ce processus utilise des méthodes similaires
a celles employées pour les marches aléatoires en milieux aléatoires. Cette partie inclut deux
articles réalisés en collaboration avec Anne-Laure Basdevant.

e Chapitre V. On donne un critére sur I’environnement initial caractérisant la stricte
positivité de la vitesse asymptotique d’une marche multi-excitée. En particulier, une
marche 2-excitée a nécessairement une vitesse nulle tandis qu’une marche 3-excitée

peut, par contre, avoir une vitesse strictement positive.
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e Chapitre VI. On poursuit l’étude commencée dans le chapitre précédent par une
recherche des différents régimes de transience d’une marche multi-excitée lorsque la
vitesse asymptotique est nulle. Ces résultats mettent en évidence, pour la marche
multi-excitée, un comportement similaire & celui observé pour la marche aléatoire en

milieu aléatoire.

Dans le suite de cette introduction, nous présentons rapidement les différents modéles
étudiés et nous décrivons les principaux résultats des travaux exposés dans les chapitres

suivants.

1 Deux modéles en milieu aléatoire

Les modéles dits en milieu aléatoire sont communément utilisés pour représenter certains
systeémes physiques ou biologiques pour lesquels il est indispensable de tenir compte de I'hé-
térogénéité spatiale de ’environnement. En effet, la présence d’impuretés dans le milieu
peut entrainer un comportement trés différent de celui observé dans le cadre classique d’un
environnement homogéne. L’étude mathématique de tels modéles connait un essor consi-
dérable depuis une vingtaine d’années. Cet essor est dii, d’'une part, au désir de répondre
aux questions posées par les physiciens et les biologistes et, d’autre part, a la richesse des
comportements observés qui requiérent souvent pour leur analyse l’'introduction d’outils

nouveaux.

1.1 La marche aléatoire unidimensionnelle en milieu aléatoire

La marche aléatoire en milieu aléatoire (abrégée en M.A.M.A.) compte parmi les mo-
déles en environnement aléatoire les plus élémentaires. Il semble que ce modéle ait été
introduit pour la premiére fois par le biologiste Chernov [Che67] en 1967 afin d’étudier cer-
tains phénomenes de duplication de ’A.D.N. Plus récemment, Lubensky et Nelson [LN02]
font intervenir des M.A.M.A. pour étudier la micro-manipulation de brins d’A.D.N. D’un
autre coté, Temkin [Tem72] utilise ce modéle dans le cadre de la métallurgie pour étudier
la transition de phase dans divers alliages. On pourra aussi se référer & Fisher, Le Doussal
et Monthus [FLDM99, FLDMO1] pour d’autres applications des M.A.M.A. en physique.

1.1.1 Le modéle

Nous considérons ici le modéle de la M.A.M.A. en dimension 1, aux plus proches voisins,
dans un environnement indépendant et identiquement distribué (i.i.d.). Un tel processus
est défini de la maniére suivante. On se fixe un espace probabilisé (€2, .4, P) sur lequel on
consideére une famille w = (w;);ez de variables aléatoires i.i.d. a valeurs dans ]0, 1[. On dit que
w représente 1’environnement. Plus précisément, w; correspond & la probabilité de transition
du site ¢ au site ¢ + 1 tandis que 1 — w; correspond a la probabilité de sauter du site ¢ au
site ¢ — 1.
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1-wo  wo 1w w;
(‘\ r’“\v I f’“\
10 1 Sl i il

FiG. 1.1 : Probabilités de transition.

La marche aléatoire S = (S, )nen dans environnement w est un processus a valeurs
dans les entiers relatifs, issu de 0, qui pour chaque réalisation de ’environnement w est une

simple chaine de Markov dont les probabilités de transition sont données par

ws, sie=1,
P{Sn+1:Sn+€|S(),...,Sn,w}: 1—-wg, sie=-—1,
0 autrement.

Etant fixé un environnement w, la loi conditionnelle P{- | w} est appelée loi quenched
(ce terme signifiant « trempé » est emprunté au lexique de la métallurgie). La probabilité
P représente la loi du processus lorsque 'environnement est lui méme inconnu ; on appelle
loi annealed (soit loi « recuite »).

Notons que lorsque 'environnement w est déterministe (i.e. quand la loi de wp est un
dirac), S est une marche usuelle et nous exclurons implicitement ce cas dégénéré. Dans le cas
général, par contre, la M.A.M.A.| sous la loi annealed P, n’est plus une chaine de Markov
car la connaissance de la trajectoire passée fournit des informations sur la configuration de
I’environnement aux sites déja visités et permet ainsi de mieux prédire le comportement
futur de la marche. Les résultats classiques concernant la théorie des processus de Markov
n’étant pas directement accessibles, il est nécessaire de trouver des approches alternatives.

Le modeéle de M.A.M.A. présenté ici est le plus simple possible. Précisons toutefois que
d’autres modeéles plus sophistiqués sont aussi largement étudiés. Ainsi, on peut considérer
une marche dans un environnement non i.i.d. ou encore permettre & la marche de faire
des sauts de taille variable (pour des travaux sur de tels modéles, on pourra par exemple
consulter [Key84, Der99, Ali99, Bré02, Bré04, MWRZ04, Roi05]).

La M.A.M.A. unidimensionnelle est actuellement relativement bien comprise. Ce n’est
pas le cas des dimensions supérieures ou 1’étude de la marche se révéle extraordinairement
plus délicate. Cette difficulté est due, en particulier, & l'irréversibilité du modéle. Un bon
compromis entre les dimensions 1 et 2 semble étre I’étude des M.A.M.A. sur des arbres.
Quelques résultats sur de tels modéles peuvent étre trouvés dans [LP92, PP95, MP02, HS06].

En ce qui concerne les M.A.M.A. en dimensions supérieures, on ne connait méme pas
de critére permettant de caractériser la transience ou la récurrence de la marche (citons
néanmoins la condition de Kalikow [Kal81| ainsi que les conditions T' et 7" de Sznitman
[Szn04]). Toutefois, des progrés ont été réalisés récemment, concernant en particulier des lois
du 0—1 [ZMO01, RA05], des théorémes de lois des grands nombres [SZ99, Szn01, CZ04, Sab04|
ou des théoremes de type limite centrale [Szn00, CZ05].
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—100

n
3.109 4.106 5.100

100

200

potentiel V M.AMA. S
x

Fic. 1.2 : Simulation d’'une M.A.M.A. récurrente.

Les références citées ici ne représentent bien évidemment qu’une toute petite partie de
la littérature sur le sujet. Pour une description plus compléte des différents modéles de
M.A.M.A. et des résultats connus, du moins jusqu’en 2004, on pourra consulter les cours de
Sznitman [Szn04] et Zeitouni [Zei04] ainsi que le livre de Révész [Rév05].

1.1.2 Quelques résultats importants

L’outil fondamental associé & la M.A.M.A. unidimensionnelle est son potentiel V =
(Vi)nez que on définit de la maniére suivante :

o log <1;—:"2> sin>1.
vV, &< 0 sin=0. (1.1)
- Z?:nﬂ log (t‘;”) sin< —1.

Il s’agit donc d’une marche simple (indexée sur Z) qui caractérise ’environnement. D’une
certaine maniére, ce processus joue le role d’une énergie en physique. La M.A.M.A. tend a se
déplacer vers les zones d’énergie les plus faibles : 14 ou le potentiel est petit. En particulier,
lorsque le potentiel présente des « puits », la marche a tendance & y rester piégée un temps
trés long. Ce phénoméne appelé localisation est bien visible sur la figure 1.2.

Le potentiel étant une marche aléatoire simple, soit il oscille, soit il dérive (vers 400
ou vers —o0). En 1975, Solomon [Sol75] montre que la nature du potentiel détermine le
caractére récurrent ou transient de la M.A.M.A. :

e si V oscille, alors S est récurrente ;

e si V dérive vers +oo (resp. —o0), alors S est transiente vers —oo (resp. +00).
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1—wg

En particulier, lorsque E[log(=;2)] est bien définie, la position de cette quantité par rapport

a4 zéro détermine la récurrence ou la transience de la marche.

Solomon montre, de plus, que la vitesse asymptotique de la M.A.M.A. est bien définie
mais peut étre nulle, méme lorsque S est transiente. Ce résultat indique un déplacement plus
lent que pour la marche usuelle. Ce comportement original, conséquence de la localisation de
la marche au fond de certaines vallées du potentiel, est précisé par Sinai [Sin82] en 1982. I
montre que dans le cas récurrent et lorsque I’environnement vérifie une propriété d’ellipticité,
en posant 02 = Var[Vy],

2 Sh loi

5— — boo (loi non dégénérée). (1.2)
log“n n—oo

g

L’expression explicite de la loi b a ensuite été déterminée indépendamment par Kesten
[Kes86] et Golosov [Gol86], ce dernier précisant également le phénomeéne de localisation
dans [Gol84].

L’hypothése d’ellipticité faite sur I’environnement par Sinai revient & supposer que le
potentiel se comporte approximativement comme un mouvement brownien. Pour des poten-
tiels plus irréguliers, la marche se réveéle encore plus lente : dans le cas d’un potentiel qui
se comporte asymptotiquement comme un processus stable d’indice «, Kawazu, Tamura et
Tanaka [KTT89, KTT92] montrent que le déplacement de la marche est d’ordre log* n.

En ce qui concerne le comportement de la marche dans le cas transient, Kesten, Kozlov
et Spitzer [KKS75] ont déterminé en 1975 tous les régimes possibles de croissance en fonction
de la valeur &, unique solution de I'équation E[e*V1] = 1. En particulier, quand & €]0, 1], ils
montrent (sous certaines hypothéses techniques supplémentaires),

S oi . . . .
—: L L. (loi de Mittag-Lefler d’indice x).
nk n—oo

Notons qu’une preuve différente de ce résultat, donnant une expression plus précise des
parameétres de la loi limite, a récemment été établie par Enriquez, Sabot et Zindy [ESZ07].

Il faut ajouter, enfin, que beaucoup d’autres propriétés de la M.A.M.A. on été étu-
diées, telles que des questions concernant les grandes déviations (voir par exemple [GDH94,
CGZ00, Dev06b]) ou encore des problémes reliés au temps local et aux sites favoris c.f.
[Rev88, HS98b, GS02, HS00, SZ06].

1.2 Un analogue continu : la diffusion en potentiel aléatoire

Nous introduisons ici un modeéle en temps continu étroitement relié a la M.A.M.A. : la
diffusion en potentiel aléatoire. Pour cela, on considére un potentiel aléatoire V = (V;),cr
désormais indexé par R, avec Vy = 0. On appelle diffusion dans le potentiel V une solution
formelle X = (X¢)¢ > 0 de I'équation différentielle stochastique :

dX; = dp; — 3V dt,
XO = Oa
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ou [ est un mouvement brownien indépendant de V. Lorsque le potentiel n’est pas dérivable,
cette équation n’a pas de sens et, plus rigoureusement, on considérera X comme une diffusion
dont le générateur infinitésimal, conditionnellement & V, est donné par

1y d [y d
2¢ daz(e d:v)‘

Une telle diffusion (sous des hypothéses minimales de régularité du potentiel) peut étre
explicitement construite, par changement de temps et changement d’échelle, a partir d’un

mouvement brownien.

L’un des intéréts du modéle est de permettre, pour un bon choix du potentiel, un cou-
plage avec une M.A.M.A. En effet, supposons que le potentiel V de la diffusion soit une
marche aléatoire de la forme décrite par (1.1), prolongé par V, = V,, pour = € [n,n + 1].
On définit la suite de temps d’arrét :

def
T = 07
{ Topl = inf{t > 7, | Xy — X, | =1}

D’aprés Schumacher [Sch85], le processus (X1, )n > 0 est une M.A.M.A. de potentiel V. Grace
a ce couplage, Hu et Shi [HS98a, HS98b, HS00| ont obtenu, en utilisant des outils issus du
calcul stochastique et via I’é¢tude de la diffusion associée, des résultats précis concernant
la M.A.M.A. lorsque son potentiel se comporte asymptotiquement comme un mouvement
brownien. Dans le second chapitre de cette thése, nous utilisons une méthode similaire afin
d’étendre les résultats décrits dans [HS98a| & des potentiels plus généraux.

Lorsque le potentiel associé & la diffusion n’est pas une marche aléatoire, il n’existe plus
de couplage évident avec une M.A.M.A. Cependant, le comportement de la diffusion reste,
dans un certain nombre de cas, similaire & celui de la M.A.M.A. Ainsi, quand le potentiel
V est un mouvement brownien, la diffusion est récurrente et Brox [Bro86] a établi en 1986

un résultat analogue au théoréme de Sinai :

log?t t—o0 >

De maniére remarquable, la loi limite est la méme que pour la M.A.M.A. (c.f. (1.2)). Comme
pour le modéle discret, ce déplacement trés lent est la conséquence d’une localisation de la
diffusion dans certains puits du potentiel, phénomeéne mis en évidence par Kawazu, Tamura
et Tanaka [KTT92] et Hu [Hu00].

On peut aussi construire des diffusions transientes. L’un des procédés les plus naturels

consiste a choisir un potentiel brownien auquel on ajoute une dérive :
K
V=B — Et (B mouvement brownien et x > 0). (1.3)

Dans ce cas, la diffusion est transiente vers oo et peut, de méme que la M.A.M.A., avoir
une vitesse asymptotique nulle selon la valeur de k. En 1997, Kawazu et Tanaka [KT97] ont
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o 2.10% 4.10% 6.10% 8.10% 10° "

potentiel V, diffusion X;

200

400

600

T

N[ =

F1G. 1.3 : Simulation d’une diffusion dans un potentiel de la forme (1.3) avec k =

décrit les différents régimes de transience d’une telle diffusion. Leur résultat est analogue &
celui obtenu par Kesten, Kozlov et Spitzer [KKS75] pour le modéle discret (mais en mettant
en ceuvre des techniques trés différentes). Ils montrent que, selon la valeur de « :

e si k < 1 alors % converge en loi vers une distribution de Mittag-Leffler d’indice & ;

. 1 1oy 2
e si k=1, alors %tXt converge en probabilité vers % ;
k—1

e si k> 1, alors % converge presque slirement vers .

Ce résultat a été par la suite affiné par Tanaka |Tan97| et Hu, Shi et Yor |[HSY99| qui
distinguent plusieurs régimes dans le cas linéaire (k > 1) et obtiennent, en particulier, des
théorémes de limite centrale.

Comme pour le modéle discret de la M.A.M.A ., les diffusions dans des potentiels de type
brownien sont relativement bien comprises et des résultats fins ont été obtenus. On pourra
par exemple se référer & : |Tal0l, Dev06b| pour des théorémes liés aux grandes déviations,
[HS98b, Dev06a] pour des résultats concernant le temps local, [HS00, Che06a| pour des
questions en rapport avec les sites favoris.

Bien que la plupart des travaux portent sur des potentiels de type brownien, il peut
étre intéressant d’étudier des diffusions dans des potentiels plus généraux. Dans cet esprit,
Carmona [Car97| considére une diffusion dans un potentiel Lévy et obtient un théoréme
de loi des grands nombres. Il conjecture également que lorsque ’exposant de Laplace du
potentiel satisfait une condition de Cramer, on doit retrouver, pour la diffusion, des régimes
de transience similaires & ceux observés quand le potentiel est un brownien avec dérive. Dans
le chapitre 3, nous apportons une réponse positive lorsque le potentiel est un processus de
Lévy spectralement négatif.

Finalement, mentionnons qu’a l'instar du modéle discret de la M.A.M.A_ il est aussi
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possible de considérer des diffusions dans des potentiels aléatoires en dimensions supérieures
a 1. Nous pensons, par exemple, aux travaux de Mathieu [Mat94, Mat95]).

2 Présentation des résultats en milieu aléatoire

2.1 Chapitre II. Comportement asymptotique d’une diffusion dans un
potentiel asymptotiquement stable!

Hu et Shi [HS98a] ont déterminé en 1998 toutes les classes de Lévy d’une diffusion (ainsi
que celles de la M.A.M.A.) lorsque le potentiel se comporte approximativement comme un
mouvement brownien. Dans ce chapitre, nous cherchons a généraliser ces résultats a des

environnements possiblement plus irréguliers. Nous faisons sur V les hypothéses

(a) Le processus (Vy,),ez est une marche aléatoire et V est constant sur les intervalles
In,n+1[, n € Z.
(b) Il existe une fonction a : Ry — Ry (que 'on choisit continue et croissante) telle que

Yo 1, g
a(x) z—oo

ou S est une variable stable d’indice « €]0, 2] dont le support est R en entier.

Ces hypothéses sont similaires & celles de Kawazu, Tamura et Tanaka [KTT92| qui ont
montré, dans ce cas, que la diffusion X est récurrente et que X;/a"'(logt) converge vers
une limite non dégénérée (on note a~' l'inverse de a).

Le premier résultat de ce chapitre établit une loi du logarithme itéré décrivant le com-
portement en limite supérieure de la diffusion.

Théoréme 2.1

1l existe une constante C' > 0, qui ne dépend que de la loi de S, telle que

X
lim sup ! = (C  presque stirement.

t—oo @ (logt)logloglogt

En outre, nous déterminons la valeur exacte de la constante C lorsque S est compléte-
ment asymétrique (c.f. Chap. II, Théoréme 1.2). En particulier, nous retrouvons dans le cas
brownien la valeur C = 8/72 obtenue dans [HS98a.

Le théoréme précédent reste inchangé si 'on remplace X; par supg <, Xs. Par symétrie,
on obtient un résultat similaire pour infs < ¢ X et on déduit ainsi du théoréme le compor-
tement asymptotique en limite supérieure de supg <, | Xs|.

Introduisons maintenant le temps d’échelle T & inf(n > 0,V,, < 0). Un théoréme
de Rogozin [Rog71] affirme que, sous nos hypotheses, T" est dans le domaine d’attraction

'A. Singh, Limiting behavior of a diffusion in an asymptotically stable environment, Ann. Inst. H. Poinc.
Probab. Statist., 43(1), 101-138, 2007.
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d’une loi stable positive d’indice ¢ & P{S < 0}. Ainsi la fonction b(z) & P{T > z} varie
réguliérement d’indice q.

Le comportement en limite inférieure du supremun unilatéral est donné par :

Théoréme 2.2

Pour toute fonction positive et croissante f, on a, presque siirement,

iminf — 0 qup X, — { 20 — /°° b(a"'(logt)/f(t))dt { = 0

t—oo a~t(logt) s <+ b(a=*(log))tlogt < 0

(on ne précise pas la borne inférieure de lintégrale car seule la convergence en 00
importe). En particulier,

(loglog t)? X = 0 siff<l/g,
t—co a-l(logt) s<¢t = | oo sif>1/q.

En ce qui concerne le supremum bilatéral, le probléme est plus complexe : il semble que
plusieurs comportements soient possibles, selon les différents modes de décroissance des
queues de distribution P{V; > z} et P{V; < —z}. Cependant, lorsque la loi de S n’est pas
complétement asymétrique, ces queues de distribution varient, toutes deux, réguliérement

d’indice « et nous obtenons un critére trés simple.

Théoréme 2.3

Lorsque la variable limite S n’est pas complétement asymétrique, pour toute fonction

positive et croissante f, on a, presque sirement,

(0 U / R -
1 f—27 X = T 2100 +
s a~'(logt) ssipt| | 00 tf(t)*logt | < oo.

En particulier,

(loglog t)? X, = 0 sif<1/2,
) s<t | oo sifi>1/2

Remarquons que ce résultat est trés différent de celui obtenu par Hu et Shi dans le cadre
brownien (c.f. Théoréeme 1.7, [HS98al).

Les preuves de ces théorémes reposent, comme dans [HS98a|, sur I'utilisation conjointe
de la méthode de Laplace et des théorémes de Ray-Knight qui permettent de ramener
I’étude de la diffusion & I’étude de certaines fonctionnelles du potentiel. La difficulté majeure
dans notre cas consiste & étudier finement les fluctuations d’une marche aléatoire dans le
domaine d’attraction d’une loi stable. En particulier, plusieurs résultats précis concernant
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les fluctuations d’une telle marche sont obtenus dans la seconde section de ce chapitre et
peuvent présenter un intérét propre.

Notons également que tous les résultats de l'article restent valides lorsque le potentiel de
la diffusion est un processus strictement stable d’indice @ €]0, 2], en choisissant maintenant
a(x) = 2V et b(z) = 27

Bien que nous nous intéressions principalement au comportement asymptotique presque
sar de la diffusion, la méthode employée permet également d’établir la convergence en loi de
sup, < ; Xs/a"*(logt) vers une variable non dégénérée (c.f. Chap. II, Théoréme 1.5). Nous
calculons de plus la loi de cette variable lorsque S est asymétrique, ce qui compléte un
résultat de Cheliotis [Che06b] qui, lorsque le potentiel est un processus stable asymétrique,
a déterminé la distribution limite de X;/log® t.

L’hypotheése (a) a pour objet principal de permettre le couplage de la diffusion avec une
M.A.M.A. et, donc, de transcrire facilement pour le modeéle discret les résultats obtenus
pour la diffusion. Par exemple, si S est une M.A.M.A. dont le potentiel vérifie la condition
(b), pour toute suite (¢,,) croissante et positive, on obtient 1’équivalence

c 0 1 = 00
e a~'(logn) sup |3l { 00 Z c2nlogn{ < 0.

n>2 "

Les autres théoréemes s’adaptent de maniére similaire.

2.2 Chapitre ITI. Régimes de transience d’une diffusion dans un potentiel
Lévy sans sauts positifs 2

Nous nous intéressons a la vitesse de transience d’une diffusion dans un potentiel de type
Lévy. Cette étude, quand le potentiel est un mouvement brownien avec dérive de la forme

Vx:]Bx—gx (k> 0), (2.1)

a été réalisée par Kawazu et Tanaka [KT97| puis précisée par Tanaka [Tan97| et Hu, Shi et
Yor [HSY99|. On distingue alors cing régimes selon la valeur de & :

K <1, k=1, 1<k <2, K =2, K> 2.

En particulier, la diffusion admet une vitesse asymptotique non nulle pour x > 1 et vérifie
un théoréme de type limite centrale pour £ > 2.

Plus généralement, lorsque le potentiel V est un processus de Lévy, nous introduisons
son exposant de Laplace ® défini par

E[e\Ve] = ¢*®*™  pour 2, A > 0.

2A. Singh, Rates of convergence of a transient diffusion in a spectrally negative Lévy potential, a paraitre
dans Ann. Probab.
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Fi1G. 1.4 : L’exposant de Laplace ®.

Dans le cas du potentiel décrit par (2.1), on obtient ®(\) = A(A — k)/2. En particulier,

est I'unique racine positive de ® ou, de maniére équivalente, I'unique solution de ’équation
E[e""1] = 1. (2.2)

On retrouve ainsi la condition (dite de Cramer) introduite par Kesten, Kozlov et Spitzer
[KKS75] qui caractérise les régimes de transience d'une M.A.M.A. Or, les résultats concer-
nant le modéle discret de la M.A.M.A. sont valides pour des potentiels trés généraux, il
parait donc intéressant de voir si la condition (2.2) caractérise aussi les différents régimes
de transience de la diffusion pour des potentiels plus généraux.

Dans cet esprit, Carmona [Car97| prouve une loi des grands nombres quand le potentiel
est un processus Lévy. Il conjecture, de plus, que si le potentiel vérifie la condition (2.2), on
doit effectivement observer des régimes de transience similaires & ceux de la M.A.M.A.

Dans ce chapitre, nous apportons lorsque le potentiel est spectralement négatif une
réponse positive & cette conjecture. Plus précisement, nous faisons les hypothéses suivantes :

(a) Le potentiel (V;)z >0 est un processus de Lévy, sans saut positif, qui n’est pas
I'opposé d’un subordinateur, et qui dérive vers —oo.
(b) La diffusion X est transiente vers +oc.

Sous T’hypothese (a), 'exposant de Laplace ® du potentiel V est bien défini. C’est une
fonction continue, convexe (c.f. figure 1.4) et il existe, de plus, un unique réel £ > 0 solution
de lequation (2.2).

Le résultat principal de cet article caractérise les taux de convergence des temps d’at-
teinte de la diffusion.

Théoréme 2.4

On définit, pour r = 0,

def .

H(r)=inf{t >0, X; =r}.

Lorsque k > 1, on pose également m & 30 On a selon la valeur de k :
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e Si0< k<1,
1 oi
H(r) =% 8.

rl/'f —00

ot Sy est une loi stable positive d’indice k.
e Si k =1, il existe une fonction f vérifiant f(r) ~ @,L(l)rlogr telle que
loi
(H(r) = f(r)) — C.
T—00
otl C est une loi de Cauchy complétement asymétrique.

e Sil< k<2,
L i) = mr) 2 s,

7’1/5 r—00
ot Sy est une loi stable complétement asymétrique d’indice k.

e Sik=2,

1 loi _4
——— (H(r)—mr) — | ———— | N
\/rlogr( (r) )r—>oo ((I)(l) @’(2))
ot N est une loi gaussienne, centrée et réduite.

e Sik>2

i [8(®(2) —49(1))
(H(r) — mr) ?02\/ D(1)30(2) N

<~

Nous retrouvons en particulier, lorsque le potentiel est de la forme (2.1), les résultats de
Hu, Shi et Yor [HSY99], & 'exception du cas k = 1 qui est un peu moins précis.
Notons que ces estimations des temps d’atteinte se transcrivent directement sur la dif-
fusion. Par exemple, pour 0 < k < 1, on obtient
Xt o . . b 1s
— — L, (loi de Mittag-Leffler d’indice k).

th t—oo

Dans le cas d’'un potentiel brownien avec dérive, Kawazu et Tanaka étudient les temps
d’atteinte de la diffusion a ’aide du lemme de Kotani et de la théorie spectrale de Krein.
Hu, Shi et Yor, quant a eux, utilisent la transformation de Lamperti et exploitent certaines
propriétés fines des processus de Jacobi. Ces deux approches se fondent sur des résultats
spécifiques au mouvement brownien et ne semblent pas adaptées aux cas de potentiels plus
généraux.

Notre méthode est, en un sens, plus proche de celle employée par Kesten, Kozlov et
Spitzer dans le cadre des M.A.M.A. Nous ramenons I’étude des temps d’atteinte de la
diffusion a I’étude des excursions d’un processus Ornstein-Uhlenbeck généralisé qui, sous
I’hypotheése (a), est un processus de Markov « sympathique » pour lequel on peut définir
un temps local et une mesure d’excursion. Le résultat clef dans la preuve du théoréme est

une estimation précise de 'aire d’une excursion générique de ce processus.
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2.3 Chapitre IV. Une diffusion transiente trés lente 3

L’objectif de ce court chapitre est de fournir un exemple de diffusion X dans un potentiel
aléatoire V dont le régime de transience est trés différent de celui observé lorsque le potentiel
est un mouvement brownien avec dérive (ou plus généralement un processus de Lévy sans

saut positif). Nous considérons ici un potentiel de la forme :
Ve =S, — dx

ou S est un processus stable d’indice « €]1,2[ et § > 0. La mesure de Lévy II du processus
stable est donnée par

(dz) = (" 1m0y + ¢ 1gz<oy) |xc|l:+1 avec ct,c” > 0et ¢t +c¢ > 0.
En particulier, S posséde des sauts positifs (resp. négatifs) si et seulement si ¢t > 0 (resp.
¢~ > 0). Lorsque ¢™ = 0, la vitesse de transience de la diffusion dans le potentiel V a été
caractérisée dans la section précédente. Nous supposons maintenant ¢t > 0. Dans ce cas,
V n’admet pas de moments exponentiels et la condition de Cramer (2.2) n’est plus vérifiée.
Le comportement asymptotique de la diffusion est alors original :

Théoréme 2.5

La diffusion X est transiente vers +oco et

Xy loi et
Ot ol e ()
log®t t—oo ol

oti £(cT /a)) est une loi exponentielle de paramétre ¢t /a. Ce résultat demeure valable si

I’on remplace Xy par sup, <t X, ou infg > ¢ X,

Notons que la valeur de 4 > 0 n’influe ni sur le régime de transience, ni sur la loi limite.
De plus, lorsque § = 0, la diffusion est récurrente et X;/log® ¢ converge vers une loi non
dégénéreée (c.f. [Sch85]). Nous avons donc ici un exemple de diffusion transiente qui se déplace
aussi lentement que dans le cas récurrent. La preuve de ce théoréme utilise, d’ailleurs, des
méthodes employées traditionellement pour I’étude de la diffusion dans le cas récurrent.
Ce résultat admet une heuristique simple : si I’'on voit le potentiel comme une « éner-
gie », le temps nécessaire & la diffusion pour toucher un niveau r > 0 est, & peu preés,
exponentiellement proportionnel & la plus grande « barriéere » de V sur Uintervalle [0, 7].
Pour un mouvement brownien, ’adjonction d’une dérive diminue fortement la hauteur de
ces barriéres. Par contre, pour un processus stable avec sauts, la plus grande barriére sur
I'intervalle [0,7] est du méme ordre de grandeur que son plus grand saut positif sur cet in-

tervalle. Comme ’ajout d’une dérive ne modifie en rien les sauts du processus, les barriéres

®A. Singh, A slow transient diffusion in a drifted stable potential, J. Theoret. Probab., 20(2), 153-166,
2007.
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du potentiel V sont comparables & celles observées pour un potentiel stable sans dérive, ce
qui explique le déplacement trés lent de la diffusion.

3 La marche multi-excitée

Dans la seconde partie de cette thése, nous nous intéressons au modéle stochastique de

la marche excitée et de sa généralisation : la marche multi-excitée.

3.1 Présentation du modéle et de quelques résultats

La marche excitée, introduite en 2003 par Benjamini et Wilson [BW03] peut étre consi-
dérée comme un analogue en temps discret des modéles de mouvements browniens perturbés
aux extrema (c.f. [PW97, Dav99|). Il s’agit d’une marche X = (X,), >0 aux plus proches
voisins sur Z¢ qui posséde, lors de son premier passage en un site, un biais dans une direction
spécifique, mais qui se comporte, lors de son retour en un site déja visité, comme une simple

marche symétrique.

Benjamini et Wilson [BW03] ont montré que la marche excitée est récurrente en dimen-
sion d = 1, mais devient transiente, dans la direction imposée par le biais, dés que d > 2. 11
ont de plus établi que, pour d > 4, le régime de transience de la marche est linéaire :

n- €

lim inf
n— oo n

>0 presque sirement, (3.1)

ol e représente un vecteur indiquant la direction du biais. Plus récemment, Kozma a montré
que (3.1) reste valide en dimensions 2 et 3 [Koz05, Koz03].

Dans le cas unidimensionnel, le biais fourni lors de la premiére visite d’un site ne suffit
pas & rendre la marche transiente. Il parait donc intéressant d’autoriser plusieurs degrés
d’excitation. Dans cet esprit, Zerner [Zer05] introduit, d’abord dans le cas de la dimension 1
[Zer05], puis pour les dimensions supérieures |Zer06], un modeéle appelé marche multi-excitée

ou, de maniére plus imagée, « cookie random walk ».

Le modeéle décrit dans [Zer05] est trés général, il permet en particulier & « I’environnement
de cookies » d’étre lui méme aléatoire. Toutefois, nous ne considérons, dans ce travail, que le

cadre d’un environnement initial déterministe. Le modéle est le suivant. On choisit M € N*

1 M

- 1[ .

2

L’entier M représente le nombre de cookies par site et p décrit ’environnement de cookies.

ainsi qu’un vecteur

D= (plap27"'7pM) S |:

Plus précisément, p; correspond a la force du i-éme cookie placé initialement en chaque
site de Z. On définit alors la marche p-excitée X = (Xy,), >0 comme une marche aux plus
proches voisins sur Z, issue de 0, qui « mange » les cookies qu’elle rencontre sur son chemin

en se déplacant de la maniére suivante :
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—100
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Fi1G. 1.5 : Simulation d’une marche multi-excitée avec M = 2 et p; = p2 = 0.7.

e si X,, = z et s’il ne reste plus aucun cookie au site x, alors X se déplace, au temps

n + 1 vers les sites  + 1 ou « — 1 avec une égale probabilité % ;

e si X,, = x et s’il reste, au site x, les cookies de forces pj,pji+1,...,pum, alors la marche
« mange » le premier cookie disponible (i.e. celui de force p;) puis se déplace vers
x + 1 avec probabilité p; ou vers x — 1 avec probabilité 1 — p;.

Rigoureusement, la marche p-excitée est un processus, issu de zéro, dont les probabilités de

transition vérifient :
P{Xnt1=X,£1|Xo,...,Xn} = 1,

P{X, 11 =X, +1|Xo,..., X} 11)] "7 #{ i n}
5 sinon.

Il ne s’agit donc pas, sauf cas dégénérés, d’'un processus de Markov puisque le déplacement
de la marche dépend, non seulement de sa position actuelle, mais également du nombre de
visites précédentes a ce site.

Dans le cas d'un unique cookie par site (M = 1), on retrouve le modeéle de la marche
excitée unidimensionnelle décrit par Benjamini et Wilson [BWO03]. Cependant, en autorisant
plusieurs degrés d’excitation (i.e. plusieurs cookies par site), on enrichit considérablement
le modeéle. Ainsi, la marche multi-excitée peut étre récurrente ou transiente selon le choix p.
Plus précisément, Zerner [Zer05] a montré, pour le modéle présenté ici, que si I'on définit

M

a(P) =y 2pi—1) -1, (3.2)

i=1

alors, selon la valeur de cette quantité :
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e si a(p) <0, la marche p-excitée est récurrente ;
e si a(p) > 0, la marche p-excitée est transiente vers +o0.

Lorsque p varie, a(p) décrit 'intervalle [—1, M — 1[. On retrouve donc que la marche excitée
est récurrente, mais, par contre, la marche multi-excitée peut étre transiente & partir de
deux cookies par site. Zerner a de plus établi que la vitesse asymptotique de la marche est
bien définie : il existe une constante v = v(p) = 0 telle que

. n A
lim — =wv presque siirement.
n—oo n

Toutefois, la vitesse limite v peut, comme dans le cas des M.A.M.A., étre nulle méme lorsque
la marche est transiente. Zerner [Zer05] montre d’ailleurs que la vitesse est forcément nulle
lorsque M = 2. D’un autre coté, Mountford, Pimentel et Valle [MPV06] ont établi que la
vitesse de la marche peut, dans certains cas, étre strictement positive. Notre travail porte

sur les deux questions suivantes :

(1) Pour quels environnements p la vitesse asymptotique de la marche est-elle stricte-

ment positive 7

(2) Dans le cas d’une marche transiente de vitesse asymptotique nulle, quel est le régime
de transience ?

3.2 Chapitre V. Vitesse d’une marche multi-excitée *

Dans [MPV06], Mountford, Pimentel et Valle considérent une marche p-excitée dans le
cas ol tous les cookies ont la méme force i.e. py =po=...=pyy=p€ [%, 1[. Tls montrent
que :

e si M(2p—1) < 2, alors la vitesse limite de la marche est nulle;

e pour tout p E]%, 1], la vitesse limite de la marche devient strictement positive dés que
le nombre initial M de cookies est suffisamment grand.

De plus, ils conjecturent que, lorsque M (2p — 1) > 2, la vitesse de la marche doit étre
strictement positive. Notons que dans le cas considéré par Mountford, Pimentel et Valle,
ona M(2p—1) = a(p) + 1. Dans ce chapitre, nous montrons que la position de «(p) par
rapport & 1 détermine la stricte positivité de la vitesse.

Théoréme 3.1

Soit X une marche p-excitée. On note v(p) sa vitesse asymptotique. On a ’équivalence

v(p) >0 <<= «a(p) >1

ou «(p) est défini par (3.2).

*A.-L. Basdevant et A. Singh, On the speed of a cookie random walk, article soumis
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Fi1G. 1.6 : Simulation de la vitesse d’'une marche (p, p, p)-excitée.

Ce théoréme montre qu’une vitesse limite non nulle peut étre obtenue avec seulement trois
cookies par site. De plus, le critére de Zerner |Zer05] affirme que la marche est transiente si
et seulement si a(p) > 0. On constate donc une seconde « transition de phase » aux points
critiques «a(p) = 1.

Il semble délicat d’obtenir une expression explicite de la vitesse. Nous montrons toutefois
que la vitesse est une fonction continue de p et admet une « dérivée a droite » en tout point

critique.

Théoréme 3.2

- def . . .
Soit Qpy = [%, 1[M, I’ensemble des environnements avec au plus M cookies par site.

(a) Pour chaque M > 1, la vitesse v(p) de la marche p-excitée est une fonction

continue de p dans ;.

(b) Pour tout environnement (critique) p. € Qs tel que a(p.) = 1, il existe une
constante C(p.) > 0 telle que

. v(p _
lim (_()ml = C(pe).
p—pe a(p) —
PEQM P
a(p)>1
Lorsque M = 3 et p1 = ps = p3 = p, la marche p-excitée est récurrente si p € [%,%],

transiente mais de vitesse nulle si p E]%, %], et admet une vitesse strictement positive si

6]%, 1[. Une simulation de la courbe de vitesse pour cette marche, illustrant le théoréme

précédent, est proposée sur la figure 1.6.

Afin d’établir ces théorémes, nous introduisons un processus auxiliaire Z étroitement relié
aux temps d’atteinte de la marche multi-excitée. La construction de ce processus s’inspire
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de la counstruction classique du processus de Galton-Watson critique associé a une marche
symétrique simple. Dans notre cas, le processus Z obtenu est un processus de branchement
avec migration aléatoire. Il s’agit, lorsque la marche est transiente, d’'une chaine de Markov
récurrente positive. L’étude de sa distribution invariante, en particulier I’existence ou non
d’un premier moment pour cette loi, permet d’établir le Théoréme 3.1.

La preuve du théoréme 3.2 repose, quant & elle, d’une part sur une expression implicite
de la vitesse obtenue lors de 1’étude de la loi invariante du processus Z, et d’autre part, sur
un résultat de Zerner [Zer05| concernant la monotonie des temps d’atteinte de la marche vis

A vis de ’environnement initial.

3.3 Chapitre VI. Régime de transience d’une marche multi-excitée’

Nous étudions, dans le dernier chapitre de cette thése, le comportement asymptotique
d’une marche multi-excitée X, transiente et de vitesse limite nulle. Des simulations numé-
riques effectuées par Antal et Redner [AR05] indiquent que X, est alors d’ordre n” pour un
certain exposant v €]0,1[.

a(p)+1

Nous montrons que v = =5, oil a(p) est le parametre défini par (3.2). Notre résultat
principal décrit les différents régimes de transience de la marche.

Théoréme 3.3
Soit X une marche p-excitée. On suppose que X est transiente et de vitesse limite nulle
(i.e. 0 < a(p) < 1). On pose

def a(p) +1
v= 5
alors
o sia(p) <1,
Xn i p

nY n—oo

ou L, est une loi de Mittag-Leffler d’indice v ;

e si a(p) = 1, il existe une constante C(p) > 0 telle que

By, ()

n n—00

Ces résultats demeurent inchangés si I’on remplace X,, par sup; <n X; ou inf; > , X;.

Remarquons que les régimes de transience de la marche multi-excitée sont analogues &
ceux de la M.A.M.A. La preuve du théoréme utilise d’ailleurs une approche similaire & celle
employée par Kesten, Kozlov et Spitzer [KKS75| lors de 1’étude des régimes de transience
de la M.A.M.A. Comme dans le chapitre précédent, on raméne I’étude de la marche multi-
excitée & ’étude d’un processus de branchement avec migration Z. Le résultat clef est alors

SA.-L. Basdevant et A. Singh, Rate of growth of a transient cookie random walk, article soumis.
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une estimation précise de la queue de distribution de la population totale du processus lors

- Clx” siv<l
r z o ’ 3.3
{,;) k>x} Hx»{ C(nz)/z siv=1. (3.3)

ou o est le premier temps de retour en 0 pour Z. Dans le cadre de la M.A.M.A., Kesten,

d’une excursion :

Kozlov et Spitzer montrent un résultat similaire a (3.3) mais Z est, dans leur cas, un pro-
cessus de branchement en environnement aléatoire. Toutefois, la technique employée dans
ce chapitre pour obtenir (3.3) est trés différente de celle utilisée dans [KKS75].

Notre méthode se base principalement sur un argument de martingale et ne repose
pas (comme c’est habituellement le cas pour l’étude des processus de branchement avec
migration) sur I’étude de fonctions génératrices. Notons enfin que, bien que nous n’étudions
que le processus Z associé a la marche multi-excitée, I’approche utilisée peut permettre
d’étudier, plus généralement, la population totale d’une classe assez large de processus de

branchement avec migration aléatoire.
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Chapter 11

Limiting behavior of a diffusion in an
asymptotically stable environment!

Abstract. We study the almost sure asymptotics of a diffusion in an asymptotically stable
potential. The results also translate for the corresponding one-dimensional random walk in

random environment.

1 Introduction

Let (V,, x € R) be a cadlag, real-valued locally bounded stochastic process on some
probability space (£2,P) with Vo = 0 almost surely. Let also (X¢, ¢ > 0) denote the coor-
dinate process on the space of continuous functions C([0,00)) equipped with the topology
of uniform convergence on compact sets and the associated o-field. For each realization of
V, let Py be a probability on C'([0,00)) such that X is a diffusion process with Xy = 0 and

generator
1y d _y, d
2 dx (6 da:) '

It is well known, see for instance [IM65], that such a diffusion may be constructed from
a standard Brownian motion by a change of scale and a change of time. We consider the
annealed probability P on 2 = Qx ([0, o)) defined as the semi-direct product P = Px Py.
The process X under P is called a diffusion in the random potential V. This process was first
studied by Schumacher [Sch85] and Brox [Bro86] who proved that, when V is a Brownian
motion, the diffusion is recurrent and X;/log®t converges in law as t goes to infinity to
some non-degenerate distribution. Extension of this result when V is a stable process may
be found in [Che06b, KTT92, Sch85|]. In this paper, we consider the case where V is a

!This chapter is a slightly modified version of the article: A. Singh, Limiting behavior of a diffusion in
an asymptotically stable environment, Ann. Inst. H. Poinc. Probab. Statist., 43(1), 101-138, 2007.



28 Chapter II : Limiting behavior of a diffusion in an asymptotically stable environment

two-sided random walk. More precisely, (V,, x € R) satisfies:

V is identically 0 on (—1,1),

V is flat on (n,n + 1) for all n € Z,

V is right continuous on [0, 00) and left continuous on (—o0, 0],
(Vps1 =V, n € Z) is a sequence of i.i.d. random variables.

The reason for chosing a potential flat on integer intervals is that the diffusion is, in this
case, "close" to a random walk in random environment and the results obtained for the
diffusion X will also translate for the discrete time model.

Our aim is to describe the almost sure asymptotics of Xy, supg <, Xs and supg <, | Xs|-
This has been done by Hu and Shi [HS98a| when the process V behaves roughly like a
Brownian motion. Here, we consider the more general setting where a typical step of the
random walk is in the domain of attraction of a strictly stable law. Precisely, we make the
following assumption which is similar to that of Kawazu, Tamura and Tanaka [KTT92].

Assumption 1.1

There exists a positive sequence (an, n > 0) such that

Vi
n aw S
Q, N—00

where S is a random variable whose law is strictly stable with index « € (0, 2] and whose

density is everywhere positive on R.

This assumption implies, of course, that V_, /a, converges in law toward —S. It is also
well known that the norming sequence (a,) is regularly varying with index 1/« and we
can without loss of generality assume that (a,) is strictly increasing with a; = 1. We now
denote by a(-) a continuous, strictly increasing interpolation of (a,) and a~!(-) stands for
its inverse. It is to be noted that a(-) and a~!(-) are respectively regularly varying with
index 1/a and a. Let p denote the positivity parameter of S and ¢ its negativity parameter,

PEP{S>0}=1-P{S<0}Z1—gq

The assumption that S has a positive density in the whole of R implies that p,q € (0,1).
More precisely, for @ > 1, we have 1 — 1/a < p,q < 1/a (see section 2.6 of [Zol86] or p218
of [Ber96al) and in any case:

0<ap,ag < 1.

Note also that the Fourier transform of S has the form
E|:€MS] _ ef'y|/\‘a 1—iﬁ tan(ﬂa(pf%)) (1‘1)

where v is some strictly positive constant. Let us now extend S into a two-sided strictly
stable process (S;, € R) such that S; has the same law as S. By two-sided, we mean that
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the processes (S¢, t > 0) and (—S_¢, t > 0) are independent, are both cadlag, and have the
same law. Notice in particular that, when o = 1, S is a symmetric Cauchy process with
drift, whereas for a = 2 we have p = 1/2 and S is a Brownian motion. Furthermore, the
extremal cases ap = 1 (resp. ag = 1) can only happen when o > 1 and are equivalent to
the assumption that S has no positive jumps (resp. no negative jumps). When S has no
positive jumps, it admits finite exponential moments of any order and the Fourier transform
can be extended so that

E[eASl} =" forall A >0 (1.2)

where 7 is a positive constant that we will always assume to be 1 (we can reduce to this
case by changing the norming sequence (ay,)). Similarly, when S has no negative jumps, we
will assume E[exp(—AS1)] = exp(A®) for all A > 0. Let also M, denote the Mittag-Leffler

function with parameter a:
oo ‘/L’n
M & — f eR.
()Y o

Define —p;(a) to be the first negative root of M, and —p2(a) to be the first negative root
of ax M (z)+ (a—1) M. (). The first result of this paper is a law of the iterated logarithm
for the limsup of the diffusion X in the random environment V.

Theorem 1.2

We have, almost surely,

lim su Xe _ L
t_)oop a=1 (logt)logloglogt  K#

where K# € (0,00) is a constant that only depends on the limit law S and is given by

of .1
K# % _ lim flogP{ sup  (Sy —Sy) < 1}.
t—oo t 0<u<o <t

Furthermore, when S is completely asymmetric, the value of K is given by

g#_l P () when S has no positive jumps,
p2(a) when S has no negative jumps.

Note that X; and supy <, X5 have the same running maximum, hence Theorem 1.2 also
holds with sup, <, X in place of X;. A symmetry argument yields

—infstht 1

lim sup 8.

t—oo a1 (logt)logloglogt T Rk# a

where K# = —limy_o log P{supg < , <y <t (S—v =S—u) < 1}/t. Hence, we also get a
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iterated logarithm law for the bilateral supremum:

lim su sup, ¢ ¢ | Xi 1
P T (logt)logloglogt  K# A K#

When a = 2, we have My (—z) = cos(y/z) for all & > 0. Therefore, K# = K# = 72/4 and
we recover the law of the iterated logarithm of Theorem 1.6 of Hu and Shi [HS98a].
Let T,, denote the n™ strictly descending ladder time of the random walk V,

Ty =0,
Tp+1 = min {k > T, Vi < Vo, }.

Since V is oscillatory, Ty, is finite for all n. Theorem 4 of Rogozin [Rog71] states that Ty
is in the domain of attraction of a positive stable law with index q. Moreover, T is in the
domain of normal attraction of this distribution if and only if

i PV <0} =a _ (1.3)

n
n=1

Let (by,) denote a strictly increasing sequence of norming constants for T and let b(-) stand
for a continuous, strictly increasing interpolation of this sequence. The function b~1(-) is
therefore regularly varying with index g. The next result characterizes the liminf behavior
of sup; 4 Xs.

Theorem 1.3

For any positive, non-decreasing function f define

der [ 071 (a™(logt)/f(t)) dt
T = / b=1(a=! (logt))tlogt

(we do not specify the lower bound since we are only concerned with the convergence of
the integral at infinity). We have, almost surely,

t—oo a~1(logt) 5 <y

t =
liminff()sust:{ 0 = J(f){ >
00
In particular, with probability 1,

lim inf

(loglog )’ X — 0, ifpg<1/q,
=0 a~l(logt) s<i

oo, iff>1/q.

Notice that (1.3) holds whenever V; is strictly stable or when E[V?] < oo (according to
Theorem 1 of Feller [Fel71], p 575). In those two cases, V; is also in the domain of normal
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attraction of S so that we can choose both a(x) = 2/ and b(z) = £/? and the last theorem

is simplified:
lim inf I(t) sup Xg = 0 <:>/ __dt )=
P Togt) 2 o fatlogt | < oo.

In particular, the liminf for the critical case § = 1/q in (1.4) is infinite.

We are also interested in the asymptotic behavior of the bilateral supremum supg < ; | Xs|.
We have already said that the limsup behavior of this process may be deduced from Theorem
1.2. Concerning the liminf behavior, although we were not able to deal with the general
case as it seems that many different behaviors may occur in the completely asymmetric
case, depending on the distribution tail of V1, we still obtain, when the limiting process has
jumps of both signs, the following integral test.

Theorem 1.4

When the limiting stable process S has jumps of both signs, we have, for any non-
decreasing positive function f, almost surely,

liminfﬂsup | Xs| = <:>/ -
t—oo @ (logt) s<t 210gt < Q.

In particular, with probability 1,

lim inf
ltrgoo a1 (10 t) s<t

log log )7 if 3<1/2
(Og Og ) Sup |Xs|: 07 1 /8 / b
oo, if3>1/2.

It is worth noticing that in this case the limiting behavior does not depend on the symmetry
parameter. We also point out that this liminf is very unlike the Brownian case (c.f. Theorem
1.7 of [HS98a]). This may be informally explained from the fact that, when the limiting
process has jumps of both signs, typical valleys of the potential V are much deeper than in
the Brownian case.

Although we are mainly concerned with the almost sure behavior of the diffusion, our
approach also allows us to prove a convergence in law for the supremum process.

Theorem 1.5
There exists a non-degenerate random variable = depending only on the limiting process
S such that under the annealed probability P,

~I(log t) s<t ¥ t—o0

Moreover, when S has no positive jumps the law of = is characterized by its Laplace
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transform,

M (q)
Ma(q)

Ele =] =T (a+1) for g > 0,

and when S has no negative jumps

_ (- )Mo
aqMi(q) + (0~ 1) Mj(q)

for g > 0.

The remainder of this paper is organized as follows: in Section 2, we prove sharp results
concerning the fluctuations of the potential V as well as on the limiting stable process S.
These estimates, which may be found of independent interest, ultimately play an important
role in the proof of the main theorems. In Section 3, we reduce the study of the hitting
times of the diffusion to the study of some functionals of the potential process. This step is
similar to |[HS98al; we make use of Laplace’s method and the reader may refer to [Shi01| for
an overview of the key ideas. The proofs of the main theorems are given in Section 4. We
shall eventually discuss these results in the last section, in particular, we explain why all the
results mentioned above still hold when the potential V is itself a strictly stable process. We
also explain how one can use these results to deduce similar theorems for a one-dimensional

random walk in a random environment with an asymptotically stable potential.

2 Fluctuations of V and S

We now give several estimates concerning the fluctuations of the random walk V and
its limiting stable process S. In the first subsection, we recall elementary properties of the
stable process S as well as a result of functional convergence of the random walk toward the
limiting stable process.

In the following, for any process Z, we shall use indifferently the notation Z, or Z(x).

2.1 Preliminaries and functional convergence in D

We introduce the space D(R4,R) of cadlag functions Z : Ry — R equipped with the
Skorohod topology. Let 6 stand for the shift operator, i.e. for any Z € D(R;,R) and any
xg = 0, we have

((0202)z; x 2 0) « (Zo+ao — Zag, © 2 0). (2.1)
Since our processes are double-sided, we will also need the space D(R,R) of functions Z :
R — R which are right continuous with left limits on [0, c0) and left continuous with right
limits on (—o0, 0] considered jointly with the associated Skorohod topology. Recall that S
and V have paths on D(R,R). We are interested in the following functionals: for a € R and
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for Z € D(R,R), define (we give two notations for each definition)

N
S}

I
gj’:
N

def SUPye(o,q) Zy, for a =0,
SUPye(a,0 Zy, for a <0,

z, = FP2z) & inf,cfo,q Zy, fora >0,
- ‘ infycq0) Zy, fora <O,
7% = F(B)(Z) def SUPye[0,q] |Zy|, for a >0,
' SUPyefa,0] | Zyl, for a <0,
zk = FY2) ¥ Z,-
g# F(5)(Z) def SUPy <y <a f, for a > 0,
’ " SUP, <y <04y, fora<o,
oz(a) = F(G)(Z) def inf{x >0, Z, > a}, fora=>0,
’ ’ inf {x >0, Z, <a}, fora<Q,
pa) = FD(z) @ | wiH{z>0242a}, fora>0,
’ ’ inf{r >0, Z_, <a}, fora<0,
Uz(a) = Fég)(Z) of 0= o4(a)), for a >0,
Uz0) = F(2Z) & a _g(az(a)), for a > 0,
éz(a) = Féw)(Z) = ﬁZ(Za) \Y Zf, for a > 0.

Let D;(a), i € {1,---,10} denote the set of discontinuity points in D(R, R) of FY. Forv > 1,
define V) £ (V,, /a(v), = € R). Following a theorem of Skorohod [Sko57], Assumption 1.1
implies that the family of processes (V(”), v > 1) converges in law, in the Skorohod space,
towards S as v goes to infinity. It remains to check that the previously defined functionals
have nice continuous properties (with respect to S) in order to obtain results such as the
convergence in law of Y (V@) towards Y (S) as v tends to infinity.

For Z € D(R,R) and a € R, we say that

Z is oscillating at o~ if for all e > 0, inf(, ¢ 4) 2 < Zo— <SUP(4_c ) £,
Z is oscillating at a™ if for all € > 0, Inf(q44e) Z < Zat < SUP(g g4e) Z-

The following lemma collects some easy results about the sample path of S.

Lemma 2.1

(1) Supp,o0) S = SUP(_o0,0) S = 00 almost surely.

(2) With probability 1, any path of S is such that, if S is discontinuous at a point x,

then S is oscillating at v~ and ™.
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(3) For any fixed a € R, the process S is almost surely continuous at a and oscillating
at a” and a™.

Proof. Assertions (1) and (2) come from Lemma 3.1 of [KTT92|, p531. As for (3), it is
well known that S is almost surely continuous at any given point and the fact that it is
oscillating follows from the assumption that [S| is not a subordinator. |

Note that (2) of the lemma implies that, almost surely, S is continuous at all its local
extrema. It also implies that, with probability 1, S attains its bound on any compact
interval. These facts enable us to prove the following:

Proposition 2.2

For any a € R and i € {1,---,10}, we have

P{S € Di(a)} = 0.

Proof. Let a be fixed. The functionals Féi),i € {1,2,3,4,5} are continuous at all Z €
D(R,R) such that Z is continuous at point a (refer to Proposition 2.11 on p305 of [JS87]
for further details) and the result follows from (3) of the previous lemma. It is also easily
checked from the definition of the Skorohod topology that the functionals Féi),i € {6,8}
are continuous at all Z having the following properties:

(a) oz(a) < oo,
(b) Z is oscillating at oz (a)+,
(¢) Z attains its bounds on any compact interval.

Using again the previous lemma, we see that (a) and (c¢) hold for almost any path of S. From
the Markov property of the stable process, assertion (3) of the lemma is unchanged when
a is replaced by an arbitrary stopping time. Hence, (b) is also true for almost any path of
S. The proofs for the functionnals Féi),i € {7,9} are, of course, similar. Finally, the result
for Félo) is easily deduced from previous ones by using the independence of (S,, > 0) and
(S—z, x = 0). [ |

We will also use the fact that the random variables Féi) have continuous cumulative functions
(except for the degenerated case a = 0).

Proposition 2.3
Foralla#0,beR andi€ {1,---,10}, we have

P{FY(S) =b} = 0.
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We shall skip the proof of this proposition since it is an easy consequence of the fact that S
has a continuous density and the assumption that it is not a subordinator.

Finally, throughout the rest of this paper, the notation ¢; will always denote a finite
strictly positive constant depending only on our choice of P. In the case of a constant
depending on some other parameters, these parameters will appear in the subscript. We
will also repeatedly use the following lemma easily deduced from the uniform convergence
theorem for regularly varying functions (c.f. [BGT89], p22) combined with the monotonicity

property.

Lemma 2.4

Let f : [1,00) — Ry be a strictly positive non-decreasing function which is regularly
varying at infinity with index 8 > 0. Then, for any € > 0 there exist ci ¢ f,¢c2¢t > 0
such that for any 1 < x <y,

B+e B—e
oo () <o)

2.2 Supremum of the reflected process

We now give some bounds and asymptotics concerning V#. These estimates which may
seem quite technical play a central role in the proof of Theorem 1.2. This subsection is
devoted to proving the following three propositions.

Proposition 2.5
We have

—1
im P e PyvE <o) = —KH
v

v/a"(x)—o0

where K# = —lim,_.o + log P{S{ < 1} is strictly positive and finite.

Proposition 2.6

For all 0 < b < 1, there exists a constant c3j, > 0 such that for all x large enough
(depending on b) and all v > 0,

e P{V# < 2} <P{VH# < 2,V, < ba} < P{V¥ <z},

Proposition 2.7

There exists ¢4 > 0 such that for all x large enough and all vy, vy > 0,

aP{V], <«}P{VE, <a} <P{V],,, <z}
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Notice that, in view of Proposition 2.6, we deduce that Proposition 2.5 remains unchanged
if we replace P{V] < z} by P{V] < z, V, < ba} for any b > 0. The proof of the first
proposition relies on the following lemma.

Lemma 2.8

There exists a constant K7 € (0,00) such that, for any a,c > 0 and any b > 0,

lim ‘LlogP{ij <a,S, < —b S —8, gc} _ _K#,

t—oo t

In particular K# = —lim, %log(P{S# < 1}).

Proof. Using the scaling property of the stable process, we can assume without loss of
generality that a = 1. For the sake of clarity, let

elﬁf{8f<1,§t< —b,st—st@},

and define f(t) & log P{Sf < 1}. Using the Markov property of the stable process S,
we see that f(t +s) < f(t) + f(s) for any s,t > 0. Since f is subadditive, elementary
analysis shows that the limit K# = —lim; .. f(t)/t exists and furthermore K# € (0, co].
In order to prove that K# < oo, notice that {Széé < 1} D {S} < 1/2} which implies
f(t)/t = logP{S; < 1/2}/t. Using Proposition 3 of [Ber96a], p220, the r.h.s. of this last
inequality converges to some finite constant when t converges to infinity. Therefore K7
must be finite and we have shown that

1 1
limsup —log P{&1} < tlim 2f (t) < — K7,
—00

t—o0 t

It remains to prove the lower bound. Let 0 < ¢ < min (¢,1) and let ¢ > 1. Define
& Sﬁ_lgl—g},
& {(019)F <e (048), < —b-1}.

We have & D & N &s. Since S has independent increments, & and &3 are independent.
Therefore P{&;} > P{&}P{&3}. Furthermore, P{&} = f((t —1)/(1 —¢)%). Hence

1 logP{&} 1 t
—logP{&} > ——m—+-f | ———— |, 2.2

;s Pi&} T \azae (22)
and P{&} = P{Si‘7£ <eg,S; < —b—1} does not depend on ¢ and is not zero (this is easy to
check from the assumption that S is not a subordinator). Letting ¢ go to infinity in (2.2),
we conclude that

1 1 t —K#
liminf = log P > lim-f(— | = — .
it s8> 1! () =
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Proof of Proposition 2.5. Pick € > 0, the previous lemma and the scaling property of
S# give

1 1
K# =~ 1im —logP{s} < - 1.
y—oo Y& Y

Hence, we can choose yp > 0 such that log P{SiéE < 1/yo} < — (K# — ¢)ys. Combining
results of Proposition 2.2 and 2.3 for the functional F(®) we get

1 1 1
lim log P{—~Vf < — 1 =log P{Sf < —} < — (K* - o)y
k—oo & {a(k‘) k yo} & 1 Yo ( )y()
Therefore, for all k large enough,
1 1
log P{— v} < — | < — (K# - 2¢)y5. 2.3
g a(k:) k Yo ( )yO ( )

We use the notation |-] to denote the integer part of a number. Let us choose k =
la=! (zyo)] + 1, thus (2.3) holds whenever x is large enough. Notice that

HE
{Vf < :r:} C m {(anV)k# < x},

n=0
hence, from the independence and stationarity of the increments of the random walk at
integer times, we get
PV <a} < (Pvf <o) (24)
Since a(-) is non-decreasing, our choice of k implies z/a(k) < 1/yop, therefore
Vk# < 1 }
a(k) = yol’

The combination of this inequality with (2.3) and (2.4) yields

P{V¥ <1} < P{

log PV} <} < — || s (K* - 22).

It is easy to check from the regular variation of a~!(-) with index « that |v/k|y§ ~ v/a=!(x)

when z and v/a~!(x) both go to infinity, therefore

-1
lim sup a” () log P{V# <z} < — K7,
v

The proof of the lower bound is quite similar yet slightly more technical. Using Lemma 2.8
and the scaling property, we can find yg > 0 such that

(2.5)

_ #.,a
logP{ngl c 2e 5} S _ K#yg

S < ——, 851 =5 € — _—
yo ! Yo " (1—2¢)

Let us set

Ey (k) =

< M ~ ) ~
a(k) yo  a(k) vo  a(k) Yo

d_ef{Vk# l-e Vp 2 Vk:_Vk:<5}



38 Chapter II : Limiting behavior of a diffusion in an asymptotically stable environment

Using Proposition 2.2 and 2.3, we check that

1—c¢ 2¢e €
lim P{& (k)} =P {S¥ < S < - 2.8 -5, <=4,
dim P{&4 (k)} { ! yo ! w' yo}

Hence, it follows from (2.5) that for all £ large enough,

log P{E4(k)} > — (2.6)

We now choose k = |a™(zyo)]. Notice that 1/yp < z/a(k) < 2/yo for all = large enough,
thus
Eu(k) C {Vk# <(1—-¢)z,V, < —ex, Vp =V, < Em} :

One may check by induction that
%]

{V# < 1’} o m {(enkv)k# < (1 - ‘5)1"’ (enkv)k S —ex, (enkv)k - (enkzv)k < 61"},
n=0

thus, using the independence and stationarity of the increments of V at integer times,

v +1
P{Vf <z} = P{Vk# <(1-¢e)x,Vp < —ex, Vi =V, < ex}LkJ

This inequality combined with (2.6) shows that for all x large enough,

g PLvE <> o (2] 1) i

We finally note that (|v/k| + 1)ys ~v/a~'(z) as z and v/a~!(z) go to infinity simultane-
ously, so the proof in complete. |

Proof of Proposition 2.6. The upper bound is trivial. Let 0 < b < 1 and define
r = la~(z)] and set ¢ = (b — 1)z. We have

{V# xV<bx} D {V# x, V, < bz, Uv()<7“}

> vt <teou(©) < p{(BaV)! <o},
thus
P{Vfgagvvgbm} > IP{Vi@)gb@oV@)gr}P{Vfga}
> P{Vfgbmﬁggc}P{Vfgx}

Just like in the previous proof, P{V# < bx, V,. < ¢} converges, as x tends to infinity, towards
P{S’f < b, S; < b— 1}, which quantity is strictly positive since |S| is not a subordinator.
[
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Proof of Proposition 2.7. Notice that

{Vﬁm < x} D {Vﬁlmvzjw < x}

> {vi<ove-vi<opn{@, <o @V, - B:9),, | <

[v1] [v1] =

2 S—— T
N {(02+\_v1jv)ﬁ2j <z, (62+Lv1JV) lvz2) < 5} :

}

R

Using the independence and stationarity of the increments of V at integer times, and setting
cs = P{V; <0} > 0, we deduce that P{V? <z} is larger than

v1+v2

2 # x # = x
AP {VE | <, Vi~ ¥, < T PP{VE, <o Vi, <5}

Moreover, time reversal of the random walk V induces
# B ” _
PV, <o Vo) = Vjuy <2/2f =P{VE, < Ty <2},

therefore, using Proposition 2.6, we conclude that

#
P {VUH-W < ‘r}

WV

(c5,1¢5)°P {Vﬁu < x} 3 {V?f;J < x}

= (63’%05)213 {V#l < w} P {V# < :L‘} .

2.3 The case where S is completely asymmetric

One certainly wishes to calculate the value of the constant K# that appears in the
last section. Unfortunately, we do not know its value in general. However, the completely
asymmetric case is a particularly nice setting where calculations may be carried out to their
full extend. We now assume throughout this section that the stable process (S, x > 0)
either has no positive jumps hence the exponential moments of S are finite and (1.2) holds
(recall that we assume 4" = 1) or S has no negative jumps and E[exp(—AS;)] = exp(tA¥)
for all t, A > 0. For a,b > 0, define the stopping times:

% def .
Tab — inf{

Recall that M, stands for the Mittag-Leffler function with parameter a.

Proposition 2.9

When S has no positive jumps, we have

Ble | = Malq)’
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and when S has no negative jumps, we have

B ag(My(q))°
agM(q) + (o = )M (q)

E [e_qu# } = Ma(q)

This proposition is a particular case of Proposition 2 of [Pis04], p191. Still, we give here
a simpler proof when S is stable using the solution of the two-sided exit problem given by
Bertoin [Ber96b].

Proof. We suppose that S has no negative jumps. Let n(g) be an exponential random
time of parameter ¢ independent of S. Let also a,b be strictly positive real numbers such
that a + b = 1. We may without loss of generality assume any path of S attains its bounds
on any compact interval and is continuous at all local extrema (because this happens with
probability 1 according to Lemma 2.1). Thus, on the one hand, the event {T{# > n(q)}
contains

{ra>n@} o ({7 <n(@). 8oz, < —a} {6, 9%, .. <1}).

a,

Using the strong Markov property of S, the lack of memory, and the independence of the
exponential time, it follows that P{Tl# > n(q)} is larger than

P{7.p > n(a)} +P{m5, <nlq) , S, < — a}P{r{" > n(q)},

therefore .
P{r;, >n(q)}

P{r¥ > q)} = . 2.7
{ ! n( )} 11— P{T;b < 77(Q) ) ST:,b < - a} ( )
On the other hand, one may check that the event {7‘1# > n(q)} is a subset of
{T;‘,b > n(Q)} U ({TZI,b <n(q), S, < - a} N {(HT;,,,S)%_T;I, < b}) :
and similarly we deduce
P{7,, >nla)}
P{r’ > n(g)} < - : 2.8
tn > @) < 7= P{ry, <nlq) S, < —a} (28)

Obviously Tlfé converges to 7'1# almost surely as b converges to 1. Combining this observation

with (2.7) and (2.8), we find

P{r ,, >n(q)}
P # =1i 2 .
{r > (@)} =l 1 — Pl ,, <n(q): S ,, <b-1}

T1—b,b

(2.9)

The probabilities of the r.h.s. of this equation have been calculated by Bertoin [Ber96b]:

a—1 / (e
P{r > 1(0)} = 1= Ma(6%) + 3558 (Ma(q) - 1), (2.10)
x b LMY, (b
P{rf ,, <nlg),Sr ,, <b-—1} = Cglt) (2.11)
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Taylor expansions of M, and M, near point ¢ enable us to calculate the limit in (2.9) in
term of M, and its first and second derivatives. After a few lines of elementary calculus,

we get

ag(My(9)°

P{r > (@)} =1~ Mol + S

We complete the proof using the classical relation E[exp(—qﬁ#)} =1- P{Ti# > n(q)}. The
proof when S has no positive jumps is similar (and the calculation of the limit is even easier).
We skip the details. ]

Corolary 2.10
Recall that —pi(«) denotes the first negative root of M, and —pa(«) denotes the first

negative root of ax M (z) 4 (a—1)M.,(x). The constant K# of Proposition 2.5 is given
by
Kt m (o) when S has no positive jumps,
p2(a) when S has no negative jumps.

Proof. Recall that K# = — limy_.o P{S?7£ < 1}/t. Using the previous proposition and the
same argument as in Corollary 1 of [Ber96b], we see that, when S has no positive jumps,
— K7 is equal to the first negative pole of the analytic function z — 1/Mq/(z). Therefore,
K# = pi(c). Similarly, when S has no negative jumps —K7 is equal to the first negative
pole of
def Oéx(Mix(x))Q
W)= M) + (o - M)

Let —zo be the first negative root of M/ . Since M/ (0) > 0, the function M, is strictly

increasing on [—zo,0]. Notice also that z 7E[€Xp(7$7'1#)] is increasing on (—K7,0],

= My(z) — E [e_”#] .

thus g(x) is strictly increasing on (—(K# Axg),0]. Since g(—2z¢) = g(0) = 0 (this holds even
when —xq is a zero of multiple order) we deduce from the monotonicity of g that K# < g
and this shows that the first negative pole of g is indeed —pa(a). [ |

We conclude this subsection by calculating the Laplace transform of 7'1# A Tp. This will be
useful for the determination of the limiting law in the proof of Theorem 1.5.

Corolary 2.11

For any 0 < b < 1, when S has no positive jumps, we have

Ma(‘](l — b)a)

E{e_qu#/\Tb} = Mo(q) )

and when S has no negative jumps,

ag M, (gh*) M., (q)
agM(q) + (o — )M} (q)

E [e_qu# Mb} = Ma(gh®) — b
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Proof. Let n(q) still denote an exponential time with parameter ¢ independent of S.
Suppose that S has no negative jumps, using the Markov property and the lack of memory
of the exponential law, we get

P{r{’ A7y > n(q)} = P{r{_,, < n(q), Sy ,, Sb— BP{r{" > n(g)} + P{ri_,; > n(q)}-

The r.h.s. of the last equality may be calculated explicitly using again (2.10), (2.11), and
Proposition 2.9. After simplification, we obtain

agM;, (gb*) Mg (q)
agMg(q) + (o = MG (q)

P{rf Am > n(g)} =1 — Ma(gh®) + b7}

The no positive jumps case may be treated the same way. |

2.4 The exit problem for the random walk V

Let us define for z,y > 0 the following events:

Az,y) & {(Vy), > o hits (y, 00) before it hits (—oo, —z)},
N(z,y) & {(Vy), > ¢ hits [y, 00) before it hits (—oo, —z]},
N(zy) & {(V_y), > ¢ hits (—o0, —y| before it hits [z,00)} .

We are interested in the behavior of the probabilities of these events for large z,y. In the
case of a fixed x, when y goes to infinity, this study was done by Bertoin and Doney [BD94].
Here, we need to study this quantities when both z and y go to infinity with the ratio y/x
also going to infinity. Recall the definition of the sequence (T},), > ¢ of strictly descending
ladder times defined in the introduction. We now consider the associated ladder heights:

H, ot —Vr, forn>0.

We also introduce the sequence (M), >1 defined by
M,, = max {Vj, + H,_1, Tm1 <k < Ty}

Note that the random variables (Ty41 — Ty, Hp11 — H, My, > are iid. We have al-
ready said that T; is in the domain of attraction of a positive stable law of index ¢ with
norming constants (b,). Moreover, Corollary 3 of [Don85| states that P{IM; > x} is regu-
larly varying with index —agq. More precisely, we have

C6
P{M; > ~ 2.12
My >z} z—oo b~1 (a~! (x)) ( )
In particular, M; is in the domain of attraction of a positive stable law when ag < 1 and M;
is relatively stable when aqg = 1 (relatively stable meaning that m ok < n M, converges

in probability to some strictly positive constant).
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Concerning Hy, Theorem 9 of [RogT71| states that H; is in the domain of attraction
of a positive stable law with index g when ag < 1 and that H; is relatively stable when
aq = 1. Furthermore, the lemma on p358 of [Don85]| states that we can even choose a (b (n))

as norming constant for Hy, i.e.

H, in probability to some positive constant c¢; when agq = 1,
———— converges { . . . .
a(b(n)) in law to a positive stable law of index ag otherwise.

When ag < 1, this implies that (2.12) holds with H; in place of M; (for a different value
of ¢) but when aq = 1, the relative stability of H; does not imply the regular variation
of P{H; > z} (look at the counter example in [Rog71], p 576). Yet, we can still prove a
smooth behavior for the associated renewal function

R(z) <) P{H, <z},
n=0

Lemma 2.12

There exists a constant cg > 0 such that

R(z) ~ esbt(at(2)).

r—00

Proof. When ag < 1 we have already mentioned that P{H; > 2} ~ cg/b! (a™! (z)) thus
the asymptotic behavior of R follows from a Tauberian Theorem just as in the lemma on
p446 of [Fel71]. We now consider the case ag = 1. Let L(\) & E[e™*H1] stand for the
Laplace transform of Hyj. We know that

Hy oy
a(b(n)) n—oo

Therefore, for any A > 0 and when n ranges through the set of integers, we get

(L (a(bA(n))»n — e T, (2.13)

Since L is continuous at 0 with L(0) = 1, setting A = 1 and taking the logarithm in (2.13)

yield
n (1 .y <a(b1(n))>> e (2.14)

Using the monotonicity of L and a (b (+)), we check that (2.14) still holds when n now ranges

through the set of real numbers, thus

1 (64

1-L <x> e T @) (2.15)

Let us set R(y) & I~ e ¥R (dx). The well-known relation R (y) =1/ (1 — L(y)) combined

with (2.15) shows that R is regularly varying near 0. We conclude the proof of the lemma
using Karamata’s Tauberian/Abelian theorem. n
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Proposition 2.13

There exists c1p such that, when © — oo and y/x — oo simultaneously,

b=t (ail (x))

T T T (o )

P{A (z,y)}

This result also holds for P{A’ (z,y)} and P{A’ (z,y)}.

Proof. Since the two processes (Vg)s>0 and (—V_g)s >0 have the same law, we have
P{A (z,y)} = P{A (z,y)}. Notice also that A (z —1,y) C A’ (z,y) C A (z,y —1). Thus,
we just need to prove the proposition for A (z,y). The first part of the proof is borrowed
from Bertoin and Doney [BD94]|, p2157: the probability P{A(x,y)} is equal to

oo
PIMy >y} + S P{Mi<y+Hy o M <y+Hy,
k=1

Hy <z My >y + Hk} (2.16)

thus

oo
P{A(z,y)} < P{Mi>y}+> P{H; <z, My >y+H}
k=1

< P{M; >y}t + Z P{H; <z, M1 >y}
k=1
< P{M; > y}R(x).

Using (2.12), Lemma 2.12, and the equivalence P{M; > y} ~ P{M; > 2 + y} when z and
y/x go to infinity, we obtain the desired upper bound with ¢ & cges. We now prove the

result pertaining to the lower bound. Let ko € N*. From (2.16), we see that P{A(z,y)} is
bigger than

P{Ml >y}+ZP{M1 <y7 Tty Mk‘ <y> Hk Sw, Mk-‘rl >l‘+y}
k=1
ko
> P{M; >+ g1+ Y PAMy <y, o, My <y, Hy <}),
k=1
hence
P{A (z,9)} > P{My > o+ y} (R (2) — Ry, () — Wi, (), (2.17)
with
Ry, (z) £ > P{H; <z},
k=ko+1
ko

Wko(y) = ZP{M1 >gyor --- or My > y}.
k=1
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On the one hand, in view of (2.12) and Lemma 2.12, we get, for y large enough,

K 2
c11k
Wi (y) < > kP{Mi >y} < kP{M; >y} < Pil(y(;'
k=1
On the other hand, we have
(e.)
Rio (r) = Y P{Hpp1 + Hepropr — Higpr < )}
k=0
o)
< ) P{Hpypr1 — Hggpr < 2}P{Hypp < o}
k=0

< R(2)P{Hy, <z}

Combining these two bounds with (2.17) yields, for all z,y large enough,

ori k2
P{A(z,y)} > P{M; >z +y}R(x) <1 - P{H;, <z} - (Rlz;;;))Q> .

It only remains to show that for a good choice of kg = ko(z,y), we have

2
Cllko

P{H,, <z}+—5 — O
’ (R(y))* w200

(2.18)

Let ko = |[b~! (a™! (zlog (y/x)))|. Note that ko is such that kg — oo, when = and y/x go
to infinity simultaneously, and we know that

Hk() law

0 (b (ko)) koo 7

where Jo is either a positive stable law (when ag < 1) or a strictly positive constant (when
aqg = 1). In either cases P{Jx = 0} = 0. Since z/a(b(ko)) — 0 when z and y/x go to
infinity simultaneously, we deduce that

Hko €T
PH,, <o =P{ g < ol o (219)

x, 5 —00

Finally, using Lemmas 2.4 and 2.12, we verify that

c11 k2 c1 (R (ar log 3) ?
VI k2 ) (2.20)
(R (y))” #.2—00 cg R (y) 2, %00

The combination of (2.19) and (2.20) yields (2.18). [ |
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2.5 Other estimates

We conclude the section about the fluctuations of V by collecting several results con-
cerning the functionals V and V. We start with a reflection principle for V.

Lemma 2.14

There exists c12 such that for all v,z > 0,
P{V, > 2} < c1o2P{V, > =},

and similarly
P{V, < — 2} <c1oP{V, < —x}.

Proof. We only need to prove the first inequality (the second inequality can be obtained
in the same way, with a possibly enlarged value for c;2).
P{V,>2} = Ploy()<|v}
P{Uw(m') < LUJ, VLUJ < x} + P{VU > 1‘}
v
> Plov(x) =k V|, <z} +P{V, >2}.
k=1

N

N

Using the Markov property, we check that P{oy(x) = k, V|, < x} is equal to

P{oy(z) = k) / PVl <0~ 5P (Vo) = dulo (o) = K}
/ < Pov(w) = kYP{V},_; < 0}.

Our assumption on V implies that lim, . P{V,, < 0} = P{S < 0} = ¢ < 1. Thus, there
exists ¢13 > 0 such that sup,, P{V,, < 0} = ¢;3 < 1. Therefore

[v]
P{V, >z} < c3) Plov(e)=k}+P{V, >z}
k=1
< cPloy(z) <o} +P{V, >z}

< P{V, > z}.

1—c3
[
We now estimate the large deviations of P{V, > z}. The characterization of the domains
of attraction (see Chapter IX,8 of [Fel71]) and Assumption 1.1 imply

_ c1a > 0 if S has positive jumps,
a 1(1‘)P{V1 > x} m?o)o { 0 otherwise (2.21)
0 ifSh tive j
0 @) PV, < -1} — c15 > i a§ negative jumps, (2.92)
T—00 0 otherwise.

The following proposition strengthens this result:
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Proposition 2.15

There exists c1g > 0 such that for allv > 1 and all x > 1,

v
Moreover, if S has positive jumps,
P{V, >z} ~ vP{V; >z} ~ (2.24)

v oo v oo 614(1_1(1’)'

a"l@)

— O

There is of course a similar result for P{V, < —z}.

Proof. The equivalence (2.24) is already known and is stated in [Bor03], but we have not
been able to find a proof of this result in English. A weaker result is proved by Heyde
[Hey68]. Yet, a slight modification of his argument will enable us to prove the proposition.
Let us choose 1/2 < § < 1 and set z & (x/a(v))%a(v). Define, for k > 1,

aer | Vg = Vi1 i [V = Viq| < 2,
Ck,z - .
0 otherwise.

Let € > 0 and define
& ¥ {Vk —Vi—1 > (1 —¢)x for at least one k in {1,..., LUJ}},
& = {Vk — Vi1 > z for at least two k’s in {1,..., LUJ}},
& = {CLZ +.o Qo) > 533}-
We first observe that {V, >z} C & N & N &7, hence
P{V, >z} < P{&} + P{&} + P{& ). (2.25)

We deal with each term on the r.h.s. of (2.25) separately. Let us choose C' > ¢4 if S has
positive jumps and set C' = 1 otherwise. We now assume that v and a=!(z)/v are very
large. According to (2.21) and using the regular variation of a=1(-), we get

C v

P{&} <ovP{Vi>(1—-¢)z} < A—arai@)

(2.26)

We now deal with P{&}. Let > 0. Lemma 2.4 gives for all v and a~!(z)/v large enough,
) 2
vat(z) ¢ (a(v)ai)) a (a(v)) o ( x >a+" (a(v))%(a_n)

X

a(v)

a~1(z))2 a=(a(v : \?
@) @ | () ()
Since § > 1/2, we can assume 7 small enough such that 26(a —n) — (o +n) > 7, then

va (x) (“(”)>n. (2.27)

@2 S e
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Using (2.21) and (2.27), we deduce that

P{&} < v*P{V; > 2}? < C(a—f(Qz)P < Ca_f(m) <a(;)>n' (2.28)
We now turn our attention to P{&7}. From Tchebychev’s inequality, we have
PUEN € Bl o+ Qo) € agBlG] + g BG LS. (229)
222 x
Let f(2) = E[((1,2) ] JZ.y*P{V1 € dy}. This function is non-decreasing and non-zero for

z large enough. It is also known from the characterization of the domains of attraction (c.f.
(8.14) of [Fel71], p304) that the norming constants (a, ) are such that nf(a,)/a2 — c17 > 0.
Hence, f(2) ~ c172%/a71(2) as z goes to infinity (f is regularly varying with index 2 — ).
Therefore, for v and a~!(z)/v large enough, we get

vf(2) v f(2) v
o < C18e o 1(@) f(x) < Cls,em-

We can sharpen this estimate when a < 2. Indeed, in this case, f is regularly varying with
index 2 — a > 0. Thus, using Lemma 2.4 and setting ' = (1 — §)(2 — a)/2,

f2) (E>(2_°‘)/2: <a(v)(:c/a(u))5>(2‘o‘)/2: <a(v)>’7"

f(z) = \z x x

When a < 2, we therefore obtain

E[(¢1.)?] = (2.30)

5%2

g22 x

o
= E[(¢12] < Cl&ea—lL(;c) (“(”)> . (2.31)
Let g(z) & E[¢C1,:] = /7, yP{V} € dy}. Since Vy is in the domain of attraction of a stable
law, it is known that the centering constants c¢(n) such that V,/a(n) — ¢(n) converge to
a stable law may be chosen to be ¢(n) = ng(a(n))/a(n) (see [Fel71], p305). The main
assumption of this paper states that the sequence ¢(n) may also be chosen to be identically
0. Thus the sequence ng(a(n))/a(n) is bounded and so there exists ¢19 > 0 such that

z
l9(2)] < ClgaT(z) for all z > 1.
Using this inequality, we get, for v and a~*(z)/v large enough,

2 2,2

N
Q
8

N

”w (“(U) ! (2.32)
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where we used (2.27) for the last inequality. Putting the pieces together, (2.25)-(2.26)-
(2.28)-(2.29)-(2.30) and (2.32) yield (2.23). Moreover, when S has positive jumps, we have
a < 2. Hence, we can use (2.31) instead of (2.30) and we deduce that

-1
a” (z)P{V, >z} <

[

lim sup
v — OO

aTl@
z

It remains to prove that the lower bound holds. Assume that S has positive jumps and
notice that the event {V, > z} contains

lv]—1
N {VZ < ez, Vigpr = Vi > (14 28)z, (e V) |1 < 55”} :
k=0

Moreover, the events of the last formula are disjoints. The independence and the stationarity
of the increments of the random walk V yield
[v]-1
P{V, >z} > Z P{VZ < €$}P{V1 > (14 ZE)x}P{VDkkfl < &?x}
k=0

> P{V; <er} P{Vy > 1+ 20)a}).

From (2.21) and the regular variation of a~1(-) we see that
C140U
vooo  (142e)% Hz)

a"l(x)

[v]P{V1 > (1 + 2¢)x}

— 00

We also know from the results of Section 2.1 that V}/a(v) converges in law towards Sj.
Therefore,

V*
lim P{V;j < 5:6} = lim P{ v ei} ~1.
v — 0o v — 00 CL('U) (I(U)
s @) o aT@ o
We conclude that .
x)P
liminf 2 (2)P{Vy > z} > as
v — oo v (14 2¢e)e

a"l(x)
K

— oo

Corolary 2.16

By possibly extending the value of cig, equation (2.23) also holds with V,,, =V, Vf or
even with V3 in place of V.

Proof. The results for V, and —V, are straightforward using Lemma 2.14. To prove
the result for V* and V#, we simply notice that {V# > 22} C{V} > 2} Cc{V, > 2} U
{-V, >z} [ ]
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Corolary 2.17
For any 0 < § < «, we have

()

Proof. It follows from the previous corollary and the regular variation of a~!(-) with index

« that for any 0 < § < «,
V. \’ < o0
a(v) '

The family ((V,/a(v))®,v > 1) is therefore uniformly integrable for all 0 < § < a. We
also know that V,/a(v) converges in law toward S; as v goes to infinity. These two facts

)

v,

lim E a()

V—00

_ E[(gl)é} and lim E - E[(—sl)ﬂ .

V—00

sup E
v>1

combined yield the first assertion. The proof of the second part of the corollary is similar.
[

Proposition 2.18

For all 0 < § < q (recall that q is the negativity parameter of S) there exists cp1 5 such
that, for all v,z > 1,

a () d
P{-V, <z} <ecng < ) -
v

A similar result holds for P{V, < x} on replacing the condition § < q by § < p.

Proof. We just prove the result for V. By possibly extending the value of cy 6, it
suffices to prove the inequality for # and v/a~!(x) large enough. Let us choose ¢’ such that
d < & < g <1 and notice that for any y > 0,

{(-V, <z} C Aa,y) U=V, <z}nA(z,y)) C Ale,y) U{V] <z+y},

thus
P{-V, <z} <P{A(z,9)} + P{V¥ <z +y}. (2.33)

On the one hand, for x and y/z large enough, using Proposition 2.13 and Lemma 2.4, we
get

b1 (ail(:v)) a () o

P{A < < i ——— . 2.34

R = I =) (23

On the other hand, for # + vy and v/a~!(x + y) large enough, using Proposition 2.5, we
obtain

K# v
P{VI <z +y} < exp (—2a_1(x+y)> : (2.35)
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Let us choose y = a (210g v/a o) ) — x. It is easy to check that (2.34) and (2.35) hold

whenever x and v/a~ are large enough, thus, (2.33) yields

P{-V, <z} < cog <K2#>6' (a—L(x) <10gaf($)>>6/ .\ Q—Z(x)

-1 é
a xXr
< 624,5'< U( )> .

3 Behavior of X

We now study the diffusion X in the random potential V. Let us first recall the classical
representation of X from a Brownian motion through a (random) change of scale and a
(random) change of time (c.f. [Bro86, HS98a, IM65|). Indeed, we can assume that X is of
the form

Xi = A" (Br-1y) (3.1)

where B is a standard Brownian motion independent of V and where A~! and T~ are the

respective inverses of

z t
A(z) dZEf/O eVvdy and T (¢) d:*’f/o e~ 2Va-1(8y) ds

Note that our assumption on V implies, with probability 1, that A is an increasing home-
omorphism on R and that T is an increasing homeomorphism on R;. Thus, A~! and T~!
are well defined. Let v > 0 and recall the definition of ox given in Section 2.1. Using (3.1),

we obtain
ox(v) =T (0B (A(v))).

Let now (L(t,x), t > 0, z € R) stand for the bi-continuous version of the local time process
of the Brownian motion B. The last equality may be rewritten:

o5(A(v))
ox(v) = / e 2Vl ds
0

A(v)
:/ e L(op(A(v)), 2)da

—00

_ / e L(op(A(v)), Aly))dy

—0o0

where we have used the change of variable x = A(y). We split this integral into two parts:
) [ e Lion(Aw). AW (32)
0

Lv) = /OooeV_yL(UB(A(v)),A(—y))dy- (3.3)
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Using the definition of ox, we get
{Xi > v} ={L(v) + Ix(v) < t}. (3.4)

The next two propositions show the connection between V and X. These estimates will
enable us to reduce the study of the limiting behavior of X to the study of some functionals
of the potential V. The streamline of the proofs are essentially the same as those of Lemmas
4.1 and 4.2 of Hu and Shi [HS98a| and one may refer to the proof of these two lemmas for
further details.

Proposition 3.1

There exists cos such that for all v large enough
Vjﬁ_l — (logv)* < log I (v) < V¥ + (logv)* on &(v),
2
where Es(v) is a measurable set such that

P{E(v)°} < cage108Y)°,

Proposition 3.2

There exists cog such that for all v large enough

logIr(v) < Uy (Vo + (logv)*) on & (v),
logL(v) > Uy (Vv_% — (log v)4) on &(v) N {Vv_% > (log v)4} ,

where U was defined in Section 2.1 and where &9(v) is a measurable set such that

P{E(v)} < coge108Y)°,

Proof of Proposition 3.1. For v > 0, let R? be defined by
aet L (0B(A(v)), A(v) — tA(v))

f <t< 1.
AQv) or 0

RE(t)

Let R stand for the positive square root of R?. Just as in [HS98a], p1498, we see, using
the first Ray-Knight Theorem and the scaling property of the Brownian motion, that for
any fixed v the process (R(t),0 < ¢t < 1) has the law of a two-dimensional Bessel process
starting from 0. Moreover, R is independent of V. We can now rewrite (3.2) as

I(v) = A(v) /OU e Ve R? <W> ds.

LD - 773@) v
b0 = {0<t£1 /tlog(8/t) S \[}

Define
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Using Lemma 6.1 p1497 of [HS98a), we get P{E5,} < care™/2. On &9, we have

) < U/O” eV (A(v) — A(s)) log <m> as,

and for all s < v,
e Vs (A(v) — A(s)) = / eVvVady < ve'?

S

L) < w2’ /0 log <M> ds. (3.5)

This implies

We also have
A(v) = / eVids <ve™  and  A(v) — A(s) = / vy > (v — s)ele,
0 S

thus

/Owlog<m>ds < U(VUVU)+/OU10g(U8_US>ds

< o(Vy -V, +1+41og(8)).

Combining this with (3.5) yields log(I1(v)) < VI + log (Vy — V) + 4log(v) for all v large
enough. We now define &1 et {log (Vu —yv) < logg(v)}. On &9 N &y, for all v large
enough, we get the upper bound,

log(I1(v)) < Vf& + log4(v).

Moreover, we have {V, —V, > a} C {V} > a/2}. Using Corollary 2.16 and the regular
variation of a~!(-), we get P{£f;} < exp(—log?(v)) for any v large enough.

We now prove the lower bound. For the sake of clarity, we will use the notation I & log(v)
and § & exp(—lQ). For v > 1/2, there exist two integers 0 < k- < kT < v — % such that
Vji% =V,+ — V.. Let us define the sets:

. A(v) — A A(v) — A(k~
fo 2 {w m(MOAOY g [0 _AG0
k= <s <k +3 A(v) A(v)
&3 & {Vf_l > 352} :
2
Using again Lemma 6.1 p1497 of [HS98a| combined with the independence of R and V, we

get
2
P{(€12 N E15)°} < P{ER} + 20+ 2B~ /01, |, (3.6)

where J is given by
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On the one hand, we have

v k+—|—% 1
Aw) —A(k™) = / eVsds > / eVsds = §evk+.
k

+
On the other hand, since k£~ is an integer and V is flat on [k, k™ 4+ 1), we also have

1 k41 1
A (k: + 2) — A(kf) = / eVsds = §evk‘.

This implies J(v) > exp(Vf_lﬂ). Using this inequality combined with (3.6), we get
P{(E12NE13)°Y < P{ELY + 26 + 2exp(—02 exp(31%)/2).

Therefore, we have P{(E12 N €13)°} < P{ES} + 3exp(—1?) for all v large enough. Using
Proposition 2.5, it is easily seen that P{&f3} < e for all large enough v’s. Let us fi-
nally set &g def E1o N &1 N E12 N E13. We have proved that there exists co5 > 0 such that
P{&§} < co5 exp(—I1?). Notice that

therefore, on &s,

but for all s such that i~ <s<k™ + % we also have

1 v kg 1
A(v) —A(s) = A(v) — A <k‘_ + > = / evdy > / eVvdy = Zevkﬂ
k k

—+3 t+3

k—+i 1 .
/ (A(v) = As)) ds > ze*.

We finally get

52 v#
Il(v) = Ee v=1/2 on &g.
We conclude the proof of the proposition by taking the logarithm. |

Proof of Proposition 3.2. For v > 0, we define the process Z by

aet L (0B (A(v)), —tA(v))

Z(t) A)

for t > 0.

Using the second Ray-Knight Theorem and the scaling property of the Brownian motion, we
see that for any fixed v the process Z has the law of a squared Bessel process of dimension
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0 such that Z(0) has an exponential distribution with mean 2. Moreover, Z is independent
of V. We can now rewrite (3.3):

I(v) = A(v) /0 Yoz (‘iﬁ;f)) s,

def

Recall that 0 is an absorbing state for Z. Let ¢ = inf (s > 0, Z; = 0) be the absorption
time of Z and let us also define

() d:‘*finf{s >0, 2 <_§E;)S)> :0}.

L(v) = A(v) /0 g <‘f§§;)$)> s,

We keep the notation [ & log(v). Note that A(v) = Jo €"#ds < exp(V, +1). Therefore,

We can now write

L) < W) sup  (e7V) sup Z(s)
0<s<¢W) 520

< C(v) sup Z(s)et VY],
s>0

Let us define £14 & {sup, > 02(s) < exp(l?)}. Using Lemma 7.1, p1501 of [HS98a], we get
P{&¢,} <4exp(—I?). Thus, on 14, we have

Lo(v) < ¢(v)e2* V@) -Y(=Cw), (3.7)
Let £15 = {((v) < v (Vo +1*) + 1} and notice that for all a > 0,
w>a= {5 <c}.
Therefore I
P{f} = P { =L ESE;)“ 1= c} ,
but

p— 1 —EV(@;-I—V‘) 1 _ 4
A=V, +1Y) -5 > eVsds > SeV
2 —Gy(Vo+i4)—1 2

and we have already checked that A, < exp(V, + ). Combining these two inequalities, we
get, for all v large enough,

—A (—5v(Vv + l4) — %) S els
A(v) = )

hence
3

P{EG} <P{C>e} <e
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where we have used Lemma 7.1 on pl1501 of |[HS98a| for the last inequality. On £14 N &5
and for v large enough, we deduce from (3.7) that

Ih(v) < ((v)e V@V (Tott) i),

But we also have V(v) — V(—ay (V, +1*) + 3) = Uy(V, + 1) —1* (recall that V is flat on
the intervals (—n — 1, —n|, n € N). Therefore, on €14 N &5,

I(v) < C(v)efl?’*ﬁ\’(vv*#) .

Let &6 def {5v(vy + 14) + % < eXp(l3)}. On &17 2t 14N E15 N 16, we have ((v) < exp(lg).
Hence, on &7 and for all v large enough,

log (I(v)) < Uy (Vy +log*v) .
This gives the upper bound on £17. Let us check that
P{&f} < cagexp(—1?). (3.8)

We have P{&5;} < P{cv(V, + %) > exp(13)/2}, thus

c T(_ L% < oF oL 4
< —— < —— <
P{Em}\P{V( S )\QV(v)}+P{V( Sy <2 }
We also have
= 1 13 — = 1 13 15/2 = 1 15/2
—el) < < ey g 1
P{V( 5 )\2V(v)}\P{V( se) <e }+P{V(v)> 5 }

Using Corollary 2.16 and the regular variation of a~!(-), for all v large enough,

P{V(v) > %eﬁm} <e P,

Recall that (V(z),z > 0) and (—V(—x),z > 0) have the same law, thus Proposition 2.18
yields
vV =, 1
P{V(—*e ) < 2l4} < P{V(—gel?’) < 615/2} < -

These inequalities give P{&{;} < 3¢, hence P{&f}) < 8e"*. We now prove the lower
bound. Notice that

1

ov(V(v—3))+3 -
Av) > / B T eVads = 1eV(v_%), (3.9)
oy(V(v—1)) 2

and for all z < ~V(VU_% — 1M <aov(V,),

0 _
—A(—z) = / ') ds < V)5, (V,). (3.10)

—T

Thus, for all 2 < oy(V(v — ) — ') we have —A_,/A, < exp(—1*)oy(V,). Let &3 £
{ov(V,) < exp(I?)}. As for the estimate of P{&f}, it is easily checked that for all v large
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enough, P{€5} < 3exp(—I1?). Moreover, on the set &1, combining (3.9) and (3.10), we
have —A(—xz)/A(v) < e 2 forall 0 < 2 < oy(V(v—3) —1%). Let us now define

&g def { inf Z(s) = eilQ}.

Using Lemma 7.1 on p1501 of [HS98a], we see that P{&{y} < 2¢~"". Recall that
0o *A(*S) gV(V(U,%),ﬂ) B *A(*S)
I(v) = A Yz ———=)ds > A Yz ——>)d
o) =0 [0z (St )as > aw | ‘ YORY A

therefore, on &y ot E1g N &g,

1) _ l4)A(v)e’y(’a’(m”*%)44))712.

I(v) > oy (V(U ~ 3

Using (3.9) again, on &,

L(v) > laV(V(v_l)_z4)er—%)—Y(—&v(V(v—%H“))—P

2 2
1. /— 1 e )
B R

Notice that on {V(v—1/2) > I*}, we have y(V(v—1/2) —I*) > 1 because V is identically
0 on (—1,0]. This implies that on &y N {V(v — 1/2) >[4},

L) > Vi)

which yields the lower bound by taking the logarithm. Finally, set &g o Eo0 N E17, we have,
for all large enough v’s

P{ES} < P{Ef} + P&} < 13~ (oev)

The upper bound holds on & and the lower bound on & N {V (v —1/2) > I*}. [

4 Proof of the main theorems

4.1 Proof of Theorem 1.2

We first state two lemmas before we give the proof of the theorem.

Lemma 4.1

For any ¢ > 0, we have

logP{X; > ca ' (1 loglogl
Jimn sup og P{X; > ca™" (logt)loglog ogt}g_

K#
00 logloglogt “a

where K# is the constant of Proposition 2.5.
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Proof. Let v & ca™! (logt)logloglogt. Using (3.4) and Proposition 3.1 we get, for all ¢

large enough,

P{X; > v} P{L(v) <t}
<

P{Vv#_l logt + (log v)*} + ca5 exp (~(log v)z) ‘

N IN

N

Using Proposition 2.5, for any € > 0 and for all ¢ large enough (depending on ¢), we obtain

4 < 4 < _ # v — 1/2
P{VU_% < logt + (logv)*} < exp < (K z—:)OL_1 (ogt + (log 1))
< exp (—c(K# — 2¢) log log log t)

where we used the regular variation of a=!(-) to check that a=*(logt+ (logv)*) ~ a~(logt).
Therefore, for all ¢ large enough,

P{X;>v} < exp (—c(K# — 2¢) log log log t) + exp (—(logv)?)

< 2exp (—C(K# — 2¢)logloglog t) .

Lemma 4.2

For any ¢ > 0 and for all t large enough (depending on c¢) we have

{Xizv} D {V# logt — +/logt, V, logt}

~ (logt logt
{UV(Of ) <O2g}0521(1))

where v £ ca1(logt)logloglog t and where £ (v) is a measurable set such that

P{&5,(v)} < cage ~(logv)?,

Proof. Using (3.4) combined with Proposition 3.1 and 3.2, for ¢ sufficiently large,

{Yt } {Il + 12( ) }
S {eV“ +(log v)* + er(Vu+(10gv)4) < t} N E21(v)

with £ (v) & E(v) N E(v), thus P{ES (v)} < cage~ 189 Notice also that

{Vf < logt—\/logt} {V#—Hog v < log2}

Hence, {Yt > v} contains

{VU# < logt — \/@} N {(NJV (Vo + (logv)*) < log <;) } N E(v). (4.1)
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We also have {Vv < lngt} C {VU + (logv)* < bft}, therefore

- _ logt ~ (logt logt ~ logt
{7, < 280 0y (50) < 2B c {a (7, + o) < 9

This inclusion combined with (4.1) completes the proof of the lemma. [

Proof of Theorem 1.2. As already mentioned in the introduction, X and X have the
same upper function so we only need to prove the theorem for X. Let us choose K such that
K < K# and e > 0. Define the sequence t; & exp(exp(ei)). We also use the notation f(z) &
a~!(log z)logloglogz. Using regular variation of a(-) we easily check that f(t;)/f(tiy1)

converges to exp(—ae). Thus, for all ¢ large enough

> L) cpfr, 5 1)

P{E

Using Lemma 4.1, we get

>f(ti)}< K#

log P{Yti+1 7 e

li -
ol Tog(e(i + 1)

Since K < K%, we can choose ¢ small enough such that K# /(K exp(2¢)) < 1 and we
deduce from the last inequality that the sum Y P{Xy,, > f(t;)/K} converges. Using

Borel-Cantelli’s Lemma, with probability 1, for all i large enough, X;.,, < f(¢;)/K. For

i+1
t € [ti,t;+1], using monotonicity of f and X,

f(ti)gw.

K K
This holds for all K < K#. Hence, we have proved that

X; < Xtiﬂ <

. 1
lim sup

< —=% a.s.

We now establish the lower bound. Choose K > K7 and change the sequence (t;) to
t; = exp(expi). From Lemma 4.2, for i large enough,

(%02 52 s entrwy/monento

where & was defined in Lemma 4.2 and where Ex9(i) & Ex3(i) N Ea4(7) N Ea5(i) with
Exnli) & {Tv (/1) <2},
.\ def # i i/2
Enli) Vi < el
Es(i) = {Vyaox <€/},

Moreover, > P{&$,(f(t;)/K)} < oco. So it only remains to prove that the events E2(7)
happen infinitely often. It follows from the results of Section 2.1 that lim; ., P{&23(7)} =
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P{Us(1/4) < 1/2} and it is clear that this quantity is not 0. Since the events Ea4(i) N Exs(7)
and &3(i) are independent, we have P{E22(7)} = c30P{€24 (i) NE25(7) } for all i large enough.
Thus, we deduce from Proposition 2.6 that for all large enough ’s,

631P{524(i)} < P{ng(z)} < P{524(i)}. (4.2)

We now use Proposition 2.5 to obtain

. K# f(ti K#
log P{&24() } TR T (ei( _) ) o log i, (4.3)

where we used the regular variation of a(-) for the last equivalence. In particular, combining
(4.2), (4.3) and using the fact that K7 /K < 1, we get

ZP{@@)} = 00.

We now estimate P{&22(i) N E22(7)} for i large enough and for j > i.

522( )ﬂgzg( ) C 524(i) ﬂ524(')
< ) 0 { CriasiV) i sigye <€ =}

Hence, from the independence and the stationarity of the increments of V (at integer times),
combined with Proposition 2.7, for all ¢ large enough (i.e. all j large enough), we get

P{En(i)NEn(j)} < PLEuIIP{VH, Kt < ol — 12y
P{&4(i) }P{E24(5)}
32P{V <el —el?)

ft)/ K
Using Lemma 2.4, we find, after a few lines of calculus, that for all ¢ sufficiently large
exp(j) — exp(j/2) = a1 (f(t;)/K) whenever j —i > logi. Thus,

v
- i YL
PV se ¢ VP{ (F(t)/K )<1}.

(
Since the r.h.s. of the last inequality converges to P{S fé 1} # 0 as i goes to infinity, we

deduce that for all ¢ large enough and all j — i > logsi,
# j /2
P{Vf(ti)/K <el — el } > c33 > 0.
Finally, for all ¢ large enough and for all j > i,

P{&(i)}, if 0 <j—1i<logi,
c3aP{&E (1) }P{E24(j)}, if j—i > logi.

Combining (4.2),(4.3) and (4.4), we see that

liminf Y P{Ex(i) N En(i)} /(2 P{Sgg(i)})2 < ¢35

Ly <N i<n

P{&(i) N &2(j)} < { (4.4)
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Thus, the Borel-Cantelli Lemma of [KS64] yields P{&22(7) i.0.} > 1/c35. From a classical 0-
1 argument (compare with [HS98a], p1511 for details), we conclude that P{&2(i) i.0.} = 1.
Hence, with probability 1,

y X, _ 1
imsup — > —.
i TOR e

Moreover, the value of K# when the limiting process S is completely asymmetric was cal-
culated in Corollary 2.10. |

4.2 Proof of Theorem 1.3
Eemma 4.3

Let p > 0, for all t large enough (depending on p) and all 1 < X\ < (loglogt)?, we have

— _at(logt b=t (a"t(logt)/A
P{x < ) <o b—(l(a—(l(lig)t/)))‘

Proof. With the notation v £ a=1(logt)/), the bounds on X give

a”'(logt) 1
———= < v<a (logt).
(loglogt)r vsa(logt)

We assume that ¢ is very large, hence v is also large. From (3.4) combined with Proposition
3.1 and Proposition 3.2, we deduce that

— t t

< > — >
P{X, <0} < P{Il(v) > 2} +P{12(v) > 2}
# t 4 T (T 4 t —(logv)

< P{Vv > log§ — (logv) }+P{UV(VU + (logv)*) > log 5} + cgre” V8

2

Remind that b=!(-) is regularly varying with index ¢ < 1. Therefore, using Corollary 2.16
and Lemma 2.4,

t 1
P{V# > log§ — (logv)4} < P{V# > §logt}
< v
)
b~ (v)
<
b0 (10g 1))

It is also easy to check from the bounds on v and the regular variations of a=!(-) and b=1(")

that
b~ (v)

S b1 (a1 (logt)”

We still have to prove a similar bound for P{Uy(V, + (logv)*) > log(t/2)}. Notice that
for any y > = > 0, {Uy(x) > y} = A(z,y — x). Hence, using Proposition 2.13 and the

- 2
o~ (log)
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independence of (V) >0 and (V_3)z >0, we get

P{ﬁv(vy + (logv)*) > log %} < C4OE[b_1(a_1(V” + (log 0)4))]

b=1(a"1(log %))
blv) o [b‘%a—lm + (logv)*))
b=1(a"1(log %)) b=a"(a(v)))

< ¢4

| as)

Pick £ > 0, we now use Lemma 2.4 for the regularly varying function b=!(a=1(-)) to verify
that (4.5) is smaller than

C41,e

(Vv +a$3g v)* > e +1

b~*(a"(log 5))

Finally, since ¢ < 1, we can choose € small enough such that ag+¢ < «, therefore Corollary
2.17 implies

iv 1 4N\ agqte 71; agq+e
gl (Yot (ogv)” <E Vo oy < a2
a(v) a(v) ’
We conclude the proof by noticing that b~ (a™!(log £)) ~ b~ (a~*(logt)). [

Lemma 4.4

Let p > 0, for all t large enough (depending on p) and for all 1 < A < (loglogt)”, we
have

— “Llogt ~ —
{Xt < a()\og)} » {UV(a(v)) > logt} N{V,/2 > 2a(v)} N&(v),
with v & a1(logt)/), and where & (v) is the event defined in Proposition 3.2 and
satisfies

P{E(v)°} < coge108Y)°,

Proof. Recall that Relation (3.4) gives {X; < v} = {I1(v) + I2(v) > t} and notice that
I;(v) > 0 for all v > 0, thus, {X; < v} D {I2(v) = t}. We now use Proposition 3.2 to see
that for all ¢ large enough (i.e. v large enough), the event {X; < v} contains
{ﬁv(v%% — (logv)?) > logt} N {V%% > (logv)4} N&E(v)
D {ﬁV(VU/Q —a(v)) = logt} N {VU/Q > 2a(v)} N&y(v)
> {Ty(a(w)) > togt} N {¥y5 > 2a(0)} 0 &o(v),

where we used the fact that z — ﬁv(av) is a non-decreasing function and the trivial inequal-
ities Vv/g < V,_1/2 and (log v)* < a(v) which hold for all large enough v’s. |
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Proof of Theorem 1.3. For any positive non-decreasing function f, recall that

b @ (log )/ £(1)dt
J(f) —/ b=1(at(logt))tlogt

(we do not specify the lower bound for the integral since we are only concerned with the
convergence of J(f) at infinity).

Let us first prove the theorem when J(f) < co. Since f is non-decreasing, it is clear
that f(t) — oo as t — co. Thus, f(£) > €2 for all t large enough. Let fo(t) < (loglogt)/4.
Since J(fp) < 0o, we may assume without loss of generality that

F(t) < fo(t) = (loglogt)¥7  for all large ¢ (4.6)

(compare with the argument given in the beginning of the proof of Theorem 1 in [Erd42]).
Let us set t; & exp(expi). Since a~!(-) is regularly varying with index «, for all i large
enough, we have

a t(logtit1) < e**a~(logty). (4.7)

Hence, Lemma 4.3 yields, ¢ still being very large,

— a_l(logtiﬂ) ~ a_l(logti)
P <—fg ) < P{Fu<Tmmim )

b_1(62aa—1(]0g tz)/f(tl))

< c36 b*l(afl(logti))

< . b~ (a ' (logti—1)/f(t:))

S b=1(a"1(logt;))
boba" (logt)/ f(#))dt

< en | ot ogt

where we again used (4.7) and the regular variation of b=! for the third inequality and the
monotonicity of a~1,b=! and f for the last inequality. Since J(f) < oo, we conclude that
S P{X:, < a(logtiy1)/f(t;)} < oo and Borel-Cantelli’s Lemma implies that, almost
surely,

a”'(log tis1)

f ()
But for t; < t < t;41, we have a1 (logt;1)/f(t;) > a (logt)/f(t) and X; > Xy, therefore,
with probability 1,
lim inf 0

t—oo a~!(logt)

X, > for all ¢ large enough.

X:>1as. (4.8)

Changing f to Cf for any C' > 0 does not alter the convergence of J(f). Thus, the liminf
in (4.8) is in fact infinite.

We now prove the second part of the theorem. Let f be a positive, non-decreasing
function such that J(f) = co. Again, we may without loss of generality assume that (4.6)
holds (compare with the argument given in the proof of Theorem 3 in [Erd42|). Moreover,
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the theorem is straightforward for any bounded function f provided that we prove the
theorem for at least one function h going to infinity with J(h) = oo (for example h(t) =
(loglogt)'/(29)). Thus, we now also assume that f(t) — oo as t — co. We use the notation
v; & a1 (logt;)/f(t;). Our assumptions on f yield the following estimates:

a=!(logt;)

(loglog 1,7/ v; < a”(logt;) for i large enough, (4.9)
0g 10g1;
and
. . (%
1 - 1 I E—] 4.1
Jim v; = oo, Jim aT(logh) 0 (4.10)

From now on, we assume that ¢ is very large. Using Lemma 4.4, we get
a~(logt;)

{Xti S f(t:)

} D Eg(vi) N Ea6(i),

where ggﬁ(i) def 527<i) N Sgg(i) with
Er(i) £ {Tv(a(v)) = log(t)},
Eas(1) ot {Vvi/2 > 2a(vi)}.

Since P{&y(v;)°} < cag exp(— log? v;), we deduce from (4.9) that

Z P{gg(vi)c} < o0.

Thus, it only remains to prove that P{&(7) i.0.} = 1. Since v; — 00 as i — oo, results of
Section 2.1 imply that

lim P{&xs(i)} = P{S;)5 > 2} > 0.

1—00

Therefore, the independence of Ex7(7) and Eg(7) yields
ca3P{E27(i)} < P{&(i)} < P{&27(0)} (4.11)

Recall that {ﬁv(a(vi)) > log(ti)} = K’(a(vi),log(ti) — a(v;)). Keeping in mind (4.10), we
can estimate P{&7(7)} using Proposition 2.13:

b1 (v;) b1 (v;)
b~ (a~!(logt;)) b~1(a"(logt;))
Combining (4.11), (4.12) and the assumption that J(f) = oo, we obtain

Z P{Egﬁ(l)} = OQ.

<P{&7(i)} < e

(4.12)

C44

We now estimate P{&x(i) N E6(j)}. Let g(i) & log(t;) — a(v;). It is easy to check from
(4.10) that g is ultimately increasing. Let us pick j > i. We can rewrite

Ex7(i) N Ex7(j) = N (a(vy), 9()) N A (a(vy), 9(5)).

There are two cases (which are not disjoint):
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1. (V_p)n >0 hits (—oo, —g(j)] before hitting [a(v;), 00). Using Proposition 2.13, we see
that the probability of this case is less than c4sb™t(v;) /b~ (a  (logt;)).

2. (V_p)n >0 hits (—o0, —g(i)] before hitting [a(v;), 00) (i.e. E27(i) happens) and also the
shifted random walk (V_z, (4(v,))—n)n >0 hits (=00, —g(j)] before hitting [a(v;), +00)
(the probability of this event is clearly smaller than P{&27(j)}). Using the Markov
property for the random walk (V_y,), > ¢ we conclude that the probability of this case
is smaller than P{&27(i)}P{&27(j)}.

Combining 1. and 2. we deduce that P{&27(7) N &27(7)} is smaller than

b~ (vy)
b= (a1 (logt;))

< P{Er ()} P{En(j)} + %P{Sw(i)}

P{Ex(i)}P{E2(4)} + cas

b~ (a"t(logt;))
b~(a"!(logt;))’

where we used (4.12) for the second inequality. Finally, using Lemma 2.4 and (4.11), we
conclude that for all ¢ large enough and all j > i,

P{&6(i) N &20(5)} P{&7 (i) N &E2(5)}

<
< ear (P{E()YP{E ()} + P{Ess(i)e w0 D)

hence

hnnllo%f Z P{EQG(Z) N gg(j(j)}/( Z P{gQG(Z)}>2 < cyq7.
,j<n i<n

As in the proof of Theorem 1.2, we apply the Borel-Cantelli Lemma of [KS64| and a standard

0-1 argument to conclude that P{&(i) i.0.} = 1. Since this result still holds on changing
f to Cf for any C' > 0, we have proved that, almost surely,

lim inf ﬁ =0.

0]

4.3 Proof of Theorem 1.4

The proof is again based on two lemmas.

Lemma 4.5

Let p > 0. For all t large enough and all 1 < A < (loglogt)? we have

a~!(logt)
A

}<Qﬁ
< .

P{X; < 2
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ef

Proof. We use the notation v & a~'(logt)/A. Let also ¥ & —X | it is clear from a

symmetry argument that Y is a diffusion in the "reversed" environment W (V_x, xz € R).
Let us notice that

P{X; <v} = P{Xi<wv Y;<v}
< PXy<v, V<V  }+P{YV,<v, W, <W_,}L

Let us also note that all the assumptions we made on V also hold for W. Hence, we only
need to prove the upper bound for the first member on the r.h.s. of the last inequality.
According to (3.4), we have

{Yt<v}={f1( +I2 >t}

thus,
P{X;<v,V, <V_,} < P{ilogtévv <V,v} (4.13)
t — logt
+P{11( )2 5.V < T} (4.14)
t — logt
—|—P{12( )25,V <V, W, < T}' (4.15)

We deal with each term separately. First, using independence of (V;), >0 and (V_z)z >0

=

we see that the right term of (4.13) is smaller than

P{VU > ilogt}P{V_v > 1o t} 6;9

where we used Corollary 2.16 for the last inequality. We now turn our attention to (4.14).
Using Proposition 3.1, we check that for ¢ large enough, this probability is smaller than

t — 1
P{V# > logi —log*v, V, < Zlogt} + 025e_l°g2”.

For ¢ large enough, using the Markov property, we also have

" — logt 1 o 1
P{V#} log§—10g4v, vaﬁ} < P{V#>E’VU<E}

4 2 4
logt # _ logt
< pfon( ) <0, o) )
I I
< P{VU < — E}P{V# > &t}
4 2

C50

S e

where we again used Corollary 2.16 for the last line. It is also clear from our bounds on
A that e~ 108" v < 1/A? for all t large enough. This gives the desired bound for (4.14). Tt
remains to prove a similar inequality for (4.15). We first use Proposition 3.2 to see that, for
all ¢ large enough, (4.15) is smaller than

-~ o B B 1
P{UV(VU +10g4 1)) > log o Vo <V_,, V, Zlogt} + C%eflog?v_
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We can rewrite:
~ t — — — 1
{UV<V’U + 10g4 U) P log 57 Vv < V—’lﬂ VU < 1 IOgt}

_ t _ o — 1
= {5V(VU +log* v — log 5) < oy (VU + log* v) ,oy(Vy) <o, V, < 1 logt}

c {av(- lngt) <Gy (Vo +1og'v) , 5(V,) <v}

- logt e e - logt U
C {UV( — %) < oy(V,) < v} U {Uv(VU) < UV( — %) < oy (VU + log* v) }
Notice that on the event {oy(—(logt)/2) < ov(V,) < v}, the process (V_z)z >0 hits
(—o0, —(logt/2)] before time v, and then hits [0,00), again before time v. The Markov

property with the stopping time oy (—(logt)/2) and Corollary 2.16 yield

P{o( - lngt) <Fv(V) <o} <P{V_, < - lngt}P{V,v > lngt} <%
We also check from the Markov property of (V_.), > ¢ applied to the stopping time v (V,)
that the probability of {5v(V,) < Gv(—(logt)/2) < v (V, +log*v)} is smaller than the
probability that the random walk (V_,), > ¢ hits (—oo, —(log t)/2] before it hits [log* v, 00).
Using the estimate for the exit problem (Proposition 2.13) and the regular variation of
b=1(a"1(-)), for t large enough,

~ = - logt = 4 b= (a™! ((logv)?)) 1
P{UV(VU) < JV< — T) < oy (VU + log v) } < e - (a_l (lngt)> < N2
so we conclude that (4.15) is indeed smaller than cs3/\2. [ |

Lemma 4.6

Let p > 0. For all t large enough and all 1 < X\ < (loglogt)?, we have

~L(logt
{X; < a()\og)} D) {Vv_; > 2logt, V_U+% > 210gt} N Ez9(v),
2

with the notation v = a=(logt)/\ and where Ex9(v)¢ is a measurable set such that

P{E20(v)°} < csqe 0570,

Proof. Recall that X is given by the formula
Xi =A™ (Bro)

def

where B is a Brownian motion independent of V. Let B ¥ _B and let L denote the bi-
continuous version of the local time process of B. Recall also that W stands for the reversed
process (V_z, & € R). At the beginning of Section 3, we stated that

ox(v) =I1(v) + Iz(v) for all v > 0. (4.16)
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It is easily checked, using similar arguments, that

ox(—v) = I (v) + L(v) for all v > 0, (4.17)
with
) 2 [ e opE). A,
B 2 [T L op(Re). A-n)dy
and where

Az) dZEf/ eVdy.
0

Thus, I and I, are given by the same formulas as I1 and Iz by simply changing the process
B to B and V to W. Notice that B is again a Brownian motion independent of W and
that W fulfills all the assumptions we made on V. Therefore, Propositions 3.1 and 3.2 also
hold for fl and fg with W instead of V (with different events and different values of the
constants). In particular, for all v large enough,

log I1 (v) > V¥

—v+1/2 T (logv)*  on Es0(v), (4.18)

where E30(v) is a measurable set such that P{E$,(v)} < cs5 exp(—log? v). In view of Propo-
sition 3.1, we also have

log I(v) > V|, — (logv)"  on E(v). (4.19)

Let Ex(v) & E(v) N Es(v), then P{ES(v)} < csqexp (—log®v). Combining (4.16), (4.17),
(4.18) and (4.19), we get

{Xi <v} = {ox(v) >t} n{ox(~v) >t}
S {Liw) >ty {Li(v) >t}
> {VI,, >logt+logtv} N {VF |, >logt+log* v} N En(v)
> {VE > 2logty 0 {VE ) > 2logt} N Ex(v)
D {Vioijg > 2logt} N{V_y 110 > 2logt} N Ex(v).

Proof of Theorem 1.4. This theorem is now an easy consequence, using similar techniques
as in the proof of Theorem 1.3 of the last two lemmas and of Proposition 2.15 when the
limiting process has jumps of both signs. We feel free to omit it. |



4 : Proof of the main theorems 69

4.4 Proof of Theorem 1.5

Proposition 4.7
We have

1 -
- # prob.
ey (logax(v) Vv UV(VU)> e,

The proof of this proposition is very similar to that of Proposition 11.1 of [HS98a| using the
estimates for I; and I obtained in Propositions 3.1 and 3.2. We therefore skip the details.

Proof of Theorem 1.5. Let A > 0 and let v be a large number,
X, .
p <a1(logv) P >\> = P (logox(Aa"'(logv)) < logv)
_ p log ox () < 1 ,
c(x) 2\

with the change of variable x = Aa~!(logv) and where

c(z) €AV (z/)) ~ alz). (4.20)

T— 00

Results of Section 2.1 ensure that (V¥ v Uy(V,))/a(x) converges in law as # — oo towards
the random variable Sf V Us(S1) whose cumulative function is continuous. Hence, it follows
from Proposition 4.7 and from (4.20) that

X ~ 1
imP|—"Y >\ =P{S* Sy < —— %,
el <a1(logv) ) { 1V Us(S1) )\1/@}

Thus, we have proved the convergence in law of X,/a~!(logv) towards the non-degenerate

random variable 2 & (S?é V Us(S1))~®. We now calculate the Laplace transform of this law

when S is completely asymmetric. Recall the notation 7 and T, defined in Section 2.3. Let

r1 be the stopping time:
r & inf (x >0, (S—¢)t >0 hits (—oo, —(1 — z)) before it hits (z, oo))
From the scaling property of S,
P{(STVUs(S1)™ <A} = P{S{VUsSy) > 1}
= P{Tl# ATr <A}

therefore = and 7'1# A Tr, have the same law. Let us first assume that S has no positive
jumps and recall that (—S_;, ¢ > 0) and (S, t > 0) have the same law. It follows from the
well known solution of the exit problem for a completely asymmetric Levy process via its
scale function W (c.f. |Ber96a| , p194) that

P{ri >z} = P{(S_¢)t>o0 hits (x,00) before it hits (—oo, —(1 —z))}

= 1—P{(St)t >0 hits (1 — z,00) before it hits (—oo, —z)}

W (z)

L wW(1)’
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and it is known that in our case W(z) = 2! /T(«). Hence, the density of 71 is

-1

2—a

P{r edz} = dx  for x € (0,1).

Using Corollary 2.11 and the independence of (S¢)t >0 and (S—¢)¢ >0, for ¢ > 0,

1
E |:6qu1#/\7'”] — / E[efqu#/\‘rz] o — 1d.’L‘

1-204

B a—l//\/l 1—3:))
- Ma r2—a dx

a—1 & q" /1(1—:1;)Q”
— d
Mal(q) nz% I'(1+an) Jo a4

but
1 Li—a2)m  T(a-1)
I'(1+4 an) / z2-e = T(a(n+1))’
hence
—(]7’17‘#/\7%1 — F(Ot) — qn M,a(q)
Ele ] Ma(q) ZO fanr 1) )

We now assume that S has no negative jumps. As in the previous case, we can again
calculate the density of r1 from the scale function and we find

a—1
P{?"l S d$} = m
Thus, using Corollary 2.11 we get
E|:e—q7'1#/\7'rl:| — /1 E[e—q’rl#/\’rx] o — ldl‘
0 1'2_0‘
~(a-1) /1 M (qz®) . M. (q)a(a—1)q /1 xafl./\/l;(qxa)dx
o (1—w=z)*e agMg(q) + (o — M (q) (1—z)>>

We have already calculated the first integral:

! M ( Lla+1), ,
[ e [ T

As for the second integral,

PatTIMG(ga®) g~ (ntl)gt 1t aettD
/0 A—ppo &= > Tlan + 1)+ 1) /0 A=zl

n=0

and it is known that

="~ " Tlamt2 -1

/1 gn+1)—1 I'(a(n+1))I(a—1)
0
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hence
Pat MG (ga®)  Tla—1) ¢ ¢"
/0 (1—x)?>« dr = « HZ:O MNan+2)-—1)
(n+2)(a(n+2)—1)¢"
Fa(n+2)+1)

=T'(a—-1)

WE

0

3
I

[e.9] oo

B (n+1)(n+2)q" (n+2)q"
=Ta-1 anz_% T(a(n+2) + 1) +(a_1)gf(a(n+2)+1)>

a1 ) M () 0L
_q<ana<q>+<a Mo (q) r<a+1>)'

Putting the pieces together, we conclude that
(a — 1)M¢(q)
agMe(q) + (o = 1M, (q)

E |:6qu1#/\77‘1:| =

5 Comments

5.1 The case where V is a stable process

Throughout the paper, we assumed V to be a random walk in the domain of attraction
of a stable process S. Let us now assume that V itself is a strictly stable process (such
that |V| is not a subordinator) and let us explain why Theorems 1.2 — 1.5 still hold in this
case. It is clear that all the results dealing with the fluctuations of V remain unchanged.
In fact, they even take a nicer form since we can now choose a(z) = 2/ and b(z) = z/9.
Notice also that we did not use the fact that V was a random walk in the proofs of the
theorems in Section 4. Indeed, the only time we really used the assumption that V was flat
on the intervals (n,n + 1) , n € Z was in the proofs of Propositions 3.1 and 3.2 because
we needed to make sure that V spends "enough" time around its local extrema. Looking
closely at those two proofs, we see that they will still hold if we can show that there exists

a measurable event &31(v) such that:
(a) there exists csg such that P{E31(v)°} < c56 exp(—log?v).

; =~ T 4
’ - v s Ul
(b) On &s1(v), any path of V is such that for all z € [—oy(V, + log®v),v], we have
|V, — V| < 1 either for all y in [2,2 + exp(—1log®v)] or for all y in the interval
[z — exp(—log®v), z].
Let us quickly explain how we can construct such an event. Define the sequence of random

variables (v, )nez by

def

Y0 = 07
Ynt1 ) inf{t >y, Vi =V, | > %} for n >0,
Yonos Einf{t <v_p, [Vi=V,_ | > 3} for n > 0.
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Define

e _ 3 1 3 . 1 3
Es2(v) aef {'yiﬂ — v > 2e log™ v for all —e2108° v < j L e lo8 ”},

def log®/2 log?/2
533(1)) = {fyi[e% log3 ’U] > eog U? 7[e%log3 'U} > eog v 9

Eyulv) € {EV(VU + logtv) < elogm”} ,
E1(v) = Es(v) N Es3(v) N Esalv).
It is clear that (b) holds for £31. We now assume that v is very large. We have
P{&3(v)°} < 2€%log31)P{,Yl < 2e—log3v} < 6576—%10g307

where we used the relation P{y; < 2} = P{V% > 1} and Corollary 2.16 for the last inequal-

(2

ity. Using Cramer’s large deviation theorem, it is easy to check that P{&33(v)‘} < e (in
fact, we can obtain a much better bound). We also have P{&34(v)¢} < 3e~ log” v compare

with the proof of the inequality (3.8) for details. Thus, (a) holds.

5.2 Non-symmetric environments

Throughout the paper, to avoid even more complicated notations, we assumed that the
processes (V;, z > 0) and (—=V_,, z < 0) have the same law. However it is easy to see
that this assumption can be relaxed. Indeed, we may swap Assumption 1.1 for the following

assumption.

Assumption 5.1

(Vp)n>o0 and (V_p)n >0 are independent random walks and there exists a positive
sequence (an),, > o such that

Vi Vo

1 - 1
L, St and —2 2§27
Ay N—00 an n—o0

where S' and S? are random variables whose laws are strictly stable with respective
parameters («, p1) and («,p2) and whose densities are everywhere positive on R.

It is crucial to assume that the norming sequence (a,) may be chosen to be the same for
both random walks (in order to keep the results of functional convergence of Section 2.1)
but the positivity parameters p; and ps may differ. Theorem 1.2-1.5 must be adapted in
consequences. For example, Theorem 1.2 now takes the form:

Theorem 5.2
Under the annealed probability P, almost surely,

I Xy 1
im su = —
tﬁoop a1 (logt)logloglogt K] ’
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where Kf depends only on S' and is given by

0<ugvKt
Furthermore, when S' is completely asymmetric, K. # is given by

K# { p1(c) when S has no positive jumps,
=

e 1
K# ' lim flogP{ sup  (Sy—S;) < 1}.
t—oo t

p2() when S' has no negative jumps.

Now let (T),) stand for the sequence of strictly ascending ladder indices of the random walk

(V—x):r: =0,

Ty &0,
Tpi1 = min (k> Ty, Vo > V_p ).

Hence, T is in the domain of attraction of a positive stable law with index po and we

choose b(+) to be a continuous positive increasing function such that (b(n)), > 1 is a norming

sequence for Ty. Theorem 1.3 now takes the form:

Theorem 5.3

For any positive, non-decreasing function f define

der [0 b=! (e (logt)/f(t)) dt
L= / b=1 (a1 (logt))tlogt

We have, almost surely,
o f(@) 0 =
1 f——r X = L
P a~1(logt) Ssi% ° 00 = L)

In particular, with probability 1,

liminf
Pkt a~t(logt) s<¢

< 0.

(1oglogt)ﬁ wp X, = 0, ifB<1/ps,
B oo, if B> 1/ps.

Theorems 1.4 and 1.5 must be adapted similarly. Notice that we can again calculate the

Laplace transform of the limiting distribution as in Theorem 1.5 when the processes S! and

S? have both completely asymmetric laws.

5.3 Random walk in random environment

We finally recall the connection between the model of the diffusion in random potential

and the discrete model of the random walk in random environment. Let w = (w;)icz be
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an i.i.d. family of random variables in (0,1) and define for each realization of this family a
Markov chain (Z,)y > o taking values in Z such that Zy = 0 and

Wy ife=1,

P{Zn-‘rl = Zn +e | Zn =, (wi>iEZ} - {

1—w, ife=-1.

(Zy,) is a random walk in the random environment w. Its associated potential is the random
walk (Vy)nez defined by Vo & 0 and V,q1 — Vi, & log (1 — wp)/wy) for all n € Z. Let
X still denote the random diffusion in the random potential V. The following result from

Schumacher relates the two processes X and Z.

Proposition 5.4 (Schumacher, [Sch85])
Define the sequence (ftn)n >0 by

def
o = 0,
fing1 = inf (¢ > g, [ Xy — Xpn| = 1)

Under the annealed probability P, the sequence (fin4+1 — fn)n >0 Is 1.i.d. and py is
distributed as the first hitting time of level 1 of a reflected standard Brownian mo-

tion. Moreover, for each realization of the environment w, the processes (X, )n >0 and

(Zn)n >0 have the same law.

Using this proposition, we can easily adapt Theorem 1.2-1.5 for the random walk in random
environment Z in the case where Vi = log ((1 — wp) /wo) satisfies Assumption 1.1. Compare
with Section 10 of [HS98a] for details. For example, Theorem 1.4 for Z takes the form:

Theorem 5.5
Assume that S has jumps of both signs. We have, with probability 1, for any non-

decreasing positive sequence (¢y)n > 0,

L. Cn, 0 1 = 00
liminf —————— sup |Zi| = — B T S—
n—oo a~!(logn) j g;' Hl { 00 HZ:Q (cn)?nlogn { < 0.

In particular, almost surely,

(loglogn)” Z { 0, ifp<1/2,
SR k =

lim inf
oo a1 (logn) 4 on if3>1/2.




Chapter 111

Rates of convergence of a transient
diffusion in a spectrally negative Lévy
potentiall

Abstract. We study the rate of transience of a diffusion X in a Lévy potential which
does not possess positive jumps. We generalize the previous results of Hu-Shi-Yor for drifted
Brownian potentials. In particular, we prove a conjecture of Carmona: provided that there
exists 0 < x < 1 such that E[e"V1] = 1, then X;/t" converges, as t goes to infinity, towards a
Mittag-Leffler distribution with parameter . These results are in a way analogous to those
obtained by Kesten-Kozlov-Spitzer for the transient random walk in a random environment.

1 Introduction

Let (V(z), x € R) be a cadlag, real-valued stochastic process with V(0) = 0, defined on
some probability space (2, P). We consider a diffusion process X, solution of the informal
stochastic differential equation

dX, = dpB — $V'(X,)dt
XU = O?

where (s, s > 0) is a standard Brownian motion independent of V. Formally, one can see
X as a diffusion process whose conditional generator given V is

1 vy d [ v d
26 dx € dr )’

We call X a diffusion in the random potential V. Somehow, this process may be thought

as the continuous analogue of the random walk in random environment (see Schumacher

!This chapter is a slightly modified version of the article: A. Singh, Rates of convergence of a transient
diffusion in a spectrally negative Lévy potential, to appear in Ann. Probab.
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[Sch85] or Shi [Shi01] for a connection between the two models). In particular, both models
exhibit similar interesting features such as asymptotic sub-linear growth.

For instance, if V is a two-sided Brownian motion, then X is recurrent and Brox [Bro86]
proved an equivalent of Sinai’s theorem [Sin82| for random walk in random environment,
that is: X;/log?t converges to some non-degenerate distribution as t goes to infinity.

When the potential process V is a drifted Brownian motion (V, = B, — §x, with £ > 0
and B a two-sided Brownian motion), the diffusion is transient towards +o0o. More precisely,
Kawazu and Tanaka [KT97| showed that the rate of convergence to infinity depends on the

value of k.

o If0 < Kk <1, then t%Xt converges in law, as t goes to infinity, towards a non-degenerate

positive random variable.

e If Kk =1, then IOTtht converges in probability towards %.

o If K > 1, then %Xt converges almost surely towards ”771.

Refined results were later obtained by Tanaka [Tan97] and Hu et al. [HSY99], in particular,
they proved a central-limit type theorem when x« > 1. We point out that these results
are the analogues, when the potential is a drifted Brownian motion, of those previously
obtained by Kesten et al. [KKS75] for the discrete model of the random walk in a random
environment. However, the results of Kesten et al. hold for a wide class of environments,
whereas few results are available in the continuous setting for general potentials. One would
certainly like to extend the results of [HSY99| and [Tan97]| for drifted Brownian motion to
a wider class of potentials. In this spirit, Carmona [Car97| considered the case where V
is a two-sided Lévy process and proved, by use of ergodic theorems that, if ® denotes the
Laplace exponent of V,

E {eAV’f} =N 10 NeR (1.1)
(note that ®(\) may be infinite), then
o If &(1) < 0 then X;/t converges almost surely towards —®(1)/2.
o If &(—1) < 0 then X;/t converges almost surely towards ®(—1)/2.
e Otherwise, X;/t converges almost surely towards 0.

Carmona also conjectured that when the limiting velocity is zero, assuming that there exists
0 < k < 1 such that ®(k) = 0, then one should observe the same asymptotic behavior as in
the case of a drifted Brownian potential, i.e. the rate of growth of X; should again be of
order t*. We prove that this is the case when V is a spectrally negative Lévy process (i.e.
a Lévy process without positive jumps).

Throughout this paper, we will make the following assumption on V:
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Assumption 1.1
The following hold:

(a) (Vg,z € R) is a cadlag locally bounded process with Vo = 0 and the two processes
(Vy,x2 > 0) and (V_,,z > 0) are independent.

(b) (Vgz,x > 0) is a Lévy process with no positive jumps, which is not the opposite of
a subordinator, and is such that limg;_, V, = —oo almost surely.

¢) (V_z, x> 0) is such that [.° eV-rdr = oo almost surely.
0

Let us first make some comments concerning our assumptions.

- Notice that (c) is a weak condition. For instance, it is fulfilled whenever (V_,, z > 0)
is a Lévy process which does not diverge to —oo. In fact, (¢) is only to ensure that the
diffusion X does not go to —oo with positive probability but we are not really con-
cerned about the behavior of V for negative 2’s. In particular, the process (V_,,x > 0)
may have jumps of both signs.

- Since (V,, z > 0) has no positive jumps, its Laplace exponent ® given by (1.1) is finite
at least for all A € [0, 00). The assumption that V is not the opposite of a subordinator
implies that ®(A\) — 0o as A — 0o. Moreover, since V is transient towards —oo, the
right derivative of ® at 0+ is such that ®'(0+) = E[Vy] € [—00,0). Thus, the strict
convexity of ® implies that V fulfills the so-called Cramer’s condition: there exists a
unique x > 0 such that

®(k) =0. (1.2)

In particular, ®(z) < 0 for all « € (0, x) whereas ®(z) > 0 for all > &.

Figure IIL.1 : The Laplace exponent .

We introduce the scale function of the diffusion X:

A(z) d:d/ eVvdy for x € [—o0,00]. (1.3)
0
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Figure IIL.2 : Sample path of V.

On the one hand, Assumption (c¢) implies that

lim A(zx) = A(—o0) = —c0 P-as. (1.4)

r——00

On the other hand, in view of Assumption (b), for 0 < § < —E[V;], the Lévy process
(Vg + dz, 2 > 0) also diverges towards —oo. This entails

lim A(z) = A(+00) <o P-as. (1.5)

T——+00
Combining (1.4) and (1.5), classical results concerning diffusion processes show that X is

almost surely transient towards +oo (see [Shi0O1] for details). We now introduce the hitting
time of level r > 0 for the diffusion:

H(r) Einf {t >0, X, =r}. (1.6)

Let AV stand for a Gaussian N (0, 1) variable. For o € (0,1)U(1,2), let S5* be a completely
asymmetric stable variable with characteristic function

B 1657] e (i (1t (22))

(S5 is positive when a < 1). Let also C°* denote a completely asymmetric Cauchy variable
with characteristic function

. ea 2
E [e”c | =exp (— <|t| +it—log |t|>) :
7T

The main result of this paper characterizes all the possible rates of transience of the diffusion
X in the Lévy potential V.
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Theorem 1.2

Recall that k defined by (1.2) is the unique positive root of the Laplace exponent ® of
V. We denote by ® the derivative of ®. Set

([ )]

This constant (which only depends on the potential V) is finite. When £ > 1 (i.e. when
def

®(1) <0), set m = —2/P(1) > 0. We have, depending on the value of k:

K=E

(a) If0 <k <1,

1

mr2K?2 "
7H law 2 Sca'
rl/s (r) oo <2sin (%) D' (k) "

(b) If k =1, there exists a function f with f(r) ~ @,2(1)7'10g7’ such that

(c) fl<k<2,

(d) If k =2,
1 law _4
Trlogy H(r) —mr) =2 (@(1) @’(2)>
(e) If k > 2,

v, [3(0(2) = 49(1)
(H(r) ~mar) —»\/ s V.

This theorem gives precise asymptotics for H(r). It is well known that these estimates may
in turn be used to obtain asymptotics for X¢, sup, <, Xs and infs > ¢ X (see [KT97| for
details). For example, when 0 < k < 1, (a) of the theorem entails

Xt o 207 "sin (B) @'(k) /1 \"
a2t law, )
t* t—oo Tr2K?2 Sca
The same result also holds for sup, < ; X or infs > ¢ Xs in place of X;.
One would certainly wish to express the value of the constant K in term of the charac-

teristics of the Lévy process. Although there is to our knowledge no explicit formula for this
constant, there are some cases where the calculations may be carried to their full extent.
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Example 1: We consider a potential of the form V, = B, — §x with x > 0 and where
B is a two-sided standard Brownian motion. According to Dufresne [Duf90] (see also
Proposition 2.2 of [CPY01]), the random variable [;*e"*ds has the same law as %
where 7, denotes a gamma variable with parameter x. Therefore, the constant K may

be explicitly calculated:
2&—1
- T(k)

(I" denotes Euler’s Gamma function). Thus, we recover the results of Hu et al. [HSY99]

and Tanaka [Tan97], except for £ = 1 where we do not have the explicit form of the

centering function f.
Example 2: We consider a potential of the form
Ve=cx—71, forz>=0,

with ¢ > 0 and where 7 is a subordinator without drift whose Lévy measure v has the
form v[z,00) = ae™" with a,b > 0. Then, the Laplace exponent of V is given by

a
PN =cA— —— = 0.
(A) =cA T b forall A > 0

Since E[V1] = ¢ — ¢, Assumption 1.1 is fulfilled whenever ¢ < %, in which case Theorem
1.2 holds with k = ¢ —b. According to Proposition 2.1 of [CPY97]|, the density & of the
integral functional fooo eVedz satisfies the differential equation

(E)bk(u)du.

u

o0

(1+ cx)k(z) = a/
x
This equation may be explicitly solved and we find

b(z) — AT (2 + 1) b
(e) = T(2—b)T(b+1)) (1+cx)te’

Thus, we can again calculate the value of the constant of Theorem 1.2,

r(2)

(2-b)T(b+1)

K= 2 k(2)dr = —
e ke =

In the case of a drifted Brownian potential, in order to obtain the rates of transience of
the diffusion, Kawazu and Tanaka [KT97, Tan97] made use of Kotani’s formula whereas Hu
et al. [HSY99] made use of Lamperti’s representation combined with the study of Jacobi
processes. Unfortunately, both methods fail for more general potentials. Our approach
consists in reducing the study of H(r) to that of an additive functional of a Markov process.

More precisely, the remainder of this paper is organized as follow: in Section 2, we show
that H(r) has the same rates of convergence as fg Zsds where Z is a generalized Ornstein-
Uhlenbeck process. In Section 3, we study the basic properties of Z. Section 4 is devoted
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to the study of the hitting times of Z and we will prove that this process is recurrent. In
Section 5, we define the local time and excursion measure associated with the excursions
of Z away from level 1. The main result of that section is an estimate of the distribution
tail of the area of a generic excursion. Section 6 is devoted to the calculus of the second
moment of the area of an excursion when s > 2. Once all these results have been obtained,
the rest of the proof is very classical and is given in the last section.

2 The process 7

We first construct X from a Brownian motion through a random change of time and a

random change of scale. Let B denote a standard Brownian motion independent of V and,
ef

for z € R, set op(z) & inf {t >0, B; = z}. Recall that the scale function A was defined
in (1.3). The process A is continuous and strictly increasing. Let A™' : (—o0, A(4+00)) — R
denote the inverse of A. We define

Tt) < /Ot exp (—2V(A~(By)))ds for 0 <t < op(A(+00)). (2.1)

The process T is strictly increasing on [0,0p(A(+00))). Let T~ denote the inverse of T
and set
X, = A N(B(T(t))) forall t > 0. (2.2)

According to Brox [Bro86|, the process (X;, t > 0) is a diffusion in the random potential
V. Recall that H(r) defined by (1.6) stands for the hitting time of level r for X. Using the
representation (2.2), we obtain

H(r) = T(op(A(r)))- (2:3)

Now, let Lp(z,t) denote the (bi-continuous) local time of B at level x € R and time ¢ > 0.
Substituting (2.1) in (2.3), we get

o5 (A())
Hr) — /0 exp (—2V(A~Y(By))) ds

A(r)
- / exp (~2V(A" () L (y, 05(A(r)))dy.

—00

Making use of the change of variable A(z) =y,

H(r) = /r exp (=V.) Lp(A(x),op(A(r)))dx = Ji(r) + Ja(r),

—00

where

J(r) = exp (—V,) Le(A(z), o5(A(r)))dz,

Jo(r) /0 "exp (—V,) Lp(A(z), o5(A(r))dz.
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We first deal with J;. Since x +— Lp(x,t) has compact support for all ¢ and since

lim, .~ A(z) = —o0, we see that
0
J1(00) d—ef/ exp (—V;) Lp(A(x),0p(A(+00)))dx < oo P-as.

Moreover, Ji(r) < Ji(oo) for all » > 0. Thus, we only need to prove Theorem 1.2 for Ja(r)
in place of H(r).

According to the first Ray-Knight theorem, for all @ > 0, (Lg(a —t,0(a)), 0 <t < a)
has the law of a two-dimensional squared Bessel process starting from 0 and is independent
of V. Let (U(z), > 0) under P be a two-dimensional squared Bessel process starting from
0, independent of V. Then, for each fixed r > 0,

Jo(r) = /OT e V=U(A(r) — A(z))dx

low /OT e VTV U(A(r) — A(r — y))dy

r Y
law / e VrvJ </ eVT5d5> dy
0 0
law " -V Y \%
= e "o-n-U e’ (r—s)—ds dy
0 0
def

(where V,_ denotes the left limit of V at point ). For any fixed r > 0, we define \7;’ =
Vir—yy— =V, for all 0 < ¢ < r. Therefore, the scaling property of U yields

ro Yy
Jo(r) = /0 e VvV <eV"/O engs> dy
r N Yoo~
law / e Vv </ €V§d5> dy.
0 0

Time reversal of the Lévy process V (see Lemma 2, p45 of [Ber96a]) states that for each
r > 0, the two processes (V; , 0 <t < r)and (—V;, 0 <t < r) have the same law. Thus,

for each fixed r, under P,

r y r
Ja(r) lgV/O evU </0 e_Vsds) dy :/0 Zgds, (2.4)

Z; ¥ eVtU (a(t)), (2.5)

with the notations

where

a(z) < /095 e Veds. (2.6)

According to (2.4), we only need to prove Theorem 1.2 for the additive functional for Zsds
instead of dealing directly with H(r).

The rest of the proof now relies on the study of the process Z. As we will see in the next
sections, Z is a ‘nice’ recurrent Markov process for which we may define a local time L at
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any positive level, say 1. We may therefore also consider the associated excursion measure

n of its excursions away from 1. Given a generic excursion (€;) with lifetime ¢, we define

~ ¢
I(e) d:ef/ €sds.
0

The key step consists in proving that I(¢), under the excursion measure n, has a regularly

the functional

varying tail of the form
~ C
n {I(e) > :17} ~ =

Then, as we may write

/OtstS% > Ie),

excursion €
starting before t

the asymptotics of fot Zsds will follow from classical results on the characterization of the
domains of attraction to a stable law.

3 Basic properties of Z

Recall that U under P is a two-dimensional squared Bessel process starting from 0 and
is independent of V. We now consider a family of probabilities (P, , x > 0) such that U
under P, is a two-dimensional squared Bessel process starting from = and is independent
of V. In particular P = Py. We will use the notation E, for the expectation under P, (and
E = E for the expectation under P = Py). Of course, the law of V is the same under all
P, and, when dealing with probabilities that do not depend on the starting point x of U,
we will use the notation P.

Let us first observe that the process Z defined by (2.5) is non-negative and does not
possess positive jumps because V has no positive jumps. Moreover, under P, the process
Z starts from xz. We define the filtration

Fi € o(Vy,Ula(s)),s < t).
Our first lemma states that Z is an F-Markov process.

Lemma 3.1

((Zt)t >0, (P2)z > 0) is an F-Markov process whose semigroup fulfills the Feller property.
Moreover, for each x > 0, the process (Z;, t > 0) under P, (i.e. starting from x) has
the same law as the process (Z*, t > 0) under Py where

78 geViU (Cl(t)) : (3.1)

X
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Proof. The process U is a squared Bessel process. Therefore, our process Z is a generalized
Ornstein-Uhlenbeck process in the sense of [CPY97] and Proposition 5.5 of [CPY97] states
that Z is indeed a Markov process in the filtration F. Let (P;); >0 and (Q¢)¢ > o stand for
the respective semi-groups of U and Z. The independence of U and V yields the relation

Quf (@) =B [(2)) = B [Pagy (7)) (@)] (3:2)

Since U is a squared Bessel process, its semi-group fulfills the Feller property. Moreover,
a(+) is continuous with a(0) = 0 and lim; .o et = 1 P-a.s. These facts combined with
(3.2) readily show that (Q;) is also a Fellerian semigroup. Finally, (3.1) is an immediate
consequence of the scaling property of U. |

For x > 0, we say that x is instantaneous for Z if the process Z starting from z leaves
x instantaneously with probability 1. Moreover, we say z is regular (for itself) for Z if Z
starting from x returns to x at arbitrarily small times with probability 1.

Lemma 3.2

Any x > 0 is regular and instantaneous for Z.

Proof. We only prove the result for x = 1, the general case may be treated in the same
way. Since U under P is a squared Bessel process of dimension 2 starting from 1, it has the
same law as (B2(t)+B2(t)+2B(t)+1 , t > 0) where B and B are two independent standard
Brownian motions. It is therefore easy to check, using classical results on Brownian motion,
that

(a) For any strictly decreasing sequence (t;); >0 of (non-random) real numbers such that

lim; . t; = 0, we have:

P {U(t;) > 110} =P {Ut) <1io} =1

(b) litgéﬁf % = —o0 Pj-a.s.

Let us now prove that Z starting from 1 visits (1,00) at arbitrarily small times. Recall
that (V, , x > 0) is a Lévy process with no positive jumps which is not the opposite of
a subordinator. According to Theorem 1, p189 of [Ber96al, the process V visits (0, 00) at
arbitrarily small times with probability 1. Thus, for almost any fixed path of V, we can find
a strictly positive decreasing sequence (u;); > o with limit 0 such that V,, > 0 for all i. But,
conditionally on V, under Py, U is still a squared Bessel process of dimension 2 starting

from 1 and
Zu, = iU (a(uy)) > Ula(uy)).

Since a(-) is continuous with lim; .o a(t) = 0, the sequence (a(u;)); > o is positive, strictly
decreasing with limit 0. Using (a), we conclude that Z starting from 1 visits (1,00) at
arbitrarily small times almost surely.
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When 0 is regular for (—oo,0) for the Lévy process V, a similar argument shows that Z
starting from 1 visits (0, 1) at arbitrarily small times almost surely. Let us therefore assume
that 0 is irregular for (—oo, 0) for V. According to Corollary 5, p192 of [Ber96a], this implies
that V has bounded variations, thus there exists d > 0 such that lim, 04+ V;/z = d a.s.
(c.f. Proposition 11, p166 of [Ber96a|). Let a~'(-) denote the inverse of a(-). Since a(t) ~t
as t — 0+, we have a1 < 1+ 2dt for all ¢t small enough, almost surely. In consequence,

Z(a'(t)) = e« '0U{t) < (1+2dt)U(t) for t small enough, Py-a.s.

Using (b), we conclude that the process (Z(a™'(t)), t > 0) visits (0,1) at arbitrarily small
times Pj-a.s. Since a™'(-) is continuous, increasing and a(0) = 0, this result also holds for
7.

We proved that Z starting from 1 visits (0,1) and (1,00) at arbitrarily small times
almost surely. Since Z has no positive jumps, starting from 1, it returns to 1 at arbitrarily
small times almost surely. ]

Lemma 3.3

For all x,y > 0 and all t > 0, we have P, {Z; = y} = 0. In consequence,

/ liz,—pdt =0 Pgy-as. forall z,y > 0.
0

Proof. Since a squared Bessel process has a continuous density, P, {U(a) = b} = 0 for all
b,z > 0 and all a > 0. Recalling that V and U are independent and a(t) > 0 for all ¢t > 0,

we get
P, {Z =y} =E [Px {U(a(t)) = ye VH =0.

The following easy lemma will be found very useful in the remainder of this paper.

Lemma 3.4

For all 0 < = < vy, the process Z under P, (i.e. starting from x) is stochastically
dominated by Z under P, (i.e. starting from y).

Proof. The process U is a two-dimensional squared Bessel process and a theorem of
comparison for diffusion process (c.f. Theorem IX.3.7 of [RY99]) states that U under P,
is stochastically dominated by U under P, whenever x < y. Thus, the lemma is a direct
consequence of the independence of U and V. ]

We conclude this section by proving the convergence of Z at infinity.
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Proposition 3.5

For x > 0, under P, the process Z; converges as t goes to infinity towards a non-
degenerate random variable Z, whose law does not depend on the starting point. The
distribution of Z Is the same as that of the random variable

oo
U(l)/ ¢'sds under Py. (3.3)
0

In particular, the law of Z has a strictly positive continuous density on (0,00) and

2°T(k + 1)K

(3.4)

where k is the constant of (1.2) and where K = E [A(+00)""!] € (0, 00) is the constant
defined in the statement of Theorem 1.2.

Proof. According to Proposition 5.7 of [CPY97], under the assumption that E[V;] < 0, the
generalized Ornstein-Uhlenbeck process Z converges in law towards a random variable Z.,
whose distribution is given by (3.3). In our case, we may also have E[V;] = —oco. However,
in the proof of Proposition 5.7 of [CPY97], the assumption that E[V;] < 0 is required only
to ensure that o

tlirélth = —oo and /0 eVtdt = A(+00) < 00 as.

Since we have already established these two results, Proposition 5.7 of [CPY97] is also true
in our case. The process U under Py is a squared Bessel process of dimension 2 starting
from 0. Therefore, U(1) under P has an exponential distribution with mean 2. Keeping in
mind that V and U are independent, we find

P{Z, >z} = Po{U(1)A(+0) > z}
= E[Po{U(1)A(4+00) > x| A(+00)}]

E [exp (-M(fm))] : (3.5)

It is now clear that Z has a continuous density, everywhere positive on (0,00). Moreover,

in view of the Abelian/Tauberian theorem (see for instance chapter VIII of [Fel71]), we
deduce from (3.5) that the estimate (3.4) on the tail distribution of Z is equivalent to
E [A(400) 1]

This result is proved in Lemma 4 of [Riv05] in the case 0 < k < 1. Another proof, valid
for any x > 0 is given in Theorem 3.1 of [MZ06| under the restrictive assumption that V;
admits a finite first moment. However, one may check that, in the proof of Theorem 3.1 of
[MZ06], the assumption E[|V;|] < oo is only required for 0 < x < 1. Thus, in our setting,
(3.6) holds for any x > 0. We point out that Lemma 4 of [Riv05] and Theorem 3.1 of
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|MZ06| are both based on a theorem of Goldie [Gol91| which is, in turn, a refined version
in the one-dimensional case of a famous result of Kesten [Kes73] on the affine equation for
random matrices. L

4 Hitting times of 7

Given a stochastic process Y and a set A we define the hitting times
TA(Y)=inf{t > 0,Y; € A} (with the convention inf () = co). (4.1)

For simplicity, we will use the notation 7,(Y) instead of 7(;1(Y). When referring to the
process Z, we will also simply write 74 instead of 74(Z). We now show that the hitting times
of Z are finite almost-surely and we give estimates on their distribution tail. In particular,
this will show that Z is recurrent. The rest of this section is devoted to proving the following
four propositions. These estimates are quite technical and, on a first reading, the details of
the proof may be skipped after glancing at the statements of the propositions.

Proposition 4.1

For any 0 < = < y, there exist ¢y, c2, > 0 (depending on y) such that

Py {T[y 00) = t} c1,y€ —c2ut  forallt > 0.

Proposition 4.2

There exist yg, cs, c4 > 0 such that for all yo < y < x:

P, {TO [0,y] = t} <es(log(z/y)+1)e “TG/TT for all t > 0.

Proposition 4.3

For all x > 0 and all y > 0, there exist c5 4.y, C6.z,y > 0 (depending on x and y) such
that

P, {1, >t} <cs5.4€ .yt forall t > 0.

In particular, Z starting from x > 0 ultimately hits any positive level.

Proposition 4.4
We have

lim sup P,{m\, <7} =0.

A—00 y >
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Proof of Proposition 4.1. Let 0 < z < y. According to Lemma 3.4, 7|, o) under Py is
stochastically dominated by 7y, o) under P, thus we only need to prove the proposition for
x = 0. Let |t] stand for the integer part of t. We have

Py {T[y,oo) >t} < Py {Zl <Y, Z2<Y, ..., Z\_t] <y} <P0{21 <y}LtJ

where we repeatedly used the Markov property of Z combined with the stochastic mono-
tonicity of Z (Lemma 3.4) for the last inequality. Since Z; = eV1U(a(1)), it is clear that
Po{Z1 <y} < 1forall y > 0. Thus, setting ca, = —log (Po{Z1 < y}) > 0 and ¢1, = e?v,
we find

Py {T[ym) > y} e ultl < cl,ye_clyt.

The proof of Proposition 4.2 relies on

Lemma 4.5

There exist c7,cg,xg > 0 such that, for all x > xo,

P. {1049 >t} < cre” St for all t > 0.

Proof of Lemma 4.5. Pick n > 0 and let (Vg") ,t > 0) stand for the Lévy process
Vgn) = V; + nt. Recall that ® denotes the Laplace exponent of V. Thus, the Laplace
exponent ® of V(M is given by ®™ (z) = ®&(z) + nz. Since ®(k/2) < 0, we can choose 7
small enough such that ®(x/2) < 0. Then Vgn) diverges to —oo as t goes to infinity and
we can define the sequence

def
Y0 0,
Yosr % inf {t >y, VI v 1og(8)} .
The sequence (Yn+1 — Yn)n >0 is 1.i.d. and distributed as ;. We have

K

P{y >t} <P {Vgn) > — log(8)} <P {exp (ﬁVgn)> > 81'5}

< 85E [eXp (gv,ﬁ"))] _ g5 (s/2)

Since CIJ(”)(K/ 2) < 0, we deduce from Cramer’s large deviation theorem that there exist
cg, €10, 11 > 0 such that

P {v, > cgn} < crpe” " for all n € N. (4.2)

Notice that, from the definition of 7y,

[a—y

71 71
eV’Yl a(fyl) = / eV’(Yq)ivgn)in(’yliS)dS < / efn('ylfs)ds < —, (4:3)
0 0

3
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and also 1
e/ < 2. (4.4)

Qo

The process U under P, is a squared Bessel process of dimension 2 starting from =x.
Therefore, U under P, is stochastically dominated by 2(x 4+ U) under Py. Using the
independence of V and U, we deduce that Z,, under P, is stochastically dominated by
2¢V1 (x4 U(a(y1))) under Py. Moreover, the scaling property of U combined with (4.3)
and (4.4) yields, under Py,

2e" 1 (. + Ula(y))) = 2ze¥ + 2" 1a(y)U(1) <
Thus, Z,, under P, is stochastically dominated by the random variable § + %U (1) under

Po. Now, let (xn,n > 1) denote a sequence of i.i.d. random variables with the same
distribution as %U(l) under Py. Define also the sequence (R¥, n > 0) by

RE =
def
w1 = 3RE A Xnt
The process (Z, , n > 0) under P, is a Markov chain starting from z. We have already
proved that Z,, is stochastically dominated by R{. By induction and with the help of
Lemma 3.4, we conclude with similar arguments that the sequence (Z, , n > 0) under P,

is stochastically dominated by (RY, n > 0). In particular, choosing n = [t/c9| and using
(4.2), we find

x x
Px {T[O,x/Z} > t} < P{’}/n > an} + P$ {Z’Yl > 5 g ey nyn > 5}
< cloe’cllt+P{RT>§,...,Rﬁ>g}.

Thus, it only remains to prove that there exist ci2, 9 > 0 such that

P{Rj‘>g, ,Rﬁ>§} <e 2" forallneN and all z > .

Expanding the definition of R*, we get

pr_ T 1 1
n—@‘f’ﬁXl‘F---‘f‘ZXn—l"’Xn-
Let us set ¢ = 8/n. We have
4 T 1 1
Rﬁ—gc < 47+4n—1 (Xl—C)+---+Z(Xn—1—C)+(Xn—0)- (4.5)

Let also S denote the random walk given by Sy 0 and Snt1 ot Sn + (Xn+1 — ¢). We can
rewrite (4.5) in the form

4 a 3~ 1
k=1
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Let p = inf {n > 1, S, < 0} stand for the first strict descending ladder index of the random
walk S. We have

PR 2\"
P{u>n} <P{S,>0} <E [G%Sn] —E [65’51} — ()
e
where we used the fact that S; has the same distribution as the random variable %U(l) - %
under Py (and U(1) under Py has an exponential distribution with mean 2). Therefore, 1
is almost surely finite. Setting c1o =1 —log2 > 0, we get

P{u>n} <e “?" forallneN.

Finally, from the definition of x, we have S, < 0 and S, > 0 for all 0 < n < u hence

3 1
Su= 72 Sk < 0.
k=1

Combining this inequality with (4.6) and the fact that 4 > 1, we obtain, whenever z > zy &

16 ..
3¢
4 €T 4 x

N
=
|8

Thus, for all x > x,

P{Rgf> g , oo., RE > g} <P{u>n} <e 2"
This completes the proof of the lemma. |

Proof of Proposition 4.2. Set yg & xo/2 where z is the constant of the previous lemma.
This lemma ensures that for all x,y such that yp < y < x and % < 2, we have

P, {7‘[07y] > t} <cre™ ! forall t > 0. (4.7)

Let us now fix z,y such that yo < y < 2. Define the sequence (z,) by 2z = z and
def def

Zn+1 = 2n/2. Set m = 1+ [log(z/y)/log(2)], then
T=202212 .- Z2m-12VY 2 Zm
Thus,

m—2
t t
P, {7[0731} > t} <Py {T[Ovzl] > m} + - P, {T[Ovzi+l] ~ T[0,2] > m}

t
+ P$ {T[ij] - T[Ovszl] > } .

3
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Making use of the Markov property of Z for the stopping times 7y ;,,; combined with Lemma
3.4, we get

m—2
t t t
P {4 > 1} <P {T[o,zﬂ > m} t Zl P {T{o,ml] > m} +t P {T[o,m = m} :

According to (4.7) each term on the r.h.s. of this last inequality is smaller than cye™¢st/™.
Hence, choosing c3, ¢4 large enough, we get
4
P, {m0, >t} < mere” % < cs (log(x/y) + 1) e Ta/mT1’,

Proof of Proposition 4.3. We have already proved Proposition 4.1 and Proposition 4.2.
Recall that Z has no positive jumps. In view of Lemma 3.4, it simply remains to prove that
for any 0 < y < yo (yo is the constant of Proposition 4.2), we have

Py0 {T[O,y} > t} < 6137y07y67014’y0’yt for all ¢t > 0. (48)

Fix y < yo, pick z > yo and define the sequence (v7) by

v =0,

Vi «f inf{t> Vp y Zy = yo and SUp,z < s <t Zs 22}.
Making use of Proposition 4.1 and Proposition 4.2, we check that v is finite for all n,
P,,-a.s. More precisely, these propositions yield

Py, (Vi >t} < cisy e 0%t forall t > 0.

Since the sequence (v}, — v})n >0 is i.i.d, Cramer’s large deviation theorem ensure that
there exist ¢17,yq,2, C18,y9,25 C19,590,= > 0 such that

Py, {vy > Cl?,yo,zn} < Cl&yo,ze_clg’yo’zn for all n € N. (4.9)
Notice that lim,_. _ v{ = 0o Py -a.s, thus
Py, {70y <vi} —2 Py {70y < o0} (4.10)

According to Proposition 3.5, we have Py, {Z € (0,y]} > 0 so the limit in (4.10) is strictly
positive. Thus, we may choose z large enough such that Py, {T[Ovy] > uf} =d < 1. Repeated
use of the Markov property of Z for the stopping times v yields

Pyo {0y > V2 } =Py {10y > vi}" = d". (4.11)

Finally, setting n = |t/ci5.4,,.], we get from (4.9) and (4.11):

Py {Tloy) >t} < Py {1 >t} + Py {10y > 7 }
< Cl&yO,ze_clg’yO’zn +d"
< ooy ot

We need the following lemma, before giving the proof of Proposition 4.4.
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Lemma 4.6
There exist kg > 1 and y; > 1 such that

Py {Tkoy < Ty/ko} < fOI‘ a,]] Y 2 Y1-

| =

Proof of Lemma 4.6. Let us choose k£ > 1 and y such that

6'k° < y. (4.12)

We use the notations m = 11og (£) and v, Einf{t > 0,V, < —m}. Set & & {4, < ™}

Since ®(x/2) < 0, we deduce that
P{&} <P{Ven > -m} <e2™E {egvem] _ Emiema(s/2) = 0.
y/k—o00

Define & & {sup, >0 Vs < log(k/7)}. Since V diverges to —oo, its overall supremum is
finite (it has an exponential distribution with parameter ), therefore

P {&5} . 0.

Define also

&Y {U(t) < 2(y—|— % —|—t2) for all t > 0}.

We noticed in the proof of Lemma 4.5 that U under P, is stochastically dominated by
2(y+ B% + §2) where B and B are two independent squared Brownian motions. Therefore,
the law of the iterated logarithm for Brownian motion (see for instance chap II of [RY99)])
entails
P,{&} <Py {there exists ¢ > 0 with U(t) > L t2} — 0.
k y/k—o0
We finally set &4 & & NENE;. Our previous estimates ensure that P,{&f} < 1/4 whenever

k and y/k are both large enough. Moreover, on the set &4, for all 0 <t < vy,

t Ym 2 y
a(t)z = </ €_V5d8> < </ e‘VSds> < (’Ymem)2 <etm = T
0 0

Thus, on the one hand, on &4, for K > 1 and for all 0 < ¢ < v,

2

— Vi < (supsZOVs) y 2 <% vy
Zy=¢e""Ula(t)) <e 2(y+k+a(t)> S = <y+k+k><ky.

On the other hand, on &, since V,,,, < —m,

Zo <72 (y+ Y %) < bye™ <

where we used (4.12) for the last inequality. Therefore,

y
k

1
P, {T[ky’OO) < T[OMH} <P, {&} < 1 for all k, # large enough.
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Finally, since Z has no positive jumps, we also have

Py {Tihy,00) < T0,y/8} = PylThy < Ty/i}-
[ |

Proof of Proposition 4.4. Let y; and kg denote the constants of the previous lemma and
let y > y1. Define the sequence (i) of stopping times for Z:

g,

wo =0,
a1 inf{t > i ) Zy = koZy, or Zy = %Zun}.
Proposition 4.1 ensures that pu, < oo for all n, Py-a.s. The Markov property of Z also

implies that the sequence (Z,, , n € N) is, under P, a Markov chain starting from y and
taking values in {kjy , n € Z}. Moreover, according to the previous lemma

1
Py{ Zunis = koZunl Zpn > 1} =1-Py{ 2, = o D\ 2 > m}<
Thus, if (S, , n > 0) now denotes a random walk such that
P{Sy =0} =1,
P{Sp1=S,+1}=1-P{Sp41=5,—-1} =1,

1
1

then we deduce from the previous lemma that (Zun under Py is

)0 <n < inf{n >0,Z,, <y}
stochastically dominated by (ykaq") In particular, for all y > 31

and all p € N*,
Py{(Zﬂn) hits [kfy, c0) before it hits [O,yl]} < P{ sup S, = p}.

0<n < inf{n>0yki™ <y1}’

Since Z has no positive jumps, we obtain, for all ¥ > y; and all p € N*
Py {Tyké’ < T[O,yﬂ} S P{ sup Sy, > P}- (4.13)
n

Note that the last inequality is trivial when y < y;. Also, since S is transient towards —oo, its
overall supremum is finite and, given £ > 0, we may find py such that P{sup,, S,, > po} < e.
Setting Ao = k7°, we deduce from (4.13) that

sup sup P, {Ty,\ < T[Om]} <e.
A2y 21

Note that 719,,] < 71 (because y; > 1) and recall that Z has no positive jumps. Using the
Markov property of Z combined with Lemma 3.4, we get, for all y > 1 and all A > A,

Py {ny <m} < Py{ny <oy} +Py{mom < Dy Py {nny <711}
< €+Py1{7')\<7'1}.

Since Py, {7\ < 71} converges to 0 as A tends to infinity, there exists A\ > Mg such that
P, {7\ <71} <eforall A > \i. Thus, we have proved that

sup Py {7y <71} < 2¢ for all A > A;.
y=>1
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5 Excursion of 7

5.1 The local time and the associated excursion measure

According to Lemma 3.1 and Lemma 3.2, the Markov process Z is a Feller process in
the filtration F for which 1 is regular for itself and instantaneous. It is therefore a ‘nice’
Markov process in the sense of chap IV of [Ber96a] and we may consider a local time process
(L, t > 0) of Z at level 1. Precisely, the local time process is such that

L (Lt)t

0) is a continuous, F-adapted process which increases on the closure of the
set {t >0

 Zi =1},

\YARW;

e For any stopping time T such that Zp = 1 a.s, the shifted process (Zyi7, Lyt —
L7): >0 is independent of F; and has the same law as (Z;, Lt); > o under Py.

We can also consider the associated excursion measure n of the excursions of Z away from
1 which we define as in IV.4 of [Ber96a]. We denote by (&, 0 < ¢ < () a generic excursion
with lifetime (. Let L~" stand for the right continuous inverse of L:

L' ®inf{s >0, Ly >t} forallt>0, (5.1)
Note that L;' < oo for all ¢ since Z is recurrent.

Lemma 5.1

Under P1, the process L' is a subordinator whose Laplace exponent ¢ defined by
E; [6_/\L;1] L e=t9(N) has the form

p(A) = )\/000 e Mn{¢>r}ydr

Moreover, there exist ca2,c23 > 0 such that n{¢ >r} < coe " for all™ > 1. In
particular, n [(] < oo.

Proof. According to Theorem 8, p114 of [Ber96a|, L' is a subordinator and its Laplace
exponent ¢ has the form

e(A) =Ad+ A /OO e n{¢>r}dr (5.2)
0

Moreover, the drift coefficient d is such that dL(t) = fg 1{z,—1ydt Pi-as. (c.f. Corollary
6, pl12 of |Ber96a|). Thus, Lemma 3.3 implies that d = 0. We now estimate the tail
distribution of ¢ under n. Recall that 74(€) stands for the hitting time of the set A for the

excursion €:

Ta(e) € inf{t €[0,¢] , & € A} (with the convention inf () = c0).
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Since a generic excursion € has no positive jumps, the Markov property yields, for r > 1,

n{(>r} < n{n(e) <1, (>rt+n{eg<2,{>r}

< n{nm(Ee)<1,(>1}Pa{mn>r—1} + n{es<2,(>1} sup P, {m >r—1}
z€(0,2)

< 2n{¢>1} sup Py{m >r—1}.
z€(0,2]

Combining Lemma 3.4 and Proposition 4.3, we also have

sup P, {m >r—1} < max(Po{m >r—1},Po{nn >r—1}) < 6246_(;25@_1)'
xz€(0,2]

This yields our estimate for n{¢ > r}. Finally, any excursion measure fulfills the condition
foln{g‘>'r’}dr<oothusn[C]:fooon{C>r}dr<oo. |

Lemma 5.2

Let f be a non-negative measurable function. For all A\ > 0, we have

W m [ [T @] = o[ [Tl
</OOO e"\tf(Zt)dt>2] = (p(;)n [</0< e_)‘tf(et)dt) 2]

4 Mn [ /O Fon f(et)dt} n [e_AC /0 Y f(et)dt] |

(b) E,

Proof. Assertion (a) is a direct application of the compensation formula in excursion
theory combined with the fact that the set {¢t > 0,Z; = 1} has 0 Lebesgue measure under
P; (Lemma 3.3). Compare with the example p120 of [Ber96a| for details. We now prove
(b). We use the notation G f(z) = E, [ [;° e f(Z;)dt]. By a change of variable and with
the help of the Markov property of Z,

</OOO e—/\tf(Zt)dt) 2] = 2E; [/OOO e MF(Zy) /too e F(Z,)ds dt]

= 2E; UOO e_”tf(Zt)GAf(Zt)dt] :

0

E;

Thus, using (a) with the function x — f(z)G) f(x), we get that

E, (/Ooo e‘)‘tf(Zt)dt>2] - (’D(Z)\)n UOC e‘”tf(et)G)\f(et)dt]. (5.3)
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We also have, with the help of the Markov property,

Grf(z) = E, Uon e"\sf(Zs)ds} +E, [/TOO e_’\sf(Zs)ds]

1

- B, [/Oﬁ e_’\sf(Zs)ds} +E, [e_’\ﬁ} Grf(1).

Therefore, we may rewrite (5.3) as

w(;)n [ /0 LB (B, [ /0 h e—“ﬂzs)ds] dt}

+ SOé)\)n [/C e N f(er) By, [e*A”} dt} Gaf(1). (5.4)

0

We deal with each term separately. Making use of the Markov property of the excursion e
at time ¢ under n(:|¢ > t) and with a change of variable, the first term of the last sum is
equal to

@(ZA)H [ /0 f D) /t Cﬂ(st)f(es)dsdt} _ SO(EA)nK /0 Ce”ﬂet)dt)Q]. (5.5)

Similarly, the second term of (5.4) may be rewritten

— so(A)?MZA)n [/Oce_)‘tf(et)dt} n [e—AC/OC e—”f(et)dt], (5.6)

where we used (a) for the expression of G f(1) for the last equality. The combination of
(5.3),(5.4),(5.5) and (5.6) yields (b). [

Corolary 5.3

Let g be a measurable, non-negative function which is continuous almost everywhere
with respect to the Lebesgue measure. Then

ay Cg(et)dt] ~ 0 Elg(Zy)].

Proof. In view of the monotone convergence theorem, we assume that g is bounded. First,
using (a) of the previous lemma with the function f =1,

Ponlffen] e

A—0+
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Thus, using again (a) of Lemma 5.2 but now with the function g, and with the help of the

monotone convergence theorem, we find
¢ o0 [e%S)
dt| = 1 ME AMg(Zy)dt| = li E)\/ ’\tZdt].
| [[stea| = i OB | [ No(zpae| =nid i i[5 [ oz

By a change of variable and using Fubini’s theorem, we also have

E; [A/OOO e_’\tg(Zt)dt] _/OOO E1 [9(Z,)))] e Ydy.

For any y > 0, Z,/\ converges in law towards Zo; as A — 0T. Moreover, according to
Proposition 3.5, Z. has a continuous density with respect to the Lebesgue measure and g
is continuous almost everywhere, hence limy o1 E1[g9(Z,/\)] = E[g(Zx)]. Making use of
the dominated convergence theorem, we conclude that

B A [ Moz o [T Blza)e vy = Blaz)].

Corolary 5.4

def _9

Recall that m = 5. When k> 1 (i.e. when ®(1) < 0), we have

n[/ogetdt]:n[dm.

Proof. Corollary 5.3 yields n [foc etdt} =n/[(] E[Z]. According to Proposition 3.5, Z,

has the same law as U(1) [;° e"+ds under Py. Moreover, U(1) under Py has an exponential

distribution with mean 2 and is independent of V, hence

E[Zx] = 2/ E [(ivs} ds = 2/ eS2MWgs = _i.
0 0

5.2 Maximum of an excursion

The goal of this subsection is to study the distribution of the supremum of an excursion.

Our main result is contained in the following proposition.

Proposition 5.5
We have

n{r() < o0} ~ nfg LK

2—00 zk
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Of course, this estimate may be rewritten

n{supe > z} ~ n[C]M.

0.¢] oo =
The proof relies on two lemmas.

Lemma 5.6
We have

Lemma 5.7
We have

T 1
lim E, liy > adt| = .
B [/ {227} ] K (k)

Let us for the time being admit the lemmas and give the proof of the proposition.

Proof of Proposition 5.5. Since a generic excursion € under n has no positive jumps, the
Markov property yields

¢ ¢
n [ /D 1{es>z}d8:| = n ll{Tz(6)<00} /T “ 1{es>z}d8]
T1
= n{n(e) < 0} E, [/ 1{Zs>z}d3:| . (5.8)
0

On the one hand, from Corollary 5.3 and Proposition 3.5,

¢ 2°T'(k + DK
1 ds| = P{Z, ~ _— .
0| [ tieaids| = nlP e > 2}~ nld TR (5.9
On the other hand, according to Lemma 5.7,
The proposition follows from the combination of (5.8), (5.9) and (5.10). [

Proof of Lemma 5.6. Since V has no positive jumps, it is not a compound Poisson process,
therefore Proposition 15, p30 of [Ber96a| states that the resolvent measures of V are diffuse
i.e. B[ 1qy,—0ydt] = 0. Thus,

E [/0 l{Vt >O}dt:| =E I:/O 1{Vt>0}dt:| .
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Let ¥ : [0,00) +— [k,00) denote the right inverse of the Laplace exponent ® such that
® o W(A) = A for all A > 0 (in particular, ¥(0) = k). Then, Exercise 1 p212 of [Ber96a)
which is an easy consequence of Corollary 3, p190 of [Ber96a| states that

—At _
E [/0 e My, >O}dt] =T for all A > 0.

Taking the limit as A — 0, we conclude that

E [/OOO Liv, >O}dt} - \fI]I,((([)))) B H‘P’l('@).

Proof of Lemma 5.7. Assume that z > 1 and let € > 0. Note that for 1 < b < z, we have
Tjo,2/5) < 71 P;-a.s. Thus, on the one hand

0,£] 71
E, [/ ' 1{Zt>z}dt] <E. [/ 1{Zt>z}dt} : (5.11)
0 0

On the other hand, the Markov property of Z combined with Lemma 3.4 yield

T1 Tio, %] 1
E. [/ liz, > z}dt] = E; [/ ’ liz, > z}dt] +E. [/ Lz > Z}dt]
0 0 7

[0.2]

T0,7] L
< E, |:/ b 1{Zt>z}dt:| —l—E% [/ 1{Zt>z}dt:|
0 0

0 - (5.12)
= Ez |:/ 1{Zt2z}dt:| +P% {Tz<Tl}Ez |:/ 1{Zt22}dt:| .
0 0

According to Proposition 4.4, there exists by > 1 such that for any b > b, we have
sup, > P./p {7. <71} <e. Therefore, combining (5.11) and (5.12), for all z > b > by,

T0,%] 71 1 T0,%]
Ez / 1{Zt > Z}dt < Ez / 1{Zt > z}dt < 1 Ez / 1{Zt > z}dt .
0 0 0

— &

Thus, we just need to prove that we may find by > by and zp > 0 such that

|
™
N

1 7-[O,bL] 1
kP (k) E. [/0 2 1z, >Z}dt} < m +e forall z > 2. (5.13)

Recall from Lemma 3.1 that the process Z under P, has the same law as the process
(zeVtU(a(t)/2) , t > 0) under Py. Thus,

Pz {Zt > zZ, T[()’%] > t} = Pl {eViU (CL’(;)> > 1 ,VS € [O,t) GVSU (CZ(ZS)> > Z} (514)

Since U is continuous at 0 and starting from 1 under Py, we also have
sup |U <“(3)) —1| P55 0 forall ¢ > 0. (5.15)
0<s<t z

zZ— 00
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Combining (5.14) and (5.15), we get, for all fixed ¢ > 0, that

1

lim inf P, {Zt >z, Tpo,2) > t} > P {th >1,Vse0,t)e’ > }

2—00 'b b
= P{Vt >0, T(—00,— log b] (V) = t}-

Thus, by inversion of the sum and from Fatou’s Lemma

T[O’g] [e o]
lim inf E, [/ "1 s z}dt] = diminf [ P{Z >z 5> 1t}a
0 0

Z—00 zZ—00

Z—00

oo
> / limianz{ZtZz,T[O%] Zt}dt
0

> / P {Vt >0, T(—o00,— log b] (V) = t} dt
0

T(—o0,— logb] (V)
/0 1y, >opdt

By use of the monotone convergence theorem, we also have

T(foo,flogb](v) oo 1
/O l{Vt>0}dt - E |:/[; 1{Vt>0}dt:| == ﬁ@/(ﬂ),

where we used Lemma 5.6 for the last equality. We may therefore find by > b; such that for

710,55] 1

We still have to prove the upper bound in (5.13). Keeping in mind (5.15), we notice that
for all fixed t > 0,

= E

lim E

b—oo

all z large enough

limsup P, {Zt 2z, To,2] 2 t} < limsup P, {Z; > 2z} <P{V,>0}.
2

Z—00 Z— 00

Moreover, Proposition 4.2 states that there exist cggp,, 27, > 0 such that for all z large
enough and all ¢ > 0,

P, {Zt Zz, T[Q%} = t} <P, {7’[07%} > t} < 62675267627”’21‘/.

This domination result enables us to use Fatou’s Lemma for the limsup. Thus, just as for
the liminf, we now find

z

7'[0’7] oo
limsup E, {/ ’2 1¢z, >z}dt} < / limsup P, {Zt >z, T2 2 t} dt
0 0

Z—00 Z—00

o
< / P{V; > 0}adt
0

> 1
= E [/0 1{Vt ZO}dt:| - liq)’(li)'

This completes the proof of the lemma. |
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5.3 Integral of an excursion

We now estimate the tail distribution of the area of an excursion. The next proposition
is the key to the proof of our main theorem.

Proposition 5.8
We have

n{/ocesds>:17} ~ n[q PLRKE

T—00 qy(/ﬂ).ﬁl""i

In the rest of this subsection, we assume « to be a large number and we will use the notations

m £ log’z, (5.16)
def T xz
= L= . 0.17
4 m  logdz ( )

.

Ty(E) py/m(e) C

Figure II1.3 : An excursion e.

The idea of the proof of the proposition is to decompose the integral of an excursion €
such that 7,(¢) < oo in the form (see figure II1.3)

¢ Ty(e) py/m(e) ¢
/ €sds :/ esds—l—/ esds—i—/ €sds (5.18)
0 0 Ty(f':) py/m(e)

where py/,, = inf {t > 7,(€) , ¢ <y/m}. We will show that the contributions of the first
and last term on the r.h.s. of (5.18) are negligible. As for the second term, we will show that
its distribution is well approximated by the distribution of the random variable y fooo eVedt.

This will give
¢ oo
n{/ esds > a:} ~n{ry(e) < oo}P{y/ eVt > a:}
0 0
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and the proposition will follow from the estimates obtained in the previous sections. We

start with a lemma:

Lemma 5.9
Recall the notations (5.16) and (5.17). We have

0.3 K /y\»
P, {/0 Zsds > x} o () (;) )

Proof of Lemma 5.9. Let (Z; , t > 0) denote the process
=~ t
Zy = ertU <a()) .
Yy

We have already proved in Lemma 3.1 that Z under Py has the same law as Z under P,.
Let 74 denote the hitting time of the set A for the process Z. We must prove that

o, %) a(t) x K /y\*
P ig (== )dt>= ) ~ Z) .
A () s O

def

v = inf{t
04 det inf {t

We define

0,V < —log(2m)},

=
> 0 ) Vt < —log(m/2)},

and for 0 < e < %, set

. 2
Sdzf{|U(z)—1|<8fora110<Z<m}'
)

Let us first notice that for all 0 < ¢ < 7y, we have a(t) = ft

0 e Vsds < 2m~y and eV < ﬁ

Thus, on &, we have

7 =y (M) - ¥ g v 1
= ye (y <2m( +8)<m (5.19)
We also have eVt > % for all t <+' < ~. Thus, on &,
~ t 2
Zy = yetU (CL()> > —y(l —e) > Y forallt < v (5.20)
Yy m m

Combining (5.19) and (5.20), we deduce that
£c{y <Hpz <}

Let us for the time being admit that

lim (;)HPl (£ =0. (5.21)

r—00
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We now write

Fo u o, &
P1{/ Ol vy <a’(t)> dt > x} < Pl{/ ol ey (a(t)> dt > $75}+P1 &
0 Yy y 0 y /

0.2 y T .
<P1{/ et(1+e)dt>y,5}+P1{5}
0

<Pl rars L ip e,
{/0 ‘ (1+e)y}+ HES

We have already checked in the proof of Proposition 3.5 that

P{/ooo et > f€>y} e T ((1?@,)5

: o, K(1+e)"
lim sup <$) Py / 0 eVt <a(t)> dt > z < &
T—00 Yy 0 Yy Yy @ (’{)

Therefore,

We now prove the liminf. Since 7' < Tjo, 2] on &,

Fou o, &
pl{/“”m] g <a(t)> dt>x} > Pl{/[o’m]eth (“(t)> dt>x,5}—P1{5c}
0 Yy y 0 Y ’
,Y/
z P /
0

> P{/7 eVedt > q ° )y}—QPl{EC}.
0 — &

Since V., < —log(m/2), it follows from the Markov property of V that

et(1—e)dt > g : 5} — P {&Y

/

P{/vevfdt> x } P{/Oothdt> x }
0 (1 - €)y z—00 0 (1 - 5)9

K (1—e)y\"
T—00 (I)’(Ii) xr ’
so we obtain the lower bound

K ; v _ .
iint (2) 2o [0 e () g S KOS

It remains to prove (5.21). To this end, notice that

2

2
mw}gp{m>m%m4sw|w%ux}
Yy Yy z€[0,m? /y]

< P{Vm/2 > log(2m)} +P1{ sup  |U(z) —1| > 5}.
z€[0,m? /y]
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Recall that ®(x/2) < 0. Thus, on the one hand

PV, > —log(2m)} < (2m)3E[e57mz]| = (2m)5e30(5) :0((%))

On the other hand, U under P; is a squared Bessel process of dimension 2 starting from
1. Thus, it has the same law as B2 4+ B? + 2B + 1 where B and B are two independent

Brownian motions. Hence,

Pl{ sup |U — 1] >£} < 2P{ sup |B|2>8}+P{ sup |B| >}
[0,222] [0,222] 4 [

< BP{ sup |B(z)| >E}.
2 4
sef0,22)

Finally, from the exact distribution of supy j | B| and the usual estimate on gaussian tails,

2Vt _a?
P, {sup|B\ > a} < —e 2t forall a,t > 0.
a

[0,¢]
Therefore,
24m €2y Y K
Pl{ sup |U(z)—1 >5}<exp<— >:0(<))_
2€[0,m2 /y] | ( ) | 5\/17 32m2 T
This completes the proof of the lemma |

Proof of Proposition 5.8. We first deal with the liminf, we have

¢ T[O’%](E)
n{/ esds>az}>n Ty(6)<oo,/ esds > x o .
0 y(€)

Using the Markov property and the fact that the excursion € does not possess positive jumps,
the r.h.s. of this inequality is equal to

n{r,(e) < oo} P, {/OT[O”Z'IL] Zyds > az} ~ mnl(] W

T— 00

where we used Lemma 5.9 and Proposition 5.5 for the equivalence. Therefore,

¢ K 212
liminf 2"n / €sds >x p = M
M 0 @/(x)

We now prove the upper bound. Let € > 0. We need only to show that

¢ 2°T (k) K2 K2
lim sup z"n / €sds > (1 + 2¢ 3:} < —
I_)OOP { o s ( ) (k)

According to Lemma 5.1, we have n {( > log? x} = o(z™"), thus

¢ ¢
n {/ esds > (1+ 25)37} =n {C <log’z, / esds > (1 + 28)3:} +o(z™").
0

0
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We also note that foc €sds < (Supgep¢) €s- Since y = x/ log? z, we deduce that for all =
large enough,

¢
{( <log?x , / esds > (1 +25)x}
0

¢ 7y(€)
= {Ty(e) <(<log’z, / esds > (1 +2¢e)z , / ’ €sds < Ex}
0 0

¢
C {Ty(e) <(¢<log’z, / esds > (1 —i—e)x}.
7y (€)

Thus, making use of the Markov property of € for the stopping time 7 (e),

¢ ¢
n {/ esds > (1+ QE)x} < n {Ty(s) < ¢ <logx / esds > (1 + 5)x} +o(z™")
0 Ty (€)

T1
< H{Ty(E) < oo}Py {/0 Zyds > (1+e)x , 1 < long} + o(x").

In view of Proposition 5.5, it remains to prove that

)" n 9 K
li - P Zsds > (1 <l <
im sup (y) y {/0 sds > (1+e)z , 7 <log x} e

T—00

B
We have

T1
P, {/ Zyds > (1+e)x , 1 < long}
0

T[Oy%] T1 5
<P, Zsds >x o + Py Zsds >ex , 11 <log“z ;.
0 T

Y
0, 7]

On the one hand, according to Lemma 5.9,

K Ty% K
i (2)° 2, [ e} =
v—o0 \ Y 0 ?'(r)

On the other hand,

n 9 ex
P, Zsds >ex | 11 <log“x < Py sup  Zs >

2
Tlo, ) s€lT, 2171] log™

log2 T

< P, {T e < n}, (5.22)

where we used the Markov property of Z for the stopping time 7(y »| combined with Lemma

3.4 and the absence of positive jumps for the last inequality. Since £ < —%— we notice

m log? x’
that

n{T ez (e)<oo} = n{T (€) < T_es (e)<oo}

log“ x
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Therefore, (5.22) is also equal to

X

IO (M) o ((2)).

n {7,/ (€) < oo} exm x

where we used Proposition 5.5 for the equivalence. This concludes the proof. |

6 The second moment

Recall that m = —2/®(1). The aim of this section is to calculate n[(foc(et - m)dt)Q]
when « > 2 in term of the Laplace exponent ® of V. We start with:

Lemma 6.1
When k > 2, for all t,z > 0,

(a) E.[Z]=m+ (z — m)e!?W).

L, 16(1— et®?) et if d(1) = ®(2),
(b) Eq [Zt] = W + 16(c®(2) — ()

B (@2)—d1)) otherwise.

Proof. U under P, is a squared Bessel process of dimension 2 starting from z, therefore
E.[U(z)] = z 4+ 2x. Making use of the independence of U and V, we get

E.[Z] =E, [thU(a(t))} —E [eV‘EZ[U(a(t)) |V]] —E [th (2 + 2a(t))] .

We have already noticed that time reversal of the Lévy process V implies that e"ta(t) and
fot eVsds have the same law, therefore

E. [Z] = 2E [evt} +2 /Ot E [eVS] ds = ze!®*M 4 q)(21) (etq>(1) - 1)

= m+ (z —m)e®W,

We now prove (b). First, the scaling property of U shows that, under Py, the random
variables Z; and €"ta(t)U (1) have the same law. Second, ¢"ta(t) and fot eVsds also have the

same law. Therefore,
t t 2
</ eVSds> (/ 6V3d8> (6.1)
0 0

where we used the fact that Eg[U(1)?] = 8 because U(1) under Py has an exponential
law with mean 2. By a change of variable and making use of the stationarity and the

2

Eo [Z{] =Eo [U1)*| E =8E
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independence of the increments of V, we get

t 2 t t
E (/ €V5d8) = 2/ E [62%/ eVy_VIdy] dx
0 0 T
t t—x
= 2/ E [62%}/ E [ew}dydx
0 0
t t—x
= 2/ ezq)@)/ eV®*Mdy da
0 0
2 .
_2(1—€t?®) @((tlt):;b(l)@(l) if ®(1) = ®(2),
- 2(e —e .
@(1)@(2) W otherwise.
This equality combined with (6.1) completes the proof of (b). [

Lemma 6.2
When k > 2,

lim AEq
A—0+

o eV @) - 4a)
</ (2 —m)e dt) = e

This limit is strictly positive because ® is a convex function with ®(0) = ®(k) = 0.

Proof. We write, for A > 0,

) 2
</ (Zt — m)e_)‘tdt>
0
Making use of (a) of Lemma 6.1, we find, for any z > 0,

E. [ / Zte_Mdt] = / E.[Z]e Mdt
0 0

_ /Ooo (m+ (= — m)e ™M) et = A(;A_;?D). (6.3)

Eo =Eg

0o 2 o) 2
2m m
)\t —At
(/0 YA dt) ]—)\ Eg[/o Ze dt]—k 2

(6.2)

This equality for z = 0 combined with (6.2) yields

o0 2 o0 2
(/ (Zt—m)e_’\tdt) /Zte_’\tdt>
0 0
oo 2 ) )
( / Zte)‘tdt>] = 2E [ / Zpe / Zye)‘ydydx]
0 0 T

= 2/ Eq [er)‘m/ Zx+ye)‘(r+y)dy] dx
0 0

= 2/ e TR, [ZIEZE [/ Zye)‘ydyH dx,
0 0

AN+ 2(1))
A (1)2(A—&(1))

E, =E, + (6.4)

We also have

| O
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where we used the Markov property of Z for the last equality. Thus, with the help of (6.3),
we find

Eq

(/000 Zte”dt) 2] - )\()\—2<I>(1)) /OOO e (Eo[Z]] + 2o [Z,]) da.

This integral can now be explicitly computed with the help of Lemma 6.1. After a few lines

of elementary calculus, we obtain

Eo

oo a 2 _ 4(6)\ - <I>(2))
</0 Zye dt) ] TN = B(1))(4N2 — 2X(D(1) + ©(2)) + D(1)D(2))

(this result does not depend on whether or not ®(1) = ®(2)). Substituting this equality in
(6.4), we get

o0 v\ A1) (9(2) — 4B(1)) — 4 (4X 4 2(B(1) — B(2)))
i | ([ e ] = (12 (8(1) - ) (N — 2N @(1) + 3(2)) + (1) D(2)
We conclude the proof of the lemma by taking the limit as A tends to 0+. |

Lemma 6.3
When k > 2,

lim )\El
A—0+

Proof. Recall that ¢ stands for the Laplace exponent of the inverse of the local time L™'.
We first use (b) of Lemma 5.2 with the function f(z) = |z — m]|:

([ ) = | (] i)

oy L, e n [ [Nl o

Note also that Lemma 5.1 and Proposition 5.8 readily show that

¢ B
n [(/ le: — m\dt) ] < oo forall f<k. (6.6)
0

Thus, the three expectations under n on the r.h.s. of (6.5) are finite because x > 2.

E;

Therefore, we can also use (b) of Lemma 5.2 with the function f(z) =2 —m:

(/OOO(Zt — m)e_)‘tdt>2] = gpé)\)n [(/;(et —~ m)e_)‘tdt) 2]

+ Mn { /0 (e m)e”dt] n [eAC /O ‘(e - m)e”dt] . (6.7)

E;
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Recall that ¢(A) ~n[C] A (¢.f. (5.7) in the proof of Corollary 5.3). Thus, keeping in mind
(6.6), the dominated convergence theorem yields

o -(/OC(Q - m)”‘“> 2] " K/og(“ - m)dt> 2]

lim n :e_AC /Oc(et — m)e_’\tdt} —n |:/OC(€t — m)dt] =0

A—0+

and

where we used Corollary 5.4 for the last equality. Finally, (a) of Lemma 5.2 combined with
(6.3) give

S L e = 2 [T e vl

_ 22X < P(1)+2 >_}_2+<I>(1)
p(2A) \ (DA = 2(1)) ) r—o+  n[(J8(1)*

These last three estimates combined with (6.7) entail the lemma. [ |

We can now easily obtain the calculation of the second moment.
Proposition 6.4

When s >2, [(/C(Et B m)dt> 2] _ njq 8(2@) —42(1))
0

Proof. In view of Lemma 6.2 and Lemma 6.3, it suffices to prove that

([ g )|

Indeed, the Markov property of Z for the stopping time 71 yields

</OOO(Zt - m)e_)‘tdt> 2]
</071(Zt —m)e Mdt + /7:0(Zt _ m)e—Atdt> 2]
</071(Zt - m)e—Atdt>2 </000(Zt _ m)e—mdt>2] (6.8)

T [e%e)
+ 2Eq [e—”l / (Z; — m)e_’\tdt] E, [ / (Z — m)e‘”dt} .
0 0

Proposition 4.1 and the absence of positive jumps for Z give

lim AE;
A—0+

Eo

- E,

= Eg + Eg {6_2)\71} Eq

Eq

</071(Zt—m)6—/\tdt>2] < (m 1 1)2Bo[r2] < oo, 69)
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Similarly, .
‘Eo {e/\n / (Z — m)e)‘tdt] ‘ < (m+ 1)Ey[r] < 0. (6.10)
0

Note also that, according to (6.3),

AE; [/OOO(Zt _ m)e”dt] _ (I)?l(;lzg\l):r 2)

(
Thus, (6.8)-(6.9)-(6.10)-(6.11) and the fact that limy_o1 Eq [e72*™] = 1 conclude the proof
of the proposition. [ |

(1)) »mo 0. (6.11)

7 End of the proof of the main theorem

We showed in Section 2 that we only need to prove Theorem 1.2 for the additive func-

I(T)d:d/ Zsds
0

under P = Py in place of H(r). Moreover Proposition 4.3 states that the hitting time of

tional

level 1 by Z is Py-almost surely finite, therefore it is sufficient to prove this result for I(r)
under P;. The remaining portion of the proof is now quite standard and very similar to the
argument given pl166,167 of [KKS75|. Let us first deal with the case x < 1. Recall that L™*
stands for the inverse of the local time of Z at level 1. Since I is an additive functional of
Z, the process (I(L; '), t > 0) under P is a subordinator (without drift thanks to Lemma
3.3), whose Laplace transform is given by

E [e*”@?l)} = exp (—t/\ /OOO e~ 1 {T(e) > x} da:) , (7.1)

where we used the notation I(e) & foc e:dt. We now define

The sequence (&, , n > 1) under Py is i.i.d. Moreover, in view of Proposition 5.8, we deduce
from (7.1) that

- K HH2 2
P1{§1>$}x~ n{](e)>x} ~ n[{]M (7.2)

—00 Tr—00 (I)/(/i).%”

The characterization of the domains of attraction to a stable law (see for instance chap.
IX.8 of [Fel71]) implies that

S

K

I(L,") &+...+& ﬂ2< n [¢] Tr2K?2 )i

2sin (%) ®'(k)

nl/c nl/k n—oo 2
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Moreover, according to Lemma 5.1, we have E [L;'] = n[(] < oo so the strong law of large
numbers for subordinators (c.f. p92 of [Ber96a]) yields

L_l a.s.
z b n[C]. (7.3)

We can therefore use Theorem 8.1 of |Ser75| with the change of time L~' to check that,

under Py,
1
21¢2 ®
I(t) taw 5 ‘K s,
t1/k t—oo ~ \ 2sin (Zf) (k)

This concludes the proof of the theorem when x < 1. Let us now assume that x = 1. In
this case, K = E [(foo Vads) } = 1 hence (7.2) takes the form

P, {fl > x} x;voo ;,rzl[ig

The characterization of the domains of attraction now states that there exists a constant
cog such that
I(L,') —ng(n) _&+...+&

_ . n 16_) [C] ca
- = - g(n) —= ¢ (1 )C (7.4)

def

where g(x Jo P1{& > y}dy. Note also that our estimate on n{¢ > z} (Lemma 5.1)

entails an 1terated logarithm law for the subordinator L~', in particular

—1

" e [n—n?3,n+n*3 for all n large enough.
n (]
Using this result and the fact that I(-) is non-decreasing, it is not difficult to deduce from

(7.4) that
1

)
(0 s (Gig)) 20 s

(compare with the argument given on pl66 of [KKS75]| for details). Thus, setting

s o (o(arg) —en).

we get the desired limiting law for (I(¢t) — f(¢))/t and also

Lt
e n[(]

2tlogt
—oo /(1)

£t A”‘P1&1>th

The proof of the theorem when s > 1 is very similar to that in the case k < 1, considering
now the sequence (£, , n > 1) instead of (&, , n > 1), defined by

Lyt
V(2 m)ds = 6 (L - L),
1
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These random variables are i.i.d. and are centered under P; because

¢ ¢
E; [¢] :n[/ (es—m)ds} =n [/ esds} —n[{lm=0
0 0
(we used Corollary 5.4 for the last equality). Moreover, when x > 2, Proposition 6.4 yields

E, [ 12} =n [(/Oc(es - m)ds>2] =n[(] 8 (q:15(21))3_q>4(§)(1))-

Since the tail distribution of ¢ under n has (at least) an exponential decrease, we see that
the estimate (7.2) still holds with & in place of ;. Thus, the characterization of the domains

of attraction to a stable law insures that, when x € (1,2),

nl/k nl/k n—00

1
HLg)—miy' G4t € o, ( nldoK ),
2sin (%) ®'(k)

Similarly, when x = 2 and since K = E [ [[~ ¢"=ds] = ﬁ,

I(Ly) —mL,' w —4ym[]
Vvnlogn — n—oe &(1),/3/(2)

and when xk > 2,

I(L,") —mL," 2] [nIC]8(2(2) — 40(1))
Jn oo | B { IQ}N_\/ (1)30(2) N

Just as in the case k < 1, we easily check that the hypotheses of Theorem 8.1 of [Ser75] are
fulfilled. Thus the change of time L;' ~ n|[(]t is legitimate and concludes the proof of the
theorem.



Chapter IV

A slow transient diffusion in a drifted
stable potentiall

Abstract. We consider a diffusion process X in a random potential V of the form
V, =S, —dx, where 0 is a positive drift and S is a strictly stable process of index a € (1,2)
with positive jumps. Then the diffusion is transient and X;/log® ¢t converges in law towards
an exponential distribution. This behaviour contrasts with the case where V is a drifted
Brownian motion and provides an example of a transient diffusion in a random potential

which is as "slow" as in the recurrent setting.

1 Introduction

Let (V(x), € R) be a two-sided stochastic process defined on some probability space
(Q, F,P). We call a diffusion in the random potential V an formal solution X of the S.D.E:

dX; = dp, — AV'(X,)dt
X =0,

where (3 is a standard Brownian motion independent of V. Of course, the process V may
not be differentiable (for example when V is a Brownian motion) and we should formally
consider X as a diffusion whose conditional generator given V is

vy d ([ —vw d
2e dzx € dr ) -

Such a diffusion may be explicitly constructed from a Brownian motion through a random
change of time and a random change of scale. This class of processes has been widely studied
for the last twenty years and bears a close connection with the model of the random walk in

!This chapter is a slightly modified version of the article: A. Singh, A slow transient diffusion in a drifted
stable potential, J. Theoret. Probab., 20(2), 153-166, 2007.
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random environment (RWRE), see |Zei04] and [Shi01] for a survey on RWRE and [Sch85],
[Shi01] for the connection between the two models.

This model exhibits many interesting features. For instance, when the potential process
V is a Brownian motion, the diffusion X is recurrent and Brox [Bro86] proved that X;/log? ¢t
converges to a non-degenerate distribution. Thus, the diffusion is much "slower" than in
the trivial case V = 0 (then X is simply a Brownian motion).

We point out that Brox’s theorem is the analogue of Sinai’s famous theorem for RWRE
[Sin82] (see also [Gol86] and [Kes86]). Just as for the RWRE, this result is a consequence of a
so-called "localization phenomenon": the diffusion is trapped in some valleys of its potential
V. Brox’s theorem may also be extended to a wider class of potentials. For instance, when
V is a strictly stable process of index « € (0, 2], Schumacher [Sch85] proved that

Xt law

log*t o0

where by is a non-degenerate random variable, whose distribution depends on the parame-
ters of the stable process V.

There is also much interest concerning the behaviour of X in the transient case. When
the potential is a drifted Brownian motion i.e. V, = B, — §x where B is a two-sided
Brownian motion and x > 0, then the associated diffusion X is transient toward +oco and
its rate of growth is polynomial and depends on k. Precisely, Kawazu and Tanaka [KT97|
proved that

o If0 <k <1, then t%Xt converges in law towards a Mittag-LefHler distribution of index
K.

o If k=1, then lngtXt converges in probability towards %.
o If kK > 1, then %Xt converges almost surely towards ”T_l.

In particular, when x < 1, the rate of growth of X is sub-linear. Refined results on the
rates of convergence for this process were later obtained by Tanaka [Tan97| and Hu et al.
[HSY99].

In fact, this behaviour is not specific to diffusions in a drifted Brownian potential. More
generally, it is proved in [Sin06]| (c.f. Chapter III) that, if V is a two-sided Lévy process
with no positive jumps and if there exists x > 0 such E[e®V1] = 1, then the rate of growth
of X; is linear when x > 1 and of order t* when 0 < k < 1. See also |Car97| for a law
of large numbers in more general Lévy potential. These results are the analogues of those
previously obtained by Kesten et al. [KKS75] for the discrete model of the RWRE.

In this paper, we study the asymptotic behaviour of a diffusion in a drifted stable
potential. Precisely, let (S;, = € R) denote a two-sided cadlag stable process with index
a € (1,2). By two-sided, we mean that

(a) The process (S;, = > 0) is strictly stable with index a € (1,2), in particular Sy = 0.
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(b) For all zg € R, the process (Sy4ao — Szy, € R) has the same law as S.

It is well known that the Lévy measure II of S has the form

_ dz
I(dz) = (c" 1m0y + ¢ 1iacoy) 2T (1.1)

where ¢ and ¢~ are two non-negative constants such that ¢t + ¢~ > 0. In particular, the
process (S, , z > 0) has no positive jumps (resp. no negative jumps) if and only if ¢* = 0

(resp. ¢~ =0). Given 0 > 0, we consider a diffusion X in the random potential
V=S, —dx.
Since the index « of the stable process S is larger than 1, we have E[V,] = —dz, and
therefore
lim V, =—-o00 and lim V, =+oc0 almost surely.
r——+00 r——00

This implies that the random diffusion X is transient toward +o0o. We have already men-
tioned that, when S has no positive jumps (i.e. ¢t = 0), the rate of growth of X is
polynomial. Thus, we now assume that S possesses positive jumps.

Theorem 1.1
Assume that ¢ > 0, then
Xt law C+
S N =
loga t t—oo o

where E(c™ /) denotes an exponential law with parameter ¢ /a. This result also holds
with supg <, Xs or inf, > ¢+ X in place of X;.

The asymptotic behaviour of X is in this case very different from the one observed when V
is a drifted Brownian motion. Here, the rate of growth is very slow: it is the same as in the
recurrent setting. We also note that neither the rate of growth nor the limiting law depend
on the value of the drift parameter 6.

Theorem 1.1 has a simple heuristic explanation: the "localisation phenomenon" for the
diffusion X tells us that the time needed to reach a positive level x is approximatively
exponentially proportional to the biggest ascending barrier of V on the interval [0,z]. In
the case of a Brownian potential, or more generally a spectrally negative Lévy potential,
the addition of a negative drift somehow "kills" the ascending barriers, thus accelerating
the diffusion and leading to a polynomial rate of transience. However, in our setting, the
biggest ascending barrier on [0, x] of the stable process S is of the same order as its biggest
jump on this interval. Since the addition of a drift has no influence on the jumps of the
potential process, the time needed to reach level z still remains of the same order as in the
recurrent case (i.e. when the drift is zero) and yields a logarithmic rate of transience.
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2 Proof of the theorem

2.1 Representation of X and of its hitting times

In the remainder of this paper, we indifferently use the notation V, or V(z). Let us
first recall the classical representation of the diffusion X in the random potential V from a
Brownian motion through a random change of scale and a random change of time (see [Bro86|
or [Shi01] for details). Let (By, t > 0) denote a standard Brownian motion independent of
V and let o stand for its hitting times:

o(z) inf(t >0, B, = ).
Define the scale function of the diffusion X,

A(x) d—ef/ eVvdy for x € R. (2.1)
0

Since limy 400 Vi /2 = —d and lim, .« V, /& = ¢ almost surely, it is clear that

A(o0) = ngfoo A(z) < oo and lim A(z) = —oo  almost surely.

Let A™': (—00,A(o0)) — R denote the inverse of A and define

t
T(t) £ / e BN s for 0 <t < o (A(o0)).
0

Similarly, let T~" denote the inverse of T. According to Brox |Bro86| (see also [Shi01]), the
diffusion X in the random potential V may be represented in the form

X, = A7 (Brag). (2.2)

It is now clear that, under our assumptions, the diffusion X is transient toward +oo. We
will study X via its hitting times H defined by

H(r)Einf(t>0, X; =r) forr>0.

Let (L(t,x), t > 0, € R) stand for the bi-continuous version of the local time process of
B. In view of (2.2), we can write

T s M @)
H(r) = T (0(A(r))) = /O ¢ s = / e L(o(A(r)), 2)dz.

— 00

Making use of the change of variable z = A(y), we get

1 - | " e L(o(AW)), Aly))dy = L(r) + In(r) 2.3)

where
L) = [ LA, AW,

0
0

L(r) / e~ L(o(A(r), Ay))dy.

—00
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2.2 Proof of Theorem 1.1

Given a cadlag process (Z; , t > 0), we denote by AyZ = Zy — Z;_ the size of the jump
at time t. We also use the notation ZE to denote the largest positive jump of Z before time
t

ZE L osup AZ
0<s<t
Let Zt# stand for the largest ascending barrier before time ¢, namely:

ZFY sup (2, — Z).
0<z<y<t

We also define the functionals:

7y < sup Zg (running unilateral maximum)
s€[0,t]

Z, % inf Z, (running unilateral minimum)
s€[0,t]

ZF < sup | Z,| (running bilateral supremum)
s€[0,t]

We start with a simple lemma concerning the fluctuations of the potential process.

Lemma 2.1

There exist two constants cy,ca > 0 such that for all a,x > 0
P{V# <a} <e tam, (2.4)
and whenever ¢ is sufficiently large,

P{V* > a} < Cga%. (2.5)

Proof. Recall that V, =§,; — dz. In view of the form of the density of the Lévy measure
of S given in (1.1), we get

P{V# <al <P{Vi <a) = T ) = <z
{VI <a} <P{V_<a}=exp(—=x i Wy =exp\———= -

o a®

This yields (2.4). From the scaling property of the stable process S, we also have

P{V:>a} =P za sup ISt — 5w1*ét| >apr <P {S’{ > il - (53:1;} .
te[0,1] To

Notice further that a/z'/* — 621~/ > a/(24'/*) whenever a/z is large enough. Therefore,
making use of a classical estimate concerning the tail distribution of the stable process S
(c.f. Proposition 4, p221 of [Ber96al), we find that

pev:>apsp{si> Ll epfns Slipls -t cal

20« 20« a®

2T«
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Proposition 2.2

There exists a constant c3 > 0 such that, for all r sufficiently large and all x > 0,

P{V¥ >z +1log*r} — cze 08T < P{logI,(r) > z} <P{V# >z —logr} + cze” log®r

Proof. This estimate was first proved by Hu and Shi (see Lemma 4.1 of [HS98a]) when
the potential process is close to a standard Brownian motion. A similar result is given in
Proposition 3.1 of [Sin07a] (c.f. Chapter II) when V is a random walk in the domain of
attraction of a stable law. As explained by Shi [Shi01], the key idea is the combined use of
Ray-Knight’s Theorem and Laplace’s method. However, in our setting, additional difficulties
appear since the potential process is neither flat on integer interval nor continuous. We shall
therefore give a complete proof but one can still look in [HS98a]| for additional details. Recall
that

n(r) = /0 " WL (A(r)), AW))dy,

where L is the local time of the Brownian motion B (independent of V). Let (U(t), ¢t > 0)
denote a two-dimensional squared Bessel process starting from zero and independent of V.
According to the first Ray-Knight Theorem (c.f. Theorem 2.2 p455 of [RY99]), for any = > 0
the process (L(o(z),z —y), 0 <y < x) has the same law as (U(y), 0 < y < x). Therefore,
making use of the scaling property of the Brownian motion and the independence of V and
B, for each fixed r > 0, the random variable I;(r) has the same law as

L) <A@ /0 ey <A(T@f@)) dy.

We simply need to prove the proposition for I, instead of I;. In the rest of the proof, we
assume that r is very large. We start with the upper bound. Define the event

&Y sup Lt)g <rp.
te(0,1] tlog (z)

According to Lemma 6.1 of [HS98a], P{Ef} < cqe™"/? for some constant ¢4 > 0. On &1, we
have

L(r) < r/or e "v(A(r) — A(y))log <A(SA_(X@)> dy

= (o )
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Notice also that A(r) = [ e"=dz < reVr and similarly A(r) — A(y) > (r — y)e¥r. Therefore

" 8A(r) ) — /7" 8r >
log (2 Nay < #(V,—V)+ [ 1 d
[ e (e i) < o [ (52 )
= 7V, =V, +1+log8).

Define the set & & {V, -V, < elogar}. In view of Lemma 2.1,
P{(€2C} < P {V; > ;elogﬁr} < 6—10g2r.

Therefore, P{(&1 N &)} < 2¢~ 198" and on E1N &,
'fl(r) < TS(eloggr +14 log 8)€V7# < elog4r+V7#_

This completes the proof of the upper bound. We now deal with the lower bound. Define
the sequence (v, k > 0) by induction

def
Y0 0,
Topr = inf(t > g, [Vi— Vo, | > 1),

The sequence (Yg+1 — Yk, k = 0) is i.4.d. and distributed as v = inf(¢ > 0, [V| > 1). We
denote by [z]| the integer part of z. We also use the notation e & e=log’r  Consider the

following events

& ¥ {’Y[r2}>r}7
e 5 2 ol k= 12 ).

In view of Cramer’s large deviation Theorem and since 7 is very large, we get P{ES} <e™".

We also have
(%]

P{EST < D) P{y—m-1 <2} < [PP|P{m <2¢}
k=1

< [PP{VE > 1}
< 6—10g2r7

where we used Lemma 2.1 for the last inequality. Define also
&Y {|V, = V,| <1 for all & € [r — 2¢,r]}.

From time reversal, the processes (Vy, 0 < t < 2¢) and (V, — V-, 0<t < 2¢) have the
same law. Thus,
P{ESY <PV}, > 1} e o8,
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Ty  Tyte
+—
v

1+ N

: V6 r
Y3 Y4 WP :
M\_\t‘/\,’:.‘\_f\

r—2¢ T

Figure IV.1 : Sample path of V on &.

Setting & = £3NE;NEs, we get P{ES} < 3e~ 108" Moreover, it is easy to check (see figure
IV.1) that on &, we can always find x_, 24 such that:

0< 2z <oy <r— 2
for any a € [x_,z_ +¢€], [V, —V,| <2
for any b € (x4, x4 + ¢, Vo, — V| <2,
Vo, -V, >VF -4

Let us also define

yElr—,x_+¢

g en{ | u(AOA) A0 A )

& ¥ {VE>310g27“}.
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We finally set & & €. N E. Then on &y, we have, for all r large enough,

Tr_+e€
> e—Vx—2—210g2T/ (A(r) — A(z_))dy

r
_ 9 2 1003
— e Ve —2—2log” r—log r/ eVydy
x

Vo —2-2log?r—logdr [T v
2 6_ xr_ T4 og~ r—log T/ e ydy
4
Vo, —Vy_ —4—2l0og2r—2log®r
2 e’ T+ T _ g g
> eV,#—log‘lr‘

This proves the lower bound on &. It simply remains to show that P{&£§} < 056_105’527".

According to Lemma 6.1 of [HS98a|, for any 0 < @ < b and any n > 0, we have

P{ inf U(t) gnb} < 21 + 2exp (—2(1_”a/b)>

a<t<b

Therefore, making use of the independence of V and U, we find
P{&} < P{&}+P{&+P{ETNENEs)

— O; 27‘
< P& +P{&)+ 2¢ 108" 4 oF [e_éﬂ(f)e 2los 156058] ,
where
J(’I") d:ef A(T) B A(aj*)
Alr_ +¢€)—Az_)
We have already proved that P{&§} < 3¢ log”r, Using Lemma 2.1, we also check that
P{&§} < e~ 198”7 Thus, it remains to show that

1 —2log?r 2
E |:€—2.,]I(r)e 2o 156058:| < CGE_IOg " (26)
Notice that, on &,

T T4+e€ log?
eVy dy > / eVydy 2 e og T+Vac+—2’
— T4

A(r) — Alz_) = /x

and also
xr_+e€ 3
A(x_ +€) —A(x_) _/ eVydy < €log 7‘+Va:,+2'
xX

Therefore, on £ N &,

_ _ #_ b _ 2,
J(’I“) > ev” Ve —4 Vi—8 > GVT 8 > e?)log r—_8

WV
o

which clearly yields (2.6) and the proof of the proposition is complete. [ |
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Lemma 2.3
We have
V7# law

—
rl/a r—00

st

Proof. Let f:[0,1] — R be a deterministic cadlag function. For A > 0, define

We first show that
Jim 7 (1) = f(1). (2.7)

It is clear that f3(1) = f/h\(l) < ff(l) for any A > 0. Thus, we simply need to prove that
lim sup f;\%(l) < f%(1). Let > 0 and set

Am,A) = sup(f(y) — fi(z),0<z<y<landy—a<n),
Bn,A) = sup(faly) — falz) ,0<z<y<landy—z>1n),
so that
£ (1) = max(A(n, \), B(n, \)). (2.8)

Notice that A(n,A) < A(n) where

A(n) = A(n,0) = sup (f(y) = f(2) , 0<z <y <landy -z <1).
Since f is cadlag, we have lim, o A(n) = f*(1). Thus, for any e > 0, we can find 79 > 0

small enough such that
lim sup A(ng, \) < f3(1) +&. (2.9)

A—00

Notice also that

B(no,\) < sup(f(y) — f(z) —moA,0<z<y<1landy—a>n)
< (L) —moA

which implies
lim B(ng, A\) = —oc. (2.10)

A—00

The combination of (2.8), (2.9) and (2.10) yields (2.7). Making use of the scaling property
of the stable process S, for any fixed r > 0,

(Vy;Ogygr)lgv(rl/agy—&'y,0§y<1).
Therefore, setting R(z) = (S. — z')f, we get the equality in law:

VT# law 171/04
s TR, (2.11)




2 : Proof of the theorem 123

Making use of (2.7), we see that R(z) converges almost surely towards Sli as z goes to

1-1/c

infinity. Since o > 1 and § > 0, we also have dr — 00 as r goes to infinity and we

conclude from (2.11) that
v#
T law

—
rl/a r—00

S

Proof of Theorem 1.1. Recall that the random variable Sli denotes the largest positive
jump of S over the interval [0, 1]. Thus, according to the density of the Lévy measure of S,

b <t ct
P{S] <z} =exp|(— e dy | = exp o) (2.12)

On the one hand, the combination of Proposition 2.2 and Lemma 2.3 readily shows that

log(11(r)) law, Si' (2.13)

rl/a r—00

On the other hand, the random variables A(c0) = limg_.oc A(x) and fEm e~Vvdy have the
same law. Moreover, we have already noticed that these random variables are almost surely
finite. Since the function L(¢,-) is, for any fixed ¢, continuous with compact support, we get

0 0
I(r) = / (oA, Al)dy < sup  L(o(A(0)), 2) / eVody < oo,
—o0 z€(—00,0] —00

Therefore,

sup I2(r) < oo almost surely. (2.14)
r>0

Combining (2.3), (2.13) and (2.14), we deduce that

log(H(r)) raw
rl/a rjc;oSl

which, from the definition of the hitting times H, yields

(0%
SUps < ¢ X o i
log®t  t—oo Sul '

According to (2.12), the random variable (1 /Shl)a has an exponential distribution with
parameter ¢t /a, so the proof of the theorem for sup, <t Xs is complete. We finally use the
classical argument given by Kawazu and Tanaka, p201 [KT97] to obtain the corresponding
results for X; and inf, > ; X. [ |
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Chapter V

On the speed of a cookie random
walk!

Abstract. We consider the model of the one-dimensional cookie random walk when the
initial cookie distribution is spatially uniform and the number of cookies per site is finite. We
give a criterion to decide whether the limiting speed of the walk is non-zero. In particular,
we show that a positive speed may be obtained for just 3 cookies per site. We also prove a
result on the continuity of the speed with respect to the initial cookie distribution.

1 Introduction

We consider the model of the multi-excited random walk, also called cookie random walk,
introduced by Zerner in [Zer05| as a generalization of the model of the excited random walk
described by Benjamini and Wilson in [BWO03] (see also Davis [Dav99] for a continuous
time analogue). The aim of this paper is to study under which conditions the speed of
a cookie random walk is strictly positive. In dimension d > 2, this problem was solved
by Kozma [Koz03, Koz05], who proved that the speed is always non-zero. In the one-
dimensional case, the speed can either be zero or strictly positive. We give here a necessary
and sufficient condition to determine if the walk’s speed is strictly positive when the initial
cookie environment is deterministic, spatially uniform and with a finite number of cookies
per site. Let us start with an informal definition of such a process:

Let us put M > 1 "cookies" at each site of Z and let us pick p1,p2,...,pym € [%, 1).
We say that p; represents the "strength" of the i*" cookie at any given site. Then, a cookie
random walk X = (X,,), >0 is simply a nearest neighbour random walk, eating the cookies
it finds along its path by behaving in the following way:

!This chapter is a slightly modified version of the joint work: A.-L. Basdevant and A. Singh, On the

speed of a cookie random walk, submitted
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e If X,, = = and there is no remaining cookie at site x, then X jumps at time n + 1 to
x4+ 1 or x — 1 with equal probability %

e If X,, = 7z and there remain the cookies with strengths p;,pj+1,...,pn at this site,
then X eats the cookie with attached strength p; (which therefore disappears from
this site) and then jumps at time n + 1 to « + 1 with probability p; and to = — 1 with
probability 1 — p;.

This model is a particular case of self-interacting random walk: the position of X at time
n + 1 depends not only of its position at time n but also on the number of previous visits
to its present site. Therefore, X is not a Markov process.

Let us now give a formal description of the general model. We define the set of
1
2
(w(i,2));i > 1,0ez where w(i,z) represents the strength of the i** cookie at site . Given

cookie environments by Q = [1, 1]N" %2 Thus, a cookie environment is of the form w =
x € Z and w € €2, a cookie random walk starting from z in the cookie environment w is a
process (Xp)n >0 on some probability space (Q2, F, P, ;) such that:

P, {Xo =2} =1,
Pw,ﬂc{‘Xn-i-l - Xn’ - 1} =1,
Pw,z{Xn—H =X, +1 | Xi,... ,Xn} = w(j, Xn) where j = jj{() <i<n, X;= Xn}.

In this paper, we restrict our attention to the set of environments Qf, C € which are
spatially uniform with at most M > 1 cookies per site:

forall x € Z and all i > 1 w(i,z) = w(i,0),
weQy <= for all i > M w(i,0) = 3,
foralli >1w(i,0) < 1.

The last condition w(7,0) < 1 is introduced only to exclude some possible degenerate cases
but can be relaxed (see Remark 2.4). A cookie environment w € QY may be represented
by (M, p) where

p=(p1,---,pm) = (w(1,0),...,w(M,0)).

In this case, we shall say that the associated cookie random walk is an (M, p)-cookie random
walk and we will use the notation Py ;) instead of P.

The question of the recurrence or transience of a cookie random walk was solved by
Zerner in [Zer05] for general cookie environments (even in the case where the initial cookie
environment may itself be random). In particular, he proved that, if X is an (M, p)-cookie
random walk, there is a phase transition according to the value of

M

a=aMp) =) (2p-1)-1. (1.1)
=1

e If a < 0 then the walk is recurrent 4.e. limsup X,, = —liminf X,, = +o0 a.s.
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e If & > 0 then X is transient toward +oo 4.e. lim X,, = +00 a.s.

In particular, for M = 1, the cookie random walk is always recurrent for any choice of p.
However, as soon as M > 2, the cookie random walk can either be transient or recurrent,
depending on p. Zerner [Zer05] also proved that the speed of a (M, p)-cookie random walk
X is always well defined (but may or may not be zero). Precisely,

e there exists a constant v(M,p) > 0 such that

X
= v(M,p) P ()7 p)-almost surely.
n n—oo ’
e The speed is monotonic in p: if p = (p1,...,pm) and § = (q1,...,qn) are two cookie

environments such that p; < ¢; for all ¢, then v(M,p) < v(M,q).
e The speed of a (2, p)-cookie random walk is always 0.

The question of whether one can construct a (M, p)-cookie random walk with strictly
positive speed was affirmatively answered by Mountford, Pimentel and Valle [MPV06| who
considered the case where all the cookies have the same strength p € [%, 1) i.e. the cookie
vector p has the form [plyr & (p,...,p). They showed that:

e For any p € (%, 1), there exists an My such that for all M > My the speed of the
(M, [p]ar)-cookie random walk is strictly positive.

o If M(2p—1) <2, then the speed of the (M, [p]yr)-cookie random walk is zero.

They also conjectured that when M (2p — 1) > 2, the speed should be non-zero. The aim of
this paper is to prove that such is indeed the case.

Theorem 1.1

Let X denote a (M, p)-cookie random walk, then

X
lim — =v(M,p) >0 <= «a(M,p)>1

n—oo N

where a(M, p) is given by (1.1).

In particular, we see that a non-zero speed may be achieved for as few as 3 cookies per site.
Comparing this result with the transience/recurrence criteria, we have a second order phase
transition at the critical value @ = 1. In fact, it is proved in [BS07] (chapter VI of this
thesis) that, in the zero speed case 0 < a < 1, the rate of transience of X, is of order ns.

One would certainly like an explicit calculation of the limiting velocity in term of the
cookie environment (M, p) but this seems a challenging problem (one can still look at Corol-
lary 3.7 where we give an implicit formula for the speed). However, one can prove that the
speed is continuous in p and has a positive right derivative at all its critical points:
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4 recurrence | transience | transience
1 I
0.9 =0 v >0
7 i
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=
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Figure V.1 : Simulation of the speed of a (3, [p]3)-cookie random walk.

Theorem 1.2

e For each M, the speed v(M,p) is a continuous function of p in Q.

e For any environment (M,p.) with a(M,p.) = 1, there exists a constant C > 0
(depending on (M, p.)) such that

M.p
lin &’\2 ’)pz -=C.
ges%ctl oL P

a(p)>1

In particular, for M > 3, the (unique) critical value for an (M, [p]as)-cookie random
walk is p. = ﬁ + % and the function v(p) is continuous, non-decreasing, zero for p < p,
and admits a finite strictly positive right derivative at p. (see the figure above).

The remainder of this paper is organized as follow. In the next section, we construct a
Markov process associated with the hitting time of the cookie random walk. The method
is similar to that used by Kesten, Kozlov and Spitzer [KKS75] for the determination of the
rates of transience of a random walk in a one-dimensional random environment. The same
method was also used by Toth [T6t95, Tot96] for studying another class of self interacting
random walk on Z. It turns out that, in our setting, the resulting process is a branching
process with random migration. The study of this process and of its stationary distribution
is undertaken in Section 3. This enables us to complete the proof of Theorem 1.1. Finally,
the last section is dedicated to the proof of Theorem 1.2.
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2 An associated branching process with migration

In the remainder of this paper, X = (X,,), > o will denote a (M, p)-cookie random walk.
Since the speed of a recurrent cookie random walk is zero, we shall also assume that we are
in the transient regime i.e.

M
a(M,p)=> (2pi—1)—1>0. (2.1)

i=1
For the sake of brevity, we simply write P, for P 5 , and P instead of Pg (the process
starting from 0). Let T, stand for the hitting time of level n > 0 by X:

T, =inf(k >0, X; =n). (2.2)

For 0 < k < n, let U;* denote the number of jumps of the cookie random walk from site 4
to site ¢ — 1 before reaching level n

U'=8{0<k<T,, Xy=10and Xy =1— 1}.
Let K, stand for the total time spent by X in the negative half-line up to time 7,
K,=t{0<k<T, X;<0}.

A simple combinatorial argument readily yields

n
T,=K,-Uj+n+2> U
k=0
Notice that, as n tends to infinity, the random variable K, increases toward K, the total
time spent by the cookie random walk in the negative half line. Similarly, Ug increases
toward U§®, the total number of jumps from 0 to —1. Since X is transient, Ko + Uj° is
almost-surely finite and therefore

T, ~ n+2> Up (2.3)
k=0

Let us now prove that, for each n, the reverse process (U}, U4, ..

., U, U§) has the same
law as the n first steps of some branching process Z with random migration. We first need to
introduce some notations. Let (B;); > 1 denote a sequence of independent Bernoulli random
variables under P with distribution:

. i
P{Bi_l}_l—P{Bi_O}_{ZZ ne (2.4)

5 ife>M.
For j € N, define
ki =min(k > 1,H{1 <i<k,B;=1}=j+1)

and
Aj=8{1<i<k;Bi=0}=k—j—L

We have the following easy lemma:
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Lemma 2.1

e For any i,j > 0, we have P{A; =i} > 0.
e For all j > M, we have
Ay Ay i+ &+ & (2.5)

where (&)i >0 are i.i.d. random variables independent of Apr—1 with geometrical

distribution starting from 0 and with parameter & i.e. P{& =i} = (1/2)"L.

Proof. The first part of the lemma is a direct consequence of the assumption that p is
such that pr < 1 for all k. To prove the second part, we simply notice that ky;—1 = M so
that, for j > M, the random variable A; — Ap/—1 has the same law as the random variable

min(k > 1,8{1<i<kB=1}=j+1-M)—j—1+M (2.6)

where (B;)i > o is a sequence of i.i.d. random variables independent of Aps—1, with common
Bernoulli distribution P{B; = 0} = P{B; = 1} = 1. It is clear that (2.6) has the same law

as §1+ ...+ &y [ |

We now consider a process Z = (Z,,n > 0) and a family of probabilities (P,), > ¢ such
that, under PP,, the process Z is a Markov chain starting from z, with transition probabilities:

IP)Z{ZO = Z} = 1’

Since the family of probabilities (IP,) depends on the law of the cookie environment (M, p),
we should rigourously write P/ 5) . instead of PP.. However, when there is no possibility of
confusion, we shall keep using the abbreviated notation. Furthermore, we simply write P
for Py and E stands for the expectation with respect to P.

Let us now notice that, in view of the previous lemma, Z,, under P, may be interpreted
as the number of particles alive at time n of a branching process with random migration
starting from z, that is a branching process which allows immigration and emigration (see
Vatutin and Zubkov [VZ93] for a survey of these processes). Indeed:

o If Z, = j =2 M — 1 then, according to Lemma 2.1, Z,,;1 has the same law as

f;]lwﬂ &+ App_1, i.e. M — 1 particles emigrate and the remaining particles repro-
duce according to a geometrical law with parameter % and there is also an immigration

of Apr—1 new particles.

o If 7, =j €{0,...,M — 2} then Z,; has the same law as A; i.e. all the j particles

emigrate and A; new particles immigrate.

We can now state the main result of this section:
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Proposition 2.2

Foreachn e N, (U, U’_,...,Uy}) under P has the same law as (Zy, Z1, . .., Z,) under
P.

Proof. The argument is similar to the one given by Kesten et al. in |[KKS75|. Recall that
U* represents the numbers of jumps of the cookie random walk X from 7 to @ — 1 before

reaching n. Then, conditionally on (U}, U]} 4,..., U ), the number of jumps U} from i to

i — 1 depends only on the number of jumps from i + 1 to ¢, that is, depends only on U} ;.

This shows that (U,

nUN 4, ..., Uf) is indeed a Markov process.

n—17"

By definition, Zp = 0 P-a.s. and U} = 0 P-a.s. It remains to compute P{U" =
k| Ul = j}. Note that the number of jumps from i to i — 1 before reaching level n is
equal to the number of jumps from ¢ to ¢« — 1 before reaching ¢ + 1 for the first time plus
the sum of the number of jumps from i to ¢ — 1 between two consecutive jumps from ¢ + 1
to 4 which occur before reaching level n. Thus, conditionally on {U}}; = j}, the random
variable U* has the same law as the number of failures (i.e. By = 0) in the Bernoulli
sequence (By, Ba, Bs, . ..) defined by (2.4) before obtaining exactly j + 1 successes. This is

precisely the definition of A; and therefore P{U* = k | U, = j} = P;{Z1 = k}. [

Since Uy is the number of jumps from 0 to —1 of the cookie random walk X before
reaching level n and since we assumed that the cookie random walk X is transient, U}
increases almost surely toward the total number U§® of jumps of X from 0 to —1. In view
of the previous proposition, this implies that under PP, Z,, converges in law toward a random
variable which we denote by Z.

Let us also note that Z is an irreducible Markov chain (this is a consequence of part 1
of Lemma 2.1). Since Z converges in law toward a limiting distribution, this shows that Z
is in fact a positive recurrent Markov chain. In particular, Z,, converges in law toward Zu
independently of its starting point (i.e. the law of Z is the same under any P;) and the
law of Z, is also the unique invariant probability for Z.

g)rolary 2.3
Recall that v(M, p) denotes the limiting speed of the cookie random walk X. We have

1
v(M,p) = HTZ[ZOO] (with the convention 0 = +%.o)
In particular, the speed of an (M, p)-cookie random walk is non zero i.i.f. the limiting

random variable Z., of its associated process Z has a finite expectation.

Proof. Since X is transient, we have the well known equivalence valid for v € [0, 00] :

P-as. (2.7)

X, T,
v P-as. <= i
n
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On the one hand, this equivalence and (2.3) yield

e 11 o
— — —— — — P-as. .
ni s w(p) 2 T

On the other hand, making use of an ergodic theorem for the positive recurrent Markov
chains Z with stationary limiting distribution Z, (see for instance Theorem 1.10.2 on p53
of [Nor98]), we find that

1 n
=3 7k — E[Zs] Pas. (2.9)
n n— o0
i=1
(note that this result is valid even if E[Z,] = 00). Proposition 2.2 implies that the limits
in (2.8) and (2.9) are the same. This completes the proof of the corollary. [
Remark 2.4

We assumed in the definition of an (M, p) cookie environment that
pi #1 foralll<i< M.

This hypothesis is intended only to ensure that Z, starting from 0, is not almost surely
bounded (for instance, if py = 1 then 0 is a absorbing state for Z). More generally,
one may check from the definition of the random variables A; that Z starting from 0 is
almost surely unbounded i.i.f.

forall 1 <i< M. (2.10)

N | .

H{l<j<i,pj=1}<

When this condition fails, Z starting from 0 is almost surely bounded by M — 1, thus
E[Z~] < oo and the speed of the associated cookie random walk is strictly positive.
Otherwise, when (2.10) is fulfilled, Z ultimately hits any level x € N with probability 1
and the proof of Theorem 1.1 below remains valid.

3 Study of Z

We proved in the previous section that the strict positivity of the speed of the cookie
random walk X is equivalent to the existence of a finite first moment for the limiting
distribution of its associated Markov chain Z. We shall now show that, for any cookie
environment (M, p) (with a(M,p) > 0), we have

EZoo) € Eprp)[Zoc) <00 = a(M,p)> L

This will complete the proof of Theorem 1.1. We start by proving that Z,, cannot have

moments of any order.
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Proposition 3.1
We have

E [ZX7] = +oo0.

Proof. Let us introduce the first return time to 0 for Z:
oc=inf(n>1, Z, =0).

Since Z is a positive recurrent Markov chain, we have 1 < Eg[o] < oo and the invariant
probability measure is given for any y € N by

Eo [ 7o ﬂ{zk:y}} |

P{Z = =
A monotone convergence argument yields
o—1
Eo | 73" = Eolo|B[Z3 ™) (3.1)
k=0

(where both side of this equality may be infinite). We can find ny € N* such that Po{Z,,, =
M, ny < o} > 0 (in fact, since we assume that p; < 1 for all ¢, we can choose ng = 1).
Therefore, making use of the Markov property of Z, we find that

o—1 o—1
Eo [ ZY = Po{Zug =M, no<o}Eny | 2z}
k=0 k=0
o0
= Po{Zuy =M, ng <o}y En [Z,Qﬁ;l} . (3.2)
k=0
In view of (3.1) and (3.2), we just need to prove that
oo
> B 285! = . (3.3)
k=0

We now use a coupling argument. Let again (&;);>1 denote a sequence of i.i.d. geometrical
random variables with parameter 1/2. We define an inhomogeneous Markov chain Z such
that, under P,:

[ ZOZZZ.
e Z; has the same law as DOIRE
min(0,Zn,—(M—1

e For n > 1, Z,41 has the same law as Y oic1 ) & (with the convention Y0 =
0).
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Thus, Zisa branching process with min(Zn, M — 1) emigrants at each unit of time, except
at time n = 0 where no emigration occurs.

Recall that Z is a branching process with migration, where at most min(Z,, M — 1)
particles emigrate at each unit of time, and has the same offspring reproduction law as Z.
Therefore, for any z > 0, the process Z under P, is stochastically dominated by Z under
P, -1 (we need to shift the starting point by M — 1 because Z has no emigration at time
n = 0). Since 0 is an absorbing state for Z, this implies that, for all n > 0,

B [ZM Y < By [ZM21). (3.4)

nAo

The process Z belongs to the class of processes studied by Vinokurov in [Vin87]. Moreover,
all the assumptions of Theorem 2 and 3 of [Vin87| are fulfilled (in the notation of [Vin87],
we have § = M — 1). Therefore, there exist two constants c¢1,c2 > 0, such that, as n tends

to infinity,
Py {Z, > 0} ~ n% and  Py{Z, >n|Zy >0} ~ cs.
Thus
B [ZMY = E[ZM1Z, > 0|P1{Z, > 0}
> pMAAPYZ, > 0| Zn > 0YP{Z, > 0} ~ 22 (3.5)
n

The combination of (3.4) and (3.5) yields (3.3). [
Remark 3.2

In view of the last proposition and Corollary 2.3, we recover the fact that for M = 2,
the speed of the cookie random walk is always zero.

In order to study more precisely the distribution of Z,,, we need the following lemma:

Lemma 3.3
We have

M
E[Ay_1] = 22(1 — ;).

Proof. Recall that (B;); > 1 denotes a sequence of independent Bernoulli random variables
with distribution given by (2.4). Let L=#{1<i< M, B;=1} = Zi‘il B;, we have

M
E[L] = ZPZ

Recall also that Ajp/—1 denotes the number of failures in the sequence (B;);>1 before obtain-
ing M successes. Furthermore, M — L represents the number of failures in the subsequence
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(Bi)1 <i< M. So we may rewrite Aps—; in the form

. . Ry
Ayt = M—L+(mf{jzo,i:%:HBi:M—L}—(M—L))
. . M+j L _
= 1nf{]20,i%+1Bz—M L}

(with the convention Z% 41 = 0). Therefore, given L, the random variable A1 represents
the number of trials needed to get M — L successes along the unbiased coin tossing sequence
(Bi)i>nm+1. Thus, given L, the random variable Aj_; has a negative binomial distribution
with parameters M — L and p = 1/2. In particular, we have E[Aj;_; | L] =2(M — L) and
we conclude that

M
E[Ay 1] = E[E[Ay 1 | L]] = E[2(M - L)] = 22(1 — i)

We now study the law of the limiting distribution Z, of the Markov chain Z. This is
done via the study of its probability generating function (p.g.f.)

G(s)=E [szﬂ for s € [0,1].

Lemma 3.4

The p.g.f. G of Z is the unique p.g.f. solution of the following equation

1
1-G <2 > =a(s)(1 —G(s)) + b(s) for all s € [0,1], (3.6)

-5

with

_ 1
CL(S) - (2 - S)M_IE [SAqu ’
and
be) — 1 - 1 Sowe) (B[N
= (2 _ S)M—IE [SA]\4,1:| Pt k' (2 _ S)M—IE [SAM*l] (2 _ S)k’

Proof. The law of Z is a stationary distribution for the Markov chain Z, therefore

G(s) = E [IEJZOC [SZIH = ZP{ZOO = k}Eg [5Z1]
§/1232 00
= Y P{Zeo = KYE: D]+ D P{Zo = K}E; [s7].

k=0 k=M-1
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By the definition of Z, the random variable Z; under P has the same law as Ay under P.
Moreover, according to Lemma 2.1, for k > M — 1, Ay has the same law as Ay—1 + & +
oo+ &—nmr+1 where (&;)i>1 is a sequence of i.i.d. random variables independent of Aps_;
and with geometric distribution with parameter % Thus,

G(S) = ]%—:QIP’{ZOO — k}E [SAk] + i ]P’{Z — k:}E |:$AM—1+£1+---+§I@+1—]M:|
k=0 k=M-1
M—2 GAm-1] @
B k=0 Pl = HBL] + ]}?‘LqM_l] k:%qp{zoo = HE {Sé]k
M—2 - SAri
> P{Zs = k} (E [s%] —E [s"V-1] E [55] o M> + EEJLqM—l]G (E [séb .

Since E [s¢] = 51, and kIP{Zs = k} = G¥)(0), we get

M—-2 G(k) (0)

k!

A Anr— M-1-k Anr_ M-1 1
(B[] ~ B[] (2 - 5)M178) 4B [s41] (2-5) G(2_8>,
from which we deduce that G solves (3.6).

Furthermore, using the same arguments as above and going backward, we can check that
if some p.g.f. satisfies (3.6), then the associated probability distribution is stationary for
the irreductible Markov chain Z. In view of the uniqueness of the stationary distribution,
we conclude that G is indeed the unique p.g.f. satisfying equation (3.6). |

Given two functions f and g, we use the classical notation f(z) = O(g(x)) in the
neighbourhood of zero if |f(x)| < C|g(x)| for some constant C' and all |z| small enough.

Lemma 3.5

The functions a and b of Lemma 3.4 are analytic on (0,2). In particular, they admit a
Taylor expansion of any order near point 1 and, as x goes to 0:

a(l—z) = 1—oaz+0(z?),
b(l—=xz) = O(x).

Proof. Recall the definitions of the random variables A given in Section 2. Since a
geometric random variable with parameter % admits exponential moments of order strictly
smaller than 2, it follows that the p.g.f. s — E[s?*] are strictly positive and analytic on
(0,2). From the explicit form of the functions a and b given in the previous lemma, we
conclude that these two functions are indeed analytic on (0,2). A Taylor expansion of a

near 1 gives

a(l—z)=1— (M —1—-E[Ay 1))z +O0(2?) =1 — azx + O(z?), (3.7)
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where we used Lemma 3.3 for the last equality. Since G is a p.g.f. we have G(1) = 1 which,
in view of (3.6), yields b(1) = 0 and therefore b(1 — z) = O(x). |

The following proposition relies on a careful study of equation (3.6) and is the key to
the proof of Theorem 1.1.

Proposition 3.6
Recall that

M

a=> (2pi—1)—1>0.

i=1
The p.g.f. G of Z is such that, as x > 0 goes to 0:

o if0<a<1,thenl—G(1—x)~ cx®, for some constant ¢ > 0.

In particular E[Zy] = +o0.

e ifa =1, then 1 — G(1 — z) ~ cz|Inz|, for some constant ¢ > 0.

In particular E[Z] = +o0.

o ifa>1,then1—-G(l—1)= 21(’;(_1%);10 + O(z?"9).

In particular E[Z] = % < +o0.

Proof. Since G is a p.g.f, it is completely monotonic and we just need to prove the
proposition along the sequence z = % with n € N*. Making use of Lemma 3.4 with
Szl—%,weget,foraﬂﬂ}l

o) o (D) o) o (d)

Let us define the sequence (uy)n>1 by

{ ur 1 —G(0) =1 —P{Zs =0} >0,
def _1-G(1-1/n) ~9
Up, T a(=1/2) for n > 2.
We also use the notation
ol b(1—1/n)
"L (= 1/9)

Hence, (uy,) is a sequence of positive numbers which satisfies the relation

Un+1 = Up + Tn,

thus

n—1
Uy = U1 + E ;.
Jj=1
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This equality may be rewritten

1-G (1—) Ha(l—) 1—G(0)+7§7«j : (3.9)

In view of Lemma 3.5, we can write the Taylor expansion of a of order M near 1 in the form
a(l—x)=1—azx+ax® + ... +aya™ + O@@M*1).

Using the classical result

n

1 1
z;izlnn+70+ ++O(nM+1>,
1=

we deduce that
C a ah,_ 1

Lemma 3.5 also states that, when b is not identically 0, there exists a unique k € {1,2,...}
such that

b(1 — ) = Da® 4+ O(z*h),  with Dy # 0. (3.11)

If b is identically 0, we use the convention k = +o00. In particular, when k is finite, combining
(3.10) and (3.11) , we deduce that

= DO F 4 O(neF 1), (3.12)

This implies, whenever o — k > —1 that

— ch_ a—k+1 a—k
1 . .
E: L +O0(1Vvn*") (3.13)

Let us now assume that £k = 1. Combining (3.9), (3.10) and (3.13) we find that 1 —
G(1- %) converges towards % # 0 as n tends to infinity but this cannot happen because
G is continuous at 1~ with G(1) = 1. Thus, we have shown that in fact

k> 2.

We now consider the three cases a > 1, @ =1, a < 1 separately.

We have three sub-cases: either a >k —1, ora <k —1,or a =k —1 with k£ > 3.
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e a >k —1: Just as before, combining (3.9), (3.10) and (3.13), we now get

1\ Dy 1
1_G<1_n> - (a—k—f—l)nkl—i_O(nk/\O‘)'

If k were strictly larger than 2, we would have

lim n(l1-G(1—-1/n))=0

n—oo

and therefore G’(1) = E[Z] = 0 which cannot be true because Z is a positive random
variable which is not equal to zero almost surely. Thus & must be equal to 2 and

1-G(1-i>:m1_721)71+0(712}mx). (3.14)

(1)

Using the equality Dy = b/T, we conclude that

E[Z.] = 2(1;(_1)1) < too.

e o < k—1: We prove that this case never happens. Indeed, in view of (3.12) we find

that
o
Z T < 0
Jj=1

(this result also trivially holds when k& = oo since 7; is equally zero in this case).
Combining this with (3.9) and (3.10) we see that

1 1
1_0(1_> :0().
n ne
Since o > 1, this implies, just as in the previous case, that E[Z] = 0, which is absurd.

e o=k —1and k > 3: Again, we prove that this case is empty. Using (3.12), we get

ch_l
Ty ~ .
n

With the help of (3.9) and (3.10), we conclude that
1 1

1—G<1—> ~ Dy
n n

Since k > 3, we again obtain E[Z] = 0, which is unacceptable.

Thus, we have completed the proof of the proposition when o > 1 and we proved by the
way that k& must be equal to 2 and that b”(1) > 0.

a=1
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We first prove, just as in the previous cases, that £ = 2. Let us suppose that £ > 3. In
view of Lemma 3.5, we can write the Taylor expansion of b of order M near 1 in the form

b(1 — ) = D3z + ... + Dpz™ + O(zM+) (3.15)

where D; € R for i € {3,4,..., M}. Combining (3.10) and (3.15) we deduce that

n—1
gr 92 gM -2 1
z;rj:go+n+nQ+...+nM2+O<nM1). (3.16)
‘7:
Therefore, in view of (3.9), (3.10) and (3.16), we get
1 A1 A2 AM—1 1

1—af1-2) =242 LML (),

( n) n T T e T

Comparing with the Taylor expansion of the p.g.f. G, we conclude that E(ZY~!) < oo
which contradicts Proposition 3.1. Thus, k = 2 and (3.12) yields

with Dy # 0. (3.17)

Tn

DQC_I
n

In view of (3.9) and (3.10), this estimate implies

1 1
1G<1>~D2nn,
n n

and therefore
E[Zx] = +oc. (3.18)

Since k > 2, equation (3.12) yields

[o¢]
E r; <00
Jj=1

(of course, this is trivially true when k = 0o0). Thus, the sequence (u,) defined by (3.8)
converges to a constant ¢; 2= 0. Suppose first that ¢; = 0. In this case, k cannot be infinite
(because when k = oo, the sequence (uy,) is constant and then ¢; = u; > 0). From (3.12)

we deduce that
oo

ch_l
U == 1y~ (k—a— Dpk—a-1’

Jj=n

therefore, with the help of (3.10) we get

n—1
1\ 1 Dy,
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Since k > 2, this implies that n(1 — G(1 — 1/n)) converges to a finite constant and so
E[Z+] < co. We have already noticed that this implies a strictly positive speed for the
cookie random walk in the associated cookie environment (M, p). But (by possibly extending
the value of M) we can always construct a cookie environment (M, ) such that p < g and
a(q) = 1. In view of (3.18), the associated cookie random walk has zero speed and this
contradicts a monotonicity result of Zerner (c.f. Theorem 17 of [Zer05]). Therefore c;
cannot be 0 and by (3.8) and (3.10), we get

n—1
1 _ 1 ch

Theorem 1.1 is now a direct consequence of the last proposition and Corollary 2.3.
Moreover, in view of the expression of E[Z)] given in the previous proposition, we get the
following expression for the limiting speed:

Corolary 3.7

For any cookie environnement such that o > 1, we have b’ (1) > 0 and the speed of the

walk is given by the formula
a—1

S a—1+0b(1)

In view of a classical Abelian/Tauberian Theorem (c.f. section XIIL.5 of [Fel71]), we also
deduce from Proposition 3.6 the following estimate concerning the tail distribution of Z.
in the zero speed case:

Corolary 3.8

When o < 1, there exists a constant ¢ > 0 such that

c/n” fo<a<l,

(clnn)/n ifa=1. (3.19)

n—oo

P{Zx >n} ~ {

Remark 3.9

Recall that the random variable Z, has the same distribution as the total number of
jumps from 0 to —1 for the cookie random walk. We may also relate this quantity to
the total number R of returns to the origin. Indeed, since U} (resp. U') stands for the
respective total number of jumps from 0 to —1 (resp. from 1 to 0) before reaching level
n, the total number of returns to the origin before reaching level n is Uy + U{* which,
under P, has the same distribution as Z, + Z,—1 under P. Therefore, we may express

the p.g.f. H of the random variable R in term of the p.g.f. G of Z:
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H(s) = E[s?~Ez_ [s7]]

In particular, Proposition 3.6 holds for H and the tail distribution of the total number
of returns to the origin when o < 1 has the same form as in (3.19).

Remark 3.10

In the particular case M = 2 (there are at most 2 cookies per site), the only unknown in
the definition of the function b is G(0). Since we know that /(1) = 0 (c.f. the beginning
of the proof of Proposition 3.6) we can explicitly calculate G(0), that is the probability
that the cookie random walk never jumps from 0 to 1, which is also the probability that
the cookie random walk never hits —1. According to the previous remark, we can also
calculate the probability that the cookie random walk never returns to 0. Hence, we
recover Theorem 18 of [Zer(5] in the case of a deterministic cookie environment.

4 Continuity of the speed and differentiability at the critical
point

The aim of this section is to prove Theorem 1.2. Recall that Corollary 3.7 states that

_ 0 if a(M,p) <1,
U(Map) = { a—1

ot i a(M,p) > 1,
where b”(1) stands for the second derivative at point 1 of the function b defined in Lemma
3.4. Furthermore, when «(M,p) = 1, then b”(1) is strictly positive (¢f. (3.17)). Hence, in
order to prove Theorem 1.2, we just need to show that (1) = b’(’Mp)(l) is a continuous
function of p in Qf,. It is also clear from the definition of the random variables A that the

functions

p— (B [SAk])(i) (1) (i-e. the i** derivative at point 1)

are continuous in p in Q% for all k£ > 0 and all ¢ > 0 (they are polynomial functions in
P1,-..,pm). Therefore, it simply remains to prove that, for all k£ > 0, the functions

P — Pup)y {2 = k}

are continuous in Q%;. The following lemma is based on the monotonicity of the hitting
times of a cookie random walk with respect to the environment.
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Lemma 4.1

Let (M, p) be a cookie environment such that a(M,p) > 0. Then there exist ¢ > 0 and
f N+ Ry with lim,_,4 f(n) = 0 such that

V(j S B(ﬁ,é) VJ eN VneN |IP)(M,(7) {Zoo = j} — ]P(M@) {Zn :j}| < f(n),

where

M
<qi<1 a(Mq) >0and Y |p—ql < 5},

=1

| =

B(p.e) = {a=(ar.- . qun),

Proof. Let us fix (M,p) with a(M,p) > 0. For € > 0, define the vector p* = (p5,...,p5%,)
by p; = max(%,pi —¢). We can choose ¢ > 0 such that a(M,p°) > 0. Then, for all
q € B(p,e), we have

—€

P <q (4.1)

(where < denotes the canonical partial order on RM). Let us now pick § € B(p,¢), j € N
and n € N. Recall that U$® denotes the total number of jumps of the cookie random walk
from 0 to —1 and

PivgtiZoo =3} = PougtUs” = 3} = P,y 1 X jumps j times from 0 to -1},

and

]P)(M,q){Zn = j} = P(M,q){Ugl = j}
= P51 X jumps j times from 0 to -1 before reaching n}.

Hence
PorgtiZoo =3} —PaurgiZn =3} = [PurglUs® =i} — PuugilUs = i}l
< Py # Ug°}
= Pugi{A}, (4.2)

where A is the event "X visits —1 at least once after reaching level n". Recall the notation
w = w(i,x); >1,42ez for a general cookie environment given in the introduction. Let now
wx,, denote the (random) cookie-environment obtained when the cookie random walk X
hits level n for the first time and shifted by n, i.e. for all x € Z and ¢ > 1, if the initial

cookie environment is w, then
wxn(i,z) =w(j,x+n) wherej=1i+84{0<k<T,, X =2+n}
With this notation we have

Pg {A} = Erg) [Pux, {X visits —(n + 1) at least once}] .
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Besides, X has not eaten any cookie at the sites x > n before time 7},. Thus, the environment
wx,py satisfies

wxn(i,z) =¢q;, forallz>0andi>1 (with the convention ¢; = 1 for i > M).

Hence, in view of (4.1), the random cookie environment wx y is larger (for the canonical
partial order) than the deterministic environment wpe defined by

27
()

{ wpe(i,x) =3, forallz <0andi>1,
wpe (i, ) = ps, for all z > 0 and i > 1 (with the convention p5 =  for i > M).
Thus, Lemma 15 of [Zer05] yields

Py X visits —(n + 1) at least once} < Py, . {X visits —(n + 1) at least once}
In view of (4.2) we deduce that

P {Zoo = 3} = Prg{Zn = j} < f(n),

where f(n) = Py . {X visits —(n + 1) at least once} does not depend of . It remains to
prove that f(n) tends to 0 as n goes to infinity. Let us first notice that

P, {¥n>0 X,>0}=Pu{¥n>0 X,>0}

since these probabilities depend only on the environments on the half line [0, 4+00). Recall
also that the cookie random walk in the environment (M, p®) is transient (we have chosen
e such that a(M,p°) > 0), thus

Hence
Pw]ﬁE {v¥n>0 X, >0}>0,

which implies
P, {X» = 0 infinitely often} < 1,

and a 0-1 law (c.f. Proposition 5 of |Zer05]) yields
Py, {X,, = 0 infinitely often} = P, {X,, <0 infinitely often} = 0.

Therefore, lim,,_,« f(n) = 0. [ |

Recall that the transition probabilities of the Markov chain Z are given by the law of
the random variables Ay:

Pip) {Zni1 =3 | Zn =1} =Py {Ai = 5}
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It is therefore clear that for each fixed n and each k, the function p — Pz {Zn = k} is
continuous in p in %,. Writing

Par,g) 1200 =k} = Parp) 1200 = k} | < [Pag) {200 = K} — Parg) 120 = K} |

and in view of the previous lemma, we conclude that for each k the function

is also continuous in p in €Y%,, which completes the proof of Theorem 1.2.






Chapter VI

Rate of growth of a transient cookie
random walk!

Abstract. We counsider a one-dimensional transient cookie random walk. It is known
from a previous paper [BS06] (Chapter V of this thesis) that the cookies random walk (X,)
has positive or zero speed according to some positive parameter o > 1 or < 1. In this article,
we give the exact rate of growth of (X,,) in the zero speed regime, namely: for 0 < o < 1,
Xn/naTJr1 converges in law to a Mittag-Leffler distribution whereas for « = 1, X,,(logn)/n

converges in probability to some positive constant.

1 Introduction

Let us pick a strictly positive integer M. An M-cookie random walk (also called multi-
excited random walk) is a walk on Z which has a bias to the right upon its M first visits at a
given site and evolves like a symmetric random walk afterwards. This model was introduced
by Zerner |[Zer06| as a generalization, in the one-dimensional setting, of the model of the
excited random walk studied by Benjamini and Wilson [BWO03|. In this paper, we consider
the case where the initial cookie environment is spatially homogeneous. Formally, let (€2, P)
be some probability space and choose a vector p = (p1,...,par) such that p; € [%, 1) for all
i=1,..., M. We say that p; represents the strength of the ¢*" cookie at a given site. Then,
an (M, p)-cookie random walk (X, n € N) is a nearest neighbour random walk, starting
from 0, and with transition probabilities:

o ifi={0<i<n, X; =X} < M,
P{X, 1 =X, +1|Xo,..., X} =4 17 "7 i i =Xn}
5 otherwise.

In particular, the future position X, ;1 of the walk after time n depends on the whole
trajectory Xo, X1,...,X,. Therefore, X is not, unless in degenerated cases, a Markov
process. The cookie random walk is a rich stochastic model. Depending on the cookie

!This chapter is a slightly modified version of the joint work: A.-L. Basdevant and A. Singh, Rate of
growth of a transient cookie random walk, submitted.
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environment (M, p), the process can either be transient or recurrent. Precisely, Zerner
[Zer06] (who considered an even more general setting) proved, in our case, that if we define

M

a=a(M,p)=> (2p—1)-1, (1.1)
=1

o if & < 0, the cookie random walk is recurrent,

e if a > 0, the cookie random walk is transient towards +o0.

Thus, a 1-cookie random walk is always recurrent but, for two or more cookies, the walk can
either be transient or recurrent. Zerner also proved that the limiting velocity of the walk is
well defined. That is, there exists a deterministic constant v = v(M, p) = 0 such that

X
lim =" =v almost surely.
n—oo N

However, we may have v = 0. Indeed, when there are at most two cookies per site, Zerner
proved that v is always zero. On the other hand, Mountford et al. [MPV06| showed that
it is possible to have v > 0 if the number of cookies is large enough. In a previous paper
[BS06] (c.f. Chapter V), the authors showed that, in fact, the strict positivity of the speed
depends on the position of o with respect to 1:

o if & < 1, then v =0,
o if @ > 1, then v > 0.

In particular, a positive speed may be obtained with just three cookies per site. The aim
of this paper is to find the exacte rate of growth of a transient cookie random walk in
zero speed regime. In this perspective, numerical simulations of Antal and Redner [AR05]
indicated that, for a transient 2-cookies random walk, the expectation of X, is of order n”,
for some constant v € (%, 1) depending on the strength of the cookies. We shall prove that,

_ o+l
more generally, v = “5=.

Theorem 1.1

Let X be a (M, p)-cookie random walk and let o be defined by (1.1). Then, when the
walk is transient with zero speed, i.e. when 0 < a < 1,

o Ifa<l,
Xn la
—ar > Lan
nT n—oo 2

where EaTH denotes a Mittag-Leffler distribution of index QTH

o [f o =1, there exists a constant ¢ > 0 such that

logn

prob.
X, — ¢

n n—00

These results also hold with sup; <n X; and inf; > ,, X; in place of X,,.




1 : Introduction 151
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Figure VI.1 : Simulation of the 100000 first steps of a cookie random walk with M = 3

andp1=p2=p3=% (z'.e. a:%andy:%)_

This theorem bears many likenesses to the famous result of Kesten et al. [KKS75| concerning
the rate of transience of a one-dimensional random walk in random environment. Indeed,
following the method initiated in [BS06], we can reduce the study of the walk to that of
an auxiliary Markov process Z. In our setting, Z is a branching process with migration.
By comparison, Kesten et al. obtained the rates of transience of the random walk in ran-
dom environment via the study of an associated branching process in random environment.
However, the process Z considered here and the process introduced in [KKS75] have quite
dissimilar behaviours and the methods used for their study are fairly different.

Let us also note that, as a tends to zero, the rate of growth n(+®/2 tends to \/n. This
suggests that, when the cookie walk is recurrent (i.e. —1 < a < 0), its growth should not be
much larger than that of a simple symmetric random walk. In fact, we believe that, in the
recurrent setting, sup; < , X; should be of order I(n)\/n for some slowly varying function I.

The remainder of this paper is organized as follow. In the next section, we recall the
construction of the associated process Z described in [BS06] as well as some important
results concerning this process. In section 3, we study the tail distribution of the return
time to zero of the process Z. Section 4 is devoted to estimating the tail distribution of the
total progeny of the branching process over an excursion away from 0. The proof of this
result is based on technical estimates whose proofs are given in section 5. Once all these
results obtained, the proof of the main theorem is quite straightforward and is finally given
in the last section.
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2 The process Z

In the rest of this paper, X will denote an (M, p)-cookie random walk. We will also
always assume that we are in the transient regime and that the speed of the walk is zero,
that is

O<a<l.

The proof of Theorem 1.1 is based on a careful study of the hitting times of the walk:
T, € inf{k >0, X}, = n}.

We now introduce a Markov process Z closely connected with these hitting times. Indeed,
we can summarize Proposition 2.2 and equation (2.3) of [BS06] (the previous chapter of this
thesis) as follows:

Proposition 2.1

There exist a Markov process (Z,, n € N) starting from 0 and a sequence of random
variables (K, n > 0) converging in law towards a finite random variable K such that,
for each n

n
Tn’¥n+222k+f(n.
k=0

Therefore, a careful study of Z will enable us to obtain precise estimates on the distribution
of the hitting times. In the rest of this section, we shall recall the construction of Z and
some important results obtained in [BS06].

For each + = 1,2,..., let B; be a Bernoulli random variable with distribution

pi if1<i< M,
P{B,=1'=1-P{B, =0} =
{Bi=1) {B: =0} {; ifi> M.

We define the random variables Ag, A1, ..., Ay—1 by
i
A 401 <i<kj, B;=0} where k; % inf (z >1,Y Bi=j+ 1).
=1

Therefore, A; represents the number of "failures" before having j + 1 "successes" along the
sequence of coin tossings (B;). It is to be noted that the random variables A; admit some

exponential moments:
E[sY] < oo forall s € [0,2). (2.1)

According to Lemma 3.3 of [BS06], we also have

M

E[Ay_1]=2) (1-p)=M-1-oa. (2.2)
=1
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Let (&, i € N*) be a sequence of i.i.d. geometric random variables with parameter 3 (i.e.
with mean 1), independent of the A;. The process Z mentioned above is a Markov process
with transition probabilities given by

i—M+1
P{Zy1=jlZn =i} = P{]l{i <m-13A4i + Loy (AMA + ) €k) = j}- (2.3)
k=1

As usual, we will use the notation P, to describe the law of the process starting from z € N
and E, the associated expectation, with the conventions P = Py and E = Ey. Let us
notice that Z may be interpreted as a branching process with random migration, that is, a
branching process which allows both immigration and emigration components.

o IfZ,=ie{M,M+1,...}, then Z,;1 has the law of ZZ;J‘I4+1 &+ Ap—1, ie. M—1
particles emigrate from the system and the remaining particles reproduce according
to a geometrical law with parameter % and there is also an immigration of Ap;_1 new
particles.

o If Z,=i€{0,...,M — 1}, then Z,;1 has the same law as A;, i.e. all the i particles
emigrate the system and A; new particles immigrate.

Since we assume that the cookie vector p is such that p; < 1 for all ¢, the process Z is an
irreducible Markov process. More precisely,

P,{Zi=y} >0 forall z,y € N.

From the construction of the random variables A;, we have Ag < A1 < ... < Ay
This fact easily implies that, for any x < y, the process Z under P, (starting from z) is
stochastically dominated by Z under P, (starting from y). Let us also note that, for any
kE>M-—1,

ElZy+1—Zu|Zy =k =E[Ay1] - M+1=—c. (2.4)

This quantity is negative and we say that emigration dominates immigration. In view of
(2.4), a simple martingale argument shows that Z is recurrent. More precisely, according
to section 2 of [BS06], the process Z is, in fact, positive recurrent and thus converges in
law, independently of its starting point, towards a random variable Z,, whose law is the
unique invariant probability for Z. Moreover, according to Remark 3.7 of [BS06], the tail
distribution of Z is regularly varying with index a:

Proposition 2.2

There exists a constant ¢ > 0 such that

P{Z. >z} c/x” ifa e (0,1),
> a—oo | clogz/x ifa=1.
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Let now o denote the first return time to 0 for the process Z,
def .
o=inf{n >1, Z, = 0}.

According to the classical expression of the invariant probability, for any non negative func-
tion f, we have

E = E[0]E[f(Z)]. (2.5)

o—1
> £(Z)
=0

In particular, we deduce the following corollary which will be found very useful:

Corolary 2.3
We have, for § = 0,

E .
=o0 Iiff > a.

o—1
> %
=0

{<oo if f < a,

3 The return time to zero

We have already stated that Z is a positive recurrent Markov chain, thus the return
time o to zero has finite expectation. The aim of this section is to strengthen this result by
giving the asymptotic of the tail distribution of o. Precisely, we will show that

Proposition 3.1

For any initial starting point x > 1, there exists ¢ = c¢(x) > 0 such that

P.{oc>n} ~ —

n—00 na-i—l '

Notice that we do not allow the starting point = to be 0. In fact, this assumption could be
dropped but it would unnecessarily complicate the proof of the proposition which is technical
enough already. Yet, we have already mentioned that Z starting from 0 is stochastically
dominated by Z starting from 1, thus P{oc > n} < P1{c > n}. We also have P{o >
n} > P{Z; = 1}P1{o > n — 1}. Therefore, we deduce that

C1
naJrl

C2

where c¢; and c2 are two strictly positive constants. In particular, we obtain the following
corollary which will be sufficient for our needs.

Corolary 3.2
We have

E[aﬁ] <o Iffg<a+l,
=oc0 Iff>2a+1.
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The method used in the proof of the proposition is classical and based on the study of
probability generating functions. Proposition 3.1 was first proved by Vatutin [Vat77] who
considered a branching process with exactly one emigrant at each generation. This result
was later generalized for branching processes with more than one emigrant by Vinokurov
|[Vin87| and also by Kaverin [Kav90]. However, in our setting, we deal with a branch-
ing process with migration, that is, where both immigration and emigration are allowed.
More recently, Yanev and Yanev proved similar results for such a class of processes, under
the assumption that, either there is at most one emigrant per generation [YY04| or that
immigration dominates emigration [YY95| (in our setting, this would correspond to o < 0).

For the process Z, the emigration component dominates the immigration component
and this leads to some additional technical difficulties. Although there is a vast literature
on the subject (see the authoritative survey of Vatutin and Zubkov [VZ93] for additional
references), we did not find a proof of Proposition 3.1 in our setting. We shall therefore pro-
vide here a complete argument but we invite the reader to look in the references mentioned
above for additional details.

Recall the definition of the random variables A; and &; defined in section 2. We introduce,
for s € [0, 1],

1
F(s) = E[s%]= 9 _ g
3(s) = (2-9)M ' ElsM ),
Hi(s) & (2—s)M1FE[sAV-1) —E[s**] for 1<k <M —2.
Let Fj(s) “Fo...0 F(s) stand for the j-fold of F' (with the convention Fj = Id). We also
define by induction
{ Yo(s) = 1,

Ynr1(5) = 6(Fa(8))1n(s)-

def

We use the abbreviated notations Fj; & F;(0), 7, & 4,(0). We start with a simple lemma.

Lemma 3.3

(a) Fn=1- 3.
(b) Hi(1—s)=—Hj(1)s+ O(s*) when s — 0 forall 1 <k < M — 2.
(c) 6(1 —s) =1+ as+ O(s?) when s — 0.

(d) Yn ~oo c3n® with c3 > 0.

Proof. Assertion (a) is straightforward. According to (2.1), the functions Hy are analytic
on (0,2) and (b) follows from a Taylor expansion near 1. Similarly, (c) follows from a Taylor
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expansion near 1 of the function ¢ combined with (2.2). Finally, 7, can be expressed in the

form
n—1 n a
=Tl ~ T (1+2) et
j=0 Jj=1
which yields (d). [

Let Z stand for the process Z absorbed at O:

Zy = Znln < inf(k, Zo=0)}-

We also define, for x > 1 and s € [0, 1],

To(s) = D P{Z; #0}s', (3.2)
=0
Gn7x(s) d:ef Ex[SZnL

and for 1 <k < M — 2,

oo
Gra(s) =D PofZ; = kst
=0

Lemma 3.4
For any 1 < k< M — 2, we have

(a) supy >1 gre(1) < o0,

(b) forallz > 1, g (1) < oo.

Proof. The value g, (1) represents the expected number of visits to site k before hitting 0
for the process Z starting from x. Thus, an easy application of the Markov property yields

B P.{Z visits k before 0} - 1 <o
~ P.{Z visits 0 before returning to k} ~ Pp{Z; = 0} '

gk,x(l)

This proves (a). We now introduce the return times oy, = inf(n > 1, Z, = k). In view of
the Markov property, we have

Ghol) = gro(D)+Eo| D nlgz ]

n=1
= gea()+ Y Pufor =i, o < VB[ (i + )15 ]
i=1 n=0

= k(1) + Exlox s, <19k k(1) + Po{og < o} Ey [Z ”]l{zn:k}} :
n=0
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Since Z is a positive recurrent Markov process, we have E;[o;1,, <51] < Ez[0] < co. Thus,

it simply remains to show that Eg [ij’:o nﬂ{%:k}} < 0o. Using the Markov property, as
above, but considering now the partial sums, we get, for any N > 1,

E;

N N
Znﬂ{ink}] = ZPk{Uk =1, o < o }Ey

n=1 i=1

N—i
> i+ ”)H{an}]
n=0
N
n=1

< Ep [oklis,<0p] 9ri(1) + Pr{or < o} Ey

Since Pr{o < o} > Pr{Z; = 0} > 0, we deduce that

N
Ex [0k, <o) grk(1)
Ei | nly .| < - < oo
] { ¥ Pk{O' < O'k}
and we conclude the proof letting N tend to +oo. |

L_ernma 3.5
The function J, defined by (3.2) may be expressed in the form
M—2

To(s) = Jo(s)+ > Jrals) forsel0,1),
k=1

where

>~ s def ZZO:() ’Yn(l - (Fn)m)sn an def Gk, z( )ZZO:() 'YnHk(Fn)Sn
J=(5) (1=8) > 02gVns" o J () = (1=8) > 00 Vns"

Proof. From the definition (2.3) of the branching process Z, we get, for n > 0,

Gri1.2(5) = Ba B [s7]
M—-2 00

=P {Z,=0}+ > P.{Z, =k}E[s™]+ Y P.{Z,=k}E[ M VE[s]
k=1 k=M-1

E[SA]Wfl] _ M-2 . E[SAMil] [e.9] "

=1-=— 2 |P{Z,=0}= P, {Z,=k\H — NP {Z, =k E[s*]
( E[Ss]M_l) { } ;:1 { }H}(s) + B[ ;:0: { 1E[s*]

Since E[s¢] = F(s) and G, ,(0) = P,{Z, = 0}, using the notation introduced in the

beginning of the section, the last equality may be rewritten

M—-2
Grit12(s) = 6(5)Gpo(F(s)) + (1 — 8(s Po{Zn, = k}YHy(s).
k=1



158 Chapter VI :  Rate of growth of a transient cookie random walk

Iterating this equation then setting s = 0 and using the relation Go z(Fp41) = (Fnt1)”, we
deduce that, for any n > 0,

n M-2 n
Gn+1,m(0> = Z(l_é(ﬂ))Van—z,x(o) + 7n+1 n+1 Z ZPm{Zn—z = k}PYsz(Fz)
=0 k=1 =0

(3.3)
Notice also that P,{Z, # 0} = 1 — Gn2(0). In view of (3.3) and making use of the relation
(1 = 6(F3))vi = v — Yir1, we find, for all n > 0 (with the convention Y ;' = 0)

n—1
Po{Z, #0} = vl - (Fn)")+ Z(% = Yi+1)Pa{Zn_1-i # 0}
=0
M—-2n-1 _
+ Z ZPx{Zn—l—i = k}viHy(F;).
k=1 i=0
Therefore, summing over n, for s < 1,
e ~
= P {Z, #0}s"
n=0
s ~
- Z'}’n(l o 8 + Z Z ’YH—l x{Zn—i i 0}5n+1
n=0 n=0 7=0
M—-2 co n B
+ Z Po{Zn—i = k}viHy(F;)s"t!
k=1 n=0 i=0
00 o0 M—-2 o0
= Z7n(1 - (Fn "+ J Z ’Yn—l—l n+1 + Z gkz )Z’YnHk(Fn)sn
n=0 = k=1 n=0

We conclude the proof noticing that > o0 (v — Ynt1)s" T = (s = 1) 3 0% jyps"+1. W
We can now give the proof of the proposition.
Proof of Proposition 3.1. Recall that the parameter « is such that 0 < o < 1. We first

assume a < 1. Fix x > 1and 1 < k< M — 2. In view of Lemma 3.3 and with the help of
an Abelian/Tauberian theorem (c.f. Chap VIII of [Fel71]), we check that

csl(a+1 -
(1—13) Z’yns s 1(—3)) and Z’ynHk(Fn)s”

_eH ()T ()
s—1— (1 — 8)‘)‘

These two equivalences show that jkx(l) < im, - j;m(s) is finite. More precisely, we get

Toa(t) = ~ 2ot DHLL),

so that we may write

jk,x(l) - :]Vk;,x(s) o gk,x(l) - gk,a:(s) jk,a:(s) gk,x(l)gk(s)
e (B ) e e e 09
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with the notation

H;,(1)

oo o0
Bk:(s) d:ef (S - 1) Z 'Ynsn - Z 'YnHk(Fn)sn'
n=0 n=0
The first term on the r.h.s. of (3.4) converges towards —g; (1)H}(1)/c as s tends to 1 (this
quantity is finite thanks to Lemma 3.4). Making use of the relation v,+1 = 0(F,)vn, we can
also rewrite By in the form

Bu(s) = iv D () - ot mm)] 57— 24— a0
With the help of Lemma 3.3, it is easily check that
uen | o) - o0 )] =0 (5 ).
Since o < 1, we conclude that
By(1) = sl—i}{l* By(s) is finite. (3.5)
We also have -
(1- s)z;]%sn ~ m (3.6)
Thus, combining (3.4), (3.5) and (3.6), as s — 17,
Tia(1) = Jeals) gk,m<1)§k(1)(1 — o1 - s)* ). (3.7)

1—s - el(a+1)

Y

We can deal with .J, in exactly the same way. We now find J,(1) = 2 and setting
Bo(1)™ S oy 2 0(Fae1) = 1) = 8(Fu-1)(1 = (F)")| + = =1 (3.8)
— « a

we also find that, as s — 17,

Jo(1) = Ju(s) __ Bu(1)
1-s esl'(a+1)

(1—s)*T+o((1-s)1). (3.9)

Putting together (3.7) and (3.9) and using Lemma 3.5, we obtain

Jz (1) — Jy(s)

. =G0- $)* T t+o((1—s)*1) (3.10)

with

def 1 ~ M=2 -
Co = m <B£B(1) + ]; gk,m<1)Bk(1)> . (3.11)
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Since x # 0, we have P, {Z, # 0} = P,{c > n} and, from the definition of .J,, we deduce

3 ( Y Puo> k:})s" _ Jo(l) = Jals) (3.12)

1—s
n=0 k=n+1

Combining (3.10) and (3.12), we see that C; > 0. Moreover, the use of two successive

Tauberian theorems yields

Cro 1

It remains to prove that C, # 0. To this end, we first notice that, for z,y > 0, we have
P,{Zi =z} >0 and

P,{oc>n}>P{Z =2}P,{c >n—1}.

Thus, Cy > Py{Z1 = 2}C; so it suffices to show that C, is not zero for some x. In view of

(a) of Lemma 3.4, the quantity
M-2

> gka(1)Br(1)

k=1
is bounded in x. Looking at the expression of C, given in (3.11), it just remains to prove
that B;(1) can be arbitrarily large. In view of (3.8), we can write

where

(1= (Fn)")

But for each fixed n, the function

T — 5(Fn_1)w

decreases to 0 as x tends to infinity, so the monotone convergence theorem yields

S) 1 Y

T—00
n=1

[e's)

Tn—1 1

na (5(Fn_1)—1) ~ C3 E o = +o0.
n=1

Thus, Em(l) tends to infinity as z tends to infinity and the proof of the proposition for
a < 11is complete. The case a = 1 may be treated in a similar fashion (and it is even easier
to prove that the constant is not zero). We skip the details. |

Remark 3.6

The study of the tail distribution of the return time is the key to obtaining conditional
limit theorems for the branching process, see for instance [Kav90, Vat77, Vin87, YY04].
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Indeed, following Vatutin’s scheme [Vat77] and using Proposition 3.1, it can now be
proved that Z,/n conditioned on not hitting 0 before time n converges in law towards
an exponential distribution. Precisely, for each x =1,2,... and r € Ry,

lim Px{Zn<7“|a>n}—l—er.
n—oo n

It is to be noted that this result is exactly the same as that obtained for a classical
critical Galton-Watson process (i.e. when there is no migration). Although, in our
setting, the return time to zero has a finite expectation, which is not the case for the
critical Galton-Watson process, the behaviours of both processes conditionally on their

non-extinction are still quite similar.

4 Total progeny over an excursion

The aim of this section is to study the distribution of the total progeny of the branching
process Z over an excursion away from 0. We will constantly use the notation

der @+ 1
UV =
2

In particular, v ranges through (%, 1]. The main result of this section is the key to the proof
of Theorem 1.1 and states as follows.

Proposition 4.1

There exists a constant ¢ > 0 such that

o—1 .
c/x” if a€(0,1)
PN 7> :c} ~ { , ’
{kzo T—00 if a=1.

clogz/x

Let us first give an informal explanation for this polynomial decay with exponent v. In
view of Remark 3.6, we can expect the shape of a large excursion away from zero of the
process Z to be quite similar to that of a Galton-Watson process. Indeed, if H denotes the
height of an excursion of Z (and o denotes the length of the excursion), numerical simulations
show that, just as in the case of a classical branching process without migration, H ~ o
and the total progeny Zz;é Zj, is of the same order as Ho. Since the decay of the tail
distribution of ¢ is polynomial with exponent o+ 1, the tail distribution of ZZ;& Z should
then decrease with exponent O‘TH In a way, this proposition tells us that the shape of an
excursion is very "squared".

Although there is a vast literature on the subject of branching processes, it seems that
there has not been much attention given to the total progeny of the process. Moreover, the
classical machinery of generating functions and analytic methods, often used as a rule in
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the study of branching processes seems, in our setting, inadequate for the study of the total
progeny.

The proof of Proposition 4.1 uses a somewhat different approach and is mainly based
on a martingale argument. The idea of the proof is fairly simple but, unfortunately, since
we are dealing with a discrete time model, a lot of additional technical difficulties appear
and the complete argument is quite lengthy. For the sake of clarity, we shall first provide
the skeleton of the proof of the proposition, while postponing the proof of the technical
estimates to section 5.2.

Let us also note that, although we shall only study the particular branching process
associated with the cookie random walk, the method presented here could be used to deal
with a more general class of branching processes with migration.

We start with an easy lemma stating that P{ZZ;& Zy, > x} cannot decrease much faster
than 2.

xV

Lemma 4.2

For any (8 > v, we have

E

= OQ.

(Ea)

Proof. When a = v = 1, the result is a direct consequence of Corollary 2.3 of section 2.
We now assume a < 1. Holder’s inequality gives

o—1

-1
JZ Zy < o' (> Zn)™
n=0

n=0
Taking the expectation and applying again Hoélder’s inequality, we obtain, for € > 0 small
enough

q

E < E[O_l-i—a—e]% E

Y

o—1 o—1
>z (D Zn)
n=0 n=0

with p = H2=¢ and ag = 3272 Moreover, Corollary 2.3 states that E[Y72; 78] = oo

2—¢/a "

and thanks to Corollary 3.2, E[o'*~¢] < co. Therefore,

o—1 o—1
e[z e[ E o] -
n=0 n=0
This result is valid for any &’ small enough and completes the proof of the lemma. |

Proof of Proposition 4.1. Let us first note that, in view of an Abelian/Tauberian theorem,
Proposition 4.1 is equivalent to

Bfi-cxiaa) o [OF itaco
A—=0+ | CAlog) ifa=1,



4 : Total progeny over an excursion 163

where C' is a positive constant. We now construct a martingale in the following way. Let
K, denote the modified Bessel function of second kind with parameter v. For A > 0, we
define

ox(z) € (V) K, (Vx), for x> 0. (4.1)

We shall give some important properties of ¢, in section 5.1. For the time being, we simply
recall that ¢, is an analytic, positive, decreasing function on (0,00) such that ¢, and ¢

are continuous at 0 with
Px(0)=2"""T(v) and ¢(0) =0. (4.2)
Our main interest in ¢ is that it satisfies the following differential equation, for > 0:

—Azda(z) — ag)(x) + 2@} (z) = 0. (4.3)

def

Now let (F,,n > 0) denote the natural filtration of the branching process Z i.e. F, =
0(Zy,0 <k <n) and define, for n > 0 and A > 0,

W & 5 (Zp)e > Zimo 7. (4.4)

Setting o
(n) < BW, — Wit | Fl, (4.5)

it is clear that the process
n—1
Yo E W+ > p(k)
k=0
is an F-martingale. Furthermore, this martingale has bounded increments since
o1 = Yo < [Wapr = Wal + |u(n)] < 4f|ox]]oc-

Therefore, the use of the optional sampling theorem is legitimate with any stopping time
with finite mean. In particular, applying the optional sampling theorem with the first return

time to 0, we get
o—1

A(0)Ele X80 2] = ,(0) — B[S u(k)],

k=0
which we may be rewritten, using that ¢,(0) = 2"~ 'T'(v),

1 o—1

E[l — e X0 %) = WE[Z (k)] (4.6)
k=0

The proof of Proposition 4.1 now relies on a careful study of the expectation of ZZ;& w(k).
To this end, we shall decompose p into several terms using a Taylor expansion of ¢). We
first need the following lemma:
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Lemma 4.3

(a) There exists a function fi with fi(x) =0 for all x > M — 1 such that

E[Zn1 — Zn | Fa] = —a+ f1(Zy).

(b) There exists a function fa with fo(x) = fo(M — 1) for all x > M — 1 such that

E[(Zni1 — Z0)? | Ful = 220 + 2f2(Z).

(c) For p € N*, there exists a constant D), such that

E(|Zns1 — ZalP | Ful < Dy(ZE? + 15, _gy).

Proof. Assertion (a) is just a rewriting of equation (2.4). Recall the notations introduced
in section 2. Recall in particular that E[Ay;—1] = M —1—«a. Thus, for j > M — 1, we have

E(Zot1 — Z0)? | Zo=3] = E[(Av_i+& + .+ &n —5)7]
j—M+1 )
= E[(a+Aua—BlAua)+ Y (G -El&) |
k=1

= o*+Var(Ay_1) + (j — M +1)Var(&)
= 27, +a*+ Var(Ay_1) —2(M —1).

This proves (b). When p is an even integer, we have E[|Z,11 — Z, P | Fn] = E[(Zn+1 —

Zn)P | Fn] and assertion (c) can be proved by developing (Z,+1 — Z,)P in the same manner
as for (b). Finally, when p is an odd integer, Holder’s inequality gives

. . 2 T 2
E[|Zni1 = ZalP | Zo =35> 0] S E[|Zps1 — Zn|P™ | Zn = j > 0]741 < DI Z3.

Continuation of the proof of Proposition 4.1. For n € [1,0 — 2|, the random variables
Z, and Z, 41 are both non zero and, since ¢, is infinitely differentiable on (0, 00), a Taylor
expansion yields

¢>\(Zn+1) = ¢>\(Zn) + Qb/A(Zn)(Zn-&-l - Zn) + %?b,)((zn)(znﬁ-l - Zn)2 + O, (4~7)

where 6, is given by Taylor’s integral remainder formula

1
O (Zusr = 2P | (1= OBt s = 2) = (2 (48)



4 : Total progeny over an excursion 165

When n = o —1, this result is a priori incorrect because then Z,11 = 0. However, according
to (4.2) and (4.3), the functions ¢y (t), ¢)\(t) and t¢(¢) have finite limits as ¢ tends to 0%,
thus equation (4.7) still holds when n = o — 1. Therefore, for n € [1,0 — 1],

E[e"¢)(Zn) — ox(Zns1) | Fnl =
(eAZn - 1)¢>\(Zn) _QS/A(Zn)E[Zn-H - Zn ‘ fn] o %QZ)/)((Zn)E[(Zn—H - Zn)2 | fn] _E[Qn | ‘7:”]'

In view of (a) and (b) of Lemma 4.3 and recalling the differential equation (4.3) satisfied by
®x, the r.h.s. of the previous equality may be rewritten

(X —1 = MZ0)oA(Zn) = O\(Zn) J1(Zn) = $3(Z0) Jo(Zn) — Elb | Fu).
On the other hand, in view of (4.4) and (4.5), we have
pn) = e Zi=0 AR 93 (Z,) = $r(Znt1) | Ful. (4.9)
Thus, for each n € [1,0 — 1], we may decompose p(n) in the form
p(n) = pr(n) + p2(n) + pz(n) + pa(n), (4.10)
where

((n) & e AT Zk (M 1 Z 77,0 (Z)

(n)

2(n) & e Do i) (2, f1(Zn)
(n) & e ATh0 Bl (Z,) o Z0)
(n) & _eATioZElp, | F,.

T T T

3

n

=

4

In particular, we can rewrite (4.6) in the form (we have to treat ;(0) separately since (4.8)
does not hold for n = 0)

4 o—1
B[l — e \Eim 24 = 2—11r(u) (E[M(O)] + ZE[ZM(n)D . (4.11)
n=1

i=1
We now state the main estimates:

Lemma 4.4

There exist € > 0 and eight finite constants (C;,Cl,i = 0,2,3,4) such that, as A tends
to 0T,

CoX + O(N) if a€(0,1)

(a) E[u(0)] :{ CoAlog A + CLA + o(N) if a=1,

(b) B[S0t mn)] = o() for a € (0,1,
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Mo 7 CoX\ + o(AV19) if a€(0,1)
E o—1 — )
(c) B |2 2(n) {(%M%A+Cy+oﬂ) ifa=1,
- 1 C5\ + o(AV19) if a€(0,1)
d) E 071 — )
() B |2 ()] { CsMlog A+ CiA+o(\)  if a =1,
Cy A’ + o(AV9) if a€(0,1)
CiA + o(N) if a=1.

(&) B [0t mln)| = {

Let us for the time being postpone the long and technical proof of these estimates until
section 5.2 and complete the proof of Proposition 4.1. In view of (4.11), using the previous
lemma, we deduce that there exist some constants C, C’ such that

o v v+e :
E|:1—ei>\zk:(%21{| _ C/\ +0(>\ ) lfOéG (0, 1), (412)
CAlog A+ C'A+o0())  ifa=1.

with

def 21_VF(I/)_1(CO + Cy 4+ C5 + 04) when a < 1,
| 21T (v) TN (Co + Co + C3) when o = 1.

It simply remains to check that the constant C' is not zero. Indeed, suppose that C' = 0.
We first assume o = 1. Then, from (4.12),
E [1 R ) Zk} = '\ +0()\)

which implies E[Y)7_3 Zx] < oo and contradicts Corollary 2.3. Similarly, when a € (0,1)
and C =0, we get from (4.12),

E [1 e Zk} — o(AVe).

This implies, for any 0 < &’ < ¢, that

E

o—1
> zn>v+e'] .
n=0

which contradicts Lemma 4.2. Therefore, C' cannot be zero and the proposition is proved.
|

5 Technical estimates

5.1 Some properties of modified Bessel functions

We now recall some properties of modified Bessel functions. All the results cited here
may be found in [AS64] (section 9.6) or [Leb72| (section 5.7). For n € R, the modified Bessel
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function of the first kind I;, is defined by

def [T\ > (x/Q)Qk
Iy(z) = <§> kzo I'(k+1)C(k+1+n)

and the modified Bessel function of the second kind K, is given by the formula
I_n(z)—In(x)
Ky(a) & 3 "ngnm"x forne R—-17Z,
K lim,_,,, K,y (z) for n € Z.

We are particularly interested in

def

F,(z) = 2"K,(z) for x> 0.
Thus, the function ¢, defined in (4.1) may be expressed in the form

ox(z) = F,(VAz). (5.1)
Elct 5.1

For n > 0, the function F;, is analytic, positive and strictly decreasing on (0,00). More-

over
1. Behaviour at 0

(a) Ifn > 0, the function F, is defined by continuity at 0 with F,(0) = 27~1T'(n).

(b) If n =0, then Fy(x) = —logx +log2 — v+ o(1) as x — 07 where v denotes
Euler’s constant.

2. Behaviour at infinity

Fp(z) ~ /e ™.

z—oo \| 22

In particular, for every n > 0, there exists ¢, € R such that

Vo >0, Fy(r) <cpe ™. (5.2)

3. Formula for the derivative

Fl(z) = —a*" ' Fi_y(). (5.3)
In particular, F), solves the differential equation

ek (x) — (2n — 1) F)(x) — 2 Fy(x) = 0.

Concerning the function ¢y, in view of (5.1), we deduce
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Fact 5.2

For each A > 0, the function ¢, is analytic, positive and strictly decreasing on (0, c0).

Moreover
(a) ¢y is continuous and differentiable at 0 with ¢»(0) = 2"7'I'(v) and ¢} (0) = 0.

(b) For z > 0, we have

oNED —)\”azaFl,,,(\f)\:L‘),
$(x) = AFR(VAz) —aXz® ' P, (V)z).

In particular, ¢y solves the differential equation

—Azdy(7) — adh(x) + xd) (z) = 0.

5.2 Proof of Lemma 4.4

The proof of Lemma 4.4 is long and tedious but requires only elementary methods. We
shall treat, in separate subsections the assertions (a) - (e) when o < 1 and explain, in a last
subsection, how to deal with the case a = 1.

We will use the following result extensively throughout the proof of Lemma 4.4.

Lemma 5.3

There exists € > 0 such that

E [0(1 — e A% Z’“)] =0(\°) asA— 0T,

Proof. Let 3 < a < 1, the function  — z” is concave, thus
o—1 o—1
(> 2)° >
k=0 k=0

where we used Corollary 2.3 to conclude on the finiteness of ¢;. From Markov’s inequality,
we deduce that P {ZZ;& Zy, > :1:} < ;—}, for all > 0. Therefore,

de

E <E :fc1<oo,

o—1

Ayt z Az ‘1
E[l e k=0 k} <(l—e )+P{I;)Zk>m}<)\x+$ﬁ.

1
Choosing © = A™ 7+1 and setting [ o %, we deduce

E |1 e 200 %] < (14 e)a.
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According to Corollary 3.2, for 6 < a, we have E[o'"°] < 0o, so Holder’s inequality gives
5
E 0(1 o G—AZZ;é Zk)] < E[O_l—o—é]ﬁE [(1 o G—AZZ;S Zk)l%f‘;} 146
_1 o—1 % B's
< E[O_H—J] gy 7y [1 _ e i Zk:| < AT+,

which completes the proof of the lemma. |

5.2.1 Proof of (a) of Lemma 4.4 when o < 1

Using the expression of p(0) given by (4.9) and the relation (5.3) between of F,, and
Fi_,, we have

VAZy A
E[1(0)] = E[F,(0) — F,(VAZ))] = —E /0 F;(ac)dx] = \E [/0 Y P, (VAy)dy| .

Thus, using the dominated convergence theorem,

F1-,(0)

1+« E[Z11Y ¥ C) < 0.

lim - E[u(0)] = B [ /0 - yO‘Fl_Z,(O)dy] _

Furthermore, using again (5.3), we get

%E[M(O)]—Cb) = EUZ1 <F1 v(0) — Fi_ V(ﬁy)> dy]

Z1 Vy
/ / x)dxdy

< LBl gl [ ydy} _ IR Bz 1o
0

1—a 2(1 - )

Therefore, we obtain
E[u(0)] = CoA” + O(N)

which proves (a) of Lemma 4.4.

5.2.2 Proof of (b) of Lemma 4.4 when a <1
Recall that
p1(n) = e A Ti=0Zk(Mn _ 1 — XZ,)p\(Zy) = e A k=0 Zk(Mn 1 — XZ,)F,(V\Zy).
Thus, p1(n) is almost surely positive and

pi(n) < (1 —en — AZ,e M) F,(VAZy).
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Moreover, for any y > 0, we have 1 — e ¥ — ye™¥ < min(1, y?), thus

p(n) < (1= e M \Zye M E,(VAZ,) (Il{zpmfogx} + ﬂ{zngz’}ﬁ})
< F(VAZo), >=2lgay + 1Eulloe N 200 7, = A

< Fy(=2log)) + ||F)||eeN2Z2 Al o ST

where we used the fact that F, is decreasing for the last inequality. In view of (5.2), we also
have F,(—2log \) < ¢, A? and therefore

o—1
E Zul(n)] < Ve Elo] + N||F||E
n=1

Z {Z <= 2log>\}] . (5.4)

On the one hand, according to (2.5), we have

% n {Zn< Zlog)\}

On the other hand, Proposition 2.2 states that P(Zo > x) ~ z% as x tends to infinity, thus

=E |:Z2 Il{Zoo 2\1/%\g>\}:| E[o]. (5.5)

2C
E[Z3 V7 <n)] | QI;k;P (Zoo 2 k) ~ 5
This estimate and (5.5) yield
o—1
NE legn{zn(%gx}] o esA 2] log A2 (5.6)
n—=

Combining (5.4) and (5.6), we finally obtain

Zul ]ZO ),

which proves (b) of Lemma 4.4.

5.2.3 Proof of (c¢) of Lemma 4.4 when a <1

Recall that
pa(n) = —e A k=0 Zk¢/>\(Zn)f1(Zn) = )‘VZgFlfu(\/XZn)fl(Zn)e_/\ZZ:O 7k

Since fi(xz) =0 for x > M — 1 (c.f. Lemma 4.3), the quantity |ua(n)|/A” is smaller than
M| fillool|Fi—v||oo- Thus, using the dominated convergence theorem, we get

ZW =E|) ZiF ,(0/(Z)] 2 eR.

lim —
A—0 )\V
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It remains to prove that, for € > 0 small enough, as A — 0%
1 o—1
B St

We can rewrite the Lh.s. of (5.7) in the form

- 02‘ — o(\). (5.7)

o—1

Z Zr?fl(zn)(Flfu(O) - FlfV(\/XZn))

n=1

E

+E

o—1
Z ngl(Zn)Flfu(\/XZn)(l - e—AZZ:o Zk)] ‘ (5'8)

n=1

On the one hand, the first term is bounded by

o—1 \&M
E |3 28 A(Z)l(Fi0(0) — Fr(VAZ)| < M| fillElo] /0 F_(o)lds
n=1
VM
< MO flloEloll1E I /0 Ay
< 04)‘1_Va

where we used formula (5.3) for the expression of F|_, for the second inequality. On the
other hand the second term of (5.8) is bounded by

o—1
n o—1
E| Y Z31f1(Z0)|Fioy (VAZn) (1 —e im0 2 ) | < M| fi ool [Fi - || oo B[ (1—e™* 2km0 7))
n=1
< 05)\8

where we used Lemma 5.3 for the last inequality. Putting the pieces together, we conclude
that (5.7) holds for € > 0 small enough.

5.2.4 Proof of (d) of Lemma 4.4 when a <1
Recall that

pa(n) = —e k=02l (Z,) fo(Zn)
— e 02k fy(7,) (AF,,(\FAZH) + aA"Zg—lFl,,,(\fAZn)) .

Note that, since a < 1, we have Z2~! < 1 when Z,, # 0. The quantities fo(Z,), F,,(ﬁZn)
and Fy_,(v/\Z,)) are also bounded, so we check, using the dominated convergence theorem,
that

' 1 o—1 o—1 - .
i B Z“3<”)] = —aB |3 2 R (0)fa(Z0) | £ Cr e R
n=1 n=1
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Furthermore we have

o—1 o—1
LB )| -0 = B Y e ATz (2, (VAZ,) (5.9)
n=1 n=1
o—1
+aB |3 28 f2(Z0) (Fl_V(O) - Fl_y(ﬁzn))
n=1

+ aE

o—1
> 287 o Zn) i (VAZ0) (1 — e M X0 Zk)] :
n=1

The first term is clearly bounded by cgA!™". We turn our attention to the second term. In
view of (5.3), we have

o F (g = [ Ml 1o o2 _ Pl y1o0 j1a
1-0(0) — F1_,(VAZ,) = x F,(z)dz < NTVZET = N2,
0 2—2v 1l-«a
where we used 2 — 2v = 1 — « for the last equality. Therefore,
1 -1
S a—1 _ \/’ HFVHOOHf2||oo 1-v ]
E ZZ fQ( )(Fl u( ) Fl—l/( )‘Zn)) < 1— A E 1
n=1 o n=1
1Fecll 2l ocElo] 1,
h 1-a '

As for the third term of (5.9), with the help of Lemma 5.3, we find

o—1

ZZQ 1f2( n)F1- u(fZ )1 6_/\ZZOZI@)]

n=1

E

o—1
< ||f2||00HF1—1/HOOE[O'(1—6_)‘ZIC=0 Zk)
g 07)\‘5.
Putting the pieces together, we conclude that

o—1
E ) us(n)
n=1

— 03)\,/ + O(>\V+E>.

5.2.5 Proof of (e) of Lemma 4.4 when a <1

Recall that
pa(n) = —e A k=0 ZkE[h, | Fp). (5.10)

This term is clearly the most difficult to deal with. We first need the next lemma stating
that Z,4+1 cannot be too "far" from Z,.

Lemma 5.4

There exist two constants K1, Ko > 0 such that for all n > 0,
(a) P(Zns1 < 32, | Fr) < Kye K2n,
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(b) P(Zpy1 > 22, | Fn) < Kye K220,

Proof. This lemma follows from large deviation estimates. Indeed, with the notation of
section 2, in view of Cramer’s theorem, we have, for any 5 > M — 1,

1 ) 1
P{Zn+1§§Zn |Zn:j} = P{AM71+§1++€]*M+1§%}
. J —Kaj
< P{§1+---+§]—M+1S§} < Kie ;

where we used the fact that (&;) is a sequence of i.i.d geometric random variables with mean
1. Similarly, recalling that Ap;_1 admits exponential moments of order § < 2, we also
deduce, for 7 > M — 1, with possibly extended values of K; and K2 that

P{Zn+1 > 27y | Zp = j} = P{AM—I +&+ .+ 2 2]}

. 5 ’
< P{AMfl > %} + P{& +o oM 2 Ej} < Kpe 5.,

Throughout this section, we use the notation, for ¢t € [0,1] and n € N,

def

Vn,t = Znp+ t(ZnJrl - Zn)

In particular V,; € [Zy, Zy+1] (with the convention that for a > b, [a, b] means [b, a]). With
this notation, we can rewrite the expression of 6,, given in (4.8) in the form

9n = (Zn—i—l - Zn)2 /01(1 - t) (QSS/\(Vn,t) - ¢I><(Zn)>dt'

Therefore, using the expression of ¢, and ¢} stated in Fact (5.2), we get

i, | 7 = | (=D + 20t (511)

1t OB [(Zur = Z0)* (R(VAVig) - FVAZY)) | 7]
2(t) < _o\E [(Zn+l — 7)) (VgglFl,y(ﬁVn,t) - Zg—lFl,V(ﬁZn)) (fn} .

Recall that we want to estimate

o—1 o—1 1
EY mn)| =E Ze—AZZ—OZkA (1—t)I;(t)dt]
n=1 n=1
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We deal with each term separately.

Dealing with I': We prove that the contribution of this term is negligible, i.e.

o—1 1
‘E 3 e Ao Zk/ (1 —t)I}L(t)dt] ) < g\ e, (5.12)
n=1 0

To this end, we first notice that

L) < )\gE[]ZnHZnF’ max |F;(ﬁx)|(fn]

TEZn,Zn+1

— M\E |:’Zn+]_ — Zp|?  max (VA2)“Fi_,(V)\z) ‘ fn}
$€[Zn7Zn+1]

IN

c1_ A2 E [|Zn+1 — Zn?  max (ﬁ:z:)ae*ﬁx
(EE[Zn,Zn+1}

]—“n] . (5.13)

where we used (5.2) to find ¢;_, such that F1_, () < ¢;—,e”*. We now split (5.13) according
to whether

1 1
(a) §Zn <Zp41<2Z, or (b)Zy1< §Zn or Zn+1 > 27,.
One the one hand, Lemma, 4.3 states that
V2
E(|Zy+1— Z,)P | ]l £ DpZ;  for all p e Nand Z, # 0.

Hence, for 1 <n <o —1, we get

-V
E |:‘Zn+1 — Zn|3 xe[gi?Z}iJrl](\/X:E)ae fm]l{%ZnSZnJrlSQZn} ) fn:|

<E

| Zns1 — Zn|? [lnéaXQZ }(ﬁx)“e‘ﬁxﬂ{%zn<zn+l<2zn} ‘ ]:”]
S 34n, n B B

<E [|Zn+1 — ZoP(2VNZy) e 2 VA

7

< o 23 (VAZy) e 3N (5.14)

6+a 1

G 3a
< AT 2 (VNZ,) 1 e 3V

3a—6 _ 3
s

S 610)\ Zn4 b
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where we used the fact that the function z 5 e~3 is bounded on R, for the last inequality.
On the other hand,

3 VA
B 120 =2l g (A8 o i | 5

<E [|Zn+1 — Zn’3 I?gg(ﬁx)ae_ﬁx]l{ZmK%Zn OF Zpi1>2Zn} ‘ .7:71:|

NI

1/2 1
< eniE [|Zng1 — Zn|® | Fo] p {Zn+1 < §Zn or Zni1 > 22,

fn} (5.15)

Combining (5.13), (5.14) and (5.15), we get

3at6 3
8

3 2—q 32
IIL(1)] < c1—pe13A2 + oo™ 8 Zpt < c\TTS Z0

And therefore

o—1 N 1 . o—1 3a
‘E Ze—xzk_ozk/ (lt)I}l(t)dt] ‘ < eV T SUE >zt .
n=1 0 n=1

3o

Corollary 2.3 states that E[Y.7_1 Z," | is finite so the proof of (5.12) is complete.

Dealing with I?: It remains to prove that

o—1 1
B[S e i / (1= O2()dt| = CoN + oA+, (5.16)
n=1 0
To this end, we write
L3(t) = —aX (T, () + Jo(t) + Jo (1)), (5.17)

with

J7lz<t) < E [(Zn-i-l - Zn)2<F1—V(\/XVn,t)) - FI—V<ﬁZn))Zg_1 ‘ fn} >
B0 E[(Zuw - 202V = 22 (P (VAVag) = B (0) |
B0 R OB [(Zu — 222Vt = 227 | Fal.

Again, we shall study each term separately. In view of (5.16) and (5.17), the proof of (e)
of Lemma 4.4, when o < 1, will finally be complete once we established the following three
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estimates:

[o—1 1 i 1—

E |3 e T / (1—tJindt| = 0N, (5.18)
Ln=1 0 -
[o—1 1 T

E ZQ—AZZOZ’C/ 1-t)J2@t)dt| = o(X), (5.19)
Ln=1 0 -
[o—1 1 T

B Ze—xzz_ozk/ (L—0)J30)dt| = C+o(X). (5.20)
Ln=1 0 -

Proof of (5.18): Using a technique similar to that used for I', we split J! into three

different terms according to whether

1 1
(a) §Zn < Zn+1 (b) 1 S Zn+1 < EZn (C) Zn+1 =0.

For the first case (a), we write, for 1 < n < o — 1, recalling that V,,+ € [Z,, Zn+1],

‘E [(Zn+1 - Zn)2 <F1—u(\/XVn,t) - Flfl/(\/}‘Z")> Zg_l]l{%ZnSZnH} ‘ Fn]

< NE||Zo - Zof 257 max |F{_, (V) ( 7l
x*i n

— \?E (| Zns1 — Znl | Fu] 2571 max ((\anc)_aFy(\FA$)>

n
$Z§Zn

< csA\2E [ Zns1 — Znl® | Fu] 2571 max ((ﬁx)*ae*ﬁx)

v>17n
— e ME [[Zogr — Zf* | F] Z;l(%ﬁ)—ae—%\f)\zn (5.21)
< 01621%)\1—70‘6—%\5\2”
= chAleaZn% ((\&Zn)l_Tae_%ﬁZ”>
< C17>\1_Tazn%,
where we used Lemma 4.3 to get an upper bound for the conditional expectation.
For the second case (b), keeping in mind Lemma 5.4, we get
E[(Zus1 = Z0)* (Fioo(VAVad) = Fieo(VAZ0)) 26 s cay | 5
< c1sA2E |:‘Z7l+1 - Zn’3Z371ﬂ{1§Zn+1<%Zn} | }—n} max ((ﬁx)w@*ﬁx)
< c1o\?E {Zna+2ﬂ{1gzn+l<gzn} \ fn] A2
(5.22)

—a 1
< ClgleZTOLhLQP{Zn_H < §Zn ’ fn}
< Cngl)\l_Ta Zro;—me_KQZ"

l1—«a
< 20N 2
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For the last case (c), we note that when Z,41 =0, then V,,; = (1 — t)Z,,, therefore

E[(Zn+1 7)) (Fl_l,(ﬁVm) - Fl_y(ﬁzn)> s TR ) fn}
= Z2(FLy(VA(Za(1 = 1)) = Fioy(VAZ0) Z5 " P{Zpy1 = 0| F}

e 2Rl max (Vi)
2€[Zn(1-1). 2] (5.23)

< 021/\1770‘(1 — t)faZTQlefK2Z”

< CQQ)\l_Ta(l — t)_a.

Combining (5.21), (5.22) and (5.23), we deduce that, for 1 <n <o — 1,
1 l—a &
/ (1— )T (1) dt < cps\ 725 .
0

3
2

Moreover, according to Corollary 2.3, we have E [ZZ;% 73

=

which yields (5.18).

] < 00, therefore

-1

Z Azkozk/l( A

=1

<cph T (5.24)

1
(1 —t)|JL(t)|dt
LI

Proof of (5.19): We write

Jr(t) = B[R, (1) | T
with
Ru(t) & (Zuy1 — Za)? (VO = 2871 (Fl,,,(ﬁvn,t) - Fl,y(0)> :

Again, we split the expression of J? according to four cases:

Jz(t) = E[Rn(t)]l{Zn+1:0} | }-n] + E[Rn(t)]l{lgzn+l<%zn} | }-n]
HE[Ry (D17, <7, <oz, | Ful + BlRu() iz, 522, [ Fal- - (5.25)

We do not detail the cases Z,41 =0and 1 < 7,11 < %Zn which may be treated with the
same method used in (5.22) and (5.23) and yields similar bounds which do not depend on
D

E{Rn(t)1(z,41=0} | Ful e\ 2 (1 1)

<
E[Rn(t)]l{1gzn+1<%zn} | Fn]l <

11—«
026>\ 2.

In particular, the combination of these two estimates gives:

E < egrh T (5.26)

o—1 1
Ze—xzzozk/ (1= OE[Ry ()N,  _zuy Ifn]dt]
n 2

n=1 0
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In order to deal with the third term on the r.h.s. of (5.25), we write

B[R ()17, <7, ,,<22,) | Fnll
E|(Zui1 = Z2 (Vi = Z8 ) (Fio(VAVai) = o) <oy | Pl

< cxE

2V A2y,
| Zn1 = Zn[® max 2972 / IF_ ()ldy | fn]
0

Zn
2722

2V Zn
< B [|Zus1 — Zof* | o] max 2% / ydy
0

Zn
x>

l-a %
SCgo)\ PAAS

According to Corollary 2.3, when % < a < 1, we have E [ZZ;% Z}Lm] < 0. In this case,
we get

o—1

1
> e Xieo % /O (1= OE[Rn(t)17,<7,,,<27,) | f"]dt]

n=1

E <epA . (5.27)

2—3a
When 0 < a < %, the function 72 e~ * is bounded on R, so

1 a Sa 2—3a
GAZn/O (1 — t)|E[Rn(t)ﬂ{%Zn§Zn+lgzzn} ’ fn”dt S 630)\ZZn4 (>\Zn) 1 67)‘Zn

o 3
< e Azt

Therefore, when o < %, the estimate (5.27) still holds by changing A2 to AS. Hence, for
every a € (0,1), we can find € > 0 such that

o—1

1
S e Nio % /0 (L= ERn (O, <7, 122, | W]

n=1

E < 3. (5.28)

We now give the upper bound for the last term on the r.h.s. of (5.25). We have

E[Rn(t)]l{zn+1222n} ‘ -7:”] = E{Rn(t)]l{zzn < Zna1 <AHY ‘ '7:"}

+E [R”(t)ﬂ{an Smax(A\"T,27,)} ‘ f"} :
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On the one hand, when Z, # 0 and Z,11 # 0, we have ]Vn‘i‘;l — 7871 < 2 thus, for
1<n<o—1,

)E[Rn(t)]l

(2Zn < Znsr <A1} ‘ ]:”}
= [B[(Zus1 = Za)* (Ve = 227") (P (VAVa) = Fiy(0))1

1| F
{2Zn<Zn+1§A*ff}‘ ”}

9 \/XZnJrl -
< 2B[(Zyr - 2,) /0 FeR @, | F)

1

A4
< C33E[(Zn+1 - Zn)Q/ m_admﬂ{2n+1>22n} | f”]
0

1-a
<eggN a E|:(Zn+1 — Zn)* Nz, 522,} | fn:|

N[

l—a L
< 034)\TE[(ZR+1 — Z) fn} QP{ZRH > 27, | fn}

where we used Lemma 4.3 and Lemma 5.4 for the last inequality. On the other hand,

E[Rn(t)ﬂ{Zn+1>max(/\_%,QZn)} ‘ fn:|
_ . 2 a—1 __ ra—1 -
_ ‘E[(Z,Hl 2PV = 2 (B VAV = B O)L, |
2
<A lloB | (Zur = Za) My Pl
1
5 1 1
< CgﬁE[(Zn+1 — Z) My, o0z | ]—'n} PP{Zyi > A1 | Fole.
_Ka gy _1 1
< cg7dpe 4 "P{Zn+1 >\ 1 ‘fn}Q
_Kagp 1.1
<cegrZpe” 1 E[Zpyr | Fal2 A8
< e3ghi.
These two bounds yield
o—1 1
n=1

with 8 = min(152, 1). Combining (5.26), (5.28) and (5.29), we finally obtain (5.19).

Proof of (5.20): Recall that

Jg(t) = Fl—V(O)E [(Zn—i-l - Zn)Q(Vant_l - Zg_l) | Fn] .

In particular, J2(t) does not depend on A. We want to show that there exist C € R and
€ > 0 such that

o—1 1
E Ze—xzzozk/ (1= ) J2(0)dt| = C + o()). (5.30)
n=1 0
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We must first check that

E

o—1 .1
— 2 0.
;/0 (1 t)]Jn(t)\dt] <

This may be done, using the same method as before by distinguishing three cases:
1 1
(a) Zn+1 Z §Zn (b) 1 S Zn+1 < §Zn (C) Zn+1 = 0.

Since the arguments are very similar to those provided above, we feel free to skip the details.
We find, for 1 <n<o—1,

1 _1 o
/ (1 — t)’Jg(t”dt S C402§ 2 + C41 S C42Z7f .
0

Since E [ZZ? Zn?] < 00, with the help of the dominated convergence theorem, we get

o—1 1 o—1 .1
: AR Z 2 _ o 72 def
lim B ) e ko k/0(1 )J2(t)dt| = E 2/0(1 t)J2(t)dt| = C e R.
n=1 n=1
Furthermore we have
o—1 1 o—1 1
E Ze‘AZkOZ’“/(l—t)Jﬁ(t)dt —ol - |B Z(l—e"\ZkOZ’“)/ (1—t)Jg(t)dt]
n=1 0 n=1 0
. o—1 o
< cpE |(1— e iz Z‘“)ZZ,? .
n=1
And using Holder’s inequality, we get
o—1 =l . o—1 1 T3 sa 2
E|(1-e?Zi0%)N 72| < EB|(1-e?Zi0Z)0i(d 7,0 )s
n=1 n=1
2
os 1 o—1 30 3
< E [(1 v Zk)%} ‘E Yz
n=1
1
< ceg3E [(1 — e i Z’“)a} ’
< e

where we used Lemma 5.3 for the last inequality. This yields (5.20) and completes, at last,
the proof of (e) of Lemma 4.4 when o € (0, 1).

5.2.6 Proof of Lemma 4.4 when o« =1

The proof of the lemma when a = 1 is quite similar to that of the case a < 1. Giving
a complete proof would be lengthy and redundant. We shall therefore provide only the
arguments which differ from the case a < 1.



5 : Technical estimates 181

For a = 1, the main difference from the previous case comes from the fact that the
function Fy_, = Fp is not bounded near 0 anymore, a property that was extensively used
in the course of the proof when o« < 1. To overcome this new difficulty, we introduce the
function G defined by

def

G(z) = Fy(z) + Fi(z)logz for z > 0. (5.31)

Using the properties of Fy and Fj stated in section 5.1, we easily check that the function G
satisfies

(1) G(0) E'lim, o+ G(z) = log(2) — v (where v denotes Euler’s constant).
(2) There exists ¢ > 0 such that G(x) < cge™™ for all x > 0.

(3) G'(x) = —xFy(x)log z, so G'(0) = 0.

(4) There exists cgr > 0 such that |G'(z)| < cgry/ze=*/? for all > 0.

Thus, each time we encounter Fy(z) in the study of pg(n), we will write G(x) — Fy(x) log x
instead. Let us also notice that F} and F} are also bounded on [0, c0).

We now point out, for each assertion (a) - (e) of Lemma 4.4, the modification required
to handle the case a = 1.

Assertion (a): E[u(0)] = Collog A + C{A + o(A)

As in section 5.2.1, we have
E[u(0)) = AE /0 - g;Fo(ﬁx)dx]
= AE /0 ” mG(\FAx)dx] —\E [ / - o F) (V) 1og(ﬁx)d4

0

— \E :/021 x (G(ﬁx) — Fy(Vaz) log x) daz} - %)\log AE [/021 xFl(\FAx)dx]

and by dominated convergence,

lim E UOZI w (G(ﬁx) — Fy(VAz) log x) dx] —E [/0& a;(G(O) — Fi(0)log x)dx] .

A—0
Furthermore, using the fact that Fj is bounded, we get

z _ F1(0)
E[/O xFl(fA:c)dx]_ 12 E[Z}] + O(V\)

so that
E[1(0)] = CoXlog A + CyA + o(N).

Assertion (b): E[>.721 u1(n)] = o(\)

n—=
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This result is the same as when a < 1, the only difference being that now

1
P{Zo>a) ~ 1087

T—00 €T

Thus, equality (5.6) becomes

\E

o—1

2 3 2
> Znﬂ{anz\l/c%/\}] e [log )|
n=1
and the same upper bound holds.

Assertion (c): E[>7"1 ua(n)] = Colog A + Ch\ + o(\)

n—=

Using the definition of GG, we now have

pa(n) = )‘ZnFO(\/XZn)f1(Zn)e_>‘ > k=0 Zk
= )\anl(Zn)e_AZZ:O Zy, [(G(\/in) — Fl(\/XZn) 10g(Zn)) — élog )\Fl(\/XZn)] .

Since fi(x) is equal to 0 for x > M — 1, we get the following (finite) limit

Iim E =
A—0

o—1
Z anl(Zn)e_A k=0 2 (G(\/XZH) - Fl(\/XZn) log(Zy))
n=1

E

o—1
> Zuf1(Z)(G(0) — F1(0) log(Zy,))
n=1

Using the same idea as in (5.8), using also Lemma 5.3 and the fact that FJ is bounded, we
deduce that
E

=E + o(\%)

o—1
Y Zuf1(Zy)e iz Ry (VAZ,))
n=1

o—1
> Zuf1(Zn) Fi(0)
n=1

which completes the proof of the assertion.

Assertion (d): E[>77] us(n)] = CsAlog A + C4\ + o(\)

We do not detail the proof of this assertion since it is very similar to the proof of (c).

Assertion (e): E[>.7_1 pa(n)] = 4\ + o(\)

It is worth noticing that, when o = 1, the contribution of this term is negligible compared
to (a) (¢) (d) and does not affect the value of the constant in Proposition 4.1. This differs
from the case o < 1. Recall that

pa(n) = —e A k-0 ZkE[Hn | Ful,
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where 6, is given by (4.8). Recall also the notation V;, e+ t(Znt1 — Zp). Just as in

(5.11), we write
B0, | £l = [ (- 00 + 1)
with
() B[ (Zor = Z0)* (B (VAVa) = FI(VAZ,)) | 7
() 0B [(Zo1 = Za) (Fo(VAVo) = Fo(VAZ,)) | Fal

It is clear that inequality (5.13) still holds i.e.

IIL(t)] < ASE [\ZM — Zn)?  max ]ﬁxFo(ﬁx) } ]—"n} .

:L‘G[Zn,Zn+1

In view of the relation
1
Fo(VAz) = G(VAz) — Fi(VAz)logx — §F1(\f)\1‘) log \,

and with similar techniques to those used in the case o < 1, we can prove that

o—1 1
‘E Ze—kzﬁ-ozk/ (1t)I}L(t)dt] ‘ < casA3|log A = o(N).
n=1 0

It remains to estimate I2(t) which we now decompose into four terms:
L(8) = =M () + J3(0) + J3(t) + T (1),
with
IO % E|(Zun - Z)M(CVAV) - GWAZ)) | F|
Pt L 108XE (i — 20 (F(VAV) ~ Fi(VAZ) | 72
) B [(Zu — Z0)*10g Zu(F(VAVaa) = FI(VAZ,)) | 7

Tt B [(Zuss — Z0)(108 Ve — log(Z0)) FA(VAV30) | Fl

(5.32)

We can obtain an upper bound of order A® for J} (t) by considering again three cases:

1 1
(V) 520 < Zus1 <220 (2) o1 S 520 (3) Zui1 2 270,

For (1), we use that |G’(x)| < cqry/ze*/? for all x > 0. We deal with (2) combining Lemma
5.4 and the fact that G’ is bounded. Finally, the case (c) may be treated by similar methods
as those used for dealing with J2(¢) in he proof of (e) when o < 1 (i.e. we separate into

two terms according to whether Z, 11 < A4 or not).
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Keeping in mind that F) is bounded and that |F}(x)| = xFy(x) < ca7y/z€™7, the same
method enables us to deal with J2(t) and J3(t). Combining these estimates, we get

E Gil e~ A h=0 Zk /1(1 —1) (J}(t) +J2(t) + Jf;(t)) dt] = 0(X°).
n=1 0

for € > 0 small enough. Therefore, it simply remains to prove that

lim E

A—0t 0

o—1 1
D e Ei=o % / (1— t)j;*(t)dt] (5.33)

n=1

exists and is finite. In view of the dominated convergence theorem, it suffice to prove that

E

o—1 .1
Z/O (1— t)E[(Zn+1 — Z2)2|log Vs — log(Z,)| ‘ fn] dt] < . (5.34)
n=1

We consider separately the cases Z,11 > Z,, and Z, 11 < Z,. On the one hand, using the
inequality log(1 + z) < x, we get

E |:]1{Zn+1 >Zn}(Zn+1 - Zn)2| log Vit — log(Zy,)| ‘ }—n}
t(Zp+1 — Zn
<B[Uz,. 50 (Zner — 2010 (14 P =2 | £ ] <47,

On the other hand, we find

E [n{zn+1gzn}(zn+1 — Z2)?|1og Vs — log(Zn)| ( fn}

9 H(Zn — Zn+1) t
= E{H{ZnHSZn}(Zn—i-l — Zy)"log (1 + Zn — t(Zn — Zn-‘,—l)) ’ }-n} < 11—tV Zn.

Since E[>.7_1 v/Z,] is finite, we deduce (5.34) and the proof of assertion (e) is complete.

6 Proof of Theorem 1.1

Recall that X stands for the (M, p)-cookie random walk and Z stands for its associated
branching process. We define the sequence of return times (oy,)n >0 by

g0 = 07
Onil def inf{k > o,,, Z = 0}.
In particular, o; = ¢ with the notation of the previous sections. We write

o1—1 on—1

On
k=0

k=09 k=0n_1
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0'7;+171
k=o;

terization of the domains of attraction to a stable law implies

The random variables ( Zy, i € N) are i.i.d. In view of Proposition 4.1, the charac-

>0 Zk Jaw, S, when a € (07 1)7

) noo (6.1)
X;f;g fk ni—o}; ¢ when a=1.
where S, denotes a positive, strictly stable law with index v o O‘TH and where c is a strictly

positive constant. Moreover, the random variables (0,41 — 0y, n € N) are i.i.d. with finite
expectation E[o], thus

0 a.s.

— 2% Elo]. (6.2)

n n—oo

The combination of (6.1) and (6.2) easily gives
iz Zr v, E[J]_%S,, when « € (0,1),

nl/v
ST Zi pron
Zk=0Zh P03 cRg] L when a = 1.

nlogn 00

Concerning the hitting times of the cookie random walk 7, = inf{k > 0, X} = n}, making

use of Proposition 2.1, we now deduce that

In, =, 2E[a]_581, when « € (0,1),

nt/v n—00
Tn prob -1 _
nlogn o 2cE|o] when o = 1.

Since Tj, is the inverse of supy, <, X, we conclude that

L supy, <, X =, £, when a € (0,1),

n—oo

1 prob

B supy <, Xp when a = 1,
n—oo

where C < (2¢) " E[o] > 0 and £, & 27VE[0]S; " is a Mittag-Lefller random variable with
index v. This completes the proof of the theorem for sup;, ,, Xi. It remains to prove that
this result also holds for X, and for inf;>, Xj. We need the following lemma.

Lemma 6.1
Let X be a transient cookie random walk. There exists a function f : N — R, with
limg_ oo f(K) =0 such that, for every n € N,

P{n — 1>an X; > K} < f(K).

Proof. The proof of this lemma is very similar to that of Lemma 4.1 of [BS06|. For n € N,
let wx,n = (wxn(%,2))i > 1,2¢z denote the random cookie environment at time T, "viewed
from the particle", i.e. the environment obtained at time 7T, and shifted by n. With this
notation, wx (i, z) denotes the strength of the i** cookies at site x:

_ pj Hj=i+8H{0<k<T,, Xy=x+n} <M,
me(Z,aj):

% otherwise.
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Since the cookie random walk X has not visited the half line [n,oc0) before time T, the
cookie environment wy , on [0,00) is the same as the initial cookie environment, that is, for
xz =0,

. pi if1<i<M,
gy 6.3
wx,n(i; ) { % otherwise. o

Given a cookie environment w, we denote by P, a probability under which X is a cookie
random walk starting from 0 in the cookie environment w. Therefore, with these notations,

P{n— 1>njf X; > K} <E [Py, {X visits —K at least once}] . (6.4)
12>Th ’

Consider now the deterministic (but non-homogeneous) cookie environment wp  obtained
from the classical homogeneous (M, p) environment by removing all the cookies situated on
(—o0, —1]:

wp 4 (1, ) = %, forallz <Oandi>1,
wp+(i,2) =p;, forall z > 0and i > 1 (with the convention p; = 3 for i > M).

According to (6.3), the random cookie environment wx, is almost surely larger than the

environment wp + for the canonical partial order, i.e.
wx (i, ) > wpy(i,z) foralli>1, z € Z, almost surely.
The monotonicity result of Zerner stated in Lemma 15 of |Zer05] yields

P,y {X visits — K at least once} < Py,  {X visits — K at least once} almost surely.

Wp,+
Combining this with (6.4), we get
P{n— 1>n7f Xi> K} <P,  {X visits — K at least once}. (6.5)
121n
This upper bound does not depend on n. Moreover, it is shown in the proof of Lemma
4.1 of |BS06] that the walk in the cookie environment wp 1 is transient which implies, in

particular,
P, {X visits — K at least once} P 0.

—0Q

We now complete the proof of Theorem 1.1. Let n,r,p € N, using that {T,4, < n} =
{supg<, Xi > r + p}, we get

{sup Xy <r} C{inf X, <r} C{supXp <r+p}U{ inf X <r}.
k<n k2n k<n k>Tryp

Taking the probability of these sets, we obtain

P{sup Xy <r} <P{inf Xj, <r} <P{sup Xy <r+p}+P{ inf Xj<r}
k<n k>n k<n k>Ty iy
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But, using Lemma 6.1, we have

. _ _ s < .
P{inf Xi<r}=P{r+p— inf Xi>p}</f(p) — 0

_T7'+p p—0

Choosing > 0 and r = [zn”] and p = |logn|, we get, for & < 1, as n tends to infinity

infg>, X nXi
lim P{mk>yk<:v}: lim P{Supk<<x}:P{El,<x}.

n—o00 n n—o0o nv

Of course, the same method also works when o = 1. This proves Theorem 1.1 for infy>,, X.
Finally, the result for X,, follows from

inf X3 < X,, <sup Xg.
kzn k<n






Bibliographie

[Ali99]

[ARO5]

[AS64]

[BD94|

[Ber96al

[Ber96b]

[BGTS9)

[Bor03]

[Bré02]

[Bréeo4]

[Bro86]

[BSO6]

[BSO7]

[BWO03]

S. Alili. Asymptotic behaviour for random walks in random environments. J. Appl.
Probab., 36(2) :334-349, 1999.

T. Antal and S. Redner. The excited random walk in one dimension. J. Phys. A,
38(12) :2555-2577, 2005.

M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas,
graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied
Mathematics Series. For sale by the Superintendent of Documents, U.S. Government
Printing Office, Washington, D.C., 1964.

J. Bertoin and R. A. Doney. On conditioning a random walk to stay nonnegative. Ann.
Probab., 22(4) :2152-2167, 1994.

J. Bertoin. Lévy processes, volume 121 of Cambridge Tracts in Mathematics. Cambridge
University Press, Cambridge, 1996.

J. Bertoin. On the first exit time of a completely asymmetric stable process from a
finite interval. Bull. London Math. Soc., 28(5) :514-520, 1996.

N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular variation, volume 27 of Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
1989.

A. A. Borovkov. Large deviations probabilities for random walks in the absence of finite
expectations of jumps. Probab. Theory Related Fields, 125(3) :421-446, 2003.

J. Brémont. On some random walks on Z in random medium. Ann. Probab., 30(3) :1266—
1312, 2002.

J. Brémont. Random walks in random medium on Z and Lyapunov spectrum. Ann.
Inst. H. Poincaré Probab. Statist., 40(3) :309-336, 2004.

Th. Brox. A one-dimensional diffusion process in a Wiener medium. Ann. Probab.,
14(4) :1206-1218, 1986.

A.-L. Basdevant and A. Singh. On the speed of a cookie random walk, 2006. Preprint,
available via http://arxiv.org/abs/math.PR/0611580. Chapter V of this thesis.

A .-L. Basdevant and A. Singh. Rate of growth of a transient cookie random walk, 2007.
Preprint. available via http://arxiv.org/abs/math.PR/0703275. Chapter VI of this
thesis.

I. Benjamini and D. B. Wilson. Excited random walk. FElectron. Comm. Probab., 8 :86—
92, 2003.



190 Bibliographie

[Car97] Ph. Carmona. The mean velocity of a Brownian motion in a random Lévy potential.
Ann. Probab., 25(4) :1774-1788, 1997.

[CGZ00] F. Comets, N. Gantert, and O. Zeitouni. Quenched, annealed and functional large
deviations for one-dimensional random walk in random environment. Probab. Theory
Related Fields, 118(1) :65-114, 2000.

[Che67] A. A. Chernov. Reduplication of a multicomponent chain by the mechanism of "light-
ning". Biophysica, 12 :297-301, 1967.

[CheO6a]  D. Cheliotis. Localization of favorite points for diffusion in random environment, 2006.
Preprint, available via http://arxiv.org/abs/math.PR/0612533.

[Che06b]  D. Cheliotis. One dimentional diffusion in an asymmetric random environment. Ann.
Inst. H. Poinc. Probab. Statist., 42(6) :715-726, 2006.

[CPY97] Ph. Carmona, F. Petit, and M. Yor. On the distribution and asymptotic results for
exponential functionals of Lévy processes. In Exponential functionals and principal
values related to Brownian motion, pages 73—-130. Rev. Mat. Iberoamericana, Madrid,
1997.

[CPYO01]  Ph. Carmona, F. Petit, and M. Yor. Exponential functionals of Lévy processes. In Lévy
processes, pages 41-55. Birkhduser Boston, Boston, MA, 2001.

[CZ04] F. Comets and O. Zeitouni. A law of large numbers for random walks in random mixing
environments. Ann. Probab., 32(1B) :880-914, 2004.

[CZ05] F. Comets and O. Zeitouni. Gaussian fluctuations for random walks in random mixing
environments. Israel J. Math., 148 :87-113, 2005. Probability in mathematics.

[Dav99] B. Davis. Brownian motion and random walk perturbed at extrema. Probab. Theory
Related Fields, 113(4) :501-518, 1999.

[Der99] Y. Derriennic. Sur la récurrence des marches aléatoires unidimensionnelles en environ-
nement aléatoire. C. R. Acad. Sci. Paris Sér. I Math., 329(1) :65-70, 1999.

[Dev06a]  A. Devulder. The maximum of the local time of a diffusion process in a drifted Brownian
potential, 2006. Preprint, available via http://arxiv.org/abs/math.PR/0604078.

[DevO6b]  A. Devulder. Some properties of the rate function of quenched large deviations for
random walk in random environment. Markov Process. Related Fields, 12(1) :27-42,
2006.

[Don85] R. A. Doney. Conditional limit theorems for asymptotically stable random walks. Z.
Wahrsch. Verw. Gebiete, 70(3) :351-360, 1985.

[Duf90] D. Dufresne. The distribution of a perpetuity, with applications to risk theory and
pension funding. Scand. Actuar. J., (1-2) :39-79, 1990.

[Erd42] P. Erdos. On the law of the iterated logarithm. Ann. of Math. (2), 43 :419-436, 1942.

[ESZ07] N. Enriquez, C. Sabot, and O. Zindy. Limit laws for transient random walks in random
environment, 2007. Preprint.

[Fel71] W. Feller. An introduction to probability theory and its applications. Vol. II. Second
edition. John Wiley & Sons Inc., New York, 1971.

[FLDM99]| D. S. Fisher, P. Le Doussal, and C. Monthus. Random walkers in one-dimensional

random environments : exact renormalization group analysis. Phys. Rev. E (8), 59(5,
part A) :4795-4840, 1999.



Bibliographie 191

[FLDMO1] D. S. Fisher, P. Le Doussal, and C. Monthus. Nonequilibrium dynamics of random field

[GDH94]|
[Gol84]
[Gol86]
[Golo1]
[GS02|
[Hey68)]
[HS98a]
[HS98b]
[HS00]
[HS06]
[HSY99]
[Hu00]

[IM65]

7S87]

[Kal81]

[Kav90]

[KesT3]

[Kes86]

Ising spin chains : exact results via real space renormalization group. Phys. Rev. E (3),
64(6, part 2) :066107, 41, 2001.

A. Greven and F. Den Hollander. Large deviations for a random walk in random
environment. Ann. Probab., 22(3) :1381-1428, 1994.

A. O. Golosov. Localization of random walks in one-dimensional random environments.
Comm. Math. Phys., 92(4) :491-506, 1984.

A. O. Golosov. Limit distributions for a random walk in a critical one-dimensional
random environment. Uspekhi Mat. Nauk, 41(2(248)) :189-190, 1986.

C. M. Goldie. Implicit renewal theory and tails of solutions of random equations. Ann.
Appl. Probab., 1(1) :126-166, 1991.

N. Gantert and Z. Shi. Many visits to a single site by a transient random walk in
random environment. Stochastic Process. Appl., 99(2) :159-176, 2002.

C. C. Heyde. On large deviation probabilities in the case of attraction to a non-normal
stable law. Sankhya Ser. A, 30 :253-258, 1968.

Y. Hu and Z. Shi. The limits of Sinai’s simple random walk in random environment.
Ann. Probab., 26(4) :1477-1521, 1998.

Y. Hu and Z. Shi. The local time of simple random walk in random environment. J.
Theoret. Probab., 11(3) :765-793, 1998.

Y. Hu and Z. Shi. The problem of the most visited site in random environment. Probab.
Theory Related Fields, 116(2) :273-302, 2000.

Y. Hu and Z. Shi. Slow movement of random walk in random environment on a regular
tree, 2006. To appear in Annals of Probability.

Y. Hu, Z. Shi, and M. Yor. Rates of convergence of diffusions with drifted Brownian
potentials. Trans. Amer. Math. Soc., 351(10) :3915-3934, 1999.

Y. Hu. Tightness of localization and return time in random environment. Stochastic
Process. Appl., 86(1) :81-101, 2000.

K. It6 and H. P. McKean, Jr. Diffusion processes and their sample paths. Die Grundleh-
ren der Mathematischen Wissenschaften, Band 125. Academic Press Inc., Publishers,
New York, 1965.

J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes, volume 288 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences]. Springer-Verlag, Berlin, 1987.

S. A. Kalikow. Generalized random walk in a random environment. Ann. Probab.,
9(5) :753-768, 1981.

S. V. Kaverin. Refinement of limit theorems for critical branching processes with emi-
gration. Teor. Veroyatnost. i Primenen., 35(3) :570-575, 1990. Translated in Theory
Probab. Appl. 35 (1990), no. 3, 574-580 (1991).

H. Kesten. Random difference equations and renewal theory for products of random
matrices. Acta Math., 131 :207-248, 1973.

H. Kesten. The limit distribution of Sinai’s random walk in random environment. Phys.
A, 138(1-2) :299-309, 1986.



192 Bibliographie

[Key84] E. S. Key. Recurrence and transience criteria for random walk in a random environment.
Ann. Probab., 12(2) :529-560, 1984.

[KKST75] H. Kesten, M. V. Kozlov, and F. Spitzer. A limit law for random walk in a random
environment. Compositio Math., 30 :145-168, 1975.

[Koz03] G. Kozma. Excited random walk in three dimensions has positive speed, 2003. Preprint,
available via http://arxiv.org/abs/math.PR/0310305.

[Koz05] G. Kozma. Excited random walk in two dimensions has linear speed, 2005. Preprint,
available via http://arxiv.org/abs/math.PR/0512535.

[KS64] S. Kochen and Ch. Stone. A note on the Borel-Cantelli lemma. Illinois J. Math.,
8 :248-251, 1964.

[KT97] K. Kawazu and H. Tanaka. A diffusion process in a Brownian environment with drift.
J. Math. Soc. Japan, 49(2) :189-211, 1997.

[KTT89] K. Kawazu, Y. Tamura, and H. Tanaka. Limit theorems for one-dimensional diffusions
and random walks in random environments. Probab. Theory Related Fields, 80(4) :501-
541, 1989.

[KTT92] K. Kawazu, Y. Tamura, and H. Tanaka. Localization of diffusion processes in one-
dimensional random environment. J. Math. Soc. Japan, 44(3) :515-550, 1992.

[Leb72] N. N. Lebedev. Special functions and their applications. Dover Publications Inc., New
York, 1972. Revised edition, translated from the Russian and edited by Richard A.
Silverman, Unabridged and corrected republication.

[LNO02] D. K. Lubensky and D. R. Nelson. Single molecule statistics and the polynucleotide
unzipping transition. Physical Review E, 65, 2002.

[LP92] R. Lyons and R. Pemantle. Random walk in a random environment and first-passage
percolation on trees. Ann. Probab., 20(1) :125-136, 1992.

[Mat94] P. Mathieu. Zero white noise limit through Dirichlet forms, with application to diffusions
in a random medium. Probab. Theory Related Fields, 99(4) :549-580, 1994.

[Mat95] P. Mathieu. Limit theorems for diffusions with a random potential. Stochastic Process.
Appl., 60(1) :103-111, 1995.

[MP02] M. Menshikov and D. Petritis. On random walks in random environment on trees and
their relationship with multiplicative chaos. In Mathematics and computer science, 11
(Versailles, 2002), Trends Math., pages 415-422. Birkhauser, Basel, 2002.

[MPV06] T. Mountford, L. P. R. Pimentel, and G. Valle. On the speed of the one-dimensional
excited random walk in the transient regime. Alea, 2 :279-296 (electronic), 2006.

[MWRZ04] E. Mayer-Wolf, A. Roitershtein, and O. Zeitouni. Limit theorems for one-dimensional
transient random walks in Markov environments. Ann. Inst. H. Poincaré Probab. Sta-
tist., 40(5) :635-659, 2004.

[MZ06] K. Maulik and B. Zwart. Tail asymptotics for exponential functionals of Lévy processes.
Stochastic Process. Appl., 116(2) :156-177, 2006.

[Nor9g| J. R. Norris. Markov chains, volume 2 of Cambridge Series in Statistical and Proba-

bilistic Mathematics. Cambridge University Press, Cambridge, 1998. Reprint of 1997
original.



Bibliographie 193

[Pis04]
[PP95]
[PW97]
[RAO5]

[Révas]

[Rév05]
[Riv05]
[Rog71]
[Roi05]

[RY99]

[Sab04]

[Sch85]

[Ser75]
[ShiO1]
[Sin82]

[Sin06]

[Sin07a]
[Sin07b]

[Sko57]

M. R. Pistorius. On exit and ergodicity of the spectrally one-sided Lévy process reflected
at its infimum. J. Theoret. Probab., 17(1) :183-220, 2004.

R. Pemantle and Y. Peres. Critical random walk in random environment on trees. Ann.
Probab., 23(1) :105-140, 1995.

M. Perman and W. Werner. Perturbed Brownian motions. Probab. Theory Related
Fields, 108(3) :357-383, 1997.

F. Rassoul-Agha. On the zero-one law and the law of large numbers for random walk
in mixing random environment. Electron. Comm. Probab., 10 :36-44 (electronic), 2005.

P. Révész. In random environment the local time can be very big. Astérisque, (157-
158) :321-339, 1988. Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau,
1987).

P. Révész. Random walk in random and non-random environments. World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ, second edition, 2005.

V. Rivero. Recurrent extensions of self-similar Markov processes and Cramér’s condi-
tion. Bernoulli, 11(3) :471-509, 2005.

B. A. Rogozin. Distribution of the first ladder moment and height, and fluctuations of
a random walk. Teor. Verojatnost. i Primenen., 16 :539-613, 1971.

A. Roitershtein. A log-scale limit theorem for one-dimensional random walks in random
environments. Electron. Comm. Probab., 10 :244-253 (electronic), 2005.

D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences]. Springer-Verlag, Berlin, third edition, 1999.

C. Sabot. Ballistic random walks in random environment at low disorder. Ann. Probab.,
32(4) :2996-3023, 2004.

S. Schumacher. Diffusions with random coefficients. In Particle systems, random media
and large deviations (Brunswick, Maine, 1984), volume 41 of Contemp. Math., pages
351-356. Amer. Math. Soc., Providence, RI, 1985.

R. F. Serfozo. Functional limit theorems for stochastic processes based on embedded
processes. Advances in Appl. Probability, 7 :123-139, 1975.

Z. Shi. Sinai’s walk via stochastic calculus. In Milieuz aléatoires, volume 12 of Panor.
Synthéses, pages 53—74. Soc. Math. France, Paris, 2001.

Ya. G. Sinai. The limiting behavior of a one-dimensional random walk in a random

environment. Teor. Veroyatnost. i Primenen., 27(2) :247-258, 1982.

A. Singh. Rates of convergence of a transient diffusion in a spectrally negative Lévy
potential, 2006. Preprint, available via http://arxiv.org/abs/math.PR/0606411. To
appear in Annals of Probability. Chapter III of this thesis.

A. Singh. Limiting behavior of a diffusion in an asymptotically stable environment.
Ann. Inst. H. Poinc. Probab. Statist., 43(1) :101-138, 2007. Chapter II of this thesis.

A. Singh. A slow transient diffusion in a drifted stable potential. J. Theoret. Probab.,
20(2) :153-166, 2007. Chapter IV of this thesis.

A. V. Skorohod. Limit theorems for stochastic processes with independent increments.
Teor. Veroyatnost. © Primenen., 2 :145-177, 1957.



194

Bibliographie

[Sol75]
[SZ99]

SZ06|

[Szn00]
[Szn01]

[Szn04]

[Tal01]
[Tan97]
[Tem72]
[T6t95]
[T6t96]
[Vat77]

[Vin87]

[VZ93]

[YY95]

[YY04]

[Zei04]

[Zer05]

[Zer06]

F. Solomon. Random walks in a random environment. Ann. Probability, 3 :1-31, 1975.

A.-S. Sznitman and M. Zerner. A law of large numbers for random walks in random
environment. Ann. Probab., 27(4) :1851-1869, 1999.

Z. Shi and O. Zindy. A weakness in strong localization for Sinai’s walk, 2006. Pre-
print, available via http://arxiv.org/abs/math.PR/0606376. To appear in Annals of
Probability.

A.-S. Sznitman. Slowdown estimates and central limit theorem for random walks in
random environment. J. Eur. Math. Soc. (JEMS), 2(2) :93-143, 2000.

A .-S. Sznitman. On a class of transient random walks in random environment. Ann.
Probab., 29(2) :724-765, 2001.

A _-S. Sznitman. Topics in random walks in random environment. In School and Confe-
rence on Probability Theory, ICTP Lect. Notes, XVII, pages 203—266 (electronic). Abdus
Salam Int. Cent. Theoret. Phys., Trieste, 2004.

M. Taleb. Large deviations for a Brownian motion in a drifted Brownian potential.
Ann. Probab., 29(3) :1173-1204, 2001.

H. Tanaka. Limit theorems for a Brownian motion with drift in a white noise environ-
ment. Chaos Solitons Fractals, 8(11) :1807-1816, 1997.

D. E. Temkin. One-dimensional random walks in a two-component chain. Soviet math.
Dokl., 13 :1172-1176, 1972.

B. Téth. The “true” self-avoiding walk with bond repulsion on Z : limit theorems. Ann.
Probab., 23(4) :1523-1556, 1995.

B. Téth. Generalized Ray-Knight theory and limit theorems for self-interacting random
walks on Z'. Ann. Probab., 24(3) :1324-1367, 1996.

V. A. Vatutin. A critical Galton-Watson branching process with emigration. Teor.
Verojatnost. i Primenen., 22(3) :482-497, 1977.

G. V. Vinokurov. On a critical Galton-Watson branching process with emigration.
Teor. Veroyatnost. i Primenen. (English translation : Theory Probab. Appl. 32 (1987),
no. 2, 351-852), 32(2) :378-382, 1987.

V. A. Vatutin and A. M. Zubkov. Branching processes. I1. J. Soviet Math., 67(6) :3407—
3485, 1993. Probability theory and mathematical statistics, 1.

G. P. Yanev and N. M. Yanev. Critical branching processes with random migration. In
Branching processes (Varna, 1998), volume 99 of Lecture Notes in Statist., pages 36—46.
Springer, New York, 1995.

G. P. Yanev and N. M. Yanev. A critical branching process with stationary-limiting
distribution. Stochastic Anal. Appl., 22(3) :721-738, 2004.

O. Zeitouni. Random walks in random environment. In Lectures on probability theory
and statistics, volume 1837 of Lecture Notes in Math., pages 189-312. Springer, Berlin,
2004.

M. Zerner. Multi-excited random walks on integers. Probab. Theory Related Fields,
133(1) :98-122, 2005.

M. Zerner. Recurrence and transience of excited random walks on Z% and strips. Elec-
tron. Comm. Probab., 11 :118-128 (electronic), 2006.



Bibliographie 195

[ZMO1] M. Zerner and F. Merkl. A zero-one law for planar random walks in random environ-
ment. Ann. Probab., 29(4) :1716-1732, 2001.
[Zol86] V. M. Zolotarev. One-dimensional stable distributions, volume 65 of Translations of

Mathematical Monographs. American Mathematical Society, Providence, RI, 1986.



