N
N

N

HAL

open science

Evaluation des performances temporelles d’architectures
d’automatisation distribuées sur Ethernet par simulation
d’un modele eb réseau de Petri de haut niveau.
Gaélle Marsal, Gaélle Poulard (épouse Marsal)

» To cite this version:

Gaglle Marsal, Gaglle Poulard (épouse Marsal). Evaluation des performances temporelles
d’architectures d’automatisation distribuées sur Ethernet par simulation d’un modele eb réseau de
Petri de haut niveau.. Automatique / Robotique. Ecole normale supérieure de Cachan - ENS Cachan,

2006. Francais. NNT: . tel-00162228

HAL Id: tel-00162228
https://theses.hal.science/tel-00162228
Submitted on 12 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00162228
https://hal.archives-ouvertes.fr

||
I m [ECHNISCHE UNIVERSITAT

m KAISERSLAUTERN c A C A A N

TN ~~—_~

ENSC-20064:26

PhD thesis of the
ECOLE NORMALE SUPERIEURE DE CACHAN
and of the
UNIVERSITY OF KAISERSLAUTERN

Defended by
Ms. Gaélle Marsal

to obtain the grades of

DOCTOR OF THE ECOLE NORMALE SUPERIEURE
DE CACHAN
and
DOCTOR OF THE UNIVERSITY OF
KAISERSLAUTERN

In :

ELECTRICAL AND AUTOMATION ENGINEERING

Evaluation of time performances of
Ethernet-based Automation
Systems by simulation of High-level
Petri Nets

Defended at Cachan on December, the 11th, 2006 in front of the committee composed of:

HASSANE ALLA Professor - INPG - LAG Examiner
STEFAN KOWALEWSKI Professor - RWTH Aachen University Reviewer
ERrRIC RONDEAU Professor - University of Nancy - CRAN Reviewer
JEAN-MARC FAURE Professor - ENS Cachan - LURPA Advisor
GEORG FREY Junior Professor - TU of Kaiserslautern - JPA2 Advisor
BRrRUNO DENIS Assistant Professor - ENS de Cachan - LURPA Advisor
PATRICK SALAUN Researcher - EDF R&D Invited
LURPA JPA?

ENS Cachan Dep. of Electrical and Computer Engineering
Université Paris 11 University of Kaiserslautern

61 Avenue Président Wilson Erwin-Schroédinger-Str. 12

94235 Cachan Cedex — France 67653 Kaiserslautern — Germany

The work that has resulted in this thesis could not have been performed without
the support of several people who must be mentioned here.

First of all, I would like to thank my advisors Professor Jean-Marc Faure, Profes-
sor Georg Frey and Assistant Professor Bruno Denis for the opportunity to perform
my work at their institutes. I thank them for all encouragement, guidance and the
necessary intellectual freedom they have given me to fulfil this work. Working in
their teams was a privilege and a great experience I will never forget.

I would like to thank the reviewers of this thesis, Professor Stefan Kowalewski
from the RWTH Aachen (Germany) and Professor Eric Rondeau from the Univer-
sity of Nancy (France) for the interest they took in my work and the effort they
invested in reviewing deeply this thesis. I would also like to thank Professor Hassane
Alla and Patrick Salaun for agreeing to participate to the Fvaluation Committee.

These three years spent in the LURPA have been a pleasant time thanks to all
the colleagues who have always been very helpful either for technical, scientific or
personal problems. In particular, I thank Francoise for its efficiency and its kind-
ness, Marc for its philosophical talks, Sylvain for its support, the Mexican team for
the "quesadillas”, Steve for its gossip, Vincent for its coding capacities.

I also would like to thank all the colleagues of Kaiserslautern, in particular Jir-
gen and Mohammed, for their kindness each time I came there.

Finally, I want to thank my parents and my brothers who always encourage me
in the way I have chosen. I don’t forget my husband, David, who has coached and
supported me during all these three years, and of course my daughter, Clara, who
enlightens my life every day.

Cachan, December 2006
Gaélle Marsal

Contents

Contents i
Introduction 1
1 Fieldbuses in Automation Systems 5
1.1 Networked Automation Systems)
1.2 Time performances of Networked Automation Systems 7
1.2.1 Networked Control Systems 7
1.2.2 Classification of Networked Automation System performances 7
1.2.3 From user requirements to response time 8
1.2.4 From designer requirements to network cycle time 10
1.3 Using specific purpose fieldbuses 10
1.3.1 Network topology and OSI reference model 10
1.3.2 Fieldbuses history L. 12
1.4 Using general purpose communication technologies for fieldbus 15
1.4.1 Using Ethernet protocol 15
1.4.2 Using TCP and IP protocols 18
1.4.3 Using the client/server cooperation model 19
1.4.4 Impact on time performances of switched Ethernet-based Au-

tomation Systems with a client/server model 22

Methods for evaluation of time performances in Networked Au-
tomation Systems 29
2.1 A priori evaluation 29
2.1.1 Methods based on analytic models 30
2.1.2 Exhaustive state-space exploration of models 34
2.1.3 Partial state-space exploration of models 35
2.2 A posteriori evaluation: Experimental methods 39
2.3 Proposed method for time performance evaluation 40
Principles for dynamic model construction 43
3.1 Static models of Ethernet-based Automation Systems 43
3.2 Choice of the formalism for the dynamic model 45

3.2.1 Time consumption mechanisms representation 45

ii

Contents

3.2.2 Representation of architecture structure 48
3.2.3 Physical time representation 48
3.2.4 Data representationo 49
3.2.5 Formalism for dynamic modelling 49
3.3 Presentation of the chosen Petri Net class 49
3.3.1 Colour feature 49
3.3.2 Hierarchy 50
3.3.3 Time feature 51
3.3.4 Use of complex colours and functions 52
3.4 Structure of the generic model 54
3.4.1 Hierarchical structure 54
3.4.2 Colours definition 56
Dynamic model description 61
4.1 Genericmodel 61
4.1.1 Global generic model 61
4.1.2 Modelling data flows 62
4.2 Components: extracts of the generic model 62
4.2.1 Ethernet Modbus client 62
4.2.2 PC-based controller model 66
4.2.3 Event source. 69
424 Switch 70
4.3 Instantiation processo 71
4.3.1 Parameters 71
4.3.2 Obtaining elementary delays values 72
4.3.2.1 Notations 72
4.3.2.2 Obtaining delays by measurement 73
4.4 Extract of one particular model o000 74
Obtaining time performances from a particular model 79
5.1 Method overview 79
5.2 Set up of one particular model 81
5.2.1 Introducing partially random execution times 81
5.2.2 Event generation scheduling for response time evaluation . . . 82
5.3 Simulation and post-treatmento 83
Evaluation of time performances 87
6.1 Presentation of the case studies 87
6.2 Comparison of three major cooperation models 91
6.2.1 Evaluation methods of Network Cycle Time 91
6.2.2 Numerical values of Network Cycle Times for the studied ar-
chitectures 95
6.2.3 Discussion on Network Cycle Times obtained 95

Contents 1ii

6.2.3.1 Comparison of the three cooperation models 95
6.2.3.2 Detailed analysis of Network Cycle Time of client /sever

model 96
6.2.3.3 Synthesis 96
6.3 Evaluation of response time of Ethernet-based Automation Systems . 98
6.3.1 Response time distribution 98

6.3.2 Influence of resource sharing and of synchronisation between
PTOCESSES . & v v v v v e e e e e e e 101
6.3.2.1 Influence of resource sharing 105

6.3.2.2 Influence of synchronisation between asynchronous
PTOCESSES .« v v v v e e 107
6.3.2.3 Synthesis oo 108
6.3.3 Delays caused by switches 0L 108
Conclusion 113
Bibliography 117
A Generic model of Ethernet-Based Automation System 123

B Example of a particular model of Ethernet-Based Automation Sys-
tem 125

Introduction

To ensure correct operation of industrial production systems, all microprocessor-
based equipments must communicate and cooperate at any level, from control to
management, including monitoring and planning. To provide communication at the
field level, when distributed automation systems appeared, automation solutions
providers have developed fieldbuses based on specific communication hardware and
protocols, such as Modbus developed by Modicon in the late seventies. Up to now,
these fieldbuses have been designed to comply with automation requirements of
different industrial domains (process control, batch or manufacturing systems au-
tomation), and each well-established automation solutions vendor went on with its
particular product (Profibus for Siemens, Unitelway for Schneider Electric...). As
a consequence, no standardisation compromise was ever found and interoperability
of Networked Automation Systems, distributed automation systems whose compo-
nents are linked by a fieldbus, was really weak. In this thesis, all these solutions
for communication at the field level developed during the 80s and the 90s will be
referred to as “classical fieldbuses”.

To reduce design and implementation costs and to improve interoperability of
Networked Automation Systems, the protocols Ethernet, TCP and IP are consid-
ered as the future universal standards for fieldbuses; in fact, industrial solutions
claiming to rely on one or several of these protocols, and labelled ‘Industrial Ether-
net’, are already available. The introduction of common Local Area Network (LAN)
protocols at field level provides indeed great prospects for both interoperability and
flexibility of Networked Automation Systems. They should ease communication over
all Computer Integrated Manufacturing (CIM) levels and permit to use Commercial
Off The Shelf (COTS) devices for automation.

However, these LAN protocols have not been designed specifically for automation
applications and thus own features that are a priori inappropriate for a fieldbus. The
two main features that seem not to fit Networked Automation Systems are, firstly,
the non-deterministic access to media method (CSMA/CD) and, secondly, the lo-
cal management of network resources provided by the client/server communication
model, which is classically implemented in Ethernet/TCP/IP LANs. Indeed, the
non-deterministic access to medium method can lead to possible frame collisions,
and the local management of network resources to long waiting times for availability

2 Introduction

of shared resources. These two phenomena can slow down strongly communication
between equipments, which is not acceptable in automation.

To overcome these two problems; a first solution is to implement producer /consumer
or master /slave cooperation model at the highest communication layer, as in classi-
cal fieldbuses. Indeed, these cooperation models guarantee both deterministic access
to medium and global management of network resources. Hence, delays caused by a
network using these cooperation models are bounded and easy to compute. However
such fieldbuses are not really Ethernet-based.

A second solution consists in introducing switches within the network, to reduce
collision domain, and using a rigorous design method, that shall include adequate
assessment or verification methods for checking compliance to requirements. This
solution, which offers a total interoperability with other COTS components, en-
ables automation engineers to develop really Ethernet-based automation systems

which contain products from well-established automation solutions providers (as
Modbus/TCP protocol from Schneider Electric), or soft PLCs.

The overall goal of this work is to show the interest of this second solution.
To reach this objective, it matters first to define accurately relevant time perfor-
mances. Then, the method and tool for time performances evaluation of Ethernet-
based automation systems are to be provided. It will be possible, in a third step,
to compare client/server cooperation model to the two other ones (master/slave
and producer/consumer) and to analyse finely time consumption mechanisms in
Ethernet-based automation systems.

The first chapter of this report starts by the definition of the limits of this study
and of the time performances that shall be evaluated: network cycle time and re-
sponse time. Then, a technological overview of classical fieldbuses and of Ethernet
and TCP/IP protocols is presented. At last, a detailed, while not formal, analysis
of the time consumption mechanisms in the different hardware and software compo-
nents of Ethernet-based automation systems enables us to pinpoint that the overall
response time is the sum of three delays: processing time, waiting time for syn-
chronisation of asynchronous processes and waiting time for availability of shared
resources.

The second chapter contains a survey on academic works that addressed eval-
uation of time performances of Networked Automation Systems. Both "a priori”
(before implementation) and "a posteriori” (after the system has been designed and
implemented) methods are considered: analytic calculus, formal verification meth-
ods, simulation and experimental methods. It appears that to determine the time
performances we focus on, the most relevant method is the simulation of a dynamic
model of the automation system.

Introduction 3

The third chapter is mainly devoted to the presentation of the modelling for-
malism that we have chosen for the dynamic model. Principles for designing the
dynamic model are first stated: generic modelling, ability to represent three time
consumption mechanisms, suitable time and data representation. Given these prin-
ciples, Hierarchical Timed Coloured Petri Nets have been chosen as the modelling
formalism. Once the concepts of this formalism presented, the chapter closes on
the description of the structure of the generic model of Ethernet-based automation
systems.

In the fourth chapter, first, some components of this generic model (Ethernet
Modbus client, PC-based controller and switch), which describe the behaviour of
hardware or software components of Ethernet-based automation systems, are de-
tailed. In the following section, the instantiation process, which permits construc-
tion of particular models from the generic model, is presented and finally an example
of one particular Ethernet Modbus client is given.

The fifth chapter deals with simulation of one particular model so as to obtain its
time performances of the corresponding automation systems. Particular attention
is paid to set up of the model in order to obtain meaningful simulation results.

At last, comparison of the three cooperation models is addressed in the first part
of the sixth chapter. The network cycle times of systems using these cooperation
models are compared and discussed. Once this comparison achieved, focus is put
on evaluation of response time of Ethernet-based automation systems and on anal-
ysis of the relative importance of the three delay causes that were pointed out above.

From the results which have been obtained in this PhD work, several research
and technical development prospects are drawn up in the conclusion.

Chapter 1

Fieldbuses in Automation Systems

This chapter presents the context of our work. The first section introduces Net-
worked Automation Systems. Then, the second section defines the Networked Au-
tomation System performances, focusing on the time performances studied in this
work, the network cycle time and the response time. A third section presents some
characteristics of specific purpose fieldbuses. Finally, a fourth section presents the
use of general communication technologies in fieldbuses, in particular, Ethernet,
TCP, IP and the client/server cooperation model. In this section is also details
the impact of these technologies on the networked Automation System time perfor-
mances.

1.1 Networked Automation Systems

A Networked Automation System is composed of automation components, con-
trollers and Remote Input Output Modules (RIOMs), interconnected by a network,
often called fieldbus, and exchanging data thanks to communication protocols.

In such systems, controllers must accomplish two functions: the first one is to
treat data for plant control and the second one is to collect from and transmit to
the RIOMs data via the communication medium. In this thesis, only mono-task
controllers will be considered. Then, the first function, to treat data for plant con-
trol, corresponds to the cyclic execution of the control program: first reading inputs,
then executing the user program, and finally writing outputs. The second function
is obtained by scanning regularly the RIOMs through the fieldbus.

Two hardware solutions are currently encountered. The first one is to have one
dedicated module with its own processor for each function which concerns most of
the Programmable Logic Controllers and some Industrial PCs with special board
added. In the following, we choose to call this solution either modular controller or
PLC-based controller. In this case, the two functions are implemented in the two
different modules, they run in parallel and communicate via a backbone bus.

The second hardware solution is to have only one processor unit to carry out both

6 Fieldbuses in Automation Systems

functions which concerns small controllers and some industrial PCs. In the following,
we choose to call this solution PC-based controller. In this case, the two functions
are executed in the unique module, where the processor of the controller is shared
for control and communication tasks that are performed sequentially.

RIOMs are interfaces between the plant and the network. Each RIOM is con-
nected to sensors and actuators. Some RIOMs are able to treat inputs and outputs
locally. These ones are called intelligent RIOMs. They are more often used in con-
tinuous process control. In the case of automation systems, mainly regular RIOMs
are used which only send input values to controllers and set up output values re-

ceived from controllers. In this work, only regular RIOMs are studied that are called
RIOMs in this thesis.

In the following, the term “device” is used for controllers, RIOMs and switches,
while “components” is used for sub-parts (hardware or software) of devices, such as
communication modules, CPU modules and user program in controllers.

Figure 1.1 shows a Networked Automation System with three controllers and three
RIOMs (RIOM).

Controller

Controller

Controller

RIOM

RIOM

[Plant]

Figure 1.1: Example of a Networked Automation System

In the Networked Automation Systems, one controller generally communicates
with several RIOMs and one RIOM can be scanned by several controllers. All these
devices share the same communication medium. As a consequence, the fieldbus
is a shared resource to manage. In the following, different solutions proposed are
studied, both with specific purpose fieldbuses (page 10) and with general purpose
communication technologies (page 15).

Time performances of Networked Automation Systems 7

The next section details the time performances of interest in Networked Automa-
tion Systems.

1.2 Time performances of Networked Automation
Systems

1.2.1 Networked Control Systems

The expression Networked Control Systems (NCS) is reserved for continuous closed-
loop control, as indicated by the term "feedback control” in the definition of the
University of Maryland (Intelligent Control Engineering Laboratory [1998]): "When
a traditional feedback control system is closed via a serial communication channel,
which maybe shared with other nodes outside the control system, then the control
system is called a Networked Control System (NCS)”.

A major user requirement in Networked Controlled Systems is then the stability
of the system. This stability can be obtained by having a constant delay (Juanole
[2002]). An other approach is presented in Vatanski et al. [2006]: robust control
based on delay compensation thanks to the evaluation of upper-bound delays.
Networked Control Systems concern a large scientific community with many ad-
vances. However, the scope of Networked Automation Systems can not benefit of
all the results found for Networked Control Systems because user requirements and
time performances needed are completely different, as explained in the next subsec-
tions.

1.2.2 Classification of Networked Automation System per-
formances

Generally speaking, the performances of a system can be put into two categories:
performances related to value correctness and performances related to time correct-
ness (Kopetz [2003]). Value correctness performances analysis focuses on correctness
of data values produced by the system, while time correctness performances analysis
considers correctness of dates and of time delays between events whatever the values
of data associated to the events.

Regarding value correctness in Networked Automation System, two causes can
damage values: errors in the user program or disturbances on the network. To verify
correctness of the user program is another field of investigation based for instance
on model checking techniques (Kowalewski et al. [1999b,a], Mertke and Frey [2001]).
Disturbances on the network, that can damage data, are important in wide area net-
works or in WiFi networks but not in local area networks such as fieldbuses. Hence,

8 Fieldbuses in Automation Systems

this study does not address the issue of value correctness.

Regarding time correctness performances in Networked Automation Systems,
they are detailed in the two next subsections.

1.2.3 From user requirements to response time

Performances of a Networked Automation System are driven by the requirements
of the system that it controls (Greifeneder and Frey [2006]). To illustrate the link
between time performances of automation and user requirements, the example of
filling a water tank to a desired level is pictured figure 1.2. The system considered
is composed of two tanks TA1 and TA2. The tank TA1 fills TA2 until a required
level included in the range Lreq. For this, when sensor S1 detects water (level Ldet),
the input I1 on RIOM6 becomes TRUE (at time t0). Then it is treated by PLC2
to emit the output O1, at time t1, that closes the valve V1. The obtained level in
TA2 is noted Lef. The performance of this system, in term of water level, can be
expressed as (Lef — Ldet), taking Ldet as the reference level. If we consider the
entire automation system, we can notice that Lef — Ldet depends on (t1 — t0), the
response time of the control system.

Whatever the system that is controlled, its performance is always linked with the
response time of the Networked Automation System defined as the delay between
the occurrence of a cause event (input I1) and the corresponding consequence event
(output O1) (Marsal et al. [2006c]).

It is essential to note that the response time is generally not constant. Actually,
the system being time-driven by the user-program execution, even if there is no net-
work, the new input values are taken into account only at the next reading phase,
i.e. between zero and one cycle time. As a result, the response time, that includes
processing of the data, lasts between one and two cycle times. In a Networked Au-
tomation System, delays due to the network appear. These delays may be constant
or not depending on the communication protocol used.

The end user is then interested not only by one value of the automated system
performance but by the distribution of all possible values. This distribution is highly
linked with the distribution of response time. Therefore, one goal of this study is to
evaluate the distribution of response time.

Time performances of Networked Automation Systems

Industrial PC

V1

- Lef
.............. II
S1
TA2

Lef-Ldet = f(t1-t0)

Figure 1.2: Example of performance for filling a tank

10 Fieldbuses in Automation Systems

1.2.4 From designer requirements to network cycle time

The response time is the major performance for the end user but it may not enable
to discriminate different fieldbus solutions. For this, the commonly used property is
the Network Cycle Time. It is defined as the time between two consecutive sendings
of message from one controller to one RIOM. The network cycle time can also be
variable, depending on the network protocols chosen. Here, as for the response time,
it is essential to evaluate the distribution of the network cycle time.

This work is going to investigate these two time performances, response time and
network cycle time of Networked Automation Systems for fieldbuses using general
purpose communication technologies. Before to study them, the two next sections
details the specific and general communication technologies that are available for
fieldbus.

1.3 Using specific purpose fieldbuses

Before to detail the features of special purpose fieldbuses and the mainly used co-
operation models, a first subsection gives general concepts of networks.

1.3.1 Network topology and OSI reference model
Network topology

The topology of a network refers to the layout of devices connected on a network.
The different existing topologies are based on six basic types presented in figure 1.3:
linear, ring, bus, star, tree, mesh. On this figure, the squares are stations, either
networking or automation devices (controllers and RIOMs).

Whatever the network topology has, protocols are needed to communicate from
one station to others. For this, a framework, named OSI model, has been defined
and standardised.

OSI reference model

The Open Systems Interconnection Reference Model (OSI model) (Zimmermann
[1980]) is an ISO standard which defines a layered, abstract description for com-
munications in computer networks. This model has been designed to simplify in-
terconnection of systems from different manufacturers who have defined their own
protocols.

Each layer of the model depends on the immediate lower layer and is isolated of the
higher layer. A layer adds value to the services provided by the lower layers and
the highest layer offers the services to run applications. The seven layers defined in

Using specific purpose fieldbuses 11

Line Star Tree
~—" Zz \
0O Ot
Bus Ring Mesh

Figure 1.3: Basic network topologies

this model are given figure 1.4, Physical layer being the lowest one and Application
layer the highest one.

Application

Presentation

Session

Network

Data link
Physical

1

communication media

7
6
5
4] Transport
3
2
1

Figure 1.4: OSI model

The application layer provides to the user with means to access network informa-
tion through an application. As examples, two well-known protocols of application
layer are FTP (File Transfer Protocol) and HTTP (HyperText Transfer Protocol).
The presentation layer provides to application layer a standard interface to interpret
data. This layer is used with cryptographic protocols to decode data. The session
layer controls the connection between hosts. The transport layer provides a trans-
parent transfer of data between hosts. Two widely used transport protocols are TCP

12 Fieldbuses in Automation Systems

(Transmission Control Protocol) and UDP (User Datagram Protocol). The network
layer provides with means to exchange data between two hosts over a network con-
nection. The most used network protocol is IP (Internet Protocol). The data link
layer provides with means to establish, maintain and release data link between hosts.
Media Access methods are included in this layer. For instance, CSMA /CD in Ether-
net. Finally, the physical layer defines the mechanical and electrical characteristics
to establish maintain and release data link between two network entities. For in-
stance, RS485 and 10Base-T are two different physical links.

Based on these general concepts, the following subsections present fieldbuses with
the mainly used cooperation models.

1.3.2 Fieldbuses history

Fieldbuses appeared in the late seventies in the form of dedicated networks devel-
oped by automation devices manufacturers. These developments have been carried
out independently and lead to different non-interoperable networks. In the area of
automation, the first fieldbus, Modbus (Modbus-IDA [2002]), designed by Modicon
has been developed for RS232 and RS485 physical layers. These serial links enable
only a bus topology. As a consequence, the access to the media must be controlled
to allow only one message on the bus at each time.

Then, academic works and consortia have begun to work on the definition of new
fieldbuses in a goal of standardisation. Three well-known results are FIP, evolv-
ing in WorldFIP (WorldFIP organisation [2003]), Profibus in Germany around 1985
(PROFIBUS Nutzerorganisation e.V. [2006]) and Fieldbus Foundation, gathering a
number of companies that decided in 1994 to define a global specification for all
the layers to be standardized. These fieldbuses have been initially designed also for
serial links RS232 and RS485, with a bus topology. So, the access to media must be
controlled, too.

For a more detailed history of fieldbuses the reader can refer to Thomesse [1999] and
Felser [2002].

The needs in automation systems to control the medium and to have a cyclic or
periodic refreshment of data in controllers and RIOMs is obtained by the coopera-
tion models. The two that are mainly used are master/slave and producer/consumer.
The figure 1.5 shows how the cooperation models take place in the OSI model. They
are providing both the media access control, which is part of the layer two (data
link layer), and the refreshment of data, which is the application layer.

Using specific purpose fieldbuses 13

7 cyclic data
refreshment
empty layers

cooperation 5

model \4‘
2 media access control

Data 1T

1 Physical

_1

RS232 or RS485

Figure 1.5: Cooperation models in the OSI model

Master /slave cooperation model

The master /slave model consists in polling all slaves (RIOMs), one after the other
by one or several masters (controllers). In the case of multi-master system, the
masters must be coordinated to not proceed in parallel in order to have always just
one communication taking place on the fieldbus. For each slave, the master sends
a request, waits until it gets the response and skips to the next slave. When it
has scanned all its slaves, the next master can proceed. The sequence diagram on
figure 1.6 illustrates this behaviour with two masters and four slaves. The black
rectangles corresponds to communication activities linked with Masterl while the
light grey ones corresponds to communication activities linked with Master2. In
the first cycle (Cyclel), Masterl begins by requesting Slavel; when Master]l has
received the associated response, it sends a request to Slave2. Then, when Masterl
has received its second reply, no more slaves are to be requested and so it is the turn
of the next master, Master2. In the same way, Master2 scans its two slaves, and
then a new cycle can begin. To allow only one master to transmit, a third device,
called bus arbiter, must be used (not represented on the figure 1.6). Its role is to
distribute time slots to access the media for each master. In the studied automation
architectures, masters are controllers and slaves are RIOMs.

Producer/consumer cooperation model

In the producer/consumer model (Miorandi and Vitturi [2004]), a producer is a
component that sends its data on the network to all consumers interested in. A
bus arbiter schedules the media access, enabling only one producer to transmit in
order to have always just one communication taking place on the fieldbus. As in
master/slave model, in each cycle, all producers must have time to send data to
consumers. In this model, devices are both producers and consumers depending
on the time. For instance, a controller is producer when it sends new output val-

14 Fieldbuses in Automation Systems

Controller| | Controller
master1 master2

SEEI

RIOM RIOM RIOM RIOM
slavet slave2 || slave3 || slave4

Master 1 Master 2 Slave 1 Slave 2 Slave 3 Slave 4
\ \ \

Cycle 1 ﬁ |
|
|

r

|

|

|

\ \

t 1

Master1 has fir;shgd |
Master2 can begin its scanning |
\

|

\

\

\

\

Figure 1.6: Sequence diagram illustrating Master/Slave model with two masters
and four slaves

Using general purpose communication technologies for fieldbus 15

ues to RIOMs, while it is a consumer when it waits for input values coming from
RIOMs. The sequence diagram on figure 1.7 shows an example with four devices
which are two controllers and two RIOMS. In this example, each controller scans
the two RIOMs by only one broadcast message (on the figure 1.7, arrows number
(1) and (2) for controller producerl and (3) and (4) for controller producer2) which
are sent to all devices. The sending of data from RIOMs (producer3 and producer4)
to controllers uses also one broadcast message for all the controllers that need their
data (here 5, 6, 7 and 8). Both broadcast and unicast communication can be used
in producer/consumer model. In this study, broadcast is always used because it
reduces communication delays.

1.4 Using general purpose communication tech-
nologies for fieldbus

The general purpose communication technologies refer to the ones developed for
office automation networking. First, the more matured technology for fieldbus,
Ethernet, is detailed. Second, the use of the protocols TCP and IP is discussed.
Finally, different cooperation models are considered and their time performances
are explained.

There are different technologies currently available to communicate on a network.
Three major ones are:

e Ethernet, defined in IEEE 802.3 [2002], with different media (copper cables,
optic fibre),

e WiFi for Wireless communication in LAN, defined in IEEE 802.11 [1999] and

e Bluetooth for short distance Wireless communication, defined in IEEE 802.15
[2005].

Some academic studies are already working on the introduction at field level (Mio-
randi and Vitturi [2004]) of the last two standards specifying wireless communica-
tion. However, they stay exceptions for fieldbuses due to the problems of magnetic
interferences and non negligible rate of lost frames. As a consequence, these solu-
tions are not studied in this work.

1.4.1 Using Ethernet protocol
General points on Ethernet

What is commonly known as Ethernet is a standard of IEEE society (IEEE 802.3
[2002]) named "Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

16 Fieldbuses in Automation Systems

Controller| | Controller
producer1| |producer2

RIOM RIOM
producer3| |producer4

Producer 1 Producer 2 | | Producer 3| | Producer 4 I Producing

\ \ D Consuming
Cycle 1
1
|
\
\
|
\
|
|
|
|

e

|
|
8
[\
Cycle 2 T |
I | |
|

Figure 1.7: Sequence diagram illustrating Producer/Consumer model with four
producers, which are two controllers and two RIOMs

Using general purpose communication technologies for fieldbus 17

access method and physical layer specifications”. As mentioned in the title, Ethernet
has two functions corresponding to the Data Link (access method) and the Physical
layers. There are several physical layers specified in the standard. In this study, only
the most mature technologies are considered: 10Base-T and 100Base-T which are
respectively 10 MBytes/s and 100 MBytes/s transmissions on copper cables with
RJ45 connectors.

The use of Ethernet implies the introduction of new components: hubs and switches.
These devices have several ports to connect devices and transfer frames in the net-
work.

Hubs transfer a frame arriving on one port to all its other ports whatever is the re-
cipient. Consequently, everyone can listen to all frames which is useful when sending
one frame to several recipients, i.e. when using broadcast. However if the commu-
nication takes place between only pairs of hosts (unicast), the use of hubs overloads
the network. When using hubs, collisions can occur over the complete network which
means that the collision domain covers the complete network.

Switches transfer a frame arriving on one port only to the ports linked with the
recipients of this frame. To know what device is connected on which port, a table
is built at the first exchange with each device. Consequently, only the recipients of
a frame can received it which is useful when using unicast. It is also possible to use
broadcast mechanism even if it is more time consuming. When using only switches
(fully-swutched architecture), collisions can occur only in one link and if using full-
duplex connections, i.e. if there is one wire in the cable for transmission and another
for reception, collision cannot occur. There are two different switch technologies:
“cut through” and ”store and forward”. The first type begins to forward a frame
when it arrives without checking its validity. The second type, “store and forward”,
first stores the entire frame that arrives, then checks it and, if correct, forwards it
to the next device (Lee and Lee [2002]). As a consequence, "cut through” switches
are faster than "store and forward” ones but these latter ones enable not to overload
the network with damaged frames.

Ethernet in fieldbuses

For the use of Ethernet in fieldbuses, most solutions now available on the market
are only using the physical medium with specific protocols developed that are called
“real-time”. These protocols implement on-line traffic control and centralised re-
source management without using the media access control of Ethernet (figure 1.8).
Actually, they use a master/slave or a producer/consumer model, with coordina-
tion between masters or producers, as in specific purpose fieldbuses presented in
section 1.3.2, page 12. As a result, there is always only one message on the medium
and hubs are prefered to switches. This kind of solution is chosen by some compa-
nies, such as Siemens with ProfiNet and Rockwell Automation with EtherNet/IP, or
by associations, such as Ethernet Powerlink Standardisation Group with Ethernet

18 Fieldbuses in Automation Systems

PowerLink.

However, these specific protocols are neither open nor interoperable with general
purpose networks. Moreover, they often need dedicated hardware to be really effi-
cient.

cyclic scanning

7
) 6
cooperation model empty layers
master/slave or 5

producer/consumer 4

with coordination

A media access control

N

1 Ethernet

1

10BaseT ou 100BaseT

Figure 1.8: Master/slave and producer/consumer models represented in the OSI
model

In the following, the term "Ethernet-based” concerns only the systems that are
totally conform to the Ethernet standard both in Physical and in Data Link layers.
This work focuses only on Ethernet-based Automation Systems.

1.4.2 Using TCP and IP protocols

The general purpose networks on Ethernet mainly use the Transport Control Pro-
tocol (TCP) and the Internet Protocol (IP). The function of TCP (University of
Southern California [1981b]) is the transport of data by establishing a connection
for each transmission between two hosts and corresponds to the Transport layer of
the OSI model. TCP ensure reliable communication by the use of acknowledgement
messages. These messages tend to increase the traffic on the network and can be
a cause of congestion. To avoid this problem TCP integrates algorithms to reduce
congestions.

The function of IP (University of Southern California [1981a]) is to communicate in
interconnected systems by means of fixed length addresses and correspond to the In-
ternet layer of the OSI model. Presentation and session layers are not implemented
in general with TCP and IP while the application layer protocol depends on the user
application. The succession of the protocols is performed with the encapsulation of
frames, adding at each layer a specific header. The figure 1.9 shows the mapping of
Ethernet, TCP and IP on the OSI model .

Using general purpose communication technologies for fieldbus 19

Application

empty layers

TCP

IP
CSMA/CD | media access control

1 Ethernet

i

10BaseT or 100BaseT

W &~ 00 O N

N

Figure 1.9: Ethernet, TCP and IP represented in the OSI model

1.4.3 Using the client/server cooperation model

The cooperation model mainly used with TCP and IP protocols is the client/server
model. In this model, client devices send requests to server devices, thereafter servers
can reply. This cooperation model takes place commonly in the application layer,
and the media access control is ensured by CSMA/CD in Ethernet (figure 1.10).

The client /server model begins to be used in fieldbuses. This is the case when us-
ing Modbus-TCP protocol (Modbus-IDA [2004]), an open implementation of Mod-
bus fieldbus protocol on Ethernet and TCP/IP using a client/server cooperation
model. It uses classic Modbus function codes consisting in "Read”, "Write”, "Read
and Write” and an indication on adress and number of bytes to transmit. This so-
lution is already used by one manufacturer (Schneider Electric [2006]) and can be
implemented on any standard TCP/IP implementation.

It matters to note that the client/server model does not ensure the regular refresh-
ment of data in devices. For this, another protocol must be added in the application
layer to ensure a cyclic scanning of the RIOMs by the controller, called IO scanning.

As our interest is to apply this model in automation systems, this behaviour
is now illustrated for the particular case of automation system. The client/server
model implements controllers as clients and RIOMs as servers. Thus the controllers
request data from Remote IO Modules and then these latter can answer. This be-
haviour is illustrated on the sequence diagram 1.11, with two clients implemented in
controllers (Clientl and Client2) and two servers implemented in RIOMs (Serverl
and Server2). The different grey levels on the diagram are present to enable an easy
reading.

This illustration enables us to understand both the advantage and the short-
coming of this model. Compared to master/salve and producer/consumer models,

20 Fieldbuses in Automation Systems

cooperation ——=m| Modbus +
model IO scanning
Client/server

empty layers

6
5
4 TCP
3 IP

CSMA/CD { media access control
Ethernet

1

10BaseT ou 100BaseT

Figure 1.10: Modbus on Ethernet, TCP and IP with client/server model repre-
sented in the OSI model

which schedule and order all sent messages without enabling any parallelism, in
the client /server model, all clients and servers can send messages at the same time.
Therefore, in best-case, the cycle time of each client is minimal, whatever the other
ones are doing. This is shown on the figure with the two clients that do not begin
their first RIOM scanning cycle (noted "Cyclel Client1” and "Cyclel Client2”) one
after the other. The two cycles of clients are independent. However, the consequence
is that if resources are shared, as the switch SW1 and the RIOMs on figure 1.11,
messages can be delayed by waiting in buffers. On the sequence diagram, there is
first the request from Client2 (arrow number 2) that must wait first of all in the
switch before to be treated (rectangle number 2), for the request of Clientl (arrow
number 1) to be forwarded (arrow number 5). Then after being forwarded to Serverl
the request from Client2 (arrow number 6) has to wait once again for the one from
Client1 to be treated (rectangle number 5).
As a consequence, a dilemma of automation system architect is to choose between
a well-known and deterministic but probably slow architecture and a new and non-
deterministic architecture but probably faster.

To help architects, in the chapter 6.2 page 91, we will perform a comparative
study of the three cooperation models:

e master/slave
e producer/consumer
e client/server

on the basis of the network cycle time. The aim of this study is to determine whether
the client/server model can lead to shorter network cycle time than the two other
models or not.

Using general purpose communication technologies for fieldbus 21

Controller| | Controller

client1 client2
\
Switch
SWi1
Z
RIOM RIOM
serveri server2
‘ Client 1 ‘ ‘ Client 2 ‘ ‘ SW 1 ‘ ‘ Server 1 ‘ ‘ Server 2 ‘
Cycle 1 ! ! ‘ ‘ ‘
Client 1 : : : |
Cycle 1 - S : im : o | o Arbitrary delay between
Client 2 the two cycle starts
. 3 5 \ \ ,
6 5 \
\ \ T,
| | I f
\ \ \
\ \ \
\ \ \
| | e
DU —] 6
I | o 11
12 8
\ \
\ \ \
| | 113
Cycle2 | | 14 | ! |
Client 1 I m‘i | 15
\

\

\

\ [
\ \
\ \
|

Client 2

Cycle2 1 D

Figure 1.11: Sequence diagram illustrating client/server model with two clients
and two servers

22 Fieldbuses in Automation Systems

1.4.4 Impact on time performances of switched Ethernet-
based Automation Systems with a client /server model

Before concluding this chapter, it matters to study with more details the differ-
ent time consumption mechanisms in switched Ethernet-based Automation Systems
with a client /server model and to show how they impact the response time and the
network cycle time.

Response time

When using a client/server cooperation model, the response time can be defined
more precisely, as in Jasperneite and Neumann [2001], as the round trip time from
client to server and back to client including a thinking time in the server. Here, we
have already defined the evaluated response time as the delay between the occur-
rence of a "cause” event (I1) and the occurrence of the "consequence” event (O1).
It is also a round trip time but from server to client and back to server including
thinking time for each client and server. In general this time is not constant because
of parallelism between cyclic processes: occurrence of event, user program execution
and cyclic scan of remote [Os.

If the fieldbus has non-deterministic access to media and local resource management,
as in our case, another non-constant source of delay is the waiting time for avail-
ability of resource.

On the architecture given figure 1.12, the analysis of the response time is pro-
ceeded from the occurrence of a cause event I1 to its effect on the process O1 after
being processed by a PLC (CPU1).

Network cycle time

It matters to well define the network cycle time when using client /server architec-
tures. When using master /slave, with coordinating masters, or producer/consumer
models as in specific fieldbuses, in one network cycle time is taken into account com-
munication among all devices. For instance, in a system composed of two masters
and four slaves, as on figure 1.6, Cyclel is one network cycle which includes both
Masterl and Master2 scanning. In this case, the network cycle time is a static and
intrinsic data of the architecture.

At the contrary, when using client/server model, there is one network cycle time per
client. On the figure 1.11 which presents a system with two clients, there are two
network cycles, "Cyclel Client1” and "Cyclel Client2”.

As a consequence, the network cycle time should then be shorter when using
client /server model compared to the one when using master /slave or producer/consumer

Using general purpose communication technologies for fieldbus 23

10 scan cycle 10 scan cycle
of Ethmod1 of Ethmod 3

I
i CPU Eth_mod i -
i Controller1 1 1 L) period [}
| |] 5ms period g
= 240 ms —
-)
(2]
sw c
o
73
i (0]
CPU3 o
period = L] o1
50 ms [B
i - -
i &2 &
| i - -
| Controller3 Eth_mod3 | /isw | sw
 Controller 2
* =
period i
18 ms EE
CPU Eth_mod - period!
2 2 sw 10 ms
10 scan cycle
Network of Eth mod 2

Figure 1.12: Example of response time studied

model. However, the parallelism of network cycles implies to share the communica-
tion medium and so it introduce the waiting time for availability of resource, which
is a variable and dynamic delay. In this case, the network cycle time is not a static
and intrinsic data of the architecture but a dynamic parameter.

To help architects, in the chapter 6.2 page 91, we will perform a comparative
study of the three cooperation models:

e master/slave
e producer/consumer

e client/server

on the basis of the network cycle time. The aim of this study is to determine whether

the client/server model can lead to shorter network cycle time than the two other
models or not.

Time consumption mechanism in switched Ethernet-based Automation
Systems when using client /server model

Figure 1.13 illustrates this complex behaviour, showing for each component on a
time diagram the time spent by information in components.
In the client/server model, the information "occurrence of I1” waits for a request

24 Fieldbuses in Automation Systems

of the PLC to be transmitted to this last one. Then the information is encapsu-
lated in a Modbus-TCP-IP-Ethernet frame in response to the PLC. After crossing
all necessary switches, here two, the frame is received in the Ethernet module of the
PLC. There, the treatment of the information is possible at the next Input reading
phase of the PLC cycle. Next, at the end of the cycle, consequently to I1 occur-
rence, O1 state changes. This information "occurrence of O1” is encapsulated in a
Modbus-TCP-IP-Ethernet frame that is sent to the recipient RIOM at next scan
cycle. Finally the frame crosses the switches until the RIOM and after being pro-
cessed, the state change effectively occurs on the plant.

The previous description of the behaviour to be exact must be enhanced with the
delays due to shared resources. Indeed, using client/server protocol on TCP/IP
and Ethernet results in the local management of shared network components. For
instance, two RIOMs can send their answers to the Ethernet module of PLC at the
same time. In this case, these messages are first queued in the switch, that can only
send messages one by one on a port. So, it sends a first message to the Ethernet
module. Then, if the second message arrives before the end of the processing of
the first one, it is queued in a buffer of the Ethernet module. The message is thus
delayed by waiting for availability of Ethernet resources.

Figure 1.13 gives an example of possible evolution and distinguishes the three dif-
ferent causes of delay:

e processing data,
e waiting for synchronisation and

e waiting for availability of resources.

Therefore, the response time should be modelled as the sum of these three types
of delays in each component. As a consequence, the first attempt to evaluate the re-
sponse time is to perform analytically this sum, and for that to evaluate the delays in
each component. Concerning processing delays, the evaluation is easy because they
are static in steady state, i.e. for the same parameters, at any time, the processing
delay is equal. For instance, the execution of the user program in PLC is always the
same for a given set of data in a given state, as well as the forwarding of an Ethernet
frame in a switch is constant for a given frame length if the destination address is
known. The two other delays, waiting for synchronisation or for availability of re-
sources, are more complex to determine because they are dynamically depending on
the history of the system. Figure 1.14 details the delay of waiting for synchronisation
in the RIOM coming from the Ethernet module of the PLC. This synchronisation
takes place when the request for the value of the input corresponding to the cause
event arrives. This arrival date depends on the date of sending the request and the
delays spent in switches. These delays depend on the rest of the system. On figure
1.14, to illustrate this dependency, we suppose that three messages have just arrived
in one switch before the request and are currently forwarded or waiting for. The
problem is to determine how many messages are waiting in this queue, given that it

Using general purpose communication technologies for fieldbus 25

Input I1 T Plant |
1
0 » time |
Ot t O1 .
WP 1T Response time |
ol | >
I
| Filtering
| Ethernet
| frame
processing
| [Switch 2
I I
| | Switch 1 |
I !_
| = ﬁ — Ilme J
r
|§g:rl1lﬁmg Eth mod. 1 ontrollerl
| of RIOMs 's‘ ml—“me I
I
| (backbone bus : |
| 3 E ‘ | CPU 1 |
| Periodic 2 15 :
execution ﬂ |
of user user program time |
Lprogram | __ execution J_
1: data processing RIOM 2
- Ethernet frame processing
W 2: waiting for synchronization
. 3:waiting for resource @
N
AN availability

Figure 1.13: Decomposition of response time in components represented on time
diagrams

26 Fieldbuses in Automation Systems

depends on the traffic generated by the other components, its amount and its time
characteristics. In network calculus, this corresponds to determine the arrival curve
of the switch. This task is rather hard because a message arrival date in the switch
is dependent on other previous message arrival dates and also on delays in other
components. The larger the system is, the trickier is this analysis. Therefore, we
can not assume to conduct it manually on automation systems.

Ethernet frame

processing in RIOM {ime

Switch

availability of

Waiting for
switch CPU

Switch

Cyclic scanning of
RIOMs in PLC 27

,,,,,,,,,,,,, ,
Waiting for 4% Port 1 - Portn
new scan cycle Reception of the request

RQ in the switch

Waiting for availability of
Ethernet module CPU

Figure 1.14: Example of delay of waiting for synchronisation in RIOM

Conclusion

In this chapter, we have presented the hardware devices studied (controllers, switches
and RIOMs), Ethernet, TCP and IP protocols, and three existing cooperation mod-
els that are available for Ethernet-based Automation Systems. The first two, mas-
ter/slave and producer/consumer, are inherited of common fieldbuses. They have
the advantage to give a fully deterministic behaviour to the system because parallel
communications are forbidden. The third model, client/server, is widely used for
Local and Wide Area Network. It does not provide a fully deterministic behaviour
because parallel communications that involve shared resources are possible.

Two main time performances of Networked Automation Systems have been de-
fined: the network cycle time and the response time (figure 1.15). The first one is
a criterion to compare different networking solutions. Consequently, the three pre-
sented cooperation models are going to be compared on their Network Cycle Time

Using general purpose communication technologies for fieldbus 27

in chapter 6.2. The second one, on which focuses the end user, indicates the perfor-
mance of the whole automation system. This performance will be evaluated on the
solution using Ethernet, TCP/IP and client/server model of cooperation.

- oy ~
S

Between two consecutive .' N
scans of one RIOM: 1 whibl

! N
Network Cycle Time

‘ §

“ LN N N -

|
[Sensor signal

Order for actuator]

From sensor signal date to

order for actuator emission date:

Response time

Figure 1.15: Networked Automation Systems Time performances that are going

to be evaluated in this thesis

The next chapter, first, details several major scientific works about the determi-
nation of time performances of Networked Automation Systems and, based on these
explains the approach we have chosen to assess these performances.

Chapter 2

Methods for evaluation of time
performances in Networked
Automation Systems

This chapter first details existing works to evaluate time performances in Networked
Automation Systems. These works can be distinguished following the kind of method
used: either "a priori” or ”a posteriori”. The first kind of methods aims to evaluate
the performances of a system during the design phase, before it exists, and conse-
quently it requires models of the system. The second kind of evaluation methods
aims to evaluate the performances of a system during running phase, when it already
exists, and consequently it consists in measurements. Then, based on the analysis
of these works, the proposed approach to evaluate time performance in Networked
Automation Systems is presented.

2.1 A priori evaluation

These methods can be sorted in three types: analytic calculus, formal verification
and simulation.

Analytic calculus consists in solving a set of equations that contain delays intro-
duced by the different components. In the case of time performances of Automation
Systems, this method is mainly used to determine upper-bound delays and use static
equations, i.e. equations where the delay values are invariant. For the calculation of
a value, the evaluation of the worst-case values of each term need to be performed
preliminary.

The mainly used formal verification technique is model-checking. A model-
checker is a model-checking tool that verifies that a property is true or false when
exploring exhaustively the state space of the model. For this, one must design a

Methods for evaluation of time performances in Networked Automation
30 Systems

model of the system and a model of the property to verify. Most tools use a class
of automata for the system model and timed or untimed temporal logic for the
property model. For evaluation of time performances, timed automata (Alur and
Dill [1994]) and Computational tree logic (CTL) are mainly used. The advantages
of model-checking are first to give bounds on complex system that are difficult to
model analytically. The problem of model-checking is the state-space explosion that
drastically limit the size and the complexity of treated problems.

Simulation is a widely developed method. It consists in a partial exploration of
the state space of a model. The modelling languages and available tools are numerous
and in general adapted to a domain or a class of problem. For automation systems
modelling and simulation, it is common to work with Petri Net models. Actually,
this language is appropriate to model Discrete Event Systems with synchronisation
and time aspects. The advantages of this method are to be not subject to state space
explosion compared to model-checking, and to be able to produce a distribution and
not only bounds. The main forthcoming of simulation is that it gives only a partial
view of the real system behaviour. Indeed, if it is quite easy to have a precise
estimation of mean values, that is more difficult for the bounds. An attempt to
evaluate the precision of the bounds obtained by simulation and a calculus of the
number of simulations to obtain these bounds are presented in Meunier [2006]

2.1.1 Methods based on analytic models

Analytic calculus is often used for determination of Worst-Case Delay of part of
architectures. Tovar and Vasques [1999, 2001] and Vitturi [2001], propose analytic
calculus of network cycle time on master /slave and producer/consumer models. The
calculus is obtained by the sum of elementary delays related to the protocol. Only
synchronisation between cycles is a source of non-constant delays.

In Tindell [1993], the author provides an analytical method to determine response
time for distributed systems based on Worst-Case FExecution Time analysis in proces-
sor (Puschner and Koza [1989], Colin and Puaut [2000]), resulting in a Worst-Case
Response Time analysis. This method is finally adapted by Pereira et al. [2004] to
response time (called by the authors end-to-end delay) in control system with remote
1Os using producer/consumer cooperation model. It is a static method, very similar
to the one proposed by Tovar and Vasques [1999, 2001] and Vitturi [2001], that relies
on the sum of Worst-Case Delays in each device and on the network. Thus, results
obtained could be very pessimistic because Worst-Case Delays of the components
are not independent, and so there is low probability that they all happen simultane-
ously. In all these cases, analytic calculus gives realistic results because the authors
consider networks in which the media access method is driven by master/slave or
producer consumer models and therefore there is no shared resource. This not the
case when using client /server cooperation model with which shared resources can be
a non-negligible source of delays. Actually, to determine a worst-case network cycle

A priori evaluation 31

time with client/server model, analytic calculus as proposed in the previous works
implies to evaluate a maximum value of the delay due to waiting for availability of
resource, which often gives very pessimistic results.

For switched Ethernet using CSMA/CD, Lee and Lee [2002] propose a calculus
based on analysis of time diagram of the Data Link Layer. The method employed
consists in summing the elementary delays during the communication, presented on
the time diagram on the figure 2.1:

e DPS is a processing delay for transmission at the source,
e DPR is a processing delay for reception at the destination,
e DT is a frame transmission delay,

e DPROP is the propagation delay for the electrical signal to propagate from
the source to the switch and from the switch to the destination,

e DIF is the interframe delay, and
e DQ is the delay spent by the frame in the queue of the switches.

The authors conclude that switched Ethernet delay is small and has little variation.
Finally they carry out an experiment to check the effect of switched Ethernet on
stability of Networked Control System. The response is similar than for a point-to-
point control system. As a consequence, the authors consider switched Ethernet as
a promising network for industrial application.

In a different way, Song [2001] uses a more complex analytic method, queueing
theory, for determining delays in switched Ethernet. The author focuses on deter-
mining buffer delays in switches. Indeed, in switched Ethernet, the switches are
shared resources and so when a frame arrives, it possibly has to wait for the CPU to
end its current task. The contribution of this work is mainly the modelling of delay
in switch (figure 2.2). On this figure, we can notice that in this model the switch
has only output buffers. Only the output ports are shared resources and not the
CPU. In our switch modelling, the switch CPU is a shared resource of the switch,
and so input buffers will be modelled.

More recently, Miorandi and Vitturi [2004] also used queueing theory to evaluate
time performance for producer/consumer model implemented on wireless network.
This work takes into account time jitter and packet error probability. The authors
conclude on the good performances of the system, enabling industrial application.
Queueing theory is adapted to model shared resources but to use it one must de-
scribe the behaviour with probability law and it yields only mean values. So, this
method is more adapted for systems with local non deterministic behaviour, such

Methods for evaluation of time performances in Networked Automation
32 Systems

APP PHY SH PHY APP

K .
DPS

APP Application APP D,

- DD W A~ OO0 O
- D W s~ O O

PHY Physical PHY T i —|

SH communication media

Figure 2.1: Time diagram of the Data Link Layer in Lee and Lee [2002]

A frame
— l" Ethernet switch
, INCTEIT 1] TiT 1]
> |
2] [2] |
2 ————————— —P'IJ]]]E —)
: buffers
N [2]6[2]1] [NIN] [|
—_—— [T+ -
INPUT OUTPUT N

Figure 2.2: Model of switch proposed in Song [2001]

A priori evaluation 33

as packet lost probability in wireless network, which is not the case for the studied
system.

The most recent approach to calculate analytically network device delays is the
network calculus introduced by Cruz [1991] and developed by Le Boudec and Thiran
[2001]. This analytic approach aims at obtaining maximum and minimum delays in
network components (buffer, multiplexer, demultiplexer, queue) modelled as leaky
buckets using Minplus algebra (figure 2.3). Network calculus implies to define for
each component an arrival curve R(t), which models the arrivals in the bucket, and
a maximum level of the bucket b, and an output r.

R(t)

A\

Figure 2.3: Leaky bucket with R(t) the arrival curve, b the maximal level and r
the output, from Le Boudec and Thiran [2001]

An application to calculate the maximum end-to-end delays in a cascade of switch
is presented in Georges et al. [2002], considering both periodic and aperiodic traffic
of automation system. The figure 2.4 presents their modelling of switches, composed
of one multiplexer, one buffer, one ASIC and one demultiplexer. In this work the
arrival curve in the switch is defined by the traffic, which must then be known, the
maximum level is defined by the buffering capacities in switches and the output by
the output ports throughput. A large part of this work has been to formulate in
Minplus algebra how to calculate a upper-bound delay not in only one component
but with several components.

Jasperneite et al. [2002] also use network calculus to obtain the upper-bound of
worst-case transaction time and conclude that in this point of view Ethernet with
CSMA /CD access method can be used for real-time systems. Network calculus gives
accurate results compared to experimental ones, however it deals only with sharing
resources and not with synchronisation between parallel processes. So it cannot be
used directly to determine response time in Networked Automation System.

Methods for evaluation of time performances in Networked Automation

34 Systems

multiplexer FIFO queue demultiplexer
—/) =)
- D »g>
-y | -
shared — central
memory — ASIC

Figure 2.4: Model of switch proposed in Georges et al. [2002]

2.1.2 Exhaustive state-space exploration of models

If many researchers have addressed the issue of time performances evaluation by
using analytic approaches, few of them have investigated the possibility of formal
verification techniques. Nevertheless Ben Hédia et al. [2005] propose a method based
on formal verification of timed communicating automata models for data acquisition
systems with parallel processes. Indeed, this technique enables to have a exhaustive
exploration of the state-space of the model, and so it should cover the whole real
behaviour. However the authors point out that state space explosion problem ap-
pears promptly when including time intervals on transition even if the models are
small (figure 2.5). The system studied is composed of one sensor and one Real-Time
Operating System, which contains a communication interface, a device driver and
a real-time application. The communication interface connects a sensor to the soft-
ware part of the system while the device driver is a dedicated software integrated
into the operating system and independent of the application.

sensor com. int. driver application legend
process process process process
Initial state
x¢ =0 IreadP *p :iu xa =0
pei) T::tam) TretA(b) Transition
: v=b
xc =10 2env(d) xp=15 xa=20| 5
! env(d) U r:=d dt :=0, dis | =W ecbek e
xc =0 xp =0 xa :=0| x=10: temporal test
9readA ‘? qi;;{ 8/ ro=d : affectation
L Irea
tretA(b)

Figure 2.5: Models proposed in Ben Hédia et al. [2005] for the time model checking
of acquisition systems

Timed model checking is also used in Krakora and Hanzalek [2004] to verify tem-
poral and logic properties of distributed real time control system over a CAN bus.
In this study, authors consider two types of shared resources: processors and bus.

A priori evaluation 35

However, the processes in each processor are synchronised and there is an arbitra-
tion to schedule the access to the bus for the different processors, as a consequence,
the delay of "waiting for synchronisation” between asynchronous processes does not
exist. The authors determine on a case study, with four processors on a CAN bus,
the worst case response time. For this, they must repeat the verification iteratively
for different values of deadline. The authors conclude that it is possible to design a
whole distributed system model by a modular approach. However, the study case
presented is very small and even if the model is designed easily, it would be interest-
ing to know the maximum number of components before occurrence of state-space
explosion.

In Greifeneder and Frey [2006], Probabilistic Model Checking is used to deter-
mine the effective stop position of a trolley when it is controlled via a Networked
Automation System. The chosen Probabilistic Model Checker implements an ex-
tension of Computation Tree Logic called Probabilistic Computation Tree Logic to
specify properties over systems described by Markov models.

The system studied is composed of two inductive sensors, one controller, one trolley
and one motor. The sensors detect the trolley moving to the stop position, and are
connected to the controller via a wireless TCP/IP Ethernet-based network, without
packet losses. The controller sends the order to slow down the trolley motor also via
the network. When the controller is aware that the trolley has been detected under
the first sensor, it must send a signal to slow down the trolley motor from normal
speed to slow mode. Then, when the controller is aware that the trolley has been
detected under the second sensor, it must send a signal to slow down the trolley
motor until it stops.

The authors have considered several pairs of sensor positions and have find out the
optimum pairs to minimise the probability of stopping outside predefined tolerance
bounds. This work has shown that Probabilistic Model Checking can be a promising
tool to optimise Networked Automation System features to comply end user require-
ments. However, the problem is always the state space explosion, limiting the size
of problem that can be treated.

To sidestep the state-space explosion problem, a solution consists in designing a
minimal equivalent model or by decomposing the problem in smaller independent
ones. If both solutions are currently under investigation, there is not yet an effective
one.

2.1.3 Partial state-space exploration of models

For networked and automation systems analysis, two kinds of simulation tools are
distinguished:

e software tools for network analysis, such as OMNet, and

Methods for evaluation of time performances in Networked Automation
36 Systems

e general purpose simulation tools based on Discrete Event System theory.

A use of network simulation tools in the analysis of networked automation system
is proposed by Pereira et al. [2004]. It aims to determine to determine by simula-
tion realistic assumptions for analytic model. This first work presents evaluation
of response time by simulation of an automation system on Ethernet-IP (Rockwell
Automation) using a producer/consumer model, and compares the results to the an-
alytical ones obtained with Worst-case Analysis. The authors choose to implement
a model in a network simulator, here OMNet++ (Varga [2001]), to have detailed
models for protocols. Indeed many versions of TCP, IP and Ethernet are already
modelled in these tools designed for their analysis. In this work, the authors want to
highlight the importance of simulation approaches to complete worst-case analysis
because simulation yields less pessimistic results.

The use of general purpose simulation is more developed in scientific community.
We focus here on works dealing with networks and protocols.
Simulation is also used for evaluating response time in switched Ethernet LAN, as
in the recent works of Zaitsev [2004a,b], who proposes to model this network with
Timed Coloured Petri Net in the simulation environment Design/CPN University of
Aarhus [2006¢], and in its successor CPNtools (University of Aarhus [2006a]). Petri
Net-based model is chosen for its ability to represent dynamic behaviour such as
client /server cooperation. The model of the system is composed of different sub-
models representing switches and workstations. Evaluation of response time is per-
formed by an additional Petri Net called measurement workstation. The figure 2.6
presents the model of switches proposed by the author. The colour is used here to
model several switches on this Place-Transition structure. Each switch is composed
of several ports, of one buffer and of a switch table. However, if we simulates this
switch, we can notice that when the switch table is treating a message from an input
port, it stays available for messages from other ports. As a consequence, the switch
table is mot considered as a shared resource. In this model, two messages that arrives
at the same time on two different input ports, that have to be forwarded on the same
output port, will be forwarded at the same date. This behaviour is not possible,
indeed, two frames cannot be emitted at the same time on the same link.

In Brahimi et al. [2006], Coloured Petri Nets are also used to model switches, but
the goal is here to evaluate the impact of different scheduling policies. This work
is carried out in the followings of the one of delay in switches by network calculus
(Georges et al. [2002]). As a consequence, the switch model is split into elementary
components: one input FIFO queue, one demultiplexer, one output FIFO queue per
priority level and one scheduler. In a studied case, the switch is associated to six
message producer and six consumers. The traffic load in the switch is given by the
producers and is defined periodic to represent sensor or actuator sampling period.
This study enables to highlight that depending on the scheduling policy, messages
can be lost.

A priori evaluation

37

atis

(macsw, porlsw)

r

b
&itch

(sre, dsfyportsw)

{sre, dsl, 1)

(mucsw, poTkiv}

frm [dst—macsw]
(sre, dst}
w+20
jrm 4
Src, dst
(P()t'll()ul;q—() Outl
@i
{Fm |dsi=macsw]

- (s, dst) 2

L,
20

Jrm

@+10

(macsw, partsw)

|dst=macsw|

ST, dst
@w. In3

(@20

frm

frm

@ (src, dst) ous

color mue = int;
color port — int;
color frm = product mac

var portsw : port;

(sre, dst) srerdsTT
.4 T | Our2 —— :

(sre, dsi,

POrtsw)

(sre, dst,
pottsw

(sre, ds

* mac;

calor swehfrm — product mae * mac * port;
color sweh — product mae * port;
var sre, dst, macsw : mac;

Table

(1,1}
P{2211'13.2)+
P43 p1'(5,3)+1°(6.3)

swelifim

v

Buffer

—

Figure 2.6: Model of a switch proposed in Zaitsev [2004a]

Methods for evaluation of time performances in Networked Automation
38 Systems

Other studies concern protocols modelling using Petri Nets. As an example,
de Figueiredo and Kristensen [1999] propose a Hierarchical Coloured Petri Net model
for TCP protocol in order to evaluate the behaviour of different TCP version in pres-
ence of frame losses. A more recent work by Bitam and Alla [2003, 2005], also on
TCP protocol, proposes to use Hybrid Petri Nets to model this protocol (figure 2.7).
In this modelled system, two emitters (E1 and E2) have to share a resource (Rt).
The Hybrid Petri Net models effectively this shared resource thanks to the place C.
Actually, when transition T3 or T10 are fired a token is removed from C and will
be available only when T5 is fired, i.e. when Rt is free. This modelling of shared
resources is possible with any class of Petri Net and shows that this language is
well-suited to model this mechanism.

{(b)
Fig. 9. (a) Two emitters connected. (b) Hybrid PN
model of a line of communication with two
emitters connected.

Figure 2.7: Hybrid Petri Net for modelling TCP protocol in Bitam and Alla [2003]

The goal of these two previous works is to show the interest of Petri Nets to
model networked systems that present shared resources and parallel processes such
as Ethernet-based Automation Systems with client/server cooperation model.

A posteriori evaluation: Experimental methods 39

2.2 A posteriori evaluation: Experimental meth-
ods

Concerning Networked Control systems, Seuret et al. [2006] shows how measurement
of communication delays using GPS can be used to stabilise the system on-line.
Concerning networked automation systems, if many works have addressed a priori
evaluation of time performances, either using analytic models, formal verification or
simulation, very few researchers have considered a posteriori evaluation, i.e. use of
experimental methods to obtain time performances. To our knowledge, only three
research teams investigate deeply this way.

First, Ferrari et al. [2004, 2006], Depari et al. [2006] from University of Brescia
(Italy) are developing their own instrument to be able to measure accurate time in
Ethernet networks. Their instrument captures frames at different points in a net-
work with different probes, that are being synchronised by an external source. It
enables to measure any kind of delays in a network, whatever are the protocol and
the cooperation model used.

Second, Cena et al. [2006] from University of Torino (Italy) proposes an exper-
imental method to measure latencies in Ethernet. The goal is to measure common
COTS Ethernet boards latencies. The authors show the difficulty to analyse the
results due to the different behaviours of each driver. If the results are different
according to the hardware tested, it gives a good order of magnitude for delays in
Ethernet boards that can be used in other works.

Third, Parrott et al. [2006] from University of Michigan (USA) investigates more
deeply the delays induced by the application layer in three types of communication:

e UDP, User Datagram Protocol, a simple transport layer protocol,

e OPC, OLE for Process Control, an open application level communication pro-
tocol, and

e VPN, virtual private networks, which create secure “tunnels” to transfer data
between networks.

The authors focus on this delay because, with the network speeds that increase,
application layer delays can become more important than network delays. As a
consequence, application layer delays must be taken into account but they are often
not specified.

The authors conclude that application layers are effectively more important than
network delays. Indeed, the application layers add significant delay when OPC is
used and VPN delays are more than double the UDP delays.

Methods for evaluation of time performances in Networked Automation
40 Systems

2.3 Proposed method for time performance eval-
uation of switched Ethernet-based Automa-
tion Systems using client /server model

In the previous chapter, two time performances of interest have been identified: the
network cycle time and the response time. The first one enables us to compare dif-
ferent solutions and the second one enables us to validate a solution with regard to
end user requirements. Both performances are very interesting to determine during
design phase so we choose an "a priori” approach. The experimental methods will
be used to determine some elementary delays that are nor documented.

Within the three kinds of "a priori” approach, the previous survey has shown
that the various analytic calculus methods are not adapted to obtain a delay dis-
tribution, but only bounds. Even for bounds, if simple analytic calculus can give
a good evaluation of best-case and worst-case response time for master/slave and
producer/consumer models, it is not the case for client/server model. In the last one
is introduced shared resources, where several clients and servers can communicates
with each other at the same time, as it has been presented in the previous section.
In Marsal et al. [2006b] and Marsal et al. [2006a], we have shown that neglecting the
shared resources mechanism to have a formulation near Tovar and Vasques [1999,
2001] and Vitturi [2001] can lead to false bounds. Evaluating a maximum value for
the delay induced by waiting for availability of shared resources can be performed
but it gives highly pessimistic results.

To use directly other more accurate formal methods, like model-checking, is still
not reasonable given the size of the system and the granularity required. Indeed, if
we want to model with same granularity all the phenomena (user program execution,
IO scanning cycle, switch behaviour and RIOM behaviour) state-space explosion is
easily reached. This has been shown in Poulard-Marsal et al. [2005] and Witsch
et al. [2006], where the model checking is limited to network cycle time verification
on small-size architectures.

Consequently, the solution chosen for client/server model is to evaluate time per-
formances by simulation. Indeed, this last one is the only method that could give
the required distribution of delays.

Within the simulation of a dynamic model, i.e. a model that can represent all
possible evolution of the modelled system, two approaches have been mentioned pre-
viously in this section page 35. One is to use a network simulator tool and to take
benefit of very detailed protocol models, the other one is to develop a new model
based on Petri net formalism. Our first interest is to validate the architecture in
normal working, using full-duplex links and switched network, so there is no lost

Proposed method for time performance evaluation 41

packets. This two points imply that we do not need to model all detailed protocol
mechanisms, such as establishment of connection with TCP. At the contrary, the
synchronisation and shared resources mechanism are essential to model.

Therefore, we choose to design a Petri net model of the whole architecture aim-
ing to determine the influence of the different delays on the response time. As our
second interest is to compare different solutions, this model must be generic for a
class of architectures.

As a result, our approach (figure 2.8) consists in evaluating time performances in
Ethernet-based Automation Systems using client /server model is to design a generic
Petri Net model. This model is going to be instantiated for each architecture to test.

Methods for evaluation of time performances in Networked Automation
42 Systems

Sensor signal Order for actuator

= m1 Network Cycle Time

- Generic Petri Net Model

: " . of switched Ethernet-based |
. Architecture whose two time . - Automation Systems using -
: performances are to be assessed © . client/server model)

= Response time

Simulation

S

Time performances

Figure 2.8: Proposed approach for evaluation of time performaces of switched
Ethernet-based Automation System using client/server model

Chapter 3

Principles for dynamic model
construction

This chapter explains the principles followed for designing the dynamic model of
Ethernet-based Automation Systems. First, a static modelling of the system en-
ables us to define clearly the class of architectures studied, including hardware and
software components and data types. Second, the four major characteristics of the
system lead to the choice of the formalism for the dynamic model. Third, this for-
malism is briefly presented and finally, the structure of the generic model is detailed.

3.1 Static models of switched Ethernet-based Au-
tomation Systems using client /server cooper-
ation model

A Ethernet-based Automation System is a set of hardware and software compo-
nents where data are exchanged and treated. The hardware components compose a
physical architecture as the example presented on figure 3.1, including controllers,
switches and Remote IO Modules. There are two kinds of controllers: modular con-
trollers composed of one processor module and one Ethernet module, and PC-based
controllers. The software components that are considered are user programs in con-
trollers, clients also in controllers and servers in RIOMs.

Data flowing in the architecture are presented on figure 3.2 by the arrows between
components. Two aspects are to be taken into account:

e the structure of data and

e the flow of data in the architecture

44 Principles for dynamic model construction

Ethernet
Switch

CPU Eth_mod =

PLC

Ethernet
links

PC-based
controller

[
3!

L

[[1| Luuks
L 1]
[11| el
L 1]

Eth_board Ethernet Ethernet
Switch Switch

Plant

TRIOM |
' RIOM |
TRIOM |
RIOM |

‘| RIOM |

' RIOM

PLC

CPU Eth_mod

Ethernet =
Switch
e Ethernet

Controllers SV‘;itChid RIO
/| network | |
S . Modules . __

Figure 3.1: Physical architecture of switched Ethernet-based Automation systems

Choice of the formalism for the dynamic model 45

Static modelling models the structure of data while the flow of data is obtained
directly when simulating the dynamic model and will be addressed later in the sub-
section 3.4.2, page 60.

Two generic static models, one for components (figure 3.3) and one for data
structure (figure 3.4), have been designed to help structuring the final generic dy-
namic model.

The class diagram of components in UML formalism describes their relationship.
Each Ethernet module, or PC-based controller, must be linked with one and only one
switch, as well, each RIOM is linked with one and only one switch. Each switch can
be linked to several devices, either Ethernet modules, PC-based controllers, RIOMs
or other switches. Each Ethernet module and each PC-based controller implements
clients as well as each RIOM implements servers. The model of a given architecture
is one instantiation of this class diagram.

The class diagram of data structure in UML formalism describes relationship
between data. From top to bottom, data of type "event” represent the change of
state of a discrete signal. In this work, the term event also represent the value (zero
or one) of a variable after a change of state. The events are included inside Modbus
frames, which are also included inside Ethernet frames. Several events are included
in one Modbus frame. That Modbus frame contains, first, a code representing an
action (read and/or write), an address and a size of data, and second, the value
of data to transmit. The Modbus frame is itself included in one Ethernet frame,
indeed the size of the Modbus frame is not large enough to need to be cut into sev-
eral Ethernet frames. The TCP segments is not represented in our case because the
Modbus frame does not need to be cut and the IP datagram is neither represented
because we study only switched networks and not routed networks. Then Ethernet,
TCP and IP protocols add only to the Modbus frame headers and tailers.

These two static models have presented the objects to model and their relation-
ships. In the dynamic model, the behaviour of software and hardware components,
their time features and the data flows between components are going to be modelled.
In the next section, the choice of the formalism of the dynamic model is explained.

3.2 Choice of the formalism for the dynamic model

3.2.1 Time consumption mechanisms representation

The three causes of delays, or time consumption mechanisms, taken into account
are (section 1.4.4 page 22):

e time for processing data within components,

46 Principles for dynamic model construction

Switf:h 2 RIOM 2

]
........................ ; - 1
HH
{ |] @
periodic] / -
user program |
execution i RIOM 9
------)Eﬁ
1 EI -+ 01
HH =
Switch 3
| Input 11 T Plant|
1
| 0 | » time |
Output O1 T 1 R ;
esponse time
|) e r, |
- — — ‘
| Filtering
| Ethernet
| frame
| processing
| |Switch 2
I
| | Switch 1
| L — — —
rCyclic
| scanning
Iof RIOMs A time
LE
| ! Y : |
| (backbone bus " : > |
(%) 2] 1
| Periodic g g‘é E ‘ CRUT |
=3 [e) 1 |

| execution Y |

of user user program O1:=I1 time |
[Program execution

I Event Ethernet
v frame

Figure 3.2: Data flows in Ethernet-based Automation systems using client /server
cooperation model

Choice of the formalism for the

dynamic model

47

\

Hardware \
components o, -
1 \
i ,‘ Software H
1
1 |Processor Module are implemented in | components \
1 ! : |
: 1 1 1
PLC-based Controller i H H
I 1 User program H
i S H
are connected 1 | |
1
1 t 1 L ! | i
1
Ethernet Module i H H
1 I 1
0..% \ 1 1
1 1
1 ! ! 5
| are impleménted in 1..% Client :
\ 1 1
I 1 1
are connected are implemented in : :
PC-based Controller ! 1 1
1 1
! | T .1~ 1
% 1 afe implemented in : 1..% :
. 1 1
1
1 | : :
1 1 I I
Switch ! I I
1 1
1
T i ' i
H 1 1
1 1
0..% T ! | 1
1 1
are conhected I
are connected : 1 1
0..x ! 1]+ i
1 I 1
Ethernet RIO Module 1 ar? implemented in I 1..% Server 1
1 1
1 1
1 1
1 1
1 1
\ /

are connected

Plant

Figure 3.3: Class diagram of component structure in switched Ethernet-based
Automation systems using client/server cooperation model

Event

1

is encapsulated into

Modbus Frame

1

is encapsulated into

Ethernet Frame

[DT e fame containing

[Event

| Modbus frame containing

several events

one Modbus frame

Figure 3.4: Class diagram and illustration of data structure in switched Ethernet-
based Automation systems using Modbus protocol

48 Principles for dynamic model construction

e waiting time for synchronisation between parallel processes and
e waiting time for availability of resources.

From the survey of scientific works given in the previous chapter, the best-suited
modelling language to model the three previous mechanisms is Petri Net.

3.2.2 Representation of architecture structure

One of the goals of the dynamic model is to evaluate time performances of Ethernet-
based automation systems in order to compare different architectures. Consequently,
the model must be generic to the class of architecture defined in the previous section
figure 3.3. This generic model will give rise to particular models representing the
different architectures to compare thanks to an instantiation process that will be
described in chapter 5.

The structure of the generic model is issued from the class diagram figure 3.3. This
means that the generic model of Ethernet-based Automation Systems shall be com-
posed of independent generic models of components (Plant, Ethernet RIO Module,
Switch, PC-based controller, Ethernet module and Processor module). Some of
these generic models are presented in chapter 4.

These two modelling principles, component-based structure and genericity are ob-
tained respectively by two Petri Net extensions:

e compound-component hierarchy and
e colour

Compound-component hierarchy enables us to build the overall generic model as the
composition of generic models of hardware components.

Colour enables us to fold a large particular model including several several particular
components models and to obtain a component particular model describing the
behaviour of a given architecture.

3.2.3 Physical time representation

In the context of evaluation of time performances, the time representation that is
chosen for the model is essential and is driven by both the type of performances to
evaluate and the assumptions made on the system.

We remind the reader that this study focuses on the variability of time perfor-
mances that are due to the conjunction of the three time consumption mechanisms
with complex relationships, but not the variability due to variable processing time
inside components. As a consequence, the time for processing data is modelled by
a constant value. Therefore, the modelling formalism should based on Timed Petri
Nets, that deal only with constant duration, and not on Time Peri Nets, that allow

Presentation of the chosen Petri Net class 49

representation of variable duration.

It matters at this point to recall also that, as we consider switched network
and full-duplex connections, there is no frame loss. As a consequence, the use of
stochastic classes of Petri Net, as in Juanole [2002], is not needed in our case.

3.2.4 Data representation

The figure 3.4 shows the three types of data (event , Modbus frame and Ether-
net frame) which are included one in the other. The place-transition structure of
the model represents the behaviours of components and their connections, so data
flowing in the network are represented by tokens flowing from place to place. To
represent data structure of figure 3.4, colours will be used.

To sum up, colours will enable us both to fold model of architectures and to
distinguish the different kinds of data flowing in the network.

3.2.5 Formalism for dynamic modelling

In order to model Ethernet-based automation systems in a generic way for evaluation
of time performances, the chosen formalism, from the above requirements, is the
Hierarchical Coloured Timed Petri Net, which is detailed in the next section.

3.3 Presentation of the chosen Petri Net class

3.3.1 Colour feature

Coloured Petri Nets have been introduced in the beginning of the nineties thanks to
academic papers and books like David and Alla [1994] and Jensen [1992]. They have
been used in particular to model manufacturing processes where both synchronisa-
tion and shared resources mechanisms are present, with several identical functional
and behavioural units. It is also the case of Ethernet-based Automation Systems.

Coloured Petri Net is standardised by IEC as High Level Petri Net (HLPN) (ISO
Standards [2004]). Tts formal definition in the standard is a tuple (P, T, D, Type, Pre, Post, M)
where:

e P is a finite set of elements called Places
e T is a finite set of elements called Transitions disjoint from P (PN T = ¢)

e D is a non-empty finite set of non-empty domains where each element of D is
called a type

50 Principles for dynamic model construction

e Type : PUT — D is a function used to assign types to places and to determine
transition modes

e Pre,Post : TRANS — uPLACE where are the Pre and Post mappings to
with
TRANS ={(t,m)|t € T,m € Type(t)}

PLACE = {(p,9)lp € P,g € Type(p)}

e M, € nPLACE is a multiset called the initial marking of the net with
uPLACE the set of multisets over the set PLACE.

A Colour in HLPN is a type, and D is also called colorset. Concerning the arcs
function Pre and Post and the transition firing rules, figure 3.5 is the example taken
from the standard, with two places pl and p2 of different types (or colours) A and
B, defined in the declaration under the Petri Net. The initial marking (M) is noted
in the places concerned. Here, the place pl have three tokens, one token whose value
is two (1‘2) and two tokens whose value is three (23). There are two arcs, one from
place pl to transition t1 and the other from transition t1 to place p2. When the
transition t1 is fired, one token is removed from pl, noted "x” on the arc, and one
token "y” is put in place p2. The guard "x < y” on transition t1 implies that the
value of the token x must be smaller than the value of the token y. The transition t1
can be fired as soon as there is one token in place pl that can satisfy the condition
x<y.

X<y

pl i p2
A= {1a2,3’4}

B= {3549597}

<:Z x Z — Boolean arithmetic “less than”
x:A ; y:B;

Figure 3.5: Example of HLPN from standard

3.3.2 Hierarchy

A hierarchical Petri Net is a model where one part can be abstracted by a substitu-
tion transition and this part is detailed in apart. The hierarchy is used to give the
possibility to cut the model into different parts, that makes it easier to design in a

Presentation of the chosen Petri Net class 51

modular way. This is explained on our model in the next section 3.4.

If the Coloured Petri Net is standardised by IEC as High Level Petri Net, this is
not the case of the Hierarchical extension. Therefore, we choose to use the semantic
defined in Jensen [1997], which is supported by a simulation software, CPNTools
(University of Aarhus [2006a]). Hence, a Hierarchical Coloured Petri Net is a tuple
(S,SN,SA, PN, PT, PA, FS) where:

e S is a non-empty finite set of pages where each page is a non-hierarchical
Coloured Petri Net

e SN is a set of substitution nodes included in 7" (transitions)

e SA is an assignation function of pages defined from SN into S where no one
page is its own sub-page

e PN is a set of port nodes included in P (places).
e PT is a function port type PN in in,out,i/o.

e PA is an assignation function of port which defines relation between nodes,
between pages and sub-pages

e 'S a set of fusion sets included in P where all elements have the same colour
and initialisation function

The use of hierarchy will be illustrated on the designed model in section 3.4.

3.3.3 Time feature

The Timed extension of Coloured Petri Net is not standardised in the IEC as High
Level Petri Net. Once again, we choose to use the semantic defined in Jensen [1997],

which is also supported by a simulation software, CPNTools. In this case a Timed
Coloured Petri Net is defined as the tuple (CPN, R, 1) where:

e C'PN is a High Level Petri Net with the Post condition that can be timed
e R a set of time values included in R+°
e 1y initial value included in R

The previous example (figure 3.5) is adapted on figure 3.6 to represent a timed CPN.
The two colours have a new attribute, “timed”, and the marking of place with timed
token is noted with a new operator ++. When the transition t1 is fired, a time-
stamp of 10 (@ + 10) is added to the token produced in place p2. As a consequence,
this token is available in p2 only ten time units after firing the transition t1. Com-
pared with the standard notation, here the names of transition and places are noted

52 Principles for dynamic model construction

inside the symbol while the initial markings and the guards, in brackets, are noted
aside.

1°2++2°3

[x<yl @+10
t1
X y

A B

colset A = {1,2,3,4} timed;
colset B = {3,4,5,7} timed;
varx: A;

vary : B;

Figure 3.6: Example of CTPN with CPNTools syntax based on the example of
standard

This definition differs from that often used in litterature for two reasons:

e time is not only linked to transitions but is also associated to tokens that carry
each one a "time-stamp”,

e there is no token reservation prior to transition firing, but a "token unavail-
ability” in the upstream place after firing the transition.

3.3.4 Use of complex colours and functions

In this subsection, some specific features of the software tool CPNTools often used
in the generic model are explained. In this modelling and simulation software, the
declaration of colours and variables is supported by a programming language called
CPN ML University of Aarhus [2006b] which is based on the Standard ML program-
ming language Milner et al. [1997], Ullman [1998]. With CPN ML language, it is
possible to use complex colours and functions.

The colours corresponds to CPN ML types, the simple ones are unit, integers,
Boolean, string, enumerated and index. Based on these types, it is possible to
build complex colours. In the model, the two following are largely employed:

e product of several colours sets which is a set of variables of type tuple,

e list which is a set of ordered variables of the same type,

As shown in the previous chapter, based on these features, colour enables to repre-
sent different concepts. It is possible to mix different types by defining composed
colours. In our case, tokens can represent either components resource or data.

Concerning data structure, there are some defined as list, an ordered set of one
data type:

Presentation of the chosen Petri Net class 53

colset A
colset B

INT timed;
list A timed;

The list is defined without any size, and so elements can be removed or added dur-
ing model simulation. As a result, this colour type enables to stack several data or
tokens into one token and keep their arrival order in a given place. In this way, it is
possible to model buffers as FIFO queues very easily.

To manage the lists, two operators are essential: :: and ~~. The first one adds
one element at the beginning of a list, and the second one concatenates two lists.
Their use to design FIFO queues is illustrated on figure 3.7. Place p2 represent a
buffer containing a list of value of colour A. This list is filled by transition t1 with
an element el coming from place pl. The list is emptied by the transition t2 that
remove one element e2 from the head of the list.

FIFO behaviour between p1 and p3

el el :: listl list2~*[e2] 2
-_—- - t1 t2
A list1 list2

B A

colset A = INT timed;
colset B = list A timed;
var el,e2 : A;

var listl,list2 : B;

Figure 3.7: Design of FIFO queues in CPNTools

CPN ML also provides a syntax and structures to design functions such as if then
else or case of. This feature is used to define guard functions and initial marking.
In both cases, the goal is to have a parametrisable Petri Net structure and to obtain
its instantiation by only changing textual declarations.

fun example(i) = casei of
1 = true
12 = false;

In this function, if the 7 variable is 1, then the function returns the Boolean value
true, else if i is equal to 2, the function returns false. This function can be associated
to the guard of a transition. In this case the transition is fired only if the variable i
is equal to 1.

For initial marking functions, the functions used returns only one result which is the
set of token desired for initial marking. It is going to be illustrated on the instanti-
ation of component models in the next chapter, section 4.3.

54 Principles for dynamic model construction

3.4 Structure of the generic model

3.4.1 Hierarchical structure

The structure of the model is represented as a tree on Figure 3.8, where the higher
level Global, on the left, contains the generic model of the whole architecture class.
The second level, contains the generic models of hardware components of the diagram
class: Ethernet RIO Module (RIOM), Switch, PC-based controller and PLC-based

controller composed of one Ethernet module and one processor module.

— Plant

—Ethernet_RIO_Module
— Switch

Global —]
—PC-based_controller

— Ethernet_Module

L_Processor_Module

Figure 3.8: Structure of the HTCPN model

Figure 3.9 shows the HTCPN representation of the highest hierarchical level
Global, in which each component is modelled as a substitution transition (Plant, Eth-
ernet_RIO_Module, Ethernet_Switch, PC-based_module, Ethernet_module and Pro-
cessor—_module). On the picture, a substitution transition is differentiated from a
transition by the tag rectangle containing the name of the sub-model at the bottom
of the transition; in general, this is the same name as the transition name. The sub-
model of the Ethernet Module is shown at the right in the middle. Some of these
sub-models, like the model of Ethernet Module, may include substitution transitions.

The structure of this Petri Net remains the same whatever the structure of the
particular Ethernet-based Automation System is. To distinguish one architecture,
that includes a set S1 of physical components, from another one, that includes an-
other set S2, we will use component colours presented in the next section. The initial
marking of the particular model describing the behaviour of one architecture will
feature the structure of this architecture.

To model the information transport from one component to another, tokens
modelling data are "sent” from one component model to another via the inter-
face places FEvents, Ethernet_frames and Variables. The three associated colours,
EVENT, ETHFRAME and VAR, model the different data types and are going to

Structure of the generic model

55

150 Pant Higher level
Plant

EVENT

TS1 Ethernet_RIC_module

Ethemet RID_module

Ethernet_frames T52 Ethernet_Switch

ETHFRAME —Ethernet_Switch |
TS6 PC-based
TS3 Ethernet_module comtroller I

—F ed controller

Ethernet_frames
10

ETHFRAME

EthMod_Eth-TCP-IP_layers |
TS30 EthMod_Eth-TCP-1P_layers

TS4 Processor_madule
Processor ITloaJ 2

alETHMxniIMBFL()

Fodbus_responses
from_servers

ETHMxMBFL

Todbus_resquests
to_servers

ETHMxMBFL

TS31 EthMod
Modbus_1G_scanner
EthMod_Modbus_10_scanner

SlIETHMXNIVARL()
Variables_ready’

Extracted_variables to.be. sent

ETHMXVARL
(ethm, mbserver,

(ethm,{id, mbdlient: :route} (ethm, mbserver, mbclient,
tiva mbalient,varl)

i (ethm,varl)

T35 Group_variables

T32 Ungroup_variable
by_servers

sent_by_servers

(ethm,{id,route}),

Variables Computed
to_compute variables

ETHMxVAR ETHMXVAR

(ethm, (id ethm ::route)) (ethm, (id, route)}

T33 Tranfert
variables

T34 Collect

varianlee | ISETHMCetnm)]

Figure 3.9: Global HTCPN model

AllETHMxniIMBFL()

ETHMXSERVERXCLIENTXVARL

(id,mbserver::route): varl)

(ethm, (id,mbclient:: mbserver:: route!

e e e e e o — = —

|
Ethernet module |

1)

56 Principles for dynamic model construction

be explained in the next section.

3.4.2 Colours definition

Colours, in our modelling, are used to distinguish components and data.

Colours representing components enable a generic representation. Indeed, by
defining a Colour for each kind of component, one structure of Petri Net can repre-
sent multiple components that have a similar behaviour. For instance one structure
of RIOM model is defined and each new RIOM instance is represented thanks to a
new token, carrying the RIOM colour. The second function of colour is to model
four information kinds, events, variables, Modbus frames and Ethernet frames. In
the definition of these colours must be modelled the encapsulation of events into
Modbus frames and of Modbus frames into Ethernet frames, as shown on the data
structure (figure 3.4).

Concerning colours associated to components, the core concept is to identify each
component by one unique and absolute identifier (positive integer) in the architec-
ture, called a location. The locations are grouped by type of components. Hence
the following colours have been defined:

LOCATION = INT timed;
DEST = LOCATION timed;
SRC = LOCATION timed;
SERVER = LOCATION timed;
CLIENT = LOCATION timed;

PROC = LOCATION timed;
ETHM = LOCATION timed;
RIOM = LOCATION timed;

SWITCH = LOCATION timed;
ETHLINK = LOCATION timed;
PLANT_ELEMENT = LOCATION timed;

Timed means that tokens of this type have a time-stamp which evolves with
model time. DEST and SRC are for destination and source of a Modbus frame, that
could be a SERVER or a CLIENT. These last two represent software components,
clients are in controllers and servers are in RIOMs. Colours PROC, ETHM, RIOM,
SWITCH, ETHLINK and PLANT_ELEMENT represent the hardware components
of the same name (PROC for processor module) and they are used to model re-
source availability. PLANT_ELEMENT is located in the plant model and is used to
generate or receive events; this part is going to be explained later in subsection 4.2.3.

Structure of the generic model 57

Concerning data, there are two different kinds in the system and they are depen-
dent. In the plant side (Plant model), there are logic signals, while in the Ethernet
network side, there are Ethernet frames. The logic signals are transformed into input
and output binary values, called "event”, then they are encapsulated into a Modbus
frame. Finally each Modbus frame is encapsulated into one Ethernet frame to be
sent to another automation device via the network. The following colours have thus
been defined:

ID = INT timed;

ROUTE = list LOCATION timed;

EVENT = product ID * ROUTE timed;

EVENTL = 1list EVENT timed;

MBFRAME = product SRC * DEST * EVENTL timed;
MBFL = list MBFRAME timed;

ETHFRAME = product ROUTE * MBFRAME timed;
ETHFL = list ETHFRAME timed;

VAR = EVENT timed;

VARL = EVENTL timed;

The colours VAR and VARL have been introduced in controllers because this
one cannot treat events but variables that represent input and output values after
an event.

In the list below, only the first Colour ID is simple data type while the others
are complex. The identifier of colour ID is the events’one, it enables us to follow
easily events all along their routes in the architecture. This route is modelled by
variables of coloured ROUTE, defined by a list of locations. This colour is used
in EVENT which is a product of ID and ROUTE and in ETHFRAME which is a
set of products of ROUTE and MBFRAME. The colour EVENT is used to follow
each event in the system, so as to know the time delay between the occurrence of
an input and the corresponding output. The route contained in EVENT is a list of
automation components, i.e. specific components for automation such as controllers
and RIOMs. The route contained in ETHFRAME is a list of Ethernet components,
i.e. general purpose communication components such as switches.

To illustrate this concept of route, supported by the colour ROUTE, an example
is given on the response time assessment presented on Figure 3.10. This archi-
tecture is composed of two controllers, each one composed of a processor module
(CPU) and an Ethernet module (Eth_module), four switches (SW) and eighteen
RIOMs (RIOM). The identifiers of hardware components are indicated by the num-
bers, such as 0 and 1 for the processors of controllers and 60 and 61 for the Ethernet
modules. The response time to evaluate here is the delay between input I1 and
output O1 occurrences, with processing in CPU 0 to set O1 equal to I1. The image

58 Principles for dynamic model construction

of I1 state in the controller as well as the state of O1 in the plant are updated thanks
to a cyclic 10 scanning performed every 5 ms by the Ethernet module 60.

scan cycle of

Server Eth mod 60

£ period
sw : : 5ms
563

period
2ms

Sw F

period I
18 ms SH|! - 564

2| period

CPU Eth_mod 10 ms
1 61
Client
67

Figure 3.10: Example of architecture and response time

The token carrying the colour EVENT models the event occurrence and also the
causality chain from I1 to O1 by the route, including all automation components,
as given on the Figure 3.11 b, with the RIOM (81), the Modbus server (101), the
Modbus client (66), the Ethernet module (60), the processor (0), once again the
Ethernet module (60), the Modbus client (66) and finally the Modbus server (108)
and the RIOM (88) where is linked the output O1. The routes between a pair of
client and server are given only by colours associated to tokens representing Eth-
ernet frames, these routes are written Figures 3.11 ¢ and 3.11 d for our example
(Poulard et al. [2004]). The first one, [101,81,567,481,563,480,560,60,66], is for the
first network crossing, from RIOM 81 to the Ethernet module of the controller. The
numbers 567, 563 and 560 model Ethernet links. The first one is between the RIOM
(81) and the switch (481). The second route is [66,60,560,480,564,482,574,88,108],
corresponding to the second network crossing, when data is sent from controller to
RIOM. It is to notice that both Modbus server and client are just software pieces and
the hardware components are connected to Ethernet link. Therefore, both RIOM
and Ethernet modules appear as interfaces between Modbus software and Ethernet

Structure of the generic model 59

link. That is why in the frame route 1, the RIOM identifier reappear after the server
identifier. The whole sequence in the RIOM is:

e treatment of the digital signal by the RIOM hardware component 81,

e treatment of the information "event” by the RIOM software component, server
101,

e sending of the frame built by a hardware physical link of RIOM &1.

The two first step appears in the event route, the second appears both in event and
frame route and the third appears only in frame route.

We have discussed colours components and colours representing data or data
routes. It remains to model data in components, for this it is necessary to define
composed colours, such as:

ETHMxETHFL = product ETHM * ETHFL timed;
RIOMxEVENT = product RIOM * EVENT timed;
PROCxVARL = product PROC * VARL timed;

These three compound colours are associated to tokens that represent one set of one
component and one data. They have been introduced to be able to know, at any
moment, which Ethernet frames are waiting in or processed in an Ethernet module,
which event are waiting for a request from a client in a given RIOM, and which
variable list is currently processed by the processor of a controller.

Conclusion

Timed Petri Nets provide constructs for modelling the three causes of delay encoun-
tered in Ethernet-based Automation Systems:

e time for processing data within components,
e waiting time for synchronisation between parallel processes and

e waiting time for availability of resources.

To facilitate time performances evaluation and comparison of several architectures,
we chose to develop a generic, component-based model. This leads to select a high-
level Petri Net class: Hierarchical Coloured Timed Petri Net. Given this formalism,
we proposed a structure and defined colours so as to derive easily particular models
from the generic one.

The next chapter focuses on a detailed presentation of the generic model.

60 Principles for dynamic model construction

Response time
Input I |< p —— | Output Of
[7)]
5 € |
| 5 2 RIOM 81 RIOM 88 |
(@]
g E
L<i — _— . _— — — |
{ — = = = = —
| Switch 4811 Switch 482 < |
§ |
‘ ()]
Y. switch 480 <
B |

<«
0
3
g
3
g g B

Automation
components
VI
w
>0
L
D
o
3
D
3
(@]
<
N

—
| .

a) Whole route from I1 to Of1

b) Event route: c) Frame route 1: d) Frame route 2:
[81,101,66,60,0,60, ||[101,81,567,481,563,|| [66,60,560,480,564,
66,108,88] 480,560,60,66] 482,574,88,108]

Figure 3.11: Routes for event and frame, presenting simplified versions of fig-
ure 1.13 without distinction between delays in components and with location num-
bers of figure 3.10

Chapter 4

Dynamic model description

This chapter opens with specific features of the implementation language often used
in the model. Secondly, four extracts of the generic model are presented. Thirdly, a
section details the instantiation process and finally one particular model is explained.

4.1 Generic model

4.1.1 Global generic model

In the previous chapter, section 3.4, the component-based structure have been ex-
plained. To obtain component generic models of manageable size, some of them
contain sub-models. The tree of the complete hierarchy is given on figure 4.1.

—Plant
—Ethernet_RIO_Module — EthRIO_Eth-TCP-IP_layers
Global ——Ethernet_Switch

—PC-based_controller ___ PCB_User_program

— Ethernet_Module EthMod_Eth-TCP-IP_layers
I: EthMod_Modbus_IO_scanner

L Processor _Module

PLC_User_program

Figure 4.1: Complete hierarchy of the Ethernet-based Automation Systems generic
model

62 Dynamic model description

4.1.2 Modelling data flows

The modelling of data flows inside the system with the flow of tokens implies to
manage token route between the component models. For instance, the place Ether-
net_frames, we have seen in the global Petri Net, contains all tokens modelling an
Ethernet frame which is between two components. To know which transition can be
enabled by these tokens, i.e. in which component model the token will be put, it is
necessary to use guards on transition that are only true for the desired tokens. The
guard on the transitions that enables input in the Ethernet module is fisETHM(loc)]
with the function defined:

fun isETHM (loc) = case loc of
60 = true
|61 = true
|62 = true
|- = false;

If the loc variable of an available token is 60 or 61 or 62, the transition can be
fired, else it cannot. This function can have different results, true or false. This
modelling induces to have a unique identifier for each component.

4.2 Components: extracts of the generic model

As the generic model is large, we prefer here to explain in detail four parts of model
that have a particular interest in the architecture studied: the Ethernet Modbus
client, the PC-based controller, the source of events and the switch.

4.2.1 Ethernet Modbus client

The Timed Coloured Petri Net (TCPN) modelling the Ethernet Modbus client,
which is a part of the Ethernet module, is presented on the figure 4.2.

Its function is to:

e build cyclically Modbus requests with variables computed by the controller
and

e to extract variables of Modbus frames coming from the Ethernet-TCP-IP lay-
ers sub-model of the Ethernet module.

Z'% 2an3ig

904D Surtuueds O Jo [opowW NJDIH OLouor)

allETHMxnilMBFL()

odbus_responses
from_servers

A ETHMxMBFL

(ethm,(mbclient,

mbserver,varl2)::mbfl) (ethm, mbfi)

Collected
responses

(mbclient,n
@+MBdelay(
ethm,mbserver,
mbclient,varl2)

T310 Extract_variables
from_Modbus_response

4

[n >= length serverl]

(ethm,scanner,serverl)@+
I0Speriod(scanner)

Next_scan
to_perform

(ethm,varl1~~varl2) (ethm,varl1)

A 4

ethm
Extracted_variables

g ETHMxVARL
allETHMxnilVARL()

allPLCSCANNERresponses

gthm,scanner,
serverl)

alllOSCANNER()
TOSCANNER

Powered
down ETHM ethm

@+ETHM_bootstrap_delay(ethm)

T313 Start_new
scan_cycle

allETHM()

IOSCANNER

(ethm,mbclient,

allETHMxnilMBFL()

odbus_resquests
to_servers
[I/O} -
A ETHMXMBFL
(ethm,mbfI~~[(mbclient,mbserver,varl)])

(ethm,mbfl)

mbserver::serverl

m,mbclient,

T314 End_of
scan_cycle

T311 Create_a

Modbus._request @+MBdelay(ethm,mbserver,mbclient,varl)

ETHM

T312

Bootstrapping

ETHM

»{ EthM_CPU

ETHM

allETHM()

‘ethm,mbserver,
mbclient,nil)

(ethm,mbserver,
mbclient,varl)

A 4 allETHMxallSERVERXxalICLIENTxnilVARL()
Variables_ready
to_be_sent
ETHMXSERVERXCLIENTXVARL

[epouw d110uUa8 9} JO sjoeaIxd :sjyusuoduwio))

€9

64 Dynamic model description

This cyclic requesting of RIOMs is also called 10 scanning. The figure 4.3 presents
the PLC-based controller with its two asynchronous processes, the user program
cycle and the IO scanning cycle, studied here.

User program cycle

PLC-based controller

IO scanning cycle

Figure 4.3: PLC-based controller

This model can be split in five parts: interface with the models of higher and
lower level, the 1O scanning cycle, the buffering mechanism, the processor resource
and the bootstrap mechanism.

The interface with the higher model Ethernet Module is composed of the four
places that are in the corners. These places are called interface places and en-
able token flowing to and from the higher level model which is Ethernet Module.
These interface places are different of the one presented in the previous chapter
(Events, Ethernet frames and Variables), section 3.4, because these previous places
were designed to enable token flowing between the global model and sub-models as
Ethernet Module, but not between the sub-models (as Ethernet Module) and the

Components: extracts of the generic model 65

sub-sub-models (as Ethernet Modbus client).

The IO scanning cycle is modelled by the following set of place:
e Next scan to perform
e Collected responses
e Current scan
e Scan free
and transition:
e T313 Start new scan cycle
e T311 Create a Modbus request
e T314 End of scan cycle
e T310 Extract variables from Modbus response

The place Next scan to perform must contains tokens that represent the next list
of servers to scan for each client. These tokens are of colour IOSCANNER , which
is a product of the colours ETHM, CLIENT and SERVERL. The time-stamp of this
token indicates the date of the next cycle. A new cycle is started by transition T313
at this date only if:

e the corresponding scan is free, i.e. the corresponding token is available in place
Scan free and

e if all corresponding responses have arrived, i.e. the corresponding token in
place Collected responses has its variable "n” equal to the number of servers to
scan (guard [n >= length server| on T313).

When transition T313 is fired, a token of colour IOSCANNER is created in the place
Current scan. Then, for each server of the list the transition T311 is fired to create a
Modbus frame with the variables available modelled by tokens in the place Variables
ready to be sent. The processing time for creating the Modbus frame is modelled by
the time result of the function M Bdelay(ethm, mbserver, mbclient, varl) associated

to the transition T311. The data are finally extracted from response received when
transition T310 is fired.

The four interface places models also buffers, using list colours as presented in
the previous chapter, section 3.3.4. In the places Fxtracted variables and Variables
ready to be sent, list of variables are stored in the tokens, while in the places Modbus
responses from servers and Modbus requests to servers, list of Modbus frames are

66 Dynamic model description

stored in the tokens.

The processor resource of Ethernet Modules is modelled by the tokens in place
EthM CPU. Concerning the sending of request to RIOMs, the resource is taken
from the creation of one Modbus frame (transition T311) to the creation of the cor-
responding Ethernet frame (in the model EthM_Eth-TCP-IP_layers). Concerning
the receiving of responses from RIOMs, the resource is taken from the extraction of
Modbus frame from one Ethernet frame (in the model EthM_Eth-TCP-IP_layers)
to the extraction of the variables from the corresponding Modbus frame (transition

T310).

The bootstrap mechanism is modelled with the place Powered down ETHM
and the transition T312. This place contains all tokens representing the Ether-
net module that have not yet booted. The time to boot is given by the function
ETHM _bootstrap_delay(ethm), which is different for each module and for each
component. This mechanism enables to avoid non required synchronisation between
all components.

Concerning the Modbus client, we begin by detailing initial markings for each
place. The initial markings of Modbus responses from servers, Fxtracted variables,
Modbus requests to servers and Variables ready to be sent prepare empty lists which
models empty buffers. The initial marking of Collected responses is an easy way to
know by parametrisation the number of server to scan for each client and conse-
quently to know if the current scan cycle is finished or not. The initial marking of
Next scan to perform models all the next scans to perform with one token for each
client taking the form of the tuple (Ethernet module, client, list of server to scan).

It is very important to notice that the IO scanning behaviour is time driven.
Actually, the Ethernet module generates requests and therefore Ethernet frames for
the RIOMs cyclically. The RIOMs answer whatever is the evolution of inputs and
outputs. As a consequence, traffic load on the network depends only on the number
of RIOMs to scan and of the period of RIOMs scanning, and then is constant for a
particular architecture. It does not depend on the values of events coming from the
plant.

In the next subsection, we detail the model of the PC-based controller and of its
Modbus client, without going so far in details, but enhancing the differences between
the two models of Modbus client in Ethernet module and in PC-based controller.

4.2.2 PC-based controller model
The figure 4.4 shows the part of HCTPN model for PC-based controller.

7'y 2an31q

ID[OIUO0D Paseq-N)J JO [opowl NJ LD 2LIoUar)

(loc: :route, mbf)

T60 Receive
Ethernet_frames

A

[isPCBPROC(loc)]

(loc, ethflr~A[(route,mbf)])| |(loc, ethfl)
allPCBPROCXNIIETHFL() v allPCBPROC()
Ethernet_frames Powered down
ready_to_treat PROC
PROCXETHFL 'y

(proc, ethfl)

(proc,(route,mbf): :ethfl)
A 4

T61 Extract_Modbus_frame

@+IPSTACKdelay(proc,mbf) from_Ethernet_frames

(proc,mbfl~~[mbf])
allPCBPROCXNilMBFL()

(proc,mbfl)

Modbus_response:
from_servers

PROCxXMBFL
(proc,(mbclient,mbserver,vari2): :mbfl

T62 Extract_variables

(mbdlient.n)
from_Modbus_response

@+MBdelay(proc,mbserver,mbclient,varl2)

jent,n+1)

(proc,varll)
allPCBPROCXNIIVARL()

Extracted_variables

PROCXVARL PPSE Varl)

(proc,varl1~~varl2)

Cur

MBSCANNERXINT

(proc,(id,mbclient::route)
:varl)

T620 Ungroup_variable
sent_by_servers

(proc,(id,route))
Y

Variables
to_compute

PROCxVAR
(proc,(id,proc: :route))
allPROCXnilVARL()

PCBPROC
eady_to_receive

received

Ethernet_frames
ETHFRAME

(proc, (mbclient

@+PROC_bootstrap_delay(proc)

PCBPROC

T69 End_of
sending

h

(prdc,
scafner,

(scannef,0)

A
(proc,ethfI*~[(iproute(mbclient,mbserver),
(mbclient,

eady_to_send

proc@+IFgap_delay(ethlink)

(route, mbf)

allPCBPROC()

T68 Send .
Ethernet_frames PCBPROC_EthLink
4 PROC
(proc,ethfl)

@+ETHdelay(ethlink,mbf)

::proc::ethlink::route,mbf)::ethfl)
\ 4 allPCBPROCXNIIETHFL()
Ethernet_frames
ready_to_send
PROCXETHFL
(proc,ethfl)

mbserver,eventl))])

A

proc T67 Encapsulate_Modbus | @+IPSTACKdelay(proc,
frame_into_Ethernet_frames |(mbclient,mbserver,eventl))

(proc,mbfl)| [(proc,(mbclient,mbserver,eventl)::mbfl)

allPCBPROCXNIIMBFL()

odbus_requests
to_servers

PROCxMBFL

(proc,mbflI~r~[(mbclient,mbserver,varl)])

(proc,mbclient,

mbserver::serverl) T66 Create_a

nil)
\ (

alllOSCANNER()

IOSCANNER

proc,varl)
T621 Collect_var
to_compute

PROCxVARL
(proc, (id,route)::varl)

TS63 Execution
PCB_User_Programs

[n >= length serverl]

(proc,varl
roc,

. .
Modbus_request @+MBdelay(proc,mbserver,mbclient,varl)

(proc,mbclient,s

5
(proc,mbserver,

mbclient,varl)
allPCBPROCxallSERVERxallCLIENTXnilVARL()

(proc,mbserver,
mbclient,nil)

ariables_ready
to_be_sent

IOSCANNER PROCXSERVERXCLIENTXVARL

(proc,mbserver,mbclient,

(proc,mbserver,mbclient,varl) F
(id,mbserver::route)::varl)

T65 Group_variables
by_servers

(proc,(id,mbclient: :mbserver::route))

Computed
variables
PROCxVAR

allPCBPROCXNIIVARL() (proc,vart)

PROCXVARL varl::varl)

[epouw d110uUa8 9} JO sjoeaIxd :sjyusuoduwio))

L9

68 Dynamic model description

This model covers more functions than the Modbus client of the Ethernet mod-
ule. Indeed, the PC-based controller includes the user program and the IO scanning
in only one cycle, as presented on figure 4.5.

User program execution

PC-based controller

Sending request to RIOM Receiving answers from RIOM

Figure 4.5: PC-based controller

The thick places and transitions (grey and black) correspond to the subset of
the Ethernet module studied in the previous subsection. The thick grey ones are
exactly the same places and transitions with same name and functions. The thick
black ones are different due to the different behaviour of this client which is synchro-
nised with the user program execution, modelled by the transition TS63 Execution.
The outputs updating after the user program execution is obtained by sending the
Modbus requests (transition T66) and the reading of input values before the user
program is obtained in the response to the previous request (transition T62). The
communication task and the control task are not parallel anymore but serial.

As a consequence, the execution is authorised only when all responses are arrived.

This is modelled by the arc between the place Current received and the transition
TS63. The sending of requests to the RIOMs is authorised only when execution is
finished. This is modelled by the arc between the transition TS63 and the place
Current sent.
It is to notice that the model of the processor resource is split into two parts, mod-
elled by the places PCBPROC ready to send and PCBPROC ready to received. This
is to ensure that all requests are sent to RIOMs before treating the responses, and so
to ensure that the outputs updating phase is done before the inputs reading phase.
This choice enables to keep the same behaviour for processor modules of modular
controllers and of PC-based controllers. The transition T69 End of sending ensures
the passage from sending phase to receiving phase.

Let us finish on a few words about Ethernet, TCP and IP modelling. The treat-
ments related to these three protocols are merged in a single one in our model. This

Components: extracts of the generic model 69

is possible due to the fact that we abstract protocols by constant treatment delays.
TCP protocol is not modelled in detail because in Modbus/TCP the acknowledge-
ment messages are sent only during non-modelled phases: establishment and closing
of connections. Concerning the congestion, the low level of traffic in the network
enables to neglect it.

The encapsulation of Modbus frame in an Ethernet/TCP/IP frame is proceeded
when firing transition T67. This action requires the processor resource of the con-
troller, as well as the action of extracting Modbus frame from Ethernet frame (T61).
This is not the case for sending the frame on the network because this action is as-
sumed to be done by an ASIC (Application Specific Integrated Circuit). The place
PCBPROC' Ethlink models the link resource by which one message can be send
every inter-frame gap delay. This delay is given in the model by the function IF-
gap(ethlink). When a frame arrives from the network, it is immediately stocked in
a buffer modelled by a token in place Ethernet frames ready to treat.

As for the Ethernet module of the PLC-based controller, the scanning of RIOMs
is time driven. Therefore, as in the Ethernet Module Modbus client, traffic load on
the network depends only on the number of RIOMs to scan and of the period of RI-
OMs scanning, and then is constant for a particular architecture. It does not depend
on the values of events coming from the plant.

4.2.3 Event source

To evaluate a response time between a cause event and a consequence event on the
plant, there is a need for an event source. The event must contain an identifier, to
make easier the analysis, and a route which determine the performance to evaluate
by giving the causal way in the architecture (section 3.4 page 60).

The model for event generation, called the plant model, is shown on the figure 4.6.
As shown on the globel model (figure 3.9, page 55), this models is connected to the
RIOM model by the place Events.

When firing the transition TO FEwvent generator, the token in place Next event
is removed to produce one token in the place Plant events and a new token in the
place Next event. The first one constitutes the first step to propagate the event in
the architecture. The first element of the route, loc, is removed because it represents
the plant element where the event occurs which is not needed anymore. The token
produced in place Next eventis the same than the one removed, with an incremented
identifier and delayed of a given time value.

The transition T1 models the consumption of the event coming from controller
which is the consequence of the previous event that occurred on the plant. The event

70 Dynamic model description

MNext_avent

rF Y EVEMT
(id+1,loc;;route)@+21111| |(idJociiroute)

Y

TO Event_generator T1 Event_consumer |[isPLANT _ELEMENT(loc)]
(id,route) (id,Joc: ;route)
O] EVEMT

Figure 4.6: Generic HCTPN model of event generation: the plant model

arriving in T1 has the same identifier than its cause event that enables to follow the
event from TO to T1.

4.2.4 Switch

The kind of switch modelled are store and forward which store the entire frame,
check its validity before to forward it on the right port. The modelling of all these
steps are abstracted by a delay (noted SWdelay) that depends on the switch and on
the Modbus frame size. We assume that all frames are valid, as a consequence all
communication linked with the re-emission policy are not modelled. The scheduling
policy modelled is First In First Out (FIFO) without priority.

The figure 4.7 present the generic HCTPN model of Ethernet switches. The
place Ethernet frames contains the tokens representing frames that are arriving or
leaving switches. If frames have to cross a switch, i.e. if the next element of their
Ethernet route is the identifier of a switch, the transition T20 is fired. The tokens
from place Ethernet frames are then stored in one list per switch in the place FIFO
matriz lists; each list models the FIFO queue at the input of the switch. Here, all
port buffering queues are represented by one queue per switch because we consider
that the switch treats only one frame at one time with its CPU resource represented

by an available token in the place SWITCH CPU.

When the transition T21 is fired, the first element of the frame list is removed
from place FIFO matriz lists to be put in the list of the place FIFO port lists of the
corresponding output port. The time associated to this transition is the time for
processing data in the switch. As written below, it depends on the switch (variable
named "switch”) and on the frame size (known from the variable "mbf” for Modbus
frame). In this model, there is one queue per port of each switch because it does
not need the CPU resource of switch. As a consequence, if several links are free at

Instantiation process 71

the same time, frames can be sent on these links at the same time.

(loc,ethfl™~~[{route,mbf)])
allSWITCHxnIlETHFL()

(lociiroute,mbf) T20 Racaive o
Ethernet_frames FIFO_matrix_lists
[iSSWITCH(Iog)] (lac, ethfl) * SWITCHXETHFL
[switchjethfll) | (switch,[ethlink::route,mbf): 1 athfll)
allSWITCH()
T21 Switching .
(Ethernet@ Matrix @+SWdelay(switch,mbf)
FY ETHFRAME SWITCH Fy

(switch,ethlink,ethfl

(switch,ethlink,{route,mbf):: ethfl2)
(switch,ethlink,
@-+ETHdelay(ethlink,mbf) (route.mbf):ethfl)

¥__ allSWITCHxallETHLINKxnilETHFL()

(route,mbf) 122 Sand
\ I 22 en .
Ethernet_frames FIFO_port_lists
r Y SWITCHxETHLINK®ETHFL

(switch ethlink,ethfl)

(switch,ethlink)@+IFgap_delay{ethlink)
(switch,ethlink)
¥

SWITCH_EthLink
allSWITCHxallETHLINK() SWITCHXETHLINK

Figure 4.7: Generic HCTPN model of switch

4.3 Instantiation process

The aim of the instantiation process is to obtain models of particular architectures
from the generic model. To reach this goal, parameters of the generic model, appear-
ing in initial marking and functions, are to be instantiated with particular values.

4.3.1 Parameters

There are three different types of parameters that must be instantiated:
e parameters depending on physical architecture,
e parameters depending on component configuration and
e parameters depending on time performance to evaluate.

The parameters of physical architecture are the number of components and their
connections. The number of components is defined by initial marking of the places
containing tokens that model resources, such as the place SWITCH CPU in the
switch model. The connections between the physical components of a particular
architecture are defined by the routes.

72 Dynamic model description

The components configuration consists in time features. It must be defined for each
component in guard functions. For instance, when firing a transition "create Mod-
bus request”, the time consumption depends on the component identifier.

If the time performance to evaluate is the network cycle time, there is no need to
other parameters. However, if the time performance to evaluate is the response time,
the event route from input to output must be parametrised.

Concerning the parameters of physical architecture and the ones of performance to
evaluate, they directly come from the definition of the architecture to study. Con-
cerning components configuration, that is not so direct, in particular for delays taken
into account concern the communication.

4.3.2 Obtaining elementary delays values
4.3.2.1 Notations

The delays concerning components configuration that are needed, are:

e the delay to build frames or to extract data from frames, that are supposed to
be equals, noted D ysoapus,

e the delay to transmit frames on cables noted Drp,qns,
e the delay in switches noted Dg,, and,

e if necessary, the delay of RIOM to answer a request (containing delays due to
all communication layers), noted Dgrrons-

Some of them are calculable but some are dependent on CPU features that are not
well-documented, and consequently, difficult to set up.

To the best of our knowledge, the values of delay needed for our models are not
existing in technical documentation and are very rare in scientific literature. Works
are currently done by three laboratories (see chapter 2 page 39). In particular, Cena
et al. [2006], gives an order of magnitude of common Ethernet boards to build or
read Ethernet frames.

The delay for a switch to forward a frame can be found only for office computa-
tion. These last switches have not the same features than industrial ones. Indeed,
office switches must transfer big data amount in a large time (about 100ms) while
industrial switches must transfer small data amount quickly. To obtain this value,
a measurement of forwarding time of industrial switches has been carried out at
LURPA, and are going to be explained below.

The delay of a RIOM to answer is available neither in technical documentation nor
in scientific literature, consequently the only way to obtain it is also to carry out
measurement.

Instantiation process 73

4.3.2.2 Obtaining delays by measurement

The measurement of:
e the delay for an industrial switch to forward a frame and
e the delay of a RIOM to answer a request

that have been carried out at LURPA are now explained.

The problem encountered is to have an accurate time measure on Ethernet

frames. Indeed, all tools developed are oriented to measure throughput or band-
width. However, it is difficult to derive time delays, that interest us, from throughput
or bandwidth. Moreover, in these tools, time measurement is generally as accurate
as the Operating System (OS). In common OS, there are multiple tasks running
that interrupt one each other. In this case, measurement task can be interrupted
and so the measurement will not be accurate. In Real-Time OS, this accuracy could
certainly be better. However, it is always difficult to know the time accuracy of any
OS.
As a consequence, the measurements carried out at LURPA have used a logical
analyser which has a sampling period of 20 ns (2-107° ms). However, this device is
dedicated to measure logic signals and not Ethernet frames, so it has been plugged
on wires inside Ethernet cables to observe the logic signal of a frame. This is possi-
ble on 10MB Ethernet because the frame is coded on two levels. Knowing the code
used, it is then possible to determine the beginning of a frame and its end.

To measure the latency of a device, the logical analyser is plugged on one side
on the wire on which the frame enters, and on the other side on the wire on which
goes out the frame, as shown figure 4.8. Then the logical analyser can give us the
latency, which is delay between the date when the last bit of the frame has entered
the device and the date when the last bit of the frame has gone out of the device.

Detection Detection

and dating i and dating
» Logical analyser |«—

UL Devics U UL
P introducing latency

Ethernet cable Ethernet cable

Figure 4.8: Measurement of device latency

This measure in two points implies to detect and date two signals which will be
dated with a precision of 20 ns each. As a consequence, the total precision of the

74 Dynamic model description

measure is 40 ns, 4 - 107° ms.

This experiment is made to measure the latency of a switch and of a RIOM to answer
a request. The conditions of measurements ensure that the measured latencies cor-
respond to the delay to forward one frame in switch and to the delay to answer one
request in RIOM. The delay measured for the switch latency is minimum 0.01008
ms and maximum 0.01069 ms with a mean value of 0.010355ms. In the following,
we consider only the mean value truncated to 0.01 ms. The delay measured for the
RIOM to answer a request is minimum 0.5428 ms and maximum 0.5471 ms with
a mean value of 0.543677ms. In the following, we consider only the mean value
truncated to 0.54 ms.

This measurement have also permitted to measure other parameters as the lenght
of Modbus frames which result is 75 bytes.

The table 4.1 sums up the different communication delays, their values and how
they can be obtained.

Table 4.1: Delays taken into account for evaluating Network Cycle Time

Delay Notation | Value (ms) obtained by
Build frames D sodbus 0.10 bibliography
or Extract data Cena et al. [2006]
Transmit frame Drrans 0.06 lenght of frame (75 bytes)
divided by the throughput (10Mb/s)

Forwarding one Dgy, 0.01 measurement
frame in switch

Answering one Drrom 0.54 measurement
request in RIOM

4.4 Extract of one particular model

The dynamic behaviour of the part of the model of Ethernet Modbus client (fig-
ure 4.2) is explained in details on the example given figure 4.9. The chosen example
is very light to enable a clear and detailed explanation.

The initial marking for this architecture, from top left to bottom right, is summed
up in the table 4.2.

From this initial marking, a dynamic evolution of the Ethernet Modbus client
model is presented in tables of figure 4.10 in the form of the new marking produced

Extract of one particular model

75

CPU Eth_mod
0 60
8 - ':: 8
i‘!ﬂ b
|l - =
: u HH
(1:011) MB client W
66 80

MB server

MB server

Scan cycle
of MB
client 66 of
period
10Speriod

Figure 4.9: Example of a very simple architecture with one controller, one switch

and two RIOMS

Table 4.2: Initial marking of Modbus client model on the example of figure 4.9

Place name Id | Initial marking function | Initial marking value
for the example

Modbus responses 1 | alETHMxnilMBFL() 1(60,[])@0

from servers

Extracted variables 2 | allETHMxnilVARL() 1(60,[])@0

Collected responses 3 | allPLCSCANNER 14(66,2)@0
responses|()

Next scan to perform | 4 | alllOSCANNER() 1(60,66,[100,101])@0

Powered down ETHM | 5 | allETHMY/() 1°‘60@0

EthM CPU 6 | allETHMY() 1'60@0

Current Scan 7

Scan free 8

Modbus requests 9 | allETHMxnilMBFL() 1(60,[])@0

to servers

Variables ready 10 | allETHMxallSERVERx | 1°(60,100,66,[])@0 ++

to be sent all CLIENTxnilVARL() | 1¢(60,101,66,[])@0

76 Dynamic model description

in each place when a transition is fired.

As this model is a sub-part of the complete model, some evolutions depend on

other models, this is notify by the mention In another model. 1t is used for markings
of the four interface places and also of the resource place EthM CPU. The time,
from dO to d7, is increasing. At time dO, the model is in initial configuration. The
first action is the boot of the Ethernet module by firing the transition T312 Boot-
strapping. A token is then produced in the place 8 Scan free which is available after
a time given by the function ETHM_Bootstrap_delay(60). This function returns
randomly an integer between 0 and the scanning cycle time value. All the hardware
devices have such a random bootstrap delay, to avoid non-desired synchronisations.
After this bootstrap delay, at time d2, the scan cycles can begin immediately. So the
transition T313 Start new scan cycle is fired to produce a token in the place 7 Cur-
rent scan containing for each Ethernet module and each client, the remaining list of
server to scan. The token from place 4 Next scan to perform used to fire this transi-
tion is available after the time IOSperiod(scanner), notify by @+I10Speriod(scanner)
which means "adding IOSperiod(scanner) value to the current time value”. In this
case, the concerned scanner, or client, is 66 and the function IOSperiod(client) gives
for each client a period value. The token in the place 7 is immediately available,
and so at time d1, the building of Modbus frame begins, with the first firing of the
transition T311 Create a Modbus request. This operation is proceeded one time for
each pair (client, server), here (66,100). As it is explained previously, when firing
this transition, the first variable in the list of the token for the corresponding client
and server in place 10 Variables ready to be sent is taken.
At the same time, an element is added in the list of place 9 Modbus requests to
servers for the corresponding Ethernet module. This list contains the model of
Modbus frames, i.e. a set of client, server and a list of variables. All tokens created
by this transition are affected by a delay of MBdelay(60), which models the delay to
produce a Modbus frame. It is to notice that by firing transition T311, one token is
removed from place 6 EthM CPU to model the resource allocation, but it does not
produce a new one. Indeed, the resource is allocated from this creation of a Modbus
request to its encapsulation into an Ethernet frame which is realised in an other
Petri Net, EThMod_Eth-TCP-IP_layers. That is why, to perform the next creating
of Modbus frame, we must wait for evolution of this other model, which released the
resource and leave a token in the place 6 EthM CPU. Then, the transition T311 is
fired once again to create a Modbus frame from the client 66 to the server 101. The
evolution of marking in places is similar to the first firing. After the time MBde-
lay(60), the token available in the place Current scan, (60,66,[]), contains an empty
server list, so this is the transition T314 End of scan cycle which is fired at the time
d2+MBdelay(60). Thus, the token in place Current scan is removed to produce one
in place 8 Scan free.

In the two following lines, at dates d3 and d4, marking of the place 6 evolves

Extract of one particular model

7T

transition fired time 1 2
do =0 1°(60,[]) 1°(60,0])
T312 do=0 1°(60,[]) 17(60,])
T313 = ETHM_Bootstrap_delay(60) 1°(60,01) 1°(60,[)
311 d1 = ETHM_Bootstrap_delay(60) 1°(60,[) 1°(60,0)
In another model d2 1°(60,[]) 1°(60,[])
T311 d2 1°(60,[]) 17(60,])
314 d2 + Mbdelay(60) 1°(60,[1) 1°(60,[1)
In another model d3 1°(60,[) 1°(60.[])
In another model d4 1°(60,[(66.100,(1,[60,0,60,66,101,81])])]) 1°(60,[])
T310 d4 1°(60,[1)@+MBdelay(60) 1°(60,[(1,[0,60,66,101,81])])) @+MBdelay(60)
In another model d5 1°(60,[(66,101,[])]) 1°(60,[(1,[0,60,66,101,81])])
310 d5 1°(60,[1)@+MBdelay(60) 1°(60,[(1,[0,60,66,101,81])])@+MBdelay(60)
T313 d6 = Max{d4+MBdelay(60) , d1+I0Speriod(66)} |1°(60,[]) 1°(60.[(1.[0,60,66,101,81))))
icomputation of variables |...
d7 1°(60,[1) 1°(60.)
T311 a7 1°(60.,[)) 1°(60,[])
fired time 3 4
do =0 1°(66,2) 1°(60,66,[100,101])
312 do=0 1°(66,2) 1°(60,66,[100,101])
T313 d1 THM_Bootstrap_delay(60) 1°(66,0) 2°(60,66,[100,101])@+|OSperiod(66)
T311 d1 = ETHM_Bootstrap_delay(60) 1°(66,0) 2°(60,66,[100,101])@+IOSperiod(66)
In another model d2 1°(66,0) 2°(60,66,[100,101])@-+OSperiod(66)
T311 a2 1°(66,0) 2'(60,66,[100,101])@+10Speriod(66)
T314 ld2 + Mbdelay(60) 1(66,0) 2°(60,66,[100,101])@-+0Speriod(66)
In another model d3 1°(66,0) 2°(60,66,[100,101])@+IOSperiod(66)
In another model d4 1°(66,0) 2°(60,66,[100,101])@+OSperiod(66)
T310 d4 1°(66,1)@+MBdelay(60) 2'(60,66,[100,101])@+0Speriod(66)
In another model d5 1°(66,1) 2'(60,66.,[100,101])@+I0Speriod(66)
310 d5 1°(66,2)@+MBdelay(60) 2'(60,66,[100,101])@+0Speriod(66)
T313 d6 = Max{d4+MBdelay(60) , d1+I0Speriod(66)} |1"(66,0) 2'(60.66,[100,101])@+I0Speriod(66)
of variables |...
7 1°(66,0) 1°(60,66,[100,101])@+I0Speriod(66)
311 d7 1°(66,0) 2'(60,66,[100,101])@+0Speriod(66)
fired time 5 6
do =0 160 160
312 do=0 P 1°60
T313 d1 = ETHM_Bootstrap_delay(60) b 1°60
T311 d1 = ETHM_Bootstrap_delay(60) b b
In another model d2 P 1°60
T311 a2 > >
T314 d2 + Mbdelay(60) > 5
In another model d3 b 1'60@+MBdelay(60)
In another model d4 P b
310 d4 P 1'60@-+MBdelay(60)
In another model d5 b b
T310 d5 ¢ 1°60@+MBdelay(60)
313 d6 = Max{d4+MBdelay(60) , d1+IOSperiod(66)} |¢ 1°60
of variables |...
7 b 1°60
T311 a7 ¢ 0
fired time 7 8
b b
7312 b 1'60@+ETHM_Bootstrap_delay(60)
313 d1 = ETHM_Bootstrap_delay(60) 1°(60,66,[100,101]) b
T311 ld1 = ETHM_Bootstrap_delay(60) 1°(60,66,[101)@+MBdelay(60) 5
In another model d2 1°(60,66,[101]) b
311 d2 1°(60,66,[])@+MBdelay(60) b
T314 d2 + Mbdelay(60) ¢ 1°(60,66.[])
In another model d3 b 1°(60,66,[])
In another model d4 b 1°(60,66.1)
310 d4 P 1°(60,66.[])
In another model d5 > 1°(60,66,))
T310 d5 b 17(60,66.[])
1313 |d6 = Max{d4+MBdelay(60) , d1+IOSperiod(66)} |1°(60,66,(100,101]) b
icomputation of variables |...
a7 1°(60,66,[101]) 5
T311 a7 1°(60,66,[]) @+MBdelay(60) i
transition fired time 9 10
do =0 1°(60,1]) 1°(60,100,66,[])++ 1 (60,101,66,[])
T312 d0=0 1°(60,[]) 17(60,100,66,[])++ 1 (60,101,66,[])
T313 di = ETHM_Bootstrap_delay(60) 1°(60,[]) 1°(60,100,66,[])++ 1°(60,101,66,[])
311 d1 = ETHM_Bootstrap_delay(60) 1°(60,[(66,100,[])]) @+MBdelay(60) 1°(60,100,66,[])@+MBdelay(60)++ 1°(60,101,66,[])
In another model d2 1°(60,[]) 1°(60,100,66,[]))++ 1°(60,101,66,[])
311 2 1°(60,[(66,101,[])]) @+MBdelay(60) 1°(60,100,66,[])++ 1'(60,101,66,[])@+MBdelay(60)
314 d2 + Mbdelay(60) 1°(60,[(66,101,[])]) @+MBdelay(60) 1°(60,100,66,[])++ 1°(60,101,66,[])
In another model d3 1°(60,[)) 1°(60,100,66,[])++ 1'(60,101,66.[))
In another model d4 1°(60,[]) 1°(60,100,66,[])++ 1'(60,101,66,[])
T310 d4 1°(60,)) 1°(60,100,66,[))++ 1 (60,101,66,[))
In another model d5 1°(60.[1) 1°(60,100,66,[1)++ 1°(60,101,66,[])
T310 d5 1°(60.,[)) 1°(60,100,66,[])++ 1'(60,101,66.[))
T313 d6 = Max{d4+MBdelay(60) , d1+I0Speriod(66)} |1°(60,[]) 1°(60,100,66,[])++ 1°(60,101,66.[))

icomputation of variables |...

1°(60,[])

1°(60,100,66,(])++ 1'(60,101,66,((1,[101,81])])

T311

1°(60,[(66,101,[(1,[101,81])])) @+MBdelay(60)

1°(60,100,66,[])++ 1'(60,101,66,[])@+MBdelay(60)

Figure 4.10: Partial marking evolution of places 1 to 10

78 Dynamic model description

due to the model EThMod_Eth-TCP-IP_layers. It models first, the release of the
resource after having sent the second Ethernet frame and, second, the arrival of a
response from RIOM. So, it produces a token in the place 1 Modbus responses from
servers. Let us note that this token contains an event (1,[60,0,60,66,101,81]) which
is identified by number one. It comes from server 100 and is destined to server 101
on RIOM 81 as indicated in the route of event. This event is treated inside the
controller as a variable. All the markings concerning this variable are in grey cells.
After, at time db, the transition T310 Fxtract variables from Modbus responses is
fired. It takes the first element of variable list from place 1 Modbus responses from
servers to insert it at the end of the variable list in place 2 Fxtracted variables. It
also takes a token in the place 3 Collected responses to produce a new one with a
value "n” incremented. This is used to count the number of responses of current
scan arrived. The produced tokens are going to be available after a delay given by
the function MBdelay(60). After this delay, the token in the place 1 can receive a
new response. It occurs at time d5, with a response coming from server 101 that
does not contain any event. The transition T310 is once again fired, adding a new
empty variable list, to the one of place 2. It also increments the number of response
received in the place 3. As the client 66 has received all the response, the transition
T313 Start new scan cycle is enabled. It is immediately fired if the corresponding
token in the place 4 Next scan to perform is available, i.e. if the current time is
upper than the time-stamp of the token which is d14+I0Speriod(66). In the other
case, the firing of transition is delayed until this time.

The next evolution of interest is the sending of the Modbus request containing
the variable to be sent to the server 101. So, we skip the evolution until the model
is at time d7. The situation is a resource available in place 6 EthM CPU, the server
101 to scan (token in place 7), and a variable to send for this server ((1,[101,81]) in
token of place 10). In this condition the transition T311 Create a Modbus request is
fired immediately. Thus a token is produced in place 9 Modbus requests to servers
which contains the variable to send to server 101.

Conclusion

Four extracts of the generic model have been detailed: the 10 scanner (Modbus
client) of the PLC-based controller, the PC-based controller, the event source and
the switch. Then the instantiation process has been presented, before to detail the
IO scanner model of a particular architecture.

The next chapter details how to obtain time performances by simulating an instan-
tiation of the generic model.

Chapter 5

Obtaining time performances from
a particular model

5.1 Method overview

The previous chapter has detailed the generic model of Ethernet-based automation
systems and its instantiation. To obtain time performances by simulation, from a
particular model, four steps are usually performed:

1. excitation scenario definition
2. set up of the model
3. simulation itself

4. useful data extraction from the raw data that yielded the simulation and post-
treatment of these useful data to obtain time performances

Figure 5.1 depicts the steps of our approach. First, the generic model is instanti-
ated so as to obtain a particular model describing the particular architecture whose
time performance are to be assessed. Then this particular model is set up in order
to carry out realistic simulation and consequently to obtain meaningful simulation
results. Once the particular model set up, simulation is launched provides a log
file where all evolutions stored. Finally, a post-treatment is necessary to obtain the
required values in an ergonomic form.

It matters to emphasise that no excitation scenario is to be defined in our
approach. Indeed, any particular model obtained from our generic model is au-
tonomous and hence can be simulated using merely a time-driven simulation strat-
egy, i.e. a strategy in which the evolutions of the model are computed each time
unit, without need of an external model that constraints the evolution.

80 Obtaining time performances from a particular model

= =1 Network Cycle Time
w— Response time

. Architecture to test

Generic HCTPN Model

@+10

. \J
- Particular HCTPN Model

Simulation

R A |

CPN Tools simulation report for:
C:\..\Model.cpn
Report generated: Mon Aug 28 10:12:48 2006

22 302 T311 Create_a_Modbus_request @(3: Ethernet Modbus Client)
- ethm = 60
- mbclient = 66

Simulation log file

Post-treatment

R v :

minimum value
maximum value
mean value

minimum value
maximum value
mean value

frequency
frequency

time time
Network cycle time Response time

Time performances

Figure 5.1: Method to evaluate time performances

Set up of one particular model 81

This choice of a time-driven simulation strategy is motivated by our concern of
simulating a loaded network. Simulation is run on a particular model of a system
including a network whose traffic load is independent of the occurrences of events
issued from the plant and depends only on the number of components (RIOMs,
switches and controllers), on their connections and on their features (processing
time, number of scanned RIOMs). Hence simulation will provide results for a net-
work at constant load.

The next two sections present the details of, first, the set up step and, second,
simulation and post-treatment steps.

5.2 Set up of one particular model

Once a particular model obtained from a generic one is built, it must be set up so
as to give rise to realistic simulation results. Set up of a particular model consists
in:

e introducing random data processing times dispersion to avoid unrealistic syn-
chronisations

e defining the event generation scheduling for response time evaluation

5.2.1 Introducing partially random execution times

It has been mentioned, in section 3.2.3 page 48, that each data treatment is mod-
elled by a transition to which a constant delay is associated. If such a model,
including constant firing times, is simulated, perfect synchronisation between differ-
ent processes may occur. This is not realistic and hence must be avoided because
simulation results would not be meaningful in that case. Real processes include
always small time deviations. Therefore, to obtain more realistic results, the model
must be set up prior to be simulated, by adding:

e Random bootstrap delays for each controllers to initiate their cycles at different
dates and

e Dispersions (about some per thousands of the value) on treatment times.

82 Obtaining time performances from a particular model

The example below shows how this is performed for the execution times of the
processors of controllers:

fun allPLCPROC

() = 104411+ +12;
fun allPCBPROC(
(

)
) = 134 14+ +1°5;
) = allPLCPROC() + +allPCBPROC);
) = withdispersion(case proc of

0 = 2000

11 = 18000

12 = 50000

13 = 2000

14 = 18000

15 = 50000

|-=10

, general_dispersion_range_in_perthousand);

fun allPROC
fun PROC Edelay(proc

with the function withdispersion:

fun withdispersion(delay, dispersion_range_in_perthousand) = delay +
discrete(” delay * dispersion_range_in_perthousand div 1000,

delay * dispersion_range_in_perthousand div 1000)
and the value general_dispersion_range_in_perthousand:
val general_dispersion_range_in_perthousand =5

In these declarations, three processor modules are declared (0, 1 and 2) as well as
three PC-based controller (3, 4 and 5). Their set defines all controllers resources (all-
PROC()) which have an attribute PROCEdelay(proc) defining the execution time
of user program. This time is defined with the function withdispersion, used to add
dispersion of 1/100 around the value in this case. The function discretes is a CP-
NML predefined function that returns a random value between the two values given
in brackets, here it is between —5/1000 and 5/1000.

Similar adaptations are made for treatment times of Ethernet modules, RIOMs
and switches.

5.2.2 Event generation scheduling for response time evalu-
ation

We remind the reader to not confuse this event generator with a simulation scheduler
defining a scenario. Actually, the cause event source must be modelled to evaluate

Simulation and post-treatment 83

a response time between a cause event and a consequence event on the plant. This
model has been presented in the previous chapter, section 4.2.3. Depending on the
function associated to this event, it could occur erratically, for instance for an alarm,
or cyclically, for instance for a position sensor on a transfer line. In order to cover
all possible cases, the choice made for this model is to have an event occurrence
periodically in a way to sweep the IO scanning period.

Thus, the events are generated periodically but to have a well distributed event
generation, as mentioned previously, we have set this period to sweep the 10O scan-
ning period. This is clear on the figure 5.2 where is pictured the time each event
waits for a request in the RIOM, in system with modular controllers (on the top)
and in another one with PC-based controllers (on the bottom). This time is well
distributed between zero and one IO scanning cycle time.

5.3 Simulation and post-treatment

Simulation of the model is proceeded in the software CPNTools. During simulation,
the default data log file stores all fired transitions with the current time and the list
of set variables. These variables are all the ones contains in tokens concerned by
the current firing transition. From this text file, we have to extract the interesting
dates to calculate time performances.

The simulation duration, for the same number of transition firing, depends on
the number of tokens in the model. As a consequence, the larger is the architecture,
the longer is the simulation. For instance, on the architecture given figure 3.10, to
simulate 107 steps, i.e. fired transitions, takes around 50 minutes of CPU time on
a PC Pentium 4 2 GHz. This corresponds to about 7000 evaluated response time
and also to a log file of 1,5 GByte. Then, it remains to extract the interesting data
from this log file and calculate the wanted performances. To parse the log file, a
prototype was running in Python. Using this interpreted language leads to really
long calculus (several hours) hence to reduce this time we used regular expressions
that call compiled C code. With this new version, in around 30 minutes of CPU
time the interesting data are extracted and saved in new files. Finally, these last
data are treated in Matlab to calculate in less than five minutes all the needed per-
formances and to draw graphic representations. Hence to compute response time of
the architecture presented figure 3.10, less than 1 hour and 30 minutes is needed.

Given this value, it is reasonable to consider that in one day of work, the pro-
posed approach enables us to compare four to five different architectures, if nothing
is done in parallel. However, considering the size of the log file, a problem of storing
this file could arise to simulate biggest architectures. A solution could be to stop
using the default log file and to save in a adapted log file only the required data.

84 Obtaining time performances from a particular model

Waiting for request time (ms)

0 1000 2000 3000 4000 5000 6000 7000 8000
Event id

k b b e b b e e e o e e E
(o Wﬁ“ﬁ%ﬁ:ﬁm@% o tﬁ%ﬁ@ﬁ%ﬁﬁﬁﬁ%ﬁ%@?
il R Mﬁ% ﬁﬁﬁ&ﬁﬁg s £

L %ﬁf 4 #*Qﬁ%tﬁ

il
%ﬁﬁ
&

e M
it e R g
ﬁ+%% o % it iy At e Wﬁﬁ it
e s L e N s S LT Dbt
SR aas e s en O
Cen it e T
2s00f T Tt s e B B e %

bl
T ﬁ?" 4
e s R s
e e Dl b il s e
L, w%}gﬁ%+ i ity W#w%%
e e
oA R e

o H - e e a2y
eSO el o e S
S R e
e L et T caati
p e #W%wp
A e e i 4 T

0 +#M% i M%ﬁ%

Waiting for request time (ms)
]
o
o
5
&
He

et T
«%m e
Wﬂ‘#ﬁi%ﬁ +f ﬁ#Jrﬁ*&i

0 1000 2000 3000 4000 5000 6000 7000 8000
Event id

Figure 5.2: Repartition of the time that each event has waited a request in RIOM:

on the top, modular controllers are used with a IO scanning cycle of 5 ms and on the

bottom PC-based controllers are used with a user program of 2 ms and a network
cycle around 2 ms.

Simulation and post-treatment 85

Conclusion

To obtain the two time performances that we consider (network cycle time and
response time) from a particular model, no excitation scenario is required, the par-
ticular models being autonomous by construction. Set up of a particular model
before simulation consists in introducing:

e introducing random data processing times dispersion to avoid unrealistic syn-
chronisations

e defining the event generation scheduling for response time evaluation

Simulation results are obtained in a reasonable time (around 50 minutes) for
architectures including several controllers, switches and RIOMs, that allows com-
parison of architectures in times that comply with industrial design constraints.

Hence, it is now possible to simulate easily Ethernet-based Automation Systems
using client /server cooperation model and, from simulation results, to compare this
cooperation model with the two other ones presented in chapter 1. Moreover, it
is also possible to assess the contributions of the different element of these systems
(controllers, RIOMs, switches) and of the three time consumption mechanisms (data
processing time, waiting for synchronisation time, waiting for resource time) to their
time performances. These are the objectives of the next chapter.

Chapter 6

Evaluation of time performances

In this chapter, two major time performances are studied: the network cycle time
and the response time.

In chapter 1, three cooperation models have been presented: master/slave, pro-

ducer/consumer and client/server. They are compared in section 6.2 on the basis
of their Network Cycle Time. First, this enables us to compare our results to those
obtained previously by other researchers (Tovar and Vasques [1999], Vitturi [2000,
2001]) who evaluated Network Cycle Time for master /slave and producer/consumer
models. Moreover, Network Cycle Time is an important characteristic widely used
by fieldbus users to choose among various solutions. this comparison will allow us
to determine whether client/server is a suitable solution for automation systems,
compared to master/slave and producer/consumer.
The simulation model presented chapter 5 is then used to evaluate response time of
Ethernet-based Automation Systems and to characterise the major time consump-
tion mechanisms in both PC-based and PLC-based architectures. This analysis is
carried out through the decomposition of response time into three elementary de-
lays: time for processing data, waiting time for synchronisation and waiting time for
availability of resources. The evaluation is done on three case studies for PC-based
and PLC-based architectures, with different level of shared resources.

6.1 Presentation of the case studies

The studied cases are based on three different configurations which are simple enough
to be instantiated and simulated fast. For each one of these configurations, PLC-
based (figure 6.1) and PC-based architectures (figure 6.2) will be studied, so as to
compare these two kinds of architectures.

The parameters set up for all three configurations are summed up in table 6.1.

88 Evaluation of time performances

RIOM scanned by
client66

scan cycle
period 5ms —
CPU Eth_mod (OF network |, time
0 60 cycle time)
prog U i‘i — .
program I
period I i Response time

2ms

user s
program
period

3 5 cycle
18 ms CPU Eth_mod eriod
L L 10ms
Client
67
RIOM scanned by
client67
RIOM scanned by
client66
481
scan cycle i

period 5ms ii
CPU Eth_mod (OF network
0 60 cycle time) sw

user =T -
program
period —‘ Ii 7‘

2ms
Client
66

o1
L e
0 time

Response time

01

user
program
period 3 G
18 ms CPU Eth_mod nad
1 61 k4
Client E-
67 H

RIOM scanned by
client67

r——
RIOM scanned by H
client66 !

1
'
'

scan cycle
CPU Eth_mod period 5ms 481
60 (or network =

H
'
:?:;ram cycle time) '
' —
me. H L tme
'
[TRioM | 86 o — .
m H X
prog i roow Lo 401 Response time
program R
period RIOM | 90
50 ms g

user .
program RIOM | 95
period 2 L
18 ms IEP o7
10ms W
RIOM scanned by
client67

RIOM scanned by
client68

Figure 6.1: Configurations 1 (top), 2 (middle) and 3 (bottom) studied with PLC-
based architectures

Presentation of the case studies 89

RIOM scanned by
client69

1

= —
i | » time
CPU 3 =
Cycle: sw ! ! I: .
1) read inputs on RIOMs @ ime
2) execute user program J o1 Response time

3) write outputs on RIOMs
user program duration: 2 ms

e 8 B

Client
70
user program duration: 18 ms

RIOM scanned by
client70

RIOM scanned by
client69

I
1 [—
o » time

o1
1 —
0 time

Response time

CPU3
2) execute user program

3) write outputs on RIOMs

user program duration: 2 ms

01

Cycle:
1) read inputs on RIOMs D

CPU4

Client
70
user program duration: 18 ms

RIOM scanned by
client70

1
RIOM scanned by H
client69 H
1
'

11
1 —
0! » time

o1
1 —
0 time

o1 Response time

One Cycle:
1) read inputs on RIOMs
2) execute user program

3) write outputs on RIOMs
user progl ion: 2 ms

user program
duration: 50 ms

user program duration: 18 ms

'
'

'

1 RIOM scanned by
} client70

'

1 RIOM scanned by
1 client71

Figure 6.2: Configurations 1 (top), 2 (middle) and 3 (bottom) studied with PC-
based architectures

90 Evaluation of time performances

Table 6.1: Characteristics of modular controllers and PC-based controllers archi-
tectures for the three configurations (time in ms)

‘ Configuration ‘ 1 ‘ 2 ‘ 3
User program period on CPU 0 2 2 2
User program period on CPU 1 18 18 18
User program period on CPU 2 50

EthMod 60 | IO Scanning Cycle Time 5 5 5
RIOMs scanned 80 to 88 | 80 to 90 | 80 to 90
EthMod 61 | IO Scanning Cycle Time 10 10 10
RIOMs scanned 89 to 97 | 87 to 97 | 87 to 97
EthMod 62 | IO Scanning Cycle Time 240
RIOMs scanned 80 to 97
CPU 3 User program duration 2 2 2
RIOMs scanned 80 to 88 | 80 to 90 | 80 to 90
CPU 4 User program duration 18 18 18
RIOMs scanned 89 to 97 | 87 to 97 | 87 to 97
CPU 5 User program duration 50
RIOMs scanned 80 to 97

In the first configuration, no Ethernet RIO module is shared. In this case all
components are not strongly solicited. This configuration is very reactive, with user
program cycle times of 2 ms and 18 ms, and 1O scanning cycle times, i.e. the time
set up for one controller to scan all the RIOMs needed, of 5 ms and 10 ms.

In the second configuration, the two controllers share four Ethernet RIO modules
(number 87 to 90). More resources are shared and the cycle times in controllers are
the same, so both controllers and shared RIOM are more solicited than in configu-
ration 1.

In the third configuration, a third controller that scans all RIOMs is added to
the previous configuration. This third scan has a slow period (50 ms) and can be
understood as associated to a supervision function. Here, all the resources are highly
solicited.

We would want to remind also that in PLC-based controllers two processes (user
program execution and IO scanning) are running in parallel while in a PC-based
controller, these two processes are performed sequentially. In this later case, the
duration of the global CPU cycle (user program execution and IO scanning) is not
constant because the duration of 10 scanning can vary. Therefore to obtain compa-
rable results, the duration of the user program executions in PC-based architectures

Comparison of three major cooperation models 91

are set up equals to the user program period in the corresponding PLC-based archi-
tectures.

Only the PLC-based architectures are considered for comparison of the three
cooperation models on the basis of their Network Cycle Time. Controllers using
master /slave or producer/consumer models must have a dedicated communication
module. This explains why only modular controllers are retained in section 6.2.

Conversely, the evaluation of response time of Ethernet-based Automation Sys-
tems will address comparison of time performances of PLC-based and PC-based
architectures.

6.2 Comparison of master/slave, producer/consumer
and client /server cooperation models

6.2.1 Evaluation methods of Network Cycle Time

We remind here that the network cycle time is defined as the time between two
consecutive sendings of message from one master, or producer or client to one slave,
or consumer, or server.

Concerning master/slave and producer/consumer models, their Network Cycle
Time can be determined exactly by analytic calculus given the feature of the net-
work. Concerning client/server model, on the contrary, its Network Cycle Time
cannot be determined exactly by analytic calculus from the feature of the network,
because the delays due to shared resources are variable. So for this last model, the
simulation model is used to evaluate the distribution of its Network Cycle Time.

Master /slave model

The calculus is proceeded considering an Ethernet-based Automation System using
TCP and IP protocols.

In master/slave model (figure 1.6 page 14), a master sends a request to a slave,
waits for the answer then it can proceed for the next slave. In multi-master configu-
ration, one master scans all its slaves then next master can proceed. First, only one
pair of one master M; and one slave S; is considered. For this pair, we can calculate
the time of an exchange, Thy,s;, taking into account the number of switches, Ng,,
between the two devices.

92

Evaluation of time performances

TM,'SJ- - DModbus + NSw . DSw + (NSw +]-) . DTrans +
DRIOM + NSw : DSw + (NSw + 1) : DTrans + DModbus

The delays that are taken into account in this formula are:

the delay to build one Modbus frame in the controller, Dysoapus,

the delay introduced by one switch to forward the request, Dg,,, multiplied by
the maximum number of switch between controller and RIOMs, Ng,,,

the delay to transmit the request, Dy qns, multiplied by the maximum number
of links between controller and RIOMs, Ng,, + 1,

the delay to answer a request from the controller in the RIOM, Dgrons,

the delay introduced by one switch to forward the answer, Dg,,, multiplied by
the maximum number of switch between controller and RIOMs, Ng,,,

the delay to transmit the answer, Dpy.q,s, multiplied by the maximum number
of links between controller and RIOMs, Ng,, + 1,

the delay to extract data from Modbus answer in the controller, Dysogpus-

The assumptions made on the system are the following:

all devices of one type (switch, controller, RIOM) have the same features,
all cables have the same throughput,
all frames have the same size,

all requests from controllers are of the same type and size and as a consequence
the answers from RIOMs also,

requests and answers have the same size.

The consequences on the elementary delays are:

all the switches have the same forwarding time,
all the RIOMs have the same answering time,
all Ethernet modules have the same processing time,

the time for building a Modbus frame is the same that the time for extracting
data from a Modbus frame.

Comparison of three major cooperation models 93

To coordinate the masters, a message is sent by one master, when it has finished
is scan, to the next master that should proceed. The message is supposed to be in
Modbus and to have the same length that requests and answers and so to take the
same time to be built, to be read and to be transmitted. The time to coordinate

masters is noted Ty, az,, ,:

TM,'M,'_H - DModbus + NSw : DSw + (NSw + 1) : DTrans + DModbus

Then to obtain the Network Cycle Time, first, one sums for each master the times
for all exchanges with all slaves which is > i Ta;s;, with j in the number of slaves
scanned by the master M;. Finally, it is to add all this times for all masters. This
gives the following equations:

Nb Master
TNetworkCycle = E (E TMiSj + TMiMi-H)
i=1 j

Among the references given in chapter 2, two authors have proposed expressions of
the Network Cycle Time.

Vitturi [2001] focuses on Network Cycle Time for master/slave model and pro-
poses a formula taking into account variable delays and based on exchange delays and
not on component latencies. Hence this formula cannot be directly compared to our.

Tovar and Vasques [1999] focuses on Network Cycle Time of Profibus, which
also uses a master/slave model. The authors take into account two priority levels
for messages, that is not the case in our approach. However, they consider the same
elementary delays.

Producer/
consumer model

The calculus is proceeded considering an Ethernet-based Automation System using
UDP and IP protocols. In this case, the use of TCP is not possible because it does
not enable to use broadcast mechanism. Given that UDP is similar to TCP, we
consider for both protocols the same delays for building or treating frames.

In producer/consumer model (figure 1.7 page 16), a producer sends a frame to
one or several consumers. When the frame is consumed then another producer can
use the network. In the case of automation systems we focus on, a producer (or a
consumer) can be either an Ethernet module or a RIOM. When a message is sent
from a producer to a consumer, four delays occur:

e the delay to build one Modbus frame or extract data from one Modbus frame
in the controller, D ysoapus,

94 Evaluation of time performances

e the delay introduced by one switch to forward the request, Dg,,, multiplied by
the maximum number of switch between controller and RIOMs, Ng,,,

e the delay to transmit the request, Dy, qns, multiplied by the maximum number
of links between controller and RIOMs, Ng,, + 1,

e the delay to read the request from the controller or to build the Modbus answer
in the RIOM, DRIOM/27

Whatever the direction of exchange (from Ethernet module to RIOM or from RIOM
to Ethernet module), the delay for one producer is:

TPiC - DModbus+NSw'DSw"_(NSw_'_l)'DTrans+DRIOM/2

The assumptions made on the system are the same than for master/slave. Moreover,
we assume that the time for RIOM to answer a request is split in two equal parts
(Drroa/2). One part is for consuming the frame from controller, and the other one
is for producing one frame for controllers.

We assume that the producers are coordinated off-line, i.e. each producer knows
when it should produce, and there is neither bus arbiter nor token passing system.
As a consequence, there is no delay to consider for coordinating producers.

Then to obtain the Network Cycle Time, one should add all this times for all pro-
ducers. This gives the following equations:

Nb Producer
TNetworkCycle - E TPZ-C'
i=1

An other proposal of an analytic formula of Network Cycle Time of producer /consumer
model can be found in Vitturi [2001]. Unfortunately, like for master/slave, this anal-
ysis does not use the same features than ours and then the formula proposed in this
reference cannot be compared to that we obtain.

Client /server model

The simulation is proceeded considering an Ethernet-based Automation System us-
ing TCP and IP protocols.

In client /server model (figure 1.11 page 21), a client send requests one after the
other to all servers it has to scan, then it waits for the answers before to proceed to
the next cycle. In multi-client configuration, the clients scan their servers in parallel
independently one of each other. Therefore there are shared resources: switches,
RIOMs and controllers themselves. That is why the Network Cycle Time cannot be
calculated with a formula. As a consequence, it will be evaluated by simulation of
the particular models of the studied architectures.

Comparison of three major cooperation models 95

6.2.2 Numerical values of Network Cycle Times for the stud-
ied architectures

For master/slave and producer/consumer Network Cycle Time, one has to apply
the formulas given in the previous section. For the three architectures we study,
delays are replaced by the numerical values of table 4.1 and the maximum number
of switches, Ng,, is equal to two. For client/server Network Cycle Time, simulation
enables us to obtain its distribution. The results for the three models are given table
6.2 with only minimum and maximum delays for client/server model.

Table 6.2: Network Cycle Time in milliseconds

Conf. | master/slave | producer/consumer | client/server
Min | Max
1 21.18 11.40 2.02 | 2.04
25.74 11.40 239 | 3.29
3 46.59 11.97 239 | 3.84

For the master/slave model, our results are close to the delays calculated in To-
var and Vasques [1999] which found for Profibus with three masters a cycle time
of 41 ms. The difference between their value and our can be explained by the dif-
ference of configuration and of latencies between Ethernet and Profibus components.

6.2.3 Discussion on Network Cycle Times obtained
6.2.3.1 Comparison of the three cooperation models

Compared to master/slave model, the producer/consumer model is more and more
efficient when the number of components increases. The use of broadcast mechanism
enables to have the same delay in the first two configurations because there is the
same number of producers even if there are more consumers for some data. It also
enables to increase just a little bit the cycle time for the third configuration, where
only one producer is added.

Indeed, in the three configurations, master /slave is the slowest while client /server
is the fastest. Even if the Network Cycle Time is not constant for client/server, for
the tested architectures, it stays approximately ten times faster than master/slave
and five times faster than producer/consumer. This first result highlights the high
capability of client/server model, even with shared resources. It shows that this
model enables so fast exchanges that it is possible to use it in real-time systems as

96 Evaluation of time performances

claimed in Stankovic [1992], Jasperneite and Neumann [2004].

6.2.3.2 Detailed analysis of Network Cycle Time of client/sever model

Before to skip to response time analysis, let us take a deeper look at the three dis-
tributions obtained for client/server model that are showed figures 6.3, 6.4 and 6.5.

In the first configuration, where only switches are shared, the Network Cycle
Time is quasi-constant because the switches are so fast (Dg, = 0.01ms) that they
have a very small impact on the cycle time. This distribution of Network Cycle
Time is then very narrow around a peak at 2.03 ms.

For the second configuration, the Network Cycle Time distribution covers a wider
range. The mean and median values of this distribution are respectively 2.46 and
2.4 ms. The main peak corresponds to Network Cycle Time values between 2.39 and
2.43 ms; 68% of the distribution stands in this main peak. Then compared to the
first configuration, this second configuration leads to longer Network Cycle Times
and to increase of the difference between the minimum and maximum values of Net-
work Cycle Times. This comes from the increasing number of shared resources: the
two controllers share two RIOMs in configuration 2.

In the peak is also present but it is translated on the right, i.e. the minimum
Network Cycle Time is longer than in configuration 1. The translation of this peak
corresponds to the two new RIOMs to scan for each controller. After the peak, lines
appears regularly until the maximum, i.e. the value of the Network Cycle Time is
varying. The percentage of values inside the peak is 68%, between 2.39 and 2.43
ms. The mean value is 2.46 ms and the median one is 2.40 ms. So, this variation
concerns few cases but the maximum is now 38% higher than the minimum.

The peak of the distribution of configuration 3 is not translated. It remains be-
tween 2.39 and 2.43 ms and includes approximately the same percentage (65%) of
the distribution. The mean and median values are now 2.49 and 2.40 ms. Introduc-
ing a third controller that scans all RIOMs does not impact strongly the Network
Cycle Time distribution mean and median values but leads to an increased maxi-
mum value of the Network Cycle Time. Indeed, the maximum value is now 61%
higher than the minimum value while it was 38% higher in the configuration 2.

6.2.3.3 Synthesis

Comparison of the three cooperation models shows clearly that the client/server
model permits faster cycles than the two other models and therefore suits Networked
Automation Systems. However, the time performances of architectures using this

Comparison of three major cooperation models 97

20 T T T T T T T T T

18f b

16 b

=

N
T
1

Frequency (%)
=
o

O 1 1 1 1 1 1 1 1 1
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Network Cycle Time (ms)

Figure 6.3: Client/server distribution of Network Cycle Time in configuration 1
with in abscissa the time in microseconds and in ordinate the frequency

Figure 6.4:

Figure 6.5:

20 T T T T T T T T T

18f b

16 b

P e
N e
T T
1 1

Frequency (%)
=
o

2 2.2 24 2.6 2.8 3 3.2 34 3.6 3.8 4
Network Cycle Time (ms)

Client /server distribution of Network Cycle Time in configuration 2
20

18f b

16} 1

B e
N B
T T
1 1

Frequency (%)
=
(=)

2 2.2 24 2.6 2.8 3 3.2 34 3.6 3.8 4
Network Cycle Time (ms)

Client /server distribution of Network Cycle Time in configuration 3

98 Evaluation of time performances

cooperation model are not constant but given by a distribution that depends on
the amount of shared resources. Hence the distribution of the response time of
an Ethernet-based Automation Systems, the major time performance with the end
user point of view, must be evaluated before operating this system so as to deter-
mine whether it fits the users requirements. Evaluation of the response time of the
Ethernet-based Automation Systems is therefore the issue addressed in the next
section.

6.3 Evaluation of response time of Ethernet-based
Automation Systems

In this section, we focus on the response time of Ethernet-based Automation Systems
using a client /server cooperation model. First, the whole response time distribution
is analysed before to evaluate the influence of the different time consumption mech-
anisms and of switches.

6.3.1 Response time distribution

The distribution of response time is the characteristic on which focus is put in this
subsection. It has been explained, in the chapter 1 page 7, that the response time of
the automation architecture influences the performance of the plant (for instance,
accuracy on the stop position of a trolley or on the final level of a liquid in a tank).
Then the distribution of response time impacts the distribution of physical features
of the plant, that explains why its knowledge is of great interest.

The distributions obtained for the three studied configurations are presented on
the figures 6.6, 6.7 and 6.8, and the minimum and maximum values of these distri-
butions are summed up in table 6.3.

The distribution obtained in configuration 1 for PLC-based architecture can
be roughly approximated by a uniform distribution, between the minimum and
maximum values. When the amount of shared resources increases (from figure 6.6
to 6.7), focusing always on PLC-based architectures, three comments can be made:

e the "rectangular model” is no more valid, some values that corresponds to the
highest response times, being clearly outside the main packet

e the range of response time increases

e this increased range comes only from the increase of the maximum value, the
minimum value being not changed (the 0.01 ms difference is not significant

Evaluation of response time of Ethernet-based Automation Systems

99

Frequency (%)

Frequency (%)
w B

N

8
Response time (ms)

14

16

18

20

[0}
0

8
Response time (ms)

14

16

18

20

Figure 6.6: Histograms of response time in PLC-based architecture (left) and PC-
based architecture (right) in configuration 1

[}

N

Frequency (%)
w

[}

Frequency (%)
w B

N

0 8 10 12 14

Response time (ms)

16

18

20

[0}
0

6 10 12

8
Response time (ms)

14

16

18

20

Figure 6.7: Histograms of response time in PLC-based architecture (left) and PC-
based architecture (right) in configuration 2

[}

Frequency (%)

[}

Frequency (%)
w

8 10 12 14

Response time (ms)

16

18

20

[0}
0

L
8 10 12
Response time (ms)

14

16

18

20

Figure 6.8: Histograms of response time in PLC-based architecture (left) and PC-
based architecture (right) in configuration 3

100 Evaluation of time performances

and can be explained easily by the dispersions added to treatment times and
by simulations uncertainties)

PC-based architectures yield distributions with shorter minimum and maximum
response times and narrower ranges. Similar comments can be made for these ar-
chitectures, when the amount of shared resources grows up, except that:

e the minimum values of the distributions in configurations 2 and 3 are higher
than the minimum value of configuration 1

e the range increase is more important than in PLC-based architecture

hence, generally speaking, the response time of these architectures is better than
that of PLC-based architectures but they are more sensitive to resource sharing in-
crease.

Nevertheless, the influence of the increase of the amount of shared resources on
response time is not so important that it could be planned. This can be explained,
in an intuitive fashion, by an assumption on the relative importance of the delay
caused by resource sharing mechanisms compared to the other delay causes, data
processing and synchronisation of parallel processes. We recall here that response
time can be decomposed in three kinds of delays:

e time for processing data within components,
e waiting time for synchronisation between parallel processes and
e waiting time for availability of resources.

Only the later two delays are variable and explain the distribution. However, if the
overall delay due to resource sharing mechanism is small compared to the other ones,
its variation will not impact strongly the distribution of response time.

This assumption is consolidated when comparing response time distributions of
PLC- and PC-based architectures. PLC-based architectures are less sensitive to the
increase of the number of shared resources. These architectures include more syn-
chronisation between processes than PC-based ones, where each controller has only
one processor that performs both user program execution and RIOM scanning, and
therefore do not include synchronisation between two processors executing these two
functions.

However, this assumption must be confirmed by analysing in details the sim-
ulation results and in particular by comparing the values of the delays caused by
resource sharing and by synchronisation between processes. This analysis is carried
out in the next subsection.

Evaluation of response time of Ethernet-based Automation Systems

101

Table 6.3: Minimum and maximum response time for the studied architectures

Response time

architecture with

architecture with

(in ms) PLC-based controllers | PC-based controllers
Conf 1 | min 6.87 5.91
max 11.90 10.10
Conf 2 | min 6.88 6.28
max 12.45 11.26
Conf 3 | min 6.87 6.28
max 12.52 11.55

6.3.2 Influence of resource sharing and of synchronisation

between processes

The post-treatment of simulation log files yield also the contribution of the different
time consumption mechanisms to the overall response time and enables us to draw

the pie charts pictured in figures 6.9, 6.10 and 6.11.

Figure 6.9 presents four pie charts for configuration 1, the two at the left concern
PLC-based architecture while the two of the right concern PC-based architectures.
For each architecture, the pie chart at the top is for the minimum response time,
while the pie chart at the bottom is for the maximum response time. Figures 6.10
and 6.11 are similar for configurations 2 and 3.

In these pie charts :

e Treat represents the sum of processing time in the RIOMs and the controllers
that are involved in the data exchange whose response time is to evaluate, i.e.:

— Electronic filtering of signals in RIOM that receive the input event

— Frame treatment in RIOM in the RIOM that receive the input event
(construction of a frame that will be sent to controller) and in the RIOM
that sends the output event to the plant (extraction of an event from a

frame)

Transmission delay of the frame (Dpyq,s) from RIOM to controller

Frame treatment in controller, in the Ethernet module for PLC-based
controllers or by the CPU in PC-based controllers,

User program execution in controller

Transmission delay of the frame (Dryq,s) from controller to RIOM

e Synchr represents the sum of all delays coming from synchronisation between
asynchronous processes in the RIOMs and controller:

102

Evaluation of time performances

Config 1 of PLC-based
Origin of delays for best response time

ifgap 2%

swl 2%
sw2 2%
res 13%

treat 56%

synchr 25%

Config 1 of PLC-based
Origin of delays for worst response time
ifgap <1%
swl 1%
sw2 1%
res 7%

treat 33%

synchr 57%

Figure 6.9: Pie charts of response time

Config 1 of PC-based
Origine of delays for best response time

ifgap 2%
swl 2%
sw2 2%

treat 66% res 15%

synchr 13%

Config 1 of PC-based
Origin of delays for worst response time

ifgap 1%
swl 1%
sw2 1%

res 9%

treat 38%

synchr 50%

in PLC-based architecture and PC-based

architecture in configuration 1

Evaluation of response time of Ethernet-based Automation Systems 103

Config 2 of PLC-based
Origin of delays for best response time

ifgap 2%

swil 2%

treat 56% sw2 2%
res 14%

synchr 24%

Config 2 of PLC-based
Origin of delays for worst response time

ifgap <1%
treat 31%
> swl 1%
sSW2 2%
res 12%
synchr 53%

Config 2 of PC-based
Origine of delays for best response time

ifgap 2%
swil 2%

sw2 2%
treat 62%

res 17%

synchr 15%

Config 2 of PC-based
Origin of delays for worst response time

ifgap 1%
0,
treat 35% swl 1%
sw2 2%
res 13%
synchr 48%

Figure 6.10: Pie charts of response time in PLC-based architecture and PC-based
architecture in configuration 2

104

Evaluation of time performances

Config 3 of PLC-based
Origin of delays for best response time

ifgap 2%
swil 2%
treat 56% sw2 2%

res 15%

synchr 23%

Config 3 of PLC-based
Origin of delays for worst response time
ifgap <1%
treat 31% swl 1%
sw2 5%
res 10%

synchr 52%

Config 3 of PC-based
Origine of delays for best response time

ifgap 2%
swl 2%

sw2 2%
treat 62%

res 16%

synchr 16%

Config 3 of PC-based
Origin of delays for worst response time

ifgap 1%
%
treat 33% swi 2%
sw2 2%
res 16%
synchr 46%

Figure 6.11: Pie charts of response time in PLC-based architecture and PC-based
architecture in configuration 3

Evaluation of response time of Ethernet-based Automation Systems 105

— Waiting time in RIOM from the end of the filtering to the arrival of the
next request from controller

— Waiting time in controller from the end of the considered frame treatment
to the beginning of the next user program

— Waiting time in controller from the end of the user program execution to
the beginning of the frame treatment (remark: this frame will be then
sent to the RIOM which generates the consequence event)

e Res represents the sum of delays due to waiting for resource availability in the
RIOMs and the controllers:

— Waiting time in RIOM from the date a request arrives to the date this
request is actually treated

— Waiting time in controller from the date a request arrives to the date this
request is actually treated

e Swl represents the overall delay due to switches from RIOM to controller for
the frame containing the considered event. We recall that the delay in switches
is the sum of a processing time and a waiting time for resource availability.

e Sw2 represent the overall delay due to switches from controller to RIOM for
the frame containing the considered event.

e [fgap represents the sum of all delays due to the Ethernet inter-frame gap.

Apart from data processing delays which are constant and non zero, all other delays
are variables and can be zero.

It shall be noted that, for switches, we merged in swl and sw2 two kinds of
delays whereas the three kinds of delays are separated for the other components. In-
deed, switches are typical components of Ethernet-based Automation Systems and
we would wish to examine the relative contribution of these components to the over-
all response time so as to pinpoint their impact on automation architectures. A
detailed analysis of delays introduced by switches is carried out in subsection 6.3.3.
At the moment, we will only note that the sum of the three delays swl, sw2 and
ifgap is always very small, lower than 7% in all cases, and therefore that the two
switches do not contribute very much to the overall response time.

6.3.2.1 Influence of resource sharing

For all cases, waiting for availability of resources (res) stands between ten and sev-
enteen percent of the response time (minimum value 0.875 ms obtained in config-
uration 1, and minimum value 1.807 ms obtained in configuration 3 for PC-based

106 Evaluation of time performances

architectures). Hence, resource sharing mechanism influences significantly this time,
even if they do not cause the most important delay whatever the configuration is.

It matters at this point of the analysis to remind the reader that, in all the
configuration we studied, the duration of the user program (2 ms) is rather small;
these configurations aim to control very reactive systems. For configuration with
higher user program duration, the ratio of response time due to resource sharing is
lessened; simulation with user program duration equal to 30 ms for instance shows
that this ratio is only six percent.

The strength of pie charts is to provide an easy way for comparing different de-
lays, but this strength is a weakness when focus is put on the evolution of one of
this delay from a configuration to another one. In particular, our pie-chart do not
show how the waiting time for resource availability changes from configuration 1 to
configuration 2 or 3. This analysis is the subject of the next paragraph.

The figure 6.12 presents two histograms of the evaluated values for delay due
to waiting for resource availability in PLC-based architecture in configuration 1, on
the left, and in configuration 2, on the right. The distribution of this time is very
narrow for configuration 1; the difference between the maximum and minimum value
is equal to 50us. For this configuration in which few resources are shared, the delay
due to resource sharing could be considered in a first approximation as a constant
value, equal for instance to the average value of this distribution. This is not the
case in the configuration 2, where the distribution lies between 0.92 ms to 1.52 ms,
a wider range than that of the previous distribution. Configurations with several
shared resources give rise to very variable delays due to resource sharing. The dis-
tribution of these delays can obtained only by simulation.

30 T T T T T T T T T 30

Frequency (%)
= = N N
o (4] o (4]
Frequency (%)
= = N N
o (4] o (4]

(&)
(&)

IR

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Waiting for resource time (ms) Waiting for resource time (ms)

o

Figure 6.12: Histograms of delay due to waiting for resource availability in PLC-
based architecture in configuration 1 (left) and in configuration 2 (right)

Evaluation of response time of Ethernet-based Automation Systems 107

6.3.2.2 Influence of synchronisation between asynchronous processes

For both PLC-based and PC-based architectures, the major cause of gap between
minimum and maximum response time is the delay due to waiting for synchronisation
of asynchronous processes (synchr), whatever is the configuration. as mentioned
above, this time includes:

e Waiting time in RIOM from the end of the filtering to the arrival of the next
request from controller

e Waiting time in controller from the end of the considered frame treatment to
the beginning of the next user program

e Waiting time in controller from the end of the user program execution to the
beginning of the frame treatment

The first time is not really typical of Ethernet-based Automation Systems. It exists
also in architectures using master/slave or producer/consumer cooperation model
because it comes from synchronisation between the two following asynchronous pro-
cesses: the plant and the data acquisition process (called 10 scanning in Ethernet-
based Automation Systems). This time is equally distributed between zero and one
IO scanning cycle time in real system when the plant is not synchronised with the
control process. This is also the case in our simulation (chapter 5 page 82).

For the discussion of the two other delays, we must consider separately PLC-

based and PC-based architectures. Concerning PLC-based architectures, these two
delays do not depend on the size of the architecture and on the number and type
of shared resources but of the duration of the cycles of the controller, user program
cycle time and IO scanning cycle time. Therefore, the bounds of the sum of these
two delays is easy to compute and do not depend on the configuration. For instance,
the waiting time in controller from the end of the considered frame treatment to the
beginning of the next user program, with a user program cycle time of 2 ms, is
between 0 and 2 ms; as well as, the waiting time in controller from the end of the
user program execution to the beginning of the frame treatment, with a IO scanning
cycle time of 5 ms, is between 0 and 5 ms.
Concerning PC-based architectures, there is only one cycle in each controller, in-
cluding waiting time for RIOMs responses, user program execution and requests
sending to RIOMs. Hence the waiting for synchronisation does not depend on cycle
times but on waiting time for all RIOMs responses to arrive and is impacted by the
number of shared resources. The maximum value of this delay grows up from con-
figuration 1 to 3; PC-based architectures are, regarding this delay, more sensitive to
the increase of the number of shared resources. The distribution of synchronisation
delay for PC-based architectures can be obtained only by simulation.

108 Evaluation of time performances

6.3.2.3 Synthesis

Analysis of the relative importance of delays caused by waiting for availability and
for synchronisation of asynchronous processes confirms the asumption we made at
the end of the previous section, the sum of waiting times for resource availability rep-
resents less than one fifth of the overall response time. Synchronisation mechanism
causes delays whose do not depend on the configuration for PLC-based architectures
while for PC-based architectures, the maximum value of the delays caused by this
mechanism grows up with the number of shared resources.

Even if their contribution is not significant, delays due to the use of a switched
Ethernet fieldbus, switch latencies and inter-frame gap, are evaluated and discussed
in the next section because they are new components in automation systems.

6.3.3 Delays caused by switches

It is often claimed that the main contribution to response time is the switches la-
tency. We saw in the previous subsection that this is not the case for the industrial
switches that we used (Telemecanique ConneXium reference 499 NES 181 00). How-
ever an analysis of the variation of the delays provoked by these components deserves
to be performed. This is the goal of this part.

Figures 6.13 and 6.14 picture, for each event, the delay caused by switches for re-
spectively PLC-based and PC-based architectures in configuration 2. "Switch delay
17 represents the sum of the delays caused by the two switches when the frame goes
from the input RIOM to the controller (response to a request) and "switch delay 2”
represents the sum of the delays caused by the two switches when the frame goes
from the controller to the output RIOM (the frame embeds a request). Each switch
introduces a delay which is the sum of its forwarding time and of its transmission
time.

Only the plots obtained for configuration 2 are represented because those ob-
tained for the other configurations have the same form and the same minimum
and maximum values. This shows clearly that, in our study, the delays caused by
switches are not affected by the variation of the number of shared resources, due to
the short frame forwarding time of switches.

Comparison of the top and bottom plots of each one of these figures shows clearly
that the maximum of delay 2 is higher than that of delay 1. This can be easily ex-
plained by considering the mechanisms of the communications between the controller
and the RIOMs. Indeed, delay 2 corresponds to the sending of the request from the
controller; as, in the client/server cooperation model, several controllers can send

Evaluation of response time of Ethernet-based Automation Systems 109

0.15

Switch delay 1 (ms)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Event id

o
(2]
T

k
K

Switch delay 2 (ms)
o
N

G0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Event id

Figure 6.13: Switch delay in PLC-based architecture in configuration 2

025 T T T T T T
'g + + T
oy _
>
©
g *i +++’?+ St
5 0. Ly E
=
U) O 1 1 1 1 1 1 1
"0 1000 2000 3000 4000 5000 6000 7000
Event id
0.8 T T T T T T
)
E 0.6 e+ + + + ++ E
N + o * + o+ A *
% + +
o 0.41 * b
°
502; . +¢++t++ﬁ¢g AN oA R et £ 4 E
§ . S S T T SO S, S A #iiﬁr L
(]
0 L L L L L L
0 1000 2000 3000 4000 5000 6000 7000

Event id

Figure 6.14: Switch delay in PC-based architecture in configuration 2

110 Evaluation of time performances

simultaneously requests to the RIOMs they scan, the work load of the first switch,
connected to the controllers, can be very high during this request sending phase.
On the contrary, delay 1 corresponds to the reception of the response sent by the
input RIOM; as the simultaneous requests of controllers have been regulated (sent
sequentially to the RIOMs) by the first switch in the previous phase, the likelihood
of simultaneous responses is far smaller. Then the difference between the maximal
values of the two plots comes only from the potential number of processes which
attempt to access the switch CPU resource in both cases.

Comparison of figures 6.13 and 6.14 leads to note that the minimum and maxi-
mum values of the two delays are the same in both PLC-based and PC-based archi-
tectures, but that the distributions of values higher than 0.140 ms along time are not
the same for these two architectures. The plots of figure 6.13 contain indeed vertical
‘blobs” which point out that the highest values of delays are obtained cyclically for
PLC-based architectures, that is not the case for PC-based ones. This difference
can be explained by considering the IO scanning methods of the two architectures.
Indeed, modular PLCs scan their 10s periodically whereas the time between two
consecutive 10 scannings of a PC controller is not constant (these controllers scan
their 10s ‘as fast as possible’; i.e. without waiting time after the user program ex-
ecution). Therefore the 10 scannings of PLC controllers can be synchronised from
time to time, depending on the values of their periods and of the deviations on these
values. Synchronisation of 10 scannings of PC controllers is far less likely and, any-
how, does not give rise to cyclic phenomenon.

The histogram of delay 1 for PLC-based architectures in configuration 2 is given
figure 6.15; the histograms of the other delays are similar. We can note that the
upper bound of this histogram is 0.240 ms and that the major part of the values is
concentrated around 0.138 ms. Focusing only on this part, it matters to say that
this distribution comes only from the choice we made for the simulation strategy
and in particular for the dispersion on processing times values. In this simulation
indeed, we chose £5% dispersion. This dispersion results in a forwarding time equal
t0 0.0140.00005ms and a transmission time equal to 0.06+0.0003ms. However, the
time unit of the model is 10™3ms, so the software rounded both previous dispersions
to [—0.001, 0]ms. Given this computational dispersion and the average values of the
two times, the lower and upper bounds of the crossing time of two switches are 0.136
ms and 0.140 ms, which are exactly the values that yields simulation. Hence, the
width of the main peak of this histogram is not meaningful; the overall delay “delay
1”7 is most of time constant and equal to the processing time of the switches, even if
from time to time it grows up because of resource sharing mechanisms.

Evaluation of response time of Ethernet-based Automation Systems 111

60 T T T T

Frequency (%)
w > [8)]
o o o

N
o
T

10
0 L 1 1 1
0 0.2 0.4 0.6 0.8 1

Switch delay 1 (rﬁs)

Figure 6.15: Histogram of switch delay 1 in PLC-based architecture in configura-
tion 2

Conclusion

Comparison of the three cooperation models on the basis of their Network Cycle
Time shows clearly that client/server is a suitable solution for switched networked
automation systems. The Network Cycle Time is always shorter (from five to ten
times) than that of architectures where communications are controlled thanks to
master/slave or producer/consumer models.

Simulation of the particular models of Ethernet-based Automation Systems, that
rely on client/server cooperation model, yields the distributions of their response
time. The analysis of these distributions pinpoints that:

e when the number of shared resources grows up, the distribution is widened
and its maximum value is increased;

e delays caused by switches are only a small part of the overall response time
(less than 7%);

e waiting times for resource availability are not the only cause of response time
variability; waiting times for synchronisation of asynchronous processes impact
also strongly the response time;

e PC-based architecture give rise to response time distributions whose mean
value is smaller than that of the corresponding PLC-based architecture; how-
ever PC-based architectures are more sensitive to the increase of the number
of shared resources.

Conclusion

Industrial Ethernet, which brings interesting prospects for both interoperability and
flexibility, is often presented as the future standard for fieldbuses. However this label
is used for networks which own very different features. This research focused on
networked automation systems based on switched Ethernet and on the client /server
cooperation model. More precisely, the objectives of this PhD work were:

e To propose a method for evaluation of time performances of these systems;

e Once this method developed, to compare the performances of the client /server
model to those of the master/slave and producer/consumer models;

e If this comparison showed that client/server is a suitable model for automa-
tion systems, to analyze in details the performances of systems based on this
cooperation model.

Two relevant time performances for networked automation systems were first

defined:
e the network cycle time that enables us to compare the cooperation models;

e the response time that permits to decide whether the designed automation
system complies with the application requirements.

Then, a bibliographic survey of scientific works that addressed time performances
evaluation of networked automation systems was carried out. Two kinds of evalua-
tion methods have been identified: ‘a priori’ methods which assess the time perfor-
mances prior to system design and implementation, by using a model of the system,
and ‘a posteriori’ (or experimental) methods which obtain the time performances
from measures on the real system. The first category includes itself three approaches:
analytic calculus, formal verification and simulation. The first approach is based on
analytic formulae which contain invariant features of network components; it has
been widely used for computing upper bounds of time performances, for instance
in the frame of the network calculus theory. Formal verification approaches based
on model-checking techniques are very promising but unfortunately lead very easily
to state-space explosion. At last, simulation approaches can be split themselves in
two sub-categories: use of a tool for network analysis, like OMNET, and simulation

114 Conclusion

of a tailored model of the networked automation system that is designed in a for-
malism issued from Discrete Event System theory, such as state automata or Petri
nets. Given the following constraints which come from our objectives and from the
characteristics of the considered systems:

e a priori evaluation of the time performances,

e evaluation of the distributions of time performances, and not only of upper
bounds,

e ability to analyse non trivial systems,

e simulation of all components of the system, and not only of network compo-
nents,

e possibility of detailed analysis of all causes of delay,
e we selected an approach based on simulation of a Petri net model of the system.

The class of Petri nets we selected is Hierarchical Coloured Timed Petri Nets
because:

e Petri nets are quite appropriate for modelling synchronisation of asynchronous
processes and resource sharing, two time consumption mechanisms encoun-
tered in switched Ethernet-based automation systems;

e Use of a Timed model is mandatory, given our objectives;

e Coloured Petri Nets permit us to design a generic model which can then give
rise to particular models by instantiation;

e Hierarchy is helpful to develop a modular model whose structure is issued from
that of the automation system.

Then, a generic model of switched Ethernet-based automation systems has been
developed. This model includes connected sub-models that describe in details the
behaviour of generic hardware and software components, such as controller (either
PLC-based or PC-based), Remote 10 Module, Ethernet switch, client, ... An instan-
tiation process has also been proposed. During this process, the generic values of the
initial marking and of parameters associated to transitions (guards and durations)
are replaced by the features of the particular system which must be analysed.

Simulation of a particular model can yield, after post-treatment, the network cy-
cle time or the response time of the Ethernet-based automation system that is mod-
elled. This enabled us, first, to compare, on the basis of the network cycle times of
several case studies including a variable number of shared resources, the client /server
cooperation model to the common master/slave and producer/consumer models.

Conclusion 115

The network cycle times of architectures based on these latter two models have
been obtained by analytic calculus.

The comparison of these different network cycle times showed clearly that the
client /server model permits faster cycles than the two other models, even for archi-
tectures with a significant number of shared resources. This can be explained by
the possibilities of parallel processes authorised by client/server. The overall con-
clusion of this comparative study of cooperation models is that client/server is quite
suitable for networked automation systems and can be even more efficient than the
master /slave and producer/consumer models.

Simulation was also used to obtain the distributions of the response times of sev-
eral switched Ethernet-based automation systems that included a variable number
of shared resources and in which controllers were either PLCs or PCs. The analysis
of these distributions pinpointed that:

e when the number of shared resources grows up, the distribution of response
time is widened and its maximum value is increased;

e the main causes of the response time are the waiting times for synchronisation
of asynchronous processes and for resources availability, and not the delays
caused by the switches we use;

e PC-based architectures give rise to response time distributions whose mean
values are lower than those of the corresponding PLC-based architectures;
however PC-based architectures are more sensitive (the response time dis-
tribution is more deeply modified) to the increase of the number of shared
resources.

To sum up, the results of this research is a complete frame for modelling, sim-
ulation and analysis of switched Ethernet-based automation systems that is aimed
at helping the designers of such systems.

From the results that we obtained, several development and research prospects
can be proposed. The first two ones of the list below may provide results in a
near future, whereas the results of the other ones are rather middle- or long-term
expectations.

e First, automatic instantiation of the generic model must be carried out. Cur-
rently each particular model is obtained indeed from the generic model ‘by
hand’, that is time-consuming and source of errors. As the parameters that
must be instantiated are written in XML format, it is possible to develop a code
to instantiate these parameters from a textual description of the architecture.

e Second, the results of this research are to be transferred in an industrial soft-
ware tool for automation systems design. The beginning of this work is planned
for the next year in the frame of a cooperative research project with a French
company of the domain.

116

Conclusion

e Third, the generic model of Ethernet-based automation system should be ex-

tended so as to be able to model more complex systems, including for instance
routers, switches with QoS, and in which controllers could act as clients or
servers. This will enable us to model communication between controllers as
well as communication between different cells or lines connected by routers.

A more detailed model of plant could also be helpful to investigate more finely
the behaviour of the closed loop system (plant plus automation system). In
the simulations we performed for response time evaluation, input events were
indeed not correlated to the controllers cycles. This is not always the case in
real systems where an input event, e.g. information delivered by a sensor, is
often the consequence of an output event, e.g. an order sent to an actuator,
which is itself the consequence of a request from a controller.

At last, a promising while challenging prospect consists in the use of the re-
sults of this study for constructing abstracts models which can be analysed by
model-checking tools. We mentioned indeed that model-checking is a promis-
ing approach for obtaining bounds of time performances, but that it can be
applied only to very abstract models. The analysis of simulation results showed
that some time consumption mechanisms are more important than other ones.
Then it could be possible to derive from the generic model we built more
abstract models, containing only the significant elements regarding time con-
sumption and which could be analysed by model-checkers.

Bibliography

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994.

Belgacem Ben Hédia, Fabrice Jumel, and Jean-Philippe. Babau. Formal evaluation
of quality of service for data acquisition systems. In FDL’05, Lausanne, 2005.

Melha Bitam and Hassane Alla. Modeling of a communication network under
TCP/IP protocols using hybrid Petri nets. In IFAC Conference on Analysis and
Design of Hybrid Systems, ADHS03, Saint Malo, France, June 2003.

Melha Bitam and Hassane Alla. Performance evaluation of a TCP/IP transmission
using hybrid Petri nets. In Proc. of IEEE International Conference on Computer
Systems and Applications, ICCSA, July 2005.

Belinda Brahimi, Christopha Aubrun, and Eric Rondeau. Modelling and Simula-
tion of Scheduling Policies Implemented in Ethernet Switch by Using Coloured
Petri Nets. In 11th IEEE International Conference on Emerging Technologies and
Factory Automation, Prague, Czech Republic, September 2006.

Gianluca Cena, Ivan Cibrario Bertolotti, and Adriano Valenzano. Experimental
analysis of latencies in Ethernet. In Proc. WFCS 2006, June 2006.

Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a processor
with branch prediction. Real-Time Systems, Special issue on worst-case execution
time analysis, 18(2):249-274, April 2000.

Rene L. Cruz. A calculus for network delay. IEEE Transactions on Information
Theory, 37(1), January 1991.

René David and Hassane Alla. Petri nets for modeling of dynamic systems : A
survey. Automatica, 30(2):175-202, 1994.

Jorge de Figueiredo and Lars Kristensen. Using Coloured Petri Nets to Investi-
gate Behavioural and Performance Issues of TCP Protocols. In Second Workshop
and Tutorial on Practical Use of Coloured Petri Nets and Design/CPN, Aarhus,
Denmark, October 1999.

118 Bibliography

Alessandro Depari, Paolo Ferrari, Alessandra Flammini, Daniele Marioli, and An-
drea Taroni. Multi-probe measurements instrument for real-time Ethernet net-
works. In Proc. WFCS 2006, June 2006.

Max Felser. The fieldbus standard: History and structure. In Technology Leadership
Day 2002, Luzern, Swiss, October 2002.

Paolo Ferrari, Alessandra Flammini, Daniele Marioli, and Andrea Taroni. Experi-
mental evaluation of PROFINET performance. In Proc. WFCS 200/, September
2004.

Paolo Ferrari, Alessandra Flammini, and Stefano Vitturi. Performance of
PROFINET networks. Computer standards € interfaces, 28(4):369-494, 2006.

Jean-Philippe Georges, Eric Rondeau, and Thierry Divoux. How to be sure that
Ethernet networks will satisfy the real-time requirements ? In Proc. ISIE’2002,
IEEFE International Symposium on Industrial Electronics, July 2002.

Jurgen Greifeneder and Georg Frey. Optimizing Quality of Control in Networked
Automation Systems using Probabilistic Models. In 11th IEEE International
Conference on Emerging Technologies and Factory Automation, Prague, Czech
Republic, September 2006.

IEEE 802.11. Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. IEEE standards 802.11, IEEE computer society, 1999.

IEEE 802.15. Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Wireless Personal Area Networks (WPANs). IEEE standards
802.15, IEEE computer society, June 2005.

IEEE 802.3. Carrier sense multiple access with collision detection (CSMA /CD)
access method and physical layer specifications. IEEE standards 802.3, IEEE
computer society, March 2002.

Intelligent Control Engineering Laboratory. University of maryland, october 1998.
URL http://www.enme.umd.edu/ice_lab/ncs/ncs.html.

ISO Standards. High-level Petri nets — part 1: Concepts, definitions and graphical
notation. ISO/IEC 15909-1, December 2004.

Jurgen Jasperneite and Peter Neumann. Switched Ethernet for factory communica-
tion. In Proc. ETFA 2001, pages 205-212, October 2001.

Jurgen Jasperneite and Peter Neumann. How to guarantee realtime behavior using
Ethernet. In Proc. 11th IFAC Symposium on Information Control Problems in
Manufacturing, April 2004.

Bibliography 119

Jurgen Jasperneite, Peter Neumann, Michael Theis, and Kim Watson. Deterministic
real-time communication with switched Ethernet. In Proc. WFCS 2002, August
2002.

Kurt Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use. Vol. 1: Basic Concepts. Springer-Verlag, eatcs monographs on theoretical
computer science edition, 1992.

Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practi-
cal Use, volume 1, Basic Concepts. Springer-Verlag, monographs in theoretical
computer science edition, 1997.

Guy Juanole. Quality of Service of communication networks and distributed au-
tomation: models and performances. In Proc. of 15th Triennial IFAC World
Congress, July 2002.

H. Kopetz. Time-triggered real-time computing. Annual Reviews in Control, 27:
3-13, 2003.

Stefan Kowalewski, Nanette Bauer, Jorg Preussig, Olaf Stursberg, and Heinz Tre-
seler. An open tool architecture for the formal verification of logic controllers in
processing systems. In 14th IFAC World Congress, Beijing, China, July 1999a.

Stefan Kowalewski, Sebastian Engell, Jorg Preussig, and Olaf Stursberg. Verification
of Logic Controllers for Continuous Plants Using Timed Condition/Event-System
Models. Automatica, 35(3):505-518, 1999b.

Jan Krakora and Zdenek Hanzalek. Timed Automata Approach for CAN Verifica-
tion. In 11th IFAC Symposium on Information Control Problems in Manufactur-
ing, INCOM, Salvador, Brasil, April 2004.

Jean-Yves Le Boudec and Patrick Thiran. Network Calculus. Springer Verlag LNCS
2050, 2001.

Kyung Chang Lee and Suk Lee. Performance evaluation of switched Ethernet for
real-time industrial communications. Computer standards € interfaces, (24):411—
423, 2002.

Gaelle Marsal, Bruno Denis, and Jean-Marc Faure. Evaluation des délais de réactiv-
ité des architectures de commande distribuées sur réseau Ethernet. In Conférence
Internationale Francophone d’Automatique, CIFA 2006, Bordeaux, France, May
2006a.

Gaelle Marsal, Bruno Denis, Jean-Marc Faure, and Georg Frey. Evaluation of Re-
sponse Time in Ethernet-based Automation Systems. In 6th IEEE International
Workshop on Factory Communication Systems, WECS’ 2006, pages 95-98, Turin,
Italy, June 2006b.

120 Bibliography

Gaelle Marsal, Bruno Denis, Jean-Marc Faure, and Georg Frey. Evaluation of Re-
sponse Time in Ethernet-based Automation Systems. In 11th IEEE International
Conference on Emerging Technologies and Factory Automation, ETFAO06, Prague,
Czech Republic, September 2006¢.

Thomas Mertke and Georg Frey. Formal Verification of PLC-programs generated
from Signal Interpreted Petri Net. In IEEE Systems, Man, and Cybernetics Con-
ference, pages 2700-2705, Tucson, USA, October 2001.

Pascal Meunier. Validation formelle de programmes Ladder Diagram pour Auto-
mates Programmables Industriels. These de doctorat, Ecole Normale Supérieure
de Cachan, 2006.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML - Revised. May 1997.

Daniele Miorandi and Stefano Vitturi. Performance analysis of Producer/Consumer
protocols over IEEE802.11 wireless protocols. In Proc. WFCS 2004, September
2004.

Modbus-IDA. Modbus messaging on TCP/IP implementation guide v1.0a, 2004.
URL http://www.modbus.org/docs/Modbus_Messaging_Implementation\
_Guide_V1_Oa.pdf.

Modbus-IDA. Modbus Serial Line Implementation Guide V1.0, November 2002.
URL http://www.modbus.org/docs/Modbus_over_serial_line_V1.pdf.

J. T. Parrott, J. R. Moyne, and D. M. Tilbury. Experimental Determination of
Network Quality of Service in Ethernet: UDP, OPC, and VPN. In 2006 American
Control Conference, ACC’06, Minneapolis, USA, June 2006.

Nuno Pereira, Eduardo Tovar, and Luis Miguel Pinho. Timeliness in COTS factory-
floor distributed systems: what role for simulation? In Proc. WFCS 2004, Septem-
ber 2004.

Gaelle Poulard, Bruno Denis, and Jean-Marc Faure. Modélisation par réseau de Petri
coloré des architectures de commande distribuées sur réseau de terrain Ethernet
et TCP/IP. In 5éme Conférence francophone de MOdélisation et SIMulation,
MOSIM 2004, pages 405—412, Nantes, France, September 2004.

Gaelle Poulard-Marsal, Daniel Witsch, Bruno Denis, Jean-Marc Faure, and Georg
Frey. Evaluation of Real-Time Capabilities of Ethernet-based Automation Sys-
tems using Formal Verification and Simulation. In ére Rencontres des Jeunes
Chercheurs en Informatique Temps Réel 2005, RJCITR’ 05, pages 27-30, Nancy,
France, September 2005.

Bibliography 121

PROFIBUS Nutzerorganisation e.V. Profibus web site, July 2006. URL http:
//www.profibus.com/pb.

Peter Puschner and Christian Koza. Calculating the maximum execution time of
real-time programs. Real-Time Systems, 1(2):159-176, September 1989.

Schneider Electric. Transparent Ready, January 2006. URL http://www.
transparentfactory.com/en/index.htm.

Alexandre Seuret, Miriea Termens-Ballester, Armand Toguyeni, Samir El Khattabi,
and Jean-Pierre Richard. Implementation of an Internet-Controlled System Under
Variable Delays. In 11th IEEE International Conference on Emerging Technolo-
gies and Factory Automation, Prague, Czech Republic, September 2006.

Ye Qong Song. Time constrained communication over switched Ethernet. In
4th TFAC International Conference on Fieldbus Systems and their Applications
(FeT’2001), Nancy, 2001.

John Stankovic. Real-Time Computing. In BYTE invited paper, pages 155-160,
August 1992.

Jean-Pierre Thomesse. Fieldbuses and interoperability. Control Engineering Prac-
tice, (7):81-94, 1999.

Ken Tindell. Holistic schedulability analysis for distributed hard real-time systems.
Technical Report YCS-93-197, University of York, Dept. of Computer Scienc, Eng-
lande, 1993. Available online at ftp://ftp.cs.york.ac.uk/reports/YCS-93-197.ps.Z.

Eduardo Tovar and Francisco Vasques. Distributed computing for the factory-floor:
a real-time approach using WorldFIP networks. Computer In Industry, 44:11-31,
January 2001.

Eduardo Tovar and Francisco Vasques. Cycle Time Properties of the PROFIBUS
Timed Token Protocol. Computer Communications, 22:1206—-16, 1999.

Jeffrey D. Ullman. FElements of ML Programming, 2nd Edition (ML97). 1998.

University of Aarhus. CPN Tools, March 2006a. URL http://wiki.daimi.au.dk/
cpntools/_home.wiki.

University of Aarhus. Standard ML in CPN Tools, March 2006b. URL http:
//wiki.daimi.au.dk:8000/cpntools/standard_ml.wiki.

University of Aarhus. Design/CPN, January 2006c. URL http://www.daimi.au.
dk/designCPN/.

122 Bibliography

University of Southern California. Internet protocol, DARPA internet program pro-
tocol specification. RFC 791, Information Sciences Institute and IETF, September
1981a.

University of Southern California. Transmission Control Protocol, DARPA Inter-
net program protocol specification. RFC 793, Information Sciences Institute and
IETF, September 1981b.

Andras Varga. The OMNeT++ discrete event simulation system. In Proceedings of
the Furopean Simulation Multiconference, Prague, Czech Republic, June 2001.

Nikolai Vatanski, Jean-Philippe Georges, Christophe Aubrun, Eric Rondeau, and
Sirkka-Liisa Jamsa Jounela. Control compensation based on upper bound delay
in networked control systems. In 17th International Symposium on Mathematical
Theory of Networks and Systems (MTNS), Kyoto, Japan, July 2006.

Stefano Vitturi. Some features of two fieldbuses of the IEC 61158 standard. Com-
puter Standards € Interfaces, 22:203-15, 2000.

Stefano Vitturi. On the use of Ethernet at low level of factory communication
systems. Computer Standards & Interfaces, 23:267-77, 2001.

Daniel Witsch, Birgit Vogel-Heuser, Jean-Marc Faure, and Gaelle Poulard-Marsal.
Performance analysis of industrial Ehternet networks by means of timed model-
checking. In 12th IFAC Symposium on Information Control Problems in Manu-
facturing, INCOM 20006, pages 101-106, Saint-Etienne, France, May 2006.

WorldFIP organisation. WorldFIP web site, June 2003. URL http://www.
worldfip.org/.

Dmitry A. Zaitsev. Switched LAN simulation by colored Petri nets. Mathematics
and Computers in Simulation, 65(3):245-249, 2004a.

Dmitry A. Zaitsev. An Evaluation of Network Response Time using a Coloured Petri
Net Model of Switched LAN. In Proceedings of the Fifth Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, pages 157-167, Aarhus,
Denmark, October 2004b.

Hubert Zimmermann. OSI reference model — the iso model of architecture for Open
System Interconnection. IEEE Transactions on Communications, 28(4):425-432,
1980.

Appendix A

Generic model of Ethernet-Based
Automation System

Generic Model overview

ABRICMAR ML)
requeity
from_genes
RIomuMpny
trimma{ | (riom,man s~ {man)

(. riom iroune) rne)

THS] Eetrace_Madbus_trame
et _Etteeret_trarmers
At een] |

e« [Fpap_setrylearink)

7515 EMAIO_Exn TCR 1P_Liyers

Etheiret_frarmes
TR

SUETHAAMBALL)

[
et ma - mibchent, misserver vari}])

(ethes, misserver,
michert, varl]

. T AT HVE R ML IEN T aralVARLT|

=
o
S ERVED ENTuVARL

TS0 Plant a |'4 Event_conmumer | [SPLANT_CLIMINTiocH]
fart] Totocs route)
Plant
TN
EVENT e)

DSSWITCHGIec)] (e, ethe)

T51 Ethernet_RIO_module

Camiten

ARTHITONE]

Gren)

witen
{amtch ethiek sthid

{Ethernet_RIO_module |

{witch bk,
&+ ETHtayashimk,mafy \LEmEs)

TS2 Ethernet_Switch

Variables

T54 Processor_module

TS6 PC-based
controller

precl + Fgao_delayethiak)

[] yEihernet_brames Trause,mly s
60 Receree ETHFRANE Tea e Ly APCRRCY
[APEBMOCR] | ppnmmet_feames Extmer_trimes _Eunun
Y e
Dec, emne~{iroute,meny| [t et [e—————————]
o SUCHROCT @ eFROC_Bootstras. deaylpesc) y
e ==
o_ven
ETHAL

PROCHETHIL
[roe,{rote b ethifl] | | ipess, et

. o e
oo

. Sw.ml

T67 Encapsutsc_Modtan | B+ IPETACKSelayisroc,
Frarme_inti_ Exheet frames | (mibcent, mserer eventil)

pese, mbschest misserver, event]: [l
MPCRPEOCARMIFLL)

miparver: seree)

o Creatn_s
Hodtus_reduest et

s proe,machent s oo
v vt Tores: mbserwer, | (i
. T ANPCBAROC K LRV BCLIEN TandV ARL()
et 1o_be_went
HBSCANERSINT OSCANNER, FROCHSERVERACLIENTHYARL
o
M rimarver: rousel: var)
U3 Grovg_varsties
by_servers
osgumen
v (i, mschent. vtsserver- route)
Computed
varaties
PHOCaAn anCrR
MPCRPRICATVARL] (proe.mmt}
foevan 1 v
p— P [ey— (o e |
PRPCH e forax,
T s kth] PROCIVARL v vaet)

]

420 PUC_User_Programs |8 +PRDCESety(pinc)

PROCHVARL

63 PER User_ Programs

[n = begth servet] b

Declarations of generic model

(* Standard declarations *)

colset E = with e timed;

colset INT = int;

colset BOOL = bool;

colset STRING = string;

var n: INT;

fun withdispersion(delay, dispersion_range_in_perthousand) =
delay +
discrete(~ delay * dispersion_range_in_perthousand div 1000,

delay * dispersion_range_in_perthousand div 1000);

val general_dispersion_range_in_perthousand =5;

val multiset_to_be_instantiated = empty;

val delay_to_be_instantiated = 0;

val guard_to_be_instantiated = true;

(* Locations declarations *)

(* Colors *)
colset LOCATION = INT timed;
colset DEST = LOCATION;
colset SRC = LOCATION,;
colset SERVER = LOCATION timed;
colset CLIENT = LOCATION timed,;
colset PROC = LOCATION timed:;
colset IOM = LOCATION timed;
colset ETHM = LOCATION timed;
colset RIOM = LOCATION timed;
colset SWITCH = LOCATION timed;
colset ETHLINK = LOCATION timed;
colset PLANT_ELEMENT = LOCATION timed;

(* Variables *)
var loc: LOCATION;
var dest: DEST;
var src: SRC;
var mbserver : SERVER;
var mbclient, scanner : CLIENT;
var proc: PROC;
var ethm : ETHM;
var riom: RIOM,;
var switch: SWITCH;
var ethlink: ETHLINK;
val IFgap_10Mbs = 10;
val IFgap_100Mbs = 1;

(* Functions *)
fun allPLCPROC() = ;
[TEUIZe R el EImultiSet to be instantiatec
fun allPROC() = allPLCPROC() ++ allPCBPROC
fun PROCEdelay(proc) = [EVAGR RS EglEE:
fun PROCRdelay(proc) = [sEEWVR GRS ERIEED;

fun PROCWdelay(proc) = [o[ENAT RS R S ETIELED
fun PROC_bootstrap_delay(proc) = (o[EVA RIS EWIELES ;

fun allRIOM() = . to_be_|
LIS elY (bW Eguard to-be instantiateds
fun RIOM_[filter_delay(riom) = [s[EWARTR TS EEED
fun RIOM_Ofilter_delay(riom) = [EVATR RS EEER ;
fun allSWITCH() = [l liTE S sl S L ELED ;
fun isSSWITCH(loc) = [s[EE{s Mol sl S ETIELEL ;
fun IFgap_delay(ethlink) = EEEVARGRERRE EEIED:
fun isPLANT_ELEMENT(loc) = [s[SEl{e Bt is =R I S E gL ELED ;
fun initial_events() = iatedy

fun event_period(loc) =

3
=
=3
7]
@
@
—
S
o
®
5
7]
[}
i}
S
=
2
@
=

delay to be instantiateds

(* Exchanges declarations *)

(* Colors *)
colset ID = INT timed;
colset ROUTE = list LOCATION timed;
colset EVENT = product ID * ROUTE timed,;
colset EVENTL = list EVENT timed;
colset VAR = product ID * ROUTE timed,;
colset VARL = list VAR timed;
colset MBFRAME = product SRC * DEST * EVENTL timed;
colset MBFL = list MBFRAME timed;
colset ETHFRAME = product ROUTE * MBFRAME timed;
colset ETHFL = list ETHFRAME timed;

(* Variables *)
var id: ID;
var route: ROUTE;
var eventl, eventll, eventl2;: EVENTL;
var varl: VAR;
var varl, varll, varl2 : VARL;
var mbf: MBFRAME;
var mbfl, mbfll, mbfl2: MBFL;
var ethframe: ETHFRAME;
var ethfl, ethfll, ethfl2 : ETHFL;

(* Complex declarations *)

(* TCP/IP Ethernet protocol *
fun iproute(src,dest) = [liEE SIS EIELED ;
fun IPSTACKdelay(loc,(ssrc,sdest,evl)) = pEEVARGR RIS EQlEES);
fun ETHdelay(wire,(ssrc,sdest,evl)) = [EVR R RS ERIEED;

(* Modbus protocol *)
colset SERVERL = list SERVER timed,;
colset IOSCANNER = product LOCATION * CLIENT * SERVERL timed;
colset MBSCANNERXINT = product CLIENT * INT timed;
var serverl : SERVERL;

multiset to be instantiatedy
fun allPLCSCANNERresponses() = [t s R sl ek ED

fun MBdelay(loc,ssrc,sdest,eventl) =

(* Processor module *)
colset PROCXETHFL = product PROC * ETHFL timed,;
colset PROCxVAR = product PROC * VAR timed;
colset PROCxVARL = product PROC * VARL timed;
colset PROCxMBFL = product PROC * MBFL timed;
colset PROCXSERVERXCLIENTXVARL = product PROC * SERVER * CLIENT * VARL timed;
fun allPROCxnilVARL() = PROCXVARL.mult(allPROC(), 1'nil);
fun allPCBPROCxnIIVARL() = PROCxVARL.mult(allPCBPROC(), 1'nil);
fun allPCBPROCXNIIETHFL() = PROCXETHFL.mult(allPCBPROC(), 1'nil)
fun allPCBPROCxniIMBFL()= PROCXMBFL.mult(allPCBPROC(), 1 nil);
fun allPCBPROCxallSERVERxallCLIENTxnilVARL() =
PROCXSERVERXCLIENTXVARL.mult(allPCBPROC(), allSERVER(), allCLIENT(), 1'nil);

(* Ethernet modules *)
colset ETHMXETHFL = product ETHM * ETHFL timed,;
colset ETHMxVAR = product ETHM * VAR timed,;
colset ETHMxVARL = product ETHM * VARL timed;
colset ETHMxXMBFL = product ETHM * MBFL timed;
colset ETHMxSERVERXCLIENTXVARL = product ETHM * SERVER * CLIENT * VARL timed,;
fun allETHMxnilETHFL() = ETHMXETHFL.mult(@lIETHM(), 1"nil);
fun allETHMxnilVARL() = ETHMXVARL. mult(@lIETHM(), 1'nil);
fun allETHMxnilMBFL()= ETHMXMBFL.mult(allETHM(), 1'nil);
fun allETHMxallSERVERxallCLIENTxnilVARL() =
ETHMxSERVERXCLIENTXVARL.mult(allETHM(), allSERVER(), allCLIENT(), 1'nil);

(* Ethernet RIO Modules *)

colset RIOMXEVENT = product RIOM * EVENT timed,;

colset RIOMXETHFL = product RIOM * ETHFL timed;

colset RIOMXEVENTL = product RIOM * EVENTL timed;

colset RIOMXMBFL = product RIOM * MBFL timed;

colset RIOMXSERVERXCLIENTXEVENTL = product RIOM * SERVER * CLIENT * EVENTL timed,;
fun allRIOMxnilMBFL() = RIOMxMBFL.mult(allRIOM(),1"nil)

fun allRIOMxnilETHFL()= RIOMXETHFL.mult(allRIOM(), 1"nil);

fun allRIOMxnilEVENTL()= RIOMXEVENTL.mult(allRIOM(), 1"nil);

fun allRIOMxallSERVERXxallCLIENTXnIlEVENTL() =
RIOMXSERVERXCLIENTXEVENTL.mult(allRIOM(), allSERVER(), allCLIENT(), 1'nil);

(* Switches *)

colset SWITCHXETHFL = product SWITCH * ETHFL timed,

colset SWITCHXETHLINK = product SWITCH * ETHLINK timed;

colset SWITCHXETHLINKXETHFL = product SWITCH * ETHLINK * ETHFL timed;
fun allSWITCHXnIlETHFL() = SWITCHXETHFL.mult(allSWITCH(), 1'nil);

fun allSWITCHxallETHLINK() = [yt St is ER g S Elg LD
fun allSWITCHxallETHLINKXnIlETHFL() = (Bl e s S el ;
fun SWdelay(switch,mbf) = [o[] AT s STy S ETIELED ;

V Global

V Ethernet_RIO_module

EthRIO_Eth-TCP-IP_layers
Plant
. Ethernet_Switch
Model hierarchy Ethernet_module

EthMod_Modbus_IO_scanner
EthMod_Eth-TCP-IP_layers

V Processor_module
PLC_User_Programs

V PC-based_controller
PCB_User_Programs

Global (Top level)

TS0 Plant

Plant

EVENT

Plant

initial_events()

EVENT
(id,loc: :route)

TS1 Ethernet_RIO_module |

Ethernet_RIO_module

(id+1,loc: :route)@+event_period(loc)

Ethernet_frames TS2 Ethernet_Switch

— (Ethernet_Switch TO Event_generator T1 Event_consumer |[isPLANT_ELEMENT(loc)]

TS3 Ethernet_module ‘ TSCGO :c“;?ﬁ:red (id,route) (id,loc: :route)
Ethernet_module PC-based_controller Plant_Events

0 EVENT

Variables

T54 Processor_module

Processor_module

Ethernet RIO_module

({id,riom: :route) (id,route)

[ISRIOM(riom)]| T10 Filter_EthRIOM_input T14 Filter_EthRIOM_output

(riom, (id,route))| @+RIOM_Ifilter_delay(riom)

Filtered_input_events
RIOMXEVENT

To_be_filtered_output_events

(riom,(id,mbserver: :mbclient: :route)) (riom, (id,route))

Ti1 Group_events
by_Modbus_servers

F 3

T13 Ungroup_events
sent_by_Modbus_clients

(riom,mbserver, mbclient,
(eventl~~[{id,mbclient::route)]))
¥ _allRIOMxallSERVERxallCLIENTxnilEVENTL() Y

Event_groups Event_groups
ready_to_send ready_to_emit

(riom,eventl)

(riom,mbserver,mbclient, eventl) sreventl)

OMxSERVERxCLIENTXEVENTL

)) (riom,mbserver, (riom,
(riom,mbserver,mbclient, eventl2) mbclient, nil) (riom, eventl)

@+MBdelay(riom,mbserver,mbclient,eventi2) | T12 EthRIO_Modbus_server

(riomn, {mbclient, mbserver,

(riom,mbfl2~~[(mbclient,
eventll)::mbfil)

mbserver,eventl2)]) (riom,mb

om,mbfl2)
allRIOMxnilMBFL{)
Modbus_responses
to_clients

allRIOM()

Modbus_requests
from_clients

RIOMXMBFL RIOM

| TS15 EthRIO_Eth-TCP-1P_layers
EthRIO_Eth-TCP-IP_layers

Ethernet_frames
fis] ETHFRAME

allRIOMxnilMBFL{)

RIOMxMBFL

@+1PSTACKdelay(riom, (mbclient,mbserver.eventl))

@+RIOM_Ofilter_delay(riom)

(riom,(id,riom: :route))

RIOMxEVENT

b
(riom,{id, mbserver::route)

allRIOMxnilEVENTL()

RIOMxEVENTL

EthRIO Eth-TCP-IP_layers

allRIOMxnilMBFL() allRIOMxniIMBFL{)

odbus_responses lodbus_requests
to_clients 7 Yo from_clients

RIOMxMBFL RIOMxMBFL
+ alRIOM() RIOM *

(riom, (mbclient,mbserver,eventl): :mbfl) | | (riom,mbfl) RIOM_CPU (riom,mbfl)| | (riom,mbfl~~[mbf])

4 @+IPSTACKdelay(riom,mbf)

T153 Extract_Modbus_frame
from_Ethernet_frames

T150 Encapsulate_Modbus
frame_into_Ethernet_frames

{riom,ethfl~~[{iproute(mbserver, mbclient),

{mbclient, mbserver, eventl))]) (riom,ethfl)

alIRIOMxnilETHFL()

(riom,ethfl) (riom, {route,mbf)::ethfl}

allRIOMxnIIETHFL()

thernet_frames
ready_to_treat

Ethernet_frames
ready_to_send

ry RIOMxETHFL ry RIOMxETHFL
(riom, (mbserver: :riom::ethlink: :route, | | (riom, ethfl) (loc,ethfl)| |(loc, ethfl~~[{route,mbf)])
mbf)::ethfl)
allRIOM() y | @+ETHdelay(ethlink,mbf) v
@ T151 Send T152 Receive .
Ethernet_frame Ethernet_frame [isRIOM(loc)]

(route,mbf)

riom@-+IFgap_delay(ethlink) (loc::route,mbf)

Ethernet_frames
fis] ETHFRAME

Ethernet_Switch

(loc,ethfl™~[{route,mbf)]})
allSWITCHxnilETHFL()

(loc::route,mbf) T20 Receive
Ethernet_frames

[ISSWITCH(loc)] (loc, ethfl)

SWITCHXETHFL

(switch,pthfll) | (switch,(ethlink::route,mbf)::ethfll)

allSWITCH()

T21 Switching .
- switch ’ Matrix @+SWdelay(switch,mbf)

ETHFRAME SWITCH y
(switch,ethlink,ethfl2)

Ethernet_frames

(switch,ethlink,{route,mbf): :ethfl2)
(switch,ethlink,
@+ETHdelay(ethlink,mbf) (Foute;mbf)::ethfl)

(route,mbf) 122 Send
Ethernet_frames

allSWITCHxallETHLINKxnilETHFL()
FIFO_port_lists
SWITCHxETHLINK=ETHFL

(switch,ethlink,ethfl)

(switch,ethlink)@ +IFgap_delay(ethlink)
(switch,ethlink)

allSWITCHxallETHLINK() SWITCHxETHLINK

Ethernet_module

Ethernet_frames
ETHFRAME

EthMod_Eth-TCP-IP_layers
TS30 EthMod_Eth-TCP-IP_layers

allETHMxniIMBFL{) allETHM{)

Modbus_responses
from_servers
TS31 EthMod

Modbus_IO_scanner
EthMod_Modbus_I0_scanner

allETHMxnilMBFL()

Modbus_resquests
to_servers

ETHMxMBFL

allETHMxnilVARL() allETHMxallSERVERxallCLIENTxnilVARL()
Variables_ready

Extracted_variables to_be_sent

ETHMxVARL F Y ETHMxSERVERxCLIENTxVARL
ethm,varl (ethm,mbserver, (ethm,mbserver,mbclient,
(¢ wvarl) mbclient,varl) (id,mbserver: :route): :varl)

{ethm,(id,mbclient: :route)
srvarl)

r

T32 Ungroup_variable T35 Group_variables
sent_by_servers by_servers

(ethm,{id,route)),

Variables
to_compute

(ethm,{id,mbclient: :mbserver: :route))

Computed
variables

ETHMxVAR ETHMxVAR
(ethm (i ethmsiroute)) (ethm,(id route))
T33 Tranfert T34 Collect | .
variables VAR variables [iSETHM(ethm})]

Variables -
(id, route) i/o (id,ethm::route)

EthMod_Eth-TCP-IP layers

ETHFRAME

Ethernet_frames
/O

(loc:: ruute.mbf}/

(route,mbf)

ethm@+IFgap_delay(ethlink)

T300 Receive

T303 Send

ethm

[iSETHM(loc)]

Ethernet_frames

Ethernet_frames
r'y

allETHM()

ETHM

@+ ETHdelay{ethlink,mbf)

(loc, ethfl~~[(route,mbf)])

(loc, ethfl)

(ethm,ethfl) (ethm, (mbclient::ethm::ethlink::route,mbf): :ethfl)
allETHMxnIlETHFL{) allETHMxnilETHFL{}
Ethernet_frames Ethernet_frames

ready_to_treat ready_to_send

b ETHMxETHFL A ETHMxETHFL
(ethm, (route,mbf): :ethfl) (ethm, ethfl) (ethm, ethfl~~[(iproute(mbclient, mbserver),
ethm, ethfl) s .
(mbclient,mbserver,eventl)}]}
h 4
ethm ethm
@+IPSTACKdelay({ethm,mbf) T3O'.i'oiftreatﬁg—:gfbf:'§;‘r;asme fr-;?:’;:g ?&?%ﬁﬂ::ﬁi‘r’;ﬁ; @+IPSTACKdelay{ethm,(mbclient, mbserver,eventl))
F Y F
(ethm,mbfl)
(ethm,mbfl~~[mbf]) (ethm,mbfl) {ethm,{mbclient,mbserver,eventl): :mbfl)
EthM_CPU
v /o ETHM L 4
odbus, response: odbus quests
fromf&gwers to_ Efers
ETHMxMBEFL

ETHMxMBFL

EthMod_Modbus 10 scanner

od bus[fasponse
from_servers

ETHMxMBFL

F

(ethm,(mbclient,
mbserver,varl2): :mbfl})

@+MBdelay(
ethm,mbserver,
mbclient,varl2) v

(ethm,mbfl)

(mbclient,n

IIETHMxnilMBFL()

Collected
responses

gcanner,n)

mibclient,n) (scanner,D

T310 Extract_variables
from_Modbus_response

allPLCSCANMERresponses,
MBSCANNERXINT

[n == length serverl]

{ethm,varll~~varl2)

h 4

Extracted_variables
Out

ETHMxVARL

(ethm,varl1)

T313 Start_new
scan_cycle

(ethm,scanner,serverl) @+
10Speriod(scanner)

Next_scan

to_perform

IOSCANNER
allETHM()

serverl)

Powered

=thm,scanner,

allIOSCANNER()

allETHMxnilMBFL()

(ethm,mbfl)
IOSCANNER
(ethm,mbclient,
mbsenver::server

im, mbclient,

ETHMxMBFL
(ethm,mbfl~~[{mbclient,mbserver,varl}])

T314 End_of
scan_cycle

T311 Create_a
Modbus_request

@+MBdelay{ethm, mbserver, mbclient,varl)

‘ethm,mbserver,
mbclient,nil)

(ethm, mbserver,
mbclient,varl)

A

1jO sent

allETHMxallSERVERxallCLIENTxnilVARL()

ETHMxSERVERXCLIENTxVARL

Processor _module

(id,proc: :route)

T40 Collect_var
to_compute

(proc, (id,proc
1iroute)::varl)

Powered down
PROC

PROC

proc (proc,varl)

T45
Bootstrapping

@+PROC_bootstrap_delay(proc)

(proc,varl) | |{proc,nil)

proc

allPLCPROC()
proc

T41
Input_reading

(id

Variables

{proc,varl)

allPROCxnilVARL()

PROCxVARL

,route)

T44 Transfer
computed_var

(proc,(id,proc: route): :varl)

allPROCxnilVARL()

PROCxVARL

(proc,varl)

PLC_User_Programs
[TS-Q Execution

T43 proc

Qutput_writing

PROC @+PROCRdelay(proc)

(proc,varl)

Program variables
to compute

PROCxVARL

Computed
program variables

PROCxVARL

@+PROCWdelay(proc)
(proc,varl)

PLC User Programs

rogram variables
to compute
InP—

PROCXVARL
(proc,varl)

A4

T420 PLC_User_Programs

@+PROCEdelay(proc)

(proc,varl)

Computed
nfogram va riables
I

PROCxVARL

T60 Receive
Ethernet_frames

F Y

[isPCBPROC(loc)]

(loc, ethfl™~[{route,mbf)])
allPCBPROCKNIIETHFL() A 4

Ethernet_frames
ready_to_treat

PROCXETHFL 'y

(loc, ethfl)

(proc,(route,mbf): :ethfl) (proc, ethfl)
h 4

T61 Extract_Modbus_frame
from_Ethernet_frames

F 3
(proc,mbfl)

@+IPSTACKdelay(proc,mbf)

(proc,mbfl~~[mbf])
allPCBPROCxNIIMBFL() A 4

Modbus_responses
from_servers
PROCxMBFL 'y
{proc,mb

(proc,(mbclient,mbserver,varl2): :mbfl)
h 4

T62 Extract_variables
from_Modbus_response

@+MBdelay(proc, mbserver,mbclient,varl2)

(proc,varll)
allPCBPROCKNIIVARL()

Extracted_variables
PROCXVARL

(proc,(id,mbclient: :route)
sivarl)

T620 Ungroup_variable
sent_by_servers

(proc,{id,route))

Variables
to_compute

PROCXVAR
(proc,(id,proc: :route))

T621 Collect_var
to_compute

(proc, (id,route)::varl)

(proc,varll~~varl2)

proc,varl)

PC-based_controller

(loc::route,mbf) Ethernet_frames

(route,mbf)

proci@+IFgap_delay(ethlink)

allPCBPROC()
ETHFRAME
@+ETHdelay(ethlink,mb Elh:;zaﬁpadmes PCBPROC_EthLink
A PROC
(proc, (mbclient::proc::ethlink: :route,mbf): :ethfl) | | (proc,ethfl)
allPCBPROC() @+PROC_bootstrap_delay(proc) b allPCBPROCKNIIETHFL()
Powered down proc T60a Ethernet_frames
PROC Bootstrapping ready_to_send
PROC A PROCxETHFL
(proc,ethfl~~[(iproute(mbclient,mbserver), . thil
(mbclient,mbserver,eventl}}]) (proc,ethfl)
Y
PCBPROC PCBPROC proc T67 Encapsulate_Modbus | @+IPSTACKdelay(proc,
ready_to_recei eady_to_sen frame_into_Ethernet_frames | (mbclient,mbserver,eventl))
PROC

T69 End_of

F Y
(proc,(mbclient, mbserver,eventl): :mbfl)
allPCEPROCxIIMBFL()

(proc,mbfl)
) 4

rent
received
MBSCANNERxINT IOSCANNER

alllOSCANNER()

Set_of
ioscanner.

I0STANNER

allPROCxnjliR

@ TS63 Execution

PRPCE_User_Programs

allPCBPROCXNIIVARL()

[n == length serverl] PROCxVARL

ANNER() mbclient,nil)

(proc,mbserver,mbclient,varl)

Modbus_requests
sending to_servers
PROCxMBFL
(scannef,0) 4 roc,mbfl) *
(prgc, (proc,mbfl~~[{mbclient, mbserver varl)])
scla}..ner, (proc,mbclient, h 4
ni mbserver::serverl .
¢ (mbclient,n) P) » M‘(r)d“béri;eﬁ:st @+MBdelay(proc,mbserver,mbclient,varl)
. roc,mbclient,se
ent,n+1) (proc, " J (proc,mbserver,
(proc,mbserver,

mbclient,varl)

allPCBPROCxallSERVERxalICLIENTxnilVARL()
Variables_ready
to_be_sent

PROCXSERVERXCLIENTxVARL

(proc,mbserver, mbclient,
(id,mbserver: :route): :varl)

T65 Group_variables

by_servers

-(E roc,varl
(pri

L
wvarl::varl)

{proc,{id, mbclient: :mbserver: :route))

Computed
variables

PROCxVAR
{proc,varl)

T64

PLC User_program

PCBPROC
dy_to_recei
In—"_

PROC

PCBPROC
ﬁad y_to_sen

allPCBPROC()

PROC

proc
alllOSCANNER()
Current Current
allPROCxnilVARL() .Inreceived 3 sent
AN — ut_-..7
Input_list MBSCANNERXINT | alllOSCANNER() I0SCANNER

PROCxVARL

/G
(scanner,n) TIOSCANNER

(proc,
scanner,
serverl)

(proc,nil) h 4 h 4

(proc,scanner,serverl)

T630 PCB_User_Programs

(proc,varl)

@+PROCEdelay(proc)
allPCBPROCxNIIVARL()
(proc,varl) N
1
(proc,nil) 1/0

[n == length serverl]

PROCxVARL

Appendix B

Example of a particular model of
Ethernet-Based Automation
System

Overview of PLC-based architecture
(configuration 3)

scan cycle scan cycle of
of Eth mod Eth mod 62

 x

CPU Eth_mod 481
0 60 o)
user
progra
period
2 ms

period
240 ms

480 482

-

Response Time

-

user

program A
period

50 ms z

2 62

user =
program

period

18 ms .

CPU Eth_mod as
1 61 SW

=i

SW sSw

period
10 ms

--T_:"
H .
-_f_:" T | o o |
:I (a1l
. EEEECEE—
T
[= el

scan cycle of
Eth mod 61

Detail of ID assignment

Ethlink

Ethlink id 566

Switch
id 480

id 563

Ethlink

Switch
id 481

Ethlink id 567

MBsrv id 100

Ethlink id 568

MBsrv id 101

A
1

Ethlink id 569

MBsrv id 102

Ethlink id 570

MBsrv id 103

Ethlink id 571

MBsrv id 104

Ethlink id 572

MBsrv id 105

id 564

PLC
EIB 1 60 Ethlink id 560
INK |
Proc | | mBclient
id0 id 66
pLC
EthB id 62
Proc | | mBclient Ethlink id 562
id 2 id 68
PLC
EthB id 61
Ethlink id 561
Proc | [mBclient
id1 id 67

Ethlink

Switch
id 482

Ethlink id 573

MBsrv id 106

Ethlink id 574

MBsrv id 107

A
1

Ethlink id 575

MBsrv id 108

Ethlink id 576

MBsrv id 109

Ethlink id 577

MBsrv id 110

Ethlink id 578

MBsrv id 111

id 565

Switch
id 483

Ethlink id 579

MBsrv id 112

Ethlink id 580

MBsrv id 113

I—
1

Ethlink id 581

MBsrv id 114

Ethlink id 582

MBsrv id 115

Ethlink id 583

MBsrv id 116

MBsrv id 117

RIOM id 80

RIOM id 81

RIOM id 82

RIOM id 83

RIOM id 84

RIOM id 85

RIOM id 86

RIOM id 87

RIOM id 88

RIOM id 89

RIOM id 90

RIOM id 91

RIOM id 92

RIOM id 93

RIOM id 94

RIOM id 95

RIOM id 96

RIOM id 97

Instantiated declarations of the studied PLC-
based architecture (configuration 3)

(* Standard declarations *)
colset E = with e timed;
colset INT = int;
colset BOOL = bool;
colset STRING = string;
var n: INT;
fun withdispersion(delay, dispersion_range_in_perthousand) =
delay +
discrete(~ delay * dispersion_range_in_perthousand div 1000,
delay * dispersion_range_in_perthousand div 1000)
val general_dispersion_range_in_perthousand =5
val multiset_to_be_instantiated = empty;
val delay_to_be_instantiated = 0;
val guard_to_be_instantiated = true;

(* Locations declarations *)

(* Colors *)
colset LOCATION = INT timed;
colset DEST = LOCATION;
colset SRC = LOCATION,;
colset SERVER = LOCATION timed;
colset CLIENT = LOCATION timed,;
colset PROC = LOCATION timed:;
colset IOM = LOCATION timed,;
colset ETHM = LOCATION timed;
colset RIOM = LOCATION timed;
colset SWITCH = LOCATION timed,;
colset ETHLINK = LOCATION timed;
colset PLANT_ELEMENT = LOCATION timed,

(* Variables *)
var loc: LOCATION;
var dest: DEST;
var src: SRC;
var mbserver : SERVER;
var mbclient, scanner : CLIENT;
var proc: PROC;
var ethm : ETHM,;
var riom: RIOM,;
var switch: SWITCH;
var ethlink: ETHLINK;
val IFgap_10Mbs = 10;
val IFgap_100Mbs = 1;

(* Functions *)

fun allPLCPROC() = 1'0++1°1++1°2;
fun allPCBPROC() = empty;
fun allPROC() = allPLCPROC() ++ allPCBPROC();
fun PROCEdelay(proc) = withdispersion (
case proc of

0=>2000
| 1=>18000
| 2=>50000
L=>0
, general_dispersion_range_in_perthousand);
fun PROCRdelay(proc) = withdispersion (
case proc of

0=>0
|1=>0
|2=>0
|_=>0
, general_dispersion_range_in_perthousand);
fun PROCWAdelay(proc) = withdispersion (
case proc of

0=>0
|1=>0
|2=>0
|_=>0
, general_dispersion_range_in_perthousand);
fun PROC_bootstrap_delay(proc) = discrete(0, PROCEdelay(proc))
fun allETHM() = 1°60++1°61++1°62;
fun isETHM(loc) = case loc of

60 => true

| 61 =>true

| 62 => true

| _=>false;
fun ETHM_bootstrap_delay(ethm) = discrete(0, 10000)
fun isPCBPROC(loc) = case loc of _ => false;
fun allRIOM() = 1°'80++1'81++1°82++1'83++1'84++1'85++1'86++1'87++1'88++
1°89++1°90++1°91++1°92++1°93++1°94++1"95++1"965++1°97;
fun isRIOM(loc) = case loc of

80 =>true

| 81 =>true

| 82 =>true

| 83 =>true

| 84 =>true

| 85 =>true

| 86 => true

| 87 =>true

| 88 =>true

| 89 => true

| 90 => true

| 91 => true

| 92 =>true
| 93 => true
| 94 => true
| 95 => true
| 96 => true
| 97 => true
| _=>false;
fun RIOM_Ifilter_delay(riom) = withdispersion(
case riom of
80=>0]81=>0|82=>0
|83=>0]84=>0|_=>0
, general_dispersion_range_in_perthousand);
fun RIOM_Ofilter_delay(riom) = withdispersion(
600
, general_dispersion_range_in_perthousand);
fun allSWITCH() = 1'480++1°481++1°482++1°483;
fun isSWITCH(loc) = case loc of
480 => true
| 481 => true
| 482 => true
| 483 =>true
| _=>false;
fun IFgap_delay(ethlink) = withdispersion (
case ethlink of
560 => IFgap_100Mbs
| 561 => IFgap_100Mbs
| 562 => IFgap_100Mbs
| _=> IFgap_10Mbs
, general_dispersion_range_in_perthousand);
fun isPLANT_ELEMENT(loc) = case loc of
2000 => true
| 2001 => true
| _=>false;
fun initial_events() = 1°(0,[2000,81,101,66,60,0,60,66,108,88,2001])@+7500;
fun event_period(loc) = case loc of
2000 => 21111
[_=>0;

(* Exchanges declarations *)

(* Colors *)

colset ID = INT timed;

colset ROUTE = list LOCATION timed,;

colset EVENT = product ID * ROUTE timed;

colset EVENTL = list EVENT timed;

colset VAR = product ID * ROUTE timed,;

colset VARL = list VAR timed;

colset MBFRAME = product SRC * DEST * EVENTL timed,;

colset MBFL = list MBFRAME timed,;
colset ETHFRAME = product ROUTE * MBFRAME timed;
colset ETHFL = list ETHFRAME timed,;

(* Variables *)
var id: ID;
var route: ROUTE;
var eventl, eventll, eventl2: EVENTL;
var varl: VAR;
var varl, varll, varl2 : VARL;
var mbf: MBFRAME;
var mbfl, mbfll, mbfl2: MBFL;
var ethframe: ETHFRAME;
var ethfl, ethfll, ethfl2 : ETHFL;

(* Complex declarations *)

(* TCP/IP Ethernet protocol *)

fun iproute(src,dest) = case src of

66 => (case dest of
100=> [66,60,560,480,563,481,566,80,100]
|101=> [66,60,560,480,563,481,567,81,101]
|102=> [66,60,560,480,563,481,568,82,102]
|103=>[66,60,560,480,563,481,569,83,103]
|104=>[66,60,560,480,563,481,570,84,104]
|105=>[66,60,560,480,563,481,571,85,105]
|106=> [66,60,560,480,564,482,572,86,106]
|107=>[66,60,560,480,564,482,573,87,107]
|108=>[66,60,560,480,564,482,574,88,108]
|109=> [66,60,560,480,564,482,575,89,109]
|110=> [66,60,560,480,564,482,576,90,110]
|_=>1)

|67 => (case dest of
107=>[67,61,561,480,564,482,573,87,107]
|108=> [67,61,561,480,564,482,574,88,108]
|109=>[67,61,561,480,564,482,575,89,109]
|110=>[67,61,561,480,564,482,576,90,110]
|111=> [67,61,561,480,564,482,577,91,111]
|112=>[67,61,561,480,565,483,578,92,112]
|113=>[67,61,561,480,565,483,579,93,113]
|114=>[67,61,561,480,565,483,580,94,114]
|115=>[67,61,561,480,565,483,581,95,115]
|116=>[67,61,561,480,565,483,582,96,116]
|117=>[67,61,561,480,565,483,583,97,117]
=)

|68 => (case dest of
100=> [68,62,562,480,563,481,566,80,100]
|101=> [68,62,562,480,563,481,567,81,101]
|102=> [68,62,562,480,563,481,568,82,102]
|103=> [68,62,562,480,563,481,569,83,103]
|104=> [68,62,562,480,563,481,570,84,104]
|105=> [68,62,562,480,563,481,571,85,105]
|106=> [68,62,562,480,564,482,572,86,106]
|107=> [68,62,562,480,564,482,573,87,107]
|108=> [68,62,562,480,564,482,574,88,108]
|109=> [68,62,562,480,564,482,575,89,109]
|110=> [68,62,562,480,564,482,576,90,110]
|111=>[68,62,562,480,564,482,577,91,111]
|112=> [68,62,562,480,565,483,578,92,112]
|113=>[68,62,562,480,565,483,579,93,113]
|114=> [68,62,562,480,565,483,580,94,114]
|115=> [68,62,562,480,565,483,581,95,115]
|116=> [68,62,562,480,565,483,582,96,116]
|117=> [68,62,562,480,565,483,583,97,117]
_=>1)

|100 => (case dest of
66=>[100,80,566,481,563,480,560,60,66]
|68=>[100,80,566,481,563,480,562,62,68]
_=>1)

|101 => (case dest of
66=>[101,81,567,481,563,480,560,60,66]
|68=>[101,81,567,481,563,480,562,62,68]
_=>10)

|102 => (case dest of
66=>[102,82,568,481,563,480,560,60,66]
|68=>[102,82,568,481,563,480,562,62,68]
_=>1)

|103=> (case dest of
66=>[103,83,569,481,563,480,560,60,66]
|68=>[103,83,569,481,563,480,562,62,68]
_=>1)

|104=> (case dest of
66=>[104,84,570,481,563,480,560,60,66]
|68=>[104,84,570,481,563,480,562,62,68]
_=>1)

|105 => (case dest of
66=>[105,85,571,481,563,480,560,60,66]
|68=>[105,85,571,481,563,480,562,62,68]
_=>1)

|106 => (case dest of
66=>[106,86,572,482,564,480,560,60,66]
|68=>[106,86,572,482,564,480,562,62,68]
—=>0)

|107=> (case dest of
66=>[107,87,573,482,564,480,560,60,66]
|67=>[107,87,573,482,564,480,561,61,67]
|68=>[107,87,573,482,564,480,562,62,68]
L=>0)

|108 => (case dest of
66=>[108,88,574,482,564,480,560,60,66]
|67=>[108,88,574,482,564,480,561,61,67]
|68=>[108,88,574,482,564,480,562,62,68]
[_=>1)

|109 => (case dest of
66=>[109,89,575,482,564,480,560,60,66]
|67=>[109,89,575,482,564,480,561,61,67]
|68=>[109,89,575,482,564,480,562,62,68]
=>10)

|110 => (case dest of
66=>[110,90,576,482,564,480,560,60,66]
|67=>[110,90,576,482,564,480,561,61,67]
|68=>[110,90,576,482,564,480,562,62,68]
=>1)

|111=> (case dest of
67=>[111,91,577,482,564,480,561,61,67]
|68=>[111,91,577,482,564,480,562,62,68]
L=>0)

|112 => (case dest of
67=>[112,92,578,483,565,480,561,61,67]
|68=>[112,92,578,483,565,480,562,62,68]
=>10)

|113 => (case dest of
67=>[113,93,579,483,565,480,561,61,67]
|68=>[113,93,579,483,565,480,562,62,68]
=>1)

|114 => (case dest of
67=>[114,94,580,483,565,480,561,61,67]
|68=>[114,94,580,483,565,480,562,62,68]
L=>0)

|115 => (case dest of
67=>[115,95,581,483,565,480,561,61,67]
|68=>[115,95,581,483,565,480,562,62,68]
=>1)

|116 => (case dest of
67=>[116,96,582,483,565,480,561,61,67]
|68=>[116,96,582,483,565,480,562,62,68]
L=>1)

|117 => (case dest of
67=>[117,97,583,483,565,480,561,61,67]
|68=>[117,97,583,483,565,480,562,62,68]
L=>1)

=

fun IPSTACKdelay(loc,(ssrc,sdest,evl)) =

withdispersion (10, general_dispersion_range_in_perthousand);
fun ETHdelay(wire,(ssrc,sdest,evl)) =

withdispersion (60, general_dispersion_range_in_perthousand);

(* Modbus protocol *)

colset SERVERL = list SERVER timed;
colset IOSCANNER = product LOCATION * CLIENT * SERVERL timed;
colset MBSCANNERXINT = product CLIENT * INT timed;
var serverl : SERVERL;
fun allSERVER() = 1'100++1°101++1°102++1°103++1°104++1°105++1°106++1°107++1°108++
1°109++1°110++1°111++1°112++1°113++1°114++1°115++1°116++1°117
fun allCLIENT() = 1'66++1°67++1°68++1°69++170++1°71
fun allPLCSCANNERresponses() = 1'(66,11)++1'(67,11)++1°(68,18)
fun allPCBSCANNERresponses() = 1°(69,9)++1°(70,9)++1°(71,0)
fun alllOSCANNER() = 1°(60, 66, [100,101,102,103,104,105,106,107,108,109,110]) ++
1'(61, 67, [107,108,109,110,111,112,113,114,115,116,117])++
1'(62, 68, [100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117]);

fun I0Speriod(scanner) = withdispersion (
case scanner of

66 => 5000
| 67 => 10000
| 68 => 240000
| _=>0
, general_dispersion_range_in_perthousand);
fun MBdelay(loc,ssrc,sdest,eventl) = withdispersion (
case loc of

60 => 100
| 61 =>100
| 62 =>100
| 3=>100
| 4=>100
| 5=>100
| 80=>520
| 81 =>520
| 82 => 520
| 83 => 520
| 84 => 500
| 85 =>520
| 86 => 520
| 87 => 520
| 88 => 520
| 89 => 520
| 90 => 520
| 91 => 520
| 92 => 520
| 93 =>520
| 94 => 520
| 95 => 520
| 96 => 520

| 97 => 520
| _=>0
, general_dispersion_range_in_perthousand);

(* Processor module *)

colset PROCXETHFL = product PROC * ETHFL timed,;

colset PROCxVAR = product PROC * VAR timed;

colset PROCXVARL = product PROC * VARL timed;

colset PROCXMBFL = product PROC * MBFL timed;

colset PROCXSERVERXCLIENTXVARL = product PROC * SERVER * CLIENT * VARL timed;

fun allPROCxnilVARL() = PROCxVARL.mult(allPROC(), 1'nil);

fun allPCBPROCXnIIVARL() = PROCXVARL.mult(allPCBPROC(), 1'nil);

fun allPCBPROCXNIIETHFL() = PROCXETHFL.mult(allPCBPROC(), 1 nil)

fun allPCBPROCXnIIMBFL()= PROCXMBFL.mult(allPCBPROC(), 1'nil);

fun allPCBPROCxallSERVERXalICLIENTxnilVARL() =
PROCXSERVERXCLIENTXVARL.mult(allPCBPROC(), allSERVER(), allCLIENT(), 1'nil);

(* Ethernet modules *)

colset ETHMXETHFL = product ETHM * ETHFL timed,;

colset ETHMXVAR = product ETHM * VAR timed,;

colset ETHMxVARL = product ETHM * VARL timed;

colset ETHMxMBFL = product ETHM * MBFL timed;

colset ETHMXSERVERXCLIENTXVARL = product ETHM * SERVER * CLIENT * VARL timed;

fun allETHMxnIlETHFL() = ETHMXETHFL.mult(@llETHM(), 1'nil);

fun allETHMxnilVARL() = ETHMxVARL.mult(allETHM(), 1'nil);

fun allETHMxniIMBFL()= ETHMXMBFL.mult(allIETHM(), 1"nil);

fun allETHMxallSERVERxallCLIENTxnilVARL() =
ETHMxSERVERXCLIENTXVARL.mult(@llETHM(), allSERVER(), allCLIENT(), 1"nil);

(* Ethernet RIO Modules *)

colset RIOMXEVENT = product RIOM * EVENT timed,;

colset RIOMXETHFL = product RIOM * ETHFL timed;

colset RIOMXEVENTL = product RIOM * EVENTL timed;

colset RIOMXMBFL = product RIOM * MBFL timed,;

colset RIOMXSERVERXCLIENTXEVENTL = product RIOM * SERVER * CLIENT * EVENTL timed;

fun allRIOMxnilMBFL() = RIOMxMBFL.mult(allRIOM(),1"nil)

fun allRIOMxnilETHFL()= RIOMXETHFL.mult(allRIOM(), 1"nil);

fun allRIOMxnilEVENTL ()= RIOMXEVENTL.mult(allRIOM(), 1'nil);

fun allRIOMxallSERVERXallCLIENTXnIlEVENTL() =
RIOMXSERVERXCLIENTXEVENTL.mult(allRIOM(), allSERVER(), allCLIENT(), 1'nil);

(* Switches *)

colset SWITCHXETHFL = product SWITCH * ETHFL timed;

colset SWITCHXETHLINK = product SWITCH * ETHLINK timed;

colset SWITCHXETHLINKXETHFL = product SWITCH * ETHLINK * ETHFL timed;

fun allSWITCHXnIlETHFL() = SWITCHXETHFL.mult(@llSWITCH(), 1'nil);

fun allSWITCHxall[ETHLINK() =
1°(480,560)++1°(480,561)++1(480,562)++
1°(481,563)++1(481,566)++1"(481,567)++1(481,568)++
1'(481,569)++1'(481,570)++1'(481,571)++

1°(482,564)++1'(482,572)++1'(482,573)++1'(482,574)++
1'(482,575)++1'(482,576)++1'(482,577)++
1'(483,565)++1'(483,578)++1'(483,579)++1'(483,580)++
1'(483,581)++1'(483,582)++1'(483,583)

fun allSWITCHXallETHLINKXnilETHFL() =
1'(480,560,nil)++1'(480,56 1, nil)++1'(480,562, nil)++
1'(481,563,nil)++1'(481,566,nil)++1'(481,567,nil)++1' (481,568, nil)++
1'(481,569,nil)++1'(481,570,nil)++1 (481,571, nil)++
1'(482,564,nil)++1'(482,572,nil)++1'(482,573,nil)++1'(482,574,nil)++
r))++1()

())++1(;

+17(
+17(

482,575, nil)++1°(482,576,nil)++1°(482,577,nil)++
1'(483,565,nil)++1°(483,578,nil)++1'(483,579,nil)++1°(483,580,nil)++
1°(483,581,nil)++1'(483,582,nil)++1°(483,583,nil

fun SWdelay(switch,mbf) = withdispersion (
case switch of
480 =>10
| 481 =>10
| 482 => 10
| 483 =>10
| _=>0
, general_dispersion_range_in_perthousand);general_dispersion_range_in_perthousand);

1

Résumé e Nous évaluons dans cette these deux performances temporelles des archi-
tectures d’automatisation distribuées sur Ethernet commuté et utilisant un modele de
coopération client/serveur :

e Le temps de réponse entre une occurrence d’un événement d’entrée et ’occurrence
de I’événement de sortie correspondant;

e Le temps de cycle réseau pour la scrutation par un controleur de I’ensemble de ses
modules d’entrées/sorties déportées.

La conjonction de trois mécanismes de consommation de temps rend ces deux performances
variables et difficiles a déterminer de maniere analytique. Par conséquent, la méthode
proposée se base sur la simulation d’'un modele en réseau de Petri temporisé et coloré
du comportement dynamique de l'architecture complete. Les résultats obtenus sur six
architectures test permettent de :

e Montrer que les architectures multi-controéleurs utilisant le modele de coopération
client /serveur donnent des temps de cycle réseau plus rapide que celles basées sur
les modeles maitre/esclave et producteur/consommateur ;

e Quantifier I'influence du réseau et des mécanismes de consommation du temps.

Mots Clés e Architectures d’automatisation, temps de réponse, temps de cycle réseau,
Ethernet commuté, client/serveur, simulation, réseau de Petri

Abstract e In this work, two time performances of switched Ethernet automation systems
that use a client/server cooperation model are evaluated:

e The response time from an occurrence of an input event to the occurrence of the
corresponding output event;

e The network cycle time for the scanning by a controller of the whole set of its remote
inputs/outputs modules.

The conjunction of three time consumption mechanisms makes both time performances
variable and difficult to compute in an analytic fashion. Thus, the proposed method is
based on simulation of a timed and coloured Petri net model of the dynamic behaviour of
the whole automation architecture. The results which have been obtained on six bench-
mark architectures enabled us:

e To show that multi-controllers architectures using a client/server cooperation model
provide faster network cycle times than those based on master /slave and producer /consumer
models;

e To quantify the influence of the time consumption mechanisms on these perfor-

mances.

Keywords e Automation architectures, response time, network cycle time, switched Eth-
ernet, client/server, simulation, Petri net

