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DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE (PARIS VI)
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Introduction

Cette thèse est compose de sept chapitres qui correspondent à quatre articles qui ont été

publiés ou soumis pour publication. Il s’agit de :

• The lower envelope of positive self-similar Markov processes, écrit en collabora-

tion avec Loı̈c Chaumont. Paru à Electronic Journal of Probability, 11, 2006, pp.

1321-1341.

• On the future infimum of positive self-similar Markov processes. Paru à Stochas-

tics and stochastics reports, 78, n. 3, 2006, pp. 123-155.

• The upper envelope of positive self-similar Markov processes.

• On the genealogy of conditioned stable Lévy forest, écrit en collaboration avec

Loı̈c Chaumont.

Comme le titre le suggère, cette thèse est organisée en deux parties indépendantes. La

première partie est consacrée à l’étude de l’enveloppe inférieure et supérieure des processus

de Markov auto-similaires positifs et la seconde à l’étude des forêts de Lévy stables d’une

taille donnée et conditionnées par leur masse. Cette introduction a pour but de décrire les

principaux résultats contenus dans cette thèse.

Comportement asymptotique des processus de Markov auto-similaires positifs.

Un processus de Markov X(x) à valeurs dans IR, issu de x et dont les trajectoires sont

continues à droite avec des limites à gauche (càdlàg) est dit auto-similaire d’indice α > 0
si pour tout k > 0,

(0.1)
(
kX

(x)

k−αt, t ≥ 0
)

(d)
=

(
X

(kx)
t , t ≥ 0

)
.

Les processus de Markov auto-similaires apparaissent souvent dans diverses parties de

la théorie des probabilités comme limites de processus normalisés . Leurs propriétés

ont été et́udiées au début des années soixantes à travers les travaux de John Lamperti

[Lamp62, Lamp72]. La propriété de Markov ajoutée à l’auto-similarité (ou scaling) four-

nit des propriétés très intéressantes comme l’avait remarqué Lamperti dans [Lamp72] où le

cas particulier des processus de Markov auto-similaires positifs est étudié. Les processus de

Markov auto-similaires apparaissent dans certains domaines de la théorie des probabilités.

Mentionnons par exemple la théorie des processus de branchement et arbres aléatoires, la

théorie de fragmentation et les fonctionnelles exponentielles des processus de Lévy.

Dans cette première partie, on considérera des processus de Markov auto-similaires posi-

tifs, on y fera référence par l’abréviation pssMp. Quelques exemples particulièrement bien

connus sont des processus de Bessel, les subordinateurs stables ou plus généralement, les

processus de Lévy stables conditionnés à rester positifs.

Notre but est de décrire l’enveloppe inférieure et supérieure en 0 et en +∞ au moyen de

tests intégraux et de lois du logarithme itéré pour une classe suffisamment grande de pssMp

et quelques processus associés, comme le minimum futur et le pssMp réflechi en son min-

imum futur. Un point crucial dans nos arguments est la célèbre représentation de Lamperti
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des pssMp. Cette représentation nous permet de construire les trajectoires d’un pssMp issu

de x > 0, noté X(x), à partir de celles d’un processus de Lévy. Plus précisément, [Lamp72]

Lamperti a montré la représentation suivante :

(0.2) X
(x)
t = x exp

{
ξτ(tx−α)

}
, 0 ≤ t ≤ xαI(ξ) ,

sous la loi du processus X(x), noté Px, où

τt = inf
{

s : Is(ξ) ≥ t
}

, Is(ξ) =

∫ s

0

exp
{

αξu

}
du , I(ξ) = lim

t→+∞
It(ξ) ,

et ξ est un processus de Lévy réel éventuellement tué en un temps exponentiel indépendent.

On remarque que pour t < I(ξ), on a

τt =

∫ xαt

0

(
X(x)

s

)−α

ds,

ce qu’implique que (0.2) est inversible et définit une bijection entre l’ensemble des proces-

sus de Lévy de temps de vie éventuellement fini et les pMasp jusqu’en leur premier temps

d’atteinte de 0.

Ici, on considère des pMasp qui dérivent vers +∞, c’est-à-dire

lim
t→+∞

X
(x)
t = +∞, presque sûrement,

et qui satisfont la propriété de Feller sur [0,∞) de sorte que on peut définir la loi d’un

pssMp, que on note X(0), issu de 0 et avec le même semi-groupe de transition que X(x),

x > 0. Bertoin et Caballero [BeCa02], et Bertoin et Yor [BeYo02] ont montré qu’une

condition suffisante pour la convergence de la famille des processus X(x), quand x ↓ 0, au

sens des distributions fini-dimensionelle vers un processus non dégénéré (qu’on va désigner

par X(0)) est que le processus de Lévy associé ξ par la représentation de Lamperti satisfasse

la condition suivante

(H) ξ n’est pas arithmétique et 0 < m
(def)
= E(ξ1) ≤ E(|ξ1|) < +∞ .

Caballero et Chaumont [CaCh06] ont montré que cette dernière condition est aussi une

condition nécessaire et suffisante pour la convergence de la famille des proccessus X(x),

x > 0, dans l’espace de Skohorod des trajectoires càdlàg. Dans le même article, les auteurs

ont également fourni une construction du processus X(0) que l’on considérera au début

du premier chapitre. La loi d’entrée du processus X(0) a été décrite dans [BeCa02] et

[BeYo02] de la manière suivante : pour tout t > 0 et toute fonction mesurable f : IR+ →
IR+, on a

(0.3) E

(
f

(
X

(0)
t

))
=

1

m
E

(
I(−αξ)−1f

(
tI(−αξ)−1

))
.

où

I(−αξ) =

∫ s

0

exp
{
− αξu

}
du.

Remarque: De la propriété de scaling, on peut facilement vérifier que le processus (Xα, Px),
x > 0 est un pssMp dont le coefficient de scaling est égal à 1. D’autre part, la fonction

x 7→ xα est une fonctionnelle continue dans l’espace des trajectoires càdlàg, alors sans

perte de généralité on peut supposer que α est égal à 1 dans la suite.
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Dans le premier chapitre, on présente des propriétés trajectorielles des pssMp qui seront

d’une grande utilité pour l’étude de leur comportement asymptotique. En fait, le but de ce

premier chapitre est de décomposer les trajectoires du processus limite X(0) en ses pre-

miers et derniers temps de passage près de 0 et de +∞, et aussi de déterminer, quand il

sera possible, les lois des premiers et derniers temps de passage en termes du processus de

Lévy associé par la représentation de Lamperti.

Les trajectoires du processus X(0) peuvent être décomposées au premier temps de pas-

sage de manière naturelle en utilisant la propriété de Markov mais cette décomposition ne

nous permet pas de déterminer la loi du premier temps de passage en termes du proces-

sus de Lévy associé. La construction de Caballero et Chaumont [CaCh06] fournit une

décomposition qui satisfait ces conditions. Soit (xn) une suite décroissante de réels stricte-

ment positifs qui converge vers 0, de manière informelle la construction de Caballero et

Chaumont est une concaténation d’une suite (Y (n), n ≥ 1) de pMasp, où chaque proces-

sus Y (n) est issu de la valeur du processus Y (n+1) pris en son premier temps de passage

au-dessus de xn et tué au premier temps de passage de Y (n) au-dessus de xn−1. On peut

trouver cette construction de manière détaillée au début du premier chapitre.

Pour la deuxième décomposition, on va d’abord étudier la loi du processus X(0) retourné

en son dernier temps de passage. Soit

Uy = sup
{
t : X

(0)
t ≤ y

}
, y ≤ 0,

le dernier temps de passage du processus X(0) dessous de y. On définit une famille de

pssMp dont la représentation de Lamperti est donnée par

(0.4) X̂(x) =
(
x exp

{
ξ̂τ̂(t/x)

}
, 0 ≤ t ≤ xI(ξ̂)

)
, x > 0 ,

où

ξ̂ = −ξ, τ̂t = inf

{
s :

∫ s

0

exp
{
ξ̂u

}
du ≥ t

}
, et I(ξ̂) =

∫ ∞

0

exp
{
ξ̂s

}
ds.

Par hypothèse, il est clair que le processus X̂(x) atteint 0 de manière continu en un un temps

aléatoire presque sûrement fini qui est égal à xI(ξ̂).

Pour simplifier la notation, on fixe Γ = X
(0)
Ux−

et on note par K, le support de la loi de Γ.

PROPOSITION 1. La loi du processus X̂(x) est une version régulière de la loi du pro-

cessus

X̂
(def)
=

(
X

(0)
(Ux−t)−, 0 ≤ t ≤ Ux

)
,

conditionnellement á {Γ = x}, x ∈ K.

Grâce à cette proposition, on obtient la décomposition suivante du processus X̂ . Soit

(xn) une suite décroissante de réels strictement positifs qui converge vers 0. Pour y > 0,

on définit

Ŝy = inf
{

t : X̂t ≤ y
}

.

Entre les temps de passage Ŝxn et Ŝxn+1 , le processus peut être décrit de la manière suiv-

ante :
(
X̂Ŝxn

, 0 ≤ t ≤ Ŝxn+1 − Ŝxn

)
=

(
Γn exp

{
ξ̂

(n)

τ̂ (n)(t/Γn)

}
, 0 ≤ t ≤ Hn

)
, n ≥ 1,
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où les processus ξ̂(n), n ≥ 1 sont indépendants et ont tous la même loi que ξ̂. La suite (ξ̂(n))
est indépendante de Γ et

τ̂
(n)
t = inf

{
s :

∫ s

0

exp
{
ξ̂(n)
u

}
du ≥ t

}

Hn = Γn

∫ T̂ (n)(log(xn+1/Γn))

0

exp
{
ξ̂(n)
s

}
ds

Γn+1 = Γn exp
{

ξ̂
(n)

T̂ (n)(log xn+1/Γn)

}
, n ≥ 1, Γ1 = Γ,

T̂ (n)
z = inf

{
t : ξ̂

(n)
t ≤ z

}
.

Pour chaque n, Γn est indépendant de ξ(n) et

(0.5) x−1
n Γn

(d)
= x−1

1 Γ .

En particulier, le temps Uxn peut être décomposé en la somme

Uxn =
∑

k≥n

Γk

∫ T̂
(k)
log(xk+1/Γk)

0

exp
{

ξ̂(k)
s

}
ds , p.s.

Comme conséquence de ces résultats, on a l’identité en loi suivante :

Ux
(d)
=

x

x1
ΓI(ξ̂) .

Il est important de remarquer qu’on a les mêmes résultats pour x assez grand.

La dernière partie du premier chapitre est consacrée au pMasp sans saut positif qui est

une classe remarquable des processus de Markov auto-similaires. Des propriétés trajecto-

rielles de tels processus peuvent être développées sous une forme simple et complète. En

particulier, on obtient une nouvelle construction du processus X(0) faisant intervenir ses

derniers temps de passage.

Soient (xn) une suite décroissante de réels strictement positifs qui converge vers 0 et (ξ(n))
une suite de processus de Lévy indépendants et ayant tous la même loi que ξ. On définit,

Y
(xn)
t = xn exp

{
ξ̄

(n)

τ̄ (n)(t/xn)

}
for t ≥ 0, n ≥ 1,

où ξ̄(n) =
(
ξ

(n)

γ
(n)
0 +t

, t ≥ 0
)
, γ

(n)
z = sup

{
t ≥ 0 : ξ

(n)
t ≤ z

}
et

τ̄ (n)(t/xn) = inf
{

s ≥ 0 : Ā(n)
s > t/xn

}
et Ā(n)

s =

∫ s

0

exp
{

ξ̄(n)
u

}
du,

ainsi que

σ(n) = sup
{

t ≥ 0 : Y
(xn)
t ≤ xn−1

}
.
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PROPOSITION 2. Soit Σ′
n =

∑
k≥n σ(k), alors pour chaque n, 0 < Σ′

n < ∞ p.s. En

plus, le processus

(0.6) Y
(0)
t =





Y
(x1)

t−Σ′
2

si t ∈ [Σ′
2,∞[,

Y
(x2)

t−Σ′
3

si t ∈ [Σ′
3, Σ

′
2[,

...

Y
(xn)

t−Σ′
n+1

si t ∈ [Σ′
n+1, Σ

′
n[,

...

, Y
(0)
0 = 0,

est bien défini et est continu à droite sur [0,∞) et l’on a les propriétés suivantes :

i) Le processus Y (0) admet des limites à gauche sur (0,∞), limt→∞ Y
(0)
t = +∞,

p.s. et Y (0) > 0, p.s. pour tout t ≥ 0.

ii) La loi du processus Y (0) ne dépend pas de la suite (xn).
iii) La famille des mesures de probabilités (Qx, x > 0) converge faiblement sur D

vers la loi du processus Y (0), quand x tend vers 0.

Le résultat suivant nous donne une égalité en loi entre le processus Y (0) et le processus

limite X(0) défini par la construction de Caballero et Chaumont.

THÉORÈME 1. Les processus Y (0) et X(0), définis par la construction de Caballero et

Chaumont, ont la même loi. De plus :

i) Le processus Y (0) satisfait la propriété de scaling, i.e. pour k > 0,
(
kY

(0)

k−1t, t ≥ 0
)

a la même loi que Y (0).

ii) Le processus Y (0) est fortement markovien et a le même semi-groupe de transition

que (X, Px) pour x > 0.

Une importante application de ces deux constructions est qu’on peut déterminer la loi

du processus X(0) retourné au dernier et premier temps de passage sans utiliser la théorie du

retournement de temps de Nagasawa. Rappelons que dans la Proposition 1, on a déterminé

la loi du processus X(0) retourné au dernier temps de passage dans le cas général. Il reste

seulement à étudier, en utilisant la construction de Caballero et Chaumont dans notre cas

particulier, la loi du processus X(0) retourné au premier temps de passage. Définissons

d’abord, pour chaque y > 0, le processus

X̃
(y)
t = y exp

{
ξ̃τ̃(t/y)

}
t ≥ 0,

où

τ̃t = inf
{

s ≥ 0 : Is

(
ξ̃
)

> t
}

, Is

(
ξ̃
)

=

∫ s

0

exp
{
ξ̃u

}
du,

et ξ̃ = (−ξγ0+t, t ≥ 0).

Par hypothèse, on peut déduire que le processus X̃(y) atteint 0 de manière continue en un

temps aléatoire presque sûrement fini, noté par ρ̃(y) = inf{t ≥ 0, X̃
(y)
t = 0}.

PROPOSITION 3. Les processus
(
X

(0)
(Sx−t)−, 0 ≤ t ≤ Sx

)
et

(
X̃

(x)
t , 0 ≤ t ≤ ρ̃(x)

)
ont

la même loi.

Grâce à ce dernier résultat et à la Proposition 1, on obtient les égalités en loi suivantes

Sx
(L)
= x

∫ ∞

0

exp
{
− ξγ(0)+s

}
ds et Ux

(L)
= x

∫ ∞

0

exp
{
− ξs

}
ds.
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On déduit des constructions de Caballero et Chaumont (cas sans saut positif) et de la Propo-

sition 2 que les processus (Sx, x ≥ 0) et (Ux, x ≥ 0) sont auto-similaires, croissants et ses

accroissements sont indépendants.

Le deuxième chapitre est consacré à l’étude du comportement asymptotique des pssMp

et de leur infimum futur en 0 et en +∞. Plusieurs résultats partiels ont été établis sur ce

sujet, en particulier pour les processus de Bessel, subordinateurs stables, pMasp croissants

et processus de Lévy stables conditionnés à rester positifs.

L’enveloppe inférieure pour les processus de Bessel a été étudiée par Dvoretzky et Erdős

[DvEr51]. Selon ces auteurs l’enveloppe inférieure pour un processus de Bessel de di-

mension δ > 2 et issu de 0, désigné par X(0), satisfait le test intégral suivant : soit f une

fonction positive et croissante qui diverge quand t tend vers +∞, alors

P

(
X

(0)
t < f(t), infiniment souvent lorsque t → 0

)
= 0 ou 1,

suivant que l’intégrale

∫

0+

(
f(t)

t

) δ−2
4 dt

t
est finie ou infinie.

La propriété d’inversion de temps des processus de Bessel induit le même test intégral pour

le comportement en +∞ de X(x), x ≥ 0.

Le cas du subordinateur stable a été d’abord étudié par Fristed [Fris64] et récemment

généralisé au cas de pssMp croissants par Rivero [Rive03] qui a prouvé la loi du logarithme

itéré suivante : soit ξ un subordinateur dont l’exposant de Laplace φ est à variation régulière

en +∞ avec indice β ∈ (0, 1). On définit la fonction

f(t) =
φ(log | log t|)

log | log t| , t 6= e, t > 0,

alors le pMasp X(x) associé au subordinateur ξ par la représentation de Lamperti, satisfait

pour tout x ≥ 0,

lim inf
t→+∞

X
(x)
t

tf(t)
= (1 − β)(1−β) presque sûrement,

et

lim inf
t→0

X
(0)
t

tf(t)
= (1 − β)(1−β) presque sûrement.

Le résultat suivant étend le test intégral pour le processus de Bessel et la loi du loga-

rithme itéré pour le pssMp croissants. Pour simplifier les notations, posons

I
(def)
=

∫ ∞

0

exp
{
− ξs

}
ds et Iq

(def)
=

∫ T̂−q

0

exp
{
− ξs

}
ds, q > 0,

où T̂x = inf{t : ξ̂t ≤ x}, pour x ≤ 0, ainsi que

F (t)
(def)
= P(I > t) et Fq(t)

(def)
= P(Iq > t) .

THÉORÈME 2. L’enveloppe inférieure du processus X(0) en 0 se décrit de la manière

suivante :

Soit f une fonction croissante.
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(i) Si ∫

0+

F

(
t

f(t)

)
dt

t
< ∞ ,

alors pour tout ε > 0,

P

(
X

(0)
t < (1 − ε)f(t), infiniment souvent lorsque t → 0

)
= 0 .

(ii) Si pour tout q > 0,
∫

0+

Fq

(
t

f(t)

)
dt

t
= ∞ ,

alors pour tout ε > 0,

P

(
X

(0)
t < (1 + ε)f(t), infiniment souvent lorsque t → 0

)
= 1 .

(iii) Supposons que t 7→ f(t)/t est croissante. S’il existe γ > 1 tel que,

lim sup
t→+∞

P(I > γt)

P(I > t)
< 1 et si

∫

0+

F

(
t

f(t)

)
dt

t
= ∞ ,

alors pour tout ε > 0,

P

(
X

(0)
t < (1 + ε)f(t), infiniment souvent lorsque t → 0

)
= 1 .

Le même résultat est satisfait en +∞ pour le processus X(x), x ≥ 0. Dans la suite

de cette introduction, nous énoncerons seulement les tests intégraux en 0 car le mêmes

résultats sont satisfaits en +∞, pour tout point de départ x ≥ 0.

Remarque: Rappelons que on a supposé que α = 1. Pour obtenir les test intégraux

pour tout index strictement positive α, il suffit de considérer le processus (X(0))1/α dans le

résultat précédent. La même remarque vaut pour les résultats suivants.

Maintenant, on introduit l’infimum futur du processus X(x) qui est défini par

J
(x)
t = inf

s≥t
X(x)

s , t ≥ 0.

Notons que le processus de l’infimum futur J (x) = (J
(x)
t , t ≥ 0) est un processus auto-

similaire croissant. Grâce à l’hypothèse (H), on a que le processus J (x) diverge quand t
tend vers +∞ pour x ≥ 0.

La preuve du Théorème 2 dépend de la décomposition de la trajectoire du processus X(0)

présentée après la Proposition 1 et du comportement asymptotique des derniers temps de

passage. Comme le processus de l’infimum futur peut être vu comme l’inverse généralisé

des derniers temps de passage de X(0), sans perdre de généralité, on peut remplacer X(0)

par son infimum futur dans le Théorème 2, ainsi que pour la version de ce résultat en +∞.

Dans la deuxième partie de ce chapitre, on va étudier l’enveloppe supérieure des pssMp

et celle de ses infimums futurs. D’après Dvoretsky et Erdős [DvEr51], l’enveloppe supérieure

des processus de Bessel est décrite de la manière suivante : soient X(0) un processus de

Bessel de dimension δ > 2 et f une fonction positive croissante qui diverge quand t tend

vers +∞, alors

P

(
X

(0)
t > f(t), infiniment suivant lorsque t → 0

)
= 0 ou 1,
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suivant que l’intégrale
∫

0+

(
f(t)

t

)δ

exp
{
− f2(t)/2

}dt

t
est finie ou infinie.

Ce test intégral est connu comme le test intégral de Kolmogorov-Dvoretzky-Erdős. Le

comportement en +∞, comme dans le cas de l’enveloppe inférieure, se déduit de la pro-

priété de l’inversion de temps du processus de Bessel. On peut aussi déduire de ce test

intégral la loi du logarithm itéré suivante :

lim sup
t→0

X
(0)
t√

2t log log t
= 1, et lim sup

t→+∞

X
(0)
t√

2t log log t
= 1, presque sûrement.

Le comportement asymptotique de J (0), l’infimum futur des processus de Bessel, a été

étudié par Khoshnevisan, Lewis et Li [Khal94] ainsi que le comportement asymptotique du

processus de Bessel réflechi en son infimum futur. Les auteurs ont obtenu dans [Khal94]

les lois du logarithme itéré suivantes :

lim sup
t→+∞

J
(0)
t√

2t log log t
= 1, et lim sup

t→+∞

X
(0)
t − J

(0)
t√

2t log log t
= 1, presque sûrement.

Dans [Khal94], Khoshnevisan et al. ont donné un test intégral qui décrit la classe des

fonctions qui sont plus grandes que l’infimum futur. Plus précisement, soit f(t) =
√

th(t)
une fonction croissante, qui diverge quand t tends vers +∞, la condition

∫ +∞

1

(
f(t)

)δ−2
exp

{
− f 2(t)/2

}dt

t
< ∞,

implique que

P

(
J

(0)
t > f(t), infiniment souvent lorsque t → +∞

)
= 0.

L’enveloppe supérieure des subordinateurs stables a été étudi par Khinchin [Khin38]

où il a obtenu le test intégral suivant : si X(0) désigne un subordinateur stable d’indice

α ∈ (0, 1) et f une fonction positive croissante telle que t 7→ f(t)/t est aussi croissante,

alors

P

(
X

(0)
t > h(t), infiniment souvent lorsque t → 0

)
= 0 ou 1,

suivant que l’intégrale
∫

0+

(
h(t)

)−α
dt est finie ou infinie.

Il existe une loi du logarithme itéré pour les processus de Lévy stable sans sauts positifs

conditionnés à rester positifs. En fait, cette loi a été montrée par Bertoin [Bert95] pour tout

processus de Lévy sans sauts positifs conditionné à rester positif. Plus précisement, soit

X(0) un processus de Lévy stable sans sauts positifs conditionné à rester positif d’indice

α ∈ (1, 2], alors il existe une constante c > 0 telle que

lim sup
t→0

X
(0)
t

t1/α(log | log t|)1−1/α
= c, presque sûrement.

Les test intégraux qu’on va présenter maintenant généralisent les résultats décrits ci-dessous.

Tout d’abord nous allons étudier l’enveloppe supérieure pour l’infimum futur du processus

X(0). On définit

F̄ν(t)
(def)
= P

(
νI < t

)
et F̄ (t)

(def)
= P

(
I < t

)
,
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où ν est indépendante de I et a même loi que x−1
1 Γ. Notons par H0 la famille des fonctions

h(t) positives croissantes qui satisfont

i) h(0) = 0, et

ii) il existe β ∈ (0, 1) tel que sup
t<β

t

h(t)
< ∞.

THÉORÈME 3. Soit h ∈ H0.

i) Si ∫

0+

F̄ν

(
t

h(t)

)
dt

t
< ∞,

alors pour tout ǫ > 0

P0

(
Jt > (1 + ǫ)h(t), infiniment souvent lorsque t → 0

)
= 0.

ii) Si ∫

0+

F̄

(
t

h(t)

)
dt

t
= ∞,

alors pour tout ǫ > 0

P0

(
Jt > (1 − ǫ)h(t), infiniment souvent lorsque t → 0

)
= 1.

Notons que dans le cas où le pssMp X(0) est croissant, le processus X(0) et son infimum

futur J (0) coı̈ncident ainsi que ses premiers et derniers temps de passage. Alors on déduit

que S1, le premier temps de passage de X(0) au-dessous de 1, a la même loi que νI et que

son enveloppe supérieure est décrite par le Théorème 3.

En général l’enveloppe supérieure des pssMp dépend du premier temps de passage. Dans le

cas ou il n’y a pas de sauts positifs, on sait que le processus du premier temps de passage a

des accroissements indépendants. Cette propriété nous permet d’obtenir le résultat suivant.

Définissons

F̃ (t)
(def)
= P

(
I
(
ξ̃
)

< t
)

et E
(def)
= E

(
log+ I

(
ξ̃
)−1

)
.

THÉORÈME 4. Soit h ∈ H0.

i) Si ∫

0+

F̃

(
t

h(t)

)
dt

t
< ∞,

alors pour tout ǫ > 0

P0

(
Xt > (1 + ǫ)h(t), infiniment souvent lorsque t → 0

)
= 0.

ii) Supposons que E soit fini. Si
∫

0+

F̃

(
t

h(t)

)
dt

t
= ∞,

alors pour tout ǫ > 0

P0

(
Xt > (1 − ǫ)h(t), infiniment souvent lorsque t → 0

)
= 1.

Dans le cas général ne semble pas facile de déterminer la loi du premier temps de

passage en termes du processus de Lévy associé. En plus le processus du premier temps

de passage n’a plus des accroissements indépendants, alors utiliser le même argument que

dans les résultats précédents ne paraı̂t pas une bonne idée. En fait le plus simple est de
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comparer l’enveloppe supérieure du processus X(0) avec l’enveloppe supérieure de son

infimum futur. Tout d’abord, on définit

G(t)
(def)
= P

(
S1 < t

)
.

PROPOSITION 4. Soit h ∈ H0.

i) Si ∫

0+

G

(
t

h(t)

)
dt

t
< ∞,

alors pour tout ǫ > 0

P

(
X

(0)
t > (1 + ǫ)h(t), infiniment souvent lorsque t → 0

)
= 0.

ii) Si ∫

0+

F̄

(
t

h(t)

)
dt

t
= ∞,

alors pour tout ǫ > 0

P

(
X

(0)
t < (1 − ǫ)h(t), infiniment souvent lorsque t → 0

)
= 1.

Les chapitres suivants concernent les applications des test intégraux qu’on vient d’établir.

Dans le chapitre 3, on étudie le cas où les queues des probabilités F (t), F̄ (t) et F̄ν(t) sont

à variations régulières. Sous l’ hypothèse que

F (t) ∼ λt−γL(t), t → +∞,

où λ, γ > 0 et L est une fonction à variations lentes en +∞, on obtient que le test intégral

pour l’enveloppe inférieure (Théroème 2) ne dépend plus de ǫ. En plus, on a que pour tout

q > 0

(1 − eγq)F (t) ≤ Fq(t) ≤ F (t), t → +∞,

ce qui implique que l’enveloppe inférieure dépend seulement du comportement de F (t).
Maintenant, on suppose que

(0.7) ctαL(t) ≤ F̄ (t) ≤ F̄ν(t) ≤ CtαL(t), t → 0,

où α > 0, c et C sont deux constantes positives telles que c ≤ C et L(t) est une fonction à

variations lentes en 0. Comme dans le cas de l’enveloppe inférieure, on obtient que le test

intégral pour l’enveloppe supérieure de l’infimum futur (Théorème 3) ne dépend plus de ǫ.
Par (0.7), il est clair Théorème 3 dépend seulement du comportement de F̄ (t). Une chose

très importante à remarquer est que la queue de la loi du premier temps de passage satisfait

que

ctαL(t) ≤ G(t) ≤ KtαL(t), t → 0,

où K ≥ C. Ansi, grâce à la Proposition 4, l’enveloppe supérieure de X(0) et celle de son

infimum futur sont les mêmes.

Le cas où − log F (t), − log F̄ (t) et − log F̄ν(t) sont à variation régulières est étudié

dans le chapitre 4. En particulier, sous ce type de comportement, on obtient des lois du

logarithme itéré. Le résultat obtenu pour l’enveloppe inférieure généralise le résultat de

Rivero [Rive03] pour les pMasp croissants. On suppose que

− log F (t) ∼ λtβL(t) , quand t → ∞,
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où λ > 0, β > 0 et L est une fonction à variations lente en +∞. Définissons la fonction Φ
par

Φ(t)
(def)
=

t

inf{s : 1/F (s) > | log t|} , t > 0 , t 6= 1 .

Alors l’enveloppe inférieure de X(0) est décrite par

(i)

lim inf
t→0

X
(0)
t

Φ(t)
= 1 , presque sûrement.

(ii) Pour tout x ≥ 0,

lim inf
t→+∞

X
(x)
t

Φ(t)
= 1 , presque sûrement.

Maintentant on suppose que

− log F̄ν(1/t) ∼ − log F̄ (1/t) ∼ λtβL(t), quand t → +∞,

où λ, β > 0 et L est une fonction à variations lente en +∞. Sous cette hypothèse, on a que

− log G(1/t) ∼ λtβL(t) quand t → +∞,

ce qu’implique que l’enveloppe supérieure de X(0) et l’enveloppe supérieure de son infi-

mum futur satisfont la même loi de logarithme itéré mais elles ne satisfont pas nécessairement

le même test intégral. Définissons la fonction

Ψ̄(t)
(def)
= t inf

{
s : 1/F̄ (1/s) > | log t|

}
, t > 0, t 6= 1,

alors l’enveloppe supérieure de X(0) et son infimum futur J (0) satisfont :

i)

lim sup
t→0

X
(0)
t

Ψ̄(t)
= 1 et lim sup

t→0

J
(0)
t

Ψ̄(t)
= 1, presque sûrement.

ii) Pour tout x ≥ 0,

lim sup
t→+∞

X
(x)
t

Ψ̄(t)
= 1 et lim sup

t→0

J
(x)
t

Ψ̄(t)
= 1, presque sûrement.

En plus sous l’hypothèse d’absence de saut positifs, le processus X(0) réflechi en son infi-

mum futur satisfait la même loi du logarithme itéré, i.e. pour tout x ≥ 0,

lim sup
t→0

X
(0)
t − J

(0)
t

Ψ̄(t)
= 1 et lim sup

t→∞

X
(x)
t − J

(x)
t

Ψ̄(t)
= 1, presque sûrement.

Finalement, dans le chapitre 5, on traite le cas où X(0) est un processus de Bessel transient.

En particulier, on obtient un nouveau test intégral pour l’enveloppe supérieure de l’infimum

futur de X(0) qui étend le test intégral obtenu par Khoshnevisan et al. [Khal94].

THÉORÈME 5. Soit h ∈ H0, alors :

i) Si ∫

0+

(
h(t)/2t

) δ−4
2

exp
{
− h(t)/2t

}dt

t
< ∞,

alors pour tout ǫ > 0

P

(
J

(0)
t > (1 + ǫ)h(t), infiniment souvent lorsque t → 0

)
= 0.
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ii) Si ∫

0+

(
h(t)/2t

) δ−4
2

exp
{
− h(t)/2t

}dt

t
= ∞,

alors pour tout ǫ > 0

P

(
J

(0)
t > (1 − ǫ)h(t), infiniment souvent lorsque t → 0

)
= 1.

Dans le même chapitre, on obtient aussi un nouveau test intégral pour l’enveloppe

supérieure de X(0).

THÉORÈME 6. Soit h ∈ H0,

i) Si
∫

0+

(
h(t)

t

) δ−2
2

exp

{
−h(t)

2t

}
dt

t
< ∞,

alors pour tout ǫ > 0

P

(
X

(0)
t > (1 + ǫ)h(t), infiniment souvent lorsque t → 0

)
= 0.

ii) Si
∫

0+

(
h(t)

t

) δ−2
2

exp

{
−h(t)

2t

}
dt

t
= ∞,

alors pour tout ǫ > 0

P

(
X

(0)
t > (1 − ǫ)h(t), infiniment souvent lorsquet → 0

)
= 1.

Forêts de Lévy stables conditionnées.

Le but de cette deuxième partie est d’étudier des forêts de Lévy stables d’une taille donnée

et conditionnées par leur masse et d’établir un principe d’invariance pour ces forêts condi-

tionnées.

L’objet de base est l’arbre de Galton-Watson de loi de reproduction µ. Dans toute la suite,

un élément u de (N∗)n, où N∗ = {1, 2, . . .}, s’écrit u = (u1, . . . un) et on fixe |u| = n. Soit

U =
∞⋃

n=0

(N∗)n,

avec la convention (N∗)0 = {∅}. La concaténation de deux éléments de U, par exemple

u = (u1, . . . un) et v = (v1, . . . , vm) est désignée par uv = (u1, . . . un, v1, . . . , vm). Un

arbre discret enraciné est un élément τ de U qui satisfait:

(i) ∅ ∈ τ ,

(ii) Si v ∈ τ et v = uj pour j ∈ N∗, alors u ∈ τ ,

(iii) Pour tout u ∈ τ , il existe ku(τ) ≥ 0, tel que uj ∈ τ si et seulement si 1 ≤ j ≤
ku(τ).

Dans cette définition, ku(τ) représente le nombre d’enfants du sommet u. Dénotons par T

l’ensemble des arbres discrets ordonnés enracinés. Le cardinal d’un élément τ ∈ T sera

désigné par ζ(τ). Si τ ∈ T et u ∈ τ , alors on définit l’arbre discret issu de u dans τ par

θu(τ) = {v ∈ U : uv ∈ τ} .
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Soit u ∈ τ , on dit que u est une feuille de τ si et seulement si ku(τ) = 0.

Considérons maintenant une mesure de probabilité µ sur Z+, telle que

∞∑

k=0

kµ(k) ≤ 1 and µ(1) < 1 .

La loi d’un arbre de Galton-Watson de loi de reproduction µ est l’unique mesure de proba-

bilité Qµ sur T telle que :

(i) Qµ(k∅(τ) = j) = µ(j), j ∈ Z+.

(ii) Pour tout j ≥ 1, avec µ(j) > 0, les arbres translatés θ1(τ), . . . , θj(τ) sont

indépendants sous la loi Qµ( · | k∅ = j) et leur loi conditionnelle est Qµ.

Une forêt de Galton-Watson de loi de reproduction µ est une suite finie ou infinie d’arbres

indépendants de Galton-Watson de loi de reproduction µ, qu’on désignera par F = (τk).
Il est bien connu qu’un processus de Galton-Watson associé à un arbre de Galton-Watson

ne code pas entièrement sa généalogie. Par contre le processus d’exploration, le processus

de contour, le processus de hauteur et la marche aléatoire de codage contiennent toute

l’information contenue dans l’arbre ou la forêt associée.

Désignons par uτ (0) = ∅, uτ (1) = 1, . . . , uτ (ζ − 1) les sommets d’un arbre τ qui sont

ordonnés dans l’ordre lexicographique.

(1) La fonction des hauteurs de τ est définie par

n 7→ Hn(τ) = |u(n)|, 0 ≤ n ≤ ζ(τ) − 1 .

(2) La fonction des hauteurs de la forêt F = (τk)k≥1 est définie par

n 7→ Hn(F) = Hn−(ζ(τ0)+···+ζ(τk−1))(τk),

si ζ(τ0) + · · · + ζ(τk−1) ≤ n ≤ ζ(τ0) + · · · + ζ(τk) − 1,

pour k ≥ 1, et avec la convention ζ(τ0) = 0.

Une deuxième façon de coder l’arbre de Galton-Watson est d’en dessiner le contour : imag-

inons que l’arbre soit injecté dans le demi-plan orienté dans les sens direct et que les arêtes

de l’arbre injecté sont des segments de longueur 1. Supposons qu’une particule parcourt

l’arbre de gauche à droite, en partant de la racine, à vitesse unité. Chaque arête est par-

courue deux fois : une fois en montant et une fois en descendant, si bien que la particule

met un temps égal à deux fois le nombre total d’arêtes de l’arbre pour revenir à la racine.

Le processus de contour et le processus des hauteurs sont proches l’un de l’autre et le pro-

cessus de contour peut être obtenu à partir du processus des hauteurs comme suit : posons

Kn = 2n − Hn(τ), alors

(0.8) Ct(τ) =

{
(Hn(τ) − (t − Kn))+ si t ∈ [Kn, Kn+1 − 1),
(t − Kn+1 + Hn+1(τ))+, si t ∈ [Kn+1 − 1, Kn+1),

Le processus de contour pour une forêt F = (τk) est défini par

Ct(F) = Ct−2(ζ(τ0)+···+ζ(τk−1))(τk), if 2(ζ(τ0)+· · ·+ζ(τk−1)) ≤ t ≤ 2(ζ(τ0)+· · ·+ζ(τk)).

Signalons qu’en général ni le processus des hauteurs ni le processus de contour n’ont une

loi facile à décrire. En particulier ne sont pas des processus de Markov.

On peut également coder un arbre de Galton-Watson par un processus dont la loi peut

facilement être décrite, la pluspart des auteurs l’appellent la marche associée S(τ) qui est

définie comme suit :

S0 = 0 , Sn+1(τ) − Sn(τ) = ku(n)(τ) − 1, 0 ≤ n ≤ ζ(τ) − 1 .
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Ici nous l’appellerons la marche aléatoir de codage. Clairement il est possible de reconstru-

ire τ à partir de S(τ). Pour chaque n, Sn(τ) est la somme de frères plus jeunes de chaque

ancêtre u(n) en incluant u(n) lui-même. Pour une forêt F = (τk), le processus S(F) est

la concaténation de S(τ1), . . . , S(τn), . . . :

Sn(F) = Sn−(ζ(τ0)+···+ζ(τk−1))(τk) − k + 1,

si ζ(τ0) + · · · + ζ(τk−1) ≤ n ≤ ζ(τ0) + · · · + ζ(τk).

On remarque que les sauts de S(τ1) sont plus grands ou égaux à −1. De plus, S(τ1)n ≥ 0
pour tout n ∈ {0, . . . , ζ(τ1) − 1} et S(τ1)ζ(τ1) = −1.

Rappelons l’égalité

Hn = card
{
0 ≤ k ≤ n : Sk = inf

k≤j≤n
Sj

}

qui est établie dans [DuLG02, LGLJ98]. On peut interpréter cette égalité, pour chaque n,

comme le temps que passe la marche aléatoire S en son minimum futur avant n.

Désignons par Fk,n la forêt de Galton-Watson avec k arbres conditionnée à avoir n som-

mets, c’est à dire la forêt avec la même loi que F = (τ1, . . . , τk) sous la loi Qµ( · | ζ(τ1) +
· · · + ζ(τk) = n). Le point de départ de cette deuxième partie est le fait que Fk,n peut être

codée par une marche aléatoire conditionnée à passer en −k pour la première fois au temps

n. Une interprétation de ce résultat se trouve dans [Pitm02], Lemme 6.3.

PROPOSITION 5. Soient F = (τj) une forêt de Galton-Watson avec loi de reproduction

µ et S et H sa marche aléatoire de codage et son processus des hauteurs. Soit W une

marche aléatoire définie dans une espace de probabilité (Ω,F , P ) ayant la même loi que

S. On définit TW
i = inf{j : Wj = −i}, pour i ≥ 1. On choisit k et n tels que P (TW

k =
n) > 0. Alors sous la loi Qµ( · | ζ(τ1) + · · · + ζ(τk) = n),

(1) le processus (Sj, 0 ≤ j ≤ ζ(τ1) + · · · + ζ(τk)) a la même loi que (Wj, 0 ≤ j ≤
TW

k ).

Définissons les processus HW
n = card

{
k ∈ {0, . . . , n − 1} : Wk = infk≤j≤n Wj

}
et CW

en utilisant HW comme dans (0.8), alors

(2) le processus (Hj, 0 ≤ j ≤ ζ(τ1) + · · · + ζ(τk)) a même loi que (HW
j , 0 ≤ j ≤

TW
k )’

(3) le processus (Ct, 0 ≤ 0 ≤ t ≤ 2(ζ(τ1) + · · · + ζ(τk) − k)) a même loi que

(CW
t , 0 ≤ t ≤ 2(TW

k − k)).

Introduisons les objets “continus” correspondant aux objets discrets évoqués précédemment.

Tout d’abord les processus de Lévy sans sauts négatifs sont les analogues des marches

aléatoires codant les arbres de Galton-Watson.

Soit X un processus de Lévy sans sauts négatifs dont l’exposant de Laplace ψ, défini par

E(e−λXt) = etψ(λ) pour λ ∈ IR+, satisfait la condition suivante :

(0.9)

∫ ∞

1

du

ψ(u)
< ∞ .

Le processus des hauteurs, noté H̄ = (H̄t, t ≥ 0) associé à X est défini pour chaque t ≥ 0,

comme la “mesure” de l’ensemble :
{

s ≤ t : Xs = inf
s≤r≤t

Xr

}
.

Une signification rigoureuse à cette mesure est donnée par le résultat suivant dû à Le Jan

and Le Gall [LGLJ98] : Il existe une suite des réels positifs (εk) qui converge vers 0, telle
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que pour chaque t,

H̄t
(def)
= lim

k→+∞

1

εk

∫ t

0

1I{Xs−Is
t <εk} ds existe p.s.,

où Is
t = infs≤u≤t Xu. Les auteurs dans [LGLJ98] ont aussi montré que sous la condition

(0.9), H̄ est un processus continu.

De la définition précédente, on peut déduire que H̄ est une fonctionnelle du processus de

Lévy réflechi en son minimum, c’est-à-dire X − I où I = I0. Il est bien connu que le

processus réflechi X − I est un processus de Markov et que −I est son temps local en 0.

On va désigner par N la mesure des excursions en dehors de 0.

Dans [DuLG02], Duquesne et Le Gall ont montré l’existence d’un processus croissant

continu (La
t , t ≥ 0) qui est défini par:

lim
ε↓0

E

(
sup

0≤s≤t

∣∣∣∣
1

ε

∫ s

0

du1I{a<H̄u≤a+ε} − La
s

∣∣∣∣
)

= 0 .

Le support de la mesure dLa
t est contenu dans {t ≥ 0 : H̄t = a} et en plus L0 = −I . Ceci

permet de définir un processus de Poisson ponctuel à partir des excursions du processus H̄
en dehors de 0.

Pour définir la version “continue” des arbres de Galton-Watson, on doit d’abord introduire

la notion d’arbre réel.

DÉFINITION 1. On dit qu’un espace métrique (T , d) est un arbre réel si pour tous

σ1, σ2 ∈ T ,

1. Il existe une isométrie fσ1,σ2 de [0, d(σ1, σ2)] vers T telle que fσ1,σ2(0) = σ1 et

fσ1,σ2(d(σ1, σ2)) = σ2.

2. Si g est une application continue injective de [0, 1] dans T telle que g(0) = σ1 et

g(1) = σ2,

g([0, 1]) = fσ1,σ2([0, d(σ1, σ2)]) .

Un arbre réel enraciné est un arbre réel (T , d) avec un point distingué ρ = ρ(T ) appelé

la racine. Une forêt réelle est une famille d’arbres réels enracinés F = {(Ti, di), i ∈ I}.

Une construction de quelques cas particuliers de ces espaces métriques a été donnée

par Aldous [Aldo91] et récemment par Duquesne et Le Gall [DuLG05] dans un cadre

plus général. Soit f : [0,∞) → [0,∞) une fonction continu à support compact, telle que

f(0) = 0. Pour 0 ≤ s ≤ t, on définit

(0.10) df (s, t) = f(s) + f(t) − 2 inf
u∈[s,t]

f(u)

et la relation d’équivalence

s ∼ t si et seulement si df (s, t) = 0 .

(Notons que df (s, t) = 0 si et seulement si f(s) = f(t) = infu∈[s,t] f(u)). On vérifie que

la projection de df dans l’espace quotient

Tf = [0,∞)/ ∼
définit une distance qu’on note encore df ; (Tf , df ) est alors un arbre réel compact. Notons

pf : [0,∞) → Tf la projection canonique, le point ρ = pf (0) est choisi comme la racine

de l’arbre Tf .
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Soit Ts = inf{t : −It ≥ s} l’inverse généralisé du temps local en 0 du processus X − I .

Posons T0− = 0 et pour u ≥ 0

eu(v) =

{
H̄Tu−+v , if 0 ≤ v ≤ Tu − Tu−

0 , if v > Tu − Tu−
.

Pour chaque s ≥ 0, on définit l’arbre réel (Tes , des) sous P comme dans la construction

précédente et on déduit que sous la mesure de probabilité P, les processus (es, s ≥ 0) et

{(Tes , des), s ≥ 0} sont des processus de Poisson ponctuels. La mesure caractéristique du

processus (es, s ≥ 0) est la loi de H̄ sous la mesure des excursions N tandis que la mesure

caractéristique de {(Tes , des), s ≥ 0} est la loi de l’arbre réel (TH̄ , dH̄) sous N .

DÉFINITION 2. L’arbre de Lévy est l’arbre réel (TH̄ , dH̄) codé par la fonction u 7→ H̄u

sous la mesure N . Notons Θ(dT ) la mesure σ-finie sur Tc, l’espace des arbres réels, qui

est la loi de l’arbre de Lévy TH̄ sous N . La forêt de Lévy FH̄ est le processus de Poisson

ponctuel

(FH̄(u), u ≥ 0)
(def)
= {(Teu , deu), u ≥ 0}

avec mesure caractéristique Θ(dT ) sous P. Pour s ≥ 0, le processus

F s
H̄

(def)
= {(Teu , deu), 0 ≤ u ≤ s} sous P,

s’appellera la forêt de Lévy de taille s.

Duquesne et Le Gall [DuLG05] ont introduit la mesure ℓa,u qui représente la mesure

du temps local au niveau a ≥ 0 sur l’arbre de Lévy Teu . Pour tout a > 0 et toute fonction

ϕ continue, bornée sur Teu cette mesure est définie par :

(0.11) 〈ℓa,u, ϕ〉 =

∫ Tu−Tu−

0

dLa
Tu+vϕ(peu(v)) ,

où La est le temps local au niveau a de H̄ . Par conséquent, la mesure de la masse de l’arbre

de Lévy T est donnée par

(0.12) mTeu
=

∫ ∞

0

da la,u

et la masse totale de l’arbre se définit naturellement comme mTeu
(Teu). On désigne la

masse totale de l’arbre Teu par mu, i.e. mu
(def)
= mTeu

(Teu). La masse totale de la forêt de

taille s, F s
H̄

est alors

Ms =
∑

0≤u≤s

mu .

PROPOSITION 6. Ts = Ms, P-presque sûrement

Maintenant, on peut construire les processus qui codent la généalogie de la forêt de

taille s conditionnée avoir une masse egale à t. Informellement, on définit

Xbr (def)
= [(Xu, 0 ≤ u ≤ Ts) |Ts = t]

H
br (def)

= [(Hu, 0 ≤ u ≤ Ts) |Ts = t].

Si X est le mouvement Brownien, le processus Xbr est appelé le premier pont de passage,

(voir [BeCP03]). Afin de donner une définition appropriée dans le cas général, nous avons

besoin de l’hypothèse suivante:

Le semigroupe de (X, P) est absolument continu par raport à la mesure de Lebesgue.

Notons par pt(·) la densité du semigroupe de X et p̂t(x) = pt(−x).
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LEMME 1. La mesure de probabilité définie sur GX
t

(def)
= σ{Xu, u ≤ t} par

P(Xbr ∈ Λu) = E

(
1I{X∈Λu ,u<Ts}

t(s + Xu)

s(t − u)

p̂t−u(s + Xu)

p̂t(s)

)
, u < t Λu ∈ FX

u .

est une version régulière de la loi du processus (Xu, 0 ≤ u ≤ Ts) en sachant Ts = t, dans

le sens : pour tout u > 0, pour s > 0 λ−p.t.p. et t > u,

P(Xbr ∈ Λu) = lim
ε↓0

P(X ∈ Λu | |Ts − t| < ε) ,

où λ est la mesure de Lebesgue.

Maintenant, nous pouvons construire le processus des hauteurs H̄br de la trajectoire du

premier pont de passage Xbr de la même manière comme H̄ est construit à partir de X ou

dans la Définition 1.2.1 dans [DuLG02]. La loi du processus H̄br est une version régulière

de la loi du processus (H̄u, o ≤ u ≤ Ts) en sachant Ts = t. Notons (es,t
v , 0 ≤ v ≤ s) le

processus des excursions de H̄br, i.e.

(es,t
v , 0 ≤ v ≤ s) a la même loi (ev, 0 ≤ v ≤ s) en sachant que Ts = t .

PROPOSITION 7. La loi du processus {Tes,t
v

, des,t
v

), 0 ≤ v ≤ s} est une version régulière

de la loi de la forêt de taille s, F s
H̄

en sachant Ms = t.

Notons (F s,t

H̄
(u), 0 ≤ u ≤ s) pour le processus à valeurs dans Tc dont la loi sous P est

celle de la forêt de Lévy de taille s conditionné par Ms = t, i.e. conditionné a avoir une

masse égale à t.
Supposons maintenant que X soit un processus de Lévy stable de indice α. La condition

(0.9) est satisfaite si et seulement si α ∈ (1, 2). Le processus des hauteurs correspondant

H̄ est aussi auto-similaire d’indice α/(α − 1), i.e.:

(H t, t ≥ 0)
(d)
= (k1/α−1Hkt, t ≥ 0) , pour tout k > 0.

L’arbre de Lévy (TH̄ , dH̄) associé au mécanisme stable est appelé l’arbre de Lévy stable

d’indice α.

Le résultat suivant donne une construction trajectorielle du processus (Xbr, H
br

) à partir

de la trajectoire du processus (X, H).

THÉORÈME 7. Soit g = sup{u ≤ 1 : Tu1/α = s · u},

(1) P-presque sûrement,

0 < g < 1 .

(2) Sous P, le processus

(0.13) (g(1−α)/αH̄(gu), 0 ≤ u ≤ 1)

a la même loi que H̄br et en plus, il est indépendant de g.

(3) La forêt F s,1

H̄
de taille s et masse 1 peut être construite à partir du processus

(0.13), i.e. soit u 7→ ǫu
(def)
= (g(1−α)/αeu(gv), v ≥ 0) son processus des excursions

en dehors de 0, alors sous P, F s,1

H̄

(d)
= {(Tǫu , dǫu), 0 ≤ u ≤ s}.

D’après Lamperti [Lamp67, Lam67b], on sait que une suite de processus de Galton-

Watson normalisés converge vers le processus de branchement à espace d’états continu.

Une question assez naturelle est : quand peut-on dire que la généalogie d’un arbre ou

une forêt de Galton-Watson converge? En particulier, les processus des hauteurs et de

contour et la marche aléatoire de codage normalisés convergent-ils? Ces questions ont été

déjà étudiées par Duquesne and Le Gall [DuLG02]. Maintenant, on se pose les même
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questions pour les arbres ou forêt de Lévy conditionnés par leur taille et leur masse. Dans

[Duqu03], Duquesne a montré que quand la loi ν est dans le domaine d’attraction d’une

loi stable, le processus de hauteur, le processus de contour et la marche aléatoire de codage

associés á un arbre conditionné par sa masse converge en loi dans l’espace de Skorohod des

trajectoires càdlàg. Ce résultat généralise le résultat de Aldous [Aldo91] qui a étudie le cas

brownien. Notre but est de montrer dans le cas stable un principe d’invariance pour la forêt

de Galton-Watson conditionnée par leur taille et leur masse (le cas étudié par Duquesne

[Duqu03] devient alors le cas particulier ou la taille est égal à 0).

On suppose d’abord que:

(HA)





µ est apériodique et que il existe une suite croissante (an)n≥0

telle que an → +∞ et Sn/an converge en loi quand n → +∞
vers la loi d’un v.a. non dégénérée θ.

Notons qu’on est dans le cas critique, i.e.
∑

k kµ(k) = 1, et que la loi de θ est une loi

stable. En plus, grâce à que ν(−∞,−1) = 0, le support de la mesure de Lévy de θ est

[0,∞) et son indice α est tel que 1 < α ≤ 2. La suite (an) est une suite à variation

régulières d’indice α. Sous l’hypothèse (HA), Grimvall [Grim74] a montré que si Z est

un processus de Galton-Watson associé à la loi de reproduction µ, alors
(

1

an

Z[nt/an], t ≥ 0

)
⇒ (Zt, t ≥ 0) , as n → +∞,

où (Zt, t ≥ 0) est un processus de branchement à espace d’états continu. Dans la suite, ⇒
désigne la convergence faible dans l’espace de Skohorod des trajectoires càdlàg. Sous la

memê hypothèse, on a d’après Corollaire 2.5.1 dans Duquesne et Le Gall [DuLG02] que
[(

1

an

S[nt],
an

n
H[nt],

an

n
C2nt

)
, t ≥ 0

]
⇒

[
(Xt, H̄t, H̄t), t ≥ 0)

]
, quand n → +∞.

où X est le processus de Lévy stable ayant pour loi θ et H̄ est le processus des hauteurs

associé.

Fixons un réel s > 0 et considèrons une suite d’entiers positifs (kn) telle que

kn

an

→ s , quand n → +∞.

Pour chaque n ≥ 1, soient (Xbr,n, H̄br,n, Cbr,n) les processus dont les lois sont celles des
[(

1

an

S[nt],
an

n
H[nt],

an

n
C2nt

)
, 0 ≤ t ≤ 1

]
,

sous Qµ( · | ζ(τ1) + · · · + ζ(τkn) = n).

THÉORÈME 8. Quand n tend vers +∞, on a

(Xbr,n, H̄br,n, Cbr,n) =⇒ (Xbr, H̄br, H̄br).

Nous avons supposé que la taille de la forêt s est strictement positive. Ceci signifie que

notre résultat ne comprend pas le cas particulier d’un arbre conditionné par sa masse étudié

par Duquesne et que se traduirait par s = 0 dans le cas continu. Toutefois des arguments

proches de ceux que nous utilisons permettraient de démontrer le résultat dans ce cas.
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Asymptotic behaviour of positive self-similar

Markov processes.





Introduction.

A real self-similar Markov process X(x), starting from x is a càdlàg Markov process

which fulfills a scaling property, i.e., there exists a constant α > 0 such that for any constant

k > 0,

(0.14)
(
kX

(x)

k−αt, t ≥ 0
)

(d)
=

(
X

(kx)
t , t ≥ 0

)
.

For each x ∈ IR we denote by Px the law of the self-similar Markov process starting from

the state x.

Self-similar Markov processes often arise in various parts of probability theory as limit of

rescaled processes. Their properties were studied by the early sixties under the impulse of

Lamperti’s work [Lamp62]. The Markov property added to self-similarity provides some

interesting features, as noted by Lamperti himself in [Lamp72], where the particular case

of positive self-similar Markov processes is studied. These processes appear in certain

domains of probability theory, for instance we mention branching processes theory, frag-

mentation theory and exponential functionals of Lévy processes. Here, we will consider

positive self-similar Markov process and refer to them as pssMp. Some particularly well

known examples are Bessel processes, stable subordinators or more generally, stable Lévy

processes conditioned to stay positive.

Our aim is to describe the lower and the upper envelope at 0 and at +∞ through integral

tests and laws of the iterated logarithm of a large class of pssMp and some related processes,

as their future infimum and the pssMp reflected at its future infimum. A crucial point in

our arguments is the famous Lamperti representation of self-similar IR+-valued Markov

processes. This transformation enables us to construct the paths of any such process starting

from x > 0, say X(x), from those of a Lévy process. More precisely, Lamperti [Lamp72]

found the representation

(0.15) X
(x)
t = x exp

{
ξτ(tx−α)

}
, 0 ≤ t ≤ xαI(ξ) ,

under Px, for x > 0, where

τt = inf
{

s : Is(ξ) ≥ t
}

, Is(ξ) =

∫ s

0

exp
{

αξu

}
du , I(ξ) = lim

t→+∞
It(ξ) ,

and where ξ is a real Lévy process which is possibly killed at independent exponential time.

Note that for t < I(ξ), we have the equality

τt =

∫ xαt

0

(
X(x)

s

)−α

ds,

so that (0.15) is invertible and yields a one to one relation between the class of positive self-

similar Markov processes up to their first hitting time of 0 and the one of Lévy processes.

In this work, we consider pssMp’s which drift towards +∞, i.e.

lim
t→+∞

X
(x)
t = +∞, almost surely,
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and which fulfills the Feller property on [0,∞), so that we may define the law of a pssMp,

which we will call X(0), starting from 0 and with the same transition function as X(x),

for x > 0. Bertoin and Caballero [BeCa02] and Bertoin and Yor [BeYo02] proved that

a sufficient condition for the convergence of the family of processes X(x), as x ↓ 0, in

the sense of finite dimensional distributions towards a non degenerate process, denoted by

X(0), is that the underlying Lévy process ξ in the Lamperti representation satisfies

(H) ξ is non lattice and 0 < m
(def)
= E(ξ1) ≤ E(|ξ1|) < +∞ .

As proved by Caballero and Chaumont in [CaCh06], the latter condition is also a NASC

for the weak convergence of the family (X(x)), x ≥ 0 on the Skohorod’s space of càdlàg

trajectories. In the same article, the authors also provided a path construction of the process

X(0) that we will discuss in the following chapter. The entrance law of X(0) has been

described in [BeCa02] and [BeYo02] as follows: for every t > 0 and for every measurable

function f : IR+ → IR+,

(0.16) E

(
f

(
X

(0)
t

))
=

1

m
E

(
I(−αξ)−1f

(
tI(−αξ)−1

))
.

where

I(−αξ) =

∫ s

0

exp
{
− αξu

}
du.

From our hypothesis, it is clear that I(−αξ) < ∞ a.s.

Several partial results on the lower and upper envelope of X(0) have been established

before, particularly for the case of Bessel processes, stable subordinators and stable Lévy

processes conditioned to stay positive. The lower and upper envelope of Bessel processes

have been studied by Dvoretsky and Erdős [DvEr51]. They characterized the class of

lower and upper functions throughout integral tests. In a later work, Motoo [Moto58] gave

a simple and elegant proof of these results using the diffusion equation. More precisely,

when X(0) is a Bessel process with dimension δ > 2, we have the following integral test

for its lower envelope at 0: if f is an increasing positive and unbounded function as t goes

to +∞ then

P

(
X

(0)
t < f(t), i.o., as t → 0

)
= 0 or 1,

according as,
∫

0+

(
f(t)

t

) δ−2
4 dt

t
is finite or infinite.

The time inversion property of Bessel processes induces the same integral test for the be-

haviour at +∞, it is enough to replace

∫

0+

(
f(t)

t

) δ−2
4 dt

t
by

∫ +∞ (
f(t)

t

) δ−2
4 dt

t
.

According to Dvoretsky and Erdős [DvEr51], the upper envelope of Bessel processes

is as follows: let X(0) be a Bessel process of dimension δ > 2. If f is a nondecreasing,

positive and unbounded function as t goes to +∞ then

P

(
X

(0)
t > f(t), i.o., as t → 0

)
= 0 or 1,

according as,
∫

0+

(
f(t)

t

)δ

exp
{
− f2(t)/2

}dt

t
is finite or infinite.
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Similarly as for the lower envelope, the inversion property of Bessel processes induces the

same integral test for the behaviour at +∞. This integral test is known as the Kolmogorov-

Dvoretzky-Erdős integral test.

It is important to note that the upper envelope of a Bessel process of dimension δ > 2
is much smoother than its lower envelope. For example, let f(t) = tβ for β > 1, hence the

lower envelope satisfies

lim
t→0

X
(0)
t

tβ
= ∞, and lim inf

t→+∞

X
(0)
t

tβ
= 0 almost surely.

and when β < 1 we have

lim inf
t→0

X
(0)
t

tβ
= 0, and lim

t→+∞

X
(0)
t

tβ
= ∞ almost surely.

On the other hand, for the upper envelope we may obtain the following law of the iterated

logarithm,

lim sup
t→0

X
(0)
t√

2t log log t
= 1, and lim sup

t→+∞

X
(0)
t√

2t log log t
= 1 almost surely.

Now, we turn our attention to the future infimum of the Bessel process X(y) at time

t ≥ 0, defined by

J
(y)
t = inf

s≥t
X(y)

s .

Note that J (y) = (J
(y)
t , t ≥ 0), the future infimum process associated to the Bessel process

starting from y, inherits the scaling property and when the Bessel process is transient, i.e.

that it drifts towards +∞, the process J (y) drifts towards +∞ as well. From the above dis-

cussion, we deduce that the future infimum process associated to a transient Bessel process

is an increasing self-similar process which drift towards +∞.

The process J (0) has been investigated for the first time by Erdős and Taylor [ErTa62] who

were interested in the rate of escape of a random walk (Brownian motion) in space. Oko-

roafor and Ugbebor [OkUg91] and Khoshnevisan, Lewis and Li [Khal94] studied inde-

pendently the asymptotic behaviour of the future infimum process associated with a Bessel

process. Khoshnevisan et al. [Khal94] also studied the upper envelope of Bessel processes

reflected at their future infimum. In section 4 of [Khal94], the authors described the upper

envelope at +∞ of the future infimum process and that of Bessel processes reflected at

their future infimum throughout the following laws of the iterated logarithm:

lim sup
t→+∞

J
(0)
t√

2t log log t
= 1, and lim sup

t→+∞

X
(0)
t − J

(0)
t√

2t log log t
= 1 almost surely.

In the same work, Khoshnevisan et al. gave an integral test that describes the class of

functions that are bigger than the future infimum for sufficently large times. More precisely,

let φ(t) =
√

tψ(t) be a nondecreasing function of t > 0 and assume that φ(t) → +∞ as

t → +∞. The condition
∫ +∞

1

(
φ(t)

)δ−2
exp

{
− φ2(t)/2

}dt

t
< ∞,

implies that

P

(
J

(0)
t > φ(t), i.o., as t → +∞

)
= 0.
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Stable subordinators are increasing self-similar Markov processes with scaling index

α ∈ (0, 1). It is well-known that if X(0) is a stable subordinator, its Laplace transform is

given by

E

(
exp

{
− λX

(0)
t

})
= exp

{
−t

∫ +∞

0

(
1 − e−λx

)
x−(1+α)dx

}
,

see for instance Bertoin [Bert96]. Khinchin [Khin38] studied for the first time, the upper

envelope of stable processes, in particular if X(0) is a stable subordinator with index α ∈
(0, 1), the upper envelope of X(0) is as follows: suppose that h is an increasing positive

function such that the function t → h(t)/t increases as well. Then

P

(
X

(0)
t > h(t), i.o., as t → 0

)
= 0 or 1,

according as, ∫

0+

(
h(t)

)−α
dt is finite or infinite.

The same integral test holds at +∞, it is enough to replace
∫

0+

(
h(t)

)−α
dt by

∫ +∞ (
h(t)

)−α
dt.

Friested [Fris64] studied the lower envelope of stable subordinators and he found the fol-

lowing law of the iterated logarithm:

lim inf
t→0

X
(0)
t

t1/α(log | log t|)1−1/α
= α(1 − α)

1−α
α , almost surely.

Note that the same law of the iterated logarithm is satisfied for large times.

Bertoin [Bert95] studied the upper envelope of Lévy processes with no positive jumps

at a local minimum through a law of the iterated logarithm. Under the assumption that

Lévy processes do not have positive jumps, Bertoin [Bert95] proved that the sample path

behaviour of a Lévy process after a local minimum is the same as that of a Lévy pro-

cess conditioned to stay positive at the origin. In particular, we have the following law

of the iterated logarithm for stable Lévy processes conditioned to stay positive which are

themselves positive self-similar Markov processes: let X(0) be such a process with index

α ∈ (1, 2]. Then there exists a positive constant c such that

lim sup
t→0

X
(0)
t

t1/α(log | log t|)1−1/α
= c, almost surely.

In [Lamp72] (see Theorem 7.1), Lamperti used his representation to describe the as-

ymptotic behaviour of a pssMp starting from x > 0 in terms of the underlying Lévy pro-

cess. More precisely, let ξ be a Lévy process. Suppose ξ admits a law of the iterated

logarithm, this is for some function g : [0, +∞) → [0, +∞) and some constant c ∈ IR

lim inf
t→0

ξt

g(t)
= c or lim sup

t→0

ξt

g(t)
= c, almost surely.

Then for x > 0, X(x) its associated positive self-similar Markov process by (0.15) satisfies

lim inf
t→0

X
(x)
t − x

g(t)
= C(x, c) or lim sup

t→0

X
(x)
t − x

g(t)
= C(x, c), almost surely,
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where C(x, c) is a constant that only depends on x and c. We also cite Xiao [Xiao98] who

studied the asymptotic behaviour of self-similar Markov processes taking values in IRd or

IRd
+.

The most recent result concerns increasing pssMp and is due to Rivero [Rive03] who

gave the following law of the iterated logarithm: suppose that ξ is a subordinator who

satisfies condition (H) (see page 22) and whose Laplace exponent φ is regularly varying at

+∞ with index β ∈ (0, 1). Suppose that the density ρ, of the Lévy exponential functional

I(−ξ) of ξ satisfies that is decreasing in a neighborhood of +∞, and bounded. For α > 0
and x ≥ 0, let X(x) be the increasing positive self-similar Markov process associated to ξ
with scaling index α. Define

f(t) =
φ(log | log t|)

log | log t| , t 6= e, t > 0,

then

lim inf
t→0

X
(0)
t

(tf(t))1/α
= αβ/α(1 − β)(1−β)/α almost surely,

and for any x ≥ 0

lim inf
t→+∞

X
(x)
t

(tf(t))1/α
= αβ/α(1 − β)(1−β)/α almost surely.

The examples presented above belong to the class of pssMp that drift towards +∞. It

is important to note that the underlying Lévy process in the Lamperti representation of a

pssMp that belongs to such class satisfies condition (H) (see page 22). Our aim is to obtain

general results on the asymptotic behaviour of such processes. With this purpose, we will

begin in Chapter 1 with some path properties of pssMp which are important tools for the

development of this work. In particular, we present the construction of Caballero and

Chaumont [CaCh06], which allows us to decompose the path of pssMp X(0) at their first

passage times, and also a path decomposition of X(0) at their last passage times. Finally,

we give special attention to the case of absence of positive jumps on the paths of pssMp

where we will present an analogous construction of X(0) and a time reversal property of

X(0) at its first passage times.

Chapter 2 is devoted to our general integral tests. We first present integral test for the

lower envelope of pssMp and we go further with the study of the upper envelope of its

future infimum. We will note that the upper envelope of pssMp is not easy to determine

in a complete form, except for the increasing case and under the assumption of absence of

positive jumps. Using the upper envelope of the future infimum, we will give an integral

test for the upper envelope of pssMp which will be very useful for our applications.

Chapters 3 and 4, are devoted to the applications of our main integral test to the regular

and log-regular cases, respectively. In Chapter 3, we will suppose that the tail probabilities

that appear in our integral test are regularly varying functions and in Chapter 4 , we will as-

sume that the logarithm of the mentioned tail probabilities are regularly varying functions.

Finally in Chapter 5, we will present some new results on the upper envelope of the

future infimum of transient Bessel processes and we also give a variant of the Kolmogorov-

Dvoretsky-Erdős integral test for the upper envelope of transient Bessel processes.





CHAPTER 1

Path properties of positive self-similar Markov processes.

In this chapter, we present path properties of positive self-similar Markov processes

which will be important tools for the study of their asymptotic behaviour. In particular,

a path decomposition of the pssMp X(0) at its last passage times is established via Naga-

sawa’s time reversal theory. Under the assumption of absence of positive jumps, we also

establish a new construction of X(0) at its last passage times and a time reversal property

of pssMp at its first passage time via Caballero and Chaumont’s construction.

1. Preliminaries and Caballero and Chaumont’s construction.

Let D be the space of Skorokhod of càdlàg paths with a probability measure P under

which ξ will always denote a real Lévy process such that ξ0 = 0. Let Π be the Lévy

measure of ξ, that is the measure satisfying
∫

(−∞,∞)

(
1 ∧ x2

)
Π(dx) < ∞,

and such that the characteristic exponent Ψ, defined by

E

(
exp

{
iuξt

})
= exp

{
− tΨ(u)

}
, t ≥ 0,

is given, for some b ≥ 0 and a ∈ IR, by

Ψ(u) = iau +
1

2
b2u2 +

∫

(−∞,∞)

(
1 − eiux + iux1I{|x|≤1}

)
Π(dx), u ∈ IR.

Then according to Caballero and Chaumont [CaCh06],

(H) ξ is not arithmetic and 0 < E(ξ1) ≤ E
(
|ξ1|

)
< ∞

is a necessary and sufficient condition for the weak convergence of the family of pssMp

which drifts towards +∞, (X(x), x > 0) , as x ↓ 0, towards X(0) on the Skorokhod space.

In the sequel, we will assume that condition (H) is always satisfied.

A crucial point on the Caballero and Chaumont construction is the overshoot of Lévy

processes. The overshoot of Lévy processes is defined by (ξTz − z, z ≥ 0), where Tz is the

first passage time of ξ above z, i.e. Tz = inf{t : ξt ≥ z}. According to Doney and Maller

[DoMa02], (H) is a sufficient condition for the weak convergence of the overshoot ξTz − z
towards the law of a finite random variable as z goes to +∞.

Doney and Maller [DoMa02] noted that condition (H) may be expressed in terms of

the upward ladder height process σ associated with ξ (see Chap. VI in [Bert96] for a proper

definition). In fact condition (H) can be stated as

σ is not arithmetic and E(σ1) < ∞.
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In the sequel θ will denote the weak limit of the overshoot of ξ. This weak limit has

the same law as UZ, where U and Z are independent random variables, U is uniformly

distributed over [0, 1] and the law of Z is given by

(1.1) P (Z > t) = E(σ1)
−1

∫

(t,∞)

sν(ds), t ≥ 0,

where ν is the Lévy measure of σ.

Let α > 0 be the scaling coefficient of the pssMp (X, Px). Note that from the scaling

property, the process (Xα, Px), x > 0 is a pssMp whose scaling coefficient is equal to one.

Moreover, the function x 7→ xα is a continuous functional of the càdlàg paths, hence we do

not lose any generality in the sequel by assuming that α is equal to one.

Let (xn) be an infinite decreasing sequence of positive real numbers which converges

towards 0. According to Caballero and Chaumont, under condition (H), there exists a

random sequence (θn, ξ
(n)) of (IR+×D)IN such that for each n, θn and ξ(n) are independent

and have the same distribution as θ and ξ, respectively. Moreover, for any i, j such that

1 ≤ i ≤ j:

ξ(i) (a.s.)
=

(
ξ

(j)

T
(j)

log(xie
−θj /xj)

+t
− ξ

(j)

T
(j)

log(xie
−θj /xj)

, t ≥ 0

)
,(1.2)

θi
(a.s.)
= ξ

(j)

T
(j)

log(xie
−θj /xj)

− log(xie
−θj/xj),(1.3)

where T
(j)
z = inf{t ≥ 0 : ξ

(j)
t ≥ z}, for z ∈ IR+. Furthermore, for any n, the Lévy process

ξ(n) is independent of (θk, k ≥ n) and (θn) is a Markov chain.

From the sequence (θn, ξ
(n)) defined above, we introduce a sequence of pssMp defined by

X
(x̄n)
t = x̄n exp

{
ξ

(n)

τ (n)(t/x̄n)

}
, t ≥ 0, n ≥ 1,

where x̄n = xneθn and with the natural definition

τ
(n)
t

(def)
= inf

{
s ≥ 0 :

∫ s

0

exp
{

ξ(n)
u

}
du > t

}
.

Let also

S(n−1) = inf
{

t ≥ 0 : X x̄n
t ≥ xn−1

}
, n ≥ 2,

The hypothesis (H) ensures that Σn =
∑

k≥n S(k) < ∞, a.s., then we can construct a

process, that we will denote by X(0), as the concatenation of the processes X(x̄n) on each

interval
[
0, S(n)

]
, i.e.,

X
(0)
t =





X
(x̄1)
t−Σ2

if t ∈ [Σ2,∞[,

X
(x̄2)
t−Σ3

if t ∈ [Σ3, Σ2[,
...

X
(x̄n)
t−Σn+1

if t ∈ [Σn+1, Σn[,
...

Note that from the definition of the process X(0), we have

Σn = inf
{

t ≥ 0 : X
(0)
t ≥ xn−1

}
.
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Caballero and Chaumont proved that this construction makes sense, it does not depend on

the sequence (xn), and X
(0)
0 = 0. They also showed, that X(0) is a càdlàg self-similar

Markov process defined in [0,∞[ with the same semi-group as (X, Px) for x > 0 and that

the family of probability measures (Px, x ≥ 0) converges weakly in D to the law of X(0),

as x tends to 0.

2. Time reversal and last passage time of X(0)

Let us define the family of positive self-similar Markov processes X̂(x) whose Lam-

perti’s representation is given by

(1.4) X̂(x) =
(
x exp

{
ξ̂τ̂(t/x)

}
, 0 ≤ t ≤ xI(ξ̂)

)
, x > 0 ,

where

ξ̂ = −ξ, τ̂t = inf

{
s :

∫ s

0

exp
{
ξ̂u

}
du ≥ t

}
, and I(ξ̂) =

∫ ∞

0

exp
{
ξ̂s

}
ds.

We recall that ξ̂ is well-known as the dual process of ξ which is of course a Lévy process.

We emphasize that the random variable xI(ξ̂), corresponds to the first time at which the

process X̂(x) hits 0, i.e.

(1.5) xI(ξ̂) = inf
{

t : X̂
(x)
t = 0

}
,

moreover, for each x > 0, the process X̂(x) hits 0 continuously.

We now fix a decreasing sequence (xn) of positive real numbers which tends to 0 and we

set

Uy = sup
{

t : X
(0)
t ≤ y

}
.

The aim of this section is to establish a path decomposition of the process X(0) reversed

at time Ux1 in order to get a representation of this time in terms of the exponential functional

I(ξ̂), see Corollaries 2 and 3 below.

To simplify the notations, we set Γ = X
(0)
Ux1−

and we will denote by K the support of

the law of Γ. We will see in Lemma 1 that actually K = [0, x1]. For any process X that we

consider here (that is satisfying condition (H)), we make the convention that X0− = X0.

PROPOSITION 1. Fix x ∈ K; then the law of the process X̂(x) is a regular version of

the law of the process

X̂
(def)
=

(
X

(0)
(Ux1−t)−, 0 ≤ t ≤ Ux1

)
,

conditionally on Γ = x.

Proof: The result is a consequence of Nagasawa’s theory of time reversal for Markov

processes. First, it follows from Lemma 2 in [BeYo02] that the resolvent operators of X(x)

and X̂(x), x > 0 are in duality with respect to the Lebesgue measure. That is, for every

measurable functions f, g : (0,∞) → IR+ and q ≥ 0, with

V qf(x)
(def)
= E

(∫ ∞

0

e−qtf(X
(x)
t ) dt

)
and V̂ qf(x)

(def)
= E

(∫ ζ

0

e−qtf(X̂
(x)
t ) dt

)
,

we have

(1.6)

∫ ∞

0

f(x)V̂ qg(x) dx =

∫ ∞

0

g(x)V qf(x) dx .
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Let pt(dx) be the entrance law of X(0) at time t, then it follows from the scaling property

that for any t > 0, pt(dx) = p1(dx/t), hence
∫ ∞

0

pt(dx) dt =

∫ ∞

0

p1(dy)/y dx for all x > 0,

where from (0.16), ∫ ∞

0

p1(dy)/y dy = m−1.

In other words, the resolvent measure of δ{0} is proportional to the Lebesgue measure, i.e.,

(1.7) m−1

∫ ∞

0

f(x) dx = E

(∫ ∞

0

f
(
X

(0)
t

)
dt

)
.

Conditions of Nagasawa’s theorem are satisfied as shown in (1.6) and (1.7), then it remains

to apply this result to Ux1 which is a return time such that

0 < Ux1 < ∞ P − a.s.,

and the proposition is proved.

Another way to state Proposition 1 is to say that for any x ∈ K, the returned process

(X̂(xI(ξ̂)−t)−, 0 ≤ t ≤ xI(ξ̂)), has the same law as (X
(0)
t , 0 ≤ t < Ux1) given Γ = x.

In [BeYo02], the authors show that when the semigroup operator of X(0) is absolutely

continuous with respect to the Lebesgue measure with density pt(x, y), this process is an

h-process of X(0), the corresponding harmonic function being

h(x) =

∫ ∞

0

pt(x, 1) dt.

For y > 0, we set

Ŝy = inf
{

t : X̂t ≤ y
}

.

COROLLARY 1. Between the passage times Ŝxn and Ŝxn+1 , the process X̂ may be

described as follows:
(
X̂Ŝxn+t, 0 ≤ t ≤ Ŝxn+1 − Ŝxn

)
=

(
Γn exp

{
ξ̂

(n)

τ̂ (n)(t/Γn)

}
, 0 ≤ t ≤ Hn

)
, n ≥ 1,

where the processes ξ̂(n), n ≥ 1 are independent between themselves and have the same

law as ξ̂. Moreover the sequence (ξ̂(n)) is independent of Γ defined above and

τ̂
(n)
t = inf

{
s :

∫ s

0

exp
{
ξ̂(n)
u

}
du ≥ t

}

Hn = Γn

∫ T̂ (n)(log(xn+1/Γn))

0

exp
{
ξ̂(n)
s

}
ds

Γn+1 = Γn exp
{

ξ̂
(n)

T̂ (n)(log xn+1/Γn)

}
, n ≥ 1, Γ1 = Γ,

T̂ (n)
z = inf

{
t : ξ̂

(n)
t ≤ z

}
.

For each n, Γn is independent of ξ(n) and

(1.8) x−1
n Γn

(d)
= x−1

1 Γ .
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Proof: From (1.4) and Proposition 1, the process X̂ may be described as

X̂ =
(
Γ exp

{
ξ̂

(1)

τ̂ (1)(t/Γ)

}
, 0 ≤ t ≤ Ux1

)
,

where ξ̂(1) (d)
= ξ̂ is independent of Γ = X

(0)
U(x1)− and

τ̂
(1)
t = inf

{
s :

∫ s

0

exp
{

ξ̂(1)
u

}
du ≥ t

}
.

Note that Γ ≤ x1, a.s., so between the passages times Ŝx1 = 0 and Ŝx2 , the process X̂ is

clearly described as in the statement with ξ̂(1) = ξ̂ and

Ŝx2 − Ŝx1 = H1 = Γ

∫ T̂
(1)
log(x2/Γ)

0

exp
{

ξ̂(1)
s

}
ds.

Now if we set

ξ̂(2) (def)
=

(
ξ̂

(1)

T̂
(1)
log(x2/Γ1)

+t
− ξ̂

(1)

T̂
(1)
log(x2/Γ1)

, t ≥ 0

)
,

then with the definitions of the statement,
(
X̂Ŝx2+t, t ≥ 0

)
=

(
Γ2 exp ξ̂

(2)

τ̂ (2)(t/Γ2)
, t ≥ 0

)
and(1.9)

Ŝx3 − Ŝx2 = inf
{

t : X̂Ŝx2+t ≤ x3

}
= H2 .

The process ξ̂(2) is independent of
{
(ξ̂

(1)
t , 0 ≤ t ≤ T̂

(1)
log(x2/Γ1)), Γ1

}
, hence it is clear that

we do not change the law of X̂ if, by reconstructing it according to this decomposition, we

replace ξ̂(2) by a process with the same law which is independent of [ξ̂(1), Γ1]. Moreover,

ξ̂(2) is independent of Γ2. Relation (1.8) is a consequence of the scaling property. Indeed,

we have (
x2

x1

X
(0)
tx1/x2

, 0 ≤ t ≤ x2

x1

Ux1

)
(d)
=

(
X

(0)
t , 0 ≤ t ≤ Ux2

)
,

which implies the identities in law

(1.10) x−1
1 X

(0)
Ux1−

(d)
= x−1

2 X
(0)
Ux2−

, and x−1
1 Ux1

(d)
= x−1

2 Ux2 .

On the other hand, we see from the definition of X̂ in Proposition 1 that
(
X̂Ŝx2+t, 0 ≤ t ≤ Ux1 − Ŝx2

)
=

(
X

(0)
(Ux2−t)−, 0 ≤ t ≤ Ux2

)
.

Then, we obtain (1.8) for n = 2 from this identity, (1.9) and (1.10). The proof follows by

induction.

COROLLARY 2. With the same notations as in Corollary 1, the time Uxn may be de-

composed into the sum

(1.11) Uxn =
∑

k≥n

Γk

∫ T̂
(k)
log(xk+1/Γk)

0

exp
{

ξ̂(k)
s

}
ds , a.s.

In particular, for all zn > 0, we have

(1.12) zn1I{Γn≥zn}

∫ T̂
(n)
log(xn+1/zn)

0

exp
{

ξ̂(n)
s

}
ds ≤ Uxn ≤ xnI(ξ

(n)
) , a.s.,
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where ξ
(n)

, n ≥ 1 are Lévy processes with the same law as ξ̂.

Proof: Identity (1.11) is a consequence of Corollary 1 and the fact that

Uxn =
∑

k≥n

(Ŝk+1 − Ŝk).

The first inequality in (1.12) is a consequence of (1.11), which implies that

Γn

∫ T̂
(n)
log(xn+1/Γn)

0

exp
{

ξ̂(n)
s

}
ds ≤ Uxn .

To prove the second inequality in (1.12), it suffices to note that by Proposition 1 and the

strong Markov property at time Ŝxn , for any n ≥ 1, we have the representation
(
X̂Ŝxn+t, 0 ≤ t ≤ Ux1 − Ŝxn

)
=

(
Γn exp

{
ξ

(n)

τ (n)(t/Γn)

}
, 0 ≤ t ≤ Ux1 − Ŝxn

)
,

where

τ
(n)
t = inf

{
s :

∫ s

0

exp
{

ξ
(n)

u

}
du > t

}
,

and the process ξ
(n)

is described as follows,

(1.13) ξ
(n)

t =





ξ̂
(n)
t if t ∈ [0, Ξ

(n)
1 [,

ξ̂
(n+1)

t−Ξ
(n)
1

if t ∈ [Ξ
(n)
1 , Ξ

(n)
2 [,

...

ξ̂
(n+k)

t−Ξ
(n)
k

if t ∈ [Ξ
(n)
k , Ξ

(n)
k+1[,

...

where Ξ
(n)
k =

∑n+k−1
j=n T̂ (j) and T̂ (j) = T̂

(j)
log(xj+1/Γj)

.

From Corollary, we get that 1Γn = X̂Ŝxn
is independent of ξ

(n)
which clearly has the same

law as ξ̂. It remains to note from (1.5) that Ux1 − Ŝxn = Uxn = ΓnI(ξ
(n)

) and that Γn ≤ xn.

The same reasoning as we used for a sequence that tends to 0 can be applied to sequences

that tends to +∞ as we show in the following result.

COROLLARY 3. Let (yn) be an increasing sequence of positive real numbers which

tend to +∞. There exist some sequences (ξ̌(n)), (ξ̃(n)) and (Γ̌n), such that for each n,

ξ̌(n) (d)
= ξ̃(n) (d)

= ξ̂, Γ̌n
(d)
= Γ, Γ̌n and ξ̌(n) are independent; moreover the Lévy processes (ξ̌(n))

are independent between themselves and we have for all zn > 0,

(1.14) zn1I{Γ̌n≥zn}

∫ Ť
(n)
log(yn−1/zn)

0

exp
{

ξ̌(n)
s

}
ds ≤ Uyn ≤ ynI(ξ̃(n)) , a.s.

where Ť
(n)
z = inf{t : ξ̌

(n)
t ≤ z}.

Proof: Fix an integer n ≥ 1 and define the decreasing sequence x1, . . . , xn as fol-

lows xn = y1, xn−1 = y2, . . . , x1 = yn, then construct the sequences ξ̂(1), . . . , ξ̂(n) and
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Γ1, . . . , Γn from x1, . . . , xn as in Corollary 1 and construct the sequence ξ
(1)

, . . . , ξ
(n)

as in

Corollary 2. Now define

ξ̌(1) = ξ̂(n), ξ̌(2) = ξ̂(n−1), . . . , ξ̌(n) = ξ̂(1),

and

ξ̃(1) = ξ
(n)

, ξ̃(2) = ξ
(n−1)

, . . . , ξ̃(n) = ξ
(1)

,

and Γ̌1 = Γn, Γ̌2 = Γn−1, . . . , Γ̌n = Γ1.

Then from (1.12), we deduce that for any k = 2, . . . , n,

zk1I{Γ̌k≥zk}

∫ Ť
(k)
log(yk−1/zk)

0

exp
{

ξ̌(k)
s

}
ds ≤ Uyk

≤ ykI(ξ̃(k)) , a.s.

Hence the whole sequences (ξ̃(n)), (ξ̌(n)) and (Γ̌n) are well constructed and fulfill the de-

sired properties.

Remark: We emphasize that

T̂
(n)
log(xn+1/Γn) = 0, a.s. on the event {Γn ≤ xn+1} ,

moreover, we have Γn ≤ xn, a.s., so the first inequality in (1.12) is relevant only when

xn+1 < zn < xn. Similarly, in Corollary 3, the first inequality in (1.14) is relevant only

when yn−1 < zn < yn.

We end this section with the computation of the law of Γ. Recall that the upward ladder

height process (σt, t ≥ 0) associated to ξ is the subordinator which corresponds to the right

continuous inverse of the local time at 0 of the reflected process (ξt − sups≤t ξs, t ≥ 0), see

[Bert96] Chap. VI for a proper definition. We denote by ν the Lévy measure of (σt, t ≥ 0).

LEMMA 1. The law of Γ is characterized as follows:

log(x−1
1 Γ)

(d)
= −UZ ,

where U and Z are independent r.v.’s, U is uniformly distributed over [0, 1] and the law of

Z is given by:

(1.15) P(Z > u) = E(σ1)
−1

∫

(u,∞)

s ν(ds), u ≥ 0 .

In particular, for all η < x1, P(Γ > η) > 0.

Proof. It is proved in [DoMa02] that under the hypothesis (H), the overshoot process

of ξ converges in law, that is

ξ̂T̂x
− x −→ −UZ, in law as x tends to −∞,

and the limit law is computed in [Chow86] in terms of the upward ladder height process

(σt, t ≥ 0).
On the other hand, we proved in Corollary 1, that

x−1
n+1Γn+1 = exp

{
ξ̂

(n)

T̂
(n)
log(xn+1/Γn)

− log(xn+1/Γn)
}

(d)
= x−1

1 Γ

(d)
= exp

{
ξ̂T̂

log(xn+1/xn)+log(x−1
1 Γ)

− log(xn+1/xn) − log(x−1
1 Γ)

}
.
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Then by taking xn = e−n2
, we deduce from these equalities that log x−1

1 Γ has the same law

as the limit overshoot of the process ξ̂, i.e.

ξ̂T̂x
− x −→ log(x−1

1 Γ), in law as x tends to −∞.

As a consequence of the above results we have the following identity in law:

(1.16) Ux
(d)
=

x

x1
ΓI(ξ̂) ,

(Γ and I(ξ̂) being independent) which has been proved in [BeCa02], Proposition 3 in the

special case where the process X(0) is increasing.

3. Positive self-similar Markov processes with no positive jumps

Positive self-similar Markov processes with no positive jumps form a remarkable class

of pssMp. Path properties of such processes can be developed in a simple and complete

form. In particular, we obtain a new construction of X(0) using the last passage times and

an interesting time reversal property at its first passage time. This last property will allow

us to determine the law of the first passage time. Moreover, we will see that the first and

last passage time processes are positive increasing self-similar processes with independent

increments. This last remarkable property is lost in the general case.

In the rest of this section we may assume that ξ is a Lévy process with no positive

jumps satisfying condition (H) (see page 27). From the general theory of Lévy processes

(see [Bert96] for background), we know that the exponential moments of ξ are finite and

that we can obtain an explicit form for them. In particular

E

(
exp{uξt}

)
= exp

{
tψ(u)

}
, u ≥ 0,

where the Laplace exponent ψ satisfies

ψ(u) = au +
1

2
σ2u2 +

∫

]−∞,0)

(
eux − 1 − ux1I{x>−1}

)
Π(dx), u ≥ 0.

It is important to note that assumption (H) is equivalent to

m = E(ξ1) = ψ′(0+) ∈]0,∞[.

We recall the definitions of the first and last passage times of X(0),

Sy = inf
{

t ≥ 0 : X
(0)
t ≥ y

}
and Uy = sup

{
t ≥ 0 : X

(0)
t ≤ y

}
,

for y > 0. Note that due to the absence of positive jumps and since the process X(0) drifts

to +∞, for all x ≥ 0

Sx and Ux are finite and X
(0)
Sx

= X
(0)
Ux

= x, a.s.

From the definition of Sx and Ux, we deduce that the first passage time process S =
(Sx, x ≥ 0) and the last passage time process U = (Ux, x ≥ 0) are increasing self-similar

processes and their scaling index is the inverse of that of X(0). We remark that S and U are

increasing self-similar processes in general, i.e. when X(0) has positive jumps. From the

path properties of X(0) we easily see that both processes start from 0 and go to +∞ as x
increases.
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3.1. Another construction of X(0). The main idea of the following construction is to

divide the limit process at its last passage times. In this way, if we set (xn) a decreasing

sequence of strictly positive real numbers which converges to 0, then we can define a se-

quence of processes
(
X(0,n)

)
such that for each n ≥ 1 the process X(0,n) starts at xn, never

returns to its starting point and it is killed at the last passage time above xn−1. Given that

X(0) has the same semi-group as (X, Px) for x > 0, it is then clear that for every y ∈ (0, xn]
the concatenation of the processes (X(0,k), k ≤ n) has the same law as the process X(y)

shifted at its last passage time below xn. This last property plays an important role in this

new construction.

For every x ∈ IR+, let us define

γx = sup{t ≥ 0, ξt ≤ x} and γ̂x = sup{t ≥ 0, ξ̂t ≥ −x}.
It is clear, by the absence of positive jumps and since the process ξ derives towards +∞,

that

γx < ∞ and ξγx = x, P − a.s.

The following lemma is an obvious consequence of Nagasawa’s theory of time reversal and

the duality between ξ and ξ̂, see for instance Prop. II.1 in [Bert96]. It is for that reason that

we state it without a proof.

LEMMA 2. For every x > 0, the law of the process
(
x + ξ̂t, 0 ≤ t ≤ γ̂x

)
is the same as

that of the law of the time reversed process
(
ξ(γx−t)−, 0 ≤ t ≤ γx

)
. Moreover, the process(

ξ(γx−t)−, γ0 ≤ t ≤ γx

)
has the same law as that of

(
x + ξ̂t, 0 ≤ t ≤ T̂x

)
.

The following path decomposition of the process ξ↑ =
(
ξγ0+t, t ≥ 0

)
can be easily

deduced from Lemma 2.

COROLLARY 4. For every x > 0, the process
(
ξt, γ0 ≤ t ≤ γx

)
and the shifted process(

ξγx+t − x, t ≥ 0
)

are independent, and the latter has the same law as that of the process

ξ̄. Moreover, both processes are independent of
(
ξt, 0 ≤ t ≤ γ0

)

Proof: Fix x > 0 and take y > 0. Let us consider the dual process of ξ started at x + y

and killed as it enters (−∞, 0), this is
(
(x+y)+ ξ̂t, 0 ≤ t ≤ T̂x+y

)
. We can decompose this

process at the first time at which it reaches the state x, this is in
(
(x + y) + ξ̂t, 0 ≤ t ≤ T̂y

)

and
(
(x + y) + ξ̂T̂y+t, 0 ≤ t ≤ T̂x+y − T̂y

)
. On the other hand, it is clear that

T̂x+y − T̂y = inf
{
t ≥ 0, ξ̂T̂y+t + y = −x

}
,

and from the Markov property and the reversed identity of Lemma 2, we have that the

processes
(
ξt, γ0 ≤ t ≤ γx

)
and

(
ξγx+t − x, 0 ≤ t ≤ γx+y − γx

)
are independent and that

the latter have the same law as
(
ξt, γ(0) ≤ t ≤ γy

)
. Then we get the desired result, letting

y go towards ∞.

The last statement of this corollary is consequence of a simple application of the Markov

property to the process
(
(x + y) + ξ̂t, t ≥ 0

)
at T̂x+y and Lemma 2.

Let us define for x > 0, the pssMp X(x) =
(
X

(x)
t , t ≥ 0

)
by the Lamperti’s representa-

tion (0.15) and denote its last passage time below y by

σy = sup
{

t ≥ 0 : X
(x)
t ≤ y

}
, for any y ≥ x.

The next proposition gives us a path decomposition of X(x) at the random time σy.
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PROPOSITION 2. For every y ≥ x > 0, the process killed at its last passage time below

the level y,
(
X

(x)
t , t ≤ σy

)
, and the shifted process

(
X

(x)
t+σy

, t ≥ 0
)

are independent; the

latter has the same law as
(
X

(y)
t+σy

, t ≥ 0
)

which will be denoted by Qy. Moreover, if we set

z = log(y/x), we have the following path representation

(1.17)
(
X

(x)
σy+t, t ≥ 0

)
=

(
y exp

{
ξ′τ ′(t/y)

}
, t ≥ 0

)
,

where ξ′ =
(
ξγz+t − z, t ≥ 0

)
and τ ′ is the right continuous inverse of the exponential

functional

I ′
s =

∫ s

0

exp
{

ξ′u

}
du,

this is τ ′(t) = inf{t ≥ 0, I ′
s > t}.

Note that when y = x the processes ξ′ and ξ↑ are the same. In this case we denote the

exponential functional I ′ by I↑ and the right continuous inverse of I↑ by τ ↑.

Proof: Fix y ≥ x > 0, and let z = log(y/x). From relation (0.15), we observe that

the random time σy = xIγz . It is then clear, that the killed process at its last passage time

below y,
(
X

(x)
t , 0 ≤ t ≤ σy

)
, only depends on

(
ξt, 0 ≤ t ≤ γz

)
.

Next, again from (0.15), we have
(
X

(x)
σy+t, t ≥ 0

)
=

(
x exp

{
ξτ(t/x+Iγz )

}
, t ≥ 0

)
.

From elementary calculations, we see

τ
(
t/x + Iγz

)
= inf

{
s ≥ 0, Is > t/x + Iγz

}

= γz + inf

{
s ≥ 0 :

∫ s

0

exp
{

ξγz+u − z
}

du > t/y

}
.

Consequently, if we denote by ξ′ = (ξγz+t − z, t ≥ 0), therefore

X
(x)
t+σy

= y exp
{

ξ′τ ′(t/y)

}
, for t ≥ 0,

where

τ ′(t/x) = inf
{

s ≥ 0 : I ′
s > t/x

}
and I ′

s =

∫ s

0

exp
{

ξ′u

}
du.

Clearly, the shifted process at its last passage time below y,
(
X

(x)
t+σy

, t ≥ 0
)
, depends

only on ξ′. It is from here that the independence of the stated processes emerges. From

Corollary 4 and equality (1.17), we can easily deduce that the processes
(
X

(x)
t+σy

, t ≥ 0
)

and
(
X

(y)
t+σy

, t ≥ 0
)

possess the same law.

An immediate consequence of this Proposition is the independence between the pro-

cesses
(
X

(x)
t , 0 ≤ t ≤ σx

)
,
(
X

(x)
σx+t, 0 ≤ t ≤ σy − σx

)
and

(
X

(x)
σy+t, t ≥ 0

)
.

Let (xn) be a decreasing sequence of strictly positive real numbers which converges

toward 0 and (ξ↑(n)) a sequence of independent processes with the same distribution as ξ↑.
We define a sequence of processes as follows,

Y
(xn)
t = xn exp

{
ξ
↑(n)

τ↑(n)(t/xn)

}
for t ≥ 0, n ≥ 1,
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where for each n ≥ 1

τ ↑(n)(t/xn) = inf
{

s ≥ 0 : I↑(n)
s > t/xn

}
and I↑(n)

s =

∫ s

0

exp
{

ξ↑(n)
u

}
du.

Let also

σ(n) = sup
{

t ≥ 0 : Y
(xn)
t ≤ xn−1

}
, n ≥ 2.

From our assumptions, the random times σ(n) are a.s. finite. We are interested in verifying

when Σ′
n =

∑
k≥n σ(k) is a.s. finite, thus to be able to define the concatenation of the

processes
(
Y

(xn)
t−Σ′

n+1
, Σ′

n+1 ≤ t < Σ′
n

)
, n ≥ 2.

LEMMA 3. For any n ≥ 2, we have that 0 < Σ′
n < ∞ a.s.

Proof: It is clear that if Σ′
n = 0 then for all k ≥ n, σ(k) = 0. Given that (xn) is a

decreasing sequence then we deduce that for all k ≥ n, xk = xn, which contradicts the fact

that the sequence (xn) converges to 0.

Now, let us observe that σ(n) = xnI
↑(n)

γ(n) , where

γ(n) = sup
{

t ≥ 0 : ξ↑(n) ≥ log(xn−1/xn)
}

.

Then, we can express the sum Σ′
n in the following way

Σ′
n =

∑

k≥n

xk

∫ γ(k)

0

exp
{

ξ↑(k)
u

}
du.

From Lemma 2, we deduce that for each n ≥ 1

xn

∫ γ(n)

0

exp
{

ξ↑(n)
u

}
du

(d)
= xn−1

∫ T̃ (n)

0

exp
{

ζ(n)
u

}
du,

where
(
ζ(n)

)
is a sequence of independent Lévy processes with same distribution as ξ̂ and

for each n ≥ 1, T̃ (n) = inf
{
t ≥ 0, ζ(n) ≤ log(xn/xn−1)

}
. Hence,

(1.18) Σ′
n

(d)
=

∑

k≥n

xk−1

∫ T̃ (k)

0

exp
{

ζ(k)
u

}
du.

On the other hand, we define for every n ≥ 1,

T̂ (n) = inf
{

t ≥ 0 : ξ̂ ≤ log (x1/xn)
}

then by a simple application of the Markov property, we have that
∫ ∞

0

exp
{
− ξu

}
du =

∑

k≥1

∫ T̂ (k+1)

T̂ (k)

exp
{
− ξu

}
du

=
1

x1

∑

k≥1

xk

∫ T̂ (k+1)−T̂ (k)

0

exp
{
−

(
ξT̂ (k)+u − log(x1/xk)

)}
du

(d)
=

1

x1

∑

k≥1

xk

∫ T̃ (k+1)

0

exp
{

ζ(k+1)
u

}
du.

But, since ξ derives toward +∞, we get that
∫ ∞

0

exp
{
− ξu

}
du < ∞ a.s.



38 CHAPTER 1. PATH PROPERTIES OF PSSMP

This and the equality (1.18) implies that Σ′
n is a.s. finite.

Now, with all these results, we are able to give the following construction. As we will

see in Theorem 1, this construction is the weak limit process of (X, Px), as x approaches 0.

PROPOSITION 3. Let Σ′
n =

∑
k≥n σ(k), then for any n, 0 < Σ′

n < ∞ a.s. In addition,

the following concatenation of processes

(1.19) Y
(0)
t =





Y
(x1)

t−Σ′
2

if t ∈ [Σ′
2,∞[,

Y
(x2)

t−Σ′
3

if t ∈ [Σ′
3, Σ

′
2[,

...

Y
(xn)

t−Σ′
n+1

if t ∈ [Σ′
n+1, Σ

′
n[,

...

, Y
(0)
0 = 0,

makes sense and it defines a càdlàg stochastic process on the real half-line [0,∞) with the

following properties:

i) The paths of the process Y (0) are such that limt→∞ Y
(0)
t = +∞, a.s. and Y (0) > 0,

a.s. for any t ≥ 0.

ii) The law of Y (0) does not depend on the sequence (xn).
iii) The family of probability measures (Qx, x > 0) converges weakly in D to the law

of the process Y (0), as x approaches 0.

Proof: From the previous lemma, we see that the definition of the process Y (0) makes

sense. It is also clear that the process Y (0) is well defined on (0,∞) and that the limit of

Y
(0)
t as t goes to 0 is equal to 0. Hence Y (0) is a càdlàg process defined on [0,∞) which is

strictly positive on the open interval (0,∞). The first part of (i) is consequence of the path

properties of the sequence of processes (Y (xn)).
Now, let (yk) be another decreasing sequence of strictly positive real numbers which con-

verges toward 0 and define

Σ̃k = sup
{

t ≥ 0 : Y (0) ≤ yk−1

}
and σ(n)(z) = sup

{
t ≥ 0 : Y (xn) ≤ z

}
.

We also recall that σ(n) = σ(n)(xn−1).
For indices m, l and k such that l ≥ m + 2 and xl ≤ yk ≤ xl−1 ≤ yk−1 ≤ xm, we define

(1.20) Ỹ
(yk)
t =





Y
(xl)

t+σ(l)(yk)
if t ∈ [0, tl,k[,

Y
(xl−1)
t−tl,k

if t ∈ [tl,k, tl,l−1,k[,
...

Y
(xm+1)
t−tl,m+2,k

if t ∈ [tl,m+2,k, tl,m+2,k + σ(m+1)(yk−1)[,

where tl,k = σ(l) − σ(l)(yk) and tl,j,k = tl,k +
∑l−1

i=j σ(i). An application of Propositon

2, show us that the law of the process defined above is the same as the law of the shifted

process (X
(yk)
σyk

+t, 0 ≤ t ≤ σyk−1
).

From Propostion 2 and construction (1.19), we get that Y (0) may be represented as the

concatenation of the processes
(
Ỹ

(yk)

t−Σ̃k+1
, Σ̃k+1 ≤ t < Σ̃k

)
. Note that the law of these pro-

cesses does not depend on the sequence (xn), obviously the same property is also satisfied

by Y (0) and hence part (ii) is proved.

In order to prove part (iii), we define for each n ≥ 1, the process Y (n) =
(
Y

(0)

Σ′
n+1+t, t ≥ 0

)
.
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From the independence of the processes ξ↑(1), . . . , ξ↑(n), it is then clear that the law of Y (n)

is Qxn . From the construction of Y (n), it is also obvious that limn→∞ Y (n) = Y (0) a.s. on

the Skorokhod space D. Hence, we have

Qxn(H) −−−→
n→∞

E

(
H

(
Y (0)

))
,

for any bounded, continuous functional H defined on D.

From the proof of part (ii), we note that we can obtain the above convergence to any de-

creasing sequence (zk) which converge to 0. This implies that the family of probability

measures (Qx, x > 0) converges weakly in D to the law of the process Y (0), as x ap-

proaches 0. With this argument we complete the proof of this proposition.

THEOREM 1. The processes Y (0) and X(0), defined by Caballero and Chaumont’s con-

struction, have the same distribution. Moreover, it satisfies the following conditions:

i) The process Y (0) satisfies the scaling property, that is for any k > 0,
(
kY

(0)

k−1t, t ≥ 0
)

has the same law as Y (0).

ii) The process Y (0) satisfies the strong Markov property and has the same semi-

group as (X, Px) for x > 0.

Proof: Let (yn) be a decreasing sequence of strictly positive real numbers which con-

verges to 0. We choose (ξ↑(n)), a sequence of independent Lévy processes with the same

distribution as ξ↑. Then, we construct a process Y (0), as in (1.19) and the sequence
(
Y (n)

)

as in the proof of the previous Proposition, i.e., for each n ≥ 1, Y (n) =
(
Y

(0)
Σ′

n+t, t ≥ 0
)

.

We recall that

lim
n→∞

Y (n) = Y (0) a.s. on the space D.

Now, we choose a sequence
(
X(n)

)
of pssMp which is independent of the random sequence

(ξ↑(n)) and for each n ≥ 1, the law of X(n) is Pyn . Let us define the last passage time of

the process X(n) below y, by ρ
(n)
y = sup

{
t ≥ 0, X(n) ≤ y

}
. From the scaling property,

we see that the law of ρ
(n)
yn under Pyn and the law of ynρ1 under P1 are the same, where

ρy = sup
{
t ≥ 0, X(1) ≤ y

}
. This implies that ρ

(n)
yn converge almost surely towards 0, as n

goes to ∞.

On the other hand for each n ≥ 1, we construct a process Z(n) as follows

Z
(n)
t =

{
X

(n)
t if t < ρ

(n)
yn ,

Y
(n)

t−ρ
(n)
yn

if t ≥ ρ
(n)
yn .

By the independence between the sequences
(
Y (n)

)
and (X(n)), and the fact that, for each

n ≥ 1, the process
(
X

(n)

ρ
(n)
yn +t

, t ≥ 0
)

has the same law as Y (n); it is clear that the law of Z(n)

is Pyn .

From the previous discussions we have that Z(n) converges almost surely on the space D
towards Y (0), as n goes to ∞. This implies that

Eyn

(
H

(
Z(n)

))
−−−→
n→∞

E

(
H

(
Y (0)

))
,

for any bounded, continuous functional H defined on D.

From Theorem 2 of [CaCh06], we know that the family (Px, x > 0) converges weakly

to the law of X(0). Then we conclude that the processes X(0) and Y (0) have the same
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distribution. The properties (i) and (ii) above, follows from the properties of the process

X(0).

3.2. Time reversal and first and last passage times of X(0). The aim of this section

is to describe the law of the process (X
(0)

(Sx−t)− , 0 ≤ t ≤ Sx). This allow us to obtain the

law of the first passage time of X(0) in terms of its associated Lévy process.

Now, for every y > 0 let us define

X̃
(y)
t = y exp

{
ξ̃τ̃(t/y)

}
t ≥ 0,

where

ξ̃ = −ξ↑, τ̃t = inf
{

s ≥ 0 : Is

(
ξ̃
)

> t
}

and Is

(
ξ̃
)

=

∫ s

0

exp
{
ξ̃u

}
du.

Since ξ derives towards +∞, we deduce that X̃(y) reaches 0 at an almost surely finite

random time, denoted by ρ̃(y) = inf{t ≥ 0, X̃
(y)
t = 0}.

PROPOSITION 4. The law of the process time-reversed at its first passage time below

x,
(
X

(0)
(Sx−t)−, 0 ≤ t ≤ Sx

)
is the same as that of the process (X̃

(x)
t , 0 ≤ t ≤ ρ̃(x)).

Proof: Let us take any decreasing sequence (xn) of positive real numbers which con-

verges to 0 and such that x1 = x.

By Corollary 4, we can divide the process (X̃
(x)
t , 0 ≤ t ≤ ρ̃) into the sequence

(
x1 exp

{
ξ̃τ̃(t/x1)

}
, x1Iγ̃(n)

(
ξ̃
)
≤ t ≤ x1Iγ̃(n+1)

(
ξ̃
))

, n ≥ 1,

where γ̃(n) = sup{t ≥ 0 : ξ̃t ≤ log xn/x}.

Then to prove this result, it is enough to show that, for each n ≥ 1
(
X

(0)
(Sxn−t)−, 0 ≤ t ≤ Sn

)
(d)
=

(
x1 exp

{
ξ̃τ̃(t/x1)

}
, x1Iγ̃(n)

(
ξ̃
)
≤ t ≤ x1Iγ̃(n+1)

(
ξ̃
))

,

where Sn = Sxn − Sxn+1 .

Fix n ≥ 1, from the Caballero and Chaumont’s construction, we know that the left-hand

side of the above identity has the same law as

(1.21)

(
xn+1 exp

{
ξ

(n+1)

τ (n+1)
(

I
T (n+1)

(
ξ(n+1)

)
−t/xn+1

)
}

, 0 ≤ t ≤ xn+1IT (n+1)

(
ξ(n+1)

))
,

where T (n+1) is the first passage time of the process ξ(n+1) above log(xn/xn+1).

On the other hand, by Corollary 4 we know that (ξ̃t, 0 ≤ t ≤ γ̃(n)) is independent of

ξ̃(n) = (log(x/xn) + ξ̃γ̃(n)+t, t ≥ 0) and that the latter has the same law as ξ̃. Since

τ̃
(
Iγ̃(n)

(
ξ̃
)

+ t/x
)

= ˜γ(n) + inf

{
s ≥ 0 :

∫ s

0

exp
{

ξ̃(n)
u

}
du ≥ t/xn

}
,

it is clear that the right-hand side of the above identity in distribution has the same law as,

(1.22)
(
xn exp

{
ξ̃τ̃(t/xn)

}
, 0 ≤ t ≤ xnIγ̃(log(xn/xn+1))

)
.

Therefore, it is enough to show that (1.21) and (1.22) have the same distribution.

Now, let us define the exponential functional of
(
ξ

(n+1)

(T (n+1)−t)−
, 0 ≤ t ≤ T (n+1)

)
as follows,

B(n+1)
s =

∫ s

0

exp
{

ξ
(n+1)

T (n+1)−u

}
du for s ∈ [0, T (n+1)],
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and H(t) = inf
{
0 ≤ s ≤ T (n+1), B

(n+1)
s > t

}
, the right continuous inverse of the expo-

nential functional B(n+1).

By a change of variable, it is clear that B
(n+1)
s = IT (n+1)

(
ξ(n+1)

)
− IT (n+1)−s

(
ξ(n+1)

)
, and

if we set t = xn+1B
(n+1)
s , then s = H(t/xn+1) and hence

τ (n+1)
(
IT (n+1)

(
ξ(n+1)

)
− t/xn+1

)
= τ (n+1)

(
IT (n+1)−s

(
ξ(n+1)

))

= T (n+1) −H(t/xn+1).

Therefore, we can rewrite (1.21) as follows

(1.23)

(
xn+1 exp

{
ξ

(n+1)

T (n+1)−H(t/xn+1)

}
, 0 ≤ t ≤ xn+1B

(n+1)

T (n+1)

)
,

and applying Lemma 2, we get that (1.23) has the same law as that of the process defined

in (1.22).

It is important to note that under the absence of positive jumps, we can give a similar

proof to Proposition 1 using our new construction of X(0) and Lemma 2. An important

consequence of this proposition is the following time-reversed identity. For any y < x,
(
X

(0)
(Sx−t)−, Sy ≤ t ≤ Sx

)
(d)
=

(
X̃

(x)
t , 0 ≤ t ≤ Ũy

)
,

where Ũy = sup
{
t ≥ 0, X̃

(x)
t ≤ y

}
.

For the next results we need to recall the notion of self-decomposable random variable.

Such concept is an extension of the notion of stable distributions (see for instance Sato

[Sato99])

DEFINITION 1. We say that a random variable X is self-decomposable if for every

0 < c < 1 there exists a variable Yc which is independent of X and such that Yc + cX has

the same law as X .

COROLLARY 5. For every x > 0, the first passage time Sx above x of the process X(0),

has the same law as xI
(
ξ̃
)
, where

I
(
ξ̃
)

=

∫ ∞

0

exp{ξ̃u}du =

∫ ∞

γ(0)

exp{−ξu}du.

Moreover, S1 is self-decomposable.

Proof: From Proposition 4, we see that the laws of Sx and ρ̃(x) are the same. By the

Lamperti representation of X̃(x), we deduce that ρ̃(x) = xI
(
ξ̃
)

and then the identity in law

follows.

Now, let 0 < c < 1. From Corollary 4, we know that (ξt, γ0 ≤ t ≤ γlog(1/c)) is independent

of (ξγlog(1/c)+t + log c, t ≥ 0) and that the latter has the same as the process (ξγ0+t, t ≥ 0),
then

I
(
ξ̃
)

=

∫ γlog(1/c)

γ0

exp{−ξu}du + c

∫ +∞

0

exp
{
− ξγlog(1/c)+u − log c

}
du,

the self-decomposability follows.

To end this chapter, we establish the following proposition which give us the self-

decomposable property of the last passage times.
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PROPOSITION 5. For every x > 0, the last passage time Ux below x of the process

X(0), has the same law as xI
(
ξ̂
)
. Moreover, U1 is self-decomposable.

Proof: The first part of this Lemma is consequence of Proposition 1. Let 0 < c < 1. From

the Markov property, we know that (ξt, 0 ≤ t ≤ Tlog(1/c)) is independent of the shifted

process (ξTlog(1/c)+t + log c, t ≥ 0) and that the latter has the same distribution as ξ, then

I
(
ξ̂
)

=

∫ Tlog(1/c)

0

exp
{
− ξu

}
du + c

∫ +∞

0

exp
{
− ξTlog(1/c)+u − log c

}
du,

the self-decomposability follows.

As we mentioned at the beginning of this section, S and U are increasing self-similar

processes and from Caballero and Chaumont construction and the construction presented

here; we deduce that they also have independent increments and moreover they are self-

decomposable processes since S1 and U1 are self-decomposable. These properties were

studied by the first time by Getoor in [Geto79] for the last passage time of a Bessel process

of index δ ≥ 3 and later by Jeanblanc, Pitman and Yor [JePY02] for δ > 2.

From Theorem 53.1 in [Sato99], we deduce that the distribution of S and U are uni-

modal in [0,∞). We recall that an unimodal distribution in [0,∞) is absolutely continuous

with respect to the Lebesgue mesure and that its density satisfies that there exists b > 0
such that it is increasing in (0, b) and decreasing in (b,∞).



CHAPTER 2

Integral tests for positive self-similar Markov processes.

The purpose of this chapter is to study the lower and upper envelope at 0 and at +∞
of positive self-similar Markov processes and some related processes. Our main results

extend the integral tests for transient Bessel processes obtained by Dvoretzky and Erdös

[DvEr51] and the integral test for the future infimum of transient Bessel processes due to

Khoshnevisan et al. [Khal94].

1. The lower envelope

The aim of this section is to study the lower envelope at 0 and +∞ of X(0). When no

confusion is possible, we set

I
(def)
= I(ξ̂) =

∫ ∞

0

exp
{
ξ̂s

}
ds.

The main results of this section means in particular that the asymptotic behaviour of X(0)

only depends on the tail behaviour of the law of I , and on this of the law of

Iq
(def)
=

∫ T̂−q

0

exp
{
ξ̂s

}
ds,

with T̂x = inf{t : ξ̂t ≤ x}, for x ≤ 0. So also we set

F (t)
(def)
= P(I > t) and Fq(t)

(def)
= P(Iq > t) .

The following lemma will be used to show that actually, in many particular cases, F suffices

to describe the lower envelope of X(0).

LEMMA 4. Assume that there exists γ > 1 such that

lim sup
t→+∞

F (γt)

F (t)
< 1.

For any q > 0 and δ > γe−q,

lim inf
t→+∞

Fq((1 − δ)t)

F (t)
> 0 .

Proof: It follows from the decomposition of ξ into the two independent processes

(ξ̂s, s ≤ T̂−q) and ξ̂′
(def)
= (ξ̂s+T̂−q

− ξ̂T̂−q
, s ≥ 0) that

I = Iq + e
ξ̂T̂−q Î ′ ≤ Iq + e−q Î ′

where

Î ′ =

∫ ∞

0

exp
{
ξ̂′s

}
ds,
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is a copy of I which is independent of Iq. Then we can write for any q > 0 and δ ∈ (0, 1),
the inequalities

P(I > t) ≤ P(Iq + e−q Î ′ ≥ t)

≤ P(Iq > (1 − δ)t) + P(e−qI > δt) ,

so that if moreover, δ > γe−q then

1 − P(I > γt)

P(I > t)
≤ 1 − P(I > eqδt)

P(I > t)
≤ P(Iq > (1 − δ)t)

P(I > t)
.

We start by stating the integral test at time 0.

THEOREM 2. The lower envelope of X(0) at 0 is described as follows:

Let f be an increasing function.

(i) If ∫

0+

F

(
t

f(t)

)
dt

t
< ∞ ,

then for all ε > 0,

P

(
X

(0)
t < (1 − ε)f(t), i.o., as t → 0

)
= 0 .

(ii) If for all q > 0, ∫

0+

Fq

(
t

f(t)

)
dt

t
= ∞ ,

then for all ε > 0,

P

(
X

(0)
t < (1 + ε)f(t), i.o., as t → 0

)
= 1 .

(iii) Suppose that t 7→ f(t)/t is increasing. If there exists γ > 1 such that,

lim sup
t→+∞

P(I > γt)

P(I > t)
< 1 and if

∫

0+

F

(
t

f(t)

)
dt

t
= ∞ ,

then for all ε > 0,

P

(
X

(0)
t < (1 + ε)f(t), i.o., as t → 0

)
= 1 .

Proof: Let (xn) be a decreasing sequence such that limn xn = 0. Recall the notations

of Chapter 1. We define the events

An =
{

There exists t ∈ [Uxn+1 , Uxn ] such that X
(0)
t < f(t)

}
.

Since Uxn tends to 0, almost surely when n goes to +∞, we have:

(2.1)
{

X
(0)
t < f(t), i.o., as t → 0

}
= lim sup

n
An .

Since f is increasing, the following inclusions hold:

(2.2)
{

xn ≤ f(Uxn)
}
⊂ An ⊂

{
xn+1 ≤ f(Uxn)

}
.
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Then we prove the convergent part (i). Let us choose xn = r−n for r > 1, and recall from

relation (1.12) in Corollary 2 that Ur−n ≤ r−nI(ξ
(n)

). From this inequality and (2.2), we

can write:

(2.3) An ⊂
{

r−(n+1) ≤ f
(
r−nI(ξ

(n)
)
)}

.

Let us denote I(ξ̂) simply by I . From Borel-Cantelli Lemma, (2.3) and (2.1),

(2.4)

if
∑

n

P

(
r−(n+1) ≤ f(r−nI)

)
< ∞ then P(X

(0)
t < f(t), i.o., as t → 0) = 0.

Note that
∫ +∞

1

P(r−t ≤ f(r−tI)) dt =

∫ +∞

0+

P(s < f(s)I, s < I/r)

s log r
ds,

hence since f is increasing, we have the inequalities:

∞∑

n=1

P

(
r−n ≤ f(r−(n+1)I)

)
≤

∫ +∞

0+

P

(
s

f(s)
< I, s <

I

r

)
ds

s log r

≤
∞∑

n=1

P(r−(n+1) ≤ f(r−nI)) .

(2.5)

With no loss of generality, we can restrict ourself to the case f(0) = 0, so it is not difficult

to check that for any r > 1,

(2.6)

∫

0+

P

(
s

f(s)
< I, s <

I

r

)
ds

s
< +∞ iff

∫

0+

P

(
s

f(s)
< I

)
ds

s
< +∞ .

Suppose the latter condition holds, then from (2.5), for all r > 1,

∞∑

n=2

P

(
r−(n+1) ≤ r−2f(r−nI)

)
< +∞

and from (2.4), for all r > 1,

P

(
X

(0)
t < r−2f(t), i.o., as t → 0

)
= 0

which proves the desired result.

Now we prove the divergent part (ii). Again, we choose xn = r−n for r > 1, and

zn = kr−n, where k = 1 − ε + ε/r and 0 < ε < 1, (so that xn+1 < zn < xn). We set

Bn =
{

r−n ≤ fr,ε(kr−n1I{Γn≥kr−n}I
(n))

}
,

where, fr,ε(t) = rf(t/k) and with the same notations as in Corollary 2, for each n,

(2.7) I(n) (def)
=

∫ T̂
(n)
log(xn+1/zn)

0

exp
{
ξ̂(n)
s

}
ds

(d)
=

∫ T̂log(1/rk)

0

exp
{
ξ̂s

}
ds

is independent of Γn, and Γn is such that x−1
n Γn

(d)
= x−1

1 Γ. Moreover the random variables

I(n), n ≥ 1 are independent between themselves and identity (2.7) shows that they have the

same law as Iq defined in Lemma 4, where q = − log(1/rk). With no loss of generality,

we may assume that f(0) = 0, so that we can write

Bn =
{

r−n ≤ fr,ε(kr−nI(n)), Γn ≥ kr−n
}
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and from the above arguments we deduce

(2.8) P(Bn) = P

(
r−n ≤ fr,ε(kr−nIq)

)
P(Γ ≥ kr−1) .

The arguments which are developed above to show (2.5) and (2.6), are also valid if we

replace I by Iq. Hence from the hypothesis, since
∫

0+

P

(
s < f(s)Iq

) ds

s
= +∞,

then from (2.5) and (2.6) applied to Iq, we have

∞∑

n=1

P

(
r−(n+1) ≤ f(r−nIq)

)
=

∞∑

n=1

P

(
r−n ≤ fr,ε(kr−nIq)

)
= ∞,

and from (2.8) we have
∑

n P(Bn) = +∞. Then another application of (2.8), gives for any

n and m,

P(Bn ∩ Bm) ≤ P

(
r−n ≤ fr,ε(kr−nIq)

)
P

(
r−m ≤ fr,ε(kr−mIq)

)

P(Bn ∩ Bm) ≤ P(Γ ≥ kr−1)−2P(Bn)P(Bm) ,

where P(Γ ≥ kr−1) > 0, from (1.15). Hence from the extension of Borel-Cantelli lemma

given in [KoSt64],

(2.9) P(lim sup Bn) ≥ P(Γ ≥ kr−1)2 > 0 .

Then recall from Corollary 2 in Chapter 1, the inequality

kr−n1I{Γn≥kr−n}I
(n) ≤ Ur−n

which implies from (2.2) that Bn ⊂ An, (where in the definition of An we replaced f by

fr,ε). So, from (2.9), P(lim supn An) > 0, but since X(0) is a Feller process and since

lim supn An is a tail event, we have P(lim supn An) = 1. We deduce from the scaling

property of X(0) and (2.1) that

P

(
X

(0)
t ≤ fr,ε(t), i.o., as t → 0.

)
= P

(
X

(0)
kt ≤ rf(t), i.o., as t → 0.

)

= P

(
X

(0)
t ≤ k−1rf(t), i.o., as t → 0.

)
= 1 .

Since k = 1 − ε + ε/r, with r > 1 and 0 < ε < 1 arbitrary chosen, we obtain (ii).
Now we prove the divergent part (iii). The sequences (xn) and (zn) are defined as in

the proof of (ii) above. Recall that q = − log(1/rk) and take δ > γe−q as in Lemma 4.

With no loss of generality, we may assume that f(t)/t → 0, as t → 0. Then from the

hypothesis in (iii) and Lemma 4, we have
∫

0+

Fq

(
(1 − δ)t

f(t)

)
dt

t
= ∞ .

As already noticed above, this is equivalent to

∫ +∞

1

P((1 − δ)r−t ≤ f(r−tIq)) dt = ∞.

Since t 7→ f(t)/t increases,
∫ +∞

1

P

(
(1 − δ)r−t ≤ f(r−tIq)

)
dt ≤

∞∑

1

P

(
(1 − δ)r−n ≤ f(r−nIq)

)
= ∞.
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Set f
(δ)
r (t) = (1 − δ)−1f(t/k), then

∞∑

1

P

(
r−n ≤ f (δ)

r (kr−nIq)
)

= ∞ .

Similarly as in the proof of (ii), define

B′
n =

{
r−n ≤ f (δ)

r (kr−nI(n)), Γn ≥ kr−n
}

.

Then B′
n ⊂ An, (where in the definition of An we replaced f by f

(δ)
r ). From the same

arguments as above, since
∑

n P(B′
n) = ∞, we have P(lim supn An) = 1, hence from the

scaling property of X(0) and (2.1)

P

(
X

(0)
t ≤ f (δ)

r (t), i.o., as t → 0.
)

= P

(
X

(0)
kt ≤ (1 − δ)−1f(t), i.o., as t → 0.

)

= P

(
X

(0)
t ≤ k−1(1 − δ)−1f(t), i.o., as t → 0.

)
= 1 .

Since k = 1 − ε + ε/r, with r > 1 and 0 < ε < 1 and δ > γe−q = γ/(r + ε(1 − r)), by

choosing r sufficiently large and ε sufficiently small, δ can be taken sufficiently small so

that k−1(1 − δ)−1 is arbitrary close to 1.

The divergent part of the integral test at +∞ requires the following Lemma.

LEMMA 5. For any Lévy process ξ such that 0 < E(ξ1) ≤ E(|ξ1|) < ∞, and for any

q ≥ 0,

E

( ∣∣inft≤Tq ξt

∣∣
)

< ∞ ,

where, Tq = inf{t : ξt ≥ q}.

Proof. The proof bears upon a result on stochastic bounds for Lévy processes due to

Doney [Done04] which we briefly recall. Let νn be the time at which the n-th jump of ξ
whose value lies in [−1, 1]c, occurs and define

In = inf
νn≤t<νn+1

ξt .

Theorem 1.1 in [Done04] asserts that the sequence (In) admits the representation

In = S(−)
n + ı̃0, n ≥ 0 ,

where S(−) is a random walk with the same distribution as (ξ(νn), n ≥ 0) and ı̃0 is inde-

pendent of S(−). For a ≥ 0, let ς(a) = min{n : S
(−)
n > a}, then for any q ≥ 0, we have

the inequality

(2.10) min
n≤ς(q+|̃ı0|)

(S(−)
n + ı̃0) ≤ inf

t≤Tq

ξt .

On the other hand, it follows from our hypothesis on ξ that

0 < E(S
(−)
1 ) ≤ E(|S(−)

1 |) < +∞,

hence from Theorem 2 of [Jans86] and its proof, there exists a finite constant C which

depends only on the law of S(−) such that for any a ≥ 0,

(2.11) E

(∣∣∣minn≤ς(a) S
(−)
n

∣∣∣
)
≤ CE(ς(a))E(|S(−)

1 |) .



48 CHAPTER 2. INTEGRAL TESTS

Moreover from (1.5) in [Jans86], there are finite constants A and B depending only on the

law of S(−) such that for any a ≥ 0

(2.12) E(ς(a)) ≤ A + Ba .

Since ı̃0 is integrable (see [Done04]), the result follows from (2.10), (2.11), (2.12) and the

independence between ı̃0 and S(−).

THEOREM 3. The lower envelope of X(x) at +∞ is described as follows:

Let f be an increasing function.

(i) If ∫ +∞

F

(
t

f(t)

)
dt

t
< ∞ ,

then for all ε > 0, and for all x ≥ 0,

P

(
X

(x)
t < (1 − ε)f(t), i.o., as t → +∞

)
= 0 .

(ii) If for all q > 0, ∫ +∞

Fq

(
t

f(t)

)
dt

t
= ∞ ,

then for all ε > 0, and for all x ≥ 0,

P

(
X

(x)
t < (1 + ε)f(t), i.o., as t → +∞

)
= 1 .

(iii) Assume that there exists γ > 1 such that,

lim sup
t→+∞

P(I > γt)

P(I > t)
< 1.

Assume also that t 7→ f(t)/t is decreasing. If
∫ +∞

F

(
t

f(t)

)
dt

t
= ∞ ,

then for all ε > 0, and for all x ≥ 0,

P

(
X

(x)
t < (1 + ε)f(t), i.o., as t → +∞

)
= 1 .

Proof: We first consider the case where x = 0. The proof is very similar to this of

Theorem 2. We can follow the proofs of (i), (ii) and (iii) line by line, replacing the

sequences xn = r−n and zn = kr−n respectively by the sequences xn = rn and zn = krn,

and replacing Corollary 2 by Corollary 3. Then with the definition

An =
{

There exists t ∈ [Urn , Urn+1 ] such that X
(0)
t < f(t)

}
,

we see that the event lim sup An belongs to the tail sigma-field ∩tσ{X(0)
s : s ≥ t} which is

trivial from the representation (0.15) and the Markov property.

The only thing which has to be checked more carefully is the counterpart at +∞ of the

equivalence (2.6). Indeed, since in that case
∫ ∞

1

P

(
rt < f(rtI)

)
dt =

∫ ∞

0+

P

(
s

f(s)
< Iq, s > rIq

)
ds

s log r
,
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in the proof of (ii) and (iii), we need to make sure that for any r > 1,

(2.13)∫ +∞

P

(
s

f(s)
< Iq

)
ds

s
= +∞ implies

∫ +∞

P

(
s

f(s)
< Iq < sr

)
ds

s
= +∞ .

To this aim, note that
∫ ∞

1

P

(
s

f(s)
< Iq < sr

)
ds

s
=

∫ ∞

1

P

(
s

f(s)
< Iq

)
− P

(
s

f(s)
< Iq, sr < Iq

)
ds

s
,

and since f is increasing, we have
∫ ∞

1

P

(
s

f(s)
< Iq, sr < Iq

)
ds

s
< +∞ if and only if

∫ ∞

1

P (s < Iq)
ds

s
< +∞ .

But ∫ ∞

1

P (s < Iq)
ds

s
= E(log+ Iq) .

Note that from our hypothesis on ξ, we have E(T̂−q) < +∞, then the conclusion follows

from the inequality

E(log+ Iq) ≤ E

(
sup0≤s≤T̂−q

ξ̂s

)
+ E(T̂−q)

and Lemma 5. This achieves the proof of the theorem for x = 0.

Now we prove (i) for any x > 0. Let f be an increasing function such that
∫ +∞

F

(
t

f(t)

)
dt

t
< +∞.

Let x > 0, put Sx = inf{t : X
(0)
t ≥ x} and denote by µx the law of X

(0)
Sx

. From the Markov

property at time Sx, we have for all ε > 0,

P

(
X

(0)
t < (1 − ε)f(t − Sx), i.o., as t → +∞

)

=

∫

[x,∞)

P

(
X

(y)
t < (1 − ε)f(t), i.o., as t → +∞

)
µx(dy)

≤ P

(
X

(0)
t < (1 − ε)f(t), i.o., as t → +∞

)
= 0 .(2.14)

If x is an atom of µx, then the inequality (2.14) shows that

P

(
X

(x)
t < (1 − ε)f(t), i.o., as t → +∞

)
= 0

and the result is proved. Suppose that x is not an atom of µx. Recall from Lemma 1 that

log(x−1
1 Γ) is the limit in law of the overshoot process ξ̂T̂z

− z, as z → +∞. Moreover, it

follows from [CaCh06], Theorem 1 that X
(0)
Sx

(d)
= xx1

Γ
. Hence, again from Lemma 1, we

have for any η > 0, µx(x, x + η) > 0. Then, the inequality (2.14) implies that for any

η > 0, there exists y ∈ (x, x + η) such that

P

(
X

(y)
t < (1 − ε)f(t), i.o., as t → +∞

)
= 0,

for all ε > 0. It allows us to conclude.

Parts (ii) and (iii) can be proved through the same way.

Recall that we are assuming that the scaling index α = 1. In order to obtain these above

integral tests for pssMp with any scaling index α > 0, it is enough to consider the process
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(X(0))1/α in the above theorems. The same remark holds for the results of the next sections.

Now, we introduce J (x) = (J
(x)
t , t ≥ 0), the future infimum process of X(x), defined by

J
(x)
t

(def)
= inf

s≥t
X(x)

s , for t ≥ 0.

Note that the future infimum process J (x), is an increasing self-similar process with the

same scaling coefficient as X(x). It is clear that when the pssMp X(x) starts from x = 0,

the process J (0) starts also from 0. When the pssMp X(x) starts from x > 0, the future

infimum J (x) starts from the global infimum, that is from inft≥0 X
(x)
t . In both cases, the

future infimum process J (x) tends to +∞ as t increases.

The lower envelope of X(x) are based on the study of its last passage times. Since the

future infimum process J (x) can be seen as the right inverse of the last passage times of

X(x), it is not difficult to deduce that we can replace X(x) by its future infimum in all the

above results. In other words, we will obtain the same integral tests for the lower envelope

of J (x) at 0 ( when x = 0) and at +∞ ( for all x ≥ 0), which means that the process X(0)

and its future infimum have the same lower functions.

2. The lower envelope of the last passage time.

In Chapter 1, we mentioned that U = (Ux, x ≥ 0) is an increasing self-similar process

whose scaling coefficient is inversely proportional to the scaling coefficient of X(0). More-

over, since X(0) starts at 0 and drifts towards +∞, we deduce that U also starts at 0 and

tends to infinity as x increases.

Here, we are interested in the lower envelope of the last passage time process U at 0
and at +∞. As we will see later, the lower envelope of U is related to the upper envelope

of the future infimum of X(0).

The following result will give us integral test at 0 for the lower envelope of U . With the

same notation as in the precedent section, we define

F̄ν(t)
(def)
= P

(
νI < t

)
and F̄ (t)

(def)
= P

(
I < t

)
,

where ν is independent of I and has the same law as x−1
1 Γ. Note that the support of the

distribution of ν is the interval [0, 1].
Let us denote by H−1

0 , the totality of positive increasing functions h(x) on (0,∞) that

satisfy

i) h(0) = 0, and

ii) there exists β ∈ (0, 1) such that sup
x<β

h(x)

x
< ∞.

THEOREM 4. Let h ∈ H−1
0 .

i) If ∫

0+

F̄ν

(
h(x)

x

)
dx

x
< ∞,

then for all ǫ > 0

P

(
Ux < (1 − ǫ)h(x), i.o., as x → 0

)
= 0.

ii) If ∫

0+

F̄

(
h(x)

x

)
dx

x
= ∞,
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then for all ǫ > 0

P

(
Ux < (1 + ǫ)h(x), i.o., as x → 0

)
= 1.

Proof: We first prove the convergent part. Let (xn) be a decreasing sequence of positive

numbers which converges to 0 and let us define the events

An =
{

Uxn+1 < h(xn)
}

.

Now, we choose xn = rn, for r < 1. From the first Borel-Cantelli Lemma, if we have that∑
n P(An) < ∞, it follows

Urn+1 ≥ h
(
rn

)
P − a.s.,

for all large n. Since the function h and the process U are increasing, we have

Ux ≥ h(x) for rn+1 ≤ x ≤ rn.

From the identity in law (1.16), we get the following inequality

∑

n

P

(
Urn < h

(
rn+1

))
≤

∫ ∞

1

P

(
rtνI < h

(
rt

))
dt

= − 1

log r

∫ r

0

F̄ν

(
h(x)

x

)
dx

x
.

From our hypothesis, this last integral is finite. Then from the above discussion, there exist

x0 such that for every x ≤ x0

Ux ≥ r2h(x), for all r < 1.

Clearly, this implies that

P

(
Ux < r2h(x), i.o., as x → 0

)
= 0,

which proves part (i).
Now we prove the divergent part. First, we assume that h satisfies

∫

0+

F̄

(
h(x)

x

)
dx

x
= ∞.

Let us take, again xn = rn for r < 1, and define the events

Cn =
{

Ux < r−2h(x), for some x ∈ (0, rn)
}

.

Note that the family (Cn) is decreasing, then

C =
⋂

n≥1

Cn =
{

Ux < r−2h(x), i.o., as x → 0
}

.

If we prove that lim P(Cn) > 0, then since X(0) is a Feller process and by Blumenthal’s

0-1 law we will have that

P

(
Ux < r−2h(x), i.o., as x → 0

)
= 1,

which will prove part (ii).
In this direction, we define the following events. For n ≤ m − 1,

D(n,m) =
{

rj+1Ī(j+1,m+1) ≥ h(rj), for all n ≤ j ≤ m − 1
}

,
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and for r < k < 1 and n ≤ m − 2

E(n,m−1) =
{

rj+1Ī(j+1,m) + rj+1R(j+1,m)Ī(m,m+1) ≥ h(rj), for all n ≤ j ≤ m − 2
}

and

E
(k)
(n,m−1) =

{
rj+1Ī(j+1,m) + rj+1R(j+1,m)Ī

(k)
m ≥ h(rj), for all n ≤ j ≤ m − 2

}
,

where

Ī(j+1,m+1) =

∫ T̄
(j+1)

log(rm+1/Γj+1)

0

exp
{

ξ̄(j+1)
s

}
ds,

Ī(k)
m =

∫ T̄
(m)

log(rm+1/krm)

0

exp
{

ξ̄(m)
s

}
ds and

R(j+1,m) = exp
{

ξ̄
(j+1)

T̄
(j+1)
log(rm/Γj+1)

}
,

and for n ≤ j ≤ m − 1, ξ̄(j+1) is a Lévy process defined as in Corollary 2.

From the definition of ξ̄(j+1), we can deduce that for j < m

ξ̄(m) =
(
ξ̄

(j+1)

T̄
(j+1)
log(rm/Γj+1)

+t
− ξ̄

(j+1)

T̄
(j+1)
log(rm/Γj+1)

, t ≥ 0
)

and

Γm = Γj+1 exp
{

ξ̄
(j+1)

T̄
(j+1)
log(rm/Γj+1)

}
,

then it is straightforward that

T̄
(j+1)

log(rm+1/Γj+1)
= T̄

(j+1)
log(rm/Γj+1) + inf

{
t ≥ 0; ξ̄

(m)
t ≤ log(rm+1/Γm)

}
.

The above decomposition allows us to determine the following identity

(2.15) Ī(j+1,m+1) = Ī(j+1,m) + R(j+1,m)Ī(m,m+1).

In the same way we can also get that,

(2.16) I(ξ̄(j+1)) = Ī(j+1,m+1) + R(j+1,m+1)I(ξ̄(m+1)).

By Corollaries 1 and 2, it follows that I
(
ξ̄(m+1)

)
is independent of (Ī(j+1,m+1), R(j+1,m+1))

and distributed as I .

From (2.15) and since
{

rmĪ(m,m+1) ≥ h(rm−1)
}
⊂

{
Γm > rm+1

}
,

we conclude that

D(n,m) = E(n,m−1)

⋂ {
rmĪ(m,m+1) ≥ h(rm−1)

} ⋂ {
Γm > rm+1

}
.

Now, for n ≤ m − 1, we define

H(n,m) = P

(
E

(k)
(n,m−1), r

mĪ(k)
m ≥ h(rm−1), Γm > rmk

)
.

On the event {Γm > rmk}, we have that Ī
(k)
m ≤ Ī(m,m+1). Hence since k > r, we deduce

that P(D(n,m)) ≥ H(n,m).
For our purpose, we will prove that there exist (nl) and (ml), two increasing sequences such

that 0 ≤ nl ≤ ml − 1, and nl,ml go to ∞ and H(nl,ml) tends to 0 as l goes to infinity. In

this direction, we define the events

Bn =
{

rn+1I
(
ξ̄(n+1)

)
< h(rn)

}
.
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If we suppose the contrary, this is that there exists δ > 0 such that H(n,m) ≥ δ for all

sufficiently large integers m and n, we see from identity (2.16) that

1 ≥ P

(
∞⋃

m=n+1

Bm

)
≥

∞∑

m=n+1

P

(
Bm

⋂
(

m−1⋂

j=n

Bc
j

))

=
∞∑

m=n+1

P

(
rm+1I

(
ξ̄(m+1)

)
< h(rm),

m−1⋂

j=n

{
rj+1I(ξ̄(j+1)) ≥ h(rj)

})

≥
∞∑

m=n+1

P
(
rm+1I

(
ξ̄(m+1)

)
< h(rm)

)
P
(
D(n,m)

)

≥
∞∑

m=n+1

P

(
rm+1I

(
ξ̄(m+1)

)
< h(rm)

)
H(n, m) ≥ δ

∞∑

m=n+1

P

(
rm+1I < h(rm)

)
,

but this last sum diverges, since

∞∑

m=n+1

P
(
rm+1I < h(rm)

)
≥

∫ ∞

n+1

P

(
rtI < h(rt)

)
dt

= − 1

log r

∫ rn+1

0

F̄

(
h(x)

x

)
dx

x
.

Hence our assertion is true.

Next, we denote P(I ∈ dx) = µ(dx) and P(Ir/k ∈ dx) = µ̄(dx) for k > r, where

Ir/k =

∫ T̂log(r/k)

0

exp{ξ̂s}ds,

and we define

ρnl,ml
(x) = P

(
ml−2⋂

j=nl

{
rj+1Ī(j+1,ml) + rj+1Rj+1,ml

x ≥ r−1h(rj)
}

, Γml
> krml

)
,

and

G(nl,ml) = P

(
ml−1⋂

j=nl

{
rj+1I(ξ̄(j+1)) ≥ h(rj)

}
, Γml

> krml

)
.

Note that ρnl,ml
(x) is increasing in x.

Hence, H(nl,ml) and G(nl,ml) are expressed as follows

H(nl,ml) =

∫ ∞

r−mlh(rml−1)

µ̄(dx)ρnl,ml
(x) and

G(nl,ml) =

∫ ∞

r−mlh(rml−1)

µ(dx)ρnl,ml
(x).

The equality for H(nl,ml) is evident since the random variable Ī
(k)
m is independent from{

Γml
, (Ī(j+1,ml), R(j+1,ml); nl ≤ j ≤ ml − 2)

}
. To show the second one, we use (2.16) in

the following form

I
(
ξ̄(j+1)

)
= Ī(j+1,ml) + R(j+1,ml)I

(
ξ̄(ml)

)
,
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and the independence between I
(
ξ̄(ml)

)
and

{
Γml

, (Ī(j+1,ml), R(j+1,ml); nl ≤ j ≤ ml−2)
}

.

In particular, it follows that for l sufficiently large

H(nl,ml) ≥ ρnl,ml
(N)

∫ ∞

N

µ̄(dx) for N ≥ rC,

where C = supx≤β x−1h(x).
Since H(nl, ml) converges to 0, as l goes to +∞ and µ̄ does not depend on l, then ρnl,ml

(N)
also converges to 0 when l goes to +∞, for every N ≥ rC.

On the other hand, we have

G(nl,ml) ≤ ρnl,ml
(N)

∫ N

0

µ(dx) +

∫ ∞

N

µ(dx),

then, letting l and N go to infinity, we get that G(nl,ml) goes to 0.

Note that the set Cnl
satisfies

P(Cnl
) ≥ 1 − P

(
rj+1I(ξ̄(j+1)) ≥ h(rj), for all nl ≤ j ≤ ml − 1

)

and it is not difficult to see that

P
(
rj+1I(ξ̄(j+1)) ≥ h(rj), for all nl ≤ j ≤ ml − 1

)
≤ P

(
Γml

≤ krml) + G(nl,ml).

Then,

P(Cnl
) ≥ P

(
Γml

> krml) − G(nl, ml),

and since P
(
Γml

> krml) = P
(
Γ > kr) > 0 (see Corollary 1 and the properties of Γ in

Lemma 1), we conclude that lim P(Cn) > 0 and with this we finish the proof.

For the integral tests at +∞, we define H−1
∞ the totality of positive increasing functions

h(x) on (0,∞) that satisfy

i) limt→∞ h(x) = +∞, and

ii) there exists β ∈ (1, +∞) such that sup
x>β

h(x)

x
< ∞,

THEOREM 5. Let h ∈ H−1
∞ .

i) If ∫ +∞

F̄ν

(
h(x)

x

)
dx

x
< ∞,

then for all ǫ > 0

P

(
Ux < (1 − ǫ)h(x), i.o., as x → +∞

)
= 0.

ii) If ∫ +∞

F̄

(
h(x)

x

)
dx

x
= ∞,

then for all ǫ > 0

P

(
Ux < (1 + ǫ)h(x), i.o., as x → +∞

)
= 1.

Proof: The proof is very similar to that in Theorem 4. First, note that we have the same

results as Corollary 2 for x large (see Corollary 3 ), then we get the integral test following
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the same arguments for the proof of (i) and (ii) for the sequence xn = rn, for r > 1, and

noticing that if we define

Cn =
{

Ux < hr(x), for some x ∈ (rn, +∞)
}

=
{

J
(0)
t > h−1

r (t), for some t ∈ (Urn , +∞)
}

,

where hr(t) = r2h(t), then the event C = ∩n≥1Cn is in the upper-tail sigma-field
⋂

t

σ
{

X(0)
s : s ≥ t

}
,

which is trivial.

In some cases, it will prove complicated to find sharp estimations of the tail probability

of νI , given that we will not have enough information about the distribution of ν. However,

if we can determine the law of I then by (0.16), we will also determine the law of X
(0)
1 and

sometimes it will be possible to have sharp estimations of its tail probability. For this

reason, we will give another integral test for the convergence cases in Theorems 4 and 5, in

terms of the tail probability of X
(0)
1 .

Let us define

H(t) = P0

(
X1 > t

)
.

COROLLARY 6. i) Let h ∈ H−1
0 . If

∫

0+

H

(
x

h(x)

)
dx

x
< ∞,

then for all ǫ > 0

P

(
Ux < (1 − ǫ)h(x), i.o., as x → 0

)
= 0.

ii) Let h ∈ H−1
∞ . If ∫ +∞

H

(
x

h(x)

)
dx

x
< ∞,

then for all ǫ > 0

P

(
Ux < (1 − ǫ)h(x), i.o., as x → ∞

)
= 0.

Proof: The proof of this corollary is consequence of the following inequality. By the

scaling property,

F̄ν

(
h(x)/x

)
= P

(
U1 < h(x)/x

)
= P

(
J

(0)
1 > x/h(x)

)
≤ P0

(
X1 > x/h(x)

)
,

and then applying Theorem 4 part (i) for the integral test at 0 and Theorem 5 part (i) for the

integral test at +∞, we obtain the desired result.

3. The upper envelopes of the future infimum and increasing positive self-similar

Markov processes.

The aim of this section is to determine the upper envelope of the future infimum of

pssMp at 0 and at +∞. With this purpose, we will use similar arguments to the used ones

in the lower envelope of the last passage time process.

We first note that if the pssMp is increasing; then its supremum , its past infimum and its
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future infimum are the same. Moreover, its first passage time over the level y > 0 is the

same as the last passage time below y. Therefore, with the following integral tests for the

future infimum we may also describe the upper envelope of increasing pssMp.

Let us denote by H0 the totality of positive increasing functions h(t) on (0,∞) that

satisfy

i) h(0) = 0, and

ii) there exists β ∈ (0, 1) such that sup
t<β

t

h(t)
< ∞.

THEOREM 6. Let h ∈ H0.

i) If ∫

0+

F̄ν

(
t

h(t)

)
dt

t
< ∞,

then for all ǫ > 0

P0

(
Jt > (1 + ǫ)h(t), i.o., as t → 0

)
= 0.

ii) If ∫

0+

F̄

(
t

h(t)

)
dt

t
= ∞,

then for all ǫ > 0

P0

(
Jt > (1 − ǫ)h(t), i.o., as t → 0

)
= 1.

Proof: Let (xn) be a decreasing sequence which converges to 0. We define the events

An =
{

There exists t ∈ [Uxn+1 , Uxn ] such that J
(0)
t > h(t)

}
.

From the fact that Uxn tends to 0, a.s. when n goes to +∞, we see
{

J
(0)
t > h(t), i.o., as t → 0

}
= lim sup

n→+∞
An.

Since h is an increasing function and J
(0)
Uxn

≥ xn a.s., the following inclusions hold

(2.17)
{

xn > h
(
Uxn

)}
⊂ An ⊂

{
xn > h

(
Uxn+1

)}
.

Now, we prove the convergent part. We choose xn = rn, for r < 1 and hr(t) = r−2h(t).
Since h is increasing, we deduce that

∑

n

P

(
rn > hr

(
Urn+1

))
≤ − 1

log r

∫ r

0

P

(
t > h

(
Ut

))dt

t
.

Replacing h by hr in (2.17), we see that we can obtain our result if
∫ r

0

P

(
t > h

(
Ut

))dt

t
< ∞.

From elementary calculations, we deduce that

∫ r

0

P

(
t > h

(
Ut

))dt

t
= E

(∫ h−1(r)

0

1I{
t/r<νI<t/h(t)

}dt

t

)
,
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where h−1(s) = inf{t > 0, h(t) > s}, the right inverse function of h. Then, this integral

converges if ∫ h−1(r)

0

P

(
νI <

t

h(t)

)
dt

t
< ∞.

This proves part (i).
Next, we prove the divergent case. We suppose that h satisfies

∫

0+

F̄

(
t

h(t)

)
dt

t
= ∞.

Take, again, xn = rn, for r < 1 and note that,

Bn =
∞⋃

m=n

Am =
{

There exist t ∈ (0, Urn ] such that J
(0)
t > hr(t)

}

=
{

There exist x ∈ (0, rn] such that Ux < h−1
r (x)

}

where hr(t) = rh(t) and h−1
r its right inverse function. Hence, by analogous arguments

to the proof of Theorem 4 part (ii) it is enough to prove that lim P(Bn) > 0 to obtain our

result. With this purpose, we will follow the proof of Theorem 4.

From inclusion (2.17) and the inequality (1.12) in Corollary 2, we see

P(Bn) ≥ 1 − P

(
rj ≤ rh

(
rjI(ξ̄(j))

)
, for all n ≤ j ≤ m − 1

)
,

where m is chosen arbitrarily m ≥ n + 1.

Now, we define the events

Cn =

{
rn > rh

(
rnI

(
ξ̄(n)

))}
,

and we will prove that
∑

P(Cn) = ∞. Since the function h is increasing, it is straightfor-

ward that

∑

n≥1

P(Cn) ≥
∫ +∞

0

P
(
rt > h

(
rtI

))
dt = − 1

log r

∫ 1

0

P

(
t > h

(
tI

))dt

t
.

Hence, it is enough to prove that this last integral is infinite. In this direction, we have that

∫ r

0

P

(
t > h

(
tI

))dt

t
= E

(∫ h−1(r)

0

1I{
t/r<I<t/h(t)

}dt

t

)
.

On the other hand, we see that
∫ h−1(r)

0

P

(
I <

t

h(t)

)
dt

t
=

∫ h−1(r)

0

P

(
t

r
< I <

t

h(t)

)
dt

t

+

∫ h−1(r)

0

P

(
I <

t

r

)
dt

t
,

and since e−1T̂1 ≤ I almost surely, then
∫ h−1(r)

0

P

(
I <

t

r

)
dt

t
≤ E

(
log+ h−1(r)

r
I−1

)

≤ 1 + log+ h−1(r)

r
+ E

(
| log T̂1|

)
,
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which is clearly finite from our assumptions. Then, we deduce that

E

(∫ h−1(r)

0

1I{
t/r<I<t/h(t)

}dt

t

)
= ∞,

and hence
∑

P(Cn) = ∞.

Next following the same notation as in the proof of Theorem 4, we define the following

events. For n ≤ m − 1

D(n,m) =
{

rj ≤ rh
(
rj Ī(j,m)

)
, for all n ≤ j ≤ m − 1

}
,

and, for r < k < 1 and n ≤ m − 2

En,m−1 =
{

rj ≤ rh
(
rj Ī(j,m−1) + rjR(j,m−1)Ī(m−1,m)

)
, for all n ≤ j ≤ m − 2

}
and

E
(k)
n,m−1 =

{
rj ≤ rh

(
rj Ī(j,m−1) + rjR(j,m−1)Ī

(k)
m−1

)
, for all n ≤ j ≤ m − 2

}
.

Again, we have that

D(n,m) = E(n,m−1)

⋂ {
rm−1 ≤ rh

(
rm−1Ī(m−1,m)

)}⋂ {
Γm−1 > rmk

}
.

Now, for n ≤ m − 1, we define

H(n,m) = P

(
E

(k)
(m,m−1), r

m−1 ≤ rh
(
rm−1Ī(m−1,m)

)
, Γm−1 > rmk

)
.

Since k > r, we deduce that P(D(n,m)) ≥ H(n,m). Then similarly as in the proof of

Theorem 4, we will prove that there exist (nl) and (ml), two increasing sequences such

that 0 ≤ nl ≤ ml − 1, and nl,ml go to +∞ and H(nl, ml) tends to 0 as l goes to infinity.

We suppose the contrary, i.e., there exist δ > 0 such that H(n,m) ≥ δ for all sufficiently

large integers m and n, hence

1 ≥ P

(
∞⋃

m=n+1

Cm

)
≥

∞∑

m=n+1

P

(
Cm

⋂
(

m−1⋂

j=n

Cc
j

))

≥
∞∑

m=n+1

P

(
rm > rh

(
rmI

(
ξ̄(m)

)))
P(D(n,m))

≥
∞∑

m=n+1

P

(
rm > rh

(
rmI

(
ξ̄(m)

)))
H(n,m) ≥ δ

∞∑

m=n+1

P
(
Cm

)
,

but since
∑

P(Cn) diverges, we see that our assertion is true.

Next, we define

ρnl,ml
(x) = P

(
ml−2⋂

j=nl

{
rj ≤ rh

(
rj Ī(j,m−1) + rjR(j,m−1)x

)}
, Γml−1 > krml−1

)

and

G(nl,ml) = P

(
ml−1⋂

j=nl

{
rj ≤ rh

(
rjI

(
ξ̄(j)

))}
, Γml−1 > krml−1

)
.

Since h is increasing, we see that ρnl,ml
(x) is increasing in x.

Again, we express H(nl,ml) and G(nl,ml) as follows

H(nl,ml) =

∫ +∞

0

µ̄(dx)1I{
h(rml−1x)≥rml

}ρnl,ml
(x) and,
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G(nl,ml) =

∫ +∞

0

µ(dx)1I{
h(rml−1x)≥rml

}ρnl,ml
(x).

In particular, we get that for l sufficiently large

H(nl,ml) ≥ ρnl,ml
(N)

∫ +∞

N

µ̄(dx)ρnl,ml
(x) for N ≥ rC,

where C = supx≤β x/h(x). Hence following the same arguments of the proof of Theorem

4, it is not difficult to see that G(nl,ml) goes to 0 as l goes to infinity and that

lim
l→+∞

1 − P

(
rj+1 ≤ rh

(
rj+1I(ξ̄(j+1))

)
, for all nl ≤ j ≤ ml − 1

)
> 0.

Then, we conclude that lim P(Bn) > 0 and with this we finish the proof.

For the integral tests at +∞, we define H∞, the totality of positive increasing functions

h(t) on (0,∞) that satisfy

i) limt→∞ h(t) = ∞, and

ii) there exists β > 1 such that sup
t>β

t

h(t)
< ∞.

Then the upper envelope of J (x) at +∞ is given by the following result.

THEOREM 7. Let h ∈ H∞.

i) If
∫ +∞

F̄ν

(
t

h(t)

)
dt

t
< ∞,

then for all ǫ > 0 and for all x ≥ 0,

Px

(
Jt > (1 + ǫ)h(t), i.o., as t → +∞

)
= 0.

ii) If
∫ +∞

F̄

(
t

h(t)

)
dt

t
= ∞,

then for all ǫ > 0 and for all x ≥ 0

Px

(
Jt > (1 − ǫ)h(t), i.o., as t → +∞

)
= 1.

Proof: We first consider the case where x = 0. In this case the proof of the tests at +∞
is almost the same as that of the tests at 0. It is enough to apply the same arguments to the

sequence xn = rn, for r > 1.

Now, we prove (i) for any x > 0. Let h ∈ H∞ such that

∫ +∞

F̄ν

(
t

h(t)

)
dt

t
is finite.

Let x > 0 and Sx = inf{t ≥ 0 : X
(0)
t ≥ x} and note by µx the law of X

(0)
Sx

. Since clearly

∫ +∞

F̄ν

(
t

h(t − Sx)

)
dt

t
< ∞,
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from the Markov property at time Sx, we have for all ǫ > 0

P0

(
Jt > (1 + ǫ)h(t − Sx), i. o., as t → ∞

)

=

∫

[x,+∞)

Py

(
Jt > (1 + ǫ)h(t), i. o., as t → ∞

)
µx(dy) = 0.

(2.18)

If x is an atom of µx, then equality (2.18) shows that

P

(
J

(x)
t > (1 + ǫ)h(t), i. o., as t → ∞

)
= 0

and the result is proved. Suppose that x is not an atom of µx. Recall from Lemma 1, that

log(x−1
1 Γ) is the limit in law of the overshoot process ξ̂T̂x

− x, as x → +∞. So, it follows

from [CaCh06], Theorem 1 that X
(0)
Sx

(d)
= xx1

Γ
, and since P(Γ > z) for z < x1, we have for

any α > 0, µx(x, x + α) > 0. Hence (2.18) shows that there exists y > x such that

P

(
J

(y)
t > (1 + ǫ)h(t), i. o., as t → ∞

)
= 0,

for all ǫ > 0. The previous allows us to conclude part (i).
Part (ii) can be proved in the same way.

Similarly as for the lower envelope of U , we may obtain integral tests for the conver-

gence cases of Theorems 6 and 7 in terms of the large tail probability of X
(0)
1 that we

denoted by H .

COROLLARY 7. i) Let h ∈ H0. If

∫

0+

H

(
h(t)

t

)
dt

t
< ∞,

then for all ǫ > 0

P

(
J

(0)
t > (1 + ǫ)h(t), i.o., as t → 0

)
= 0.

ii) Let h ∈ H∞. If
∫ +∞

H

(
h(t)

t

)
dt

t
< ∞,

then and for all ǫ > 0

P

(
J

(x)
t > (1 + ǫ)h(t), i.o., as t → ∞

)
= 0.

Proof: As in Corollary 6, the proof of this result is consequence of the following in-

equality. By the scaling property,

F̄ν

(
t/h(t)

)
= P

(
U1 < t/h(t)

)
= P

(
J

(0)
1 > h(t)/t

)
≤ P0

(
X1 > h(t)/t

)
,

and then applying Theorem 6 part (i) for the integral test at 0 and Theorem 7 part (i) for the

integral test at +∞, we obtain the desired result.
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4. The upper envelope of positive self-similar Markov processes with no positive

jumps

In the precedent section, we noted that the upper envelope of the future infimum is

determined by the lower envelope of the last passage times and also that the same arguments

describe the upper envelope of increasing pssMp since in this case the first and last passage

times are the same. Following the same type of reasonings, we deduce that the upper

envelope of X(0) (and that of its past supremum) is determined by its first passage times

and a natural question that we may raise is: could we use similar arguments, as for the

future infimum, to determine the upper envelope of positive self-similar Markov processes?

In general, we do not know how to determine the law of the first passage time and even

how to establish an integral test, since from the Caballero and Chaumont’s construction we

have that the first passage time depends on the sequence (θn) which is a Markov chain.

In Chapter 1, under the assumption of absence of positive jumps, we determined the

law of the first passage time in terms of its associated Lévy process and moreover that

S1 is a self-decomposable random variable. The self-decomposability of the first passage

time will allow us to obtain in a complete and satisfactory way integral tests for the upper

envelope of pssMp in this case.

4.1. The lower envelope of the first and last passage times. In Chapter 1, we showed

that the first and last passage time processes are increasing and positive self-similar pro-

cesses with independent increments (ipsspii to simplify the notation). Watanabe [Wata96]

established integral tests and laws of the iterated logarithm for this type of processes. Here,

we will use the integral tests found by Watanabe to describe the lower envelope of the first

and last passage time of pssMp with no positive jumps.

Let Y be an ipsspii starting from 0 and define

R(t)
(def)
= P(Y1 < t).

We recall that H−1
0 is the totality of positive increasing functions h(x) on (0,∞) that satisfy

i) h(0) = 0, and

ii) there exists β ∈ (0, 1) such that sup
x<β

h(x)

x
< ∞.

LEMMA 6 (Watanabe [Wata96]). Let h ∈ H−1
0 and Y an isspii.

i) If ∫

0+

R

(
h(t)

t

)
dt

t
< ∞,

then for all ǫ > 0

P

(
Yt < (1 − ǫ)h(t), i.o., as t → 0

)
= 0.

ii) If ∫

0+

R

(
h(t)

t

)
dt

t
= ∞,

then for all ǫ > 0

P

(
Yt < (1 + ǫ)h(t), i.o., as t → 0

)
= 1.
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We have the same integral tests at +∞, for h ∈ H−1
∞ , we only need to exchange

∫

0+

R

(
h(t)

t

)
dt

t
by

∫ +∞

R

(
h(t)

t

)
dt

t
.

Since U and S are ipsspii starting from 0, we will have integral tests for the lower envelope

at 0 and at +∞ of both processes. By Corollary 5 and Proposition 5, we see that the integral

test of U and S depends on the distribution functions of I(ξ̂) and I(ξ̃), respectively.

4.2. The upper envelope. Now, we will establish integral tests for the upper envelope

of X(0) at 0 and at +∞. The following theorem means in particular that the asymptotic

behaviour of X(0) only depends on the tail behaviour of the law of

I(ξ̃) =

∫ +∞

0

exp
{

ξ̃u

}
du =

∫ +∞

γ(0)

exp
{
− ξu

}
du,

and on the additional hypothesis

(2.19) E

(
log+ I

(
ξ̃
)−1

)
< ∞.

Let us define

F̃ (t)
(def)
= P

(
I
(
ξ̃
)

< t
)
.

THEOREM 8. Let h ∈ H0.

i) If ∫

0+

F̃

(
t

h(t)

)
dt

t
< ∞,

then for all ǫ > 0

P0

(
Xt > (1 + ǫ)h(t), i.o., as t → 0

)
= 0.

ii) Assume that (2.19) is satisfied. If
∫

0+

F̃

(
t

h(t)

)
dt

t
= ∞,

then for all ǫ > 0

P0

(
Xt > (1 − ǫ)h(t), i.o., as t → 0

)
= 1.

Proof: The proof is very similar to this of Theorem 6. We only need to make some

remarks in part (ii) that we will explain below. We recall from Corollary 5, the following

identity in law Sx
(d)
= xI(ξ̃), for x > 0.

The proof of part (i) follows line by line, replacing the future infimum process J (0) by the

pssMp X(0) and the last passage time U by the first passage time S.

The proof of part (ii) is much easier to this of Theorem 6, since in this case the first passage

process S has independent increments. In order to proof this part, we follow again line by

line the arguments in the proof of part (ii) in Theorem 6 replacing the future infimum pro-

cess J (0) by the pssMp X(0), the last passage time U by the first passage time S, and noting

the following assertions:
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• First, we note that to prove
∑

P(Cn) = ∞ the additional hypothesis is required

since
∫ h−1(r)

0

P

(
I
(
ξ̃
)

<
t

r

)
dt

t
≤ E

(
log+ h−1(r)

r
I
(
ξ̃
)−1

)
.

• Since the process S has independent increments, we will not need to define the

sets D(n,m), En,m−1 and E
(k)
n,m−1. Then H(n,m) becomes

H(n,m)
(def)
= P

(
rj ≤ rh

(
Srj − Srm

)
, for all n ≤ j ≤ m − 1

)
.

• The existence of the two increasing sequences (nl, l ≥ 1) and (ml, l ≥ 1), is also

much easier. In fact, if we assume that there exist δ > 0 such that H(n, m) ≥ δ
for all sufficiently large integers m,n; from the independence of the increments of

S, we have

1 ≥ P

(
∞⋃

m=n+1

Cm

)
≥

∞∑

m=n+1

P

(
Cm

⋂
(

m−1⋂

j=n

Cc
j

))

≥
∞∑

m=n+1

P

(
rm > rh

(
Srm

))
H(n,m) ≥ δ

∞∑

m=n+1

P
(
Cm

)
.

• The definitions of ρnl,ml
(x) and G(nl,ml) become,

ρnl,ml
(x)

(def)
= P

(
rj ≤ rh

(
Srj − Srml−1 + x

)
for, nl ≤ j ≤ ml − 2

)
, x ≥ 0,

and

G(nl,ml)
(def)
= P

(
rj ≤ rh

(
Srj

)
for, nl ≤ j ≤ ml − 1

)
.

• Finally, we note that the probability measures µ and µ̄ in the decomposition of

H(nl,ml) and G(nl,ml) are the laws of S1 and S1 − Sr and hence the proof

follows.

The upper envelope of X(x) at +∞ is given by the following result.

THEOREM 9. Let h ∈ H∞.

i) If ∫ +∞

F̃

(
t

h(t)

)
dt

t
< ∞,

then for all ǫ > 0 and for all x ≥ 0,

Px

(
Xt > (1 + ǫ)h(t), i.o., as t → +∞

)
= 0.

ii) Assume that (2.19) is satisfied. If
∫ +∞

F̃

(
t

h(t)

)
dt

t
= ∞,

then for all ǫ > 0 and for all x ≥ 0

Px

(
Xt > (1 − ǫ)h(t), i.o., as t → +∞

)
= 1.
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Proof: We first consider the case where x = 0. In this case the proof of the tests at +∞
is almost the same as that of the tests at 0. It is enough to apply the same arguments to the

sequence xn = rn, for r > 1.

Now, we prove (i) for any x > 0. Let h ∈ H∞ such that
∫ +∞

F̃

(
t

h(t)

)
dt

t
is finite.

Let x > 0 and Sx as usual. Since clearly
∫ +∞

F̃

(
t

h(t − Sx)

)
dt

t
< ∞,

from the Markov property at time Sx, we have for all ǫ > 0

0 = P0

(
Xt > (1 + ǫ)h(t − Sx), i. o., as t → ∞

)

= Px

(
Xt > (1 + ǫ)h(t), i. o., as t → ∞

)
,

which proves part (i).
Part (ii) can be proved in the same way.

5. Describing the upper envelope of a positive self-similar Markov process using its

future infimum.

In this section, we will use the integral tests which describe the upper envelope of

the future infimum of pssMp to determine the upper envelope of pssMp, under general

hypothesis. The integral tests that we will find here are related with the tail probabilities

of the exponential functional I and S1. Note that the tail probability of I can be smaller

than the tail probability of S1 but for our applications (see Chapters 3 and 4) these integral

test will be very useful. In fact, in the following chapters we will compare the behaviour of

these tail probabilities under different conditions.

5.1. Lower envelope of the first passage time. Recall that S = (Sx, x ≥ 0) is an

increasing self-similar process whose scaling coefficient is the inverse of the scaling coef-

ficient of X(0). Since the process X(0) starts at 0 and drifts towards +∞, we deduce that

the process S also starts at 0 and tends to +∞ as x increases.

In this section, we are interested in the lower envelope of the process S at 0 and at +∞.

As we will see later, the asymptotic behaviour of the process S is related to the asymptotic

behaviour of X(0). Let us define

G(t) := P
(
S1 < t

)
.

PROPOSITION 6. Let h ∈ H−1
0 .

i) If ∫

0+

G

(
h(x)

x

)
dx

x
< ∞,

then for all ǫ > 0

P

(
Sx < (1 − ǫ)h(x), i.o., as x → 0

)
= 0.

ii) If ∫

0+

F̄

(
h(x)

x

)
dx

x
= ∞,



5. DESCRIBING THE UPPER ENVELOPE OF A PSSMP USING ITS FUTURE INFIMUM 65

then for all ǫ > 0

P

(
Sx < (1 + ǫ)h(x), i.o., as x → 0

)
= 1.

Proof: We first prove the convergent part. Let (xn) be a decreasing sequence of positive

numbers which converges to 0 and let us define the events

An =
{

Sxn+1 < h(xn)
}

.

Next, we choose xn = rn, for r < 1. From the first Borel-Cantelli Lemma, if we have that∑
n P(An) < ∞, it follows

Srn+1 ≥ h
(
rn

)
P − a.s.,

for all large n. Since the function h and the process S are increasing, we have

Sx ≥ h(x) for rn+1 ≤ x ≤ rn.

Hence from the scaling property, we get that

∑

n

P

(
Srn < h

(
rn+1

))
≤

∫ ∞

1

P

(
rtS1 < h

(
rt

))
dt

= − 1

log r

∫ r

0

G

(
h(x)

x

)
dx

x
.

From our hypothesis, this last integral is finite. Then from the above discussion, there exist

x0 such that for every x ≥ x0

Sx ≥ r2h(x), for all r < 1.

Clearly, this implies that

P0

(
Sx < r2h(x), i.o., as x → 0

)
= 0,

which proves part (i).
The divergent part is a natural consequence from the integral test of lower envelope of the

last passage time see section 2 (Theorem 4, part (ii)) since Sx ≤ Ux for all x ≥ 0.

The integral test at +∞ is as follows;

PROPOSITION 7. Let h ∈ H−1
0 .

i) If ∫ +∞

G

(
h(x)

x

)
dx

x
< ∞,

then for all ǫ > 0

P

(
Sx < (1 − ǫ)h(x), i.o., as x → +∞

)
= 0.

ii) If ∫ +∞

F̄

(
h(x)

x

)
dx

x
= ∞,

then for all ǫ > 0

P

(
Sx < (1 + ǫ)h(x), i.o., as x → +∞

)
= 1.
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Proof: The proof is very similar to that in Proposition 7. We get the integral test

following the same arguments for the proof of part (i) and (ii) for the sequence xn = rn,

with r > 1.

5.2. The upper envelope. The first result that we present here establishes the integral

test at 0 for the upper envelope of X(0)

PROPOSITION 8. Let h ∈ H0.

i) If ∫

0+

G

(
t

h(t)

)
dt

t
< ∞,

then for all ǫ > 0

P

(
X

(0)
t > (1 + ǫ)h(t), i.o., as t → 0

)
= 0.

ii) If ∫

0+

F̄

(
t

h(t)

)
dt

t
= ∞,

then for all ǫ > 0

P

(
X(0) < (1 − ǫ)h(t), i.o., as t → 0

)
= 1.

Proof: Let (xn) be a decreasing sequence which converges to 0. We define the events

An =
{

There exists t ∈ [Sxn+1 , Sxn) such that X
(0)
t > h(t)

}
.

From the fact that Sxn tends to 0, a.s. when n goes to +∞, we see
{

X
(0)
t > h(t), i.o., as t → 0

}
= lim sup

n→+∞
An.

Since h is an increasing function the following inclusion hold

(2.20) An ⊂
{

xn > h
(
Sxn+1

)}
.

Now, we prove the convergent part. We choose xn = rn, for r < 1 and hr(t) = r−2h(t).
Since h is increasing, we deduce that

∑

n

P

(
rn > hr

(
Srn+1

))
≤ − 1

log r

∫ r

0

P

(
t > h

(
St

))dt

t
.

Replacing h by hr in (2.20), we see that we can obtain our result if
∫ r

0

P

(
t > h

(
St

))dt

t
< ∞.

From elementary calculations, we deduce that

∫ r

0

P

(
t > h

(
St

))dt

t
= E

(∫ h−1(r)

0

1I{
t/r<S1<t/h(t)

}dt

t

)
,

where h−1(s) = inf{t > 0, h(t) > s}, the right inverse function of h. Then, this integral

converges if ∫ h−1(r)

0

P

(
S1 <

t

h(t)

)
dt

t
< ∞.
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This proves part (i).
The divergent part follows from the integral test for the upper envelope of the future infi-

mum of pssMp, see section 3 (Theorem 6, part (ii)) since Xt ≥ Jt, for all t ≥ 0.

The upper envelope at +∞ for pssMp is as follows;

PROPOSITION 9. Let h ∈ H∞.

i) If ∫

+∞

G

(
t

h(t)

)
dt

t
< ∞,

then for all ǫ > 0 and for all x ≥ 0

P

(
X

(x)
t > (1 + ǫ)h(t), i.o., as t → +∞

)
= 0.

ii) If ∫

+∞

F̄

(
t

h(t)

)
dt

t
= ∞,

then for all ǫ > 0 and for all x ≥ 0

P

(
X(x) < (1 − ǫ)h(t), i.o., as t → +∞

)
= 1.

Proof: We first consider the case where x = 0. In this case the proof of the tests at +∞
is almost the same as that of the tests at 0. It is enough to apply the same arguments to the

sequence xn = rn, for r > 1.

Now, we prove (i) for any x > 0. Let h ∈ H∞ such that
∫ +∞

G

(
t

h(t)

)
dt

t
< ∞.

Let x > 0 and Sx and note by µx the law of X
(0)
Sx

. Since clearly
∫ +∞

G

(
t

h(t − Sx)

)
dt

t
< ∞,

from the Markov property at time Sx, we have for all ǫ > 0

P0

(
Xt > (1 + ǫ)h(t − Sx), i. o., as t → ∞

)

=

∫

[x,+∞)

Py

(
Xt > (1 + ǫ)h(t), i. o., as t → ∞

)
µx(dy) = 0.

(2.21)

If x is an atom of µx, then equality (2.21) shows that

P

(
X

(x)
t > (1 + ǫ)h(t), i. o., as t → ∞

)
= 0

and the result is proved. Suppose that x is not an atom of µx. From Caballero and Chaumont

[CaCh06], Theorem 1 we know that X
(0)
Sx

(d)
= xeθ, (see also Chapter 1).

In Chapter 1, we also determined the law of θ. Hence from (1.1), we can easily deduce that

P(eθ > z) > 0 for z > 1,

and for any α > 0, µx(x, x + α) > 0. Then (2.21) shows that there exists y > x such that

P

(
X

(y)
t > (1 + ǫ)h(t), i. o., as t → ∞

)
= 0,
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for all ǫ > 0. The previous allows us to conclude part (i).
Part (ii) can be proved in the same way.



CHAPTER 3

Regular cases.

The aim of this chapter is to provide interesting applications of the general integral tests

established in Chapter 2. Here, we will assume that each tail probability that we considered

in our main integral tests satisfies a regular condition either in 0 or in ∞ depending on the

case. We also provide some explicit examples.

1. The lower envelope

Recall that

I =

∫ +∞

0

exp
{
ξ̂s

}
ds and F (t) = P(I > t).

In this section, we consider that F is regularly varying at infinity, i.e.

(3.1) F (t) ∼ λt−γL(t) , t → +∞ ,

where γ > 0 and L is a slowly varying function at +∞. As shown in the following lemma,

under this assumption, for any q > 0 the functions Fq and F are equivalent, i.e. Fq ≍ F .

Examples that satisfy the above condition are given by transient Bessel processes raised

to any power and more generally when the process ξ satisfies the so called Cramér’s con-

dition, that is,

(3.2) there exists γ > 0 such that E(e−γξ1) = 1.

In that case, Rivero [Rive05] and Maulik and Zwart [MaZw06] proved by using results of

Kesten and Goldie on tails of solutions of random equations that the behavior of P(I > t)
is given by

(3.3) F (t) ∼ Ct−γ , as t → +∞,

where the constant C is explicitly computed in [Rive05] and [MaZw06].

Stable Lévy processes conditioned to stay positive are themselves positive self-similar

Markov processes which belong to the regular case. These processes are defined as h-

processes of the initial process when it starts from x > 0 and killed at its first exit time of

(0,∞). Denote by (qt) the semigroup of a stable Lévy process Y with index α ∈ (0, 2],
killed at time R = inf{t : Yt ≤ 0}. The function h(x) = xα(1−ρ), where ρ = P(Y1 ≥ 0),
is invariant for the semi-group (qt), i.e. for all x ≥ 0 and t ≥ 0, Ex(h(Yt)1I{t<R}) = h(x),
(Ex denotes the law of Y + x). The Lévy process Y conditioned to stay positive is the

strong Markov process whose semigroup is

(3.4) p↑t (x, dy) :=
h(y)

h(x)
qt(x, dy), x > 0, y > 0, t ≥ 0 .
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We will denote this process by X(x) when it is issued from x > 0. We refer to [Chau96]

for more on the definition of Lévy processes conditioned to stay positive and for a proof of

the above facts. It is easy to check that the process X(x) is self-similar and drifts towards

+∞. Moreover, it is proved in [Chau96], Theorem 6 that X(x) converges weakly as x → 0
towards a non degenerated process X(0) in the Skorohod’s space, so from [CaCh06], the

underlying Lévy process in the Lamperti representation of X(x) satisfies condition (H).
We can check that the law of X(x) belongs to the regular case by using the equality in

law (1.17). Indeed, it follows from Proposition 1 and Theorem 4 in [Chau96] that the law

of the exponential functional I is given by

(3.5) P(t < xαI) = x1−αρE−x

(
Ŷ αρ−1

t 1I{t<R̂}

)
,

where Ŷ = −Y and R̂ = inf{t : Ŷt ≤ 0}. If Y (and thus X(0)) has no positive jumps, then

αρ = 1 and it follows from (3.5) and Lemma 1 in [Chau97] that

(3.6) P(t < I) = Ct−ρ .

We conjecture that (3.6) is also valid when Y has positive jumps. We also emphasize the

possibility that the underlying Lévy process in the Lamperti representation of X(x) even

satisfies (3.2) with γ = ρ.

LEMMA 7. Recall that

Iq =

∫ T−q

0

exp
{
ξ̂s

}
ds and Fq(t) = P(Iq > t).

If (3.1) holds then for all q > 0,

(3.7) (1 − e−γq)F (t) ≤ Fq(t) ≤ F (t) ,

for all t large enough.

Proof: Recall from Lemma 4, that if (ξ̂s, s ≤ T̂−q) and ξ̂′
(def)
= (ξ̂s+T̂−q

− ξ̂T̂−q
, s ≥ 0)

then

(3.8) I = Iq + exp(ξ̂T̂−q
)Î ′ ≤ Iq + e−q Î ′ where Î ′ =

∫ ∞

0

exp
{
ξ̂′s

}
ds.

The exponential functional Î ′ is a copy of I which is independent of Iq. It yields the second

equality of the lemma.

To show the first inequality, we write for all δ > 0,

P(I > (1 + δ)t) ≤ P(Iq + e−q Î ′ ≥ (1 + δ)t)

which implies that,

P(I > (1 + δ)t) ≤ P(Iq > t) + P(e−qI > t) + P(Iq > δt)P(e−qI > δt)

≤ P(Iq > t) + P(e−qI > t) + P(I > δt)P(e−qI > δt) ,

so that

lim inf
t→+∞

P(Iq > t)

P(I > t)
≥ (1 + δ)−γ − e−qγ ,

and the result follows since δ can be chosen arbitrary small.

The regularity of the behaviour of F allows us to drop the ε of Theorems 2 and 3 in the

next integral test.
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THEOREM 10. Under condition (3.1), the lower envelope of X(0) at 0 and at +∞ is as

follows:

Let f be an increasing function, such that either limt↓0 f(t)/t = 0, or lim inft↓0 f(t)/t > 0,

then:

P

(
X

(0)
t < f(t), i.o., as t → 0

)
= 0 or 1,

according as ∫

0+

F

(
t

f(t)

)
dt

t
is finite or infinte.

Let g be an increasing function, such that either limt↑∞ g(t)/t = 0, or lim inft g(t)/t > 0,

then for all x ≥ 0,

P

(
X

(x)
t < g(t), i.o., as t → +∞

)
= 0 or 1,

according as ∫ +∞

F

(
t

g(t)

)
dt

t
is finite or infinte.

Proof: First let us check that for any constant β > 0:

(3.9)

∫ λ

0+

F

(
s

f(s)

)
ds

s
< ∞ if and only if

∫ λ

0+

F

(
βs

f(s)

)
ds

s
< ∞ .

From the hypothesis, either limt↓0 f(t)/t = 0, or lim inft↓0 f(t)/t > 0. In the first case, we

deduce (3.9) from (3.1). In the second case, since

P(I > λ) > 0, for any 0 < λ < ∞
and lim supu↓0 u/f(u) < +∞, we have for any s,

0 < P

(
lim sup

u↓0

u

f(u)
< I

)
< P

(
s

f(s)
< I

)
,

so both of the integrals above are infinite.

Now it follows from Theorem 2 part (i) that if
∫

0+

F

(
t

f(t)

)
dt

t
< ∞

then for all ε > 0,

P

(
X

(0)
t < (1 − ε)f(t), i.o., as t → 0

)
= 0.

If ∫

0+

F

(
t

f(t)

)
dt

t
= ∞

then from Lemma 7, for all q > 0,
∫

0+

Fq

(
t

f(t)

)
dt

t
= ∞,

and it follows from Theorem 2 part (ii) that for all ε > 0,

P

(
X

(0)
t < (1 + ε)f(t), i.o., as t → 0

)
= 1.

Then the equivalence (3.9) allows us to drop ε in these implications.

The test at +∞ is proven through the same way.
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Remarks: 1. It is possible to obtain the divergent parts of Theorem 10 by applying parts

(iii) of Theorems 2 and 3 but then, one has to assume that f(t)/t is an increasing (re-

spectively a decreasing) function for the test at 0 (respectively at +∞), which is slightly

stronger than the hypothesis on f of Theorem 10.

2. This result is due to Dvoretzky and Erdős [DvEr51] and Motoo [Moto58] when X(0) is

a transient Bessel process, i.e. the square root of the solution of the SDE:

(3.10) Zt = 2

∫ t

0

√
Zs dBs + δt ,

where δ > 2 and B is a standard Brownian motion. We recall that when δ is an inte-

ger, X(0) =
√

Z has the same law as the norm of the δ-dimensional Brownian motion.

Processes X(0) =
√

Z such that Z satisfies the equation (3.10) with δ > 2 are the only

continuous self-similar Markov process with index α = 2, which drifts towards +∞. In

this particular case, thanks to the time-inversion property, i.e.:

(Xt, t > 0)
(d)
= (tX1/t, t > 0),

we may deduce the test at +∞ from the test at 0.

3. A possible way to improve the test at ∞ in the general case (that is in the setting of

Theorem 2) would be to first establish it for the Ornstein-Uhlenbeck process associated to

X(0), i.e. (e−tX(0)(et), t ≥ 0), as Motoo did for Bessel processes in [Moto58]. This would

allow us to consider test functions which are not necessarily increasing.

2. The lower envelope of the first and last passage times

We begin this section with the study of the lower envelope of the last passage time

process. Recall that

F̄ (t) = P(I < t) and F̄ν(t) = P(νI < t),

where ν is independent of I and has the same las as x−1
1 Γ. We also recall that the support

of the distribution of ν is the interval [0, 1].
Here, we consider that F̄ and F̄ν satisfy

(3.11) ctαL(t) ≤ F̄ (t) ≤ F̄ν(t) ≤ CtαL(t) as t → 0,

where α > 0, c and C are two positive constants such that c ≤ C and L is a slowly varying

function at 0. An important example included in this case is when F̄ and F̄ν are regularly

varying functions at 0.

The “regularity” of the behaviour of F̄ and F̄ν gives us the following integral tests for the

lower envelope of the last passage time process at 0.

THEOREM 11. Under condition (3.11), the lower envelope of U at 0 and at +∞ is as

follows:

i) Let h ∈ H−1
0 , such that either limx→0 h(x)/x = 0 or lim infx→0 h(x)/x > 0, then

P

(
U(x) < h(x), i.o., as x → 0

)
= 0 or 1,

according as
∫

0+

F̄

(
h(x)

x

)
dx

x
is finite or infinite.
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ii) Let h ∈ H−1
∞ , such that either limx→+∞ h(x)/x = 0 or lim infx→+∞ h(x)/x > 0,

then

P

(
U(x) < h(x), i.o., as x → ∞

)
= 0 or 1,

according as
∫ +∞

F̄

(
h(x)

x

)
dx

x
is finite or infinite.

Proof: First let us check that under condition (3.11) we have

(3.12)

∫ λ

0

F̄ν

(
h(x)

x

)
dx

x
< ∞ if and only if

∫ λ

0

F̄

(
h(x)

x

)
dx

x
< ∞.

Since νI ≤ I a.s., it is clear that we only need to prove that
∫ λ

0

F̄

(
h(x)

x

)
dx

x
< ∞ implies that

∫ λ

0

F̄ν

(
h(x)

x

)
dx

x
< ∞.

From the hypothesis, either limx→0 h(x)/x = 0 or lim infx→0 h(x)/x > 0. In the first case,

from condition (3.11) there exists λ > 0 such that, for every x < λ

c

(
h(x)

x

)α

L

(
h(x)

x

)
≤ F

(
h(x)

x

)
≤ C

(
h(x)

x

)α

L

(
h(x)

x

)
.

Since, we suppose that
∫ λ

0

F

(
h(x)

x

)
dx

x
< ∞, then

∫ λ

0

(
h(x)

x

)α

L

(
h(x)

x

)
dx

x
< ∞,

and again from condition (3.11), we get that
∫ λ

0

Fν

(
h(x)

x

)
dx

x
is also finite.

In the second case, since

P
(
I < δ

)
> 0, for any 0 < δ < ∞,

and lim infx→0 h(x)/x > 0, we have for any y

(3.13) 0 < P

(
I < lim inf

x→0

h(x)

x

)
< P

(
I <

h(y)

y

)
.

Hence, since for every t ≥ 0, F (t) ≤ Fν(t), we deduce that
∫ λ

0

F

(
h(x)

x

)
dx

x
=

∫ λ

0

Fν

(
h(x)

x

)
dx

x
= ∞.

Now, let us check that for any constant β > 0,

(3.14)

∫ λ

0

F̄

(
h(x)

x

)
dx

x
< ∞ if and only if

∫ λ

0

F̄

(
βh(x)

x

)
dx

x
< ∞,

Again, from the hypothesis either limx→0 h(x)/x = 0 or lim infx→0 h(x)/x > 0. In the first

case, we deduce (3.14) from (3.11). In the second case, from (3.13) both of the integrals in

(3.14) are infinite.

Next, it follows from Theorem 4 part (i) and (3.12) that if
∫

0+

F̄

(
h(x)

x

)
dx

x
is finite,
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then for all ǫ > 0,

P
(
U(x) < (1 − ǫ)h(t), i.o., as t → 0

)
= 0.

If ∫

0+

F̄

(
h(x)

x

)
dx

x
diverges,

then from Theorem 4 part (ii) that for all ǫ > 0,

P
(
U(x) < (1 + ǫ)h(t), i.o., as t → 0

)
= 1.

Then (3.14) allows us to drop ǫ in this implications.

The tests at +∞ are proven through the same way.

Now, we turn our attention to the lower envelope of the first passage time. Recall that

G(t) = P(S1 < t).

The following Proposition shows that under condition (3.11), the functions F̄ , F̄ν and G
have a similar behaviour at 0.

PROPOSITION 10. Under condition (3.11), we have that

ctαL(t) ≤ G(t) ≤ Cǫt
αL(t) as t → 0,

where Cǫ is a positive constant bigger than C.

Proof: The lower bound is clear since F̄ (t) ≤ G(t), for all t ≥ 0 and our assumption.

Now, let us define M
(0)
t = sup0≤s≤t X

(0)
s and fix ǫ > 0. Then, by the Markov property and

the fact that J (x) is an increasing process, we have

P0

(
J1 >

1 − ǫ

t

)
≥ P0

(
J1 >

1 − ǫ

t
,M1 ≥

1

t

)

= E

(
S1/t ≤ 1, P

X
(0)
S1/t

(
J1−S1/t

>
1 − ǫ

t

))

≥ E

(
S1/t ≤ 1, P

X
(0)
S1/t

(
J0 >

1 − ǫ

t

))
.

(3.15)

Since X
(0)
S1/t

≥ 1/t a.s., and the Lamperti representation (0.15), we deduce that

E

(
S1/t ≤ 1, P

X
(0)
S1/t

(
J0 >

1 − ǫ

t

))
≥ P

(
S1/t < 1

)
P

(
inf
s≥0

ξs > log(1 − ǫ)
)
.

On the other hand, under the assumption that ξ drifts towards +∞, we know from Section

2 of Chaumont and Doney [ChDo05] that for all ǫ > 0

Kǫ := P

(
inf
s≥0

ξs > log(1 − ǫ)
)

> 0.

Hence

K−1
ǫ P0

(
J1 >

1 − ǫ

t

)
≥ P

(
S1 < t

)

which implies that

CK−1
ǫ

(
t

1 − ǫ

)α

L(t) ≥ K−1
ǫ P

(
U1 <

t

1 − ǫ

)
≥ P

(
S1 < t

)
, as t → 0,

then the proposition is proved.
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The next result give us integral tests for the lower envelope of S at 0 and at ∞, un-

der condition (3.11). In particular, we can deduce that the first and the last passage time

processes have the same upper functions.

THEOREM 12. Under condition (3.11), the lower envelope of S at 0 and at +∞ is as

follows:

i) Let h ∈ H−1
0 , such that either limx→0 h(x)/x = 0 or lim infx→0 h(x)/x > 0, then

P

(
Sx < h(t), i.o., as x → 0

)
= 0 or 1,

according as
∫

0+

F̄

(
h(x)

x

)
dx

x
< ∞ is finite or infinite.

ii) Let h ∈ H−1
∞ , such that either limx→+∞ h(x)/x = 0 or lim infx→+∞ h(x)/x > 0,

then

P

(
Sx < h(x), i.o., as x → ∞

)
= 0 or 1,

according as
∫ +∞

F̄

(
h(x)

x

)
dx

x
< ∞ is finite or infinite.

Proof: First let us check that under condition (3.11) we have

(3.16)

∫ λ

0

F̄

(
h(x)

x

)
dx

x
< ∞ if and only if

∫ λ

0

G

(
h(x)

x

)
dx

x
< ∞.

Since F̄ (t) ≤ G(t) for all t ≥ 0, it is clear that we only need to prove that
∫ λ

0

F̄

(
h(x)

x

)
dx

x
< ∞ implies that

∫ λ

0

G

(
h(x)

x

)
dx

x
< ∞.

From the hypothesis, either limx→0 h(x)/x = 0 or lim infx→0 h(x)/x > 0. In the first case,

from condition (3.11) there exists λ > 0 such that, for every x < λ

c

(
h(x)

x

)α

L

(
h(x)

x

)
≤ F̄

(
h(x)

x

)
≤ C

(
h(x)

x

)α

L

(
h(x)

x

)
.

Since, we suppose that ∫ λ

0

F̄

(
h(x)

x

)
dx

x
is finite,

then ∫ λ

0

(
h(x)

x

)α

L

(
h(x)

x

)
dx

x
< ∞,

hence from Proposition 10, we get that
∫ λ

0

G

(
h(x)

x

)
dx

x
is also finite.

In the second case, since for any 0 < δ < ∞, P
(
I < δ

)
> 0, and lim infx→0 h(x)/x > 0,

we have for any y

(3.17) 0 < P

(
I < lim inf

x→0

h(x)

x

)
< P

(
I <

h(y)

y

)
.
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Hence, since for every t ≥ 0, F̄ (t) ≤ P (t), we deduce that
∫ λ

0

F̄

(
h(x)

x

)
dx

x
=

∫ λ

0

G

(
h(x)

x

)
dx

x
= ∞.

On the other hand from (3.14), we recall that for β > 0,

(3.18)

∫ λ

0

F̄

(
h(x)

x

)
dx

x
< ∞ if and only if

∫ λ

0

F̄

(
βh(x)

x

)
dx

x
< ∞.

Next, it follows from Proposition 6 part (i) and (3.16) that if
∫

0+

F̄

(
h(x)

x

)
dx

x
is finite,

then for all ǫ > 0,

P
(
Sx < (1 − ǫ)h(x), i.o., as x → 0

)
= 0.

If ∫

0+

F̄

(
h(x)

x

)
dx

x
diverges,

then from Proposition 6 part (ii) and (3.16) that for all ǫ > 0,

P
(
Sx < (1 + ǫ)h(x), i.o., as x → 0

)
= 1.

Then (3.18) allows us to drop ǫ in this implications.

The tests at +∞ are proven through the same way.

2.1. Example. Let ξ a subordinator with zero drift and Lévy measure

Π(dx) =
βex

Γ(1 − β)(ex − 1)1+β
dx,

with β ∈ (0, 1). The pssMp X(x) associated to ξ is the stable subordinator of index β (see

for instance Rivero [Rive03]).

From Zolotarev [Zolo86], we know that there exists k a positive constant such that

P0(X1 > x) ∼ kx−β x → +∞.

It is well-known that the law of X
(0)
1 has a density ρ1 with respect to the Lebesgue measure

and that this density is unimodal, i.e., there exist b > 0 such that ρ1(x) is increasing in

(0, b) and decreasing in (b, +∞) (see for instance Sato [Sato99]). Hence ρ1 is monotone

in a neighborhood of +∞, then by the monotone density Theorem (see Theorem 1.7.2 in

Bingham et al.[Bial89] page 38) we get

ρ1(x) ∼ kβx−β−1 x → +∞.

On the other hand, from Proposition 2.1 in Carmona et al. [CaPY97] provided that m < ∞,

we know that the law of I admits a density ρ which is infinitely differentiable on (0,∞).
Moreover from (0.16), we have the following relation

(3.19) ρ1(x) =
1

mx
ρ

(
1

x

)
for x ∈ (0,∞).

Hence, we can easily deduce that

ρ(x) ∼ mkβxβ x → 0,
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and it is also easy to see that

P

(
I < x

)
∼ mkβxβ+1 x → 0.

Note that in this example, we can not apply Theorem 11. The jumps of the stable subordi-

nator contribute a lot on the estimate of F̄ν and have a different index of regularity as F̄ . A

simple application of Theorems 4 and 5 gives us the following integral test.

COROLLARY 8. Let ξ be a subordinator without drift and such that its Lévy mesure Π
satisfies

Π(dx) =
βex

Γ(1 − β)(ex − 1)1+β
dx.

The lower envelope of S, the first passage time of the pssMp X(0), at 0 and at +∞ is as

follows:

i) Let h ∈ H−1
0 , such that either limx→0 h(x)/x = 0 or lim infx→0 h(x)/x > 0, then

P

(
Sx < h(x), i.o., as x → 0

)
= 0 or 1,

according as

∫

0+

(
h(x)

x

)β
dx

x
is finite or infinite.

ii) Let h ∈ H−1
∞ , such that either limx→+∞ h(x)/x = 0 or lim infx→+∞ h(x)/x > 0,

then

P

(
Sx < h(x), i.o., as x → ∞

)
= 0 or 1,

according as

∫ +∞ (
h(x)

x

)β+1
dx

x
is finite or infinite.

It is important to note that if we suppose that thet 7→ h(t)/t is also increasing, hence

we may recover an integral test where the divergent part only depends on the index β.

3. The upper envelopes of positive self-similar Markov processes and its future

infimum.

We begin this section describing the upper envelope of the future infimum.

THEOREM 13. Under condition (3.11), the upper envelope of the future infimum at 0
and at +∞ is as follows:

i) Let h ∈ H0, such that either limt→0 t/h(t) = 0 or lim inft→0 t/h(t) > 0, then

P

(
J

(0)
t > h(t), i.o., as t → 0

)
= 0 or 1,

according as
∫

0+

F̄

(
t

h(t)

)
dt

t
< ∞ is finite or infinite.
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ii) Let h ∈ H∞, such that either limt→+∞ t/h(t) = 0 or lim inft→+∞ t/h(t) > 0,

then for all x ≥ 0

P

(
J

(x)
t > h(t), i.o., as t → ∞

)
= 0 or 1,

according as
∫ +∞

F̄

(
t

h(t)

)
dt

t
< ∞ is finite or infinite.

Proof: We prove this result by following the same arguments as the proof of Theorem

11.

Now, we turn our attention to the upper envelope of positive self-similar Markov pro-

cesses. In particular, we deduce that under condition (3.11) a pssMp and its future infimum

have the same upper functions.

THEOREM 14. Under condition (3.11), the upper envelope of the pssMp at 0 and at

+∞ is as follows:

i) Let h ∈ H0, such that either limt→0 t/h(t) = 0 or lim inft→0 t/h(t) > 0, then

P

(
X

(0)
t > h(t), i.o., as t → 0

)
= 0 or 1,

according as
∫

0+

F̄

(
t

h(t)

)
dt

t
< ∞ is finite or infinite.

ii) Let h ∈ H∞, such that either limt→+∞ t/h(t) = 0 or lim inft→+∞ t/h(t) > 0,

then for all x ≥ 0

P

(
X

(x)
t > h(t), i.o., as t → ∞

)
= 0 or 1,

according as
∫ +∞

F̄

(
t

h(t)

)
dt

t
< ∞ is finite or infinite.

Proof: Similarly as the above theorem, we prove this result following the same argu-

ments as the proof of Theorem 12.

3.1. Example. Let ξ a subordinator with zero drift and Lévy measure

Π(dx) =
βex

Γ(1 − β)(ex − 1)1+β
dx,

with β ∈ (0, 1). In Example 2.1, we noted that the pssMp X(x) associated to ξ is the stable

subordinator of index β and that

P(νI < x) ∼ kxβ and P

(
I < x

)
∼ mkβxβ+1 as x → 0.

Then we have the following result.

COROLLARY 9. Let ξ be a subordinator as in Corollary 8, the upper envelope of X(x)

at 0 (x = 0) and at +∞ (x ≥ 0) is as follows:
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i) Let h ∈ H0, such that either limt→0 t/h(t) = 0 or lim inft→0 t/h(t) > 0, then

P

(
X

(0)
t > h(t), i.o., as t → 0

)
= 0 or 1,

according as
∫

0+

(
x

h(x)

)β
dx

x
is finite or infinite.

ii) Let h ∈ H∞, such that either limt→+∞ t/h(t) = 0 or lim inft→+∞ t/h(t) > 0,

then for all x ≥ 0

P

(
X

(x)
t > h(t), i.o., as t → ∞

)
= 0 or 1,

according as
∫ +∞ (

x

h(x)

)β+1
dx

x
is finite or infinite.

We recall that if we suppose that thefunction t 7→ h(t)/t is also increasing, hence we

may recover an integral test where the divergent part only depends on the index β.





CHAPTER 4

Log-regular cases.

Similarly as the previous chapter, our aim is to provide interesting applications of our

main theorems, but here we will assume that the logarithm of each tail probability satisfies

a regular condition either in 0 or in +∞. Under this condition, the behaviour of the lower

or upper envelope (depending on the case) is much smoother.

1. The lower envelope.

We first recall that

F (t) = P(I > t) and I =

∫ +∞

0

exp
{
− ξs

}
ds.

The type of behaviour that we shall consider here is when log F is regularly varying at +∞,

more precisely

(4.1) − log F (t) ∼ λtβL(t) , as t → ∞,

where λ > 0, β > 0 and L is a function which varies slowly at +∞. Define the function Φ
by

(4.2) Φ(t)
(def)
=

t

inf{s : 1/F (s) > | log t|} , t > 0 , t 6= 1 .

Then the lower envelope of X(0) may be described as follows:

THEOREM 15. Under condition (4.1), the process X(0) satisfies the following law of

the iterated logarithm:

(i)

(4.3) lim inf
t→0

X
(0)
t

Φ(t)
= 1 , almost surely.

(ii) For all x ≥ 0,

(4.4) lim inf
t→+∞

X
(x)
t

Φ(t)
= 1 , almost surely.

Proof: We shall apply Theorem 2. We first have to check that under hypothesis (4.1),

the conditions of part (iii) in Theorem 2 are satisfied. On the one hand, from (4.1) we

deduce that for any γ > 1, lim sup F (γt)/F (t) = 0. On the other hand, it is easy to see

that both Φ(t) and Φ(t)/t are increasing in a neighbourhood of 0.

Let L be a slowly varying function such that

(4.5) − log F (λ−1/βt1/βL(t)) ∼ t , as t → +∞.
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Th. 1.5.12, p.28 in [Bial89] ensures that such a function exists and that

(4.6) inf{s : − log F (s) > t} ∼ λ−1/βt1/βL(t) , as t → +∞.

Then we have for all k1 < 1 and k2 > 1 and for all t sufficiently large,

k1λ
−1/βt1/βL(t) ≤ inf{s : − log F (s) > t} ≤ k2λ

−1/βt1/βL(t)

so that for Φ defined above and for all k′
2 > 0,

(4.7) − log F

(
t k′

2

k2Φ(t)

)
≤ − log F (k′

2λ
−1/β(log | log t|)1/βL(log | log t|))

for all t sufficiently small. But from (4.5), for all k′′
2 > 1 and for all t sufficiently small,

− log F (k′
2λ

−1/β(log | log t|)1/βL(log | log t|)) ≤ k′′
2k

′
2
β
log | log t| ,

hence

F

(
t k′

2

k2Φ(t)

)
≥ (| log t|)−k′′

2 k′
2

β

.

By choosing k′
2 < 1 and k′′

2 < (k′
2)

−β , we obtain the convergence of the integral
∫

0+

F

(
t k′

2

k2Φ(t)

)
dt

t
,

for all k2 > 1 and k′
2 < 1, which proves that for all ε > 0,

P

(
X

(0)
t < (1 + ε)Φ(t), i.o., as t → 0

)
= 1

from Theorem 2 (iii). The convergent part is proven through the same way so that from

Theorem 2 (i), one has for all ε > 0,

P

(
X

(0)
t < (1 − ε)Φ(t), i.o., as t → 0

)
= 0

and the conclusion follows.

Condition (4.8) implies that Φ(t) is increasing in a neighbourhood of +∞ whereas

Φ(t)/t is decreasing in a neighbourhood of +∞. Hence, the proof of the result at +∞ is

done through the same way as at 0, by using Theorem 3, (i) and (iii).

1.1. Example. An example of such a behaviour is provided by the case where the pro-

cess X(0) is increasing, that is when the underlying Lévy process ξ is a subordinator. Then

Rivero [Rive03], see also Maulik and Zwart [MaZw06], proved that when the Laplace

exponent φ of ξ which is defined by

exp(−tφ(λ)) = E

(
exp

{
λξ̂t

})
, λ > 0, t ≥ 0

is regularly varying at +∞ with index β ∈ (0, 1), the upper tail of the law of I and the

asymptotic behavior of φ at +∞ are related as follows:

PROPOSITION 11. Suppose that ξ is a subordinator whose Laplace exponent φ varies

regularly at infinity with index β ∈ (0, 1), then

− log F (t) ∼ (1 − β)φ←(t) , as t → ∞,

where φ←(t) = inf{s > 0 : s/φ(s) > t}.
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Then by using an argument based on the study of the associated Ornstein-Uhlenbeck

process (e−tX(0)(et), t ≥ 0) Rivero [Rive03] derived from Proposition 11 the following

result. Define

ϕ(t) =
φ(log | log t|)

log | log t| , t > e .

COROLLARY 10. If φ is regularly varying at infinity with index β ∈ (0, 1) then

lim inf
t↓0

X(0)

tϕ(t)
= (1 − β)1−β and lim inf

t↑+∞

X(0)

tϕ(t)
= (1 − β)1−β, a.s.

This corollary is also a consequence of Proposition 11 and Theorem 15. To establish

Corollary 10, Rivero assumed moreover that the density of the law of the exponential func-

tional I is decreasing and bounded in a neighbourhood of +∞. This additional assumption

is actually needed to establish an integral test which involves the density of I and which

implies Corollary 10.

2. The lower envelope of the first and last passage times.

Recall that

F̄ (t) = P(I < t), F̄ν(t) = P(νI < t) and G(t) = P(S1 < t),

where ν is independent of I and has the same law as x−1
1 Γ (see section 2 in Chapter 1 for

the definition of Γ). We also recall that the support of the distribution of ν is the interval

[0, 1].
In this section, we will study two types of behaviour for F̄ and F̄ν . The first case that

we shall consider is when log F̄ and log F̄ν are regularly varying at 0, i.e

(4.8) − log F̄ν(1/t) ∼ − log F̄ (1/t) ∼ λtβL(t), as t → +∞,

where λ > 0, β > 0 and L is a slowly varying function at +∞. The second type of

behaviour is when log F̄ and log F̄ν satisfy that

(4.9) − log F̄ν(1/t) ∼ − log F̄ (1/t) ∼ K(log t)γ, as t → +∞,

where K and γ are strictly positive constants.

Our next result shows that under conditions (4.8) and (4.9), the functions log G, log F̄ν

and log F̄ are asymptotically equivalents.

PROPOSITION 12. Under condition (4.8), we have that

(4.10) − log G(1/t) ∼ λtβL(t) as t → +∞.

Similarly, under condition (4.9), we have that

(4.11) − log G(1/t) ∼ K(log t)γ as t → +∞.

Proof: First, we prove the upper bound of (4.10). We recall that J
(0)
1 = inft≥1 X

(0)
t and

M
(0)
1 = supt≤1 X

(0)
t . Hence, it is clear that,

− log P

(
νI < 1/t

)
= − log P0

(
J1 > t

)
≥ − log P0

(
M1 > t

)
,

which implies that

1 ≥ lim sup
t→∞

− log P0

(
M1 > t

)

λtβL(t)
,
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and since P0

(
M1 > t

)
= P

(
S1 < 1/t

)
, we get the upper bound.

Now, fix ǫ > 0. From the inequality (3.15) found in the proof of Proposition 10, we have

that

P0

(
J1 > (1 − ǫ)t

)
≥ P

(
St < 1

)
P

(
inf
s≥0

ξs > log(1 − ǫ)
)
.

On the other hand, we know that

Kǫ := P

(
inf
s≥0

ξs > log(1 − ǫ)
)

> 0,

Hence,

− log P0

(
J1 > (1 − ǫ)t

)
≤ − log P

(
S1 < 1/t

)
− log Kǫ,

which implies that

(1 − ǫ)β ≤ lim inf
t→∞

− log P

(
S1 < 1/t

)

λtβL(t)
,

and since ǫ can be chosen arbitrarily small, (4.10) is proved.

The upper bound of tail behaviour (4.11) is proven through the same way as in the proof of

(4.10). For the lower bound, we follow the same arguments as above and we get that

− log P0

(
J1 > (1 − ǫ)t

)
≤ − log P

(
S1 < 1/t

)
− log Kǫ,

which implies that

1 = lim
t→∞

(
log(1 − ǫ)t

log t

)γ

≤ lim inf
t→∞

− log P

(
S1 < 1/t

)

K(log t)γ
,

then the proposition is proved.

Define the functions

Φ̄(x)
(def)
=

x

inf
{
s : 1/F̄ (1/s) > | log x|

} , x > 0, x 6= 1,

and

Φ̂(x)
(def)
= x exp

{
−

(
K−1 log | log x|

)1/γ
}

, x > 0, x 6= 1.

Then the lower envelope of the first and last passage time processes may be described as

follows.

THEOREM 16. Under condition (4.8), we have the following laws of the iterated loga-

rithm:

i) For the first passage time, we have

lim sup
x→0

Sx

Φ̄(x)
= 1, lim sup

x→∞

Sx

Φ̄(x)
= 1 almost surely.

ii) For the last passage time, we have

lim sup
x→0

Ux

Φ̄(x)
= 1 and lim sup

x→+∞

Ux

Φ̄(x)
= 1 almost surely.

Similarly, under condition (4.9), we have the following laws of the iterated logarithm:

iii) For the first passage time, we have

lim sup
x→0

Sx

Φ̂(x)
= 1, lim sup

x→∞

Sx

Φ̂(x)
= 1 almost surely.
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iv) For the last passage time, we have

lim sup
x→0

Ux

Φ̂(x)
= 1 and lim sup

x→+∞

Ux

Φ̂(x)
= 1 almost surely.

Proof: We first prove part (ii). This law of the iterated logarithm is a consequence

of Theorems 4 and 5, and it is proven in the same way as Theorem 15, we only need to

emphasize that we can replace log F̄ν by log F̄ , since they are asymptotically equivalent.

The proof of part (i) is very similar. Here, we will use Propositions 6, 7 and 12, and

following the same arguments of Theorem 15. We only need to emphasize that we can

replace log G by log F̄ , since they are asymptotically equivalent.

Now, we prove part (iii). Here, we shall apply again Propositions 5,6 and 11. It is easy

to check that both Φ̂(x) and Φ̂(x)/x are increasing in a neighbourhood of 0, moreover the

function Φ̂(x)/x is bounded by 1, for x ∈ [0, 1).
From condition (4.9), we have for all k1 < 1 and k2 > 1 and for all t sufficiently large,

k1K(log t)γ ≤ − log G(1/t) ≤ k2K(log t)γ,

so that for Φ̂ defined above,

k1 log | log t| ≤ − log G
(
Φ̂(x)/x

)
≤ k2 log | log t|,

hence

G

(
Φ̂(x)

x

)
≥ (| log t|)−k2 .

Since k2 > 1, we obtain the convergence of the integral
∫

0+

G

(
Φ̂(x)

x

)
dt

t
,

which proves that for all ε > 0,

P

(
Sx < (1 − ε)Φ̂(x), i.o., as x → 0

)
= 0

from Proposition 6 part (i). The divergent part is proven through the same way so that from

Proposition 6 part (ii), one has for all ε > 0,

P

(
Sx < (1 + ε)Φ̂(x), i.o., as x → 0

)
= 1

and the conclusion follows.

Condition (4.9) implies that Φ̂(x) is increasing in a neighbourhood of +∞ whereas Φ̂(x)/x
is decreasing in a neighbourhood of +∞. Hence, the proof of the result at +∞ is done

through the same way as at 0, by using Proposition 7.

The laws of the iterated logarithm for the last passage time (part (iv))are proven in the same

way using the integral tests for the lower envelope of process U (see Theorems 4 and 5).

2.1. Examples. 1. Let X
(0)
t be a stable Lévy process conditioned to stay positive with

no positive jumps and with index 1 < α ≤ 2, (see Example 2 in Chapter 3.1). From

Theorem VII.18 in [Bert96], we know that the process time-reversed at its last passage

time below x, (x−X
(0)

(Ux−t)− , 0 ≤ t ≤ Ux), has the same law as the killed process at its first

passage time above x, (ξt, 0 ≤ t ≤ Tx), where ξ is a stable Lévy process with no positive

jumps and with the same index as X(0).

From Theorem VII.1 in [Bert96], we know that (Tx, x ≥ 0) is a subordinator with Laplace
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exponent φ(λ) = λ1/α. Hence by the previous argument, we will have that X(0) drifts

towards +∞ and that the process (Ux, x ≥ 0) is a stable subordinator with index 1/α.

Hence an application of the Tauberian theorem of de Brujin (see for instance Theorem

5.12.9 in Bingham et al. [Bial89]) gives us the following estimate

− log F̄ (x) ∼ α − 1

α

(
1

α

)1/(α−1)

x−1/(α−1) as x → 0.

Note that due to the absence of positive jumps ν = 1 a.s.

Then applying Theorem 16, we get the following laws of the iterated logarithm.

COROLLARY 11. Let X(0) be a stable Lévy process conditioned to stay positive with

no positive jumps and α > 1. Then, its related first passage time process satisfies

lim inf
x→0

Sx

(
log | log x|

)α−1

xα
=

1

α

(
1 − 1

α

)α−1

, almost surely.

Similarly, the last passage time process associated to X(0) satisfies

lim inf
x→0

U(x)
(
log | log x|

)α−1

xα
=

1

α

(
1 − 1

α

)α−1

, almost surely.

We have the same law of the iterated logarithm for large times.

2. Let ξ = N be a standard Poisson process. From Proposition 3 in Bertoin and Yor

[BerY02], we know that

− log P
(
I < t

)
∼ 1

2
(log 1/t)2, as t → 0,

and also that

− log ρ(x) ∼ 1

2
(log 1/x)2, as x → 0.

From (3.19) we get that

− log ρ1(x) ∼ 1

2
(log x)2, as x → +∞.

Now, applying Theorem 4.12.10 in Bingham et al. [Bial89] and doing some elementary

calculations, we obtain that

− log

∫ +∞

x

ρ1(y)dy ∼ 1

2
(log x)2 as x → +∞.

These estimations allow us the following laws of the iterated logarithm. Let us define

f(x) = x exp
{
−

√
2 log | log x|

}
.

Note that we cannot construct a weak limit process X(0) using the arguments of Chaumont

and Caballero, since N is arithmetic. According to Bertoin and Caballero [BeCa02] a limit

process (in the sense of finite dimensional distribution) can be defined. By an abuse of

notation, we will denote such process by X(0).

COROLLARY 12. Let N be a Poisson process and X(0) its associated pssMp starting

from 0. Then, the first passage time process S associated to X(0) satisfies the following law

of the iterated logarithm,

lim inf
x→0

Sx

f(x)
= 1, and lim inf

x→+∞

Sx

f(x)
= 1 a. s.
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3. Let ξ be a subordinator with zero drift and Lévy measure Π(dx) = abe−bxdx, with

a, b > 0, i.e. a compound Poisson process with jumps having an exponential distribution.

Carmona, Petit and Yor showed that the density ρ of I is given by

ρ(x) =
a1+b

Γ(1 + b)
xbe−ax, for x > 0.

The pssMp associated to ξ by the Lamperti representation is the well-know generalized

Watanabe process. From (3.19), we get that

P0

(
X1 > y

)
=

ba1+b

Γ(1 + b)

∫ 1/y

0

zb−1e−azdz.

On the other hand, It is clear that

P

(
I < y

)
=

a1+b

Γ(1 + b)

∫ y

0

xbe−axdx

Elementary calculations give us the following inequality,

e−ax xb+1

b + 1
≤

∫ x

0

zbe−azdz ≤ xb (1 − e−ax)

a
.

Hence for x sufficiently small, there exists cb a positive constant such that

P

(
I < x

)
∼ cb

a1+b

Γ(1 + b)
xb+1e−ax,

and for y sufficiently large there exist Cb such that

P0

(
X1 > y

)
∼ Cb

a1+b

Γ(1 + b)
(1/y)be−a/y.

Then applying Corollary 6 and Theorem 16, we get the following law of the iterated loga-

rithm for the first passage time process of the generalized Watanabe process. Let us define

g(x) = a−1t log | log x|.
COROLLARY 13. Let ξ be a compound Poisson process with jumps having and ex-

ponential distribution as above and X(0) its associated pssMp starting from 0. Then the

first passage time process S associated to X(0) satisfies the following law of the iterated

logarithm,

lim inf
x→0

Sx

g(x)
= 1, and lim inf

x→0

Sx

g(x)
= 1 a. s.

3. The upper envelope

Now, we turn our attention to the upper envelopes of pssMp and their future infimum.

With this purpose we define the functions,

Ψ̄(t)
(def)
= t inf

{
s : 1/F̄ (1/s) > | log t|

}
, t > 0, t 6= 1,

and

Ψ̂(t)
(def)
= t exp

{(
K−1 log | log t|

)1/γ
}

, t > 0, t 6= 1.

THEOREM 17. Under condition (4.8), we have the following laws of the iterated loga-

rithm:



88 CHAPTER 4. LOGREGULAR CASES

i)

lim sup
t→0

X
(0)
t

Ψ̄(t)
= 1 and lim sup

t→0

J
(0)
t

Ψ̄(t)
= 1 almost surely.

ii) For all x ≥ 0,

lim sup
t→+∞

X
(x)
t

Ψ̄(t)
= 1 and lim sup

t→0

J
(x)
t

Ψ̄(t)
= 1 almost surely.

Similarly, under condition (4.9), we have the following laws of the iterated logarithm:

iii)

lim sup
t→0

X
(0)
t

Ψ̂(t)
= 1 and lim sup

t→0

J
(0)
t

Ψ̂(t)
= 1 almost surely.

iv) For all x ≥ 0,

lim sup
t→+∞

X
(x)
t

Ψ̂(t)
= 1 and lim sup

t→0

J
(x)
t

Ψ̂(t)
= 1 almost surely.

Proof: We prove this theorem by following the same arguments as in the proof of

Theorem 16.

It is important to note that even if that under condition(4.8) a pssMp and its future

infimum satisfy the same law of the iterated logarithm, they do not necessarily have the

same upper functions.

3.1. Examples. 1. Let X
(0)
t be a stable Lévy process conditioned to stay positive with

no positive jumps. The absence of positive jumps implies that α ≥ 1, here we exclude the

case α = 1 which corresponds to the symmetric Cauchy process. Recall that the function

F̄ satisfies

− log F̄ (x) ∼ α − 1

α

(
1

α

)1/(α−1)

x−1/(α−1) as x → 0.

Note that due to the absence of positive jumps ν = 1 a.s.

Then applying Theorem 17, we get the following laws of the iterated logarithm.

COROLLARY 14. Let X(0) be a stable Lévy process conditioned to stay positive with

no positive jumps and α > 1. Then the future infimum process of X(0) satisfies

lim sup
t→0

J
(0)
t

t1/α
(
log | log x|

)1−1/α
= α(α − 1)−

α−1
α , almost surely,

and for all x ≥ 0,

lim sup
t→+∞

J
(x)
t

t1/α
(
log | log x|

)1−1/α
= α(α − 1)−

α−1
α , almost surely.

Similarly the pssMp satisfies the following law of the iterated logarithm:

lim sup
t→0

X
(0)
t

t1/α
(
log | log x|

)1−1/α
= α(α − 1)−

α−1
α , almost surely,

and for all x ≥ 0,

lim sup
t→+∞

X
(x)
t

t1/α
(
log | log x|

)1−1/α
= α(α − 1)−

α−1
α , almost surely.
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2. Let ξ = N be a standard Poisson process. Recall that

− log P

(
I < t

)
∼ 1

2
(log 1/t)2, as t → 0,

and also that

− log

∫ +∞

x

ρ1(y)dy ∼ 1

2
(log x)2 as x → +∞.

These estimations allow us the following laws of the iterated logarithm. Let us define

f(t) = t exp
{
−

√
2 log | log t|

}
.

COROLLARY 15. Let N be a Poisson process, then the pssMp X(x) associated to N by

the Lamperti representation satisfies the following law of the iterated logarithm,

lim sup
t→0

X
(0)
t f(t)

t2
= 1, almost surely.

For all x ≥ 0,

lim sup
t→+∞

X
(x)
t f(t)

t2
= 1, almost surely.

3. Let ξ be a subordinator with zero drift and Lévy measure Π(dx) = abe−bxdx, with

a, b > 0, i.e. a compound Poisson process with jumps having an exponential distribution.

Recall from example 3 in Section 2.1 that the function F̄ satisfies for t sufficiently small

F (t) = P

(
I < t

)
∼ cb

a1+b

Γ(1 + b)
tb+1e−at,

where cb is a positive constant, and for s sufficiently large there exist Cb such that

H(s) = P0

(
X1 > s

)
∼ Cb

a1+b

Γ(1 + b)
(1/s)be−a/s.

Then applying Corollary 7 and Theorem 17, we get the following law of the iterated loga-

rithm for the generalized Watanabe process. Let us define

g(t) = a−1t log | log t|.

COROLLARY 16. Let ξ be a compound Poisson process with jumps having and expo-

nential distribution as above, then the pssMp X(x) associated to ξ by the Lamperti repre-

sentation satisfies the following law of the iterated logarithm,

lim sup
t→0

X
(0)
t g(t)

t2
= 1, almost surely.

For all x ≥ 0,

lim sup
t→+∞

X
(x)
t g(t)

t2
= 1, almost surely.
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4. The case when ξ has finite exponential moments

In this section, we suppose that the Lévy process ξ associated to a pssMp X(x) by the

Lamperti representation, has finite exponential moments of arbitrary positive order. This

condition is satisfied, for example, when the jumps of ξ are bounded from above by some

fixed number, in particular when ξ is a Lévy process with no positive jumps. Then, we have

E
(
eλξt

)
= exp

{
tψ(λ)

}
< +∞ t, λ ≥ 0.

From Theorem 25.3 in Sato [Sato99], we know that this hypothesis is equivalent to assume

that the Lévy measure Π of ξ satisfies
∫

[1,∞)

eλxΠ(dx) < +∞ for every λ > 0.

Under this hypothesis, Bertoin and Yor [BerY02] gave a formula for the negative moments

of the exponential functional I

(4.12) E

(
I−k

)
= m

ψ(1) · · ·ψ(k − 1)

(k − 1)!
for k ≥ 1,

where m = E(ξ1) and with the convention that the right-hand side equals m for k = 1.

Moreover they proved that if ξ has no positive jumps, then I−1 admits some exponential

moments, this means that the distribution of I is determined by its negative entire moments.

From the entrance law of X(x) at 0 (see (0.16)), and the above equality (4.12), we get the

following formula for the positive moments of X
(0)
1 ,

(4.13) E0

(
Xk

1

)
=

ψ(1) · · ·ψ(k)

k!
for k ≥ 1.

Now, if we suppose that the Laplace exponent ψ is regularly varying at +∞ with index

β ∈ (1, 2), i.e. ψ(x) = xβL(x), where L is a slowly varying function at +∞; then from

equation (4.12), we see

E

(
I−k

)
= m

(
(k − 1)!

)β−1
L(1) · · ·L(k − 1),

and from (4.13),

E0

(
Xk

1

)
=

(
k!

)β−1
L(1) · · ·L(k).

In consequence, we can easily deduce that

E

(
exp

{
λI−1

})
< +∞ and E0

(
exp{λX1}

)
< +∞ for all λ > 0.

This allows us to apply the Kasahara’s Tauberian Theorem (see Theorem 4.12.7 in Bingham

et al. [Bial89]) and get the following estimate.

PROPOSITION 13. Let I be the exponential functional associated to the Lévy process ξ.

Suppose that ψ, the Laplace exponent of ξ, varies regularly at +∞ with index β ∈ (1, 2).
Then

(4.14) − log P0(X1 > x) ∼ − log P (I < 1/x) ∼ (β − 1)
↼

H(x) as x → +∞,

where
↼

H(x) = inf
{

s > 0 , ψ(s)/s > x
}

.
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Recall that if the process ξ has no positive jumps then the fact that the Laplace exponent

ψ is regularly varying at ∞ with index β ∈ (1, 2) is equivalent to that ξ satisfies the

Spitzer’s condition (see Proposition VII.6 in Bertoin [Bert96]), this is

lim
t→0

1

t

∫ t

0

P(ξs ≥ 0)ds =
1

β
.

Proof: As we see above, the moment generating functions of I−1 and X
(0)
1 are well

defined for all λ > 0. We will only prove the case of I−1, the proof of the estimate of the

tail probability of X
(0)
1 is similar.

From the main result of Geluk [Gelu84], we know that if φ is a regularly varying function

at +∞ with index σ ∈ (0, 1), then the following are equivalent

(i)

(
E

(
I−n

)
/n!

)1/n

∼ eσ/φ(n) as n → +∞,

(ii) log E

(
exp

{
λI−1

})
∼ σ

↼

φ(λ) as λ → +∞,

where
↼

φ(λ) = inf
{

s > 0 , φ(s) > λ
}

.

If we have (ii), then a straightforward application of Kasahara’s Tauberian Theorem gives

us

− log P

(
I−1 > x

)
∼ (1 − σ)

↼
ϕ(x) as x → +∞,

where
↼
ϕ is the asymptotic inverse of s/φ(s). Therefore, it is enough to show (i) with

φ(s) = s2/ψ(s) to obtain the desired result.

Let us recall that if ψ is regularly varying at ∞ with index β, it can be expressed as

ψ(x) = xβL(x), where L(x) is a slowly varying function. By the formula (4.12) of nega-

tive moments of I and the fact that ψ is regularly varying, we have

(
E

(
I−n

)
/n!

)1/n

= m1/n(n!)
β−2

n n
1−β

n

(
L(1) · · ·L(n − 1)

) 1
n ,

due to the fact that (n!)1/n ∼ ne−1 for n sufficiently large, then

(
E

(
I−n

)
/n!

)1/n

∼
(
ne−1

)β−2
exp

{
1

n

n∑

k=1

log L(k) − 1

n
log L(n)

}
.

On the other hand, from the proof of Proposition 2 of Rivero [Rive03] we have that

1

n

n∑

k=1

log L(k) ∼ log L(n) as n → +∞.

This implies that
(
E

(
I−n

)
/n!

)1/n

∼ e2−β ψ(n)

n2
.

This last relation proves the Proposition.

Since the tail probability of I−1 and X
(0)
1 have the same asymptotic behaviour, it is

logical to think that the tail probability of (νI)−1 could have the same behaviour. The next

Corollary confirms this last argument.
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COROLLARY 17. Let I be the exponential functional associated to the Lévy process ξ.

Suppose that ψ, the Laplace exponent of ξ, varies regularly at +∞ with index β ∈ (1, 2).
Then

− log P

(
νI < 1/x

)
∼ (β − 1)

↼

H(x) as x → +∞,

where
↼

H(x) = inf
{

s > 0 , ψ(s)/s > x
}

.

Proof: Since νI ≤ I a.s., then

− log P

(
νI < 1/x

)
≤ − log P

(
I < 1/x

)
.

On the other hand, from the scaling property and since X
(0)
1 ≥ J

(0)
1 a.s., we see

− log P

(
νI < 1/x

)
= − log P

(
U(1) < 1/x

)
≥ − log P0(X1 > x).

Hence, from the estimate (4.14) we have that

− log P

(
νI < 1/x

)
∼ (β − 1)

↼

H(x) as x → +∞,

and this finishes the proof.

These estimates will allow us to obtain laws of iterated logarithm for the first and last

passage time processes, for the pssMp X(x) and their future infimum process in terms of

the following function.

Let us define the function

h(t) =
log | log t|

ψ(log | log t|) for t > 1, t 6= e.

By integration by parts, we can see that the function ψ(λ)/λ is increasing, hence it is

straightforward that the function th(t) is also increasing in a neighbourhood of ∞.

COROLLARY 18. If ψ is regularly varying at +∞ with index β ∈ (1, 2), then

lim inf
x→0

Sx

xh(x)
= (β − 1)β−1 almost surely

and,

lim inf
x→+∞

Sx

xh(x)
= (β − 1)β−1 almost surely.

Similarly, for the last passage time process, we have

lim inf
x→0

Ux

xh(x)
= (β − 1)β−1 almost surely

and,

lim inf
x→+∞

Ux

xh(x)
= (β − 1)β−1 almost surely.

Proof: It is enough to see that for t sufficiently small and t sufficiently large the func-

tions th(t) and Φ̄(t) are asymptotically equivalent, but this is clear from (4.8). Now, apply-

ing Theorem 16 parts (i) and (ii), we obtain the desired result.

Let us define

f(t) =
ψ(log | log t|)

log | log t| for t > 1, t 6= e.
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COROLLARY 19. If ψ is regularly varying at +∞ with index β ∈ (1, 2), then

lim sup
t→0

J
(0)
t

tf(t)
= (β − 1)−(β−1) almost surely

and for x ≥ 0,

lim sup
t→+∞

J
(x)
t

tf(t)
= (β − 1)−(β−1) almost surely.

Similarly, for the process X(x), we have

lim sup
t→0

X
(0)
t

tf(t)
= (β − 1)−(β−1) almost surely

and,

lim sup
t→+∞

X(x)(t)

tf(t)
= (β − 1)−(β−1) almost surely.

Proof: This proof follows from similar arguments of the last corollary and using Theo-

rem 17 parts (i) and (ii).

4.1. Example. Let us suppose that ξ = (Yt + ct, t ≥ 0), where Y is a stable Lévy

process of index β ∈ (1, 2) with no positive jumps and c a positive constant. Its Laplace

exponent has the form

E
(
eλξt

)
= exp{t(λβ + cλ)}, for t ≥ 0, and λ > 0,

where c > 0. Note that under the hypothesis that Y has no positive jumps, ν = 1 a.s.

Let us define by X(x), the pssMp associated to ξ starting from x and with scaling index

α > 0, then when x = 0 its first and last passage time processes satisfies

lim inf
x→0

Sx

xα
(
log | log x|

)(1−β)α
= α−βα(β − 1)α(β−1), almost surely,

and,

lim inf
x→0

Ux

xα
(
log | log x|

)(1−β)α
= α−βα(β − 1)α(β−1), almost surely,

Note that we have the same law of the iterated logarithm at +∞.

The pssMp X(x) satisfies that

lim sup
t→0

X
(0)
t

t
1
α

(
log | log t|

) (β−1)
α

= α
β
α (β − 1)−

β−1
α , almost surely,

and for all x ≥ 0

lim sup
t→+∞

X
(x)
t

t
1
α

(
log | log t|

)β−1
α

= α
β
α (β − 1)−

β−1
α , almost surely.

Finally, its future infimum process also satisfies that

lim sup
t→0

J
(0)
t

t
1
α

(
log | log t|

) (β−1)
α

= α
β
α (β − 1)−

β−1
α , almost surely,
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and for all x ≥ 0

lim sup
t→+∞

J
(x)
t

t
1
α

(
log | log t|

)β−1
α

= α
β
α (β − 1)−

β−1
α , almost surely.

Note that when α = β, the processes X(x) and J (x) have the same asymptotic behaviour as

ξ, this is

lim sup
t→0(or +∞)

ξt

t
1
β
(
log | log t|

)β−1
β

= β(β − 1)−
β−1

β , almost surely,

see Zolotarev [Zolo64] for details, and also the same asymptotic behaviour of the stable

Lévy process conditioned to stay positive with no positive jumps (see Corollary 14).

5. The case with no positive jumps

We finish this chapter with some remarkable asymptotic properties of pssMp with no

positive jumps. The following result means in particular that if there exist a positive func-

tion that describes the upper envelope of X(x) by a law of the iterated logarithm then the

same function describes the upper envelope of the future infimum of X(x) and the pssMp

X(x) reflected at its future infimum.

THEOREM 18. Let us suppose that

lim sup
t→0

X(0)

F (t)
= 1 almost surely,

then

lim sup
t→0

J
(0)
t

F (t)
= 1 and lim sup

t→0

X
(0)
t − J

(0)
t

F (t)
= 1 almost surely.

Moreover, if we suppose that for all x ≥ 0

lim sup
t→+∞

X(x)

F (t)
= 1 almost surely,

then

lim sup
t→+∞

J
(x)
t

F (t)
= 1 and lim sup

t→+∞

X
(x)
t − J

(x)
t

F (t)
= 1 almost surely.

Proof: First, we prove part (i) and (ii) for large times. Let x ≥ 0. Since J
(x)
t ≥ X

(x)
t

for every t ≥ 0 and our hypothesis, it is clear that

lim sup
t→+∞

J
(x)
t

F (t)
≤ 1 almost surely.

Now, fix ǫ ∈ (0, 1/2) and define

Rn = inf

{
s ≥ n :

X
(x)
s

F (s)
≥ (1 − ǫ)

}
.

From the above definition, it is clear that Rn ≥ n and that Rn diverge a.s. as n goes to

+∞. From our hypothesis, we deduce that Rn is finite, a.s.
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Now, since X(x) has no positive jumps and applying the strong Markov property, we have

that

P

(
J

(x)
Rn

F (Rn)
≥ (1 − 2ǫ)

)
= P

(
J

(x)
Rn

≥ (1 − 2ǫ)X
(x)
Rn

(1 − ǫ)

)

= E

(
P

(
J

(x)
Rn

≥ (1 − 2ǫ)X
(x)
Rn

(1 − ǫ)

∣∣∣∣X
(x)
Rn

))

= P

(
inf
t≥0

ξ ≥ log
(1 − 2ǫ)

(1 − ǫ)

)
= cW

(
log

1 − ǫ

1 − 2ǫ

)
> 0,

where W : [0, +∞) → [0, +∞) is the unique absolutely continuous increasing function

with Laplace exponent
∫ +∞

0

e−λxW (x)dx =
1

ψ(λ)
for λ > 0,

and c = 1/W (+∞), (see Bertoin [Bert96] Theorem VII.8).

Since Rn ≥ n,

P

(
J

(x)
t

F (t)
≥ (1 − 2ǫ), for some t ≥ n

)
≥ P

(
J

(x)
Rn

F (Rn)
≥ (1 − 2ǫ)

)
.

Therefore, for all ǫ ∈ (0, 1/2),

P

(
J

(x)
t

F (t)
≥ (1 − 2ǫ), i.o., as t → +∞

)
≥ lim

n→+∞
P

(
J

(x)
Rn

F (Rn)
≥ (1 − 2ǫ)

)
> 0.

The event of the left hand side is in the upper-tail sigma-field ∩tσ{X(x)
s : s ≥ t} which is

trivial, then

lim sup
t→+∞

J
(x)
t

F (t)
≥ 1 − 2ǫ almost surely.

The proof of part (ii) is very similar, in fact

P

(
X

(x)
Rn

− J
(x)
Rn

F (Rn)
≥ (1 − 2ǫ)

)
= P

(
J

(x)
Rn

≤ ǫX
(x)
Rn

1 − ǫ

)

= E

(
P

(
J

(x)
Rn

≤ ǫX
(x)
Rn

1 − ǫ

∣∣∣∣X
(x)
Rn

))

= P

(
inf
t≥0

ξ ≤ log
ǫ

1 − ǫ

)
= 1 − cW

(
log

1 − ǫ

ǫ

)
> 0,

Since Rn ≥ n,

P

(
X

(x)
t − J

(x)
t

F (t)
≥ (1 − 2ǫ), for some t ≥ n

)
≥ P

(
X

(x)
Rn

− J
(x)
Rn

F (Rn)
≥ (1 − 2ǫ)

)
.

Therefore, for all ǫ ∈ (0, 1/2),

P

(
X

(x)
t − J

(x)
t

F (t)
≥ (1 − 2ǫ), i.o., as t → +∞

)
≥ lim

n→+∞
P

(
X

(x)
Rn

− J
(x)
Rn

F (Rn)
≥ (1 − 2ǫ)

)
> 0.
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The event of the left hand side of the above inequality is in the upper-tail sigma-field

∩tσ{X(x)
s : s ≥ t} which is trivial and this establishes part (ii) for large times.

In order to prove the LIL for small times, we now define the following stopping time

Rn = inf

{
1

n
≤ s :

X
(0)
s

Λ(s)
≥ (1 − ǫ)

}
.

Following same arguments as above, we get that for a fixed ǫ ∈ (0, 1/2) and n sufficiently

large

P

(
J

(0)
Rn

Λ(Rn)
≥ (1 − 2ǫ)

)
> 0 and P

(
X

(0)
Rn

− J
(0)
Rn

Λ(Rn)
≥ (1 − 2ǫ)

)
> 0.

Next, we note

P

(
J

(0)
Rp

Λ(Rp)
≥ (1 − 2ǫ), for some p ≥ n

)
≥ P

(
J

(0)
Rn

Λ(Rn)
≥ (1 − 2ǫ)

)
,

and

P

(
X

(0)
Rp

− J
(0)
Rp

Λ(Rp)
≥ (1 − 2ǫ), for some p ≥ n

)
≥ P

(
X

(0)
Rn

− J
(0)
Rn

Λ(Rn)
≥ (1 − 2ǫ)

)
.

Since Rn converge a.s. to 0 as n goes to ∞, the conclusion follows taking the limit when n
goes towards to +∞

Hence from Theorem 17, we deduce the following result.

COROLLARY 20. Under condition (4.8), we have the following law of the iterated

logarithm for all x ≥ 0

lim sup
t→0

X
(0)
t − J

(0)
t

Ψ̄(t)
= 1 and lim sup

t→+∞

X
(x)
t − J

(x)
t

Ψ̄(t)
= 1 almost surely.

Similarly, under condition (4.9), we have that

lim sup
t→0

X
(0)
t − J

(0)
t

Ψ̂(t)
= 1 and lim sup

t→+∞

X
(x)
t − J

(x)
t

Ψ̂(t)
= 1 almost surely.

5.1. Examples. 1. Let X(0) be a stable Lévy process conditioned to stay positive with

no positive jumps and index 1 < α ≤ 2. In Section 2.1, we noted that

− log F̄ (1/t) ∼ α − 1

α

(
1

α

)1/(α−1)

t1/α−1 as t → +∞.

Then applying Corollary 20, we get the following law of the iterated logarithm.

COROLLARY 21. Let X(0) be a stable Lévy process conditioned to stay positive with

no positive jumps and α > 1. Then, the processes X(x) − J (x) satisfy the following law of

the iterated logarithm

lim sup
t→0

X
(0)
t − J

(0)
t

t1/α
(
log | log t|

)1−1/α
= α (α − 1)−

α−1
α , almost surely,
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and for all x ≥ 0,

lim sup
t→+∞

X
(x)
t − J

(x)
t

t1/α
(
log log t

)1−1/α
= α (α − 1)−

α−1
α , almost surely,

2. Let ξ be a Lévy process with no positive jumps and suppose that its Laplace exponent

ψ is regularly varying at +∞ with index γ ∈ (1, 2). Recall from the previous section that,

− log P

(
I
(
ξ̂
)

< 1/t
)
∼ (β − 1)

↼

H(t) as t → +∞,

where
↼

H(t) = inf
{

s > 0, ψ(s)/s > t
}

.

Let us define the function

f(t) =
ψ(log | log t|)

log | log t| for t > 1, t 6= e.

COROLLARY 22. Let ξ be a Lévy process with no positive jumps such that its Laplace

exponent ψ is regularly varying at +∞ with index γ ∈ (1, 2). The process X(x) denotes

the pssMp starting from x > 0 associated to ξ by the Lamperti relation (0.15). Then, the

processes X(x) − J (x) satisfies the following laws of the iterated logarithm

lim sup
t→0

X
(0)
t − J

(0)
t

tf(t)
= (β − 1)−(β−1), almost surely,

and for all x ≥ 0,

lim sup
t→+∞

X
(x)
t − J

(x)
t

tf(t)
= (β − 1)−(β−1), almost surely.

3. Sato [Sato91] ( see also Sato [Sato99]) studied some interesting properties of ipsspii

(increasing and positive self-similar processes with independent increments). In particular,

he showed that if Y = (Yt, t ≥ 0) is an ipsspii with 0 as starting point, we can represent its

Laplace transform by

E

[
exp

{
− λY1

}]
= exp

{
− φ̄(λ)

}
for λ > 0,

where

φ̄(λ) = cλ +

∫ +∞

0

(
1 − e−λx

)k(x)

x
dx,

c ≥ 0 and k(x) is a nonnegative decreasing function on (0, +∞) with
∫ +∞

0

k(x)

1 + x
dx < +∞.

From its definition, it is clear that the Laplace exponent φ̄ is an increasing continuous

function and more precisely a concave function.

Under the assumption that φ̄ varies regularly at +∞ with index α ∈ (0, 1), we will have

the following sharp estimate for the distribution of Y1.

Let us define the function

h(t) =
t log | log t|

ϕ̄(log | log t|) , for t 6= e, t > 1,

where ϕ̄ is the inverse function of φ̄.
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PROPOSITION 14. Let (Yt, t ≥ 0) be an isspii and suppose that φ̄, its Laplace exponent,

varies regularly at +∞ with index α ∈ (0, 1). Then for every c > 0, we have

− log P

(
Y1 ≤

ch(t)

t

)
∼

(
α/c

) α
1−α (1 − α) log | log t| as t → 0 (t → ∞).

Proof: From de Brujin’s Tauberian Theorem (see for instance Theorem 4.12.9 in [Bial89]),

we have that if φ̄ varies regularly at +∞ with index α ∈ (0, 1) then

− log P
(
Y1 ≤ x

)
∼ α

α
1−α (1 − α)
↼

Θ(1/x)
, for x → 0,

where
↼

Θ is the asymptotic inverse of Θ, a regularly varying function at +∞ with index

(α − 1)/α and that satisfies

(4.15)
λ

φ̄(λ)
∼ Θ

(
1

φ̄(λ)

)
for λ → +∞.

Hence, taking x = ch(t)/t and λ = ϕ̄(log | log t|), and doing some calculations we get the

desired result.

This estimate and Lemma 6 allow us to get the following law of the iterated logarithm.

COROLLARY 23. Let (Yt, t ≥ 0) be an ipsspii and suppose that φ̄, its Laplace exponent,

satisfies the conditions of the previous proposition. Then, we have

lim inf
t→0

Yt

h(t)
= α(1 − α)(1−α)/α, almost surely.

The same las of iterated logarithm is satisfied for large times.

Now, we denote by φ1 and φ2 the Laplace exponents of the last and first passage time

processes, respectively. Since S1 ≤ U1 a.s., it is clear that φ2(λ) ≤ φ1(λ) for all λ ≥ 0.

Let us suppose that φ1 and φ2 are regularly varying at +∞ with index α1 and α2 respec-

tively, such that 0 < α2 ≤ α1 < 1. By Theorem 16 and Proposition 12, we can deduce

that in fact φ1 and φ2 are asymptotically equivalents and that α1 = α2. Then by the above

corollary, we have that

h1(t) =
t log | log t|

ϕ1(log | log t|) and h2(t) =
t log | log t|

ϕ2(log | log t|) , for t 6= e, t > 1,

where ϕ1 and ϕ2 are the inverse of φ1 and φ2, respectively, the processes U and S satisfy

lim inf
t→0

Ut

h1(t)
= α1(1 − α1)

(1−α1)/α1 almost surely,

and

lim inf
t→0

St

h1(t)
= α1(1 − α1)

(1−α1)/α1 almost surely.

Note that we can replace h1 by h2 and that we also have the same laws of the iterated

logarithm for large times.

By the sharp estimation in Proposition 14 of the tail probability of S1, we deduce the

following law of the iterated logarithm.

Let us define

f2(t) =
tϕ2(log | log t|)

log | log t| , for t 6= e, t > 1.
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COROLLARY 24. Let φ2 be the Laplace exponent of S1 and ϕ2 its inverse. If φ2 is

regularly varying at +∞ with index α2 ∈ (0, 1), then

lim sup
t→0

X
(0)
t

f2(t)
= α−1

2 (1 − α2)
−(1−α2)/α2 almost surely,

and for any x ≥ 0,

lim sup
t→+∞

X
(x)
t

f2(t)
= α−1

2 (1 − α2)
−(1−α2)/α2 almost surely.

On the other hand, from Theorem 18 we get the following Corollary.

COROLLARY 25. Let φ2 be the Laplace exponent of S1 and ϕ2 its inverse. If φ2 is

regularly varying at +∞ with index α2 ∈ (0, 1), then

i)

lim sup
t→0

J
(0)
t

f2(t)
= α−1

2 (1 − α2)
−(1−α2)/α2 almost surely,

and for any x ≥ 0,

lim sup
t→+∞

J
(x)
t

f2(t)
= α−1

2 (1 − α2)
−(1−α2)/α2 almost surely.

ii)

lim sup
t→0

X
(0)
t − J

(0)
t

f2(t)
= α−1

2 (1 − α2)
−(1−α2)/α2 almost surely,

and for any x ≥ 0,

lim sup
t→+∞

X
(x)
t − J

(x)
t

f2(t)
= α−1

2 (1 − α2)
−(1−α2)/α2 almost surely.





CHAPTER 5

Transient Bessel processes.

Bessel processes form the sub-class of continuous positive self-similar Markov pro-

cesses. In this chapter, the upper envelope of the future infimum of transient Bessel pro-

cesses is completely described through integral test. This result improve the results found

by Khoshnevisan et al. [Khal94]. We also establish an integral test for the upper envelope

of transient Bessel processes which is a variant of the Kolmogorov-Dvoretsky-Erdös inte-

gral test.

1. The future infimum.

In this section we will suppose that ξ = (2(Bt + at), t ≥ 0), where B is a standard

Brownian motion and a > 0.

We define the process Z = (Zt, t ≥ 0), the square of the δ-dimensional Bessel processes

starting at x ≥ 0, as the unique strong solution of the stochastic differential equation

(5.1) Zt = x + 2

∫ t

0

√
|Zs|dβs + δt, for δ ≥ 0,

where β is a standard Brownian motion.

By the Lamperti representation, we know that we can define X(x) a pssMp starting at x > 0,

such that

X
(x)
xIt(ξ)

= x exp
{
ξt

}
for t ≥ 0.

Then, applying the Itô’s formula and Dubins-Schwartz’s Theorem (see for instance, Revuz

and Yor [ReYo99]), we get

X
(x)
xIt(ξ)

= x + 2

∫ xIt(ξ)

0

√
X

(x)
s dBs + 2(a + 1)xIt(ξ).

Hence it follows that X(x) satisfies (5.1) with δ = 2(a+1) and therefore X(x) is the square

of the δ-dimensional Bessel processes starting at x > 0. From the main result of Caballero

and Chaumont [CaCh06], we may define X(x) at x = 0, and from (0.16) we can computed

its entrance law. Since, we suppose that a > 0, we deduce that X(x) is a transient process

and that δ > 2.

From the formula of negative moments (4.12) of the exponential functional I(ξ̂), we can

deduce (see Example 3 in Bertoin and Yor [BerY02]) the following identity in distribution

(5.2)

∫ ∞

0

exp
{
− 2(Bs + as)

}
ds

(d)
=

1

2γa

,

where γa is a gamma random variable with index a > 0. In fact, we can also deduce that

X
(0)
1 is distributed as 2γa+1.
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We recall that the distribution of γa for a > 0, is given by

(5.3) P(γa ≤ x) =
1

Γ(a)

∫ x

0

e−yya−1dy, where Γ(a) =

∫ ∞

0

e−yya−1dy.

It is important to note that due the continuity of the paths of X(0), we have that ν = 1
almost surely.

The following Lemma will be helpful for the application of our general results to the case

of transient Bessel processes.

LEMMA 8. Let a > 0, then there exist c and C, two positive constants such that

ce−xxa−1 ≤
∫ ∞

x

e−yya−1dy ≤ Ce−xxa−1, for x ≥ C(a − 1)

C − 1
.

Proof: First, we prove the lower bound for a > 1. For x > 0, we see
∫ ∞

x

e−yya−1dy = xa

∫ ∞

1

e−xyya−1dy ≥ xα−1ex.

For a ∈ (0, 1), we have
∫ ∞

x

e−yya−1dy = (1 − a)

∫ ∞

x

e−y

(∫ ∞

y

za−2dz

)
dy

= xa−1e−x − (1 − a)

∫ ∞

x

za−2e−zdz

≥ xa−1e−x − (1 − a)

∫ ∞

x

za−1e−zdz,

then, ∫ ∞

x

e−yya−1dy ≥ 1

2 − a
xa−1e−x.

Next, we prove the upper bound for a ∈ (0, 1). For x > 0,
∫ ∞

x

e−yya−1dy = xa

∫ ∞

1

e−xyya−1dy ≤ xα−1ex.

For a > 1, we see
∫ ∞

x

e−yya−1dy = (a − 1)

∫ ∞

x

e−y

(∫ y

0

za−2dz

)
dy

= xa−1e−x + (a − 1)

∫ ∞

x

e−yya−2dy

≤ xa−1e−x +
(a − 1)

x

∫ ∞

x

e−yya−1dy.

Now, let b ∈ (0, 1). Then, for x ≥ a−1
1−b

it follows

β

∫ ∞

x

e−yya−1dy ≤
(

1 − a − 1

x

) ∫ ∞

x

e−yya−1dy ≤ xa−1e−x,

and therefore, we have the upper bound with C = b−1.

The case a = 1 is evident.

From this Lemma, we deduce the following integral tests for the last passage time

process of transient square Bessel process.
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THEOREM 19. Let h ∈ H−1
0 , then:

i) If ∫

0+

(
x/2h(x)

) δ−4
2

exp
{
− x/2h(x)

}dx

x
< ∞,

then for all ǫ > 0

P

(
Ux < (1 − ǫ)h(x), i.o., as x → 0

)
= 0.

ii) If ∫

0+

(
x/2h(x)

) δ−4
2

exp
{
− x/2h(x)

}dx

x
= ∞,

then for all ǫ > 0

P

(
Ux < (1 + ǫ)h(x), i.o., as x → 0

)
= 1.

Proof: The proof of this Theorem follows from the fact that

(5.4) P(I < x) = P
(
γ(δ−2)/2 > 1/2x

)
for x > 0,

and an application of Theorem 4 and Lemma 8.

THEOREM 20. Let h ∈ H−1
∞ , then:

i) If ∫ +∞ (
x/2h(x)

) δ−4
2

exp
{
− x/2h(x)

}dx

x
< ∞,

then for all ǫ > 0

P

(
Ux < (1 − ǫ)h(x), i.o., as x → +∞

)
= 0.

ii) If ∫ +∞ (
x/2h(x)

) δ−4
2

exp
{
− x/2h(x)

}dx

x
= ∞,

then for all ǫ > 0

P

(
Ux < (1 + ǫ)h(x), i.o., as x → +∞

)
= 1.

Proof: The proof of these integral tests is very similar to the proof of the previous result,

it is enough to apply Lemma 8 and Theorem 5 to the tail probability (5.4).

From these integral tests, we get the following law of iterated logarithm.

lim inf
x→0

Ux
2 log | log x|

x
= 1 and lim inf

x→+∞
Ux

2 log log x

x
= 1 almost surely.

Note that we are also in the “log-regular” case and we can apply Theorem 16 to get the

same law of the iterated logarithm.

For the upper envelope of the future infimum process, we have the following integral tests.

THEOREM 21. Let h ∈ H0, then:
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i) If ∫

0+

(
h(t)/2t

) δ−4
2

exp
{
− h(t)/2t

}dt

t
< ∞,

then for all ǫ > 0

P

(
J

(0)
t > (1 + ǫ)h(t), i.o., as t → 0

)
= 0.

ii) If ∫

0+

(
h(t)/2t

) δ−4
2

exp
{
− h(t)/2t

}dt

t
= ∞,

then for all ǫ > 0

P

(
J

(0)
t > (1 − ǫ)h(t), i.o., as t → 0

)
= 1.

Proof: We get this result applying Theorem 6 and the estimate of Lemma 8 to the tail

probability (5.4).

THEOREM 22. Let h ∈ H∞, then for all x ≥ 0:

i) If ∫ +∞ (
h(t)/2t

) δ−4
2

exp
{
− h(t)/2t

}dt

t
< ∞,

then for all ǫ > 0

P

(
J

(x)
t > (1 + ǫ)h(t), i.o., as t → +∞

)
= 0.

ii) If ∫ +∞ (
h(t)/2t

) δ−4
2

exp
{
− h(t)/2t

}dt

t
= ∞,

then for all ǫ > 0

P

(
J

(x)
t > (1 − ǫ)h(t), i.o., as t → +∞

)
= 1.

Proof: The proof of these integral test is similar to the previous Theorem. We only

replace Theorem 6 by Theorem 7.

From these integral tests, we get the following laws of iterated logarithm,

lim sup
t→0

J
(0)
t

2t log | log t| = 1 and lim sup
t→+∞

J
(x)
t

2t log log t
= 1 almost surely,

for x ≥ 0. Here we can also obtain the same laws of the iterated logarithm applying

Theorem 17.

2. The upper envelope of transient Bessel processes.

Gruet and Shi [GrSh96] proved that there exist a finite constant K > 1, such that for

any 0 < s ≤ 2,

(5.5) K−1s1−δ/2 exp

{
− 1

2s

}
≤ P(S1 < s) ≤ Ks1−δ/2 exp

{
− 1

2s

}
.

Hence we establish the following integral test for the lower envelope of the first passage

time process of the square Bessel process X(0).
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THEOREM 23. Let h ∈ H−1
0 ,

i) If
∫

0+

(
t

h(t)

) δ−2
2

exp

{
− t

2h(t)

}
dt

t
< ∞,

then for all ǫ > 0

P

(
St < (1 − ǫ)h(t), i.o., as t → 0

)
= 0.

ii) If
∫

0+

dt

t

(
t

h(t)

) δ−2
2

exp

{
− t

2h(t)

}
= ∞,

then for all ǫ > 0

P

(
St < (1 + ǫ)h(t), i.o., as t → 0

)
= 1.

Proof: The proof of this Theorem is a simple application of (5.5) to Lemma 6.

Similarly, we have the same integral test for large times.

THEOREM 24. Let h ∈ H−1
∞ ,

i) If
∫ +∞ (

t

h(t)

) δ−2
2

exp

{
− t

2h(t)

}
dt

t
< ∞,

then for all ǫ > 0

P

(
St < (1 − ǫ)h(t), i.o., as t → +∞

)
= 0.

ii) If
∫

+∞

dt

t

(
t

h(t)

) δ−2
2

exp

{
− t

2h(t)

}
= ∞,

then for all ǫ > 0

P

(
St < (1 + ǫ)h(t), i.o., as t → +∞

)
= 1.

From these integral tests, we get the following law of the iterated logarithm

lim inf
t→0

St
2 log | log t|

t
= 1 and lim inf

t→+∞
St

2 log log t

t
= 1 almost surely.

For the upper envelope of X(0), we have the following integral tests.

THEOREM 25. Let h ∈ H0,

i) If
∫

0+

(
h(t)

t

) δ−2
2

exp

{
−h(t)

2t

}
dt

t
< ∞,

then for all ǫ > 0

P

(
X

(0)
t > (1 + ǫ)h(t), i.o., as t → 0

)
= 0.
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ii) If
∫

0+

(
h(t)

t

) δ−2
2

exp

{
−h(t)

2t

}
dt

t
= ∞,

then for all ǫ > 0

P

(
X

(0)
t > (1 − ǫ)h(t), i.o., as t → 0

)
= 1.

Proof: The proof of this Theorem follows from a simple application of (5.5) to Theo-

rem 8. The proof of the additional hypothesis (2.19), is clear from (5.5).

Similarly, we have the same integral tests for large times.

THEOREM 26. Let h ∈ H∞

i) If
∫ +∞ (

h(t)

t

) δ−2
2

exp

{
−h(t)

2t

}
dt

t
< ∞,

then for all ǫ > 0 and for all x ≥ 0

P

(
X

(x)
t > (1 + ǫ)h(t), i.o., as t → +∞

)
= 0.

ii) If
∫ +∞ (

h(t)

t

) δ−2
2

exp

{
−h(t)

2t

}
dt

t
= ∞,

then for all ǫ > 0 and for all x ≥ 0

P

(
X

(x)
t > (1 − ǫ)h(t), i.o., as t → +∞

)
= 1.

Recall from the Kolmogorov and Dvoretzky-Erdös (KDE for short) integral test that for

h a nondecreasing, positive and unbounded function as t goes to +∞, the upper envelope

of X(0) at 0 may be described as follows:

P
(
X

(0)
t > h(t), i.o., as t → 0

)
= 0 or 1,

according as,

∫

0

(
h(t)

t

) δ
2

exp

{
−h(t)

2t

}
dt

t
is finite or infinite.

Note that the class of functions that satisfy the divergent part of Theorems 25 and 26 implies

the divergent part of the KDE integral test, hence ǫ can also take the value 0. The convergent

part of the KDE integral test obviously implies the convergent part of Theorems 25 and 26.

From these integral tests, we get the following laws of the iterated logarithm: for x ≥ 0,

lim sup
t→0

X
(0)
t

2t log | log t| = 1 and lim sup
t→+∞

X(x)

2t log log t
= 1 almost surely.

On the other hand, it is not difficult to deduce from Lemma 8 that

− log F̄ (x) ∼ x, x → 0,

then the square of a transient Bessel process satisfies condition (4.8) and Theorem 18,

which implies that for x ≥ 0,

lim sup
t→0

X
(0)
t − J

(0)
t

2t log | log t| = 1 and lim sup
t→+∞

X(x)J
(x)
t

2t log log t
= 1 almost surely.
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Now, we will apply some of the results of the third example of Section 5.1. Here we employ

the usual Bessel functions Ia and Ka, as in Kent [Kent78] and Jeanblanc, Pitman and Yor

[JePY02]. It is well-known that

E

(
exp

{
− λS1

})
= λa/2 1

2a/2Γ(a + 1)Ia(
√

2λ)
, λ > 0,

and

E

(
exp

{
− λU1

})
=

λa/2

2a/2−1Γ(a)
Ka(

√
2λ), λ > 0,

where Γ is the well-known gamma function (see for instance Jeanblanc, Pitman and Yor

[JePY02]).

Now, we define for λ > 0

φ1(λ) = log(2a/2−1Γ(a)) − log Ka(
√

2λ) − log λa/2,

φ2(λ) = log Ia(
√

2λ) + log(2a/2Γ(a + 1)) − log λa/2.

Since, we have the following asymptotic behaviour

Ia(x) ∼ (2πx)−1/2ex and Ka(x) ∼
( π

2x

)1/2

e−x when x → +∞,

(see Kent [Kent78] for instance), we deduce that φ1 and φ2 are regularly varying at +∞
with index 1/2. From Propositions 11 and 13 and Theorem 18, we deduce that they are

asymptotically equivalent.

From Corollaries 23, 24 and 25, we have that

lim inf
t→0

Ut

h1(t)
= 1/4, lim inf

t→0

St

h2(t)
= 1/4 almost surely,

lim sup
t→0

X
(0)
t

f2(t)
= 4, lim sup

t→0

J
(0)
t

f1(t)
= 4 almost surely,

and

lim sup
t→0

J
(0)
t

f2(t)
= 4, lim sup

t→0

X
(0)
t − J

(0)
t

f2(t)
= 4 almost surely,

where

h1(t) =
t log | log t|

ϕ1(log | log t|) , h2(t) =
t log | log t|

ϕ2(log | log t|) , f1(t) =
t2

h1(t)
, f2(t) =

t2

h2(t)

and, ϕ1 and ϕ2 are the inverse functions of φ1 and φ2, respectively.

Similarly, we have all these laws of the iterated logarithm for large times and for x ≥ 0,

lim inf
t→∞

Ut

h1(t)
= 1/4, lim inf

t→∞

St

h2(t)
= 1/4 almost surely,

lim sup
t→∞

X
(x)
t

f2(t)
= 4, lim sup

t→∞

J
(x)
t

f1(t)
= 4 almost surely,

and

lim sup
t→∞

J
(x)
t

f2(t)
= 4, lim sup

t→∞

X
(x)
t − J

(x)
t

f2(t)
= 4 almost surely.





Part 2

Conditioned stable Lévy forest.





Introduction.

Continuous state branching processes or CB-processes are Markov processes taking

values in the half-line [0,∞], with càdlàg paths and satisfying the branching property. Such

processes have been introduced by Jirina [Jiri58] and studied by many authors includ-

ing Bingham [Bing76], Grey [Grey74], Grimval [Grim74], Lamperti [Lamp67, Lam67a,

Lam67b], etc... An important property of this class of Markov processes is that they ap-

pear as limit of rescaled Galton-Watson processes (see for instance [Lamp67, Lam67b]

and [Grim74]). At the end of the sixties, Lamperti [Lam67a] stated that CB-processes

are connected with Lévy processes with no negative jumps by a simple time-change. The

Laplace exponent ψ of a Lévy process is well known as the branching mechanism of its

related CB-process by the Lamperti transform. The branching mechanism ψ solves a dif-

ferential equation that characterizes the law of the CB-process.

Motivated in extending the notion of the Brownian snake, Le Gall and Le Jan [LGLJ98]

studied the genealogical structure of CB-processes. In [LGLJ98], the authors proposed

a coding of the genealogy of CB-processes via a real-valued random process called the

height process. In the case of the Feller branching diffusion (i.e. when ψ(u) = u2), the

height process is the reflected Brownian motion. Le Gall and Le Jan also observed that

for a general critical or subcritical CB-process, there is an explicit formula expressing the

height process as a functional of its related Lévy process with no negative jumps. Recently

in the monograph [DuLG02], Duquesne and Le Gall studied the genealogical structure of

CB-processes in connection with limit theorems of discrete branching trees well known as

Galton-Watson trees.

The basic object here is the Galton-Watson tree with offspring distribution µ. It can be

seen as the underlying family tree of the corresponding Galton-Watson process started

with one ancestor and offspring distribution µ. This random tree is chosen to be rooted

and ordered (see chapter 6). It is well-known that if µ is critical or subcritical, the Galton-

Watson process is almost surely finite and therefore so is its corresponding Galton-Watson

tree. The Galton-Watson tree can be coded by two different discrete real valued processes:

the height process and the contour process (see chapter 6 for a proper definition). These

two processes are not Markovian but they can be written as functionals of a certain left-

continuous random walk whose jump distribution depends on µ.

When the sequence of rescaled Galton-Watson processes converges towards the CB-process

with branching mechanism ψ, Duquesne and Le Gall [DuLG02] have shown that the ge-

nealogical structure of the Galton-Watson processes converges too, i.e. that the correspond-

ing rescaled sequences of contour processes and height processes, converge respectively

towards (H̄t/2, t ≥ 0) and (H̄t, t ≥ 0), where the limit process (H̄t, t ≥ 0) is the height

process in continuous time that has been introduced by Le Gall and Le Jan in [LGLJ98].

Similarly as the discrete case, the height process is not Markovian in general but it can be

described as a functional of a Lévy process with no negative jumps.

Real trees or IR-trees have been studied for a long time for algebraic or geometric purpose

(see [DMTe96] for instance), in probability theory their use seems to be quite recent. The
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precise definition of an IR-tree is recalled in chapter 6. Informally an IR-tree is a metric

space (T , d) such that for any two points σ and σ′ in T there is a unique arc with endpoints

σ and σ′ and furthermore this arc is isometric to a compact interval of the real line. A rooted

IR-tree is an IR-tree with a distinguished vertex called the root. In a recent paper [EPWi06]

of Evans, Pitman and Winter, IR-trees are studied from the point of view of measure theory

and establishes in particular that the space Tc of equivalent classes of (rooted) compact real

trees, endowed with the Gromov-Hausdorff metric, is a Polish space. This makes it very

natural to consider random variables or even random processes taking values in the space

Tc. Our presentation owes a lot to the recent paper of Duquesne and Le Gall [DuLG05],

which uses the formalism of IR-trees to define the so-called Lévy trees that were implicit

in [LGLJ98] or [DuLG02]. Lévy trees are the continuous analogues of discrete Galton-

Watson trees. We may consider Lévy trees as random variables taking values in the space

of compact rooted IR-trees.

Aldous [Aldo91, Ald91a, Aldo93] developed the theory of the Continuum Random Tree

or CRT which can be naturally viewed as a IR-tree, but this interpretation was not made

explicit in Aldous’ work. In particular, Aldous showed that this object is the limit as n
increases, in a suitable sense, of rescaled critical Galton-Watson trees conditioned to have

n vertices whose offspring distribution has a finite variance. Although the CRT was first

defined as a particular random subset of the space l1, it was identified in [Aldo93] as the

tree coded by the normalized Brownian excursion. Recently, Duquesne [Duqu03] extended

such result to Galton-Watson trees with offspring distribution in the domain of attraction of

a stable law with index α in (1, 2]. Then, Duquesne showed that the discrete height process

of the Galton Watson tree conditioned to have a large fixed progeny, converges on the space

of Skorokhod of càdlàg paths to the normalized excursion of the height process associated

with the α-stable CB-process. Note that in the case when α = 2 such result coincides with

Aldous’ CRT.

In a natural way, Galton-Watson forest and Lévy forest are a finite or infinite collection

of independent Galton-Watson trees and independent Lévy trees, respectively. Our aim

is to study the genealogy of the stable Lévy forest of a given size and conditioned by its

mass and also prove an invariance principle for this conditioned forest by considering k
independent Galton-Watson trees whose offspring distribution is in the domain of attrac-

tion of any stable law conditioned on their total progeny to be equal to n. More precisely,

when n and k go towards ∞, under suitable rescaling, the associated coding random walk,

contour and height processes converge in law on the space of Skorokhod towards the first

passage bridge of a stable Lévy process with no negative jumps and its height process, re-

spectively. With this purpose in Chapter 6, we recall some basic results on Galton-Watson

trees and Lévy trees. In particular, we introduce the notion of a Galton-Watson tree and

define their related coding random walk, height process and contour process. We also in-

troduce the conditioned Galton-Watson forest and their related coding first passage bridge,

conditioned height process and contour process which is the starting point of our work. We

will finish this second part with Chapter 7 were we will construct the Lévy forest of a given

size s and conditioned by its mass and prove the invariance principle stated above.



CHAPTER 6

Galton-Watson and Lévy forests.

In this Chapter, we introduce the concept of Galton-Watson and Lévy forests. In par-

ticular, we define the contour and the height process of a Galton-Watson forest and also its

continuous analogue, the height process of a Lévy forest. We will remark that the height

process can be written as a simple functional of a left-continuous random walk in the dis-

cret case and in the continuous case as a functional of a Lévy process with no negative

jumps.

1. Discrete trees.

In this section, we are interested in finite and rooted ordered trees. Let us denote by N∗

the set of strictly positive integers, i.e. N∗ = {1, 2, . . .}. In all the sequel, an element u
of (N∗)n is written as u = (u1, . . . , un) and we set |u| = n. Now, we introduce the set of

labels

U =
∞⋃

n=0

(N∗)n,

where by convention (N∗)0 = {∅}. The concatenation of two elements of U, let us say

u = (u1, . . . , un) and v = (v1, . . . , vm) is denoted by

uv = (u1, . . . un, v1, . . . , vm).

A discrete rooted tree is an element τ of the set U which satisfies:

(i) ∅ ∈ τ ,

(ii) If v ∈ τ and v = uj for some j ∈ N∗, then u ∈ τ ,

(iii) For every u ∈ τ , there exists a number ku(τ) ≥ 0, such that uj ∈ τ if and only if

1 ≤ j ≤ ku(τ).

In this definition, ku(τ) represents the number of children of the vertex u. We denote by

T the set of all rooted trees. The total cardinality of an element τ ∈ T will be denoted by

ζ(τ), we emphasize that the root is counted in ζ(τ). If τ ∈ T and u ∈ τ , then we define the

shifted tree at the vertex u by

θu(τ) =
{
v ∈ U : uv ∈ τ

}
.

We say that u ∈ τ is a leaf of τ if ku(τ) = 0. The last common ancestor between two

elements of τ , say u and v, is denoted by u ∧ v.

We will now explain how discrete trees can be coded by three different functions. We

first introduce the so-called height function associated with the rooted tree τ . With this

purpose, let us denote by uτ (0) = 0, uτ (1) = 1, . . . , uτ (ζ(τ) − 1) the elements of the tree

τ ordered in lexicographical order. The height function (Hn(τ), 0 ≤ n < ζ(τ)) is defined

by

Hn(τ) = |uτ (n)|, for 0 ≤ n < ζ(τ).



114 CHAPTER 6. G-W AND LÉVY FORESTS

Hence the height function is the sequence of the generations of the elements of the discrete

tree τ listed with the lexicographical order. There is another way to present the height

function which is more natural. For two vertices u and v of a tree τ , the distance dτ (u, v)
is the number of edges of the unique elementary path from u to v. Then, we may define

the height function in terms of the distance from the root ∅, i.e. Hn(τ) = dτ (∅, uτ (n)). In

particular, we have the following relation

(6.1) dτ (uτ (n), uτ (m)) = Hn(τ) + Hm(τ) − 2Hk(n,m)(τ) ,

were k(n, m) is the integer satisfying that uτ (k(n,m)) = uτ (n) ∧ uτ (m). It is not difficult

to see that the height function of a tree allows us to recover the entire structure of this tree.

We say that it codes the genealogy of the tree. The contour function or Dick path gives

another characterization of the tree which is easier to visualize. We suppose that the tree is

embedded in a half-plane in such a way that edges have length one. Informally, we imagine

the motion of a particle that starts at time 0 from the root of the tree and then explores the

tree from the left to the right continuously along each edge of τ at unit speed until all edges

have been explored and the particle has come back to the root. Note that if uτ (n) is a leaf,

the particle goes to uτ (n + 1), taking the shortest way that consist first to move backward

on the line of descent from uτ (n) to their last common ancestor uτ (n) ∧ uτ (n + 1) and

then to move forward along the single edge between uτ (n)∧uτ (n+1) to uτ (n+1). Since

it is clear that each edge will be crossed twice, the total time needed to explore the tree is

2(ζ(τ) − 1). The value Cs(τ) of the contour function at time s ∈ [0, 2(ζ(τ) − 1)] is the

distance (on the continuous tree not the distance dτ ) between the position of the particle at

time s and the root. More precisely, let us denote by l1 < l2 < · · · < lp the p leaves of τ
listed in lexicographical order. Hence, the contour function (Ct(τ), 0 ≤ t ≤ 2(ζ(τ)−1)) is

the piecewise linear continuous path with slope equal to +1 or -1, that takes successive local

extremes with values: 0, |l1|, |l1 ∧ l2|, |l2|, . . . |lp−1 ∧ lp|, |lp| and 0. It is important to note

that the contour function can be recovered from the height function through the following

transform: set Kn = 2n − Hn(τ), then

(6.2) Ct(τ) =

{
(Hn(τ) − (t − Kn))+ if t ∈ [Kn, Kn+1 − 1),
(t − Kn+1 + Hn+1(τ))+, if t ∈ [Kn+1 − 1, Kn+1),

There is still another way of coding the tree. We denote by S the set of all sequences of

nonnegative integers m1, . . . , mp (with p ≥ 1) such that

• m1 + m2 + · · · + mi ≥ i, for all i ∈ {1, . . . , p − 1};

• m1 + m2 + · · · + mp = p − 1.

The mapping

Φ : τ → (kuτ (0), kuτ (1), . . . , kuτ (ζ(τ)−1)),

defines a bijection from T onto S. Rather than the sequence Φ(τ), we will consider the

Lukasiewicz path (see figure 1) defined by

xn =
n∑

i=1

(kuτ (i) − 1), 0 ≤ n ≤ ζ(τ),

where kuτ (ζ(τ)) = 0. The Lukasiewicz path satisfies the following properties

• x0 = 0 and xζ(τ) = −1.

• xn ≥ 0 for every 0 ≤ n ≤ p − 1.

• xi − xi−1 ≥ −1 for every 1 ≤ i ≤ p.
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Obviously the mapping Φ induces a bijection between trees and the Lukasiewicz path.

Finally we note that we can recover the height function from the Lucasiewicz path by the

following formula

Hn(τ) = card
{

j ∈ {0, 1, . . . , n − 1} : xj = inf
j≤l≤n

xl

}
,

for every n ∈ {0, 1, . . . , ζ(τ) − 1}.
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2. Galton-Watson trees and forest.

Now let us consider a probability measure µ on Z+, such that

∞∑

k=0

kµ(k) ≤ 1 and µ(1) < 1 .

A probability measure satisfying such conditions is called critical or subcritical offspring

distribution.

We will use the approach of discrete trees to construct our basic objects, the Galton-Watson

trees. Let (Ru, u ∈ U) be a family of independent random variables with law µ, indexed

by U. Denote by ∆ the random subset of U defined by

∆ =
{

u = (u1, . . . , un) ∈ U : uj ≤ R(u1,...,uj−1) for every 1 ≤ j ≤ n
}

.

Note that ∆ is almost surely a discrete tree and if we define

Zn = card
{
u ∈ ∆ : |u| = n

}
,

it is not difficult to show that (Zn, n ≥ 0) is a Galton-Watson process with offspring distri-

bution µ and initial value Z0 = 1. By the definition of ∆, it is clear that ku(∆) = Ru for

every u ∈ ∆.

The tree ∆, or any other random tree with the same distribution, will be called a Galton-

Watson tree with offspring distribution µ and its law is the unique probability measure Qµ

on T satisfying:
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(i) Qµ(k∅(∆) = j) = µ(j), j ∈ Z+.

(ii) For every j ≥ 1, with µ(j) > 0, the shifted trees θ1(∆), . . . , θj(∆) are indepen-

dent under the conditional distribution Qµ( · | k∅ = j) and their conditional law is

Qµ.

A Galton-Watson forest with offspring distribution µ is a finite or infinite sequence of inde-

pendent Galton-Watson trees with offspring distribution µ. In the sequel, we will denote by

τ for a Galton-Watson tree and by F = (τk) for a Galton-Watson forest, respectively. With

a misuse of notation, we will denote by Qµ the law on (T)N
∗

of a Galton-Watson forest

with offspring distribution µ.

Since τ is a random discrete tree, we may code its genealogy by its associated height func-

tion, contour function and Lukasiewicz path which obviously became random processes.

The definition of such objects are the same as in the previous section, but here we will

introduce them for the case of Galton-Watson forests.

The height process of a Galton-Watson forest F = (τk)k≥1 is defined by

n 7→ Hn(F) = Hn−(ζ(τ0)+···+ζ(τk−1))(τk),

if ζ(τ0) + · · · + ζ(τk−1) ≤ n ≤ ζ(τ0) + · · · + ζ(τk) − 1,

for k ≥ 1, and with the convention that ζ(τ0) = 0.

Although this process is natural and simple to define from discrete trees, its law is rather

complicated to characterize. In particular, H is neither a Markov process nor a martingale.

In a similar way, we may introduce the contour process related to a Galton-Watson forest.

The contour process for a Galton-Watson forest F = (τk)k≥1 is the concatenation of the

processes C(τ1), . . . , C(τk), . . . , i.e. for k ≥ 1

Ct(F) = Ct−2(ζ(τ0)+···+ζ(τk−1))(τk), if 2(ζ(τ0)+· · ·+ζ(τk−1)) ≤ t ≤ 2(ζ(τ0)+· · ·+ζ(τk)).

If there is a finite number of trees, say j, in the forest, we set Ct(F) = 0, for t ≥
2(ζ(τ0) + · · · + ζ(τj)). Note that for each tree τk, [2(ζ(τk) − 1), 2ζ(τk)] is the only non-

trivial subinterval of [0, 2ζ(τk)] on which C(τk) vanishes. This convention ensures that the

contour process C(F) also codes the genealogy of the forest. However, it has no “good

properties” in law either.

The Lukasiewicz path of a Galton-Watson tree is a process with nice properties. In fact,

it is a random walk killed at its first passage time below the negative half-line. Such process

is also well known as the coding random walk.

Here, we will denote by S(τ) for the coding random walk associated to a Galton-Watson

tree τ and from its definition it satisfies that:

S0 = 0 , Sn+1(τ) − Sn(τ) = ku(n)(τ) − 1, 0 ≤ n ≤ ζ(τ) − 1 .

Note that for each n, Sn(τ) is the sum of all the younger brother of each of the ancestor of

u(n) including u(n) itself.

For a forest F = (τk), the process S(F) is the concatenation of S(τ1), . . . , S(τn), . . . :

Sn(F) = Sn−(ζ(τ0)+···+ζ(τk−1))(τk) − k + 1,

if ζ(τ0) + · · · + ζ(τk−1) ≤ n ≤ ζ(τ0) + · · · + ζ(τk).

If there is a finite number of trees j, then we set Sn(F) = Sζ(τ0)+···+ζ(τj)(F), for n ≥
ζ(τ0) + · · · + ζ(τj). From the construction of S(τ1) it appears that S(τ1) is a random walk

with initial value S0 = 0 and step distribution ν(k) = µ(k + 1), k = −1, 0, 1, . . . which

is killed when it first enters into the negative half-line. Hence, when the number of trees is

infinite, S(F) is a downward skip free random walk on Z with the law described above.
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Let us denote H(F), C(F) and S(F) respectively by H , C and S when no confusion is

possible. We recall the identity

Hn = card
{
0 ≤ k ≤ n : Sk = inf

k≤j≤n
Sj

}

which is established in Section 1 for any discrete tree.

For any integer k ≥ 1, we denote by Fk,n a G-W forest with k trees conditioned to have

n vertices, that is a forest with the same law as F = (τl, . . . , τk) under the conditional law

Qµ( · | ζ(τ1) + · · ·+ ζ(τk) = n). The starting point of our work is the observation Fk,n can

be coded by a downward skip free random walk conditioned to first reach −k at time n. An

interpretation of this result may be found in [Pitm02], Lemma 6.3 for instance.

PROPOSITION 15. Let F = (τj) be a forest with offspring distribution µ and S and H
be respectively its coding walk and its height process. Let W be a random walk defined on

a probability space (Ω,F , P ) with the same law as S. We define TW
i = inf{j : Wj = −i},

for i ≥ 1. Take k and n such that P (TW
k = n) > 0. Then under the conditional law

Qµ( · | ζ(τ1) + · · · + ζ(τk) = n),

(1) The process (Sj, 0 ≤ j ≤ ζ(τ1) + · · · + ζ(τk)) has the same law as the killed

random walk (Wj, 0 ≤ j ≤ TW
k ).

Moreover, define the processes HW
n = card

{
k ∈ {0, . . . , n − 1} : Wk = infk≤j≤n Wj

}

and CW using the height process HW as in (6.2), then

(2) the process (Hj, 0 ≤ j ≤ ζ(τ1) + · · · + ζ(τk)) has the same law as the process

(HW
j , 0 ≤ j ≤ TW

k ).

(3) the process (Ct, 0 ≤ 0 ≤ t ≤ 2(ζ(τ1) + · · ·+ ζ(τk)− k)) has the same law as the

process (CW
t , 0 ≤ t ≤ 2(TW

k − k)).

It is also straightforward that the identities in law involving separately the processes H , S
and C in the above proposition also hold for the triple (H, S,C). In the figure below, we

have represented an occurrence of the forest Fk,n and its associated coding first passage

bridge.
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Figure 2

In chapter 7, we will present a continuous time version of this result, but before we need to

introduce the continuous time setting of Lévy trees and forests.

3. Real trees.

Discrete trees may be considered in an obvious way as compact metric spaces with

no loops. Such metric spaces are special cases of IR-trees which are defined hereafter.

Similarly to the discrete case, an IR-forest is any collection of IR-trees. In this section we

keep the same notations as in Duquesne and Le Gall’s articles [DuLG02] and [DuLG05].

The following formal definition of IR-trees is now classical and originates from T -theory.

It may be found in [DMTe96].

DEFINITION 2. A metric space (T , d) is an IR-tree if for every σ1, σ2 ∈ T ,

1. There is a unique map fσ1,σ2 from [0, d(σ1, σ2)] into T such that fσ1,σ2(0) = σ1

and fσ1,σ2(d(σ1, σ2)) = σ2.

2. If g is a continuous injective map from [0, 1] into T such that g(0) = σ1 and

g(1) = σ2, we have

g([0, 1]) = fσ1,σ2([0, d(σ1, σ2)]) .

A rooted IR-tree is an IR-tree (T , d) with a distinguished vertex ρ = ρ(T ) called the root.

An IR-forest is any collection of rooted IR-trees: F = {(Ti, di), i ∈ I}.

Let us explain in a more detailed way this definition. The range of the mapping fσ1,σ2 in

(1), denoted by l(σ1, σ2), is the line segment between σ1 and σ2 in the tree. In particular,

for every σ ∈ T , l(ρ, σ) is the path going from the root to σ, such line can be interpreted as

the ancestral line of vertex σ. In fact, we may define a partial order on T in the following

way: let σ and ς be two elements of the tree, σ is an ancestor of ς if and only if σ ∈ l(ρ, ς).
If σ, ς ∈ T , there is a unique η ∈ T such that l(ρ, ς) ∩ l(ρ, σ) = l(ρ, η), such element of

the tree is called the last common ancestor of σ and ς . The multiplicity of a vertex σ ∈ T
is defined as the number of connected components of T \ {σ}. Vertices of T \ {ρ} which

have multiplicity 1 are called leaves.

Now, we discuss some important points on IR-trees. Two rooted real trees T1 and T2 are

called equivalent if there is a root-preserving isometry that maps T1 into T2. The space of all

equivalent classes of rooted compact IR-trees will be denoted by Tc. It is endowed with the

Gromov-Hausdorff distance, dHG which we briefly recall now. For a metric space (E, δ)
and K, K ′ two subspaces of E, δHaus(K, K ′) will denote the Hausdorff distance between

K and K ′. Then we define the distance between T and T ′ by:

dGH(T , T ′) = inf (δHaus(ϕ(T ), ϕ′(T ′)) ∨ δ(ϕ(ρ), ϕ′(ρ′))) ,

where the infimum is taken over all isometric embeddings ϕ : T → E and ϕ′ : T ′ → E
of T and T ′ into a common metric space (E, δ). We refer to Chapter 3 of Evans [Evan05]

and the references therein for a complete description of the Gromov-Hausdorff topology.

We only emphasize that from Theorem 3.23 of [Evan05], the space (Tc, DGH) is complete

and separable.

A construction of some particular cases of such metric spaces has been introduced by Al-

dous [Aldo91] and may be found in [DuLG05] in a more general setting. Let f be a

positive-continuous function with compact support defined on [0,∞), such that f(0) = 0.
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For 0 ≤ s ≤ t, we define

(6.3) df (s, t) = f(s) + f(t) − 2 inf
u∈[s,t]

f(u)

and the equivalence relation by

s ∼ t if and only if df (s, t) = 0 .

(Note that df (s, t) = 0 if and only if f(s) = f(t) = infu∈[s,t] f(u).) We easily check that

the projection of df on the quotient space

Tf = [0,∞)/ ∼
defines a distance. This distance will be denoted by df .

THEOREM 27. The metric space (Tf , df ) is a compact IR-tree.

Denote by pf : [0,∞) → Tf the canonical projection. The vertex ρ = pf (0) will be chosen

as the root of Tf . It has recently been proved by Duquesne [Duqu06] that any IR-tree

(satisfying some rather weak assumptions) may by represented as (Tf , df ) where f is a left

continuous function with right limits and without positive jumps.

4. Lévy trees.

Now, we will introduce the random process which codes, in the sense of section 2,

the genealogical structure of a continuous state branching process (or CB-process). As we

mentioned in the introduction, the CB-process is a Markov process Z = (Zt, t ≥ 0) taking

values in [0,∞] with Feller semigroup (Qt, t ≥ 0) which satisfies the following property:

for every t ≥ 0 and x, y ≥ 0,

Qt(x, ·) ∗ Qt(y, ·) = Qt(x + y, ·),
where ∗ denotes the convolution. This is the well known branching property.

The Laplace functional of the semigroup (Qt, t ≥ 0) can be written in the following form:
∫

[0,∞]

e−λyQt(x, dy) = exp
{
− xut(λ)

}
, for λ ≥ 0,

where the function ut(λ) is determined by the following partial differential equation

∂ut(λ)

∂t
= −ψ(ut(λ)), u0(λ) = λ,

and ψ is a function of the type

ψ(λ) = aλ + βλ2 +

∫

(0,∞)

(
e−x − 1 + λx

)
Π(dx),

where a, β are positive real numbers and Π is a σ-finite measure such that
∫

(0,∞)

(
x ∧ x2

)
Π(dx) < ∞.

The process Z is called the CB-process with branching mechanism ψ. It is well known

that Z may be obtained as a time change of a Lévy process with no negatives jumps. We

remark that if the CB-process with branching mechanism satisfies that

(6.4)

∫ ∞

1

du

ψ(u)
< ∞ ,

hence Z have a finite time extinction almost surely.

In the remainder of this section, we will recall from [DuLG05] the definition of Lévy trees
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and given this of the Lévy forests. Let (Px), x ∈ IR be a sequence of probability measures

on the Skorokhod space D of càdlàg paths from [0,∞) to IR such that for each x ∈ IR, the

canonical process X is a Lévy process with no negative jumps. Set P = P0, so Px is the

law of X + x under P. Here, we suppose that the characteristic exponent ψ of X , defined

by

E(e−λXt) = etψ(λ), λ ∈ IR

satisfies the condition (6.4).

By analogy with the discrete case, the continuous time height process H is the measure (in

a sense which is to be defined) of the set

{s ≤ t : Xs = inf
s≤r≤t

Xr}.

A rigorous meaning to this measure is given by the following result due to Le Jan and Le

Gall [LGLJ98], see also [DuLG02]. Define Is
t = infs≤u≤t Xu. There is a sequence of

positive real numbers (εk) which decreases to 0 such that for any t, the limit

(6.5) H̄t
(def)
= lim

k→+∞

1

εk

∫ t

0

1I{Xs−Is
t <εk} ds

exists a.s. It is also proved in [LGLJ98] that under assumption (6.4), H̄ is a continuous

process, so that each of its positive excursion codes a real tree in the sense of Aldous. We

easily deduce from this definition that the height process H̄ is a functional of the Lévy

process reflected at its minimum, i.e. X − I , where I := I0. In particular, when α = 2,

H̄ is equal to the reflected process multiplied by a constant. It is well known that X − I is

a strong Markov process. Moreover, under our assumptions, 0 is regular for itself for this

process and we can check that the process −I is a local time at level 0. We denote by N
the corresponding Itô measure of the excursions away from 0.

Now in order to define the Lévy forest, we need to introduce the local times of the height

process H̄ . It is proved in [DuLG02] that for any level a ≥ 0, there exists a continuous

increasing process (La
t , t ≥ 0) which is defined by the approximation:

lim
ε↓0

E

(
sup

0≤s≤t

∣∣∣∣
1

ε

∫ s

0

du1I{a<H̄u≤a+ε} − La
s

∣∣∣∣
)

= 0 .

The support of the measure dLa
t is contained in the set {t ≥ 0 : H̄t = a} and its is not

difficult to check that L0 = −I . Then we may define the Poisson point process of the

excursions away from 0 of the process H̄ as follows. Let Ts = inf{t : −It ≥ s} be the

right continuous inverse of the local time at 0 of the reflected process X − I . The time Tu

corresponds to the first passage time of X bellow −u. Set T0− = 0 and for all u ≥ 0,

eu(v) =

{
H̄Tu−+v , if 0 ≤ v ≤ Tu − Tu−

0 , if v > Tu − Tu−
.

For each u ≥ 0, we may define the tree (Teu , deu) under P as in Theorem 27. We easily

deduce from the Markov property of X−I that under the probability measure P, the process

{(Teu , deu), u ≥ 0} is a Poisson point process whose characteristic measure is the law of

the random real tree (TH̄ , dH̄) under N . By analogy to the discrete case, this Poisson point

process, as a Tc-valued process, provides a natural definition for the Lévy forest.

DEFINITION 3. The Lévy tree is the real tree (TH̄ , dH̄) coded by the function H̄ under

the measure N . We denote by Θ(dT ) the σ-finite measure on Tc which is the law of the

Lévy tree TH̄ under N . The Lévy forest FH̄ is the Poisson point process

(FH̄(u), u ≥ 0)
(def)
= {(Teu , deu), u ≥ 0}



which has for characteristic measure Θ(dT ) under P. For s > 0, the process

F s
H̄

(def)
= {(Teu , deu), 0 ≤ u ≤ s},

under P will be called the Lévy forest of size s.

Such a definition of a Lévy forest has already been introduced in [Pitm02], Proposition

7.8 in the Brownian setting. In this work, it is observed that this forests may also be

simply defined as the real tree coded by the function H̄ under the law P. One may also

see [PiWi05] for the case of Lévy forests. Similarly, the Lévy forest with size s may be

defined as the compact real tree coded by the continuous function with compact support

(H̄u, 0 ≤ u ≤ Ts). These definitions are more natural when considering convergence of

sequences of real forest and we will make appeal to them in section 5, see Corollary 26.

We will simply denote the Lévy tree and the Lévy forests respectively by TH̄ , FH̄

or F s
H̄

, the corresponding distances being implicit. When X is stable, condition (6.4) is

satisfied if and only if its index α satisfies α ∈ (1, 2). Then it follows from (6.5) that H̄ is

a self-similar process with index α/(α − 1), i.e.:

(H̄t, t ≥ 0)
(d)
= (k1/α−1H̄kt, t ≥ 0) , for all k > 0.

In this case, the Lévy tree TH̄ associated to the stable mechanism is called the α-stable

Lévy tree and its law will be denoted by Θα(dT ). This random metric space also inherits

from X a scaling property which may be stated as follows: for any a > 0, we denote by

aTH̄ the Lévy tree TH̄ endowed with the distance adH̄ , i.e.

(6.6) aTH̄

(def)
= (TH̄ , adH̄) .

Then the law of aTH̄ under Θα(dT ) is a
1

α−1 Θα(dT ). This property is stated in [DuLG05]

where other fractal properties of stable trees are considered.





CHAPTER 7

Conditioned stable Lévy forests.

In this Chapter, we define the total mass of the Lévy forest of a given size s. Then

we define the Lévy forest of size s conditioned by its total mass. In the stable case, we

give a construction of this conditioned forest from the unconditioned forest and we prove

an invariance principle for this conditioned forest by considering kn independent Galton-

Watson trees whose offspring distribution is in the domain of attraction of any stable law

conditioned on their total progeny to be equal to n.

1. Construction of the conditioned Lévy forest

In this section we present the continuous analogue of the forest Fk,n introduced in the

previous chapter. In particular, we define the total mass of the Lévy forest of a given size

s. Then we define the Lévy forest of size s conditioned by its total mass. In the stable case,

we give a construction of this conditioned forest from the unconditioned forest.

We begin with the definition of the measure ℓa,u which represents a local time at level

a > 0 for the Lévy tree Teu . For every level a > 0, and every bounded and continuous

function ϕ on Teu , the finite measure ℓa,u is defined by:

(7.1) 〈ℓa,u, ϕ〉 =

∫ Tu−Tu−

0

dLa
Tu+vϕ(peu(v)) ,

where we recall from the previous section that peu is the canonical projection from [0,∞)
onto Teu for the equivalence relation ∼ and (La

u) is the local time at level a of H̄ . Then the

mass measure of the Lévy tree Teu is

(7.2) mu =

∫ ∞

0

da la,u

and the total mass of the tree is mu(Teu). Now we fix s > 0 and t > 0. The total mass of

the forest of size s, F s
H̄

is naturally given by

Ms =
∑

0≤u≤s

mu(Teu) .

PROPOSITION 16. P-almost surely Ts = Ms.

Proof. It follows from the definitions (7.1) and (7.2) that for each tree Teu , the mass measure

mu coincides with the image of the Lebesgue measure on [0, Tu − Tu−] under the mapping

v 7→ peu(v). Thus, the total mass of each tree Teu is Tu − Tu−. This implies the result.
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Then we will construct processes which encode the genealogy of the Lévy forest of size s
conditioned to have a mass equal to t. From the analogy with the discrete case in Proposi-

tion 15, the natural candidates may be informally defined as:

Xbr (def)
= [(Xu, 0 ≤ u ≤ Ts) |Ts = t]

H̄br (def)
= [(H̄u, 0 ≤ u ≤ Ts) |Ts = t] .

When X is the Brownian motion, the process Xbr is called the first passage bridge, see

[BeCP03]. In order to give a proper definition in the general case, we need the additional

assumption:

The semigroup of (X, P) is absolutely continuous with respect to the Lebesgue measure.

Then denote by pt(·) the density of the semigroup of X , by GX
u

(def)
= σ{Xv, v ≤ u}, u ≥ 0

the σ-field generated by X and set p̂t(x) = pt(−x).

LEMMA 9. The probability measure defined on each GX
u by

(7.3) P(Xbr ∈ Λu) = E

(
1I{X∈Λu ,u<Ts}

t(s + Xu)

s(t − u)

p̂t−u(s + Xu)

p̂t(s)

)
, u < t Λu ∈ GX

u ,

is a regular version of the conditional law of (Xu, 0 ≤ u ≤ Ts) given Ts = t, in the sense

that for all u > 0, for λ-a.e. s > 0 and λ-a.e. t > u,

P(Xbr ∈ Λu) = lim
ε↓0

P(X ∈ Λu | |Ts − t| < ε) ,

where λ is the Lebesgue measure.

Proof. Let u < t, Λu ∈ GX
u and ε < t − u. From the Markov property, we may write

P(X ∈ Λu | |Ts − t| < ε) = E

(
1I{X∈Λu}

1I{ |Ts−t|<ε}

P(|Ts − t| < ε)

)

= E

(
1I{X∈Λu,u<Ts}

PXu(|Ts − (t − u)| < ε)

P(|Ts − t| < ε)

)
.(7.4)

On the other hand, from Corollary VII.3 in [Bert96] one has for λ-a.e. s > 0 and λ-

a.e. t > 0,

(7.5) tP(Ts ∈ dt) ds = sp̂t(s) dt ds .

Hence, for all x ∈ IR, for all u > 0, for λ-a.e. s > 0 and λ-a.e. t > u,

lim
ε↓0

Px(|Ts − (t − u)| < ε)

P(|Ts − t| < ε)
=

t(s + x)

s(t − u)

p̂t−u(s + x)

p̂t(s)
.

Moreover we can check from (7.5) that E

(
t(s+Xu)
s(t−u)

p̂t−u(s+Xu)
p̂t(s)

)
< +∞ for λ-a.e. t, so the

result follows from (7.4) and Fatou’s lemma.

We may now construct a height process H̄br from the path of the first passage bridge Xbr

exactly as H̄ is constructed from X in (6.5) or in Definition 1.2.1 of [DuLG02] and check

that the law of H̄br is a regular version of the conditional law of (H̄u, 0 ≤ u ≤ Ts) given

Ts = t. Call (es,t
v , 0 ≤ v ≤ s) the excursion process of H̄br, that is in particular

(es,t
v , 0 ≤ v ≤ s) has the same law as (ev, 0 ≤ v ≤ s) given Ts = t .

The following proposition is a straightforward consequence of the above definition and

Proposition 16.
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PROPOSITION 17. The law of the process {(Tes,t
v

, des,t
v

), 0 ≤ v ≤ s} is a regular version

of the law of the forest of size s, F s
H̄

given Ms = t.

We will denote by (F s,t

H̄
(u), 0 ≤ u ≤ s) a process with values in Tc whose law under P

is this of the Lévy forest of size s conditioned by Ms = t, i.e. conditioned to have a mass

equal to t.
In the remainder of this section, we will consider the case when the driving Lévy process

is stable. We suppose that its index α belongs to (1, 2] so that condition
∫ ∞

1

du

ψ(u)
< ∞,

is satisfied. We will give a pathwise construction of the processes (Xbr, H̄br) from the path

of the original processes (X, H̄). This result leads to the following realization of the Lévy

forest of a given size conditioned by its mass. From now on, with no loss of generality, we

suppose that t = 1.

THEOREM 28. Define g = sup{u ≤ 1 : Tu1/α = s · u}.

(1) P-almost surely,

0 < g < 1 .

(2) Under P, the rescaled process

(7.6) (g(1−α)/αH̄(gu), 0 ≤ u ≤ 1)

has the same law as H̄br and is independent of g.

(3) The forest F s,1

H̄
of size s and mass 1 may be constructed from the rescaled process

defined in (7.6), i.e. if we denote by u 7→ ǫu
(def)
= (g(1−α)/αeu(gv), v ≥ 0) its

process of excursions away from 0, then under P, F s,1

H̄

(d)
= {(Tǫu , dǫu), 0 ≤ u ≤ s}.

Proof. The process Tu = inf{v : Iv ≤ −u} is a stable subordinator with index 1/α.

Therefore,

Tu < suα , i.o. as u ↓ 0 and Tu > suα , i.o. as u ↓ 0.

Indeed, if un ↓ 0 then P(Tun < suα
n) = P(T1 < s) > 0, so that

P

(
lim sup

n→∞
{Tun < suα

n}
)

≥ P(T1 < s) > 0.

But T satisfies Blumenthal 0-1 law, so this probability is 1. The same arguments prove that

P(lim supn{Tun > suα
n}) = 1 for any sequence un ↓ 0. Since T has only positive jumps,

we deduce that Tu = suα infinitely often as u tends to 0, so we have proved the first part of

the theorem.

The rest of the proof is a consequence of the following lemma.

LEMMA 10. The first passage bridge Xbr fulfills the following path construction:

Xbr (d)
= (g−1/αX(gu), 0 ≤ u ≤ 1) .

Moreover, the process (g−1/αX(gu), 0 ≤ u ≤ 1) is independent of g.

Proof. First note that for any t > 0 the bivariate random variable (Xt, It) under P is

absolutely continuous with respect to the Lebesgue measure and there is a version of its
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density which is continuous. Indeed from the Markov property and (7.5), one has for all

x ∈ IR and y ≥ 0,

P(It ≤ y |Xt = x) = P

(
1I{Ty≤t}

pt−Ty(x − y)

pt(0)

)

=

∫ t

0

y

s
p̂s(y)

pt−s(x − y)

pt(0)
ds .

Looking at the expression of p̂t(x) and pt(x) obtained from the Fourier inverse of the char-

acteristic exponent, we see that theses functions are continuously differentiable and that

their derivatives are continuous in t. It allows us to conclude.

Now let us consider the two dimensional self-similar strong Markov process Y
(def)
=

(X, I) with state space {(x, y) ∈ IR2 : y ≤ x}. From our preceding remark, the semi-

group qt((x, y), (dx′, dy′)) = P(Xt + x ∈ dx′, y ∧ (It + x) ∈ dy′) of Y is absolutely

continuous with respect to the Lebesgue measure and there is a version of its density which

is continuous. Denote by qt((x, y), (x′, y′)) this version. We derive from (7.5) that for all

−s ≤ x,

(7.7) qt((x, y), (−s,−s)) = 1I{y≥−s}
1

t
p̂t(s + x) .

Then we may apply a result due to Fitzsimmons, Pitman and Yor [FPYo92] which asserts

that the inhomogenous Markov process defined on [0, t], whose law is defined by

(7.8) E

(
H(Yu, v ≤ u)

qt−u(Yu, (x
′, y′))

qt((x, y), (x′, y′))
|Y0 = (x, y)

)
, 0 ≤ u < t ,

where H is a measurable functional on C([0, u], IR2), is a regular version of the conditional

law of (Yv, 0 ≤ v ≤ t) given Yt = (x′, y′), under P( · |Y0 = (x, y)). This law is called

the law of the bridge from (x, y) to (x′, y′) with length t. Then from (7.7), the law which

is defined in (7.8), when specifying it on the first coordinate and for (x, y) = (0, 0) and

(x′, y′) = (−s,−s), corresponds to the law of the first passage bridge which is defined in

(7.3).

It remains to apply another result which may also be found in [FPYo92]: observe that

g is a backward time for Y in the sense which is defined in this paper. Indeed g may

also be defined as g = sup{u ≤ 1 : Xu = −su1/α, Xu = Iu}, so that for all u > 0,

{g > u} ∈ σ(Yv : v ≥ u). Then from Corollary 3 in [FPYo92], conditionally on g,

the process (Yu, 0 ≤ u ≤ g) under P( · |Y0 = (0, 0)) has the law of a bridge from (0, 0)
to Yg with length g. (This result has been obtained and studied in a greater generality in

[ChUr06].) But from the definition of g, we have Yg = (−sg1/α,−sg1/α), so from the

self-similarity of Y , under P the process

(g−1/αY (g · u) , 0 ≤ u ≤ 1)

has the law of the bridge of Y from (0, 0) to (−s,−s) with length 1. The lemma follows

by specifying this result on the first coordinate.

The second part of the theorem is a consequence of Lemma 10, the construction of H̄br

from Xbr and the scaling property of H̄ . The third part follows from the definition of the

conditioned forest F s,1

H̄
in Proposition 16 and the second part of this theorem.
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2. Invariance principles

We know from Lamperti that the only possible limits of sequences of re-scaled G-W

processes are continuous state branching processes. Then a question which arises is: when

can we say that the whole genealogy of the tree or the forest converges ? In particular,

do the height process, the contour process and the coding walk converge after a suitable

re-scaling ? This question has now been completely solved by Duquesne and Le Gall

[DuLG02]. Then one may ask the same for the trees or forests conditioned by their size

and their mass. In [Duqu03], Duquesne proved that when the law ν is in the domain of

attraction of a stable law, the height process, the contour process and the coding excursion

of the corresponding G-W tree converge in law in the Skorohod space of càdlàg paths.

This work generalizes Aldous’ result [Aldo91] which concerned the brownian case. In this

section we will prove that in the stable case, an invariance principle also holds when we

consider a G-W forest conditioned by its size and its mass.

Recall from section 2 that for an offspring distribution µ we have set ν(k) = µ(k + 1),
for k = −1, 0, 1, . . . . We make the following assumption:

(H)





µ is aperiodic and there is an increasing sequence (an)n≥0

such that an → +∞ and Sn/an converges in law as n → +∞
toward the law of a non-degenerated r.v. θ.

Note that we are necessarily in the critical case, i.e.
∑

k kµ(k) = 1, and that the law of θ
is stable. Moreover, since ν(−∞,−1) = 0, the support of the Lévy measure of θ is [0,∞)
and its index α is such that 1 < α ≤ 2. Also (an) is a regularly varying sequence with

index α. Under hypothesis (H), it has been proved by Grimvall [Grim74] that if Z is the

G-W process associated to a tree or a forest with offspring distribution µ, then
(

1

an

Z[nt/an], t ≥ 0

)
⇒ (Zt, t ≥ 0) , as n → +∞,

where (Zt, t ≥ 0) is a continuous state branching process. Here and in the sequel, ⇒ will

stand for the weak convergence in the Skohorod space of càdlàg trajectories. Recall from

chapter 6 the definition of the discrete process (S,H). Then under the same hypothesis, it

follows from Corollary 2.5.1 in Duquesne and Le Gall [DuLG02] that

(7.9)

[(
1

an

S[nt],
an

n
H[nt],

an

n
C2nt

)
, t ≥ 0

]
⇒

[
(Xt, H̄t, H̄t), t ≥ 0)

]
, as n → +∞,

where X is a stable Lévy process with law θ and H̄ is the associated height process, as

defined in section 4 of chapter 6.

Now we fix a real s > 0 and we consider a sequence of positive integers (kn) such that

(7.10)
kn

an

→ s , as n → +∞.

Recall the notations of chapter 6. For any n ≥ 1, let (Xbr,n, H̄br,n, Cbr,n) be the process

whose law is this of [(
1

an

S[nt],
an

n
H[nt],

an

n
C2nt

)
, 0 ≤ t ≤ 1

]
,

under Qµ( · | ζ(τ1)+· · ·+ζ(τkn) = n). Note that we could also define this three dimensional

process over the whole halfline [0,∞), rather than on [0, 1]. However, from the definitions

in section 2, H̄br,n and Cbr,n would simply vanish over [1,∞) and Xbr,n would be constant.

Here is the conditional version of the invariance principle that we have recalled in (7.9).
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THEOREM 29. As n tends to +∞, we have

(Xbr,n, H̄br,n, Cbr,n) =⇒ (Xbr, H̄br, H̄br) .

In order to give a sense to the convergence of the Lévy forest, we may consider the trees

T br,n and T br which are coded respectively by the continuous processes with compact

support, Cbr,n
u and H̄br

u , in the sense given at the beginning of section 3 (here we suppose

that these processes are defined on [1,∞) and both equal to 0 on this interval). Roughly

speaking the trees T br,n and T br are obtained from the original (conditioned) forests by

rooting all the trees of these forests to a same root.

COROLLARY 26. The sequence of trees T br,n converges weakly in the space Tc en-

dowed with the Gromov-Hausdorff topology towards T br.

Proof. This results is a consequence of the weak convergence of the contour function Cbr,n

toward H̄br and the inequality

dGH(Tg, Tg′) ≤ 2‖g − g′‖ ,

which is proved in [DuLG05], see Lemma 2.3. (We recall that dGH the Gromov-Hausdorff

distance which has been defined in chapter 6.)

A first step for the proof of Theorem 29 is to obtain the weak convergence of (Xbr,n, H̄br,n)
restricted to the Skorokhod space D([0, t]) for any t < 1. Then we will derive the con-

vergence on D([0, 1]) from an argument of cyclic exchangeability. The convergence of the

third coordinate Cbr,n is a consequence of its particular expression as a functional of the

process H̄br,n. In the remainder of the proof, we suppose that S is defined on the same prob-

ability space as X and has step distribution ν under P. Define also Tk = inf{i : Si = −k},

for all integer k ≥ 0.

LEMMA 11. For any t < 1, as n tends to +∞, we have
[
(Xbr,n

u , H̄br,n
u ), 0 ≤ u ≤ t

]
=⇒

[
(Xbr

u , H̄br
u ), 0 ≤ y ≤ t

]
.

Proof. From Feller’s combinatorial lemma, see [Fell71], we have

P(Tk = n) =
k

n
P(Sn = −k), for all n ≥ 1, k ≥ 0.

Let F be any bounded and continuous functional on D([0, t]). By the Markov property at

time [nt],

E[F (Xbr,n
u , H̄br,n

u ; 0 ≤ u ≤ t)] = E

[
F

(
1

an

S[nu],
an

n
H[nu]; 0 ≤ u ≤ t

)
|Tkn = n

]

= E

(
1I{[nt]≤Tkn}

PS[nt]
(Tkn = n − [nt])

P(Tkn = n)
× F

(
1

an

S[nu],
an

n
H[nu]; 0 ≤ u ≤ t

))

= E

(
1I{ 1

an
S[nt]≥− kn

an
}

n(kn + S[nt])

kn(n − [nt])

PS[nt]
(Sn−[nt] = −kn)

P(Sn = −kn)

×F

(
1

an

S[nu],
an

n
H[nu]; 0 ≤ u ≤ t

))
.(7.11)

where Sk = infi≤k Si. To simplify the computations in the remainder of this proof, we set

P (n) for the law of the process
(

1
an

S[nu],
an

n
H[nu]; u ≥ 0

)
and P will stand for the law of the

process (Xu, H̄u; u ≥ 0). Then Y = (Y 1, Y 2) is the canonical process of the coordinates
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on the Skorohod space D2 of càdlàg paths from [0,∞) into IR2. We will also use special

notations for the densities introduced in (7.3) and (7.11):

Dt = 1I{Y 1
t≥−s}

s − Y 1
t

s(1 − t)

p1−t(Y
1
t ,−s)

p1(0,−s)
, and

D
(n)
t = 1I{Y 1

[nt]≥− kn
an

}

n(kn + anY
1
[nt])

kn(n − [nt])

PanY 1
[nt]

(Sn−[nt] = −kn)

P(Sn = −kn)
,

where Y 1
s = infu≤s Y 1

u . Put also Ft for F (Yu, 0 ≤ u ≤ t). To obtain our result, we have to

prove that

(7.12) lim
n→+∞

|E(n)(FtD
(n)
t ) − E(FtDt)| = 0 .

Let M > 0 and set IM(x)
(def)
= 1I[−s,M ](x). By writing

E(n)(FtD
(n)
t ) = E(n)(FtD

(n)
t IM(Y 1

t )) + E(n)(FtD
(n)
t (1 − IM(Y 1

t ))

and by doing the same for E(FtDt), we have the following upper bound for the term in

(7.12)

|E(n)(FtD
(n)
t ) − E(FtDt)| ≤ |E(n)(FtD

(n)
t IM(Y 1

t )) − E(FtDtIM(Y 1
t ))|

+CE(n)(D
(n)
t (1 − IM(Y 1

t ))) + CE(Dt(1 − IM(Y 1
t ))) ,

where C is an upper bound for the functional F . But since Dt and D
(n)
t are densities,

E(n)(D
(n)
t ) = 1 and E(Dt) = 1, hence

|E(n)(FtD
(n)
t ) − E(FtDt)| ≤ |E(n)(FtD

(n)
t IM(Y 1

t )) − E(FtDtIM(Y 1
t ))|(7.13)

+C[1 − E(n)(D
(n)
t IM(Y 1

t ))] + C[1 − E(DtIM(Y 1
t ))] .

Now it remains to prove that the first term of the right hand side of the inequality (7.13)

tends to 0, i.e.

(7.14) |E(n)(FtD
(n)
t IM(Y 1

t )) − E(FtDtIM(Y 1
t ))| → 0 ,

as n → +∞. Indeed, suppose that (7.14) holds, then by taking Ft ≡ 1, we see that the

second term of the right hand side of (7.13) converges towards the third one. Moreover,

E(DtIM(Y 1
t )) tends to 1 as M goes to +∞. Therefore the second and the third terms in

(7.12) tend to 0 as n and M go to +∞.

Let us prove (7.14). From the triangle inequality and the expression of the densities Dt

and D
(n)
t , we have

|E(n)(FtD
(n)
t IM(Y 1

t )) − E(FtDtIM(Y 1
t ))| ≤ sup

x∈[−s,M ]

|gn(x) − g(x)| +

|E(n)(FtDtIM(Y 1
t )) − E(FtDtIM(Y 1

t ))| ,(7.15)

where gn(x) = n(kn+x)
kn(n−[nt])

Px(Sn−[nt]=−kn)

P(Sn=−kn)
and g(x) = s−x

s(1−t)
p1−t(x,−s)
p1(0,−s)

. But thanks to Gne-

denko local limit theorem and the fact that kn/an → s, we have

lim
n→+∞

sup
x∈[−s,M ]

|gn(x) − g(x)| = 0 .

Moreover, recall that from Corollary 2.5.1 of Duquesne and Le Gall [DuLG02],

P (n) ⇒ P ,
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as n → +∞, where ⇒ stands for the weak convergence of measures on D2. Finally, note

that the discontinuity set of the functional FtDtIM(Y 1
t ) is negligible for the probability

measure P so that the last term in (7.15) tends to 0 as n goes to +∞.

The next lemmas are needed to prove the tightness of the sequence, (Xbr,n, H̄br,n). Define

the height process associated to any downward skip free chain x = (x0, x1, . . . , xn), i.e.

x0 = 0 and xi − xi−1 ≥ −1, as follows:

H(x)
n = card

{
i ∈ {0, . . . , n − 1} : xk = inf

i≤j≤n
xj

}
.

Define also the first passage time of x by t(k) = inf{i : xi = −k} and for n ≥ k, define

the shifted chain:

θt(k)(x)i =

{
xi+t(k) + k, if i ≤ n − t(k)
xt(k)+i−n + xn + k, is n − t(k) ≤ i ≤ n

, i = 0, 1, . . . , n ,

which consists in inverting the pre-t(k) and the post-t(k) parts of x and sticking them

together.

LEMMA 12. For any k ≥ 0, we have almost surely

H(θt(k)(x)) = θt(k)(H
(x)) .

Proof. It is just a consequence of the fact that t(k) is a zero of H(x).

LEMMA 13. Let ukn be a random variable which is uniformly distributed over {0, 1, . . . , kn}
and independent of S. Under P( · |T (kn) = n), the first passage time T (ukn) is uniformly

distributed over {0, 1, . . . , n}.

Proof. It follows from elementary properties of random walks that for all k ∈ {0, 1, . . . , kn},

under P( · |T (kn) = n), the chain θT (kn)(S) has the same law as (Si, 0 ≤ i ≤ n). As a

consequence, for all j ∈ {0, 1, . . . , n}
P (T (k) = j |T (kn) = n) = P (T (kn − k) = n − j |T (kn) = n) .

which allows us to conclude.

LEMMA 14. The family of processes

(Xbr,n, H̄br,n) , n ≥ 1

is tight.

Proof. Let D([0, t]) be the Skorokhod space of càdlàg paths from [0, t] to IR. In Lemma

11 we have proved the weak convergence of (Xbr,n, H̄br,n) restricted to the space D([0, t])
for each t > 0. Therefore, from Theorem 15.3 of [Bill99], it suffices to prove that for all

δ ∈ (0, 1) and η > 0,

(7.16)

lim
δ→0

lim sup
n→+∞

P

(
sup

s,t∈[1−δ,1]

|Xbr,n
t − Xbr,n

s | > η, sup
s,t∈[1−δ,1]

|H̄br,n
t − H̄br,n

s | > η

)
= 0 .

Recall from Lemma 13 the definition of the r.v. ukn . Put Vn = T (ukn)/n. Since from

this lemma, Vn is uniformly distributed over {0, 1/n, . . . , 1 − 1/n, 1}, we have for any
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ε < 1 − δ,

P

(
sup

s,t∈[1−δ,1]

|Xbr,n
t − Xbr,n

s | > η, sup
s,t∈[1−δ,1]

|H̄br,n
t − H̄br,n

s | > η

)
≤ ε + δ +

P

(
Vn ∈ [ε, 1 − δ], sup

s,t∈[1−δ,1]

|Xbr,n
t − Xbr,n

s | > η, sup
s,t∈[1−δ,1]

|H̄br,n
t − H̄br,n

s | > η

)
.

Now for a càdlàg path ω defined on [0, 1] and t ∈ [0, 1], define the shift:

θt(ω)u =

{
ωs+t + u, if s ≤ 1 − t
xt+u−1 + ωu + k, is 1 − t ≤ s ≤ 1

, u ∈ [0, 1] ,

which consists in inverting the paths (ωu, 0 ≤ u ≤ t) and (ωu, t ≤ u ≤ 1) and sticking

them together. We can check on a picture the inclusion:

{Vn ∈ [ε, 1 − δ], sup
s,t∈[1−δ,1]

|Xbr,n
t − Xbr,n

s | > η, sup
s,t∈[1−δ,1]

|H̄br,n
t − H̄br,n

s | > η} ⊂

{ sup
s,t∈[0,1−ε]

|θVn(Xbr,n)t − θVn(Xbr,n)s| > η, sup
s,t∈[0,1−ε]

|θVn(H̄br,n)t − θVn(H̄br,n)s| > η} .

From Lemma 12 and the straightforward identity in law Xbr,n (d)
= θVn(Xbr,n), we deduce the

two dimensional identity in law (Xbr,n, H̄br,n)
(d)
= (θVn(Xbr,n), θVn(H̄br,n)) which implies

P

(
sup

s,t∈[1−δ,1]

|Xbr,n
t − Xbr,n

s | > η, sup
s,t∈[1−δ,1]

|H̄br,n
t − H̄br,n

s | > η

)
≤ ε + δ +

P

(
sup

s,t∈[0,1−ε]

|Xbr,n
t − Xbr,n

s | > η, sup
s,t∈[0,1−ε]

|H̄br,n
t − H̄br,n

s | > η

)
.

But from Lemma 11 and Theorem 15.3 in [Bill99], we have

lim
δ→0

lim sup
n→+∞

P

(
sup

s,t∈[0,1−ε]

|Xbr,n
t − Xbr,n

s | > η, sup
s,t∈[0,1−ε]

|H̄br,n
t − H̄br,n

s | > η

)
= 0 .

which yields (7.16).

Proof of Theorem 29. Lemma 11 shows that the sequence of processes (Xbr,n, H̄br,n) con-

verges toward (Xbr, H̄br) in the sense of finite dimensional distributions. Moreover tight-

ness of this sequence has been proved in Lemma 14, so we conclude from Theorem 15.1

of [Bill99]. The convergence of the two first coordinates in Theorem 29 is proved, i.e.

(Xbr,n, H̄br,n) =⇒ (Xbr, H̄br). Then we may deduce the functional convergence of the

third coordinates from this convergence in law following similar arguments as in Theorem

2.4.1 in [DuLG02]:

From (6.2), we can recover the contour process of Xbr,n as follows set Ki = 2i−H̄br,n
i ,

for 0 ≤ i < n. For i < n − 1 and t ∈ [Ki, Ki+1)

Cbr,n
t/2 =

{
(H̄br,n

i − (t − Ki))
+ if t ∈ [Ki, Ki+1 − 1),

(t − Ki+1 + H̄br,n
i+1 )+, if t ∈ [Ki+1 − 1, Ki+1),

Hence for 0 ≤ i < n,

(7.17) sup
Ki≤t<Kn+1

∣∣∣Cbr,n
t/2 − H̄br,n

i

∣∣∣ ≤
∣∣∣H̄br,n

i+1 − H̄br,n
i

∣∣∣ + 1



Now, we define hn(t) = i, if t ∈ [Ki, Ki+1) and i < n, and hn(t) = n, if t ∈ [2n − 2, 2n].
The definitions of Ki and hn implies

sup
0≤t≤2n

∣∣∣∣hn(t) − t

2

∣∣∣∣ ≤
1

2
sup

0≤k≤n
H̄br,n

k + 1.

Next, we set fn(t) = hn(nt)/n. By (7.17), we have

sup
0≤t≤2

an

n

∣∣∣Cbr,n
nt/2 − H̄br,n

nfn(t)

∣∣∣ ≤ an

n
sup

0≤t≤1

∣∣∣H̄br,n
[nt]+1 − H̄br,n

[nt]

∣∣∣ +
an

n
,

and

sup
0≤t≤2

∣∣∣∣fn(t) − t

2

∣∣∣∣ ≤
1

2an

sup
0≤k≤n

an

n
H̄br,n

k +
1

p
.

From our hypothesis, we get

an

n
sup

0≤t≤1

∣∣∣H̄br,n
[nt]+1 − H̄br,n

[nt]

∣∣∣ +
an

n
→ 0 as n → ∞,

and
1

2an

sup
0≤k≤n

an

n
H̄br,n

k +
1

p
→ 0 as n → ∞,

in probabiity. Hence, from Theorem 4.1 in [Bill99] and Skorokhod representation theorem

we obtain the convergence,

(Xbr,n, H̄br,n, Cbr,n ⇒ (Xbr, H̄br, H̄br).

Remarks: By a classical time reversal argument, the weak convergence of the first coor-

dinate in Theorem 29 implies the main result of Bryn-Jones and R.A. Doney [BrDo06].

Indeed, when X is the standard Brownian motion, it is straightforward to prove that the

returned first passage bridge (s + Xbr
t−u, 0 ≤ u ≤ t) is the bridge of a three dimensional

Bessel process from 0 to s with length t. Similarly, the returned discrete first passage bridge

whose law is this of (kn + ST (kn)−i, 0 ≤ i ≤ n) under P( · |T (kn) = n) has the same law

as (Si, 0 ≤ i ≤ n) given Sn = kn and conditioned to stay positive. Then integrating

with respect to the terminal values and applying Theorem 29 gives the result contained in

[BrDo06].
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cesses and exponential funtionals of Lévy processes. Ann. Fac. Sci. Toulouse VI Ser.

Math. 11, no. 1, 33-45, (2002).

[Bill99] P. BILLINGSLEY: Convergence of probability measures. Second edition. John

Wiley & Sons, Inc., New York, 1999.

[Bing76] N. BINGHAM: Continuous branching processes and spectral positivity. Stochas-

tic Process. Appl. 4, 217-242, (1976).

[Bial89] N. BINGHAM, C.M. GOLDIE AND J.L. TEUGELS: Regular variation. Cam-

bridge University Press,Cambridge, (1989).

[Brei68] L. BREIMAN: A delicate law of the iterated logarithm for non-decreasing stable

processes. Ann. Math. Statist. 39, 1818-1824, (1968) [Correction 41, 1126, (1970)].

[BrDo06] A. BRYN-JONES AND R.A. DONEY: A functional limit theorem for random

walk conditioned to stay non-negative. J. London Math. Soc. (2), 74, no. 1, 244–258,

(2006).

[CaCh06] M.E. CABALLERO AND L. CHAUMONT: Weak convergence of positive self-

similar Markov processes and overshoots of Lévy processes. Ann. Probab., 34, no. 3,
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