
HAL Id: tel-00164582
https://theses.hal.science/tel-00164582

Submitted on 20 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DYNAMIC LOAD BALANCING FOR ACTIVE
OBJECTS ON COMPUTER GRIDS

Javier Bustos-Jiménez

To cite this version:
Javier Bustos-Jiménez. DYNAMIC LOAD BALANCING FOR ACTIVE OBJECTS ON COM-
PUTER GRIDS. Networking and Internet Architecture [cs.NI]. Université Nice Sophia Antipolis,
2006. English. �NNT : �. �tel-00164582�

https://theses.hal.science/tel-00164582
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS - UFR Sciences

École Doctorale de Sciences et Technologies de l’Information et de la Communication

THÈSE

pour obtenir le titre de

Docteur en Sciences
de l’UNIVERSITE de Nice-Sophia Antipolis

Discipline : Informatique

présentée et soutenue par

Javier BUSTOS-JIMÉNEZ

DYNAMIC LOAD BALANCING

FOR ACTIVE OBJECTS ON COMPUTER GRIDS

Thèse dirigée par Denis CAROMEL

et préparée à l’INRIA Sophia Antipolis, projet OASIS

soutenue le 18 décembre 2006

Jury:

Président du Jury Mauricio MARÍN Universidad de Magallanes, Chile

Rapporteurs Pierre COINTE École des Mines de Nantes, France

Gonzalo NAVARRO Universidad de Chile, Chili

Examinateurs Denis CAROMEL Université de Nice Sophia-Antipolis, France

Eric MADELAINE INRIA Sophia-Antipolis, France

José PIQUER Universidad de Chile, Chili

UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS - UFR Sciences

École Doctorale de Sciences et Technologies de l’Information et de la Communication

THÈSE

pour obtenir le titre de

Docteur en Sciences
de l’UNIVERSITE de Nice-Sophia Antipolis

Discipline : Informatique

présentée et soutenue par

Javier BUSTOS-JIMÉNEZ

ÉQUILIBRAGE DE CHARGE DYNAMIQUE POUR

DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

Thèse dirigée par Denis CAROMEL

et préparée à l’INRIA Sophia Antipolis, projet OASIS

soutenue le 18 décembre 2006

Jury:

Président du Jury Mauricio MARÍN Universidad de Magallanes, Chile

Rapporteurs Pierre COINTE École des Mines de Nantes, France

Gonzalo NAVARRO Universidad de Chile, Chili

Examinateurs Denis CAROMEL Université de Nice Sophia-Antipolis, France

Eric MADELAINE INRIA Sophia-Antipolis, France

José PIQUER Universidad de Chile, Chili

to Cristina

... and Amelia

Contents

List of Figures ix

Acknowledgements xiii

I Résumé étendu en français (Extended french abstract) xv

Équilibrage de Charge pour des Objets Actifs dans les Grilles de Calcul xvii

1 Introduction et objectifs . xvii

2 État de l’art . xix

2.1 Les objets actifs et ProActive . xix

2.2 Les algorithmes d’équilibrage de charge xxi

2.3 Les réseaux à grande échelle . xxiii

3 Algorithmes proposés . xxvii

4 Modélisation . xxviii

4.1 Modélisation d’une grille de bureau xxviii

4.2 Modélisation d’une grille de projet xxxii

5 Conclusions et travaux futurs . xxxvii

II Thesis 1

1 Introduction 3

2 Active Objects 7

2.1 Active Objects . 8

2.2 Reflection . 8

2.2.1 Reflective Architecture . 9

2.3 ProActive . 10

2.3.1 Distribution model . 10

2.3.2 Active Objects implementation for ProActive 10

2.3.3 Message Passing for Actives Objects in ProActive 12

2.3.4 Synchronisation: Wait-by-necessity 13

2.3.5 ProActive: Environment and implementation 13

2.3.6 ProActive Meta-Object Protocol 15

v

vi CONTENTS

3 Networks for parallelism 19

3.1 History of parallel computing . 19

3.1.1 Cluster of computers . 20

3.1.2 Computer Grids . 20

3.1.3 A model overview for Project Grids 22

3.2 Peer-to-Peer Infrastructure of ProActive 22

3.2.1 Bootstrapping: First Contact . 23

3.2.2 Discovering and Self-Organising 24

3.3 Theory of Networks . 24

3.3.1 Generating random graphs . 25

3.3.2 Natural Networks . 26

4 State of the Art on Load-Balancing 29

4.1 Static Load-Balancing . 30

4.2 Dynamic Load-Balancing . 30

4.3 Components of a Load-Balancing Algorithm 32

4.3.1 Load Index . 32

4.3.2 Information-Sharing Policy . 33

4.3.3 Transfer Policy . 34

4.3.4 Location Policy . 35

4.4 Related Work . 35

4.4.1 Condor . 35

4.4.2 Legion . 37

4.4.3 Cilk . 39

4.4.4 Satin . 41

5 Setting foundations for Load-Balancing of Active-Objects 45

5.1 Active-Objects and Processing Idleness 45

5.2 Location policy for load-balancing of active-objects 47

5.3 Information and transfer policies for load-balancing of active-objects . . . 47

5.3.1 Modelling ProActive behaviour to test algorithm policies 48

5.3.2 Implementing the Information-Sharing Policies 48

5.3.3 Hardware and Software . 50

5.3.4 Results Analysis . 50

5.3.5 Testing the impact of Information-Sharing Policies 53

5.4 Exploiting the Peer-to-Peer infrastructure: Information on-demand 54

5.4.1 Robin-Hood Load-Balancing Algorithm 54

5.4.2 Robin-Hood over ProActive’s Peer-to-Peer Infrastructure 55

5.5 Robin-Hood and the Nottingham Sheriff 57

5.6 Testing algorithms in a real environment 57

6 Models, Simulations and Deployment on Large-Scale Networks 61

6.1 Simulating Desktop Grids . 61

6.1.1 Characterising nodes of Desktop Grids 62

6.1.2 Modelling Desktop Grids . 62

CONTENTS vii

6.1.3 Finding the best processor . 63

6.1.4 Scaling towards the “infinite network” 68

6.2 Simulating Project Grids . 76

6.2.1 Characterising a Project Grid . 78

6.2.2 Modelling a Project Grid . 80

6.2.3 Environment-aware Algorithms 81

6.2.4 Experimental Setup . 82

6.2.5 Simulation Results . 82

6.2.6 Results Confidence . 85

6.3 Where to run parallel applications? . 85

6.3.1 Problematic of Applications and Descriptors 87

6.3.2 Clauses in ProActive Descriptors 87

6.3.3 Clauses in ProActive Applications 89

6.3.4 Constraints . 89

6.4 The real world . 90

7 Conclusions and Future Work 93

A Matrices for Robin-Hood algorithm working alone 107

B Matrices for Robin-Hood + Nottingham-Sheriff algorithm 111

C Expected values for Kolmogorov-Smirnov test statistics 115

viii CONTENTS

List of Figures

i Exécution d’un appel asynchrone et à distance d’une méthode xx

ii Migration and tensioning . xx

iii Grilles présentées . xxvii

iv Distribution des fréquences des Mflops des 200,000 processeurs enreg-

istrés dans Seti@home et la distribution normale qui fait la modélisation. . xxix

v Passage à l’échelle . xxxi

vi Migrations . xxxii

vii La latence des nœuds de la grille de projet PlugTests xxxiv

viii Nombre total des services dans tous les objets actifs, avec synchronisation

chaque 10 unités de temps . xxxvi

ix % de confiance des algorithmes selon le factor de migration M xxxvi

2.1 The reflection process, featuring levels of data, reification and reflection. 9

2.2 Parallelisation and distribution with active objects 11

2.3 Execution of an asynchronous and remote method call 13

2.4 Base-level and meta-level of an active object 16

2.5 Migration and tensioning . 18

3.1 Grids divided by objective . 22

3.2 (a) step two of Watts and Strogatz model with n = 12 and k = 2; (b) step

three with small pe . 27

4.1 A supermarket . 29

4.2 Examples of information-sharing policies 34

4.3 Matchmaking process of Condor . 36

4.4 Parallel problems solved by Condor . 37

4.5 Main classes of Legion infrastructure . 38

4.6 Legion Resource Management Infrastructure 39

4.7 Cilk model: each thread is a circle, grouped in procedures. Each down-

ward arrow is a spawned child, and each horizontal arrow is a spawned

successor. Dashed arrows represent data dependency (synchronisations).

Also, spawn-levels from the original thread are presented. 40

ix

x LIST OF FIGURES

5.1 Different behaviours for active-objects request (Q) and reply (P): (a) B

starts in wait-for-request (WfR) and A made a wait-by-necessity (WfN).

(b) Bad utilisation of the active-object pattern: asynchronous calls become

almost synchronous. (c) C has a long waiting time because B delayed the

answer. 46

5.2 The supermarket abstraction for load-balancing of enqueued tasks. 46

5.3 The supermarket abstraction for load-balancing of Active Objects. 46

5.4 Migration time from the point of view of latency and object’ size 47

5.5 Mean response time for all policies . 51

5.6 Bandwidth usage of coordination policies during the information-sharing

phase . 52

5.7 Bandwidth usage of coordination policies during all the load-balancing . . 53

5.8 Impact of load-balancing algorithms over Jacobi calculus 59

6.1 Frequency distribution of Mflops for 200, 000 processors registered at

Seti@home and the normal function which models it. 63

6.2 Final distribution for the Robin-Hood algorithm only, for RB = 0.5 and

T = 0.5 . 65

6.3 Final distribution for the Robin-Hood + Nottingham Sheriff 66

6.4 Tuning for RS considering: a) number of active-objects in (9, 9) per total

of active-objects; and b) Number of total migrations reaching a stable state. 67

6.5 Tuning for RS considering: a) number of active-objects in (9, 9) per total

of active-objects; and b) Number of total migrations reaching a stable

state. Because the results using 3 to 6 acquaintances were similar, only

those for 3 are shown. 69

6.6 Tuning for RS considering: a) mean number of total migrations until

each time-step; and b) mean number of overloaded nodes in each time-

step. Using RB = 0.7, acquaintances subset size = 3, |x − y| ≤ 3,

λ = 0.1, 0.2, 0.3 and T = 0.7 . 71

6.7 Tuning the value of RS considering: a) mean number of active objects on a

node with µ ≥ 1 per total number of active objects; and b) mean number

of active objects on a node with µ > 1 + 1
3

per total number of active

objects. Using RB = 0.7, acquaintances subset size = 3, |x − y| ≤ 3,

λ = 0.1, 0.2, 0.3 and T = 0.7 . 72

6.8 Scalability for a network using RS = 0.9, 1.0, 1.1, RB = 0.7 74

6.9 Scalability in terms of number of processors used, having RS = 1.0 . . . 75

6.10 Scalability in terms of number of migrations, having RS = 1.0. The

plot presents, for an active object, the (mean) number of accumulated

migrations performed until a time-step t ∈ [0; 1, 000]. 76

6.11 Scalability, having the number of active objects proportional to the num-

ber of nodes . 77

6.12 Latency between nodes from the PlugTest project grid. 79

6.13 Total number of pending requests in all active-objects using message-size

C = 0.1 and object size M = 1, without synchronisation. 83

LIST OF FIGURES xi

6.14 Total number of pending requests in all active-objects using message-size

C = 1 and object size M = 10, without synchronisation. 84

6.15 Total number of pending requests in all active-objects using message-size

C = 0.1 services, object size M = 1 services and synchronisation each

10 time-steps. 84

6.16 % of confidence of load-balancing algorithms, increasing object size (M) 86

6.17 Example of clauses in descriptor. 88

6.18 Example of clauses in application. 89

6.19 Integer Constraint Schema Grammar. 90

6.20 Institutional clusters on Grid5000: Bordeaux, Grenoble, Lille, Lyon, Nancy,

Orsay, Rennes, Sophia-Antipolis and Toulouse. 91

6.21 Speed of Jacobi parallel application in iterations per milliseconds. 92

6.22 Mean number of cumulated migrations that an active object performs dur-

ing the experience. 92

A.1 Final distribution for the Robin-Hood algorithm only, for RB = 0.5 and

q = 3 . 107

A.2 Final distribution for the Robin-Hood algorithm only, for RB = 0.5 and

q = 4 . 108

A.3 Final distribution for the Robin-Hood algorithm only, for RB = 0.5 and

q = 5 . 108

A.4 Final distribution for the Robin-Hood algorithm only, for RB = 0.7 and

q = 4 . 109

B.1 Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for

RB = 0.5, RS = 0.5 and q = 3 . 111

B.2 Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for

RB = 0.5, RS = 0.5 and q = 5 . 112

B.3 Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for

RB = 0.7, RS = 0.7 and q = 3 . 113

B.4 Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for

RB = 0.9, RS = 0.9 and q = 3 . 114

xii LIST OF FIGURES

Acknowledgements

I would like to thank both the French Embassy at Chile and the Chilean Commission in

Research and Technology (Conicyt) that granted me a scholarship that allowed me to pur-

sue further education in France and Chile.

I am specially thankful to my adviser José Piquer, who demonstrated an amazing ded-

ication guiding me through my studies and who encouraged me to go to France. His

support has been incommensurable.

I am most grateful to INRIA, the Oasis team, and its former members. Thanks to De-

nis Caromel, my adviser in France, who accepted to support my thesis. Special thanks to

Tomás Barros, Alfredo Illanes, Mauricio Araya, Gonzalo Robledo and Christian Delbé,

who helped me with all the paperwork at the beginning of my French life, without their

help I probable would had been deported. I would also like to thank all the people who

shared their knowledge in useful discussions about my thesis work: Eric Tanter (Objects),

Alexandre di Costanzo (ProActive’s P2P infrastructure), Nelson Morales (Network Mod-

elling), Angela Ganz (Poisson Processes), Satu Elisa Schaeffer (Natural Networks) and

Luis Mateu (Synchronisation).

I would like to thank to all people who helped me in “non-academic” ways during

this PhD. First to my Chilean friends whom gave me their support asking me from time

to time “where are you now?” (Geddy, Lemus, Benja, Iván, Fernando, Pato, Pancho,

Humberto, Gastón, Teresa, Valeria and Vicky). Second to my French friends whom gave

me their support asking me from time to time “when you will back?” (Arthur, Nico

and all the Garibaldi F.C. team). Third to the tennis players (Fernando, Humberto, Luis,

Tomás, Tamara, Ángela and Mario). Fourth to the beach-volley players (the “Argentine

team”, specially Tamara and Jimena; Igor, Carlos, Marcela, etc.). Fifth to “la vida del

estudiante” group (Marcelo, Ángela, Diego, Patricio and Elena). Sixth to the co-author

by default (Mario). Seventh to my favourite proof-reader (Elisa). Finally, to three special

places for me: Stade du Ray, La foyer (Valrose) and Pub van Gogh. It is also my privilege

to thank all those who shared their friendship along these last four years.

xiv ACKNOWLEDGEMENTS

Part I

Résumé étendu en français

(Extended french abstract)

xv

Équilibrage de Charge pour des Objets

Actifs dans les Grilles de Calcul

1 Introduction et objectifs

Cette thèse prétend définir les bases du développement d’algorithmes d’équilibrage de

charge pour le modèle des objets actifs de la librairie ProActive [97] dans le contexte des

réseaux à grande échelle (grilles).

Dans ProActive, chaque objet actif a son propre fil de commande et peut indépen-

damment décider dans quel ordre servir la méthode entrante appelé: les appels entrants

sont automatiquement stockés dans une file d’attente de service. Pour ajouter de l’efficacité

au paradigme des objets actifs, ProActive fournit une manière de déplacer un objet ac-

tif d’une machine virtuelle de Java (JVM) à une autre JVM appelée migration [11]. Les

références entre l’extérieur et les objets actifs qui ont migré doivent demeurer valables

après la migration. L’opération de migration vient avec une pénalité de communication:

un objet actif doit émigrer avec son état complet, ses demandes en suspens, futurs, et des

objets passifs. Par conséquent, les applications fournies avec ProActive sont très sensibles

à la latence.

Lorsque plusieurs objets actifs sont déployés pour un logiciel parallèle, un algorithme

d’équilibrage de charge peut être employé pour améliorer le temps d’exécution d’une

application en utilisant la migration [45, 47, 89, 104, 109]. La charge de travail en ob-

jets actifs peut être équilibrée en envoyant des objets actifs d’un processeur fortement

chargé à un autre moins chargé, ou en volant des objets actifs d’un processeur fortement

chargé pour un autre moins chargé. Pour le cas de la grille, l’environnement d’exécution

des objets actifs se compose habituellement de multiples clusters de ressources, et avec

ProActive, les objets actifs forment un réseau Pair-a-Pair [24]. Donc, nous algorithme

d’équilibrage de charge doit également considérer la topologie de ce réseau.

Etant donnée l’impossibilité d’avoir accès à un réseau à grande échelle (plus de 1, 000

nœuds), et de réaliser tout l’essai requis, la majeure part du temps nous effectuons de la

simulation de réseau pour ajuster les paramètres de l’algorithme. Donc, nous présentons

nos modèles de grilles basées dans l’observation et la mesure de ce que nous considérons

les caractéristiques principales de l’équilibrage de charge avec des objets actifs: la ca-

pacité de traitement des taches et la latence de communication. La communauté de

recherche de grilles a commencé à prendre en compte l’importance des modèles validés

pour le travail de simulation. Par conséquent, il y a eu plusieurs approches dans les

dernières années [70, 72, 76, 84, 87]. Cependant, à notre connaissance, notre travail de

modélisation et simulation est la première approche qui étudie les caractéristiques d’une

xvii

xviii ÉQUILIBRAGE DE CHARGE POUR DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

partie d’une infrastructure de grille.

Ce thèse est organisé comme suit:

• Le concept d’un objet est expliqué dans le chapitre 2, suivi du modèle des objets

actifs et l’implémentation de ProActive.

• Le chapitre 3 présente le concept de réseau et de grille dans le contexte des calculs

parallèles.

• Le chapitre 4 présente la situation actuelle dans les modèles et les algorithmes d’

équilibrage de charge.

• Le chapitre 5 explique pourquoi l’équilibrage de charge d’une application parallèle

développée avec ProActive accélère ces applications et il montre nos politiques pour

l’algorithme d’équilibrage de charge des objets actifs.

• Dans le chapitre 6 nous présentons et discutons nos modèles de grille et des objets

actifs utilisés dans ce travail.

• Le chapitre 7 présente des conclusions et les discussions de futurs travaux.

Dans ce résumé, les chapitres 2,3 et 4 sont présentées dans la section suivante (État de

l’art), le chapitre 5 est présenté dans la Section 3. Finalement, le chapitre 6 est résumé

dans la section 4.

2. ÉTAT DE L’ART xix

2 État de l’art

Cette thèse étudie l’intersection de trois sujets: les objets actifs, les algorithmes d’équili-

brage de charge et les réseaux à grande échelle. Le première traite de l’infrastructure sur

laquelle nous avons développée notre recherche, la deuxieme est un sujet largement étudié

pour la communauté scientifique [20, 36, 92, 108] et technologique [12, 64, 89, 122],

mais le troisième est un sujet encore en exploration. Donc, le but de notre recherche est

de réaliser une contribution scientifique en utilisant les connaissances établies des deux

premier sujets pour construire des algorithmes nouveaux appliqués aux troisième sujet.

2.1 Les objets actifs et ProActive

En raison de la popularité et acceptation du paradigme orienté aux objets (OO), plusieurs

langages de programmation OO concurrents ont été conçus et mis en application. Ces

langages sont basés sur le modèle des objets concurrents où l’objet est une organisa-

tion active [134]. Néanmoins, du point de vue d’un logiciel d’exploitation, chaque objet

était un grand processus avec un seul fil de commande. Par conséquent, il était impératif

d’écrire une grande quantité de code additionnel pour soutenir les abstractions des objets.

Le modèle de object/thread [95] a été présenté en 1995 dans le contexte d’un système

d’exploitation appelé Clouds [42]. Dans ce modèle, les objets sont des entités passives

qui fournissent des fonctions aux données et les threads représentent l’écoulement de

commandes dans le système par l’invocation et l’exécution postérieure de méthodes.

L’avantage de ce modèle est sa bonne exécution, parce que les fils multiples peuvent

fonctionner au même temps dans les mono-processeurs avec un bas coût.

ProActive est un modèle de programmation d’objet actif uniforme. Chaque objet actif

a son propre fil de commande et il a la capacité de décider dans quel ordre servir les appels

entrants de méthode qui sont automatiquement stockés dans une file d’attente des deman-

des en suspens. Si la file d’attente est vide, les objets actifs attendent jusqu’à l’arrivée

d’une nouvelle demande, cet état est connue comme wait-for-request. Les objets actifs

sont accessibles à distance par l’intermédiaire de l’invocation d’une méthode. Les ap-

pels de méthode avec les objets actifs sont asynchrones avec synchronisation automatique

laquelle est fournit par les objets de type future (Figure i). La synchronisation est fournie

par un mécanisme connu sous le nom de wait-by-necessity [31]. Il y a des rendez-vous

courts au début de chaque appel à distance asynchrone qui bloquent l’appelant jusqu’à ce

que l’appel ait atteint le contexte de l’appelé.

ProActive fournit aussi un modèle de communication appelé communication des group-

es. La communication de groupes permet de déclencher la méthode d’ un groupe distribué

d’objets actifs du même type compatible, avec une génération dynamique des groupes de

résultats. Ce mécanisme de communication de groupe, plus certaines opérations de syn-

chronisation (WaitAll, WaitOne, etc.), fournit des modèles tout à fait semblables pour des

opérations collectives tels que ceux disponibles dans par exemple MPI.

Proactive fournit une manière de déplacer n’importe quel objet actif de n’importe

quelle machine virtuelle de Java (JVM) à n’importe quel autre, ceci s’appelle le mécanisme

de migration [11]. Un objet actif peut migrer de JVMs à JVMs par la primitive mi-

grateTo(. . .). La migration peut être lancée de l’extérieur par n’importe quelle méthode

xx ÉQUILIBRAGE DE CHARGE POUR DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

3− A future object

is created

1− Object A performs

a call to method foo

2− The request for foo

is appended to the queue

5− The body updates the future

with the result of the execution of foo

6− Object A can use the result

throught the future object

4− The thread of the body

executes method foo on object B

Object BObject A

Proxy Body

Object A

Future

Result

Local node Remote node

Object B

Figure i: Exécution d’un appel asynchrone et à distance d’une méthode

publique mais il est responsabilité de l’objet actif exécuter la migration, car c’est une

migration de type faible. L’expédition automatique et transparente des demandes et des

réponses fournissent le transparence de l’endroit, car les références à distance vers les ob-

jets mobiles actifs demeurent valables par un protocole connu comme tensioning (Figure

ii) .

Initial state

Migration

Tensioning

�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂

Active object

Active object

node bnode a node c

Active object

Forwarder Active object

node cnode a node b

Active object

Active object

node cnode bnode a

Figure ii: Migration and tensioning

Dans ProActive, un Node (nœud) est un objet qui à pour but de recueillir plusieurs

objets actifs dans une entité logique. Il est une abstraction de l’endroit physique d’un

ensemble d’objets actifs. À tout moment, une JVM accueille un ou plusieurs nœuds. La

manière traditionnelle d’appeler les nœuds est de les associer un nom symbolique, qui est

2. ÉTAT DE L’ART xxi

une URL donnée pour leur endroit, par exemple rmi://sea.inria.fr/node1.

Mais, ProActive donne une nouvelle abstraction pour éliminer les noms d’ordinateur,

les protocoles d’enregistrement et de consultation du code source: le nœud virtuel (NV)

[10]:

1. un NV est identifié par un nom,

2. un NV est employé dans une source de programme,

3. un NV est défini et configuré dans un descripteur de déploiement, et,

4. un NV, après activation, est tracé à un ou plusieurs nœuds.

Ces nœuds virtuels sont décrits extérieurement par des descripteurs XML qui sont lus

au moment de l’exécution.

2.2 Les algorithmes d’équilibrage de charge

L’équilibrage de charge est le processus de distribuer la charge d’une application par-

allèle sur un ensemble de processeurs pour améliorer l’exécution en réduisant le temps

de réponse de l’application. Les décisions de quand, ou et quelles charge doivent être

transférées sont critiques, et donc l’information de charge doit être précise et à jour [94].

Si la décision d’équilibrage de charge est faite avant l’exécution de l’application et en

connaissante de toutes les variables qui peuvent affecter cet exécution, on parle d’un

équilibrage de charge statique. Mais, si on ne connaı̂t pas toutes les variables qui peu-

vent affecter l’exécution et donc les décisions d’équilibrage doivent être faites pendant

l’exécution, on parle d’un équilibrage de charge dynamique. Notre recherche se focalise

dans l’équilibrage de charge dynamique.

Dans l’équilibre de charge dynamique, les décisions dépendent de l’information ras-

semblée du système. L’information de charge peut être mise en commun entre les pro-

cesseurs périodiquement ou sur la demande, avec des collecteurs centralisés ou distribués

de l’information [119]. Les algorithmes d’équilibrage de charge se concentrent sur la sta-

bilité (capacité d’équilibrer la charge seulement si cette action améliore l’exécution du

système) et le temps de réponse (capacités de réaction à rapport à des instabilités). Le

travail de Casavant et de Kuhl [35] reporte qu’un temps de réponse plus rapide est plus

important que la stabilité pour améliorer l’exécution.

Typiquement, un algorithme d’équilibrage de charge a un index de charge et un ensem-

ble de politiques basées sur l’index. Généralement, les politiques peuvent être classifiées

dans une des catégories suivantes [61]. Une politique de partage, définit quelle informa-

tion doit être partagée et comment elle doit être rassemblée et partagée. Une politique de

transfert, détermine quel travail doit être équilibrée et quand le faire. Finalement, une

politique de localisation qui détermine où le travail doit être partagé. Il existent deux

genres de politiques de localisation: migration et placement. La migration du travail est

réalisé dans le temps d’exécution et le placement est le premier placement d’une applica-

tion parallèle. Autant que dans cette thèse nous nous focalisons dans la politique migra-

toire, nous verrons tout au long de ce travail que le premier placement est une question

clé dans l’équilibrage de charge des objets actifs.

xxii ÉQUILIBRAGE DE CHARGE POUR DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

En suite nous décrirons les principaux systèmes étudiés qui utilisent l’équilibrage de

charge.

Condor

Le système Condor a été présenté tout au début comme “le chasseur des postes de travail

vides” dans un travail de Michael Litzkow, Miron Livny et Matt Mutka [89]. Ils ont

présenté un système capable de contrôler des processus dans un cluster des postes de

travail en utilisant le traitement en différé, l’idée principale était détecter les ressources

(CPU, mémoire) vides et distribuer une application parallèle parmi elles.

L’équilibrage de charge en Condor est exécuté pour l’attribution des ressources en

utilisant un système centralisé appelé Matchmaking. Condor a plein accès aux ressources

des postes de travail au niveau du processeur; donc, il peut acquérir un processus si un

poste de travail est surchargé, et trouver un nouvel endroit pour lui avec des demandes au

Matchmaking et remettre en marche le processus dans le nouvel endroit. Naturellement,

exécuter ce genre de migration est très coûteux en termes de ressources, Condor doit donc

employer le checkpointing [88]: au cas où, il arrête un processus dans un poste de travail et

commence le même processus dans un nouvel endroit a partir du dernier point de contrôle.

Legion

Legion est un système qui se compose d’objets C++ indépendants qui se communiquent

entre eux en utilisant l’invocation de méthodes. Les appels de méthode sont non groupants

et peuvent être acceptés dans un ordre quelconque par l’objet appelé. Chaque méthode a

une signature qui décrit les paramètres et sa valeur de retour (si cette valeur existe). Dans

le modèle d’objet de Legion, chaque objet appartient à une classe, et chaque classe est

elle-même un objet de Legion. Un objet de classe est responsable de créer et de localiser

ses instances et sous-classes. Plus de détails de Legion sont présents dans le travail de

Mike Lewis et Andrew Grimshaw [81].

Une migration dans Legion est semblable à celles de Condor: sortant un objet de la

file d’attente de traitement, transférant son état persistant (checkpointing) et le remettre

dans un nouvel endroit. Cependant, dans Legion le passage à l’échelle est atteint car la

communication est effectuée parmi des ensembles de ressources non disjoignent .

Cilk

Cilk est un logiciel pour la programmation multi-fil parallèle qui est basée sur le langage C

de norme ANSI. La philosophie du Cilk est qu’un programmeur devrait se concentrer sur

structurer le programme pour exposer le parallélisme et profiter de la localité. Pour mettre

en œuvre cela, le programmeur doit établir un graphe acyclique direct explicite (DAG), en

employant un primitive spawn. En plus, Cilk fournit un primitif pour synchroniser des

dépendances de données appelé sync.

Etant donné que le programmeur a la responsabilité de expliciter le parallélisme dans

un code de Cilk, le système d’exécution de Cilk a la responsabilité de programmer le

calcul pour fonctionner efficacement sur une plateforme de données. Ainsi, le système

2. ÉTAT DE L’ART xxiii

d’exécution de Cilk doit prendre soin des détails tels que l’équilibrage de charge, la pag-

ination, et les protocoles de transmission. L’équilibrage de charge dans Cilk est exécuté

pour un algorithme de vol-du-travail (Work-Stealing) et partage-du-travail (Work-Sharing)

[12]. Malheureusement, cet algorithme de équilibrage de charge a été critiqué même par

ses réalisateurs [60].

Satin

Satin a été présenté dans le travail de van Nieuwpoort, Kielmann, et Bal [121] comme

une prolongation de Java avec primitives de Cilk. La contribution principale de Satin est

son algorithme du vol-du-travail [122]. Les auteurs [122] démontrent que, en pratique,

les algorithmes du vol-du-travail s’exécutent sous l’optimum dans des réseaux à grand

échelle. Dans le même travail [122], les auteurs présentent un algorithme d’équilibrage

de charge appelé Cluster-Aware Random Stealing (CRS), qui s’adapte aux états de réseau

et aux granularities du travail, équilibrant différemment pour des nœuds locaux (dans un

cluster ou une LAN) et pour des nœuds externes (dans une WAN).

Analyse des systèmes de l’équilibrage de charge

Condor a été signalé comme le meilleur et le plus stable système distribué [118] et notre

travail était focalisé et inspiré en profiter l’expérience du Condor. Malheureusement,

nous avons démontré [27] que une politique de partage centralisé en ProActive produit

des effets de saturation des réseaux et implosion du serveur. L’impossibilité d’utiliser une

politique centralisé a fait que notre foc change vers les ensembles non disjoignent de Le-

gion, et la réponse a la question “comment faire une implantation efficient des ensembles

en ProActive?” fit l’étude de la topologie du réseaux sur lequel l’équilibrage de charge

sera exécuté. Cet étude est décrit dans la section suivante.

2.3 Les réseaux à grande échelle

Nous avons étudié les réseaux à grand échelle a partir de la théorie des réseaux et du

développement des systèmes distribues. Nous avons abordé les études théoriques des

réseaux pour exécuter des simulations et mesurer la performance de notre algorithme,

et nous avons abordé les systèmes distribués pour savoir quel type de réseaux existent,

adapter notre algorithme aux eux, et mesurer la performance en la pratique.

Théorie des réseaux

Les réseaux est un champ bien étudié dans les mathématiques sous le nom de la Théorie

des Graphes et il a commencé avec des travaux de Leonard Euler au 18ème siècle. Une

bonne introduction dans ce domaine est le travail du Reinhard Diestel [44].

Un réseau est représenté par un graphe, dont les nœuds s’appellent sommets. Un en-

semble de nœuds est dénoté par V et les symboles u,v,w sont généralement employés pour

se rapporter à des nœuds spécifiques. Le nombre de nœuds n = |V | est connu comme

l’ordre d’un graphe.

Un lien entre deux nœuds u, v est représenté par un arête. Une arête représentant un

lien non dirigé est dénoté par l’ensemble {u, v}, le nombre de liens de un nœud est connu

xxiv ÉQUILIBRAGE DE CHARGE POUR DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

comme le degre de un nœud. Une arête qui représente un lien dirigé est dénoté par 〈u, v〉,
qui signifie que le lien va de u vers v. Dans les graphes pesé, une fonction de poids est

défini pour assigner un poids à chaque nœud. Dans ce travail, la fonction de poids plus

utilisée c’est la latence l(u, v) qui est le temps écoulé depuis qu’un message est envoyé

d’un nœud u jusqu’à ce qu’il est reçu par un nœud v.

Dans le domaine des systèmes distribués, l’étude des graphes aléatoires est devenu un

outil puissant pour comprendre les algorithmes, processus distribués et réseaux à grande

échelle. Un graphe aléatoire est un graphe produit par un certain processus aléatoire. Dès

nos jours on l’applique à l’étude des réseaux de grilles et des réseaux Pair-à-Pair.

Les réseaux théoriques étudiés dans ce travail sont les réseaux naturels modelés par

Watts and Strogatz en 1998 [130] puis implantés par Jon Kleinberg [74]. Un réseau naturel

a les propriétés suivantes:

1. Un coefficient de cluster élevé (connectivité moyenne des nœuds)

2. Une basse longueur de chemin moyenne (nombre des hops entre les nœuds)

Cependant, en 1999 Albert-László Barabási and Réka Albert ont reporté que le modèle

présenté pour Watts et Strogatz n’avait pas la même distribution de degrés que les vrais

réseaux. Donc, ils ont proposé un nouvel modèle théorique dont le degré d’un nœud suit

une distribution binomiale:

Degré(v) ∼ Binom(n − 1, pe) (1.1)

Et le nombre de nœuds “avec un degré k” suit une distribution de Poisson:

Poisson

((

n

k

)

pk
e(1 − pe)

(n−1)−k

)

(1.2)

Finalement, ils ont proposé que la distribution des degrés peut être approchée par la loi

de puissance:

P (Degré(v) = k) ∼ k−γ (1.3)

Par exemple, des réseaux Pair-à-Pair comme Gnutella ont rapporté une valeur γ = 2.3
[63] et la topologie de routage de l’Internet en 1995 a rapporté une valeur γ = 2.48 [51].

Processeurs, Clusters et Grilles

Depuis la naissance du ENIAC (intégrateur et ordinateur numériques électroniques), connu

comme premier ordinateur capable de résoudre un ensemble de problèmes de calcul

[110], le monde scientifique a recherché les moyens d’employer le potentiel de l’ordinateur

dans la résolution de problèmes durs (comme des problèmes NP) d’une manière parallèle.

Le problème principal dans cette recherche était le prix des ordinateurs, des processeurs

si chers que la plupart des organismes ont eu les moyens de construire seulement un, et

ils travaillaient séparément.

Autour de 1985, le développement de la puissance de calcul produit des micropro-

cessors peu coûteux (comparé aux unités centrales précédentes) et les scientifiques ont

2. ÉTAT DE L’ART xxv

étudié encore la manière de résoudre leurs problèmes utilisant des ensembles de micro-

processeurs. La première tentative devait utiliser des microprocesseurs reliés en un bus de

données et partageant la mémoire et des dispositifs à l’aide d’un ordinateur d’arrangement

de SIMD (également connu sous le nom de multiprocessor), mais alors l’invention des

réseaux informatiques à grande vitesse a permit le raccordement d’une centaine de ma-

chines (processeur + mémoire + dispositifs) dans un ensemble appelé cluster.

L’histoire des clusters des ordinateurs est directement liée avec l’histoire des réseaux

informatiques, en tant qu’une des motivations primaires pour le développement d’un

réseau était lier les ressources informatiques, créant des clusters d’ordinateurs. Des réseaux

de commutation par paquets ont été conceptuellement inventés par l’équipe de la cor-

poration RAND1 en 1962. L’exploitation du concept d’un réseau de commutation de

paquets, projet de recherche du département de défense des Etats-Unis (ARPANET), a

établi les bases de ce que nous connaissons aujourd’hui comme l’Internet. L’Internet

est l’interconnexion forte des ressources de calcul en utilisant la commutation par pa-

quets, et le paradigme d’Internet est la base qui permet la communication des clusters.

Le développement des clusters a commencé dans le début des années 70 soutenu par le

développement des réseaux (protocole de TCP/IP) et du logiciel d’exploitation d’Unix.

Cependant, les protocoles et les outils pour faire facilement la distribution du travail et le

partage à distance de dossiers ont été définis autour de 1983 dans le contexte du schéma

Unix (mis en application par Sun Microsystems).

Le monde universitaire a présenté une des leurs premières infrastructures qui relient

ensemble un groupe des processeurs fournissant à un système effectif réparti en 1986, le

projet Amoeba [115], développé par Andrew Tanenbaum et autres depuis 1986 jusqu’en

1995.

Un point clé dans le développement des clusters est l’apparition du système virtuel de

machine en parallèle (PVM) en 1990 [114], qui permet la création d’un ordinateur géant

virtuel en utilissant des ordinateurs normaux (et peu coûteux) reliés par TCP/IP. Dans

1995 l’invention d’un cluster d’ordinateurs construit avec le but spécifique d’être “un

ordinateur géant”, en employant l’Internet comme réseau des communications (appelé

un cluster Beowulf [112]), et le développement des réseaux à grande vitesse permet que

la plupart des clusters soient reliés ensemble, permettant la construction des cluster de

clusters ou grilles.

La grille c’est le prochain niveau de l’abstraction dans les réseaux informatiques, ex-

ploitant l’interconnexion à grande vitesse d’un ensemble d’ordinateurs et de faisceaux

distribués afin de résoudre des problèmes parallèles à grande échelle comme une architec-

ture d’ordinateur virtuelle unique. Par conséquent, l’ordinateur de grille doit manipuler

le partage d’interconnexion et des ressources; et en plus il doit prendre en charge de nou-

veaux services comme l’attribution et la gestion des ressources.

Le nom Grille apparu pour la première fois sur le travail d’Ian Foster et Carl Kesselman

[57]. Foster est le chef d’équipe de Globus Alliance2, qui développe les outils appelés

“Globus Toolkit”. Globus Toolkit est un logiciel développé pour exécuter la gestion de

grille, fournissant des services de CPU et la gestion de stockage, sécurité, transfert de

données, surveillance et qui fournit également des outils pour développer des services

1http://www.rand.org
2http://www.globus.org

xxvi ÉQUILIBRAGE DE CHARGE POUR DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

additionnels basés sur la même infrastructure. L’importance de Globus dans la grille a

établi une association directe du nom de Ian Foster avec le concept de Grille.

Ian Foster a défini la grille [56] comme le système qui:

• coordonne les ressources qui ne sont pas à la centralisation de la com-

mande...

• emploi la norme des protocoles ouverts et d’usage universel...

• fournit des qualités de service non triviales.

De la définition précédente, nous notons les différences principales avec le calcul sur

clusters: décentralisation et le concept de qualité de service.

Dans la littérature, les grilles sont subdivisé selon leur objectif :

• Les grilles d’entreprise: veulent fournir l’objectif d’une entreprise d’une manière

transparente, comme si eux pourraient donner des services comme une super-ordi-

nateur branché à l’Internet (par exemple : Google), et c’est fait pour augmenter la

qualité du service.

• Les grilles d’Internet: ont l’objectif de profiter de la capacité de traitement potentielle

de tous les ordinateurs branchés à l’Internet pour résoudre un problème parallèle en

utilisant le paradigme d’Maı̂tre-Ouvrier [65] (par exemple: l’infrastructure BOINC

[3] utilisé pour résoudre le problème de Seti@home [98]).

• La grille scientifique (également connue sous le nom de grilles institutionnelles):

ont l’objectif de profiter des multiprocesseurs, du grand équipement (télescopes,

accélérateurs de particules) et des ordinateurs de laboratoire de plusieurs établis-

sements pour augmenter le calcul potentiel parallèle de tous eux, avec la gestion des

architectures parallèles (par exemple [89] en employant les outils de Globus comme

Condor-g [59]).

• Les grilles de bureau: ont l’objectif de profiter de la connexion à l’Internet pour

communiquer les ordinateurs de bureau personnels afin de partager des ressources

comme CPU ou stockage. Les réseaux décentralisés de Pair-à-Pair comme Gnutella,

développés en utilisant les infrastructures ouvertes et qui accomplissent avec les con-

ditions minimales de qualité de service sont des grilles de bureau. Par exemple,

l’infrastructure Pair-à-Pair développé pour ProActive [43] dont nous avons modifié

pour profiter de l’équilibrage de charge [24].

Nous avons noté que les définitions précédentes des grilles étaient trop statiques pour

s’adapter sur de vraies infrastructures étudiées. Par conséquent, nous nous sommes placés

au prochain niveau de l’abstraction, des infrastructures virtuels, définissant le concept de

Grilles de Projet.

Grilles de Projet

Nous définissons comme grille de projet l’environnement virtuel d’un projet multi-insti-

tutionnel, dont des ressources venant d’une infrastructure déployée de grille. Notez que

la topologie physique d’une grille de projet peut être très différente de la topologie de

3. ALGORITHMES PROPOSÉS xxvii

(a) Grille d’entreprise (b) Grille d’Internet

(c) Grille scientifique (d) Grille de bureau

Figure iii: Grilles présentées

l’infrastructure physique de tous les ressources. D’abord, alors que l’infrastructure origi-

nale peut comporter des centaines des faisceaux, chacun avec des centaines de ressources

(probablement le nombre de ressources est un power-of-two [72]), la grille de projet con-

tient seulement autant de ressources comme ont été assignés pour et pendant le projet, du

commencement ou dynamiquement.

Un établissement, assumant le rôle du chef de projet, fournit toutes ses ressources,

qui deviendront probablement une grande partie des ressources de la grille de projet

et les autres établissements qui fournissent seulement une partie de leur infrastructure

disponible sont appelés les contribuables. Toutes les applications qui fonctionnent dans

une grille de projet sont spécifiques au projet, et peuvent venir d’un ensemble très re-

streint, avec des caractéristiques très semblables. Ce modèle d’opération est employé par

de plus en plus projets comme CERN’s LCG [116], et ProActive PlugTests [50].

3 Algorithmes proposés

Nous avons développé notre algorithme d’équilibrage de charge en utilisant les appels de

méthodes de ProActive pour l’equilibrage des objets actifs [24]. Cet algorithme, de type

partage-du-travail, fait les opérations suivantes:

À chaque unité du temps:

1. Si un processeur A est surchargé, il fait la demande au réseau d’un processeur sous-

chargé,

2. Le réseau répond avec un candidat B à partir d’un algorithme de sélection détaillé

dans la section 5.4.2 de ce travail,

3. Si A n’est plus surchargé, et l’algorithme détermine que le processeur B est pareil ou

meilleur que le processeur A, un objet actif est émigré depuis A vers B.

xxviii ÉQUILIBRAGE DE CHARGE POUR DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

Cependant, nous avons découvert que cet algorithme ne profite pas de toute la capacité

de processeurs d’un réseau à grand échelle. Donc, inspirés pour les systèmes Cilk et Satin,

nous avons ajouté la capacité de voler un objet actif [28]:

À chaque unité du temps:

1. Si un processeur C est sous-chargé, il cherche une victime dans le réseau.

2. Si l’algorithme détermine que la victime (D) est un processeur pire que C, un objet

actif es volé du D vers C

Nous avons démontré que cette nouvelle version de notre algorithme profite bien de la

capacité des processeurs d’un réseau à grand échelle [28].

4 Modélisation

Les travaux de Lu et Dinda [84], et de Kee et autres [72] sont concentrés sur un modèle

réaliste pour les ressources impliquées dans une grille basée sur des clusters. Le tra-

vail de Kondo et autres [76] décrit un environnement de grille de bureaux, dans le quel les

ressources peuvent apparaı̂tre ou disparaı̂tre à tout moment. La matière principale de cette

recherche est la disponibilité des ressources et son exécution. Medernach [87] analyse les

traces d’un cluster dans un environnement de grille. Son travail est complété par l’étude

du Iosup et autres dont quatre traces long-terme prises à partir des environnements de

grille à grande échelle sont analysées. Les matières principales dans ces deux efforts sont

la caractérisation des modèles principaux pour la demande de travail dans leurs environ-

nements respectifs. Nous nous focalisons sur deux caractéristiques principales: capacité

de traitement, présentant un modèle simple mais réaliste; et latence de communication

d’inter-ressource, qui n’a pas encore été étudiée dans un environnement de grille.

En utilisant nos modèles de grilles, nous simulons notre algorithme d’équilibrage de

charge visant à choisir le meilleur comportement pour des réseaux à grande échelle.

4.1 Modélisation d’une grille de bureau

Dans les études des algorithmes d’équilibrage de charge, une des plus importantes car-

actéristiques des nœuds est leur capacité de traitement. Une fonction, utilisant cette

capacité et la quantité de travail qu’un nœud doit effectuer, détermine si un nœud est

surchargé ou sous-chargé.

Un modèle fiable de la capacité de traitement est nécessaire pour une correcte modélisation

des réseaux de bureau. Donc, un étude statistique des ordinateurs de bureau enregistrés au

projet Seti@home [98] a été réalisé. Le projet Seti@home analyse les données obtenues

du radio-télescope d’Arecibo, distribuant des unités des données parmi des ordinateurs

et profitant la capacité de traitement de plus de 200, 000 processeurs distribués autour du

monde pour analyser les données. Nous analysons les Mega flops (Mflops) utilisés pour

Seti@home qui on été rapportés par BOINC [3]. Nous considérons que Mflops est une

bonne métrique pour déterminer la capacité de traitement dans ce calcul scientifique par-

allèle, car nous sommes intéressés en traiter l’équilibrage de processus, pas des données.

4. MODÉLISATION xxix

Nous avons groupé les Mflops (dr) dans 30 groupes avec la formule suivante:

dr ∈ Ct si
⌊ r

106

⌋

= t (1.4)

et nous avons fait l’histogramme de fréquence, visible dans la Figure iv

En définissant une function de distribution normale

N (x) = 16000 × exp

(

−(x − 1300)2

2 × 4002

)

(1.5)

nous avons comparé la vraie distribution contre notre fonction modèle (N (x)) et nous

avons une valeur des statistiques d’essai de Kolmogorov-Smirnov (KST) de KST =
0.0605 (voir l’Annexe C). Par conséquent, nous pouvons déduire avec un niveau de confi-

ance de 0.01 que la capacité de processeurs des réseaux à grand échelle peut être modelée

par une distribution normale.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 500 1000 1500 2000 2500 3000

F
 r

 e
 q

 u
 e

 n
 c

 y

M f l o p s

Figure iv: Distribution des fréquences des Mflops des 200,000 processeurs enregistrés dans Seti@home et

la distribution normale qui fait la modélisation.

Pour obtenir les liens de notre grille de bureau, nous utilisons l’algorithme de l’infras-

tructure Pair-à-Pair de ProActive [24], c’est-à-dire:

1. Un nouveau pair doit avoir une liste d’adresses de ”serveur”. Les serveurs sont des

pairs qui ont un potentiel élevé d’être disponibles et d’être dans le réseau de P2P, ces

sont d’une certaine manière le noyau du réseau Pair-à-Pair.

2. En utilisant cette liste, le nouveau pair essaye de se communiquer avec le plus proche

serveur. Quand un serveur est accessible, le nouveau pair l’ajoute dans sa liste de

pairs connus (connaissances). Les serveurs sont les responsables de maintenir dans

ses listes aux autres serveurs.

xxx ÉQUILIBRAGE DE CHARGE POUR DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

3. Le nouveau pair doit découvrir de nouvelles connaissances par l’infrastructure Pair-

à-Pair, en envoyant des messages d’exploration à ses connaissances. Chaque pair a

la capacité de décider quand il veut arrêter le transfert du message: quand un pair

reçoit le message, il doit décider s’il veut être une connaissance avec une probabilité

donnée (expérimentalement définie entre 0.66 et 0.75), s’il accepte, le message est

transmis.

4. Chaque pair doit répéter le processus d’exploration pour avertir aux autres pairs qu’il

est encore vivant et connecté.

Nous avons utilisé notre modèle pour simuler un logiciel développé avec ProActive et

pour déterminer si notre algorithme d’équilibrage de charge peut présenter des problèmes

s’il est utilisé dans une réseau à grand échelle.

Passage à l’échelle

Dans un réseau simulé, nous avons organisé les nœuds par ordre de capacité de traitement,

de la plus haute à plus basse, et nous avons défini le sous-ensemble optimal comme les

premiers OPT nœuds qui satisfont la condition:

OPT
∑

i=1

µi > m × λ (1.6)

Après une simulation d’une application avec 100 objets actifs et en utilisant différente

taille de réseau (n × n), nous avons découvert que:

• OPT(n = 10) = 13,

• OPT(n = 20, 30) = 11,

• OPT(n = 40) = 10,

• OPT(n ∈ [50, 90]) = 9

Les résultats de la taille optimale de sous-ensemble (OPT) sont justifiés par le modèle de

la capacité de traitement (une distribution normale): plus grande est la taille du réseau,

plus haute est la capacité de traitement des meilleurs nœuds, et plus bas est le nombre de

nœuds dans le sous-ensemble optimal.

Afin de mesurer l’exécution de notre algorithme dans les réseaux à grande échelle,

nous définissons le rapport optimum d’algorithme (ALOP) comme:

ALOP =
Nombre de nœuds utilisés pour l’algorithme

OPT
(1.7)

En même temps, nous calculons le nombre moyen de migrations accumulées effectuées

par tous les objets actifs depuis le temps 0 jusqu’au temps t. Une augmentation de la

taille du sous-ensemble de connaissances a comme conséquence une augmentation de

la probabilité de trouver un nœud pour migrer, et par conséquent une augmentation de

la probabilité d’atteindre l’état optimal. Recherchant le plus mauvais scénario traitable,

et suivant les recommandations de [24], nous montrons seulement les résultats pour un

sous-ensemble de taille 3.

4. MODÉLISATION xxxi

La figure v montre les résultats de notre algorithme dans des réseaux de n × n nodes,

avec n = 10, 20, ..., 90. Notez que dans les premières unités du temps, notre algorithme

augmente le nombre de nœuds employés, car les objets actifs sont placés dans un pe-

tit sous-ensemble du réseau, produisant une surcharge élevée dans ce sous-ensemble.

Puis, l’algorithme effectue rapidement des migrations pour réduire la surcharge. Puis,

seulement l’étape de vol-des-travaux de notre algorithme groupe les objets actifs sur

les meilleurs nœuds, réduisant le nombre de nœuds employés par l’algorithme. Les

expériences ne rapportent aucun nœud surchargé au-delà du temps 30.

La figure 6.9 présente deux comportements au même temps:

1. Nombre de nœuds employés par l’algorithme, car le nombre de nœuds optimaux

employés par une distribution statique (OPT) est constant pour chaque nombre de

nœuds (n×n). Nous voulons grouper tous les objets actifs dans un ensemble minimal

de nœuds pour éviter les retards de communication.

2. Le rapport d’ALOP (nombre de nœuds employés par l’algorithme contre le nombre

de nœuds employés par une distribution statique optimale OPT); c’est-à-dire, la

qualité des sous-ensembles minimaux trouvés par l’algorithme.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000

n
o
d
e
s
 u

s
e
d
:

a
lg

o
ri
th

m
/o

p
ti
m

a
l

time

n=10x10
n=20x20
n=30x30
n=40x40
n=50x50
n=60x60
n=70x70
n=80x80
n=90x90

Figure v: Passage à l’échelle

La figure v montre comment dans un premier temps l’algorithme réagit contre une

surcharge en distribuant les objets actifs dans le réseau et puis, il montre aussi comment

un état stable est atteint en groupant des objets actifs. Un comportement ressemblant peut

être vu dans la figure vi, avec un nombre élevé des migrations accumulées au début et

après le système devient stable, ou ils existent quelques migrations afin de grouper les

xxxii ÉQUILIBRAGE DE CHARGE POUR DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

objets actifs sur les meilleurs processeurs. Pour toute taille de réseau étudiée, les courbes

restent au-dessous de 6.5 migrations par objet actif. D’ailleurs, considérant seulement le

temps 1000, nous pouvons voir que le nombre de migrations de notre algorithme est de

l’ordre O(log(n)). Ces deux résultats sont prometteurs en termes de le passage à l’échelle

de notre algorithme.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 200 400 600 800 1000

n
u

m
b

e
r

o
f

m
ig

ra
ti

o
n

s

time

n=10x10
n=20x20
n=30x30
n=40x40
n=50x50
n=60x60
n=70x70
n=80x80
n=90x90

Figure vi: Migrations

4.2 Modélisation d’une grille de projet

Le paradigme de la grille prétend améliorer le partage des ressources hétérogènes, et leur

agrégation dans des plateformes véritablement globales, pour être employé par des or-

ganismes multiples et des utilisateurs indépendants [58]. Dans l’infrastructure naissante

de grille, cette prétention devient réalité [14], par exemple, la grande grille de CERN

(LCG [116]) entoure aujourd’hui plus de 200 clusters et 40, 000 processeurs à tout mo-

ment, et des projets multi-institutionnels commencent à exécuter leurs applications dans

les environnements (virtuels) dynamiquement créés. Cependant, la balance de charge

réalisée s’accompagne d’un coût: la dynamique des ressources exige que les applications

soient équipées d’une conscience d’environnement, c’est-à-dire, la capacité de s’adapter

à la disposition et au comportement de l’environnement. Ce problème de conscience

d’environnement forme le centre de cette section.

Le projet ProActive PlugTests grid [50] est employé normalement comme environ-

nement pour résoudre le problème des n-reines: les participants programment avec Pro-

Active une application qui doit résoudre le plus grand possible exemple du problème de

4. MODÉLISATION xxxiii

n-reines. L’infrastructure est fournie par les organisateurs, par plusieurs établissements de

recherches qui emploient ProActive, et par certains des participants.

Nous avons obtenu l’information concernant à la version 2005 du PlugTests: les car-

actéristiques des ressources partagées par chaque établissement participant, et la latence

de communication entre deux ressources dans la grille de projet. L’information de latence

a été obtenue comme suit. Deux sources ont été considérées, une située dans le réseau de

l’INRIA Sophia-Antipolis en France (INRIA), et une située au service d’informatique de

l’université du Chili (DCC). Nous avons envoyé 100 ping messages à chaque ressource

participante. Les latences moyennes observées ont été choisies pour représenter la dis-

tance entre les sources et les clusters participants.

La table 1.1 dépeint les caractéristiques de la grille de projet de PlugTests. Le chef de

project a été FRANCE G5K, qui de loin domine la grille de projet par taille, l’établissement

de CHINA offre la meilleure exécution par-nœud et l’établissement des NETHERLANDS

consacre 20 de ses 72 nœuds à cette grille de projet. Plusieurs établissements participent

avec les ressources partagées à la grille de projet, leurs ressources peuvent également être

employées par des utilisateurs externes au projet, donc faisant la variable réelle de taille

de contribution. Par exemple, le vrai Mflops/node mesuré à l’établissement CHINA était

autour de 90 au lieu des 569.92 théoriques.

Table 1.1: Caractéristiques de la grille de projet PlugTests. Les lettres C et P représentent les ressources

consacrés et partagés respectivement.

Pays nœuds Mflops Mflops
node

distance(INRIA) distance(DCC) Type

AUSTRALIA 13 1,658 127.54 394 329 C

BRAZIL 8 2,464 308.00 268 60 C

CHILE I 26 2,917 112.19 299 2.1 C

CHILE II 30 5,103 170.1 388 17.5 P

CHINA 184 104,865 569.92 287 392 P

FRANCE G5K 822 278,647 338.99 2.1 299 C

FRANCE 162 48,298 298.14 2.1 301 P

GREECE 16 4,125 257.81 168 464 C

IRELAND 14 2,147 153.36 42.3 308 P

ITALY I 25 3,465 138.60 58.5 314 C

ITALY II 33 2,385 72.27 39.7 298 C

NETHERLANDS 20 1,346 67.3 32.2 284 C

NORWAY 22 2,328 105.82 51.7 302.67 C

SWITZERLAND 46 3,918 85.17 29.14 288.7 P

U.S.A 22 3,179 144.5 169.1 134.3 C

Les résultats prouvent que dans les grilles de projet, les groupes de ressources proches

et très loin sont la majorité (Figure vii). Ceci diffère de la situation observée dans les

grand réseaux Pair-à-Pair [71], dont les applications de ProActive partagent le modèle de

topologie.

Notre modèle de réseau a été modifié pour modéliser une grille de projet, le nouvel

algorithme de construction est le suivant:

1. Considérer une représentation discrète de l’espace euclidien dans la quelle les res-

sources sont physiquement placés. Choisir aléatoirement un ensemble d’ établisse-

ments et leur assigner dans des positions aléatoires (ou des positions connus, si la

xxxiv ÉQUILIBRAGE DE CHARGE POUR DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

1

10

100

1000

10000

0-10 10-40 40-70 70-100 100-130 130-160 160-190 190-220 220-250 250-oo

Distance [ms]

N
u

m
b

e
r
 o

f

n
o

d
e
s

INRIA

DCC

Figure vii: La latence des nœuds de la grille de projet PlugTests

topologie est fixée à l’avance). Pour modéliser l’environnement de PlugTests, nous

avons choisi une matrice des 40 × 40 nodes, et 10 établissements.

2. Les établissements sont employés comme serveurs de connexion, et tous les liens

créés reçoivent une distance de 1.

3. Connecter les ressources appartenant au même cluster, et marquer tous les liens nou-

vellement créés avec une distance de 1; toutes les ressources dans un cluster peuvent

se relier entre elles à coût bas (local).

4. Connecter les ressources de différents clusters; la distance entre les nœuds de deux

clusters différents est la distance euclidienne des serveurs. Si une ressource ap-

partient à plusieurs clusters, assigner aléatoirement la ressource à un cluster. Pour

PlugTests, nous avons assigné les latences de communication à partir des traces (Fig-

ure vii).

5. Dans chaque ressource, choisir une capacité de traitement correspondant au modèle.

Pour nos données, nous avons choisi une capacité de traitement à partir d’une dis-

tribution uniforme U [50, 150] pour chaque cluster et nous avons assigné à chaque

processeur de ce cluster un valeur de µi±ε, ε ∈ [0, 1]. Nous avons assigné au cluster

qui représente le chef de project (le cluster de FRANCE G5K dans nos données) une

capacité de µ = 350 ± ε.

En utilisant notre modèle de grille de projet, nous avons testé notre algorithme d’équili-

brage de charge. Dan le domaine des grilles de projets, de nouveaux problèmes parallèles

4. MODÉLISATION xxxv

peuvent être résolus, car ces grilles correspondent à une alliance scientifique. Par exemple,

en plus des problèmes de type Maı̂tre-Ouvrier, des problèmes de type Single-Programme

Multiple-Data (SPMD) [7] sont étudiés. À partir de la section précédente nous savons

que l’algorithme groupe les objets actifs dans les ordinateurs. Dans cette section, nous

voulons déterminer si les nœuds utilisés sont proches ou pas, c’est-à-dire, si une applica-

tion parallèle qui utilise de la synchronisation soit basculée avec notre algorithme, cette

application améliorera son exécution ou pas.

Nous avons modélisé le comportement des objets actifs (communication, migration et

synchronisation) en considérant que les communications distantes et les migrations peu-

vent être modélisés comme services, car dans la réalité ils retardent les services normaux

de ProActive. En plus, nous modelons la synchronisation comme un service spécial, qui

au moment d’être servi demande à l’objet actif de sortir de son processeur (pas de son

nœud), et l’objet actif ne rentre pas au processeur jusqu’au le moment dont ce service soit

traité dans tous les objets actifs concernés dans la synchronisation.

Comme nous avons dit, le problème de la conscience d’environnement est très impor-

tant dans le cadre des grilles de projet. Donc, nous avons modifié le processus de sélection

de candidat de notre algorithme pour l’ajouter cette conscience:

1. Avant de sélectionner, l’algorithme ordonne les candidates de la plus basse à la plus

haut distance, et les candidats sont énumérés (i = 1, ..., n) .

2. Le candidat est choisi aléatoirement en suivant une fonction de distribution i−2,

comme est proposé par Kleinberg [74].

Nous avons simulé une application parallèle qui utilise 100 objets actifs sur notre

modèle de réseau, et nous avons mesuré le nombre total de services dans les queues des

objets actifs, en considérant que l’application est exécutée pendant 1, 000 unités du temps.

Dans cette expérience, nous avons testé les étapes de notre algorithme avec la conscience

d’environnement (crh pour le partage-de-travail et cws pour le vol-du-travail) et sans cette

conscience (rh pour le partage-de-travail et ws pour le vol-du-travail). En plus, nous avons

testé chaque étape tout-seul ou en travail conjoint.

Nous avons groupé les objets actifs en 10 groupes de communication, et fixé le ratio

de synchronisation toutes les 10 unités de temps. Chaque objet actif doit se synchro-

niser avec les autres 9 membres de son groupe de communication. Les résultats de notre

expérience, s’il avait pas des queues saturés à la fin de l’expérience, sont présentés dans

la Figure viii par un factor de migration M = 1.0 (le coût de migration est M × distance

services). Le pourcentage des expérimentes qui n’ont pas des queues saturés par al-

gorithme est présenté dans la Figure ix. Dans ces figures, nous montrons que la con-

science d’environnement est indispensable pour un algorithme de balance de charge dans

les grilles de projet (l’algorithme de partage-de-travail connais son environnement par

définition): l’algorithme faille parce-que l’application a besoin de plus de ressources qui

ces qui le cluster peut donner (algorithmes crh, cws et crh-cws) ou il faille parce-que les

migrations sont à long-distance (algorithmes ws, crh-ws et rh-ws).

Pour aider à une exécution correcte des applications parallèles, nous proposons les

contrats pour la négociation des ressources entre l’application et les grilles [26].

Dans l’approche traditionnelle, le créateur d’une application et les créateurs de de-

scripteur doivent avoir un accord précédent sur le nom du nœud Virtuel (NV). Ceci sig-

xxxvi ÉQUILIBRAGE DE CHARGE POUR DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200 1400

n
u
m

b
e
r

o
f

re
q
u
e
s
ts

 o
n
 a

ll
q
u
e
u
e
s

time

rh
crh

crh-cws
crh-ws
rh-cws

cws
ws

rh-ws

Figure viii: Nombre total des services dans tous les objets actifs, avec synchronisation chaque 10 unités de

temps

Figure ix: % de confiance des algorithmes selon le factor de migration M

nifie que le nom du nœud virtuel est écrit à l’intérieur de l’application et du descripteur.

Si l’application veut employer un nouveau descripteur, le descripteur ou l’application

doivent être modifié pour s’accorder sur le nouveau nom du nœud virtuel.

5. CONCLUSIONS ET TRAVAUX FUTURS xxxvii

Une solution possible à ce problème est de passer le nom du nœud virtuel en paramètre

de l’application. Néanmoins, le problème de penser le nom approprié du nœud virtuel

dans le descripteur persiste.

En plus, le nom du nœud virtuel n’est pas la seule information partagée qui peut poser

des problèmes. Par exemple, un descripteur pourrait être configuré pour se déployer sur

k nœuds, mais l’application exige seulement j nœuds (j < k). Sans clauses partagées, le

descripteur doit être modifié pour se conformer aux conditions de l’application.

La modification de l’application ou du descripteur peut être un problème de complexité

similaire ou supérieur au problème parallèle a exécuter, particulièrement si nous con-

sidérons que la personne qui fait l’application (deployer) peut ne pas être l’auteur du de-

scripteur ou, pire encore, la source d’application peut ne pas être disponible pour inspecter

les conditions et effectuer des modifications.

Les contrats garantissent que l’information partagée par l’application et les descrip-

teurs soit valide pour tout les deux, pendant toute la validité du contrat.

5 Conclusions et travaux futurs

Dans cette thèse, un algorithme d’équilibrage de charge pour les objets actifs a été présenté,

plaçant les bases du développement des algorithmes d’équilibrage de charge dans ProAc-

tive.

Nous avons conclu que la meilleure politique pour des applications parallèles com-

muniquées intensivement développées avec ProActive, était une politique initié pour les

machines surchargées en conjoint avec une politique initiée pour les machines en sous-

charge. Cette configuration exécute une réaction rapide contre les surcharges et profite

des meilleurs ressources d’un réseau Pair-à-Pair, groupant les objets actifs sur un sous-

ensemble de processeurs qualifiés meilleurs.

Nous avons étudié notre algorithme d’équilibrage de charge sur des grilles de bureau,

visant une distribution proche-optimale des objets actifs en utilisant seulement l’informa-

tion locale fournie par l’infrastructure Pair-à-Pair. De plus, l’algorithme emploie environ

1.7 fois le nombre optimal de nœuds pour des réseaux jusqu’au 400 nœuds, et utilise moins

de 5.5 migrations par objet actif. Le nombre de migrations est de l’ordre O(log(n)) après

que le premier état optimal (sans nœuds surchargés) soit atteint.

Nous avons présenté le concept de conscience d’environnement, consacré aux appli-

cations parallèles développées avec ProActive. De plus, nous avons montré la définition

et modèle de grilles de projet. Nous avons simulé les objets actifs sur notre modèle de

grille pour montrer l’importance de la conscience d’environnement dans les algorithmes

d’équilibrage de charge qui s’exécutent sur grilles de projet.

À l’avenir, nous projetons de prolonger le travail sur des algorithmes d’équilibrage

de charge avec de conscience d’environnement avec des métriques: symétriques (par ex-

emple, la largeur de bande dans un réseau sans restriction), asymétriques (par exemple,

la largeur de bande dans un réseau avec la formation du trafic et différentes quotas pour

différents participants dans la grille de projet), et défini par l’utilisateur (par exemple,

basés sur des principes économiques).

Nous avons montré comment employer l’accouplement basé sur des contrats pour as-

xxxviiiÉQUILIBRAGE DE CHARGE POUR DES OBJETS ACTIFS DANS LES GRILLES DE CALCUL

surer des conditions minimales de déploiement d’ applications parallèles. À ce jour un

contrat a seulement deux états : valid ou invalid. À l’avenir, nous voudrions prolonger ce

concept en ajoutant des niveaux de conformité dans les contrats d’accouplement. Ainsi,

un niveau minimum de conformité pourrait être donné pour des applications de base, et

des niveaux plus élevés de conformité pourrait être employés pour les dispositifs plus

avançés qui exigent des clauses plus spécifiques.

Du côté de l’infrastructure de grille, à l’avenir nous voudrions identifier les interfaces

standards pour des applications d’accouplement avec différents types de grilles. L’idée

est de pouvoir faire des applications emballées avec ses interfaces qui peuvent certifier le

déploiement d’une application avec une interface donnée de grille.

Part II

Thesis

1

Chapter 1

Introduction

“A herd of buffalo can only move as fast as the slowest buffalo. And when

a herd is hunted, its the slowest and weakest ones in the back, that are killed

first...”. (Cliff Clavin from “Cheers”)

This thesis aims to set the foundations for the development of load-balancing algo-

rithms for the active objects model defined by ProActive [97] in the context of large-scale

networks (Grids).

ProActive is an open-source Java middleware which achieves seamless programming

for concurrent, parallel, distributed, and mobile computing, implementing the active-

object paradigm [134]. In ProActive, each active object has its own control thread and can

independently decide in which order to serve incoming method calls. Incoming method

calls are automatically stored in a queue of pending requests (called a service queue).

When the queue is empty, active objects wait for the arrival of a new request; this state

is known as wait-for-request. Active objects are accessible remotely via method

invocation. Method calls with active objects are asynchronous with automatic synchroni-

sation using future objects, and the synchronisation is provided automatically handled by

a wait-by-necessity mechanism [31].

To add efficiency to the active objects paradigm, ProActive provides a migration mech-

anism, that is, a way to move any active object from any Java Virtual Machine (JVM) to

another JVM [11]. The remote references towards the active objects that have been mi-

grated must remain valid after the migration; in ProActive, forwarding of requests and

replies provide automatic location and transparency. The migration operation comes with

a communication penalty: an active object must migrate with its complete state, that

means, its pending requests (method calls), futures, and passive (mandatory non-shared)

objects. Therefore, ProActive applications are very sensitive to latency.

When several active objects with identical functionality are deployed, a load balancing

algorithm can be used to improve the performance of an application using that functional-

ity [45, 47, 89, 104, 109] . Such an application must make use of the needed functionality

several times until it finishes. We denote each functionality use by work unit. We de-

note the total work units required by an application to finish by workload. To use some

active object’s functionality, an application puts a work unit into the active object’s ser-

vice queue. The workload can be balanced across several active objects either by sending

active-objects from a highly loaded processor to a less loaded one (push model), or by

3

4 CHAPTER 1. INTRODUCTION

stealing active-objects from a highly loaded processor by a less loaded one (pull model).

For the Grid case, the environment where the active objects run is usually composed of

multiple clusters of resources, e.g., a set of monitor-less machines inter-connected by a

high-speed local network. In ProActive, the active objects form a P2P network [24]; the

load-balancing algorithm should also take into consideration the topology of this network.

Note that for ProActive applications latency is a key performance estimator.

Given the impossibility of having access to a large-scale network (over 1, 000 nodes)

to perform all the tests needed, most of the time we perform network simulation to ad-

just algorithm parameters. In that case, we present our model of Grids based in obser-

vation and measurement of what we consider the key characteristics for active-objects

load-balancing: processing capacity and inter-resource communication latency. The grid

computing research community has started to realise the importance of validated mod-

els for simulation work. Therefore, there have been several approaches in the last 2-3

years [84, 72, 76, 87, 70]. However, to the best of our knowledge, ours is the first ap-

proach to research the characteristics of these components of the grid infrastructure.

This thesis is organised as follows. First we explain the concept of object in Chapter 2,

followed by the Active-Objects Model and its implementations. Chapter 3 introduces the

concept of network and Grids in the context of parallel computations. Chapter 4 presents

the state of the art in Load-Balancing models and algorithms, explaining in Chapter 5 why

performing load-balancing in a parallel application developed within ProActive will speed

up these applications and setting the foundations for Load-Balancing of Active-Objects.

In Chapter 6 we present and discuss our Grid and active-objects models used during fine-

tuning and testing of our load-balancing algorithm for active-objects. Finally, conclusions

of this thesis and discussions of future work are presented in Chapter 7.

The time-line of this thesis is:

• First, we tested if the communication architecture of ProActive’s active objects fits

in the information-collection phase of well known schemes of load-balancing. This

work lead to a publication presented in Sixth IEEE International Symposium and

School on Advanced Distributed Systems (ISSADS 2006) [27].

• Then, we focused in minimising the number of messages used by the load-balancing

algorithm. Using the previous work and well-known facts of Peer-to-Peer networks

we proposed to perform the information phase on-demand, exploiting the probability

of having a response of another processor due the low probability of having over-

loaded processors and the high number of processors connected to a Peer-to-Peer

network. We demonstrated that load-balancing of active-obejcts parallel applica-

tions can be performed using a minimal set of acquaintances in Section 5.4.2, having

better performance than a server-oriented scheme. This work generated a publication

presented in 25th International Conference of the Chilean Computer Science Society

(SCCC 2005) [24].

• Our load-balancing algorithm performed balancing until a stable-state (without over-

loaded processors) is reached, but we experimentally determined that commonly this

algorithm did not reach optimal configurations, even using best qualified processors,

because its objective was to perform fast reactions against overloadings. Therefore,

5

we added a work-stealing [13, 18, 36] step to our algorithm, aiming to reach opti-

mal configurations. This work is presented in Chapter 6 and generated a publication

presented on 12th Workshop in Job Scheduling Strategies for Parallel Processing

[28].

• We noted that sometimes our load-balancing algorithm did not speed up a given par-

allel application in some Grids which we defined as Project Grids (Section 3.1.3),

even though active-objects were grouped on the best qualified processors. There-

fore, we improved our model to consider object communication and synchronisation,

discovering the usefulness of environment-awareness in load-balancing algorithms.

This work is presented in Section 6.2 and generated a publication accepted in Core-

GRID Integration Workshop 2006 [25].

• Finally, we noted that for some configurations the first deployment of a given parallel

application influenced both application and load-balancer performance [25], there-

fore we recommend to use of contracts for coupling to improve the first deployment

of a ProActive parallel application. This work generated a publication presented in

CoreGRID Workshop on Grid Middleware (in conjunction with EuroPar) 2006.

Contributions of collaborators that are discussed in this thesis are the following:

• in Section 3.1.3, the definition of Project Grids is a joint work of Alexandru Iosup

and the author.

• In Section 3.2, the original infrastructure of a Peer-to-Peer network developed within

active-objects is by Alexandre di Costanzo, the model presented in this thesis is an

optimization by the author presented in [24].

• In Chapter 6, simulations of algorithms are inspired on the implementation of “small-

world” networks by Kleinberg in [74].

• In Section 6.3, coupling contracts is an idea generated by Mario Leyton, arithmetic

and contract use for discovering resources are by the author.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Active Objects

“It has therefore recently suggested that one should combine a shared vari-

able and the possible operations on it in a single, syntactic construct called

monitor. It is, however, too early to speculate about what this approach may

lead to”. (Per Brinch-Hansen, 1973)

In 1994, Grady Booch [21] documented the model of objects, describing which are the

characteristics that a standard object must provide:

1. Data Encapsulation: the techniques of data encapsulation [4] restrict the data access

to a set of functions associated to that data. In the Object Oriented Paradigm, the unit

of data encapsulation is the object. Each object encapsulates a set of variables (a

state) and a set of used methods to access and to modify the variables (an interface).

The only way to use the data is by the invocation (call) of some of the methods

that compose the interface of the object. Therefore, the state of the object between

method invocations is preserved.

2. Inheritance: In the Object Oriented Paradigm, it appears in a natural way the con-

cept of class to express the common characteristics between objects with identical

behaviour that are different only by their state. Each class defines the interface and

encapsulates the state of that class. Inheritance [15] is a technique that allows a set of

classes to share parts of a common interface and behaviour (methods and variables).

3. Polymorphism: polymorphism allows that different objects respond to the same

message and will be the system, at runtime, which decides the suitable interpretation

of the message based on the concrete instance of an object. It allows to write differ-

ent behaviours for a same interface, and the decision from which one to use could be

taken based on the parameters received during the call. Polymorphism through in-

heritance consists on the redefinition of a method in such a way that, when a method

in an object is invoked, the decision of which method will be executed to answer the

messages, is taken at execution time.

More recently, a similar definition of objects is provided by Wegner in [132]:

“Objects are collections of operations that share a state. The operations de-

termine the messages (calls) to which the object can respond, while the shared

state is hidden from the outside world and is accessible only to the object’s

7

8 CHAPTER 2. ACTIVE OBJECTS

operations. Variables representing the internal state of an object are called in-

stance variables and its operations are called methods. Its collection of meth-

ods determines its interface and its behaviour.”.

In this chapter, we first define an active-object, followed by the concept of reflection

in object oriented programming, and finishing with the description of an implementation

of active-objects using reflection: ProActive.

2.1 Active Objects

Due to the great popularity and acceptance of the Object Oriented (OO) Paradigm, several

concurrent OO programming languages have been designed and implemented, based on

the model of concurrent objects where each object is an active organisation [134] or all

objects are not active but the active entities are objects [30, 29]. Nevertheless, from the

point of view of the operating system, each object was a process with an only thread of

control. Therefore, it was imperative to write great amount of additional code to support

the abstractions by the objects.

As a consequence of the abstraction overcost, the object/thread model [95] was intro-

duced in 1995 in the context of an Operative System called Clouds [42]. In this model,

the objects are address spaces with names that provide storage of data and methods for

the manipulation. They are passive entities which provide functions to share data and

synchronisation. On the other hand, the threads represent the control flow in the system

by the invocation and later execution of methods.

One advantages of this model is its good performance, because multiple threads can

run at the same time in mono-processors with low cost. However, a main disadvantage is

the mutual exclusion, because threads are running independently. Also, the introduction

of external code to the object to perform synchronisation adds complexity to the program-

ming, specially if it is used combined with the inheritance.

2.2 Reflection

In human terms, reflection is the act of thinking about the own ideas, actions and experi-

ences. In the field of the computer systems, the reflectivity appeared first in the field of

the Artificial Intelligence and then it was quickly propagated to other fields like program-

ming languages [111], and in the object-oriented technologies, where it was introduced

by Pattie Maes [85].

Several definitions of reflectivity exist, and the most extended, with some modifica-

tions, it was given by Bobrow, Gabriel and White [19]:

”Reflection is the ability of a program to manipulate as data something rep-

resenting the state of the program during its own execution”.

In this manipulation two fundamental aspects exist: introspection and intercession.

Introspection is the ability of a program to observe and to reason about its own state.

Intercession is the ability of a program to modify its own state of execution or to alter its

2.2. REFLECTION 9

own interpretation [19, 86]. Both aspects require a mechanism that codifies the state of

execution like data, Reification provides such codification.

2.2.1 Reflective Architecture

A reflective architecture provides a mean to introduce the reflecting computation in a mod-

ular way, which makes the system more comprehensible and easy to modify. It is, then,

common to think about a structured reflecting system or compound, from a logical point

of view, by two or more levels, which build a reflective tower [128] (Figure 2.1). Each

level serves as a base level for the upper level and reflects to the lower level. The base

solves the external problem while the reflecting part (meta-level) maintains information

and determines the behaviour of the bases.

Base Level
method

object

reificationreflection

Meta − Meta − Level

Meta − Level

Figure 2.1: The reflection process, featuring levels of data, reification and reflection.

Moreover, the work of Jaques Ferber “Computational Reflection in Class based Object

oriented Languages” [53] presents the key features that all reflective architectures must

perform:

• A reflective architecture has to determine which aspects are wanted to be reflected,

that is to say, what organisations and/or characteristics must be exposed.

• A reflective architecture has to determine the representation of the system within

the system. There are, at least, two approaches to build self-representation of a

computer system: To assume the existence of a data set that represents the system

and to introduce the self-representation of each organisation as an individual form in

the system [129].

• A reflective architecture has to maintain the cause-effect relation between the model

of the system and the system itself (between base and meta-levels)

• A reflective architecture has to determine how to activate the meta-computation and

when the control returns to the base level.

10 CHAPTER 2. ACTIVE OBJECTS

In next section, we introduce ProActive as a reflective implementation of Active Ob-

jects.

2.3 ProActive

ProActive is an open source1 Java library for parallel, distributed, and concurrent com-

puting, also featuring mobility and security in a uniform framework. With a reduced set

of simple primitives, ProActive provides a comprehensive API allowing to simplify the

programming of applications that are distributed on Local Area Networks (LAN), on clus-

ters of workstations, or on Internet Grids. ProActive uses only standard Java classes, and

requires no changes to the Java Virtual Machine, no pre-processing or compiler modifica-

tion; programmers write standard Java code. Based on a simple Meta-Objects Protocol,

the library is itself extensible, making the system open for adaptations and optimisations.

ProActive currently uses the RMI Java [113] standard library as the default portable trans-

port layer.

2.3.1 Distribution model

The ProActive library was designed and implemented with the aim of importing reusabil-

ity into parallel, distributed, and concurrent programming in the framework of a MIMD2

model. Reusability has been one the major contributions of object-oriented programming,

and ProActive brings it into the distributed world. Most of the time, activities and distri-

bution are not known at the beginning, and they change over time. Seamlessness implies

reuse, smooth and incremental transitions.

The model of distribution and activity of ProActive is part of a larger effort to improve

simplicity and reuse in the programming of distributed and concurrent object systems

[31, 32], including precise semantics [5]. It contributes to the design of a concurrent

object calculus named ASP (Asynchronous Sequential Processes) [33, 34]. As shown in

Figure 2.2, ProActive seamlessly transforms a standard centralised mono-threaded Java

program into a distributed and multithreaded program.

2.3.2 Active Objects implementation for ProActive

A distributed or concurrent application built using ProActive is composed of a number of

medium-grained entities called active objects. Each active object has one distinguished

element, the root, which is the only entry point to the active object. Each active object

has its own thread of control and is granted the ability to decide in which order to serve

the incoming method calls that are automatically stored in a queue of pending requests.

Objects that are not active are designated as passive.

There are three ways to transform a standard object into an active one:

1. The Class-based approach is the more static one. A new class must be created ex-

tending an existing class, and must implement the Active interface. The Active

interface is a tag interface that does not specify any method. This approach allows

1Source code under LGPL license
2MIMD stands for Multiple Instruction Multiple Data

2.3. PROACTIVE 11

Passive object Java Virtual Machine / ComputerThreaded Object

Sequential DistributedMulti−threaded

Figure 2.2: Parallelisation and distribution with active objects

adding specific methods useful in distributed environment and possibly to define

a new service policy in place of the default First In First Out (FIFO) service (see

ProActive’s documentation at [97] for further details about service policy).

public class pA extends A implements Active { }

Object[] params = new Object[] {"s", new Integer (28)

};

A a = (A) ProActive.newActive("pA", params, node);

The array of objects params represents the parameters to use for the remote creation

of the object of type A. The parameter node is an abstraction of the physical location

of an active object (cf. Section 2.3.5).

2. With the instantiation-based approach, a Java class that does not implement the

Active interface is directly instantiated without any modification to create an ac-

tive object. The parameters params and node play the same role as above.

Object[] params = new Object[] {"s", new Integer (28)

};

A a = (A) ProActive.newActive("A", params, node);

3. Finally, the object-based approach allows transforming an already existing Java ob-

ject into an active object, possibly remote. It is possible to turn both, active and

remote objects, for which the source code is not available, a necessary feature in the

context of code mobility. If the node parameter is null or designates the local

JVM, new elements are created to transform the object into active object (those el-

ements are meta-objects presented in Section 2.3.6). Otherwise, if node refers to a

remote JVM a copy of the object is sent on the remote JVM and transformed into an

active object. The original passive object remains on the local JVM.

A a = new A ("s", 28);

a = (A) ProActive.turnActive(a, node);

12 CHAPTER 2. ACTIVE OBJECTS

2.3.3 Message Passing for Actives Objects in ProActive

The active object creation primitives of ProActive locally return an object compatible with

the original type because of polymorphism. For instance, at the A class:

public class A {

public void methodVoid () {...}

public V getaV () {...}

public V getanotherV () {...} throws AnException {...}

}

The methods provided by class A could be remotely invoked but the communication

semantics would differ:

• The method named methodVoid does not return any result, so it will perform only

a communication from the caller to the callee. This is a one-way method call.

• The getaV method requires a bidirectional communication. Firstly, from the caller

to the callee, then from the callee to the caller in order to return the result. With

ProActive this communication is separated into two steps detailed below. Between

the steps, activity of the caller does not stop because this is an asynchronous method

call.

• The getanotherV method is quite similar to the previous method except that it

can raise an exception. Therefore, the call to getanotherV is managed as a syn-

chronous method call. Methods returning a primitive type or a final class are also

invoked in a synchronous way.

Objects given as parameters are copied on the caller side to be transmitted to the callee

side.

Second and third previous cases are explained in Figure 2.3, which exposes an asyn-

chronous call sent to an active object and introduces transparent future objects and syn-

chronisation handled by a mechanism known as wait-by-necessity [31]. There is a short

rendezvous at the beginning of each remote call, which blocks the caller until the call has

reached the context of the callee. In Figure 2.3, step 1 blocks until step 2 has completed.

At the same time a future object is created (step 3). A future is a promised result that will

be updated later, when the reply of the remote method call returns to the caller (step 5).

The next section presents synchronisation and control of such futures.

A synchronous method call proceeds in similar steps, with two main differences.

Firstly, the future is not created (no step 3). This is due to the incapacity of the Meta-

Objects Protocol to create a future in the case the return type does not belong to a class.

Secondly, the activity of the caller stops until step 5 has completed (instead of steps 2/3

for an asynchronous call).

ProActive features several optimisations improving performance. For instance, when-

ever two active objects are located within the same virtual machine, a direct communi-

cation is always achieved, without going through the network stack. This optimisation is

ensured even when the co-location occurs after a migration of one or both of the active

objects.

2.3. PROACTIVE 13

3− A future object

is created

1− Object A performs

a call to method foo

2− The request for foo

is appended to the queue

5− The body updates the future

with the result of the execution of foo

6− Object A can use the result

throught the future object

4− The thread of the body

executes method foo on object B

Object BObject A

Proxy Body

Object A

Future

Result

Local node Remote node

Object B

Figure 2.3: Execution of an asynchronous and remote method call

2.3.4 Synchronisation: Wait-by-necessity

Let our active object a:

A a = (A) ProActive.newActive("A", params, node);

and the asynchronous method call:

V v = a.method();

As previously seen, v is a future. ProActive automatically deals with future objects

with a wait-by-necessity mechanism. Consider the new instruction:

v.glop();

There is no guarantee that the future v was updated before the method glop is in-

voked.If the result has arrived and hence the future has been updated when the call to

glop is executed, activity never stops. However, if the future has not yet arrived, the

wait-by-necessity mechanism stops the current activity until the future object is returned,

after which the activity is resumed and the method is executed. The wait-by-necessity

mechanism ensures a maximum efficiency of the asynchronism.

2.3.5 ProActive: Environment and implementation

ProActive is only made of standard Java classes, and requires no change to the Java Virtual

Machine (JVM), no pre-processing or compiler modification; programmers write standard

Java code. Using an unmodified Java development and execution kit, and the standard Java

classes ensures portability and allows running applications with all the JVM implementa-

tions. For debugging, which is especially critical in a distributed environment, avoiding

source code modification is more efficient. ProActive uses reflection techniques in order

to manipulate runtime events such as a method call. Supplementary code is dynamically

generated in the same fashion used by generative or active libraries [40, 124]. Based on a

simple Meta-Object Protocol, the library is itself extensible, making the system open for

14 CHAPTER 2. ACTIVE OBJECTS

adaptations and optimisations. ProActive currently uses the RMI Java standard library as

a portable communication layer.

Mapping active objects to JVMs: Nodes

A Node is an object defined in ProActive whose aim is to gather several active objects in a

logical entity. It provides an abstraction for the physical location of a set of active objects.

At any time, a JVM hosts one or several nodes. The traditional way to name and handle

nodes in a simple manner is to associate them with a symbolic name, which is a URL

giving their location, for instance rmi://sea/node1.

Consider a standard Java class A. The following instruction creates a new active object

of type A on the JVM identified with node1.

A a1 = (A) ProActive.newActive("A", params, "rmi://sea/

node1");

Assigning no third parameter or passing a null value will cause the active object to be

created on the local JVM (i.e. the JVM in which the newActive primitive is called).

Also, passing an active object as parameter triggers the co-allocation mechanism. For

instance, the active object a4 will be created in the JVM containing the active object a1:

A a4 = (A) ProActive.newActive("A", params, a1);

Note that an active object can also be bound dynamically to a node as the result of a

migration.

Node deployment

Active objects will eventually be deployed on very heterogeneous environments where

security policies may differ from place to place, where computing and communication

performances may vary from one host to the other, etc. As such, the effective locations of

active objects must not be tied to the source code.

A first principle is to eliminate from the source code the computer names, the creation

protocols and the registry and lookup protocols. The goal is to deploy any application

anywhere without changing the source code. For instance, we use various protocols (rsh,

ssh, Globus GRAM, LSF, etc.) for the creation of the JVMs needed by the application.

In the same manner, the discovery of existing resources or the registration of the ones

created by the application can be done with various protocols such as RMIregistry, Jini,

Globus MDS, LDAP, UDDI, etc. Therefore, the creation, registration, and discovery of

resources have to be done externally to the application.

To reach that goal, the programming model relies on the specific notion of Virtual

Nodes (VNs):

1. a VN is identified by a name (a simple string),

2. a VN is used in a program source,

3. a VN is defined and configured in a deployment descriptor, and,

4. a VN, after activation, is mapped to one or more nodes.

2.3. PROACTIVE 15

The concept of virtual nodes as entities for mapping active objects has been introduced

in [10]. Those virtual nodes are described externally through XML-based descriptors

which are then read at runtime when necessary. They help in the deployment phase of

ProActive active objects (and components).

Active objects are created on Nodes, not on Virtual Nodes. Both concepts, Nodes and

Virtual nodes, are justified and necessary. Virtual Nodes are a much richer abstraction,

as they provide mechanisms such as cyclic mapping, for instance. Moreover, a Virtual

Node is a concept of a distributed program or component, while a Node is actually a

deployment concept: it is an object that lives in a JVM, hosting active objects. There is

of course a correspondence between Virtual Nodes and Nodes: the function created by

the deployment, the mapping. This mapping can be specified in an XML descriptor. By

definition, the following operations can be configured in such a deployment descriptor:

1. the mapping of VNs to Nodes and to JVMs,

2. the way to create or to acquire JVMs, and,

3. the way to register or to lookup VNs.

Now, within the source code, the programmer can manage the creation of active objects

without relying on machine names and protocols. For instance, the following piece of

code allows creating an active object onto the Virtual Node Dispatcher. The Nodes

(JVMs) associated in a descriptor file with a given VN are started (or acquired) only

upon activation of a VN mapping (virtualNode.activateMapping() in the code

below).

Descriptor pad = ProActive.getDescriptor("file://des.xml");

VirtualNode myVirtualNode = pad.getVirtualNode("vnode");

myVirtualNode.activateMapping();

Node node = virtualNode.getNode();

A a = ProActive.newActive("A", params, node);

2.3.6 ProActive Meta-Object Protocol

ProActive is built on top of a Meta-Object Protocol (MOP) [73] that permits reification of

method invocations and constructor calls. As the MOP is not limited to the implementa-

tion of the transparent remote objects library, it also provides an open framework for im-

plementing powerful libraries for the Java language. As all other elements of ProActive,

the MOP is entirely written in Java and does not require any modification or extension to

the Java Virtual Machine, unlike other Meta-object protocols for Java [75, 123]. ProActive

makes extensive use of the Java Reflection API.

An active object provides a set of services, in particular asynchronous communication,

but it is important to separate concerns to ensure extensibility and maintenance. A meta-

object was introduced for each service provided by an active object. Figure 2.4 shows the

final decomposition.

The MOP creates the stub/proxy pair and the body with its meta-objects. The stub is

an entry point for the meta-level and it inherits the type of the object. Being a 100% Java

16 CHAPTER 2. ACTIVE OBJECTS

Figure 2.4: Base-level and meta-level of an active object

library, the MOP has a few limitations: primitive types cannot be reified because they are

not instances of a standard class nor final classes (including all arrays) because they cannot

be sub-classed. So primitive types and final classes are said to be not reifiable. The stub

overloads the public methods of the class. A method invocation creates a MethodCall

object that represents the executed method call. This object contains the invoked Method,

information about the return type, and a copy of each parameter.

The proxy maintains a reference to the active object. It is responsible for the commu-

nication semantics:

1. it hides the concept of remote or local reference, and

2. it transmits the MethodCall object (embedded into a Request object) to the

body of the active object.

The body is the entry point for all communications addressed to the active object. It is

the only remotely accessible part of the active object. The body is in charge of the meta-

objects attached to it. A request queue is attached to the body and it stores messages sent

to the body from local objects or other active objects. Requests are served with a FIFO

service policy by default, and this can be customised by the programmer.

Migration

Mobility is the ability to relocate at runtime the components of a distributed application.

The ProActive library provides a way to migrate an active object from any JVM to any

other one [11]. ProActive migrations are weak, which means that the code moves but not

the execution state (as opposed to strong mobility). Activity restarts from a stable state.

Any active object has the possibility to migrate. If it references some passive objects,

they will also migrate to the new location. Since we use serialisation to send the object on

the network, an active object has to implement the Serializable interface to be able

2.3. PROACTIVE 17

to migrate. The migration of an active object is triggered by the active object itself, or by

an external agent. In both cases a single primitive will eventually get called to perform

the migration. The principle is to have a very simple and efficient primitive to perform

migration, and then to build various abstractions on top of it. The name of the primitive is

migrateTo. For ease of use of the migration, the ProActive class provides two sets

of static methods.

The first set of methods handles migration triggered by the active object wishing to

migrate. These methods rely on the calling thread being the active thread of the active

object:

• migrateTo(Object o): migrate to the same location as an existing active ob-

ject,

• migrateTo(String nodeURL): migrate to the location given by the URL of

the node,

• migrateTo(Node node): migrate to the location of the given node.

The second set of methods is intended for migration triggered by some other agent than

the active object being migrated. For instance, in this thesis the migration is triggered by

Load Balancing Active Objects. In this case the external agent must have a reference to

the Body of the active object it wants to migrate.

• migrateTo(Body body, Object o, boolean priority): migrate to

the same location as an existing active object

• migrateTo(Body body, String nodeURL, boolean priority): mi-

grate to the location given by the URL of the node

• migrateTo(Body body, Node node, boolean priority): migrate to

the location of the given node

The priority parameter represents two possible strategies:

1. The request is high priority and is processed before all existing requests the body

may have received (priority = true);

2. The request is normal priority and is processed after all existing requests the body

may have received (priority = false).

To answer the location problem (find a migrated object, maintain connectivity), two

mechanism were proposed: forwarders and location servers [66]. A forwarder is a refer-

ence left by the active object when it leaves a host: this reference points the new location

of the object. Multiple migrations create a chain of forwarders; some elements of chains

may become temporarily or permanently unreachable because of a network partition or a

single machine in the chain failure. Longer chains produce worse performance because

of multiple “hops” of the message. Therefore, ProActive uses tensioning to shortcut the

chain of forwarders: after a migration, the first method call updates the location of the

migrated object to the caller and creates a direct link. This mechanism is presented in

Figure 2.5.

18 CHAPTER 2. ACTIVE OBJECTS

Initial state

Migration

Tensioning

�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂

Active object

Active object

node bnode a node c

Active object

Forwarder Active object

node cnode a node b

Active object

Active object

node cnode bnode a

Figure 2.5: Migration and tensioning

With the second solution, the location server tracks the location of each active ob-

ject. Every time an object migrates, it sends its new location to the location server. After

a migration, all the references pointing to the previous location become invalid. When

an object attempts to communicate with a migrated active object (through an invalidated

reference), the call fails, triggering a lazy mechanism that transparently performs the fol-

lowing steps:

1. queries the location server for the new location of the active object,

2. updates the reference regarding to the server’s response, and

3. re-performs the call on the object at its new location.

Contrary to the forwarder approach, the location server approach produces additional

messages: first, messages from the migrated object to the server, and second, due to the

failed communication attempt. Further discussion about the two approaches in the context

of ProActive can be found on the PhD thesis of Fabrice Huet [66].

Chapter 3

Networks for parallelism

“God creates men, but they choose each other.” (Niccolo Machiavelli)

Michael Flinn proposed in 1972 a classification of computer architecture based on kind

of processing and data [55]:

• SISD (Single Instruction, Single Data): Sequential processing of instructions and

data. Not parallelism at all.

• SIMD (Single Instruction, Multiple Data): Exploiting data parallelism to solve par-

allel problems; for instance, to apply non-deterministic algorithms for NP-hard prob-

lems in parallel.

• MISD (Multiple Instruction, Single Data): Exploiting instruction parallelism using

data redundancy, for instance in real-time architectures.

• MIMD (Multiple instruction, Multiple Data): Exploiting full parallelism, having a

set of instructions processing different (sections of shared) data.

MIMD derived in Single Program, Multiple Data (SPMD) [7], multiples processors exe-

cuting the same set of instructions (a program) on different data.

In this chapter we review the state of the art of networks oriented to parallel computing

from a historical point of view of implemented networks and from a point of view of

theory of large-scale networks.

3.1 History of parallel computing

Since the birth of ENIAC (Electronic Numerical Integrator and Computer), known as the

first computer capable to solve a set of computing problems [110], the scientific world

has been searching for ways to use the computer potential in solving hard problems (like

NP-problems) in a parallel way. Initially, the main problem in this quest was the price of

computers: processors where so expensive that most organisations had the means to build

only one, or a few but working separately.

Around 1985, the development of microprocessors produced computing power at low-

cost (compared with previous mainframes), and the scientific world studied again the

way to solve their problems using sets of microprocessors. The first attempt was to use

19

20 CHAPTER 3. NETWORKS FOR PARALLELISM

microprocessors connected by a data bus and sharing memory and devices using a SIMD

scheme (also known as a multiprocessor computer), but then the invention of high-speed

computer networks allowed the connection of hundred of machines (processor + memory

+ devices) in a cluster.

3.1.1 Cluster of computers

The history of clusters of computers is directly related with the history of computer net-

works, as one of the primary motivation for the development of a network was to link

computing resources, creating computer clusters. Packet switching networks were firstly

studied by the RAND corporation1 in 1962. Exploiting the concept of a packet switched

network, the Research Projects of U.S. Department of Defense (ARPANET) built the foun-

dations of what we know today as the Internet. Internet is the strong interconnection of

computer resources using packet switching and the Internet paradigm is the basis of clus-

ter communication.

The development of clusters started in early 1970s supported by the development of

networks (TCP/IP protocol) and the Unix operating system. However, the protocols and

tools for easily doing remote job distribution and file sharing were defined around 1983 in

the context of BSD Unix (as implemented by Sun Microsystems). In 1984 DEC released

their VAXcluster [78] product for the VAX/VMS operating system.

The academia presented one of their first infrastructures to interconnect a pool of pro-

cessors providing a Distributed Operating System (mean to coordinate processors) in 1986

with the Amoeba project [115], developed by Andrew Tanenbaum et al. from 1986 to

1995. This project reported on its web-page2 that:

Amoeba is a powerful microkernel-based system that turns a collection of work-

stations or single-board computers into a transparent distributed system. It has

been in use in academia, industry, and government for about 5 years. It runs

on the SPARC (Sun4c and Sun4m), the 386/486, 68030, and Sun 3/50 and Sun

3/60. At the Vrije Universiteit, Amoeba runs on a collection of 80 single-board

SPARC computers connected by an Ethernet, forming a powerful processor

pool.

A key point in the development of cluster computing was the birth of Parallel Vir-

tual Machine (PVM) systems in 1990 [114], which allows the creation of a virtual su-

percomputer made of TCP/IP connected (and low-cost) normal computers. In 1995 the

invention of a computer cluster built for the specific purpose of ”being a supercomputer”

using an Internet-like network (called a Beowulf cluster [112]), and the development of

long-distance high-speed networks allowed that most of the clusters be inter-connected,

building kinds of cluster of clusters or computer grids.

3.1.2 Computer Grids

The Grid is the next level of abstraction in computer networks, exploiting the high-speed

interconnection of a set of distributed computers and clusters in order to solve large-scale

1Research team of U.S. Army. http://www.rand.org
2http://www.cs.vu.nl/pub/amoeba

3.1. HISTORY OF PARALLEL COMPUTING 21

parallel problems as a unique virtual computer architecture. Therefore, Grid computer

has to handle interconnection and resource sharing (as a normal cluster); and new services

such as resource allocation or resource management.

The name “Grid” first appeared on the work of Ian Foster and Carl Kesselman called

Computational grids (from the book “The grid: blueprint for a new computing infras-

tructure”, 1999) [57]. Foster is the team leader of Globus Alliance3, which develops the

“Globus Toolkit”. Globus Toolkit is a middleware to perform grid management, providing

services of CPU and storage management, security provisioning, data movement, moni-

toring and which also provides a toolkit for developing additional services based on the

same infrastructure. The importance of Globus in Grid computing built a direct associa-

tion of the name of Ian Foster with the Grid concept.

Ian Foster defined “a Grid” in his article “What is the Grid? A Three Point Checklist”

[56] as a system that:

• coordinates resources that are not subject to centralised control

• ... using standard, open, general-purpose protocols and interfaces

• ... to deliver nontrivial qualities of service.

From the previous definition, we note the main differences with cluster computing: de-

centralisation and the concept of quality of service.

In the literature, Grids are most of the time subdivided by their objective:

• Enterprise Grids (Figure 3.1(a)) have the objective of transparently provide a busi-

ness services as a supercomputer connected to Internet (e.g: Google), processing

distribution is used to increase business quality of service.

• Internet Grids (Figure 3.1(b)) have the objective of exploiting the potential pro-

cessing capacity of all computers connected to Internet to solve a parallel problem

using the Master-Worker paradigm [65] (e.g.: BOINC infrastructure [3] to solve

Seti@home problem [98]).

• Scientific Grids (Figure 3.1(c)), also known as Institutional Grids, have the objective

of joining clusters, multiprocessors, large equipment (telescopes, particle accelera-

tors) and laboratory computers of several institutions to increase the potential parallel

computation of all of them, managing the shared time of parallel architectures (e.g.

Condor [89] using Globus Toolkit as Condor-g [59]).

• Desktop Grids (Figure 3.1(d)) have the objective to communicate personal desktop

computers using Internet in order to share resources as CPU or storage. Decen-

tralised Peer-to-Peer networks as Gnutella4, developed using open-infrastructures

and which fulfil with the minimal requirements of quality of service are Desktop

Grids.

We noted that previous definitions of Grids were too static to fit on studied infrastruc-

tures. Therefore, we placed ourselves on the next level of abstraction, virtual infrastruc-

tures, defining the concept of Project Grids.

3http://www.globus.org
4http://www.gnutella.com

22 CHAPTER 3. NETWORKS FOR PARALLELISM

(a) Enterprise Grid (b) Internet Grid

(c) Scientific Grid (d) Desktop Grid

Figure 3.1: Grids divided by objective

3.1.3 A model overview for Project Grids

We define as project grid a multi-institutional project’s virtual environment, created from

resources coming from a deployed grid infrastructure. A Project Grid is the infrastructure

where a virtual organisation is deployed.

Note that the physical topology of a project grid may be very different from the topol-

ogy of the physical infrastructure from where its resources originate. First, while the orig-

inal infrastructure may comprise hundreds of clusters, each with hundreds of resources

(possibly the number of resources is a power-of-two [72, 84]), the project grid contains

only as many resources as were allocated for the project, either from the beginning or

dynamically. An institution, assuming the role of project leader, provides all of its re-

sources, which will possibly become a large part of the project grid’s pool of resources.

Contributing institutions provide only a part of their available infrastructure. All the ap-

plications that run in a project grid are specific to the project, and may come from a very

restricted set, with very similar characteristics. This model of operation is being used by

more and more projects, including CERN’s LCG [116], and ProActive’s PlugTests [50].

3.2 Peer-to-Peer Infrastructure of ProActive

The Peer-to-Peer (P2P) Infrastructure for ProActive middleware began as the Master the-

sis of Alexandre Di Costanzo [43] and some improvements for its use in load balancing

were added by the author in a work called “Balancing Active Objects on a Peer to Peer

Infrastructure” [24]. In this section we explain the basis of the P2P Infrastructure and the

improvements for load balancing.

The goal of the work of Di Costanzo was to use sparse desktop computer processors

(called CPU) cycles from institutions; personal desktop computers, grids, and clusters to

3.2. PEER-TO-PEER INFRASTRUCTURE OF PROACTIVE 23

deploy Java Virtual Machines (JVMs), building an Infrastructure where ProActive active

objects might run safety. As he noted, the management of several kinds of resources

(grids, clusters, desktop computers) as a single, highly unstable network of resources,

needs a fully decentralised and dynamic approach. Therefore, mimicking data Peer-to-

Peer networks is a good solution for sharing a dynamic JVM network, where JVMs are

the shared resources.

The work of Di Costanzo aimed to comply with the definition of Pure P2P given by

Rudiger Schollmeier: [107]

“A distributed network architecture may be called a Peer-to-Peer (P-to-P, P2P)

network, if the participants share a part of their own hardware resources (pro-

cessing power, storage capacity, network link capacity, printers). These shared

resources are necessary to provide the Service and content offered by the net-

work (e.g. file sharing or shared workspaces for collaboration). They are ac-

cessible by other peers directly, without passing intermediary entities. The par-

ticipants of such a network are thus resource (Service and content) providers as

well as resource (Service and content) requesters (Servent-concept).

A distributed network architecture has to be classified as a Pure Peer-to-Peer

network, if it is firstly a Peer-to-Peer network according to previous definition

and secondly if any single, arbitrary chosen Terminal Entity can be removed

from the network without having the network suffering any loss of network

service.”

The previous definition gives the notion of a P2P network with quality of service, and

given that ProActive is an open source middleware, the ProActive P2P Infrastructure can

be catalogued as a Desktop Grid. Therefore, this thesis will use ProActive P2P Infrastruc-

ture algorithm to model Desktop Grids.

3.2.1 Bootstrapping: First Contact

A fresh (or new) peer which would like join the P2P network, will encounter a serious

bootstrapping problem or first contact problem: How can it connect to the P2P network?.

There are different solutions to join a P2P network, such as using specific discovering

protocols like JINI [127]. The ProActive P2P Infrastructure solution is inspired from Data

P2P Networks. The ProActive P2P bootstrapping protocol works as follows:

• A fresh peer has a list of ”server” addresses. These are peers, which have a high

potential to be available and to be in the P2P network, they are in a certain way the

P2P network core.

• Using this list, the fresh peer tries to contact each server. When a server is reachable,

the fresh peer adds it in its list of known peers (acquaintances).

Using the previous algorithm a fresh peer may be connected to a very distant network,

and we will see in Section 5.4.2 that we would like to have peers nearly interconnected.

Therefore, we added the requirement that a fresh peer has to connect only to its nearest

server, and servers will maintain a list of other servers.

24 CHAPTER 3. NETWORKS FOR PARALLELISM

3.2.2 Discovering and Self-Organising

ProActive P2P infrastructure aims to maintain a created P2P network alive while there are

available peers in the network, this is called self-organising of the P2P network. Under

condition that P2P does not have exterior entities, such as centralised servers, to maintain

peer databases, the P2P network has to be self-organised. That means all peers should be

enabled to stay in the P2P network by their own means. There is solution which is widely

used in data P2P networks: for each peer to maintain a list of their neighbours, a peer’s

neighbours is typically a peer close to it (IP address or geographically).

This same solution was selected to keep the ProActive P2P infrastructure up. All

peers have to maintain a list of acquaintances (most of them geographically close). At

the beginning, when a fresh peer has just joined the P2P infrastructure, it knows only

peers from its bootstrapping step. Knowing a very small number of acquaintances is

a real problem in a dynamic P2P network, as all servers will be unavailable the fresh

peer will be disconnected from the P2P infrastructure. Therefore, ProActive P2P infras-

tructure uses a specific parameter called: Number Of Acquaintances (NOA). This is a

minimum size of the list of acquaintances of all peers. Thereby, a peer must to discover

new acquaintances through the P2P infrastructure by sending exploration messages to its

acquaintances which forward messages to their own acquaintance until a time-to-live in

the messages expire. A fresh peer will not be part of the P2P Infrastructure until the size

of its acquaintance list be equal or greater than NOA. In order to do not have isolated peers

in the infrastructure, we defined that all peer registrations are symmetric.

We discovered that previous solution generated larger and hard to manage networks,

therefore we gave to each peer the capacity of decide when to stop message forward-

ing: when a peer receive the discovering message, it has to decide to respond to be an

acquaintance with a given probability (experimentally defined between 0.66 and 0.75).

As the P2P infrastructure is a dynamic environment, the list of acquaintances must be

also dynamic. Therefore, all peers keep frequently their lists up-to-date, introducing a

new parameter: Time To Update (TTU). This is the frequency, which the peer must check

its own acquaintances’ lists to removed unavailable peers and in case of need discovering

new peers. To verify the acquaintances availability, the peer sends a Heart Beat to all of

its acquaintances. The heartbeat is sent every TTU.

The previous resource query mechanism is similar to the communication system of

Gnutella, called Breadth-First Search algorithm (BFS). The Gnutella BFS algorithm got

a lot of justified critics [103] for scaling, bandwidth using, etc. However, in our exper-

iments, the network size of 250 desktop computers with 100 Mb/s Ethernet connections

the message traffic has not posed a significant problem. We made a permanent infras-

tructure with INRIA laboratory desktop computers and we have been experiment about

massive parallel applications for 2 years.

3.3 Theory of Networks

Networks is a well studied field in mathematics, by the name of Graph Theory and orig-

inated from the works of Leonard Euler in the 18th century. A good introduction in this

field is a textbook by Reinhard Diestel [44]. In the field of distributed systems, the study

3.3. THEORY OF NETWORKS 25

of random graphs became a powerful tool for understanding the main behaviour of dis-

tributed algorithms and processes.

A network is represented by a graph, and its nodes are called vertices. A set of nodes

is denoted by V and the symbols u,v,w are commonly used to refer to specific nodes. The

number of nodes n = |V | is known as the order of a given graph.

A link between two given nodes u, v is represented by an edge. An edge representing

an undirected link is denoted by the set {u, v}. The number of links of a given node is

known as its degree (Deg). An edge representing a directed link is denoted by 〈u, v〉,
which means that the link goes from u to v. In weighted graphs, a weight function is

defined which assigns a weight to each node. In this work, the most used weight function

is the latency l(u, v) which is the time it takes from a message sent from a node u to be

received by node v.

A set of edges in a graph is denoted by E, having an edge count of |E|. A graph is

characterised by the two sets E and V and in the literature it is denoted by G = (V, E).

In graph theory, it is said that two vertices u and v are neighbours if they are connected

by an edge, that is, {u, v} ∈ E. The set of neighbours for a given node is called its

neighbourhood. We shall see in Section 3.2 that in practice we prefer to use the words

acquaintance and acquaintances respectively, using the term neighbour to refer only nodes

that are physically located near each other.

A path from v to w is defined by a sequence of edges in E starting at vertex v and

ending at vertex w, i.e.:

{v, v1}, {v1, v2}, {v2, v3}, ..., {vk−1, vk}, {vk, w}

If that given path exists we will say that u and w are connected, the length of that path

will be the number of hops (edges) between them (k + 1 in this case) and we define the

theoretical distance between two nodes as the length of the shortest path connecting them

in G. In practical experiences, the shortest path will be defined using the weights of the

given edges. The distance for all nodes to themselves is zero.

A cyclic path is where u = w, i.e.:

{u, u1}, , ..., {uk−1, uk}, {uk, v}, {v, v1}, , ..., {vj−1, vj}, {vj, w}

A simple path is one path without cycles. The shortest path between two vertices

is always simple. A connected graph is a graph with paths between all pairs of nodes,

otherwise the graph is disconnected. In directed graphs, a sub-graph having paths between

all its pairs of nodes in both directions is called strongly connected (SCC). A connected

graph with no cycles is called acyclic. When the degrees of the nodes are known, the

expected average distance between a pair of nodes can be obtained theoretically [38].

3.3.1 Generating random graphs

A random graph is a graph generated by some random process. The study of random

graphs has been a relevant tool in the study of the theoretical properties and behaviour

of large-scale networks. Nowadays it is applied to the study of Grids and Peer-to-Peer

networks.

In 1959, the following model was proposed by Gilbert [62]:

1. Fix the graph order n and choose a probability pe

26 CHAPTER 3. NETWORKS FOR PARALLELISM

2. Include each one of the
(

n

2

)

unordered node pairs as an edge in the graph G uniformly

at random with probability pe.

Another approach was presented by Pál Erdös and Alfréd Rényi in 1959 [48]:

1. Fix the graph order n and the number of edges m

2. Select m of the possible
(

n

2

)

unordered pairs of nodes uniformly at random.

Even though these uniform random graph models were not intended to capture prop-

erties of real-world network problems, as Pál Erdős and Alfréd Rényi reported in 1960

[49], they are useful to capture the existence of certain properties and behaviours of graph

algorithms, such as finding the shortest path between nodes. However, the need of real

network generation models resulted in wide adoption of uniform random graphs as mod-

els of real-world networks, commonly with modifications such as placing the nodes on a

plane and using connection probabilities proportional to Euclidean distance [131].

3.3.2 Natural Networks

In 1998, Watts and Strogatz reported observations on natural network data which were

in high disagreement with the uniform models [130], and the study of models for real

networks was re-opened. The work of Watts and Strogatz studied two properties: the

cluster coefficient (average connectivity of nodes), which was reported higher for real data

than for random graphs models; and the average length of the shortest path between two

nodes, which was reported for real data almost as small than for random graph models.

Based on their observations, Watts and Strogatz (WS) suggested the following model (see

Figure 3.2):

1. Fix the graph order n and place the nodes in a circle

2. An initial lattice graph is formed by connecting each node to the k nearest nodes

along the circle in both sides. We call these edges short-distance edges.

3. For each node v choose a small probability pe, and trace with probability pe an edge

between v and the others n − 2k − 1 nodes in V . We call these edges long-distance

edges.

The second step of the WS model produces high clustering coefficient and the third

step produces small average path length. Even though this model could be considered

naive, it serves to show that for small values of pe the introduction of long-distance edges

reduces the average path length almost to the expected level of an uniform random graph

of the same order and size, but having greater clustering coefficient (therefore, closer

to real data). Graphs with both properties (low average path length and high clustering

coefficient) are known nowadays as small-world networks [130].

In 1999, Albert-László Barabási and Réka Albert reported an observation which dis-

agrees again with the models of networks, even with the WS model and its variations

[9]. The observation they made deals with the degree of nodes in natural networks. For

uniform random graphs, the degree of a node follows the binomial distribution:

3.3. THEORY OF NETWORKS 27

(a) (b)

Figure 3.2: (a) step two of Watts and Strogatz model with n = 12 and k = 2; (b) step three with small pe

Deg(v) ∼ Binom(n − 1, pe) (3.1)

Yielding for the number of vertices with given degree k a Poisson’s distribution:

Poisson

((

n

k

)

pk
e(1 − pe)

(n−1)−k

)

(3.2)

Nevertheless, Barabási and Albert discovered that all the observed distributions had a

persistent right tail with a fast decreasing but without vanishing, and when they plotted

the real data on a log log scale, practically all of them had could be approximated with

straight lines with almost the same slope. Therefore, data show that in all natural networks

there are few special nodes with high-degree, which are called hubs. The straight line

distribution in log log scale is called scale-free and it could be approximated by a power

law of the form

P (Deg(v) = k) ∼ k−γ (3.3)

That is, the probability that a randomly chosen node has degree k is proportional to

k−γ . For that reason, scale-free networks are also known as power-law graphs. Examples

of scale-free networks are Peer-to-Peer networks as Gnutella (with a reported γ = 2.3
[63]) and the router topology of internet in 1995 (γ = 2.48 [51]).

Although the concept of the small-world phenomenon was introduced already in 1960’s

by Stanley Milgram [90], the theory of small-world networks was initiated by the seminal

paper of Watts and Strogatz [130] and quickly followed by the work of Jon Kleinberg

[74]. Kleinberg presents another model for small-world networks, where the network is

constructed in the following manner:

1. using a n × n matrix to represent the nodes

2. defining the lattice distance between a pair of nodes (i, j) and (k, l) as d[(i, j), (k, l)] =
(|i − k| + |j − l|).

28 CHAPTER 3. NETWORKS FOR PARALLELISM

3. giving a constant p ≥ 1, a node u has a directed edge to all other nodes at distance

lower than p. Connected nodes are known as local contacts.

4. giving two constants q ≥ 0 and r ≥ 0, a node u has a directed edge to q other nodes

(long-distance contacts) using independent random trials, where the ith directed edge

from u has endpoint v with probability proportional to d[(i, j), (k, l)]−r

In the same work [74], Kleinberg shows that the optimal exponent for this implemen-

tation is r = 2. We are very interested in the model of Kleinberg because it is easy of

implement in C language and as we will see in following sections, we will exploit this

model to develop fast simulations of large-scale networks.

A good introduction and explanation of natural networks is the work of Elisa Schaeffer

[106, 125].

Chapter 4

State of the Art on Load-Balancing

“Idleness is not doing nothing. Idleness is being free to do anything”.

(Floyd Dell)

Imagine that you are in a supermarket, pushing your shopping cart full of groceries to

the register. When you look in front of you there are more people pushing their shopping

carts and only one who is served by the cashier ((1) in the Figure 4.1) . You look back and

you see more people coming with their carts and following you. Together with the other

people with shopping carts, you form a queue ((2) in the Figure 4.1). In a queue, those

who arrived first are served before those who arrived later. Also, every now and then,

new clients join the queue. The number of carts arriving in a given time unit is called the

incoming rate (Figure 4.1 (3)). You look to the register and note that the time it takes the

cashier to attend a customer depends on how many items are in the shopping cart. The

number of carts attended on a given unit of time is known as service rate (Figure 4.1 (4)).

(4)

(3)

(2)

(1)

Figure 4.1: A supermarket

Suddenly, you look around you and see more queues. One of the cashiers seems to

work faster than the others: the service rate of that queue is greater than that of the other

queues. Therefore, you think “if I change to that queue, would I be served before than if I

keep my place here?”. That question represents the main principle of load-balancing: to

move tasks (carts) among processors (registers) to reach a given objective (in this case, to

minimise the time spent in queue).

Even more, you would think “but, what if everybody thinks the same than me?”, “how

many people would be seen that queue is faster than others?”, “what if when I arrive to

the another queue it becomes slower?”. Those questions are related to the model and

implementation of the load-balancing algorithms themselves. In this chapter, we study

the possible response to such questions.

29

30 CHAPTER 4. STATE OF THE ART ON LOAD-BALANCING

4.1 Static Load-Balancing

Suppose that in the previous example we know exactly the number of registers that the

supermarket has, the service ratio of all cashiers, the incoming ratio of all queues, and the

number of groceries that each shopping cart will has when it enters the queue. Having all

that information and a given objective we can pre-compute how to optimally distribute the

shopping carts among the queues even before the arrival of the first cart. The computation

of such distributions is known as static load-balancing.

Static load-balancing is a well-studied issue in literature. Casavant and Kuhl propose

on their Taxonomy of Scheduling [36] four categories for static task-distribution algo-

rithms:

1. Solution-space enumeration and search: Defining a cost function which represents

the maximum time for a task to complete its execution and communication in all

the processors and a minimax criterion based on which both minimisation of inter-

processor communication and balance of processor loading can be achieved [108].

2. Graph theoretic: Using graph partitioning for minimising execution, communica-

tion and reassignment costs [133]. Or, having the interconnection pattern of the

tasks in a tree form, an algorithm minimises the sum of execution and communi-

cation costs for arbitrarily connected distributed systems with arbitrary numbers of

processors finding the minimum spanning tree [20].

3. Mathematical Programming: Modelling the environment as a system of equations

and transforming the scheduling problem in an optimisation problem [69].

4. Queuing theoretic: Using Markov chains to model the system, as was done by

Mitzenmacher in his PhD Thesis [92]. He modelled the system using a supermarket

abstraction where arriving customers has to choice their queue and they can not

change their decision once enqueued.

Casavant and Kuhl [36] also consider the heuristics approach to solve this kind of

problems. That is, to make use of some special parameters which could have indirect

influence over system performance. For instance, clustering communication-intensive

parallel tasks.

4.2 Dynamic Load-Balancing

Suppose that for the problem presented in Figure 4.1, every customer has to decide upon

arrival in which queue he wants to join (as in the model of Mitzenmacher [92]), but now

registers could open or close every time. If we know the schedule of registers before

starting the customers distribution, this problem still can be solved in a static way. But,

if we do not know in advance at least one of the parameters such as the incoming ratio,

the service ratio or the number of registers; the problem of finding an optimal distribu-

tion becomes intractable. However, good approximations for optimal distributions can be

done having only partial information. The process of determining the distribution of the

4.2. DYNAMIC LOAD-BALANCING 31

clients in the queues based on information obtained at runtime is known as dynamic load

balancing.

The design of a balancing strategy is directly related to the objective of the distribution.

Riedl and Richter presents in their work a list of primary objectives [102], concerning:

• Service performance for tasks: waiting time, service time, response time, availability

of services.

• Physical distance between tasks and data

• Service performance of resources: throughput, cache or communication times.

• Equalisation of load among processors.

• Minimisation of processor idle time.

Starting with these objectives, a metric (measuring unit for determine load imbalances)

can be chosen to determine the system performance.

Considering the objectives, we can study the performance from two perspectives: that

of the system and that of the parallel application. For the parallel application point of

view, commonly the metric used is the individual process completion time (also known

as makespan). And, from the system point of view, commonly the metric used aims to

a maximisation (or fairly distribution) of resource usage. A trade-off can be achieved

by choosing the metric that incorporates both viewpoints, because applications will try

to use the available resources to improve their performance and systems will aim at fair

distribution of the resources.

Casavant and Kuhl work [36] propose in addition two properties for consideration in

evaluating a load distribution mechanism:

1. Performance: the quantitative measure of the improvement of the parallel applica-

tion when the mechanism manage the resources.

2. Efficiency: the costs produced by the resource manager.

A perfect load-balancing algorithm is that which performs the best performance possible

with minimal cost.

Thomas Kunz described in [79] some requirements which proved to be important for

a general purpose load-balancing strategy:

1. no a priori knowledge about incoming task requirement

2. no assumptions about the underlying network (topology, homogeneity, size, etc.)

3. dynamic, physically distributed and cooperative decision making (we draw the same

conclusion in Section 5.3).

4. Minimisation of average/worst response time of tasks as performance criteria. Defin-

ing response time as the time between a task is received by a parallel application and

it is finished by the processor.

32 CHAPTER 4. STATE OF THE ART ON LOAD-BALANCING

Nevertheless, Kunz [79] conducted his study in 1991 with heterogeneous networks

without varying geographical distance. Nowadays, with the utilisation of Internet and

large-scale networks for parallel computing, the second requirement proposed by Kunz

has becomes inapplicable. As we will see in Section 5.4.2, a knowledge in the underlying

network has high importance in modern load-balancing algorithms.

Another important requirement in load-balancing algorithms is their level of complex-

ity. Mirchandaney, Towsley and Stankovic reported in their work [91] that:

• simple load distribution yields dramatic performance improvement compared to a

setup without load-balancing

• complex policies, which try to make the best selection, do not offer further improve-

ments

A load-balancing algorithm should aim to minimise work transfer among processors.

When the system is under heavy load, above-average transfer delays may be expected,

reducing in the performance of the algorithms. Only a small amount of work has to be

transferred in order to achieve effective load-balancing [13, 77].

4.3 Components of a Load-Balancing Algorithm

Typically, a load-balancing scheme consists of a load index and a set of policies based on

the index. Commonly, the policies can be classified into one of the following categories

[61]. An information-sharing policy, defines what information has to be used and how

it has to be collected and shared. A transfer policy, determines which work has to be

balanced and when to do it. And, a localisation policy, determines where the shared work

as to be balanced. There exist two kinds of localisation policies: migration and placement.

The former directs the migration of work in execution time and the latter directs the first

placement of a parallel application. While in this thesis we focus in the migration policy,

we will see all along this work that the first placement is a key issue in load-balancing of

active-objects.

The decisions of when, where and which tasks have to be transferred are critical, and

therefore the load information has to be accurate and up to date [94]. In dynamic load-

balancing, the balance decisions will strictly depend on the information collected from

the system.

4.3.1 Load Index

A key issue for all load monitors is the definition of a good load index. Ferrari and Zhou

proposed in [54] that a good load index should:

• correlate well with task response-time, because it is used to predict the performance

of a task if it is executed at some particular node;

• aid in predicting the load in the near future, since the response time of a task will be

more influenced by future load than by present load;

4.3. COMPONENTS OF A LOAD-BALANCING ALGORITHM 33

• be relatively stable. Note that this point is influenced by the load index and the

periodicity of the load measurement.

• relatively cheap to compute.

Several load indices have been proposed in the literature [54, 79]: CPU queue length,

I/O queue length, used memory, CPU utilisation, etc. Ferrari and Zhou [54] proposed a

linear combination of resources queue lengths as a load index, using the time tj that a

task requires from a resource rj which has a queue length qj and including N different

resources:

load =
N

∑

j=1

(qj × tj) (4.1)

Nevertheless, to know all the tasks requirements is hard in real environments, and Kunz

[79] proposed to avoid that requirement. Ferrari, Zhou and Kunz conclude that the CPU

queue length is the predominant resource in the studied hosts. That suggests that CPU

queue length to be one of the most adequate as load index, because it determines the

behaviour of the machine, is relatively stable and cheap to compute. A similar conclusion

was reached by Olivier Dalle in its PhD thesis [41].

4.3.2 Information-Sharing Policy

An information-sharing policy is responsible of which information will be used in the

load-balancing process and how it will be shared. Load information can be shared among

processors periodically or “on demand”, using centralised or distributed information col-

lectors [119]. Also, information-sharing policies can be full or partial, the former policies

share all information and the latter policies share their information only for certain states

(values) of the load metric. These policies are defined as follows:

• Centralised Full Information: Nodes share all their load information with a central

server. Figure 4.2 (a) presents an example with three nodes: nodes A and C send their

load information L to the server B periodically. The server collects that information

and keeps the system balanced (in the figure, ordering A to balance with C). This

policy is widely used on systems such as Condor [65, 89] and middlewares such

as Legion [37]. Theoretical and practical studies report this policy as non-scalable

[2, 35, 83, 119].

• Centralised Partial Information There is partial information (such as a state change)

sharing among the nodes through central server. Figure 4.2 (b) presents an example

using three nodes which share information only when they are overloaded. A node

A registers on the server B when it enters an “overloaded state” (that is, the “load

metric” is above a given threshold), and node C unregisters from the server because

it exits the ”overloaded state”. At the same time C asks the server for overloaded

nodes, the server chooses one node from its registers and starts the load-balancing

between them.

• Distributed Full Information Nodes share all their information using broadcast.

Figure 4.2 (c) shows an example using three nodes: Each node broadcasts its load

34 CHAPTER 4. STATE OF THE ART ON LOAD-BALANCING

A B C

t

L
L

C

(a) Centralised Full Info.

A B C

t

R

A

U/?

(b) Centralised Partial Info.

A B C

t

L

L L

S

S

(c) Distributed Full Info.

A B C

t

O O

S

S

(d) Distributed Partial Info.

Figure 4.2: Examples of information-sharing policies

to the others periodically. The nodes use the information for load-balancing [22].

Then, A and C realise they can share B’s load and send the balance message S. The

figure also shows the main problem of this policy: there is no control on the number

of balance messages an overloaded node might receive.

• Distributed Partial Information There is partial information-sharing among the

nodes using broadcast. Figure 4.2 (d) presents an example for the overloaded case:

a node B broadcasts its load only when changing to the overloaded state, requesting

a load balance. Using this information, A and C reply to the request S, but unlike in

the previous policy, only the reply from A is considered. In practise, this policy was

used in the first load-balancing algorithm developed for ProActive [23].

Also, demand-driven policies can be used, where a node collects information about

other nodes only when it wants to make a work transfer; therefore, the information-sharing

policy is triggered by the decision policy. We will see in Section 5.4.2 that a demand-

driven performs the best performance in the context of load-balancing of active-objects in

Peer-to-Peer networks.

4.3.3 Transfer Policy

A transfer policy is responsible to determine if a given node have to participate in a load-

balancing, either as a sender or a receiver. Common policies are based on thresholds or

based on environment load.

Threshold based policies determines that a given node is a work-sender if its load

index is greater than a given parameter (threshold) OT or a work-receiver if its load index

is lower than a given parameter (threshold) UT . A key issue for all transfer policies is the

smart selection of both thresholds. Even though some techniques are presented to adapt

thresholds to the system load in runtime [99], we will see that fixed parameter behaves

very well for load-balancing of active objects in Section 5.6.

Environment based policies determines if a node has to transfer some of all of its work

considering its load and the load of the other nodes in its environment. Nodes will share

their work if their load index differ by more than a given threshold [109, 35, 101]. Note

that a threshold based policy most of the time aims to exploits resource usage, and an

environment based policy aims to equalise the workload among nodes.

Transfer policies may be sender-initiated (also known as eager policies) , receiver-

initiated (also known as lazy policies or work-stealing) or symmetrically-initiated. In

the first case, overloaded nodes initiate the load-balancing process looking for a (set

4.4. RELATED WORK 35

of) candidate(s) to receive it work. In the second case, underloaded nodes has to look

for an overload node to steal some of its work. Note that, as we will see in Section

5.3, sender-initiated policies have better response time against overloading than receiver-

initiated ones, because in real environment the number of underloaded nodes are greater

than overloaded nodes, therefore it is more probable that an overloaded node randomly

find an underloaded one is greater than the an underloaded node randomly find an over-

loaded one.

Another issue of a transfer policy is to determine which work and how much work to

transfer to a new location. We will see in Section 4.4 that if the policy has not access

to computer’s resources, it is better to send low transfer-cost works which are in a not

on-running state [12, 18, 37, 122]. How much work to send depends on the objectives of

load-balancing; for instance, in a sender-initiated scheme the objective could be equalise

the work (sending low slices of work) or only avoid overloading (sending the amount of

work which produces overloading), and in receiver-initiated schemes, theoretical studies

determines that a node has to send at most half of its work [13], stealing only the amount

of work which guarantees a long period of working time [18, 122].

4.3.4 Location Policy

Location policy is the responsible of use all the information collected by the information-

sharing policy to determine where is located the best partner to perform a load transfer.

A location policy can be deterministic [101] (e.g.: “Enumerate n nodes and always send

work to node i + 1mod n”), stochastic (e.g.: random load-balancing schemes [13, 18,

93, 122] or probabilistic (decisions are taken according a set of predefined rules and their

probabilities [1, 105]).

4.4 Related Work

The study of load-balancing is always related to what we need to balance and at which

level of complexity. For instance, there are some infrastructures which have access to

most of the hardware resources and processor schedulers, such as Condor [89]; thus, it

can stop a process in runtime and migrate it completely to another new location. Other in-

frastructures such as Legion [64] and Cilk [17] have limited access to hardware resources,

so they migrate only inactive entities. In the other side, there are infrastructures built in

Java (e.g: Satin [123] and ProActive [97]), taking advantage of Java portability but hav-

ing very limited access to hardware resources as the schedulers; therefore, they have to

migrate only inactive entities and also handle the lost references.

In this section we will describe the first four architectures (ProActive was described in

depth in Section 2.3) and their load-balancing mechanism.

4.4.1 Condor

Condor was first introduced as “A Hunter of Idle Workstations” in a work of Michael

Litzkow, Miron Livny and Matt Mutka [89]. They presented a system able to manage

36 CHAPTER 4. STATE OF THE ART ON LOAD-BALANCING

processes in a cluster of workstations using batch processing, the main idea was to detect

idle resources (CPU, Memory) and distribute a parallel application among them.

Condor was designed following these principles:

• Batch processing should have no impact on quality and availability of services pro-

vided by workstations to their owners.

• Condor should have complete control of the resources: locating them for applica-

tion’s jobs, monitoring and informing to user the resource use and job progressing.

• Condor should preserve the operating environment of workstations and it should not

require special programming to submit parallel applications.

The key point in the infrastructure of Condor is the Matchmaking process [100]: re-

sources and job requirements are published as a kind of “classified advertisements (Clas-

sAds)” (Figure 4.3 (1)) and a central entity makes the matchmaking among ClassAds to

determine the best pair job-resource (Figure 4.3 (2)). Both (job and resource) are noti-

fied of the match (Figure 4.3 (3)) and a claim process (negotiation of undefined variables)

begins between them (Figure 4.3 (4)).

Matchmaker

Claiming(4)

Notification(3)
Advertisement(1)Advertisement(1)

ResourceAgent

Matchmaking algorithm (2)

Figure 4.3: Matchmaking process of Condor

Load-balancing in Condor is performed by resource allocation. Condor has full access

to workstation resources at processor’s level; therefore, it may preempt a process if a

workstation is overloaded, find a new location for it and restart the process in a new

place. Of course, to perform that kind of migration is very costly in terms of resources;

therefore, what Condor really does is to use a checkpointing [88]: in case of necessity, it

stops a process in a workstation and starts the same process in a new location from the

last checkpoint.

Condor is designed to solve two kinds of parallel paradigms: Master-Worker (Figure

4.4(a)) and Direct Acyclic Graphs (Figure 4.4(b)).

In Master-Worker paradigm [65], a central entity (the Master) performs the (optimal)

division of a big task in several treatable sub-tasks. Those sub-tasks are solved by a set of

independent Workers and results are returned to the Master which use them to build the

problem’s solution or to produce more sub-tasks. Idle workers are in charge to ask the

Master for new sub-tasks.

In Direct Acyclic Graph (DAG) paradigm , tasks are ordered using a Direct Acyclic

Graph before execution, providing a structure which allows to know in advance which

4.4. RELATED WORK 37

tasks can be executed in parallel and which ones must be sequential. Condor provides

a semantic to structure this graph using a minimal set of primitives: JOB, PARENT and

CHILD. Also, Condor allows to declare scripts to pre-process data (SCRIPT PRE) and

post-process data (SCRIPT POST). Finally, a specific primitive to retry in case of node

failures is given (RETRY).

work list

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

Worker process

Master process

steering

tracking

(a) Master-Worker

JOB B b.condor

A

in.pl
B

out.pl

C

D E

JOB C c.condor

JOB D d.condor

JOB E e.condor

PARENT A CHILD B C

PARENT C CHILD D E

SCRIPT PRE C in.pl

SCRIPT POST C out.pl

RETRY C 3

JOB A a.condor

(b) Direct Acyclic Graph

Figure 4.4: Parallel problems solved by Condor

Condor is a powerful tool for distributed computing, but has two disadvantages: its

low level management (at Operative System level) reduces its portability (system archi-

tecture is a key issue for matchmaking), even that some error handling for Java programs

has been published [117]; and, even that Master-Worker and DAG paradigms are enough

to solve most of parallel programming problems, some new generation parallel applica-

tions (e.g: Jem3D [67]) exploit high-speed networks to distribute a task among dependent

workers, having intensive communication among them and needing mobility to quick re-

act against overloading [24, 27]. Condor mechanism of checkpointing/restart does not

provide mobility for dependent workers.

4.4.2 Legion

Legion is an object-based, meta-systems software project at the University of Virginia.

The project began in late 1993 [64], focusing in object-oriented parallel processing, dis-

tributed computing, scalability, programming ease, fault tolerance and security. Legion

is designed to support large degrees of parallelism in application code and to manage the

complexities of the physical system for the user. The first public release was made at

Supercomputing ’97, San Jose, California, on November 17, 1997.

Legion comprises of independent, address-space disjoint C++ objects that communi-

cate with one another via method invocation. Method calls are non-blocking and may be

accepted in any order by the called object. Each method has a signature that describes the

parameters and its return value (if any). In the Legion object model, each Legion object

belongs to a class, and each class is itself a Legion object. A class object is responsible for

creating and locating its instances (non-class objects) and subclasses (other class objects).

Further details of Legion’s implementation can be found in the work of Mike Lewis and

Andrew Grimshaw [81].

38 CHAPTER 4. STATE OF THE ART ON LOAD-BALANCING

We are particularly interested in two Legion objects: Hosts and Vaults (See Figure

4.5). A Host object runs on each host that is included in the Legion system. A host

handles tasks as instantiating and executing objects on the host, report object exceptions

and they encapsulate machine capabilities. Vaults are the generic storage abstraction in

Legion. All object must have a Vault in order to be executed, and this Vault will store the

persistent state of the Object (after a set of method calls, the object’ state is stored inside

the Vault), which is used for migration purposes.

Legion Class

vault 1 vault 2host 2host 1

Vault ClassMy ClassHost Class

Figure 4.5: Main classes of Legion infrastructure

In Legion’s Resource Management Infrastructure [37], three new Legion’s object came

to light: a Collection, which store information of a set of hosts; an Enactor, which is

responsible of the scheduling for a given Collection, and an execution Monitor. Also, a

user-defined Scheduling to interact with the infrastructure is allowed.

The object placement (and replacement) works as follows (See Figure 4.6):

1. The Collection is populated with the information of Hosts.

2. The Scheduler queries about resources information to the Collection

3. Based on the result and knowledge of the application and the answer of the Collec-

tion, the Scheduler performs a mapping of objects to resources.

4. The previous mapping is passed to the Enactor.

5. The Enactor invokes methods in Hosts and Vaults.

6. The method call performs reservation in those resources named at the mapping.

7. After the reservation, the Enactor confirms the schedule with the Scheduler.

8. The approval or rejection is sent to the Enactor.

9. Enactor attempts to instantiate the objects through the appropriate class objects.

10. The class objects report success/failure codes.

11. The Enactor returns the result to the Scheduler.

4.4. RELATED WORK 39

12. If, during execution, a resource decides that an object has to be migrated, it

performs an outcall to the Monitor.

13. the Monitor notifies the Scheduler and Enactor that a rescheduling of that object

has to be performed.

A migration in Legion is performed taking out an object from the processing queue,

transferring its persistent state to a new location, and rescheduling it. Scalability is

achieved because Collections are non-disjoint sets of resources.

Collection

Legion Class

Host Class My Class Vault Class

host 1 host 2 vault 2vault 1

13

13

126,105,9

7,11

4,8

32

1

MonitorEnactorScheduler

Figure 4.6: Legion Resource Management Infrastructure

Legion as itself was not finished, but the project team which developed it continued the

idea, reporting at the project web-page (http://legion.virginia.edu) that

Legion team will not finish Legion but will create an “open” system that allows

and actively encourages third-party development of applications, run-time li-

brary implementations, and core system components.

Legion as a model of objects for parallel computing was a very good idea, and some of

its features, as the use of non-disjoint sets of resources to achieve scalability and migra-

tion of objects in safe-state were take in account in the development of a load-balancing

infrastructure for ProActive’s active objects, adding the Java natural portability that C++

Legion’s objects did not have.

4.4.3 Cilk

Cilk is a Middleware for multithreaded parallel programming which is based on ANSI

C Language and it was first introduced in 1992 as a model for “Managing Storage for

Multithread Computations”, the master thesis of Robert Blumofe [16] and as a real im-

plementation in 1995 with the work of Blumofe et al. [17], and winning the Dutch Open

40 CHAPTER 4. STATE OF THE ART ON LOAD-BALANCING

Computer Chess Championship in November 1996 with CilkChess [80]. Finally, in 1998;

Frigo, Leiserson and Randall present Cilk5 [60], a new implementation of Blumofe’s

idea improving its performance reducing overheads of previous versions using distributed

shared memory.

The philosophy of Cilk is that a programmer should concentrate on structuring the pro-

gram to expose parallelism and exploiting locality. To achieve that, the programmer has

to build an explicit Direct Acyclic Graph as Condor (see Figure 4.4(b)) using a primitive

called spawn. In addition of Condor’s DAG, Cilk provides also a primitive to synchronise

data dependencies (sync). Figure 4.7 presents a DAG built using Cilk’s primitives.

level 0

level 3

level 2

level 1

Figure 4.7: Cilk model: each thread is a circle, grouped in procedures. Each downward arrow is a spawned

child, and each horizontal arrow is a spawned successor. Dashed arrows represent data dependency (syn-

chronisations). Also, spawn-levels from the original thread are presented.

Below there is a Cilk code example for an (non-optimal) implementation of parallel

Fibonacci’s function. Note that using a minimal set of primitives (cilk, spawn and

sync) a sequential procedure was transformed in a parallel one.

cilk int fib (int n)

{

if (n < 2) return n;

else

{

int x, y;

x = spawn fib (n-1);

y = spawn fib (n-2);

sync;

return (x+y);

}

}

As the programmer has the responsibility of make explicit the parallelism in a Cilk

code, the Cilk runtime system has the responsibility of scheduling the computation to run

efficiently on a given platform. Thus, the Cilk runtime system has to take care of details

such as load-balancing, paging, and communication protocols. Load-balancing in Cilk is

performed by a Work-Stealing algorithm [18] which works as follows:

4.4. RELATED WORK 41

1. Choose a victim to steal

2. If the victim is idle, attempt to steal again

3. Otherwise, steal the first non-executed thread on the lower level and execute it until:

(a) The thread spawns another thread

(b) The thread returns/terminates

(c) The thread reaches a sync point

The previous algorithm was enhanced by Bender and Rabin [12], performing a work

stealing and sharing to speed up parallel applications (we arrived to the same conclusion

for load-balancing of active objects in Section 5.5). The steps of their modified algorithm

are:

1. Choose a victim to steal

2. If the victim has available threads, steal using the previous algorithm

3. If there are not available threads but the victim is working on a thread and it is

reported to be β times slower than the thief (β > 1, but β close to 1), then mug

the thread (mug means its thread is migrated to another processor and this processor

attempts to work steal).

4. Once a thread is received, work on ituntil:

(a) The thread spawns another thread

(b) The thread returns/terminates

(c) The thread reaches a sync point

(d) The processor is mugged

5. Otherwise, there is a failed steal attempt; try to steal again!

Even thought Cilk improves the Direct Acyclic Graphs presented in Condor, provid-

ing a synchronisation primitive which allows the utilisation of dependent tasks, its per-

formance has been discussed even by its implementers [60]. Moreover, its philosophy

of give to the programmer the parallelism responsibility (in opposition to Condor and

ProActive [97]) may produce poor performance parallel programs with a minimal use of

Cilk’s primitives (as the Fibonacci code example). Finally, the use of a distributed shared

memory makes a hard requirement in the context of large scale networks.

4.4.4 Satin

Satin was first introduced with the work of Robert van Nieuwpoort, Thilo Kielmann, and

Henri E. Bal as an extension of Java language with Cilk-like primitives for the Manta

compiler1, with the goal of efficiently run parallel divide-and-conquer applications on

1Manta is a native Java compiler which compiles Java source codes into Intel architecture executables. For details, see the PhD

thesis of Robert van Nieuwpoort [120], Chapter 3

42 CHAPTER 4. STATE OF THE ART ON LOAD-BALANCING

wide-area hierarchical systems. This work was presented in EuroPar 2000 conference

[121].

In 2005, a new implementation of Satin adapted for Grid Computing [123] replaced

the Cilk spawn primitive by an interface which determine that an object could be exe-

cuted in parallel. An example of Satin source code is the following (again not-optimal)

implementation of Fibonacci’s function:

interface FiboIter extends satin.Spawnable {

public long fib (long a);

}

class Fibo extends satin.satinObject

implements FiboIter {

public long fib (long a) {

if (a < 2) return a;

long x = fib (a-1); // spawned

long y = fib (a-2); // spawned

sync();

return x+y;

};

// ...

}

The main contribution of Satin is its work-stealing algorithm [122]. Nieuwpoort et al.

[122] presented an experimental study of Cilk-like Random Work-Stealing (RS) with ex-

isting load-balancing strategies that were believed to be efficient for multi-cluster systems

(Random Pushing [109] and two variants of Hierarchical Stealing [6, 8]). They demon-

strate that, in practice, these work-stealing algorithms perform sub-optimally.

In the same work [122], authors introduce a novel load-balancing algorithm, called

Cluster-Aware Random Stealing (CRS), which adapts itself to network conditions and job

granularities, balancing differently for local nodes (in a cluster or LAN) than for external

nodes (accessed through a WAN). Cluster-Aware Random Stealing works as follows:

1. Choose a victim to steal

2. If the victim has available threads:

(a) If the victim is in the same cluster, steal the first non-executed thread on the

lower level (this is a synchronous process).

(b) Else, if the thief is not performing a long-distance work-stealing, it performs an

asynchronous steal requirement.

A steal requirement may be one of the following:

1. the thief sets its long-distance work-stealing flag.

4.4. RELATED WORK 43

2. the thief sends a steal request to the victim.

3. if the victim has an available thread, the thread is sent to the thief ; else, a “no avail-

able thread” reply is sent.

4. the handler routine for the long-distance steal simply resets the flag and, if the re-

quest was successful, puts the new thread into the work queue.

Note that while the asynchronous long-distance work-stealing is performed, the thief may

perform synchronous steal requests to nodes within its own cluster. As long as the flag is

set, only local stealing will be performed.

CRS was reported faster than its competitors for 11 out of 12 test applications with

various WAN configurations using at most a 4% of overhead in run time compared to

normal random stealing on a single, large cluster, even with high wide-area latencies and

low wide-area bandwidths. Nevertheless, in Section 6.2 we will show that in large-scale

networks, a cluster-awareness has to be complemented with a smart first distribution to

improve the performance of a parallel application, else the performance may be worse.

Moreover, as we will see in Section 5.3.4, a receiver-initiated load-balancing does not

perform quick reaction against overloading; therefore, it has limited applicability in the

context of Desktop Grids.

Even thought Satin behaves better than Cilk for Divide and Conquer parallel ap-

plications in heterogeneous networks, the use of the Manta undermines its chances of

widespread adoption.

44 CHAPTER 4. STATE OF THE ART ON LOAD-BALANCING

Chapter 5

Setting foundations for Load-Balancing

of Active-Objects

“Do you wish to be great? Then begin by being. Do you desire to construct

a vast and lofty fabric? Think first about the foundations of humility. The higher

your structure is to be, the deeper must be its foundation.” (Saint Augustine)

In this Chapter we present the main contribution of our thesis: foundations for the

load-balancing of active objects. The idea is to reduce the overall time of an application

developed with active-objects, migrating objects from overloaded to underloaded proces-

sors with an increase of application speed regardless of migration time.

5.1 Active-Objects and Processing Idleness

When an active-object is idle (without processing), it can be in one of two states: wait-

for-request or a wait-by-necessity (see Figure 5.1). While the former represents a sub-

utilisation of the active-object, the latter means that some of its requests are not served

as quickly as they should. The longer waiting time is reflected on a longer application

execution time, and thus a lower application performance. Therefore, we focus on a

reduction in the wait-by-necessity delay.

Even though the balance algorithms will speed up applications such as that on Figure

5.1 (b), they are not the focus of our work, because the time spent in message services is

so long that the usage of futures would be pointless. In such application designs, asyn-

chronism provided by futures will unavoidably become synchronous. Migrating this kind

of an active-object to a faster machine will reduce the application’s response time but will

not correct the application design problem.

Therefore, we focus on the behaviour presented in Figure 5.1 (c), where the active-

object on C is delayed because the active-object on B does not have enough free processor

time to serve its request. Migrating the active-object from B to a machine with avail-

able processor resources speeds up the global parallel application, because the wait-by-

necessity time of C will become shorter, and B will have fewer active-objects, decreasing

its load.

In Section 4.2 we presented several algorithms of load-balancing. Some of them per-

form batch processing balance (such as Condor [89]), exploiting their knowledge of the

45

46 CHAPTER 5. SETTING FOUNDATIONS FOR LOAD-BALANCING OF ACTIVE-OBJECTS

A B

WfR
Q

P

WbN

(a)

A B

Q

P

Q

P

(b)

A B C

Q
P

Q

P

QP

(c)

Figure 5.1: Different behaviours for active-objects request (Q) and reply (P): (a) B starts in wait-for-request

(WfR) and A made a wait-by-necessity (WfN). (b) Bad utilisation of the active-object pattern: asynchronous

calls become almost synchronous. (c) C has a long waiting time because B delayed the answer.

hardware architecture to perform the migration. However, active-objects are also normal

objects which are executed on virtual machines. That is, virtual environments on real

machines where objects can run safely, having no access to kernel calls of hardware re-

sources. Therefore, the study of load-balancing of active objects has to concentrate on

those that do not exploit kernel calls for hardware knowledge.

Most of load-balancing schemes perform migration of tasks1 among queues (Figure

5.2), and those queues are fixed to each processor. Because the stated behaviour of active

objects service queues, each service has to be served for the active object on which it was

enqueued, unless it does not change the instance variables of the active object. However,

to know if the service has the capacity to change the variables while it is enqueued re-

quires similar processing time than serving it, producing that the application runs almost

at half the speed than running in a normal behaviour. That is the main reason why a load-

balancing algorithm of active-objects has to perform migrations of active-objects instead

of tasks (services) (Figure 5.3).

(a) Before balancing (b) After balancing

Figure 5.2: The supermarket abstraction for load-balancing of enqueued tasks.

(a) Before balancing (b) After balancing

Figure 5.3: The supermarket abstraction for load-balancing of Active Objects.

1On active-objects there are no notion of task, instead of it, we will use the term service (for the service queue).

5.2. LOCATION POLICY FOR LOAD-BALANCING OF ACTIVE-OBJECTS 47

5.2 Location policy for load-balancing of active-objects

In order to produce a good location policy for load-balancing of active-objects we need

a good estimator of the migration costs. Therefore, we measured the migration time be-

tween two given nodes, varying the communication latency (which we call the distance

of the nodes) and the heap-size of the object in doubles (one double equals four bytes).

The distance parameter was 50, 100, 150, ..., 350 milliseconds (ms) and the object size

between 100, 000 and 1, 000, 000 doubles. The result was that the migration time corre-

sponds linearly to the size of the object and to the latency of the communication between

two nodes. This result is very important for the location policy: an active object will

serve no requests while it is migrating; therefore, higher the migration time, slower the

performance of the parallel application. Unfortunately, a reliable approximation of the

size of the active-object can only be obtained during (or after) a migration, and it may

be too late. However, a good estimation of latency can be achieved by network topology

(Chapter 3). Therefore, our location policy will aim to locate “a good, close partner” (see

Section 5.4.2) and even big objects will not have a too high migration time.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 50 100 150 200 250 300 350

ti
m

e
 [

m
s
e
c
]

latency [msec]

200M

400M

600M

800M

1,000M

(a) Fixed object size

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

ti
m

e
 [

m
s
e
c
]

heap size [doubles]

50.0 ms

100.0 ms

150.0 ms

200.0 ms

250.0 ms

300.0 ms

350.0 ms

(b) Fixed distance

Figure 5.4: Migration time from the point of view of latency and object’ size

5.3 Information and transfer policies for load-balancing of active-

objects

The objective of this section is to determine good information-sharing and transfer poli-

cies for load-balancing of active-objects. To measure the performance of the different

policies we use simulations validated with practical experiences.

In this section, we classify partial-information policies by their transfer policy: Ea-

ger or Lazy. Eager policies correspond to the ones where an overloaded node triggers

the load-balancing, and therefore the shared information corresponds to the underloaded

nodes. Lazy policies correspond to the ones where the underloaded node triggers the load-

balancing, and therefore the shared information corresponds to the overloaded nodes.

48 CHAPTER 5. SETTING FOUNDATIONS FOR LOAD-BALANCING OF ACTIVE-OBJECTS

5.3.1 Modelling ProActive behaviour to test algorithm policies

Each node represents a machine (virtual or real) which participates in the balancing. As in

[119], we compare centralised and distributed algorithms, adding also partial-information

algorithms in our experiments. In ProActive, there is no notion of tasks as in parallel batch

systems [89] we will use the term task to refer to a service [97], adding the term job for

a set of services served by an active object. In the literature, the word load represents

a metric such as the CPU queue length, the available memory, a linear combination of

both, etc. In this work, load represents the number of tasks in the CPU queue modelled

with ProActive (see Section 5.3.2). In our study, response time is the time since a node

entering the overloaded state and the beginning of the load-balancing.

Following the recommendations of [13, 35], we simulate the load of each node with

a discrete-time population process with birth-rate λ and death-rate µ. The value of λ

represents the number of jobs which arrive every second to a node. The job size (in terms

of number of tasks) follows an exponential distribution with mean 1. The death-rate µ

represents the number of tasks served by a single node per second. In our experiments we

use λ = 1, 2, ..., 10, and in order to maintain the system stable: µ = 10. Note that this

methodology simulates the load balance process and its communications. Simulation data

will conclude whether the policies hinder intensive-communicated parallel applications.

Because our experiments have to be comparable for all policies and number of nodes,

we calculated the total number of incoming tasks every second (along a period of 60

seconds) for each value of λ. These precomputed values were used for all the experiments.

In our experiments, the nodes are labelled 0, ..., n and the value of λ assigned to the

node i is λi = 1 + i mod 10. Each node used the initial precomputed incoming rate λi, and

after 60 seconds, the simulation was restarted again with the value of λi.

Several studies have shown that on a set of workstations (without load-balancing),

more than 80% of the workstations are idle during the day [83, 89, 119]. The concept of

occupied workstations and overloaded nodes are similar: processors which want to share

work. Therefore, in our study, if no load balance was made, 20% of the nodes had to reach

the overloaded state. To achieve this with the previously calculated values for λ, we used

the convention:

• Underloaded Node: load < 10.

• Normal Node: 10 ≤ load < 15.

• Overloaded Node: load ≥ 15.

5.3.2 Implementing the Information-Sharing Policies

When dealing with communication-intensive applications (parallel applications which

transfer a large amount of data among processors), the information-sharing policy in-

fluences not only the load-balancing decisions but also the communication itself. We

studied this problem, because our results can be applied in the context of load-balancing

on peer-to-peer networks.

This section describes experiments which measure the response time and bandwidth

5.3. INFORMATION AND TRANSFER POLICIES FOR LOAD-BALANCING OF ACTIVE-OBJECTS49

usage for different information-sharing policies applied by well-known load-balancing

algorithms.

Each node is modelled as an active object with three principal operations:

• register: registers on the communication channel (server, broadcast). This method

starts the clock in our experiments.

• loadBalance: starts the load-balancing process, to stop the clock in our experi-

ments, and to calculate the response time.

• addLoad(x): adds x tasks to the called object.

Centralised

For this policy, one active object was chosen as a central server which collected and stored

load-balance information of each node as: underloaded, normal or overloaded. The policy

works as follows:

• Every second, the nodes call the remote register execution on the server.

• The load server processes incoming method calls. If the call originates from an

overloaded node, the server randomly chooses an address of an underloaded node (if

any) and calls the method loadBalance on the overloaded node with the chosen

address.

• The overloaded node performs locally addLoad(-myLoad/2) (according to the

recommendations of Berenbrink, Friedetzkyand Goldberg [13]) and the underloaded

node (remotely) performs addLoad(myLoad/2).

Lazy Centralised

We studied this policy aiming at a reduction of the information transmitted over the net-

work. For this, we included an unregister method in the node model. This policy is

described as follows:

• When a node reaches the overloaded state, it registers on the central server, and

• When a node leaves the overloaded state, it unregisters (removes its reference) from

the server.

• Every second, if a node is underloaded it asks the server for overloaded nodes. When

the server receives that query, it randomly chooses the address of an overloaded node

(if any), and starts the load-balancing: ordering the overloaded node to balance with

the node that originated the query.

Eager Centralised

This policy is similar to the previous one, but underloaded nodes share their informa-

tion instead of overloaded ones. The nodes register on the server when they reach the

underloaded state and unregister when leaving it:

50 CHAPTER 5. SETTING FOUNDATIONS FOR LOAD-BALANCING OF ACTIVE-OBJECTS

• When a node is in overloaded state, it asks the server for underloaded nodes once

per second.

• Upon receiving the query, the server randomly chooses the address of an underloaded

node (if any) and begins the load-balancing by ordering the overloaded node that sent

the query to balance with the chosen underloaded node.

Distributed

The policy is similar to Centralised, but instead of sending the information to a central

server, nodes broadcast their information. Therefore, all the nodes are servers, and each

node makes its own balance decisions (i.e.: local decisions), using information collected

from the communication channel.

Lazy Distributed

This policy is similar to Lazy Centralised, but in this case the information is shared

through the multicast channel instead of a central server. As in Distributed policy, ev-

ery node is also a server and the decisions are local. We expected this policy to have

similar time delay but use less bandwidth than the Distributed policy due to the reduction

in number of messages sent.

Eager Distributed

This policy is the broadcast version of Eager Centralised, and we expected a behaviour

similar to the Lazy Distributed policy.

5.3.3 Hardware and Software

We simulated the models using the Oasis Team Intranet [96]. We tested the policies on

an heterogeneous network composed of: 3 Pentium II 0.4 GHz, 10 Pentium III 0.5 - 1.0

Ghz, 3 Pentium IV 3.4GHz and 4 Pentium XEON 2.0GHz for the nodes and a Pentium

IV 3.4GHz for the server. We uniformly at random distribute the nodes (active objects)

on the processors. For response-time measurements we used the system clock, and for

bandwidth measurements we used Ethereal [39] software. The policy methods for nodes

and servers were developed using the ProActive middleware on Java 2 Platform (Standard

Edition) version 1.4.2.

5.3.4 Results Analysis

We tested the policies on 20, 40, 80, 160, 320 nodes distributed on 20 machines. For each

case we took 1000 samples of response times and the bandwidth reports from Ethereal.

In this section we present the main results of this study. We will first discuss the response

time, and then the bandwidth analysis.

5.3. INFORMATION AND TRANSFER POLICIES FOR LOAD-BALANCING OF ACTIVE-OBJECTS51

Response Time

Figure 5.5 shows the response time for all policies using the model defined in Section

5.3.1. Note that in the Eager Distributed policy, overloaded nodes collect the information

from underloaded nodes before the balancing takes place. Therefore, the response time is

near zero, and we omitted this policy from the plot.

According to the recommendations of [94], response time should be less than the peri-

odical update time, and in this study the update time is 1000 ms.

Using this reference, distributed policies presented better response times than cen-

tralised policies. Also, policies that sent underloaded information (Eager policies) had

better performance than policies which shared overloaded information (Lazy policies).

This happens because in the Eager policies, the overloaded nodes generate the load-

balancing requests, while in Lazy policies overloaded nodes have to wait until an un-

derloaded node initiates the load-balancing.

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200 250 300 350

R
e
s
p
o
n
s
e
 T

im
e
 [

m
s
e
c
]

Number of Nodes

Distributed
Lazy Distributed

Centralised
Lazy Centralised

Eager Centralised

Figure 5.5: Mean response time for all policies

Bandwidth

In this section we tested the policies bandwidth usage. Unfortunately, the underlying im-

plementations introduces an additional difference through resorting to TCP or UDP-based

communications (resp. Centralised and Distributed policies). To avoid having to inter-

pret such bias, we compare performance between full and partial information policies,

developed on centralised and distributed load-balancing algorithms.

Figure 5.6 shows the bandwidth used during the information-sharing phase, counting

only messages sent to the server:

1. Centralised policies use between 5 (Eager Centralised) and 40 times (Centralised)

52 CHAPTER 5. SETTING FOUNDATIONS FOR LOAD-BALANCING OF ACTIVE-OBJECTS

more bandwidth than distributed policies. This phenomenon is the result of the dif-

ferent type of network protocols used, and has been well studied in related-work

[113].

2. For partial information schemes with centralised policies: when overloaded nodes

share their information, less than 20% of the total nodes (see Section 5.3.1) will

send register/unregister messages, and more than 80% of them will send queries for

registered nodes (every second).

3. When underloaded nodes share their information, more than 80% of the total nodes

will send register/unregister messages and less than 20% of them will send queries.

This behaviour causes the former approach to consume more bandwidth than the

latter.

 0

 20000

 40000

 60000

 80000

 100000

 0 50 100 150 200 250 300 350

B
a
n
d
w

id
th

 [
B

y
te

s
/s

e
c
]

Number of Nodes

Distributed
Lazy Distributed

Eager Distributed
Centralised

Lazy Centralised
Eager Centralised

Figure 5.6: Bandwidth usage of coordination policies during the information-sharing phase

Figure 5.7 shows the total bandwidth used by our load model, including the loadBalance

and addLoad messages:

1. Eager policies which share partial information of underloaded nodes have the lowest

bandwidth usage for each case (centralised and distributed).

2. Lazy Centralised policies which share partial information generate a great increase

of the bandwidth usage, because there is no control on how many underloaded nodes

send loadBalance messages. In the Lazy Centralised policy, this behaviour gen-

erates a saturation on the communication channel even though the number of mes-

sages is half of the Centralised policy number. This happens because most of the

messages are balance queries, and the server has to choose an overloaded node and

send the loadBalance message to it.

5.3. INFORMATION AND TRANSFER POLICIES FOR LOAD-BALANCING OF ACTIVE-OBJECTS53

3. When the service queue of a central server becomes saturated (over 300 nodes on

our experiments), the response time increases and the bandwidth usage decreases,

because the saturation will cause less messages to be sent over the network. Using

a multi-threaded central server can increase the saturation threshold, but it is not a

scalable solution because new constraints such as mutual exclusion are generated.

 0

 100000

 200000

 300000

 400000

 500000

 0 50 100 150 200 250 300 350

B
a
n
d
w

id
th

 [
B

y
te

s
/s

e
c
]

Number of Nodes

Distributed
Lazy Distributed

Eager Distributed
Centralised

Lazy Centralised
Eager Centralised

Figure 5.7: Bandwidth usage of coordination policies during all the load-balancing

5.3.5 Testing the impact of Information-Sharing Policies

We tested the impact of the policies with a real application: the calculus of a Jacobi ma-

trix. This algorithm performs an iterative computation on a real-valued square matrix. On

each iteration, the value of each element is computed using its own value and the value of

its neighbours on the previous iteration. We divided a 3600x3600 matrix into 25 disjoint

sub-matrices of equal size, each one managed by an active object called “worker” (imple-

mented using ProActive). Each worker communicates only with its direct neighbours.

As a reference, all the workers are randomly distributed among 15 machines, using at

most two workers per machine. Using this distribution, we measured the mean execution

time of performing 1000 sequential calculus of Jacobi matrices (first row of Table 5.1).

To determine the impact of the policies on the Jacobi application, we distributed 30

nodes among the 15 machines. We ran the application (placing one load server outside of

the simulation machines), and measured the execution time of Jacobi. Separately for each

policy we measured the CPU cost (in % of busy time) for the 15 machines. The results

are in Table 5.1.

While Centralised policies use less CPU on the “client” side, they use more bandwidth

than their distributed equivalents. A special case is the Distributed policy, which uses less

54 CHAPTER 5. SETTING FOUNDATIONS FOR LOAD-BALANCING OF ACTIVE-OBJECTS

Table 5.1: Information-sharing policies and their effects on execution time of a parallel Jacobi application

Policy Execution Time (sec) % policy cost (time) % policy cost (CPU)

None 914.361 — —

Centralised 1014.960 11.00% 1.3%

Lazy Centralised 995.873 8.91% 1.1%

Eager Centralised 972.621 6.37% 1.1%

Distributed 1004.800 9.89% 10.7%

Lazy Distributed 925.964 1.26% 4.5%

Eager Distributed 915.085 0.08% 4.1%

bandwidth than the Centralised policies, but the largest CPU time consumption, and it

produces almost 10% of time delay on the application. So, if this policy is used, the load

balancing itself will produce overloading.

We conclude that Distributed oriented policies have the best performance using these

metrics, and sharing underloaded nodes information (Eager), is the best decision. In a

load-balancing architecture for communication-intensive parallel applications developed

with asynchronous communicated middlewares, we suggest using an Eager Distributed

policy where overloaded nodes trigger the balancing using previously acquired informa-

tion, thus avoiding the need for Centralised servers. Moreover, if the load index could

be updated with a lower frequency than once per second and similar accuracy, the policy

would use fewer coordination messages, producing less interference with parallel appli-

cations.

5.4 Exploiting the Peer-to-Peer infrastructure: Information on-demand

As we concluded in Section 5.3, the best policy for intensive-communicated parallel ap-

plications developed within ProActive, in terms of bandwidth used and response-time, is

an eager scheme. In this section, we take some ideas from load-balancing studied in Sec-

tion 4 and design new algorithms for load-balancing of active-objects. Our first approach

is a Robin-Hood eager-centralised scheme. The algorithm performed a good balance if

the initial distribution of the parallel application was near to a local optimum; else, the

performance of the algorithm decreased. To improve the algorithm, we study the imple-

mentation of the Peer-to-Peer infrastructure of ProActive (see Section 3.2), and develop

a new algorithm which exploits its knowledge of the other nodes to find a good selection

for balancing.

At the end of this section there are some implementation issues and benchmarking of

our algorithm with the Jacobi parallel application.

5.4.1 Robin-Hood Load-Balancing Algorithm

The Robin-Hood load-balancing algorithm was the first attempt to perform dynamic load-

balancing of ProActive active-objects [23]. First it was implemented using a multicast

channel but then, given the firewall constraints of multicast channels, it was implemented

using a central server [24]. The Robin-Hood algorithm uses a central server to store

5.4. EXPLOITING THE PEER-TO-PEER INFRASTRUCTURE: INFORMATION ON-DEMAND 55

system information, processors can register, unregister and query it for balancing. The

algorithm is as follows:

Every t units of time

1. if a processor A is underloaded, it registers on the central server,

2. if a processor A was underloaded in t-1 and now it has left this state, then it unreg-

isters from the central server,

3. if a processor A is overloaded, it asks the central server for an underloaded processor,

the server randomly chooses a candidate from its registers and gives its reference to

the overloaded processor.

4. The overloaded processor A migrates an active object to the underloaded one.

This simple algorithm satisfies the requirements of minimising the reaction time against

overloading and, as we explained on Section 5.1, speeds up the application performance.

However, it works only for homogeneous networks.

In order to adapt this algorithm to heterogeneous computers, we introduce a function

called rank(A), which gives the processing speed of A. Note that this function generates

a total order relation among processors as the gradient model of Lin and Keller [82].

The function rank provides a mechanism to avoid processors with low capacity, con-

centrating the parallel application on the higher capacity processors. It is also possible to

provide the server with rank(A) at registration time, allowing the server to search for

a candidate with similar or higher rank, producing the same rank mechanism, with the

drawback of adding the search time to reaction time against overloading. In general, any

search mechanism of the best unloaded candidate in the server will add a delay into server

response, and consequently in reaction time.

Before implementing the algorithm, we studied our network and selected a proces-

sor B2 as reference in terms of processing capacities. Then, we modified the previous

algorithm to:

Every t units of time

1. If a processor A is overloaded, it asks the central server for an underloaded processor,

the server randomly chooses a candidate from its registers and gives the reference to

the overloaded processor.

2. If A is not overloaded, it checks if load(A,T) < UT*rank(A)/rank(B), if

true then it registers on the central server. Else it unregisters from the central server.

3. Overloaded processor A migrates an active object to the underloaded one.

5.4.2 Robin-Hood over ProActive’s Peer-to-Peer Infrastructure

An important issue for load-balancing of active-objects algorithms is the migration time,

defined as the time interval since the processor requests an object migration, until the

objects arrives at the new processor3. Migration time is undesirable because the active

2Choosing the correct processor B requires further research, but for now the median has proved reasonable approach.
3In ProActive, an object abandons the original processor upon confirmation of arrival at the new processor.

56 CHAPTER 5. SETTING FOUNDATIONS FOR LOAD-BALANCING OF ACTIVE-OBJECTS

object is halted while migrating. Therefore, minimising this time is an important aspect

at load-balancing.

While several schemes try minimising the migration time using distributed memory

[17] (hard to implement for ProActive’s Active Objects), or migrating idle objects [64] (al-

most inexistent on intensive-communicated parallel applications), we exploit ProActive’s

Peer-to-Peer architecture (defined on Section 3.2) to reduce the migration time. Using a

group call, the first reply will come from the nearest acquaintance, and thus the active ob-

ject will spend the minimum time travelling to the closest unloaded processor known by

the peer. Note that the notion of “nearest acquaintance” is “the node at which active ob-

jects can arrive fastest”. As seen in Section 5.2, we are trying to minimise latency which

is linear to migration time.

We adapted the Robin-Hood algorithm, using a subset of peer acquaintances from the

Peer-to-Peer infrastructure to coordinate the balance. Suppose the number of computers

on the P2P network is N , large enough to suppose them load-independents. If p is the

probability of having a computer on an underloaded state, and the acquaintances subset

size is n << N , if we send a request asking for an underloaded node, the probability of

having at least k responses is

n
∑

i=k

(n
k)pi(1 − p)n−i (5.1)

Therefore, having an estimation of p, a good selection of the parameter n permits a

reduction on the bandwidth used by the algorithm with a minimal addition on reaction

time. For instance, using the pairs (p = 0.8,n = 3) or (p = 0.6,n = 6), one has a response

probability greater than 0.99.

The algorithm for P2P networks is: Every t units of time

1. If a processor A is overloaded, it sends a balance request and the value of rank(A)

to a subset of n of its acquaintances.

2. When a processor B receives a balance request, it checks if load(B,T) < UT

and rank(B) ≥ RB*rank(A) (RB is a coefficient between [0,1]); if true, then

B sends a response to A.

3. When A receives the first response (from B), it migrates an active object to B. Further

responses for the same balance request can be discarded.

The migration time problem is not the only source of difficulty. There is a second

one: the ping pong effect. This appears when active objects migrate forwards and back-

wards between processors. This trouble is conceptually avoided by our implementation

by choosing the migrating active object as the one with shortest service queue. During

the migration phase, the active object pauses its activity and stops handling requests. For

a recently migrated active object, all new requests are waiting in the queue, and will only

begin to be treated after the migration has finished. Therefore, a freshly migrated object

generally has a longer queue than similar objects on the new processor, thus a low priority

for moving. Moreover, on our Peer-to-Peer load-balancing algorithm, we chose the tar-

get node from a minimal subset of the acquaintances. This random selection reduces the

probability of a ping-pong effect.

5.5. ROBIN-HOOD AND THE NOTTINGHAM SHERIFF 57

5.5 Robin-Hood and the Nottingham Sheriff

The main problem of the Robin-Hood algorithm in Peer-to-Peer networks is that the al-

gorithm looks for a proportional equalisation of the system load, and stops the balancing

when reaching a local optimum.

To face the algorithm to continue looking for better solutions, we added to the previ-

ous algorithm the capacity for an underloaded node to choose another node randomly (a

greedy work-stealing approach). If the target node has a lower ranking, an active-object

(if any) will be stolen from the low ranking node to the higher one. That is:

1. If a processor A is underloaded, it randomly chooses one of its acquaintances and it

sends to this node a steal message and the value of rank(A).

2. When a node B receives a steal request, it checks if it has active-objects. In an

affirmative case, if rank(A) > RS*rank(B), B migrates an active-object to A

(RS is a coefficient between [0,1]).

In other words, we have a Robin-Hood algorithm migrating active-objects from over-

loaded (rich) nodes to underloaded (poor) nodes, and a Ranked Work-Stealing algorithm

(the Nottingham Sheriff) trying to collect all active-objects to the best ranked node. We

aim to demonstrate that, using a low number of links among nodes and a good selection

of parameters, an optimal distribution is reachable.

5.6 Testing algorithms in a real environment

Algorithms were deployed on a set of 25 of INRIA lab desktop computers, having 10

Pentium III 0.5 - 1.0 Ghz, 9 Pentium IV 3.4GHz and 6 Pentium XEON 2.0GHz, all of

them using Linux as operating system and connected by a 100 Mbps Ethernet switched

network. With this group of machines we used the Peer-to-Peer infrastructure to share

JVMs. Using our previous experiences (see Section 3.2), we configured the Peer-to-

Peer infrastructure with: TTU (Time-to-Update the acquaintances list) at 10 minutes, NOA

(Minimal size of acquaintances set for each peer) at 10 peers and TTL (depth in hops of

the peer searching request) at 5 hops. At first only one peer was chosen as server for the

first contact, and other peers used it to join the infrastructure.

Functions load() (resp. rank()) of Section 4.2 and 5.4.2 were implemented with

information available on /proc/stat (resp. /proc/cpuinfo). load-balancing al-

gorithms were developed using ProActive on Java 2 Platform (Standard Edition) version

1.4.2.

In our experience, we used our knowledge of the lab networks to have, in normal con-

ditions, 80% of desktop computers on underloaded state (as it was reported by Litzkow,

Livny and Mutka [89]), defining the parameter UT of the algorithm as UT = 0.3; and, to

avoid swapping on migration time, defining OT = 0.8.

Since the CPU speed (in MHz) is a constant property of each processor and it repre-

sents its processing capacity, and after a brief analysis of them on our desktop computers,

we define the rank function as: rank(P) = log10 speed(P).

58 CHAPTER 5. SETTING FOUNDATIONS FOR LOAD-BALANCING OF ACTIVE-OBJECTS

When implementing the algorithm, a new constraint appears: all load status are checked

each t units of time (called update time). If this update time is less than migration time,

extra migrations which affect the application performance could be produced. After a

brief analysis of migration time, and to avoid network implosion, we assume a variable t̃

which follows an uniform distribution and experimentally define the update time as:

tupdate = 5 + 30 t̃(1 − load)[sec], (load ∈ [0, 1]) (5.2)

This formula has a constant component (migration time) and a dynamic component

which decreases the update time while the load increases, minimising the overload reac-

tion time.

We tested the impact of our load-balancing algorithm over a concrete application: the

Jacobi matrix calculus. This algorithm performs an iterative computation on a square

matrix of real numbers. On each iteration, the value of each point is computed using its

value and the value of its matrix neighbours in their last iteration. We divided a 3600x3600

matrix in 36 workers all equivalents, and each worker communicates with its direct matrix

neighbours.

Looking for lower bounds in Jacobi execution time, we measured the mean time of Ja-

cobi calculus for 2, 3 and 4 workers by machine, using the computers with higher rank and

without load-balancing. Horizontal lines on Figure 5.8 are the values of this experience.

Note that those values are a good approximation for the static optimal distribution.

Initially, we randomly distributed Jacobi workers among 16 (of 25) machines, measur-

ing the execution time of 1000 sequential calculus of Jacobi matrices. First, we used the

central server algorithm defined on Section 4.2 (having a CPU clock of 3GHz as refer-

ence) and then using the P2P Robin-Hood versions defined on Section 5.4.2 . Measured

values of these experiences using RB = 0.7 and RS = 0.9 can be found in Figure 5.8.

While the central server oriented algorithm produced low mean times for low rate of

migrations (an initial distribution near to the optimal), Peer-to-Peer oriented algorithm

presents better performance while the number of migrations increase. Moreover, consid-

ering the addition of migration time on Jacobi calculus performance, Peer-to-Peer load-

balancing algorithms produces the best migration decisions only using a minimal subset

of its acquaintances. The use of this minimal subset produces also a minimisation in num-

ber of messages for balance coordination. This fact and the acquaintance approach of our

P2P network provide automatically scalability conditions for large networks.

However, the plot in Figure 5.8 shows that, for Robin-Hood algorithm, the presence of

a local optimal attempts against a good performance of the application; and, for Robin-

Hood algorithm using Ranked Work-Stealing, a performance near to the global optimal

state is reached for all migration number; that is, for all initial distributions.

5.6. TESTING ALGORITHMS IN A REAL ENVIRONMENT 59

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 5 10 15 20 25 30 35 40

ti
m

e
 [
s
e
c
]

number of measured migrations

4 AOxCPU

3 AOxCPU

2 AOxCPU

Central Server
Robin−Hood

Robin−Hood + Ranked Work Stealing

Figure 5.8: Impact of load-balancing algorithms over Jacobi calculus

60 CHAPTER 5. SETTING FOUNDATIONS FOR LOAD-BALANCING OF ACTIVE-OBJECTS

Chapter 6

Models, Simulations and Deployment

on Large-Scale Networks

“Make everything as simple as possible, but not simpler”. (Albert Einstein)

The grid computing research community has started to realise the importance of vali-

dated models for simulation work. Therefore, there have been several approaches in the

last 2–3 years to model the grid [70, 72, 76, 84, 87]. However, to our knowledge, there

are no previous attempts to research the characteristics of a part of a grid infrastructure.

For instance, the work of Lu and Dinda [84], and of Kee et al. [72] focuses on a realistic

model for the resources involved within a cluster-based grid, focusing on the model of

processors clock speed and number of processors per node. Kondo et al. [76] describe

a desktop grid environment, in which resources may enter and leave at any moment, fo-

cusing on resources availability and provided performance of resources. Medernach [87]

analyses the traces of a cluster in a grid computing environment. His work is comple-

mented by the study of Iosup et al. [70]. The main topics in both these efforts are the

characterisation of the main patterns for job submission in their respective environments.

Therefore, no other works research about processing capacity on Desktop Grids and La-

tency on Institutional-Project Grids.

Our work targets at two main characteristics: processing capacity, presenting a simple

but realistic model; and inter-resource communication latency, unstudied yet in a grid

environment. Using our Grids models, we simulate our active-objects load-balancing

algorithm aiming to select the best behaviour for large-scale Grids.

6.1 Simulating Desktop Grids

In this section we present a contribution on dynamic load balancing for distributed and

parallel object-oriented applications. We specially target Desktop Grids and their capabil-

ity to distribute parallel computation. Using an algorithm for active-object load balancing,

we simulate the balance of a parallel application over ProActive’s P2P infrastructure. We

tune the algorithm parameters in order to obtain the best performance, concluding that our

algorithm behaves well and scales to large peer-to-peer networks (around 8, 000 nodes).

This section is organised as follows. First we present the simulated environment of

61

62 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

our tests; then, the fine tuning of algorithm parameters, and finally the scalability tests

performed over our model of Desktop Grids.

6.1.1 Characterising nodes of Desktop Grids

In the study of load-balancing algorithms, one of the most important characteristics of

nodes are their processing capacity. A function using this capacity and the amount of

work that a node has to perform determine if a node is on an overloaded or underloaded

state. To have a reliable model of processing capacity, we made a statistical study of desk-

top computers registered at the Seti@home project [98]. This project aims at analysing the

data obtained from the Arecibo Radio telescope, distributing units of data among personal

computers and exploiting the processing capacity of up to 200, 000 processors distributed

around the world. We analyse the Mflops information of Seti@home reported by BOINC

[3] benchmarks. We consider Mflops as a good metric to determine the processing ca-

pacity for parallel scientific calculus, because we are interested in processing balance, not

data balance.

We grouped all desktop computers Mflops (dr) in 30 clusters (Ct) using the following

formula:

dr ∈ Ct if
⌊ r

106

⌋

= t ; therefore t = 0, ..., 3000 (6.1)

The resultant frequency histogram is shown in Figure 6.1.

Defining a normal distribution N (x) (equation (6.2)), we compared the real distribu-

tion against our model function using Kolmogorov-Smirnov test statistics (KST), giving

us a value of KST = 0.0605 (See Appendix C). Therefore, we can deduce that using

a level of significance 0.01, the capacity of processors in a Large-Scale network can be

modelled by a normal distribution.

N (x) = 16, 000 × exp

(

−(x − 1, 300)2

2 × 4002

)

(6.2)

6.1.2 Modelling Desktop Grids

Considering a discrete representation of the Euclidean space in which the resources are

physically located, we implemented in C a network simulator, using an n × n matrix for

the nodes and an n2 × n2 matrix for the edges. We assign the nodes processing capacities

(called µ) using a normal distribution N(1, 1
9
) (see Section 6.1.1).

In our simulations, we assume that all active-objects are parts of a parallel application;

therefore, we assume all service queues to have equal incoming message ratios λ. Clearly,

real Grids run different parallel applications from different sources, having different ser-

vice queue ratios and workloads. Nevertheless, from the point of view of a given parallel

application, we consider other applications only as a reduction of processing capacity of

network nodes for given time periods.

Denoting by j the number of active objects in the node i at a given time, we say that

the node i is overloaded if jλ ≥ µi and underloaded if jλ < Tµi, where T is a given

threshold between [0.5, 0.9]. The processor capacity µi is also used as the node rank.

For consistency with the previous section, we use underload threshold UT = T × µi and

6.1. SIMULATING DESKTOP GRIDS 63

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 500 1000 1500 2000 2500 3000

F
 r

 e
 q

 u
 e

 n
 c

 y

M f l o p s

Figure 6.1: Frequency distribution of Mflops for 200, 000 processors registered at Seti@home and the

normal function which models it.

overload threshold OT = µi. Each experimental sample is the mean number of 100 repe-

titions, fixing the parameter set {n, m, λ, T,RB, RS} (see Table 6.1) and recalculating µ

for all nodes in each repetition.

Table 6.1: Parameters and variables used in the simulation

Simulation parameters Model parameters Algorithm parameters

n × n number of nodes µ processor’s capacity

and ranking

UT threshold to deter-

mine an underloaded

state

m number of active ob-

jects

λ incoming ratio of an

active object service

queue

OT threshold to deter-

mine an overload

state

x, y initial deployment

subset, x is the length

and y the high of the

network area

T factor used to deter-

mine UT

RB,RS load-balancing

and work-stealing

similarity factors

6.1.3 Finding the best processor

We placed 50 active-objects in (0, 0) and tested the load-balancing algorithms (with and

without stealing), measuring how many of them are capable to traverse all the network

until the node with the best capacity (n − 1, n − 1). Tuning the values of the similarity

factors RB and RS, we analyse the final distribution generated by algorithms. In this

experience, we define that the node (0, 0) has capacity 0, and the node (n − 1, n − 1) has

64 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

capacity ∞, testing if active-objects are capable to reach the best processor. Our goal is

to maximise the number of active-objects in (n − 1, n − 1); that is, the number of active-

objects whom traversed all the network until the node with infinity processing capacity.

Note that it is the worst scenario to find the global optimal state.

Each matrix Ai has the number of active-objects per node after the load balancing

reaches a stable state (or no active-object can move). Therefore, we repeated the experi-

ment 100 times, each one with different node capacities but equal parameters. Finally, we

computed A =
∑100

i=1 Ai. In every matrix A, the number of active-objects per node was

normalised by the maximal number of active-objects in a cell. Therefore, each cell in the

matrix has values between 0 and 1. To simulate the first response to balancing requests, if

there are more than one candidate for balancing, the balance is made with the nearest one.

The objective of this simulation is to demonstrate that using a small number of links a

global optimal load balancing (all active-objects on the best processor) can be performed.

Then, we tested our algorithms using two different scenario: using fixed links of a “small-

world” network and using random links of a ProActive P2P network.

Simulation with fixed links using a small-world network

We defined a small world network in Section 3.3.2, showing the model implementation

presented by Kleinberg. Considering that the register/forwarding algorithm of the Peer-

to-Peer infrastructure presented in Section 3.2 uses a probability to accept a fresh peer less

than one, and considering that in practice all first contacts will be made in local networks;

then, randomly choosing a number of q fixed links from a given acquaintance set, the

ProActive’s P2P Infrastructure fits with Kleinberg’s model for p = 0.

To graphically represent the matrices, we used black for the value 0 and white for 1. If

all the objects are concentrated in a single node, only a little box is white and the others

are black. If all objects are distributed among the nodes, the matrix will have a grey area.

The node (0, 0) is the one on the top left and the node (9, 9) is the one on bottom right.

Also, we measured that, in all final distributions, there are no overloaded nodes.

Figure 6.2 shows the final distribution using a pure Robin-Hood algorithm over the

model of Kleinberg for q = [3, 4, 5], the ponderer RB = 0.5, and threshold value T = 0.5.

We show only those values because similar behaviours are obtained using the values 0.7
and 0.9 for both ponderer and threshold (see matrices in appendix A). We expected that

similarity because there exists a correlation between processing capacity and load state:

there is a higher probability to find a low capacity node overloaded than underloaded.

The matrices on Figure 6.2 presents two interesting effects. First, all active-objects

leave the node (0, 0) and second, the matrices presents the local optimal effect: when no

active-object generates overloading, no one of them migrates. Note that low values of

the parameter λ generates a distribution of active objects over the network far from the

objective-node (9, 9), that phenomenon is explained because the lower the value of λ, the

higher the number of active objects which can stay in a node without overloading it.

Adding the Nottingham Sheriff step, and using RS = RB, the results are significantly

different (see Figure 6.3). For active objects with incoming rate λ between 0.2 and 0.3
(Figures 6.3 (b),(c), (d), (f), (i) and (j)), the behaviour is as we expected: the combination

6.1. SIMULATING DESKTOP GRIDS 65

(a) λ = 0.1, q = 3 (b) λ = 0.2, q = 3 (c) λ = 0.3, q = 3

(d) λ = 0.1, q = 4 (e) λ = 0.2, q = 4 (f) λ = 0.3, q = 4

(g) λ = 0.1, q = 5 (h) λ = 0.2, q = 5 (i) λ = 0.3, q = 5

Figure 6.2: Final distribution for the Robin-Hood algorithm only, for RB = 0.5 and T = 0.5

of both schemes, sender and receiver initiated, balances the active objects to the best node

(9, 9).

Nevertheless, if we consider a low value of λ (near 0.10) and a high value for ponderers

RB and RS (Figure 6.3 (g)), it will produce more active objects per node near the initial

position (0, 0). Active objects would have not the necessity of balancing (because they

do not overload the node) or they would not find the path to the best node (because the

high value of RB). Moreover, if active-objects cluster near the initial node, and due the

fact that on natural networks the edges are between two near nodes, a high value of RS

(stealing only if the node is similar or better than the target node) does not allow the

Nottingham-Sheriff step to carry active objects to the best node (9, 9). The key point is:

what is the cost to carry all those active objects to the best node? if the cost is high, maybe

it is not worth to move them there.

It is easy to see that, for low values of λ, if there are 50 active objects and 100 nodes,

to use more than 5, 000 migrations will mean that there were be used lots of back-steps

66 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

(actives-objects returning to previous nodes) during the balance process. Considering the

cost of a migration (see section 2.3), all load-balancing algorithm for active-objects will

aim at minimising the number of migrations. Figure 6.4 shows in (a) the ratio (percentage)

of active objects on the best node (9, 9) after a stable state was reached, and in (b) there is

the number of migrations used to reach that stable state. Because the results using q from

3 to 6 acquaintances were similar (see matrices in appendix B), only those for q = 3 are

shown. We can see that the higher the value of RS, the lower the number of migrations and

the lower the number active-objects on the best ranked processor. Therefore, using fixed

links, there is a low probability to perform an efficient load balancing until an optimal

state.

(a) λ = 0.1, q = 3, T =
0.50, RB = RS = 0.50

(b) λ = 0.2, q = 4, T =
0.70, RB = RS = 0.50

(c) λ = 0.3, q = 5, T =
0.90, RB = RS = 0.50

(d) λ = 0.1, q = 3, T =
0.50, RB = RS = 0.70

(e) λ = 0.2, q = 4, T =
0.70, RB = RS = 0.70

(f) λ = 0.3, q = 5, T =
0.90, RB = RS = 0.70

(g) λ = 0.1, q = 3, T =
0.50, RB = RS = 0.90

(h) λ = 0.2, q = 4, T =
0.70, RB = RS = 0.90

(i) λ = 0.3, q = 5, T =
0.90, RB = RS = 0.90

Figure 6.3: Final distribution for the Robin-Hood + Nottingham Sheriff

6.1. SIMULATING DESKTOP GRIDS 67

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ra
ti
o

RS

!=0.1, RB=0.5
!=0.1, RB=0.7
!=0.1, RB=0.9
!=0.2, RB=0.5
!=0.2, RB=0.7
!=0.2, RB=0.9
!=0.3, RB=0.5
!=0.3, RB=0.7
!=0.3, RB=0.9

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ig

ra
ti
o
n
s

RS

!=0.1, RB=0.5
!=0.1, RB=0.7
!=0.1, RB=0.9
!=0.2, RB=0.5
!=0.2, RB=0.7
!=0.2, RB=0.9
!=0.3, RB=0.5
!=0.3, RB=0.7
!=0.3, RB=0.9

(b)

Figure 6.4: Tuning for RS considering: a) number of active-objects in (9, 9) per total of active-objects; and

b) Number of total migrations reaching a stable state.

68 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

Simulation with randomly chosen links using a Peer-to-Peer network

In the previous experiment we demonstrated that using a low number of fixed links, a

global optimal load balance may be performed using a high number of migrations. In this

section, we aim at demonstrating that using a low number of randomly chosen links, the

global optimum can be reached using less number of migrations.

We study the number of active-object until the algorithm reaches its final distribu-

tion over the P2P infrastructure [24] having all peers with at least 5 acquaintances. For

the Robin-Hood algorithm we randomly choose 3 to 6 acquaintances to send the balance

request, and for the Nottingham Sheriff step we still randomly choose only one acquain-

tance. The resulting matrices are similar to those obtained in the previous section, there-

fore in this case we use for illustration 2D plots (see Figure 6.5), having the values for

RS on the X-axis and placing on Y-axis: a) ratio of active-objects in (9, 9) per total of

active-objects; and b) number of total migrations until a stable state is reached. Our goal

is to determine the tuning of the parameters in order to have the maximal numbers of

active-objects in the best node using the minimal number of migrations.

Figure 6.5(b) shows that number of migrations if we use a value RS ≤ 1.9. Figures

6.5(a) and 6.5(b) clearly present a trade-off in the values of RS: if this value is low, most

of the active-objects will reach the optimal node, but using a high number of migrations

(most of them back-steps). If RS is high, no steal will be performed. Therefore, con-

sidering that in real P2P networks there will be more than one node with high processing

capacity (hence, active-objects would have not to traverse through the entire network to

find it) we recommend to use the parameter RS with values near 0.9. In our worst sce-

nario a value of RS = 0.9 gives that around 35% of active-objects might reach the best

ranked node.

Figure 6.5 shows the same behaviour for values of RB between 0.5 and 0.9. As we

can see in previous section, there exists a correlation between processing capacity and

load state. For that reason, and to avoid back-steps, we recommend to use RB values in

the range [0.5, 0.9]. Values lower than 0.5 might produce migrations to very low ranked

processors, which could be overloaded with the execution of only one active object, and

values higher than 0.9 will reduce the probability to find an underloaded node to perform

the balance, increasing the response time of the algorithm.

We also presented that there exists a trade-off between the number of active-objects that

can traverse the network to find an optimal node and the number of migrations performed

by them. In a middleware such as ProActive, minimising number of migrations (that are

costly in processing time) is essential to any load balancing algorithm.

Therefore, we suggest to use a value near 0.9 for the stealing ponderer (RS), which

permits that more than 35% of the active-objects do traverse all the network to find the

optimal node, using around 400 migrations.

6.1.4 Scaling towards the “infinite network”

Our goals are to perform a fine-tuning of the constant RS and second to determine whether

our algorithm can reach a stable state near to the optimal on large-scale P2P networks

using a minimal subset of acquaintances. Even though migration cost seems to be a key

6.1. SIMULATING DESKTOP GRIDS 69

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ra
ti
o

RS

RB=0.5

RB=0.6

RB=0.7

RB=0.8

RB=0.9

RB=1.0

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
ig

ra
ti
o
n
s

RS

RB=0.5
RB=0.6
RB=0.7
RB=0.8
RB=0.9
RB=1.0

(b)

Figure 6.5: Tuning for RS considering: a) number of active-objects in (9, 9) per total of active-objects; and

b) Number of total migrations reaching a stable state. Because the results using 3 to 6 acquaintances were

similar, only those for 3 are shown.

70 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

issue for load balancing algorithm, it is possible that processors use the blocking or idle

time of the parallel application to perform migrations having a low overcost in application

total time.

Now we will use a different initial placement: we randomly placed m active objects

in (0 + x, 0 + y) (x and y defined on runtime) and tested the load-balancing algorithm,

measuring the total number of migrations and the kind of processors used by the algorithm

on each time-step. Each experimental sample is the mean number of 100 repetitions,

fixing the parameter set {n, m, λ, T,RB, RS} (see Table 6.1) and recalculating µ for all

nodes in each repetition.

Fine-Tuning

We placed m = 50 active-objects in a simulated P2P network of 100 nodes, measuring

the total number of migrations performed by the algorithms until a given time-step (Fig-

ure 6.6a) and the number of overloaded nodes per time-step (Figure 6.6b), because it is

imperative for all load-balancing algorithms to avoid increasing the number of overloaded

nodes. As we expected, a lower value for RS generates a greater number of migrations.

It is easy to see that a low value of this factor will produce bad decisions of balance,

migrating active objects to underloaded nodes with low processing capacity. Then, those

active objects could cause overload in subsequent nodes, or an infinite migration among

underloaded nodes.

Figure 6.7a presents the mean number of active-objects in nodes with capacity higher

than one per total number of active objects during 100 repetitions, and Figure 6.7b presents

the mean number of active objects in nodes with capacity higher than 11
3

by total number

of active objects during 100 repetitions. Because we are using a normal distribution for

the processor capacity µ, 50% of nodes will have µ ≥ 1 and 25% of nodes will have

µ ≥ 11
3
.

Two behaviours are present in Figure 6.7 (a) and (b). First, because our algorithm

aims to cluster active-objects on the best processors, for high values of RS, the number

of active objects in the best quadrant of the processors increase. Second, for low values

of RS, some active objects are stolen by worse processors. We can see from the plots that

RS ≥ 0.9 behaves well, placing all of active objects in nodes with processing capacity

greater than one.

Scalability tests

As seen in the previous section, we aimed at optimising the application performance clus-

tering active-objects on the best qualified processors. Therefore, using the values of µ,

we sorted the nodes from higher to lower processing capacity and we defined the optimal

subset as the first OPT nodes that satisfy the condition:

OPT
∑

i=1

µi > m × λ (6.3)

Simulating an application of m = 100 active objects using different network sizes (n×n),

we have:

6.1. SIMULATING DESKTOP GRIDS 71

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

n
u

m
b

e
r

o
f

m
ig

ra
ti
o

n
s

time

RS=0.5
RS=0.6
RS=0.7
RS=0.8
RS=0.9
RS=1.0

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20

m
e

a
n

 n
u

m
b

e
r

o
f

o
v
e

rl
o

a
d

e
d

 n
o

d
e

s

time

RS=0.5

RS=0.6

RS=0.7

RS=0.8

RS=0.9

RS=1.0

(b)

Figure 6.6: Tuning for RS considering: a) mean number of total migrations until each time-step; and b)

mean number of overloaded nodes in each time-step. Using RB = 0.7, acquaintances subset size = 3,

|x − y| ≤ 3, λ = 0.1, 0.2, 0.3 and T = 0.7

72 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

ra
ti
o

time

RS=0.5

RS=0.6

RS=0.7

RS=0.8

RS=0.9

RS=1.0

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

ra
ti
o

time

RS=0.5

RS=0.6

RS=0.7

RS=0.8

RS=0.9

RS=1.0

(b)

Figure 6.7: Tuning the value of RS considering: a) mean number of active objects on a node with µ ≥ 1
per total number of active objects; and b) mean number of active objects on a node with µ > 1+ 1

3
per total

number of active objects. Using RB = 0.7, acquaintances subset size = 3, |x − y| ≤ 3, λ = 0.1, 0.2, 0.3
and T = 0.7

6.1. SIMULATING DESKTOP GRIDS 73

• OPT(n = 10) = 13,

• OPT(n = 20, 30) = 11,

• OPT(n = 40) = 10,

• OPT(n ∈ [50, 90]) = 9.

These results of the optimal subset size (OPT) are because we modelled processing ca-

pacity following a normal distribution. Therefore, larger the network size, higher the

processing capacity of best nodes, then lower the number of nodes in the optimal subset.

In order to measure the performance of the Robin-Hood algorithm for large-scale net-

works, we define the “Algorithm Optimum” (ALOP) ratio as:

ALOP =
Number of nodes used by Robin-Hood

OPT
(6.4)

At the same time, we calculate the mean number of accumulated migrations performed

by all active objects from time-step 0 until time-step t.

An increase in the acquaintances subset size results in an increase in the probability to

find a node to migrate, and hence an increase in the probability to reach the optimal state.

Looking for the worst treatable scenario, and following the recommendations of [24], we

only show the results for subset-size s= 3.

We measured scaling of the Robin-Hood + Nottingham Sheriff algorithm in terms of

ALOP and the number of migrations, for networks of 100 (Figures 6.8 (a) and (b)) and

400 nodes(Figures 6.8 (c) and (d)). Even though in Section 6.1.4, a value of RS = 0.9 was

promising, these plots show that the total number of migrations generated by this value

makes the algorithm not scalable. Scalability in terms of migrations in Figures 6.8 (b) and

(c) exists only for values of RS ≥ 1.0. The optimal scalability, in terms of ALOP , in

Figures 6.8 (a) and (c) exists for a value of RS = 1.0.

Considering that a 20 × 20 network can still be considered as a small network, we

test the scalability in terms of ALOP and number of migrations over n × n P2P networks

using n = [10, 90], fixing the parameter RS in 1.0 and RB in 0.7. The results are shown

in Figure 6.9.

Note that at the beginning, the Robin-Hood + Nottingham Sheriff algorithm increases

the number of nodes used, because active objects are first placed in a small subset of the

network generating a high overload in this subset. Then, the algorithm quickly performs

migrations to reduce the overload. Then, only the work-stealing step of Robin-Hood +

Nottingham Sheriff algorithm works, clustering active-objects on the best nodes and thus,

reducing the number of nodes used by the algorithm. Experiments report no overloaded

nodes over 30 time-steps.

Figure 6.9 presents two behaviors at the same time:

1. Number of nodes used by Robin-Hood + Nottingham Sheriff algorithm through

time, because the number of optimal nodes used by a static distribution (OPT) is

constant for each number of nodes (n × n). We aim to cluster all active objects in a

minimal set of nodes to avoid communication delays.

74 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

 1

 2

 3

 4

 5

 6

 7

 0 200 400 600 800 1000

no
de

s
us

ed
: a

lg
or

ith
m

/o
pt

im
al

time

q=3, RS=0.9
q=3, RS=1.0
q=3, RS=1.1

(a) ALOP for a 10x10 network

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000

m
ig

ra
tio

ns

time

RS=0.9
RS=1.0
RS=1.1

(b) Migrations for a 10x10 network

 1

 2

 3

 4

 5

 6

 7

 0 200 400 600 800 1000

no
de

s
us

ed
: a

lg
or

ith
m

/o
pt

im
al

time

q=3, RS=0.9
q=3, RS=1.0
q=3, RS=1.1

(c) ALOP for a 20x20 network

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000

m
ig

ra
tio

ns

time

RS=0.9
RS=1.0
RS=1.1

(d) Migrations for a 20x20 network

Figure 6.8: Scalability for a network using RS = 0.9, 1.0, 1.1, RB = 0.7

2. ALOP ratio (number of nodes used by Robin-Hood + Nottingham Sheriff algorithm

versus number of nodes used by an optimal statical distribution OPT), evaluating

“how good” are the minimal subsets found by the Robin-Hood + Nottingham Sheriff

algorithm.

For networks of until 40 × 40 nodes, Robin-Hood algorithm uses less than two times

the optimal number of nodes. In other words, the algorithm uses less than 20 nodes from

all the network until 1, 000 time-steps. For networks of 50 × 50 to 70 × 70 nodes, the

algorithm uses less than three times the number of optimal nodes (i.e: 27). For larger

networks, the algorithm uses more than three times the optimal number of nodes at time-

step 1, 000; nevertheless, the curves seem to decrease before that value.

We expected the previous behaviour, because the distribution of processing capacity µ

follows a normal distribution; therefore, values of µ in the subset of the “best X nodes”

will be higher for larger values of n (larger the network, smaller the subset size); and,

because the Robin-Hood algorithm tries to use the nearest nodes while balancing an over-

6.1. SIMULATING DESKTOP GRIDS 75

loaded node. Therefore, as the network size increase, the probability of finding a node

from the optimal subset decreases.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000

n
o
d
e
s
 u

s
e
d
:

a
lg

o
ri
th

m
/o

p
ti
m

a
l

time

n=10x10
n=20x20
n=30x30
n=40x40
n=50x50
n=60x60
n=70x70
n=80x80
n=90x90

Figure 6.9: Scalability in terms of number of processors used, having RS = 1.0

The plot in Figure 6.9 shows how at the first 10 time-steps the algorithm reacts against

an overloaded situation, distributing the active objects among the network and then, when

a stable state is reached, it begins the clustering of active objects. Similar behaviour can

be seen in Figure 6.10, having a high number of accumulated migrations at the beginning

and then the system becomes stable (for small-size networks) or there are some migra-

tions in order to group the active objects on the “best processors” (large-size networks).

Remember that plots present the mean number of accumulated migrations for m active

objects; therefore, the contribution in plots of a each new migration is 1/m.

For all studied network size, the curves remain under 6.5 migrations per active-object.

Moreover, considering only the time-step 1, 000, we can see that the number of migrations

is of order O(log(n)). Both are promising results in terms of scalability of the Robin-Hood

algorithm.

Previous experiment was performed using a fixed number of active objects and an

increasing number of nodes, in Figure 6.11 we study another interesting case: having

the number of active objects proportional to the number of nodes, distributing uniformly

at random sets of active objects on the network. Figure 6.11(a) presents the number of

nodes used by the algorithm divided by the number of optimal nodes, noting that in this

case the size of the optimal set increase compared to the number of nodes. The behaviour

is similar to have the network divided in sub-networks, performing load-balancing only

inside the sub-networks (sets of active-objects uniformly distributed at random produce a

natural subdivision of the space). As a consequence of the previous behaviour, a constant

76 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 200 400 600 800 1000

n
u

m
b

e
r

o
f

m
ig

ra
ti

o
n

s

time

n=10x10
n=20x20
n=30x30
n=40x40
n=50x50
n=60x60
n=70x70
n=80x80
n=90x90

Figure 6.10: Scalability in terms of number of migrations, having RS = 1.0. The plot presents, for an

active object, the (mean) number of accumulated migrations performed until a time-step t ∈ [0; 1, 000].

number of migrations until a stable state is experimentally presented (Figure 6.11(b)).

6.2 Simulating Project Grids

The grid computing paradigm (the Grid) promises to ease the sharing of heterogeneous re-

sources, and their aggregation into truly global platforms, to be seamlessly used by multi-

ple organisations and independent users alike [58]. With the emerging Grid infrastructure

starting to fulfil such ambitious promises [14], e.g., the CERN Large Hedron Collider

Grid (LCG [116]) encompasses today more than 200 clusters and 40, 000 processors at

any time, multi-institutional projects are starting to run their applications in dynamically-

created (virtual) environments. However, the achieved scale comes at a price: the re-

sources dynamics require that the applications be equipped with environment-awareness,

that is, the ability to adapt to the environment’s layout and behaviour. In this section we

focus on the environment-awareness problem.

The environment-awareness problem is broad; our approach treats the case of active-

objects parallel applications (see Section 2.3) running in a multi-institutional project’s

virtual environment (project Grid, see Section 6.2.1). Our main contributions in this sec-

tion are:

• A model for project Grids dedicated to running active-objects-based applications, de-

rived from a set of traces and applications coming from a multi-institutional project,

namely the ProActive PlugTest [50] (Section 6.2.1). To the best of the authors knowl-

6.2. SIMULATING PROJECT GRIDS 77

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000

n
o
d
e
s
 u

s
e
d
:

a
lg

o
ri
th

m
/o

p
ti
m

a
l

time

n=10x10
n=20x20
n=30x30
n=40x40
n=50x50

(a) Number of processors divided by the optimum

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000

n
u
m

b
e
r

o
f

a
c
c
u
m

u
la

te
d
 m

ig
ra

ti
o
n
s

time

n=10x10
n=20x20
n=30x30
n=40x40
n=50x50

(b) Accumulated migrations

Figure 6.11: Scalability, having the number of active objects proportional to the number of nodes

78 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

edge, ours is the first approach to identify the characteristics of such a project Grid,

with specific new insights in the inter-resource communication latency;

• Two environment-aware load-balancing algorithms dedicated to active-objects-based

applications, based on a generic concept of clustered resources. Our notion of clus-

tered resources should not to be confused with the notion of physical clusters of

resources. Our approach generalises previous cluster-aware load-balancing results,

such as the one by van Nieuwpoort et al. [122], where clusters must be manually

and, most importantly, statically defined. The algorithms are validated experimen-

tally through simulation, and shown to offer better performance when compared to

traditional, non-environment-aware, algorithms (Section 6.2.5).

For the Grid case, the environment where the active objects run is usually composed

from multiple clusters of resources, e.g., a set of monitor-less machines inter-connected

by a high-speed local network. In this case, the load balancing procedure must take into

consideration the inter-cluster vs. intra-cluster communication costs, for optimal perfor-

mance [122]. In ProActive, the active objects form a P2P network; the load-balancing

algorithm should also take into consideration the topology of this network. Note that for

ProActive applications latency is a key performance estimator.

6.2.1 Characterising a Project Grid

The ProActive PlugTests project grid [50] is used normally as an environment for the n-

queens competition: participants program using the ProActive library an application that

must solve the largest possible instance of the n-queens problem. The infrastructure is

provided by the organisers, by several research institutions that use ProActive, and by

some of the participants.

We have obtained information pertaining to the 2005 version of the ProActive PlugTests:

the characteristics of the resources shared by each participating institution, and the com-

munication latency between each two resources in the project grid. The latency infor-

mation was obtained as follows. Two sources, one located within the INRIA Sophia-

Antipolis Network in France (INRIA), and one located at the Computer Science Depart-

ment of the University of Chile (DCC), sent 100 ping messages to each participating

resource and discarding outliers. The average observed latencies were selected as the

representative of the distance between the sources and the participating clusters.

Table 6.2 depicts the characteristics of the PlugTests project grid. The project leader

provides the FRANCE G5K cluster, which is by far dominating the project grid, by size.

The CHINA contributing institution offers the best per-node performance. The NETHER-

LANDS contributing institution dedicates 20 of its 72 nodes to this project grid. Several

institutions participate with shared resources to the project grid, that is, their resources

can also be used by users external to the project, therefore making the actual contribution

size variable. For instance, measured real Mflops/node of China contributing institution

was around 90 instead of the theoretical 569.92.

Figure 6.12 depicts graphically the latency information shown in Table 6.2. Given the

latency values, we define four classes of nodes inter-location:

6.2. SIMULATING PROJECT GRIDS 79

Table 6.2: Summary of the PlugTests project grid characteristics. The acronyms D and S represent dedicated

and shared resources, respectively.

Country # Nodes Mflops Mflops
node

d(INRIA) d(DCC) Type

AUSTRALIA 13 1,658 127.54 394 329 D

BRAZIL 8 2,464 308.00 268 60 D

CHILE I 26 2,917 112.19 299 2.1 D

CHILE II 30 5,103 170.1 388 17.5 S

CHINA 184 104,865 569.92 287 392 S

FRANCE G5K 822 278,647 338.99 2.1 299 D

FRANCE 162 48,298 298.14 2.1 301 S

GREECE 16 4,125 257.81 168 464 D

IRELAND 14 2,147 153.36 42.3 308 S

ITALY I 25 3,465 138.60 58.5 314 D

ITALY II 33 2,385 72.27 39.7 298 D

NETHERLANDS 20 1,346 67.3 32.2 284 D

NORWAY 22 2,328 105.82 51.7 302.67 D

SWITZERLAND 46 3,918 85.17 29.14 288.7 S

U.S.A 22 3,179 144.5 169.1 134.3 D

1

10

100

1000

10000

0-10 10-40 40-70 70-100 100-130 130-160 160-190 190-220 220-250 250-oo

Distance [ms]

N
u

m
b

e
r
 o

f

n
o

d
e
s

INRIA

DCC

Figure 6.12: Latency between nodes from the PlugTest project grid.

Close: This class represents nodes located within the same network, with a ping time of

around 2.5 ms;

Near: This class represents nodes that are near geographically, with a ping time between

10 and 70 ms;

Far: This class represents nodes located in clusters situated on different continents, with

a ping time around 150 ms;

80 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

Very Far: This class represents nodes that are poorly connected (for a ProActive appli-

cation), with a ping time over 250 ms.

The results show that for project grids with resources obtained from institutional part-

ners, there clusters of closely-connected resources are a majority. This contrasts with the

situation observed for freely-contributing partners in large P2P networks [71], with which

the ProActive applications share the application topology model.

6.2.2 Modelling a Project Grid

We describe in the following paragraphs a constructive procedure for modelling a project

grid as a modification of the ProActive’s Infrastructure Algorithm presented in Section

3.2 and simulated in Section 6.1.

1. Considering again a discrete representation of the Euclidean space in which the re-

sources are physically located, randomly choose a set of “institutions” by assigning

to them random locations (or known locations, if the topology is fixed in advance).

For modelling the ProActive PlugTest environment, we have selected a 40 × 40 ma-

trix, and 10 institutions.

2. The institutions are used as first contacts, and all links created to them receive a

distance of 1.

3. Connect resources belonging to the same cluster, and mark all the newly created

links with a distance of 1; all resources within a cluster can connect to each other at

the lowest (local) cost.

4. Inter-connect resources from different clusters; the distance between nodes from two

different clusters is Euclidean1. If a resource belongs to several clusters, e.g., because

the clustering method is not a one-to-one mapping, randomly assign the resource to

one cluster from its belonging-to set of clusters. For ProActive PlugTests, we have

assigned the inter-cluster communication latencies extracted from the traces (see

Section 6.2.1).

5. For each resource, select a processing capacity corresponding to your model. For our

data, we have chose a processing capacity (denoted by µ) from a uniform distribution

U [50, 150] for each cluster representing a contributing institution, and assigned a

value of µi ± ε, ε ∈ [0, 1] to all processors in that cluster. We have assigned to the

cluster representing the project leader (the FRANCEG5K cluster in our data) a

capacity of µ = 350 ± ε.

As shown by the PlugTests experience, even though an “inter-continental” project grid

seems to be a good idea to solve parallel problems using as many resources as possible,

regardless of their geographical location, the notion of location has to be exploited by the

application to achieve optimal performance.

We define a load balancing algorithm as environment-aware if it uses information about

the relative distance between two resources to select a destination for its load balancing

1d({x1, y1}, {x2, y2}) = |x1 − x2| + |y1 − y2|

6.2. SIMULATING PROJECT GRIDS 81

process. In this work we focus only on latency as a location (or distance) estimator. This

decision is based on the fact that latency is a very good distance estimator [68]. Since the

resources considered in this work typically come from institutional clusters, we use from

hereon the terms environment-aware and cluster-aware interchangeably.

6.2.3 Environment-aware Algorithms

Environment-aware Robin-Hood (also known as cluster-aware Robin-Hood, or crh) cor-

responds to the environment-aware version of the pure Robin-Hood algorithm presented

in Section 5.4.2 (labelled as rh).The Robin-Hood algorithm exploits the ProActive’s P2P

infrastructure to perform efficient load balancing, using a minimal subset of neighbours

(commonly on Robin-Hood algorithm a value of n = 3 is used). The environment-aware

Robin-Hood exploits also the distance knowledge of neighbours to perform efficient load

balancing through Project Grids. Cluster-aware Robin-Hood works as follows.

On an overloaded node:

1. Define Ngb as list of neighbours, Nls the neighbours list size, Dist a table with

distances to the neighbours and n, number of neighbours to use for load-balancing.

2. Sort Ngb by (dynamic) distance, ascending (environment-awareness)

3. Every time-step, choose a neighbour Ni from Ngb[1,Nls] at random with proba-

bility Dist[i]−2 [74]:

(a) if isNotLoaded(Ni) and Rank(Ni) = 0.7× Rank(self), send work

unit to Ni.

(b) exit after n tries.

Environment-aware Work Stealing (also known as cluster-aware Work-Stealing, or

cws) is a receiver-initiated and ranked algorithm, which corresponds to the environment-

aware version of the Nottingham Sheriff step presented in Section 5.5 (labelled as ws).

Nottingham Sheriff step exploits the ProActive’s P2P infrastructure to perform short-

distance work-stealing, using a minimal subset of neighbours (commonly on Nottingham-

Sheriff step a value of n = 1 is used). The environment-aware Work Stealing exploits also

the distance knowledge of neighbours to perform efficient and trusty short-distance work-

stealing through Project Grids. Cluster-aware Work-Stealing works as follow:

1. Define Ngb as list of neighbours, Nls the neighbours list size,Dist a table with

distances to the neighbours and n, number of neighbours to use for work-stealing.

2. Sort Ngb by (dynamic) distance, ascending (environment-awareness)

3. Every time-step, choose a neighbour Ni from Ngb[1,Nls] at random with proba-

bility Dist[i]−2 [74]:

(a) if Rank(Ni) < Rank(self), steal work unit from Ni.

(b) exit after n tries.

82 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

6.2.4 Experimental Setup

We have built a simulator based on the model described in Section 6.2.2.

Similarly to Section 6.1, we modelled active objects as queues, adding this time the

capabilities to put active objects in wait state, and to introspect the queues. Using the

introspection we have added to the application model synchronisation features, commu-

nication costs to remote objects, and migration costs.

The setup of each experiment was as follows. We randomly choose a cluster and, using

the “institution” neighbour list, we simulate the deployment of 100 active objects with an

arrival rate λ = 10. The arrival process ends after 1, 000 time-steps. We group the active

objects in 10 sets (the ith active objects belongs to the set ⌊ i
10
⌋) and we define that the

10th request is a message to the remote objects on the same set.

Defining a parameter C as the message size, the tenth request has a size of

round(
∑

C × d(ni, nj)) ∀
i

10
=

j

10
, i 6= j services

Defining the cost of the communication between active objects at the same node is zero.

We define M as the active object size; then, the migration cost from a node i to a node

j is

round(M × d(ni, nj))

To simulate previously reported idleness of resources (Litzkow, Livny and Mutka [89]

reported that desktop processors are idle 80% of the time; this value is reported up to 90%

in 2005 [46]), we randomly choose 25% of the clusters in the Grid, which represent the

“Desktop Laboratory” components of the Grid, and on the clusters we randomly choose

⌊10%⌋ of their processors. Then, at each processor we generate the same number of

services than processing capacity (µ) on each time-step.

6.2.5 Simulation Results

Our first goal is the analysis of the influence of remote communication and migration

on the performance of algorithms. To this end, we test each step of the algorithm alone

(rh,crh, ws and cws) and combined (rh-ws, crh-ws, crh-cws and rh-cws). Each simu-

lation was performed 100 times; to avoid noise produced by saturated queues, only the

experiences in which at the end of 1, 000 time-steps there are no overloaded nodes are

considered for the reported values.

Not-Synchronised Parallel Applications

Figures 6.13 and 6.14 depict the observed mean number of pending requests in all

active objects for low and high message and object size, respectively. Initially queues are

long and and the load-balancing algorithm try to distribute them until reaching a minimum

(considering that the communication cost is measured in number of services) in a stable

state before 1, 000 time-steps, note that even the communication cost increase the queue

length, when the stable state is reached active objects are placed in processors capable

to process all the queue during the time step. The values lead to the conclusion that, for

non-synchronised parallel applications based on active objects:

• A Work-Stealing algorithm without cluster-awareness is useless in project grids even

if it targets its load balancing at close neighbours [28]. Due to migration, two active

6.2. SIMULATING PROJECT GRIDS 83

objects could go from close neighbours to intercontinental distances quickly, for a

penalty of over 100 ms of communication latency.

• Robin-Hood algorithm tries to select a near underloaded node to perform the bal-

ance using probabilities, but Work-Stealing algorithm tries to perform “stealing” of

a near underloaded node using network properties. For this reason, increasing the

message size and the object size (from Figure 6.13 to Figure 6.14), we observe that

algorithms performing non Environment-Aware Work Stealing have the worst per-

formance. The only exception to this rule is the combination crh-ws, which exploits

the quick reaction against overloading of the Robin-Hood algorithm (here, active ob-

jects are distributed inside the cluster before an external node performs its stealing).

• For high size messages and objects, the best performance is achieved by rh-cws and

cws algorithms. The reason for the former is that this algorithm aims to balance

active objects on near nodes only while overloading occurs; for the latter, the reason

is that a steal inside a cluster reduces the migration time, and the algorithm aims to

equalise the load of the cluster.

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200 1400

n
u
m

b
e
r

o
f

re
q
u
e
s
ts

 o
n
 a

ll
q
u
e
u
e
s

time

rh
crh

crh-cws
crh-ws
rh-cws

cws
ws

rh-ws

Figure 6.13: Total number of pending requests in all active-objects using message-size C = 0.1 and object

size M = 1, without synchronisation.

Synchronised parallel applications

We now focus on the behaviour of synchronised parallel applications [7],e.g., Single

Program - Multiple Data (SPMD). We model the synchronisation requirements of an

application as follows: every 10 time-steps, a synchronisation request is enqueued in each

active object. When the request is served, actives objects switch to a wait state until all

objects in their set have served the synchronisation request, then all objects in that set can

continue serving requests. Figure 6.15 presents the results of the simulation under this

84 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

 10

 100

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200 1400

n
u
m

b
e
r

o
f

re
q
u
e
s
ts

 o
n
 a

ll
q
u
e
u
e
s

time

rh
crh

crh-cws
crh-ws
rh-cws

cws
ws

rh-ws

Figure 6.14: Total number of pending requests in all active-objects using message-size C = 1 and object

size M = 10, without synchronisation.

new constraint. Note that, as in previous section, even though the communication cost

increase the queue length, when the stable state is reached active objects are placed in

processors capable to process all the queue during the time step.

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200 1400

n
u
m

b
e
r

o
f

re
q
u
e
s
ts

 o
n
 a

ll
q
u
e
u
e
s

time

rh
crh

crh-cws
crh-ws
rh-cws

cws
ws

rh-ws

Figure 6.15: Total number of pending requests in all active-objects using message-size C = 0.1 services,

object size M = 1 services and synchronisation each 10 time-steps.

6.3. WHERE TO RUN PARALLEL APPLICATIONS? 85

Note that a bad decision (as to use non-environment-awareness work stealing) could

produce 10 times more work than a good decision. The best performance is achieved by

algorithms using Environment-Awareness Work Stealing, because they aim to distribute

active objects on the same cluster.

6.2.6 Results Confidence

We define the results confidence as the percent of simulation cases, from the total simu-

lation tries, in which there are no overloaded queues after 1, 000 simulation time-steps.

These results have not been included in the evaluation described in Section 6.2.5. The

higher the results confidence value, the better the presented results describe the true capa-

bilities of the evaluated algorithm.

We measured the results confidence using a message size of 0.1 (to compare results

with Figures 6.13 and 6.15), object sizes 1, 10 and 100 services, with and without syn-

chronisation (Figure 6.16) . From these results we conclude that:

• Most of the time a given cluster was not suitable to process the parallel application.

Therefore, algorithms performing only environment-awareness steps have low level

of confidence.

• Environment-Awareness Robin-Hood algorithm, used alone and in conjunction with

both flavours of Work-Stealing, presents a poor performance for Institutional Grids,

the search for a “good” partner, inside the cluster only, to send one active object

every time-step produces bottlenecks and node overloading. Note that to search a

good pattern to send and active object may produce less migrations in a given time-

step that a set of underloaded nodes stealing from the overloaded node.

• As we noted at Sections 6.2.5 and 6.2.5, to use a work-stealing algorithm without

environment-awareness behaves badly, in Figure 6.16 we also note that greater the

object size lower its confidence. That was a expected result because the migration

cost is strictly dependent on the distance.

• The best confidence is achieved for the symmetrically initiated Robin-Hood + Environment-

Awareness Work Stealing algorithm. Because the Robin-Hood step will distribute ac-

tive object among near nodes (neighbouring clusters in this case) and the Environment-

Awareness Work Stealing step will distribute active objects on the cluster maintaining

the distance property.

Last conclusion is very important, because it can be applied also to Desktop Grids

(Section 6.1). Therefore, our Load Balancing algorithm is able to perform efficient bal-

ance in both Project and Desktop Grids.

6.3 Where to run parallel applications?

In previous section we noted the confidence of some combinations of algorithms was low

because a given cluster was not suitable to process the given application. The problem of

86 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

(a) Without synchronisation

(b) With synchronisation

Figure 6.16: % of confidence of load-balancing algorithms, increasing object size (M)

6.3. WHERE TO RUN PARALLEL APPLICATIONS? 87

finding a suitable Grid infrastructure for an application can be seen as a problem of clas-

sified advertisements and matchmaking [100] or a problem of database search like UDDI

web services [52]. ProActive provides the mechanism for, given a known set of proces-

sors (clustered or not), define where and how to deploy a parallel application without code

modification [10].

We propose coupling based on contracts as a mechanism to address the problem of

exchanging information in a generic way between unfamiliar parties. We aim to couple the

deployment of an unfamiliar application with an unfamiliar Grid infrastructure descriptor

using ProActive, deploying an application on a Grid infrastructure without modifying or

inspecting either.

Nevertheless, unfamiliar parties cannot exchange information with each other in a

generic way. A group of typed clauses will then form an interface that will specify what

information is required and provided by each party. The coupling of the interfaces will

yield a contract, that will allow the parts to couple and work together on a common goal.

The semantic definition of typed clauses was presented in the work of Mario Leyton et

al. [26], in this thesis we show how to use typed clauses on ProActive’s deployment

descriptors to achieve efficient deployment.

6.3.1 Problematic of Applications and Descriptors

In the traditional approach, the application developer and the descriptor developers need

to have a previous agreement on the name of the Virtual Node (the abstraction of the Grid

nodes). This means that the name of the Virtual Node is hardcoded inside the applica-

tion and the descriptor. If the application wants to use a new descriptor, then either the

descriptor or the application has to be modified to agree on the new Virtual Node name.

A possible solution to this problem is passing the Virtual Node name as a parameter to

the application. Nevertheless, the problem of figuring out the proper Virtual Node name

from the descriptor remains. To find out the name of the Virtual Node, inspection of the

descriptor has to be performed, which can be a problem for someone alien with respect to

the Grid infrastructure’s descriptor.

Furthermore, the Virtual Node name is not the only information sharing problem that

the application and descriptor have. For example, a descriptor might be configured to

deploy on k nodes, but the application only requires j nodes (j < k). Without shared

clauses, the descriptor has to be modified to comply with the requirements of the applica-

tion.

Modifying the application or the descriptor can be a painful task, specially if we con-

sider that the person deploying the application (deployer) may not be the author of either.

To complicate things further, the application source may not even be available for inspect-

ing the requirements and performing modifications.

6.3.2 Clauses in ProActive Descriptors

Clauses can be specified using XML tags as shown in the example of Figure 6.17 for the

descriptor. To define the clauses, a new section labeled clauses has been added at the

88 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

<clauses>

<interface name="descriptor-example-interface">

<Descriptor name="PROACTIVE_HOME" value="ProActive/"/>

<Descriptor name="MAX_NODES" value="100/"/>

<Application name="VIRTUAL_NODE_NAME" value=""/>

<DescriptorPriority name="LOAD_BALANCING" value="on"/>

<ApplicationPriority name="NUMBER_OF_NODES" value="1">

<!--// (NUMBER_OF_NODES>0) && NUMBER_OF_NODES<=MAX_NODES -->

<integerConstraint>

<and>

<biggerThan>0</biggerThan>

<smallerOrEqualThan>${MAX_NODES}</smallerOrEqualThan>

</and>

</integerConstraint>

</ApplicationPriority>

<JavaProperty name="USER_NAME" value="user.name"/>

<interface>

</clauses>

...

<virtualNodesDefinition>

<virtualNode name="${VIRTUAL_NODE_NAME}"/>

</virtualNodesDefinition>

...

<sshProcess class="org.objectweb.proactive.core.process.SSHProcess"

hostname="example.host" username="${USER_NAME}"/>

Figure 6.17: Example of clauses in descriptor.

beginning of the descriptor to hold the interfaces. The clauses shown in the example

correspond to:

PROACTIVE HOME & MAX NODES Correspond to descriptor set clauses. The value is

set directly in the descriptor, and can be used later on, inside the descriptor or the

application.

VIRTUAL NODE NAME Corresponds to a clause that the descriptor enforces the appli-

cation to set. If the application doest not set this value, the clause inside the coupling

contract will not be valid, and the application will not be allowed to couple with the

descriptor. In the example, we force the application to set the name of the Virtual

Node.

LOAD BALANCING Corresponds to a clause that the application has set, but the de-

scriptor can override. In the example, we imagine that an application is capable of

handling, or not, the load balancing. By default the application will assume that no

load balancing is provided by the Grid infrastructure (Figure 6.18), and thus handle

the load balancing at the application level. Nevertheless, the descriptor is aware if

load balancing can be done at the Grid infrastructure level and activate it. The appli-

cation can then access the contract’s clauses to learn if the infrastructure is using the

load balancing and disable the application load balancing mechanism.

NUMBER OF NODES Corresponds to a clause that the descriptor has set a value, but the

application may override. Additionally, the descriptor has set constraints indicating

that the value must be an integer between 1 and MAX NODES.

USER NAME Corresponds to a clause that is set from the environment. In this case, the

username can be specified from the environment as a java property.

Figure 6.17 also shows an example of how the clauses can be used inside descriptors.

Note that the value of the clause VIRTUAL NODE NAME has not been set in the descriptor,

6.3. WHERE TO RUN PARALLEL APPLICATIONS? 89

//Create a new interface

ClausesInterface ci= new ClausesInterface("application-example-interface");

//Set the clauses in this interface

//set(<type>, <clause name>, <value>, [<constraint>])

ci.set(Application, "VIRTUAL_NODE_NAME", "testnode",);

ci.set(ApplicationPriority, "NUMBER_OF_VIRTUAL_NODES", "16");

// LOADBALANCE="on" || LOADBALANCE="off"

OrConstraint oc = new OrConstraint();

oc.add(new EqualsConstraint("on"));

oc.add(new EqualsConstraint("off"));

ci.set(DescriptorPriority, "LOAD_BALANCING", "off", new StringConstraint(oc));

//Parse and load the descriptor using the coupling interface. If the application and descriptor can

not be coupled an exception will be thrown

ProActiveDescriptor pad = ProActive.getProactiveDescriptor("descriptor.xml", ci);

//Clauses from the coupling contract can be used in the application

CouplingContract cc = pad.getCouplingContract();

String loadBalancing = cc.getValue("LOAD_BALANCING");

//The application can take decisions based on the clauses

if(loadBalancing.equals("on")){...}

else{...}

Figure 6.18: Example of clauses in application.

since it is of type Application. This means that the value used inside the descriptor will be

the one set from the application. Also note, that clauses obtained from the environment

can also be used, like the USER NAME clause.

6.3.3 Clauses in ProActive Applications

We have also provided a mechanism for specifying clauses and interfaces from the appli-

cation. This can be done through an API, or loading the clauses from an external XML

file. Since the XML approach has already been shown for the descriptor, Figure 6.18

shows an example using the API. First an interface is created, and then the clauses are

added to the interface. The interface is then passed as a parameter when parsing the de-

scriptor. The parsing will try to generate a coupling contract using the application’s and

the descriptor’s interfaces.

If the application can be coupled with the descriptor, then the application can retrieve

the coupling contract and consult the contract’s clauses. For example, using this strategy

the application can know if the descriptor activated the infrastructure load balancing, and

avoid using the application load balancing.

6.3.4 Constraints

Constraints are boolean expressions that will be evaluated for each clause when the con-

tract is built. The constraints operate on two types: integer or string. For each constraint

the logical operators: and, or, xor are allowed. Also, boolean operators are provided for

each type of constraint. The integer operators are: biggerThan, biggerOrEqualThan,

smallerThan, smallerOrEqualThan, equals. The string case sensitive oper-

ators are: subString, superString, equals. Figure 6.19 shows the constraint

grammar specified using XML Schema[126] for the integer type constraints.

Figure 6.17 shows an example where the clause NUMBER OF NODES is constrained

to be: 0 < NUMBER OF NODES <= MAX NODES. Note that MAX NODES is defined as a

90 CHAPTER 6. MODELS, SIMULATIONS AND DEPLOYMENT ON LARGE-SCALE NETWORKS

<xs:element name="integerConstraint">

<xs:complexType>

<xs:choice>

<xs:element name="and" type="intConst"/>

<xs:element name="or" type="intConst"/>

<xs:element name="xor" type="intConst"/>

</xs:choice>

</xs:complexType>

</xs:element>

</xs:complexType>

<xs:complexType name="intConst">

<xs:choice minOccurs="1" maxOccurs="unbounded">

<xs:element name="and" type="intConst"/>

<xs:element name="or" type="intConst"/>

<xs:element name="xor" type="intConst"/>

<xs:element name="biggerThan" type="xs:string"/>

<xs:element name="biggerOrEqualThan" type="xs:string"/>

<xs:element name="smallerThan" type="xs:string"/>

<xs:element name="smallerOrEqualThan" type="xs:string"/>

<xs:element name="equals" type="xs:string"/>

</xs:choice>

</xs:complexType>

Figure 6.19: Integer Constraint Schema Grammar.

Descriptor type clause. Figure 6.18 shows an example using string constraints. The

clause LOAD BALANCING is constrained to be either on or off.

Using the proposed coupling approach of [26], we have shown how coupling contracts

can be applied for automated deployment of unfamiliar applications on alien Grids. For

this, we have provided mechanisms to specify clauses in the application and the deploy-

ment descriptor using the Grid middleware ProActive. As a result, the approach can now

be used to couple applications with descriptors, without having to modify or inspect either.

6.4 The real world

To finalise our work, we tested the performance of our algorithm on Grid5000 network.

Grid5000 is a French project which aims to interconnect by a high-speed network a set of

5, 000 processors distributed over the French territory in Institutional Clusters (see Figure

6.20 2). Nowadays Grid5000 has around 900 fully operative nodes (see Table 6.3), all of

them shared by French scientific world.

We checked the Robin-Hood + environment-aware work-stealing algorithm in terms

of migration decisions and scalability using the Jacobi parallel calculus defined in Section

5.6. In this experiment, we used 100, 200 and 300 Grid5000 nodes to deploy our applica-

tion and we measured the application speed in number of iterations per milliseconds (see

Figure 6.21), and mean number of cumulated migrations that an active objects performs

(see Figure 6.22); both measurements until 1, 000 Jacobi iterations.

As we expected by our simulations, after an initial redistribution as a reaction against

overloading, the mean number of migrations remains almost constant, and similar values

are observed by different number of nodes. This result validates our scalability hypothesis

of the behaviour of our algorithm, using the nearest nodes where the parallel application

fits, regardless of the network size. On the other hand, an increase in the number of nodes

used (in this case, more nodes per cluster reserved) produced an increase on application

2Map from https://www.grid5000.fr/mediawiki/images/thumb/612px-G5K geographical map.jpg

6.4. THE REAL WORLD 91

Figure 6.20: Institutional clusters on Grid5000: Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes,

Sophia-Antipolis and Toulouse.

Table 6.3: Clusters of AMD Opteron processors from Grid5000: on the left the number of nodes by cluster,

on the right Gflops per processor clock

Clock Freq (GHz)

Site CPUs per node N Nodes 1.0 1.8 2.0 2.2 2.4 2.6

Bordeaux 2 48 - - - 3.542 - -

Lille 2 53 1.718 3.022 3.336 3.647 - -

Lille II 2 15 - - - - - 4.3

Lyon (capricorne) 2 56 - - 3.254 - - -

Lyon (sagittaire) 2 70 - - - - 3.865 -

Nancy (grillon) 2 47 1.737 3.057 3.379 - - -

Orsay (gdx) 2 216 - - 3.388 - - -

Orsay (gdx II) 2 126 1.730 3.065 3.385 3.720 4.040 -

Rennes (paravent) 2 99 1.737 3.059 3.364 - - -

Rennes (parasol) 2 64 - - - 3.573 - -

Sophia (azur) 2 105 - - 3.258 - - -

Sophia (helios) 4 56 - - - 3.675 - -

Toulouse 2 58 - - - 3.586 - -

Note: Grenoble has 206 Intel itanium 2 and 64 Intel Xeon IA32

(Source: https://www.grid5000.fr/mediawiki/index.php/Processor#AMD Opteron)

speed compared to the initial distribution. This result validates our hypothesis of cluster-

ing of active objects on the best processors.

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 1 10 100 1000

ite
ra

tio
n

/ m
se

c

Iteration

100 nodes
200 nodes
300 nodes

Figure 6.21: Speed of Jacobi parallel application in iterations per milliseconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 10 100 1000

m
ig

ra
ti
o
n
s

Iteration

100 nodes
200 nodes
300 nodes

Figure 6.22: Mean number of cumulated migrations that an active object performs during the experience.

Chapter 7

Conclusions and Future Work

“And God saw every thing that he had made, and, behold, it was very

good...” (Genesis, 1:31)

In this thesis, a load-balancing algorithm for active objects which belong to a par-

allel application was developed and studied, setting the foundations for development of

load-balancing algorithms for the middleware ProActive. This first approach is called the

Robin-Hood + Nottingham Sheriff load-balancing algorithm.

Initially (Section 5.3) we found that the best policy for intensive-communicated par-

allel applications developed within ProActive, in terms of bandwidth used and response-

time, was an eager scheme (called Robin-Hood). Then, we noted that using an eager

scheme we did reach stability in balance, but the algorithm did not exploit all the network

capabilities (as the best processors of the network). Therefore, we added a ranked work-

stealing component (called Nottingham Sheriff), grouping active-objects on a subset of

the best qualified processors. Both components exploited a Peer-to-Peer infrastructure

developed for ProActive to perform On-Demand load-balancing queries (Section 5.4), re-

ducing the number of messages which traverse the network. Thus, bandwidth interference

produced by load-balancing algorithm was reduced.

Then, aiming at reaching a near-optimal distribution of active objects using only local

information provided by a P2P infrastructure, we studied the Robin-Hood + Nottingham

Sheriff load-balancing algorithm on Desktop Grids (Section 6.1). Using a simulated P2P

network, we showed that, using only a low number of links among nodes and a careful

tuning of the algorithm parameters, a near-optimal distribution is reachable even for large-

scale networks. We suggested to use a value near 1.0 for the stealing factor, which allows

using around 1.7 times the optimal number of nodes for networks until 400 nodes, using

less than 5.5 migrations in average per active object. Moreover, the number of migrations

appears to be of order O(log(n)) after the first optimal state (without overloaded nodes)

is reached.

As seen in Section 6.1.4, the value of RS is a key factor for a low-cost and efficient

load balancing and we did experimental fine-tuning for it. RS seems to depend on network

topology and we are studying its behaviour to calculate it automatically and dynamically.

We presented the concept of Project Grid (Section 3.1.3) as the virtual organisation

which has all the resources used on an Institutional Grid for a given project. Study-

ing the traces collected from the ProActive PlugTests environment, we characterised and

93

94 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

presented a model for Project Grids considering the node processing capacity and the la-

tency among nodes (Section 6.2). Using the information of Project Grids, we presented

in Section 6.2.3 two environment-aware load balancing algorithms dedicated to active-

objects-based applications, aiming for optimising the performance of the Robin-Hood +

Nottingham Sheriff load-balancing algorithm over project grids. The algorithms are val-

idated experimentally through simulation, and shown to offer better performance when

compared to traditional, non-environment-aware, algorithms.

For the future, we plan to extend the work on environment-aware load-balancing algo-

rithms with more metrics: symmetric (e.g., bandwidth in an unrestricted network), asym-

metric (e.g., bandwidth in a network with traffic shaping and different quotas for different

participants to the project grid), and user-defined (e.g., based on economic principles).

In Section 6.2.6 we noted that confidence of some combinations of algorithms was low

because a given cluster was not suitable to process the given application. Therefore, in

Section 6.3 we shown how using coupling based contracts to ensure minimal requirements

to deploy parallel applications. By now a contract have only two states: valid or invalid.

In the future, we would like to extend this concept by introducing conformance levels

in coupling contracts. Thus, a minimum conformance level (i.e. minimum set of known

clauses) could be provided for basic applications, and higher conformance levels (i.e. a

superset of the lower conformance levels) could be used for more advanced features that

require more specific clauses. From the Grid infrastructure side, in the future we would

like to identify standard interfaces for coupling applications with different types of Grids.

The idea is to be able to release applications packaged with interfaces that certify the

deployment of an application with a Grid interface.

Bibliography

[1] Karl Aberer, Anwitaman Datta, and Manfred Hauswirth. Multifaceted simulta-

neous load balancing in DHT-based P2P systems: A new game with old balls and

bins. In Özalp Babaoglu, Márk Jelasity, Alberto Montresor, Christof Fetzer, Stefano

Leonardi, Aad P. A. van Moorsel, and Maarten van Steen, editors, Self-star Proper-

ties in Complex Information Systems, volume 3460 of Lecture Notes in Computer

Science, pages 373–391. Springer Berlin Heidelberg, 2005.

[2] Kento Aida, Wataru Natsume, and Yoshiaki Futakata. Distributed computing with

hierarchical master-worker paradigm for parallel Branch and Bound algorithm. In

CCGRID ’03: Proceedings of the 3rd International Symposium on Cluster Com-

puting and the Grid, pages 156–163, Washington, DC, USA, 2003. IEEE Computer

Society.

[3] David P. Anderson. Boinc: A system for public-resource computing and storage.

In GRID ’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid

Computing (GRID’04), pages 4–10, Washington, DC, USA, 2004. IEEE Computer

Society.

[4] William Appelbe and A. P. Ravn. Encapsulation constructs in systems program-

ming languages. ACM Transactions on Programming Languages and Systems,

6(2):129–158, 1984.

[5] Isabelle Attali, Denis Caromel, and Romain Guider. A Step Towards Automatic

Distribution of Java Programs. In Proceedings of 2nd Formal Methods for Open

Object-based Distributed Systems, pages 141–161, Stanford University, California,

USA, September 2000. Kluwer Academic.

[6] Martin Backschat, Alexander Pfaffinger, and Christoph Zenger. Economic-based

dynamic load distribution in large workstation networks. In Luc Bougé, Pierre

Fraigniaud, Anne Mignotte, and Yves Robert, editors, Euro-Par ’96 Parallel Pro-

cessing, Second International Euro-Par Conference, Lyon, France, August 26-29,

1996, Proceedings, Volume II, volume 1124 of Lecture Notes in Computer Science,

pages 631–634. Springer Berlin Heidelberg, 1996.

[7] Laurent Baduel, Françoise Baude, and Denis Caromel. Object-oriented SPMD. In

5th International Symposium on Cluster Computing and the Grid (CCGrid 2005),

9-12 May, 2005, Cardiff, UK, pages 824–831. IEEE Computer Society, 2005.

95

96 BIBLIOGRAPHY

[8] Eric Baldeschwieler, Robert Blumofe, and Eric Brewer. Atlas: An Infrastructure

for Global Computing. In Proceedings of the Seventh ACM SIGOPS European

Workshop: Systems Support for Worldwide Applcations, September 1996.

[9] Albert-László Barabasi and Réka Albert. Emergence of scaling in random net-

works. Science, 286:509–512, October 1999.

[10] Françoise Baude, Denis Caromel, Fabrice Huet, Lionel Mestre, and Julien

Vayssière. Interactive and Descriptor-Based Deployment of Object-Oriented Grid

Applications. In 11th IEEE International Symposium on High Performance Dis-

tributed Computing (HPDC), pages 93–102, Edinburgh, Scotland, July 2002. IEEE

Computer Society.

[11] Françoise Baude, Denis Caromel, Fabrice Huet, and Julien Vayssière. Communi-

cating Mobile Active Objects in Java. In Proceedings of the 8th International Con-

ference on High Performance Computing and Networking Europe, volume 1823 of

Lecture Notes in Computer Science, pages 633–643, Amsterdam, The Netherlands,

May 2000. Springer Berlin / Heidelberg.

[12] Michael A. Bender and Michael O. Rabin. Scheduling cilk multithreaded paral-

lel programs on processors of different speeds. In SPAA ’00: Proceedings of the

Twelfth Annual ACM Symposium on Parallel Algorithms and Architectures, pages

13–21, New York, NY, USA, 2000. ACM Press.

[13] Petra Berenbrink, Tom Friedetzky, and Leslie Ann Goldberg. The natural work-

stealing algorithm is stable. In IEEE Symposium on Foundations of Computer Sci-

ence, pages 178–187, Washington, DC, USA, 2001. IEEE Computer Society.

[14] Fran Berman, Geoffrey Fox, and Anthony J. G. Hey. Grid Computing: Making the

Global Infrastructure a Reality. John Wiley & Sons, Inc., New York, NY, USA,

2003.

[15] G.M. Birtwhistle, O.J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin.

Chartwell-Bratt Ltd, 1979.

[16] Robert D. Blumofe. Managing storage for multithreaded computations. Master’s

thesis, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, Cambridge, USA, September 1992. Also available as MIT

Laboratory for Computer Science Technical Report MIT/LCS/TR-552.

[17] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-

erson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime

system. In PPOPP ’95: Proceedings of the Fifth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 207–216, New York, NY,

USA, 1995. ACM Press.

[18] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computa-

tions by work stealing. Journal of the ACM, 46(5):720–748, 1999.

[19] Daniel G. Bobrow, Richard P. Gabriel, and Jon L. White. CLOS in context: the

shape of the design space, pages 29–61. MIT Press, Cambridge, MA, USA, 1993.

BIBLIOGRAPHY 97

[20] Shahid H. Bokhari. A shortest tree algorithm for optimal assignments across space

and time in a distributed processor system. IEEE Transactions on Software Engi-

neering, 7(6):583–589, 1981.

[21] Grady Booch. Object-oriented analysis and design with applications (2nd ed.).

Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994.

[22] José Luis Bosque Orero, Marcos Gil, and Luis Pastor. Dynamic load balancing

in heterogeneous clusters. In Proceedings of IASTED International Conference on

Parallel and Distributed Computing and Networks. Acta Press, 2004.

[23] Javier Bustos-Jiménez. Robin hood: An active objects load balancing mechanism,

for intranet. In Proceedings of Workshop de Sistemas Distribuidos y Paralelismo,

Chile, 2003.

[24] Javier Bustos-Jiménez, Denis Caromel, Alexandre di Costanzo, Mario Leyton, and

José M. Piquer. Balancing active objects on a peer to peer infrastructure. In Pro-

ceedings of the XXV International Conference of the Chilean Computer Science So-

ciety (SCCC 2005), pages 109–115, Valdivia, Chile, November 2005. IEEE Com-

puter Society.

[25] Javier Bustos-Jiménez, Denis Caromel, Alexandru Iosup, Mario Leyton, and

José Miguel Piquer. The rocking chair and the grid: Balancing load across project

grids. In Integrated Research in Grid Computing, CoreGrid Integration Workshop,

pages 117–128, October 2006.

[26] Javier Bustos-Jiménez, Denis Caromel, Mario Leyton, and José Miguel Piquer.

Coupling contracts for deployment on alien grids. In CoreGRID Workshop on Grid

Middleware (in conjunction with EuroPar), Lecture Notes in Computer Science.

Springer Berlin, September 2006.

[27] Javier Bustos-Jiménez, Denis Caromel, Mario Leyton, and José Miguel Piquer.

Load information sharing policies in communication-intensive parallel applica-

tions. In ISSADS, Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2006.

[28] Javier Bustos-Jiménez, Denis Caromel, and José Miguel Piquer. Toward the infinite

network, and beyond. In Proceedings of 12th Workshop on Job Scheduling Strate-

gies for Parallel Processing (JSSPP), volume 4376 of Lecture Notes in Computer

Science, pages 176–191. Springer Berlin Heidelberg, June 2006.

[29] Denis Caromel. A general model for concurrent and distributed object-oriented

programming. Proceedings of the 1988 ACM SIGPLAN workshop on Object-based

concurrent programming, 24(4):102–104, 1989.

[30] Denis Caromel. Service, asynchrony, and wait-by-necessity. Journal of Object-

Oriented Programming, 2(4):12–22, November 1989.

[31] Denis Caromel. Toward a method of object-oriented concurrent programming.

Communications of the ACM, 36(9):90–102, 1993.

98 BIBLIOGRAPHY

[32] Denis Caromel, Fabrice Belloncle, and Yves Roudier. The C++// Language. In

Parallel Programming using C++, pages 257–296. MIT Press, 1996. ISBN 0-262-

73118-5.

[33] Denis Caromel and Ludovic Henrio. A Theory of Distributed Objects. Springer,

2005. ISBN 3-540-20866-6.

[34] Denis Caromel, Ludovic Henrio, and Bernard Serpette. Asynchronous and De-

terministic Objects. In Proceedings of the 31st ACM Symposium on Principles of

Programming Languages, pages 123–134, Venice, Italy, January 2004. ACM Press.

ISBN 1-58113-729-X.

[35] Thomas Casavant and Jon Kuhl. Effects of response and stability on scheduling

in distributed computing systems. IEEE Transactions on Software Engineering,

14(11):1578–1588, 1988.

[36] Thomas Casavant and Jon Kuhl. A taxonomy of scheduling in general-purpose

distributed computing systems. IEEE Transactions on Software Engineering,

14(2):141–154, 1988.

[37] Steve Chapin, Dimitrios Katramatos, John Karpovich, and Andrew Grimshaw. The

Legion resource management system. In Dror G. Feitelson and Larry Rudolph, edi-

tors, Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer

Science, pages 162–178. Springer Berlin Heidelberg, 1999.

[38] Fan Chung and Linyuan Lu. The average distances in a random graph with given

expected degrees. Internet Mathematics, 1(1):91–113, 2005.

[39] Gerald Combs. Ethereal: The world’s most popular network protocol analyzer.

http://www.ethereal.com.

[40] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: methods,

tools, and applications. ACM Press/Addison-Wesley Publishing Co. New York,

NY, USA, 2000.

[41] Olivier Dalle. Techniques et Outils pour les communicatios et la répartition dy-

namique de charge dans les réseaux de stations de travail. PhD thesis, École

Doctorale Sciences pour l´ Ingenieur. Université de Nice - Sophia Antipolis, Nice,

France, January 1999.

[42] Partha Dasgupta, Jr. Richard J. LeBlanc, Mustaque Ahamad, and Umakishore Ra-

machandran. The clouds distributed operating system. Computer, 24(11):34–44,

1991.

[43] Alexandre di Costanzo. Modèle et infrastructure de programmation pair-à-pair.

Master’s thesis, Nice University France, June 2004.

[44] Reinhard Diestel. Graph Theory. Springer, New York, USA, second edition, 2000.

BIBLIOGRAPHY 99

[45] Menno Dobber, Ger Koole, and Robert D. van der Mei. Dynamic load balancing

for a grid application. In Luc Bougé and Viktor K. Prasanna, editors, High Per-

formance Computing - HiPC 2004, volume 3296 of Lecture Notes in Computer

Science, pages 342–352. Springer Berlin / Heidelberg, 2004.

[46] Patrı́cio Domingues, Paulo Marques, and Luı́s Moura Silva. Resource usage of win-

dows computer laboratories. In ICPP Workshops, pages 469–476. IEEE Computer

Society, 2005.

[47] Luı́s Paulo Peixoto dos Santos. Load distribution: a survey. cite-

seer.ist.psu.edu/santos96load.html, 1996.

[48] Pál Erdős and Alfréd Rényi. On random graphs I. Publ. Mathematica, 6:290–297,

December 1959.

[49] Pál Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Mathemat-

ica. Inst. Hungar. Acad. Sci., 5:17–61, 1960.

[50] ETSI and INRIA. 2nd Grid Plugtests. http://www.etsi.org/plugtests/

GRID.htm.

[51] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law rela-

tionships of the internet topology. Computer Communication Review, 29(4):251–

262, October 1999.

[52] Dieter Fensel and Christoph Bussler. The web service modeling framework WSMF.

Electronic Commerce Research and Applications, 1(2):113–137, 2002.

[53] Jaques Ferber. Computational reflection in class based object-oriented languages.

In OOPSLA ’89: Conference proceedings on Object-oriented programming sys-

tems, languages and applications, pages 317–326, New York, NY, USA, 1989.

ACM Press.

[54] Domenico Ferrari and Songnian Zhou. An empirical investigation of load indices

for load balancing applications. In Performance ’87: Proceedings of the 12th IFIP

WG 7.3 International Symposium on Computer Performance Modelling, Measure-

ment and Evaluation, pages 515–528. North-Holland, 1988.

[55] Michael Flynn. Some computer organizations and their effectiveness. IEEE Trans-

actions on Computers, C-21:948–960, 1972.

[56] Ian Foster. What is the grid? - a three point checklist. GRIDtoday, 1(6), July 2002.

[57] Ian Foster and Carl Kesselman. Computational grids. In The Grid: blueprint for

a new computing infrastructure, pages 15–51. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1999.

[58] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling

scalable virtual organizations. Int. J. High Perform. Comput. Appl., 15(3):200–222,

2001.

100 BIBLIOGRAPHY

[59] James Frey, Todd Tannenbaum, Miron Livny, Ian Foster, and Steven Tuecke.

Condor-g: A computation management agent for multi-institutional grids. Clus-

ter Computing, 5(3):237–246, 2002.

[60] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation

of the Cilk-5 multithreaded language. In PLDI ’98: Proceedings of the ACM

SIGPLAN 1998 conference on Programming language design and implementation,

pages 212–223, New York, NY, USA, 1998. ACM Press.

[61] El ghazali Talbi. Allocation dynamique de processus dans les systèmes distribués et

parallèles : état de l´art. Technical report, Laboratoire d Informatique Fondamentale

de Lille, January 1995.

[62] E. Gilbert. Random graphs. Annals of Mathematical Statistics, 30(4):1141–1144,

December 1959.

[63] Gnutella measurement project. Clip 2. http://www.clip2.com.

[64] Andrew Grimshaw, William Wulf, James French, Alfred Weaver, and Paul

Reynolds Jr. Legion: The next logical step toward a nation wide virtual computer.

Technical Report CS-94-21, University of Virginia, August 1994.

[65] Elisa Heymann, Miquel A. Senar, Emilio Luque, and Miron Livny. Adaptive

scheduling for master-worker applications on the computational grid. In GRID, vol-

ume 1971 of Lecture Notes in Computer Science, pages 214–227. Springer Berlin

Heidelberg, 2000.

[66] Fabrice Huet. Objets mobiles : conception d´un middleware et évaluation de la

communication. PhD thesis, Université de Nice Sophia-Antipolis, Nice, France,

December 2002.

[67] Fabrice Huet, Denis Caromel, and Henri Bal. A high performance java middleware

with a real application. In Proceedings of the ACM/IEEE Conference on Supercom-

puting (SC), pages 2–17, Washington, DC, USA, 2004. IEEE Computer Society.

[68] Bradley Huffaker, Marina Fomenkov, Daniel Plummer, David Moore, and

K. Claffy. Distance metrics in the internet, September 2002. http://

citeseer.ist.psu.edu/huffaker02distance.html.

[69] Shuichi Ichikawa. Mathematical programming approach for static load balancing of

parallel PDE solver. In Proceedings of the 16th IASTED International Conference

on Applied Informatics. Acta Press, 1998.

[70] Alexandru Iosup, Catalin Dumitrescu, Dick Epema, Hui Li, and Lex Wolters. An

analysis of four long-term grid traces. Technical Report PDS-2006-003, TU Delft,

April 2006.

[71] Alexandru Iosup, Pawel Garbacki, Johan Pouwelse, and Dick Epema. Correlating

topology and path characteristics of overlay networks and the internet. In CCGRID

’06: Proceedings of the Sixth IEEE International Symposium on Cluster Comput-

ing and the Grid (CCGRID’06), pages 10–18, Washington, DC, USA, 2006. IEEE

Computer Society.

BIBLIOGRAPHY 101

[72] Yang-Suk Kee, Henri Casanova, and Andrew Chien. Realistic modeling and syn-

thesis of resources for computational grids. In Proceedings of the ACM/IEEE con-

ference on Supercomputing (SC), pages 54–63. ACM Press, 2004.

[73] Gregor Kiczales and Jim Des Rivieres. The Art of the Metaobject Protocol. MIT

Press, Cambridge, MA, USA, 1991.

[74] Jon M. Kleinberg. The small-world phenomenon: an algorithm perspective. In Pro-

ceedings of the Thirty Second Annual ACM Symposium on Theory of Computing,

pages 163–170, New York, NY, USA, 2000. ACM Press.

[75] Jurgen Kleinoder and Michael Golm. Metajava: an efficient run-time meta archi-

tecture for Java. In Proceedings of the 5th International Workshop on Object Ori-

entation in Operating Systems (IWOOOS), pages 54–61, Washington, DC, USA,

1996. IEEE Computer Society.

[76] Derrick Kondo, Michela Taufer, Charles L. Brooks III, Henri Casanova, and An-

drew A. Chien. Characterizing and evaluating desktop grids: An empirical study.

International Parallel and Distributed Processing Symposium, 01:26–35, 2004.

[77] Orly Kremien and Jeff Kramer. Methodical analysis of adaptive load sharing al-

gorithms. IEEE Transactions on Parallel and Distributed Systems, 3(6):747–760,

1992.

[78] Nancy P. Kronenberg, Henry M. Levy, and William D. Strecker. Vaxcluster:

a closely-coupled distributed system. ACM Transactions on Computer Systems,

4(2):130–146, 1986.

[79] Thomas Kunz. The influence of different workload descriptions on a heuristic load

balancing scheme. IEEE Transactions on Software Engineering, 17(7):725–730,

1991.

[80] Bradley Kuszmaul. The StarTech Massively Parallel Chess Program. Journal of

the International Computer Chess Association, 18(1):3–19, 1995.

[81] Mike Lewis and Andrew Grimshaw. The core legion object model. In Proceed-

ings of the Fifth IEEE International Symposium on High Performance Distributed

Computing, pages 551–561, Syracuse, New York, USA, August 1996. IEEE, IEEE

Computer Society.

[82] Frank Lin and Robert Keller. The gradient model load balancing method. IEEE

Transactions on Software Engineering, 13(1):32–38, 1987.

[83] Michael Lo and Sivarama Dandamudi. Performance of hierarchical load sharing in

heterogeneous distributed systems. In Proceedings of International Conference on

Parallel and Distributed Computing Systems, Dijon, France, pages 370–377, 1996.

[84] Dong Lu and Peter A. Dinda. Synthesizing realistic computational grids. In Pro-

ceedings of the ACM/IEEE Conference on Supercomputing (SC), page 16, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

102 BIBLIOGRAPHY

[85] Pattie Maes. Concepts and experiments in computational reflection. In OOPSLA

’87: Conference proceedings on Object-oriented programming systems, languages

and applications, pages 147–155, New York, NY, USA, 1987. ACM Press.

[86] Jaques Malenfant, Marco Jaques, and F.N. Demers. A tutorial on behavioral re-

flection and its implementation. In Gregor Kiczales, editor, Proceedings of the

Reflection 96 Conferencext, pages 1–20, April 1996.

[87] Emmanuel Medernach. Workload analysis of a cluster in a grid environment. In

Dror G. Feitelson, Eitan Frachtenberg, Larry Rudolph, and Uwe Schwiegelshohn,

editors, Proceedings of 11th Workshop on Job Scheduling Strategies for Parallel

Processing (JSSPP), volume 3834 of Lecture Notes in Computer Science, pages

36–61, Cambridge, USA, June 2005. Springer Berlin.

[88] Joe Meehean and Miron Livny. A service migration case study: Migrating the

Condor schedd. In Midwest Instruction and Computing Symposium, April 2005.

[89] Miron Livny Michael Litzkow and Matt Mutka. Condor - a hunter of idle worksta-

tions. In Proceedings of 8th International Conference on Distribuited Computing

Systems, pages 104–111, 1998.

[90] Stanley Milgram. The small world problem. Psychology Today, 2(1):60–67, 1967.

[91] Ravi Mirchandaney, Don Towsley, and John A. Stankovic. Adaptive load sharing in

heterogeneous distributed systems. Journal of Parallel and Distributed Computing,

9(4):331–346, 1990.

[92] Michael Mitzenmacher. The power of two choices in randomized load balancing.

PhD thesis, University of California, Berkeley, California, USA, September 1996.

Chair-Alistair Sinclair.

[93] Michael Mitzenmacher. On the analysis of randomized load balancing schemes. In

SPAA ’97: Proceedings of the ninth annual ACM symposium on Parallel algorithms

and architectures, pages 292–301, New York, NY, USA, 1997. ACM Press.

[94] Michael Mitzenmacher. How useful is old information? IEEE Transactions on

Parallel and Distributed Systems, 11(1):6–20, 2000.

[95] Kenichi Murata, Nigel Horspool, Eric Manning, Yasuhiko Yokote, and Mario

Tokoro. Unification of active and passive objects in an object-oriented operating

system. In Proceedings of the 4th International Workshop on Object-Orientation in

Operating Systems (IWOOOS), pages 68–71, Washington, DC, USA, 1995. IEEE

Computer Society.

[96] Oasis Group at INRIA Sohpia-Antipolis. Oasis: Active objects, semantics, internet,

and security. http://www-sop.inria.fr/oasis, 1999.

[97] Oasis Group at INRIA Sohpia-Antipolis. Proactive, the java library for par-

allel, distributed, concurrent computing with security and mobility. http://

proactive.objectweb.org, 2002.

BIBLIOGRAPHY 103

[98] Pragyansmita Paul. Seti @ home project and its website. Crossroads, 8(3):3–5,

2002.

[99] Spiridon Pulidas, Don Towsley, and Jack Stankovic. Design of efficient parameter

estimators for decentralized load. Technical Report UM-CS-1987-079, University

of Massachusetts, Amherst, MA, USA, 1987.

[100] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed re-

source management for high throughput computing. In HPDC ’98: Proceedings of

the The Seventh IEEE International Symposium on High Performance Distributed

Computing, pages 140–146, Washington, DC, USA, 1998. IEEE Computer Society.

[101] Hélène Renard. Équilibrage de charge et redistribution de données sur plates-

formes hétérogénes. PhD thesis, École normale supérieure de Lyon, France, De-

cember 2005.

[102] Reinhard Riedl and Lutz Richter. Classification of load distribution algorithms. In

PDP ’96: Proceedings of the 4th Euromicro Workshop on Parallel and Distributed

Processing (PDP ’96), pages 404–413, Washington, DC, USA, 1996. IEEE Com-

puter Society.

[103] Jordan Ritter. Why Gnutella can’t scale. No, really., 2001. http://www.

darkridge.com/\∼{}jpr5/doc/gnutella.html.

[104] Mema Roussopoulos and Mary Baker. Practical load balancing for content requests

in peer-to-peer networks. The Computing Research Repository, cs.NI/0209023,

2002.

[105] Sandip Roy Chowdhury and Bidyut Gupta. A probabilistic dynamic load balancing

algorithm for homogeneous distributed systems (with extension to hypercubes). In

CSC ’94: Proceedings of the 22nd annual ACM computer science conference on

Scaling up: Meeting the challenge of complexity in real-world computing applica-

tions, pages 165–172, New York, NY, USA, 1994. ACM Press.

[106] Satu Elisa Schaeffer. Algorithms for nonuniform networks. PhD thesis, Helsinki

University of Technology, Espoo, Finland, April 2006.

[107] Rudiger Schollmeier. A definition of peer-to-peer networking for the classification

of peer-to-peer architectures and applications. In 2001 International Conference

on Peer-to-Peer Computing (P2P2001), Department of Computer and Information

Science Linkopings Universitet, Sweden, august 2001. IEEE Computer Society.

[108] Chien-Chung Shen and Wen-Hsiang Tsai. A graph matching approach to optimal

task assignment in distributed computing systems using a minimax criterion. IEEE

Transactions on Computers, 34(3):197–203, 1985.

[109] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load distributing for

locally distributed systems. Computer, 25(12):33–44, 1992.

[110] Joel Shurkin. Engines of the Mind: A History of the Computer. W. W. Norton &

Co., 1984.

104 BIBLIOGRAPHY

[111] Brian Cantwell Smith. Reflection and Semantics in a Procedural Language. PhD

thesis, Massachusetts Institute of Technology, Cambridge, USA, January 1982.

[112] Thomas Sterling, Daniel Savarese, Donald Becker, John Dorband, Udaya

Ranawake, and Charles Packer. BEOWULF: A parallel workstation for scientific

computation. In Proceedings of the 24th International Conference on Parallel Pro-

cessing, volume 1, pages 11–14, Oconomowoc, WI, 1995. CRC Press.

[113] Sun Microsystems. RMI Architecture and Functional Specification.

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/

rmiTOC.html.

[114] Vaidy Sunderam. PVM: a framework for parallel distributed computing. Concur-

rency: Pract. Exper., 2(4):315–339, 1990.

[115] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp,

and Sape J. Mullender. Experiences with the amoeba distributed operating system.

Commun. ACM, 33(12):46–63, 1990.

[116] EGEE Team, 2004. http://lcg.web.cern.ch/LCG.

[117] Douglas Thain and Miron Livny. Error scope on a computational grid: Theory and

practice. In HPDC ’02: Proceedings of the 11 th IEEE International Symposium

on High Performance Distributed Computing HPDC-11 20002 (HPDC’02), pages

199–208, Washington, DC, USA, 2002. IEEE Computer Society.

[118] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in

practice: the Condor experience. Concurrency and Computation Practice and Ex-

perience, 17(2-4):323–356, 2005.

[119] Marvin Theimer and Keith Lantz. Finding idle machines in a workstation-based

distributed system. IEEE Transactions on Software Engineering, 15(11):1444–

1458, 1989.

[120] Rob V. van Nieuwpoort. Efficient Java-Centric Grid-Computing. PhD thesis, Vrije

Universiteit, Amsterdam, The Netherlands, September 2003.

[121] Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. Satin: Efficient parallel

divide-and-conquer in java. In Proceedings of EuroPar 2000, Lecture Notes in

Computer Science, pages 690–699, Munich, Germany, September 2000. Springer

Berlin / Heidelberg.

[122] Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. Efficient load balancing

for wide-area divide-and-conquer applications. SIGPLAN Notices, 36(7):34–43,

2001.

[123] Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann, and Henri E. Bal. Satin:

Simple and efficient java-based grid programming. Scalable Computing: Prac-

tice & Experience, 6(3):19–32, 2005. AGridM 2003, Workshop on Adaptive Grid

Middleware, New Orleans, Louisiana, USA.

BIBLIOGRAPHY 105

[124] Todd L. Veldhuizen and Dennis Gannon. Active Libraries: Rethinking the roles

of compilers and libraries. In Proceedings of the SIAM Workshop on Object Ori-

ented Methods for Inter-operable Scientific and Engineering Computing (OO’98),

Philadelphia, Pennsylvania, USA, 1998.

[125] Satu Elisa Virtanen. Properties of nonuniform random graph models. Research Re-

port A77, Helsinki University of Technology, Laboratory for Theoretical Computer

Science, Espoo, Finland, May 2003.

[126] W3C. XML schema: Formal description. http://www.w3.org/TR/

xmlschema-formal.

[127] Jim Waldo and Ken Arnold. The Jini Specifications, Second Edition. Addison-

Wesley, 2000.

[128] Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: a non-

reflective description of the reflective tower. In LFP ’86: Proceedings of the 1986

ACM conference on LISP and functional programming, pages 298–307, New York,

NY, USA, 1986. ACM Press.

[129] Takuo Watanabe and Akinori Yonezawa. Reflection in an object-oriented concur-

rent language. In OOPSLA ’88: Conference proceedings on Object-oriented pro-

gramming systems, languages and applications, pages 306–315, New York, NY,

USA, 1988. ACM Press.

[130] Duncan Watts and Steven Strogatz. Collective dynamics of “small world” networks.

Nature, 393(6684):440–442, June 2005.

[131] Bernard Waxman. Routing of multipoint connections. IEEE Journal on Selected

Areas in Communications, 6(9):1617–1622, 1988.

[132] Peter Wegner. Concepts and paradigms of object-oriented programming. SIGPLAN

OOPS Messenger, 1(1):7–87, 2005.

[133] Jerry C. Yan and Stefen F. Lundstrom. The post-game analysis framework - devel-

oping resource management strategies for concurrent systems. IEEE Transactions

on Knowledge and Data Engineering, 1(3):293–309, 1989.

[134] Yasuhiko Yokote and Mario Tokoro. Concurrent programming in concurrent

smalltalk. In Object-oriented concurrent programming, pages 129–158, Cam-

bridge, MA, USA, 1987. MIT Press.

Appendix A

Matrices for Robin-Hood algorithm

working alone

(a) λ = 0.1, T = 0.70 (b) λ = 0.2, T = 0.70 (c) λ = 0.3, T = 0.70

(d) λ = 0.1, T = 0.90 (e) λ = 0.2, T = 0.90 (f) λ = 0.3, T = 0.90

Figure A.1: Final distribution for the Robin-Hood algorithm only, for RB = 0.5 and q = 3

107

108 APPENDIX A. MATRICES FOR ROBIN-HOOD ALGORITHM WORKING ALONE

(a) λ = 0.1, T = 0.70 (b) λ = 0.2, T = 0.70 (c) λ = 0.3, T = 0.70

(d) λ = 0.1, T = 0.90 (e) λ = 0.2, T = 0.90 (f) λ = 0.3, T = 0.90

Figure A.2: Final distribution for the Robin-Hood algorithm only, for RB = 0.5 and q = 4

(a) λ = 0.1, T = 0.70 (b) λ = 0.2, T = 0.70 (c) λ = 0.3, T = 0.70

(d) λ = 0.1, T = 0.90 (e) λ = 0.2, T = 0.90 (f) λ = 0.3, T = 0.90

Figure A.3: Final distribution for the Robin-Hood algorithm only, for RB = 0.5 and q = 5

109

(a) λ = 0.1, T = 0.50 (b) λ = 0.2, T = 0.50 (c) λ = 0.3, T = 0.50

(d) λ = 0.1, T = 0.70 (e) λ = 0.2, T = 0.70 (f) λ = 0.3, T = 0.70

(g) λ = 0.1, T = 0.90 (h) λ = 0.2, T = 0.90 (i) λ = 0.3, T = 0.90

Figure A.4: Final distribution for the Robin-Hood algorithm only, for RB = 0.7 and q = 4

Appendix B

Matrices for Robin-Hood +

Nottingham-Sheriff algorithm

(a) λ = 0.1, T = 0.70 (b) λ = 0.2, T = 0.70 (c) λ = 0.3, T = 0.70

(d) λ = 0.1, T = 0.90 (e) λ = 0.2, T = 0.90 (f) λ = 0.3, T = 0.90

Figure B.1: Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for RB = 0.5, RS = 0.5
and q = 3

111

112 APPENDIX B. MATRICES FOR ROBIN-HOOD + NOTTINGHAM-SHERIFF ALGORITHM

(a) λ = 0.1, T = 0.50 (b) λ = 0.2, T = 0.50 (c) λ = 0.3, T = 0.50

(d) λ = 0.1, T = 0.70 (e) λ = 0.2, T = 0.70 (f) λ = 0.3, T = 0.70

(g) λ = 0.1, T = 0.90 (h) λ = 0.2, T = 0.90 (i) λ = 0.3, T = 0.90

Figure B.2: Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for RB = 0.5, RS = 0.5
and q = 5

113

(a) λ = 0.1, T = 0.50 (b) λ = 0.2, T = 0.50 (c) λ = 0.3, T = 0.50

(d) λ = 0.1, T = 0.70 (e) λ = 0.2, T = 0.70 (f) λ = 0.3, T = 0.70

(g) λ = 0.1, T = 0.90 (h) λ = 0.2, T = 0.90 (i) λ = 0.3, T = 0.90

Figure B.3: Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for RB = 0.7, RS = 0.7
and q = 3

114 APPENDIX B. MATRICES FOR ROBIN-HOOD + NOTTINGHAM-SHERIFF ALGORITHM

(a) λ = 0.1, T = 0.50 (b) λ = 0.2, T = 0.50 (c) λ = 0.3, T = 0.50

(d) λ = 0.1, T = 0.70 (e) λ = 0.2, T = 0.70 (f) λ = 0.3, T = 0.70

(g) λ = 0.1, T = 0.90 (h) λ = 0.2, T = 0.90 (i) λ = 0.3, T = 0.90

Figure B.4: Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for RB = 0.9, RS = 0.9
and q = 3

Appendix C

Expected values for

Kolmogorov-Smirnov test statistics

Level of Significance (α)

for T = Max {FReal(x) − FTheoretical(x)}

Sample Size (K) 0.20 0.15 0.10 0.05 0.01

1 0.900 0.925 0.950 0.975 0.995

2 0.684 0.726 0.776 0.842 0.929

3 0.565 0.597 0.642 0.708 0.828

4 0.494 0.525 0.564 0.624 0.733

5 0.446 0.474 0.510 0.565 0.669

10 0.322 0.342 0.368 0.410 0.490

15 0.266 0.283 0.304 0.338 0.404

20 0.231 0.246 0.264 0.294 0.356

25 0.210 0.220 0.240 0.270 0.320

30 0.190 0.200 0.220 0.240 0.290

35 0.180 0.190 0.210 0.230 0.270

> 35 1.07√
K

1.22√
K

1.36√
K

1.52√
K

1.63√
K

If the calculated ratio is greater than the value shown, the null hypothesis is rejected

for the chosen level of confidence.

115

