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I AVANT-PROPOS

Mon ambition est de doter le robot d’un haut niveau de flexibilité et d’adaptation a la tiche
en présence d’imprécisions et d’incertitudes lides 4 celle-ci et & son état interne.

Ceci se traduit par le développement de concepts et d’outils visant & permettre au robot de

planifier sa tiche et de mettre en ceuvre pour son exécution des processus décisionnels bouclés
sur la tache et sur 'environnement.

Profondément convaincu de la nécessité d’avancer & la fois:

- sur les aspects conceptuels de 'autonomie des robots;
- sur l'intégration de leurs différentes composantes décisionnelles et fonctionnelles;

- et sur leur concrétisation algorithmique, logicielle puis expérimentale dans des robots
systémes complets;

j’ai contribué a ces différents niveaux.

Ceci s’est traduit par une forte implication dans une approche de la robotique avancée, fruit
d’une volonté, d'une réflexion et d’un travail d’équipe au sein du groupe RIA! du LAAS.

Animé par la volonté de traduire mes travaux dans une réalité tangible, celle de la robotique
“avec des robots”, je me suis fortement impliqué dans des projets internes au groupe RIA

mais aussi dans des programmes ou projets coopératifs au niveau régional, national, européen
ou international,

Je présente, dans ce qui suit, une synthése de mes contributions et ma prospective de recherche.

Les annexes détaillent mes activités d’encadrement de jeunes chercheurs, de gestion et de
participation a des contrats de recherche et & des conventions de collaboration, de recherche

et développement en relation avec le milieu industriel et institutionnel, d’enseignement et
d’administration de la recherche.

1. Robotique et Intelligence Artificielle



IT CONTRIBUTIONS SCIENTIFIQUES

II.1 Ma problématique

Ma contribution scientifique concerne trois volets:

1. I'élaboration d’architectures permettant d'intégrer les composantes décisionnelle et fone-
tionnelle et de mettre en ceuvre des processus bouclés sur Penvironnement & différents
niveaux d’abstraction;

2. le développement de représentations et d’algorithmiques pour la planification et ['inter-
prétation de plans: planification logique et temporelle (au niveau de la mission) mais
aussi planification géométrique (plus proche de la tache]);

3. la réalisation effective de systémnes robotiques complets démontrant les capacités déve-
loppées el servant de support de validation et d’aiguillons exigeants & I'extension de ces
mémes capacités.

Je suis intimement persuadé de la complémentarité de ces trois volets et de Uintérédt de les
conjuguer dans un processus d’élaboration et de maturation progressives. Ils correspondent en
effet & une démarche globale en trois étapes concentriques, du plus général au plus particulier,
du plus conceptuel au plus concret.

Considérons un robot mobile dont lsbjectif est d’atteindre un lieu distant dans un environne-
ment d’intérieur dont il posséde une description (topologique et géoméirique). Ajoutons qu’il
doit étre capable d’effectuer sa mission malgré une description imprécise de son environne-
ment (forme et position des obstacles), en détectant et évitant des obstacles imprévus (fires ou
mobiles) et en coopérant avec d’autres robots mobiles du méme type (croisement, dépassement,
suivi).

Un tel robot est aujourd’hui une réalité tangible: une démonstration metiant en wuvre trois
robots mobiles de ce type est aujourd’hui opérationnelle au LAAS.

Il est le résultat d’un long cheminement, de contributions nombreuses et d’un travail d’équipe
de longue haleine. Il concrétise plusieurs de mes contributions relevant des trois volets cités
plus haut.

Je présente, dans ce qui suit, une synthése de mes contributions sous la forme de 9 “fiches”
qui résument les approches et les résultats:

L. Une architecture de contréle générique
2. Programmation et Conduite d’une Cellule Flexible d’Assemblage
3. Téléprogrammation niveau tache et autonomie en robotique d’intervention

4. Planification de mission avec prise en compte de contraintes temporelles et du non-
déterminisme
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5. La planification automatique de tiches de type Prendre-et-Pose
6. Une formulation générale de la planification des tiches de manipulation

7. Planification de stratégies de déplacement pour un robot mobile en présence d’incerti-
tudes

8. Un robot mobile autonome

9. Une approche nouvelle de la coopération multi-robots



IT.2  Une architecture de contréle générique

L’ambition ici est de définir une architecture pour le contréle d'un robot autonome et plus
généralement de concevoir des systémes décisionnels temps réels permettant & la fois:

- Iélaboration d’un plan d’actions (processus généralement cofiteux en temps calcul et
non borné dans le temps);

- et la disponibilité permanente dans un environnement évolutif (réactivité), les réactions
devant étre cohérentes avec Iétat du robot et de son environnement et avec les objectifs
du plan.

Cette problématique fait l'objet depuis plusieurs années d’un débat passionnant (dans la
communauté robotique et au-deld) et constitue indubitablement un élément décisif de la
robotique i venir.

J’ai élaboré avec R. Chatila et G. Giralt, une Architecture de contrile générique [43, 64] qui
organise le robot-systéme en trois niveaux composés de systémes décisionnels temps réel & des
niveaux d’abstraction et avec des contraintes temporelles différents (figure 2). Chaque niveau
est construit selon un Paradigme pour Uiniégration de la Planification et de |’Fzécution qui
distingue deux types de décisions traités par des processus différents (figure 1) et mettant
en ceuvre des algorithmes de nature et de complexité différentes: la planification d’une part,
Iinterprétation de plans et la réaction aux situations d’autre part.

goal/ goal modalities

-} plan + ptan modalities
— S . situation-driven
Planner Supervisor procedures
-
— goal + state — T

signals to/from
processes

Processes

F1c. 1 — Paradigme pour Uintégration de la Planification et de I’Ezécution

Les trois niveaux mettent en ceuvre des processus décisionnels 3 des niveaux d’abstraction et
avec des contraintes temporelles différents.

— Le niveau de planification le plus élevé permet de produire des plans d’actions correspon-
dant & la réalisation d’un objectif donné. Le superviseur associé lui transmet |’objectif
a réaliser, puis contrdle 'exécution du plan compte tenu des événements produits par
I’exécution ou par une évolution de Penvironnement.

- Le niveau suivant est un niveau d’aflinement. L’existence de ce niveau est essentielle
et est I'une des originalités de notre approche. En effet, au niveau précédent, les repré-
sentations de Penvironnement et des taches sont nécessairement incomplétes car trop

abstraites. Elles ne peuvent en particulier pas exprimer toutes les interactions du robot
avec son environnement.
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F1G. 2 - Une architecture de contréle générique

~ Le troisitme niveau (exécution) ne comprend pas de planificateur. Il est composé d’une
part d’un ensemble de modules encapsulant les fonctions de perception, de modélisation,
de génération de mouvement, de commandes asservies etc., et d’autre part d’un exécutif
qui controle 'exécution des actions. Ceci peut étre notamment réalisé au moyen ¢'un
ensemble de regles de production compilées.

Points marquants:

Cette architecture a évolué et s’est affinée au cours de divers travaux (depuis la premiere
architecture pour une Cellule d’Assemblage jusqu’a la mise en ceuvre effective d’un ensemble
de plusieurs robots mobiles autonomes coopérants). Elle a donné lieu 3 de nombreux débats
et présentations [19, 20, 61, 43, 67] dans des sessions spéciales de conférences ou de workshops
thématiques (IEEE-RA, ICAR, ISRR, ISRAM. ..). Elle s’est avérée opératoire en permettant:

— de concevoir et réaliser des robots dotés d’une autonomie réelle dans différents domaines
d’application particulitrement contraignants.

— de mettre clairement en évidence la nécessité de prendre en compte au niveau de la
planification les incertitudes liées aux actions du robot, Ia dynamique de I’environnement
et de Ia tache, ainsi que les actions faisant intervenir des boucles perception-action. C’est
a ces problémes, que je considére aujourd’hui comme centraux, que je consacre une partie

de mes travaux (Cf. §11.4, §I1.5, §11.8).

Cette architecture a fait I'objet de plusieurs instanciations notamment dans le cadre des
projets VAP-RISP 2(Robotique mobile d’exploration planétaire) [83], AMR-EUREKA *(robot
d’intervention pour la protection civile) [29], MARTHA *(robots de transitique lourde)[89, 94].
Elle a donné lieu également & une implantation compléte sur les robots HILARE 1.5 [109] et
Hilare 2 et 2-bis[51, 50] ainsi que dans le cadre du projet MARTHA.




I1.3 Programmation et Conduite d’une Cellule Flexible d’Assemblage

Le projet NNS a été développé initialement dans le cadre du programme ARA pour 'aide 4
la programmation et le contréle d’exécution de taches d’assemblage conduites sur une Cellule
Flezible d’Assemblage (CFA) multi-robots, multi-capteurs.

La problématique de la CFA est celle de la robotique dite “a4 poste fixe”. Elle s’intéresse
a Pexécution, par un systéme robotisé, d’une tache préétablie dans up environnement bien
structuré et connu a priori. Les aspects essentiels sont, dans ce cas, la programmation ou plus
généralement la “préparation des travaux” ainsi que I'ensemble des moyens permettant une
exécution efficace et “robuste” de la tiche.

Dans cette perspective, j'ai mené et dirigé des travaux de recherche portant sur les aspects
suivants:

— la définition d’une modélisation originale des taches d’assemblage, de la cellule et de ses
composants;

— la définition d'une architecture générale fondée sur cette modélisation et destinée
fournir une structure d’accueil pour Pensemble des travaux;

— la construction de modules décisionnels spécialisés destinés & compléter progressivement
Penvironnement NNS: évitement d’obstacles, génération de mouvements fins, analyse
des incertitudes, contréle d’exécution, module de diagnostic et d’aide 3 la reprise. ..

Le systeme NNS: Le systéme NNS comporte un Environnement de Programmation (en-
vironnement hors-ligne) et un Systéme de Conduite (systéme en-ligne) [16, 4, 58, 5].

- L’Environnement de programmation inclut essentiellement des Modules Décisionnels
Spécialisés destinés & aider le programmeur & spécifier et a raffiner progressivement une
tache d’assemblage: la structuration de I’espace de la cellule, les trajectoires d’approche,
les stratégies d’insertion. .. L’ensemble de ces informations est introduit de maniére gra-
nulaire sur la base de la modélisation définie plus haut. Des modules de vérification
ou de simulation graphique permettent de valider les choix du programmeur. A partir
de ces informations, un module appelé Compilateur de Tdche d’Assemblage produit le
Modeéle d’Exécution (thése de H. Chochon, soutenue en novembre 1986).

— Le Systéme de Conduite est un systéme basé sur la connaissance (Knowledge-Based
System). Il utilise le Modéle d’Fxécution pour générer, au fur et & mesure, les consignes
nécessaires & la réalisation de la tiche, & partir des informations provenant de ’envi-
ronnement (arrivée d’une piéce, fin d’une action, détection d’une anomalie. . ). 11 est
coustitué d’un ensemble de boucles imbriquées 4 des niveaux d’abstraction différents:
niveau tache, niveau action, niveau fonction.

Le niveau fdche comprend notamment un Générateur de Plans d’Ezécution dont le role
consiste a déterminer les actions i réaliser & partir d’un état quelconque de Ia tache, I
est invoqué chaque fois qu’un événement se produit dans la cellule comme le résultat
d’une action non déterministe (identification, inspection), Parrivée d’un convoyeur,un
échec ou un incident (thése de 5. Lopez Mellado soutenue en décembre 19886).
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F1G. 3 — La Cellule Flezible d’Assemblage du programme ARA

Points marquants:

Cette approche constituait, a I’époque, une contribution originale et sur le front de 1’état de
Part [4, 5].

Ce systéme a été entiérement implanté et a été démontré notamment dans le cadre d’expé-
rimentations canoniques réalistes {ARA) mettant en ceuvre une tiche d’assemblage réalisée
par une cellule composée de deux bras manipulateurs et d’un ensemble de capteurs et de
dispositifs péri-robotiques (1985, 1986).

Par ailleurs, ces travaux ont également donné lieu i:

— Panalyse formelle des séquences d’assemblage issue de la modélisation que nous avons
proposée en collaboration avec Paul Freedman (Université de McGill & Montréal) lors
de son séjour post-doctoral au LAAS [1, 23, 24];

— le développement d’un environnement pour la programmation antomatique de tiches
de prise et pose (cf. §11.6);

- l'application de la modélisation que nous avons proposée et de ’architecture de NNS 3 la
spécification d’une tache d’assemblage en langage ESTELLE (projet ESPRIT SEDOS
en collaboration avec le groupe OLC® du LAAS) [59].




II.4 Téléprogrammation niveau tiche et autonomie en robotique
d’intervention

Cette architecture compléte 'architecture générique (présentée en §11.2) en fournissant un
cadre général pour P'utilisation par I’homme d’un robot dans les cas - nombreux dés qu’on
quitte des environnements spécialement aménagés - ot Pautonomie totale est hors de portée
(ou non souhaitée) et ot la téléopération est impossible ou trop lente (limitations physiques
dues a I'éloignement du robot) ou encore trop “technique”,

Ainsi, j'ai élaboré, en collaboration avec R. Chatila et G. Giralt, une architecture fonctionnelle
générale pour un systéme robotique d’intervention sur site distant (19, 20, 22, 26, 29, 28, 34]

Operator PLAN SUPERVISIO

Mission planning TASK REFINEME@‘%
. Mo

and Manapsmeni

usez Inlerface:

Operator Guided

Task Planning
{task level ROBOT MODULES
PrOgramming) /\/
Data Commandg
Proce:
OPERATOR STATION
ROBOT CONTROL SYSTEM

F1G. 4 - Une architecture pour robots autonomes d’intervention distants

Elle met en ceuvre des processus décisionnels 3 plusieurs niveaux:

— au niveau de la préparation de la mission & accomplir en générant un plan d’action de
niveau d’abstraction élevé pour atteindre lobjectif. Cette fonction est appelée Fonetion
de Planification ou de re- Planification de Mission.

— au niveau de laffinement du plan de mission obtenu en termes de tiches interpré-
tables par le systtme de contréle du robot. Cette fonetion est appelée Fonction de
{Télé) Programmation.

- au niveau de l'interprétation et de Pexécution des tiches par le robot en interaction
directe avec son environnement. Cette fonction sera appelée Contréle d’ezécution. Elle
est assurée par le systéme de contrdle embarqué. Elle suppose la présence & bord de
structures décisionnelles permettant d’interpréter (i.e. d’afliner) les tiches en terme de
primitives exécutables par le robot et d’en contréler exécution. Cette interprétation
consiste en une planification 4 granularité plus fine et portant sur des entités directement
perceptibles par la machine.
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Cette architecture générale appelle les remarques suivantes:

— Le robot est une machine (télé)programmable au niveau tiche. Le degré d’abstraction
et de généralité de la tiche fixe les niveaux d’auvtonomie décisionnelle & concevoir et &
implémenter au niveau de la programmation et dans le contréle de la tache. En effet, les
taches doivent pouvoir &tre exécutées alors que l'environnement n’est que grossiérement
connu au moment de leur planification. Il est alors impossible de prévoir la totalité des
actions & mettre en ceuvre mais également impossible 4 cause des délais de transmission
d’avoir un mode directement téléopérs.

— Phomme “reste dans la boucle” mais & un niveau d’abstraction élevé. 11 interpréte la
situation, raisonne sur les objectifs de la mission et programme les taches 3 accomplir.

En effet, notamment dans le cas de robots d’intervention, le robot ne dispose pas de
capacités d’interprétation de situation et de génération automatique de mission. Par
contre, i} peut étre doté d’une grande autonomie pour le déplacement (et la perception
pour le déplacement) ainsi que pour Iaffinement et I’exécution d’une classe de tiches
dont la sémantique peut étre définie de maniére précise (manipulation, taches spécifiques
dépendantes de Iapplication...)

De toute maniere, tous les processus mettant en ceuvre des asservissements ou des
commandes gardées sont exécutés de maniére autonome. C’est le niveau minimal d’au-
tonomie nécessaire dans ce schéma fonctionnel.

F1G. 5 — Le robot ADAM réalisant une tdche de navigation en environnement inconnu

Points marquants:

Cette architecture a fait ’objet de plusieurs instanciations notamment dans le cadre des pro-
jets VAP-RISP ¢ (Robotique mobile d’exploration planétaire}(robotique mobile d’exploration
planétaire) puis JARES-EUREKA, AMR-EUREKA7 (robot d’intervention pour la protection
civile), IFREMER (navette de diagraphie NADIA [34]).

Elle a donné lieu également & une implantation partielle sur le robot d’extérieur ADAM [42].
Elle constitue également la base de départ de notre réflexion sur interaction entre ’homme
et la machine dans des applications telles que ’aide aux handicapés,
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I1.5 Planification de mission avec prise en compte de contraintes
temporelles et du non-déterminisme

I1.5.1 La prise en compte de contraintes temporelles

Jai lancé avec M. Ghallab et R. Chatila une thématique nouvelle portant sur le raisonnement
temporel pour la génération et le contréle d’exécutiorn de plans 6, 28].

En effet, de telles tiches requiérent en général la possibilité de représenter explicitement. et
de raisonner sur:

— des relations temporelles entre les objectifs a atteindre par le plan, en relatif (réaliser
A et B simultanément, B décalé de & par rapport & A), ou contraint par rapport 4 une
référence absolue (terminer A avant Iinstant T);

- des relations temporelles entre les actions élémentaires, en tenant compte de leur durée,
et de leurs effets;

— des événements attendus, programmés (i tel instant, aprés tel effet), ou conditionnels
(se produiront s’il ¥ a conjugaison des effets E1 et E2).

Nous avons développé dans ce sens un formalisme et une structure de données, dite IxTeT
(Table des Temps Indexée), pour générer et représenter un plan, qui inclut instant et I’inter-
valle comme structures de base. Un algorithme rapide de gestion (recherche et mise a jour)
du treillis des temps a été proposé. Un planificateur a également été développé [62, 110]

11.5.2 Planification et non-déterminisme

Ces iravaux, récents, constituent un prolongement des choix que nous avong effectués au ni-
veau de l'architecture générique que nous avons proposée (§11.2). On se propose de prendre en
compte, au niveau du planificateur, des modéles d’actions non-déterministes (certaines actions
de perception notamment) ainsi qu’une description de I’évolution possible de I’environnement
a travers ['occurrence d’événements “externes”.

L'objectif visé, au-dela I’élargissement des classes de problémes traités par le planificateur,
consiste a doter le planificateur de la capacité d’identifier et de traiter des situations d’échec
ou de reprise dites “indésirables” ou “dangereuses” et pour lesquelles il est nécessaire de
planifier une réaction é I’avance, réaction qui viendrait éventuellement supplanter une réaction
par défaut du superviseur [47]. On peut dire qu’un tel systéme est "robuste” si, pour toute
situation nécessitant une réaction rapide, le superviseur dispose de information suffisante
pour déclencher cette réaction, et surtout pour prendre la "bhonne” décision.

Une modélisation et un algorithme de planification appelé NODEP ont été développés [111]
avec des résultats prometteurs. NODEP apporte une solution élégante et compléte: en n’au-
torisant la replanification que dans des situations stables, c’est-a-dire dans lesquelles le temps
mis a planifier n’est pas contraint, il garantit la robustesse du systéme. A l'opposé, en per-
mettant la replanification dans de tels cas, il économise le développement de tous les futurs
possibles, et donc réduit la complexité et le temps de calcul nécessaire. $i le premier état dans
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lequel se trouve le systéme est lui-méme stable, alors sa sécurité est garantie. L’accomplis-
sement de la tiche, par contre, ne l'est pas: il est possible qu’il n'y ait pas de plan, ou bien
qu’il se révéle impossible de rejoindre le but depuis une situation stable non développée dés
le départ en vertu de la stratégie d’économie.

Points marquants:

- Les travaux sur le planificateur IXTET ont donné lieu 3 des développements et des
applications & la fois en génération et en contréle d’exécution de plan.
Citons notamment I’application de ces travaux dans le cadre du projet VAP [77, 79, 83],
du projet HILARE [28, 35}, d’une convention CIFRE avec la société SHELL (sous la
responsabilité de Malik Ghallab) et du projet PADRE (MESR) avec Matra Marconi
Space.
Cette approche constitue également un élément important de notre contribution a un
projet collaboratif (LAAS, IRIT, CERT) sur la Planification (cf §B.2) dans le cadre du
PRC intelligence Artificielle et dont j’ai assuré la coordination pendant 2 ans [62].

— Les travaux portant sur NODEP ouvrent la voie & une étude formelle et des algorithmes
de planification qui prennent en compte explicitement le caractere évolutif de ’envi-
ronnement du robot et les capacités dé de décision et réaction disponibles au niveau
superviseur.
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1.6 La planification automatique de taches de type Prendre-et-Poser

J’ai dirigé les travaux de développement d’un systéme - appelé SPARA - de planification auto-
matique de tiche de Prise et Pose pour un robot manipulateur 4 6 degrés de liberté (structure
bras-poignet) équipé d’une pince i mors paralltles et manipulant des objets polyédriques.

Ce systeme est similaire, dans ses principes, 3 HANDEY et SHARP développés respectivement
at MIT et au LIFIA. En effet, il est fondé sur une décomposition d’une tiche de prise et
pose en une séquence d’étapes " élémentaires” correspondant i des problémes distincts: grand
mouvement, choix de la prise, mouvement d’approche, mouvement de dégagement, etec. ..

SPARA intégre un ensemble de planificateurs spécialisés traitant de chacun de ces sous-
problemes [21, 25] De plus, il manipule explicitement et propage, en cours de planification, les
incertitudes de positionnement relatif des objets, permettant ainsi de produire un programme
robuste.

La planification des mouvements d’approche et de dégagement est également traitée de ma-
niere originale: en effet, elle permet de produire une trajectoire de la pince prenant en compte
une représentation exacte des obstacles locanx.

Une troisieme caractéristique essentielle de SPARA est le développement d’une structure de
contrdle flexible permettant de prendre en compte explicitement les interactions fortes entre
les différentes étapes d'une tache de Prise et Pose: ainsi, la planification des trajectoires
d’approche et de dégagement prend en compte explicitement les contraintes cinématiques
induites par le bras porteur; de méme il est possible de prendre en compte, au moment de la
planification d’une étape de saisie, les contraintes (incertitudes, obstacles locaux. . .} imposées
par une étape de pose ultérieure.

T

Fic. 6 - Caleul des positions de
prise pour une pince d mors paral-

Ieles Fic. 7 — Calcul d’une trajectoire de

dégagement

Le systéme SPARA de planification automatique de taches de Prise et Pose a été effectivement
réalisé et a permis de produire automatiquement des plans de niveau effecteur exécutés par
un robot SCEMI. Il représente le travail de trois doctorants [106, 107, 108] et de plusieurs
stagiaires.
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Les figures 6, 7 et 8 illustrent une exemple de tache de Prise et Pose produit par SPARA.

F1G. 8 - Calcul d’une trajectoire de transfert

Points marquants:

Notons qu’il s’agit, & notre connaissance, d’un des trés rares systémes de ce type qui alent été
effectivement et entidrement implantés et testés dans un environnement réel.

Il a également fait Pobjet d’une installation & I’Université de Berkeley pour la planification
de taches d’assemblage (cf. B.1).

Notons enfin que le caractére fortement imbriqué des différentes étapes d’une tiche de Prise-
et-Pose ainsi que sa dépendances trés forte vis-a-vis de ’encombrement de ’environnement
m’a conduit & re-formuler le probleme d’une manitre plus générale (Cf. §IL.7).
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I1.7 Une formulation générale de la planification des taches de
manipulation

Une tache de manipulation se caractérise par la capacité qu’a le robot de déplacer certains
objets dans son environnement et ainsi d’en modifier la structure. Ainsi un probléme de
manipulation ne se réduit pas & un simple probleme d’évitement d’obstacles.

Alors que la plupart des méthodes attaquant ce probléme présupposent une décomposition
priori de la tiche en sous-tiches, nous nous sommes posés le probleme de I'automatisation
de I’étape décomposition elle-méme. I apparait que le probleme dans sa globalité trouve une
modélisation formelle purement géométrique. Il s’agit de considérer le produit cartésien de
'espace de configurations de tous les corps mobiles de la scene, c’est-a-dire non seulement le
robot, mais aussi les objets potentiellement déplacables. Une tache de manipulation apparait
ainsi comme un chemin particulier dans cet espace. Mais, de méme qu’un robot mobile posséde
des contraintes qui invalident certains chemins, ici aussi tous les chemins dans cet espace ne
correspondent pas nécessairement a un chemin de manipulation. Il suffit pour s’en convaincre
de constater que localement le chemin est inclus dans une variété de dimension égale & la
dimension de I'espace des configurations du robot (puisque le robot est le seul "agent” de la
scéne].

J'al proposé et développé, avec J.P. Laumond et T. Siméon, une formulation générale du
probléme et un schéma d’algorithme de résolution (60].

D’un intérét uniquement théorique, cette approche a permis de montrer que le probiéme de la
manipulation restait un probleme décidable, mais surtout a permis une bonne compréhension
du probléme ce qui a eu pour conséquence la résolution de deux instances de ce probléme.

Un premier algorithme [71] résout la planification de mouvements d’un disque en présence
d’obstacles polygonaux et d’un objet déplacable circulaire. Qutre sa possible application dans
le contexte de la robotique mobile, cet algorithme a permis de vérifier I'applicabilité de I’ap-
proche générale,

Dans une deuxieme application {8] on considére que ’ensemble des prises et des poses possibles
des objets est en nombre fini. Dans ce cas [’espace des configurations de toute la scéne se ré-
duit & un nombre fini d’espaces de configurations de dimension de 'espace des configurations
du robot. Un systéme général de planification a pu étre ainsi construit sur un planificateur
de trajectoires sans collision. Il produit en sortie, non seulement un plan au sens de la dé-
composition explicite de la tiche en sous-taches élémentaires, mais également la séquence des
trajectoires sans collision que doit effectuer le robot.

Enfin, ce travail a été poursuivi dans le cadre d'une thése et appliqué au probléme de la
planification des mouvements d’un polygone en présence d’obstacles (fixes et déplagables)
polygonaux [36, 10]. La figure 9 illustre un exemple de plan de manipulation produit.
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F1G. 9 - Le planificateur produit les trajectoires ainsi que les positions ou il est nécessaire
d’effectuer des changement de prise

Points marquants:

Ce travail est aujourd’hui abondamment cité dans la littérature. Il a jeté les bases d’une nou-
velle classe de problemes de planification géométrique de tiches robotiques. 1l est ’ob jet de
plusieurs extensions.

Notons également qu’il est longuement présenté dans un chapitre du livre de J-C. Latombe
(professeur a I'Université de Stanford) intitulé “Motion Planning” et qui constitue aujour-
d’hui une référence dans le domaine.
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I1.8  Planification de stratégies de déplacement pour un robot mobile en
présence d’incertitudes

Une des diflicultés majeures posées par 'utilisation d’algorithmes de planification de trajec-
toires sur des robots réels est liée la non prise en compte par les planificateurs des écarts
possibles entre les modeles sur lesquels s’appliquent le raisonnement et la réalité. En effet,
il est nécessaire, dans des environnements contraints, de planifier en prenant en compte les
incertitudes de maniére explicite (incertitudes provenant du modale géométrique de ’environ-
nement tel qu’il est produit par la perception, mais également des erreurs de controle)

J’ai développé, avec Thierry Siméon, un planificateur qui, étant donné une incertitude sur la
position initiale du robot, ainsi qu’un modéle de lerreur de controle, permet de générer une
stratégie de déplacement (composée de mouvements gardés et de mouvements asservis sur

des capteurs externes) garantissant au robot d’atteindre son but avec une précision donnée
[63, 64].

Les figures 10 & 12 illustrent les stratégies produites dans différentes conditions.

FIG. 10 - Incertitude faible sur la position de départ et sur le contréle des déplacements
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Cette problématique - la génération automatique de stratégies de déplacement avec prise en
compte explicite des incertitudes - est aujourd’hui affichée comme une thématique importante
du groupe RIA: deux théses en cours [48]

Points marquants:
Les travaux de recherche sur la prise en compte des incertitudes au niveau de la planification
de trajectoire, connaissent aujourd’hui un regain d’intérét notabie.

Notre approche se distingue par le fait qu’elle a été parmi les premidres 2 prendre compte le
cas des robots mobiles avec accumulation progressive de I'erreur de position {odométrie)
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J1.9 Un robot mobile autonome

J’ai dirigé I'implantation compléte (1990-1992) sur les moyens expérimentaux du LAAS de
Iarchitecture de Téléprogrammation nivean tache de robots d’intervention (décrite en 11.4)

ainsi que la démonstration de plusieurs expérimentations inspirées des scénarios de mission
VAP-RISP et AMR-EUREKA.

Fic. 13 — Hilare 1.5 « atteint sa cible

Un systéme robotique complet a ainsi été réalisé et mis en ceuvre, intégrant un planificateur
de mission de haut niveau avec prise en compte de contraintes temporelles symboliques et
numériques [6, 28], un systéme d’affinement de tiches en fonction du contexte d’exécution ainsi
qu’une structure de controle assurant exécution des taches et la réaction aux événements
asynchrones dans des délais compatibles avec la dynamique de environnement (30, 31, 35].

Les démonstrations illustrent la capacité du systéme de planifier et de réaliser des missions
en environnement inconnu avec construction incrémentale de I'environnement, identification
d’amers, gestion de contraintes temporelles, détection de situations non planifides et reprises
différents niveaux d’abstraction.

La figure 14 représente une trace graphique de la réalisation d’une tache de navigation au-
tonome dans un environnement d’intérieur inconnu avec la construction incrémentale d’un
modele de espace libre,

La figure 13 illustre la situation finale atteinte par le robot ainsi que la connaissance de
I’environnement qu’il a acquise en réalisant sa mission.

Points marquants:

Cette expérimentation a constitué la premitre implémentation compléte de Iarchitecture et
des processus décisionnels et fonctionnels permettant expression & un trés haut niveau d’abs-
traction d’une mission qui est ensuite réalisée de maniére autonome par le robot.

Notons qu’une telle intégration et sa démonstration effective est rarissime.
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I1.10 Une approche nouvelle de la coopération multi-robots

I1.10.1 Le Paradigme d’insertion incrémentale de plans

Cette problématique nouvelle a été démarrée en accompagnement du projet ESPRIT-III
MARTHA (cf. §A.4).

Nous partons de 'hypothése qu'il est possible (et plus efficace) dans un grand nombre de cas
d’éviter une planification unique dans laquelle une station centrale (ou un robot) planifie dans
le détail les actions de ’ensemble des robots®.

Nous supposons que les robots disposent de moyens de communication (avec une portée
éventuellement limitée) leur permettant d’interroger les robots dans leur voisinage et d’échan-
ger des informations (buts, plans courants, plans futurs, signaux, état)

J’ai proposé un schéma original de coopération multi-robots fondé sur un Paradigme d’inser-
tion de Plan [46].

Dans une premiére étape, un robot élabore un plan puis tente de I'insérer dans un ensemble
de plans en cours d’exécution. Ceci est rendu possible grace au systéme de communication
qui permet au robot d’interroger les robots voisins et de récupérer leurs plans en cours d’exé-
cution et les synchronisations (éventuelles) déja établies lors d’une phase d'insertion de plan
antérieure.

L’avantage d’une telle approche tient essentiellement:

— au fait que ’exécution peut se dérouler en parallele (un robot évitant autant que possible
de perturber les plans courants);

— au fait que le paradigme est incrémental par construction: il permet de prendre en
compte aisément l'insertion ou Pextraction d’un robot dans une coopération en cours,

— au fait que le paradigme se préte & un traitement hiérarchique des conflits

— par rapport a de nombreux schémas proposés dans la littérature, il est correct, n’induit
aucun comportement incohérent et permet de détecter toutes les situations d’inter-
blocages nécessitant une planification centralisée.

Deux réalisations de ce paradigme général ont été développées. Elles different par la nature
des plans échangés: plans d’actions avec allocation de ressources [49]ou trajectoires [66]. Elles
ont permis de traiter de manitre systématique le probleme de la navigation d'un ensemble de
robots dans un réseau “routier”[50]: voies, carrefours, zones de chargement ou de garage.

[1.10.2 Coopération entre plusieurs robots mobiles autonomes

J’assure depuis septembre 1993 ’animation d’un projet interne “multi-robots” et la responsa-
bilité de la réalisation d’une expérimentation multi-robots mettant en ceuvre plusieurs robots
mobiles (Hilare 1.5, Hilare 2, Hilare 2-bis).

8. Celle-ci peut toutefois s’avérer nécessaire dans certaines situations qu’il s’agira de détecter
P
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Je coordonne, dans ce cadre, les travaux de plusieurs chercheurs (F. Ingrand, T. Siméon, R.
Chatila), ingénieurs (M. Devy, M. Herrb), post-doc (S. Suzuki de |'université de Tsukuba, B,
Dacre-Wright), doctorants (S. Fleury, F. Robert, L. Aguilar, M. Khatib, H. Bullata)

Chacun des robots est doté d’une implantation nouvelle de Iarchitecture de contrale telle
qu’elle est décrite en §IL.2 et entidrement installée & bord du robot sous VxWorks.

L’expérimentation est aujourd’hui opérationnelle. Elle intégre de nombreux travaux dévelop-
pés par le groupe RIA et démontre concrétement I’approche de la coopération multi-robots

que j'ai développé. Cette expérimentation a été notamment retenue comme démonstrative du
concept MARTHA §A 4,

Un opérateur ou une station centrale alloue a chaque robot autonome une mission propre
exprimée a un haut niveau d’abstraction (ex: transport d’une charge d’un lieu & un autre)

Chaque robot dispose de ses propres moyens de perception. De plus, les robots sont équipés
d’un systéme de communication leur permettant d’une part de communiquer avec la station et
d’autre part de communiquer directement avec les robots qui se trouvent dans leur voisinage
(communication inter-robots avec portée limitée).

Les robots doivent, de maniére autonome, planifier leurs actions et les coordonner et les
exécuter, en prenant en compte le contexte d’exécution tel qu'ils le percoivent au moyen de
leurs capteurs et de leur systéme de communication.

Dans un premier temps, pour valider I’approche de la coopération que j’ai développé. nous
avons réalisé un systéme de simulation qui permet d’exécuter la presque totalité des logiciels
sur stations de travail (une station par robot + une station pour la visualisation graphique).
Ce systéme a permis de tester des scenarii réalistes (inspirés de I’application MARTHA)
impliquant une quinzaine de robots. Les résultats sont probants et se situent 3 un trés bon
niveau international [50].

Le systeme est également enti¢rement opérationnel sur trois robots de la famille Hilare (Hi-
larel.5, Hilare 2 et Hilare 2-bis) dotés de capacités de perception (pour la localisation et
la construction de modeles d’obstacles), d’évitement d’obstacles imprévus, de planification
de missions et de trajectoires...Le paradigme d’insertion de plan a ainsi pu &tre démontré
non seulement dans des cas “nominaux” mais également dans des situations de reprise aprés
échecs.

Points marquants:

Cette approche s’est avérée & la fois générique et efficace. Elle a été démontrée en simula-
tion sur un nombre substantiel de robots (15) pour des missions de navigations relativement
contraintes, tout en garantissant une cohérence du comportement global. En ce sens, elle
est aujourd’hui, & notre connaissance, unique. Les autres systdmes connus mettant en ceuvre
autant de robots, ont été réalisés sur la base de comportements dits “réactifs”et ne peuvent
donc prétendre & un comportement global cohérent.

Cette approche s’aveére par ailleurs riche d’extensions et de variantes.
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FiG. 15 - L'une des simulations réalisées pour valider le “Paradigme d’Insertion de Plans”:
10 robots mobiles autonomes dans un environnement d’intérieur

FiG. 16 — & robots mobiles autonomes et coopérants: Hilare 1.5, Hilare 2 et Hilare 2-bis
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III PROSPECTIVE

Mon ambition reste toujours d’aller de I’avant dans la conception et la concrétisation des
ingrédients décisionnels de Pautonomie en robotique.

L’architecture générique que j’ai élaboré offre un cadre adéquat pour les travaux de recherche
et les réalisations en cours.

Elle est notamment intéressante également parce qu’elle fournit une aide pour caractériser les
types de plans et, par conséquent, les ”planificateurs” et les "superviseurs” d’actions et de
taches. Ainsi, il s’avére aujourd’hui indispensable de concevoir des planificateurs qui prennent
en compte explicitement le non-déterminisme (lié aux conséquences des actions du robot et
aux résultats des actions de perception) et les incertitudes sur 1'état (actuel ou futur) du
robot et de son environnement,

Ce travail a déja été entamé avec des premiers résultats [44, 47]. Je compte le poursuivre et
le renforcer.

Un deuxiéme axe, aujourd’hui important de ma prospective, concerne la coopération multi-
robots.

Je compte pourstivre et étendre ma recherche dans ce domaine: approfondissement du schéma
de coopération que j'ai développé, et exploration d’autres schémas prenant en compte no-
tamment des interactions entre des robots qui different par leurs capacités d’action et de
perception.

Une autre défi est celui du développement de nouvelles recherches et de I'application des
résultats obtenus dans des domaines ol ’autonomie décisionnelle et opérationnelle du robot
est incontournable. C'est le cas notamment:

- du robot meobile d’exploration planétaire:

I'éloignement. du robot, les contraintes sur les communications entre la Terre et Mars
(retards de 5 & 20 minutes, débits de I’ordre du Kilo baud), interdisent le recours & la
téléopération (4 moins d’accepter une évolution du robot d’une lenteur extréme ou des
risques considérables lors du fonctionnement de la machine).

- de la flotte de robots mobiles autonomes:

la complexité du probléme, la quantité d’informations 3 transmettre, le flux d’événe-
ments, sont tels qu’une station centrale, quelle que soit la puissance de ses calculateurs,
ne peut piloter I’ensemble a bas niveau (4 moins d’accroitre jusqu’a I’absurde les capa-
cités de transmission et de traitement de I'information).

Ceci est en pleine cohérence avec I'un des axes prioritaires mis en avant par le Département
p
SPI®: “les structures et machines intelligentes™.

A court terme, de maniére prévisible et en prolongement de la situation actuelle, ces travaux

9. Département “Sciences pour 'ingénieur” du CNRS,
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s’accompagneront:

— de responsabilités importantes, de taches d’animation et de collaboration dans le cadre
de projets internationaux;

— d’une activité intense de réalisation, d’intégration et de transfert des résultats.
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A RESPONSABILITES DANS DES GRANDS PROJETS

Je ne rapporte, ici, que sur les grands projets nationaux ou internationaux, dans lesquels j’ai
contribué de maniere importante et j'ai assumé des responsabilités parfois trés exigeantes.

Ces projets, constituent, sur des registres différents, des points marquants dans ma carriere.

A.1 ARA (1980-1986)

Pendant la période 1984-1986, j’ai été chargé de coordonner les travaux de plusieurs cher-
cheurs du groupe RIA et d’ingénieurs de recherche du LAAS visant a Pinstallation et & la
mise en ceuvre du site expérimental collectif du Péle Robotique Générale du programme ARA
56, 57].

Les travaux ont porté aussi bien sur Iinstallation progressive d'un ensemble expérimental
complexe que sur le développement et l'intégration d’un grand nombre de logiciels provenant
des équipes de recherche impliquées dans le pole Robotique Générale d’ARA.

Ceci nous a notamment permis de réaliser plusieurs expérimentations ” canoniques” [67] met-
tant en ceuvre des sous-séquences d’assemblage d’une piece industrielle complexe avec va-
riantes (contacteur électrique fourni par la société Télémécanique).

A.2 EUREKA-FAMOS (1986-1987)

J’ai participé, en tant qu’adjoint de Georges GIRALT (Responsable Technique National), au
projet européen EUREKA-FAMOS réunissant, sur la base d’une initiative Franco-Allemande
sept pays (Allemagne, Autriche, Espagne, France, Italie, Royaume Uni, Suéde)

Il s’agissait d’un projet cadre ou " parapluie”, le premier de ce type dans EUREKA. L’objectif
essentiel était de susciter des projets EUREKA visant & développer des sites pilotes productifs
intégrés flexibles pour 'assemblage industriel dans une perspective de coopération européenne.

Ce travail a représenté une part importante de mon activité pendant la période octobre 1986
- septembre 1987 correspondant a la phase préliminaire du projet FAMOS:

=~ Participation a plusieurs journées de travail a I’échelle européenne: Londres (novembre
86), Milan (janvier 87), Madrid (mars 87), Toulouse (mai 87);

— Participation a de nombreuses réunions au niveau national: Comité de Suivi et Pilotage,
Groupe de Travail FAMOS-France. . .

— Analyse technique et suivi de propositions de projets EUREKA présentées par plus
d’une dizaine d'industriels francais;

- Participation a la recherche de partenaires européens pour plusieurs propositions de
projets FAMOS;

~ Participation a la rédaction d’un “Etat de I'art” des technologies de I'assemblage flexible.
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Cette premiére phase de FAMOS a été un succés complet et exemplaire,

D’une part, neuf projets (dont trois projets d’origine frangaise) issus de FAMOS, ont obtenu
le label EUREKA lors de la conférence Ministérielle EUREKA de septembre 1987 {Madrid)
D’autre part, il a solidement installé la structure internationale de promotion et de suivi.

En 1992, FAMOS réunissait 20 pays et "abritait” plus de quarante projets.

A.3 VAP/RISP (1989-1993) puis IARES/EUREKA

Jal assumé des responsabilités au sein du groupement RISP (Robotique d’Intervention sur
Site Planétaire - CEA, CNRS, INRIA, ONERA, contrats de partenariat avec le CNES) depuis
octobre 1989.

Ce groupement a mené un travail important d’étude d’un véhicule d’exploration planétaire
(avant-projet VAP19) sur MARS.

J’ai été responsable du théme 10 (“Planification de Mission et Téléprogrammation niveau
Téche”) et co-responsable du Théme 6 (“Gestion des Taches et Structure Décisionnelle™)
d’octobre 1989 A janvier 1991 [78, 77, 80, 79, 84, 83], puis responsable de ’axe fonctionnel
“Structure Décisionnelle et Téléprogrammation Niveau Tache” depuis janvier 1991. Cet axe
fonctionnel couvre les aspects décisionnels et programmation niveau tache aussi bien au niveau
de la station d’opération (au sol) qu’au niveau de la structure de contréle embarquée.

Il est & remarquer que le projet VAP-RISP a pris une nouvelle dimension par la mise en place
en 1993 d’un projet EUREKA (IARES) portant sur la réalisation d’un démonstrateur de
robot mobile d’exploration planétaire. Qutre la participation de RISP, du CNES et d’indus-
triels frangais (MATRA-MACORNI SPACE, ALCATEL ESPACE, SAGEM, CYBERNETIX,
ITMI, ROL), le projet concerne la Russie, la Hongrie et I’Espagne.

J’ai participé activement a la mise en place de ce projet et j'assure actuellement la responsa-
bilité, pour le LAAS, du “Segment Sol Robotique” (Planification et Téléprogrammation au
sol) en liaison avec CYBERNETIX.

A.4 MARTHA (ESPRIT III) depuis 1992

Le projet MARTHA (ESPRIT III, Nr 6668) a démarré le 15 juin 1992. Les partenaires sont:
la France (FRAMATOME qui en assure la coordination, la SNCF, la société ROL et le GIP
PROMIP ! par ses composantes LAAS/CNRS et Midirobots), I’Allemagne (Mannesmann
Demag Gottwald, Indumat, I'Université de Karlsruhe et I’Aéroport de Francfort), ies Pays Bas
(le Port de Rotterdam) et I'Espagne (le centre de Recherche et Développement IKERLAN)

L’objectif général du projet (sur 3 ans) est I’étude et le développement des concepts et des
systémes nécessaires & la planification, au contréle et & ’exécution de taches de transborde-
ment et transport de conteneurs dans des gares, ports et aéroports par une flottille de robots
autonomes dotés de capacités de perception et de décision avancées.

10. Véhicule Automatique Planétaire
11. PROMIP: GIP Productique Midi-Pyrénées
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Les applications de ce projet sont de premiére importance. La présence d’utilisateurs aussi
importants que la SNCF, P'Aéroport de Francfort et le Port de Rotterdam en témoigne.

Notons que le Port de Rotterdam (Europe Combined Terminals) dispose depuis quelques mois
d’une installation opérationnelle équipée notamment d’une cinquantaine de robots mobiles

assurant le transport de conteneurs entre des grues de quai et des stations de stockage elles-
mémes automatisées.

Le projet MARTHA a pour ambition est d’aller vers une plus grande flexibilité en dotant les
robots d’une grande autonomie décisionnelle et opérationnelle.

En effet, les solutions actuelles souffrent d’un certain nombre de limitations telles que la
nécessité, comme c’est le cas aujourd’hui & Rotterdam d’installer un balisage systématique
(colteux et difficilement reconfigurable) du site de travail des robots.

Par ailleurs, la planification et le contréle de |'ensemble du systéme est exclusivement du
ressort du systéme informatique central. Ce dernier fournit des ordres extrémement détaillés
aux robots sous la forme de trajectoires que les robots doivent réaliser de manidre exacte et
sans étre capables de les modifier en cas de détection d’obstacles par exemple. De plus, c’est
au niveau de la station centrale que sont gérés 'ensemble des conflits éventuels entre robots.

Ce sont sur ces points que le projet MARTHA porte son effort, En effet, 'approche retenue
dans le cadre de MARTHA ne nécessite ni de balisage préalable du site d’évolution des robots,
ni des communications trés fréquentes entre la station centrale et les robots.

La station centrale, envisagée dans MARTHA, produit et met 3 Jjour une mission globale (de
haut niveau) pour les robots avec des contraintes temporelles et laisse une grande autonomie
aux robots quant a la planification détaillée et 'exécution de leurs tiches en fonction du

contexte d’exécution (percu de maniére autonome) et a la gestion des interactions avec les
autres robots.

A titre d’exemple, chaque robot regoit de la station centrale une mission du type:
"Va-a Station-22, Charge conteneur-17 avant 12h45, Va-a Grue-84, Décharge”
Il doit étre capable grace i ses capacités propres de perception et de décision embarquées de

mener & bien une telle en mission de facon autonome. Ceci suppose notamment des capacités

— A} de perception de ’environnement en vue:

— 1) de la détection d’obstacles fixes ou mobiles,
— 2) de P’élaboration d’un modéle de I’environnement du robot,

- 3) de la localisation du robot dans son environnement (& partir d’amers non spé-
cifiques tels que les bitiments)

- B) de communication avec la station centrale mais également de communication directe
entre les robots

= C) enfin, des capacités de raisonnement:

— pour la planification et le contréle de 'exécution de mission,
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FiG. 17 - Représentation de la problématique du projet MARTHA

— pour la coordination avec les autres robots,

— et pour la génération de routes et de trajectoires,

dans un environnement dynamique comprenant non seulement un grand nombre de
robots (de l'ordre de la cinquantaine) mais également d’autres véhicules conduits par
des hommes et méme des piétons, tout ceci dans des conditions climatiques sévéres
(fonctionnement 24h/24h, pluie, brouiltard. . .).

L'ensemble des résultats obtenus dans le cadre de MARTHA seront démontrés sur deux
sites réunissant les conditions des applications réetles: 2 Trappes (SNCF) et & I’Aéroport de
Francfort.

Le role de PROMIP (et plus précisément le LAAS et MIDIROBOTS) dans ce projet est la
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réalisation d’une architecture logicielle embarquée générique, le développement de I’ensemble
des aspects décisionnels incluant ceux permettant d’assurer une coordination autonome entre

les robots sans intervention de la station centrale, et la planification de trajectoires (89, 90,
91, 94]

JPassure, depuis le ler octobre 1992, la responsabilité (Local Project Manager) de la contribu-
tion de PROMIP (LAAS/MIDIROBOTS) & ce projet ainsi que la responsabilité (Workpackage
Leader) d’un aspect essentiel du projet: 'ensemble des logiciels embarqués.

Ceci se traduit par une charge de travail trés importante. En effet:

- la contribution de PROMIP s’éléve & 108 hommes-mois sur 3 ans

— il s’agit également d’assurer la coordination entre plusieurs partenaires (FZ1, ROL,
FRAMATOME, PROMIP, IKERLAN) jusqu’a l'intégration des logiciels

— il s’agit aussi de coordonner le travail de développement mené au LAAS et & MIDL
ROBOTS avec les contraintes de réalisation de logiciels importants devant étre portés
sur des robots développés par d’autres partenaires: robot COMMUTOR de la SNCF
(fig 22, robot développé par INDUMAT pour I’aéroport de Francfort.

En octobre 1994 puis en juin 1995, deux revues détaillées du projet par les experts de la CEE
ont été tenues au LAAS. La qualité des travaux de PROMIP a été soulignée.

La figure 18 représente un environnement d’évolution typique.

Les figures 19, 20 et 21 représentent des traces d’exécution (en simulation) d’une résolution
de conflit détectée et résolue de maniére décentralisée.

F1G. 18 - Un environnement de type “ré-
seau routier” (550 m z 250 m) F1G. 19 - Eiape

La derniere phase des travaux a concerné Pintégration (au LAAS) des logiciels de tous les
partenaires en vue du portage sur les sites de démonstration.

Alnsi les robots COMMUTOR et FAG sont aujourd’hui dotés d’une architecture de contréle
complete - développée au LAAS sous ma responsabilité - permettant affinement et Iexécu-
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Fic. 20 ~ Etape 2 F1G. 21 — FEtape §

tion autonome de missions de transport de conteneurs et intégrant des capacités évoluées de
coopération inter-robots.

Les démonstrations finales sont prévues pour mars 1995.

F1G. 22 - Le robot COMMUTOR de la SNCF sur lequel nous avons intégré une architecture
de contréle comprenant un superviseur, un planificateur de trajectoires, un module de sur-
veillance. .. Une intégration similaire a également été réalisée sur un robot de Uaéroport de
Francfort
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B CONTRATS ET CONVENTIONS DE RECHERCHE

B.1 Responsabilités dans des Collaborations scientifiques internationales
Convention avec I'Université de Berkeley (& partir de 1987)

Cette convention porte sur les “Méthodes et les Outils pour la Reconfiguration d’Architectures
Informatiques Distribuées et la Programmation Distribuée des Cellules Robotisées Flexibles”.
J’ai participé a sa mise en place en collaboration avec le groupe OLC du LAAS. Elle a été
approuvée et soutenue par la NSF,

Deux doctorants dont j’ai encadré le travail ont effectué des post-doc 3 Berkeley: Hélene
Chochon et Isabelle Mazon. Des logiciels dans le cadre du projet NNS ont été transférés.

Collaboration avec 'université de Pennsylvanie (a partir de 1988)

J’ai élaboré avec R. Chatila un projet de collaboration avec P'université de Pennsylvanie i
Philadelphie (Professeur Richard Paul) portant sur la conception et la réalisation d’un systéme
robotisé (plate-forme mobile équipée de deux bras manipulateurs) 4 grande autonomie destiné

a exécuter des tiches de manipulation en milieu sous-marin. Cette proposition a recu le soutien
de la NSF et du CNRS.

Elle a donné lieu notamment a de nombreux échanges: visites, logiciels. Un doctorant dont
j'al encadré le travail a effectué un post-doc a Philadelphie: Thierry Siméon.

Projet ESPRIT-BRA ROCOMI (& partir de janvier 1993)

Il s’agit d’un projet de collaboration (sur deux ans) dans le cadre de ’action Basic Research
d’ESPRIT entre trois laboratoires d’Amérique du Sud:

— Plnstitut d’Automatique de I’Université de San Juan en Argentine

— le Laboratoire d’Instrumentation et de Contréle de 'Université de Mar del Plata en
Argentine

— DPlInstitut d’Ingénierie de Caracas au Vénézuela
et deux laboratoires européens:

— P'Institut d’Automatique Industrielle du Conseil Supérieur de la Recherche Scientifique
(Madrid, Espagne)

- et le LAAS du CNRS.

J’en assure la responsabilité pour le LAAS. J’ai notamment co-organisé deux workshops
(Lisbonne 1993, Madrid 1994}.
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Convention de Collaboration avec le Québec (a partir de janvier 1993)

Il s’agit d’un Projet de collaboration dans le cadre de la Coopération Franco-Québécoise
dans le domaine de I’Enseignement Supérieur et de la Recherche. ]| porte sur la Télérobo-
tique Mobile: interface opérateur, perception, modélisation de environnement et navigation
autonome. Les partenaires sont:

— I’ Université Laval (Denis Poussart)

— PUniversité Polytechnique de Montréal (Richard Hurteau)

1

le Centre de Recherche en Informatique de Montréal {Paul Freedman)

!

I"Université McGill (Greg Dudek)
le LAAS (groupe RIA)

Les chercheurs du LA AS directement concernés par ce projet sont: Rachid Alami, Raja Chatila
et Jean-Paul Laumond. J’en assure la coordination pour le LAAS.

Ce projet a donné lieu en 1993 et 1994 & plusieurs échanges (séjour & Québec d’un doctorant
de RIA, séjour au LAAS d’un doctorant de I’Université Polytechnique de Montréal, visites de
chercheurs dans les deux sens).

B.2 Responsabilités dans des contrats et conventions au niveau national
Projet MRES Programmation Avancée en Robotique d’Assemblage (1988-1989)

J’ai participé A 'élaboration puis assuré I’animation du Projet ”Programmation Avancée en
Robotique d’Assemblage” soutenu par le MRES. Ce projet porte sur le développement d’un
Systéme de Programmation Avancé en Robotique d’Assemblage: Modélisation des processus
d’assemblage et modélisation fonctionnelle des cellules robotisées, Modules de Raisonnement
Géométrique, Construction d’un Environnement de Programmation complet. Il est le résultat
d’une concertation de quatre formations CNRS (LRP, LAAS, LAB, LIFIA).

Projet Planification dans le cadre du PRC-IA (1992-1993)

J’ai coordonné un projet collaboratif (groupe "Robotique et Intelligence Artificielle” du
LAAS/CNRS, groupe "Intelligence Artificielle” du CERT/ONERA et équipe ”Formalisa-
tion du Raisonnement” de I'IRIT) sur la Planification dans le cadre du PRC Intelligence
Artificielle.

Les travaux portent sur le choix et I’exploration approfondie d’une représentation des ac-
tions et du changement permettant notamment la prise en compte du temps, et offrant un
compromis satisfaisant vis-3-vis de la complexité des algorithmiques de planification. Cette
représentation doit conduire a la construction d’un ”Gestionnaire de Connaissances Tempo-
relles” intégrant un systéme de maintien des contraintes temporelles et un systéme déductif,
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élément central & partir duquel le projet définira un systéeme de planification, de contréle
d’exécution de plan, d’interprétation de situation et de révision des connaissances.

A noter Porganisation d’une journée de travail sur la Planification (février 1993) avec la
participation d’une trentaine de chercheurs du PRC-IA.

Convention de collaboration avec FIFREMER (1989-1993)

Cette convention portait sur la robotique d’intervention en milieu sous-marin (thése de Ber-
nard Degallaix}.

Projet Recherche et Transfert de Technologie

Je suis responsable d’un projet “Recherche et Transfert de Technologie” soutenu par la région
Midi-Pyrénées. Il implique le LAAS et MIDIROBOTS et porte sur la planification et le
contrdle d’exécution d’un ensemble de robots autonomes.

Conventions CIFRE

- avec MATRA-DATAVISION (1987-1990): Elle portait sur la modélisation et la
propagation des incertitudes de positionnement (thése d'Isabelle MAZON).

- avec MIDI-ROBOTS (& partir d’octobre 1992): Elie concerne la structure dé-
cisionnelle embarquée pour robots autonomes de transport de charges (thése de F.
Robert).

— avec CYBERNETIX (& partir de février 1993): Elle concerne la Téléprogramma-
tion au niveau tiche pour robots d'intervention autonomes et a pour cadre Ia partici-
pation du LAAS et de la société CYBERNETIX au projet IARES (thése de J. Perret).

B.3 Participation & des contrats et conventions de recherches
Contrat ADI-MATRA-LAAS (19886)

Jai contribué & 'exécution d’un contrat ADI-MATRA-LAAS portant sur les capteurs et
systemes associés a un robot manipulateur assurant la distribution d’objets 4 assembler dans
une unité d’assemblage flexible [76].

Convention CNET portant sur la machine MAIA (1986-1988)

Ayant développé par le passé un systéme LISP [69] [13] [14] [15] [70], j’ai participé & I"utilisation
en field-test du prototype MAIA. Par ailleurs, j’ai contribué a I’évaluation des capacités
spécifiques de la machine MAIA pour le temps réel dans le cadre des applications robotiques
du groupe RIA.
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Le projet AMR-EUREKA (1988-1991)

Le projet “AMR” (début en Octobre 1986) porte sur le développement de robots mobiles
d’intervention pour la sécurité civile. J’ai participé activement, avec Raja Chatila (qui en
assurait la responsabilité pour le LAAS) & partir de 1988. Ceci nous a conduit & travailler
en étroite collaboration avec MATRA-ESPACE sur les problémes d’architecture de contréle
de robots, d’affinement et de contréle d’exécution de tiches d’intervention en milieu pas ou
partiellement structuré. Ces travaux ont donné lieu des transferts de connaissance et de
logiciels et a la rédaction en commun de communications. La phase 2 du projet, achevée en
92, a notamment permis la démonstration du robot mobile tout-terrain ADAM réalisant une
tache de navigation en terrain accidenté.

Projet ESPRIT-BRA PROMOTION (& partir de 1992-1995)

J’ai participé & ce projet (dont le responsable est Jean Paul Laumond du groupe RIA du
LAAS) essentiellement sur les aspects algorithmiques liés 3 la planification de stratégies de
déplacement pour robots mobiles en présence d’incertitudes (cf §IL.8).

A ce titre, j’ai présenté un “Tutorial” sur la planification de trajectoires en présence d’incer-
titudes lors de I’Ecole de Printemps organisée par le projet en Avril 1993.
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ACTIVITES D’PENCADREMENT

Encadrement de théses

1.

10.

11.

Hélene CHOCHON, Programmation de tiches d’assemblage robotisées: modélisation et
processus décisionnels, novembre 1986.

. Ernesto LOPEZ-MELLADO, Le contréle d’ezécution dans les Cellules Flezibles d’As-

semblage, décembre 1986,

. Thierry SIMEON, Génération automatique de trajectoires sans collision et planification

de tdches de manipulation en robotique, janvier 1989.

. Isabelle MASON, Raisonnement sur les contraintes géométriques et d’incertitudes pour

la planification de tiches de manipulation robotisées, en mai 1990.

- Pascal VIOLERO, SPARA: Un Systéme de programmation auvtomatigue de tdche de

manspulation robotisée, novembre 1991.

. Bernard DEGALLAIX, Une architecture pour lu téléprogrammation au niveau fache

d'un robot mobile autonome, janvier 1993.

. Hervé LARUELLE (co-encadrement avec M. Ghallab), Planification Temporelle et exé-

cution de tiches en robotique, mars 1994.

. Jérome PERRET, Téléprogrammation au niveau téche pour un robot mobile autonome

d’intervention sur site distant, novembre 1995.

Théses en cours

. Frédéric ROBERT (depuis novembre 1992): Coopération multi-robots et structure de

contrdle embarquée de robots mobiles autonomes.

Luis AGUILAR (depuis octobre 1993): Planification de tiches de navigation pour robots
mobiles dans un contexte multi-robots.

Samir QUTUB, (depuis octobre 1995): Coopération multi-robots et Planification Dis-
tribuée.

Jai également accueilli deux postdocs étrangers: P. Freedman (1988-1990, Mc Gill, Canada)
et 5. Suzuki (1992-1994, Tsukuba, Japon).

Direction de stages et de mémoires de fin d’étude

1.
2.

1984: Ernesto LOPEZ-MELLADO, DEA Automatique, UPS
1984: Sylvie RAVENEAU, ENSEEIHT Informatique

. 1984: A. GLEYZES et T. LARROQUE, ENSAE

1985: Anourada BONDRE, ENSEEIHT Informatique
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10.
11.
12.
13.

1985: Olivier GENELLE, Ecole Centrale de Lyon

1985: J.P. GLEYZES et M. NONON-LATAPIE, ENSAE
1986: Jesus SILVA CASTRO, DEA Automatique, UPS
1987: M. AZEMA, DEA Automatique, UPS

1988: Jean-Christophe HAMANI, DEA Informatique, UPS
1990: Hervé LARUELLE, DEA Automatique, UPS

1990: Christophe DOUSSON, Ecole Polytechnique

1992: Frangois REVILLOD, ENSAE

1995: Samir QUTUB, DEA Automatique, UPS

Participation & des jurys de thése (extérieurs)

1.
2.

Pierre BACQUET, ENSAE, décembre 1988

Michel PASQUIER, INPG, janvier 1989

Bernadette GASMI, ENSAE, octobre 1990

Roger PISSARD-GIBOLLET, Ecole des Mines de Paris, décembre 1993
Fouad MEFTOUH, ENSAE (rapporteur), décembre 1993

Patrick REGNIER, INPG, décembre 1994

Fadi DORNAIKA, INPG (rapporteur), septembre 1995.

José Antonio NAJERA MORA INPG (rapporteur), octobre 1995.

Participation & des jurys de thése (groupe RIA)

1.

L

Ernesto LOPEZ-MELLADO, UPS, décembre 1986
Thierry SIMEON, UPS, janvier 1989

Isabelle MAZON, UPS, mai 1990

Pascal VIOLERO, UPS, novembre 1991

Bernard DEGALLAIX, UPS, janvier 1993

. Hervé LARUELLE, UPS, mars 1994
. Thierry VIDAL, UPS, septembre 1995.
. Jérdme PERRET, UPS, novembre 1995.
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D PARTICIPATION A COLLOQUES ET CONGRES

Conférences et Workshops Internationaux

— International IEEE Conference on Robotics and Automation, Nagoya, JAPON, Mai
1995.

- ECLA.CIM’94. European Community - Latin America Workshop on CIM. Madrid (Es-
pagne), Novembre 1994 (co-chairman).

- Workshop on Motion Planning, I'Escala (Espagne), Octobre 1994.

— WAFR’94, The First Workshop on the Algorithmic Foundations of Robotics, San Fran-
cisco, Février 1994,

— International Conference on Advanced Robotics (ICAR), Tokyo, Novembre 1993 (Or-
ganisation avec B. Espiau d’une session portant sur les Architectures de contréle pour
robots autonomes).

- Spring School on Robot Motion Planning, Rodez, Avril 1093.

— IEEE International Conference on Intelligent Robots and Systems, Raleigh, NC, USA,
Juillet 1992,

- Workshop on Architectures for Intelligent Control Systems, Nice (France), Mai 1992.
— International IEEE Conference on Robotics and Automation, Nice, FRANCE, Mai 1992.
- Workshop IARP sur la robotique sous-marine, Monterey, USA, Octobre 1990.

- TAS-2, Amsterdam, Pays Bas. Décembre 1989,

~ International Symposium on Robotics Research, Tokyo, Japon, Septembre 1989,

— International IEEE Conference on Robotics and Automation, Scottsdale, USA, Avril
1989.

— International Conference on Advanced Robotics {ICAR), Versailles, Octobre 1987.
— Workshop sur la Programmation Automatique de Robots, MIT, Cambridge, Avril 1987.

- 6éme Seminari Sobre Robotica organisé par I’Université de Barcelone, Espagne, Juin
1986.

~ International IEEE Conference on Robotics and Automation, San Francisco, USA, Avril
1986.

— International IEEE Conference on Robotics and Automation, Saint-Louis, USA , Avril
1985.

~ International IEEE Conference on Robotics and Automation, Atlanta, USA, Mars 1984.

— Conférence Internationale AFCET “Intelligence Artificielle et Reconnaissance des For-
mes”, Paris, Janvier 1984,
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Journées Nationales

— Journées Nationales du PRC-IA, Février 1995, Nancy.
— Journée “Plaanification” du PRC-TA, Février 1993, organisateur.

- Quatrieémes Journées Annuelles du PRC-GDR Intelligence Artificielle, Marseille, Oc-
tobre 1992,

— Troisiémes Journées Nationales du PRC Intelligence Artificielle, Paris, 1990

~ Journées “Robotique”, INRIA, Sophia Antipolis, Juin 1987.

- Journées SYSCOROB, ADI, Paris, Décembre 1986.

— Journées Bilan du Programme Automatisation et Robotique Avancée, Paris, Mai 1986.

— Troisiemes Journées Annuelles du Programme ARA, Toulouse, Septembre 1984.
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E ACTIVITES DIVERSES

Revue d’articles et de communications

Je contribue régulitrement aux procédures de revue d’articles et de communications pour:
[‘International Journal of Robotics Research, la Revue d’Intelligence Artificielle, IEEE Confe-
rence on Robotics and Automation, IEEE International Conference on Intelligent Robots
and Systems (IROS), International Conference on Advanced Robotics (ICAR), Conférence
AFCET RFIA.

Groupes de travail du MRT-MRES

— Participation aux réunions du groupe de travail “Cellule Flexible d’Assemblage” et 4 la
rédaction d’un rapport dans le cadre de 'action “Automatisation Intégrée de Produc-
tion” du Ministére de la Recherche et de la Technologie (mars 1985 - mai 1985)

- Participation aux réunions du groupe de travail “Systémes de Programmation™ et & la
rédaction d’un rapport dans le cadre de P'action “Robotique Industrielle” du Ministore
de la Recherche et de la Technologie (janvier 1986 - avril 1986).

Expertise et revue de projets

A la suite, de ma participation, en tant qu’adjoint de Georges GIRALT (Responsable Tech-
nique National), au projet européen EUREKA-FAMOS, j’ai été amené 3 participer i 'exper-
tise d'un projet EUREKA portant sur automatisation de l’assemblage de lave-linge (juin /
juillet 1989).

J’al également assuré un réle d’expert auprés de PANVAR (Aquitaine) et aupres de la CEE
expertise scientifique et suivi de projets ESPRIT Basic Research (a partir de 1990):

— le projet FIRST (3 revues: Leuven, Bruxelles, Oxford)
— le projet MUCOM (2 revues: Bruxelles, Paris)

— le projet SECOND (2 revues: juin 1993 et juin 1994, Leuven)

Diffusion de la connaissance

— Séminaire invité a 'IRIT sur la Coopération Multi-robots, Groupe de travail multi-agent
de PAFCET, Toulouse, Avril 1993.

~ Tutorial “Motion Planning with Uncertainties”, Spring School on Robot Motion Plan-
ning, Rodez, Avril 1093.

- Séminaire invité & 'INRIA (Sophia) sur la programmation au niveau tiche en robotique
(mars 1991)
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— Séminaire invité au LIFIA (Grenoble) sur la planification automatique de tiches de
manipulation (février 1990).

— Séminaire au LAAS sur une approche géométrique du probleme de la planification de
taches de manipulation (novembre 1989)

— Séminaire au LAAS sur la prise en compte du temps en planification (novembre 1988)

Séminaire invité au LIFIA (Grenoble) sur les processus décisionnels pour la program-
mation de tiches d’assemblage robotisées (mai 1987).

— Exposé sur la conduite d’une Cellule Flexible d’Assemblage. Journée d’Information
ADERMIP, Toulouse (mai 1987).

— Séminaire invité a I’université Carnegie Mellon (Pittsburg - USA) sur la programmation
et la conduite de Cellules Flexibles d’Assemblage (avril 1987).

— Séminaire invité au CERT (Toulouse) sur les processus décisionnels pour la program-
mation de Cellules Robotisées (mars 1987).

— Séminaire invité sur la programmation et la conduite de Cellules Flexibles d’Assemblage,
Société Hewlett-Packard, Palo Alto, USA (mars 1986).

— Séminaire au LAAS sur les langages de programmation de manipulateurs (décembre
1984).

- Séminaire invité sur l'intégration et la programmation de Cellules Robotisées d’Assem-
blage, Société Hewlett-Packard, Palo Alto, USA (avril 1984).

— Séminaire invité & I'université de Stanford (USA) sur l'intégration et la programmation
de Cellules Robotisées d’Assemblage (avril 1984).
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F ACTIVITES D’ENSEIGNEMENT

— Cours d’Initiation au Langage LISP (INSA, Toulouse, 5éme année, Option Informatique
Industrielle}: 1984 (10 h), 1985 (10 h).

~ Cours d’initiation & I'Intelligence Artificielle (ENSM, Nantes, option Robotique): 1987
(12 h), 1988 (12 h).

=~ Introduction & la Programmation des Robots (UPS, Toulouse, Ingéniorat Robotique et
Reconnaissance des Formes): 1988 (4 h) et 1989 {4 h).

— Cours d’Intelligence Artificielle (UPS, DEA Automatique, Option Informatique Indus-
trielle): 10 h par an depuis 1987.

— Cours d’Intelligence Artificielle (UPS, DESS Productique): 10 h par an depuis 1988.

— Cours d’initiation & I'Intelligence Artificielle (ENAC, 2eme année, Toulouse): 1992 (2
fois 8 h), 1993/1994 (4 fois 8 h), 1994/1995 (4 fois 8 h), 1995/1996 (2 fois 8 h)

Syllabus des Enseignements

Introduction a I’Intelligence Artificielle

1. Complexité combinatoire
2. Raisonnement géométrique et spatial
3. Représentation de la connaissance

— Logique des propositions
— Représentations procédurales et déclaratives

~ Systémes & base de régles
4. Représentation et résolution de probléemes

~ Représentation par Graphe d’Etats
— Representation par Graphe ET/QU
— Recherche dans les graphes d’états
— Recherche dans les graphes ET/QOU

5. Applications: planification, perception, systémes intégrés
6. Introduction et pratique du langage LISP

7. Introduction & la programmation de moteurs d’inférence
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Introduction 4 la programmation des robots

gooa e

Introduction / Les différentes techniques de programmation
Les outils d’aide & la programmation

Vers la programmation automatique

Vers une exécution autonome

Treois systémes en cours de développement
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Abstract

This paper is divided into four sections. The
first section discusses Flexible Assembly Cell
(FAC) programming requirements. Sections 2 and 3
present an approach to FAC modelling and program-
ming. The intended cbjective 13 to build a
programming and decisional environment which
allows construction of assembly applications,
and to endow the on-line system with decision-
making capabilities. The last secticon describes
the current state of an actual system which is a
First approach teo meeting the discussed
requirements.

INTRODUCTION

Flexible Assembly Cells (FAC) programming is a
ma jor concern as it requires integration of a
bread spectrum of techniques inte a complete,
highly autonomous system successfully interfaced
with its environment. This paper presents an
approach to FAC programming and reviews resulta of
research on the experimental Flexible Assembly
Cell of the French Advanced Roboties and Automa~-
tion (ARA} joint program,

The first section examines various features of
Flexible Assembly Cells. It focuses on flexibility
and the capabilities i1t underlies: adaptability,
autonomy (during execution time) and configurabi-
lity, versatility (during setting up and program-
ming time).

Section 2 presents an approach to FAC modelling;
three aspects are examined: application apecifica-
tion, functional classification of FAC components,
and FAC space organization.

In the third section, this modelling is used to
define elementary actions that can be executed,
and organize them in a program structure. We show
that this modelling provides a suitable framework
for embedding different subsystems into a program-
ming and decisional environment for FACs.
Moreover, it provides a basis for endowing the
on-line system with decision-making capabilities
such as task execution monitoring, or interaction
with shop flcor management systems, or with the
operator.

Section U addresses FAC on-line ayatem, taking as
an 1llustraztive example the FAC developed at Labo-
ratoire d'Automatique et d'Analyse des Systemes.

1~ FAC PROGRAMMING REQUIREMENTS

A Flexible Assembly Cell is the place, in an
automated factory, where assembly tasks and asao-
ciated operations are actually performed. It typi-
cally includes a number of closely linked compo-
nents sueh as manipulators, sensors and
peripheral/speclalized devices. Such a system can
be evaluated in various terms, We will examine
herein in some detail questions related to
FLEXIBILITY. Two related FAC aspects are to be
studied: during execution time, and during
preogramming time.

1.1 During execution time

During execution time, a FAC must behave as an
autonomous system (Figure 1), that delivers
assembled objects according to some preplanned
process while supplied with various parts.”
Furthermore, it must be able toc adapt to dynamic
changes In the shop environment and to provide
user-interface facilities for occasional operator
interventions.

Scheduling, loading and unloading of FACs,
adaptive route selection, and determination of
various process varilables are conducted under the
econtrol of the shop floor system!. A FAC must
respond to various orders and take into account
information proceeding from the shop level
management system.

A typical interaction is the specification of a
task to be performed by the FAC. Here, we must
emphasize the fact that a FAC should be programmed
not for a single task but for a series of tasks
which pertain to the same application. This can be
very useful if there exists some functional
redundancy between two or aseveral FAC3 operating
in the plant. For instance, an inspection opera-
tion that was formerly carried out by a FAC, could
be dynamically assigned to another FAC which
inceorpeorates a functionally equivalent inspection
apparatus.

Other interactions concern managerial information:
for instance, a FAC must take into account infor-
mation about parts input flows.

A FAC should also be able to provide information
about its current ability to achieve a task, or
qualitative/quantitative data about the task
currently performed. For instance, it must be able
to inform that it can no longer deal with
workpieces of a apecified variant (due to a
malfunctioning device).
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Besides, a cell must provide user-interface faci-
lities and aid for problem diagnosis and error-
recovery.

Another key problem is FAC autonomy. There must be
provision for 1) management of various loeal
resources, 2) alteration of plans based on more
recent information, and 3) coping with various
events occuring at the FAC level, in a
"transparent™ manner with respect to higher level
3ystems, Resorting to higher level systems
{including the operator) is done only if the task
to be performed cannot be achieved accerding to
the specifications (fatal failure, inability to
reet requirements of precision, time-
constraints..),

1-2 During programming time

This section examines briefly methods and tools
required for programming a FAC. Design objectives
involve three major aspects.

First is system integration. The software/hardware
architecture must provide facilities for integra-
ting various sub-systems into a programmable
system. Addition and suppression of modules - even
specialized devices - must be possible with
einimum effort. In section 4 a system is
described, NNS, which meets such requirements2,
Second, it i3 necessary to set up a framework for
construeting applications and for accessing and
using in a coherent manner, data and programs
invelving different fields of advanced roboties.
Finally, the structure of the programs and of the
FAC cn-line system should take into account
various aspects previously introduced: FAC state
management, interaction with decision-making
systems, dynamic changes in planned processes, and
resource management.

The next sections discuss a FAC modelling and the
assoclated off-line/on-1ine system which represent

a lirst approach towards meeting these require-
ments.

2-FAC MODELLING

Addressing FAC modelling, one has to deal with a
real-world environment that comprises various
components - including very sophlsticated automa-
tion systems - which are to be coordinated for
performing repeatedly over time complex assembly
applications.

As atated before, autonomy of the whole system
plays a crucial role. Whereas much of the planning
takes place before execution, changes in the

environment force the FAC to adapt to various
events by making decisions based on its current
model and on information exchanged with external
systems. We introduce a means of specifying
applications achieved by the FAC together with a
functional description of every component and a
FAC space structuring. These three aspectas will
serve not only to deal with "on-line"™ preblems
such as failure diaghosis, break-down recovery and
eoping with various events, but also to construct
new applications.

2.1 Specifying an application

A FAC application will be described by the set of
parts to be processed, their origin, i.e.
supplied to the cell by a feeder system or created
within the FAC, and their target, i.e. to be
delivered by the FAC, to be composed with other
Parts or pracessed by a specialized device.

A part-mating or manufacturing® operation and,
more generally, every action which results in a
change in some characteristics of a part, will be
considered as a creation of a new part. For
instance, an inspection operation which concludes
that a part is defective, results in the
"creation” of a new part.

Additional information may be provided in order to
simplify FAC programming or to improve FAC beha-
vior. For instance, parts which differ only in a
few parameters (colour, size..) are grouped in
classes; Likewise, information about flows of
parts delivered to the FAC, which can be complete-
ly specified, partially specified or arbitrary,
may allow to optimize the sequencing of actions
and the management of local resocurces.

2.2 Punctional classification of FAC components

FAC components fall iInto three classes - tools,
sensors and effectors- whiech are examined with
respect to their functional propertieas.

Tools: This term covers a great variety of specia-
lized or peripheral devices: complex machine-tools
that perform specific compo2ing or manufacturing
operations, and any kind of vices, grippers,
feeders, unloading apparatus,

The function of a tool is determined by its
ability to hold a part and to {possibly) transform
i1t. Tools may be located at fixed positions or
movable using effectors.

A tocl 1is operated through a set of commands, the
effect of which is defined in various terms: crea-
tion of a new part, establishing/suppressing geo-
metrical relations between the tool and the part
and the entailed consequences (degrees-of-freedom
of a part in the tocol..). Other commands may
provide information about the state of the tool.

Sensors: We distinguish three different modes for

the use of sensing: consulting mode, monitoring
mode and contrelling (servoing) mode. A same
sensor may be used alternatively in different
modes.

* : Through all the paper, "manufacturing” is to
be understood as an action of specialized devices,
included in the assembly process and that results
in part wodification: e.g. screwing, riveting...




In the consulting mode, sensors provide informa-
tion that is used to check if an action had the
desired effect, or to determine parameters for
subsequent actions. Typical applications are part
identification, location and inspection, detecting
object presence or absence and so forth.

In the monitoring mode, conditions on sensory data
are checked at high rate and, if matched, entail
execution of predetermined actions. Typical
examples are guarded-motions, and acticn-dependant
sensory condition monitoring such as grasping with
specified gripping-force.

The third mode invelves sensors that are directly
linked to an effector (for the sake of
efficiency). It is used {(n situations where
manipulater pesitions are continuously updated in
response Lo sensory data.

As FAC programming involves essentially combining
of fairly high~level functions and execution moni-
toring of the whole system, only the two first
modes are directly addressed. Sensor-controlling
capabilities will be used within part-mating er
special-purpose primitives ({see Section 3).

Effectors: Every system able to move parts or
tools is an effector. Actions performed by an
effector can be more or less complex, according to
its number of degrees-of-freedom, its workspace,
and capabilities provided by its control system.
We distinguish two effector uses: to transport a
part or toocl from a workplace to another
workplace; and to perform fine motions within a
workplace in order to achieve complex operations
as part-mating..

General-purpose manipulators allow both uses,
whereas other effectors are speclally designed [for
the first use (conveyor belts, rotary tables..) or
the second use (fine-positioning wrists..).

2.3 Spatial organization

The funeticnal description of FAC compcnents does
not deal with the FAC spatial organization. Simple
questions, as where are the parts in the cell,
which is the orientation of a part on the conveyor
belt, what 1is the position of a manipulator
hand..., involve an organization of the FAC space.
To enable this organization, we define the notion
of site.

A gite is a place in the cell capable to support
one workpiece at a time. A site ig always tied to
a single effector, and may be equipped with
various tools and sensors. A coordinate frame FS
i3 attached to every site. FS is independant of
the tool and the workpiece present on the site,
Location of aites. A FAC is enly composed of
apparatus at fixed places; every effector is
attached to a reference frame FE, related to the
world frame by an invariaple transform. These
transforms, which enable to 1ink effectors, are
obtained by calibration methods. The location of a
site is defined as the transform relating FE to
F3. It 1= generally provided by sensory data,
which specify the effector configuraticn, and by a
geometric model of the effector,

Orientation and locatlon of parta in the aites.
The part orientation in a 3ite includes all the
information which specify how a part is held by a
tecol, l.e. the part faces or edges touching the

tool, the degrees-of-freedom of the part in the
tocl, the position stability.. This information is
crucial, as it has consequences on the fol lowing
actions which can be performed on a part: for
instance, depending on its orientation in a grip-
per, a part can be directly assembled or must be
first turned over. Computer Aided Design systems
offer facilities to define, automatically or in an
interactive way, orientations of parts in the
sites.

The part location in a site is given by the
transform relating FS to a reference frame FP aof
the part. This transform is obtained from the
location of the tool present in the site, i.e.
frem the transform relating FS to a reference
frame FT of the tocl, and from the part orienta-
tion in the site, which provides a transform rela-
ting FP to FT (Figure 2). When the part location
is unknown or partially unknown or when the uncer-
tainties are too important with respect to the
allowances, a sensor must provide the part loca-
tion. It is assumed that we are capable to inter-
pret sensory data 30 as to obtain the transform
relating FS to a known frame attached to the part.

Structuring FAC space. The FAC 2patial organiza-
ticon cannot be restrained to a world model with
cocrdinate frames: we need a discretization of the
FAC space and we must take into account the space
occupied by objects in the cell. This is in parti-
cular the case when we deal with collision
avoidance problems,
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The FAC workspace is subdivided Into space regions
associated to each site. The position of a site
tied to a manipulator is glven by the name of the
space where is the origin of FS. For each of these
regions, we distinguish a "free space" and a
"eonstraint space". Indeed this partitioning of
site spaces agrees with the two different uses of
effectors (see section 2). Gross motions are
defined so that the site tied to a manipulator
remains inside "free spaces", whereas fine-motions
are performed ingide a "constraint space™. CAD and
geometric reasoning systems can be used to specify



3ite spaces, tgo generate off-line optimized
obstacle-free gross motions s and to build fine-
@otion strategies based on parts geometric
description and manipulator kinematics
Todala™sr 2,

figure 2 summerizes the relationships between the
iifferent frames. In particular, it illustrates
Jow this spatial organization fits well with the
processing of inaccuracies, a3 it distinguishes
cetween the different causes of uncertainty: mani-
pulation or sensors resclution, part tolerances
zalibration precision, uncertainty of the
Zecometric models!.

Tinally, with this structuring of FAC workspace,
“e get a means to define a FAC state which speci-
fies the parts present in each site and their
srientation. In the next section, we will exa-
rine how this FAC modelling enables to specify
elementary actions performed by a FAC and to build
a process plan, which constitutes a suitable
framework for programming and controlling an
application.

3- FAC Programming

3.1 Elementary actions

The FAC state is represented at every moment by
the parts that are present on each site and their
crientations. Therefore we define an elementary
iction as a transition of the FAC state, i.e. the
change of site and orientation for a part; such
ictions may result ipn the creation of a new part
<hen parts are assembled or processed by machine-
tools. We next give two examples of elementary
ictions.

The first example consists of picking a part A on
i conveyor belt; the second example is the assem~
5>ly operation of a part A and a part B on a table,
resulting in the creation of a part AB.

ex 1 3 {conveyor part-A orien-1)
(robot-hand - - )

N (conveyor - - )

(robot-hand part-a orien-2)

ex 2 : (table-site?l part-B orien-3)

(robot-hand  part-i orien-2)

> (table-site! part-aB orien-1)
(robot-hand - - )

‘he elementary actions at FAC level are often
‘omplex actions; nevertheless, our purpose is tg
show how these actions are deccmposed by means of
rimitive functions that may invoke sophisticated
irocedures. Indeed the process of an elementary
wetion is subdivided inte four steps:

1- Establishing of the initial statea of sites
-nvolved in the action: these states are partly
nown a priori as the resuylt of previous actions,
‘ut are to he completely specified yor simply
‘hecked, using sensory informaticon. This step uses
dentification and location procedures and con-
‘ulting funections of sensors avallable in the
iites, to set up conditions about the initial
itate.

| -%

2~ Preparation of the sites for the action:
this step consists of changing the tools if neces-
sary, setting the tools ready to act with the
right parameters, bringing two sites closer.. At
this step, all these primitive operations are
independant and can be performed concurrently.
They are monitored by sensers in order to control
their execution. For instance, there must be a
quick reaction if a gripper releases a part during
3 gross motion or if a vice is broken and cannot
be opened.

3~ Execution of the action: it is the step
which carries out the transition of the FAC state.
It involves close interaction between parts, tools
and effectors. These constraints night require the
use of special purpose procedures, invelving fine
motion strategies, part-mating compliant motien
generation.. These procedures are not addressed
directly at a FAC-level description of the
actions, but are taken into account to provide
them with information related to their execution
context; they are used through primitive
functions.

U- Validation of the action, to ensure with
3ensors that the reached state for each site is
the goal state. Like the fiprst step, it requires
sensor consulting functions and inspection
procedures.

The primitive functions embody the FAC components
functional aspects and include the FAC spatial
modelling. They use their own knowledge base -
generated off-line using specialized decisional
modules - to specify an operaticon and to interface
with the low level software structure. Several
examples of such primitive functions illustrate
how they are implemented and used to program an
elementary action:

~ LOCALIZE takes a site, a part and its orien-
tation as parameters and returns the part
location. It requires data such as calibration of
the camera on the site, the transform relating the
frame located by the camera to the reference frame
of the part FP and cther parameters of the vision
system (threshold, wvision Window, object
models..).

- MOVE takes an effector, a site tied to this
effector and a position as parameters. It finds a
safe trajectory according to the FAC state, and
executes it monitored by stafe-dependant sensory
conditions.

- APPROACH takes a part with its initial and
final states as parameters, It finds and performs
an approach motion, related to the part and tools
Present on the gites.

The elementary actian of example 1 ¢can be
decomposed as follows:

1st step: (TEST-COND light-beam part-present)
(LOCALIZE conveyor-belt part-A orient)

2nd step: (MOVE probot robot-hand conveyor-pos)
(PREPARE robot-hand part-A  orien?)

3rd step: (APPROACH part-A {conveyor-belt orieni)
(robot-hand orien2))

(MONITOR-COND switches—1 part-present)

(EXTRACT part-a (conveyor-belt orieni)
(robot-hand orien2))

ith step: (TEST—COND switches-~1 part-present}




We can notice here that this definition of elemen-
tary actlons performed by a FAC and their decompo-~
sition in steps, enable a simple resource manage-
ment and offer a basis for concurrent execution
{see Section 4},

3.2 Application process plan

The set of elementary actions that can be achieved
by the FAC for a given application, constitutes
the application process plan. It is represented by
a network, whose nodes are part states in the FAC
and whese arcs represent possible elementary
actions. The network is gradually constructed
beginning with the original part states in the
cell: from each node, all feasible elementary
actions are determined, In section 4, we give an
example of such a plan.

The application process plan constitutes a
suitable framework for accessing and relating,
during programming phase, various specialized
systems. It provides relevant information that
enables a broad spectrum of possibilities (Figure
3). Typical processing might include studying
feasability of the whole process, spatigl organi-
zation, dealing with uncertainty®, y time
estimation, simulation, optimization issues®.
During execution time, it is used to decide which
elementary actions to perform, according to FAC
state and external events such as new parts arri-
val. Conflicts that may occur at this stage, are
taken into account at programming time. Indeed,
the number of possible FAC states could be very
important and on-line conflict resolution might
lead to inefficiency.In its current Implementa-
tion, every arc of the network is labeled with a
condition about the FAC state, 30 that deadlock
sltuations are avoided and the process is
"optimized" with respect to FAC state.

The on-line system, rather than executing classi-
cal programs, interprets a network structure in
interaction with the environment. Such a feature
is central if one wants some flexibility.

FAL CONFLGURATIOM
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Indeed:

- the managment of the various FAC components is
clearly separated from "programs" (process plan)
that are to be achieved; this allowa a simple
definition of software layers as well as it
provides an easy means to introduce other software
modules;

~ this kind of programming allows easy FAC state

management, and selection of actions to be
performed with respect to the FAC state. For the
same reasons, interruption handling and starting
again from another state is possible without heavy
processing;

~ it allows an incremental development of FAG
capabilities. This concerns decisional processes
that deal with FAC and process state, such as
failure diagnosis systems, error-recovery
procedures, user interface or interface with
higher level managment systems.

B-FAC on-line aystem

Throughout this section, we will use as an
1llustrating example the FAC of the ARA research
program. We describe Successively its aectual
configuration and an appliecation example that will
serve as a guide while discussing the on-1line
system software layers.

¥.1 The PAC of the ARA program
The FAC of the ARA program is intended to serve as
a realistic experimental mainframe for testing,
validating and developing various contributions
dealing with different fields in advanced
robotics !0,

The computer environment is composed of a real-
time oriented 32-bit GOULD-SEL mini-computer sys-
tem and various microprocessors. The robotics
environment consists mostly of two six degrees-of-
freedom manipulators (Renault-Acma TH8, SCEMI).
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Various other systems are installed including
sensory modules (cameras, proximeters, micro-
switeches..) and numerous auxiliary devices
(conveyor belt, rotary table, vices, special-
purpose tools..).

A salient feature of this hardware/software confi-
guratien is that it 1s diversified and in constant
evolution. A great variety of Instrumental and
software tools are to be developed and installed,
enlarging the speectrum of possible experiments
(various vision systems, force-controlled motion
softwarell, fine-positioning devices..),
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3.2 Application example

Figures 4 illustrates a segment of an application
that performs the part-mating of two parts A and
B. Parts of type A and B arrive, randomly posi-
tioned and in arbitrary order, on a conveyor belt.
Parts of type A must be inspected before being
assembled with parts of type B.

Two orientations are considered for parts A { <1>
for planar surfaces, and <2> in robot grippers),

//z/’ \\i\\
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P N

{0ut1 8 1) (Robt B

while five possible orientations are defined for
part B {<1> and <2> for planar surfaces, <3> and

" <4> for rohot grippers, and <5> for vices). a

vision system provides information on the parts
delivered by the conveyor belt : their type,
orientation and location.

Figure 5 is a representation of the associated
application process plan, Parts of type A and B
arrive on a conveyor belt (CONV); they are imme-
diatly directed out of the FAC (OUT1) if their
introduction may lead to a deadlock state. The
inspection operation of parts A results in the
creation of parts A+, if it is Successful, or of
part A", if the part is defective. Parts A% are
put aside (QUT3), whereas parts A+ are stored on
the rotary table (S5TO1 or ST02) before being posi-
tioned on ASS1 or ASS2, If parts B arrive on CONY
with a "wrong" orientation <25, they must be
turned over - using VICE?! or VICEZ - before being
assembled with A+ on ASS1 or ASS2. Parts A+B are
delivered by the FAC at QuT2.

A condition on the FAC state is associated to each
elementary action, i.e. to each arc in the appli-
cation process plan. For instance, the condition
of the arc (ROBZ,B,3)--—>(ASS1,A+B,1) is: "sjite
AS31 contains a part A+ with orientation <1>"; the
condition of the arc (ST01,B,1)--->(ROBZ,B,3) is:
"there is no part in ROB2 and, either one aite

B in the FAC that has to be re-oriented (i.e. with
orientation <2> or <)),

It is worth noting that such a program structure
eXpresses numerous possibilities in a condensed
way. For instance, parts B can be re-oriented in
varicus ways : using ROB1 and VICE1, ROB2 and
VICE1 or VICEZ2, parts B can also be momentarily
stored before or after being re-oriented. Besides,
it allows a great flexibility in dealing with
arbitrary parts arrival, and pProcessipg several

parts simultaneously.
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4.3 Implementation issues

For a given application, the programming phase
previdesa the on-line system with the process plan,
the elementary actions and the primitive
functions. The on-line system 1ig composed of
several layers (Figure §),

QPERATAR $haa Flaar

AN ki

Pracess Plan Interprecer

Apclicartign

Pracess Plan —_
Elementary

Usar Interface

aciians Shoo Flaer Intzrface

FAC sTaTg

FAC Manager

100 - T

FAC Moduies

Arimitivas —_——

- Figure 5 FRC on-line System -

Application proceas plan iutergreter.The fipst

level comprises the application process plan
interpreter and cthep medules such as an interface
with higher level hanagement systems, and a user
interrface.

Upon arrival of one or Several parts, the process
plan interpreter generates a plan composed of
elementary actiaens that can be performed with
respect to the current FAC state, Elementary
actions are formulated as sequences of primitive
functions that are sent to the FAC Manager. They
are scheduled, taking into account FaC components
management and concurrent execution (between inde-
pendant actions, and between operations within
steps 1 and 2 for each action).

FAC er. The FAC Manager incorporates the FaC
model. It executes Sequences of primitive

functions proceeding from the process plan inter-
preter and sends back completion results.

it issues commands to various devices and inter-
prets data and completion messages in terms of FAC
3tate changes

Basic software architecture. The ARA FaAC high
level software has been implemented using NNSz,a
Lisp-based interactive environment that hags been
developed to establish a framewsrk for integrating
various subaystems into 4 programmable system.

The NNS system is based on a modular hierarchical
implementation, similar to other integrated
systems'2,13, The different Subsystems are orga-
nized as "Specialized Modules™ (SM). 4 SM consists
of all the software and hardware involved in an
"activity". SMs ean be viewed as entities
embodying a set of remote procedures. SMs are
implemented as independent tasks running under a
multi-tasking operating system or gn dedicated
processors.

Programming, debugging, and execution are carried
out in the same environment, hence facilitating
connection between off-line and on-line software
systems.

CONCLIOSION

This paper has Presented an approach to FAC model-
ling and programming that serves as a basis for
the construction of a programming and decisional
environment, and for providing FAC on-line system
Wwith decision-making capabilities. A key feature
is the generation of an application process plan
that is interpreted on-line, hence resulting in a
éreat flexibility. Future extensions concern the
development of decisional processes that deal with
FAC and process state such as fatlure diagnosis
systems, errer-recovery procedures, and interface
with higher lavel management systems.
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ABSTRACT

Performing complex assembly tasks requires
decisional capabilities available on-line, in
order to handle various events (sensor conditions,
part arrivals, failure detection...), that occur
during execution.

In this paper, we describe NN8, a complete cn-line
system for multi-robot assembly workcells, that
deals with problems of execution monitoring,
action scheduling, and failure diagnosis and
recovery. NNS is distributed in different
decisional layers with their own reasoning methods
and state represeataticn; it uses an "execution
model" that embeds various knowledge bases built
off-line. This approach £firs well with
requirements of flexibility and efficiency.

1. INTRODUCTIOR
A Flexible Assembly Cell (FAC) should behave as an
autonomous system that is provided workpieces and
that performs various physical operations
according to some predefined process.

This paper presents an approach to the design of
an on-lina system for a highly autonomous FAC.
First, a brief discussion will focus on the major
requiremeunts for such a system. Then, we give a
detailed description of NNS, a knowledge-based on~
line system that is aimed to be a first step
towards meeting flexibility and autonomy
requirements.

On-line regnirements

In the case of robots working in a well structured
environment and performing predefined tasks
repeatedly, most decisional problems are addressed
off-line. Yet, there remains numerous decisions
that must be taken at execution time:
opportunistic action scheduling, reacting to
unexpected events, specifying an action depending
on the execution context. Moreover, an autonomous
cel! must provide failure diagnosis and user
interface facilities for plan repair and error
recovery.

Local resource management also plays an impertant
rele. In normal operation, several actions
requiring common resources (effectors, tools,

space regions...) are likely to execute ie
parallel; the on-line system must be able to
distribute cell resources depending on the actions
to be performed. There also must be provision for
dealing with functional equivalence between
several FAC components.

Another key feature is FAC state wonitoring using
sensors. The on-line system has to detect
anomalous events and to react, by generating
appropriate emergency actions. Finally, the system
must take into account modifications of the FAC
state caused by a failure and resume execution.

Considering the above mentioned issues,
design aspects deserve special interest:

some

* Programming a FAC using a conventional language
seema inappropriate as it would be difficult to
achieve simultaneously execution and state
monitoring, to provide for asynchronous events and
to recover after a failure <GIN-85>.

* Such a system has to maintain a FAC state, to
reason about it, and to understand action results
according to a task-level model.

* The on-line system needs a large amount of
information that is supposed to originate from the
programming phase. For efficiency reasons the off-
line phase must reduce as much as possible the
complexity of decisional problems that have to be
golved during execution. This is the purpose of
various task~level programming systems that are
currently investigated <LOZ-84> <LAU-85>. However,
such systems must leave gufficient latictude for
the on—line phase.

The result will be an amount of pre-processed and
condensed information, structured in what we call
the "task execution model™.

We describe in the following the organization of
NNS, an on-line system based on the discussed
design issues.

NHS organization

BNS is a knrowledge-basged system with a
hierarchical organization. This hierarchy covers
three levels of abstraction: a task level, a
functional level and an ccmmand level (figure 1).
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figure 1 : NNS organization

* The task level reasons about what happens in the
cell and what the system has to perform. It
involves planning, failure analysis, interface
with higher level systems (operator, workshop),
execution monitoring and action generation. It
uses a FAC state representation that will be
described in the next section.

* The functional level is in charge of action
execution, in terms of functional primitives
available in the cell (robot motions, tool
operations...). It is composed of two modules: the
sequence manager and the interpreter.

* The command level interacts directly with the

cell components controllers (manipulators,
sensors, various devices ..).

2. F STATE REPRESENTATIOR

A state repregentation must specify at every
moment the situation of a task and allow a
prediction of its evolution. A4ll the pessible
evolutions of the on-line task, are included in a
set of “elementary actiomns™

A complex assembly task performs physical
relationships among objects in a known
environment; it also gets information about parts,
and communicates with the external enviroument
(operator, workshop level). We define the
following elementary actiomns:

2. -2
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- PICKIRG or PLACING a part somewhere in ch
workspace: such actions modify the equilibriua o
a part, with the creation of new relationship
between the part and the environment,

- PART MATING cr DISASSEMBLING, i.e. creatir
or destreoying physical links among severa
workpieces.

- GETTING INFORMATION about parts, such a
identification, location or inspection ...,

- FEEDING or UNLOADING: these operation
involve communication with a workshop level
asking for new parts or signalling that parts art
ready to be unloaded. The workshop level i
responaible for conveying parts to and from th
cell.

Elementary actions are counsidered as stat
operators by the planner: the plan does no
specify how elementary actions will be performe
(in particular, wmanipulator motions are mo
addressed in the plam), but it sets up
scheduling which represents a projection of th
FAC state. The generaticn of elementary action
takes into account opportunities and informatic
provided by the execution context.

It is worth noting that the clasaical PICK&PLAC
operation is considered in our representation a
two diatinct elementary actions, so that ever
change in the FAC state is associated to only or
modification of physical relatiounships amon
objects. Thus, the system is able to restart fro
any state.

Our FAC state definition provides the followin
information, that are more detailed in <ALA-85>:

- Where are the parts in the cell? Answerin
this question implies that the cell is organize
into a finite number of SITIES. A site is z plac
in the cell intended to support workpieces; site
may be equipped with effectors, tools, sensers, c
specialized devices...

- Where are the sites in the cell? Tt
workspace is discretized into REGIONS, in order t
specify the type of effector motions that can't
performed within.

- What are the part configuratiouns? To speci!
the physical relationships of a workpiece in
site, we need the three following parameters:

-—> the POSTURE, i.e. a representation ¢
geometric and dynamic constraints that achieve
stable position. The legal poatures of eac
part are determined off-line, and the way th
are achieved is specified in the execution model

—-> the LOCATION of a part in the site, i.e. ¢!
transform between a reference frame associated
the site and the reference frame of the part.

—-> the ACCURACY of part location in the sit
This accuracy results from the entire pa
foliowed by the part. Indeed, every elementa
action modifies the uncertainty about pa
location, according to a model obtained off-line




group of appreopriate concurrent actions, and
determines the resulting FAC state for the next
step. Let us specify the implemented heuristics

that are successively applied for conflict
resolution, illustrating our discussicn with an
example.

First we use a graph representation of the
application process (figure 3), whieh is part of
the execution model. The graph specifies all the
possible paths of each part in the cell. The nodes
are part states {(site, part, posture), and the
arcs represent elementary actions. Arcs are
labelled with conditions about certain components
of the FAC state: parts present in the sites, the
posture, the location and location accuracy of
parts. The conditions are evaluated in order to
determine if elementary actions are or are not
appropriate. Conditions are used to assure that
actions are feasible (e.g. Is the accuracy
sufficient to guarantee execution success? Is the
grasp achievable according to part posture and
location?), and relevant (e.g. Will the action
contribute to bring a part nearer to its target?
Will the action free a c¢ritical site, i.e. a gite
that is a mandatory crossing point of some part?).
Using the graph partially represented on figure 3,
the set of appropriate actions from the initial
statz, ((in B 2){p B 1)X{vi B 5){al A &4){(a2 A 4)),
would be 5, 13 and l4.

Then, the plammer groups appropriate actions that
may bte performed in parallel. To do so, it
examines available resources they need {(effectors,
tools, space regions...). Note that the plan does
not impose a concurrent execution of these

with backtracking. Moreover it seems to he
sensitive to variations between estimated
durations and real execution times.

Another possibility is tec defer the decision until
plan execution. This opportunistic approach
implies generating a conditionnal plan. It mayv
entail a combinatory explosion of the plan, and it
does not always provide the best optimization.

As a first approach, the plauner selects one of
the groups that includes the greatest number of
actions, but conflicts are not always entxrel;
solved, as in the example: the group selected is

,13), and after several steps, we obtain the
follow1ng results:

step 1: (5, 13)

=—> ({z1 B 3) (r2 B 6) (vi B 5) (al A 4) (a2 4 &)
(in))

step 2: (9,17 , 1)

-—> {{p B 1) (al AB 1) (vi B 5) (a2 A 4) {in 7))

step 3: (14 , 2)
-—> ((p B 1) (al 4B 1) (r2 B 6) (a2 & 4))
step 4: (18)

——> ({p B 1) (al AB 1) (a2 AB 1))

The geoal of the plan is reached when no more
actions are appropriate or when the planner
decides to postpone the remaining steps to a next
planning.

The plan is then provided to the monitor: it
specifies the order of elementary actions related
to each gite. In the example, the plan generated
would be:

actions, but it uses this heuristic for a better site I actions
resource management. In the example, groups of
appropriate actions are (5, 13) or (5, 14). in T 5, 1, 2, planning
rl 1 ’
At this stage, conflicts may remain and the choice p I 13, 9
of a group of actions is not easy to make. s 1
vi I 14
An estimation of the durations of actions could be r2 1 13, 17, 14, 18
taken into account, but this method requires al 1 17
specifying all the timing and it implies a search a2 1 18
(in A 1) (in B 1) (in B 2} {in)
3 4 "”,,—”E"'/ 6 1j
Rt R
(rl & 2) (r} B 3) (r1 B &) v (in 7)
e e e e -
7 8 9 1/ \11
(p A1) (s B 1) (p B 1) (vi B 5) (s B 2} (in 7}
12 \\\\ /// 2
(r2 A 3) (r2 B 6) "7 (in A 15

jor (in B 1)
vor {in B Zﬁ

({al A 4)l-(32 A 4)'

figure 3:

‘(al AB 1)'l(a2 AB lﬁ
] [

c— o — - ==

4 process graph

'part targets,
'

== m 4 4 % omomme

2.3



The graph gives all its efficiercy to the planner;
it expresses in & concise wmanner all the
potentialities of the cell. Methods for graph
analysis are studied in order to establish off=
line the conditions associated to each arc.

3.2 The monitor

The monitor coordinates the execution, planning
and failure analysis activities. It knows about
the past, the present and the near future of the
task: it maintains information about the history
of parts present in the cell, the elementary
action in progress and the next actions to be
performed on each site.

The monitor asks for a new plan in some particular
situations that have been examined above (part
arrival, unexpected events, end of the previous
plan).

It provides a "valid" initial state for planning,
i.e. a state completely specified and that belongs
to a set of acceptable states. Indeed, after a
failure detection and analysis, the FAC state may
become partially undetermined or it may lead to a
deadlock situsation: the monitor has then recourse
to an cperator intervention in order to start
again (e.g., removing an unknown part from a site
where no camera is available to identify it),
Generally, the initial state provided to the
planner does not agree with the current FAC state.
It is an impending state that assumes a successful
completion of ongoing actionsi thus, planning
times are partrially hidden.

The monitor interacts with a workshop level,
exchanging signals {part arrival or part ready to

be unlcaded}, and information (asking for missing
parts, notifying its ability to process the
task...}.

The monitor is informed of the end of elementary
actions: it updates a task execution history and
uses the plan to determine what are the next
actions that can be started.

When the real-time system detects a mismatch
between the FAC state managed by NK5, and the
actual gtate monitored by sensors, it generates
some predefined emergency actions and issues an
interrupt to the monitor. The monitor reacts first
by interpreting the interrupt, by determining the
sites that were present in the region where the
unexpected event occured, and by cancelling all
ongoing actions that ere likely to be affected by
the event. For instance, if a part, held in a
vice, falls down as a robot was about to grasp it,
the picking action is aborted. Then, the monitor
aends to the failure analysis module circumstances
about the event: current FAC state, sensory
conditions that were monitored, sensor values,
elementary actions in progress, history of the
execution.

3.3 The failure analysis module

In the NNS system, the purpose of the failure
analysis module 13 precisely defined as to
establish the FAC state whiech results from a

24

failure. Note that this module is not in charge o:
the emergency actions following a failure, nor o
execution resumption.

Lfter the occurence of an ancmalcus evant, th.
validity of the FAC state will be considerc:
doubtful; the failure analysis module will use th.
execution context and the task history provided b
the monitor, to establish a diagnosis of possibl
causes. Sometimes, the diagnosis implies
mandatory modification of the task execution mode
(e.g. a new estimation of the accuracy require
for an action). The failure analysis module wil
then use its hypotheses to modify the set o
available resources { e.g. device, sensor o
effector malfunctioning), and to update the Fa
state (e.g. to free a site which has released
part)}.

The failure analysis module is a key eliement o
sophisticated on-line systems. It raises wman
design problems as it needs a large knowledge o-
the task, on the cell functions, and on assembl
errors... We are developing research oa such

topic. In the -current implementation, there is u.
true diagnosis. We use & very simple approach
which consists in invalidating the state of al
sites that were present in the space regiom wher
the event occured. Then the system makes use o
sensors to reacquire information and asks th
operator for missing information. Even with thi
simple implementationm, the system requires minimus
operator intervention for execution resumption.

3.4 The action generator

The action generator embeds the transition betwee
the task level and the functional lewel. I
determines how an elementary action can b
performed.

A set of intermediate objectives is associated t
each type of elementary action (pick, place
identification...). Action generation consists i
instanciating these objectives and building th
appropriate sequences of FAC functions
primitivea.

For instance, the PICK or PLACE elementary actior
involve the following objectives:

~a= bringing two sites in the same region, wher
the whole action will be performed. This ste
consists in manipulators gross motions and othe
effectors positioning (rotary table, conveyor).

-b- preparing toecls in order to receive t!
part, according to its next posture (opening
gripper or a vice).

—c— approaching in order to achieve ¢tt
geowetrical relationships involved in the ne
state of the parc.

-d= achieving the state transitiom, by applyi
new forces (closing a gripper) and then releasi
the part (opening a vice}). The FAC state and t
associated sensory monitoring conditicns a
updated at this step.



-e- Moving sites apart, so that gross motions
for a next action can be performed.

The system exploits the potential parallelism in
sceps -a- and =-b-, and produces several
independant sequences. On the other hand, steps
-¢= =d- and =-e~ arestrictly ordered and
performed in a unique sequence, synchronized with
the end of the other sequences.

Instanciating these steps takes advantage of some
information given by the execution context. For
instance, the following decisions, using
predefined heuristics, have to be taken:

- Choosing a region to perform the action: for
example, picking a part on 8 rotary table requires
to determine the pesitioning of this effector.

- Selecting a path for gross motions, that aveids
to cross a region currently locked by another
action.

- Choosing among a number of predefined fine-
motion strategies, according to the accuracy of
the part location.

Sequence generation consists in selecting
functional primitives, specifying their parameters
and determining resources that are required for
their execution. Note that information provided by
the task execution model is of critical importance
for sequence generation. Sequences cannot be
entirely generated off-line; all complex
decisionnal problems are addressed off-line (space
structuring <GOU-84>, fine motion generation
<VAL-85>) and results are provided to the action
generator module in the task execution model.

3.5 The sequence manager

The sequence manager provides s multi-tasking
enviromnment that allows to run sequences in
parallel.

Sequences consist of functional primitives,
requests to update the FAC state, and resource
wanagement operatious. Indeed, the planner cannot
deal with cell resources that are only necessary
to achieve an intermediate atep of .an action
{space regions to be crossed, effectors linked to
several sites...).

Likewise, FAC state is updated inside the
sequences (not after the completion of elementary
actions), in order to reflect more accuratly the
actual state and to change the monitoring of
sensory conditions that are issued to the real-
time system.

Sequences may be suspended after a call to a
functional primitive, waiting for the receipt of a
completion status; any error will cause the whole
sequence to be abandoned.

Sequences can also be aborted when the monitor
orders it,

3.6 The interpreter

It is composed of all functional primitives, such
as effector motions, part identification and

localization, state checking and menitoring 2nd
other task-specific functions (complex assembli
primitives, scrawing operations...).

These primitives establish a link between tte
cell's functions and their actual implementation:
primitives will be translated into executicn
requests that are submitted to the real time
interface. In the opposite direction, data
proceeding from the real-time system will be
interpreted in terms of the primitive's executicn
status or in terms of events that will be
addressed to the monitor.

3.7 The real-time interface

This layer contains all implementation-dependent
information. It accepts execution requests from
the interpreter and issues commands to the
physical FAC components (robot controllers, vision
systems, peripheral devices ..).

Requests are of three types: action, sensing and
monitoring.

- Action requests involve robot movements, gripper
opening... Such actions may be interrupted if some
monitored sensory condition is wverified. For
instance, the motion of a robot approaching a part
must be stopped, if a sensor detects that the part
has been displaced. Note that, as the example
illustrates, there are numerous situations where
an event not directly linked to an ongoing action,
may have consequences on the fessability of this
action.

- Semsing rTequests involve acquisition of
information from sensors: obtaining the identity
and the location of a workpiece... Note that an
other use of sensors is embedded in monitoring
requests,

- Momitoring requests consist of the activation
and cancellation of predefined rules, intended to
monitor the FAC state or to perform simple guarded
commands. A monitoring rule contains a condition
on the wvalue of some sensors, which will be
evaluated periodically, and a set of immediate
actions that must be executed when the condition
is verified.

4. IMPLEMENTATION ISSUES

NNS is implemented as a set of processes running
on various processars. Communication is performed
mainly by interprocess messages.

The system a-chitecture is based on a hierarchical
structure composed of various software layers.

The low level - termed "real~time level" - is
composed of "specialized modules™ (SM). Each
module controls one of the main cell components
(robots, vision systems, peripheral devices...}
and is implemented as an independant low level
interpreter. SMs may access to 2 Common MEmMOry,
which contains the current status of the cell
(ongoing requests, immediate actions to be taken
when excepticns are detected, processes state ..).

2.7



The second level is implemented in LISP. The Lisp
system w2 use provides facilities for exchanging
messages with other processes and for having
access to the call common memory. Likewise, we use
a multi-tasking package that allows to rur, within
one Lisp system, multiple processes in a pseudo-
parallelism mode. This pseudo-parallelism produces
a true parallelism for physical acticus; indeed,
execution requests are sent to SMs running on
dedicated processors. The sequence manager makes
use of these mechanisms: every generated sequence
is associated to an independant Lisp process.
Higher level layers (monitor, planner...) are also
implemented in LISP.

The hardware architecture is based on a mini-
computer linked to various microprocessors and
specialized processors. The SMs currently
installed are two 6 d-o-f manipulators, an
industrial visien system, an experimental
multilevel vision system <DEV-85>, a system for
monitoring sensory conditions <LOP-86>. This
software runs on an independent processor and
controls various sensors {(microswitches,
potenticmeters, infrared cells, ultrasonic
sensors...) and peripherals (rotary table,
vices...). It dynzmically accepts rules, composed
of a sensory conditiom that are checked at high
rate and of some associated actions to perform
when the condition is verified.

A first version of NNS has been fully implemented
and used for several experimental assembly tasks.
We have obtained some reasonably fast performances
for the execution of complex assembly tasks (four
types of parts arriving in arbitrary order on &
conveyor with different postures and manipulated
with two robots): the decision-making time was
entirely hiddem by the execution time of action
requests. Moreover, the system proves to be of
flexible use: debugging and simulating facilities
have been integrated within NNS.

CONCLUSION

We have examined design issues of on-line systems
for Flexible Assembly Cells and shown how
flexibility and autonomy are considerably improved
by incroducing some decisional capabilities during
the execution phase.

Our approach is based on a multilevel organized
system, provided with a "task execution model".
The main decisional activities are involved in
planning for action schedulinmg, failure diagnosis
and action generatiom.

It is worth noting that this approach can be
viewed as a method for building complex assembly
tasks, because it clearly distinguishes between
what should be prepared off-line (programming and
learning phases) and what should be left to omn-
line decision wmaking.

Finally, we consider it as a suitable

specification for the output of a task-level

programing system, that we are currently
investigating .
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The analysis of repetitive sequencing at the workcell level:
from workcell tasks to workcell cycles

PAUL FREEDMAN+{ and RACHID ALAMI}

We begin with the part-oriented definition of a workeell rask in terms of generic
elemeniary actions to be performed. These actions are then mapped to a workeell-
element-oriented descripticn of the operations to be executed to perform the task.
When the workeell task is repetitive, the notion of a workcell cycle becomes
important, and we can associate with each workeell element a repetitive sequence of
operations. In this paper, we shall demonstrate that workeell programming is more
than just a matter of sequencing, since there may exist alternative cycles inherent in
the same specification of the workce!l tasks. These alternatives are then compared in
terms of cycle time, task throughput, task-processing rate, and machine utilization.
But even for simple workeell tasks, the space of possible time evolutions of workcell
behaviour can be very large, with many different workeell cycles. To automate such
sequence analysis, we therefore present a Prolog-based decision-support system
called SAGE (sequence analysis by generalized enumeration). Three simple
examples are used 10 illustrate our approach.

1. Introduction
According to Wemmerlév and Hyer (1987), there are two aspects to the problem of
workcell-level design:

(1) issues related to system structure, such as the selection of workcell elements
(robots, computer vision systems, conveyors, etc.), their physical layout, and
the definition of their programming primitives; and

(2} issues related to system operation, such as the definition of the workcell tasks,
and the sequencing of these tasks.

In this paper, we shall concentrate on the second aspect. [n particular, when the
workcell must function in a repetitive way, the notion of a workcell cyele becomes
important, and we can associate with each workcell element a repetitive sequence of
operations. (Qur use of terminology is given in the next section.) The importance of
repetitive behaviour has been emphasized by Hall (1988): ‘the key is to develop as
repetitive a process as possible in any kind of manufacturing’ (p. 458). This has two
important consequencies. First, operational aspects are easier to analyse and, therefore,
easier to improve. Second, the balancing of production flows at the factory level is
easier to perform, and a ‘lead’ (master) schedule becomes easier to construct. Then ‘the
goal is not onaly to complete units to ship on schedule, but to also maintain a steady
cycle time so that all of the operations keying from a lead schedule can stay together’
(p. 466).
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For our purposes, sequence analysis begins once the workcell operations are
defined. Thereafter, at least two kinds of optimization related to system operation can
be studied. First, if there is some functional redundancy among the workcell elements,
the workcell may be capable of performing the same task in different ways, e.g. by using
a robot instead of a conveyor system to load/unload parts. Then if the durations
of these ‘equivalent’ operations are different, we will obtain different repetitive
behaviours.

The second kind of optimization is more fundamental, Given the definition of a task
as a set of workeell operations, there may be several ways of performing the task, i.e.
there may exist several different partial orders of operations for the workcell elements.
Since the workcell operations are typically strongly cougled, the partial order selected
for a given workcell element will strongly influence workcell-level behaviour. In this
context, the selection of the partial order for each workcell element which minimizes the
time to perform the task could be important (Giralt 1984),

It is this second kind of optimization which is missing from current workcell
programming systems. Indeed, the constraints associated with precedence and shared
resources which link the workcell operations make it difficult to analyse workeell
behaviour in a manual way. According to a recent study (Meredith 1987),
programming (or perhaps one should say ‘re-programming’) difficulties at the workcell
level severely limit the flexibility of so-called flexible manufacturing. Indeed, ‘software is
the major technical problem during implementation...[but] the implementation
process really never stops’ (p. 1502).

Therefore, it seems evident that programming aids at the workcell level are of
critical importance. In particular, the problem of constructing a sequence of operations
for each workceil element which respects the constraints associated with precedence
and shared resources is computationally intractable (Garey and Johnson 1979),
Informally, this implies that there exists no known efficient algorithm for generating
a solution. Therefore, problems of this nature are ordinarily solved by searching
the space of possible solutions, possibly with the aid of application-dependent
heuristics.

To this end, we note the increasing popularity of logic programming in the
management science literature (Bharath 1986, Lee and Miller 1986). Unlike
conventional programming which emphasizes an algorithmic or prescriptive
approach, programming in logic, e.g. using the programming language Prolog
(Clocksin and Mellish 1981), has a descriptive feel because a program consists of
relationships among values. Each definition (rule) defines a relationship, and each
clause in the definition specifies a condition of pattern for which the relationship holds
(Davis 19835),

Predicate logic and the mechanical theorem proving of Prolog together provide a
powerful framework for solving planning problems in a manufacturing environment.
One example is a knowledge-based system for the ‘operational control’ of a production
facility (Ben-Arieh, Moodie and Nof 1985), Routing decisions of parts between
machines are derived in real time from policies encoded as decision rules in Prolog.

A Prolog system called MASCOT has been presented by Erschler and Esquirol
{1986) to schedule operations on machines in a Job shop. Each workcell operation is
described by duration, earliest start time, latest finish time, resources required and the
amounts consumed. The system uses the objectives associated with resources
to construct a partial order which characterizes feasible seluttons. Bensana, Bel and
Dubois {1988) have described 2 planning system called OPAL based on MASCOT
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which generates a job-shop schedule from the partial order using heuristic knowledge
supplied by the shop-floor manager about ‘technological constraints”.

Finally. a knowledge-based planning system has been presented by Shaw (1988) to
dynamically schedule a set of tasks (jobs) for a robotics workeell. The state of the
workeell is represented in a symbolic way via a ‘world model'. Each workgell operation
Is characterized by a duration and the set of required resources; pre-conditions and
changes fadditions, deletions) to the workcell are defined in terms of the world model.
Tasks are then defined as sets of required operations. At first, each task is planned
separately and then precedence constraints are ‘added’ to manage the mutual exclusion
associated with shared resources,

However, these systems are best described as production (or process) planners since
goals are associated with the scheduling problem. Indeed, they emphasize the
resolution of different kinds of scheduling requirements (which may be conflicting) at
different levels in the factory.

In this paper, we present SAGE, (sequence analysis by generalized enumeration) an
application-independent  Prolog-based decision-support system for workcell
sequencing anaiysis (Freedman and Malowany 1988a). Given the definition of the
operations required to perform the intended workcell tasks, SAGE first constructs a
Timed Petri net (Ramchandani 1974) to verify that the workcell program has a repetitive
form. Alternative repetitive workcell behaviours are then found by searching the space
of possible time evolutions of the workcell. Since the workcell operations are strongly
coupled, this space is of manageable size, even for medium-sized applications. {The use
of Petri nets in flexible manufacturing has been reviewed by Barad and Sipper (1988).

In contrast to the Al-oriented scheduling systems described above, the work to be
presented here has a completely different emphasis, since we view sequence
optimization as part of the off-line development of the workcell program, rather than as
part of the runtime control. For example, we make no attempt to ‘resolve’ runtime
conflict; rather, we simply explore the consequences of resolving such conflict in
different ways. In this sense, SAGE is designed simply to help the workceil programmer
evaluate alternative runtime ‘strategies’. Note too that SAGE performs no ‘planning’ in
the sense that there are no goals to be achieved (except the obvious one that the
intended workcell task must be performed).

To the best of our knowiedge, the only other research dealing with time in the
context of flexible manufacturing is that on FORBIN {Miller, Firby and Dean 1985).
Here the workcell consists of a single mobile robot tending several CNC machines, and
the set of travel times between machiges is provided to the system. Since the coupling
among the workcell operations is restricted to relations between the robot and the
CNC machines, the planner seeks to optimize the robot motions by assigning to each
task the time interval which results in a plan of minimal execution time. The resulting
search space is factorial in the number of tasks, and heuristics (c.g., deadlines on the
robot motions) are invoked to make the analysis possible; thus, the ‘best’ plan found
may be sub-optimal. Note too that parallel streams of operations are not treated.

[n the next section, we present a part-oriented programming paradigm along with
the required terminology. Next, a classification of workcell applications in terms of
runtime uncertainty, or non-determinism (Freedman 1989} is developed to understand
better what repetition means at the workceli level. Then a characterization of workcell
cycles is described to compare alternative cycles, based on workcell time, task
throughput, and machine utilization. Finally, the sequencing analysis is illustrated
using three small examples of increasing complexity.
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Work with SAGE was begun by the first author at McGill University (Freedman
and Malowany 1988a, Freedman and Malowany 1988b), and is now part of
continuing research at LAAS with the workcell programming environment NNS
(Alami 1984, Alami and Chochon 1986, 1988).

2.  Assembly workcell programming

In the context of automated assembly, a workeell task is a part-oriented description
of the time evolution of a part of part set as it is ‘processed’ by the workcell. The flow of
control is implicit here; the task takes the form of a set of part states and state
transitions.

A workeell program is a set of tasks to be concurrently performed. For example, the
workeell might be programmed to produce multiple sub-assemblies, or perhaps
perform distinct inspection and repair tasks on the same part set, In what follows, we
shall sometimes refer to the execution of a program task as an ‘instance’ of that task.

Associated with each state transition is an elementary action which describes a
modification of the part state. Thus, the set of elementary actions of a given task
characterize how the task is to be performed by the workcell. In this sense, the set of
elementary actions are the functional primitives of the workeell. Elementary actions
may be classed as either ‘deterministic’, when there is a single outcome, e.g. a robot
motion, or ‘non-deterministic’ when there are multiple outcomes, e.g. the inspection of
an assembly with outcomes {pass, fail}. (It is at this level that treatment or errors is best
introduced, by associating error-related outcomes with the elementary actions and by
defining extra elementary actions for error handling.)

Finally, we associate with cach workcell element a set of operations. Each operation
describes a modification of the workcell state (not to be confused with part state) in
terms of changes in the workcell resources. Each operation takes the form of a set of
enabling pre-conditions, an activity (command) to be executed, a set of post-conditions,
and the duration of the activity. Thus, the set of all workcell operations defines the
execution primitives of the workcell, i.e. ‘what’ the workeell can do. In general, an
elementary action may be realized by several different operations {or sequences of
operations).

We shall further classify the workcell operations as follows. Those operations which
figure in the definition of the workcell task are called required; they are associated with
transformations of the parts (e.g. loading, unloading, inspection and mating). The other
operations are called auxiliary; they are entirely associated with motions (of the robots,
conveyor systems, etc.) within the workcell. Such operations may or may not be
executed as part of the workcell task.

Since we shall be concerned with time minimization in this paper, we shall assume
that the duration of an operation is independent of its execution context, i.e.
independent of the operation previously executed, independent of the aperation to be
¢ wecnted next, and independent of the other operations to be executed in parallel. (If
this assumption is invalid, then the granularity of the operation is too coarse and the
single activity associated with the operation tmust be decomposed.)

For example, the assembly task ‘mate parts A and B’ might have the following
description:

0—{A, new), i.e. a new part of type A is in the workcell
0—(B, new)
{A, new)—(A, aligned)
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{B. new)—(B. aligned)

{A.aligned)and (B. aligned)—{AB. new)i.e. the aligned parts are mated and a new
assembly i1s obtained

(AB. new)—+{AB. +), i.e. the assembly was correctly performed

(AB, new)-~(AB. ), i.e. the assembly was incorrectly performed

(AB. +)—store result

(AB.—)—scrap resuit

Each step’is an elementary action; note that the operations required to perform the
elementary action are not specified. For example. parts may enter the workeeil as the
result of different workcell operations, e.g. a robot motion, or the motion of a convevor
system. The inspection of the assembly might be performed by a computer vision
system in a single image-processing step, or perhaps in several steps. Indeed, the set of
actions required is not unique when the workcell exhibits functional redundancy. We
will return to this issue shortly.

A key feature of the NNS workcell programming environmeat is the runtime
representation of the workcell program in the form of a condition/event graph called
the execution graph. Nodes are the part states, and the arcs are the operations required
to perform the desired workcell tasks. To perform the sequencing analysis based on
time, the execution graph is re-cast as a timed Petri net so that the durations of the
operations can also be modelled.

3. Workcell tasks: a classification

Clearly, repetition implies the absence of runtime uncertainty or non-determinism.
This non-determinism can take two forms. The simplest kind of workcell task can be
described as deterministic when: (i) the outcome of each of the associated workcell
operations can be compietely predicted; and (i) the operations follow one another in a
fixed way. For example, the task of a CNC machine is nominally determiristic. Since
the possibility of failure at each machining step is not considered, programming is a
matter of sequencing subject to the precedence constraints on the machining steps. But
even when all the workcell operations have predictable outcomes, there can arise
instances when mutually-exclusive operations become possible to perform at the same
time. For example, consider a single robot responsible for parts transfer between
several CNC machines. If multiple machines finish their required operations
simultaneously, then when the robot is free, multiple part transfer operations are
possible. Such conflict can be resolved by examining the consequences of the
alternative robot operations so as to optimize the usage of the CNC machines. This
might mean first tending to the machine with the operation of longest duration.

Therefore, we will say that a workcell task exhibits internal non-determinism when:
{a) the operations have predictable outcomes; and (b) there arise instances when
mutually-exclusive operations become enabled at the same time (due to resource
sharing). Note that here, non-determinism takes the form of runtime conflict; we use the
word ‘internal’ to emphasize that it is embedded in the description of the task itself.
Each instance of internal non-determinism must be resolved by examining the
consequences of the alternative operations. In this sense, programming means
respecting precedence constraints and optimizing the usage of shared resources.

But when we move beyond the definition of operations to consider the workcell
environment, another kind of runtime uncertainty becomes apparent. The workpieces
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might not be uniform, and they might arrive at the workcell with different orientations,
in different orders, etc. Of equal importance, the operations are subject to failure, due
to progressive wear/failure of robotic components, and to unexpected human
interference.

In general, this uncertainty describes non-determinism associated with the outcome
of a robotic operation. Such external non-determinism, i.e. non-determinism external to
the user description of the workcell task, can be handled in the following way. For
example, consider a workeell configured to perform the repair of printed circuit boards
with varying defects. A vision system might be used to inspect each board to determine
the nature of the defect {and the kind of repair to be performed). The visual inspection
could be modelled as a single sensing operation with alternative mutually exclusive
outcomnes {no_defect, defect_typel,...} ‘competing’ as the consequence of the sensing,
Similarly, the possibility of failure could be modelled by adding an extra outcome to
cach operation to represent failure (along with extra operations associated with the
recovery mechanism). Of course, this approach requires that all the outcomes
associated with the external non-determinism can be anticipated and suitably defined.

Stated in another way, imternal and external non-determinism represeat,
respectively, runtime uncertainty associated with conflict among mutually exclusive
operations, and runtime uncertainty associated with on-line events related to the
robotic environment. In the balance of this paper, we shall restrict our attention to
workcell tasks which exhibit internal non-determinism. (See Freedman (1989) for the
treatment of external non-determinism.)

Given this classification of workcell tasks, we still require a means of comparing
alternative sequences {and, therefore, schedules). This is the topic of the next section.

4. Comparing repetitive behaviours

One common metric used to compare sequences {or more properly, schedules
derived from sequences) in the job-shop literature is the completion time of ¢ach job
(Baker 1974). In this sense, we say that a schedule § dominates another schedule S’ if for
each job j,, the completion time ¢{S) < c(§'), i.e. each job completes sooner or no later
in § than in §".

In the context of repetitive manufacturing, we can replace the ‘time to complete’ by
the ‘time between successive completions’. And when the workcell operations are
strongly coupled, we will expect to find that the time between successive completions of
different workcell operations will be the same.. We shall call the period of repetitive
behaviour the workcell cycle time.

Using our terminology, makespan is the total time required to execute a task. When
the workcell program consists of just one task, then makespan =cycle time. But since a
typical workeell program ccasists of several tasks, the cycle time = the makespan of
each task since for any given task, the cycle time may include task ‘idle’ time due to the
inter-leaving of the different tasks.

But time, by itself, tells just part of the story. To compare different repetitive
sequencies more carefully, we introduce two additional metrics: the task throughput,
ie. the number of times each task in the workcell program is executed per cycle; and

machine utilization, i.e. the working time of the workcell elements as a percentage of the
cycle time.
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The operational information described by these metrics might be used in the
following ways.

(1 As described by Hall (1988). cycle time is key to the simplified analysis and
improvement of operational aspects, and to the balancing of production flows
at the factory level.

12) Task throughput can be used to determine the appropriate amounts and mixes
of parts for the input and output pallets associated with different tasks. In a
sense. this represents a fine-tuning of the resource allocation performed at the
factory level. If each task in the workceli program involves the assembly of a
different part set. then the processing rate of the task is simply the task
throughput divided by the cycle time. For example, if task; is executed n; times
during a workeell cycle with cycle m, then its processing rate would be n/mn.

(3) Machine utilization time can be used in two ways: to help select the operations
required to perform the tasks by identifying workcell elements which are under-
used, and to help formulate policies for periodic inspection and maintenance, as
suggested in (Wemmerldév and Hyer 1987).

As we shall see, the three metrics are not simply related when the workeell program
consists of multiple tasks. Such a situation is typical of automated assembly
applications.

We have demonstrated previously {Freedman and Maiowany 1988b) that a
workcell task which is ‘meaningful’ in the sense of ‘repetitive’ will always have a finite
State space. A simple cyclet in this space therefore represents one possible form of
repetitive behaviour. Since the space is finite, all simple cycles must have finite length.
(At worst, a cycle will contain every node.)

To simplify the enumeration of this state space, we introduced a simple heuristic: as
soon as a workcell element completes an operation, assign to it a new operation from
among the operations now enabled. At the time, we recognized that this incremental or
local’ minimization of machine idle time may not be optimatl in the ‘global’ sense, i.e.
optimal in terms of the workcell cycle thus obtained {as shown by Carlier and
Chrétienne (1985) for the general case of timed Petri nets). But for workceil applications
dominated by synchronization, the heuristic greatly reduces the complexity of the
sequence analysis at little ‘cost’,

When this heuristic is suppressed, a sense of forced waiting is added to our analysis.
We shall say that a workcell element is ‘forced to wait’ if it is now idle and at least one of
its operations to be performed is now enabled. According to the classification of
workcell tasks presented above, forced waiting is therefore a kind of artificial non-
determinism associated with the addition of ‘do nothing’ operations of varying
duration. Clearly, the addition of forced waiting increases the size of the state space of
workcell behaviour, and adds new cycles to the sequence analysis.

At this point, the following question comes to mind: Depending upon the mix of
durations of the workcell operations, does there exist a workcelt cycle of smaller cycle
time than can be found using the heuristic to locally minimize machine idle time? As we
shall see, the answer to the question is ‘sometimes’. Indeed, the answer critically
depends upon the structure of the workcell application, and upon the mix of durations
of the workcell operations. But even when the answer is ‘no’, a sequence with forced

t A cycle is simple if each arc in the cycle is traversed just once.
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waiting might be preferred, since the workeell throughput, or the distribution of
machine utilizations might be somehow preferred at the factory level Indeed, Hall
(1988} noted that when the cycle time ol a workcell must be reduced in order to balance
production flows at the factory level, but the processing rate of a particular machine
cannot be varied, that machine must lie idle for part of the workcell cycle.

We can therefere pose a second question as follows: Depending upon the mix of
durations of the workeell operations, does there exist a workcell cycle with a superior
processing rate for some task that can be found using the heuristic to Jocally minimize
machine idle time? 1n the following section we present various examples to make this
clear. The first example involves a single robot tending two CNC machines, while the
second and third concern two robots perfcrming co-operative assembly.

5. A first example

Consider a simple workcell consisting of two CNC machines and a single robot.
The machines work independently on different tasks, and on different part types A, B.
The robot is responsible for loading new parts and unloading finished parts at each
machine. This ieads to the following task descriptions.

Task A
0—(A, new)
(A, new}—(A, machined)
{A, machined)—0

Task B
0—(B, new}
(B, new)—{B, machined)
(B, machined)—0

Using these elementary actions, we now define the workcell operations using the
notation op;, for the jth operation of the ith workcell element, where element number |
is CNC 1, element number 2 is CNC 2, and element number 3 is the robot:

op,: (A, new)—(A, machined)
op;,: (B, new)—(B, machined)
ops;: 0(A, new) and (A, machined}—0
0p3» 0—(B, new) and (B, machined)—0

with the following durations: t,, =3s, 1,, =1s, 15, =2sand 13, =1s.

Using the heuristic of local minimization of machine idie time, a single repetitive
sequence is found, as shown in Fig. | in the form of a Gantt chart. Note that operation
op,, appears twice in the Gantt chart although it is executed exactly once {in two parts)
during the cycle.

Since operations op,, and op;, are each executed just once per cycle, the
throughput of task A is just 1. However, since operations op,, and op,, are each
executed twice per cycle, the throughput of task B is 2. This result can be generalized as
follows.

Theorem 5.1: All the operations associated with the same task must be executed
the same number of times.

Proof: By contradiction. First let’s look at the case where the workcell program
consists of just one task. Now suppose that for some cycle, at least one operation

53




Repetitive sequencing at the warkcell level

CNC L

vpll

(SR

Robat

apll apl

opl2 wpi3l opil

op3l

[—

[V
f—
y

1203

Figure 1. The repetitive sequence found via the heuristic for the first example, in the form
of a Gantt chart.
Throughput Processing rate Machine utilization (%)

Cycle Forced
time Task A Task B Task A Task B 1 2 3 waiting
5 { 2 020 0-40 0-60 0-40 C-80 No
6 1 1 016 16 0-50 ¢17 G50 Yes
7 1 3 014 042 0-43 043 072 Yes
7 1 1 014 14 043 015 0-43 Yes
10 2 1 0-20 o10 0-60 0-t0 0-50 Yes
12 2 2 016 016 0-50 17 0-50 Yes
12 2 2 016 016 50 G17 0-50 Yes

Tablet. Characterizing the seven different repetitive sequences found with and without forced
waiting, where the operations have the following durations: t,, = 35,1, = 1 s, 1, =2sand

T3, =1s.

is executed fewer times than the other operations. But by definition, each cycle
represents some form of (strictly) repetitive behaviour in the space of possible
time evolutions of the workcell. Therefore, we must be able to ‘glue’ the execution
of a cycle to the next execution of the same cycle. But if some operation remained
outstanding, we would be unable to ‘add’ it to the repetitive behaviour
characterized by the cycle. Therefore, all the operations must be executed the

same number of times during the cycle.

When the workcell program consists of N tasks, there will be N sets of
assoctated operations, and the previous result must hold for each set.

The data associated with the repetitive sequence found via the heuristic are
presented in the first row of Table 1. (The corresponding state space has nine nodes and
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Figure 2. One of the repetitive sequences found via forced waiting for the first example, in the
form of a Gannt chart. The shaded area denotes the interval of forced waiting. (Although
operatien op;, is enabled by the completion of opy, it does not begin until 25 later.)

11 arcs.) By suppressing the heuristic, six extra sequences involving forced waiting are
found, as shown in the same table. (The corresponding state space now has 21 nodes
and 54 arcs) Clearly, the last two sequences (with duration 12s) are merely
permutations of the second sequence (duration 6s) executed exactly twice,

To illustrate better how the forced waiting appears, the third sequence in Table 1
(cycle time 7s) is presented in Fig. 2 in the form of a Gantt chart, The shaded area
denotes the interval of forced waiting; although operation op,, is enabled by the
completion of op;,, it does not begin until two seconds later.

Of particular interest are the first, second, and third sequences in Table 1. Although
the second sequence is the time-optimal one with forced waiting, its cycle time is 1§
longer than the cycie time of the first sequence found via the heuristic (6 instead of 5 5),
and the throughput of task B is actually reduced from 2 to 1. Indeed, both task
processing rates are inferior since the cycle time is greater. But by increasing the cycle
{ime by I s more to 7s (the third sequence in Table 1), the throughput of parts of type B
jumps from t to 3, and the utilization of CNC 2 and the robot (workcell elements 2 and
3}increases from 0-17 to 043 and from 0-50 to 0-72, respectively. The reader may wish to
consult Figs. 1 and 2 to appreciate better how the sequencing of the workcell operation
changes. Note that the third repetitive sequence mught be preferred to the first one if a
cycle time of 7 instead of 5s was preferred at the factory level to better balance
production flows between workeells, or if a greater throughput of task B (3 instead of 2)
was desired at the expence of task A.

But the addition of forced waiting has important consequences on the time
complexity of the sequencing analysis, as shown in Table 2. The last column is the sum
of the CPU timet 1o enumerate the state space. identify all cycles, construct the

T Timing measurements are for a Sun-3.60 workstation.
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Number of Number of Number of CPU time

Case nodes arcs sequences (s)
With heuristic 9 11 1 55
Without heuristte 21 54 6 402

Table 2. Comparing the task spaces and time complexity of the sequencing analysis with and
without the heuristic of local minimization of tobot idle time for the first example.

Throughput Processing rate Machine utilization (%)

Cycle Forced
time Task A Task B Task A Task B | 2 3 waiting
8 1 2 012 0-25 062 017 075 No
9 1 1 O-tl ¢l 0-56 023 045 Yes
12 1 3 008 025 042 0-50 0-67 Yes
14 2 1 014 007 072 015 043 Yes
18 2 2 Ot 011 0-56 0-23 45 Yes
26 3 4 011 0-t5 0-58 o 054 Yes

Table 3. Characterizing six different repetitive sequences where the operations have the
following durations: 1,,=35s, 15, =25, 15, =25 and 15, =2s.

corresponding repetitive sequences, and generate the statistics associated with the three
metrics. It is clear that, at least for this example, the workcell analysis is rendered almost
10 times more complex by the suppression of the heuristic and the concomitant
addition of forced waiting. (Not shown in Table 2 is the space (memory) required by the
analysis, since we are primarily concerned with time complexity.)

To what extent are these figures representative if the actual durations of the
workcell operations differ from the values used in the sequencing analysis? Since the
operations are typically strongly coupled, changing their relative durations will, in
general, change the repetitive behaviour of the workcell (except when the workcell tasks
are strictly sequential).

For example, when all four operations have the same duration, e.g. 1,, =1,, =1,,
=13, =25, a single repetitive sequence is found via the heuristic, with cycle time 4 s and
each task executed once. (The corresponding state has five nodes and seven arcs.) By
suppressing the heuristic, five other repetitive sequences are found with forced waiting
(cycle times 4, 6, 8, 8 and 12's) which are permutations of the time optimal sequence.
{The corresponding state space is larger, composed of 11 nodes and 30 arcs.)

Now by changing just the duration of op,, to 5s, a single repetitive sequence is
found via the heurstic with cycle time 8s, task A is executed once, and task B is
executed twice. (The corresponding state space has eight nodes and nine arcs.) By
suppressing the heuristic, 14 other repetitive sequences are found with forced waiting,
with cycle times ranging from 9 to 29s. (The corresponding state space is again much
larger composed of 31 nodes and 77 arcs.) Results for a subset of these sequences are
given in Table 3. Again we observe that by selecting a repetitive sequence which is not
time optimal (in the sense of minimal cycle time), the respective throughputs of tasks A
and B can be radically aitered, along with the percentage utilization of the workceil
elements.

For ail mixes of durations of the operations for this example, the time-optimal
sequence can always be identifed using the heuristic. Therefore, the other sequences
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‘discovered’ by forced waiting simply demonstrate how cycle time can be traded off
against task throughput and machine utilization. In the following section, we present a

different example for which the time-optimal sequence is not discovered using the
heuristic,

6. A second example

Consider the example of two robots R] and R2 performing a singie task:
cooperative assembly. The assembly consists of two parts, p, and p,. Each part must be
pre-processed in some way (e.g. inspected or aligned) and then attached to a common
base, In addition, part p, must be re-positioned after the Pre-processing before it can be

attached to the base. We shall define the workcel operations to perform the assembly
task as follows:

op,,: unload the finished assembly at OUTPUT, and load from INPUT pew
parts p,, p,

Op,3: pre-process p,, and attach to base

0py 3! Te-position p,

OPa1: pre-process p,

op,;: attach p, to base

with the following mix of durations: Tn=181,,=351,,=135 Tyy=1lsand 1,,=3s

Using the simple heurstic, a single repetitive sequence 15 found, cycle time =105
(The corresponding state space has four nodes and five ares.) The associated data are
given in the first row of Table 4. Now by Suppressing this heuristic, nine other repetitive
Sequences are found; the results are summarized in the same table, (The corresponding
state space is much larger, with 21 nodes and 33 arcs,) Clearly, the time-optimal
repetitive sequence {second rOw) is superior in ¢very way to that found via the heuristic
(first row) even though it incorporates forced waiting,

The reader may be puzzled by the existence of four repetitive sequences with forced
waiting which have the same cycie time (10 s) as that of the repetitive sequence without
forced waiting. This is due to the fact that both robots are under-utilized by the
assembly task, and there are exactly four different ways of forcing them to wait witho ut
increasing the cycle time of the repetitive sequence.

The consequences of adding forced waiting to the sequencing analysis are
Summarized in Table 5. Once more, the CPU time required is increased about [ times.

Machine utilization %)

Cycle  Number of Processing ——— — 7% Forced
time sequences  Throughput rate 1 2 waiting
- - "7
10 I I 0lo 0-70 040 No
8 1 l 012 075 ¢75 Yes
10 4 1 0-10 G-70 0-40 Yes
1t 4 | 009 063 036 Yes

Table 4, Characterizing ten different repetitive scquences where (he operations have the
following durations: Thn=1s1,,=135s Ty3=3s, 15, =15 and Ty;=3s.




Repetitive sequencing at the workeell level 1207

Number of Number of Number of CPU time

Case nodes arcs sequences (s)
With heunstic 4 ) 1 20
Without heurtstic 21 33 10 U0

Table 5. Comparing the task spaces and time complexity of the sequencing analysis with and
without the heuristic of local minimization of robot idle time for the second example.

Cycle Machine utilization (°,)

Lime Number of Processing Forced
{s) sequences  Throughput rate 1 2 waiting
4 1 1 0-25 0-50 075 No
4 2 t 025 050 075 Yes
5 3 1 0-20 040 ¢-60 Yes

Table 6. Characterizing the different repetitive sequences with and without forced waiting,
where the operations have the following durations: t,, =1s, 1, =15 75, =1s and 1;,=2s.

7. A third example

To decouple partially workcell operations, sites for temporary parts storage within
the workcell may sometimes be used, in order to obtain more robust behaviour or to
enable the concurrent execution of multiple instances of the same task. As described in
an earlier section, we associate the motions to/from these sites with auxiliary workcell
operations. In this third example, we demonstrate how the consequences of adding
such sites and auxiliary operations to the workcell can be evaluated.

Here we begin with a variation on the previous example. Two workcell sites are
defined: s, for the input and alignment of parts of type p,; and s, for the input of parts of
type p, and for the assembly. The workcell operations are defined as follows:

op,,: load from INPUT]1 a new part p, at 5,, and add alignment pin
op;,: move p, from s, to 5,

op,,: load from INPUT2 a new part p, at 5,

op,,: assemble p; and p,, and move to OUTPUT

with the following mix of durations: 1,,=1s, 1,,=15, 7, =15 and 1,,=2s.

Using the simple heuristic, a single repetitive sequence is found, with cycle time
=4s.{The corresponding state space has four nodes and five arcs.) Now by suppressing
this heuristic, a total of five other repetitive sequences with forced waiting are found,
with cycle times of 4 and §s. (The corresponding state space is much larger, with 12
nodes and 20 arcs.) All these results are summarized in Table 6. Clearly, the extra cycles
with forced waiting are no better than the time-optimal cycle with no forced waiting.

Note the existence of two repetitive sequences with [orced waiting which have the
same cycle time (45} as that of the repetitive sequence without forced waiting. This is
due to the fact that robot R1 is under-utilized by the assembly task; therefore it can be
commanded to wait L s (at exactly two different time instants) without increasing the
cycle time of the repetitive sequence.

2.43
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11. Adding a buffer

Now we shall add to the workcell one buijer with capacity one part, to be used by
R1 to temporarily stock a part of type p, while R2 is busy (and site s, 15 occupied).
Therefore, a third workeell site b (buffer) is defined, along with the following operations:

op;y move p, from s, to b
OpP33. MOVE p, L0 5,

with the durations t,,=1s and 7,,=15s.

Using the simple heuristic, two repetitive sequences are found with cycle time =45,
must one sequence makes use of the buffer. (The corresponding state space has 13 nodes
and 17 arcs.) The data for these two repetitive sequences are presented in the first two
rows of Table 7. Since the second sequence involves the buffer, R2 must execute an
additional operation op, ,; therefore; its utilization increases from 0-75 to 1-0. However,
the per cent utilization of R1 does not change since op, replaces op,, and these
operations have equal duration.

Now by suppressing this heuristic, a total of 44 extra repetitive sequences with
forced waiting are found, with cycle times ranging from 5 to 22s. (The corresponding
state space is much larger, with 34 nodes and 82 arcs.) Data for a subset of these
repetitive sequences are also presented in Table 7. It is clear that, for this example, the
presence of the buffer is key to the formation of longer cycles.

The data in Table 2 also demonstrate how machine utilization is reduced as the
cycle time increases. Indeed, machine utilization is no longer important for comparing
repetitive sequences when auxiliary operations are executed, since these operations
cannot directly affect the task throughput and, therefore, the processing rate of the
workcell. However, machine utilization couid still be used to help schedule periodic
maintenance.

The relative complexities of the sequence analysis for the various cases are
summarized in Table 8. When the buffer is not considered, the addition of forced
waiting increases the CPU time by a factor of 5 for this example {as opposed to a factor
of 10 for the two previous examples). When the buffer is added, even the CPU time

Cycle Utilization (%)
time Processing Buffer Forced
{s) Throughput rate 1 2 used waiting
4 1 0-25 0-50 075 No No
4 1 025 0-50 1-0 Yes No
5 1 0-20 0-40 060 No Yes
5 1 0-20 0-40 (80 Yes Yes
6 1 016 033 ¢67 Yes Yes
9 2 0-22 044 078 Yes Yes
10 2 020 040 070 Yes Yes
11 2 018 037 073 Yes Yes
15 3 020 040 073 Yes Yes
17 3 017 035 065 Yes Yes
21 4 o19 038 0-67 Yes Yes
22 4 18 0-36 064 Yes Yes

Table 7. Characterizing a subset of the different repetitive sequences for the cases of with
and without the workcell buffer.

3. 44
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Number of Number of Number of CPU ume

Case nodes arcs sequences (s)

No buffer. heuristic 4 5 1 20
No buffer. no heunstic 12 20 5 9-3
Buffer. heuristic 13 17 2 R8
Buffer. no heuristic 4 82 44 1319

Table 8. Comparisons of the task spaces and time complexity of the sequencing analyss with
ant without the heuristic of local minimization of robot idle time. for the cases of with and
without the workcell buffer.

required using the heuristic is greatly increased. But this increase is much smaller than
that incurred with forced waiting. Although the size of the task space do¢s nol grow
inordinately, the number of repetitive sequences discovered increases 20-fold. This is
due to the fact that the buffer partially de-couples the operations of the two robots,
thereby leading to many more possible sequences.

The comparative analysis presented here could also be used to study other kinds of
operational varations. For example, when several workcell elements share the same
workcell volume, it is sometimes convenient to command them to wait at a particular
location outside the shared volume whenever they are idle, in order to simplify the
execution of the other operations which involve the shared volume. Clearly, the
consequences of ‘adding’ such locations (and their associated motions} could also be
investigated via our sequencing analysis.

8. SAGE

In its current form, SAGE is a collection of 14 small programs written in C-Prolog
(Pereira 1984) (comprising some 3500 lines of source code) which execute under the
Unix operating system on either VAX or Sun families of workstations. Only the
graphics interface (Brachman 1985) is particular to Sun, since it makes use of the
SunCore graphics library.

SAGE creates a representation of the repetitive runtime behaviour called the task
space from a description of the workeell application as a timed Petri net. The core of the
analysis is performed by three programs, as described below.

8.1. Generation of the task space

The first key program generates the task space ina breadth-first manner, as a set of
nodes and arcs. When the workcell application is strictly sequential, each operation has
a unique successor operations and the nodes and arcs form a single cycle. However,
most practical sequencing problems exhibit some degree of internal non-determinism
which gives rise to branching in the task space, i.c. when multiple competing operations
become enabled for the same workcell element, SAGE explores the consequences of
cach alternative by creating a new node for each permutation of elements in the lists of
candidate successor operations.

Unlike conventional simulation in which time advances by some fixed interval at
each iteration, the time interval here between iterations changes as the task space is
explored. At each iteration, we ‘leap’ ahead to the first time instant at which a condition
now pending will become true. Experiments with workeell applications of moderate
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size and typical variation in the durations of the operations have shown that this
adaptive timestep can reduce by two thirds the computer time required to generate the
task space.

The time complexity of the task space generation and analysis is difficult to
measure, since it depends upon how the operations are related and their durations, if at
some time there are N active elements {i} which have {n.} successor operations, then the
number of possible permutations to consider is n, x n, X ... x ny. As previously noted,
each permutation becomes a new branch in the task space to explore when this number
is small. But when this number is large, the heuristics must be invoked which introduces
extra time complexity. Similarly, the extra complexity associated with the calcuiating
the adaptive timestep can only be justified when the durations of the operations vary
substantially; otherwise, time could be more simply advanced by a fixed value (such as
the greatest common divisor of all the durations) which could be calculated just once at
the state of the task space generation.

8.2. Finding cycles in the task space

A closed path in the task space consists of a cycle characterizing some repetitive
behaviour, plus some transient behaviour associated with start-up from the initial
workeell state. Although we shall now restrict our attention to just the cycle, it must be
noted that the transcience is aiso part of the runtime ‘program’, since it describes how
the workcell is driven from the initial state to ‘induce’ the repetitive behaviour.

Cycles in the task space are found in two steps. First, a spanning forest is generated
using depth-first search. Then, the extra arcs in the task space which are not in the
spanning tree are processed; these arcs are called ‘chords’. In this way, we obtain simpie
cycles which are elementary, i.e. no node is visited more than once. Finally, elementary
cycles which share nodes are combined to obtain new cycles which correspond to the
‘interleaving’ of independent workcell tasks (see Section 2).

8.3. Cycle analysis

Although cycles in the task space correspond to repetitive sequences, not all
sequences are complete, i.e. each of the required workcell operations is executed at least
once. (Auxiliary operations may or may not be executed.) For instance, the task space of
the first example described above for two CNC machines and one robot contains two
incomplete cycles consisting of just one CNC machine and the robot working together
while the other CNC machine lics idle. Clearly, this means that just one of the two tasks
in the workeell program is performed by the workeell.

The cycle analysis has three steps, and is performed by two programs. First, cycles
which are incomplete are deleted from further consideration; second, the repetitive
sequences based on the remaining cycles are created; and, finally, the three metrics are
determined for each sequence.

The time complexity of the cycle analysis is simply (O{N), where N is the number of
cycles in the task space, since each sequence is examined Just once at each step.

9. Conclusions

In this paper, we have shown that when the workcell tasks are repetitive, the notion
of a workeeli cycle becomes important and we can associate with each workcell element
a repetitive sequence of operations. But there may be multiple repetitive sequences
inherent in the mapr ing of the tasks to workeell operations. This is the motivation for
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our decision-support system called SAGE (sequence analysis by generalized
enumeration). First. the state space of all possible ti = evolutions called the task space
is enumerated. Cycles in this space represent repetitive sequences, and those which are
‘complete’, Le. which contain all the required operations, can be used by the workeell
runtime system to perform the intended tasks. Using cycle time, task throughput, task-
processing rate. and machine utilization, we demonstrate how the alternative
scquences could be compared.

In contrast to Al-oriented scheduling systems, our work has a completely different
emphasis since we view sequence optimization as part of the off-line development of the
workcell program, rather than as part of the runtime control. For example, we make no
attempt to ‘resolve’ runtime conflict; rather, we simply explore the consequences of
resolving such conflict in different ways. In this sense, SAGE is designed simply to heip
the workcell programmer evaluate alternative runtime ‘strategies’. Note too that
SAGE performs no ‘planning’ in the sense that there are no goals to be achieved (except
the obvious one that the intended workcell task must be performed).

To simplify the sequence analysis, a simple application-independent heunistic was
introduced, to locally minimize the idle time of each workeell element. In this sense, just
a subset of the complete task space was searched; therefore, just a subset of possible
workcell cycles were identified. By suppressing the heuristic, the complete task space is
searched and different repetitive sequences with forced waiting were found. Sometimes
such a sequence with forced waiting was ‘bettet’ than the sequences without forced
waiting. We are now looking for ways of recognizing this ‘sensitivity to forced waiting,
within the context of our ongoing work with timed Petri nets.

However, the suppression of the heuristic greatly increases the time complexity of
the sequence analysis. For example, this might mean several minutes {(instead of
seconds) of calculation on a Sun-3/60 workstation. However, we see this as no real
obstacle since the sequencing analysis described in this paper is meant to be performed
off-line.

Clearly, the simple examples presented here are not representative of typical
workcell tasks. Nonetheless, the state space of even these examples is much too large to
be analysed in a manual way. To handle larger problems, other pruning mechanisms
must be used. For example, a desirable task throughput could be specified by the user as
part of the specification of the workcell program. Then when a partial path (not yet a
cycle) in the task space exceeds this throughput, it would be deleted from further
consideration. In the case of our first example, if the throughputs or tasks A and B were
to be limited to one, then five of the seven possible repetitive sequences would be pruned
(see Table t).

Of course, the C-Prolog impiementation itself limits the speed of analysis and the
size of analysable problems. This was the motivation for the development of a second
implementation of SAGE for a different Prolog which offers the possibility of
compilation. We report new results (Freedman and Alami 1990) which indicate that
CPU time required for the apalysis is now two orders of magnitude less, making it
possible to treat workcell programs of a more practical size.

Although not treated in this paper, a restricted amount of external non-
determinism related to runtime sensing can be analysed when the workcell program
consists of a single task. For example, consider a computer vision system performing
inspection of printed circuit boards; the outcome of the inspection operation is either
‘pass’ or ‘fail’. By ‘pretending’ that each cutcome always occurs, we can construct two
families of cycles, one for ‘pass’ and the other for ‘fail’ {Freedman 1989). Each cycle
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would correspond to some repetitive workcell behaviour ‘anchored’ by the inspection
operation. The various cycles could then be compared using the metrics developed in
this paper (cycle time, task throughput, etc) and an optimal cycle would then be chosen
from each family. These two cycles would form the basis of two distinct workceil
runtime programs. The global behaviour of the workcell could then be summarized by
averaging their metrics, e.g. n(average) = (r(pass) + n(fail))/2. If the frequencies of the
outcomes can be a priori estimated, €.g. 90% pass, 10°%] fail, then a weighted average
could be calculated, eg n(average)=090m(pass)+0-10tn(fail)).
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Dealing with Time ip Planning and Execution
Monitoring

Malik Ghallab, Rachid Alami, Raja Chatila

LAAS-CNRS, 31077 Toulouse cedex, France

1 Introduction

Robotica researches focus usually on one of the two generic classes of
robotica applications:

« the structured environment class, and

e the unstructured environment class,

A good Paradigm of the first clags is that of fexible asgembly celis,
whereas antonomous mobile rabots, for example in public safety ap-
plications, are protatype elements of the second class. Although there
are some applications that fall in between (e.g. a fexible maintenance
and repair cell), these two classes present a significant spectrum of
reaearch problems that have to be solved in third generation robots.

There are severa] common points and differences between the two
classes, for example in space Tepresentation and geometric Teasoning,
in control problems, or in perception systems. We will be concerned
here solely by planning and execution monitoring aspects involved in
these two classes.

The Robotics Group at LAAS has been developing for several years
two experimental Projects, one in sach ¢lass: HILARE, a mobile robot
{16} {8], and NNS an environment for managing a flexible assembly
cell [1] {11}. Two distinct, approaches to planning and execution mon-

compilers. None of our Previous approaches was able to Tepresent ex-
plicitly and deal with time and real-time at the Planning level, and
at the action and reaction level,

tasks. A subsequent goal waz to come up with a satisfactory approach
for meeting these requirements, and o apply it to our experimental
Projects.

This paper reports on our findings and the actual state of the work.
The next section analyses the temporal structures required, surveys
known methods, and developes the proposed approach that relies on
an original data structure, called an Indezed Time Toble {(IxTeT).
An fxTeT is a hierarchical representation of temporal relations in
a plan (relations between goals, events, actions and their effecta),
together with an efficient management of the time lattice. Section 3
develops and ilustrates through an example of realistic complexity

the embodiment of the proposed approach for one of the 2 generic
classes considered: the flexible assembly cell environmen,

2 Temporal structures for planning and
acting

Different types of actions may involve different kind of Tesources
(space, tools, sensors, particular abilities of the robot, Programs and
computer resources... ). Byt every action involves time. Information
describing an action exhibit a rich temporal structure; the time at
which the action has been {or will be) considered and decided, when
it could be carried out, when it did {or may) start, its duration, when
¢ach of its effects held (or wil] hold}, and the various relations {be-
fore, during, at the same moment.. .} between these time points or
intervals. Events that take place in a dynamic environment have sim-
ilarly 2 temporal struciure (except that they are not under the robot
control).

Sech knowledge is difficult o Tepresent and manage, it lacks preci-
sion and certainty, and leads to huge combinatorics. It is however
absolutely required if a robot hags to act in a dynamic environment
coherently and efficiently towards some goal, and to react sensibly
and in real-time to external events. Let ns analyse the requirements

2.1 Temporal knowledge required in planning

Planning for a goal, ie, deciding in a given situation what to do and
when todo it, in 5 Projection over a desirable future. Such projection
relies on the knowledge of Past and current states of the world, and
results fraom the analysis of several possible futures where goals and
expected events have been tentatively set and tried to be met or
dealt with through actions. It is thus mainly a reasoning on time: a
Processing of the temporal structures of goals, actions and events.

Goals: in genera] they may be given with both relative and absolute
time links. The “conjunctive goals® planzing problem [7] is just a
particular case of the situation where goals are partially ordered. For
example: “pack up bolts A and assemble sub-system B then bring
back both®,

Goals may also be linked by aynchronisation, overlapping and dura-
tion constraints, e.g. “feed parts A and B simultaneously‘ i “keep
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spring A loaded while inserting shock absorber”. Similar relations
may be used to set goals relatively to expected events, e.g. “heat
until but no more than the red peint” ; “unload wagon A during its
next stop”.

Achievement of goals may also be specified with regards to absolute
time bounds: ‘reach location A before sunset™ ; “fix the leak or leave
area B before end of count-down timer” .

Thus in general a goal corresponds to an interval of time {or a time
point) during which a property should hold, and one may need to
constrain the length or position of this interval relatively to other
goals, events or absolute references.

Actions: they take place during a time span that has a constrained
length (duration). Their effects and conditions should be located
with respect to this interval. Some effects hold from the beginning of
an action, others during it or when the actions ends; indirect effects
may lag well behind the action.

A decomposition operator (or a skeleton of plan) may describe a
structure of elementary actions together with their relative position
in time and their compound effects.

Actions that share resources or are done by the same agent may have
additional time constraints that do not result from their elementary
description (such as overlapping, disjoining or synchronization rela-
tions).

Events and world deseription: the current state of the world is
just a part of what needs to be described in a dynamic environment
where changes may result from other causes then the robot own ac-
tions.

Past eveats and states could be important for future decisions. This
is the case for events without effects on the present but that may have
future results; for example an intermittent failure, or a fixed failure
that could have a delayed effect.

Information about the expected future are evidently essential in plan-
ning: what will or may happen in the environment if the robot does
not act. This concerns:

* scheduled eventa: bound to happen at known time {relative
or abgolute); e.g. “workshop garbage is collected at 07:00" ;
“feeding cart comes every 20 minutes”.

conditional events: will happen when some conditions are
met (immediately or after a delay); e.g. “overflow of a bin or
storage place at some threshold®, “failure in computers room
cooling equipment, if not fixed, will results approximately 1
hour later in an automatic shut down of all computers”.

A robot may plan to act in order to prevent some expected events
(the above shut down). It may also plan to take profit from their
known effects to reach its goals, thus synchronising its actions with
world changes. Processes that take place in the environment may
be considered just like events, except that they have durations that
could be conatrained.

In summary the various knowledges required as input by a planner,
i.e. goals, actions, events and world properties, have time intervals
that can be constrained in duration, are related to each others and
to absolute references,

The output of a planner should be a conditional plan: several sets of
actions, temporally structured, and whose projected effects achieve
the given goals and their temporal constraints, taking into account
current and past states of the environment together with the expected
events. This conditiona! plan should be generated together with an
execution mode] that specifies:

¢ the conditions and rules that will be evaluated at execution
time to resolve non deterministic choices,

» the properties to be monitored for checking direct or indirect
effects of actions,

 the sensorial informations to focus attention on in order to de-
tect expected events.

The corresponding temporal knowledge would be: when and for how
long checking, monitoring and focusing should be done. The plan
execution model should also detail synchronization steps and other
critical phases, taking into account the real duration of actions, delays
of their ¢ffects, length of processes. . .

As it will be argued and illustrated later, the differences between a
structured environment planner and an unstructured one cannot be
grasped into a unified approach unless planning is considered as a
hierarchical process that is pursued deeper opportunistically as con-
ditions (knowledge, time for planning...) permit or require.

2.2 Time in Execution Monitoring

Execution monitoring is used here in a broader semse than the re-
stricted literal interpretation. In fact we are interested in most deci-
sion making aspecta related to acting and reacting.

Acting requires necessarily a plan. There is however a large over-
lapping between planning and acting. Plans need refinement at exe-
cution time: an action considered elementary at planning level may
require at execution level a further decomposition chosen such that it
fits the current situation. Conditional plans involve choices between
alternatives, eventually only one of which (the most likely one) has
been fully pursued at planning time but another one may need to be
developed and resubmitted to the planner at execution time. Unex-
pected events may require partial modification or rejection of current
plan. Even cutrent goals may have to be discarded or postponed for
more urgent ones.

Tasks devoted to a robot execution monitor are thus: moenitoring,
keeping track of the state of achievement of current plan, refining
adequately actions and implementing them, chosing among alterna-
tives, focusing the atiention of sensory systems, deciding about short
terms reactions to unexpected events. Those tasks involve mainly 2
temporal aspects: how one keeps track and defines permanently the
present time, and how one deals with real-time.

The present is defined relatively to the projected future. It evolves
normally as planned, or may “jump” backward in the plan, or for-
ward, or even out of the plan. The advance of time is discontinuous
and driven by asynchronous events {although a robot may have a
clock that gives the absolute time). Each expected event when ob-
served instanciate a particular future: if P and Q are expecied next,
Q happening before P reduces uncertainty for what should come iater.
Observing the occurrence of an event expected much later may change
locally or significantly the rest of the plan, e.g. if it was to result from
a forthcoming action, the purpase of this action has to be recongid-
ered. A “positive” event (forward jump in the plan) may achieve
directly part of the goals, e.g. a motor that resumes operations while
the robot is in its way to reach it for repair. On the opposite a *neg-
ative” event {backward jump) may cancel the effects of a previous
actions and make them necessary again or show them ineffective and
require another plan,

The real-time requirement is mainly due to the dynamic feature of
the environment, ie. to unexpected changes and evenis that happen
asynchronously, at a speed not under the robot control, but that
require from it adequate reactions. Such events should be perceived,
identified, and at least partially understood before a decision about
how to react can be taken. We are talking here about unexpected
events that the robot knows about, and can deal with.

To perceive and identify an unexpected event a robot should be look-
ing for its eventual happening. This awareness or focua of attention
relies on execution monitoring: critical actions or phases of a plan



should trigger particular monitorings. The real-time reaction to an
event should correspond to a set of actions hierarchically ordered by
response time, e.g. with the following 3 levela:

* an immediate reflex action: most of the time a direct mapping
from the event identification;

® a short term adaptation to the new situation: to permit full
assessment, goals evaluation and replanning;

+ a long term reaction according to the new plan

For example: a fast autonomous vehicle faces a closed path

# reflex: it brakes to avoid collision
= short term adaptation: it parks safely and replan

* long term reaction: it takes another itinerary (this can overlap
with the previous level).

2.3 Time in structured and in unstructured en-
vironment applications

A scenario for a structured environment application is that of a multi-
sensory, multi-arm, flexible cell for robotics assembly that has to carry
out the same task for a short time (few days) with the maximum de.
gree of robustness, error recevery and efficiency (see detail in section
3.1)

A scenario for an unstructared environment application is that of
mobile robot working in a hazardous area that is required to go to
some place, to find and fix a leak, or to leave that place before an
automatic shut down.

The following table sketches the main differences of interest to us
between this two classes:

structured unstructured

- variability of the environment low high
- variability of goala low high
- degree of knowledge

modelization and programming high low

- degree of autonomy low high
- degree of parallelism high low

How time is involved in this two classes of applications 7

Structured environment:

o off-line tasks : time is involved only at the reasoning level

* on-line tasks :

-each agent in this distributed multi-agent system has the same
share of time {other resources are shared differently);

- at a macroscopic level time iz seen as periodic (repetition of
the task};

- time has to be optimired
Unstructured environment:

» there are almost no off-line tasks {except high level learning),
most planning has to be done in real-time;

e there are more constraints on a unique agent, less paralielisim
and almost ro repetitive tasks
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» a clock giving the absolute time s required

These differences have several consequences for planning and execu-
tion monitoring. In the structured case most of the planning can
be done off-line, Giving the a priori knowledge about the environ-
ment and its low vaniability, one may aim for a conditional plan, or
a scheme of plans, that foresees 2 large number of possible fatures,
and organize this set of plans into a detailed execution model.

In the unstructured case a detailed plan, even if it can be gener-
ated, would be useless (not achievable). The task at hand could be

Planning being done on-line in the unstructured case, it is just like
any other action: it has a duration (unknown, but constrained) and
overlaps with other actions. As time permit, planning can be pursued
into deeper levels of detail, or stopped at just a sketchy skeleton to-

are both involved at action time. Unexpected events that make the
plan non achievable are easily checked, those not involved in the plan
but that make it obsolete require a limited replanning.

In the structured case the on-line system relies on the execution model
to instanciate a particular plan, among the schema of plans, that fie
the current situation. No simultaneous use of the off-line planner and
the on-line system is required,

2.4 Temporal Knowledge in known Planners and
Execution Monitors

Now that we have freely prospected what knowledge we would like to
express and what should be done with it, let ua briefly survey what

can be done with known planning and execution monitoring technics.

Situation caleulus and state-gpace representations: The para-
digm here is STRIPS [13]. There is no explicit representation of time
in such systems, just a linear sequence of states. Actions are mod-
eled by a triple < pre~conditions, delete-lint, add-list>. They do not
have a duration, and their effects take place in a single instantaneous
transition from state to state. The goal is a single atate. No coming
event can be taken into account. The world is assumed to be static
but of the only actions planned for {thus there is no real time).

Some discrepancy with planned atates can however be taken into ac-
count at execution titne. Execution monitoring relies on the Triangle
Table method [12]. A Triangle Table is a data structure that summa-
rises all conditions and effects of @ sequences of STRIPS-like actions
and their relationships. The *kerpel® of the table defines what has
been consistently achieved so far. If permanently computed at exe-
cution time it will enable to [ocate the present state of the world in
the plan and to inform the execution monitor about what to do next
[19] and [20]. Replanning will be required if the kernel i8 empty.

Procedural or task networks: They have been developed in NOAH
[21] and NONLIN {23]. Planning is a hierarchical process based on
task decomposition. For efficiency reasons and in order to avoid un-
necessary constraints and backtrackings “early commitment®) con-
current sub-taska are considered. A decomposition is a partial order
of actions and sub-tasks to be ackieved by further decomposition. Or-
dering constraints are later on added by a critical assessment of the
network (if not possible a backtracking is performed). The planner’s
output is thus a partial order of instantaneous actions, opportunisti-
cally ordered at execution time,

Windows and durations: They are temporal concepts used in
DEVISER [25] 10 extend the task network approach. A window is
one or 2 numerical bounds on a forthcoming time point. Goals are
constrained relatively to absolute references, e.g. (goals {(window
between 10 50) (duration 1000)) (P} {Q)) requests that properties

4-3
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P and Q should be achieved simultaneously sometime between t=10
and t'=50, and should hold for at least 1000 time units. Actions
are represented by the usual triples <pre-conditions, del, add> in
addition to a fixed duration. All effects take place at the end of an
action. Unconditional events scheduled at times bounded by known
windows can be expressed. Planning is performed as in NONLIN
by node decomposition, this is done in addition to a propagation of
numerical inequalitiea along the task network, that constrain further
allowed windows and may lead to backtracking. The planner's output
is similar to a PERT chart.

Thus DEVISER represents time as points, bounds and values on the
real axis, that are processed only when given numerical values, No
relative relationships (between goals, events, actions and their effects)
are allowed, neither are conditional events.

Temporal logic of intervals: It has been developed in [2 and
[4], and proposed for planning in [3|. It is a general world model
where each assertion is temporally qualified by a symbolic interval
over which it holds. An interval is related to another oge by a tem-
poral relation or a disjunction of [mutually exclusive) relations, such
as: during, start, overlap. Each interval is represented as a node in
a complete graph whose consistency is maintained by transitive clo-
sure propagation, ¢.g. adding “A overlaps or meets B* propagates to
all other intervals related to A and B, thus adding new constraints
that propagate at their turn. . . eventually leading to a contradiction.
Past and current properties of the world are directly expressed in
this temporal graph. Even non temporal properties are represented
as quantified expressions on intervals.

Future events are temporally related to the conditions that trigger
them. Goals and their relationships appear like expected events ex-
cept that they should result from actions to be added in the graph.

An action is also an interval temporally linked to the intervals of its
conditions and effects intervals, e.g.

"if action STACK(x.y} occurs over interval I-stack then
I-stack finishes the interval I-clear-y over which
CLEAR(y)} holds, and
I-stack meets the interval I-on-xy over which
ON(x, y) holds. and
I-atack is during the interval I-clear-x over which
CLEAR(x) holds".

The plaaner's output is a consistent temporal graph that includes
the one giver as input, and where every goal results from {has been
causally explained by} the effects of planned actions.

This approach has some nice features: time is explicitly dealt with
at the symbolic level, general qualitative relations can be expressed,
intervals are very flexible (they are implicitly stretched or moved to
allow insertion of other actions as Planning progresses), synchronized,
overlapping and parallel actions can be generated.

But the temporal logic of interval has also several drawbacks and
reatrictions:

* at the knowledge representation level: it i a strictly relative
model that does not allows acheduled dates, deadlines, dura-
tions, or absolute delays {thus a solution given by this approach
may not be feasible);

at the programmer's level: a large number of intervals have to
be explicited and described;

at the planning level: the plan cutpul is non conditional, ie, it
is a single projected future of what will happen if every thing
goes well;

at the problem solving level: the homogeneous Tepresentation
of all knowledge as relations on temporal intervals leads to a
very large graph, the management of which is an exponential
process (that also requires a vast amgunt of memory); this does

not reduce the usual complexity of planning {backtracking is
still required), thus making the Practicality of the approach
questionable.

A recent paper [22] unifies that approach with that of 18] into a
more rigorous theory (based on time points instead of intervals). It
formalizes clearly the syntax and semantics of formulas in this tempo-
ral logic. However it does not address the above mentioned problems.

2.5 The Indexed Time Table approach to Plan-
ning and Execution Monitoring

This section introduces a knowledge representation formalism and
structure, called an fndezed Time Table {IxTeT) that will enable
Us ta express absolute and relative temporal relations between prop-
erties, events, goals and actions. It will be argued through simple
examples and informal algorithms that the proposed representation
is a promising approach towards filling the requirements previously
set for planning and execution monitoring.

2.5.1 A formalism for actions, goals and events

We need to express intervals and time pointa, together with their
relationships:

* qualitative relations between 2 intervals: before, meet, over-
lap, start, during, end, equal, and their inverses (after, is-met-

by. .. see [2]):

before meet overlap

— F— —
= — —

start during end equal

— — —

=
— —

»

qualitative relations between an interval and a time point: be-
fore, during, start-at, end-at, after. Other relations can be
expressed by combining those above, g

{disjoin A B) is equivalent to

(or (before A B) (meet A B) (after A B))

{start-before A T) is equivalent to

(or {(during A T) (end-at A T) (before A T))

quantitative relations between 2 time pointe or extremities of
intervals, e.g.

(> (span (beginning Intervl) (termination [nterv2})

(span Interv3)}

Some absolute time references can be used, e.g.

(clock Value-A), (end Timer-B).

Planning being a hierarchical process, we will rely on decomposition
operators to specify the steps required to achieve a task. Such oper-
ators will be described as in the following example that defines a 3
actions and 2 pre-conditions operator:

(to (achieve (on 7x 7))
(when (on ?x ?z))
(do  ateps s1 (achieve (clear x))
82 (achieve {clear 7y))
83 (pickup ?x ?z)
o4 (holdmove ?x (pamition ?y))
35 (putdown ?x 7y)
such-that (meet s1 83)
(meet 82 o5)
(neet 83 p4)
(meet a4 a5)))



The “when” field specifies the context of decomposition: the “do”
field can be a single action or task, e.g.

(to (achieve {clear 7x))
{when {and (on ?y ™x) {clear 7z)))
(do  (achieve (on ?y ?z))))

Actions and their affects are described wndependently of decomposi-
tion operators. For example:

(describe (pickup 7x 7y)
(effects met-by (clear ?x}
meet  {clear ?y)
end  (on ?x 7y))

(duration 20)}

(describe (putdown ?x 7y)
(effects met-by (clear 7y)
start (on 7x 7y)
meet (clear ?x))

(duration 20))

A “when” field can be added to specify different effects and dura-
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The output of this preprocessing analysis is represented as a time ta-
ble, called an O TT, that summarizes action positions and truth values
for all properties involved in the operator (effects and subgoals) along
a sequence of symbolic time points. The time table corresponding to
the previous example is given in Figure {, Three contiguous actions,
thus 4 time points are needed for this operator. Few simple temporal
relations have been propagated to check possible matching of inter-
vals, e.g. effect [clear 7} of putdown cannot be the same interval
as that of (clear 7x) of step s1 otherwise we would have a loop. All
logical relations {non temporal} between properties involved in the
operatar are taken into account, e.g.

¥ xy {clear 7x} ~— (not (on 7y ?x)). The usual hypothesis for
negation by failure for closed world is assumed,

t1 2 t2 t4

{clear ?7x) [Ge(s1) a(14} ta(t4)]
(on ?x 7y} e (tb(t1) e(t2) fa(t4}]
(pickup ?x Tz) (s(t1) e(r2)}

{clear ?2) —-ooo-__ —_ [fb{t1) w(t2) ta{t2)]
(holdmove 7x) LNUTORTR| [e(52) o(t3)]

(clear ?y) —-- [Ce(td) fa{t4))]
(putdown 7x 7y) AV [8(t3) e(t4)]

fon ?x 7y} —eemeee . P———  [fb(t1) u(t3) ta(td)]

Figure 1

tions in various situations. The duration field can be any evaluable
expression on the action variables. Quantitative delays can be added
to temporal relations between an action and its effects. Note that the
preconditions of an action that are not affected by it do not appear in
its description: they are subtasks in a decomposition operator. This
clean separation between decomposition operators and the descrip-
tion of actions (as in [23)) leads to a modular and powerful formalism
(there are different waya to combine a “to” operator with its actions).

Expected events, scheduled or conditional, are expressed by the fol-
fowing operator:

(expect event
(when context)
(effects temporal-relationi Propertyl
temporal-relationl prapertyN))

The context in the “when™ field can be:

* a scheduled time, e.g. (starts-at {clock 0700)}; or

* a conjunction of conditions that trigger the event together with
temporal links to it.

A duration field can also be associated to an event.

Finally the required goals are defined by an achieve operator:

(achieve goals goall absolute-conmstrainti
goallN absolute-constrainti
auch-that (temporal-relations between goals)s )

Absolute constraints are temporal relations between the required
goals and known intervals or time points.

2.5.2 The Indexed Time Table

Temporal relations in the above formalism Link implicit intervals; this
make the knowledge easier to specify and read. But this knowl-
edge cannot be used unless an internal representation make the cor-
responding intervala explicit: the same property may have several
instances, each one can be true and false at different intervals (e.g.
there are 6 instances of {clear 7u) in the above example}. Thus an
analysis of each decomposition operator and its actions is needed in
order to explicit and match consistently the right intervals.

In this table a solid line denctes a true property, a broken line a
false property, a rectangle is the interval of an action. End points
of intervals are marked whenever known. Those corresponding to
subgoals are indicated by circles. A complete symbolic representation
of an OTT (given on the right of the figure) needs apecification of
truth values together with temporal relations. We use the symbols
tb, ta, fb, fa for reapectively true before, true after, false before and
false after; s stands for start-at {was false, became true}, e stands for
end-at {from true to false), G denotes a subgoal. Notice for example
how step s1 and the relation (meet 51 33) is translated in the first row
as Ge(tl), whereas the 3rd effect of action putdown corresponda
for the same row to [s(t4) ta(td)].

Animportant property of this structure: it is not allowed to introduce
an interval in a row between 2 time points one of which being an s
or an € not prefixed by a G, e.g. an new interval for {clear ?x) is not
allowed between t1 and t4. The corresponding interval is said to be
non breakable for that property.

An Indexed Time Table (JzTeT) is a structured organization of sev-
eral OTTs, that is generated by a planner and corresponds to a com-
plete plan together with its time structure. It starts initially from
a time table describing current and Past properties of the world,
expected events and required goals together with their temporal re-
lations. A goal is expanded using an appropriate decomposition op-
eratar, its OT7 is inserted in the current JzTe?. This satisfies one

or several pending goals {at least the expanded one), and introduces
new subgoals to be expanded later.

The most important and difficult step here is the insertion of an OTT
into an [zTeT. Time points have to be located with respect to those
of the JzTeT: subgoals and effects in the OTT should be matched
to properties in the IrTe T taking into account and checking several
temporal and logical relations.

Let us illustrate some aspects of this process through a simple exam-
ple (borrowed from [3]) using the above OTT. 4 2 arms robot has to
permute the first 2 parts of a stack of 3 parts, e.g. starting from

(and fon b a) {on a ¢)),
we require the un-ordered conjunction of 2 goals:
(and {on a b) (on b ¢)).

The initial Jz7e T is thus (Ist and Last are first and last time points):
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(on b a) [tb(Ist) fa(Lamt)]
(on a c) [tb(Ist) fa{Laat)]
(on a b) [f5(Xst) Ctaf{lLast}]
(on b ¢) [fb(Ist) Gta(Laat}]

Goal {on b ¢) is expanded: an instance of the above OTT ia simply
inserted between time points Ist and Last, giving the sequence (Ist
t1t2 ¢3 ¢4 Last). Two interesting rows in the current JzTeT are:

(clear b) : [tb(Ist) Ge{t1) a(t4) ta(td) fa(Last)]
(on b c} : [fb(Ist) fb(t1) s(t3) ta(last)]

Replacing the goal (on b ¢} at Gta{Last) in the initial [zTeT by
ta(Last), and removing ta(4), makes the interval |t3 Last] non break-
able: no other interval for this property can be inserted in it unless 2
backtracking in this goal decomposition is performed. Similarly sub-
goal (¢lear b), when later on expanded, will be immediately satisfied
if no other interval for that row is inserted between Ist and t1 {note
however that the interval |Ist t1] remains breakable since the goal is
still pending).

In the next step goal (on a b} requires insertion of another instance
of the same OTT (with time points ¢’1 through 1'4):

¢ '] is characterized by the subgoal (clear a), this property is
true in the current fzTeT starting at t2, thus we should have:
t'1 after t2 ;

* t'3 requires the subgoal (clear b) that is true either between
Ist and t1 (but this will make the previously pending subgoal
harder to meet), or after t4, thus : '3 after td ;

e t'2 is not conatrained by a subgoal, but it provides the effect
{clear c} that is a pending subgoal at 13, thus: t'2 before t3 ;

® t'4 is just constrained to be between t’3 and Last,.

Luckily in this example all insertion constraints can be met and lead
te a completely ordered e of time points. The corresponding
IzTeT is given graphically in Figure £ (matched intervals have been
drawn separately).

Remaining subgoals are immediately satisfied without further expan-
sion. Notice how interactions between overlapping actions have been
explicitly and quite simply taken into account {as a mater of com-
parison, the same example requires the explicit definition of 23 input
intervals and propagation of 945 temporal constraints in the approach

of 3]).

2.5.83 Planning with an /zTeT

The basic principles have been explained above along with the def.
inition of the JzTeT. Several essential topics remain however to be
developed. Let ua go through some of them here.

How one should manage the agenda of pending goals 7 The idea is
to follow the hierarchy of decomposition: firat all goals in the initial
IzTeT, then those pending from the first level of decomposition, and
so son. However if a goal can be immediately satisfied, without de-
composition, by making an interval non breakable, we will leave it
peunding and put it back at the end of the agenda (unless all goals are
in the same situation). This avoids constraining unnecessarily the
IrTeT: a relation such as [tb(t) Ge(t’)] is easily checked in the table,
and the planner will chose if possible insertions that do not break
it, otherwise nothing has been invested yet in decomposing this goal
(and no backtracking will be required if it has to be decomposed).

Such strategy solves the classical problem where stariing from:
{and {on c a) {clear b)), we require
(and {on ¢ a) {on a b)).

Goal (on c a) will simply stay unexpanded until expansion of {on a bj
needs {clear a), that in turn makes expansion of (on ¢ a) necessary.

This strategy also enhancesthe planner robustness with regards to
goals ordering in the agenda.

Another important issue is where in the [zTe T to insert an OTT
when there are several alternatives. In addition to the time position
of the goal being expanded and to the subgoals and effects of the
decomposition operator used, one has also to consider the decompo-
siticn context (the "when” field) that may restrict poasible insertion
points,

A first heuristic here is to leave whenever possible variables of the
context non instanciated. This can be done for variables that are
required for achieving the OTT subgoals. For example the “to” oper-
ator for (clear 7x) can be used with variable 75 non instanciated (but
it requires variable ?y). This again avoids unnecessary constraints in
the IzTeT: remaining variables are opportunistically matched when
needed to satisfy a pending subgoal

A second heuristic in this issue is to introduce only the constraints
that may solve pending subgoals. Most of the time this should lead to
an IzTe T whose time points are partially but not tompletely ordered.

The efficient management of this partial order relies on one of the two
indexing schemes proposed for the fzTe T approach. Let us introduce
an example using the above OTT. Starting from

(and {on a b) (on a d) (clear )} we require

(and {on b c) {on a b)) . Expansion of the first goal is done as before.
The 2nd instance of the OTT for goal (on a b} is however inserted in
the current fzTe T with less conatraints:

* t'] requires {clear a) : t'1 is before t2
# t'3 requires (clear b) : t'3 is after 14
¢ t'Z does not provide any needed effect, its is not constrained by

this insertion; neither is t"4. We have thus the following partial
order { Figure 3):

t3 t4d t'3 t’4 Last

{clear b) —— e = O-—----- .

(on b a) —_ i I Ty -

{pickup b a)

(clear a) ——— ——weaa— e 4, —_— —

{holdmove b) AR IIRIAARRAIAWAY

(clear c) m——— e mmmm bt e @ - ——— _—

(putdown b <) AXANWARY

{on b c) e e e —— —_—— -&—

(on a ¢} —_— f = o _—

{pickup a ¢) AVEAARANS

(holdmove a) [ A

(putdewn a b) AR

(on a b) e A e ———————— e ———————— - _9_
Figure 2
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Figure 3

Two interesting rows in the corresponding [1TeT (that cannot be
drawn graphically) are given bellow:

(clear b) :

{tb(Ist) Ge(t1) s(td) Ge(t’'3) fa(lat)]
(clear a) :

[fb{Ist) fb(t1) s(t2) Ge(t'1) m(t'dq) fa(Lat)]

The important property here is, although the JzTe T time points are
partially ordered, those used in any given row correspond to a com-
plete order. From the point of view of a single property, time is non
ambiguocusly seen as a simple sequence. We know wher: the property
is required to be true or false, when a new interval can be inserted for
it, and whether it corresponds to a pending goal that can be readily
satisfied or that request expansion.

The algebraic stracture of a set of time points in an zTe T ia thus a
lattice. It can be represented as a directed acyclic graph with a root
(Ist) and a sink (Last). Two basic operations have to he performed
on this time lattice:

+ finding if two points are ordered and their relative position;

© inserting time points and links consistently {ie. without loops).

The obvious method for both operations relies on path finding, but
it is too costly for such a heavy use. The proposed approach relies
on a hierarchical indexing scheme,

Let R be any convenient range of numbers {integers or reals) with a
conventional Min and Max; i, j, 1,..., i, are elements of R. Each time
point t in the lattice is given an index: a sequence noted t{1;.32. .. ii),
of one or several elements of R. Ist and Last are indexed Ist{Min}
and Last{Max). The rest of the lattice is indexed such that if ¢ is
immediately before ¢’ {no other point is between t and t') then:

s either ¢(3,. 4x.j) and £'(s;. ¢c.j’) are such that j < j and there
is no other index (5;. t4.j") in the lattice with: j < j* «j*
{ie. t* is the next sibling of ¢ in the index hierarchy) ;

® or t{z;. .fx} and t’(f). ¥;.j) are such that there is no index
ty.0k) with: Min < 7 < j
{i.e. ¢ iz the first son of t in the hierarchy).
For example we would have (Figure §):
Iat — (1) — t(2) —> t(3)—> "f“) —> t(5)

Lo t{1.1) 4—> t(1.2)
L__, t(2.1) —— t(2.2)

Figure 4

Indexes as stored as a tree with a pointer from each index to the
correaponding time peint. A node in the lattice has pointers to its
immediate successors.

The relative position of t{t;. .1,) and t'(ji. .jm) is found as follow:

s if (n < m)and {i;. a1} = (51 -Ja—1) and (50 < 7u) then t is
before t’ {e.g. t{3.4.5) is before t{3.4.7.2) ; 1(6) is before £(9.1.3)
}, in this case t and t’ are said to be directly comparable, and
we note t < ¢’

o otherwise successor nodes of t are followed along the same level
of the indexing hierarchy uutil a node t* at a higher level is
found:
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— H t” < t' then t is before ¢’

~ if ' < t” then nothing can be said: we restart from ¢’ and
try to compare ita higher successors to ¢

— otherwise the path from 1" is pursued higher vp until a
direct comparison can be made,

If no direct comparison can be made at the highest indexing level up
from t, then we try up from t'. If it does not succeed then ¢t and t’
are not ordered.

A direct comparison involve few operations (of constant complexity).
A path up in the indexing hierarchy is of logarithmic length. Thus
it should be a very fast algorithm. The same procedure provides a
loop checking test: there is a cycle between t and ¢’ iff t is before t’
and ¢’ is before ¢,

More work is needed to insert time points and links in the lattice
while keeping the indexing structure as defined. The main idea is to
have nodes in the lattice as high as possible in the indexing hierarchy
{to “Hatten® up the lattice). For example we may want to insert in
the previous lattice { Figure 4) a time point t after (2.2} and before
t(1.2). Previously to this insertion we had the path

t(2.2) ~— t(5) , after the insertion we would have

t{2.2) —+t —t{1.2) ~— ¢(4) . But t{4) < ¢(5) : the insertion adds
a constraint into the lattice that has to be taken into account by
changing pointers and indexes. Pointer t(2.2) is removed (less con-
strained), ¢ is indexed t(2.3}, t{1.2) is re-indexed 4{2.4), thus giving
(Figure 5):

t(1) —» £(2) — t(3) — t(4)— (5’
| L 2.0 — t2.29— £(2.3)— t2.0 g
t1.1) T

Figure §

The general procedure for inserting a link (or a sequence of nodes)
between t and t’ would be:

¢ if t’ is before t then the link cannot be inserted (it would make
a loop);

¢ if the path up from ¢ goes through a node t* such that ¢’ is
before t* then the link adds a constraint in the lattice, nodes in
the 2 involved pathes and their offsprings have to be re-indexed;

® otherwise we juat add the new link or sequence of nodes as off-
springs of t up to ¢' (if t(s;. .ix) has already a son node
Ll (TR et 1), we just add a dummy node indexed (i;. Ak SMin)
between them and make it father of the newly inserted nodes).

The complexity of this procedure has not yet been analysed.

With the time lattice being defined we are now ready to take into
account abeolute constraints on the duration of actions and position
of time points for goals and events. The lattice is an additive graph
with durations as positive or null labels on arcs. The maximum
cumulative sum of arc labels between & and ¢, over all exiating pathes
from t to t’, corresponds to the minimam required time to go from t to
t'. This minimum will eventgally be compared to absclute constraints
attached to the 2 time points t and t*. A non satisfied constraint will
lead to rejecting the faulty path. PERT-like technics sach aa those
implemented in DEVISER {25] will be used to check the consistency
of each insertion of an OTT into the IzTeT. A good processing of the
uncertainty and imprecision necessarily attached to such information
bas however to be added to such technics.

A final point about the structure of an Iz Te T: ite temporal dimension
is indexed through the time lattice, it would improve the planner
efficiency to also index its second dimension. We would like to find
easily the rows to look into and those to be added to an IzTeT, while
inserting an instance of an OTT. We would also need to have all
logical relations cancerned by those rows, and the rows that will be

(-3
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checked through those relations. The indexing scheme proposed here
relies on a unification tree, a structure that results from the compiling
of a set of patterns {14].

2.5.4 Execution Monitoring with an IzTeT

This topic will be discussed in more detail in the next section, in the
context of a flexible agsembly cell apphication. Let us survey briefly

here what could be the main benefits for monitoring a plan expressed
asan fzTeT

As time advances, the lattice is reduced to an ordered sequence. This
is achieved either:

¢ through an opportunistic choice made by the Execution Moni-
tor, or

» through the occurrence of an event.

For example we just passed time t. In the JzTeTt is followed in any
order by:

* t’, defined as the end of action A aynchronized with the begin-
ning of action B; and

# t” , defined as the cceurrence of a scheduled event.

If ¢ happens before t”, the corresponding relation is propagated
through the 2 pathes. Ewventually this will add constraints in the
lattice, and resolve future choices.

Another issue is when to expect a conditional event: the indexing of
the IxTe T enables to find easily when a conditional event may occur
(its effecte have been taken into account at planning level). The
cbserved (or chosen) ordering of time points non previously ordered
will enable to tell {or decide] if the conditions triggering the event do
or do not hold simultanecusly.

How an /zTeT can be of any help to reacting to an unexpected event?
We assume that such event is relevant to the task at hand but does
not require postponing or canceling current goals. The event and its
logical consequences are put into the JrTe T at the current time. Any
contradiction with what was expected is compared to the past and
to the previously projected future:

¢ properties required later for a forthcoming action or goal but
that are not true any more (were true initially or resulted from
some previous action} should be considered as new subgoals in-
serted in the rest of the [zTe T and decomposed by the planner;

properties that were planned to hold only later on, as a result
of some forthcoming actions, will lead to reconsider the need of
such actions and those before them.

Detailed examples will be given in the following section.

3 A Structured Environment Application:

The NNS project

In this section, we discuss how the proposed approach ¢ould be used
to tackle problems of Task Planning and Ezecution Control for a
preject developed at LAAS that represents a structured environment
application: the NNS project [5] |6} [10].

The NNS project aims at developing methods and tools for the pro-
gramming and the robust execution control of complex manipulation
tasks to be performed by a multi-robot flexible assembly cell.

Clearly, such a system involves decision-making capabilities available
off-line and on-line. The originality of our system lies mainly in the

&.®

fact thai the Of-Line System, instead of producing a “rigid” pro-
gram, generates a more “flexible” structure called Task Erecution
Model that will be used on-line in order to take into account sensor
information, to interpret what happens in the workcell and to react
to various asynchronous events {Figure §).

Guometrlc and Functlonal
A Priurd Knowledge

OFF-LINE ; i :
IR
[SPLCIALIZED DECISIONAL MODULES
OPERATOR INTERFACE
-
111
Task Representation Model

¢

{ ASSLMBLY TASK COMFILER i

ON.LINE !

-
Task Eaccution Maodgcl
!

~

[ ON LINE SYSTEM ]

{11

DEVICE CONTROLLERS

Figure 8: NNS organization and Knowledge
Representation

The Off-Line System includes various planners based on geometric
reasoning in order to structure the space of the workcell, to synthesize
the various actions that can be executed [17] [24] and to provide rules
for action selection and scheduling {1].

The On-Line System is a Knowledge-Based System [L1]; it uses the
Task Ezecution Modelin order to completely instanciate and schedule
the actions to be performed given the current state of the workeell,
ag well as to control their execution in a multi-agent environment.

We will restrict ourselves, in the following, to the problem of Action
Scheduling and Execution Control.

3.1 Task Modeling

The highest level of abstraction used by our system for an assem-
bly task is modeled as follows: the workeell is supplied with several
primary elements and delivers products according to a predefined
process.

Example: The assembly task concerns three types of parts:A, B
and C. Partz A are introduced by the conveyor 1. Parts B and € are
introduced in random order on conveyor 2. The workeell produces
sub-assemblies B4 (B on A) and BC (B on ). The sub-assembly
BC must be inspected before unloaded. Defective parts are put in a
specific storage.

We introduce three concepts that allow to specify an assembly task at
this level of abstraction: the identity of part, the site and the posture
of a partin a site.

The identity of a part corresponds to a specific step in an assembly
process (primary part, sub-assembly...)

Example:

® the identity “part A® corresponds to a part of type A.

» the identity “?{partAl partA2 ... partAn)® corresponds to a
part of type Al or AZor .. or An. This is an arbitrary notation
to represent parts that belong to a class of parts but that are



not yet identified. This case may arise after a feeding operation
if parts arrive in random order, after an identification cperation
that does not discriminate completely the identity of a part ot

after the analysis of a failure that makes the identity of a part
doubtful,

A site corresponds 1o a place in a workeell which is intended to hold
parts (such as a robot gripper, a storage place on a table or on a
conveyor belt...). A symbolic name is attached to each site (robs,
stol, convl). The parts present in a cell are always in one of its sites.
A site contains only one part at a time. Sites may be fixed or may

move in a cell. In the case of sjtes representing conveyors, these sites
may be AWAY.

A part posture provides a qualitative deacription of the geometric and

dynamic constraints that achieve stable position of a part. On Figure
7 different postures of part B are represented.

N @

postB-1 posiB-5 posiB-2

Figure 7 : Different Postures of part B

Each part has a discrete number of possible (and useful) postures.
It is limited by the devices and the tools available in a cell and by
the set of part postures imposed to perform operations. A number is
associated to each part posture: PostB-I, PostB-2. ..

The three basic concepts of site, identity and posture constitute the
major ingredients that allow us to specify and to represent an assem-
bly task. The Task State is represented by the state of all the sites
in the workeell:

< TaskState > n= (< Site >< SiteState >)°
< SiteState > = < part >:< posture > | EMPTY | AWAY

Example: Figure 8 shows the different sites in a call and their role
in the assembly task introduced earlier.

# cnel: conveyor belt for loading parts B and C; this site is equipped
with a camera for part identification and localization;

& cnef conveyor for loading parts A;

#® cnud: conveyor for unloading sub-assemblies BA and BC,

# garb: storage where defective parts BC {noted BC.} are rejected;
& robl and rob® robot grippers;

® asm[: site for the part-mating of A and B;

& asm#: site , equipped with a camera, for the part-mating of B and
C and the inspection of the result;

® stol, sto?, tadl; storage sites.

Acticns are defined as operators that change the Task State. An ac-
Lion either modifies the identity of a part present, in a site, or transfers
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it from one site to another site, changing its posture. There are sev-
eral actior classes that can be represented as follows;

Feeding
(s5tc AW AY) — (aite pareX : post X}

Inspection

(sste partX* : post X'+)
(site partX : postX) — or
(svte partX— . postX )

Part-Mating

(sitel partX : postX,) .. [sstel partXy postXY;)
{site2 partY : poatYs) [aite2 EMPTY)

Pick or Place

(sitel partX : postX;) — (s3tel EM PTY)
{site2 EM PTY) (s4tc2 partX : post X.)

3.1.1 Action Planning

As it has been emphasized earlier, a roboties workcell that performs
repeatedly over time the same assembly task is an a priori known
environment (though very difficult to model and to structure) where
most problems - or at least those that need heavy decisional processes
- can be addressed off-line. Yet, there remain decisions that must

be taken on-line in order to provide a robust behavior and a better
efficiency to the system.

For instance, action planning cannot be done completely off-line be-
cause of:

¢ the presence of non-deterministic actions (use of sensor infor-
mationj;

¢ the occurrence of asynchronous events (failures, random arrival
of parta, interaciions with the shop level..);

o the difficulty to evaluate precisely the duration of actions par-
ticularly in the case of a multi-agent system.

However, it is not useful to kave a “complete” and *permanent”
planning system on-line, that will, again and again, rediscover inter-
relations between actions, goals.., Such a situation is useleas and very
time-consuming particularly in the case of a multi-agent system.

For all these reasons, the Task Ezecution Model, produced by the
Off-Line System, contains what we call & Task Plan; it is a scheme of
plans that will reduce the planning activity of the On-Line Syatem.
Note that the planning activity is reduced not suppressed, This is a
key issue as it emphasises an interesting link between Planning and
Ezecution Control. The Planner prepares the decisions using a glabal
knowledge of the task. The Ezecution Controller has a planning ac-
tivity based on this knowledge; it generates “amall plans”® in a close
interaction with the actual environment,

There exists a firal version of the software that implements these
ideas. It has been used, with reasonable performance, to program
and control a complex assembly task involving 4 types of parts on a
two-robot assembly cell equipped with various sensors, The reader
may refer to [1] [11] 9] [10].

Our intent here below is to analyse how the temporal structures and
the formalisms, presented in section 2, could be used in such a ays-
tem to overcome some of its limitations by introducing an explicit
representation of time in the planning process off-line and on-line.

3.1.2 The Task Plan

The Task Plan is a part of the Tosk Ezecution Model; it is used on-line
to determine the set of “admissible” actions that can be performed

4-9
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Figure 8: Spatial Organisation of a Cell

from any Task State. An action is “admissible” if it is feasible from
the current Task State, relevant (the action is necessary and other
actions that are “better” are not feasible) and if the action does not
lead to a “deadlock” situation or a sitwation where the task has to
*backtrack”.

The Task Plan representation is not explicit: the number of poesible
task states is finite but very important, if we consider that asyn-
chronous events may occur during the execution. The Task Plan
consists of a set of rules. Each rule represents a condition on the
Task State that makes an action admissible. All rules are terminal
and made of simple propositional forms without quantified variables.
They can be compiled into a decision tree according to the techniques
described in [15].

Using temporal relations, it will be possible to analyse the Task State
at various moments; this will lead to more subtle conditions like:
Action i ss admissible if the situation 8j iz verified in a “close” Juture,
We give here an example of a rule correspanding to the Task Plan of
the assembly task described above.

Example: If a part A is stored in sto and there is no expected
arrival of another part A on envf for a given duration (DELTAZ time
uniis), and if the site asm1 will be empty in a close futurs (less than
DELTAT time units), then the action 26 of picking part A from stoi
is "admissible” (*at* represents the time at which the action will be
executed)

(if ((atol A:3)
(rob2 EMPTY)
(< (span *at+ (begin (seml ENPTY))) DELTA1)
(> (span vats (end (cnv2 AWAY))) DELTA2))
then
((ADNISSIBLE action-26))}

Other conditiona can be taken into account. For instance, two actions

k.do

that make use of the same tool cannot overlap.

The effects of the actions are provided as follows:

(describe (pick 7sitel 7aite2 ?part Tpostl 7poat2)

(effectn
met-by (7sitel Tpart : Tpostl)
met-by (?site2 ENPTY)
meet  (?mitel EMPTY)
meet  (7aite2 ?part : ?post2)))

Note that value of the properties is changed somewhere between the
beginning of aa action and its end. However, at the level of action
planning, the states of the nites are *protected” during all the dura-
tion of an action. Lower levels manipulate a more precise description
of actions. For example, a Pick action ia composed of several steps:
gross motion and preparation of the tools, approach motion, grasp-
ing operation, disengage motion. The change of state is situated in a
»mall interval - called “uncertainty interval® - where we cannot define
what is exactly the state. This description is used by the Erecution
Controller in order to monitor the task state.

Starting from this general description, the Off-Line System will in-
stanciate specific description for each action taking into account in-
formation such as the effectors to be used, the position of the aites...
in order to determine the duration of the action (for some actiona, it
is possible to do it off-line) or a minimam and a maximum bound of
it.

We will show later how all this knowledge is used on-line to pro-
duce Ezecution Plans that describes the sequences of actions to be
performed with respect to the actual workcell state.

3.1.3 The Task Plan construction or “compilation phase”

The Asscmbly Task Compiler is the last astep in the Off-Line System.
It generates the Task Execution Model which containa the Task Plan.
It performs various processings, like verifying that no information
is missing, that there is a way for each part entering the cell to be
processed..

For this purpose, a graph representation is built for the assembly
task. It describes all the actions that can be performed on parts. Thi:
graph represents the possible evolutions of each part independenth
(Figure 9). Nodes are site atates; arcs are oriented and represen
actions,

This graph illustrates various difficulties encountered in action plan
ning:

Problems of parallel execution: several parts, even paris of th
same type, may “traverse® the graph at the same time. Variov
actions can be executed in parallel as we assume a multi-ager
system. Some actions cannot be performed simultaneously :
they use the same resource (tool, sensor, space region ...)

Special care must be taken in order to manage appropriate
“critical resources” like sites linked to manipulators;

* Temporal relations and estimation of action duration {depen
ing on the context) are clearly very useful in such applicatic
it should be interesting to take into account the fact that
conveyor cannot stay idle more than a specified time...

It could be also useful to preselect paths for paris, that cou
be chosen under certain preconditions {normal functioning, |
riodical arrival of parts...)
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Figure 9: Assembly Task Graph

3.1.4 Execution Control

An Erecuiion Plan is a patticular set of action sequences - among
posaible sequences implicitly contained in the Task Plan - together
with synchronization constraints between these sequences. This plan
selection and instanciation will take place at the completion of non
deterministic actions, after feeding and unloading actions and when
a failure arises that causes 3 mismatch between the actual state and
the state expected in the current Ezecution Plan.

In the current implementation, a new Ezecutson Plan is generated
as if the cell was not working; its initial state ia the state that will
be obtained if the the current Exzecution Plan is completely achisved.
We would like to proceed more smoothly by taking into account the
current plan ie. “merging® a new Ezecution Plan plan with the
current one.

An example: In the first situation, the cell activity is stopped (no
action is currently performed} and we have the current Task State:

ESG = { ... {enw B:1) (stol A:8} (asm® C:4} (robl EMPTY) (rebe
EMPTY} ... )

{the two robots are empty, a part B is available on the conveyor belt
envl, a part A and a part C are reapectively stored in stol and in
asms)

The Ezecution Controller constructs an fzTe T (partially) illustrated
in Figure 10a and Figure 10b.

Time points for the beginning and the end of action s will be noted
11/i/k and ei/j/k where j is the number of the Exccution Plan et
& is a complementary index (used only in the case when an aciion
appears more than one time in a plan). The time point representing
the beginning of the Erecution Plan number j is noted lst/fy.

The Execution Plan that has been produced contains the sequences:
13-5-14-16-29...], [26-23] and [1-2]. The temporal structure of this

plan is given in Figure 10b.

Note that:

In constructing the table after action 3, the Ezecution Con-
troller has chosen action 5 while action § was aleo admissible;
this is because of a task-dependent heuristic;

the set of actions 26-23 could be placed before or after 14; as
the action 23 has to be placed before action 1€ {rendes-vous for
part-mating), the reasonable choice has been made;

the manipulator linked to robl does mothing between ¢(5/0)
and (29/0},

2 new planning step is expected after the execution of action 2
(identification of parts provided in random order by conveyor
1); thia is represented in Figure 10a by an arrow.

The execution begins. Actions 3/0 and 26/0 can be started in paral-
lel. Let us suppose that action 2/0 finishes with the identification of
a new part of type B while actions 5/0 and 23/0 are still executing.

If we assume that the planning procees is eufficiently fast and that
we can estimate & time bound for its duration, then it is possible to
consider a “scenario® where a complementary plan is "merged” with
the plan under execution, This assumption is reasonable because
of the fact that the planning activity of the Ezecution Controlier ie
based on decisions prepared off-line.

The Ezeccution Controller would then generate the fxTeT presented
in Figure {1a and Figure 11b.

Note that:

e actions 3/1 and 9/1 have been inserted between 5/0 and 29/0;

o two actions will cause a new plan to be constructed; action 2/1
and action 17/1.

4 -t
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A lot of work remains to be done in order to validate the ideas and
the mechanisms sketched here. However, let us summarize here below
some key isaues under investigation. The availability of a temporal
structure for plans and of a flexible projection in the future will allow
a better control of the ceil.

An important issue is to be able to permanently verify the reievance
of plans (or sub-plans) under execution. The Ezecutron Controller
has to decide when to “merge” a new plan with a plan already in
execution, when to replan completely... Task dependent heuristics
should be prepared ofi-line in order to allow the Ezecution Controller
to evaluate a situation and to react to it efficiently.
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PLANNING WITH NON-DETERMINISTIC EVENTS FOR
ENHANCED ROBOT AUTONOMY

Jérome Perret - Rachid Alami®

*LAAS/CNRS, T avenue dv Colonel Roche, 31077 Toulouse Cédex, France

Abstract. Beyond pure academic research, a number of application fields raise a challenge. In
activities such as planetary exploration, undersea servicing, work in auclear plants, or disaster inter-
vention, the dynamics of the environment and the strong constraints on data transmissions call for
advanced robot autonomy. In this paper we propose a cooperative robot control system architecture

based on a reaction planner. We develop our rep
present a simple algorithm for building robust pl

hints of possible future developments.

resentation for action and event operators and
ans. Finally, we discuss plan execution and give

Key Words. Robotics, Reaction Planning, Autonomous Systems, Plan Execution

1. INTRODUCTION

An autonomous robot system operating in an
environment in which there is uncertainty and
change needs to combine reasoning with reaction.
Reasoning means the ability to decide what to do;
the reasoning activity we are interested in here is
planning, as the action of projecting the current
situation into the future in order to figure out a
sequence of actions leading to a goal. Reaction
means the ability to act in order to avoid the neg-
ative consequences of a situation, or on the con-
trary to benefit from its positive effects.

The choice of the “good” reaction is usually not
trivial, and might require planning. However, in
the case of an automatic planning system, the
time needed to produce a plan can be very long,
which contradicts the notion of “reaction” itself.

In this context, several approaches have been pro-
posed, which give a partial solution to the prob-
lem. We will distinguish here three main strate-
gles:

Anytime planning: (Dean and Boddy, 1988)
Anytime algorithms have the ability to produce
a plan within a given bounded time compatible
with the necessary reaction. This approach tries
to bring reasoning nearer to reactivity. The price
to pay for this is the poor quality of the plan when
the time allocated to planning is short. Moreover,
in order to build a complete control system, there
is a need for a meta-supervision level in charge
of deciding when to plan and how much time to
allocate to planning in a given situation.

Probabilistic planning: (Kushmeric et al,
1993) The purpose of this approach is to plan for
a sequence of actions which, whatever the initial
state of the environment and whatever its evolu-
tion, will lead to the goal with a sufficiently high
probability. In that way, uncertainty in the envi-
ronment is accounted for, and the control system
does not have to rely heavily on the poor per-
ception capabilities of the robot. The problem is
the existence of such plans, and the complexity of
their construction.

Reaction planning: (Thiébaux and Hertzberg,
1992) Reaction planning means to foresee the
changes in the environment and to produce re-
actions in advance. The strong hypothesis in this
approach is the complete knowledge of the world
and its possible evolution, and of the consequences
of the robot’s actions.

Finally, a number of recent works try to bring
these approaches together and associate them
(Drummond and Bresina, 1990). However, they
hit the full complexity of the problem and are
forced to make compromises.

Our claim is that reasoning and reaction are two
activities which must remain distinct, and COOp-
erate. In that way, we definitively place ourselves
in the third strategy, reaction planning. The key
point is the interaction between the two processes,
and previous works defer largely there.

In section 2, we will discuss this interaction, and
establish what conditions it imposes on produced
plans. In section 3 we will describe the class of
problems we are interested in here. In section 4 we

5.4
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Figure 1 The Planner-Supervisor paradigm

will present our planning operators and in section
5 we will propose a planning scheme for producing
plans which satisfy the conditions introduced in
section 2. Section 6 will deal with plan execution.
Finally, we will give an overview of our future work
and a short conclusion.

2. DISCUSSION

Our system design is simple and now rather com-
monplace (see fig. 1). Several authors use the
same description, such as (Fikes ef al, 1972},
(Drummond and Bresina, 1990), (Kabanza, 1992),
(Musliner et al., 1992).

The responsibility of “closing the loop” at the level
of plan execution control is entirely devoted to the
supervisor. In order to achieve it, the supervisor
makes use only of deliberation algorithms which
are guaranteed to be time-bounded and compat-
ible with the dynamics of the controlled systermn.
Indeed, all deliberation algorithms which do not
verify this property are actually performed by the
planner upon request of the supervisor.

We are primarily interested here in the planning
module, so we will develop the conditions which
the plans have to fulfil, and we will come back to
the supervision at the end of the article.

We say that, in order to insure the completion of
the task and the safety of the robot, the plans have
to be: safe, complete, and goal-achieving. We call
such a plan robust.

Safe means it shouldn’t lead the robot into a
dangerous situation and leave it there without a
handy reaction. Complete means all courses of
events are accounted for. Goal-achieving means
the plan leads to the goal.

Given our strong hypotheses and the complexity,
the task of building a robust plan is way beyond
our reach. Thus we adopt a moderated definj-
tion of robustness, based on the three following
rules:
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1. safety: while applying the plan to the known
initial state of the world, given its foreseeable
evolution, no situation shall arise where the
safety condition is unsatisfied;

2. completeness: every foreseeable course of
events shall be accounted for, i.e. followed by
an action or a replen statement; no replan
statement shall take care of a situation which
could foreseeably become dangerous while re-
planning (replanning can take an unknown
unbounded time). This is a key point in
our approach, which helps vs limit the ex-
ploration, and thus envisage to address more
ambitious problems;

3. goal-achieving: the probability of reaching
the goal by applying the plan to the known
initial state of the world, given its foreseeable
evolution, shall be non-null {and superior to
a given threshold);

Several previous works give partial answers to the-
ses Tules:

{(Kabanza, 1992; Godefroid and Kabanza,
1991): F. Kabanza proposes a search algorithm
in a graph of states which transitions correspond
to actions (operators which the system can con-
trol) or events (operators over which the system
has no control); his system uses the search itself
for generating liveness rules (leading towards the
goal), safety rules (leading away from danger),
and heuristic rules {which can be used at run-
time to deal with an unforeseen situation). Effi-
cient as it may be for a specific class of problems,
the search in a graph of states hits the full combi-
natorial complexity in any closer-to-reality world.
Moreover, Kabanza cannot avoid to manage the
conflicts between generated rules, which can turn
out to be very dangerous in the end.

(Musliner et al., 1992): CIRCA is a complete
integration example for a robot control system; by
reasoning on a graph model of RTS/environment
interaction, it generates reactions which are neces-
sary to achieve the goals; from these reactions, it
computes a eyclic schedule to be executed by the
RTS. However, the graph mode] representation
appears to be very complex and difficult to expand
to a realistic world domain; this compels CIRCA
to remain a low-level control system, which actu-
ally is its primary purpose.

(Thidbaux and Hertzberg, 1992): &S.
Thiébaux and J. Hertzberg propose a non-
deterministic action model and a planning method
which produces plans as 7-M graphs; these plans
can in turn be translated into finite state au-
tomata, which makes them executable and en-
larges their applicability scope. However, they



avoid modelling foreseeable changes in the envi-
ronment, which are indeed partly responsible of
the non-determinism of the actions.

3. OUR CLASS OF PROBLEMS

Our domain is mobile robets in changing environ-
ments. We define a class of problems character-
ized as follows:

e the robot system has an exact knowledge of
the characteristics of its environment relevant
to its task, or it can find them out by execut-
ing a specific action;

o these characteristics include the state of the
environment and its reactivity, i.e. its fore-
seeable evolution in the context of robot ac-
tivity;

e Imoreover, it has an exact mode] of the actions
it can execute; this model includes their non-
deterministic consequences and their proba-
bility.

Following are two example worlds which belong to
this class of problems:

First example: The robot’s task is to enter a
building in which a chemical incident occurred; it
carries a spray which can neutralize one of the con-
taminating chemicals (but not all that may have
been spilled); it can be itself contaminated if in
presence of a corrosive chemical for too long, and
the contamination is fatal in the short term; it can
decontaminate itself by going out of the building
and into a cleaning area.

Second example: The robot's task is to carry
objects around inside a factory; the production
process implies strong unscheduled constraints on
its movements; moreover, it is dangerous to stay
at some crossings because of heavy carriers.

We will develop the first example in the following
sections.

4. REPRESENTATION

Qur planning operators are variants of STRIPS
operators with pre and postconditions. As in
(Thiébaux and Hertzberg, 1992) and (Kushmeric
et al., 1993), we allow for alternative outcomes of
actions applied in the same situation, and to ev-
ery set of consequences of the application of an
operator, we associate a probability.

We distinguish between actions and evenis. Ac-
tions are operators over which the robot system

(def-action check-for-room-contamination
:args (7room)
:precond (
(room 7room)
(robot-at ?room))
:effacts (
{(with-probability
(0.8 ((:add (room-clean 7room))))
(0.2
((:add (room-contaminated ?room))))))
:duration 1)

Figure 2 A sample action

(def-event robot~contaminated

:vars (7room)
swhen (

(robot-at 7room)

(Toom-contaminated ?room})
:affects (

{vith-probability

(0.5 {(:add (robot-contaminated))})))

:delay 10)

{def-avent robot-dead-contaminated
:vars ()
:when (
(robot-contaminated))
reffects (
(with-probability
(1. ((:add (robot-dead))
(:del (robot-safe))})))
:delay 25)

Figure 3 Two sample events

has full control, therefore they are akin to the
STRIPS planning operators. On the other hand,
events are operators over which the robot system
has no control; the preconditions of an event are
its trigger, and the postconditions are its conse-
quences. The total probability of all cutcomes
of an action has to be 1, whereas for an event
it can be lower (meaning that an event may or
may not occur). Figures 2 and 3 present some
sample operators, actions and events. Please
note that event robot-dead-contaminated vio-
lates the safety condition (robot-safe), which
no action can re-assert.

Action operators can be used to describe robot
actions, reactions of the environment to robot
actions (e.g. while spraying decontaminants, a
smoke alarm could be raised automatically), and
actions of the lower robot control layers (e.g. when
moving along a corridor, the robot might stop be-
cause of an obstacle). Event operators account




(defstep
raction (check-for-rcom-contamination ?room)
:precond ’({room ?room)(robot-at ?room))
:add ’((room-clean Troom))
:dele nil
tequals nil}

{defstep
‘action (check-for-room-contamination ?room)
:precond '((room ?room)(robot-at ?room))
;add ’({room-contaminated ?room))
:dele nil
:equals nril)

Figure 4 Generated SNLP operators

for the evolution of the world state only (e.g. the
light being turned off by the time switch, the robot
becoming contaminated).

The planning problem is defined as follows: given
the initial state of the world (a set of predicates)
and the goal, actions and events as described
above, the safety condition not to be violated, the
replan threshold and the goal achievement thresh-
eld, find a robust plan (i.e. satisfying the con-
ditions given in section 2). It may be that the
goal can be achieved in a situation which is not
stable (in which events can occur); in that case,
the planner should continue to plan until it has
reached a stable state. The concept of stability is
fundamental in our approach; we assume here that
any stable situation is suitable for replanning. In
that way, the planner can insure that it will be
called again eventually, possibly with a new task
to perform.

5. SIMPLE PLANNING ALGORITHM

We propose a first simple planning algorithm,
much in the fashion of Warren’'s WARPLAN-C
(Warren, 1976), It is based on the deterministic
non-linear planner SNLP (Mc Allester and Rosen-
blitt, 1991; Barrett and Weld, 1992), but could be
applied to other deterministic planners

The action operators are first compiled into de-
terministic operators, one operator being cre-

ated for every possible outcome of an ac-
tion. Figure 4 presents the operators for the
check-for-room-contamination action.

Given the initial state of the world and the com-
piled operators, a first linear plan is build by the
deterministic planner, consisting of a sequence
of deterministic operators. Now, using the orig-
inal actions and events, this plan is expanded
into a tree structure akin to the T-M graphs of
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(Thiébaux and Hertzberg, 1992); this structure is
composed of three types of nodes: A (i.e. start of
an action), E (i.e. event) and S (i.e. world state),
and has the following properties:

¢ the root is a S-node, as are all leaves,

¢ A-nodes and E-nodes have only one S-node
as successor,

¢ non-leaf S-nodes have either one A-node or a
number of E-nodes as successor.

The procedure for building the A-E-S tree is the
following: the first action of the linearized deter-
ministic plan is expanded into one A-node (the
start of the action) followed by one S-node (its
execution state), itself followed by a number of
E-nodes and corresponding S-nodes (one pair for
each possible outcome of the action); then the ex-
ecution S-node is tested for events, as well as all
other new S-nodes which do not fit in the deter-
ministic plan; for each $-node, all triggered events
are sorted using their deley parameter, and tested
for exclusiveness (i.e. incompatibility of effects);
the list is pruned after the first event with a prob-
ability of 1 (if present), and one E-node is gener-
ated for every remaining (set of) event(s), along
with its successor S-node and its probability of oc-
currence. The root S-node is built from the initial
world state, and the procedure is carried on with
every S-node along the deterministic plan, untii
all actions have been translated into A-nodes and
no event is applicable in any leaf S-node. The re-
sulting structure may or may not lead to the goal,
depending on the triggered events.

For example, suppose we have two actions A and
B, and two events E; and E3. A has two possible
outcomes, and B only one, leading to three deter-
ministic operators: 4, 4», and B;. Starting from
an initial state S;, the deterministic planner pro-
duces the following linear plan: A, then B;. No
events are applicable in S;, so an A-node is built
with the start of action A, then a S-node $4 for its
execution, leading to two E-nodes, E41 and F4o
and their successor S-nodes S4; and Sqp (corre-
sponding to outcomes A; and Aj; respectively).
Event F; is applicable in S41, so we add an E-
node Eg; and a 5-node Sg;. From S4, we expand
action B, leading to Sg, Eg1 and Sp;. Event Ey
is applicable in state Sg, so we add two nodes:
Eg» and Sgo, leading to the tree structure pre-
sented fig. 5.

Now, all new S-nodes are tested for the safety
condition (e.g. in our example, (robot-safe}).
Should this condition be false in state S, then we
have to plan for a reaction avoiding S. If §’s fa-
ther is an A-node A, then we prune the plan before



Figure 5 A-E-S tree example

A and look for an other linear plan starting from
the new leave. If S’s father is an E-node E, again
we call the deterministic planner in order to find a
new plan, which first action will inhibit E. There
are several means to find a new plan: either by
using the negation of one of the preconditions of
E as new goal, or by inserting any applicable ac-
tion compatible with the delay of £ and planning
again from there on. If no plan is found, then the
problem is declared unsoclved.

If all new S-nodes are safe, then a new S-node
with a probability above the replan threskold is
chosen, among all S-nodes which have no successor
A-node. The S-node becomes the initial state, and
the deterministic planner is used to build a new
plan towards the goal.

In the end, all pending S-nodes which are below
the replan threshold are flagged with the replan
statement. The resulting plan is solution if the
sum of the probabilities of all goal states is above
the goal achievement threshold. Figure 6 gives an
example of a plan after the first planning step,
and at the end of the refinement phase.

Why is our algorithm sound? We can de-
monstrate that, provided no event loop with a 1
probability exists (which can be easily checked
for), the probability keeps decreasing along all
branches of the A-E-S tree, and thus will finally
go under the replan threshold. Furthermore, the
plans produced satisfy the three conditions given
in section 2.

We have built a first prototype planner based on

SNLP, which managed to produce the plan pre-
sented fig. 6. However, it is not complete, as it is
not guaranteed to find a plan if one exists. Sup-
pose we add an event stating that the doors close
automatically after the robot got through them,
and the only way to open them is with a remote-
control. After building the first SNLP plan, the
system will come up with the event (door-closed
rooml), and is not going to find a solution because
it should have taken the remote-control before en-
tering the room. In order to solve this type of
problems, we need the ability to backtrack over
goals, which is not yet possible with our proto-
type.

6. PLAN EXECUTION

The Supervisor interacts with the environment
and with the planner, The environment (which
may include one or more lower control layers) is
viewed as a set of processes which exchange signals
with the supervisor. These processes correspond
to the actions of the agent as well as events associ-
ated with environment changes independent from
robot actions (Alami et al., 1993).

These processes are under the control of the su-
pervisor which has to comply with their specific
features. For example, a process representing a
robot motion, cannot be cancelled instantaneously
by the supervisor: indeed, such a process has an
"inertia”. The supervisor may request a stop at
any moment during execution; however, the pro-
cess will go through a series of steps before actu-
ally finishing,

The simplest way to represent such processes are
finite state automata (FSA). More elaborate rep-
resentations such as temporized processes should
be investigated.

The plan itself can also be understood as a finite
automaton: A-nodes and S-nodes correspend to
the states of the automaton, A-node and E-nodes
to transitions.

In the FSA class we use, at any moment:

¢ the set of allowed external signals correspond
to all the actions that can be taken by the su-
pervisor (either part of the plan or decided by
the supervisor’s own bounded-time decisional
abilities);

¢ similarly, the set of possible internal signals
correspond to all action terminations and re-
sults and all environment changes that could
be perceived by the supervisor.

The activity of the supervisor consists in mont-
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Figure 6 Two steps

of the planning algorithm

toring the plan execution by performing situation
detection and assessment and by taking appropri-
ate decisions in real time, i.e., within time bounds
compatible with the rate of the signals produced
by the processes and their possible consequences.
Such bounded-time decisional abilities are well in
the reach of a system like KHEOPS (Ghallab,
1984).

Indeed, every single decision process which can be
left to the supervisor, provided it can be done in
bounded time, reduces the complexity of the plan-
ning problem. For example, suppose the supervi-
sor is able to make the robot leave the building
as soon as it becomes contaminated, by following
the same path backwards. We could take advan-
tage of this behaviour at planning time by adding
a meta-planning rule which takes care of all -
nodes where (robot-contaminated) is true and
the robot is not teo far away from the entrance.
That way, we would leave the world model un-
changed so that the planner can still plan for these
situations if it decides to.

During execution, the robot system will follow one
path in the plan automaton, thus validating states
which had only a probability of occurrence before.
Now with each execution step, we can propagate
this validation, dividing the probability of all de-
scendants of the selected state by its own proba-
bility, and setting all other states to null. Doing
this, it is possible that some states flagged with
(replan} will raise above the probability thresh-
old and thus become eligible for further planning.
In order to save time and profit from our coop-
erating architecture, the execution supervisor will
send right away the most probable state to the
planner for further plan refinement.

7. FUTURE WORK

Our first activity will be to implement backtrack-
ing strategies in the simple planner and to investi-
gate the possibility of enriching our representation
with meta-planning rules. Then we will focus on
the supervisor module.
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Once the complete system is operational, we will
test it extensively on different problems, trying to
evaluate the robustness of produced plans and in
particular the stability regarding modelling errors
(action outcomes’ and events’ probabilities are es-
pecially difficult to estimate).

We hope to give some interesting results of these
activities in the final presentation at TAS-4.

8. CONCLUSION

After having justified our approach to integrat-
ing reasoning and reaction in the context of au-
tonomous mobile robots, we have described the
planner/supervisor interaction and have derived
the key properties of the plans to be produced.
Then, we have proposed a model for actions and
events and a tentative planning algorithm for gen-
erating such plans, which we have demonstrated
on an example. Finally, we have proposed a plan
execution scheme, addressing the issues of plan-
ner/supervisor interaction and real-time decision-
making.
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Abstract

This paper describes an implemented tntegrated sys-
tem allowing a mobile robot to plan its actions, taking
into account temporal consireints, and to control their
execution in real time. The general architecture has
three levels and the approach is related to hierarchical
planning: the plan produced by the temporal planner is
further refined at the control level that in turn super-
vises ils execution by a functional level The frame-
work of the french Mars Rover project VAP is used as
an ilustration of the various aspects discussed in the

paper.

1 Introduction

Intervention robots are machines that have to per-
form non-repetitive and time-constrained tasks in ill-
known environments which are often remote or of dif-
ficult or dangerous access, with specific constraints on
communication (delays, bandwidth;. In this context
classical teleoperation as well as telerobotics-like [21
approaches with a human operator in the contro] loop
are not adequate [9],

Some authors argue that planning is not useful, and
that reactivity is the necessary and sufficient ingredi-
ent of robot intelligence {4]. Furthermore, collective
intelligence would emerge as a result of the simple in-
teractions of reactive robots which have complete au-
tonomy but limited behavior [5, 7]. Being not able of
predicting their actions and their outcome, wich is one
aspect of planning, such robots are more data than
goal driven, and 1if ever able to accomplish a given
task, they would certainly lack efficiency.

The challenge is to design an autonomous robot en-
dowed with the capacities of planning its own actions
in order to accomplish specified tasks, and having a re-
active behavior with respect to is environment. Such
a robot would be both goal and data driven. The
work presented in this paper is a contribution to this
objective.

Plans are produced by a temporal planner at the
higher level. They are then refined into actions ac-
cording to specified execution modalities and to the
actual execution context [2, 18]. The robot control
structure includes the systems necessary for task in-
terpretation and autonomous execution. The system

*Supported by IFREMER
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is aimed to be generic and applicable to several domain
instances of intervention robots; planetary rovers [§],
underwater vehicles [12], disaster reaction (18], etc.

The paper is organized as follows: section 2 presents
the functional architecture of the overall system; sec-
tion 3 focuses on planning and section 4 plan execu-
tion supervision. Finally, section 5 presents the task
refinement and execution levels.

In order to illustrate the approach we will consider
a Mars Rover as an example of intervention robots
tzoughout this paper. This case study is motivated by
the french national project VAP![g].

2 System Architecture

The global system architecture is organized into
three levels (figure 1). A higher temporal planning
level - with its own supervision. The planning time is
unbounded.

PLANNING PLAN SUPERVISION

TASK REFINEMENT, ACTION SUPERVISION;
EXECUTIVE
FUNCTIONAL
MODULES
/ G/ ON CONTROL

Figure 1: Global architecture

The second “refinement” level receives tasks that it
transforms into sequences of actions using its own in-
terpretation and planning capacities, and supervises

'VAP: Autonomous Planetary Vehicle, a project of the
french national space agency CNES.



the execution of these actions while being reactive
to asynchronous events and environment conditions.
This level comprises a task supervisor that is in
charge of receiving the plan from the higher level and
interacting with the second component, the task re-
finement planner which refines tasks into actions,
taking into account the execution modalities specified
with the plan, and the actual situation of the robot.
The response time of this level is bounded as the re-
finement planning is in fact very much context-driven
selection of actions in a precompiled structure.

The functional “execution” level is composed of a
set of modules embedding the functions for sensing
and acting, including various specific Processings nec-
essary for perception and motion control {2, 20, 10].
This level is managed and controlled by a central Ex-
ecutive in order to execute the actions requested by
the task supervisor. The response time of these mod-
ules that implement polynomial time algorithms is
bounded.

A module embeds primitive robot functions which
share common data or resources 51, 8). An internal
control process called the “module manager” is re-
sponsible for receiving requests to perform these func-
tions from the robot controller, and for otherwise man-
aging the module. Each function being well defined,
its activation or termination must respect certain con-
ditions that the module manager verifies.

Modules interact by message passing or by reading
data exported by other modules, and by putting their
own processing results into exported data structures
(EDS). At a given time, a module can be executing
several functions. All of the functions of a given mod-
ule are pre-defined at the system design stage.

In the context of a Mars rover, the planner could
be on Earth, while the plan supervisor in charge of
controlling its execution and the two other levels are
on-board the robot.

3 Planning

3.1 Temporal Planning

The planning level is based on general action plan-
ning techniques, including temporal Teasoning, since
it 1s necessary to take into account time constraints in
robots that have to act in the real world.

The explicit representation of time allows for an
operator representation that is richer than STRIPS
operators or their usual extensions as summarized in
[16]. It 1s possible, for instance, to specify informa-
tion concerning the duration of operators, the relative
time when the postconditions of an operator become
true, the conditions which must remain true during
action execution, joint effects of operators with other
operators executed in parallel, and the like. This has
been partly addressed in temporal planners like DE-
VISER [22] and in event based planners like GEM-
PLAN [17] or, more recently, CHICA [19]. GEM-
PLAN also makes a difference between temporal and
causal orderings of operators. FORBIN [11], as a time
map based planner, involves most of these issues.

We have developed a temporal planning system
called IzTeT (Indexed Time Table) {13, 15] which can
reasen on symbolic and numeric temporal relations
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between time instants. It produces a set of partially
ordered tasks with temporal constraints.

IxTeT’s representation is based on reified logic. It
relies on a 2-dimensional array (called Indexed Time
Table) with rows corresponding to logical assertions
and columns to time points (instants). Cells in the ta-
ble are temporal qualifications of the assertions. Tem-
poral constraints between instants are represented by
a time lattice. A temporal relation manager maintains
the lattice and propagates temporal constraints [14].

The descriptions of the world, the goals and
the decomposition operators are given using sym-
bolic and/or numeric temporal relations between time
points Einstants) or a set of temporal relations between
intervals (start, meet, finish, during, overlap, before,
same and the inverse relations) [3] which can be trans-
formed into relations between instants.

Ixtet involves two levels of description for decom-
position operators: the Task and the Procedure.

Tasks in IxTeT correspond to the lowest level of de-
scription. The ‘effects’ of a task are assertions which
change as a direct result of performing that task.
Hence, a task is described through its ‘effects’, tem-
porally linked to the interval of execution of the task.
Minimal and maximal duration of a task may also be
specified.

For example, in the task description given in figure
2, {Data-Avaslable ?data ?site ?larget) becomes true
at the end of the task while (Sending-Data Ptarget)
becomes and remains true during task execution.

m 1
‘(ixtet:Task TASK-SEND-DATA '
:args ("data Tsite Ntarget)
teffects ( (:meets Data-Available 7data Tsite Narget) |
(:equal Sending-Data Narget))

:duration-min (length 7data)
‘duraticn-max {length 7data)) |

Figure 2: A task description

Procedures are the decomposition operators. They
are defined in terms of a context (a set of conditions
needed in order to apply the procedure), a set of tem-
porally constrained tasks required to achieve a partic-
ular goal, together with additional effects which are
due to the combined execution of the tasks involved
by the procedure.

In the example given in figure 3, in order to ap-
ply the procedure SEND-PANORAMA, the robot will
have to wait until (Sunlight) becomes true before ex-
ecuting TASK-GET-PANORAMA(?site), and to wait
for a visibility window with the target (Earth or Or-
biter) and the rover, with a sufficient duration for per-
forming TASK-SEND-DATA(panorama, fsite, ?ar-
gel),

{:’lanning in IxTeT proceeds from an initial context
called ‘initial situation’ containing an initial state, ex-



{ixtet:Procedure SEND-PANORAMA

:args (site Narget
:goal (Data-Available panorama 7site Ttarget)
:context {  {:during s1 {:0n (Sunlight})}

(:during 51 (:on (VAP-Site Zsite}))

(:during 52 (:on (Visibility “target)))}
:steps (sl (TASK-GET-PANQRAMA Zsite)

52 (TASK-SEND-DATA panorama 7site Mtarget))

:such-that ({:before sk 52))
effects ()

Figure 3: A Procedure description

pected events and goals which are linked (directly or
indirectly) to an initial time-point by numerical or
symbolic temporal relations. The occurence dates may
be specified more or less precisely (ranging from an ex-
act absolute or relative occurence date, to a numerical
interval, to a simple symbolic ordering).

The planner performs goal decomposition by
heuristically selecting procedures and inserting them
in the time lattice together with constraints addition
and propagation.

3.2 Example

Here we describe an example based on the VAP
mars Rover mission scenario. If on-board comput-
ing capacities are limited, planning may take place on
Earth, and the plan be sent to the rover for refinement
and execution.

The mission of VAP consists in sending to the or-
biter a panoramic view of a zone called site-2 and in
collecting geological samples from site-3.

The initial time-point is noted 1. At this time
the rover is localized in a geographic zone called site-
I. Besides, there are three expected events that are
known to occur in the future: (Sunlight) will become
true at instant 2, a visibility window will start with
the orbiter at instant 18 and with Earth at instant 17.
This initial situation is represented by the time lattice
in figure 4.

O+~ @
18
(B

Figure 4: The initial situation

The procedure Vap-Navigate(?sitel, ?site?) can
only be applied during day-time (sunlight). Besides,
Collect-samples(?site) can be applied only after the
panoramic view of fsite was transmitted.

Figure 5 illustrates the plan as produced by IxTeT.
The upper part of the table shows the validity in time
of the predicates describing the world state and the
effects of the robot’s actions (values before instant 1
are not relevant). The lower part shows the the tasks

1234686789 11718101213 1438 18

(DATA-AWAILABLE PAMORAMA SITE-Z ORBITER)
(DATA-AVAILABLE PANORAMA EITE-2 RODOT)
{OATA-AVAILADLE PAMCRAMA EITE-) EARTH) -
(OMTA-AVWILABLE PANORAMA SITE-3 RODOT) =
(VING) - =
(SAMPLES-FRON SITE-3)
GURLIAT)
CUSING-4RM} -
CUSING-CAMERA)
(USING-PLATFORM) - - -
CVRLID-PATH SITE~1 $1TE-2)
(VRLID-PATM $17E-1 BITE-2)
(WAL ID-PATH 3ITE-2 $ITE-3)
(W31 gITE-1) gy
(AP-2ITE $ITE-2)
{VRP-S1T L1TE-2)
{VIEIBILITY PARTH)
{VISIBILITY IRBITIR)
ks
(TASK-HAVIGATE SITE-L $1TE-2) ™
CTASK-GET-PHAMORAMR $ITE-1) m
(TASK-SEND-DRTH PAMORRMA EITE-2 ORBITER) ™
(TRSK-HRVIGATE $1TE-2 3ITE-3) w
CTRSK-GET-PAMORAM $ITE-3) =
CTAIK-SEND-DATH PANORAMA $112-3 EARTH) I~
(TRIK-COLLECT-SAMPLES 3ITE-3)

Figure 5: The indexed time table. The upper parts
shows predicate validity in time and the lower part
the tasks in the plan.

composing the plan and their beginning and end in-
stants. Note that the identifiers of the time instants
are purely arbitrary and are not ordered in figure 5.
The temporal relations between the instants (partial
order) are given in figure 6.

We see that in order to achieve the mission goal,
the rover must navigate from site- 1 to site-2, acquire a
panoramic view, and then send it to the orbiter, nav-
igate from site-2 to site-3, acquire a new panoramic
view which is sent to Earth, and finally collect sam-
ples. Note also that the rover will wait until Sun-
light (instant 2) becomes true before moving and that
1t will wait for visibility with the orbiter or Earth
in order to communicate with them. Furthermore,
the tasks Send-data(Panorama, site-2, orbiter) and
Navigate(site-2, site-3) may be executed in parallel
(instants 7 and 9).

4 Plan Supervision

4.1 Introduction

A Plan, as produced by IxTeT, is a set of partially
ordered tasks, together with temporal constraints such
as minimal and maximal expected durations, and syn-
shronisa,tion with expected external events or absolute

ates.
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Figure 6: The lattice of time instants.

The plan supervisor is in charge of monitoring the
execution of the tasks involved in the plan. It has
therefore to verify that the tasks produce indeed the
expected effects, and must react in case of discrepancy.
Execution will be globally managed by the robot su-
pervisor, that schedules the tasks, sending thern to the
action supervisor that controls thejr execution, possi-
bly after refinement.

4.2 Plan Execution Monitoring

Instants in the time lattice correspond to different
event types: beginning or end of task execution, inter-
mediate events produced by tasks during their execu-
tion, expected external events {(which occur indepen-
dently from robot actions). Besides, numerical bounds
for dates and durations may be attached to some time-
points or intervals,

The plan execution control process interacts with
a clock by requiring messages to be sent at given ab-
solute dates, and with the robot action supervisor by
requiring task execution or cancellation (fig 7).

IxTeT Plan
t

PLAN quEnwsroN
¥

r Events ‘ Plan Execution
Lattice i Contrat
H Manager

Figure 7. The Plan supervisor

Messages received from the clock authorize the sys-
tem to state the accurence of dated expected events
and to monitor the tasks minimal and maximal ex-
pected durations.

Messages received from the robot action supervisor
are ‘filtered’ by the associated automata (see below
§4.3) and transformed into events which correspond
either to instants planned in the time lattice (in case
of nominal execution) or to unexpected instants oth-
erwise,

The plan supervisor starts from a given instant in
the time lattice and ‘executes’ the time lattice by per-
forming the following actions:

® At any moment, it considers only the time in-
stants whose predecessors have been processed

and whose planned occurence date is compatible
with the current time.

* It requires the execution of a new task when it
reaches the instant which corresponds to its be-
ginning.

e While processing incoming events, the supervisor
verifies that they correspond to planned instants
and that they satisfy the planned ordering and
numerical time constraints. If it is the case, the
absolute date corresponding to the occurence of
the events is considered, inducing a progressive
‘linearisation’ of the time lattice (see figure 8).

e In the current implementation, the only ‘stan-
dard’ reaction performed by the plan supervisor
in case of non-nominal situations is to stop the
current tasks, and update the world state accord.
ing to events incoming from task execution, until
all tasks are stopped.” This is performed by in-
serting new time instants in the time lattice cor-
responding to the transitions as defined by the
automata.

Figure 8 shows the plan at two different stages of
interpretation. The first time lattice represents a sit-
uation wherein the rover is navigating from site-2 to
sile-3 (indeed, instant 9 is in the past while instant
10 is still in the future). It has previously acquired a
panoramic view of site-2 (between instants 5 and 6),
however it has to wait for instant 18 (visibility with the
orbiter) in order to send the data (between instants 7
and 8),

In the second lattice, instant 18 has occured; the
rover is performing two tasks in parallel (navigating
and sending data to the orbiter).

@>®'@-®'®'
©)

Figure 8: Plan execution

O Last processed Instant

4.3 Using Automata To Monitor Task Ex-
ecution

In order to allow the plan supervisor to monitor
task execution and to act on them while they are exe-
cuted, each task is modelled by a finite state autorna-
ton (FSA).

The FSA associated to a task not only models the
nominal task execution (as defined in the task de-
scription manipulated by the planner) but alse non-
nominal situations (exceptions), as well as the differ-
ent actions which should be taken then by the plan
supervisor.



In the finite state automata we use, state transi-
tions can be caused by ‘internal events’ (i.e. events
generated by the task execution process and trans-
mitted to the plan interpreter) or by ‘external events’
(I.e. events due to an action of the plan supervisor on
the task while it is executed).

Typical internal events are: RUN (beginning
of execution), RETURN {nominal end of execy-
tion), STOP_ON_FAILURE (end due to a failure),
STOPPED (end of execution caused by an external
STOP request). A Typical external event is STOP
(corresponding to a stop request issued by the plan
interpreter). Other external events are related to the
task and force a state transition in the execution.

For each task, an automaton class is provided. An
example is given in figure 9. Note that each automaton
state change produces transitions in the world state
as it is maintained by IxTeT. The example in figure
9 shows a decription of automaton associated to the
task TASK-NAVIGATE. Whenever a task execution
is started by the plan supervisor, an automaton of the
associated class is instanciated and initialized. It will
then represent the execution of the task as it is viewed
by the plan supervisor,

fixtet Task TASK-NAVIGATE
(BEGS (?sitel Tsitel)
“etfects 1: js-met vAP-Site Ysitel:
t:meecs VAP-Site Isited;
i equal Noving);
:duration-nin {min-length Jsite] Isitel
:duration-max umax-length Jsitel Isitel);

\FEFIHE-RITOMKTE-CLASS TASK-HAVIGATE {2s1tel si tel;
1.STATE bequn
< INTERNAL-ZVENTS ((:run
:MEXT-STATE |, executing
“TRANSITIONS {(:0N MOVING)
T:OFF VAP-SITE sitel)) |}
*EXTERNAL-EVENTS {{:s10p
‘HEXT-STATE . stopping
<TRANSTTIONS 1 1})
:STATE executing
" INTERMAL-EVENTS | {.7eturn
*NEXT-STATE -end
TRANSITICNS * :OPP MOVING!
- ON VAP-5ITE Zs1tedl )t
+execution_failurs
*NEXT-STATE : fa1lure
TRANSTTIONS (1.0 MAVIGATION-FATLURE} 1) |
-ENTERNAL-EVENTS |1 stop
MEXT- STATE . stopping

“TRANSITIONS 1))+
*7STATE failure
INTERNAL - EVENTS v:stop an_failyre
MEXT-STATE :end

TRAKSITIONS (1:0FF NOVTNG)
(:0d VAP-SITE CURRZNT)
{:0K VALID-PATH CURRENT ®sitel)
[:0FF VALID-PATH ?5ite] site}))}
*EXTERNAL-EVENTS ((:stop !
<HEXT-STATE :stopping .
iTRANSITIONS ()17}

Figure 9: Automaton for TASK-NAVIGATE

5 Refinement and Execution Control

5.1 Task Refinement
Task Refinement transforms a task into specific ac-
tions that are adapted to the actual context. As an
example, a motion task may be executed in different
ways:
* adisplacement using only dead-reckoning systermns
to guide the movement.

¢ a closed-loop motion Using a perceptual feature
of the environment {landmark tracking, edge fol-
lowing of a large object, rim following, ete.).

These two modes correspond to the execution of dif-
ferent scripts gsee {18] for details%}, associated with the
task “move”. Script selection is ased on testing con-
ditions using the acquired data, Secripts have variables
as arguments, that are instanciated at execution time.
The execution of a script is similar to the execution of
a program.

5.2 Task Execution

Action execution are represented by activities. The
execution of a script corresponds to a global activity.
An activity is thus equivalent to the execution of a
program, and is analogous to the notion of process in
an computer operating system. A simple activity is
the execution of a function by a module. An activity
may cause the emission of requests to other modules,
starting children activities. The module in the par-
ent activity is then a client of the module in the child
activity. An activity may be the parent of many chil-
dren, but may be the chiid of only one other activity.
A set of rules and mechanisms were developed to cre-
ate and manage activities. Two basic mechanisms are
activity creation and message transmission between
two activities.

At a given moment, the set of activities represent
the functions being executed in the robot system. The
activity structure 1s a tree with a parent-child relation-
ship. The tree evolves while the robot is executing. An
activity communicates with its (single) parent activity
via “up-signals” and with its (eventual) child activi-
ties via “down-signals”, The activity hierarchy is not
predefined and depends on the current task.

Regardless of the specific processing it performs,
an activity must be able to react to signals sent by its
parent or its children. In particular, it must be able
to react to asynchronous signals within a pre-defined
bounded time delay.

An activity is also represented by a finite autorna-
ton, Its state changes are dependent on external or
internal signals. Control flow between a mother and
child activities is implemented as typed messages that
cause a state change. Specifc mechanisms permit the
propagation of a state change along the activity tree.

Important features of the notion of activity are:

* Activities provide for the management of a hier-
archy of actions without imposing a fixed number
of layers.

o All activities, regardless of level, may be treated
in the same way.

* No assumptions are made about the nature of the
inter-connections between activities: the activity
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hierarchy is not pre-defined. We might require
that a “high level” activity starts and manages a
“low level” activity at any level. This knowledge
must however exist in the modules.

¢ All mechanisms for managing activities (starting,
terminating, etc.) and the communication be-
tween them do not depend upon any program-
ming language constructs; in this sense, they re-
semble part of an operating system.

¢ The concept of activity permits reactivity at
all levels: at any moment, each activity in the
tree structure is able to respond to asynchronous
events.

Figure 10 represents an example of activity tree at
one stage of the execution of a go-to(location) task.
The “root” box represents the mother activity of this
task, within the executive. The “monitor-11" box is
the mother activity of a main child-activity (monitor-
12) and of an associated monitoring activity (timer-
200: a time-out for this task). When the corre-
sponding event occurs, the main activity is stopped.
“Monitor-12” is a monitoring activity also: the trav-
eled distance should not exceed a given maximum
{(here 60 meters). Sequence in the “sequence-6” box
means that the following children are to be executed
in sequence (this defines a sub-activity block). “go-
to-xy” and “exec-traj” are the two sequential activi-
ties. The first is the “go to” coordinate location, and
the second is the trajectory execution phase within
it. Other possible phases are “build-model” (envi-
ronment modelling) and “build-traj” (trajectory plan-
ning}. The last box “move-5” is the primitive actiocn
move being executed.

Figure 11 shows the execution of the go-toflocation)
task in a laboratory experiment, where the robot dis.
covers its environment and builds a model of it while
It navigates to reach the assigned location.

6 Conclusion

We presented in this paper a global approach te
task planning and execution for intervention robots.
Such robots are characterized by the fact that they
have to be able to autonomously execute their actions
in a partially and poorly known environment in order
to accomplish missions and tasks specified and pro-
grammed by a human user. The robot have to inter-
pret the tasks according to the context and its evolu-
tion, and to achieve autonomous execution. The main
interest of the plan execution supervision as it is pro-
posed in this paper is to maintain and update a com-
plete history of the plan execution not only in nominal
cases but also when a failure occurs. This is performed
using automata which model tasks execution and their
interaction with the plan supervisor. However other
representations may be used. Indeed, we are working
on an extension using on a compiled rule-based system
which should allow not only to model task execution
but also combined effects due to the simultaneous ex-
ecution of several tasks as well as domain dependent
knowledge allowing to infer new transitions starting
from a set of observed events. While it is still neces.
sary to further deepen some aspects, the experimental

Figure 10: Activity tree during execution of a GOTO
task

results show that this approach is sound and applica-
ble.
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Figure 11: Experimental Execution of a goto(location) task.
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Abstract: Designing a control architecture for au-
tonomous robots able to reason and to act in their
environment to accomplish tasks, and to adapt in real
time to the actual execution context, raises major
questions in the field of control theory, knowledge-
based and reasoning systems, as well as software archi-
tecture. We prapose in this paper an approach to build
such systems, based on the experiences and contribu-
tions of two laboratories, INRIA and LAAS-CNRS.

1 Introduction

It is known that the necessity of designing truly au-
tonomous robots comes from highly demanding appli-
cations (undersea intervention, planetary exploration,
working in nuclear plants, etc.). Since, in such appli-
cation fields, any repairing intervention is excluded,
the need for a total technological autonomy is obvicus:
energy. computing facilities, sensors... Furthermore,
the dialogue with an end-user is reduced to mission
specification and, when possible, to very few high-level
communications Efor example teleprogramming). This
means that an almost total operetional autonomy is
also required, especially in the domains of perception,
decision and control.

This search for operational autonomy raises major ques-
tions in the fields of control theory, knowledge-based
and reasoning systems, as well as architecture. How-
ever, the specificity of the application domain gener-
ates particular constraints which may sometimes be
felt as antagonistic according to the concerned scien-
tific dornain:

1) The need for adaptivity in time and space. This
leads to the necessity of on-line planning:

# because of the incompleteness of the knowledge,
or of existing uncertainties on measurements. This
is for example the case when the environment is
gradually discovered by the robot;

¢ because of technical limitations. In most cases,
the on-board storage capabilities make impos-
sible to keep in memory all possible execution
COUrses.

2) The need for reliebility. Since no intervention is
possible in general, it is necessary to be sure, as far as

possible, that the robot will work satisfactorily before
its launching. This implies:

* the necessity of ensuring that every step down to
the real-time implementation of the tasks han-
dled by a planner is correct, takes the expected
time and that possible conflicts may be avoided;

# to be able to verify the largest possible set of
assertions about the mission: nominal behavior,
emergency procedures, etc,

Up to now, and in mest of the architectures for au-
tonomous robots, these requirements were not consid-
ered as compatible; item 2 needs an exhaustive knowl-
edge of all the handled entities and of the way they are
organized. Determinism and synchrony assumption
are often used. Analysis of continuous-time aspects is
also required. This may be clearly not compatible with
tssues of item 1. Conversely, item 1 requirements make
difficult non-trivial verifications and are inappropriate
to take into account automatic control aspects.

The aim of this paper is to present and illustrate some
ideas which would constitute the generic basis of an ar-
chitecture allowing to take into account as far as pos-
sible the previous requirements. The challenge may
here be understood as the feasibility of designing an
autonomous robot endowed with capacities of plan-
ning its own actions in order to accomplish specified
tasks while having a so-called reactive or reflex behav-
ior with respect to its environment. For that purpose,
we emphasize design aspects at two levels in the robot
architecture:

e the functional level: it concerns the design, vali-
dation and implementation of control loops asso-
ciated with a local behavior, called robot-tasks;

« the decisional level: it relies on a layered plan-
based architecture and provides with a suitable
framewark for the interaction between delibera-
tion and action, as defined later.

The interest of this structure is that on-line plan-
ning will be allowed at the last level, without ex-
cluding reactivity or sensor-based reflex actions at the
first one. Furthermore, verification aspects will be
made possible almost from implementation up to high



level mission specification when models based on state-
transitions systems are used.

The paper is organized as follows: in the next section,
we present the concepts underlying our approach to
the design of a intelligent robot. Then, in section 3,
we detail the functional level, and in section 4 the deci-
sional level. An example of the proposed architecture
is finally given in section 5.

2 Basic Principles

The proposed approach is based on a few simple ideas,
an overview of which we give in this section.

2.1 At the Functional Level

A key question is ” What is an action?” In other words,
what are the characteristics of the smailest entity of
this type handled by the decisional level? A partial
response lies in the concept of reactivity, widely used,
sometimes wrongly. The theory of discrete-event sys-
tems provide us with a rather precise definition: a
synchronous reactive system produces a set of output
events deterministically and instantaneously upon the
occurrence of a set of input events. Such an emission
of signals may thus be considered as an internal action,
which will perhaps lead to a robot action, i.e. a dedi-
cated motion. This last may therefore be started by an
event occurrence, but it still remains to describe what
this motion will be. A second point is that, clearly,
other types of actions may also be triggered on event
reception at a higher level: sensor activation, planning
requirement, asking for operator intervention, etc. We
thus already conclude: 1- that a too general concept of
action is not the adequate one at the functional level;
2- that the specification in terms of reactivity only is
necessary but not sufficient.

Let us now come to the problem of specifying and con-
trolling a robot action. This may be stated as a control
problem which may be efficiently solved in real-time
using adequate feedback control loops. Since it is a
powerful and mathematically rigorous tool, we believe
that control theory should be used as far as possible.
In particular, sensor-based control loops are a nice way
of performing motions in continuous interaction with
the environment, called reflez actions. Furthermore,
it will be seen that implementation issues are easily
handled within this framework. This is why we de-
fine the key entity at the functional level as a kind of
event-driven reflex aclion, called rebot-task.

2.2 At the Decisional Level

The investigation on the interaction between deliber-
ation and action is certainly a key aspect in the de-
velopment of intelligent agents and particularly au-
tonomous robots. Deliberation here is both a goal-
oriented planning process wherein the robot antici-
pates its actions and the evolution of the world, and
also a time-bounded context dependent decision for a
timely response to events.

While there are high emergency situations where a
first and immediate (reflex) reaction should be per-
formed, such situations often require last resort safety

actions. They can often be avoided if the agent is able
to detect events which allow it to predict such situa-
tions in advance. Note that this is first a requirement
for sensors and sensor data interpretation. Being in-
formed in advance and consequently having more time
to deliberate, the agent should be able to produce a
better decision. Note also that such a capacity is gen-
erally ignored in ”purely” reactive approaches where
the robot makes uses only of ”short” range sensors
giving it data on its immediate environment.

Acting is permanent, and planning should be done
in parallel: an intelligent agent should not neglect
any opportunity to anticipate (i.e, to plan). How-
ever, since planning requires an amount of time usu-
ally longer than the dynamics imposed by the occur-
rence of an event, the paradigm that we shall develop
consists in controlling the functional level by a delib-
erative system that has a bounded reaction time for
a first response. This level is composed of a plan-
ner which produces the sequence of actions necessary
to achieve a given task or to reach a given goal, and a
supervisor which actually interacts with the functional
level, controls the execution of the plan and reacts to
Incoming events.

The decisional level may not be unique: a planner usu-
ally requires abstract models, and its representations
of actions do not embed the actual interactions with
the environment. ¥or example, a planner would use
a model in which situations are described in terms of
predicates and general topology (e.g. “connects (D1,
R1, R2)”) without taking intoc account the geometry
of the environment. Furthermore, there may be sev-
eral ways to execute a given action (as defined at the
high-level planning system) depending on the actual
execution situation. Hence, there may be several deci-
sional layers the lower ones manipulating representa-
tlons of actions which are more procedural and closer
to the execution conditions.

Let us now present functional and decisional levels
more deeply.

3 The Functional Level

As previously evoked, this level mainly relies on the
concept of robot task. This keystone concept is the
minimal granule to be handled by the decisionel level,
while it 1s the object of maximum complexity to be
concerned by the conirol aspects. It characterizes in
a structured way a closed loop control scheme, the
temporal features related to its implementation and
the management of associated events. Fully described
in [19], it 1s defined in a formal way as follows:

A Robot-Task is the entire parametrized specification:
e of an elementary servo-controf task, i.e. the activa-
tion of a control scheme structurally invariant along
the task duration;

¢ and of a logical behavior associated with a set of sig-
nals liable to occur previously to and during the task
execution.

Let us give some details on these two aspects.



3.1 Design and Implementation of a Ser-
voing Task

A first step consists in specifying the continuous-time
control law associated with a dedicated robot-task. In
the case of a two-wheeled mobile robot, it is for exam-
ple the expression of the control which, given desired
and actual configuration at time t, computes the wheel
velocities or the driving torques to be applied. Usu-
ally, such a scheme may be split in several functional
modules {position estimation, trajectory generation,
feedback control...) which exchange data.

Now this description should take into account imple-
mentation issues: discretization, variable quantization,
delays, computation times, periods, communication
and synchronization between the involved processes.
This is done by defining the basic entity cailed Module-
Task, which is a real-time task used to implement an
elementary functional module of the control law.

Since the Module- Tasks may, possibly, be distributed
over a multiprocessor target architecture, they com-
municate using message passing and typed ports. A
set of 8 communication and synchronization mecha-
nisins is provided (see [19]). "Dedicated simulation
tools allow to finely validate this design step.

3.2 The Event-based Behavior

In a way, a Robot Task is atomic for the decisional
level. However it follows an internal sequencing which
has not to be seen in normal (failure-free) circum-
stances. Nevertheless the Robot Task has also to ex-
change information with the supervisor, described later,
which synchronizes and/or conditions their activation.
In the present approach, these two aspects are con-
sidered in a single way. Thus the Robot Tasks can
be considered as reactive systems and can be pro-
grammed using the synchrony assumption ([6]): sig-
nals are emitted from and to z finite state automaton
which specifies the Robot-Task behavior. This au-
tematon, called RTA , is encoded using the synchronous
language ESTEREL ([5]).

The signals are emitted by specific module tasks, called
"observers”. They are strongly typed:

e the pre-conditions. Their occurrence is required for
starting the servoing task. They may be pure synchro-

nization signals or signals related to the environment,
usually obtained through a sensor

¢ the ezceplions. They are exclusively emitted by ob-
servers in case of failure detection.

¢ the post-conditions. They are either logical synchro-
nization signals emitted by the RTA itself in case of
correct termination, or signals related to the environ-
ment,

The treatments associated with pre- and post-conditions
are quite stimple and not described here. The excep-
tion processing is more specific:

® type I processing: the reaction to the received excep-
tion signal is limited to the modification of the value
of at least one parameter in the module-tasks (gain
tuning, for example).

goal/ goal modalities

. plan + plan modatiies ~———————

— - . situation-driven

i i Supervisor ;
. g

Planner
_— goal + state &
signals toArom
processes
L)
Frocesses

Figure 2: Paradigm for the Integration of Planning
and Execution

® type 2 processing: the exception requires the activa-
tion of a new Robot-Task. The current one is therefore
killed. When the ending is correct, the nominal post-
conditions are fulfilled. Otherwise, a specific signal is
emitted towards the supervisor, which knows the re-
covering process to activate (see later).

¢ lype & processing: the exception is considered as fa-
tal. Then, everything is stopped.

Desiin of a Robot Task: An object-oriented ap-
proach is used for design and modelling of robot-tasks.
Based on this approach, a dedicated human-machine
interface has been realized. It allows to easily instan-
tiate all the objects required in a given robot task and
to specify the values of temporal attributes. Graphic
facilities are also provided. Figure 1 gives an example
of a robot task which consists in making park a mo-
bile robot. To conclude on this aspect, let us underline
that the ESTEREL synchronous code is automatically
generated from the object specification, All existing
verification tools may then be used on this code with-
out any need for the user to learn the language.

4 The Decisional Level

4.1 A Paradigm for Integrating Delibera-
tion and Action

We summarize here the paradigm we have adopted
in order to take into account the different attributes
discussed in section 2.2.

A decisional level is composed of two independent en-
tities: a planner and a supervisor (figure 2).

The Planneris given a description of the state of the
world and a goal; it produces a plan. One criterion
that should be considered when speaking about plan-
ning is the “quality” of the produced plan which is
related to the cost of achievement of a given task or
objective {time, energy, ...), and to the robustness of
the plan, i.e., its ability to cope with non nominal sit-
uations. This last aspect is one of the motivations of
our approach: besides providing a plan, the planner
should also provide a set of execution "modalities”.
These execution modalities are expressed in terms of:
¢ constraints or directions to be used by a lower plan-
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Figure 1: A robot-task example for parking a mobile robot

ning level;

¢ description of situations to monitor and the appro-
priate reactions to their occurrence; such reactions are
immediate reflexes, “local” correcting actions (with-
out questioning the plan), or requests for re-planning.

These "modalities” provide a convenient (and com-
pact) representation for a class of conditional plans.
However, the generation of "modalities” still remains
to be investigated: we have no generic method yet
for integrating modalities production in a planning
algorithm. However, it is possible to produce useful
modalities in a second step by performing an analy-
sis of the plan as produced by the a first "classical”
planning step. Such an analysis can be based on a
knowledge of the limitations of the planner itself and
of the world description it uses, as well as on domain
or application specific knowledge (see section 5 for ex-
ample).

The Supervisor interacts with the other layers and
with the planner. The other layers are viewed as a
set of processes which exchange signals with the su-
pervisor. These processes correspond to the actions
of the agent as well as events associated with environ-
ment changes independent from robot actions.

These processes are under the control of the supervi-
sor which has to comply with their specific features.
For example, a process representing a robot motion,
cannot be cancelled instantaneously by the supervisor:
indeed, such a process has an "inertia”. The supervi-
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sor may request a stop at any moment during execu-
tion; however, the process will go through a series of
steps before actually finishing.

The simplest way to represent such processes are finite
state automata (FSA). More elaborate representations
such as temporized processes should be investigated.

In the FSA we use, at any morment:

¢ the set of allowed external signals correspond to all
the actions that can be taken by the supervisor;

o similarly, the set of possible internal signals corre-
spond to all environment changes that could be per-
ceived by the supervisor.

The activity of the supervisor consists in monitoring
the plan execution by performing situation detection
and assessment and by taking appropriate decisions
in real time, i.e., within time bounds compatible with
the rate of the signals produced by the processes and
their possible consequences (Figure 3).

The responsibility of ” closing the loop” at the level of
plan execution control is entirely devoted to the super-
visor. In order to achieve it, the supervisor makes use
only of deliberation algorithms which are guaranteed
to be time-bounded and compatible with the dynam-
ics of the controlled system. Indeed, all deliberation
algorithms which do not verify this property are ac-
tually performed by the planner upon request of the
Supervisor.

This execution control is done through the use of the
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plan and its execution modalities, as well a sot of
situation-driven procedures embedded in the supervi-
sor and independent of the plan. These procedures arc
predefined (at design phase), but can take into account
the current goal and plan when they arc executed, by
recognizing specific goal or plan patterns,

4.2 A Generic Architecture

We propose here below an architecture which is adapted
1o a class of autonomous robot applications where it
18 possible {and smtable) to describe the world model]
in an abstract symnbolic level, and where the robot is
given goals expressed in terms of a state. However,
even though there is sufficient information to build
and maintain such a description, this does not mean
that detailed informaticn is alse available. Typical
cases are “intervention robots” that have to operate
in an ill-known environment discovered by the robot’s
scnsars and on which only incomplete and uncertain
previous knowledge may exist. Examples are disaster
intervention (e.g., the AMR-EURFEKA (18] project) or
planetary rovers {e.g., VAP![12],

The global system architecture we propose is orga-
nized into threc levels representing two decisional lay-
ers and a functional level (figure 4). The two upper
levels are built with the supervisor-planner paradigm.
The higher level uses a temporal planner. The sec-

'"WAP: Autonomous Planetary Vehicle, a project of the
French national space agency CONES,
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Figure 4: Global Architecture

ond level receives tasks that it transforms into scripts
(procedures) composed of elementary robot actions,
and supervises script execution while being reactive
to asynchronous events and environment conditions.
Planning at this level is a “refinement” using domain
or task specific knowledge: it does not use a general
planner.

The functicnal “execution” embeds a set, of elementary
robot tasks implementing task-oriented servo-loops as
well as a set of robot. primitive functions {motion plan-
ner. perception, ete, .. ).

5 An Instance of the Architecture

We present next an example of the architecture which
complies with the different properties discussed in the
previous sections.

At The Mission Planning Level: For the planner,
we have developed a ternporal planning system called
IrTeT (Indexed Time Table) [11, 9] which can reason
on symbolic and numeric temporal relations hetween
time instauts.

A Plan, as produced by IxTeT, is a set of partially or-
dered tasks, together with temporal constraints such
as minimal and maximal expecled durations, and syn-
chronization with expected external events or absolute
dates.

In the current implementation, the temporal plan su-

pervisor is provided with automaton classes correspond-

ing to the execution of the different actions which
may be included in the plan. Whenever an action is
started an automaton of the associated class is instan-
tiated. The “internal” events, as well as the “external”
events, are represented as time-stamped transitions in
the world model as it is used by the temporal planner.

At the task-planning level: At this level, we use C-
PRS [15] which provides a suitable framework for goal-
driven as well as situation-driven deliberation processes.
Indecd, PRS implements seript (called KA in PRS) se-
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lection and goal posting mechanisms. Planning can be
performed through context dependent goal decompo-
sttion; situation-driven reaction can be performed by
triggering KAs according to the world model content.

At the executive level: This level is purely reac-
tive with no planning capacities. It controls the exe-
cution of robot-tasks and other robot primitive func-
tions using pre-defined context-dependent actions. It
is implemented using a rule-based system KHEQPS
[10] which allows to compile {off-line) a set of rules,
producing a program which performs a time-bounded
search through a decision-tree.

At the functional level: Concerning the functional
level, an example of architecture is described is (19]

and an implementation is given in [18].
user to specify complex robot-tasks wit temporal prop-

It allows the

erties, to check their performances in a discrete-time
multi-rate framework and on a target hardware archi-
tecture. It also provides with automatic code genera-
tion for automaton encoding as well as for execution
within a real-time operating system.

6 Conclusion

We have presented some key design issues of intelligent
control architectures for autonemous robots. We have
discussed the relevant attributes and showed how they
can be integrated in a coherent architecture which
provides a framework for implementing time-bounded
decision and reaction at different levels, from task-
oriented closed [oops to situation-driven decision and
goal-driven plan generation. We have also briefly pre-
sented several tools which can be used to implement
instances of this generic architecture.
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Abstract

We present in this paper an approach to planet exploration
by mobile robots. We discuss the capuacilies that the robot
should be endowed with according to the objectives of the
mission, and we present a complete system that prevides
for mussion planning and supervision from a ground sta-
tion, and for en-board misston inlerpretation and erecy-
tron, including aulonomous navigation. The concepts are
tlustrated by resulls from the crperimental testbed EDEN
developed at LAAS.

[. INTRODUCTION

Several aspects make planet exploration a demanding and
difficult problem for robotics:

® The robot has to operate in a natural, unstructured
and a priorl unknown envircninent.

¢ There is no possibility of continuous imteraction with
the robot hecause of importan: delays in communica-
tions and low bandwidth.

» The information on the rohot and the environment is
mostly acquired through the robot's own SENSOTs.

These constraints rule out direct telcoperation as well as
telerobolics approaches [18, 13, 12], and point towards
robots with Important antonomous capacities.

One approach that has been proposed [1, 15] is to send
one or more “simple” and completely autonomous robots,
without any control from a ground station. Such robots,
using a behavior-based control scheme [3], would achieve
an 1naging, measurewment or sample collection mission but
1ot in a designated site, since they cannot be given their
objective from the ground.

The perception and navigation systems of this type of
robot would be simple (not considering the instruments
necessary for the scientific measurements) since they don’t
plan their motion except locally. A local or contact-based
obstacle avoidance algorithm and low-level security re-
flexes would be sufficient to carry out the mission. If it ig
necessary to get back to the landing module, these robots
would be equipped with some radic device for homing back
to the lander (without a real guarantee to reach jt- they
have no motion planning).

For the mission to be really useful if based on this concept,
a number of robots should be sent since some could be |ost,

and other could acquire a too poor data, Furthermore, the
area explored by such robots would he limited to the sur-
roundings of the landing module because of the simplicity
of their navigation and the absence of path planning.

We think this approach would certainly be easier to maple-
ment and probably produce robust robots (because they
are simple) but would be far from guaranteeing the success
of the mission, neither its sclentific harvest.

We have a different approach to the challenge of planet
exploration by mobile robots [11]. Our approach stems
from the following considerations:

* The landing site may be remote from areas of interest
to the scientists, mainly because it will be selected for
its safety whereas the interesting areas are in general
rather inadequate for landing [5]. Hence the robot has
to travel some distance (tens of kilometers or more}
from the lander to reach a specific region {not at ran-
dom nor merely in a given direction).

¢ The mission is not defined once and for all. Accord-
ing to returned data, the scientists on Earth should
be able to decide for the exploration of such or such
site, the analysis of such sample, ete. 1t is necessary
then to be able to control the robet, Le., send it new
missions. It is therefore important Lo know what it is
doing. In order to provide it with new objectives, it
is also important to know where it is.

* Because the environment is poorly kuown, the mis-
sion can ouly be defined at a task-levelin general, and
not in its every detail (except in very special cases
such as picking up a rock at reac ). Hence the robot

must be able 10 interpret the mission according to its
actual context during its autonomous execution.

¢ The robot could fall into difficult situations wherein
its perception, interpretation or decision making ca-
pacities are unsufficient. Human intervention would
then be necessary for troubleshooting {which could
be at a very low-level of command).

According to the preceeding arguments, we propose a
global architecture for a robotic exploration system in two
main parts: a ground station for mission programming
and supervision, and a remote robot! able to interpret
the mission and execute autonomously,

—
Tnot necessarily a single one.



II. THE GROUND STATION

The Ground Station includes the necessary functions to
allow a human to a) build a mission that can then be
interpreted and executed by the robot. Such a misston
is called an ezecutable mission, as opposed to a higher
level description of objectives as they may be expressed
by planet scientists, and b} supervise its execution, taking
into account the delays and communication constraints.

It consists of:

o A user interface that includes representations of the
environment, the mission, and the robot state.

¢ A computer-aided environment to support the plan-
ning, programming and supervision of the mission by
the human user.

The process of building an executable mission is decom-
posed into two phases which correspond to two different
levels of abstractions and to different planning techniques:

. a phase called “mission planning” which produces a
“mission plan”, i.e. a set of (partially) ordered steps
that will allow the robot to achieve a given goal.

2. a phase called “teleprogramming” that consists in re-
fining a step in the mission in terms of tasks that can
be interpreted and then executed by the robot. De-
pending on the nature of the mission and its difficulty,
and on the amount of information available at plan-
ning time, an executable mission can be composed of
a variable number of steps.

A. Misston Planning

Mission planning can be carried out with the help of a
planning system able to take into account temporal and
resource constraints as they can be foreseen at this stage.
We have developed a temporal planning system called Jz-
TeT [9, 10] which can reason on symbolic and numeric
temporal relations between time instants. It produces a
set of partially ordered tasks with temporal constraints.

The explicit representation of time allows for a represen-
tation of planning operators that specify information con-
cerning the duration of actions, the relative time when
the consequences of an operator become true, the con-
ditions which must remain true during action execution,
joint effects with other operators executed in paralle], and
the like. This has been partly addressed in planners like
DEVISER [20] or FORBIN 16] that introduce temporal
operators.

The descriptions of the world, the goals and the planning
operators are given using symbolic and /or numeric tempo-
ral relations between time instants or elementary temporal
relations between intervals which can be transformed inte
relations between instants.

IxTeT architecture is closer to FORBIN's, with an explicit
time-map manager. Its representation is based on a rei-
fied logic formalism. Tt relies on a 2-dimensional array
(called Indexed Time Table) with rows corresponding to
domain relations and columns to temporal qualifications
with time points at the primitive level. Tempeoral con-
straints between instants are represented by a time lat-
tice. A temporal relation manager maintains the lattice
and propagates temporal constraints [10].

Ixtet involves two levels of description for operators: the
Actian and the Task. Actions correspond to the lowest
level of description. The ‘effects’ of an action are asser-
tions which change as a direct result of performing that
action. Hence, an action is described through its ‘effects’,
temporally linked to the interval of execution of the ac-
tion. Minimal and maximal duration of an action may
also be specified.

For example, in the action description given in figure 1,
(Data-Available ?data ?site flarget) becomes true at the
end while (Sending-Data Pterget} becomes and remaing
true during action execution.

(ixtet:Action ACTION-SEND-DATA
args (data Tsite Mtarget)
effects { (:mects Data-Available "data %ite Mtarget)
{:equal Sending-Data targety)
duration-min {length data)
:duration-max (leagth data))

Figure 1: An Action description

Tasks are the planning operators. They are defined in
terms of a context (a set of conditions needed in or
der to apply the procedure), a set of temporally con-
strained actions reguired to achieve a particular goal, to-
gether with additional effects which are due to the com-
bined execution of the actions involved by the task, In
the example given in figure 2, in order to apply the
task SEND-PANORAMA, the robot will have to wait
until (Sunlight) becomes true before executing ACTION-
GET-PANORAMA(?site), and to wait for a visibility win-
dow with the target (Earth or Orbiter) and the rover,
with a sufficient duration for performing ACTION-SEND-
DATA(panorama, ?site, Ptarget).
(ixtet: Task SEND-PANORAMA
args {7site Narget)
‘goal (Duta-Available panorama 7site Marget)
«context {  (:during s] (:on (Sunlight)))
(:during s1 (:on (VAP-Site 7site))}
(:during s2 (:on (Visibility Ttargen))
steps {s! (ACTION-GET-PANORAMA site)
52 (ACTION-SEND-DATA panorama Jsite Marget))
:such-that ({:before s1 52))
effects ()

Figure 2: A Task description

B. Task-level Teleprogrammang

Depending on the nature of the task and on its difficulty
with respect to environment conditions, and depending
on the robot decisional and operational capacities, a task
selected by the planner can be sent as it is to the robot or
must be further refined at the ground station.

We call this process the “tele-programming phase”. It uses



all the information and expertise available at the ground
station which may help the robot in performing its task.

The result of this phase can be a more or less detailed pro-
gram together with a set of execution "modalities” which
provide a convenient representation for a class of condi-
tional plans.

These execution modalities are expressed in terms of:

e constraints or directions to be used by the robot control
system for executing the mission and each of its tasks ;

* a description of situations to monitor and the appropri-
ate reactions to their occurrence; such reactions are im-
mediate reflexes, “local” correcting actions (without ques-
tioning the mission), or requests for re-planning a task.

We can consider four types of tasks: global motion, per-
ception tasks, local motion, and scientific tasks.

Global motion teleprogramining consists in replacing a
“GQO-TO(site)” task by a sequence of more robust global
motions that guide the robot along a “good” route as it
may be selected from data taken from orbit, and also rely-
ing on environment features - if any. The robot will be still
executing autonomously its navigation, but instead of us-
ing only its own data, it also takes advantage of other ob-
servatons. In addition, execution modalities can be added
to the task, to be used by the robot to take its own deci-
sions. Such modalities include constraints and indications
for selecting the adequate actions (e.g., decision to cross
an uneven terrain, with respect to try to avoid it, at the
price of a longer but easier trajectory). This teleprogram-
ming phase ends up for the case of global navigation in
couslricting navigation routes as shown in figure 3.

Perception tasks are used to acquire specific data for local
motion or other actions. Local motions or scientific tasks
are those which concern positioning the robot either for
sample picking or equipment deployment. Local motions
can also be programmed for heiping the robot to overcome
some difficult situation. Such tasks need data sent back
by the robot and cannot be programmed beforehand.

Telesupervision in this context has both a mission moni-
toring role and a troubleshooting role, Because of commu-
nication constraints (communication requires pointing the
antenna and hence cannot be done continously) specific
supervision commands such as status reports and data on
mission execution must be included in the mission itself.
In case of a problem encountered during execution, the
robot must take the decision to call for help, or to con-
tinue the mission according to the modalities given with
it

iIl. THE ROBOT SYSTEM

Because the robot is in a remote ill-known environment,
and communications constraints prevent from a continu-
ous exchange of data with it, it is not possible in general
to plan its actions with all the details. Therefore, the
robot contro} system should be able to interpret the tasks
in terms of actions to be executed, taking into account
the actual state of the system and of the environment [2].
Nominal mission execution is completely autonomous and
controlled on-board, without any direct interaction with
the station (except if planned). FExchange of data with

orbiter image

local view (robot)
with terrain classification

Figure 3: Construction of ¢ navigalion route

the Ground Station takes place as planned in the mission
or when necessary because of execution status.

The robot system is composed of two levels: a decisonal
level and a functional execution level.

A. The Decisional Level

The first level receives the tasks composing the plan,
transforms them into sequences of actions and supervises
their execution. It is composed of a task refinement
system which selects the adequate actions - coded as pro-
cedures to execute - according to a current context, i.e.,
to mission, environment and robot state. This is a time-
bounded process. The other component at this level is a
task supervisor that is in charge of receiving the mission
from the Ground Station and transmit it for refinement,
and then controlling the execution of the selected pro-
cedures. This system is reactive to asynchronous events

coming from the execution level. Tts time response is also
bounded.

B. The Functional Level

The second level is an “execution” level. It is composed
of a set of modules embedding the functions necessary
for perception, motion and other actions [17, 4]. The re-
sponse time of these modules that implement polynomial
time algorithms is bounded. This level is managed and
controlled by a central Executive in order to execute the
actions requested by the task supervisor. The executive
Is a time-bounded system: its reactions to events are pre-
determined precompiled structure.

A module embeds primitive robot functions which share
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common data or resources [7]. An internal control process
called the “module manager” is responsible for receiving
requests to perform these functions from the robot con-
troller, and for otherwise managing the module. Each
function being well defined, its activation or termination
must respect certain conditions that the module man-
ager verifies. Modules interact by message passing or by
reading data exported by other modules, and by putting
their own processing results into exported data structures
(EDS). At a given time, a module can be executing several
functions.

IV. AUTONOMOUS NAVIGATION

The global system as described in section I1I has been
partially instanciated in the “EDEN” experiment carried
out at LAAS with the mobile robot ADAMZ. This robot
Is not to be sent to Mars; it is only used for development
and testing.

We focus here on a fully autonomous navigation in a natu-
ral envirenment, including perception, environment mod-
eling, localization, path and trajectory planning and exe-
cution on flat or uneven terrain. All the functions are en-
capsulated in modules integrated together in a real-time
environment for autonomous operation.

The canonical task is “GO-TO (Landmark)” in an initially
unknown environment that is gradually discovered by the
robot. The landmark is an object known by its model,
which can be recognized and localized on a video or laser
image.

The robot has six motorized non directional wheels with
passive suspensions®. It is equipped with a 3D scanning
laser range finder (LRF), two orientable color cameras,
and a 3-axis inertial platform (figure 4). The motion con-
troller also provides for odometry. On board computing
equipment is composed of two VME racks, one for locomo-
tion and attitude control, and the other for the perceptual
and decisional functions.

A. General approach

In a natural terrain, there may be areas that are rather
flat - cluttered or not by obstacles - and others which
are uneven with respect to the locomotion capacities of
the robot. Uneven areas require detailed modeling and
complex trajectory planning, whereas flat areas can be
more easily crossed, and motion planning is sometimes
not necessary if the area is essentially obstacle-free.

According to a general economy of means principle, we
chose to adapt the robot’s behavior to the nature of the
terrain, and hence consider three navigation modes

¢ A 2D planned navigation mode : Applied when the
terrain is mostly flat - or with an admissible slope for the
robot -, it relies on the execution of a planned 2D trajec-
tory . The motion planner requires a binary description
of the environment in terms of Crossable/Non-Crossable
areas.

2ADAM: Advanced Demonstrator for Autonomy and Mobility is
property of FRAMATOME and MATRA MARCONI Space, cur-
rently lent to LAAS.

*Robot, chassis was built by VNII Transmash (St Petersbourg,
Russia).

Figure 4: The mobile robot Adam.

¢ A 3D planned navigation mode : Applied when an
uneven area has to be crossed, it requires a precise model
of the terrain, on which a 3D trajectory is planned and
executed [19].

* And a reflex navigation mode : The robot locomotion
commands are determined on the basis of () a goal {head-
ing or position) and (i) the information provided by “ob-
stacle detector” sensors. This navigation mode does not
require any maodeling of the terrain, that has simply been
labeled as “essentially obstacle-free”.

Our approach to determine which navigation mode can be
applied is based on a fast analysis of the raw 3D data pro-
duced either by the LRF or by a stereovision algorithm.
This analysis provides a description of the terrain in terms
of five classes . {horizontal, Flat with slope, Uneven, Ob-
stacle, Unknown} (figure 5). This model is maintained
(old and new data are fused) as the robot moves by to
build a global description of the environment. All the
“strategic” decisions are taken on the basis of this global
representation. These decisions concern the determination
of the intermediate positions, the choice of the navigation
mode to apply to reach them, as well as the definition of
the next perception task to execute: sensor orientation
(and selection, since Adam is equipped with stereo and
LRF), and operating modalities.

B. Terrain represeniations

As mentioned above, the different navigation modes re-
quire different types of terrain deseription, and the strate-
gic decisions are taken on the basis of a specific repre-
sentation of the environment. The localization processes
also requires specific representations: a localization pro-
cess based on landmark recognition for instance, needs ge-
ometric features to model and match the perceived land-
marks, and it also uses a global map of landmarks or areas
of interest.

Several data structures that represent the environment
must coexist in the system. We developed a multi-layered
heterogeneous model of the environment: in such a model,
the different representations are easily managed and a
global coherence can be maintained.




The top-level of this heterogeneous model is a “bitmap”
description of the environment (figure 5), built upon the
results of the quick terrain analysis algorithm. A large
amount of information is available in each pixel of this
bitmap, such as the terrain label and its confidence level,
the estimated height, the identification of the region it be-
longs to (section IV.C) etc. We have chosen such a struc-
ture for the following reasons : it is simple, rich, adapted
to a unstructured terrain, and open, in the sense that any
complementary information can easily be encoded in a
pixel whithout reconfiguring the entire description and the
algorithms that runs on it. Moreover, the techniques that
allow to extract structured informations (regions, connex-
ity...} from a bitmap are well known and easily imple-
mented.

C. Navigation siralegies

Navigation strategies include (¢) perception strategies, ie.
the choice and definition of the different perception tasks
to perform, and () the motion strategies, that imply the
definition of intermediate goals and the choice of naviga-
tion modes; The two problems are obviously linked, but to
avoid a great complexity, we developed twa specific inde-
pendant techniques, that are coupled afterwards to obtain
an adequate behavior of the robot.

¢ Perception strategies: they mainly concern the deci-
sions to acquire more detailed information on some regions
(e.g., building an elevation map to cross an uneven area),
or to perceive a new zone, or robot localization. They are
always performed according the following procedure: (a)
perceptual constraint check, (8) prediction of the result of
the perceptual task, and (¢} evaluation of the contribution
of the task. The first two steps need an explicit model of
the environment {in our case the bitmap description}, and
but also of the sensor to be used (in terms of logical sen-
sors such as ~ landmark extractor”, or “a terrain analyzer”
for instance). and the third step is computed heuristically,
considering the current mission constraints.

Fast terrain analysis [14]: This procedure, performed
each time 3D data are acquired, relies on a discretiza-
tionin “cells” of the perceived zone, and on the deter-
mination of global attributes for these cells that allow
to label them (figure 5). The main point is that la-
bels are associated to a confidence value, which allow
to fuse different perceptions in a global model (the
bitmap structure mentioned above).

Elevation map building {16]: When a uneven area has
to be crossed, it is more precisely modeled using and
interpolation algorithm to produce a digital elevation
map on a cartesian grid.

Landmark based localization [8]: Localization using
environment features has been developed. Currently,
it mainly relies on the recognition of terrain “peaks”
(points of important elevation).

Percepticn processes are autonormously activated and con-
trolled, according to mission constraints and knowledge on
the environment.

» Motion strategies: The mode! structure used for path
planning and subgoal selection is an adjacency graph of

Figure 5: Bitmap model after 5 perceptions...

Stant -

Figure 6: ... and the corresponding region structure

regions on which a heuristic search can be performed (fig-
ure 6. Regions are areas of uniform label, confidence and
height: their crossing cost is defined taking into account
these characteristics, and also the quality for localiza-
tion, depending on the mission context. The heuristic
search provides intermediate goals; navigation modes are
deduced from the labels of the crossed regions.

In the current implementation, an intermediate goal
search is first performed, and the perception tasks to ex-
ecute are determined according the results of this search:
elevation map building is performed on the uneven regions
to cross.

V. CONCLUSION

We have presented a complete system for operating an au-
tonomous rover for planet exploration missions, together
with all the ingredients which implement the robot deci-
sional and operational autonomy. This system is based on
a generic architecture for intervention robots we are de-
veloping for several highly demanding applications. It has
been implemented and demonstrated using an all terrain
mobile robot performing autonomous navigation tasks in
an unknown natural environment. The experimentation of
the full system including the mission planning and telepro-
gramming phases is under way.
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Abstract

How lo program a remole intervention robot with a high
degree of autonomy and reasoning abilitics? We have pro-
posed a control sirateqy, called Task-Level Teleprogram-
ming, based on a specific architecture. After a brief pre-
sentation of our approach, we discuss in this paper the re-
cent developments, mainly a Teleprogramming language,
and ilystrate them with an example.

1 Introduction

An ever increasing number of application fields (undersea
intervention [13], planetary exploration {4], work in nu-
clear plants, disaster intervention [11], etc) show the need
for very robust robots with a high degree of autonomy. In-
deed, in those areas, the Telerobotics approach is of little
help, the main reasons being:

* the environment is not known well enough beforehand
in order to simulate or model it,

* the communication link is too constrained in terms of
capacity and/or time lag.

All these constraints require Remote Intervention Robots
to have all the attributes of operational and decisional au-
tonomy: the environment being ill-known, the task cannot
be completely specified in advance.

There is a need for Tele-Programming.

We will first discuss in section 2 what this programming
means and how it can take profit of on-board decisional
abilities. We will then briefly describe a specific control
architecture which complies with this needs {section 3).
Then we will present in section 4 how such programming
can be performed and what it produces. And finally we
will give an illustrative example in section 5.

2 What does Teleprogramming
mean?

The Teleprogramming strategy has already been pre-
sented on several occasions: [5, 4]. We give here an
overview of the subject.

Teleprogramming opposes Teleoperation, because the
operator is not in the perception-control loop, and Teler-
obotics [9, 14, 12] because the operator does not perform
the action, even remotely.

Teleprogramming consists in transmitting the task to
be achieved in the form of a program, along with any in-
formation which the operator thinks could be useful to
the robot. The abstraction level of that program depends
on the refinement capabilities on board. Thus, we dis-
tinguish Task Level Teleprogramming, which makes use of
the decisional capacities of the robot.

The Teleprogramming scheme divides into two aspects:
first, to describe in advance the tasks to be performed and
the situations to be recognized; second, to assist the robot
in case of failure or unforeseen situations. In order to in-
sure robustness, the first aspect must prepare the second.
Indeed, the operator can assist the robot only in a stable
situation, that is in a situation which is not evolutive {in
order to give time to the operator to react, considering the
communication constraints), not dangerous for the robot,
and of course in which the robot can communicate with
the operator.

Consequently, the robot must be able to identify and to
reach a stable situation (or to avoid any unstable cne) in
all cases. To achieve this primary condition, the operator
will use every resource available to supply the robot with
useful and usable knowledge. Typically, the Teleprogram
will carry along:

¢ processed information coming from other Sensors, un-
available to the robot (e.g. a planetary orbiter),

+ indications about the context of the task,

¢ specification of (unstable) situations beyond the in-
terpretation capacities of the robot (e.g. quicksand),
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e actions to be taken in the above situations (e.g. stop
and move back!).

To illustrate the Task-Level Teleprogramming ap-
proach, let us consider an exploration robot on the surface
of the planet Mars. The time delay between Mars and the
Earth can be up to 20 minutes (40 minutes round trip),
and the available data flow very small (a few kbits per
second} within narrow communication windows. There-
fore, neither Teleoperation (needing no time delay and
a large data flow), nor Telerobotics (needing precise and
frequently updated knowledge of the environment) is af-
fordable.

A typical task could be: the robot has to move from
a place called sitel to site2, at a few hundred meters’
distance. We will suppose that it can perceive its envi-
ronment and plan a trajectory around obstacles. Is this
sufficient to assure robustness? Surely not, for the sur-
face of Mars is far from robot-friendly. In order to insure
robustness, the operator will supply the robot with a pro-
gram including:

1. the description of the task:
goto (sitel, site2),

2. the location of possible dangers (pits, possibly unsta-
ble terrain, quicksand, etc) detected in the orbiter’s
images for example,

3. the location of known dead ends, or if possible a valid
path to the goal {at orbiter’s resolution),

4. how to detect quicksand (motor overload or odometry
errors) and what to do in that case (backtrack!),

5. what to do in case of trouble (go to a safe place and
call back!).

3 The Architecture

We contend that this class of problems demands a specific
architecture which couples “intelligence” at the program-
ming level with “intelligence” at the level of the physical
machine.

We have developed an architecture composed of two
systems (Figure 1)

1. The Operator Station, which includes modules and fa-
cilities for mission planning, task-level programming
and supervision.

Given a set of goals (mission) to be achieved, the op-
erator station plans and then refines the mission, gen-
erating a set of tasks, to be interpreted and performed
by the robot, along with their “execution modalities”.

3-2
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2. The Robot Control System which possesses all the
functional capabtlities of an autonomous robot,

The Robot Control System is derived from the archi-
tecture for complete autonomy presented in [1], in
which the task planning component is deported on
the operator station, having more powerful comput-
ers as well as computer-aided facilities and human
expertise at its disposal [8, 2]. It is organized into
three levels,

The higher level is composed of a Supervisor which
interacts with the cperator station and the next level
{viewed as a set of processes which exchange signals
with it).

The second level is composed of a supervisor and a
task refinement planner.

The activity of the supervisors consists in monitor-
ing plan execution at their level by performing situ-
ation detection and assessment and by taking appro-
priate decisions in real time. In order to achieve this,
the supervisor makes use of deliberation algorithms
which are guaranieed to be time-bounded and compat-
ible with the dynamics of the controlled system. In-
deed, all deliberation algorithms which do not verify
this property are actually performed by the planner
(on-board or at the Operator’s Station) upon request
of the supervisor.

Note that in this architecture, on-board planming
is necessary only at the second level. It is essen-
tially a “refinement” using domain- or task-specific
knowledge. For this, we use C-PRS [10] which pro-
vides a suitable framework for goal-driven as well
as situation-driven deliberation processes. Indeed,
PRS implements script {called KA in PRS) selection
and goal posting mechanisms. Planning can be per-
formed through context-dependent goal decomposi-
tion; situation-driven reaction can be performed by
triggering KAs according to the environment model.

The lowest level includes the robot modules that per-
form perception and action execution.

Such an architecture allows a level of robot autonomy
which is essentially dependent upon the difficulty of the
task and the state of the environment.

4 Task-Level Teleprogramming

4.1 A Language for Teleprogramming

The first point is, in order to transmit a program, we need
a programming language to express it. What elements of
the language can we deduce from the application charac-
teristics?
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Figure 1: An architecture for Remote Intervention Robots

The program is to be merged into the robot’s control
system. so it has to share the same opening towards real-
time processing. We advise that it include:

l. event-driven control structures
2. multi-threading
3. on-board procedure calls

The introduction of event-driven control structures will
make program verification possible, as in ESTEREL [3].

To take advantage of the decisional abilities of the robot,
we further need:

4. goal-manipulation primitives, such as posting, sus-
pending, cancelling, testing

5. conditional and relational structures necessary to
express the organization of a mission in terms of
goal/task sequencing, etc.

Finally, we introduce a new concept, called:
6. modalities

Modalities are added pieces of information, intended for
the on-board reasoning system. They are of three different
sorts: advice, constraints, and additional data. Modalities

can be attached to the entire program, or to individual
tasks, in which case their scope covers all sub-tasks and
posted goals.

4.2 The Task-Level Teleprogramming En-
vironment

Once we have designed a programming language, we need
a Task-Level Teleprogramming Environment. Typically, it
will include:

¢ mission planning,
¢ mission refinement,
¢ mission supervision.

At the mission planning level, the operator describes
the mission in terms of results to be achieved, goals to
be reached, temporal relations and numerical constraints,
and so forth. The planning module produces a set of tasks
according to that description, be it the result of an actual
planner or simply of a scheduling algorithm. The degree
of completeness of the plan depends on the reasoning abil-
ities of the robot: at the lower level, the plan will include
all situations and reactions; at the upper level, the han-
dling of abnormal events will be left to the robot, as well

9-3
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Figure 2: The IxTeT plan

as a substantial part of the task refinement, Actually, task
refinement generally requires a large amount of context-
dependent information available only to the robot. It en-
tails that using a robot with high-level on-board reasoning
abilities can lead to a great improvement of the niission
scope, 1.¢. the extent of the mission which can be achieved
without intervention of the operator.

At the mission refinement level, information will be
added to the mission plan, such as modalities or the de-
scription of tasks not yet defined. Various types of verifica-
tion algorithms will be used in order to increase confidence
of the mission’s robustness. The mission supervision will
be anticipated, and its representativity will be checked.

At the mission supervision level, the robot’s reports will
be used for synchronization of the supervision module, and
the mission progress will be evaluated.

The special case of recovery from failure is addressed
much in the same fashion, except that the produced pro-
gram does not have the same meaning. First, the robot’s
situation is evaluated, and the operator defines the recov-
ery strategy, which is either the replacement of the former

34

mission program by a new one, or its suspension for the
duration of the recovery, which is, 1n that case, handled
by a sub-program.

The main reasons why recovery from failure is left to
the operator is that the robot is not aware of the general
purpose of the mission, and that its interpretation abilities
are limited.

5 An Implementation Example

In this section, we will present how the Task-Level
Teleprogramming concept can become an actual robot
control procedure. As a matter of fact, such a system
has already been partially instantiated in the “EDEN”
experiment carried out at the LAAS [4]. In an attempt to
keep it short, we have chosen a very simple example, which
does not pay credit to the actual development effort.
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5.1 Mission Planning

For the planner, we have developed a temporal planning
system based on [zTeT (Indexed Time Table) [7, 6] which
can reason on symbolic and numerical temporal relations
between time instants.

A Plan, as produced by IxTeT, is a set of partially or-
dered tasks, together with temporal constraints such as
minimal and maximal expected durations, and synchro-
nization with expected external events or absolute dates.

This set of tasks is the spinal axis of the mission plan,
actually forming the nominal plan.

As an example, let us consider the planetary rover
again, and the following mission: proceed from area called
sitel to area site2, there take a video panorama, send
1t to Earth, and finally proceed to site3, in order to be
there before nightfall. Given the appropriate task models,
the IxTeT planner will produce the plan shown in figure
2, provided the overall time constraint (“before nightfali”)
is not too tight. The numerical constraints between time
instants are not represented here.

In this example, we have chosen to use very simple task
models (consisting in two instants: begin and end) for the
sake of demonstrativity!. According to these models, the
1wo tasks GotoSite and SendData do not share the same
resources, so the planner leaves them unordered. What
this means is, they both occur after instant 19 (when
GetPanorama is finished), and after instant 2 in the case
of SendData(Panorama,Site2) (when the communication
with the Earth becomes possible). In the case of the plane-
tary rover, the physical machine cannot execute both tasks
at the same time, because talking to the Earth means un-
folding the antenna, pointing it, etc. But ordering these
two tasks would be very constraining, considering that we
do not know in advance which instant occurs first, 2 or
12,

5.2 Plan Refinement

The IxTeT data structures are entirely planning-oriented
and do not provide enough flexibility for our purposes.
Thus, we operate a change of representation. The new rep-
resentation has to provide conditional control structures
as well as parallel execution, while remaining expressive
and simple enough to use a graphic display.

The transposition uses a new, non-deterministic model
of the tasks. Hereafter is an example:

Task GotoSite(?Sitel,?Site2)}

{
Prerequisite robot_at_site{):?Sitel;
Resource locomotion(l);

!'The present plan is by no means representative of the capacities
of the IxTeT planner.
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Resource energy(150);
Nominal success(travel_time(?Sitel,?Site2))
{

robot_at_site() ?Site2;

Use[locomotion] = 0;

Use[ensrgy] = travel_expense(?Sitel,?7Site2);
3
Other failure([00:30:00,06:50:00])
{

robot_at_site() = current;

Use[locomotion] = 0;

Uselenergy] = 240;

Other hardware_breakdown([00:00:00,06:50; 001>
{

robot_at_site() = current:

Use[locomotion] = 1:

Uselenergyl = 240;

};

};

This description includes preconditions and effects, as
well as resource consumption and duration of the task
along each possible path. The plan produced by IxTeT
corresponds to the nominal path of each task. The proce-
dure 1s as follows: the new operators are instantiated once
for each task in the IxTeT plan, and ordered according to
the instant lattice; then, all pending leaves of the resulting
graph are tested for stability (does the robot know how
to get out of that situation?) and unstable ones are sig-
nalled to the operator. The operator can modify and/or
append the graph using a graphic display and tools for the
verification of preconditions and resource consumption,

Figure 3 shows an example. Here, the operator decided
that the robot proceed to Site3 should it fail to reach
Site2; as well if it is short of time after completing the
task GetPanorama. Of course, all events not made explicit
should be handled by the robot itself.

Finally, execution modalities can be attached to the
plan, in order to specify global constraints or default ac-
tions such as: in case of trouble, call home.

5.3 Task Programming

At this point, the plan skeleton is complete, but the tasks
need yet to be refined.

If a task is resident on the robot, the only programming
required is the definition of the modalities. Otherwise, a
task program must be supplied.

Again, in our example, we suppose that the task
GotoSite() is already known to the robot (see §6). As
we do not want to develop in detail in this paper, please
refer to [4] for an illustration of how modalities can be
produced, such as navigation routes and landmarks in the
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Figure 3: The final plan
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case of a GotoSite task. We will simply note that this
process is mostly task-dependent and can require special-
ized tools (e.g. a path planner).

On the contrary, let us suppose that the task
GetPanorama is not yet known by the robot control sys-
tem. The operator has to supply a program for that task.
Here is a simplified example:

Task GetPanorama ( place ) {
do {
exec check_robot_at_place{place);
report RESULT;
if ( is_false(?RESULT) )
raise END("context_ failure");
post point_camera(0.00)
report STATUS;
if ( is_failed(?STATUS) )
raise END(“"hardware_failure");
loop {
post get_picture();
post move_camera{30.00);
exec check_camera_position{(.00)
report RESULT;
if ( is_true{?RESULT) )
raise BREAK;
} watching BREAK;
raise END("success");
} watching END;
} export END;

Using the model of the procedures called in
GetPanorama, the system can certify that this program
corresponds to the non-deterministic task-rnodel used in
the “plan refinement” phase.

In our current implementation. the task program is
written as a PRS-KA, in order to be sxecuted on board.

5.4 'Telesupervision

The same reasons that led us to consider the Task-
Level Teleprogramming approach make mission supervi-

3-€

Paper Ref. E-161 6

sion a difficult problem. Indeed, the intervention robotics
paradigm involves that any communication with the op-
erator be the result of an action undertaken by the robot,
possibly involving complex decisions {e.g. moving to a
clear place).

We distinguish two cases. In the first case, the operator
can obtain information from other sensors (e.g. the or-
biter [4]); he can verify whether the mission is proceeding
smoothly or not, but cannot influence the robot, short of
an emergency call (not always possible). In the second
case, no such sensor is available, and the operator de-
pends entirely on the robot for the mission supervision; in
that case, regular check-points must have been planned in
advance. We introduce Telesupervision Directives as spe-
cial tasks inserted into the mission plan. These tasks are
responsible for transmitting the mission progress reports,
along with any information specified by the operator. Two
modes of operation are possible: blocking or non-blocking.

We will not demonstrate the Telesupervision Directives
here, our example being inadequate. We will suppose that
the operator is content with having only that much visi-
bility provided by the mission completion report.

9.5 Producing the Program

After the Telesupervision Ditectives have been inserted,
two mission programs are produced, one for the robot and
one for the Telesupervision module, which will be evalu-
ated during the mission and synchronized using the data
received from the robot according to the Telesupervision
Directives.

The robot’s version of the mission program includes the
final mission plan, the modalities, the description of new
tasks, and all necessary pieces of data. The plan is ex-
pressed as a data structure, consisting in a set of tasks,
defined with their arguments, temporal constraints (rela-
tive to the start and end point, as well as duration) and
modalities, connected by transitions labelled with internal
and external events.

6 Plan Execution

6.1 Overall Strategy

The plan supervision consists in sequencing the tasks ac-
cording to expected events specified in the plan (begin and
end events of the tasks, and time-synchronization events)
as well as unspecified (for instance, task failure not ad-
dressed in the plan). In case of conflict between two tasks,
the plan supervisor is responsible for deciding which task
should be executed or interrupted and for enforcing that
decision.
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Each task in the plan corresponds to the execution of
one or several procedures. According to the tasks and to
the execution context, the procedures are either selected
because they are explicitly designated in the task plan,
and are then intanciated for execution, or are selected as
a result of goal posting. In this case the selection of a
procedure follows the general scheme of PRS and is based
on some invocation conditions and on the context of ex-
ecution as expressed in the data base. The choice of the
best procedure, when several are possible candidates, is
made by a meta-procedure that reasons on applicability
criteria. Procedure selection is an iterative process.

The execution of a procedure may produce several out-
comes. The plan explicitly provides the desired chain-
ing between the tasks according to some of this outcomes
(§5.2). If this chaining is not explicit in the plan, default
procedures are selected (or goals) and executed by the su-
pervision system. Usually, such procedures will put the
robot in a safe and stable situation, and try to communi-
cate with the ground station.

As an example, we describe the procedure GotoSite
(see figure 4), which loops until the robot has reached the
target site. Executing this procedure makes the system
post new goals, and select new procedures that will even-
tually result in executing some actions (e.g., perception,
trajectory planning, etc.) and so on. In the EDEN exper-
iment, this task is implemented as a set of PRS-KAs.

Here the robot starts by acquiring new data on the en-
vironment, and decides, on the basis of a first modelling
of the terrain, which navigation mode should be selected.
Two modes are possible: reactive and planned. The reac-
tive mode is selected in case of a flat terrain almost free of
obstacles. 1t makes the robot move toward the goal while
trying to detect obstacles - without a full analysis of the
terrain, In the planned mode, a navigation map is built,
and a trajectory planner is selected to compute a collision
free trajectory (either on flat or uneven terrain).

The selection of subgoals for navigation depends on the
modalities associated with the plan, such as the navigation
routes and landmarks.

6.2 Sample Execution

When the mission plan is received by the robot, the su-
pervision system on board first loads the new procedures,
then the new plan is initiated.

Let us go back to the plan showed figure 3.
The first task to be executed is the navigation
from Sitel to Site2. Accordingly, the plan su-
pervisor asks the task supervision level to launch
the task GotoSite(Sitei,Site2), and then waits
for the termination event (either GotoSite:success,
GotoSite:failure, or GoteSite:hardware_breakdown)
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task GotoSite (gite) {
locp {
exec check_robot_at_site (site)
report RESULT;
if { is_true (?RESULT) )
raise END("success");
post get_environment_model ()
report MODEL;
post choose_navigation_mode (?MODEL)
report MODE;
i? ( equals(?MODE,#reactive) )
{
fork watch_site_entry (site)
report SITE_REACHED;
exec move_until_obstacle ()
watching SITE_REACHED
report STATUS;
it ( is_true(?SITE_REACHED) )
raise END("success");

else
{
post find_sub_goal {?MODEL)
report SUB_GOAL;
Post find _trajectory (?MQDEL,?SUB_GOAL)
report TRAJECTORY;
if ( is_void(?TRAJECTORY) )
raise END("failure");
exec follow_trajectory (?TRAJECTORY);
¥
} watching END;
}

Figure 4: The GotoSite task program

while monitoring the temporal constraints.

The task supervisor then updates the execution modal-
ities and posts the PRS-goal corresponding to the task.
The task refinement level (see figure 1) selects a suitable
KA for achieving the goal with respect to the execution
context and the modalities. When the goal is fulfilled or
recognized as unreachable, the task supervisor generates
the task-termination event.

A number of outcomes are possible: if the robot
reaches a deadlock, the plan supervisor proceeds with
GotoSite(unknown,Site3); if a breakdown occurs, it
calls for help; if the task takes too much time, it requests
it to stop. Let us suppose that the robot managed to
reach site2. At this point, the picture acquisition task
is launched, which results in the KA GetPanorama being
selected at the task supervision level, In the special case

4-}



J. Perret, C. Proust, R. Alami, R. Chatila

of the two concurrent tasks SendData and GotoSite, the
plan supervisor has to suspend the navigation task as the
communication link hecomes available, in order to execute
the data sending task.

Any event not specified in the mission plan, such as
a hardware breakdown, would cause the abortion of the
plan execution and the activation of a default recovery
procedure. This procedure would place the robot in a safe
and stable state and contact the ground station for further
instructions.

7 Conclusion

We have presented a paradigm for the planning, refine-
ment and execution of tasks by a remote robot, called
Task-Level Teleprogramming. This paradigm provides a
high degree of operational and decisional autonomy. We
have described a specific architecture, which combines “in-
telligence” at the programming level with “intelligence” at
the level of the physical machine. This architecture has
already been partially implemented on an all-terrain robot
(EDEN project), and has been chosen for the Eureka-
project IARES, which aims at developing a demonstrator
for a planetary exploration robot.
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Abstract

This paper describes an implemented system that plans auto-
matically “Pick and Place” tasks, Tlhe originality of this system
comes from Lhe way it takes into consideration the strong in-
terdependencies existing between the different steps of a “Dick
and Place” task.

Indeed, it deals explicitly with the interactions between grasp
planning, transfer motions and approach motions. Desides, it
makes use, at several steps during the planning phase, of a
madule that propagates and evaluates posilion uncertainties in
A “Pick and Place” context.

We describe the dilferent modsies included in our system and
shaw hew the controller invokes them and how it manages Lheir
interaction. Finally, we discuss several control strategies which
can he implemented in order to solve a “Pick and Mace” plan-
ning problem,

1 Introduction

One key issue in rohotics is the development of automatic
Task Level Planning systems. When instanciated to “Pick and
Place™ tasks, this problem raises difficult jssues that are only
partiaily taken inte account by cxisting or proposed systems.

A now classical approach to plan a “Pick and Place” task is
Lo decompose it into several steps such as transfer motion, ap-
proach motion, grasp, depart motion etc ... The problem is that
there are strong interdependencies belween these steps.

These interdependencics can be classified into geometric inter-
dependencies (e.g. the grasp position should be chosen not
only Lo ensure a stable grasp but also taking into acconnt the
reachability of the grasp position, the way the ohjecl will be
manipulated in the next action) and interdependencics related
to position uncertainty (the cheice of a grasp position depends
on the relative position uncertainly between the rohot and the
object before thie aclion is performed, but also on the action 1o
be performed after the grasp action is completed).

This paper describes a system called “SPARA™ {Systtme de
Programmation Automatigne pour
la Robotique d’Assembiage). Given a description of the en-
vironment (manipulator, ob jects, obstacles) the system is able
ta produce automatically the sequence of eflactor level actions
that are necessary to perform a Pick and Place task expressed
in terms of initial and final positions of the robot and of an
ohject. Besides, the obtained plan is robust with respect to
position uncertainties.

In section 2, we hriefly discuss related work. In section 3, we
present the architecture of the SPARA sysiem. Section 4 gives
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a briefl description of the different modules invalved in the plan.
ning process.

In section 5, we discuss different rontrol strategies Lhat can be
nsed in order to solve the Pick and Place planning probiem hy
invoking the different modules and managing their interactions.

2 Related Work

We will not discuss here all issues related Lo rohot programming;
the interested reader may refer for example to (4]

Concerning recent Task Level systems (in the context of Pick
and Place tasks), ta the best of our knowledge, the only sys.
Lems that effectively address the problem in a complete way are
HANDEY {5), [7] and SIARP (3], [13].

ITANDEY system has the major advantage to have been im.
plemented and tested in a real environment. One interesting
feature is its ability to plan a regrasp action when it finds no
way to perform the task with only one pick and one place op-
eration. .

In Lhe SHARP system, the uncertainty conatraints are takes
into account in a verification/correction phase that takes place
alter the planning phase [11]. In case of failure, the plan is
locally improved by adding a sensing action,

ITANDEY and SITARP make the assumption that the task en-
vironment is not oo constrained. Since the solution space is
assumed to be sufficiently Jarge, it is reasonable to make ap-
proximations without discarding all possible solutiona.

Qur system is based on the same assumption and performs a
similar task decomposition. However it is designed to handie
environments that might be a little more constrained, due to
the following:
¢ alocal motion planner which builds an exact representation
of the obstacles in (=, y,8) configuration space,
* an original method for propagating genmetric constraints
between gross motions and local motions,
¢ the processing of uncertainty constraints in the planning
phase,

3 Architecture of SPARA

SPARLA is based on a decomposition of a “Pick and Place” task
inte several sieps:

1. a transfer motion {also referred to as gross motion) from
the initial robot positicn ta a paint “near” the chject to
be picked,

2. an approach motion (in Lhe vicinity of the obstacles) in
order to reach the grasp position,



3. the grasp action itsclf,

4. adepart motion from the £rasp position to a position where
a transfer motion can he perforined,

5. a transfer motion in order 4o bring the object “near” ils
final destination,

6. an approach motion in order Lo place the ohject,

7. an ungrasp actjon,

8. adepart motion from the place position to a position wlhere
a transfer motion can be performed,

9. a transfer mation in arder to bring the robot to its final
position.

In order to solve these problems, SPARA is mainly composed
of a high-level module (referred to as the “controller™) and a
number of “specialized planners™ : a gross motion planner, a
local motion planner, a grasp planner and an uncertainty prop-
agation module.

We discuss in this section the interdependencios thatl are ex-
plicitly taken inte account by SPARA. Indeed, tlicse interde-
pendencies lead Lo a decomposition of the diferent specialized
planners into several modules that can be called independently
by the controller with different data. In the next section, we
will show how this decomposition allows a great flexibility in
the choice of various control strategies for planning the com-
plete task.

SPARA deals with interdependencies caused by grometric in-
teractions and by position uncertainties constraints.

SPARA propagates position uncertainty, step by step, through
the sequence of planned actions and verifies at cach step thal
it does not violate the constraints imposed by a given aclion.
Il it is not so, the system backtracks. Another way to lake
uncertainties into account is to nse them in order o guide the
planning process, for example by ordering the possible grasps
with respect to the position uncertainty they will entail.

Geometric interactions can be classified into throe types:

* interactions induced by the task itsell for cxample, the
choice of a grasp must be compatihle with the environment
of the subscquent place action, .
interactions induced hy the decomposition of the task into
several steps: for example, the initial point of an approach
motion must be reachable through a trapsfer motion,
interactions induced by the limitations of the differont spe-
cialized planners used by SPARA: for example, local mo-
tion planning is mainly based on the use of a (z.y,8) mo-
tion planner that produces a trajectory for a projection of
the gripper in a plane. Ilowever, such a trajectory must
verily the following constraints: 1) it must not violate the
mechanical limits of the manipulator, 2} it must not pass
through a singularity, and 3) it must be collision-free for
the whole robot,

An example of a task performed by the system is showu in figure
1. It consists of picking object B and placing it on a specified
final position. The illustration of results produced by the dif-
ferent specialized planners are based on the same cxample.

4 SPARA basic modules

SPARA is composed of a number of specialized planners and a
set of processing modules. The specialized planners are them.
selves decomposed into modules which can be invoked indepen-
dently hy the controller.

Woe give here below a brief description of SPARA basic modules.

object B

initiaJ object
position

final object
position

Figure I: An illustrative example of a Pick and Place task

The interested reader may refer to (8] {11] [9] for a more detailed
presentation.

Iicfore presenting the different modules, bet us fiest summarize
the basic assuinptions upon which our system is built :

¢ all ebjects and obstacles in the environment arc repre-
scnted by polyhedra
the grasping tool is a parallel jaw gripper
a grasp is performed via two plane-to-plane contacts
the robot has an arm-wrist kinematic structure
the approach and depart motions for picking and placing
objects are cartied out in a plane.

® 5 & @

4.1 The Gross Motion Planner

The algorithms used in this planner {12] belong to the class of
global methods based on a discretization of the rohot configu-
ration space, It is composed of two modules:

1. a module which builds a representation of the froe Fpace for
an approximation of the actual manipulator: a manipula-
tor with only three degrees of freedom corresponding to the
fitst three joints; the volume swept by the last three links
for the full range of values of the last 3 joints is represented
by a sphere whose radius is the greatest distance hetween
the center of the wrist and any point of the gripper. The
representation of the free space is a connectivity graph. It
is noted G F'S, when it is computed wilh an emply gripper,
and GFS, ., with the gripper holding an ol ject.

2. a module which builds a transfer path between two config.
urations by performing a search in the connectivily graph.
An example of such a trajectory is given in figure 2.

4.2 The Grasp Planner

This module [14] generates antomatically all potential grasps
{with planar contacts) for a polyhedral ohject and a parallel
Jaw gripper; it uses techniques similar o [10].

to-2
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Figure 2: A transfer motion (read left to right, top te bottom)

This set of grasps is then refined in order to eliminate grasps
which induce a collision between the gripper and the cnviron-
ment at pick and/or at the place locations.

A potential grasp is defined by twe parallel object faces. We
call “grasp plane” their median planc. The intersection of the
projections of Lheses faces on the grasp plane is called the “vis.
ibility polygon™.

As the final location of the object is known, we define, in a
similar manner, a “place plane” which carresponds to the grasp
planc at the objecl target location.

Note that a potential grasp does not completely determine the
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position of the gripper relatively to the chject. The pasition
and orientation of the gripper is only constrained to verify an
overlap between the projection of the jaws in the grasp plane
and the visibility polygon.

Several classification criterias can be cliosen {by the controller)
in order to select first thie most “promising™ grasp. We can use
the uncertainty that the grasp action will induce alter its the
execulion, or the stability of the grasp. ..

0 &
@@@@ ®

N2

Figure 3: Six potential grasps

When the controller calls this module, it can ask to produce
grasps thal are compatible with the pick location only, or with
the pick and place locations together. In the example of figure 3,
only three grasps (numbered 1,2 and 5} out of six are considered
as correct.

4.3 The Local Motion Planner

This planner solves the prohlem of path planning {or a palygo-
nal object in translation and rotation in a plane among polyg-
onal obstacles [1], [14]. It is used in order to build trajectories
for a prajection of the gripper in a plane. In order to guaran-
tee that the robot will be able to “follow” such a trajectory, we
impose to the robot to stay in the same posture (geometric con-
figuration) during all the local motion. This will be discnssed
in section 4.6

It is composed of two modules:

1. a2 module which builds an exact representation of the
boundary of local free space.

2, a module which uses the obtained representation in order
to compute a free collision trajectory between Lwo {z,vy,8)
configuralions.

In our context, the algorithm has heen modified in order Lo
deal with a partially specified finai configuration. The goal
configuration is given with an arbitrary orientation. The motion
is stopped when the current position verifies a given criteria,
This feature has been implemented in order to search for a
Pick approach motion, where the grasp is not totally specified.

An example of a pick depart motion is given in figure 1.

4.4 The position uncertainty propagation module

No programming system will produce robust programs il it does
not take into account the fact that the location of objects and

4o. %8



Figure 4: Local Pick depart motien (read from bottom to top)

of the robot itself are subject to error. Moreover, as the robot
physically acts on objects, the position uncertainly associated
with the objects may change and propagate [rom one situation
to another.

One solution to the problem is to make use of compliant motion
and sensing. However, such an approach is not sufficient. Un.
certainty must also be taken into account from a global point
of view, in order to estimate the position uncertainties at each
step of a robot program. This is the aim of this module. It
embeds a set of operators that allow to propagate uncertainties
through a sequence of actions {9].

This module, is invoked each time the controller instanciates a
new aclion, in such a way that the system maintains a plan of
actions which is always robust.

This module can also be invoked in order to evaluate the quality
of a potential grasp. As a potential grasp does not completely
define the position of the gripper telatively to the object, the
quality of the grasp is estimated by computing the maximum
uncertainty that may occur [14].

4.5 The Workspace module

This module computes the set of positions that can be reached
by a point attached to a manipulator and whose position de-
pends only on the first 3 degrees of freedom of the robot. It is
based on the notion of joint space decomposition into “aspects”
as defined in [2).

This module can be called in two different ways. The first one
consists in computing the images of the complete configuration
space in the cartesian space. The second way consists in com-
puting only the images of the free space (produced by the Gross
motion planner) in the cartesian space.

A different image will be obtained for each aspect, They will
be noted WS' .. WS*and FWS}, .., FWS).

4.6 The Accessibility module

Grasp
Plane

/4'2’-_'._?_-,7‘».
. - ~

Figure 5: Workspace for the center of the wrist

This module computes a surface corresponding to all points
in a plane which can be reached by a point attached Lo the
manipulator wrist. This is done by cutting a representation of
the workspace, for a given aspect, by a given plane.

Such computation is performed in order to determine:

1. a surface (noted 1) representing all pointa (in the grasp
plane or in Lhe place plane) which can be accessed by the
origin ol a frame attached Lo the gripper.

2. or a surface (noted 7’) representing all points (in the grasp
plane or in the place plane} which can be accessed by the
origin of a frame attached to the gripper and which corre.
spond to free configurations (as determined by the Gross
Motion planner).

Surfaces of type D correspond to all points which can be po-
tentially accessed by the local motion planner and which are
compatible with the kinematic structure of the manipulator.
Surfaces of type I’ represent the set of points which can be
accessed by a gross motion and by a local metion. Figure 5
represents such surfaces.

It is worth noting that the same aspect must be used for an
approach and a depart motion in order to guarantee that there
is no posture change between the two motions. Consequently,
a same surface B will be used for both motions, while a new
surface f1" must be computed after a grasp or an ungrasp oper-
ation.

4.7 The Local Environment Module

This module is in charge of computing the local (planar) envi-
ronment {polygonal mobile body, and polygonal obstacles) that
will be used by the local motion planner in a Pick and/or in a
Place context.

The potygonal mobile hady is the projection of the gripper (or
the gripper and the grasped object) on the grasp {or the place)}
plane.

In order to determine the polygenal obstacles, the module uses
surface [ to build a prism (figure 6) which corresponds to Lhe
volume swept by the gripper {or the gripper and the grasped
object).

The polygonal obstacles correspond to the projection of the
parts of the environment obstacles which intersect the prisin.
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Figure 6: Local environment

The exterior of surface B is also considered as an obstacle in
order to guarantee that any path produced by the local motion
planner (for the gripper in the plane) will respect the robot
kinematics constraints (for the first 3 d.o.1).
This module can also be invoked by the controller in order to
“merge™ in a same local environment the constraints imposed
by the Pick and by the Place situations. Doing so, it becoines
rossible to plan a local motion which tan be valid (locally):

* as a Tick approach motion and a Place depart motion

* or a Pick depart motion and a Place approach motion

4.8 Extremity Points for linking local and transfer
motions

Bisector Line

—— e

Surface B

Figure 7: Clicice of an initial point for a Pick approach motion

This module is in charge of selecting a set of points which can
be accessed by a planar local motion and a transfer motion in
a given context (Pick or Place, gripper empty or holding an
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object).

Such points belong to the frontier of surfaces of type ' The
sclection of good randidate points is based (heuristically) on the
visibility between sach points and a path extremity (provided
Ly the controller) among polygonal obstacles.

Figure 7 illustrales the computation done in order to find the
initial points of an approach motion for the grasp action.

4.9 Verification

We describe here a set of verifications that must be performed
in order to guarantee Lthat a local inotion is valid:

¢ there must he no collision for the whole robot
+ there must be no posture change (on Lhe last three degrees
of [recdom ) along the trajectory

fesides, when a grasp transformation is completely determined,
it is possible Lo propagate position uncertainties and to verify
that the grasp action and the subsequent place action arc robust
with respect to uncertaintios.

5 Controlling the planning process

The planning process is implemented in the controlier. Two
types of interactions are used:

1. the first type is a classical generate-and-test interaction,
For example, the Grasp Planner produces a finite set of
potentials grasps. This set can then he sorted heuristically
and its elements arc then used one after the other until a
complete plan is produced;

2. the sccond type can be qualified as constraint propagation.
An example of constraint propagation is the use of the free-
space (computed by the gross motion planner) in arder to
compute the initial paint of a local motian

5.1 A planning process

We describe the control flow of a complete planning process in
order Lo show how the controller can be programimed Lo take
into account the interdependencies existing between the differ-
ent steps of a Pick and Place task. A step corresponds to a
controller chnice or to the call of one (or more} modules in a
given context.

Figure 8 illustrates the different planning steps.

Similar steps arc represented by the same pattera,

Hold patterns represent “backtrack™ steps. A
backtrack step generates a finite set of possible choices
and produces a new choice cach time it is executed un-
til no choice is available. In such case, a backtrack to
a preceding hackirack slep is nccessary.

Simple arrows indicate precedence between steps.
Bold arrows represent a backtrack Lo a preceding back-
track step.

The presented planning process involves the following steps:
step 1: Duilding a representation (noted GFS,) of the free-
space for the robot alonc (3 d.o.f, see §4.1.1).

step 2: Building a representation of the warkspace for the
center of the wrist for each robot aspect: WS!,. IV 5! (see
£84.5).

step 3: Duilding, for each aspect, a representation of the part
of the workspace that corresponds to the image GFS, in the
cartesian space: FWS}, .., FIVS? (sce §4.5).
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Figure 8: The different planning steps

step 4: Generation and selection of 2 potential grasp (see §4.2);
the grasp plane and the place plane are induced by this chojce.
step 5: Selection of a robot aspect (noted {) for planning the
approach and depart motions of the PICK operation.

step 6: Computing surfaces B and 5 using WS, FIV'S' and
the selected grasp plane (see §4.6). Testing that the visibility
polygon intersects surface B,

Computing the (planar) environment (obstacles and mobile)

for planning the approach motion for the PICK operation (see
§4.7).

step 7: Determining an initial point (noted AP P, ) for the
approach motion (see §4.8).

step 8: Search (in GFS,) for a transfer motion between the
tobot initial position and APPpi (see §4.1.2),

step B: Building a representation of the local free space
(see §4.3) and search for a local approach motion starting at
AP Py, 1f the search is successful then the grasp transforma-
tien is completely determined (see §4.3). ) )
The obtained approach motion is then checked (see §4.9) in or-

der to verify that it causes no-collision for the whole robot, no
posture change. .. :
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step 10: Building a representation (noted G IS, 40) of the frec-
space for the robot holding the ohjoct (84.1.1).

step 11: Building, for cach asperct, a representation of the part
of the workspace that corresponds to the image GF'S,4, in the
carlesian space: FWS) . FWS?}  (see §4.5).

step 12: Computing a new surface [ using FWSs ., and the
grasp plane (see §4.6). Computing the {planar) environment
for planning the PICK depart motion (see §4.7). In this step,
the mobile is the projection of the gripper and of the grasped
object.

step 13: Determining a final point (noted DEPpcx) for the
PICK depart motion (sce §1.8).

step 14: Building a representation of the local froe space and
search for a focal depart motion between the grasp position and
AP Poicx (see §4.3).

The obtained depart molion is tlien checked (see §4.9) in or-
der to verily that it causes no-collision for the whale robot, no
posture change. ..

step 15: Selection of a robot aspect (noted j) for planning the
approach and depart motions of the PLACE operalion.

atep 18: Computing surfaces J and ' using WS4, FWS/
and the selected place plane (see §4.6).

Computing the (planar) environment (obstacles and mobile} for
planning the approach motion for the PLACE operation (see
§4.7).

step 17: Determining an initial point (noted AP Py, ) for the
I'LACE approach motion (see §4.8).

step 18: Search (in GFS,;,) for a transfer motion between
DEFpicx and AP Ppra., (5ee §4.1.2).

step 18: Duilding a representation of the local free space and
search for a local approach motion starting between AP Pplace
and the place position (sce §4.3).

The obtained approach motion is then checked (sce §4.9) in

order to verify that it causes no-collision for the whole robot
no posture change. ..

step 20: Computing a new surface I using FW S/ and the
place plane (sce §4.6). Computing the (planar) environment for
planning the PLACE depart motion (sce §4.7).

step 21: Determining a final point (noted DE Py} for the
PLACE depart motion (see §4.8). step 22: Nuilding a repre-
sentation of the local free space and search for a local depart
motion between the place position and DE Py, (sce §4.1).
The oblainced depart motion is then checked (see §4.9) in or-
der to verify that it causes no-collision for Lhe whole robot, no
posture change. ..

step 23: Search (in GFS,) for a transfor motion between
DE Ppiece and the rohot target position (see §4.1.2).

t

5.2 Control strategies

The aim of the following remarks is to illustrate low the con-
trolier manages the interactions between SPARA modules, and

ta show the great variety of possible control strategics which
can be used.

1. When a backtrack is necessary, the tasiest way to imple-
ment an exhaustive search is to go back to the nearest
upper step. However, this is not mandatory and more so-
phisticated searches can (should ?) be devised.

2. Several “paths" are possible. Tor example, after slep 17,
the controller can execute steps 18 and 19 in an arbitrary
order. A possible strategy is to begin with the step that is
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assumed Lo be the most constrained. Another strategy is
to begin with the less “cxpensive™ stop,

3. Gross motion planning is performed by steps 1 and 8 for
the first transfer motion, by steps 10 and IR for the second,
and by steps 1 and 23 for the last. Besides, the output of
step 1 (resp. 10} is also used in steps 3, 6 and 20 {resp. 11,
12 and 16).

4. The first “half” of the planning pracess (from step 1 1o

slep 9) is almost “scquential® while the second hall ex-
hibits mare “parallelism”. This is due to the fact that the
grasp planner (step 4) produces uncompletely instanciated
grasps. The grasp transformation is completely determined
only at step 9. This strategy gives more latitude to the first
local motion plarning step (which is considercd as a very
constrained step).
Ancther possibility is to provide a grasp planncr which
produces completely instanciated grasps. In such case, the
planning process can hecome more “parallel” afler step 4;
however this may entail a greater number of backtracks to
step 4.

5. A possible heuristic is to “merge”, for example, the se.
quences of steps 5-6-7 and 15-20.21. This corresponds to
the “projection™ in a same environment of the obstacles
at the Pick and at the Place location. Such a merging
can be very efficient because it allows to find, in one se-
quence, a grasp and a local path which can be nsed as a
local Pick approach motion and as a local TMlace depart
motion. Ilowever, the ohtained environment may also be
too constrained to allow such a motion.

6. As mentioned belore, several steps can be executed in par-
allel. The implementation of SPARA has been designed in
order to allow the controller Lo run the motion planners as
independent processes in a UNIX environment.

6 Conclusion

A first version of the system is almost completely implemented.
It includes the groes motion planner, the local motion planuer,
the grasp planner and the module which maintains and propa-
gales the posilion uncertainties. owever, the computation of
the projection of the free space expressed in the configuration
space, on the cartesian space is under implementation and is
not yet integrated.

All the figures presented in the paper, have been obtained au-
tomatically, except the surface B in figure 7.

The principal limitations of the system presented in this paper,
come from the characteristics of local motions {planar motions
in the grasp plane} and from the algorithms used to plan these
motions

One major advantage of the system is the flexibility it provides
for programming difTerent control strategies.

More work remains to be done in order to improve the system.
Extensions and future work will concern the following aspects:
the integration of the complete system, the development of a
local motion planner which deals with a 3D object moving in a
plane, and the investigation of different control strategies.
Acknowledgements: This system is a result of a continuous
team effort. Alain Girand, Bruno Gorla, Thierry Siméon and
Michel Taix have contributed to its development and implemen-
tation. We are also grateful to Jean Paul Laumond, Philippe
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Two manipulation planning algorithms

R. Alami, J.P. Laumond, and T Siméon
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This paper addresses the motion planning problem for

a robot in presence of movable objects. Motion plan-
ning in this conlert appears as a consirained instance
of the coordinated motion planning problem for multi-
ple movable bodies.

Indeed, a solution path (in the configuration space
of the robot and all movable objects) is a sequence
of transit-paths, where the robot moves alome, and
transfer-paths where o movable object "follows” the
robot. A major problem is to find the sel of config-
urations where the robot has to "grasp” or ”release”
objects.

Based on [I, 5], the paper gives an overview of a
general approach which consists in building a manip-
ulation graph whose connected components character-
ize the eristence of solutions. Two planners developed
at LAAS/CNRS ilustrate how the general formulation
can be instantiated in specific cases.

1 The manipulation planning problem

Robot motion planning usually consists in planning
collision-free paths for robots moving amidst fixed ob-
stacles. Nevertheless a robot may have to perform
tasks which are more difficult than planning motions
only for itself. In some situations, a robot may be able
to move objects and to change the structure of its en-
vironment. In such a context, the robot moves amidst
obstacles but also movable objects. A movable object
cannot move by itself; it can move only if it is grasped
by the robot. According to the standard terminology,
considering movable objects appears as a constrained
instance of the ceordinated motion planning problem,
that we call the manipulation planning problem 1.

'Note that this problem is related to Pick&Place and
re-Grasping tasks and not to the dextrous manipulation of
an object by a multi-fingered robot hand.

As stated in [1] (see also Latombe’s book [10)), a
general geometric formulation of the problem can be
defined as follows.

1.1 Manipulation task and

space(s)

configuration

The environment is a 3D (resp. 2D) workspace which
consists of three types of bodies: (1) static obstacles,
(2) movable objects and (3) a robot.

For the robot and for each object we consider its
associated configuration space. Object configuration
spaces are 6D (resp. 3D}; the robot configuration space
is n-dimensional, where n is its number of degrees of
freedom. Let C'S denote the cartesian product of all
objects and robot configuration spaces.

In the following, we will say that c is an incompletely
specified configuration when some parameters in ¢ are
left unspecified; besides, we will say that a configura-
tion ¢’ “verifies” ¢ when it is included in the subspace
defined by ¢. Such a terminology will be used in order
to denote partially specified goals.

Furthermore, we introduce a function Free which
gives, for each domain of CS, the set of its free config-
urations (i.e. configurations where the bodies do not
overlap).

A manipulation task is clearly a particular path in
Free(C'S). The converse does not hold: all paths in
Free(CS) do not necessarily correspond to a manipula-
tion task. Indeed a manipulation path is a constrained
path in Free(CS). We have now to define geometrically
these constraints. There are two types of constraints:

¢ constraints on the placements of objects; these
constraints model the physics of the manipulation
context (any object must be in a stable position
in the environment),



¢ constraints on object motions; any object motion
is a motion induced by a robot motion.

1.2 Placement constraints

All configurations in Free(C'S) do not necessartly cor-
respond to a physically valid environment configura-
tion. For example an object can not "levitate”, and
must be in a stable position. Geometrically speaking,
we have to reduce the space of free configurations to a
subspace which contains all valid configurations. These
constraints concern only the objects. For example, if
we constrain a polyhedron to be placed only on top
of horizontal faces of polyhedral obstacles or of other
objects (which are already in a stable position); its
placement constraints will then define a finite number
of 3-dimensional manifolds in its configuration space,

We call PLACEMENT the subspace of Free(C'S)
containing all valid placements for all objects, i.e.
placements which respect the physical constraints of
the manipulation context. With this definition, all the
objects have a fixed and known geometrical relations
with the obstacles or with other objects,

PLACEMENT is not more precisely defined; the
definition depends on the context, and appears clearly
for each context. For a mobile robot in a 2-

dimensional euclidean space, amidst movable objects.
PLACEMENT = Free(C5).

For the planner presented in Section 2, we assume
that each object has a finite number of placements in
the environment; then PLACEMENT appears as a
finite union of n-dimensional manifoids, where n 1s the
number of degrees of freedom of the robot.

For the planner presented in Section 3, the movable
object can be placed anywhere in the environment.

1.3 Motion constraints

We define a grasp mapping Gl as a mapping from the
configuration space of the robot (noted CSR) into the
configuration space of a given object O (noted C50),
which verifies Gg(cr) = c¢o, where er € CSR and
co € CSO. This mapping models the geometrical
relation which is defined by a grasping operation (T
denotes a homogeneous transform between the robot
gripper frame and the object reference frame). Such
mappings define geometrically the semantics of grasp-
ing for a particular manipulation context. They can be
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in finite or infinite number, and can be given explicitly
(as in Section 2) or implicitly (they are defined for ex-
ample by a contact relation between the robot or the
object as in Section 3).

1.4 Problem statement

Definition A {ransfer-path is a path in Free{CS)
such that there is one object O and one grasp map-
ping Gg verifying:

¢ the configuration parameters of any object 0’ # O
are constant along the path

» for any configuration of the path, G‘g(cr) = co,
where cr and co designate respectively the config-
uration parameters of the robet and Q.

Two configurations of Free(CS) connected by a
transfer-path are said to be g-connected.

We call GRASP the subspace of Free(C'S) contain-
ing the configurations which are g-connected with a
configuration of PLACEMENT.

Definition: A fransit-path is a path in Free(C'S)
such that the configuration parameters of the objects
are constant along the path. Two configurations in
Free(C'S) connected by a transit-path are said to be
t-connected.

Remark: a transit-path is included in PLACE-
MENT (but every path in PLACEMENT is not nec-
essary a transit-path).

We are now in position for defining any manipulation
task as a manipulation path in Free(CS):

Definition: A manipulation-path is a path in
Free(C'S) which is a finite sequence of transit-paths
and transfer-paths. Two configurations in Free(CS)
connected by a manipulation-path are said te be m-
connected.

A manipulation planning problem can then be de-
fined as:

Manipulation planning problem: An ini-
tial configuration 7 and a final {completely or
incompletely specified) configuration f being
given, does there exists a configuration veri-
fying f which is m-connected with i 7 If the
answer is yes, give a manipulation path be-
tween ¢ and some configuration verifying f.
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1.5 Manipulation graph

The previous definitions lead to a property which mod-
els the structure of the solution space:

Lemma: A transit-path and a transfer-path are
connected iff both have a common extremity in
PLACEMENTNGRASP.

The manipulation planning problem then appears as
a constrained path finding problem inside the various
connected components of PLACEMENT N GRASP
and between them.

In the case of a discrete number of placements and
grasps, PLACEMENT N GRASP consists of a finite
set of configurations.

When the environment contains only one movable
object, even if there is an infinite number of place-
ments and grasps, we can prove that two configura-
tions which are in a same connected component of
GRASPNPLACEMENT are m-connected (see Ap-

pendix). This property leads to reduce the problem.

In both cases, it is sufficient to study the connectiv-
ity of the various connected components of GRASP N
PLACEMENT by transit-paths and transfer-paths.

We then define a graph whose nodes are the con-
nected components of GRASP N PLACEMENT.
There are two types of edges. A transil (resp. trans-
fer) edge between two nodes indicates that there exists
a transit-path (resp. transfer-path) path linking two
configurations of the associated connected components.

This graph is called a manipulation graph (MG). It
verifies the fundamental property:

Property: An initial configuration { and a goal
(completely or incompletely specified) configuration g
being given, there exists a configuration f verifying g
and m-connected with ¢ iff:

¢ there exist a node N; in MG and a configura-

tion ¢; in the associated connected component of
GRASPNPLACEMENT, such that i and ¢; are
t-connected or g-connected;

e there exist a node N; in MG and a configura-
tion ¢; in the associated connected component of

GRASPNPLACEMENT such that:

— ¢y and f are t-connected or g-connected;

— N; and Ny are in the same connected compo-
nent of MG

In order to use this method for particular instances
of the problem, one needs:

1. to compute the connected
GRASPNPLACEMENT;

2. to determine the connectivity of these connected
components using transit-paths and transfer-
paths;

components of

3. and to provide a method for planning a path

in a given connected component of GRASP N
PLACEMENT.

We present, in the sequel, two manipulation planners
working respectively when PLACEMENTNGRASP
15 reduced to a finite set of points (Section 2) and
when the environment contains only one movable ob-
ject {Section 3).

2 The case of discrete placements and
grasps for several movable objects

In this section, we present a description of a manipu-
lation task planner for the case of discrete placements
and grasps for objects®. It is directly derived from the
general scheme above. It is based on the fact that the
connected components of GRASP N PLACEMENT
are given a priort by some discretization and that the
construction of transit-paths and transfer-paths can be
obtained using a collision-free path planner for a robot
amidst stationary obstacles.

It leads to an effective construction of the manipu-
lation graph.

For simplicity reasons, we give a presentation con-
sidering only two objects. The extension to a finite
number of cbjects is straightforward. The presenta-
tion will be illustrated using the example of Figure 1,
ie. a 2D world where all bodies are polygonal and
where the robot is allowed to move only in translation.
However, the solution we propose is general.

2.1 Notations

We designate the robot by R and the objects by A
and B. Let cr, ca and cb be the configuration pa-

*This planner has been first introduced in 1. In
this current presentation we have added new experimental
results.
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Figure 1: 4 manipulation task generated automatically

rameter vectors and CSR, CSA and CSB the associ-
ated configuration spaces. Let n be the dimension of
C/SR. The configuration space of all movable bodies
is: C8=CSRx CSA x CSB.

Object placements: We assume that each object
has a finite number of possible placements in the envi-
ronment that will physically correspond to stable posi-
tions when the robot does not hold the object.

We designate by pl,...p%... € CSA and by

Py -Pg... € CSB the authorized placements for A
and B respectively (Figure 2).

Remark: we may also give explicitly - or give means
to compute - all authorized placements combinations
(P4, Ps) € CSA x CSB, in order to take into account,
for example, the possibility of stacking an ohject on
another object.

Object grasps: We assume that each object has a
finite number of possible grasps. A given grasp for
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object A is specified by providing a mapping G, :
CSR — CSA.

Let G}, G4 G3 and G4, G% be the authorized grasps
for A and B (Figure 2).

12
Ps  Pg
Placements for objects A and B

5

A

robot :
\é

1
GA

;‘% :
¢ @

Grasps for objects A and B

&

Figure 2: Placements and grasps for objects A and B

2.2 Building the manipulation graph

2.2.1 Building the nodes

Intuitively, GRASPNPLACEMENT is simply the
set of all configurations where the robot is authorized
to grasp or un-grasp an cbject in a given placement,
taken into account all possible placement cornbinations
for the other objects.

Let I{grasp ; placementA ; placernent B designate
the set of all free configurations where the robot can
grasp one object using grasp while objects are placed
in placementA and placementB.

Thus, GRASP OPLAC'EMENT is the union of all
I(Gy ; Pl s ph) and I(GY ; Py ;5 pY).
By definition, I(GY, ; #, ; p%) equals
Free({er € CSR | Gis(er) = Py} x {ph} x {pk})

The computation of {cr € CSR | GY(er) = piy} is
done using the robot inverse geometric model. If we
assume that the robot is not redundant and that the
solution does not include a robot singular configura-
tion, then (G} ; p ; p%) consists of a finite (and
small) number of configurations.
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Each node of MG corresponds to a configuration
which can be computed easily; it represents a con-
nected component of GRASP N PLACEMENT re-
duced to a single configuration.

2.2,2 Building the edges

The second step in building MG consists of establish-
ing edges between nodes. Two nodes Ny and N, are
linked by a transit (resp. transfer) edge if there exists
a transit-path (resp. transfer-path) between two con-
figurations of their associated connected components.

All paths involving a node have an extremity in com-
mon: the single configuration represented by the node.
For a node in I(GY ; pl, ; p%), all transit-paths will
correspond to paths where the robot moves alone while
A and B are in p/; and in pf, and all transfer-paths
will correspond to paths where the robot holds 4 us-
ing grasp GY while B is in p%. This is why we define
the concept of task state which denotes the fact that
the robot is in a situation where it moves alone, or it
is holding a given object.

Task states and CS slices: We define a {lask
stale by giving for each object its current place-
ment and, for at most one object, its current grasp:
(grasp ; placementA ; placementB).

When no object is grasped, grasp will be noted “_”,
for example ( - ; p4 ; ph). We call such a state a
transit slate.

When object X is held by the robot, placementX
will be noted “.", for example (G} ; _; p). We call
such a state an transfer stafe.

Let C{grasp : placementA ; placementB) denote
the set of configurations in C§ associated to a given
task state. C{ -: p}y ; pjy) and C(GY ; - pl) corre-
spond to n-dimensional “slices” of CS where n is the
dimension of CSR.

For a transit state:
C(-; Py s Pg) = Free(CSR x {p'y} x {rl})

i.e. all configurations such that the robot does not
overlap object A4 in placement pY, nor object B in place-
ment pp nor the obstacles.

For a transfer state:

C(GY 5 —; ply) = Free(CSR x GY4(CSR) x {PshH

ie. all configurations such that the robot holding ob-
Ject A in grasp G| does not overlap object B in place-
ment ph nor the obstacles.

Remark: When C(GY, ; _; pj;) = @ the correspond-
ing state is invalid.

A node models a transition between a transit state
and a transfer state. We say that the node “belongs”
to these states. For example, a node inI(GY ; 7y 5 %)
“belongs” to the transit state ( - ; Py ; pk) and to the
transfer state (GY ; _: ph).

Transit edges: A transit edge can be built be-
tween a node N and any node N' which belongs to
the same transit state and which is “directly” reach-
able. This simply means that N and N’ represent con-
figurations that are in a same connected component of

C(-; Py 5 Ph).

Transfer edges: A transfer edge can be built be-
tween a node N and any node N’ that belongs to the
same transfer state and that is “directly” reachabie.
This simply means that N and N’ represent config-
urations that are in a same connected component of

C(Gly s -; Py or C(Glg 5 Py ;)

We have then to construct two CS slices for any given
node. However, a given CS will be used for a great
number of nodes.

Figure 3 represents several nodes in the manipu-
lation graph that corresponds to the example. The
drawing at the center of the figure represents the node
I(G% ; p5 ; p%). Transit and transfer edges are built
using C(_; p} ; p}) and C(Gh ; _; p3).

Figure 4 illustrates the “links” between several con-
figuration space slices that are traversed by the system
when it executes the sequence represented in Figure 1.
Several states are represented; for each state, the re-
gions in white represent the projection of the connected
components of its CS slice onto the robot configuration
space. In the initial state of Figure 1, the robot is in the
“left” connected component of C(-; P4 ; ph). The
only possible transition (arc 11) is to move the robot
until it is able to grasp object A in G. The transitions
sequence 18 11-10-7-0-8-5. . . Note that the solution in-
volves state ( .; p% ; ph) twice, but it traverses only
once a given connected component of C( _; p? ; ph).
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C§ rransie slice

CS transfer slice

Figure 3: A partial representation of a manipulation graph

2.3 Search Strategies in the Manipulation
Graph

The size of the graph grows rapidly depending on
the number of grasps and placements. The num-
ber of nodes corresponds to number of grasps x
number of placements (in our simple example, there
are (3+ 2) % {4 x 4) = 80 nodes). The number of tran-
sit slices is equal to the number of legal placements
((4%x4)—4 = 12 in the example). The number of
transfer slices is equal to the number of combinations
of grasps for an object and placements for the other
objects (3 x 4+ 2 x4 =20 in the example).

The cost of building an edge is expensive and de-
pends mainly on the cost of computing a n-dimensional
CSslice (where n is the number of degrees of freedom
of the robot). However, a €5 slice is used several times;
for example C( _; pl, ; p&) will be used for all nodes
inI{ Gy ; p, ; Ph) and in I{ G ; P p%). The first
time. it has to be computed; and then, it will only be
used in order to find a path.

MG has not to be built completely before execution.
It can be explored and built incrementally. Powerful
heuristics remain to be explored in order to “drive” the
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initiol connected

component initial stase

Figure 4: Links between Configuration Space slices

system towards the goal. However, even simple heuris-
tics based only on the distance between the positions
of objects allow to limit substantially the construction
of the graph.

Note that, if several objects have the same shape and
the same grasps and placements, the number of differ-
ent CS slices to build can be considerably reduced. In
the case, similar to the example, of two identical ob-
Jects with 3 different grasps and 4 placements, we have
only 12 transfer slices and 6 transit slices, Then, an-
other way to limit the complexity, when exploring the
graph edges, is to consider only a gross approximation
of objects shape (by classifying them into a limited
number of classes: small, elongated, big...) in order to
use a same CS slice for a great number of nodes.

2.4 Implementation

We have implemented a system based on the method
described above. It is composed of two modules: a
Manipulation Task Planner and a Motion Planner.

The Manipulation Task Plannerbuilds incrementally
the manipulation graph and searches solution paths in
1t. It makes use of the Motion Planner in order to
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Figure 5: A manipulation task.

build the different €S slices corresponding to transfer
and transit states, to structure them into connected

components and to find paths between two robot con-
figurations.

The search in the manipulation graph is performed

using a A* algorithm. The cost functions currently
used are based on the length of the movable bodjes
trajectory. The incremental graph construction allows
a nice feature: for the first plans, the system is quite
slow but it becomes more efficient progressively as it

(=%




re-uses parts of the graph already developed.

The Manipulation Task Planner is implemented in
order to be used for an arbitrary number of objects and
does not depend on a specific motion planner module.

For the Motion Planner, we have first implemented
a method working for a polygonal body in translation
amidst polygonal obstacles (the obstacles are grown
using Minkowsky surn and the trajectory is built using
a vistbility graph). This has been done mainly in order
to demonstrate the feasibility of the approach. Figure
1 shows the plan produced for the example.

A second implementation is based on a general mo-
tion planner [17} which works for manipulators is a 3-
dimensional workspace. It allows to solve manipula-
tion planning problems as complicated as the example
of Figure 5. Note that the sub-sequences 14-15-16 and
24-25-26 correspond to re-grasping operations of an ob-
Jject.

3 The polygonal case for one movable
object with an infinite set of grasps

This section describes a method for solving the manip-
ulation problemn in the case of a polygonal robot and a
polygonal object moving in translation amidst polyg-
onal obstacles. It has been implemented in the case
where both polygons are convex. In order to illustrate
the different steps, we will rely on the simple example
of Figure 6.

Let us consider CS = C5R x ¢SO the configuration
space of the robot and the object together. In order to
simiplify the notations, we denote by :

¢ ACS the admissible (i.e. without any collision be-
tween the bodies) configurations space (ACS =
Free(C5)),

¢ ACSR(co) the admissible configuration space of

the robot when the movable object is placed at
co € CSO, and

e ACS50(er) the admissible configuration space of
the movable object when the robot lies at cr €
CSR.

We assume that the robot has to avoid any con-
tact with the obstacles (hypothesis H, see Appendix).
We define GRASP as the subset of all the config-
urations verifying hypothesis H and such that the
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C : The five stages manipulation path.

Figure 6: An illustration of mantpulation constraints.

robot touches the object. Finally, the movable ob-
Jject may be placed anywhere in the envircnment, as
long as the bodies do not collide. As a consequence,
GRASPNPLACEMENT = GRASP.

Let € be the set of connected components of
GRASP. Let us consider the graph whose nodes are
the elements of C and whose edges correspond to the
existence of a transit-path between two configurations
of the associated nodes. Thanks to the reduction prop-
erty (see Appendix), two configurations in GRASP are
connected by a manipulation path if and only if they
belong to two elements of C which are in the same con-
nected component of the graph.

Therefore, according to the resolution scheme stated
in Section 1, a manipulation graph can be built by :

1. computing the connected components of GRASP,

2. and linking them by transit-paths.

In a first step, we compute a cell decomposition of
ACS (which solves the coordinated motion problem);
then a retraction on the boundary of ACS gives a cell
decomposition of GRASP. Finally, the connectivity
by transit-paths between the various connected com-
ponents of GRASP is given by a study of the connec-
tivity of ACSR, whose structure can be extracted from
ACS cells.
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3.1 ACS cell decomposition and coordinated
motions

To compute the cell decomposition of ACS, we have
chosen to use an adaptation of the projection method
developed by Schwartz and Sharir in [15] for the case of
two discs. Any other, and perhaps better ([7, 14, 16])
method could have been used. However, the purpose of
this paper is not to give some optimal algorithm, but
to demonstrate the feasibility of our approach,

Let us consider an object position co. ACSR(eo) is
obtained by removing, from ACSR (robot admissible
configurations without the object), the set COL(co)
of all configurations where the robot and the object
collide 3.

Figure 7: The hatched areas represent the connected com-
ponents of ACS R(co).

Let us observe now the evolution of ACSR(co) with
respect to co. In a neighborhood of most object po-
sitions, ACSR(co) varies only quantitatively, keeping
the same structure. However, at some object posi-
tions. some ACSR(co) connected components may ap-
pear, disappear, be split or merged. More precisely,
the geometrical structure of the connected components
of AC'SR(co) are modified when some vertices appear
or disappear. These changes correspond to specific
values of co which constitute a set of critical curves
(see [15] for a proof). Figure 8 gives an example of a
critical curve along which a connected component of
ACSR(co) is divided into two separate components.

COL(¢o) is the polygon obtained by Minkowski differ-
ence between the robot and the object, and placed in co.

The critical curves provide a decomposition of AC SO
into non-critical regions,

One or two ACSR(co)
components according
to the position of co
with respect to the
critical curve.

Figure 8: A critical curve

Figure 9: Cell decomposition of ACSO and the associated
graph

Let us consider a non-critical region R. {{co} x
ACSH(co) | co € R} constitutes cells of ACS (there
are as many cells as the number of connected compo-
nents of ACSR(co)). The set of all such cells is the

1=9



expected cell decomposition.

In order to compute the critical curves, we introduce
a symbolic description of ACSR(co). Let us recall that
the boundary of ACSR(co) is constituted by ACSR
edges and COL(co) edges. We assign a numerical label
to all the vertices of ACSR and a literal symbol to the
edges of COL(co). We denote by b[8, 9] the intersection
between the edge b of COL(co) and the segment [8, 9] of
ACSR. Therefore, the bottom connected component
in the example of Figure 10 is labeled by the sequence
(3,4,[4,5]b,6(8,9],9,[9, 10]b, 5[1, 2}, 2).

ACSR(co)

Figure 10: An illustration of the labels used to characterize
the connected components of ACSR(co).

To compute the critical curves, we do not consider
all the possible changes in this sequence. We just need
to consider the changes on the letters (i.e. the changes
mduced by €0L(co) and not by ACSR vertices). In
Figure 10 for instance, when co moves to the bottom,
the disappearance of vertex 2 in the sequence above
does not induce a critical curve, while the fusion of the
two b labels {when edge b meets vertex 3) does.

The critical curves of aur example are shown in Fig-
ure 9, together with the graph of non-critical regions
of ACSO.

Let us recall that each non-critical region induces as
many cells 1n ACS as the number of connected com-
ponents in ACSR(co) when co belongs to the region.
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Now we structure all these cells into a coordinated mo-
tion graph. Two cells are adjacent in this graph if and
only if :

» the associated non-critical regions are adjacent in

ACSO,

+ and the symbolic descriptions of the associated
ACSR(co) components just differ by a letter.

Figure 11: The coordinated motion graph.

Figure 11 shows the coordinated motion graph of our
example. In Figure 10, co belongs to the non-critical
region 10 (Figure 9). This region gives rise to three
ACS cells numbered 104, 10B and 10C in Figure 11.
10C is the node corresponding to the label mentioned
above.

The fundamental property is : there exists a coor-
dinated motion between two configurations in ACS if
and only if they belong to nodes of a same connected
component of the coordinated motion graph. The proof
1s exactly the same as in [15].

3.2 GRASP cell decomposition and contact
motion

Let us consider the above ACSR(co) component la-
beled by (3,4, [4,8]b,b[8,9],9,19,106,4[1,2],2). There
are two edges labeled by b in it.  This means
that there are two connected sets of configurations
where the robot is in contact with the object. It
is not possible to go from one set to the other
one without leaving the contact. These connected
sets are easily extractable from the symbolic descrip-
tion of the AC'SR{co) components. In our example,
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([4,5],5[8,9]) and (]9, 10]5,8{1, 2]} are the symbolical
descriptions of the two classes of contact. By defini-
tion, they always contain two terms.

Now, let us consider a non-critical region R. The
set {{co} x COL{co) N ACSR(co) | co € R} consti-
tutes cells of GRASP (there are as many cells as the
number of connected components of COL(co) along the
ACSR(co) boundary).

We follow the same method as for the coordinated
motion problem. We structure the GRASP cells into
a contact graph. Two cells are adjacent in this graph if
and only if :

* the associated non-critical regions are adjacent in
ACS0,

¢ and their symbolic descriptions Jjust differ by one

term.
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Figure 12: The contact graph.

Figure 12 shows the contact graph of our example.
Region 10 gives rise to three ACS cells. The fron-
tier of two of them (104 and 10B) contain one con-
nected component in GRASP. They then give rise
to two GRASP cells (which keep the same name in
the contact graph). The frontier of 10C' contains two

connected components in GRASP; they give rise to
GRASP cells 10C A and 1008,

This graph verifies the following property : there
exists a motion keeping the contact between the robot

and the object, between two configurations in GRASP,
if and only if both configurations belong to nodes of a
same connected component of the contact graph. The
proof is exactly of the same kind as for the coordinated
motion graph.

3.3 The manipulation graph

Let us come back to our manipulation planning prob-
lem. At this time we have captured the connectivity
of GRASP. We know that two configurations in the
same connected component of GRASP may be linked
by a manipulation path (Reduction Property).

Now we have to study the existence of transit-paths
between GRASP components. This study is very
easy from the above labeling. Indeed let us consider
ACSR(co) in Figure 10. There are two grasp classes in
the bottom component. Nevertheless, it is possible for
the robot to move alone in this component; that means
that the robot can go from a position in the first grasp
class to any other one in the second grasp class. Then,
these two classes are linked by transit-paths.

The existence of such transit-paths is very easy to
compute from the labeling of ACSR(co). Indeed, two
GRASP cells are connected by a transit-path if and
only if they belong to the frontier of the same ACS
cell. In our current example, only the cells 10C' 4 and
I0CB (which come from the same ACS cell 10C) are
linkable by a transit path.

Computing the connectivity of GRASP components
by transit-path is equivalent to adding to the contact
graph edges between nodes defined from a same ACS
cell. These additional edges are referred as “transit
edges” in Figure 13. With our notations, two nodes
in the contact graph whose “names” contain the same
number and the same first letter are linked by a transit
edge. The resulting graph is the manipulation graph.

3.4 Manipulation path finding

Let us consider an initial configuration ¢; and a final
one cy, defining the initial and final positions of the
robot and the object. According to the property of the
manipulation graph, we use a three-steps procedure :

1. First, we compute the ACS cells C: and Cy con-
taining ¢; and cs. Then, we compute the set G;
(resp. Gy} of GRASP cells reachable from ci (resp.
cs ). This computation is a 2-dimensional problem
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Figure 13: The manipulation graph, where dotied lines
describe transit edges.

since the transit-paths have to lie in ACSR(co;)
{resp. ACSR(coy).

2. The second step consists in searching a path in
the manipulation graph between a cell in G; and
a cell in Gy. If no such path exists, the procedure
stops. There is no solution. Otherwise, we obtain
a sequence Path of GRASP cells.

3. Finally the complete path is built from elemen-
tary manipulation paths lying in the GRASP cells
of Path and from transit-paths associated to the
transit edges contained in Path.

Comments on Step 1: The computation of C; (resp.
C¢) is a 2-dimensional location problem performed in
ACSR(co;) (resp. ACSR(coy)) : we have to deter-
mine the connected component of ACSR(co;) (resp.
ACSR(coy) containing cr; (resp. er;). This fully char-
acterizes C; (resp. Cy). Then the computation of G;
(resp. Gy} is very easy, since these GRASP cells belong
to the frontier of C; (resp. Cy) : with our notations, a
GRASP cell belonging to the frontier of some ACS cell
appears in the contact graph with the same numerical
label and the same first letter as the ACS cell appears
in the coordinated motion graph.

Comments on Step 2: The second step is performed
using a A” algorithm. Several cost criteria can be intro-
duced : the length of the complete path, the number of
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grasping changes. .. The experimental results will give
an illustration of the influence of the cost definition.

Comments on Step 3 : Step 3 consists in computing
the complete manipulation path. Path is a sequence of
GRASP cells. Two consecutive cells in this sequence
are linked either by an edge already appearing in the
contact graph, or by a transit edge. Moving inside
a GRASP cell needs a specific procedure : we have
implemented the method presented in the proof of the
reduction property . Finally, there remains to compute
the transit-path associated to a transit edge : this is a
2-dimensional problem solved in scme ACSR(co) slice
by a visibility graph method for instance (which is the
method we have implemented).

Remark : The algorithm can be adapted in order
to take into account partial goals : in this case the goal
configuration describes only a goal position for the ob-
Ject (resp. the robot) without specifying a goal position
for the robot (resp. the object). Such an extension is
easy when the robot goal is unspecified and the object
goal is known (the identification of the goal node is
given by the non-critical region containing the object).
The case of an unspecified object goal is also tractable,
but would require some tedious algorithrnic details.

3.5 Complexity

In order to evaluate the complexity of the algorithm,
we have to distinguish the decision part of the manipu-
lation probiem (i.e. proving the existence of a solution)
from the complete problem (i.e. the computation of a
solution if any).

In our algorithm, the decision problem is solved by
building and searching the graph. The complexity of
this part is clearly dominated by the construction of the
non-critical regions. Let us denote by n,, n, and n, the
number of vertices of the environment, the robot and
the object respectively. We assume that both object
and robot are convex.

All the eritical curves lie in ACSO (Figure 9), whose
computation can be done in O(n.n, log(n.n,)); more-
over, the complexity of the admissible configuration
space of the object is in Q(nn,) (see for instance [6]).
Similarly the complexity of the admissible robot config-
urations subset ACSR is in £(n.n,) and can be com-
puted in O(n.n, log(n.n,)).
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The critical curves are defined by the coincidence
between an edge (resp. a vertex) of ACSR and a vertex
(resp. an edge) of COL(co) boundary (i.e. the set of
contacts between the object and the robot). The edge
number of COL(co) is exactly (n, + n,.). Then, the
number of critical curves is in Q(r.n,(n, + n,)).

The cell decomposition of ACSO is given by
the computation of the intersections between the
Qnene(n, + n,)) critical curves, and the Hnen,)
edges of ACSO boundary. This can be done in
O((nene(n, + 1) + nen, )2 log(nen, (n, + N} +nen,))
and gives Q((n.n.(n, + n,} + n.n,)?) non-critical re-
gions.

Finally, in each non-critical region, the number of
connected components of ACSR(co) is in O(n,n,).
They are computed by intersection of the (nr + ny)
edges of COL(co), and the Q(n.n,) edges of ACSR,
for each non-critical region, each time placing the ob-
Ject on some point of the region. Such an intersection is
computed in O((n,+n,)nen, log(n, +n,4nn,.)) . The
manipulation graph is then obtained in O({n.n.(n, +
ny) + nento) (ny + no)nen, log(n, + n, + n,n, ).

The number of robot and object edges may be con-
sidered to be small comparing with n.. Then, defining
n as the environment complexity, previously called .,
our algorithm runs in O(n®log(n)) time. We did not
try to optimize it at this time. Perhaps more sophis-
ticated cell-decomposition (like [16]) could be used in
the same framework.

Finally, the complexity of the complete problem (ie.
the computation of a solution path), is dominated in
the worst case by the number of elementary manipula-
tion paths (see Appendix). Therefore the complexity
of the complete prablem not only depends on the com-
plexity of the environment but also on the “clearance”
of the robot in the environment.

3.6 Experimental results

Figures 14 to 17 show results obtained with the abave
described implementation.

The solution given by the planner to our illustrative
example is shown in Figure 6C. The initial and final
object positions are respectively in the non-criticaj re-
gions 6 and 19 (Figure 9). The initial and final config-
urations of the manipulation problem are respectively

in the ACS cells 5 and 18 (Figure 11).

Let us consider now the solution path (5_-B, 4_B,
3.8, 24B, 9AB, 23AB, 22_B, 22 A, 25BA, 13BA,
14BA, 15_4, 16_4, 19_4, 18_4). Figure 6Ca shows
the transit-path along which the robot first reaches the
object. In Figure 6Cb, the object is moved with a se-
quence of transit and transfer paths along the same
connected component of GRASP. If we refer to the
manipulation graph (Figure 13), the manipulation path
is built, at this time, from the sequence (5-8,4.B, 3.8,
2AB, 9AB, 23AB, 22 B) of GRASP cells. A trapsit
edge appears between vertices 22_B and 22_A; the as-
sociated transit path is shown in Figure 6Cc. Figure
6Cd describes the subsequence (22.4, 25BA, 13BA,
14BA, 15_4, 16_4, 19_4, 18_4). A last transit-path
allows to reach the robot goal configuration.

Figure 15: Solution using a cost function that minimizes
the number of grasps.

Figures 16 to 15 illustrate the influence of heuristics
used to find a path through the manipulation graph,

In Figure 16, the weights of transit and transfer links
of manipulation graph are nearly equivalents, each re-
ferring to the straight line distance between reference
points of the GRASP cells. Then the path found by
the search algorithm involves numerous transit-paths
and re-grasps.

On the contrary, Figure 15 describes the obtained



Figure 16: Solution using a cost function that minimizes
the length of the object path.

solution when transit-paths are heavier, due to a sim-
ple multiplying coefficient. A path is then found that
allows to keep the same grasp along the whole path.

Finally, Figures 17 and 19 show the solution given
Lo a more intricate situation, involving numerous re-
grasps. The second and third images detail a transit
and a transfer path at the beginning of a contact mo-
tion. The heuristic used there takes into account the
average length of available grasp frontier for each grasp
cell. Then it avoids narrow grasps which could involve
NUMerous re-graspings.

object
t, robot

A4

Figure 17: A more intricate situation,

-4

R. Alami, J.P. Laumond, T. Siméon

A

[N

Figure 18: Non-critical regions.

The algorithm has been implemented in C on a Sun
SPARC Station 2. The computation of the manipula-
tion graph of Figure 13 (including the computation of
the non-critical regions) takes 3.4 seconds. The search
for a path takes 0.25 seconds for the example in Figure
6. In this simple case, the cell decomposition of the
admissible configurations of the object gives 25 non-
critical regions, and the manipulation graph consists of
69 nodes and 126 edges. In the example of Figure 14,
we obtain 146 non-critical regions, 257 nodes and 475
edges. The case of Figure 17 gives 288 non-critical re-
gions (shown in Figure 18) and its manipulation graph
consists of 619 nodes and 1115 edges.

4 Related work and open problems

The first paper that attacks motion planning in pres-
ence of movable obstacles is [18]; in this paper, Wilfong
gave the first results on the complexity of the problem :
he proved that the problem is PSP ACE-hard (zesp.
N P-hard) in two dimensional environments where only
translations are allowed and when the final configura-
tion specifies (resp. does not specify) the final positions
of all the movable objects. In the same reference, Wil-
fong gives a solution in O(n3log? n) (where n is the
number of vertices of a polygonal environmment) for the
case of a convex polygonal robot moving in translation
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Figure 19: 4 manipulation path.

amidst one polygonal object (with a finite grasp set)
and obstacles.

In [12] we presented a general algorithm for the case
of one robot and one movable object. We showed * how
to decompose the space of grasping configurations into
a finite number of cells in order to make the problem
tractable. However the method makes use of general
tools from algebraic geometry, leading to an inefficient
algorithm in practice.

More recently, several authors attacked the manipu-
lation planning problem in various contexts.

Koga and Latombe [8, 9] addressed the case of multi-
arm manipulation planning where several robots have
to cooperate to carry a single movable object amidst
obstacles. In this context, re-grasps of the object are
often required along the path to avoid collisions and

*The principles are similar to those presented in Section
3, but they are established for general robot systems.

may involve changing the arms grasping the object. In
[8] they propose several implemented planners to deal
with problems of increasing difficulty for two identical
arms in a 2D workspace. For problems involving many
degrees of freedom, which is usually the case in multi-
arm manipulation, they use an adapted version of the
randomized potential field planner [2]. An extension
to a robot system made of three 6 DOF arms in a
3D workspace is also presented in [9]. In this work,
the number of legal grasps of the object is finite and
the algorithms require the object to be held at least
by one robot at any time during a re-grasp operation.
The approach relies on several simplifications, but it
yields to impressive results for complex and realistic
problems.

The approach developed by Barraquand and Ferbach
{3] consists in translating the manipulation planning
problem into convergent series of less constrained sub-
problems increasingly penalizing the motions that do
not satisfy the constraints. Each subproblem is solved
using variational dynamic programming,.

(4] describes a heuristic algorithm for a circular robot
and where all the obstacles can be moved by the robot
in order to find its way to its goal.

Finally, let us pinpoint the interesting extension of
the manipulation planning problem attacked by Lynch
and Mason [13]. In their context, grasping is replaced
by pushing. The space of stable pushing directions
imposes a set of nonholonomic constraints on the robot
motions, which opens issues of controllability.

All the above mentioned studies contribute to es
tablish the manipulation planning problem as a spe-
cific and challenging instance of the motion planning
problem with constraints. However, several open ques-
tions remain, ranging from a theoretical analysis of the
problem to the investigation of new practical instances.
One key theoretical aspect concerns the conditions un-
der which the reduction property can be extended to
the case of several objects and robots. On a practical
point of view, the problem represents alsc a challenge
to motion planning techniques because of its additional
complexity.
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supported by the Esprit Programme through Basic Re-
search Action 6546 PROMotion. We are grateful to

B. Dacre-Wright who implemented the algorithm de-
scribed in Section 3.
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Appendix : Reduction property

In this appendix, we consider only one movable object.
In this case, two configurations belonging to a same
connected component of GRASP N PLACEMENT are
m-connected. In fact, this property holds up to a pre-
cise definition of what is a grasping configuration.

Let us consider CS = CSR x CSO the configura-
tion space of the robot and the object together. Let
us denote by CONTACT the domain of the configu-
rations where the robot and the object are in contact.
CONTACT is a subset of Free(C'S) boundary,

Hypothesis H: We assume that the robot has to
avoid any contact with the obstacles,

We then define GRASP as the subset of CONTACT
of all the configurations verifying hypothesis H.

Property 1 Two configurations of a same connected
component of GRASP N PLACEMENT are connected
by a manipulation path.

Proof: Let a and b be two configurations in a con-
nected component of GRASP " PLACEMENT. There
exists a path p . [0,1] — GRASP N PLACEMENT
linking these two configurations® (p(0) = a, p(1) = b).
We define p, and p, as the projections of p onto CSR
and C'SO respectively.

Let ¢ = p(t) be any configuration on the path.
Thanks to the hypothesis A, pr(t) lies in an open
set of Free(CSR). We then can find an open disc
D, C Free(CSR) centered on pr(t) and with a radius
¢ > 0.

Since p is continuous, there exists m > 0 such that ;
VrElt—nt+mpe(r) e Dy

Similarly, p, — p, is a continuous function. Then there
exists 73 > 0 such that, for any 7 €}t — g, t + 2!

1@ (7) = Po(7)) ~ (2 (2) = Po(t)) || ga< /2.

This last assertion means that the relative grasp con-
figuration does not vary more than €/2 along the path
p between p(t — 1) and p(t+ 1),

Let us consider 5 = min{n;, na} :

V1, o €]t =1 t+n], PO(U)+(Pr(T)_Po(T)) €. (1)

®p designates a path as well as the associated function.
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Object
Robot

Figure 20: A case with findte (but great) number of transit
and transfer paths.

Let ¢; = p(r;) and ¢; = p(72) be any two configura-
tions on p, with 7y and 7 in Jt—n, t4q] (we assume that
71 < 72). We prove now that ¢, and ¢z can be linked
by one transfer path followed by one transit path.

Let us consider the path (Po(7), pol(r) + (pr(m) —
Po(m1))), with 7 € [ry, r2]. This path is clearly a trans-
fer path with constant grasp (pr(71) — po (1)), between
p(11) and (po(72), Po(72) + (Pr(m1) — po(m))). Accord.
ing to relation 1, this path is admissible. Let us con-
sider the path (Po(T2), Po(72) + (pr(T) ~ P.(7})), with
T € [r1, 7o]. This path is clearly a transit path between
(Po(72), Po(72) + (pr(11) ~ Po(m1))) and p(rs). Again,
according to relation (1), this path is admissible. The
concatenation of both paths constitute a manipulation
between p(r) and p(ry).

As path p, is a compact set inctuded in an open set of
Free(CSR), we can apply this local transformation on
a fintte covering of [0, 1]. We have then a finite number
of elementary manipulation paths which constitutes a
manipulation path linking a and 4. O

Remark : the number of elementary manipulation
paths used in the proof of the reduction property de-
pends on the clearance of p, in Free(C'SR). The worst
case is reached in the example Figure 20 where the
number of elementary paths is clearly in O(2).

-

Object _—
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A: Hypothesis H unsatisfied B: Hypothesis H satisfied

Figure 21: Mlustration of hypothesis H.
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Note that the reduction property does not hold when
hypothesis H is not satisfied. Figure 21 illustrates this
fact. Figure 21A shows an example where both the
robot and the object touch the environment. There
exists a coordinated path, but no feasible manipuja-
tion path (the robot cannot move the object with a
constant grasp). Figure 21B shows how the robot can
“manipulate” the object even when this one is in con-
tact.
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1 Introduction

Robot motion planning has received a widespread attention over the past
decade [14]. Dealing with uncertainties constitutes an important issue of the
motion planning problem since robots operating in real world settings, are faced
to several sources of uncertainties arising from control errors, limited sensing
aceuracy and inaccurate models of the environment. Consequently, the use
of motion planners which do not take explicitly into account uncertainties is
limited to simple situations where the errors remain small with respect to the
task tolerances. This cannot be the case in assembly pianning or in the context
of mobile robot navigation which constitutes a challenging problem for motion
planning in presence of uncertainties.

Indeed, mobile robots are not generally equipped with an absolute local-
ization procedure and accumulate position errors (since the error cannot be
bounded to some value, a growing of the obstacles is not sufficient). To over-
come the uncertainty accumulated during the motions, the mobile robot has to
be equipped with sensors that can provide additional information by identify-
ing some appropriate features of the environment. Among all the collision free
paths which may connect two given configurations of the robot, only some of
them may allow at execution to acquire enough information from the sensors
to reliably guide the robot toward its goal. Dealing with uncertainty in control
and sensing may therefore completely change the strategy used to plan the mo-
tions and it is preferable to reason in advance, on the capacity of the available
sensing functions, to generate a robust motion plan composed of sensor-based
motion primitives.

This paper reports on a recent work we have conducted concerning the
development and the implementation of a robust motion planner for a mobile
robot moving in a palygonal environment in presence of uncertainty in control
and sensing. Such a planner takes explicitly into account the uncertainty in
robot control and produces a robust motion plan composed of sensor-based
motion commands. The main originality of this approach is that it considers
a set of motion commands which may accumulate errors. It is based on a
geometric analysis of the reachability and it generates motion strategies which
may allow the robot to reduce its uncertainty.

The paper is organized as follows. In section 2, we briefly discuss related
work. Section 3 defines more precisely the problem we propose to tackle. In
section 4 and 5, we describe how we perform a geometric analysis of the reacha-
bility taking into account the uncertainties, and how this analysis is used by the
planner (section 6). We finally present some experimental results and discuss
possible extensions.

2 Background and Related work

We do not have here the ambition to provide a detailed analysis of the
relevant literature. The reader may refer to a very interesting state of the
art and discussion in [14, 15, 12]. Roughly speaking, the problem has been
tackled in the literature following two general approaches: several contributions
are based on a fwo-phase approach, while other contributions stem from the
preimage backcheining approach.

¢ In the two-phase approach, a motion plan (or more generally a task plan)
is first generated assuming no uncertainty and then, this plan is analyzed



and patched in order to finally produce a robust task plan. The analysis
is mainly based on the propagation of uncertainty through the plan and
its consequences on plan correctness [23, 17, 3, 21, 24, 20, 13}. The plan
is then modified by inserting complementary actions or sensor readings
allowing to reduce uncertainty. When a plan cannot be patched, a bacﬁ-
track can occur when planning is based on skeleton or script selection [18].
The main interest of such an approach is that it can applied to problems
which can be more general than motion planning (e.g. assembly, manipu-
lation) and to robots with a high number of degrees of freedom. Its main
drawback is that it is based on an a priori decomposition of the planning
process and on the assumption that, in most situations, the plan can be
locally patched.

¢ The second approach is the preimage backchaining approach which is
based on the geometry of the Configuration Space. It has been originally
roposed by [19] and analyzed or extended through several contributions
FIO, 8, 5, 14, 15]. The underlying assumption is that it is necessary to take
uncertainty explicitly into account in the planning process itself since it
can have drastic consequences on the plan structure.

A preimage for a given motion command and for a given goal region
(subset of the C-space), is a set of free configurations from which the
command can be started and which guarantee that the robot will reach
the goal region and stop inside it. Given a goal region and a start re-

lon,preimage backckaining consists in finding a sequence of commands
%i.e. a plan) such that the inverse sequence allows an iterative construc-
tion of preimages starting from the goal and resulting in a preimage which
contains the initial region.

While this problem, in its general formulation gives a useful computa-
tional framework, it raises “discouraging” complexity issues [5]. However
this, by no means, affects its interest. It remains to find relevant instances
of the general problem:

— which integrate new sensor modalities (proximity sensors, vision)
and control algerithms [4, 11];

— which provide sub-classes of the problem with “better” properties
(the complete and polynomial algorithm proposed in [16] applies
the backchaining framework to navigating a circular mobile robot
through circular landmarks where sensing is supposed to be perfect).

— or which allow to implement algorithms of practical use even though
they are not complete [7].

The instance of the problem addressed in this paper ! and the algorithm
that we propose fall in these categories.

Note that we also need more elaborate models of different sensor modalities
in order to be able to compute where (in the C-Space) they can be used and the
nature of the measure they can provide together with its (pre-computed) esti-
mated uncertainty. This should of course be done, taking into account the sen-
sor characteristics (position relative to the robot frame, range, specularity. . )
in a given environment [9, 22, 6].

14 shorter version was published in f1].
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3 Problem statement

3.1 The robot and the environment

Let us assume that the robot is a point moving in the plane amidst polyg-
onal obstacles denoted by a set of oriented edges e;. We assume that the
environment is perfectly known. The robot is equipped with a position sensor
(dead reckoning), and a proximity sensor which allows to detect contact with
obstacles and to follow walls (edges). The error on position depends on past
history (trajectory) and results in cumulative uncertainty.

We assuine that the robot initial and final positions are in the free space
aor along a known edge with an associated uncertainty represented either by a
disk or by an interval. The planner will provide a plan which allows, at any
moment to know if the robot is at an uncertain position P:

e in the free space; p = (z,y. €), where z,y denote the coordinates and ¢
the value of the maximum error of the position sensor (dead reckoning)?;

¢ in the contact space, on a known edge e;; p = {z,€) where z denotes the
nominal position along e; and ¢ the value of maximum €ITor;

¢ or on a known obstacle vertex; the uncertainty is then set to zero®.

3.2 The commands and their models

MOVE_UNTIL_CONTACTI®)

FOLLOW_WALL_DISTANCE(d, direction}

FOLLOW_WALL_UNTIL_VERTEX(direction)

Figure 1: Model of the different primitives

2the disk centered on (z,¥) with a radius equal to ¢ may overlap obstacles
it is straightforward to extend it to a fixed value



There are several available motion primitives which are modelled by the
type of initial situations where they can be applied, the final situation they can
reach and the envelope of possible actual trajectories they can induce (Fig. 1):

e MOVE DISTANCE(#, d)

e MOVE_UNTIL_CONTACT(d)

¢ FOLLOW WALL DISTANCE(d, [LEFT | RIGHT])
e FOLLOW WALL UNTIL VERTEX([LEFT | RIGHT])

These primitives are based on dead-reckoning and contact (or proximity)
sensors for primitives designed to maintain contact (or fixed distance) with an
edge.

£(x) 4 €(x)

€(x)

0 1 x 1 X

Figure 2: Evolution of the uncertainty along an edge. a/ after arriving onto the edge at
To with an uncertainty ¢g. b/ and c/ after a vertex relocalization

e When the robot is cornmanded to move in a direction 8 (MOVE DISTANCE,
MOVE.UNTIL.CONTACT), it follows a path such that the tangent to the path
at any point makes an angle with the direction # which is smaller than a
pre-specified value A# called the angle of the control uncertainty cone.

® When it reaches non ambiguously an edge (after a MOVE UNTIL_CONTACT),
the new uncertainty is modelled as an interval whose endpoints corre-
spond to the intersection of the edge with the envelope of all possible
trajectories.

¢ When the robot is commanded to follow an edge (FOLLOW WALL DISTANCE),
we assume that the maximum value of the positionin error, increases
linearly: €(x} = a.||z — zo|| + €0 with a € [0, 1] (Fig. 2—33.

¢ When it reaches a vertex (after a FOLLOWWALL UNTIL.VERTEX), € is reset to
zero. If, from the reached vertex, the robot foliows again the same edge (in
the opposite direction) or an adjacent edge, using FOLLOW WALL DISTANCE,
the maximum value of the positioning error will again increase linearly,
but with an initial value equal to zero: ¢(z) = a.z Fig 2-b and 2-¢).

This will allow the planner to produce, when necessary, re-localization
strategies along a given edge. In order to ensure a coherence between the dif-
ferent commands, we take: a = tan(A#). However, the algorithm we propose
does not need such an assumption.
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3.3 The planning problem

Given an initial and a goal position, in the free space or along a known

edge together with their uncertainties (represenj;ed by a disk or by an interval),

inside the control uncertainty cone A#. We restrict the plan, except the initial
and final steps, to contain a sequence of commands which allow the robot to
follow edges or to reach an edge starting from another one,

In order to implement such a planner, we need a basic step which computes
if a given entity (a disk or an edge) can be reached from another entity using
the available commands. If a command exists, the entities will be said adjacent.
Informally, a target entity ent; can be reached from an uncertain position p,
if there exists at least one direction § such that, taking into account a given
value of the uncertainty cone Ag-

¢ C1: the robot cannot miss ent;. That is, any path lying inside the
uncertainty cone issued from any initial position contained in p, intersects
ent;. When this condition is satisfied, the target entity ent; 1s said to be
Strongly visible from the uncertain position p;

¢ C2: the robot cannot collide any other entity ent; before the target
entity ent; is reached (i.e. none of these paths intersects enty before the
Intersection with ent; ). When this condition is not verified for some ent,,
this entity is said to be Weakly visible from the uncertain position p.

In the next sections, we develop the computation of the disk-edge and edge-
edge adjacencies. While the first is quite simple (§4), the second gives rise to the
possibility of characterizing the adjacency from a complete edge and not only
from an uncertain position on an edge (§5). It will provide us with a coherent
way to combine and to compute the parameters of the motion commands.

4 Disk-Edge Adjacency

max
8, g, min

almﬂx 1

62"““

strong visibility of 1 {9, Min g, max)
weak vistbility of 2: (8,21 g,max}
adjacency range of el:[§,"2% g, ™%

Figure 3: #-ranges associated to the disk-edge adjacency

[
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This adjacency can be easily computed as illustrated by Fig. 3. The strong
and weak visibility of each edge are satisfied for only one range of @ values.
These ranges are determined using the tangents to the disk going through the
edges endpoints. The adjacency between the disk associated to an uncertain
position p and a given edge is characterized by the existence of a non empty
set of adjacency ranges. This set of f-ranges is obtained from the set difference
between the strong visibility range computed for this edge and the weak visibil-
ity ranges computed for the other edges lying between the disk and the target
edge. Figure 4 shows an example of workspace and the adjacencies computed
by the algorithm.

Figure 4: An example of disk/edge adjacency

5 Edge-Edge adjacency

Let us consider that the robot arrived on a given edge e; at position (zy, 60{.
We want to characterize the parameters of the motion commands which al-
low to reliably reach the other edges of the environment from this position.
Some of these edges can be directly reached with a MOVE UNTIL_CONTACT using
a computation similar to the case described in §4. However there can also
be other edges which are not directly “visible” from the current position but
which can be reached if the robot first executes a FOLLOWWALL DISTANCE along e;
from z to another position z. In some other cases, the additional uncertainty
induced by FOLLOW.WALLDISTANCE will be too important and a re-localization
(using FOLLOW_UNTIL_VERTEX) will be required. In this section, we first introduce
a notion of visibility between edges; then we explain how this notion is used to
decompose the (x,6)-space (which parametrizes the set of motion commands)
into regions where the reachability of specific edges is guaranteed, These re-
gions allow to determine the adjacencies between the edges of the environment.




5.1 Visibility regions

An edge e; is said to be strongly (resp. weakly) visible from a position z
along e; and for a commanded motion in direction 8, if for any (resp. some)
uncertain position Z of the interval [z —e{x),z + e(z)], the straight line issued
from Z in direction # intersects the edge e;.

Note that this definition of the strong and weak visibility slightly differs
from the one expressed in section 3.3 by the conditions C1 and C2 since we
do not consider here the uncertainty cone Af. As explained later (see section
5.2), this allows a simpler way to construct the adjacency regions between the
edges of the environment.

The regions of the (z,#)-space which verify this condition are called the
strong (resp. weak) visibility regions from the edge e; to the edge ;. These
vistbility regions, respectively denoted SV; and WV}, are limited by two curves
9min(z) and 8maz(z). For a linear evolution of €(z), the tangents of these ex-
tremal orientations also depend linearly on z. Thus, SV; and WV; can be
simply represented in the {z,tan(8))-space by trapezoidal regions, We detail
below how these regions can be computed.

5.1.1 Strong visibility regions

£(x}=ax

pl(t+a)x pl(1-2)x]

Figure 5: Strong visibility regions



Figure 5 illustrates the construction of SV; for an error * modelled by efz) =
a.z. Thus, for a given nominal position z, the robot can be anywhere inside
the interval Us(z) = [(1-a)z, (1+a)z]. As shown by the figure, two cases need
to be considered depending on the location of the interval Ua(z) relatively to
the intersection £f between the edge e; and the support line of e;.

¢ When Us(z) is located on the left of 2/ (ie. = € 0,z /(14a)]), the
minimal value min(z) (resp. Omas(z)) corresponds to the direction of the
half-line starting at position (1+a)z (resp. (1-a)z) and oing through the
endpoint P (resp. (2). The tangents of these extrema) orientations are
therefore defined by:

tmin(z) = p(1+a)z] and tmaz(z) = ¢](1-a)z]

where plz] = (z — zP)/yF and g¢[z] = (z — 29)/49.

However, only the 2 values such that tm;ﬂgm) < tmaz (), belong to the
strong visibility region SV;. It can be easily shown that this inequality

is only verified for z € [0, z4] where 24 < z/(1+a). We call SV, the

region defined on this interval by the two linear functions tmin(z) and
tmaz ().

o Similarily, when U;(z) is located on the right of 2/ (ie. z € [/(1-a), 1)),
the same reasoning yields:

tmin(2) = g[(14+a)2] and tmez(z) = p(1-a)]
The condition fmin(*) < tmae(z) is only verified for z € [zZ,1] with
2% > 27 /(1-a). We call SV} the associated region.

When z! belongs to U,(z) (ie. z € {z'/(1+a), 27 /(1-a)]), the set of orien-
tations verifying the definition of the strong visibility region, is clearly empty.
Therefore SV; is the union of the two® disjoint regions SV; and SV?’.

5.1.2 Weak visibility regions

As illustrated by Fig. 6, the weak visibility region WV; consists of the three
following connected regions:

* WV} is defined for z € [0,2'/(1+a)] by the region lying between the
functions:

tmin(z) = P[(l‘a)‘c] and tmaz(Z) = 9[(1+‘1)$]

. WV? is defined for z € [x’/(l+a),m’/(1—a)] by the region lying between
the functions:
tmin(z) = p(1-a)z] and tmaz(z) = p[(1+a)z]

*the extension to the general case () = a.||z — zol| + €o is straightforward.
5When z! lies outside e; only one of the these regions is defined.
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E(x)=ax

pl{1+a)x pi(1-a)x]

ql(1+a)x]

qlx]
q(1-a;x]

Figure 6: Weak visibility regions

* WVI is defined for z € [27/(1-a),1] by the region lying between the
functions:

tmin(z) = q(1-a)z] and tmq.(z) = p[(1+a)z]

Figure 6 shows the weak visibility regions in the (z,tan(f))-space. Note
that we have presented the general case for which 2/ lies on the edge e;. For
the cases such that 2! is exterior to e;, WV; consists of less than three regions.

5.2 Adjacency regions

The adjacency regions A; from e; to e;, consist of the (z,8) values such
that the motions issued from any uncertain position = + €(2) along e;, and in
any direction § + Af are guaranteed to endup on e;; that is, the robot will not
miss e; and it will not be stopped on its way by another edge. We describe
below the two steps of the algorithm we implemented in order to compute the
A; regions.

The first step is performed without considering the directional uncertainty
Af. In this case, 4; clearly corresponds to the sub-regions of SV; which
are not contained into the union of the WV, regions associated to the edges
lying between e; and e;. A; is first initialized fo SV;; then it is iteratively



decomposed by considering each of the WV,. The basic operation of each
iteration consists in computing the set difference between two regions. This
computation can be easily performed by considering their representations in
the (z, tan(8))-space; it results in decomposing each trapezoid into at most four
trapezoidal regions.

The second step is needed to account for Ad. Hence, the adjacency regions
A; only contain the points (z, 8) such that (z, tan(8 + Af) belongs to the trape-
zoids produced by the first step. Using the equations of the upper and lower
lines defining each trapezoid, we derive the expression of the curves 8.,,n(z)
and 8maz(z) which limit the corresponding sub-region of A;.

n2

= Ajregions

Figure 7: Example of adjacency regions from e; to ey

Figure 7 shows a simple environment and the adjacency regions associated
to the edge e1. Ouly the regions A7 computed from e; to the edge e; are
represented on Figure 7-b. For a given a position x of the robot, the different
angular ranges guaranteed to reac%l the target edge e7 can be simply obtained
from these regions; as illustrated on the Fi ure, while two ranges are possible
from position 1, only one range remains valid when the robot reaches zg (with
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a larger positional uncertainty). The lower Figures (Fig. 7-c and 7-d) show
all the adjacency regions computed for e; and illustrate the influence of the
control uncertainty A8 on the edge adjacency. For example, when A# is set to
3 deg. (Fig. 7-c), all the edges are adjacent to e;; the adjacency to the edges
ey and e, disappears (Fig. 7-d) when the control uncertainty is increased to 6
degrees.

6 The Planner

The planner is given a set of polygonal obstacles, a value for the angle
uncertainty cone Af, the initial and final positions represented by tweo discs
Cr and Cg. The search space is a directed graph G of uncertain positions
P = (2,9,¢). The nodes are the initial and final positions p; and pg and a
discrete set of positions lying on the edges of the environment. An arc between
two nodes corresponds to a given motion command as defined in §3.2.

The planner initially constructs a graph & containing only the two nodes
associated to pr and pg. In a first step, it simply tries to connect them by
checking that the half-lines I}y and D, (see Fig. 8) issued from p; do not
intersect any edge e; and both intersect the cireular region Cg. In this case,
the single motion command MOVE DISTANCE(d;g, d;c) issued in direction 074 and
terminating after a nominal distance dj¢ is guaranteed to end somewhere inside
the goal region.

¢/

Figure 8: a/ pg and p; are connected. b/ and ¢/ pg and p; cannot be connected
(potential collision with the environment or final error too large)

If not, the initial node is expanded as illustrated by Fig. 9 in order to gen-
erate a discrete set of positions lying on the “visible” edges of the environment.
‘These successors are created for the extremal values of the legal f-ranges. The
arcs issued from p; correspond to a MOVE.UNTIL_CONTACT motion command.

The other nodes of the graph are incrementally created during the search of
a minimum-cost path connecting py to pg. The costs assigned to the arcs are
simply computed from the length of the nominal path connecting two adjacent
nodes, and the search is carried out by a classical 4" algorithm. Each iteration
of the algorithm consists in expanding the “best” node of the QP EN list. We
now describe the expansion of a current node denoted Peur lying on an edge
€cyr- If pour can be directly connected to pg, the expansion simply consists in
linking both nodes with a MOVEDISTANCE arc and the planner returns success.



Figure 9: Expansion of the initial node: given the positional uncertainty e; and the control
uncertainty A8, only the edge e is “visible"” from Ps. Two successors p! and p? are generated
for the extremal values 6] and 82 of the adjacency orientatjon range

Otherwise, the successors are generated as follows: p,,, is first connected with
FOLLOWUNTIL VERTEX motions to the two endpoints of edge e.,. As the robot
is assumed to perfectly detect a corner of the environment, a null uncertainty
is associated to both corresponding nodes (py, st and prip, for the example of
Fig. 10 which illustrates the node expansion mechanism).

For all the other edges e;, the adjacency regions computed from e, to e;
are used to generate motion commands guaranteed to reach the edge e;. Three
€ases can occur:

* The set of adjacency regions A; is empty (ie. the edge is too short to
be reachable from e,,, with the current uncertainty or it is completely
obstructed by other edges): no successors are associated to this edge.
This is the case of edge e, on the example,

¢ The location p.,, along the edge e.,, is such that one (or more) feasible
range of orientations exists in the 4;’s regions (case illustrated by the A3
region shown in Fig. 10-b). A successor is then created for each of the two
extremal orientations of the ranges (61 and 8% for the example). These
new nodes are connected to Peur by MOVE_UNTIL_CONTACT commands.

¢ When the vertical line issued in the (z,8)-space at the current z position
does not intersect any cells of the A; regions (case illustrated by the A3
regions of Fig. 10-b associated to the edge e3), the robot first needs to
follow e, toward the left {resp. the right) until it reaches a position
denoted p’ (resp. p”) on the figure, and corresponding to the beginning
of the nearest legal range. From this intermediate position p’ (resp. p")
reached via 3 FOLLOWDISTANCE command, a MOVE UNTIL.CONTACT nmotion
command issued in direction 8] (resp. 62) allows to generate the successor

P3 (resp. p2) on edge e3.

Figure 10-c shows the successors created for the environment of Fig. 10-a; it
also indicates the motion commands produced to connect p.,, to these nodes.
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Figure 10: Node expansion mechanism



7 Experimental Results

The algorithms presented above have been implemented in C on a Sun
Sparc 10 computer. We ran the planner on several workspaces, with various
sizes of the initial and goal regions (¢; and €¢) and with different values of the
directional uncertainty A#.

Figures 11, 12 and 13 illustrate some results obtained for a same polygonal
workspace. The preprocessing of the adjacency regions between all the 98 edges
of this workspace required § seconds on a Sparc 10 workstation.

The black polyline joining the initial and goal regions represent the nominal
trajectory followed by the motion primitives produced by the planner. The grey
regions show the areas that may be swept by the robot during the execution of
these primitives becanse of the uncertainties,

Figure 11: Solution obtained for small initial and control uncertainty

The first example (Fig. 11) was run for small values of both initial and
control uncertainties (A8 = 5deg.). Note that the positional uncertainty is
reset at the end of the FOLLOWUNTIL VERTEX commands (positions ps, py and
Ps) because of the vertex based re-localization. Only 35 nodes were developed
during the search and the solution was obtained in half a second after the
preprocessing step.

The second example was run with the same value of A8 but with a larger
radius for the initial disk. In this case, the initial uncertainty is too important
to directly reach the polygon displayed at the center of the figure. After a
first motion guaranteed to stop on the left-down wall of the workspace, and
a precise vertex localization at position ps, this large polygon can be reliably
reached with the next MOVE_UNTIL.CONTACT command (position p3).

Finally, the third example was run with A4 set to 10 degrees. The small
obstacles around the goal region cannot be used anymore to localize the robot
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and a completely different motion strategy is required as illustrated by Fig. 13.

[MOVE_UNTH_CONTACT (leta=-2.68) |
FOLLOW_UNTIL_VERTEX(right)
MOVE_UNTIL_CONTACT(tsta=-.20)
FOLLOW_UNTIL_VERTEX{right)
FOLLOW_UNTIL_VERTEX(right)
MOVE_UNTIL_CONTACT{tsta=.85
FOLLOW_UNTIL_VERTEX(right}
MOVE_UNTIL_CONTACT (teta=-23)
FOLLOW_UNTIL_VERTEX(taft}
MOVE_DISTANCE (tsta=.41,dist=29.1)

Figure 12: Same example with a larger initial uncertainty

MOVE_UNTIL_CONTAC T(t8ta=2.37)
FOLLOW_UNTIL_VEHTEX(Iighl)
FOLLOW_DISTANCE(dist=65.8, right}
MOVE_UNTIL_CONTAGT (teta=-.52)
FOLLOW_UNTIL_VERTEX(r‘ighi)
FOLLOW_UNTIL_VERTEX(right)
FOLLOW_DISTANCE(dist=14.2,right)
MOVE_UNTIL_CONTACT{teta=.13)
FOLLOW_UNTIL_VERTEX(right)
MOVE_DISTANCE( (teta=2.53,dist=31 3)

Figure 13: Same example with a larger contrel uncertainty



Note that the solution produced by the planner contains two FOLLOW.DISTANCE
commands between p; (resp. Ps) and p3 (resp. p7). In both cases, the edge
containing p4 (resp. Ps) could not be reached directly from position Pa {resp.
Ps} and the planner used the adjacency regions between the corresponding
edges to compute the first position at which the next MOVEUNTIL_CONTACT com-
mand was guaranteed to succeed.

For the two last examples, 46 and 78 nodes were respectively developed
during the search and the solution was obtained in both cases after less than
one second of computation.

8 Discussion and Extensions

The main originality of the approach described above is its ability to produce
robust motion plans composed of sensor-based motion commands which may
accurnulate errors, and to determine where the robot needs to re-localize in
order to guarantee a successful execution of the trajectory.

Although the edge-edge adjacency described in § 5 captures exactly all the
guaranteed motions between two given edges of the workspace, the planner
described in § 6 is not complete since the number of paths explored is a fi-
nite set (discrete points (z,0) selected into the computed adjacency regions).
Moreover, the current version of the planner does not allow to generate inter-

but could be avoided by a sequence of MOVE DISTANCE commands, allowing to
reach the goal (or an intermediate edge) with a sufficient precision. Figure 14
illustrates such a situation where the planner fails to find a solution 5.

However, the planner becomes complete if we restrict the class of solutions
to strategies where a vertex re-localization is systematically performed after
the MOVE_ UNTIL CONTACT commands (the errors do not depend anymore on the
complete past history). Note that in this case, and when the error Af tends
to zero, the search space of the algorithm degenerates to a classica] visibility
graph.

€In [2}, we propose a different algorithm based on the Propagation of a numerical potential
which allows, whenever possibie to navigate without localizing the robot when the task does
not impose it.
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The algorithm described in this paper solves a relatively simple instance
of the motion planning problem in presence of uncertainty, We are currently
investigating several extensions of the approach. Some of them are rather
straightforward; the algorithms can be easily adapted to deal with a circular
robot and to relax the assumption of a perfect proximity sensor. Another inter-
esting extension would be to consider the information which can be provided
by other types of sensors (distance to the obstacle, orientation of the edges)
and to explore the possibility of producing conditional strategies.

Nevertheless, there are numerous situations where it should be enough to
use a planner like the one we described, which is really able to find in a very
reasonable time, non-trivial sensor-based motions strategies for a mobile robot
equipped with proximity sensors.
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Multi-robot Cooperation through Incremental Plan-Merging*
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31077 Toulouse - France

Abstract: This paper presents an approach we
have recently developed for multi-robot cooperation.
It is based on a paradigm where robots incrementally
merge their plans into a set of already coordinated
plans. This is done through exchange of informa-
tion about their current state and their future actions.
"This leads to a generic framework which can be applied
to a variety of tasks and applications. The paradigm,
called Plan-Merging Paradigm is presented and illus-
trated through its application to planning, execution
and control of a large fleet of a autonomous mobile
robots for load transport tasks in a structured envi-
ronment,

1 Introduction

We present, in this paper, an approach we have re-
cently developed for multi-robot cooperation. It is
based on a paradigm, called Plan-Merging Paradigm,
where robots incrementally merge their plans into a
set of already coordinated plans. This is done through
exchange of information about their current state and
their future actions. This paradigm leads to a generic
framework which can be applied to a variety of tasks
and applications.

In section 2 we define the framework where multi-
robot cooperation takes place. In section 3 we briefly
present and discuss the proposed paradigm. Section 4
discusses a typical application: a fleet of autonomous
mobile robots navigating in a route network. We then
discuss implementation issues and related work (sec-
tion 5).

2 A framework for cooperation
2.1 Problem statement

Let us assume that we have a set of autonomous
robots and a central system which, from time to time,
assigns and sends goals to robots individually.

Whenever it receives a goal, a robot is assumed to
elaborate and execute a plan which achieves it. Goals
may be sent asynchronously to the robots even if they
are still processing a goal previously sent.

Each robot processes sequentially the goals it re-
ceives, taking as initial state the final state of its cur-

*This paper has been submitted to 1995 IEEE International
Conference on Robotics and Automation, Nagoya, Japan.

rent plan. Doing so, it incrementally appends new
sequences of actions to its current plan.

However, before executing any plan step, a robot
has to ensure that it is valid in the current multi-robot
context, 1.e. that it is compatible with all the plans
currently under execution by the other robots. This
will be done without modifying the other robots plans,
in order to allow the other robots to continue execu-
tion.

We call this operation, a Plan-Merging Operation
(PMO) and its result a Coordination Plan (i.e. a plan
valid in the current multi-robot context).

Planning, plan merging and execution may run in
parallel. In fact, considering the time needed for plan-
ning and plan merging operation, and considering the
average range of the obtained coordination plans, ex-
ecution run most often without waiting for a new co-
ordination plan.

2.2 The “global plan” and its properties

Everything works as if there was a global plan pro-
duced and maintained by the set of robots. In fact,
neither the robots nor the central station elaborate,
store and maintain such a global plan!.

At any moment, a robot has its own ceordination
plan under execntion. Such a coordination rlar con-
sists of a sequence of actions and events to be signaled
to other robots as well as events which are planned to
be signaled by other robots. Such events correspond to
state changes in the multi-robot context and represent
temporal constraints (precedence) between actions in-
volved in different individual coordination plans.

At any moment, the “global plan” is the graph rep-
resenting the union of all current robot coordination
plans. Such a global plan is valid (i.e. it does not
contain inconsistent temporal constraint) if it can be
represented by a directed acyclic graph (dag).

The key point here is how to devise a system com-
posed of a set of robots which should, as much as pos-
sible, plan independently to achieve their tasks while
maintaining such property of the global plan.

INote that the central station maintains a higher level de-
scription of the set of missions allocated to the robots. However
it does not need to know the plans elaborated by the robots to
achieve their missions and how these plans are coordinated.
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3 The Plan-Merging Paradigm

Let us assume here that:

1. there exists a mean which allows a robot to get the
right to perform a PMO while having the guaran-
tee that it is the only robot doing so. This right
should be thought of as a resource allocation?.

2. there is a mean allowing a robot (which has ob-
tained the right to perform a PMO) to ask for and
obtain all the other robots coordination plans.

3. there exists a mean allowing rohots to ask or
inform one another about the occurrence of an
event.

3.1 Performing a Plan Merging Operation

Robots are assumed to plan from time to time
(whenever it is necessary).

When a robot is not planning and even when it is
walting to obtain the right to perform a PMO, it must
be able to send its current coordination plan to an-
other robot (which currently has the right to perform
a PMO).

When a robot has to plan, it uses the following pro-
tocol which we call the Plan Merging Protocol (see
Figure 1):

State(

No PMO
in progress

Plan mergin,
deadlock detected
(PMO failure)

New coordination
plan required by
execution.

State3

-t

=~ Statel
,’ Waiting for the right ™,
! to petform a 1”1\/%0 \\

Waitin,
leﬂm% evernits

. an . and
Monltormglplal? merging N CullectjnFcoordinaﬁon ,’
deadloc! -~ plans >

Planning events ~

Got the right and
Collecting done

State2

PMQ deferred Planning and PMO success
Plan merging

operation

Figure 1: The general protocol state graph

1. It asks for the right to perform a PMO and waits
until it obtains it together with the coordination
plans of all the other robots.

2. It then builds the dag corresponding to the union
of all coordination plans {including its own coor-
dination plan)

25 simple way to do it is to maintain a “token” through com-
munication; but this is not always desirable nor even possible
(see section 4.2).

Y2

3. It then tries to produce a new plan which can be
inserted in the dag, affer its current coordination
plan. The new plan insertion may only add tem-
poral constraints which impose that some of its
actions must be executed after some time-points
from other robots coordination plans.

Besides, the insertion must maintain the faci that
the obtained global plan is still a dag.

4. If it succeeds in producing the desired plan, the
robot appends it to its current coordination plan.

5. And finally, it releases the right to perform a
PMO.

When a robot executes its coordination plan, if it
reaches a step with a temporal constraint linked to
another robot time-point, it asks that robot if it has
passed that time-point or not. Depending on the an-
swer, the robot will wait until the other robot informs
it or will immediately proceed.

3.2 Situations where PMO is deferred or
where deadlock is detected

When a robot tries to perform a PMO, it may fail to
produce a plan which satisfies the properties discussed
earlier.

This may happen in two situations:

1. the goal can never be achieved. This can be de-
tected if the robot cannot produce a plan even
if it were alone in the environment. The robot
informs the station and waits for a new goal.

2. the robot can generate a plan but this plan cannot

be inserted in the global plan. This means that
the final state of another robot forbids it to insert
its own plan.
In such situation, the robot can simply abandon
the PMO and decide to wait until the robots,
that it has identified, have performed a new PMO
which may possibly make them change the states
preventing it to insert its plan.

Hence, we have introduced two types of events:

1. executrion evenis: i.e. events which oceur during
plan execution and which allow robots to synchro-
nize their execution.

2. planning events: i.e. events which occur whenever
a robot performs a new PMO. These events can
also be awaited for.

Note that, even when a robot fails in its PMQO, it
leaves the global plan in a correct state (it is still a
dag and its execution can continue).

In order to detect deadlocks, a roboi which finds it-
self in a situation where it has to wait for a planning
event from a particular robot, must inform it. Then,
it becomes possible for a robot to monitor and detect
deadlock situations by propagating and updating, the
list of robots wajting (directly or by transitivity) for



planning events from itself. Indeed, a deadlock is de-
tected when a robot finds itself in the list of robots
waiting for itself.

When a deadlock oceurs, it is necessary to take ex-
plicitly into account, in a unique planning operation, a
conjunction of goals (which have been given separately
to several robots).

This simply means that the global mission was
too constrained to be solved using the Plan-Merging
Paradigm. It is then the responsibility of the central
station to produce a multi-robot plan.

Here we must recall that we do not claim that
the Plan-Merging paradigm can solve or help to solve
multi-robot planning problems. The main point here
is that the Plan-Merging paradigm is safe as it includes
the detection of the deadlocks.

Note also that, in the case where only a small num-
ber of robots are involved in a deadlock, one can decide
to allow the robot, which detected the deadlock, to
plan for all the concerned robots . The Plan-Metging
paradigm remains then applicable: the inserted plan
will then concern several robots at a time.

A detailed discussion on the properties of the Plan-
merging paradigm as well as on its ability to cope with
execution failures can be found in [2].

3.3 Discussion

The paradigm and the protocol presented so far
is generic. We believe that it can be used in nu-
merous applications. Several instances of the general
paradigm can be derived, based on different planners:
action planners in the stream of STRIPS, as well as
more specific task planners or motion planners.

One class of applications which seems particularly
well suited is the control of a large number of robots
in a route network.

We present in the sequel an application in the case of
a fleet (dozens) of autonomous mobile robots. The use
of the Plan-Merging paradigm allowed us to deal with
several types of conflicts in a general and systematic
way.

4 A fleet of autonomous mobile robots

We have applied the Plan-Merging Paradigm in
the framework of the MARTHA project® which deals
with the control of a large fleet of autonomous mobile
robots for the transportation of containers in harbors,
airports and railway environments.

In such context, the dynamics of the environment,
the impossibility to correctly estimate the duration of
actions (the robots may be slowed down due to obsta-
cle avoidance, and delays in load and un-load opera-
tions, etc..) prevent a central system from elaborating
efficient and reliable detailed robot plans.

The Plan-Merging paradigm is well suited to such
applications where conflicts are local and involve a lim-
ited number of robots. Indeed, its use allowed us to

SMARTHA: European ESPRIT Project No 6668. “Multiple
Autonomous Robots for Transport and Handling Applications”

Mis

limit the role of the central system to the assignment
of tasks and routes to the robots (without specifying
any synchronization between robots) taking only into
account global traffic constraints.

4.1 Mission processing

In the MARTHA application, the robots are reg-
ularly assigned missions: destination points together
with routes and operations to perform when the des-
tination points are reached (docking, loading..).

The environment is a route network: lanes, cross-
ings, open areas. In order to allow efficient and incre-
mental plan merging, we have decomposed the route
network intc smaller entities called “cells” or “spa-
tial resources” which will be used as a basis for deal-
ing with local conflicts. Basically, the robots navigate
through an oriented graph of cells.

When a robot receives a mission, it first refines into
an executable plan: a set of trajectories planned au-
tonomously together with the sequence of resources it
has to allocate.

Plan-merging will essentially consist in synchroniz-
ing the use of such resources by the different robots
through inter-robot communication. It takes place
from time to time, for a limited number of spatial re-
sources ahead in order to not constrain unnecessarily
the other robots.

Mission planning (refinement), plan-merging and
execution may run in parallel (see Figure 2), allow-
ing most often the robots not to stop at all (unless
they have to effectively wait for a resource which is
still occupied by another robot).

$ions

Coordination
plans

-~ - -~
Coordination plai == — —— -
requests

Figure 2: Interactions between mission refinement,
plan-merging and execution

4.2 A Plan-Merging Protocol for multi-
robot navigation in a route network

We have devised a specific Plan-Merging protocol
based on resource allocation. It is an instance of the
general protocol described in §3.1, where State ! is
decomposed into several sub-states (see Figure 3).

To present the Plan-Merging Protocol in the par-
ticular case of traffic application, let us recall that, in
State_I(see Figure 3), the robot should obtain the right
and the necessary data to perform a Plan-Merging Op-
eralion.

As, in this context, Plan-Merging Operation is done
for a limited list of required resources (the cells which
will be traversed during the plan to merge), a robot,
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Figure 3: The statel for traffic application in the pro-
tocol state graph

by broadcasting this list, announces its intention to
start a PMO:

* No response, means that all required resource
gueues are empty.

¢ If another robot is in State_ 1.1, Siate 1.2 or
State_2 and if its list of required resources inter-
sect the list contained in the broadcast message, it
sends immediately a message (WAIT-FOR-PMO,
robot-name, resource-intersect-list}.

¢ If several robots enter simultaneously in State_1.0
for common resources, the conflict is solved by
taking into account the robots priority. Doing so,
robols maintain together for each critical resource
& qucue, without risk of starvation or deadlock.

Due to place Mmitations, we will not describe in
more detail this protocol. A full description may he
found in [13].

One of the most interesting attributes of this proto-
col is that it allows several PMOs to be performed si-
multaneously if they involve disjunctive resource sets.
This is particularly useful when there are several local
conflicts at the same time .

4.3 When reasoning about cells is not suf-
ficient

While, most of the time, the robots may restrict
their caoperation to cell allocation, there are situations
where this is not enough. This happen when they
have to cross non-structured regions (called “areas” )
or when an unexpected obstacle, encountered in a lane
or in a crossing, forces a set of robot to maneuver
simultaneously in a set of cells.

When this happens, a more detailed cooperation
(using the same protocol but a different planner: the
motion planner) takes place allowing robots to coor-
dinate their actions at trajectory level.

Thus, we have a hierarchy of PMOs

A3 .4

1. first, at the cell level, based on resource {cells)
allocation

2. then , depending on the context, at trajectory
level: motion planning in a set of common celis
determined by the first level

This scheme authorizes a “light” cooperation, when
possible, and a more detailed one, when necessary, ob-
tained by a further refinement of the Global Plan with-
out altering the properties.

4.4 An example of Plan-Merging at a
crossing

We shall now illustrate the plan merging paradigm
and protocol with a concrete example from the
MARTHA application. We have chosen an allocation
strategy which makes the robots allocate one cell (at
least) ahead when they traverse lanes, while they allo-
cate all the cells necessary to cross and leave a crossing.

The example involves several robots at a crossing di-
vided into four cells with entry and exit cells belonging
to four lanes (Figure 4):

(Instant: t0) Robot R; is entering ¢4 and has a plan
to go through ¢11, €12, and enter c5. We shall now ex-
amine different steps (Figure 4) and show how other
robots willing to go through this crossing will coordi-
nate their plans together,

t1: R; has already merged its plan to traverse the
crossing. Ry needs to go through ¢4, eq (ie. a
crossing cell and an exit cell); it cannot produce
and merge a plan compatible with R;’s plan, since
E; has not yet merged a plan in which it frees
¢s. As a consequence R, defers its PMO {switch
from State_2 to State_3), and asks R; to produce
a “planning-event” as soon as it has elaborated a
new plan {which suppesedly will contain a release
operation for ¢5). Ry will remain in State_3 un-
til R, signals a “planning-event”. Note that Ry’s
execution will continue until its current coordina-
tion plan is done i.e. until the ¢;5.

t2: Ry and R4 attempt to start a PMO at (almost)
the same time. Let us assume than By has a lower
priority than Rs. R4 switches to State_1.2 and
Ra proceeds. It merges a new plan whieh makes
use of ¢10, ¢y and ez without interfering with any
other robot coordination plan.

t3: R4 receives a message from R which is now done
with its PMO. R, switches from Sfate 1.2 to
State_1.1, it broadcasts the list of its required re-
sources (c11, €13, €10 and ¢o) and gets back coor-
dination plans from R; and R3. It merges a plan
with temporal constraints referring to Ry and Ra
plans.

t4: After a while, B3 and B, need again new PMOs.
There is no interference between their respective
required resources. Therefore, they can perform
their PMOs in parallel.
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Figure 4: Plan Merging in a Crossing

t5: R; has now produced a new plan. It sends a
“planning-event” to R, which can now switch
from State_3 to State_1.0 and proceed.
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stateQ
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Figure 5: State change chronogram

We can make a number of remarks from this exam-
ple and its associated state change chronogram (see
Figure 5).

¢ One can see that planning and execution is done
in parallel.

More than one robot can perform a PMO at the
same time for disjunctive lists of resources (e.g.
R, and Ry at instant t4).

Several robots may use the crossing simultane-
ously (e.g. Ry and Rg).

The example exhibits the two types of syn-
chronization: synchronization based cn ezecution
events (e.g. R4 will wait until R; leaves ¢11), and
synchronization based on planning events (e.g.
R, waits R has produced and merged a new plan,
at instant t5),

Each robot produces and merges its plans itera-
tively, and the global plan for the use of the cross-
ing is incrementally built through several PMOs
performed by various robots.

It is not a first arrived first served execution; for
example Rj arrived second, was blocked by R,
but did not block the crossing and let R3 and Ry
enter the crossing before it.

4.5 The current implementation

We have developed a complete robot control sys-

tem which includes all the features described. Iis ar-



chitecture is based on generic control architecture for
autonomons mabile robots developed at LAAS (4, 1].

It is instantiated in this case by adding an inter-
mediate layer for performing Plan-Merging operations
(Figure 2).

The robot supervisor is coded using a C-PRS (7]; it
performs Plan-Merging Operations based on a tepo-
logical planner and on a motion planner. Figure 6
illustrates two trajectories planned and synchronized
using a PMO at trajectory level.

Figure 6: The result of a PMO at trajectory level

For testing and demonstration purposes, it has been
linked to a robot simulator.

Experiments have been run successfully on a dozen
of workstations (each workstation running a complete
robot simulator) communicating through Ethernet. A
3-d graphic server has been built in order to visualize
the motions and the load operations performed by all
the robots in a route network environment, (Figure 7).
The simulated robots where able to achieve navigation
missions, performing hundreds of PMQs and solving
local conflicts. Motion planning and PMOs were suffi.
ciently efficient to allow most often the robots to elab-
orate and merge their plans without stopping unless
necessary.

The software is currently been installed under  real-
time multi-processor operating system for future ex-
perimentations on real robots.

5 Related work

There are numerous contributions dealing with
multi-robot cooperation, However, the term “cooper-
ation” has been used in several contexts with different
meanings.
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Figure 7: Several simulated robots at a crossing

We will not consider here contributions to coopera-
tion schemes at servo level (e.g. [10]) nor contributions
which aim at building an “intelligent group” of simple
robots (e.g. [11]). We will limit our analysis to con-
tributions which involve an effective cooperation (at
plan or program level) between several robots.

Several approaches have been proposed, such as gen-
eration of trajectories without collision (e.g. (5, 14]),
traffic rules [6, 8], negotiation for dynamic task alloca-
tion [9, 3], and synchronization by programming [12,
16].

Inter-robot communication allows to exchange var-
ious information, positions, current status, future ac-
tions, etc [3, 16, 15] and to devise effective cooperation
schemes.

Traffic rules have been proposed as a way to allow
several robots to avoid collision and to synchronize
their motion (with limited or even without communi-
cation). However, many aspects should be taken into
account in order to build the set of traffic rules: the
tasks, the environment, the robot features, and so on.
This entails that the generated rules are valid only un-
der the considered assumptions. If some of them are
changed, the rules have to be modified or sometimes
be regenerated completely. Besides, these systems are
generally built heuristically and do not provide any
guarantee such as deadlock detection.

Negotiation have been used for dynamic task [3] or
resource [9] allocation to several robots depending on
the situation. One robot or a station allocates tasks
to negotiators determined through communication.

Most contributions which make use of synchro-
nization through communication are based on a pre-
defined set of situations or on task dependent proper-
ties.

Indeed, most of the methods listed here, deal essen-
tially with collision avoidance or motion coordination
and cannot be directly applied to other contexts or
tasks.

We claim that our Plan-Merging paradigm is a
generic framework which can be applied in different



contexts, using different planners (action planners as
well as motion planners). It has some clean properties
(and clear limitations) which should allow, depending
on the application context, to provide a coherent be.
havior of the giobal system without having to encode
explicitly all situations that may encoded.

6 Conclusion and future work

The Plan-Merging paradigm we propose has the fol-
lowing properties;

1. It makes possible for each robot to produce a co-
ordination plan which is compatible with all plans
executed by other robots.

2. No system is required to maintain the global state
and the global plan permanently. Instead, each
robot updates it from time to time by executing
a PMO.

3. The PMO is safe, because it is robust to plan
execution failures and allows to detect deadlocks.

We believe that it can be applied to a large variety
if contexts and with different planners (from action
planners to task or motion planners), and at different
granularities.

Such a multi-robot cooperation scheme “fills the
gap” between centralized, very high level planning and
distributed execution by a set of autonomous robots
in a dynamic environment.

Indeed, it appears to be particularly well suited to
the control of a large number of robots navigating in
a route network. The application that we have imple-
mented clearly exhibits its main features. It allowed
us to make a large number of autonomous robots be-
have coherently and efficiently without creating a huge
activity at the central system.

Besides the demonstration of real robots and the in-
vestigation of other classes of applications, our future
work will concentrate on developing new cooperation
schemes by embedding a multi-robot planning activity
inside a PMO.
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Ten Autonomous Mobile Robots (and even more)
in a Route Network Like Environment

L. Aguilar, R. Alami, S. Fleury, M. Herrb, F. Ingrand, F. Robert
LAAS / CNRS,
7, Avenue du Colonel Roche - 31077 Toulouse - France

Abstract: This paper presents an implemented sys-
tem which allows to run a fleet of autonomous mohile
robots in a route network with a very limited central-
ized activity. The robots are endowed witk all the
necessary ingredients for planning and execuiing nav-
igation missions in a multi-robot context.

Multi-robot cooperation is based on a generic para-
digm called Plan-Merging Paradigm, where robots in-
crementally merge their plans into a set of already
coordinated plans.

The robot architecture is derived from the generic
architecture developed at LAAS. A 3D graphic envi-
ronment system allows to display a complete system
composed of a dozen (or more) robots, each running
ob an independent workstation. An example is pre-
sented together with numerical results on the system
behavior.

1 Introduction

We describe, in this paper, a system which allows
to run a fleet of autonomous mobile robots in a route
network with a very limited centralized activity. The
robots are endowed with all the necessary ingredients
for planning and executing navigation and load han-
dling missions - expressed at a very high level of ab-
straction - as well as for multi-robot cooperation.

In order to implement a robust and efficient multi-
robot cooperation capability, we use a generic paradigm
called Plan-Merging Paradigm, where robots incremen-
tally merge their plans into a set of already coordi-
nated plans. This is done through exchange of in-
formation about their current state and their future
actions.

The robot architecture is derived from the generic
architecture developed at LAAS. The software tools
we use allow us to run the robot software under Vx-
Works on real robots (from the Hilare family) as well
as on Unix workstations emulating low level robot
primitives.

A test and evaluation environment has been devel-
oped which includes a 3D graphic system to display a
complete fleet of robots (a dozen or even moreg in a
structured environment. This testbed provides mech-
anisms such that each robot is fully functional and can
be ran on an independent Unix workstation.

‘Typical runs on this testbed are presented together
with numerical results on the system behavior.

2 Related Work

Various methods have heen proposed which deal
with multi-robot systems. Besides, the term “cooper-
ation” has been used in several contexis with differ-
ent meanings. We will not consider here cooperation
schemes at servo level nor contributions dealing with
“intelligent groups” of simple robots.

A thorough analysis of the literature is still to be
made; we simply mention here some representative
contributions which involve an effective cooperation
(at plan or program level} between several robots.

Several approaches have been proposed, such as
generation of trajectories without collision (eg. [7,
21}), traffic rules fll, 14], dynamic adaptation of tra-
jectories {10], negotiation for dynamic task allocation
ilf]), 4], and synchronization by programming [17, 23,
22].

Concerning more particularly multi-robot motion
planning methods, numerous contributions have been
made which are generally based on a central planner,
specially designed to cope with the intrinsic complex-
ity of the problem [20, 8, 18]. While these methods are
not complete or cannot be used for a “large” number of
robots (more than 3), recent techniques hased on ran-
domized search in the Global Configuratior Space [19],
allow most often to obtain a solution in a reasonable
time, even though, in the worst case, they fall into the
unavoidable problem complexity.

Most. of these contributions are based on a pre-
defined set of situations or on task specific planners.
We claim that our Plan-Merging Paradigm is a generic
framework which can be applied in different contexts,
using different planners (action planners as well as mo-
tion planners). It has some clean properties (and clear
limitations) which should allow, depending on the ap-
plication context, to provide a coherent behavior of
the global system without having to encode explicitly
all situations that may be encountered. Another ad-
vantage of our method is that it allows, most of the
time, to solve a conflict without using a full multi-
robot planner and even without stopping the execu-
tion of the other robots.

3 A fleet of Autonomous Mobile Robots
The problem consists in devising a system which
allows to run a large number of autonomous mobile
robots in a route network composed of lanes, cross-
ings and open areas. Typical applications of this prob-



lem are cargo transfer as dealt with in the MARTHA

project! which requires the development of a large

fleet of autonomous mobile robots for the transporta-

tion of containers in harbors, airports and railway sta-

tion environments.

3.1 Autonomous Robots need Decentral-
ized Cooperation

The system is composed of a Central Station and a
set of autonomous mobiles robots.

The current state of the art allows a substantial
level of antonomy for a unique mobile robot in a struc-
tured environment: autonomous motion planning, lo-
calization based on the perception of known features
in the environment, obstacle avoidance, and so on.

However, if there are several robots, and if all nec-
essary synchronizations are performed at a central sys-
tem, this will result in a very high activity at the cen-
tral system and a drastic limitation of the range of the
plans allocated to the robots.

The Plan-Merging Paradigm we propose is well suited

to such applications as it allows to run a great number
of robots, locally dealing with conflicts while main-
taining a global coherence of the system. Indeed, it
lmits the role of the central system to the assignment
of tasks and routes to the robots (without specifying
any trajectory or any synchronization between robots)
taking only into account global traffic constraints.

3.2 Mission specification

We now present the Environment Model used for
mission elaboration and motion planning and the role
of the Central Station in the mission elaboration.

The Environment Model: In order to allow effi-
cient and incremental plan merging, we have decom-
posed the route network into smaller entities called
“cells” or “spatial resources” which will be used as a
basis for dealing with local conflicts.

Basically, the robots navigate through an oriented
graph of cells. Lanes and crossings are composed of a
set of connected cells, while areas consist of only one
cell.

Thus, the environment model, which is provided to
each robot, mainly contains topological and geometric
information (Figures 1 and 2):
¢ A network describing the connections of areas and
crossings by oriented lanes. This is the only informa-
tion used by the Central Station to elaborate routes
for robots.

* A lower level topological description (cell level). The

raph of cells is criented, in order to pravide a nominal
%but not exclusive) direction for lanes and crossings
use.

* A geometrical description of cells (polygonal regions).

¢ Additional information concerning landmarks {for
re-localization), station descriptions for docking and
load handling actions.

!MARTHA: European ESPRIT Project No 6668. “Multiple
Autonomous Robots for Transport and Handling Applications”
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Figure 2: The associated topological graph

The role of the Central Station: The central
station is in charge of producing high level plans to
load/unload ships, trains or planes. A plan is pro-
duced taking into account the route network topology
as well as the availability of such or such robot. How-
ever, it does not further specify the sequence of robots
going through a crossing (this decision is left to the
tobot locally concerned), nor does it require the robot
to remain on the specified lanes (in case it needs to
move away from an unexpected obstacle).

3.3 A Plan-Merging Protocol for Multi-
Robot Navigation

The cooperation scheme we use is based on a gen-
eral paradigm, called Plan-Merging Peradigm [2], where
robots incrementally merge their plans into a set of
already coordinated plans. This is done through ex-
change of information about their current state and
their future actions.

For the case of a number of mobile robots in a
route network environment, we have devised a spe-
cific. Plan-Merging Protocol (PMO) based on spatial
resource allocation (see [3}). It is an instance of the
general protocol described in [2], but in this context,
Plan-Merging Operation is done for a limited list of
required resources: a set of cells which will be tra.
versed during the plan to merge. The robot broad-
casts the set or required cells, receives back the set of
coordination plans from other robots which have al-
ready planned to use some of the mentioned cells, and



then tries to perfrom a plan insertion which ensures
that the union of the considered plans is a directed
acyclic graph.

Due to space limitations, we will not describe in
more detail this protocol. A full description may be
found in [2].

One of the most interesting attributes of this proto-
col is that it allows several PMOs to be performed si-
multaneously if they involve disjunctive resource sets,
This is particularly useful when there are several local
conflicts at the same time.

Plan-Merging for cell occupation: In most sit-
uations, robot navigation and the associated Plan-
merging procedure are performed by trying to main-
tain each cell of the environment occupied by at most
one robot. This allows the robots to plan their trajec-
tories independently, to compute the set of cells they
will cross and to perform Plan-Merging at cell alloca-
tion level.

In order not to constrain unnecessarily the other
robots, the allocation strategy makes a robot allocate
one cell ahead when it moves along lanes, while it al-
locates all the cells necessary to traverse and leave
Crossings.

When reasoning about cells is not sufficient
While, most of the time, the robots may restrict their
cooperation to cells allocation, there are situations
where this is not enough. This happens when they
have to cross non-structured areas (§3.2) or when an
unexpected obstacle, encountered in a lane or in a
crossing, forces a set of robots to maneuver simulta-
neously in a set of cells. In such situations, a more
detailed cooperation (using the same protocol but a
different planner: the motion planner) takes place al-
lowing robots to coordinate their actions at trajectory
level. Thus, we have a hierarchy of PMOs

¢ first, at the cell level, based on resource (cells} allo-
cation

e then, depending on the context, at trajectory level:
motion planning in a set of common cells determined
by the first level

This hierarchy authorizes a “light” cooperation, when

possible, and a more detailed one, when necessary.

4 The Robot Control System

The architecture of the Robot Control System (RCS)
is directly derived from the generic control architec-
ture for autonomous robots developed at LAAS [5, 1,
9]. It is composed of a Decisional Level and a Funec.
tional Level.

4.1 The Decisional Level

The Decisional Level (also called the Robot, Super-
visor (RS)) consists of three layers, corresponding to
a hierarchical decomposition of planning and control
activities (Figure 3): the Mission layer, the Coordina-
tion layer and the Execution layer.

The first two layers are themselves composed of a
planning and a a supervision process. All processes
(five) run in parallel and satisfy different response time
constraints [1, 13]
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Figure 3: The robot supervisor architecture

1. The Mission layer: From time to time, the
Central Station sends a new mission to the robot (Fig-
ure 4 illustrates a typical mission). The Mission layer
deals with mission refinement and control. Mission re-
finement is performed through the use and context de-
pendent instantiation of a library of “predefined plans”
or “plans skeletons”. A mission is first refined as if
the robot was alone. The resulting plan is a sequence
of actions (including planned trajectories) annotated
with cell entry and exit monitoring operations which
will be used to maintain the robot execution state and
to synchronize its actions with other robots. The Mis-
sion Supervisor is in charge of controlling the execu-
tion of such plans. If a plan fails to achieve a particular
goal, alternative plans are refined and attempted.

(mission {.
(action 1 (goto (station 1}) (using (lane 10)))
(action 2 (dock))
(action 3 (put-down))
(action 4 (un-dack))
(action 5 (goto (station 3)) (using (lane 12) (lane 8)))
(action 6 (dock))
(action 7 (pick-up (container 5)))
(action 8 {un-dock))
(action 5 (goto (end-lane 0)) (using (lane 9) (lane 0))) .})

Figure 4: A mission example

2, The Coordination layer: produces and con-
trols “coordination plans”. It performs Plan-mergin
operations and manages the interactions with the other
robots (exchanging coordination plans and events).
Indeed, the plans produced by the Mission layer are in-
crementally validated in a multi-robot context by the
Coordination layer through the use of a Plan-merging
protocol. The result is a “coordination plan” which



specifies all trajectories and actions to be executed,
together with all events to be monitored and sent to
another robot or to be awaited from another robot
(Figure 5).

Note that an execution failure reported by a robot
from which an event is awaited will cause a new Plan-
merging operation to be performed.

(coordination-plan (.

(exec-plan 1 (report (begin-action 1)))

(exec-plan 2 (wait-exec-event 13 9))

(exec-plan 4 (monitor (entry (cell 4))})

(exec-plan 8 {exec-traj 0))

(exec-plan 3 (wait-exec-event r7 48))

(exec-plan 5 (monitor {entry (cell 5)}})

(exec-plan 6 {monitor {exit (cell 14))
(signal-exec-event r4 17)))

(exec-plan 7 {monitor {exit (cell 4))))

(exec-plan 9 (exec-traj 1))

(exec-plan 10 (exec-traj 2}) .))

Figure 5: Example of coordination plan

3. The Execution layer is in charge of the in-
terpretation and the execution of coordination plan.
As a result, it is responsible of most interactions with
the functional level. Besides all actions and monitors
included in the plan, it alsoc monitors and reacts to
a number of critical events, such as unexpected ob-
stacles in its path, or its own status (battery or fuel
level), failure reports from the different modules, as
well messages sent by the other robots (infos about
synchro events or plan failures}.

4.2 The Functional Level

The functional level implements all the robot basic
capabilities in sensing, acting and computing. These
functionalities are grouped according to data or re-
source sharing, and integrated into Modules.

Beside real time capabilities to insure closed-loop
control and reactivity, this level fulfills several condi-
tions towards the decisional level: bounded response
time to requests, ohservability and programmability.

All modules have the same structure SSee 9. A
module is composed of a module controller and an
execution level.

At the execution level, the implemented functions
(l.e. embedded algorithms) are interruptible by the
module controller. They can also abort by themselves
if the execution cannot be achieved (internal failure,
failure of a server at a lower level...). A specific report
is then returned to the client.

A formal language is used to describe a module in-
cluding its behavior, its interfaces and its connections
with others modules. We have buijlt an automatic
modules compiler that uses a formal module descrip-
tion and user supplied functions to automatically pro-
duce the modules.

Figure 6 shows the functional level, for the pre-
sented application, including 7 modules, their client /-
server relations and 3 exported data (posters). Each
module will be described later on.

The Robot Supervisor is a client of all the modules
of the functional level. It manages itself the poster
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Figure 6: Architecture and interactions of the funec-
tional level

named ENVIRONMENT which exports the topological and
geometrical model of the environment, (cf §3.2).

4.2.1 The Motion Planner Module

Each robol is equipped with an independent Motion
Planner composed of a Topological Planner, a Ge-
ometrical Planner and Multi-robot Scheduler. It is
used in order to compute not only feasible trajecto-
ries but also synchronization events between different
robot trajectories.

The Topological Planner: performs a search in
the graph of cells in order to determine the set of cells
to be used for a given motion task. The selection
of cells may be done in twoe modes: a Local obsta-
cle Avoidance mode that selects only the cells which
correspond to the nominal way of traversing lanes or
crossings, and an Ezlended obstacle Avoidance mode
which is invoked, for example, when a major obstacle
forces a robot to leave its current lane and to use cells
belonging to a “parallel” lane.

The Geometrical Planner: computes a non-holo-
nomic path between an initial position and a goal posi-
tton. When used in a “multi-robot” mode, it produces
a path which avoids the last positions of the other
robots. It Is based on techniques similar to those de-
scribed in [6].

The Multi-robot Scheduler: determines, along
each trajectory, the positions where a robot should up-
date its set of occupled resources, the positions where
it should signal a trajectory synchronization event to
another robot, and the positions where it should stop
and wait for synchronization. Figure 7 illustrates tra-
Jectory synchronizations: Ri-Wj stands for a position



Figure 7: The result of a PMO at trajectory level (in
an area)

where robot ri should stop and wait that robot rj has
passed position Rj-Si.

4.2.2 The Motion Execution Module

This module has a permanent activity which consists
in position computation from proprioceptive sen-
sors {odometers, gyro) and in the feedback control
on the robot position (x,y). The current position is
exported in the POSITION poster Besides, it executes
trajectories composed of a sequence of segments and
ares of circle, and a polygonal bounding area in which
the robot should remain {cell, lane). The trajectories
are smoothed with clothoids.

It is also able, for multi-robot coordination pur-
poses, to monitor the curvilinear abscissa while exe-
cuting a motion (cf §4.2.1).

4.2.3 The Local Obstacle Avoidance Module

The Local Avoidance module monitors obstacles with
range sensors (ultra-sonic sonars or laser range finder)
and filters the trajectories before transmitting them
to the Motion Execution module.

According to the urgency, the robot can be stopped
or the trajectory can be slightly modified in order to
avoid an obstacle. However, the trajectory should re-
main in a bounding area specified by the Robot Su-
pervisor. If the robot is blocked, the motion requests
are ended. The Robot Supervisor will then produce
a new planned trajectory taking into account the new
obstacles.

4.2.4 The External Perception Module

The role of this medule is twofold[16]: (1) updating
the robot position using exteroceptive data (range sen-
sors) and performing landmarks based re-localization;
and (2) building and maintaining a local obstacles map
which may be provided, upon request, to the Motion
Planner, through the PERCEIVED OBSTACLES poster.

4.2.5 The Position Monitoring Module

This module allows to maintain the set of resources
(cells, lanes, areas) occupied by the robot and to mon-
itor the entry and the exit of these resources. This
information is necessary for the Plan-Merging activity
performed by the Robot Supervisor,

4.2.6 The External Communication Modules

Tne communications with the Central Station and
with the others robots are achieved by two distinct
modules called Inter-Robot Communication {IRC) and
Central Station Communication (CSC).

A message between robots can be dedicated to one
specific robot or broadcasted to all robots in its vicin-
ity (the IRC is assumed to have a limited range).

5 Implementation of a Realistic Testbed

We have developed a complete robot control system
which includes all the features described above.

The robot supervisor is coded using a procedural
reasoning system: C-PRS [12, 13]. The target imple-
mentation runs on a multi-processor VME rack, under
the VxWorks real-time system.

For testing and demonstration purposes we have
built an emulation of the communication and multi-
tasking primitives of the real-time system, that allows
us to run all elements of a robot (the supervisor and
all functional modules) on a Unix workstation as a set
of Unix processes.

The motion execution is simulated at the lowest
level by sending the elementary motion controls into
the perception sub-system, Radio communications be-
tween robots and with the central station are simu-
lated on the Ethernet network (Figure 8).

A 3-D graphic server has been built to visualize
the motions and the load operations performed by the
robots in their environment (Figures 1,9-12). It re-
ceives positions updates from the motion execution
modules of all the robots, each running on its own
workstation.

Experiments have been run successfully on a dozen
of workstations {each workstation running a complete
robot simulator, Figure 8). Some results are presented
in the next sections.

We have also tested the implementation on two real
mobile robots, and a third robot is under construction
to run real experiments in a real environment.

6 Results

We shall now illustrate the plan-merging paradigm
and its capabilities with some sequences from our ex-
perimentation with simulated robots in a route net-
work with open areas. The first example presents a
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PMO at a crossing, the second, a PMO in an open
area.

An example of PMOs at a crossing

Figure 9: Crossing (Step 1)

Note that as presented in section 3.3, PMO performed
at crossing allocates all the cells necessary to traverse
and leave the crossing.

Crossing, Step 1 (Figure 9);

‘This snapshot has been edited to exhibit the routes
that the robots must follow.

# Robot 73, coming from position 4, and r0 have dis-
Jjunctive list of resources. Therefore, they can perform
PMOs in parallel and traverse the crossing without
any synchronization.

Ak b

Figure 10: Crossing (Step 2)

¢ Robot 79 follows r3, but its PMO fails (because r3
has not yet planned an action to free the cell that r0
must allocate to exit the crossing). As a result 9 must
wait a planning event from r3 (Le. a new PMO).

® Robot r2, which wants to go to position B, finds
ttself in a situation where it can merge its plan with
the other robots plans.

Crossing, Step 2 (Figure 10):

¢ Robot r2 traverses the crossing, after an execution
synchronization with r0 (it must wait until 70 leaves
the lower left cell of the crossing before entering it).
» Robot 79 has received the awaited planning event
from 3 (which has now planned an action to exit its
current cell) and its PMO succeeds, but it must syn-
chronize with 2 and 3.

Crossing, Step 3:

¢ Robot r2 frees the crossing cells and sends the cor-
responding ezecuiion event to r9.

¢ Robot r9 can now traverse the crossing.

An example of PMOs in an Open Area

Figure 11: Open Area (Step 1)



Figure 12: Open Area (Step 2)

As mentioned earlier, open areas are not exclusive re-
sources. In our example, r§ goes to position B, r4
moves backward from a station in the area to position
A and rb enters the area to dock at a station.
Open Area, Step 1 (Figure 11):
The three robots have perform theirs PMOs, first at
“cell level”, then at “trajectory level”, in the followin
order: r4, r§ and r5. r9 and r5 (which has entere
the area) are both waiting until r4 passes a computed
curvilinear abscissa. Each of them waits at a par-
ticular position (R9-W4 and R5-W{) that r4 passes
respectively R{-59 and R4-55.
Open Area, Step 2 (Figure 12):
Robot rd goes from R35-Wj to R5-W9 and waits for
an execution event from r9 (which will be sent as soon
as rQ passes R9-W5).
Open Area, Step 3:
r9 has sent the execution even and all the robot can
now continue their mission.

The two examples, presented above, exhibit the fol-
lowing properties of the PMO:
¢ Planning and execution is done in parallel.
» Several robots may use the crossing simultaneously
(r0 and r3).
¢ The example exhibits the two types of synchroniza-
tion: ezecution events (r4, r5 and r9 in the area ex-
ample), and planning events (r9 and 3 in the crossing
example).
s Each robot produces and merges its plans iteratively,
and the global plan for the use of the crossing is in-
crementally built through several PMOs performed by
various robots.
« It is not a first arrived first served execution. In the
crossing example r9 arrived second, was blocked by
73, but did not block the crossing, letting 72 enter the
crossing before itself.

6.1 A Complete Mission

The simulated robots were able to achieve naviga-
tion missions, performing hundreds of PMOs and solv-
ing local conflicts. Motion planning and PMOs were
sufficiently efficient to allow the robots to elaborate

and merge their plans without stopping unless neces-
sary.

From a set of experiments ran on the environment
presented on Figure 1 where ten emulated robots ex-
ecute each a representative mission (such as the one
presented in section 4), we collected the following data:
379 messages were exchanged:

155  broadcasts for plan merging
36  plans exchanged
5 messages for execution synchronization.

During all these missions several types of conflicts
have been encountered and solved:

5 conflicts for simultanecus PMO for common resources

11 conflicts for PMO queue management
16 messages to release the PMO token (16 = 11 + 3)
36 messages to update the deadlock detection graph.

Depending on the length and difficulty of their mis-
sions, individual robots have produced from 20 to 90
messages. The average message length is 100 bytes
(without any optimization). The experiments lasted
around 15 minutes for 41 k-bytes exchanged. A very
simple improvement, (shortening the keywords included
in the messages) would result in a 20 k-bytes exchanged
for the whole mission. These results show that the
bandwidth required by the PMO protocol is compati-
ble with the low baud rate provided by the communi-
cation interface,

Moreover, the robots were able to run at an average
speed of 3m/s without ever stopping, unless required
by a synchronization.

7 Conclusion and future work

The system described in this paper presents many
original contributions to the field of research on au.
tonomous mobile robots. To our knowledge, it is the
first time such a large fleet of autonomous robots is
put together to execute high level missions given by a
central station.

Our experimentation using large number of emu-
lated robots and with real robots {(from the Hilare fam-
ily) has shown the feasibility and the embarkability of
our solution.

The Plan-Merging Paradigm we propose has the
following properties:

1. It “fills the gap” between centralized, very high
level planning and distributed execution by a set of
autonomous robots in a dynamic environment.

2. 1t makes possible for each robot to produce a co-
ordination plan which is compatible with all plans ex-
ecuted by other robots.

3. No system is required to maintain the global state
and the global plan permanently. Instead, each robot
updates it from time to time by executing a PMO.

4. The PMO is safe, because it is robust to plan exe-
cution failures and allows to detect deadlocks.

The current implementation in simulation has shown
that the protocol works and allows for far more than
ten robots to cooperate. In fact, considering the local-
1ty of the conflict resolution, i.e. the ability of robots
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in a group to coordinate their plans and acttons with-
out disturbing the rest of the fleet, one can easily see
that this protocol can scale to a much larger number of
robots (hundreds). This protocol allowed us to make
a large number of autonomous robots behave coher-
ently and efficiently without creating a burden on the
central system activity.

Our future work will concentrate on developing new
cooperation schemes by embedding 2 multi-robot plan-
ning activity inside a PMO particularly in the case of
motion planning.
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1 Introduction

We present and discuss a generic cooperative
scheme for multi-robot cooperation. It is based
on an incremental and distributed plan-merging
process.

Each robot, autonomously and incrementally
builds and executes its own plans taking into ac-
count the multi-robot context.

The robots are assumed to be able to collect
the other robots current plans and goals and to
produce plans which satisfy a set of constraints
that will be discussed.

We discuss the properties of this cooperative
scheme (coherence, detection of dead-lock situa-
tions) as well as the class of applications for which
it is well suited.

We show how this paradigm can be used in a
hierarchical manner, and in contexts where plan-
ning is performed in parallel with plan execution.

We also discuss how this paradigm "fills the
gap” between (centralized or distributed) goal /
task allocation and distributed task achievement!

We finally illustrate this scheme through an im-
plemented system which allows a fleet of more
than ten autonomous mobile robots to perform
load transfer tasks in a route network environ-
ment with a very limited centralized activity, and
important gains in system flexibility and robust-
ness to execution contingencies.

!We use here the term “task achievement” instead of
“task execution” in order to emphasize the fact that task
achievement involves further (context-dependent) task re-
finement and sensor-based plan execution.

2 Two multi-agent
cooperation issues

In the field of multi-agent cooperation we distin-
guish two main issues:

e C1: the first issue involves goal /task decom-
position and allocation to various agents

¢ C2: the second issue involves the simultane-
ous operation of several autonomous agents,
each one seeking to achieve its own task or
goal.

goals
goals/tasks tasks sequence

goals/tasks . goals/tasks
allecation achievement
— ““A'i’ R 4

L B
Succes/Failures/
Interactions/conflicts/..

Figure 1: The two main issues in muiti-agent co-
operation

While several contributions have concentrated
more particularly on one issuc or the other, we
claim that in numerous multi-agent applications,
both issues appear and even “invoke” one another
“recursively” .

This is particularly true for autonomous multi-
robot applications and, more penerally, when the
allocated tasks or goals cannot be directly “exe-
cuted” but require further refinement.

The case of multi-robot applications is indeed
directly concerned because the rcbots act in a
saine physical environment and because of the
multiplicity of uncertainties.
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Let us assume a set of autonomous robots,
which have been given, through a centralized sys-
tem or afier a distributed process, a set of (par-
tially ordered) tasks or goals. One can reasonably
assume that this process is finished when the ob-
tained tasks or goals have a sufficient range and
are sufficiently independent to cause a substan-
tial “selfish” robot activity. However, each robot,
while seeking to achieve its task will have to com-
pete for resources, to comply with other robots
activities. Hence, several robots may find them-
selves in situations where they need to solve a new
goal/task interaction leading to a new goal ftask
allocation scheme.

Indeed, these two issues are somewhat different
in nature, and should call for different resclution
schemes. While the first (C1) is more criented
towards the collective search for a solution to a
problem and calls for a purely deliberative activ-
ity, the second (C2) involves a more “comphant”
behavior of the agents and integrates a closer in-
teraction between deliberation and action.

While several generic approaches have been
proposed in the literature concerning task or
goal decomposition and allocation (Contract
Nets{25], Partial Global Planning[9], distributed
search(10], negotiaticn [14, 5, 12, 23, 6], motiva-
tional behaviers [21, 11]), cooperation for achiev-
ing independent goals have been mostly treated
using task-specific or application-specific tech-
niques [16, 20, 22, 27]

We argue that there is also a need for generic
approaches to C2. One can of course make the
agents respect a set of rules (e.g. traffic rules),
or more generally “social behaviers”[24], which
are specially devised to avoid as much as possi-
ble conflicts and to provide pre-defined solutions
to various situations. However, this cannot be a
general answer applicable to various domains.

We would like to devise a scheme which guar-
antees a coherent behavior of the agents in all
situations (including the avalanche of situations
which may occur after an execution failure) and
a reliable detection of situations which call for a
new task distribution process.

In the following, we propose a paradigml[3, 4]
which, we believe, provides a generic framework
for C2 issues and clearly establishes a link with
C1 issues.

4<.2

3 The Plan-Merging Paradigm

Let us assume that we have a set of autonomous
robots equipped with a reliable inter-robot com-
munication device which allows to broadcast a
message to all robots or to send a message to a
given robot.

Let us assume that each robot processes se-
quentially the goals it receives, taking as initial
state the final state of its current plan. Doing so,
it incrementally appends new sequences of actions
to its current plan.

However, before executing any action, a robot
has to ensure that it is valid in the currens multi-
robot context, i.e. that it is compatible with all
the plans currently under execution by the other
robots. "This will be done by collecting all the
other robot plans and by “merging” its own plan
with them. This operation is “protected” by a
mutual exclusion mechanism and is performed
without modifying the other robots plans or in-
serting an action which may render one them in-
valid in order to allow the other robots to continue
execution.

We call this operation, a Plan-Merging Oper-
ation (PMO) and its result a Coordination Plan
(i.e. a plan valid in the current multi-robot con-
text). Besides new actions for the robot such
a plan will specify the necessary synchronization
between these new actions and the other robots
coordination plans.

Note that such an operation involves only com-
munication and computation and concerns future
(near term) robot actions. It can run in paral-
lel with the execution of the current coordination
plan.

3.1 The “global plan” and its

properties

Everything works as if there was a global plan
produced and maintained by the set of robots. In
fact, no robot elaborates, stores or maintains a
complete representation of such a global plan.

At any moment, a robot has its own coordina-
tion plan under execution. Such a coordination
plan consists of a sequernce of actions and events
to be signaled to other robots as well as events
which are planned to be signaled by other robots.
Such events correspond to state changes in the
multi-robot context and represent temporal con-
straints (precedence) between actions involved in
different individual coordination plans.

At any moment, the “global plan” is the graph



representing the union of all current robot co-
ordination plans. Such a global plan is valid
(i.e. it does not contain inconsistent temporal
constraint} if it can be represented by a directed
acyclic graph (dag).

The key point here is how to devise a systemn
composed of a set of rcbots which should, as
much as possible, plan independently to achieve
their tasks while maintaining such property of the
global plan.

3.2 The Plan-Merging Protocol

Let us assume here that:

L. there exists a mean which allows a robot to
get the right to perform a PMO while hav-
ing the guarantee that it is the only robot
doing so. This right should be thought of as
a resource allocation?

2. there is a mean allowing a robot (which has
obtained the right to perform a PMO) o ask
for and obtain all the other robots coordina-
tion plans.

3. there exists a mean allowing robots to ask or
inform one another about the occurrence of
an event.

Robots are assumed to plan from time to time
(whenever it is necessary).

When a robot is not planning and even when it
is waiting to obtain the right to perform a PMO,
it must be able to send its current coordination
plan to another robot (which currently has the
right to perform a PMO).

When a robot has to plan, it uses the following
protocol which we call the Plan Merging Protocol
(see Figure 2):

1. Tt asks for the right to perform a PMO and
waits until it obtains it together with the co-
ordination plans of all the other robots.

2. It then builds the dag corresponding to the
union of all coordination plans (including its
own coordination plan)

3. It then tries to produce a new plan which can
be inserted in the dag, after its current coor-
dination plan. The new plan insertion may
only add temporal constraints which impose

2A simple way to do it is, for instance, to maintain a
“token” through communication

State0

No 'MC
in progress

New coordination
plan required by
execution

Plan merging
deadlock detected
{PMO failure}

State3

LT T T State]
27 Watting for the nght S
Il ko perform a PMO 1
an
Cotlecting coardination f
N s .

Waiting
planning events

an
Monitoring plan mergin,
deatfock OB

»
Planning events Swe e

Cot the right and
Coilecting dane

¥ State2
Elanning and
Plan merging
operation

Figure 2: The general protocol state graph

PMO deferred MO success

that some of its actions must be executed
after some time-points from other robots co-
ordination plans.

Besides, the insertion must maintain the fact
that the obtained global plan is still a dag.

4. 1f it succeeds in producing the desired plan,
the robot appends it to its current coordina
tion plan.

9. And finally, it releases the right to perform a
PMO.

When a robot executes its coordination plan, if
it reaches a step with a temporal constraint linked
to another robot time-point, it asks that robot if
it has passed that time-point or not, Depending
on the answer, the robot will wait unti] the other
robot informs it or will immediately proceed.

3.3 Situations where PMO is de-
ferred or where deadlock is de-
tected

When a robot tries to perform a PMO, it may fail
to produce a plan which satisfies the properties
discussed earlier.

This may happen in two situations:

L. the goal can never be achieved. This can be
detected if the robot cannot produce a plan
even if it was alone in the environment.

2. the robot can generate a plan but this plan
cannot be inserted in the global plan. This
means that the final state of another robot
forbids it to insert its own plan,



In such situation, the robot can simply aban-
don the PMO and decide to wait until the
robols, that it Las identified, have performed
a new PMO which may possibly make them
change the states preventing it (o insert its
plan.

Hence, we have introduced two types of events:

cvents which oc-
cur during plan execution and which allow
robots to synchronize their execution.

1. erccution cvenls: l.e.

2. planning events: i.e. events which occur
whenever a robot performs a new PMO.
These events can also be awaited for.

Note that, even when a robot fails in its PMO,
it leaves the global plan in a correct state (it is
still a dag and its execution can continue).

In order to detect deadlocks, a robot which
finds itself in a situation where it has to wait for a
planning event from a particular robot, must in-
form it. Then, it becoines possible for a robot to
monitor and detect deadlock situations by prop-
agating and updating, the list of robots waiting
(directly or by transitivity) for planning events
from itself. Indeed, a deadlock is detected when
a robot finds itsell in the list of robots waiting for
itself.

When a deadlock occurs, it is necessary to take
explicitly into account, in a unique planning op-
erafion, a conjunction of goals (which have been
given separately to several robots).

This simply means that the global mission was
too constrained to be solved using the Plan-
Merging Paradigm. Here we must recall ihat
we do not claim that the Plan-Merging paradigm
can solve or help to solve multi-robot planning
problems. The main point here is that the Plan-
Merging paradigm is safe as it includes the de-
tection of the deadlocks ie. situations where a
cooperation scheme of type C1 should take place.

Note also that, i the case where only a small
nuiber of robots are involved in a deadlock, one
can decide to allow the robot, which detected the
deadlock, to plan for all the concerned robots .
The Plan-Merging paradigm remains then appli-
cable: the inserted plan will then concern several
robots at a time.

A detailed diseussion on the properties of the
Plan-merging paradigm as well as on its ability to
cope with execution failures can be found in [3].

The paradigm and the protocol presented so
far is generic. We believe that it can be used
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In numerous applications. Several instances of
the general paradigm can be derived, based on
different planners: action planners in the stream
of STRIPS, as well as more specific task planners
or motion planners.

One class of applications which seems particu-
larly well suited is the control of a large number
of autonomaous mobile robots.

We present in the sequel an application in the
case of a fleet of autonomous mobile robots,

4 A fleet of autonomous
mobile robots

We have applied the Plan-Merging Paradigm in
the framework of the MARTHA project® which
deals with the control of a large fleet of au-
tonomous mobile robots for the transportation of
containers in harbors, airports and railway envi-
ronments.

In such context, the dynamics of the environ-
ment, the impossibility to correctly estimate the
duration of actions (the robots may be slowed
down due to obstacle avoidance, and delays in
load and un-load operations, etc..) prevent a cen-
tral system from elaborating efficient and reliable
detailed robot plans.

The use of the Plan-Merging paradigm allowed
us to deal with several types of conflicts in a gen-
eral and systematic way, and to limit the role of
the central system (o the assignment of {asks and
routes {o the robots (without specifying any tra-
Jectory or any synchronization between robots)
taking only into account global traffic constraints.

4.1 A Plan-Merging Protocol for
Multi-Robot Navigation

For the case of a number of mobile robots in a
route network environment, we have devised a
specific Plan-Merging Protocol (PMO) based on
spatial resource allocation (see [4]). It is an in-
stance of the general protocol described above,
but in this context, Plan-Merging Operation is
done for a limited list of required spatial re-
sources: a sct of cells which will be traversed dur-
ing the plan to merge. The robot broadcasts the
set or required cells, receives back the set of coor-
dination plans from other robots which have al-
ready plauned to use some of the mentioned cells,

*MARTHA: European ESPRIT Project No 6668,
“Multiple Autonomous Robots for Transport and Han-
dlicg Applications”



and then tries to perform a plan insertion which
ensures that the union of the considered plans is
a directed acyclic graph.

One of the most interesting attributes of this
protocol is that it allows several PMOs to be per-
formed simultaneously if they involve disjunctive
resource sets. This is particularly useful when
there are several local conflicts at the same time.

4.1.1  Plan-Merging for cell occupation:

In most situations, robot navigation and the asso-
ciated Plan-merging procedure are performed by
trying to maintain each cell of the environment
occupied by at most one robot. This allows the
robots to plan their trajectories independently,
to compute the set of cells they will cross and to
perform Plan-Merging at cell allocation level.

In order not to constrain unnecessarily the
other robots, the allocation strategy makes a
robot allocate one cell ahead when it moves along
lanes, while it allocates all the cells necessary to
traverse and leave crossings.

4.1.2  When reasoning about cells is not

sufficient

While, most of the time, the robots may restrict
their cooperation to cells allocation, there are sit-
uations where this is not enough. This happens
when they have to cross large (non-structured) ar-
eas or when an unexpected obstacle, encountered
in a lane or in a crossing, forces a set of robots
to maneuver simultaneously in a set of cells. In
such situations, a more detailed cooperation {us-
ing the same protocol but a different planner: the
motion planner) takes place allowing robots to
coordinate their actions at trajectory level. Fig-
ure 3 illustrates the results of a PMO at trajec-
tory level leading to trajectory synchronizations:
R;-W; stands for a position where robot r; should
stop and wait that robot r; has passed position
R;-5;.
Thus, we have a hierarchy of PMOs

e first, at the cell level, based on resource
(cells) allocation

» then, depending on the context, at trajectory
level: motion planning in a set of common
cells determined by the first level

This hierarchy authorizes a “light” coopera-
tion, when possible, and a more detailed one,
when necessary,

Figure 3: The result of a PMO at trajectory level
(in an area)

4.2 Examples

We shall now illustrate the plan-merging
paradigm and its capabilities with some sequences
from our experimentation with simulated robots
in a route network with open areas. The first ex-
ample presents a PMO at » crossing, the second,
a PMO in an open area,

An example of PMOs at a crossing

Figure 4: Crossing (Step 1)
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Figure 5: Crossing (Step 2)

Note that as presented in section 4.1.1, PMO per-
formed ab crossing allocates all the cells ROCEessary
to traverse and leave the crossing,.

Crossing, Step 1 (Figurc 4):

This snapshot has been odited to exhibit the
routes that the robots must follow.

s obol r3, coming from position A, and 70 have
digjunctive list of resources. Therefore, they can
perform PMOs in paraltel and traverse the cross-
ing without any synchronization,

¢ Robot #9 follows 73, but its PMO fails {hecause
r3 has not yet planned an action to free the cell
that »9 must allocate to exit the crossing). As a
result »9 must wait a planning cvent from r3 (ie.
a new I’'MO).

e Robot r2, which wants to go to position 3,
finds itsell in a situation wherc it can merge its
plan with the other robots plans.

Crossing, Step 2 (Figure 5):

* Robot r2 traverses the crossing, after an execu-
tion synchronization with »0 (it must wait until
r0 leaves the lower left cell of the crossing before
entering it).

» Robot r9 has received the awaited planning
event from r3 (which has now planned an action
Lo exit its current cell} and its PMO suecceds, but
it must synchronize with 2 and r3.

Crossing, Step 3:

¢ Robot #2 frees ihe crossing cells and sends the
corresponding ezecution event 1o r9.

¢ Robot 79 can now traverse the crossing.

An cxample of PMOs in an Open Area

As tentioned earlier, open arcas are not exclusive
resources. In our example, r9 goes to position #3,
1 moves backward from a station in the arca to
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position A aud »5 enters the area to dock at a
station.

Open Area, Step 1 (Figure 6):

The three rabots have perform theirs PMOs, first
al “cell level”, then at “trajectory level”, in the
following order: 4, »9 and r5. +9 and 5 (which
hias eatered the area) are both waiting until r4
passes a computed curvilinear abscissa. Each of
thern waits at a particular position (R9-W4 and
R5-W{) that r4 passes respectively R4-59 and
R{-S5.

Open Area, Step 2 (Figure 7):

Rohot rd goes from R5-W4 to R5- W9 and waits
for an ezecution cuent from r9 (which will be sent
as soon as 19 passes R9- W5,

Open Arca, Step 3:

4 has sent the execulion even and ali the robot
can now centinue their mission.

Figure 7: Open Area (Step 2)

The two examples, presented above, exhibit the



following properties of the PMO:
s Planning and execution is done in parallel.

¢ Several robots may use the crossing simulta-
neously (r0 and r3).

¢ The example exhibits the two types of syn-
chronization: erecution events (rd, r5 and
73 in the area example}, and planning events
(r9 and #3 in the crossing example).

¢ Each robot produces and merges its plans
iteratively, and the global plan for the use of
the crossing is incrementally built through
several PMOs performed by various robots.

s It is not a first arrived first served execu-
tion. In the crossing example r8 arrived sec-
ond, was blocked by 3, but did not block the
crossing, letting r2 enter the crossing before
itself,

4.3 Implementation and Results

We have developed a complete robot control 8ys-
tem which includes all the features described. Its
architecture is based on a generic control archi-
tecture for autonomous mobile robots developed
at LAAS [7, 2. It is instantiated in this case
by adding an intermediate layer for performing
Plan-Merging operations.

For testing and demonstration purposes, it has
been linked to a robot simulator.

Experiments have been run successfully on a
dozen of workstations (each workstation run-
ning a complete robot simulator) communicating
through Ethernet. A 3-d graphic server has been
built in order to visualize the motions and the
load operations performed by all the robots in a
route network (Figure 6) or in-door (Figure 8)
environments. The simulated rcbots where able
to achieve navigation missions, performing hun-
dreds of PMOs and solving local conflicts. Mo-
tion planning and PMOQs were sufficiently efficient
to allow most often the robots to elaborate and
merge their plans without stopping unless neces-
sary.

Extensive experiments have also been per-
formed using three lab robots (Pig 9).

5 Related work

There are numerous contributions dealing with
multi-robot cooperation. However, the term “co-

Figure 9: The Hilare family

operation” has been used in several contexts with
different meanings.

We will not consider here contributions to co-
operation schemes at servo level (e.g. [17]) nor
contributions which aim at building an “intelli-
gent group” of simple robots (e.g. [18]). We will
limit our analysis to contributions which involve
an effective cooperation (at plan or program level)
between several robots,

Several approaches have been proposed, such
as generation of trajectories without eollision
(e-g- [8, 26}), traffic rules [13, 15], negotiation for
dynamic task allocation {16, 5], and synchroniza-
tion by programming [19, 22].

Inter-robot communication allows to exchange
various information, positions, current status, fu-
ture actions, etc [5, 22, 27] and to devise effective
cooperation schemes.

Traflic rules have been proposed as a way to
allow several robots to avoid collision and to
synchronize their motion (with limited or even
without communication}. However, many aspects
should be taken into account in order to build the
set of traffic rules: the tasks, the environment, the
robot features, and so on. This entails that the
generated rules are valid only under the consid-
ered assumptions. If some of them are changed,
the rules have to be modified or sometimes be re-
generated completely. Besides, these systems are
generally built heuristically and do not provide
any guarantee such as deadlock detection.

Negotiation have been used for dynamic task
[5] or resource [16] allocation to several robots on
a situation-dependent basis.

Most contributions which make use of synchro-
nization through communication are based on a
pre-defined set of situations or on task dependent
properties.

Indeed, most of the methods listed here, deal
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Figure 8: Several (10) Hilare using the Plan-Merging Paradigm (simulation)

essentially with collision avoidance or motion co-
ordination and cannot be direetly applied to other
contexts or tasks.

We claim that cur Plan-Merging paradigm is
a generic framework which can be applied in
different contexls, using different planners {ac-
tion planuers as well as rnotion planners). It
has some clean properties (and clear limitations)
which should allow, depending on the application
context, to provide a coherent behavior of the
global system without having to encode explic-
itly all situations that may encoded.

6 Conclusion

We have argued that, in the field of multi-robot
{and more generally multi-agent) cooperation, it
is useful to distinguish between two main issues:
C1 goal/task decomposition and allocation, and
C2 cooperation while seeking to achieve loosely
coupled goals.

We have even claimed that in numerous multi-
agent. applications, both issues appear and even
“invoke” one another “recursively”.

We have then proposed a “generic” approach
called Plan-Merging Paradigm which deals with
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C2 issues and clearly establishes a link with C1
igsues.

The Plan-Merging paradigm has the following
properties;

L. Tt makes possible for each rebot to produce a
coordination plan which is compatible with
all plans executed by other robots.

2. No system is required to maintain the global
state and the global plan permanently. In-
stead, each robot updates it from time to
time by executing a PMO.

3. The PMCQ is safe, because it is robust to plan
execution failures and allows to detect dead-
locks.

We believe that it can be applied to a large va-
riety of contexts and with different planners (from
action planners to task or motion planners), and
at different granularities,

Such a multi-robot cooperation scheme *“fills
the gap” between very high level planning (be it
centralized or distributed) and distributed execu-
tion by a setl of autenomous robots in a dynamic
environrent.



Indeed, it appears to be particularly well suited
to the control of a large number of robots navi-
gating in a route network., The application that
we have implemented clearly exhibits its main
features, It allowed us to make a large number
of autonomous robots behave coherently and ef-
ficlently without creating a huge activity at the
central system,

Besides the investigation of other classes of ap-
plications and the work on a more formal descrip-
tion of the proposed approach, our future work
will concentrate on developing new cooperation
schemes by embedding a multi-robot planning ac-
tivity.
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Robots autonomes: du concept au robot.
Architectures, représentations et algorithmes

Le travail présenté procéde de I’ambition de doter le robot d*un haut nivean de flexibilité et d*adaptation
a la tache en présence d’imprécisions et d’incertitudes lides & celle-ci et & son état interne. Ceci se traduit
par le développement de concepts et d’outils visant 3 permettre au robot de planifier sa tache et d’en
controler Pexéeution.

Une premiére partie porte sur Pélaboration d’architectures permettant d’intégrer les composantes déci-
sionnelle et fonctionnelle et de mettre en ceuvre des processus bouclés sur la tache et sur Ienvironnement,
& différents niveaux d’abstraction. Elle présente notamment une architecture de contréle générique per-
mettant & la fois I’élaboration d*un plan d’actions (processus généralement coiiteux en temps caleul et
non borné dans le temps), et la disponibilité permanente dans un environnement évolutif (réactivité).
Un deuxiéme aspect concerne le développement de représentations et d’algorithmiques pour la planifica-
tion et I'interprétation de plans: planification logique et temporelle (au niveau de la mission) mais anssi
planification géométrique (plus proche de la tache). Les contributions portent sur la planification de mis-
sion avec prise en compte de contraintes temporelles et du non-déterminisme, la coopération multi-robots,
la planification des taches de manipulation, ainsi que la planification de stratégies de déplacement pour
un robot mobile en présence d’incertitudes.

La derniére partie présente la réalisation effective de systémes robotiques complets démontrant les capacités

développées et servant de support de validation et d’aiguillons exigeants a 1’extension de ces mémes
capacités.

Mots clefs: Robots autonomes, Systémes décisionnels, Architecture de contréle, Planification de taches,
Planification de trajectoires, Manipulation, coopération multi-robots, Cellules Flexibles d’assemblage.

Autonomous Robots: from the concept to the robot.
Architectures, representations and algorithms

This work aims at endowing the robot with a high level of flexibility and adaptability in presence of
inaccuracies and uncertainties on its current state as well as on the task state. This has entailed the
development of concepts and tools which allow the robot to plan its task and to monitor its execution.
The first part concerns the elaboration of architectures in order to integrate decisional and functional
components and to run deliberative processes at different levels of abstractions. We present a generic
control architecture which provides a framework for implementing planning, time-bounded decision and
reaction at different levels, from task-oriented closed loops to situation-driven decision and goal-driven
plan generation.

The second part involves the development of representations and algorithms for planning and plan inter-
pretation for mission planning as well as for task planning. The presented contributions deal with mission
pianning taking into account temporal constraints and non-determinism, a novel approach to multi-robot
cooperation, a new formulation of the manipulation planning problem as well as a motion planner for a
mobile robot in presence of uncertainties.

The last part reports on the effective integration of most of the presented capabilities into complete

autonomous robots which serve as a highly demanding validation testbed as well as a source for future
extensions.

Key words : Autonomous robots, Real-time Decisional systems, Motion and task planning, manipula-
tion, Multi-robot cooperation, Flexible assembly cells.



