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Abstract

In this Thesis, we study three problems related to the modeling of interconnects in Integrated
Circuits. The common denominator among them is the use of physical arguments in order to
produce éicient models that simplify the mathematical complexity of each problem.

The first problem deals with a fast and accurate calculation of mutual inductance. We adopt
a loop inductance formalism, wherein the circuit elements represent current loops. Within this
formalism, we develop the dipole approximation, which keeps the leading-order terms for the
inverse separations, and leads to significant reductions in the cost of computing mutual induc-
tance. We show representative examples for parasitics extraction, as well as for the estimation
of noise figures between intentional inductors. Ranges of validity are for separations larger than
a threshold comparable the typical sizes of loops.

The second problem is related to the modeling of non-uniform currents, along the conduc-
tors’ cross-sectional dimensions, due to skifeet. We represent this non-uniformity by ex-
panding the current distribution with a reduced set of basis functions, called conduction modes,
which are eigenfunctions to theffirential equation satisfied by the current density inside the
conductors. Our contributions are in two main categories: on one side, we have expanded the
existing one-dimensional current formulation into a three dimensional one, including currents
and charges; on the other, we have systematically optimized the computation of non-trivial inte-
grals appearing in the conduction modes formulation, translating the previously reported gains
in size into savings in runtimes, of two orders of magnitude compared to the standard references.

The third problem concerns the representation of the frequency behavior of loop impedance
using simple circuits. In order to capture the expected transitions, we use Foster pairs,. These
circuits are particularly useful in conjuction with realizable circuit approaches to model order
reduction. We reproduce the salient features related to proxirfiggte and skinféects in IC’s,
and suggest enhancements to represent the frequency variation of mutual inductance between
circuit elements.






Resune

Dans cette thse, nougtudions trois proldmes lesa la modtlisation des interconnexions de
circuits ingies. Leur @&nominateur commun est I'utilisation d’arguments physiques afin de
produire des mogles dficaces qui simplifie la compled@tmattematique de chaque pr@ohe.

Le premier pro®me aboré est le calcul rapide et @gcis de I'inductance mutuelle. Nous
adoptons un formalisme d’inductance de boucle hous @veloppons I'approximation dipo-
laire, qui garde les contributions principales pour les inversesages ations, et reduit significa-
tivement le cd@it du calcul I'inductance mutuelle. Nous montrons des exemplegseptatifs
pour I'extraction des parasitiques, aussi bien que p@awaluation des chires de bruit entre
inducteurs intentionnels. Les domaines de vdidle I'approximation songtablis pour des
séparations plus grandes qu’un seuil comparable aux tailles typiques des boucles.

Le deuxeme probdme est k a la modtlisation des courants non-uniformes, le long des
dimensions transversales des conducteurs, dueffet de peau. Nousédeloppons la distri-
bution de courant avec un ensembdeluit de fonctions de base, appéts modes de conduc-
tion, qui sont des fonctions proprad’équation satisfaite par la derésie courand I'intérieur
des conducteurs. Nos contributions dans ce domain sont: d'é notis avongtendu la
formulation existant, valide pour des courants unidimensionnéllasg formulation tridimen-
sionnelle, comprenant des courants et des charges; de l'autre, nous avénsatigstement
optimi<t le calcul des irigrales non triviales apparaissant dans la formulation de modes de con-
duction, traduisant les gains rappstdans la litterature pour la taille en gains pour les temps
d’exécution, de deux ordres de magnitude corapaux eferences standard.

Le troisikme probdme concerne la repsentation du comportement de l'iégance de
boucle en fonction de la&équence avec des circuits simples. Afin de capturer les transitions
attendues, nous employons des pairs Foster. Ces circuits sont pargimént utiles en con-
jonction avec des approchada duction d’ordre bas sur des circuit€alisable. Nous re-
produisons les caramtstiques saillants s aux &ets de proximi¢ et aux éets de peau en
IC, et suggrons le perfectionnement pour répenter la variation deéguence de I'inductance
mutuelle.
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Introduction G enerale
(version francaise)

Les circuits inégres (IC) se composent de transistors et de fils; les prend@alisent la fonction-
nalité du circuit; les secondes fournissent les interconnexiénessaires parmi les transistors.
Des le &but de I'industrie d'IC, une croissance exponentielle dans le nombre maximum des
transistors par pouceé&g verifiee. Elle aéte accomplie dicea une éduction des dimensions
linéaires des dispositis imprimer, d'un facteur 2 tous les deux ans. Connu comme la loi de
Moore [1], elle s’appliqueegalement la vitesse maximale échange dans les transistors, qui
déecroit comme la inverse du facteuredhelle; autrement dit, les vitesses maximales dans les
IC sont doubtes tous les deux ans. Des transistors plus rapides se traduiségireas plus
larges de fequence pour la propagation sur les fils. Pendant les premiers temps des IC, avec des
frequences maximales deNl®iz la longueur d’ondel correspondante si®i0; était de 18,
beaucoup plus grandes que les dimensions d’une pouce, qui ont @efixesrautour dedm

Apres l'augmentation graduelle de la vitesse (par exemple: powriergtion de 250m, des
frequences maximum d&Hzsont assoéesa la longueur d’onde de tH), nous arrivons la
gérération actuelle de 6Bnavec des fquences des dizaines @élz qui corresponderdt des
longueurs d'onde de I'ordre donm sensiblement ifrieures aux longueurs de fil de certains
interconnexions.

Les fils sont le sujet de cette dissertation; ilBmant aux sysimes lirgaires qui refsentent
la loi d’Ohm et lesequations de Maxwell. Historiquement, le traitement des interconnexions a
subi plusieurstapes dférentes. Au ébut, leurs ffets pouvaienétre regliges sans risque par
rapporta ceux dus aux transistors. Le premier vrai traitement des fils leesemait simple-
ment comme uneésistanceR) et une capacitance&] par interconnexion [2]. De meilleures
approximations d& sont obtenues en incluant une version dis&#bdes morceaux d@C; dans
la limite d’'un nombre infini de morceaux, un circuit distrébdeRC estéquivalenta I'équation
de difusion [3].

Plus écemment, lorsque lesiquences atteignent la gamme @4z I'effet de I'inductance
(L) est devenu important; c’est une cégsence directe de la forme dans laquéllepparé

1



2 Introduction G énérale (version francaise)

dans lestquations du syétme,a savoir comme produibl, ol w est la féquence angulaire.
Des circuits comprenant I'inductance peuvéetre modets avec des morceaux distréaRLC,
qui, dans le cas limite, amenta un moele de ligne de transmission résené par I'equation
du telegraphiste [4]. La gamme des dimensions dans lesquelledféds d'inductance sont
importantes onéte discuées en étail dans [2, 5].

Dans cette thse, nous consaions dfférents prol#mes lesa la manere dont les paraétres
de circuit pour les fils sont calaes, partant d’'une description de le@agrétrique, de leurs pro-
priétesélectriques et de leurs interconnexions. Les domaines d’application soatifization
des circuits nurariquesa grande vitesse, la radiéfijuence (RF) et les circuits analogues d’'onde
millim étrique, ainsi que certains circuits de signal mixte qui incorporent les dispositifs passifs,
comme par exemple les circuagphase-verroudles pour la grération de I'horloge (PLL). Afin
de situer les contributions de notre travail, il est convenantédeid brevement les prdmes
principaux impliges dans la maglisation des fetsélectromagatiques des fils pour ces appli-
cations.

Modélisation eélectromagretique

Modeler les interconnexions exige le calcul des courants et des charges, ou des&leatmps
magretiques, pour le &s grand nombre de fils dans un dessin IC. Pour ceci, ilezsssaire de
résoudre, d’'une facon approximatif, I'ensemble de quéatpeations partielles (PDE) de Max-
well. Cette &iche esévidemment &s dificile.

Dans lindustrie du dessin asgispar ordinateur (CAD, selon les sigles en anglais), des
outils asso@sa cette &che sont connus comme ceux d’extraction et de simulation. En un mot,
les premiers calculent des paratmes de circuit, qui sont transmis aux déumis afin d’obtenir
les courants, charges, tensio@egrgies, retardes, etc. Six composants principaux peatent
identifiés:

1. Identification géométrique: L'entrée du processus d’extraction est une descriptém: g
métrique des fils, ainsi que des constarésctriques de ce type de fils, des constantes
diélectrigues et des peéabilitts des radias, etc. Les formats typiques pour cette de-
scription sont GDSII, Oasis, etcA cette premére étape, les dispositifs sonégaeés
des fils, et leur connectids doiventetre stockes afin deé&cuperer une regsentation
ultérieure du circuit.

2. Segmentation: La taille des configurations des IC rend impossible un traitement direct
de I'ensemble des interconnexions dans le circuit. Ené@mgumesnce, I'information pro-
duite dans la premie étape doitetre partitionge afin de produire des sous-prates
maniables.
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Figure 1: Composants principaux impliggidans la maglisation des fetsélectromagatiques
des interconnexions dans les IC.

3. Résolution: Résistancdr, capacitanc€ et inductancd. sont calcués pour chaque con-
figuration maniables éea I'étape pecedente. @réralement, ces paraties esultent
des solutions aux sy&tnes lirgaires degquations de Maxwell. Etant le processus le plus
lourd du point de vue des @its de computation, I'approche choisi \dsvis du probkme
d’extraction est di@& par le type du sy8tmea résoudre, ainsi que par laétihode de
résolution; ces approches seront exg@ssdans la prochaine section.

4. Format du circuit RLC : Les paramtres extraits sont transfoa®as en circuits afin de
produire des magles significatifs. La connecti@tdu circuit est&cugeree, des dispositifs
sont inclus afin de &er une enée valide pour le simulateur.

5. Réduction de I'ordre du modele (MOR) : Dans les casfalistes, les tailles des circuits
produits par le formateur sont insurmontables pour les simulateurs de circuit. Les outils
MOR les convertissent en mekkséquivalents et maniables. Ceéiquivalence pelitre
atteinte soit en produisant un circuit plus petit, softavers d'une expression néngue
plus simple.

6. Simulation : Magnitudes d’inérét (courants, tensions, retarde, bruit, etc.) sont obtenues
apms une simulation de circuiy; cetteétape la moélisation des interconnexions de I'lC
est dfectivement cougle au reste des composants du desssgvoir les transistors ou
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dispositifs.

Sommaire des approches

La decomposition moné&e dans 1.1 n’est pas unique; certaines détgses ne sont pas toujours
réalies, ou sont gro@es autrement, selon I'approche partierdi au prol#me d’extraction.
Nous cktaillerons maintenant certaines de&tences principales entre ces approches.

Domaine temporel/ fr equentiel

Des outils de moglisationélectromagétique peuvengtre appligés directement aukquations
de Maxwell (domaine des temps); ou ils peuvent se concentrer aueprebhssoéia une
frequence unique (domaine desduence).

L'avantage de travailler dans le domaine temporel est éqar le caraére compact de
la description: en pratique, ils fusionnent une partie des proceg&suigsdci-dessus. Dans le
domaine des temps, l&solution lesequations de Maxwell est un préphe de valeur initiale
et de condition de frorgre ouverte, avec une PDE hyperbolique pour les variables spatiales et
temporelles.

Dans le domaine équentiel, le dme probdme est compoé en un prot#me de frontre
pour chaque &quence. Chacune de ces derniers est une PDE elliptique pour les variables spa-
tiales seulement savoir léquation de Helmholtz; la &éiquence demeure un pareime pour
les solutions. Lequivalence avec desathodes du domaine temporel estugeree apes g’'un
ensemble complet des soluticagréquence unique subisse une anti-transformation de Fourier.
Pour chaque &quence, le probme est comparativement plus simple; la compéegins le
domaine fequentiel est ass@au nombre de fierent fléquences qui doiverdtre consiérées
(c.-a-d. : la signification de “complet’ dans I'expressioe@dente, ce qui@pende de chaque
probkeme en particulier). Dans beaucoup de situations pratiques, il existeieicelies de
temps d'inérét typiques, ce qui permet défihir un ensembleéduit frequences ass@as (par
exemple, dans des applications rariques, le spectre va dé&m aux féquences de I'ordre
1/tise, OU trise €St le temps de moaé pour une rampe nuarique). Par contre, pour le domaine
temporel, toutes leschelles de temps significatives doivéirte comprises dans laéme simu-
lation, menan& un compromis entre les petiteshelles de temps qui garantissent une meilleure
précision, et le ct d’avoir un grand nombre de petits pas du temps.

L'exemple typique pour des @thodes de domaine temporel est le FDTD [6]; pour le do-
maine féquentiel, c’est la @hode de moments (MoM) [7]. Il y a aussi deéthiodes qui peu-
ventétre également @velopges dans le domaine temporel étdfuentiel, tels que la @hode
desélements finis (FEM) [8] et le circuiquivalent degléments partiels (PEEC) [9].

Dans cette tbse, nous travaillons toujours dans le domaiggdentiel.
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Régimes quasistatiqueg d’onde complete

Dans le domaine &quentiel, il y a fondamentalement deux approches augmubbe frontére:
soit une solution de I'ensemble complet daguations de Maxwell (onde con@pé), soit la
séparation du proBime en deux,é&solvant le chamglectrique €lectro-quasi-statique, EQS)
d’'un cdte, et le champ magnique (magato-quasi-statique, MQS) de l'autre. Cectuplage
simplifie @énormément chacun des deux sous-pesbés par rapport au prashe complet. Les
charges et la capacitance sont médekpaément des courants et c&sistance et inductance.
Les esultats obtenus avec I'hypéthe QS ne sont valides que siéehelles de temps impliges
dans les sous-pranes sont beaucoup plus petites gaetelle de temps pour une perturbation
électromagatique, qui est dorée par I'inverse de la&guence. En ce sens, QS est une limite
de basse frquence; aussi, il peutditre regaréd comme une limite de large longueur d’onde,
lorsquef « 271, En tant que tels, pour des hautesguences, les solutionneurs QS ont besoin
de cecomposer les conducteurs dans un grand hombre des petites sections.

Des exemples typiques des solutionneurs d’onde complet incluent Fastimp [10], HFSS [11],
LargeCom [12], et plusacemment FastMaxwell [13]; pour des préfles QS, il y a deux
réferences standards, toutes les deux rappsrtiu réme groupe de recherche au MIT : FastCap
[14] pour EQS, FastHenry [15] pour MQS.

Une des contributions principales dans cettssthest justement I'adaptation d’'un approche
tres dficace pour un probme MQSa sonéquivalent pour le probme d’onde complet, ce qui
est le sujet du chapitre 4.akdedans, nous donnerons plus é&ds au sujet des liens entre QS
et solutionneurs d’onde complet.

M éthodes inegrales/ difféerentielles

Leséquations de Maxwell peuvedtre traduites et expriaes avec dierents formulations, tant
sous la forme degquations dtérentielles comme sous celle d=guations irgrales.

Les solutions nur@riques directea la PDE impliquent la disétisation du domaine en-
tier, afin de propager les conditioasla frontere en tant qu’approximations némues aux
opérateurs dférentiels contenus dans léguations de Maxwell. Par capuent, les tailles
des systmesa résoudre sonté&@éralement #s grandes; en tant que tels, ces solutions sont
habituellement commodes pour des pésbés de petites tailles avec beaucoup de couplage.
Cependant, les composants de la description sont des cellules qui interagissent seulement avec
les voisins les plus proches, afin d’exprimer lési¢es. Ceci signifie que les sgshes liraires
pour ces rethodes sont, dans le casngral, creuses [16]. Autrement dit, I'incoemient men-
tionné ci-dessus n’est pas de cametfondamental, puisqu'il existe des techniquegmues
pour manipuler de grands, sgates creux [17]. Les exemples typiques déshades diérentiel-
les sont celles mentioges ci-dessus de FDTD et de FEM ; ditécdes applications, HFSS est
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un exemple bieitabli dans le domaine des circuit impés(PCB).

En utilisant desquations iregrales, il est possible de résenter le syste en termes
d’'inconnues (les champs ou les sourcesgrivant seulement leggions actives, c&-d. les
volumes et les surfacesites sources sont localiss. Les tailles des sgshes sontgréralement
plus petites que pour le&quations irkgrales; cependant, ces gyses sont denses, puisqu’ils
repesentent l'interaction entre les sources, qui a un caracte longue distance (par exemple,
1/r pour la fonction de Green de Coulomb). Un incénient commun des @thodes irégrales
est lié au traitement des inhoméxgiteés du milieu, qui jouent ledte des sourcedfectives; ceci
a meré a l'introduction ecente des Bthodes de fonction de Greéquivalentes [18, 19] afin de
réproduire cesféets (du &té des applications, FastMaxwell a incorpain tel arrangement pour
traiter le substrat). Des@thodes baes sur degéquations irtgrales sont habituellement eas
sur un sckma partant de la athode-de-moments (MoM) afin de produire un éyst lirgaire
pour les sources [7]. Les exemples sont tous les outils du MIT meritiordessus (Fastimp,
FastHenry, FastCap, FastMaxwell), aussi bien que de LargeCom.

Dans cette thse, nous utilisons deséathodes irkgrales,a I'instar De la néthode MoM
décrite au @but du chapitre 4.

Inductance partielle / de boucle

Une classification plus §gifique parmi les approches s’appligaida facon dont les champs
magretiques et les sources sont te@s dans le probime MQS, pour les outils d’extraction qui
adoptent la strégie QS. Les courants pour des gyses de plusieurs conducteurs peure
mocklisés sur la base des boucles ou sur celle des segments de fil; desergptions de circuit
équivalent peuverdétre cerivées pour les deux types de description [20].

Desélements partiels orété introduits afin ceviter I'identification a priori des boucles de
courant dans un circuit, @-d. le chemin de retour suivi par le courant sur chaque fil. Par contre,
dans les approches d'inductance de boucle, cétierhination est la premaie fichea realiser.

Les magnitudes calceks avec le traitement partiel ne repentent uneéalitte physique qu’au
moment al les boucles sont ferges dans unetape ukrieure (par exemple par un simulateur
de circuit).

Entermes de calcul, cetteatihode nénea des matrices denses, contenant de graldsents
hors de la diagonale. Ceux-ci r&sentent I'interaction notealiste des monopoles magigues.

Par comparaison, lédéments hors de la diagonale pour la matrice d’inductance de boucle sont

beaucoup plus petits puisqu'’ils ré&g@entent I'annulation nuenique inteérentea une structure de

boucle: le courant sur un fil est de l&me magnitude, et de signe oppascelui de I'ensemble

de ses chemins de retour. Cettff@lience entre les deuxathodes réane aux complicationsdes

a la violation de passivéten essayant de rendre creuse la matrice partielle d'inductance [21].
Des exemples de traitements de boucle sont I'extracteur Calibre xL chez Mentor [22, 23],
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Table 1: Outils de Mentor Graphics pour la nédidationélectromagatique

Proc&de Produit
1. Reconnaissance Calibre LVS (layout-vs-schematics)
2-4. Segmentation, &solution et Format Calibre xRxL
5. Réduction de I'Ordre du Magle TICERBMR
6. Simulation Eldg ADMS

ainsi que celui de Cadence, apgpdissura, [24, 25]. Les éthodes partielles proviennent du
travail original de PEEC [20, 21]. Une esution d€ficace, dans le domaine temporel, en utilisant
des néthodes de f@correction bases sur la transformation rapide de Fourier (FFT) afin de
surmonter la diiculté asso@&e au grand nombre de produits matrice-vecteur dans la formulation
partielle, aéte rapporée dans [26].

Dans ce travail, nous aélons aux traitements d’inductance de boucle; en fait, nous con-
sacrons une partie importante du chapitra &tailler les points mentior@s ci-dessus, aussi
bien gu’une discussion sur la facon dont les chemins de retour sont choisis dans un traitement
de boucle.

Mentor Graphics

Le travail menant la pésente thse aéte dfectle aux bureaux de Mentor Graphics, &
Montbonnot en France. Mentor est une &ticimportante dans l'industrie du CAD, avec plus
de 4000 emplogs dans le monde entiegpartie dans 20 pays.

Ayant son sege en Oggon, aux Etats-Unis, Mentor p@ske 28 centres deegie, consacrant
plus de 20 % de son revenu brut, qui est de I'ordre de 800 millions de dollars, auxéactieit
recherche et&veloppement.

Mentor a @velopg@ des produits commerciaux pour tous les pdés discuts auparavant,
et inclus dans le séma 1. Ces produits soahunérés dans le Tableau 1

L’ équipe de travail dans laquelle ce projetta cevelopie est le noyau de recherche pour
les outils d’extraction. Nous produisons le coeur des algorithmeséissians le moteur et
le formateur de Calibre xL. Le rapport avec desveloppeurs sies au QG de Mentor mis
a part, nous partageons I'espace de bureau avec le groupe principal de R&D pour les outils
de simulation Eldo et ADMS. Cette proxirgia meg a beaucoup de discussions fructueuses.
En outre, nous co@rons avec des groupes de recherche de I'UnigedstCaliforniea Santa
Barbara (UCSB), ainsi que de I'Univemsite I'lllinois a Urbana- Champaign (UIUC). Des
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étudiants ceéte provenant de ces de@tablissements ontali€s des stages durant plusieurs
mois toutes les ar@es, ce qui a stiméalenornmément le cours de ce travail.

Plan de la these

Pendant ce travail, nous avons to@atu doigt une grande véie de probkmes les au proeces

du sctema 1, avec une con&rhtion sgciale sur les points 3 et 4. Trois de ces peofrks
constituent le contenu de lagtbe, qui est en coaquence orgarésen trois parties. Concernant

les outils Mentor Graphics, nous nous sommes colsaaux perfectionnements et additions
pour les outils d’extraction Calibre. Dans les pages qui suivent, nous donnons une description
succincte de chacun de ces pkahks, laissant desthils pour les introductions de chaque
chapitre. Tous les chapitres incluent des conclusions et discussions sur des sujets de travalil
présent et venir, qui seronégalementé&capitués en fin de thse.

Calcul efficace de I'inductance mutuelle

Le traitement de boucle de I'inductance implique I'identification de chaque fil ainsi que de tous
les chemins de retour possibles pour chaque signal; ces boucles constituglatrients de
description pour I'extractioRL. En calculant les distributions des courants parmi les chemins
de retour, nous obtenions I'inductance propre de la boucle.
Ensuite, des interactions entre toutes les paires des bouftkrgdies doivergtre estinees.
Géréralement, cela exige unide calcul qui croit au cagrdu nombre de fils interagissant.
Nous pésentons une @thode qui éduit nettement la complekitde ce proldme. En ce
qui concerne la recetteégerale mentionée ci-dessus, I'avantage principékide dans le fait
gue le cdit devient lireaire avec le nombre de fils. Leédlle cette rathode est la simplification
de I'interaction entre deux boucles, en traitant chacun comme tedipagtique ickal sitie
au centre fficace de la boucle. Nous avonsrmbmng ceci I'approximation diplaire, et avons
montté son dicacié pour des calculs rapides des interactiatsngues distances.
Specifiquement, les chapitres concernant cetbééhmde sont :

e Chapitre 2: Nous pésentons I'approximation difaire pour le prol#me de I'extraction
des parasitiques; ce travail est une version &@ende l'article pesené a [27] etédite
dans [28] en version journal; les routines expége dans le texte sont incluses dans le
moteur Calibre XL, et oréte clasées pour une demande de brevet [29].

e Chapitre 3: L'approximation dilaire estetendue afin d’inclure I'inductance mutuelle
entre deux inducteurs intentionnels; ce travdtiapieseng a [30] et clasé pour une autre
demande de brevet [31].
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Modéelisation des sources aux &s hautes fequences

Aux frequences gtisamment hautes, les courants et les chamfistérieur d’'un conducteur
ne peuvent pastre consiérés uniformes. |l est bien connu que les courants se distribuest pr
de la surface des conducteurs, selon une chute exponeatigledpar unechelle typiquey,

la profondeur de peau pour le conducteur. Ce pateandiminue lorsque la éiquence croit
(6 o« F71/2): pour le cuivre, il est va de 6.6 100MHzjusquz 0.2 & 100GHz

Afin de decrire ce manque d’'unifornd@tpour les distributions du courant, I'approche la plus
directe est celle consistaatiscitiser le conducteur dans de peétsments, tels que le courant
peutétre consiéré uniforme pour chacun d’eux. Il eg8vident que cette stigie impose un
grand surcit a I'extraction aux haute &quences par rappatcelle aux bassessfquences. Par
exemple, un solutionneur MQS comme FastHenry dediinposer chaque fil le long de sa sec-
tion transversale. Le €t accru di a cette ealite a ceclencle une grande quangide recherches
dans le éveloppement des techniques rapidesémlution, comme par exemple des expan-
sions multipolaires rapides (dans FastHenry, FastCap. Fastimp et LargeCorggdagction
pFFT (dans Fastimp et FastMaxwell), entre autres.

Nous avons choisi une stégfie compdtement diérente: celle qui &t piesenée dans [32],
ou les distributions des courants sogtdtes en termes d’'un type&@gpal de fonctionsa savoir
les fonctions propres deduation satisfaite par des couraatintérieur des conducteurs. Mod-
eler en termes de ces fonctiong€sfliques, @sormais appébk " modes de conduction ”, fournit
une repésentation plus compacte, bien que dénme niveau c’exactitude, que les nétes de
fonctions constants par morceaux.

Nos contributions dans ce domaine sont orgaggscomme sulit :

e Chapitre 4 : Nous pésentons le cadre formel pour ce pegbk, aussi bien que la
méthode existante de modes de conduction, qui estéerdux proldmesRL dans la
limite QS; ensuite, nous introduisons une verdRirC des modes de conduction, valide
pour des structures semblables aux lignes de transmission, et montrons sé salidit
des configurations exemplaires. Ce chapitre est une version adahgtravail pesené
a[33].

e Chapitre 5: Nous analysons, proposons, et mettons en pratique, unegséraungrique
abordant la complication principale du formalisme de modes de condiREAMQS, a
savoir le calcul de sesléements de matrice. Avec cesthodes, nous arrivorsstraduire
uneéconomie d'un facteur 20 pour la taille du S, comme &té rapporé dans [32]
en uneéconomie, de deux ordres de magnitude pour le temp£digion, par rapport au
méme niveau de pcision avec des approches des fonctions constants par morceaux. Une
version courte de ce chapitreete piesenéea [34].
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e Chapitre 6: Ce chapitre est consd@caux questions qui doiveltre poges au moment
de transformer le formalisme des modes de conduction dans un solutionneur d’onde
compkte dficace. Ces questions sont: adapter lé&thodes num@riques du domaine
RL a celuiRLC; ainsi qu'agrandir les ensembles de fonctions et de geometries de base
consiceré dans la version actuelle.

Représentation large bande avec des circuits simples

Finalement, nous nous concentrons sur un @molgl e au composant du formateur dans le
schema d’extraction 1). En particulier, nous noush@ssons la capture des variations pour
la résistance et de 'inductance avec laquence. Plus &gifiguement, nous entendons de faire
ceci en utilisant seulement des composants de circuit constants.

Dans le domaine équentiel, des paragires der, L, C sont extraits fequence par équence.
Pour certains cas particuliers, une extractioune féquence unique peutféiue afin d’obtenir
des limites sur le bruit ou le retard. Pour le c&ségal, il faut construire des circuits montrant
le comportement correct sur une grande gamme éegiénces.

Puisque ce processus esali€ a I'étape du formatage, le choix particulier de la sgmta-
tion est |é au processus suivant dans leé&muol, qui est laéduction de I'ordre du made
(MOR). Dans le cas des interconnexions, il s’agit deelduction de circuits li@aires et passifs.

Il existe fondamentalement deux lignes d’approche pour ce type de MOR: celles qui calcu-
lent une versiorequivalente, tandis que simpé# matmatiquement, de l&ponse du circuit;
et celles qui produisent un circuit physiquemertlisable d’'une plus petite dimension.

Pour le premier type dé&ducteurs, le point deghart est la rathode asymptotique &valua-
tion de la forme d’onde (AWE) [35] en 1990pdes moments de l&&ponse sont ajuss aux
fonctions rationnelles. Ce travail a ouvert la v@iaine grie d’antliorations, telles que les
méthodes Palvia Lanczos [36] et PRIMA [37]. Toutes se€thodes font partie de la &jorie
des n&thodes de projection de Krylov, qui constituent aujourd’hui encore un grand domaine de
recherche. Le &fi principal est celui dviter la possible perte de passivitontenue dans la
formulation originale de AWE.

Calibre a incorpd une technique qui appartient au second typédeateurs. TICEBMR
[38,39] se fonde suré&limination des noeuds du circuit. Latrmination des noeudsliminer
est baés sur des congidations locales des constantes de temps. Sans entrer dabsaiés d
lesquels ne rélvent pas du champ&tude de cette #se, nous renvoyoris[40] pour une anal-
yse comparative et comgte de ce type de @thode par rappod celles mentionkes dans le
paragraphe @cedent.

Pour la repesentatiora large bande, TICEBMR permet la @duction de plusieurs types de
circuits comprenant des pairs Foster. Ceux-ci sont des blocs simples, dont chacun se compose
d’un résisteur en parale avec un inducteur. Un de ces blocs peut reproduire une transition
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L-décroissanR-croissant en fonction de laéiquence croissante. D’'un point de vue physique,
ces transitions ont deux origines: le choix des chemins de retour pour le courant sur un fil
de signal (et de proximi&); et la distribution non uniforme des courants sur les dimensions
transversales du fil {Eet de peau).

Nous organisons notre travail dans ce domaine de la facon suivante:

e Chapitre 7: Nous caradrisons des pairs Foster et mettons en pratique une solution pour
le cas d'une transition simple; cetteéethode est incorpée au scema de Calibre depuis
2005 et est pré@ge par une demande de brevet [41].

e Chapitre 8: Nous consiérons le cas des pairs Foster pour ésgnter des transitions
multiples ; d’abord nousé&leloppons et analysons une stgaé pour les circuits Foster
deux pairs; nous concluons en discutanétbeiment des situations pluérgrales.






Chapter 1

General Introduction

Integrated Circuits (IC’s) are composed of transistors and wires; the former implement the func-
tionality of the circuit, the latter provide the necessary interconnections among the transistors.
From the start of the IC industry, an exponential growth in the maximum number of transistors
per chip has been verified. It has been accomplished by a reduction in the linear dimensions
of the features to be printed, by a factor of 2 every two years. Known as Moore’s law [1], it
also applies to the maximum switching speed of transistors, that goes as the inverse of the scale
factor; in other words, maximum speeds in IC’s are doubled every two years. Faster switching
transistors translates into wider frequency regimes for wire propagation. In the early days of
IC logic, with maximum frequencies of MHz, the corresponding wavelengiton SiO, was

of 15m, much larger than the chip dimensions, which remain fixed &cm Following the

speed increase with scaling, (e.g. for the @B@eneration, maximum frequencies @é3fzare
associated with minimum wavelength ofctf), we arrive at the current ®ngeneration, with
frequencies in the tens @@Hzassociated to Jfisrise-times, i.e. minimum wavelengths of the
order of the millimeter, significantly smaller than some interconnect wire lengths.

Wires are the subject of this dissertation; they lead to linear systems that represent Ohm’s
law and Maxwell’'s equations. Historically, the treatment of interconnects has undergone several
different phases. At the beginning, thetieets could be safely neglected with respect to the ones
due to transistors. The first treatment of wires were simple resistBheedpacitance®) lumps
representing for each interconnect [2]. BefRE approximations are obtained by including a
distributed version oRC lumps; in the limit of an infinite number of lumps, a distribute@
circuit is equivalent to the éliusion equation [3].

More recently, as frequencies reach @k zrange, inductance.j effect have become im-
portant; this is a direct consequence of the form in whi@nters the system equations, namely
as the produabl, wherew is the angular frequency. Circuits including inductance can be mod-
eled as distribute®LC lumps, which in the limiting case lead to a transmission-line model in

13
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the form of the telegraphist’s equation [4]. Ranges of dimensions in which inductéectse
are important have been discussed in [2,5].

In this thesis, we considerftierent problems related to the way in which circuit parameters
for wires are computed, starting from a geometrical description of wires, their electrical prop-
erties and their interconnections. The domain of application is the verification of high speed
digital circuits, radio frequency (RF) and millimeter wave analog circuits, and some mixed sig-
nal circuits that incorporate passive devices as in phase-locked loop (PLL) clock generation
circuits. In order to situate the contributions of our work, it is convenient to briefly describe the
main processes involved in modeling electromagnetices in wires for these applications.

1.1 Electromagnetic modeling

Modeling interconnects demands computing currents and charges, or equivalently electromag-
netic fields, for the enormous number of wires in an IC design. In order to do so, it is necessary
to model electromagnetidtects, expressed in the form of Maxwell’s set of four partidledt

ential equations (PDE’s). Needless to say, this is a veficdit task.

In the CAD industry, associated tools are known as extraction and simulation tools. In a
nutshell, the first ones compute circuit parameters, which are passed on to the second ones, in
order to obtain currents, charges, voltages, energies, delays etc. Six main components can be
identified:

1. Geometric recognition: The input for extraction is a geometrical description of wires,
together with electrical constants such as conductivities of wires, permittivities and per-
meabilities of media. Typical formats for this description are GDSII, Oasis, etc. At the
first stage, devices are separated from wires, and connectivity among these must be stored
in order to allow for a downstream circuit representation.

2. Segmentation:The size of IC configurations renders impossible a direct treatment of all
the interconnects in the circuit. Therefore, the information produced in step 1 must be
spanned and partitioned in order to produce manageable subproblems.

3. Solution: Resistancd, capacitanc€ and inductancé are computed for the manage-
able configurations created in the first step. In general, these result from solutions to linear
systems representing Maxwell's equations. Usually the approach to extraction is dictated
by the type of system and solution method; these approaches will be expanded in the next
section.

4. RLC circuit format: Extractedr, L, C parameters are transformed into circuits in order
to produce meaningful models. The connectivity of the circuit is recovered, components
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Figure 1.1: Main components involved in the modeling of electromagngégcts in IC inter-
connects.

are rejoined in order to create valid input for the simulators.

5. Model order reduction (MOR): In realistic cases, the sizes of circuits produced by the
formatter are intractable for circuit simulators. MOR tools convert them into equivalent,
manageable ones; this can be done either by producing a smaller circuit, or a simpler
numerical expression.

6. Simulation: Relevant magnitudes (currents, voltages, delays, noise, etc.) are obtained
after a circuit simulation; at this stage the modeling of IC interconnects can be coupled
with the rest of the components in a design, namely the transistors or devices.

1.2 Overview of approaches

The decomposition shown in Fig. 1.1 is not unique; some of these tasks are not always done, or
are grouped dierently, according to the approach of any particular method. We will now detail
some of the main dierences among methods.



16 Chapter 1. General Introduction

1.2.1 Time/ Frequency domain

EM tools can be applied directly to Maxwell's equations (time domain); or they can solve prob-
lems associated to a single frequency (frequency domain).

The advantages of working in the time domain are given by the compactness of the descrip-
tion: in practice, they merge some of the points in the flow described above, into one single
process. In the time domain, solving Maxwell’'s equations is an initial-value, open boundary-
condition problem, with a hyperbolic PDE for the time and spatial variables.

In the frequency domain, the same problem is decomposed into one boundary-value prob-
lem per frequency. Each of these is an elliptic PDE for the spacial variables only, namely the
Helmholtz equation; the frequency is a parameter for the solutions. The equivalence with time
domain methods is recovered after a complete set single-frequency solutions undergo a Fourier
anti-transformation. For each frequency, the problem is comparatively simpler; complexity in
the frequency domain is associated to the (problem-dependent) numb&ecdmti frequencies
that must be considered (i.e.: the meaning of “complete” in the previous phrase). In many practi-
cal situations, there exist typical time scales of interest, which define a reduced set of associated
frequencies (e.g., in digital applications, the spectrum goes from zero to frequencies of order
1/tise, With tiise the rise time for a digital ramp). In the time domain, all significant time scales
must be accounted for in the same simulation, leading to a tr&deetween small time steps
that guarantee better precision, and the cost involved in having a large number of these small.

An example for time domain methods is the Finité¢fBience Time Domain (FDTD) algo-
rithm [6]; for the frequency domain, there is the Method of Moments (MOM) [7]. There are
also methods which can be equally developed in the time and frequency domains, such as the
Finite Element Method (FEM) [8] and the Partial Element Equivalent Circuit (PEEC) [9].

In this work, we always work in the frequency domain.

1.2.2 Quasistatiq¢ Fullwave regimes

Within the frequency domain, there are basically two types of approaches to the boundary-value
problem: either to approach a solution involving the full set of Maxwell's equations (fullwave),

or to split the problem in two, solving the electric field on one side (electroquasistatic, EQS),
and the magnetic field (magnetoquasistatic, MQS) on the other. This decoupling simplifies
enormously each of the two subproblems. Charges and capacitance are modeled separately
from currents and resistanosluctance.

The results obtained within the QS assumption are valid as long as the time scales involved
in the subproblems are much smaller than the time scale for an EM perturbation, given by the
inverse of the frequency. In this sense, QS is a low-frequency limit; also, it can be viewed as
long-wavelength limit, since « f~1. As such, for very high frequencies, QS solvers require a
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decomposition of conductors into electromagnetically small portions.

Typical examples of fullwave solvers include Fastimp [10], HFSS [11], LargeCom [12], and
recently FastMaxwell [13]; for QS problems, there are two standard references, both coming
from the same research group at MIT: FastCap [14] for EQS, FastHenry [15] for MQS. One
of the main contributions in this work is precisely the adaptation of a purely MQS scheme to a
fullwave problem, which is the subject of Chapter 4. Therein, we elaborate on details concerning
the links between QS and fullwave solvers.

1.2.3 Integral/ Differential methods

Maxwell’s equations can be translated into manfjedent formulations, both asftkrential or
as integral equations.

Direct numerical solutions to PDE'’s involve discretizing the entire domain, in order to prop-
agate the boundary conditions as numerical approximations toftieeadlitial operators in Max-
well’'s equations. The size of the systems to be solved are generally very large; as such, these
solutions are usually convenient for small bounded problems. However, the components of the
description are cells that only interact with nearest neighbors, as local approximations to deriva-
tives. This means that the linear systems for these methods are, in the general case, sparse [16].
Thus the aforementioned drawback is not of a fundamental nature, since there exist a specific
techniques for handling large, sparse systems [17]. Typical examplef@rfediial methods
are the aforementioned FDTD and FEM methods; in terms of applications, HFSS is a well-
established example within the domain of printed circuit boards (PCB).

For integral equations, it is possible to represent the system in terms of unknowns (fields or
sources) describing solely active regions, i.e. the volumes and surfaces where the sources are lo-
cated. System sizes are generally smaller than for integral equations; however, these systems are
in general dense, since they represent interaction between sources, which are a long-range inter-
action (e.g., Ir for the Coulomb Green function). One common drawback of integral methods
is related to the treatment of inhomogeneities in the medium, which play the roféeofiee
sources; this has led to the recent introduction of equivalent Green function methods [18,19] in
order to account for thesdfects (in terms of applications, FastMaxwell has incorporated such
a scheme for treating substrate). Methods based on integral equations are usually based on a
method-of-moments (MOM) scheme in order to produce a linear system [7]. Examples are all
the tools from MIT mentioned above (Fastimp, FastHenry, FastCap, FastMaxwell), as well as
LargeCom.

In this Thesis, we apply integral methods; such is the general method described at the be-
ginning of Chapter 4.
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1.2.4 Loop/ Partial inductance

A more specific type of classification among approaches applies to the way magnetic fields and
sources are treated in the MQS problem, for extraction tools that adopt the QS strategy. Currents
in multiconductor systems can be calculated either on loops or on wire segments; equivalent
circuit representations can be derived through either description [20].

Partial elements were introduced in order to avoid having to predetermine the current loops
in a circuit, i.e. the return path followed by a current on any given wire. On the other hand,
for loop inductance methods, this is the first task to be carried out. The magnitudes computed
within the partial treatment do not represent a physical reality, until the loops are closed further
down the modeling flow (for example by a circuit simulator).

In terms of computation, this observation leads to dense matrices, in the sense that they
contain large fi-diagonal elements. These represent unrealistic monopole interaction between
currents. By comparison, thefaliagonal elements in the loop inductance matrix are smaller,
since they representfectively the numerical cancellation inherent in a loop structure: the cur-
rent on one wire is equal in magnitude to the ones in the return paths. Tiesedice leads to
problems of passivity violation in attempting to sparsify the partial inductance matrix [21].

Examples of loop treatments are Mentor’s Calibre xL extractor [22,23], as well as Cadence’s
Assura tools [24, 25]. Partial methods all spring from the original PEEC work [20, 21]. An ef-
ficient time-domain implementation, using precorrected-FFT (Fast Fourier Transform) methods
in order to overcome the fliculty associated to the large humber of matrix-vector products in
the partial formulation, was reported in [26].

In this work, we adhere to loop inductance treatments; in fact, we devote an important part
of Chapter 2 to detailing the points mentioned above, as well as a discussion on how the return
paths are selected within a loop treatment.

1.3 Mentor Graphics

The work leading to the present dissertation was carried out atffice®of Mentor Graphics
in Montbonnot, France. Mentor is a major company in the CAD industry, with more that 4000
employees worldwide, distributed in over 20 countries. Headquartered in Oregon, USA, Mentor
has 28 engineering centers and spends more that 20% of its raw income, which is in the order
of 800 million US dollars, in research and development activities.

Mentor has developed commercial products for all the items described in Section 1.1. Re-
lating to the flow in Fig. 1.1, Mentor’s products are listed in Table 1.1

The workgroup in which this project was developed is the core of research for the extraction
tools. We produce the kernel of the algorithms inserted into the Calibre xL engine and formatter.
Apart from the relationship with developers at Mentor HQ, we shéiesspace with the main
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Table 1.1: Mentor Graphics’ tools for EM modeling

Process Product
1. Recognition Calibre LVS (layout-vs-schematics)
2-4. Segmentation, Solve, Format Calibre XRC
5. Model Order Reduction TICERMR
6. Simulation Eldg ADMS

R&D group for the simulation tools Eldo and ADMS. This vicinity has led to many fruitful
discussions.

Also, we cooperate with research groups at the University of California in Santa Barbara, as
well as the University of Illinois in Urbana Champaign. Summer visiting students from both of
these institutions have been very stimulating for the course of this work.

1.4 Outline of this Thesis

During the course of this work, we have addressed a very large scope of problems related to the
implementation of the flow described above, with special emphasis on points 3 and 4. Three
of these problems constitute the contents of the present Thesis, that is accordingly organized
into three parts. This work has been incorporated into an industrial tool set at Mentor Graphics,
and our approaches have been used in order to enhance the Calibre extraction engine. We will
now give a succinct description of each of these, leaving details for the introductions of each
Chapter. All chapters include conclusions and discussions concerning present and future work,
which will also be summarized at the end of the thesis.

1.4.1 Hificient mutual inductance calculation

Loop treatment of inductance involves recognizing each signal wire and all its possible return
paths; theseftective current loops constitute the building blocks of Rleextraction scheme.
By computing the distributions of currents among the return paths, we obtain the loop self
inductance.

Next, interactions between all pairs of twdldrent loops must be accounted for. In general,
this task requires a cost which is quadratic with the total number of interacting wires.

We present a method that reduces dramatically the complexity of this problem. With respect
to the general recipe mentioned above, the main advantage is that the cost becomes linear. The
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key aspect is to simplify the interaction between two loops, by treating each one as an ideal

magnetic dipole located at th&ective center of the loop. We have denominated this the dipole

approximation, and shown itsfciency for rapid computations of long distance interactions.
Specifically, the chapters relating to this method are:

e Chapter 2: We introduce the dipole approximation for the problem of parasitics extrac-
tion; this work is an extended version of the paper presented in [27] and published in [28]
as a journal version; the routines explained in the text are included in the Calibre xL
engine, and have been filed for a patent application [29].

e Chapter 3: The dipole approximation is extended in order to include mutual inductance
between two intentional inductors; this work has been published in [30] and filed for
another patent application [31].

1.4.2 High frequency modeling of sources

For very high frequencies, currents and fields inside a conductor are not uniform. It is well-
known that currents distribute themselves near the surface of the conductors, according to an
exponential decay within a typical scalethe skin depth for the conductor. This parameter
decreases with growing frequenayot f~/2): for copper, it is varies from 66at 100MHzto

0.21u at 100GHz

In order to describe this non-uniformity of current distributions, the straightforward ap-
proach is to discretize the conductor into small elements, such that current can be considered
uniform for each one of them. The increased cost of this procedure is self-evident, and makes
high-frequency extraction a gruesome task. For example, an MQS solver like FastHenry must
decompose each wire along its cross-section, including a number of piecewise-constant fila-
ments. The increased cost due to this reality has triggered a large amount of research into
developing fast solver techniques, like fast multipole expansions (in FastHenry, FastCap and
Fastimp, LargeCom), pFFT precorrection (in Fastimp and FastMaxwell), among others.

We adhere to a completelyftirent strategy: the one presented in [32], with current distri-
butions described in terms of a special type of functions, named “conduction modes”, which are
eigenfunctions of the éfierential equation satisfied by currents inside the conductors. Model-
ing in terms of these specific functions provides a compact representation at the same level of
accuracy of piecewise constant models.

Our contributions in this domain are organized as follows:

e Chapter 4. We present the formal framework for this problem, as well as the existing
conduction modes method, which is restricted to extractioRloparameters in the QS
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limit; then we introduce afRLC version of conduction modes, valid for structures sim-
ilar to transmission lines, and validate with exemplary configurations; this chapter is an
extended version of the work presented at [33].

e Chapter 5: We analyze, propose, and implement a numerical strategy for handling the
major complication for th&kL/MQS conduction modes formalism, which resides in the
computation of its matrix elements; we are able to translate savings of a factor 20 in size,
as reported in [32], into savings of two orders of magnitude in runtime with respect to
similar-accuracy filament based solutions; a short version of this chapter has been pub-
lished at [34].

e Chapter 6: This chapter is devoted to some of the issues that must be addressed in order
to convert the conduction modes formalism into a complete dicient fullwvave field
solver; these tasks include: adapting the numerical methods frorRlthte the RLC
domain; enlarging the sets of basis functions and geometries accepted.

1.4.3 Broadband representation with simple circuits

Finally, we concentrate on a problem related to the formatter part of the extraction flow (Fig.1.1):
representing extracted circuits valid over a wide frequency range. In particular, we are concerned
with capturing the variations of resistance and inductance with frequency. More specifically, we
want to do so using only constant circuit components.

Within the frequency domairRLC parameters are extracted on a frequency-by-frequency
basis. In some particular cases, an extraction at a single frequencificsest for obtaining
bounds on noise or delay. In general, however, it is necessary to construct circuits exhibiting the
correct behavior of parameters over a wide frequency range.

Since this task is done at the formatting stage, the particular choice of representation is
linked to the subsequent process in the flow, which is Model Order Reduction (MOR). In the
case of interconnects, we are dealing with reduction of passive linear circuits.

There exist basically two lines of approach for this type of MOR: those that compute a math-
ematically simplified equivalent version of the response of the circuit; and those that produce
physically realizable circuit of smaller dimension.

For the first type of reducers, the starting point work is the Asymptotic Waveform Evaluation
(AWE) method [35] in 1990, in which moments of the response are fitted to rational functions.
This set the pace for a series of refinements, such as tlevRatdanczos [36] and PRIMA [37].
These methods all fall within the category of Krylov projection methods, which constitute a
large area of ongoing research. The main challenge lies in avoiding possible loss of passivity
present in the original AWE formulation.



22 Chapter 1. General Introduction

Calibre has incorporated a technique that belongs to the second type of reducers. The
TICER/BMR [38, 39] method relies on elimination of circuit nodes based on local consider-
ations of time-constants. Without going into details, which is not in the scope of this Thesis, we
refer to [40] for a thorough comparative analysis of this type of method with respect to the ones
mentioned in the previous paragraph.

For broadband representation, TIGBRIR permits the reduction of several types of circuits
including Foster pairs. These are simple blocks consisting of one resistance in parallel with
one inductance. Each of these blocks is able to reproduce one relevant frequency decreasing-
L/increasingR transition. From a physical point of view, these transitions have two origins: the
choice of return paths for the current flowing on any given signal wire (proxinfiigc; and the
non-uniform current crowding of currents on the cross-sectional dimensions of any wire (skin
effect).

We organize our work in this area as follows:

e Chapter 7. We characterize Foster pairs and implement a solution to the case with one
single transition; this method is incorporated into the Calibre flow as of 2005 and is pro-
tected by a patent application [41].

e Chapter 8: We consider the case of Foster pairs for representing multiple transitions;
first we develop and analyze a strategy for two-pair serial Foster circuits; we conclude by
briefly discussing more general situations.
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Efficient evaluation of mutual
Inductance
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Un traitement amelioré pour
I'inductance mutuelle aux longues
distances

Résune en francais

Dans ce chapitre nous développons I'approximation dipolaire pour I'extraction de I'inductance
mutuelle. Lorsqu’elle est appliqué dans des approches d’inductance de boucle, nous com-
mencons le chapitre par une discussion étendue sur les avantages de ceux-ci par rapport aux
approches d’inductance partielle (section 2.1). Cette discussion mene directement au sujet le
plus délicat pour notre approche, qui est la sélection des chemins de retour pour chaque sig-
nal ; autrement dit, la détermination des boucles dans le systeme (section 2.2). En estimant
les inductances propres de ces boucles, nous obtenions aussi ggsiesds permettant le
développement des formules de ndtre approximation dipolaire (section 2.3). Nous exposons
des exemples d’application pour des configurations typiques dans le domaine de I'extraction
des parasitiques, montrant une précision acceptable pour des distances supérieures a un seuil
qui est du méme ordre que les tailles des boucles (section 2.4). Finalement, nous concluons
par une discussion sur les applications et les futures extensions (section 2.5). Le travail discuté
en ce chapitre a été présenté a I'“International Symposium on Physical Design” (ISPD’04)
[27], et développé dans un article pour les “Transactions on CAD” de I'lEEE (TCAD) [28];
c’est également le contenu d’'une demande de brevet [29]. Ici, nous présentons une version
legerement modifiée du papier de TCAD.
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Chapter 2

An Improved Long Distance
Treatment for Mutual Inductance

Extraction of electromagnetic parameters has two components: self and mutual terms. The
former correspond toffects of sources upon the same component on which they are located;
the latter describeffects of sources on other circuit components. Self terms must always deal
with zero and short distances; thdfdiulty in computing them is generally associated with
this observation. On the other hand, mutual terms are comparatively simpler to estimate. The
complexity of their calculation lies in the large number of terms, which is quadratic with the
number of wires.

The first problem we will tackle is precisely that of developing a fast yet accurate method for
computing mutual inductance. A fundamental decision must be taken from the starting point:
what are the components mentioned in the first phrase above? Answering this question leads to
the discussion between partial and loop inductance methods.

Partial inductance, or PEEC (Partial Element Equivalent Circuit), is a term that was intro-
duced in the world of printed circuit boards in the early 70’s [20], after being widely used in
applications to power line transmission from the beginning of the 20th century [42]. The main
feature of this method is that it decomposes the wires in the circuit into straight segments. In
other words: “inductance” is computed for pieces of wires, instead of wire loops.

It is well understood that inductance is a magnitude whose definition is valid only for closed
current loops; hence the quotation marks indicating this abuse of nomenclature in partial treat-
ments. As a matter of fact, the main result in [20] is the equivalence between PEEC and the
physically correct description of currents in terms of loops. The reason PEEC was introduced
in the first place is that it simplifies one part of the task on computing inductance, namely the
identification of the return paths for any given wire segment.

Loop inductance methods, on the other hand, do not enjoy this benefit. The most critical step

27
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in a loop inductance scheme is precisely that of determining which are the loops. Nevertheless,
this task is tractable, and has been already implemented in various applications [22, 24,43]. By
contrast, the drawbacks of the PEEC approach are of a fundamental nature. We summarize them
in Table 2.1; a thorough explanation of all these points is contained in Section 2.1.

Table 2.1: Summary of comparative advantages and disadvantages of Loop inductance methods
with respect to Partial inductance ones.

Partial inductance Loop inductance

Correct physical description;
Advantages Straightforward implementation;  Sparsifiable matrix;
Reduced circuit size;

Unphysical behavior;
Disadvantages Dense matrix; Predetermination of return paths;
Workload pushed downstream;

Once the adoption of a loop treatment has been decided upon, extraction consists in com-
puting first the self inductance for the circuit loops, and then the mutual inductance between all
pairs of elements. A general strategy has been exposed in [23], implemented inside Mentor’s
Calibre tools [22] and and filed for a patent application [41].

Although the use of the loop formalism introduces important savings while preserving a
correct physical description, the loop inductance matrix still requires a large (quadratic) number
of mutual inductance couplings. Therefore, it is desirable to have a technique that can speed up
the computation of a large number of these terms.

Our contribution in this domain is the derivation of the dipole approximation, whereby we
keep only the most important contributions when computing mutual inductances at large dis-
tances.

Ranges of validity of the dipole approximation are determined by the length scales of the
problem. We show that, for distances that are a factor 6 or greater than the internal separation
of loops, the errors of the dipole approximation are low.

Computational gains are an order of magnitude improvement as compared to standard tech-
niques. Apart from these gains, for parasitic extraction, the dipole approximation allows to
visualize certain rules regarding the magnitude of inductance. These rules dictate when it is safe
to neglect altogether some types of interactions, thus resulting in memory, as well as perfor-
mance, savings.

The work discussed in this chapter was presented at ISPD’04 [27], and extended into a
journal version for the IEEE Transactions on Computer Aided Design (TCAD) [28]; it is also
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the content of a patent application [29]. Here, we present a slightly modified version of the
TCAD paper, organized as follows:

e Section 2.1 is dedicated to the detailed analysis of the entries in Table 2.1 concerning the
relative advantages of loop treatments over partial ones.

¢ In Section 2.2, we show how to overcome the maifiailty in loop treatments, hamely
the determination of return paths; an important by-product is Esq.(2.13), definiffg coe
cients to be used downstream.

e These cofficients are used in developing the Dipole Approximation, for quick evaluation
of mutual inductance at long distance, in Section 2.3.

e Results and comparisons, as well as the aforementioned rules are found in Section 2.4;
here, we also include an analysis of the performance of our approximations.

e Finally, in Section 2.5 we conclude with a discussion on the opportunities and possible
future developments in this area.

2.1 Partial vs Loop Inductance treatments

To estimate the electromagnetitexts on a multi-conductor system of currehtsinning along
loopsC; we consider the energy associated with a set of currents

PR

Wi = 1iljM;j (2.1)

w

whereM;; is thei, j element of the inductance matrix. It can be computed from first principles,
in the Magneto-Quasi-Static (MQS) domain using:

lIli—)j
li

- %!Ba).dg’.
gy

Ci Cj Conductors’
cross-sections

Mij =

where;_,j is the magnetic flux due to the magnetic induction fiBfd, S; is the surface
bounded by;, generated by the time varying currénacting onl;. In (2.2) we are invoking the
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MQS regime, whereby the currertsare uniform over the transverse cross-sections permitting
us to equalize the last two expressions. The sum in (2.1) contains as diagonal elémeig
the self inductance of loop

The integrals are evaluated over closed loops, in physical systems, and we then speak about
loop inductance. The previous equations can be extended to segments [42], giving rise to the
PEEC formalism, and we then speak about partial inductance. On this last formalism, conductor
segments are considered to form part of loops closing at infinity.

2.1.1 Long distance behavior

The long distance behavior of the partial inductance marielements is non-physical. In fact,
for large wire separation its per unit length matrix elements ; behave as

M;; (r)
L

mij(r) = ~ —log(r) (2.3)

whereL is their common length.
The logarithmic decrease with distance manifests itself in two dimensi@hak2vell as in
three dimensional B problems. The only diierence between the two cases is the appearance
of a constant cdéicient log(d.) in 3D, which is absent in R. Using Grover’s expressions, the
ratio of M;; for a filamenti and its neighboj to the corresponding diagonal tertfy has the
following limit at large distances (large whiler < L):
M 1- log(r /w)

£ 7 log(2h) (2:4)
with w, the wire cross-section.

As aresult of (2.3) and (2.4)1 is dense, and not diagonally dominant. A strictly diagonally
dominant real matrix is one in which the sum of the absolute valuefediagonal elements
for each row is strictly smaller than the absolute value of the diagonal counterparts. For a
symmetric matrix with diagonal elements strictly positive, diagonal dominance iffiaienot
condition for having real and strictly positive eigenvalues. Moreover, neglecting sfiiall o
diagonal terms in a matrix of this type does not change the sign of its eigenvalues. Matrices of
this kind can be sparsified by neglecting smdltdiagonal terms, without resulting in possible
passivity violation. Positive definite matrices that do not satisfy the requirement of being strictly
diagonally dominant, on the other hand, can display unwanted instabilities of the following
kind: setting to zero seemingly negligibléf-@iagonal contributions can alter the sign of the
eigenvalues oM, a violation of passivity for linear systems [44], [45]. The system designer can
be left with unwanted choices when working with particularly in the PEEC method: either
sparsify and live with passivity violations or live with very large matrices and rapidly increase
the complexity of downstream circuit simulation.
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To investigate the primary source of the denseness, the following statement is useful:

Proposition 1 The asymptotic behavi@2.3)results from the following large distance behavior
of B :

B(r) ~ 1/r? In three dimensions

B(r) ~ 1/r In two dimensions (2.5)

The above proposition is verified by directly substituting (2.5) into (2.2), counting powers
in the integrand to estimate the asymptotic behavior, and (2.3) results.
Proposition 1 is derived from :

Proposition 2 The asymptotic behaviqR.5) results from the presence of unbounded current
distributions.

Consider first the R case of an infinitely long filament; applying Ampere’s law

Sgs-dl = ol (2.6)
and extractind®
|
Br) = 5
mr) = %der:’Z‘—ilog(viv) @2.7)

which gives precisely (2.3).
In 3D, consider the vector potential

A(r) — @ ’J(r/) 37

\%
and carry out, as in [46], a multi-pole expansion of Green’s functign1r’| = 1/|r| +r -
r'/Ir|® + ..., giving :
1 r
A(r) = lﬁ[mf\]i(r’)dg’r%W-fr’Ji(r’)d3r’+...] (2.9)
\% \%

For B(r) ~ 1/r? as demanded by (2.3), the first term in (2.9) must fEegint from zero.
It is on the other hand well known that for any bounded current distribution in the quasi-static
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regimedp/d t = 0, with p the charge density, the integral in the first term of (2.9) vanishes
(the volumeV of integration includes the entire current distribution). Thus, under quasi-static
conditions and for bounded current distributioAsnust decrease for large distances at least as
rapidly as r2. UsingB = V x A we conclude that for bounded physical systems:

B~ 1/r5, (2.10)

Equations (2.3) and (2.5) are invalid amddecays with distance as a power law. The PEEC
method violates the asymptotic behavior of Maxwell's equations in the quasistatic regime.
Dropping the assumption of bounded current distributions is tantamount to the presence of
monopoles in the theory, whereas dropping the quasi static assumption requires a completely
new approach. The correct physical behavior of electromagnetic theory, when used in conjunc-
tion with PEEC is recovered downstream during the circuit simulation phase of the flow. During
this phase circuits are necessarily closed by virtue of the Kifdlmtage Laws (KVL). Large
cancellations involving dierent length scales occur, mixing short distance with long distance,
an inherent result of the method. The correct theory is recovered, but the price is the size of the
mutual inductance matrix needed for timing simulation. Issues related to capacity and numerical
accuracy are unavoidable.

The previous are rigorous results in Electromagnetism. A loop treatment of MQS must
necessarily give rise to a significantly more localized magnetic influence than what would be
resulting from the PEEC approach.

2.1.2 Sparsification of the partial inductance matrix

There has been widespread work to improve on the PEEC formalism ([21,47-49] and references
therein). The underlying goal is to sparsify the deisanatrix while preserving its positive
definiteness.

The behavior (2.5) of magnetic fields within a partial inductance treatment (magnetic field
produced by a magnetic monopole) is formally equivalent to that of the electrical field produced
by a point charge.

This similarity has inspired some researchers to explore the notion of inverse methods [50,
51]. In few words, these consist of first inverting locally thematrix, and then sparsifying
the K = M~! matrix. The analogy clearly extends @ and K which play similar roles in
the electrostatic and magneto-static problems, respecti@@ly (CAV, jwl = KAV). This
procedure introduces a new circuit elemdft,whose behavior is included within simulators
[50,52].

However, there is an importantftBrence between the two cases: for the electrostatic case,
the C matrix, in the Maxwell sense, is strictly diagonal dominant by construction, and thus any
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truncation preserves positive definiteness; on the other hand the jury is still out regarding the
diagonal dominance df [48]. In [53], theK matrix is shown to be sparse, positive definite and
symmetric, within a circuit-aware inverse extraction method that separates wires having strong
inductive dfects from those do not.

At variance withC, the matrixK is not physical, and it is not obvious how to extend the
concept of shielding, present in the electrostatic case. Shielding of electrical fields by conduc-
tors cause th& field to be localized in a dense wire environment, makingGhmatrix sparse.

For MQS there is no physically equivalent shielding, currents andBtfield may penetrate

the conductors. Nonetheless, it is empirically verified tkas sparse, yielding a considerable
amount of strength to partial inductance followed by inverse methods [47,51]. A loop induc-
tance method, on the other hand, has inherent localization properties deriving from (2.10), as
we shall derive from (2.28), while preserving the correct physical theory.

2.1.3 On positive definiteness of the loop inductance matrix

The following arguments do not constitute a proof, but clearly support the claim that the loop
inductance matrixM is diagonal dominant for configurations where there are no shared re-
turn paths. Let us start by treating a seemingly worst case scenario, configurations with values
of the diagonal elements that are as small as possible while the corresponding values of the
off-diagonal elements are as large as possible. We take as representative example of this hypo-
thetical worst case scenario, the configuration of Fig.2.1a.

We take the return of signah to beg;, while for signals,, it is go. To minimize loop
self inductance of one signal wire, the corresponding ground return paths need to be as close
as possible to the signal wire. Furthermore, to maximize mutual loop inductance between two
signals is necessary to minimize the distance between the two circuits. We take values from
typical 90 nm technology. The minimum value of inter-wire separatiosyjs = 0.2 um, for
representative wires of low resistance the wire width is alost1 um. Havingd = s = Syin
and equal wire widths in Fig. 2.1a results in the following inductance per unit length matrix:

~ ( 296 007

nH/cm.
0.07 296

The ratios of self to mutual inductance &= 42. The above matrix is diagonal dominant.
To violate the condition of diagonal dominance, we need at asirst case circuits separated
by smin, an unfeasible configuration. Consider now a small increase in the separation between
the two initial circuits by Ium. Thené increases to 132. This fast increase reflects the power
law nature of the loop inductance variation with distance, a result we shall derive in (2.28).

For feasible wire densities, the self inductance will be larger than the sum of the magnitudes
of the mutual inductances with the other circuits, i.e. the mawixvill be strictly diagonal
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Figure 2.1: Representative worst case scenarios for diagonal-dominance of the loop inductance
matrix: (a):no shared grounds; (b): with shared grounds.

dominant.

When diterent signal wires share return grounds, the above argument does not hold. Take
for instance a configuration where 4 signal wires share one ground wire as return path (Fig.2.1b).

Using the same&y,in andw as in the previous example results in & 4 matrix

78 39 16 25
39 49 1 16

M = nH/cm.
16 1 49 39

25 16 39 78

This matrixM, calculated from Grover’s expressions, is positive definite but not diagonally
dominant.

We thus conclude that, in the absence of shared ground return paths, the inductance matrix
will be diagonal dominant in the loop formalism. This is not the case in the partial inductance
formalism, as can be immediately concluded from (2.4).

Our concern is the treatment of the long distance behavior of the inductance matrix, that is
to say the contributions to the inductance matrix arising from signal wire segments which are
separated by long distances. These wire configurations do not lead to shared ground configura-
tions.

The general solution to the mutual inductance problem, one that incorporates short and long
distance behavior, demands attention to this problem, since the presence of shared ground con-
figurations is unavoidable albeit restricted in scope. We refer to [23] (Chapter 3) for a treatment
of the general case. Therein, it is shown that the mutual inductance in the presence of shared
grounds involves a term that is proportional to partial self inductance of the shared wires. These
are terms much larger than mutual ones, explaining the origin of the lack of diagonal dominance
in the matrix above.
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Figure 2.2: (a): Example of an IC configuration for comparison of loop and partial methods:
the width of the signals S1 and S2 jg, and width of grounds GND1-4 ig5wires in black are

in a layer of thickness;d, and gray are 0.7%h total length is Inm (b): Comparative results of
simulation for the far-end voltages for configuration in (a).

2.1.4 Size of loop and partial inductance matrices

In order to compare the sizes associated to loop and partial inductance treatments, we consider
a representative IC example shown Fig. 2.2a. It consists of two signal lines surrounded by 4
ground lines. We construct twoftirent netlists: the first one, extracting thenatrix with our

loop inductance engine [22], and the second one with PEEC, using FastHenry [15]. Capacitance
is extracted with FastCap [14]. For both cases, the presence of devices is represented by a
resistor ofR; = 50Q at nodes S1 and S2, and a capacitor to grdbipgh = 1fF at S1lout and

S2 out. The sizes of these netlists are as follows:

resistors| inductors capacitors impedance Total  Average
couplings run time (s)
PEEC 70 70 118 2415 2673 10.2
Loop 26 26 34 128 214 1.9

Table 2.2: Number of RLC elements in the PEEC and loop netlists.

In this table, we have also included, on the last column, the runtime for the simulation of
each netlist with Eldo [52], Mentor’s circuit simulator. The simulations represent a step 1 \Volt
excitation on S1 at time= 0, while leaving line S2 grounded at both extremes. The comparative
results of the two simulations, for the far-end voltages, are shown in Fig. 2.2b.

Iwe acknowledge our colleague Rafael Escovar for this example, included in his Phd. Thesis [23].
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Without any appreciable fierence in the output, the gain is a factor of 5 in computation
time, and more than 10-fold in terms of space. Thigedénce between the two factors is due
to the fact that the cost of simulation is governed by both the number of nodes as well as the
number of elements. While the PEEC netlist has more than 10 times the number of elements of
the loop one, the nodes (70 vs. 26) are multiplied only by a factor lower than 3.

2.2 Return path in the loop inductance formulation

Partial inductance methods do not requingriori identification of which are return paths for the
currents along any given signal wires. The contrary happens in the loop inductance formulation.
We proceed to show that large uncertainties related to the problem of return path selection do
exist, but are limited to low frequencies, where in fact inductarfii@ets are unimportant.

For this purpose, we introduce the concepbahdle[28], as the set of parallel wires of
equal length consisting of one signal plus all its possible return paths. We consider a bundle as a
set of closed loops with one common segment (namely the signal wire), neglecting the absence
of the small segments in the orthogonal direction needed to close the loops.

Bundles are generated by simple fracturing of the annotated layout database, in the following
fashion: for each signal wire, we decompose its path into the union of a set of non-overlapping
segments whose ends are identified by discontinuities (changes of layer or direction) either in
the signal path or in the path of any of its return wire candidate neighbors. For each segment,
there is a set of ground wire segments of the same length, that form part of the bundle. Bundles
have an orientation. We have, for Manhattan layaandy oriented bundles. Glierent bundles
of the same path of a net will clearly be offdirent length. The process of selection of ground
return paths is done independently for each bundle.

When two bundles corresponding tdfdient signals share one or multiple ground segments
as shared return path, we speak abodegenerate configurationThe concept of degenerate
configuration for shared ground is applicable at the bundle level only. This means, for example,
that two diferent signal segments of the same wire belong fi@int bundle configurations.
Two bundles that are not degenerate are treated independently from one another. In Section I1.C,
when we speak about shared ground configurations, we refer exclusively to those arising from
degenerate configurations. These constitute a very limited subset of all possible shared ground
configurations. The set of criteria for selecting which ground wire segments are chosen during
the fracturing process of bundle formation is frequency dependent, path dependent, segment
dependent, and is explained below.

Consider nowR_qop and L oop, i.€. the resistance and self inductance of a bundle. This is
the diagonal elements of the impedance matrix,
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Z(w) = R+ joL (2.11)

The return paths, at any frequency, are the ones that minirdizes low w, this corre-
sponds to resistand@minimization, while for largew it demands inductancg€ minimization.
We can classify four distinct frequency regimes, according to the comparative contributions of
resistance-per-unit-lengthand inductance-per-unit-lengthsee Table 2.3. The boundaries be-
tween regimes is determined by technology. In an order-of-magnitude estintaisotlictated
by the typical cross-section ared as well as the material properties~ (cwh)™1; whereas
inductance-per-unit is typicallly~ uolog(r/w) ~ uo. Therefore, these conditions can be stated
in terms of the parameteér = \/m. These regimes determine the way return paths are
selected, a subject that we now begin to detail.

Table 2.3: Classification of frequency regimes according to return path selection.

Regime r, | Technology| Return path criteria
condition| condition

1. Low frequencies r> ol wh < 6% | Many, wide return paths

2. Intermediate frequencies r > wl wh < 62 R-L trade-df

3. High frequencies r <ol wh ~ §2 Only 2 or 3 nearest wires
4. Very high frequencies r < ol wh < 62 Skin-efect current crowding

Loop impedance is computed with a configuration consisting of a signal wire and its (not
necessarily coplanar) return paths. We are interested in calculating the clirrantsing along
return pathi when a unit amplitude voltage source is connected between the signal and the
return wires of the bundle (see Fig.2.3). This can be done with elementary circuit analysis in the
frequency domain. We have

AV =ZI (2.12)
where
1 - Vout Isignal
-V, I n
AV = .OUt , = ) ,suchthat) =0
: i=0
—Vout In

These current$ give the (complex) weight of each return path within each bundle. Nor-
malized by the curreritjgna, their sum is unity. We define the values
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Figure 2.3: Circuit equivalence of a bundle witlreturn paths (for simplicity, mutual induc-
tances between wires are depicted as dashed lines without label).

4= — (2.13)

|9gnm

Solving (2.12) can be computationally expensive when there is a large number of return
paths in a bundle, since it involves computing the inverse ohanl() x (n + 1) matrix. A large
number of return paths are only needed in Regime 1, in which non-negligible currents may be
present on far away, low resistive return paths. But in this regime, we follow [54], neglecting
the inductance component in the calculation;pfind then computing the inductance based on
these currents. Thus for Regimed;, « R‘l is a good approximation, which avoids solving
(2.12).

For a signal wire in regime 1, the dominant teRyyp, is minimized by including all parallel
ground wires ordered by their resistance. The distance between signal and ground(s) plays no
role. Far away return wires contribute to make the overall inductance large. The impact on
is small, sincav is small in regime 1. This balance explains the large possible spread of return
path choices. Given two signal wires in regime 1 the chances of them to have degenerate con-
figurations is very high. For a signal in regime 2, where both contributions are of the same order
of magnitude, while dominates, the choice of return path is a balance in between minimizing
Ry and minimizingL and therefore the length of the overall path, aitle separation between
signal and ground wires. A good compromise is obtained by including as return path wires
organized according to resistance, up to a maximum distance that is problem dependent.

For signals in regime 3 the set @f computed in (2.13) with appreciable contributions will
be that arising from close-by neighbors, whose contribution to the loop inductance is lowest.
Mutual inductance is particularly important in noise calculations for signals in regime 3. The
choice of one or at most two closest neighbors is a good compromise. The chances of finding
degenerate bundles for signals which are widely separated in this regime is negligible.
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Finally for signals in regime 4, resistance does not matter, only close neighbor ground or
signal can act as a valid return path. The number of close near neighbors is small, but these must
be discretized into filaments in order to account for skile@ current crowding (Part B of this
thesis deals with this problem). The considerations of regime 3 hold, with the proviso walues
in (2.13) refer to these filaments.

From this discussion we conclude, that except for signals in region 1, where inductance
does not matter, it is relatively simple to select return path configurations from a layout. The use
of the physically rigorous method of loop inductance becomes for these cases reasonable and
expedient.

2.3 Mutual inductance and the Dipole Approximation

We now develop a method to compute theitual inductance between bundlegpM.e. the
off-diagonal terms in th& matrix. The aim is to arrive at an expression analogous to (2.1), but
for bundles,

Map = ——
|a|b

with currentsl, (resp. Ip), running along the signal wires of bundiéo). For this purpose we
begin precisely from (2.1), with subind&y) sweeping all wires in bundla(b).

Following the steps laid out in the previous section, the curtgig divided among the
return paths according to the d¢heientsa,

lj = apjlp with apo = 1, Z apj=-1 (2.14)
=1

ConsequentlyV,y, in (2.1) can be factored as

lb
Wap = 2 ; @b, Passi (2.15)

HereWY,_.j is the magnetic flux of all wires in bundiethrough the elementary surfa&g
of bundleb (see Fig.2.4), which is bounded by the circuit la#fp; formed by the signal wire
plus thej-th return wire.

These fluxes are computed using Stokes’ theorem,
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Figure 2.4: Schematic view of the dipole approximation for calculating the interaction between
two bundles.

Yo = f f (VxA®).ds = 95 A® . dg (2.16)
S

JS;j
with A@ the vector potential due to all wires in bundle
To split the closed curvilinear integral in (2.16) into two rectilinear integrals, one over the
signal, the second over the return wirghe contribution from this last one must be multiplied

by -1 (since the closed integral is circulated in one definite sense). Thus, summing up all the
terms, expression (2.15) becomes

|
Wip = %’Zag’j f AB . dg (2.17)
j=0 C|
whereC; is the conductof > 0, anday, ; = —apj ¥j > 1.

Next we take into account the magnetic dipole approximation, whereby we consider the
field due to all the circuits in bundi@ as the one generated by a representative dipole moment
Pa [46].

To compute the value @i, we first consider the dipole of a configuration of two parallel
wires lying on thex — y plane, one being the return path of the other (Fig.2.5a). In this simple
case,

Pa = 20 [ xan)dr
8n

- B e (2.18)
8r
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Figure 2.5: Calculation of dipole moment for a bundle: (a) simple case with one unique return
path; (b) bundle with several return paths; the resultinga weighted average of all thpg.

wherelL is the common length of the two wires asds the separation between them, (is
proportional to the area spanned by the circuit and points in the direcfierpéndicular to the
plane containing them.)

For bundles having multiple return paths (all oriented alongytheis, see Fig.2.5b), the
integral in the first line of (2.18) is decomposed into several terms like the one in the second
line. Since each of those terms is proportional to the current it carries, they are weighed again
by geometrical ca@icientsa,;, | € aasin (2.15).

Therefore the expression for the magnetic dipole moment becomes,

a= £l ). aai(§x1) (2.19)
i>0

wherer; is the position of return patihwith respect to the signal wire.

Since the total current in a bundle adds up to zero, the value obtained by (2.19) is indepen-
dent of where the origin of coordinates is located. We choose this origin as the position of the
“center of mass” of bundla,

lema = —Zaa,lrl (2.20)
i>1

i.e., as the weighted average of the position of all the constituent moments of the form (2.18).
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The expression for the vector potentfaht positionr due to a dipole, at the origin is

Pa XT

(@ =
A = 3

(2.21)

The 1/r? behavior ofA corresponds to the/i® behavior forB as demanded by (2.10).

Replacing expression (2.21) into (2.17), we arrive at a closed expression of the mutual in-
ductance between bundl¥k,y,, within the dipole approximation,

Map = — Zabjf(paxr) de, (2.22)

3950

In general, the resultinyl is complex, with the real part of (2.22) contributing to the mutual
inductance. The imaginary part M modifies the resistance, iffectively negligible in all the
numerical examples we encountered.

Inspection of (2.19) and (2.22) shows thmtis proportional tol,; hence,My, does not
depend on the currents, but is solely a geometri¢taient, as should be expected. For the sake
of notation, from here on, we ug§g to stand fopa/I,.

As mentioned before, all conductors in a bundle run along the same directiopn, $hus
pa is perpendicular to all the wires. We have the freedom to choose dhes parallel to the
dipole momenp,, and (2.22) becomes

Y1,j

dy

Map = pazab,jxjfm (2.23)
Yo,j

j=0

whereyg j andy, j are the extremes of conduct@rin a coordinate system with origin at
rema. EXpression (2.23) isffortlessly integrated,

Yi=Yij

(2.24)

. @ XjYj
M
0 =Pa) (0@ +2)02 +y2 + 2)112
=0 Yi=Yo,j

Thus mutual inductance between two bundles is reduced to calculating the dipole moment

and the position of the first bundle via (2.19) and (2.20), and then evaluating the simple expres-
sion (2.24) for each of the wires of the second bundle.

An important remark concerning (2.24) is that it does not strictly comply with the expected
symmetryMg, = Mpa. This is due to the fact that our treatment considers the aggressor as an
ideal point-like dipole, whereas this is not assumed for the victim. In the next section we will
show with numerical examples that in practice this asymmetry is seldom significant. In practice
we enforce the expected physical symmetry by identifyvhavith
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Figure 2.6: Simple configuration for the sake of comparison of (2.24) with Grover's expressions
(a) transverse coupling; (b) forward coupling.

~ Map + M
ab = %‘ (2.25)
Similarly, we can construct the expression for the interaction between wires lying along the
X-axis.

In order to compare with classical Grover expressions, (2.24) would replace the one arising
from the algebraic sum of filament-to-filament interactions [55],

HoL
Mggovef = EZZ“”“‘”M” (2.26)
i>0 j>0
2
L L2 Tij I‘ij
where M;; = log| — 1+ = |+ —-\1+—
ij g[rij + + rﬁ]+ 3 + 2

For example, in a very simple configuration like the one shown in Fig. 2.6a it is straight-

forward to see that both expressions (2.24) and (2.26).fors> s1, 5, give exactly the same
limit, namely

Moy = sy, 2t 2l 2.27
ab> 7 -S1%2L1 zXZ(XZJrL%)g/Z (2.27)
As anticipated in section 2.1, once all terms are accounted for, in the loop inductance treat-
ment, the asymptotic behavior bf is quite unlike that of (2.3). In fact, (2.27) shows two types
of regimes for transverse coupling (we take= s, = sandL; = L, = L for simplicity),

Mo 1
Mo~ | 2 § = for x> L (3d case) (2.28)
fgrx_z'- ~ riz for x < L (2d case)

In a case of forward coupling, like the one shown in Fig.2.6b, the comparison with the
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Grover expressions, now in the linig, L, Ay > s, = , = s, gives

Mdipoles ~ Ho Ssz(Ay +L)
ab m 2(Ay + L/2)2(Ay + 3L/2)2
2
Mggover . Ho SL (2.29)

7 2Ay(Ay + 2L)(Ay + L)

where we have simplified the expressions by seting= s, = sandL; = L, = L. Both
expressions above have the same long distance asymptotic behavior,

. 2
pdipoles #OSZL (1_ 3¢ — E'Ez)

ab N 2
grover #OSZI—2 o E 2
M2, 271'A§ 1-3e > € (2.30)

fore = L/Ay.

Although both expressions show essentially the same behavior, they have been obtained
through significantly dferent proces::,ewlgibpo'eS are two direct evaluations of (2.24), whereas
M3 result from a subtle cancellation of eight expressions like (2.26) [55].

2.4 Results

In this section, we display some numerical results that verify the validity of the dipole approxi-
mation, its applicability, and its limitations.

In the first subsection, we analyze some simple extraction rules that can be established by
virtue of the dipole approximation. These rules allow for quick and very practical determination
of which geometrical configurations can be automatically neglected when computing mutual
inductance.

Next, we consider the question of the numerical accuracy of the dipole method. We do this
by comparison of (2.24) with the results obtained with the field solver FastHenry [15].

It is self evident that calculating the mutual inductance using the dipole approximation is
considerably less expensive than FastHenry. The simulations with FastHenry were carried out
at the single frequency of 10 GHz. To assure good convergence with FastHenry, we empirically
found that &5 filament partitioning sfiices. In most casesx3 was accurate enough.

The dipole approximation is often computationally mofécgent than the direct use of
Grover’s expressions (2.26). An analysis of the performance is included at the end of the present
section.
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A good criterion to be used in considering the errors introduced in a mutual inductance
extraction method is the comparison to the self inductances of the two buhgllés, To this
effect, we choose to plot the dimensionless magnitueeMap/ VLaLp, whose absolute value
is smaller than 1.

Observe that is scale invariant, in the following sense: if all dimensions in a given con-
figuration are multiplied by a factot, thenZ remains unchanged, except for minor logarithmic
corrections to the self inductanéesThis statement allows us to generalize the results in this
section to scaled-down configurations.

2.4.1 Dipole selection rules

There is a number of situation-dependent rules that are exact in the dipole approximation and
constitute reasonable approximations in general. They are of importance in the action of pruning
geometrical configurations.

1. For perfectly symmetric bundles, the mutual inductance is negligible. An example of this
kind of configuration is given by a sandwich configuration. (i.e., a perfectly symmetric
coplanar ground-signal-ground bundle, see Fig.2.7). It has zero dipole moment, meaning
that in the dipole approximation its signal voltage is insensitive to external noise. Veri-
fication of this rule with FastHenry, calculating the mutual inductance between two such
structures, gives values gtbelow 10°° for distances between bundles as small as the in-
ternal separations of the bundles. Sandwich configurations are good candidates for clock
routing. This result impacts favorably on the stability of clock routing using symmetrical
ground signal ground configurations [56].

2. Given two bundles with parallel dipole moments (e.g. Fig.2.8), the mutual inductance
between them is minimized when their relative position forms a certain angle with the
common direction of their dipole moments; the value of this angle goes frérwvén
the bundles are much longer than the transverse dimensiong3bwhen this is not the
case. This result derives from the following reason: since the two bundles have aligned
dipole moments, then the flux of magnetic field through the second bundle due to the first
one is, in first approximation, proportional to the perpendicular field of the first one (it is
helpful to imagine a bundle as a coil perpendicular to its dipole moment). Thus we should
analyze where the perpendicular component for the field of a dipole vanishes. For the case
of long bundles, in which a 2D description is adequate, the dipole moment vahihes

2In mathematical terms;, is homogeneous of degree 0, whig,;, is homogeneous of degree 1, dngandL,,
are “nearly” homogeneous of degree 1.
Sthis can be deduced from Taylor expansion of (2.24) and (2.18) under the conditieng, z < L wheres
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Figure 2.7: Dipole Selection Rule 1: Completely symmetric configuration, in which the return
currents are balanced with respect to the signal line, having a zero net dipole moment.

45, In the case of short bundles, this rule comes from the expression for the perpendicular
componenB, for the field of a dipole (2.31), which is null fér= 0.5 cos1(1/3) ~ 35°.
Numerical examples for this situation are shown in Fig.2.8.

3p-F)f —p
I‘3

B(r)

B, = ;3wsw+n£
B = ggnmg (2.31)

3. Given two bundles with perpendicular dipole moments as in Fig.2.9, mutual inductance
is negligible for configurations where one bundle is near the vertical axis passing through
the center of the other. The reasoning is similar to the previous case, except that now
we should analyze when does the parallel compoBgnianish. This occurs & = 0
andd = 90°. In one of the examples that will be shown in the next section (Fig.2.9)
this situation manifests itself in two ways: (a) the mutual inductance drops to z&p as
does; (b) forD, large, increases with increasiridy. This rule is also helpful in pruning
geometries.

2.4.2 Validation

In Fig.2.9, we display the simplest case, two bundles consisting of one signal wire with a single
return path each. Notice that the relative position between signal and return is perpendicular

represent generically distances within each bundle. The result idhatxactly vanishes wher = z, i.e. when
0 =45
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Figure 2.8: Dipole Selection Rule 2, showing the angular dependence of mutual inductance for
different separation between bundles: dipole approximation (solid lines) and FastHenry (dotted
lines with symbols)

in one bundle with respect to the other. From the results displayed in this figure, we notice

that the dipole approximation shows relative discrepancies with FastHenry which are upper
bounded by 10%. Considering that mutual inductance, in this case, is two or three orders of
magnitude smaller than the self inductances, this means that the error introduced by the dipole
approximation ffects at worst, the third significant digit.

We stress that noise figures forare scale independent. For the sake of verification we
reproduced all the examples that follow, scaling up and down two order of magnitudes, obtaining
the same figures. This allows us to generalize the results as follows: if these typical bundle sizes
of order 5u, and we can assure small errors for distances larger+h3@u, then these small
errors are maintained as long as the ratio of bundle size to separations is larger than 6. For this
reason, we always plot distances as functions of the ratjos Dy/sandAy = Dy/s, where
Dyy are separations alongy, andsis the typical size scale for the bundles.

Next, consider two bundles with one return path each, with their dipole moments being
parallel (see Fig.2.10). Again, the resulting comparison with FastHenry also show discrepancies
upper bounded by 10%. The dipole approximation holds quite accurately for mutual inductances
between two simple loops, irrespective of the orientation of their dipole moments.

Finally, we show a slightly more complicated geometry, consisting of two bundles with
multiple return paths each. Both are asymmetric, in the widths of the return paths as well as in
their positions with respect to the signal wire (see Fig.2.11).

In this example, we find that for the case of the closest configurations< 6) there is a
considerable dierence between the two results. It should be noted, however, that even in those
cases, the value d@fis very small, thus rendering the aforementioned errors insignificant when
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A=D/s
X Z a

Figure 2.9: Comparison of between the dipole approximation (solid lines) and FastHenry (dot-
ted lines with symbols) for perpendicular bundles, geometries like the one shown at left:

is plotted for diferent values o\, = D,/s; as a function ofAx = Dy/s,. Parameters are:

L =500um, s = & = 5um andh = 0.5 um, w = 0.5 um for all conductors.

compared to the self inductandeg Ly,.

In few words, the previous cases are examples that manifest the behavior that holds for arbi-
trary configurations: as long as distance between bundles is not too narrevé @ seemingly
worst caseA = 2 being more representative), the leading dipole representation gives a good
approximation to the mutual inductance.

2.4.3 Performance analysis

In order to analyze thefciency of the present dipole approximation, we compare its runtimes
with respect to the direct use of Grover’s expressions (2.26). We mention briefly that these last
expressions give basically the same results as FastHenry, meaning that the errors between the
dipole approximation and Grover’s expressions are as small as the ones presented in the previous
sections.

If we consider a general case, withwires broken up into, bundles, Grover’s expressions
requireN?/2 computations of terms as in the second line of (2.26). On the other hand, the dipole
approximation requires a total ofN calculations. Thus, if there are on average considerably
more than one return path per bundle (i.enyit« N/2), then the dipole approximation demands
a much smaller number of evaluations. Moreover, each of the evaluations of Grover's expression
involves a transcendental function, whereas for the dipole approximation théMesaaduations
arising from the calculation of dipole moment, which are only sums and multiplications (see
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Figure 2.10: Comparison between the dipole approximation (solid lines) and FastHenry (dotted
lines with symbols) for parallel bundles, geometries like the one shown atleftplotted for
different values of\; = D,/s; as a function ofAy = Dy/s,. Parameters ard- = 500 um,
Sa = S = 5um andh = 0.5 um, w = 0.5 um for all conductors.
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Figure 2.11: Comparison between the dipole approximation (solid lines) and FastHenry (dotted
lines with symbols) for the two bundles shown at left, each of typical sidg: ¢ is plotted for
different values of\; = D,/5u as a function ofA/5u. The coordinates and widths of the wires

are shown asx y; w) triplets, the thickness is = 0.54 um, and length i4. = 1000um for all

wires.
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eq.(2.19)), plusr, — 1)N evaluations as in the argument in the sum of (2.24), where the most
expensive operation is a half-power.

Table 2.4: Comparative runtimes for Dipole approximation (DA) and Grover’s expressions (GE)
as a function of the number of return patiistimes expressed in microseconds per evaluation

N | DA GE Ratio GEDA

1] 0.412| 1.586 3.85
2| 0544 3.343 6.14
3| 0.697| 5.817 8.34
4 | 0.784| 9.052 11.54
5| 1.000| 13.002 13.00
6 | 1.092| 17.902 16.39

In Table 2.4 we present a comparison between the two methods for concrete examples in-
volving two bundles with the same number of return paths in each one. Runtimes are expressed
in microseconds per mutual inductance computatiod@ similar computations are averaged
for each entry of the table). All runs were carried out on a desktop PC runnin@ &2z,
under identical situations. The approximately linear increase of the runtime ratios with bundle
size (last column of Table 2.4) shows that, at least in this case, the dipole approximation is one
order of magnitude faster than the use of Grover’s expressions.

2.5 Conclusions

The near field behavior of the mutual inductance between two bundles, in regimes 1 to 3, is well
described by a simple extension of the Grover expressions (2.26). This extension consists on
averaging (2.26) over the transverse dimensions of the participating wires. The end result con-
sists in substituting the values f in (2.26) with the geometric mean distance (GMD) among

the respective cross-sections. In [56], diiceent way to compute the GMD of two rectangular
cross-sections is presented. It was therein verified that the resulting mutual inductaffice coe
cients using the values; computed as in (2.13), equation (2.26) with thereinterpreted as
GMD’s, agree with FastHenry to a high level of accuracy. Our experiments, of which Figs.2.9
to 2.11 give representative results, do in fact show that the analytical expressions derived from
the dipole approximation converge to the near field solution for distances as small as 6 times the
typical sizes of loops. This scheme works unchanged for cases that have shared return paths that
are not in a degenerate configuration. This is consistent with the long distance behavior. The
only modification to (2.26) is the appearance of the partial self inductance replacing the partial
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mutual inductance between two ground wires.

We stress that we are mainly interested in mutual inductance extraction at high frequencies,
where the reactance part of the serial impedance is important. In this case, as discussed in
Section 3, proximity plays a crucial role in the choice of return paths. Thus the bundles will
have small spacial extensions, and the requirement that there are no shared return wires between
intervening signals in the dipole approximation is fulfilled for all feasible layouts for bundles
separated by distances between bundles in which the dipole approximation holds (i.e. typically
6 times the typical size of bundles).

Having analytical expressions both for near field and far field is key to achieving compu-
tational dficiency in an inductance extraction code. The additional presence of selection rules
permits a pruning on the number of candidate configurations. The largest memory gains are due
to another factor, that resulting from our use of the loop inductance representation that is more
amenable to sparsification, as we have shown in section 2.1. A commercial engine incorporating
the near field and the far field (dipole approximation) solutions has been released [41].

Shared ground configurations can lead to non diagonal dominance, and and positive definite
violations when neglecting seemingly negligible terms. They can be expressed in terms of trian-
gular coupling violations [24]A couples taB, B couples tdC, while A does not couple t€. To
the extent that there are no shared grounds when the signals are widely separated, the triangular
problem does not enter into our analysis. In practical terms, mutual inductance calculations are
driven by noise analysis, as such a high frequency concern, the selection of return wires for
each signal wire bundle can be, in good approximation, localized to near neighbor configura-
tions. The general solution to the mutual inductance problem, one that incorporates short and
long distance behavior, demands attention to this problem, since the presence of shared ground
configurations is unavoidable albeit restricted in scope.

We claim to have contributed to the understanding and simplification on the problem of mu-
tual inductance computations relevant in IC design, in terms of simple dipole structures. For
distances that are not too close the dipole representation computes with good precision the be-
havior of the mutual inductance matrix. When the physical loops are seen in terms of dipoles,
it is easier to separate what is important from what is negligible. The resulting selection rules
emerge quite naturally, and further contribute to the sparsification. Considering an inductance
matrix that falls as Ar? or 1/r® makes the problem of bounding the size of the extraction matrix
manageable. This feature simplifies enormously fiiereduring downstream circuit simula-
tion.

Previous work [57] have attributed to small current loops the term dipoles, without further
ado. FastHenry and FastCap uskeetively the multipole expansion of the Green Function in
order to speed up matrix vector multiplications in their field solver [14, 15]. In fact, we have
verified empirically that using FastHenry, with this expansion truncated at order 2, gives the
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same results as the dipole approximation [58].

Our analysis goes beyond in providing a framework for the proper extraction of the mutual
inductance matrix for a wide range of distances. At very small distances, where the dipole
approximation is no longer applicable, we simply need to compute the loop mutual inductances
in terms of the algebraic sum of Grover-like expressions. Similarly, for interactions involving
degenerate bundles, Grover like expressions need to be used. We have shown that the presence
of degenerate bundles, at frequencies (regime 3) where inductfiacesean be important in
noise analysis, flect at most the short distance calculation. Given that our approach relies on
measurable quantities, it is feasible to ratify or rectify experimentally by simply verifying for
example some of the selection rules or the inverse power-law decay.

As stated in the Introduction to this chapter, this work was carried out, published, and im-
plemented into Mentor’s Calibre tools at the early stages of this project. More recently, a collab-
oration with a group from University of California at Santa Barbara has re-opened the subject,
in two main aspects [59]:

e extending the dipole treatment to cope with short distances; this involves fieoedit
approaches that are being tested and contrasted, one consisting in representing a bundle by
an optimally chosen set of dipoles, the other by expanding further terms of the multipole
approximation (quadrupole, octupole, etc.);

e incorporating substrateffects into the dipole treatment, based on so-called equivalent
Green function methods [18, 19].



Formules closes pour I'inductance
mutuelle entre inducteurs intentionnels

Résune en francais

Dans ce chapitre, I'approximation dipdlaire développé au chapitre antérieur est appliquée au
probléme du calcul de I'inductance mutuelle entre deux inducteurs intentionnels. En premiéere
instance, nous décrivons les formules standard qui seront utilisees comme référence (section
3.1), ainsi que les modifications aux formules du chapitre précedent pour le probleme actuel
(section 3.2). La uite du chapitre inclut un traitement pour des hauts frequences (section 3.3),
ou les courants ne seront plus uniformes le long des sections transversales des segments de
l'inducteur. Des exemples typiques sont exposés et analysés (sections 3.4 et 3.5), montrant le
méme degré de précision que dans le cas d'extraction de parasitiques, a savoir : cette approx-
imation est valide pour des distances qui sont supérieures a un seuil comparable aux tailles
des inducteurs. Nous finissons par une breve discussion sur des défis pour les futurs recherches
(section 3.6). Le travail décrit dans le présent chapitre a été présenté et publiée aux actes du
“International Symposium on Circuits and Systems” (ISCAS) de 'lEEE [30], et son contenu est
inclus dans une demande de brevet [31] en Mai 2006 en Kos, Gréce.
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Chapter 3

Mutual Inductance between
Intentional Inductors: Closed Form
EXxpressions

Intentional inductors are used as components in RF (radio frequency) analog designs, partic-
ularly in telecommunication applications [60]. Designers frequently use multiple intentional
inductors. Each one of these devices occupies an amount of real estate on the chip in the order
of 10%42, at 13¢mtechnology. Design and manufacturing considerations favor placing induc-
tors close to each other to minimize the occupied area, thereby improving the manufacturing
yield. To be able to do it safely, a quantitative measure of the electromagnetic noise that one
inductor generates on another one is essential. The noise figures can be evaluated in terms of
the device’s electrical parameters: resistance, inductance and capacitance nmRttice€s. (

The purpose of this chapter is to provide a quick while reasonable estimate to the values of the
mutual inductance as a function of separation among the inductors. Mutual inductance for mod-
erate RF frequencies can be accurately represented with Grover like expressions integrated over
the transverse dimensions. We assume low doping profiles, domain where sulifgcdseon
inductance can be neglected [60]fdets due to the onset of non uniform current distributions

are not included in the treatment, except to verify that the correction they provide to the long
distance behavior of the magnetic noise parameter is negligible.

The main results on this chapter are the derived analytical formulae, which are an exten-
sion of the dipole approximation presented in the previous chapter, and whose simplicity and
linear complexity allow for quick estimates of the magnetic noise parameter. We provide de-
tailed calculations for a number of configurations, the extensibility to other configurations being
straightforward. We compare our results against Grover expressions [55] and FastHenry [15].

The computation of the mutual inductance using Grover expressions grows quadratically

55
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with the number of segments per inductor. Using the dipole approximation we improve to linear
complexity. This property makes it suitable for design explorations, whereby mutual inductance
must be computed for a large number of configurations; the self inductance remains unchanged,
and thus needs to be computed only once. Essentially, this method is an extension, into the
domain of intentional inductors, of the one presented in the previous chapter for the problem of
parasitics extraction.

Prior work within the PEEC formalism [51,61-63] anticipated similar complexity reduction
when applying the multipole expansion. We compare the two methods, ours based on the loop
formalism and the other based on the PEEC formalism. In fact, we use FastHenry to obtain the
PEEC results. As mentioned at the end of the previous chapter, this tool includes a multipole
expansion in order to accelerate linear algebra operations. The results obtained using order
2 in these expansions are the same as the ones obtained using the dipole approximation; the
difference is that FastHenry is a description based on segments (and as such, a partial treatment),
whereas the dipole approximation is applied to current loops.

Neither the PEEC formalism nor the inverse method [47, 50] lead to simplified analytical
results. This we take as a clear advantage of the loop formalism. The resulting expressions
are given in terms of easily computable functions significantly simpler to compute than the
corresponding Grover expressions for filaments.

The work described in the present chapter was published at proceedings of the IEEE Inter-
national Symposium on Circuits and Systems (ISCAS) [30], and its contents were included for
a patent application [31] in 2006. We organize it as follows:

e Section 3.1 describes the classical way for carrying out these calculations, that will be
used as a reference to our methods;

e Section 3.2 revisits the dipole approximation presented in the previous chapter, concen-
trating on the application to intentional inductors;

e Section 3.3 discusses the high-frequency extensions of the method; it is also shown that
these modifications are small enough to be negligible for realistic cases;

e Section 3.4 presents some basic examples, as well as estimation of errors against the
classical reference;

e Section 3.5 analyzes the gains in terms of performance in the aforementioned comparison;

e Section 3.6 is a brief conclusion, as well as matters of concern for future development.
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3.1 Classical Approach

An inductor can be considered as a circuit consisting of a concatenatistohight segments,
connecting at least two ports, laid out in one or multiple metal planes. In general, the layouts are
non-Manhattan, since these provide a better figure of inductance-per-unit-area, and thus allow
for better yield.

The loop self inductance of an inductor can be decomposed into:

N N N
Lioop= ) Lii+2> . > Mij (3.1)
i=1 i=1 j=i+1
whereM,; j is the partial mutual inductance between segnanid j andL;; corresponds to the
partial self inductance of segmerdand the sum extends over éIN(N + 1) terms.

The mutual inductanc® between two inductors can be similarly computed in terms of a
list of partial mutual inductance among the respective constituent segments:

Na Np

Mab= > > M/ (3.2)
i=1 j=1
with Ny andNy the number of wire segments in each inductor. The vMﬂJeorresponds to the
partial mutual inductance between segmieintthe first inductor and segmeitof the second
inductor.

Under uniform current distribution, the classical approach makes use of the filament based
Grover expressions [55] (equations (52)-(55)) for arbitrarily oriented filaments. For finite cross
sections, the four dimensional integral required to compute the average over transverse dimen-
sions is done numerically. For the sake of reference, we denominate this method “Classical
Grover” (CG)

3.2 Dipole Approximation for inductors

The dipole approximation applied to quasi-magnetostatic problems is a general method for com-
puting the magnetic field for an arbitrary current distribution as a function of distance, keeping
only the leading term in /& [46]. In the loop treatment, we deal exclusively with closed current
loops; the leading term of the generated magnetic field is that of a dipole [28]. Thi¥eisedi

from the PEEC approach to the dipole approximation, which contains monopole contributions.
The monopole contribution vanishes for quasistatic closed loop current distributions, in a finite
domain. In the loop inductance approach, we replace the field produced by each of the ele-
mentary current filaments within an inductor with one of a representative point-like dipole at
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the center. The computation then proceeds following first principles in Electromagnetic Theory.
The mutual inductance between two inductaendb is given by:

Map = T";Hb => fB(a) S = %9§A<a> -de (3.3)
a a

Sjebsj c

with W,_,p the magnetic flux resulting from the field generated by induat@ver the area
sustained by inductds. In addition,S; are the surfaces subtended by the turns of indug;tor
C is the union of all segments of inductbr B® is the magnetic induction field generated by
inductora andA® is its vector potential that satisfi@&? = V x A®@. We now introduce the
dipole approximation:

e computation of the vector potentiAl® for a magnetic dipole, in terms of the magnetic
dipole momenp®:

@
@ _ P& xr
A = = (3.4)
e computation of the dipole moment of inductrdivided by its current;
@)
e =P _ K f r x J(r)d®r (3.5)
I 8rl

e computation of the magnetic fluK,_,p Of the field produced by the magnetic dipole of
inductora on the area sustained by induchyr

e replacinga with b in the above steps to compute the resulting mutual inductance as the
averageM = (Mgp + Mpg)/2 to ensure that the inductance matrix is symmetric.

For a single planar current distribution, representative of single metal layer intentional in-
ductors, the dipole moment (3.5) reduces to:

p@ = %sz (3.6)

whereS is the total area bounded by the wire loop, arid an unitary vector perpendicular to

the plane containing the loop. The calculation of the dipole moment of the whole ingi®tor

i.e. the vector sum of the dipole moments of each filament loop, reduces to computing the sum
of the areas “trapped” inside each turn of the induetdn what follows we definet = number

of turns; n = number of sides per tury = total number of segments & t); d = separation
between vertices on successive tursis; dcos(%’f) = separation between sides on successive
turns.
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(a)

Figure 3.1: Polygonal inductors: (a) symmetric; (b) spiral.

We exemplify the calculation of area (magnetic dipole) for some common single layer
polygonal inductors.

1. Symmetric inductors, built as concentric rings of regular polygons joined at every half
turn, as shown in Fig. 3.1(a).

2. Spiral inductors, constructed such that the vertices of the inductor are situated along
a linear spiral (i.e. a curve defined b{Y) = Ry — 6d/2r, whereRy is the distance
from the center to the farthermost vertex of the inductor, éiglthe separation between
corresponding vertices on two successive turns of the inductor, see Fig. 3.1(b).

3. Arbitrary planar inductors , general single layer inductor.

For a symmetric inducto6 is the sum of the areas of all the concentric polygons (e.g., the
hexagons in Fig.3.1a), which is

t
gleym  _ gsin(%ﬂ) Z R (3.7)

For a spiral inductor, we split its area into triangles as shown in Fig. 3.1(b). The resulting
total area is

N
sspirah - — %sin(%ﬂ) > R.-(R.-—g) (3.8)

triangle

Expressions (3.7) and (3.8) have been obtained for inductors whose segments can be treated
as filaments. The extension to finite cross section, for uniform current distribution within each
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segment, is done by averaging over its transverse dimensions. Note that, given the simple com-
bination of algebraic expressions and trigonometrical functions in (3.7) and (3.8), direct inte-
gration is easily obtainable leading to:

1 R
S:VW]f

R-w

h
f S(R. M)dR dh’ (3.9)
0

The resulting expressions for finite cross section are

g(SVm — N S|n(2_ﬂ-)
2 n

RS+(RO+§)5—(RO—V—:;/+§)(St+W)+%(St)z] (3.10)

s
s Son() (ool few| o

For an arbitrary planar inductor, the dipole moment can be computed as a sum of the areas of
the triangles bounded by each inductor segment and the segments joining its extremes with the
originr = 0, where we locate the dipole moment. Each area is averaged over its finite transverse
dimensions. The cost increase of performing this decomposition is small compared to the total
cost (see analysis in Section 3.5).

Our next step is to compute the magnetic flux, through the surfaces bounded by the wiring
of inductorb, for the field generated by the collection of dipoles representing indactdhis
part of the computation is common to all three types of inductors analyzed before. Combining
expressions (3.3) and (3.4) we obtain, for the dipole located=a0:

No d d
_ 5@ Z TYjOX) + Xjdyj 3.12
=P f (x2+y +27)%2 (3.12)

segment j

This last expression is trivially integrable giving:

Np—1
Lj+a aj
Map = @ i - (3.13)
Z bz -a (b2 +ajLj+ LJ?)l/2 b;
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where we introduced for each segmendtarting at ko, o) and ending atxi, y1), the codfi-
cients:

Lj = \/(Xl - X0)? + (Y1 = Yo)%
aj = 2(Xo(X1 — Xo) + Yo(Y1 — Yo)) /Lj;

bj = X5 +Y5+7;
Cj = (Xoy1 — X1Yo) /L

Equations (3.10) to (3.13), properly symmetrized by replaeimgth b and averaging, con-
stitute our basic results for the evaluation of the mutual inductance between two intentional
inductors.

3.3 High frequency extensions

The derivation of the previous results demands that the currents be uniform across the wires’
cross-section. This approximation ceases to be valid at higher frequencies (above 5-7 GHz),
wherein skin and proximityféects sensibly modify the current distribution inside the wires.

At higher frequencies we compute the distribution of currents across the cross section of
each wire segment. The natural way to do so is to discretize the wire segmemidiiaioents,
each one carrying uniform current. In Fig.3.2 we show schematically a discretized inductor,
represented in terms of filaments. Solving for the filament currents, from the Hiretpaations
for one inductor we obtain the following cieients:

aj,kz%, l<j<mls<k<N (3.14)

where

| = Zm: lix (3.15)

is the total inductor current common to all segments. Notice that the values in (3.14) are fre-
qguency dependent complex numbers. The dependengg oh the second subinddxsimply
expresses the fact that we allow for current redistribution in going from segment to segment.
The above discretization procedure is carried out only once per frequency and per inductor.
It provides the high frequency self impedance of the inductor, which is definaW/ds with
AV the diterence of potential between the input and output nodes givéin by (3.15).
The implicit approximation is that the current distribution in one inductor igfected by
the presence of the other inductor. This assumption still holds for small distances, even for
separations between inductors much smaller than the inductors’ sizes, as we have verified with
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Figure 3.2: Circuit equivalent of a filament discretization of an inductor; for the sake of clarity,
the inductive interaction between filaments oftelient segments are not drawn, but they are
included in the calculation.

FastHenry which does not incorporate this assumption. Tierént results can be derived from

this approximation. The first one applies to the classical approach. Within the classical approach
we obtain the following expression for the mutual inductance in the filament decomposition,
under the above mentioned approximation:

Na Np

Map = Re Z Z Z Z @iy ka i, ks Miakainks (3.16)

ka=1kp=1ia=1ip=1

The imaginary part of the above expression is in fact the mutual resistance between the
inductors divided by 2f, with f the frequency. We have verified with simulations that the
mutual resistance is in general negligible.

In other words, in the filament decomposition, (3.2) is replaced by (3.16). We have verified
with FastHenry that the results obtained in this fashion are accurate and computationally less
expensive than FastHenry for non negligible separations.

Similarly, in the dipole method, the extension of the dipole moment in (3.5) consists of a
weighted sum over filaments:

Na my
pe@ = Z Z @i kPi k (3.17)

k=1 i=1
with la;kPik the contribution of filameni in the k-th segment to the total dipole moment and
Pik proportional to the area spanned by the filament.
The total magnetic flux through the victim inductor is the weighted sum over the fluxes
through the surfaces spanned by each filament, giving

No m
MEF) [Z > ajkMa

(3.18)
k=1 j=1

with Mg jk calculated as in (3.13) for segments.
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Figure 3.3: Frequency variation of resistance (left), self inductance, and mutual inductance
(right) for a configuration of: square inductalRy = 10Qum, s = lum,w = 1lum,t = 0.65um);

spiral inductorb (Ry = 10Qum, s = lumw = 10um,t = 0.65um); with a border-to-border
separation of 50m between them. We plot the ratio of the frequency dependent values to the
low frequency ones.

Concerning the necessity of implementing this discretized version of the dipole approxima-
tion, we study a typical configuration in Fig. 3.3. These graphs show that frequency-dependent
variations for mutual inductance are negligible, at least up to a frequency®H20

3.4 Validation

We compare our simple analytical results to those obtained using standard references. The key
parameter for magnetic noise analysis is the ratiefined as:

Mab
VLalo
with L, Lp the self inductances of inductaasandb, respectively. The geometric mean between
L, andLy, is a normalization factor for noise estimates, which needs to be computed once. We
rely on Grover's formulas or FastHenry to calculate it.

While using FastHenry, we apply it in its default mode, i.e. with multipole expansions up
to order 2. In Fig. 3.4 we plat as a function of the horizontal border-to-border separafion
for different values of the center to center separafipnThe calculations with FastHenry are
made at 5GHz, its results are insensitive to the number of filaments, uniform current distribution

(= (3.19)

being valid at this frequency for these geometries. Except for very large separations, the results
from FastHenry and CG sit on top of each other as expected. The mifenedices at very large
separations are interpreted as possible numerical instabilities for very small valiestbin
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Figure 3.4: Mutual inductance coupling for Dipole approximation (solid lines), Classical Grover
(dashed lines), FastHenry (symbols). Configuration consisting of a 6-turn hexagonal symmetric
inductor Ry = 50um, s = 1um) and a 5-turn octagonal symmetric induct® (= 80Qum,

s = 0.5um); Ay anddy are defined in the inset, and errors for DA with respect to CG are
presented at right
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FastHenry, totally harmless for relevant calculations. The dipole approximation (DA) and CG
agree with each other and, for completeness, also agree with ASITIC [64] at large distances.
Concerning the short distance behavior of DA, region where the approximation breaks down, it
turns out to provide order of magnitude approximation, useful for first order estimates of noise
figures at short distance.

The value ot/ in the DA is scale invariant, with small logarithmic deviations arising from the
self inductances in the Grover approximation. This result can be immediately concluded from a
cursory examination of the above formulae in Sec.3.2. This permits us to express our estimates
in terms of the ratio of separation to mean radius, rather than minimum separation. In this and
other examples we verify that when this ratio is larger thAtOIreasonable agreement between
is obtained. It also allows us to predict noise estimates after scaling. In Fig.3.4 we display the
relative error using the DA method for the example shown in Figure 2 as a function of horizontal
separation. Oferent configurations have given similar results to the ones presented above.

Our approach is naturally extensible to a filament decomposition to study modifications
due to non uniformity in the current distribution. Nevertheless, we verified with FastHenry
computing self and mutual inductance for the examples presented above, among others, using
extensive filament decomposition, and noticed that in going up to 30GHz the variatigns in
amount to less than 3%. Therefore, the predictive power of the method presented here is not
substantially &fected by skin ffect considerations, up to 30GHz.

3.5 Performance analysis

A basic property emerging from the dipole approximation introduced for computing the mutual
inductance among two intentional devices is its linear growth with the number of segments. It
results in general as a consequence of the multipole expansion and is valid to any order in this
expansion. Algorithms that grow asymptotically as fasNdsg N, and even linear algorithms

are properly discussed by Beatson and Greengard [65]. The classical Grover expression in (3.2)
is quadratic in the number of segments.

Given two inductors witiN; andNy number of segments, the linear behavior for the dipole
approximation emerges in a natural way from: one evaluation of (3.5) using (3.10) or (3.11), or
a worst case oN, evaluations of the areas of triangles if no specific formula for the total area
can be obtained; plull evaluations of (3.13). Given two inductors with = N5 + Ny, total
segments, the dipole approximation in the loop formalism, requires a maxirhkop2rations
(the factor of 2 is due to symmetrization), as oppose}i\l&)operations in the classical approach
(see eq.(3.2)).

Furthermore, all the terms appearing in the computatiod gfin the dipole approximation
involve simple functions, i.e. there is a single transcendental function to evaluate, thg'sjn(2
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in the expressions for the area which is evaluated once per inductor, irrespectively of the sepa-
ration. There are no further integrals to be computed for finite cross sections.

To evaluate the results of a PEEC analysis to the same order in powefs afelmust
include contributions té\(r) that behave as/t at large distances [51,61-63], in addition to
the dipole behavior /& in the vector potential(r). Both approaches being fundamentally
equivalent, once we include all contributions, the tontributions of partial methods cancel
out, leaving the dipole term as the dominant one. This equivalence has been verified using
FastHenry with its multipole expansion for filament interactions, retaining up to the dipole level.

In Table 3.5 and Fig. 3.5 compare the total average runtimes for the three methods, for two
symmetrical octagonal inductors as a function of the number of turns of one of them, for a fixed
separation. These were performed according to the following criteria:

For the CG and the loop dipole method, we break the computation into a setup step (reading
input files, memory allocation, etc.), common to both, and a computation part. For FastHenry,
we only display the total runtimes, with a single filament per segment, and the default dipole
approximation for the long distance computation. For each datapoint we run 1000 samples, all
of them on a Sun workstation with an Opteron processor clocked at 2.39 GHz and 2 GB of
physical memory. To avoid the influence of outliers, the highest and lowest 1% of runtimes for
each configuration are discarded.

The Dipole Approximation in the loop treatment is two and one half orders of magnitude
faster than the Classical Grover approach. The common set-up time in DA and CG is roughly
one order of magnitude larger than the time for the DA calculation. The total runtime using the
DA method is dominated by the set up time. The opposite holds when using CG. The overall
effect, is to render the DA total runtime to be two orders of magnitude faster than the runtime
using CG. These estimates were presented for a single separation dst&wcenoise driven
synthesis applications, we are interested in the computational cost for a number of separations.
Thus in general we anticipate further gains while using the DA method to corjfs)teince
the dipole moment and the self inductance of each device are computed only once.

3.6 Conclusions

We introduced a method for calculating mutual inductance between intentional devices based on
first principles on closed loop configurations, resulting from a multipole expansion starting with

a dipole termA(r) ~ 1/r2. This is conceptually dierent from the PEEC method, that contains

A ~ 1/r behavior. Reasonable levels of accuracy are obtained in the computation of the noise

parameter for a wide spectrum of geometries, separations and frequencies up to 30GHz. The

resulting analytical expression with linear complexityNrmnd moderate accuracy, can be useful

for a number of applications.
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Figure 3.5: Comparative runtimes for the methods described in the text, as a function of the
number of turndNy,mns, for two identical octagonal symmetric inductors.

Concerning present and future work, we state that the same comments found at the end of
the previous chapter apply to this one. Most important is a valid estimate of subsieats &r
inductors, since it plays an important role in any calculation of noise figures for these devices.
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Niurns CG| DA(setu D CG(calc) DA(caIc) FH
10°x 103x 10°x
1 468+052 | 3.8:0.2 | 135+2.6| 5.1+0.1
2 482+054 | 9.1+05 | 189+1.8| 12.4+0.3
3 5.09+0.43 | 18205 | 25.2+2.9| 20.2+0.2
4 529+ 050 | 31.1+ 0.6 | 31.6+4.1| 26.9+0.3
5 554+ 055 | 46.30.7 | 38.9+4.4| 349+ 2.2
6 5.68+0.47 | 59.6+ 0.8 | 42.8+4.4| 43.3+ 0.5
7 593+ 0.59 | 69.6£0.8| 51.1+4.9| 52.9+ 0.9
8 598+ 0.49 | 78.1+ 0.9 | 56.8+6.6 | 59.8+ 0.5

Table 3.1: Comparative runtimes for Loop Dipole approximation (DA), Classical Grover ex-
pressions (CG), and FastHenry (FH) as a function of the number ofgsng for two identical
octagonal symmetric inductors; times expressed in microseconds per calculation
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Modelisation RLC avec des modes de
conduction

Résune en francais

Ce chapitre est consacré aux modélisations des courants et charges sur la base de modes de
conductions. Nous présentons d’abord le cadre général selon lequel 'ensemble original des
équations de Maxwell est converti a un systéme linéaire pour les sources (sections 4.1), tant
pour une description quasistatique et découplée+RL (section 4.2.1), que pour une descrip-

tion d’'onde compléte RLC (section 4.2.2). Ensuite, nous introduisons les modes de conduction
comme une base qui permet une caractérisatfinazes des courants pour le cas RL deja ex-
istant dans la littérature (sections4.3.1) et des courant et charges pour I'extension au domaine
RLC, ce qui constitue une innovation originale (sections 4.3.2). Nous continuons en discu-
tant le choix des modes et son rapport avec une classe particuliere des problemes, a savoir
la propagation des ondes quasi-TEM (transverse électromagnétique) en présence des conduc-
teurs non parfaits (section 4.4). Un schéma des algorithmes liés a I'implémentation de cette
méthode est inclus et brievement discuté en section 4.6. En section 4.7, se trouvent des ex-
emples d’application, montrant des résultats tres précis par rapport aux réféerences standard,
avec une réduction significative pour la taille des systémes linéaires. Les conclusions en section
4.8 sont succinctes, car la discussion approfondie sur ce sujet fait I'objet d’un traitement plus
systématique au chapitre 6. Le présent chapitre est une prolongation du papier présenté lors de
la derniére réunion de I'* International Conference on Computer-Aided Design” (ICCAD) en
Novembre 2006 [33].
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Chapter 4

RLC conduction modes formalism and
examples

Obtaining electromagnetic parameters for IC interconnects implies solving, in an approximate
manner, Maxwell’s equations for the circuit components in a layout. For configurations with a
very large number of conductors, this task i§idult. In order to cope with this complexity, long
distance interactions among wires must be neglected (at the first level of approximation), so as
to produce smaller coupled problems, for which a solution is possible. The task of performing
this separation, computing the EM parameters for the smaller problems, and later including the
long-distance interactions neglected above, is the function of an extractor.

In the market of commercial extractors, there are four major competitors: Assura (Cadence)
[25], Raphael (Synopsys) [66], Columbus (Sequence) [43], and Calibre (Mentor Graphics) [22].
All of them perform a full-chip sweep, isolating a large number of manageable configurations
that must be solved individually.

Fast solvers are a necessity for each one of these subproblems. We distinguish between
fullwave and decoupled solvers. The first ones treat the complete set of four Maxwell equations,
producingRLC parameters. The second type of solvers split the problem in two, solving for
charges and producing parameters on one side; for currents and produBira;d L on the
other. Each of these two subproblems are comparatively simpler than the fullwave ones. For
validity of this decomposition, dimensions of the components must be small compared to the
EM wavelength in the medium.

In Table 4.1, we include a (non-exhaustive) list of tools for solving these problems. We in-
clude academic as well as commercial programSor most of these solvers, sources /and
fields are treated as piecewise constant functions. For example, charge distribution can be

1Concerning these last ones, we point out that we ignore the details of each implementation; we know broadly
what type of solution is proposed.

73



74 Chapter 4.RLC conduction modes formalism and examples

represented by a set of surface panels (FastCap, FastMaxwell), currents by a set of filaments
(FastHenry, FastMaxwell), the, H field on conductors’ surfaces by piecewise-constant panels
(Fastimp, LargeCom).

The number of such piecewise-constant elements depends on two main factors: geometry
and fields’ variations. The impact of geometry, for any given configuration, is independent of
the method to be used. Geometry is an unavoidable constraint, in the following sense: if many
relevant small wires are present, many small elements are required.

Instead, the second factor depends on frequency. It is well known that, for high enough
frequencies, currents cease to be uniform along the conductors’ cross-sections. The shape of
this non-uniformity of currents on the conductor is not arbitrary; they have exponential decays
of orderg, the skin depth for a conductor. This establishes a length scale, that decreases as the
inverse square root of frequency, determining the minimum size in which currents can safely be
considered uniform along the transverse dimensions.

Table 4.1: List of well-known electromagnetic solvers and their characteristics

Name Origin Type \Volume Surface Description

elements| elements
FastHenry MIT [67] RL v Filament decomposition for skirffects
FastCap MIT [67] C v Panel discretization of Laplace’s equation
Fastimp MIT [67] Fullwave oRL v Fullwave surface using Green'’s identities
FastMaxwell MIT [67] Fullwave v v Integrated paneffilament mesh model
LargeCom U.of lllinois [68] | Fullwave oRL v Surface formulation in Fourie—space
HFSS Ansoft [11] Fullwave v Volume diferential finite element method (FEM)
Sonnet Suites|  Sonnet [69] Fullwave v FFT-based planar wave decomposition
IE3D Zeland [70] Fullwave v Surface-mesh fullwave solver

Knowledge of how currents decay inside the conductor is used by tools like FastHenry [15]
and Calibre [22,23], in order to discretize the conductors’ cross-section ificiet way, with
fine filaments near the borders and wider ones toward the center. But this knowledge also sug-
gests an idea that avoids altogether the need of fine discretization: describing currents in terms
of distribution functions with the appropriate behavior. These functions, named “conduction
modes”, are non other than the eigenfunctions to tfemintial equation for the system, which
is the Helmholtz equation. If the set of expansion functions is well chosen, the conduction
modes produces an important reduction in the system size.

Choosing these type of functions is reminiscent of the separation-of-variables techniques
used in electrostatics for solving Laplace’s equation, given boundary conditions on a closed
surface [46]. The same problem can be solved by discretizing the boundary and applying any
finite element method for solving this elliptic PDE. However, this would neglect the gains to be
made in using the more adequate eigenfunctions to the Laplace equation.

This analogy with electrostatics ends here, since we are concerned witleramli type of
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problem and therefore aftitrent kind of approach. Instead of solving Laplace’s equation within

a closed surface, we construct and solve a linear system based on a chosen set of functions that
describe the current distribution. The success of this technique depends on the quality of this
choice.

Conduction modes were first introduced in 60’s [71], and resurfaced in 2001 [32RLfor
problems involving only longitudinal currents, and short wires compared to the wavelengths.
As such, this formulation was presented as a reduced-size replacement for a piecewise-constant
approaches, like FastHenry. Size reductions of factor 20 were reported for several examples
[16]. Another application of conduction modes was put forward by the same group in 2003 [72],
in which these functions are used as boundary conditions in order to reduce the size of Fastimp
(see Table 4.1), a surface mesh fullwave solver.

There are two main disadvantages of the conduction modes method. The first one is that
the conduction modes are defined only for simple geometries, namely rectangular or cylindrical
cross-sections [71]. This restriction does not play an important role in the IC domain, where
most structures fall into this category [73].

The second disadvantage is that, although there is an important reduction in size, this is
not immediately reflected in the overall runtime. The reason is that the computation of the
matrix elements, for the conduction modes method, is computationally more expensive than
their piecewise constant counterparts. We will show that this limitation is not fundamental; in
fact, we have developed a comprehensive study on these matrix elements, demonstrating that
significant runtime savings are attainable.

Our contribution to the conduction modes method has two main components:

1. We have generalized the original formulation, which was valid onlyRbrextraction
under the Magneto-Quasi-Static (MQS) assumption, into a fullvirRiv@ methodology;
we have shown its validity for transmission-line type of structures.

2. We have systematically tackled the problem of calculating nontnmv@imensional in-
tegrals inherent to the conduction modes method, thus rendering it not foicigrg in
terms of size, as well as in terms of performance.

The present chapter deals with point 1 above, restricted to a special type of subproblem
which will be described in the text. Next chapter is devoted exclusively to point 2 above, re-
stricted to theRL formulation. Chapter 6 deals with the generalizations of these two aspects,
namely the formulation to a more ample set of problems, as well as the speed-up for the calcu-
lation of matrix elements for thRLC method.

In detail, in this chapter we cover the following aspects:

¢ general framework, by which we pass from the original set of Maxwell’s equations to a
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linear system (Sections 4.1), first for a sepafte+ C description (Section 4.2.1), and
then for a mixedRLC one (Section 4.2.2);

e introduction of conduction modes as a basis for expanding and solving these linear sys-
tems, for theRLandRLC cases (Sections 4.3.1 and 4.3.2, respectively);

¢ choice of conduction modes and relationship to a particular class of problems, namely the
quasi-TEM wave propagation in the presence of non-perfect conductors (Section 4.4);

o different solution schemes for the conduction modes method (Section 4.6) and outline of
the implementation of algorithms (Section 4.6);

e examples of application, showing very precise results when compared to some of the tools
described above, with a considerable reduction in size (Section 4.7);

We mention that the present chapter is an extension, as well as an upgrade, of the paper
presented at the last meeting of ICCAD in November 2006 [33]; the following chapter is the
analogous for a paper accepted to ISVLSI 2007 [34]; and chapter 6 is a description of ongoing
work, as well as proposals for the future.

4.1 From Maxwell's equations to a MPIE

Electromagnetic fields, currents and charges are governed by Maxwell's equations:

V-eE = p (4.1a)
oB
VXE = —-—— 4.1b
X 50 (4.1b)
V.-B = 0 (4.1c)
V % B = J+ 9¢E (4.1d)
u ot

wherekE is the electric fieldB is the magnetic induction vector fieldlandp are the current and
charge distribution functions respectivedyis the dielectric permittivity of the medium and
its magnetic permeability, withu = c¢2, andc the velocity of light in the medium.

It is standard practice to define the scalar and vector potentials, by observing that: from
(4.1c),B is divergence-free, and can be derived as the curl of some vector poteritian this
expression foB is inserted into (4.1b), obtaining a curl-free magnitude; A /ot, which can
be derived as the gradient of some scalar poteatial
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B = VxA

0A
E+— = -V 4.2
o 0 (42)

Replacing these two expressions in (4.1a) and (4.1d), the equations for the potentials be-
come,

10 A
V2A—V(V-A—?a—‘f)—¥ = —ud (4.3a)
ov - A 0
V3¢ + o = ¢ (4.3b)

Vector potentialA has been defined only by its curl; this contemplates a freedom in the
choice of its divergence. This property of EM potentials is called the gauge invariance; in this

work we adopt the Lorentz gauge, wherébé = —c2d¢/dt, so as to cancel the second term
in (4.3a),
1 9%A
2 —
\Y) - ?W = —,UJ (448.)
16% p
Vip-—— = -E 4.4b
c2 o2 € ( )

These second-orderftirential equations are in fact wave equations, having the retarded-
potential solutions,

:u J(r/’tret) 3.7
Afr,t) = — | ——— 4,
(o = & [T (4.52)
\%

1 p(r’, tret) 3./
o 1] d°r (4.5b)
\Y

¢(r.1)

wheretet = t — |r —r’|/c is the retarded time, such that en EM perturbation at positi@nd
time te; reaches position at timet; andV is the entire space containing the sourdemdp
(in this last statement, we consider that sources are bounded, so that we have open boundary
conditions:A, ¢ ~ 1/r —» 0 asr — ).

We work in the frequency domain, whereby all sources and fields have a time harmonic
behaviorX = Xge I“t, with w the common angular frequerfcyWithin this framework, time

2We neglect the sub-index ”0” , in favor of a clearer notation; this is valid because we assume the same behavior
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derivatives in (4.1) are replaced Bjw, and the &ect of evaluating ate; translates into multi-
plication by a phase factor expjkolr — r’|) with kg = /euow = 27/ the wave humber and
the wavelength.

Another important relationship among fields and sources is Ohm’s law which states that, in
the interior of conductorg] is proportional tce. The constant of proportionality is called the
conductivity of the medium,

J=0E (4.6)

With this last expression, the Mixed Potential Integral Equation (MPIE) is reached:

i ~ jKolr—r’|
)0 +Mfa(r')e— ar’ = —Vé(r) (4.72)
o 47 Ir —r’|
Y,
1 , e—jk0|r—r'| ,

The common kernel exp(kolr — r’|)/|r —r’| is the Green function for this problem in the
Lorentz gauge.

4.2 From the MPIE to a linear system

In addition to the MPIE (4.7), the sourcésandp are related by the continuity equation:

ap
V-J+ — = 4.
J+8t 0 (4.8)

Charges inside the conductors’ volume, in the absence of time-varying external fields, have a
time dependence expl/7), wherer = €/(4no) is the relaxation time [74]. For good conductors,
this is of order 10'8s; consequently, it is safe to assume that, for frequencies in the range 10-
1000 GHz, with typical times periods of 1 — 10~13s, charge inside the conductors’ volume
is null. However, the same cannot be said for surface charges on the conductors, where there is
a discontinuity in the constituent relationships of the materials [75]. Therefore, we impose the
absence of volume charge distribution,

V-J =0 inside the conductors (4.9)

This condition implies a distinction must be made between surfaces of conductors that are
properly frontiers and those that are not (see Fig.4.1):

for all magnitudes.
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A
Sside 4 n

Figure 4.1: Conductors’ surfac®V) with its normal vectorsi, decomposed into two contact
surfacesSip andSyet, and one non-contact surfagige composed of four faces (right); these
surfaces are determined by the role their electrical placement in the circuit (left).

e Contact surfaces which represent the terminations of the conductors, and are surrounded
by conducting material, so that they aréeetively in the interior of the conductor; they
do not support charge distribution, and they allow for normal current distribution on both
sides; in a circuit representation, these surfaces correspond to the ports, where external
conditions are imposed, either in the form of voltage or current sources, or as continuity
from other conductors;

#(r) = ¢s; on conductorscontact surfaces (4.10)

e Non-contact surfaces on the other hand, are those that face non-conducting material,
or materials with very low conductivity; these surfaces contain non-zero charge distribu-
tions; the value of this surface charge is not arbitrary: due to the congitio® inside
the conductor, it is related to the normal component of the current; thus the charge distri-
butions in (4.7b) are in fact surface distributions given by,

J-fi = jwp onconductorsnon- contact surfaces (4.12)

In order to approximate a solution to (4.7a) and (4.7b), we adopt the Galerkin method of
moments. This is a standard procedure whereby an integral equation is transformed into a linear
system [76].

The first step consists in expanding the vector current dedstyd surface charge density
p, in terms of two sets of functions;(r),i = 1...n, defined on the conductors volumes, and
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vj(r), ] = 1...ns defined on the conductors’ surfaces,

Ny

Iy~ D wi(r) rev (4.12a)
=1
Ns

p(r) ~ Z q;vj(r) I' € Snon-contact (4.12b)
=1

To determine the cdicientsl; andq; for these expansions, (4.12) is replaced into (4.7a)
and (4.7b). Orthogonality between the residual of this replacement and the basis functions
is imposed. These constraints on the inner products with), 1 < i < n, for (4.7a), and
vj(r), 1< j < nsfor (4.7b), are represented byN& linear system, wittN = ny + ng:

R+JwL0} ('] _ [—<W’V¢>] b (4.13)

with the matrix elements given by:

Rj = gfwi*(r)-wj(r)dsr (4.14a)
\%
. _ Mo gy (€T s
Lij = 4ﬂffw. (rw;(r) T d’r dr (4.14Db)
vV Vv
1 , g ikolr—r’] ,
Py = Eff\f;(r i) S ofr (4.14c)
S S

and the subindices j ranging from 1 ta,, in the first two lines, and from, + 1 to N in the last

one. The volumé/ is the union of all the conductors’ volumes, wher&ais the set of all the
conductors’ non-contact surfaces. The inner products appearing on the right hand side (rhs) of
(4.13) are given by:

<w,Vé> = | Vo-wd i=1.n (4.15a)

<Vi, > ovid’r  i=ny+1.N (4.15b)

0o— <~—

The dfectiveness of the method will be assessed by the level of precision obtained in using
a relatively small number of functions for each conductor, as well as theuly associated
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with computing (4.14).

4.2.1 Quasi-static approximation

The linear system in (4.13) is coupled through its right-hand-side (rhs). In computational elec-
tromagnetics, there is a standard framework known as the quasistatic (QS) limit [77], whose
main characteristic is the decoupling of charges and currents in the description of the system.
In terms of the unknowng;, |; for the expansion (4.12), this means splitting the two blocks in
(4.13), and solving two dlierent subproblems: the electroquasistatic (EQS) and magnetoqua-
sistatic (MQS). In Table 4.2, we list the main ingredients of each of these type of problems, as
well as their relationship to the solution of (4.13).

Table 4.2: Electroquasistatic (EQS) and Magneto-quasi-static (MQS) approximations and rela-
tionship to linear system in (4.13)

EQS MQS
Principal quantities E,p H,J
Approximation VXE=0 VxH=]
Typical time scale Te = €/0 Tm = pod?
Example tool FastCap FastHenry
Unknowns g in (4.12b) li in (4.12a)
System matrix Second block in (4.13) First block in (4.13)
Boundary conditions ¢ = const A¢ = Viop — Vot
Output Capacitanceé Resistanc®, inductance.

Once these two incomplete problems have been solved, meaningful quantities (e.g., volt-
ages, currents, noise, delay, etc.) are obtained through a circuit representation iniRlving
andC elements. Thus, in the QS approach, the coupling is carried out, at a later phase, by a
tool that is independent of the solvers. Relating to the general flow in Fig. 1.1 described in the
Introduction, this means that tlL parameters on one side, and G@arameters on the other,
are independent of each other until the process of either model order reduction or simulation.

Under which conditions is this decomposition valid? The answer to this question is problem
dependent; there is no general rule that can be applied to every problem.

Physically, we must analyze thefidirent time scales involved in the problem. For EQS
fields, these are given by the charge relaxation &g ¢/0; for MQS, the characteristic times
result from solutions to diusion equation for currents in a conductgf, = ,uO'dz, whered is a
typical dimension of the system [77]. The two problems can be treated independently as long as
both of these time scales are small compared to the time scales for full electromagnetic fields,
Tem = 1/w. In other words, as long as it is valid to consider the sources of the “other” problem
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as stationary, we may neglect their time derivatives (see second line in Table 4.2). Thus, the
quasi-static assumption is a highr/ low frequency regime.

Conditions of validity for the QS decomposition can also be analyzed in terms of length
scales, related to the essentiglelience between the two boundary conditions in the MQS and
EQS problems (see Table 4.2). As long as the dimensions of these two problems are electrically
small, these dierences are not relevant in the results of the simulation. Quantitatively, electri-
cally small refers to the typical spacial variations for electromagnetic fields in the surrounding
mediunt?, of orderd. Here, the quasistatic assumption is a short-conductor, or long-wavelength,
limit.

Within this nearly infinite wavelength approximatians ¢ (with ¢ the conductor’s length)
it is admissible to replace the phase factors by 1 inside the integrals in (4.14), an assumption
that is very practical in terms of computational cost (see following Chapter).

4.2.2 RLCmixed representation

For the coupledrLC extraction method, valid over a wider regime of length and frequencies,
the coupling between (4.7a) and (4.7b) must be kept. Our goal in this section is to reduce
the dimensionality of the linear system on (4.13) and express the unknowns solely in terms of
currents. To thisfect, we rewrite the linear system using Green'’s theorem:

#F-ﬁd2r=—fV-Fd3r (4.16)

S(Vi) Vi
with S(V;) a closed surface that encloses volutiga single conductor) and we use it Bn=
¢w;. We then use the identify - (¢u) = u- V¢ + (V - u)¢ to obtain,

#(wi* -A)g dr + fwi* V¢ dr + f(v W) d*r =0 (4.17)
S(Vi) Vi Vi

We use divergence-free functiowg as demanded by the continuity equation inside the vol-
ume, thus the lasttermin (4.17) vanishes. The first integral in the last expression is decomposed
into integrals over the two contact surfacgp, Spot plus the integral over the side walige
(non-contact surfaces, see Fig.4.1). On the side walls, we adopt the following choigédor
describe the surface charge distribution functions:

~

Vi=w;-N On side faceSsige (4.18)

3Inside the conductors, the length scales are given by the decay ofdigt@sts in the interior, and the distribu-
tion of charges on the surface; the first one is given by the skin defstbe (4.21)) and the second one depends on
the shape of the surface. The capacity to capture these scales depends on the precision level for the solution of each
of the decomposed problenRI{andC), and not on the QS decomposition itself.
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resulting inn, = ngand

f w;%v¢d3r+z f Vipdr = f (wi - A)g d?r + f (wi - A)g dr (4.19)
Vi

Sldesssidei Stopi Shot;

The left hand side on this last expression is the sum of the two right hand sides of (4.13),
which we replace by the respective left hand sides.

Consistency between the continuity conditions (4.9)-(4.11) and this choice of fungtions
in (4.18) implies that the valuas in the solution must be such thabg; = I;.

As to the rhs of (4.19), the factorg - A act as weights for the average potential on each
contact surface. On each of these, we identify the average potential with the excitation voltage
on that end of the conductor. Between the two terms in the rhs of (4.19), therdiisramte of
sign given by the orientation of the normal vectors (see Fig.4.1); there also is a factor identical to
thez—dependencé; (2) of thezcomponent for the functiow;(r). Thus we obtain the following

equation for the system:
. P .

with (AV); = f(&)Vs, — fi(0)Vo, (4.20)

with the size of the system beimgx n. This equation, with the matrix elements defined in
(4.14), is the basis of theLC formulation for extraction.

4.3 Definition of conduction mode functions

The conduction modes are eigenfunctions of the homogeneous vector Helmholtz equation that
the current density satisfies inside the conductors.

(V2 +x2)I(r) =0 (4.21)

' 2
ith =42+~ 6= |——
wi K kG + 52 oo
where we have introduced the skin deptiwhich is the fundamental length scale for penetration
currents and fields inside a conductor [46, 74]. We emphasize its frequency deperddence,

f-1/2: fields penetrate less as frequency is increases.
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Equation (4.21) is the flierential form of (4.7). We will now introduce solutions to this
equation, and the conditions that must be imposed on them, that constitute the expansion func-
tions for the conduction modes formalism. We distinguish betweerRthepecial case, pre-
sented in [32], and thRLC general one, which we have presented in [33].

4.3.1 RLfunctions

In the RL version of conduction modes [32], currents are assumed to be unidimensional, with
their spacial variation independent of the current direction. In other words:

J(r) = I(xy)2 (4.22)

Furthermore, this method is developed underM@S hypothesis, in which it is valid to
decouple theRL andC problems; for its validity Anmin > ¢ <= kod < 1 must hold for
all dimensiondl in the problem. This last condition allows for settikgg= 0 in the integrals
(4.14b), thus simplifying enormously their computation (details of this procedure are the subject
of the following chapter).

TheRL conduction mode eigenfunctions of (4.21) are:

oA e [ CX)HB-W]if r eV,
wi(r) = ' (4.23)
else
with
21\? 1+ 2

and x;, y; indicate the corner, on the cross section, from which the conduction mode decays.
Sinces < A, one can negletthe first term in the rhs of (4.24). For the rhs of (4.13), the above
assumptions lead to:
< W, Vo >= fa(g—(zz)w{‘(x, y)dr = f%dz = ¢(L) — ¢(0) = AV (4.25)
Vi Vi
with the normalizationfwi(x, y)dxdy = 1 over the cross section of the conductor. Either
or B can be zero, in which case we speak of a side mode. In Fig. 4.2 we show the current
distributions for a corner conduction mode.
Although (4.24) allows for an infinite number of solutions, the purpose of this method is
to show that using only a few is flicient to accurately represent current redistributions. The
author in [16] obtains the same accuracy, Rir effects in the regime of small penetration

“For the 10-100 GHz range, and typical materials in themmto cmscale, and is of order um.
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Figure 4.2: Distribution of currents for a cornet conduction mode, for a wire of dimensions

1u x 1u x 50u and the frequencies such that the skin depth is larger, comparable and smaller
than the cross-sectional dimensions (color scale is normalized so that the maximum of current
is 1 for each frequency).

freq=100 GHz
(3=0.21)
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using 3 modes per conductor, as the one obtained with 252 filaments. In this senRé, the
conduction modes is arfficient replacement for filament-based methods like FastHenry, which
adopt the same conditions (4.22).

4.3.2 RLCfunctions

For the coupledRLC problem, we use a larger set of eigenfunctions to the vector Helmholtz
equation, as compared to tRd case of the previous section. Given that the equation separates
in cartesian coordinates the extension is straightforward:

% R S\alai(x=x)+Bi(y-y)l+ni(z-z)  j
ayiX + + az2)e if reVy
Wi(r) = (axiX + ayiy + azi2) n (4.26)
else
with
om\? (14 )2
a?+ it =— (—) + (L) (4.27)
A 0
Enforcing the continuity condition (4.9) leads to,
axi@i + &ifi + &ini = 0 (4.28)
This last condition restricts the spatial direction for basis functigns
11 2 1 1
ag,avi,ai) =A==, -=]+B|=,-=, 4.29
(axi, ayi, azi) = A (ai B ni) I(a’i : ) ( )

for arbitraryA;, B; complex numbers.

The direction of the second vector in the rhs of (4.29) represents solutions with no current
flow along thez axis, direction of the applied gradient of the potential. These solutions carry no
net charge, and represent redistribution of currents along the cross section of a conductor. We
neglect their contribution, and keep only a vector that is perpendicula. to it

We thus determine thHeLC conduction modes, up to an arbitrary normalization congant
In order to normalize the basis functions, we impose that the total current entering the conductor
at the bottom face be represented as the sum of all théaeats in (4.12) corresponding to
that conductof conductor k= D.ick li-

This choice fixes the arbitrary constant remaining in (4.29) :

(axi» ayi» azi) = (em\,;yi_ 1)(6&(?_ 1)(]62727@’ jdzgi'gi , 1) (4.30)

SAn analysis of the significance of this assumption is left for Section 6.4, in which we discuss limitations and
possible extensions of our present formulation.



4 .4.RLCconduction modes and TEM waves 87

with w; andh;, the width and thickness of the conductor, respectively. In general, a conduction
mode will have bothy;,8; # 0, and we will refer to it as a corner mode. If one of these
parameters is zero, we will call it a side mode, as inRiecase. If, for exampleg; = 0O,
then the first fraction in the expression above should be replacaqjoy_ikewise, the second
fraction is replaced bhi‘l (ai andB; cannot both be zero due to (4.24)).

For every current conduction mode, there is a corresponding surface charge functjon
computed using (4.18).

4.4 RLCconduction modes and TEM waves

In many applications, we are concerned with the problem of extra®in@ parameters for
configurations that are long wires with electrically small cross-sectional dimensions. These
type of structures are found, for example, in clock-tree designs [5, 78]. The parameters we
extract will often be used in transmission line (TL) models, or else in a distributed lumped
model approximation to TL. We refer to these long (comparable to a wavelength) and thin (of
the order of the skin depth) structures as TL-like structures. In this section, we discuss which
values of conduction mode parameters are compatible with this description.

441 TEM fields and transmission line behavior

Transverse Electromagnetic (TEM) waves are the dominant propagation of fields, for transmis-
sion line structures [79]. The main characteristic of these waves is that the electric and magnetic
components of the field lie in the plane orthogonal to the direction of propagation, and are
orthogonal to each other [46]. TEM propagation relies on the following assumptions [4]:

1. wires are perfect conductors;
2. very long wires, with symmetry along the corresponding axis;
3. homogeneous medium surrounding the conductors;

4. small transverse dimensions;

Variations from these conditions induce non-TEM modes; analytical studies of these high-
order terms are found in [80—83]. For the TL-like structures defined above, conditions 1 and 2
are met approximately, whereas we assume 3 and 4 to be valid. Therefore we expect to have
quasi-TEM behavior for the waves in the medium. In chapter 6, we will discuss the necessary
amendments to our formulation in order to capture non-quasi-TEM responses.
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Figure 4.3: Geometry for the analysis of fields at the boundary between conducting and non-
conducting media (non-contact surfaces).

In the TEM treatment of transmission lines, the conditions above simplify the relationship
between the capacitance and inductance matrix, sdihg (ue)™! = ¢2. In fact, the perfect-
conductor assumption must be dropped, in order to allow for bounded currents to flow along
the zaxis. Physical contradictions are avoided by includingadrhoc(small) resistance-per-
unit length to describe ohmic losses, but neglecting thecethat these voltage drops have in
“bending” the fields. Refer to the discussion on pp 28-9 and 46 of [4], and references therein,
for a detailed discussion of the assumptions of transmission line analysis.

4.4.2 Boundary conditions for conduction modes

In any integral method-of-moments approach, EM waves in the medium are not explicitly mod-
eled. Instead, these are determined by the boundary conditions on the non-contact surfaces. To
compute the normal component of the fields at the boundaries of the medium surrounding the
conductors, consider an infinitesimally small cylinder on the frontier, use Maxwell’s divergence
laws and Gauss’s theorem, in order to relate the flux of the fields through the cylinder’s lids with
the charge inside the cylinder 4.3a; for the tangential components, a similar procedure is carried
out for a small rectangle, using Maxwell’s curl laws and Stokes’ theorem 4.3b.

(D(out) _ D(in)) ‘A =p (E(out) _ E(in)) <xfA=0
(BOW-BMM).A=0  (HOW-HM)xh=K (4.31)
whereriis the unit normal vector pointing from the conductor into the medium cadK is

the superficial charge and current at the discontinuity, respectively.
The tangential component of the electric field is continuous,
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g _ g _ M (4.32)
I I o
On the other hand, the normal componenEdfas a discontinuity due to the surface charge

distribution. Assuming there is no changeciacross the surface,

ESI_I’]) = O-_IWL

ECW = 2ol (4.33)

€

As to the magnetic inductioB, all components are continuous across the non-contact sur-
face, since the modes in our model are volume currents, and not superficial
4.4.3 Conduction mode parameters and quasi-TEM fields

In [33], we presented an implementation of ReC conduction mode formalism. Therein, we
adopted a particular choice of modes:

o +_27r
n = _J_/l
1+ 2
%ﬂf:(jr) (4.34)

From a practical point of view, when selectingB, n in (4.27) we no longer neglect the
(27/2)? term in the rhs, as was done in (4.24) BRL/MQS, since we are modeling dimen-
sions comparable with the wavelengthWe associate the scale in (4.34) with the depen-
dence. This particular choice stems from the observation that for realistic configurations, the
wire length is the only length scale that can be comparable to the wavelength, while the wire
cross sections are much smaller tlamakingA-sensitivity inx or y unnoticeable.

The resulting picture is: we represent #@rder exponential current crowding, common
to the RL conduction modes, along the current cross-sectional dimensions; and a sinusoidal
A-order wave traveling on theaxis (the diferent signs in (4.34) correspond to forward- and
backward-traveling waves). A schematic of these functions is shown in Fig. 4.4.

We will now show that, for this particular choice at,(3,7), the fields at the boundaries
of the conductors are quasi-TEM. In other words, we want to analyze the ratios of the electric
E©U) and magneti¢i @Y fields on the non-conducting side of the surface in Fig. 4.3

6Surface currents exist for the limiting case— oo (or w — ), in whichs — 0; for real situations, there is a
sharp exponential attenuation of the volumetric currents inside the conductor, over a length §céiles & small
enough, this can be viewed as an equivalent surface cl€egnt fJ dn, leading to a discontinuity in the tangential
magnetic field [46]. These deviations from perfect conductivity are precisely the object of the CM model.
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Figure 4.4: Distribution of currents for a corrRLC conduction mode, for a wire of dimensions

1u x 1ux 150Qu and at frequencies such that the skin depth is larger, comparable and smaller
than the cross-sectional dimensions (color scale is normalized so that the maximum of current
is 1 for each frequency).
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Consider, without loss of generality, the non-contact surface along perpendicularxto the
direction,f = X, so that in the medium neighboring the conductors:

W.
Ez|§?:lg) = ;Z
(up) Wy_ j6217,8wz_ 0\ Wy
Bl = o=t o)
2 1 P
ctet 2% (2 D (ool wom
x= € O we o A 0l o

where we have used our choice of modes (4.34) in order to express the order-of-magnitude of
the Ey andEy fields. Given thafl > ¢, we can say that

E(out)

E
o | = z__ |- o(%) <1 (4.36)
Etrans \JEZ + E)2,

i.e., the TEM conditions are nearly satisfied.

The longitudinal magnetic fieltH, vanishes inside the conductor, independently of the
choice (4.34). This can be seen by taking the curl of the electric field, which is proportional
to the currentv in (4.30),

g(n = K (v X "—") _ @I+ o) (4.37)
w o 2wo T '

Given the continuity of the magnetic field at the non-contact surfBES’ét,) must also van-
ish. This states that the small non-TEMeets modeled with the present formalism are in fact
transverse electric (TE) modes. For perfect conductorsi-thick current distribution reduces
to a superficial curreri (see footnote page 89 and inset Fig.4.3). Then there is a jump in the
tangential magnetic field which is mainly orientedygiecause thK runs mainly on the axis
(Wz > wy).

Variations from (4.34) for the choice of conduction mode parameters are discussed in Sec-
tion 6.4. Basically, more modes introduce degrees of freedom which are expected to be negligi-
ble for transmission line type of configurations.

Another important issue is the choice@fandg for any given geometry. It is evident that
the second line in (4.34) has an infinite number of solutions. For every conductor, there are four
side modes, as well as a continuum of corner modes. Our aim is to choose a subset of these
solutions such that they capture the behavior of currents and charges in the conductors. The
number of modes in this subset is a tradebetween precision and performance. We will show
that four side modes, and eventually four corner modes 4tal® stiicient for a variety of
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Figure 4.5: Diferent solution schemes forftlirent types of problems: (a) admittance matrix
calculation; (b) shorted transmission line; (c) serial circuit.

=

configurations.

45 Solvers

We now consider the rhs of equation (4.20). In Section 4.2.2 this array is defined as the dif-
ference between the average potential, multiplied by a factor representingéipendence, on
each contact surface. For the quasi-TEM modes of (4.34), this factor is a phasgkg®p(

For a given geometry, the rhs of this equation contains the information on how the wires are
connected. As such, we could say that the "circuit analysis” is contained in the rhs. We will
discuss, in the first subsection, how to obtain the most general information available, which is
the admittance matrix among the wires. In most cases, the interest is to obtain a reduced amount
of information. The other subsections will focus on two such cases. Similar approaches to the
ones exposed therein, can be adopted for any particular circuit topology. A general treatment
demands implementation of nodal or mesh analysis, as in FastHenry or FastMaxwell..

For matrix solvers, we use standard LU Decomposition adapting the algorithm in [84] to
complex algebra. We recall that the main feature of the conduction modes method is that of
producing representations significantly smaller, and with the same modeling capacity, than the
piecewise-constant counterparts. In this sense, the choice of matrix solver is not a critical one:
savings result from having smaller systems for the same problem.

In the examples analyzed, solving the linear system entails a cost no larger than 1% of the
total. The main component of computation cost is always in the filling of the matrix, a subject
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that will be thoroughly analyzed in the next two chapters.

45.1 Admittance matrix

In the most general case, we are interested in obtaining the admittance ¥hatex ann x n

array withn the number of conductors, representing the electromagnetic interaction between
conductors. The elemen¥y are defined as the current on condudtevhen conductok is
subject to a unitary voltage drop and all others are grounded at both ends:

Y= > 10 10=zBW, g0 LooTreconde, ag
p € cond 0 else
whereZZ is the conduction modes matrix, given by the first block of (4.13)RbfrMQS, and
by (4.20) forRLC.

From the admittance matrix, all relevant magnitudes (impedance, S-parameters, etc.) can be
computed through elementary circuit theory. For example, ifkilyM QS implementation, the
currents at both ends of a conductor are identical, and we can refer unequivocally to the current
along a conductor. In this case, the impedance matrix is,

Z(MQs) _ (y(MQS))‘l

In words, the elementj is the total current on conduct&mwhen conductor is excited by
a voltage source between its contact surfaces, and all the others are grounded at both ends (see
Fig. 4.5a). For th&RLC problem, currents at opposite ends do not coincide, so that both input
and output admittangiempedance matrices can be defined, according to whether the currents are
excitations are considered at the near or the far end. The currents at the far end are multiplied
by the f;(¢), representing the- dependence of the conductions modes (see eq.(4.20)).

45.2 Shorted transmission line

Now we study a commonly encountered situation in extraction, namely a configuration as in
a bundle (see Section 272)n which then wires are composed of one signal wire ptus 1
return paths, such that all wires are shorted at the far end, the return paths are shorted at the
near end, and the source is placed between this node and the near end of the signal. For quasi-
TEM conduction modes, this kind of configuration represents a shorted transmission line, as in
Fig.4.5b.

The impedance of this shorted circuit is definedvaglin, with I;, the total current at the
shorted (far) end of the signal aMd is the amplitude of the voltage source at the open (near)

“In Sec. 2.2, we considered tiRL version of bundles; the only flerence forRLC is that the currents are not
constant along theaxis.
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end. We point out that there exist a plethora dfatient magnitudes to be computed, according
to how the conductors and source(s) are connected, as well as the location of the ports (i.e.,
where are the currents to be extracted). We show the example of the shorted T-line, as it is a
common case in the literature, but a scheme similar to the one exposed in this section can be
effortlessly devised for any arbitrary circuit.

In this case, we havll + 1 unknowns, given by thBl conduction mode currents, plus the
unknown potentiaV/; at the far end. The extra equation is Kir¢he law at the far end,

N
> =g (4.39)
i=1

Although this solution can be computed from the impedance matrices in the previous sec-
tion, it is more dficient to write a specific system for this circuit,

1 if i €con
ZI = vgBUa0 _y glrean,  glfa) _gni; - gnean _ ¢ (4.40)
0 else

Thus, we can solve two systems (as opposexlifave were to generate the whole impedance
matrix) with the same matrig, and then impose the Kircliccondition:

(far) _ —~-1p(far)

=278 SN | (fan

i=1"i

—ZN I(near)VO (4.412)
i=1"i

|(nean _ -1pg(nea) = Vi =
IERVATGOIRVATCEY

OnceV; is determined, we obtain the curremtsenabling us to determine the total current
for any conductor.

This kind of solution scheme, translated to Re/MQS domain, is precisely what is re-
ferred to in Section 2.2 for solving the self inductance of a bundle, (2.12), and obtaining the
codficients in (2.13) proportional to the participation of each return wire in the total current.

4.5.3 Serial circuit/ inductors

Another particular case of interest is that where all conductors form a serial circuit, as in an
intentional inductor. Again, this example can be computed from the admittance matrices in
Section 4.5.1, but this would imply the solution and storage of unwanted quantities.

As in the previous case, we concentrate on the input impedance, i.e. thegAtio where
now li, represents the current at the open end of the first segment of the inductor.

For an inductor, we have to impose a Kir¢hiaw (4.39) at each node of the inductor. The
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voltages of all the intermediate nodes are the added unknowns (see Fig.4.5c). In each node with

voltageV;, we must cancel the right curreriﬁight) of the previous segment with the left current

Ii(lrelft) of the following segment. Each of these currents is the sum of the contributions of all the

modes for that segment. For segmerthe chargey on its non-contact surfaces results from

the displacement curreq@isr’), which is the diference between the longitudinal currents at the

two extremesjwg; = 11099 = | 9" _ (€70

We avoid the tedious algebra and give a recipe to solve this problem:

1. Solve, foreack=0,1,..,n

grti if i e cond
_ . KW _ .
H® = Zz-1B®; BW =41 if i €condu1 (4.42)

0 else

2. Construct the matrice’s, C € C™",

Ak= >, HY:  Cik= > Hemm (4.43)

me cond me cond

fori,k = 1,..,n, as well as the vectotkandK which correspond to settirig= 0 in the
above definitions,

Ji = Ao; Ki = Cio (4.44)

3. Define the incidence matrM € R™*" whose elements are given My = 6;_1x%, and
use this matrix to construct,

Y = [E4/C - MA] e C™" (4.45)
with E; the first column of the identity matrix.

4. Solve the matrix equation,

YV = —(C - MA) (4.46)

whereV e C"is a vector whose first elementys, the left current entering segment 1,
and the rest of the elements are the voltages of the intermediate Node¥,,1,i = 2,..n.

86 here represents the Kronecker symbol, equal td £ik, and 0 if they are dierent.
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5. Obtain the closed-end input impedance of the inductor:

1.1 (4.47)
Yin V1
The above procedure can be trivially modified if we wish to compute other magnitudes, e.qg.
open-ended impedance, or output instead of input impedance. With this recipe, we are able to
account forRLC effects for inductors, with a cost of solvingsystems with the same matrix
of sizeN (i.e., we need only repeat the back-substitution, and not the decompaosition), plus one
more solve of size.

4.6 Code organization: global structure

Development of the algorithm for the methods exposed in this chapter has been theffodjor e
of the present work. Although this code has undergone sevéralelit iterations, it has always
maintained the structure shown in the flowchart in Fig.4.6.

The components of this code are:

e Input: we can either run the tool as a stand-alone or integrated into the CalibyglxRC
family; in either case, we receive information on the geometry of the wires (widths,
lengths, thicknesses, and relative positions); and the electrical parameters (frequency,
conductivitieso, electrical permittivities, magnetic permeabilities).

e Setup: the method begins by determining which conduction modes are to be created; and
allocating space, establishing magnitudes which will be used throughout (e.g. reading or
calculating the Gaussian quadratures).

e Matrix calculation: this is the most intensive part of the calculation, in which we construct
the Z matrix for the conduction modes; in this flow we only sketch the loops involved,
and refer to next chapter for details on this calculation (see Figs.5.7,5.8).

e Solve: the final step is solving the system, as shown in Section 4.5, in order to determine
the conduction mode current and thus the electrical parameters; for this step, we need fur-
ther information concerning the interconnections among wires (i.e. how is the underlying
circuit), as well as which are the ports (i.e. where are the currents to be modeled).

All the code was developed in4G-, using complex arithmetic. For the numerical integra-
tions we have developed fast anig@ent methods specific for the conduction modes applica-
tions (see Section 5.6); these coexist, and can be used alternatively, with adapted algorithms
contained in [84] and [85].
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Figure 4.6: Conduction modes flow.
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4.7 Examples

In this section, we will show diierent situations in which theLC conduction modes formalism

is capable of rendering accurate magnitudes, showing a significant reduction in size. These
examples evidence the capacity of the method to capture resonances: in the first case we study a
shorted transmission line composed of two copper wires; then we switch to a more complicated
example, consisting of a square three-turn intentional inductor.

e Fastimp used in the fullwave mode [10]

e Numerical solution of circuits with parameters obtained via sep&ht@ndC computa-
tions under quasistatic conditions.

The examples in the section were included in the presentation of this work at [33]. We do
not discuss in this section the runtimes involved, because at this stage, some featur&d.@f the
method are at a development phase. One such feature is the optimal calculation of the matrix
elements for theZ matrix in (4.20). This kind of optimization strategy has been developed in
full detail for theRL case, and is the subject of the following chapter. Extensions t& L
case, though straightforward, are lengthy. Some aspects of this generalization are discussed in
Chapter 6. For the interest of the present section, fiicas to say that the runtime involved in
the following examples are unrealistically of the same order as the other methods.

4.7.1 Shorted transmission line

Our first example is drawn from [72], consisting of tWa wires Smmlong, of cross sections

10u x 4Qu, separated by a distance ofid Ghorted at the far end, and with an input excitation

V, at the near end (Fig.4.7). The solution of this system in terni®ld? conduction modes is
explained in Section 4.5.2. We employ 16 modes per conductor: 4 side plus 4 corner for each
possiblez— propagation.

Comparison against the mentioned references is standard: Fastimp contemplates a trans-
mission line option; concerning the number of panels, we varied the discretization until stable
values were reached, ak8x100 panels along width, thickness, and length, respectively. The
total number of panels is 3260.

For theRL + C representation, we resort to a W-model [52] for transmission line simulation
with per-unit-lengtiRL values tabulated atfierent frequencies. Extraction of these parameters
was carried out with FastHenry at a finex® discretization on the cross-sectlorPer-unit-

®Note: we use FastHenry without the multipole acceleration, computing direct matrix products, and therefore
avoiding a subdivision of filaments along their lengths; for these size of problem, this is the optimal use for this tool,
both in terms of size and performance. This point will be expanded upon in the following chapter.



4.7. Examples 99

7 ar)

w=10 pn 5"

=0 [ | n
n )
V()

Figure 4.7: Shorted Transmission Lines example configuration.

lengthC values stabilize with FastCap using 272 panels. Issuing from an electrostatics solution,
these capacitance parameters are frequency-independent.

In Figs. 4.8 and 4.8 we compare the admittanég k), as well as the shorted currdit??,
defined in Fig. 4.7.

We observe the expected resonance peaks at frequencies multiples of quarter wave lengths.
Qualitatively, the merge®LC conduction modes model shows the correct physical behavior.
The location of the minima for the admittance is significantlifedent on Fastimp compared
to ours as well as the transmission line madfello determine this discrepancy, we turned to
LargeCom [12] from Univ.of lllinois, which confirmed our results [86]. We ignore the origin of
these discrepancies.

4.7.2 RLCinductor

Next we consider a square 3-turn inductor, with the parameters shown in Fig.4.10a. All the
wires are Cu, and we neglect substrateds.

For conduction modes, we use 8 modes per segment: 4 side modes for each sense of prop-
agation along its length. Thus the total current and charge distributions has a dimensionality of
96. These conduction modes are the entries for marix (4.20), whose elements are defined
in (4.14). The underlying circuit is shown in Fig. 4.10c, where eAalement represents the
collection of conduction modes for that segment. Solution of this model follows the recipe in
Section 4.5.3.

0This is not the case for the shorted currefif, where the discrepancies in the jumps of the argument (bottom
graph in Fig. 4.9) are due to insignificantférences for a smooth change of sign in the real part; we are using a
definition of the argument function agy(e [, n].



100 Chapter 4.RLC conduction modes formalism and examples
F [ [ E
1071 E E
107k .
Yla) F E
1073 ? =—= FastImp

E —— FastHenry+FastCap+Simulator
: } } : } : } o———= RLC Conduction modes
2 ' —
T4 — —
arg(Y) O —
—m/4 — —

|

20 20

Figure 4.8: Admittance for the shorted transmission line in Fig.4.7: modulus (top) and argument
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On the other hand, we compute a decouped+ C extraction; the corresponding circuit is
shown in Fig. 4.10b. The resistor and inductor on each segment represent in fact a collection
of piece-wise constant filaments. Since the total lengths of wires is much smaller that the wave-
length, it is sifficient to represent each segment as one branch of luRged elements. The
RL extraction is carried out with Calibre xL using 3 discretization along the cross-sections,
and capacitance is computed with FastCap. Stability was reached for 11904 panels. Solution to
this circuit is similar to the one for thRLC circuit described in Section 4.5.3, with twofldir-
ences: currents are the same at both ends of each segment; the total currents at a node do not
cancel out, the dierence representing the time-derivative of the chajge)(transferred to the
capacitors at that node. A routine for this solution is integrated into the Calibre engine [22,23].

Impedance computation for this example is shown in Fig. 4.11. Accuracy near the resonance
is remarkable. In Table 4.3 we compare the sizes of the problems solved by theffeverdi
approaché's .

Attempts to obtain stable output from Fastimp, for this example, have been unfruitful. We
have raised the number of panels along the length of each up to 400 (with a total of panels above
10°, total system size & 10°) without obtaining stable results. Again, we ignore the source of
this difficulty.

Table 4.3: Comparative sizes for théfdrent methods

Method Transmission Line Inductor
RLC Conduction Modes 32 96
Fastimp 3260 KA
RL+C+Simulator 162272 300+ 11904

4.8 Conclusions

We have presented the essence of a new simulation approach t&étGdiyllwave modeling of
conductors in terms of a small set of conduction basis functions. We have been able to capture
the interplay between the electric and magnetic energy content that gives rise to resonances,
while keeping a very concise description of the geometry. Our model resembles a transverse
electromagnetic (TEM) model with frequency dependent parameters.

1Wwe separate thRL andC contributions, since the complexity associated to each problem is ffeaatit nature;
for example, the system with more than 11000 panels in FastCap was solved very fast, as compared to comparable
sizes for FastHenry.
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Figure 4.10: (a): Example 3-turn square inductor; @I+ C circuit representation for decou-
pled extractionRLC circuit representation for fullwave extraction with conduction modes (for
the sake of clarity, in the circuits we omit the coupling elements, and we reduce one turn).
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Figure 4.11: Conduction Modes and mixRdl + C results for the square inductor example in
the vicinity of its first resonant frequency.
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We have omitted the extensive algebra associated with the detailed computation of the ma-
trix elements for the next Chapter. We also address the issues associated with the generalization,
of the method presented here, to a fullwave field solver, in Chapter 6.






Elements de matrice pour les modes de
condcution : casRL

Résune en francais

Dans ce chapitre, nous proposons une solution au probleme principal de la formulatidvh@RE

des modes de conductions, qui est celui du calcul des intégrales multidimensionnelles pour les
élements |; définis par eq4.14) La premiere partie du chapitre décrit des considérations
générales qui sont valables pour toutes les intégrales 5.2. Ici, nous réduisons la dimension-
nalité de 6 & 2.A la section 5.3, nous considérons les integrales pour la situation oti I'element
Lij de matrice correspond a deux modes du méme conducteur; fligsiltes y trouvés sont
principalement liés a une singularité intégrable présente dans le domaine d’intégration. Les
intégrales associés aux modes de conducteyférents sont analysés dans la section 5.4 ;

les complications, dans ce cas, sont plutdt liees a la grande quantité d’éléments, ainsi qu'au
manque de symétrie permettant des simplifications pour les fonctions a intégrer. Néanmoins,
I'absence de la singularité mentionnée ci-dessus permet un calculfiéace sur la base des
approximations de Taylor. Nous montrons un schéma de l'organisation des algorithmes pour
ce calcule dans la section 5.5, ce qui complete le diagramme global présenté dans le chapitre
précédent. Dans la section 5.6, nous étudions en profondeur la précisionfieatéé de nos
méthodes en fonction de ces parameétres de contrdle. En conclusion, nous analysons des exem-
ples comparatifs (sections 5.7 et 5.8), montrant une économie de deux ordres de magnitude pour
le temp de calcul, par rapport a FastHenry d’'un coté, et a I'application des modes de conduc-
tion avec des méthodes d'intégration standard de I'autre. Une version succincte de ce chapitre
a été publiee a I' ” International Symposium on Very Large Scale Integration "(ISVLSI), tenue
en mai 2007 a Porto Alegre en Brésil. Aussi, les algorithmes de ce chapitre sont en train d'étre
fusionné dans l'outil d’extraction Calibre XL chez Mentor Graphics.
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Chapter 5

Calculation of Matrix Elements for RL
Conduction Modes

In the previous chapter, we have shown how to expand sources in terms of conduction modes
basis functions, in a way that renders this method véigient in terms of size savings. How-

ever, we have purposefully avoided to comment on the runtimes. Discussion of computational
costs are also absent in the literature on conduction modes [16, 32,33, 72].

The reason for this omission is simply that, in adopting this strategy, the burden of the calcu-
lation is transfered, from the cost of having a large linear system of easily computed elements,
to that of having a much smaller system whose elements fireudti to obtain.

Matrix elements for conduction modes are the 6- and 4-dimensional integrals in (4.14). They
extend over the whole volume and surface of the conductors, and are composed of two very
distinct components: on one side, the Green function-ejqa()/r; on the other, exponential
decays of ordes for the conduction modes; andw;. This duality renders dicult a standard
numerical integration of these matrix elements.

In this chapter, we immerse ourselves precisely in these complications. We restrict ourselves
to theRL case, so that onll;; integrals are studied. Furthermore, we work within the Magneto-
Quasi-Static (MQS) approximation, whereby we are safe tkgsetO thus neglecting the phase
factor in Green’s function. The generalizations to the RILC case are treated in the next
chapter.

Chronologically, the work displayed in this chapter was developed in order to replace the
standard numerical integration methods that were incorporated into the early versions of our
general conduction modes formulation.

The first of these methods was the Monte Carlo (MC) implementation given by [87]. This
algorithm was designed for use in quantum field theory calculations, and is targeted for dimen-
sions of the order of 10 or larger, as well as situations in which little detailed information about
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the integrand is known. For our purposes, it gives a very reliable estimate of the integral values,
but its performance is far from optimal. Concerning the accypmrjormance pay®, it has a

single control parameter corresponding to the maximum number of function calls. On output,
we obtain an estimate of the error committed.

At a later stage, this component of the calculation was replaced by the so-called Adaptive
Quadrature (AQ) algorithms [85], which target integrands of lower dimensionality. The ac-
curacyperformance is controlled by either of two parameters, the maximum number of calls
andor the desired precision, which is estimated at each refinement. The drawback of AQ, with
respect to MC, is that some particular integrals have a very slow convergence rate. The number
of such occurrences is very low, and it is possible to implement the method in such a way as to
avoid a standstill in the computation, by incrementally modifying the number of calls for those
particular cases.

Both methods above belong to the class of importance sampling methods, meaning that they
must develop a heuristic in order to evaluate the integrand at the regions whereat, itsd
gradient, is peaked. Thefthrence between them relies in the way they sample the space: MC
does a stochastic sampling, whereas AQ is deterministic.

Importance sampling is the only option when we do not possess a detailed information on
the integrand. For conduction modes, this information is hidden within complicated forms for
the integrands. In a nutshell, this chapter is about how to capture and use this information for
evaluating the conduction mode integrals. We organize this chapter as follows:

e Sections 5.1 and the first part of 5.2 are devoted to exposing the general setup and consi-
derations valid for all integrals; here, we reduce the dimensionality from 6 to 2.

e Section 5.3 considers the integrals for the situation in which the matrix eldmentrre-
sponds to two modes for the same conductor; tifiécdities in this case are mainly due
to an integrable singularity in the integration domain.

e The integrals for dferent conductors are analyzed in Section 5.4; the complications, in
this case, are related to the more general geometry, but the task is enormously simplified
by the absence of the singularity mentioned above.

¢ We show a flow for the organization of the algorithms in Section 5.5, thus completing the
global diagram presented in the previous chapter.

¢ Athorough study of the precision and performance of these methods is carried out in Sec-
tion 5.6, including comparisons against the aforementioned methods for multidimensional
integration [84, 85, 87].

¢ Finally, in 5.7 we conduct examples BfL extraction, and compare the results with the
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well-established standard FastHenry [15], observing up to two order of magnitude in per-
formance gains without loss of accuracy.

A distilled version of this chapter has been published at the IEEE International Symposium
on Very Large Scale Integration (ISVLSI), held in May 2007 in Porto Alegre, Brazil. The
algorithms in this chapter are in the process of being merged into Mentor’s Calibre xL extraction
tool.

5.1 Statement of the problem

In this chapter, we concentrate on the matrix elemepteepresented in (4.14b), f&L current

modes under Magneto-Quasi-Static (MQS) conditions. This means that currents are treated
as one-dimensional, along tlzeaxis (which is defined as that of the voltage drop along the
conductor), and that the modes are independent Bhus the integrals are written'as

#Ai*Aj ffézfxmjx’wrywjy' s a,

Lij = d’r d°r 5.1

VT 4 r—r/] 1)
VoV

whereV, V’ refer to the volumes of two conductors whiland j, refer to CM modes, and
are the normalization constant for the conduction modes, defined in Section 4.3.1.

This matrixL is clearly hermitian, hence onl(N + 1)/2 of the totalN? integrals need to
be computed, withN the total number of degrees of freeddin= mn n andm the number of
conductors and the number of modes per conductor, respectively.

A natural classification of these integrals corresponds to whether the two conduction modes
belong to the same orfiierent conductors. Either case has particular characteristics that favor
distinct integration techniques; on broad terms, these are:

¢ When both volumes cover the same conductor, there is a higher degree of symmetry, so
that fewer terms need to be computed; for these integrals, the integration domain contains
an integrable singularity at zero separation which demands special attention.

e When bothV, V’ refer to diferent conductors, the integrand is non-singular and smooth
within the full integration domain, thus permitting the use of Taylor expansions, which
reduce significantly the cost of evaluating the integral.

In a typical multi-conductor configuration, the numiéy,meof same-conductor matrix el-
ements is much smaller than the one fdfetient conductord)\gis: for n conductors withm
the number of conduction modes per conductor, there.amesame-conductor elements while

For the expressions in this chapter we shorten the notation by omitting the border fastréi#, which are
simply a factor common to the whole integral.



110 Chapter 5. Conduction Modes Matrix Elements:RL case

(n? — n).n? different-conductor ones. Due to hermiticity, the number of integrals that must be
computed reduces to:

1
Nsame = é(mz + m)n

Naity = (0~ ). (5.2)

It has been shown empirically [16] thatvalues can reasonably be assumed to be indepen-
dent ofn, and small; thudg;s ¢ is significantly larger thaisame The quadratic growth dfly;s ¢
with n is the dominant contributions for configurations containing three or more conductors.
Furthermore, symmetries further reduce the number of independent contributiNggto
(see Fig.5.1):

e For a conductor containing four side modes, only 5 integrals (out of 10) need to be com-
puted, namely: (E,E) (E,W) (N,N) (N,S) (E,N)

e For a conductor containing four corner modes of equal angles, only 4 integrals (out of 10)
need to be computed, namely: (NE,NE) (NE,NW) (NE,SE) (NE,SW)

e For a conductor containing four side modes and four corner modes, only 4 mixed integrals
(out of 16) need to be computed, namely: (E,NE) (E,NW) (N,NE) (N,SE)

We will first discuss some general aspects of our integration strategy applicable to both
domains, to be followed by a detailed analysis that relies on the above mentioned classification.

5.2 General considerations

The first and obvious simplification results from the observation that, except for the exponentials
representing each conduction mode, the variables enter in the combiratighy -y, z- 7
contained in the Green function for this system. Therefore, we apply the change of variables
shown in Fig.5.2:

r.=r-r’

ry=r+r’
{ (5.3)

with r = (X, ¥, 2); the Jacobian for each dimension j2 1giving a total factor of B.
In the new variables, the integrals over,y,, z, are performed analytically:

w h ¢
Ly = Ny ffffx(x—)fy(ry—)fz(L)dx_ dy_ dz. (5.4)

“wilh Ze
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with r = /(X + X0)2 + (Y- + Y0)? + (Z + 20)? and the functiongyy,, are the result of the ana-
Iytical integrals inx,, Yy, Z;; X is the separation between the two left extremes of each conduc-
tor (without loss of generality, we assume the conductor wit primed variables to be located at
the origin, see Fig.5.2), ang, zp are the corresponding values for the other axes. In (5.4), we
have also defined the proportionality consthint = ’%

Functionséyy,, act as weight functions for the integration of thé Coulomb kernel over
the relative (“-") variables. In order to illustrate the variety of weight functions, according to
each possible pair of conduction modes, we illustrate on th& tagiable:

W+ W — X —|X= X if & +aj=0
Ex(X) = . N (5.5)
(af + a/j)_l (yle"i X+ yge‘“JX) if o +aj#0
with x; = w—w, and the piecewise-constant functiéns
y1 = IV Q(x; — X) — O(X)
yp = UV — X1) — O(=X) (5.6)

For the&y(y) weight function« is replaced by andxo, x; by yo,y1 = h—h’. Since we are
within the MQS regime, thez—integral can be done analytically leading to:

+w +h

Lij = Njj f f Ex(XEy(Y) F (o(X + X0, Y + Yo)) dx dy (5.7)

—wW _h/

wherep(x,y) = +/x2+Yy2 andF(p) is a cumbersome expression, which in the case of both
conductors sharing the-extension (i.ezp = 0;¢ = ¢'), is

Fe= f(sinh‘l (g) — /14 ’2—2 + %f] (5.8)

with ¢ the common length of the conductors. In the general case it is a combination of four of
these expressions evaluated for foufetient lengths [55]:

1
F=3 [Fizo+el + Fizo—e1 = Fizol = Fizge-e1] (5.9)

with the same notation as the one foiFig. 5.2, replacingy < zg,w & £, W < £,
We are left with two dimensional integrals, which we classify according to tiferdnt

1 ifx>0

) , the Heaviside step function.
0 ifx<O

2Wemaxms{
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weight functions. Each conduction mode can either be a “corner” (ghe 0: e.g. theSW,

SE NE or NWin Fig. 5.1) or a “side” mode (only one non-zero exponential compongent:

N, S or W). Therefore, any integral can contain 0,1 or 2 exponential decays along each of the
cross-sectional dimensions. The integrals belong to the following types (see Fig. 5.3):

[H,V] (or[V,H]): One horizontal side mode and one vertical side mode, the corresponding inte-
gral has one exponentially decaying contribution along each integration axis.

[H,H] (or[V,V]): Two horizontal (or vertical), the integral has two exponentially decaying con-
tributions along one axis, and none along the other.

[H,C] (or[C,H] [V,C][C,V] ): One corner mode and one side mode (in any combination), the
integral has two exponentially decaying contributions along one axis, and one along the
other.

[C,C] : Two corner modes, the integral has two exponentially decaying contributions along each
axis.

For any of the two integration variablespr y, the number of exponentially decaying func-
tions on that variable classifies the contribution of this integration variable to the total integral.
Rearranging expressions in (5.5), we can decompose each integral into terms that have a def-
inite behavior (exponential or linear) along each axis. In Table 5.1, we show a representative
set identifying the dimensions of thefiirent sub- domains for each type of integral described
above.

Table 5.1: Decomposition of the total integration domain into exponeriga(d linear ()
contributions along the x and y integration coordinates (&g:L is exponential in X, linear in
y), for different types of integrals.

Type | E-E|L-E|E-L|L-L

HV] | v
HH | -
[V.V]
[H.C]
[V.C]
[C.C]

&

U
U T N
NG

This decomposition permits us to apply appropriate methods of integration according to the
functional behavior of the integrand, as well as the integration domain.
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Figure 5.3: Examples of total weight functiotigty(x,y) (3-d plots); and the corresponding
separaté&,(x) andéy(y) (2-d plots) for diterent types of integrals.
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5.3 Same-conductor integrals

For matrix elements between two modes belonging to the same conductor, we kayg= 0
andw = w, h = . Therefore, the integration domain simplifiesta [0, w];y € [0, h].
The expression for the—weight function in this interval is,

(5.10)

X =

_ |2 (sinh@jx - t) + sinh@;x 1)) if of +aj %0
2w - x) if of +aj=0

wheret = (o] + aj)w/2; analogous expressions hold fgr

5.3.1 Exponential decaysE-type contributions

When botho}', o # 0, the expression on the first line of (5.10) is a sum of two or four decaying
exponentials. In particular, fgH,H] type integrals, we have

; 2 cos(%)(e75 - e o if & = q (5.1
X = Wex . .

2j sin(%*) (7% + &%) if o = —of

Here the first line corresponds to two modes decaying from the same side, i.e. (E,E) or
(W,W); while the second one is for modes decaying from opposite sides, (E,W) or (W,E). Simi-
lar expressions as the ones in (5.11) exist for the other integrals with double exponential contri-
butions, namely the typdsl,C] and[C,C] in Table 5.1.

Once the exponential decays are written explicitly as in (5.11), we proceed to estimate the
X— integral by using a Gauss-Laguerre quadrature rule [84]. This is a tabulatedgf pdints
and weights{x:ag, vv:ag} that best approximate the integral,

oo Glag

f e Xf(x) dx ~ Z W29F(x29) (5.12)

o i=1
We point out that these tabulated values exist for the integrals in the] [nge, whereas
we have finite integrals in the [@/] interval. Therefore, we must transform each exponential as:

e f(x)dx=05] | eXf(ex) dx—e5 | e*f ((x+w)s) dx (5.13)
Jetroecs|] I

Each exponential term over a finite range is replaced by two infinite-range integrals, that can
each be approximated by (5.£2¥aking into account all the contributions for the exponentials,

3The inclusion of this extra term can be avoided according to the relative importance of the second integral in
(5.13) with respect to the first one: as frequency increases, the skindldptineases, and for frequencies such that
¢ is an order of magnitude smaller thanthe factor expfw/s) makes the second integral negligible.
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the x—contribution to[H,H] integrals in (5.11) is approximated as

GIag

fgx(x)F(x,y) dx = 6 > W (F(u) = Ke (F(U) + F(U) = (Ke + KF (w)))
0 i=1
+ WKs(F() = F(U") = (Ke — Ko)F(u)) (5.14)

for ¢ = @, and

Glag

w
[ E00F G dx= 5 ) we(F(w) - 2KeF ) + (K2 + KIF ()
o i=1

for aj = —aj, where we have defined

b= (98) +y2 we=wcosd™).  Ke=e " cosiw/o)

u = \/((W - x:ag’)/é)2 +y2, WS =wsinxY),  Ks=e"sinw/s)

u’ = \/((W+ x:ag)/(i)2 +y2

In Section 5.6 we will analyze in detail the convergence and cost of this techniques, as a
function of the parametesqag.

5.3.2 Linear decays:L-type contributions

When bothe = aj = 0, there is no exponential contribution @nandéy is lineal. Its contribu-
tion is best approximated by a Gauss-Jacobi quadrature rule [84]. As in the previous case, this
consists of another set G tabulated points and weight&™®, w*” such that

GJac

1
f (1= %P1+ X°FO) dx = > wlF (™) (5.15)
~1 i=1

By settinga = 1, b = 0 and performing a linear shift infor x; in (5.11), we obtain the rule:

f W= X)F(xY) dx ~ WZZ > weF ("Ev(xijac +1, y)) (5.16)
0

i=1

The exponential decay dominates the behavior of the whole integrand. Therefore, as long
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as there is one exponential decay along any axis, the integral is well approximated if the expo-
nentials are. In other words, the overall quality of the fit is not gredfcéed by the accuracy

with which the linear part is approximates, i.e. the numbgg. In practice, we have observed

that usingGjac ~ 10 sufices for the desired precision; we study in depth this/aostiracy
relationship in Section 5.6. These arguments apply tocttmmponent of thgV,V] integrals,

as well as one term of tH¥,C] integrals (see Table 5.1).

5.3.3 Flatterms:L — L integral types

For the[H,V] integrals, the weight functions are,

é:x ea'*(w_x) - ea'*x — Kx
& = SN Yy (5.17)

wherexy = 1 - expl;w), ky = 1 — exp@jh).
The product,é, can be split up three ways:

e anE - E term due to the product of the two exponentials of these weight functions;

e anE - L and anL — E terms coming from the cross-products of the two exponentials of
one function and the constant of the other;

e anlL — L term springing from the product of the two constants in each function (in fact, it
is "flat-flat”).

Note that thel — L term is the most significant one among the three contributions above.
This is because for this term, the weight function is a constant close to 1, whereas the other
terms have exponential decays which confine the integrand to a region obdfdeE — L) or
62 (for E — E). These two terms are handled with the techniques described in the two previous
sections. FoL - L, using a double Gauss-Jacobi rule would result in large errors due to the
integrable singularity at the origin (in the previous section, these errors were mitigated by the
presence of exponential decays).

In order to circumvent this complication, we switch to a polar coordinate system (Fig.5.4)

p = \C+y2 o |X =pcose)
¢ = arctany/x) y =psinig)

with the Jacobian given by. Therefore, the integrand goes to zero neat 0, thus explicitly
removing the integrable singularity at the origin. The price for this change of variables is the

(5.18)
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/2

Figure 5.4: Integration domains far— L same-conductor in cartesian (left) and polar variables
(right); the shaded regions are the excess that must be deduced from the total value (see text).

irregular shape of the new integration domain, represented by the unshaded region of Fig.5.4
(right).

To deal with this domain, we first integrate over the square [0, pmax = VW2 + h2],
¢ € [0,7/2] domain, i.e. the quarter-circle in the original variables. Next, we need to estimate
the value of the contributions of the excess regions (shaded sections of Fig.5.4)

Li(j!__L) = NinXKy(Cl -C)) (5.19)

with

C; = 3tzsinh‘1(%)+(t2—2)\/1+t2+2t3+2; (t = €/pmax)
Pmax h Pmax

Co = f COS_l(/—))pF(p) do + f Cos_l(\g)pF(p) do (5.20)
h w

Each of the integrals i@, is dealt with in the following manner (see Fig.5.5):

e pF(p) is replaced by its Taylor approximation@at= w and ato = h, and the product of
these polynomials with the inverse trigopnometric functions is analytically integrable;

e pcos(w/p) andpcos(h/p) are replaced by their Taylor expansionspat pmaxand
the product of these polynomials wiE(p) is analytically integrable;

e the cutting poinjp is determined, for each branch, as the intersection of the two polyno-
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Figure 5.5: Taylor approximation for the polar-variable integration of same-conductot
terms (a); the resulting integrals (b, with inset showing detail); and error committed (c).

mials abové.

We exemplify point 1 above applied to the second integral in (5.20), being all the other
integrals (tedious but) similar in nature. In this case, we write

Ts
PF() = > palo - w)" (5.21)
n=0

where the cofficientsp, are combinations of sinfi(£/w), v/1 +w2/£2 and powers ofv/¢. In
other words, this Taylor expansion demands only one transcendental function call. This expan-
sion is replaced in the example integral,

Pmax K
f cos—l(V;V)pF(p) do= " pln (5.22)
Pc n=0

where we have defined

4In practice p. is a function of the ratios//h andpmax/¢ Which can be fortlessly tabulated and interpolated for
any arbitrary geometry; we will show this dependence in detail in Section 5.6.3.
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pTXcos‘1 (\:_)v) (o —w)" do

Pc

-
11

1

h+L ) (n)(—l)”‘i u=(+2) cos}(u) du (5.23)
D [

Uc

andue = w/pc.

The integrals inside the sum have analytical solutions which involve combinatioyis efu2,
tani (/1 — u2) and powers ofi.. Again, only one transcendental function call is necessary.

Hence, this recipe enables us to computeltheL term in (5.17) with as few as 9 tran-
scendental function evaluations, 9 square roots, plus a limited number of elementary arithmetic
(additions and multiplications).

The key to the success of this scheme is that the Taylor expansions are carried out at a dis-
tance far away from the singularity, which itself is "softened” by the Jacobian of the transforma-
tion p, forcing the whole integrand to go to zero at the origin; also important is the observation
that extending the order of these polynomidlsgdoes not represent an important computational
burden, since only additional elementary arithmetic is added. Presently, we are working on ex-
tensions of this method in order to cover integrals with exponential decays (i.e.: to replace the
Gauss-Laguere and Gauss-Jacobi techniques of the previous section).

5.4 Different-conductor integrals

Compared to the same-conductor case, the integration domairffemedit conductors does not
share the symmetries that allow for the simple expressions as the ones shown in (5.10), except
for some limited situatiorts

For example, the—integral on the intervab{p — W, Xo + W] is divided into four terms: two
terms, rangingXo —w’', Xo + W—w’] and [Xp, Xg + W] of lengthw whose behavior (exponential or
linear) is given byj; plus two other termsyp — W', Xo] and [xo + W — W', Xo + w] of lengthw’
whose behavior is given hy;. Thus the cost associated with eactiatient-conductor integral
will be multiplied by a factor of 16 (worst-case, ho symmetry on any axis) compared to the
same-conductor case.

Integrals for diferent conductors, however, permit mof@aent approximations, as com-
pared due to same-conductor integrals, due to the absence of the singularity. Each of the poten-
tially 16 terms are significantly less expensive to compute. In practice, we apply the following

SFor example, when both conductors belong to the same metal layegthe® andh = b, thus simplifying the
integration domains for thg-integration as if it were same-conductor.
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Figure 5.6: Taylor approximations for exponential terms ifiedlent-conductor integrals.

strategy:

5.4.1 Exponential contributions

Exponential contributions are integrated by carrying out a Taylor expansion of everything but
the exponential term. This a reasonable strategy, if we observe that, in the presence of an
exponential decay, the integrand will be very peaked at the maximum value of the exponential.

In this section, we analyze integrands with a double exponential contribution along an axis,
such as the—integral for[H,H] and[H,C] types, they—integral for[V,V] and[H,V] types, and
both integrals fofC,C] types. The case of a single exponential contribution is described briefly
in Section 5.4.3

For example, consider axintegral with a double exponential (see Fig.5.6): we expand
F(X,y) = ¥ pn(X — xp)" around theop = p(Xp, y); the location of the peaks, depend on the
side from which the two modes de&ay

The value ofy in the definition forp, depends on whether theintegration has an exponential decay or not:
in the first case, we are actually dealing with a 2-d Taylor expansion; in the secong-cagendence is linear (or
flat), and the integral is evaluated at certain discrete points (see Sec.5.4.2).
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(E,E) © Xp=Xo

WW) o Xp=X+Ww-W

(E,W) © Xp=Xo+W-¢

(WE) o Xp=X-W +e (5.24)

In other words, the peak is locatedtif both modes decay from the left, and is shifted by
w if the ;" decays from the opposite side, and-by’ if @j does so. The displacementdor
the "mixed” cases occur because the integration domain is of area zero at the location of these
peaks: the change of coordinates forégt vanish at the extremeg — w andxg + w. Hence,
the peaks cannot be located exactly at the extremes. Instead, they correspond to the maxima of
&, in the vicinity of the corresponding extreme, given by the solution to the equation,

*

ei(wi*+aj)s _ a_' (5.25)
aj

where the “-" is for (E,W) and the+" is for (W,E) integrals.
The x-integral along this axis reduces to:

w T4
[ &00F Goct xa.y +yondx= " pud (5.26)
W n=0

where the expansion cfiients are,

1 "F(x,y)
Pn —_
n! oxn X=Xp
t
Po = 5(Iog(t+ V1+1t2 ——)
1+ V1+1t2
cpt?
pp = ——m—
1+ V1++¢2
1-cA)t? c2t?
P = i[( ) + —2 ); etc. (5.27)
201+ V1+t2 V1412

with t = £/pp andcy = Xp/pp; in (5.26) we have also defined:

I = f (x = )" (12008 + y2()e ) dx (5.28)
-w

The functionsy,, y» are defined in (5.6), and are responsible for the “peaked” behavior.
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Concerning the integrals in (5.26), they are computed analytically using the following recursion:

\]n = Cn + Cr,1
b 1
Cr = [ (x= s yae* d= 2 (Ko - Cr)
_W/
" 1
c, = f (X— Xp)"y26 ¥ dx = = (K, — nC,_,) (5.29)
a
—W

with

Kn = 6no — W™ — (—w)"e" ™ + (w — w)"e Wi

This simple expansion permits the computation of these integrals with very few transcen-
dental function evaluations (notice that the €m#entsp, in (5.27) contain only one logarithm
and one square root, and evaluation of all fljedemand only two exponentials). A detailed
analysis of the cost and performance of this method is contained in Sections 5.6 and 5.7.

5.4.2 Linear or Flat contributions

Weight functionsty corresponding to integrals of ty[j¥V] are trapezoidal, composed of two
linear intervals of lengthv. plus one flat one of lengthv.., wherew. () is the larger (smaller)
of w,w, eg. (5.5).
In contrast to the case of exponential decays, these integrals do not contain peaked weight
functions. Therefore the arguments leading to a Taylor approximation do not hold.
Nevertheless, since we are in the case fiedent conductors, the functidhis very regular,
and thus we are safe to adopt quadrature rules in order to estimate these integrals. Linear inter-
vals are integrated with @— point Gauss-Jacobi quadrature rule, as in Section 5.3.2, whereas
flat contributions are integrated withGy— point Gauss-Legendre quadrature rule [84], which
is a simplified version of Gauss-Jacobi wéh= b = 0in (5.15).
Due to the smooth behavior &f, we found that the required numb@g is generally very
small Gg = 3 turned out to be dficient for all of the examples we studied). In Section 5.6, we
support this claim rigorously.

5.4.3 Mixed FlayExponential

Special care must be taken for integrals that contain both flat and exponential terms, such as the
x—integral for[H,V] or [V,C] types.
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Here, we must separate thdfdrent kinds of terms in order to capture the correct behavior
for each, and apply the corresponding method. The complication is in discriminating expo-
nential terms from and the lingflat ones, in order to isolate them and apply the appropriate
techniques: Taylor approximations as in Section 5.4.1 for the first ones, Gaussian quadratures
as in Section 5.4.2 for the second. For example, consider the (E,S) integral, belonging to type
[H,V], i.e. of = 0,8 = 0. We can write the whole integrand as,

L = Njj {

[F(0) - Flow) — Fo-i) + F(ow—r)] €Y dx dy

%o

|
5

%o OH:T o%:

[F(0) = Flo-r) + (F(o-w 1) = Fo-w)) €™ &Y dx dy

+ +
o%é é%o O%E
%o

[F(0) = Flow) + (Fown) - F(on)) €| €% dx dy (5.30)

|
=<

+

[F(0) ~ Fone™ + (F(pow )& — Fp_u)) €1%] &Y dlx dy}

I
I

where we have introduced a notation with subindices for displaced distances: for example
Pow = X+ X0 = W)2 + (Y +Y0)2 pwtv = V(X+ Xo +W)2 + (y+ Yo — IV)2, etc.
In this last expression, we are showing explicitly thféefient contributions: the first term is
a double-exponentidt — E, the second i& — E, the thirdE — L and the fourthL — L. Thus,
the whole integral is decomposed into 16 terms: 4 Taylor-Taylor, 8 mixed Taylor-Gaussian,

and 4 Gaussian-Gaussian types of integrals. In terms of performance, this decomposition is not
expensive compared to the global runtime, since the Taylor expansions are evaluated extremely
fast, and it is sfficient to take as low as 3 evaluation points foffelient-conductor Gaussian
guadratures; a thorough analysis of these costs is included in Section 5.6.

5.5 Code organization: Integral calculation blocks

We are now able to complete the description of the flow of the conduction modes method, by
expanding in detail the two integration blocks contained in the flow in Fig.4.6.

These details are contained in the flows in Figs.5.7 and 5.8. They reflect the calculations
that have been detailed, for tR/MQS case, in this chapter. Extensions to RieC case will
be discussed in the following chapter.
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Figure 5.7: Flow for the computation of a matrix block for the same conductor.
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Figure 5.8: Flow for the computation of a matrix block for th&elient conductors.
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5.6 Performancgaccuracy analysis

Throughout the previous section, we have introduced several techniques for dealing with spe-
cific integrals. All of these techniques involve some parameter that determines the perfor-
mancgaccuracy tradefdfor that particular calculation.

These parameters are:

e Gjag: NnUmMber of points in the Gauss-Laguerre quadrature rule for same-conductor inte-
grals with exponential decays; we will discriminate betwééjé for the case when there
is exponential decays in only one dimension, @ﬁ;@ when the decay is on both dimen-
sions.

e Gjac: number of points in the Gauss-Jacobi quadrature rule for |ift@acontributions.

e T order of Taylor polynomials for the — L term in the same-conductor integrals of type

[H,V].
e Ty4: order of Taylor polynomials for the fierent-conductor integrals.

e Gy: number of points in the Gauss-Jacobi and Gauss-Legendre quadrature rules for linear
and flat terms in dferent-conductor integrals.

e pcut: the cut-df value where the two polar expansions are joined for same-integral flat
terms.

The impact of these parameters must also be wieghted by the number of times they appear
in evaluation of integrals. For example, we have seen that using the methods in Section 5.4 we
can account for all the contributions for each type of integral in table (5.1). The number of calls
to transcendental functiomdgqs is given by,

4 + 8Gjac + 4G]23C [H N V]
16G; [H,H]
Nealls = 4(GjacNL + GJZaCNLL + NEE) = e (5.31)
4 + 8Gjac [H . C]
16 [C.C]

whereNEg is the number of terms with a single linedr £ F, F — L) contribution,N_, is the
number ofL — L terms, andNgg is the number ofE — E terms. (Taylor contributions cost
only one call, since the exponentials for each mpdan be evaluated once per mode at setup
time, stored and reused for every matrix elemejx. Similar decompositions hold for same-
conductor integrals.
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In this section, we will analyze in detail the convergence of integrals with respect to these
parameters. In carrying out these analyses, we will compare against thefsvemtireferences
mentioned in the introduction to this chapter: Monte Carlo (MC) [87] and Adaptive Quadrature
(AQ) [85].

In order to avoid bias associated witlffdrent integration method, as well as the overheads
they incur, we will use, for comparison of performance, the number of CPU cycles. This num-
ber is obtained using standard tools; we adoptduantify package from IBlyRational [88].
Although this cycle count is both machine- and compiler-dependent, it provides an easily im-
plementable way of avoiding an expensive comprehensive search through all the instructions
and sub-instructions of each of the methods.

Concerning the source of improvements in runtimes with respect to these standard methods,
they have two distinct components:

1. the main source of savings derives from the approximation of the integralsferedi
conductors, which is controlled by the parametggsand Ty (see Section 5.4);

2. the reduced runtime is then dominated by the same-conductor integrals, and further gains
are obtained by applying the approximations for same-conductor integralsGwjtias
the critical parameter (see Section 5.3).

In the rest of this section, we will analyze, separately and in detail, the impact of the integrals
and parameters enumerated above. Overall runtimes are found in next section.

5.6.1 T4 and Gq sensitivity

Approximation of integrals for dierent conductors involves two parameters that determine the
performancgaccuracy tradefd(see Section 5.4)f 4, the order of the Taylor expansions for the
functionF(p) for exponential contributions; ar@y, the number of values taken for each linear
interval. In this section, we show that for our purposes, fiiceis to seGy = 3 andTy = 2.

Computing this integral demands the evaluation of an ofdefaylor polynomial at &y
points on thex-axis, according to the Gauss-Legen@gpoint rules:Gq within [xg — W, Xg],
plusGg in [Xg, Xo + W— W], andGgq in [Xg, Xg + W].

In terms of cost, paramet&g has no incidence on the total cost of integration, for the range
0 < Ty < 3. This was verified by obtaining exactly the same number of cyclgsamtify[88]
for all values ofTy in this range. The reason is that, for> 0, the Taylor cofficients py,
eq.(5.27), and the analytic integralg eq.(5.29), only require transcendental function evalua-
tions already included ipy and Jo. They only add more elementary arithmetic that does not
affect the total CPU cycle couht

"This is an empirical observation, tested on sever@dint processors, as well as compilers.
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Figure 5.9: Accuragigost trade-& of Taylor-Jacobi integration for fferent-conductor inte-
grals, varying the paramet&y € [1,7] and fixingTq = 3, compared to adaptive quadrature
and Monte Carlo methods: at GHz(left) and 100G Hz(right), for the configuration shown at
right.

On the other hand, the CPU cycle count depends linearlg@rwhich is evident from
observing that each point in the Gauss-Jacobi rule demands one Taylor expansion.

Fig. 5.9 displays an extreme situation, whereby the two modes participating in the integral
show exponential decays from borders separatedly The integrals are computed at G&z
and 100GHzand the material of both wires is copper, vex 0.66u andé ~ 0.21u respectively.

For this configuration, we compare the cost and accuracy of our approximations against the
standard references: fixingy = 3, we varyGyq in the range 1< Gq < 7, and plot the error,
defined as the variation from a reference obtained with AQ in high precision mode. For AQ, we
modify the maximum number of calls to the integrand within the allowed r&rayes compute
the error in the same manner.

Both of these methods are deterministic, and therefore the error for a value at a certain
precision level is the dlierence between this value and the asymptotic exact value. On the other
hand, MC is stochastic; for any level of precision (i.e number of function calls, which we vary
from 10* to 2x 10°), we compute the same integral a large number of tfraed define the error
as the standard deviation for the distribution of values.

The plots in Fig. 5.9 show more than 2 orders of magnitude improvement, with respect to
AQ, by applying the Taylgdacobi method, and more than 3 orders of magnitude with respect
to MC. The detailed behavior of errors with respect to the paramé&grgy is shown in Fig.

5.10. We observe the following:

8For 2-dimensional integrals, the minimum number of calls in BDCUHRE [85] is hard-wired at 195, which
correspond to the minimum precisjtowest CPU cycles of the AQ data in Figs. 5.9 and 5.12.
®Nearly normal distributions are always obtained, with as few as 1000 values.



130 Chapter 5. Conduction Modes Matrix Elements:RL case

10 GHz 100 GHz Td=3
e 1 =2
aa T =1
4 L 4 —o T =0

0.1 =

\ /W
f 11 ] -0} -
2" als 12 02 -

% error

| |
| | | | | | | | | | -
1 2 3 4 5 6 71 2 3 4 5 6 7 3 4 5 6 1

Gy Gy

Figure 5.10: Convergence of Taylor-Jacobi as a function of the number of points for the Gauss-
Jacobi rules@q), and the order of the Taylor polynomidl), for the configuration in Fig. 5.9,
at 10GHz(left) and 100GHz(right, with detailed blow-up).
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Figure 5.11: Taylor approximations féi(p) (top graphs); and errors fayF (o), with dotted
lines indicating the value (bottom), as a functionyodind for three dterent values ok; the

configuration is the one shown in Fig.5.9, at 100 GHz; dashed vertical lines show the location
of the peak fogy aty, ~ 0.657: (see Fig.5.6).
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e errors become insensitive @y for Gq > 3 at 10GHz the same holds witfiy=0,1,2 at
100GHz

e order-2 and order-1 Taylor expansions show insignificaffieinces at 100 GHz (where
6 < w, h for both conductors);

e at 100 GHz, and for low values @, order-3 Taylor deviated further than order-2 and
order-1;

o for practical purposes, we are satisfied with errors smaller than 1%, so that &iting
andTy = 2 is appropriate for all cases.

The apparent contradiction of the second and third points above are explained by analyzing
in detail the origin of errors for the Taylor approximation. As mentioned in Section 5.4, the
weight functior¢y, is peaked &y = yo+h-¢ (see eq.(5.25) and Fig.5.6b). For the configuration
we are presently consideringp, =~ 0.53u at 10 GHz andy, ~ 0.26u at 100 GHz. Taylor
codficients are evaluated at this value.

In Fig.5.11, we investigate in detail the behavior of these approximations fferetit re-
gions of the integration domain. First we choose three values of-tlagiable (i.e. the “linear”
dimension, in the sense that there is no exponential decay. dihese three values correspond
to Xg—Ww', 0, Xg + W (the two extremes of the interval, and the minimum value). For each of these
values, we plot - on the top graphs of Fig.5.11 - thiedent orders of Taylor approximations
centered ayp, ranging from the constanT§ = 0) to the cubic functionTy = 3). We point out
that, in the vicinity ofy,, the approximation always improves with increasing order, as expected.

However, for largey-separations from the peak, and particularly for the smallest value of
X, the higher-order Taylor approximations deviate more than the lower-order ones. This is
expected, sincé& (o) becomes steeper asdecreases, thereby raising the contributions of the
higher-order derivatives, and thus the errors in the Taylor approximations. Strictly speaking, the
radius of convergence for this expansiorxkat 0 isyp: the Taylor series does not converge to
the original function fotty — yp| > yp.

Since we are concerned with approximating the whole integrand, which includes the peaked
weight functionéy, we also plot - on the lower graphs of Fig.5.11- the incidence of the errors
discussed abov® The values of the original integrand are included as dashed lines, in order
to compare magnitude of the errors with the value being estimated. We can observe that all
errors vanish ay, and the zeroes @, (these occur at intervals ab ~ 0.657). For thex = 0
plots, there is a second peak contributing to the error for the higher-order approximations. These
errors, associated to the higher-order approximations, can be reduced by carrying out another

1°The relationship between the errors in these graphs and the ones at the bottom graph of Fig.5.10 is that the latter
are a numerical integration of the former, using:aGy Gauss-Legendre rule.



132 Chapter 5. Conduction Modes Matrix Elements:RL case

(a) == Monte Carlo (b)
1 I /5 " Adaptive quadrature lp{ /
Freq. = 100 Ghz o Gaussian-Laguere Freq =10 Ghz

CPU cycles
CPU cycies

3 L | L | | L
1007 2 4 ( 2 4
% error % error

)

Figure 5.12: Accuraggost trade-& of Gauss-Laguerre integration for same-conductor inte-
grals, varying the paramet&,g € [3, 28], compared to adaptive quadrature and Monte Carlo
methods: (a) at 100 GHz, for modes decaying from the same side and an aspect ratio of 5; (b)
at 10 GHz, modes decaying from opposite side, aspect ratio of 2.

Taylor expansion at these secondary peaks, and joining the two expansions at the intermediate

zero of&y. The cost increase is a factor 2. The main conclusion from this discussion is that

higher-order Taylor terms do not necessarily improve the convergence, and can actually deteri-

orate it, if they are included “blindly”. Although we have not encountered such situations, the

necessity of the second-peak expansion depends on the relationship between the abscissas at the

first and second peaks. We have repeated the exercise in this figures for separations as low as
073y, (i.e. less than/100th of a skin depth at 100 GHz), and errors remain bounded by 1%.

5.6.2 Glag SenSitiVity

For same-conductor integrals, we concentrate on the sensitiviydgthe number of points in
the Gauss-Laguerre rules, eg. (5.12)). By increasing this number, we increase also the number
of calls to the function, as well as the precision.

In Fig.5.12 we compare, against the standard AQ and MC methods, the convergence of the
Gauss-Laguerre integration method for value&gf ranging from 3 to 28, for the (W,W) inte-
gral of a conductor of dimensiong X 5u x 50u, at a 10GHzand 100GHz The determination
of the errors in these graphs is the same as in the previous section.

From the results in Fig.5.12a, we conclude that the Gauss-Laguerre approximation of Sec-
tion 5.3 improves one order of magnitude with respect to the better of the two standard integra-
tion methods.

As mentioned in Section 5.3.2, théfieiency of the Gauss-Laguerre strategy relies on the
dominance of the order-exponential decay inside the conductors. Therefore, we expect the
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Figure 5.13: Errors for polar variables method applied to the flat integrals for [H,V] types, as a
function ofp; and aspect ratio//h, and for two diferent lengthsL = 1Qu(a) andL = 100Qu(b).

savings shown in the previous graphs to increase with frequency. This is in fact the case: in
Fig.5.12b we show that the savings are inferior when we decrease one decade. Also, we point
out that the aspect ratio for this second example is 2 (instead of 5 for the previous case); we have
observed that the standard integration methods improve as the aspect ratio decreases.

Other parameters thaffact same-conductor integrals a@jac, number of points for Gauss-
Jacobi in the case of same conductors, which plays the same r@g @sove, so we omit a
special treatment (in practi€®jsc ~ 7 is suficient for any desired level of accuracy); afg
the order of Taylor approximations for the polar-variable integrals, which doesfiigat she
cost (same argument as fo§ above), and we keep fixed at 4; ang which is analyzed next.

5.6.3 p. sensitivity

In computing the flat — L term for[H,V] same-conductor integrals, we carry out two Taylor
expansions in the polar variabdeand joined these expansions at a valgiésee Sec. 5.3.3).

As in the previous Taylor expansions foifférent conductors, the cost of the expansions
does not vary significantly with the order of the polynomials. Again, this is because higher
orders only add elementary arithmetic, but do not require new transcendental function evalua-
tions. For all our calculations, we set the order of these expansion to 4, incurring in 13 such
evaluations, 7 square roots, plus sums and multiplications in a number that does not exceed 100.

By comparison, the AQ method needs, on average several thousand integrand evaluations,
with one transcendental function call for each of these. In terms of CPU cycles, we observe three
orders of magnitude improvement, fra®{10°) to O(10%). We do not plot these comparisons,
since there are no control parameters to regulate the number of calls in our approximation.

Concerning the errors for this calculation, we point out that they are sensitive to the choice



134 Chapter 5. Conduction Modes Matrix Elements:RL case

3 T T T T
251 Ao e T T .
/./:‘/':AV _========================
L 'z N
S 2 oo 0000
A
wip 21~ ,/’,;=' o—o L=5 ]
| / B—aLz]_OH i
[ o—o L=50u
15 / a—a L=100y |
) »—~ L=500p
- +—+L:1000|J -1
1 1 I 1 I 1 I 1
0 10 20 30 40
w/h

Figure 5.14: Curvep(w/h) for differentL, result of minimizing errors in graphs 5.13.
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of pc. There are basically two variables that determine the optimal choipg ¢éngthL and
the aspect ratiov/h.

In Fig. 5.13 we plot these errors for twofidirent values ok, as a function op. andw/h.
Reference data is obtained with AQ integration. We observe that errors are minimized along
a curvepc(w/h) (in fact, they vanish, due to a change of sign). Minimization of errors defines
a functional dependence fpg,(w, L), which we plot in Fig. 5.14. The smoothness of these
functions suggest that they can be tabulated for interpolation at arbitrary geometries, or also
fitted to a modéfl. Using linear interpolation, we are able to obtain errors below 0.1 % for a
wide spectrum of aspect ratios and lengths.

5.7 Examples

For RL/MQS extraction, we will always compare our results and runtimes against FastHenry
[15]. Itis a filament-based approach that decomposes conductors into a user-specified number
of filaments whose dimensions can be tuned so as to capture greater detail near the conductors’
surfaces. Concerning the use of FastHenry, we clarify that there are two options for tuning its
performance:

e Solver type: can be either GMRES iterative, or LU decomposition; the advantage of the
first ones is that for very large sizes, the cost grows, as a function oNsilike kN?,
wherek is the average number of iterations; this is to be compared tdlfhgrowth of
direct methods [84].

e Multipole acceleration: FastHenry can avoid direct matrix product by carrying out a mul-
tipole expansion; for very large system size, this can lead to significant space and per-
formance improvements; this expansion conserves accuracy as long as wires are short; in
practice, this condition demands a refinement which increases the total number of fila-
ments?.

Optimal choice of these options depends on the size and structure of the underlying linear
system. For small number of closely-packed filaments, it is advantageous to use LU decompo-
sition, and to avoid the size increase due to the multipole refinement. With growing number of
filaments, the comparative cost of solving the system becomes dominant, and it is convenient
to switch to iterative methods. Since these carry out a large number of matrix-vector multi-
plications, it may be also be convenient to perform the multipole acceleration, despite the size

1At the time of writing, no satisfactory fit has been found; tabulation of the curves in Fig. 5.14, on the other hand
is straightforward.

2|n FastHenry, the total size of the systéis the number of meshes, which is related to the number of filaments
throughN = n¢ + ng+ n. — 1, wherens, ns andn, are the numbers of filaments, sources, and conductors, respectively.
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increase demanded by the refinement. Another important feature of the multipole refinement is
that it also produces, as a by-product, a preconditioner for the system matrix, which decreases
the numbek of iterations.

The first example is a large exploration of simple configurations, in order to validate the
use of 4 side conduction modes per conductor; we use FastHenry in its default mode so as to
assure accurate values; the other two examples are of fievadit sizes: first we show a small
example of one signal wire with three parallel return paths; then we show a large power-and-
ground grid example consisting of 215 wires. For the first one, the multipole acceleration is
counterproductive, due to the increase in size. For the second one, this decision depends on the
level of discretization. Choice of solvers depends, in both cases, on the number of filaments.

5.7.1 Configuration space exploration

First, we concentrate on the validity of the conductions modes method, by randomly exploring
a large configuration space and computing the error of our method. As such, this verification
does not concentrate on the specific numerical expressions developed in the previous sections,
but is rather a “proof of concept” for the method. We obtain the same figures whether we
use our approximation or a numerical integrator, such as the Adaptive Quadrature method [85]
described above; FastHenry is used in its default mode. The following two examples focus on
the gains accomplished by the recipes in this chapter.

We consider, as a “building block” for this exploration, loops of two wire, since any arbitrary
configuration can be described in terms of these blocks. The guidelines are as follows:

1. We restrict to two-wire configurations, and establ&bpl = |Rioop + jwLioopl, the modu-
lus of the impedance of the loop formed by these two wires, as the magnitude of reference
(Zioop is the impedance computed for a bundle in eq.(2.12), section 2.2).

2. We fix the thickness of the two conductors at, Inaterial copper, and three frequencies:
10, 50 and 100 GHz (i.eh is approximately 56, 35, and B, respectively).

3. We construct 10000 configurations at random, by choosing random values for the widths,
lengths, and separations, within the rangés:to

W]_’z € [1, 10]/.1, Xsepysep S [O, 25]#, 51’2 € [10, 50][1

4. For each configuration, we compute the relative errdp, using the conduction modes
method, with respect to FastHenry at high precision.

BApart from these restrictions, we also impose the physical constraint that the volumes of the conductors do not
overlap
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Figure 5.15: Distribution of errors for the random parameter space exploration: we show the
normalized error histograms for 10000 two-wire configurations, at 10 GHz (top left), 50 GHz
(top middle), 100 GHz (top right); as well as a detail of low-and high-error tails of the cumulative
histograms, showing that, for all three frequencies, more that 95% of the configurations have
errors lower than 5%(Note the logarithmic scale on the y-axis of the histograms).
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5. We plot the histogram of these errors, as well as the percentile errors.

6. We investigate in depth the origin of the outliers.

In Fig.5.15 we show the distribution of errors for these parameter sweeps. We carry out the
exploration for 10, 50 and 100 GHz, and observe that for all three cases, very few configurations
show significant errors. Quantitatively, we can say that less than 5% of the configurations have
significant errors, at 100 GHz; this number improves for lower frequencies: about 3% for 50
GHz and less than 2% for 10 GHz.

We have found that the outliers of these histograms correspond to configurations in which
there is a large dierence between the widths of the two wires, as well as a non-negligible
overlap in thex-extensions. This situation, which further deteriorates with increasing frequency,
is related to the major drawback within the conduction modes method: since they are functions
defined for the whole conductor, they cannot captufeceés due to the localization of currents
at intermediate positions along a cross-sectional dimension. Typical example for this picture are
the ground planes. The solution to this problem requires splitting the wide conductors in order
to capture these details. This is a necessary task that is not yet developed; we discuss in Section
6.5 the issues concerning such an implementation.

We also observe that, on the low-error region of the distributions, the values for 100 GHz
are slightly better than the ones for the lower frequencies. This is compatible with the funda-
mental concept behind conduction modes, which idficiently capture high frequency current
crowding.

5.7.2 Bundle example

Consider the test example shown in Fig.5.16. It corresponds to a typical bundle example, con-
sisting of one signal wire (darker shading in the figure) and three return paths.

We compute the loop impedance and use FastHenry, with each wire decomposed into 81
filaments as reference for accuracy; this comparison is shown in Fig.5.17. The total size of
the linear system contains 324 unknowns in FastHenry vs 16 for CM. The graphs on Fig.5.18
contain the percentage error for this curve, compared against data issuing from FastHenry with
increasing precision levels.

Note that errors for the CM method are small for inductance at high frequencies and for
resistance at low. This corresponds to the relative importance of each magnitude: for this exam-
ple,wL/R ~ 1 at 10GHzandwL/R ~ 0.1 and at 106GHz The precision of CM, using only
4 modes per conductor, is comparable to that>of 7or high frequency inductance, where it is
important.

Run times for the above example, comparing agairfsémint levels of accuracy for Fas-
tHenry, are displayed in the first column of Table 5.2. They were all computed on a Xeon
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Figure 5.16: Bundle example configuration; all dimensions, ilengths are 50.

Figure 5.17: Loop inductance and resistance behavior for the example 5.16, comparing 4 con-
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Figure 5.18: Relative errors against reference, féiedent levels of FastHenry precision and 4
conduction modes per conductor.
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Figure 5.19: Configuration for the power and ground grid exampRLoéxtraction.

3.0GHz processor, averaging over 100 identical calls for each method, for the configuration
at 100GHz (runtime values are insensitive to frequency). The runtimes show less than 0.5%
dispersion. Concerning the FastHenry computations, they were all performed without the mul-
tipole refinement, owing to the observation that, for this configuration, refinement involves a
multiplication in size by a factor 8. For the solver, the first three entries in the table were done
with LU decomposition, whereas the last one was done with GMRES.

For the conduction modes runtimes, we observe that one order of magnitude is gained, with
respect to the AQ numerical integration, in applying the Taylor approximations fi@reint
conductors; with respect to this reduced runtime, a further order of magnitude is obtained by
applying the same-conductor methods. Compared to the same-precision level of FastHenry,
there is an improvement of two orders of magnitude in total runtime.

5.7.3 Power and ground grid

We next consider a larger example, consisting of a configuration representing a power and
ground grid, Fig. 5.19. Total dimensions amarhx 1mm with 5 wires in each grid. The
orientation of the wires in the top grid is perpendicular to the orientation of wires for the lower
grid. The cross sectional dimensions agex52u for the top grid, and 10 x 2u for the lower
one. Separation between the two grids ig.10

In order to model a power glitch for this structure, we place an AC current source between
one node of the grid, e.g, the one located on the second wire of the top grid and the third wire
of the lower one X = 50Qu,y = 25Qu). This excitation is the input for a circuit simulation
using Eldo [52], consisting of 214 segments joining 208 nodes, resulting from the discretization
shown in Fig. 5.19, with long wires split up into 15 segments and short ones into 4. This
discretization assures that all segments are electrically small up to frequencies of order 100
GHz(i.e. 2 ~ 3mm). We compute the impedance of the grid as the ratio between the voltage at
the excited node and the input current.

Capacitance among these segments is extracted with a discrete ES solver, FastCap [14] with
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Figure 5.20: Input impedance for the power and ground grid example in Fig. 5.19, showing
the first resonant peaks. Data fet Conduction Modes is compared against FastHenry for
different filament discretizations; insets at right show details near the peaks. Capacitance is
extracted with FastCap.

a total number of 67584 panels. We compare féfiedént methods dR andL extraction. In Fig.
5.20, we observe that CM precision for this case is better that of FastHenxy ditaments per
conductor (as in the previous example, we consider #8discretization as reference).

Runtimes for this example are shown in the last two columns of Table 5.2. FastHenry com-
putations, for this case, were done with multipole acceleration and GMRES, for the three more
accurate cases; for thex3 discretization, LU decomposition without multipole acceleration
was optimal.

As in the previous case, we obtain two orders of magnitude improvement in runtimes, with
respect to numerical integrations as well as compared to similar-accuracy FastHenry results.
Contrary to the previous example, the gains for performing only tfierént-conductor approx-
imations are very close to the ones for the full approximations. This is due to the fact that the
savings for same-conductor integrals grow linearly with the number of conductors, whereas the
ones for diferent-conductor integrals grow quadratically; a detailed cost estimation is included
at the end of next section.
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Table 5.2: Sizes and Runtimes for théelient methods considered: "CM Taylor” refers to the
savings obtained with theftierent-conductor approximations (Section 5.4); "CM Taj&auss”
refers to the complete approximations in this chapter; "CM - AQ” is using AQ algorithm for all
integrals.

Method Size | Runtime (mg Size  Runtime (s)
Bundle Bundle Grid Grid

FastHenry 9x9 324 1185.3 21,834 4199

FastHenry 7x7 196 500.1 12,936 1718

FastHenry 5x5 100 150.9 6,600 633

FastHenry 3x3 36 25.6 1944 62

CM - AQ 16 949.0 860 2925.11

CM Taylor 16 130.1 860 31.65

CM Taylor/Gauss 16 6.5 860 23.19

5.8 Discussion

In the previous section, we have verified empirically that conduction modes introduces two or-
ders of magnitude improvement with respect to similar-accuracy filament-based methods; sim-
ilar comparison is established against the use of conduction modes with standard numerical
integration methods.

An important diference between the two examples lies in the impact of solve rutime
with respect to the total runtimes expressed in Table 5.2. For the bundle exarpias
completely negligible (less than 1% and therefof@iclilt to measure); whereas for the grid, it
is 6.67 sec, i.e. 30% of total runtime. This is expected, since this contribution grow cubically
with increasing number of conduction modes. For 860 modes, this contribution is still not
critical, but for much larger configurations, an iterative solver should be considered.

On the other hand, for a filament-based approach, and for equivalent levels of accuracy, the
size of the system is such that cost is dominatet.fy

The most relevant feature, of the conduction modes method, is the savings in size, which
are a factor 15 for the conduction modes with respect to FastHenry. This is similar to the ones
reported in [32]. These savings are of a fundamental nature, as they respond to the fact that the
conduction modes functions represent a more compact model, compared to piecewise-constant
filaments, of the physical phenomenon related to skece Here, we havefkectively translated
these gains in system size into gains in runtime. For larger systems, with runtimes dominated by
tsolve these gains will depend on the solver method: if a factor 15 is maintained in size savings,
then a factor 15is expected for runtimes, withthe order of complexity for the solve method.
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With respect to standard numerical integration methods, the origin of the runtime savings
shown in Table 5.2 can be illustrated in the following manner: consider, for the sake of simplic-
ity, that each element computed with the numerical AQ integration has &k a@sid that the
savings for each elierent-conductor approximation reduces this cost by a fa€§pmwhereas
this factor isK for the case of same-conductor integrals (we have shown representative exam-
ples in Section 5.6, wheré€q > O(10%) andKs = O(10)). Then the costs associated with each
of the conduction modes implementations are:

nQ _ Q2

C 2(N +N)

cO = Z—Ed(N2+KdN(m+1)) (5.32)
o) _ Q (N2, Kd
C K (N + KSN(m+ 1))

where the supraindices indicate théelient approximation methods presented in this chapter:
“D” is for only different-conductor, and 78" is for both the full acceleration schemat is

the total number of modes, amdis the number of modes per conductor, as in (5.2). Thus the
savings, are

-1
s _ 1+N Ky
1+ Kg(m+1)N-1

1+N1
SE/D) K 5.33
1+ Kg(m+ 1)(KN)L) ¢ (5-33)

For very largeN, both of these values go asymptoticallyg with a N~ behavior; the rate
of this tendency is a factd{s larger forS(/P) than forS®). This is precisely the situation for
the power and ground grid example.
Instead, for relatively small values bif (compared tdy), the savings are of ordé&t/(m+1)
for S© and KsN/(m + 1) for S©/P). This represents the figures for the bundle exafiple
The two order of magnitude savings for this example have a great impact in the cost of high-
frequency extraction, where a large number of configurations with few wires must be considered.
Concerning future work, further savings can be obtained, specifically for the same-conductor
integrals, in precomputing them and applying an interpolation or parametrization techniques.
We briefly discuss this subject in Section 6.3. Also, a systematic treatment of the outliers in Fig.
5.15 is necessary; this will be briefly discussed in Section 6.5.

1In fact, these values are enhanced by the application of the symmetries discussed in Section 5.1, having the
effect of eliminating the factorsi{+ 1) in the second and third lines in eq.(5.32).






Generalisation des modes de
conduction

Résune en francais

Ce chapitre est consacré au sujet de I'implémentation de la méthode RLC des modes de con-
duction, avec I'objectif de voir si celle-ci peut étre étendue pour atteindre un solutionneur
électromagnétique d’'onde complet trgBoace. Les modifications/eti additions nécessaires

pour cette tache se situent a trois niveaux : en premier instance, I'adaptation des méthodes
gfficaces d'intégration développés au chapitre 5 dans le domain®MRIS a celui RLGonde

complet (sections ) ; deuxiemement, la description d’'une gamme plus étendue des phénomenes
gue ceux présentés au chapitre 4, ce qui demande I'extension des bases des modes de con-
ductions (section ); finalement, la compréhension des géométries arbitraires (section ). Une
guatrieme source de modifications, qui n'est pas discuté dans cette these est celle associée
aux médias multicouches tels que le substrat ou les configurations a diélectriques multiples.
Nous renvoyons, pour cette tache, a la littérature portant sur des méthodes de fonction de Green
équivalente. Le contenu de ce chapitre est la traduction d’un travail en cours, aussi bien que des
propositions de travail pour I'avenir. En tant que tels, nous utiliserons souvent des arguments
intuitifs résultant du raisonnement physique d'un coté, et de notre expérience avec les modes
de conduction de l'autre. En ce sens, ce chapitre peut étre considéré comme une discussion
générale sur les méthodes présentées dans les deux chapitres précédents.
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Chapter 6

Generalization of conduction modes

This chapter is dedicated to issues concerning implementatiBhGfconduction modes. The
objective is to address the question of whether this methodology can be expanded into an ef-
ficient fullwave Electromagnetic solver. So far, we have developed a method for modeling
currents inside the conductors’ volume and charges on its surfaces, and presented examples of
significant savings for a certain type of structure, namely the TL-type of configuration. Fur-
thermore, we have shown in the previous chapter thatRIgiMQS extraction, this can be
implemented in an extremehfiecient manner. The aim is to be able to obtain savings, in size
and computation, for more general type of problems.

The modifications andr additions necessary for upgrading this tool into an EM solver come
in three general categories:

e RLC efficiency: going from theRL/MQS to RLC demands inclusion d? elements, as
well as an increase in the complexity in computinglthmatrix elements; in Sections 6.1,
6.2 and 6.3, we immerse into this complexity, and deviseficient strategy to carry out
these calculations.

e Generalized wavesin Chapter 4 we constructed tRt.C conduction mode basis retain-
ing only quasi-TEM-type modes with net current entering the conductors; we consider,
in Section 6.4, what kind of modes must be included in order to obtain a more general
description.

e Arbitrary geometry: only Manhattan-type geometry has been developed so far; the gen-
eral case is more complex. Another complication arises from configuration in which the
dimensions of the conductorsfidir dramatically (typical example: ground planes). In
Section 6.5 we briefly discuss the solutions needed for these types of problems.

Another issue which deserves special attention, and will not be discussed in this Thesis, is
the incorporation of #ects of inhomogeneous media. Examples in the IC domain include multi-
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layered dielectrics and substrate. At present, our team is cooperating with researchers from
he University of California in Santa Barbara [59], investigating on Green-function methods
for this task [18, 19, 89]. In a nutshell, they consist in considering ffeckeof the multiple

media by an equivalent Green function, that replaces the kéijfk}%rzl for our homogeneous
space formulation. Applications of this type of technique are found in FastMaxwell [13]. For the
adaptation of these methods to the conduction modes method, we expect similar complications
to the ones outlined in [90].

The contents of this chapter constitute ongoing work, as well as propositions for future
lines of work. As such, we will often be indulging in intuitive arguments arising from physical
reasoning on one side, and our experience with the conduction modes on the other. In this sense,
this chapter can be considered as a general discussion on the methods presented in the previous
two chapters; therefore, we omit conclusions at the end of the present one.

6.1 L-and P-matrix elements for RLC extraction

While computing matrix elements for conduction modes, we noticed the following property:
the capacitive ) contribution nearly cancels out with the inductitg pne for the case where
the two modes, j correspond to waves traveling in the same sense or-diection (in other
words, wheny; = 7;), and are practically the same when the modes are opposing wages in
(i = —nj)-

This is strictly a high frequency phenomenon. In fact, in the (infinite-frequency)dimit0,
the Lj; andPjj contributions withy; = 5; exactly cancel each other out. This limit can also be
seen as the perfect conductor condition, leading to the familiar relationg€hio c21 (I is the
identity matrix) [4, 78].

The origin of this near cancellation and doubling stems from the observation that the
contribution for these modes may be written as

L= ff[jex/‘sf(x,y, 2) dx] dy dz, (6.1)
Y,z 0

whereas thé contribution becomes:

P/w? = + f f f(0,y,2) dy dz, (6.2)
v,z

both with the same integrand functid(x, y, z); the+ corresponds to same- ofidirent-orientation
on thez axis.
In other words: theé® matrix elements, divided by?, are a zero-th order version of the
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Figure 6.1: Structure of the matrix in (4.20) according to the propagatia{amrows). The
darker boxes represent larger elements in that part of the matrix (multiplied by a phase factor
etikof): the diagonal elements contain the contribution ofRreements.

L ones. This collapse is carried out by the peaked form of the weight functjois These
weight functions can be seen as quasi-Dirgs for the Lij integral, whereas thi;; is the same
integrand multiplied by an exact Dirdg.

Given this state offéairs, we always pair up the combinatign(L;; — Pj; /w?) (see (4.20)).
Otherwise, we would be incurring in large numerical errors by computing them separately and
canceling out two similar magnitudes, each with a certain numerical error.

Apart from being larger, th¢| and| T elements are also dominated by a phase facthr'e
which result from the-weight functions,

(¢ - 2) cosko?) (), ()
S sin(( - 2ko) (1), (U1)
(the weight functions, defined in eq.(5.5) are the result of reducing from two variables to one;

here, we have exemplified with a same-conductor integral time general case being similar
in nature.)

&(2) = ze[0,{] (6.3)

Therefore, decomposing into forward- and backward-traveling waves results in a matrix
Z =R+ jo(L - P/w?) in (4.20), that has a checker-board structure as shown in Fig.6.1.

1 ifO0elab]

1The Diracsp, is a generalized function defined £3§b:60(x) dx = {0 else
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Figure 6.2: Schematic of geometry for calculatiorPoflements using Stokes’ theorem.

6.1.1 P integrals for different conductors using Stokes’ Theorem

When computing &;; matrix element of the form (4.14c), it is convenient to transform the
surface integrals into volume ones. This is done by successively applying Stokes’ theorem
twice. The reasons for the convenience mentioned above will be evident at the end of this
calculation. The calculation that follows in valid only for the case @ifedéent conductors.

The P integrals for surface charge functions that are given by (4.18), are written as

1 g Ikod )
Pij = Are ff d (W - dSateral) (W' - dS'jaterar)

S S
: j 9§ Lf € W (dzx d0) (W - (dZ x dE')
= — W - ZX w - Z X
4ne ARSI d
1 ] ¢ Lf e (e wx dz)) @e - (W x dz)) (6.4)
= — (WX az - (W X dz .
4ne ARSI d

whered = |r — r’| and the elements of arek5;iera and lengthd¢ are shown in Fig6.2 With
respect to the original expression (4.14c) we have adopted here the more compact notation
w=wi(r),w = w;(r).

In the final expression in (6.4), we have expressed the integrals on the lateral faces of the
conductors as a decomposition of one along zheaxes plus one along a closed loop that
contours the conductors’ cross-section.

Stokes’ Theorem states,

56d€><f=f ds- (v x f) (6.5)
C

S(€)

for S(C) a surface subtended by pagtandf : R3 — RS non-singular or8(C).
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This theorem can readily be applied to the non-primed variables for the last expression in
(6.4% with f = w(r) exp (- jkod)/d,

Pij = 4i fo‘z‘f(ds- (Vx (f xdz))) (d¢' - (W x dZ')) (6.6)

The first vector product in this integrand givesfy, f, 0), whose curl is,

Otxs afyw(a—fuafy)z (6.7)

X ay
Since the area elemed8 = dxdyz is parallel to thez—axis (see Fig. 6.2), we retain only

the last component of this curl; moreover, the un-primed integration is simply a 3-d integral over

the volume of this conductor,

Py = ffgg (afx %)(df’-(w’xdz’)) (6.8)
v

Next, we perform the same procedure for the primed variables, with ffexatice that the
functionf will be replaced by

7 8fX afy ’
After some lengthy algebra, and using the divergence-free condifmrbothw andw’ we

obtain the final expression,

P ff GWZ(')W;
U7 ane 9z 97

AAYAS
ow, oW, ow, owz\ .\ 1+ jkod
W, T2 e
( oz TV az) (yaz'+ Yoz Az

., . 3+3jked - k2d?] e iked
(ko ) g, - ) 29T |0

+

(WXW;( + WyW(, —

dr d®r’ (6.10)

where we have defined= x- X', § = y-V/, i.e. the same relative variablgs, y_ that were
used in the transformation (5.3).

We observe that all the terms in expression (6.10) contain a product of a comporént of
with a component ofv (or, in the original notationw; andw;). Hence, all terms contain the

2We are dealing with dierent conductors, therefode+ 0 and the integrand is well-behaved.

*For example 5 + 5 = 5 (52 + (= X)w+ (y ~y)wy) 25)
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same exponential dependen&e&f v+ zraiX Ay +niz) thatis common to thij integral. This
enables us to perform, at this stage, the same transformation as in Sec.5.2: adopt the variables
r—=r—r’,r, =r+r’and obtain,

1 x % * . X . . 1+ jKor
Pij = Zre f[’]i nj+ ((ti nj+tm)x+ (s + sy - (Gt + 5 Sj)) %
v
. « 3+ 3jko|’ — k2r2 g Jkor
- (ti*x +5 y) (th + Sjy) r—4k0]§xé:y§z r dr (6.11)

for the r_ variables, whereyy, are as in (5.5)f;; are thex-components and ; are the
y—components for modasj respectively (eq.(4.30)):

Though this expression seems cumbersome, there are important advantages gained in using
it instead of the usual surface integrals (4.14c):

1. We have observed that, when using the Adaptive Quadrature [85] method for numerical
integration, the convergence of integrals that mix 2-d and 3-d terms is very poor. If we
decompose the surfadgeintegral into all its components, there are 2-d as well as 3-d
contributioné. In that case, it is necessary to calculate them separately. Using expression
(6.11) avoids this extra partitioning.

2. Expression (6.11) exhibits, at least for the case fiédént conductors, the property dis-
cussed in the previous sectioh: ~ |P|/w?. Effectively, if we form the combination
jw(L — P/w?), then the constant factor in tieterm ismlw2 = ﬁkg' Considering the first
termin (6.11), plus the definition for the= +jkg in (4.34), we see that, in the case where
the producty’n; > 0 (i.e., wheny; = 7;) then this first term cancels out with thecon-
tribution. The following terms in (6.11) all contain at least one ordes of t, rendering

them of order Kqp6) or higher. This explains the cancellation mentioned above.

3. Moreover, the argument in the previous paragraph can be extended to group all terms in
(6.11) by the orden in which (kp6)" appears. This permits a classification of terms for
the RLC integration scheme, which consists in performing a series expansion in terms of
powers ofkor andkgz (see Section 6.2.2).

4This is precisely what is shown in the next section, for same-conductor elements, where Stokes’ theorem does
not hold.
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Figure 6.3: Diagram for same-conduci®mtegrals; the table at right shows the decomposition
of the 16 surface terms for the two surface charge distributions.

6.1.2 P integrals for same conductors

When two conduction modes belong to the same conductor, then the integrand contains an
integrable singularity, and Stokes’ theorem does not apply.

Therefore, a dferent approach is needed. In fact, for same conductors, we adopt the
straightforward decomposition of all terms having chavgen one face and; on another.
There are 16 such terms, which we group into the types of surface intelgfgs P0Y), pOX,

PYY, shown in Fig.6.3. For exampl®®® contains the four terms coming frow andv; on

sides "a” and "c”.

Both P andPW reduce to 2d integrals, performing the=r —r’,r, =r +r’ transfor-
mation as in (5.3), for variablesandz in the first case, and forandzin the second:

w L
Sj . — jKora § ~jkorc
Pffx)_%ff (1+e(ﬁi+ﬂl)h)er —(eBih+e81h)er }fxfdedZ
-w 0 2 ¢
tt oo ore
vy _ G (ar+apw) €0 arw  gw) €
Py = Mff(ue W) - (e + eV - }é—‘yfzdydz (6.12)
“h 0

wherera = VX2 + 22,1, = Y2+ 221 = VR + 2+ 2,1g = YW2 + y2 + 22 andéy, & are the

same weight functions defined in the previous chapter, eq.(5.5).

On the other hand?™ andPY¥ cannot be reduced in the same manner; onlytrariable
is reducible with thez,, z_ transformation, and we obtain 3d integrals:
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w h L
gkt e_jkor * .
T = 2 f f f &Py yyéz dx dy dz
TTE r
-W -h 0
-’ Sj e s
I(}/X) - L:r_J fff eix+h; y)’x)’yfz dx dy dz (6.13)
JTE r
-w -h 0

where we have used the piecewise constant functions of (5.6) which, for the same-conductor
case have the propery(X) = y2(X) = y1(—X):

yx = O(x) — e (—x)
yy = O(y) — €4 FNe(~y) (6.14)

If one of the modes is a side mode, then the transverse current has only one component, and
two of the integrals above vanish. For exampleyiifs a horizontal mode, thelﬁ(jxy) = Pi(;‘x) =0
becauses’ = 0.

Unlike the diferent-conductor case, these terms cannot be grouped together into one single
integral. The comparison with tHeintegral, showing the basic property that: |P|/w? must
be proved on a case-by-case basis. This involves a large number of lengthy expressions, which
we omit for the sake of brevity. Basically, this compensation results¥rom

e For an[H,H] type of integral, onlyP® % 0 the 2-d integrals in (6.12) are exactly the
subtraction between the evaluationd.dhtegrals atx = 0 and atx = w (resp.y = 0 and
y = hfor [V,V] type, onlyP™ « 0).

e For an[H,V] type of integral, onlyPY? % 0; the 3-d integrals in (6.13) cancel exactly

with “flat” term exposed in (5.17), leaving only terms multiplied by factor¥/€andor
e /s

e For a|C,C] type of integral, we have not been able to isolate the origin of the cancellation;
this involves all four integrals in (6.12) and (6.13), and therefore a combination of the
two mechanisms described above; we have verified, with the numerical integration tools
described in the previous chapter, that this property holds in all our calculations (similarly
for [H,C], [V,C] , with contributions from three of the integrals).

SRefer to classification in Section 5.2 for the definition of integral types based on the exponential decays along
the cross-sections.
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6.2 AcceleratedRLCintegral calculations

The expressions shown in the two previous sections form the basis that allow us to calculate, in
an accurate andigcient way, theRLC conduction mode matrix elements. In Chapter 5, we dis-
cussed the computation bfmatrix elements in thR®L/MQS domain. The techniquesftir for

two distinct cases, depending on whether the two modes correspond to the samefereatdi
conductors. This distinction persists in tR&C integrals, and is further amplified by the obser-
vation in the previous section: forftierent conductors, the integrals can be transformed "as

a block” into 3d integrals that resemble théntegrals; on the other hand, for same-conductor
integrals, this transformation is not possible.

Compared to th&L/MQS situation, the first observation is that the integrals are 3-d, be-
cause the—-integration cannot be done analytically. This is for two reasonsz-tdependence
exp(z); and because we cannot &gt= 0 in the Green functioﬁﬁ.

We perform the{z, 7} « {z_,z,} transformation, as in (5.3); after integration over the
variable, the result is a weight functi@gn for the interval gy — ¢’, g + €] that multiplies the
Green function. The algebra is exactly the same as in egs.(5.4)-(5.6). For the quasi-TEM imple-
mentation ofRLC conduction modes, we have chosgrs + kg, so that these weight function
are combinations of cakfz), sinkp2) and linear functions ia. For example, if we consider the
simplified casegy = 0 and? = ¢’ (i.e., wires with the sameextension), the weight functions
become:

(¢-2cosko?)  if mi=n;  (IMor(ll)
osinfo(t-2)  if ;m=-n; (TL)or(l1)
where thet distinguishes between| and|T. The general case is represented by similar ex-
pressions for each of the four subintervals:¢’[ 0], [-¢',¢ — ('], [0, €], [¢ — ¢, €] (setting

r = (X + X0)2 + (Y- + Yo)2 + (z_ + 20)? in the Green function). This form atdependence
induces the following strategy for the 3d integrals:

&2 = { (6.15)

1. Replace exp{jkor) andé&,(2) by their Taylor series in powers &§r andkgyz respectively.
2. Integrate along the-axis, separately for each power of the expansions.

3. Perform, for the integration along the cross-sectional variabtexly, the same recipes
as for theRL/MQS case:

e Taylor for different conductors (as in Sec.5.4);

e Gaussian quadratuy@olar variables for same conductors (as in Sec.5.3).

For the first step above, the expansions are,
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g Jkor 1 . kar  jk3r?
T = F - Jko - 7 + 6
| KR K
COS((OZ) = - T + ﬁ —
. _ oz k?
sinko2) = koz- - + 120" (6.16)

Therefore each appearance of exjior) cosko2)r  is replaced by several terms, combin-
ing all the products up to a given powerlef In this manner, we reduce these expressions to a
sum of products of whole powers pandz

e_ikor 11 —(¢ z)[% ~ ko — ;(r + ?) ; KGS (2+32) (6.17)
+ 2—k§1(r3+ ~ 4 1222) - iizi(rh 57+ 10r°Z) - ]

e—ikor £l =(¢ z)[% — jko - %?(r + q) + %(3’ (r?+ (- 2?)
+ 2—k§1(r3 44l ;rz)4) - ilzg;)(r“ +(-2"+ 1—3Or2({f - 2)2) - }

Note that all these terms can be integrated analyticalty For carrying out this integration,
we separate same-conductor frorffelient-conductor matrix elements.

6.2.1 Same-conductor integrals

When both modes correspond to the same conductor, a#tdependence is given by expres-
sions (6.17). We exemplify for thEl weight functions, the other one being essentially the same
type of calculations.

Replacingz? = r? — p? for all but the¢ — zfactor in (6.17), and defining,

¢
Hpn = f(f - 2r"dz (6.18)

0

we can write the result of theintegration as

M-1
®(p) = ), Gnlp)Hn(o) (6.19)

n=-1
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with p = /X2 +y2, andM is the maximum order o, retained in the Taylor expansion; for
example, settingl = 5 we obtain:

1] 1 gkt | e(sintu- )

0 | —jko (1 +2p% + +2i4,54) 2

1 —k2(1+ 17 S(a+wy¥2-1)us (6.20)
2 K3 (2+ 57 C(1+2u?)

3 L € (L+u®¥2-1)u™

4 S £(1+3u2+3u)

where we have usadl= kop andu = ¢/p. Keeping higher order terms results in similar expres-
sions, slightly more lengthy, without adding in any new transcendental function evaluation.
Function®(p) in (6.19) plays the same role, f®LC integration, as the functiok (o) in
(5.8) for theRL/MQS counterpart: it reduces by one the dimensionality of the integrals, and
defines the kernel of the integrand ix ¥)-plane, to be multiplied by functions ofy. These
functions are the combination of thHe integrals presented in Section 6.1.2, and the weight
functionséyy for L, which are the same as for tRé/MQS case studied in the previous chapter.
The techniques of Section 5.3 are valid for performingstheintegration: L contributions are
replaced by a Gauss-Jacobi expansion, whose principal values are cancele® kgrthe ( for
17 integrals), or doubled (for]).
For these same-conductor integrals, we are presently developing an interpolation approach
that will replace the one shown herein; this new technique is the subject of Section 6.3.

6.2.2 Dfferent-conductor integrals

For different-conductor integrals, the faidependence is composed of (6.17) multiplied by the
sum of theL andP contributions,

w h
1 H
Lij——Pij = 4 f f Ex(X)&y(y) (6.21)
—wW _h/
l
- jkor i 3+ 3jkor — 3Kk2r?
fer fz[l$[fo+f11+r12kor+f2 J Or4 ]l dz; dxdy

0

where thex,y polynomialsfo = ninj, f1 = (t'n; + tin))x + (s'7; + i)y — (t'tj + §'sj), and
fo = (' x+ SY)(tjx + sjy) are the expression inside the brackets of (6.11).
Again, we consider th¢T example, with the other possibilities being similar. Keeping terms
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up to orderM in kg we obtain, afteg-integration, an expression similar to the same-conductor
case,

M-3
O(xY) = D’ Gu(% Y)Hn(p) (6.22)
n=-5
with p = /(X + X0)2 + (Y + Yo)?, and setting for exampli! = 5:
i Gi Hi
5| @+ IR+ Y bo3(2E -1
—4 -~ itp~3tamtu
—3| (1+ 3%+ 459 - KBh pH(VIT R -1)
-2 -~ tp~ttamtu - log(1+ u?) (6.23)
_ 112~2 el
S (sinrtu- 4
0 | -52((+ 1) h + 12H) 1¢2
3
1 - g f1 F(@+w?)¥2-1)us
4
2 2 C(1+2u?)

with the same notation as in (6.20).
As in the same-conductor cad€x, y) reduces the dimensionality of the integrals, so that
(6.21) becomes:

w h
L= 5Py = [ [ otxnecog) axay (6.24)
-w —h
Having performed theintegration, we are now in a position to apply the methods of Section
5.4 in order to calculate this 2-d integral. Basically, this consists in Taylor expansions for every
exponentially decaying interval and Gauss-Legendre rules for evefingiar interval.
Although the expressions in (6.23) contain more terms than the onédLfahey do not
entail an important increase in computational cost. Both cases consist of one-time evaluations
of transcendental functions, plus a certain number of elementary arithmetic. Both the number
of transcendental functions and elementary arithmetic is greater f&liGease; however, this
difference is slight when compared against the savings obtained therein.

6.2.3 Preliminary examples

As mentioned at the beginning of the present chapter, this strategy is presently under develop-
ment, hence we cannot show global results for the methods in this section. Instead, we present,
in Fig. 6.4 a brief analysis of thie)-approximation: we consider integrals fofférent conduc-
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Figure 6.4: Approximation errors for Taylor &g; dimensions of wires areulx 1u x L, 2u X
3u x L, and the separation is:dn x and J: ony; material is copper, and frequency is Gl9z
The wavelengthl = 300Qu is indicated by the dashed vertical line.

tors, replace thedependence by the order-2 Taylor approximation in (6.22), and compare the
results for this 2d integral (6.24) against the original 3d integrals (6.21). We use the Adaptive
Quadrature (AQ) [85] method for both the 2d and 3d inte§rals

Errors for this Taylor approximation remain below 1% for values of length significantly
larger than the wavelength. The reason for this behavior is given b}yfmﬂor, which dampens
the value of the integrand for valuesoifvhere the approximation errors are large. For ldrge
errors grow with the expectdd® dependence (the remainder o« 3, for somezy, € [0, L]).

In terms of cost, we mention that, in approximating ttietegral in this manner, the number
of function calls is reduced, on average, by a factor 20: for these 3d integrals, the number of
calls is of order & 10°, whereas the 2d ones, for the same AQ accuracy parameters, demand an
order 4x 10,

Nevertheless, we expect the savings mentioned above to be increased by two additional
orders of magnitude when the Taylor expansions,grare implemented. This is a consequence
of applying the methods shown in Section 5.4, with the runtimes of Section 5.6 and errors of
Section 5.7. Runtimes are expected to be slightly longer than the ones in Fig. 5.11, since the
RLC Taylor expansions contain more transcendental functions thaRltHd QS ones.

5The full strategy includes the Taylor and Gauss-Legendre expansiony éor (6.23); this part of the code is
currently under development (although it is computationally inexpensive, it is "developmentally” very expensive).
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6.3 Interpolation/Parametrization of self matrix elements

In the previous chapter, we presented a systematic approach to the problem of computing matrix
elements in th&kL conduction modes matrix. Therein, we showed that by performing certain
approximations, we could reduce one order of magnitude in calculation of the elements for
different conductors. For tHeLC problem, the analogous savings are obtained by combining
the methods in Sections 6.1 and 6.2 above.

For RL, we also obtained a further order of magnitude savings by approximating the same-
conductor elements, by using Gaussian and polar variables integrations on the cross-sectional
dimensions. Comparatively, the savings for each same-conductor integral are less significant
than the ones for éierent-conductor integrals. FRLC, we expect the same-conductor savings
to compare worse, because the Taylor expansidg lomeaks down when the origin is contained
in the integration domain.

A far more interesting alternative is that of avoiding these calculations altogether, by pre-
computing them filine; at runtime we can obtain the value of the matrix elements by either of
the following methods:

e Creating a large library (or several distributed small ones) of precomputed values at cer-
tain specified nodes, spreading out over all the possible configurations, and interpolating
among the nodes of this lookup library for any arbitrary configuration. The choice of in-
terpolation method must be done carefully, according to the distribution of node; a survey
on multidimensional interpolation is found in [91].

e Parametrizing the function dependence of the matrix elements, thus creating a numerical
model for each. In this case, thefiitiulty of the problem lies in capturing the correct
model for each of the dimensions of the problem.

In [92], an interpolation approach was presentedRdarextraction of inductance among
interconnects. The nodes of the library consist of a predetermined set of current distribution
functions for two-wire configurations, denominated “proximity templates”. More recently, this
technique was refined by requiring orthogonality among these functions, as well as inclusion of
these within a multilayered complex image formulation [93]. The main advantage is that the
matrix elements for the templates are computefilifee”, avoiding the burden of computing
non-trivial integrals.

The dficiency of creating such library is dominated Oy the number of degrees of free-
dom for the interpolation. For two-wire configuratio$,= 10: the three dimensions of each
conductor, the three separations, and the frequency. In the most general case, the proximity
templates method implies constructing, bookkeeping, and scanning (online), a number of 10-
dimensional lookup libraries. The complexity of this method is exponentid]| inith the basis
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Figure 6.5: Typical values for same-conducloe jw(L — P/w?) integrals, expressing varia-
tions with respect tol{w, f) parameters; for the two fierent types of integrals shown above,
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of the exponential determined by the number of nodes along each of the dimensions. Further-
more, the number of such libraries is given by the product between the number of templates for
each of the participating conductors.

For these reasons, we do not consider an interpolation scheme in computing matrix elements
for different conductors.

However, for elements for the same conductor, this number reduces drasticHlky, 4qthe
three dimensions plus the frequency), which is manageable. Moreover, the number of libraries
required is much smaller, because symmetries reducefitbetiee number of dierent matrix
elements (see Section 5.3). This scheme is also appropriatdifnedi-conductor matrix ele-
ments, in configurations where there is a large degree of symmetry among wires (e.g.: planar
inductors, where it is common for all long segments to be on the same layer and have the same
width, or ground planes that have been partitioned into several subregions, with a large degree
of symmetry among them).

Furthermore, in ICs some of these 4 dimensions do not necessarily have a continuous vari-
ation. For example, the thickness of wires is related to the thickness of the metal layers. These
thicknesses are restricted to a small number of discrete values [73, 94]. For our interpolation
scheme, this reduces the dimensionality by one, seHirg 3, with the proviso that we must
construct one set of libraries for each value of the thickness.

For the three remaining parametefsy, f), we show in Fig.6.5, the dependence of some
matrix elements. These are the functions to be either interpolated or parametrized. A first glance
at these graphs shows that thelependence is linear. This means that, alond-thdimension
of II-space, two values fiice for parametrizatiginterpolation. In practice, the dimensionality
is reduced to 2.

The dependences @nandf require a more delicate inspection. The fact thad reduced to
2 allows for a large amount of nodes in an interpolation scheme, which leads to the possibility of
adopting simple algorithms (e.g. a bi-cubic splines [84] for equally-spaced nodes; [91] and [95]
give recipes for arbitrarily spaces nodes). If a parametrization scheme is adopted, the lower
dimensionality permits anficient isolation the behavior of each dimension as in Fig.6.5, in
order to fit these curves with analytical expressions. At present, we are analyzing the advantages
and disadvantages of either one of the two methods (or a combination or them), applied to these
integrals.

6.4 Enlarging the conduction modes basis

The conduction modes method is based on a particular choice of modes for the expansion basis.
Obviously, the goal is to capture as much of the physics as possible, with as few functions as
possible.
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In this section, we discuss the implications of enlarging the conduction modes basis, i.e. the
set of functionsw; in (4.12) (the surface charge functions are always defined by (4.18)). For the
RLC examples shown in Chapter 4, we made certain assumptions in order to reduce the number
of modes. In particular:

e in Section 4.4, only quasi-TEM modes were considered, leading to a reduction in the size
of the parameter space for the conduction modes;

e in Section 4.3.2, we neglected one of the possible directions for the quasi-TEM conduc-
tion modes.

Dropping each of these two assumptions leads to the inclusion of new sets of conduction
modes, which we denominate “dissipation” and “reaccomodation” modes, respectively. They
constitute the subject of the two subsections that follow.

Although these ideas have not been implemented, we can combine our experience in con-
duction modes with physical intuition, to predict thiéeets that these future inclusions may lead
to. This intuition is a useful guide in determining if and when to implement these additions. In
the following two subsections, we detail each of the assumptions above.

6.4.1 Dissipative modes

The particular choice of parametersp, n for RLC conduction modes of Section 4.4 corre-
sponds to quasi-TEM modes of propagation for the waves in the medium surrounding the con-
ductors (see discussion in Section 4.4). As a consequence, we have set a sinusoidal dependence
along thez-axis, withA = 27rk51, i.e. the natural wavelength for EM waves in the medium.

In terms of the conduction mode parameters, relation (4.27) states theg¢dses to be jKko,
then it must contain somg -order component. Given that, for the frequencies and materials
of interest,d ~ 10732, this means that we can safely neglect%h% in (4.27), and concentrate
only on the first term in the ris

2
R 6:25)

Thus, inclusion of non-TEM modes involves includingn the redistribution of the rhs in
(6.25). We recall that, both fdRL/MQS andRLC conduction modes, this redistribution was
limited to @ andB. We thus obtain a description with exponential terms along all three spatial
directions.

Computationally, the evaluation of matrix elements for these new modes is not expected
to add a significant amount of cost. This is due the fact thatztbeponentials localize the

"For the validity of this statement, we also need < 2, an assumption which is most generally the case.
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integrands for these elements (in contrast to the sinusoidals for the quasi-TEM modes), so that
we may set expfjkor) = expjkorg) in the Green function for the corresponding integrals
(with ro defined as the distance between the maxima of the exponential decays). Then, the
familiar Taylor expansion and Gaussian quadrature techniques for exponential decays, which
were previously used only for cross-sectional dimensions, can be applied to the longitudinal
one. The dficulty in the implementation relies mainly in the mixing of these new modes with
old ones. Before embarking on this course, it is instructive to attempt to forecast when these
modes can be important.

Physically, these “dissipation” modes are such that capaciffeets are much larger than
the inductive ones. This observation results from estimating the magnitudes of longitudinal
and transverse currents; from the continuity equation imposed on the definition of conduction
modes, which was shown in eq. (4.30),

= O(1) (6.26)

= 5(%nB)

where we have imposeglto be orders. We recall that the cancellation betwekrand P
in Section 6.1, for quasi-TEM modes, relies on the ratio at the right of eq.(6.26) being of order
O(5/.). Not having this relationship is tantamount to havi@gP/L| = O(1?/62) for dissipative
modes.

Furthermore, these modes have a typical length scadewhereas the quasi-TEM modes
extend all over the conductor. As such, we expect theces to be negligible it > 6.
Conversely, these modes should be appropriate for representing bfietas éor geometries
with small scales, i.e. vias and small connecting wire. Unfortunately, these statements can only
be verified in practice: including these modes and observing that the solution iffexitd,
this task involves implementing thefficulties mentioned above.

Wy _ J(s2
W§ = 2(6 na) N Werans
Wiong

6.4.2 Charge reaccomodation modes

The second type of modes neglected in RieC formulation of Chapter 4 are those that carry
no net current along theaxis. They represent a redistribution of charge along the transverse
dimensions of the conductor.

These neglected modes are quasi-TEM with no transverse divergence,

= w* = By (3_, —3_,0) (6.27)

ai B
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whereVirans = X0x + Joy.

The main distinction, between these modes and the ones we have been using\é'igaﬂHai
0: currents only flow on the transverse direction. We cannot normalize these modes in the same
manner as the usual ones, because there is no current entering the conductor. Also, for any value
of z, the total charge for these modes is zero, so we cannot normalize according to the value of
charge. For the sake of having comparable elements in the description, we borrow the same
normalization as for the modes in (4.30), defining the proportionality constant as,

B = (G- 1)(e&fi— 1)‘5’7i (6.26)

with the same comment as in (4.30), namely that, if it is a side mode withgsay), then the
first fraction above is replaced by its limit. In this manner, the currentsand corresponding
chargesgi = (jw)~l; to these modes have the same scale factor as the ones for the usual

conduction modes in Chapter 4.
There are two important consequences related to the abserceioénts:

1. the rhs of the system equations for these modes vanishes (see eq.(4.19));

2. theL contribution is negligible with respect to the one coming frénelements, thus
avoiding the cancellation discussed in Section 6.1; all the elements corresponding to
Wi(rea@ (including those on the diagonal) are much larger then the ones for “normal”
modes.

The combination of the two statements above suggests that contribution from these modes
is negligible. As in the previous case, these statements can only be verified through trial and
error.

6.5 Arbitrary 3-d geometries

Concerning the geometry of the wires that can be treated by our conduction modes method,
there exist certain associated limitations. We now examine two of them.

6.5.1 Non-Manhattan configurations

For two currents running on wires at@0nductance fects are negligible. In this case, only
capacitance needs to be computed. A, ®0e application of Stokes’ theorem runs very similar

to the calculation for parallel wires, Section 6.1.1. The resulting expression is the same as
(6.11) with appropriate exchangesxly parameters and the corresponding oneszfdraylor
expansions as is Section 6.2.2 can be applied in a straightforward manner.
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Collectively termed Manhattan geometry, parallel and perpendicular configurations cover a
large set of IC interconnect applications; typical exceptions are given by multi-sided inductors.
Concern for non-Manhattan geometries is more important in PCB and package applications.

When the angle between the two conductors is n&t &tk calculation in Section 6.1.1
becomes very cumbersome. Even for the case of inductance of infinitesimal filaments, this
computation involves the non-trivial combination of no less than 15 transcendental functions
(page 56, [55]). For non-negligible cross-sections, these complicated expression must be inte-
grated over the two cross-sections [23]. In practice, though, it is appropriate to approximate
wires as filaments located at the centers of the cross-sections [58].

In our case, the conduction modes are helpful, as they concentrate the value of the integrand
within a narrow region, allowing for Taylor expansions as in 5.4. Obtaining the expressions
ready to be used for these Taylor expansion is not an easy task. An analysis of the necessity for
inclusion of this case must be done before embarking on this road.

6.5.2 “Fat” wires

Any description in terms of localized current distribution method encountéisuliies when
dealing with wires that have significantfidirence in their dimensions, e.g., when we have one
wire on top of another with a larger width, as in a ground plane; or when two wires have very
different lengths. The reason for thigtdiulty is due to a well-known phenomenon: the current
returning on the wide wire tends to concentrate on the “shadow” of the thinner one.

In filament-type approaches RL inductance extraction, the problem is solved by applying
a specific discretization for ground planes [15, 23], with many narrow filaments, for the wide
wire, at the shadow of the thin one. These kind of solutions, when applied to a large system of
wires, can be a double-edged blade: if taishocdiscretization is carried out for all wires above
the ground plane, then the size of the system will grow accordingly. Clearly, some heuristic is
needed in order to avoid an explosion in size. Such a heuristic must discriminate the importance
of each particular discretization.

For conduction modes, the analogous solution is to decompose the wide conductor into a
collection of conductors, representing the same total dimensions and being able to reproduce the
“shadow” currents mentioned above. As in the filament approach, we must avoid an explosion
in system size, by determining when and how to make this decomposition, and which modes to
use in the process.

For theRLC formulation, this situation can also occur along the length: if two wires have
significantly diferent lengths, then the strategy of decomposing into same-length wires can lead
to an explosion in the size of the system. Implementation of this type of strategy is underway,
for theRL/MQS problem, at the time of writing.
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Pairs Foster pour des transitions
simples

Résune en francais

Ici, nous nous intéressons au probleme lié a la représentation giets &L en fonction de la
frequence. Suite au choix de méthode de réduction de I'ordre du mofiettué chez Men-

tor, méthodologie cf. Introduction Générale, nous utilisons des pairs Foster. Dans la section
7.1, nous analysons en détail la réponse d’'un pair Foster, définissant son parametre princi-
pal, c.-a-d. la frequence caractéristique. Dans la section 7.2 nous montrons comment calculer
les parametres d’un circuit avec un seul pair Foster, en garantissant la passivité du circuit.
L'équivalence entre un pair Foster et un élément d’un circuit échelle est exposée dans la section
7.3. La section 7.4 contient une description de I'implémentation de cette stratégie dans les outils
d’extraction chez Mentor. Finalement, nous montrons et analysons des exemples des transitions
simples qui sont modelés avec des circuits d'un pair Foster (section 7.5). Les méthodes de ce
chapitre sont contenues dans le formateur Calibre, et font partie du contenu de la demande de
brevet correspondant [41].
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Chapter 7

Single-transition Foster pairs

We now address the question of how to represent broadband frequency dependent resistance
and inductancefgects for IC interconnects. As discussed in the Introduction, we wish to do so
using realizable circuit elements, compatible with the node-elimination, model order reduction
(MOR) scheme. The main goal in this type of modeling is to capture the relevant variations of
resistance and inductance, with only very few data input values (and hence few circuit elements).

Resistance always increases, and inductance always decreases, as frequency grows. To un-
derstand this in physical terms, we must consider that currents always reaccommodate them-
selves so as to minimize the total impedarge, R+ jwL. The weight of the frequency for the
imaginary part oZ causes the importance bfto grow with respect to that dk.

Empirically, we have already seen two cases in which this phenomenon presents itself: the
selection and distribution of return paths for a signal wire (Sec. 2.2); and the current crowding
within conductors due to skinfiects (Chapters 4-6). For any given configuration, there is a
frequency threshold that determines the onset where indudfeet€become important. Below
this frequency, impedance can be considered frequency-independent. For very high frequencies,
currents are nearly superficial, constrained within a wittk f~1/2, so that inductance stabi-
lizes at a fixed value, and resistance grow$44. In general, we are interested in modeling the
response of a system at intermediate frequencies, where these transitions appear.

A Foster pair is a simple circuit, with constant parameter values, whose response as a func-
tion of frequency resembles the one described above. It consists of one resistance in parallel
with one inductance, as in Fig.7.1. At very low frequencies, the impedasicef the inductive
branch is negligible, so the current will flow mainly through it; as frequency increases, this con-
tribution becomes more important, while the impedance of the resistance remains unchanged.
For high enough frequencies, current flows mainly through the resistive branch. The value of
frequency at which this transition takes place is called the characteristic frequency of the Foster
pair.
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R
—\\WA—(0000—® =
R(@) L(o) R. L, [%
L

Figure 7.1: Basic circuit: a resistance and inductance in series with one Foster pair, as a repre-
sentation of a frequency-depend&it circuit.

Circuits with Foster pairs for representing frequency-dependéatte were used already
in the sixties. At the beginning, these studies were of a theoretical nature: [96] is a thorough
comparative analysis of flerentRL structures with respect to Foster and Cauer ones; [97]
shows applications to network synthesis; and [98] treats equivalence transformations between
Cauer and Foster networks. More recently, applications appear in the literature: in [99] Foster
pairs are used for a finite-pole approximation within a full 2-d modeling approach, and [100]
include Foster pairs for a transmission line model; Model Order Reduction (MOR) applications
of Foster pairs are found in [101] and [40]. Alternatives to Foster pairs, namely the ladder
networks, are reported in [54] and [102].

We follow [40]: therein several recipes for including Foster pairs into the Mentor's MOR
scheme TICERBMR [38,39] are presented. We will construct Foster pairs for a specific case of
the Arbitrary Frequencies Branch Merge method (page 235 of [40]), which allows the freedom
to choose the characteristic frequencies for the Foster pair circuit. Reduction of these computed
circuits is described in the same reference.

The two typical frequency-dependent transitions found in IC’s can occur either at distinct
frequency ranges, or at overlapping ones. In practice, the response can be modeled well with
one or two Foster pairs, depending on how many types of phenomena are contained in the
original data (current crowding afat skin dfect). In this chapter we show how to determine the
parameters of one-pair Foster circuits, leaving the more general case for the following chapter.

We organize the contents of the present chapter as follows:

e in Section 7.1, we analyze in detail the response of a Foster pair, defining its main param-
eter, i.e. the characteristic frequency;

e in Section 7.2 we show how to compute a one-pair Foster circuit for a set of 4 input data
points, coming from two dferent frequencies;

e we prove in Section 7.3 that a one-pair Foster circuit is identical to a corresponding ladder
circuit;

e Section 7.4 deals with issues regarding the implementation of Foster pairs within Mentor’s
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extraction tool, Calibre xL;
e Section 7.5 analyzes basic examples of one-pair Foster modeling.

We emphasize that this chapter, as well as the following one, do not contain highly innova-
tive concepts, from a scientific point of view (except for the issues described at the discussion
of Chapter 8). Nevertheless, they constitute a working example of fhieullies encountered
in an industrial application of simple physical concepts, and relating to a particular choice made
at a higher level (i.e., the adoption of the TICBRIR reduction scheme).

7.1 Characterization of Foster pairs

The frequency dependent impedance for the Foster pair in Fig.7.1 is:

1 1\ w?L2 R2
Z(FP) =(— : ) = P IRy +| —"—|jwL 7.1
(w) Ro + joly R% +w2L% p+ R%+a)2L% Jwlp (7.1)

This can be written in terms of the characteristic frequency of the Foster pair,

= — (7.2)

ZFP)(w) = [1— ]jwl_p (7.3)

- 2] Rp + [ - 2
1+ (g) 1+ (%)

Separating real and imaginary parts, we see that the equivalent resistance and inductance for
the Foster pair are given by,

7(FP) = RFP) 4 oy (FP), RFP(w) = (1-y¢(w)Ry (7.4)
LFP() = y(w)Lp

In Fig. 7.2 we plot the general form for the characteristic funcii¢m) = (1 + (w/Q)?) %,
having the following properties:

o lim,oy(w) =1,

o lim o y(w) =0;

« YO =73

e (3Q) = 0.9 andy(Q/3) = 0.1.

o the derivativay’(w) < 0 Yw with a peak atwp = Q/ V3, and¥’(wp) = %ﬁ ~ %65.
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o I O sl I KT N 0.65/Q

3" 3"
angular frequency w angular frequency w

Figure 7.2: Characteristic functiof(w) and its derivativedy/dw for a Foster pair, in linear
(left) and logarithmic (right) scales.

In other wordsy/(w) is a soft decreasing unit step function, occurring in the vicinitf2of
The typical “width” of the transition in the frequency domain is approximately one decade. In
fact, ¥ (w) has a symmetric shape to the right and lef€pff we use a logarithmic scale for the
frequency (as is common practice when analyzing broadband behavior).

For a Foster pair, the equivalent resistance and inductance are both subject to this type of
transition, the first one being multiplied by a facteR, and the second one by a faclgy, so
that the desired increasirig/decreasing- characteristic is modeled.

7.2 One-pair Foster circuit parameters

The simplest realization of a circuit with these characteristics is the one shown in Fig.7.1, com-
posed of only one Foster pair in series with a resistor and an inductor.

Such a circuit contains four parameters to be determined. Namely, the two series values
Rs, Ls plus the Foster paiRp, L,. These four parameters are determined by giving extraction
values at two dferent frequencies, = 27 f, andwy, = 27 f;, satisfying the consistency condi-
tions:

wr < wp = Rlwe) < Riwn) (7.5)
L(a)[) > L(a)h)
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The equations to solve in this case are :

2|2 2|2

Row; Ly Rpwilp
Rt a2 =R =Rw) Rt o5 —"55 = R = Rlwn)
p+wilp p+wilp
RZL R2L
p=p p-p
LB R Let — PP =L 7.6
TRz TR T Rrarg T Hen (7.6)

This system has an analytic solution, given by:

B
R, = -R)K; Rs=R/ - R
1
Lp = (L[ - Lh)K, LS = L[ - rﬁ?Lp (77)
with
(1+8) (1+£7) 1
K = 2_ o2 =
By, — B; Y(we) — Yl(wn)
Weh
Ben = o
Here, we have set,
_R-Re
Q= L Lo (7.8)

Equation (7.8) expresses the essence of this solution: it is the result of equating the charac-
teristic frequency of the Foster pair to the characteristic frequency implied by the data, given by
the ratio between the variations RfandL.

7.3 Equivalence between ladder and Foster pairs

As mentioned in the introduction to the present chapter, several authors have used ladder circuits,
instead of Foster pairs, in order to represent frequency-depeRdebehavior [54, 102]. A
ladder element is a “cousin” of a Foster pair: it also has two parallel branches, with a resistance
in one branch and an inductanphus an inductance on the other, as in the circuit at Ihs of
the equivalence in Fig.7.3. In this section, we will prove that this ladder circuit has identical
behavior as the Foster pair shown as the rhs of this equivalence.

The impedance for the ladder element is:
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O,
®-—/00000" = QW%
L o o,

R +R,
R,

Figure 7.3: Equivalence between a ladder circuit and a corresponding Foster pair circuit.

1 1\t

(parameters defined in Fig.7.3) Performing the same procedure as done for Foster pairs, the
response for the ladder circuit is:

Z(@) = R@) + joL (), {m» -, (7.10)

L(w) = Ls+ a?y(w)lL
wherey is the same function as before, with the characteristic frequency given by,

R, +R,

ob = (7.11)
Lp
and we have an additional parameter,
R,
= 7 O<axl 7.12
RL+R, (7.12)

Like in the Foster circuit, the system with two pairs of input datavatand w, has an
immediate solution given by,

Ri-R. __Ri-R

Q= ; = 7.13
-0 7 wRi—unRe (7.13)
(obtaining the original parametel®(,, L, Ls) is trivial from here on).
For the sake of comparison, we rewrite (7.10) in the following way:
RO(w) =(1-0a)R, :R(l — ¥(w)) aR, 7.14)
LO@) = Lo+ y(w)pt
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Compared to a Foster pair, (7.4) says that the magnitude of the SEFI(w) is Rp, and the
one inLFP)(w) is —Lp, which can be written asR,/Q. In other words: the step for the ladder
is exactly the same as the one for a Foster pair, multiplied by a factbhus the response of a
ladder circuit with solution given by (7.7) is identical to that of a Foster pair with parameters,

I—S = Lo Lp = QL|
Rs = (1- )R, R, = aR, (7.15)

(Note: Rg! = R‘ll + R,‘Zl, stating that the series resistance of the equivalent Foster pair is simply
the parallel between the resistances of the two ladder branches.)

The diference between the two systems relies in how the sensibility is tuned. For the ladder,
parameteir controls the low-frequency resistance by establishing the relative weight of the
purely resistive branch with respect to the mixed; in Foster pairs this role is carried out by the
series resistandes.

Two limiting situations exist:

e o« — 1: gives a Foster pair witlR,, L) and no series resistance; this is coherent with the
factthate =1 R, =0.

e o — 0: corresponds t&, = 0, which is tantamount to shorting the ladder structure; only
inductanced_s survives, and there is no corresponding Foster pair.

As a conclusion: for a single-transition picture, there is ritedence between using one type
of representation or the other. We anticipate that, for systems with more than one transition, the
situation is quite dferent, because the ladder circuits can be cascaded to produce non-trivial
behavior (this will be analyzed in the following Chapter).

7.4 Implementation

Determining the characteristic frequency in (7.8) is the maffeddince between our method
and the ones discussed in [40], whereby all the characteristic frequencies are pre-established.
From the MOR point of view, this predetermination of all possls in a circuit is a desired
property. Instead, from the extraction side of the flow, it is computationally convenient(®o let
be determined by the data, as in (7.8). This choice determines the Arbitrary Frequencies Branch
Merge variant of MOR mentioned earlier [40].

However, before accepting this solution, we must be certain that it is a representative model
of the original data. In other words, we must verify that the transition of the produced Foster
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pair takes place in the vicinity of the frequencies corresponding to the data we possess. Failing
to do so, solution (7.7) is unstable and may lead to unphysical parafmeters

Graphically, we want to avoid the situation in which the two data points are on the same
branch of the functiom/(w) in Fig. 7.2, meaning that they are not both to the left of the 10%-
transition mark, nor both to the right of the one for 90%. This condition reads:

[we, wn] N [€Q/3,3Q] 20 (7.16)

% < we < 3wn (7.17)

In arithmetic terms, this statement is equivalent to requiring the denominator in (7.7) not to
be small. This denominator is factored gs € 8n)(Bnh — B¢),

Bh—-Br<l & wh—wr<xQ (7.18)

If the input data does not comply to these conditions, it is because no significant transition
occurs in the given frequency range. Thus, fixed average values of resistance and inductance are
appropriate for the whole range.

Returning to the discussion between fix@dnd free€2 methods, we point out that the for-
mer must imposad hocthe non-negativity of circuit parameters at computation time (generally,

a Gauss-Seidel triangulation), whereas condition (7.17)ffcgent for the latter.

In Fig.7.4 we show the implementation of the Foster pair synthesis method included in
the actual version Mentor’s Calibre tools [22,41,103]. Only those aspects that are relevant to
broadband extraction are pointed out. The major blocks of the calculation are the one-frequency
extraction call to Calibre xL and the call to the TICEHBRIR MOR tool, which are documented
in the references. With respect to the flow in Fig.7.4, we make the following comments:

1. Input to Calibre xL is through a geometrical description of wires, that is converted at an
earlier stage of the extraction flow into the Parasitics Database (PDB), containing, apart
from the geometry, a placeholder for tReL, C parameters; the only addition for doing
broadband extraction is the set of frequencies.

2. For digital signal nets, in Calibre’s low-frequency mode, which does not contemplate
skin-dfects, f;, is determined as

fh = min(tl, fmax)

r

INamely, the series parametétsandor Ls may take negative values.
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4‘ RLC Database (PDB) l {frequencies}

Compute RL at frequencies
(solve ZI=V, eq 2.12)

0 @ 2
Capacitance

extraction !

Single Foster-pair method | | Double Foster-pair method
(eq 1.7) (eq 2.6)

< Ravg' Lavg ) < R.v’Ls' RI)’L[) ) R.y’Lx' Rp]‘ij‘ sz’Lpz

‘ Model Order Reduction (call TICER/BRM) ‘

RLC netlist

Figure 7.4: Foster pair flow diagram inserted into the Calibre xL extraction tool.

wheret; is the minimum rise time for the net, ariglax is the technology-dependent max-
imum frequency where skinfiect current crowding may be safely neglected, including
one piecewise-constant filament per wire.

3. Determination of the number of transitions springs from (7.17), when 2 data points are
extracted; for more data points these conditions are discussed in Section 8.4.

7.5 Examples

In this section, we will analyze two numerical examples of one-pair Foster circuits, one corre-
sponding to the each of the two types of transitions we have been discussing.

7.5.1 Example with return-path selection

We concentrate on the example shown in Fig. 7.5: a configuration of one signal and 17 wires
identified as grounds. Therefore, the current has 17 degrees of freedom to “choose” the return
paths. Original data is produced with FastHenry using one filament per conductor, in order to

avoid current-crowding féects on each wife and computing loop resistance and inductance.

2These curves are indistinguishable from the one obtained with the CaliliRé ®itraction tool [22].
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Figure 7.5: Configuration for capturing return-path selectiaats; one signal (blue, circled in
red) with 17 returns (in green); all lengths are 10@hd material is copper.

These are the symbols with dashed lines in Fig. 7.6. Next, we compute the Foster pair circuit
parameters as in Section 7.2 using the data at1GHzand f, = 10GHz and plot the result of
the fit for a broadband spectrum that covers one decade above and one below the fitted region.

Fig.7.7 plots the errors of these fits, compared to the original data. Worst-case 2.5% error is
comitted for inductance in the interpolation region, and less than 0.5% for resistance.

The importance of each component of the errors depends on the impact of that magnitude
on the total impedance. In order to pinpoint the relevance of these errors, it is perhaps more
instructive to decompose the impedance into its absolute value and argument (Fig.7.8, and errors
in Fig. 7.7(right)). In this manner, we are able to observe that the aforementioned 2.5% error in
L is not dominant in the interpolation region: the absolute value of impedance is well fitted with
an error below 0.5%. The 2.5% errors in inductance are translated to errors in the argument,
when this magnitude is very close to zero.

Finally, we emphasize that errors remain quite low (below 3%) well beyond the interpolated
region. Thus, the Foster pair not only fits this interval, but also allows for a fair level of ex-
trapolation. ldentical figures were obtained for all the 42 signals (blue cross-sections) in Fig.
7.5.

7.5.2 Example with skin-dfect current crowding

At very high frequencies, return paths are reduced to the nearest neighbors: the frequency is
such that we are well inside the plateau observed at the right extremes of Fig.7.6. Frequency
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Figure 7.6: Result of fitting with one Foster pair for test case in Fig.7.5.
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Figure 7.8: Same results as Fig. 7.6, plotting modulus and argument of impedance.
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4u 4u

Figure 7.9: Balanced sandwich configuration for the study of sKigeecurrent crowding.

effects for this situation are given by current crowding within the conductors; i.e. thefshatse
that are the subject of Part B (Chapters 4-6) of this thesis.

Consider the configuration in Fig.7.9, composed of one signal with two symmetric return
paths; the material of all wires is copper. We are interested in a range of frequencies up to
100GHz in which the skin depth is smaller or comparable to the dimensions of the wires. By
studying a perfectly symmetrical configuration with only two closest return paths, as in Fig. 7.9,
we are able to isolate current-crowdinjeets from the return-path selectiofiexts studied in
the previous example.

In order to represent thesé&ects with a one-pair Foster, we fit original data produced with
FastHenry at a high precision level X2 filaments on the cross section), for frequendies
1GHzand atf, = 100GHz The characteristic frequendyhar = Q/2r for the fit is 52.9GHz
so that condition (7.17) is comfortably satisfied.

We plot the inductance and resistance of the resulting Foster pair fit, compared to the original
data, in Fig.7.10. On the right graphs of this figure, we observe that errors remain below 3%.
Plotting modulus and argument for this example (Fig.7.11), we see that this time the maximum
level of errors are translated to the absolute value of impedance.

Similar examples render the same error figures, with errors always bounded by 5% for rep-
resentation of skinféects by one Foster pair.
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Figure 7.10: Resistance and inductance figures for the configuration on Fig.7.9, comparing
Foster pair fit to original data produced with FastHenry at high precisio® discretization.
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Figure 7.11: Same results as Fig. 7.10, plotting modulus and argument of total impedance.






Pairs Foster pour des transitions
multiples

Résune en francais

Pour certaines configurations et gammes de fréquences, les deux transitions décrites dans le
chapitre précédent sont présentes, et une modélisation a un pair Foster ggsamde. Dans

ce chapitre, nous considérons un cas plus général. Dans la section 8.1, nous transformerons
les équations pour un circuit composé de deus pair Foster en une forme simple et maniable.
Une solution graphique et simple pour ces équations est proposée dans la section 8.2. Des
configuration exemplaires sont exposées et analysées dans la section 8.3. En conclusion (section
8.4.1), nous discutons les conditions de convergence de cette méthode, ainsi que des importants
extensions, concernant : le probleme d’'un nombre arbitraire de pairs ou d’élements d'echelle
d’'une parte, et la représentation de la dépendance fréquentielle I'inductance mutuelle avec des
Foster pairs de l'autre.
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Chapter 8

Multiple-transition Foster pairs

At high enough frequencies, both return-path proximity and sKiece crowding are present
in the extracted data. For these cases, one Foster pair may not render an acceptable fit. If the
characteristic frequencies for these two transitions are substantidéyediit, then it is advisable
to include one Foster pair for each of these. Similarly, we may wish to include several Foster
pairs in order to model more detailed data.

For a system of Foster pairs, the equations for fitting the circuit parameters become more
complicated, due to the non-linearity of the characteristic response respémsa Foster pair.
For the case of two Foster pairs, they are tractable if we bare in mind which are the important
variables. Namely, these are the characteristic frequencies.

The contents of the present chapter are as follows:

e in Section 8.1, we will transform the equations into a simple, tractable form;
¢ these equations have a graphical solution, which is the subject of 8.2;
e numerical examples are exposed in 8.3;

e we conclude with a discussion on the concerns regarding implementation (Sec.8.4); this
discussion is extended to three questions which are presently at the development phase:
the generalization to several pairs (8.4.4)ladder circuits as an alternative to Foster
pairs (8.4.2); a brief summary of the problem of broadband mutual inductance modeling
(8.4.3).

8.1 Two-pair system

Consider a circuit composed of two Foster pairs, as in Fig.8.1. Being connected in series, the
response of this circuit is simply the addition of two Foster pairs,
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Figure 8.1: Circuit for representing frequency dependence in the presence of two transitions: a
resistance and inductance in series with two Foster pair.

1 1
R((/.)) = Rs+ WRQL + 1. (%)2 sz
1 1
L(w) = Ls+Lp, +Lp, - 1+(%)2LP1_@LP2 (8.1)

whereQ; = Ry, /Lp, 1 <i<2.

There are 6 circuit parameters to be determined. Thus, we need 6 input data, i.e. 3 pairs of
values R,L). Evaluating at 3 frequency pointa){ < wm < wp) We obtain the system of six
nonlinear equations,

Ry, + Rs =
14X P T ™0 R
1 R 1 R R
2ﬂ zﬁ_( s+ pz)a%’:—a)cLe
1+x3 X1 1+X5 X X1 Xo
2 2
kn Rp, + Rs = Rm

K +2 X1 k&h+X3 X X1 X
K K
Ry, + Rp, + Rs =
kf21+xi P1 kﬁ"’ 2 ' \P2 S Rm
2 2
R R R R
S Re 6 R | PRe Re) o, 6.2
KE+Xx] X1 ki+X5 X X1 X2
where we have redefined two of the unknowns as,
Q1o

as well as the parameters
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_ Wmh
Kmn = or

In order to solve these equations, we first elimiriandLs by forming the relative values

(Rm=Re), (Rh=Ry), (Lm—Le)we, and (h - Le)w,. Then we further eliminat®y,, by combining
as follows,

K,
ka+x2  1+x2
K

2 2 2
kh+x1 1+xl

(Rm — Re) + Xow¢e(Lm — L¢) = ( )(Xl - X2)Rp,

(Rnh — Re) + Xowe(Ln — L) = ( )(Xl — X2)Rp, (8.4)

Dividing left- and right-hand sides above eliminaRs, so that we havefectively reduced

the system to two unknowns, namedyandx,:

D
2
xl—B

X2 = C- (85)

where we have used the auxiliary parameters

5 Ak, + k3)(gh — gm)

1-A
Om— At
c==2" "=
1-A
T O1-A

A (k& — 1)(L¢ — L)
(k2 = 1)(L¢ — L)
_1Rm-R

Gmh = we L — Linh

We remark that in passing from (8.2) to (8.4), we have elimin&gdoy multiplying the
“L” equations byx; and adding the corresponding”equation; likewise, we could eliminate
Rp, by doing the same process with. This produces exactly the same final equation (8.5) with
X1 andx; interchanged.

8.2 Solving the equations

In the previous section, we have reduced the two-Foster pair system of 6 nonlinear equations to
one with 2:
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— ¥=F()
— x=FQ)

Figure 8.2: Graphical view of the solution of the 2-pair Foster system (8.6 fo®, given by
the intersection of the green and red curves (dotted lines correspond to asymptotes).

with F(x) = C - (8.6)

X1 = F(Xz) D
X =F(x) X-B

with the definitions as in (8.5).

Graphically, solving this equation is tantamount to intersecting the two curves in Fig.8.2. In
the next two subsections, we will first show that a simple fixed-point iteration can be applied for
solving this equation; we will later analyze the conditions for the convergence of this solution.

8.2.1 Fixed-point iteration

Solving (8.6) can be done veryteiently by performing the fixed-point iteration:

X(1n+1) -F (X(zn))
X(2n+1) -F (X(1n+1)) (8.7)

Assuming convergence is guaranteed (see conditions (8.10) in the following section), a safe
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Figure 8.3: Convergence of the fixed point for a typical-case two Foster pair circuits; values are:
C =3321D =1.25 1, B = 7477, emanating from the test case presented in Figs.8.4 and 8.5;
108 tolerance convergence is reached in 10 iterations.
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and dficient starting point i9<(21) = %(C + VB), i.e. the mid-point between the two vertical
asymptotes in Fig.8.2.

In Figs.8.3, we show an example of this convergence for a typical test case, reactfing 10
accuracy in the solution within 10 iterations. Similar convergence is obtained for a large variety
of examples, never exceeding 15 iterations, for the same tolerance.

Once the characteristic frequencies are obtained by undoing (8.3), the circuit parameters of
the circuit follow immediately:

~ Re-R)(1-2)
=
(1- %) (R - %)
~ (Re-R)(1-3)
=
( _%)(kmerg‘rig)

Lp = weXaRp,

L P2 = Wy X2 sz

Rpl sz
RS: _1 2_1 2
+ X7 + X5
2 2
x5L L
Lo=L -0 fom (8.8)
1+x1 1+x2

Concerning the ficiency of the fixed-point iteration, we remark that (8.6) can be trans-
formed into a single equation:

x = F (F(X) (8.9)

This is a 5-th degree equation, that can be solved with standard techniques. If we can assure
that (8.7) converges, then so will (8.9). For example, we have implemented an elementary
Newton-Raphson method that converges in 5 iterations, for the same example as the one shown
in Fig.8.3 (which requires 10 iterations for the same accuracy).

However, the cost of calculating the order-5 polynomialfiorents, plus evaluating it and
its order-4 derivative at each iteration, exceeds the total cost required for the immediate evalu-
ations ofF in (8.7). This was verified by counting the number of CPU cycles, using the same
tool quantify[88] as in Section 5.6: for this example, the 10 fixed point iterations cost a total
of 41 CPU cycles, whereas the computation offioents plus the 4 iterations of the Newton-
Raphson require 125 cycfes

1Given that these runtimes are negligible with respect to the ones for extraction, we do not emphasize this point,
as any solution method is a valid one; we prefer the fixed-point method not only because it is slightly faster, but
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8.2.2 Convergence conditions

Inspection of the graphs in Fig. 8.2 shows that a solution in ¥aex( 0, X2 > 0) quarter is
guaranteed under the conditiéns

VB>C A A>0
B.CD>0 A Vv (8.10)
VB<C A A<O

where we have defineti= C + 2 — /B - 2, the diference between the valuesxat 0 for F
andF~1 (i.e., the intersections between the vertical axis and the red and green curves in Fig.8.2,
respectively).

Parameter®, C, D, defined for eq. (8.5), are dimensionless ratios for the input data. As
such, the conditions above depend on the quality of input data. We cannot have a mathematical
proof for all possible sets of input, but we can analyze in detail the inequalities’ implications.

In a broad sense, these are generalizations of the condition (7.17): input data must represent a
significant transition at the extracted frequencies.

In first place, let us consider an auxiliary condition, namg&ly 1. ParameteA in (8.5) is
the result of dividing the two steps in the input data for inductance, and multiplying this number
with the division of the squares of the two steps in frequency. From all the examples we have
seen, it is clear that inductance makes a shift within the same order of magnitude, even for
frequencies that are separated by several decades. If the frequency values are chosen far enough
apart, the ratio of squares of frequencies will be much much larger than the ration between
inductance variations:

A<l S =

Le-Ln _K-1 N(wh)z

< ~ | ——
Le—Lm krzn—l Wm

Next we consider conditioB > 0. AssumingA < 1, then

B>0<=>S|_>1_k'%2:l+(@)2 (8.11)
1- kf_12 wh

Using the same argument as before, since frequencies span orders of magnitude, the right-
most values of this expression is expected to be very close to 1. If data is “good”, in the sense
that it represents a non-trivialféérence between the values atw, and those atuy, then this
condition should hold comfortably.

Next, we take into accour, andg,: they represent ratios between the characteristic fre-

because of its inherent graphical beauty.
2These are dficient conditions, we make no claim concerning necessary conditions.
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18u

Figure 8.4: Configuration of wires for 2-pdRLl extraction (signal wire shaded).

guency, implied at each extraction, and the lowest angular frequencigain, if data is well
chosen, these frequencies should resggect gm, thus satisfying conditio® > 0.

ConsideringC > 0, it translates into a similar condition as the oneBopbut for resistance
instead of inductance:

C>0 Sg= ~— (8.12)

Ro-Re _ kﬁ—l_(wh)z
Rn—Re krzn—l Wm

We have found no strong correlation to physical conditions in order to support the inequal-
ities inside the brackets of eq.(8.10). Nevertheless, we emphasize an empirical argument that
iS most convincing: no realistic test cases has violated these conditions yet. In the following
section, we will present a representative example, and see that these conditions are comfortably
satisfied for all types of input data.

8.3 Examples

In Fig. 8.5 we exemplify the fit resulting from this methodology. The configuration is shown in
Fig.8.4, consisting of one signal and 7 return wires. The extractions correspond to frequencies:
f, = 0.1GHz f, = 10GHz f, = 54GHz Original data is produced with FastHenry at a high-
precision level, in order to capture skiffect current crowding. As in the previous chapter,

we compute loop resistance and inductance.

3To be contrasted with data in Fig.7.6, in which one filament per wire is used, so that data only represents return-
path selectionféects; or the one in Fig.7.9, in which return-path selectifedts are absent.



8.3. Examples

195

Resistance (Q)

Frequency (GHz)

— T T T T T — T 2.5e-11
—— Inductance, Foster Pairs
---- Inductance, FastHenry
2e-11
=
=)
53
9
g
B
S
e
1.5e-11
—— Resistance, Foster Pairs
---- Resistance, FastHenry
il P R
e-11
10 106

% Error

10

T T

—
&(R)
&(L)

f,=2.42 GHz f,=49.4 GHz

10

Frequency (GHz)

100

Figure 8.5: Two-pair Foster fit for the configuration of Fig. 8.4, and original data produced with

FastHenry at % 9 discretization.
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Figure 8.6: Same data as Fig. 8.5, plotting modulus and argument of impedance.
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Figure 8.7: Verification of conditions in (8.10) for the 2-pair Foster solution of Fig. 8.4, varying
fm in the range {,, f] - indicated by the vertical dotted lines - at left: settifig= 0.1GHzand
fn = 54GHz at right; f, = 1GHzand f, = 10GHz

Convergence to 8-digit precision occurs within 10 iterations of (8.7), obtaining the charac-
teristic frequenciesf; = 242GHz f, = 49.4GHz Inside the interpolated region, the com-
parison between real data and the one from the two-pair Foster circuit shows an acceptable
representation of frequencytects up to frequencies of the order of Gl9z

Note that the discrepancies occur mainly for inductance at low frequencies (whefedts e
is negligible) and for resistance at high frequencies (idem). This is better expressed in the
graphs for absolute value and argument, Fig. 8.6: the error in the magnitude of impedance is
always below 2% in the interpolation region, the 6% erroiis being insignificant in the region
where they occur. As in the previous chapter, the large (6%) relative errors in the argument of
impedance are for values where it is close to zero.

Regarding the conditions for convergence to the solution, we now analyze this method’s
sensibility to the choice of data inputs. Suppose we fix, as in the example in Fig. 8.5, the
maximum and minimum frequencies, at their valdgs- 0.1GHzand f;, = 54GHz Then, we
vary fn, in the broad range that separates these two extremes. For each of these intermediate
frequencies, we calculate the four paramefers/B, C, D andA (see eq. (8.10)). These results
are plotted in Fig. 8.7a.

We observe that all the conditions are comfortably satisfied (note the logarijhscale),
even for values offy, very close tof, or f,. Similar figure is obtained for values df and
fr, separated by only one decade, shown in of Fig.8.7b. The number of iterations needed for
convergence at I8 precision remains between 9 and 13 for all thigedlent values of,, f, and
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Figure 8.8: Average errors for the 2-pair Foster fits as function of the intermediate frequency
fm: at left, for range [0.GHz 54GHZ; at right, for range [GHz 10GHZ.

fn shown in the figures.

Errors for the fits, as a function of the choice of the intermediate frequépchave a
minimum near the middfeof the range f;, fn]. In Fig.8.8, we plot these average errors: for
each value off,, we compute the Foster pair parameters and the global average error of the fit

as,
Nt X_(fit) _ x_(orig)
1 i i
X] = — - 8.13
8[ ] Nf ; xi(ong) ( )

for X = R L, |Z|, the “(fit)” supra-index indicates the magnitudes produced by the 2-pair Foster
circuit, and “(rig)” is the original data produced by FastHenN; covers the whole interpo-
lated region.

8.4 Discussion and further work

At the time of writing, one-pair Foster circuits are implemented in the Calibre xL formatter
according to the specifications in Section 7.4. The 2-pair implementation is currently being
tested. Certain issues are of concern, mainly:

“Note: “middle” refers to the logarithmic-scale separation of frequencies; when doing broadband we assign the
same weight to all frequency points chosen equally spaced according to this scale. This also applies to the estimation
of average errors (i.e., we do not weigh the error with the frequency interval between points, as this would bias the
figure on the side of high frequencies.)
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1. When can we guarantee a solution for the input data?

2. Are the circuit parameters always real and positive?

The first point is easily implementable, since conditions (8.10) can be immediately verified,
avoiding unnecessary iterations when they are not. Non-compliance to these conditions leads to
the one-pair solution, by dropping one of the data input points fthextraction is the natural
candidate in this regard, as the user is generally interested in the anf$)[

The second point is more delicate. We recall the discussion in Section 7.4 concerning when
a significant transition is implied by the input data. Generalizing to the 2-pair situation, the
analogous question is whether the data represents two significant transitions. In practice, this
translates to: how much do the two characteristic frequenciger @i We will establish that if
they are well “resolved

3gl<&@%>3«/§:5.2 (8.14)
V3

Apart from the condition above, we must also enforce that these two characteristic frequen-
cies comply to the single-pair condition (7.17), namely that the input data is not completely
to left or to the right of the characteristic transitions of each Foster pair. When any of these
conditions are not satisfied, then a 1-pair, or eventually no pair, representation is the appropriate
one.

We finish this discussion by exposing three issues that are presently under study. The first
two issues deal with the generalization of these methods to a larger number of pairs, or input
data. The third issue deals with the representation of frequency dependent mutual coupling.

8.4.1 Generalization ton-pairs

As we have mentioned over these two chapters, there are typically two types of frequency-
dependent behaviors: return-path selection, for frequencies up to abGiHAfdor 90 nmtech-
nology (the frequency value scales upward with technology); and skin-depth current crowding,
for higher frequencies. Within this picture, three well chosen data Rets Y should be enough
to fit two Foster pairs and capture both transitions. In terms of computing cost, we empha-
size that extraction is the expensive task of the whole flow, so that we are usually interested in
keeping down the number of extracted data.

However, in certain cases, a user may wish to obtain more information, or assure a better
fit, by extracting at more frequencies. The question is how to treat this larger data set. The first
decision is whether to augment the number of Foster pairs or not:

SWe borrow this term from optics, applied to the peaks in the derivatives of the two characteristic functions.
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Figure 8.9: Two-ladder circuit and its reduction to a 1-ladder circuit.

e Extending the number of Foster pairs in order to fit more data, in a similar fashion as
the one presented in this chapter, is not advisable. The functional relationship between
characteristic frequencies will be a very intricate version of (8.5), and a graphical solution
as the one presented in Section 8.2 is not available. Nevertheless, numerical solvers for
this type of fit exist (or can be developed hog, although the cost and capacity of
avoiding unnecessary iteration iditult to control.

¢ |fthe number of Foster pairs stays fixed at two, it is clear that the behavior can not be fitted
to an exact solution, since the system is overdetermined. Instead, this becomes a problem
of least-squares fit. For low-dimensional problems like this case, there arefiiergre
out-of-the-box implementations [104]. These kind of techniques are easily extended to
more than two Foster pairs, if desired (and enough data is available, although we insist
that, on physical grounds, two Foster pairs should ifcient).

8.4.2 Higher-order ladder networks

Another interesting alternative is that of considering the higher-order ladder circuits. We re-
call that for a single ladder element, there is nfiedence between a ladder and a Foster pair
representation (see Section 7.3). However, for more complicated structures, this is not the case.

Consider the circuit in Fig. 8.9, with two cascaded ladder elements. Having 6 total pa-
rameters, we are able to fit the same data as with two Foster pairs (circuit 8.1). The system
equations for Fig. 8.9 can be reduced to an equivalent circuit with one frequency-dependent
ladder element:
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Riw) = (1-awa()R
~ R
L]_(a)) = Lo+ a'ilﬁ]_(a))Lz =Llg+ a’llﬂl(w)g—ll (815)
with,
_ 1 _ Rl + R2 _ Rl
¥a= 1+ ()2 T L “TR+R

as in Section 7.3. Then the total impedance of the circuit can be written as,

Rw) = (1-aowo(w))Ro
L@) = Ls+@uo(w)s= Ls+&o¢0(w)% (8.16)
0

where we have introduced the notation:

1 . Ru(w) + Ro

Yo = m, Qo(w) =

Magnitudesayg, Qo for the reduced circuit, play the same role as the corresponding ones in
a one-ladder network, but are frequency-dependent. Here resides the ffeziendie between
this problem and the 2-pair Foster one: characteristic frequencies are “cascaded” for ladder
networks, whereas they are added for Foster pairs. Basically, this corresponds to the comparison
between the arithmetic result of placing circuits in parallel or in series. Foster pairs placed in
parallel do not acquire any extra degree of freedom, since they can be reduced to just one pair
with theR, andL, corresponding to the parallel of all resistances and inductances. This is why
only series Foster networks are analyzed.

Parallel ladder networks, on the other hand, respond to a more complex structure of compo-
sition, with characteristic transitions occurring within characteristic transitions. At the heart of
the distinction between the two types of models, lies the main limitation for the Foster systems:
each Foster transition occurs over a range of roughly one decade &otordadder networks,
this is not the case.

Before implementing this type of model, which implies solving the intertwined equations
(8.15) and (8.16) for a given set of input data, it is necessary to analyze the capacity of the output
n-ladder system to be reduced. Merging parallel ladders in T)BER is not as straightfor-
ward as doing so with series ladders (which are equivalent to Foster pairs) [105].
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Figure 8.10: Two-bundle example configuration for study of mutual broadBangeft), and
magnitudes obtained with FastHenry: self resistance and inductance (center) and mutual cou-
pling codficients (right).

8.4.3 Broadband mutual impedance

Foster pairs replace the single-frequenRyl() values in the netlist for self inductance calcula-
tions at a fixed frequency. We now turn to the corresponding changes needed in the representa-
tion of mutual inductance.

First of all, we point out that mutual inductance calculations are generally carried out in
order to obtain upper bounds for noise. In this sense, it is generdligisnt to give an estimate
of the maximum coupling over a whole frequency band. This solution is currently employed for
Calibre tools.

Having said this, we consider the example shown in Fig.8.10a, with two coupled bundles.
We can extract the values for self and mutual impedance using, say, FastHenry. This gives a
2 x 2 matrix:

Zi(w) Zix(w)
Z = 8.17
(@) [zlz(w) Zz(w)l (8.17)

For this matrix, we plot in Fig.8.10c the coupling theients:

L= Lz R= Riz
VRiR

; 8.18
Lo (8.18)

Immediately, we observe that these couplings are described by a Foster-pair type of transi-
tion: £ undergoes a monotonically decreasing step, &nd monotonically increasing step
(with zero couplingR at low frequencies). Moreover, the "characteristic frequency” corre-

5The term "coupling resistance” is the counterpart of the more familiar coupling inductance; it acts on the real part
in the same manner as the latter works on the imaginary one, and has a circuit representation as current-controlled
voltage source, treated by most circuit simulators. In physical terms, it is important for loop inductance when two
bundles are very close, and is specially important for configurations with shared grounds.
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Figure 8.11: Model and circuit representation containing the notation for frequency-dependent
mutual impedance.

sponding to these steps is approximately the same as the ones shown for the self transitions
(Fig.8.10b). Since our intention is to model the whole circuit with fixed parameters, we can
picture this as two Foster circuits, with fixed coupling between the two inductive branches, and
fixed coupling between the two resistive branches. In this manner, the magnitude of the to-
tal coupling is “tuned” by the current along the branches of each Foster pair. This leads us to
attempt to model the this system with the circuit in Fig.8.11, adding the following elements:

Ms :inductance coupling between the two series inductances;
M, :inductance coupling between the two pair inductances;

M; :resistance coupling between the two series inductances; (8.19)

The equations for this circuit are given by:

(Rs, + jwls)l1 + joMsly = Vo, — Vi,
joMsly + (Rs, + jwLg)la = Vo, — Vi

Rpglp, + Melp, = Vi

Mlp, +Rolp, = Vin,

jolp (l1=1p) + joMp(l2=1p,) = Vi,
joMp (11 =1p,) + jwlp, (12— 1p,)

|
<
S

(8.20)

where all the symbols are defined in Fig. 8.11.
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The system for the six unknownk (I, I p,, I p,, Vim,» Vim,) Can be reduced to ax2 system
for the two total currents, although the expressions are quite cumbersome.

Another important observation is that the self parameters (central graph of Fig.8.10) are
largely undfected by the coupling, i.e.: if we compute them individually, we obtain identical
curves with at least three digits accuracy. This leads us to introduce the main assumption for
estimating the parameters in our model. Namely, that the Foster-pair parameters in Fig.8.11
and eq.(8.20) are the same as the ones for the uncoupled configuration. We have encountered
this situation several times throughout the present work: for example, when computing the
distributions cofficients@; among return paths for a bundle in Section 2.2, we neglect the
presence of other bundles. Here, we are dealing with the frequency-dependent version of the
same statement.

Using this information, and the data extracted at two frequency points, we obtain a system
of 3 (non-linear) equations for unknown parametérs Ms, M,,. The recipe is the following:

1. extract atv, andwp;

2. compute the two Foster pairs separately, using:
(Za(we), Za(wn)) = (Rs, Lsis Roy, Lpy)

(Za(we), Za(wn)) = (Rs;s Lsys Rpys L)

3. obtain the currentl andl, at wy, by inverting (8.17) for an arbitrary assignment\af
andVy;

4. replacav,, currents, voltage assignments, and Foster-pair parameters into (8.20);
5. eliminatelp,, I p,, Vim,» Vm,, thus obtaining two non-linear complex equationsbr Ms, M.
6. repeat steps 3,4,5 fd§, obtaining a new set of two non-linear equationsNgt Ms, Mp,.

If the approximations are valid, then the two equations obtained in step 5 should be linearly
dependent, and the same holds for the ones in step 6. Moreover, in view of the fact that the
is purely imaginary at low frequencies, then the independent equation in step 5 should be one
real equation. In this manner, the number of independent equations is 3, and we able to solve
for My, Ms, M.

The method described above is a cumbersome one, and its implementation is not straightfor-
ward. A relevant analysis of the necessity for this implementation is required, before embarking
on this route. Furthermore, TICERMVR reduction of the elements!l; and M, is not direct,
as opposed to the case bfs [105]. Our intention is to propose a solution, for the sake of
completeness of the Foster pair model, and notwithstanding the question of its utility.
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8.5 Conclusions

Inthese two Chapters, we have outlined a methodology for represétitiingquency-dependent
behavior using frequency-independent circuit parameters. First, we have shown the single-
transition case, capturingfects due to either return-path selection, or skiieet current crowd-

ing. Representative examples show that the interpolation errors are small. Next, we have ex-
tended the analysis to the case where data is originated from models containing both type of
transitions. Analysis of errors and convergence conditions are included. Future applications are
discussed in detail, along two lines of development: including more transitions or pairs (and
eventually replacing Foster pairs by ladder networks); and representing, in an accurate form,
frequency-dependent mutual inductance with Foster pairs.



General Conclusions

In this Thesis, we have exhibited, analyzed and proposed solutions to tfieremti problems

related to interconnects in ICs. Apart from the fact that they have been developed within the
same framework, namely Mentor Graphics’s extraction tools CalibregxiR@e common fea-

ture to these three problems is the search for compact models based on simple physical reason-
ing. We will now summarize the main contributions for each of these problems, including the
implementations into Mentor’'s commercial tools, as well the ongoing and future work.

Mutual inductance

Within the physically appropriate loop inductance formalism, we have developed and imple-
mented the dipole approximation, whose main characteristic lies in capturing the leading con-
tribution for interaction between circuit loops; more specifically, we have:

e obtained closed-form formulas for calculating mutual inductance between circuit ele-
ments in an extraction flow;

e reduced the cost of these computations, from quadratic to linear in the number of ele-
ments;

e shown that accuracy is acceptable for distances comparable to the typical dimensions of
circuit loops;

e obtained simple rules that permit discarding certain types of interactions between loops;

o extended the dipole approximation for the calculation mutual inductance between inten-
tional inductors, showing similar gains as the ones mentioned above.

The methods described above are all included within Mentor’s extraction tools, and have
been filed for patent awards. Concerning present and future developments, we are collabo-
rating with researchers from UCSB along two lines: higher precision approximations at short
distances; and inclusion of substrafeets via equivalent Green function methods.
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High frequency modeling of sources

For modeling non-uniform current crowding due to skin and proxinfityats at high frequency,
we have implemented the method of conduction modes, which consists of expanding the current
distributions in terms of functions which are appropriate for this task; in particular we have:

e extended the existinBL, quasistatic iMQS), version of conduction modes, into &L.C
version;

e shown representativ8LC examples with two orders of magnitudes savings in size with
respect to standard references;

¢ developed a systematic approach for the computation of integrals fRLINMQS method,
in order to render the conduction modes methfittient in terms of computational cost;

e displayed typicaRL/MQS examples with two orders of magnitudes in runtime savings
with respect to similar-accuracy, methods based on piecewise constant current functions.

The RL/MQS implementation is in the process of being included in Calibre xL, replacing
the current high-frequency mode. We have discussed extensively, in Chapter 6, the current and
future challenges related to conduction modes methods, which are grouped into three groups:
renderingRLC extraction dicient; capturing more generaffects by enlarging the basis of
conduction modes functions; and applications to arbitrary type of geometry. Although we do not
discuss the subject explicitly, another important issue for future development is the inclusion of
multi-layered media; as in the previous problem, we expect that this can be done with equivalent
Green function methods. Solving these issues will lead to a fullwave Maxwell solver with a
different, possibly moreficient, approach as the ones found today in the market.

Broadband circuit representation

RL effects in ICs have a characteristic increasiidecreasing- behavior over wide frequency
ranges; we have represented this behavior using constant-parameter circuits with Foster pairs,
appropriate for the model order reduction (MOR) tool implemented in Mentor’s tools; in this
domain, we have:

e implemented a strategy allowing to capture simple transitions, while guaranteeing physi-
cally correct parameters;

¢ displayed examples that conserve a high accuracy level for cases arising from two phys-
ically distinct type of transitions: proximity return-path selection, and sKiecé current
crowding.
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e presented and validated methods for a combination of these two types of transitions.

These strategies are presently included in the formatter for CalibrgxkRénd included
in the corresponding patent requests. Future work in this area, discussed at the end of Chapter
8, include the extension of Foster pairs, or alternatively ladder circuits, to an arbitrary num-
ber of transitiongpairs; another prospect is the representation of frequency-dependent mutual
inductance using Foster pairs.
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Dans cette thse, nous avons exgmsanalyé et propoé des solutiona trois probémes diférents
liésa le modtlisation des interconnexions dans les ICs. Outre le fait qu'ils sorgldpes dans

le méme cadrea savoir les outils d’extraction Calibre xR chez Mentor Graphics, le point
commun entre les trois sujets peut se situer dans la recherche dekesmoodmpacts bas sur

des simples raisonnements physiques. Négapitulerons dans les pages suivantes les contri-
butions pour chacun de ces prebiles, un incluant les applications dans les outils commerciaux
Mentor, ainsi qu’'une mention des possil@itpour de futures recherches.

Inductance mutuelle

Dans le formalisme physiquement apprépdiinductance de boucle, nous avorevelope et
mis en pratique I'approximation dipaire, dont l'interaction entre les boucles du circuit est
simplifié en ne gardant que sa contribution principale; plésHigjuement, nous avons:

e obtenu des formules de forme close pour I'inductance mutuelle entrel@egents de
circuit, valides pour un s@ma d’extraction de parasitiques;

e réduit le cait de ces calculs, d’'une quatiqui est quadratique dans le nombreléiments
a une qui est ligaire;

e monte que I'exactitude est acceptable pour des distances comparables aux dimensions
typiques des boucles de circuit;

e obtenu deségles simples qui permettent dégliger certains types d'interactions entre
les boucles;

e étendu I'approximation diaire au calcul de I'inductance mutuelle entre deux inducteurs
intentionnels, montrant des gains semblallesux qui onétt mention@s ci-dessus.
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Toutes les rathodes dcrites ci-dessus sont incluses dans les outils d’extraction Calibre, et
ontété clasges pour desecompenses de brevet. Par rapport adwetbppements psents et fu-
turs, nous collaborons avec des chercheurs d’'UCSB sur deux lignes : la formulation d’approxi-
mations de pecision plugleee aux courts distances, ainsi que l'inclusion déstede substrat
en utilisant des i@thodes de fonction de Greéguivalentes.

Modélisation des sourcea haute frequence

Afin de modeler la distribution non uniforme de couraiitd’effet de peau, nous avons appkqu
la méthode des modes de conduction, dont les distributions sestap@es comme une somme
de fonctions appropeesa cet dfet, a savoir les fonctions propres dédjuation de Helmholtz.
En particulier nous avons :

e étendu la mthode des modes de conduction existant, valide pour despreHRL dans
le regime quasistatiqueMQS), dans une versioRLC applicablea un ensemble plus
large de prol#mes;

e monte des exemples regsentatifs de I'applicatioRLC, obtenant deux ordres de mag-
nitude deconomie pour la taille du syshe, par rapport auweferences standard ;

e dévelop® un approche syasmatique pour le calcul des égrales impligées dans la
méthode deRL/MQS des modes de conduction ;

e reproduit des exemples typiques dan®le’MQS avec deux ordres de magnitudes de
gains pour les temps d’égution, pour un i@me niveau de @cision avec des @thodes
de fonctions constantes par morceaux.

Limpl @émentation de la BthodeRL/MQS est en cours d’inclusion dans Calibre xL, rempla-
cant le mode actudl haute fequence, qui est une formulation basur des filaments de courant
constant. Nous avons diséutn etail, au chapitre 6, lesafis cecouverts egtendant la version
actuelle des modes de conductidmine situation plusérérale, Ces éfis sont groupes dans
trois groupes : rendrefficace I'extractionRLC, capturer une gamme plus ample ftkgs en
agrandissant la base des fonctions de modes de conduction, etézensid type arbitraire de
géonetrie. Une autre question importante pour les futirgetbppements est I'inclusion des
médias multicouche ; comme dans le pkghke pecedent, nous pensons que ceci p&e fait
avec des rathodes de fonction de Gre@qguivalentes. La solution de ces questiorenara
a un solutionneur d’'onde complet deguations de Maxwell, avec une approch@&édente, et
probablement plusficace, que ceux qui se trouve aujourd’hui sur le march
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Représentation large-bande des circuiRL

Les dfetsRL dans les IC ont un comportement caéaidtique avec la &quence, consistant de
'augmentation de lagsistancé plus la cecroissance de I'inductante Nous avons rejseng

ce comportemena l'aide des circuit@x parangtres constants en utilisant des pairs de Foster.
Ceux-ci conviennent pour I'outil deéduction de 'ordre du made (MOR) mis en application
dans les outils chez Mentor. Dans ce domaine, nous avons :

e mis en marche une stégie permettant la capture des transitions simples, tout en garan-
tissant des paragtres physiquement corrects ;

e monte des exemples qui conservent un niveau @eipion acceptable pour des transi-
tions appartenard deux types physiquement distinct : choix de chemin de retdiat (e
de proximit), et distribution des courant dad’effet de peau.

e introduit et valice une stratgie permettant capturer de la combinaison de ces deux types
de transitions.

Ces nethodes sont actuellement incluses dans le formateur pour CalibrxIxR&E con-
tenues dans les demandes correspondantes de breveeuéspghements futurs dans ce secteur
discug ala fin du chapitre 8 incluent : la prolongation des pairs Foster, ou autrement des circuits
enéchelle, vers un nombre arbitraire des transitiofmugbairs ; ainsi que la repsentation des
variations de 'img@dance mutuelle avec des paires Foster.
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