Squarks and gauginos

QCD-resummation and non-minimal flavour-violation for supersymmetric particle production at hadron colliders

Ph.D. defense of Benjamin Fuks

Advisor: Prof. Michael Klasen Collaborators: G. Bozzi, J. Debove, B. Herrmann

> LPSC Grenoble June 26, 2007

Squarks and gauginos

Outline

- Main features of the MSSM
- mSUGRA with NMFV
- SUSY particle production at hadron colliders

Resummation for slepton-pair hadroproduction in the MSSM

- Leading order results: Single-spin asymmetries
- Next-to-leading order calculations
- Resummation formalisms
- Transverse-momentum distributions
- Invariant-mass distributions
- Total cross sections
- Squark and gaugino hadroproduction in NMFV SUSY
 - Considered benchmark point
 - Squark-antisquark pair production
 - Associated squark-gaugino production

Summary and outlook

Squarks and gauginos

Outline

- Main features of the MSSM
- mSUGRA with NMFV
- SUSY particle production at hadron colliders

Resummation for slepton-pair hadroproduction in the MSSM

- Leading order results: Single-spin asymmetries
- Next-to-leading order calculations
- Resummation formalisms
- Transverse-momentum distributions
- Invariant-mass distributions
- Total cross sections
- Squark and gaugino hadroproduction in NMFV SUSY
 - Considered benchmark point
 - Squark-antisquark pair production
 - Associated squark-gaugino production

Summary and outlook

< 同 ▶

ъ

Squarks and gauginos

Outlook

Main features of the MSSM

- High energy extension to Standard Model.
- Symmetry between fermions and bosons.

 $Q|Boson\rangle = |Fermion\rangle$ $Q|Fermion\rangle = |Boson\rangle$ where Q is a SUSY generator

Minimal Supersymmetric Standard Model (MSSM): one SUSY generator.
 ⇒ One SUSY partner for each SM particle.

Squarks and gauginos

Outlook

Particle content of the MSSM

Names		particle	spin	superpartner	spin
(s)quarks	Q	$(u_L d_L)$	1/2	$(\tilde{u}_L \tilde{d}_L)$	0
$(\times 3 \text{ families})$	ū	u_R^{\dagger}	1/2	\tilde{u}_R^*	0
	d	d_R^\dagger	1/2	\widetilde{d}_R^*	0
(s)leptons	L	(<i>ν</i> e _L)	1/2	$(\tilde{\nu} \tilde{e}_L)$	0
$(\times 3 \text{ families})$	ē	e_R^\dagger	1/2	\tilde{e}_R^*	0
Higgs(inos)	Hu	$(H_{u}^{+} H_{u}^{0})$	0	$(ilde{H}^+_u ilde{H}^0_u)$	1/2
	H _d	$(H_{d}^{0} H_{d}^{-})$	0	$(\tilde{H}^0_d \tilde{H}^d)$	1/2
gluon/gluino		g	1	ğ	1/2
W bosons/winos		W^{\pm} , W^0	1	$ ilde{W}^\pm$, $ ilde{W}^0$	1/2
B boson / bino		В	1	Ĩ	1/2

• Two Higgs doublets (\equiv eight degrees of freedom).

 \Rightarrow 3 Nambu-Goldstone bosons *eaten* by the Z⁰ and W[±] bosons to get massive.

 \Rightarrow 5 remaining physical Higgses (h^0 , H^0 , A^0 and H^{\pm}).

- Mixing of gauginos/Higgsinos (same electric charge, spin and color).
 - * Charginos: $(\tilde{W}^{\pm}, \tilde{H}^{\pm}_{\{u,d\}}) \Rightarrow (\tilde{\chi}^{\pm}_1, \tilde{\chi}^{\pm}_2).$
 - * Neutralinos: $(\tilde{B}^0, \tilde{W}^0, \tilde{H}^0_u, \tilde{H}^0_d) \Rightarrow (\tilde{\chi}^0_1, \tilde{\chi}^0_2, \tilde{\chi}^0_3, \tilde{\chi}^0_4).$

Advantages of the MSSM

Some advantages

- * Solution to the hierarchy problem (stabilization of the Higgs mass). [Witten (1981); Kaul (1982)]
- Gauge coupling unification at high energy (Q ~ 10¹⁶ GeV). [Ibanez, Ross (1981); Dimopoulos, Raby, Wilczek (1981)]
 [Amaldi, de Boer, Fürstenau (1991); Carena, Pokorski, Wagner (1993)]
- * R-parity conservation: $R = (-1)^{(3B+L+2S)}$.
 - \Rightarrow No *B* or *L* violating terms in the Lagrangian (\checkmark proton lifetime).
 - ⇒ Lightest SUSY particle stable and neutral \Leftrightarrow dark matter candidate. [Goldberg (1983); Ellis *et al.* (1984)]
 - \Rightarrow SUSY particle produced in pairs at colliders.
 - \Rightarrow Large amount of $\not\!\!\!E_T$ in SUSY decays.

* . .

• Problem: more than 100 new free parameters.

(本間) ((日) (日) (日)

Squarks and gauginos

SUSY-breaking

- No SUSY discovery until now:
 - * SUSY must be broken,
 - * SUSY masses at a higher scale than SM masses.
- SUSY-breaking:
 - * Is soft (no additional quadratic divergences).
 - * Occurs in a hidden sector.
 - * Mediated through the visible sector via a given interaction.
- Minimal supergravity (mSUGRA):
 - * Gravitational interaction.
 - * Non renormalizable interactions, suppressed by the Planck mass.
 - * Determined by 5 parameters (m_0 , $m_{1/2}$, A_0 , tan β , sgn(μ)).
- Gauge-mediated SUSY-breaking (GMSB):
 - * Gauge interactions.
 - * Couplings to messenger fields.
 - * Determined by 6 parameters (M_{mes} , Λ , n_q , n_l , $\tan \beta$, $\operatorname{sgn}(\mu)$).

Squarks and gauginos

Outlook

Constrained minimal flavour violation

[Ciuchini, Degrassi, Gambino, Giudice (1998)]

• Squared sfermion mass matrices:

- * All flavour-violating elements of $M_{\tilde{c}}^2$ are zero.
- * Sfermion mixing: $(\tilde{f}_L, \tilde{f}_R) \Rightarrow (\tilde{f}_1, \tilde{f}_2)$ with flavour conservation.
- * Small first- and second-generation fermion masses: $m_1, m_2 \rightarrow 0$.
- * Three flavour-conserving mixing angles, $\theta_{\tilde{t}}$, $\theta_{\tilde{b}}$ and $\theta_{\tilde{\tau}}$.
- Squark sector
 - * Flavour violation is governed by the CKM matrix, within the interactions.
 - * e.g. chargino-squark-quark vertex proportional to $V_{qq'}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Squarks and gauginos

Outlook

Non-minimal flavour violation

[Gabbiani, Gabrielli, Masiero, Silvestrini (1996)]

The squared squark mass matrices are

* The off-diagonal elements are 24 new free parameters, parameterized by $\Delta_{ij}^{qq'} = \lambda_{ij}^{qq'} M_{ii,q} M_{jj,q'}.$

* Diagonalization through 6×6 rotation matrices R^u and R^d .

• Physical eigenstates given by

$$\begin{array}{rcl} (\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}, \tilde{u}_{4}, \tilde{u}_{5}, \tilde{u}_{6})^{T} &=& R^{u} (\tilde{u}_{L}, \tilde{c}_{L}, \tilde{t}_{L}, \tilde{u}_{R}, \tilde{c}_{R}, \tilde{t}_{R})^{T}, \\ (\tilde{d}_{1}, \tilde{d}_{2}, \tilde{d}_{3}, \tilde{d}_{4}, \tilde{d}_{5}, \tilde{d}_{6})^{T} &=& R^{d} (\tilde{d}_{L}, \tilde{s}_{L}, \tilde{b}_{L}, \tilde{d}_{R}, \tilde{s}_{R}, \tilde{b}_{R})^{T}. \end{array}$$

▲□ ▲ □ ▲ □ ▲ □ ■ □ ● ○ ○ ○

SUSY 00000000000000 Sleptons

Squarks and gauginos

Outlook

Constraints on non-minimal flavour violation

Scaling of the off-diagonal terms with the SUSY-breaking scale:

 $\Delta_{LL} \gg \Delta_{LR,RL} \gg \Delta_{RR}$

[Gabbiani, Masiero (1989)]

- FCNC: upper limits on λ 's.
 - * Neutral kaon sector (Δm_K , ε , ε'/ε)
 - B-meson oscillations,
 - * D-meson oscillations (Δm_D) ,
 - * Rare decays (BR($b \rightarrow s\gamma$), BR($\mu \rightarrow e\gamma$), BR($\tau \rightarrow e\gamma$), BR($\tau \rightarrow \mu\gamma$)),
 - * Electric dipole moments $(d_n \text{ and } d_e)$.

[Gabbiani, Gabrielli, Masiero, Silvestrini (1996)] [Ciuchini, Masiero, Paradisi, Silvestrini, Vempati, Vives (2007)]

- Constraints: $\lambda_{LL}^{ct} \leq 0.1$, $\lambda_{LL}^{bs} \leq 0.1$, other $\lambda_{ij}^{qq'} = 0$.
- Simplification: $\lambda_{LL}^{ct} = \lambda_{LL}^{bs} = \lambda$.
 - \Rightarrow Only one new free parameter.

 \Rightarrow Analysis of the experimentally allowed parameter space in mSUGRA with NMFV.

Squarks and gauginos

Low-energy, EW precision, and cosmological constraints

- $b \rightarrow s \gamma$:
 - * ${
 m BR}(b o s \gamma) = (3.55 \pm 0.26) imes 10^{-4}$ [Barbiero et al. (2006)].
 - * NMFV contributes at the one-loop level (same as the SM contributions).
- Δρ:
 - * $\Delta
 ho = 0.00102 \pm 0.00086$ (fits of EWPO) [PDG (2006)].
 - * Sensitive to squark mass splitting [Veltman (1977)].
 - * Influence on m_W and $\sin^2 \theta_W$.
- a_μ
- * $a_{\mu}^{\rm SUSY} =$ (22 \pm 10) \times 10⁻¹⁰ (BNL data vs SM) [PDG (2006)].
- * Squarks contribute at the two-loop level only.
- * Disfavours $\mu < 0$.
- LSP:
 - * Color singlet and electrically neutral [Ellis et al. (1984)].
- $\Omega_{CDM} h^2$:
 - * 0.094 $< \Omega_{CDM} h^2 < 0.136$ [Hamann, Hannestad, Sloth, Wong (2007)] (WMAP, SDSS, SNLS, Baryon Acoustic Oscillations).

Constraints on the NMFV mSUGRA parameter space

SPheno 2.2.3 [Porod (2003)], FeynHiggs 2.5.1 [Heinemeyer, Hollik, Weiglein (2000)]. DarkSUSY 4.1 [Gondolo *et al.* (2004)].

• $\tan \beta = 10, \mu > 0, A_0 = 0$ GeV, $0 \le \lambda \le 0.1$.

- Region favoured by a_μ @2σ (grey) Reduced squark two-loop vs. slepton one-loop contributions.
- Region excluded by $b \rightarrow s\gamma$ @2 σ (blue) Very sensitive to λ (same loop-level as the SM one).
- Charged LSP (beige)
- Region favoured by Ω_{CDM} (black) Not really sensitive to λ.
- Region excluded by $\Delta \rho \ @2\sigma$ (not shown) Very heavy scalar and gaugino masses excluded.

Squarks and gauginos

Benchmark points

[Bozzi, BF, Herrmann, Klasen (2007)]

• (Some) allowed benchmark points:

	<i>m</i> ₀ [GeV]	$m_{1/2}$ [GeV]	<i>A</i> ₀ [GeV]	aneta	$sign(\mu)$	λ bounds
Α	700	200	0	10	+	[0;0.05]
В	100	400	0	10	+	[0;0.1]
C	230	590	0	30	+	[0;0.05]
D	600	700	0	50	+	[0;0.05]

- Benchmarks also allowed for cMFV scenarios ($\lambda = 0$).
- In this talk: focus on benchmark point B.

• $a_{\mu} \simeq 14 \times 10^{-10}$ (for any λ).

* Included in the PDG's 2σ range of [2; 42] imes 10^{-10} .

- $\Delta \rho$ (first figure).
 - * Depends strongly on squark flavours, helicities and masses.
 - * Large allowed range ($\lambda \leq$ 0.52), due to important experimental errors.
- $b \rightarrow s\gamma$ (second figure).
 - * Very stringent constraint (small error band and large sensitivity on λ).
 - * 2nd allowed region disfavoured by $b \to s \mu^+ \mu^-$ [Gambino, Haisch, Misiak (2005)].
- Cosmological constraints (third and fourth figures).
 - * Small mass difference between LSP and NLSPs at large λ . $\Rightarrow \Omega_{CDM}$ falls (co-annihilation and light squark propagated processes).
- Allowed region: close to (c)MFV ($\lambda \leq 0.1$).

SUSY

Sleptons

Squarks and gauginos

Benchmark point BFHK-B: Mass splitting - flavour content

• Hermitian squark mass matrices depend continuously on the single parameter λ .

- * The eigenvalues do not cross \Rightarrow avoided crossings.
- * Exchange of the flavour content between the concerned eigenstates.
- Large mixing between 2^{nd} and 3^{rd} generations, even for small $\lambda.$

< 一型

Squarks and gauginos

Outlook

SUSY particles production at hadron colliders

- Slepton-pair production.
 - * Much reduced sensitivity to NMFV (through squark-gluino loops only). \Rightarrow cMFV hypothesis.
 - * Fixed-order calculations at LO and SUSY-QCD NLO.
 - * Precision calculations including soft-gluon resummation.
- Squark- and gaugino-pair production.
 - * Fixed-order LO calculations in NMFV.
 - * QCD loop-corrections for squark-antisquark pair production (cMFV limit).

Squarks and gauginos

Outline

Supersymmetry

- Main features of the MSSM
- mSUGRA with NMFV
- SUSY particle production at hadron colliders

Resummation for slepton-pair hadroproduction in the MSSM

- Leading order results: Single-spin asymmetries
- Next-to-leading order calculations
- Resummation formalisms
- Transverse-momentum distributions
- Invariant-mass distributions
- Total cross sections
- Squark and gaugino hadroproduction in NMFV SUSY
 - Considered benchmark point
 - Squark-antisquark pair production
 - Associated squark-gaugino production

Summary and outlook

< 同 ▶

ъ

 Squarks and gauginos

Outlook

Slepton-pair production at hadron colliders

• Drell-Yan like process

$$q\bar{q} \to \gamma, Z^0 \to \tilde{l}_i \tilde{l}_j^* \qquad \text{and} \qquad q\bar{q}' \to W^\mp \to \tilde{l}_i \tilde{\nu}_l^* + c.c.$$

- Sleptons are often light \Rightarrow decays into LSP + SM lepton \Rightarrow clean signal.
- Cross sections given by

$$(\Delta)\sigma = \sum_{a,b} \int_{\tau}^{1} \mathrm{d}x_{a} \int_{\tau/x_{a}}^{1} \mathrm{d}x_{b} \left(\Delta\right) f_{a/h_{1}}(x_{a},\mu_{F}) \ (\Delta)f_{b/h_{2}}(x_{b},\mu_{F}) \left(\Delta\right) \hat{\sigma}_{ab}(z,M;\alpha_{s}(\mu_{R}),\frac{M}{\mu_{F}},\frac{M}{\mu_{R}})$$

where $(\Delta)\hat{\sigma}_{ab}$ is computed perturbatively

$$(\Delta)\hat{\sigma}_{ab}(z,M;\alpha_s(\mu_R),\frac{M}{\mu_F},\frac{M}{\mu_R}) = \sum_{n=0}^{\infty} \left(\frac{\alpha_s(\mu_R)}{\pi}\right)^n (\Delta)\sigma_{ab}^{(n)}(z,M;\frac{M}{\mu_F},\frac{M}{\mu_R}) \ .$$

Spin asymmetries

- Unpolarized cross section $d\hat{\sigma} = \frac{d\hat{\sigma}_{1,1} + d\hat{\sigma}_{1,-1} + d\hat{\sigma}_{-1,1} + d\hat{\sigma}_{-1,-1}}{4}$.
- Double-spin polarized cross section $d\Delta \hat{\sigma}_{LL} = \frac{d\hat{\sigma}_{1,1} d\hat{\sigma}_{1,-1} d\hat{\sigma}_{-1,1} + d\hat{\sigma}_{-1,-1}}{4}$.
- Single-spin cross polarized section $d\Delta \hat{\sigma}_L = \frac{d\hat{\sigma}_{1,1} + d\hat{\sigma}_{1,-1} d\hat{\sigma}_{-1,1} d\hat{\sigma}_{-1,-1}}{4}$.
- Double-spin asymmetry for slepton-pair production $A_{LL} = \frac{d\Delta \hat{\sigma}_{LL}}{d\hat{\sigma}} = -1.$ \Rightarrow Independent of any SUSY parameter.

 \Rightarrow Single-spin asymmetry $A_L = \frac{\Delta \sigma_L}{\sigma}$.

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Squarks and gauginos

Single-spin asymmetry and mixing effects at the Tevatron

[Bozzi, BF, Klasen (2005)]

- Scenario based on SPS1a' (A₀ varying).
- Sizeable asymmetry.
- Sensitive to the mixing angle.
- Large PDF uncertainties.
- SM lepton pair production: $A_L \approx -0.09$. \Rightarrow discrimination SUSY/SM Drell-Yan.
- Upgraded Tevatron:
 - * One polarized beam. [SPIN collaboration (1995)]
 - * Higher luminosity.

Squarks and gauginos

Outlook

NLO calculations

Feynman diagrams:

Partonic invariant-mass and transverse-momentum distributions at O(α_s):

$$\begin{array}{lll} \frac{\mathrm{d}\hat{\sigma}_{ab}}{\mathrm{d}M^2} & = & \hat{\sigma}^{(0)}_{ab}(M)\,\delta(1\!-\!z)\!+\!\frac{\alpha_s}{\pi}\,\hat{\sigma}^{(1)}_{ab}(M,z)\!+\!\mathcal{O}(\alpha_s^2), \\ \\ \frac{\mathrm{d}^2\hat{\sigma}_{ab}}{\mathrm{d}M^2\,\mathrm{d}q_T^2} & = & \hat{\sigma}^{(0)}_{ab}(M)\,\delta(q_T^2)\delta(1\!-\!z)\!+\!\frac{\alpha_s}{\pi}\,\hat{\sigma}^{(1)}_{ab}(M,z,q_T)\!+\!\mathcal{O}(\alpha_s^2), \\ \\ \text{where } z = M^2/s. \end{array}$$

• Squark mixing included in the SUSY-loops.

Squarks and gauginos

Outlook

q_T and invariant-mass distributions

- Soft and collinear radiations:
 - * $\frac{\alpha_s^n}{q_T^2} \ln^m \frac{M^2}{q_T^2}$ or $\alpha_s^n \Big(\frac{\ln^m(1-z)}{1-z} \Big)_+$ terms in the distributions $(m \le 2n-1)$.
 - * Large at small q_T or $z \lesssim 1$.
 - * Fixed-order theory unreliable in these kinematical regions.
 - * Resummation to all orders needed.
 - \Rightarrow q_T-resummation.
 - \Rightarrow Threshold resummation.
 - \Rightarrow Joint resummation.
- Advantages of resummation:
 - * Reliable perturbative results.
 - * Correct quantification of these radiations (even far from critical regions).
 - * Accurate invariant-mass and q_T spectra.

 q_T -distribution \Rightarrow stransverse mass \Rightarrow spin and mass determination. [Lester, Summers (1999); Barr (2006)] *M*-distribution and total cross section \Rightarrow accurate mass determination. [Bozzi, BF, Klasen (2007)]

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Main features of the resummation

Reorganization of the cross section

 $\mathrm{d}\sigma = \mathrm{d}\sigma^{(\mathrm{res})} + \mathrm{d}\sigma^{(\mathrm{fin})} \ .$

• $d\sigma^{(res)}$

- * Contains all the logarithmic terms.
- * Resummed to all orders in α_s .
- * Exponentiation (Sudakov form factor).

• $d\sigma^{(fin)}$

* Remaining contributions.

Image: A image: A

The resummed component: conjugate spaces (1)

- Conjugate space(s) introduced \Rightarrow kinematics naturally factorizes.
- *N*-moments defined by a Mellin transform

$$F(N) = \int_0^1 \mathrm{d} y \, y^{N-1} \, F(y).$$

Inverse transform:

$$F(y) = \oint_{C_N} \frac{\mathrm{d}N}{2\pi i} y^{-N} F(N).$$

- *N*-moment of the hadronic cross section taken with respect to $\tau = M^2/s_h$.
- q_T -spectrum: impact-parameter *b*-space defined via a Fourier transform.
- The logarithms:

$$\begin{pmatrix} \frac{\ln(1-z)}{1-z} \end{pmatrix}_{+} \rightarrow \ln^{2} \overline{N} \text{ with } \overline{N} = N \exp[\gamma_{E}]$$

$$\frac{1}{q_{T}^{2}} \ln \frac{M^{2}}{q_{T}^{2}} \rightarrow \ln \overline{b}^{2} \text{ with } \overline{b} = \frac{bM}{2} \exp[\gamma_{E}]$$

The resummed component: conjugate spaces (2)

• Factorization of the hadronic cross sections:

$$\begin{split} \frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^2}(\tau, M) &= \sum_{a,b} \int_{\tau}^{1} \mathrm{d}x_{a} \int_{\tau/x_{a}}^{1} \mathrm{d}x_{b} f_{a/h_{1}}(x_{a}, \mu_{F}) f_{b/h_{2}}(x_{b}, \mu_{F}) \hat{\sigma}_{ab}^{(\mathrm{res})}(z; \alpha_{s}(\mu_{R}), \frac{M}{\mu_{F}}, \frac{M}{\mu_{R}}) \\ & \downarrow \\ \frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}}(N, M) &= \sum_{a,b} f_{a/h_{1}}(N+1, \mu_{F}) f_{b/h_{2}}(N+1, \mu_{F}) \hat{\sigma}_{ab}^{(\mathrm{res})}(N; \alpha_{s}, \frac{M}{\mu_{R}}, \frac{M}{\mu_{F}}), \end{split}$$

and

$$\frac{\mathrm{d}^{2}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}\mathrm{d}q_{T}^{2}}(\tau,M,q_{T}) = \sum_{a,b} \int_{\tau}^{1} \mathrm{d}x_{a} \int_{\tau/x_{a}}^{1} \mathrm{d}x_{b} f_{a/h_{1}}(x_{a},\mu_{F}) f_{b/h_{2}}(x_{b},\mu_{F}) \hat{\sigma}_{ab}^{(\mathrm{res})}(z,q_{T};\alpha_{s}(\mu_{R}),\frac{M}{\mu_{F}},\frac{M}{\mu_{R}})$$

$$\downarrow$$

$$\frac{\mathrm{d}^{2}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}\mathrm{d}q_{T}^{2}}(N,M,q_{T}) = \sum_{a,b} f_{a/h_{1}}(N+1,\mu_{F}) f_{b/h_{2}}(N+1,\mu_{F}) \int_{\tau}^{b} \mathrm{d}b J_{0}(b q_{T}) \mathcal{W}_{ab}^{F}(N,b;\alpha_{s},\frac{M}{\mu_{R}},\frac{M}{\mu_{F}}).$$

• The logarithms are included in the functions $\hat{\sigma}^{(res)}$ and \mathcal{W}^F .

< 17 >

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Squarks and gauginos

The resummed component: the partonic cross section

• The process-dependence is factorized outside the exponent:

$$\begin{aligned} \mathcal{W}^{F}_{ab}(N,b) &= \mathcal{H}^{F}_{ab}(N) \exp\left\{\mathcal{G}(N,b)\right\}, \\ \hat{\sigma}^{(\mathrm{res})}_{ab}(N) &= \sigma^{(LO)} \, \tilde{C}_{ab}(N;\alpha_{s}) \, \exp\left\{\mathcal{G}(N,L)\right\}. \end{aligned}$$

- *H^F* and *C*-functions:
 - * Can be computed perturbatively.
 - * Are process-dependent.
 - * Contain all the finite terms in the limit $N \to \infty$ and $b \to \infty$ (real and virtual collinear radiation, hard contributions).

The resummed component: the Sudakov form factor

• The Sudakov form factor contains the soft-collinear radiation:

$$\mathcal{G}(N,L;\frac{M^2}{\mu_R^2}) = Lg^{(1)}(\alpha_s L) + \sum_{n=2}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^{n-2} g_N^{(n)}(\alpha_s L;\frac{M^2}{\mu_R^2})$$

The logarithm L is

	qт	Joint	Threshold
L=ln()	$1+\bar{b}^2$	$\bar{b} + \frac{\bar{N}}{1 + \frac{\bar{b}}{4 \bar{N}}}$	Ñ

- q_T-resummation not justified at small b (large q_T) ⇒ +1 in the log (no change at large b).
- Argument of the log in joint resummation: \Rightarrow no subleading terms in perturbative expansions of $\sigma^{(res)}$.

• At NLL accuracy:
$$g^{(1)}$$
 and $g^{(2)}$ needed $\equiv \alpha_s^n L^{2n}$ and $\alpha_s^n L^{2n-1}$.

The resummed component: improvements and remarks

- q_T-resummation [Catani, de Florian, Grazzini (2001); Bozzi, Catani, de Florian, Grazzini (2006)]
 - * Universal formalism.
 - * Process-independent Sudakov form factor.
 - * Resummation impact only in the relevant kinematical region.
- Threshold resummation [Sterman (1987); Catani, Trentadue (1989, 1991)]
 - * Consistent inclusion of the collinear radiation in the \tilde{C} -function. [Krämer, Laenen, Spira (1998); Catani, de Florian, Grazzini (2001)]
- Joint resummation [Laenen, Sterman, Vogelsang (2001); Kulesza, Sterman, Vogelsang (2002, 2004)]
 - * Process-independent and universal Sudakov form factor. [Bozzi, BF, Klasen (*in prep.*)]

The finite component: matching procedure

- Fixed-order theory
 - * Reliable far from the critical kinematical regions ($z \ll 1$, $q_T \gg 0$).
 - * Spoiled in the critical regions ($z \sim 1$, $q_T \sim 0$).
- Resummation
 - * Needed in the critical regions.
 - * Not justified far from the critical regions.
- Both contributions important in the intermediate kinematical regions.
- Information from both fixed-order and resummation needed.
- Need to avoid double-counting.
- Consistent matching procedure required:

 $d\sigma^{(fin)} = d\sigma^{(f.o.)} - d\sigma^{(exp)}.$

・ 同・ ・ ラ・・・

SUSY Sleptons Squarks and gauginos

Summary: complete resummation formulae

Invariant-mass spectrum

$$\begin{array}{lcl} \frac{\mathrm{d}\sigma}{\mathrm{d}M^2}(\tau,M) & = & \frac{\mathrm{d}\sigma^{(\mathrm{F}\,\mathrm{O}\,\mathrm{.})}}{\mathrm{d}M^2}(\tau,M) \\ & + & \oint_{\mathcal{C}_N} \frac{\mathrm{d}N}{2\pi i} \, \tau^{-N} \Big[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^2}(N,M) - \frac{\mathrm{d}\sigma^{(\mathrm{exp})}}{\mathrm{d}M^2}(N,M) \Big] \end{array}$$

Transverse-momentum spectrum

$$\begin{array}{lll} \frac{\mathrm{d}^2 \sigma}{\mathrm{d}M^2 \, \mathrm{d}q_T^2}(\tau, M, q_T) & = & \frac{\mathrm{d}^2 \sigma^{(\mathrm{F.O.})}}{\mathrm{d}M^2 \, \mathrm{d}q_T^2}(\tau, M, q_T) \\ & + & \oint_{\mathcal{C}_N} \frac{\mathrm{d}N}{2\pi i} \, \tau^{-N} \int \frac{b\mathrm{d}b}{2} J_0(q_T \, b) \bigg[\frac{\mathrm{d}^2 \sigma^{(\mathrm{res})}}{\mathrm{d}M^2 \, \mathrm{d}q_T^2}(N, b) - \frac{\mathrm{d}^2 \sigma^{(\mathrm{exp})}}{\mathrm{d}M^2 \, \mathrm{d}q_T^2}(N, b) \bigg]. \end{array}$$

- * Far from the critical regions, $d\sigma^{(res)} \approx d\sigma^{(exp)} \Rightarrow$ Perturbative theory.
- * In the critical regions, $d\sigma^{(F.O.)} \approx d\sigma^{(exp)} \Rightarrow$ Pure resummation.
- * In the intermediate regions \Rightarrow Consistent matching.

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Outlook

Squarks and gauginos

Outlook

q_T -distribution at the LHC

- * SPS1a and BFHK-B SUSY scenarios (slepton masses \approx 100-200 GeV).
- * Finite results at small q_T ; enhancement at intermediate q_T ; finite total σ .
- * Improvement of scale dependences: (NLL+LO \leq 5%; LO 10%).
- * Effects of the threshold-enhanced contributions in the intermediate- q_T region.

USY Sleptons Squarks and gauginos

Outlook

Invariant-mass distribution at the LHC

[Bozzi, BF, Klasen (2007; in prep.)]

- * SPS1a and BFHK-B SUSY scenarios (slepton masses \approx 100-200 GeV).
- * Normalization to LO cross section.
- * Small *M*: $d\sigma^{(res)} \approx d\sigma^{(exp)}$; Large *M*: $d\sigma^{(F.O.)} \approx d\sigma^{(exp)}$.
- * Reduced SUSY-loop effects.
- * Joint-exponent reproduces q_T -exponent. \Rightarrow some differences with threshold-resummation (however under control).

[Bozzi, BF, Klasen (2007)]

- * SPS7 slope.
- * $\sigma \sim 0.1 100$ fb ($\Rightarrow 1$ to 1000 events).
- * NLO and threshold-resummation effects important.
- * Resummation more important for heavier sleptons.
- * Shift in $m_{\tilde{e}_l}$ if deduced from total σ measurement.

Squarks and gauginos

Outline

Supersymmetry

- Main features of the MSSM
- mSUGRA with NMFV
- SUSY particle production at hadron colliders

Resummation for slepton-pair hadroproduction in the MSSM

- Leading order results: Single-spin asymmetries
- Next-to-leading order calculations
- Resummation formalisms
- Transverse-momentum distributions
- Invariant-mass distributions
- Total cross sections

Squark and gaugino hadroproduction in NMFV SUSY

- Considered benchmark point
- Squark-antisquark pair production
- Associated squark-gaugino production

4 Summary and outlook

< 同 ▶

Squarks and gauginos ●○○○○ Outlook

The benchmark point BFHK-B

Benchmark point for our numerical studies:

<i>m</i> ₀ [GeV]	$m_{1/2}$ [GeV]	<i>A</i> ₀ [GeV]	aneta	$sign(\mu)$	λ bounds
100	400	0	10	+	[0;0.1]

- * Light sleptons (200-300 GeV) and rather light gauginos (150-550 GeV).
- * Not too heavy squarks (650-850 GeV) and heavy gluino (900 GeV).
- * Collider friendly.

A 10

Squarks and gauginos ○●○○○

Outlook

Neutral current squark-antisquark pair production

- Diagonal pairs:
 - * Gluon-fusion initiated diagrams.
 - * Strong production
 - \Rightarrow Large cross sections.
 - * Quite unsensitive to λ (flavour-independent $g\tilde{q}\tilde{q}$ vertex).

Non-diagonal pairs:

- * Only $q\bar{q}$ annihilation diagrams (EW + heavy gluino).
- * Show sharp transitions with λ (Avoided crossings - mass flips). Example: $\tilde{d}_1 \tilde{d}_6^*$ and $\tilde{d}_3 \tilde{d}_6^*$

 SUSY
 Sleptons
 Squarks and gauginos
 Outlook

 QCD-loops for squark-antisquark pair production (1)
 0

- cMFV limit taken, non-diagonal stop-pair production.
 - Gluon fusion subprocesses (enhanced at the LHC).
 - *O*(α⁴_s) diagrams

- * Gluino neglected (loops with heavy top quarks and gluino).
- * Strong coupling (enhancement).
- * Heavy SUSY propagators (suppression).
- * Comparable to $\mathcal{O}(\alpha^2)$ diagrams ?
- Loop-contributions proportional to mixing.
 - \Rightarrow Only third generation considered.

Squarks and gauginos ○○○●○

QCD-loops for squark-antisquark pair production (2)

- SPS5 SUSY scenario (A₀ varying).
- Dominant Z diagram.
- \tilde{g} and $\tilde{\chi}^0$ *t*-channels suppressed (negligible top densities).
- QCD-loop effects reduced. (heavy propagators).
- Small sbottom contributions. (small mixing).

Squarks and gauginos

Outlook

Associated squark-neutralino production

[Bozzi, BF, Herrmann, Klasen (2007)]

- Semi-strong production $(10^{-1} \text{ fb to } 10^2 \text{ fb}).$
- Quite sensitive to flavour violation (due to the qq̃ χ̃ vertex).
- $\tilde{d}_1 \tilde{d}_3$ mass flip.
- *d*₆ *χ*⁰₂ cross section decreases with λ (see *d*₆ strange/bottom content).
- *ũ*₆ *χ*⁰₂ cross section increase with λ
 (see *ũ*₆ charm/top content).

Squarks and gauginos

Outline

Supersymmetry

- Main features of the MSSM
- mSUGRA with NMFV
- SUSY particle production at hadron colliders

Resummation for slepton-pair hadroproduction in the MSSM

- Leading order results: Single-spin asymmetries
- Next-to-leading order calculations
- Resummation formalisms
- Transverse-momentum distributions
- Invariant-mass distributions
- Total cross sections
- Squark and gaugino hadroproduction in NMFV SUSY
 - Considered benchmark point
 - Squark-antisquark pair production
 - Associated squark-gaugino production

Summary and outlook

< 同 ▶

ъ

Conclusion and outlook

- Slepton-pair production at hadron colliders.
 - * Mixing effects in LO polarized cross sections.
 - * Full NLO SUSY-QCD calculations, including squark mixing.
 - * Threshold, q_T and joint resummations.
 - * Comparison with the Monte Carlo approach.
 - * Study of other SUSY particle production processes.
 - * Resummation vs. Monte Carlo for other BSM theories (Z').
- Study of NMFV effects in the framework of mSUGRA.
 - * Implementation of a flexible computer program, XSUSY.
 - Interface with DarkSUSY, FeynHiggs, SPheno and SuSpect.
 - mSUGRA, GMSB and AMSB scenarios within NMFV.
 - Search for regions allowed by experimental data.
 - Cross sections at LO for "all" sparticle pair-production processes.
 - SUSY particle decays at LO.
 - * Inclusion of next-to-leading order, three-body decays.
 - * Full experimental study

(heavy-flavour tagging efficiencies, detector resolutions, background,...)

Appendix

<⊡>

문 돈

SUSY cross sections

< 一型

з

ъ

- ₹ 🖬 🕨

SUSY cross sections

[Abdullin et al. (2002)]

Image: Image:

3

ъ

Minimal flavour violation (in the squark sector)

[D'Ambrosio, Giudice, Isidori, Strumia (2002); Altmannshofer, Buras, Guadagnoli (2007)]

- Flavour structure generated by the Yukawa couplings
 ≡ different renormalizations of the quark and squark mass matrices.

 ⇒ Additional flavour violation at the weak scale through RG running.
- Flavour-violating terms of the Lagrangian:
 - * Rewritten as functions of the Yukawa couplings.
 - * Not set to zero as for cMFV.
- The squared squark mass matrices are

$$M_{\tilde{Q}}^{2} = \begin{pmatrix} M_{LL,1}^{2} & \Delta_{LL}^{11} & \Delta_{LL}^{13} & m_{1} m_{LR,1} & \Delta_{LR}^{12} & \Delta_{LR}^{13} \\ \Delta_{LL}^{21} & M_{LL,2}^{2} & \Delta_{LL}^{23} & \Delta_{RL}^{21} & m_{2} m_{LR,2} & \Delta_{LR}^{23} \\ \Delta_{LL}^{31} & \Delta_{LL}^{32} & M_{LL,3}^{2} & \Delta_{RL}^{31} & \Delta_{RL}^{32} & m_{3} m_{LR,3} \\ m_{1} m_{RL,1} & \Delta_{RL}^{12} & \Delta_{RL}^{13} & M_{RR,1}^{2} & \Delta_{RR}^{13} & \Delta_{RR}^{21} \\ \Delta_{LR}^{21} & m_{2} m_{RL,2} & \Delta_{RL}^{23} & \Delta_{RR}^{21} & M_{RR,2}^{22} & \Delta_{RR}^{23} \\ \Delta_{LR}^{31} & \Delta_{LR}^{32} & m_{3} m_{RL,3} & \Delta_{RR}^{31} & \Delta_{RR}^{32} & M_{RR,3}^{23} \end{pmatrix}$$

• The off-diagonal elements depend only on the Yukawa couplings.

The diagonalizing matrices depend only on the CKM matrix.

Benchmark points

[Bozzi, BF, Herrmann, Klasen (2007)]

• (Some) allowed benchmark points:

	<i>m</i> ₀ [GeV]	$m_{1/2}$ [GeV]	A_0 [GeV]	aneta	$sign(\mu)$	λ bounds
А	700	200	0	10	+	[0;0.05]
В	100	400	0	10	+	[0;0.1]
С	230	590	0	30	+	[0;0.05]
D	600	700	0	50	+	[0;0.05]

- Benchmarks also allowed for:
 - * cMFV scenarios ($\lambda = 0$).
 - * MFV scenarios ($\dot{\lambda}$ ranging from zero to $5 \times 10^{-3} \dots 1 \times 10^{-2}$).
- In this talk: focus on benchmark point B.

Appendix

Single-spin asymmetry and mixing effects at RHIC/LHC

[Bozzi, BF, Klasen (2005)]

- RHIC: SPS7-like scenario (Λ varying); strong θ_{τ̃} dependence; small cos θ_{τ̃} unaccessible and large cos θ_{τ̃} excluded by LEP.
- LHC: SPS4-like scenario (A_0 varying); reduced mixing angle dependence.
- Both: SM asymmetry of different sign, but large PDFs uncertainties.

< 17 ▶

Inverse transforms

• There are singularities in the integrand in the (b,N) spaces

$$\oint_{\mathcal{C}_N} \frac{\mathrm{d}N}{2\pi i} \, \tau^{-N} \int \frac{\mathrm{b}\mathrm{d}b}{2} J_0(q_T \, b) \left[\frac{\mathrm{d}^2 \sigma^{(\mathrm{res})}}{\mathrm{d}M^2 \, \mathrm{d}q_T^2}(N, b) - \frac{\mathrm{d}^2 \sigma^{(\mathrm{exp})}}{\mathrm{d}M^2 \, \mathrm{d}q_T^2}(N, b) \right].$$

- * e.g. argument of the logarithm, Landau pole, PDFs,...
- * Must be avoided when getting back to physical space.
- * Prescription required.
- Inverse *b*-transform:
 - * Integration contour diverted in the complex plane.
 - * Bessel function replaced by more convenient auxiliary functions. [Laenen, Sterman, Vogelsang (2000)]
- Inverse Mellin transform:
 - * Specific contour avoiding all the poles.
 - * Minimal prescription and principal value resummation.

[Catani, Mangano, Nason, Trentadue (1996); Contopanagos, Sterman (1994)]

The resummed component: non perturbative effects

Important non-perturbative (NP) effects for q_T-distributions (large-b region).
 ≡ intrinsic q_T of the partons, inside the hadrons.

Resummation formula

$$\mathcal{W}_{ab}^{F}(N,b) = \mathcal{H}_{ab}^{F}(N) \exp\left\{\mathcal{G}(N,b) + F_{ab}^{\mathrm{NP}}\right\}.$$

- NP form factor obtained from experimental data:
 - * Ladinsky-Yuan (LY-G) [Ladinsky, Yuan (1994)].
 - * Brock-Landry-Nadolsky-Yuan (BLNY) [Landry, Brock, Nadolsky, Yuan (2003)].
 - * Konyshev-Nadolsky (KN) [Konyshev, Nadolsky (2006)].

q_T -distribution at the LHC

- * SPS1a scenario (slepton masses \approx 100-200 GeV).
- * Importance of the NP effects:

$$\Delta = \frac{d\sigma^{(\text{res.+NP})}(\mu = M) - d\sigma^{(\text{res.})}(\mu = M)}{d\sigma^{(\text{res.})}(\mu = M)}$$

* Non-perturbative effects under good control for $q_T > 5$ GeV.

K-factors for associated $\tilde{e}_L \tilde{\nu}_e$ production at the Tevatron

[Bozzi, Fuks, Klasen (2007)]

- SPS1a' SUSY scenario.
- Normalization to LO cross section.
- Close to the threshold:
 - * Resummation effects important (even at low *M*).
 - * σ^{NLO} dominated by the logs.
 - * $\hat{\sigma} = \hat{\sigma}^{(res)}$ at the permille level.
 - * $\hat{\sigma}^{(f.o.)} = \hat{\sigma}^{(res)}|_{f.o.}$ at the same level.
- SUSY-loop effects reduced.

Appendix

Dependence of the total σ on unphysical scales (1)

[[]Bozzi, Fuks, Klasen (2007)]

- SPS7 SUSY scenario.
- Theoretical uncertainty estimated by variations of μ_F and μ_R.
- μ_R dependence
 - Absent at LO.
 - ^k Introduced at NLO.
 - * Tamed by resummation.
- μ_F dependence
 - * Reduced at NLO.
 - * Further stabilized by resummation.
- Total theoretical uncertainty.
 - * LO: 20%
 - * NLO: 29%
 - * Resummed: 23%

Dependence of the total σ on unphysical scales (2)

[[]Bozzi, Fuks, Klasen (2007)]

- SPS7 SUSY scenario.
- Theoretical uncertainty estimated by variations of μ_F and μ_R.
- μ_R dependence
 - * Absent at LO.
 - ^k Introduced at NLO.
 - * Tamed by resummation.
- μ_F dependence
 - * Overcompensated at NLO.
 - * Stabilized by resummation.
- Total theoretical uncertainty.
 - * LO: 7%
 - * NLO: 17%
 - * Resummed: 8%

Neutral current squark-antisquark pair production (cMFV)

[Bozzi, BF, Klasen (2005)]

- SPS1a slope SUSY scenario.
- Only stop and sbottom mixing.
- Diagonal production:
 - * Large gluon luminosity (LHC).
 - * \exists gluon fusion channels.

 \Rightarrow enhanced.

- Non-diagonal production:
 - * Weak production.
 - * One heavy final mass.
 - \Rightarrow Phase-space suppressed.
- Mixed production:
 - * Weak production.
 - * Light masses possibility.
 - * Charged final state.
 - \Rightarrow Favoured over non-diagonal channels.

・ロト ・同ト ・ヨト ・ヨト

Appendix 000000000000

Gaugino-pair production

- Light gauginos (rather large cross sections).
- Insensitive to flavour violation (sum over all the squark physical states).

[Bozzi, BF, Herrmann, Klasen (2007)]

