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voie de la physique.
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Abstract

Cross sections for supersymmetric particles production at hadron colliders have been extensively
studied in the past at leading order and also at next-to-leading order of perturbative QCD. The
radiative corrections include large logarithms which have to be resummed to all orders in the strong
coupling constant in order to get reliable perturbative results. In this work, we perform a first and
extensive study of the resummation effects for supersymmetric particle pair production at hadron
colliders. We focus on Drell-Yan like slepton-pair and slepton-sneutrino associated production in
minimal supergravity and gauge-mediated supersymmetry-breaking scenarios, and present accurate
transverse-momentum and invariant-mass distributions, as well as total cross sections.

In non-minimal supersymmetric models, novel effects of flavour violation may occur. In this case,
the flavour structure in the squark sector cannot be directly deduced from the trilinear Yukawa
couplings of the fermion and Higgs supermultiplets. We perform a precise numerical analysis of
the experimentally allowed parameter space in the case of minimal supergravity scenarios with
non-minimal flavour violation, looking for regions allowed by low-energy, electroweak precision,
and cosmological data. Leading order cross sections for the production of squarks and gauginos at
hadron colliders are implemented in a flexible computer program, allowing us to study in detail the
dependence of these cross sections on flavour violation.

Les sections efficaces de production hadronique de particules supersymétriques ont été largement
étudiées par le passé, aussi bien à l’ordre dominant qu’à l’ordre sous-dominant en QCD pertur-
bative. Les corrections radiatives incluent de larges termes logarithmiques qu’il faut resommer à
tous les ordres afin d’obtenir des prédictions consistantes. Dans ce travail, nous effectuons une
première étude détaillée des effets de resommation pour la production hadronique de particules
supersymétriques. Nous nous concentrons sur la production de type Drell-Yan de sleptons et sur la
production associée d’un slepton et d’un sneutrino dans des scénarios de supergravité minimale et
de brisure de supersymétrie véhiculée par interactions de jauge, et nous présentons des distributions
d’impulsion transverse et de masse invariante, ainsi que des sections efficaces totales.

Dans les modèles supersymétriques non minimaux, de nouveaux effets de violation de la saveur
peuvent avoir lieu. Dans ce cas, la structure de saveur dans le secteur des squarks ne peut pas être
déduite directement du couplage trilinéaire entre les supermultiplets de Higgs et de fermions. Nous
effectuons une analyse numérique de l’espace des paramètres permis dans le cas de scénarios de
supergravité minimale avec violation de la saveur non minimale, cherchant les régions permises par
les mesures de précision électrofaibles, les observables à basse énergie et les données cosmologiques.
La dépendance des sections efficaces à l’ordre dominant pour la production hadronique de squarks
et de jauginos par rapport à la violation de la saveur non minimale est étudiée en détails.
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Résumé

Le Modèle Standard (SM) de la physique des particules [1, 2, 3, 4, 5, 6, 7]
décrit avec succès un grand nombre de données expérimentales de haute énergie.
Cependant, certaines questions fondamentales restent sans réponse, comme par
exemple les origines de la brisure de la symétrie électrofaible et des masses des
particules, la large hiérarchie entre l’échelle de Planck et l’échelle électrofaible,
le mécanisme responsable des oscillations de neutrinos, les origines de la matière
sombre et de la constante cosmologique, ou encore le problème CP lié à l’interaction
forte. Les tentatives visant à relier différents paramètres du SM mènent en général
à des théories plus fondamentales qui résolvent naturellement certains de ces
problèmes ouverts.

La philosophie générale des Théories de Grande Unification (GUTs) [8, 9, 10] est
de considérer que les groupes de symétrie du SM émergent de la brisure d’un groupe
simple de rang plus élevé. A l’échelle GUT, les trois constantes de couplage de jauge
du SM sont unifiées, et les quarks et les leptons sont décrits par des représentations
communes de ce groupe de jauge plus large. Ces théories prédisent en général
un certain nombre de bosons de jauge additionnels, menant éventuellement à des
interactions pouvant violer la conservation des nombres baryonique et leptonique.
Il s’agit de l’un des problèmes phénoménologiques les plus importants pour les
GUTs, vu que les baryons sont alors instables, ce qui est contraire aux données
expérimentales liées à la non observation de la désintégration du proton. Les théories
GUTs peuvent expliquer la quantification de la charge électrique et incorporer des
neutrinos massifs, mais ont quelques difficultés pour reproduire la valeur mesurée
de l’angle de mélange électrofaible. De plus, un grand nombre de problèmes
conceptuels déjà présents dans le SM demeurent sans réponse.

Une approche populaire pour résoudre le problème de hiérarchie du SM est
d’ajouter à l’espace-temps des dimensions supplémentaires [11, 12]. Dans ce cadre
théorique, les interactions de jauge et gravitationnelle sont unies à une échelle
proche de l’échelle électrofaible, qui est alors la seule échelle fondamentale de la
théorie, la valeur importante de l’échelle de Planck étant seulement une conséquence
de la présence des nouvelles dimensions. L’espace à quatre dimensions habituel
est contenu dans une “brane” quadridimensionnelle, elle-même incluse dans une
structure plus large contenant N dimensions additionnelles, le “bulk”. Dans ces
théories, chaque champ du SM possède une série d’excitations de Kaluza-Klein avec
les mêmes nombres quantiques, mais une masse différente. Au jour d’aujourd’hui,
ces excitations n’ont pas encore été observées, mais l’ordre de grandeur de leur
masse est le TeV, ce qui les rend tout à fait détectables au futur Grand Collisionneur
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de Hadrons, le LHC, au CERN.

Plus récemment, d’autres tentatives pour résoudre ce problème de hiérarchie
ont été proposées, comme par exemple les théories “Little-Higgs” ou “Twin-Higgs”,
qui prédisent également de nouvelles particules avec des masses de l’ordre du TeV
[13, 14, 15]. Ces théories incluent des partenaires fermioniques pour les quarks et les
leptons du SM, et des partenaires bosoniques pour les bosons de jauge. Cela permet
la stabilisation de la masse du boson de Higgs au-delà de l’ordre dominant grâce à
la réalisation d’une symétrie non linéaire reliant les couplages au boson de Higgs
d’une façon telle que les divergences venant des corrections quantiques s’annulent.

Dans cette thèse, nous nous concentrons sur une autre extension attractive du
SM, la supersymétrie (SUSY) [16, 17, 18, 19, 20], et plus précisément le Modèle
Standard Supersymétrique Minimal (MSSM) [21, 22]. La supersymétrie à basse
énergie fournit une solution naturelle à plusieurs des problèmes conceptuels du
SM. Reliant les fermions et les bosons, elle permet la stabilisation de la hiérarchie
séparant l’échelle de Planck de l’échelle électrofaible [23, 24] et l’unification des
couplages de jauge aux hautes énergies [25, 26, 27, 28]. De plus, la particule SUSY
la plus légère peut dans certains cas être vue comme un candidat potentiel pour
la matière sombre [29, 30]. Vu que les partenaires supersymétriques des particules
du SM n’ont pas encore été observés jusqu’à présent, la supersymétrie doit être
brisée à basse énergie, mais de façon douce afin qu’elle reste une solution viable
pour le problème de la hiérarchie. Les particules SUSY sont donc plus massives
que leurs équivalents du SM, mais leur masse ne devrait pas excéder quelques
TeV. Une recherche concluante couvrant un large régime de masses allant jusqu’à
l’échelle du TeV est donc l’un des points principaux du programme expérimental
des collisionneurs hadroniques présents et futurs, comme par exemple le Tevatron à
Fermilab ou le LHC au CERN.

Les sections efficaces de production des particules SUSY auprès des collisionneurs
hadroniques ont été étudiées en détail par le passé, aussi bien à l’ordre dominant
(LO) [31, 32, 33] qu’à l’ordre sous-dominant (NLO) [34, 35, 36, 37, 38, 39, 40]
en QCD perturbative. Il est connu que les corrections NLO QCD [39] et NLO
SUSY-QCD complètes [40] pour la production d’une paire de sleptons augmentent
les sections efficaces hadroniques d’environ 35% au Tevatron et 25% au LHC, ce
qui étend le potentiel de découverte des sleptons de plusieurs dizaines de GeV.
Cependant, les corrections SUSY sont bien plus faibles que leurs analogues QCD en
raison de la présence de squarks et gluinos très lourds dans les boucles.

Malgré le succès des premières collisions proton-proton en mode polarisé au
collisionneur RHIC, les sections efficaces polarisées ont reçu bien moins d’attention
que leurs équivalents non polarisés. Les calculs pionniers pour la production de
squarks et de gluinos non massifs [41, 42] n’ont été vérifiés, généralisés au cas de
particules SUSY massives et appliqués aux collisionneurs actuels que récemment
[43]. Concernant la production de sleptons, seulement des calculs négligeant
les mélanges entre les états propres d’hélicité étaient disponibles, et appliqués
uniquement à des expériences d’anciens collisionneurs [44].
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En raison de leurs couplages purement électrofaibles, les sleptons sont parmi les
particules SUSY les plus légères dans de nombreux scénarios de brisure de super-
symétrie [45, 46]. Les sleptons et sneutrinos se désintègrent souvent directement
en la particule SUSY la plus légère (le neutralino le plus léger dans les modèles de
supergravité minimale (mSUGRA) ou le gravitino pour la brisure de supersymétrie
véhiculée par interactions de jauge (GMSB)) et le partenaire du SM correspondant
(un lepton ou un neutrino). Ainsi, un signal relatif à une paire de sleptons produite
en collisionneur hadronique consistera en une paire de leptons très énergétiques, qui
sera facilement détectable, et de l’énergie manquante associée.

Dans cette thèse, nous avons vérifié les calculs pionniers pour la produc-
tion polarisée d’une paire de sleptons [44], que nous avons ensuite généralisés
afin de prendre en compte le mélange des états propres d’interaction, qui est
surtout pertinent pour les sleptons de troisième génération. Nous présentons les
résultats analytiques pour les courants de sleptons neutres et chargés, et prédisons
numériquement les asymétries simple-spin pour le collisionneur RHIC et pour
d’éventuelles améliorations du Tevatron et du LHC où l’un des faisceaux est
polarisé. Nous avons mis en évidence la sensibilité de l’asymétrie simple-spin à
l’angle de mélange du slepton tau et la possibilité de l’utiliser comme moyen pour
distinguer le signal SUSY du bruit de fond du SM correspondant à la production
Drell-Yan d’une paire de leptons [47].

Le bruit de fond standard principal lié à la production hadronique d’une paire
de sleptons vient des désintégrations de paires WW et tt̄ en une paire de leptons et
de l’énergie manquante [48, 49]. Deux éléments clés pour distinguer le signal SUSY
du bruit de fond standard sont la reconstruction de la masse et la détermination
du spin des particules produites. Pour une paire de sleptons, la masse (s)transverse
de Cambridge est une observable particulièrement utile, puisqu’une connaissance
précise du spectre en impulsion transverse (qT ) suffit alors pour déterminer la masse
[50] et le spin [51] des sleptons.

Lorsque que l’on étudie la distribution en impulsion transverse d’un système
non coloré produit avec une masse invariante M lors d’une collision hadronique, il
est pertinent de séparer les régions cinématiques relatives aux larges et aux faibles
valeurs de qT . Dans la région des qT importants (qT ≥ M), l’utilisation de la
théorie perturbative à ordre fixé est parfaitement justifiée, vu que le développement
en série de la distribution en qT est contrôlé par un paramètre d’expansion de
faible valeur, la constante de couplage forte αs(M2). Dans la région des petites
valeurs de qT , les coefficients du développement perturbatif sont amplifiés par
des termes logarithmiques importants, ln(M2/q2T ), et les résultats basés sur des
calculs perturbatifs divergent pour qT → 0, la convergence de la série étant alors
complètement détruite. Ces logarithmes proviennent de l’émission multiple de
gluons mous par l’état initial, et doivent être systématiquement resommés à tous
les ordres en αs afin d’obtenir des résultats consistants. La méthode pour effectuer
cette resommation est bien connue [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. La
resommation des logarithmes dominants a été effectuée pour la première fois en
[52]. Il a été montré en [53] que la procédure de resommation est plus naturellement
effectuée dans l’espace du paramètre d’impact b, b étant la variable conjuguée à
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qT via une transformation de Fourier. En effet, dans ce cas-là, la cinématique de
l’émission multiple de gluons factorise complètement. Dans les cas particuliers de
la production Drell-Yan d’une paire de leptons et de la production d’un boson
électrofaible, la resommation dans l’espace b a été effectuée au niveau sous-dominant
(NLL) [55], un formalisme de resommation consistant à n’importe quelle précision
logarithmique a été développé [59], et les termes d’ordre sous-sous-dominant ont été
calculés [60]. Pour les valeurs de qT intermédiaires, le résultat resommé doit être
ajusté de façon consistante avec celui basé sur la théorie perturbative, afin d’obtenir
des prédictions d’une précision théorique uniforme sur tout le domaine d’impulsion
transverse considéré.

Dans ce travail, nous avons implémenté le formalisme de resommation en qT
proposé en [61, 62], et prédit le spectre en impulsion transverse pour la production
d’une paire de sleptons au LHC. Nous avons combiné le résultat resommé (valide
pour les faibles valeurs de qT ), calculé au niveau NLL, avec la section efficace
à ordre fixé (valide pour les larges valeurs de qT ), calculée à l’O(αs) en QCD
perturbative qui correspond à la production d’une paire de sleptons associée à un
jet QCD [63]. Il s’agit du premier calcul de précision concernant la distribution
en impulsion transverse pour un processus de production d’une paire de particules
SUSY auprès d’un collisionneur hadronique. Dans nos résultats numériques, nous
avons montré l’importance de la resommation aussi bien pour les faibles valeurs
de qT que pour les valeurs intermédiaires. Par ailleurs, la resommation permet de
réduire la dépendance de la distribution en qT en les échelles non physiques de
factorisation et de renormalisation. Nous avons également étudié l’influence des
contributions non perturbatives sur le résultat resommé, et observé qu’elle était
réduite par rapport à l’effet de la resommation.

En ce qui concerne les corrections NLO SUSY-QCD, elles ont été calculées
uniquement en négligeant le mélange des états propres d’interaction des squarks
apparaissant dans les boucles [40]. Nous avons généralisé ce travail en incluant ce
mélange pertinent pour les squarks de troisième génération, et avons considéré les
effets de seuil provenant de l’émission de gluons mous par l’état initial. Lorsque les
partons initiaux ont tout juste assez d’énergie pour produire la paire de sleptons
dans l’état final, les corrections virtuelles et l’émission de gluons réels supprimée
par l’espace de phase mènent à l’apparition de termes logarithmiques importants
αn

s [ln2n−1(1 − z)/(1 − z)]+ à l’ordre n de la théorie perturbative, où z = M2/s,
s est l’énergie dans le centre de masse partonique et M la masse invariante de
la paire de sleptons. Lorsque s est proche de M2, ces logarithmes doivent être
resommés à tous les ordres en αs. Bien que ces divergences apparaissent de façon
explicite dans la section efficace partonique, la section efficace hadronique n’est
en général pas divergente en raison de la convolution avec les densités de partons
très faibles pour les grandes valeurs de la fraction d’impulsion longitudinale du
proton correspondant aux valeurs de z proches de un. La resommation en seuil est
donc plutôt une tentative de quantification de l’effet d’un ensemble de corrections
bien définies qu’une simple somme de logarithmes d’origine cinématique. Ces effets
peuvent cependant être significatifs même loin du seuil hadronique, et l’on s’attend
donc à des corrections importantes pour la section efficace de production de type
Drell-Yan d’une paire de sleptons de quelques centaines de GeV au Tevatron et au
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LHC.

La resommation en seuil à tous les ordres en αs équivaut à l’exponentiation des
radiations de gluons mous, et n’a pas lieu dans l’espace z directement, mais dans
l’espace N de Mellin, où N est la variable conjuguée à z par une transformation
de Mellin, la région du seuil z → 1 correspondant à la limite N → ∞. Ainsi, la
section efficace resommée dans l’espace z sera obtenue après une transformation
inverse finale. La resommation en seuil pour le processus Drell-Yan fut d’abord
effectuée en [64, 65] aux niveaux logarithmiques dominant et sous-dominant (NLL),
correspondant à la resommation des termes de type αn

s ln2nN et αn
s ln2n−1N .

L’extension au niveau NNLL (termes de type αn
s ln2n−2N) a également été effectuée

à la fois pour le processus Drell-Yan [66] et pour la production d’un boson de
Higgs [67]. Il a été montré [68, 69] que les contributions dues à l’émission de
partons colinéaires peuvent également être incluses de façon consistante dans la
formule de resommation. Cela correspond au formalisme de resommation “amélioré
colinéairement”, où des termes contenant un facteur suppressif 1/N et une classe
de contributions universelles indépendantes de N sont également resommés. Très
récemment, les contributions à l’ordre NNNLL (les termes de type αn

s ln2n−3N) ont
été calculées [70, 71, 72].

Nous présentons ici une étude détaillée des effets de la resommation en seuil
pour la production de type Drell-Yan d’une paire de sleptons et pour la production
associée d’un slepton et d’un sneutrino dans le cadre de scénarios mSUGRA et
GMSB. Nous avons ajusté les résultats resommés à la précision NLL, calculés
grâce au formalisme de resommation amélioré colinéairement, avec les résultats
basés sur la théorie perturbative calculés à la précision NLO. Numériquement, nous
avons montré une augmentation non négligeable de la section efficace théorique par
rapport aux prédictions NLO, et une stabilisation de la dépendance en les échelles
non physiques grâce à l’apport des termes d’ordres supérieurs pris en compte par la
resommation [73].

L’origine dynamique des contributions logarithmiques intervenant dans les
formalismes de resommation en impulsion transverse et en seuil est identique, vu
qu’il s’agit de l’émission multiple de gluons mous par l’état initial. Un formal-
isme de resommation jointe, prenant en compte simultanément les contributions
des gluons mous dans les deux régions cinématiques concernées (qT � M et
M2 ∼ s) a été développé dans la dernière décade [74, 75]. L’exponentiation des
termes singuliers dans les espaces de Mellin et du paramètre d’impact, pour la
resommation en seuil et en impulsion transverse respectivement, a été prouvée,
et une méthode consistante pour effectuer les transformations inverses a été
introduite afin d’éviter le pôle de Landau et les singularités dues aux densités de
partons. Les applications de ce formalisme à la production hadronique d’un photon
rapide [76], d’un boson électrofaible [77], d’un boson de Higgs [78], et d’une paire de
quarks lourds [79] montrent les effets de la resommation sur différentes distributions.

Nous présentons dans ce travail un traitement joint des corrections à faible
impulsion transverse et des contributions importantes proche du seuil partonique
pour la production d’une paire de sleptons auprès des collisionneurs hadroniques, ce
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qui permet une compréhension complète des effets de gluons mous pour le spectre
en impulsion transverse et pour les distributions en masse invariante. Avec le travail
sur la resommation en impulsion transverse [63] et la resommation en seuil [73],
cette étude [80] complète notre programme ayant pour but de fournir les premiers
calculs de précision incluant la resommation de gluons mous pour la production de
sleptons auprès des collisionneurs hadroniques.

Si les particules SUSY existent, elles doivent aussi apparâıtre dans les boucles
de particules virtuelles et affecter les observables de précision électrofaibles et
les observables à basse énergie. Plus particulièrement, les courants neutres à
changement de saveur qui apparaissent seulement au niveau des boucles dans le
SM contraignent sévèrement les contributions de nouvelle physique au même ordre
perturbatif. Le MSSM se libère de ces contraintes grâce aux hypothèses de Violation
de Saveur Minimale contrainte (cMFV) [81, 82] ou de Violation de Saveur Minimale
(MFV) [83, 84, 85], où les particules SUSY peuvent intervenir dans les boucles,
mais les changements de saveur sont soit négligés, soit complètement dictés par la
structure des couplages de Yukawa et par la matrice CKM [86, 87].

En SUSY avec MFV, les éléments des matrices de masse des squarks violant la
saveur découlent des couplages trilinéaires de Yukawa entre les supermultiplets de
Higgs et de fermions et des différentes renormalisations des secteurs des quarks et des
squarks via les équations du groupe de renormalisation qui induisent des violations
de saveur supplémentaires à l’échelle électrofaible [88, 89, 90, 91]. En SUSY avec
violation de saveur non minimale, des sources de violation de saveur additionnelles
sont incluses dans les matrices de masse et leurs termes non diagonaux qui ne
peuvent plus être simplement déduits à partir de la matrice CKM seule doivent
être considérés alors comme des paramètres libres. Dans ce travail, nous allons
considérer le mélange des saveurs de squark de deuxième et troisième générations,
car d’une part, les recherches directes de violation de la saveur dépendent des
capacités à déterminer la saveur, ce qui n’est expérimentalement bien établi que
pour les saveurs lourdes, et d’autre part, des contraintes expérimentales sévères pour
la première génération existent en raison de mesures très précises des oscillations
K0 − K̄0 et des premières preuves du mélange D0 − D̄0 [92, 93, 94].

Nous avons analysé l’espace des paramètres NMFV SUSY, recherchant les
régions permises par les contraintes venant des mesures de précision électrofaibles,
des observables à basse énergie et des données cosmologiques. Nous avons observé
que le mélange des chiralités et des saveurs de deuxième et troisième générations est
fortement contraint, notamment par l’erreur expérimentale de plus en plus petite
sur le rapport d’embranchement b → sγ et la densité relique de matière sombre.
Nous avons défini quatre nouveaux points typiques avec leur ligne associée, valides
à la fois en SUSY avec cMFV, MFV et NMFV, et pour lesquels nous présentons la
dépendance des masses de squarks et de la décomposition des états physiques de
squark en la violation de la saveur.

Considérant la SUSY avec cMFV (le MSSM habituel), les corrections SUSY-
QCD pour la production de squarks et de gluinos [34], de jauginos [40], ainsi
que pour leur production associée [37] ont déjà été calculées. En raison de leur
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couplage fort, les squarks devraient être produits abondamment aux collisionneurs
hadroniques, et l’espace de phase favorise la production des états propres de masse
les plus légers. Ainsi, les productions des squarks top [35] et bottom [95] avec
un grand mélange d’hélicité ont reçu une attention toute particulière. Dans cette
thèse, nous nous sommes intéressés à l’importance des canaux électrofaibles pour la
production de paires de squarks non diagonales et mixtes de troisième génération
aux collisionneurs hadroniques [96]. Näıvement, l’on s’attend à ce que ces sections
efficaces, qui sont d’ordre deux en la constante de structure fine, O(α2), soient plus
faibles que celles concernant la production forte d’une paire de squarks diagonale
d’environ deux ordres de grandeurs. Pour la production non diagonale, l’importance
des canaux QCD est réduite en raison de la présence de boucles, et celle des canaux
électrofaibles l’est également en raison du couplage faible. L’importance relative de
ces canaux mérite donc une étude approfondie. Si l’on considère des squarks bottom
qui se mélangent, leur contribution au niveau des boucles QCD doit également être
prise en compte.

Ensuite, pour la première fois, nous nous sommes concentrés sur les effets
possibles de la violation de saveur non minimale (NMFV) aux collisionneurs
hadroniques [97]. A cette fin, nous avons recalculé toutes les amplitudes d’hélicité
pour la production et la désintégration des squarks et des jauginos, en prenant
en compte les interactions non diagonales des courants chargés des jauginos et les
interactions de Yukawa des Higgsinos, et en généralisant les matrices de mélange
d’hélicités bidimensionnelles, souvent supposées réelles, en matrices de mélange
d’hélicités et de saveurs, complexes et six-dimensionnelles. Nous avons vérifié
que nos résultats reproduisaient ceux de la littérature existant dans les limites de
squarks non mélangés.

Dans notre analyse phénoménologique de la production NMFV de squarks et de
jauginos, nous nous sommes concentrés sur le LHC en raison de son énergie dans
le centre de masse élevée et de sa luminosité importante. Nous avons porté une
attention particulière à la compétition entre les effets liés aux densités de partons
qui sont dominés par les contributions des quarks légers, les contributions fortes du
gluino qui sont généralement plus importantes que les contributions électrofaibles et
qui ne doivent pas nécessairement être diagonales en saveur, et la présence de saveurs
lourdes dans l’état final, facilement identifiables expérimentalement et généralement
plus légères que les saveurs de squark de première et deuxième générations.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics [1, 2, 3, 4, 5, 6, 7] provides a
successful description of all experimental high energy data. However, despite of
its success many fundamental questions remain unanswered, e.g. the origins of
electroweak symmetry breaking and particle masses, the large hierarchy between
the electroweak and the Planck scales, the mechanism leading to neutrino oscilla-
tions, the origins of dark matter and of the cosmological constant, or the strong
CP-problem. Attempts to relate different SM parameters lead to more fundamental
theories, that may at the same time solve some of the open problems of the SM.

The basic philosophy of Grand Unified Theories (GUTs) [8, 9, 10] is to consider
the SM symmetry groups as originating from the breaking of a larger simple group.
At the GUT scale, the three SM gauge coupling constants unify and quarks and
leptons are embedded in common representations of the unifying gauge group.
These theories include then number of additional gauge bosons, leading potentially
to interactions violating the baryon and lepton numbers. This leads to one of
the major phenomenological problems of GUTs, which predict baryon instability,
contrary to the experimental non-observation of proton decay. GUT theories can
explain the quantization of the electric charge and incorporate massive neutrinos,
but have difficulties in accounting for the measured value of the electroweak mixing
angle. Besides, many other conceptual SM problems remain unsolved.

One popular approach to solve the hierarchy problem of the SM is to extend
space-time to higher dimensions [11, 12]. In this framework, the gravitational and
gauge interactions become unified close to the weak scale, which is then the only
fundamental scale of the theory. The large value of the Planck scale is only a
consequence of the new dimensions. The usual four-dimensional space is contained
in a four-dimensional “brane”, embedded in a larger structure with N additional
dimensions, the “bulk”. In these theories, each field of the SM possesses a tower
of Kaluza-Klein excitations with the same quantum numbers, but different mass,
which have not been observed at the present time, but which should lie in the
TeV-range. They could then be detected at the future Large Hadron Collider (LHC)
at CERN.

Recently, other attempts to solve the hierarchy problem have been proposed,
e.g. Little-Higgs or Twin-Higgs theories, which predict new particles with masses
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in the TeV-range as well [13, 14, 15]. These theories include fermionic partners for
quarks and leptons and bosonic partners for the SM gauge bosons, which allows for
stabilization of the Higgs mass beyond tree-level thanks to a non-linearly realized
symmetry that relates the couplings to the Higgs in such a way that the quantum
corrections to the Higgs mass cancel.

In this thesis, we focus on another attractive extension of the SM, supersymme-
try (SUSY) [16, 17, 18, 19, 20], and more precisely the Minimal Supersymmetric
Standard Model (MSSM) [21, 22]. Weak scale supersymmetry provides a natural
solution for a set of conceptual problems of the SM. Linking fermions with bosons,
SUSY allows for a stabilization of the gap between the Planck scale and the
electroweak scale [23, 24] and for a consistent unification of SM gauge couplings
at high energies [25, 26, 27, 28]. In addition, it can include a potential dark
matter candidate as the stable lightest SUSY particle [29, 30]. Since spin partners
of the SM particles have not yet been observed and in order to remain a viable
solution to the hierarchy problem, SUSY must be broken at low energy via soft
mass terms in the Lagrangian. As a consequence, the SUSY particles must
be massive in comparison to their SM counterparts, but their mass should not
exceed a few TeV. A conclusive search covering a wide range of masses up to the
TeV scale is then one of the main topics in the experimental program at present
and future hadron colliders, such as the Tevatron at Fermilab and the LHC at CERN.

Production cross sections for SUSY particles at hadron colliders have been
extensively studied in the past at leading order (LO) [31, 32, 33] and also at
next-to-leading order (NLO) of perturbative QCD [34, 35, 36, 37, 38, 39, 40]. The
NLO QCD [39] and full SUSY-QCD [40] corrections for slepton pair production are
known to increase the hadronic cross sections by about 35 % at the Tevatron and
25% at the LHC, extending thus the discovery reaches of sleptons by several tens of
GeV. However, the presence of massive squarks and gluinos in the loops makes the
genuine SUSY corrections considerably smaller than the standard QCD ones.

Despite of the first successful runs of the RHIC collider in the polarized pp mode,
polarized cross sections have received much less attention. Only the pioneering
LO calculations for massless squark and gluino production [41, 42] have recently
been confirmed, extended to the massive case, and applied to current hadron
colliders [43]. Concerning slepton pair production, only polarized calculations for
non mixing sleptons were available before, and for old collider experiments only [44] .

Due to their purely electroweak couplings, sleptons are among the lightest
SUSY particles in many SUSY-breaking scenarios [45, 46]. Sleptons and sneutrinos
often decay directly into the stable lightest SUSY particle (the lightest neutralino
in minimal supergravity (mSUGRA) models or the gravitino in gauge-mediated
SUSY-breaking models (GMSB)) plus the corresponding SM partner (lepton or
neutrino). As a result, a slepton signal at hadron colliders will consist in a highly
energetic lepton pair, which will be easily detectable, and associated missing energy.

In this thesis, we verify the pioneering polarized calculations for slepton pair
production [44] and extend them by including the mixing of the left- and right-
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handed interaction eigenstates relevant for third-generation sleptons. We present
analytical results for neutral and charged current sleptons and make numerical
predictions for longitudinal spin asymmetries at RHIC and possible upgrades of
the Tevatron and the LHC, where one of the beams is considered to be polarized.
We put particular emphasis on the sensitivity of the asymmetry to the tau slepton
mixing angle as predicted by various SUSY-breaking mechanisms. Possibilities of
using asymmetries to discriminate between the SUSY signal and the corresponding
SM Drell-Yan background are also discussed [47].

The main SM background to slepton pair production at hadron colliders is due
to WW and tt̄ decays to a lepton pair and missing energy [48, 49]. Two key features
distinguishing the SUSY signal from the SM background are the reconstruction of
the mass and the determination of the spin of the produced particles. For sleptons,
the Cambridge (s)transverse mass proves to be a particularly useful observable,
requiring only a precise knowledge of the transverse-momentum (qT ) spectrum to
get their mass [50] and spin [51].

When studying the qT -distribution of a colourless system produced with an
invariant-mass M in a hadronic collision, it is appropriate to separate the large-qT
and small-qT regions. In the large-qT region (qT ≥ M) the use of fixed-order
perturbation theory is fully justified, since the perturbative series is controlled by a
small expansion parameter, the strong coupling constant αs(M2). In the small-qT
region, where the coefficients of the perturbative expansion in αs(M2) are enhanced
by powers of large logarithmic terms, ln(M2/q2T ), results based on fixed-order calcu-
lations diverge as qT → 0, and the convergence of the perturbative series is spoiled.
These logarithms are due to multiple soft-gluon emission from the initial state and
have to be systematically resummed to all orders in αs in order to obtain reliable
perturbative predictions. The method to perform all-order soft-gluon resummation
at small qT is well known [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. The resummation
of leading logarithms was first performed in [52]. It was shown in [53] that the
resummation procedure is most naturally performed using the impact-parameter (b)
formalism, where b is the variable conjugate to qT through a Fourier transformation,
to allow the kinematics of multiple-gluon emission to factorize. In the special case
of Drell-Yan lepton pair or electroweak boson production, b-space resummation was
performed at next-to-leading level in [55], a resummation formalism consistent at any
logarithmic accuracy was developed in [59], and the next-to-next-to-leading order
terms have been calculated in [60]. At intermediate qT the resummed result has to be
consistently matched with fixed-order perturbation theory in order to obtain predic-
tions with uniform theoretical accuracy over the entire range of transverse momenta.

We implement the universal qT -resummation formalism proposed in [61, 62] and
compute the qT -distribution of a slepton pair produced at the LHC by combining re-
summation at small qT and the fixed-order cross section at large qT . The resummed
contribution has been computed at the next-to-leading logarithmic (NLL) accuracy
and the fixed-order cross section at O(αs) in perturbative QCD, corresponding to
the production of a slepton pair plus a QCD jet. It is the first precision calculation
of the qT -spectrum for SUSY particle pair production at hadron colliders. The
importance of resummed contributions at small and intermediate values of qT , both
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enhancing the pure fixed-order result and reducing the scale uncertainty, is shown
in our numerical results [63].

Concerning NLO SUSY-QCD corrections [40], they have only been computed
for non-mixing squarks appearing in the loops. We extend this work by including
the mixing effects relevant for the third generation in the squark sector, and
we consider the threshold-enhanced contributions of the QCD corrections [39],
also due to soft-gluon emission from the initial state. They arise when the
initial partons have just enough energy to produce the slepton pair in the final
state. In this case, the mismatch between virtual corrections and phase-space
suppressed real-gluon emission leads to the appearance of large logarithmic terms
αn

s [ln2n−1(1− z)/(1− z)]+ at the nth order of perturbation theory, where z = M2/s,
s being the partonic centre-of-mass energy and M the slepton pair invariant-mass.
When s is close to M2, these large logarithms have to be resummed to all orders in
αs. Although they are manifest in the partonic cross section, they do not generally
result in divergences in the physical cross section since they are smoothed by the
convolution with the steeply falling parton distributions. Threshold resummation is
then not really a summation of kinematic logarithms in the physical cross section,
but rather an attempt to quantify the effect of a well-defined set of corrections
to all orders, which can be significant even if the hadronic threshold is far from
being reached. Large corrections are thus expected for the Drell-Yan like produc-
tion of a slepton pair with invariant-mass of a few 100 GeV at the Tevatron and LHC.

All-order resummation is achieved through the exponentiation of the soft-gluon
radiation, which does not take place in z-space directly, but in Mellin N -space,
where N is the Mellin variable conjugate to z and the threshold region z → 1
corresponds to the limit N → ∞. Thus, a final inverse Mellin transform is needed
in order to obtain a resummed cross section in z-space. Threshold resummation
for the Drell-Yan process was first performed in [64, 65] at the leading logarithmic
and next-to-leading logarithmic (NLL) levels, corresponding to terms of the form
αn

s ln2nN and αn
s ln2n−1N . The extension to the NNLL level (αn

s ln2n−2N terms)
has been carried out both for the Drell-Yan process [66] and for Higgs-boson
production [67]. It was shown in [68, 69] that contributions due to collinear parton
emission can be consistently included in the resummation formula, leading to a
“collinear-improved” resummation formalism where 1/N -suppressed and a class of
N -independent universal contributions are resummed as well. Very recently, even
the NNNLL contributions (αn

s ln2n−3N terms) became available [70, 71, 72].

We present here an extensive study on NLL threshold resummation effects for
Drell-Yan like slepton pair and slepton-sneutrino associated production in mSUGRA
and GMSB scenarios, matching the resummed contributions computed within a
collinear-improved resummation formalism with a fixed-order calculation at NLO
accuracy. Numerically, we show a non-negligible increase of the theoretical cross
sections with respect to the NLO prediction and a stabilization of the unphysical
scale dependences thanks to the higher order terms taken into account in the
resummed component of the cross section [73].

The dynamical origin of the enhanced contributions is the same both in
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transverse-momentum and threshold resummations, since it comes from the soft-
gluon emission by the initial state. A joint resummation formalism, embodying
soft-gluon contributions in both the delicate kinematical regions (qT �M , M2 ∼ s)
simultaneously, has been developed in the last decade [74, 75]. The exponentiation
of the singular terms in the Mellin and impact-parameter spaces, for threshold and
transverse-momentum resummation respectively, has been proven, and a consistent
method to perform the inverse transforms in order to avoid the Landau pole and the
singularities of the parton distribution functions has been introduced. Applications
to prompt-photon [76], electroweak boson [77], Higgs boson [78] and heavy-quark
pair [79] production at hadron colliders show the substantial effects of the joint
resummation on the differential cross sections.

We present a joint treatment of the recoil corrections at small qT and the
threshold-enhanced contributions near partonic threshold for slepton pair produc-
tion at hadron colliders, allowing for a complete understanding of the soft-gluon
effects in differential distributions [80]. Together with the previous papers on
transverse-momentum [63] and threshold [73] resummation, this completes our pro-
gram of providing the first precision calculations including soft-gluon resummation
for slepton pair production at hadron colliders.

If SUSY particles exist, they should also appear in virtual particle loops and
affect low-energy and electroweak precision observables. In particular, flavour-
changing neutral currents (FCNC), which appear only at the one-loop level even
in the SM, put severe constraints on new physics contributions appearing at the
same perturbative order. The MSSM has passed these crucial tests, largely due
to the assumption of constrained Minimal Flavour Violation (cMFV) [81, 82]
or Minimal Flavour Violation (MFV) [83, 84, 85], where heavy SUSY particles
may appear in the loops, but flavour changes are either neglected or completely
dictated by the structure of the Yukawa couplings and thus the CKM-matrix [86, 87].

In SUSY with MFV, the flavour violating entries in the squark mass matrices
stem from the trilinear Yukawa couplings of the fermion and Higgs supermultiplets
and the resulting different renormalizations of the quark and squark mass matrices,
which induce additional flavour violation at the weak scale through renormalization
group running [88, 89, 90, 91]. In non-minimal flavour violating SUSY, additional
sources of flavour violation are included in the mass matrices at the weak scale,
and their flavour-violating off-diagonal terms cannot be simply deduced from the
CKM matrix alone, and have to be considered as free parameters. In this work,
we consider flavour mixings of second- and third-generation squarks, since direct
searches of flavour violation depend on the possibility of flavour tagging, which is
established experimentally only for heavy flavours. In addition, stringent experi-
mental constraints for the first-generation are imposed by precise measurements of
K0 − K̄0 mixing and first evidence of D0 − D̄0 mixing [92, 93, 94].

Considering SUSY with cMFV (the usual MSSM), NLO SUSY-QCD calculations
for the production of squarks and gluinos [34], gauginos [40], as well as for their
associated production [37] are available. Due to their strong coupling, squarks
should be abundantly produced at hadron colliders. In addition, phase space
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favours the production of the lighter of the squark mass eigenstates of identical
flavour. As a consequence, the production of top [35] and bottom [95] squarks with
large helicity mixing has received particular attention. In this thesis, we investigate
the importance of electroweak channels for non-diagonal and mixed squark pair
production at hadron colliders [96]. Naively, one expects these cross sections, which
are of O(α2) in the fine structure constant α, to be smaller than the diagonal strong
channels by about two orders of magnitude. For non-diagonal squark production,
the interplay between loop suppression in QCD and coupling suppression in the
electroweak case merits a detailed investigation, and in the presence of the mixing
of bottom squarks, their loop contributions must also be taken into account.

Then, for the first time, we concentrate on the possible effects of non-minimal
flavour violation (NMFV) at hadron colliders [97]. To this end, we recalculate
all squark and gaugino production and decay helicity amplitudes, keeping at the
same time the CKM-matrix and the quark masses to account for non-diagonal
charged-current gaugino and Higgsino Yukawa interactions, and generalizing the
two-dimensional helicity mixing matrices, often assumed to be real, to generally
complex six-dimensional helicity and generational mixing matrices.

In our phenomenological analysis of NMFV squark and gaugino production, we
concentrate on the LHC due to its larger centre-of-mass energy and luminosity.
We pay particular attention to the interesting interplay of parton density functions
(PDFs), which are dominated by light quarks, strong gluino contributions, which are
generally larger than electroweak contributions and need not be flavour-diagonal, and
the appearance of third-generation squarks in the final state, which are easily iden-
tified experimentally and generally lighter than first- and second-generation squarks.

This thesis is organized as follows. In the first part of Chapt. 2, we briefly de-
scribe the MSSM within cMFV, showing several motivating arguments for SUSY and
defining the model. In the second part of this chapter, we set up the notations that
we use in the case of NMFV SUSY, and we perform a precise numerical analysis of
the experimentally allowed NMFV SUSY parameter space with respect to low-energy
constraints, leading to the definition of four collider-friendly benchmark points for
which we investigate the corresponding helicity and flavour decomposition of the
up- and down-type squarks. Finally, we introduce generalized couplings in order to
compute compact analytical expression for the various cross sections calculated in
this work. In Chapt. 3, we describe the two qT -resummation formalisms (CSS and
universal), the threshold-resummation formalism and the joint-resummation formal-
ism that we have used in the case of slepton pair hadroproduction. Chapts. 4 and
5 are devoted to the results, the first one for slepton pair hadroproduction and the
second one to squark and gaugino production and decays, and we show a large num-
ber of analytical and numerical results. Our conclusion and outlook are presented
in Chapt. 6.
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Chapter 2

The Minimal Supersymmetric
Standard Model

2.1 Motivation

The Standard Model of particle physics is a gauge field theory based on the
symmetry group SU(3)× SU(2)× U(1), containing the electroweak [1, 2, 3, 4] and
the strong [5, 6, 7] interactions and providing a remarkably accurate description of
a large class of phenomena. It is well-established by the discovery of all its particle
content, the Higgs boson excepted, and by precision measurements at colliders.
However, a new framework will certainly be required, at least at the Planck scale
MP = 2.8 × 1018 GeV, where the quantum gravitational effects become important,
but more probably at a lower scale, since the absence of new physics between the
current experimental limit of several hundreds of GeV and MP is highly improbable.
Moreover, this large gap leads to what is called the hierarchy problem [23, 24].

The origin of the masses in the SM is an isodoublet scalar Higgs field [98, 99,
100, 101, 102, 103], yielding electroweak symmetry breaking and one physical Higgs
boson which couples to each SM fermion of mass mf with a strength driven by the
Yukawa couplings λf . The quantum corrections ∆m2

H to the Higgs squared mass
m2

H , where

m2
H = (m2

H)0 + ∆m2
H , (2.1)

(mH)0 being a parameter of the fundamental theory, are given by

∆m2
H =

|λf |2

16π2

[
−2 Λ2 + 6m2

f ln
Λ
mf

+ . . .

]
, (2.2)

where Λ is an ultraviolet cutoff that corresponds to the scale at which new physics
alters the theory and that regulates fermionic loop-integrals. If Λ is of order MP ,
these corrections are some 30 orders of magnitude larger than the expected value of
about (100 GeV)2, particularly due to the large top Yukawa coupling. Supersym-
metry [16, 17, 18, 19, 20, 21, 22] provides an elegant solution to this problem, since
a heavy complex scalar particle of mass mS can couple to the Higgs boson with a
strength λS . The corresponding quantum corrections to m2

H are

∆m2
H =

λS

16π2

[
Λ2 − 2m2

S ln
Λ
mS

+ . . .

]
. (2.3)
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Provided that the scalar masses are not too heavy, the systematic cancellation of
fermionic and bosonic corrections to the Higgs squared mass is then achieved, since
each fermion of the SM is now accompanied by two scalars, and their couplings to
the Higgs field are closely related by λS = |λf |2. The remaining corrections to the
squared Higgs mass depend only logarithmically on the cutoff Λ and are thus under
control.

Furthermore, a set of conceptual problems of the SM can be solved thanks to
supersymmetry, such as the unification of the fundamental gauge interactions [25, 26,
27, 28], since the SUSY particles modify the renormalization-group evolution of the
gauge couplings with the energy, leading to unification at about 1016 GeV. SUSY
also provides a potential cold dark matter candidate, the lightest SUSY particle
(LSP) [29, 30], and can even include gravity, in the framework of local supergravity
theories [104, 105].

2.2 Definition of the model

Most present SUSY models are based on the four-dimensional supersymmetric
field theory of Wess and Zumino [16], which are free of many of the divergences
encountered in similar SUSY theories of that time [106, 107]. The simplest model is
the straightforward supersymmetrization of the SM with the same gauge interactions,
called the Minimal Supersymmetric Standard Model [21, 22]. As for any SUSY
model, it postulates a symmetry between fermionic and bosonic degrees of freedom
in nature, predicting thus the existence of a fermionic (bosonic) SUSY partner for
each bosonic (fermionic) SM particle. A complete introduction to supersymmetric
field theories and the MSSM can be found in Refs. [108, 109, 110].

2.2.1 Field content

Due to the various conserved quantum numbers of the known bosons and
fermions, a minimal supersymmetric model cannot be built up with the SM
particles alone, and new particles have to be postulated. Quarks and leptons
get scalar partners called squarks and sleptons, while electroweak bosons and
gluons get fermionic partners referred to as gauginos and gluinos. Since in the
SM, the left- and right-handed parts of the fermionic fields transform differently
under the gauge group, it is required that fermions get two superpartners, named
left- and right-handed sfermions. Finally, to preserve the electroweak symmetry
from gauge anomaly and to give masses to both up- and down-type fermions,
the MSSM requires two Higgs doublets and their fermionic superpartners, the
Higgsinos. The field content of the MSSM is shown in Tab. 2.1. Let us note that the
local version of supersymmetry includes a spin-2 state and a spin-3/2 state which
can be interpreted as the spin-2 graviton and its spin-3/2 superpartner, the gravitino.

All of these particles are organised in chiral and gauge supermultiplets, containing
an equal number of fermionic and bosonic degrees of freedom. Chiral supermultiplets
contain one on-shell Weyl fermion ψ (i.e. the left- or the right-handed part of a
fermionic field) and its associated scalar complex field φ, corresponding to a total
of two fermionic and two bosonic real degrees of freedom. Off-shell Weyl fermions
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Table 2.1: Field content of the MSSM.

Names particle spin superpartner spin

(s)quarks Q (uL dL) 1/2 (ũL d̃L) 0

(×3 families) u u†R 1/2 ũ∗R 0

d d†R 1/2 d̃∗R 0

(s)leptons L (ν eL) 1/2 (ν̃ ẽL) 0

(×3 families) e e†R 1/2 ẽ∗R 0

Higgs(inos) Hu (H+
u H0

u) 0 (H̃+
u H̃0

u) 1/2

Hd (H0
d H

−
d ) 0 (H̃0

d H̃
−
d ) 1/2

gluon/gluino g 1 g̃ 1/2

W bosons/winos W±, W 0 1 W̃±, W̃ 0 1/2

B boson / bino B 1 B̃ 1/2

having two additional real fermionic degrees of freedom, an auxiliary complex scalar
field F is introduced, preserving supersymmetry off-shell, but being eliminated when
one goes on-shell by imposing its equations of motion. Gauge supermultiplets contain
a massless gauge boson Aa

µ and its on-shell associated fermionic partner λa, which
corresponds as well to two fermionic and two bosonic real degrees of freedom. If one
goes off-shell, the fermionic field gets two additional real degrees of freedom, while
the vector boson only gets one. As for chiral supermultiplets, an auxiliary field D
with one real bosonic degree of freedom is introduced, preserving SUSY off-shell and
being eliminated on-shell through its equations of motion.

2.2.2 Lagrangian density

The MSSM gauge interactions are the same as those of the SM and are deter-
mined by the gauge group SU(3) × SU(2) × U(1). The full Lagrangian density for
a renormalizable SUSY theory is then given by

L = Lchiral + Lgauge −
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) + g(φ∗T aφ)Da. (2.4)

Lchiral and Lgauge contain the kinetic terms and the gauge interactions for the chiral
and gauge supermultiplets,

Lchiral = −Dµφ∗iDµφi − iψ†iσµDµψi −
1
2

(
W ijψiψj +W ∗

ijψ
†iψ†j

)
−W iW ∗

i ,(2.5)

Lgauge = −1
4
F a

µνF
µνa − iλ†aσµDµλ

a +
1
2
DaDa, (2.6)

where σ are the Pauli matrices

σ0 =σ0 =

1 0

0 1

 , σ1 =−σ1 =

0 1

1 0

 ,

σ2 =−σ2 =

0 −i

i 0

 , σ3 =−σ3 =

1 0

0 −1

 . (2.7)
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The last terms of Eq. (2.4) are interactions whose strength is given by the usual
gauge couplings, but which are not gauge interactions from the point of view of an
ordinary gauge theory. The covariant derivatives

Dµφi = ∂µφi − igAa
µ(T aφ)i, Dµφ

∗i = ∂µφ
∗i + igAa

µ(φ∗T a)i,

Dµψi = ∂µψi − igAa
µ(T aψ)i, Dµλ

a = ∂µλ
a + gfabcAb

µλ
c (2.8)

make the Lagrangian gauge-invariant, T a being hermitian matrices corresponding
to the representation in which the chiral supermultiplets transform under the gauge
group and satisfying [T a, T b] = ifabcT c, where fabc are the totally antisymmetric
structure constants defining the group. Finally, in Eq. (2.6), F a

µν is the usual Yang-
Mills field strength

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (2.9)

The interactions between the chiral and the gauge supermultiplets are embodied in
derivatives of the superpotential W

W i =
∂W

∂φi
and W ij =

∂2W

∂φi∂φj
, (2.10)

W being analytic in the complex fields φ. Let us note that the auxiliary fields Fi do
not explicitly appear in the Lagrangian since they are expressed in terms of Wi, using
the equations of motion Fi = −W ∗

i and F i∗ = −W i. This Lagrangian is obviously
invariant under a global infinitesimal SUSY transformation ε, the transformation
rules being

δφi = εψi, δψiα = i(σµε†)αDµφi + εαFi,

δAa
µ =

1√
2

(
ε†σµλ

a + λ†aσµε
)
, δλa

α =
i

2
√

2
(σµσνε)αF

a
µν +

1√
2
εαD

a,

δFi = iε†σµDµψi +
√

2g(T aφ)iε
†λ†a, δDa =

i√
2

(
ε†σµDµλ

a −Dµλ
†aσµε

)
. (2.11)

The MSSM is specified by the choice of its superpotential

W = −eye LHd − uyuQHu − dydQHd + µHuHd, (2.12)

where e, u, d, L, Q, Hu and Hd are the chiral and Higgs superfields described in
previous subsection. The 3 × 3 Yukawa matrices y give rise to the masses of the
quarks and leptons when the Higgs fields acquire their vacuum expectation values
(vevs). As in the SM, different rotations are needed to diagonalize both the up- and
down-type quark Yukawa matrices yu and yd, leading to the usual flavour mixing
driven by the CKM matrix [86, 87]. Finally, the µ-term provides the Higgs and
Higgsino squared-mass terms. This superpotential is minimal since it is sufficient to
produce a phenomenologically viable model. However, other gauge-invariant terms
could be included in the superpotential,

W 6R =
1
2
λLLe+ λ′LQd+

1
2
λ′′u d d+ µ′ LHu, (2.13)

violating either the total lepton number L, or the baryon number B. In principle, we
could just postulate B and L conservation, forbidding then the terms of Eq. (2.13),
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as there are no possible renormalizable terms in the SM Lagrangian violating B or L.
But neither B nor L are fundamental symmetries of nature since they are violated
by non-perturbative electroweak effects [111]. Therefore, an alternative symmetry is
rather imposed, forbidding the B- and L-violating terms of Eq. (2.13), the R-parity
[19]. It is defined by

R = (−1)3B+L+2S , (2.14)

S being the spin of the particle. The SM particles then have a positive R-parity,
while their SUSY counterparts have a negative one. Due to R-parity conservation,
interaction vertices have to contain an even number of SUSY particles, leading to
SUSY particle production by pairs at colliders and to decays into states containing
an odd number of stable LSPs, which can only interact via annihilation vertices.
Furthermore, if we assume the LSP to be electrically and colour neutral, it can
even be a potential dark matter candidate [30]. In this work, we assume R-parity
conservation, but an introduction to SUSY models with R-parity violation can be
found in Refs. [112, 113].

The scalar potential is already included in the Lagrangian, via the F - and D-
terms, which can be expressed as a function of the scalar fields,

V (φ, φ∗) = F i∗ Fi +
1
2
DaDa = W iW ∗

i +
1
2

∑
a

g2
a(φ

∗T aφ)2, (2.15)

where we sum over the different gauge groups. We should note that V is entirely
determined by the other interactions of the theory, contrary to the SM potential
containing free parameters.

2.2.3 Soft SUSY-breaking

SUSY particles still remain to be discovered, and their masses must therefore
be considerably larger than those of the corresponding SM particles, so that super-
symmetry must be broken. In order to remain a viable solution to the hierarchy
problem, SUSY can, however, only be broken via soft terms in the Lagrangian, i.e.
with positive mass dimension, which prevents us from introducing new quadratic
divergences in the quantum corrections to the Higgs squared mass. Since we do not
know the SUSY-breaking mechanism and at which scale it occurs, we usually modify
the Lagrangian at low energies by adding all possible terms breaking explicitly the
SUSY. In the MSSM, we get [114]

Lsoft = −1
2

(
M3 g̃ g̃ +M2 W̃ W̃ +M1 B̃ B̃ + c.c.

)
−

(
Q̃†m2

Q Q̃+ L̃†m2
L L̃+ ũm2

u ũ
† − d̃m2

d
d̃
†
+ ẽm2

e ẽ
†
)

−
(
m2

Hu
H∗

u Hu +m2
Hd
H∗

d Hd + (bHuHd + c.c.)
)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)
. (2.16)

The first line contains the gluino, wino and bino mass terms and the second line
the squark and slepton mass terms, m2

Q, m2
L, m2

u, m2
d
, m2

e being 3 × 3 hermitian
matrices in family space. In the third line of Lsoft, we have the mass terms for the
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Higgs fields contributing to the scalar potential and in the fourth line the trilinear
scalar interactions, au, ad, and ae, which are also 3×3 matrices in generation space.
Contrary to the supersymmetric part of the MSSM Lagrangian, which has only one
new free parameter µ, the SUSY-breaking Lagrangian contain 105 masses, phases
and mixing angles, which cannot be rotated away by redefining the field basis and
which have no counterpart in the SM [115]. Most of them are strongly constrained,
since they introduce new sources of flavour mixing and CP violation, which could
enhance processes severely restricted by experiment, such as K0− K̄0, D0− D̄0 and
B0 − B̄0 mixing, flavour-changing neutral-current (FCNC) B, µ or τ decays, and so
forth [116].

Present models assume that SUSY is broken in a hidden sector, containing
particles that have no or small coupling to the visible sector, and SUSY-breaking is
mediated to the visible sector via an interaction shared by the two sectors. Let us
note that if the mediating interaction is flavour-blind and the related parameters
are real, we get automatically conditions which evade the flavour and CP violating
terms in Lsoft at low energies. In local SUSY theories, the Goldstone fermion related
to SUSY breaking, the goldstino, is absorbed by the gravitino which acquires a
mass through the super-Higgs mechanism [117, 118], analogously to the usual Higgs
mechanism where the electroweak gauge bosons acquire a mass by absorbing the
Goldstone bosons associated to electroweak symmetry breaking. We have studied
two SUSY-breaking scenarios, supergravity [119, 120, 121] and gauge-mediated
SUSY-breaking [122, 123, 124, 125].

In the framework of supergravity, SUSY-breaking is mediated to the
MSSM through gravitational interactions, appearing in the Lagrangian via non-
renormalizable terms suppressed by powers of the Planck mass. Assuming minimal
supergravity, the soft terms in Lsoft are completely determined by five parameters,
the universal scalar and gaugino masses m0 and m1/2, the universal trilinear coupling
A0, the ratio of the vevs of the two neutral Higgs fields, tanβ, and the sign of µ. At
the SUSY-breaking scale, we get the relations

M3 = M2 = M1 = m1/2, (2.17)
m2

Q = m2
u = m2

d
= m2

L = m2
e = m2

0 1; m2
Hu

= m2
Hd

= m2
0, (2.18)

au = A0yu, ad = A0yd, ae = A0ye. (2.19)

Assuming that all of these parameters are real, the problematic flavour and CP
violation terms of the Lagrangian are automatically suppressed. Low-energy
parameters are deduced from renormalization-group evolution of the high scale
parameters down to the electroweak scale.

SUSY-breaking can also be mediated by usual gauge interactions. To this aim,
new chiral supermultiplets are introduced in the Lagrangian, the messenger fields,
which carry SU(3)× SU(2)×U(1) quantum numbers and couple to the particles of
both the visible and hidden sectors. Virtual loops of messengers generate gaugino
and sfermion masses, i.e. the mass terms in Lsoft, in a completely renormalizable
framework. At the messenger scale Mmes, the trilinear couplings are generated via
two-loop diagrams, and we can then neglect them with respect to the masses gener-
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ated by one-loop diagrams,

au = ad = ae = 0. (2.20)

Gauge interactions being flavour-blind and assuming real SUSY-breaking param-
eters, undesired large FCNC and CP violation effects are again avoided. SUSY-
breaking is parameterized by one gauge-singlet chiral superfield, whose scalar and
auxiliary components acquire the two vevs 〈S〉 and 〈FS〉, respectively, defining the
scale Λ = 〈FS〉/〈S〉. At the scale Mmes, the soft SUSY-breaking mass parameters
are given by

Mi(Mmes) =
αi(Mmes)

4π
Λ g
(

Λ
Mmes

)
(N5 + 3N10) (2.21)

m2
j̃
(Mmes) = 2 (N5 + 3N10) Λ2 f

(
Λ

Mmes

)∑
i

[
αi(Mmes)

4π

]2

Ci
j , (2.22)

where the coefficients Ci
j are quadratic Casimir invariants and Ni is the multiplicity

of the messengers in the 5 + 5 and 10 + 10 vector-like supermultiplets, assuming
that messengers come in complete multiplets of SU(5) to preserve gauge coupling
unification. The threshold functions are given by [126, 127]

g(x) =
1
x2

[(1 + x) log(1 + x) + (1− x) log(1− x)], (2.23)

f(x) =
1 + x

x2

[
log(1 + x)− 2Li2

(
x

1 + x

)
+

1
2
Li2

(
2x

1 + x

)]
+ (x↔ −x). (2.24)

The different terms of Lsoft are then determined via the evolution of six parameters,
the numbers of (s)quark and (s)lepton messenger fields nq̂ and nl̂ needed for the
calculation of the multiplicities, the messenger scale Mmes, Λ, tanβ and the sign of
µ.

2.2.4 Electroweak symmetry breaking and particle mixing

The scalar potential of the MSSM is given by

V = (|µ|2 +m2
Hu

)|Hu|2 + (|µ|2 +m2
Hd

)|Hd|2 + b (HuHd + c.c.)

+
1
8
(g2 + g′2)(|Hu|2 − |Hd|2)2 +

1
2
g2|H+

u H
0∗
d +H0

uH
−∗
d |2. (2.25)

The terms proportional to µ, g and g′ come from the F - and D-terms of Eq. (2.15),
while the terms proportional to mHu , mHd

and b come from the SUSY-breaking
Lagrangian of Eq. (2.16). SU(2) gauge transformations allow to rotate away any
possible vev of one of the charged Higgs fields, and we simply take 〈H+

u 〉 = 0.
Since the minimum of the potential satisfies ∂V/∂H+

u = 0, we automatically get
〈H−

d 〉 = 0, which leads to electric charge conservation in the Higgs sector. As for
U(1) gauge transformations, they allow to redefine the phases of Hu and Hd, so
that all complex phases of the Lagrangian can be absorbed, making the vevs real
and positive. CP is thus not spontaneously broken by the Higgs scalar potential,
and the Higgs physical states are also CP eigenstates.
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To get electroweak symmetry breaking, the potential has to have a minimum,
which is the case if

(|µ|2 +m2
Hu

) + (|µ|2 +m2
Hd

) > 2 b and (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

) < b2. (2.26)

These two conditions can be satisfied if m2
Hu
6= m2

Hd
, implying that electroweak sym-

metry breaking is not possible without SUSY-breaking, since in unbroken SUSY, the
two Higgs mass terms do not exist and the masses are then equal to zero. Imposing
the stationary conditions ∂V/∂H0

u = ∂V/∂H0
d = 0 leads to the relations

|µ|2 +m2
Hu
− b cotβ −

m2
Z

2
cos(2β)= |µ|2 +m2

Hd
− b tanβ +

m2
Z

2
cos(2β)=0. (2.27)

The particle masses are calculated by expanding the potential about the min-
imum, once the Higgs fields get their vevs, vu and vd, leading to various bilinear
terms with fields with the same quantum numbers, contributing to the off-diagonal
terms in the different mass matrices. Let us first note that the electroweak gauge
bosons mix as in the SM. Among the eight degrees of freedom of the two Higgs dou-
blets, three of them are the Nambu-Goldstone bosons G{0,±}, remaining massless
after electroweak symmetry breaking and being absorbed by the electroweak gauge
bosons which become massive. The five remaining ones represent two CP even (the
light h0 and the heavy H0), one CP odd (A0) and two charged Higgs bosons (H±)
[22, 128] G0

A0

 =
√

2

sinβ − cosβ

cosβ sinβ

Im(H0
u)

Im(H0
d)

 , (2.28)

G+

H+

 =

sinβ − cosβ

cosβ sinβ

H+
u

H−∗
d

 , (2.29)

h0

H0

 =
√

2

 cosα sinα

− sinα cosα

 Re(H0
u)− vu

Re(H0
d)− vd

 , (2.30)

where the mixing angle α and the tree-level masses are given by

tan(2α) = tan(2β)
(
m2

A +m2
Z

)
/
(
m2

A −m2
Z

)
, (2.31)

m2
A = 2 b / sin(2β), (2.32)

m2
H± = m2

A +m2
W , (2.33)

m2
h0,H0 = 1/2

(
m2

A +m2
Z ∓

√
(m2

A +m2
Z)2 − 4m2

Am
2
Z cos(2β)

)
, (2.34)

mZ and mW being the Z and W boson masses. The negatively charged Goldstone
and Higgs bosons are defined by G− ≡ (G+)∗ and H− ≡ (H+)∗. Let us note that
the upper limit on the lightest neutral Higgs h0 mass

mh0 ≤ mZ | cos(2β)| (2.35)

has already been exceeded by the current experimental lower bound of 114.4
GeV [129]. However, the tree-level Higgs mass formulas above receive significant
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one-loop corrections, the upper limit for mh0 being then shifted to about 140 GeV
[130, 131, 132, 133, 134, 135].

In the most general case, sfermion mass eigenstates are obtained by diagonalizing
6× 6 mass matrices, except for sneutrinos with their 3× 3 mass matrix, since there
exist only left-handed sneutrinos. In cMFV SUSY, the mixing between different
generations, which could enhance strongly constrained FCNC processes [93, 136,
137], is neglected, and the 6× 6 matrices are decomposed into several 2× 2 matrices
for squarks and charged sleptons, describing the mixing of scalars of a specific flavour
[22, 138]

M2 =

 m2
LL mf mLR

mf mRL m2
RR

 , (2.36)

with

m2
LL = m2

F̃
+ (T 3

f − ef sin2 θW )m2
Z cos 2β +m2

f , (2.37)

m2
RR = m2

F̃ ′ + ef sin2 θW m2
Z cos 2β +m2

f , (2.38)

mLR = m∗
RL = A∗f − µ

 cotβ for up− type sfermions.

tanβ for down− type sfermions.
(2.39)

The soft SUSY-breaking mass terms for left- and right-handed sfermions are mF̃
and mF̃ ′ respectively, and Af is the trilinear Higgs-sfermion-sfermion interaction,
i.e. the entries of the diagonal matrices af of Eq. (2.16). The weak isospin quantum
numbers are T 3

f = ±1/2 for left-handed and T 3
f = 0 for right-handed sfermions, their

fractional electromagnetic charges are denoted by ef , and θW is the weak mixing
angle. M2 is diagonalized by a unitary matrix S f̃ , S f̃ M2 S f̃† = diag (m2

1,m
2
2) and

has the squared mass eigenvalues

m2
1,2 =

1
2

(
m2

LL +m2
RR ∓

√
(m2

LL −m2
RR)2 + 4m2

f |mLR|2
)
, (2.40)

where by convention m1 < m2. For real values of mLR, the sfermion mixing angle
θf̃ , 0 ≤ θf̃ ≤ π/2, in

S f̃ =

 cos θf̃ sin θf̃

− sin θf̃ cos θf̃

 with

 f̃1

f̃2

 = S f̃

 f̃L

f̃R

 (2.41)

can be obtained from
tan 2θf̃ =

2mf mLR

m2
LL −m2

RR

. (2.42)

Let us note that for purely left-handed sneutrino eigenstates a diagonalizing matrix
is not needed.

The neutral Higgsinos and gauginos (B̃0, W̃ 3, H̃0
d , H̃0

u) also mix when SU(2)×
U(1) is spontaneously broken. The diagonalization of the generally complex mass
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matrix [22, 128]

Y=


M1 0 −mZ sin θW cosβ mZ sin θW sinβ

0 M2 mZ cos θW cosβ −mZ cos θW sinβ

−mZ sin θW cosβ mZ cos θW cosβ 0 −µ

mZ sin θW sinβ −mZ cos θW sinβ −µ 0


(2.43)

by a unitary matrix N leads to four neutral mass eigenstates, the neutralinos χ̃0
i

(i = 1, 2, 3, 4), χ̃0
1 being the lightest one. The resulting diagonal matrix ND =

N∗ Y N−1 = diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
), has four real entries, and the neutralino

fields are given by

χ̃0
i = Nij ψ

0
j , i, j = 1, . . . , 4, with ψ0

j = (−iB̃0,−iW̃ 3, H̃0
d , H̃

0
u)T . (2.44)

Analytical expressions for the diagonalizing matrix N and the mass eigenvalues can
be found in Refs. [139, 140]. In general, all the possible complex phases can be
absorbed by a redefinition of the fields, making the masses real and non-negative.

The charged analogues of the neutralinos are the two charginos, χ̃±1 and χ̃±2 ,
resulting from the mixing of the charged wino and Higgsino fields (W̃±, H̃±

u,d). Two
unitary matrices U and V are needed to diagonalize the generally complex mass
matrix [22, 128]

X =

 M2 mW

√
2 sinβ

mW

√
2 cosβ µ

 , (2.45)

since X 6= XT . The eigenvalues of the diagonal matrix MC = U∗XV −1 =
diag (m±

χ̃1
,m±

χ̃2
) can be chosen to be real and non-negative, absorbing all complex

phases by a suitable redefinition of the fields

m2
χ̃±1,2

=
1
2

{
M2

2 +µ2+2m2
W∓

√
(M2

2 +µ2+2m2
W )2−4 (µM2−m2

W sin(2β))2
}
,(2.46)

where by convention mχ̃±1
< mχ̃±2

, while the U and V matrices

U = O− and V =

 O+ if detX ≥ 0

σ3O+ if detX < 0
, with O±=

 cos θ± sin θ±

− sin θ± cos θ±

(2.47)

are determined by the mixing angles θ± with 0 ≤ θ± ≤ π/2,

tan(2θ+)=
2
√

2mW (M2 sinβ+µ cosβ)
M2

2 − µ2 + 2m2
W cos(2β)

and tan(2θ−)=
2
√

2mW (M2 cosβ+µ sinβ)
M2

2 − µ2 − 2m2
W cos(2β)

.

(2.48)

The chargino mass eigenstates are given by χ̃−1

χ̃−2

 = U

 −iW̃−

H̃−
d

 and

 χ̃+
1

χ̃+
2

 = V

 −iW̃+

H̃+
u

 . (2.49)
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2.3 The MSSM with non-minimal flavour violation

2.3.1 The model

When SUSY is embedded in larger structures such as grand unified theories, new
sources of flavour violation can appear [141]. In addition, SUSY parameter space is
today becoming more and more constrained by electroweak precision measurements,
direct searches for Higgs and SUSY particles at colliders, and precise data on the
cosmological relic density of (possibly) SUSY dark matter. This encourages the
investigation of non-minimal models, e.g. with additional sources of flavour violation.
Non-minimal flavour violation in SUSY is well parameterized in the super-CKM basis
[142], where the up- and down-type squark mass matrices are

M2
Q̃

=



m2
LL,1 ∆12

LL ∆13
LL m1mLR,1 ∆12

LR ∆13
LR

∆21
LL m2

LL,2 ∆23
LL ∆21

RL m2mLR,2 ∆23
LR

∆31
LL ∆32

LL m2
LL,3 ∆31

RL ∆32
RL m3mLR,3

m1mRL,1 ∆12
RL ∆13

RL m2
RR,1 ∆12

RR ∆13
RR

∆21
LR m2mRL,2 ∆23

RL ∆21
RR m2

RR,2 ∆23
RR

∆31
LR ∆32

LR m3mRL,3 ∆31
RR ∆32

RR m2
RR,3


,

(2.50)

the indices (1, 2, 3) being the flavour indices (u, c, t) for the up-type and (d, s, b) for
the down-type mass matrix, and mLL, mRR, mLR and mRL being defined by Eqs.
(2.37), (2.38) and (2.39). The flavour-changing elements of the mass matrices are
usually normalized with respect to their diagonal entries [93],

∆f1 f2

ab = λf1 f2

ab mab,f1 mab,f2 , (2.51)

and obey to the relations ∆f1 f2

LL,RR = ∆f2 f1∗
LL,RR. In this basis, even if the fields are

not the mass eigenstates, all the charged current H± and W± interactions couple
with a strength given by the CKM matrix [86, 87], as their SUSY counterparts
do. M2

Ũ
and M2

D̃
are then diagonalized via two additional 6 × 6 matrices Ru and

Rd, diag(m2
ũ1
, . . . ,m2

ũ6
) = RuM2

Ũ
Ru† and diag(m2

d̃1
, . . . ,m2

d̃6
) = RdM2

D̃
Rd†, where

by convention, the masses are ordered as mq̃1 < . . . < mq̃6 . The physical mass
eigenstates are given by

(ũ1, ũ2, ũ3, ũ4, ũ5, ũ6)T = Ru(ũL, c̃L, t̃L, ũR, c̃R, t̃R)T ,

(d̃1, d̃2, d̃3, d̃4, d̃5, d̃6)T = Rd(d̃L, s̃L, b̃L, d̃R, s̃R, b̃R)T . (2.52)

In the limit of vanishing off-diagonal parameters, the matrices Rq become flavour-
diagonal, leaving only the well-known helicity-mixing already present in cMFV.

2.3.2 Experimental constraints on flavour violating SUSY

The scaling of the flavour violating entries ∆ij with the SUSY-breaking scale
MSUSY implies a hierarchy ∆LL � ∆LR,RL � ∆RR [141, 143]. Note also that SU(2)
gauge invariance relates the ∆qq′

LL of up- and down-type quarks through the CKM-
matrix, implying that a large difference between them is not allowed. Experimental
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Table 2.2: The 95% probability bounds on |λdkdl
ij | obtained in Ref. [144].

ij LL LR RL RR

kl

12 1.4×10−2 9.0×10−5 9.0×10−5 9.0×10−3

13 9.0×10−2 1.7×10−2 1.7×10−2 7.0×10−2

23 1.6×10−1 4.5×10−3 6.0×10−3 2.2×10−1

bounds coming from the neutral kaon sector (on ∆mK , ε, ε′/ε), on B- (∆mB) and D-
meson oscillations (∆mD), various rare decays (BR(b→ sγ), BR(µ→ eγ), BR(τ →
eγ), and BR(τ → µγ)), and electric dipole moments (dn and de) can be used to
set constraints on non-minimal flavour mixing in the squark and slepton sectors
[144, 145, 146, 147]. As example, we show the 95% probability bounds on |λdkdl

ij |
in Tab. 2.2 [144]. In our own analysis, we take implicitly into account all of the
previously mentioned constraints by restricting ourselves to the case of only one real
NMFV parameter,

λ ≡ λsb
LL = λct

LL. (2.53)

Let us note that in addition, direct searches of flavour violation depend on the
possibility of flavour tagging, established experimentally only for heavy flavours,
comforting us in our restriction to consider only mixing between the second and the
third generations in our analysis.

Allowed regions for this parameter are then obtained by imposing several low-
energy electroweak precision and cosmological constraints. We start by imposing the
branching ratio

BR(b→ sγ) = (3.55± 0.26)× 10−4, (2.54)

obtained from the combined measurements of BaBar, Belle, and CLEO [148], which
affects directly the allowed squark mixing between the second and third generation.
A second important consequence of NMFV in the MSSM is the generation of large
splittings between squark-mass eigenvalues. The splitting within isospin doublets
influences the Z- and W -boson self-energies at zero-momentum ΣZ,W (0) in the elec-
troweak ρ-parameter ∆ρ = ΣZ(0)/M2

Z−ΣW (0)/M2
W and consequently the W -boson

mass MW and the squared sine of the weak mixing angle sin2 θW . The latest com-
bined fits of the Z-boson mass, width, pole asymmetry, W -boson and top-quark
mass constrain new physics contributions to T = −0.13± 0.11 [149] or

∆ρ = −αT = 0.00102± 0.00086, (2.55)

where we have used α(MZ) = 1/127.918. A third observable sensitive to SUSY
loop-contributions is the anomalous magnetic moment aµ = (gµ− 2)/2 of the muon,
for which recent BNL data and the SM prediction disagree by [149]

∆aµ = (22± 10)× 10−10. (2.56)
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For cosmological reasons, i.e. in order to have a suitable candidate for non-baryonic
cold dark matter [30], we require the LSP to be stable, electrically neutral, and a
colour singlet. The related dark matter relic density is constrained to the region

0.094 < ΩCDMh
2 < 0.136 (2.57)

at 95% (2σ) confidence level, which has been obtained from the three-year data of
the WMAP satellite, combined with the SDSS and SNLS survey and Baryon Acous-
tic Oscillation data and interpreted within an eleven-parameter inflationary model
[150], which is more general than the usual six-parameter “vanilla” concordance
model of cosmology.

We impose both the BR(b→ sγ) bounds on the two-loop QCD/one-loop SUSY
calculation [147, 151] and the ∆ρ bounds on the one-loop NMFV and two-loop
cMFV SUSY calculation [152] at the 2σ-level. We take into account the SM and
SUSY contributions to aµ up to two loops [153, 154] and require them to agree with
the experimental region within two standard deviations. ΩCDM is calculated using
a modified version of DarkSUSY 4.1 [155], that manages NMFV.

2.3.3 Scan of the mSUGRA parameter space

The above experimental limits are now imposed on the minimal supergravity
models with their five free parameters (m0, m1/2, A0, tanβ, sign(µ)) at the grand
unification scale. Since our scans [97] in the (m0, m1/2) plane depend very little
on the trilinear coupling A0, we set it to zero. Furthermore, we fix a small (10),
intermediate (30), and large (50) value for tanβ, and investigate the impact of
the sign of µ for tanβ = 10 only, before we set it to µ > 0 for the two other
cases (see below). We solve the renormalization group equations numerically to
two-loop order using the computer program SPheno 2.2.3 [156], evolving the five
parameters at grand unification scale in order to compute the soft SUSY-breaking
parameters at the electroweak scale (see Eq. (2.16)) with the complete one-loop
formulas, supplemented by two-loop contributions in the case of the neutral Higgs
bosons and the µ-parameter. At this point we generalize the squark mass matrices,
introducing the λ parameter, and compute the low-energy, electroweak precision,
and cosmological observables with the computer programs FeynHiggs 2.5.1 [157]
and DarkSUSY 4.1 [155].

For the masses and widths of the electroweak gauge bosons and the mass of
the top quark, we use the current values of mZ = 91.1876 GeV, mW = 80.403
GeV, mt = 174.2 GeV, ΓZ = 2.4952 GeV, and ΓW = 2.141 GeV. The CKM-matrix
elements are computed using the parameterization

V =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.58)

where sij = sin θij and cij = cos θij relate to the mixing of two specific generations i
and j and δ is the SM CP violating complex phase. The numerical values are given
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by

s12 = 0.2243, s23 = 0.0413, s13 = 0.0037, and δ = 1.05. (2.59)

The squared sine of the electroweak mixing angle sin2 θW = 1 − m2
W /m2

Z and
the electromagnetic fine structure constant α =

√
2GFm

2
W sin2 θW /π are cal-

culated in the improved Born approximation using the world average value of
GF = 1.16637 · 10−5 GeV−2 for Fermi’s coupling constant [149].

Typical scans of the mSUGRA parameter space in m0 and m1/2 with a relatively
small value of tanβ = 10 and A0 = 0 are shown in Figs. 2.1 and 2.2 for µ < 0 and
µ > 0, respectively. All experimental limits described in the previous section are
imposed at the 2σ-level. The b → sγ excluded region depends strongly on flavour
mixing, while the regions favoured by gµ − 2 and the dark matter relic density are
quite insensitive to variations of the λ-parameter. ∆ρ constrains the parameter
space only for heavy universal scalar masses m0 > 2000 GeV and heavy universal
gaugino masses m1/2 > 1500 GeV, so that the corresponding excluded regions are
not shown here. The dominant SUSY effects in the calculation of the anomalous
magnetic moment of the muon come from induced quantum loops of a neutralino
or a chargino and a slepton, while squarks contribute only at the two-loop level.
This reduces the dependence on flavour violation in the squark sector considerably.
Furthermore, the region µ < 0 is disfavoured in all SUSY models, since the one-loop
SUSY contributions are approximatively given by [158]

aSUSY, 1−loop
µ ' 13× 10−10

(
100 GeV
MSUSY

)2

tanβ sgn(µ), (2.60)

where MSUSY is a typical SUSY mass scale. Negative values of µ would then
increase, not decrease, the disagreement between the experimental measurements
and the theoretical value of aµ. Furthermore, the measured b→ sγ branching ratio
excludes virtually all of the region favoured by the dark matter relic density, except
for very high scalar SUSY masses. We therefore do not consider negative values of
µ in the rest of this work.

In Figs. 2.3 and 2.4, we show the (m0,m1/2)-planes for larger tanβ, namely
tanβ = 30 and tanβ = 50, and for µ > 0. The regions which are favoured both
by the anomalous magnetic moment of the muon and by the cold dark matter relic
density, and which are not excluded by the b → sγ measurements, are stringently
constrained and do not allow for large flavour violation.

2.3.4 NMFV benchmark points and slopes

Restricting ourselves to non-negative values of µ, we now inspect the (m0,m1/2)-
planes in Figs. 2.2-2.4 for scenarios that are allowed or favoured by low-energy,
electroweak precision, and cosmological constraints, that permit non-minimal
flavour violation among left-chiral squarks of the second and third generation up to
λ . 0.1, and that are at the same time collider-friendly, with relatively low values
of m0 and m1/2. We propose [97] the four benchmark points given in Tab. 2.3. We
also attach a model line (slope) to each point in Tab. 2.4. These slopes trace the
allowed/favoured regions from lower to higher masses and can, of course, also be
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Figure 2.1: The (m0,m1/2)-planes for tanβ = 10, A0 = 0 GeV, µ < 0, and λ = 0,
0.03, 0.05 and 0.1. We show WMAP (black) favoured as well as b → sγ (blue)
and charged LSP (beige) excluded regions of mSUGRA parameter space in minimal
(λ = 0) and non-minimal (λ > 0) flavour violation.
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Figure 2.2: Same as Fig. 2.1, for tanβ = 10, A0 = 0 GeV, µ > 0, and λ = 0, 0.03,
0.05 and 0.1.
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Figure 2.3: Same as Fig. 2.1, for tanβ = 30, A0 = 0 GeV, µ > 0, and λ = 0, 0.03,
0.05 and 0.1.
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Figure 2.4: Same as Fig. 2.1, for tanβ = 50, A0 = 0 GeV, µ > 0, and λ = 0, 0.03,
0.05 and 0.1.
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Table 2.3: Benchmark points allowing for flavour violation among the second and
third generations for A0 = 0, µ > 0, and three different values of tanβ.

m0 [GeV] m1/2 [GeV] A0 [GeV] tanβ sgn(µ)

A 700 200 0 10 1

B 100 400 0 10 1

C 230 590 0 30 1

D 600 700 0 50 1

Table 2.4: Model lines allowing for flavour violation among the second and third
generations for A0 = 0, µ > 0, and three different values of tanβ.

A 180 GeV ≤ m1/2 ≤ 250 GeV , m0 = −1936 GeV + 12.9m1/2,

B 400 GeV ≤ m1/2 ≤ 900 GeV , m0 = 4.93 GeV + 0.229m1/2,

C 500 GeV ≤ m1/2 ≤ 700 GeV , m0 = 54 GeV + 0.297m1/2,

D 575 GeV ≤ m1/2 ≤ 725 GeV , m0 = 600 GeV.

used in MFV scenarios where the off-diagonal terms are expressed in function of the
CKM matrix and the Yukawa couplings, and in cMFV with λ = 0.

Starting with Fig. 2.2 and tanβ = 10, the bulk region of equally low scalar
and fermion masses is all but excluded by the b → sγ branching ratio. This
leaves us with two favoured regions. Our benchmark point A lies in the so-called
focus point region of low fermion masses m1/2, where the lightest neutralinos are
relatively heavy, have a significant Higgsino component, and annihilate dominantly
into pairs of electroweak gauge bosons. Our values for the universal masses are
smaller than those of the pre-WMAP point SPS 2 [45, 46] (m0 = 1450 GeV,
m1/2 = 300 GeV) and post-WMAP point BDEGOP E’ [159] (m0 = 1530 GeV,
m1/2 = 300 GeV), which lie outside the region favoured by aµ (grey-shaded) and
lead to collider-unfriendly heavy squark and gaugino masses. Our benchmark point
B lies in the co-annihilation branch of low scalar masses m0, where the lighter τ̃1
mass eigenstate is not much heavier than the lightest neutralino, the two having a
considerable co-annihilation cross section. This point differs from the points SPS
3 (m0 = 90 GeV, m1/2 = 400 GeV) and BDEGOP C’ (m0 = 85 GeV, m1/2 = 400
GeV) only very little in the scalar mass.

At the larger value of tanβ = 30 in Fig. 2.3, only the co-annihilation region
survives the constraints coming from b → sγ decays, where we choose our point C,
which has slightly higher masses than both SPS 1b (m0 = 200 GeV, m1/2 = 400
GeV) and BDEGOP I’ (m0 = 175 GeV, m1/2 = 350 GeV). Finally for the very large
value of tanβ = 50 in Fig. 2.4, the bulk region reappears at relatively heavy scalar
and fermion masses. Here, the couplings of the heavier scalar and pseudo-scalar
Higgses H0 and A0 to bottom quarks and tau-leptons and the charged-Higgs
coupling to top-bottom pairs are significantly enhanced, resulting e.g. in increased
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dark matter annihilation cross sections through s-channel Higgs-exchange into
bottom-quark final states. So as tanβ increases further, the so-called Higgs-funnel
region eventually makes its appearance on the diagonal of large scalar and fermion
masses. We choose our point D in the concentrated (bulky) region favoured
by cosmology and aµ at masses, that are slightly higher than those of SPS 4
(m0 = 400 GeV, m1/2 = 300 GeV) and BDEGOP L’ (m0 = 300 GeV, m1/2 = 450
GeV). In this scenario, squarks and gluinos are very heavy with masses above 1 TeV.

Let us now turn to the dependence of the precision variables discussed in Sec.
2.3.2 on the flavour violating parameter λ in our four benchmark scenarios. As
already mentioned, we expect the leptonic observable aµ to depend weakly on
the squark sector, which is confirmed by our numerical analysis of the SUSY
contribution a

(SUSY )
µ . We find constant values of 6, 14, 16, and 13×10−10 for the

benchmarks A, B, C, and D, all of which lie well within 2σ (the latter three even
within 1σ) of the experimentally favoured range (22± 10)× 10−10.

The electroweak precision observable ∆ρ is shown first in Figs. 2.5-2.8 for the
four benchmark scenarios, where only the experimental upper bound of the 2σ-range
is visible as a dashed line. While the self-energy diagrams of the electroweak gauge
bosons depend obviously strongly on the helicities, flavours, and mass eigenvalues
of the squarks in the loop, the SUSY masses in our scenarios are sufficiently small
and the experimental error is still sufficiently large to allow for relatively large
values of λ ≤ 0.57, 0.52, 0.38, and 0.32 for the benchmark points A, B, C, and D,
respectively. As mentioned above, ∆ρ conversely constrains SUSY models in cMFV
(λ = 0) only for masses above 2000 GeV for m0 and 1500 GeV for m1/2.

The next diagram in Figs. 2.5-2.8 shows the dependence of the most stringent
low-energy constraint, coming from the good agreement between the measured
b → sγ branching ratio and the two-loop SM prediction, on the NMFV parameter
λ. The dashed lines of the 2σ-bands exhibit two allowed regions, one close to
λ = 0 (vertical green line) and a second one around λ ' 0.57, 0.75, 0.62, and 0.57,
respectively. As is well-known, the latter are, however, disfavoured by b → sµ+µ−

data constraining the sign of the b → sγ amplitude to be the same as in the SM
[160]. We will therefore limit ourselves later to the regions λ ≤ 0.05 (points A, C,
and D) and λ ≤ 0.1 (point B) in the vicinity of cMFV.

The 95% confidence-level (or 2σ) region for the cold dark matter density is
shown as a dashed band in the upper right part of Figs. 2.5-2.8. However, only
the lower bound (0.094) is of relevance, as the relic density falls with increasing
λ. This is not so pronounced in our model B as in our model A, where squark
masses are light and the lightest neutralino has a sizable Higgsino-component, so
that squark exchanges contribute significantly to the annihilation cross sections.
For models C and D there is little sensitivity of ΩCDMh

2 (except at very large λ),
as the squark masses are generally larger. The rapid fall-off of the relic density
for very large λ . 1 can be understood by looking at the resulting lightest up-
and down-type squark mass eigenvalues in the lower left part of Figs. 2.5-2.8.
For maximal flavour violation, the off-diagonal squark mass matrix elements are
of similar size as the diagonal ones, leading to one squark mass eigenvalue that
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mark scenario A. The experimentally allowed ranges (within 2σ) are indicated by
horizontal dashed lines.
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Figure 2.6: Same as Fig. 2.5 for our benchmark scenario B.
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Figure 2.7: Same as Fig. 2.7 for our benchmark scenario C.
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Figure 2.8: Same as Fig. 2.5 for our benchmark scenario D.
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approaches and finally falls below the lightest neutralino (dark matter) mass.
Light squark propagators and co-annihilation processes thus lead to a rapidly
falling dark matter relic density and finally to cosmologically excluded NMFV
SUSY models, since the LSP is assumed to be electrically neutral and a colour singlet.

An interesting phenomenon of level reordering between neighbouring states can
be observed in the lower central diagrams of Figs. 2.5-2.8 for the two lowest mass
eigenvalues of up-type squarks. As λ and the off-diagonal entries in the mass matrix
increase, the splitting between the lightest and highest mass eigenvalues naturally
increases. It is first the second-lowest mass that decreases up to intermediate values
of λ = 0.2...0.5, whereas the lowest mass is constant, and only at this point the
second-lowest mass becomes constant and takes approximately the value of the
until here lowest squark mass, whereas the lowest squark mass starts to decrease
further with λ. These “avoided crossings” are a common phenomenon for Hermitian
matrices and reminiscent of meta-stable systems in quantum mechanics. At the
point where the two levels should cross, the corresponding squark eigenstates mix
and change character. This level-reordering phenomenon occurs also for other
scenarios, as well as for down-type squarks, even if it is not so pronounced for the
latter, as shown in the lower right diagrams of Figs. 2.5-2.8.

As shown in Eq. (2.52) in NMFV, squarks exhibit mixing of left- and right-
handed helicities and the three generations. For our benchmark scenario A, the
helicity and flavour decomposition of the six up-type (left) and down-type (right)
squark mass eigenstates is shown in Fig. 2.9 for the full range of the parameter
λ ∈ [0; 1] and in Fig. 2.10 for the experimentally favoured range in the vicinity
of MFV, λ ∈ [0; 0.1]. Left- and right-handed first-generation and right-handed
second-generation squarks remain, of course, helicity- and flavour-diagonal, with
the left-handed and first-generation squarks being slightly heavier due their weak
isospin coupling (see Eqs. (2.37), (2.38) and (2.39)) and different renormalization-
group running effects. The lightest up-type squark ũ1 remains the traditional
mixture of left- and right-handed stops over a large region of λ ≤ 0.4, but it
shows at this point the flavour transition expected from the level reordering
phenomenon (central plot of Fig. 2.5). The transition happens, however, above
the experimental limit of λ ≤ 0.1. Below this limit, it is the states ũ2, ũ6, d̃1,
and in particular d̃4 and d̃6 that show, in addition to helicity mixing, the most
interesting and smooth variation of second- and third-generation flavour content (see
Fig. 2.10). Note that at very low λ ' 0.002 the states d̃L and s̃L rapidly switch levels.

For the benchmark point B, whose helicity and flavour decomposition is shown
in Fig. 2.11, level reordering occurs at λ ' 0.4 for the intermediate-mass up-type
squarks. Close inspection of Fig. 2.12 shows, however, that also d̃R and s̃R switch
levels at low values of λ ' 0.02. At λ ' 0.01, in addition s̃R and b̃L switch levels,
and at λ ' 0.002 it is the states ũL and c̃L. The lightest up-type squark is again
nothing but a mix of left- and right-handed stops up to λ ≤ 0.4. Phenomenologically
smooth transitions below λ ≤ 0.1 involving taggable third-generation squarks are
observed for ũ4, ũ6, d̃1, and d̃6.

For our scenario C, shown in Fig. 2.13, just below λ = 0.1, ũR and c̃R as well as
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Figure 2.9: Dependence of the chirality (L, R) and flavour (u, c, t; d, s, and b) content
of up- (ũi) and down-type (d̃i) squark mass eigenstates on the NMFV parameter
λ ∈ [0; 1] for benchmark point A.
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Figure 2.10: Same as Fig. 2.9 for λ ∈ [0; 0.1].
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Figure 2.11: Same as Fig. 2.9 for benchmark point B.
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Figure 2.12: Same as Fig. 2.11 for λ ∈ [0; 0.1].
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Figure 2.13: Same as Fig. 2.9 for benchmark point C.
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Figure 2.14: Same as Fig. 2.13 for λ ∈ [0; 0.1].
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Figure 2.15: Same as Fig. 2.9 for benchmark point D.
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Figure 2.16: Same as Fig. 2.15 for λ ∈ [0; 0.1].
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d̃R and s̃R rapidly switch levels, and ũL and c̃L switch levels at very low λ ' 0.002.
These changes were already visible upon close inspection of the lower central and
right plots in Fig. 2.7. On the other hand, the lightest squarks ũ1 and d̃1 only
acquire significant flavour admixtures at relatively large λ ' 0.2...0.4, whereas
they are mostly superpositions of left- and right-handed stops and sbottoms in the
experimentally favourable range of λ ≤ 0.1 shown in Fig. 2.14. Here, the heaviest
ũ6 and d̃6 show already smooth admixtures of third-generation squarks as it was
the case for the scenarios A and B discussed above. The most interesting states
are ũ2, ũ4, d̃2, and d̃4, respectively, since they represent combinations of up to four
different helicity and flavour states and have a significant, taggable third-generation
flavour content.

The helicity and flavour decomposition for our scenario D, shown in Fig. 2.15,
is rather similar to the one in scenario A, and only the mixed down-type state d̃4 is
now lighter and becomes d̃2. The lightest up-type squark ũ1 is again mostly a mix
of left- and right-handed top squarks up to λ ' 0.4, where the level reordering and
generation mixing occurs (see lower central part of Fig. 2.8). At the experimentally
favoured lower value of λ ≤ 0.1, the states ũ2, d̃1, d̃2, and d̃6 exhibit some smooth
variations, shown in detail in Fig. 2.16, albeit to a lesser extent than in scenario A.
At very low λ ' 0.004, it is now the up-type squarks ũL and c̃L that rapidly switch
levels.

2.4 Generalized couplings

Considering the strong interaction first, it is well known that the interaction of
quarks, squarks, and gluinos can in general lead to flavour violation in the left- and
right-handed sectors through non-diagonal entries in the matrices Rq,{

Lq̃jqk g̃, Rq̃jqk g̃

}
=

{
Rq

jk,−R
q
j(k+3)

}
. (2.61)

Of course, the involved quark and squark both have to be up- or down-type, since
the gluino is electrically neutral.

For the electroweak interaction, we define the square of the weak coupling con-
stant g2

W = e2/ sin2 θW in terms of the electromagnetic fine structure constant
α = e2/(4π) and the squared sine of the electroweak mixing angle xW = sin2 θW =
s2W = 1 − cos2 θW = 1 − c2W . The W± − χ̃0

i − χ̃±j , Z − χ̃+
i − χ̃−j , and Z − χ̃0

i − χ̃0
j

interactions are proportional to [22]

OL
ij = − 1√

2
Ni4V

∗
j2 +Ni2V

∗
j1 and OR

ij =
1√
2
N∗

i3Uj2 +N∗
i2Uj1, (2.62)

O′L
ij = −Vi1V

∗
j1 −

1
2
Vi2V

∗
j2 + δijxW and O′R

ij = −U∗
i1Uj1 −

1
2
U∗

i2Uj2 + δijxW ,(2.63)

O′′L
ij = −1

2
Ni3N

∗
j3 +

1
2
Ni4N

∗
j4 and O′′R

ij =
1
2
N∗

i3Nj3 −
1
2
N∗

i4Nj4 . (2.64)

In NMFV, the coupling strengths of left- and right-handed (s)quarks to the elec-
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troweak gauge bosons are given by

{Lqq′Z , Rqq′Z} = (2T 3
q − 2 eq xW )× δqq′ , (2.65)

{Lq̃iq̃jZ , Rq̃iq̃jZ} = (2T 3
q̃ − 2 eq̃ xW )×

3∑
k=1

{Ru
ik R

u∗
jk , R

u
i(3+k)R

u∗
j(3+k)}, (2.66)

{Lqq′W , Rqq′W } = {
√

2 cW Vqq′ , 0}, (2.67)

{Lũid̃jW , Rũid̃jW } =
3∑

k,l=1

{
√

2 cW Vukdl
Ru

ik R
d∗
jl , 0}, (2.68)

where Vkl denotes the elements of the CKM-matrix. To simplify the notation, we
have introduced flavour indices in the latter, d1 = d, d2 = s, d3 = b, u1 = u,
u2 = c, and u3 = t. The SUSY counterparts of these vertices correspond to the
quark-squark-gaugino couplings,

Ld̃jdkχ̃0
i

=
[
(eq−T 3

q ) sWNi1+T 3
q cos θWNi2

]
Rd∗

jk+
mdk

cWNi3R
d∗
j(k+3)

2mW cosβ
, (2.69)

−R∗
d̃jdkχ̃0

i
= eq sW Ni1R

d
j(k+3) −

mdk
cW Ni3R

d
jk

2mW cosβ
, (2.70)

Lũjukχ̃0
i

=
[
(eq−T 3

q ) sWNi1+T 3
q cWNi2

]
Ru∗

jk +
muk

cWNi4R
u∗
j(k+3)

2mW sinβ
, (2.71)

−R∗ũjukχ̃0
i

= eq sW Ni1R
u
j(k+3) −

muk
cW Ni4R

u
jk

2mW sinβ
, (2.72)

Ld̃julχ̃
±
i

=
3∑

k=1

[
Ui1R

d∗
jk −

mdk
Ui2R

d∗
j(k+3)√

2mW cosβ

]
Vuldk

, (2.73)

−R∗
d̃julχ̃

±
i

=
3∑

k=1

mul
Vi2 V

∗
uldk

Rd
jk√

2mW sinβ
, (2.74)

Lũjdlχ̃
±
i

=
3∑

k=1

[
V ∗

i1R
u
jk −

muk
V ∗

i2R
u
j(k+3)√

2mW sinβ

]
Vukdl

, (2.75)

−R∗
ũjdlχ̃

±
i

=
3∑

k=1

mdl
U∗

i2V
∗
ukdl

Ru∗
jk√

2mW cosβ
. (2.76)

These general expressions can be simplified by neglecting the Yukawa couplings ex-
cept for the one of the top quark, whose mass is not small compared to mW . The
usual MSSM couplings, and the couplings involving sleptons and sneutrinos are eas-
ily obtained by replacing the mixing matrices, the masses, and the CKM matrix in
a proper way from the above equations.
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Chapter 3

Resummation formalisms

3.1 General points

3.1.1 Main features of the resummation procedure

The finite energy or angular resolution of any particle detector implies that
physical cross sections are always inclusive over arbitrarily soft produced particles.
For example, a single quark jet cannot be distinguished from a quark jet accom-
panied by some collinear gluons or by partons with vanishing momentum. This
implies that after the renormalization procedure, the remaining divergences in any
physical observable are soft (due to parton radiation with small four-momentum)
and/or collinear (due to emission of partons moving in parallel to the emitting one).

In fixed-order perturbation theory, infrared divergences of virtual gluons are
exactly cancelled by the emission of real undetected ones, but this cancellation
can leave large finite terms. In specific kinematics configurations, real and virtual
contributions can be highly unbalanced, spoiling the cancellation mechanism, and
only resummation to all order restores the balance. At the exclusive boundary
of the phase space, when for example the tagged final state carries almost all the
available energy or when its transverse momentum tends to zero, the real emission
is strongly suppressed, producing a loss of balance with the virtual contribution,
and spreads out up to the phase space kinematical limits through finite logarithmic
terms L which become large.

Let us take a given physical observable R, whose perturbative expansion in the
strong coupling constant αs is

R = R0

[
1 +

∞∑
n=1

αn
s

(
c
(n)
2n L

2n + c
(n)
2n−1L

2n−1 + . . .
)]

. (3.1)

The logarithmic corrections L can be large even if αs is small, enhancing thus
the coefficients of the perturbative expansion. The ratio of two successive terms
in Eq. (3.1) is O(αsL

2), which means that any higher order contribution is O(1)
with respect to the previous terms, and the reliability of perturbative predictions is
thus spoiled. However, all-order resummation gives a satisfactory solution to this
problem in the context of perturbation theory.
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The key features of the resummation procedure are the dynamical and kine-
matical factorizations. Dynamical factorization comes from gauge invariance
and unitarity and is completely general. The multi-gluon radiation amplitude
factorizes, in the soft-limit, into the product of single-gluon emission probabilities.
It is similar to multiple soft-photon emission in QED, apart from the fact that
radiations of photons are uncorrelated, since they are electrically neutral. In QED,
soft divergences related to degenerate final states cancel out after summation, as
stated by the Bloch-Nordsieck theorem [161]. In general, this theorem is broken in
QCD, since the collinear degeneracy leads to a divergence that does not necessary
cancel out in the transition rates due to colour correlation in gluon interactions.
The Kinoshita-Lee-Nauenberg theorem [162, 163] asserts that all the infrared
divergences, soft and collinear, exactly cancel if the summation over initial and final
degenerate states is carried out, and the resulting observables are infrared safe.
Although it is not possible to sum over degenerate initial states, the corresponding
uncancelled soft divergences are under control if the energy scale is high enough,
because they are power-suppressed, while the QCD factorization theorem guarantees
that the collinear divergences can be absorbed in the scale dependence of the parton
densities, and they thus factorize from the hard-scattering process. This eventually
leads to an exponentiation due to coherent rather than independent emission as in
QED.

The second factorization concerns kinematics and occurs if phase space can be
factorized in terms of single-parton phase spaces. It does not generally occur in the
space where the shape variable is defined, because it depends in a complicated way
on the multi-parton configuration, but rather in a conjugate space introduced via
Mellin or Fourier transformation, in which momentum conservation is more easily
implemented.

Both factorizations lead to exponentiation, and the observable R defined in Eq.
(3.1) can be rewritten as

R = R0 exp

[ ∞∑
n=1

αn
s

n+1∑
m=1

GnmL
m

]

= R0 exp

[
Lg1(αsL) + g2(αsL) + αs g3(αsL) + . . .

]
, (3.2)

where each gi function corresponds to the resummation of a specific class of loga-
rithms and contains all QCD effects due to gluon colour charge and running coupling.
The ratio of two successive terms is now O(1/L), and the perturbative expansion is
converging in the L � 1 region, provided that αsL � 1. All the αsL

m terms with
n+1 < m ≤ 2n appearing in Eq. (3.1) are taken into account by the exponentiation
of the lowest order terms and reappear in the expansion of the exponent at a given
power of αs.

3.1.2 Soft-photon resummation in QED

Let us first describe multiple soft-photon emission in QED and its exponentiation
[53, 164] with a generic process f1(p1) f̄2(p2) → F (M)+X, describing the production
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Figure 3.1: Emission of n soft photons of momenta qi.

of a final state F of mass M , plus some unobserved states X relative to the number of
emitted photons. The one-photon emission partonic cross section dσ(1)(M ; q), where
q is the photon momentum, is given by the product of Born cross section dσ(0)(M)
and the single photon emission probability dw(1)(q)

dσ(1)(M ; q) = dσ(0)(M) dw(1)(q) = dσ(0)(M)
α

4π2ω
|j(q)|2 (3.3)

with restriction to fast fermions (with negligible mass with respect to their mo-
mentum) and to small photon energy ω compared to the scale M . jµ(q) =
(pµ

2/p2 · q − pµ
1/p1 · q) is the conserved emission current of a soft-photon with mo-

mentum q by a fermion of momentum p1 and antifermion of momentum p2. The
amplitude for n soft-photon emissions of momenta qi (see Fig. 3.1) is given, in the
soft-limit, by

M (n) =
en

n!

n∏
i=1

p1 · εi
qi · p1

, (3.4)

where εi is the polarization vector of the ith photon. By summing over the different
polarization states, we see that the squared matrix element factorizes

dσ(n)(M ; q1, . . . , qn) = dσ(0)(M)
1
n!

n∏
i=1

dw(1)(qi). (3.5)

This means that soft-photon emission is uncorrelated and that infrared singular-
ities exponentiate. Indeed, kinematical factorization occurs naturally in impact-
parameter b space, b being conjugate to the shape variable, where the δ-function
implementing four-momentum conservation exponentiates. Summing Eq. (3.5) to
all orders, we get

dσ (M) = dσ(0)(M)
∑

n

∫
1
n!

dw(1)(q1) . . .dw(n)(qn) δ

(∑
i

qi + P − p1 − p2

)

= dσ(0)(M)
∫

d4b

(2π)4
eib·(P−p1−p2)

∑
n

[
1
n!

∫
dw̃(1)(q) eiq·b

]n

= dσ(0)(M)
∫

d4b

(2π)4
eib·(P−p1−p2) exp

[∫
dw̃(1)(q) eiq·b

]
, (3.6)

where dw̃ is the Fourier transform of the single-photon emission probability dw and
P the four-momentum of the final state F . By using the usual expression of dw̃ and
performing the integral, we can deduce an exponentiated form factor, containing all
the logarithms.
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Figure 3.2: Emission of two soft-gluons.

3.1.3 Soft-gluon resummation in QCD

Contrary to photons which are electrically neutral, gluons carry colour charge.
However, the infrared divergences related to gluon correlations cancel among them-
selves and an exponentiation is still possible [165, 166]. Considering the same generic
process as in the previous section, the cross section for single-gluon emission can be
written as in Eq. (3.3), provided that we introduce colour operators,

dσ(1)(M ; q) = dσ(0)(M) dw(1)(q) = dσ(0)(M)
αs

4π2ω
|Ja(q)|2 , (3.7)

where ω (q) denotes the gluon energy (momentum) and the current Ja
µ(q) = T a

p2
jµ(q)

includes now the colour charge operator T a
p2

.

For the emission of n soft-gluons of momentum qi and energy ωi, diagrams where
gluons are emitted by harder ones have to be taken into account, as in Fig. 3.2 for a
two-gluon emission. The difference with QED comes from the second diagram, not
present in the case of photons. If we assume strong ordering in gluon energies ω1 �
ω2 � . . . � ωn � M , the use of the soft limit is justified, and we can recursively
define the amplitude M (n), since the emission of the softest gluon factorizes

〈a1, . . . , an |M (n)〉 = 〈a2, . . . , an | Ja1
µ1

(q1) | b1, . . . , bn−1〉 〈b1, . . . , bn−1 |M (n−1)〉,(3.8)

where we sum over repeated indices and where ai (µi) are the colour (Lorentz)
indices of the emitted gluons. M (n) can then be computed through an iterative
insertion scheme, and performing the summation over n leads to the exponentiation
of the gluonic radiations. As an example, we will show the exponentiation of the
gluon coherent state operator, whose application on the vacuum leads to the usual
resummation formulas, given e.g. in [167] for transverse-momentum resummation,
in [64] for threshold resummation, and in [75] for joint resummation in the case of
Drell-Yan lepton pair production.

Let us consider the emission of two gluons. Using the usual definition of the
current Jµ(q1) =

∑n
i=2 Ti

qiµ

qi·q1
+ T0 jµ(q) where the index 0 labels the hard f1f̄2

contribution, we get

〈a1, a2 |M (2)〉 = 〈a2 |T a1
0 ε1 ·j(q1) |b1〉〈b1 |M (1)〉+ 〈a2 |T a1

2

ε1 · q2
q2 · q1

|b1〉〈b1 |M (1)〉

= Ca1

(1)C
a2

(1) + Ca1a2

(2) , (3.9)

after the introduction of the polarization vectors in Eq. (3.8). The correlation oper-
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ators C are recursively defined by

Cai

(1) = 〈ai |M (1)〉 = 〈b | T ai
0 εi · j(q) | b〉

Ca1...an

(n) = 〈a2 . . . an |
n∑

j=2

T a1
j

ε1 · qj
qj · q1

| b1 . . . bn−1〉Cb1...bn−1

(n−1) . (3.10)

The first term of Eq. (3.9) corresponds to the emission of the softest gluon by one
of the external legs (left diagram of Fig. 3.2), and the second to the emission by the
harder gluon (right diagram of Fig. 3.2). Generalization to any number of gluons is
straightforward,

〈a1, . . . , an |M (n)〉=
n∑

k=1

∑
{n1,...,nk}

C(nk)Θnk
. . . C(n1)Θn1Θ(1, . . . , k)+perm., (3.11)

where the dependence on the colour indices is not explicitly shown in order to
simplify the expression. For each value of k, the indices {a1, . . . , an} are partitioned
into k classes of ni indices, corresponding to k chains of ni gluons. Inside a given
class, the gluons are ordered in energy through the Θni functions so that a specific
gluon can only be emitted by a harder one. Eventually, the Θ(1, . . . , k) function
orders the energies of the hardest gluon of each class.

Let us now define the coherent state operator for real emission, containing the
correlation structure between the emitted gluons

UM (A+) =
∞∑

n=0

∫
dφn〈a1, . . . , an |M (n)〉A+a1

α1
(q1) . . . A+an

αn
(qn), (3.12)

where dφ(n) = d[q1] . . .d[qn] is the relativistic n-gluon phase space and A+ai
αi

(q) the
creation operator of a gluon with colour (polarization) index ai (αi). Eqs. (3.10)
and (3.11) lead to

UM (A+) = 1 +
∞∑

n=1

n∑
k=1

∑
{ni}

∫
dφ(n1) . . .dφ(nk)

[
gnk
s C(nk−1)Θnk

(
εk · JMk

)]
. . .

×
[
gn1
s C(n1−1)Θn1

(
ε1 · JM1

)]
A+(nk) . . . A+(n1) Θ(1, . . . , k), (3.13)

where A+(ni) is the product of ni gluon creation operators and Jµi

Mi =
∑ni

j=2 Tj
q

µi
j

qj ·qi
.

After summing over {ni}, each square bracket factor reproduces the gluon coherent
state operator Uqi(A+) where qi is the momentum of the fastest gluon in each class.
Eventually, we get exponentiation

UM (A+) = 1 +
∞∑

k=1

gk
s

∫
d[q1] . . .d[qk] Θ(1, . . . , k)

(
εαk · Jbk

Mk

)
. . .
(
εα1 · Jb1

M1

)
×
[
Uqk(A+)

]
akbk

. . .
[
Uq1(A+)

]
a1b1

A+a1
α1

(q1) . . . A+ak
αk

(qk)

= P̄w exp

{
gs

∫
d[q] Θ(M − w)A+a

α (q)
[
Uq(A+)

]
ab

(
εα · Jb

Mq

)}
,

(3.14)
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where P̄w orders the colour matrices appearing in JMq in such a way that the harder
operator acts first.

Eq. (3.14) is not unitary, since we have only creation operators. The unitary
is restored through the introduction of destruction operators, replacing A+

α (q) by
Rα(q) = A+

α (q) − Aα(q). It corresponds to the inclusion of the virtual corrections
that we have neglected in the first place.

3.2 Transverse-momentum resummation

3.2.1 The Collins-Soper-Sterman (CSS) formalism

Let us consider the process

h1(p1)h2(p2) → F (M2, q2T ) +X, (3.15)

where two hadrons h1 and h2 with momenta p1 and p2 collide with a centre-of-mass
energy

√
sh to produce an observed colourless final state system F with a mass

M and a transverse momentum qT , while X is unobserved. As F does not carry
any colour charge, the lowest order partonic mechanism is initiated either by qq̄
annihilation or by gluon fusion. Isolating the divergences from the fixed-order
production cross section, we can derive the resummed cross section to get a finite
expression for the qT -spectrum of the system F .

On the basis of the QCD factorization theorem, the most general form of the
differential cross section,

d2σ

dM2dq2T
=
∑
a,b

∫ 1

0
dxa

∫ 1

0
dxb fa/h1

(xa;µF ) fb/h2
(xb;µF ) σ̂ab(M, qT , s;µR, µF ), (3.16)

where s = xa xb sh is the partonic centre-of-mass energy, can be computed by con-
voluting the hard scattering function σ̂ab with universal parton densities fa/h1

and
fb/h2

of partons a, b in the hadrons h1, h2. The PDFs depend on the longitudinal
momentum fractions of the two partons xa,b and on the unphysical factorization
scale µF . The hard part σ̂ab has a perturbative expansion in αs(µR), µR being the
unphysical renormalization scale,

σ̂ab(M, qT , s;µR, µF ) =
∞∑

n=0

(
αs(µR)
π

)n+p

σ̂
(n)
ab (M, qT , s;µF ), (3.17)

where p is the minimum power of αs needed for the process to occur at leading
order. Isolating the divergent terms as the transverse momentum qT → 0, σ̂(n)

ab can
be written as [52]

σ̂
(n)
ab (M, qT , s;µF ) = R

(n)
ab (M, qT , s;µF ) + σ̂

(n,δ)
ab (M, s;µF ) δ(qT )

+
2n−1∑
m=0

σ̂
(n,m)
ab (M, s;µF )

lnm(M2/q2T )
q2T

, (3.18)

where R(n)
ab is the regular part of the hard function, containing all the terms less

singular than δ(q2T ) and q−2
T as qT → 0. All the logarithmically enhanced and the
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δ(q2T ) contributions are resummed to all orders in αs, and the remaining terms
correspond to the usual perturbative series after the removal of the logarithmic and
δ(q2T ) contributions.

We define then the finite component by[
d2σ

dM2dq2T

]
fin

=
∑
a,b

∫ 1

0
dxa

∫ 1

0
dxb fa/h1

(xa;µF ) fb/h2
(xb;µF )

×
∞∑

n=1

(
αs(µR)
π

)n+p

Rab(M, qT , s;µF ), (3.19)

which is exactly the difference between the full perturbative result and its asymp-
tote at low qT , containing the terms which are at least as singular as q−2

T or
proportional to δ(q2t ). At low qT , we are subtracting two terms dominated by their
singularities, and their difference is thus not significant. In the large-qT region,
the asymptote does not play a significant role, and the fixed-order theory is recovered.

For the resummed component, we rather work with its Fourier transform W̃ with
respect to the impact-parameter b, the variable conjugate to qT , because as stated
in the previous section, the kinematic factorization of the multiple gluon emission
is more naturally performed in impact-parameter space [53, 54]. Using the singular
part of the partonic cross section σ̂ab, i.e. the two last terms of Eq. (3.18), and Eq.
(3.16), we get

W̃F (b;M, s;µR, µF ) =
∑
a,b

∞∑
n=0

(
αs(µR)
π

)n+p∫ 1

0
dxa

∫ 1

0
dxb fa/h1

(xa;µF ) fb/h2
(xb;µF )

×
∫

d2qT e
−iqT ·b

[
σ̂

(n,δ)
ab (M, s;µF ) δ(qT )+

2n−1∑
m=0

σ̂
(n,m)
ab (M, s;µF )

lnm(M2/q2T )
q2T

]
. (3.20)

The dependence in the two partons a and b factorizes, and W̃ obeys an evolution
equation where b and M dependences are separated, so that Eq. (3.20) can be sim-
plified to the usual CSS resummation formula [56, 57, 59], taking into account the
coherent gluon emission described in section 3.1.1 [167]. Omitting the dependences
on the unphysical scales, we get[

d2σ

dM2dq2T

]
res

=
∑
a,b

∫ 1

0
dxa

∫ 1

0
dxb

∫
db
b

2
J0(b qT ) fa/h1

(x1;
C3

b
) fb/h2

(x2;
C3

b
)

×W̃F
ab(b;M, s), (3.21)

W̃F
ab(b;M, s) =

∑
c

∫ 1

0

dz1
z1

∫ 1

0

dz2
z2

CF
ca(αs(C3/b), z1)CF

c̄b(αs(C3/b), z2)SF
c (M, b)

×σ(LO)F
cc̄ (M) δ(M2 − z1 z2 s), (3.22)

where J0(x) is the zeroth order Bessel function of the first kind. By convention, the
constants C1, C2, and C3 are chosen to be C1 = C3 = b0 = 2 e−γE and C2 = 1, where
γE = 0.5772... is the Euler-Mascheroni constant. W̃F is computed perturbatively
and is the process-dependent partonic cross section. It embodies the all-order re-
summation of the large logarithms ln(M2 b2) (conjugate to lnM2/q2T ), and σ(LO)F

cc̄ is
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the total cross section for the LO partonic subprocess cc̄→ F . The resummation of
the logarithms is completely achieved by the exponentiation in the quark (c = q) or
gluon (c = g) Sudakov form factor SF

c , which can be expressed as [55, 56, 57, 168],

SF
c (M, b) = exp

{
−
∫ C2

2M2

C2
1/b2

dq2

q2

[
Ac(αs(q);C1) ln

C2
2M

2

q2
+BF

c (αs(q);C1, C2)
]}

,(3.23)

depending only on the two functions Ac, relative to soft-radiation, and Bc, relative
to flavour conserving collinear radiation, and which can be perturbatively computed

Ac(αs) =
∞∑

n=1

(αs

π

)n
A(n)

c and BF
c (αs) =

∞∑
n=1

(αs

π

)n
B(n)

c . (3.24)

The coefficients of these series can be obtained by comparing the expansion of Eq.
(3.21) at a given order in αs with the expression of the fixed-order cross section in
the small-qT limit. The lowest order coefficients, needed for resummation at NLL
accuracy, have been computed both for the quark [55, 168] and the gluon [169] form
factors,

A(1)
q = CF and A(1)

g = CA (3.25)

A(2)
q =

1
2
CF K and A(2)

g =
1
2
CAK (3.26)

B(1)
q = −3

2
CF and B(1)

g = −1
6

(11CA − 2nf ) , (3.27)

where K =
[(

67
18 −

π2

6

)
CA − 5

9nf

]
, and where CF = 4/3 and CA = 3 are the usual

QCD colour factors. The process-dependent coefficient B(2)F
c has been computed

for different processes, as for example Drell-Yan pair [60] or Higgs production [170].

Finally, the CF
ab coefficient functions of Eq. (3.22) can as well be computed per-

turbatively

Cab(αs, z) = δab δ(1− z) +
∞∑

n=1

(αs

π

)n
C

(n)
ab (z), (3.28)

where z = M2/s. They contain a collinear contribution which has its origin in the
particularities of the MS scheme, where the full splitting functions are not factorized
into the parton densities, and a hard process-dependent contribution coming from
the finite part of virtual-loop corrections. The first coefficient C(1) is known for a
large number of processes [58, 60, 170, 171, 172, 173, 174, 175].

3.2.2 Non-perturbative effects in the CSS formalism

The qT -distribution is affected by non-perturbative effects associated with the
large-b region, b & 1/ΛQCD, where the strong coupling αs and the PDFs at the
scale b0/b enter the non-perturbative regime. To take these effects into account,
the function W̃F

ab is evaluated at a new variable b∗ = b/
√

1 + (b/bmax)2, far from
the region where non-perturbative effects are relevant, the latter being included in a
function FNP. Practically, the W̃F function of Eq. (3.21) is replaced by

W̃NPF
ab (b;M,x1, x2) = W̃F

ab(b∗;M, s)FNP
ab (b;M,x1, x2). (3.29)
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The value of bmax and the shape of FNP have to be chosen so that
W̃NP

ab (b;M,x1, x2) ' W̃ab(b;M, s) when b . bmax. In the original formalism [56, 59]

FNP
ab (b,M, x1, x2) = exp

[
− ln(M2 b2max) g1(b)− ga/h1

(x1, b)− gb/h2
(x2, b)

]
, (3.30)

where the three g-functions are assumed to vanish as b→ 0. The predictive power of
the CSS formalism relies on the universality and the scale dependence of these func-
tions. As the PDFs, they can be evolved from a given energy until the required scale.

The main source of non-perturbative effects comes from partons with a non-zero
intrinsic transverse-momentum already inside the hadron and from unresolved gluons
with qT < 1/bmax. Global fits of experimental Drell-Yan data allow for different forms
for this non-perturbative function [60, 176, 177, 178, 179]

F
NP(dws)
ab (b,M, x1, x2) = exp

[
−b2
(
g1 + g2 ln

bmaxM

2

)]
, (3.31)

F
NP(ly)
ab (b,M, x1, x2) = exp

[
−b2
(
ḡ1+ḡ2 ln

bmaxM

2

)
−b ḡ1 ḡ3 ln(100x1x2)

]
,(3.32)

F
NP(blny)
ab (b,M, x1, x2) = exp

[
−b2
(
g̃1 + g̃2 ln

bmaxM

2
+ g̃1 g̃3 ln(100x1x2)

)]
,(3.33)

F
NP(kn)
ab (b,M, x1, x2) = exp

[
−b2
(
a1 + a2 ln

M

3.2GeV
+ a3 ln(100x1 x2)

)]
.(3.34)

The most recent values of these parameters can be found in [178, 179].

3.2.3 Disadvantages of the CSS formalism

Although the Collins-Soper-Sterman resummation formalism has been used in
several processes at various levels of perturbative accuracy, it presents some disad-
vantages, in particular regarding the process dependence of the various coefficients
of Eqs. (3.21, 3.22, 3.23). For instance, the first coefficient of the C−functions, C(1)F

ab

can be written in terms of the one-loop matrix element of the considered process
[173]. Even the Sudakov form factor, supposed to be universal and to depend only
on the quark or gluon nature of the emitting particles, is process-dependent through
the BF

c coefficients involving also loop diagrams [170]. Moreover, the dependence
on renormalization and factorization scales, parameterized through the arbitrary
coefficients C1, C2 and C3 does not correspond to the usual procedure followed in
fixed-order perturbative calculations, and the parton distribution functions called at
the scale b0/b rather than µF involve extrapolation in the non-perturbative region.
Eventually, expanding the resummed expression at a given power in αs in the
large-qT region leads to unwanted factorially growing coefficients, with oscillating
signs [180].

Some of the difficulties can be overcome by performing resummation in qT -space
instead of b-space [181, 182], but at the cost of non fulfilment of the transverse-
momentum conservation [53]. However, all these problems can be avoided by using
the recently proposed universal resummation formalism in b-space [61, 62, 183].
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3.2.4 Universal resummation formalism

General expressions of the first C-function coefficient and of the second B-
function coefficient show explicitly the process-dependence of these terms [170]

C
(1)F
ab (z) = −P̂ ε

ab(z) + δab δ(1− z)
(
Ca

π2

6
+

1
2
Aa(φ)

)
, (3.35)

B(2)F
a = −2 δP (2)

aa + β0

(
2
3
Caπ

2 +Aa(φ)
)
, (3.36)

where P̂ ε
ab(z) is the O(ε)-term in the one-loop Altarelli-Parisi splitting kernel

(ε = (4 −D)/2), δP (2)
aa the coefficient of the δ(1 − z) term in the two-loop splitting

functions, and Aa(φ) is the finite part of the one-loop virtual contributions. Contrary
to the universal coefficients A(1)

a and B
(1)
a determined only by the Altarelli-Parisi

splitting functions, B(2)F
a and C

(1)F
ab contain both collinear and hard contributions,

for which αs should be evaluated at two different scales, the same scale as the
parton densities b0/b for the process-independent collinear contribution and the
hard scale M for the process-dependent hard contribution.

Making the replacement

σ
(LO)F
cc̄ (M) → σ

(LO)F
cc̄ (M,αs(M)) = σ

(LO)F
cc̄ (M)HF

c (αs(M)), (3.37)

we include now all the hard process-dependent contributions in σ(LO)F
cc̄ through the

function HF
c , which has a perturbative expansion

HF
c (αs) = 1 +

∞∑
n=1

(αs

π

)n
H(n)F

c . (3.38)

Eqs. (3.22) and (3.23) can then be rewritten in their universal form,

W̃F
ab(b;M, s) =

∑
c

∫ 1

0

dz1
z1

∫ 1

0

dz2
z2

Cca(αs(b0/b), z1)Cc̄b(αs(b0/b), z2)Sc(M, b)

×σ(LO)F
cc̄ (M) δ(M2 − z1 z2 s), (3.39)

Sc(M, b) = exp

{
−
∫ M2

b20/b2

dq2

q2

[
Ac(αs(q)) ln

M2

q2
+Bc(αs(q))

]}
, (3.40)

where the subscript F denotes the process-dependent factors. The universal Sudakov
form factor Sc contains only real and virtual contributions due to soft and flavour
conserving collinear radiation at scales M & qT & 1/b, the Cab coefficients include
real and virtual contributions due to collinear radiations at very low qT & 1/b, the
hard contributions produced by virtual corrections at scales qT ∼ M are embodied
in HF

c , and eventually, soft radiations at very low qT . 1/b are not considered, since
real and virtual soft contributions cancel in this kinematic range due to infrared
safety. All of these coefficients depend now only on the flavour and the colour
charges of the radiating partons.
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The two versions of the resummation formula can be related by the use of the
renormalization-group identity

HF
c (αs(M)) = exp

[∫ M2

b20/b2

dq2

q2
hF

c (αs(q))

]
HF

c (αs(b0/b)), (3.41)

hF
c (αs(M)) = β(αs)

d lnHF
c (αs)

d lnαs
, (3.42)

where β(αs) is the QCD β-function. The relations between the process-dependent
and process-independent coefficients are then given by

CF
ab(αs, z) =

√
HF

c (αs)Cab(αs, z) (3.43)

BF
c (αs) = Bc(αs)− β(αs)

d lnHF
c (αs)

d lnαs
. (3.44)

This identity can be use to show that the universal resummation formula is invariant
under the transformation

HF
c (αs(M)) → HF

c (αs(M)) [g(αs(M))]−1 , (3.45)

where g is an arbitrary perturbative function. The universal resummation coeffi-
cients are then not unambiguously determined, which is a consequence of the fact
that the transverse-momentum distribution is not a collinear-safe observable. This
ambiguity is similar to the one encountered in the parton distribution functions,
renormalized by fixing an arbitrary factorization scheme. The resummation coeffi-
cients then have to be defined after choosing a specific resummation scheme. In this
work, we set HF

q (αs) = HDY
q (αs) ≡ 1, corresponding to the Drell-Yan resummation

scheme.

In Eq. (3.21), the PDFs are called at a scale embodying a b-dependence, which
eventually leads to an extrapolation into the non-perturbative regime. Besides, the
dependence on the factorization scale µF cannot be directly computed as for the
fixed-order theory. These problems can be solved [184, 185, 186, 187] by using the
scale dependence relation for parton densities

fa/h(x, b0/b) =
∑

d

∫ 1

x

dz
z
Uad(z; b0/b, µF ) fd/h(x/z, µF ), (3.46)

where Uab is the evolution operator matrix obtained by solving the DGLAP evolution
equations to the required perturbative accuracy. To avoid dealing with convolution
integrals, we rather express the resummation formula in Mellin N -space, taking
moments with respect to τ = M2/sh. Eq. (3.21) can then be rewritten, restoring
the dependence on the factorization scale, as[

d2σN

dM2 dq2T

]
res

=
∑
ab

fa/h1
(N+1;µF ) fb/h2

(N+1;µF )
∫ ∞

0
db
b

2
J0(b qT )W̃F

ab(N, b;M,µF ).

(3.47)
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The moments of the W̃ -function are given by [61]

W̃F
ab(N, b;M,µF ) =

∑
c

σ
(LO)F
cc̄ (M)HF

c (αs(M))Sc(M, b)
∑
de

(
Ccd(N ;αs(b0/b))

× Uda(N ; b0/b, µF )Cc̄e(N ;αs(b0/b))Ueb(N ; b0/b, µF )
)
, (3.48)

where we consider only a single parton species to simplify. The generalization to the
multiflavour case is treated in App. A of [62]. This expression can be written in a
resummed form, where constant and logarithmic terms factorize, after restoring all
scale dependences,

W̃F
ab(N, b;M,µF , µR)=HF

ab

(
N,αs(µR);

M

µR
,
M

µF
,
M

Q

)
exp
{
G
(
N,L, αs(µR);

M

µR
,
M

Q

)}
,

(3.49)

with L = lnQ2b2/b20. The resummation scale Q is introduced due to the degree of
arbitrariness involved by the factorization [188], since the argument of the large
logarithms can be rescaled as ln(M2b2) = ln(Q2b2)+ ln(M2/Q2), provided that Q is
independent of b and ln(M2/Q2) = O(1) when bM � 1. Similarly to the case of µR

and µF , one should set Q = M and estimate uncalculated subleading logarithmic
corrections by varying Q around the central value M .

The function HF
ab does not depend on the impact-parameter b and therefore

contains all the perturbative terms that behave as constants in the limit b→∞. Its
evaluation can be done perturbatively

HF
ab(N,αs;

M

µR
,
M

µF
,
M

Q
)=
∑

c

σ
(LO)F
cc̄ (M)

[
δacδbc̄+

∞∑
n=1

(αs

π

)n
HF (n)

ab→cc̄(N ;
M

µR
,
M

µF
,
M

Q
)

]
.

(3.50)

Let us remark that the notation ab → cc̄ is a compact way of writing the full
subprocess ab→ cc̄+X → F+X. The first coefficients for Drell-Yan pair production,
i.e. those corresponding to the emission of one gluon, HDY (1)

qq̄→qq̄ , and of one quark,

HDY (1)
qg→qq̄ , are given by [62]

HDY (1)
qq̄→qq̄ (N ;

M

µR
,
M

µF
,
M

Q
) = HDY (1)

q −
(
B(1)

q +
1
2
A(1)

q ln
M2

Q2

)
ln
M2

Q2

+2C(1)
qq (N) + 2 γ(1)

qq (N) ln
Q2

µ2
F

, (3.51)

HDY (1)
qg→qq̄ (N ;

M

µR
,
M

µF
,
M

Q
) = C(1)

qg (N) + γ(1)
qg (N) ln

Q2

µ2
F

, (3.52)

with

C(1)
qq (N) =

2
3N (N + 1)

+
π2 − 8

3
and C(1)

qg (N) =
1

2 (N + 1) (N + 2)
. (3.53)

The exponent GN includes all the logarithmically divergent terms when b→∞ and
can be systematically expanded as
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G(N,L;αs,
M

µR
,
M

Q
) = Lg(1)(

1
π
β0 αs(µ2

R)L) + g(2)(N,
1
π
β0 αs(µ2

R)L;
M

µR
,
M

Q
) + . . . ,

(3.54)

where β0 = (11CA − 2nf )/12 is the first coefficient of the QCD β function, nf

being the number of flavours. The term Lg(1) collects the leading logarithmic (LL)
contributions, the function g(2) the NLL ones, and so forth. The explicit expressions
for the gi functions needed to perform NLL resummation are given by

g(1)(λ) =
A(1)

β0

λ+ ln(1− λ)
λ

, (3.55)

g(2)

(
N,λ;

M

µR
,
M

Q

)
=

B(1) + 2 γ(1)
qq

β0
ln(1− λ)− A(2)

β2
0

(
λ

1− λ
+ ln(1− λ)

)
+

A(1) β1

β3
0

(
1
2

ln2(1− λ) +
ln(1− λ)

1− λ
+

λ

1− λ

)
+

A(1)

β0

(
λ

1− λ
+ ln(1− λ)

)
ln
Q2

µ2
R

, (3.56)

where β1 = (17C2
A − 5CA nf − 3Cf nf )/24 is the second coefficient of the QCD β

function. In the small-b (large-qT ) region, resummation should not be applied since
the perturbation theory is reliable. A slight modification of the expansion parameter
L is then introduced [183, 185],

L→ L̃ ≡ ln
(
Q2 b2

b20
+ 1
)
, (3.57)

so that the logarithmic terms are now suppressed for small b-values, reducing the
impact of the unjustified resummed logarithms in the small-b region, but leading to
an equivalent behaviour in the large-b region.

3.2.5 Inverse transforms and matching procedure

Once resummation has been achieved in N - and b-space, inverse transforms have
to be performed in order to get back to the physical x- and qT -space. Special
attention has to be paid to the singularities in the resummed exponent, related to
the divergent behaviour near λ = 0 and λ = 1. For N -space, an inverse Mellin
transform is performed following a contour inspired by the minimal prescription
[189] and the principal value resummation [190],[

d2σ

dM2 dq2T

]
res

(τ) =
∮

CN

dN
2πi

τ−N

[
d2σN

dM2 dq2T

]
res

, (3.58)

where the contour CN is chosen in such a way that all the singularities related to the
N -moments of the PDFs are to the left of the integration contour in the complex
N -plane

N = C + z e±iφ, (3.59)

with 0 ≤ z ≤ ∞, π > φ > π/2 and C > 0. This leads to an exponentially convergent
integral.
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For the inverse transform of b-space, we should first note that the functions g(i)
N

are singular when b2 = (b20/Q
2 exp{π/(β0αs)}, which is related to the divergent

behaviour of the running perturbative coupling near the Landau pole, corresponding
to very large values of b. In Sec. 3.2.2, these singularities were regularized through
the variable b∗, preventing the variable b to become too large. Alternatively, we can
deform the integration contour of the b integral in Eq. (3.47), continuing it in the
complex plane [76, 77]. We define then two integration branches

b = (cosϕ± i sinϕ)t (3.60)

with 0 ≤ t ≤ ∞, and the Bessel function is replaced by the auxiliary functions
h1,2(z, v)

h1(z, v) ≡ − 1
π

∫ −π+ivπ

−ivπ
dθ e−iz sin θ,

h2(z, v) ≡ − 1
π

∫ −ivπ

π+ivπ
dθ e−iz sin θ. (3.61)

Their sum is always h1(z, v) + h2(z, v) = 2 J0(z), but they distinguish positive and
negative phases of the b-contour, being then associated with only one of the branches.

The parameter C is chosen in such a way that all the singularities related to the
N -moments of the parton densities are to the left of the integration contour. It has
to lie within the range 0 < C < exp[π/(2b0αs) − γE ] in order to have convergent
inverse transform integrals for any choice of φ and ϕ.

The resummed component of the cross section dominates in the small-qT region,
and the finite component defined in Eq. (3.19) dominates at large values of qT . In the
intermediate-qT region, both components have to be consistently matched in order
to obtain uniformly accurate theoretical predictions. To this aim, we express the
finite component as the difference between the usual fixed-order result at a specific
order f.o. in αs and the expansion of the resummed component at the same order[

d2σ

dM2dq2T

]
fin

=
[

d2σ

dM2dq2T

]
f.o.

−
[

d2σ

dM2dq2T

]
res

∣∣∣∣∣
f.o.

. (3.62)

Besides we impose the condition[
d2σ

dM2dq2T

]
res,l.a.

∣∣∣∣∣
f.o.

=
[

d2σ

dM2dq2T

]
res

∣∣∣∣∣
f.o.

, (3.63)

meaning that the expansion at a given order f.o. of the resummed component evalu-
ated at a specific logarithmic accuracy l.a. equals the expansion of the full resummed
component at the same order f.o. in αs. The complete cross section at a given loga-
rithmic accuracy is then given by

d2σ

dM2dq2T
=
[

d2σ

dM2dq2T

]
res,l.a.

+
[

d2σ

dM2dq2T

]
fin

. (3.64)

Our matching procedure guarantees that we retain the full information of
the perturbative calculation up to the specified order, plus the resummation of
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logarithmically enhanced contributions from higher orders, without double-counting
any term. Moreover, after integration over qT , it allows us to exactly reproduce
the fixed-order calculation of the total cross section, which is not the case for the
CSS-formalism due to non-vanishing contributions of the resummed component in
the high-qT region.

The fixed-order truncation of the resummed component
[
d2σ

]
res
|f.o. is obtained

by perturbatively expanding the W̃ -coefficient in Eq. (3.39) and performing the b-
integral of Eq. (3.47),[

d2σab

dM2dq2T

]
exp

=
∑

c

σ
(0)
cc̄ (M)

{
δcaδc̄b+

∞∑
n=1

[(
αs(µR)
π

)n

H(n)
ab→cc̄

(
N ;

M

µR
,
M

µF
,
M

Q

)
+ Σ̃(n)

ab→cc̄

(
N, L̃;

M

µR
,
M

µF
,
M

Q

)]}
, (3.65)

where ab = qq̄, qg. Considering Drell-Yan lepton pair production, we get for the NLL
resummation matched with the O(αs) fixed-order calculations [62]

Σ̃(1)
ab→cc̄

(
N, L̃;

M

Q

)
=

2∑
i=1

[
ΣF (1;i)

cc̄→ab

(
N ;

M

Q

)
Ĩi(qT /Q)

]
, (3.66)

with

ΣF (1;2)
qq̄→qq̄ (N) = − 1

2
A(1)

q and ΣF (1;2)
qq̄→qg (N) = 0, (3.67)

ΣF (1;1)
qq̄→qq̄

(
N ;

M

Q

)
=−

[(
B(1)

q +A(1)
q ln

M2

Q2

)
+2 γ(1)

qq

]
and ΣF (1;1)

qq̄→qg (N)=−γ(1)
qg , (3.68)

Ĩn(qT /Q) = Q2

∫ ∞

0
db
b

2
J0(b qT ) lnn

(
Q2 b2

b20
+ 1
)
. (3.69)

3.3 Threshold resummation

3.3.1 Formalism

Integrating Eq. (3.16) over qT , the differential cross section can be written as

dσ
dM2

=
∑
a,b

∫ 1

0
dxa

∫ 1

0
dxb fa/h1

(xa;µF ) fb/h2
(xb;µF ) σ̂ab(z,M ;αs(µR), µR, µF ),(3.70)

where the partonic cross section σ̂ab is expanded in powers of αs

σ̂ab

(
z,M ;αs(µR),

M

µF
,
M

µR

)
=

∞∑
n=0

(
αs(µR)
π

)n

σ
(n)
ab

(
z,M ;

M

µF
,
M

µR

)
. (3.71)

At the nth order, the mismatch between virtual corrections and phase-space
suppressed real-gluon emission leads to the appearance of large logarithmic terms
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αn
s [ln2n−1(1 − z)/(1 − z)]+, which have to be resummed when s is close to M2.

Although these large logarithms are manifest in the partonic cross section, they
do not generally result in divergences in the physical cross section, contrary to the
qT -spectrum, because they are smoothed by the convolution with the steeply falling
parton distributions in Eq. (3.70). Threshold resummation is then not a summation
of kinematic logarithms in the physical cross section, but rather an attempt to
quantify the effect of a well-defined set of corrections to all orders, which can be
significant even if the hadronic threshold is far from being reached.

The hadronic cross section of Eq. (3.70) is more conveniently written in Mellin
N -space [191],

σ(N,M) =
∑
ab

fa/ha
(N + 1, µF ) fb/hb

(N + 1, µF ) σ̂ab(N,M ;αs,
M

µR
,
M

µF
). (3.72)

After performing the resummation of the radiative corrections, the moments of the
partonic cross section are given by

σ̂
(res)
ab (N,αs) = σ(LO)Cab(αs) exp

[
S(N,αs)

]
, (3.73)

where the scale dependences are suppressed for brevity and where σ(LO) represents
the Born cross section. In Mellin space, the Cab-functions, collecting the hard con-
tributions, i.e. the N -independent terms in Mellin space or the terms proportional
to δ(1−z) in the physical space, can be written as a perturbative series in the strong
coupling,

Cab(αs) = δab +
∞∑

n=1

(αs

π

)n
C

(n)
ab . (3.74)

For Drell-Yan pair production, the first coefficients are given by

C
(1)
qq̄ = CF

(
2π2

3
− 4 +

3
2

ln
M2

µ2
F

)
and C(1)

qg = 0. (3.75)

The universal Sudakov form factor S is given by integrals over functions of the
running coupling,

S(N,αs) = 2
∫ 1

0
dz
zN−1 − 1

1− z

∫ (1−z)2 M2

µ2
F

dq2

q2
A(αs(q2)). (3.76)

This form is valid for processes where the final state particles do not carry any colour
charge. The function A embodies the contributions related to the collinear emission
of soft gluons by initial-state partons. It is a series expansion in the strong coupling
constant,

A(αs) =
∞∑

n=1

(αs

π

)n
An, (3.77)

whose coefficients are perturbatively computable through a fixed-order calculation.
In particular, it has been proven [192] that in the MS factorization scheme the
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coefficients An are exactly equal to the large-N coefficients of the diagonal splitting
function

γqq(αs) =
∫ 1

0
dz zN−1 Pqq(z) = −A(αs) ln N̄ +O(1), (3.78)

where N̄ = N exp[γE ]. Performing the integration in Eq. (3.76) and using Eq. (3.77),
we obtain the form factor up to NLL accuracy,

S(N,αs) = g1(λ) ln N̄ + g2(λ). (3.79)

The functions g1 and g2 resum the LL (αn
s lnn+1N) and NLL (αn

s lnnN) contribu-
tions, respectively, and are given by [66, 70]

g1(λ) =
A(1)

β0λ
[2λ+ (1− 2λ) ln(1− 2λ)] , (3.80)

g2(λ) =
A(1)β1

β3
0

[
2λ+ ln(1− 2λ) +

1
2

ln2(1− 2λ)
]
− A(2)

β2
0

[2λ+ ln(1− 2λ)]

+
A(1)

β0
[2λ+ ln(1− 2λ)] ln

M2

µ2
R

− 2A(1) λ

β0
ln
M2

µ2
F

, (3.81)

where λ = [β0 αs ln N̄ ]/π. Thus, the knowledge of the first two coefficients of the
function A(αs) [55, 169],

A(1) = CF and A(2) =
1
2
CF

[
CA

(
67
18
− π2

6

)
− 5

9
Nf

]
, (3.82)

together with the first coefficients of the C-functions allows us to perform resumma-
tion up to NLL.

3.3.2 Improvements of the resummation formalism

In the limit of large N , the cross section is clearly dominated by terms of
O(ln2N), O(lnN) and O(1). It seems thus reasonable to neglect terms suppressed
by powers of 1/N in the resummation formalism. Actually these last terms are mul-
tiplied by powers of lnN and could as well provide a non-negligible effect in the
threshold limit. In [68, 69] it has been shown that these contributions are due to
collinear parton emission and can be consistently included in the resummation for-
mula, leading to a “collinear-improved” resummation formalism. The modification
simply amounts to the introduction of an N -dependent term in the C(1)

qq̄ and C
(1)
qg

coefficients. For the Drell-Yan case, Eq. (3.75) is replaced by

C
(1)
qq̄ → C̃

(1)
qq̄ = C

(1)
qq̄ + 2A(1)

ln N̄ − 1
2 ln M2

µ2
F

N
, (3.83)

C(1)
qg → C̃(1)

qg = C(1)
qg − TR

ln N̄ − 1
2 ln M2

µ2
F

N
. (3.84)

Furthermore, for Drell-Yan processes and deep inelastic scattering, the exponen-
tiation of the contributions embodied in the C-function has been proven in [193],
leading to the following modification in Eq. (3.73):

σ̂
(res)
ab (N,αs) = σ(LO) exp

[
C

(1)
qq̄ (αs)

]
exp

[
S(N,αs)

]
. (3.85)
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As the authors of Ref. [193] recognize, this exponentiation of the N -independent
terms is not comparable to the standard threshold resummation in terms of predictive
power. While in the latter case a low-order calculation can be used to predict
the behaviour of full towers of logarithms, in the former case it is not possible to
directly get information on the behaviour of constant terms at, say, n loops, but a
complete calculation at the nth perturbative order is still necessary. Nonetheless, the
comparison of the numerical results obtained with and without the exponentiation
of the constant terms can at least provide an estimate of the errors due to missing
higher-order corrections.

3.3.3 Inverse Mellin transform and matching procedure

As for transverse-momentum resummation, once resummation has been achieved
in Mellin space, an inverse transform has to be performed in order to get back to
the physical x-space. The customary way to perform this inversion, avoiding the
singularities of the N -moments, is the “Minimal Prescription” of [189],

σ =
1

2π i

∫ CMP +i∞

CMP−i∞
dN τ−N σ(N,M). (3.86)

The constant CMP has to be chosen so that all the poles in the integrand are to the
left of the integration contour in the complex N -plane except for the Landau pole
at N = exp[π/(2β0 αs)], which should lie far to the right on the real axis.

Finally, a matching procedure of the NLL resummed cross section to the NLO
result has to be performed in order to keep the full information contained in the fixed-
order calculation and to avoid possible double-counting of the logarithmic enhanced
contributions. A correct matching is achieved through

σ = σ(F.O.) +
1

2π i

∫ CMP +i∞

CMP−i∞
dN τ−N

[
σ(res)(N,M)− σ(exp)(N,M)

]
, (3.87)

where σ(F.O.) is the fixed-order perturbative result, σ(res) is the resummed cross
section, and σ(exp) is the truncation of the resummed cross section to the same
perturbative order as σ(F.O.). In the Drell-Yan case, and taking into account the
improvement of Eqs. (3.83) and (3.84), the expansion of the resummed partonic
cross section up to order αs reads

σ̂
(exp)
qq̄ (N,M) = σ(LO)

[
1 +

αs

π

(
CF

(
2 ln2 N̄ − 2 ln N̄ ln

M2

µ2
F

)
+ C̃

(1)
qq̄

)]
, (3.88)

σ̂(exp)
qg (N,M) = σ(LO)

[αs

π
C̃(1)

qg

]
. (3.89)

Let us note that in Mellin space, the fixed-order NLO cross sections for Drell-Yan
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read [194]

σ̂
(F.O.)
qq̄ (N,M) = σ(LO)

[
1 +

αs

π
CF

(
4S2

1(N)− 4
N (N + 1)

S1(N) +
2
N2

− 8

+
4π2

3
+

2
(N + 1)2

+
[

2
N (N + 1)

+3−4S1(N)
]

ln
M2

µ2
F

)]
, (3.90)

σ̂(F.O.)
qg (N,M) = σ(LO)

[
αs

π
TR

(
N4 + 11N3 + 22N2 + 14N + 4

N2 (N + 1)2(N + 2)2

− 2
N2+N+2

N (N+1)(N+2)
S1(N)+

N2+N+2
N (N+1)(N+2)

ln
M2

µ2
F

)]
(3.91)

with S1(N) =
∑N

j=1 1/j. In the large-N limit, S1(N) ' ln N̄ + 1/(2N), and we get

σ̂
(F.O.)
qq̄ (N,M) = σ(LO)

[
1+

αs

π

(
CF

(
2 ln2 N̄−2 ln N̄ ln

M2

µ2
F

)
+C̃(1)

qq̄

)]
, (3.92)

σ̂(F.O.)
qg (N,M) = σ(LO)

[αs

π
C̃(1)

qg

]
. (3.93)

Comparing Eqs. (3.88), (3.89), (3.92), and (3.93), we see that the expansion of the
resummed cross section at order αs correctly reproduces the fixed-order result in the
large-N limit, including even terms that are suppressed by 1/N .

3.4 Joint resummation

3.4.1 Formalism

Let us go back to the QCD factorization theorem of Eq. (3.16), writing the
unpolarized hadronic cross section as

dσ
dM2 dq2T

=
∑
a,b

∫ 1

τ
dxa

∫ 1

τ/xa

dxb fa/h1
(xa, µF ) fb/h2

(xb, µF )

× dσ̂ab

dM2 dq2T
(z,M ;αs(µR),

M

µF
,
M

µR
) (3.94)

as the convolution of the partonic cross section σ̂ab with the universal distribution
functions fa,b/ha,b

. We have explicitly shown the lower integration limits depending
on the quantity τ = M2/sh, which approaches the limiting value τ = 1 when the
process is close to the hadronic threshold. In Mellin N -space, the hadronic cross
section naturally factorizes

dσ
dM2 dq2T

=
∑
ab

∮
C

dN
2iπ

τ−Nfa/h1
(N + 1, µF )fb/h2

(N + 1, µF )σ̂ab(N ;αs(µR),
M

µF
,
M

µR
),

(3.95)

where the contour C in the complex N−space will be defined later and the N -
moments of the various quantities are defined according to the Mellin transform

F (N) =
∫ 1

0
dxxN−1 F (x), (3.96)
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for x = xa,b, z, τ and F = fa/ha,b/hb
, σ̂, σ. The jointly resummed cross section in

N -space is usually written, at the NLL accuracy, as [75, 77, 78]

σ̂(res)(N) =
∑

c

σ
(0)
cc̄ (M)Hc(αs(µR))

∫
d2b
4π

eib·qT Cc/h1
(M, b,N ;αs(µR), µF )

× exp
[
E(PT)

c (N, b;αs(µR),
M

µR
)
]
Cc̄/h2

(M, b,N ;αs(µR), µF ), (3.97)

where the parton densities and the sums over the different possible initial partonic
states are included in the definition of the C-coefficients. The exponent is given by

E(PT)
c (N, b;αs(µR),

M

µR
) = −

∫ M2

M2/χ2

dµ2

µ2

[
Ac(αs(µ)) ln

M2

µ2
+Bc(αs(µ))

]
. (3.98)

The function χ organizes the logarithms of N and b in joint resummation and can
be defined as

χ(N̄ , b̄) = b̄+
N̄

1 + η b̄/N̄
, (3.99)

where b̄ ≡ bM eγE/2, N̄ ≡ NeγE and η = 1/4. The only requirement to be satisfied
when introducing a particular form of χ is that the leading- and next-to-leading
logarithms in N̄ and b̄ are correctly reproduced in the limits N̄ → ∞ or b̄ → ∞,
respectively. The choice of Eq. (3.99) avoids the introduction of sizeable subleading
terms into perturbative expansions of the resummed cross section at a given order
in αs which are not present in fixed-order calculations [77]. As for qT -resummation,
the A-term resums the soft radiation, while the B-term accounts for the difference
between the eikonal approximation and the full partonic cross section in the threshold
region, i.e. the flavour-conserving collinear contributions. In the large-N limit, these
coefficients are directly connected to the leading terms in the one-loop diagonal
anomalous dimension, calculated in the MS factorization scheme (see Eq. 3.78) [192]

γcc(N,αs) = −Ac(αs) ln N̄ − Bc(αs)
2

+O(1/N), (3.100)

and can be expressed as perturbative series in αs

Ac(αs) =
∞∑

n=1

(αs

π

)n
A(n)

c , (3.101)

Bc(αs) =
∞∑

n=1

(αs

π

)n
B(n)

c . (3.102)

Performing the integration in Eq. (3.98), we obtain the form factor up to NLL,

E(PT)
c (N, b;αs(µR),

M

µR
) = g(1)

c (λ) lnχ+ g(2)
c (λ;

M

µR
) (3.103)
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with λ = β0/παs(µR) lnχ, and the g-functions are given by

g(1)
c (λ) =

A
(1)
c

β0

2λ+ ln
(
1− 2λ

)
λ

,

g(2)
c (λ;

M

µR
) =

A
(1)
c β1

β3
0

[
1
2

ln2
(
1− 2λ

)
+

2λ+ ln
(
1− 2λ

)
1− 2λ

]
+
B

(1)
c

β0
ln
(
1− 2λ

)
+

[
A

(1)
c

β0
ln
M2

µ2
R

− A
(2)
c

β2
0

] [
2λ

1− 2λ
+ ln

(
1− 2λ

)]
. (3.104)

The C-coefficients are chosen to correspond to transverse-momentum resumma-
tion for b→∞, N being fixed, and are defined by

Cd/H(M, b,N ;αs(µR), µF )=
∑
a,a1

Cd/a1
(N ;αs(

M

χ
))Ua1a(N ;

M

χ
,µF )fa/H(N+1, µF ).

(3.105)

The C-functions contain contributions to the singular behaviour at vanishing qT
(but not at threshold) of the fixed order cross section, while Ujk represents the
evolution of the parton densities from scale µF to scale M/χ and the H-function
of Eq. (3.97) absorbs hard virtual contributions. The C- and H-functions can be
expressed perturbatively in powers of αs,

Hc(αs) = 1 +
∞∑

n=1

(αs

π

)n
H(n)

c , (3.106)

Ca/b(αs) = δab +
∞∑

n=1

(αs

π

)n
C

(n)
a/b. (3.107)

3.4.2 Reorganization of the resummed cross section

In order to explicitly factorize the dependence on the parameter χ, it is possible
to organize the resummation of the logarithms in analogy to the case of transverse-
momentum resummation [61, 62]. The hadronic resummed cross section can be
written as

dσ(res)

dM2 dq2T
=

∑
a,b

∮
C

dN
2π i

τ−N fa/ha
(N + 1, µF ) fb/hb

(N + 1, µF )
∫ ∞

0

b db
2

J0(b qT )

×
∑

c

Hab→cc̄

(
N ;αs(µR),

M

µR
,
M

µF

)
exp

{
Gc(lnχ;αs(µR),

M

µR
)
}
. (3.108)

The function Hab→cc̄ does not depend on the parameter χ, and contains all the terms
that behave as constant in the limits b→∞ or N →∞,

Hab→cc̄

(
N ;αs(µR),

M

µR
,
M

µF

)
=σ(0)

cc̄ (M)

[
δcaδc̄b+

∞∑
n=1

(αs

π

)n
H(n)

ab→cc̄

(
N ;

M

µR
,
M

µF

)]
.

(3.109)
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Using Eqs. (3.97), (3.105) and the QCD evolution operator Uab(N ;µ, µ0), fulfilling
the evolution equation

dUab(N ;µ, µ0)
d lnµ2

=
∑

c

γac(αs(µ))Ucb(N ;µ, µ0), (3.110)

which has the solution

Uab(N ;µ, µ0) = exp
[∫ µ

µ0

dq2

q2
γ(αs(q))

]
, (3.111)

we get the first order coefficient

H(1)
ab→cc̄

(
N ;

M

µF

)
=δcaδc̄bH(1)

c +δcaC
(1)
c̄b (N)+δc̄bC(1)

ca (N)+
(
δcaγ

(1)
c̄b +δc̄bγ(1)

ca

)
ln
M2

µ2
F

.

(3.112)

The χ-dependence appearing in the C-coefficients and in the evolution operator of
Eq. (3.105) is factorized and included in the exponent Gc, which is equal to the
exponent E(PT)

c defined in Eq. (3.2), provided we make the replacement

Bc(αs) → B̃c(αs) = B(αs) + 2β(αs)
d lnC(N ;αs)

d lnαs
+ 2 γ(αs), (3.113)

At NLL accuracy, Eq. (3.103) remains almost unchanged, since only the coefficient
g
(2)
c of Eq. (3.104) has to be slightly modified, through the replacement

B(1)
c → B̃(1)

c (N) = B(1)
c + 2γ(1)

cc . (3.114)

Although the first-order coefficients C(1)
ab and H(1)

c are in principle resummation-
scheme dependent [61], this dependence cancels in the perturbative expression of
Hab→cc̄ [62]. In the numerical code we developed for slepton pair production, we
chose to implement the Drell-Yan resummation scheme and take Hq(αs) ≡ 1, the
C-coefficients being the same as for qT -resummation (see Eq. (3.53))

C(1)
qq (N) =

2
3N (N + 1)

+
π2 − 8

3
and C(1)

qg (N) =
1

2 (N + 1) (N + 2)
. (3.115)

3.4.3 Inverse transform and matching

Once resummation has been achieved in N - and b-space, inverse transforms
have to be performed in order to get back to the physical spaces. Again, special
attention has to be paid to the singularities in the resummed exponent, related
to the divergent behaviour near χ = exp[π/(2β0αs)], i.e. the Landau pole of the
running strong coupling, and near b̄ = −2N̄ and b̄ = −4N̄ , where χ = 0 and
infinity respectively. The integration contours of the inverse transforms in Mellin
and impact-parameter space must therefore avoid all of these poles.

As for qT -resummation, the b−integration is performed by deforming the integra-
tion contour with a diversion into the complex b-space [76], defining two integration
branches

b = (cosϕ± i sinϕ)t, with 0 ≤ t ≤ ∞, (3.116)
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under the condition that the integrand decreases sufficiently rapidly for large |b|-
values. The Bessel function J0 is replaced by two auxiliary functions h1,2(z, v) related
to the Hankel functions (see Eq. (3.61))

h1(z, v) ≡ − 1
π

∫ −π+ivπ

−ivπ
dθ e−iz sin θ,

h2(z, v) ≡ − 1
π

∫ −ivπ

π+ivπ
dθ e−iz sin θ. (3.117)

Their sum is always h1(z, v) + h2(z, v) = 2 J0(z), but they distinguish positive and
negative phases of the b-contour, being then associated with only one of the two
branches.

The inverse Mellin transform is performed following a contour inspired by the
Minimal Prescription [189] and the Principal Value Resummation [190], where one
again defines two branches

N = C + z e±iφ with 0 ≤ z ≤ ∞, π > φ >
π

2
. (3.118)

The parameter C is chosen in such a way that all the singularities related to the
N -moments of the parton densities are to the left of the integration contour. It has
to lie within the range 0 < C < exp[π/(2β0αs) − γE ] in order to have convergent
inverse transform integrals for any choice of φ and ϕ.

Finally, a matching procedure of the NLL resummed cross section to the NLO
result has to be performed in order to keep the full information contained in the
fixed-order calculation and to avoid possible double-counting of the logarithmically
enhanced contributions. A correct matching is achieved through the formula

d2σ

dM2 dq2T
(τ) =

d2σ(F.O.)

dM2 dq2T
(τ ;αs) +

∮
CN

dN
2πi

τ−N

∫
bdb
2
J0(qT b)

×

[
d2σ(res)

dM2 dq2T
(N, b;αs)−

d2σ(exp)

dM2 dq2T
(N, b;αs)

]
, (3.119)

where d2σ(F.O.) is the fixed-order perturbative result at a given order in αs,
d2σ(res) is the resummed cross section at a given logarithmic accuracy, d2σ(exp) is
the truncation of the resummed cross section to the same perturbative order as
d2σ(F.O.), and where we have removed the scale dependences for brevity.

The expansion of the resummed results reads

dσ(exp)

dM2 dq2T
(N, b;αs(µR),

M

µR
,
M

µF
) =

∑
a,b

fa/ha
(N + 1, µF ) fb/hb

(N + 1, µF )

×σ(exp)
ab (N, b;αs(µR),

M

µR
,
M

µF
), (3.120)
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where σ(exp)
ab is obtained by perturbatively expanding the resummed component

σ
(exp)
ab (N, b;αs(µR),

M

µR
,
M

µF
) =

∑
c

σ
(0)
cc̄ (M)

{
δcaδc̄b +

∞∑
n=1

(
αs(µR)
π

)n

×

[
Σ̃(n)

ab→cc̄

(
N, lnχ;

M

µR
,
M

µF

)
+H(n)

ab→cc̄

(
N ;

M

µR
,
M

µF

)]}
. (3.121)

The perturbative coefficient Σ̃(n) is a polynomial of degree 2n in lnχ and H(n)

embodies the constant part of the resummed cross section in the limit of b→∞ or
N →∞. The first order coefficient Σ̃(1) is given by

Σ̃(1)
ab→cc̄ (N, lnχ) = Σ̃(1;2)

ab→cc̄ ln2 χ+ Σ̃(1;1)
ab→cc̄ lnχ, (3.122)

with

Σ̃(1;2)
ab→cc̄ = −2A(1)

c δcaδc̄b and Σ̃(1;1)
ab→cc̄ = −2

(
B(1)

c δcaδc̄b + δcaγ
(1)
c̄b + δc̄bγ

(1)
ca

)
.(3.123)

The integrals

In(qT , N) =
∫ ∞

0

bdb
2
J0(b qT ) lnn

(
b̄+

N̄

1 + η b̄/N̄

)
, (3.124)

appearing when performing the inverse b−transform, must be computed numerically.

3.5 Comparison between qT , threshold and joint resum-
mations

In this section, we summarize the main differences between the three resum-
mation formalisms described in the previous sections. For all resummations, the
Sudakov form factor at the NLL accuracy can be written as

G(N,L) = g(1)(λ)L+ g(2)(λ), (3.125)

where we have removed all scale dependences for brevity. The logarithm L, λ and
the two g-functions are given in Tab. 3.1.

Let us first note that M corresponds to the final state invariant-mass in the
joint resummation formalism, but to the resummation scale in the qT -resummation
formalism (see Eq. (3.49)). Such a scale is not needed in joint resummation, since
the logarithm cannot be rescaled with a factor that is N - and b-independent.
Finally, b0 is defined as for qT -resummation, b0 = 2e−γE .

For all three resummations, the exponent is taken to be universal and process-
independent, since the enhanced logarithmic contributions have the same dynamical
origin, i.e. the soft-gluon emission from the initial state, which cannot depend on
the hard-scattering process. All the process-dependence is factorized outside of the
exponent, i.e. in the H-coefficient for joint and transverse-momentum resummation
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qT Joint Threshold

L = ln(...) 1 + M2 b2

b20

M b
b0

+ N̄
1+ M b

4 b0 N̄

N̄

λ β0
π αs(µR)L 2β0

π αs(µR)L β0
π αs(µR)L

g(1)(λ) A(1)

β0

λ+ln(1−λ)
λ

2 A(1)

β0

λ+ln
(
1−λ
)

λ
A(1)

β0λ [2λ+ (1− 2λ) ln(1− 2λ)]

g(2)(λ)

B(1)+2 γ(1)
qq

β0
ln(1− λ) A(1)β1

β3
0

[
2λ+ln(1−2λ)+ 1

2 ln2(1−2λ)
]

+
(

A(1)

β0
ln M2

µ2
R
−A(2)

β2
0

)(
λ

1−λ +ln(1−λ)
)

−A(2)

β2
0

[2λ+ln(1−2λ)]− 2 A(1)λ
β0

ln M2

µ2
F

+A(1) β1
β3
0

(
1
2 ln2(1− λ) + λ+ln(1−λ)

1−λ

)
+A(1)

β0
[2λ+ ln(1− 2λ)] ln M2

µ2
R

Table 3.1: Comparison of the exponent in the (universal) transverse-momentum,
joint, and threshold resummation formalisms.

and in the C-coefficient for the threshold resummation. In the conjugate Mellin- and
b-spaces, the resummed partonic cross section can then be written as

σ
(qt/j)
ab (N,L) = HF

ab(N) exp
{
G(N,L) + FNP

ab

}
, (3.126)

σ
(th)
ab (N,L) = σ(LO) C̃ab(αs) exp

{
G(N,L)

}
. (3.127)

FNP
ab is the non-perturbative form factor parameterizing the non-perturbative effects

relevant for soft-gluon emission with very small qT . The expressions for all the
coefficients can be found in the previous sections.

As a side remark, let us note that the ‘+1’-term introduced in the logarithm
of the transverse-momentum resummation in order to minimize the impact of the
resummation in the small-b region (where the perturbative theory is reliable) is not
necessary for joint resummation, since for small b the corresponding logarithm is
not tending towards zero.
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Chapter 4

Slepton-pair production at
hadron colliders

The LO cross section for the production of non-mixing slepton pairs (see Fig.
4.1) has been calculated in [31, 32, 33, 44]. We generalize these results, including
the mixing effects relevant for third generation sleptons, and we calculate single-
and double-spin asymmetries, for both neutral (γ, Z0) and charged (W±) currents
[47], making numerical predictions for the RHIC collider and for possible upgrades
of the Tevatron [195] and the LHC [196] as well.

Sleptons being among the lightest supersymmetric particles in many SUSY-
breaking scenarios [46], they often decay into the corresponding SM partner and
the lightest stable SUSY particle, a possible signal for slepton pair production at
hadron colliders consisting thus in a highly energetic lepton pair and associated
missing energy. The corresponding SM background is mainly due to WW and tt̄
production [48, 49]. An accurate calculation of the transverse-momentum spectrum
allows us to use the Cambridge (s)transverse mass to measure the slepton mass
[50] and spin [51] and to distinguish then the signal from the background. When
studying the transverse-momentum distribution of a slepton pair produced with an
invariant-mass M in a hadronic collision, it is appropriate to separate the large-qT
and small-qT regions. In the large-qT region (qT ≥M), the use of fixed-order pertur-
bation theory is fully justified, since the perturbative series is controlled by a small
expansion parameter, αs(M2), but in the small-qT region, where the coefficients of
the perturbative expansion in αs(M2) are enhanced by powers of large logarithmic
terms, ln(M2/q2T ), results based on fixed-order calculations are completely spoiled.
However, a precise qT -spectrum can be obtained by systematically resumming these
logarithms to all orders in αs, using the universal formalism described in Sec. 3.2.4.

The NLO QCD corrections have been calculated in [39], and the full SUSY-QCD
corrections have been added in [40], considering however only massive non-mixing
squarks and gluinos in the loops. We extend this last work by including the mixing
effects relative to the squarks appearing in the loops [73]. We also consider the
threshold-enhanced contributions, due to soft-gluon emission from the initial state,
which arise when the initial partons have just enough energy to produce the slepton
pair in the final state. In this case, the mismatch between virtual corrections
and phase-space suppressed real-gluon emission leads to the appearance of large
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Figure 4.1: Feynman diagram for slepton pair (V = γ, Z0) and slepton-sneutrino
associated (V = W∓) production at leading order in perturbative QCD.

logarithmic terms αn
s [ln2n−1(1 − z)/(1 − z)]+ at the nth order of perturbation

theory. When s is close to M2, the large logarithms have to be resummed, which
is achieved through the exponentiation of the soft-gluon radiation, within the
collinear-improved formalism described in Sec. 3.3.

Since a complete understanding of the soft-gluon effects in differential distribu-
tions requires a study of the relation between the recoil corrections at small qT and
the threshold-enhanced contributions, we finally present a joint treatment of these,
within the method described in Sec. 3.4.

4.1 LO unpolarized cross section and spin asymmetries

4.1.1 Analytical results

In the following, we define the square of the weak coupling constant g2 =
e2/ sin2 θW in terms of the electromagnetic fine structure constant α = e2/(4π)
and the squared sine of the electroweak mixing angle xW = sin2 θW . The coupling
strengths of left- and right-handed (s)leptons to the neutral electroweak current given
in Sec. 2.4 are

{Lff ′Z , Rff ′Z} = (2T 3
f − 2 ef xW )× δff ′ , (4.1)

{Ll̃i l̃′jZ , Rl̃i l̃′jZ} = {Lll′Z S
l̃
j1 S

l̃′∗
i1 , Rll′Z S

l̃
j2 S

l̃′∗
i2 }, (4.2)

{Lqq′W , Rqq′W } = {
√

2 cW Vqq′ , 0}, (4.3)

{Ll̃iν̃lW
, Rl̃iν̃lW

} = {
√

2 cW S l̃∗
i1, 0}. (4.4)

We express (un)polarized cross sections for the electroweak 2 → 2 scattering pro-
cesses

qq̄ → γ, Z0 → l̃i l̃
∗
j ,

qq̄′ →W∓ → l̃i ν̃
∗
l , l̃

∗
i ν̃l,

(4.5)

in terms of the conventional Mandelstam variables,

s = (pa + pb)2 , t = (pa − p1)2 , and u = (pa − p2)2 (4.6)

and the masses of the neutral and charged electroweak gauge bosons mZ and mW .
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The neutral current differential cross section for the production of mixing slepton
pairs in collisions of quarks with definite helicities ha,b is given by [47]

dσ̂ha,hb

dt
=

2πα2

3s2

ut−m2
l̃i
m2

l̃j

s2

[e2q e2l δij(1− hahb)

+
eq el δij Re

[
Ll̃i l̃jZ +Rl̃i l̃jZ

] [
(1−ha)(1+hb)LqqZ +(1+ha)(1−hb)RqqZ

]
4xW (1−xW )(1−m2

Z/s)

+

∣∣∣Ll̃i l̃jZ +Rl̃i l̃jZ

∣∣∣2 [(1−ha)(1+hb)L2
qqZ +(1+ha)(1−hb)R2

qqZ

]
32x2

W (1−xW )2(1−m2
Z/s)2

]
, (4.7)

the three terms representing the squared photon-contribution, the photon-Z0 inter-
ference and the squared Z0-contribution, respectively, while the purely left-handed,
charged current cross section is

dσ̂′ha,hb

dt
=

2πα2

3s2

[
ut−m2

l̃i
m2

ν̃j

s2

](1− ha)(1 + hb)
∣∣∣Lqq′W Ll̃iν̃lW

∣∣∣2
32x2

W (1−m2
W /s)2

 . (4.8)

Averaging over initial helicities,

dσ̂(′) =
dσ̂(′)

1,1 + dσ̂(′)
1,−1 + dσ̂(′)

−1,1 + dσ̂(′)
−1,−1

4
, (4.9)

we obtain the unpolarized partonic cross sections

dσ̂
dt

=
2πα2

3s2

ut−m2
l̃i
m2

l̃j

s2

[e2q e2l δij+ eq el δij Re
[
Ll̃i l̃jZ +Rl̃i l̃jZ

] [
LqqZ +RqqZ

]
4xW (1−xW )(1−m2

Z/s)

+

∣∣∣Ll̃i l̃jZ +Rl̃i l̃jZ

∣∣∣2 [L2
qqZ +R2

qqZ

]
32x2

W (1− xW )2(1−m2
Z/s)2

]
, (4.10)

dσ̂′

dt
=

2πα2

3s2

[
ut−m2

l̃i
m2

ν̃j

s2

][ ∣∣∣Lqq′W Ll̃iν̃lW

∣∣∣2
32x2

W (1−m2
W /s)2

]
, (4.11)

which agrees for mass-degenerate non-mixing sleptons with the neutral current
result of Ref. [31] and with the charged current result of Ref. [33]. Note that for
invariant final state masses close to the Z0- or W -pole, the Z0- and W -propagators
must be modified to include the decay width of the corresponding electroweak boson.

From Eqs. (4.7) and (4.8), one can easily calculate the polarized cross sections

d∆σ̂(′)
LL =

dσ̂(′)
1,1 − dσ̂(′)

1,−1 − dσ̂(′)
−1,1 + dσ̂(′)

−1,−1

4
, (4.12)

d∆σ̂(′)
L =

dσ̂(′)
1,1 + dσ̂(′)

1,−1 − dσ̂(′)
−1,1 − dσ̂(′)

−1,−1

4
, (4.13)
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which then read [47]

d∆σ̂(′)
LL = −σ̂(′), (4.14)

d∆σ̂L =
2πα2

3s2

ut−m2
l̃i
m2

l̃j

s2

[− eq el δij Re
[
Ll̃i l̃jZ +Rl̃i l̃jZ

] [
LqqZ −RqqZ

]
4xW (1− xW )(1−m2

Z/s)

−

∣∣∣Ll̃i l̃jZ +Rl̃i l̃jZ

∣∣∣2 [L2
qqZ −R2

qqZ

]
32x2

W (1− xW )2(1−m2
Z/s)2

]
, (4.15)

d∆σ̂′L = −σ̂′. (4.16)

Let us note that the single-polarized cross section corresponds to a polarized initial
quark, the corresponding quantity for a polarized initial antiquark being obtained
from the following definition,

d∆σ̂(′)
L =

dσ̂(′)
1,1 − dσ̂(′)

1,−1 + dσ̂(′)
−1,1 − dσ̂(′)

−1,−1

4
. (4.17)

These expressions show that it will be interesting to study the dependence of the
neutral current single-spin asymmetry

AL =
d∆σ̂L

dσ̂
(4.18)

on the SUSY-breaking parameters, since it is the single quantity remaining sensitive
to these. Furthermore the squared photon contribution, insensitive to them, is elim-
inated. Finally, this scenario may also be easier to implement experimentally, e.g. at
the Tevatron, since protons are much more easily polarized than antiprotons [195].
Let us note that our polarized results agree with those of Ref. [44] for non-mixing
sleptons after integration over t, provided that we put parentheses around the ŝ|DZ |2
terms of Eqs. (5) and (7) of Ref. [44], and if we replace the index q by e in the first
occurrence of (aq + εbq) in Eq. (7) of Ref. [44].

4.1.2 Unpolarized cross section

For the masses and widths of the electroweak gauge bosons, we use here
older values of mZ = 91.1876 GeV, mW = 80.425 GeV, ΓZ = 2.4952 GeV, and
ΓW = 2.124 GeV [197], which are slightly different from the current ones (see Sec.
2.3.3). Since the sfermion mixing is proportional to the mass of the corresponding
SM partner (see Eq. (2.42)), it is numerically only important for third generation
sleptons. Consequently, the lightest slepton is the lighter stau mass eigenstate τ̃1
and we focus our numerical studies on its production.

The τ̃ mass limits imposed by LEP depend strongly on the assumed SUSY-
breaking mechanism, the mass difference between the τ̃ and the LSP, and the
mixing angle θτ̃ . The weakest limit of 52 GeV is found for GMSB models and stau
decays to gravitinos, if no constraints on their mass difference are imposed [198].
This is the scenario that we will study for the RHIC collider, which has the most
restricted hadronic centre-of-mass energy, equal to 500 GeV. For the Tevatron and
the LHC, with their considerably larger centre-of-mass energies of 1.96 and 14 TeV,
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Figure 4.2: Unpolarized hadronic cross sections for non-mixing τ̃ pair production of
at the RHIC, Tevatron, and LHC colliders as a function of mτ̃ . The vertical lines
indicate the two different τ̃ mass limits of 52 [198] and 81.9 GeV [199].

respectively, we will, however, impose the stricter mass limit of 81.9 GeV [199], which
is valid for staus decaying into neutralinos, with a mass difference of at least 15 GeV.

Thanks to the QCD factorization theorem, the unpolarized hadronic cross section

σ =
∑
a,b

∫ 1

τ
dxa

∫ 1

τ/xa

dxb fa/ha
(xa, µF ) fb/hb

(xb, µF ) σ̂ab (4.19)

can be written as the convolution of the relevant partonic cross section σ̂ab (in-
tegrated here over t) with the universal distribution functions fa,b/ha,b

of partons
a, b inside the hadrons ha,b, which depend on the longitudinal momentum fractions
of the two partons xa,b and on the unphysical factorization scale µF . In order to
employ a consistent set of unpolarized and polarized parton densities (see next
subsection), we choose the LO set of GRV98 [200] for our unpolarized predictions
at the factorization scale µF = mτ̃1 .

In Fig. 4.2, we show the unpolarized hadronic cross sections for non-mixing τ̃
pair production at the RHIC, Tevatron, and LHC colliders as a function of the τ̃
physical mass. The observation of tau sleptons will be difficult at RHIC, which is the
only existing polarized hadron collider, but they will be detectable at the Tevatron,
extending considerably the discovery reach beyond the current limits. In contrast, at
the LHC, τ̃ pair production will be visible up to masses of 1 TeV. Before application
of any experimental cuts, the SUSY signal cross section is at least three orders of
magnitude smaller than the corresponding SM background coming from tau lepton
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Figure 4.3: Longitudinal single-spin asymmetry AL as a function of the cosine of the
stau mixing angle for τ̃1 pair production at RHIC.

pair production. Evaluated using the physical tau mass of mτ = 1.77699 GeV as
factorization scale for the GRV98 LO parton densities, this cross section is equal
to 1.7, 3.4, and 8.3 nb for the RHIC, Tevatron, and LHC colliders, respectively.
Imposing an invariant-mass cut on the observed lepton pair and a minimal missing
transverse energy will, however, greatly improve the signal-to-background ratio. In
addition, as we will see in the next section, asymmetries may provide an important
tool to further distinguish the SUSY signal from the corresponding SM process.

4.1.3 Single-spin asymmetries

Using again the QCD factorization theorem, we calculate the hadronic cross
section for longitudinally polarized hadrons ha with unpolarized hadrons hb

∆σL =
∑
a,b

∫ 1

τ
dxa

∫ 1

τ/xa

dxb ∆fa/ha
(xa, µF ) fb/hb

(xb, µF ) d∆σ̂L,ab (4.20)

through a convolution of polarized (∆fa/A) and unpolarized (fb/B) parton densities
with the singly polarized partonic cross section ∆σ̂L (integrated over t). As
mentioned above, we employ a consistent set of unpolarized [200] and polarized
[201] LO parton densities. The theoretical uncertainty due to the less well known
polarized parton densities is estimated by showing our numerical predictions for
both the GRSV2000 LO standard (STD) and valence (VAL) parameterizations.

The physical masses of the SUSY particles and the mixing angles are computed
with the program SuSpect 2.3 [202], including a consistent calculation of the Higgs
mass, with all one-loop and the dominant two-loop radiative corrections in the
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renormalization group equations that link the restricted set of SUSY-breaking
parameters at the gauge coupling unification scale to the complete set of observable
SUSY masses and mixing angles at the electroweak scale. We choose three SPS
benchmark points [45, 46], the GMSB point SPS 7 with a light tau slepton decaying
to a gravitino for RHIC and its very limited mass range, the typical mSUGRA point
SPS 1a’ with an intermediate value of tanβ = 10 and a slightly reduced common
scalar mass of m0 = 70 GeV for the Tevatron, and the mSUGRA point SPS 4 with
a large scalar mass of m0 = 400 GeV and large tanβ = 50, which enhances mixing,
for the LHC with its larger mass range. Since θτ̃ depends directly on the universal
soft SUSY-breaking mass scale Λ in the GMSB model and on the trilinear coupling
A0 in the mSUGRA models, we test the sensitivity of the single-spin asymmetry on
these parameters (see Figs. 4.3-4.4).

In Fig. 4.3, we show the single-spin asymmetry for τ̃1 pair production at RHIC
as a function of the cosine of the stau mixing angle. The asymmetry is quite large
and depends strongly on the stau mixing angle. However, very large values of
cos θτ̃ , corresponding to τ̃ masses below 52 GeV may already be excluded by LEP
[198], while small values of cos θτ̃ may be unaccessible to RHIC limited luminosity,
which is not expected to exceed 1 fb−1. Polarization of the proton beam will also
not be perfect, and the calculated asymmetries should be multiplied by the degree
of beam polarization PL ' 0.7. The uncertainty introduced by the polarized parton
densities increases considerably to the left of the plot, where the stau mass 41 GeV
≤ mτ̃ ≤ 156 GeV and the associated values of the parton momentum fractions
xa,b ' 2mτ̃/

√
sh become large. While the SM background cross section is then still

two orders of magnitude larger than the SUSY signal after imposing an invariant-
mass cut on the observed tau lepton pair, the SM asymmetry of -0.04 (-0.10) for STD
(VAL) polarized parton densities can clearly be distinguished due to its different sign.

An asymmetry measurement at an upgraded Tevatron would be extremely
valuable, since the predicted asymmetry is very sizeable in the entire viable SUSY
parameter range, and depends strongly on the parameter A0, and then the stau
mixing angle (top figure of Fig. 4.4). Unfortunately, the parton density uncertainties
are still large, but will be reduced considerably in the future through more precise
measurements at the COMPASS, HERMES, PHENIX, and STAR experiments. As
a recent experimental study demonstrates, events with tau leptons with associated
missing energy larger than 20 GeV can be identified with the CDF-II detector,
considering hadronic tau decays [203]. Again, the negative SM asymmetry of -0.09
(for both polarized parton densities) would be clearly distinguishable due to its
opposite sign.

For the LHC, where studies of tau slepton identification with the ATLAS detector
[204] and tau tagging with the CMS detector [205] have recently been performed,
SUSY masses should be observable up to the TeV-range. We show the predicted
asymmetry for a possible polarization upgrade of this collider in the bottom panel of
Fig. 4.4. It is still comfortably large and has again the opposite sign with respect to
the SM asymmetry of -0.02 (for both polarized parton densities). The dependence
of the asymmetry on the stau mixing angle is, however, also reduced, while the
uncertainties from the polarized parton densities, which are not yet well known
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at the small x values relevant for the large LHC centre-of-mass energy, are quite
enhanced.

4.2 Transverse-momentum spectrum

4.2.1 Analytical results

As said in the introduction, the main SM background to slepton pair produc-
tion comes from WW and tt̄ production. However, an accurate calculation of the
transverse-momentum spectrum would allow us to distinguish the signal from the
background. A transverse-momentum distribution for slepton pair production at
leading order is induced by a final state containing one slepton pair and one QCD
jet. The relative partonic cross section can be divided into a resummed and a finite
part, as in Eq. (3.64),

dσ̂ab

dM2dq2T
=

dσ̂(res.)
ab

dM2dq2T
+

dσ̂(fin.)
ab

dM2dq2T
, (4.21)

where a, b label the partons which take part in the hard process. In Mellin N -space,
the (partonic) resummed component is deduced from Eqs. (3.47) and (3.49),

dσ̂(res.)
ab

dM2dq2T
(qT ,M, s;αs(µR), µR, µF ) =

∫ ∞

0
db

b

2
J0(bqT ) W̃F

ab(N, b;M,µF , µR),

(4.22)

W̃F
ab(N, b;M,µF , µR)=HF

ab

(
N,αs(µR);

M

µR
,
M

µF
,
M

Q

)
exp
{
G
(
N, L̃, αs(µR);

M

µR
,
M

Q

)}
,

(4.23)

where at the NLL accuracy, the functions H and G of Eqs. (3.50) and (3.54) read

HF
ab(N,αs;

M

µR
,
M

µF
,
M

Q
)=
∑

c

σ
(LO)F
cc̄ (M)

[
δacδbc̄+

(αs

π

)
HF (1)

ab→cc̄(N ;
M

µR
,
M

µF
,
M

Q
)
]
,

(4.24)

G(N, L̃;αs,
M

µR
,
M

Q
) = L̃ g(1)(

1
π
β0 αs(µR)L) + g(2)(N,

1
π
β0 αs(µR) L̃;

M

µR
,
M

Q
),(4.25)

with

L̃ = ln
(
Q2 b2

b20
+ 1
)
, (4.26)

this definition of L̃ allowing us to avoid the unwanted resummed contributions in
the small-b region. The explicit expression of g(1) and g(2) in terms of the univer-
sal perturbative coefficients A(1)

q , A(2)
q , and B

(1)
q (see Eqs. (3.25), (3.26) and 3.27))

are given by Eqs. (3.55) and (3.56). Slepton pair production being similar to SM
lepton pair production, except for the final state, we can use the Drell-Yan coeffi-
cients H(1) from Eqs. (3.51) and (3.52), but the Born cross section σ(LO)F (M) in
Eq. (4.24) corresponds obviously to the slepton pair production one, which can be
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obtained for neutral and charged currents by integrating Eqs. (4.10) and (4.11) over
t, respectively,

σ
(LO)
qq̄ (M) =

α2 π β3

9M2

[
e2q e

2
l δij +

eq el δij(LqqZ +RqqZ) Re
[
Ll̃i l̃jZ +Rl̃i l̃jZ

]
4xW (1− xW ) (1−m2

Z/M
2)

+
(L2

qqZ +R2
qqZ)

∣∣∣Ll̃i l̃jZ +Rl̃i l̃jZ

∣∣∣2
32x2

W (1− xW )2(1−m2
Z/M

2)2

]
, (4.27)

σ
(LO)
qq̄′ (M) =

α2 π β3

9M2

[ ∣∣∣Lqq′WLl̃iν̃lW

∣∣∣2
32x2

W (1− xW )2(1−m2
W /M2)2

]
, (4.28)

where the slepton-mass dependence is factorized in the velocity

β =
√

1 +m4
i /M

4 +m4
j/M

4 − 2(m2
i /M

2 +m2
j/M

2 +m2
i m

2
j/M

4), (4.29)

mi and mj being the two masses of the final state particles.

The second term (dσ̂(fin.)
ab /dM2dq2T ) in Eq. (4.21) is free of divergent contributions

and can be computed by fixed-order truncation of the perturbative series, as in
Eq. (3.62). In order to be consistently matched with the resummed contribution at
intermediate qT (qT 'M), this term is evaluated starting from the usual perturbative
calculation of the partonic cross section from which we subtract the expansion of the
resummed component of the cross section at the same perturbative order. In order
to consistently perform a NLL+LO matching, we need the fixed-order cross section
relative to the production of a slepton pair with non-vanishing transverse-momentum
at order αs, i.e. one slepton pair plus one parton [39, 40]. The different channels
read

dσ̂qg

dM2dq2T
=

αs(µR)TR

2π s
Aqg(s, t, u;M2)σ(LO)

qq̄(′) (M), (4.30)

dσ̂gq̄

dM2dq2T
=

αs(µR)TR

2π s
Aqg(s, u, t;M2)σ(LO)

qq̄(′) (M), (4.31)

dσ̂qq̄(′)

dM2dq2T
=

αs(µR)CF

2π s
Aqq(s, t, u;M2)σ(LO)

qq̄(′) (M), (4.32)

where s, t, and u denote the partonic Mandelstam variables relative to the 2 → 2
subprocess ab→ γ, Z0,W∓ + one parton,

s = xaxbsh, (4.33)

t = M2 −
√
sh(M2 + q2T )xbe

y, (4.34)

u = M2 −
√
sh(M2 + q2T )xae

−y, (4.35)

y being the rapidity of the slepton pair. We have defined the Aab-functions as [206],

Aqg(s, t, u;M2) = −
(
s

t
+
t

s
+

2uM2

st

)
, (4.36)

Aqq(s, t, u;M2) = −Aqg(u, t, s;M2). (4.37)
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It is known [57] that the transverse-momentum distribution is affected by
non-perturbative effects which become important in the large-b region. In the
case of electroweak boson production, these contributions are usually parameter-
ized by multiplying the function W̃F in Eq. (4.23) by a NP form factor FNP (b)
[172, 176, 177, 178, 179], whose coefficients are obtained through global fits to
DY data. We include in our analysis three different parameterizations of non-
perturbative effects corresponding to three different choices of the form factor: the
Ladinsky-Yuan (LY-G) [176], Brock-Landry-Nadolsky-Yuan (BLNY) [178], and the
recent Konychev-Nadolsky (KN) [179] form factor. The explicit expressions can be
found in Eqs. (3.32), (3.33) and (3.34).

4.2.2 Numerical results

We present quantitative results for the qT -spectrum of slepton pair (slepton-
sneutrino associated) production at NLL+LO accuracy at the LHC collider. For the
masses and widths of the electroweak gauge bosons, the electroweak mixing angle
and the electromagnetic fine structure constant, we use the same values as those
given in Sec. 4.1.2, while the CKM-matrix elements are computed as in Sec. 2.3.3.
As in the previous section, we focus our study on the lightest slepton mass eigenstate
τ̃1 and thus we consider the processes

qq̄ → γ, Z0 → τ̃1τ̃
∗
1 ,

qq̄′ →W∓ → τ̃1ν̃
∗
τ , τ̃

∗
1 ν̃τ .

(4.38)

We use the MRST (2004) NLO set of parton distribution functions [207] and
αs is evaluated at two-loop accuracy. We fix the resummation scale Q (see Eq.
(3.49)) equal to the invariant-mass M of the slepton (slepton-sneutrino) pair and
we allow µ = µF = µR to vary between M/2 and 2M to estimate the perturbative
uncertainty. We also integrate Eq. (4.21) with respect to M2, taking as lower limit
the energy threshold for τ̃1τ̃∗1 (τ̃1ν̃τ ) production and as upper limit the hadronic
energy (

√
sh = 14 TeV at the LHC).

In the case of τ̃1τ̃∗1 production (neutral current process, see the top panel of
Fig. 4.5), we choose the SPS 7 GMSB benchmark point [45] which gives, after the
renormalization group evolution of the SUSY-breaking parameters performed by
the SuSpect computer program [202], a light τ̃1 of mass mτ̃1 = 114 GeV. In the case
of τ̃1ν̃∗τ + τ̃∗1 ν̃τ production (charged current process, see the bottom panel of Fig.
4.5), we use instead the SPS 1a mSUGRA benchmark point which gives a light τ̃1
of mass mτ̃1 = 136 GeV as well as a light ν̃τ of mass mν̃τ = 196 GeV.

In both cases we plot the LO result (dashed line) and the total NLL+LO
matched result (solid line) with their uncertainty band relative to scale variation
(yellow band for LO result, and green band for NLL+LO result). The expansion
of the resummation formula at LO (dotted line) is also shown. We can see that
the LO result diverges, as expected from the generic form of the fixed-order cross
section in Eq. (3.18), for both processes as qT → 0. The asymptotic expansion of
the resummation formula at LO is in very good agreement with LO both at small
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∗
1 (top) and pp →

τ̃1ν̃
∗
τ + τ̃∗1 ν̃τ (bottom). NLL+LO matched result, LO result, asymptotic expansion
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and intermediate values of qT , from which we can conclude that the cross section
is clearly dominated by the logarithms that we are resumming in this kinematical
region. The effect of resummation is clearly visible at small and intermediate values
of qT , the resummation-improved result being nearly 39% (36%) higher at qT = 50
GeV than the pure fixed-order result in the neutral (charged) current case. When
integrated over qT , the former leads to a total cross section of 66.8 fb (12.9 fb) in
good agreement (within 3.5%) with the QCD-corrected total cross section at O(αs)
[40].

The scale dependence is clearly improved in both cases with respect to the pure
fixed-order calculations. In the small and intermediate qT -region (up to 100 GeV)
the effect of scale variation is 10% for the LO result, while it is always less than 5%
for the NLL+LO curve.

Finally, we study the dependence of the total NLL+LO matched result on non-
perturbative effects. We show the quantity ∆

∆ =
dσ(res.+NP)(µ = M)− dσ(res.)(µ = M)

dσ(res.)(µ = M)
, (4.39)

as a function of the transverse momentum of the slepton pair. The parameter ∆ gives
thus an estimate of the contributions from the different NP parameterizations (LY-
G, BLNY, KN) that we included in the resummed formula, which are under good
control, since they are always less than 5% for qT > 5 GeV and thus considerably
smaller than the resummation effects.

4.3 Invariant-mass distributions

4.3.1 Next-to-leading order calculations

Restoring the various scale dependences in the QCD factorization theorem of Eq.
(4.19), the invariant-mass distribution of a given process can be written as

σ =
∑
a,b

∫ 1

τ
dxa

∫ 1

τ/xa

dxb fa/ha
(xa, µF ) fb/hb

(xb, µF ) σ̂ab

(
z,M ;αs(µR),

M

µF
,
M

µR

)
,

(4.40)

where M is the invariant-mass. The partonic cross section is usually expanded in
powers of αs

σ̂ab

(
z,M ;αs(µR),

M

µF
,
M

µR

)
=

∞∑
n=0

(
αs(µR)
π

)n

σ
(n)
ab

(
z,M ;

M

µF
,
M

µR

)
.(4.41)

Concerning slepton pair hadroproduction, we have computed the LO (n = 0) coef-
ficients in the previous sections, which read, showing explicitly the dependence on
the scaling variable z = M2/s,

σ
(0)

qq̄(′)

(
z,M ;

M

µF
,
M

µR

)
= σ

(′)
0 (M) δ(1− z), (4.42)
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σ0 and σ′0 being defined in Eqs. (4.27) and (4.28) for the neutral and charged currents,
respectively,

σ0(M) =
α2 π β3

9M2

[
e2q e

2
l δij +

eq el δij(LqqZ +RqqZ) Re
[
Ll̃i l̃jZ +Rl̃i l̃jZ

]
4xW (1− xW ) (1−m2

Z/M
2)

+
(L2

qqZ +R2
qqZ)

∣∣∣Ll̃i l̃jZ +Rl̃i l̃jZ

∣∣∣2
32x2

W (1− xW )2(1−m2
Z/M

2)2

]
, (4.43)

σ′0(M) =
α2 π β3

9M2

[ ∣∣∣Lqq′WLl̃iν̃lW

∣∣∣2
32x2

W (1− xW )2(1−m2
W /M2)2

]
. (4.44)

The NLO QCD and SUSY-QCD corrections, i.e. the n = 1-coefficients in the
perturbative expansion of Eq. (4.41), have been studied for non-mixing sleptons in
[39, 40]. At NLO, the quark-antiquark annihilation process receives contributions
from virtual gluon exchange (see upper part of Fig. 4.6), real gluon emission (see
Fig. 4.7) diagrams, and we also have to take into account the quark-gluon initiated
subprocesses (see Fig. 4.8).

The infrared and collinear singularities of the three-parton cross sections are
extracted using the dipole subtraction formalism [208], and the virtual corrections
have been evaluated in the MS renormalization scheme. For the SM QCD diagrams
one has the well-known results [39, 209]

σ
(1;QCD)

qq̄(′)

(
z,M ;

M

µF
,
M

µR

)
= σ

(′)
0 (M)CF

[(
π2

3
− 4
)
δ(1− z) + 4

(
ln(1− z)

1− z

)
+

− 1 + z2

1− z
ln z−2 (1 + z) ln(1− z)+

2P (0)
qq (z)
CF

ln
M2

µ2
F

]
,

(4.45)

σ(1;QCD)
qg

(
z,M ;

M

µF
,
M

µR

)
= σ

(′)
0 (M)TR

[(
1
2
− z + z2

)
ln

(1− z)2

z
+

1
4

+
3z
2

− 7z2

4
+
P

(0)
qg (z)
TR

ln
M2

µ2
F

]
, (4.46)

which expose the LO cross-sections σ(′)
0 (M) in factorized form. CF = 4/3 and TR =

1/2 are the usual QCD colour factors, and P
(0)
qq,qg are the Altarelli-Parisi splitting

functions [210]

P (0)
qq (z) =

CF

2

[
3
2
δ(1− z) +

2
(1− z)+

− (1 + z)
]

and (4.47)

P (0)
qg (z) =

TR

2
[
z2 + (1− z)2

]
. (4.48)

We remind the reader that our normalization corresponds to a perturbative
expansion in powers of αs/π.
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Figure 4.6: Contributions of virtual diagrams for slepton pair (V = γ, Z0) and
slepton-sneutrino associated (V = W∓) production at next-to-leading order in per-
turbative QCD. The first and second lines show the QCD and SUSY-QCD cor-
rections, respectively. In the SUSY-QCD case, one has to sum over squark mass-
eigenstates k, l = 1, 2.

Figure 4.7: Contributions from real gluon emission diagrams for slepton pair (V =
γ, Z0) and slepton-sneutrino associated (V = W∓) production at next-to-leading
order in perturbative QCD.

Figure 4.8: Contributions from qg diagrams for slepton pair (V = γ, Z0) and slepton-
sneutrino associated (V = W∓) production at next-to-leading order in perturbative
QCD.
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The three lower diagrams of Fig. 4.6 contain SUSY-QCD corrections. We gener-
alize the results from [40] to the case of mixed squark mass eigenstates k, l = 1, 2 in
the virtual loop diagrams, obtaining for neutral and charged currents [73]

σ
(1;SUSY)
qq̄

(
z,M ;

M

µF
,
M

µR

)
=

α2 π β3CF

36M2

[
fγ e

2
q e

2
l δij

+ fγZ

eq el δijRe
[
LZl̃i l̃j

+RZl̃i l̃j

]
4xW (1− xW ) (1−m2
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+ fZ

∣∣∣LZl̃i l̃j
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32x2
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2)2

]
δ(1−z), (4.49)

σ
(1;SUSY)
qq̄′

(
z,M ;

M

µF
,
M

µR

)
=

α2 π β3CF

36M2

[
fW

∣∣∣LWl̃iν̃l

∣∣∣2 δ(1−z)
32x2

W (1−xW )2(1−m2
W /M2)2

]
, (4.50)

where now only the diagonal squared photon contribution to the Born cross section
factorizes. The virtual loop coefficients fγ , fγZ , fZ and fW are

fγ = 2 +
∑
i=1,2

[
2m2

g̃ − 2m2
q̃i

+M2
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(
B0f
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+
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, (4.51)
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∑
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fZ = 2
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)
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−
∑
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The functions B0f (p2,m2
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2
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, (4.56)

C0(p2
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× 1
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3

. (4.57)

Our results agree with those of Ref. [211] in the case of mass-degenerate non-mixing
squarks. Note that the quark mass, which appears in the off-diagonal mass matrix
elements of the squarks running in the loops (see Eq. (2.36)), corresponds to a linear
Yukawa coupling in the superpotential and can not be neglected, even if it is much
smaller than the total centre-of-mass energy of the colliding partons allowing for a
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massless factorization inside the outer hadrons. The full NLO contributions to the
cross section are then given by

σ
(1)

qq̄(′)

(
z,M ;

M

µF
,
M

µR

)
=σ(1;QCD)

qq̄(′)
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,
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)
+σ(1;SUSY)
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M

µF
,
M

µR

)
,(4.58)

σ(1)
qg

(
z,M ;

M

µF
,
M

µR

)
= σ(1;QCD)

qg

(
z,M ;

M

µF
,
M

µR

)
. (4.59)

4.3.2 Threshold-enhanced contributions

Eqs. (4.45) and (4.46) explicitly show logarithmic terms of the form αs[ln(1 −
z)/(1−z)]+. When the initial partons have just enough energy to produce the slepton
pair in the final state, i.e. z is close to one, these terms can become large and have
to be resummed to all order in αs in order to correctly quantify the effect of this
set of corrections, corresponding to soft-collinear gluon emission. Collinear parton-
emission can also be taken into account, using the collinear-improved resummation
formalism which is described in Sec. 3.3 for Drell-Yan pair production, which can
directly be applied to slepton pair production by replacing the Born cross sections
by those of Eqs. (4.43) and (4.44). In Mellin space, we have then

σ̂
(res)
ab (N,αs) = σ

(′)
0 C̃ab(αs) exp

[
S(N,αs)

]
, (4.60)

with

C̃
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(
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3
− 4 +

3
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+ 2A(1)

ln N̄ − 1
2 ln M2
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N
, (4.61)

C̃(1)
qg = −TR

ln N̄ − 1
2 ln M2

µ2
F

N
, (4.62)

the Sudakov form factor S being defined by Eqs. (3.79), (3.80) and (3.81). The errors
due to missing high-order corrections can be estimated by comparing our results with
those obtained by taking the resummed contribution given by Eq. (3.85), where the
hard contributions exponentiate as well,

σ̂
(res)
ab (N,αs) = σ(LO) exp

[
C

(1)
qq̄ (αs)

]
exp

[
S(N,αs)

]
. (4.63)

The matching with the fixed-order results is achieved through Eq. (3.87)

σ = σ(F.O.) +
1

2π i

∫ CMP +i∞

CMP−i∞
dN τ−N

[
σ(res)(N,M)− σ(exp)(N,M)

]
. (4.64)

The truncation of the resummed cross section to the same perturbative order as
σ(F.O.), reads for a NLL+NLO matching (i.e. at order αs) as in Eqs. (3.88) and
(3.89)

σ̂
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qq̄ (N,M) = σ

(′)
0

[
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(
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,(4.65)

σ̂(exp)
qg (N,M) = σ

(′)
0

[αs

π
C̃(1)

qg

]
. (4.66)
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Let us note that in Mellin-space, the large-N limit of the fixed order NLO cross
sections of Eqs. (4.45) and (4.46) is correctly reproduced by the expansion of the
resummed cross section at order αs, including even terms that are suppressed by 1/N ,
as expected from the collinear-improved resummation formalism (see Eqs. (3.92) and
(3.93)).

4.3.3 Numerical results

We take current masses and widths of the electroweak gauge bosons, electroweak
mixing angle, electromagnetic fine structure constant and CKM matrix elements,
as in Sec. 2.3.3 [149], and the physical masses of the SUSY particles and the mixing
angles are obtained with the computer program SuSpect [202]. We choose one
mSUGRA point, SPS 1a, and one GMSB point, SPS 7, with their associated model
lines, as benchmarks for our numerical study [45]. SPS 1a is a typical mSUGRA
point with an intermediate value of tanβ = 10 and µ > 0, and the model line
attached to it is specified by m0 = −A0 = 0.4 m1/2. For m1/2 = 250 GeV, this
SUSY-breaking scenario leads to light sleptons τ̃1, ẽ1, τ̃2, ẽ2, ν̃τ and ν̃e with masses
of 136.2, 146.4, 216.3, 212.3, 196.1 and 197.1 GeV and to heavy squarks with
masses around 500-600 GeV. However, even if the top-squark mass eigenstate t̃1 is
slightly lighter, it does nonetheless not contribute to the virtual squark loops due
to the negligible top-quark density in the proton (we consider flavour-conserving
SUSY-loops in Fig. 4.6). SPS 7 is a GMSB scenario with a τ̃1 as the next-to-lightest
SUSY particle and an effective SUSY-breaking scale Λ = 40 TeV, Nmes = 3
messenger fields of mass Mmes = 80 TeV, tanβ = 15, and µ > 0, which leads
again to light sleptons with masses of 114.8, 121.1, 263.9, 262.1, 249.5 and 249.9
GeV, respectively, and even heavier squarks with masses around 800-900 GeV. Its
model line is defined by Mmes = 2Λ. The slepton masses and mixing angles are
actually quite similar for the SPS 1a mSUGRA and SPS 7 GMSB points, so that
the corresponding production cross sections will not differ significantly. Slepton
detection will, however, be slightly different in both scenarios, as the sleptons decay
to a relatively massive neutralino LSP at SPS 1a, but to a very light gravitino
LSP at SPS 7. The lightest tau slepton thus decays into a tau lepton and missing
transverse energy.

Our cross sections are calculated for the Tevatron pp̄-collider, as well as for the
LHC pp-collider. For the LO (NLO and NLL) predictions, we use the LO 2001
[212] (NLO 2004 [207]) MRST-sets of parton distribution functions. For the NLO
and NLL predictions, αs is evaluated with the corresponding value of Λnf=5

MS
= 255

MeV at two-loop accuracy. We fix the unphysical scales µF and µR equal to the
invariant-mass M of the slepton (slepton-sneutrino) pair.

The invariant-mass distribution M3dσ/dM for first- (and equal-mass second-)
generation sleptons at the Tevatron is shown in the top panel of Fig. 4.9, and the
one for (slightly lighter) third-generation sleptons at the LHC in the bottom panel
of the same figure. In both cases, we have chosen the SPS 7 GMSB benchmark
point. The differential cross section dσ/dM has been multiplied by a factor M3 in
order to remove the leading mass dependence of propagator and phase space factors.
As is to be expected for P -wave production of scalar particles, the distributions
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Figure 4.9: Invariant-mass distribution M3 dσ/dM of ẽL pairs at the Tevatron (top)
and τ̃1 pairs at the LHC (bottom) for the benchmark point SPS 7. We show the
total NLL+NLO matched and the fixed-order NLO SUSY-QCD and LO QCD re-
sults, including the respective scale uncertainties as horizontally hatched, vertically
hatched and shaded bands.
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rise above the threshold at
√
s = 2ml̃ with the third power of the slepton velocity

β, see Eq. (4.27), and peak at about 100 GeV above threshold (at 370 GeV for
M3dσ/dM and 310 GeV for dσ/dM for the Tevatron; 410 GeV and 300 GeV for the
LHC), before falling off steeply due to the s-channel propagator and the decreasing
parton luminosity. Furthermore, it can also be seen that the QCD corrections do
not alter the P -wave velocity dependence close to threshold. At the Tevatron, the
total and NLO SUSY-QCD predictions exceed the maximal LO cross section by 36
and 31%, respectively, whereas at the LHC, the maximal cross section increases
by 28 and 27%. Threshold resummation effects are thus clearly more important at
the Tevatron, where the hadronic centre-of-mass energy is limited and the scaling
variable τ = M2/sh is closer to one, and they increase with M to the right of both
plots.

The maximal theoretical error is estimated in Fig. 4.9 by an independent
variation of the factorization and renormalization scales between M/2 and 2M .
It is indicated as a shaded, vertically, and horizontally hatched band for the LO,
NLO SUSY-QCD, and the total prediction. At LO, the only dependence comes
from the factorization scale. It increases with the momentum-fraction x of the
partons in the proton or anti-proton and is therefore already substantial for small
M at the Tevatron, but only for larger M at the LHC. At NLO, this dependence is
reduced due to the factorization of initial-state singularities, but a strong additional
dependence is introduced by the renormalization scale in the coupling αs(µR).
After resummation, this dependence is reduced as well, so that the total scale
uncertainty at the Tevatron diminishes from 20%–35% for NLO to only 16%–17%
for the matched resummed result. The reduction is, of course, more important in
the large-M region. At the LHC, where αs is evaluated at a larger renormalization
scale and is thus less sensitive to it, the corresponding numbers are 18%–25% and
15%–17%.

For the mSUGRA scenario SPS 1a, we show in Figs. 4.10 and 4.11 the cross
section correction factors

Ki =
dσi/dM

dσLO/dM
, (4.67)

where i labels the corrections induced by NLO QCD (Eqs. (4.45) and (4.46)),
additional NLO SUSY-QCD (Eqs. (4.58) and (4.59)), resummation (Eq. (4.60)), and
the matched total contributions (Eq. (4.64)) as well as the fixed-order expansion
(Eqs. (4.65) and (4.66)) of the resummation contribution as a function of the
invariant-mass M . As one can see immediately, the mass-dependence of these
corrections for charged-current associated production of sleptons and sneutrinos
(lower parts of Figs. 4.10 and Fig. 4.11) does not differ substantially from the
mass-dependence of the neutral-current production of slepton pairs (upper parts).

At the Tevatron (Fig. 4.10), where we are close to the threshold, resummation
effects are already important at low M (4%) and increase to sizeable 16% at large
M . The NLO QCD result is thus dominated by large logarithms and coincides with
the expanded result at the permille level. In addition, the relative importance of
the (finite) SUSY-QCD contributions is reduced, and the total prediction coincides
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Figure 4.10: K-factors as defined in Eq. (4.67) for ẽL pair (top) and associated ẽLν̃∗e
production (bottom) at the Tevatron for the benchmark point SPS 1a. We show the
total NLL+NLO matched result, which is almost identical to the purely resummed
result at NLL, as well as the fixed-order NLO SUSY-QCD and QCD results. The
latter practically coincides with the resummed result expanded up to NLO.
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SUSY-QCD and QCD results, and the resummed result expanded up to NLO.
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with the resummed prediction, since fixed-order and expanded contributions can-
cel each other in Eq. (4.64). We have also verified that exponentiating the finite
(N -independent) terms collected in the coefficient function C

(1)

qq̄(′) , as proposed in
[193] (see Eq. 4.63), leads only to a 0.6%–0.8% increase of the matched resummed
result. The Tevatron being a pp̄-collider, the total cross section is dominated by
qq̄-annihilation, and qg-scattering contributes at most 1% at small M (or small x),
where the gluon density is still appreciable. Integration over M leads to total cross
sections for the neutral (charged) current processes in Fig. 4.10 of 4.12 (3.92) fb in
LO, 5.3 (4.96) fb in NLO (SUSY-)QCD, and 5.55 (5.28) fb for the matched resummed
calculation. The corresponding (global) K-factors

Ki
glob =

σi

σLO
=
∫

dM dσi /dM∫
dM dσLO/dM

(4.68)

are then 1.29 (1.27) at fixed-order and 1.35 (1.35) with resummation.

At the LHC, sleptons can be produced with relatively small invariant-mass M
compared to the total available centre-of-mass energy, so that z = τ/(xaxb) =
M2/s � 1 and the resummation of (1 − z)-logarithms is less important. This is
particularly true for the production of the light mass-eigenstates of mixing third-
generation sleptons, as shown in Fig. 4.11. In the low-M (left) parts of these plots,
the total result is less than 0.5% larger than the NLO (SUSY-)QCD result. Only at
large M the logarithms become important and lead to a 7% increase of the K-factor
with resummation over the fixed-order result. In this region, the resummed result ap-
proaches the total prediction, since the NLO QCD calculation is dominated by large
logarithms and approaches the expanded resummed result. However, we are still far
from the hadronic threshold region, and a consistent matching of both resummed
and fixed-order contributions is needed. At low M , where finite terms dominate,
the resummed contribution is close to its fixed-order expansion and disappears with
M . In the intermediate-M region, one can observe the effect of SUSY-QCD con-
tributions, in particular the one coming from the q̃q̃g̃-vertex correction (lower left
diagram in Fig. 4.6). As M ≥ 2mq̃, one crosses the threshold for squark pair produc-
tion and observes a resonance in Fig. 4.11. As for the Tevatron, exponentiating the
finite (N -independent) terms collected in the coefficient function C

(1)

qq̄(′) leads only
to a 1% increase of the matched resummed result. The LHC being a high-energy
pp-collider, it has a significant gluon-luminosity, in particular at small M (or x),
and indeed the qg-subprocess changes (lowers) the total cross section by 7% at small
M and 3% at large M . After integration over M , we obtain total cross sections of
27 (9.59) fb in LO, 34.3 (12.3) fb in NLO SUSY-QCD, and 34.6 (12.5) fb for the
resummed-improved result, corresponding to global K-factors of 1.28 for fixed-order
and 1.29 for the matched resummed cross section for both processes. Resummation
of large logarithms is thus not as important as for the Tevatron at the benchmark
point SPS 1a.

4.4 Total cross section at NLO

In this section, we study the dependence of total, i.e. invariant-mass integrated,
slepton pair and slepton-sneutrino cross sections on three different scales: first the
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Figure 4.12: Total cross sections (top) and K-factors as defined in Eq. (4.68) (bot-
tom) for first- (and second-) generation slepton pair and slepton-sneutrino associated
production at the Tevatron along the model line attached to the SPS 7 benchmark
point (vertical dashed line). We show the total NLL+NLO matched and the fixed-
order NLO (SUSY-)QCD and LO QCD results.
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dependence on the effective SUSY-breaking scale Λ as defined in the GMSB model
line SPS 7, and then the dependence on the renormalization and factorization scales
µR,F at the point SPS 7. The benchmark point at Λ = 40 TeV will be indicated in
the figures where Λ varies as a vertical dashed line, and we show in addition to the
scale Λ the mass scale of the produced charged slepton, ranging from 80 (87.5) to
280 (385) GeV for ẽL (τ̃1).

In Fig. 4.12, total cross sections (top) and K-factors (bottom) are shown at the
Tevatron, which is expected to produce a total integrated luminosity of 4–8 fb−1.
Even for ẽL pair production the mass-range is limited to masses below 280 GeV,
where the cross section reaches 0.1 fb and at most one event would be produced.
NLO and resummation corrections are clearly important, as they increase the LO
prediction by 18 to 28% (lower part of Fig. 4.12). At the SPS 7 benchmark point,
the corrections would thus induce a shift in the selectron mass as deduced from a
total cross section measurement by about 8 GeV (cf. the two dashed lines in the
upper part of Fig. 4.12). By comparing the NLO and total predictions, one observes
an increased importance of threshold resummation for heavier sleptons, as expected.

We show in Fig. 4.13 the total cross sections in the restricted range Λ ≤ 135
TeV. The NLO and resummed corrections are again large (25–30%), but the
resummation corrections only become appreciable for large SUSY-breaking scales
(or slepton masses). The largest cross section is obtained for pair production of
the light stau mass eigenstate, even though it has a large right-handed component.
Conversely, the heavier stau mass eigenstate has a large left-handed component,
so that its cross section is less suppressed. At the SPS 7 benchmark point, the
corrections would again induce a shift in the slepton mass as deduced from a total
cross section measurement by about 8 GeV, as can be seen for τ̃1 on the upper part
of Fig. 4.13, cf. the two dashed lines.

Finally, we consider the theoretical uncertainty of invariant-mass integrated to-
tal cross sections at the Tevatron (Fig. 4.14) and the LHC (Fig. 4.15) as induced by
variations of the factorization scale (top), renormalization scale (middle), or both
(bottom). The µR-dependence (middle), which is absent in LO, is first introduced
in NLO, but then tamed by the resummation procedure. On the other hand, the
logarithmic µF -dependence (top), already present through the PDFs at LO, is over-
compensated (reduced) at NLO for the LHC (Tevatron) and then (further) stabilized
by resummation. This works considerably better at the LHC, where at least one
quark PDF is sea-like and the PDFs are evaluated at lower x, than at the Tevatron,
where both PDFs can be valence-like and are evaluated at relatively large x. In
total, the theoretical uncertainty at the Tevatron (LHC), defined by the ratio of the
cross section difference at µF = µR = ml̃/2 and µF = µR = 2ml̃ over their sum,
increases from 20 (7) % in LO to 29 (17) % in NLO, but is then reduced again to 23
(8) % for the resummed-improved prediction.

4.5 Jointly resummed results

We present here a joint treatment of the recoil corrections at small qT and the
threshold-enhanced contributions near partonic threshold, allowing a complete un-
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derstanding of the soft-gluon effects in differential distributions for slepton pair pro-
duction at hadron colliders [80]. We use the joint formalism described in Sec. 3.4
and compare it to the qT - and threshold resummation formalisms of Secs. 3.2.4 and
3.3.2. The fixed-order perturbative and the qT - and threshold-resummed results for
the transverse-momentum and invariant-mass distributions are those presented in
the previous subsections, while the jointly-resummed matched cross section (see Eq.
(3.119)) is

d2σ

dM2 dq2T
(τ) =

d2σ(F.O.)

dM2 dq2T
(τ ;αs) +

1
2π i

∮
CN

dN
2πi

τ−N

∫
bdb
2
J0(qT b)

×

[
d2σ(res)

dM2 dq2T
(N, b;αs)−

d2σ(exp)

dM2 dq2T
(N, b;αs)

]
. (4.69)

The resummed contribution is given by Eq. (3.108)

dσ(res)

dM2 dq2T
=

∑
a,b

fa/ha
(N + 1, µF ) fb/hb

(N + 1, µF )

×
∑

c

Hab→cc̄

(
N ;αs(µR),

M

µR
,
M

µF

)
exp

{
Gc(lnχ;αs(µR),

M

µR
)
}
, (4.70)

while the expansion of the resummed component is (see Eq. (3.121))

dσ(exp)

dM2 dq2T
=

∑
a,b

fa/ha
(N + 1, µF ) fb/hb

(N + 1, µF )

×
∑

c

σ
(0)
cc̄ (M)

{
δcaδc̄b +

∞∑
n=1

(
αs(µR)
π

)n

×

[
Σ̃(n)

ab→cc̄

(
N, lnχ;

M

µR
,
M

µF

)
+H(n)

ab→cc̄

(
N ;

M

µR
,
M

µF

)]}
. (4.71)

The O(αs) coefficients of the perturbative functions H, G and Σ̃, can be found in Sec.
3.4. We remind the reader only of the definition of the argument in the logarithm
(see Eq. (3.99)),

χ(N̄ , b̄) = b̄+
N̄

1 + η b̄/N̄
. (4.72)

For the masses and widths of the electroweak gauge bosons, the electroweak
mixing angle and the electromagnetic fine structure constant, we use the same values
as in the previous section, i.e. those given by the latest version of the PDG review
[149]. We focus our study on the production of a right-handed selectron pair at the
LHC,

qq̄ → γ, Z0 → ẽR ẽ
∗
R. (4.73)

We use the MRST (2004) NLO set of parton distribution functions [207], αs is
evaluated at two-loop accuracy, and we allow µF and µR to vary between M/2 and
2M to estimate the perturbative uncertainty. We choose the mSUGRA benchmark
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point BFHK B (see Tab. 2.3) which gives, after the renormalization group evolution
of the SUSY-breaking parameters performed by the SPheno computer program
[156], a light ẽR of mass mẽR = 186 GeV and rather heavy squarks with masses
around 800-850 GeV, except for top-squark mass eigenstate t̃1 which is slightly
lighter, but which nevertheless does not contribute to the virtual squark loops due
to the negligible top-quark density in the proton.

In Fig. 4.16, we integrate the previous equations with respect to M2, taking
as lower limit the energy threshold for ẽRẽ∗R production and as upper limit the
hadronic energy,

√
sh = 14 TeV. We plot the LO result (dashed line) and the total

NLL+LO matched result (solid line) with their uncertainty band relative to scale
variation (yellow band for the LO result and green band for the NLL+LO result).
The effect of resummation is clearly visible at small and intermediate values of qT ,
the resummation-improved result reaching a value that is even 40% higher than the
pure fixed-order result at qT = 80 GeV .

The asymptotic expansion of the resummation formula at LO (dotted line) is in
good agreement with LO at small values of qT , from which we can conclude that
the cross section is clearly dominated by the logarithms that we are resumming
in this kinematical region. In the intermediate-qT region, we can see that the
expansion is slightly smaller than the fixed-order calculation. Since this effect was
not present in qT -resummation (see Fig. 4.5 in Sec. 4.2.2), we deduce that it is
purely related to the threshold-enhanced contributions important in the large-M
region. It is also presented in Fig. 4.17, where we directly compare jointly- and
qT -matched results, the main difference between the two approaches relying indeed
in this intermediate-qT region where the jointly-resummed cross section is 5%-10%
lower than the qT -resummed one for 50 GeV < qT < 100 GeV.

In Fig. 4.16, we estimate the scale dependence by an independent variation of
the factorization and renormalization scales between M/2 and 2M , and is clearly
improved using resummation rather than pure fixed-order calculations. In the small
and intermediate qT -region the effect of scale variation is 10% for the LO result,
while it is always less than 5% for the NLL+LO curve.

We also study the dependence of the total NLL+LO matched result on non-
perturbative effects. We show the quantity ∆ defined in Eq. (4.39),

∆ =
dσ(res.+NP)(µR = µF = M)− dσ(res.)(µR = µF = M)

dσ(res.)(µR = µF = M)
, (4.74)

as a function of the transverse momentum of the slepton pair. The parameter ∆ gives
thus an estimate of the contributions from the different NP parameterizations (LY-G,
BLNY, KN) that we included in the resummed formula, which can be found in Eqs.
(3.32), (3.33) and (3.34). They are under good control, since they are always less
than 5% for qT > 5 GeV and thus considerably smaller than the resummation effects.

The invariant-mass distribution M3dσ/dM for ẽR-pair production at the LHC
is obtained by integrating the equations given above with respect to the transverse-
momentum qT , and is shown in Fig. 4.18. As in the previous section, the differential
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cross section dσ/dM has been multiplied by a factor M3 in order to remove the
leading mass dependence of propagator and phase space factors. We can again
see the P -wave behaviour relative to the production of scalar particles, since the
invariant-mass distribution rises above the threshold at

√
s = 2mẽR with the third

power of the slepton velocity and peaks at about 200 GeV above threshold (both for
M3dσ/dM and the not shown dσ/dM differential distribution), before falling off
steeply due to the s-channel propagator and the decreasing parton luminosity. Let
us note that we use the MRST LO 2001 [212] set of parton distribution functions
for the LO predictions.

In the large-M region, the resummed cross section is 30% higher than the
leading-order cross section, but this represents only a 3% increase with respect to
the NLO SUSY-QCD result. In the small-M region, much further then from the
hadronic threshold, resummation effects are rather limited, inducing a modification
of the NLO results smaller than 1%.

The shaded, horizontally and vertically shaded bands in Fig. 4.18 represent the
theoretical uncertainties for the LO, NLO SUSY-QCD, and the jointly-matched
predictions. At LO, the dependence coming only from the factorization scale
increases with the momentum-fraction x of the partons in the proton (i.e. with
M), being thus larger in the right part of the figure, but this dependence is largely
reduced at NLO due to the factorization of initial-state singularities in the PDFs.
However, we add the dependence due to the renormalization scale in the coupling
αs(µR), leading to a total variation of about 7%-11%. After resummation, the
total scale uncertainty is finally reduced to only 7%-8% for the matched result,
the reduction being of course more important in the large-M region, where the
resummation effects are more important.

In Fig. 4.19, we show the cross section correction factors

Ki =
dσi/dM

dσLO/dM
(4.75)

as a function of the invariant-mass M . i labels the corrections induced by NLO
QCD, NLO SUSY-QCD, joint- and threshold-resummation, these two last calcula-
tions being matched with the NLO SUSY-QCD result.

At small invariant mass M , the resummation is less important, since we are quite
far from the hadronic threshold, as shown in the left part of the plot. At larger M ,
the logarithms become important and lead to a larger increase of the resummed K-
factors over the fixed-order one. We also show the difference between threshold and
joint resummations, which is only about one or two percents. It is due to the choice
of the Sudakov form factor G and of the H-function, which reproduces correctly
transverse-momentum resummation in the limit of b→∞, N being fixed, but which
presents some differences with the pure threshold limit b → 0 and N → ∞, as
it was the case for joint resummation for Higgs and electroweak boson production
[77, 78]. However, this effect is under good control, since it is much smaller than the
theoretical scale uncertainty of about 7%.
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the total NLL+NLO matched and the fixed-order NLO SUSY-QCD and LO QCD
results, including the respective scale uncertainties as vertically hatched, horizontally
hatched and shaded bands.

 [GeV]
Re~ Re~

M
500 1000 1500 2000 2500 3000

 [GeV]
Re~ Re~

M
500 1000 1500 2000 2500 3000

K

1.24

1.26

1.28

1.3

1.32

1.34

1.36
Jointly-matched
Threshold-matched

NLO SUSY-QCD

NLO QCD

* at the LHCRe~ Re~ → 0
, Zγ →p p 
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Chapter 5

Squark and gaugino production
and decays at hadron colliders

In many models, the non-coloured charginos and neutralinos belong to the class
of the lightest supersymmetric particles, their low masses counterbalancing the
small weak cross sections for direct production. Theoretically, full NLO SUSY-QCD
calculations have been performed [40], while experimentally, their subsequent decay
to gold-plated trilepton signatures [213, 214] have been exploited in several CDF
and D0 analyses at the Tevatron [215, 216, 217, 218, 219] and will be investigated
at the LHC [220, 221]. Due to their strong coupling, squarks should be abundantly
produced at hadron colliders, and hadroproduction cross sections and decay has
therefore been studied in detail at NLO SUSY-QCD [34]. The production of top
[35] and bottom [95] squarks with large helicity mixing has received particular
attention, and both QCD one-loop and electroweak tree-level contributions have
been calculated for non-diagonal, diagonal and mixed top and bottom squark pair
production [96]. Very recently, flavour violation has been considered in the context
of collider searches [97]. Concerning the associated production of squarks and
gauginos, NLO SUSY-QCD cross sections in cMFV SUSY have been calculated
some times ago [37] and generalized to NMFV scenarios [97].

In the following, we use for the sake of simplicity the generic notation{
C1

abc, C2
abc

}
= {Labc, Rabc} (5.1)

for the couplings defined in Sec. 2.4, while the propagators appearing as mass-
subtracted Mandelstam variables read

sw = s−m2
W , sz = s−m2

Z ,

tχ̃0
k

= t−m2
χ̃0

k
, uχ̃0

k
= u−m2

χ̃0
k

,

tχ̃j = t−m2
χ̃±j

, uχ̃j = u−m2
χ̃±j

,

tg̃ = t−m2
g̃ , ug̃ = u−m2

g̃ ,

tq̃i = t−m2
q̃i

, uq̃i = u−m2
q̃i

.

(5.2)
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Figure 5.1: Tree-level Feynman diagrams for the production of charged squark-
antisquark pairs in quark-antiquark collisions.

5.1 NMFV squark-antisquark pair hadroproduction

5.1.1 Analytical results

In NMFV SUSY, the production of charged squark-antisquark pairs

q(ha, pa) q̄′(hb, pb) → ũi(p1) d̃∗j (p2), (5.3)

where i, j = 1, ..., 6 label up- and down-type squark mass eigenstates, ha,b helicities,
and pa,b,1,2 four-momenta, proceeds from an equally charged quark-antiquark initial
state through the tree-level Feynman diagrams shown in Fig. 5.1. The corresponding
cross section can be written in a compact way as [97]

dσ̂qq̄′

ha,hb

dt
= (1− ha)(1 + hb)

[
W
s2w

+
( ∑

k,l=1,...,4

N kl
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]
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k
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l

)
+
G21

t2g̃

]
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[( ∑
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k
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l

)
+
G22

t2g̃

]
(5.4)

thanks to the form factors

W =
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16x2
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ũi
m2

d̃j

)
δmn +

(
mχ̃0

k
mχ̃0

l
s
)

(1− δmn)

]
,

Gmn =
2π α2

s

9 s2

∣∣∣Cn∗
d̃jq′g̃

Cm
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, (5.5)
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Figure 5.2: Tree-level Feynman diagrams for the production of neutral squark-
antisquark pairs in quark-antiquark (top) and gluon-gluon collisions (bottom).

which combine coupling constants and Dirac traces of the squared and interference
diagrams. In cMFV SUSY, superpartners of heavy flavours can only be produced
through the purely left-handed s-channel W -exchange, since the t-channel diagrams
are suppressed by the small bottom and negligible top quark densities in the
proton, and one recovers the result in Ref. [96]. In NMFV, t-channel exchanges can,
however, contribute to heavy-flavour final state production from light-flavour initial
states and even become dominant, due to the strong gluino coupling.

Neutral squark-antisquark pair production in NMFV proceeds either from equally
neutral quark-antiquark initial states

q(ha, pa) q̄′(hb, pb) → q̃i(p1) q̃∗j (p2) (5.6)

through the five different gauge-boson/gaugino exchanges shown in Fig. 5.2 (top) or
from gluon-gluon initial states

g(ha, pa) g(hb, pb) → q̃i(p1) q̃∗i (p2) (5.7)

through the purely strong couplings shown in Fig. 5.2 (bottom). The differential
cross section for quark-antiquark scattering [97]
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+ (1− ha)(1− hb)
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involves many different form factors,
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since only very few interferences (those between strong and electroweak channels of
the same propagator type) are eliminated due to colour conservation. On the other
hand, the gluon-initiated cross section

dσ̂gg
ha,hb

dt
=

πα2
s

128s2

[
24
(
1−2

tq̃iuq̃i

s2

)
− 8

3

][
(1−hahb)−2

sm2
q̃i

tq̃iuq̃i

(
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sm2
q̃i

tq̃iuq̃i

)]
(5.10)

involves only the strong coupling constant and is thus quite compact. In the case of
cMFV, our results agree with those in Ref. [96] for diagonal and non diagonal squark
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helicities in the final state. Diagonal production of identical squark-antisquark mass
eigenstates is, of course, dominated by the strong quark-antiquark and gluon-gluon
channels. Their relative importance depends on the partonic luminosity and thus
on the type and energy of the hadron collider under consideration. Non-diagonal
production of squarks of different helicity or flavour involves only electroweak and
gluino-mediated quark-antiquark scattering, and the relative importance of these
processes depends largely on the gluino mass.

5.1.2 Numerical results

We present numerical predictions for the production cross sections of squark-
antisquark pairs in NMFV SUSY at the CERN LHC. Again, we use the QCD fac-
torization theorem to compute the total unpolarized hadronic cross sections

σ =
∫ 1

4m2/sh

dτ
∫ 1/2 ln τ

−1/2 ln τ
dy
∫ tmax

tmin

dt fa/A(xa,M
2
a ) fb/B(xb,M

2
b )

dσ̂
dt
, (5.11)

where the relevant partonic cross section dσ̂/dt is convolved with universal parton
densities. For consistency with our leading order QCD calculation in the collinear
approximation, where all squared quark masses, the top excepted, are much lower
than the partonic centre-of-mass energy, we employ the LO set of the latest CTEQ6
global parton density fit [222], which includes nf = 5 “light” quark flavours and
the gluon, but no top-quark density. For gluon initial states and gluon or gluino
exchanges, the strong coupling constant αs(µR) is calculated with the corresponding
LO value of Λnf=5

LO = 165 MeV. We identify the renormalization scale µR with the
factorization scales Ma = Mb and set the scales to the average mass of the final
state SUSY particles i and j, m = (mi +mj)/2.

We take current masses and widths of the electroweak gauge bosons, electroweak
mixing angle, electromagnetic fine structure constant and CKM matrix elements,
while the soft SUSY-breaking masses at the electroweak scale are computed thanks
the computer program SPheno 2.2.3 [156]. Then we introduce NMFV as in Sec.
2.3.3 through the parameter λ defined in Eq. (2.53). The physical masses of the
SUSY particles and the mixing angles, taking into account NMFV, are obtained
with the computer program FeynHiggs 2.5.1 [157].

The numerical cross sections for charged squark-antisquark and neutral up- and
down-type squark-antisquark pair production are shown in Figs. 5.3, 5.4, 5.5 and
5.6 for the benchmark scenarios A, B, C and D described in Sec. 2.3.3, respectively.
The magnitudes of the cross sections vary from the barely visible level of 10−2 fb
for weak production of heavy final states to large cross sections of 102 to 103 fb
for the strong production of diagonal squark-antisquark pairs. Unfortunately, these
processes, whose cross sections are largest, are practically insensitive to the flavour
violation parameter λ, as the strong gauge interaction is insensitive to quark flavours.

Some of the subleading, non-diagonal cross sections show, however, sharp
transitions, in particular down-type squark-antisquark production at the benchmark
point B (bottom panel on Fig. 5.4), but also other squark-antisquark production
processes. At λ = 0.02, the cross sections for d̃1d̃

∗
6 and d̃3d̃

∗
6 switch places. The
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Figure 5.3: Cross sections for charged squark-antisquark (top) and neutral up-type
(centre) and down-type (bottom) squark-antisquark pair production at the LHC in
our benchmark scenario A. 98
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Figure 5.4: Same as Fig. 5.3 for our benchmark scenario B.
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Figure 5.5: Same as Fig. 5.3 for our benchmark scenario C.
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Figure 5.6: Same as Fig. 5.3 for our benchmark scenario D.
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concerned down-type squark mass differences are rather small (see lower right
panel of Fig. 2.5), and this flip is then mainly due to the interplay between the
different strange and bottom quark densities in the proton and the level reordering
phenomenon discussed in Sec. 2.3.4, since at this value of λ, the flavour contents of
d̃1 and d̃3 are exchanged (see Fig. 2.12).

At λ = 0.035, the flavour content of the eigenstate d̃3 switches from s̃R to d̃R,
leading to a sharp increase of the cross sections for d̃3d̃

∗
6 and d̃1d̃

∗
3, since these final

states can then be produced from down-type valence quarks. For λ > 0.035, the
cross section of the latter process, d̃1d̃

∗
3 production, increases with the strange squark

content of d̃1 (see Fig. 2.12). Let us note that all of these non-diagonal squark pair
production cross sections are mainly dominated by the exchange of strongly coupled
gluinos despite of their large mass.

5.1.3 cMFV limit

We investigate in this subsection the production of diagonal (same mass-
eigenstates), non-diagonal (different mass eigenstates) and mixed (different flavours)
third generation squark-antisquark pairs within the limit of the constrained Mini-
mal Flavour Violation, where the squark mixing is parameterized only by the two
mixing angles θt̃ and θb̃. The cMFV limit of Eq. (5.8) in the case of diagonal squark-
antisquark pair production, keeping only strong contributions and showing explicitly
the mixing angle dependence, is given by [96]

dσ̂qq̄
ha,hb

dt
=

4πα2
s

9s2
[1− hahb]

tu−m4
q̃

s2

− 4πα2
s

27s2
[1± (hb − ha) cos 2θq̃ − hahb]
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stg̃
δqb δq̃b̃

+
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s

18s2

[
(1+hahb) (1−cos 4θq̃)m2

g̃s+(1−hahb) (3+cos 4θq̃) (tu−m4
q̃)

t2g̃

± 4 cos 2θq̃ (hb − ha)
tu−m4

q̃

t2g̃

]
δqb δq̃b̃, (5.12)

where the upper sign holds for b̃1 and the lower sign for b̃2 production. Stops are
produced only through s-channel gluon exchange due to negligible top quark PDFs
in the proton. Even for sbottom production, t-channel gluino contributions are
suppressed by small bottom PDFs and the heavy gluino propagator. The cross
section for the gluon-fusion initiated subprocess in Eq. (5.10) is left unchanged,
since it is mixing independent. In the case of no squark mixing, our results agree
with the double-polarized and unpolarized cross sections in Ref. [43].

For non-diagonal production, s-channel strong diagrams are not present. How-
ever, we take into account the PDF-suppressed gluino t-channel and the quark-
induced tree-level electroweak diagrams, proceeding either through an s-channel Z-
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boson exchange or a t-channel neutralino exchange,
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q̃qχ̃0
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}]
,

(5.13)

where we have summed over q̃1q̃∗2 + q̃2q̃
∗
1 final states. The coupling strengths

Lq̃qχ̃0
i

=
[
(eq − T 3

q ) sWNi1 + T 3
q cWNi2

]
, (5.14)

−R∗q̃qχ̃0
i

= eq sW Ni1, (5.15)

correspond the the quark-squark-neutralino interactions in the limit of non-mixing
left- and right-handed (s)quarks, provided that we neglect the relatively small
Yukawa couplings, which is the case here since top (s)quarks do not take part in the
considered subprocess.

Finally, mixed squark-pair production, i.e. a pair of one bottom plus one top
squark, proceeds at tree-level only through an s-channel exchange of a charged W±-
boson, since the t-channel exchanges of Fig. 5.1 are PDF-suppressed due to the
negligible top density inside the proton. The t̃1b̃1 production cross section is obtained
from Eq. (5.4) by keeping only the W contribution,

dσ̂qq̄′

ha,hb

dt
=

πα2

s2
|Vqq′ |2|Vtb|2

[
tu−m2

t̃1
m2

b̃1

s2

]
cos2 θt̃ cos2 θb̃ (1−ha)(1+hb)

4x2
W (1−m2

W /s)2
, (5.16)

where we show explicitly the dependence on the CKM matrix elements. For the
mixed production of the heavier squark mass eigenstates, the corresponding index 1
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has to be replaced by 2 and the squared cosine of the mixing angle by the squared
sine.

In the following, we use older values of the SM parameters [197], and the phys-
ical masses of the squarks and mixing matrices are calculated using the computer
program SuSpect Version 2.3 [202]. As a first benchmark, we choose the model line
SPS 1a [45] described in Sec. 3.3 and show in the top panel of the Fig. 5.7 that
cMFV non-diagonal and mixed third generation squark production will be difficult
to discover at the Tevatron due to its limited centre-of-mass energy. As one can see,
only diagonal production of the lighter top squark mass eigenstate will be visible in
the full region of the mSUGRA parameter space shown here with the expected final
integrated luminosity of 8.9 fb−1. For diagonal sbottom production, the accessible
parameter space is already reduced to m1/2 ≤ 225 GeV. Non-diagonal and mixed
squark production could only be discovered, if the common fermion mass m1/2 is
not much larger than 100 GeV. As expected for a pp̄ collider, the cross sections
are very much dominated by qq̄ annihilation, even for the diagonal channels, and
gg initial states contribute at most 15% in the case of diagonal light stop production.

The LHC with its much larger centre-of-mass energy of and design luminosity of
300 fb−1 will, in contrast, have no problem in producing all combinations of squarks
in sufficient numbers. The hierarchy between the strong diagonal production
channels of O(α2

s) and the electroweak non-diagonal and mixed channels of O(α2)
is, however, clearly visible in the bottom panel of Fig. 5.7, the latter being about
two orders of magnitude smaller. The LHC being a pp collider and the average
x-value in the PDFs being considerably smaller, the diagonal channels are enhanced
by the high gg luminosity, which dominates their cross sections by up to 93 %.
Among the electroweak O(α2) processes, mixed production of top and bottom
squarks is favoured over non-diagonal top or bottom squark production by the
possibility of two light masses and a positive charge in the final state, which is more
easily produced by the charged pp initial state.

We show in Figs. 5.8 numerical results for the LHC, varying m0 independently to
test the sensitivity of the cross section on the squark masses and mixing, starting from
the benchmark point SPS 5 [45], which is a mSUGRA scenario with low tanβ = 5,
large m1/2 = 350 GeV, and large negative A0 = −1000 GeV, leading to heavier
sbottoms of 566 and 655 GeV, a heavy t̃2 of 651 GeV, but also a light t̃1 of 259
GeV. We see a clear hierarchy between the dominant pair production of the lighter
stop, strong pair production of the heavier stop and sbottoms, charged and neutral
electroweak production of final states involving at least one light squark, and finally
charged and neutral electroweak production of the heavier squarks, which may only
be visible up to m0 ≤ 600 GeV. The more pronounced hierarchy can be explained
by the considerable squark mass differences in SPS 5, which lead to additional phase
space suppression for the heavier squarks.

5.1.4 QCD one-loop contributions for non-diagonal squark pair pro-
duction

Within QCD and cMFV SUSY, we have also investigated the possibility to pro-
duce non-diagonal squark pairs by the rescattering of diagonal squark pairs through
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Figure 5.7: Production cross sections for top (full), bottom (dashed), and mixed top
and bottom squarks (dotted) at the Tevatron (top figure) and at the LHC (bottom
figure) as a function of the common fermion mass m1/2 in the mSUGRA model line
SPS 1a [45].
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Figure 5.8: Production cross sections for top (full), bottom (dashed), and mixed top
and bottom squarks (dotted) at the LHC in the mSUGRA model SPS 5 as a function
of the scalar mass m0. [45].

four-squark vertices in the final state, in the limit of a decoupled gluino. The cor-
responding Feynman diagrams, shown in Fig. 5.9, have one-loop topology and are
therefore suppressed by additional squark propagators and/or annihilations within
the squark loop. The squared helicity amplitude for the production of non-diagonal
stop pairs in gluon-gluon collisions is given by [96]

dσ̂gg
ha,hb

dt
= (1+hahb)

[
37α4

s sin2 (4θt̃)
27648πs4

|∆ lnt̃ |
2 +
∑
q̃ 6=t̃

5α4
s cos2 (2θq̃) sin2 (2θt̃)

3072πs4
|∆ lnq̃ |2

+
∑
q̃ 6=t̃

5α4
s cos (2θq̃) cos (2θt̃) sin2 (2θt̃)

2304πs4
Re (∆ lnq̃ ∆ lnt̃)

+
∑

q̃,q̃′ 6=t̃;q̃ 6=q̃′

5α4
s cos (2θq̃) cos

(
2θq̃′

)
sin2 (2θt)

1536πs4
Re
(
∆ lnq̃ ∆ lnq̃′

) , (5.17)

where

∆ lnq̃ = m2
q̃1

ln2 (−xq̃1)−m2
q̃2

ln2 (−xq̃2), with xq̃i =
1− βq̃i

1 + βq̃i

, (5.18)

and βq̃i =
√

1− 4m2
q̃i

is the velocity of the ith squark mass eigenstate. In the
limit of degenerate light squarks, only top and bottom squark loops survive loop
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Figure 5.9: Subdominant loop-level QCD Feynman diagrams for non-diagonal (i 6= j)
squark production at hadron colliders.

annihilations, and the squared helicity amplitude simplifies to

dσ̂gg
ha,hb

dt
= (1 + hahb)

[
37α4

s sin2 (4θt̃)
27648πs4

|∆ lnt̃ |
2 +

5α4
s cos2

(
2θb̃

)
sin2 (2θt̃)

3072πs4
|∆ lnb̃ |

2

+
5α4

s cos
(
2θb̃

)
cos (2θt̃) sin2 (2θt̃)

2304πs4
Re
(
∆ lnb̃ ∆ lnt̃

)]
. (5.19)

These expressions have been summed over t̃1t̃∗2 + t̃2t̃
∗
1 final states and generalize

the corresponding result in Ref. [35], where only top squark loops were taken into
account. For non-diagonal sbottom production, top and bottom squark indices have
to be exchanged in the equations above.

For the non-diagonal third generation squark production t̃1t̃∗2+t̃2t̃
∗
1 and b̃1b̃∗2+b̃2b̃

∗
1,

the only contributing diagrams of Fig. 5.2 is the electroweak Z-boson exchange, since
the QCD gg-initiated processes and the gluon s-channel are only open for diagonal
squark pair production, and the neutralino and gluino diagrams are suppressed by the
negligible top and small bottom densities in the proton. Indeed, for the mSUGRA
scenario SPS 5, their contributions are found to be six to eight orders of magni-
tude smaller than the Z-contribution. Within the SPS 5 scenario and at the LHC,
Fig. 5.10 shows that for non-diagonal stop production, the QCD loop-contributions
from Fig. 5.9 are smaller than the electroweak tree-level ones by about one order of
magnitude, whereas we naively expect the O(α2) and O(α4

s) diagrams to contribute
with roughly equal strength. As already mentioned, this can be easily explained by
the presence of additional heavy squark propagators in the loop diagrams. Here,
we consider not only loops involving top, but also bottom squarks, which do not
cancel in Eq. (5.19), if the masses of the two bottom squarks are unequal. However,
the non-diagonal elements in the squark mass matrices are proportional to the rel-
evant SM quark mass and mb � mt, so that mixing effects are less important for
sbottoms than for stops. Consequently, sbottom loops contribute about one order
of magnitude less than stop loops, as can also be seen in Fig. 5.10. SUSY-QCD
loop diagrams involving gluino exchanges have not been calculated here, as they
are of O(α4

s) and require in addition the presence of heavy top quark and gluino
propagators in the loop. In the SPS 5 scenario, we have indeed a heavy gluino of
mass mg̃ = 725 GeV. The dependence on the cosine of the stop mixing angle in the
electroweak cross section of Eq. (5.16) and in the the sbottom loop contribution in
Eq. (5.19) through sin2(2θt̃) = 4 cos2 θt̃ (1− cos2 θt̃) is clearly visible in Fig. 5.10. In
contrast, the stop loop contribution in Eq. (5.19) has a steeper dependence through
sin2(4θt̃) = 16 cos2 θt̃ (1− cos2 θt̃) (1− 2 cos2 θt̃)

2, which is also visible in the figure.
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5.1.5 Double-spin asymmetries

As a possible application of the polarization dependence of our analytical results,
we show in Fig. 5.11 the double-spin asymmetry of diagonal light stop production
at RHIC (within cMFV SUSY). As this polarized pp collider has only a rather small
centre-of-mass energy of

√
sh = 500 GeV, the observable stop mass range is obviously

very limited. Already for mt̃1
> 106 GeV, the unpolarized cross section drops below

1 fb, while stop masses below 96 GeV are most likely already excluded [149]. This
leaves only a very small mass window of 10 GeV for possible observations. In Fig.
5.11 one can clearly see the rise of the asymmetry for qq̄ and gg initial states, as
the stop mass and the correlated x-value in the PDFs grows. However, as the two
asymmetries are approximately of equal size, but opposite sign, the total observable
asymmetry rests below the 5% level in the entire mass range shown. This is true
for both choices of polarized parton densities, GRSV 2000 standard (STD) as well
as valence (VAL) [201]. For consistency, the unpolarized cross sections have been
calculated in this case using the GRV 98 parton density set [200], as in Sec. 4.1.

5.2 NMFV squark pair production

5.2.1 Analytical results

Figure 5.12: Tree-level Feynman diagrams for the production of one down-type
squark (q̃i) and one up-type squark (q̃′j) in the collision of an up-type quark (q)
and a down-type quark (q′).

While squark-antisquark pairs are readily produced in pp̄ collisions, e.g. at the
Tevatron, from valence quarks and antiquarks, pp colliders have a larger quark-quark
luminosity and will thus more easily lead to squark pair production. The potentially
flavour-violating production of one down-type and one up-type squark

q(ha, pa) q′(hb, pb) → d̃i(p1) ũj(p2), (5.20)

in the collision of an up-type quark q and a down-type quark q′ proceeds through
the t-channel chargino or u-channel neutralino and gluino exchanges shown in Fig.
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5.12. The corresponding cross section within NMFV SUSY [97]

dσ̂qq′

ha,hb

dt
= (1−ha)(1−hb)

[( ∑
k=1,2
l=1,2

Ckl
11

tχ̃k
tχ̃l

)
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( ∑
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l=1,...,4

N kl
11

uχ̃0
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l

)
+
G11

u2
g̃

+
( ∑

k=1,2
l=1,...,4

[CN ]kl
11

tχ̃k
uχ̃0

l

)
+
( ∑

k=1,2

[CG]k11
tχ̃k

ug̃

)]
+(1+ha)(1+hb)

[( ∑
k=1,2
l=1,2

Ckl
22

tχ̃k
tχ̃l

)

+
( ∑

k=1,...,4
l=1,...,4

N kl
22

uχ̃0
k
uχ̃0

l

)
+
G22

u2
g̃

+
( ∑

k=1,2
l=1,...,4

[CN ]kl
22

tχ̃k
uχ̃0

l

)
+
( ∑

k=1,2

[CG]k22
tχ̃k

ug̃

)]

+ (1−ha)(1+hb)

[( ∑
k=1,2
l=1,2

Ckl
12

tχ̃k
tχ̃l

)
+
( ∑

k=1,...,4
l=1,...,4

N kl
12

uχ̃0
k
uχ̃0

l

)
+
G12

u2
g̃

+
( ∑

k=1,2
l=1,...,4

[CN ]kl
12

tχ̃k
uχ̃0

l

)
+
( ∑

k=1,2

[CG]k12
tχ̃k

ug̃

)]
+(1+ha)(1−hb)

[( ∑
k=1,2
l=1,2

Ckl
21

tχ̃k
tχ̃l

)

+
( ∑

k=1,...,4
l=1,...,4

N kl
21

uχ̃0
k
uχ̃0

l

)
+
G21

u2
g̃

+
( ∑

k=1,2
l=1,...,4

[CN ]kl
21

tχ̃k
uχ̃0

l

)
+
( ∑

k=1,2

[CG]k21
tχ̃k

ug̃

)]
(5.21)

involves the form factors

Ckl
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ũjq′χ̃±k
Cm∗

d̃iqχ̃±k
Cm∗

ũjqg̃ Cn∗
d̃iq′g̃

] [(
u t−m2

d̃i
m2

ũj
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, (5.22)

where the neutralino-gluino interference term is absent due to colour conservation.
The cross section for the charge-conjugate production of antisquarks from antiquarks
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Figure 5.13: Tree-level Feynman diagrams for the production of two up-type or
down-type squarks.

can be obtained from the equations above by replacing ha,b → −ha,b. Heavy-flavour
final states are completely absent in cMFV due to the negligible top quark and
small bottom quark densities in the proton and can thus only be obtained in NMFV.

The Feynman diagrams for pair production of two up- or down-type squarks with
non-minimal flavour violation

q(ha, pa) q′(hb, pb) → q̃i(p1) q̃j(p2) (5.23)

are shown in Fig. 5.13. In NMFV SUSY, neutralino and gluino exchanges can lead
to identical squark flavours for different quark initial states, so that both t- and
u-channels contribute and may interfere. The cross section [97]
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depends therefore on the form factors
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Gluinos will dominate over neutralino exchanges due to their strong coupling, and
the two will only interfere in the mixed t- and u-channels due to colour conser-
vation. At the LHC, up-type squark pair production should dominate over mixed
up-/down-type squark production and down-type squark pair production, since the
proton contains two valence up-quarks and only one valence down-quark. As before,
the charge-conjugate production of antisquark pairs is obtained by making the re-
placement ha,b → −ha,b. If we neglect electroweak contributions as well as squark
flavour and helicity mixing and sum over left- and right-handed squark states, our
results agree with those of Ref. [31].
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5.2.2 Numerical results

As in Sec. 5.1.2, we employ the LO set of the latest CTEQ6 global parton
density fit [222], with five active flavours and the gluon, and the strong coupling
constant is calculated with the value of Λnf=5

LO = 165 MeV. The renormalization and
factorization scales are set to the average mass of the final state SUSY particles,
and the SUSY masses and mixings are again computed with the help of SPheno
and FeynHiggs.

The numerical cross sections for mixed, up- and down-type squark-squark pair
production are shown in Figs. 5.14, 5.15, 5.16 and 5.17 for the benchmark scenarios
A, B, C and D described in Sec. 2.3.3, respectively, where we show their dependence
on the flavour violating parameter λ (see Eq. (2.53)). While the diagonal channels
are practically insensitive to flavour violation, some of the non-diagonal cross sec-
tions show sharp transitions, as for example at the benchmark point C (Fig. 5.16)
where they occur between the ũ2/ũ4 and d̃2/d̃4 states, which are pure charm/strange
squarks below/above λ = 0.035. As a side-remark we note that an interesting per-
spective might be the exploitation of these t-channel contributions to second- and
third-generation squark production for the determination of heavy-quark densities
in the proton. This requires, of course, efficient experimental techniques for heavy-
flavour tagging.

5.3 NMFV associated production of squarks and gaug-
inos

5.3.1 Analytical results

The associated production of squarks and neutralinos or charginos

q(ha, pa) g(hb, pb) → χ̃j(p1) q̃i(p2) (5.26)

is a semi-weak process that originates from quark-gluon initial states and has both
an s-channel quark and a t-channel squark contribution. They involve both a quark-
squark-gaugino vertex that can in general be flavour violating. The corresponding
Feynman diagrams can be seen in Fig. 5.18. The squark-gaugino cross section is
given by [97]
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=
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∣∣2 ]}, (5.27)

where nχ̃ = 6xW (1 − xW ) for neutralinos and nχ̃ = 12xW for charginos. Note that
the t-channel diagram involves the coupling of the gluon to scalars and does thus
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Figure 5.14: Cross sections for mixed (top), up-type (centre) and down-type (bot-
tom) squark-squark pair production at the LHC in our benchmark scenario A.
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Figure 5.15: Same as Fig. 5.14 for our benchmark scenario B.
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Figure 5.16: Same as Fig. 5.14 for our benchmark scenario C.
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Figure 5.17: Same as Fig. 5.14 for our benchmark scenario D.
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Figure 5.18: Tree-level Feynman diagrams for the associated production of squarks
and gauginos.
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Figure 5.19: Cross sections for associated production of squarks with charginos (left)
and neutralinos (right) at the LHC in our benchmark scenario A.
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Figure 5.20: Same as Fig. 5.19 for our benchmark scenario B.
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Figure 5.21: Same as Fig. 5.19 for our benchmark scenario C.

λ0 0.01 0.02 0.03 0.04 0.05λ0 0.01 0.02 0.03 0.04 0.05

 [
fb

]
σ

0.01

0.1

1

10
 + c.c.

j
q
~

 
±
1χ∼ →p p 

1u~
±
1χ∼

2u~
±
1χ∼

6u~
±
1χ∼

6d
~±

1χ∼

λ0 0.01 0.02 0.03 0.04 0.05λ0 0.01 0.02 0.03 0.04 0.05

 [
fb

]
σ

0.01

0.1

1

10
 + c.c.

j
q
~

 
0

2χ∼ →p p 

1d
~0

2χ∼
2d

~0

2χ∼

6u~
0
2χ∼

6d
~0

2χ∼

Figure 5.22: Same as Fig. 5.19 for our benchmark scenario D.
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Figure 5.23: Tree-level Feynman diagrams for the production of gaugino pairs.

not depend on its helicity hb. The cross section of the charge-conjugate process can
be obtained by taking ha → −ha. For non-mixing squarks and gauginos, we agree
again with the results of Ref. [31].

5.3.2 Numerical results

Again, we employ the LO set of the latest CTEQ6 global parton density fit
[222], with five active flavours and the gluon, and the strong coupling constant
is calculated with the value of Λnf=5

LO = 165 MeV. The renormalization and
factorization scales are set to the average mass of the final state SUSY particles, and
the SUSY masses and mixings are computed with the help of SPheno and FeynHiggs.

The numerical cross sections for associated production of squarks with charginos
and neutralinos production as a function of the flavour violating parameter λ are
shown in Figs. 5.19, 5.20, 5.21 and 5.22 for the benchmark scenarios A, B, C
and D described in Sec. 2.3.3, respectively. The cross sections for the semi-strong
production of very light gaugino and not too heavy squark vary from 10−1 fb to
102 fb and are quite sensitive to the flavour violation parameter λ thanks to the
quark-squark-gaugino vertex in diagrams of Fig. 5.18. Smooth transitions are
observed for the associated production of third-generation squarks with charginos
and neutralinos, and in particular for the scenarios A and B.

For benchmark point A (Fig. 5.19), the cross section for d̃4 production decreases
with its strange squark content (see Fig. 2.10), while the bottom squark content
increases at the same time. For benchmark point B (Fig. 5.20), the same (oppo-
site) happens for d̃6 (d̃1), while the cross sections for ũ6 increase/decrease with its
charm/top squark content. Even in constrained Minimal Flavour Violation, the as-
sociated production of stops and charginos is a particularly useful channel for SUSY
particle spectroscopy, as can be seen from the fact that cross sections vary over
several orders of magnitude among our four benchmark points (see also Ref. [223]).

5.4 NMFV gaugino pair production

5.4.1 Analytical results

We consider the purely electroweak production of gaugino pairs

q(ha, pa) q̄′(hb, pb) → χ̃i(p1) χ̃j(p2) (5.28)

from quark-antiquark initial states, where flavour violation can occur via the quark-
squark-gaugino vertices in the t- and u-channels (see Fig. 5.23). However, if it were
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not for different parton density weights, summation over complete squark multiplet
exchanges would make these channels insensitive to the exchanged squark flavour.
Furthermore there are no final state squarks that could be experimentally tagged.
The cross section can be expressed generically as [97]
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dt
=
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3s2
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[
|Qu

LL|
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i.e. in terms of generalized charges. For χ̃−i χ̃
+
j -production, these charges are given

by
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,

Qu−+
RL =

6∑
k=1

Ld̃kq′χ̃±i
R∗

d̃kqχ̃±j

2xW ud̃k

,

Qt−+
RL =

6∑
k=1

L∗
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Note that there is no interference between t- and u-channel diagrams due to
(electromagnetic) charge conservation. The cross section for chargino pair
production in e+e−-collisions can be deduced by setting eq → el = −1,
Lqq′Z → LeeZ = (2T 3

l − 2 el xW ) and Rqq′Z → ReeZ = −2 el xW . Neglecting
all Yukawa couplings, we can then reproduce the calculations of Ref. [224].
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The charges of the chargino-neutralino associated production are given by
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The charge-conjugate process is again obtained by making the replacement
ha,b → −ha,b in Eq. (5.29). In the case of non-mixing squarks with neglected
Yukawa couplings, we agree with the results of Ref. [40], provided we correct a sign
in their Eq. (2) as described in Ref. [225].

Finally, the charges for the neutralino pair production are given by
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Figure 5.24: Cross sections for gaugino pair production at the LHC in our benchmark
scenario A (left) and B (right).
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Figure 5.25: Same as Fig. 5.24 for our benchmark scenario C (left) and D (right).
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which agrees with the results of Ref. [226] in the case of non-mixing squarks.

5.4.2 Numerical results

As in the previous sections, the SUSY masses and mixings are computed with
the help of SPheno and FeynHiggs, and the LO set of the CTEQ6 parton density are
used. The numerical cross sections for gaugino pair production are shown in Figs.
5.24 and 5.25 for our benchmark scenario A, B, C, and D. Their cross sections are
rather large, but practically insensitive to the flavour violation parameter λ, since
they are summed over exchanged squark flavours.
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Table 5.1: Dominant s-, t-, and u-channel contributions to the flavour violating
hadroproduction of third-generation squarks and/or gauginos and the competing
dominant flavour-diagonal contributions.

Exchange s t u

Final State

t̃b̃∗ W NMFV-g̃ -

b̃s̃∗ NMFV-Z NMFV-g̃ -

t̃c̃∗ NMFV-Z NMFV-g̃ -

t̃b̃ - - NMFV-g̃

b̃b̃ - g̃ g̃

t̃t̃ - NMFV-g̃ NMFV-g̃

χ̃0b̃ b b̃ -

χ̃±b̃ NMFV-c NMFV-b̃ -

χ̃0t̃ NMFV-c NMFV-t̃ -

χ̃±t̃ b t̃ -

χ̃χ̃ γ, Z,W q̃ q̃

5.5 Impact of flavour violation on squark and gaugino
production

In the previous sections, we have performed an extensive analysis of squark and
gaugino hadroproduction and decays in non-minimal flavour violating supersymme-
try. Within the super-CKM basis, we have taken into account the possible misalign-
ment of quark and squark rotations and computed all squared helicity amplitudes for
the production and the decay widths of squarks and gauginos in compact analytic
form, verifying that our results agree with the literature in the case of non-mixing
squarks whenever possible. In order to obtain numerical predictions for hadron col-
liders, we have implemented all our results in a flexible computer program, allowing
us to discuss in detail the dependence of the cross section on flavour violation. An
illustrative summary of flavour violating hadroproduction cross section contributions
for third-generation squarks and/or gauginos is presented in Tab. 5.1, together with
the competing flavour-diagonal contributions, which are the only contributions in
cMFV SUSY.

5.6 NMFV decays of squarks, gluino and gauginos

5.6.1 Squark decays

We turn now from SUSY particle production to decay processes and show in
Fig. 5.26 the possible decays of squarks into gauginos and quarks (top) as well as
into electroweak gauge bosons and lighter squarks (bottom). Both processes can in
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Figure 5.26: Tree-level Feynman diagrams for squark decays into gauginos and
quarks (top) and into electroweak gauge bosons and lighter squarks (bottom).

general induce flavour violation. The decay widths of the former are given by
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while those of the latter are given by

Γq̃i→Zq̃k
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The usual Källen function is

λ(x, y, z) = x2 + y2 + z2 − 2(x y + y z + z x). (5.38)

In MFV, our results agree with those of Ref. [227].
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Figure 5.27: Tree-level Feynman diagram for gluino decays into squarks and quarks.

Figure 5.28: Tree-level Feynman diagrams for gaugino decays into squarks and
quarks (left) and into lighter gauginos and electroweak gauge bosons (centre and
right).

5.6.2 Gluino decays

Heavy gluinos can decay strongly into squarks and quarks as shown in Fig. 5.27.
The corresponding decay width
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can in general also induce flavour violation. In MFV, our result agrees again with
the one of Ref. [227].

5.6.3 Gaugino decays

Heavier gauginos can decay into squarks and quarks as shown in Fig. 5.28 (left)
or into lighter gauginos and electroweak gauge bosons (Fig. 5.28 centre and right).
The analytical decay widths are
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and
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for charginos and
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for neutralinos, respectively. Chargino decays into a slepton and a neutrino (lepton
and sneutrino) can be deduced from the previous equations by taking the proper lim-
its, i.e. by removing colour factors and down-type masses in the coupling definitions.
Our results agree then with those of Ref. [228] in the limit of non-mixing sneutrinos.
Note that the same simplifications also permit a verification of our results for squark
decays into a gaugino and a quark in Eqs. (5.33) and (5.34) when compared to their
leptonic counterparts in Ref. [228].
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Chapter 6

Conclusion and outlook

The Standard Model of particle physics provides a successful description of
presently known phenomena, except for neutrino physics. However, despite of its
success, a set of conceptual problems do not have a solution within the framework
of the SM, such as the origin of mass, gauge coupling unification, or the hierarchy
problem. Several attempts have been made to solve these problems, leading to
various theories beyond the SM, even if there is still no experimental evidence of
their existence. Each of these theories predicts new particles, with masses lying in
the TeV-range, i.e. the discovery reach of present and future hadron colliders, the
Tevatron and the LHC, which will then be able to put constraints on these models,
or conclude about their (non-)existence.

In this thesis, we have considered the production of sleptons, squarks and
gauginos of the Minimal Supersymmetric Standard Model. Cross sections for SUSY
particles production at hadron colliders have been extensively studied in the past
at leading order and also at next-to-leading order of perturbative QCD, since they
are expected to receive important contributions from radiative corrections. These
corrections include large logarithms, which have to be resummed in order to get
reliable perturbative results. We have thus performed a first and extensive study
of the resummation effects for SUSY particle pair production at hadron colliders,
focusing on Drell-Yan like slepton-pair and slepton-sneutrino associated production
in minimal supergravity and gauge-mediated SUSY-breaking scenarios. We have
presented accurate transverse-momentum and invariant-mass distributions, as well
as total cross sections, resumming soft-gluon emission contributions to all orders in
the strong coupling.

Monte Carlo event generators are also commonly used, especially by experi-
mentalists, to calculate observables depending on the soft-gluon emission from the
initial state partons in hadronic collisions. This allows to compare experimental
data to theoretical predictions and to simulate experimental signatures, when
there are no experimental data yet. These programs usually implement the hard
scattering process at the leading order, matching it with parton showering, the latter
parameterizing the initial- and final-state radiation. Let us note that recently, event
generators using next-to-leading order calculations have also been developed. It is
expected that both Monte Carlo parton showering and resummation calculations
should accurately describe the effects of soft-gluon emission from the incoming
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partons. A comparison between the predictions given by the two approaches
would certainly be useful in testing their reliability. Finally, other SUSY particle
production processes, such as gaugino- or squark pair hadroproduction should also
be considered.

The quest for supersymmetric particles at hadron colliders will nevertheless
rely on our ability of predicting both the SUSY signal and the SM processes being
the backgrounds for these searches. In this work, we have focused on presenting
accurate predictions for a slepton-pair signal, i.e. two highly energetic lepton
and a large amount of missing energy. We have not considered the background
consisting mainly in lepton pairs coming from WW and tt̄ decays. A detailed
phenomenological study, including all background contributions, remains to be
performed, in order to propose proper experimental cuts to enhance the signal over
the background ratio. Furthermore, the sensitivity of these cuts to a complete
experimental environment should also be investigated.

In non-minimal supersymmetric models, novel effects of flavour violation may
occur. In this case, the flavour structure in the squark sector cannot be directly
deduced from the trilinear Yukawa couplings of the fermion and Higgs supermulti-
plets. We have performed a precise numerical analysis of the experimentally allowed
parameter space, considering minimal supergravity scenarios with non-minimal
flavour violation, looking for regions allowed by low-energy, electroweak precision,
and cosmological data. Leading order cross sections for the production of squarks
and gauginos at hadron colliders have been implemented in a flexible computer
program, allowing us to study in detail the dependence of these cross sections on
flavour violation.

A full experimental study including heavy-flavour tagging efficiencies, detector
resolutions, and background processes would, of course, be very interesting in order
to establish the experimental significance of NMFV. While the implementation of
our analytical results in a general-purpose Monte Carlo generator should now be
straight-forward, such a detailed experimental study is beyond the scope of this
work. Other possible extensions of our work include the investigation of other
SUSY-breaking mechanisms or the computation of the radiative corrections for all
of these processes within the NMFV framework.
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