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Chapter 1

Introduction

“The interactions of all other elements, even noble gases, is too large,
therefore Helium will stay the only superfluid” writes H. Vogel in “Gerth-
sen-Physik” [1], a not-so-old introductory physics textbook. Nowadays
it is a standard procedure in the laboratory to create superfluid dilute
gases of various alkali metals. This shows how unbelievable and ground-
breaking the work on cold atoms was over the last years. A superfluid
is a liquid of vanishing viscosity, a situation that strange that Richard
Feynman quotes John von Neuman of having it called “Dry Water” to
underline how unthinkable such a state is [2].

It all started from a rather unconventional root, atomic physics, a field
so unfamiliar to the general public that it is often confused with nuclear
physics. It was the invention of the laser, which made this field possible.
Suddenly, precision spectroscopy improved drastically and found a new
use: the cooling of neutral atoms and ions. A masterpiece of this field
was the invention of the magneto-optical trap, proposed by Jean Dalibard
and first realized by Raab et al. [3], which made it possible to take over
a hitherto independent field, the struggle to create a quantum gas and
especially a Bose-Einstein condensate (BEC), attempted for decades in
Hydrogen [4] but finally carried out first in 1995 with laser cooled atomic
gases [5, 6]. The ado was not about nothing, as the founders of this field,
Steven Chu, William D. Phillips and Claude Cohen-Tannoudji, were
awarded the 1997 Nobel prize in physics. The first creators of Bose-
Einstein condensation in dilute gases, Eric A. Cornell, Carl E. Wieman
and Wolfgang Ketterle, followed in 2001.

This enormous success led to an explosion in the field. Cold atoms
are nowadays studied in many laboratories around the world. Shortly
after the first realization of BEC, physicists started to ask: but what will
happen with fermions? Answering this question opened a large field of
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CHAPTER 1. INTRODUCTION

research, which is still growing.
Cold atoms are a wonderland for theorists: nowhere more than here

can physical principles be reduced to their purest meaning. We can
study fermions which are just that, and we can tune their interactions –
using a Feshbach resonance – at will. Thus, cold atoms can be seen as a
model system, having essentially the same behavior as superconductors,
neutron stars or the quark-gluon plasma [7], to name a few, without the
downsides of impurities as in solid state systems.

All the mentioned systems can be put under one universal umbrella: a
phase transition to superfluidity occurs below the critical temperature
Tc. As mentioned above, superfluidity is a state in which the particles
flow completely frictionless. If the particles carry a charge, one speaks
of superconductivity.1 Microscopically, this effect can be described by
the particles forming pairs. These pairs are bosonic, and below Tc the
pairs start to occupy the ground state in macroscopic numbers, forming
a Bose-Einstein condensate.

The nature of these pairs is very different in the various types of
superfluidity. In the case of superfluid He-4 and the mentioned BEC
in cold bosonic gases, the pairs consist of the ion core and the valence
electron. The binding is sufficiently strong to treat the atoms as bosonic
particles on their own. On the other hand, in superconductors, we have
weakly bound Cooper pairs, described by a theory by Bardeen, Cooper
and Schrieffer [9], which is termed BCS theory, after their inventors.
The advantage of working with cold atoms is that we can smoothly
change between all these behaviors, from very weak to very strong
interactions.

A very good illustration of this universality can be found in an article
by M. Holland et al. [10], shown in figure 1.1. The different kinds of
superfluidity span a range of six orders of magnitude in their critical
temperature. Nevertheless, they can all be described by the same theory.
This theory is based on a binding of fermionic particles to bosonic
pairs. The binding energy spreads over 15 orders of magnitude. Our
experiments on cold fermionic atomic gases are located in the center of
the graph, on the border between the two different extremes. On the left
in the graph, the weakly bound particles that can still be seen as single
fermionic particles, and on the right the strongly bound compound
bosons.

The situation is even richer for cold atoms: We do not only have a

1The equivalence of superfluidity and superconductivity was already realized by F.
London [8], long before any microscopic description was available.
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electrons for He-4. Our experiments are marked as ×. Figure modified
from reference [10].
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CHAPTER 1. INTRODUCTION

crossover from weak to strong interactions, but instead, looking at it
from a mean-field standpoint, we have weak attractive interactions in the
BCS limit, and weak repulsive interactions between the strongly bound
pairs, which we call molecules. This is important, because this enables us
to condense the molecules into a BEC, it would implode if the interactions
were attractive. In between these two weakly interacting limits lies a
zone where the interactions are sufficiently strong to form stable pairs,
but not yet strongly bound enough to be considered particles on their
own. This region has drawn large attention to theorists, because the
approximations usually used in many-body theory do not hold anymore,
as the parameters around which the approximations are performed are
not small.

At the 10th International Conference on Recent Progress in Many-
Body Theories [11], a challenge was posed by George Bertsch:

What are the ground state properties of the many-body system
composed of spin-1/2-fermions interacting via a zero-range,
infinite scattering-length contact interaction.

What was thought of as a toy model to describe the behavior of neutron
stars, started a large discussion in the field. Furthermore, as a rare
exception for neutron star theorists, an experimental realization was
possible [12]. In the very center of the crossover that we just described,
the fermionic atoms fulfill, at least as a very good approximation, the
conditions of this challenge. This means that the crossover forms a link
between different parts of physics.

It is this transition, from a bosonic to a fermionic gas, that this thesis
is devoted to. As this transition is smooth, it is known in the literature
as the BEC-BCS crossover.

The pioneering work in the field of fermionic gases started around
1997. The group at JILA had reached quantum degeneracy of 40K [13]
in 1998, while the groups at Rice [14] and our group [15] used 6Li and
reached quantum degeneracy in 2001, followed by the groups at MIT [16]
with 6Li and Florence [17] with 40K. The most important tool to manipulate
the atoms, the Feshbach resonance, was found and characterized [18,19].
The next important step was the creation of weakly bound molecules
in such a resonance [20]. Our group showed that these molecules are
surprisingly long-lived in 6Li [21]. Together with an exact calculation of
the scattering length between molecules [22], this laid the foundations
for the creation of molecular Bose-Einstein condensate at Innsbruck
[23], JILA [24], MIT [25] and our group (see the article in appendix A.1).
The condensation of fermion pairs on the BCS side has been shown at
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JILA, where they use magnetic field ramps to project these pairs onto
molecules on the BEC side [26]. The same group also determined the
condensation temperature throughout the resonance region [27].

Various properties of fermionic superfluidity have been studied. In
this thesis, we show that the expansion of a cold gas close to zero
temperature in the crossover follows the hydrodynamic equations typical
of the superfluid phase. The momentum distribution of the particles
shows the smoothing predicted by BCS theory. At the same time, the
other groups were not lazy: The Innsbruck group reported on the
pairing of atoms using a radio frequency spectroscopy technique [28].
In another experiment they showed that collective excitations behave as
predicted for a hydrodynamic gas [29]. In precision measurements, they
were able to distinguish the basic mean-field BCS theory from more
advanced Monte-Carlo simulations [30]. The thermodynamics of a gas
in the BEC-BCS crossover was studied by measuring its heat capacity at
Duke University [31]. At MIT, the creation of vortices, seen as the first
direct proof of superfluidity, was shown [32].

There are other important work carried out besides the BEC-BCS
crossover. After the group at JILA localized Feshbach resonances with
p-wave symmetry in 40K [33], the group at MIT [34] and our group found
them in 6Li as well. This is interesting to compare with superfluid 3He,
which also shows p-wave symmetry [35], and not an s symmetry like
the Feshbach resonance used in the crossover. This might someday
lead to a new BEC-BCS-p-wave-crossover physics. Resonances between
different isotopes, described in this thesis, provide a straight forward
extension to the field of Feshbach physics, and is nowadays used in
many research groups.

A rather different experiment on cold fermionic atoms has been
presented by the group at Amsterdam. They performed the Hanbury-
Brown and Twiss experiment, which showed photon bunching in light,
with metastable, fermionic 3He. In close cooperation with the Orsay
group which had performed the same experiment on bosonic metastable
4He [36], they were able to show an anti-bunching effect in fermions [37].

This thesis consists of six chapters: In the current introduction,
we gave a general overview of the field. In chapter 2 we present
an introduction to the theory of the presented subject, giving a broad
overview while focusing on details necessary to understand and interpret
the experiments. We will begin with a description of scattering by cold
atoms and discuss the Feshbach resonance. Afterwards, we will present a
many-body theory of the crossover mostly based on BCS theory. During
my thesis, we realized that many experiments were nearly impossible
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CHAPTER 1. INTRODUCTION

to perform using our previous experimental setup. We decided to do
a major reconstruction of the setup. Chapter 3 will describe these
efforts. Chapter 4 is devoted to the techniques needed to interpret our
data, which is not always easy as experimental constraints often do
not fit to theoretical concepts. The above mentioned reconstruction
is still underway, therefore, the results presented in chapter 5 were
not performed with the new setup, but still date from the old setup, an
exhaustive description of which has been given by my predecessors
[38, 39]. We will conclude this thesis in chapter 6.

12



Chapter 2

Theory

Da steh’ ich nun ich armer Thor!
Und bin so klug als wie zuvor

– J.W. Goethe, Faust I

The theory of cold atomic gases is a very large field, already covered
by entire textbooks [40, 41]. Here, we want to present the parts that are
necessary to understand our experiment. We start with a general intro-
duction into fermionic gases, presenting the most important formulae.
We then consider the scattering between atoms as this forms a basis for
all the effects we want to study, going more into the details of Feshbach
resonances, the main tool used in tuning the scattering properties. After-
wards we will look at the big picture, trying to understand superfluidity
using the BCS theory.

2.1 Fermionic gases
In quantum mechanics, all particles can be classified as bosons or
fermions, depending on whether their spin is integer or half-integer,
respectively. In our experiment we study gases of fermionic 6Li. They
can be seen as generic representatives for many kinds of fermions,
since, as we will see, their interactions are tunable to match those of
other fermionic systems. The choice of Li was not a complicated one:
due to their simple electronic structure, alkali atoms are the easiest to
cool optically. The only fermionic alkali isotopes with a non-negligible
natural abundance are 6Li and 40K (where the latter is already very rare
with a natural abundance of around 0,01%). The choice between the two
is a matter of preference, both atoms have their specific advantages. We
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CHAPTER 2. THEORY

chose Li because the large abundance of a bosonic and a fermionic Li
isotope was appealing, as we can obtain the best of both worlds with
only one cooling laser system.

The Li gas we study is very dilute, around 1013 atoms/cm3, and can be
described by an ideal fermionic gas whose properties we want to recall
in the following. The low density is necessary, since at the temperatures
we work, the ground state of our atoms is not gaseous but solid. The
gas can relax into this absolute ground state by inelastic collisions. The
art of cold atom gases is to stabilize the gas in the metastable state by
inhibiting these inelastic collisions. We need at least three atoms in
a collision to form a bound pair to conserve energy and momentum.
The three-body collision rate increases quadratically with density, this is
where the low density comes into play. We can decrease the collision
rate further if we bring the atoms into spin states where selection rules
forbid collisions.

An ensemble of indistinguishable fermions without interactions fol-
lows the Fermi-Dirac statistics, meaning that the probability to occupy a
state with energy E is

f (E) = 1
eβ(E−µ) + 1 (2.1)

where β = 1/kBT is the inverse temperature and µ is the chemical
potential needed to fix the number of particles. Looking closely at this
distribution, we note that at zero temperature the fermions will occupy
all the states below µ and none above. At zero temperature, this µ is
called the Fermi Energy, EF = µ(T = 0). Likewise, we define a Fermi
wave vector kF by EF = h̄2k2

F/2m, where m is the fermion’s mass. In
phase space, there is on average one state per volume (2πh̄)3 [42]. If all
states below kF are filled, we can thus calculate the density of the gas as

n = k3
F

6π2 (2.2)

The simplest way to describe a fermionic gas is the homogeneous
case, when there is no potential, and the fermions are just free particles in
space. In the experiments, we need to confine the atoms in the minimum
of a smooth potential well, which we call a trap. Such traps can, for
example, be generated using magnetic fields, or lasers, or both, as we
will see in the experimental chapter. In practice, we usually approximate
the trap by its Taylor expansion around its minimum up to the quadratic
term, leading to a harmonic potential. It is the experimenter’s duty to
ensure the validity of this approximation.
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2.2. A REMINDER ON SCATTERING THEORY

We normally describe a gas in a harmonic trap using the local
density approximation (LDA). In this approximation we assume that the
gas locally behaves like a homogeneous gas. We assume the chemical
potential µ0 to be constant over the trap, meaning that

µ0 = µ(n(r)) + V (r) (2.3)

where µ(n) is the equation of state of the homogeneous system. In the
case of a (polarized) noninteracting gas, we can calculate the Fermi
energy in the center of the trap as EF = h̄ω̄(6N)1/3, where we define
ω̄3 = ωxωyωz. Likewise, we can calculate the Fermi wave vector as kF =
(48N)1/6/aho, where aho is the harmonic oscillator length, aho =

√
h̄/mω̄.

At other points in the trap we can define a local Fermi energy and wave
vector, calculated from the density at this point. To avoid confusion, we
label them ẼF and k̃F, while we use kF and EF always in the sense that
we just defined.

We normally use traps where two of the trapping frequencies are
nearly the same and higher than the third one. In this case we can
assume cylindrical symmetry. We call the radial frequency ωz and the
axial frequency ω⊥. The cloud will have a cigar-like shape, and we call
the ratio between the two frequencies the ellipticity λ = ωz/ω⊥.

2.2 A reminder on scattering theory
Naively, one would expect that for the low densities we work at, scatter-
ing should become negligible. But the opposite is true: the discovery
that cold alkali gases do scatter only made quantum gases possible.
Experiment and theory heavily depend on it, both positively and nega-
tively. It starts with basic problems: the scattering of cold atoms with a
background gas for example can be a major loss process, which calls
for an ultra-high vacuum apparatus. It is elastic scattering that makes
atoms loose energy during evaporative cooling, while inelastic scattering
leads to unwanted losses of the atoms. In theory, all the models we
want to realize, like the forming of pairs in a molecular BEC or BCS
superfluidity, are directly based on the elastic scattering problem. This
is why it is important to understand scattering theory.

A very good description of the theory can already be found in
textbooks (see for example references [43, 44]). We will, therefore,
concentrate on key parts that are essential to the understanding of our
experiments.
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CHAPTER 2. THEORY

2.2.1 The stationary scattering problem
We will start by posing the problem in the form of a Schrödinger equation.
Later, we will present a general ansatz for its solution and discuss its
general properties. At this point we will focus on the differences between
bosons and fermions at ultracold temperatures.

We want to solve the problem of two particles, in our case atoms,
scattering against each other. The interaction potential for such a two-
body system can, at least in our case, be written as V (|r1 − r2|) since it
depends on the distance between the two particles only. It is convenient
to describe the problem in the center of mass frame, where the relative
position of the two particles r = r1 − r2 is the only variable.

We are now left with the problem of solving the stationary scattering
problem, that is the time-independent Schrödinger equation Hψ = Eψ,
with the Hamiltonian H = p2

2µ + V (r), and the reduced mass µ = m1m2
m1+m2

where m1 and m2 are the masses of the atoms. We can now separate
out the angular momentum component by invoking the ansatz ψ(r) =
χ(r)
r Pl(cos θ), (Pl are the Legendre polynomials) leaving us with the radial

problem
χ′′ +

(
2µ
h̄2 (E − V ) − l(l + 1)

r2

)
χ = 0 (2.4)

The third term in this expression, the angular momentum term, can be
considered to be part of the potential V . This means that an angular
momentum l > 0 forms a centrifugal barrier. The height of this barrier
is a few hundred mK. In experiments on cold atoms we reach much
lower temperatures, such that normally we have nearly no contribution
from partial waves with l > 0 and we are limited to s-wave scattering.

The wave function that we wish to calculate is a two-particle wave
function. For two identical particles, this wave function has to be sym-
metric under the exchange of particles for bosons, or anti-symmetric for
fermions. If the two particles are in the same internal state, this means
that the wave function must be even for bosons or odd for fermions
in the center of mass frame. From the properties of the Legendre
polynomials, we know that they are even for even l and odd for odd l.
This implies that for bosons we only have a contribution from the even
waves s, d, . . . , while for fermions we only have the odd waves p, f , . . . .
Therefore, indistinguishable ultra-cold fermions hardly scatter, which
can lead to problems. As an example, it makes evaporative cooling im-
possible. One should not forget that there is a simple way to overcome
this problem: if the two particles are in different internal states, we can
treat them like distinguishable particles. This means that we only have to
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bring the fermions into two different internal states, very often different
spin states, and there is no reason for them to refrain from scattering.

2.2.2 Scattering at low energies
Here we want to treat the special case of scattering at low energies, as
this is the interesting case for cold atoms. A good understanding can
be given by comparing the scattered wave function to the case when
there is no potential, thus no scattering. In free space, we can describe
a moving particle using plane waves ψ(r) = exp(ik · r) [43]. We choose
the particles to propagate along the z-axis. The scattered particles can
leave in any direction, which we describe using spherical waves. At large
distances, we can describe this situation using the wave function

ψ(r, θ) = eikz + f (θ)e
ikr

r (2.5)

where we can ignore the azimuthal angle φ since the problem is symmet-
ric around the axis between the two atoms. f (θ) is called the scattering
amplitude, it is 0 if there is no scattering. Integrating |f |2 over a sphere
gives a measure of the scattering strength known as the scattering cross
section σ .

For large distances compared to the range r0 of the potential, where
we can assume the potential to be 0, the wave function can be written
as

χ(r � r0) = sin(k(r − a)) (2.6)

Comparing this with equation (2.5) (see also Landau and Lifshitz, §123
and §132 [43]), where we expand the plane wave in spherical waves, we
can calculate the scattering amplitude [45]. We only take the s-wave
term of the expansion, as we just saw that this is the only contributing
partial wave. Then we find the scattering amplitude to be

f = e−2ika − 1
2ik ≈ −a for small k (2.7)

This means that the scattering amplitude is constant for small a. Inte-
grating over θ, one obtains a scattering cross section of σ = 4πa2. a is
called the scattering length.

The scattering length is a good tool to “hide” the details of the
interatomic potential. However, there are situations in which the shape
of the potential does matter. Here we present one rather specific example,
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a shape resonance. The treatment is very generic and holds for many
scattering problems.

If there is a bound state in the scattering potential very close to the
dissociation limit, the scattering length can take on very large values.
This is called a shape resonance and the situation is sketched in figure
2.2.2. For large distances r we can neglect the potential V . In this case,
a bound state wave function takes the form

χ(r � r0) = Ae−r
√

2m|ε|/h̄ (2.8)

where ε is the binding energy. At small distances and for cold atoms,
we can neglect the total energy E in the Schrödinger equation χ′′ −
2m
h̄2 U(r)χ = Eχ, since the potential energy is much larger. As we have
neglected the total energy, all wave functions of low scattering energies
are the same, including the bound state. The solutions to this equation
must be connected to the solution for large distances at some point,
and since this solution does not change much as r Ï 0, we can do this
formally at r = 0. We match the logarithmic boundary condition χ′/χ at
r = 0 for the two limiting cases, equation 2.6 and 2.8 and get

cotka = −
√

|ε|/E (2.9)

where E is the energy of the incoming particles, E = h̄2k2/2µ.
Here we see that the scattering length can become very large once

the binding energy ε gets small. Our approximation performed in
equation (2.7) does not hold anymore, it would lead to infinite cross
sections, which has no physical meaning. Instead we can write that [46]

f = − a
1 − 1

2r∗k2a + ika
(2.10)

Here r∗ is called the effective range of the potential. The effective range
term does not follow from equation (2.7) but it is introduced to explain
better the behavior at high momentum k. We can use it to explore the
limits of our approximations: the effective range is very small in our
experiments, and there is a natural cut-off for the momenta, the Fermi
momentum kF, such that the effective range term is normally negligible
[47].

However, there are two noteworthy exceptions to this rule. Firstly,
the group at Rice University studied the formation of molecules in the
narrow Feshbach resonance [48], see the next section, where the effective
range is large and negative, which complicated the interpretation of
their data.
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Figure 2.1: A sketch of a shape resonance. A bound state with binding
energy ε is located just below the dissociation energy in the potential (thick
solid line), its wave function is drawn as a grey dotted line, it exponentially
decays for large distances r. The free state symbolized by the solid line is
very close to the bound state, for large distances it will become a sine func-
tion with a very long wavelength. One extends the bound state exponential
and free state sine function to the origin, as if there was no potential, drawn
as dashed lines, and connects them there (The lower dashed line is not a
straight line but the beginning of a sine with a very long wavelength). The
distance where this extended wave function crosses zero is the scattering
length a.
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Secondly, before the gas is evaporatively cooled, the atoms also have
a large momentum k. In 7Li, the scattering cross section σ vanishes for
energies around 6,6 mK, making evaporative cooling difficult to achieve
as described in the thesis of Florian Schreck [38].

Such a bound state close to resonance exists for some atoms, like
Cesium. It even exists in Lithium, but there the situation is more
complicated, as we will see in the next section. There, we will also
see that there is a way of artificially moving a bound state close to
dissociation.

The treatment shown here thus far is very generic. The “bound state”
could be above the dissociation limit, meaning that there is actually only
a virtual bound state. While the physical notion of a bound state is
incorrect in this situation, the presented calculation is still valid, as we
abstract completely from the scattering potential, replacing it by a simple
boundary condition at the origin.

We can artificially construct a pseudo potential, which imposes this
boundary condition:

V (r) = 2πh̄aµ δ(r) ∂∂rr (2.11)

This pseudo potential is often used in many-body theory [49]. It leads
to the same results as those presented in this thesis, see for example
reference [50].

2.3 Feshbach resonances
In the last section it was mentioned that in order to get the fermionic
atoms to scatter in the first place, we have to put them into two different
internal states. For most of our experiments, we chose the two lowest
Zeeman sub-levels of the atoms. In figure 2.2 we see that |F = 1/2,mF =
1/2〉 and |F = 1/2,mF = −1/2〉 are the lowest energy states at zero
magnetic field. At high fields, this notion looses its meaning, so we
simply use |1〉 and |2〉 as names for these two states. This mixture is
stable against losses through inelastic collisions. As we have to conserve
the total spin during the scattering process, the resulting pair after an
inelastic collision would have an angular momentum l = 1, which is
suppressed by the centrifugal barrier.

When two atoms are far apart, we can treat them as independent
particles. We normally sum the angular momenta and spins of all the
electrons and the nucleus, and consider the atom as a single particle with
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a total angular momentum. Nevertheless, as the electrons of both atoms
are indistinguishable, we have to anti-symmetrize their wavefunctions.
When they are far apart, this hardly changes anything: the wavefunction
of the two electrons overlap only negligibly, such that we can neglect
the changes due to anti-symmetrization. During the scattering process,
however, the atoms sufficiently approach each other for the electronic
wavefunctions to overlap. This calls for a different treatment of the
electrons, we would like to sum their spins, leading to singlet and a
triplet state. Therefore, we introduce two different interaction potentials
between the two atoms, one for the singlet, one for the triplet state, which
is the antisymmetric or symmetric spin-wavefunctions, respectively. The
two potentials coincide at large distances, as there the exchange and
spin-spin interactions vanish, as described above.

Nevertheless, the electrons are still coupled to their nuclei. This
means that the singlet and the triplet potentials are also coupled. When-
ever a scattering process couples internal states of the scattered particles,
this, in general scattering theory, is called coupled channels. We can
treat such coupled channels by defining one scattering potential for each
channel and say that the scattering particles are in a superposition of
their internal states at every distance. In our case, the energy of the
atoms is sufficiently low that the internal states of the atoms will not be
changed while scattering. This means that at large distances the atoms
are only in the lowest energy state and we call such a channel open as
opposed to the closed channels, which only have an importance during
the scattering process.

In our case, there are two different channels: the singlet and the
triplet state of the electrons, shown in figure 2.3. As the singlet state has a
total spin S of 0, only the triplet state can have magnetic quantum number
MS 6= 0, therefore, only the triplet state can couple to a magnetic field.
For the lowest Zeeman states, the states we use for our experiments,
the Zeeman effect will shift down the state with MS = −1. In our case
this is then the lowest energy state and the only open channel.

The singlet potential contains a bound state which is close to the
dissociation limit. Using a magnetic field, we can shift down the triplet
state until the continuum is at the same level as the weakly bound state
in the singlet channel. The energy of the bound state and its dependence
on the magnetic field is shown in figure 2.4. The existence of a bound
state close to the dissociation limit drastically changes the scattering
length of the atoms. From the theoretical standpoint, we have a bound
state coupled to a continuum of scattering states. This was treated
independently in nuclear physics by Feshbach [53] and in atomic physics
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Figure 2.2: The energy levels of Lithium-6. For low magnetic fields we
have a Zeeman effect, the total spin F of the atoms couples to the magnetic
field. For high magnetic fields we are in the Paschen-Back regime, where
the nuclear spin I and the total electron spin J decouple. In the center, we
show the usual convention to give a number to each state.
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Figure 2.3: The two scattering potentials involved in the Lithium-6 Feshbach
resonances. 3Σu is the triplet, and 1Σg is the singlet state. The singlet state
contains bound states. The triplet state can be shifted using a magnetic
field. Here, we show a shift down such that the dissociation energy of the
triplet potential coincides with the bound state in the singlet state. This is
what happens close to a Feshbach resonance. The binding energy Ec is
not to scale, in reality the bound state is so close to dissociation that the
difference would not be visible in this graph. The insert shows the overall
picture at zero magnetic field. Data adopted from references [51, 52].
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by Fano [54], and is known in cold atoms as a Feshbach resonance.
The bound state in the singlet potential exists in different flavors. The

total nuclear spin I leads to an energy shift, splitting the singlet potential
into two, resulting in two Feshbach resonances. The same bound state
exists also in the p-wave scattering potential, where it is shifted because
of the centrifugal barrier mentioned above. As p-wave scattering is
allowed even for fermions in the same internal state, they couple to all
possible combinations of two atoms in the shown states, as shown in the
inset of figure 2.4.

The different couplings call for a rather complicated coupled-channel
treatment, as found in reference [47]. Here we choose a more simplified
model potential [55, 56], which we can actually calculate analytically. For
the open channel, we choose a spherical potential well of depth h̄2q2

o/m
with an interaction range r0, while we use a spherical box for the closed
channel, where the bottom of the box is at h̄2q2

c/m as, depicted in figure
2.5. We assume a coupling term Ω between the two potentials. This is
much weaker than the short range potential between the atoms, so we
can suppose that Ω � q2

o/c. This gives the Schrödinger equation

h̄2

m (−∇2 + V )|ψ〉 = E|ψ〉 (2.12)

with V =


−
(
q2
c Ω

Ω q2
o

)
for r < r0(

0 0
0 ∞

)
for r > r0

(2.13)

In the limit of zero scattering energy E = 0, and setting ψ(r) = χ(r)
r

as above, we can write the general solution to this problem as

|χ〉 = (r − a)|o〉 for r > r0 (2.14a)
|χ〉 = cosφ sin(q+r)|+〉 + sinφ sin(q−r)|−〉 for r < r0 (2.14b)

a is the scattering length, q± are determined by inserting equations (2.14)
into the Schrödinger equation. φ is fixed by the boundary conditions.
|o〉 denotes the open channel, as |c〉 will denote the closed one. |±〉 are
defined by

|+〉 = cos θ|o〉 + sin θ|c〉
|−〉 = − sin θ|o〉 + cos θ|c〉

(2.15)
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Figure 2.4: The bound states and the continuum state. The solid line is
the Zeeman shift for two atoms, where the atoms are in the two lowest
Zeeman states. The curves are essentially the sum of two curves of figure
2.2, the notation corresponding to that figure. The dashed lines are the
bound states in the scattering potential. The total electronic spin is S = 0, as
it is the singlet state. This is why the energy is independent of the magnetic
field. The two lower states are the s-wave (l = 0) bound states. They differ
in the orientations of the nuclear spins. Due to a coupling of the atomic
state to the I = 0 s-wave state, close to the crossing, the states shift in
energy. The same effect exists for the I = 1 state, but is much smaller,
invisible on the scale of this figure. The p-wave (l = 1) states correspond
to a higher rotational state of the same molecular bound state.
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Figure 2.5: The potentials of the model described in the text. The dotted
line is the bound state in the closed channel.

Inserting this into the Schrödinger equation gives tan 2θ = 2Ω/(q2
o − q2

c ).
As the coupling Ω is small, the mixing angle θ will be small as well. We
do not want any atoms outside the box in the closed channel, giving the
boundary condition χ(r0)|c〉 = 0, which enables us to calculate φ as

tanφ = − tan θ sinq+r0

sinq−r0
(2.16)

For the open channel, we need to connect the two wave functions. We
do this by setting the logarithmic derivative χ′/χ equal on both sides of
the equation to give:

1
r0 − a = q+ cos2 θ

tanq+r0
+ q− sin2 θ

tanq−r0
(2.17)

The last term is usually small, as θ is small, but it can become very large
if there is a bound state in the closed channel near the continuum of
the open channel.1 If this bound state has a binding energy of Ec, then
its wavefunction vanishes at r0, such that nπ =

√
q2
c + εcr0 ≈ qcr0(1 +

εc/(2q2
c )), where we have defined εc = 2mEc/h̄2. The small coupling Ω

leads to q− ≈ qc, and we can approximate the denominator of the last
term of equation (2.17) as tanq−r0 ≈ tanqcr0 ≈ tan(nπ − r0εc/2qc) ≈
−r0εc/2qc.

At the same time, the middle term of equation (2.17) can be considered
constant, since θ is small. It can be identified as a background scattering
length abg . These simplifications lead us to the important equation

1We are indeed talking about the bound state in the closed channel – the two channel
molecular states of the atoms, also known as the dressed state, will be discussed later.
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relating the scattering length with the energy difference of the bound
state:

1
a − r0

= 1
abg − r0

+ γ
εc
, (2.18)

where γ = 2q2
cθ2/r0 is a constant that contains the details of the potentials,

i.e., the Feshbach coupling strength.
As described above, we can shift the energy levels by varying the

magnetic field. We do so by replacing Ec by Ec + µB, with µ being the
difference of the magnetic moments of the singlet and triplet state. In
our case, µ = 2µB [55]. The scattering length can then be written as

a
abg

= 1 + ∆B
B− Bres

(2.19)

where the resonance position Bres and the resonance width ∆B are

Bres = −Ecµ + ∆B abg
abg − r0

≈ −Ecµ + ∆B

∆B = − h̄2

2mµγ
(abg − r0)2

abg
≈ h̄2

2mµγabg
(2.20)

From the first formula, it can be seen immediately that the resonance
is not at the position where the bound state crosses the continuum but
at a magnetic field of ∆B higher.

The situation in lithium is certainly more complicated than the model
just presented. It turns out that there is not only a bound state close
to dissociation in the singlet channel, our closed channel, but also one
in the triplet channel, our open channel. This leads to an unusually
large background scattering length abg. As a surprise, just next to the
predicted Feshbach resonance, another very narrow one was found at
54,325 mT [19]. The two resonances correspond to different values of
the total nuclear spin, as shown in figure 2.4. It was intensely studied at
Rice [48]. Our group normally uses the large resonance around 83 mT.
We can describe both resonances with the presented model by using
different parameter sets for each resonance. The parameters are shown
in table 2.1. A complete treatment of the Feshbach resonance including
the open channel resonance can be found in reference [57]. Figure 2.6
shows the dependence of the scattering length on the magnetic field.

Historically, experiments using the Feshbach resonance as a tool
were often clouded by the uncertainty of the scattering length in the
Feshbach resonance. However, recent precision measurements have
cleared the situation: the group in Innsbruck claims in reference [58]
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resonance r0/a0 Bres/mT ∆B/mT abg/a0 µ/µB γ−1/3/a0
broad 29,9 83,415 30 -1405 2,0 101
narrow 29,9 54,326 -0,1 61,6 2,1 400

Table 2.1: The parameters of our model for the broad and narrow Feshbach
resonances, from reference [55]. a0 is the Bohr radius, a0 = 0,53 · 10−10 m,
and µB is the Bohr magneton, µB = 9,3 · 10−24 J/T.
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Figure 2.6: The scattering length a (solid line) and the molecular binding
energy Em (dashed line) by the magnetic field. The large resonance is
centered at 83 mT. The narrow resonance at 54,325 mT is depicted by the
vertical bar, it is too narrow to be shown otherwise. The scattering length
crosses zero at 52,8 mT [19].
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to fit the real scattering length with an accuracy better than 1% in the
relevant range from 60 mT to 120 mT using the empirical formula

a = ab
(

1 + ∆
B− B0

)
(1 + α(B− B0)) (2.21)

with the fitted parameters ab = −1405a0, B0 = 83,4149 mT, ∆ = 30,0 mT
and α = 0,0040 mT−1.

On the left side of the resonance, the existence of the bound state
in the closed channel close to resonance leads to a molecular state of
atom pairs. One should not get confused between the two: the bound
state exists only in the closed channel. The molecular state which we
are about to discuss, on the other hand, is a state that depends on both
channels and is a stable state that can be occupied for macroscopic time
scales.

Certainly, the molecular state is also a bound state in the sense that
its wave function vanishes at large distances, leading to an exponentially
decaying wave function

|χ〉 = e−√εmr|o〉 for r > r0 (2.22)

where −Em = −(h̄2/m)εm is the binding energy of the molecule (Em > 0),
and the only change we have to apply to equation (2.14b) is to replace
the wave vectors q by q̄2

± = q2
± −εm, and the mixing angle φ by φ̄. Hence,

(2.17) becomes

−
√
εm = q̄+ cos2 θ

tan q̄+r0
+ q̄− sin2 θ

tan q̄−r0
(2.23)

Using the same approximations as above, we can calculate the molecular
binding energy as

−
√
εm = 1

r0 − abg
− γ
εc + εm

(2.24)

plotted in figure 2.6. If the molecular binding energy is small, we can
compare this to equation (2.18). This gives us a simple relation between
the scattering length and the binding energy:

Em = h̄2

ma2 (2.25)

This is the same result we get from a single channel calculation from
equation 2.9. As long as the effective range r0 is sufficiently short, we
can use an effective single channel model in most cases.
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2.4 BCS theory
When Bardeen, Cooper and Schrieffer (BCS) [9] presented their theory
of superconductivity back in 1957, it was an important breakthrough
for the microscopic description of superconductors. As a core of their
theory they proposed a many-body ground state that incorporates pairing
between electrons. They showed that it is this pairing which is the origin
of superconductivity. Later, Eagles [59] and Leggett [60] realized that the
BCS ground state is more general and can be used to describe more than
just superconductivity. They realized that at large interaction strengths
(compared to the Fermi energy), the diameter of a pair will become small
and the pairs can be seen as independent bosons which may condensate
into a Bose-Einstein condensate. As an important detail, this means that
the condensation temperature and the pair binding temperature will not
be the same as is the case in normal BCS theory. This also means that
there is an intermediate region, a crossover between BCS-type pairing
and Bose-Einstein condensation.

Large attention has been drawn on this subject after Randeria et
al. suggested that such a crossover could be used to describe high
critical temperature Tc superconductors [61]. They extended an older
theory by Nozières and Schmitt-Rink, which treated the crossover for
non-zero temperatures [62]. Shortly after Bose-Einstein condensation in
cold atomic gases had been achieved, experimenters began working on
obtaining a superfluid state also in fermionic gases, bearing in mind that
the only ingredient necessary for BCS theory is an attractive interaction,
which is easily achievable by means of a Feshbach resonance. Reaching
low temperatures, however, turned out to be a bigger obstacle. Later,
Holland et al. [10], following the theory by Randeria [61], predicted that
the transition temperature in the crossover may become sufficiently
high to be achieved in cold atoms, which created excitement in the
community and hence the interest in this area.

2.4.1 The BCS ground state
The breakthrough of BCS was the realization that superconductivity can
only be described using a theory that takes pair correlations between
particles into account. Now we want to show the Hamiltonian they used
to describe such a system and the ground state wavefunction they found.

We have fermions of two different spin states, which we call ↑ and ↓.
They do not need to be spin-up and spin-down, any two different spin
states will do. Atoms in these spin states interact via a potential U . In
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second quantization, this is written as

H =
∑
k,σ

εka†
kσakσ +

∑
k,k′

Uk,k′a†
−k′↓a

†
k′↑ak↑a−k↓ (2.26)

where a† and a are the creation and annihilation operators, and the
kinetic energy is εk = h̄2k2/2m. The last term, the interaction term,
contains pairing of atoms of opposite momentum. This has turned
out to be a sufficient description in the limit of weak interactions, as
it can be found in normal superconductors. For stronger interactions,
it has shown to be useful to include pairs with a non-vanishing total
momentum. This was used, for example, by Nozières and Schmitt-Rink
to calculate the transition temperature in the case of strong coupling
[62].

In a normal state, for example the Fermi sea, the interaction term
is only a negligible contribution, as only the terms with k = −k′ do not
vanish. BCS deserve the credit to have found a state with an important
contribution from the interaction term. Their idea is to construct a wave
function which is a superposition of configurations where the atoms
always occupy the momentum states in pairs, meaning that if there is
one atom with momentum k, there is also an atom with momentum −k.
This BCS ground state is

|ψBCS〉 =
∏
k

(uk + vka†
k↑a

†
−k↓)|0〉 (2.27)

The vk and uk are the probability amplitudes that a pair state is occupied
or not. For simplicity, they can be taken as real2, and normalization
yields u2

k+v2
k = 1. One notices that this wave function does not conserve

the number of particles. We describe the system in the grand canon-
ical ensemble. Efforts have been made to calculate the BCS problem
without using the grand canonical ensemble, but it has turned out to be
cumbersome at best and did not reveal any new physics [63].

2.4.2 The gap and number equations
Now we need to calculate the parameters uk and vk. We do this by
minimizing the free energy F = H − µN , leading to 2u2

k = 1 + ξk/Ek and
2v2

k = 1 − ξk/Ek, where we have defined that ξk = εk − µ, E2
k = ξ2

k + ∆2
k

2One can introduce a phase φ by vk = |vk|eiφ , which gives a macroscopic phase
of the wave function and is needed to describe effects like the creation of vortices or
Josephson junctions
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and ∆k = −1
2
∑

k′ Uk,k′uk′vk′ . ξk is the energy of a particle measured
from the Fermi level, which is the natural way to measure energies in
the grand canonical ensemble. Ek can be understood as the energy of a
quasi-particle (low-lying excited state of a system due to its response to
an external perturbation). From its definition, we see that the minimum
excitation energy is ∆k. This is the excitation gap found in experiments.

Looking at the definition of the gap more closely, we realize that ∆
appears on both sides of the equation. The problem has to be solved
self-consitently, leading to the gap equation

∆k = −1
2
∑
k′

Uk,k′
∆k′√

ξ2
k′ + ∆2

k′

(2.28)

We also need to fix the number of atoms. We do this by summing over
the occupation probabilities v2

k , leading to the number equation

N = 1
2
∑
k

(
1 − ξk√

ξ2
k + ∆2

k

)
(2.29)

2.4.3 Renormalization
Let us now consider the potential U . Certainly, it originates from our
Feshbach resonance, but how is it related? Usually, this potential is taken
to be constant, which on one hand allows for important simplifications
in the calculations, but also leads to an ultraviolet divergence. In super-
conductors, one usually uses an energy cut-off at the Debye frequency
to overcome this divergence.

Taking the potential U as constant is also a viable approach in our case.
In real space the potential has a very small effective range, meaning that
its Fourier transform, this is the Uk,k′ used in the BCS Hamiltonian (2.26),
is nearly constant. In order to connect this potential to the theories we
developed in the last sections, we calculate the scattering length of such
a constant potential, and equate it to the one found for the Feshbach
resonance.

In formal scattering theory, we use the T-matrix instead of the
scattering amplitude, which is defined as − V

4π
2m
h̄2 〈k|T|k′〉 = f (k − k′),

where V is the quantization volume. The T-matrix can be calculated as
[44]

T(E) = U +UG(E)U +UG(E)UG(E)U + · · · (2.30)
where G is the resolving operator G(E) = (E − h̄2k2/m)−1. Since U is
taken to have constant elements, the second term on the right side in

32



2.4. BCS THEORY

equation (2.30) can easily be calculated as

〈k|UG(E)U|k′〉 =
∑
k′′

〈k|UG(E)|k′′〉〈k′′|U|k′〉 = U2
∑

k

1
E − h̄2k2

2m

(2.31)

The other terms can be calculated in a similar manner. This way, we
can calculate the whole sum as

〈k|T|k′〉 = U +U2Σ +U3Σ2 + · · · = U
1 −UΣ (2.32)

where Σ is the sum over k in (2.31). We can now calculate the scattering
length in the limit of small energies. We set E = 0 in equation (2.31) and
remember that f ≈ −a for low energies and get

2mV
4πh̄2a

=
∑

k

m
h̄2k2

+ 1
U (2.33)

One sees that the sum on the right side of this equation does not
converge, but this is intentional: it exactly compensates the divergence
in the gap equation. This technique is called renormalization. It is
also possible to use the pseudo potential introduced in section 2.2.2 [64].
That technique leads to the same result. One might also note that this
equation has a very similar form to equation (2.18). This gives a physical
meaning to the two terms on the right hand side: the diverging part
is the contribution from the background scattering length, while the
interaction in the BCS theory is nothing else than the Feshbach coupling
term.

As we have taken the potential to be constant, the gap ∆ will be a
constant as well. We divide the gap equation (2.28) by U and ∆ and
equate it to equation (2.33) and get the renormalized gap equation

m
4πh̄2a

= 1
2V
∑
k

(
1
εk

− 1√
(εk − µ)2 + ∆2

)
(2.34)

When working with cold atoms, it is easier to deal with densities rather
than with number of atoms. This is easily done by dividing by the
quantization volume. The number equation (2.29) then becomes

n = 1
2V
∑
k

(
1 − εk − µ√

(εk − µ)2 + ∆2)

)
(2.35)

We can now think about the physical meaning of the two equations.
The gap equation gives a relation between the energy gap ∆ and the
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chemical potential µ. Using this relation and the number equation we
can then fix the chemical potential. Once we have calculated both
parameters, we can go back to the BCS ground state (2.27). We can
now calculate the parameters vk, and remember that this probability
amplitude of the occupation of a momentum state. In the end we see
that this is the same as removing the sum in the number equation 2.35,
which gives us the momentum distribution.

2.4.4 A closed form representation
The gap and number equations (2.34) and (2.35), respectively, are the
key to the solution of the BCS theory. Several authors have presented
solutions to these equations in closed form [98]. Obtaining expressions
for these equations is an important step in facilitating the description of
the BCS state. We want to present these efforts and apply them to the
problem of the momentum distribution in a harmonic trap.

The first step in the treatment is to transform the two equations into
their integral form

m
4πh̄2a

= 1
(2π)3

∫ ∞

0

(
1
εk

− 1√
(εk − µ)2 + ∆2

)
4πk2dk (2.36)

n = 1
(2π)3

∫ ∞

0

(
1 − εk − µ√

(εk − µ)2 + ∆2

)
4πk2dk (2.37)

By introducing the dimensionless variables3 x2 = εk/∆ and x0 = µ/∆,
we can rewrite the equations in the form

1
a =

√
2m∆
h̄ G(x0) n = 1

2π2h̄3 (2m∆)3/2N(x0) (2.38)

where we have introduced the gap and number integrals

G(x0) = 2
π

∫ ∞

0

(
1
x2 − 1√

(x2 − x0)2 + 1

)
x2dx (2.39)

N(x0) =
∫ ∞

0

(
1 − x2 − x0√

(x2 − x0)2 + 1

)
x2dx (2.40)

3The square in the presented substitution is purely technical, it later brings the
equations into the form of an elliptic integral.
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Using the substitution ξ = x0+
√

1+x2
0

2
√

1+x2
0

, we can write these integrals in
the closed form

G(ξ) =
√

2
π((1 − ξ)ξ)1/4 (2E(ξ) −K(ξ)) (2.41)

N(ξ) = 1
3
√

2((1 − ξ)ξ)3/4
((2ξ − 1)E(ξ) + (1 − ξ)K(ξ)) (2.42)

where K and E are the complete elliptic integrals of the first and second
kind, respectively. They are readily available in most computer algebra
systems.

2.4.5 Results
The BCS theory gives a good qualitative description of the whole cross-
over. In figure 2.7, we show the behavior of the chemical potential µ
and the gap ∆ at zero temperature in the crossover. While for a deep
BCS state with weak interactions the chemical potential coincides with
the Fermi energy, it decreases while crossing the resonance and even
becomes negative on the BEC side, and eventually becomes asymptot-
ically equal to the binding energy of the molecules. The Fermi edge
washes out, as can be seen in figure 2.8, and once the chemical potential
crosses zero it disappears completely. This illustrates that the pairs are
not governed by the Fermi-Dirac distribution anymore, but follow the
Bose-Einstein statistic and thus can be considered bosons. The gap,
normally small in superconductors, opens up.

The critical temperature can also be deduced from BCS theory,
usually by calculating the temperature T∗ at which the gap vanishes, see
references [65, 66]. This is the dashed curve in figure 2.9. As we already
stated, the pair creation and condensation do not coincide for strong
interactions [59]. This becomes clear once we are on the BEC side of
the crossover: the molecules exist even at higher temperatures and only
condense into a BEC below a critical temperature Tc [60]. A similar
effect is seen in high temperature superconductors and is known as the
pseudogap [67, 68].

This critical temperature was first studied by Nozières and Schmitt-
Rink (NSR) [62]. They realized that the BCS approximation to only take
pairs with zero momentum into account will fail at strong interactions,
and considered thermal motion of bound molecules. A recent theoretical
calculation, which agrees well with NSR, is shown in figure 2.9 together
with experimental measurements. Further studies, which took beyond
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Figure 2.7: The gap ∆ (dashed line) and the chemical potential µ (solid line)
in the BEC-BCS crossover. The small dash-dotted lines are the approxi-
mations that we will discuss in section 5.1.3. The lower line corresponds
to the binding energy of a molecule. In the experiment the parameter
1/kFa decreases with increasing magnetic field, therefore, we introduce
the minus sign in the abscissa to give the graph the same orientation as
the graphs of the Feshbach resonance.
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Figure 2.8: The momentum distribution in a homogeneous gas in the
different limits of BCS theory. On the top the BCS limit, kFa = −1. The
dashed line shows a Fermi gas at the critical temperature for comparison.
The center line is the unitarity limit (1/kFa = 0) and the bottom line
is the BEC limit (kFa = 1). The dotted lines are the predictions from
Astrakharchik et al. [70].

mean field fluctuations into account, revealed that the maximum visible
in the figure should not exist, but the condensation temperature should
increase steadily [69].

2.4.6 Beyond BCS theory
The use of BCS theory throughout the whole BEC-BCS crossover by
Leggett was a bit adventurous, since the BCS approximations only hold
for small attractive interactions. Nevertheless, his approach was justified
later as his theory is a self-consistent theory which predicts experiments
at least qualitatively.

This success had raised the bar for further theoretical research. The
problem is indeed challenging: with the interactions being strong, we
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Figure 2.9: The transition temperature in the BEC-BCS crossover (solid
line). The data in the background is a measurement taken in 40K of the
condensate fraction. Above the curve the gas is in the normal state, while
we have a superfluid phase below. We note that there is no phase transition
between a superfluid BEC on the left side and BCS superfluidity on the
right. Both theory and data is by Chen et al. [27]. The colors correspond
to a condensate fraction between 0 (dark) and 15,5% (bright). The curve is
higher than the data since they could not measure a condensate fraction
below 1%. The dashed line shows the transition temperature usually used
to describe superconductivity in metals, it is the temperature below which
pairing begins.
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loose the last small parameter and approximations that hold on one side
of the crossover not necessarily do so on the other.

The center of the crossover, where the scattering length diverges, is
the best studied part. In general we can say that the chemical potential
is proportional to the Fermi energy, where the proportionality depends
on the scattering length, such that µ = f (1/kFa)EF with some function
f . At the center of the resonance a diverges, and we are left with a
constant which is traditionally called 1 + β = f (0).

This β is independent of BCS theory, thus β is a meaningful constant
even without BCS theory, in this meaning it can be considered universal.
Therefore, it can be used as a test for BCS or beyond BCS theories.
Furthermore, the definition does not contain any details on the interac-
tion potential. It is thus valid even outside atomic physics, and indeed
it is used in other fields, like the physics of neutron stars [11] or the
quark-gluon plasma [7]. There has recently been a large effort, both
theoretically and experimentally, to determine the value of β.

A first approximation is to calculate β from BCS theory by solving
the gap equation, which results in β = 0,41. In our group, in order to
determine β, we measured the energy released by a gas while expanding.
The energy can be calculated from the size of the cloud. In a harmonic
trap, the released energy is then ER =

√
1 + βE0

R, where E0
R is the value

for a gas without interactions. The square root comes from averaging
over the trap, as described in the thesis of Julien Cubizolles [71]. The
resulting values for β are described in the thesis of Thomas Bourdel
[65], as well as in the paper in appendix A.1. There, we find a result
of β = −0,64(15). This value was based on a resonance position of
82 mT. Later, the position was more precisely determined to be 83 mT
[58], such that we obtain a more accurate value of β = −0,59(15), as
written in the paper in appendix A.5. Similar to our work, the group
in Innsbruck studied the size of the atomic cloud in the trap without
releasing the atoms [72]. This is also a measure for β and after a
correction similar to ours they obtained a value of β = −0,73+12

−09 [73].
The same experiment was performed at Duke University and resulted
in β = −0,49(4), [31], while β = −0,54(5) was found at Rice [74]. The
group at JILA measured the potential energy in the trap for 40K. They
carefully studied temperature effects and where able to extrapolate a
zero temperature value of β = −0,54+05

−12 [75]. This nicely illustrates that
β is universal, as it has the same value measured for both atoms.

Quantum Monte Carlo simulations predict values of β that fall into the
same range as the experimental values. The theories are not immune to
errors, as Carlson et al. also had to correct their value from β = −0,56
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[76] to β = −0,58 [77], obviously not due to more precise knowledge of
the resonance but because they simulated a larger number of atoms to
achieve the latter value. Extending BCS theory by taking into account
pairing fluctuation effects, Pieri et al. calculated a value of β = −0,545
[78].

Using Monte-Carlo simulation, Carlson et al. [76] studied the unitarity
limit, where they calculated the chemical potential and the momentum
distribution. Astrakharchik et al. [79] studied the whole crossover,
calculating the energy per particle. They found that their results agree
with the equation of state of a repulsive gas of molecules with a molecule-
molecule scattering length of am = 0,6a. This is in direct contradiction
to BCS theory, which predicts a molecule-molecule scattering length of
twice the atom-atom scattering length. By direct calculation, BCS theory
was shown wrong before by Petrov et al. [22], who solved the molecular
scattering problem and found the exact result of am = 0,6a.

Astrakharchik et al. [70] also used a Monte-Carlo simulation to
calculate the momentum distribution of a Fermi gas in the crossover.
Their results are shown in figure 2.8.

In this chapter we have shown the scattering properties of fermionic
gases, and presented and introduction into the BCS theory. In chapter 5
we will use the results from these theories to develop a description of
the experiments that we have performed.
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Chapter 3

Experimental setup

LASER, subst. masc.
“Plante de la famille des Ombellifères” (Ac. 1878–1935).

Le laser à feuilles larges, à racine cylindrique, a des fleurs blanches
disposées en ombelles larges et ouvertes (PRIVAT-FOC. 1870).

– Le Trésor de la Langue Française informatisé

This chapter gives a brief introduction to our experimental setup.
As it is already described elsewhere in detail [38, 39], I will give a brief
overview and make emphasis only on the parts that have been changed.

First I want to give a quick overview of the experimental procedure,
to help in the general understanding of the following sections. Our
experiment starts with the atoms in an oven, which is heated to create a
gas jet. The atoms are slowed down in a Zeeman slower, after which we
capture both isotopes, 6Li and 7Li, in a magneto-optical trap (MOT). Using
a magnetic elevator, we transfer the atoms into a Ioffe-Pritchard trap, in
which we perform forced evaporative cooling on the bosonic isotope 7Li,
at the same time sympathetically cooling the fermionic isotope 6Li. In
the end, the atoms are transferred into an optical dipole trap to enable
us to study them in the states that are not magnetically trappable. After
another evaporative cooling stage in the optical trap we can perform our
experiments, which normally take place in a magnetic field around our
Feshbach resonance at 83 mT. As a last step, we switch off the optical
dipole trap and let the atoms expand, taking an absorption image at the
end.
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3.1 The vacuum chamber
As Lithium is a metal with a negligible vapor pressure at room tempera-
ture, the first step to make an atomic gas of it is to heat it. We do this in
an oven which consists of a vertical stainless steel tube into which we
put a few grams of Lithium. The oven is connected via a small tube to
the vacuum chamber to create a collimated gas jet. Figure 3.1 shows
the setup. A small metal mesh is installed in this collimator to recycle
lithium into the oven via capillary forces. The oven is heated with an
electric heating wire soldered around the tube. Originally, this wire
had been only installed in the center of the tube, where the collimator
leaves to the vacuum chamber. In order to have a more uniform heat
distribution, we changed this design to heat the whole oven tube. This
was a bad idea, since now there is no cold point in the oven anymore
where lithium condenses. Instead, it will close the collimator albeit the
mentioned recycling mesh. The solution to this problem was to also heat
the collimator with a second heating wire, to temperatures comparable
to the oven’s temperature.

The most important drawback in our old setup was the very slow
loading of the MOT. During the reconstruction, an important part of our
efforts was to improve on that aspect. The loading times were mostly
limited by the low flux of atoms in the gas jet. The flux of atoms in turn
was limited by the small differential pumping tube between the oven part
of our vacuum chamber and the experimental chamber. The obvious
way to increase the flux, which is to open this differential pumping tube a
bit more, had shown to degrade the vacuum to a point that the magnetic
trap had lifetimes too low to work with. A second differential pumping
stage was the solution. A 6-way cross was introduced between the oven
chamber and the Zeeman slower to install a 25 l/s ion pump. The 6-way
cross has windows on all ends, very helpful when measuring the flux of
the atomic beam.

Let us estimate the efficiency of the differential pumping. The vapor
pressure of Lithium in the oven can easily exceed 20 mbar, which means
that we are in the transition region between viscous and molecular flow
[80]. This region is very hard to calculate, so we trust the reading of the
ion pump in the oven chamber which gives a current corresponding to
a pressure of 10−7 mbar. The conductance of the differential pumping
tubes can be calculated as C = 0,26v̄d3/l, where v̄ is the average velocity
of the particles, d is the diameter of the tube and l its length. The
pressure ratio between the two ends of the tube that can be maintained
is C/S if S is the pumping speed of the pump before the tube. Plugging in
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Figure 3.1: This is the beginning of the vacuum chamber, where the atomic
jet gets collimated. A block of lithium is in the oven on the left, heated by
the heating wire wound around the oven. The gas jet leaves the oven by the
little tube between the oven and the chamber, in which we placed a metal
mesh as described in the text. Afterwards the jet passes through two small
collimation tubes, which also act as differential pumping stages. Here they
are marked with their length and inner diameter. Each pumping stage has
its own ion pump, one is shown and the other one is situated orthogonal to
the represented plane, and indicated with the dashed circle. Between the
oven chamber and the Zeeman slower is a 6-way cross with windows on
all open ends and a valve to separate the oven from the main chamber in
case we have to change the lithium. A bellow before the Zeeman slower
allows for fine tuning of the gas jet’s direction.
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our numbers, using a very conservative average velocity of v̄ = 2000 m/s,
which is the average velocity of a lithium gas at 900 K (this is the highest
temperature we could possibly reach with the oven, lower temperatures
give better results), we get a ratio of 180 for the first tube and 9 for the
second one. This gives a ratio 5 times better than the previous value of
270 for the smaller differential pumping tube we had before.

3.2 The Zeeman slower
In order to slow the atoms, a laser beam, detuned from the resonance,
is shone counter-propagating onto the atomic gas jet. The momentum
transfer to the atoms by the photons will slow the atoms down. This
way, the Doppler shift of the resonance frequency changes, which we
compensate using magnetic fields via the Zeeman effect. This is why
such a setup is called a Zeeman slower.

From the technical point of view, the Zeeman slower consists of two
cone-shaped coil wound around the vacuum chamber. This creates a
decreasing magnetic field in the first coil, followed by an increasing field
in the second one. As described in the thesis of Florian Schreck [38],
the first coil consists of a cable which is wound in layers around the
vacuum tube, held in place using a cement and cooled by water tubes, as
illustrated in figure 3.2. The second coil is much smaller, it is a simple
cable wound around the tube. As we did not change this second coil, we
refer to Florian Schreck’s thesis for its design.

One of the factors lowering the atomic flux was that the Zeeman
slower was not working correctly, since some of the electric layers
stopped working, as the wire was broken. After having dismantled the
coils, we found out that those layers obviously had burnt down in some
parts, and since we were working on the vacuum, we decided to wind a
new slower.

We designed the slower in a way that it gives a high flux but does
not burn down during bakeout. The high flux was easy to achieve:
the old slower would have had a nice flux if all the windings had been
functioning properly. Just to be on the safe side we added 10 cm of
windings, giving us a slower of 90 cm. We used a slightly thicker wire
(cross section 2,5 mm2, Garnisch GGCb250-K5-19), and added silicon
carbide to the cement used before (Sauereisen No. 10) to increase its
heat conductance. As a first layer we wound two coils that were only
used for heating during bake out, since the burning of the coils had
apparently occurred during that time. Should other layers of the slower
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Figure 3.2: The Zeeman slower while being wound. One can see the layer
structure of the coils. The cables are held in place using a cement mixed
with silicon carbide, which gives a grey color. On the right on can see the
end of the two parallel water cooling tubes which are below the coils.

stop functioning with time, one could consider using this layer instead.
For cooling, we wound a layer of two parallel copper tubes with an
outer diameter of 8 mm around the first layer. The two parallel tubes
should increase the water flux by a factor of four compared to a single
tube. After seven layers of cables, we added another cooling layer, and
another cooling layer at the end.

The light for the Zeeman slower enters through a window at the end
of the vacuum chamber. This window is under constant bombardment
from lithium atoms from the jet. After many years of operation, this
window was slightly covered with lithium. Not that it had prevented
us from working, but as the chamber was already open, we decided
to replace it with an anti-reflection coated window, hoping to improve
the efficiency of the Zeeman slower. We were surprised that after only
a few weeks the window was completely covered, the anti-reflection
coating had apparently reacted with the lithium, and we had to replace
it by a non-coated window, which works fine.

Once wound, we characterized the performance of the slower by
measuring the velocity distribution of the atoms at the end as follows:
When we shine a resonant laser onto the atom jet, the atoms will
fluoresce. From the fluorescence we can measure the flux of atoms in
the laser beam We do not adjust the laser beam perpendicular to the
atomic jet, but leave a slight angle between the orthogonal of the jet
and the laser beam. Then those atoms will fluoresce, whose Doppler
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Figure 3.3: The velocity distribution after the Zeeman slower, at the position
of the MOT. The small left peak is the slowed atoms. The other curve
is the same distribution with the Zeeman slower switched off, shown for
comparison. The grey area is the atoms that get slowed, they show up again
in the peak on the left. The smooth curve is a fit with a Maxwell-Boltzmann
distribution at a temperature of 500 ◦C. This is a bit lower than the nominal
value of 550 ◦C that the oven was set to.

shift of the velocity component in the direction of the laser beam is
exactly the detuning of the laser. As the atomic beam is collimated, the
perpendicular velocity component is nearly negligible, which means
that we directly measure the axial velocity of the atoms. Scanning the
detuning of the laser, we can acquire the velocity distribution of the
atoms. Figure 3.3 shows such a velocity distribution. The small peak
on the left are the slowed atoms. Comparing to the distribution with
the Zeeman slower switched off, one sees that there is less flux around
for the velocity component of around 1000 m/s. It is those atoms which
show up in the Zeeman slowed peak afterwards. This peak corresponds
to a flux of about 1010 atoms/cm2s.
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3.3 The laser system
Our laser system is divided into several distinct parts, shown in figure
3.4. We placed our master lasers on a separate table, not disturbed by
the vibrations that the experiment creates, especially while switching
the magnetic fields. The lasers are extended cavity diode lasers, locked
using saturated absorption spectroscopy onto three lines: the 6Li D1 and
D2 lines and the 7Li D2 line. The lithium level structure is shown in
figure 3.5. Using two double-pass acousto-optic modulators (AOM) we
can generate the two hyperfine lines in 7Li used as principal and repump
beams. Due to the coincidence of the 7Li D1 and the 6Li D2 lines, we
repump 6Li on the D1 line, otherwise the 6Li light would disturb the 7Li
MOT. Therefore we need an additional master laser for this line.

The mentioned double-pass AOMs together with those installed after
the 6Li lasers allows us to tune the lasers in the needed range. The
resulting beams are injected into optical fibers and sent to the experiment,
where they are used to inject slave lasers. As the power of the 7Li master
laser was not sufficient to stably inject the slave lasers on the experimental
table, we injected diodes with each beam. These acted as amplifiers.
Since we exchanged the 7Li master laser with a more powerful diode,
the need for this amplification stage has disappeared, so we removed
the amplifier for the 7Li principal beam. The other amplifier might be
uninstalled as well if the master laser turns out to be stable and powerful
enough over a long time. In the meantime, the 6Li principal laser has
degraded to a point that we had to add an amplification stage to it.

After many years of successful operation, the tapered amplifier,
used to amplify the light for the MOT, had died. The spontaneous
emission background had raised to a level such that almost a third of
the emitted power was not actually in the desired mode but formed
a pedestal that was unfortunately too broad to be seen on a Fabry-
Pérot interferometer. This resulted in an unstable MOT which became
unusable. The replacement did not have a good fate: it died after
only two weeks of operation. This left us with no tapered amplifier,
since our model had gone out of production and no other model was
available on the market (nowadays, Toptica produces tapered amplifiers
for 670 nm). Fortunately, at the same time two models of high-power
laser diodes became available. Both models (Mitsubishi ML101J27 and
Hitachi HL6545MG) are specified for a wavelength of 660 nm and a
power of 120 mW. For the Mitsubishi diodes, we managed to convince
the distributor (Municom) to sell us diodes selected for a high wavelength,
typically specified as 663 nm at room temperature. According to the
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Figure 3.4: A bird’s eye view of the laser system. Shown on the left is
the master table, while the experimental table is on the right. The light is
transported via fibers (shown on the bottom) from one table to the other.
Three master lasers are locked via a feedback loop. Eight AOMs enable us
to independently tune the four frequencies for the MOT and the Zeeman
slower. All beams have to be amplified on the experimental table, some
even on the master table, symbolized by the boxes with a triangle.

48



3.3. THE LASER SYSTEM

803,5 MH z

228,2 MH z

26,1 MH z

2,8 MH z
1,7 MH z9 1,8 MH z

9 ,2 MH z
6,2 MH z
3,1 MH z

10 GH z

10 GH z

671 nm

7P 7R
6P 6R

1/2

1/2

1/2

3/2

3/2

3/2
5/2

2

2

2
3

1

1

1
0

F
F

F'

F'

δ6P

Lith ium -7 Lith ium -6

22P3/2

22P3/2

22S1/2

22P1/2

22P1/2

22S1/2

δ7R

δ7P
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specification, they should get to around 668 nm when heated to 60 ◦C.
In the experiment, we usually heat them up to 80 ◦C. Near a current of
280 mA the wavelength reaches 670 nm, and we can inject the diodes,
giving us more than 120 mW of power. Both temperature and current
are beyond the specifications of the diode.

The high current in combination with a high power is not easy to
handle. Thermal isolation is crucial, as at high temperatures the losses by
convection will be large, leading to an unstable diode. We glued rubber
isolations on the inside of the laser housing, and closed it hermetically.
Additionally, we used commercial diode mounts Newport Model 700
Series Temperature Controlled Mounts. Only the high price prevented
us from using them for all diodes.

In case the temperature controller fails, the temperature drops rapidly
and the diode will die, as the current is by far too high at ambient
temperature. After having lost some diodes this way, we installed a
temperature security system. We installed a temperature sensor LM35
into our own diode mounts and used the sensors AD592 in the Newport
mounts to monitor the temperature. Once it leaves a predefined range,
a relay installed in the current drivers will cut the supply to the diode.

During the evaporation of the atoms, it is imperative that we do not
allow any light that resonates with the atoms, as even at low powers this
leads to non-negligible heating. This is not easy to achieve if one has to
block some 100 mW. In the old setup, we used to switch off the AOMs
of the master lasers in order to disinject the lasers, such that they were
not resonant with the atoms anymore. Unfortunately, some of the new
lasers show an annoying behavior: while they are stable once injected,
they will not re-inject after the injection beam has been switched off for
a while. The diodes show a hysteresis behavior: one has to increase
the diode current above the injection point and decrease it again for the
laser to injection lock. As a first solution, we tried to constantly modulate
the laser diode current. This made re-injection possible, but not to an
extent that we could guarantee it. As this also affected long term stability
on normal conditions, we abandoned this technique. Instead, we had to
block the resonant light completely. This turned out to be harder than
expected, as even after a switched off AOM and a shutter there was still
enough light to decrease the lifetime of the atoms below a second. A
shutter in front of a small aperture solved this problem.

Still, the tapered amplifier gave us about 500 mW of optical power, far
from what the diodes are capable of. As luck would have it, this power
is equally distributed over the four frequencies that we use. This means
that we can use four lasers to generate the six beams needed for the
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Figure 3.6: The optical setup for the MOT

MOT. In order to achieve this, we mix the four beams on non-polarizing
beam splitters and use all four outputs, three of them are split again to
make up the six beams of the MOT, while the fourth one is sent to a
Fabry-Pérot interferometer to monitor the injection of the slave lasers
(see Figure 3.6). In the end, we have a beam with a diameter of 25 mm
and an intensity of 6 mW/cm2 per line.

The high power of the MOT lasers also enables us to take some of
their power to inject the lasers of the Zeeman slower. This makes the
injection more stable, since we can now use all the power of a fiber
coming from the master lasers to inject one laser, and we always have
enough power to inject the Zeeman slower slave lasers, even though
they are behind an AOM (see Figure 3.7). One exception is the laser
for the MOT 7Li principal line, since it has the highest need for power
and we do not want to loose any without need.

In the old setup, the imaging beam used to be problematic. It was
derived from the MOT lasers and mode cleaned in an optical fiber. After
that optical fiber, the beam could be switched with an AOM, and was
mode cleaned again using a pinhole. This design had several disadvan-
tages: as the MOT lasers were disinjected during an experimental run,
there was always a wait time of 20 ms to re-inject the lasers, during
which time the experiment did nothing. The injection into the fiber was
unstable, there was a high-frequency noise on the outgoing beam. We
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Figure 3.7: The principal optical setup for the lasers on the experimental
table. Note that the 7Li principal Zeeman laser is not injected by the MOT
lasers, but directly from the fiber via the AOM.

found out that this was due to the fiber acting as a cavity. The beam was
injected into the fiber on the experimental table that vibrated while the
magnetic coils were switched off. The AOM which was installed after
the fiber distorted the beam, such that we needed a pinhole to clean the
mode again.

In the new setup we addressed all these problems. The AOMs to
switch the beams are now placed on the table with the master lasers,
with no vibrations from the coils switch-off, using beams coming directly
from the amplifiers. This is shown in figure 3.3. A fiber cleaved with an
angle on both ends eliminates the possible creation of a cavity, and the
only optics after the fiber is a single lens which is placed directly after
the exit of the fiber to collimate the beam, and some steering mirrors.
This gives a virtually perfect Gaussian beam.

The Doppler cooling beam also had to be redesigned, as it was taken
after the tapered amplifier, which does not exist anymore. We also
simplified the beam path of the optical pumping beam.
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3.4 The magnetic traps
After the atoms have been trapped in the MOT, we have to transfer
them into the Ioffe-Pritchard trap where we perform the evaporative
cooling. As the MOT coils are not perfectly on the axis of the Zeeman
slower, we have some current in the transfer coils in order to lift the
center of the atoms a bit. When the experiment starts, we shift down the
MOT to the center of the coils. Afterwards, we detune the lasers closer
to resonance while lowering their power and the magnetic field to cool
the atoms more and compress them. We optically pump the atoms into
the higher hyperfine states, the only states magnetically trappable.

When trapping cold atoms, one must do a trade-off: a MOT should
be as big as possible as to trap as many atoms as possible. Later, while
doing evaporation, one prefers high magnetic field gradients to achieve
high densities. This is especially important in lithium, as it has rather
low scattering cross sections in low magnetic fields. A high gradient
means high currents close to the atoms, contradictory to a large MOT
volume. The solution adopted here is to spatially separate the two traps,
and transfer from one to the other.

The final magnetic trap is a classical Ioffe-Pritchard trap [81], illus-
trated in figure 3.9. It consists of four parallel bars, commonly called
Ioffe bars, arranged around a common center line, where they create
a magnetic field minimum in which the atoms will be trapped. At the
end of the bars, two coils are posed. They are not in a Helmholtz con-
figuration, but further apart, thus they create a magnetic field minimum
in the center. This traps the atoms also in the direction parallel to the
bars. These coils also create a large offset field, which is eliminated
using a pair of large compensation coils with a current flowing in the
opposite direction of the pinch coils’ current. As the compensation is
not exact, there is a small coil wound around the compensation coils
connected to a different power supply used to fine-tune the offset field.
The Ioffe-Pritchard trap is installed around a little appendix, which sticks
out of the glass cell in which we make the MOT. The appendix is very
small, enabling us to pose the trapping coils very close to the atoms,
lowering the needed currents considerably.

We transfer the atoms magnetically. We ramp up a current in the
transfer coils, centered around the Ioffe-Pritchard trap, and later lower
the current in the MOT coils. This procedure moves the center of the
quadrupole magnetic trap into the appendix. This technology, pioneered
by our group, is used in many variations in several laboratories. While
we use one pair of coils to transfer the atoms, the group in Munich
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Figure 3.9: The magnetic coils setup.

extended this concept by using many coils acting like a conveyor belt
[82].

An important problem with the old setup was the fact that we lost
most atoms during the transfer from the MOT into the magnetic trap
because the little appendix on the glass cell was just too small. The
atomic cloud has a 1/e radius of about 5 mm. As the inner diameter
of the appendix was only 3 mm, we loose 90% of the atoms when
transferring into the appendix. Increasing the inner diameter to 5 mm,
the loss will decrease to only about 50% of the atoms, which can be
easily calculated considering a cloud with a Gaussian distribution. This,
admittedly oversimplified estimation, has been verified by a Monte-Carlo
simulation by Andrea Alberti [83]. This means that we will be able to
transfer five times more atoms into the Ioffe-Pritchard trap.

This change made a redesign of the coils around this appendix
necessary. In order to reach the same confinement as before, the
current in the Ioffe bars has to be increased significantly. In the old
design we had three parallel wires for each bar, which we increased to
four. This way, we can create a magnetic field gradient per current of
3 GA−1cm−1, close to the 3,9 Gcm−1A−1 in the old setup. Fortunately, we
were driving a current of 400 A in the bars, well below their maximum

55



CHAPTER 3. EXPERIMENTAL SETUP

current, such that we can compensate for this decrease. We expect
that a current around 600 A will be necessary. We tested that the water
cooling will be sufficient for these currents.

3.5 The optical dipole trap
As we just described, only atoms in a low field seeking states can be
trapped using a magnetic trap. We prefer to use the lowest states of
the atoms as they cannot scatter inelastically, reducing the losses from
the trap. Therefore we installed an optical dipole trap, which can trap
atoms in all states.

An optical dipole trap consists basically of a focused Gaussian beam
of a wavelength higher than the atomic transition. The atoms are
attracted to high laser intensities, giving us a trapping potential which is
proportional to the intensity.

We use two crossed beams to create the optical trap. This enables
us to change the shape of the trap by changing the relative intensities
of the two laser beams. Originally, we used a 9,5 W Nd:YAG laser from
Spectra Physics, which was split on a beam splitting cube for the two
beams. One AOM per beam enabled us to change the intensity of the
vertical and horizontal trap independently.

After years of successful operation, the old laser for the optical dipole
trap started to decrease in power. As a replacement, we bought a Yb:YAG
laser “VersaDisk” from ELS. The manufacturer specified an output power
of 30 W at a wavelength of 1030 nm. Using a birefringent filter and an
etalon, the laser should be able to work in single frequency mode, while
still lasing at 15 W. This was a major design goal, as we will use this
laser to create an optical lattice.

This laser had a big surprise for us: when we first tried to replace
the old laser with it, the laser failed to trap the atoms, but instead heated
them until they left the trap. The reason for this was that the laser
showed a distinct noise peak at 3,4 kHz with a relative intensity noise
(RIN) of -93 dB/Hz, on top of a noise background of -115 dB/Hz. This
was far above the specified -160 dB/Hz. Similar results had been found
by the group in Innsbruck.

The heating of an atomic cloud with a laser that has intensity noise
was studied by Savard et al. [84]. They reported that the average energy
of the particles in a trap created by a noisy laser increases exponentially,

〈E(t)〉 = 〈E(0)〉et/τ (3.1)
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The heating rate τ in this equation relates to the noise of the laser as

1
τ = π2ν2S(2ν) (3.2)

where ν is the trap frequency and S(ν) is the power spectral density.
Equation (3.2) shows that the most disturbing noise is around twice the
trapping frequency, which we expect since parametric heating is the
dominating process.

The laser was shipped back for repair. A feedback loop was installed
in the factory, but this and various changes in the laser geometry had
only minor effect, the peak noise did not drop below -100 dB/Hz. The
good news was that the noise peak had moved to higher frequencies:
the main peak was now at 32 kHz, see figure 3.10. The heating times
calculated for the laser are shown in figure 3.11. Since we work at lower
frequencies, the atoms see less of the noise. The noise is very different
for single mode or multi-mode operation. The noise peak at 32 kHz is
narrower, but the noise at low frequencies increases tremendously for
multi-mode operation. This makes single mode the favorable way of
operating.

The only way to use this laser was to install a feedback loop. A
photodiode, installed after the trap, detects the intensity of the laser. We
designed a PI controller, which feeds back onto the AOM installed after
the laser. The electronic circuit is shown in figure 3.12. The photodiode’s
signal enters on the left. It get summed with the reference voltage using
an operational amplifier. As the photodiode’s signal is negative, and the
reference positive, the sum of the two give directly the error signal. A
potentiometer, wired as a voltage divider, determines the overall gain of
the feedback loop. The core part of the controller is the integrator in
its center. The gain G of the shown circuit is proportional to

G ∝ RGRτ

R0

(
1 + 1

iωRτC

)
(3.3)

where RG is the setting of the overall gain potentiometer and C is the
value of the capacitor in the integrator. Rτ is the setting of the variable
resistor named time constant in the figure, and looking at the equation
we note that it can be indeed used to set the time constant τ = RτC of
the system.

The output from this controller is connected to voltage controlled
attenuators (PAS-3 from Minicircuits) which attenuate the radio frequency
power sent to the AOM. As their working point is normally not around
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Figure 3.10: The noise of the laser in single mode and multi-mode operation,
after it had been repaired but before we installed the active stabilization.
The reference is the noise of the electronics.
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Figure 3.12: The controller electronics for the intensity feedback. All the
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0 V, a last summing amplifier is installed in the electronics to add an
offset to the output. The switch in the circuit can be used to disconnect
the feedback loop, and the power of the RF can be controlled manually
using the offset potentiometer.

In order to check the performance of the feedback loop, we studied
the losses of the atomic cloud in the optical trap. Starting with 9 · 105

atoms at 20µK, we saw an exponential decay with a time constant of 2,8 s
when the laser was feedback stabilized. This is much worse than the
predicted value shown in figure 3.11, apparently we are not limited by
the laser noise. Without the stabilization the losses were much higher,
and especially very non-deterministic, so that we were not even able to
trace a loss curve.

After a short while the laser constantly dropped in power. We found
out that this was due to an accumulation of dirt burnt into the laser
crystal. This problem could only be solved by realigning the lasing
cavity to use a different spot on the crystal. As this procedure can only
be performed by ELS technicians, this is not a long term solution. We
tried to overpressure the laser with filtered compressed air to reduce
dust, but the final solution was that we bought laminar flow air filters
which we installed on top of the experimental table.

The standard operation for the experiments described in this work
was that we used the ELS laser for the horizontal trap and the Spectra

60



3.6. THE COOLING STRATEGY

Physics laser for the vertical.

3.6 The cooling strategy
In BEC experiments, the standard tool for creating quantum degenerate
gases is forced evaporative cooling: one removes the most energetic
atoms out of the trap and lets the remaining atoms rethermalize. Con-
stantly lowering the energy above which one removes the atoms will
cool the gas. It is elastic collisions which provide rethermalization, while
inelastic collisions is the major limit of evaporative cooling, as it leads to
heating.

As we have seen in section 2.2, s-wave collisions are forbidden for
fermions. This decreases scattering to almost zero at low temperatures,
which prevents the gas from rethermalizing. Two techniques are used
to circumvent this: realizing that scattering is allowed once the fermions
are in different internal states, the groups at Duke [85] and Innsbruck
[86] are using the two lowest spin states of 6Li in an optical trap. At
JILA, they do the same in a magnetic trap using 40K [13]. The other
technique is to mix the fermions with a boson. One then cools the boson
evaporatively, and as the bosons and fermions scatter, the fermions
are cooled sympathetically. This technique is used in many groups,
the pioneers were the group at Rice [14] and our group [15] for the
combination 6Li-7Li, the group at MIT for 23Na-6Li [16]. Many groups
use nowadays the combination 87Rb-40K, pioneered at Florence [17] and
JILA [87]. The obvious solution would be the combination 87Rb-6Li, as Rb
is the most simple atom to deal with and Li is easier to handle than K.
This was tried by the group at Tübingen [88]. They reported on a very
low scattering length between the two atoms of 20a0, which reduces
evaporation efficiency to a point that quantum degeneracy is hard to
achieve.

We are using both techniques in our experiment. We start by per-
forming sympathetic evaporative cooling in a magnetic trap. In order
to start evaporative cooling, we first have to perform a Doppler cooling
stage, the principle of cooling used in a MOT. This is necessary as evap-
orative cooling does not work for Lithium around 6 mK, corresponding
to the cancellation of the scattering length described in section 2.2. In
the MOT we can cool below 1 mK, but when we transfer the atoms into
the magnetic trap we adiabatically compress the cloud, thus heating it.
Using Doppler cooling we can decrease the temperature again below
1 mK.
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Figure 3.13: Evaporative cooling in a dressed state picture. The solid lines
on the left represent the energy levels in the magnetic trap without the RF
field, while the dashed line is the dressed state energy. On the right side we
consider the avoided crossing and see that the atoms, symbolized as large
circles, can leave the trap if they have sufficient energy. The small circles
show how the atoms may be trapped in an eggshell trap, as described in
the text.

A magnetic trap is a minimum of the magnetic field in free space.
Atoms can be trapped in such a minimum, if they are prepared in a low
field seeking state, this is a state whose energy increases with increasing
magnetic field. Atoms in a high field seeking state, the other possibility,
cannot be trapped as there is nothing like a magnetic field maximum
in free space [89]. The situation of 6Li is shown in figure 3.15. We can
trap the atoms in the highest state. In order to remove the highest
energy atoms from the trap, we drive an RF transition which transfers
atoms into the untrapped lower states. As the transition depends on
the magnetic field, only the atoms at a certain isomagnetic shell are
removed, thus only those which are sufficiently energetic to get there.
One commonly speaks of a radio frequency knife which “cuts” the high
energetic tail of the atomic distribution.

Another way of seeing this is to look at a dressed state picture. The
radio frequency effectively shifts the lower state upwards until it crosses
the upper states, as shown in figure 3.6. This creates an avoided crossing,
and the atoms will be able to leave the trap once they manage to cross
the magnetic field of the RF knife. One can also trap the atoms in the
upper minima, symbolized by the small circles in the figure. This gives
an eggshell like trap, that was proposed by Zobay and Garraway [90],
and experimentally shown at Villetaneuse [91].

In the magnetic trap, we only evaporate 7Li, as this way we are able
to cool sufficiently low without loosing any of the fermions we want
to work with later. Historically, we were using a sequence of linear
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Figure 3.14: The evaporation ramp. The solid line shows the linear ramps
used originally, while the dashed line shows the exponential ramp used
later. One should note the little linear ramp a the end of the exponential
ramp to eliminated all remaining bosons.

ramps for the RF knife, that were optimized independently. It turned
out that by proceeding this way we converged to an approximation of an
exponential function by linear pieces, as shown in figure 3.14. Thus we
replaced the ramp by a simple exponential sweep which can be easily
tuned as a whole. The exponential sweep is followed by a linear ramp
which goes down below the hyperfine splitting in order to clear the
cloud from any remaining bosons.

We can improve the evaporation if we increase the scattering length
by making use of the Feshbach resonance. There is a Feshbach res-
onance between the lowest spin states, which are not magnetically
trappable. With an optical trap on the other hand, it is not easy to create
a potential sufficiently deep and large as to trap the atoms directly from
the MOT with good efficiency. This is why we evaporate first in the
magnetic trap.1 Once the atoms are sufficiently cold to be held in the

1The group in Innsbruck decided to build a cavity around the vacuum chamber,
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Figure 3.15: The atoms first get cooled down, and then get transferred to
the lower spin states using an RF pulse. Then we ramp to high magnetic
field where we generate the spin mixture using an RF sweep. On the right
we show an absorption image where the two lowest spin states had been
separated using the Stern-Gerlach effect.

optical trap, we transfer the atoms into it. Typical numbers are 106 atoms
at 15µK, while the optical trap depth is 500µK. We overlap the magnetic
trap with an optical trap which is similar in stiffness to its magnetic
counterpart, to minimize heating during the transfer. We ramp up the
optical trapping laser in 1 s. Afterwards, we switch off the magnetic trap
in 1,1 s only leaving some current in the pinch offset coils as a guiding
field. At this stage, the atoms are still in the magnetically trappable
higher hyperfine state. Using a RF transition we change from state |6〉
to state |1〉, as shown in figure 3.15. As this is the lowest state, inelastic
collisions cannot lead to heating anymore, improving the stability of the
cloud.

A rather complicated procedure follows to evaporatively cool the

leading to a power buildup which enables them to load directly from the MOT [86],
while the group at Duke uses a 140 W CO2 laser for the same purpose [85].
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atoms in the optical trap, one may follow the description comparing
the sketch in figure 3.6 to the setup shown in figure 3.9. The only coils
which can generate the Feshbach field around the resonance and can
be switched off rapidly are the pinch coils, as they are both small and
close to the atoms. In the Ioffe-Pritchard trap they had been used to
trap the atoms axially, and as we are now in a high field seeking state,
the trap acts as an anti-trap, pushing out the atoms. The “anti-trapping
frequency” is around 100 Hz at the Feshbach resonance point. We can
avoid the expulsion of the atoms by shining a second trapping laser
vertically onto the atoms, but evaporative cooling is more efficient in the
horizontal trap only. Therefore we use the compensation coils to create
the magnetic field. In 15 ms we ramp them close to the minimum of
the scattering length left of the resonance at 28 mT. There we create the
mixture of the two lowest spin states using another RF sweep.

The parameters of this sweep are very sensitive to magnetic stray
fields, and has to be verified regularly in a separate experimental run.
A small additional coil, not shown in the figure, enables us to apply a
magnetic field gradient. The spin states of the atoms will separate as
in the Stern-Gerlach experiment, and we can image this separation to
check the equality between the two spin states. Such a check is shown
on the right of figure 3.15.

After the spin mixture has been created, we wait 1 s for the atoms to
thermalize, followed by an exponential ramp down of the optical trap to
a fourth of its initial power in 5 s, to perform evaporative cooling. There
is no RF knife necessary in an optical trap, as it is naturally limited in
size and the atoms are not trapped outside the small focus of the laser
beam. At this point we are left with 5 · 105 atoms at 3µK, meaning that
we lost only half of the atoms while cooling down by a factor of five.

As we need to use the pinch coils to do experiments at the Feshbach
resonance, we now have to ramp up a second, vertical laser that prevents
the atoms from getting pushed out by the anti-trapping potential. This
is the time to switch to the pinch coils. We want to cross the p-wave
resonances at low field as fast as possible to avoid losses resulting from
them. This is why we first ramp up the pinch coils, in 5 ms, before we
switch off the compensation coils, again in 5 ms, as it is much faster
to ramp the small pinch coils. We stop at the center of the Feshbach
resonance, at 83 mT, from where we can ramp to the desired magnetic
field.
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Figure 3.16: The magnetic field ramps, as described in the text. On the left
is a sketch of the scattering length for comparison, as in figure 2.6. The
time is not to scale. The two coils generate a field opposite to each other,
the magnetic field thus crosses zero where the pinch coils get ramped up.
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3.7 MOT imaging
When optimizing the MOT, it is of crucial importance to know the
number and temperature of the trapped atoms. The old MOT imag-
ing system had long stopped working, mostly due to the fact that the
frame grabber card to read the camera did not fit into new computers.
Therefore we decided to install a completely new system.

As for the camera, we decided to buy a cheap and especially small
camera, as we do not need precision measurements for the characteri-
zation of the MOT. We chose the uEye UI-1410-M from IDS, an eight
bit CMOS camera, which is triggerable via a TTL signal and can be
connected to a computer using the USB port, which at the same time
is its power supply, limiting the number of cables on the experimental
table. There was a problem with that camera. A glass slide, meant to
protect the camera, created strong fringes on the camera, such that the
images were destroyed by the interference fringes. Unfortunately, while
breaking this glass slide we destroyed some pixels on the camera, but
there were enough left over to work with the camera.

As with the main imaging system, we use absorption imaging, since
this gives an absolute number of atoms. Assuming we correctly installed
the imaging lenses, each pixel of the camera will “see” a column of
the imaged cloud. If the cross section of this column is A, and the
scattering cross section of a photon with an atom is σ , a photon traveling
along this column has a probability of σ/A to scatter with an atom.
Considering many photons, there will be 1 − σ/A of the incident light
intensity transmitted. For N atoms Iout/Iin = (1−σ/A)N will be left, calling
Iin and Iout the incident and transmitted light intensities, respectively. In
order to know the number of atoms, we take the logarithm, leaving
us with N = ln(Iout/Iin)/ ln(1 − σ/A) ≈ − ln(Iout/Iin)A/σ . Note that σ/A
is normally sufficiently small that the last approximation is very good.
The term − ln(Iout/Iin) is called the optical density. The advantage of
absorption imaging is clearly visible: the calculated number of atoms
only depend on the ratio between two intensities, which can be easily
determined by taking two images, one with, one without the atoms to be
imaged, and we take the ratio of the two. Therefore there is no need to
calibrate the calculated number of atoms. The formula for the scattering
cross section is

σ = 3c2λ2

2π (1 + 4(∆/Γ)2)−1 (3.4)

with λ = 671 nm the wavelength of the transition, Γ = 5,9 MHz its
line width, c the corresponding Clebsch-Gordon coefficient, and ∆ the
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Figure 3.17: Two images of the MOT. On the left a normal MOT with 2 ·109

atoms, on the right side a compressed MOT, with 9 · 108 atoms left. The
images show the same area. One can see that the CMOT is at a different
position than the MOT, as described in section 3.4. The images are taken
with a detuning of the probe laser of -10 MHz to reduce the absorption,
otherwise the center of the cloud would be saturated.

detuning from the resonance. Special care has to be taken not to saturate
the atoms: once the intensity reaches the order of the saturation intensity,
the atoms absorb less photons, leading to a seemingly lower density. As
a MOT usually has optical densities too high to be measured with the
camera, we usually detune the lasers until saturation is sufficiently low.
Figure 3.17 show examples of the MOT imaging.

3.8 Computer control
The whole experiment is controlled by an MS-DOS PC running a pro-
gram written in Turbo Pascal. It commands an IO card which is mul-
tiplexed over a bus connected to two types of output boxes: a digital
version with 16 outputs and an analog version containing 16 bit digi-
tal/analog converters. They had five address bits which we increased to
six in order to double the number of boxes that can be connected.

Several other equipments are connected via a General Purpose
Interface Bus (GPIB, IEEE754) namely the radio frequency generators,
the function generator to generate the imaging pulses and a pulse
generator.

Over the years, the computer control had grown chaotic to a point
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where the code could not be maintained. We rewrote the whole experi-
mental sequence, adapting it to the new setup and removing large parts
that had become unnecessary. During this rewrite we optimized the code
interfacing with the bus, cutting in half the time between commands to
5µs.

The cameras are connected to two different computers, which in turn
are connected via serial ports to the control computer. We preferred to
use two computers as the camera imaging the magnetical and optical
traps is connected to the computer via an old PCi card and we feared
that it would not be compatible with modern computers, while the MOT
camera is connected via USB 2.0 which is not compatible with the old
computer.

The data acquisition program controlling the cameras had become
even more cumbersome. Many different data analysis tools had been
introduced which we were not able to manage. This led to frequent
crashes of the program. When the new MOT camera arrived, it was
nearly impossible to adapt the old program to the camera, so it was
decided to write a new program from scratch. We chose Python as a
programming language, since it has an easy to understand structure and
automatic garbage collection, eliminating memory leaks which we think
was the problem causing the frequent crashes. Our design goal was to
keep the program as simple as possible, making it understandable as
a whole. To achieve this task we used readily available libraries from
the Internet wherever feasible. Namely we used Qt4 and PyQt for the
graphical user interface, matplotlib [92] for plotting the acquired images
and SciPy [93] for fitting our data. We could thus decrease the size of the
program from more than 25000 lines to below 2000 lines. The running
program is shown in figure 3.18. An important problem of the old
program was, that the calculation of the physical values were distributed
over the whole program. After a while they did not correspond to the
actual experiment anymore, but it was cumbersome to change the code
appropriately. The new program contains all physical calculations in
one single file, shown in figure 3.19, which can even be changed during
runtime.
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Figure 3.18: The data analysis program while performing a 2D Fermi
fit. The program can show the optical density as well as absorption and
reference images separately in the center of the screen. Left of the image
and below integrals of a selected area are shown, with the fit superimposed.
On the lower left the user can select the fitting method, and the fitting
results are shown. On the very right is the selection of the images.

70



3.8. COMPUTER CONTROL

from scipy.special import erf
from math import pi, sqrt
from pygsl import sf

isotope = p["DetectIsotop"]
if isotope == 6: cgq = 1./2. # cgq is the clebsch-gordon-coefficient squared
else: cgq = 7./15.
pixelsize = (1./17.3/1000) # width of a pixel, in m
detuning = p["Probe7PrincipalDetuning"] # laser detuning, in MHz
gamma = 5.8724 # linewidth (in MHz)
lamda = 670.992421e-9 # wavelength, sorry, lambda is a reserved word in python...
# the scattering cross section
sigma = (3*cgq*lamda**2) / (2*pi) / (1 + 4 * (detuning / gamma)**2)

if fit == "Gaussian Fit":
od = Hmax * Hsigma * 2 / ( # od is the optical density

erf((bottom-Vmu) / (sqrt(2)*Vsigma)) - erf((top-Vmu)
/ (sqrt(2)*Vsigma))) * sqrt(2*pi)

r["N horizontal"] = od * pixelsize**2 / sigma
od = Vmax * Vsigma * 2 / (

erf((right-Hmu) / (sqrt(2)*Hsigma)) - erf((left-Hmu)
/ (sqrt(2)*Hsigma))) * sqrt(2*pi)

r["N vertical"] = od * pixelsize**2 / sigma
r["offset"] = Hoffset
r["sigma horizontal / mm"] = Hsigma * pixelsize * 1000
r["sigma vertical / mm"] = Vsigma * pixelsize * 1000
r["TOF / ms"]=p["MOTImageTOF"]

elif fit == "Fermi Fit":
max = (Hmax + Vmax) / 2
od = 2 * pi * max * Hsigma * Vsigma
r["N"] = od * pixelsize**2 / sigma
r["T / TF"] = (6*sf.fermi_dirac_2(Hfermi)[0])**(-1./3.)

elif fit == "Gaussian Fit 2D":
od = 2 * pi * max * Hsigma * Vsigma
r["N"] = od * pixelsize**2 / sigma
r["aspect ratio"] = Hsigma / Vsigma
r["sigma horizontal / mm"] = Hsigma * pixelsize * 1000
r["sigma vertical / mm"] = Vsigma * pixelsize * 1000

elif fit == "Fermi Fit 2D":
od = 2 * pi * max * sigmax * sigmay
r["N"] = od * pixelsize**2 / sigma
r["T / TF"] = (6*sf.fermi_dirac_2(fermi)[0])**(-1./3.)

elif fit == "Integrate": # simple summation of the optical density
r["N"] = integral * pixelsize**2 / sigma
r["opt. dens."] = integral

Figure 3.19: The calculation of physical parameters, as it is currently used
in the experiment. fit is the fitting method selected by the user, p contains
the settings of the experimental parameters, r will be shown on screen.
The calculations are done in a “physical” way, one can find, for example, the
scattering cross section (equation (3.4)) or the temperature from equation
(4.5).
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Chapter 4

Data analysis

A correct data analysis is crucial to every experiment. In experiments on
cold atoms, the raw data is normally the density distribution of the atoms
acquired using absorption imaging techniques. Most often, the total
number of the atoms and the extent of the cloud in the two directions is
sufficient to interpret the data and can be achieved easily by performing
an appropriate fit on the atomic distribution. Here we want to focus
on a more advanced method of data analysis: firstly, the shape of the
cloud contains important information about the temperature of the cloud,
which can be extracted using appropriate fitting functions. Secondly,
the cloud we see on the computer screen is only a two dimensional
projection. Knowing that the original cloud has rotational symmetry, we
can reconstruct the three dimensional distribution of the atoms.

4.1 Determination of the temperature of a fer-
mionic gas

The temperature of a classical gas in a trap can be determined easily:
after a time-of-flight expansion, the momentum distribution of the gas
is known from which the temperature can be easily calculated. The
case of a bosonic gas is very different: once the gas has condensed
into a Bose-Einstein-Condensate, the fraction of the non-condensed
atoms is directly related to the temperature of the gas. At very low
temperatures, the condensate becomes nearly pure, and a temperature
measurement becomes a task that is difficult to accomplish. The case
of a fermionic gas is as tricky. At low temperatures, especially below
the Fermi temperature, the momentum distribution shows no changes
except that the smearing of the step in the Fermi distribution.
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In order to determine the temperature of the gas, we release the
atoms from their trap and study the momentum distribution. Since the
gas is in the trap, this distribution will not have the shape of a Fermi
distribution – the chemical potential varies in the trap. Instead, we
obtain a bell-shaped distribution. At higher temperatures the width of
this curve gives the temperature, while at low temperatures the width
stays constant. This is an effect known as the Fermi pressure [14, 15].
We determine the temperature of a fermionic cloud by fitting an image
of the cloud to a theoretical function, which we want to develop in this
section.

One of our former group members, Julien Cubizolles [71], has de-
veloped a fit based on the Sommerfeld approximation of the Fermi
function. This fitting routine was useful, while limited, since he used
approximations only valid in a certain temperature range, leading to a
divergence of the fit once out of this range. A variation of the method we
present here has been used in the group at Duke University. They claim
that the fitting function developed here can also be used with a strongly
interacting gas if one introduces and additional calibration parameter
[31]. They developed a new technique to determine this parameter:
they released the gas from the trap for a short while, recapturing it
afterwards. The gas heats during this time in a controlled way. This
way they created a reference scale using which they could determine
the calibration parameter for their fitting routine.

Via absorption imaging, one measures the density of atoms integrated
over the line of sight. Traditionally we integrate over a second direction
to get a resulting curve which can then be fitted to a function. In case
of a non-interacting Fermi gas, the density can be easily calculated.

For fermions, the occupation probability follows the well-known
Fermi-Dirac distribution

f (E) = 1
eβ(E−µ) + 1 with β = 1

kBT
(4.1)

µ is the chemical potential. Using the local density approximation, the
phase space density w(r,k) in a harmonic trap is given by

w(r,p) = (2πh̄)−3

(
e
β
(

p2
2m+ 1

2m
∑

j ω2
j r2
j −µ

)
+ 1
)−1

(4.2)

As we want to use these functions to fit our data, we need to integrate
over four or five dimensions, depending on whether we want to do a two-
or one-dimensional fit. One should remember that we do not normally
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see the spatial dimension of the cloud, but rather the momentum space
since we do a time-of-flight measurement. Such an integration of two
variables leads to:

n2D(px,py) =
∫
w(r,p)drdpz

= (2π3h̄3mβ2ωxωyωz)−1
∫ ∞

0

(
e

β
2m (p2

x+p2
y )−βµ+u2 + 1

)−1
2π2u3du

= 1
2π

β
m6N

(
T
TF

)3

F1

(
βµ − β

2m (p2
x + p2

y)
)

= N
2π

β
mF1

(
βµ − β

2m (p2
x + p2

y)
)
/F2(βµ)

(4.3)

n1D(px) =
∫
w(r,p)drdpydpz

= (
√

2mβ5π3h̄3ωxωyωz)−1
∫ ∞

0

(
e

βp2x
2m −βµ+u2 + 1

)−1 8π2

3 u4du

= 1√
2π

√
β
m6N

(
T
TF

)3

F3/2

(
βµ − βp2

x
2m

)
= N√

2π

√
β
mF3/2

(
βµ − βp2

x
2m

)
/F2(βµ)

(4.4)

with Fj(x) = 1
Γ(j+1)

∫∞
0

t j
exp(t−x)+1 dt the complete Fermi-Dirac integral,

which is easily available as a function in the GNU Scientific Library
[94].

What information can we infer from such a fit? There are three
parameters in the fit functions. The constant in front of the function will
determine the height of the distribution and thus the number of atoms,
while the two other parameters both contain β, which is the inverse
temperature. The argument of the function F contains two terms: the
first one βµ corresponds to the Fermi pressure. For high temperatures
it is small, and the resulting distribution resembles a Gaussian, as the
function F resembles an exponential. The width of the distribution
at high temperatures is given by the other term in the argument, the
kinetic energy term. Interestingly we only have one width parameter
even in the two-dimensional case, resulting from the isotropy of the
gas. At low temperatures, βµ becomes important and leads to a much
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broader distribution than what one would expect from the kinetic energy
term. This parameter is already interesting in itself since it is a unitless
physical parameter of the trapped gas. In addition, it is strongly related
to the parameter this whole fitting was developed for: the ratio T/TF.
To see this, we integrate over all dimensions:

N =
∫
w(r,p)dpdr

= (β3h̄3ωxωyωzπ3)−1
∫ ∞

0
(eu2−βµ + 1)−1π3u5du

= (β3h̄3ωxωyωz)−1F2(βµ) = 6N
(
T
TF

)3

F2(βµ)

(4.5)

Meaning that T/TF = (6F2(βµ))−1/3. This is the parameter we are
finally interested in.

Once we have calculated those functions, we use the least square
fitting function “leastsq” of SciPy [93] to fit them to our data. Figure
4.1 shows a one-dimensional fit of n1D to the integrated optical density.
One can see that the Fermi function gives a better fit than a Gaussian,
especially in the wings, where the information about the temperature
lies.

The quality of a fit is usually measured by means of the χ2 test.
We calculate the sum of squares of the differences between the fitting
function and the data points. For normalization, this has to be divided
by the variance of a single datapoint. This is commonly divided by the
number of datapoints reduced by the number of parameters, which is
called the reduced χ2. Correctly normalized, one can thus compare
different fitting methods. The lower the reduced χ2, the better the fitting
function suits the data. A value of χ2 = 1 represents an optimal fit.
Values significantly below 1 are usually caused by major mistakes during
the data analysis.

In the the one-dimensional case, the reduced χ2 is 1,06 for the Fermi
fit, but 1,16 for the Gaussian, for the sample in the figure. The two-
dimensional fit has a typical χ2 of 1,2 for a Fermi function, while it is at
1,7 for a Gaussian function. The higher χ2 value for those fits first seems
to make them unfavorable, but the higher difference in χ2 between a
Gaussian and a Fermi fit shows that the two-dimensional fit is better
suited to attain an information about the temperature. Nonetheless, the
higher value for the two-dimensional fit is an artifact in most cases. Our
images often show a fluctuating offset in the vertical direction. As we did
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Figure 4.1: An example for a Fermi gas. The upper picture shows the
optical density in a false-color plot. The lower picture is an integration
over the vertical axis. The solid line is a fit with the Fermi-Dirac integral,
while the dashed line shows a fit with a Gaussian for comparison. The
parameters of the solid curve are T = 0,7µK, T/TF = 0,2 and N = 1,4 · 105
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the one-dimensional fits in the horizontal direction, these fluctuations
are simply averaged out for the one-dimensional fit.

While using the fit, it is important to check that the fitting algorithm
correctly finds the baseline of the data, as the temperature information
is mostly in the wings of the function which are just misplaced if the
baseline is incorrect. It turns out that in most of the cases, the Fermi fit
is much better at finding the baseline than the Gaussian fit. If this is not
the case, the data is most likely too bad to give any information about
the temperature, since the reason why the baseline could not be found
is that the algorithm could not find the typical sharp wings of the Fermi
function.

At very low temperatures, the shape of the expanded cloud shows no
changes. This makes fitting problematic and casts doubts on its result.
Thus, we tested the algorithm by letting it fit theoretical distributions
where a Gaussian noise was added. The results are shown in figure
4.2. This shows that the one-dimensional fit is reliable below T = 0,7TF,
given reasonable noise levels. The error is around 0,1TF, and as this
becomes slightly bigger for lower temperatures, we are not able to
measure temperatures below 0,15TF, this is also where we stopped the
simulation. At high temperatures, we do not have need for this fit, as
we can take the size of the cloud as a measure for the temperature.
The same simulation performed for the two-dimensional fit appears to
be more stable at first sight, given the much higher noise levels the fit
works at. This appearance is deceptive, since for the one-dimensional fit
we average over one direction, giving us much lower noise levels than
in two dimensions. In practice, the difference between the two fitting
methods is negligible. The noise on the data is normally below 30 % for
the two-dimensional fit, and below 3 % for the one-dimensional.

4.2 Three-dimensional reconstruction
In most of the experiments we have at least one axis of symmetry. This
enables us to deconvolute the data to get the original distribution, not
integrated over the line of sight. In the case of cylindrical symmetry, we
have to cut the image into slices perpendicular to the axis of symmetry,
and deconvolute each slice. In the case of spherical symmetry, we could
do the same, since spherical symmetry is cylindrical symmetry with an
additional symmetry axis. We can make use of this additional axis. We
find the center of the distribution and integrate over same distances
around this central point. This gives a one-dimensional distribution
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Figure 4.2: The stability of the fit. The graph shows the fitted values for a
distribution with a given value for T/TF with Gaussian noise added. On the
left graph a one-dimensional fit is performed. The noise level is 1 % for
the innermost, light, points, 2 % for the intermediate points and 3 % for the
outer, dark points. The right panel shows the same for a two dimensional
fit. Noise levels are 30 % for the outermost, dark points, 20 % and 10 % for
the intermediate shades and 5 % for the light curve.

which is then to be deconvoluted.
Both cases can be treated with the same mathematical method. The

one-dimensional distribution ρ(k) is

ρ(kr) =
∫ ∞

−∞
n(
√
k2
r + k2

z)dkz (4.6)

with kr being the distance on the image from the symmetry axis for
cylindrical symmetry or the distance on the image from the symmetry
center for spherical symmetry. kz is the line of sight over which we
integrate. We take a Fourier-transform of both sides and change to
polar coordinates to obtain

ρ̂(r) =
∫ ∞

−∞

∫ ∞

−∞
n(
√
k2
r + k2

z)eikrrdkzdkr = 2π
∫ ∞

0
n(kρ)J0(rkρ)kρdkρ

(4.7)
J0 is the zero order Bessel function. The last part of this equation is the
Hankel-transform. This transform is its own inverse, which allows us to
calculate the original distribution n in terms of the measured distribution
ρ as

n(k) = 1
2π

∫ ∞

0
ρ̂(r)J0(kr)rdr (4.8)
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In total, this gives us a good method for deconvoluting the data: we
first Fourier-transform the data, which is easily done using the fast
Fourier transform algorithm, and then use the Hankel transform. As
the Hankel transform is linear, it is just a matrix multiplication whose
coefficients can be calculated analytically [95].

We tried this deconvolution on both spherical and cylindrical symmet-
ric data. It works well in the case of spherical symmetry and has been
used to create the curves presented in chapter 5 for the momentum
distribution curves, which are spherically symmetric. The cylindrically
symmetric data, however, namely the hydrodynamic expansion later
described in that chapter, is by far too noisy to be deconvoluted. This
is because the summation over same distances done for the spherical
symmetric data has an important smoothing effect, which is not possible
for cylindrically symmetric data.
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Chapter 5

Experimental results

Well roared, Lion.
– W. Shakespeare A Midsummer Night’s Dream

The heart of an experimental physics thesis is the presentation
of the results achieved in the experiment. Our interest is to study
superfluidity in the BEC-BCS crossover. The two main sections of this
chapter are devoted to the study of the momentum distribution and the
hydrodynamic expansion of a gas in the crossover region. An outline of
similar experiments reported by other groups will be given. In addition,
we developed a new analysis of an older experiment on molecular BECs.
We accompany these experiments with measurements of the creation
of molecules happening while crossing the Feshbach resonance. We
extended the older experiments using slow magnetic field sweeps to
high sweep rates.

Finally results on heteronuclear Feshbach resonances are presented,
with initial measurements on this interesting extension of our current
work.

5.1 Momentum distribution
One of the main ingredients to BCS theory is the prediction of the the
momentum distribution for superfluid fermions: even at zero tempera-
ture, it does not follow a Fermi-Dirac distribution as one would expect
but the step of this distribution is smeared out. At zero temperature, the
momentum distribution resembles closely the Fermi distribution of a
non-interacting gas at the condensation temperature. The momentum
distribution is accessible in experiments (this is illustrated in figure 2.8).
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If we switch off both the trapping potential and the interactions at the
same time, the gas will expand freely and the momentum distribution
gets mapped onto a distribution in real space which we can measure
using absorption imaging.

In this section, we want to calculate the momentum distribution
in the BEC-BCS crossover and compare it to experimental data. The
momentum distribution is directly connected to the microscopic behavior
of the atom, thus we can derive it directly from BCS theory. Wherever
possible, we compare to more advanced theories.

From the gap and number equations (2.34) and (2.35), we can calculate
µ and ∆ for a given scattering length a and density n. In our case, this
is not necessarily a simple task as the density n is not constant since the
atoms are in a harmonic trap. Therefore, we need to solve the equations
at each point r in the trap. After the gas has expanded, we measure
the momentum distribution, so we have to integrate the density at each
point over the whole space,

n(k) =
∫ d3r

(2π)3nk(r) =
∫ d3r

(2π)3

(
1 − εk − µ(r)√

(εk − µ(r))2 + ∆2(r)

)
(5.1)

leaving us with the problem of determining the local parameters µ and
∆. In order to determine µ we use the local density approximation. We
consider the “global” chemical potential µ to be constant over the whole
cloud, which is the sum of the local chemical potential and the external
potential: µ = µ(r) + Vext(r).

5.1.1 Unitarity limit
Let us start with the distribution at the unitarity limit, where a = ±∞.
This has the advantage that the left side of equation (2.34) vanishes, and
gives us a simple proportionality between µ and ∆. As we have seen in
section 2.4.6, the chemical potential can be written as µ(r) = (1 + β)EF(r),
with 1 + β being a unitless proportionality constant.

The local Fermi energy is ẼF = h̄2k̃2
F

2m , and with the Fermi wave vector
k̃3

F = 6π2n we can directly calculate the density as

n(r) = 1
6π2

(
2m

h̄2(1 + β)

)3/2(
µ − 1

2mω
2r2
)3/2

(5.2)

and upon normalization (see also Appendix C of [71]) leads to µ =
h̄ω(6N)1/3√1 + β.
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Now we have all the ingredients together, we can just plug everything
into 5.1, which leads to [96]

n(k) = 1
2π2 (1 + β)3/4k3

Fa6
ho

·
∫ 1

0

1 − k2/k2
F −

√
1 + β(1 − r2)√(

k2

k2
F

−
√

1 + β(1 − r2)
)2

+ (1−r2)2
1+β ( ∆

EF
)2

 r2dr (5.3)

with the harmonic oscillator length aho =
√
h̄/mω. Here we used also

that the ratio ∆/EF is constant in the unitarity limit. Solving the BCS
theory as described in section 2.4, it can be determined to be ∆ = 0,69EF.

5.1.2 The crossover
The problem becomes more complicated once we leave the unitarity
limit. The relationship between the Fermi energy and the chemical
potential is no longer linear. For simplicity, we use BCS theory, as it can
be written in a closed form. More complicated treatments have been
proposed [97], but the differences are not large enough to be seen in
our experiment.

The integral describing the momentum distribution, equation (5.1),
contains two functions which we need to calculate, the chemical potential
µ(r) and the gap ∆(r). We determine the former using the local density
approximation as µ(r) = µ0−Vext(r). The latter can be determined from µ
using the gap equation (2.36). The closed form solution from section 2.4.4,
however, is not well suited for solving for ∆, as it is contained implicitly
in x0. To circumvent this, we substitute r by x0 in the integration, as

µ(x0) = x0∆(x0) = x0
h̄2

2ma2 G−2(x0) = µ0 − 1
2mω

2r2 (5.4)

which follows directly from equation (2.38).
The determination of the limits of this integration gives an interesting

physical insight. We begin the integration in the center of the trap, where
µ = µ0. Using equation (5.4) we can determine the corresponding x0. In
figure 5.1 we have plotted the dependency of µ(x0). One sees that each
positive value of µ corresponds to two values of x0. The left branch of
this function corresponds to the BEC side of the resonance, while the
right branch represents the BCS limit. When leaving the center of the
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cloud, µ decreases. On the BCS side, x0 increases, reaching infinity at
the border of the cloud. The BEC side is more interesting: x0 decreases
and even crosses zero, so that µ is negative at the cloud’s border. As a
negative µ leads to a bosonic behavior, we can thus have the situation
that the center of our cloud behaves femionic, while the border shows
bosonic behavior.

From equation (5.4) we can calculate the dependences x0(r) and ∆(r),
and substitute into (5.1). This leads to

n(k) =
∫ (

1 − εk/∆(r) − x0(r)√
(εk/∆(r) − x0(r))2 + 1

)
d3r

(2π)3

= a6
ho

2a3

∫ ∞

x0∆(x0)=µ0

(
1 − a2k2G2(x0) − x0√

(a2k2G2(x0) − x0)2 + 1

)

·

√
4µ0a2m
h̄2 − x0

G2(x0)
G(x0) − 2x0G′(x0)

G3(x0)
dx0

(2π)3

(5.5)

This function is plotted in figure 5.2 for different values of kFa. In
the same graph, we show the distribution in the unitarity limit (equation
(5.3)) and in the limiting cases of a noninteracting gas, using the same
equations as in chapter 4. Furthermore, we show the momentum
distribution of a molecular condensate that we will discuss in the next
section. One sees that the transition between the different parameter
ranges are smooth, although they are derived from different formulae.
The steepest curve corresponds to the noninteracting gas. It actually
reaches zero at the Fermi momentum. The central density decreases
while traversing the crossover, and the distribution broadens.

5.1.3 Molecular condensate
For weak repulsive interactions, meaning that 0 < kFa � 1, the atoms
form deeply bound molecules, as seen at the end of section 2.3. In this
case the binding energy of the molecules dominates over the interaction
energy, and the momentum distribution is determined by the molecular
wavefunction. Here we want to show that this also follows from the
presented theory.

In section 2.4.5 we saw that in the molecular regime, the chemical
potential becomes negative and the gap becomes large, as shown in
figure 2.7. In combination with figure 5.1 we see that in this case
x0 = µ/∆ Ï −∞. We can develop the equations 2.38 for x−1

0 Ï −0 and
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Figure 5.1: An illustration of the gap equation. We present the normalized
chemical potential as a function of the ratio x0 of the chemical potential
and the gap. The left branch corresponds to the BEC side of the resonance,
while the right one corresponds to BCS.
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Figure 5.2: The calculated momentum distributions in a harmonic trap. The
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∫∞
0 n(k)k2dk = 1. The areas under the curves are

not equal as the number of atoms is proportional to the density multiplied
by the surface of the sphere with radius k. kF is the Fermi wave vector
calculated for the noninteracting gas.
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get na3 = 3π/16x2
0 , or ∆2 = 4h̄4k3

F/3πm2a. Then from (5.4) we see that
µ = −h̄2/2ma2. This is exactly the molecular binding energy per atom
that has been found in equation (2.25). Developing the summands in the
number equation (2.35) for small values of ∆/µ, in combination with the
result from this paragraph, leads to

nk = 4
3π (kFa)3 1

(k2a2 + 1)2 (5.6)

This result is interesting as it is the Fourier transform of a molecular
bound state. This means that the center of mass motion of the molecules
is condensed into p = 0 and only the relative motion of the atoms in
the molecule is relevant. This shows that in the BEC limit the BCS
wavefunction indeed describes a Bose-Einstein-Condensate of molecules.

5.1.4 Experiments
We measure the momentum distribution at three different magnetic
fields: at the unitarity limit at 83 mT, in the molecular regime and on
the BCS side of the Feshbach resonance.

We perform evaporative cooling as described in section 3.6. At the
end of this cooling stage we lower both trapping lasers to 10% of their
initial power, leading to transverse trapping frequencies of 2 kHz in both
the horizontal and vertical beam. The desired field is then ramped in
500 ms to the desired magnetic field.

At this point we would like to verify that we are indeed sufficiently
cold to be condensed into the superfluid state. The easiest way to achieve
that is to ramp the field to the BEC side of the resonance and let the
gas expand in the presence of the field. If the expanded gas is elliptic,
we know that the gas is Bose-Einstein condensed (we will go into more
details on this in section 5.3). But this will only happen if the trap is
non-isotropic in the observed plane, which is not the case. Therefore, we
recompress the horizontal beam in 200 ms to a trap frequency of 5,5 kHz.
Technically, it would not be necessary to recompress the horizontal
beam for the momentum distribution experiments, but as it does not
disturb the momentum distribution we prefer to keep the verified state
as is.

At the end, we switch off the trap, which takes about 5µs. The gas
expands for 0,5 ms, after which we take an absorption image. In order
to reconstruct the three-dimensional distribution, we perform an inverse
Abel transform as described in section 4.2.
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While taking these measurements, we realized that we were not
imaging all the atoms. Instead, a non-negligible part of the atoms
formed molecules during the switch-off of the magnetic field, which are
invisible to our absorption imaging. We will discuss this in detail in the
next section.

These lost atoms are the only unknown parameter that prevents us
from comparing directly to theory. We determine this loss parameter
by fitting the measured data to the theory in the BCS limit, as this is the
region where our theory is most trustworthy. This is shown in figure
5.5. Once we know this factor, we can plot theory and experiment in
the same graph for other positions in the crossover. Figure 5.3 shows
this in the unitarity limit. From this figure, it is seen that the BCS
theory slightly overestimates the broadening of the cloud. This was
already predicted by Astrakharchik et al.. We integrated their prediction
(see figure 2.8) over the trap and included the result in figure 5.3. We
see that their theory underestimates the broadening. Figure 5.4 shows
the experiments in the BEC region at 78 mT. Again we see that BCS
theory overestimates the broadening, as predicted by Astrakharchik et
al. Unfortunately, in this case we cannot compare to their theory as the
local Fermi wave vector k̃F varies over the trap, and they calculated the
momentum distribution only for a specific value of k̃Fa.

Similar experiments have been performed by the JILA group [99].
They study the momentum distribution in a gas of 40K. They fit their data
to an empirical function, which enables them to quantify the broadening
of the distribution. There is an important difference between the two
experiments: as the Feshbach resonance in 40K is shaped differently,
there is no need to cross the Feshbach resonance in order to take ab-
sorption images and thus they have no losses from molecule formation.
They use a more detailed theory which includes the ramp to zero field
[97]. Similar to us, they find that the mean-field BCS theory underesti-
mates the broadening of the distribution. In a second experiment, they
analyzed the temperature dependence of the distribution [100].

5.2 Molecule creation
When measuring the momentum distribution of the atoms, we assumed
that the magnetic field switch off happens instantaneously. Certainly,
this can never be exactly true. With only 5µs, the switch off of the coils
is very fast and we expected this to be sufficient. Nevertheless, we found
that in experiments where we switch off the coils after the expansions
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Figure 5.3: The momentum distribution of a gas at the unitarity limit. The
crosses are the inverse Abel transform of the cloud. The solid curve is the
distribution at zero temperature as calculated in section 5.1.1. The dashed
line is the prediction by Astrakharchik et al. [70]. The data is averaged
over three images.
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Figure 5.4: The momentum distribution of a gas in the molecular regime.
kFa = 3, with about 1,5 · 105 atoms. The data (crosses) is averaged over
three images. The solid line shows the theoretical predictions explained in
the text.
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Figure 5.5: The momentum distribution of a gas on the BCS side of the
resonance. kFa = −3,5, with about 1,5 · 105 atoms, averaged over two
images. The crosses are the experimental points, while the solid line shows
the BCS predictions (see text).
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systematically had higher optical density than the momentum distribution
experiments, where the coils get switched off before expansion.

This convinced us that we were creating molecules while ramping
the field, which cannot be seen in absorption imaging. If we leave
the magnetic field on during the expansion, the density of the cloud
decreases, down to densities too low to create molecules during the
magnetic field switch off.

We did a systematic scan of this effect, since it could be crucial to
the validity of our data. We let the atoms expand for a variable time τ
in the magnetic field, switch it off and let the atoms expand for 0,5 ms
more before imaging them. Figure 5.6 shows the detected number of
atoms after this procedure. One can clearly see that for short expansion
times, less atoms are detected than for long expansion times. During
the expansion, the density of atoms drops and less atoms get converted
into molecules.

We can fit this result to a simple Landau-Zener model [101,102]. In
this model we treat the Feshbach resonance as an avoided crossing
of the molecular and the atomic levels, similar to figure 2.4. When
sweeping the magnetic field infinitely slowly coming from infinitely high
magnetic fields over the resonance, the atoms should follow adiabatically
into the molecular state. At faster ramping speeds, the atoms can change
into the atomic state. This change is possible while they are in the
resonance region, during a time ∆B/Ḃ, where ∆B is the resonance
width from section 2.3, and Ḃ is the sweeping rate. The typical time for
an interaction is the time tinter the atoms are close to each other in the
open channel of the resonance, and is thus proportional to the density
n. A detailed analysis by Góral et al. [103] leads to tinter = 4πh̄abgn/m.

The presented model is only a crude simplification of the real process.
We do not start the magnetic field sweep at infinite magnetic field,
but instead from the center of the resonance. The sweep is also not
slow, but actually faster than all relevant time scales, the fastest being
the interaction time, which is about tinter = 10µs. Using a mean field
approach to calculate this time is also questionable given the strength
of the interactions. Despite these problems, we will see that this model
gives a good qualitative and even reasonable quantitative description of
the observations.

According to the Landau-Zener theory, the probability of changing
states is the exponentially suppressed ratio of the time to cross the
resonance by the interaction time tinter:

P = e−An/Ḃ (5.7)
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where A = 4π∆Babg/m is a parameter which contains the details of
molecule creation. During the expansion, the radius of the cloud chang-
es as r2(t) = r2

0(1 + ω2t2), where ω is the trap frequency. Therefore, the
density changes as n(t) = n0/(1 + ω2t2)3/2. We insert this into equation
(5.7) and fit it to our data. This way, we can determine the molecule
creation parameter A as A = 7 · 10−15 Tm3/s. The same parameter
has been measured by the MIT group, with the difference that their
field ramp was slower. They measured A to be much smaller, A =
2,4 ·10−15 Tm3/s [104]. Calculating A using the values from table 2.1 gives
A = 1,9 · 10−15 Tm3/s. This agrees rather well with the experimental
values, given the approximations explained above.

It should be mentioned that the fit is best when we take the time zero
of the expansion to be 50µs before the switch-off of the magnetic coils.
This is of the same order as the time between two commands executed
by the computer control, apparently the switch off of the coils and of the
trap did not happen exactly at the expected time. In the future, special
care should be taken to ensure that this does not happen.

5.3 Hydrodynamic expansion
While the momentum distribution presented in the last section is a good
tool to test theories in the BEC-BCS crossover, the superfluidity of the
gas is not as apparent. If we leave the magnetic field on while the
gas is expanding, it will stay superfluid at least in the beginning of the
expansion. Using the equations of hydrodynamics, we can calculate the
expansion of the gas, as we will show in this section.

5.3.1 General properties
After we have released the gas from the trap, it will expand ballistically if
there is no or only negligible interactions. In an ideal gas, the momentum
distribution is isotropic and thus the expanded cloud will also be isotropic.
This changes drastically once we go to very low temperatures, when
the quantum mechanical nature of the gas becomes important. For
example, if the atoms in the gas are condensed into a Bose-Einstein
condensate, they all occupy the same macroscopic quantum state The
expansion of this quantum state determines the shape of the final cloud,
see reference [105] for theoretical calculations of this. In bosons, an
anisotropic expansion is a clear signature for Bose-Einstein condensation.
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Figure 5.6: The number of detected atoms as function of the time of flight
τ in magnetic field at the unitarity limit. The error bars are one standard
error, the points without error bars are single points, thus the error is not
defined. The line is a fit with the Landau-Zener model described in the
text.
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The situation with fermions is more complicated. In order to achieve
any kind of condensation we need interactions, as the non-interacting
Fermi gas shows no phase transition. Therefore we have to treat three
different cases: At very low interaction strength, the gas will behave
collisionless and show ballistic expansion, this is the noninteracting
regime. For stronger interactions we enter into the collisional regime
where the gas behaves like a normal fluid. In both situations, the gas
can condense into a superfluid below a certain temperature, which is
the third case to consider.

We now want to estimate which regime the atoms are in, in our
experiment. We calculate the expected collision rate in the gas, and com-
pare it to the relevant time scale in our system, the trapping frequency.
The interactions reach their maximum at the unitarity limit, therefore
we chose this point as reference.

The scattering rate Γ can be calculated as Γ = nσv, where n is the
density of scatterers, σ is the scattering cross section and v is the average
velocity of the atoms. At the unitarity limit, the scattering cross section is
σ = 4π/k2. The average velocity can be calculated from the temperature
of the gas to be v =

√
3kBT/m. Now we can compare this scattering rate

with the trap frequency and define the collisional parameter φ = Γ/ω.
As we have two different trapping frequencies, we actually have two
parameters φ⊥ = Γ/ω⊥ and φz = Γ/ωz = φ⊥/λ, with the definitions from
section 2.1. To get a typical value for this parameter, we calculate it
at the Fermi temperature, and use kF to calculate the scattering cross
section, which leads to

φ⊥ = (3λN)1/3

6π (5.8)

This calculation can only be approximate, since we have ignored
completely the changes in the scattering length k. A detailed calculation
by Gehm et al. [106]1 showed that we need to correct this value by a
temperature-dependent factor shown in figure 5.7. Comparing to their
experiments in reference [107], they find that a gas is to be treated as
collisional above a collisional parameter of φ = 0,4. Our results usually
have an atom number around 2 · 104 atoms, and the temperature is
typically T = 0,2TF. This means that at unitarity we have φ⊥ ≈ 3, so
we are clearly in the collisional regime. This changes once we leave
unitarity: the scattering cross section will decrease or even vanish at the

1This paper uses the term “collisional hydrodynamics” for what we call the collisional
regime. Given that there is no well-established theory for this regime, using the term
hydrodynamic is a bit adventurous.
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Figure 5.7: The correction factor between the typical scattering rate γ
resulting from the calculations in the text and the real scattering rate Γ
as a function of the temperature. The scattering rate decreases for high
temperatures as does the scattering cross section. At low temperatures the
Pauli exclusion principle reduces the scattering rate. This can decrease
scattering down to values found in the noninteracting regime, but as the
gas condenses at these low temperatures, it will become hydrodynamic.
Figure taken from reference [106]

point where a = 0, so that we can expect to enter into the collisionless
regime at some point.

In the experiment, one has to be careful about judging whether an
expansion is anisotropic or not: the ellipticity of the expanded cloud is
not a clear signature, as the cloud will always be elliptic initially if the trap
is not isotropic. An anisotropically expanding cloud will eventually invert
its ellipticity. As this will never happen for an isotropically expanding
cloud, this ellipticity inversion is a clear signature of an anisotropic
expansion.

Our final goal is to distinguish the superfluid state from a normal
state. Originally, it was proposed to take the same path as for bosons

96



5.3. HYDRODYNAMIC EXPANSION

and take the ellipticity inversion as a signature for superfluidity [108].
For the collisional regime, however, it was pointed out by Jackson et al.
[109] 2 that at very strong interactions the cloud will also show ellipticity
inversion, but this effect is much smaller than the ellipticity resulting
from a superfluid cloud. Therefore we calculate the ellipticity that we
expect from a hydrodynamic theory and compare to the experiment,
and take the gas to be superfluid once the ellipticity inversion is close to
the predicted value.

5.3.2 The scaling ansatz
We now want to calculate the ellipticity of an expanding superfluid. In a
superfluid, all particles have condensed into one macroscopic wavefunc-
tion ψ. This wavefunction follows the continuity equation of quantum
mechanics,

∂|ψ|2
∂t + ∇ · j = 0 (5.9)

where the probability current j is defined by 2mj = ψ∇ψ∗ − ψ∗∇ψ.
We write the wave function as ψ = |ψ| exp iφ. Then the density is
n = |ψ|2 and the probability current becomes j = (h̄/m)n∇φ. After
having defined a velocity v = j/n, we are left with the continuity equation
of classical fluid mechanics:

∂n
∂t + ∇ · (nv) = 0 (5.10)

A superfluid is a liquid with vanishing viscosity. Such a liquid is described
by the Euler equation, which reads, after having used the Gibbs-Duhem
relation [40], as

m∂v
∂t + ∇

(
µ(n) + Vext(r) + 1

2mv
2
)

= 0 (5.11)

Now we are supposed to plug in the results from BCS theory, see
section 2.4, for the equation of state µ(n). Unfortunately, this leads to
coupled differential equations which are only numerically solvable. A
good approximation is to use a polytropic equation of state, µ(n) ∝ nγ ,
where γ is the polytropic exponent [108].

Recently, a large amount of literature was published regarding this
exponent since it is crucial in describing the Innsbruck [29] and Duke

2This paper uses the term “hydrodynamic” only for the superfluid state as we do,
opposed to Gehm et al., see last footnote
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Figure 5.8: The chemical potential as a function of the inverse gas parameter
in the homogeneous case. The points are Monte-Carlo simulations from
reference [79], the solid line is the fit presented in reference [112], while
the dashed line is the prediction from mean-field BCS theory.

[110] experiments on collective excitations. The idea is to take the real
equation of state and calculate an effective polytropic exponent

γ = n
µ
∂µ
∂n (5.12)

which coincides with the actual one for a polytropic equation of state. In
section 2.4 we calculated µ(n), which we could use to calculate γ , shown
in figure 5.9. Hu et al. [111] improved this approach by averaging over
the trap. Astrakharchik et al. [79] performed a quantum Monte Carlo
simulation to achieve a better approximation, and Manini et al. [112]
used an empiric fitting function to fit their data. The data and the fitted
function are presented in figure 5.8. We can use 5.12 to extract the
effective polytropic exponent, shown in figure 5.9.

The external potential Vext is the potential of the optical dipole trap. By
setting the partial derivatives with respect to time in the Euler equation
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Figure 5.9: The effective polytropic exponent γ as a function of the inverse
gas parameter. The solid line is calculated from the fit in figure 5.8, while
the dashed line is the mean-field BCS theory.
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5.11 to zero we can find the equilibrium solution n0 ∝ (µ0 − Vext)1/γ , and
v = 0 since we have no vortices. To model the switch-off of the trap, we
set Vext to zero for times t > 0, and solve the Euler equation (5.11). The
choice of a polytropic equation of state now pays back, as we can solve
it using the scaling ansatz [113]

n(rx,ry,rz,t) =
n0

(
rx
bx ,

ry
by ,

rz
bz

)
bxbybz

and vi(ri,t) = ḃi
bi
ri (5.13)

where the bi are the time dependent scaling parameters. Inserting this
ansatz into the Euler equation (5.11) leads to the coupled differential
equations

b̈i = ω2
i

(bxbybz)γbi
(5.14)

The scaling ansatz is the method of choice if one wants to avoid ex-
tensive numerical simulations. Nevertheless, it is only an approximation
as we do not have a polytropic equation of state. It has been shown that
a scaling ansatz is correct in an isotropic trap [114]. Recently it has been
proposed to study the expansion not after a sudden switch off of the
trap, but to perform a special ramp of the trap which would lead to an
expansion where a scaling ansatz is exact [115].

For very elongated cylindrically symmetric traps the scaling ansatz
(5.14) has been integrated analytically [113]. Our trap is neither very elon-
gated nor cylindrically symmetric, thus we had to integrate numerically.
At the same time, we have taken into account the fact that the magnetic
field for the Feshbach resonance is not completely homogeneous and
thus forms an anti-trapping potential. As we switch off this field after
a while to enable imaging, we have to remove that field for later times
from our calculation. The result of such a numerical integration is
shown in figure 5.10.

A very similar treatment has been performed by Diana et al. [116] for
our older data presented in the articles in the appendix. Unfortunately,
they were not aware of the anti-trapping potential, so their theory seems
to disagree with our data. Although they attribute this to the finite
temperature of the cloud, the anti-trapping is a far more likely reason.

5.3.3 Experiments
Let us now turn to the realization of the presented experiments. After
evaporation, we transfer 1,7 · 106 atoms into the crossed dipole trap,
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Figure 5.10: The ellipticity of an atomic cloud while expanding in a magnetic
field. The parameters are the same as for the experiments which will
be shown in the experimental section, namely in figure 5.11. The inset
illustrates the behavior of the diameter of the three axes, the notation of
the axis is described in the text.
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where we create a mixture of the two lowest Zeeman states as described
for the momentum distribution experiments. Two linear evaporations of
1 s, each down to 50% and 25% of the initial trap depth, respectively, are
followed by a ramp of the vertical beam down to 5% of its initial value in
500 ms. This leaves us with optical trap frequencies of ωx = 2π ·1,24 kHz
in the horizontal direction, ωy = 2π · 2,76 kHz in the vertical direction
and ωz = 2π ·3,03 kHz in the direction perpendicular to both laser beams.
This means that we have a nearly cigar-shaped trap with an ellipticity of
ωy/ωx = 2,23.

At this time we are only left with less than 105 atoms, which makes
it difficult to determine the temperature of the cloud. Thus we have also
stopped the ramp of the vertical beam at 10% of the initial value, giving
us enough atoms to fit with a fermionic distribution function. This gave
a result of T = 0,17TF.

In 5 ms we ramp to the resonance point, where we let the atoms
rethermalize for 200 ms. It takes the same time to ramp the magnetic
field to the desired field value. Once there, we switch off the optical
dipole trap and let the cloud expand in 0,5 ms, when we also switch off
the magnetic field and wait another 0,5 ms before we take an image. We
fit these images to a two-dimensional Gaussian distribution function to
calculate the ellipticity of the cloud. The results can be seen in figure
5.11. In image 5.12 we show the same data, where we plot the ellipticity
as a function of the interaction parameter −1/kFa. In this graph we the
step at −1/kFa = 0,3, which is the point where we expect the transition
from a superfluid to a collisionless behavior, according to the theoretical
predictions shown in figure 2.9. We cannot give a theoretical curve, as
the ellipticity depends strongly on the antitrapping potential described
above, which is independent of −1/kFa.

One might argue that the experimental procedure does not corre-
spond to the theoretical calculations, as we are switching off the magnetic
field during the expansion and our theory is not valid in this case. This
argument is correct, but misleading: superfluidity is due to interactions,
which in turn strongly depend on the density of the atoms. This means
that all the interesting effects occur while the cloud is still dense. Dur-
ing this time, the original anisotropy in real space is turned into an
anisotropy in momentum space, and lacking any further interactions
the cloud will simply expand ballistically. This is also why the ellipticity
converges to a constant value, as shown in figure 5.10. On the other
hand, after the 0,5 ms that we let the cloud expand, one might argue, the
ellipticity did not yet converge, as it is visible in the very same figure. We
could not increase this time any further as the density drops too much
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Figure 5.11: Ellipticity of the gas after expansion in a magnetic field on the
BCS side of the crossover. The temperature was determined with a two-
dimensional Fermi fit to be T = 0,17TF. The solid line shows the theoretical
expectation, as calculated in section 5.3. The dashed line marks the position
of the Feshbach resonance. While at the resonance the experimental points
agree with a superfluid hydrodynamic expansion, they leave this function
in a step-like manner. We average images at same magnetic fields before
applying the gaussian fit.
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Figure 5.12: The ellipticity as a function of −1/kFa. The step happens at
a gas parameter of about kFa = 0,3. Since the temperature is about T =
0,17TF (see text), this is consistent with the predicted transition temperature
in figure 2.9.
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Figure 5.13: The ellipticity of the cloud for various times in the magnetic
field at the unitarity limit. The expected ellipticity for long expansion times
is 1,4. This is the same dataset as figure 5.6, the error bars are calculated
in the same way.

to be imaged. In order to verify the validity of our data, we repeated the
experiment, stopping the magnetic field after different times, while leav-
ing the expansion without field constant at 0,5 ms. The result is shown in
figure 5.13. In this figure, we see that the cloud already reaches its final
ellipticity after 0,2 ms. It is worth noting that this measurement does not
correspond to figure 5.10. The two curves present different situations:
the experimental data have an additional expansion time without field
during which the ellipticity changes. The point at zero expansion time
in field is actually a momentum distribution measurement. This is not
true for the other points, as one cannot expect the cloud which already
expanded in field to be small compared to the final size. This is necessary
for the momentum distribution measurements to be valid.

We repeated the same curve using the evaporation scheme described
for the momentum distribution, shown in figure 5.14. This way we have
more atoms left, leading to a better signal to noise ratio. The temperature
of the gas is significantly higher. A Fermi fit to the noninteracting gas
gave T = 0,3TF. At this temperature we can only expect to be condensed
very close to the unitarity limit, as we see from figure 2.9. And indeed,
we observe that the step seen at lower temperatures has disappeard.
We are near the predicted ellipticity for a hydrodynamic gas at the
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Figure 5.14: The ellipticity in the crossover at higher temperatures: here
T = 0,3TF. The step has disappeared. The residual ellipticity is lower than
its superfluid counterpart in figure 5.11

resonance.
Our data are complementary to the data taken by the Innsbruck group

[117]. They measured the quadrupole mode in a cigar-shaped harmonic
trap along the long axis. They found its frequency and damping to
change around 1/kFa = −0,8. They attributed this to the transition
from a hydrodynamic to collisionless behavior. Their gas is colder
than ours, below T = 0,1TF. Studying the temperature behavior, they
found that heating up the gas to T = 0,2TF, the transition moves above
1/kFa = −0,66, which is in agreement with our measurements.

5.4 Molecular condensate
On the molecular side of the Feshbach resonance, we performed ad-
ditional studies on the molecular Bose-Einstein condensates expected
there. As a BEC is superfluid, we expect the same behavior as in the
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last sections. But more than that, we expect the momentum distribution
after time of flight to show a bimodality, a landmark of Bose-Einstein
condensation. Indeed, this behavior was observed both in 40K at JILA
[24], as well as in 6Li at MIT [25]. In our experiments, however, we saw
that the ellipticity corresponds to condensation, but the bimodality was
not obvious, as it can be seen in the paper in appendix A.1. This is due
to the much stronger interactions that we have compared to the usual
condensation of bosonic atoms. The group in Innsbruck ramped the
magnetic field down to 68 mT, a value where the bimodality becomes
visible [72]. We attempt to model the expansion of the cloud with strong
interactions.

The theory of Bose-Einstein condensation is too wide a field to be
treated here in depth, it can be found in textbooks (e.g. reference [40]).
The condensate wave function follows the Gross-Pitaevskii equation

ih̄∂ψ∂t = (−h̄
2∇2

2m + Vext(r) + g |ψ|2)ψ (5.15)

This equation can be seen as a Schrödinger equation with a kinetic
and potential energy and an interaction term in the Hamiltonian. The
interaction part is proportional to the condensate density nc = |ψ|2. The
proportionality constant is the coupling g = 4πh̄2am/m. Here, am is
the scattering length between molecules. In section 2.4.6 we saw that
am = 0,6a, where a is the atom-atom scattering length.

We suppose that there is a BEC in the center of the trap, which
is expanding after switching off the trap. Around this condensate is a
cloud of thermal molecules. We only consider interactions between the
molecules in the thermal cloud and the BEC as a whole. Then the BEC
acts as a potential for the thermal cloud. This way, we can write the
Hamiltonian of the molecules in the thermal cloud:

H(r,p) = p2

2m + 1
2m

∑
i∈{x,y,z}

ω2
i r2

i + 2gnc(r) (5.16)

The term gnc is exactly twice the interaction energy which appears in
the Gross-Pitaevskii equation. The factor two is owed to the exchange
interaction of bosonic particles. One might note here that the two is
not the BCS result of the molecule-molecule interaction being twice the
atom-atom interaction, as our basic particle is already a molecule.

In the trap, this gives a Mexican hat potential as illustrated in figure
5.15. We start our simulation by generating a random distribution of up
to one million atoms following the Bose-Einstein distribution function
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Figure 5.15: Illustration of the model used in the text. The points represent
the thermal cloud. They are trapped in a potential created by the BEC
before the trap is switched off, and pushed outwards afterwards by the
expanding BEC.

n(r,p) ∝ (exp(β(H − µ)) − 1)−1, with H being the Hamiltonian in the
trap. Then we numerically integrate the path of each atom with the
BEC as a time-varying potential. As we are deeply on the BEC side of
the resonance, we can calculate the expansion of the cloud using the
formulae of the last section, knowing that in this limit the polytropic
exponent is just 1.

The result of such a simulation is shown in figure 5.16. It is a
simulation of a condensate of 1000 molecules and some 3000 atoms
in the thermal cloud (technically, we simulated one million atoms and
divided the result appropriately to get a smoother curve). The expansion
time is 12 times the trap frequency period, corresponding to the example
data shown in the background. Unfortunately, we had to change the
parameters to get a curve that is similar to experimental data: we
simulated a scattering length between molecules of a = 0,02aho, while
the experiments are done at a = 0,1aho. The number of molecules is
also much higher in the experiment, about 2 · 104. Those discrepancies
are probably due to neglecting the interactions between the molecules
in the thermal cloud. Another possibility is that the cloud contains a
fraction of unbound atoms. Further investigation in this problem will be
necessary.

5.5 Heteronuclear Feshbach resonances
After atoms had been successfully cooled and trapped, various efforts
have been made to extend this field to ultra-cold molecules. This is
not a simple task, as laser cooling is difficult to achieve, as the level
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Figure 5.16: Simulation of a molecular Bose-Einstein condensate. The solid
line is the atomic density, the dashed line is the thermal cloud. The points
are experimental data. The data is taken at kFa ≈ 1.

109



CHAPTER 5. EXPERIMENTAL RESULTS

structure of molecules is too complicated. There are two possible paths
to ultra-cold molecules: one can develop cooling mechanisms that work
with molecules, or one can laser cool atoms and create molecules once
they are cold. An example for the first approach is the use of Stark
slowers, the electrostatic counterpart of the Zeeman slower, which has
been successfully used to slow various molecular gases [118]. Efforts to
create molecules using photoassociation, particularly interesting as this
is a new state of matter which does not exist in nature [119], falls into
the second category.

The most advanced approach, however, is the one presented in this
thesis. Using a Feshbach resonance, we can easily create molecules
and we even achieved molecular Bose-Einstein condensation. However,
the molecules we are studying are a very particular example, as they
consist of two atoms not only of the same element but even of the
same isotope. But we can do better. Since our experimental setup
also cools the bosonic isotope of Lithium, we can work on creating
molecules between these two isotopes. Taking the same approach as
for homonuclear molecules, we were searching Feshbach resonances
between the two isotopes.

Heteronuclear molecules can have a large electric dipole moment.
This adds dipole-dipole interactions to the usual contact interactions used
in the physics of cold atoms so far. New quantum states, like a quantum
ferrofluid, can be realized using these interactions. Another option to
create dipolar interactions is to use atoms with a large magnetic dipole
moment. Using this approach, quantum ferrofluid has recently been
demonstrated in Chromium [120]. It has also been proposed to use
heavy polar molecules to measure the electric dipole moment of the
electron [121], in the search for violations of the standard model.

Such resonances had been predicted before [122]. As one can see
in figure 5.17, the situation is comparable to the usual Feshbach reso-
nances described in section 2.3. Several molecular states exist below the
dissociation limit and can be tuned to this limit using a magnetic field.
One obvious difference is that the bound states in the closed channel
also depend on the magnetic field. This is due to their fermionic nature,
which means that they cannot have a spin of 0 and thus a magnetic spin
component mF 6= 0. We have been searching for these resonances by
looking at the atom loss, which is large close to a resonance.

During the time we performed our experiments, other combination
of atoms have been studied, namely 6Li and 23Na by the group at MIT
[123], as well as 87Rb and 40K at JILA [124]. In the meantime, inter-species
resonances have become a standard tool in atomic physics:
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Figure 5.17: The bound states and Feshbach resonances for a mixture of
7Li and 6Li. This figure corresponds to figure 2.4, which describes the same
situation in 6Li only. We only searched for the resonances between the
lowest Zeeman states, as in such a gas inelastic collisions are suppressed.
Image taken from reference [122]

• The group in Hamburg studied mixtures of fermionic 40K and
bosonic 87Rb both in a harmonic trap [125] and in an optical lattice
[126]. They found an enhancement of the mean-field energy of a
Bose-Einstein condensate by the fermions on the attractive side of
the resonance, and a phase separation on the repulsive side, both
in the harmonic trap. In the lattice they showed the creation of
heteronuclear molecules.

• At the ETH in Zürich they studied the same mixture in a lattice, and
found that the phase coherence between the bosons diminishes as
the fermions are added [127].

• Purely bosonic mixtures between 85Rb and 87Rb have been studied
at JILA, where molecules could be formed and observed [128].

The experimental procedure is similar to the experiments on 6Li
only, as described in section 3.6. In order to have some 7Li left in the
trap, we stop the evaporation prematurely. We evaporatively cool for
27 s, leaving 2 · 105 atoms of both 6Li and 7Li. In the optical dipole trap,
we apply two RF fields in order to transfer the atoms from the |3/2, 3/2〉
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Figure 5.18: The magnetic field ramps used to search the heteronuclear
resonances. On the left we mark the starting magnetic field of the final
ramps, on the right we mark the found resonances and compare them to
the theoretical values from reference [122]. We also find that one of the
resonances changes in position depending on the ramping speed. A fifth
resonance, predicted at 21,9 mT, was not searched for. Graph not to scale.

and |2,2〉 state into the |1/2,1/2〉 and |1,1〉 states, with a small guiding
field of 8 G.

During 1 ms we ramp the magnetic field close to the searched res-
onance, as shown in figure 5.18. We try to ramp as fast as possible
in order to prevent a loss of atoms at other resonances than the one
under investigation. It is possible that the current supplies are not fast
enough to actually follow, therefore, we have to stop far enough from
the resonance so that we do not reach the resonance during a possible
overshoot. A last slow ramp of 1 s leads us to the point we are looking
for. At the end, we wait for 20 ms before taking an image of 7Li. Once
the end of the ramp is close to a resonance, we loose the atoms very
rapidly. The losses were too fast as to characterize a lifetime.

We found four resonances, shown in figure 5.18. One of the mea-
surements is particularly interesting, as the position of the resonance
seems to have changed depending on the starting point of the ramp.
Figure 5.19 shows the raw data. One can see that the number of atoms
drops at different magnetic fields for the different ramps. The most
probable explanation for this behavior is an overshoot of the magnetic
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Figure 5.19: An example for the measurement of the position of a het-
eronuclear Feshbach resonance. Here we show the most interesting of
the four resonances, where the position changed with the ramping speed.
The magnetic field was ramped in 1 s from lower values, 47,5 mT for the
crosses, 53,7 mT for the dots, to the value indicated in this graph. One sees
a sharp loss of atoms.

field after the ramp. For the higher ramping speed the losses seem to
appear earlier, as the magnetic field is a bit higher at the end of the
ramp than demanded from the current supply.

The sharpness of the heteronuclear resonances asks for a very
careful calibration of the magnetic field. As a first step, we performed
an RF spectroscopy of the transition from state |6〉 to state |1〉 of 6Li
at high field (28 mT). At this field, we performed RF sweeps, and could
determine the transition frequency with an accuracy of 0,1% by searching
for the frequency where the transfer is most efficient. Knowing the
Zeeman splitting (see for eample references [71, 129]), we can calculate
the magnetic field with the same accuracy.

We also need to include the small offset coils mentioned at the end
of section 3.4, which provide an additional magnetic field. We were able

113



CHAPTER 5. EXPERIMENTAL RESULTS

0 2 4 6 8 10 12 14
Pinch offset current / A

58.0

58.5

59.0

59.5

60.0

60.5

61.0

61.5

62.0

P
in

ch
 c

u
rr

e
n

t 
/ 

A

Figure 5.20: Calibration of the magnetic fields of the two coil systems. The
points are the position of the p-wave resonance |1/2,1/2〉 + |1/2,1/2〉. The
fit of the points gives a calibration of Ipinch = 0,24Ioffset.

to calibrate the field by locating the p-wave Feshbach resonances (in
essentially the same way that we located the heteronuclar resonances),
which are very narrow, for different values of the offset field. Figure
5.20 shows this result. The accuracy is not as good as for the pinch coils,
around 1%, but as the generated field is more then 10 times lower than
the field generated by the pinch coils, we get the same accuracy for the
final results.

In conclusion, we have localized several heteronuclear Feshbach
resonances. They will open us the opportunity to study interactions
between the bosonic and the fermionic lithium isotope, hopefully leading
to the possibility to study the formation of molecules. This molecules
will have exciting properties, as they are fermionic, something found
only very rarely in nature.

5.6 Other experiments and outlook
The large interest in the work described in this thesis becomes visible
seeing the many groups working in the field of strongly interacting
fermionic gases. Namely, the groups of W. Ketterle at MIT, J. Thomas
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at Duke, R. Grimm at Innsbruck, R. Hulet at Rice and D. Jin at JILA
contributed important results to this field. We want to give here a rough
overview of their work.

5.6.1 The collective oscillation modes

In the experiments presented in this thesis, the gas is statically confined in
a trap until the trap is switched off. Superfluidity is seen in the expansion
of the gas, which eventually leaves the superfluid state. Therefore, we
never see a superfluid flow. Another approach was taken in Innsbruck:
the dynamics of the gas after a sudden change of the trap was studied.
The group used an AOM to displace the trap rapidly which leads to the
gas oscillating in the trap.

In a first experiment, they studied the radial sloshing and compression
oscillations [30]. The measurements have a very high precision, as they
were able to see the beat note between the two frequencies in two
orthogonal directions of the trap. As the compression mode depends
on the pressure of the gas, it was shown [130] that one can trace the
whole equation of state using this technique.

A second experiment was a study of the radial quadrupole mode [117].
This mode is a pure surface mode, the compressibility does not enter.
It was predicted [131] that in the hydrodynamic regime the quadrupole
mode has a frequency of ωq =

√
2ωr , where ωr is the radial trapping

frequency. In a collisionless gas on the other hand, the frequency is
twice the trapping frequency. One notes that here the equation of state
does not enter, making it simple to compare theory to experiment.

Interestingly, they find that the gas changes from hydrodynamic
to collisionless behavior near the position where we see the step in
the ellipticity, around 95 mT, and 1/kFa ≈ −0,8. They find that the
frequency of the quadrupole mode corresponds to predictions in the
hydrodynamic regime, and it drops just before it does a step upward
to reach the frequency expected in the collisionless regime. They also
find that the damping of the mode is increased just around that step.
This damping has been interpretated as the position where the pair
breaking energy has become sufficiently low to break a pair during the
oscillations [132].
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5.6.2 Spin-polarized Fermi gases
Shortly after the development of BCS theory, theorists started to ask
what would happen if the electrons were spin-polarized, for example
by a magnetic field. This is hard to achieve in superconductors, as
normally the Meissner effect prevents the magnetic field from entering
the superconductor. Recently an experimental realization of such a
state became possible in cold atoms. This created excitement in the
community, especially since some of the results seem contradictory.
These experiments showed the great advantage of the physics of cold
atoms: we can easily vary the polarization state of the atoms in a
controlled way, just by changing the RF pulse which depolarizes the gas
appropriately.

It started with an experiment at Rice [74]. They created fermionic
gases with different spin populations, and substracted the absorbtion
images of the two spin states from each other. They found that both
spin state form clouds of the same size if the polarization is lower than
a certain limit. Above this limit they see a core of bound atom pairs,
surrounded by a shell of unpaired atoms.

A more detailed analysis revealed that the experiment showed a
breakdown of the local density approximation. An explanation for this
would be the existence of a surface tension between the two phases [133].
A second experiment seemed to support this strongly: they observe that
the unpaired atoms get pushed to the ends of their highly elongated
trap [134].

In a much less elongated trap, the group at MIT found significantly
different results [135]. Instead of the two phases from the Rice experi-
ment, they saw a third phase appearing between the superfluid core and
the unpaired single atoms. This phase contains particles of both spin
states, but not equal in number. They also developed a new variation
of phase contrast imaging, where they can directly image the density
difference between the two states.

The seemingly contradictory results from the two groups opened a
sometimes heated discussion in the community. The discussion is still
ongoing, we try here to present the main lines of argumentation. A
rather general idea of the situation is presented in figure 5.21, following
the results of Gubbels et al. [136]. One of the oldest theoretical results is
the prediction by Clogston [137]: at some point it becomes energetically
favorable to align spins, Cooper pairs will break. Above this limit no
superfluidity is possible. The two groups who have studied spin-polarized
gases disagree on the position of this limit, the Rice group claiming that
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Figure 5.21: A sketch of the phase diagram of a spin-polarized Fermi gas.
The temperature is given in the unit of the transition temperature Tc for
a polarized gas. A polarization of 1 means that all spins are oriented in
the same direction, while 0 means that the gas is completely depolarized.
Figure adopted from reference [136]

it is too high to be seen in experiments.
At lowest temperatures, one expects the gas to be phase separated,

meaning that there exists a superfluid core and a normal shell around.
This separation is linked to the fact that the Clogston transition is first
order. Since in the vicinity of the critical temperature of the unpolarized
phase, the transition is second order just as the standard BCS transition
itself, the transition for the polarized phase has also to be second order
for this higher temperature range. A tri-critical point should therefore
appear when the temperature is lowered, as shown in figure 5.21, where
the transition goes from second to first order [138]. Other authors
introduce different phases into the phase diagram [139, 140]. Most
important is a phase proposed independently by Fulde, Ferrel [141],
Larkin and Ovchinnikov [142], who predict that a BCS state can tolerate
a small spin imbalance if we allow the Cooper pairs to have non-zero
momentum. This leads to a gap that fluctuates in the gas.

Good predictions of the experiments were also made using a very
different approach: Combescot et al. [143] considered a single atom in
one spin state immersed in a sea of atoms in the other spin state. Using
a many-body variational approach in combination with a Monte-Carlo
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simulation, they were able to predict the macroscopic quantities of a
spin-polarized gas, especially the three different phases found in the
MIT experiment. As their model is independent of BCS theory, their
results should hold independently from the outcome of the discussion
about the various states mentioned in the last paragraph.

In another experiment the MIT group could prove that the core
of the spin-polarized gas is actually superfluid by rotating the cloud
and observing vortices [32]. In a recent study they showed that pairing
occurs at very low temperatures in the absence of superfluidity once
the population imbalance becomes too large [144]. They demonstrated
the existence of pairs using radio frequency spectroscopy, a method
pioneered at Innsbruck to study the pairing gap in the BEC-BCS cross-
over [28]. The method was recently improved at MIT to be position
dependent by using a tomography technique [145].

5.6.3 p-wave resonances
In section 2.3 we saw that there is also p-wave Feshbach resonances.
We searched these resonances and performed a first study of their
behavior, published in the article in appendix A.2. For fermions, p-wave
scattering is allowed between the same spin state. Since we were usually
studying mixtures of the lower two spin states of the atoms, there are
three different resonances for the different possible combinations of the
internal states of the atoms. This was already shown in figure 2.4.

We detected the resonances by studying the losses near the resonance
point. Taking into account two- and three- body losses, one expects the
number of atoms N to follow the law

Ṅ
N = −G2〈n〉 − L3〈n2〉 (5.17)

The coefficents G2 and L3 are the two-body and three-body loss coeffi-
cients, respectively, and n is the density of the atoms. We find that for the
resonance between two atoms in the state |1〉, the three-body coefficient
L3 domiates. As both atoms are in the lowest Zeeman state, they cannot
scatter inelastically, and thus two-body collisions are suppressed. Once
at least one of the atoms is in a higher Zeeman state, namely state |2〉,
two-body collisions become possible, and the two-body loss coefficient
G2 dominates the process, in agreement with the experiments.

The main difference between an s-wave resonance and its p-wave
counterpart is the centrifugal barrier which we talked about in section
2.2. While the molecular state in the s-wave resonance becomes large,
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this does not happen in p-wave resonances, as the molecular state is
localized behind the centrifugal barrier, as we have shown in the paper
in appendix A.4. This also means that the scattering is not dominated
anymore by the low energy scattering, but by collisions around the
energy of the molecular state, as the atoms need to tunnel through the
potential barrier. This also leads to a temperature dependence of the
losses: the maximum of losses is located at the magnetic field where
the maximum of the momentum distribution of the atoms is equal to
the binding energy of the molecules. Interestingly this means that the
maximum of losses happens above the actual resonance position. This
is very interesting if we want to create p-wave molecules: at the exact
resonance position, the lifetime of the atomic cloud could be sufficiently
long to study the molecules.

The group at JILA found and studied the p-wave resonances in 40K
[33]. The group in Zürich studied p-wave resonances in an optical lattice,
allowing them to show that a p-wave resonance is not isotropic, as the
direction of the spin-alignment changes the scattering properties [146].
We found preliminary indication of p-wave molecule formation with an
efficiency of 20% and a lifetime below 20 ms.

In a recent experiment, the group at JILA demonstrated the existence
of p-wave molecules. As the gas near such a resonance is very unstable,
they could not use the usual technique to slowly ramp the magnetic
field to the resonance, but they modulated the magnetic field with a
frequency which corresponds to the molecule’s binding energy. They
were able to take images of the non-isotropic momentum distribution
inside a p-wave molecule [147]. Unfortunately, the lifetimes of these
molecules are only around 2 ms, making it unlikely to achieve p-wave
condensates.

5.6.4 Other experiments

In the group of John Thomas [31], a new technique for thermometry
was developed: the gas is released from its trap for a short time to be re-
trapped shortly after. This adds a defined quantity of energy into the gas,
which changes the shape of the cloud, from which the heat capacity of the
cloud can be determined. They find that the heat capacity deviates from
the behavior of a normal Fermi gas at low temperatures. They were also
able to use this method to create a relative temperature scale. This scale
is proportional to the real temperature. The proportionality constant,
however, is not precisely known, but this scale is nowadays a generaly
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accepted method to perform temperature dependent measurements.
The creation of vortices in a rotating gas is seen as a proof for its

superfluidity. The usual method to rotate a gas is to “stir” it using a
blue detuned laser beam. After having been used in bosonic gases
[148], it was used to show superfluidity of a fermionic gas at MIT [149].
Until now, this is the only direct proof of the superfluidity of the gas.
An interesting detail is that it seems not to be possible to image the
vortices in the crossover. They had to ramp the magnetic field to 74 mT,
well below the resonance point, during the expansion of the gas, in
order to observe vortices above 81 mT. Their explanation is that the
pairs will break during the expansion if they omit the described ramp.
This detection of vortices is also the technique that was used to observe
superfluidity in spin-polarized gases, mentioned in the last subsection.

The direct measurments of the pair correlation is possible by measur-
ing the correlations of the noise in the absorption images. This method
was introduced by the group at JILA [150]. They studied the noise cor-
relations of two images of the momentum distribution, one for each
spin state of the atoms. They dissociated weakly bound molecules in
the crossover, and were able to observe the correlation of the resulting
atoms in momentum space.
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Conclusions

In this thesis we have studied the behavior of an ultracold fermionic
gas in the vicinity of a Feshbach resonance. We have seen that the
gas becomes superfluid below a critical temperature. This state is
normally only found in Helium and is very similar to the behavior of
superconductors. The crossover can be separated into three regions: the
BCS regime, which corresponds to superconductivity in metals, a BEC
regime, where the atoms form molecules which can condense into a
Bose-Einstein condensate, like atoms in cold bosonic gases, and a strongly
interacting regime comparable to high temperature superconductors.
In the center of the crossover, where the scattering length diverges, one
reaches the unitarity limit, a state common to all strongly interacting
Fermi systems, which can hence be called universal.

We have shown that the BCS theory, originally developped for su-
perconductors, can be extended to the whole crossover region. One
ingredient of this theory is a prediction of the momentum distribution
of the particles. The Fermi edge seen for a noninteracting Fermi gas
smears out even at zero temperature. We have calculated the momen-
tum distribution in the crossover using the BCS theory, comparing to
more advanced theories. We presented an experimental measurment
of the momentum distribution of a strongly interacting Fermi gas in a
harmonic trap, and have found it to agree well with the predictions.

As superfluidity is in its roots a dynamic process, studying its dynamics
is crucial for the comprehension of this phenomenon. We studied
the expansion of a superfluid gas with strong interactions around the
unitarity limit and on the BCS side of the resonance. We found that
superfluidity suddenly breaks down when interactions drop below a
certain value. This value moves to higher interaction strengths once we
measure at higher temperatures.
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Stable molecules can be formed by preparing the gas around the
unitarity point and slowly ramping down the magnetic field into the BEC
region. In this thesis we present experimental measurements which
show that this molecule creation also happens for fast sweep rates if the
density of the gas is sufficiently high. This can occur when we switch
off the magnetic field in order to take an absorption picture of a cloud
in the crossover, and can disturb the measured distribution.

The development of new data analysis methods allowed us to deter-
mine more precisely the temperature of the gas. We also presented
an algorithm to deconvolute absorption images into the original three
dimensional density distribution.

The presented experiments have also shown that we are at the limits
at what our setup is capable of. Therefore, we have started with the
construction of a second generation experimental apparatus. We have
installed a new laser system, which is more flexible and stable than its
predecessor. The vacuum system was rebuilt in large parts, including a
complete rebuild of the Zeeman slower. As a result, the loading rate of
the atoms is now ten times higher than before, enabling us to increase
the repetition rate of our experiment, leading to better statistics. At the
same time we optimized the geometry of the magnetic traps, which will
enable us to increase the number of trapped atoms by about an order
of magnitude. A new imaging system for the magneto-optical trap is an
important tool in the characterisation of the new setup.

In the near future, we plan to set up an optical lattice in our system.
An optical lattice is a standing wave overlapped with the atomic cloud.
Similar to an optical dipole trap, atoms will be trapped in the intensity
maxima of the standing wave. Many different configurations are possible.
We can successively “freeze out” the spatial degrees of freedom, enabling
us to study atomic gases in low dimensions. For bosons, optical lattices
have already become a standard tool, we refer to reference [151] for a
review.

Optical lattices open the possiblity to experimentally realize theoretical
many-body models, without the problems appearing in solid state physics,
such as lattice defects or impurities. One example is the Fermi-Hubbard
model. Hubbard proposed in 1963 a simple model for electrons in a
lattice [152] whose Hamiltonian contains only two terms, a next-neighbor
tunneling and an on-site interaction term. It is a very simple model, but
exhibits phenomena like a metal-insulator transition, ferromagnetism or
superconductivity. For a review we refer to reference [153]. This model
is still a challenge to theoretical physics, as no complete solution has
been found yet.
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Cold fermions in optical lattices can be seen as a direct experimental
implementation of this model [154]. Its bosonic counterpart has already
been experimentally realized [155]. Pioneering experiments have been
performed for fermions. The group in Florence studied transport
phenomena in optical lattices [156]. The MIT group reported on evidence
for superfluidity in a lattice [157]. We already mentioned the efforts
made by the group in Hamburg to study Bose-Fermi mixtures in optical
lattices in section 5.5, and the study of p-wave resonances in optical
lattices in Zürich in section 5.6.3. We see that optical lattices are an
exciting future project, which will lead to a merge of cold atoms and
solid state physics.
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We report Bose-Einstein condensation of weakly bound 6Li2 molecules in a crossed optical trap near
a Feshbach resonance. We measure a molecule-molecule scattering length of 170�100

�60 nm at 770 G, in
good agreement with theory. We study the 2D expansion of the cloud and show deviation from
hydrodynamic behavior in the BEC-BCS crossover region.

DOI: 10.1103/PhysRevLett.93.050401 PACS numbers: 03.75.Ss, 05.30.Fk, 32.80.Pj, 34.50.–s

By applying a magnetic field to a gas of ultracold
atoms, it is possible to tune the strength and the sign of
the effective interaction between particles. This phenome-
non, known as Feshbach resonance, offers in the case of
fermions the unique possibility to study the crossover
between situations governed by Bose-Einstein and
Fermi-Dirac statistics. Indeed, when the scattering length
a characterizing the 2-body interaction at low tempera-
ture is positive, the atoms are known to pair in a bound
molecular state. When the temperature is low enough,
these bosonic dimers can form a Bose-Einstein conden-
sate (BEC) as observed very recently in 40K [1] and 6Li
[2,3]. On the side of the resonance where a is negative, one
expects the well-known Bardeen-Cooper-Schrieffer
(BCS) model for superconductivity to be valid. How-
ever, this simple picture of a BEC phase on one side of
the resonance and a BCS phase on the other is valid only
for small atom density n. When njaj3 * 1 the system
enters a strongly interacting regime that represents a
challenge for many-body theories [4–6] and that now
begins to be accessible to experiments [7–9].

In this Letter, we report on Bose-Einstein condensation
of 6Li dimers in a crossed optical dipole trap and a study
of the BEC-BCS crossover region. Unlike all previous
observations of molecular BEC made in single beam di-
pole traps with very elongated geometries, our conden-
sates are formed in nearly isotropic traps. Analyzing free
expansions of pure condensates with up to 4 � 104 mole-
cules, we measure the molecule-molecule scattering
length am � 170�100

�60 nm at a magnetic field of 770 G.
This measurement is in good agreement with the value
deduced from the resonance position [9] and the relation
am � 0:6 a of Ref. [10]. Combined with tight confinement,
these large scattering lengths lead to a regime of strong
interactions where the chemical potential � is on the
order of kBTC where TC ’ 1:5�K is the condensation
temperature. As a consequence, we find an important
modification of the thermal cloud time of flight expansion
induced by the large condensate mean field. Moreover, the
gas parameter nma3

m is no longer small but on the order of
0:3. In this regime, the validity of mean field theory
becomes questionable [11–13]. We show, in particular,

that the anisotropy and gas energy released during
expansion varies monotonically across the Feshbach
resonance.

Our experimental setup has been described previously
[14,15]. A gas of 6Li atoms is prepared in the absolute
ground state j1=2; 1=2i in a Nd-doped yttrium aluminum
garnet crossed beam optical dipole trap. The horizontal
beam (respectively vertical) propagates along x (y), has a
maximum power of Pho � 2 W (Pvo � 3:3 W) and a waist
of �25�m ( � 40�m). At full power, the 6Li trap oscil-
lation frequencies are !x=2� � 2:4	2
, !y=2� � 5:0	3
,
and !z=2� � 5:5	4
 kHz, as measured by parametric
excitation, and the trap depth is �80�K. After sweeping
the magnetic field B from 5 to 1060 G, we drive the
Zeeman transition between j1=2; 1=2i and j1=2;�1=2i
with a 76 MHz rf field to prepare a balanced mixture of
the two states. As measured very recently [9], the
Feshbach resonance between these two states is peaked
at 822	3
 G, and for B � 1060 G, a � �167 nm. After
100 ms the coherence between the two states is lost
and plain evaporation provides N" � N# � Ntot=2 �
1:5 � 105 atoms at 10 �K � 0:8TF, where kBTF �
�h2k2

F=2m � �h	3Ntot!x!y!z
1=3 � �h �!	3Ntot

1=3 is the

Fermi energy. Lowering the intensity of the trapping laser
to 0:1P0, the Fermi gas is evaporatively cooled to tem-
peratures T at or below 0:2TF and Ntot  7 � 104.

Then, sweeping the magnetic field to 770 G in 200 ms,
the Feshbach resonance is slowly crossed. In this process
atoms are reversibly transformed into cold molecules
[14,16] near the BEC critical temperature as presented
in Fig. 1(a). The onset of condensation is revealed by
bimodal and anisotropic momentum distributions in
time of flight expansions of the molecular gas. These
images are recorded as follows. At a fixed magnetic field,
the optical trap is first switched off. The cloud expands
typically for 1 ms and then the magnetic field is increased
by 100 G in 50�s. This converts the molecules back into
free atoms above resonance without releasing their bind-
ing energy [3]. Switching the field abruptly off in 10�s,
we detect free 6Li atoms by light absorption near the D2
line. Using this method, expansion images are not altered
by the adiabatic following of the molecular state to a
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deeper bound state during switch-off as observed in our
previous work [14]. Furthermore, we check that there are
no unpaired atoms before expansion. In Fig. 1(b), a Bose-
Einstein condensate of 7Li atoms produced in the same
optical trap is presented. The comparison between the
condensate sizes after expansion reveals that the mean
field interaction and scattering length are much larger for
6Li2 dimers [Fig. 1(a)] than for 7Li atoms [Fig. 1(b)].

To measure the molecule-molecule scattering
length, we produce pure molecular condensates by
taking advantage of our crossed dipole trap. We
recompress the horizontal beam to full power while
keeping the vertical beam at the low power of
0:035Pv0 corresponding to a trap depth for moleculesU �
5:6�K. Temperature is then limited to T � 0:9�K
assuming a conservative � � U=kBT � 6, whereas
the critical temperature increases with the mean
oscillation frequency. Consequently, with an axial (re-
spectively radial) trap frequency of 440 Hz (respec-
tively 5 kHz), we obtain T=T0

C � 0:3, where T0
C �

�h �!	0:82Ntot=2

1=3 � 2:7 �K is the noninteracting

BEC critical temperature. Thus, the condensate
should be pure as confirmed by our images. After
1.2 ms of expansion, the radius of the condensate in the
x (respectively y) direction is Rx � 51 �m (Ry �
103 �m). The resulting anisotropy Ry=Rx � 2:0	1
 is
consistent with the value 1.98 [17] predicted the scaling
equations [18,19]. Moreover, this set of equations leads to
an in-trap radius R0

x � 26 �m (respectively R0
y �

2:75 �m). We then deduce the molecule-molecule scatter-
ing length from the Thomas-Fermi formula R0

x;y �

aho �!=!x;y	15Ntotam=2aho

1=5, with aho �

����������������
�h=2m �!

p
.

Averaging over several images, this yields am �
170�100

�60 nm at 770 G. Here, the statistical uncertainty is
negligible compared to the systematic uncertainty due to
the calibration of our atom number. At this field, we
calculate an atomic scattering length of a � 306 nm.
Combined with the prediction am � 0:6 a of [10], we
obtain am � 183 nm in good agreement with our mea-
surement. For 7Li, we obtain with the same analysis a
much smaller scattering length of a7 � 0:65	10
 nm at
610 G also in agreement with theory [20].

Such large values of am bring our molecular conden-
sates into a novel regime where the gas parameter nma3

m is
no longer very small. Indeed, am � 170 nm and nm �
6 � 1013 cm�3 yield nma

3
m � 0:3. As a first consequence,

corrections due to beyond mean field effects [11,21] or to
the underlying fermionic nature of atoms may play a role,
since the average spacing between molecules is then of the
order of the molecule size �a=2. Second, even in a mean
field approach, thermodynamics is expected to be modi-
fied. For instance, in the conditions of Fig. 1(a), we expect
a large shift of the BEC critical temperature [11–13]. The
shift calculated to first order in n1=3a [12], �TC=T

0
C �

�1:4, is clearly inapplicable and a more refined approach
is required [22]. Third, we observe that partially con-
densed cloud expansions are modified by interactions.
Indeed, double structure fits lead to temperatures incon-
sistent with the presence of a condensate. In Fig. 1, we find
T � 1:6�K, to be compared with T0

C � 1:4�K, whereas
for the 7Li condensate T � 0:7�K � 0:6T0

C.
This inconsistency results from the large mean field

interaction which modifies the thermal cloud expansion.
To get a better estimate of the temperature, we rely on a
release energy calculation. We calculate the Bose distri-
bution of thermal atoms in a Mexican hat potential that is
the sum of the external potential and the repulsive mean
field potential created by the condensate. For simplicity
we neglect the mean field resulting from the thermal
component. The release energy is the sum of the ther-
mal kinetic energy, condensate interaction energy, and
Hartree-Fock interaction energy between the condensate
and thermal cloud. The temperature and chemical poten-
tial are then adjusted to fit the measured atom number and
release energy. For Fig. 1(a), we obtain a condensate
fraction of 28% and � � �h!=2	15NCam=2aho


2=5 �
1:4 �K. The temperature T � 0:9 �K is then found be-
low T0

C � 1:4 �K.
The condensate lifetime is typically �300 ms at 715 G

(am � 66 nm) and �3 s at 770 G (am � 170 nm),
whereas for a � �167 nm at 1060 G, the lifetime exceeds
30 s. On the BEC side, the molecule-molecule loss rate
constant is G � 0:26�0:08

�0:06 � 10�13 cm3=s at 770 G and
G � 1:75�0:5

�0:4 � 10�13 cm3=s at 715 G with the fit proce-
dure for condensates described in [23]. Combining simi-
lar results for four values of the magnetic field ranging
from 700 to 770 G, we find G / a�1:9�0:8. Our data are in

FIG. 1. Onset of Bose-Einstein condensation in a cloud of
2 � 104 6Li dimers at 770 G (a) and of 2 � 104 7Li atoms at
610 G (b) in the same optical trap. (a) 1.2 ms expansion profiles
along the weak direction x of confinement. (b) 1.4 ms expan-
sion. The different sizes of the condensates reflect the large
difference in scattering length am � 170 nm for 6Li dimers and
a7 � 0:55 nm for 7Li. Solid line: Gaussian�Thomas-Fermi fit.
Dashed line: Gaussian component. Condensate fractions are
both 28%. !x=2� � 0:59	4
 kHz, !y=2� � 1:6	1
 kHz, and
!z=2� � 1:7	1
 kHz in (a). !x=2� � 0:55	4
 kHz, !y=2� �
1:5	1
 kHz, and !z=2� � 1:6	1
 kHz in (b).
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agreement with the theoretical prediction G / a�2:55 of
Ref. [10] and with previous measurements of G in a
thermal gas at 690 G [14] or in a BEC at 764 G [8]. A
similar power law was also found for 40K [24].

We now present an investigation of the crossover from a
Bose-Einstein condensate to an interacting Fermi gas
(Figs. 2 and 3). We prepare a nearly pure condensate
with 3:5 � 104 molecules at 770 G and recompress
the trap to frequencies of !x � 2�� 830 Hz, !y �
2�� 2:4 kHz, and !z � 2�� 2:5 kHz. The magnetic
field is then slowly swept at a rate of 2 G=ms to various
values across the Feshbach resonance. The 2D momentum
distribution after a time of flight expansion of 1.4 ms is
then detected as previously.

Figure 2 presents the observed profiles (integrated over
the orthogonal direction) for different values of the mag-
netic field. At the lowest field values B � 750 G, nma

3
m �

1, condensates number are relatively low because of the
limited molecule lifetime. As B increases, the condensate
width gradually increases towards the width of a non-
interacting Fermi gas, and nothing dramatic happens on
resonance. At the highest fields (B � 925 G), where
kFjaj � 3, distributions are best fitted with zero tempera-
ture Fermi profiles. More quantitatively, Fig. 3(b) presents
both the gas energy released after expansion Erel and the
anisotropy � across resonance. These are calculated from
Gaussian fits to the density after time of flight: Erel �
m	2�2

y � �2
x
=2�2 and � � �y=�x, where �i is the rms

width along i, and � is the time of flight [17]. On the BEC
side at 730 G, the measured anisotropy is �� 1:6	1
, in
agreement with the hydrodynamic prediction, 1.75. It
then decreases monotonically to 1.1 at 1060 G on the
BCS side. On resonance, at zero temperature, superfluid
hydrodynamic expansion is expected [25] corresponding
to � � 1:7. We find, however, � � 1:35	5
, indicating a

partially hydrodynamic behavior that could be due to a
reduced superfluid fraction. On the a < 0 side, the de-
creasing anisotropy would indicate a further decrease of
the superfluid fraction that could correspond to the reduc-
tion of the condensed fraction of fermionic atom pairs
away from resonance observed in [7,9]. Interestingly, our
results differ from that of Ref. [26] where hydrodynamic
expansion was observed at 910 G in a more elongated trap
for T=TF ’ 0:1.

In the BEC-BCS crossover regime, the gas energy
released after expansion Erel is also smooth [Fig. 3(c)].
Erel presents a plateau for B � 750 G, and then increases
monotonically towards that of a weakly interacting Fermi
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cloud, (c) release energy across the BEC-BCS crossover region.
In (c), the dot-dashed line corresponds to a T � 0 ideal Fermi
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gas. The plateau is not reproduced by the mean field
approach of a pure condensate (dashed line). This is a
signature that the gas is not at T � 0. It can be understood
with the mean field approach we used previously to de-
scribe the behavior of the thermal cloud. Since the mag-
netic field sweep is slow compared to the gas collision rate
[14], we assume that this sweep is adiabatic and conserves
entropy [27]. We then adjust this entropy to reproduce the
release energy at a particular magnetic field, B � 720 G.
The resulting curve as a function of B (solid line in
Fig. 3(c)] agrees well with our data in the range 680 G �
B � 770 G, where the condensate fraction is 40%, and the
temperature is T  0:6T0

C � 1:4 �K. This model is lim-
ited to nma3

m & 1. Near resonance the calculated release
energy diverges and clearly departs from the data. On the
BCS side, the release energy of a T � 0 ideal Fermi gas
gives an upper bound for the data (dot-dashed curve), as
expected from negative interaction energy and a very cold
sample. This low temperature is supported by our mea-
surements on the BEC side and the assumption of entropy
conservation through resonance which predicts T �
0:1TF [27].

On resonance the gas is expected to reach a universal
behavior, as the scattering length a is not a relevant
parameter any more [5]. In this regime, the release energy
scales as Erel �

�������������
1 �  

p
E0

rel, where E0
rel is the release

energy of the noninteracting gas and  is a universal
parameter. From our data at 820 G, we get  �
�0:64	15
 . This value is larger than the Duke result  �
�0:26 � 0:07 at 910 G [26], but agrees with that of
Innsbruck  � �0:68�0:13

�0:10 at 850 G [8], and with the
most recent theoretical prediction  � �0:56 [6].
Around 925 G, where a � �270 nm and 	kFjaj


�1 �
0:35, the release energy curve displays a change of slope.
This is a signature of the transition between the strongly
and weakly interacting regimes. It is also observed near
the same field in [8] through in situ measurement of the
trapped cloud size. Interestingly, the onset of resonance
condensation of fermionic atom pairs observed in 40K [7]
and 6Li [9], corresponds to a similar value of kFjaj.

In summary, we have explored the whole region of the
6Li Feshbach resonance, from a Bose-Einstein conden-
sate of fermion dimers to an ultracold interacting Fermi
gas. The extremely large scattering length between mole-
cules that we have measured leads to novel BEC condi-
tions. We have observed hydrodynamic expansions on the
BEC side and nonhydrodynamic expansions at and above
resonance. We suggest that this effect results from a
reduction of the superfluid fraction and we point to the
need of a better understanding of the dynamics of an
expanding Fermi gas.
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C. Sá de Melo, M. Randeria, and J. Engelbrecht, Phys.
Rev. Lett. 71, 3202 (1993); M. Holland, S. Kokkelmans,
M. Chiofalo, and R. Walser, Phys. Rev. Lett. 87, 120406
(2001); Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89,
130402 (2002); J. N. Milstein, S. J. J. M. F. Kokkelmans,
and M. J. Holland, Phys. Rev. A 66, 043604 (2002);
R. Combescot, Phys. Rev. Lett. 91, 120401 (2003);
G. M. Falco and H.T. C. Stoof, cond-mat/0402579.

[5] H. Heiselberg, Phys. Rev. A 63, 043606 (2001).
[6] J. Carlson, S-Y Chang, V. R. Pandharipande, and K. E.

Schmidt, Phys. Rev. Lett. 91, 050401 (2003).
[7] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,

040403 (2004).
[8] M. Bartenstein et al., Phys. Rev. Lett. 92, 120401 (2004).
[9] M. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004).

[10] D. S. Petrov, C. Salomon, and G.V. Shlyapnikov, cond-
mat/0309010.

[11] G. Baym et al., Eur. Phys. J. B 24, 107 (2001).
[12] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari,

Rev. Mod. Phys. 71, 463 (1999).
[13] F. Gerbier et al., Phys. Rev. Lett. 92, 030405 (2004).
[14] J. Cubizolles et al., Phys. Rev. Lett. 91, 240401 (2003).
[15] T. Bourdel et al., Phys. Rev. Lett. 91, 020402 (2003).
[16] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature

(London) 424, 47 (2003).
[17] We correct our data for the presence of a magnetic field

curvature which leads to an antitrapping frequency of
100 Hz at 800 G along x.

[18] Yu. Kagan, E. L. Surkov, and G.V. Shlyapnikov, Phys.
Rev. A 54, 1753(R) (1996).

[19] Y. Castin and R. Dum, Phys. Rev. Lett. 77, 5315 (1996).
[20] L. Khaykovich et al., Science 296, 1290 (2002).
[21] L. Pitaevskii and S. Stringari, Phys. Rev. Lett. 81, 4541

(1998).
[22] A mean field self-consistent calculation of the molecular

density profile in the trap at TC leads to Tmf
C � 0:58T0

C 
0:8�K. S. Kokkelmans (to be published).
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We report the observation of threep-wave Feshbach resonances of6Li atoms in the lowest hyperfine state
f =1/2. Thepositions of the resonances are in good agreement with theory. We study the lifetime of the cloud
in the vicinity of the Feshbach resonances and show that, depending on the spin states, two- or three-body
mechanisms are at play. In the case of dipolar losses, we observe a nontrivial temperature dependence that is
well explained by a simple model.
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In the presence of a magnetic field, it is possible to obtain
a quasidegeneracy between the relative energy of two collid-
ing atoms and that of a weakly bound molecular state. This
effect, known as a Feshbach resonance, is usually associated
with the divergence of the scattering length and is the key
ingredient that led to the recent observation of superfluids
from fermion atom pairs of6Li [1–4] and40K [5]. Up to now
these pairs were formed ins-wave channels but it is known
from condensed matter physics that fermionic superfluidity
can arise through higher angular momentum pairing:p-wave
Cooper pairs have been observed in3He [6] and d-wave
cooper pairs in high-Tc superconductivity[7]. Although
Feshbach resonances involvingp or higher partial waves
have been found in cold atom systems[8–10], p-wave atom
pairs have never been directly observed.

In this paper we report the observation of three narrow
p-wave Feshbach resonances of6Li in the lowest hyperfine
state f =1/2. We measure the position of the resonance as
well as the lifetime of the atomic sample for all combinations
uf =1/2,mfl+ uf =1/2,mf8l, henceforth denotedsmf ,mf8d. We
show that the position of the resonances are in good agree-
ment with theory. In the case of atoms polarized in the
ground states1/2,1/2d, the atom losses are due to three-
body processes. We show that the temperature dependence of
the losses at resonance cannot be described by the threshold
law predicted by[11] on the basis of the symmetrization
principle for identical particles. In the case of atoms polar-
ized in s−1/2,−1/2d or that of a mixtures1/2,−1/2d, the
losses are mainly due to two-body dipolar losses. These
losses show a nontrivial temperature dependence that can
nevertheless be understood by a simple theoretical model
with only one adjustable parameter. In thes1/2,−1/2d chan-
nel, we take advantage of a sharp decrease of the two-body
loss rate below the Feshbach resonance to present a first
evidence for the generation ofp-wave molecules.

The p-wave resonances described in this paper have their
origin in the same singletsS=0d bound state that leads to the
s-wave Feshbach resonances located at 543 G and,830 G.
The latter has been used to generate stable molecular Bose-
Einstein condensates[1–4]. In order to discuss the origin of

these resonances, it is useful to introduce the molecular basis
quantum numbersS,I, and l, which correspond to the total
electron spinS=s1+s2, total nuclear spinI = i1+ i2, and or-
bital angular momentuml. Furthermore, the quantum num-
bers must fulfill the selection rule

S+ I + l = even, s1d

which is a result of the symmetrization requirements of the
two-body wave function. Since the atomic nuclear spin quan-
tum numbers arei1= i2=1, andS=0, there are two possibili-
ties for the total nuclear spin in combination with ans-wave
sl =0d collision: I =0 andI =2. These two states give rise to
the two aforementioneds-wave Feshbach resonances. For
p-wave sl =1d collisions only I =1 is possible. This bound
state may then give rise to the threep-wave Feshbach reso-
nances of Fig. 1. This threshold state does not suffer from
exchange decay, and is therefore relatively stable. Our pre-
dicted resonance field valuesBF (Table I) result from an
analysis which takes into account the most recent experimen-
tal data available for6Li. The calculation has been performed
for all spin channelssmf ,mf8d and a typical collision energy

FIG. 1. Coupled channels calculation ofp-wave binding ener-
gies, which give rise to Feshbach resonances at threshold. The two-
atom states(full line) are indicated by their quantum number
smf1

,mf2
d, while the bound state(dashed line) is labeled by the

molecular quantum numbersS,I, and l.
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of 15 µK. A more detailed analysis will be published else-
where[12].

Experimentally, we probe thesep-wave resonances using
the setup described in previous papers[13,14]. After evapo-
rative cooling in the magnetic trap, we transfer,53105

atoms of6Li in uf =3/2, mf =3/2l in a far-detuned crossed
optical trap at low magnetic field. The maximum power in
each arm isPh

0=2 W andPv
0=3.3 W in the horizontal and

vertical beam, respectively, and corresponds to a trap depth
of ,80 mK. The oscillation frequencies measured by para-
metric excitation are, respectively,vx=2p32.4s2d kHz, vy

=2p35.0s3d kHz, vz=2p35.5s4d kHz, where thexsyd di-
rection is chosen along the horizontal(vertical) beam. A first
radio-frequency(rf) sweep brings the atoms touf =1/2, mf
=1/2l and, if necessary, we perform a second rf transfer to
prepare the mixtures1/2,−1/2d or the pures−1/2,−1/2d.
The variable magnetic fieldB is the sum of two independent
fields B0 and B1. B0 offers a wide range of magnetic field
while B1 can be switched off rapidly. After the radio-
frequency transfer stage, we ramp the magnetic field toB0
,220 G withB1,8 G in 100 ms. When needed, we reduce
in 100 ms the power of the trapping beams to further cool the
atoms. For the coldest samples, we obtain at the end of this
evaporation sequenceN,105 atoms at a temperature
,5 mK. This corresponds to a ratioT/TF,0.5, where
kBTF="s6Nvxvyvzd1/3 is the Fermi energy of the system. To
reach the Feshbach resonance, we reduceB0 in 4 ms to its
final value B0,f ,BF, near the Feshbach resonance. At this
stage, we abruptly switch offB1 so that the total magnetic
field is now close to resonance. After a waiting time in the
trap twait=50 ms, we switch off the trapping and the mag-
netic field and we measure the remaining atom number after
a 0.35 ms time of flight.

We show in Fig. 2 the dependence of the atom number on
the final value ofB0,f in the case of the spin mixtures1/2,
−1/2d at a temperatureT,14 mK. As expected from theory,
we observe a sharp drop of the atom number for values of the
magnetic field close to 186 G. The other twop-wave Fesh-
bach resonances have a similar loss signature and Table I
shows that for all spin channels, the resonance positions are
in good agreement with predictions. Note that in Table I the
uncertainty is mainly due to the magnetic field calibration
while the short term stability is&50 mG.

To evaluate the possibility of keepingp-wave molecules
in our trap, we have studied the lifetime of the gas sample at
the three Feshbach resonances. We have measured the num-
ber N of atoms remaining in the trap after a variable time
twait. Accounting for two- and three-body processes only,N
should follow the rate equation

Ṅ

N
= − G2knl − L3kn2l, s2d

wheren is the atom density andknal=ed3r na+1/N sa=1,2d
is calculated from the classical Boltzman distribution. In this
equation, we can safely omit one-body losses since the mea-
sured decay time is,100 ms, much smaller than the one-
body lifetime,30 s.

In the s1/2,1/2d channel, we find that three-body losses
are dominant. The dependence ofL3 with temperature is very
weak[Fig. 3(a)]. A theoretical calculation of the temperature
dependence of three-body loss rate has been performed in
[11] and it predicts that in the case of indistinguishable fer-
mionsL3 should be proportional toTl, with lù2. Although
this prediction seems in disagreement with our experimental

TABLE I. Theoretical and experimental values of the magnetic
field BF at the p-wave Feshbach resonance for6Li atoms in uf1

=1/2,mf1
l and uf1=1/2,mf2

l.

smf1
,mf2

d Theory (G) Experiment(G)

s1/2,1/2d 159 160.2(6)

s1/2,−1/2d 185 186.2(6)

s−1/2,−1/2d 215 215.2(6)

FIG. 2. Atom number vs magnetic fieldB0,f after a 50 ms wait
for atoms in the spin mixtures1/2,−1/2d at T,14 mK. The sharp
drop close toB0,186 G over a range.0.5 G is the signature of
the p-wave Feshbach resonance predicted by theory.

FIG. 3. Variations of(a) three-body and(b) two-body loss rates
vs temperature at the Feshbach resonance.(a) l: atoms in the
Zeeman ground stateuf =1/2,mf =1/2l , B0,f ,159 G.(b) j: atoms
polarized in uf =1/2,mf =−1/2l , B0,f ,215 G. P: the mixture uf
=1/2,mf =1/2l+ uf =1/2,mf =−1/2l , B0,f ,186 G. In both cases,
the full line is a fit to the data using the prediction of Eq.(4) with
the magnetic field as the only fitting parameter.
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results, the analysis of[11] relies on a Wigner threshold law,
i.e., a perturbative calculation based on the Fermi golden
rule. At the Feshbach resonance where the scattering cross
section is expected to diverge, this simplified treatment is not
sufficient. This suggests that three-body processes must be
described by a more refined formalism, analogous to the uni-
tary limited treatment of thes-wave elastic collisions[15].
To confirm this assumption, we have compared the loss rates
at two given temperatures(T=2 mK and T=8 mK, respec-
tively) for various values of the magnetic field(Fig. 4). If the
threshold law is valid, then the ratioL3s2 mKd /L3s8 mKd
should always be smaller thans2/8d2,0.0625(full line of
Fig. 4). As seen before, experimental data show no signifi-
cant variation ofL3 with temperature near resonance. How-
ever, when the magnetic field is tuned out of resonance we
recover a dependence in agreement with[11].

In contrast tos-wave Feshbach resonances where dipolar
losses are forbidden in thef =1/2 manifold[16], the losses at
resonance are found to be dominantly two body in the
s1/2,−1/2d and s−1/2,−1/2d channels. The variations of
the two-body loss rate with temperature are displayed in Fig.
3(b). The temperature dependence appears very different in
the two cases. We show now that this is the consequence of
a strong sensitivity to magnetic field detuning from reso-
nance, rather than a specific property of the states involved.
In an extension of the work presented in[17], we describe
inelastic collisions by two noninteracting open channels
coupled to a singlep-wave molecular state[18]. This model
leads to an algebra close to the one describing photoassocia-
tion phenomena[19] and the two-body loss rate at energyE
is given by

g2sEd =
KE

sE − dd2 + g2/4
. s3d

Hered=msB−BFd is the detuning to the Feshbach resonance
andK ,m, andg are phenomenological constants, depending
on the microscopic details of the potential[21]. For each
channel, these parameters are estimated from our coupled-
channel calculation(Table II). To compare with experimental

data, Eq.(3) is averaged over a thermal distribution and for
d.0 andd@g we get

G2 , 4Îp
K

g
S d

kBT
D3/2

e−d/kBT. s4d

Equation(4) is used to fit the data of Fig. 3(b), with B
−BF as the only fitting parameter. We get a fairly good agree-
ment if we takeB−BF=0.04 G (0.3 G) for the s−1/2,
−1/2dfs1/2,−1/2dg channel, illustrating the extreme sensi-
tivity of G2 to detuning and temperature. This feature was
also qualitatively tested by measuring the variations ofG2
with magnetic field at constant temperature. Another interest-
ing feature of Eq.(4) is that it predicts that the widthdB of
the Feshbach resonance, as measured by atom losses, should
scale likekBT/m. For a typical temperatureT,15 mK, this
yields dB,0.15 G, in agreement with the resonance width
shown in Fig. 2.

From Eq.(4) we see thatG2 nearly vanishes atd=0. The
thermal average of Eq.(4) for d=0 yieldsG2sd=0d~KkBT.
The ratio between the maximum two-body loss ratesd
=3kBT/2d and that atd=0 is then ,kBT/g , ,102 for
,10 mK. In the regiond,0 where we expect to form mol-
ecules, we benefit from a 1/d2 further reduction of the two-
body losses[see Eq.(4)].

We have checked the production of molecules ins1/2,
−1/2d by using the scheme presented in[13,22]. We first
generate molecules inuS=0, I =1, l =1l by ramping in 20 ms
the magnetic field from 190 G.BF to Bnuc=185 G,BF. At
this stage, we can follow two paths before detection(Fig. 5).
Path 1 permits us to measure the numberN1 of free atoms:
by rampingdown in 2 ms the magnetic field from 185 G to
176 G, we convert the molecules into deeply bound molecu-

FIG. 4. RatioL3sT=2 mKd /L3sT=8 mKd of the three-body de-
cay rate for two different temperatures for a gas of atoms polarized
in uf =1/2,mf =1/2l. The full line is the threshold lawL3,T2.

TABLE II. Parameters characterizing the two-body loss rates for
s1/2,−1/2d and s−1/2,−1/2d spin channels.

K g m

smf1
,mf2

d scm3 mK s−1d (µK) smK G−1d

s1/2,−1/2d 1.21310−13 0.05 117

s−1/2,−1/2d 7.33310−13 0.08 111

FIG. 5. Molecules are generated by ramping from a magnetic
field higher thanBF to Bnuc,BF. From there, two paths are used. In
path 1(dashed line), the magnetic field is decreased to create tightly
bound molecules that will not appear on absorption images. In path
2 (dashed-dotted line), the magnetic field is ramped up across reso-
nance to dissociate the molecules. The efficiency of the molecule
production is simply given bys1−N1/N2d, whereNi is the atom
number measured after pathi.
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lar states that decay rapidly by two-body collisions. Path 2
gives access to the total atom numberN2 (free atoms + atoms
bound inp-wave molecules). It consists of rampingup the
magnetic field in 2 ms fromBnuc to 202 G.BF to convert
the molecules back into atoms. Since the atoms involved in
molecular states appear only in pictures taken in path 2, the
number of molecules in the trap issN2−N1d /2. In practice,
both sequences are started immediately after reachingBnuc
and we average the data of 25 pictures to compensate for
atom number fluctuations. We then getN1=7.1s5d3104 and
N2=9.1s7d3104 which corresponds to a molecule fraction
1−N1/N2=0.2s1d. Surprisingly, we failed to detect any mol-
ecule signal when applying the same method tos1/2,1/2d
atoms.

Since the dramatic reduction of inelastic losses close to a
s-wave Feshbach resonance[23] was a key ingredient to the
recent observation of fermionic superfluids, the formation of

stable atom pairs requires a full understanding of the decay
mechanisms at play close to ap-wave resonance. In this
paper we have shown that in the particular case of two-body
losses, the maximum losses take place when the detuning is
positive. Since stable dimers are expected to be generated for
negative detuning, dipolar losses should not present a major
hindrance to further studies ofp-wave molecules.
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We report on experiments in 6Li Fermi gases near Feshbach resonances. A broad s-wave resonance
is used to form a Bose-Einstein condensate of weakly bound 6Li2 molecules in a crossed optical
trap. The measured molecule-molecule scattering length of 170+100

−60 nm at 770G is found in good
agreement with theory. The expansion energy of the cloud in the BEC-BCS crossover region is
measured. Finally we discuss the properties of p-wave Feshbach resonances observed near 200Gauss
and new s-wave resonances in the heteronuclear 6Li- 7Li mixture.

Strongly interacting fermionic systems occur in a variety of physical processes, ranging from nuclear physics, to high tem-
perature superconductivity, superfluidity, quark-gluon plasmas, and ultra-cold dilute gases. Thanks to the phenomenon of
Feshbach resonances, these gases offer the unique possibility to tune the strength and the sign of the effective interaction be-
tween particles. In this way, it is possible to study the crossover between situations governed by Bose-Einstein and Fermi-Dirac
statistics.

BEC-BCS CROSSOVER NEAR 6LI S-WAVE RESONANCE

When the scattering length a characterizing the 2-body interaction at low temperature is positive, the atoms can pair in a
weakly bound molecular state. When the temperature is low enough, these bosonic dimers can form a Bose-Einstein condensate
(BEC) as observed very recently in 40K [1] and 6Li [2–4]. On the side of the resonance where a is negative, one expects the
well known Bardeen-Cooper-Schrieffer (BCS) model for superconductivity to be valid. However, this simple picture of a BEC
phase on one side of the resonance and a BCS phase on the other is valid only for small atom density n. When n|a|3 & 1 the
system enters a strongly interacting regime that represents a challenge for many-body theories [5]. In the recent months, this
regime has been the subject of intense experimental activity [4, 6–11].

Here we first report on Bose-Einstein condensation of 6Li dimers in a crossed optical dipole trap, and a study of the BEC-
BCS crossover region. Unlike all previous observations of molecular BEC made in single beam dipole traps with very elongated
geometries, our condensates are formed in nearly isotropic strongly confining traps. The experimental setup has been described
previously [12, 13]. A gas of 6Li atoms is prepared in the absolute ground state |1/2, 1/2〉 in a Nd-YAG crossed beam optical
dipole trap. The horizontal beam (resp. vertical) propagates along x (y), has a maximum power of P h

o = 2W (P v
o = 3.3W) and

a waist of ∼ 25 µm (∼ 40 µm). At full power, the 6Li trap oscillation frequencies are ωx/2π = 2.4(2) kHz, ωy/2π = 5.0(3) kHz,
and ωz/2π = 5.5(4) kHz, as measured by parametric excitation, and the trap depth is ∼ 80 µK. After sweeping the magnetic
field B from 5G to 1060G, we drive the Zeeman transition between |1/2, 1/2〉 and |1/2,−1/2〉 with a 76MHz RF field to prepare
a balanced mixture of the two states. As measured recently [11], the Feshbach resonance between these two states is peaked at
834(2)G, and for B=1060G, a = −167 nm. After 100 ms the coherence between the two states is lost and plain evaporation

provides N↑ = N↓ = Ntot/2 = 1.5× 105 atoms at 10 µK=0.8 TF, where kBTF = ~2k2
F/2m = ~(3Ntotωxωyωz)

1/3 = ~ω̄(3Ntot)
1/3

is the Fermi energy. Lowering the intensity of the trapping laser to 0.1 P0, the Fermi gas is evaporatively cooled to temperatures
T at or below 0.2 TF and Ntot ≈ 7× 104.

Then, sweeping the magnetic field to 770G in 200ms, the Feshbach resonance is slowly crossed. In this process atoms are
adiabatically and reversibly transformed into cold molecules [13, 14] near the BEC critical temperature as presented in figure
1a. The onset of condensation is revealed by bimodal and anisotropic momentum distributions in time of flight expansions of
the molecular gas. These images are recorded as follows. At a fixed magnetic field, the optical trap is first switched off. The
cloud expands typically for 1ms and then the magnetic field is increased by 100 G in 50 µs. This converts the molecules back
into free atoms above resonance without releasing their binding energy [3]. Switching the field abruptly off in 10 µs, we detect
free 6Li atoms by light absorption near the D2 line. We have checked that, in the trap before expansion, there are no unpaired
atoms. In figure 1b, a Bose-Einstein condensate of 7Li atoms produced in the same optical trap is presented. The comparison
between the condensate sizes after expansion dramatically reveals that the mean field interaction and scattering length are
much larger for 6Li2 dimers (Fig. 1a) than for 7Li atoms (Fig. 1b).

To measure the molecule-molecule scattering length, we produce pure molecular condensates by taking advantage of our
crossed dipole trap. We recompress the horizontal beam to full power while keeping the vertical beam at the low power
of 0.035 P v

0 corresponding to a trap depth for molecules U = 5.6 µK. Temperature is then limited to T ≤ 0.9 µK assuming a
conservative η = U/kBT = 6, whereas the critical temperature increases with the mean oscillation frequency. Consequently, with

an axial (resp. radial) trap frequency of 440Hz (resp. 5 kHz), we obtain T/T 0
C ≤ 0.3, where T 0

C = ~ω̄(0.82Ntot/2)1/3 =2.7 µK is
the non interacting BEC critical temperature. Thus, the condensate should be pure as confirmed by our images. After 1.2 ms
of expansion, the radius of the condensate in the x (resp. y) direction is Rx = 51 µm (Ry = 103 µm). The resulting anisotropy



2

Ry/Rx = 2.0(1) is consistent with the value 1.98 [15] predicted the scaling equations [16, 17]. Moreover, this set of equation
leads to an in-trap radius R0

x = 26µm (resp. R0
y = 2.75µm). We then deduce the molecule-molecule scattering length from

the Thomas-Fermi formula R0
x,y = ahoω̄/ωx,y(15Ntotam/2aho)

1/5, with aho =
p

~/2mω̄. Averaging over several images, this

yields am =170+100
−60 nm at 770G. Here, the statistical uncertainty is negligible compared to the systematic uncertainty due to

the calibration of our atom number. At this field, we calculate an atomic scattering length of a = 306 nm. Combined with the
prediction am = 0.6 a of [18], we obtain am = 183 nm in good agreement with our measurement. For 7Li, we obtain with the
same analysis a much smaller scattering length of a7=0.65(10) nm at 610G also in agreement with theory [19].

The condensate lifetime is typically ∼300ms at 715G (am = 66nm) and ∼3 s at 770 G (am = 170 nm), whereas for a = −167
nm at 1060G, the lifetime exceeds 30 s. On the BEC side, the molecule-molecule loss rate constant is G = 0.26+0.08

−0.06×10−13 cm3/s

at 770G and G = 1.75+0.5
−0.4 × 10−13 cm3/s at 715G with the fit procedure for condensates described in [20]. Combining similar

results for four values of the magnetic field ranging from 700 G to 770 G, we find G ∝ a−1.9±0.8 (figure 2). Our data are in
agreement with the theoretical prediction G ∝ a−2.55 of ref. [18] and with previous measurements of G in a thermal gas at
690G [13] or in a BEC at 764 G [6]. A similar power law was also found for 40K [21].

We then made an investigation of the crossover from a Bose-Einstein condensate to an interacting Fermi gas (Fig. 1.c
and d). We prepare a nearly pure condensate with 3.5×104 molecules at 770G and recompress the trap to frequencies of
ωx = 2π × 830Hz, ωy = 2π × 2.4 kHz, and ωz = 2π × 2.5 kHz. The magnetic field is then slowly swept at a rate of 2 G/ms to
various values across the Feshbach resonance. The 2D momentum distribution after a time of flight expansion of 1.4ms is then
detected as previously. As B increases from the regime of weak interactions the condensate size gradually increases towards
the width of a non interacting Fermi gas. Nothing particular happens on resonance. Fig. 1.c and 1.d present respectively the
anisotropy of the cloud after expansion η and the corresponding released energy Erel. These are calculated from gaussian fits
to the density after time of flight: Erel = m(2σ2

y + σ2
x)/2τ2 and η = σy/σx, where σi is the rms width along i, and τ is the time

of flight. The anisotropy monotonically decreases from ∼1.6 on the BEC side, where hydrodynamic expansion predicts 1.75, to
1.1, at 1060G, on the BCS side. On resonance, at zero temperature, a superfluid hydrodynamic expansion is expected [22] and
would correspond to η = 1.7. We find however η = 1.35(5), indicating a partially hydrodynamic behavior that could be due to
a reduced superfluid fraction. On the a < 0 side, the decreasing anisotropy would indicate a further decrease of the superfluid
fraction that could correspond to the reduction of the condensed fraction of fermionic atom pairs away from resonance observed
in [7, 8]. Interestingly, our results differ from that of ref.[23] where hydrodynamic expansion was observed at 910G in a more
elongated trap for T/TF ' 0.1.

In the BEC-BCS crossover regime, the gas energy released after expansion Erel is also smooth (Fig. 1.d). Erel presents a
plateau for B ≤ 750G, and then increases monotonically towards that of a weakly interacting Fermi gas. The plateau is not

FIG. 1: a,b: Onset of Bose-Einstein condensation in a cloud of 2 × 104 6Li dimers at 770 G (a) and of 2 × 104 7Li atoms
at 610G (b) in the same optical trap. (a): 1.2ms expansion profiles along the weak direction x of confinement. (b): 1.4 ms
expansion. The different sizes of the condensates reflect the large difference in scattering length am = 170 nm for 6Li dimers
and a7 = 0.55 nm for 7Li. Solid line: Gaussian+Thomas-Fermi fit. Dashed line: gaussian component. Condensate fractions are
44% in (a) and 28% in (b). c,d: BEC-BCS crossover. (c): anisotropy of the cloud. (d): release energy across the BEC-BCS
crossover region. In (d), the dot-dashed line corresponds to a T = 0 ideal Fermi gas. The dashed curve is the release energy
from a pure condensate in the Thomas-Fermi limit. The solid curve corresponds to a finite temperature mean field model with
T = 0.5 T 0

C. Arrow: kF|a| = 3.
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FIG. 2: Molecular condensate loss rate β as a function of the atomic scattering length a near the 834 G s-wave Feshbach
resonance. The line is a power law fit with β ∼ a−1.9±0.8 in agreement with theory, β ∼ a−2.55 [18].

reproduced by the mean field approach of a pure condensate (dashed line). This is a signature that the gas is not at T = 0.
It can be understood with the mean field approach we used previously to describe the behavior of the thermal cloud. Since
the magnetic field sweep is slow compared to the gas collision rate [13], we assume that this sweep is adiabatic and conserves
entropy [24]. We then adjust this entropy to reproduce the release energy at a particular magnetic field, B = 720 G. The
resulting curve as a function of B (solid line in Fig. 1.d) agrees well with our data in the range 680G≤ B ≤ 770G, where the
condensate fraction is 40%, and the temperature is T ≈ T 0

C/2 = 1.4 µK. This model is limited to nma3
m . 1. Near resonance

the calculated release energy diverges and clearly departs from the data. On the BCS side, the release energy of a T = 0 ideal
Fermi gas gives an upper bound for the data (dot-dashed curve), as expected from negative interaction energy and a very cold
sample. This low temperature is supported by our measurements on the BEC side and the assumption of entropy conservation
through resonance which predicts T = 0.1 TF on the BCS side [24].

On resonance the gas is expected to reach a universal behavior, as the scattering length a is not a relevant parameter any
more [25]. In this regime, the release energy scales as Erel =

√
1 + βE0

rel, where E0
rel is the release energy of the non-interacting

gas and β is a universal parameter. From our data at 820 G, we get β = −0.64(15). This value is larger than the Duke result
β = −0.26 ± 0.07 at 910G [23], but agrees with that of Innsbruck β = −0.68+0.13

−0.10 at 850G [6], and with the most recent

theoretical prediction β = −0.56 [26, 27]. Around 925G, where a = −270 nm and (kF|a|)−1 = 0.35, the release energy curve
displays a change of slope. This is a signature of the transition between the strongly and weakly interacting regimes. It is also
observed near the same field in [6] through in situ measurement of the trapped cloud size. Interestingly, the onset of resonance
condensation of fermionic atom pairs observed in 40K [7] and 6Li [8], corresponds to a similar value of kF|a|.

P-WAVE RESONANCES

Recently, both experimental [28–30] and theoretical [31] papers have devoted interest to the p-wave Feshbach resonances.
The goal of these experiments is to nucleate molecules with internal angular momentum l = 1, that could lead to the observation
of some non-conventional superconductivity, analogous to that observed in superfluid 3He [32].

In the manifold f = 1/2 corresponding to the hyperfine ground state of 6Li, coupled channels calculations have demonstrated
that three Feshbach resonances could be observed in p-wave channels. The position of the resonances are calculated using the
most recent experimental data available on 6Li and are presented in Tab. I. The predicted values of the resonance position are
compared with the location we obtained experimentally using the following procedure: we prepare 6Li atoms in the dipole trap
with the required spin state (mf , m′

f ) using radiofrequency transfer. We then ramp up the magnetic field from 0 to a value
B1 slightly higher than the predicted position of the Feshbach resonance. The magnetic field is then abruptly decreased to a
variable value B close to resonance. After a waiting time of 50ms in the trap, we measure the atom number by time of flight
imaging. In Fig. 3.a, we show the evolution of the atom number vs magnetic field in the channel (1/2,-1/2). We observe a
sharp decrease of the atom number at ∼ 186.5 G, close to the predicted value 185 G. The two other channels display similar
losses in the vicinity of the theoretical position of the Feshbach resonances (Tab. I). Note that in this table the experimental
uncertainty is mainly due to the magnetic field calibration.

One of the main issue of the physics of Feshbach resonances is related to the lifetime of the molecules, and more generally
of the atoms, at resonance. Indeed, one of the key element that led to the experiments on the BEC-BCS crossover was the
increase of the lifetime of molecules composed of fermions close to resonance. To address this issue, we have measured the time
evolution of the atom number N in the sample at the three Feshbach resonances. Since the one-body lifetime is ∼ 30 s, much
longer than the measured decay time (∼ 100 ms), we can fit the time evolution using the rate equation
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FIG. 3: (a) Atom number vs. magnetic field B0,f after a 50 ms wait for atoms in the spin mixture (1/2,−1/2) at T ∼ 14µK.
The sharp drop close to B0 ∼ 186 G over a range ' 0.5 G is the signature of the p-wave Feshbach resonance predicted by
theory. (b) (resp. (c)) Variations of 3-body (2-body) loss rates vs temperature at the Feshbach resonance. (b): �: atoms in
the Zeeman ground state |f = 1/2, mf = 1/2〉, B0,f ∼ 159 G. (c): �: atoms polarized in |f = 1/2, mf = −1/2〉, B0,f ∼ 215 G.
•: mixture |f = 1/2, mf = 1/2〉 + |f = 1/2, mf = −1/2〉, B0,f ∼ 186 G. In both cases, the full line is a fit to the data using
prediction of Eq. 3 with the magnetic field as the only fitting parameter.

Ṅ

N
= −G2〈n〉 − L3〈n2〉, (1)

where n is the atom density and 〈na〉 =
R

d3r na+1/N (a = 1, 2) is calculated from the classical Boltzman distribution.
In contrast to s-wave Feshbach resonances where dipolar losses are forbidden in the f = 1/2 manifold [33], the losses near a

p-wave resonance are found to be dominantly 2-body in the (1/2,-1/2) and (-1/2,-1/2) channels. The variations of the 2-body
loss rate with temperature are displayed in Fig. 3.c and show very different behaviors in these two channels. This non trivial
dependence is actually not the consequence of some specific property of the states involved (eg., the quantum statistics) but
can be recovered using a very simple three-state model. We describe inelastic processes by two non interacting open channels,
respectively the incoming and decay channels, that are coupled to a single p-wave molecular state . This model leads to a very
simple algebra that can be treated analytically [34] and yields for the two-body loss-rate at a given energy E

g2(E) =
KE

(E − δ)2 + γ2/4
. (2)

Here δ = µ(B −BF) is the detuning to the Feshbach resonance and K, µ and γ are phenomenological constants depending on
the microscopic details of the potential. For each channel, these parameters are estimated from our numerical coupled-channel
calculation (Tab. I).

Eqn. (2) shows that, contrarily to s-wave processes that can be described accurately by their low energy behavior, p-wave
losses are dominated by the resonance peak located at E = δ where the losses are maximum. In other word, the so-called
“threshold laws”, that give the low energy scattering behavior, are insufficient to describe a Feshbach resonance associated with
p-wave molecular states (and, more generally, any non zero angular momentum molecular state).

To compare with experimental data, Eq. (2) is averaged over a thermal distribution and for δ > 0 and δ � γ we get:

G2 ∼ 4
√

π
K

γ

„
δ

kBT

«3/2

e−δ/kBT . (3)

Eqn. 3 is used to fit the data of Fig. 3.b, with B − BF as the only fitting parameter. We get a fairly good agreement if we
take B − BF = 0.04 G (resp. 0.3 G) for the (-1/2,-1/2) (resp. (1/2,-1/2)) channel, illustrating the extreme sensitivity of G2

to detuning and temperature. This feature was also tested by measuring the variations of G2 with magnetic field at constant
temperature. Note that the width of the resonance, as given by Eqn. 3, is of the order of kBT/µ. At ∼ 10 µK, this yields a
width of ∼ 0.1 G, which is comparable with the one observed in Fig. 3.a.
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(mf1 , mf2)
Bth

G

Bexp

G

K

cm3 · µK · s−1

γ

µK

µ

µK ·G−1

(1/2,1/2) 159 160.2(6) – – –

(1/2,-1/2) 185 186.2(6) 1.21× 10−13 0.05 117

(-1/2,-1/2) 215 215.2(6) 7.33× 10−13 0.08 111

TABLE I: Position and two-body losses parameters of the p-wave Feshbach resonances of 6Li atoms in |f1 = 1/2, mf1〉 and
|f2 = 1/2, mf2〉 .

In the (1/2,1/2) channel, dipolar losses are forbidden and we indeed find that 3-body losses are dominant. The dependence
of L3 with temperature is very weak (Fig. 3.b) and contradicts the low energy theoretical calculation of the temperature
dependence of three-body loss rate performed in [35]. Indeed, Wigner threshold law predicts that at low energy, L3 should be
proportional to T λ, with λ ≥ 2 for indistinguishable fermions. However, as we noticed earlier in the case of two-body losses,
the threshold law is probably not sufficient to describe losses at resonance due to the existence of a resonance peak that might
also be present in three-body processes. This suggests that 3-body processes must be described by a more refined formalism,
analogous to the unitary limited treatment of the s-wave elastic collisions [36].

Finally, we have checked the production of molecules in (1/2,-1/2)mixture by using the scheme presented in [13, 14]. We first
generate p-wave molecules by ramping in 20 ms the magnetic field from 190 G> BF to Bnuc = 185 G < BF. At this stage, we
can follow two paths before detection. Path 1 permits to measure the number N1 of free atoms: by ramping down in 2 ms the
magnetic field from 185 G to 176 G, we convert the molecules into deeply bound molecular states that decay rapidly by 2-body
collisions. Path 2 gives access to the total atom number N2 (free atoms + atoms bound in p-wave molecules). It consists in
ramping up the magnetic field in 2 ms from Bnuc to 202 G> BF to convert the molecules back into atoms. Since the atoms
involved in molecular states appear only in pictures taken in path 2, the number of molecules in the trap is (N2 − N1)/2. In
practice, both sequences are started immediately after reaching Bnuc and we average the data of 25 pictures to compensate for
atom number fluctuations. We then get N1 = 7.1(5) × 104 and N2 = 9.1(7) × 104 which corresponds to a molecule fraction
1−N1/N2 = 0.2(1). Surprisingly, we failed to detect any molecule signal when applying the same method to (1/2,1/2) atoms.

HETERONUCLEAR FESHBACH RESONANCES

So far, the Feshbach resonances used in this paper were involving atoms of the same species (namely 6Li). However, it was
recently pointed out that the observation of Feshbach resonances between two different atom species could lead to a host of
interesting effects ranging from the observation of supersolid order [37] to the study polar molecules [38]. In the case of a mixture
of bosons and fermions, these molecules are fermions and are expected to be long lived. Indeed, Pauli principle keeps molecules
far apart and prevents inelastic collisions. Such resonances were observed experimentally in 6Li-23Na [39] and 40K-87Rb [40]
mixtures. In the case of 6Li-7Li in the stable Zeeman ground state |f = 1/2, mf = 1/2〉 ⊗ |f = 1, mf = 1〉, the existence and
the position of heteronuclear Feshbach resonances were predicted in [41]. In that work, the 6Li-7Li interaction potential was
extracted from the data on 6Li-6Li scattering properties by mean of a simple mass-scaling. Using coupled channels calculation
it was found that this system exhibited five Feshbach resonances whose position is displayed in Tab. II [42].

Experimentally, we probed these Feshbach resonances using a mixture of respectively N6 ∼ N7 ∼ 105 atoms of 6Li and 7Li
in the absolute Zeeman ground state |1/2, 1/2〉 ⊗ |1, 1〉. The gas is cooled at a temperature of 4 µK in the cross dipole trap
and we locate the resonance by sweeping down in 1 s the magnetic field from a value located about 20 G above the predicted
position of the resonance to a variable value B. By looking for the value of B at which we start loosing atoms, we were able
to detect four of the five resonances at a value very close to that predicted by theory (Tab. II). The discrepancy between
the experimental and theoretical values is larger in this case than in the case of th p-wave resonance. This is probably due
to a breakdown of the Born-Oppenheimer approximation that one expects in the case of light atoms such as lithium and that
forbids the use of the mass scaling [41]. Note also that the missing resonance is predicted to be very narrow (∼1 mG).

As noticed in [43], the width of a Feshbach resonance strongly influences the molecule lifetime that can be much higher close
to a wide resonance. Since the Feshbach resonances we found in |1/2, 1/2〉 ⊗ |1, 1〉 are very narrow (∼ 0.1 G) it might prove
interesting to look for wider Feshbach resonances. In the case of 6Li-7Li, a wide resonance is predicted to exist in the stable
state |3/2, 3/2〉⊗ |1, 1〉 at ∼ 530 G, in agreement with our observation of a large atom loss located between ∼ 440 G and ∼ 540
G.
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I. INTRODUCTION

The observation of molecular gaseous Bose-Einstein con-
densatessBECSd and the subsequent experimental study of
the BEC-BCS crossoverf1–5g were made possible by the
possibility of tuning interatomic interactions using a mag-
netic fieldsthe so-called Feshbach resonancesd. Although all
these experiments were based ons-wave interatomic interac-
tions, it is known from condensed matter physics that super-
fluidity of fermionic systems can also arise through higher-
order partial waves. The most famous examples of this
nonconventionnal superfluidity are3He f6g, for which the
Cooper pairs spawn fromp-wave interactions, and high-Tc
superconductivity, in which pairs are known to possess
d-wave symmetryf7g. Recent interest inp-wave interactions
in cold atom gases stemmed from these possibilities and re-
sulted in the observation ofp-wave Feshbach resonances in
40K f8g and 6Li f9,10g, as well as theoretical studies on the
superfluidity of cold atoms interacting throughp-wave pair-
ing f11,12g.

The present paper is devoted to the study ofp-wave in-
teractions close to a Feshbach resonance and it derives some
results presented inf9g. In a first part, we present the model
we use to describe both elastic and inelastic processes that
are discussed in the second part. We stress in particular the
main qualitative differences betweenp-wave ands-wave
physics and show that contrarily to the case of thes wave,
which is dominated by low-energy physics,p-wave scatter-
ing is dominated by a resonance peak associated to the qua-
sibound molecular state. Finally, we compare our analytical
results to numerical coupled-channel calculations.

II. MODEL FOR p-WAVE INTERACTIONS

We consider the scattering of two identical particles of
massm. As usual when treating a two-body problem, we
work in the center-of-mass frame and consider only the mo-
tion of a fictitious particle of massm/2 interacting with a
static potential. In order to study thep-wave Feshbach reso-
nance, we use a model based on the separation of open and

closed channels. In this framework, the Feshbach resonance
arises in an open channel as a result of the coupling with a
closed channelf13g. At resonance, scattering properties are
dominated by resonant effects and we can neglect all “back-
ground” scatteringsi.e., we assume there is no scattering far
from resonanced.

s1d We restrict ourselves to a three-channel system, la-
beled 1, 2, and 3, which correspond to the different two-body
spin configurationssFig. 1d. Channels!1l and !2l are open
channels. We focus on the situation where atoms are pre-
pared initially in state!1l. Atoms may be transferred to state
!2l after an inelastic process. Channel!3l is closed and hosts
the bound state leading to the Feshbach resonance.

Let us consider, for instance, the case of6Li atoms pre-
pared in a mixture ofuF=1/2,mF=1/2l and uF8=1/2,mF8
=−1/2l. In this system, the only two-body decay channel is
associated with the flipping of anmF8 =−1/2 atom tomF8
=1/2. If wedenote bysmF ,mF8d the symmetrized linear com-
bination of the statesuF=1/2,mFl and uF8=1/2,mF8l, then
u1l=s1/2,−1/2d and u2l=s1/2,1/2d.

FIG. 1. Thep-wave model: we consider three internal states,
labeled!1l, !2l, and !3l. States!1l and !2l are two open channels
corresponding, respectively, to the incoming and decay channels.
The released energy in an inelastic collision bringing an atom ini-
tially in !1l to !2l is denotedD. State!3l is a closed channel that
possesses ap-wave bound state of energyd nearly resonant with
state !1l. Finally, we assume that these three channels interact

through a potentialV̂ acting only on the internal states and coupling
the two open channels to the closed channel.
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s2d The Feshbach resonances studied here are all located
at values of the magnetic field where the Zeeman splitting is
much larger than the hyperfine structure. In a first approxi-
mation we can therefore assume that the internal states are
described by uncoupled electronic and nuclear spin states. In
the absence of any dipolar or hyperfine coupling between the
electronic singlet and triplet manifolds, we assume we have
no direct interaction in channels 1 and 2 so that the eigen-
states are plane waves characterized by their relative wave
vector k and their energyE1skd="2k2/m schannel 1d and
E2skd=−D+"2k2/m schannel 2d. D.0 is the energy released
in an inelastic process leading from 1 to 2.D can be consid-
ered as independent of the magnetic field and is assumed to
be much larger than any other energy scalessin the case
relevant to our experiments,D /h,80 MHz is the hyperfine
splitting of 6Li at high fieldd.

s3d In channel 3, we consider only ap-wave bound state
nesting at an energyd quasiresonant with channel 1. In the
case of6Li atoms in theF=1/2 hyperfine state,d=2mBsB
−B0d, whereB is the magnetic field andB0 is the position of
the “bare” Feshbach resonance. If the projection of the an-
gular momentumsin units of"d is denoted bymu for a quan-
tization axis chosen along some vectoru, the eigenfunctions
associated with this bound state can be written as
gsrdY1

musu ,fd, wheresr ,u ,fd is the set of polar coordinates
and theYl

m are the spherical harmonics.

s4d The couplingV̂ between the various channels affects
only the spin degrees of freedom. Therefore the orbital an-
gular momentum is conserved during the scattering process
and we restrict our analysis to thep-wave manifold. This is
in contrast to the situation in heavy alkalimetals where in-
coming particles in thes wave can be coupled to molecular
states of higher orbital angular momentumf14,15g.

We assume also that the only nonvanishing matrix ele-
ments are between the closed and the open channelssi.e.,

k1,2uV̂u u3l and k3uV̂u1,2ld.
Let us denote a state of the system byua ,xl, wherea

P h1,2,3j and x describe, respectively, the internalsspind
and the orbital degrees of freedom. According to assumption

ss4dd, the matrix elementka ,xuV̂ua8 ,x8l is simply given by

ka,xuV̂ua8,x8l = kxux8lkauV̂ua8l, s1d

and is therefore simply proportional to the overlapkx ux8l
between the external states.

Let us now particularize to the case whereaP h1,2j, and
uxl= ukl is associated with a plane wave of relative momen-
tum "k. According to hypothesisss4dd, this state is coupled
only to the closed channel!3l . Moreover, using the well-
known formulaeikz=oli

lÎ4ps2l +1d j lskrdYl
0su ,fd, where the

j l are the spherical Bessel functions, we see thatuxl is
coupled only to the stateua8=3,k =0l describing the pair in
the bound stateua8=3l with zero angular momentum in thek
direction. The matrix element then reads

ka,k uV̂u3,mkl = idmk,0Î12p

L3 kauV̂u3l E g*srd j1skrdr2dr,

s2d

whereL3 is a quantization volume. Since for smallk we have

j1skrd,kr /3, the matrix elementka ,k uV̂u3,mkl takes the
general form

ka,k uV̂u3,mkl = dmk,0
kFaskd
ÎL3

, s3d

whereFaskd has a finitesin general nonzerod limit when k
goes to zero.

Later on, we shall also need the coupling betweenua ,kl
and u3,mk8=0l sthat will be denoted byu3,0k8ld, where the
momentumk and the direction of quantizationk8 are no
longer parallel. The calculation presented above yields
readily

ka,k uV̂u3,0k8l =
kFaskd
ÎL3

k0ku0k8l =
kFaskd
ÎL3

cossk,k8
ˆ d, s4d

wheresk ,k8
ˆ d is the angle betweenk andk8 f16g.

III. T MATRIX

From general quantum theory, it is known that the scat-
tering properties of a system are given by the so-calledT

matrix T̂. It can be shown in particular thatT̂ is given by the
following expansion in powers of the coupling potential:

T̂sEd = V̂ + V̂Ĝ0sEdV̂ + V̂Ĝ0sEdV̂Ĝ0sEdV̂ + ¯ , s5d

where Ĝ0sEd=1/sE−Ĥ0d and Ĥ0=Ĥ−V̂ is the free Hamil-
tonian of the system.

Let us considerua ,kl and ua8 ,k8l, two states of theopen

channels, and let us setTaa8sk ,k8 ,Ed=ka ,k uT̂sEdua8 ,k8l.
According to formulas5d, this matrix element is the sum of
terms that can be represented by the diagram of Fig. 2 and
we get after a straightforward calculation

Taa8sk,k8,Ed =
kk8

L3 FaskdFa8
* sk8do

n=0

`

RnLsEdnG0
smdsEdn+1.

Here G0
smdsEd=1/sE−dd is the free propagator for the

molecule,L=L1+L2 with

FIG. 2. Diagrammatic expansion of theT matrix. The full
sdashedd lines represent free atomssmoleculesd. ua ,kl is the scat-
tering state of the two particles, in the internal statea=1,2. u3,0kl
represents the state of ap-wave molecule with orbital angular mo-
mentum component zero on thek direction.
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LasEd =E q4dq

s2pd3

uFasqdu2

E − Easqd
s6d

the results of the integration on the loops, and finally

Rn =E d2V1 ¯ d2Vncossk,k 1̂d

3cossk1,k 2̂d ¯ coskn,k8
ˆ

,

whereVp is the solid angle associated withkp, arises from
the pair-breaking verticesu3,0k i

l→ uai+1,k i+1l. This last in-
tegral can be calculated recursively and we getRn

=s4p /3dncossk ,k8
ˆ d, that is, for theT matrix

Taa8sk,k8,Ed =
1

L3

kk8FaskdFa8
* sk8d

E − d − S1 − S2
cossk,k8
ˆ d,

with Sa=4pLa /3.
This expression can be further simplified since, according

to Eq. s2d, the width ofFasqd is of the order of 1/Re, where
Re is the characteristic size of the resonant bound state. In the
low-temperature limit, we can therefore expandSa with the
small parameterkRe.

From Eq.s2d, we see that replacingFasqd by its value at
q=0 leads to aq2 divergence. This divergence can be regu-
larized by the use of counterterms in the integral, namely, by
writing that

SasEd =E uFasqdu2F q4

E − Easqd
+

mq2

"2 +
m2

"4 fE − Eas0dgG dq

6p2

−E uFasqdu2
mq2

"2

dq

6p2

− fE − Eas0dg E uFasqdu2
m2

"4

dq

6p2 ,

where we have assumed thatFa was decreasing fast enough
at largeq to ensure the convergence of the integrals.uFasqdu2
can now be safely replaced byla= uFas0du2 in the first inte-
gral and we finally get

Sa = − i
la

6p

m

"2S m

"2fE − Eas0dgD3/2

− d0,a − hafE − Eas0dg,

with

d0
sad =E uFasqdu2

mq2

"2

dq

6p2 ,

ha =E uFasqdu2
m2

"4

dq

6p2 .

If we assume that the release energyD is much larger than
E and if we setd0=d0

s1d+d0
s2d andh=h1+h2, we get for theT

matrix

Taa8sk,k8,Ed .
1

L3

kk8Fas0dFa8
* s0dcossk,k8

ˆ d/s1 + hd

E − d̃ + i"gsEd/2
s7d

with

"gsEd = S m

"2D5/2sl2D3/2 + l1E
3/2d

3ps1 + hd
,

d̃ =
sd − d0d
1 + h

.

We note that this expression for theT matrix is consistent
with the general theory of multichannel scattering resonances
f13g, where resonantly enhanced transitions to other channels
are readily included. In a similar context of two open chan-
nels and a Feshbach resonance, a recent experiment was ana-
lyzed f15g that involved the decay of a molecular state
formed from a Bose-Einstein condensate.

IV. s WAVE VS p WAVE

This section is devoted to the discussion of the expression
found for theT matrix. In addition to the scattering cross
section, the study of theT matrix yields important informa-
tion on the structure of the dressed molecular state underly-
ing the Feshbach resonance and we will demonstrate impor-
tant qualitative differences between the behaviors ofp-wave
ands-wave resonances.

A. Molecular state

The binding energyEb of the molecule is given by the
pole of T. In the limit d,d0, it is therefore given by

Eb = d̃ − i"gsd̃d/2,

We see that the real part ofEb sthe “physical” binding

energyd is ,d̃ and therefore scales linearly with the detuning
d−d0. This scaling is very different from what happens for
s-wave processes where we expect asd−d0d2 behavior. This
difference is in practice very important: indeed, the mol-
ecules can be trapped after their formation only if their bind-
ing energy is smaller than the trap depth. The scaling we get
for the p-wave molecules means that the binding energy in-
creases much faster when we increase the detuning than what
we obtain fors-wave moleculessthis feature was already
pointed out in f11gd. Hence, p-wave molecules must be
looked for only in the close vicinity of the Feshbach
resonance—for instance, forh!1 srelevant for6Li, as we
show belowd and a trap depth of 100mK, the maximum
detuning at which molecules can be trapped is.0.1 G.

This asymptotic behavior of the binding energy is closely
related to the internal structure of the molecule. Indeed, the
molecular wave functionucmsBdl can be written as a sum
uopenl+ uclosedl of its projections on the closed and open
channels, which correspond, respectively, to short- and long-
range molecular states. If we neglect decay processes by set-
ting l2=0, we can define the magnetic moment of the mol-
eculesrelative to that of the free atom paird by
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DmeffsBd = −
]Eb

]B
= −

] d̃

]B
,

that is, in the case of6Li where d=2mBsB−B0d,

DmeffsBd = −
2mB

1 + h
. s8d

On the other hand, we can also writeEb

=kcmsBduĤsBducmsBdl. Since in the absence of any decay
channel, the molecular state is the ground state of the two-
body system, we can write using the Hellmann-Feynman re-
lation

Dmeff = −
]Eb

]B
= − kcmsBdu

]ĤsBd
]B

ucmsBdl.

In our model, the only term of the Hamiltonian depending
on the magnetic field is the energyd=2mBsB−B0d of the bare
molecular state in the closed channel and we finally have

Dmeff = − 2mBkcloseduclosedl. s9d

If we compare Eqs.s8d ands9d, we see that the probability
Pclosed=kcloseduclosedl to be in the closed channel is given
by

Pclosed= 1/s1 + hd.

In other words, unlessh=`, there is always a finite frac-
tion of the wave function in the tightly bound state. In prac-
tice, we will see that in the case of6Li, h!1. This means
that the molecular states that are nucleated close to a Fesh-
bach resonance are essentially short-range molecules. On the
contrary, fors-wave molecules,Eb~ sd−d0d2 leads toDmeff

=−2mBkcloseduclosedl~ sd−d0d. This scaling leads to a zero
probability of occupying the bare molecular state near an
s-wave resonance.

We can illustrate these different behaviors in the simpli-
fied picture of Fig. 3. For small detunings around threshold,
the p-wave potential barrier provides a large forbidden re-
gion, which confines the bound state behind this barrier. The
bound-state wave function decays exponentially inside the
barrier and the tunneling remains nearly negligible. Since
there is no significant difference for the shape of thep-wave
bound state for small positive and negative detunings, the
linear dependence of the closed channel on magnetic field
will be conserved for the bound state, and therefore the bind-
ing energy will also linearly approach the threshold. We note
that the linear dependence close to threshold can also be
found from the general Breit-Wigner expression for a reso-
nance, in combination with thep-wave threshold behavior of
the phase shiftf13g.

The imaginary part ofEb corresponds to the lifetime of
the molecule. In the case ofs-wave molecules for which
two-body decay is forbiddenf20,21g, the only source of in-
stability is the coupling with the continuum of the incoming

channel that leads to a spontaneous decay whend̃.0 fsee
Fig. 3sadg. By contrast, we get a finite lifetime in thep wave

even atd̃,0: due to dipolar relaxation between its constitu-
ents, the molecule can indeed spontaneously decay toward

state u2l. For d̃,0, the decay rateg0 associated with this
process is given by

g0 = gs0d =
l2

1 + h

m

3pq3SmD

"2 D3/2

.

B. Elastic scattering

The scattering amplitudefsk ,k8d for atoms colliding in
the channel 1 can be extracted from theT matrix using the
relation

fsk,k8d = −
mL3

4p"2T11sk,k8,E = "2k2/md,

that is,

fsk,k8d = −
ml1

4p"21k2cossk,k8
ˆ d/s1 + hd

"2k2/m− d̃ − i"g/2
2 .

The cossk ,k8
ˆ d dependence is characteristic ofp-wave

processes and, once again, this expression shows dramatic
differences from thes-wave behavior. First, at lowk, fsk ,k8d
vanishes likek2. If we introduce the so-called scattering vol-
umeVs f13g defined by

FIG. 3. Effect of the centrifugal barrier on the bound state in
p-wave Feshbach resonances.sad Case ofs-wave scattering: the
bare molecular state goes fromd,0 sfull lined to d.0 sdashed
lined. In the process, the molecular state becomes unstable and the
wave function becomes unbounded.sbd In the case of ap-wave
bound state, the presence of the centrifugal barrier smooths the
transition fromd.0 to d,0. Even ford.0, the wave function
stays located close to the bottom of the well.
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fsk,k8d = − Vsk
2,

then we have

Vs =
− ml1

4p"2fd − d0 + is1 + hd"g0/2g
,

− ml1

2p"2sd − d0d
,

if we neglect the spontaneous decay of the molecule. We see
that in this approximation, the binding energyEb of the mol-
ecule is given by

Eb = −
ml1

2p"2s1 + hd
1

Vs
.

In s-wave processes, the binding energy and the scattering
length are related through the universal formulaEb
=−"2/ma2. This relationship is of great importance since it
allows one to describe both scattering properties and the mo-
lecular state with only one scattering length, without having
to be concerned care with any other detail of the interatomic
potential. In the case of thep wave, we see that no such
universal relation exists between the scattering volume and
Eb, a consequence of the fact that we have to deal with
short-range molecular states, even at resonance. We therefore
need two independent parameters to describe both the bound
states and the scattering properties.

In the general case, the elastic cross sectionsel is propor-
tional to uf u2. According to our calculation, we can putsel
under the general form

selsEd =
CE2

sE − d̃d2 + "2g2/4
, s10d

whereE="2k2/m is the kinetic energy of the relative motion
andC is a constant depending on the microscopic details of
the system. Noticeably, the energy dependence of the cross

section exhibits a resonant behavior atE= d̃ as well as a
plateau whenE→`, two features that were observed in the
numerical coupled-channel calculations presented inf17g.
Once again, this leads to physical processes very different
from what is expected ins-wave scattering. Indeed, we know
that in s-wave scattering, we havef ,−a, as long aska!1.
Sincea is in general nonzero, the low-energy behavior gives
a non-negligible contribution to the scattering processes. By
contrast, we have just seen that in the case of thep wave, the
low-energy contribution is vanishingly smallssel,E2d so
that the scattering will be dominated by the resonant peak

E, d̃.

C. Inelastic scattering.

For two particules colliding in channel 1 with an energy
E="2k2/m, the probability to decay to channel 2 is propor-
tional to r2sk8duT12sk ,k8 ,Edu2 where r2 is the density of
states in channel 2. Sincek8 is given by the energy conser-
vation condition"2k82/m−D=E, and in practiceD@E, we
see thatk8,ÎmD /"2 is therefore a constant. Using this ap-
proximation, we can write the two-body loss rateg2sEd for
particles of energyE as

g2sEd =
DE

sE − d̃d2 + q2g2/4
,

whereD is a constant encapsulating the microscopic details
of the potential.

V. COMPARISON WITH COUPLED-CHANNEL
CALCULATION

The quantities such asC,D ,g0, etc., that were introduced
in the previous section were only phenomenological param-
eters to which we need to attribute some value to be able to
perform any comparison with the experiment. These data are
provided by ab initio numerical calculations using the
coupled-channel scheme described inf18g. The result of this
calculation for the elastic scattering cross section is presented
in Fig. 4. The most striking feature of this figure is that it
displays two peaks instead of one, as predicted by Eq.s10d.
This difference can be easily understood by noting that the
dipolar interaction that couples the molecular state to the
outgoing channel provides a “spin-orbit” coupling that modi-
fies the relative orbital angular momentum of the pairf17g.
In other words, each resonance corresponds to a different
value of the relative angular momentumml sthe ml = +1 and
ml =−1 resonances are superimposed because the frequency
shift induced by the dipolar coupling is proportional toml

2, as
noted inf17gd.

As the spin-orbit coupling is not included in our simpli-
fied three-level model, we take the multiple peak-structure
into account by fitting the data of Fig. 4 using a sum of three
laws s10d with a different set of phenomenological param-
eters for each value of the angular momentum:

selsEd = o
ml=−1

+1 Cml
E2

sE − d̃ml
d2 + "2gml

2 /4
, s11d

where d̃ml
is related to the magnetic field throughd̃ml

=msB
−BF,ml

d and gml
=g0,ml

+aml
E3/2. Using this law, we obtain a

perfect fit to the elastic as well as inelastic data obtained
from the coupled-channel calculations. The values obtained

FIG. 4. Energy dependence of the elastic cross section. Dots:
numerical closed-channel calculation. The left peak corresponds to
ml =0 and the right peak toml = ±1. Full line: Fits using Eq.s11d.
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for the different phenomenological parameters are presented
on Table I.

From these data, we see first that the “elastic” properties
are independent ofml. This comes from the fact that the
elastic scattering is mainly a consequence of the hyperfine
coupling that does not act on the center-of-mass motion of
the atoms. However, we see that both the inelastic collision
rate constantD and the molecule lifetimeg0 exhibit large
variations with the relative angular momentumf22g. First,
the spontaneous decay rateg0 of a molecule inml =0, +1 is
always larger than,102 s−1, which corresponds to a maxi-
mum lifetime of about 10 ms. Second, we observe a strong
reduction of the losses in theml =−1 channel, in which no
significant spontaneous decay could be found. An estimate of
g0 can nevertheless be obtained by noting that, since the
elastic parameters are independent ofml, the ratio D /g0

should not depend onml fthis can be checked by comparing
the ratiosD /g0 for ml =0 andml = +1 in the s−1/2,−1/2d
channelg. Using this assumption we find thatg0,4
310−3 s−1 both ins1/2,−1/2d ands−1/2,−1/2d. The reason
for this strong increase of the lifetime of the molecules in
ml =−1 is probably because, due to angular momentum con-
servation, the outgoing pair is expected to occupy a state
with l =3 after an inelastic process. Indeed, if we start in a
two-body statesmF ,mF8d and if the dipolar relaxation flips the
spin mF8, then the atom pair ends up in a statesmF ,mF8 +1d.
This increase of the total spin of the pair must be compen-
sated by a decrease of the relative angular momentum.
Therefore, if the molecule was associated with a relative an-
gular momentumml, it should end up withml −1. In the case
of ml =−1, this means that the final value of the relative
angular momentum isml =−2, i.e., l ù2. But, according to
selection rules associated with spin-spin coupling, the dipo-
lar interaction can only changel by 0 or 2. Therefore, start-
ing from a p-wave sl =1d compound, this can only lead tol
=3. Let us now assume that the coupling between the mo-
lecular state and the outgoing channel is still proportional to
the overlap between the two statesfsee Eq.s1dg, even in the
presence of a dipolar coupling: the argument above indicates
that the ratior=g0,ml =−1/g0,ml8Þ−1 between the decay rate of
molecules inml =−1 and the one of molecules inml8Þ1 is
then of the order of

r , *E g*srd j3skrdr2dr

E g*srd j1skrdr2dr*
2

,

where k=ÎmD /"2 is the relative momentum of the atoms
after the decay. For lithium, we haveRe,3 Å f23g which
yields kRe,7310−2. This permits us to approximate the
spherical Bessel functionsj l by their expansion at low
k, j lskrd,skrdl, that is,

r , k4*E g*srdr5dr

E g*srdr3dr*
2

, skRed4.

With the numerical value obtained forkRe, we getr,2
310−5, which is, qualitatively, in agreement with the nu-
merical coupled-channel calculations presented above.

VI. TEMPERATURE AVERAGING

In realistic conditions, the two-body loss rateG2 needs to
be averaged over the thermal distribution of atoms.G2 is
therefore simply given by

G2sEd =Î p

4skBTd3E
0

`

g2sEde−E/kBTE1/2dE.

The evolution ofG2 vs detuning is displayed in Fig. 5 and
shows a strongly asymmetric profile that was already noticed
in previous theoretical and experimental papersf8,10g.

This feature can readily be explained by noting that in
situations relevant to experiments,g0 is small with respect to
temperature. We can therefore replaceg2 by a sum of Dirac
functions centered ond0,ml

. When thed0,ml
are positive,G2

takes the simplified form

G2 = 4Îpo
ml
S Dml

"gml
sd̃ml

d
DS d̃ml

kBT
D3/2

e−d̃ml
/kBT.

Moreover, if we neglect the lift of degeneracy due to the

dipolar interaction coupling and we assume all thed̃ml
to be

equal to somed̃, we get

TABLE I. Values of the phenomenological parameters obtained after a fit to the coupled-channel calcu-
lation data of Fig. 4.dBF is the shift between theml = ±1 andml =0 resonances.

Channel s1/2,−1/2d s−1/2,−1/2d
ml −1 0 1 −1 0 1

Cs10−13 cm2d 0.22 0.22 0.22 0.87 0.88 0.87

Ds10−13 cm2 mK/sd 0.00002 0.59 0.56 3310−5 1.54 5.72

g0ss−1d ,10−2 110 110 ,1 220 830

asmK−1/2d 0.0017 0.0017 0.0017 0.0024 0.0024 0.0024

h 0.22 0.22 0.22 0.23 0.23 0.23

dBFsGd −0.0036 0 −0.0036 −0.012 0 −0.012
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G2 = 4ÎpS D̄

"ḡsd̃d
DS d̃

kBT
D3/2

e−d̃/kBT, s12d

with D̄=oml
Dml

and D̄ / ḡ=oml
Dml

/gml
f19g.

For d̃,0 and ud̃u@kBT, we can replace the denominator

of g2 by d̃ 2 and we get the asymptotic form forG2

G2 =
3

2
kBTo

ml

Dml

d̃ ml

2
. s13d

Let us now comment on the two equationss12d ands13d .
s1d We note that the maximum value ofG2 is obtained for

d̃ /kBT=3/2. It means that when tuning the magnetic field

si.e., d̃d, the maximum losses are not obtained at the reso-

nance d̃=0, but at a higher field, corresponding tod̃
=3kBT/2. For a typical experimental temperatureT=10 mK,
this corresponds to a shift of about 0.1 G.

s2d Similarly, the width of G2sd̃d scales likekBT. Ex-
pressed in terms of magnetic field, this corresponds to
,0.1 G for T=10 mK. This width is a consequence of the
resonance nature of the scattering inp-wave processes. As
seen earlier, both elastic and inelastic collisions are more

favorable when the relative energyE= d̃. When d̃,0, the
resonance conditions cannot be satisfied, since there are no
states in the incoming channel with negative energy. The

scattering is then formally analogous to optical pumping or

other second-order processes and yields the 1/d̃ 2 obtained in

Eq. s13d. When d̃@kBT, the resonance condition is satisfied
by states that are not populatedssince for a thermal distribu-
tion, we populate states up toE,kBTd.

VII. CONCLUSION

In this paper, we have developed a simple model captur-
ing the main scattering properties close to ap-wave Fesh-
bach resonance. The analytical formulas we obtained show
very good agreement with both numerical coupled-channel
calculations and experimental measurements from our group
f9g and from Chin and Grimmf24g. We have shown that the
line shape of the resonance is very different from what is
expected for ans-wave process: whiles-wave scattering is
mainly dominated by low-energy processes,p-wave scatter-
ing is rather dominated by collisions at energies equal to that
of the molecular state. Regardingp-wave molecules, we
have seen that at resonance their wave function was domi-
nated by the short-range bare molecular state. Finally, the
study of the spontaneous decay of these molecules has
shown a very different lifetime depending on the relative
angular momentum of its constituents, since molecules in
ml =−1 could live 104 times longer than those inml =0, +1.
This very intriguing result might prove to be a valuable asset
for the experimental study ofp-wave molecules since it guar-
antees thatml =−1 dimers are very stable against two-body
losses in the absence of depolarizing collisions.
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Summary. — We present an experimental study of the time of flight properties
of a gas of ultra-cold fermions in the BEC-BCS crossover. Since interactions can
be tuned by changing the value of the magnetic field, we are able to probe both
non interacting and strongly interacting behaviors. These measurements allow us
to characterize the momentum distribution of the system as well as its equation
of state. We also demonstrate the breakdown of superfluid hydrodynamics in the
weakly attractive region of the phase diagram, probably caused by pair breaking
taking place during the expansion.

1. – Introduction

Feshbach resonances in ultra cold atomic gases offer the unique possibility of tun-
ing interactions between particles, thus allowing one to study both strongly and weakly
interacting many-body systems with the same experimental apparatus. A recent major
achievement was the experimental exploration of the BEC-BCS crossover [1, 2, 3, 4, 5, 6],
a scenario proposed initially by Eagles, Leggett, Nozières and Schmitt-Rink to bridge the
gap between the Bardeen-Cooper-Schrieffer (BCS) mechanism for superconductivity in
metals, and the Bose-Einstein condensation of strongly bound pairs [7, 8, 9]. Here, we
present a study of the crossover using time of flight measurements. This technique gives
access to a wide range of physical properties of the system and has been successfully
used in different fields of physics. The observation of elliptic flows was for instance used
to demonstrate the existence of quark-gluon plasmas in heavy ion collisions [10]. In cold
atoms, the ellipticity inversion after free flight is a signature of Bose-Einstein condensa-
tion [11, 12]. In an optical lattice the occurrence of interference peaks can be used as the
signature of the superfluid to insulator transition [13] and, with fermions, it can be used
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to image the Fermi surface [14]. Two series of time-of-flight measurements are presented:
expansion of the gas without interactions, which gives access to the momentum distri-
bution, a fundamental element in the BEC-BCS crossover, or with interactions, which
allows us to characterize the equation of state of the system, and probe the validity of
superfluid hydrodynamics.

2. – Experimental method

In a magnetic trap, a spin polarized gas of N = 106 6Li atoms in |F = 3/2,mF =
+3/2〉 is sympathetically cooled by collisions with 7Li in |F = 2,mF = +2〉 to a tempera-
ture of 10 µK. This corresponds to a degeneracy of T/TF ∼ 1, where TF = ~ω̄(6N)1/3/kB

is the Fermi temperature of the gas. The magnetic trap frequencies are 4.3 kHz (76 Hz)
in the radial (axial) direction, and ω̄ = (ωxωyωz)1/3 is the mean frequency of the trap.
Since there are no thermalizing collisions between the atoms in a polarized Fermi gas, the
transfer into our final crossed dipole trap, which has a very different geometry (Fig. 1),
is done in two steps. We first transfer the atoms into a mode-matched horizontal sin-
gle beam Yb:YAG dipole trap, with a waist of ∼ 23 µm. At maximum optical power
(2.8 W), the trap depth is ∼ 143 µK (15 TF ), and the trap oscillation frequencies are
6.2(1) kHz (63(1) Hz) in the radial (axial) direction. The atoms are transferred in their
absolute ground state |F = 1/2,mF = +1/2〉 by an RF pulse. We then sweep the mag-
netic field to 273 G and drive a Zeeman transition between |F = 1/2,mF = +1/2〉 and
|F = 1/2,mF = −1/2〉 to prepare a balanced mixture of the two states (better than 5%).
At this magnetic field, the scattering length between both states is −280 a0 (Fig. 2). Af-
ter 100 ms the mixture has lost its coherence, initiating collisions in the gas. During the
thermalization process about half of the atoms are lost. We then perform a final evapo-
rative cooling stage by lowering the trap depth to ∼ 36µK. At this point, we ramp up
a vertical Nd:YAG laser beam (power 126 mW and waist ∼ 25µm), obtaining our final
crossed dipole trap configuration (Fig. 1). The measured degeneracy is T/TF . 0.15.
The magnetic field is then increased to 828 G (in the vicinity of the Feshbach resonance,
see Fig. 2), where we let the gas thermalize for 200 ms before performing subsequent
experiments.

3. – Momentum distribution

In standard BCS theory, the ground state of an homogeneous system is described by
a pair condensate characterized by the many-body wave function

|ψ〉 =
∏
k

(uk + vka
†
k,↑a

†
−k,↓)|0〉,

where |0〉 is the vacuum and a†k,σ is the creation operator of a fermion with momentum
k and spin σ. In this expression, |vk|2 can be interpreted as the occupation probability
in momentum space, and is displayed in Fig. 3a for several values of the interaction
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parameter 1/kFa, where kF is the Fermi wave vector of the non interacting Fermi gas
(EF = ~2k2

F /2m). One effect of the pairing of the atoms is to broaden the momentum
distribution. In the BCS limit (1/kFa → −∞), the broadening with respect to the
momentum distribution of an ideal Fermi gas is very small, of the order of the inverse of
the coherence length ξ. In the unitary limit (1/kFa→ 0) it is expected to be of the order
of kF . In the BEC limit (1/kFa → ∞) we have molecules of size a so the momentum
distribution, which is given by the Fourier transform of the molecular wave function, has
a width ~/a.

In a first series of expansion experiments, we have measured the momentum distribu-
tion of a trapped Fermi gas in the BEC-BCS crossover. Similar experiments have been
performed at JILA on 40K [15].

In order to measure the momentum distribution of the atoms, the gas must expand
freely, without any interatomic interactions. To achieve this, we quickly switch off the
magnetic field so that the scattering length is brought to zero (see Fig. 2) [16]. We
prepare N = 3 × 104 atoms at 828 G in the crossed dipole trap with frequencies ωx =
2π × 2.78 kHz, ωy = 2π × 1.23 kHz and ωz = 2π × 3.04 kHz. The magnetic field
is adiabatically swept in 50 ms to different values in the crossover region. Then, we
simultaneously switch off both dipole trap beams and the magnetic field (with a linear
ramp of 296 G/µs). After 1 ms of free expansion, the atoms are detected by absorption
imaging. The measured density profiles give directly the momentum distribution of the
gas integrated along the imaging direction.

In Fig. 3, we show the measured momentum distributions for three different interac-
tion parameters, corresponding to the BCS side of the resonance, the unitary limit and
the BEC side of the resonance. Together with our data, we have plotted the predictions
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of mean field BCS theory at T = 0, taking into account the trapping potential with
a local density approximation [17]. k0

F is now the Fermi wave-vector calculated at the
center of the harmonic trap for an ideal gas.

Some precautions need to be taken concerning this type of measurements due to
possible density dependent losses during the magnetic field switch-off. If the magnetic
field is not turned off fast enough, some atoms can be bound into molecules while the
Feshbach resonance is crossed. The molecules are not detected with the imaging light
and therefore will appear as a loss of the total number of atoms. Even if, as in our case,
the Feshbach resonance is crossed in only 1 µs, this time may not be small compared to
the typical many-body timescale (~/EF ∼ 1.3µs for Fig. 3 data).

To investigate quantitatively this effect, we have performed an additional experiment
in a more tightly confining trap. We prepare a gas of 5.9× 104 atoms at 828 G in a trap
with frequencies ωx = 2π×1.9 kHz, ωy = 2π×3.6 kHz and ωz = 2π×4.1 kHz. The total
peak density in the trap is 1.3 × 1014 atoms/cm3. We let the gas expand at high field
for a variable time tB , then switch off B and detect the atoms after 0.5 ms of additional
free expansion. Assuming hydrodynamic expansion at unitarity we calculate the density
after tB [18] and obtain the fraction of atoms detected as a function of the density of
the gas when the resonance is crossed. For instance, we detect ' 60% fewer atoms for
tB = 0 compared to tB = 0.5 ms, where the density is a factor ' 103 lower. The results
are nicely fitted by a Landau-Zener model :

Ndetected/Ntotal = exp
(
−An(tB)

2Ḃ

)
,

where n(tB) is the total density at tB , Ḃ the sweep rate and A the coupling constant
between the atoms and the molecules. We determine A ' 5× 10−12 G m3/s. Our result
is five times smaller than the MIT value A ' 24×10−12 G m3/s [19], measured at a total
peak density of 1013 atoms/cm3 (one order of magnitude smaller than in our experiment).
The theoretical prediction, assuming only two body collisions, is A = 19× 10−12 G m3/s
[20]. The difference between our measurement and theory may suggest that many-body
effects are important in our case. Finally, using our value of A the model predicts an
atom number loss of about 27% for the momentum distribution measurements of Fig. 3.
This loss is comparable to our shot-to-shot fluctuations in atom number and therefore
was not unambiguously observed.

In conclusion, we have performed a measurement of the momentum distribution of
a trapped Fermi gas. The results are found in reasonable agreement with BCS theory
despite the fact that it is not expected to be quantitatively correct in the strongly in-
teracting regime. In future work, experiments at lower density will be performed, in
order to avoid the observed loss effect. This should allow us to distinguish between BCS
and more exact theories [21]. It would also be interesting to perform measurements at
different temperatures as in Ref. [22].
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Fig. 3. – (a): Momentum distribution of a uniform Fermi gas for 1/kF a = −1 (solid line),
1/kF a = 0 (dotted line) and 1/kF a = 1 (dashed line) calculated from mean field BCS theory
at T = 0 [17]. The results obtained from quantum Monte Carlo simulations [21] show that
BCS theory slightly underestimates the broadening; (b): Measured momentum distribution of
a trapped Fermi gas on the BCS side of the resonance (1/k0

F a = −0.42); (c): Unitary limit
(1/k0

F a = 0); (d): BEC side of the resonance (1/k0
F a = 0.38). The solid lines in (b), (c) and (d)

are the predictions of BCS mean field theory taking into account the trapping potential with a
local density approximation [17]. k0

F is defined in the text.

4. – Release energy

In a second series of experiments, we have performed expansions at constant magnetic
field, thus keeping the interactions present during the time of flight. The analysis of size
measurement across the BEC-BCS crossover yields valuable information on the influence
of interactions on the properties of the system. In particular, we have measured the
release energy of the gas in the BEC-BCS crossover [3]. On resonance (1/k0

Fa = 0), the
gas reaches a universal behavior [23]. The chemical potential µ is proportional to the
Fermi energy µ = (1 + β)EF . We have determined the universal scaling parameter β
from our release energy measurement.
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The starting point for the experiment is a nearly pure molecular condensate of 7×104

atoms at 770 G, in an optical trap with frequencies ωx = 2π×830 Hz, ωy = 2π×2.4 kHz,
and ωz = 2π×2.5 kHz. We slowly sweep the magnetic field at a rate of 2 G/ms to various
values across the Feshbach resonance. We detect the integrated density profile after a
time of flight expansion of 1.4 ms in several stages: 1 ms of expansion at high magnetic
field, followed by a fast ramp of 100 G in 50 µs in order to dissociate the molecules and,
after the fast switch-off of the magnetic field, 350 µs of ballistic expansion.

Fig. 4 presents the gas energy released after expansion, which is calculated from
gaussian fits to the optical density after time of flight: E′

rel = m(2σ2
y + σ2

x)/2τ2, where
σi is the rms width along i and τ is the time of flight. We assume that the size σz

(which is not observed) is equal to σy. Note that both in the weakly interacting case
and unitarity limit the density has a Thomas-Fermi profile and the release energy can
be calculated from the exact profiles. However, we have chosen this gaussian shape to
describe the whole crossover region with a single fit function. This leads to a rescaling
of the release energy. In particular, the ideal Fermi gas release energy in an harmonic
trap is Erel = 3/8EF but when using the gaussian fit to the Thomas-Fermi profile we get
instead E′

rel = 0.46EF as shown in Fig. 4.
The release energy in the BEC-BCS crossover varies smoothly. It presents a plateau

for −1/kFa ≤ −0.5, (BEC side) and then increases monotonically towards that of
a weakly interacting Fermi gas. On resonance, the release energy scales as Erel =√

1 + β E0
rel, where E0

rel is the release energy of the non interacting Fermi gas. The
square root comes from the average over the trap. At 834 G, we get β = −0.59(15).
This value is slightly different from our previous determination β = −0.64(15), where
the resonance was assumed to be located at 820 G instead of 834 G [3]. Our result
agrees with other measurements performed on 6Li and with some theoretical predictions
(see Table I). Remarkably, the recent 40K measurement at JILA is also in very good
agreement, thus proving the universality of the unitarity regime.

5. – Ellipticity

Nontrivial information can be extracted from the measurement of the aspect ratio
of the cloud after expansion. For instance, in the first days of gaseous Bose-Einstein
condensates, the onset of condensation was characterized by an ellipticity inversion after
time of flight, a dramatic effect compared to the isotropic expansion of a non condensed
Boltzmann gas. In the case of strongly interacting Fermi gases, ellipticity measurements
can be used as probes for the hydrodynamic behavior of the system, and constitute an
indirect signature of the appearance (or breakdown) of superfluidity.

We have studied the ellipticity of the cloud as a function of the magnetic field for
different temperatures. As before, the density profiles are fitted with gaussians, and the
ellipticity is defined as η = σy/σx. We prepare N = 3× 104 atoms at 828 G in a crossed
dipole trap. The magnetic field is adiabatically swept in 50 ms to different values in the
crossover region. Then, we switch off both dipole trap beams and let the gas expand
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extract β = −0.59(15).

β

Experimental results on 6Li This work −0.59(15)
at finite T ENS 2004 [3] −0.64(15)

Innsbruck [24] −0.73+12
−0.09

Duke [25] −0.49(4)
Rice [26] −0.54(5)

Experimental result on 40K JILA [27] −0.54+0.05
−0.12

extrapolation to T=0

Theoretical predictions BCS theory [7, 8, 9] −0.41
at T = 0 Astrakharchik et al. [28] −0.58(1)

Carlson et al. [29, 30] −0.58(1)
Perali et al. [31] −0.545
Padé approximation [23, 32] −0.67
Steel [33] −0.56
Haussmann et al. [34] −0.64

Theoretical predictions Bulgac et al. [35] −0.55
at T = Tc Burovski et al. [36] −0.507(14)

Table I. – List of the recent experimental measurements and theoretical predictions of the uni-
versal scaling parameter β.



8 L. Tarruell, et al.

for 0.5 ms in the presence of the magnetic field. After 0.5 ms of additional expansion
at B = 0, the atoms are detected by absorption imaging. Fig. 5a and Fig. 5b show
the measured value of the ellipticity as a function of the magnetic field for two different
samples, which are at different temperatures. Together with the experimental results we
have plotted the expected anisotropy from superfluid hydrodynamics [18]. For this, we
have extracted from the quantum Monte Carlo simulation of ref. [28] the value of the
polytropic exponent γ, defined as γ = n

µ
∂µ
∂n .

The first series of measurements is done in a trap with frequencies ωx = 2π×1.39 kHz,
ωy = 2π×3.09 kHz, ωz = 2π×3.38 kHz and trap depth∼ 1.8TF . The measured ellipticity
(Fig. 5a) is in good agreement with the hydrodynamic prediction on the BEC side, at
resonance and on the BCS side until 1/k0

Fa = −0.15. It then decreases monotonically to
1.1 at 1/k0

Fa = −0.5.
For the second series of experiments we prepare a colder sample in a trap with fre-

quencies ωx = 2π × 1.24 kHz, ωy = 2π × 2.76 kHz, ωz = 2π × 3.03 kHz and trap depth
∼ 1.6TF . In this case the behavior of the anisotropy is very different (Fig. 5b). We
observe a plateau until 1/k0

Fa = −0.33, in good agreement with the hydrodynamic pre-
diction, and at this critical magnetic field there is a sharp decrease of η to a value close
to 1.2. This sharp transition seems analogous to the sudden increase of the damping of
the breathing mode observed in Innsbruck [37].

In a third experiment, we measure the ellipticity at unitarity as a function of trap
depth (hence of the gas temperature). Below a critical trapping laser intensity, the
ellipticity jumps from a low value (1.1) to the hydrodynamic prediction 1.45.

In all cases, the decrease of the anisotropy indicates a breakdown of superfluid hydro-
dynamics in the weakly attractive part of the phase diagram or at higher temperature.
A first possibility would be that the gas crosses the critical temperature in the trap.
However, we know from the MIT experiment [38] that pair breaking can occur during
the expansion. During the time of flight, both the density and kF decrease. On the BEC
side of resonance, the binding energy of the molecules (−~2/ma2) does not depend on
the density and the pairs are very robust. By contrast, on the BCS side of resonance
the generalized Cooper pairs become fragile as the gap decreases with 1/kFa and they
can be broken during the expansion. Our experiments use the ellipticity of the cloud as
a probe and are complementary to the MIT approach, where the breakdown of superflu-
idity was characterized by the disappearance of vortices during the expansion of the gas.
We are planning additional experiments in order to investigate wether the breakdown of
superfluidity occurs in the trap or during the expansion.

6. – Conclusion

The results presented here constitute a first step in the understanding of the free flight
properties of strongly correlated fermionic systems. In future work, we will investigate
more thoroughly the pair breaking mechanism taking place during the expansion in the
BCS part of the phase diagram. We point out the need for a dynamic model of the
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Fig. 5. – Ellipticity of the gas after expansion from a trap of depth ∼ 1.8 TF (a) and from a trap
of depth ∼ 1.6 TF (b). Solid lines: hydrodynamic predictions.

expanding gas at finite temperature.
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Résumé
Nous utilisons un gaz fermionique de lithium-6 en tant que système modèle
pour étudier l’effet de la superfluidité. Les deux cas limites de la superfluidité
sont la formation d’un condensat de Bose-Einstein (BEC) et la supraconductivité,
décrite par la théorie de Bardeen, Cooper et Schrieffer (BCS). Dans un gaz
de lithium-6 on peut explorer toute la transition entre ces deux limites, la
transition BEC-BCS, grâce à une résonance de Feshbach.

Nous étudions le comportement de la distribution d’impulsions du gaz
dans la zone de cette transition et la comparons avec des modèles théoriques.
L’expansion hydrodynamique, caractéristique d’un gaz superfluide, est aussi
étudiée. Nous observons un changement brusque de la forme du gaz en
expansion à proximité de la transition vers la phase superfluide. Nous avons
aussi localisé des résonances de Feshbach hétéronucléaires entre 6Li et 7Li.

Au cours d’une reconstruction du montage vers une expérience de deux-
ième génération, un nouveau système laser, basé sur des diodes laser à haute
puissance, a été developpé. Des améliorations dans notre enceinte à vide, y
compris une reconstruction complète du ralentisseur Zeeman, ont augmenté le
flux d’atomes, permettant de diminuer le temps de répétition de l’expérience. La
géometrie des pièges magnétiques a été modifiée afin d’augmenter le nombre
d’atomes piégés.

Mots clés : transition BEC-BCS, superfluidité fermionique, résonance
de Feshbach, résonance hétéronucléaire

Summary
We use a fermionic gas of Lithium-6 as a model system to study superfluidity.
The limiting cases of superfludity are Bose-Einstein condensation (BEC) and
superconductivity, described by the theory by Bardeen, Cooper and Schrieffer
(BCS). In Lithium-6 gases, we can explore the whole range between the two
cases, known as the BEC-BCS crossover, using a Feshbach resonance.

We study the change of the momentum distribution of the gas in this cross-
over and compare to theoretical models. We also investigate the hydrodynamic
expansion, characteristic for a superfluid gas. We observe a sudden change of
the ellipticity of the gas close to the transition to the superfluid phase. Moreover,
we localized heteronuclear Feshbach resonances between 6Li and 7Li.

We are currently constructing a second generation of the experimental
setup. An new laser system, based on high power laser diodes, was developed.
Changes in the vacuum chamber, including a complete reconstruction of
the Zeeman slower, have increased the atomic flux, allowing us to increase
the repetition rate of our experiment. Modifications of the geometry of the
magnetic traps lead to a higher number of trapped atoms.

Keywords: BEC-BCS crossover, fermionic superfluidity, Feshbach res-
onance, heteronuclear resonance
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