Laboratoire Kastler Brossel

Atomes fermioniques de Lithium-6 ultra-froids dans la transition BEC-BCS : expériences et construction d'un montage expérimental

Soutenance de thèse

Martin Teichmann Paris, 27 Septembre 2007

superfluidité et supraconductivité

plan de la présentation

- Introduction
- Le dispositif expérimental et les modifications effectuées
- Résultats
- Résumé

fermions et bosons

gaz dans un piège harmonique :

principe d'exclusion de Pauli

exemples : électron, neutron, proton, Li-6 exemples : photon, la majorité des isotopes stables, Li-7, molécules

fermions en interaction : la superfluidité

fermions en interaction : la transition BEC-BCS

interactions fortes : état moléculaire, effet à 2 corps

interactions effectives répulsives : condensat de Bose-Einstein des molécules

⁶Li₂

interactions faibles attractives: état BCS, effet à N corps

transition BEC - BCS dans le lithium-6 : résonance de Feshbach

autres expériences dans la transition BEC-BCS

deux types d'expérience

expansion sans interaction : accès à la distribution d'impulsions

nuage toujours rond transformation d'Abel inverse donne :

expansion avec interactions : dynamique d'un gaz en expansion

expansion d'un gaz normal toujours isotrope ellipticité consequence de la superfluidité

les nouvelles diodes laser

la nouvelle partie four de l'enceinte à vide

un nouveau ralentisseur Zeeman

céramique spéciale avec SiC ajouté pour meilleure conductivité thermique

Des couches avec fils électriques alternent avec des couches de refroidissement

le fonctionnement du ralentisseur Zeeman

nouveau système d'acquisition des données

serial port opened.

préparation d'un mélange d'états de spin

évaporation dans le piège dipolaire

détermination de la température par un fit avec la distribution de Fermi

la distribution en impulsion : cas homogène

distribution d'impulsions : résultats expérimentaux

— théorie BCS (Leggett)

—— simulations Monte-Carlo (Astrakharchik et al.)

expansion avec interactions : l'ellipticité du nuage

expansion avec interactions : à plus haute température

expansion avec interactions : en fonction de -1/k_Fa

observation de résonances de Feshbach hétéronucleaires

«simulateur quantique» pour des problèmes de la matière condensée

réseau optiques sont sans défaut
utiliser une espece comme «défauts ajustables», par exemple localisation d'Anderson résonances de Feshbach entre Li-6 et Li-7

expérience	prédictions
champ magnetique / mT	
22,64	23,0
24,69	25,1
53,9	55,1
54,82	55,9

théorie : E. van Kempen et al., PRA 70, 050701 (2004)

résumé

- Nous avons construit une expérience pour les gaz fermioniques de deuxième génération
- Des mesures de distribution d'impulsion et la dynamique d'expansion d'une gaz fortement interagissant ont été effectuées
- Les résonances de Feshbach hétéronucleaires (Li-6, Li-7) ont été localisées
- La prochaine étape sera la construction d'un réseau optique : réalisation de modèles de la matière condensé

Merci !

la théorie BCS

Hamiltonien de la théorie BCS :

$$H = \sum a^{+}_{ko} a_{ko} + U \sum a^{+}_{k\uparrow} a^{+}_{-k\downarrow} a_{-k\downarrow} a_{k\downarrow} a_{k\uparrow}$$

État fondamental :

$$|\psi_{\mathsf{BCS}}\rangle = \prod (u_k + v_k a^+_{k\uparrow} a^+_{-k\downarrow}) |0\rangle$$

On minimise l'energie libre. Solutions existantes pour toute valeur des interactions *U*. Après renormalisation suit :

$$\frac{m}{4\pi\hbar^2 a} = \frac{1}{(2\pi)^3} \int_0^\infty \left(\frac{1}{\epsilon_k} - \frac{1}{((\epsilon_k - \mu)^2 + \Delta^2)^{1/2}}\right) 4\pi k^2 dk$$

«équation du gap»

Correlations dans l'éspace des impulsions entre les particules opposé en impulsion et spin

$$n = \frac{1}{(2\pi)^3} \int_0^\infty \left(1 - \frac{\varepsilon_k - \mu}{\left((\varepsilon_k - \mu)^2 + \Delta^2 \right)^{1/2}} \right) 4\pi k^2 dk$$

«équation du nombre»

avec μ le potentiel chimique, Δ le «gap» et U est relié à a

l'expansion hydrodynamique en champ magnétique

loi d'échelle :

$$n(x, y, z, t) = n(\frac{x}{b_x(t)}, \frac{y}{b_y(t)}, \frac{z}{b_z(t)}, 0)$$

(n est la densité locale)

valable si équation d'état est polytropique :

$$\mu = n^{\gamma}$$

(γ est la constante polytropique) cas sans interactions : $\gamma = 1$ cas BEC : $\gamma = 2/3$ dans la transition on utilise l'approximation polytropique avec une constante déduit d'une simulation Monte-Carlo (Astrakharchik et al, Diana et al)

deux types d'expérience : expansion avec ou sans champ magnétique

