

Relations plutons et discontinuités lithosphériquesApproche pluridisciplinaire de la mise en place de plutons granitiques le long du Sillon Houiller(Massif Central Français).Apports des études de terrain et des données gravimétriques, magnétiques et ASMpour des modélisations 3D.

Aurore Joly

▶ To cite this version:

Aurore Joly. Relations plutons et discontinuités lithosphériques Approche pluridisciplinaire de la mise en place de plutons granitiques le long du Sillon Houiller (Massif Central Français). Apports des études de terrain et des données gravimétriques, magnétiques et ASM pour des modélisations 3D.. Tectonique. Université d'Orléans, 2007. Français. NNT: . tel-00167514

HAL Id: tel-00167514 https://theses.hal.science/tel-00167514

Submitted on 21 Aug2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THESE PRESENTEE A L'UNIVERSITE D'ORLEANS POUR OBTENIR LE GRADE DE DOCTEUR DE L'UNIVERSITE D'ORLEANS

Discipline : Science de la Terre et de l'Univers

PAR

Aurore JOLY

Relations plutons et discontinuités lithosphériques

Approche pluridisciplinaire de la mise en place de plutons granitiques le long du Sillon Houiller (Massif Central Français). Apports des études de terrain et des données gravimétriques, magnétiques et ASM pour des modélisations 3D.

Soutenue le : 22 juin 2007

MEMBRES DU JURY

- M. Patrick Ledru	Ingénieur-chercheur senior BRGM, Orléans	Président de Jury
- M. Jean-Marc Lardeaux	Professeur, Université de Nice	Rapporteur
- M. Bernard Henry	Chargé de recherche CNRS, IPG Paris	Rapporteur
- M. Michel Diament	Professeur, IPG Paris VII	Examinateur
- M. Jean Van Den Driessche	Professeur, Université de Rennes I	Examinateur
- M. Guillaume Martelet	Ingénieur-chercheur BRGM, Orléans	Examinateur
- M. Michel Faure	Professeur, Université d'Orléans	Co-directeur de thèse
- M. Yan Chen	Professeur, Université d'Orléans	Directeur de thèse

REMERCIEMENTS

« Et si l'on peut te prendre ce que tu possèdes, qui peut te prendre ce que tu donnes ? » Antoine de Saint-Exupéry (1953), Le petit prince. « La vraie générosité envers l'avenir consiste à tout donner au présent. » Albert Camus (1951), L'Homme révolté Je tiens à remercier en tout premier lieu Yan Chen et Michel Faure qui ont dirigé cette thèse. Tout au long de ces trois années, ils ont su orienter mes recherches aux bons moments au travers de leurs regards de grands passionnés, en me faisant découvrir l'ASM pour Yan, la structurale et la géochronologie pour Michel. Cette thèse n'aurait jamais vu le jour sans leur confiance, leur patience et leur altruisme. Ils ont toujours été disponibles pour des discussions scientifiques palpitantes et efficaces. Pour tout cela, je vous suis très reconnaissante.

Mes remerciements s'adressent ensuite à Guillaume Martelet pour m'avoir communiquée son enthousiasme contagieux envers la recherche, pour m'avoir initiée à la gravimétrie, au magnétisme et la modélisation 2D avec un sujet passionnant et pour avoir aidé à développer mon raisonnement par ses conseils judicieux et des discussions stimulantes au possible. Guillaume est sans aucun doute, la définition même de la générosité, du sens de la famille et de la recherche scientifique comme je les conçois.

Soyez assurés tous les trois de toute mon estime et de mon profond respect.

Je remercie les rapporteurs de cette thèse Jean-Marc Lardeaux et Bernard Henry qui ont accepté de porter de l'intérêt à mon travail. Merci également aux autres membres du jury qui ont accepté de juger ce manuscrit: Michel Diament, Jean Van Den Driessche et en particulier Patrick Ledru. En effet, au cours de ma thèse, il a toujours été intéressé par mes travaux et a accepté d'être le « reviewer » de l'un de mes articles soumis à JGR.

En témoignage du temps qu'ils m'ont accordée, je remercie vivement Gabriel Courrioux (« the Gourou »), Antonio Guillen et Phillippe Calcagno pour l'initiation à la modélisation 3D et à l'inversion géophysique. Leur générosité, leur savoir-vivre et leur efficacité ont vraiment pimenté ces trois années. Ils sont aussi, sans aucun doute, les précurseurs de mon goût avéré pour l'Australie qui est mon prochain pays d'accueil professionnel.

Au même titre, j'adresse mes vifs remerciements à Jean-Yves Roig et Manuel Duguet pour leur concours efficace et compétent, tant sur le terrain que lors de discussions fructueuses. Ils ont été d'une aide précieuse.

Une thèse étant finalement le fruit d'un travail collectif, je remercie :

- ✓ Sylvain Janiec et Gabriel Badin, pour la conception des lames minces ;
- ✓ Olivier Rouer, Gilles Drouet et Christian Gilles qui m'ont encadrée à la microsonde électronique ;
- ✓ Alain Cocherie et Eugène Be pour l'aide qu'ils m'ont apportée afin de traiter et d'interpréter les données sur les datations chimiques sur monazites ;
- ✓ Annick Genty, pour l'identification de minéraux aux MEB.

- ✓ Hubert Haas pour les explications des mesures de densité ;
- ✓ Nathalie Rouchon pour la conception d'image en DAO, ultra rapide ;
- ✓ Patricia Benoist pour la séparation des monazites et des apatites ;
- ✓ Dominique Panis, pour la diffraction aux RX de mes échantillons;
- ✓ Julien Charreau, Jean-Yves Talbot, Zhan Sheng, Bo Wang et Nicolas Charles pour leur soutien soit sur le terrain pour le carrotage, soit au laboratoire pour les analyses de fabrique magnétique, soit au bureau pour le traitement des données ASM.
- ✓ Jocelyn Barbarand pour l'initiation aux traces de fissions sur apatites.

J'ai trouvé au sein du service BRGM-CDG-MA une ambiance particulièrement favorable pour mener à bien ce travail et je remercie Catherine Truffert, Jean-Louis Feybesse, Pierre Nehlig et Philippe Rossi qui m'y ont accueillie. Mais je n'oublierai pas José Perrin, Frédéric Lacquement, Bernard Bourgine, Chrystel Dezayes, Anne Bialkowski, Florence Quesnel, Thierry Baudin, le deuxième étage, les stagiaires (Lara, Yaël, Arthur, Aïssata...), sans qui cette histoire n'aurait jamais aussi bien marché et surtout pas les pauses cafés ou celles de midi!!!

J'adresse toute ma gratitude aussi à l'université Géosciences d'Orléans et à l'ISTO pour m'y avoir aussi accueillie et qui ont mis à ma disposition les moyens nécessaires à la réalisation de ce travail.

Je remercie aussi toutes les personnes qui ont fait partie de mon chemin sur la fac ou au BRGM et qui l'ont égayé comme Yannick Branquet, Sizaret Stanislas, Luc Barbanson (¿Qué tal? Mal !), Jean-Robert Disnar, Bruno Scaillet, Eric Marcoux, Cyril Marchand, Jérémy Jacob, Hatton Marielle, Xavier Bourrat et les membres des différentes équipes de l'ISTO ou du BRGM.

Merci aussi, aux personnes qui m'ont encadrée ou aidée lors de vacations universitaires au cours de ces trois années : Dominique Cluzel, Christian Di-Giovanni, Mohammed Boussafir, Laurent Arbaret, Charles Gumiaux, Romain Augier.

Sans leur aide administrative, tout aurait été plus compliqué. Merci à Babette, Chantal, Catherine et Fabienne.

Je salue tous mes compagnons thésards ou ex-thésards : Pierre, Fét, Marcio, Prisce, Laure, Sylvain, François, Sébastien, Mathieu, Marie, Marie-Véro, Eric, Aida, Mourad, Khalifa, Amanda, Yann ... sans oublier mes amis, Nanou, Seb et tous les autres...

Mes remerciements vont enfin à ceux qui en fait le plus, qui ont cru en moi, qui m'ont secourue et encouragée et; vers qui je me retournerai toujours. Présents ou absents, mon arbre de vie, c'est vous: Tonton, Papa, Didile et surtout toi, Tata à qui je dois tout.

Et enfin ces derniers mots pour toi, mon bonheur : Mehdi.

Sommaire

REMERCIEMENTS	3
<u>Sommaire</u>	9
INTRODUCTION	11
I. OROGENE VARISQUE	17
1. Orogène Varisque en Europe	19
2. Evolution de l'orogène Varisque	21
2.1. Les unités lithotectoniques du Massif central français	21
2.2. Histoire Orogénique du Massif central	29
2.3. L'extension tardi orogénique syn à post collisionelle de la chaîne Varisque.	31
2.3.1. L'extension NW-SE syncollisionnelle au Viséen supérieur –Namurien	33
2.3.2. L'extension NE-SW post-collisionelle au Stéphano-Autunienne	34
3. Les grandes discontinuités structurales	36
3.1. Les décrochements actifs au Carbonifère inférieur	36
3.2. Les failles normales ductiles, marqueurs de l'extension du Carbonifère supérieur	37
3.2.1. La faille d'Argentat	37
3.2.2. La faille de Nantiat	38
3.2.3. La faille du Pilat : Faille normale marqueuse de l'extension NNE-SSW Stéphanien	ne 39
3.3. Le Sillon Houiller.	40
3.3.1. Contexte géologique	40
3.3.2. Une activite anté-Stéphanienne peu documentée	40
3.3.3. Activité Stéphanienne	41
3.3.4. Activité Tertiaire	42
3.3.5. Données géophysique existantes	44
4. Méthodologie d'étude du Sillon Houiller Anté-Stéphanien	48
II. STRUCTURE ET TECTONIQUE LE LONG DU SILLON HOUILLER	53
	<i></i>
1. Le massif granitique de Montmarault	33
Publication n°1	56
A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault: relati between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French M Central. Part I: Geochronology, mineral fabrics and tectonic implications. Journal of Geophysi	onships Iassif cal Reseach

Publication n°2	89
A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault: rela between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Central. Part Part II: Gravity, aeromagnetic investigations and 3D numeric modeling. Journa Geophysical Reseach -Solid Earth (Soumis).	ationships n Massif l of
2. Les massifs granitiques de Glénat, Omps et Boisset	114
<u>Publication n°3</u> AMS and gravity inversion studies of the relationships between granitic plutons and a nearby from granitic plutons and Sillon Houiller Fault in the southern part of the Variscan French M Geophysical Journal International (Soumis).	114 fault. Example assif Central.
3. Le segment Pontaumur - Bort-les-Orgues	159
3.1. Cadre géologique et structurale de la série du la Sioule et de la série du Chavanon.	159
3.2. Analyse structurale et cinématique	164
3.3. Synthèses des observations	169
III. SYNTHESES ET CONCLUSIONS	171
1. Synthèses des résultats	172
1.1. Apport et originalité de la méthodologie pluridisciplinaire	172
1.2. Apport à la compréhension du fonctionnement du SH anté-Stéphanien	173
2. Place du Sillon Houiller dans l'orogène varisque	177
2.1 L'AMBP	177
2.2.1. E Adupt	181
2.3. Corrélation méridionale F-W (Limousin-Rouergue)	183
2.4. Corrélations avec les linéaments à l'Ouest du Sillon Houiller	185
3 Tertigire	105
4. Perspectives	187
References	189
ANNEXE 1: METHODES EMPLOYEES AU COURS DE LA THESE	207
1. L'Anisotropie de la Susceptibilité Magnétique (ASM)	209
2. La gravimétrie	221
3. Le magnétisme	239
4. Modélisation 3D	253
5. Inversion géophysique	263
6. Géochronologie U-Th- Pb sur monazite à la microsonde électronique	271
ANNEXE 2 : ANALYSES A LA MICROSONDE ELECTRONIQUE POUR LA DATATION CHIMIQUE CHAQUE PLUTON ETUDIE	U-Th-Pb de 281
ANNEXE 3 : DONNEES GRAVIMETRIQUES ACQUISES	289
ANNEXE 4 : MESURES DE DENSITE ET DE SUSCEPTIBILITE MAGNETIQUE	295
ANNEXE 5 : COUPES CONJOINTES GEOPHYSIQUES 2D	297

INTRODUCTION

« Les mots servent à exprimer les idées ; quand l'idée est saisie, oubliez les mots. » Tchouang-Tseu, mort en 315 av. J-C.

Les chaînes de montagnes constituent un site privilégié pour localiser les discontinuités lithosphériques. Outre la limite de plaque fondamentale que constitue la zone de suture, de nombreuses chaînes de montagnes sont caractérisées par de grands décrochements parallèles ou transverses à la chaîne qui accommodent des déplacements horizontaux entre les blocs continentaux. Ces zones de cisaillement sont aussi des sites favorables à l'ascension de magmas et aux transferts de chaleur. La connaissance de la signature profonde de ces zones de déformation est essentielle pour contraindre leur signification tectonique à l'échelle lithosphérique. Plusieurs failles actives comme celle de San Andreas, des Philippines, de Sumatra ou de Sagaing sont des failles lithosphériques complexes qui migrent de façon importante au cours du temps (Atwater and Stock, 1998). En effet, la lithosphère sous-jacente est affectée par une évolution tectonique rapide. Leur histoire cinématique est celle qui est la plus précisément contrainte en âge et géométrie par la cinématique océanique. Contrairement aux failles lithosphériques récentes, assez bien étudiées, les orogènes anciens tel l'orogène Varisque possèdent aussi de telles structures d'échelles lithosphériques qui jouent un rôle majeur dans la tectonique des plaques et dans l'évolution d'un orogène. Il est donc primordial d'identifier de telles structures et leur évolution au cours du temps si l'on veut rendre compte de manière complète et fiable de l'histoire d'une chaîne de montagne. La chaîne Varisque qui possède plusieurs failles d'échelle lithosphériques a été le lieu choisi pour une telle étude.

La chaîne Varisque constitue le socle anté-Permien de toute l'Europe moyenne depuis la Pologne jusqu'au Sud du Portugal. Ces terrains affleurent de manière discontinue dans de grands massifs cristallins tels que le massif de Bohème, les Vosges, le Massif armoricain, la péninsule ibérique, et bien entendu le Massif central. La chaîne Varisque est tout à fait exemplaire puisque des cisaillements ductiles, parallèles au grain structural de la chaîne, constituent un des traits tectoniques majeurs du Massif armoricain et des Vosges. En revanche, l'architecture finale, très compartimentée du Massif central résulte du jeu de failles transversales comme le Sillon Houiller, la faille d'Argentat ou la Faille des Cévennes dont l'origine, l'histoire et le ou les fonctionnements successifs restent mal compris. Le Sillon Houiller représente la faille la plus importante du Massif central, voire même de toute la chaîne hercynienne, si on considère son extension septentrionale probable sous le bassin de Paris, reconnue sous la forme de « l'Anomalie Magnétique du Bassin de Paris (AMBP) », et méridionale sous le bassin aquitain le long de la faille de Villefranche.

Plus particulièrement, pour ce qui concerne le Sillon Houiller, de nombreuses questions demeurent non résolues. On retiendra les points suivants:

- S'agit-il d'une faille crustale ou lithosphérique ?
- Comment se caractérise la déformation : mécanismes rhéologiques ductiles ou fragiles, cinématique ?
- Quelles sont les relations avec le magmatisme ?
- Quelles sont les relations entre cette faille et le fonctionnement des pièges sédimentaires comme les bassins houillers ?
- Quel est l'impact des réactivations post-carbonifères : distension permienne, compression pyrénéenne, extension oligocène ?

Ce travail s'est concentré sur les relations entre le plutonisme et le Sillon Houiller. Pour cela, une action pluridisciplinaire destinée à contraindre l'origine, le fonctionnement et le rôle de cette faille a été mise en œuvre sur quelques plutons granitiques qui longent le Sillon Houiller. En particulier, ce travail insiste sur l'exploitation et l'interprétation conjointe des données géologiques et géophysiques.

(i) À l'échelle du Massif central, les données de gravimétrie, magnétisme, sismologie propres au Sillon Houiller seront réinterprétées et confrontées avec la géologie.

(ii) Quelques sites particuliers illustrant les relations entre le plutonisme et le Sillon Houiller seront étudiés. Il s'agit du massif granitique de Montmarault et des massifs de Glénat, Omps et Boisset, localisés respectivement aux extrémités Nord et Sud du Sillon Houiller. La structure interne des plutons sera déterminée par des méthodes ASM et pétro-structurales. Les déformations ductiles et fragiles ainsi que les cinématiques dans les plutons et leur encaissant seront caractérisées. Enfin, on acquerra des informations géochronologiques sur les granites. Ces nouvelles informations géologiques et leurs interprétations seront validées par la géophysique. En particulier, des modélisations 2D et 3D gravimétriques et magnétiques permettront de discuter l'enracinement des plutons, la géométrie du Sillon Houiller en profondeur et des relations entre la faille et les plutons.

Ce travail se divise en trois parties.

(i) Dans un premier temps, nous décrirons l'orogène Varisque en Europe et son évolution, en insistant sur l'extension syn- à post-orogénique de la chaîne et du magmatisme associé. Puis, les grandes discontinuités structurales de la chaîne Varisque seront décrites, en mettant l'accent sur le Sillon Houiller.

(ii) Le deuxième chapitre traitera des structures et des tectoniques rencontrées le long du
 Sillon Houiller.

Une première étude pluridisciplinaire, réalisée sur le pluton granitique de Montmarault est abordée via deux articles soumis à « JGR-Solid Earth ». Ce travail permettra de proposer un modèle de mise en place du pluton de Montmarault et ses relations avec le Sillon Houiller.

Puis, une deuxième étude pluridisciplinaire, réalisée sur les plutons de Glénat, Omps et Boisset dans la partie méridionale du Sillon Houiller est présentée également dans un article soumis à « Journal of the Geological Society ».

Enfin, une étude structurale de terrain du segment Pontaumur - Bord-les-Orgues, dans la partie centrale du Sillon Houiller a été réalisée. Bien que dépourvu de plutons granitiques, cette étude de ce segment a été opérée afin de mettre en évidence des critères cinématiques ductiles dans l'encaissant proche du Sillon Houiller que l'on pourrait alors associer à un jeu ductile.

(iii) Enfin, dans le dernier chapitre « Synthèses et conclusions », nous discuterons le fonctionnement du Sillon Houiller au Paléozoïque au Cénozoïque ainsi que ses relations avec les autres décrochements de l'orogène Varisque.

I. OROGENE VARISQUE

« Il n'y a pas de passé, de présent ou de futur. Le présent du passé, c'est la mémoire. Le présent du présent, c'est l'action. Le présent de l'avenir, c'est l'imagination. » St-Augustin (415), Les Confessions, livre XI Cette présentation de l'orogène Varisque est fondée sur les données et références bibliographiques. L'extension de cette chaîne pénéplanée à travers le monde est gigantesque : elle s'étend depuis le Texas à l'ouest jusqu'au massif de Bohème à l'est en passant par les Appalaches, le Mexique, la Colombie, les Mauritanides d'Afrique de l'Ouest, et enfin à l'est de l'Australie (Figure I.1).

1. OROGENE VARISQUE EN EUROPE

En Europe, la chaîne Varisque qui constitue le socle antépermien européen, chemine sur près de 3 000 km du Massif de la Bohème jusqu'à la péninsule ibérique. Les structures tectoniques et évènements magmatiques et métamorphiques observés sont les témoins de la convergence et de la collision entre trois continents (Figure I.1) : la Laurussia au nord, la Baltica au centre et le Gondwana au sud ainsi que des microcontinents comme l'Armorica et l'Avalonia (Autran et Cogné, 1980; Bard et al., 1980, Paris et Robardet, 1990, Van der Voo, 1993; Tait et al., 1997; Cocks, 2000; Franke, 2000; Robardet, 2003; Von Raumer et al., 2003).

La collision intervient entre 380 et 350 Ma, elle fait suite à la disparition par subduction de deux domaines océaniques : l'océan Médio - Européen au Sud et l'océan Rhéique au Nord (Matte, 1986; Franke, 1989). Deux sutures (Bodinier et al., 1986; Pin et Vielzeuf, 1988; Bouchardon et al., 1989 ; Pin, 1990) où sont préservés des lambeaux de lithosphères océaniques (ophiolites) témoignent de ces évènements (Figures I.2 et I.3).

Figure I.1. Reconstitution paléozoïque depuis l'ordovicien moyen (465 Ma) jusqu'à la fin du Carbonifère (340 Ma) d'après Matte (2001), mettant en évidence les microplaques continentales Armorica et Avalonia.

Figure I.2. Carte structurale de l'Europe Varisque (Matte, 1991). LRhS : Suture Rhin-Lyzard,
 MTS : Suture Munchberg-Tepla, MCS : Suture Massif Central, CCS : Suture Coimbra-Corboba,
 OMS : Suture Ossa Morena, NVF : Front Hercynien Nord.

Les données structurales (Matte, 1986) et géophysiques (Pinet et al., 1987; Matte et Hirn, 1988) ont montré des sens de subduction opposés pour l'océan Rhéïque et Médio-Européen (subduction vers le sud pour l'océan Rhéïque et vers le nord pour l'océan Médio-Européen). Le trait structural majeur de la chaîne Varisque est l'organisation en éventail de domaines très déformés sur les marges d'un domaine médian peu structuré. Cette disposition particulière (Figure I.3) résulte probablement des pendages initiaux des plans de subduction (Matte, 1986; Franke, 1989). La double polarité structurale s'accompagne également d'une zonéographie métamorphique. Au sein de chaque compartiment, une migration de la déformation dans le temps et dans l'espace est observée depuis les zones internes vers les zones plus externes.

Figure I.3. Modèle d'évolution de la chaîne Varisque sur la transversale Ardennes-Massif
Central: comportement mécanique de la croûte continentale et position des "phases", simples
étapes dans la construction progressive d'un prisme d'accrétion tectonique (d'après Matte, 1986).
Ce modèle ne prend pas en compte les diverses phases de plutonisme (Carbonifère Inférieur, médio
à tardi-Dévonien, Viséen supérieur, Namuro-Westphalien et Stéphanien, cf. § I. 2. 1), ni les
déplacements NW-SE dans le Massif central et le Sud du Massif Armoricain.

Du Silurien-Dévonien au Carbonifère moyen, la chaîne de collision se structure avec la mise en place de nappe de charriage conduisant à l'épaississement de la croûte continentale, aux transformations métamorphiques et au magmatisme résultant de la fusion crustale des roches tectonisées. Cette ancienne chaîne a subi une érosion au cours du Carbonifère Supérieur jusqu'au début du Permien. La reconstruction anté-triasique de la chaîne est rendue difficile par le fonctionnement à la fin du Paléozoïque de décrochements qui ont repris les anciennes sutures (Arthaud et Matte, 1977; Bard, 1997). Elle a été disloquée ensuite lors du mouvement mésozoïque des plaques et de l'ouverture de l'Océan Atlantique.

2. EVOLUTION DE L'OROGENE VARISQUE

2.1. LES UNITES LITHOTECTONIQUES DU MASSIF CENTRAL FRANCAIS

Le Massif central est une partie importante de la chaîne Varisque, formée entre 450 et 290 Ma. Un empilement de nappes crustales syn-métamorphiques caractérise la structure anté stéphanienne du Massif central (Ledru et al., 1989; Colchen and Rolin, 2001; Ledru et al., 2001b; Faure et al., 2005 et les références incluses). Ces nappes sont séparées par de grands accidents d'importance crustale. Les unités constitutives de l'empilement du Massif central sont de plus en plus métamorphiques du Sud vers le Nord et du bas vers le haut (Figure I.4):

(i). Le domaine des plis et des chevauchements est composé de séries paléozoïques d'âge Cambrien à Viséen, déformées par des plis couchés plurikilométriques déversés vers le sud et des chevauchements. Cette tectonique à vergence sud affleure dans la Montagne Noire et dans le sud des Cévennes. Il s'agit essentiellement de roches terrigènes et carbonatées de marge passive de plateformes. Les séries sédimentaires sont affectées par des charriages associés à un faible métamorphisme dans des conditions anchi à épizonales (Guérangé-Lozes et Alsac, 1986). Les nappes superficielles s'amortissent dans un bassin flexural d'avant pays d'âge Viséen supérieur à Namurien. (ii). L'unité Para-autochtone ou « micaschistes des Cévennes » est observée au Sud dans la région des Cévennes et de l'Albigeois et au Nord dans les fenêtres du plateau d'Aigurande, du Limousin et de la Sioule. Elle est constituée d'une épaisse série gréso-pélitique (ca 1500 m) recoupée par des plutons dioritiques datés vers 550 Ma (Pin, 1990) ou des plutons granitiques datés entre 550 et 480 Ma transformé en orthogneiss (Duthou, 1977). La foliation subhorizontale porte une linéation d'étirement N–S associée à la mise en place de nappes ductiles formées dans un contexte métamorphique de moyenne pression - moyenne température (faciès des schistes verts à amphibolite). Des données radiochronologiques ⁴⁰Ar/³⁹Ar sur muscovite, biotite et amphibole indiquent des âges compris entre 340 et 330 Ma, pour le métamorphisme syntectonique (Caron, 1994).

(iii). L'Unité Inférieure des Gneiss (UIG) est lithologiquement identique au Paraautochtone car ces deux unités proviennent tous les deux de la marge nord du Gondwana (Matte, 1986). Cependant, on remarque qu'à l'ouest du Sillon Houiller, cette unité est essentiellement composée de termes orthodérivés (métagranitoïdes alcalins). A l'Est du Sillon Houiller, les paragneiss constituant l'encaissant de ces orthogneiss dominent. L'UIG ne présente très peu de reliques de haute pression. Elles ont été décrites dans le limousin dans les gneiss du Thaurion et dans le massif de Sauviat, mais leur situation pourrait très bien correspondre à des klippes de l'unité supérieure des gneiss. Notons par ailleurs que ces reliques de haute pression semblent totalement absentes à l'Est du Sillon Houiller. Le métamorphisme y est de type barrovien. Cette unité est composée d'orthogneiss oeillés, correspondant à des granitoïdes porphyriques d'âge cambroordovicien (550 - 480 Ma), et de leur encaissant pélitique avec des termes grauwackeux, qui est d'âge Néo-Proterozoique à Cambro-Ordovicien inférieur probable. Le magmatisme alcalin cité juste dessus est interprété comme résultant d'un phénomène de rifting ordovicien lié à la cassure entre le Gondwana et l'Armorica (Ledru et al., 1994). Dans cette unité, un gradient prograde associé à un métamorphisme inverse est décrit par exemple dans les séries du Lot ou de la Sioule (Grolier, 1971; Briand, 1978; Burg et al., 1984).

(iv). L'Unité Supérieure des Gneiss (USG) comprend à sa base un complexe leptynoamphibolique (Burg et Matte, 1978) formé de roches magmatiques basiques (amphibolites) et acides (leptynites). Le magmatisme bimodal, caractéristique des complexes leptyno-amphiboliques résulte aussi du rifting ordovicien. L'USG est caractérisée par la présence de vestiges de métamorphisme de haute pression. En effet, l'USG a été entrainée dans la subduction éo-Varisque. L'âge du métamorphisme de haute pression est daté entre 430 et 400 Ma selon les régions par la méthode U/ Pb sur zircon (Pin et Peucat, 1986). Les roches ont été métamorphisées dans le faciès éclogite ou granulite (Santallier et al., 1988 et 1994) à des profondeurs de 60 à 100 km (de environ 20 à 30 kbar ; Marchand, 1981; Santallier, 1981; Lardeaux et al., 2001). Le sommet de l'USG contient des migmatites datées de 386 Ma (par la méthode U-Pb sur zircon) dans le Limousin et les Monts du Lyonnais (Duthou et al., 1984) qui correspondent à la fusion crustale liée à l'exhumation de l'USG (Faure et al., 1997).

(v). L'unité de Thiviers - Payzac (UTP) est formée de grauwackes, de quartzites et de rhyolites d'âge cambro-ordovicien formant l'encaissant des granites ordoviciens. Dans ces unités, l'intensité du métamorphisme croit du Sud vers le nord où l'on passe de conditions épizonales au faciès amphibolite au Nord (650°C, 8 kbar avec augmentation de pression pour le chemin P-T), ce qui est caractéristique d'un métamorphisme prograde normal (Duguet, 2003; Duguet et Faure, 2004). L'UTP affleure dans le Quercy (série de Leyme), dans le Sud du Limousin où l'unité de Thiviers – Payzac sensu stricto (Duguet et al., 2007) est affectée par le plutonisme granitique (Roig et al., 1996).

(vi). L'unité de Brévenne est formée de roches océaniques (i.e. roches ultrabasiques, de basaltes, de gabbros tholéitiitiques et de roches sédimentaires siliceuses et ultrabasiques). Cette unité est d'âge dévonienne et interprétée comme une nappe ophiolitique (Pin et al., 1982; Sider and Ohnenstetter, 1986; Pin and Paquette, 1998) charriée sur l'USG vers le NW (Faure et al., 1997; Leloix et al., 1999). Des roches acides contemporaines du magmatisme basique, ont été datées par méthode U-Pb sur zircon à 356+/- 10Ma (Pin and Paquette, 1998). L'âge du processus d'obduction n'est pas clairement déterminé. Toutefois, comme les nappes de la Brévenne sont scellées par les séries sédimentaires gréseuses du Viséen inférieur qui affleure à l'est de Lyon (Série du Goujet), un âge Carbonifère inférieur ou Dévonien supérieur est probable.

Figure I.4. Schéma structural simplifié du Massif central français

Toutes ces roches sont impliquées dans la tectonique de nappes résultant de la collision continentale. Ces roches peuvent atteindre des conditions thermo-barométriques favorables à la fusion partielle. La fusion affecte surtout les composants pélitiques et génère des liquides silicatés à l'origine des plutons, des dykes, de granitoïdes et aussi des migmatites. Le Massif central renferme de nombreux complexes anatectiques composés de migmatites et de granitoïdes. Plusieurs épisodes de fusion crustale sont recensés (Duthou et al, 1984) :

Le magmatisme médio à tardi-Dévonien est principalement d'origine mantellique (Pin et Duthou, 1990; Shaw et al., 1993; Pin et Paquette, 2002). Il est principalement constitué de volcanisme calco-alcalin comme la série de la Somme, de plutons d'arc tels que des diorites, des tonalites et gabbros qui affleurent à l'ouest du Massif central ; et enfin d'ophiolites qui sont reconnues à l'est du Massif central en Brévenne (Figure I.5).

Figure I.5. Carte synthétique du magmatisme dévonien montrant les plutons dioritiques d'arc, les séries volcano- sédimentaire calco-alcaline (Morvan and Vendée), et les roches d'arrière-arc (ophiolites de Brévenne, rift de Bolazec, gabbro de St-Jean-du-Doigt, les roches vertes de Génis et la Ligne des Klippes). Des âges radiométriques sont aussi visbles (Faure et al., 2005).

- Le magmatisme Carbonifère inférieur (granite de type Guéret) a été daté vers 355 Ma (Berthier et al., 1979, Cartannaz et al., 2006). Dans le Limousin, des études structurales sur des granitoïdes de type Guéret montrent que ces granites présentent des fabriques magmatiques jusqu'à l'état solide portant une linéation magnétique NW-SE (Bouchez and Jover, 1986; Roig et al., 1996, 1998; Cartannaz et al., 2006). Le magmatisme Carbonifère inférieur peut être considéré comme un dernier incrément de l'événement compressif NW-SE daté du Carbonifère Inférieur (Faure et al., 2005).
- Le magmatisme Viséen supérieur (vers 330 Ma) très développé dans le Nord Est du Massif central, avec des faciès d'épanchement et des microgranites, regroupé sous le terme de « tufs anthracifères » (Bruguier et al., 1998; Faure et al., 2002; Be Mézème, 2002). L'analyse structurale des dikes indique qu'un étirement NW-SE de la croûte contrôle leur mise en place.
- Le magmatisme Namuro-Westphalien (Didier et Lameyre, 1971) se caractérise à la fois par des leucogranites très développés au Nord et à l'Ouest du Massif central (Limousin, Gébelin et al., 2004, 2006; Bellot, 2007) et des monzogranites porphyriques bien représentés au centre et au Sud, comme par exemple les plutons de la Margeride, et des Cévennes (Talbot et al., 2004; 2005a, 2005b). L'analyse petro-structurale et de l'anisotropie de la susceptibilité magnétique montre que ces corps granitiques sont caractérisés par une linéation magnétique et minérale NW-SE.
- Le magmatisme Stéphanien est représenté par des granites à cordiérite et des migmatites limités au dôme du Velay (Ledru et al., 2001a; Be Mézème et al., 2005) et un magmatisme basique (filons et coulées) dans les bassins houillers Stéphaniens. Le dôme du Velay est limité au nord par la faille de détachement du Pilat (Malavieille et al., 1990) qui est caractérisé par des stries N-S à NNE- SSW. Il est maintenant communément accepté que le magmatisme Stéphanien se déroule pendant l'extension tardi à post orogénique du Massif central.

2.2. HISTOIRE OROGENIQUE DU MASSIF CENTRAL

Quatre périodes orogéniques successives ont été définies par Ledru et al. (1989). La période éo-Varisque (450-400 Ma) est une phase de subduction de portions de lithosphère à croûte océanique et continentale. Le métamorphisme de haute pression qui s'y rapporte (Ducrot et al., 1983; Pin et Vielzeuf, 1988) est compris entre 430 et 400 Ma. Récemment, des éclogites à cœsite, témoins d'une subduction continentale à plus de 100 km de profondeur, ont été découvertes dans les Monts du Lyonnais (Lardeaux et al., 2001). La période médio-Varisque (400-370 Ma) est une période de collision continentale et de mise en place des nappes principales. Pendant leur exhumation, les unités de haute pression évoluent selon des conditions métamorphiques rétrogrades ce qui provoque l'anatexie de leur composante pélitique durant leur remontée dans la croûte. Les unités sous-jacentes quant à elles subissent un métamorphisme barrovien (Roig et Faure, 2000), parfois inverse comme la série du Lot, consécutif à l'empilement des nappes. Ceci se traduit par le développement d'une foliation sub-horizontale portant une linéation d'allongement NE-SW.

Vers 380 Ma, la cinématique de mise en place se fait du NE vers le SW (Roig et Faure, 2000). Cette tectonique de nappe D_1 se poursuit vers 360-340 Ma, par une déformation ductile D_2 caractérisée par une foliation plate, une linéation NW-SE avec une cinématique vers NW (Roig et al., 1996; Duguet et Faure, 2004). La phase néo-Varisque D_3 (340-330 Ma) se traduit par une évolution tectonique intra continentale toujours en domaine convergent à cinématique vers le SE. Enfin, la période tardi-Varisque (325-280 Ma) correspond au phénomène de désépaississement crustal avec un retour à une épaisseur de croûte normale.

Le changement de cinématique pendant la période médio-Varisque, est diversement interprété. Brun et Burg (1982) ainsi que Ledru et al. (1989) considèrent que ces deux événements se succèdent dans un continuum tectono -métamorphique depuis le Dévonien jusqu'au Carbonifère inférieur. La linéation NE-SW atteste du développement des chevauchements principaux. Au cours de l'évolution, les conditions aux limites de plaques changent. Les déplacements se font parallèlement à ces limites c'est-à-dire vers le NW. Par analogie avec l'Himalaya, les mouvements vers le NW ont été interprétés comme une marque tectonique extensive (Mattauer et al., 1988). Ces mouvements extensifs seraient synchrones de la mise en place des nappes vers le Sud. Or, plusieurs études ont montré que la cinématique était contemporaine d'un métamorphisme barrovien peu compatible avec une tectonique extensive et une foliation très plate sur des centaines de kilomètres du nord des Cévennes jusqu'à la pointe du Raz. De plus, les mouvements vers le NW sont datés à 350 Ma contrairement à ce que suggéraient Mattauer et al. (1988).

Faure et al. (1997) présentent un modèle où les deux évènements compressifs sont séparés par un épisode de distension au cours du Dévonien moyen. Dans ce modèle polycyclique et non plus monocyclique, la notion de période médio -Varisque de Ledru et al. (1989) n'existe pas puisqu'elle regroupe des évènements de signification géodynamique différente. Le premier cycle d'âge paléozoïque inférieur (Cambrien au Dévonien inférieur) correspond à la mise en place des nappes vers le SW au Dévonien inférieur. Au Dévonien moyen, un épisode de distension conduit localement à la création de croûte océanique comme peut en témoigner le bassin océanique de la Brévenne (Leloix et al., 1999). Le contexte géodynamique de cet épisode est interprété comme dans un système d'arc- arrière arc, directement lié à la subduction vers le Sud de l'océan Rhéique au Nord. Au Dévonien supérieur-Carbonifère inférieur, un nouvel épisode compressif dû à la fermeture de l'océan Rhéique et la collision Laurussia -Gondwana, provoque le charriage vers le NW des unités sommitales sur l'ensemble des nappes déjà structurées. Au cours de cet événement D2, les bassins océaniques se referment selon une direction NW - SE. L'évolution tectonique de l'orogène se poursuit par une tectonique intracontinentale compressive D3 à cinématique vers le SE suivie par une phase d'extension syn -orogénique vers 320 Ma (Arthaud et Matte, 1974 ; Caron, 1994, Faure et al., 2001 et référence incluses).

2.3. L'EXTENSION TARDI OROGENIQUE SYN A POST COLLISIONELLE DE LA CHAINE VARISQUE.

La prise en considération du phénomène d'extension syn et tardi orogénique est une notion récente dans l'explication de l'évolution tectonique d'une chaîne de montagne. Depuis une vingtaine d'années, de nombreuses études ont permis d'améliorer de façon substantielle notre connaissance de ce phénomène dans la chaîne Varisque (Costa, 1990 ; Faure et Pons, 1991, Faure, 1995). L'extension tardi-orogénique est une conséquence du désépaississement crustal car l'érosion est trop lente pour restaurer l'épaisseur initiale de la croûte. Le moteur principal de l'extension orogénique est la rhéologie de la croûte. Cette croûte préalablement surépaissie par des phénomènes de charriage, possède un gradient géothermique anormal. La base de la croûte voit sa viscosité faiblir jusqu'à atteindre un seuil critique où le système devient instable. La contrainte principale σ 1 horizontale lors de la compression devient verticale quand le poids dû à l'empilement des nappes est supérieur aux forces horizontales. Le régime tectonique devient donc extensif. La chaîne s'effondre alors sous son propre poids et la croûte retrouve une épaisseur normale par relaxation thermique (Buck, 1991; Echtler et Malavieille et al., 1990; Burg et al., 1994). Or, l'amincissement lithosphérique est compensé par une remontée de l'asthénosphère, responsable d'un transfert de chaleur dans la lithosphère par advection. Il en résulte un échauffement qui peut entrainer la fusion partielle de la croûte continentale et la production de liquides magmatiques qui cristallisent sous forme de plutons granitiques ou de dômes migmatitiques (Vanderhaege et Teyssier, 2001). Structuralement, la tectonique extensive se caractérise par des failles normales cassantes en surface et ductiles en profondeur. Cette tectonique en extension a été décrite dans plusieurs secteurs du Massif central notamment au Mont Pilat ou dans le Nord du Limousin. Ce régime a été actif depuis la fin du Viséen dans le Nord alors que dans les domaines plus au sud (Montagne Noire, Pyrénées), la compression était toujours dominante. Deux directions d'extension distinctes ont été mises en évidence dans le Massif central à deux époques différentes (Figure I.6).

Figure I.6. Evolution des directions d'extension dans la chaîne Varisque d'Europe occidentale entre 330 et 260 Ma (Burg et al., 1994). A - Directions d'extension du Viséen supérieur au Westphalien. B - Directions d'extension du Stéphanien supérieur au Permien inférieur. Les bassins sédimentaires principaux sont en grisé.

2.3.1. L'EXTENSION NW-SE SYNCOLLISIONNELLE AU VISEEN SUPERIEUR - NAMURIEN

Un premier épisode extensif de direction NW-SE (Faure, 1995) a été mis en évidence pendant la transition Viséen supérieur-Namurien (330-310 Ma). Cette phase extensive est caractérisée par la mise en place de nombreux granites dont l'origine est liée à une intense fusion crustale. Dans le Nord Limousin, le massif granitique anté-Viséen de Guéret, son encaissant et sa couverture sédimentaire Viséenne se comportent comme un bloc rigide décollé vers le sud à la faveur d'une grande faille listrique (Faure et Pons, 1991). Le cisaillement extensif est contemporain de la mise en place de plutons leucogranitiques du plateau d'Aigurande, de Brame, St-Sylvestre, St Goussaud et même Echassière dans la série de la Sioule. La structure de ces plutons résulte de l'interférence entre leur dynamique propre de mise en place et la tectonique régionale caractérisée par un allongement NW-SE (Figure I.6a). Des résultats comparable à l' « allochtone de Guéret » peuvent être obtenue par l'étude de la faille d'Argentat (Roig et al., 1996), les leucogranites de la Margeride et du Mt Lozère-Borne (Talbot et al., 2004; 2005b), du granite de Rocles (Be Mézème et al., 2006b) qui sont des structures interprétées comme étant extensives.

Le massif de Millevaches a lui été interprété comme un fin laccolite mis en place dans une pop-up structure centrée sur la faille de Pradines, et formé durant un événement transpressif (Gébelin et al., 2004; 2006; 2007) plutôt qu'extensif (Bellot, 2007).

Cet évènement extensif diachronique, commence au Viséen supérieur dans les parties internes septentrionales du Massif central et n'atteint les Cévennes que plus tard. La Montagne Noire, au même moment subit encore des déformations compressives comme le montre le développement de chevauchements et de plis couchés d'échelle kilométrique. Cette extension dont la direction est parallèle à la direction de la chaîne est donc syn-collisionelle. Dans les parties centrales et méridionales du Massif central, la fusion crustale est responsable de la formation de migmatite et de granite à cordiérite. Les migmatites datées à ca 330 Ma qui affleurent dans la zone axiale de la Montagne Noire, le sud du massif tardi-Carbonifère du Velay et du Millevaches appartiennent à cet événement (Be Mézème et al., 2005). Au tardi-Viséen, le découplage du manteau lithosphérique à partir de la croûte en d'autres termes, la délamination lithosphérique a probablement joué un rôle significatif dans le développement du magmatisme du Massif central (Figure I.7 ; Faure et al., 2002).

Figure I.7. Modèle d'évolution polyphasée de la Chaîne Varisque d'Europe suivant une coupe d'échelle lithosphérique sur la transversale Ardennes- Massif central au Viséen supérieur (330 Ma ; Faure et al., 2002).

2.3.2. L'EXTENSION NE-SW POST-COLLISIONELLE AU STEPHANO-AUTUNIENNE

Reconnue depuis longtemps (Mattauer et al., 1988; Van den Driessche et Brun, 1989; 1991; Malavieille et al., 1990), cette dernière phase extensive (Figure I.6b) est enregistrée dans l'ensemble du Massif central et correspond à l'effondrement généralisé de la chaîne Varisque. Cette déformation est responsable non seulement, de la formation du dôme granitique et migmatitique du Velay (Ledru et al., 2001a), mais aussi de la formation de bassins houillers intra-montagneux « limnique » Stéphano-Autuniens. Leur distribution dans l'espace des bassins Stéphaniens donne au premier égard une impression d'éparpillement qui se complète par l'évidence d'une liaison étroite entres ces bassins et d'importantes failles dont la plus connue est le Sillon Houiller (Figure I.8). Ces bassins houillers (Figure I.8) sont soit des demi-grabens (les bassins de Commentry, Graissessac, St-Affrique, Lodève), soit des pull-aparts ouverts le long de décrochements sénestre NNE-SSW (le bassin de St-Eloy, Messeix, Champagnac). La direction d'extension NE -SW en moyenne, peut varier selon les endroits. Ces variations seraient dues au jeu de failles de transfert, comme par exemple le Sillon Houiller ou la faille d'Argentat (Burg et al., 1994; Faure, 1995) qui accommodent des directions et des quantités d'extension différentes dans les blocs qu'elles séparent. A la même époque, la croûte inférieure subit un métamorphisme dans le facies des granulites suite à un apport de chaleur important du manteau.

De plus, cette extension permet l'amincissement de la croûte qui retrouve une épaisseur normale (25 à 35 km). Cette dernière phase extensive a modifié considérablement l'aspect final du Massif central car elle est responsable de son élargissement apparent et de l'importance des flèches de chevauchements (qui ne sont en réalité que de l'ordre de la centaine de kilomètres).

Figure I.8. Bassin Permo-Carbonifère du Massif central Français.
3. Les grandes discontinuites structurales

3.1. Les decrochements actifs au Carbonifere inferieur

A la fin de la tectonique tangentielle du Massif central, la convergence est accommodée par des décrochements ductiles. Ainsi, on peut observer :

le décrochement sénestre Sud-Limousin (Roig et al., 1996);

 le décrochement dextre de Ste-Christine qui sépare le granite de St-Gervais d'Auvergne de la série de la Sioule (Barbarin et Belin, 1982, Faure et al., 1993), de son prolongement à l'Ouest du Sillon Houiller par le décrochement de la Courtine séparant le granite d'Ussel de la série du Chavanon;

les décrochements dextres du Lyonnais (Gay et al., 1981 ; Costa et al., 1993).

La plupart de ces accidents s'accompagne de la mise en place de plutons syn-tectoniques qui constituent d'excellent marqueurs cinématiques et dont l'âge compris entre 350-340 Ma, fournit aussi l'âge de la déformation. Cet âge Carbonifère inférieur est également attesté, dans le cas du décrochement de St Christine, par la discordance de la série de «tufs anthracifères » sur les mylonites du granite de St Gervais d'Auvergne. Ces décrochements dextres ne doivent pas être confondus avec les décrochements dextres Namuro-Westphaliens qui peuvent présenter des orientations, des cinématiques ou des conditions physiques de fonctionnements identiques. Dans certains cas favorables, comme pour le décrochement Sud-Limousin, on a pu montrer que le cisaillement senestre se produit dans des conditions du facies amphibolite pendant la mise en place et la structuration du granite d'Estivaux et qu'il est ensuite repris par un mouvement dextre dans les conditions du facies schiste verts (Roig et al., 1996).

3.2. Les failles normales ductiles, marqueurs de l'extension du Carbonifere superieur

3.2.1. LA FAILLE D'ARGENTAT

La faille d'Argentat qui est situé au contact du Limousin et du Millevaches (Figure I.4), a fait l'objet de plusieurs études (Ledru et Autran, 1987; Faure, 1995 ; Milesi et al, 1997; Bitri et al., 1999). Son histoire complexe est polyphasée. Son jeu ductile est associé à l'âge de mise en place syntectonique des leucogranites du massif de Millevaches au Viséen dans un régime extensif (Roig, 1997; Roig et al., 2002). La faille est datée à ca 335 Ma par ⁴⁰Ar/³⁹Ar sur muscovite (Gébelin et al., 2004). Cette tectonique en extension est responsable de l'exhumation du massif granitique de Millevaches (Roig et al., 2002). A la fin du Carbonifère, cette faille est réactivée et subit une déformation cassante (Roig et al., 2002; Bellot et al., 2005).

Un récent profil sismique (Bitri et al., 1999) orienté NE-SW a été effectué dans le Sud Limousin (Figure I.9). Il recoupe les granites du Millevaches, la faille d'Argentat, la synforme d'Uzerche, l'antiforme de Tulle et la faille Sud Limousine. Il met en évidence un système de failles normales à pendage NW, qui descend jusqu'à plus de 20 km de profondeur, se confondant ensuite avec la croûte litée. Les méthodes sismiques et gravimétriques employées (Gébelin et al., 2006) sur un massif granitique laccolitique non affleurant au cœur du dispositif de nappes du Limousin, surmonté des réseau de failles normales montre l'importance de l'extension subie par la croûte après l'épaississement crustal.

Figure I.9. Interprétation du profil sismique d'Argentat d'après Bitri et al. (1999). A: Unités gneissiques. B, C, D, E, F, G: Unités discordantes. G : Micaschistes. H : Leucogranites du Millevaches. Le tracé rouge sur le Massif central indique le positionnent du profil sismique.

3.2.2. LA FAILLE DE NANTIAT

La faille de Nantiat, située àu NW de Limoges, est également une faille normale ductile qui limite à l'ouest, le pluton de la Brame. Cette faille abaisse le compartiment ouest, formé par les nappes de l'USG et de l'UIG, par rapport au pluton de la Brame. Ce pluton namurien est un massif leucogranitique syncinématique mis en place pendant la tectonique extensive. La faille de Nantiat est jalonnée par des mylonites dont la foliation et la linéation, orientée N°110 à N°140 sont respectivement parallèles aux foliations et linéations magmatique du granite de la Brame ce qui s'accorde bien avec un jeu syncinématique de la faille (Lespinasse et al., 1986; Guinerbertreau et al., 1989; Faure, 1989).

3.2.3. LA FAILLE DU PILAT : FAILLE NORMALE MARQUEUSE DE L'EXTENSION NNE-SSW STEPHANIENNE

Au niveau de la bordure nord du dôme du Velay, la faille du Pilat affecte non seulement l'UIG mais aussi la bordure Nord du massif granitique du Velay (Ledru et al., 2001a) marqué par un étirement dirigé vers le Nord (Roig and Faure, 1995) et un détachement des terrains métamorphiques au dessus du Velay (Gardien, 1990; Lagarde et al., 1994). Ce détachement est daté entre 330 et 300Ma (Costa, 1992; Ledru et al., 2001a). L'extension cartographique des accidents et l'épaisseur plurikilométrique des terrains affectés par la déformation ductile associée montrent l'échelle crustale de ce détachement. L'activation de ce détachement en faille normale ductile est antérieure aux dépôts du bassin sédimentaire Stéphanien de St-Etienne. Certes, des accidents qui affectent les dépôts sédimentaires sont affectés par un jeu décrochant, mais l'extension crustale de ce détachement écarte l'hypothèse d'un contexte transpressif (Mattauer et Matte, 1998). Cette combinaison mène à l'exhumation des migmatites et des granites à 300 Ma (Vanderhaeghe et al., 1999).

3.3. LE SILLON HOUILLER

3.3.1. CONTEXTE GEOLOGIQUE

Le Sillon Houiller est une discontinuité de premier ordre de la chaîne Varisque européenne surtout si on considère son extension septentrionale probable sous le bassin de Paris, reconnue sous forme de « l'Anomalie Magnétique du Bassin de Paris (AMBP) », et méridionale sous le bassin aquitain le long de la faille de Villefranche. Cet accident sépare deux grandes régions, le Limousin à l'Ouest du Massif central oriental à l'Est (Figures I.4 et 8). Cette faille doit son nom aux bassins houillers d'âge Carbonifère supérieur qui la jalonnent. Le Sillon Houiller de direction NNE-SSW est un décrochement sénestre actif au Carbonifère supérieur qui s'étend sur près de 500 km. Comparé aux grands décrochements crustaux que l'on connaît en Himalaya (Tapponier et Molnar, 1977), le rejet horizontal cumulé apparaît curieusement très minime, de l'ordre de 80 km (Grolier et Letourneur, 1968). Néanmoins les données géologiques sont très éparses et fragmentaires (Letourneur, 1953; Feybesse, 1981; Blès et al., 1989; Basile, 2005). On peut toutefois noter que cette faille est jalonnée par des massifs granitiques comme ceux de Montmarault, de Glénat et de Villefranche de Rouergue dont les relations cartographiques avec la faille suggèrent aussi un lien génétique entre le fonctionnement du Sillon Houiller et la mise en place des plutons (Figure I.4). Là encore, hormis des cartes géologiques au 1/50 000, les données disponibles sur ces objets sont quasi-inexistantes (Sossa-Simawango, 1980; Feybesse, 1981).

3.3.2. UNE ACTIVITE ANTE-STEPHANIENNE PEU DOCUMENTEE

Après la mise en évidence, à la fin des années 80, des phénomènes associés au désépaississement crustal et à l'effondrement gravitaire (Ménard et Molnard, 1988; Faure et Pons, 1991), le Sillon Houiller a été interprété comme une faille de transfert qui aurait accommodé une extension NW-SE à l'Ouest et une extension NE-SW à l'Est (Burg et al., 1990). Ce modèle est en désaccord avec les données géologiques et géochronologiques qui montrent clairement que les deux directions d'extensions ne sont ni synchrones, ni formées dans des conditions rhéologiques identiques. En effet, l'extension NW-SE, parallèle à la chaîne se développe entre 330 et 315 Ma dans des conditions essentiellement ductiles alors que l'extension NE-SW est surtout active dans la croûte supérieure fragile, où elle est associée à la formation des bassins houillers stéphaniens (Faure, 1995).

3.3.3. ACTIVITE STEPHANIENNE

Au Westphalien terminal et Stéphanien, le Sillon Houiller joue en décrochement sénestre qui ouvre des bassins en transtension (Letourneur, 1953; Grolier et Letourneur, 1968; Bonijoly et Castaing, 1984, 1987; Blès et al, 1989) comme les bassins de St-Eloy, de Messeix et de Decazeville. Le cisaillement cassant est à l'origine de la physionomie actuelle du Sillon Houiller (Gélard et al., 1986). Les bassins associés (Figure I.8) au jeu senestre du Sillon Houiller sont souvent étroits avec un remplissage plissé et pouvant atteindre 1500 m. Un épisode volcanique a immédiatement précédé la sédimentation houillère. En effet, le remplissage Stéphanien des différents bassins commence par une série éruptive de base associée à des conglomérats, telle que les tufs de Pontaumur, des tufs rhyolitiques dans le bassin de Commentry et de St-Eloy, des andésites à la base du bassin de Decazeville ou encore des épanchements rhyolitiques dans le bassin de Messeix. Letourneur (1953) pense que le Sillon houiller constitue lui-même l'axe des centres éruptifs. Puis, du Stéphanien moyen au supérieur, des dépôts continentaux s'accumulent dans le fossé d'effondrement du Sillon Houiller et sont généralement limités par des failles. L'attribution au Stéphanien moyen est fondée abondante : sur une flore assez *Callipteridium* gigas, С. pteridium. pecopteris arborescens, pecopteris bioti, etc (Letourneur, 1953). Le complexe détritique est à dominante gréseuse; successivement on trouve souvent des couches de charbons gras, des poudingues, des grés et des schistes bitumineux où peuvent s'épancher des laves intrusives trachy-andésititiques et des cendres volcaniques (Letourneur, 1953). Le Permien, visible seulement aux deux extrémités (bassin de Noyant/Aumance et Decazeville) est peu déformé. Il est constitué de deux ensembles organisés en séquences positives : l'Autunien gris à la base où disparaît le caractère rythmique des dépôts stéphaniens; et l'Autunien rouge, où existent d'importantes rubéfactions (Turland et al., 1989).

3.3.4. ACTIVITE TERTIAIRE

L'évolution géodynamique du Massif central durant le Tertiaire est influencée par l'héritage tectonique Varisque et par le contexte de convergence entre l'Afrique et l'Europe (Bergerat, 1987; Ziegler, 1990). Cet épisode a provoqué le flambage de la lithosphère Ouest européenne (Paléocène, Eocène supérieur: Wyns et Guillocheau, 2000). La discontinuité majeure que représente le Sillon Houiller joue un rôle indiscutable dans l'histoire géologique tertiaire du Massif central. Cet accident correspond en effet à la limite occidentale du magmatisme et des aires de sédimentation associées au rift Ouest Européen. Ceci, bien visible en carte (Figure I.4), est confirmé par les structures profondes obtenues par la sismologie (Granet et al., 1995a; 1995b). En particulier, les données de tomographie sismique montrent clairement que l'anomalie thermique (la valeur moyenne du flux de chaleur est de 105mW/m², Lucazeau et al., 1984) dans la région du Cantal est quasi verticale à l'Ouest, et est située juste à l'aplomb du Sillon Houiller (Granet et al., 2000). Par conséquent, le Sillon Houiller est une faille d'ampleur lithosphérique (Figure I.10) qui aurait guidé la remontée de chaleur du Massif central au Tertiaire. Les données de tomographie sismique (Sobolev et al., 1997; Zeyen et al., 1997; Judenherc et al., 1999; 2003) montrent que cette limite occidentale verticale de l'anomalie thermique se poursuit en profondeur, dans l'asthénosphère, toujours à l'aplomb du Sillon Houiller. Une première étude sur la texture des enclaves de péridotites qui sont remontées par des volcans du Massif central, a montré que les enclaves les plus déformées se trouvent précisément à la limite de la zone de remontée de la lithosphère. Au vue de ces résultats, un modèle de remontée diapirique est alors proposé (Coisy, 1977; Coisy et Nicolas, 1978). La remontée de ce matériel mantellique pourrait être alors liée à une déstabilisation du manteau lors de l'extension de la lithosphère mantellique (Fleitout, 1984; Lucazeau et al., 1984; Wilson et Downes, 1992). Certains auteurs suggèrent que cette anomalie thermique positive sous le Massif est reliée à un changement de contraintes durant le Pliocène (Maury et Varet, 1980). Mais, cette ascension mantellique serait peut être aussi associée à un panache mantellique de type point chaud (Froideveaux et al., 1974; Vasseur, 1982; Alard et al., 1996) ou encore lié à un ensemble de petits diapirs (Nicolas et al., 1987). En revanche, pour d'autres auteurs, l'anomalie thermique trouverait son origine dans l'érosion thermo-mécanique de la lithosphère sous-jacente en réponse à un courant asthénosphérique provoqué par la formation de la racine lithosphérique des Alpes (Granet et al., 1995a; 1995b; Sobolev et al., 1996; Merle et Michon, 2001).

Selon eux, la racine lithosphérique des Alpes aurait généré un flux asthénosphérique suffisamment important pour délaminer thermomécaniquement la lithosphère au niveau de l'Est du Massif central. Au tardi- Cénozoïque, le Sillon Houiller possède un mouvement normal et il n'existerait pas de mouvement transcurent associé à son jeu (Merle et Michon, 2001).

Figure I.10. Images tomographiques sismiques sous du Massif central et à travers le Sillon Houiller (Granet et al., 2000) affichant des coupes verticales qui illustrent le systeme lithosphèreasthénosphère jusque 170 km. La topographie est affichée sur le panneau supérieur. Les couleurs rouges du spectre caractérisent de faibles vitesses alors que les couleurs bleues représentent des vitesses rapides.

L'âge de mise en place du point chaud est différent selon les auteurs. Lorsque le diapirisme est lié à l'extension, le début de la remontée mantellique serait daté à 40 Ma (Lucazeau et al., 1984; Nicolas et al., 1987). Qu'elle se fasse sous la forme d'un diapir unique ou en plusieurs diapirs kilométriques, la remontée du manteau se serait interrompue à partir de 10 Ma (Lucazeau et al., 1984; Nicolas et al., 1987). Des âges de mise en place plus récents entre 5 et 4 Ma ont également été proposés pour expliquer le développement d'une phase volcanique importante à partir de la fin du Miocène (Coisy et Nicolas, 1978; Maury et Varet, 1980). Finalement, selon Lucazeau et al. (1984), la remontée du point chaud aurait induit une pression en base de croûte suffisamment importante pour engendrer la surrection.

La question qui se pose est donc de savoir s'il est possible que le fonctionnement paléozoïque (ou mésozoïque?) du Sillon Houiller ait pu provoquer une anisotropie importante dans l'asthénosphère. Cette anisotropie aurait été préservée jusqu'au Miocène pour guider la remontée de la matière liée à l'épisode magmatique du Massif central. Ainsi même s'il n'est pas certain que l'anisotropie du manteau lithosphérique ne soit pas héritée de la tectonique paléozoïque, il est possible que cette zone d'accident ait joué un rôle majeur, dans l'évolution de la lithosphère ouest européenne.

3.3.5. DONNEES GEOPHYSIQUE EXISTANTES

La gravimétrie (Figure I.11a) et le magnétisme (Figure I.11b) associés au Sillon Houiller, présentent des signatures particulières en continuité apparente avec l'anomalie magnétique du Bassin de Paris. Mais jusqu'alors, ces champs gravimétriques et magnétiques (Aubert et Perrier, 1971) n'ont pas fait l'objet d'interprétation spécifique au Sillon Houiller. Les données gravimétriques sont réparties de manière hétérogène avec une densité de 1 point par 10 km² en moyenne. Cette couverture permet de répondre à une problématique à l'échelle du Sillon Houiller. Au premier abord, la croûte serait plus mince à l'est du Sillon Houiller (Aubert et Perrier, 1971; Sobolev et al., 1997; Grandjean et al., 1998). En effet, le Sillon Houiller marque la limite occidentale d'une anomalie positive dont on peut suivre le prolongement vers le Jura et les Vosges. A coté de ces structures profondes, un certain nombre d'anomalies locales s'interprètent en fonction de la nature des terrains superficiels qu'elles intéressent. C'est ainsi que les Limagnes, les fossés volcano-sédimentaires forment des anomalies négatives. Au contraire les zones de socle métamorphique sont associées aux anomalies positives.

Le magnétisme est illustré dans la zone d'étude par le levé général de la France à 3000 m d'altitude. Ce levé magnétique met en évidence dans le socle magnétique un accident principal qui se matérialise par une limite entre deux régions d'orientation ou de comportement magnétique différent. Cet accident se superpose au Sillon Houiller sur la presque totalité de son tracé. L'accident présente comme caractéristique générale, de séparer un compartiment du socle magnétique relativement superficiel à l'Ouest d'un compartiment où les sources aimantées sont plus profondes à l'Est, à l'exception des chaînes volcaniques et du horst de la partie Nord-Est de la Limagne (Aubert et Perrier, 1971). Il semble qu'un rejet vertical soit nécessaire pour expliquer cette observation. Le déplacement horizontal proposé par Feybesse (1981) et Belin (1983) peut expliquer le rapprochement entre les structures magnétiques de la région de Pouzol-Servant et celles qui se trouvent à la hauteur de Ussel, mais ne suffisent pas à expliquer les différences de comportements magnétiques entre les deux blocs Est et Ouest. Le long du Sillon Houiller, un certain nombre d'anomalies négatives soulignent les bassins houillers (Bassin de St Eloy, du Sud d'Herment, des bassins de Messeix et Champagnac).

Les premières études de sismiques réfractions (Aubert et Perrier, 1971; Perrier et Ruegg, 1973) ont mis en évidence des différences d'épaisseurs crustales de part et d'autre de l'accident. Ainsi, le compartiment ouest est constitué d'une croûte d'épaisseur normale (ca. 30km) qui possède trois couches successives de vitesse moyenne 6; 6,3 et 7,1 km.s⁻¹. Le moho assez uniforme surmonte un manteau de vitesses de 8,2 km.s⁻¹. Le compartiment Est possède une croûte amincie d'épaisseur variable. Au nord (Morvan, Pilat), le Moho présente des variations de profondeur (caractère morcelé de la croûte) et le manteau est caractérisé par des vitesses des ondes P de 6 km.s⁻¹ sous le mont Pilat, à 8,2 km.s⁻¹ sous le Morvan. Au Sud, sous la région volcanique et les fossés d'effondrement (Limagne), il existe un manteau anormal à partir de 24 km; le Moho est remplacé par une zone de transition entre 15 et 23 km où la vitesse des ondes P passe de 7,3 km.s⁻¹ (de 25 à 22 km) à 8,4 km.s⁻¹ (de 40 à 45 km). Cette zone anomale est liée à d'importants volumes de magmas basaltiques piégés sous la croûte (Lucazeau et al., 1984). A l'aide d'ondes de surface, une zone à faible vitesse entre 70 et 200 km dans la zone englobant la province volcanique a rapidement été mise en évidence sous le compartiment Est (Souriau, 1976). Cette atténuation de vitesse a été mise en relation avec une anomalie thermique et à une zone partiellement fondue (Souriau, 1976). Des analyses des résultats de biréfringence des ondes S (Souriau, 1981), montrent clairement que la lithosphère a des caractéristiques différentes de part et d'autre du Sillon Houiller, uniforme à l'Ouest, et plus héterogène à l'Est.

La modélisation de flux de chaleur (Vasseur, 1982; Lucazeau et Bayer, 1982; Lucazeau et al., 1984) montre des valeurs anormales de 100 à 110 mW.m⁻² dans le compartiment ouest. En soustrayant la contribution crustale à ce flux de chaleur, Lucazeau et al. (1984) ont montré que la contribution mantellique était de 35 mW.m⁻² sur les bords de l'anomalie thermique. Plus récemment, l'imagerie sismologique (Granet et al., 1995a; 1995b; Zeyen et al., 1997) couplée à la modélisation de flux de chaleur (Lucazeau et Bayer, 1982; Lucazeau et al., 1997) couplée à la gravimétrie (Sobolev et al., 1997) ont montré des différences d'épaisseur de la croûte sous le Massif central : le compartiment Est aminci de 2 à 3 km par rapport au compartiment Ouest. Juhenderc et al. (1999), insistent sur la variation drastique de direction de l'anisotropie de part et d'autre du Sillon Houiller. Ils corrèlent cette variation avec l'image tomographique d'anomalie de vitesses des ondes P et Pn, ainsi qu'avec le flux de chaleur important sous la région volcanique. Ces variations azimutales de l'anisotropie sont interprétées par Juhenderc et al. (1999) en termes d'influence des structures Varisques.

Par ailleurs, l'étude des xénolithes mantelliques (Lenoir et al., 2000) semble confirmer l'existence de manteaux de nature différente de part et d'autre du SH mais aussi une hétérogénéité Nord-Sud, qui serait héritée du Varisque. Le Sillon Houiller n'a pas fait l'objet d'interprétation particulière, bien que la zone ait été couverte par ces études. L'essentiel de ces travaux a porté sur l'analyse des relations possibles entre des anomalies profondes et leur expression de surface, comme la localisation du volcanisme récent et la tectonique extensive cénozoïque. Cependant, les données de tomographie sismologique (Granet et al., 1995a; 1995b; 2000; Sobolev et al., 1997) suggèrent que le Sillon Houiller constitue une discontinuité majeure avec des effets visibles dans le manteau supérieur et jusqu'à des profondeurs de 170 à 270 km (Figure I.10). Les derniers travaux géophysiques confirment bien que l'accident traverse toute la lithosphère et qu'il est même décalé au niveau du Moho (Babuska et al., 2002). Ces données illustrent surtout la dynamique lithosphérique récente et actuelle sous le Massif central. Elles évoquent toutefois les notions d'héritage Varisque et de contrôle rhéologique de la déformation dans l'histoire d'un accident qui se déroule sur plus de 300 Ma.

Figure I.11. Données géophysiques sur la zone du Sillon Houiller : (a) Anomalie de Bouguer complète; (b) Anomalie magnétique réduite au pôle (levé général de la France, alt. 3 000 m, zone du Sillon Houiller)

4. METHODOLOGIE D'ETUDE DU SILLON HOUILLER ANTE-STEPHANIEN

De nombreux auteurs (Hutton, 1982; Castro, 1986; Hutton, 1988; McCaffrey, 1992; Tikoff et Teyssier, 1992; Crawford et al., 1999; McNulty et al., 2000 ; Neves et Vauchez, 1995, Tikoff et Saint Blanquat, 1997) ont montré l'importance des interactions entre magmatisme et tectonique. De nombreux exemples naturels suggèrent que le plutonisme est souvent associé à des failles qui peuvent servir de guide à l'ascension du magma. Inversement, la cinématique de ces failles aura une forte influence sur l'architecture finale de ces plutons dit syncinématiques : forme du pluton, type de déformation (solidus ou post-solidus), fabrique interne du pluton.

Pour connaître l'évolution du Sillon Houiller avant le Stéphanien il apparaît donc intéressant de rechercher des granites qui présentent des relations cartographiques avec la faille du Sillon Houiller et dont la mise en place pourrait être synchrone du jeu ductile de cette faille. La problématique même de ce travail est donc d'appréhender les relations entre la mise en place des granites et le fonctionnement de ce grand accident. Afin d'établir l'existence ou non d'un lien génétique entre le magmatisme et le jeu de la faille, nous avons étudié au nord du Sillon Houiller, le pluton granitique de Montmarault, au Sud ceux de Omps, Glénat et Boisset, en mettant en œuvre simultanément plusieurs méthodes.

• <u>*La géochronologie*</u> fournit des contraintes temporelles sur la mise en place du pluton ou sur sa déformation.

La datation chimique U-Th-Pb sur monazite à la microsonde électronique permet d'analyser des surfaces minérales de 1 à 2 μ m (Be Mezème, 2005 ; Gloaguen, 2006 ; Cocherie et Legendre, 2007 et références incluses). Cette datation ponctuelle et reproductible permet donc d'analyser des grains présentant des zonations chimiques complexes, fréquentes dans la monazite et montrant des domaines d'âges différents. Cette datation chimique effectuée directement sur lame mince, favorise ainsi l'analyse de portions homogènes du minéral. La combinaison des données géochronologiques et de l'étude pétrologique et texturale de l'échantillon permet de replacer les cristallisationsdéformation dans leur contexte temporel. Les principes de la méthode sont précisés en Annexe 1 et les analyses ponctuelles de différentes datations obtenues sont données en Annexe 2. <u>L'étude pétro-structurale</u> est utilisée pour appréhender la cinématique et les conditions rhéologiques de l'évolution du magma granitique.

Les structures géologiques dépendent des conditions physiques qui régissent l'évolution des propriétés rhéologiques du matériel au cours de sa cristallisation. Les roches granitiques sont de bons marqueurs de la déformation de la croûte continentale. Ainsi, l'étude des structures planaires et linéaires permettent de connaître la cinématique du magma lors de la mise en place des plutons.

<u>Les orientations minérales : fabriques et microstructures des granitoïdes</u> enregistrent
l'état rhéologique du magma au cours de son refroidissement.

Afin de comprendre les relations entre la tectonique et le magmatisme, il est indispensable de caractériser les mécanismes de déformation qui contrôlent le système magma / roche. L'étude des microstructures des roches magmatiques a pour but de déterminer l'état rhéologique du magma ou de la roche déjà entièrement cristallisée lors de l'acquisition des fabriques. Depuis une vingtaine d'années plusieurs études ont servi à identifier ces microstructures, à leur associer les mécanismes de déformation les ayant formé et donc déterminer l'état rhéologique de la roche lors de cette formation (Marre, 1982; Hibbard, 1987; Blumenfeld et Bouchez, 1988; Paterson et al., 1989; Bouchez et al., 1992; Paterson et al., 1998; Vernon, 2000). Cet état rhéologique est en effet très variable au cours de la cristallisation des magmas puisqu'il évolue d'un comportement newtonien pour de faibles teneurs en cristaux jusqu'à un comportement de corps de Bingham pour des teneurs plus importante (Arzi, 1978; Van der Molen et Paterson, 1979). Ces différents états rhéologiques sont caractérisés par des types de déformation contrastés et donc par des microstructures variées.

En effet, une fabrique sera dite magmatique si l'orientation des cristaux est le résultat d'un déplacement du magma, c'est à- dire d'un liquide visqueux, et donc d'une rotation rigide des cristaux préexistants dans un milieu visqueux sans interaction suffisante entre ces cristaux pour provoquer des déformations plastiques. A l'opposé, une déformation à l'état solide de haute température est caractérisée par une déformation plastique intracristalline et à plus basse température par l'apparition de déformations fragiles dans certains minéraux. Les fabriques des granites peuvent donc refléter une déformation liée à l'écoulement du magma dans la chambre magmatique ou à une déformation ultérieure plastique ou cassante, associée à des phénomènes internes à la chambre ou encore à une déformation régionale contemporaine de la mise en place du pluton ou postérieure à celle-ci.

• <u>L'Anisotropie de la Susceptibilité Magnétique(ASM)</u> est un outil très utile pour connaître l'orientation préférentielle des minéraux lorsque l'observation à l'œil nu ne le permet pas :

L'acquisition des données de l'anisotropie magnétique est rapide, sensible et simple à mettre en œuvre. Le principe de la mesure de l'ASM, ainsi que des minéraux porteurs de l'anisotropie magnétique, peut être appliqué aux roches granitiques (e.g. Tarling et Hrouda, 1993; Talbot, 2003; Charreau, 2005). L'ASM permet d'étudier la fabrique magnétique des granites, soit paramagnétique, sans magnétite dominante où le signal est porté par les différents types de silicates ferrifères soit ferromagnétique à magnétite dominante. Certains granites peuvent être à minéralogie magnétique composite (Gleizes et al., 1993; Bouchez, 1997; 2000). La grande homogénéité des orientations des fabriques au sein des plutons granitiques, permet d'établir des cartes de fabriques magnétiques montrant une grande cohérence directionnelle des structures à l'échelle du pluton ou de certaines parties de celui-ci (Olivier et al., 1997). Les renseignements obtenus à partir de l'orientation préférentielle des cristaux, acquise avant la cristallisation du magma, apportent des données sur les implications rhéologiques et cinématiques concernant la déformation crustale. De la même façon, l'ASM permet de cerner les modalités de transfert de magma dans la croûte et donc être utilisée comme marqueur de la déformation crustale lors du transport (Gleizes et al., 1997 ; Benn et al., 2001). L'anisotropie magnétique des granites a conduit à un renouveau des études géologiques des terrains dominés par les roches granitiques (Archanjo et al., 1994; Aranguren et al., 1996; Borradaille et Kehlenbeck, 1996; Améglio et al., 1997; Benn et al., 1997; 1998; 1999; Parada et al., 2005).

<u>La gravimétrie</u> apporte une image des plutons en profondeur:

La gravimétrie est un outil particulièrement bien adapté à l'étude de la forme des granites. L'acquisition des données se fait avec un microgravimètre CG-3 M (Bonvalot et al, 1997); le traitement des données via de nombreux logiciels est relativement rapide. Du fait du bon contraste de densité qui existe entre les granites (dmoy. = 2,65) et leurs encaissants métamorphiques (dmoy. = 2,75), les granites s'individualisent correctement sur les cartes gravimétriques sous la forme d'anomalies négatives (déficit de masse). Seules, les formations sédimentaires sont moins denses que les plutons granitiques (dmoy. = 2,55). L'analyse de la carte de l'anomalie de Bouguer permet de déterminer les racines des plutons et aussi de préciser la forme du pluton (Vigneresse, 1990; 1995; Améglio, 1998). • <u>Le magnétisme aéroporté permet comme la gravimétrie d'individualiser des structures</u> <u>géométriques en profondeur ;</u>

L'étude du champ magnétique permet d'appréhender la géométrie des unités et des structures depuis la surface ou la sub-surface jusqu'en profondeur. L'anomalie du champ magnétique reflète l'effet des sources comprises dans la première moitié de la croûte environ. Un traitement supplémentaire, la réduction au pôle, consiste à recalculer la valeur des anomalies magnétiques telles qu'elles auraient été mesurées, pour des sources équivalentes, à l'aplomb des pôles magnétique (où le champ magnétique est vertical). Dans cette configuration "polaire", où le champ magnétique est vertical). Dans cette configuration "polaire", où le champ magnétique se retrouvent globalement situées à l'aplomb de leurs sources sur la carte. Le lien entre la valeur de l'anomalie du champ magnétique et les caractéristiques de la source à l'origine de cette anomalie n'est pas direct : c'est à travers l'étude des variations spatiales du signal mesuré que la forme et la profondeur des unités ou des structures pourront être déterminées.

<u>La modélisation géologique et géophysique directe 2D et 3D</u> permet de mieux contraindre la géométrie des corps géologiques en profondeur et ainsi, leur contexte de mise en place :

La modélisation géologique et géophysique directe contribuent à la connaissance de la géométrie 2D ou 3D du pluton granitique et de ses relations avec son encaissant. En effet, la modélisation gravimétrique (Martelet et al., 2004), effectuée sur les granites permettent de déterminer avec une précision d'autant meilleure que l'on dispose de contraintes indépendantes, leur épaisseur, la géométrie du plancher et des bordures des massifs granitiques en profondeur et ainsi de localiser les zones de racines, correspondant généralement aux zones les plus profondes (i.e. là où les anomalies gravimétriques sont les plus négatives). Basée sur les informations de localisation des sources magnétiques profondes et superficielles, la modélisation magnétique directe (Gumiaux, 2003) permet de rendre compte de la structure responsable de l'anomalie du champ total observée à l'aplomb des granites étudiés. La modélisation 3D permet de combiner toutes les données géophysiques et structurales disponibles dans l'espace et de manière cohérente. Grâce à l'interpolation en 3D des corps géologiques, la modélisation 3D permet de sources corps géologiques nuclei la compexité des corps modélisés. Le partage d'un référentiel géométrique des corps géologiques modélisés permet de tester non seulement des hypothèses géologiques mais aussi des hypothèses géophysiques.

A partir de cette modélisation conjointe géologique et géophysique, un schéma de mise en place du massif en liaison avec la tectonique régionale peut être proposé (Martelet, 1999; Talbot, 2003).

 <u>L'inversion géophysique</u> permet de trouver un et/ou des ensemble (s) de modèle qui explique(nt) une anomalie en accord avec des hypothèses géologiques posées.

Il existe des références sur les problèmes inverses en géophysique (Tarantola et Valette, 1982; Tarantola, 1994; Berryman, 1991; Meju, 1994; Bosch et al ; 2001). N'existant pas de solution unique à un problème donné, l'inversion géophysique permet de trouver le modèle géologique et géophysique le plus probable en fonction des contraintes qu'on lui aura fournit.

La description détaillée des méthodes utilisées sur les plutons granitiques étudiés est donnée dans l'Annexe 1. Chaque outil apporte des informations sur la formation et l'évolution des massifs granitiques et leur combinaison grâce à des études intégrées est beaucoup plus pertinente et utile pour comprendre la mise en place des magmas.

L'étude sur les plutons granitiques de Montmarault, Omps, Glénat et Boisset, est donc une étude pluridisciplinaire, entreprise dans le but de comprendre leurs contextes de mise en place et leurs relations avec le Sillon Houiller.

II. STRUCTURE ET TECTONIQUE LE LONG DU SILLON HOUILLER

Le massif granitique de Montmarault se trouve à l'extrémité septentrionale et à l'Ouest du Sillon Houiller. Les massifs de Glénat, Omps et Boisset se situent à l'extrémité méridionale et de part et d'autre du Sillon Houiller. Ils présentent d'étroites relations spatiales avec cette structure majeure.

Figure II.1. Monzogranites namuriens le long du Sillon Houiller.

L'association entre les granite et les failles a fréquemment été décrite dans d'autres secteurs du globe (Hutton et Reavy, 1992 ; Tikoff et Teyssier, 1992; Neves et Vauchez, 1995, Tikoff et Saint Blanquat, 1997). Pour certains comme Paterson et Schmidt (1999, 2001), il n'existe pas de relations génétiques entre les plutons et les failles. Mais pour d'autres comme Clemens et Mawer (1992); Aranguren et Tubia (1992); D'Lemos et al. (1992); Gapais et al. (1993), Leloup et al. (1995); Richards (2001); Martelet et al. (2004), les grandes zones de cisaillement joueraient un rôle dans les mécanismes de mise en place et de déformation des magmas granitiques.

Ces décrochements qui peuvent être d'échelle crustale ou lithosphérique, semblent contrôler au moins en partie, le transport et la mise en place des magmas. Le Sillon Houiller, qui est une faille lithosphérique (Granet et al., 1995a; 1995b) a également pu jouer un rôle de drain pour le transport de liquides magmatiques. La cinématique et la période de fonctionnement de cet accident sont partiellement connues (Blés et al., 1989) et fait l'objet de discussions sur la structure et l'évolution de la croûte continentale dans le Massif central (Feybesse, 1981, Burg et al., 1984). L'étude de ces plutons situés à chaque extrémité du Sillon Houiller nous permettra de proposer un modèle d'évolution crustale du Sillon Houiller de manière à discuter des relations entre les évènements magmatiques et tectoniques qui se sont déroulés dans l'orogène Varisque entre 330 et 290 Ma. En outre, dans la partie centrale du Sillon Houiller, il n'existe pas de plutons proches de la faille. Cependant, le segment compris entre Pontaumur et Bort-les-Orgues a fait l'objet d'une étude structurale depuis l'échelle du terrain jusqu'à celle de la lame mince qui permet de préciser les cinématiques et le comportement mécanique du Sillon Houiller.

1. LE MASSIF GRANITIQUE DE MONTMARAULT

Cette étude a fait l'objet de deux articles conjoints soumis à Journal of Geophysical Research -Solid Earth qui sont reproduits par la suite (le premier est accepté).

Les données gravimétriques acquises sur le domaine de Montmarault, ont été listées en Annexe III.

Les mesures de densités et de susceptibilités magnétiques sur les différents faciès géologiques de Montmarault ont été répertoriées en Annexe IV.

Les coupes géophysiques conjointes gravimétriques et magnétiques non representées dans la Part II, le sont en Annexe V.

A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault: relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Massif Central.

Part I: Geochronology, mineral fabrics and tectonic implications.

Joly Aurore^{1, 2,*}, Chen Yan¹, Faure Michel¹ and Martelet Guillaume²

¹ Institut des Sciences de la Terre d'Orléans, UMR CNRS 6113, Université d'Orléans, BP 6759, F45067, Orléans, France.

² Bureau de Recherches Géologiques et Minières, 3 avenue Claude Guillemin, BP6009, Orléans, F45060, Cedex 2, France.

*Corresponding author: <u>Aurore.Joly@univ-orleans.fr</u>

Abstract

Due to its location along one of the major faults, the Sillon Houiller Fault (SHF) of the French Massif Central (FMC), the Montmarault granitic pluton is well-suited to better understand the place of the late-orogenic magmatism in Variscan orogeny. Through a methodological approach, the close spatial association of the pluton with the lithospheric SHF is investigated in order to clarify the relationships between faulting and magmatic processes during the Late Carboniferous. Therefore, a multidisciplinary study has been carried out on the Montmarault massif. Combining geochronology, field and laboratory microstructural observations, and Anisotropy of Magnetic Susceptibility (AMS) methods presented in Part I, and gravity and aeromagnetic modeling (Part II), as well as similar studies from other plutons in the FMC, allows us to draw the following conclusions: 1. The Montmarault pluton, dated by the chemical U-Th-Pb method on monazite at 321 ± 2 Ma, was emplaced in a NW-SE maximum stretching trend which is consistent with the regional extensional tectonic regime; 2. The Montmarault pluton is rooted in its eastern part along the SHF with a laccolite-like shape in its western part; 3. At ca 320 Ma, the "Proto-SHF" acted probably as a normal fault considered as the feeding channel for the magma emplacement; 4. Late Carboniferous NE-SW extensional tectonics reworked the Montmarault pluton in a brittle postsolidus stage.

Keywords: Granitic pluton, Chemical U-Th-Pb dating, Rock fabrics, Anisotropy of Magnetic Susceptibility (AMS), European Variscan Belt, French Massif Central.

Introduction

The Variscan French Massif Central (FMC) provides a good example of a complete orogenic cycle. The polyphase tectonic, metamorphic and magmatic events are well documented. After the ductile and syn-metamorphic nappe stacking events that took place from Late Silurian to Early Carboniferous times (from 420 to 340 Ma), numerous Middle to Late Carboniferous granitic plutons intruded the metamorphic basement (for details see Ledru et al., 1989; Faure, 1995; Faure et al., 2005, and enclosed references). The study of pluton architecture, emplacement mechanisms and tectonic settings are important to understand the evolution of the continental crust after the collision. In the FMC, the plutons that have been studied extensively are essentially located in the western and southeastern parts of the FMC, namely in the Limousin and Cévennes areas (e. g. Mollier and Bouchez, 1982; Jover, 1986; Dumas et al., 1990; Faure and Pons, 1991; Faure, 1989, 1995; Talbot et al., 2004, 2005; Gébelin et al., 2004; Be Mezème et al., 2006b; Figure 1). The granitic plutons that crop out along one of the major faults of the FMC (e.g. Grolier and Letourneur, 1968), named the Sillon Houiller Fault (SHF), are poorly investigated. Along the SHF, a single Late Stephanian sinistral strike-slip offset has been only described so far. The pre-Stephanian activity of the SHF has not been well documented (Feybesse, 1981). Therefore, investigations with innovative and multidisciplinary methods of the plutons close to the SHF to determine the geometry of granitic bodies and their emplacement mechanisms, might provide constraints to assess the regional tectonic style during the pluton emplacement. Moreover, the question of the structural and genetic relationships between fault and pluton is also addressed.

Due to its particular tectonic position at the northern extremity of the FMC and along the SHF, the Montmarault granitic massif has been chosen as a target for this multidisciplinary study. Field structural analysis, petrological observation on thin section, monazite chemical U-Th-Pb dating, determination of anisotropy of magnetic susceptibility, gravity field measurement, interpretation of airborne survey, as well as 3D modeling have been carried out. The study is divided in two parts, this paper, corresponding to Part I, deals with geochronological dating, petrofabrics and AMS measurements followed by a discussion of the tectonic implications of our results with respect to the Late Variscan extension and to the activity of the SHF. The interpretations of new gravity measurements and previous aeromagnetic data as well as integrated 3D geophysical modeling of the Montmarault granitic pluton will be described in Part II.

Figure 1. Structural map of the Montmarault granitic pluton (a) in the French Massif Central (b).

Geological setting

Carboniferous extensional tectonics in the FMC

The Variscan Belt of the FMC is a Paleozoic collisional orogen between the Gondwana and Laurussia plates (Matte, 1986; Ledru et al., 1989). Crustal stacking has been followed by two distinct episodes of "crustal unthickening" accommodated by extensional tectonics, crustal melting, and erosion (e.g. Ménard and Molnard, 1988; Faure, 1989; 1995; Malavieille et al., 1990; Faure and Pons, 1991). The early stage is a syn-orogenic extension developed between 330 and 310 Ma, which is characterized by a NW-SE maximum stretching direction. The NW-SE extensional tectonics is diachronous throughout the FMC since in the north, extension started in Late Visean (ca 330 Ma), while in the south (i.e. Montagne Noire and Cévennes areas), at the same time, the compression was still active. In the southern FMC, the onset of this NW-SE extension occurred in Westphalian (ca 320-315 Ma). During this Middle Carboniferous NW-SE event, several synkinematic granitic plutons were emplaced (Faure, 1995; Talbot et al., 2004, and enclosed references). In the northwestern Massif Central, the Middle Carboniferous magmatism is mainly represented by leucogranites whereas in the central and southern parts of the Massif Central (Cévennes and Margeride areas), the plutons are dominantly porphyritic monzogranites but both record the same NW-SE maximum stretching.

The FMC experienced a second episode of extension characterized by N-S to NE-SW maximum stretching (Van den Driessche and Brun, 1989; Malavieille et al., 1990; Faure, 1995; Ledru et al., 2001). Since this event occurred from Late Carboniferous to Early Permian, this second extensional tectonics is interpreted as a post-orogenic gravitational collapse of the Variscan Belt (Menard and Molnard, 1988; Malavieille et al., 1990; Costa and Rey, 1995) due to the melting of the lower crust (Vanderhaege and Teyssier, 2001). In the upper crust, the Late Carboniferous-Early Permian event is responsible for the formation of intra-mountain coal basins, which are either half-grabens or pull-aparts.

Geological framework of the Montmarault area

The study area, located at the northern part of the FMC, immediately south of the unconformity of the Mesozoic cover of the Paris basin (Turland et al., 1989), is mostly occupied by the Montmarault granitic massif and its metamorphic host rocks which are locally overlain by Late Carboniferous to Permian coal basins (Figure 1a). In spite of extensive mapping and some limited petrological or structural works (Grolier and Letourneur, 1968; Boissonas and Debeglia, 1976; Barbarin et al., 1985; Sossa-Simawango et al., 1987; Faure, 1995), the age, tectonic setting, architecture and emplacement mechanism of the Montmarault pluton are poorly constrained.

Nevertheless, due to its northern location, the Montmarault pluton is potentially a suitable entity that might have recorded the extensional tectonics experienced by the FMC.

In the study area, the Late Carboniferous (Stephanian) Commentry and Montvicq coal basins are half-grabens. Their openings are controlled by NW-SE trending, NE dipping normal faults (Turland et al., 1989; Faure, 1995) developed along the southwestern boundary of each basin (Figure1a). Moreover, the Late Carboniferous St-Eloy and Noyant basins (Figure 1a) opened along the left-lateral Sillon Houiller Fault (SHF) as pull-aparts during the N-S to NE-SW extensional tectonics. Therefore, during the Stephanian time, the SHF is a NNE-SSW trending strike-slip fault of more than 500 km in length along which several Stephanian coal basins formed coevally with fault displacement (Letourneur, 1953). The cumulative strike-slip displacement is estimated at ca 80km (Grolier and Letourneur, 1968; Bonijoly and Castaing, 1984; Blès et al., 1989). Pre-Stephanian ductile activity of the SHF is not demonstrated yet. The SHF was interpreted as a transfer fault accommodating the late orogenic extension (Feybesse, 1981; Burg et al., 1990) however this assumption is not in accordance with two distinct and successive episodes of extensional tectonics (Faure, 1995).

The Montmarault pluton

The Montmarault granitic pluton occupies an area of about 600 km2. Its western margin corresponds to the Cher fault that bounds an Oligocene graben, and to the East, the Montmarault pluton is limited by the Sillon Houiller Fault (Figure 1a). The massif intrudes Late Devonian metamorphic rocks and the Guéret pluton (Figure 1b), which yields a Rb-Sr whole rock age of 356 \pm 12Ma (Berthier et al., 1979). Recently, chemical U-Th-Pb dating on monazite from the Guéret pluton gives a 356 \pm 5 Ma age that complies with previous Rb-Sr one (Cocherie, personal communication). To the north, the pluton is unconformably covered by Early Permian (Autunian) continental deposits of the Aumance basin, and is in fault contact with the Late Carboniferous (Stephanian) Murat coal basin. The present cartographic outline of the Montmarault massif does not correspond to the primary shape, since the pluton structure was partly disrupted by later tectonic events (tilting due to brittle faulting, Figure 1a) during the Late Carboniferous, Permian and Mesozoic as well (cf. Part II).

Granite petrography

The main part of the Montmarault massif consists of pink porphyritic monzogranite that locally encloses kilometer-scale monzodiorite septa and gneissic xenoliths similar to the country rocks. The monzogranite is cut by meter-scale leucogranite dikes and kilometer-scale leucogranitic stocks (Sossa-Simawango, 1980). The leucogranites range from aplitic to pegmatic in texture and their mineralogical composition consists mainly of quartz, K-feldspar, plagioclase, muscovite and minor biotite. According to our structural observations, the leucogranites are younger than the porphyritic granite and were emplaced in a host granite already crystallized. The monzogranite also contains titanite and allanite rich mafic enclaves. The abundance of titanium and iron in the mafic enclaves argues for a lower crust origin for the magma source of the Montmarault monzogranite (Sossa-Simawango, 1980). Petrological studies indicate a fast ascent of the magma throughout the middle crust and its emplacement close to the surface (Sossa-Simawango, 1980). Moreover, first gravity investigations (Boissonas and Debeglia, 1976), the phase crystallization order, the presence of magnetite and the abundance of red orthoclase instead of microcline suggest a shallow depth (ca 2km) for its emplacement (Turland et al., 1991).

Two types of granitic facies, separated by a transition zone (Figure 1a), have been defined within the massif (Boissonas and Debeglia, 1976; Sossa-Simawango, 1980). From a mineralogical viewpoint, the western part presents a predominance of weakly hydrated or oxidized minerals and, on the contrary, the eastern one is richer in orthoclase and guartz and poorer in plagioclase and ferromagnesian phases. Indeed, the western part is constituted by a porphyritic monzogranite with a magnetic susceptibility higher than in the eastern zone. As discussed below, these petrological insights are consistent with AMS and structural observations that support a deeper setting for the eastern part of the massif. Indeed, the presence of weakly hydrated or oxidized minerals suggests that the western part is closer to surface than the eastern part. Moreover, the gravity measurements (Part II) reinforce this assumption, since an intense negative gravity anomaly lies along the eastern domain whereas the western part of the pluton corresponds to a positive gravity anomaly. The Montmarault pluton is petrologically and geochemically similar to the Middle Carboniferous "red granites" of the Bourbonnais area (Figure 1b) that have been dated at 313 +12 / -9 Ma by U-Pb method on zircon and at 318 ± 6 Ma and at 328 ± 4 Ma by Rb-Sr methods on whole rocks (Binon and Pin, 1989). First chemical U-Th-Pb age on monazite for the Montmarault pluton is presented in the next section.

New U-Th-Pb dating on the Montmarault massif

The age constraint is essential for the understanding of the relationships between Montmarault pluton emplacement and regional tectonic evolution. Whole rock Rb-Sr measurements on several facies of the Montmarault granitic pluton do not provide any conclusive isochron (Sossa-Simawango, 1980). Over the past fifteen years, owing to the technological progress on the electron microprobe measurements, chemical geochronology realized on monazite has become possible (e.g. Suzuki and Adachi, 1991; Montel et al., 1996; Cocherie et al., 2005; Be Mezème et al., 2006a).

Analytic procedure

Due to its high U-Th contents and negligible common Pb content (Parrish, 1990), monazite constitutes one of the phases frequently used in geochronology. This use as radiochronometer is also enhanced by the restricted lead diffusion in monazite lattice (Montel et al., 1996; 2000) and by its high temperature stability up to more than 900°C (Braun et al., 1998). Monazite can record successive geological processes (e. g. Cocherie and Albarède, 2001; Be Mézème et al., 2006a). In order to understand accurately the thermal and tectonic history experienced by a rock, geochronological data must be acquired in situ, that is to say, grains are directly analyzed with respect to their textural environment in thin section (Williams and Jercinovic, 2002). Scanning electron microprobe (SEM) in Back-Scattered Electron (BSE) mode is one of the best methods to distinguish constituent mineral species of the thin section. SEM allows us to recognize micro-inclusions, altered domains and all other components of non-monazite composition. Providing contrasted chemical composition of monazite, SEM can also help to define heterogeneous compositional domains, which can be related to inheritance phenomenon during successive episodes of crystallization. The detailed analytical procedure is described in Cocherie et al. (1998). The theoretical procedure to reduce the data and to calculate the average age from individual spot analyses is given by Cocherie and Albarède (2001) and Cocherie et al. (2005). None of the eight analyzed monazite grains exhibits optical or chemical zoning. This observation allows us to confidently assume that the Th, U and Th/U ratio variations correspond directly to crystallization time and thus grains should reveal homogeneous ages, as commonly the composition of the melt surrounding the monazite can significantly change during mineral growth (e.g. Be Mezème et al., 2005; 2006a). The analyzed points correspond to the same event and the U-Th content variations will define an isochron in the geochronological representation (Th/Pb versus U/Pb diagram). Besides, as each point of the diagram corresponds to an age, it is possible to calculate an average age with good precision at the population centroid. Finally, Mean Squared Weight Deviation (MSWD) calculation must agree with the Wendt and Carl (1991) criteria to certify the statistical significance of the calculated average age.

Porphyrytic granite has been sampled at $46^{\circ}19'53.4''N$ and $2^{\circ}45'09.7''E$ for the geochronological study. This sample contains a common mineral composition of quartz, plagioclase, K-feldspar, biotite, zircon, apatite, monazite, xenotime, ilmenite, hematite and some iron-oxides (magnetite, maghemite). Analyzed monazite grain sizes are between 50 and $100\mu m$. The hand sample does not show any macroscopic mineral preferred orientation. Under the microscope in the dated sample, quartz grains reveal some weak undulose extinction and are almost free of sub-grain boundaries. Biotites are not deformed. Ductile deformation is totally lacking in feldspars and compositional zoning of plagioclase is locally observed. These mineral microstuctures are characteristic of a magmatic flow and indicate the lack of any solid-state deformation.

Dating results

As stated above, in the analyzed sample, the magmatic fabric is not overprinted by a postsolidus deformation. Therefore, the obtained dating can be confidently considered as the crystallization age of the Montmarault granite coeval with its emplacement in its present outcropping site. Monazite is found as inclusions either in biotite (Figure 2a) or in feldspar (Figure 2b). Monazites grains are homogeneous without chemical zoning mainly related to U and Th contents (Figures 2c and 2d).

Eight grains from one thin section of the porphyritic facies of the Montmarault massif were prepared and analyzed by a Cameca SX 50 EPMA co-operated by BRGM-CNRS and Orléans University. The analytic detection limits at 20kV and 200nA for U, Th, Pb are of 105, 130 and 110 ppm, respectively, and they are considered as absolute errors. The 2σ errors given on individual ages depend on U, Th, and Pb contents and are calculated by propagating the uncertainties of these elements (with 95% confidence level) into the decay equation of Montel et al. (1996). The analyses present a satisfactory accuracy with a MSWD of 0.68 inferior to 1 for 170 analyses (Wendt and Carl, 1991). The intercept ages are well defined and consistent within errors, since the U-Pb age (intercept with U-Pb axis) and the Th-Pb age (intercept with Th-Pb axis) are at 382 +73/-80 Ma and 312 +11/-10Ma, respectively. Monazite grains yield a mean age of 321 ± 2 Ma (at 2σ confidence level; Figure 3). The calculated regression line, close to the theoretical isochron, indicates that the monazite grains experienced only one single crystallization event.

Figure 2. SEM images in BSE mode of representative monazite grains from the Montmarault granite. The upper raw images (a, b) illustrate the textural relationships of monazite grains with the surrounding minerals. Monazite is included in biotite or along biotite grain boundary. The lack of U-Th zonation in monazite complies with a single stage of crystallization (c, d).

Figure 3. Th/Pb vs U/Pb– isochron diagram for monazites from the Montmarault porphyritic granite.

Rock fabrics

Macroscopic structures within the pluton

In the Montmarault porphyritic pluton, K-Feldspar fabrics present a variety of orientations (Barbarin et al., 1985). Except in the northwest boundary of the eastern branch, the preferred orientation of K-feldspar megacrysts shows a pronounced dip of the preferred orientation surface. The direction of foliation of K-feldspar is submeridian in the core of the pluton; it is deflected to an East-West orientation in the eastern part of the pluton. This change in trend is interpreted as the evidence for a late event of plastic deformation (Barbarin et al., 1985). The northwest boundary of the eastern branch of the pluton is mylonitized and associated to a flat lying foliation containing a N150°E trending stretching lineation. In sections perpendicular to the foliation and parallel to the lineation, kinematics indicators such as sigma-type porphyroclast systems, sigmoidal biotite or S-C fabrics indicate a top-to-the NW shearing (Figure 1a). The mylonitization occurred during or after the granite crystallization, i.e. in Namurian (320 Ma), and before the deposition of the Early Permian sandstone that unconformably covers the mylonite (Faure, 1995). Thus, except in the northeastern part of the massif, the Montmarault pluton exhibits undeformed minerals. This is the reason why the techniques of petrographic fabrics and the Anisotropy of Magnetic Susceptibility (AMS) were applied in this study.

Mineral fabrics

Detail examinations of rock fabrics and mineral microstructures of magmatic rocks have been proposed for a long time to understand the kinematic and dynamic patterns of plutons related to their crystallization and emplacement; and to reconstruct the tectonic setting experienced by the crust at the time of pluton emplacement (e.g. Hibbard, 1987; Paterson et al., 1989; Vernon, 2000 and enclosed references). It is well acknowledged that microstructures record the evolution of the rheologic state of the magma during the experienced cooling of the magma as well as plastic deformation in solid state. Indeed, the rheologic state is changing when magma crystallization evolves from a linear viscous behavior corresponding to low content of crystals to a Bingham behavior matching to higher crystal content. Magmatic flow may be defined as the deformation by displacement of melt with consequent rigid body rotation of crystals (Paterson et al., 1989; Vernon, 2000). Oppositely, solid state deformation is characterized by intracrystalline plastic deformation, dynamic recrystallization and at lower temperature by appearance of cataclastic flow of high strength minerals such as feldspars or amphiboles.

Based on detail analyses of fifteen thin-sections by optical microscope, three principal microstructural types are distinguished in the Montmarault pluton.

1) The dominant type is a magmatic fabric characterized by an equigranular arrangement of large quartz grains with no intragranular microstructure (Figure 4a). Undulatory quartz-extinction is not observed but euhedral plagioclase crystals with synneusis association between grains exist. Large brown biotites with opaque inclusions (magnetite, ilmenite) are not deformed. These microstructures are interpreted as primary because the feldspar grains preserved their initial compositional zoning and lack evidence of either ductile or brittle solid-state deformation. Rare myrmekites within orthoclase are interpreted as the result of crystallization of water saturated magma (Hibbard, 1987). In this microstructural type, some small sized magnetite grains are observed with their primary shapes.

2) Weak solid-state deformation is the transitional rheological state between magmatic and solid states. This fabric is characterized by the limited kinking of few grains of biotite (Figure 4b). Myrmekites in feldspar are rare. Quartz grains exhibit a conspicuous undulatory extinction and rare dynamic recrystallization. Indeed, numerous small-sized quartz grains develop at the expense of a large porphyroclast that shows a chess-board texture (Figure 4c) formed by the coeval activity of both <a> and <c> dislocation slip. These microstructures formed under high temperature conditions during granitic magma crystallization and are considered as evidence of a weak solid-state deformation.

3) Intense solid-state structure is rarely observed in the Montmarault pluton, but it is conspicuous in the mylonites that crop-out in the northwest part of the eastern branch of the massif. It is characterized by a severe intracrystalline plastic deformation. Quartz grain size reduction due to dynamic recrystallization is well developed. The neograins are arranged in a ribbon pattern and often exhibit an oblique shape fabric. Highly sheared biotites anastomose around weakly deformed but recrystallized K-feldspar porphyroclasts. It is worth noting that sigmoidal biotite, quartz oblique shape fabric and sigma-type porphyroclast systems comply with the top-to-the-NW shearing observed at the outcrop scale (Figure 4d) associated to a flat lying foliation containing a N150°E trending stretching lineation.

At the pluton scale, the distribution of these different types of microstructures shows a well defined spatial organization (Figure 5). The Montmarault pluton is dominantly characterized by magmatic (50%) and weak solid-state deformation (40%) primary microstructures. Magmatic microstructures predominate in the zone located along the SHF and in the western part of the pluton while weak solid-state deformation spreads out in a NE-SW direction from the core of the pluton to its extreme northwestern part. In the northwest part of the eastern branch of the massif, the granitic rocks present an intense planar and linear fabric. This is the only part of the massif where the intense solid-state microstructures are significantly developed. This area corresponds to the mylonitic margin of the pluton with a top-to-the NW shearing (Figure 4d). Locally, important undulose extinction of some quartz grains is observed in the footwall of the fault that underlies the Commentry coal basin along its SW margin (Figure 1a). This limited ductile deformation, superimposed on a magmatic fabric, is likely related to the activity of the listric normal fault controling the opening of the Commentry half graben (Faure, 1995).

Figure 4. Characteristic microstructures for the microstructural domains as indicated on Figure 5. Thin sections are perpendicular to the magnetic foliation and parallel to the magnetic lineation defined by AMS study. (a) Magmatic domain where large and undeformed biotite grains (Bi) and quartz (Qz) coexist with zoned plagioclase (Pl); (b) and (c): weak solid state fabric; b: Kinked biotite and undeformed feldspar; c: Quartz with chess-board pattern indicating both < a> and < c> dislocation slip activities during high temperature deformation in porphyritic granite; and (d) Intense solid state fabric in granite mylonite showing ribbon of recrystallized quartz grain and sheared biotite. The folia anastomose around a deformed plagioclase porphyroclast, the asymmetry indicates a top to the NW shearing.

Figure 4.

Figure 5. Deformation domains within the Montmarault pluton.

Magnetic fabrics

Providing a rapid insight of the bulk internal structure of a pluton and facilitating the definition of fabric elements, the Anisotropy of Magnetic Susceptibility (AMS) is considered as the most efficient method to study the fabrics in weakly deformed rocks (e.g. Hrouda, 1982). AMS is, therefore, widely used for the analysis of both solid-state fabrics and the more subtle magmatic fabrics in granitoids (e.g. Bouchez, 1997).

Magnetic mineralogy

Before AMS determinations, several methods were employed to identify the magnetic mineral composition: thermomagnetic experiments, X-ray diffraction analyses, hysteresis loops as well as isothermal remanent magnetization.

Due to their locations, five representative samples have been selected for thermomagnetic experiments carried out by an AGICO KLY3 kappabridge - CS3 furnace apparatus in the Laboratory of Rock Magnetism of Orléans University (France). The presence of magnetite seems evident with significant drops at about 580°C (Figure 6). However, the concentration of this mineral is remarkably lower in the eastern part with respect to the western one as the thermomagnetic curves are normalized to mass of samples (Figure 6).

Figure 6. Thermomagnetic curves in free air for two representative samples. The rapid decrease of magnetic susceptibility at about 580° indicates the presence of magnetite. Full (dotted) lines stand for heating (cooling) curves.

Ten X-ray diffraction analyses with an INEL Diffractometer with a cobalt tube and a XRG 3000 generator and microscopic observations carried out in ISTO show a relatively common composition for the entire pluton on the majority of minerals, such as quartz, biotite, K-feldspar, albite (Figure 7). However, the abundance of magnetite in samples from the western part of the pluton has been demonstrated (e.g. Sample 35 in Figure 7). This result is confirmed by optical observation on thin sections (Figure 2b).

Figure 7. Representative X-ray diffraction spectra of powder of two samples from the porphyritic Montmarault granite with the interpretation of mineral composition. Qz: quartz, Fk: Kfeldspar, Bi: biotite, Alb: Albite, Mgt: magnetite, Ilm: ilmenite.

Six hysteresis loops on several representative specimens were determined using a translation inductometer within an electromagnet providing a field of up to 1 T at the Paleomagnetic laboratory of IPGP at Saint Maur. Two types of magnetic behavior are identified. Hysteresis curves of the first type for the samples from the western part of the pluton present ferromagnetic sensu lato minerals with magnetic saturation at about 300 mT (Figures 8a and 8b). This shows the presence of magnetite as a significant magnetic mineral. The form of the curve, without apparent inflections, suggests that the grain size is homogeneous (Tauxe et al., 1996). The ratios of Hrs/Hr and Mrs/Mr indicate that magnetite is principally multidomain (Day et al., 1977). It is worth noting by optical observation that magnetite is often found in inclusion in biotite and is sometimes substituted by ilmenite that begins to be alterated into hematite and iron oxide mixture. Its 5 μ m to 30 μ m size is sufficient to strongly increase the magnetic susceptibilities, even if magnetite is rare. For the samples from the eastern part, near the SHF, Figures 8c and 8d show the typical behavior of paramagnetic minerals with very slight flex up to 0.15 T and almost perfect linear variation of induced magnetic moment by increasing and decreasing magnetic fields up to 1 Tesla, indicating the paramagnetic minerals as the principal magnetic carriers. Thus, the magnetic mineral analyses indicate that magnetite grains control the magnetic fabrics of the western part of the pluton, despite the presence of several other magnetic mineral phases, including ilmenite, hematite as well as iron silicates. However, the paramagnetic minerals, such as biotite, are the main AMS carriers for the eastern part near the SHF.

Figure 8. Hysteresis curves in field up to 1 Tesla of 4 samples of porphyritic granite illustrating the presences of ferrimagnetic sensu lato (a, b) and paramagnetic minerals (c, d).
AMS measurements

For the AMS study of the Montmarault pluton, 295 cores were collected from 54 sites (49 sites of monzogranite and 5 sites of leucogranite) covering the whole pluton using a portable gasoline drill. When it was possible, the cores were oriented, both by magnetic and sun compasses. The mean difference between magnetic and sun azimuths was less than 0.5°. The cores were cut into the standard specimens of 22 mm in length and 25 mm in diameter. The AMS measurements (Table 1) were carried out by an AGICO Kappabridge KLY 3S apparatus in the Laboratory of Rock Magnetism of Orléans University.

Sito	Туре	Latitude	Longitude	0	BMS		K1		K3			Di	т		
One	rype	Latitude	Longitude		DIVIO	Dec	Inc	a95min	a95max	Dec	Inc	a95min	a95max	1)	
MM1	porphyritic granite	46°21'2.5"	2°59'49.8"	4	675	4.9	28.7	15.1	18.0	205.2	61.0	5.2	18.8	1.142	0.252
MM2	porphyritic granite	46°21'2.0"	2°59'49.8"	5	245	23.2	40.4	7.1	20.2	182.0	45.3	6.5	12.4	1.058	0.014
MM3	porphyritic granite	46°21'1.5"	2°59'49.8"	6	575	26.5	47.5	9.5	12.2	203.0	45.0	8.0	27.8	1.117	-0.108
MM4	porphyritic granite	46°24'0.6"	2°54'27.6"	5	4098	317.1	3.0	4.3	18.3	50.6	59.1	2.3	6.8	1.250	0.440
MM5	porphyritic granite	46°24'0.6"	2°54'37.0"	5	901	281.0	34.1	20.5	32.1	45.1	39.6	17.1	23.7	1.093	-0.011
MM6	porphyritic granite	46°24'1.0"	2°54'37.0"	6	5113	276.6	41.0	7.4	26.0	40.8	35.2	7.0	10.4	1.311	0.511
MM7	porphyritic granite	46°21'31.4"	2°55'02.2"	3	4814	235.5	12.8	12.2	20.0	2.8	73.3	11.8	23.1	1.178	0.514
MM8	porphyritic granite	46°22'3.4"	2°50'44.1"	6	120	133.0	10.6	14.1	18.0	228.6	16.3	11.1	23.0	1.017	-0.055
MM9	porphyritic granite	46°22'34,4"	2°50'31.8"	7	96	190.0	43.4	13.5	27.0	26.9	49.2	7.6	20.6	1.019	0.337
MM10	porphyritic granite	46°10'33.7"	2°53'59.3"	5	378	82.4	68.0	7.9	17.4	328.1	8.5	3.1	10.9	1.157	0.481
MM11	porphyritic granite	46°18'56.3"	2°55'7.3"	5	169	244.3	66.3	10.5	15.8	141.5	6.1	8.8	13.7	1.035	0.743
MM12	porphyritic granite	46°16'24.1"	2°53'31.9"	5	130	160.8	39.5	2.8	11.5	328.9	51.4	1.5	13.9	1.026	-0.579
MM13	porphyritic granite	46°15'28.7"	2°52'55.8"	6	175	63.6	79.6	7.8	16.1	316.2	4.4	5.9	16.7	1.037	0.175
MM14	porphyritic granite	46°14'31.7"	2°52'23.3"	4	304	41.1	30.2	8.7	25.8	256.9	56.0	3.3	14.6	1.048	0.223
MM15	porphyritic granite	46°13'53,3"	2°49'57.2"	6	1066	64.3	3.0	11.0	32.8	335.3	21.6	6.9	12.5	1.127	0.670
MM16	porphyritic granite	46°14'18.8"	2°49'9.4"	6	379	269.8	10.6	9.3	27.4	3.6	28.1	5.6	13.4	1.068	0.389
MM17	porphyritic granite	46°13'34.8"	2°49'22.7"	6	1975	119.8	43.0	14.1	43.3	357.9	14.8	6.3	20.2	1.076	0.577
MM18	porphyritic granite	46°13'13.7"	2°49'25.9"	6	114	254.0	47.3	10.0	35.9	358.0	10.1	10.4	25.7	1.017	0.378
MM19	porphyritic granite	46°11'45.5"	2°48'45.5"	6	1248	221.2	61.8	7.0	33.0	313.7	0.4	7.6	11.6	1.038	0.710
MM20	leucogranite	46°10'10.7"	2°48'5.8"	6	122	93.3	50.7	8.2	36.7	334.1	14.8	11.2	14.9	1.014	0.694
MM21	porphyritic granite	46°8'51.1"	2°48'27.9"	4	57	143.7	69.3	5.6	17.3	283.4	13.4	0.3	38.4	1.063	-0.042
MM22	porphyritic granite	46°8'21.7"	2°48'15.6"	6	58	187.7	49.6	7.0	32.0	326.7	27.7	10.0	27.7	1.033	0.382
MM23	porphyritic granite	46°8'43.5"	2°47'42.1"	5	126	98.2	40.4	4.0	41.2	333.3	34.6	3.0	6.1	1.126	-0.262
MM24	porphyritic granite	46°8'30.0"	2°47'4.0"	5	84	96.2	29.1	10.4	33.7	336.0	37.9	5.1	11.5	1.019	0.766
MM25	porphyritic granite	46°7'28.4"	2°45'57.1"	3	84	129.3	49.6	7.9	19.7	327.3	37.6	5.5	9.5	1.031	0.874
MM26	porphyritic granite	46°6'46.9"	2°45'12.6"	5	111	160.1	26.7	3.4	9.2	23.5	54.1	2.3	13.1	1.029	0.317
MM27	porphyritic granite	46°12'49.9"	2°48'40.4"	6	1155	277.5	33.7	11.3	34.0	189.8	1.5	5.6	12.1	1.165	0.614
MM28	porphyritic granite	46°15'42.1"	2°43'51.6"	6	4632	195.8	45.6	4.1	6.5	30.5	44.0	5.9	14.3	1.178	-0.032
MM29	porphyritic granite	46°17'13.5"	2°40'24.7"	5	1425	40.8	58.4	2.8	5.3	247.0	29.0	4.1	2.3	1.161	0.219
MM30	joint+porphyritic granite	46°16'53.2"	2°39'20.7"	6	1586	2.4	46.3	2.6	26.3	228.5	33.7	2.0	4.9	1.129	0.790
MM31	porphyritic granite	46°17'32.2"	2°39'11.0"	5	134	97.7	61.0	7.4	45.7	237.5	20.5	4.1	9.8	1.028	0.841
MM32	porphyritic granite	46°18'30.6"	2°38'38.1"	4	179	110.0	19.3	8.3	42.5	224.0	35.2	6.3	15.5	1.045	0.610
MM33	leucogranite	46°22'53.3"	2°38'7.3"	5	30	272.9	5.3	7.7	10.3	162.9	59.0	5.0	41.2	1.077	-0.676
MM34	porphyritic granite	46°24'31.0"	2°44'17.1"	6	5044	266.1	47.9	6.6	11.0	52.2	38.3	4.3	9.6	1.102	0.117
MM35	noporphyritic granite+enclave	46°23'52.1"	2°43'10.3"	7	7195	70.4	52.6	4.4	18.9	63.4	34.9	5.6	12.0	1.108	0.291
MM36	porphyritic granite	46°19'53.4"	2°45'9.7"	8	1537	286.4	17.4	6.7	28.4	69.7	71.2	9.4	13.6	1.117	0.557
MM37	porphyritic granite	46°19'38.0"	2°46'37.3"	7	284	211.7	33.3	2.4	14.7	40.2	57.1	1.5	3.8	1.069	0.598
MM38	porphyritic granite	46°17'29.9"	2°49'45.1"	6	2886	126.7	70.9	5.5	14.0	9.3	9.7	3.6	5.9	1.093	0.475
MM39	porphyritic granite	46°18'6.8"	2°50'24.1"	8	172	101.1	77.1	8.5	18.4	350.1	5.2	7.3	26.0	1.021	-0.138
MM40	porphyritic granite	46°18'24.4"	2°51'34.2"	7	270	247.8	76.4	5.4	16.1	356.7	3.8	3.8	6.9	1.096	0.427
MM41	porphyritic granite	45°19'36.3"	2°53'53.7"	6	3804	137.5	52.7	6.0	19.2	308.9	39.0	6.5	19.9	1.167	0.234
MM42	porphyritic granite	46°17'32.5"	2°51'15.9"	6	1673	345.7	66.2	2.2	16.5	204.0	20.2	9.0	20.5	1.098	-0.139
MM43	porphyritic granite	46°18'4.3"	2°50'49.0"	6	953	129.0	75.1	2.1	13.1	0.9	8.9	2.8	17.8	1.117	0.406
MM44	porphyritic granite	46°20'46.1"	2°45'17.9"	4	2200	109.9	21.6	9.4	35.2	359.2	38.1	3.7	15.3	1.138	0.287
MM45	leucogranite	46°21'44.2"	2°45'29.0"	5	31	342.9	62.9	2.7	6.7	203.3	30.1	6.5	44.5	1.126	0.625
MM46	porphyritic granite	46°22'58.1"	2°43'38.7"	6	7486	246.2	47.1	4.7	12.2	54.0	43.3	4.6	11.5	1.095	-0.010
MM47	porphyritic granite	46°24'31.6"	2°43'47.4"	6	4015	275.1	52.3	2.1	5.8	42.1	24.5	1.3	6.9	1.134	0.297
MM48	leucogranite	46°23'54.4"	2°40'06.6"	5	48	256.4	44.7	7.3	12.1	134.5	29.0	10.9	17.6	1.018	0.005
MM49	porphyritic granite	46°27'54.5"	2°42'11.6"	6	1320	272.0	45.8	2.9	9.6	45.9	34.0	1.8	4.5	1.256	0.229
MM50	porphyritic granite	46°29'11.0"	2°39'15.0"	6	4771	187.2	55.1	3.5	7.1	73.0	15.7	3.1	5.5	1.176	0.302
MM51	porphyritic granite	46°30'16.3"	2°40'37.5"	4	3731	193.8	41.7	1.1	23.5	81.5	23.8	1.2	4.7	1.170	0.576
MM52	porphyritic granite	46°20'50.5"	2°44'49.3"	5	5579	54.1	4.8	2.8	9.5	179.1	81.8	1.6	3.3	1.221	0.100
MM53	leucogranite	46°27'50.8"	2°44'53.8"	4	55	252.7	32.1	8.1	10.6	82.2	50.9	1.7	12.9	1.058	0.455
MM54	porphyritic granite	46°27'15.5"	3°02'43.8"	4	157	287.8	29.6	4.1	23.0	90.2	58.1	0.9	18.6	1.042	0.229

*P_j = exp {2 [(ln K₁- ln K₃)² + (ln K₂- ln K_{mean})²+(ln K₁-ln K_{mean})²]}^{v_2} with K_{mean} = 1/3 (K₁ +K₂+K₃) and T = [2 ln (K₂/K₃)/ (ln (K₁/K₂)] - 1

Table 1. Data of anisotropy of magnetic susceptibility obtained from this study. n: number of measured specimens; BMS: Bulk magnetic susceptibility in 10^{-6} SI; Dec, Inc, a95min, a95max: declination, inclination, maximal and minimal 95% confidence intervals from Bingham (1964) bimodal statistics, respectively, in degree; P_i : corrected anisotropy degree and T: ellipsoid shape parameter (Jelinek, 1981; Hrouda, 1982).

Figure 9 shows the histogram distribution of bulk magnetic susceptibility values (Km= $(K_1+K_2+K_3)/3$) characterized by a single mode at about 150 µSI with a long queue until about 7500 µSI. This typical 150 µSI value is widely observed among the numerous granitic plutons where paramagnetic minerals are the main contributors of magnetic susceptibility (e.g. Ellwood and Wenner, 1981; Zapletal, 1990). However, these wide-ranged high values may show heterogeneous behavior of magnetite probably due to crystallization process. The sites that possess low magnetic susceptibility values (< 600 µSI) are essentially located in the eastern part of the pluton along the SHF whereas the sites of high values (> 600 µSI) are mainly located in the western area. Leucogranites yield weaker values of magnetic susceptibility (< 150 µSI) which is also in agreement with the abundance of paramagnetic minerals (Table 1). In consideration of relative content between the white or black micas, the magnetic mineralogy of leucogranite is due to the contribution of both biotite and iron-bearing muscovite or only the iron-bearing muscovite.

After the measurements of induced magnetization in different directions in a weak magnetic field, the three principal axes of the shape ellipsoid are defined by a tensor calculation for each specimen ($K_1>K_2>K_3$; see Figure 10). Being long and short axes of the ellipse, K_1 and K_3 are considered as the magnetic lineation and the pole of magnetic foliation, respectively. For each site, a mean direction for each of these three principal axes is calculated with a corresponding confidence interval at the 95% level by Bingham's statistic method (1964; Table 1 and Figure 10). Concerning the AMS directional distribution, more than 80% of sampled sites reveal at least one well-defined axis with a confidence level less than 20° (Figure 10). If confidence level of a magnetic axis, K_1 and/or K_3 , is larger than 20° within a site, this magnetic axis is considered as poorly defined, and thus, the site-average orientation is not reliable (Table 1).

Four groups of sites can be distinguished. Namely, group I (45%) is characterized by three well clustered axes (e.g. Sites 10 and 50 in Figure 10), group II (13%) corresponds to the sites where K_1 is better defined than K_2 and K_3 (e.g. Site 33 in Figure 10), group III (33%) shows the opposite case to group II, K_3 is better clustered than other two axes (e.g. Site 23 in Figure 10), group IV (9%) presents three scattered axes (e.g. Site 18 in Figure 10). The secondary AMS related to solid-state deformation will not be taken into account because they are associated with syn to post granite deformation (Figure 5).

triangle and circle, respectively with 95% confidence zone. Small grey symbols are for the specimen data, the large black symbols are Figure 10. Equal-area, lower hemisphere projection of the directions of the magnetic susceptibility axes from 54 sites with their geographical corresponding location within the Montmarault pluton. The three main axes of ellipsoid (K_1 , K_2 and K_3) are represented by square, for the average site data.

In order to better understand the AMS fabric pattern observed in this pluton, the degree of anisotropy (P_j) and shape parameter (T; see Figures 11 and 12) have been calculated according to Jelinek (1981). The shape parameter T (Figure 11b) represents the degree to which the fabric ellipsoid is prolate (0> T > or = -1) or oblate (0 < T < or = 1). 92 % of the sites present an anisotropy degree P_j lower than 1.2, and 80 % of the sites show a T parameter between 0 and 1 (Table 1 and Figure 12). The T value shows a dominance of the AMS oblate ellipsoids (Figure 11b). A spatial correlation between the magnetic susceptibility (Figure 9) and the degree of anisotropy (Figure 11a) exists, particularly in the western part of the pluton. Variations of P_j are likely partly related to the magnetic mineralogy, i.e. either due to the magnetic or biotite (Borradaile and Henry, 1997).

Figures 13a and 13b present the magnetic foliation and lineation distribution patterns, respectively. Only statistically well defined data are presented on the maps with the confidence level lower than 20° (Figure 13; Table 1). In the eastern part of the pluton, that stretches parallel to SHF, the magnetic fabrics are mainly characterized by a dominant NE-SW trending foliation with steeply plunging dips towards the SE (40° to 90°; Figure 13a) and by a well defined NW-SE trending magnetic lineation plunging mainly to the southeast at about 72° perpendicularly to the SHF (see maximum density in Figure 13b). In the central part of the Montmarault pluton, the NE-SW trending foliation is bent in an E-W direction. This magnetic fabric pattern correlates well with the previous measurements (Figure 13) carried out only on the northeastern part of the Montmarault pluton by Sossa-Simawango et al. (1987). In the other parts of the pluton, the NNW-SSE magnetic foliations are roughly perpendicular to the SHF (Figure 13a). In the northwest area of the Montmarault massif, the magnetic foliation is gently dipping about 42° to the southwest and generally, the NW-SE magnetic lineation plunges to the west (48°). To the south of Commentry, in the southwestern part of the massif, the well defined magnetic foliation with also a NW-SE strike dips 60° to the northeast. However, the magnetic lineations are too scattered to define a statistically reliable orientation (Figure 13b).

Figure 12. Plot of anisotropy degree Pj and shape T parameters showing dominant oblate AMS ellipsoid. Open and solid symbols indicate prolate and oblate shapes of AMS ellipsoid, respectively.

Figure 13. Magnetic foliation pole (K3) and lineation (K1) within the granitic pluton of Montmarault. Equal-area, lower hemisphere projection. Ellipses define areas with consistent AMS orientations. (a) Strike and dip of magnetic foliation at individual sites with the equal-area, lower hemisphere projection of poles to foliation of each area. (b) Plunge and trend of magnetic lineation at individual sites with the equal-area, lower hemisphere projection of lineation orientation of each area. Previous data comes from Sossa-Simawango et al., 1987.

Figure 13

Discussion and conclusions

One difficulty in the study of pluton fabrics lies in measuring the planar and linear mineral preferred orientations, especially when the deformation is weak. AMS helps to better understand the mechanisms of pluton emplacement. Thus, AMS analyses are applied here to the Montmarault pluton. Indeed, petrographic observations show that the Montmarault massif as a whole is characterized by a magmatic fabric and locally by a weak solid state fabric, as shown by both petrographic and AMS studies. The large range of spatial variations of the bulk magnetic susceptibility shown in this study and by the magnetic field intensity observed by previous airborne magnetic surveys (see Part II of this study) argue for an important heterogeneous distribution of magnetic minerals at the pluton scale, which we attribute to the variation of magnetite concentration. In the western part of the pluton, the magnetic property is clearly controlled by the magnetite content in agreement with the positive anomaly of magnetic field intensity (Figure 3 in Part II), with high magnetic susceptibility (Figure 9) and well-identified magnetite (Figures 6, 8a and 8b). However, paramagnetic minerals, such as biotite, are the main contributor to AMS measurements in the eastern part of pluton along the SHF with a negative magnetic anomaly (Figure 2 in Part II), lower magnetic susceptibility (Figure 9) and weak contribution of ferromagnetic minerals (Figures 6, 8c and 8d). According to petrostructural study, Sossa-Simawango (1980) argued that magnetite and biotite crystallized contemporarily and that the magnetic heterogeneity might be due to the chemical zonation of the granitic pluton. Geochemical analyses show that the Montmarault massif is produced from a single magmatic chamber where silica and iron concentrations are heterogeneous (from 57% to 77% SiO₂ and from less than 1% to 7% Fe_{tot} on the whole rock; Sossa-Simawango, 1980). This chemical zoning accounts for the formation conditions of the magnetite. To assess this mechanism, more petrological and chemical analyses are necessary all over the pluton. Moreover, the magma ascent may involve a high oxygen fugacity that may in turn produce a significant modification of the chemical composition of ferromagnesian minerals, in particular for biotite (Frost and Lindsey, 1991; Gaillard et al., 2001). Indeed, the oxygen-dependent equilibrium between biotite and magnetite (1) indicates that an increase in the O₂ fugacity during the evolution of a magma system will displace this equilibrium to the right, consuming biotite and oxygen, as well as producing magnetite plus K-feldspar (Frost, 1990).

 $2KFe_3AlSi_3O_{10}(OH)_2 + O_2 = 2KAlSi_3O_8 + 2Fe_3O_4 + H_2O(1)$

Biotite + O_2 = K-feldspar + magnetite + water

From our own petrographic and rock magnetism studies, it may be concluded that biotite is the main contributor of the magnetic susceptibility in the eastern part of the pluton along the SHF where the granitic massif is thicker, whereas the multidomain magnetite is the main contributor of the magnetic susceptibility in the western part where the massif is thinner (see following paragraphs and Figure 2 of Part II). As multidomain magnetite and biotite minerals carry normal magnetic fabrics (Rochette et al., 1992), the AMS data may be directly used to infer their mineral fabrics. These fabrics could be interpreted as related to pluton emplacement and crystallization deformation because the microstructures are essentially of magmatic and locally weak solid-state deformation types.

Sossa-Simawango et al. (1987) carried out a local AMS study in the northeastern part of the pluton that shows a good consistency of the fabric pattern with our observations (see black symbols in Figures 13a and 13b). Combining all data from these two studies allow us to draw the following conlusions. The magnetic fabric pattern is characterized by 1) oblate fabric dominance all over the pluton (Figures 11b and 12); 2) weaker anisotropy degree (P_j) along the SHF with respect to the western part of the pluton (Figure 11a); 3) high southeastward dip of the foliation and relatively high angle plunge lineation in the eastern part along the SHF; and 4) E–W trending lineation with "V" shape (SW- and NE-dipping) foliations in the western part of the massif (Figure 13a).

The AMS results that mostly describe the magmatic fabrics of the Montmarault pluton during its emplacement, can be highlighted when interpreted together with the gravity anomaly map (Figure 2 in Part II). Indeed, a well-defined negative gravity anomaly along the SHF is interpreted as the root zone of the pluton. This anomaly progressively vanishes northwestwards suggesting that the pluton spreads towards the northwest with a laccolite-like shape, in agreement with the relatively flat magnetic foliation (Figure 14a). The steep magnetic lineation in the pluton is perpendicular to the SHF and associated to a magnetic foliation strongly dipping towards the SHF. Moreover, a top-to-the-NW shearing develops along the NW margin of the pluton (Figures 4d and 14b). These geometric and kinematic features support the interpretation that, if the SHF existed at the time of pluton emplacement, i.e. in Namurian times, this fault that can be called the "Proto-Sillon Houiller Fault" would have acted as a feeder zone for the magma. However, the kinematics of the "Proto-Sillon Houiller Fault" remains hypothetical.

The U-Th-Pb monazite age obtained in this study indicates that the Montmarault pluton was emplaced at ca 320 Ma. This age shows that the pluton is coeval with the Middle Carboniferous NW-SE extensional regime, already described in several Namurian granitic plutons in the French Massif Central (Figure 15). The Namurian to Westphalian (325-315 Ma), late orogenic NW-SE extension is conspicuously recorded by mineral and magnetic fabrics of leucogranites and granodiorites (Faure et al., 1992; Faure, 1995; Talbot et al., 2004, 2005; Be Mezème et al., 2006b). However, geochemical compositions of these granites are significantly different (Didier and Lemeyre, 1971; Duthou et al., 1984), indicating that they do not originate from the same magmatic sources. The consistency of the NW-SE trending lineation throughout the Namurian plutons of the French Massif Central (Gébelin et al., 2004; Talbot et al., 2004, 2005) indicates that these plutons emplaced into the metamorphic host rocks under the same tectonic regime within a relatively short time of ca 20 Ma. This NW-SE orientation of the stretching direction in the entire FMC is perpendicular to the "Proto-Sillon Houiller Fault"; therefore this structure probably behaved as an extensional structure.

Furthermore, in an alternative hypothesis in which the "Proto-Sillon Houiller Fault" had acted as a left-lateral transfer fault during the emplacement of the Montmarault pluton, the mineral and AMS lineation would have trended parallel to the fault, i.e. in the NE-SW direction; and this direction is almost orthogonal to the NW-SE magnetic lineations we measured. In the present state of knowledge, as no field observation attest for ductile tectonics along the SHF, the existence of normal kinematics along the "Proto-Sillon Houiller Fault" remains a working hypothesis to be confirmed by further studies.

The present "V" shape of the foliation pattern of the Montmarault pluton is due to the postorogenic extensional tectonics developed around 300 Ma. The NE-SW Late Carboniferous extensional regime is recorded by the opening of intra-mountain Stephanian coal basins (e.g. Commentry and Montvicq) within the already crystallized Montmarault massif (Figure 1a). Indeed, our field observations show the existence of high-angle brittle fault which was already been interpreted as listric faults by Faure (1995). The NW-SE trending and NE-dipping listric normal faults are responsible for the southwestward tilting of the early magmatic foliation of the pluton (Figure 14b).

According to the geochronological, structural and rock fabric investigations on the Montmarault granitic massif complemented by the geophysical data (Part II), the following conclusions can be drawn: a) the Montmarault pluton formed in Middle Carboniferous (ca 320 Ma); b) the syntectonic Montmarault pluton is rooted in its eastern part along the SHF, and presents a laccolite-like shape in its western part; c) its emplacement is controlled by NW-SE extensional tectonics which is consistent with the regional tectonic regime; d) the SHF is interpreted as the feeding channel for the granitic magma emplacement during the Namurian-Westphalian period; e) if the "Proto-Sillon Houiller Fault" was existed at ca 320 Ma, it probably acted as a normal fault; and f) the final architecture of the pluton is due to the Late Carboniferous (ca 300 Ma) NE-SW extensional tectonics.

Figure 14. Emplacement model for the porphyritic Montmarault pluton. (a) Emplacement of the porphyritic granite during the Namurian NW-SE extensional tectonics through one feeder zone located along the SHF. (b) Opening of half-graben basins filled by terrigeneous and coal deposits during Late Carboniferous NE-SW extensional setting. The NE facing normal faults are responsible for the tilting to the southwest of the fault footwall (see text for further details).

Figure 15. Tectonic map of the French Massif Central showing the two distinct Carboniferous extensional structures.

Acknowledgements

This study was partially funded by "Réferentiel Cartographique 3D integré" project of Bureau de Recherche Géologique et Minière (BRGM). Constructive reviews by two reviewers are deeply acknowledged.

References

Barbarin, B., J.M. Belin, A. Fernandez, J. Grolier, A. Lacour and M. Turland (1985), Observations de pétrologie structurales sur le granite de Montmarault (Allier, Puy-de-Dôme), *Géol. de la France*, 4, 381-388.

Be Mezème, E., M. Faure, A. Cocherie and Y. Chen (2005), In situ chemical dating of tectonothermal events in the French Variscan Belt, *Terra Nova*, 17, 420-426.

Be Mezème, E., A. Cocherie, M. Faure, O. Legendre and Ph. Rossi (2006a), Electron microprobe monazite geochronology of magmatic events: Examples from Variscan migmatites and granitoids, Massif Central, France, *Lithos*, 87, 3-4, 276-288.

Be Mezème, E., M. Faure, Y. Chen, A. Cocherie and J.-Y. Talbot (2006b), Structural, AMS and geochronological study of a laccolith emplaced during Late Variscan orogenic extension: the Rocles pluton (SE French Massif Central), *International Journal of Earth Sciences*, DOI:10.1007/s00531-006-0098-2.

Berthier, F., Duthou J.-L. and Roques M (1979), Datation géochronologique Rb/Sr sur les roches totales du granite de Guéret (Massif Central). Age fini-dévonien de la mise en place de l'un de ses faciès, *Bulletin BRGM*, 1, 2, 59-72.

Bingham, C. (1964), Distribution on a sphere and on the projective plane. Ph-D Thesis, Yale University, USA.

Binon, M. and C. Pin (1989), Geochronologie Rb-Sr et U-Pb des granites du Mayet-de-Montagne et des Bois Noirs, Montagne bourbonnaise (Massif central), *Bull. Soc. géol. Fr.*, 8, 695-703.

Blès, J. L., D. Bonijoly, C. Castaing and Y. Gros (1989), Successive post-variscan stress fields in the French Massif Central and its borders (western European plate): Comparison with geodynamic data, *Tectonophysics*, 169, 79-111.

Boissonas, J. and N. Debeglia (1976), Etude géophysique du granite magnétique de Montmarault (Allier) et corrélation avec la pétrographie, Rapport BRGM 76 SGN 401 GPH.

Bonijoly, D. and C. Castaing (1984), Fracturation et genèse des bassins Stéphaniens du Massif central français en régime compressif, *Ann. Soc. Géol. Nord*, t. CIII, 187-199.

Borradaile, G.J. and B. Henry (1997), Tectonic applications of magnetic susceptibility and its anisotropy, *Earth-Science Reviews*, 42, 1-2, 49-93.

Bouchez, J.L. (1997), Granite is never isotropic: An introduction to AMS studies of granitic rocks. In: Bouchez J.-L., Hutton D.H.W., Stephens W.E. (Eds) (1997), *Granite: From segregation of melt to emplacement fabrics*, Kluwer Academic Publishers, Dordrecht, 95-112.

Braun, I., J.M. Montel and C. Nicollet (1998), Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India, *Chemical Geology*, 146, 65-85.

Burg, J.P., J.P. Brun and J. Van Den Driessche (1990), Le Sillon Houiller du Massif Central français: Faille de transfert pendant l'amincissement crustal de la chaîne varisque? *C. R. Acad. Sci.*, Série II., Issue 1, 311, 147-152.

Cocherie, A., O. Legendre, J.J. Peucat and A.N. Kouamelan (1998), Geochonology of polygenetic monazites constrained by in situ electron micropobe Th-U-total lead determination: Implications for lead behaviour in monazite, *Geochim. Acta*, 62, 2475–2497.

Cocherie, A. and F. Albarède (2001), An improved U–Th–Pb age calculation for electron micropobe dating of monazite, *Geochim. Cosmochim. Acta*, 65, 4509 – 4522.

Cocherie, A., E.Be Mezème, O.Legendre, C.M.Fanning, M. Faure and P. Rossi (2005), Electronmicroprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites, *American Mineralogist*, 90, 607-618.

Costa, S. and P. Rey (1995), Lower crustal rejuvenation and growth during post-thickening collapse from a crustal cross section through a variscan core complex, *Geology*, 23, 905-908.

Day, R., M. Fuller, and V.A. Schmidt (1977), Hysteresis properties of titanomagnetites: grain-syze and compositional dependence, *Phys. Earth Planet. Inter.*, 13, 260-267.

Didier, J. and J. Lameyre (1971), Les roches granitiques du Massif Central français, In : *Symposium J. Jung*, Géologie, géomorphologie et structures profondes du Massif Central français, Plein air service, Clermont-Ferrand, 135-156.

Dumas, E., M. Faure and J. Pons (1990), L'architecture des plutons leucogranitiques du plateau d'Aigurande et l'amincissement crustal tardi-varisque, *C. R. Acad. Sci.*, Paris, 310, Ser. II, 1533-1539.

Duthou, J.L., J.M. Cantagrel, J. Didier and Y. Vialette (1984), Paleozoic granitoids from the french Massif Central: age and origin studied by 87Rb/87Sr system, *Phys. Earth Planet. Inter.*, 35, 131-144.

Ellwood, B.B. and D.B. Wenner (1981), Correlation of magnetic susceptibility with 18O:16O data in orogenic granites of southern Appalachian Piedmont, *Earth Planet. Sci. Lett.*, 59, 200-202.

Faure, M. (1989), L'amincissement crustal de la chaîne varisque à partir de la déformation ductile des leucogranites du Limousin, *C. R. Acad. Sci.*, Paris II, 309, 1839-1845.

Faure, M. and J. Pons (1991), Crustal thinning recorded by the shape of the Namurian-Westaphalian leucogranite in the Variscan belt of the northwest Massif central, France, *Geology*, 19, 730-733.

Faure, M., Pons J. and J.F. Babinault (1992), Le pluton du Pont-de-Montvert: un granite syntectonique extravasé vers l'Est pendant le désépaississement crustal varisque du Massif Central français, *C.R. Acad. Sci.*, 315, 201-208.

Faure, M. (1995), Late Carboniferous extension in the Variscan French Massif central, Tectonics, 14, 132-153.

Faure M., E. Be Mézème, M. Duguet, C. Cartier and J.-Y. Talbot (2005), Paleozoic tectonic evolution of medioeuropa from the example of the French Massif central and Massif Armoricain, *Journal of the virtual Explorer*. ISSN 1441-8142, 19, 5, 26 p.

Feybesse, J.L. (1981), Tectonique et microtectonique de la région de Laroquebrou (Cantal, Massif central français). Rôle de la déformation ductile et évolution du Sillon Houiller, Ph-D Thesis, Clermont Ferrand University, France, 250 pp.

Frost, B.R. (1990), Biotite crystallisation as an oxidation agent in granitic rock, *Geolo. Soc. Am.*, Abs.w. Prog., 22, A301.

Frost, B. R., and H. Lindsley (1991), Occurrence of iron-titanium oxides in igneous rocks, *Reviews in Mineralogy* and Geochemistry, 25, 433-468.

Gaillard, F., B. Scaillet, M. Pichavant and J. L. Beny, (2001), The effect of water and fO2 on the ferric-ferrous ratio of silicic melts, *Chemical Geology*, 174, 255–273.

Gébelin, A., G. Martelet, M.Brunel, M. Faure and P. Rossi (2004), Late Hercynian leucogranites modelling as deduced from new gravity data: the example of the Millevaches massif, Massif Central, France, *Bull. Soc. Géol. Fr.*, 175, 3, 239-248.

Grolier, J. and J. Letourneur (1968), L'évolution tectonique du grand Sillon Houiller du Massif Central francais, XXIII International Geological Congress, 1, 107-116.

Hibbard, M.J. (1987), Deformation of incompletely crystallized magma systems: granitic gneisses and their tectonic implications, *Journal of Geology*, 95, 543-561.

Hrouda, F. (1982), Magnetic anisotropy of rocks and its application in geology and geophysics, *Geophysical Surveys*, 5, 37-82.

Jelinek, V. (1981), Characterization of the magnetic fabric of rocks, *Tectonophysics*, 79, 563-567.

Jover, O. (1986), Les massifs granitiques de Guéret et du nord-Millevaches. Analyse structurale et modèle de mise en place (Massif Central Français), Ph-D Thesis, Nantes University, France, 233 pp.

Ledru, P., J.M. Lardeaux, D. Santallier, A. Autran, J.M. Quenardel, J.P. Floc'h, G. Lerouge, N. Maillet, J. Marchand and A. Ploquin (1989), Où sont les nappes dans le Massif Central français? *Bull. Soc. Géol. Fr.*, 8, 605–618.

Ledru, P., G. Courrioux, C. Dallain, J. M. Lardeaux, J. M. Montel, O. Vanderhaeghe and G. Vitel (2001), The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution, *Tectonophysics*, 342, 3-4, 207-237.

Letourneur, J.(1953), Le grand Sillon Houiller du plateau central français, Bull.Carte géologique de la France, 238, LI, 235pp.

Malavieille, J., P. Guihot, S. Costa, J.M. Lardeaux and V. Gardian (1990), Collapse of the thickened Variscan crust in the french Massif central : Mont Pilat extensional shear zone and St-Etienne Late Carboniferous basin, *Tectonophysics*, 177, 139-149.

Matte, P. (1986), La chaîne varisque parmi les chaînes paléozoïques péri atlantiques, modèle d'évolution et position des grands blocs continentaux au Permo –Carbonifère, *Bull. Soc.Géol. France*, 8, 9 – 24.

Menard, G. and P. Molnard (1988), Collapse of hercynian Tibetan Plateau into a late Paleozoic European Basin and Range province, *Nature*, 334, 235-237.

Mollier, B. and J.-L. Bouchez (1982), Structuration magmatique du complexe granitique de Brâme-St Sylvestre-St Goussaud (Limousin, Massif Central Français), *C.R. Acad. Sci.*, Ser. 2, 294, 1329-1334.

Montel, J-M., S. Foret, M. Veschambre, C. Nicollet and A. Provost (1996), Electron microprobe dating of monazite, *Chemical Geology*, 131, 37 – 53.

Montel, J.-M., J. Kornprobst and D. Vielzeuf (2000), Preservation of old U-Th-Pb ages in shielded monazite: example from Beni Bousera Hercynian Kinzigites (Morroco), *Journal of Metamorphic Geology*, 18, 335-342.

Parrish, R. R. (1990), U – Pb dating of monazite and its application to geological problems, *Can. J. Earth Sci.*, 27, 1431 – 1450.

Paterson, S.R., R.H. Vernon and O.T. Tobisch (1989), A review of criteria for the identification of magmatic and tectonic foliations in granitoids, *J.Struct.Geol.*, 11, 349-363.

Rochette, P., M. Jackson and C. Aubourg (1992), Rock magnetism and the interpretation of anisotropy of magnetic susceptibility, *Geophysics*, 3, 209-226.

Sossa-Simawango, M. (1980), Contribution à la pétrologie, la géochimie, la géologie structurale du massif granitique de Montmarault (Massif Central français), Ph-D Thesis, Orléans University, France.

Sossa-Simawango, M., B. Henry and L. Daly (1987), Magnetic structural analysis of the montmarault granite (French Massif Central), *J.Struct.Geol.*, 9, 7, 911-914.

Suzuki, K. and M. Adachi (1991), The chemical Th – U – total Pb isochron ages of zircon and monazite from the gray granite of the Hida terrane, Japan, *J. Earth Sci.*, Nagoya Univ., 38, 11 – 37.

Talbot, J.Y., G. Martelet, G. Courrioux, Y. Chen and M. Faure (2004), Emplacement in an extensional setting of the Mont Lozère-Borne granitic complex (SE France) inferred from comprehensive AMS, structural and gravity studies, *J.Struct.Geol.*, 26, 1, 11-28.

Talbot, J.Y., M. Faure, Y. Chen and G. Martelet (2005), Pull-apart emplacement of the Margeride granitic complex (French Massif Central), Implications for the late evolution of the Variscan orogen, *J.Struct.Geol.*, 27, 9, 1610-1629.

Tauxe, L., T.A.T. Mullender and T. Pick (1996), Potbellies, wasp-waists and superparamagnetism in magnetic hysteresis, *J. Geophys. Res.*, 101, 571–583.

Turland, M., R. Feys, F. Destieux and D. Virlogeux, (1989), Carte géol. France, (1/50 000), feuille Montluçon (619), *Ed. B.R.G.M.*, Orléans, France .Notice explicative par M. Turland, A.M. Hottin and R. Feys 115 p.

Turland, M., P. Gentilhomme, J.L. Duthou, D. D'Arcy, J.-P. Carroué and N. Debeglia, (1991), Carte géol. France,

(1/50 000), feuille Montmarault (620), *Ed. B.R.G.M.*, Orléans, France .Notice explicative par Turland, M., P. Gentilhomme, J.L. Duthou, D. D'Arcy, J.-P. Carroué and N. Debeglia, 114p.

Van den Driessche, J. and J.P. Brun (1989), Un modèle de l'extension paléozoïque supérieur dans le sud du Massif central, *C. R. Acad. Sci.*, Série 2, 309, 1607-1613.

Vanderhaege O., and C. Teyssier (2001), Partial melting and flow of orogen, Tectonophysics, 342, 451-472.

Vernon, R.H. (2000), Review of microstructural evidence of magmatic and solid-state flow, *Electronic Geosciences*, 5, 2.

Wendt, I. and C. Carl (1991), The statistical distribution of the mean squared weighted deviation, *Chem.Geol.* (*Isot. Geosci. Sect.*), 86, 275-285.

William, M.L. and M.J. Jercinovic (2002), Microprobe monazite geochronology: putting absolute time into microstructural analysis, *J.Struct.Geol.*, 86, 1013-1028.

Zapletal, K. (1990), Low field susceptibility anisotropy of some biotite crystals, *Phys. Earth Planet. Inter.*, 63, 85-97.

A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault:

relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the

Variscan French Massif Central.

Part II: Gravity, aeromagnetic investigations and 3D geologic modeling.

Joly Aurore^{1, 2, *}, Martelet Guillaume², Chen Yan¹ and Faure Michel¹

¹ Institut des Sciences de la Terre d'Orléans, UMR CNRS 6113, Université d'Orléans, BP 6759, F45067, Orléans, France.

² Bureau de Recherches Géologiques et Minières, 3 avenue Claude Guillemin, BP6009, Orléans, F45060, Cedex 2, France.

*Corresponding author: <u>Aurore.Joly@univ-orleans.fr</u>

Abstract

New gravity and aeromagnetic investigations have been carried out to understand the emplacement mechanisms of a granitic pluton and the relationships with a nearby lithospheric-scale fault. This paper concerns the second part of a methodological multidisciplinary study and complements previous geochronologic and Anisotropy of Magnetic Susceptibility (AMS) studies on the same pluton. In the northern part of the Variscan French Massif Central (FMC), the Montmarault massif crops out along the Sillon Houiller Fault (SHF). Bouguer and aeromagnetic anomaly maps imply thickening of the pluton along the SHF and suggest laccolitic spreading northwestwards. Based on petrophysical measurements, direct 2D joint gravity and magnetic modeling has been performed along 10 cross-sections. In order to quantitatively constrain the 3D pluton geometry and its relationships with surrounding geologic units, these geophysical crosssections, new structural information (field and AMS measurements) and petrophysical data have been integrated into a regional 3D geological and geophysical model. Altogether, the results obtained from geochronology, petro-magnetic fabrics (Part I), gravity and aeromagnetic investigations as well as 3D modeling (Part II), demonstrate that the Montmarault pluton was emplaced during the Namurian period along the SHF. Our results further show that, at that time, in response to a NW-SE regional extension, if the SHF existed, it behaved as a normal fault. Mylonites attesting for synmagmatic normal motion on the northeastern part of the Montmarault pluton strengthen this tectonic scenario. During the Late Carboniferous, the FMC experienced NE-SW extension along the SHF by 80 km of brittle left lateral wrench offset. This second tectonic event is well recorded in the Stephanian coal basins which were formed along NW- SE listric brittle faults and constrain the present-day shape of the Montmarault pluton.

Keywords: Granitic pluton, Gravity and magnetic investigations, 3D modeling, European Variscan Belt, French Massif Central.

Introduction

Studies of large scale crustal to lithospheric deformations documented worldwide show that various amounts of localized (Tapponier and Molnar, 1979; Ledru et al., 1989) *versus* distributed and continuous (Molnar, 1988; Teyssier and Tikoff, 1998; Vanderhaeghe and Teyssier, 2001; Schellart and Lister, 2005) deformation can occur. When the large crustal or lithospheric tectonic structures accommodate the main part of the deformation, such as in the French Massif Central, they represent key geological objects for the understanding of regional tectonic history. Tectonic structures preserve information on the deformation mechanisms recorded during the orogenic phase. They may document the dynamic evolution of geologic terrains. However, the primary events are often erased by younger ones since multiphase deformations generally re-activate these ancient structures.

Over the past decade, there has been extensive work documenting the emplacement of plutons in a variety of structural settings. Pluton emplacements were described in extensional tectonic environments such as pull-apart structures (e.g., McCaffrey, 1992; Tikoff and Teyssier, 1992; Crawford et al., 1999), tensional cracks (Hutton, 1982; Castro, 1986; McNulty et al., 2000), shear zone terminations (Hutton, 1988; Neves and Vauchez, 1995, Tikoff and Saint Blanquat, 1997), flower structures (Pe-Piper et al., 1998), and on the shoulders of shear zones (Weinberg et al., 2004). In recent years, application of gravity, magnetic and Anisotropy of Magnetic Susceptibility (AMS) techniques has contributed to important advances in the understanding of pluton emplacement mechanisms, and in the use of syntectonic granitoids as markers of regional kinematics and strain fields (Cruden and Launeau, 1994; Leblanc et al., 1994; 1996; Bouchez and Gleizes, 1995; Tobisch and Cruden, 1995; Benn et al., 1997, 1998; Gleizes et al., 1997).

In the French Massif Central (FMC), the 500-km-long Sillon Houiller Fault (SHF) is a major tectonic structure: its Late Carboniferous (ca. 320-300Ma) activity at the end of the Variscan orogeny has already been demonstrated (Grolier and Letourneur, 1968; Feybesse, 1981; Belin, 1983). However, its exact tectonic style and timing remain largely uncertain, except the 80 km of brittle left lateral wrench movement, associated with the development of Stephanian (ca. 300Ma) coal basins (e.g. Grolier and Letourneur, 1968; Bonijoly and Castaing, 1984). In the field, direct evidence for ductile shearing is quite rare (Feybesse, 1981), thus in order to document the early SHF activity, we have studied the relationships between the SHF and a nearby granitic massif.

The Montmarault granitic massif (Figure 1a), is located at the northern end of the SHF (Figure 1b) and is geologically juxtaposed to the west of it. In the companion paper (Part I), this pluton has been dated by the U-Th-Pb method at 321 ± 2 Ma and the internal fabrics revealed by Anisotropy of the Magnetic Susceptibility (AMS) study show a dominant NW-SE lineation trend that complies with the regional late orogenic extensional tectonic field developed during the Namurian time (Faure, 1995).

In this article, we present results from potential field modeling, which allow assessment of the pluton geometry at depth. We thereby complement results presented in Part I of this study based essentially on the observations at the surface. Joint AMS and gravity studies have been already carried out to infer the 3D geometry (from gravity) and the regional deformation during emplacement (from AMS) of several plutons (e.g. Vigneresse and Brun, 1983, Améglio et al., 1997; Talbot et al., 2005, Gébelin et al., 2006). Here, we complement this approach by joint gravity and magnetic modeling, which strengthens the modeled geology. In order to constrain this modeling, petrophysical parameters (density and magnetic susceptibility) were determined by laboratory or field measurements, for each encountered lithology. Furthermore, modeling of several crosssections strengthens the geometrical and topological consistency of the interpretative geological model. Finally, an ad hoc 3D geostatistical interpolation (Lajaunie et al., 1997; Guillen et al., 2000) of these cross-sections, surface geological data as well as AMS foliations provides a full 3D geometrical model (of $59 \times 62 \times 8 \text{ km}^3$ extent), centered on the Montmarault pluton. Though non-unique, the obtained model is consistent with available geophysical data and integrates the present-day geological knowledge.

This study (i) provides a methodology for integrating multidisciplinary information into a realistic geological 3D model, and (ii) allows us to infer the shape of the pluton at depth and to characterize its relationships with the SHF. In light of results obtained in both Parts I and II of this study, an emplacement model of the pluton is proposed, and its implications on the understanding of the Variscan ductile tectonics along the SHF are discussed.

Geological setting

Variscan orogeny of Western Europe

In western Europe, the Variscan belt resulted from the collision between Gondwana and Laurussia in the Late Devonian to Early Carboniferous times (Matte, 1986). Oceanic and subsequent continental subduction occurred during the Late Silurian-Devonian (e.g. Santallier et al., 1994; Lardeaux et al., 2001).

Continent-continent collision and associated crustal thickening occurred during the Devonian to Carboniferous and caused thrust and wrench tectonics (Brun and Burg, 1982). Then, from 330 to 300 Ma, the belt experienced late orogenic extensional tectonics (Van den Driessche and Brun, 1989; Faure et al., 2005). Crustal thinning described in several places in the FMC consists of two successive and distinct extensional events (Ménard and Molnard, 1988; Van den Driesche and Brun, 1991; Faure and Becq-Gireaudon, 1993; Burg et al., 1994; Faure, 1995).

The first one, in Namurian-Westphalian time (about 330- 315 Ma), is characterized by an orogen-parallel NW-SE maximum stretching direction (Faure, 1995). This NW-SE extensional tectonics is diachronous throughout the FMC since in the north, the late-orogenic extension event started in Late Visean (ca. 330 Ma), while in the south (i.e. Montagne Noire and Cévennes areas), the compression was still active at that time. In the southern FMC, the onset of this NW-SE late-orogenic extensional event occurred in Westphalian (ca. 320-315 Ma).

The second extensional phase of Stephanian-Autunian time (ca.310-290 Ma) is a postorogenic event and characterized by a NE-SW maximum stretching direction (i.e. subperpendicular to the general trend of the belt) and by the emplacement of rare granitic plutons and the Velay migmatitic dome. The role of granitic plutons as markers of the late stage of orogenic evolution of the Variscan belt is now well documented by geochronological, petrological and geophysical studies on several Namurian synkinematic granitic massifs (Figure 1b), such as la Margeride (Talbot et al., 2005), Millevaches (Gébelin et al., 2004; 2006), Rocles (Be Mezème et al., 2006) or Mont Lozère-Borne (Talbot et al., 2004). In the FMC, the NE-SW extensional regime is well recorded by brittle deformation associated with the opening of several Stephanian coal basins (Blès et al., 1989). Along the SHF, the Stephanian coal basins are coeval with a ca. 80 km of left-lateral wrenching (Grolier and Letourneur, 1968).

Figure 1. Structural map of the Montmarault massif (a) in the French Massif Central (b). Black thin lines indicate locations of the two gravity-magnetic models presented in this paper.

Ductile tectonics along the SHF, however, is poorly documented (Feybesse, 1981) and an attempt to interpret it as a transfer fault accommodating different rates of the late orogenic extension was proposed (Burg et al., 1990). However this assumption is not in accordance with the existence of the two distinct and successive episodes of extensional tectonics (Faure, 1995) that we have reviewed earlier in this section. Consequently, in order to bring indirect constraints on the ductile tectonic style of the SHF, in relation with a plutonic event, we investigate the Montmarault granitic pluton which crops out along the SHF.

Geological framework in the northeast of the FMC

The Montmarault massif was emplaced in metamorphic series of biotite-sillimanite migmatites, biotite-sillimanite gneisses and biotite-muscovite micaschists (Figure 1a). These series compose the para-authochtonous country rocks which were overlain by thrust sheets. The Barrovian metamorphism affecting the para-authochtonous unit is coeval with the napping tectonics which took place during the Silurian-Carboniferous time (Matte, 1986; Ledru et al, 1989; Faure et al., 2005) and enclosed references). The metamorphic series were then intruded by the Carboniferous Guéret pluton (Figure 1b; Berthier et al., 1979; Cartannaz et al., 2006). The Montmarault granitic massif dated at 321 ± 2 Ma (cf. Part I) was emplaced during the late-orogenic extensional phase of the Variscan orogen (Ménard and Molnard, 1988; Van Den Driesche and Brun, 1991; Faure and Becq-Gireaudon, 1993; Burg et al., 1994; Faure, 1995). Monazites dated in Montmarault granite are unzoned and have not recorded any deformation according to their magmatic texture (cf. Part I). Consequently, the age of 321 ± 2 Ma is coeval with pluton emplacement. The massif (Figure 1a) consists mainly of porphyritic granite, known as the Montmarault granite sensu stricto, which is locally intruded by leucogranite stocks and dikes. Separated by a transition zone, two types of granitic facies have been defined within the massif (Figure 1a; Boissonas and Debeglia, 1976; Sossa-Simawango, 1980). From a mineralogical point of view, the western part presents a predominance of weakly hydrated or oxidized minerals while the eastern one is rich in orthoclase and quartz and poor in plagioclase and ferromagnesian phases. Petrological studies reveal deep magma origin and its rapid emplacement close to the surface (Sossa-Simawango, 1980). Compared to other plutons already studied in the French Massif Central, the depth of emplacement of the Montmarault pluton is rather shallow at about 2 km. This conclusion is enforced by a high concentration of magnetite and the abundance of orthoclase instead of microcline (Sossa-Simawango, 1980), suggesting fast crystallization at high temperature and low depth (Boissonas and Debeglia, 1976). Rock fabrics studied in detail in companion paper Part I highlight the predominance of magmatic microstructures and weak solid-state deformation, indicating that the Montmarault pluton acquired its magmatic fabrics during its emplacement. The only part of the massif where the intense solid-state microstructures are significantly developed is observed by Barbarin et al. (1985) in the northwestern part of the eastern branch of the massif. The granitic rocks present intense planar and linear fabrics corresponding to the mylonitic margin of the pluton with a top-to-the NW ductile shearing, associated to a foliation pattern gently dipping to the NW and to a vertical lineation. This structural observation indicates normal faulting.

Eventually, several Stephanian half-graben coal basins formed, bounded by NE dipping normal faults, which currently overlie the pluton (e.g. Commentry and Doyet; Figure 1a).

Geophysical data

Despite the lack of geophysical studies specifically devoted to the SHF fault, several studies imply its crustal or even lithospheric extent. Seismic tomography (Granet et al., 1995a, 1995b) as well as seismic anisotropy (Babuska et al., 2002; Granet et al., 2000), suggest that the SHF separates two distinct lithospheric domains, down to about 200 km in depth. At the crustal scale, a crustal thickness difference across the SHF has been evidenced by seismic refraction (Perrier and Ruegg, 1973; Zeyen et al., 1997), heat flux modeling (Lucazeau et al., 1984) and thermal modeling constrained by seismic, gravity and petrologic data (Sobolev et al., 1997).

These results emphasize the recent lithospheric dynamics under the FMC but the Variscan activity of the SHF is not documented. At the crustal scale, geophysical data, such as seismic reflection that would allow us to decipher the upper crustal structures along the SHF, are not available. However, it is obvious that the structure of the crust, or even the lithosphere, of the early SHF, around 300 Ma, may have influenced the deformation experienced along the SHF since then. The Montmarault pluton, which was emplaced along the SHF during its probable ductile activity, might provide indirect constraints to assess the tectonic style at that time. In this paper, regional modeling has been performed by combining gravity and magnetic investigations in order to image the 3D geometry of the pluton in relation with the SHF and to characterize the regional deformation during its Namurian emplacement.

Gravity data

A Bouguer anomaly map of the Montmarault massif including the existing data coming from the "Banque Gravimétrique de la France" and 525 new stations was prepared. Gravity measurements were carried out throughout the entire pluton in the gap area with the existing gravity data, using a SCINTREX CG3-M micro-gravimeter. This led to an average coverage of one station per square kilometer. The whole data set was tied to the CGF65 French gravity reference network. The gravity anomaly was computed with respect to the theoretical value of g on Hayford-1930 ellipsoid. In order to obtain the complete Bouguer anomaly, we successively performed standard free air, plateau and terrain corrections. Terrain corrections were computed to a distance of 167 km, following the procedure detailed in Martelet et al., (2002). In order to be close to the expected density of the granites, a Bouguer reduction density of 2.6 g.cm⁻³ was used. As we focus on plutons cropping out at the surface, the long wavelengths in the Bouguer anomaly were removed by fitting a polynomial of degree 3 to the Bouguer anomaly for the entire Massif Central. The gravity data were finally interpolated using a standard minimum curvature algorithm, resulting in a 500-m anomaly grid.

Formation	Rock type	n	Density (g.cm ⁻³)	n	Susceptibility (µSI)
Mesozoic cover	Mainly calcareous sediments	3	2.35 - 2.45	3	5 - 19
Permian basin	Sandstone	4	2.31 - 2.41	5	12 - 38
Stephanian coal basin	Sandstone	3	2.50 - 2.58	5	13 - 39
Montmarault leucogranite	Leucogranite	5	2.59 - 2.65	6	2475 - 3725
Namurian Montmarault granite	Porphyroid granite	5	2.62 - 2.68	20	10 - 13200
Late Carboniferous Gueret granite	Calc-alkaline porphyroid granite	2	2.59 - 2.65	5	2050 - 2950
Devonian diorite	Diorite	2	2.74 - 2.82	5	11850 -18150
Metamorphic basement	Migmatite	5	2.69 - 2.75	7	1520 - 2280
Metamorphic basement	Gneiss	4	2.73 - 2.83	5	585 - 715
Metamorphic basement	Micaschist	2	2.71 - 2.79	2	585 - 715

Table 1. Density and magnetic susceptibility measurements of geological formations outcropping along the SHF.

To the first order, the residual Bouguer anomaly of the Montmarault area, reflecting the heterogeneous distribution of masses at depth, is consistent with geological boundaries (Figure 2a). Positive anomalies, corresponding to mass excess, that is to say to high densities, are normally associated with the basement; whereas sedimentary basins or/and granite, which have lower densities (Table 1), are prominently displayed as negative anomalies. The SHF is well defined on the Bouguer anomaly map: it is outlined by a sharp gravity gradient corresponding to the contact between the low density Montmarault pluton to the west and the high density Sioule metamorphic series to the east. The negative anomaly along the SHF suggests thickening of the pluton in relation with the fault. In contrast, the northwestern branch of Montmarault massif is unexpectedly

associated with a positive gravity anomaly. This suggests that the northwestern extension of the Montmarault pluton is thin and that the underlying basement is close to the surface, since no density variation exists inside the pluton (Table 1). Therefore, the massif spreads northwestwards from the Sillon Houiller fault, as a laccolith. North of the Montmarault massif, the Aumance Permian-Stephanian basin is characterized by a negative anomaly suggesting that the sedimentary rocks become thicker to the SE, up to the fault (next Murat), that forms the contact with the Montmarault pluton. In the centre of the Montmarault massif, the Commentry and Montvicq half-grabens are also underlined by negative anomalies.

Airborne magnetic data

Figure 2b shows the magnetic anomaly map, reduced to the pole over the Montmarault area. Original data come from a regional airborne survey carried out in 1972, with 2-km line-spacing and 1200-m barometric flight height. The data were interpolated on a 500-m grid (Edel and Gachon, 1973; Debeglia, 1973). In order to re-locate anomalies above causative geological bodies, anomalies were reduced to the pole with an inclination of 62° and a declination of 5°W, which corresponds to the average orientation of the magnetic field at the time and in the zone of the survey. Extensive qualitative interpretations of these data have been previously published (Debeglia and Gérard, 1975; Boissonas and Debeglia, 1976). Here, we briefly comment on the main magnetic anomalies in relation with the Montmarault massif and its surrounding structures. We further quantitatively analyze the anomalies through 2D modeling.

As previously interpreted, in the Montmarault area, the SHF separates two distinct magnetic domains: to the west, the Montmarault granitic massif exhibits high amplitude anomalies; whereas to the east, metamorphic units are mainly non-magnetic. To the first order, the V-shaped magnetic anomaly correlates well with the outcropping limits of the pluton. Parallel to the outcropping limits of the Montmarault pluton, the reduced to the pole magnetic anomaly map (Figure 2b) shows an alternation of positive and negative anomalies: when compared to the geological map, the positive anomalies correspond to the granitic massif, whereas the negative ones are related to the metamorphic basement or the Permo-Stephanian sedimentary basins. To the southwest of the massif, low magnetic amplitudes are mostly related to migmatitic units, whereas, to the north, they correspond to the Aumance basin. Low anomalies are also associated with the Commentry and Montvicq Stephanian half-grabens, which are intercalated in between two branches of Montmarault batholith. Along the SHF as well, several small negative anomalies correspond to Stephanian basins, such as the St-Eloy coal basin. Indeed, metamorphic units and sedimentary basins have low magnetic susceptibilities ranging from 25 to $630 \, \mu$ SI (Table 1). In contrast, the only lithologies that

have significant magnetic susceptibilities are the Montmarault granitic pluton itself (ranging from 10 to 13200 μ SI) within distinct facies (Figure 1a) and diorites (around 15000 μ SI). In this area, several dioritic intrusions occur either within or in close contact with the Montmarault pluton, and are outlined by a strong magnetic anomaly, such as near Cosne d'Allier/Hérisson, north of the study area, or near Villefranche, to the west of the SHF.

This observation led us to hypothesize that the magnetic anomalies apparently induced by the Montmarault pluton might be partly due to underlying dioritic intrusions. This is suggested, in particular, by the association of both positive magnetic and gravity anomalies under the western branch of Montmarault massif. Indeed, in this area, the entire magnetic anomaly cannot derive from the pluton only (even if its susceptibility is high), since its thickness is small, evidenced by the positive gravity anomaly. The occurrence of dioritic intrusives, underlying the granitic rocks is, therefore, introduced in the modeling and will be further discussed in following sections.

Figure 2. Measured, calculated and misfit maps of the gravity and magnetic field. Major geological limits (thin black lines), faults (thick black lines) and location of the gravity-magnetic profiles (dashed black lines) are drawn. (a) Residual Bouguer anomaly map of the Montmarault pluton with location of previous (black dots) and new (white dots) gravity stations. (b) Reduced to pole magnetic map of the Montmarault pluton. (c) Computed 3D gravity effect of the 3D model, using densities reported in Figure 3. (d) Computed 3D magnetic effect of the 3D model, using susceptibilities reported in Figure 3. (e) Misfit gravity map showing the discrepancies between the Bouguer anomaly map and the calculated one. (f) Misfit magnetic map showing the discrepancies between the reduced to the pole anomaly map and the calculated one.

AMS data

The internal structure of the Montmarault pluton has been studied by AMS and petrostructural methods (Part I of this study) and only necessary information for the modeling are recalled here. A NW-SE mineral and magnetic lineation is nearly perpendicular to the SHF in a conspicuous feature. In the eastern part of the massif along the SHF, the magnetic foliation pattern generally presents a high dip to the southeast (Figure 13 and Table 1 in Part I). In the northwestern branch of the massif, the magnetic foliation is gently dipping about 30° to the southwest. To the south of Commentry in the southwestern part of the massif, the magnetic foliation strikes in the NW-SE direction and dips 40° to the northeast.

2D forward gravity and magnetic modeling

Based on the geological knowledge, two dimensional (2D) forward gravity and magnetic modeling has been performed using the Geosoft-GM-SYS software along ten cross-sections distributed all over the Montmarault pluton (see location on Figure 2). 2D and 3D magnetic modelings are based on the reduced to pole map. In order to avoid edge effects, 2D cross-sections were extended for one third of their length at each extremity of the profile. Five profiles are drawn perpendicularly to the SHF to image the relationships between the Montmarault massif and the SHF, while other five profiles crosscut the western branch of the Montmarault pluton and the associated half-graben coal basins. Modeling of several cross-sections improves the geometrical and topological consistency of the interpretative geological model. Furthermore, the joint gravity and magnetic modeling constrains the geometry of a geological source both in terms of density and magnetic contrast with surrounding rocks. Therefore, taking into account measured petrophysical properties, the joint gravity and magnetic modeling tightly constrains the geological interpretation (Menichetti and Guillen, 1983). Though non-unique, the obtained model is compatible with both available potential field data and integrates the present-day geological knowledge.

Average densities of the modeled geological units (Figure 3) were derived from rock density measurements. The densities of 35 samples were determined (Table 1) using the double weighting method, further complemented by several liquor density determinations to calibrate accurately the density measurements. Magnetic susceptibilities of rocks were measured in the field using a SatisGeo KT-6 portable kappameter. In each of the 63 measured sites, the susceptibility was averaged from a series of punctual determinations. The Montmarault pluton, however, is characterized by a large range of magnetic susceptibilities: the values used for the modeling range from 13200 μ SI in the western branch of the massif, that is higher than most comparable plutons in the French Massif central, to 6300 μ SI in its south-central part and 10 μ SI in the facies close to the

SHF. This heterogeneity is due to the presence or absence of magnetite. Chemical variations within the pluton and/or oxygen fugacity variations are likely to be the cause of the crystallization of the magnetite in the Montmarault pluton (see Part I for details).

These ranges of rock densities and magnetic susceptibilities are in good agreement with previous measurements of the same study area (Debeglia and Gérard, 1975; Boissonas and Debeglia, 1976; Sossa Simawango, 1980), and are also in accordance with those obtained from comparable geological contexts in the French Massif central (e.g. Talbot et al., 2004; Gébelin et al., 2006).

In addition to the petrophysical determinations, other constraints used for the geophysical modeling primarily concern the knowledge of geological units, contacts and structural data. When one performs direct modeling of the geophysical anomalies, this combination of constraints drastically decreases the degrees of freedom of geologic models; and this is even amplified when gravity and magnetic anomalies are integrated together into a model. Furthermore, the integration of the available information as well as the condition of coherent crossings among all the 10 modeled cross-sections requires very careful matching of the geological model to the geophysical constraints. Density and magnetic susceptibilities being fixed, every small variation of thickness of the modeled geological bodies can significantly modify the gravity and/or magnetic contribution of the model. These considerations are particularly true close to the surface where we estimate the position of interfaces to be accurate within 100 to 500m, depending on the petrophysical contrast on interfaces considered. As discussed in the following, for deeper interfaces where constraints are more scarce, and petrophysical contrasts sometimes low, the accuracy of the model slightly decreases (to within 1km), and should be considered as regionally significant.

Bouguer anomaly data using surface geology in the same way petrophysical properties (density and magnetic susceptibility). On middle window, the model gravity effect has been fitted to magnetic anomaly data (black dots) using surface geology (lithologies and structural data on the lower window) and their Figure 3. Joint modeling of Bouguer and magnetic anomalies along profiles 1 and 2 (see location on Figure 1a). AMS foliations are represented by white lines. On upper window, the model magnetic effect (thin black curve) has been fitted to

According to regional tectonic and metamorphic studies (Ledru et al., 1989; Faure et al., 2005), the Montmarault host rocks consist of gneiss and micaschist series overthrust by higher grade terrains. This stack of nappes is well exposed to the east of the SHF around the Sioule metamorphic series (Faure et al., 1993), but crops out only locally in the vicinity of the Montmarault massif (Figure 1a). In our modeling, interfaces between these metamorphic units were primarily modeled according to the geological map and keeping these interfaces as smooth as possible at depth. In particular, due to the weak magnetic and density contrast between micaschists and gneisses, the interface between these metamorphic units is poorly constrained. It is, however, regionally coherent, for instance, with the same interface modeled in the Millevaches area (Gébelin et al., 2004), about 100 km southwest of Montmarault. The interface between the gneiss and overlying migmatites is also partly constrained by the surface geology; at depth, the density contrast and to a lesser extent the magnetic susceptibility contrast provide acceptable constraints to model the interface between both units.

In Figure 3, we present two representative cross-sections out of ten modeled, which exhibit the main geometric features of the Montmarault massif. Profile 1 trends NW-SE across the whole pluton, it shows the sharp relationship between the pluton and the SHF. Profile 2 trends SW-NE, it highlights the late reworking of the granitic massif by the Stephanian extension and half-graben basin formation.

Profile 1 (Figure 3) runs perpendicularly to the SHF, and a vertical fault is modeled on the right extremity of this section. To the first order, this geometry is consistent with both gravity and magnetic data, as one can observe in map view (Figures 2a and 2b). To the west of the SHF, the Montmarault pluton thickens towards the SHF. Its bottom deepens up to 2 km close to the fault. As shown by the low gravity anomaly that underlines the Montmarault granitic massif along the SHF (Figure 2a), this geometry is also reproduced in the other four cross-sections oriented in the same direction, suggesting rooting of the pluton along the SHF.

The central part of Profile 1, which is marked by low gravity and magnetic anomalies, corresponds to the Stephanian Cosne d'Allier basin, around 500 m thick, as constrained by bore holes (Turland et al., 1989). The basin thickens towards the Montmarault pluton, and the contact is the Murat fault. In Figure 1a, this contact is almost everywhere faulted, to the SW, south and SE of the basin. To the west, the basin gently thins out and is progressively replaced at the surface by porphyritic monzogranite and leucogranite belonging to the Montmarault massif. The accounted strong increase in both the magnetic and gravity anomalies cannot be fitted by granitic rocks only. In particular, the high gravity anomaly is not in agreement with thickening of the low-density granitic pluton. Therefore, the presence of a dense and high magnetic material underneath is required. Suboutcropping dioritic intrusions are a good candidate, as between Cosne d'Allier and Villefranche,

diorite is exposed just few kilometers apart. Along this profile, to the SE, two dioritic bodies in association with the thickest part of the Montmarault pluton are modeled. One of these bodies crops out as a large septum enclosed in the granodiorite, the second one is interpreted at depth.

In map view (Figure 1a), Profile 2 crosscuts alternatively granites and Stephanian basins. In section view (Figure 3), this profile 2 shows the late reworking of the Montmarault massif by two faults that control the opening of the Commentry and Montvicq coal basins. The two basins are associated with two negative magnetic and gravity anomalies. The Stephanian coal basins are modeled integrating the geologic cross-sections by Turland et al. (1989). Both basins are half-grabens with a maximum sediment thickness of 500 m, opened along NW-SE trending listric faults. The sedimentary rocks deposited in these basins directly overly the Montmarault granodiorite while they are tilted to the SE. Subjacent migmatite, diorite and gneiss are also affected by the tilting. To the south of Commentry, the gravity increase and magnetic decrease correspond to the emergence of the metamorphic basement to the surface. These three magnetic highs are satisfactorily explained by three dioritic bodies underlying the Montmarault pluton, since the thickness of the pluton is controlled by the relatively high gravity anomaly (Figure 3, profile 2). This situation is comparable to that in the NW of Profile 1.

3D geometrical modeling

The knowledge of the 3D shape of a pluton can bring important insight on its emplacement mode, for instance, by locating the possible feeder zones, as well as the geometry of the batholith in its final stage of cooling (e.g. Hutton, 1982; Brun et al., 1990; Vigneresse, 1990; Aranguren et al., 1996; Améglio et al., 1997; Vigneresse and Bouchez, 1997; Benn et al., 1999; Martelet et al., 2004). In order to represent properly the non-cylindrical geometry of the Montmarault pluton, 3D modeling was obviously required. We used the 3D Geomodeller software (Aug, 2004; Guillen et al., 2004; 2006) which allowed us to integrate available information such as geophysical cross-sections, AMS foliations, as well as the geological knowledge into a 3D geometrical model. Through a common georeferencing, the integration in 3D of all available data was critical to ensure the overall consistency of modeled structures at depth, as well as with the surface geological map. The data used to constrain the model were: (i) the 10 geophysical modeled cross-sections, (ii) the geological map including lithological boundaries and structural data, (iii) the AMS foliations in granitic rocks, (iv) petrophysical measurements (density and magnetic susceptibility) and (v) drill-hole information to constrain the thickness of basins.

In the 3D Geomodeller, interpolation of the available information to the whole 3D space is achieved using implicit surfaces (Lajaunie et al., 1997). The 3D geological space is described

through a potential field, in which geological boundaries are iso-potential surfaces, and structural dips correspond to the gradients of the potential. This formulation further allows a pseudo-geological description of the relationships between geological bodies through a "geological pile". Geometric relationships, such as normal sedimentation, unconformity, erosion or intrusion, can be modeled and allow to reproduce complex geological systems as realistically as possible.

A 59 x 62 x 8 km 3D model of the regional geology in Montmarault area was thus interpolated. The 3D Geomodeller further allowed us to compute the gravity and magnetic 3D effects of the model. This ensures that (i) all complex 3D effects of geological bodies are correctly taken into account, and (ii) the 3D interpolation has not introduced spurious deformations. After discretizing the model into voxels, its 3D magnetic and gravity effects have been computed using susceptibilities and densities of each modeled lithology (Table 1). The measured gravity (Figure 2a) and magnetic data (Figure 2b) were compared to the calculated gravity (Figure 2c) and magnetic effects (Figure 2d) of the 3D model. In more details, the misfit between the Bouguer anomaly and the 3D model gravity effect is displayed in Figure 2e: a rather close fit of the model to the data is achieved. For the magnetics, the misfit between the reduced to the pole magnetic anomaly and the model magnetic effect is displayed in Figure 2f. Because the modeling was focused on the SHF and Montmarault pluton, only minor discrepancies exist in the west-central part of the model, except along the NW branch of the Montmarault pluton where misfit residues remain significant because of very strong positive magnetic anomalies that remain difficult to fully reproduce in between the modeled cross-sections.

Discussion

Brittle post-Stephanian activity of the Sillon Houiller Fault is the only described motion of this fault (Grolier and Letourneur, 1968; Feybesse, 1981; Belin, 1983). Several previous geophysical studies together with our own results, however, suggest that this present lithospheric-scaled fault might have played a ductile role to accommodate the late-orogenic extensional event of the FMC, even if in this study, no data provide the evidence of a lithospheric scale fault in the Variscan time.

Methodologically, the 3D geologic and geophysical model allows to simultaneously integrate the data from different investigations such as petrophysical measurements, structural orientations of different geological lithologies (AMS and field), 2D conjoint gravity and magnetic cross-sections. The coherent integration of informations from various sources allows us to proceed from an intuitive and qualitative geological understanding to a quantitative description of the

geology. On the basis of these integrated results, an emplacement model of the Montmarault pluton in relation with the SHF is discussed.

The Montmarault magmatism is dated at 321 ± 2 Ma (cf. Part I). The magnetic fabric in the pluton is acquired during emplacement; it shows a predominant NW-SE magnetic lineation, perpendicular to the SHF and that complies with regional extensional tectonics (cf. Part I).

The negative gravity anomaly along the SHF (Figure 2a) and NE-SW trending foliation of the pluton associated to a NW-SE orientated magnetic lineation , both steeply plunging towards the SHF (Figure 13 in Part I), support the interpretation that this syntectonic pluton is rooted in the SHF and spreads towards the northwest with a laccolite-like shape. Indeed, if the SHF existed at the time of pluton emplacement, i.e. in Namurian times, this fault, named the "Proto-Sillon Houiller Fault", would have acted as a feeder zone for the magma. However, in the field, no Namurian ductile offset has been documented along the SHF. Therefore, the proposed emplacement model and the kinematics of the SHF remain hypothetical.

Two distinct and successive episodes of extensional tectonics have been documented in the FMC (e.g. Faure and Becq-Gireaudon, 1993; Faure, 1995). The first episode occurred during early Late Carboniferous, at around 325-310 Ma. The Montmarault granitic massif was emplaced during this period at ca. 320 Ma (Part I). At that time, numerous syntectonic granitic plutons were emplaced throughout the FMC (e.g. Faure, 1995; Talbot et al., 2004, 2005; Be Mezème et al., 2006; Gébelin et al., 2006). Magmatic fabrics in these plutons show a maximum NW-SE stretching direction, developed on both sides of the SHF (Figure 15 in Part I). In the Montmarault pluton, the NW-SE magnetic lineation that we describe in Part I is in accordance with this regional pattern. The perpendicular lineation to the SHF excludes the possibility of strike-slip motion along the SHF during the Montmarault pluton emplacement.

Furthermore, we have observed along the NE margin of the Montmarault pluton (Figure 4d in Part I), a top-to-the-NW shearing associated to a gentle dip to the NW and a vertical lineation, demonstrating an extensional regime for the pluton emplacement. Therefore, the "proto-SHF" should have behaved as a normal fault during this NW-SE directed extensional phase, although no field evidences of ductile deformation along the SHF have been observed in the northern part of the SHF. At a regional scale, the NW-SE extension along the SHF, which took place during the Namurian belt-parallel syn-orogenic extensional event (Faure et al., 1995), is consistent with the NW-SE extension attested in several granitic massifs, as well as local strike-slip movements along transfer faults in the Limousin area (Gébelin et al., 2004, 2006).

During the second Late Carboniferous –Early Permian extensional episode, N-S to NE-SW stretching developed in the FMC (Faure, 1995). The opening of the intra-mountain coal basins

throughout the FMC, either as half graben or pull-apart structures, complies with this tectonic pattern. At that time, the SHF behaved as a left lateral brittle wrench fault in accordance with this general pattern (Grolier and Letourneur, 1968; Feybesse, 1981; Blès et al., 1989). The NE-SW extension is also well recorded by the syntectonic Stephanian basins in the Montmarault area. Our modeling shows the pluton extends underneath most of these basins, the opening of which was controlled by listric faults (Faure, 1995). At present, the Montmarault pluton outcropping limits correspond to the brittle part of those listric faults that roughly trend perpendicular to the SHF (Figure 3 and Animation 1).

Concerning the deeper geological units, our modeling shows that the northern and western parts of the Montmarault pluton are underlain by significant amounts of relatively dense and highly magnetic materials, as already suspected (Boissonas and Debeglia, 1976). In the Montmarault area, outcrops of the dioritic plutons are limited, but we assume that dioritic bodies are the likely source for the observed gravity and magnetic anomalies since this mafic lithology is the only significantly magnetic rock outcropping in the area (Figures 2d and 3, Animation 1). Moreover, abundant calcalkaline gabbro, diorite and tonalite plutons crop out in the Limousin area (e.g. Didier and Lameyre, 1971, Peiffer, 1986; Shaw et al., 1993; Cuney et al., 1993; Faure et al., 2005). These plutons were emplaced during the Middle to Late Devonian (ca. 380-370 Ma) and often exhibit a solid-state deformation developed at the pluton margins before the Namurian extensional tectonics. In the west of the study area, diorite and tonalite plutons crop out along the Marche fault (Figure 1b; Bouvier, 1985). The dioritic intrusions recognized in the Montmarault area belong to this group. Their calcalkaline geochemistry and their place in the geological framework of the Variscan Belt led some authors to propose that the deep part of magmatic arcs consists of diorites (Peiffer, 1986; Pin, 1990; Pin and Paquette, 1997; Faure et al., 2005). Together with host rocks, the diorites were involved in the Late Devonian-Early Carboniferous ductile event that predates the Middle to Late Carboniferous magmatic event, which includes emplacement of the Montmarault pluton. The discussion of the early geodynamics of the FMC is beyond the scope of this paper (see Ledru et al., 1989; Faure et al., 2005). Nevertheless, on the basis of the regional knowledge, the presence of dioritic intrusions at depth in the Montmarault area appears a reasonable assumption.

Animation 1. Geological history of Montmarault area via a 3D commented movie.
Conclusions

Gravity and magnetic data document the bulk geometry of the Montmarault massif. From east to west, the Montmarault granitic pluton is rooted in the SHF and intrudes the metamorphic series as a kilometer-thick laccolith. Together with AMS data, these 2D results are interpolated into a 3D geometrical model which integrated all currently available data and geological knowledge. A realistic geometry of Montmarault pluton is proposed, which highlights its geological history. Present V-shape geometry of Montmarault massif, structured by Stephanian half-graben coal basins was acquired during the well-documented Late Carboniferous NE-SW extensional phase. Along the SHF, this tectonic phase overprints most evidences of the Namurian ductile tectonics that prevailed during the emplacement of Montmarault massif. Our AMS and joint gravity-magnetic modeling results show that the syntectonic granitic massif roots along the SHF. And, as the pluton was emplaced in a general NW-SE extensional tectonic setting, combined with AMS results in the pluton, we therefore conclude that if the "Proto Sillon Houiller Fault" existed in Namurian times, it acted as a normal fault, at least in its northern part. In order to assess the SHF tectonic behavior at the scale of the FMC during the late orogenic stages, additional field and laboratory studies in the southern part of the SHF are needed.

Acknowledgments

We are grateful to M. Diament for providing us a SCINTREX CG3-M micro-gravimeter. We also thank the 3D Geomodeller team: Gabriel Courrioux, Antonio Guillen, Philippe Calcagno and Intrepid Geophysics team. Reviews from Pierre Keating, Olivier Vanderhaege and an anonymous reviewer allowed to significantly improve the manuscript. Geophysical maps and 2D joint gravity and magnetic forward modeling were achieved using Geosoft – GM-SYS package.

References

Améglio, L., J.L. Vigneresse and J.L. Bouchez (1997), Granite pluton geometry and emplacement mode inferred from combined fabric and gravity data, In: Bouchez, J.-L., Hutton, D.H.W., Stephens, W.E. (Eds.) (1997), *Granite: From Segregation of Melt to Emplacement Fabrics*, Kluwer Academic Publishers, Dordrecht, pp. 199–214.

Aranguren, A., J.M. Tubia, J.L. Bouchez and J.L. Vigneresse (1996), The Guiritz granite, variscan belt of Northern Spain: extension-controlled emplacement of magma during tectonic escape, *Earth Planet. Sci. Lett.*, 139, 165-176.

Arthaud, F. and Matte, P. (1977), Late-Paleozoic strike-slip faulting in southern Europe and northern Africa : Result of a right lateral shear zone between the Appalachians and the Urals, Geol. Soc. Am. Bull, 88, 1305-1320.

Aug, C. (2004), Modélisation géologique 3D et caractérisation des incertitudes par la méthode du champ de potentiel, Ph-D Thesis, École des Mines de Paris.

Babuska, V., J. Plomerova, L. Vescey, M. Granet and U. Achauer (2002), Seismic anisotropy of the French Massif Central and predisposition of Cenozoic rifting and volcanism by variscan suture hidden in the mantle lithosphere, *Tectonics*, 21, 4, 10.1029/2001TC901035.

Barbarin, B., J.M. Belin, A. Fernandez, J. Grolier, A. Lacour and M. Turland (1985), Observations de pétrologie structurales sur le granite de Montmarault (Allier, Puy-de-Dôme), *Géol. de la France*, 4, 381-388.

Belin, J.-M. (1983), Le massif de Saint-Gervais d'Auvergne (Massif Central français). Evolution d'un ensemble granitique composite, Ph-D Thesis, Clermont-Ferrand II University, France, pp 196.

Be Mezème, E., M. Faure, Y. Chen, A. Cocherie and J.-Y. Talbot (2006), Structural, AMS and geochronological study of a laccolith emplaced during Late Variscan orogenic extension: the Rocles pluton (SE French Massif Central), *International Journal of Earth Sciences*, DOI:10.1007/s00531-006-0098-2.

Benn, K., R.J. Horne, D.J. Kontak, G. Pignotta, and N.G. Evans (1997), Syn-Acadian emplacement model for the South Mountain Batholith, Meguma Terrane, Nova Scotia: magnetic fabric and structural analyses, *Geol. Soc. Am. Bull.*, 109, 1279–1293.

Benn, K., N.M. Ham, G.S. Pignotta, and W. Bleeker (1998), Emplacement and deformation of granites during transpression: magnetic fabrics of the Archean Sparrow pluton, Slave Province, Canada, *J. Struct. Geol.*, 20, 1247–1259.

Benn, K., W.R. Roest, P. Rochette, N.G. Evans and G.S.Pignotta (1999), Geophysical and structural signature of syntectonic batholith construction: the South Mountain Batholith, Meguma Terrane, Nova Scotia, *Geophysical Journal International*, 136, 144–158.

Berthier, F., Duthou J.-L. and Roques M (1979), Datation géochronologique Rb/Sr sur les roches totales du granite de Guéret (Massif Central). Age fini-dévonien de la mise en place de l'un de ses faciès, *Bulletin BRGM*, 1, 2, 59-72.

Blès, J. L., D. Bonijoly, C. Castaing and Y. Gros (1989), Successive post-variscan stress fields in the French Massif Central and its borders (western European plate): Comparison with geodynamic data, *Tectonophysics*, 169, 79-111.

Boissonas, J. and N. Debeglia (1976), Etude géophysique du granite magnétique de Montmarault (Allier) et corrélation avec la pétrographie, Rapport BRGM 76 SGN 401 GPH.

Bonijoly, D. and C. Castaing (1984), Fracturation et genèse des bassins stéphaniens du Massif central français en régime compressif, *Ann. Soc. Géol. Nord*, t. CIII, 187-199.

Bouvier, P. (1985), Les gabbro-diorites du domaine de Boussac. Pétrographie, minéralogie, géochimie. Relations avec le magmatisme acide du domaine de la Marche-Guéret, Unpubl. Ph-D Thesis, Orsay University, Paris XI, France, 262 pp.

Bouchez, J.L. and G. Gleizes (1995), Two-stage deformation of the Mont-Louis–Andorra granite pluton (Variscan Pyrenees) inferred from magnetic susceptibility anisotropy, *J. Geol. Soc. London*, 152, 669–679.

Brun, J.P. and J.P. Burg (1982), Combined thrusting and wrenching in the Ibero-Armorican arc: a corner effect during continental collision, *Earth Planet. Sci. Lett.*, 6, 319-332.

Brun J.P., D. Gapais, J.P. Cogné, P. Ledru and J.L. Vigneresse (1990), The Flamanville granite (NW France): an unequivocal example of an expanding pluton, *Geological Journal*, 25, 271–286.

Burg, J.P., J.P. Brun and J. Van Den Driessche (1990), Le Sillon Houiller du Massif Central français: Faille de transfert pendant l'amincissement crustal de la chaîne varisque? *C. R. Acad. Sci.*, Série II., Issue 1, 311, 147-152.

Burg, J.P., J. Van Den Driessche and J.P. Brun (1994), Syn-to post thickening in the Variscan Belt of the Western Europe: modes and structural consequences, *Géologie de la France*, 3, 33–51.

Cartannaz, C., P. Rolin, A. Cocherie, D. Marquer, O. Legendre, C. M. Fanning and P. Rossi (2006), Characterization of wrench tectonics from dating of syn- to post-magmatism in the north-western French Massif Central, *Int. J. Earth Sci.*, DOI 10.1007/s00531-006-0101-y.

Castro, A. (1986), Structural pattern and ascent model in the Central Extremadura Batholith, Hercynian Belt, Spain, J. Struct. Geol., 8, 633–645, doi: 10.1016/0191-8141(86)90069-6.

Crawford, M.L., K.A. Klepeis, G. Gehrels, and C. Isachsen (1999), Batholith emplacement at midcrustal levels and its exhumation within an obliquely convergent margin, *Tectonophysics*, 312, 57–78, doi: 10.1016/S0040-1951(99)00170-5.

Cruden, A.R. and P. Launeau (1994), Structure, magnetic fabric and emplacement of the Archean Lebel Stock, SW Abitibi Greenstone Belt, *J. Struct. Geol.*, 16, 677–691.

Cuney, M., J.M. Stussi, M. Brouand, D. Dautel, A. Michard, Y. Gros, D. Poncet, P. Bouton, M. Colchen and J.P. Vervialle (1993), Géochimie et géochronologie U/Pb des diorites quartziques du Tallud et de Moncoutant: nouveaux arguments pour une extension de la « Ligne Tonalitique Limousine » en Vendée, *C. R. Acad. Sci.*, 316, 2, 1383-1390.

Debeglia, N. (1973), Levé areomagnétique Massif Central 1972 : compilation, Rapp. B.R.G.M. 73 MET/ GPH 029.

Debeglia, N. and A. Gérard (1975), Eléments interprétatifs de bases obtenus à l'issue du levé aeromagnétique "Massif central 1972", *Rapport B.R.G.M.*, 36 p.

Didier, J. and J. Lameyre (1971), Les roches granitiques du Massif Central, In: *Symp. J. Jung*, Plein-Air Service, Clermont-Ferrand, pp 133-155.

Duguet, M. (2003), Evolution tectono-métamorphique des unites de type Thiviers-Paysac dans la chaîne hercynienne française (Massif Cental et Vendée), Thesis of Orléans University, 255 pp.

Edel, J.B. and A. Gachon (1973), Massif central: levé aéromagnétique 1972. Rapport B.R.G.M. 73 MET/GPH 030.

Faure, M. and J.F. Becq-Gireaudon (1993), Sur la succession des épisodes extensifs au cours du désepaississement carbonifère du Massif Central Français, *C. R. Acad. Sci.*, Paris, 316, 2, 967-973.

Faure, M., J. Grolier and J. Pons (1993), Extensional ductile tectonics of the Sioule metamorphic series (Variscan French Massif Central), *Geol. Rundschau*, 82, 461-474.

Faure, M. (1995), Late Carboniferous extension in the Variscan French Massif central, Tectonics, 14, 132-153.

Faure M., E. Be Mézème, M. Duguet, C. Cartier and J.-Y. Talbot (2005), Paleozoic tectonic evolution of medioeuropa from the example of the French Massif central and Massif Armoricain, *Journal of the virtual Explorer*, ISSN 1441-8142, 19, 5, 26 p.

Feybesse, J.L. (1981), Tectonique et microtectonique de la région de Laroquebrou (Cantal, Massif central français). Rôle de la déformation ductile et évolution du Sillon Houiller, Ph-D Thesis, Clermont Ferrand University, France, 250 pp.

Gébelin, A., G. Martelet, M. Brunel, M. Faure and P. Rossi (2004), Late Hercynian leucogranites modeling as deduced from new gravity data: the example of the Millevaches massif, Massif Central, France, *Bull. Soc. Géol. Fr.*, 175, 3, 239-248.

Gébelin A., G. Martelet, Y. Chen, M. Brunel, and M. Faure (2006), Structure of late Variscan Millevaches leucogranite massif in the French Massif Central: AMS and gravity modelling results, *J. Struct. Geol.*, 28, 148-169.

Gleizes, G., D. Leblanc and J.L. Bouchez (1997), Variscan granites of the Pyrenees revisited: their role as syntectonic markers of the orogen, *Terra Nova*, 9, 38–41.

Granet, M., G. Stoll, J. Dorel, U. Achauer, G. Poupinet and K. Fuchs (1995a), Massif Central (France): New constraints on the geodynamical evolution from teleseismic tomography, *Geophys. J. Int.*, 121, 33-48.

Granet, M., M. Wilson and U. Achauer (1995b), Imaging a mantle plume beneath the French Massif Central, *Earth Planet. Sci. Lett.*, 136, 281-296.

Granet, M., S. Judenherc and A.Souriau (2000), Des images du système lithosphère - asthénosphère sous la France et leurs implications géodynamiques: l'apport de la tomographie télésismique et de l'anisotropie sismique, *Bull. Soc. Géol. France*, 171, 2, 149-167.

Grolier, J. and J. Letourneur (1968), L'évolution tectonique du grand Sillon Houiller du Massif Central français, *XXIII International Geological Congress.* 1, 107-116.

Guillen, A., V. Delos and P. Ledru (2000), A new method to determine lithology and geometry in depth: 3D lithoinversion of potential fields, extended abstract in *European Geophysical Society, 25th General Assembly*, Katlenburg– Lindau, Federal Republic of Germany (DEU).

Guillen, A., G. Courrioux, P. Calcagno, R. Lane, T. Lees and P. McInerney (2004), Constrained gravity inversion applied to Broken Hill, extended abstract in: *Australian society of exploration geophysicists 17th geophysical conference and exhibition*, Sydney, Australia.

Guillen, A., A. Joly, P. Calcagno, G. Courrioux, D. Fitzgerald, P. McInerney and R. Seikel (2006), Coupling 3D Modeling and Forward-Inverse modeling of potential field data (gravity and magnetic data and tensor components), extended abstract in *International Association for Mathematical Geology 2006*, session 12, Liege, Belgium.

Hutton, D.H.W. (1982), A tectonic model for the emplacement of the Main Donegal granite, NW Ireland, J. Geol. Soc. London, 139, 615-631.

Hutton, D.H.W. (1988), Granite emplacement mechanisms and tectonic controls: Inferences from deformation studies, *Royal Society of Edinburgh Transactions*, 79, 452–455.

Jover, O. (1986), Les massifs granitiques de Guéret et du Nord-Millevaches. Analyse structurale et modèle de mise en place (Massif Central Français), Thesis, Nantes University (France), 233 p.

Lajaunie, C., G. Courrioux and L. Manuel (1997), Foliation fields and 3D cartography in geology: principles of a method based on potential ,interpolation, *Mathematical Geology*, 29, 571–584.

Lardeaux, J.-M., P. Ledru, I. Daniel and S. Duchene (2001), The Variscan French Massif Central: a new addition to the ultra-high pressure metamorphic club: exhumation processes and geodynamic consequences, *Tectonophysics*, 332, 143-167.

Leblanc, D., G. Gleizes, P. Lespinasse, P. Olivier and J.L. Bouchez (1994), The Maladeta granite polydiapir, Spanish Pyrenees: a detailed magneto-structural study, *J. Struct. Geol.*, 16, 223–235.

Leblanc, D., G. Gleizes, L. Roux and J.L. Bouchez (1996), Variscan dextral transpression in the French Pyrenees: new data from the Pic des Trois-Seigneurs granodiorite and its country rocks, *Tectonophysics*, 261, 331–345.

Ledru, P., J.M. Lardeaux, D. Santallier, A. Autran, J.M. Quenardel, J.P. Floc'h, G. Lerouge, N. Maillet, J. Marchand and A. Ploquin (1989), Où sont les nappes dans le Massif Central français ? *Bull. Soc. Géol. France*, 8, 605–618.

Lucazeau, F., G. Vasseur and R. Bayer (1984), Interpretation of heat flow data in the French Massif Central, *Tectonophysics*, 103, 1-4, 99-119.

Martelet, G., N. Debeglia and C. Truffert (2002), Homogénéisation et validation des corrections de terrain gravimétriques jusqu'à la distance de 167 km sur l'ensemble de la France, *C. R. Geosciences*, 334, 449-454.

Martelet, G., P. Calcagno, C. Gumiaux, C. Truffert, A. Bitri, D. Gapais and J. P. Brun (2004), Integrated 3D geophysical and geological modeling of the Hercynian Suture Zone in the Champtoceaux area (south Brittany, France), *Tectonophysics*, 382, 1-2, 117-128.

Matte, P. (1986), La chaîne varisque parmi les chaînes paléozoïques péri atlantiques, modèle d'évolution et position des grands blocs continentaux au Permo –Carbonifère, *Bull. Soc.Géol. France*, 8, 9 – 24.

McCaffrey, K.J.W. (1992), Igneous emplacement in a transpressive shear zone: Ox Mountains igneous complex, *J. Geol. Soc. London*, 149, 221–235.

McNulty, B.A., O.T. Tobisch, A.R. Cruden, and S. Gilder (2000), Multistage emplacement of the Mount Givens pluton, central Sierra Nevada Batholith, California, *Geol. Soc. Am. Bull.*, 112, 119–135, doi: 10.1130/0016-7606.

Ménard G., and P. Molnard (1988), Collapse of a Hercynian Tibetan Plateau into a late Paleozoic European Basin and Range province, *Nature*, 334, 235-237.

Menichetti, V. and A. Guillen (1983), Simultaneous interactive magnetic and gravity inversion, *Geophys. Prospect.*, 31, 929–944.

Molnar, P. (1988), Continental tectonics in the aftermath of platetectonics, Nature, 335, 131-137.

Neves, S. and A. Vauchez (1995), Magmas emplacement and shear zone nucleation and development in northeast Brazil (Fazenda Nova and Pernambuco shear zones; state of Pernambuco), *Journal of South American Earth Sciences*, 8, 289-298.

Peiffer, M.T. (1986), La signification de la ligne tonalitique du Limousin. Son implication dans la structuration varisque du Massif Central français, *C. R. Acad. Sci.*, Fr., Paris, 303, 4, 305-310.

Pe-Piper, G., I. Koukouvelas and D.J.W. Piper (1998), Synkinematic granite emplacement in a shear zone: The Pleasant Hills pluton, Canadian Appalachians, *Geol. Soc. Am. Bull.*, 110, 523–536.

Perrier, G. and J.C. Ruegg (1973), Structure profonde du Massif Central français, Ann. Géophysique, 29, 435-502.

Pin, C. (1990), Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data, *Tectonophysics*, 177, 215-227.

Pin, C. and J.L. Paquette (1997), A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the late Devonian Brévenne metavolcanics, Massif Central (France), *Contrib. Mineral. Petrol.*, 129, 222-238.

Roig, J. Y., M. Faure and P. Ledru (1996), Polyphase wrench tectonics in the southern French Massif Central. Kinematic inferences from pre- and syn-kinematic granitoïds, *Geologische Rundschau*, 85, 138-153.

Roig J.-Y. and M. Faure (2000), La tectonique cisaillante polyphasée du Sud-Limousin (Massif central français) et son interprétation dans un modèle d'évolution polycyclique de la chaîne hercynienne-Polyphase shear tectonics in the South-Limousin (French Massif Central) and its interpretation in a polycyclic evolution model of the Hercynian Belt., *Bull. Soc. Géol. Fr.*, 171, 3, 295-307.

Santallier, D., J.M. Lardeaux, J. Marchand and C. Marignac (1994), Metamorphism. *In*: Keppies J.D. (Eds), Premesozoic geology in France and related areas, *Springer Verlag*, 325-340.

Schellart, W.P., and G.S. Lister (2005), The role of the East Asian active margin in widespread extensional and

strike-slip deformation in East Asia, Journal of the Geological Society, London, 162, 959-972.

Shaw, A., H. Downes and M.F. Thirlwall (1993), The quartz-diorites of Limousin: elemental and isotopic evidence for Devono-Carboniferous subduction in the Hercynian belt of the French Massif Central, *Chem. Geol.*, 107, 1-18.

Sobolev, S.V., H. Zeyen, M. Granet, U. Achauer, C. Bauer, F. Werling, R. Altherr and K. Fuchs (1997), Upper mantle temperatures and lithosphere-asthenosphere system beneath the French Massif Central constrained by seismic, gravity, petrologic and thermal observations, *Tectonophysics*, 275, 1-3, 143-164.

Sossa-Simawango M. (1980), Contribution à la pétrologie, la géochimie, la géologie structurale du massif granitique de Montmarault (Massif central français), Ph-D Thesis, Orléans University, France.

Talbot, J.-Y., G. Martelet, G. Courrioux, Y. Chen and M. Faure (2004), Emplacement in an extensional setting of the Mont Lozère-Borne granitic complex (SE France) inferred from comprehensive AMS, structural and gravity studies, *J.Struct.Geol.*, 26, 1, 11-28.

Talbot, J.-Y., M. Faure, Y. Chen and G. Martelet (2005), Pull-apart emplacement of the Margeride granitic complex (French Massif Central). Implications for the late evolution of the Variscan orogen, *J.Struct.Geol.*, 27, 9, 1610-1629.

Tapponier ,P., and Molnar P. (1979), Active faulting and Cenozoic tectonics of the Tian Shan, Mongolia, and Baikal regions, *Journal of Geophysical Research*, 84, 3425-3459.

Teyssier, C., and Tikoff, B. (1998), Strike-slip partitioned transpression of the San Andreas fault system: a lithospheric-scale approach, *Geological Society, London*, Special Publications, 135, 143-158, DOI: 10.1144/GSL.SP.1998.135.01.10

Tikoff, B., and Teyssier, C. (1992), Crustal-scale, en echelon "P-shear" tensional bridges; a possible solution to the batholithic room problem, *Geology*, v. 20, p. 927–930, doi: 10.1130/0091-7613(1992)020<0927: CSEEPS>2.3.CO;2.

Tikoff, B., and Saint Blanquat, M. (1997), Transpressional shearing and strike-slip partitioning in the Late Cretaceous Sierra Nevada magmatic arc, California, *Tectonics*, 16, 442–459, doi: 10.1029/97TC00720.

Tobisch, O.T., and Cruden, A.R. (1995), Fracture-controlled magma conduits in an obliquely convergent continental magmatic arc, *Geology*, 23, 941–944, doi: 10.1130/0091-7613(1995)023<0941:FCMCIA>2.3.CO;2.

Turland, M., V. Mathis, J. Grolier, G. Monnier, G. Croisé, P. Debriette, D. Milhau, F. Mercier-Batard, J.-P. Carroué, M. Piboule and N. Debeglia (1989), Notice explicative, Carte géol. France, (1/50 000), feuille Bourbon l'Archambault, Montluçon, Montmarault, 82 p., *Ed. B.R.G.M.*, Orléans, France.

Van den Driessche, J. and J.P. Brun (1989), Un modèle de l'extension paléozoïque supérieur dans le sud du Massif central, *C. R. Acad. Sci.*, Série 2, 309, 1607-1613.

Vanderhaege, O. and C., Teyssier (2001), Partial melting and flow of orogen, Tectonophysics, 342, 451-472.

Vigneresse J.-L. and J.-P. Brun, (1983), Les leucogranites armoricains marqueurs de la déformation régionale : apport de la gravimétrie, *Bull. Soc. Géol. Fr.*, t.XXV-3, 357-366.

Vigneresse, J.L. (1990), Use and misuse of geophysical data to determine the shape at depth of granitic intrusions, *Geological Journal*, 25, 249–260.

Vigneresse, J.L. and J.L. Bouchez (1997), Successive granitic magma batches during pluton emplacement: the case of Cabeza de Araya (Spain), *Journal of Petrology*, 38, 1767–1776.

Weinberg, R.F., Hodkiewicz, P.F., and Groves, D.I. (2004), What controls gold distribution in Archean terranes?, *Geology*, 32, 545–548, doi: 10.1130/G20475.1.

Zeyen, H., O. Novak, M. Landes, C. Prodehl, L. Driad and A. Hirn (1997), Refraction-seismic investigations of the northern Massif Central (France), *Tectonophysics*, 275, 1-3, 99-117.

2. LES MASSIFS GRANITIQUES DE GLENAT, OMPS ET BOISSET

Cette étude a fait l'objet d'un article soumis à **Geophysical Journal International** qui est reproduit par la suite. Les mesures gravimètriques acquises sur ce site d'étude ont été reportées en annexe 3.

AMS and gravity inversion studies of the relationships between granitic plutons and a nearby fault. Example from granitic plutons and Sillon Houiller Fault in the southern part of the Variscan French Massif Central.

Joly Aurore^{1, 2, *}, Faure Michel¹, Martelet Guillaume² and Chen Yan¹

¹Institut des Sciences de la Terre d'Orléans, UMR CNRS 6113, Université d'Orléans, BP 6759, F45067, Orléans, France.

² Bureau de Recherches Géologiques et Minières, 3 avenue Claude Guillemin, BP 6009, Orléans, F45060, Cedex 2, France.

* Corresponding author: <u>Aurore.Joly@univ-orleans.fr</u>

Abstract

In the southern part of the Variscan French Massif Central (FMC), the Glénat, Omps and Boisset plutons crop out on both sides of the crustal-scale Sillon Houiller Fault (SHF). A multidisciplinary study of these three plutons has been undertaken in order to elucidate the relationships between faulting and magmatic processes during the Late Carboniferous. Chemical U-Th-Pb dating, structural observations, petrographic and magnetic fabric analyses, gravity inversion, as well as similar studies from other plutons in the FMC, allow us to draw the following conclusions: 1. the three plutons were emplaced in Late Carboniferous; 2. the Glénat and Omps plutons acquired their final structure during the magma crystallization and record a NW-SE maximum stretching trend; 3. in the Boisset pluton, post magmatic fabrics predominate with a NNW-SSE trending lineation; 4. gravity inversion via a 3D preliminary geological modelling does not show any anomaly along the SHF. Despite the apparent cartographic relationship that exists between the SHF and the three plutons, our study reveals no genetic link between them and question about the existence of the SHF at the time of pluton emplacement. Another significant result of this study is that the structural pattern deduced from the Glénat, Omps and Boisset plutons confirms the late orogenic extensional tectonic regime that prevailed during Namurian time in the French Massif Central.

Keywords: granite fabrics, Sillon Houiller Fault, chemical U-Th-Pb dating, Anisotropy of Magnetic Susceptibility (AMS), gravity investigations and inversion, 3D modelling, Variscan Belt.

1. Introduction

The collapse of mountain belts is often accommodated by ductile extensional tectonics, crustal melting and syntectonic magma emplacement (e. g. Malavieille 1993; Faure 1995; Vanderhaege & Teyssier 2001). Examples of granitic plutons emplaced during late- or post-orogenic extensional phases have been documented in many collisional belts. For instance in the Variscan French Massif Central (FMC), several plutons exhibit subsolidus or postsolidus fabrics that accommodate with the NW-SE regional extensional tectonics (e. g. Faure & Pons 1992; Faure 1995; Talbot et al. 2004, 2005a, 2005b; Gébelin et al. 2004; Be Mezème et al. 2006a, 2006b). Since they may record tectonic regimes developed during a short time interval, granitic bodies can be used as strain gauges allowing an accurate reconstruction of the late stages of the tectonic evolution of orogenic belts (Gleizes et al. 1997; Benn et al. 2001).

The anisotropy of magnetic susceptibility (AMS) is a powerful tool to investigate the internal structures within plutons where the macroscopic preferred mineral orientation is poorly expressed or absent (Bouchez 1997). Lineation is often difficult to observe in the field because, unless they are significantly deformed, granitoids do not develop planar and linear fabrics that can be easily observed. The advantage of using magnetic techniques in fabric studies of plutons lies in the fact that accurate and reproducible foliation and lineation measurements can be obtained for any outcrop in a pluton (Bouchez 1997, 2000). Hence, the significance of the planar and linear fabrics in terms of rheological behaviour of a crystallizing magma (i.e. magmatic viscous flow or solid state preferred orientation) or in terms of crustal-scale tectonics (i.e. interference between pluton dynamics and regional tectonics) in a growing pluton can be discussed with good confidence.

In addition, the knowledge of the 3D shape of a pluton brings important information on the emplacement process, for example by locating the possible feeder zones (Vigneresse 1990; Aranguren et al. 1996; Améglio et al. 1997; Joly et al. 2007b) and by defining the relationships between the host rocks and the granitic pluton. Several studies illustrate the usefulness of combining gravity and structural data when investigating the emplacement mode and structural evolution of a granitic pluton (e.g. Améglio et al. 1997; Vigneresse & Bouchez 1997; Talbot et al. 2004). In order to obtain a constrained and consistent model, the 3D geological model is directly computed from the available structural and geophysical observations (i.e. AMS and gravity data), using potential-field method (Lajaunie et al. 1997). Namely, the 3D geological boundaries are quantitatively well-

constrained by using geophysical modelling (Martelet et al. 2004; Joly et al. 2007b). The validity of such 3D model is, then, assessed by inversion of gravity datasets.

This paper presents the results of a combined structural, geochronological, AMS and gravimetric investigation of Glénat, Omps and Boisset plutons in the southern part of the Variscan French Massif Central. The architecture, kinematics, and timing of these Carboniferous plutons are discussed in the structural framework of the late orogenic evolution of the Variscan chain of the FMC. The relationships between the emplacement of these plutons and the nearby Sillon Houiller Fault (SHF) are considered and compared with previous results obtained in the northern part of the SHF (Joly et al. 2007a, 2007b).

Figure 1. Structural map of the Glénat, Omps and Boisset plutons (a), located in the French Massif Central (b).

2. Geological setting

2.1. Regional tectonic framework

The Variscan Belt was built up in Paleozoic times as a result of the collision between Gondwana and Laurussia in the South and North, respectively (e.g. Matte 1986; Paris & Robardet 1990; Franke 2000). The French Massif Central is one of the largest pieces of the Variscan belt of Western Europe. It is now well established that the geological evolution of the FMC can be divided into several tectonic, metamorphic and magmatic episodes (e.g. Ledru et al. 1989; Faure et al. 2005 and enclosed references). From Late Silurian to Middle Devonian, the northward continental subduction of the Gondwana margin beneath the Armorica microplate is coeval with the formation of ultra-high pressure rocks (Lardeaux et al. 2001). Around 380 Ma, the first event, named D1 (Faure et al. 2005), is responsible for the first crustal melting and exhumation of high-pressure rocks and nappe stacking. A conspicuous NE-SW-trending stretching lineation associated with a top-tothe-SW shearing develops during D1 (Roig & Faure 2000). This stack of nappes is reworked by a second event D2 dated around 360-350 Ma (Late Devonian to Early Carboniferous), characterized by a top-to-the NW shearing and coeval with an intermediate pressure-temperature metamorphism (Roig et al. 1996; Duguet et al. 2007). A Middle Carboniferous compressional event, called D3, and dated at 340-330 Ma, characterized by South to SE-directed ductile shearing develops only in the southern part of the FMC (e.g. Arthaud & Matte 1977; Ledru et al. 1989; Faure et al. 2001). At the same time, in the northern part of the FMC, the onset on the syn-orogenic extension took place. During the Late Carboniferous times (320-290 Ma), the entire belt experienced extensional tectonics (Faure 1995).

It is worth to note that at the scale of the FMC, orogenic collapse is diachronous, beginning earlier in the north than in the south of the FMC. Moreover, extensional tectonics can be divided into late and post-orogenic events (Faure & Becq-Giraudon 1993; Faure 1995). The former event is orogen-parallel with a NW–SE maximum stretching direction and coeval with the emplacement of numerous leucogranitic to porphyritic monzogranitic plutons (Faure 1995). The later event is characterized by i) a N-S to NE-SW trending maximum stretching direction, ii) the opening of small but numerous coal basins, and iii) the emplacement of the ca. 300 Ma Velay migmatitic dome (Malavieille et al. 1990; Burg et al 1994; Ledru et al. 2001). The NNE-SSW trending Sillon Houiller fault (SHF) is a major structure of the FMC. Its Late Carboniferous (Stephanian) left-lateral brittle motion is well documented (Letourneur 1953; Grolier & Letourneur 1968; Bonijoly & Castaing 1987; Blès et al. 1989). It has been argued that the SHF was a transfer fault that accommodated the extensional tectonics of the FMC (Burg et al. 1990). However, this hypothesis must be carefully considered since the late and post extensional events were not distinguished.

Indeed, when dealing with the post-orogenic event, this attractive interpretation is in agreement with available data (Bonijoly & Castaing 1987; Blès et al. 1989; Burg et al. 1990; Faure 1995) since it may account for the development of transtensional pull-apart coal basins, but when dealing with the syn-orogenic event, the submeridian trend and brittle motion of the SHF is not in agreement with the NW-SE ductile stretching.

Therefore, the questions arise of the existence, kinematics and rheological behaviour (i.e. brittle or ductile) of the SHF in Namurian-Westphalian. An element of answer has been provided in the northernmost part of the SHF. There, it has been shown that the ca. 320 Ma Montmarault pluton was spread to the NW and rooted to the SE in the SHF (Joly et al. 2007a, 2007b). Thus if the fault already existed in Namurian times, it should have behaved as a dilatant zone representing the feeder zone of the Montmarault pluton. Along the Southern part of the SHF, several plutons crop out, but geological information is nearly absent.

2.2 The southern part of the SHF

The structural map of the southern part of the SHF displays several geological units (Figure 1a). The "Châtaigneraie" and "Millevaches" micaschist units that crop out in the eastern and western sides of the SHF, respectively belong to the Para-Autochthonous Unit (Ledru et al. 1989). These rocks form the host-rock of the analyzed plutons. In the Châtaigneraie micaschists, the foliation trends NW-SE in the southern part, around the Marcolès and Veinazès plutons, and turns toward to the north near the Omps pluton, with NE to Eastward dips. On the northeast part of the study area, the Lower Gneiss Unit (LGU) formed by medium pressure and temperature metagraywackes and metapelites overthrusts to the southwest the Para-Autochthonous unit.

The Millevaches micaschists, pinched between the SHF and Argentat fault, exhibit various attitudes, they are intruded by leucogranites (Vivier & Lasseyre 1973; Gébelin et al. 2004). To the Southwest, the Millevaches micaschists are overthrust by high grade allochthonous gneiss units. In Figure1a, the Upper Gneiss and Lower Gneiss Units (Ledru et al. 1989) are not distinguished. Lastly, the sandstone and pelite Thiviers-Payzac Unit forms the uppermost unit of the stack of nappes.

The Glénat, Omps and Boisset plutons intrude in metamorphic series. Biotite hornfelses develop in the northwest and southeast parts of the Glénat pluton, and around the Boisset pluton. In the geological map (Figure 1a), the Glénat, Omps and Boisset plutons appear in close vicinity, however, it is worth to note that this present situation is due to the Stephanian left lateral movement of the SHF. In fact, at the time of its emplacement, the Glénat pluton was located about 80 km north of the Omps and Boisset ones. Along this segment of the SHF, coal-bearing pull-apart basins are

rare. At the northwestern end of the Omps pluton, Late Carboniferous (Stephanian) sandstone and mudstone beds are turned to vertical. Subhorizontal slickenlines associated to a left-lateral brittle shearing are common (Gélard et al. 1986; Bonijoly & Castaing 1987).

To the east of the study area, the Marcolès and Veinazès porphyritic plutons have been already studied. Biotite yield ⁴⁰Ar/³⁹Ar ages around 315 Ma (Monié et al. 1999). The structure of these plutons has been determined by AMS (Olivier & Améglio 2002). To the southwest of the Veinazès pluton, the magnetic foliation is mainly WNW-ESE trending with a medium to steep northward dip. In the central part of the pluton, the lineation displays very shallow plunges and are mainly E-W trending. To the west, the magnetic lineation displays shallow to steep plunges mainly trending either E-W or NW-SE. The magnetic foliations of the Marcolès pluton are concentrated around a NW-SE trending mean direction, with generally steep ($\geq 60^{\circ}$) and northeast dips. Most of the magnetic lineations in the Marcolès pluton trend NW-SE to E-W, with a moderate (20° to 45°) southeastward plunge. Gravimetric data indicate that the Veinazès pluton is characterized by a single zone of deepening up to 2.5 km located in the center of the massif (Olivier & Améglio 2002). Conversely, for the Marcolès pluton, the maximum depth of 1.25 km is located at the East of the village of Marcolès, beneath the micaschist host rocks and is interpreted as a possible root. On the basis of these gravity and AMS data, an emplacement model of the Veinazès and Marcolès plutons in transtensional jogs opened along ENE-WSW-trending sinistral wrench faults has been proposed (Olivier & Améglio 2002). However, another interpretation suggested that the Veinazès pluton corresponds to a NE-SW km-scale tension gash which NW-SE opening direction is in agreement with the syn-orogenic extensional event (Faure 1995).

3. Petrography and structure of the Glénat, Omps and Boisset plutons

3.1. Granite petrography

Glenat pluton

The Glénat pluton is an intrusive body situated to the west of the SHF that extends along a NNE direction on 20 km in length, its average width is about 8 km in the E-W direction (Figure 1a). Most of observed contacts with the host rocks are subvertical or dipping outward of the pluton. The Glénat pluton is blue grey porphyritic to the west and homogeneous with medium grained with globular quartz grains to the east, but facies change is progressive (Figure 2a). In the porphyritic facies, the megacrysts consist of 2 cm x 1 cm sized poecilitic microcline and sub-euhedral plagioclase. Under the optical microscope, the medium grained facies presents equigranular texture (Feybesse 1981). Sometimes, quartz grains are globular monocrysts. Plagioclase is often zoned and

contains biotite inclusions. Some grains exhibit a syneusis association suggesting that they crystallized early from the magma. Plagioclase is rarely included within K-feldspar.

K-feldspar is zoned orthoclase, rarely euhedral and Carlsbad twined. Perthites are numerous and thin but myrmekite is quite common. Alteration is important and grain cores are almost completely sericitised. K-feldspar contains little euhedral quartz crystals. Biotite grains generally form thick, partly chloritized, tablets, but biotites are also grouped as clusters. Apatite and zircon inclusions are abundant. Accessory minerals are muscovite, apatite, zircon, sphene and epidote. The porphyrytic facies is a biotite poor light-colored rock. K-feldspar megacrysts, that do not exceed 1 cm, present Carlsbad twins and numerous perthites. Quartz, biotite and plagioclase similar to the matrix grains are common inclusions in K-feldspar. Tourmaline rarely appears. The medium sized equigranular and porphyritic facies are granodiorite and monzonite, respectively (Vivier 1970).

Omps pluton

Situated to the east of the SHF, the Omps pluton is an ovoid massif of 30 km total length with a globular 10 km "head" followed to the South by a 20 km long to 1 km to 2 km width "tail". Along the SHF, cataclased granite develops on 500 m to 1000 m in width. The Omps pluton is composed of a grey homogeneous porphyrytic rock (Figure 2b). The microcline megacrysts may reach 5 cm whereas in the matrix, Carlbsad twined microcline is millimeter-sized. Millimeter sized globular monocrystalline quartz grains and euhedral oligoclase form the main constituents of the matrix. Chemical analyses show that the rock is a leucocratic monzonitic granite (Vivier 1970).

Boisset pluton

The 25 km long Boisset pluton develops south of the Omps body. This middle grained rock is also constituted by quartz, feldspath and biotite. The rock is mineralogically and chemically similar to the Omps monzonitic granite (Vivier 1970), but its macroscopic fabric is significantly different since the rock exhibits a conspicuous foliation (Figure 2c).

Figure 2. Characteristic textures for the Glénat, Omps and Boisset massifs. Observed thin sections are perpendicular to the magnetic foliation and parallel to the magnetic lineation defined by AMS study.
(a) Schlieren layering in the medium grain facies of the Glénat pluton. (b) Oriented accumulation of potassic feldspar megacrysts belonging to the porphyritic facies of the Omps pluton. (c) Boisset pluton strongly deformed in the solid state. The S-C surfaces, parallel to the lineation indicate a top-to-the SSW shearing. (d) Slickenlines with a pitch of 40°S in a N°165 vertical granitic fault plane show sinistral movements. (e) and (f) Magmatic textures, e: large and undeformed biotite (Bi) and quartz (Qz) grains coexist with K-feldspar (FK) indicating primary formation; f: Compositional zoning of a plagioclase. (g) Microstructure with weak solid-state deformation: Quartz grains are weakly recrystallized with a slight neograin formation, biotite is bent. (h) Intense solid state fabric in Boisset granite mylonite showing ribbon of recrystallized quartz grain and sheared biotite.

Contact aureole rocks

In the study area, around all the plutons, a contact metamorphic aureole of ca 1km wide develops at the expense of the country rock micaschist, metagrauwacke or quartile (Figure 1). Between the Boisset and Marcolès plutons, the country rocks throughout more than 2-km are changed into hornfels. In the vicinity of the plutons, the regional foliation is deformed by a NW-SE crenulation or by post folial folds with axes also parallel to this crenulation. Immediately at the pluton contact, the host rock consists sometimes of massive black hornfels, but more generally, the regional foliation is overprinted by biotite, muscovite, andalusite, garnet or cordierite porphyroblasts. The contact metamorphic minerals such as micas or andalusite, frequently oriented along a NW-SE or NNW-SSE trend, define a mineral lineation. In sections perpendicular to the foliation and parallel to the mineral lineation, the contact metamorphic minerals are boudinaged, and shear criteria are well developed. For instance, garnet porphyroblasts fringed by quartz or chlorite asymmetric pressure shadows (Figure 3a), sigmoidal shapes of muscovite or oxide minerals (Figure 3b), feldspar surrounded by asymmetric quartz pressure shadows (Figure 3e), shear bands (figure 3c), polycrystalline quartz aggregate with an oblique shape fabric of the recrystallized neograins (Figure 3d) are common kinematic indicators, indicating a top-to-the SE sense of shear. The early minerals are also deformed, for instance staurolite grains, formed during the early regional metamorphism coeval with the regional D2 event (Faure et al. 2005; Duguet et al. 2007), are boudinaged (Figure 3f) and the voids are filled by quartz or chlorite aggregates.

As a whole, shear criteria indicate normal motion, with the host rock being down-faulted with respect to the granite. On the western margin of the Glénat pluton, the sense of shear is top-to-the West or NW, and in the eastern margin of the Omps and Boisset plutons, the sense of shear is top-to-the-East or SE. These kinematic indicators coeval with the pluton emplacement are markers of a NW–SE stretching.

Figure 3. Optical photomicrographs showing contact aureole of the Glénat, Omps and Boisset massifs and their associated defomations. (a) Quartz and muscovite asymmetric pressure shadows around garnet porphyroblast showing top-to-the southeast shearing recristallisation tails (contact aureole of Glénat pluton: 44°46'47.2"N, 2°12'30.5"E). (b) Sigmoidal iron oxide in the contact aureole of Boisset pluton; 44°44'13.7"N, 2°14'10.2"E. (c) Southeastward post-folial shear bands and K-felspar sigmoidal (contact aureole of Boisset pluton: 44°44'13.7"N, 2°14'10.2"E. (c) Southeastward post-folial shear bands and K-felspar sigmoidal (contact aureole of Boisset pluton: 44°44'11.0"N, 2°13'48.0"E). (e) Asymmetric quartz pressure shadows around K-felspar clast showing a top-to-the SE shearing in contact micaschists around Boisset pluton; 44°47'4.5"N, 2°15'7.2"E. (f) Staurolite crystallized during an early regional metamorphic and boudinaged during the Boisset pluton emplacement, voids that accommodated the brittle stretching are filled by chlorite contact aureole; 44°46'5.4"N, 2°10'19.1"E.

3.2. Macroscopic structures within the plutons

Numerous horizontal slickenlines developed on N-S trending fault planes develop in the plutons in vicinity of the SHF (Figure 2d). These brittle structures are the only ones that can be related to the activity of the SHF. The statistical analyses of jointing, enclaves, schlieren and K-feldspar megacrysts (KFM) preferred orientation have been carried out in the Glénat, Omps and Boisset plutons (Feybesse 1981). According to this study, in the Glénat pluton, the KFM fabric is rather scattered, but flat or low dip planar predominates.

Within the Omps pluton, the KFM planar preferred orientation changes from N-S to N100E and N150E (Figure 2b). At the scale of the entire pluton, the foliation pattern reveals an elliptic shape in map view and suggests a sub-vertical funnel geometry. Along the northwest boundary of the Omps pluton, the planar fabric is characterized by a steep lying foliation containing a N120°E trending stretching lineation marked by elongated enclaves and NE-SW trending aplitic veins that correspond to cross-joints (Feybesse 1981). The northern margin of the Omps pluton is interpreted as a dextral strike-slip fault (Feybesse 1981).

The Boisset pluton is a southeastward dipping 1 km thick granitic slice with sharp and concordant contacts with the host-rocks. Inside the pluton, the KFM fabric is characterized by a dominant N-S trending foliation with steeply plunging dips towards the SE (40° to 90°) and by a NNW-SSE trending, southeast dipping, mineral lineation (Feybesse 1981). In the section perpendicular to the foliation and parallel to the lineation, kinematic indicators such as S-C fabrics, sigma-type porphyroclast systems, sigmoidal biotite or quartz grain oblique shape fabric imply a top-to-the SSE shearing with a dextral component (Figure 2c). This kinematics is not in agreement with the left-lateral motion of the SHF. The discrepancy between this normal dextral shearing and the regional sinistral movement of the SHF has been explained as the result of small-scale conjugate shear zone from the main sinistral fault (Feybesse 1981). However, it is worth to note that the sinistral and dextral motions occur in brittle and ductile regimes, respectively, and, as argued below, the two displacements are not contemporaneous.

3.3. Microstructures

Several works attempted to define petro-structural criteria to distinguished magmatic or solid-state textures (e. g. Paterson et al. 1989; Bouchez et al. 1990, Passchier & Trouw 1996, Vernon 2000). Based on detail analyses of thirty thin-sections by optical microscope, the microstructures of the Glenat, Omps and Boisset plutons can be divided into three classes (Figures 2 and 4).

Class 1 microstructure is characterized by well-developed crystal faces of early crystallizing minerals such as feldspar and micas, and the lack of extensive dynamic recrystallization of minerals. Crystal-plastic deformation is absent, as indicated by quartz grains with weak undulose extinction only or rare subgrain boundaries. Plagioclase crystals exhibit concentric igneous zonation, and most of them have euhedral to subhedral crystal habits (Figure 2e), indicating that the rock did not experience significant high-temperature subsolidus strain and recrystallization. In Class 1, the magmatic fabrics are well preserved with pristine igneous textures, showing that the mineral orientations developed in the rocks during magma crystallization and were not subsequently deformed under solid-state conditions. Most of the northern part of the Glénat pluton and the central part of the Omps pluton belong to this class (Figure 4).

Class 2 microstructure corresponds to weak solid-state deformation. These rocks show evidence of high-temperature plastic deformation features, such as quartz grains partly replaced by subgrains with a chess board pattern, and kinked but stable biotite (Figure 2g). High temperature deformation features such as high-angle sub-grain boundaries and small sized recrystallized new grains are common. This microstructure developed in the transitional rheological state between magmatic and solid states. The southern part of the Glénat pluton and the northwestern margin of the Omps pluton (Figure 4) constitute the most important areas where Class 2 microstructure can be observed.

Class 3 microstructure occurs in protomylonitic to mylonitic bands where intense solid-state deformation is easily recognized in the field since the rock exhibits well-developed planar and linear fabrics (Figure 2h). At the thin section scale, biotite and quartz grains are organized in ribbons forming a gneissic texture. The primary quartz grains, without exception, are recrystallised and replaced by aggregates of small sized neograins, elongated in the same direction and with serrated grain boundaries. Biotites are intensely deformed with a "mica-fish" shape. Feldspar often displays intense undulose extinction. Class 3 microstructure characterizes the entire Boisset pluton, and it can be also observed in the southern tail of the Omps pluton, however, there the mylonitic fabric is often erased and overprinted by a cataclastic texture. More locally, meter scale mylonitic shear zones are developed in the northern and western parts of the Omps pluton (Figure 4).

Figure 4. Deformation domains within the Glénat, Omps and Boisset plutons.

4. New U-Th-Pb chemical dating

Previous geochronological data on the Glénat, Omps and Boisset granitic plutons yielded quite young Rb/Sr whole rock ages of 272 ± 4 Ma, 270 ± 15 Ma and 281 ± 10 Ma, respectively (Vivier & Lasseyre 1973). Nowadays, these results are poorly reliable since the datings have been performed on whole rock using several samples to derive an isochron. Nevertheless, since the age constraint is an essential parameter for the understanding of the emplacement of the three plutons in their regional tectonic frame, new datings have been undertaken using single grain and in situ techniques.

In-situ U-Th-Pb chemical dating of monazite by EPMA combined with microstructural and petrographic analyses has been successfully applied to constrain the timing of pluton emplacement or metamorphic processes (e.g. Suzuki & Adachi 1991; Montel et al. 1996; Cocherie et al. 2005; Be Mezème et al. 2006a; Cocherie & Legendre 2007). A similar methodology as those presented in the above-cited works has been used in the case of the Glenat, Omps and Boisset plutons.

4.1. Analytic procedure

Monazite grains are directly investigated with respect to their textural environment in thin section (Williams & Jercinovic 2002). Scanning electron microprobe (SEM) in back-scattered electron mode allows us to avoid micro-inclusions, altered domains and all other components of non-monazite composition. SEM images commonly show heterogeneous domain compositions, which can be related either to discrete age domains or to variations of Th and U composition during the various stages of recrystallisation of monazite within a period of less than 1 Ma.

Monazite grains are analyzed with a Cameca SX 50 electron microprobe; for the detailed analytical procedure see Cocherie et al. (1998). According to this procedure, detection limit (2σ) is 150 ppm for Pb and U, the absolute error being taken as 150 ppm. A systematic relative error of 2% is considered for Th as well as for U concentrations above 7500 ppm, in order to avoid an unrealistic low error for U-enriched grains. In obvious need of a program to simplify the individual age and isochron mean age calculations, Pommier et al. (2002) wrote *EPMA Dating*, a Microsoft Excel add-in software for determining U–Th–Pbtotal ages from electron probe microanalyser (EPMA) measurements. This program calculates an age for each individual point analysis from raw data. Individual analyses of poorer quality because of their major oxide composition and the maximum acceptable errors were rejected. All the parameters needed for calculating mean and intercept ages are computed and grouped in a specific table ready for plotting with the ISOPLOT program (Ludwig 1999).

The starting assumptions of the chemical U-Th/Pb dating method on monazite are: i) common Pb is negligible as compared to the amount of thorogenic and uranogenic Pb; ii) no radiogenic Pb loss occurred since closure of the system; iii) a single age is assumed at each individual spot analysis. Considering monazite, after many cross-checks with conventional isotopic U–Pb age determinations (e.g. Montel et al. 1996; Cocherie et al. 1998) it is now accepted that the EPMA spatial resolution allows avoiding inclusions and altered domains that could provide most of the common Pb. Thus, the first assumption of negligible common Pb can be accepted as true in monazite. Similarly for the second assumption, monazite appears to be a very robust reservoir for radiogenic Pb (cf. the recent experimental work by Cherniak et al. 2004). Cocherie et al. (1998) have shown that when no hydrothermal fluid interacts with the mineral, Pb diffusion remains insignificant, even for complex polygenetic monazite (Montel et al. 1996, 2000; Braun et al. 1998; Finger et al. 1998; Williams et al. 2001; Williams & Jercinovic 2002). Because of its higher spatial resolution, EPMA is the most efficient method to avoid mixed-age domains. Finally, the MSWD calculation must agree with the Wendt & Carl (1991) criteria to certify the statistical significance of the calculated average age.

4.2. Sampling

Each pluton has been sampled for the geochronological study at 44°56'24.3"N and 2°15'46.9''E for the Glénat pluton (G14), at 44°55'27.5''N and 2°16'04.5''E for the Omps pluton (O17) and at 44°44'58.4''N and 2°15'01.9''E for the Boisset pluton (B63). These samples contain a common mineral composition of quartz, plagioclase, K-feldspar, biotite, zircon, apatite, monazite, xenotime, ilmenite, hematite and muscovite. Monazite is found as inclusions either in biotite or in feldspar. Analyzed monazite grain sizes are comprised between 50 and 100µm. The hand samples of Glénat and Omps plutons do not show any macroscopic mineral preferred orientation. Under the microscope, in the dated samples, quartz grains reveal some weak undulose extinction and are almost free of sub-grain boundaries. Biotites are not deformed. Ductile deformation is totally lacking in feldspars and compositional zoning of plagioclase is locally observed. These mineral microstuctures lack of any solid-state deformations and appear as characteristic of a magmatic flow. Conversely, the Boisset sample (B63) shows severe intracrystalline plastic deformation. Quartz grain size reduction due to dynamic recrystallization is well developed. The neograins are arranged in a ribbon pattern and exhibit often an oblique shape fabric. Highly sheared biotites anastomose around the weakly deformed but recrystallized K-feldspar porphyroclast. SEM observations (Figure 5) are consistent with the optical observations. None of these monazite types exhibits any zoning. Therefore, the obtained dating can be confidently considered as the crystallization age of the Glenat, Omps and Boisset granitic magmas coeval with their emplacement time.

Figure 5. BSE images of representative monazite grains from the Glénat, Omps and Boisset granites. The upper raw images (a, b) illustrate the textural relationships of monazite grains with the surrounding minerals. Monazite is included in biotite or along biotite grain boundary. The lack of U-Th zonation in monazite complies with a single stage of crystallization (c, d).

4.3. Results

Figure 6. U/Pb vs Th/Pb – isochron diagrams for monazites from each studied pluton: Glénat, Omps and Boisset.

EPMA U, Th and Pb data processing is described in detail in Cocherie & Albarède (2001) and Cocherie et al. (2005). The Th/Pb vs. U/Pb plot is used to represent the results (Cocherie & Legendre 2007). The large range of Th/U allows the regression line to be well defined. The mean age is calculated using the population centroid where the precision is optimal. The data from the monazite of three different plutons are plotted in Figure 6.

The mean age of the Glénat granitic pluton calculated at the population centroid for 5 grains and 92 analysed points, from sample G14, is 320.8 ± 4.5 Ma. The regression line fits quite well the theoretical isochron. As a consequence, the calculated intercepts Th–Pb and U– Pb ages are concordant at 323+13/-12 Ma and 299 +120/-132 Ma. This demonstrates that the regression line is not a mixing line between two populations of different compositions but corresponds to the crystallization of the analysed monazite grains.

The Omps pluton (O17) yields an isochron age of 331.5 ± 3.5 Ma which is calculated at the centroid of the population using 158 analyses obtained on 8 grains. The intercept ages are similar within error (U–Pb and Th–Pb ages of 369 +66/-69 Ma and 328 ±7 Ma, respectively).

Seven monazite grains were analyzed from the Boisset pluton (B63). The regression line is parallel to the reference isochron, and the two U–Pb and Th–Pb intercept ages of 378+175/-195 and 315+12/-11 Ma are similar within errors. At the centroid of the population, a mean age has been calculated at 318 +/-3 Ma. The calculated MSWD of each analyzed sample are in agreement with such an interpretation (Wendt & Carl 1991). The Glénat and Boisset plutons yield similar ages of ca. 320 Ma, the age of the Omps pluton appears as older than the other two. However, the close resemblance between the Omps and Boisset massifs, as shown by field relationships and petrostructual analyses, suggests that these two plutons are contemporaneous.

5. Geophysical data.

5.1. Magnetic fabrics

The Anisotropy of Magnetic Susceptibility (AMS) of rocks is controlled by preferred orientation of magnetic mineral grains, and therefore AMS provides information on both the grain magnetic susceptibilities and the grain orientations. The AMS is a powerful tool to investigate the internal structure of plutons where the macroscopic preferred mineral orientation is absent (e.g. Hrouda 1982; Bouchez 1997). Hence, together with textural information, AMS method allows studying the mechanisms of magma emplacement in a pluton chamber to be inferred (e. g. Bouchez 2000; Talbot et al. 2005a, 2005b).

In the study area, 51 sites with 248 oriented cores have been drilled for AMS study. When it was possible, the cores were oriented in the field using both magnetic and sun compasses. The mean difference between magnetic and sun azimuths was less than 0.5°. The cores were cut into the standard specimens of 22 mm in length and 25 mm in diameter. Before AMS determinations, hysteresis loop method was used to identify the magnetic mineral composition. Three hysteresis loops on each representative specimens of pluton were acquired using a translation inductometer within an electromagnet providing a field of up to 1 T in the Paleomagnetic laboratory of IPGP at Saint Maur (Figure 7). A strong dominant effect of paramagnetic minerals is demonstrated by the almost perfect linear variation of induced magnetization. Thus, it can be confidently considered that biotite, as a paramagnetic mineral, is the main AMS carrier for the Glénat, Omps and Boisset plutons. The ferromagnetic phases are in a small proportion relatively to other minerals and do not influence AMS results as the measured specimens show rather low magnetic susceptibility (Figure 8). The specimens were analyzed using an AGICO Kappabridge KLY 3S apparatus in the Laboratory of Rock Magnetism of Orléans University. The three principal axes of the AMS ellipsoid $K_1 \ge K_2 \ge K_3$ were calculated after measurements for each specimen with a corresponding confidence interval at the 95% level by Bingham's statistic method (1964; Table 1).

The magnetic susceptibility, Km, values of the three plutons are obtained by the average of the arithmetic means of the K₁, K₂, K₃ magnitudes of the specimens (Km= (K₁+K₂+K₃)/3) are quite homogenous. For these three plutons (Figure 8), Km shows a monomodal distribution and for the Glénat pluton, Km ranges mostly from 50 to 220 μ SI with an average of 113 ± 37 μ SI (1 σ), 107 ± 16 μ SI and 118 ± 20 μ SI for the Glénat, Omps and Boisset plutons, respectively. These weak values (lower than 150 μ SI) are typical of granites for which the main carriers of AMS are paramagnetic phases such as micas, amphiboles or cordierite (e.g. Ellwood & Wenner 1981; Zapletal 1990; Bouchez 1997).

Figure 7. Hysteresis curves, in field up to 1 Tesla for 3 samples of each studied pluton showing the presence of paramagnetic minerals.

Figure 8. Geographic distribution and frequency histogram of bulk magnetic susceptibility (Km).

Station	Truck	1 - 414 4 - (0)			DMC	K1				K3				D:	т
Station	Туре	Latitude (*)	Longitude (*)	n	DINO	Dec	Inc	a95min	a95max	Dec	Inc	a95min	a95max	PJ	
GOB1	Glénat pluton	44,9704	2,2168	5	130	296	23,9	11,3	19,7	131,6	65,5	8,2	28,6	1,013	0,234
GOB2	Glénat pluton	44,9609	2,1953	5	143	318,5	5,4	9,1	31,3	199,8	79	9,9	15,9	1,009	0,113
GOB3	Glénat pluton	44,9243	2,1933	5	126	96,1	8,4	5,3	8,9	249,6	80,3	5,6	8,6	1,014	0,146
GOB4	Glénat pluton	44,9148	2,1920	5	45	134,4	84,6	7,1	19,7	239,5	1,7	9,2	15,6	1,007	0,430
GOB5	Glénat pluton	44,9200	2,1487	5	67	316,5	4,3	8,1	28	82,1	72	8,4	19	1,015	0,070
GOB6	Glénat pluton	44,9017	2,1406	5	59	207,8	32,2	3,9	15	16,4	56,9	1	7,7	1,023	0,136
GOB7	Glénat pluton	44,8662	2,1504	5	89	135,5	6,9	13	36,6	224,5	71,6	5,4	18,3	1,012	0,819
GOB8	Glénat pluton	44,8578	2,1659	5	89	76,6	20,2	5,1	32,8	240	73,2	6,7	10,7	1,014	0,694
GOB9	Glénat pluton	44,8568	2,1891	5	93	89	16,4	4,3	40,8	276,6	68,2	5,6	17,1	1,013	0,502
GOB10	Glénat pluton	44,8578	2,2091	5	71	75,8	10	4,8	34,9	295,3	69,5	5,7	19,9	1,025	0,422
GOB11	Glénat pluton	44,8877	2,2120	5	88	191.3	10,3	14,3	20,1	35,9	81	12,1	32,6	1,008	0,002
GOB12	Glénat pluton	44,8962	2.2052	5	78	69.6	5.8	6.6	27.2	319.1	68.3	6.2	18	1.015	0.431
GOB13	Glénat pluton	44,9001	2.2367	5	66	74.2	27.5	10.6	39.6	243.9	61.8	2.2	13.9	1.016	0.858
GOB14	Glénat pluton	44,9294	2,2062	6	129	95.2	15.5	6.1	24.5	216.3	68	2.8	13.7	1.013	0.502
GOB15	Glénat pluton	44 9453	2 2169	5	147	61.5	172	15.2	39.4	175.3	55.3	92	12.9	1 007	1 000
GOB16	Glénat pluton	44 9593	2 2023	6	154	323.5	15.7	65	36	192.2	37.3	31	72	1 011	0.801
GOB33	Glénat pluton	44 8728	2 2415	5	135	154.3	31 3	13.1	31.6	57	39.2	17.6	40	1 007	-0 427
GOB34	Glénat pluton	44 8462	2,2361	1 Å	124	90.3	29.5	37	28.2	267.4	57.8	26	124	1 014	0,500
GOB35	Glénat pluton	44 8189	2,2001	5	134	48.2	195	51	31.2	285.7	59.9	2,0	65	1 011	0,602
GOB36	Glénat pluton	44 9731	2 21 11	3	1/1	172.6	27.1	22	51.9	342 1	69	98	52.3	1,012	0,002
COB37	Glénat pluton	44,37350	2 1804	5	156	241 4	29.5	01	44.2	354 6	35.0	2,0	16.6	1,012	0,667
COB38	Glénat pluton	44,7035	2,1004	1	215	241,4	25	73	25.5	5.9	58.6	9	13.8	1,000	0,007
GOB36	Glénat pluton	44,7075	2,1035	14	215	62.0	125	1,3	10.0	202 5	50,0 66 5	27	7 1	1,000	0,212
GOB39	Glénat pluton	44,0299	2,1775	14	100	03,9	12,0 E 7	1,4	12,2	171	60,5 62,5	1.2	0.0	1,017	0,403
GOB40	Glénat pluton	44,0130	2,1743	4	109	2/4,1	0,7	1,0	20	210.0	02,5	1,3	0,0	1,013	0,171
GOB41	Glénat pluton	44,0177	2,1003	4	100	152.5	14,2	177	20,1	310,Z	34,2	10,1	30,7	1,015	0,460
GOB42	Glenal pluton	44,0100	2,1939	2	1120	100,0	32,7	6.2	50,5	200,0	20	4,0	30,Z	1,009	0,335
GOB43	Glénat pluton	44,0333	2,2271	4	100	177.0	1,0	0,5	12.0	240,5	00,7	5,7	10,2	1,010	1,000
G0B44	Glenat pluton	44,8154	2,2578	4	108	177,2	3,8	7,5	13,8	89	3,1	7,9	70	1,057	1,000
GOB17	Omps pluton	44,9270	2,2001	12	121	288,8	23,5	6,4	10,2	195,8	15 7	0,Z	7,2	1,000	0,161
GOBI8	Omps pluton	44,9219	2,2680	2	112	269,7	9,3	14,9	31	5,1	15,7	4,5	29,1	1,039	0,220
GOB19	Omps pluton	44,9139	2,2775	6	106	298,3	5,7	3	4,8	208,1	6,9	4,3	9	1,050	0,073
GOB20	Omps pluton	44,9133	2,2862	4	/6	303,2	5	4,8	19,7	213,1	0,3	10,6	19,8	1,031	0,227
GOB21	Omps pluton	44,9131	2,2964	6	101	300,7	8,1	8,9	18,8	207,2	14,4	6,8	18	1,023	0,278
GOB22	Omps pluton	44,8500	2,2964	6	105	286,7	1,5	3,7	17,4	197,7	9,1	4,2	7,2	1,041	0,637
GOB23	Omps pluton	44,9040	2,2997	5	83	90	65,6	12,6	47,1	223,9	15	6,3	13	1,025	0,742
GOB24	Omps pluton	44,8942	2,3011	5	106	110,9	53,9	5,9	12,9	221,3	13,9	3,4	12,6	1,049	0,401
GOB25	Omps pluton	44,8811	2,3100	6	113	28,8	79,4	10,2	16,6	261,6	4,6	12,4	37,3	1,141	-0,341
GOB26	Omps pluton	44,8677	2,3023	5	135	108,7	72,8	2,9	19,8	0,5	6,8	6,6	10,6	1,034	0,280
GOB27	Omps pluton	44,8751	2,2906	5	110	92,8	53,9	6,5	26	193	8,9	4	6,4	1,048	0,680
GOB28	Omps pluton	44,8790	2,2735	7	133	228,2	7,8	7,3	12	316	15,5	7,3	23,3	1,034	-0,083
GOB29	Omps pluton	44,8824	2,2491	5	88	190,1	1,9	10,9	44,2	103	2,6	4,3	12,5	1,033	0,796
GOB30	Omps pluton	44,9055	2,2516	5	102	22,4	1,8	5,9	6,2	291,5	14,5	3,5	8	1,065	0,273
GOB31	Omps pluton	44,8919	2,2590	5	105	6,6	5,8	3,4	10	273,5	23,9	4,1	18,2	1,070	-0,380
GOB32	Omps pluton	44,8921	2,2803	4	115	33,3	15,8	5,1	14,1	311,8	76,8	6,6	47,5	1,054	0,118
GOB45	Boisset pluton	44,8000	2,2500	4	141	195,2	8	3,1	8,9	68,5	77,3	4,3	9,3	1,086	0,227
GOB46	Boisset pluton	44,7749	2,2519	3	119	178,7	22,5	10,5	39,3	287,3	65	12,5	30,4	1,057	0,003
GOB47	Boisset pluton	44,7486	2,2481	5	149	129,9	40,9	4,7	12,6	276,4	42,8	0,7	12,2	1,055	0,295
GOB48	Boisset pluton	44,7894	2,2575	5	127	177,6	16,3	3,8	11,3	323,6	69	2,5	8,2	1,087	0,466
GOB49	Boisset pluton	44,7935	2,2661	5	99	179,3	21,3	10,1	17,7	285,5	31,6	10,5	15,5	1,035	-0,168
GOB50	Boisset pluton	44,8135	2,2714	4	96	163,9	7,8	2	11	258,2	30,9	3,5	9,6	1,065	0,360
GOB51	Boisset pluton	44,8260	2,2709	5	103	184,5	22	1,5	8,7	288,9	30,3	0,7	5,1	1,079	0,513

*P_J = exp {2 [(In K₁- In K₃)² + (In K₂- In K_{mean})²+(In K₁-In K_{mean})²]}^{y_2} with K_{mean} = 1/3 (K₁ + K₂ + K₃) and T = [2 In (K₂/ K₃)/ (In (K₁/K₂)] - 1

Table 1. Data of anisotropy of magnetic susceptibility obtained from this study. n: number of measured specimens; BMS: Bulk Magnetic Susceptibility in 10⁻⁶ SI; Dec, Inc, a95min, a95max: declination, inclination, maximal and minimal 95% confidence intervals from Bingham (1964) bimodal statistics, respectively, in degree; Pj: corrected anisotropy degree and T: ellipsoid shape parameter (Jelinek, 1981; Hrouda, 1982).

Figure 9. Geographic distribution of the shape parameter T.

Figure 10. Geographic distribution of the anisotropy degree Pj.

To describe the degree of anisotropy and shape of the AMS ellipsoid, the Pj and T parameters (Jelinek 1981) were calculated for each AMS site. The shape parameter T (Figure 9) indicates whether the fabric ellipsoid is prolate ($0 > T \ge -1$) or oblate ($0 < T \le 1$). The majority of sites (46 out of 51) show an oblate of AMS ellipsoid (Figure 9) with only 5 sites displaying T values smaller than 0. Nevertheless, it is worth to note that when comparing the degree of anisotropy Pj (Figure 10) with shape parameter T of the AMS ellipsoid (Figure 11a), although T values remains in a similar range for three plutons, Pj increase from the Glénat (mean Pj = 1.012) to the Omps (mean $P_j = 1.047$) and eventually to the Boisset granitic facies (mean $P_j = 1.065$). Conversely, no clear relationship between Km and Pj may be observed since paramagnetic phases are the main carriers of AMS of these plutons (Figure 11b; Borradaile & Henry 1997).Concerning the AMS directional distribution, more than 88 % of sampled sites reveal at least one well-defined axis with a confidence level less than 20° (Figures 12 and 13). If the confidence level of a magnetic axis, K₁ and/or K₃, is larger than 20° within a site, this magnetic axis is considered as poorly defined, and thus, the siteaverage orientation is not reliable (Table 1). In detail, four groups of sites can be distinguished. Namely, group I (41 %) is characterized by three well clustered axes (e.g. Sites 19 and 40 in Figures 12 and 13), group II (6 %) corresponds to the sites where K_1 is better defined than K_2 and K_3 (e.g. Site 4 in Figure 12), group III (41 %) shows the opposite case to group II, K₃ is better clustered than other two axes (e.g. Site 25 in Figure 13), group IV (12 %) presents three scattered axes (e.g. Site 33 in Figure 12). The magnetic lineation (parallel to K_1) and foliation (normal to K_3) for each site were computed from the averages of the K1 and K3 orientations of individual specimens. Since the SHF separates the Glénat pluton from the Omps and Boisset ones, AMS measurements are described separately.

Glénat pluton

In the Glénat pluton, the well-defined magnetic foliations (Figure 14a) are close to horizontal. The calculated average pole of the magnetic foliation for the whole pluton lies at N°220 dipping at 72° towards the southwest with a maximum density of 15.38 % (n=27). The magnetic lineations are less clustered (Figure 14b), but dominant E-W trending and eastward dipping (12°) magnetic lineation is observed with a maximum density of 9.5% for 27 analyzed sites.

Figure 11. Plot of anisotropy degree Pj and shape T parameters showing oblate dominant AMS ellipsoid (a). Plot of anisotropy degree Pj and magnetic susceptibility Km showing no relation between them (b). Grey, dark grey and black symbols correspond respectively to the Glénat, Omps and Boisset plutons.

Figure 12. Equal-area and lower hemisphere projection of the directions of the magnetic susceptibility axes from 27 sites with their geographical corresponding location within the Glénat pluton. The three main axes of ellipsoid (K1, K2 and K3) are represented by square, triangle and circle, respectively, with 95% confidence zone. Small grey symbols are for the specimen data, the large black symbols are for the average site data.

Figure 13. Equal-area and lower hemisphere projection of the directions of the magnetic susceptibility principal axes from 24 sites with their geographical corresponding location within the Omps and Boisset pluton. The three main axes of ellipsoid (K_1 , K_2 and K_3) are represented by square, triangle and circle, respectively, with 95% confidence zone. Small grey symbols are for the specimen data, the large black symbols are for the average site data.

Omps pluton

To the east of the SHF, the magnetic fabrics of the Omps pluton are characterized by subvertical magnetic foliations with variable trends (Figure 14a). Most of the magnetic foliation poles are weakly inclined with a dip less than 20° (14 out of 16 sites). On the northwestern part of the pluton, the magnetic foliation is well defined. The strike of the magnetic foliation is NW-SE in the northern part, whereas on the western part, along the SHF, the magnetic foliation is trending N-S. In its southern part, a magnetic NW-SE trending foliation with steeply plunging dips dominates, while to the east, the magnetic foliation trends N-S. In agreement with the K-feldspar fabrics, the AMS results of the Omps pluton indicate a concentric shape of the foliation. Three distinct magnetic lineation orientations can be recognized within the Omps pluton (Figure 14b): the first one, observed ubiquitously throughout the pluton trends NW-SE and dips weakly northwestwards (6°), the second one, which is found in the core and eastern part of the pluton, exhibits also a NW-SE trend but with a steeper plunge (ca. 60°), and the third one, restricted along the SHF, corresponds to a subhorizontal N-S direction.

Boisset pluton

In the Boisset pluton, the magnetic fabric is characterized dominantly by a NNE-SSW trending, steeply plunging to the ESE, foliation and by a NNW-SSE trending, southward dipping (less than 20°), lineation. This magnetic fabric pattern correlates well with the previous measurements of MFK preferred orientation carried out directly in the field (Feybesse 1981; and our own field observations).

Figure 14. Magnetic foliation pole (K3) and lineation (K1) within the granitic plutons of Glénat, Omps and Boisset. Equal area and lower-hemisphere projection. Ellipses define areas with consistent AMS orientations. (a) Strike and dip of magnetic foliation at individual sites with the stereogram of poles to foliation of each area. (b) Plunge and trend of magnetic lineation at individual sites with the stereogram of lineation orientation of each area.

0

0

n=27

n=8

Magmatic magnetic foliation

រ b

10

0 to 69	Well-defined magnetic foliation
0 to 69 >70	Poorly-defined magnetic foliation
Post n	nagmatic magnetic foliation
0 to 69	Well-defined magnetic foliation
^{0 to 69} >70	Poorly-defined magnetic foliation
	Interpretative form-line of foliation

Magmatic magnetic lineation

∲10 Well-defined magnetic lineation

110 Poorly-defined magnetic lineation

- Post magmatic magnetic lineation
- 410 Well-defined magnetic lineation
- 10 Poorly-defined magnetic lineation

Figure 14.

5.2. Gravity data

The gravity method has proven its efficiency for 3D imaging of geological structures and particularly for the study of plutons (e.g. Vigneresse & Brun 1983; Martelet et al. 2004). In the study area, the French gravity database presents important gaps of data (Figure 15); that is the reason why 310 new gravity stations were measured. This was achieved using a SCINTREX CG3-M micro-gravimeter and resulted in a final coverage of the study area by one station per square kilometer (Figure 15). All measurements were tied to the CGF65 French gravity reference network and the gravity anomaly was computed with respect to the theoretical value of g on Hayford-1930 ellipsoid. In order to obtain the complete Bouguer anomaly, we successively performed standard free air, plateau and terrain corrections. Terrain corrections were computed up to 167 km, following the procedure detailed in Martelet et al. (2002). In order to be close to the expected density of the granites, a 2.6 g.cm⁻³ Bouguer reduction density was chosen. The gravity data were finally interpolated using a standard minimum curvature algorithm, resulting in a 500-m anomaly grid. Taking into account mostly the accuracy of positioning (roughly 1m on IGN benchmarks), as well as the error on terrains corrections (Martelet 1999; Martelet et al. 2002), an average error of 0.5 mGal can be considered for the newly measured dataset. Interpolation of these data together with old less accurate data increases the average accuracy level of the Bouguer map to about 1 mGal. Considering that we are mainly interested in the geometry of the granitic bodies, the long wavelengths of the Bouguer anomaly were removed from the signal. This was achieved using a low-pass filter of Gaussian-type with a cutoff wavelength of 300 km over the entire Massif Central. The resulting residual Bouguer anomaly represents the effect of density heterogeneities located below the topography, down to a few kilometers (Figure 15).

To the first order, negative Bouguer anomalies (Figure 15) can be correlated to the three granitic plutons. The most intense negative anomaly on the northwestern part of the map suggests thickening of the Glénat pluton. In contrast, the Omps and Boisset pluton may not be very thick as they are not associated to intense negative gravity anomaly. And, it should be noticed that the gravity anomaly next to Boisset pluton is shifted anti-clockwise towards the northeast, implying that the Boisset massif spreads northeastwards at depth. To the east, previous studies (Olivier & Améglio 2002) show that the Marcolès and Veinazès plutons are characterized by marked negative anomalies suggesting that the granitic rocks become thicker to the SE. However, our observations as well as previous gravity studies and structural constraints in the host rocks, preclude any link at depth between these plutons (Olivier & Améglio 2002). To the west of the SHF, the "Millevaches" leucogranites seem to be shallow as they are not associated to negative anomalies. To the northeast of the Omps massif, the Lower Gneiss Unit is characterized by a positive anomaly, which confirms that these units are dense and that the low density tertiary sedimentary rocks which cover the LGU are thin.

Figure 15. Residual Bouguer anomaly map of the Glénat, Omps and Boisset plutons with location of previous (black dots) and new (white dots) gravity stations. Major geological limits of the plutons (thin black lines) and faults (thick black lines) are drawn.
6. Geological and geophysical modelling

6.1. Preliminary 3D geological model

In order to assess the rooting of granites and their relationships with the SHF, 3D geological modelling was performed, further constrained by 3D gravity inversion. Primarily, the 3D modelling requires the consistency of all available data; it also allows to integrate them in a common geometrical referential, and thus to merge them into a geological model that supports the 3D structural interpretation. The 3D preliminary model of the study area has been achieved using the geological map, including lithological boundaries and field structural data, as well as the AMS foliations in granitic rocks. For this purpose, we used the "3D Geomodeller" software (Guillen et al. 2004; Martelet et al. 2004), which reproduces 3D geological geometries based on interpolation of a scalar field in space (Lajaunie et al. 1997; Chilès et al. 2004), where a lithological contact corresponds to an isovalue of this field and the dipping of the structures corresponds to the gradient of this field. The topological relationships between the different lithological units and the geometrical relationships, like superposition, intrusion or cross-cutting relations, are taken into account through a "lithological pile", in order to reproduce complex geological systems as realistically as possible. A 28 x 35 x 8 km 3D model of the regional geology was thus interpolated. This model is preliminary since no constraints have been introduced yet concerning the depth of geological bodies. At this stage, the geometry derives from a geostatistical extrapolation of surface geological observations of contacts and dips. In a second step, using the geophysical constraints, inverse modelling of the Bouguer gravity anomaly was performed in order to refine the 3D geology, especially of the three plutons.

6.2. Gravity inversion

The 3D gravity inversion was performed using a probabilistic formulation of the inverse problem (Guillen et al. 2000; Bosch et al. 2001). This inversion scheme is particularly adapted to refine existing models since a realistic and topologically consistent starting model is needed in order to achieve a meaningful convergence of the inversion process. Being part of 3D Geomodeller software, the inversion algorithm is designed to investigate the space of possible density models following a Monte-Carlo algorithm (Guillen et al. 2006). The inversion process is briefly explained here and we refer to Guillen et al. (2004, 2006) for a thorough description of the method.

In order to compute the gravity effect of the 3D model, previous geometrical model is discretized into 3D elementary voxels. Densities of the different units of the study area were taken from previous works in nearby areas (Améglio et al. 1997; Olivier & Améglio 2002; Talbot et al. 2005b; Gébelin et al. 2006) as well as some new density determinations. In order to constrain

stochastic inversion, density distributions were expressed as mean density and standard deviation (Table 2). Starting from the preliminary 3D geometrical model, $5 \, 10^6$ different models were successively generated following a Monte-Carlo progression (Mosegaard & Tarantola 1995). The convergence of the process is achieved reducing the Root Mean Squared (RMS) difference between the model gravity effect and the Bouguer map. Modifications of the initial model address both the geometry and the density distribution. The density modifications follow the *a priori* density distribution law (average and standard deviation), and the overall topology of the initial model is conserved, *i.e.* no geological bodies are added or removed and voxels at the surface are not modified, with respect to the reference geological map. Following these rules, at each iteration, either the lithological attribute or the density of a voxel is modified, and the gravity effect of the 3D model is re-computed.

Formation	Rock type	Density used for inversion with its incertitude (g.cm ⁻³)
Tertiary deposits	Mainly calcareous sediments	2.55 (+/-0.05)
Stephanian coal basin	Sandstone	2.55 (+/-0.05)
Glénat pluton	Granite	2.60 (+/-0.03)
Omps pluton	Granite	2.62 (+/-0.03)
Boisset pluton	Granite	2.61 (+/-0.03)
Marcolès pluton	Granite	2.60 (+/-0.03)
Veinazès pluton	Granite	2.60 (+/-0.03)
Millevaches leucogranite	Leucogranite	2.59 (+/-0.03)
Lower Gneiss Unit basement	Metagraywacke, metapelite	2.75 (+/-0.05)
Parautoctonous basement	Micaschist	2.77 (+/-0.05)
Limousine serie basement	Gneiss	2.72 (+/-0.05)
High grade alloctonous unit basement	Orthogneiss	2.77 (+/-0.05)

Table 2. Density measurements of geological formations outcropping in the studied area.

Figure 16 shows the RMS misfit between the gravity effect of the 336 000th computed model and the Bouguer map, which is close to 1mGal. This threshold of 1 mGal is chosen with respect to the average accuracy of the Bouguer anomaly map, as mentioned earlier. All models with RMS misfit inferior or equal to 1 mGal are memorized and statistically combined into a most probable model. The result is provided in terms of probability of presence of densities in the 3D space.

Figure 16. Decrease of the root mean squared difference between the 3D model gravity effect and the Bouguer anomaly map, along 5 million iterations. Models with misfit inferior or equal to 1 mGal are retained to derive the final most probable model.

Figure 17. Three most probable density cross-sections derived from gravity inversion after 5 million iterations. Black lines correspond to the preliminary model.

In Figure 17, two NW-SE and one SW-NE cross-sections, cutting across the SHF, have been extracted from the inverted 3D most probable model. Since most density contrasts principally occur at the granitic pluton- metamorphic host rocks interface, the density cross-sections extracted from the 3D inverted model are representative of the pluton bulk geometry and of their geometric relationships with the metamorphic host rocks. The basement associated to high densities is represented in "hot" colors, whereas the low densities in "cold" colors, represent the plutons, the leucogranites and the sedimentary cover. The inverted cross-sections show an overall consistency with the starting 3D geometrical model (black line in Figure 17). Initial geological bodies are diversely deformed after inversion, but none of these deformations significantly modify the understanding of the geology. The NW-SE cross-section (Figure 17a) shows that to the northwest,

the low densities associated to the Millevaches Massif are shallow and the leucogranite pluton does not exceed 1 km at depth. The Glénat pluton clearly deepens northwestwards with a 4-km maximum thickness. To the east of the SHF, the Boisset pluton is very shallow, as it does not reach more than 500 m in depth. In the same way, the Marcolès pluton exhibits a 1 km flat-lying shape, and does not reveal any root on this NW-SE profile. To the Southeast, the Veinazès pluton reaches a ca. 1.5 km depth, which is in good agreement with Olivier & Améglio (2002) results. The NW-SE cross-section (Figure 17b) confirms that, to the northwest, the Glénat pluton thickness. The SW-NE cross-section (Figure 17c) does not reveal significant modifications compared to the initial geological model. To the southwest, the dense metamorphic rocks occupy a wide area. In this SW-NE direction, the Glénat pluton presents a laccolitic shape, with a constant thickness around 1.5 km, but does not show any deepening corresponding to a possible root zone. To the East of the SHF, the Omps pluton has an average 1.5 km thickness, lower than the 2.5 km suggested by extrapolation of surface dips, in the preliminary model. At the NE end of the cross-section, a shallow sedimentary cover that directly overlies the dense LGU.

7. Discussion

The lack of zonation within the analyzed monazite grains indicates that monazite crystallized in the granitic magma. The U-Th-Pb chemical ages of ca 321 ± 5 Ma, 332 ± 4 Ma and 318 ± 3 Ma yielded by the Glénat, Omps and Boisset plutons, respectively, show that these plutons emplaced in Middle to Late Carboniferous times. Although the Omps pluton appears as ca 10 Ma older than the other two, the petrological similarities and the spatial proximity of the Boisset and Omps plutons suggest that these plutons emplaced from late Visean to Namurian during the same tectonometamorphic event. They belong to the Middle to Late Carboniferous magmatic event already well recognized in the FMC (e. g. Faure 1995; Faure et al. 2005). Therefore, a similar tectonic setting seems likely to account for the emplacement of all these plutons.

As shown by the petrographic and structural studies, the dominantly flat-lying foliation of the Glénat pluton developed under sub-solidus conditions for most of the massif, and under hightemperature solid-state conditions on the pluton southern extremity. In both domains, E-W or NW-SE trending magnetic lineations are widespread (Figure 14b) and are parallel to the stretching lineations measured in the contact aureole.

The Omps pluton is characterized by a magmatic fabric in its center and by a weak solidstate one in its western and northeastern parts. The main part of the pluton exhibits a squared-shape with concentric high-angle dipping foliations. On the western and northern pluton margins, the low angle dip magnetic lineation trends N-S and NW-SE, respectively. Conversely, the central and eastern parts of the Omps pluton are characterized by highly dipping magnetic lineation.

The Boisset pluton, records a conspise solid-state deformation, characterized by a N-S trending, eastward dipping, magnetic foliation and a well-defined NNW-SSE trending lineation plunging to the South. During its emplacement at 318 Ma the Boisset pluton developed a metamorphic aureole in the country rock. The contact metamorphic minerals are synkinematic and display shear criteria such as asymmetric strain shadows or recrystallisation tails (cf. section 3). Those kinematic indicators are consistent with a normal-dextral motion of the country rock coeval with the Boisset pluton emplacement.

The AMS measurements obtained from granitic rocks showing magmatic fabrics are coherent with the K-feldspar preferred orientation (Feybesse 1981): a NW-SE magnetic lineation predominates in these granitoids. The structure of the northern part of the Omps pluton is characterized in map view by a square shape. Taking into account its limited thickness (about 1.5 km) provided by gravity inversion, the Omps pluton appears as a horizontal "flat box". The highly dipping concentric foliation in surface complies with the bulk shape of the massif. The granite fabric is dominated by magmatic textures in the core and eastern margin, however, weak solid-state fabrics characterize the northern and western margins. These fabrics appear to develop during pluton emplacement. The highly plunging magmatic lineation in the central part can be interpreted as the result of magma ascent. On the contrary, a N-S and NW-SE trending subhorizontal magmatic lineation develops on the western and northern margins, respectively. The significance of these linear fabrics probably reflects shearing along these margins of the pluton during its emplacement, but it is not clearly understood yet.

In order to achieve a regional geological description of the relationships between Glénat, Omps and Boisset plutons and the SHF, AMS and field observations were merged into a 3D model. The refinement by gravity stochastic inversion results into the geometric frame provides a 3D geological model which (i) agrees with the surface geological data, (ii) is constrained by the gravity and AMS geophysical data, (iii) has a true statistical reliability. Though certainly non-unique, the obtained 3D inverted model provides an integrated view of the three granitic massifs and their relationships with the host-rocks. Some geological implications of the model are discussed in the following paragraph.

The Glénat massif roots to the northwest, and spreads out to the southeast. The Omps and Boisset plutons are ca. 1 km thick laccoliths. Despite their cartographic proximity, none of these three plutons root in the SHF. No genetic link between the fault and plutons can be inferred from either the internal fabrics or the shape of the pluton. This pattern is quite different from the Montmarault area in the northern part of the SHF where a dilatant displacement of the fault has been inferred from gravity, magnetic and AMS studies (Joly et al. 2007a, 2007b). The early Late Carboniferous (ca. 320 Ma) Montmarault pluton exhibits a flat-lying foliation and a NW-SE trending mineral lineation that steepens to the East towards the SHF. Gravity modelling indicates that the maximum thickness of the Montmarault pluton is located along the SHF. From these lines of evidence, it has been argued that the SHF corresponded to a feeder zone for the Montmarault pluton (Joly et al. 2007a, 2007b). Although a genetic link between the pluton and the fault is not strictly demonstrated, it can be proposed that if the SHF existed at the time of the Montmarault pluton emplacement, i.e. at 320 Ma, this fault should have behaved as a normal fault, or a kind of crustal scale tension crack.

The tectonic significance of the present multidisciplinary study of these three granitic massifs can be better understood in the regional tectonic framework of the southern FMC (Figure 18). It is already well established that numerous granodioritic and leucogranitic plutons of Namurian to Westphalian ages (325-315Ma) throughout the southern part of the FMC are syntectonic bodies that recorded the late orogenic ductile NW-SE extension (Faure et al. 1992; Faure 1995; Talbot et al. 2004, 2005a, 2005b; Be Mezème et al. 2006b). The Margeride pluton is one of the largest porphyritic monzogranitic pluton in the FMC. On the basis of petro-structural, AMS and gravimetric analyses, it has been shown that this huge massif emplaced through NE-SW trending feeder zones interpreted as extensional fractures connected by sinistral NW–SE trending transtensional jogs (Talbot et al. 2005b). In the Cévennes area, the Mt-Lozère-Borne and Aigoual-St-Guiral plutons also record a NW-SE to E-W trending AMS lineation which is parallel to the mineral and stretching lineation observed in the host-rocks (Figure 18; Talbot et al. 2004, 2005a). To the East, the NW-SE trend of the maximum stretching direction turns E-W as shown by the magnetic lineation measured in the Mt-Lozère-Borne, Aigoual-St-Guiral, and Rocles plutons.

To the West of the Margeride pluton, the emplacement of the Veinazès and Marcolès plutons in transtensional jogs opened along ENE–WSW-trending sinistral wrench faults plutons has been proposed (Olivier & Améglio 2002). However, no field or AMS evidence neither for NE-SW nor NW-SE trending wrenching support this view. Thus, on the basis of the magmatic texture of the monzogranite, the dominant NW-SE mineral and magnetic lineation, and the shape of the gravity anomaly, an alternative interpretation suggested that the Veinazès pluton emplaced in a NE-SW km-scale tension gash opened as a result of NW–SE-oriented extension (Faure 1995; Talbot et al. 2005b). This NW-SE opening direction is in agreement with the regional syn-orogenic Namurian extension.

Figure 18. Southern MCF regional synthesis of Namurian pluton magnetic lineations.

The Glénat pluton exhibits a domal shape with an E-W trending lineation developed under magmatic or high-temperature solid-state during its emplacement. Moreover, it must be kept in mind that when the Glénat pluton acquired its fabric, at ca. 321 Ma, this body was located about 80 km north of its present location, that corresponds to the restoration of the Stephanian left lateral offset of the SHF. Unfortunately, the counter part of the Glénat pluton, east of the SHF, is presently hidden below the Tertiary deposits. Nevertheless, at the scale of the entire Massif Central, the architecture of the Glénat pluton is consistent with that of other contemporaneous plutons (Faure 1995). Consequently, the model established from mineral and magnetic fabrics and gravity observations seems in good agreement with the Middle-Late Carboniferous general NW-SE extensional tectonics of the French Massif Central.

In this model, the tectonic setting of the Boisset pluton raises some difficulties since its NNW-SSE trending linear structure deviates from the NW-SE magnetic lineation observed regionally. This lineation is developed under a solid-state rheology. Kinematic indicators observed in the field along the NNW-SSE trending lineation and perpendicularly to the eastward or southeastward dipping foliation, show a top-to-the-S shearing that complies with a ductile normal faulting. Moreover, the N-S trend and eastward dip of the foliation in the host-rocks and the Boisset laccolith-like shape pluton is in accordance with gravity data. Thus, apparently, relationships exist between the metamorphic host-rocks stress and the pluton size during pluton emplacement. The magnetic lineation of the Boisset massif cannot be attributed to the Stephanian left-lateral shearing related to the motion of the SHF since the ductile shearing is not kinematically compatible. Moreover, as shown in section 3, the ductile deformation of the Boisset pluton occurred after the magma crystallization, dated at ca. 318 Ma, and before the Stephanian brittle episode. Therefore, two possible explanations can be put forward. Firstly, the linear fabric of the Boisset pluton is independent of the regional tectonic regime, or secondly, the normal-dextral shearing corresponds to a local rotation of the regional NW-SE trend. In the present state of knowledge, there is no regional linear structure that might account for such a N-S lineation. The small size of the pluton and its thin laccolithic shape might be responsible for this abnormal lineation trend in agreement with the first hypothesis.

Conclusions

This multidisciplinary study replaces the Glénat, Omps and Boisset granitic plutons in their regional geological context. The good consistency in age, petrology and structure indicates that the three plutons underwent the same extensional tectonic regime. When magmatic fabrics predominate, these Namurian plutons record NW-SE magnetic lineation. This NW-SE linear trend is also observed in other Namurian plutons of French Massif Central such as the Montmarault pluton to the North; Margeride to the Northeast; Veinazès, Mont-Lozère and Aigoual plutons to the East. Because of its small size and post-solidus deformation, the NNW-SSE lineation observed in the Boisset pluton, differs of ca. 40° from the stretching direction in the other plutons. Nevertheless, the normal dextral shearing recorded in the Boisset pluton can also be integrated in the regional tectonic framework. The gravity and structural inversion refutes any genetic relationships between the SHF and the three studied plutons. Moreover, no ductile shearing has been observed along the SHF in this area. Consequently, the existence of a pre-Stephanian motion of the SHF cannot be inferred from the internal fabrics or architecture of the Glénat, Omps and Boisset plutons as shown in the Montmarault pluton in the north part of the SHF. From this study and in comparison with the

previous ones, we conclude that the NW-SE lineation pattern observed in the Glénat and Omps plutons agrees with the Middle to Late Carboniferous extensional regime of the FMC.

Acknowledgments

We are grateful to M. Diament for providing us with a SCINTREX CG3-M microgravimeter. The 3D Geomodeller team: Antonio Guillen, Gabriel Courrioux, Philippe Calcagno and Intrepid Geophysics team are acknowledged for their support. Geophysical map is achieved using Geosoft software. J.Y. Roig & J.L. Feybesse are thanked for fruitful discussions.

References

Améglio, L., Vigneresse, J.L. & Bouchez, J.L., 1997. Granite pluton geometry and emplacement mode inferred from combined fabric and gravity data, In: Bouchez, J.-L., Hutton, D.H.W. & Stephens, W.E. (Eds.), 1997. Granite: From Segregation of Melt to Emplacement Fabrics, *Kluwer Academic Publishers, Dordrecht*, pp. 199–214.

Aranguren, A., Tubia, J.M., Bouchez, J.L. & Vigneresse, J.L., 1996. The Guiritz granite, variscan belt of Northern Spain: extension-controlled emplacement of magma during tectonic escape, *Earth Planetary Science Letters*, **139**, 165-176.

Arthaud, F. & Matte, P., 1977. Late-Paleozoic strike-slip faulting in southern Europe and northern Africa: Result of a right lateral shear zone between the Appalachians and the Urals, *Geology Society America Bulletin*, **88**, 1305-1320.

Aug, C., 2004. Modélisation géologique 3D et caractérisation des incertitudes par la méthode du champ de potentiel, Ph-D Thesis, École des Mines de Paris.

Be Mezème, E., Faure, M., Cocherie, A. & Chen, Y., 2005. In situ chemical dating of tectonothermal events in the French Variscan Belt, *Terra Nova*, **17**, 420-426.

Be Mezème, E., Cocherie, A., Faure, M., Legendre, O. & Rossi, Ph., 2006a. Electron microprobe monazite geochronology of magmatic events: Examples from Variscan migmatites and granitoids, Massif Central, France, *Lithos*, **87**, 3-4, 276-288.

Be Mezème, E., Faure, M., Chen, Y., Cocherie, A. & Talbot, J.-Y., 2006b. Structural, AMS and geochronological study of a laccolith emplaced during Late Variscan orogenic extension: the Rocles pluton (SE French Massif Central), *International Journal of Earth Sciences*, DOI:10.1007/s00531-006-0098-2.

Benn, K., Paterson, S.R., Lund, S.P., Pignotta, G.S. & Kruse, S., 2001. Magmatic fabrics in batholiths as markers of regional strains and plate kinematics: example of the Cretaceous Mt. Stuart batholith, *Physics and Chemistry of the Earth*, **26**, 343-354.

Bingham, C., 1964. Distribution on a sphere and on the projective plane, Ph-D Thesis, Yale University, USA.

Blès, J. L., Bonijoly, D., Castaing, C & Gros, Y., 1989. Successive post-variscan stress fields in the French Massif Central and its borders (western European plate): Comparison with geodynamic data, *Tectonophysics*, **169**, 79-111.

Blès, J. L., Bonijoly, D., Castaing, C. & Gros Y., 1989. Successive post-variscan stress fields in the French Massif Central and its borders (western European plate): Comparison with geodynamic data, *Tectonophysics*, **169**, 79-111.

Bonijoly, D. & Castaing, C., 1987. Ouverture et évolution structurale de quelques bassins houillers de directions orthogonales, dans le Massif Central français, *Annale de Société géologique du Nord*, **CVI**, 189-200.

Borradaile, G.J. & Henry, B., 1997, Tectonic applications of magnetic susceptibility and its anisotropy, *Earth-Science Reviews*, **42**, 1-2, 49-93.

Bosch, M., Guillen, A. & Ledru, P., 2001. Lithologic tomography: an application to geophysical data from the cadomian belt of northern Brittany, France, *Tectonophysics*, **331**, 197-228.

Bouchez, J.L., Gleizes, G., Djouadi, T. & Rochette, P., 1990. Microstructure and magnetic susceptibility applied to emplacement kinematics of granites: the example of the Foix pluton (French Pyrenees), *Tectonophysics*, **184**, 157-171.

Bouchez, J.L., 1997. Granite is never isotropic: An introduction to AMS studies of granitic rocks. In: Bouchez, J.-L., Hutton, D.H.W. & Stephens, W.E. (Eds) 1997. Granite: From segregation of melt to emplacement fabrics, *Kluwer Academic Publishers. Dordrecht* 95-112.

Bouchez, J.L., 2000. Anisotropie de susceptibilité magnétique et fabrique des granites, *Comptes Rendus de l'Académie des Sciences*, **330**, 1-14.

Braun, I., Montel, J.M. & Nicollet, C., 1998. Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India, *Chemical Geology*, **146**, 65-85.

Brun, J.P., Gapais, D., Cogné, J.P., Ledru, P. & Vigneresse, J.L., 1990. The Flamanville granite (NW France): an unequivocal example of an expanding pluton, *Geological Journal*, **25**, 271–286.

Burg, J.-P., Brun, J.-P. & Van Den Driessche, J., 1990. Le sillon houiller du Massif Central Français: Faille de transfert pendant l'amincissement crustal de la chaine varisque? *Comptes Rendus de l'Académie des Sciences Paris*, Serie II, **311**, 147-152.

Burg, J.P., Van Den Driessche, J. & Brun, J.P., 1994. Syn-to post thickening in the Variscan Belt of the Western Europe: modes and structural consequences, *Géologie de la France*, **3**, 33–51.

Cherniak, D.J., Watson, E.B., Grove, M. & Harrison, T.M., 2004. Pb diffusion in monazite: a combined RBS/SIMS study, *Geochimica et Cosmochimica Acta*, **628**, 829–840.

Chilès, J.P., Aug, C, Guillen, A. & Lees, T., 2004. Modelling the Geometry of Geological Units and its Uncertainty in 3D From Structural Data: The Potential-Field Method, extended abstract in: *Orebody Modelling and Strategic Mine Planning*, 22-24/11/2004, Perth, Australia.

Cocherie, A., Legendre, O., Peucat, J.J. & Kouamelan, A.N., 1998. Geochonology of polygenetic monazites constrained by in situ electron micropobe Th-U-total lead determination: Implications for lead behaviour in monazite, *Geochimica et Cosmochimica Acta*, **62**, 2475–2497.

Cocherie, A. & Albarède, F., 2001. An improved U–Th–Pb age calculation for electron micropobe dating of monazite, *Geochimica et Cosmochimica Acta*, **65**, 4509 – 4522.

Cocherie, A., Be Mezème, E., Legendre, O., Fanning, C.M., Faure, M. & Rossi, P., 2005. Electronmicroprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites, *American Mineralogist*, **90**, 607-618.

Cocherie, A. & Legendre, O., 2007. Potential minerals for determining U–Th–Pb chemical age using electron microprobe, *Lithos*, **93**, 288-309, doi:10.1016/j.lithos.2006.03.069.

Duguet, M., Le Breton, N. & Faure, M., 2007. P-T paths reconstruction of a collisional event: the example of the Thiviers-Payzac Unit in the Variscan French Massif Central, *Lithos*, In press.

Ellwood, B.B. & Wenner, D.B., 1981. Correlation of magnetic susceptibility with 18O:16O data in orogenic granites of southern Appalachian Piedmont, *Earth Planetary Science Letters*, **59**, 200-202.

Faure, M. & Pons, J., 1991. Crustal thinning recorded by the shape of the Namurian-Westaphalian leucogranite in the Variscan belt of the northwest Massif central, France, *Geology*, **19**, 730-733.

Faure, M., Pons, J. & Babinault, J.F., 1992. Le pluton du Pont-de-Montvert: un granite syntectonique extravasé vers l'Est pendant le désépaississement crustal varisque du Massif Central français. *Comptes Rendus de l'Académie des Sciences*, **315**, 201-208.

Faure, M. & Becq-Giraudon, J-F., 1993. Sur la succession des épisodes extensifs au cours du désépaississement carbonifère du Massif Central français, *Comptes Rendus de l'Académie des Sciences Paris*, **316**, II, 967-973.

Faure, M., 1995. Late Carboniferous extension in the Variscan French Massif central, Tectonics, 14, 132-153.

Faure, M., Charonnat, X., Chauvet, A., Chen, Y., Talbot, J. Y., Martelet, G., Courrioux, G., Monié, P. & Milési, J.
P., 2001. Tectonic evolution of the Cévennes para-autochthonous domain of the Hercynian French Massif Central and its bearing on ore deposits formation, *Bulletin de la Société Géologique de France*, **172**, 687–696.

Faure, M., Mézème, E. Be, Duguet, M., Cartier, C. & Talbot, J.-Y., 2005. Paleozoic tectonic evolution of medioeuropa from the example of the French Massif central and Massif Armoricain, *Journal of the virtual Explorer*, ISSN 1441-8142, **19**, 5, 26 p.

Feybesse, J.L., 1981. Tectonique et microtectonique de la région de Laroquebrou (Cantal, Massif central français). Rôle de la déformation ductile et évolution du Sillon Houiller, Ph-D Thesis, Clermont Ferrand University, France, 250 p.

Finger, F., Broska, I., Roberts, M.P. & Schermaier, A., 1998. Replacement of primary monazite by apatite– allanite–epidote coronas in amphibolite faciès gneiss from the eastern Alps, *American Mineralogist*, **83**, 248–258.

Franke, W., 2000. The mid-European segment of the Variscides : tectonostratigraphic units, terrane boundaries and plate tectonic evolution, in Orogenic Processes : Quantification and Modelling in the Variscan Belt, edited by Franke, W., Haak, V., Oncken O. & Tanner, D., Special Publications, **179**, *Geological Society of London*, 35-61.

Gébelin, A., Martelet, G., Brunel, M., Faure, M. & Rossi, P., 2004. Late Hercynian leucogranites modeling as deduced from new gravity data: the example of the Millevaches massif, Massif Central, France, *Bulletin de la Société Géologique de France*, **175**, 3, 239-248.

Gébelin, A., Martelet, G., Chen, Y., Brunel, M. & Faure, M., 2006. Structure of late Variscan Millevaches leucogranite massif in the French Massif Central: AMS and gravity modelling results, *Journal of Structural Geology*, **28**, 148-169.

Gébelin, A., Brunel, M., Monié, P., Faure, M. & Arnaud, N., 2007. Transpressional tectonics and Carboniferous magmatism in the Limousin, Massif Central, France: Structural and 40Ar/39Ar investigations, *Tectonics*, **26**, doi:10.1029/2005tc001822.

Gélard, J.P., Castaing, C., Bonijoly, D. & Grolier, J., 1986. Structure et dynamique des bassins houillers limniques du massif central, *Mémoire de la Société Géologique France*, N.S., **149**.

Gleizes, G., Leblanc, D. & Bouchez, J.-L., 1997. Variscan granites of the Pyrenees revisited: their role as syntectonic markers of the orogen, *Terra Nova*, **9**, 38–41.

Grolier, J. & Letourneur, J., 1968. L'évolution tectonique du grand Sillon Houiller du Massif Central francais, *XXIII International Geological Congress*, **1**, 107-116.

Guillen, A., Delos, V. & Ledru, P., 2000. A new method to determine lithology and geometry in depth: 3D lithoinversion of potential fields, *European Geophysical Society*, 25th General Assembly, Katlenburg– Lindau, Federal Republic of Germany (DEU). Abstract.

Guillen, A., Courrioux, G., Calcagno, P., Lane, R., Lees, T. & McInerney, P., 2004. Constrained gravity inversion applied to Broken Hill, extended abstract in: *Australian society of exploration geophysicists 17th geophysical conference and exhibition*, 15-19/08/2004, Sydney, Australia.

Guillen, A., Joly, A., Calcagno, P., Courrioux, G., Fitzgerald, D., McInerney, P. & Seikel, R., 2006. Coupling 3D Modelling and Forward-Inverse modelling of potential field data (gravity and magnetic data and tensor components), *IAMG06*, session 12, Liege (Belgium).

Hrouda, F., 1982. Magnetic anisotropy of rocks and its application in geology and geophysics, *Geophysical Surveys*, **5**, 37-82.

Hutton, D.H.W., 1982. A tectonic model for the emplacement of the Main Donegal granite, NW Ireland, *Journal of the Geological Society*, London, **139**, 615-631.

Jelinek, V., 1981, Characterization of the magnetic fabric of rocks, Tectonophysics, 79, 563-567.

Joly, A., Chen, Y., Faure, M. & Martelet, G., 2007a. A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault: relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Massif Central. Part I: Geochronology, mineral fabrics and tectonic implications, *JGR Solid Earth*, accepted.

Joly, A., Martelet, G., Chen, Y. & Faure, M., 2007b. A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault: relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Massif Central. Gravity, aeromagnetic investigations and 3D geologic and geophysical modeling, *JGR Solid Earth*, in review.

Lajaunie, C., Courrioux, G. & Manuel, L., 1997. Foliation fields and 3D cartography in geology: principles of a method based on potential interpolation, *Mathematical Geology*, **29**, 571–584.

Lardeaux, J.-M., Ledru, P., Daniel, I. & Duchene, S., 2001. The Variscan French Massif Central: a new addition to the ultra-high pressure metamorphic club: exhumation processes and geodynamic consequences, *Tectonophysics*, **332**, 143-167.

Ledru, P., Lardeaux, J.M., Santallier, D., Autran, A., Quenardel, J.M., Floc'h, J.P., Lerouge, G., Maillet, N., Marchand, J. & Ploquin, A., 1989. Où sont les nappes dans le Massif Central français ? *Bulletin de la Société Géologique de France*, **8**, 605–618.

Ledru, P., Courrioux, G., Dallain, C., Lardeaux, J. M., Montel, J. M., Vanderhaeghe, O. & Vitel G., 2001. The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution, *Tectonophysics*, **342**, 3-4, 207-237.

Letourneur, J., 1953. Le grand Sillon Houiller du plateau central français, *Bulletin Carte géologique de la France*, **238**, LI, 235pp.

Ludwig, K.R., 1999. Users manual for ISOPLOT/EX, version 2. A geochronological toolkit for Microsoft Excel, *Berkeley Geochronology Center*, Special Publication 1a.

Malavieille, J., 1993. Late orogenic extension in mountain belts: insight from the Basin and Range and the late Paleozoic Variscan Belt, *Tectonics*, **12**, 1115–1130.

Martelet G. (1999), Modélisation de la structure crustale et du comportement mécanique de la lithosphère à partir des anomalies gravimétriques. Applications à l'Himalaya et au massif granitique du Mont Lozère, Cévennes, *Ph-D thesis*, Institut de Physique du Globe de Paris, 324p.

Martelet, G., Debeglia, N. & Truffert, C., 2002. Homogénéisation et validation des corrections de terrain gravimétriques jusqu'à la distance de 167 km sur l'ensemble de la France, *Comptes Rendus de l'Académie des Sciences*, **334**, 449-454.

Martelet, G., Calcagno, P., Gumiaux, C., Truffert, C., Bitri, A., Gapais, D. & Brun, J. P., 2004. Integrated 3D geophysical and geological modelling of the Hercynian Suture Zone in the Champtoceaux area (south Brittany, France), *Tectonophysics*, **382**, 1-2, 117-128.

Matte, P., 1986. La chaîne varisque parmi les chaînes paléozoïques péri atlantiques, modèle d'évolution et position des grands blocs continentaux au Permo –Carbonifère, *Bulletin de la Société Géologique de France*, **8**, 9 – 24.

Menichetti, V. & Guillen, A., 1983. Simultaneous interactive magnetic and gravity inversion, *Geophysisical Prospection*, **31**, 929–944.

Monié P., Bouchot, V., Faure, M., Charonnat, X. & Najou, K., 1999. 40Ar/39Ar laser-probe dating of W-Au-Sb deposits in the southern French Massif Central (Cévennes, Châtaigneraie), *EUG 10*, Strasbourg, **477**.

Montel, J-M., Foret, S., Veschambre, M., Nicollet, C. & Provost, A., 1996. Electron microprobe dating of monazite, *Chemical Geology*, **131**, 37 – 53.

Montel, J.-M., Kornprobst, J. & Vielzeuf, D., 2000. Preservation of old U-Th-Pb ages in shielded monazite: example from Beni Bousera Hercynian Kinzigites (Morroco), *Journal of Metamorphic Geology*, **18**, 335-342.

Mosegaard K., & Tarantola A., 1995. Monte Carlo sampling of solutions to inverse problems, *Journal of Geophysical Research*, **100**, No. B7, 124321-12447.

Olivier, P. & Ameglio, L., 2002. Structure et mise en place en régime décrochant puis rotation tardi-magmatique des plutons granitiques hercyniens du Veinazés et de Marcolés (Châtaigneraie, Massif central français), *Bulletin de la Société Géologique de France*, **173**, 207–218.

Passchier, C.W. & Trouw, R.A.J., 1996. Microtectonics, Springer, Berlin 298pp.

Parrish, R. R., 1990. U – Pb dating of monazite and its application to geological problems, *Canadian Journal of Earth Sciences*, **27**, 1431 – 1450.

Paris, F. & Robardet M., 1990. Early Palaeozoic palaeobiogeography of the Variscan regions, *Tectonophysics*, **177**, 1-3, 193-213.

Paterson, S.R., Vernon, R.H. & Tobisch, O.T., 1989. A review of criteria for the identification of magmatic and tectonic foliations in granitoids, *Journal of Structural Geology*, **11**, 349-363.

Pommier, A., Cocherie, A. & Legendre, O., 2002. EPMA Dating User's Manual: Age Calculation from Electron Probe Microanalyser Measurements of U–Th–Pb, *BRGM Documents*, 9 pp.

Roig, J.Y., Faure M. & Ledru, P., 1996. Polyphase wrench tectonics in the southern French Massif Central. Kinematic inferences from pre- and syn-kinematic granitoïds, *Geologische Rundschau*, **85**, 138-153.

Roig, J.-Y. & Faure, M., 2000. La tectonique cisaillante polyphasée du Sud-Limousin (Massif central français) et son interprétation dans un modèle d'évolution polycyclique de la chaîne hercynienne-Polyphase shear tectonics in the South-Limousin (French Massif Central) and its interpretation in a polycyclic evolution model of the Hercynian Belt, *Bulletin de la Société Géologique de France*, **171**, 3, 295-307.

Suzuki, K. & Adachi M., 1991. The chemical Th - U - total Pb isochron ages of zircon and monazite from the gray granite of the Hida terrane, Japan, *Journal of Earth Science*, Nagoya Univ, **38**, 11 - 37.

Talbot, J.Y., Martelet, G., Courrioux, G., Chen, Y. & Faure, M., 2004. Emplacement in an extensional setting of the Mont Lozère-Borne granitic complex (SE France) inferred from comprehensive AMS, structural and gravity studies, *Journal of Structural Geology*, **26**, 1, 11-28.

Talbot, J.-Y., Chen, Y. & Faure, M., 2005a. A magnetic fabric study of the Aigoual–Saint Guiral–Liron granite pluton (French Massif Central) and relationships with its associated dikes, *Journal of Geophysical Research*, **110**, B12106, doi:10.1029/2005JB003699.

Talbot, J.Y., Faure, M., Chen, Y. & Martelet, G., 2005b. Pull-apart emplacement of the Margeride granitic complex (French Massif Central), Implications for the late evolution of the Variscan orogen, *Journal of Structural Geology*, **27**, 9, 1610-1629.

Van den Driessche, J. & Brun, J.P., 1989. Un modèle de l'extension paléozoïque supérieur dans le sud du Massif central, *Comptes Rendus de l'Académie des Sciences*, Série 2, **309**, 1607-1613.

Vanderhaege, O. & Teyssier, C., 2001. Partial melting and flow of orogen, Tectonophysics, 342, 451-472.

Vernon, R.H., 2000. Review of microstructural evidence of magmatic and solid-state flow, *Electronic Geosciences*, **5**, 2.

Vigneresse, J.-L. & Brun, J.-P., 1983. Les leucogranites armoricains marqueurs de la déformation régionale : apport de la gravimétrie, *Bulletin de la Société Géologique de France*, **t.XXV-3**, 357-366.

Vigneresse, J.L., 1990. Use and misuse of geophysical data to determine the shape at depth of granitic intrusions, *Geological Journal*, **25**, 249–260.

Vigneresse, J.L. & Bouchez, J.L., 1997. Successive granitic magma batches during pluton emplacement: the case of Cabeza de Araya (Spain), *Journal of Petrology*, **38**, 1767–1776.

Vivier, G., 1970. Etude pétrographique et géochronologique de la Châtaigneraie (Massif Central Français), *Ph-D Thesis*, Clermond-Ferrand University, France.

Vivier, G. & Lasseyre, M., 1973. Age hercynien des granites de la châtaigneraie (SW du Massif Central Français), *Bulletin de la Société Géologique de France*, **7**, XV, 3-4, 283-287.

Wendt, I. & Carl C., 1991. The statistical distribution of the mean squared weighted deviation, *Chemical Geology* (*Isotope Geoscience Section*), **86**, 275-285.

Williams, M.L., Scheltema, K.E. & Jercinovic, M.J., 2001. Highresolution compositional mapping of matrix phases: implications for mass transfer during crenulation cleavage development in the Moretown Formation, western Massachusetts, *Journal of Structural Geology*, **23**, 923–939.

William, M.L. & Jercinovic, M.J., 2002. Microprobe monazite geochronology: putting absolute time into microstructural analysis, *Journal of Structural Geology*, **86**, 1013-1028.

Zapletal, K., 1990. Low field susceptibility anisotropy of some biotite crystals, *Physics Earth Planetary Interiors*, **63**, 85-97.

3. LE SEGMENT PONTAUMUR - BORT-LES-ORGUES

Afin de de réveler l'existence, ou non d'une déformation ductile le long du Sillon Houiller, une étude structurale entre Pontaumur et Bort-les- Orgues a été réalisée.

3.1. CADRE GEOLOGIQUE ET STRUCTURALE DE LA SERIE DU LA SIOULE ET DE LA SERIE DU CHAVANON

C'est dans cette région (Figure II.2) que les corrélations entre la région occidentale Limousine et la région orientale Sioule-Bort-les-Orgues du Massif central sont les plus claires (Letourneur, 1953; Grolier et Letourneur, 1968). Ainsi, il est aisé de comparer i) le massif de Guéret à l'Ouest et celui de Tréban à l'Est, ii) la série métamorphique du Chavanon à l'Ouest et celle de la Sioule à l'Est et iii) le massif de Ussel à l'Ouest et celui de St-Gervais. Le rejet cartographique est de l'ordre de 80 km (Grolier et Letourneur, 1968; Faure et al., 1993).

La série de la Sioule (Figure II.2) est l'exemple typique d'une séquence métamorphique inverse qui correspond en fait à l'empilement des nappes de l'Unité Supérieure des Gneiss (USG) et de l'Unité Inférieure des Gneiss (USG, Grolier, 1971). La foliation de l'encaissant métamorphique est plissée en antiforme et est recoupée en son cœur par le leucogranite d'Echassière d'âge Namuro-Westphalien (Duthou et Pin, 1987). Une première déformation NE-SW est observée localement dans les parties supérieures de la série de la Sioule. La cinématique liée à cette structure NE-SW indique un sens de cisaillement vers le SW (Faure et al., 1993). Cette déformation NE-SW est contemporaine d'un métamorphisme prograde de type barrovien correspond à la déformation D₁ (Faure et al., 2005). Quelquefois observable au nord de la série de la Sioule, une deuxième linéation NW-SE est associée à une cinématique qui indique un sens de cisaillement vers le NW. Cette deuxième déformation D₂ est caractérisée par une foliation plate (Roig et al., 1996; Duguet et Faure, 2004). La partie Sud de la série de la Sioule est déformée avant le dépôt des « Tuffs anthracifères Viséens », par le décrochement dextre de St- Christine (Figure II.2). La linéation D₁ NE-SW et de rares plis intrafoliaux liée à cette déformation sont replissés par des plis droit d'axe NW-SE. Les roches métamorphiques de la série de la Sioule ont aussi enregistré des linéations d'étirement NW-SE associées à un sens de cisaillement vers le SE de la partie supérieure (Faure et al., 1993). Cette cinématique vers le SE est en accord avec le mouvement vers le SE de l'allochtone de Guéret (Faure et Pons, 1991; Faure, 1995) et est donc postérieure à la déformation D₁ puisqu'elle est déformée par des plis NW-SE.

Figure II.2. Carte de localisation de la Sioule et du Chavanon (Faure et al., 1993). a,
Formations Post-Stéphaniennes ; b, Bassin sédimentaires Stéphaniens; c, Granite de Montmarault;
d, Leucogranite et dyke de microgranite (μγ); e, Tufs anthracifères Viséen; f, Granitoïdes préViséens (Guéret, Ussel, St-Gervais, Tréban); g, Migmatite de l'USG; h, Gneiss à biotite et
sillimanite de l'USG; i, Paragneiss de l'UIG; j, Micaschiste du Pa; k, Chevauchement principal
SH, Sillon Houiller; 1, Zone d'étude structurale.

Au Sud du massif de Guéret, la série du Chavanon qui est l'équivalent occidental de la série de la Sioule, possède les mêmes caractéristiques strucuturales (Figures II.3a et 3b). En effet, une linéation minérale et d'étirement NE-SW est replissée par des plis post-foliaux droits NW-SE. La série du Chavanon subit un métamorphisme prograde pouvant localement atteindre le facies granulitique (Martin, 1985), suivi par un événement rétrograde. Cette rétromorphose est contemporaine d'une déformation ductile caractérisée par une linéation d'étirement et une crénulation NW-SE (N120° - N150°). Le long de la rivière du Chavanon, la foliation sub-horizontale (Faure et al., 1993) est déformée par des bandes de cisaillement qui indique un déplacement de la partie supérieure vers le SE. Ce critère cinématique, synchrone du métamorphisme rétrograde Namurien renforce l'idée que la série de la Sioule et celle du Chavanon subissent la même histoire tectonique et métamorphique jusqu'au Carbonifère moyen. Une différence entre les deux séries est l'absence de plutons et de leucogranites dans la série du Chavanon.

A l'Est du Sillon Houiller, la partie orientale du pluton d'Ussel, est un granite majoritairement isogranulaire gris présentant une orientation minérale planaire NW-SE. Suite au jeu sénestre Stéphanien, le massif d'Ussel a été « décroché » de façon fragile le long du Sillon Houiller, laissant derrière lui des lentilles granitiques qui ont conservé la direction verticale primaire NW-SE de leur foliation (Figure II.3c). La foliation ancienne est donc très peu déformée pas le décrochement senestre du Sillon Houiller. Par analogie pétrographique, l'âge du granite d'Ussel est estimé à 357 Ma (Rb-Sr sur roche totale, Duthou et al., 1984).

Figure II.3. Structures macroscopiques. a, Sigmoïde de quartz à cinématique vers le SE dans les micaschistes de la série du Chavanon (45°31'41''N, 2°30'33''E); b, Faille normale à cinématique vers le SE (45°31'40''N, 2°30'33''E); c, Granite d'Ussel où la foliation primaire NW-SE verticale et la linéation NW-SE (Lo) sont conservées entre les failles verticales décrochantes sénestres (45°51'27''N, 2°40'09''E); d, Zone cataclasée du Sillon Houiller (aucune déformation ductile n'apparaît); e, Alternance de bandes verticalisées de grès et de charbons. La verticalisation a lieu pendant le mouvement transpressif Stéphano-Permien (45°35'20''N, 2°32'53''E); f et g, Plis d'entrainements sénestre d'échelle métrique et à axe vertical. La linéation (Lo) est replissée

(45°29'11''N, 2°29'12''E).

Sur le terrain, le Sillon Houiller est souvent matérialisé par une zone cataclasée (Figure II.2d) dans laquelle aucune déformation ductile n'apparaît. Les bassins sédimentaires bordant le Sillon Houiller sont composés de conglomérats et de grés qui sédimentent les uns après les autres. Horizontales lors de leurs dépôts, des strates de grés et de charbons se sont redressées pendant le mouvement transpressif Stéphano-Permien (Figure II.3e).

Les micaschistes qui se trouvent à l'Ouest du Sillon Houiller, ont enregistré le mouvement senestre de cette faille méridienne. Outre la présence de stries horizontales sénestre sur des plans de failles d'orientation N-S, des plis d'entrainement sénestres à axes verticaux (Figure II.3f et II.3g et Figure II.4) sont aussi enregistrés au sein des micaschistes. On attribue ces plis d'entrainement au jeu transpressif Stéphanien.

Figure II.4. Plis d'entrainements sénestres où une linéation horizontale Lo s'enroule autour des axes de plis verticaux.

3.2. ANALYSE STRUCTURALE ET CINEMATIQUE

Les séries de la Sioule et du Chavanon ont déjà été étudiées (Grolier, 1971; Belin, 1981; Barbarin et Belin, 1982; Martin, 1985; Cuney et Autran, 1987; Faure et al., 1993). Mais afin de savoir s'il existait une déformation ductile le long du Sillon Houiller, nous avons réalisé une étude structurale entre Pontaumur et Bort-les-Orgues.

D'une manière générale, dans la partie métamorphique occidentale du Sillon Houiller (Figure II.4a), la foliation est majoritairement subhorizontale, mais présente aussi une direction NE-SW, et un pendage variable : tantôt NW, tantôt SE. La foliation métamorphique est marquée par la cristallisation orientée des phyllosilicates (chlorite, muscovite, biotite), du quartz, du feldspath quelquefois de sillimanite et de cordiérite. La linéation y est composite, à la fois minérale et d'allongement. Une linéation de crénulation tardive, puisqu'elle déforme la foliation, mais parallèle à la linéation d'allongement, se surimpose quelquefois à cette dernière. Dans le secteur métamorphique du Chavanon, la linéation d'allongement possède une direction autour de N110E avec un faible plongement. Cette direction de linéation d'allongement N110E se retrouve non seulement, au sein du pluton d'Ussel (Figure II.3c) mais aussi, à l'Ouest et l'Est du Sillon Houiller (Figure II.3d), dans le domaine métamorphique. La foliation de direction NW-SE au sein du massif granitique d'Ussel (Figure II.4c) est verticale avec une linéation horizontale. Les plans de faille développés dans le granite d'Ussel sont verticaux et parfois conjugués. Ils portent des stries subhorizontales (Figure II.3c).

Figure II.5. Carte structurale et cinématique de la zone1 étudiée entre Pontaumur et Bort-les-Orgues.

Au nord de Messeix, il existe une zone mylonitique (Figures II.5, II.6, II.7b). Sur une coupe de terrain (Figure II.8), des lentilles de granite d'Ussel intrudent des gneiss mylonitiques qui juxtaposent des mylonites à pendage vers l'Est. La foliation de direction NNE-SSW est soit subverticale soit avec un pendage vers l'ESE (Figure II.7b). Une linéation NWW-SEE d'allongement plonge verticalement dans le sens du pendage de la foliation. Une linéation de crénulation horizontale se surimpose à la linéation d'allongement et la recoupe donc perpendiculairement (Figure II.9).

Figure II.6. Carte structurale et cinématique de la zone2 étudiée autour de Meisseix

Figure II.7. Stéréogrammes des pôles des plans de foliation et de failles, des linéations d'allongement et de crénulation (canevas de Schmidt, hémisphère inférieure).

Figure II.8. Coupe de terrain d'échelle métrique (45°39'48''N, 2°34'11''E).

Figure II.9. Mylonites sub-verticales possédant une linéation de crénulation N30E et une linéation d'étiremement N110E. Cette déformation NW-SE est associée une cinématique vers le SE (45°38'44''N, 2°33'42.5''E.)

Dans les sections perpendiculaires à la foliation et parallèles à la linéation d'allongement, des queues de recristallisations asymétriques de biotite et de quartz autour des de feldspaths (Figure II.10a), des biotites et de quartz sigmoïdes (Figure II.10b), des bandes de cisaillement à biotite, chlorite et muscovite, témoignent dans ces formations, d'un déplacement. La partie supérieure des mylonites (Figure II.10) se déplace vers le SE.

Figure II.10. Mylonites longeant le Sillon Houiller montrant un cisaillement vers le SE. a, Queues de recristallisation de quartz (Qz) et de biotite (Bi) autour d'un feldspath (Fk) en lumière analysée.
Les grains de quartz sont tres petits ; ceci est dû à une recristallisation dynamique; b, Sigmoïde de feldspath entouré de bande très fine de biotite et de quartz en lumière polarisée.

3.3. SYNTHESES DES OBSERVATIONS

En résumé, l'étude structurale et cinématique des séries du Chavanon et de la Sioule permet de préciser quelques périodes de déformation.

Le premier épisode de déformation est lié à l'empilement de nappes le long d'une direction NE-SW (Ledru et al., 1989) et d'un déplacement anté – Viséen dextre le long de faille NW-SE (Belin, 1983). La cinématique vers le SW de la déformation D₁ est en accord avec des études structurales réalisés sur le plateau d'Aigurande (Quenardel et Rolin, 1984 ; Faure et al., 1990). Puis, les deux séries subissent un deuxième épisode compressif D₂ à vergence NW (Faure et al., 1993) qui est reconnu à travers tout le Massif central (Roig et Faure, 1996; Duguet et Faure ; 2004).

Figure II.11. Coupe interprétative au Namurien (320 Ma) de la série du Chavanon et de la Sioule qui sont alors face à face. USG, Unité Supérieure des Gneiss; UIG, Unité Inférieure des Gneiss;
Pa, Para-autocthone; Proto-SH, Proto Sillon Houiller; D1, premier episode compressif subi par la chaîne Varisque du NE vers le SW (380 Ma); D2, deuxième déformation ductile (360-340 Ma) caractérisée par une cinématique vers le NW et E1, Début de l'extension syncollisionelle NW-SE à cinématique vers le SE (320 Ma).

Un troisième événement E_1 est synchrone de l'extension Namurienne NW-SE et possède une cinématique vers le SE qui a aussi été enregistré dans une mince bande mylonitique au Nord de Messeix (Figures II.8 et II.9). Ce mouvement vers le SE est en accord avec un jeu normal du Sillon Houiller et le contexte extensif NW-SE Namurien (Figure II.10).

Enfin la dernière déformation est contemporaine du jeu senestre Stéphanien du Sillon Houiller. Cette déformation a largement été enregistrée sur les plans de failles N-S qui sont associées à des stries horizontales. Les plis d'entrainement sénestres à axes verticaux sont aussi contemporains du jeu Stéphanien du Sillon Houiller. Le granite d'Ussel a été cisaillé dans des conditions fragiles par ce mouvement décrochant. Les blocs granitiques d'Ussel n'ont peu ou pas subi de rotation des structures primaires NW-SE et aucune déformation ductile au sein du pluton n'a été enregistrée le long de la faille.

III. SYNTHESES ET CONCLUSIONS

« L'idée sans le mot serait une abstraction; le mot sans l'idée serait un bruit; leur jonction est leur vie.» Victor Hugo (1901), Extrait de Post-Scriptum de ma vie.

« Le style doit être comme un vernis transparent : il ne doit pas altérer les couleurs, ou les faits et pensées sur lesquels il est placé » Stendhal (1933), Extrait de Mélanges de littérature

1. SYNTHESES DES RESULTATS

1.1. ORIGINALITE D'UNE APPROCHE METHODOLOGIQUE PLURIDISCIPLINAIRE.

D'un point de vue méthodologique, ce travail de thèse aborde un ensemble de disciplines des géosciences : la géochronologie (datation U-Th-Pb), la géologie cartographique et structurale, la géophysique (ASM, gravimétrie et magnétisme) et la modélisation 3D, qui séparément ont été mises en oeuvre pour les éléments de réponse qu'elles permettaient d'apporter à une question spécifique.

Mais au delà et dans son ensemble, ce travail de thèse 1/ réaffirme l'intérêt et la nécessité d'intégrer un ensemble large d'informations pour contraindre une problématique géologique, et 2/ illustre les possibilités croissantes offertes par les approches de modélisation 3D dites "intégrées" et leur utilité qui va bien au-delà d'une simple restitution visuelle en 3D. En effet, l'intégration simultanée d'informations d'ordre géologique, structurales, géophysiques, géochronologiques, au sein d'un modèle 3D, nous permet désormais de passer d'une compréhension géologique intuitive et qualitative, à une description quantitative et validée statistiquement, à la fois de la géométrie du sous-sol, mais aussi de certaines de ses propriétés.

En effet, partager dans un même référentiel géométrique, des corps géologiques en leur attribuant des propriétés pétrophysiques (comme la densité ou la susceptibilité magnétique) qui sont à même de génerer leur propre champ de potentiel; ainsi que des fabriques (structurale et ASM) qui ont été mesurées et analysées sur le terrain, permet de :

- 1) S'assurer de la cohérence 3D des éléments d'information dont on dispose,
- 2) Les restituer sous la forme d'un modèle qui représente la géologie,
- 3) Paramétrer la connaissance du sous-sol,

4) Mettre en adéquation le modèle avec l'information géophysique dont on dispose et en proposer une réalisation la plus probable (par exemple par inversion gravimétrique et/ou magnétique).

La mise en cohérence de ces différents types de données via cette "modélisation 3D intégrée" aboutit à un modèle de la géologie dans toute sa complexité 3D, qui représente un état de la connaissance, compte-tenu des informations disponibles à un instant donné. Ce modèle n'est ni unique, ni définitif, il représente néanmoins, l'état de compréhension de la géologie qui prévaut à une époque, en adéquation avec l'ensemble des données disponibles (ici, les mesures d'ASM, structurales, pétrophysiques, des champs de potentiel gravimétriques et magnétiques). Sur la base de ce modèle, un ensemble d'interprétations peuvent se fonder.

1.2. APPORT A LA COMPREHENSION DU FONCTIONNEMENT DU SH ANTE STEPHANIEN

Le magmatisme Namuro-Westphalien est largement développé dans tout le Massif central français (Figure III.1). Il s'étend du NW du Massif central (Marche, Plateau d'Aigurande, Limousin) jusque dans les Cévennes au SE, et du Morvan au NE à Villefranche de Rouergue au Sud. Les monzogranites-granodiorites sont mieux représentés dans la partie centrale et méridionale du Massif central alors que les leucogranites sont plus nombreux dans la partie septentrionale et occidentale. Le magmatisme étudié et les accidents associés apparaissent pendant une période comprise entre 335 et 310 Ma. Les stades magmatiques précoces se caractérisent par la mise en place de formations effusives appelées Tufs Anthracifères datés à 335 Ma (e.g. Bruguier et al., 1998; Leloix et al., 1999 et références incluses). Au Namurien, le Massif central est affecté par un épisode magmatique majeur résultant de la fusion crustale, responsable de la formation de plutons granitiques comme celui de la Margeride (Talbot et al., 2005b), des Cévennes (Talbot et al., 2004, 2005a; Be Mézème et al., 2006a), du Millevaches (Gébelin et al., 2004, 2006, 2007), de la Brâme (Faure et Pons, 1991), de Montmarault, Glénat, Omps et Boisset. Dans de nombreux cas, leur mise en place est associée à la tectonique extensive syn-collisionelle, orientée NW-SE (Faure, 1995) et peut être liée génétiquement à des failles.

Comme l'ont démontré plusieurs études de géophysique profonde (Perrier et Ruegg, 1973; Souriau, 1976, 1981; Lucazeau et Bayer, 1982; Lucazeau et al., 1984; Granet et al., 1995a, 1995b, 2000; Sobolev et al., 1997; Zeyen et al., 1997; Babuska et al., 2002; Judenherc et al., 1999; 2003), le Sillon Houiller qui est un accident de première ordre de la chaîne Varisque, est une faille lithosphérique dont le fonctionnement s'est effectué sous différentes conditions rhéologiques. Probablement existante dès le Namurien, son jeu serait alors ductile (Joly et al, 2007a; 2007b soumis) puis fragile, à partir du Stéphanien (Letourneur, 1953; Grolier et Letourneur, 1968; Bonijoly et Castaing, 1984; 1987; Gélard et al., 1986; Blès et al, 1989). Le Sillon Houiller se caractérise donc par des cinématiques différentes au fil de son histoire. Les plutons namuriens qui sont cartographiquement proches du Sillon Houiller comme les massifs de Montmarault, Glénat et Omps, ont enregistré ces différents régimes de déformations (Joly et al, 2007a; 2007b, 2007c soumis).

Datées du Namurien par la méthode chimique U-Th-Pb sur monazite (c.f. §II.1 et §II.2), les fabriques magmatiques enregistrées par ces plutons sont contemporaines de leur mise en place et possèdent une linéation magnétique WNW- ESE. La direction de cette linéation magnétique est comparable avec la linéation des plutons Namuriens déjà étudiés et celle observée dans les roches métamorphiques de l'auréole de contact (Faure, 1995; Talbot et al., 2004, 2005a, 2005b; Gébelin et al., 2004, 2006, 2007; Be Mezème et al., 2006b). La déformation extensive tardi-orogénique associée au désépaississement de la chaîne Varisque est responsable de cette direction d'allongement maximum NW-SE A l'échelle régionale, la tectonique contrôle la mise en place de ces plutons Namuriens. Les études géophysiques (ASM, gravimétrie et magnétisme) et les modélisations 3D entreprises sur le pluton granitique de Montmarault, montrent que le massif s'enracine le long du Sillon Houiller et qu'il existe donc un lien génétique entre les deux objets. De plus, dans la branche Nord-Est du pluton, des mylonites à foliation à faible pendage vers le Nord sont associées à une linéation NW-SE avec une cinématique admettant un déplacement du «haut vers le NW », traduisant une cinématique en faille normale. La mise en place du pluton de Montmarault est contemporaine du jeu du Sillon Houiller au cours de l'extension syn-orogénique NW-SE reconnue dans tout le Massif central français. Nous proposons donc le terme de « Proto-Sillon Houiller » pour le jeu précoce Namurien de cet accident. La direction d'allongement maximum NW-SE, orthogonale à la direction générale de cette faille, ainsi que les cinématiques mises en évidence dans le granite de Montmarault sont autant d'arguments montrant que le Proto-Sillon Houiller est une faille normale ou une fente de tension d'âge Namurien. Les modélisations 3D gravimétriques et magnétiques permettent, en outre, d'interpréter le Proto-Sillon Houiller comme la zone d'alimentation principale du pluton de Montmarault.

Toutefois, les failles ne sont pas nécessairement des drains magmatiques (Paterson et Schmidt, 1999, 2001). D'après l'inversion géophysique réalisée grâce à la modélisation 3D géologique et géophysique, et malgré leurs relations cartographiques avec le Sillon Houiller, les plutons granitiques de Glénat, Omps et Boisset ne montrent pas d'enracinement dans la faille du Sillon Houiller (Joly et al., 2007c soumis). Ainsi, notre étude des plutons méridionaux ne peut donc démontrer ni son existence au Namurien, ni une cinématique qui s'y rapporterait. Cependant, la direction magnétique et magmatique enregistrée par ces plutons est en bon accord avec la direction d'allongement NW-SE Namurienne, et ne contredit pas l'hypothèse d'une zone en dilatation, proposé à partir de l'étude du granite de Montmarault.

Figure III.1 . Massif central au Namurien

Au Namuro-Westphalien, la série du Chavanon qui se situe à l'Est du Sillon Houiller se trouve « en face » de la série de la Sioule (Grolier, 1971). Ces deux séries ont subi la même histoire tectono-métamorphique (Faure et al., 1993). En effet, suite à l'empilement de nappes vers le Sud, les séries de la Sioule et du Chavanon subissent une seconde déformation tangentielle ductile associée à une cinématique vers le NW, interprétée comme une tectonique de nappe. Puis au Namurien, des bandes de cisaillement associées à une linéation d'étirement NW-SE indiquant un déplacement de la partie supérieure vers le SE, déforment des micaschistes à foliation plate. Cette déformation Namurienne est liée à des mouvements en extension. L'étude structurale du segment Pontaumur - Bort-les-Orgues (§II.3.2) a permis de mettre en évidence une zone mylonitique à

proximité du Sillon Houiller actuel. Cette zone mylonitique est caractérisée par une foliation NE-SW soit verticale soit à pendage faible vers le SE. La foliation mylonitique porte une linéation d'allongement NW-SE. Les critères cinématiques observées témoignent d'un déplacement de la partie supérieure vers le SE. Ces caractéristiques structurales et cinématiques sont en accord avec un jeu normal du « proto- Sillon Houiller » au Namurien mais aussi, avec le régime tectonique extensif NW-SE que connaît le Massif central à cette époque.

Au Stéphanien, le Massif central français enregistre une direction d'extension NNE-SSW qui est responsable de dépressions locales fortement subsidentes, du fait des mécanismes en « pullapart » et « demi-graben » (Gélard et al., 1986). Ces dépressions vont conditionner le dépôt des bassins sédimentaires intra montagneux et structurer leur encaissant qui sont alors régis par ce régime tectonique (Faure, 1995).

Par exemple, le pluton granitique de Montmarault a enregistré ce régime tectonique NNE-SSW au Carbonifère supérieur. En effet, au centre du pluton granitique, des bassins Stéphano-Permiens (Commentry, Doyet, Figure I.8) se sont formés le long de failles cassantes listriques NW-SE, perpendiculaires au Sillon Houiller, dont le jeu est responsable de la forme actuelle du pluton granitique de Montmarault (§II.2). A cette époque, le Sillon Houiller joue en décrochement fragile sénestre (Grolier et Letourneur, 1968) et est jalonné de bassins sédimentaires (Letourneur, 1953; Bonijoly et Castaing, 1984; 1987; Gélard et al., 1986; Blès et al., 1989). Le jeu décrochant compatible avec une direction d'allongement maximum NNE-SSW, est d'ailleurs confirmé par les critères cinématiques fragiles associés à des stries horizontales que l'on observe sur des plans de failles N-S affectant aussi bien le granite que les micaschistes qui jalonnent le Sillon Houiller. Par exemple, des plis asymétriques sénestres à axes verticaux ont été enregistrés dans les micaschistes à proximité du Sillon Houiller. La foliation verticale globalement orientée NE-SW est affectée par des plis à axes verticaux. La foliation porte une linéation horizontale qui s'enroule autour de ces axes de plis. Les relations géométriques entre ces différents éléments structuraux permettent d'interpréter ces plis comme des plis d'entrainements contemporains du jeu sénestre cassant du Sillon Houiller et à la déformation extensive NE-SW Stéphanienne.

Enfin, il est important de noter que la cinématique senestre du Sillon Houiller est en accord avec le jeu normal des failles listriques qui lui sont orthogonales et qui contrôlent les bassins sédimentaires Stéphaniens de type Commentry. 2. PLACE DU SILLON HOUILLER DANS L'OROGENE VARISQUE.

A la lumière de notre étude sur le Sillon Houiller, il semble que cette discontinuité ait surtout accommodé l'extension tardi-orogénique syn à post collisionelle de la chaîne Varisque. Mais, quels sont les liens du Sillon Houiller avec les autres structures qui se trouvent à chacune de ces extrémités comme l'Anomalie Magnétique du Bassin de Paris (AMBP) et la faille de Villefranche?

2.1. L'AMBP

Figure III.2 . Carte du champ magnétique total de la France (Le Borgne et Le Mouël, 1969). Elle représente les perturbations induites du champ magnétique global de la Terre par les roches de la croûte supérieure (sur quelques kilomètres d'épaisseur). En violet, les zones d'anomalies positives traduisent la présence de corps magnétiques tandis que les zones bleues marquent des formations géologiques peu magnétiques). Au nord de la France, l'Anomalie Magnétique du Bassin de Paris est caractérisée par une anomalie positive.

L'AMBP (Figure III.2) se situe à l'extrémité septentrionale du Sillon Houiller. Liée à une anomalie gravimétrique et magnétique positive, l'AMBP est interprétée comme étant le résultat de la présence de roches basiques à ultrabasiques en profondeur. Selon Gerard et Weber (1971), Weber (1973) et Autran et al. (1986), ces roches correspondent à un rift d'âge Dévonien qui se serait refermé au Carbonifère (Figure III.3a). L'AMBP aurait en effet, acquis son aspect définitif de zone de suture au Namuro-Westphalien (Autran et al., 1986).

Figure III.3. Une évolution au cours du Varisque de l'AMBP selon Autran et al. (1986) à revoir avec
l'obtention des nouvelles données structurales. A : Principaux événements au Dévonien inférieur moyen
avec 1: Début de possible du rift ensialique de la Brévenne; 2: Limite nord de la zone orogénique; 3:
Chevauchement intracrustaux avec sens de déplacements. B : Principaux événements au namurienWestphalien avec 1: Tectonique du granite de St-Silvestre; 2 : Champ filonien du granite de Champ
Valmont disposé N30E; 3: Fossé volcanique de la Loire; 4: Plissement des formations du Viséen supérieur;
5: Leucogranite, 6: Monzogranites, granodiorites; 7: Dôme anatectique du Velay; 8: Cisaillement ductile;
9: Chevauchement; 10: Métamorphisme et déformation tangeantielle; 11: Passage de la déformation
cisaillante à la déformation tangeantielle.

Toutefois, les sutures connues dans le Massif central sont d'âge Silurien ou Dévonien La suture la plus ancienne correspond à la fermeture de l'Océan Massif central au Silurien. Par contre, le bassin océanique de la Brévenne (Leloix et al., 1999) témoigne, d'un épisode de distension d'âge Dévonien moyen qui conduit localement à la création de croûte océanique. Ce phénomène directement lié à la subduction vers le Sud de l'océan Rhéique au Nord (Figure III.4), le bassin de la Brévennes est alors interprété comme un système d'arc- arrière arc. Or, de direction ENE-WSW, le bassin océanique de la Brévenne est de direction sub-perpendiculaire à l'AMBP. De plus, dans ce bassin, des nappes Dévoniennes montrent un sens de cisaillement vers le NW (Leloix et al., 1999). Ces données structurales sont peu compatibles avec une suture NNW-SSE comme celle proposée pour l'AMBP.

Autran et al., (1986) suggèrent qu'au Namurien, le Sillon Houiller est une faille sénestre ductile et que le raccourcissement par charriage vers le NE aurait permis à l'AMBP d'acquérir sa morphologie actuelle. Or, cette interprétation doit être réactualisée à la lumière des nouvelles données structurales et cinématiques surtout celles acquises à l'ouest du Sillon Houiller. Par exemple, au Nord-Ouest du Massif central (Figure III.3b), les plutons de la Brâme et de St-Sylvestre (Faure et Pons, 1991; Faure, 1995) sont associés à une linéation NW-SE. La limite ouest du massif de la Brâme/ St- Sylvestre est une faille normale ductile: la faille de Nantiat (Floc'h, 1983). Cette faille est jalonnée par des mylonites dont la foliation et la linéation sont respectivement parallèles aux foliations et linéations du granite de la Brâme/ St- Sylvestre ce qui s'accorde avec un jeu synmagmatique de la faille qui n'est donc pas lié à un chevauchement vers l'Est mais bien à une faille normale. De la même façon, au Namurien, la faille d'Argentat (Roig et al., 2002) est en fait, une faille normale ductile associée à l'extension NW-SE reconnue dans tout le Massif central. Enfin, notre étude montre qu'au Namurien, le Sillon Houiller joue également en faille normale. Certes, l'AMBP a peut être acquis sa morphologie finale au Namurien, mais dans un contexte régional extensif plutôt que transcurent (Autran et al., 1986).

Figure III.4 . Reconstruction de la paleogeodynamique Dévonienne (d'après Faure et al., 2005). A :
Reconstruction global, montrant la marge active du Gondwana (en Laurussia, av, Avalonia, B, Baltica, NA, North America ; simplifié à partir de Robardet, 2003) ; B : Zone de l'Europe de l'Ouest, C : Coupe à l'échelle de la lithosphère.

Les données de terrain montrent que le Sillon Houiller a une origine qui peut remonter au plus au Namurien. Or, en examinant les relations cartographiques entre le Sillon Houiller et l'AMBP (cette dernière venant buter sur le Sillon Houiller), il est envisageable que le couple Sillon Houiller/AMBP ait pu correspondre à une faille transformante au cours du Dévonien (Figure III.4). Ceci s'accorderait bien avec la nature lithosphérique du Sillon Houiller actuel (Granet et al., 2000) qui serait héritée de la tectonique Paléozoïque.

D'autres indices qui sont décrits dans le paragraphe qui suit, permettent d'argumenter l'existence du Sillon Houiller avant le Namurien.

2.2. Les diorites du Limousin

Le bassin océanique de la Brévenne (Leloix et al., 1999) où affleurent des ophiolites, traduisent un magmatisme d'âge Dévonien moyen, lié à la subduction vers le Sud de l'océan Rhéique (Figure III.4). Dans le Limousin, il existe aussi des diorites (Figure I.5, Bernard-Griffit et al., 1985; Pin et Paquette, 2002) qui sont interprétés comme des témoins d'un arc, et donc d'une subduction, au Dévonien (Faure et al., 1997). Pouvons-nous lier ces diorites à la subduction vers le Sud de l'océan Rhéique en sachant que les témoins de l'arc actuel sont localisés à environ 600 km plus au Sud de la zone de suture Rhéique (Cap Lizard; Figure I.5, Franke, 1989; Matte, 1986). L'hypothèse de Ziegler en 1986 d'envisager la subduction vers le Nord d'un bloc Aquitain pourrait expliquer la présence d'un arc magmatique et donc la présence des diorites du Limousin. De plus, une anomalie positive gravimétrique et magnétique orientée NW-SE (Figure III.5) qui s'arrête à l'Est au niveau du Sillon Houiller, s'accorderait avec l'existence d'une suture (Bois et Gariel, 1997; Lefort et Agarwal, 1999). Dans une telle hypothèse, le système Sillon Houiller/ AMBP jouerait le rôle de faille transformante au Dévonien qui accommoderait deux subductions de sens opposés: la subduction vers le Sud de l'océan Rhéique et la subduction vers le Nord du bloc Aquitain. Cependant, cette hypothèse ne permet pas d'expliquer la tectonique de nappe vers le NNW de l'unité de Thiviers-Payzac (Duguet et al., 2007). Cette hypothèse qui se heurte à la présence de cette unité de part et d'autre du Sillon Houiller actuel, dans le limousin à l'Ouest et dans le Rouergue à l'Est, doit être considérée comme une hypothèse de travail qui demande encore d'autres études pour être étavée.

Figure III.5 . Principaux traits géophysiques de l'Aquitaine et des régions voisines (d'après Bois et Gariel, 1997) avec SH, Sillon Houiller; SASZ, Zone de cisaillement Sud Armoricaine; F.A., Faille d'Argentat; F.P., Faille de Pradines. Les anomalies positives et gravimétriques sont associés à des roches ultrabasiques qui temoignerait d'une suture entre le bloc aquitain et une microplaque Armoricaine.

L'hypothèse que le Sillon houiller soit une faille transformante au Dévonien, permettrait d'expliquer la différence des trajets Pression – Température (P-T) d'exhumation de l'USG de part et d'autre du Sillon Houiller. En effet, à l'Est du Sillon Houiller, les unités de haute pression (USG) s'exhument en passant par le faciès granulite (Bodinier et al., 1988; Mercier et al., 1992). Par contre, à l'Ouest du Sillon Houiller, les chemins P-T passent toujours dans le faciès amphibolite (Santallier, 1981; Faure et al., 1990; Floc'h, 1983). Ces différents chemins P-T pourraient être reliés à des processus d'exhumation distincts. A l'Est du Sillon Houiller, ces processus seraient principalement tectoniques tandis qu'à l'Ouest du Sillon Houiller, les phénomènes érosifs prédomineraient (Duthou, 1994). Cependant, Bellot et Roig (2007) proposent que l'exhumation de l'USG de part et d'autre du Sillon Houiller s'échelonnent par plusieurs étapes lors de l'orogène Varisque : une première au Dévonien moyen, une seconde au Carbonifère Inférieur et enfin une dernière au Carbonifère Supérieur. Les assemblages métamorphiques des roches de haute pression passeraient tous par le facies granulite. Par conséquent, à la lumière de ces nouvelles informations, le Sillon Houiller ne serait plus une limite : les processus d'exhumation entre les blocs Est et Ouest ne seraient plus si contrastés car les histoires thermo-barométriques des roches de part et d'autre du Sillon Houiller sont identiques (Bellot et Roig, 2007).

2.3. CORRELATION MERIDIONALE E-W (LIMOUSIN-ROUERGUE)

La faille de Villefranche correspond à la continuité méridionale du Sillon Houiller (Figure III.6). Bien que probable, la continuité de ces deux accidents est incertaine en raison du recouvrement par les dépôts tertiaires du bassin de Maurs (Roig et al., 2001). C'est également à hauteur de ce bassin que la faille d'Argentat, d'orientation NW-SE, vient intersecter le Sillon Houiller orienté NNE-SSW. S'il semble acceptable d'associer le Sillon Houiller et la faille de Villefranche, le prolongement de la faille d'Argentat à l'Est du Sillon Houiller reste problématique.

Figure III.6 . Schéma structural de la zone méridionale du Sillon Houiller (Roig et al., 2001).

Toutefois, le bassin houiller de Decazeville se situe à l'intersection de ces deux systèmes de fractures crustales du réseau de décrochement tardi-Varisques (Arthaud et Matte, 1975). Le bassin de Decazeville a pris naissance à la faveur d'un décrochement dextre orienté NW-SE qui constitue la bordure nord-est du bassin (Bonijoly et Castaing, 1984; Gélard et al., 1986). Cette structure permet de proposer une relation possible entre les différents ensembles géologiques identifiés. Ainsi, la faille de Villefranche met en contact les séries du Lot-Rouergue, avec les prolongements méridionaux des séries d'affinité limousine. Vers le Nord, le Sillon Houiller met en contact les formations du Millevaches avec celles de la série du Lot. Enfin, la limite entre les micaschistes de la série du Lot et les formations métamorphiques du Rouergue correspondrait au décrochement dextre orienté NW-SE, scellée par les dépôts permiens du bassin de Rodez (Roig et al., 2001).

2.4. CORRELATIONS AVEC LES LINEAMENTS A L'OUEST DU SILLON HOUILLER.

A l'Ouest du Sillon Houiller, des failles d'orientation N-S comme la Faille d'Argentat ou de Pradines, ne se retrouvent pas à l'Est du Sillon Houiller. Des relations entre la Zone de Cisaillement Sud Armoricaine (SASZ, Berthé et al., 1979; Gumiaux et al., 2004) et ces failles de directions N-S dans le Limousin (Figure III.5) ont été établies par Gébelin et al. (2007). La faille de Pradines, perpendiculaire à la structuration E-W générale de la chaîne Varisque, s'est développée vers 330 Ma associée à un jeu dextre décrochant du CSA. Ces failles N-S ont été interprétées comme des failles normales synconvergences (Gébelin et al., 2007) qui se seraient développées lors de l'écoulement gravitaire de la croûte partiellement fondue (Vanderhaeghe and Teyssier, 2001). Cet événement serait contemporain de l'exhumation locale de la croûte ductile représentée par les granites du Millevaches, à 315 Ma (Gébelin et al., 2004). Dans cette hypothèse de travail, les failles normales formées dans l'encaissant au toit des intrusions ne serviraient qu'à accommoder des mouvements relatifs dû à la mise en place des plutons. Elles n'auraient que peu ou pas de significations géodynamiques. Or, la faille d'Argentat (Roig et al., 2002) illustre particulièrement bien l'amincissement crustal et de l'élongation due à l'extension namurienne syn-orogénique. En effet, les plutons granitiques qui sont associés à l'accident sont syn-tectoniques du jeu normal dextre de la faille d'Argentat. De plus d'après les profils sismiques, la faille d'Argentat semble s'enraciner dans la croûte inférieure, et un décalage vertical de l'ordre de 12 km est argumenté sur des critères sismiques, géométriques et pétrologiques (Figure III. 7, Bellot et al., 2007, soumis). Au même titre que la faille d'Argentat, l'allochtone de Guéret ou la faille de Nantiat, notre travail suggère que le Sillon Houiller est un accident extensif majeur. La tectonique d'âge Namuro-Westphalien est donc contrôlée par des phénomènes de désépaississement crustal caractérisés par des faille normales ductiles d'échelle crustale à lithosphérique accommodées latéralement par des décrochements, et par la mise en place de plutons granitiques et non l'inverse comme le suggèrent Gébelin et al. (2007).

Figure III.7 . Données geologiques de surface (A), ligne sismique simplifiée (B), et coupe interprétée (C) des lignes sismiques d'Argentat (Bellot et al., 2007, soumis) . Pour la localisation (c.f. Figure I.9). Les paramètres d'aquisition sismiques sont préalablement reportés par Bitri et al. (1999). Les numero en gras indiquent la profondeur avant l'érosion due à l'extension postorogénique.

3. Tertiaire

Les fossés d'effondrements de la Limagne, ainsi que l'ensemble de l'activité volcanique sont localisés à l'Est du Sillon Houiller. Cette activité volcanique s'est initiée au début du Cénozoïque et est devenue importante au début du Miocène (Nehlig et al., 2001). À la lumière des données du modèle numérique de terrain et de la litho-stratigraphie, Michon et Merle (2001) attribuent au Sillon Houiller, un mouvement normal tardi - Cénozoïque et excluent tout mouvement transcurent. L'évolution post-oligocène du Massif central a été caractérisée par une surrection généralisée (Barbarand, 1999; Barbarand et al., 2001; Lefort et Argwal, 1996) et par la réactivation de failles Varisques comme celle du Sillon Houiller (Mazabraud, 2004). Quoiqu'il en soit, le Sillon Houiller joue le rôle d'une barrière lithosphérique (Mazabraud, 2004; Michon et Merle, 2001): i.e. d'une limite passive entre le domaine Ouest et le domaine Est. Néanmoins, la structuration actuelle du Massif central résulte de la conjugaison de deux moteurs de surrection: l'épaulement de rift dans l'extrémité sud-est du Massif Central (Mazabraud, 2004) et l'arrivée de matériel mantellique chaud localisé sous la zone centrale (Figure I.10; Vasseur, 1982; Lucazeau et al. 1984; Lucazeau et Vasseur 1989; Granet et al., 1995a). En effet, depuis près de 30 ans, les nombreuses campagnes géophysiques ont permis de déterminer la structure profonde à l'aplomb du Massif central (Perrier et Ruegg, 1973; Souriau, 1976, 1981; Lucazeau et al., 1984; Granet et al., 1995a; Sobolev et al., 1996). A l'échelle lithosphérique, les études sismologiques ont mis en évidence une anomalie de vitesse sous le Massif central et dans sa partie orientale qui est corrélée à une anomalie de Bouguer et un flux de chaleur élevé. Cette anomalie de vitesse a été interprétée en termes d'anomalie thermique et de remontée de la limite lithosphère-asthénosphère. Cette remontée de la limite lithosphère-asthénosphère se concentre sous les principales provinces volcaniques (Granet et al., 1995a; Sobolev et al., 1996). L'origine de l'anomalie thermique est encore largement discutée (c.f. §1.3.3.4; Maury et Varet, 1980; Fleitout, 1984; Lucazeau et al., 1984; Wilson et Downes, 1992; Granet et al., 1995a; 1995b; Sobolev et al., 1996; Merle et Michon, 2001). En outre, Granet et al. (2000) ont interprété les anomalies de chaleur au niveau des apex comme le résultat de l'intrusion de magma le long d'accidents lithosphériques. Dans la zone médiane du Massif central, l'orientation N130-140E de la structuration et des alignements volcaniques semble donc être liée à un héritage Varisque. Par conséquent, quelles que soient les régions du Massif central, il apparaît clairement que la structuration Varisque a fortement influencé l'évolution tectonique au Cénozoïque (Michon et Merle, 2001; Granet et al., 2000).

4. PERSPECTIVES

Des datations Ar/Ar sur les plutons de Boisset nous permettraient de connaître l'âge de la température de fermeture des micas et ainsi de contraindre l'âge maximum du cisaillement ductile du pluton de Boisset.

Des mesures d'orientations préférentielles de réseau sur quartz, permettraient de connaître la cinématique des structures verticales du granite de Montmarault qui longent le Sillon Houiller et ainsi, de déterminer le mouvement relatif entre les compartiments Est et Ouest.

Enfin, la thermochronologie par traces de fission dans les cristaux d'apatite ou de zircon est une méthode de reconstitution de l'histoire thermique et des mouvements verticaux des roches dans les premiers kilomètres de la croûte. Cette technique est basée sur l'effacement progressif de défauts cristallins liés à la fission naturelle et spontanée des atomes de ²³⁸U pour des températures comprises entre 60 et 110°C. Cette technique permettrait donc de déterminer les paléotempératures dans cet intervalle et de préciser à quelle époque ces températures ont régné. On pourrait donc mettre en évidence les mouvements tardifs du Sillon Houiller liés soit à la compression pyrénéenne et alpine Méso-Cénozoïque, soit à l'extension Oligocène.

REFERENCES

« Le futur appartient à celui qui a la plus longue mémoire. » Friedrich Nietzsche (1844-1900)

« L'histoire, ce témoin des siècles, cette lumière de la vérité, cette vie de la mémoire, cette maîtresse de la vie. » Cicéron (106 - 43 av. J-C.)

A

Alard O., Dautria J-M. et Bodinier J.-L. (1996), Nature du manteau supérieur et processus métasomatiques de part et d'autre du sillon houiller (Massif central), C.R. Acad. Sci., Fr., Paris, II, 323, 763-770.

Améglio L., Vigneresse J.L. et Bouchez J.L. (1997), Granite pluton geometry and emplacement mode inferred from combined fabric and gravity data. In: Bouchez J.-L., Hutton D.H.W., Stephens W.E. (Eds), Granite: From segregation of melt to emplacement fabrics, Kluwer Academic Publishers, Dordrecht, 199-214.

Améglio L. (1998), Gravimétrie et forme tridimensionnelle des plutons granitiques. Thèse de doctorat, Université de Toulouse III, 246 p.

Aranguren A. et Tubia J.M. (1992), Structural evidence for the relationship between thrusts, extensional faults and granite intrusions in the Variscan belt of Galicia (Spain), Journal of Structural Geology, 14, 10, 1229-1237.

Aranguren A., Tubia J.M., Bouchez J.L. et Vigneresse J.L. (1996), The Guiritz granite, variscan belt of Northern Spain:extension-controlled emplacement of magma during tectonic escape, Earth and Planetary Sciences Letters, 139, 165-176.

Archanjo C.J., Bouchez J.L., Corsini M. et Vauchez A. (1994), The Pombal granite pluton: magnetic fabric, emplacement and relation ship with the Brasiliano strike-slip setting of NE Brazil (Paraiba State), Journal of Structural Geology, 26, 3, 323-335.

Arthaud F. et Matte P. (1974), Synthèse provisoire sur l'évolution tectonique et les raccords entre les segments hercyniens situés autour du bassin nord-Baléare (sud de la France, Espagne, bloc corso-sarde) in La chaîne varisque d'Europe moyenne et occidentale, coll. intern. CNRS, 243, 497-513.

Arthaud F. et Matte P. (1975), les décrochements tardi-hercyniens du sud ouest de l'Europe. Géométrie et essai de reconstitution des conditions de formations, Tectonophysics, 25,139-171.

Arthaud F. et Matte P. (1977), Late-Paleozoic strike-slip faulting in southern Europe and northern Africa: Result of a right lateral shear zone between the Appalachians and the Urals, Geol. Soc. Am. Bull, 88, 1305-1320.

Arzi A.A. (1978), Critical phenomena in the rheology of partially melted rocks, Tectonophysics, 44, 173-184.

Atwater T. and Stock J. (1998), Pacific-North America Plate Tectonics of the Neogene Southwestern United States-An update, International Geological Review, 40 (5), 375-402.

Aubert M. et Perrier G. (1971), La structure profonde du Massif Central, Symposium J.Jung: Géologiegéomorphologie et structure profonde du Massif Central français, Clermont Ferrand.

Autran A., Castaing C., Debeglia N., Guillen A. et Weber C. (1986), Nouvelles contraintes géophysiques et géodynamiques pour l'interprétation de l'anomalie magnétique du bassin de Paris: hypothèse d'un rift paléozoïque refermé au Carbonifère, Bulletin de la Société Géologique de France, 2(1), 8, 125-141.

Autran A. et Cogné (1980), La zone interne de l'orogenèse varisque dans l'Ouest de la France et sa place dans le développement de la chaîne hercynienne, In Géologie de l'Europe. 26° C.G.I. Paris. Mém. BRGM, 108, Orléans, 90 – 111.

B

Babuska V., Plomerova J., Vescey L., Granet M. et Achauer U. (2002), Seismic anisotropy of the French Massif Central and predisposition of Cenozoic rifting and volcanism by variscan suture hidden in the mantle lithosphere, Tectonics, 21, 4, 10.1029/2001TC901035.

Barbarand J. (1999), Cinétique de cicatrisation des traces de fission dans les cristaux d'apatite et histoire thermique de la bordure sud-est du Massif Central, PhD Thesis, Centre de Recherches Pétrographiques et Géochimiques, Nancy, France, 492p.

Barbarand J., Lucazeau F., Pagel M. et Séranne M. (2001), Burial and exhumation history of the south-eastern Massif Central (France) constrained by apatite fission track thermochronology, Tectonophysics, 335/3-4, 275290.

Barbarin B. et J.M. Belin (1982), Mise en évidence du cisaillement ductile « St Gervais- l'Hermitage » (Massif Central francais), C.R. Acad. Sci., Fr., Paris, II, 294, 1377-1380.

Bard J.P., Burg J.P., Matte P. et Ribeiro A. (1980), La chaîne hercynienne d'Europe occidentale en termes de tectonique des plaques, In. Géologie de l'Europe. 26e C.G.I. Paris. Mém. BRGM, 108, Orléans, 233 – 246.

Bard J.P. (1997), Démenbrement anté-mésozoïque de la chaîne varisque d'Europe occidentale et d'Afrique du Nord : Rôle essentiel des grands décrochements transpressifs dextres accompagnant la rotation-translation horaire de l'Afrique durant le Stéphanien : Paris, C. R. Acad. Sci., 324, 693-704.

Basile B. (2005), A new interpretation of Stephanian deformation in the Decazeville basin (Massif Central, France): consequences on late Variscan tectonism, Int. J. Earth Sci. (Geol Rundsch), 95, 791–801, DOI 10.1007/s00531-005-0062-6.

Belin J.-M. (1981), Le massif de Saint-Gervais d'Auvergne (Massif Central français). Evolution d'un ensemble granitique composite, Ph-D Thesis, Clermont-Ferrand II University, France, pp 196.

Bellot J.-P., Roig, J.-Y. et Genna, A., (2005), The Hospital coal basin (Massif Central, France): relay of the leftlateral strike-slip Argentat fault in relation to the Variscan postorogenic extension, Bulletin de la Société Géologique de France, 177, 141-149.

Bellot J.-P. (2007), Pre- to syn-extension melt-assisted nucleation and growth of extensional gneiss domes: the western French Massif Central (Variscan belt), Journal of Structural Geology, doi: 10.1016/j.jsg.2007.01.001.

Bellot J.-P. et Roig J.-Y. (2007), Episodic exhumation of HP rocks inferred from structural data and P-T paths from the southwestern Massif Central (Variscan belt, France), Journal of Structural Geology, In Press.

Bellot J.-P., Roig J.-Y. et Truffert C. (2007), Crustal-scale structure and kinematics of synorogenic extension: evidence from the Variscan Massif Central (France), Tectonics, soumis.

Be Mezeme E. (2002), Application de la méthode de datation à la microsonde électronique de monazite de migmatites et de granitoïdes tardi-hercyniens du Massif Central. Analyse critique de la méthode et significations géologiques. Rapport de DEA, Université d'Orléans, 39 p.

Be Mézème E., M. Faure, A. Cocherie et Y. Chen (2005), In situ chemical dating of tectonothermal events in the French Variscan Belt, Terra Nova, 17, 420-426.

Be Mézème E., A. Cocherie, M. Faure, O. Legendre and Ph. Rossi (2006a), Electron microprobe monazite geochronology of magmatic events: Examples from Variscan migmatites and granitoids, Massif Central, France, Lithos, 87, 3-4, 276-288.

Be Mézème E., M. Faure, Y. Chen, A. Cocherie and J.-Y. Talbot (2006b), Structural, AMS and geochronological study of a laccolith emplaced during Late Variscan orogenic extension: the Rocles pluton (SE French Massif Central), International Journal of Earth Sciences, DOI:10.1007/s00531-006-0098-2.

Benn K., Horne R.J., Kontak D.J., Pignotta G. et Evans N.G. (1997), Syn-Acadian emplacement model for the South Mountain Batholith, Meguma Terrane, Novia Scotia: Magnetic fabric and structural analyses, Geological Society of America Bulletin, 109, 1279-1293.

Benn K., N.M. Ham, G.S. Pignotta, and W. Bleeker (1998), Emplacement and deformation of granites during transpression: magnetic fabrics of the Archean Sparrow pluton, Slave Province, Canada, J. Struct. Geol., 20, 1247–1259.

Benn K., Roest W.R., Rochette P., Evans N.G. et Pignotta G.S. (1999), Geophysical and structural signature of syntectonic batholith construction: the South Mountain Batholith, Meguma Terrane, Nova Scotia, *Geophysical Journal International*, 136, 144–158.

Benn K., Paterson S.R., Lund S.P., Pignotta G.S. et Kruse S. (2001), Magmatic fabrics in batholiths as markers of regional strains and plate kinematics: example of the Cretaceous Mt. Stuart batholith, Physics and Chemistry of the Earth, 26, 343-354.

Bergerat F. (1987), Stress fields in the european Platform at the time of Africa- Eurasia collision, Tectonics, 6, pp. 99-132.

Bernard-Griffiths J., Gebauer D., Grünenfelder M. et Piboule M. (1985), The tonalite belt of Limousin. Bull. Soc. Géol. Fr., 1, 459–622.

Berryman J. G. (1991), Lectures notes on nonlinear inversion and tomography. Borehole seismic tomography: Technical report, Lawrence Livermore National Laboratory, 134 p.

Berthé D., Choukroune P. et Jegouzo P. (1979), Orthogneiss, mylonite and noncoaxial deformation of granites: the example of the South Armorican Shear zone, J. Struct. Geol., 1, 31-42.

Berthier F., Duthou J.-L. et Roques M (1979), Datation géochronologique Rb/Sr sur les roches totales du granite de Guéret (Massif Central). Age fini-dévonien de la mise en place de l'un de ses faciès, Bulletin BRGM, 1, 2, 59-72.

Bitri A., Truffert, C., Bellot, J.-P., Bouchot, V., Ledru, P., Milesi, J.-P. et Roig J.-Y. (1999), Imagerie des paléochamps hydrothermaux As-Au-Sb d'échelle crustale et des pièges associés dans la chaîne varisque : sismique réflexion verticale (GéoFrance3D : Massif central français), C. R. Acad. Sci., Paris, 329, 771-777.

Blès J. L., Bonijoly D., Castaing C. et Gros Y. (1989), Successive post-variscan stress fields in the French Massif Central and its borders (western European plate): Comparison with geodynamic data, Tectonophysics, 169, 79-111.

Blumenfeld P. et Bouchez J.L. (1988), Shear criteria in granite and migmatite deformed in the magmatic and solid states, Journal of Structural Geology, 10, 361-372.

Bois P. et Gariel O. (1997), Deep seismic investigation in the Parentis basin (southwestern France), Mém. Geol. Soc. Fr., 171, 97–114.

Bodinier J.L., Giraud A., Dupuy C., Leyreloup A. et Dostal J. (1986), Caractérisation géochimique des métabasites associées à la suture méridionale hercynienne : Massif Central Français et Chamrousse (Alpes), Bull. Soc. Géol. Fr., 8, 115-123.

Bodinier J.-L., Burg J.-P., Leyreloup A. et Vidal H. (1988), Reliques d'un bassin d'arrière arc subducté puis obducté dans la région de Marvejols (Massif Central), Bull. Soc.Géol. Fr., 8, 21-33.

Bonijoly D. et C. Castaing (1984), Fracturation et genèse des bassins Stéphaniens du Massif central français en régime compressif, Ann. Soc. Géol. Nord, t. CIII, 187-199.

Bonijoly D. et C. Castaing (1987), Ouverture et évolution structurale de quelques bassins houillers de directions orthogonales, dans le Massif Central français, Ann. Soc Geol. Nord, CVI, 189-200.

Bonvalot S., Diament M. et Gabalda G. (1997), Continuous gravity recording with Scintrex CG-3M meters:a promising tool for monitoring active zones, Geophysical Journal International 135 (2), 470–494, doi:10.1046/j.1365-246X.1998.00653.x

Borradaile G.J. et Kehlenbeck M.M. (1996), Possible cryptic tectono-magnetic fabrics in 'post-tectonic' granitoid plutons of the Canadian Shield, Earth and Planetary Science Letters, 137, 119-127.

Bosch M., Guillen A. et Ledru P. (2001), Lithologic tomography: an application to geophysical data from the cadomian belt of northern Brittany, France, Tectonophysics, 331, 197-228.

Bouchardon J.-L., Santallier D., Briand B., Menot R.P. et Piboule M. (1989), Eclogites in the french Massif Paleozoïc orogen : geodynamic significance. Tectonophysics, 169, 317-332.

Bouchez J.L. et Jover O. (1986), Le Massif Central : un chevauchement de type himalayen vers l'Ouest-Nord-Ouest, Comptes Rendus de l'Académie des Sciences, 302, 675-680.

Bouchez J.L., Delas C., Gleizes G., Nédélec A. et Cuney M. (1992), Submagmatic microfractures in granites, Geology, 20, 35-38.

Bouchez J.L. (1997), Granite is never isotropic: An introduction to AMS studies of granitic rocks. In: Bouchez J.-L., Hutton D.H.W., Stephens W.E. (Eds) (1997), Granite: From segregation of melt to emplacement fabrics, Kluwer Academic Publishers, Dordrecht, 95-112.

Bouchez J.L. (2000), Anisotropie de susceptibilité magnétique et fabrique des granites, Comptes Rendus de l'Académie des Sciences, 330, 1-14.

Briand B. (1978), Métamorphisme inverse et chevauchement de « type himalayen » dans la série de la vallée du Lot, C. R. Acad. Sci. Fr., 286, D, pp. 729-732.

Bruguier O, Becq-Giraudon J-F., Bosch D. et Lancelot J-R. (1998), Late Visean (upper Missisipian) hidden basins in the internal zones of the Variscan Belt: U-Pb zircon evidence from the French Massif Central, Geology, 26, 627-630.

Brun J.P. et Burg J.P. (1982), Combined thrusting and wrenching in the Ibero-Armorican arc: a corner effect during continental collision, Earth Planet. Sci. Lett., 6, 319-332.

Buck W.R. (1991), Modes of continental lithospheric extension, Journal of Geophysical Research, 96, 20161–20178.

Burg J.P. et Matte P. (1978), A cross section through the french Massif Central and the scope of its variscan geodynamic evolution, Zeitschrift der Deutschen Geologischen Gesellschaft, 129, 429-460.

Burg J.P., Leyreloup A., Marchand J. et Matte P.H. (1984), Inverted metamorphic zonation and large scale thrusting in Variscan belt: an example in the French Massif central, In: Hutton D.H.W. and Sanderson D.J., Eds, Variscan tectonics of he North Atlantic region. Spec. Publ.Geol.Soc.London, 44 – 61.

Burg J.-P., Brun J.-P. et Van Den Driessche, J. (1990), Le sillon houiller du Massif Central Français: Faille de transfert pendant l'amincissement crustal de la chaine varisque? Comptes Rendus de l'Académie des Sciences Paris Serie II, 311, 147-152.

Burg J.P., Van Den Driessche J., Brun J.P. (1994), Syn-to post thickening in the Variscan Belt of the Western Europe: modes and structural consequences. Géologie de la France 3, 33–51.

C

Caron C. (1994), Les minéralisations Pb-Zn associées au Paléozoïque inférieur d'Europe méridionale. Traçage isotopique Pb-Pb des gîtes de l'Iglesiente (SW Sardaigne) et des Cévennes et évolution de socle encaissant par la géochronologie U-Pb, 40Ar-39Ar et K-Ar. Thèse de doctorat, Université de Montpellier II, 288p.

Cartannaz C., Rolin P., Cocherie A., Marquer D., Legendre O., Fanning C. M. et Rossi P. (2006), Characterization of wrench tectonics from dating of syn- to post-magmatism in the north-western French Massif Central, Int J Earth Sci, DOI 10.1007/s00531-006-0101-y.

Castro A. (1986), Structural pattern and ascent model in the Central Extremadura Batholith, Hercynian Belt, Spain, J. Struct. Geol., 8, 633–645, doi: 10.1016/0191-8141(86)90069-6.

Charreau (2005), Evolution tectonique du Tianshan au Cénozoïque liée à la collision Inde-Asie Apports de la magnétostratigraphie et de la géochronologie isotopique U-Th/He. Thèse de l'université d'Orléans, 278pp, http://tel.archives-ouvertes.fr/tel-00011572.

Clemens J.D. et Mawer C.K. (1992), Granitic magma transport by fracture propagation, Tectonophysics, 204, 339-360.

Cocherie A. et Legendre O. (2007), Potential minerals for determining U–Th–Pb chemical age using electron microprobe, Lithos, 93, 288-309, doi:10.1016/j.lithos.2006.03.069.

Cocks L.R.M. (2000), The Early Palaeozoic geography of Europe, J. Geol. Soc. London, 157, 1-10.

Coisy P. (1977), Structure et chimisme des péridotites en enclaves dans les basaltes du Massif central. Modèles géodynamiques du manteau supérieur, thèse UTSL, 117p.

Coisy P. et Nicolas A. (1978), regional structure and geodynamics of the upper mantle beneath the Massif central, Nature, 274, 429-432.

Colchen M. et Rolin P. (2001), La chaîne hercynienne en Vendée, Géologie de la France, 1-2, 53-85.

Costa S. (1990), De la collision continentale à l'extension tardi-orogénique: 100 millions d'années d'histoire varisque dans le Massif central Français. Une étude chronologique par la méthode 40Ar/39Ar, Thèse d'université, Université de Montpellier, 441 p.

Costa S. (1992), East – West diachronism of the collisional stage in the French Massif Central: Implications for the European Variscan Orogen, Geodinamica Acta, 5, 51-68.

Costa S., Maluski H. et Lardeux J.M. (1993), 40-39Ar chronology of Variscan tectono-metamorphic events in an exhumed crustal nappe: the Monts de Lyonnais complex (Massif Central, France), Chemical geology, 105, 339-359.

Crawford M.L., Klepeis K.A., Gehrels G. et Isachsen C. (1999), Batholith emplacement at midcrustal levels and its exhumation within an obliquely convergent margin, Tectonophysics, 312, 57–78, doi: 10.1016/S0040-1951(99)00170-5.

Cuney M. et Autran A. (1987), Géologie profonde de la France, Forage scientifique d'Echassière, Geol Fr, 2-3 : 7-23.

D

D'Lemos R.S, Brown M. et Strachan R.A. (1992), Granite magma generation, ascent and emplacement within a transpressional orogen, Journal of geological Society, london, 149, 487-490.

Ducrot J., Lancelot, J.R. et Marchand, J. (1983), Datation U-Pb sur zircon de l'éclogite de la Borie (Haut-Allier, France) et conséquences sur l'évolution anté-hercynienne de l'Europe occidentale, Earth Planet. Sci. Lett., 62, 385-394.

Duguet M. (2003), Evolution tectono-métamorphique des unités de type Thiviers-Payzac dans la chaine hercynienne français (Massif Central et Vendée), Thèse de l'université Orléans, 256 p.

Duguet M. et Faure M. (2004), Granitoïd emplacement during a thrusting event: structural analysis, microstructure and quartz c-axis patterns. An example from Hercynian plutons in the French Massif Central, Journal of Metamorphic Geology, 26, 927 – 945.

Duguet M., de Breton N. et Faure M. (2007), P-T paths reconstruction of a collisional event: the example of the Thiviers-Payzac Unit in the Variscan French Massif Central, Lithos, (sous-presse).

Duthou J.-L. (1977), Chronologie Rb-Sr et géochimie des granitoïdes d'un segment de la chaîne varisque. Relations avec le métamorphisme: le Nord-Limousin, Thèse 3ème cycle, Université de Clermont-Ferrand, Annales Scientifiques de l'Université de Clermont-Ferrand, 63, 290 p.

Duthou J.L., Cantagrel J.M., Didier J. et Vialette Y. (1984), Paleozoic granitoids from the french Massif Central: age and origin studied by 87Rb/87Sr system, Phys. Earth Planet. Inter., 35, 131-144.

Duthou J.L. et Pin C. (1987), Etude isotopique Rb/Sr de l'apex granitique d'Echassière, Geol. France, 2, 63-67.

E - **F**

Echtler H. et Malavieille J. (1990), Extensional tectonics, basement uplift and Stephano-Permian collapse basin in a late variscan metamorphic core complex (Montagne noire, Southern Massif Central), Tectonophysics, 177, 125-138.

Faure M. (1989), L'amincissement crustal de la chaîne varisque à partir de la déformation ductile des leucogranites du Limousin, C. R. Acad. Sci., Paris, 309, II, 1839-1845.

Faure M., Prost A. et Lasne E. (1990), Déformation ductile extensive d'âge Namuro-Westphalienne dans le plateau d'Aigurande, Massif Central français, Bull. Soc. Géol. France, 8, 189-197.

Faure M. et Pons J. (1991), Crustal thinning recorded by the shape of the Namurian-Westaphalian leucogranite in the Variscan belt of the northwest Massif central, France, Geology, 19, 730-733.

Faure, M., Grolier J. et Pons J. (1993), Extensional ductile tectonics of the Sioule metamorphic series (Variscan French Massif Central), *Geol. Rundschau*, 82, 461-474.

Faure M. (1995), Late Carboniferous extension in the Variscan French Massif central, Tectonics, 14, 132-153.

Faure M., Leloix C et Roig J.Y. (1997), L'évolution polycyclique de la chaîne hercynienne. Bull. Soc. Géol. France, 168, 695 – 705.

Faure M., Charonnat X., Chauvet A., Chen Y., Talbot J.-Y., Martelet G., Courrioux G., Monié P. et Milési J.-P. (2001), Tectonic evolution of the Cévennes para-autochthonous domain of the Hercynian French Massif Central and its bearing on ore deposits formation, Bulletin de la Société géologique de France, 172, 687-696.

Faure M., Monie, P., Pin, C., Maluski, H. et Leloix, C. (2002), Late Visean thermal event in the northern part of the French Massif Central : new ⁴⁰Ar/³⁹Ar and Rb-Sr isotopic constraints on the Hercynian syn-orogenic extension, Int. J. Earth Sciences, 91, 53-75.

Faure M., E. Be Mézème, M. Duguet, C. Cartier et J.-Y. Talbot (2005), Paleozoic tectonic evolution of medioeuropa from the example of the French Massif central and Massif Armoricain, Journal of the virtual Explorer, ISSN 1441-8142, 19, 5, 26 p.

Feybesse J.L. (1981), Tectonique et microtectonique de la région de Laroquebrou (Cantal, Massif central français). Rôle de la déformation ductile et évolution du Sillon Houiller, Ph-D Thesis, Clermont Ferrand University, France, 250 pp.

Fleitout L. (1984), Modélisation des contraintes tectoniques et des instabilités thermo mécaniques dans la lithosphère, Thèse d'état, Univ. Orsay, 433p.

Floc'h J.-P. (1983), La série métamorphique du Limousin central, Thèse d'Etat, Université de Limoges, 444 p.

Franke W. (1989), Tectonostratigraphic units in the Variscan belt of central Europe, Geological Society of America, Spec. Papar, 230, 67–90.

Franke W. (2000), The mid-European segment of the Variscides : tectonostratigraphic units, terrane boundaries and plate tectonic evolution, in Orogenic Processes : Quantification and Modelling in the Variscan Belt, edited by W. Franke, V. Haak, O. Oncken, D. Tanner, Special Publications, 179, Geological Society of London, 35-61.

Froidevaux, C., Brousse, R. et Bellon, H. (1974), Hot spot in France? Nature, 248, 749-751.

G - **H**

Gapais D., Lagarde J.L., Le Corre C., Audren, C. Jégouzo, P. Casas Sainz, A. Van den Driessche J. (1993), La zone de cisaillement de Quiberon: témoin d'extension de la chaîne varisque en Bretagne méridionale au Carbonifère, C.
R. Acad. Sci. Paris, II, 316, 1123–1129.

Gardien V. (1990), Reliques de grenat et de staurotide dans la série métamorphique de basse pression du Mont Pilat (Massif Central français): témoins d'une évolution tectonométamorphique polyphasée, C. R. Acad. Sci. Paris, 310, 233–240.

Gay M., Peterlongo J.M. et Caen-Vachette M., (1981), Age radiométrique des granites en massifs allonge´s et en feuillets minces syn-tectoniques dans les Monts du Lyonnais (Massif Central français), C. R. Acad. Sci. Paris, 293, 993–996.

Gébelin A., Martelet G., Brunel M., Faure M. et Rossi P. (2004), Late Hercynian leucogranites modelling as deduced from new gravity data: the example of the Millevaches massif, Massif Central, France, Bull. Soc. Géol. Fr., 175, 3, 239-248.

Gébelin A., G. Martelet, Y. Chen, M. Brunel, et M. Faure (2006), Structure of late Variscan Millevaches leucogranite massif in the French Massif Central: AMS and gravity modelling results, J. Struct. Geol., 28, 148-169, 2006.

Gébelin A., Brunel M., Monié P., Faure M. et Arnaud N. (2007), Transpressional tectonics and Carboniferous magmatism in the Limousin, Massif Central, France: Structural and 40Ar/39Ar investigations, Tectonics, 26, doi:10.1029/2005tc001822.

Gélard J.P., Casting C., Bonijoly D. et Grolier J. (1986), Structure et dynamique des bassins houillers limniques du massif central, Mém. Soc. Geol. Fr., N.S., 149.

Gerard A. et Weber, C. (1971), L'anomalie magnétique du bassin de Paris interprétée comme élément structural majeur dans l'histoire géologique de la France, C. R. Acad. Sci. Paris, 272, 7, D, 921-923.

Gleizes G., Nédélec A., Bouchez J.L., Autran A. et Rochette P. (1993), Magnetic susceptibility of the Mont-Louis-Andorra ilmenite-type granite (Pyrenees): a new tool for the petrographic characterization and regional mapping of zoned granite plutons, Journal of Geophysical Research, 98, 4317-4331.

Gloaguen E. (2006), Apports d'une étude intégrée sur les relations entre granites et minéralisations filoniennes (Au et Sn-W) en contexte tardi-orogénique (Chaîne Hercynienne, Galice centrale, Espagne), Thèse de l'université Orléans, 572 p., http://tel.archives-ouvertes.fr/tel-00107391.

Grandjean G., Ménnechet C., Debéglia N. et Bonijoly D. (1998), Insuring the quality of gravity data, EOS Transactions-American Geophysical Union, 79, 217–221.

Granet M., Stoll G., Dorel J., Achauer U., Poupinet G. et Fuchs K. (1995a), Massif Central (France): new constraints on the geodynamical evolution from teleseismic tomography, Geophysical Journal International, 121, 33-48.

Granet M., Wilson M. et Achauer U. (1995b), Imaging a mantle plume beneath the French Massif Central, Earth Planet. Sci. Lett., 136, 281-296.

Granet M., Judenherc S. et Souriau A. (2000), Des images du système lithosphère –asthénosphère sous la France et leurs implications géodynamiques : l'apport de la tomographie télésismique et de l'anisotropie sismique, Bulletin de la Société Géologique de France, 171, 2, 149-167.

Grolier J. et Letourneur J. (1968), L'évolution tectonique du grand Sillon Houiller du Massif Central français, XXIII International Geological Congress. 1, 107-116.

Grolier J. (1971), Contribution à l'étude géologique des séries cristallophyliennes inverses du Massif central français : la série de la Sioule, Mémoire du B.R.G.M., 64, 163p.

Guerange-Lozes J. et Alsac C. (1986), Les nappes varisques de l'Albigeois cristallin. Lithostratigraphie, volcanisme et déformations. - Géologie de la France, 3, 309-337.

Guinerbertreau B., Cuney M. et Carre J.-L. (1989), Structure magmatique et plastique des granite de la Marche Occidentale : un couloir transformant hercynien dans le NW du Massif Central français, C.R. Acad. Sci., Fr., Paris, 309, II, 1695-1702.

Gumiaux C. (2003), Modélisation du cisaillement hercynien de Bretagne centrale : déformation crustale et implications lithosphériques, Thèse de l'université Rennes I, 267 p., http://tel.archives-ouvertes.fr/tel-00003938.

Gumiaux C., Gapais D., Brun J. P., Chantraine J. et Ruffet G. (2004), Tectonic history of the Variscan Armorican Shear belt (Brittany, France), Geodin. Acta, 17(4), 289 – 307.

Hibbard M.J. (1987), Deformation of incompletely crystallized magma systems: granitic gneisses and their tectonic implications, Journal of Geology, 95, 543-561.

Hutton D.H.W. (1982), A tectonic model for the emplacement of the Main Donegal granite, NW Ireland, J. Geol. Soc. London, 139, 615-631.

Hutton D.H.W. (1988), Granite emplacement mechanisms and tectonic controls: Inferences from deformation studies, Royal Society of Edinburgh Transactions, 79, 452–455.

Hutton D.H.W. et Reavy R. J. (1992), Strike-slip tectonics and granite petrogenesis, Tectonics, 11, 960-967.

I – J - K- L

Joly A., Chen Y., Faure M. et Martelet G. (2007a). A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault: relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Massif Central. Part I: Geochronology, mineral fabrics and tectonic implications. JGR (Soumis).

Joly A., Martelet G., Chen Y. et Faure M. (2007b). A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault: relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Massif Central. Gravity, aeromagnetic investigations and 3D numeric modeling. JGR (Soumis).

Joly A., Faure M., Martelet G. and Chen Y. (2007c). A multidisciplinary study on granitic plutons and their Glénat, Omps and Boisset relationship with a nearby lithospheric fault. Example from granitic plutons and Sillon Houiller Fault of the southern part of the French Massif central. Journal of the Geological Society (Soumis).

Judenherc S., Granet M. et Boumbar N. (1999), Two-dimentional anisotropic tomography lithosphere beneath France using regional arrival times, Journal of Geophysical Research, 104, B6, 13.201-13.215.

Judenherc S., Granet M., Brun J.P. et Poupinet G. (2003), The Hercynian collision in the Armorican massif : evidence of different lithospheric domains inferred from seismic tomography and anisotropy, Bulletin de la société géologique de France, 174, 1, 45-57.

Lagarde J.L., Dallain C., Ledru P. et Courrioux G. (1994), Deformation localization with laterally expanding anatectic granites: hercynian granites of the Velay, French Massif Central, J. Struct. Geol, 16, 839–852.

Lardeaux J.M., Ledru P., Daniel I. et Duchene S. (2001), The Variscan French Massif Central a new addition to the Ultra –High Pressure metamorphic "club": exhumation processes and geodynamic consequances, Tectonophysics, 332, 143 – 167.

Le Borgne E. et Le Mouël J.L. (1969), La nouvelle carte magnétique de la France, Inst. Phys. Globe Paris, 35, p. 197-224.

Ledru P. et Autran, A. (1987), L'édification de la chaîne Varisque dans le Limousin. Rôle de la faille d'Argentat à la limite Limousin-Millevaches.- Prog. G.P.F., Doc. B.R.G.M., Orléans, 87-106.

Ledru P., Lardeaux J.M., Santallier D., Autran A., Quenardel J.M., Floc'h J.P., Lerouge G., Maillet N., Marchand J. et Ploquin A. (1989), Où sont les nappes dans le Massif Central français ? Bull. Soc. Géol. France, 8, 605–618.

Ledru P., Costa S. et Echtler H. (1994), Structure. In: Keppie J. D. (Ed), Pre-Mesozoic geology in France and related areas. Springer-Verlag, 276-288.

Ledru P., Courrioux G., Dallain C., Lardeaux J. M., Montel J. M., Vanderhaeghe O. et Vitel G. (2001a), The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution, *Tectonophysics*, 342, 3-4, 207-237.

Ledru P., Faure M. et Bouchot V. (2001b), Le massif central, témoin de la chaîne Varisque ouest-ouest-européenne, géologues, 130/131, 30-46.

Lefort J.P. et Agarwal B.N.P. (1996), Gravity evidence for Alpine buckling of the crust beneath the Paris Basin, Tectonophysics, 258, 1-14.

Lefort J.P. et Agarwal B.N.P. (1999), Of what is the centre of the Ibero Armorican arc composed?, Tectonophysics, 302, 71–81.

Leloix C., Faure M. et Feybesse J.L. (1999), Hercynian polyphase tectonics in the northeast French Massif central: the closure of the Brévenne Devonian-Dinantian rift. Int. J. Earth Sci., 88, 409-421.

Leloup P.H., Lacassin R., Tapponnier P., Schärer U., Dalai Z., Xiaohan L., Liangshang Z., Shaocheng J. et Trinh P.T. (1995), The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina, Tectonophysics, 251, 3-84.

Lenoir X., Garrido C. J., Bodinier J.-L. et Dautria J.M (2000), Contrasting lithospheric mantle domains beneath the Massif Central (France) revealed by geochemistry of peridotite xenoliths, Earth and Planetary Science Letters, 181, 3, 15, 359-375.

Lespinasse M., Mollier B., Delair J. et Bladier Y. (1986), Structuration tangeantielle et chevauchements carbonifères dans les leucogranites du NW du Massif Central français : l'exemple des failles de Bussières-Madelaines et d'Arrènes-Ouzilly, C.R. Acad. Sci., Fr. Paris, II, 17, 1575-1580.

Letourneur, J. (1953), Le grand Sillon Houiller du plateau central français, Bull.Carte géologique de la France, 238, LI, 235pp.

Lucazeau F. et Bayer R. (1982), Evolution géothermique et géodynamique du Massif Central français depuis l'Oligocène, Ann.Géophys, 38, 405-429.

Lucazeau F., Vasseur G. et Bayer R. (1984), Interpretation of heat flow data in the French Massif Central, Tectonophysics, 103, 1-4, 99-119.

Lucazeau F. et Vasseur, G. (1989), Heat flow density data from France and surrounding margins, Tectonophysics, 164, 251-258.

M - **N**

Malavielle J., Guihot S., Costa S., Lardeaux J.-M. et Gardien V. (1990), Collapse of thickened Variscan crust in the French Massif Central : Mont Pilat extensional shear zone and St Etienne carboniferous basin, Tectonophysics, 177, 139-149.

Marchand J. (1981), Ecaillage d'un "mélange tectonique" profond: le complexe cristallophyllien de Champtoceaux (Bretagne Méridionale), Comptes Rendus Acad. Sci., Paris, II, 293, 223-228.

Marre J. (1982), Méthodes d'analyse structurale des granitoïdes. BRGM, Manuels et Méthodes n°3, 130p.

Martelet G. (1999), Modélisation de la structure crustale et du comportement mécanique de la lithosphère à partir des anomalies gravimétriques. Applications à l'Himalaya et au massif granitique du Mont Lozère, Cévennes, Thèse de doctorat, Institut de Physique du Globe de Paris, 324p.

Martelet G., P. Calcagno, C. Gumiaux, *C. Truffert, A. Bitri, D. Gapais et J. P. Brun (2004)*, Integrated 3D geophysical and geological modeling of the Hercynian Suture Zone in the Champtoceaux area (south Brittany, France), Tectonophysics, 382, 1-2, 117-128.

Martin D. (1985), Etude structurale, pertologique et gytologique de la valée du Chavanon (Massif Central français), Thèse de 3^e cycle, Université de Clermont Ferrand.

Mattauer M., Brunel M. et Matte P. (1988), Failles normales ductiles et grands chevauchements. Une nouvelle analogie entre l'Himalaya et la chaîne hercynienne du Massif Central français. C.R. Acad. Sci., Fr., Paris, 306, 671-676.

Mattauer M. et Matte P. (1998), Le bassin Stéphanien de St Etienne ne résulta pas d'une extension tardihercynienne généralisée : c'est un bassin en pull-apart en relation avec un decrochement dextre, Geodynamici acta, 11, 23-31.

Matte P. (1986), La chaîne varisque parmi les chaînes paléozoïques péri atlantiques, modèle d'évolution et position des grands blocs continentaux au Permo – Carbonifère, Bull. Soc. Géol. France, 8, 9 – 24.

Matte P. et Hirn A. (1988), Seismic signature and tectonic cross section of the Variscan Belt in Western France, Tectonics, 72, 141-155.

Matte P. (1991), Accretionary history and crustal evolution of the Variscan belt in Western Europe, Tectonophysics, 196, 309-337.

Matte P. (2001), The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate: a review, Terra Nova, 13, 122-128.

Mattauer M., Brunel M. et Matte P. (1988), Failles normales ductiles et grands chevauchements. Une nouvelle analogie entre l'Himalaya et la chaîne hercynienne du Massif Central français, C.R. Acad. Sci., Fr., Paris, 306, 671-676.

Maury R. C. et Varet J. (1980), Le volcanisme tertiaire et quaternaire en France, Mém. BRGM, 107, 138-59.

Mazabraud Y. (2004), Déformation active d'une région intraplaque àdéformation lente : Le cas de la France. Sismicité et modélisations thermomécaniques 2D et 3D, Thèse de l'université de Nice-Sophia Antipolis, p.165.

McCaffrey K.J.W. (1992), Igneous emplacement in a transpressive shear zone: Ox Mountains igneous complex, J. Geol. Soc. London, 149, 221–235.

McNulty B.A., O.T. Tobisch, A.R. Cruden, et S. Gilder (2000), Multistage emplacement of the Mount Givens pluton, central Sierra Nevada Batholith, California, Geol. Soc. Am. Bull., 112, 119–135, doi: 10.1130/0016-7606.

Meju M. (1994), Geophysical Data Analysis: Understanding Inverse Problem Theory and Practice, Course Notes, Series 6, Society of Exploration Geophysicists.

Ménard G. et Molnard P. (1988), Collapse of a Hercynian Tibetan Plateau into a late Paleozoic European Basin and Range Province, Nature, 334, 235-237.

Mercier L., Johan V., Lardeaux J.-M. et Ledru P. (1992), Evolutions tectonométamorphiques des nappes de l'Artense (Massif Central français) : nouveaux marqueurs de la collision dans la chaîne varisque, Bull. Soc. Géol. Fr., 163, 641-649.

Merle O. et Michon L (2001), The formation of the West European rift: a new model as exemplified by the Massif Central area, Bull. Soc. Géol. France, t 172, n° 2, 213-221.

Michon L. et Merle O. (2001), The evolution of the Massif Central rift: spatio-temporal distribution of the volcanism, Bull. Soc. géol. France, t. 172, n°2, 201-211.

Milési J.P., Bouchot V. et Ledru P. (1997), cartographie et métallogénie 3D du massif central français (programme national GéoFrance 3D), Chron. Rech. Min., 528, 3-12.

Nehlig P. Boivin P., de Goër A., Mergoil J., Prouteau G., Sustrac G. et Thiéblemont D. (2001), Les volcans du Massif central, Géologues, 130-131, 66-91.

Neves S. et Vauchez A. (1995), Magmas emplacement and shear zone nucleation and development in northeast Brazil (Fazenda Nova and Pernambuco shear zones; state of Pernambuco), Journal of South American Earth Sciences, 8, 289-298.

Nicolas A., Lucazeau F. et Bayer R. (1987), Peridotite xenoliths in Massif Central basalts, France: textural and geophysical evidence for asthenospheric diapirism. In: Mantle Xenoliths (P.H. Nixon, ed.), pp. 563–574. Wiley, Chichester.

O – **P**

Olivier P., de Saint-Blanquat M., Gleizes G. et Leblanc D. (1997), Homogeneity of granite fabrics at the metre and decametre scales. In: Bouchez J.-L., Hutton D.H.W., Stephens W.E. (Eds), Granite: From segregation of melt to emplacement fabrics, Kluwer Academic Publishers, Dordrecht, pp. 113-128.

Parada M.-A., Roperch P., Guiresse C. et Ramirez E. (2005), Magnetic fabrics and compositional evidence for the construction of the Caleu pluton by multiple injections, Coastal Range of central Chile, Tectonophysics, 399, 399–420.

Paris F. et Robardet M. (1990), Early Paleozoic paleobiogeography of the Variscan regions, Tectonophysics, 177, 193 – 213.

Paterson S.R., Vernon R.H. et Tobisch O.T. (1989), A review of criteria for the identification of magmatic and tectonic foliations in granitoids, Journal of Structural Geology, 11, 349-363.

Paterson S.R., Fowler Jr. T.K., Schmidt K.L., Yoshinobu A.S., Yuan E.S. et Miller R.B. (1998), Interpreting magmatic fabric patterns in plutons, Lithos, 44, 53-82.

Paterson S.R. et Schmidt K.L. (1999), Is there a spatial relationship between faults and plutons? Journal of Structural Geology, 21, 1131-1142.

Paterson S.R. et Schmidt K.L. (2001), Reply to a discussion of "Is there a spatial relationship between faults and plutons?" Journal of Structural Geology, 23, 2029-2032.

Perrier G. et Ruegg J.C. (1973), Structure profonde du massif Central français, Annales de Geophysique, 29, 4, 435-502.

Pin C., Dupuy C. et Peterlongo J-M. (1982), Répartition des terres rares dans les roches volcaniques basiques dévonodinantiennes du nord-est du Massif central, Bull. Soc. Géol. France, Paris, 7, 669-676.

Pin C. et Peucat J.J. (1986), Ages des épisodes de métamorphisme paléozoïques dans le Massif Central et le Massif Armoricain, Bull. Soc. Géol. France, 8, 461 – 469.

Pin C. et Vielzeuf D. (1988), Les granulites de haute pression d'Europe moyenne témoins d'une subduction éohercynienne. Implications sur l'origine des groupes leptyno-amphiboliques, Bull. Soc. Géol. Fr., 8, 13-20.

Pin C. (1990), Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data, Tectonophysics, 177, 215-227.

Pin C. et Duthou J-L. (1990), Sources of Hercynian granitoids from the french Massif Central: inferences from Nd isotopes and consequences for crustal evolution, Chemical Geology, 83, 281-296.

Pin C. et Paquette J-L. (1998), A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France), Contrib. Mineral Petrol., 129, 222-238.

Pin C. et Paquette J-L. (2002), Le magmatisme basique calcoalcalin d'âge dévonodinantien du nord du Massif Central, témoin d'une marge active hercynienne : arguments géochimiques et isotopiques Sr/Nd, Geodinamica acta, 15, 63–77.

Pinet B., Montadert L., Curnelle R., Cazes M., Marillier F., Rolet J., Tomassino A., Galdeano A., Patriat Ph., Brunet M. F., Olivet J. L., Schaming M., Lefort J. P., Arrieta A. et Riaza C. (1987), Crustal thinning on the Aquitaine shelf, Bay of Biscay, from seismic data, Nature, 325, 513-516, doi:10.1038/325513a0.

Q - **R**

Quesnardel J.M. et Rolin P. (1984), Paleozoic evolution of the plateau d'Aigurande (NE du Massif Central, France). In, Hutton DHW, sanderson DJ (eds) Variscan tectonics of the North Atlantic Region, Spec. Publ. Geol. Soc. London, 14, 47-61.

Richards J.P. (2001), Discussion of "Is there a spatial relationship between faults and plutons?" by Paterson S.R. and Schmidt K.L, Journal of Structural Geology, 23, 2025-2027.

Robardet M. (2003), The Armorica "microplate": fact or fiction ? Critical review of the concept and contradictory paleobiogeographical data, Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 125-148.

Roig J.Y. et Faure M. (1995), La déformation du quartz dans un pluton syntectonique mis en place pendant l'extension Carbonifère supérieur du Massif Central français (le leucogranite de Chambles, Massif du Velay), C. R. Acad. Sci. Paris, 321, 789–796.

Roig J.-Y., Faure M. et Ledru P. (1996), Polyphase wrench tectonics in the southern French Massif Central. Kinematic inferences from pre- and syn-kinematic granitoïds, Geologische Rundschau, 85, 138-153.

Roig J.-Y. (1997), Evolution tectono-métamorphique d'un segment de la chaîne hercynienne. Rôle du plutonisme dans la caractérisation des tectoniques du Sud-Limousin (Massif Central français), Thèse de 3eme cycle, Université d'Orléans, 287p.

Roig J.-Y. et Faure M. (2000), La tectonique cisaillante polyphasée du Sud Limousin (Massif central Français) et son interprétation dans un modèle d'évolution polycyclique de la Chaîne hercynienne. Bull. Soc. Géol. Fr., 171, 295-307.

Roig J.-Y., Alabouvette B., Collomb P., Bogdanoff S., Guérangé-Lozes J., Genna A., Couturié J.P., Monchoux P., Ciszak R. (2001), Notice explicative, Carte géol. France (1/50 000), feuille Decazeville (859). Orléans : BRGM, 94 p.

Roig J.-Y., Faure M. et Maluski H. (2002), Surimposed tectonic and hydrothermal events during the late-orogenic extension in the Western French Massif Central: a structural and ⁴⁰Ar/³⁹Ar study, Terra Nova, 14, 25-32.

S

Santallier D. (1981), Les roches basiques de la série métamorphique du Bas Limousin (Massif Central, France), Thèse d'état, Orléans, 340p.

Santallier D., Briand B., Menot R.P. et Piboule M. (1988), Les complexes leptynoamphiboliques (C.L.A.) : revue critique et suggestions pour un meilleur emploi de ce terme, Bull. Soc. Géol. Fr., 8, IV, 1, 3-12.

Santallier D., Lardeaux J.M., Marchand J. et Marignac C. (1994), Metamorphism. In: Keppie J. D. (Ed), Pre-Mesozoic geology in France and related areas. Springer-Verlag, pp. 325-340.

Shaw, A., Downes H.et Thirlwall M.F. (1993), The quartz-diorites of Limousin: elemental and isotopic evidence for Devono-Carboniferous subduction in the Hercynian belt of the French Massif Central, Chem. Geol., 107, 1-18.

Sider H. et Ohnenstetter M. (1986), Field and petrological evidence for the development of an ensialic marginal basin related to the Hercynian orogeny in the Massif Central, France, Geol. Rundsch., 75, 421-443.

Sobolev S.V., Zeyen H., Stoll G., Werling F. Altherr R. et Fuchs K. (1996), Upper mantle temperatures from teleseismic tomography of French massif central including effects of composition, mineral reactions, anharmonicity, anelasticity, and partial melt, Earth and Planetary Science Letters, 139, 147-163.

Sobolev S.V., Zeyen H., Granet M., Achauer U., Bauer C., Werling F., Altherr R. et Fuchs K. (1997), Upper mantle temperatures and lithosphere-asthenosphere system beneath the French Massif Central constrained by seismic, gravity, petrologic and thermal observations, Tectonophysics, 275, 1-3, 143-164.

Sossa-Simawango M. (1980), Contribution à la pétrologie, la géochimie, la géologie structurale du massif granitique de Montmarault (Massif central français), Ph-D Thesis, Orléans University, France.

Souriau A. (1976), Structure profonde sous la France obtenue à partir des ondes de surface, Bull. Soc. Géol. Fr., XVIII-5, 1085-1093.

Souriau A. (1981), Le manteau supérieur sous la France, Bull. Soc. Géol. Fr., XXIII-7, 1, 65-81.

Т

Tait J., Bachtadse V., Franke W. et Soffel H. C. (1997), Geodynamic evolution of the European Variscan fold belt: paleomagnetic and geological constraints, Geol. Rundschau, 86, 585-598.

Talbot J.Y. (2003), Apport des études ASM et gravimétriques des plutons cévenols à la caractérisation structurale de l'évolution tardi-hercynienne du Massif Central, Thèse, Univ. Orléans, 256 p, http://tel.archives-ouvertes.fr/tel-00005395.

Talbot J.-Y., Martelet G., Courrioux G., Chen Y. et Faure M. (2004), Emplacement in an extensional setting of the Mont Lozère-Borne granitic complex (SE France) inferred from comprehensive AMS, structural and gravity studies, *J.Struct.Geol.*, 26, 1, 11-28.

Talbot J.-Y., Chen Y. et Faure M. (2005a), A magnetic fabric study of the Aigoual–Saint Guiral–Liron granite pluton (French Massif Central) and relationships with its associated dikes, Journal of Geophysical Research, 110, B12106, doi:10.1029/2005JB003699.

Talbot J.-Y., Faure M., Chen Y. et Martelet G. (2005b), Pull-apart emplacement of the Margeride granitic complex (French Massif Central). Implications for the late evolution of the Variscan orogen, *J.Struct.Geol.*, 27, 9, 1610-1629.

Tapponier P. et Molnar P. (1979), Active faulting and Cenozoic tectonics of the Tian Shan, Mongolia, and Baikal regions, Journal of Geophysical Research, 84, 3425-3459.

Tarantola A. et Valette B. (1982), Inverse Problems = Quest for Information, Journal of Geophysics, 50, 159–170

Tarantola A. (1994), Inverse Probleme Theory – Methods for Data Fitting and Model Parameter Estimation, 2, Impression, Elsevier, Amsterdam, 613 p.

Tarling D.H. et Hrouda F. (1993), The magnetic anisotropy of rocks, Chapman and Hall, London, 220 p.

Tikoff B. et Teyssier C. (1992), Crustal-scale, en échelon "Pshear" tensional bridges: a possible solution to the batholithic room problem, Geology, 20, 927-930.

Tikoff B. et Saint Blanquat M. (1997), Transpressional shearing and strike-slip partitioning in the Late Cretaceous Sierra Nevada magmatic arc, California, Tectonics, 16, 442–459, doi: 10.1029/97TC00720.

Turland M., Gentilhomme P., Duthou J.L., d'Arcy D., Carroué J.-P. et Debeglia N. (1989), Notice explicative, Carte géol. France, (1/50 000), feuille Montmarault, 114 p., *Ed. B.R.G.M.*, Orléans, France.

U - V - W

Van den Driessche J. et Brun J.P. (1989), Un modèle de l'extension paléozoïque supérieur dans le sud du Massif central, C. R. Acad. Sci., Série 2, 309, 1607-1613.

Van der Molen I. et Paterson M.S. (1979), Experimental deformation of partially-melted Granite, Contributions to Mineralogy and Petrology, 70, 299-318.

Vanderhaeghe O., Burg, J.P. et Teyssier, C. (1999), Exhumation of migmatites in two collapsed orogens: Canadian Cordillera and French Variscides. In: Ring, U., Brandon, M.T., Lister, G.S., Willett, S.D. (Eds.), Exhumation Processes: Normal Faulting, Ductile Flow and Erosion Geological Society, London, Special Publications, 154, 181–204.

Vanderhaege O. et Teyssier C. (2001), Partial melting and flow of orogen, Tectonophysics, 342, 451-472.

Van der Voo R. (1993), Paleomagnetism of the Atlantic, Tethys and Iapetus oceans, Cambridge University press, Cambridge, 411pp.

Vasseur G. (1982), Synthèse des résultats de flux géothermique en France, Ann. Géophys. T. 38, fasc. 2, 189-201.

Vernon R.H. (2000), Review of microstructural evidence of magmatic and solid-state flow, Electronic Geosciences, 5, 2.

Vigneresse J.L. (1990), Use and misuse of geophysical data to determine the shape at depth of granitic intrusions, Geological Journal, 25, 249-260.

Vigneresse J.L. (1995), Control of granite emplacement by regional deformation, Tectonophysics, 249, 173-186.

Von Raumer J., Stampfli G.M. et Bussy F. (2003), Gondwana-derived microcontinents-the constituents of the variscan and Alpine collisional orogens, Tectonophysics, 365, 7-22.

Weber C. (1973), Le socle antétriasique sous la partie du Bassin de Paris, Bull. B.R.G.M., II, 2, 219-343.

Wilson M. et Downes H. (1992), Mafic alkaline magmatism associated with the European Cenozoic rift system, Tectonophysics, 208, 173-182.

Wyns R. et Guillocheau F. (2000), Géomorphologie grande longueur d'onde, altération, érosion, et bassins épicontinentaux. In : Colloque Géofrance 3D : résultats et perspectives, Doc. BRGM, 293, pp. 103-108.

X - Y - Z

Zeyen H., Novak O., Landes M., Prodehl C., Driad L. et Hirn A. (1997), Refraction-seismic investigations of the northern Massif Central (France), Tectonophysics, 275, 1-3, 99-117.

Ziegler P.A. (1990), Geological Atlas of Western and Central Europe, second and completely revised edition, Shell International Petro. Maatschappi B.V., Geological Society Publishing House, 239 p.

Annexe 1 : Méthodes employées au cours de la thèse

I.	L'Anisotropie de la Susceptibilité Magnétique (ASM)	
II.	La gravimétrie	
III.	Le magnétisme	
IV.	Modélisation 3D	
V.	Inversion géophysique	
VI.	Géochronologie U-Th- Pb sur monazite à la microsonde électronique	

« Il n'y a pas une méthode unique pour étudier les choses» Aristote (384 – 322_av. J-C.)

1. THEORIE ET METHODOLOGIE

1.1. **DEFINITION**

La susceptibilité magnétique exprime l'aptitude d'un corps à s'aimanter, lorsqu'il est soumis à un champ magnétique (inducteur). Lorsque l'on applique un champ magnétique H ($A.m^{-1}$) sur un matériau, celui-ci acquiert une aimantation induite M ($A.m^{-1}$) proportionnelle au champ appliqué. Le facteur de proportionnalité k (I.1) est appelé susceptibilité magnétique volumétrique du solide et est sans dimension :

$$M = k \times H \qquad (I.1)$$

Tous les minéraux présentent une susceptibilité magnétique mais la relation entre aimantation induite et champ est différente suivant les familles "magnétiques" de minéraux.

La valeur de la susceptibilité magnétique est fonction de la température, de l'intensité du champ magnétique et dans certains cas de la direction selon laquelle H est appliqué à ce solide. Si les solides sont isotropes par rapport à la susceptibilité magnétique, k est un scalaire. Or, les solides sont en général anisotropes vis-à-vis de la² susceptibilité magnétique, donc k ne s'exprime plus nécessairement par un scalaire. En effet, pour des champs magnétiques faibles, la relation entre M et H est toujours linéaire et k s'exprime par un tenseur d'ordre 2, dont la représentation géométrique est un ellipsoïde (Figure I.1) de trois demi axes $K1 \ge K2 \ge K3$ (Daly, 1970). Mais, pour des champs magnétiques plus forts, k ne peut pas automatiquement être décrit comme précédemment.

Figure I.1. Ellipsoïde de susceptibilité magnétique

En effet, pour certains minéraux, il n'y a plus de relation linéaire entre les deux grandeurs M et H puisque l'aimantation M, est saturée pour de grandes valeurs du champ H (Figure I.2). C'est uniquement dans ce dernier cas que la susceptibilité magnétique, k, ne peut plus être décrite en terme de tenseur de rang deux.

Remarquons que les mesures ASM de ce travail ont été réalisées en champ magnétique faible. Donc, k peut être décrit comme un ellipsoïde.

Figure I.2. Relation entre l'aimantation et le champ magnétique pour les différents comportements magnétiques des solides (d'après Bouchez, 1997).

1.2. L'AIMANTATION DES MINERAUX ET DES ROCHES

1.2.1. LES DIVERSES TYPES D'AIMANTATION

L'aimantation est la capacité d'une substance à acquérir des propriétés magnétiques en présence ou en l'absence de champ magnétique. Deux types d'aimantation existent :

- l'aimantation induite qui est un paramètre intrinsèque du minéral considéré et;
- l'aimantation rémanente qui est la capacité intrinsèque d'un minéral à retenir l'aimantation en l'absence du champ magnétique. Elle disparaît lorsque la température de Curie (Tc) du minéral considéré, est dépassée. Notons qu'au delà de la Tc, le matériel devient alors paramagnétique (cf. paragraphe 1.2.1.2.).

1.2.1.1. LES MINERAUX DIAMAGNETIQUES

Les matériaux diamagnétiques K_{dia} présentent une aimantation induite M opposée au champ H (Figure I.3). En absence de champ, les atomes ont un moment magnétique (résultant des moments de spin nucléaire, de spin des électrons et orbitaux des électrons) nul. Le diamagnétisme est une propriété universelle de tous les corps mais il est observable uniquement quand il n'est pas masqué par d'autres effets magnétiques plus importants. Les substances uniquement diamagnétiques ont une susceptibilité toujours négative et faible (~ 10⁻⁵ SI) Des minéraux comme le quartz, les feldspaths, la calcite et le graphite présentent un comportement purement diamagnétique. En l'absence de champ magnétique, l'aimantation est nulle.

1.2.1.2. LES MINERAUX PARAMAGNETIQUES

La majorité des matériaux qui ne sont pas diamagnétiques sont paramagnétiques, c'est-à-dire k est toujours positif et faible (~ 10^{-5} à 10^{-4} SI) et que le vecteur aimantation est de même sens que le champ d'excitation.

Dans un matériau paramagnétique, une partie des atomes a un moment magnétique non-nul. En absence de champ, ces moments élémentaires ont des orientations aléatoires et leur somme est nulle. Comme pour le diamagnétisme, la présence d'une aimantation n'a donc lieu que sous l'effet d'un champ qui oriente préférentiellement les moments élémentaires. Contrairement au diamagnétisme, la réponse d'un matériau paramagnétique vise à renforcer l'action du champ H extérieur (Figure I.3). Ce comportement est généré par les atomes de quelques corps, dont en particulier le fer, au sein des principaux silicates (micas, amphiboles, pyroxènes, olivines, grenats) et de certains oxydes et sulfures. Notons que la susceptibilité paramagnétique K_{para} diminue avec l'augmentation de la température suivant la loi hyperbolique de Curie Weiss, puisque l'agitation thermique désoriente les dipôles magnétiques élémentaires.

1.2.1.3. Les mineraux ferromagnetiques

L'aimantation d'un matériau ferromagnétique sensu lato correspond à l'orientation des dipôles élémentaires dans une même direction, à cause de leur interaction. À la différence des paramagnétiques, cette orientation se fait spontanément, en l'absence d'un champ H extérieur. Contrairement aux minéraux diamagnétiques et paramagnétiques, les minéraux ferromagnétiques sensu lato peuvent donc conserver une aimantation, même hors du champ magnétique. On parle alors de rémanence.

Trois sous-types de comportement ferromagnétiques sont connus (Figure I.3):

- Le ferromagnétisme sensu stricto se rencontre dans les métaux contenant les éléments de transitions (Fe, Co, Ni et leurs alliages). Tous les moments élémentaires sont parallèles et de même sens. La susceptibilité K_{ferro} est positive et très forte en champ faible (≥10³ SI).
- Le ferrimagnétisme se trouve dans des matériaux, dans lesquels on trouve des domaines magnétiques dans lesquels les moments sont alignés en deux sous-réseaux ayant un sens opposé les uns par rapport aux autres mais ayant aussi une intensité différente. Le moment magnétique total dans un domaine n'est alors pas nul, même lorsque le champ extérieur est nul. C'est le cas de la magnétite, la titanomagnétite et d'une partie des oxydes et sulfures de fer. La susceptibilité K_{ferri} est positive et assez forte en champ faible (10³ à 10⁻³ SI).
- Lorsque l'intensité des moments magnétiques des sous-réseaux parallèles et antiparallèles est identique (contrairement au ferrimagnétisme), la susceptibilité résultante est très faible et positive, de l'ordre de celle des substances paramagnétiques. Ces minéraux ne peuvent porter une aimantation rémanente. Ces substances sont nommées antiferromagnétiques. L'hématite est un minéral possédant cette propriété, mais qui, par suite d'un parallélisme imparfait des sous-reseaux, peut porter une aimantation rémanente.

Figure I.3. Disposition des moments magnétiques élémentaires en présence et absences de champ pour les différents états magnétiques (d'après Tarling et Hrouda, 1993, modifié).

Au delà d'une certaine valeur forte du champ, les minéraux ferromagnétiques *sensu stricto* et ferrimagnétiques montrent une saturation de leur aimantation et leur susceptibilité diminue alors avec la valeur du champ. Pour les minéraux antiferromagnétiques, la susceptibilité K_{anti} reste immuable en champ fort (Figure I.2).

En champ faible, la susceptibilité globale d'un granite est la somme de toutes les contributions magnétiques mais en raison de la forte susceptibilité des minéraux ferromagnétiques sensu lato et des minéraux paramagnétiques, la susceptibilité des minéraux diamagnétiques et antiferromagnétiques est en général négligeable.

En champ inducteur fort, ce sont les minéraux paramagnétiques qui contribuent le plus à la susceptibilité totale de la roche et à son anisotropie. Il est donc nécessaire de connaître la minéralogie d'une roche pour étudier son ASM et identifier sa (ou ses) principale(s) phase(s) porteuse(s).

1.2.2. L'AIMANTATION REMANENTE

En dessous de la température de Curie et pour la plupart des minéraux ferro- et ferrimagnétiques, les dipôles magnétiques ne peuvent plus être orientés librement. Leurs moments magnétiques sont parallèles au champ magnétique terrestre du lieu et du moment. Il s'agit donc d'une aimantation forte et stable, dite aimantation thermorémanente, acquise lors d'un refroidissement qui est proportionnelle au champ ambiant. C'est ce qui par exemple se produit au niveau des dorsales océaniques. Cette aimantation est détruite si l'on chauffe à la température des points de Curie et si l'on refroidit en champ magnétique nul. Il existe d'autres types d'aimantation rémanente (détritique, chimique, visqueuse, isotherme, piézo-rémanente, anhystérétique,...) dont l'origine est liée à d'autres phénomènes géologiques, chimiques ou physiques.

1.3. MAGNITUDE D'ANISOTROPIE

1.3.1. L'ANISOTROPIE MAGNETIQUE A L'ECHELLE DU GRAIN

Le principe de la méthode ASM est basé sur le fait que dans la grande majorité des substances cristallisées l'aimantation s'oriente préférentiellement selon certaines de ses directions cristallographiques. Ces directions sont les axes de facile aimantation. L'anisotropie qui apparaît ainsi, porte le nom d'anisotropie magnétocristalline. Cette anisotropie est donc liée à la symétrie de la substance cristallisée et elle concerne tous les minéraux présents dans les roches (substances diaparamagnétiques et ferromagnétiques au sens large). L'intensité de l'anisotropie magnétocristalline va dépendre de degré de symétrie du minéral. Plus son degré de symétrie est élevé plus l'intensité de l'anisotropie est faible.

Une autre "source" d'anisotropie magnétique, l'anisotropie de forme, contribue aussi à la mesure de l'anisotropie magnétique dans les roches. Elle est liée à la forme du cristal et du champ démagnétisant qui lui est associé. Elle devient prépondérante devant l'anisotropie magnétocristalline quand la susceptibilité de la substance est grande. On admet qu'elle ne concerne que la magnétite et ses dérivés enrichis en titane.

1.3.2. L'ANISOTROPIE MAGNETIQUE A L'ECHELLE DU GRANITE

La contribution relative de ces deux précédents effets à l'échelle du granite est essentiellement fonction des minéraux magnétiques de la roche. On distingue alors, les granites paramagnétiques (phases para-, dia- et antiferromagnétique) dont la susceptibilité, inférieure à 500.10^{-6} SI est indépendante du champ appliqué, des granites ferromagnétiques (phases ferro et ferrimagnétiques) caractérisées par une forte susceptibilité de plus de 5 000.10⁻⁶ SI. La susceptibilité magnétique des granites montre donc un caractère bimodal (Bouchez, 2000).

1.3.2.1. LES GRANITES PARAMAGNETIQUES

En l'absence de minéraux fortement magnétiques, ce sont en général les phyllosilicates (biotite et chlorite essentiellement) qui sont les porteurs de l'ASM. Les ions Fe^{2+} et Fe^{3+} présents dans la structure cristalline contrôlent la susceptibilité du granite. L'ASM est des granites est alors d'origine magnétocristalline puisqu'elle correspond à la disposition préférentielle des phyllosilicates.

1.3.2.2. LES GRANITES FERROMAGNETIQUES

Le principal porteur de l'ASM, dans ces granites est la magnétite. L'ASM des magnétites correspond pour l'essentiel, à une fabrique de forme (distribution d'orientation et forme des grains) mais aussi aux interactions entre les grains de magnétite. En effet, si leur distance mutuelle est inférieure à la taille des grains eux-mêmes, ces grains de magnétite comme des aimants peuvent interagir. Le degré d'anisotropie peut par conséquent, croître ou décroître selon la distribution des grains (Bouchez, 1997; 2000). Donc dans ces granites, les variations du degré d'anisotropie ne peuvent être synonymes de variations de l'intensité de la déformation que quand la susceptibilité est homogène et la distribution des grains identique dans tous les échantillons.
En ce qui concerne les données directionnelles (Figure I.1), l'axe long K_1 de l'ellipsoïde d'ASM définit la linéation magnétique et l'axe court K_3 est perpendiculaire au plan de foliation magnétique (K_1K_2).

Plusieurs paramètres scalaires faisant intervenir le module des axes principaux de l'ellipsoïde, permettent de caractériser la fabrique (Jelinek, 1981) comme la susceptibilité magnétique moyenne K_m (I.2), qui s'écrit :

 $K_m = (K_1 + K_2 + K_3) / 3$ (*I.2*) (K'm est la moyenne géométrique des susceptibilités principales) l'anisotropie linéaire L (I.3), l'anisotropie planaire F (I.4) et le degré d'anisotropie P ou P'(I.5) qui sont données respectivement par les relations :

$$L = K_1 / K_2 (I.3)$$

$$F = K_2 / K_3 (I.4)$$

$$P = K_1 / K_3 \text{ ou } P' = \exp \left[2 \times \Sigma \left(\ln(K_i / K'm)\right)^2\right]^{1/2} (I.5)$$

Le degré d'anisotropie paramagnétique P_{para} , pour les roches à très faible susceptibilité, peut croître anormalement lorsque K₃ tend vers zéro. Pour éviter ce phénomène, il suffit de tenir compte de la susceptibilité diamagnétique considérée comme isotrope et valant -14.10⁻⁶ SI, P est alors remplacé par le degré d'anisotropie paramagnétique: $P_{para} = (K1-Kdia) / (K3-Kdia)$. On procède la même façon pour le L_{para} et le F_{para}. Le degré d'anisotropie paramagnétique peut enfin s'exprimer sous forme de pourcentage (I.6) :

$$P\% = (P-1) \times 100$$
 (I.6)

Le dernier paramètre, celui de forme T (I.7) décrit la forme de l'ellipsoïde et varie de +1 (forme oblate ou en galette) à -1 (forme prolate ou en cigare) et s'exprime par:

$$T = [ln(K2/K3) - ln(K1/K2)] / [ln(K2/K3) + ln(K1/K2)]$$
(1.7)

1.3.4. Cycle d'hysteresis

Lorsqu'une roche est soumise, naturellement ou artificiellement, à un champ magnétique, celle-ci répond par une aimantation induite proportionnelle au champ appliqué et dont le facteur de proportionnalité est la susceptibilité magnétique k. Cette dernière mesure physique, tient compte de l'ensemble des grains de la roche, c'est à dire non seulement de la fraction ferromagnétique (qui peut avoir une aimantation rémanente naturelle), mais aussi de la matrice qui comprend des minéraux dia, para et anti-ferromagnétiques. Si un échantillon naturel est soumis à un champ magnétique, l'aimantation mesurée sous champ (I.8) est alors la somme de l'aimantation rémanente et de l'aimantation induite que l'on peut exprimer par :

$$J = Jr + Ji = Jr + kH \quad (I.8)$$

où H est le champ appliqué, J l'aimantation mesurée sous champ, Jr l'aimantation rémanente et Ji l'aimantation induite.

Pour un champ très faible, insuffisant pour obtenir une aimantation rémanente, l'aimantation mesurée n'est que l'aimantation induite qui permet d'obtenir la susceptibilité de l'ensemble des minéraux constituant l'échantillon k0 (dia, para et ferromagnétiques) (Figure I.4).

Figure I.4. Cycle d'hystérésis et détermination de la susceptibilité initiale (k₀) et celle qui est liée aux minéraux dia- et paramagnétiques (k_{para/dia}).

Lorsqu'on augmente l'intensité de champ magnétique H, on constate que l'induction n'augmente pas de manière proportionnelle car la perméabilité des matériaux n'est pas constante et ce jusqu'à ce que l'on atteigne une saturation de l'aimantation ferrimagnétique. On aura alors (I.9):

$$Js = Jrs + Ji = Jr + kHs \quad (I.9)$$

où Hs est le champ nécessaire pour obtenir la saturation, Js est l'aimantation à saturation, Jr l'aimantation rémanente et Jrs l'aimantation rémanente à saturation. L'aimantation des ferrimagnétiques étant saturée, l'augmentation de l'aimantation n'est liée qu'à la susceptibilité constante des minéraux dia et paramagnétiques. La pente de la droite de saturation nous donne alors $k_{para/dia}$ (Figure I.4).

Connaissant la susceptibilité totale k0 on peut également déduire la susceptibilité uniquement liée aux ferromagnétiques. Si on fait disparaître le champ, on peut aussi mesurer, seule l'aimantation rémanente à saturation Jrs. Lorsque l'on diminue le champ à partir de la saturation, on observe que l'aimantation ne parcourt pas la courbe de première aimantation. On remarque en particulier que pour une induction nulle il subsiste une aimantation rémanente Jrs et qu'il faut une induction négative pour compenser cette aimantation. Cette valeur de H est appelée champ coercitif Hc. Par conséquent, lorsque l'on applique un champ opposé d'une valeur -Hc, l'aimantation rémanente est compensée par l'aimantation induite et l'aimantation apparente est donc nulle. Si on continue à augmenter l'intensité de ce champ, on peut, pour un champ -Hcr, faire disparaître l'aimantation rémanente. Hcr est le champ coercitif rémanent (et n'est pas déterminé à partir du seul cycle simple d'hystérésis). L'aimantation apparente sous champ sera non nulle et égale à l'aimantation induite.

L'ensemble des variations de l'aimantation en fonction d'un champ appliqué, mesurées dans la direction d'application du champ, est représenté sous forme d'un cycle d'Hystérésis (Figure I.4). Jrs < Js et Hc < Hcr, et les rapports Jrs/Js et Hcr/Hc sont fonction de la taille et de la nature des minéraux ferromagnétiques rencontrés. Les cycles d'Hystérésis sont donc une bonne approche de la minéralogie magnétique.

Tous les minéraux ont des courbes d'hystérésis différentes allant de cycles très fermés (relativement faible aimantation rémanente isotherme) à des formes très ouvertes (forte aimantation rémanente isotherme).

1.4. ECHANTILLONNAGE

Figure I.5. Echantillonnage, préparation et principe de mesure des échantillons d'ASM (Bouchez, 1997). (a) Orientation de l'echantillon : R, direction de l'horizontale du plan perpendiculaire au plan verticale P' passant par l'axe de la carotte ; a, le plongement de la carotte. (b) Carotte orientée extraite, et l'echantillons correspondants. (c). Orientation de l'axe K1 de l'éllipsoïde d'ASM dans le repère de l'échantillon. (d) Orientation de l'éllipsoïde d'ASM dans le repère de l'échantillon. DEC, Déclinaison ; INC, Inclinaison

L'échantillonnage (Figure I.5) est réalisé par forage avec une foreuse portative. D'une manière générale, quatre à huit carottes sont prélevées par site. Chacune d'elles possède une longueur de 3 à 6 cm et est orientée à l'aide d'une table d'orientation qui permet de mesurer la déclinaison, c'est-à-dire la direction par rapport au Nord, l'inclinaison (angle par rapport à l'horizontale d'une génératrice de l'échantillon, Figure I.5c), le plongement de la carotte (a, pendage du plan R, figure I.5a) et les azimuts magnétique et solaire (si le temps le permet) de la génératrice. A l'aide de l'application Paleomac 5.4, la différence entre deux azimuts est calculée pour chaque carotte. La moyenne de ces différences a été utilisée pour la correction de l'azimut magnétique pour les carottes qui n'ont pas de mesure de l'azimut solaire. Les carottes sont ensuite sciées perpendiculairement à leur axe, ce qui permet d'obtenir des spécimens de 2,5 cm de diamètre et de 2,2 cm de longueur (Figure I.5.b et 5c).

II. LA GRAVIMETRIE

Du Latin, *gravis* qui signifie lourd, et du Grec, μετρεω qui traduit mesurer, la gravimétrie ou la prospection gravimétrique est une méthode utilisée pour déterminer la répartition des divers types de roches, caractérisées par leur densité à travers des mesures du champ de pesanteur. Cette méthode permet de repérer les anomalies dans la répartition des masses (corps denses, corps légers) au sein du sous sol. Mechler (1982), Milsom (1989), Torge (1989), Telford et al. (1990), Kearey et Brooks (1992) et Dubois et Diament (2002) constituent des références en ce qui concerne la théorie de la gravimétrie.

1. THEORIE ET METHODOLOGIE

1.1. RAPPEL METHODOLOGIQUE

La pesanteur est l'attraction exercée par la Terre sur tout corps, quelque soit la position du corps dans l'espace entourant la Terre. L'accélération de la pesanteur ou le vecteur champ de pesanteur \vec{g} à la surface de la Terre est dirigé du haut vers le bas suivant la verticale du lieu. Dans le système International d'Unités (SI), l'unité de pesanteur est m.s⁻². Pour exprimer les anomalies de pesanteur, on utilise souvent le μ m.s⁻² = 10⁻⁶ m.s⁻². Mais on continue en géodésie et géophysique à utiliser des unités auxiliaires, le Gal et surtout le mGal: 1 mGal = 10⁻⁵ m.s⁻², unité dérivée du Gal, rappelant le nom de Galilée (1 Gal = 1 cm.s⁻²).

Toute masse à la surface de la Terre, et en rotation avec elle, est soumise à trois composantes :

- La composante g_N due à l'attraction newtonienne par la Terre, créant l'accélération gravitationnelle;
- La composante g_r due à l'accélération centrifuge causée par à rotation de la Terre;
- La composante due à l'attraction newtonienne du reste de l'Univers (variable au cours du temps).

La géophysique et l'astrophysique font intervenir de très grandes masses - celles des planètes, de la Lune, des étoiles, des galaxies - en interaction à de très grandes distances; dans de telles conditions, c'est la force de gravitation qui est toujours prédominante. La loi de la gravitation est fondamentale pour l'étude de la physique de la Terre, car elle détermine la *forme générale de notre planète*, elle est en partie responsable de nombreux processus tectoniques qui modèlent sa surface, et elle contrôle le mouvement orbital et celui de rotation propre.

1.2. LOI DE L'ATTRACTION UNIVERSELLE

Les physiciens ont établi qu'il existe *quatre types de forces* qui agissent entre des corps matériels : les forces électromagnétiques, les forces *d'attraction gravitationnelle*, les forces d'interactions nucléaires, fortes et faibles. Le second type, la *gravitation*, est des plus importants en Astronomie et dans le domaine des Sciences de la Terre. On sait que, Isaac Newton (1643-1727) donna une description mathématique correcte des lois de la gravitation : cette loi prédit que *deux corps ponctuels massiques s'attirent avec une force proportionnelle au produit des masses et inversement proportionnelle au carré de la distance qui sépare ces deux points*. Bien que la loi de Newton n'apparaisse de nos jours que comme un cas limite - une approximation, de la loi générale de la gravitation formulée par Einstein en théorie générale de la relativité, elle est parfaitement suffisante dans toutes les applications en géophysique, ainsi même que pour de nombreux secteurs de l'astrophysique. La loi de Newton (II.1) peut s'écrire :

$$F = G.(m_1.m_2)/r^2$$
 (II.1)

Où F représente la force d'attraction en kg.m.s⁻², r la distance en m entre les deux points de masse m_1 et m_2 qui s'exprime en kg. Le facteur G, appelé *constante de gravitation universelle*, est déterminé expérimentalement mais il est difficile de l'obtenir avec grande précision ; sa valeur dans le système métrique international est 6.672 x 10⁻¹¹m³.kg⁻¹.s⁻².

Cette très petite valeur de G reflète le fait que l'attraction gravitationnelle est intrinsèquement une force faible. Il a été suggéré que G ne soit pas constant mais décroissant dans le temps. Une telle variation pourrait induire de nombreuses conséquences dont l'une d'entre elles serait une augmentation du rayon de la Terre avec le temps. Cependant, si ce changement existe (Dobrin et Savit, 1988), son taux est trop petit (environ 1% sur plusieurs milliards d'années) pour être pris en compte en prospection gravimétrique. Cette éventuelle variation de G dans le temps est donc classiquement négligée.

Dans le cas où le corps de masse m_1 est la Terre et le corps de masse m_2 est un objet situé près de la surface de la Terre, l'intensité de la force gravitationnelle due à l'attraction par la Terre (II.2) peut s'exprimer ainsi :

$$F = m_{2.}g_N$$
 avec $g_N = G(M_T/R_T^2)$ (II.2)

Où g_N est la composante de l'intensité de la pesanteur due à l'attraction newtonienne de la Terre (9,81 m.s⁻²), M_T est la masse de la Terre (5,976.10²⁴ kg) et R_T, le rayon de la Terre (6378, 160 km à l'équateur et 6356, 774 km aux pôles).

1.3. ROTATION DE LA TERRE

Le terme g_r doit être combiné au terme g_N pour tenir compte de l'effet de la rotation de la Terre autour de son axe. En effet, la pesanteur est la somme de la gravité et de l'accélération centrifuge. Cependant, l'accélération centrifuge due à la rotation de la Terre s'oppose à l'accélération gravitationnelle modifiant donc l'intensité de la pesanteur de presque 3 % i.e. 3 Gals. Elle varie à cause de la non-sphéricité et de la répartition hétérogène des masses sous la surface de la Terre. Les variations dues à l'ellipticité de la Terre sont comprises entre 9,78 m.s⁻² à l'équateur et 9,83 m.s⁻² aux pôles. Le module de la résultante des deux composantes g_N et g_r est appelé « pesanteur vulgaire » et est proche de 9,80 m.s⁻².

1.4. ATTRACTION NEWTONIENNE DU RESTE DE L'UNIVERS

Un corps situé dans le champ de gravité de la Terre est également soumis à l'attraction des autres corps célestes dont la Lune et le Soleil. Un terme dit « terme de marée » doit donc être introduit dans l'expression de *g*. Cependant, le terme de marée est faible (0,3 à 0,4 mGals) par rapport à la pesanteur vulgaire et est souvent directement calculé lors de la mesure instrumentale du champ de pesanteur.

2. VARIATION DE G A LA SURFACE DE LA TERRE. FORME DE LA TERRE

La valeur de *g* à la surface du globe varie. En tout point de la surface, la valeur de *g* est essentiellement fonction de R_T et M_T à la verticale de ce point. La valeur de *g* varie donc :

- En fonction de la latitude : g augmente de l'équateur aux pôles en relation avec l'aplatissement de la Terre selon l'axe des pôles et avec la vitesse angulaire de rotation ;
- En fonction de l'altitude : g diminue avec celle-ci ;
- En fonction de la répartition des masses en profondeur : g varie en fonction de la densité moyenne de la Terre à la verticale du point considéré ;
- En fonction de reliefs avoisinants : une montagne ou une vallée voisine provoquent une déviation de la verticale et une diminution de g par rapport à une situation topographiquement plane.

3. ANOMALIE DU CHAMP DE PESANTEUR. LIEN AVEC LE GEOIDE.

La toute première étape à considérer dans le traitement des données gravimétriques est celle qui consiste à passer d'une valeur de g à une anomalie de g. En d'autres termes, il s'agit de référencer des mesures de g par rapport à un modèle choisi. L'accélération de la pesanteur est un champ vectoriel qui dérive d'un potentiel scalaire. On peut donc définir des surfaces équipotentielles. La verticale qui correspond à la direction du champ est normale en tout point à une surface équipotentielle. Pour étudier la répartition des masses à l'intérieur de la Terre, les mesures de g faites en différents points du globe doivent être ramenées à une surface de référence qui modélise la forme de la Terre. En gravimétrie, ce modèle est le géoïde. C'est une équipotentielle de pesanteur, i.e., l'enveloppe terrestre fictive sur laquelle le potentielle gravifique est constant (Figure II.1). En mer, le géoïde est bien connu : il passe par le niveau moyen des océans. A terre, sa géométrie est plus difficile à déterminer. En pratique on ne se ramène pas exactement au géoïde mais à un ellipsoïde de référence qui surface mathématique qui ajuste au mieux le géoïde et qui tient compte de l'aplatissement aux pôles et des variations des vitesses de rotation de la Terre.

Figure II.1 . Comparaison entre le sphéroïde et le géoïde

Il existe plusieurs ellipsoïdes de référence définis par des paramètres géométriques légèrement différents selon leur année de conception ou la zone géographique privilégiée pour laquelle ils ont été calculés. Ayant rattaché nos mesures au système CGF65, nous avons travaillé avec l'ellipsoïde de Hayford (1930). Sur cet ellipsoïde, le champ de pesanteur n'est plus fonction que de la seule latitude χ et s'exprime sous la forme (II.3) :

$$g_{\lambda} = g_o(1 + \alpha \sin^2 \lambda + \beta \sin^2 2\alpha) \quad avec \ \lambda = \chi/180 \times \pi \quad (II.3)$$

où g_0 est l'intensité de la pesanteur à l'équateur (978 049 mGals), χ est la latitude en degrés minutes secondes, et α et β sont des constantes égales, respectivement à 0,0052884 et -0,0000059. Cette valeur théorique de l'accélération de pesanteur g_{λ} (Figure II.2) est établie pour une Terre homogène. La valeur de la gravité ainsi obtenue est celle qui serait observée au niveau de la mer sur une terre de forme sphéroïdale et dont la densité ne varie qu'en profondeur et non pas latéralement. La différence de 5170 mGals pour l'ellipsoïde de Hayford (1930) entre la valeur aux pôles et à l'équateur est causée par :

- L'effet de la rotation de la Terre : plus on se rapproche du pôle, plus la force centrifuge est faible, et donc g est maximum.
- La différence entre le rayon équatorial et le rayon polaire : au pôle on est plus proche du centre de masse de la terre.

La différence de 5170 mGals représente 2/3 pour la force centrifuge et 1/3 pour l'aplatissement.

Figure II.2. Composante de l'accélération centrifuge en un point S (latitude Φ) sur la surface de la Terre (sphérique du rayon r) en rotation avec une vitesse angulaire où $\omega 2r$ est la force centrifuge ; $\omega 2r.\cos^2 \Phi$ est la composante dans la direction g.

L'anomalie de pesanteur en chaque point de mesure correspond à la différence entre la pesanteur mesurée (g_{mes}) et la valeur théorique g_{λ} (II.4) et que l'on aurait si la Terre était homogène. Les effets de variations de densité de terrains (qui nous intéressent) et les effets de variations d'altitudes des mesures sont responsables de cet écart. Ce second effet doit être compensé pour obtenir l'anomalie de Bouguer complète qui représente alors l'effet des seules variations de densité sous la topographie. Mais il est important de rappeler que les corrections appliquées ne tendent pas à ramener les mesures au niveau de l'ellipsoïde. En effet, les valeurs de l'anomalie de Bouguer sont le résultat de la comparaison du g_{mes} à la valeur théorique g_{λ} ramenée au point d'observation (Naudy et Neumann, 1964; Ervin, 1977).

4. METHODOLDIE

4.1. Leve des massifs

4.1.1. Appareillage

Au cours de nos levés, nous avons utilisé un SCINTREX CG3-M (Figure II.3). Il est important de savoir que cet instrument ne permet pas une mesure absolue de la composante verticale de la pesanteur g_z . Seules les variations du champ de pesanteur entre deux points, ou les variations temporelles en un même point peuvent être mesurées. Ce gravimètre utilise un ressort vertical en quartz au bout duquel est suspendu une masse placée dans un capteur capacitif. La mesure de pesanteur revient alors à une mesure de la tension électrique, nécessaire au maintien en position fixe de la masse soumise à l'influence de la gravité. Contrairement au gravimètre LaCoste et Romberg, le ressort du Scintrex n'est jamais immobilisé. Le capteur est intégré dans une enceinte thermostatée qui réduit la sensibilité aux variations extérieures de température. Ce gravimètre permet des mesures rapides de haute résolution égale à 1µGal.

La dérive instrumentale (due au fait que la valeur de g varie au cours du temps en un point donné) est de l'ordre de quelques centaines de μ Gals pour une journée et doit donc être prise en compte. Elle est notamment liée au comportement du matériau qui compose le ressort du capteur, en réponse aux sollicitations mécaniques et thermiques qu'il subit. La dérive est calculée en effectuant une réoccupation à une station de base, au moins une fois par jour en début et en fin de journée. La dérive journalière est pratiquement linéaire.

Figure II.3 . Photo d'un gravimètre SCINTREX CG3-M

4.1.2. LE POSITIONNEMENT ALTIMETRIQUE ET GEOGRAPHIQUE

En fonction de la topographie et des facilités de déplacement, l'espacement des mesures peut être très variable : de quelques mètres en zone urbaine, pour l'identification de fontis ou d'anciennes carrières, à quelques kilomètres pour des études de grande reconnaissance. La mesure elle-même est assez rapide, inférieure à 10 minutes, et il est possible de mesurer une cinquantaine de points distants de quelques centaines de mètres ou quelques kilomètres par jour. Pour nos levés, nous avons réalisé une maille de un point tous les km² afin de recouvrir au mieux les plutons et leur encaissant. Pour la plupart des études, on doit calculer l'anomalie du champ de pesanteur, qui nécessite pour la déterminer la connaissance de la latitude du point de mesure ainsi que son altitude. Si la précision sur la position en X et Y n'est pas cruciale (une erreur sur la latitude de 100 m induit une erreur sur l'anomalie à l'air libre de 0,1 mGal au maximum, par contre une erreur de 30 cm sur l'altitude conduit à la même erreur sur l'anomalie (à l'air libre)! On conçoit donc aisément que, si l'on désire effectuer un levé gravimétrique précis, on doit l'associer à un levé précis de nivellement.

En gravimétrie de reconnaissance, une précision altimétrique de l'ordre du mètre est suffisante. Lors de nos levés, le nivellement des stations des mesures gravimétriques a été effectué en utilisant systématiquement les repères de nivellement ou les points côtés de l'Institut Géographique National (IGN). Les coordonnées indiquées par l'IGN sont à la précision de 10 ou 100 m en X/Y selon les repères et de 1mm en altitude.

4.1.3. RATTACHEMENT DE NOTRE LEVE AU RESEAU GRAVIMETRIQUE NATIONAL

Le gravimètre Scintrex CG3-M fournit des mesures qui sont relatives et il est donc nécessaire de réaliser des mesures régulières sur un point où la valeur absolue de la composante verticale de la pesanteur est connue. Ces points singuliers sont appelés bases gravimétriques. Les mesures sur base permettent de rattacher nos levés à un réseau gravimétrique. Ce protocole permet de recalculer les valeurs absolues pour toutes nos mesures et de les intégrer au sein d'autres études. Le réseau des bases gravimétriques le plus étendu en France est le réseau CGF 65 (Carte Gravimétrique de la France, 1965). L'ensemble des mesures gravimétriques sur le territoire figurant dans la banque de données nationales du BRGM est référencé dans ce système, de même que la carte gravimétrique nationale.

Lors de notre levé sur Montmarault, nous avons pu rattacher nos mesures à 11 bases du réseau CGF 65 : Doyet, Beaune d'Allier, Montluçon, Bizeneuille, Hérisson, Reugny, Theneuille, St Eloy, Montmarault qui a été une des bases principales avec celles de Murat et du Montet. Pour le levé de Glénat, Omps et Boisset, nous l'avons rattaché à 4 bases : Montvert, Senaillac la Tronquière, Maurs et Lacapelle-Viescamp qui était la base principale du levé.

Figure II.4. Exemple de fiche de description de base gravimétrique rattachée au système CGF 65.

La première partie de chaque campagne a consisté à faire des liaisons entre ces bases afin, d'une part de tester la validité des différentes bases, mais aussi de vérifier le bon fonctionnement du gravimètre. En effet, établi durant les années 60, l'environnement des bases gravimétriques (non matérialisé mais précisément repéré sur fiches signalétiques, Figure II.4) a pu être modifié. Du coup, la valeur originelle référencée de la base pourrait être modifiée et ne devrait donc plus être utilisée.

De plus, les calculs de dérive par réoccupation de points de mesure en début et fin de journée ont toujours été effectués sur les bases gravimétriques principales. Toutes nos mesures sont donc rattachées au système CGF 65.

4.1.4. CARACTERISTIQUES DU LEVE

Au Nord du Sillon Houiller, pour modéliser avec précision le granite de Montmarault, plus de 600 nouvelles mesures ont été acquises sur une superficie d'environ 600 km² soit une densité de 1 point/ km². Pour le relevé des plutons du Sud du Sillon Houiller, nous avons acquis environ 300 points de mesures. Les mesures ont été acquises sur les faciès granitiques et à leur pourtour afin de distinguer d'éventuelles apophyses granitiques sous-jacentes. Outre le fait d'affiner la géométrie des structures, ces nouvelles données contribuent à l'amélioration de la carte gravimétrique française.

4.2. OBTENTION DE L'ANOMALIE BOUGUER COMPLETE

Afin d'obtenir des anomalies de Bouguer représentatives des anomalies de densité dans le sous-sol (c'est à dire la partie du signal gravimétrique qui nous intéresse), il faut s'affranchir des autres effets sur la gravité en effectuant des corrections sur les mesures.

Les anomalies gravimétriques ont été calculées en utilisant la formule du g théorique sur l'ellipsoïde de Hayford, 1930 et rapportées au réseau de bases gravimétriques CGF 65. Pour obtenir l'anomalie de Bouguer complète, on a effectué les corrections à l'air libre, de plateau et de terrain en chaque station de mesure. Pour les deux dernières, nous avons pris une densité de réduction de 2.6 g/cm³ proche de la densité moyenne des granites. La correction de terrain a été faite jusqu'à 167 km de façon à assurer une bonne cohérence des données nouvelles avec celles de la base gravimétrique française (Martelet *et al.*, 2002). Le gravimètre calcule directement une des premières corrections, celle de la marée gravimétrique (due essentiellement au changement au cours du temps de la position relative Terre-Lune-Soleil). Cette correction luni-solaire est directement appliquée à la mesure de la pesanteur relative lue sur le terrain

4.2.1. LA DERIVE INSTRUMENTALE

La correction de dérive instrumentale élimine l'influence apportée sur les mesures par la fatigue de l'instrument. La dérive instrumentale est due notamment au relâchement infinitésimal du système mécanique du gravimètre. A ce stade, les valeurs mesurées sont donc erronées puisqu'une de leurs composantes provient de la dérive et ne reflète pas un changement dans la valeur de g dû à des hétérogénéités du sous-sol. La correction est faite en supposant que la dérive est linéaire dans le temps. Donc, si on est passé à la station de base, aux temps t_1 et t_2 et que les valeurs mesurées étaient respectivement v_1 et v_2 , le taux de dérive TD (II.5) est défini par :

$$TD = (V_2 - V_1) / (t_2 - t_1) \quad (II.5)$$

Ainsi, toute valeur v prise au temps t (où $t1 \le t \le t2$) est corrigée par la formule suivante(II.6):

$$Vcorr = Vlu - TD \times (t - t_1)$$
 (II.6)

4.2.2. LA CORRECTION A L'AIR LIBRE

Le premier facteur induisant des anomalies est celui lié aux différences d'altitude existant entre deux points de mesure. La gravité décroît avec l'altitude parce que la distance entre le point observé et le centre de la terre augmente, ceci est une application directe de la loi de Newton. Dans l'air, le gradient de pesanteur lié à ce phénomène est d'en moyenne $-0,3086 \ mGal \ m$ (II.7).

$$(dg_{AL} / dr\lambda) = -(2 GM_T)/(R^3_{\lambda}) \approx -(2 g)/(R_{\acute{e}g}) \approx -0.3086 mGal/m$$
 (II.7)

où R_{λ} est le rayon de la Terre à l'altitude *h et R_{éq}* est le rayon équatorial de la Terre. Ainsi, la correction d'altitude est appliquée à toute station d'altitude *h*, et aboutit à l'anomalie à l'air libre par (II.8) :

$$A_{AL} \approx g_{mes} - (g_{th} - 0, 3086. h)$$
 (II.8)

4.2.3. Les corrections de Bouguer

Les corrections de Bouguer tiennent compte des masses (et donc de leurs effets gravimétriques) situées entre les stations et le niveau de la mer. Au terme des corrections de plateau et de terrain, on obtient l'anomalie de Bouguer complète qui représente l'effet des variations de densité sous la topographie.

4.2.4. LA CORRECTION DE PLATEAU

La correction de plateau (II.10) élimine l'effet gravimétrique d'un plateau horizontal qui s'étend latéralement à l'infini et qui se trouve entre la station et le niveau z = 0. Comme pour la correction à l'air libre, la précision du relevé altimétrique a donc une grande importance. Pour une densité moyenne des roches crustales de 2,67, la correction de plateau pour une station d'altitude *h* est donnée par :

$Ap = -2\pi G\rho_B h \quad (\text{II.10})$

où ρ_B est la densité de réduction de Bouguer (en g.cm⁻³), h l'altitude du point considéré (en mètres) et *G*, la constante de gravitation universelle. Après cette correction, on obtient l'anomalie de Bouguer simple (II.11).

$$A_B = g_{mes} - (g_{th} - 0.3086h + 0.0419\rho_B h) \quad (\text{II.11})$$

4.2.5. Les corrections de terrain

La surface réelle du globe étant une surface topographique irrégulière, il faut donc effectuer une nouvelle réduction pour prendre en compte l'effet de masses situées dans le relief environnant chaque station de mesure. Une colline à proximité exerce une attraction vers le haut et diminue la valeur de g à la station. Une dépression est l'équivalent d'une déficience de masse de sorte que l'attraction aussi est vers le haut et la valeur de g à la station est moindre (Figure II.5). Comme la valeur observée de g est moindre que la valeur réelle dans les deux cas, la réduction topographique est toujours positive. Bien que ces corrections de terrain puissent être réalisées entièrement à partir d'un Modèle Numérique de Terrain (MNT), ces derniers, à cause d'une faible résolution, peuvent ignorer les variations locales de topographie autour des points de mesures. Pour parer à ce problème, des corrections de terrain de champ proche à lointain ont été réalisées.

Figure II.5 . Effet d'une montagne (a) ou d'une vallée (b) voisine sur la pesanteur. La verticale est déviée et, dans les deux cas, l'intensité de la pesanteur est diminuée.

Correction de terrain en champ très proche (0 à 53m)

La réduction topographique se calcule en divisant la région autour de la station en mailles délimitées par un réseau de droites en éventail régulièrement réparties et de cercles concentriques de rayon r (Figure II.6). Chaque maille est affectée d'une altitude moyenne z absolue et sont sommés entre elles. Ces corrections sont faites à l'aide des abaques de Hammer (1939) qui a publié des tables de conversion de variation d'altitude à variation de pesanteur, qui permettent d'effectuer la réduction topographique (Figure II.6). Pour nos levés, les corrections en champ proche ont été réalisés jusqu'à une distance de 53 mètres du point de mesure.

Figure II.6 . Abaques de Hammer utilisées pour estimer les effets des zones B et C qui correspondent à des secteurs angulaires autour du point de mesure.

ZONE B		ZONE C		
(2 à 16 m)		(16 à 53 m)		
Granite (densité: 2,6)				
Altitude	Valeur de la	Altitude	Valeur de la	
moyenne d'un	correction de	moyenne d'un	correction de	
compartiment	terrain	compartiment	terrain	
(m)	(µGal)	(m)	(µGal)	
1	6	2	1	
1	0	2	1	
2	19	3	5	
3	30 54	4	0	
4	54	5	9	
5	72	/	1/	
6	89	10	34	
7	105	15	67	
8	120	20	104	
9	134	25	142	
10	147	30	178	
11	159	35	212	
12	170	40	242	
13	181	45	270	
14	191	50	296	
15	200	60	339	
20	236	70	375	
25	262	80	404	
30	281	90	429	
35	296	100	450	
40	308	120	482	
45	317	150	516	
50	324	200	553	

• Correction de terrain en champ lointain

La correction de la courbure terrestre, sur une gamme d'altitude comprise entre 0 et 4 000m, reste en moyenne faible lorsque les corrections de terrain sont réalisées jusqu'à la distance de 1.5°, soit 167 km (Bullard, 1936). 167 km est donc la référence de distance de calcul des corrections de terrain. De 53 m à 167 km, les corrections de terrain ont été réalisées numériquement à partir de différents MNT de l'IGN. Pour trois couronnes de rayons croissants (Tableau 1) autour du point de mesure, des pas de plus en plus grands de MNT ont été utilisées (Martelet et Debeglia, 2001).

Zone	Rayon (Km)	Pas du MNT(m)
Proximale	0,05 – 3	50
Intermédiaire	3 - 10	250
Lointaine	10 - 167	1 000

 Tableau 1.
 Découpage des corrections de terrain en trois colonnes

Lors du calcul des corrections de terrain, il apparaît que la différence d'altitude entre la station gravimétrique et le MNT est un paramètre prépondérant dans la justesse de la correction de terrain. En effet, lorsque la station gravimétrique s'écarte de la surface topographique (vers le haut ou le bas) en particulier pour les corrections proches, l'effet calculé du terrain est faussé. Dans la pratique, on observe couramment des écarts d'altitude entre le MNT et les stations de mesure de 10, 20 voir 50m (Figures II.7 et II.8). Ces écarts peuvent être dus soit à la précision du MNT, soit à une interpolation erronée entre les nœuds du MNT qui peut être d'autant plus grande que le relief est montagneux, ou soit encore dû à des imprécisions du positionnement des stations gravimétriques (surtout en altitude).

Figure II.7 . Répartition des DzMNT calculées pour l'ensemble des points où les corrections de terrain ont été calculées sur le granite de Montmarault

Figure II.8 . Nouvelle CT obtenue par filtrage

L'effet de cet écart d'altitude entre le MNT et les stations gravimétriques sur les corrections de terrain peut être atténué. En effet, pour la plupart des points mesurés, le Δz MNT est faible et donc on peut considérer que la correction de terrain calculée est fiable. Par interpolation, une grille de la correction de terrain réalisée sur l'ensemble du domaine étudié, a permis de l'échantillonner aux points où la correction de terrain a été altérée par un Δz MNT fort de plus de 16 m. Après ce filtrage, la correction de terrain est modifiée et elle reproduit désormais plus fidèlement les tendances de la topographie (Figure II.7). Toutes les corrections de nos levés ont été réalisées grâce au logiciel Geosoft.

4.3.OBTENTION DE L'ANOMALIE DE BOUGUER RESIDUELLE

Pour obtenir une image plus contrastée de la répartition des masses à quelques kilomètres sous la surface, nous devons nous affranchir des variations régionales de grandes longueurs d'onde qui reflètent les masses profondes. Nous devons par conséquent retirer à l'anomalie de Bouguer complète de chaque région étudiée (Figures II.8 a et b), une l'anomalie de Bouguer régionale. Après avoir testé plusieurs méthodes (filtrage, retrait de cartes prolongées vers le haut et retrait de surfaces polynomiales lissées), nous avons opté pour un retrait d'une surface polynomiale de degré 3 calculée à plus petite échelle et représentant la tendance régionale (Figure II.8) pour le granite de Montmarault ; et pour les granites du sud : un filtre passe bas de type gaussien avec une limite des longueurs d'ondes à 300 km (Figure II.8.d). Finalement, l'anomalie de Bouguer résiduelle de chaque région étudiée est obtenue en soustrayant l'anomalie régionale à la complète (Figures II.8 e et f).

Figure II.9 . Carte de l'anomalie de Bouguer complète (a, b), régionale (c, d) et résiduelle (e, f) des deux régions étudiées : celle de Montmarault (à gauche) et celle de Glénat, Omps et Boisset (à droite).

1. THEORIE

En 1820, le danois Hans Christian Ørsted montre qu'à proximité d'un fil rectiligne parcouru par un courant électrique, l'aiguille d'une boussole dévie. Le déplacement de charges électriques crée un champ magnétique. Pour tout complément concernant ce chapitre, les ouvrages de Mechler (1982), Milsom (1989), Telford et al. (1990), Blakely (1990), Kearey et Brooks (1992) et Dubois et Diament (2002) constituent des références sur la théorie du magnétisme. La magnétisation est une des propriétés physiques les plus complexes que le géophysicien puisse étudier dans les roches. La source magnétique dont l'effet est mesuré en surface, peut être localisée à une très grande profondeur. En vertu de leurs propriétés magnétiques, certains minéraux tels la magnétite, l'ilménite, la pyrrhotine (etc.), produisent des perturbations locales dans le champ magnétique terrestre (c.f. Annexe § I.1.2). En plus de leur emploi dans la recherche de tels minéraux, les méthodes magnétiques sont utilisées indirectement comme un outil dans la cartographie géologique, pour la localisation de structures géologiques favorables dans l'exploration du pétrole etc.

1.1. RAPPELS

1.1.1. APPROCHE MAGNETOSTATIQUE

Le champ magnétique est crée par l'effet de charges magnétiques (pôles) régit par la loi de Coulomb (III.1). Deux charges magnétiques d'intensité p et p' distantes de r interagissent selon une force F:

$$F = (pp'/r^2).r1$$
 (III.1)

où μ est la perméabilité magnétique et rl est le vecteur unitaire dirigé de p vers p'.

Les charge magnétiques sont soit positives (pôle Nord) soit négatives (Pôle Sud). F est une attraction si p et p' sont de signes opposés et une répulsion s'ils sont de même signe. H est le champ magnétique existant au point p' et est crée par la charge d'intensité p au point p (*III.2*):

$$H = F/p' = (p/\mu r^2). r1$$
 (III.2)

L'élément de base est le dipôle magnétique constitué de deux pôles de même intensité mais de signes opposés séparés par une distance *2l*. Le moment magnétique de ce dipôle (*III.3*) est un vecteur dirigé du pôle négatif vers le pôle positif tel que :

$$M = 2l \, prl \qquad (III.3)$$

1.1.2. APPROCHE MAGNETODYNAMIQUE

Le champ magnétique est crée par la circulation d'un courant électrique (*III.4*). En effet, la circulation d'un courant dans une boucle circulaire agit comme un dipôle magnétique localisé au centre de la boucle. Le moment magnétique de cette boucle serait :

$$M = I. a \qquad (III.4)$$

Avec I, l'intensité du courant et a, la surface de la boucle.

Des courants de ce type existent dans la matière liés à la circulation des particules électriques (électrons...). Chacune d'elle donne naissance à un petit dipôle magnétique. En l'absence de champ magnétique externe, l'orientation des dipôles est quelconque et l'effet résultant est nul.

1.2. LE CHAMP MAGNETIQUE TERRESTRE

L'existence du champ magnétique terrestre (CMT) est connue depuis longtemps par ses applications à la navigation à travers la boussole. Son utilisation apparaît pour la première fois en Occident autour du 12e siècle, mais il est fortement possible qu'il ait été utilisé en Chine plusieurs siècles avant. Le CMT possède un caractère vectoriel et sa présence peut être visualisée à l'aide d'une aiguille aimantée : l'aiguille va s'orienter dans la ligne géographique nord-sud, mais cela seulement d'une façon approximative. En fait, l'aiguille de la boussole est déviée du Nord Géographique et, libre de rotation horizontale ou verticale, s'oriente tangentiellement aux lignes de champ magnétique.

Le décalage angulaire (Figure III.1) entre la projection sur l'horizontal du vecteur champ et la direction du Nord géographique est appelé déclinaison magnétique (D). Cet angle est mesuré du Nord géographique au Nord magnétique, et par convention est considéré positive dans le sens horaire. L'angle entre la projection horizontale du vecteur CMT, dirigé vers le Nord magnétique, et la direction du vecteur CMT est appelé l'inclinaison magnétique (I). Par convention cette valeur est comptée positivement lorsque le vecteur pointe vers l'intérieur de la planète, ce qui est le cas dans l'hémisphère nord. Ces deux angles, la déclinaison et l'inclinaison magnétiques, avec l'intensité du champ magnétique F décrivent ensemble le vecteur CMT (voir Figure 14), qui varie spatialement. Le CMT peut être approximé par un champ dipolaire. Il est trop complexe pour être exprimé par une fonction mathématique simple, mais il peut être considéré, sur quelques centaines de km, comme uniforme et le bruit de fond géologique est facilement observable. \vec{F} a un intensité de 0.6 Oe aux pôles magnétiques (I = ±90°) et minimale de 0.3 Oe à l'équateur magnétique (I =0°). A l'heure actuelle, l'unité utilisée en prospection magnétique est le nanoTesla (nT), qui par un jeu de transformation est exactement égal à l'ancienne unité, le γ avec ln T = 10⁻⁹T = 1 γ .

En CGS, puisque $\mu = 1$ dans l'air (ou le vide), et que $\vec{B} = \mu_0 \cdot \vec{H}$, alors $\vec{B} = \vec{H}$ et 1 Oersted est équivalent à 1 gauss. Comme le gauss est une unité d'induction très grande on a eu recours au gamma (γ), dans le passé pour exprimer dans les champs 1 $\gamma = 10^{-5}$ gauss.

Figure III.1. *Décomposition du vecteur champ magnétique terrestre (d'après Butler, 1992)*

Le champ magnétique terrestre moyen varie à la surface de la Terre de ~30000 nT à l'équateur magnétique, à ~60000 nT au pôle magnétique (Figures III.2, III.3 et III.4).

Figure III.2 . Champ magnétique principal (contour solide) et changement séculaire annuelle (contour en pointillées) de la Terre en gamma (modifié par l'intensité totale du champ magnétique terrestre, Epoch 1975.0, charte publiée par la « Defense Mapping Agency Hydrographic Center », Washington, D.C.)

Figure III.3 . Inclinaison du champ magnétique principal à la surface de la Terre en degrés (d'après l'inclinaison magnétique, Epoch 1975.0, charte publiée par la « Defense Mapping Agency Hydrographic Center », Washington, D.C.)

Figure III.4 . Déclinaison du champ magnétique principal à la surface de la Terre en degrés (d'après la déclinaison magnetique, Epoch 1975.0, charte publiée par la « Defense Mapping Agency Hydrographic Center », Washington, D.C.)

En première approximation, le champ terrestre (Figure III.5) est celui d'un dipôle placé suivant une droite faisant actuellement avec l'axe de rotation un angle de 11.5° et orienté vers l'hémisphère sud. Cette structure schématique du champ magnétique terrestre est appelée champ de Gauss.

Figure III.5. Relation –latitude géographique et inclinaison du champ

Le champ moyen vrai diffère du champ de Gauss qui n'a d'autre intérêt que de fournir un modèle simple. Le champ réel est irrégulier et les pôles magnétiques vrais ne coïncident pas avec les pôles géomagnétiques et ne sont pas diamétralement opposés.

<u>Pôle géomagnétique</u> Nord = 78,5 °N 111°W Sud = 78.5° S 111°E

<u>Pôle magnétique</u> Nord = 75 °N 101°W Sud =67° S 143°E Le CMT est produit par 3 types de champs :

Le champ magnétique principal, produit par les déplacements de son noyau externe - composé essentiellement de fer et de nickel en fusion conducteurs – autour de la graine, l'ensemble pouvant être comparé à une gigantesque dynamo. Ce champ principal explique les grandes variations régionales et temporelles d'intensité et de direction du champ.

Le champ magnétique externe, produit par des courants électriques dans l'ionosphère terrestre.

Des anomalies du champ magnétique, produit par l'interaction du champ principal avec des minéraux magnétiques contenues dans les roches de la croute terrestre.

1.3. VARIATION TEMPORELLES DU CHAMP MAGNETIQUE TERRESTRE

Le champ magnétique principal peut théoriquement être causé par une source interne ou externe dont le magnétisme peut être rémanent ou engendré par un flux de courant. Des analyses mathématiques du champ observé à la surface du globe démontrent qu'au moins 99% est causé par des sources internes et 1% par des sources extérieures à la Terre.

De longues séries d'observations démontrent que le champ magnétique terrestre est loin d'être constant. Des données obtenues aux observatoires de Londres et de Paris depuis 1540 montrent que l'inclinaison a varié de 10° (de 75 à 65°) et la déclinaison de 35° (10°E à 25°W puis retour à 10°W) depuis cette période. Même si ces données ont l'air cyclique, des renseignements ailleurs dans le monde n'engendrent pas les mêmes conclusions. Les variations séculaires ont donc un caractère régional. Leurs sources sont mal expliquées, mais on pense qu'elles sont liées aux changements de convection dans le noyau, au couplage à la limite noyau-manteau et à la vitesse de rotation de la terre.

La majeure partie du 1% du champ magnétique provenant de l'extérieur de la terre apparaît être associée aux courants électriques dans les couches ionisées de la haute atmosphère. Les variations dans le temps sont beaucoup plus rapides que celles du champ « permanent ». Les couches de la haute atmosphère (40 km et plus) sont fortement ionisées donc électriquement conductrices. Le maximum d'ionisation se situe vers 300 km d'altitude. Le phénomène d'ionisation est dû essentiellement au rayonnement lumineux. L'ionisation augmente donc le jour et diminue la nuit. La variation diurne suit le rythme solaire. De plus l'amplitude de la variation est influencée par l'activité du soleil qui passe par un maximum à tous les 11 ans. L'ionosphère se déplace par rapport au globe solide.

- Circulation générale atmosphérique qui tend à rétablir l'équilibre thermique entre l'hémisphère insolé et celui privé de soleil.
- La marée atmosphérique due aux forces d'attraction luni-solaires.

Le mouvement de l'ionosphère conductrice dans le champ de l'aimant permanent que constitue la terre induit des courants dans l'ionosphère qui produisent un champ magnétique supplémentaire, champ qui constitue la variation diurne.

- suit le rythme solaire (cycle de 24 heures, 11 ans)
- ordre de 30 nT
- varie avec les latitudes et saisons (plus faible en hiver, plus fort en été)
- suit les marées luni-solaires (périodes de 25 heures, amplitude de 2 nT)

Les orages magnétiques sont des perturbations dont les amplitudes peuvent atteindre 2000 nT. Elles se retrouvent sous toutes les latitudes et sont plus importantes dans les régions polaires où elles sont associées aux aurores boréales. Ces perturbations sont dues aux émissions sporadiques et capricieuses de particules électriques issues du soleil. L'arrivée de ces particules dans l'atmosphère provoque à la fois une luminescence donnant lieu aux aurores ainsi une variation intense de l'ionisation qui est à l'origine des perturbations magnétiques. Ces tempêtes peuvent durer plusieurs jours, troublant les communications radio à grande échelle et empêchant de poursuivre les campagnes de prospections magnétiques.

1.4. PROSPECTION MAGNETIQUE

Une anomalie est le reflet d'une perturbation dans le champ magnétique qui provient d'un changement local dans l'aimantation ou dans le contraste des propriétés magnétiques des roches qui constitue l'écorce terrestre (*III.5*). Tout corps placé dans un champ magnétique externe, tel celui de la terre, acquiert une magnétisation induite proportionnelle au champ inducteur et dans la même direction.

$$\vec{B} = \vec{H} + \vec{H},$$

= $\vec{H} + 4\mu \vec{I}$
= $(1 + 4\mu k).\vec{H}$ (III.5)

où \vec{B} représente l'induction magnétique; \vec{H} , le champ magnétique terrestre; \vec{I} , l'intensité de la magnétisation et k, la susceptibilité magnétique du corps

Le champ total résultant revêt la forme mathématique suivante :

$$\vec{H}_{\rm T} = \vec{H} + 4\mu {\rm k.} \, \vec{H} + \vec{M}_{\rm R}$$
 (III.6)

Cela indique que le champ magnétique total est donné par la somme du champ terrestre (III.6), de la magnétisation induite et de la magnétisation rémanente $\vec{M}_{\rm R.}$

Lorsqu'on fait une interprétation quantitative de données magnétiques, il est donc nécessaire de tenir compte de la \vec{M}_{R} sinon de graves erreurs d'interprétation peuvent en résulter.

Le paramètre physique mesuré pendant une acquisition du champ magnétique est l'Intensité Magnétique Totale du champ magnétique de la Terre (TMI). Le TMI est dépendant de la situation géographique, varie avec le temps et la distance entre la mesure et le centre de la Terre (Altitude). L'amplitude d'une étude magnétique peut atteindre 10 000 nT, tandis que l'acquisition et le traitement des données modernes permet une sensibilité en dessous de 0,1 nT. Le TMI est souvent soustrait des données magnétiques acquises. Le champ de référence géomagnétique international (IGRF) indique l'inclinaison et la déclinaison du champ vectorielle magnétique, qui sont des informations essentielles pour le traitement des données ou encore pour des modèles de calcul (Figure III.6). Après lui avoir enlevé le champ régional (i.e. l'IRGF), l'anomalie magnétique devient un champ résiduel.

Figure III.6 . a. Observatoires Intermagnet et satellites (CHAMP - GRACE). b. Les observations sont continues et précisent les 3 composantes mesures (H, D, Z).

- 2. CORRECTIONS
 - 2.1. CORRECTIONS TEMPORELLES

On doit tenir compte des variations spatio-temporelles du champ magnétique terrestre.

1. Variation séculaire : variations annuelles reliées au déplacement des pôles magnétiques.

2. Variations diurne : variations cycliques d'environ 24 heures reliées aux variations de courant dans l'ionosphère dues à l'activité du soleil. Les variations diurnes sont corrigées en établissant une station de base, fixe de référence dont l'enregistrement est soustrait aux données de production. On accepte des variations de moins de 50 nT/heure.

3. Orages magnétiques : variations brusques dues à des sursauts de l'activité solaire qui peuvent atteindre 2000 nT et durer plusieurs jours. Lors de tempêtes magnétiques, le levé est interrompu.

2.2. CORRECTION D'ALTITUDE

Le gradient vertical de Ho est d'environ -0.03 nT/m aux pôles et de -0.015 nT/m à l'équateur. Les effets d'élévation sont donc normalement négligeables. Toutefois, dans les régions montagneuses, une correction d'élévation est faite. Elle est égale à -0.47 nT.Ho/m, où Ho est la valeur locale de l'intensité du champ géomagnétique en Oe. La correction est positive au nord de l'équateur et négative au sud. Le nivellement peut s'exécuter par levé barométrique. Dans le cas de levés aéroportés, il peut être spécifié que tout survol dont la différence entre la hauteur de vol théorique et réelle dépasse une certaine limite sera rejeté.

3. TRANSFORMATIONS D'UN RELEVE AERO-MAGNETIQUE POUR L'INTERPRETATION

Pour commencer un traitement, plusieurs paramètres doivent être connus :

(i) L'inclinaison et la déclinaison géomagnétique moyens du domaine d'acquisition

(ii) Les paramètres d'acquisitions (espacement des lignes, altitude du vol, technique de récupération des données)

(iii) la taille de la grille interpolée.

(iv) l'échelle de compilation et le type de données présentées.

Les sources d'anomalies magnétiques sont diverses et nombreuses. Elles peuvent être anthropiques, au socle (en général magnétique alors que les sédiments le sont moins), à des filons, à des contacts (tectonique ou non) entre blocs de socle de caractères magnétiques différents ou encore à des intrusions magnétiques intra-socles. Plusieurs sources coexistent dans la croûte terrestre et la carte magnétique est le résultat de la superposition des effets de ces différentes sources. Il est donc important de traiter les cartes pour tenter de les séparer. Les sources magnétique génèrent des anomalies du champ dont la largeur (longueur d'ondes) et l'amplitude dépendent de la géométrie de la source, la profondeur du toit de la source et le contraste de susceptibilité magnétique par rapport à l'encaissant (Figure III.7). En effet, il y a un lien direct entre la largeur de l'anomalie et la profondeur de la source. C'est ce principe qui est utilisé pour séparer des sources dans des transformations de cartes. De manière générale, une source peu profonde correspond à une anomalie large peut correspondre à une anomalie large, mais attention inversement, une anomalie large peut correspondre à une source étroite et profonde.

Figure III.7 . Amplitude en fonction des longueurs d'onde générées par différentes tailles de sources magnétiques

Par définition, la nature du champ magnétique est multipolaire. La forme et l'amplitude de l'anomalie crée par un corps magnétique donné varie selon : la latitude magnétique à laquelle on se trouve, la géométrie du corps (orientation : maximum d'amplitude pour les corps Est-Ouest, pendage). Au pôle, le champ est vertical; les anomalies sont placées à l'aplomb de la source qui les créent et ont le maximum d'amplitude possible. Par conséquent, la position des anomalies relatives à une source dépendent de l'inclinaison et de la déclinaison du champ magnétique (Figure III.8).

Figure III.8. Une simple anomalie induite possède une forme dipolaire

La transformation mathématique des données magnétiques afin de les relocaliser à l'aplomb de leur source, est appelé : « une réduction au pôle » et revient à ramener le champ d'induction de la Terre comme s'il était au pole (i.e. vertical) et permet de aussi de corriger l'amplitude de l'anomalie (Figure III.9). La réduction au pôle est indispensable ; avant toute tentative de réalisation d'un schéma structural et pour comparer des données magnétiques et gravimétriques. Il existe cependant des limites à cette manipulation. La première est s'il existe une aimantation rémanente. Le champ rémanent, n'ayant pas la même direction et le même sens que le champ magnétique induit et n'étant pas pris en compte pour la réduction au pôle, le calcul de la réduction au pôle lorsque l'aimantation rémanente est dominante, fournit des anomalies non centrées sur les sources. De la même façon, si l'on se situe à des basses inclinaisons (<30°), les anomalies NS sont amplifiées par la réduction au pôle.

Figure III.9. Les anomalies sont simplifiées et relocalisées à l'aplomb de leur source magnétique.

Afin d'interpréter des données aéromagnétiques et/ou gravimétriques, plusieurs traitements (filtres) leurs sont appliqués pour produire des cartes et des profiles qui souligneront des textures, des gradients en amplitudes et longueurs d'ondes, des discontinuités ou encore des variations. Les filtres sont utilisés pour atténuer les bruits, isoler l'effet d'un marqueur (ou d'une série de marqueurs) ayant une réponse fréquentielle connue et bien différenciée de celles des autres marqueurs. Ils existent plusieurs types de marqueurs : passe-bas, passe-haut, passe-bande, isotrope...

Les transformations *focalisantes* favorisent de manière générale les hautes fréquences. Elles permettent d'accroitre le pouvoir séparateur, i.e. qu'elles séparent les anomalies interférées ou coalescentes et favorisent ainsi les sources peu profondes en occultant les effets régionaux. Ainsi, un « *prolongement vers le bas* » amplifie les courtes longueurs d'ondes. Les « *dérivées* » du champ permettent de calculer la variation du signal dans une direction donnée et rapportée à une distance. Si la dérivée est réalisée selon la direction X ou Y, les hautes fréquences seront accentuées comme les contacts entre différents corps magnétiques. Si la dérivée est réalisée verticalement (i.e. selon Z), elle mettra en valeur des structures superficielles (de hautes fréquences) au regard de leur extension horizontale. Les « *signaux analytiques* » accentuent les limites des distributions des anomalies magnétiques des différents corps géologiques et permettent d'obtenir les anomalies à l'aplomb des sources, que l'on soit en aimantation induite ou rémanente. L'utilisation de ces transformations focalisantes est indispensable pour réaliser un schéma structural. Néanmoins, ces dernières amplifient les hautes fréquences et y compris le bruit, et donc doivent être associées à une filtre intégrant qui cependant risque de lisser l'information intéressante.

En effet, les transformations *intégrantes* favorisent les basses fréquences. Elles ont pour effets d'atténuer l'effet des sources peu profondes et du bruit et de renforcer les effets profonds ou régionaux. Faisant ressortir les grandes longueurs d'ondes, *le prolongement vers le haut* par exemple, dégage les grands traits structuraux.
La modélisation géométrique en 3 dimensions (3D) des objets géologiques contribue à la compréhension des phénomènes géologiques. La modélisation géométrique 3D d'objets géologiques consiste à obtenir une description continue de la répartition des formations géologiques ; et ce à partir d'observations directes et indirectes dont on dispose. Ces données sont hétérogènes, irrégulièrement réparties et de nature diverses (lithologie, âge, structures ou encore propriétés physico-chimiques).

Différents outils existent pour la modélisation 3D en géologie. Du point de vue de la modélisation 3D proprement dite, EarthVision semble incontestablement l'outil le plus complet, suivi par GOCAD puis PETREL. Ces logiciels ne permettent pas une appropriation simple par des non spécialistes. Ils apportent une réponse à une large gamme de besoins ou de situations lorsque la forme des objets géologiques est à peu près connue, c'est-à-dire lorsqu'on dispose d'une sismique 3D ou de nombreux profils sismiques 2D. Cette situation concerne principalement le domaine pétrolier.

Le Geomodeller 3D est un logiciel qui peut prendre en compte la forme et la topologie des objets géologiques qui sont mal connues, mais où, on dispose de données d'orientation ou de relevées de surface. Cet outil exprime le modèle géologique par des fonctions implicites complexes. Pour ce faire, il exploite, entre autres, les données structurales disponibles sur les interfaces, mais aussi des données qui ne sont prises en considération par aucun des outils précités alors qu'elles s'avèrent essentielles pour la modélisation 3D dans les études disposant de peu d'informations en profondeur (comme les forages ou quelques coupes géophysiques et toutes les informations structurales de surface). Enfin, le Geomodeller 3D permet de tester différentes hypothèse d'interprétation géologique et de réaliser des inversions géophysiques.

1. PRINCIPE

1.1. METHODES VOLUMIQUES ET SURFACES IMPLICITES

Deux classes de méthodes permettent de construire numériquement des surfaces :

• les méthodes « explicites » qui définissent les surfaces par leurs équations et ;

• les méthodes « implicites » où la surface n'est pas directement connue par son équation mais peut être déduite d'une propriété particulière. Par exemple, il peut s'agir d'une isovaleur particulière d'un champ défini dans tout l'espace : f(x,y,z) = V. Dans ce cas, à une isovaleur V₀ correspondra l'ensemble de points x, y et z tels que $f(x,y,z) = V_0$ mais cette surface particulière ne peut pas être connue analytiquement. Il conviendra de la rendre explicite pour pouvoir l'exploiter (par exemple pour la représenter).. De la même façon, l'ensemble des points (x,y,z) tels que V₁ \ge f(x,y,z) \ge V₀, constitue un volume limité par les surfaces implicites correspondant aux isovaleurs V₀ et V₁.

Du fait de sa généralité et de son caractère automatique, cette méthode est intéressante et permet de passer facilement à une représentation volumique des corps géologiques. La méthode d'interpolation que l'on va utiliser par la suite est basée sur ce principe.

1.2. METHODE D'INTERPOLATION.

En géologie, les données les plus classiquement et traditionnellement utilisés pour accéder à la géométrie des interfaces géologiques sont : les points de contact des formations géologiques et les données d'orientations sur la stratification, les schistosités, les foliations qui ne sont localisés qu'au point de contact. Dans la plupart des situations géologiques, on peut considérer que :

- dans les bassins sédimentaires, il existe un parallélisme général entre limites chrono-stratigraphiques et plans de stratification;
- dans les granites, les structures internes sont généralement utilisées pour déterminer la forme des plutons ;
- dans les terrains métamorphiques, les limites entre unités montrent un fort parallélisme avec les foliations métamorphiques

La méthode d'interpolation repose sur ce type d'interprétation et de donnée. On fait l'approximation que les couches géologiques sont des surfaces isovaleurs particulières d'un champ scalaire (ou champ de potentiel) dont les gradients ou dérivées partielles sont représentées par les données d'orientations (Lajaunie et al., 1997).

1.3. METHODE GEOSTATISTIQUE

Les méthodes géostatistiques permettent par cokrigeage d'estimer un champ connaissant des valeurs ponctuelles de ce champ (points de passage) assimilées à des équipotentielles et des valeurs de ses dérivées partielles. Le cokrigeage consiste à interpoler de façon simultanée plusieurs variables connaissant leur corrélation spatiale. En d'autres termes, on utilise le fait qu'il existe des corrélations spatiales entre un champ et ses dérivées pour faire du cokrigeage. Les interfaces sont finalement représentées comme des isolignes (2D) ou des isosurfaces (3D) du champ interpolé (Figure IV.1).

Figure IV.1 . Principe 2D de modélisation (Courrioux et Calcagno, 2004).

En pratique le champ scalaire est assimilé à un champ de potentiel. Du fait que le champ de potentiel est défini à une constante près, sa valeur à l'origine est définie arbitrairement, on interpole alors des accroissements de potentiel. Les données sont définies comme suit :

- une donnée d'orientation est traduite en 3 dérivées partielles
- la donnée de polarité permet de compléter le gradient de U, i.e. donne la valeur de la dérivée partielle dans la direction orthogonale à la foliation.
- quand on sait que deux points appartiennent à la même interface, ceci est traduit par le fait que l'incrément de U entre ces deux points est égal à 0.

Le champ de potentiel est ensuite estimé en tout point par cokrigreage i.e. en utilisant des estimateurs linéaires. L'algorithme est complètement décrit par Lajaunie et al. (1997). Noter que l'estimation dépend de la fonction de covariance du champ de potentiel. En pratique celle-ci n'est pas connue. Dans ce cas d'étude nous utilisons une covariance cubique. Lorsque le système de cokrigreage est résolu, le résultat de l'interpolation donne l'estimation du champ de potentiel en tout point. Les isolignes (en 2D) ou isosurfaces (en 3D) peuvent donc être calculées. Chaque interface correspond à une isovaleur du champ. Par construction elles respectent simultanément les points connus et les données d'orientation.

Pour prendre les failles en compte, on introduit une fonction spatiale discontinue dans le système de cokrigeage, comme fonction de dérive. Pour chaque faille la fonction modélise la forme d'influence de la faille. Sa valeur est 0 d'un côté de la faille et décroit de 1 à 0 de l'autre coté en fonction de la distance à la faille et la distance au bord de la faille (Figure IV.2). Prendre en compte un type donné de faille implique un choix pertinent pour cette fonction. Par exemple si une translation rigide est supposée, la fonction vaudra 0 d'un côté de la faille et 1 de l'autre. Sinon, si on souhaite modéliser un amortissement la fonction décroitra en fonction de sa distance au bord et au long de la faille.

Figure IV.2 . Exemple de modèle d'influence de faille finie avec leur rayon d'influence.

1.4. GESTION DE PLUSIEURS FORMATIONS

La pile stratigraphique indique la chronologie des dépôts et obéit aux « principe de superposition » de *Steno (1669)*. S'il n'y a pas d'inversion tectonique, les terrains les plus anciens sont sous les récents. Lorsque les couches sont subparallèles, un seul champ de potentiel suffit à les modéliser.

Mais dans des cas réels, il est assez rare que des interfaces soient parallèles ou subparallèles à l'intérieur de toute une zone d'étude. Dans ce cas on doit interpoler séparément ces interfaces ou groupes d'interfaces. On est ramené à interpoler autant de champs de potentiels distincts qu'il existe de groupes d'interfaces sécants. Par exemple, la modélisation de structures complexes telles que des plis couchés ou intrusions granitiques, qui ne peuvent être modélisées par des surfaces d'élévation du type z = f(x,y), n'est possible que par l'introduction de la polarité sur les données d'orientation. On définit alors une série comme un ensemble de couches (formations) concordantes et on utilise un champ de potentiel par série.

Il reste alors à imposer les règles spécifiques à la géologie afin de fixer les relations entre les séries et résoudre ainsi les problèmes de contact entre elles. On nomme alors deux règles : érosion (dénommé Erod) et dépôt (Onlap). Ces règles permettent de résoudre toutes les situations rencontrées. Les formations d'une série de type Onlap vont uniquement se déposer dans l'espace laissé par les séries précédentes. Les formations d'une série de type Erod vont à la fois éroder les séries existantes et se déposer. La relation Erod combine 2 évènements : une séquence d'érosion puis une phase de dépôt (Figure IV.3, Aug, 2004).

Figure IV.3 . Champs multipotentielles permettant des relations Onlap et Erod entre les interfaces.
(a) Formation 1(en gris) interpolée. Données pour le champ de potentiel de la formation 2 sont en noir (i.e. points de passage et données d'orientations). (b) La formation 2 (en gris foncé) interpolée avec une relation Onlap. Données pour le champ de potentiel de la formation 3 sont en gris clair.
(c) La formation 2 (en gris foncé) interpolée avec une relation Erod (Calcagno et al., 2006).

L'outil qui définit

- le regroupent de formation en séries,
- un ordre chronologique des séries,
- une relation (Erod ou Onlap) pour chaque série

est appelé la pile géologique.

2. Le Geomodeller 3D

Cette méthodologie a été implémentée dans le Geomodeller 3D qui est un logiciel développé par le BRGM (Calcagno et al., 2005). La limite supérieure du modèle est définie par le MNT (Modèle Numérique de Terrain) qui est une grille donnant l'altitude en fonction de la latitude et de la longitude et qui fournit une connaissance en 3D de la topographie. Les données de la carte géologique sont reportées sur le MNT en digitalisant les limites des interfaces géologiques que l'on souhaite modéliser (Figure IV.4).

Figure IV.4 . MNT et données de terrain du modèle géométrique 3D de Montmarault

On attribue à chacune des formations géologiques, les foliations (i.e. des données structurales) que l'on a observées sur le terrain ou que l'on a acquises lors de mesures de l'Anisotropie de la Susceptibilité Magnétique. Sur des coupes verticales, on peut également introduire des données ou des interprétations (points de passage, données d'orientations, d'ASM, Figure IV.5).

Figure IV.5 . Coupes verticales provenant du modèle 3D de Montmarault.

L'interpolation de l'ensemble des données disponibles en 3D s'effectue en utilisant la méthode expliquée précédemment (§4.1.). Puis, en donnant les relations chronologiques et spatiales entre les unités géologiques via l'élaboration d'une pile géologique (Figure IV.6), il est possible de construire un « modèle solide »; i.e. où l'espace est rempli par les formations géologiques (Figure IV.7).

Figure IV.6 . Pile géologique du modèle géométrique 3D de Montmarault.

Figure IV.7 . Modèle géométrique 3D de Montmarault

3. LA MODELISATION GEOPHYSIQUE DIRECTE

La modélisation directe permet de calculer l'effet gravimétrique et/ou magnétique de structures ou hétérogénéités dans le sol. Les corps sont caractérisés par :

- Leur contraste de densité ou susceptibilité magnétique vis-à-vis de leur encaissant et ;
- Leur géométrie approchée par des volumes issus de la modélisation géométrique 3D.

Les utilisations principales de la modélisation directe sont ;

- La validation d'une hypothèse d'interprétation, en particulier validation d'une coupe géologique ou d'un modèle 3D. l'effet du modèle est calculé (modèle géologique 3D, interprétation géophysique...) est calculé et comparé aux données gravimétriques et/ou magnétiques existantes.
- Le calcul de l'effet d'une structure particulière connue (par exemple un granite) pour le soustraire au champ mesuré.

Les paramètres influents sur les résultats d'un modèle sont les profondeurs, les contrastes (densités et/ou susceptibilité) et la géométrie du corps modélisé. Il est important de garder en mémoire que la modélisation pourra permettre de rejeter ou de proposer des variantes ; mais il existe toujours une infinité de solutions pouvant expliquer une anomalie gravimétrique et/ou magnétique. La confrontation des modèles est essentielle pour limiter le nombre de solution.

Par conséquent, la concordance de la contribution du modèle (anomalie calculée) avec les données mesurées (anomalies observées) n'implique pas forcement que ce modèle soit le bon. Par contre, la non-concordance indique que le modèle est insatisfaisant.

Pour qu'une modélisation soit efficace, il faut intégrer toutes les informations existantes (géologie, forage, profils sismiques, autres méthodes géophysiques...). Le Geomodeller 3D permet l'interaction entre toutes ces données.

"It's through the falsification of our suppositions that we effectively grasp reality" (K.Popper, Objective knowledge, 1972, 1979)

Plusieurs distributions de masses ou de corps magnétiques peuvent donner la même réponse gravimétrique et/ou magnétique. Il n'y a donc pas de solution unique a un problème d'inversion. Compte tenu des hypothèses initiales, le programme d'inversion utilisé va livrer la solution probable au sens de la vérification de critère de convergence mathématique.

L'interprétateur doit prendre en compte le maximum d'informations extérieures (géologie, autres méthodes géophysique) pour éliminer un certain nombre de solutions impossibles géologiquement. L'inversion réalisée par le Geomodeller 3D est une méthode probabiliste (Bosch et al, 2001). Cette approche probabiliste de l'inversion nécessite l'intervention de trois éléments de bases, typique du problème inverse:

1. Des informations « A-priori »: comme la carte géologique; des propriétés pétrophysiques des roches (densités, susceptibilité magnétique) ou encore des règles de déformations (e.g. l'objet modélisé doit-il se dilater ou se compresser ?). Ces informations « A-priori » sont représentées par une probabilité volumétrique Pprior(M) définit dans un espace de modèle M.

2. Des informations expérimentales, comme la carte de l'anomalie de Bouguer ou magnétique, sont représentées par une probabilité volumétrique *PObs(O)* qui est définie dans un espace d'observation *O*.

3. Et enfin d'une relation 3D directe gravimétrique et/ ou magnétique, c'est-à-dire une équation de l'effet gravimétrique du modèle 3D ($M \rightarrow O = O(M)$). Soit,

$$Ppost(M) = Pprior(M) \times PObs(O(M)) /k$$

Après quoi, chaque voxel du modèle est discrédité un à un. Les modèles géophysiques et géométriques obtenues, sont gardés ou rejetés en fonction de leur similarité (ou pas) avec la réalité expérimentale. Ainsi, on peut obtenir le modèle le plus probable via une multitude de modèles qui sont tous en accord avec la réalité.

Communication orale « Joly Aurore, Guillen Antonio, Calcagno Philippe, Courrioux Gabriel, Fitzgerald Desmond, McInerney Phil, Seikel Ray (2006). Coupling 3D Modelling and Forward-Inverse modelling of potential field data (gravity and magnetic data and tensor components).3rd international conference "GIS in geology", 15-17 November, Moscow (Russia) and Int. Assoc. for Mathematical Geology XIth International Congress, S12-18, 03-08 September. University of Liège (Belgium).

COUPLING 3D MODELLING AND FORWARD-INVERSE MODELLING OF POTENTIAL FIELD DATA (GRAVITY AND MAGNETIC DATA)

Joly Aurore^(1,2) (a.joly@brgm.fr), Guillen Antonio⁽¹⁾ (a.guillen@brgm.fr), Calcagno Philippe⁽¹⁾ (p.calcagno@brgm.fr), Courrioux Gabriel⁽¹⁾ (g.courrioux@brgm.fr)

1)Bureau de Recherches Géologiques et Minières, 3 av. C. Guillemin, BP 6009, 45060 Orléans Cedex 2. France

2)ISTO, UMR CNRS 6113, Université Orléans F 45067 Cedex 2, France

1. Introduction

The 3D modeling of geological objects is often decomposed in two steps: i) delimitation of the boundaries of the units corresponding to the various geological formations or ore types; and ii) verification and estimation of these boundaries, using geophysical data. A new approach using potential-field interpolators addressing the 3D modeling problem is used here (Ch.Lajaunie et al. 1997). We will discuss how we can statistically estimate the validity of such 3D model taking in account various geophysical data. This estimation can be computed by inverting complementary datasets, provided (a) the data are a function of the 3D distribution of a source, (b) the response of a given 3D source distribution can be calculated, and (c) the source distribution shows some degree of correlation with the litho-regions. Gravity and magnetic potential field data generally satisfy these criteria. Unfortunately, these data do not allow source geometry to be uniquely resolved through inversion, nor is the source geometry likely to be perfectly correlated with the litho-regions. Even allowing for these limitations, we can see through the expression for the posterior probability density function (PPD) for a Bayesian inversion procedure how uncertainty in prior geological knowledge is modified by investigating the fit to observed potential field data for various models;

$$P(\mathbf{m} \mid \mathbf{d}_{\mathbf{o}}) = k\rho(\mathbf{m})L(\mathbf{d}_{\mathbf{o}} \mid \mathbf{m})$$
(1)

where k is a normalizing constant, $\rho(\mathbf{m})$ is the prior probability for the property model **m** based on geological knowledge, and $L(\mathbf{d_0} | \mathbf{m})$ is the likelihood function that reflects the agreement between the observed potential field response and the predicted response of the model. Lithomodels that have reasonable probability based on prior knowledge are downgraded if the likelihood deduced from the associated potential field response is very low. To reduce the non-uniqueness, we can add to the classical data, the tensor components of the field. The main goal with gradients measurements is to improve accuracy and spatial resolution of gravity and magnetic surveys. For those reasons, we propose to build a 3D forward modelling and inversion method for tensor data.

2. Constrained Potential Field Inversion Overview

The geological model is discretized into a 3D matrix of cells, termed voxels, to produce an initial rock unit ('lithology') model. Lithology is the primary model parameter. The lithology associated with subsurface voxels information is free to vary, subject to the condition that the "shape trend" of the initial model remains unchanged. The inversion explores variations to the initial model which reproduce the supplied gravity or magnetic data to within a desired tolerance level. The adopted strategy is to randomly walk around the space of possible models for a given set of a priori information. This approach was proposed by Mosegaard and Tarantola (1995) and developed in 2D by Bosch et al. (2001). At each iterations, we make one of two possible changes. The physical property (density and/or magnetic susceptibility and/or remnant magnetization) for a randomly selected voxel that is separated from the boundary of that unit may be modified. Alternately, the lithology of a voxel that lies on the interface between two or more units may be modified and a new physical property assigned to that voxel according to a random selection from the probability function of the relevant physical property distribution for the new lithology. The

voxels to which the latter operation can be applied is restricted by the constraint that the "shape trend" of the model is not altered.

The change in the misfit between the observed gravity and/or magnetic field and/or tensor components data and the responses calculated for the modified model is determined. This change is examined in a probabilistic framework to determine whether the modification to the model is accepted.

2.1. Detailed Outline of the Inversion Algorithm

The inversion algorithm can be defined using 11 steps.

- 1. Build the a priori geological model
- 2. Define the a priori physical property laws
- 3. Discretise this model
- 4. Compute topology
- 5. Make a list of the boundary or frontier cells
- 6. Compute the gravity and/or magnetic field and gravity and/or magnetic tensor for each cell
- 7. Initialise the density or magnetisation values
- 8. Compute the geophysical effects of the model
- 9. Disturb the model
- 10. Compute the geophysical effects of the disturbed model
- 11. Compute the likelihoods of the disturbed model

During the initial part of the inversion, the data misfit for each field of the current model follows a generally decreasing trend. At some point, the data misfit reaches an asymptotic value, defined or set in function of the measurement errors and we begin to store the models. These stored models are an exploration of the probability space of acceptable models. After completing Step 11, the inversion returns to Step 9 and continues to iterate around this loop. An ensemble of models that can satisfactorily explain the geophysical signature might be explored by continuing for a further million iterations.

During the inversion process, at the step 9, we will use after some iteration an operation to homogenise the current model. We will use the morphology-based operations erosion, dilation and their combined uses to add or remove voxels from the boundaries of features in order to smooth them, to join separated portions of features or separate touching features, and to remove isolated voxels noise from the model. Dilation turns voxels "on" according to rules based on the number or arrangement of neighbouring voxels, erosion turns pixels "off" according to similar rules, while Opening - an erosion followed by a dilation - and Closing - the reverse sequence - attempt to restore the original area of features but with some rearrangement of the boundary pixels. We apply these operations during some state of the step 9 during the inversion process, they control the "quality" of the model.

To modify the geometry of the bodies we apply growing and thinning geological unit methods, after a given number of iterations. For this purpose, we will use the previous method to modify the shape of the geological units using growing (dilation process) or thinning (erosion process). These operations occur during step 9. After a random number of inversion we select randomly a geological unit, a process (growing or thinning) and one of the six possible directions (N, S, E, W, Up, Down) to realise this shape modification.

Once inversion finished, the set of stored model allows to compute for each voxel, the probability of finding each unit, the most probable lithology and the mean value of the petrophysical properties.

3. Application to the Montmarault granitic massif in the Variscan French Massif Central.

Montmarault porphyritic pluton in the northern part of the French Massif Central is located along the Sillon Houiller Fault (SHF). Field structural observation, U-Th/Pb dating, petrographic and magnetic fabric results demonstrated that the Montmarault pluton, emplaced in the Namurian times (about 320 Ma), is controlled by the NW-SE maximum stretching direction, also well recorded by emplacement fabric of other Namurian granitic pluton of the French Massif Central. However, foliation and lineation patterns provide insufficient information to determine an accurate three dimensional shape of a granitic pluton, thus, the use of joint gravity and magnetic methods becomes essential, despite interpretations are not always unique.

To constrain the structure of the granitic massif, new gravity measurements have been acquired from 525 stations. Supplemented to existing gravity data, we provide an average coverage of the area with about 1 station per km2. As suggesting Bouguer anomaly and magnetic intensity maps, the important negative gravity and magnetic anomalies are well located along the SHF and correlated to the thickening of the granite in relation with tectonic structure. To the west of the SHF, the important positive V-shaped magnetic and gravity anomalies suggest the thinner laccolithe-like granite with high magnetic susceptibility and low density is probably underlain by geologically evidenced intrusions of diorite with high magnetic susceptibility and magnetic anomalies.

Fig. 1. On the left the 3D model in red the granites and in pink the leucogranites. The SHF is the East limit of the granites. On the right we have the 3D view of different sections used to build the model.

Geophysical and new structural information have been integrated to construct 3D model to better understand the emplacement of Montmarault granite, this model contains 30 different geological units and faults (Fig. 1). From this starting model, we have applied the previous inverse method, we obtain a set (1000 000 of different models) explaining the both gravity and magnetic anomalies, taking in account the petrophysical data (densities, susceptibilities and remanant magnetization), and close to the 3D starting model. The figure 2 shows the agreement between the fields created by the model and the measurements, just after 330000 iterations.

The results (Fig. 3) show that the granites thickness increases with a high probability along the SHF, the joint inversion of gravity and magnetic inversion add constrains on the granites where the magnetic diorites bound them.

Gravity field

Magnetic field

Fig. 2. Misfit evolution after 330000 iterations of the gravity and magnetic fields.

: lowercarbogranite_||_porphyriticgranite_||_porphyri

Fig. 3. Probability (P=1 in white, P=0 in black) to have the granite units along a cross-section SW-NE along the SHF. We see that the tickness of the granite units increase from south to north.

REFERENCES

- Bosch M., Guillen A. and Ledru P., 2001, Lithologic tomography: an application to geophysical data from the cadomian belt of nothern Brittany, France: Tectonophysics, 331, 197-228.
- Mosegaard K., and Tarantola A., 1995, Monte Carlo sampling of solutions to inverse problems: J. Geophys. Res., 100, No. B7, 124321-12447.
- Lajaunie Ch., Courrioux G., Manuel L. 1997, Foliation fields and 3d cartography in geology: principles of a method based on potential interpolation. Mathematical Geology, 29, 571-584.

1. BUTS ET PRINCIPES DE LA GEOCHRONOLOGIE

Le principe général de la géochronologie isotopique est de déterminer l'âge absolu des processus géologiques qui conduisent à la cristallisation des cristaux comportant dans leurs structures des atomes radioactifs. La loi de décroissance radioactive (VI.1) suit la loi de Rutherford et Soddy (1902) :

$$dN/dt = -\lambda N$$
 (VI.1)

où N désigne le nombre d'atomes radioactifs pères présents à l'instant t (instant de l'analyse) et λ , la constante de désintégration. L'association du système isotopique radioactif avec une espèce minérale constitue donc un géochronomètre. L'intégration de la loi nous donne une équation cinétique (VI.2) de premier ordre de la forme :

$$N = N_0 e^{-\lambda t}$$
 (VI.2)

Où No = N +n (n, nombre d'atomes radiogéniques : résultat de la désintégration de N)

Il vient : N = (N+n) e^{$$-\lambda t$$} (VI.3)
On obtient : n = N(e ^{λt} -1) (VI.4)

Sur la base de l'équation VI.4, on peut calculer le temps t qui est souvent associé à un processus géologique qui a conduit à la concentration de l'élément N (cf. VI.5). Ceci n'est applicable que si on admet que le système reste clos après sa fermeture (cristallisation du minéral) c'est-à-dire qu'aucun autre processus physico-chimique n'a entraîné la perte ou l'adjonction de N et/ou n, en d'autres termes le radiochromètre n'est pas perturbé.

$$t=1/\lambda \ln (1+(n/N))$$
 (VI.5)

Dans les systèmes naturels (roches ou minéraux), la présence de quantités initiales de l'isotope fils est à craindre. Il est donc indispensable de connaître cette quantité initiale de l'isotope fils, présent lors de la fermeture du système. La technique de mesure isotopique la plus largement utilisée est la spectrométrie de masse. Le géochronomètre U-Pb sur zircon peut être étudié à l'aide de la microsonde ionique. Depuis les années 90, grâce à l'amélioration des performances des microsondes électroniques, une géochronologie « chimique » c'est à dire non isotopique, réalisée sur monazite, est devenue possible (Suzuki et Adachi, 1991). La monazite est un phosphate de terres rares (REE, Th) PO₄, phase accessoire mais bien représentée dans les roches magmatiques et métamorphiques de composition pélitique (Parrish, 1990).

2. LA METHODE DE DATATION CHIMIQUE U-TH-PB SUR MONAZITE

Du fait de ses teneurs élevées en U, Th et Pb, la monazite constitue une des phases très utilisées en géochronologie. Cette utilisation comme radiochronomètre est confortée par le caractère limité de la diffusion de plomb et par sa stabilité dans les domaines de haute température (Cocherie *et al.*, 1998 ; Montel *et al.*, 1996 ; Montel *et al.*, 2000). En effet, la monazite ne présente pas de variations chimiques notables dans des environnements thermiques avoisinant 900°C (Parrish, 1990 ; Braun et al., 1998). Ces caractéristiques permettent à la monazite d'enregistrer des processus géologiques successifs (Cocherie et Albarède, 2001). Ainsi, pour comprendre de façon exhaustive l'histoire thermique et tectonique de roches qui ont connu plusieurs événements, il convient d'acquérir des données géochronologiques *in situ*, c'est-à-dire analyser directement le minéral dans son environnement textural en lame mince et combiner ces données aux résultats de l'étude pétrotexturale.

Grâce à sa très haute résolution spatiale ($<2 \mu m$), la microsonde électronique fournit un niveau de détail géochronologique sans égal. La datation chimique sur monazite à la microsonde électronique est particulièrement bien adaptée aux contextes polymétamorphiques et peut être utilisée comme aide à l'interprétation de données isotopiques conventionnelles (Cocherie *et al.*, 1998; Be Mézème *et al.*, 2005, 2006a, 2006b ; Be Mézème, 2005).

3. PRINCIPE DE LA METHODE DE DATATION CHIMIQUE U-TH-PB

L'U et le Th sont à l'origine de deux familles radioactives qui donnent le plomb comme produit ultime de désintégration. Les deux isotopes de l'U (U^{235} et U^{238}) donnent respectivement le Pb²⁰⁷ et le Pb²⁰⁶, le Th²³² donne le Pb²⁰⁸. En admettant un équilibre séculaire, l'équation du calcul de l'age est basée sur l'équation de désintégration radioactive (VI.6):

$$Pb_{total} = Pb_0 + {}^{208}Pb + {}^{207}Pb + {}^{206}Pb$$
(VI.6)

En admettant que la teneur du plomb initial dans la monazite est négligeable, le plomb total mesuré est donc du plomb urano et thorogénique. Soit l'égalité (VI.7):

$$Pb = Th \frac{M_{208}}{M_{232}} \left(e^{\lambda 232t} - 1 \right) + U \left[\left(\frac{M_{206}}{M_{238}} \times 0.9928 \times \left(e^{\lambda 238t} - 1 \right) \right) + \left(\frac{M_{207}}{M_{235}} \times 0.0072 \times \left(e^{\lambda 235t} - 1 \right) \right) \right]$$
(VI.7)

Où M_{206} , M_{207} , M_{208} , M_{232} , M_{235} , M_{238} désignent les masses moléculaires. 0,09928 et 0,0072 représentent des proportions des nucléides U^{235} et U^{238} dans la fraction totale de l'uranium actuel.

Enfin, l'application de cette méthode et la validité des âges chimiques sont basées sur l'hypothèse très forte que la monazite n'a pas subi de pertes, même partielles, en plomb depuis sa cristallisation initiale ou son dernier épisode de remise à zéro complète (Montel *et al.*, 1996; Cocherie *et al.*, 1998). Autrement dit, on admet que les réouvertures, lorsqu'elles interviennent, affectent des domaines bien délimités ou la totalité du grain considéré. Etant donné que l'hypothèse du système clos ne peut être vérifiée qu'à partir de données isotopiques adéquates, il faut toujours considérer les âges chimiques obtenus à la microsonde électronique comme des âges apparents qui peuvent dans certains cas ne pas avoir de signification géologique. Quoi qu'il en soit, des travaux récents ont montré que les âges obtenus à la microsonde électronique étaient le plus souvent compatibles avec ceux obtenus par les méthodes isotopiques conventionnelles (Montel *et al.*, 1996; Cocherie *et al.*, 1998, 2007; Goncalves, 2002). Sur la base de l'équation (VI.7), il existe plusieurs méthodes graphiques pour déterminer le temps t. Ainsi, en divisant les deux membres par le Pb l'équation VI.7 devient VI.8:

$$l = \frac{Th}{Pb} \frac{M_{208}}{M_{232}} \left(e^{\lambda 232t} - 1 \right) + \frac{U}{Pb} \left[\left(\frac{M_{206}}{M_{238}} \times 0.9928 \times \left(e^{\lambda 238t} - 1 \right) \right) + \left(\frac{M_{207}}{M_{235}} \times 0.0072 \times \left(e^{\lambda 235t} - 1 \right) \right) \right] (IV.8)$$

Les points d'analyses qui sont liés à un même événement (c'est-à-dire qui ont le même âge) et dont les quantités de U et Th différentes se distribueront selon des isochrones dans le diagramme Th/ Pb= f (U/Pb) (Cocherie et al., 1998, 2007), permettent de déterminer de façon indépendante les âges U-Pb, Th-Pb et contrôler la concordance entre les deux (Figure VI.1). Cependant, les analyses étant souvent dispersées, vers le centre du diagramme ce qui permet de définir la droite de régression pour la population étudiée, les erreurs sur ces deux interceptes sont souvent élevés. Par ailleurs comme à chaque point du diagramme correspond un âge, il sera possible de choisir le point le mieux défini statistiquement afin d'obtenir l'âge moyen recherché. Comme les erreurs sur les rapports U/Pb et Th/Pb, sont corrélée la meilleure représentation de l'erreur sur chaque analyse est une ellipse. A l'aide du programme ISOPLOT (Ludwig, 1999; 2004), il est possible d'identifier la valeur du barycentre et de visualiser l'enveloppe d'erreur constitué de deux hyperboles symétrique de part et d'autre de la droite de régression calculée.

Figure VI.1. Représentation graphique d'un isochrone calculé à partir des données analytiques, sur le même diagramme pour comparaison, l'isochrone théorique est également projetée. L'âge calculé est au barycentre des points où l'erreur est la plus petite, i.e. là où l'enveloppe d'erreur est resserrée.

Enfin, si la droite de régression obtenue à l'aide de points expérimentaux est représentative d'un événement unique, cette droite sera superposable à l'isochrone théorique correspondante. En d'autres termes, les âges U/Pb et Th/Pb sont égaux dans la limite d'erreur sur ces âges.

4. PROCEDURE ANALYTIQUE

La monazite qui appartient au système monoclinique, est formée par une chaîne de tétraèdres de phosphate (PO₄) reliés entre eux par des polyèdres de type REEO₉. La monazite incorpore préférentiellement des Terres Rares Légères allant du La au Gd qui se caractérisent par de larges rayons ioniques. La structure de la monazite peut également incorporer d'autres d'éléments comme le Ca, Si, Y, Th et U par l'intermédiaire de substitutions cationiques.

Figure VI.2 . Exemple de spectre de l'analyse aux rayons X d'une des monazites du granite de Montmarault.

L'ensemble des analyses (Annexe 2) a été réalisé directement sur lames minces afin de conserver l'information texturale. Le Microscope Electronique à Balayage (MEB) est le meilleur moyen de distinguer toutes les espèces minérales constitutives de la lame. Le MEB permet la mise en évidence des principaux éléments constitutifs de la monazite et fournit donc une représentation de leur distribution (Figure VI.2). En effet, les électrons rétrodiffusés produits par le MEB, offrent une image de contraste de la composition chimique de l'objet. Cet outil peut donc aider à définir des phénomènes d'héritages qui se traduisent par des zonations et des surcroissances autour d'un ancien grain.

La monazite se présente en lame mince (Figure VI.3) sous forme de grains fins incolores avec un relief très fort proche de celui du zircon et un pléochroïsme nul. Ils présentent un clivage régulier par rapport auquel l'extinction est très légèrement oblique. La biréfringence est très élevée (teinte violacée du troisième ordre). Ces caractères optiques sont très proches du zircon et du xénotime. Les grains de monazite sont souvent tabulaires verdâtres à incolores, avec un éclat résineux. Ce minéral est assez tendre et s'écrase facilement. Sa dureté est estimée à 5.

Figure VI.3. Microphotographies de monazites d'un orthogneiss. (a) Cristal de monazite inclus dans de la muscovite (Ms) et du quartz (Qz) vu en lumière naturelle. (b) Monazite vue en lumière polarisée analysée : les teintes de polarisation sont du 3ème ordre.

REFERENCES ANNEXE1

Aug C. (2004), Modélisation géologique 3D et caractérisation des incertitudes par la méthode du champ de potentiel, Ph-D Thesis, École des Mines de Paris.

Be Mézème (2005), Contribution de la géochronologie U-Th-Pb sur monazite à la compréhension de la fusion crustale dans la chaîne varisque française et implication géodynamique, Thèse de University d'Orléans, 255 p., http://tel.archives-ouvertes.fr/tel-00011558.

Be Mezème, E., Faure M., Cocherie A.et Chen Y. (2005), In situ chemical dating of tectonothermal events in the French Variscan Belt, *Terra Nova*, 17, 420-426.

Be Mezème E., Cocherie A., Faure M., Legendre O. et Rossi Ph. (2006a), Electron microprobe monazite geochronology of magmatic events: Examples from Variscan migmatites and granitoids, Massif Central, France, Lithos, 87, 3-4, 276-288.

Be Mezème E., Faure M., Chen Y., Cocherie A. et Talbot J.-Y. (2006b), Structural, AMS and geochronological study of a laccolith emplaced during Late Variscan orogenic extension: the Rocles pluton (SE French Massif Central), International Journal of Earth Sciences, DOI:10.1007/s00531-006-0098-2.

Blakely R.J (1990), Potential theory in gravity and magnetic applications, Cambridge University press.

Bosch M., Guillen A. et Ledru P. (2001), Lithologic tomography: an application to geophysical data from the cadomian belt of nothern Brittany, France, Tectonophysics, 331, 197-228.

Bouchez J.L. (1997), Granite is never isotropic: An introduction to AMS studies of granitic rocks. In: Bouchez J.-L., Hutton D.H.W., Stephens W.E. (Eds) (1997), *Granite: From segregation of melt to* *emplacement fabrics*, Kluwer Academic Publishers, Dordrecht, 95-112.

Bouchez J.L. (2000), Anisotropie de susceptibilité magnétique et fabrique des granites, Comptes Rendus de l'Académie des Sciences, 330, 1-14.

Braun I., Montel J.M. et Nicollet C. (1998), Electron microprobe dating of monazites from highgrade gneisses and pegmatites of the Kerala Khondalite Belt, southern India, *Chemical Geology*, 146, 65-85.

Bullard E. C. (1936), Gravity Measurements in East Africa, Philosophical transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 235, 757, 445-531.

Butler R.F. (1982), Paleomagnetism: Magnetic domains to geologic terranes, Boston, Blackwell Scientific Publications, 83-104.

Calcagno P., Courrioux G., et Guillen A. (2005), Manuel de l'utilisateur GeoModeller, 135 p., <u>http://www.geomodeller.com/geo/documentation/frenc</u> <u>h/geomodeller_manual_fr.pdf</u>

Calcagno P., Courrioux G., Guillen A., Fitzgerald D. et McInerney P. (2006), How 3D implicit Geometric Modelling Helps To Understand Geology: The 3DGeoModeller methodology, 3rd international conference "GIS in geology", 15-17 November, Moscow (Russia) and Int. Assoc. for Mathematical Geology XIth International Congress, S14-06, 03-08 September. University of Liège (Belgium).

Cocherie A., Legendre O., Peucat J.J. et Kouamelan A.N. (1998), Geochonology of polygenetic monazites constrained by in situ electron micropobe Th-U-total lead determination: Implications for lead behaviour in monazite, *Geochim. Cosmochim. Acta*, 62, 2475–2497. *Cocherie A. et Albarède F. (2001)*, An improved U–Th–Pb age calculation for electron micropobe dating of monazite, *Geochim. Cosmochim. Acta*, 65, 4509 – 4522.

Cocherie A., Be Mezème E., Legendre O., Fanning C.M., Faure M. et Rossi P. (2005), Electronmicroprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites, American Mineralogist, 90, 607-618.

Cocherie A. et Legendre O. (2007), Potential minerals for determining U–Th–Pb chemical age using electron microprobe, Lithos, 93, 288-309, doi:10.1016/j.lithos.2006.03.069.

Courrioux G. et Calcagno P. (2004), Modélisation géométrique d'interfaces et volumes géologiques, BRGM, 44p.

Daly L. (1970), Etude des propriétés magnétiques des roches métamorphiques ou simplement tectonisées, *Thèse d'état, Paris*, 240p.

Dobrin M. et Savit C. H. (1988), Introduction to geophysical prospecting: Mc-Graw Hill Book Co.

Ervin P.C. (1977), Theory of the Bouguer anomaly, Geophysics, 1, 127-136.

Goncalves P. (2002), Pétrologie et geochronology des granulites de ultra-hautes temperatures de l'unité basique d'Andriamena (Centre-Nord de Madagascar), Thèse de

3ème cycle, Université Blaise Pascal (Clermond-Ferrand), 320p, http://tel.archives-ouvertes.fr/tel-00003569.

Hammer S. (1939), Terrain corrections for gravimeter stations, Geophysics, 4, 184-194.

JelinekV. (1981), Characterization of the magnetic fabric of rocks, *Tectonophysics*, 79, 563-567.

Kearey P. et Brooks M. (2002), An Introduction to Geophysical Exploration, Blackwell.

Lajaunie C., Courrioux G. et Manuel L. (1997), Foliation fields and 3D cartography in geology: principles of a method based on potential interpolation, Mathematical Geology, 29, 571–584.

Ludwig K.R. (1999), Users manual for ISOPLOT/EX, version 2. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication 1a.

Ludwig K.R. (2004), Users manual for ISOPLOT. A geochropnological toolkit for Microsoft excel, Berkeley Geochronology Center.

Martelet G. (1999), Modélisation de la structure crustale et du comportement mécanique de la lithosphère à partir des anomalies gravimétriques. Applications à l'Himalaya et au massif granitique du Mont Lozère, Cévennes, Thèse de doctorat, Institut de Physique du Globe de Paris, 324p.

Martelet G. et Debeglia N. (2001), Homogénéisation et validation des corrections de terrain gravimétriques jusqu'à la distance de 167 km en vue de réactualiser la banque gravimétrique française, Rapport B.R.G.M., RP-51287-FR.

Martelet G., Debeglia N. et Truffert C. (2002), Homogénéisation et validation des corrections de terrain gravimétriques jusqu'à la distance de 167 km sur l'ensemble de la France, C. R. Geosciences, 334, 449-454.

Mechler P. (1982), Les méthodes de la géophysique, Dunod Paris.

Milsom J. (1989), Field geophysics, Geological society of London, Handbook series.

Montel J-M., Foret S., Veschambre M., Nicollet C. et Provost A. (1996), Electron microprobe dating of monazite, *Chemical Geology*, 131, 37 – 53. Montel, J.-M., Kornprobst J. et Vielzeuf D. (2000), Preservation of old U-Th-Pb ages in shielded monazite: example from Beni Bousera Hercynian Kinzigites (Morroco), Journal of Metamorphic Geology, 18, 335- 342.

Naudy H. et Neumann R. (1964), Sur la définition de Bouguer et ses conséquences pratiques, Geophysical Prospecting, 13, 1-11.

Parrish R. R. (1990), U – Pb dating of monazite and its application to geological problems, *Can. J. Earth Sci.*, 27, 1431 – 1450.

Rutterford E. et Sandy F. (1902), The radioactivity of thorium compounds. II. The cause and

the nature of radioactivity, J. Chem. Soc. London, 81, 837 – 860.

Suzuki K. et Adachi M. (1991), The chemical Th – U – total Pb isochron ages of zircon and monazite from the gray granite of the Hida terrane, Japan, J. Earth Sci., Nagoya Univ., 38, 11 – 37.

Tarling D.H. et Hrouda F. (1993), The magnetic anisotropy of rocks, Chapman and Hall, London, 220 p.

Telford W.L., Geldart L.P. et Sheriff R.E. (1990), Applied geophysics, 2nd edn. Cambridge university press, 790pp.

Torge W. (1989), Gravimetry, Walter de Gruyter.

Annexe 2 : Analyses à la microsonde électronique pour la datation chimique U-Th-Pb de chaque pluton étudié

Pluton de Montmarault :

10000000	Age	Error	U.	Error	Error	Th	Error	Error	Ph	Error	Error		Th*(U)	Error	Error	U*(Th)	Error	Error	18629788	Error	en en estas	Error	-
REF	Ma	Age Ma	ppm	U %	U	ppm	Th %	Th	ppm	Pb %	Pb	MPb	ppm	Th*	Th*	ppm	U* %	U*	U/Pb	U/Pb	Th/Pb	Th/Pb	Corr
MTM263a2	335	45	2950	5,08	150	81460	2,00	1629	1364	11,00	150	207,773	91062	2,33	2117	27976	2,33	651	2,163	12,12	59,726	11,18	0,893
MTM263a2	318	53	3430	4,37	150	62770	2,00	1255	1048	14,31	150	207,685	73920	2,36	1743	22740	2,36	536	3,271	14,96	59,867	14,45	0,947
MTM267a1 MTM267a1	339	50 43	2510	5,98	150	71610	2,00	1432	1207	12,43	150	207,778	79782	2,41	1921	24504	2,41	590	2,080	13,79	59,343	12,59	0,890
MTM267a1	345	43	3220	4,66	150	84120	2,00	1682	1459	10,00	150	207,762	94609	2,29	2171	29044	2,29	666	2,207	11,29	57,655	10,47	0,894
MTM267a1	317	50	4460	3,36	150	63460	2,00	1269	1104	13,59	150	207,617	77958	2,25	1757	23983	2,25	540	4,041	14,00	57,498	13,74	0,960
MTM267a2	335	48	2860	5,24	150	74200	2,00	1484	1248	12,02	150	207,761	83509	2,36	1972	25657	2,36	606	2,291	13,11	59,435	12,18	0,904
MTM260a1	309	61	3400	4.41	150	52570	2,00	1051	945	16.30	150	207,605	63628	2,33	1596	19564	2,33	491	3,694	16,30	57,116	16,00	0,966
MTM262a1	320	62	2640	5,68	150	53910	2,00	1078	892	16,81	150	207,711	62493	2,51	1566	19222	2,51	482	2,959	17,75	60,424	16,93	0,941
MTM262a2	300	50	4080	3,68	150	64990	2,00	1300	1047	14,32	150	207,649	78235	2,28	1787	24099	2,28	550	3,896	14,79	62,065	14,46	0,959
MTM261a1	337	55	3730	4,20	150	59130	2,00	1183	1071	14.01	150	207,666	71272	2,35	1671	21894	2,30	513	3,234	14,22	55,218	14 15	0,945
MTM261a1	339	58	3570	4,20	150	55270	2,00	1105	1012	14,82	150	207,640	66894	2,38	1594	20545	2,38	490	3,527	15,40	54,601	14,95	0,953
MTM261a1	331	57	3680	4,08	150	56420	2,00	1128	1009	14,86	150	207,638	68394	2,36	1616	21019	2,36	497	3,647	15,41	55,909	15,00	0,956
MTM261a1 MTM261a2	339	57	3690	4,07	150	55980	2,00	1120	921	14,56	150	207,635	67183	2,30	1589	20883	2,30	494	3,581	15,12	59,823	14,70	0,954
MTM261a2	317	56	3770	3,98	150	56820	2,00	1136	977	15,36	150	207,633	69074	2,35	1624	21250	2,35	500	3,859	15,86	58,166	15,48	0,960
MTM261a2	327	57	3210	4,67	150	57400	2,00	1148	992	15,13	150	207,679	67842	2,41	1636	20855	2,41	503	3,237	15,83	57,890	15,26	0,947
MTM261a2 MTM261a2	320	60 57	2990	5,02	150	55240	2,00	1105	927	16,18	150	207,687	64961 67859	2,45	1592	19981	2,45	490	3,225	16,94	59,574	16,30	0,948
MTM261a3	318	57	3610	4,16	150	55810	2,00	1116	959	15,65	150	207,640	67545	2,37	1604	20778	2,37	493	3,766	16,19	58,224	15,78	0,959
MTM261a3	323	57	3850	3,90	150	55720	2,00	1114	983	15,26	150	207,621	68240	2,35	1602	20984	2,35	493	3,917	15,75	56,682	15,39	0,961
MTM261a3 MTM261a3	340	56 56	3740	4,01	150	57280	2,00	1146	1055	14,21	150	207,637	69458	2,35	1634	21331	2,35	502	3,544	14,77	59,631	14,35	0,953
MTM261a3	319	58	3060	4,90	150	56740	2,00	1135	948	15,82	150	207,688	66688	2,43	1622	20514	2,43	499	3,228	16,56	59,851	15,95	0,948
MTM261a3	317	57	3300	4,55	150	57470	2,00	1149	963	15,57	150	207,672	68196	2,40	1637	20981	2,40	504	3,425	16,22	59,651	15,70	0,952
MTM261b1	329	53	3010	4,98	150	64640	2,00	1293	1092	13,73	150	207,722	74433	2,39	1781	22879	2,39	547	2,755	14,61	59,174	13,88	0,930
MTM261c1	317	55	2720	5.51	150	62470	2,00	1249	1008	14,88	150	207,737	71311	2,30	1737	21939	2,44	534	2.698	15,87	61.967	15.01	0,932
MTM261c1	315	30	3040	4,93	150	133830	2,00	2677	2021	7,42	150	207,844	143710	2,20	3164	44219	2,20	974	1,504	8,91	66,230	7,69	0,804
MTM261c1	328	30	3510	4,27	150	134200	2,00	2684	2133	7,03	150	207,825	145619	2,18	3172	44762	2,18	975	1,646	8,23	62,923	7,31	0,822
MTM2612a1 MTM2612a1	333	52	4640	3,24	150	58650	2,00	1173	1023	13.67	150	207,580	73751	2,25	1661	22979	2,25	517	4,526	14.05	53,450	13.82	0,967
MTM2612a1	319	52	4390	3,42	150	60330	2,00	1207	1062	14,13	150	207,606	74602	2,27	1694	22947	2,27	521	4,135	14,53	56,820	14,27	0,962
MTM2612a1	340	53	4600	3,26	150	59670	2,00	1193	1132	13,25	150	207,588	74648	2,25	1682	22925	2,25	517	4,062	13,64	52,690	13,40	0,960
MTM2612a1 MTM2612a1	336	53	4520	3,32	150	58870	2,00	11/7	1069	13,59	150	207,589	73584	2,26	1655	22605	2,26	512	4,094	13,99	53,325	13,73	0,961
MTM2612a1	321	60	3470	4,32	150	53370	2,00	1067	926	16,20	150	207,639	64653	2,41	1555	19884	2,41	478	3,748	16,77	57,644	16,32	0,959
MTM2612a2	330	63	3440	4,36	150	50260	2,00	1005	904	16,58	150	207,624	61453	2,43	1493	18887	2,43	459	3,803	17,15	55,571	16,71	0,960
MTM2612a2 MTM2612a2	330	53 52	4470	3,36	150	59290 60310	2,00	1186	1087	13,80	150	207,595	73834	2,27	1674	22692	2,27	514	4,113	14,20	54,557	13,95	0,962
MTM2612a2	312	55	3460	4,34	150	59340	2,00	1187	983	15,26	150	207,668	70583	2,37	1674	21722	2,37	515	3,520	15,86	60,366	15,39	0,954
MTM2610a1	329	51	2920	5,14	150	68520	2,00	1370	1147	13,08	150	207,741	78020	2,38	1858	23980	2,38	571	2,545	14,05	59,727	13,23	0,920
MTM264a1	339	48	3670	4,09	150	72410	2,00	1448	1278	11,74	150	207,703	84359	2,30	1937	25909	2,30	595	2,872	12,43	56,672	11,91	0,931
MTM264a1	308	53	4050	3,02	150	60770	2.00	1215	1016	14.77	150	207,621	73926	2,30	1703	22758	2.30	524	3,987	15.22	59.825	14.90	0.961
MTM264a1	316	54	3690	4,07	150	60030	2,00	1201	1015	14,78	150	207,654	72023	2,34	1688	22160	2,34	519	3,636	15,33	59,159	14,92	0,956
MTM264a1	319	53	3870	3,88	150	60500	2,00	1210	1039	14,43	150	207,643	73081	2,32	1698	22480	2,32	522	3,724	14,95	58,218	14,57	0,957
MTM264a1 MTM264a1	320	52	4050	3,70	150	61650	2,00	1224	1060	14,15	150	207,639	74150	2,31	1721	23012	2,31	527	3,791	14,64	57,745	14,29	0,957
MTM264a1	298	46	3160	4,75	150	75410	2,00	1508	1141	13,15	150	207,745	85667	2,33	1995	26392	2,33	615	2,770	13,98	66,111	13,30	0,930
MTM264a1	352	42	3670	4,09	150	85980	2,00	1720	1540	9,74	150	207,740	97941	2,25	2208	30051	2,25	678	2,383	10,56	55,833	9,94	0,903
MTM264a1 MTM264a1	337	41	3720	4,03	150	87240	2,00	1745	1497	10,02	150	207,741	101421	2,25	2233	30518	2,25	700	2,486	10,80	58,294 63 422	10,22	0,910
MTM264a1	326	40	3790	3,96	150	91390	2,00	1828	1508	9,95	150	207,747	103717	2,23	2316	31887	2,23	712	2,514	10,71	60,613	10,15	0,911
MTM264a1	327	39	3890	3,86	150	92120	2,00	1842	1531	9,80	150	207,743	104774	2,22	2330	32208	2,22	716	2,541	10,53	60,183	10,00	0,912
MTM264a1 MTM264a1	325	38	3960	3,79	150	94160	2,00	1883	1413	10,61	150	207,744	10/012	2,21	2370	32974	2,21	730	2,802	11,27	66,630	10,80	0,926
MTM264a1	349	38	4070	3,69	150	98860	2,00	1977	1748	8,58	150	207,748	112122	2,20	2466	34410	2,20	757	2,328	9,34	56,554	8,81	0,895
MTM264a1	324	37	4010	3,74	150	101150	2,00	2023	1652	9,08	150	207,756	114191	2,20	2511	35112	2,20	772	2,428	9,82	61,241	9,30	0,903
MTM264a1 MTM264a1	305	36	3860	3,89	150	103650	2,00	2073	1583	9,48	150	207,768	116186	2,20	2560	35776	2,20	788	2,439	9 22	65,491 59.073	9,69	0,905
MTM264a1	317	37	3030	4,95	150	101250	2,00	2025	1571	9,55	150	207,805	111099	2,26	2513	34180	2,26	773	1,928	10,75	64,435	9,75	0,869
MTM264a1	328	38	3070	4,89	150	100770	2,00	2015	1622	9,25	150	207,802	110757	2,26	2503	34046	2,26	770	1,892	10,46	62,117	9,46	0,864
MTM264a1	290	37	3000	5,00	150	100710	2,00	2014	1431	10,48	150	207,806	110442	2,26	2501	34045	2,26	771	2,097	11,61	70,385	10,67	0,887
MTM264a1 MTM264a1	346	38	3270	4,69	150	98590	2,00	1972	1687	9,42 8.89	150	207,801	109964	2,20	2460	33535	2,20	755	1,920	10,01	58,447	9,03	0,867
MTM264a1	324	39	2870	5,23	150	97700	2,00	1954	1549	9,68	150	207,808	107034	2,28	2442	32911	2,28	751	1,853	11,00	63,071	9,89	0,862
MTM264a1	331	39	3350	4,48	150	95840	2,00	1917	1577	9,51	150	207,779	106741	2,25	2405	32804	2,25	739	2,124	10,51	60,757	9,72	0,885
MTM264a1	340	40	2970	4,92	150	95070	2,00	1921	1590	9.44	150	207,798	103943	2.28	2390	32167	2.28	734	1.868	10,70	59.806	9.65	0,890
MTM264a1	313	39	2880	5,21	150	94890	2,00	1898	1457	10,29	150	207,803	104249	2,29	2385	32081	2,29	734	1,976	11,54	65,116	10,49	0,876
MTM264a1	329	39	3080	4,87	150	96030	2,00	1921	1558	9,63	150	207,794	106051	2,27	2409	32597	2,27	740	1,977	10,79	61,655	9,84	0,874
MTM264a1	310	39 40	3080	4.87	150	93140	2,00	1863	1403	10,11	150	207,800	103220	2,20	2350	31747	2,20	723	2,149	11,52	64,998	10,51	0.891
MTM264a1	342	39	3650	4,11	150	93850	2,00	1877	1616	9,28	150	207,759	105737	2,24	2366	32468	2,24	726	2,259	10,15	58,080	9,50	0,894
MTM264a1	298	38	3920	3,83	150	93510	2,00	1870	1413	10,62	150	207,745	106234	2,22	2357	32729	2,22	726	2,774	11,29	66,184	10,80	0,924
MTM264a1 MTM264a1	311	40	3960	4,16	150	87030	2,00	1799	1389	10,64	150	207,753	99897	2,25	22287	31302	2,25	686	2,560	11,42	62,654	10,82	0,915
MTM264a1	323	54	3030	4,95	150	63050	2,00	1261	1051	14,27	150	207,715	72903	2,40	1749	22418	2,40	538	2,883	15,10	59,981	14,41	0,936
MTM264a1	323	54	4090	3,67	150	58960	2,00	1179	1043	14,38	150	207,620	72261	2,31	1667	22220	2,31	513	3,921	14,84	56,523	14,52	0,960
MTM264a2	308	33	3/30	4,02	150	11/100	2,00	2342	17786	8,45	150	207,795	129216	2,19	2829	39/81	2,19	8/1	2,102	9,36	65,988	8,69	0,879
MTM264a2	318	33	4000	3,75	150	115520	2,00	2310	1822	8,23	150	207,781	128523	2,18	2798	39538	2,18	861	2,195	9,04	63,387	8,47	0,884
MTM264a2	308	33	3990	3,76	150	115160	2,00	2303	1763	8,51	150	207,781	128121	2,18	2790	39442	2,18	859	2,263	9,30	65,318	8,74	0,890
MTM264a2	308	33	3940	3,81	150	115630	2,00	2313	1765	8,50	150	207,784	128428	2,18	2800	39537	2,18	862	2,232	9,31	65,506	8,73	0,888
MTM264a2	306	33	3800	3.95	150	117010	2,00	2340	1768	8,49	150	207,792	129352	2,10	2827	39827	2,10	871	2,053	9,36	66,190	8,72	0,883
MTM264a2	293	35	3490	4,30	150	108050	2,00	2161	1559	9,62	150	207,793	119373	2,22	2648	36792	2,22	816	2,238	10,54	69,303	9,83	0,894
MTM264a2	321	33	3990	3,76	150	118180	2,00	2364	1880	7,98	150	207,785	131154	2,17	2851	40336	2,17	877	2,122	8,82	62,845	8,22	0,877
MTM264a2	287	32	4030	3,72	150	117150	2,00	2340	1898	9,00	150	207,782	130778	2,17	2826	40105	2,17	870	2,41/ 2,207	9,74	70,166 61,710	9,22	0,902
MTM264a2	326	33	4150	3,61	150	116720	2,00	2334	1896	7,91	150	207,776	130219	2,17	2822	40034	2,17	868	2,189	8,70	61,555	8,16	0,882
MTM264a2	327	33	4190	3,58	150	118130	2,00	2363	1926	7,79	150	207,776	131760	2,16	2851	40504	2,16	876	2,176	8,57	61,338	8,04	0,880
MTM264a2	313	33	3900	3,85	150	11/830	2,00	2357	1823	8,23	150	207,789	130503	2,18	2844	40161	2,18	879	2,139	9,08	64,629	8,47	0,880
MTM264a2	316	32	4160	3,61	150	117740	2,00	2355	1853	8,10	150	207,777	131261	2,17	2842	40384	2,17	874	2,245	8,86	63,548	8,34	0,887
MTM264a2	327	33	4070	3,69	150	115630	2,00	2313	1881	7,97	150	207,778	128869	2,17	2801	39616	2,17	861	2,164	8,79	61,474	8,22	0,880

	Aae	Error	U	Error	Error	Th	Error	Error	Pb	Error	Error		Th*(U)	Error	Error	U*(Th)	Error	Error		Error		Error	
REF	Ma	Age	ppm	U	U	ppm	Ih	Ih	ppm	Pb	Pb	MPb	ppm	Ih*	Th*	ppm	0*	0*	U/Pb	U/Pb	Th/Pb	Th/Pb	Corr
MTN004-0	200	Ma	4000	%	ppm	140.400	%	ppm	4700	%	ppm	007 704	100450	%	ppm	00004	%	ppm	0.070	%	05 040	%	0.004
MTM264a2	306	33	4020	3,13	150	116400	2,00	2328	1004	8,49	150	207,781	129455	2,17	2010	39801	2,17	007	2,270	9,28	60,916	0,73	0,891
MTM264a2	323	35	4070	3,09	150	109200	2,00	2294	1044	0,13	150	207,776	12/935	2,17	2/02	39341	2,17	000	2,207	0,93	62,109	0,00	0,004
MTM264a2	314	35	4050	3,70	150	107790	2,00	2100	1604	8.86	150	207,707	120084	2,10	2000	37335	2,10	813	2,190	0,94	63 635	0,00	0,004
MTM264a2	305	34	3040	3,00	150	108550	2,00	2150	1654	0,00	150	207,700	121346	2,10	2045	37364	2,10	818	2,307	0.84	65 642	0,00	0,000
MTM264a2	307	34	4070	3,60	150	107010	2,00	2158	1660	9.07	150	207,775	121130	2,13	2645	37203	2,13	814	2,303	9,04	6/ 002	9,25	0,000
MTM264a2	312	35	3920	3.83	150	107960	2.00	2159	1680	8.93	150	207 772	120697	2 19	2647	37146	2 19	815	2 333	9.71	64 252	9.15	0.897
MTM264a2	333	36	3870	3.88	150	106480	2 00	2130	1772	8 47	150	207 772	119075	2 20	2618	36588	2 20	804	2 184	9.31	60 095	8 70	0.885
MTM264a2	333	35	3950	3.80	150	106740	2.00	2135	1780	8.43	150	207,769	119595	2.19	2623	36747	2.19	806	2.219	9.24	59.954	8.66	0.887
MTM264a2	287	34	4020	3,73	150	106330	2,00	2127	1531	9,80	150	207,765	119368	2,19	2613	36805	2,19	806	2,626	10,48	69,448	10.00	0,916
MTM264a2	310	35	3940	3,81	150	106010	2,00	2120	1644	9,12	150	207,768	118810	2,19	2608	36571	2,19	803	2,396	9,88	64,464	9,34	0,901
MTM264a2	329	36	3920	3,83	150	103870	2,00	2077	1713	8,76	150	207,765	116623	2,20	2565	35846	2,20	789	2,289	9,56	60,648	8,98	0,893
MTM264a2	301	36	4040	3,71	150	103000	2,00	2060	1562	9,60	150	207,758	116117	2,19	2547	35765	2,19	784	2,587	10,30	65,947	9,81	0,913
MTM264a2	319	36	3970	3,78	150	101440	2,00	2029	1628	9,21	150	207,758	114346	2,20	2516	35173	2,20	774	2,438	9,96	62,307	9,43	0,904
MTM264a2	320	37	4070	3,69	150	99340	2,00	1987	1609	9,32	150	207,749	112573	2,20	2474	34624	2,20	761	2,529	10,02	61,723	9,53	0,909
MTM264a2	302	38	4040	3,71	150	95160	2,00	1903	1458	10,29	150	207,742	108277	2,21	2390	33349	2,21	736	2,771	10,94	65,265	10,48	0,923
MTM264a2	298	38	3740	4,01	150	94460	2,00	1889	1420	10,57	150	207,756	106600	2,23	2376	32841	2,23	732	2,634	11,30	66,537	10,75	0,919
MTM264a2	345	39	3960	3,79	150	92630	2,00	1853	1627	9,22	150	207,740	105530	2,22	2341	32396	2,22	719	2,434	9,97	56,924	9,43	0,904
MTM264a2	297	39	3840	3,91	150	89830	2,00	1797	1357	11,05	150	207,741	102293	2,23	2283	31517	2,23	704	2,829	11,72	66,190	11,23	0,928
MTM264a2	333	40	3820	3,93	150	90330	2,00	1807	1528	9,81	150	207,743	102/62	2,23	2295	315/6	2,23	/05	2,499	10,57	59,099	10,02	0,910
MTM264a2	321	41	3870	3,88	150	85520	2,00	1/10	1407	10,66	150	207,728	98103	2,24	2198	30171	2,24	6/6	2,751	11,35	60,797	10,85	0,924
MTM264a2	340	49	3030	4,42	150	61660	2,00	1424	1250	12,00	150	207,717	74404	2,33	1913	20202	2,33	500	2,711	12,79	50,904	14.00	0,925
MTM264a2	320	53	3920	3,03	150	61000	2,00	1233	1141	12 15	150	207,045	74404	2,31	1725	22000	2,01	529	3,095	12,60	54 204	12 20	0,950
MTM264a2	311	53	4040	3,75	150	60310	2,00	1206	1010	14 72	150	207,043	73436	2,31	1604	22943	2,31	521	3,472	15,09	50 180	14.85	0,950
MTM264a2	334	58	3640	4 12	150	55170	2,00	1103	999	15.01	150	207,031	67017	2 37	1592	20591	2 37	489	3 643	15,10	55 218	15 15	0,956
MTM264b1	334	61	3610	4 16	150	51720	2,00	1034	945	15.87	150	207 618	63469	2 40	1523	19501	2 40	468	3,820	16.41	54 730	16.00	0,960
MTM264b1	315	62	3290	4 56	150	51020	2 00	1020	868	17.28	150	207,641	61713	2 44	1508	18988	2 44	464	3 791	17.88	58 790	17 40	0,961
MTM264b1	328	65	2750	5.45	150	50380	2.00	1008	868	17.28	150	207.685	59326	2.52	1496	18237	2.52	460	3,168	18.12	58.045	17.40	0.947
MTM264b1	319	59	2560	5,86	150	57040	2,00	1141	931	16,12	150	207,730	65363	2,49	1628	20105	2,49	501	2,750	17,15	61,281	16,24	0,933
MTM264b1	329	70	2290	6,55	150	46900	2,00	938	799	18,77	150	207,711	54351	2,62	1426	16705	2,62	438	2,866	19,88	58,699	18,88	0,939
MTM264b1	337	49	3940	3,81	150	68830	2,00	1377	1229	12,21	150	207,673	81657	2,28	1865	25083	2,28	573	3,206	12,79	56,007	12,37	0,942
MTM264b1	297	47	3920	3,83	150	70340	2,00	1407	1102	13,61	150	207,680	83063	2,28	1894	25592	2,28	583	3,558	14,14	63,843	13,76	0,952
MTM264b1	317	47	4050	3,70	150	71640	2,00	1433	1198	12,52	150	207,676	84804	2,26	1920	26090	2,26	591	3,380	13,05	59,782	12,68	0,947
MTM264b2	333	55	3670	4,09	150	59120	2,00	1182	1058	14,18	150	207,651	71064	2,35	1671	21835	2,35	513	3,470	14,76	55,905	14,32	0,951
MTM264b2	330	62	2840	5,28	150	53600	2,00	1072	927	16,19	150	207,692	62841	2,48	1560	19313	2,48	479	3,065	17,03	57,849	16,31	0,944
MTM264b2	334	64	2730	5,49	150	51070	2,00	1021	895	16,77	150	207,690	59955	2,52	1510	18421	2,52	464	3,051	17,64	57,082	16,88	0,944
MTM264b2	330	60	2760	5,43	150	55320	2,00	1106	947	15,83	150	207,706	64300	2,48	1594	19762	2,48	490	2,913	16,74	58,392	15,96	0,938
MTM264b2	317	48	4000	3,75	150	69550	2,00	1391	1167	12,85	150	207,672	82552	2,28	1879	25397	2,28	5/8	3,426	13,38	59,574	13,00	0,949
MTM264D2	320	40	3900	3,19	150	72890	2,00	1450	1220	12,23	150	207,000	00/00	2,21	1940	203/0	2,21	598	3,229	12,00	59,432	11,39	0,943
MTM261402	340	40	2830	5,95	150	76100	2,00	1410	1290	12.42	150	207,000	84302	2,29	1000	25509	2,29	612	2,940	12,20	62 107	12.59	0,933
MTM2614a1	327	63	2030	5.03	150	51180	2,00	1024	003	16.61	150	207,703	60878	2,50	1512	18707	2,30	465	3 300	17 35	56 669	16 73	0,900
MTM2614a2	320	40	2860	5 24	150	92070	2,00	1841	1449	10,01	150	207,000	101369	2 30	2329	31178	2 30	716	1 973	11,60	63 525	10,75	0,876
MTM2615a1	306	33	4810	3 12	150	112750	2.00	2255	1756	8 54	150	207 741	128372	2 14	2742	39525	2 14	844	2 740	9 10	64 226	8 78	0,915
MTM2615a1	333	34	4910	3.05	150	109370	2.00	2187	1866	8.04	150	207.730	125350	2.13	2676	38515	2.13	822	2.631	8.60	58.605	8.28	0.907
MTM2615a1	312	32	4360	3.44	150	117580	2.00	2352	1835	8.17	150	207,769	131747	2.15	2839	40546	2.15	874	2.376	8.87	64.068	8.41	0.895
MTM2615a1	315	51	3100	4,84	150	67310	2,00	1346	1088	13,78	150	207,725	77385	2,37	1834	23811	2,37	564	2,849	14,61	61,858	13,93	0,934
MTM2615a1	303	48	3600	4,17	150	70660	2,00	1413	1112	13,49	150	207,702	82349	2,31	1900	25362	2,31	585	3,238	14,12	63,561	13,64	0,945
MTM2615a1	321	32	4400	3,41	150	117920	2,00	2358	1894	7,92	150	207,767	132226	2,15	2846	40667	2,15	875	2,323	8,62	62,246	8,17	0,891
MTM2615a1	317	29	4730	3,17	150	134030	2,00	2681	2114	7,10	150	207,778	149405	2,12	3168	45964	2,12	975	2,237	7,77	63,398	7,37	0,879
MTM2615a1	325	29	5080	2,95	150	137100	2,00	2742	2233	6,72	150	207,769	153623	2,10	3230	47231	2,10	993	2,275	7,34	61,400	7,01	0,877
MTM2615a1	296	28	5420	2,77	150	137460	2,00	2749	2046	7,33	150	207,757	155049	2,09	3236	47777	2,09	997	2,649	7,84	67,188	7,60	0,903
MTM2615a1	319	29	5420	2,77	150	132240	2,00	2645	2136	7,02	150	207,749	149861	2,09	3132	46096	2,09	964	2,537	7,55	61,907	7,30	0,895
MTM2615a1	310	30	5240	2,86	150	125080	2,00	2502	1966	7,63	150	207,745	142104	2,10	2989	43/41	2,10	920	2,665	8,15	63,621	7,89	0,906
MTM2615a1	305	30	5530	2,71	150	125/80	2,00	2516	1956	1,67	150	207,735	143/39	2,09	3003	44261	2,09	925	2,827	8,13	64,304	7,93	0,912
MTM2615a1	309	34	2030	5,30	150	07310	2,00	2144	1566	0,95	150	207,746	1210/0	2,10	2031	37457	2,10	749	2,001	9,56	62 143	9,17	0,914
MTM2615a1	328	30	2930	5,12	150	97310	2,00	1940	1538	9,56	150	207,804	105051	2,20	2434	32042	2,20	740	1,071	11 23	62,143	9,79	0,850
MTM2615a1	320	36	3830	3.00	150	104470	2,00	2080	1727	8.60	150	207,010	116032	2,30	2414	35036	2,30	702	2 2 18	0.53	60 402	8.01	0,830
MTM2615a1	311	59	4040	3 71	150	52430	2,00	1049	909	16 50	150	207 589	65556	2 34	1536	20177	2 34	473	4 445	16.92	57 685	16.62	0,000
MTM2615a2	356	43	3710	4 04	150	83290	2,00	1666	1517	9.89	150	207 731	95385	2 26	2155	29258	2 26	661	2 445	10,68	54 897	10.09	0,000
MTM2615a2	318	52	1870	8.02	150	70260	2.00	1405	1085	13.83	150	207.823	76339	2.48	1893	23483	2.48	582	1.724	15.99	64,770	13.97	0.856
MTM2615a2	305	31	5460	2,75	150	120670	2,00	2413	1881	7,97	150	207,729	138401	2,10	2901	42618	2,10	893	2,903	8,43	64,155	8,22	0,917
MTM2615a2	322	30	5150	2,91	150	127510	2,00	2550	2075	7,23	150	207,752	144257	2,11	3038	44362	2,11	934	2,482	7,79	61,450	7,50	0,894
MTM2615a2	315	29	5500	2,73	150	131780	2,00	2636	2105	7,13	150	207,745	149655	2,09	3123	46047	2,09	961	2,613	7,63	62,612	7,40	0,899
MTM2615a2	323	29	5600	2,68	150	133260	2,00	2665	2187	6,86	150	207,744	151472	2,08	3153	46577	2,08	970	2,561	7,36	60,941	7,15	0,894
MTM2615a2	326	29	5450	2,75	150	133520	2,00	2670	2205	6,80	150	207,750	151248	2,09	3158	46497	2,09	971	2,472	7,34	60,556	7,09	0,889
MTM2615a2	295	28	5540	2,71	150	135120	2,00	2702	2014	7,45	150	207,749	153098	2,08	3189	47179	2,08	983	2,751	7,93	67,094	7,71	0,908
MTM2615a2	328	30	5230	2,87	150	129580	2,00	2592	2148	6,98	150	207,752	146595	2,10	3080	45061	2,10	947	2,434	7,55	60,317	7,26	0,889
MTM2615a2	312	46	3620	4,14	150	73950	2,00	1479	1195	12,55	150	207,711	85713	2,29	1966	26378	2,29	605	3,028	13,21	61,862	12,71	0,938

REE	Age	Error	U	Error	Error	Th	Error	Error	Pb	Error	Error	MPh	Th*(U)	Error	Error	U*(Th)	Error	Error	U/Ph	Error	Th/Ph	Error	Corr
IXE1	Ma	Ma	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm		ppm	%	ppm	ppm	%	ppm	0/1 0	%	1101 0	%	CON
g14-101	361	77	2030	7,39	150	43140	2,00	863	804	18,66	150	207,719	49761	2,72	1352	15257	2,72	415	2,525	20,070	53,667	18,767	0,924
a14-101	288	63	2810	5,64	150	54650	2.00	1093	777	19.30	150	207,720	60564	2,51	1500	18673	2,51	400	3.615	20.024	66,196	19,403	0,959
g14-101	291	42	2300	6,52	150	89030	2,00	1781	1254	11,96	150	207,827	96492	2,35	2267	29743	2,35	699	1,834	13,626	71,008	12,130	0,866
g14-101	316	54	1690	8,88	150	68140	2,00	1363	1040	14,43	150	207,832	73633	2,51	1850	22654	2,51	569	1,625	16,937	65,529	14,563	0,844
g14-101 g14-101	284	38	2020	7.43	150	101650	2.00	2033	1372	10,20	150	207,859	108200	2,44	2519	33370	2,44	777	1.473	13,218	74.102	11,116	0.814
g14-101	317	41	2710	5,54	150	92340	2,00	1847	1434	10,46	150	207,808	101149	2,31	2334	31117	2,31	718	1,890	11,834	64,387	10,649	0,868
g14-101	317	36	2460	6,10	150	108660	2,00	2173	1654	9,07	150	207,844	116656	2,28	2661	35888	2,28	819	1,487	10,929	65,702	9,288	0,810
g14-101 a14-101	357 296	38	1940	6,67 7,73	150	112310	2.00	2140	1825	9,56	150	207,853	114336	2,30	2629	36545	2,30	806	1,233	12,292	58,623	8,458 9,762	0,755
g14-101	347	38	2210	6,79	150	106350	2,00	2127	1760	8,52	150	207,854	113550	2,30	2616	34854	2,30	803	1,255	10,894	60,415	8,753	0,761
g14-101	277	37	2180	6,88	150	102670	2,00	2053	1358	11,05	150	207,852	109735	2,31	2540	33861	2,31	784	1,606	13,017	75,631	11,229	0,835
g14-101 a14-102	318	40	2020	6.20	150	89780	2,00	1796	1346	10.81	150	207,850	97647	2,35	2366	30967	2,35	729	1,501	12,459	64,688	10.991	0,819
g14-102	333	44	2360	6,36	150	84640	2,00	1693	1372	10,93	150	207,816	92320	2,36	2181	28368	2,36	670	1,719	12,643	61,669	11,110	0,850
g14-102	289	39	2510	5,98	150	95440	2,00	1909	1335	11,24	150	207,825	103581	2,31	2395	31934	2,31	738	1,881	12,729	71,512	11,416	0,869
g14-102	318	45	1830	8.20	150	84990	2.00	1700	1292	11,61	150	207,819	90939	2,43	2187	27975	2,45	673	1.417	14,215	65.801	11,784	0,805
g14-102	348	41	1790	8,38	150	96630	2,00	1933	1595	9,41	150	207,867	102462	2,36	2421	31447	2,36	743	1,122	12,597	60,588	9,615	0,730
g14-102	309	42	2680	5,60	150	87260	2,00	1745	1322	11,34	150	207,801	95966	2,33	2232	29542	2,33	687	2,027	12,648	65,983	11,517	0,883
g14-102	276	57	2950	9,93 5,08	150	57260	2,00	1145	821	18,27	150	207,700	66819	2,44	1631	20621	2,44	503	3.593	18,962	69,732	18,376	0,922
g14-102	344	49	2790	5,38	150	73760	2,00	1475	1273	11,79	150	207,764	82847	2,37	1964	25436	2,37	603	2,193	12,956	57,964	11,956	0,897
g14-102	305	47	2300	6,52	150	77170	2,00	1543	1154	13,00	150	207,806	84640	2,40	2031	26062	2,40	625	1,993	14,542	66,869	13,151	0,883
g14-102	281	46	1510	9,93	150	80980	2,00	1620	1076	13,95	150	207,866	85875	2,42	2106	26491	2,42	650	1,404	17,122	75,288	14,088	0,806
g14-041	278	68	1160	12,93	150	51490	2,00	1030	686	21,87	150	207,845	55250	2,74	1516	17047	2,74	468	1,691	25,408	75,076	21,962	0,857
g14-041	304	80	1030	14,56	150	43690	2,00	874	638	23,52	150	207,839	47035	2,89	1361	14485	2,89	419	1,615	27,663	68,504	23,604	0,847
g14-041	299	43	1990	7.54	150	88100	2.00	1762	1262	11,89	150	207,844	94560	2,32	2249	29130	2,32	693	1.577	14.075	69.811	12,053	0.833
g14-041	314	43	1960	7,65	150	87670	2,00	1753	1320	11,36	150	207,846	94040	2,38	2241	28937	2,38	690	1,485	13,700	66,413	11,538	0,817
g14-041	329	44	2010	7,46	150	87450	2,00	1749	1382	10,85	150	207,842	93990	2,38	2237	28889	2,38	688	1,454	13,172	63,278	11,037	0,810
g14-041	330	44	2190	6.85	150	86300	2,00	1726	1379	10,39	150	207,830	93426	2,30	2214	28713	2,30	680	1.588	12,851	62,560	11,056	0,808
g14-041	310	43	2150	6,98	150	86890	2,00	1738	1301	11,53	150	207,833	93875	2,37	2225	28894	2,37	685	1,652	13,472	66,762	11,698	0,843
g14-041	346	44	2210	6,79	150	86820	2,00	1736	1452	10,33	150	207,829	94019	2,37	2225	28862	2,37	683	1,522	12,361	59,794	10,522	0,821
g14-041	320	42	2310	6.49	150	90710	2,00	1814	1402	10,40	150	207,819	98220	2,33	2302	30211	2,33	708	1.648	12,517	64,710	10,886	0,840
g14-041	270	45	1950	7,69	150	80820	2,00	1616	1049	14,29	150	207,836	87136	2,41	2102	26902	2,41	649	1,858	16,233	77,017	14,433	0,872
g14-041	306	86	1090	13,76	150	39960	2,00	799	594 663	25,24	150	207,819	43500	2,96	1286	13394	2,96	396	1,834	28,745	67,232 56 547	25,316	0,875
g14-041	299	90	970	15,46	150	38450	2,00	769	556	26,97	150	207,830	41599	3,02	1256	12815	3,02	387	1,744	31,089	69,134	27,044	0,865
g14-041	295	87	670	22,39	150	40770	2,00	815	565	26,53	150	207,879	42944	3,03	1302	13234	3,03	401	1,185	34,715	72,113	26,607	0,762
g14-041	337	80	660 860	22,73	150	45390	2,00	908 914	716	20,95	150	207,889	47539	2,94	1396	14603	2,94	429	0,922	30,912	63,406	21,049	0,675
g14-041	322	77	910	16,48	150	46420	2,00	928	711	21,10	150	207,861	49379	2,87	1416	15185	2,87	436	1,280	26,772	65,283	21,190	0,784
g14-041	320	77	870	17,24	150	46910	2,00	938	711	21,09	150	207,867	49739	2,87	1426	15298	2,87	439	1,223	27,238	65,945	21,181	0,771
g14-041 g14-041	360	75	1200	12,50	150	47830	2,00	957	753	18,00	150	207,830	51/43	2,79	1446	15866	2,79	443	1,440	21,918	57,408	18,114	0,816
g14-041	295	68	1910	7,85	150	49360	2,00	987	732	20,50	150	207,761	55558	2,65	1474	17120	2,65	454	2,610	21,949	67,447	20,594	0,929
g14-041	324	70	970	15,46	150	52100	2,00	1042	800	18,75	150	207,866	55255	2,77	1530	16990	2,77	470	1,213	24,307	65,137	18,860	0,767
g14-041 a14-041	305	68 69	1090	14.85	150	52480 51850	2,00	1050	764	19,64	150	207,854	55132	2,74	1537	16966	2,74	4/3	1,428	23,985	67,298	19,746	0,815
g14-041	322	63	1090	13,76	150	57700	2,00	1154	880	17,04	150	207,865	61244	2,68	1642	18835	2,68	505	1,238	21,901	65,540	17,155	0,773
g14-041	286	67	1520	9,87	150	51820	2,00	1036	724	20,72	150	207,809	56749	2,68	1523	17500	2,68	470	2,100	22,951	71,583	20,817	0,899
g14-042 a14-042	302	53	2360	6.36	150	67790	2,00	1326	1036	14,40	150	207,780	75452	2,47	1843	23240	2,47	568	2,134	16.081	66,757	14,622	0,897
g14-042	308	54	2080	7,21	150	66370	2,00	1327	1004	14,94	150	207,798	73126	2,48	1815	22513	2,48	559	2,071	16,586	66,088	15,069	0,893
g14-042	309	52	2120	7,08	150	68250	2,00	1365	1036	14,48	150	207,799	75137	2,47	1852	23130	2,47	570	2,046	16,114	65,873	14,615	0,890
g14-042	325	93	1060	14,15	150	36730	2,00	735	583	25,74	150	207,808	40178	3,04	1222	12353	3,04	376	1,819	29,369	63,017	25,813	0,874
g14-042	302	90	1120	13,39	150	38070	2,00	761	561	26,72	150	207,808	41706	2,99	1248	12846	2,99	385	1,995	29,890	67,818	26,796	0,892
g14-042 a14-042	332	89 84	980	15,31	150 150	38430	2,00	769 828	515 666	29,13	150	207,829	41606	3,02	1255	12838	3,02	387	1,903	32,910	74,641 62 159	29,202	0,883
g14-042	341	73	1020	14,71	150	49730	2,00	995	810	18,53	150	207,856	53052	2,80	1483	16291	2,80	455	1,260	23,653	61,419	18,633	0,779
g14-042	331	45	1950	7,69	150	83300	2,00	1666	1325	11,32	150	207,840	89645	2,40	2154	27550	2,40	662	1,472	13,687	62,868	11,496	0,815
g14-042 a14-042	287	42 38	2030	6.79	150	90910 99440	2,00	1818	1336	11,23	150	207,846	97503	2,36	2305	32872	2,36	710	1,520	13,442	68,057 72,895	11,406	0,822
g14-042	307	44	2240	6,70	150	83220	2,00	1664	1240	12,10	150	207,821	90496	2,38	2152	27862	2,38	662	1,806	13,825	67,105	12,260	0,863
g14-042	332	46	2130	7,04	150	81480	2,00	1630	1310	11,45	150	207,825	88411	2,40	2118	27169	2,40	651	1,626	13,442	62,191	11,622	0,839
a14-021	345	80	1350	11.11	150	47530	2.00	868	736	20.38	150	207,682	47777	2,57	1356	14668	2,57	442	1.834	23.214	58,944	20,480	0,951
g14-021	294	79	1340	11,19	150	43350	2,00	867	626	23,97	150	207,800	47698	2,84	1354	14700	2,84	417	2,141	26,453	69,266	24,051	0,903
g14-021	296	46	3090	4,85	150	76500	2,00	1530	1141	13,14	150	207,752	86528	2,33	2017	26663	2,33	621	2,708	14,012	67,034	13,295	0,927
a14-021	321	42	3150	4,00	150	81200	2.00	1624	1309	11,46	150	207,762	94455	2,29	2112	29090	2,29	649	2,300	12,758	62.014	11.629	0,910
g14-021	364	45	3110	4,82	150	82060	2,00	1641	1499	10,01	150	207,764	92205	2,31	2131	28266	2,31	653	2,075	11,110	54,750	10,206	0,883
g14-021	293	53	2450	6,12	150	65660	2,00	1313	963	15,58	150	207,768	73609	2,45	1800	22686	2,45	555	2,544	16,737	68,186	15,705	0,923
g14-021	309	62	3540	4,24	150	49910	2,00	998	900 847	17,71	150	207,608	61410	2,20	1485	18904	2,20	457	4,480	18,211	58.932	17,824	0,966
g14-022	334	66	2330	6,44	150	50540	2,00	1011	868	17,28	150	207,724	58124	2,58	1499	17858	2,58	461	2,684	18,441	58,223	17,396	0,931
g14-022	329	44	3020	4,97	150	82000	2,00	1640	1350	11,11	150	207,770	91826	2,32	2128	28224	2,32	654	2,237	12,172	60,748	11,291	0,899
g14-022	304	42	3210	4,67	150	84390	2,00	1688	1287	11,65	150	207,764	94814	2,29	2175	29197	2,29	670	2,493	12,553	65,551	11,822	0,915
g14-022	320	43	2990	5,02	150	85570	2,00	1711	1361	11,02	150	207,779	95291	2,31	2199	29310	2,31	676	2,198	12,112	62,891	11,204	0,896
g14-022	323	44 44	3100	4,84	150	81950	2,00	1639	1326	11,31	150	207,765	92031	2,31	2127	28301	2,31	654	2,338	12,305	61,812	11,489	0,905
g14-022	358	48	4410	3,40	150	70220	2,00	1404	1354	11,08	150	207,648	84600	2,24	1894	25945	2,24	581	3,257	11,590	51,866	11,258	0,941
g14-022	313	48	4770	3,14	150	65890	2,00	1318	1137	13,19	150	207,608	81390	2,22	1805	25047	2,22	556	4,195	13,562	57,948	13,343	0,962
g14-022 g14-101	323 213	50 62	4050 2620	3,3U 6	150	04370 50540	2,00	1287	560	13,13	150	207,615	58990	2,24	1495	24343	2,24	546 463	3,983	27,381	00,348 90,2175	26,851	0,959

DEE	Age	Error	U	Error	Error	Th	Error	Error	Pb	Error	Error	MDb	Th*(U)	Error	Error	U*(Th)	Error	Error		Error	Th/Dh	Error	Corr
NEF	Ma	Ma	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	NIFD	ppm	%	ppm	ppm	%	ppm	UFD	%	INFO	%	COIL
017-021	355	59	1150	13,04	150	63200	2,00	1264	1063	14,12	150	207,868	66949	2,62	1753	20537	2,62	538	1,082	19,22	59,481	14,26	0,727
017-021	296	53	1140	13,16	150 150	69980 72680	2,00	1400	973	15,42	150	207,879	73680	2,56	1886	22704	2,56	581 596	1,1/2	20,27	71,958	15,55	0,754
017-021	297	49	1340	11,19	150	76100	2,00	1522	1068	14,04	150	207,872	80449	2,50	2009	24786	2,50	619	1,254	17,96	71,241	14,18	0,774
017-021	345	50	1470	10,20	150	75610	2,00	1512	1241	12,09	150	207,861	80398	2,49	2001	24681	2,49	614	1,185	15,82	60,941	12,25	0,754
017-021	313	52	1650	9.09	150	69220	2,00	1384	1041	15,20	150	207,866	74582	2,54	1899	23076	2,54	576	1,338	18,98	66.497	15,33	0,794
017-021	301	56	1360	11,03	150	65040	2,00	1301	933	16,08	150	207,854	69455	2,57	1788	21394	2,57	551	1,458	19,50	69,729	16,21	0,818
017-021	330	57	1900	7,89	150	62520	2,00	1250	1013	14,81	150	207,803	68702	2,53	1738	21115	2,53	534	1,875	16,78	61,712	14,94	0,874
017-021	313	50	1970	7,40	150	73060	2,00	1420	1129	13,01	150	207,814	79464	2,40	1913	23949	2,40	599	1,850	15,69	64 707	13,95	0.858
o17-021	301	53	2090	7,18	150	67660	2,00	1353	1002	14,97	150	207,800	74446	2,47	1840	22930	2,47	567	2,086	16,60	67,534	15,11	0,894
017-021	321	58	1590	9,43	150	62640	2,00	1253	974	15,40	150	207,829	67810	2,57	1741	20854	2,57	535	1,633	18,06	64,328	15,53	0,846
017-022	356	50	1800	8.33	150	74930	2,00	1499	1285	11,67	150	207,803	80798	2.45	1988	24011	2,45	610	1,401	14,34	58,301	11,84	0,802
o17-022	311	44	1840	8,15	150	84820	2,00	1696	1261	11,90	150	207,849	90798	2,41	2184	27946	2,41	672	1,459	14,42	67,265	12,06	0,813
017-022	329	44	2060	7,28	150	84950	2,00	1699	1349	11,12	150	207,835	91652	2,39	2187	28170	2,39	672	1,527	13,29	62,975	11,30	0,823
017-022	298	52	1560	9,62	150	70140	2,00	1403	999	15,01	150	207,846	75203	2,51	1890	23170	2,51	582	1,561	17,83	70,189	15,14	0,835
017-022	310	50	1360	11,03	150	75500	2,00	1510	1108	13,54	150	207,870	79918	2,50	1997	24599	2,50	615	1,227	17,46	68,141	13,68	0,767
017-022	347 293	53	1310	11,45	150	71790	2,00	1436	1181	12,71	150	207,868	76058	2,53	1924	23345	2,53	591 606	1,110	17,10	72.364	12,86	0,734
017-041	338	47	1360	11,03	150	82440	2,00	1649	1313	11,42	150	207,878	86868	2,46	2137	26681	2,46	656	1,036	15,88	62,780	11,60	0,709
017-041	373	55	860	17,44	150	71750	2,00	1435	1243	12,07	150	207,904	74557	2,58	1925	22840	2,58	590	0,692	21,21	57,721	12,23	0,561
017-041	337	55 49	1000	15.00	150	78550	2,00	1430	1230	12,00	150	207,915	81805	2,60	2059	25129	2,60	633	0,576	19.32	63,754	12,17	0,492
017-041	322	47	730	20,55	150	83150	2,00	1663	1231	12,18	150	207,923	85524	2,51	2151	26301	2,51	661	0,593	23,89	67,537	12,35	0,503
017-041	327	48	890	16,85	150	82020	2,00	1640	1240	12,09	150	207,911	84915	2,51	2128	26104	2,51	654 631	0,717	20,74	66,120	12,26	0,575
017-041	321	49	1420	10,56	150	77700	2,00	1554	1182	12,70	150	207,868	82317	2,48	2042	25316	2,48	628	1,202	16,52	65,761	12,85	0,759
017-041	373	51	1030	14,56	150	76800	2,00	1536	1339	11,20	150	207,896	80162	2,53	2026	24556	2,53	621	0,769	18,37	57,368	11,38	0,600
o17-041	306	54 56	1840	8,15	150	66850 66100	2,00	1337	995 1083	15,07	150	207,818	72826	2,50	1824	22423	2,50	562 556	1,849	17,13	67,159	15,20	0,872
017-042	331	57	1460	10,27	150	63850	2,00	1277	1016	14,76	150	207,843	68601	2,57	1765	21082	2,57	542	1,437	17,99	62,849	14,90	0,813
017-042	343	54	1510	9,93	150	68680	2,00	1374	1129	13,29	150	207,847	73598	2,53	1862	22597	2,53	572	1,337	16,59	60,831	13,44	0,792
017-042	330	59	780	19,23	150	63550	2,00	1271	973	15,41	150	207,991	66088	2,56	1759	20312	2,56	541	0,900	24,64	65,283	15,54	0,620
017-042	346	51	1000	15,00	150	76070	2,00	1521	1228	12,22	150	207,897	79328	2,53	2010	24351	2,53	617	0,814	19,35	61,953	12,38	0,623
017-042	332	51 51	920	16,30	150	75730	2,00	1515	1169	12,83	150	207,903	78724	2,54	2003	24191	2,54	615	0,787	20,75	64,789	12,99	0,611
017-042	308	48	920	16,30	150	79990	2,00	1600	1142	13,14	150	207,907	82978	2,52	2087	25545	2,52	643	0,806	20,94	70,064	13,29	0,620
017-042	311	49	690	21,74	150	79870	2,00	1597	1140	13,16	150	207,924	82112	2,54	2085	25273	2,54	642	0,605	25,41	70,069	13,31	0,512
017-042	308	40	660	22.73	150	83880	2,00	1678	1182	12.69	150	207,918	86024	2,51	2129	26484	2,51	666	0.558	26.03	70,972	12,00	0,535
017-042	323	50	880	17,05	150	78200	2,00	1564	1169	12,84	150	207,908	81062	2,53	2052	24928	2,53	631	0,753	21,34	66,914	12,99	0,594
o17-042	358	54 58	1130	13,27	150	71480	2,00	1430	1204	12,45	150	207,882	75165	2,55	1919	23051	2,55	588 523	0,938	18,20	59,346	12,61	0,676
017-061	287	99	620	24,19	150	35210	2,00	704	478	31,40	150	207,872	37221	3,20	1191	11476	3,20	367	1,298	39,64	73,718	31,47	0,791
017-061	310	94	650	23,08	150	37780	2,00	756	553	27,11	150	207,874	39892	3,12	1243	12279	3,12	383	1,175	35,60	68,291	27,19	0,759
017-061	299 340	96	850	17.65	150	36470	2,00	735	597	29,02	150	207,878	39238	3,10	1222	12050	3,10	376	1,180	30,71	61,109	29,09	0,761
o17-061	325	57	770	19,48	150	67090	2,00	1342	1010	14,85	150	207,907	69594	2,63	1830	21398	2,63	563	0,762	24,49	66,418	14,98	0,601
017-061	341	60 45	890 5570	16,85	150	62770 70650	2,00	1255	1001	14,98	150	207,891	65668 88796	2,66	1744	20166	2,66	536 584	0,889	22,55	62,684	15,11	0,658
017-061	373	42	6700	2,24	150	76790	2,00	1536	1645	9,12	150	207,547	98662	2,05	2025	30223	2,05	620	4,072	9,39	46,667	9.33	0,949
017-061	337	46	4950	3,03	150	70880	2,00	1418	1308	11,47	150	207,618	86994	2,19	1906	26723	2,19	585	3,784	11,86	54,183	11,64	0,952
017-061	297	50 49	3780	3,91	150	67090	2,00	1342	1053	14,25	150	207,740	79359	2,40	1829	24450	2,40	563	2,565	14,79	63,717	15,20	0,924
o17-062	348	51	3340	4,49	150	67090	2,00	1342	1212	12,38	150	207,707	77972	2,35	1831	23931	2,35	562	2,756	13,17	55,361	12,54	0,928
017-062	321	55	2840	5,28	150	61370	2,00	1227	1010	14,85	150	207,724	70604	2,43	1715	21715	2,43	528	2,811	15,76	60,745	14,98	0,934
017-062	313	57	1920	7,81	150	62170	2,00	1243	957	15,68	150	207,800	68409	2,53	1731	21052	2,53	533	2,007	17,52	64,981	15,81	0,888
017-062	331	44	5670	2,65	150	71680	2,00	1434	1331	11,27	150	207,580	90130	2,13	1922	27699	2,13	591	4,259	11,57	53,847	11,44	0,959
017-062	315	52	4910	3,05	150	59200	2,00	1184	1056	14,21	150	207,525	75158	2,00	1672	23125	2,00	514	4,651	14,53	56,072	14,35	0,968
017-062	298	56	2610	5,75	150	60450	2,00	1209	918	16,34	150	207,739	68922	2,46	1696	21233	2,46	522	2,843	17,32	65,856	16,46	0,936
017-062	355	49	6020	2,49	150	60900 52510	2,00	1218	1274	11,77	150	207,505	80524	2,12	1707	24702	2,12	524 473	4,724	12,03	47,792	11,94	0,965
017-062	323	83	790	18,99	150	43250	2,00	865	661	22,70	150	207,868	45819	2,95	1353	14090	2,95	416	1,196	29,60	65,457	22,79	0,764
017-062	359	60	2140	7,01	150	59430	2,00	1189	1066	14,07	150	207,773	66408	2,53	1678	20365	2,53	514	2,008	15,72	55,752	14,21	0,886
017-062	317	63	1070	14,02	150	58550	2,00	1171	878	17,08	150	207,848	62028	2.67	1659	19083	2,70	510	1,429	22,09	66,653	17,19	0,768
017-062	276	52	2310	6,49	150	66450	2,00	1329	910	16,49	150	207,781	73935	2,45	1815	22817	2,45	560	2,539	17,72	73,050	16,61	0,924
017-081	341	51 52	650	23,08	150	76540	2,00	1531	1199	12,51	150	207,925	78657	2,57	2019	24154	2,57	620	0,542	26,25	63,828	12,67	0,471
017-081	289	50	790	18,99	150	75830	2,00	1517	1010	14,85	150	207,913	78392	2,56	2003	24169	2,56	618	0,782	24,11	75,089	14,99	0,611
017-081	331	45	1200	12,50	150	87590	2,00	1752	1355	11,07	150	207,894	91495	2,45	2240	28117	2,45	688	0,886	16,70	64,649	11,25	0,652
o17-081	315	40	1050	9.93	150	79140	2,00	1705	1248	12,02	150	207,902	84044	2.47	2193	25879	2,47	637	1.318	16.43	69.068	12,18	0,635
o17-081	321	51	1550	9,68	150	72930	2,00	1459	1117	13,43	150	207,852	77970	2,50	1946	23980	2,50	599	1,388	16,56	65,308	13,58	0,803
o17-081	316	50 55	1760	8,52	150	74020	2,00	1480	1125	13,33	150	207,838	79740	2,47	1968	24534	2,47	605 549	1,564	15,82	65,796	13,48	0,833
o17-081	346	58	2000	7,35	150	61070	2,00	1221	1008	14,33	150	207,787	67716	2,43	1710	20786	2,49	525	1,948	16,10	58,326	14,47	0,881
017-081	335	57	1750	8,57	150	64100	2,00	1282	1043	14,38	150	207,819	69796	2,54	1770	21444	2,54	544	1,678	16,74	61,446	14,52	0,851
o17-081	332 299	52 45	2270	6,61 4.49	150 150	69300 76880	2,00	1386 1538	1139	13,17	150 150	207,790	76687	2,44	1874	23565	2,44	576 624	1,994	14,74	60,867	13,33	0,884
017-081	326	46	3710	4,04	150	74960	2,00	1499	1267	11,84	150	207,708	87028	2,28	1987	26755	2,28	611	2,929	12,51	59,186	12,01	0,933
017-082	287	51	2550	5,88	150	68340	2,00	1367	980	15,31	150	207,768	76610	2,42	1853	23623	2,42	571	2,603	16,40	69,769	15,44	0,926
017-082	295	54 46	2520	9,32 5,95	150	79220	2,00	1584	948 1321	11.35	150	207,836	87425	2,53	2073	26852	2,53	637	1,999	12.82	59,958	11.53	0,855
017-082	334	51	2220	6,76	150	71420	2,00	1428	1173	12,79	150	207,799	78645	2,44	1917	24164	2,44	589	1,892	14,46	60,884	12,94	0,874
017-082	341	59 56	1630	9,20	150	61130	2,00	1223	1012	14,82	150	207,822	66438	2,58	1711	20402	2,58	525	1,610	17,44	60,388	14,95	0,842
017-082	377	40	2900	5,17	150	97110	2,00	1942	1798	8,34	150	207,805	106580	2,28	2432	32639	2,28	745	1,613	9,82	54,009	8,58	0,826
017-082	353	55	2180	6,88	150	65190	2,00	1304	1140	13,16	150	207,787	72295	2,48	1793	22181	2,48	550	1,912	14,85	57,173	13,31	0,876
017-082	331 294	58 56	1870	8,02	150 150	61810 64410	2,00	1236	1003	14,96	150 150	207,803	67895 69212	2,54	1/24	20866	2,54	530 547	1,865	16,98	61,646	15,09	0,874
017-082	277	51	2190	6,85	150	68130	2,00	1363	930	16,13	150	207,794	75227	2,46	1849	23213	2,46	570	2,355	17,52	73,254	16,25	0,913
o17-082	347	50	2520	5,95	150	72580	2,00	1452	1252	11,98	150	207,780	80790	2,40	1940	24798	2,40	596	2,012	13,37	57,951	12,14	0,883

	Ane	Error	11	Error	Error	Th	Error	Error	Ph	Error	Error		Th*(U)	Error	Error	U*(Th)	Error	Error		Error		Error	
REF	Ma	Age	nom	U	U	nom	Th	Th	nnm	Pb	Pb	MPb	000	Th*	Th*	nom	U*	U*	U/Pb	U/Pb	Th/Pb	Th/Pb	Corr
	IVIA	Ma	ppin	%	ppm	ppm	%	ppm	ppin	%	ppm		ppin	%	ppm	ppin	%	ppm		%		%	
017-082	322	45	3610	4,16	150	76950	2,00	1539	1276	11.76	150	207,720	88689	2,29	2027	27274	2.29	623	2.830	12,47	60,314	11.93	0,929
017-082	350	44	5510	272	150	73610	2 00	1472	1429	10 49	150	207 597	91565	2 14	1961	28100	2 14	602	3 855	10.84	51 502	10.68	0.951
017-101	312	48	2050	7 32	150	76990	2 00	1540	1165	12.88	150	207 823	83651	2 42	2027	25745	2 42	624	1 760	14.81	66 095	13.03	0.859
017 101	205	54	1900	7.04	150	65690	2,00	1214	015	16.40	150	207,020	71900	2,51	1900	22144	2,42	555	2,066	10.22	71 000	16.52	0,000
-47 404	200	54	1090	1,54	150	00000	2,00	1014	915	10,40	150	207,011	71009	2,51	1000	22144	2,51	555	2,000	10,22	71,000	10,52	0,034
017-101	368	5/	1270	11,81	150	66620	2,00	1332	1164	12,88	150	207,863	10/64	2,57	1822	21686	2,57	558	1,091	17,48	57,218	13,04	0,728
017-101	384	61	1000	15,00	150	62780	2,00	1256	1135	13,22	150	207,881	66047	2,64	1746	20216	2,64	534	0,881	19,99	55,315	13,37	0,654
017-101	318	68	920	16,30	150	53230	2,00	1065	798	18,80	150	207,874	56221	2,76	1552	17295	2,76	477	1,153	24,88	66,701	18,90	0,751
o17-101	294	60	450	33,33	150	63460	2,00	1269	853	17,59	150	207,933	64920	2,70	1756	20007	2,70	541	0,528	37,69	74,407	17,70	0,464
017-101	329	61	590	25,42	150	62850	2,00	1257	953	15,75	150	207,919	64770	2,69	1745	19908	2,69	536	0,619	29,91	65,979	15,87	0,522
017-101	332	55	610	24.59	150	69660	2.00	1393	1062	14.12	150	207.923	71645	2.63	1881	22017	2.63	578	0.574	28.35	65.564	14.26	0.493
017-101	368	48	560	26.79	150	84570	2.00	1691	1422	10.55	150	207,936	86397	2.52	2181	26477	2.52	668	0.394	28.79	59,461	10.73	0.360
017-101	344	52	1170	12 82	150	73700	2 00	1474	1192	12 59	150	207 882	77511	2 53	1963	23797	2.53	603	0.982	17.97	61 852	12 75	0.692
017-101	354	62	1840	8 15	150	57560	2 00	1151	1005	14 92	150	207 794	63558	2 58	1640	19498	2 58	503	1.830	17 00	57 262	15.06	0.870
017-101	287	51	3060	4 90	150	66910	2,00	1338	984	15 24	150	207 727	76834	2 37	1825	23691	2 37	563	3 110	16.01	68 002	15 38	0.944
017-101	322	52	3200	4,50	150	65350	2,00	1307	1007	12 73	150	207,727	76049	2,36	1705	23387	2,36	552	3,012	14 47	50,002	13.99	0,030
-17 101	322	52	3290	4,50	150	005300	2,00	1011	1092	13,75	150	207,704	70040	2,30	1/95	23307	2,30	502	3,012	14,47	59,027	13,00	0,939
017-101	324	55	3210	4,07	150	60540	2,00	1211	1027	14,00	150	207,692	70960	2,39	1099	21025	2,39	522	3,124	15,33	50,920	14,73	0,944
01/-101	353	51	3630	4,13	150	66390	2,00	1328	1232	12,17	150	207,684	78221	2,32	1817	23999	2,32	557	2,946	12,85	53,873	12,34	0,934
017-102	325	53	2440	6,15	150	66950	2,00	1339	1087	13,79	150	207,772	74886	2,44	1827	23024	2,44	562	2,244	15,10	61,566	13,94	0,904
017-102	322	51	2370	6,33	150	70780	2,00	1416	1127	13,31	150	207,787	78486	2,43	1903	24138	2,43	585	2,103	14,74	62,802	13,46	0,893
017-102	305	53	2070	7,25	150	67800	2,00	1356	1015	14,77	150	207,802	74523	2,47	1843	22947	2,47	568	2,039	16,45	66,774	14,91	0,890
o17-102	306	58	1890	7,94	150	60480	2,00	1210	910	16,48	150	207,798	66618	2,55	1697	20512	2,55	522	2,077	18,30	66,465	16,61	0,894
017-102	338	51	1290	11,63	150	74530	2,00	1491	1190	12,61	150	207,873	78730	2,51	1979	24182	2,51	608	1,084	17,15	62,639	12,76	0,726
017-102	297	53	1190	12.61	150	70710	2.00	1414	990	15.16	150	207.876	74572	2.55	1901	22976	2.55	586	1.202	19.71	71,450	15.29	0.762
017-102	307	53	1020	14 71	150	71260	2 00	1425	1024	14 65	150	207 891	74573	2 56	1912	22959	2 56	589	0.996	20.76	69 593	14 79	0 699
017-102	336	58	1810	8 29	150	62070	2 00	1241	1021	14 69	150	207 809	67962	2 55	1730	20878	2 55	531	1 773	16.87	60,800	14.83	0.863
017-121	204	56	1750	8 57	150	64140	2.00	1283	916	16 37	150	207 819	60810	2.53	1770	21517	2.53	545	1 010	18 48	70.014	16.50	0.879
017 121	334	55	1310	11 15	150	67740	2,00	1355	1076	13.04	150	207,010	72004	2,55	1843	221017	2,55	566	1 217	18.04	62 036	14.08	0.765
-17 101	270	00	1000	11,40	150	07740	2,00	1000	1000	10,04	150	207,002	64000	2,00	1704	10011	2,00	500	1,217	17,04	50,050	14,00	0,705
-17 101	240	66	1300	12.04	150	00550	2,00	1211	1000	10,09	150	207,045	70400	2,02	1000	19911	2,02	521	1,209	10.10	00,002	14,03	0,775
017-121	346	55	1100	13,64	150	68520	2,00	1370	1115	13,46	150	207,881	72103	2,58	1859	22134	2,58	5/1	0,987	19,16	61,472	13,60	0,695
017-121	349	55	1010	14,85	150	69640	2,00	1393	1140	13,16	150	207,889	72931	2,58	1882	22382	2,58	5//	0,886	19,85	61,112	13,31	0,656
017-121	307	50	1050	14,29	150	75650	2,00	1513	1086	13,82	150	207,893	79061	2,53	2000	24340	2,53	616	0,967	19,87	69,681	13,96	0,688
017-121	317	50	1230	12,20	150	74900	2,00	1498	1117	13,42	150	207,879	78898	2,52	1986	24272	2,52	611	1,101	18,14	67,029	13,57	0,732
017-121	324	47	1010	14,85	150	82360	2,00	1647	1239	12,11	150	207,902	85645	2,49	2135	26335	2,49	656	0,815	19,16	66,480	12,27	0,623
017-121	317	47	1160	12,93	150	81130	2,00	1623	1203	12,47	150	207,891	84901	2,49	2110	26119	2,49	649	0,965	17,97	67,465	12,63	0,686
017-121	293	49	1100	13,64	150	77820	2,00	1556	1066	14,07	150	207,892	81389	2,51	2043	25084	2,51	630	1,032	19,59	72,998	14,21	0,711
017-121	345	57	1570	9.55	150	64340	2.00	1287	1070	14.02	150	207.834	69454	2.56	1775	21322	2.56	545	1.468	16.97	60.142	14.16	0.818
017-121	305	50	2300	6.52	150	70770	2.00	1415	1064	14.10	150	207,792	78239	2.43	1903	24092	2 43	586	2.162	15.54	66 528	14.24	0.899
017-121	342	54	1790	8.38	150	67590	2 00	1352	1121	13.38	150	207 823	73419	2.51	1840	22545	2 51	565	1 596	15 78	60 274	13.53	0.838
017-121	291	52	2210	6 79	150	68450	2.00	1369	982	15 27	150	207 793	75620	2 45	1856	23310	2 45	572	2 250	16 71	69 701	15.40	0,906
017 121	342	53	2060	5.07	150	65430	2,00	1300	1146	13.00	150	207,733	75020	2,40	1707	23051	2,40	552	2,200	14.03	57 070	13.24	0,000
017 121	244	46	1220	11 26	150	05020	2,00	1717	1205	10.00	150	207,720	00120	2,00	2205	27672	2,00	677	0.052	15 70	61 070	11.01	0,022
-17 122	344	40	1320	11,30	150	00000	2,00	1070	1300	10,05	150	207,004	90129	2,45	2205	27072	2,45	011	0,955	15,70	74 400	10.45	0,070
017-122	201	45	1270	11,01	150	83930	2,00	16/9	1120	13,30	150	207,886	88049	2,40	2105	2/149	2,40	000	1,120	17,79	74,402	13,45	0,739
017-122	316	50	1370	10,95	150	74570	2,00	1491	1115	13,45	150	207,868	19023	2,50	19/9	24313	2,50	609	1,228	17,34	66,865	13,60	0,767
017-122	337	49	2810	5,34	150	72070	2,00	1441	1221	12,28	150	207,759	81218	2,38	1930	24949	2,38	593	2,301	13,39	59,006	12,44	0,905
017-122	330	48	3720	4,03	150	70960	2,00	1419	1225	12,25	150	207,695	83064	2,30	1907	25528	2,30	586	3,037	12,89	57,929	12,41	0,937
017-122	350	44	6470	2,32	150	69990	2,00	1400	1423	10,54	150	207,528	91074	2,07	1889	27948	2,07	580	4,545	10,79	49,169	10,73	0,960
017-131	315	46	1280	11,72	150	82840	2,00	1657	1225	12,25	150	207,884	87000	2,46	2144	26769	2,46	660	1,045	16,95	67,629	12,41	0,713
017-131	296	49	1090	13,76	150	77620	2,00	1552	1071	14,00	150	207,892	81157	2,51	2039	25008	2,51	628	1,018	19,63	72,458	14,14	0,706
017-131	348	47	1250	12,00	150	83910	2,00	1678	1369	10,96	150	207,887	87983	2,46	2167	27004	2,46	665	0,913	16,25	61,305	11,14	0,663
017-131	307	52	980	15,31	150	72270	2,00	1445	1035	14,50	150	207,895	75453	2,56	1933	23230	2,56	595	0.947	21,08	69,843	14,63	0,681
017-131	363	57	910	16,48	150	68180	2.00	1364	1155	12.99	150	207,896	71148	2.60	1853	21812	2.60	568	0.788	20.99	59.044	13.14	0.612
017-132	281	48	1310	11 45	150	76880	2 00	1538	1019	14 72	150	207 875	81127	249	2024	25025	249	624	1 285	18.65	75 429	14 85	0 782
017-132	347	54	1260	11 90	150	70140	2 00	1403	1151	13.03	150	207 870	74245	2 55	1891	22789	2 55	581	1 094	17.65	60 922	13 18	0 730
017-132	333	45	1350	11 11	150	86100	2,00	1722	1348	11 13	150	207,883	90494	2 44	2210	27805	2.44	670	1 002	15 73	63 876	11 31	0.696
017 132	312	40	1180	12 74	150	78140	2,00	1562	1147	13.09	150	207,003	81075	2,44	2050	25000	2,44	634	1 020	18.24	68 110	12.22	0,030
017-132	313	49	1060	14.15	150	77090	2,00	1503	1070	14 04	150	207,000	019/5	2,50	2000	20220	2,50	6001	0.925	10,24	60,000	11.00	0,709
017-132	353	50	1060	14,15	150	77080	2,00	1542	12/0	11,81	150	207,894	80535	2,52	2030	24/09	2,52	023	0,835	18,43	00,696	11,98	0,632
01/-132	301	51	1000	15,00	150	74620	2,00	1492	1047	14,33	150	207,896	//867	2,54	19/9	23984	2,54	610	0,955	20,75	/1,293	14,47	0,684
017-132	326	56	990	15,15	150	66770	2,00	1335	1019	14,72	150	207,888	69990	2,61	1823	21518	2,61	561	0,972	21,12	65,523	14,86	0,690

Pluton de Boisset :

REF	Age	Error Age	U	Error U	Error	Th	Error Th	Error Th	Pb	Error Pb	Error Pb	MPb	Th*(U)	Error Th*	Error Th*	U*(Th)	Error U*	Error U*	U/Pb	Error U/Pb	Th/Pb	Error Th/Pb	Corr
063-091	325	Ma 67	2320	%	ppm	49300	% 2.00	ppm	825	%	ppm 150	207 720	56846	%	ppm	17478	%	ppm	2 811	% 19.29	59 743	% 18.29	0.937
g63-091	316	45	2250	6,67	150	81800	2,00	1636	1256	11,94	150	207,818	89113	2,38	2124	27418	2,38	653	1,791	13,68	65,117	12,11	0,861
g63-091 g63-091	320 315	29 23	2940 3210	5,10 4.67	150 150	141980	2,00	2840 3858	2164 2859	6,93 5,25	150 150	207,855	151538 203342	2,20	3327 4346	46610 62568	2,20	1023 1337	1,358	8,61 7.03	65,603 67,464	7,21 5.61	0,774
g63-091	320	25	3070	4,89	150	173420	2,00	3468	2619	5,73	150	207,871	183401	2,16	3956	56411	2,16	1217	1,172	7,53	66,228	6,07	0,718
g63-091 a63-091	302 347	20 37	3570 1750	4,20 8.57	150 150	226380	2,00	4528 2193	3210 1790	4,67 8,38	150 150	207,882 207,881	237971	2,11	5015 2682	73293 35409	2,11 2.32	1544 823	1,112	6,28 11.99	70,527	5,08 8.62	0,684
g63-091	291	29	2450	6,12	150	138920	2,00	2778	1907	7,86	150	207,872	146868	2,22	3265	45272	2,22	1006	1,285	9,97	72,840	8,12	0,765
g63-091 a63-091	325 296	21 38	4090	3,67	150 150	103030	2,00	4460 2061	3437	4,36	150 150	207,868	236303	2,09	4948 2547	72651 33717	2,09	1521 785	1,190	5,70 12,87	64,891 71.250	4,80	0,696
g63-091	334	34	2510	5,98	150	118320	2,00	2366	1888	7,95	150	207,852	126489	2,26	2855	38864	2,26	877	1,330	9,94	62,675	8,19	0,775
g63-091 g63-091	308 288	35 36	1980	7,01	150	108020	2,00	2228	1625	9,23	150	207,863	118341	2,29	2715	36433 35285	2,29	836	1,317	11,59	68,539 73,508	9,44	0,778
g63-091	282	32	1970	7,61	150	123400	2,00	2468	1632	9,19	150	207,881	129787	2,28	2954	40034	2,28	911	1,207	11,93	75,593	9,40	0,752
g63-091 g63-091	322	31	2460	6,10	150	132290	2,00	2646	2009	7,47	150	207,865	140289	2,27	3134	40310	2,27	964	1,218	9,61	65,517	7,69	0,746
g63-091	354	32	2160	6,94	150	133520	2,00	2670	2224	6,74	150	207,880	140561	2,25	3159	43122	2,25	969	0,971	9,68	60,029	7,03	0,668
g63-091	336	35	1780	8,43	150	116240	2,00	2325	1835	8,18	150	207,885	122034	2,34	2813	37488	2,34	864	0,970	11,74	63,357	8,42	0,676
g63-091	307	28	2070	7,25	150	155090	2,00	3102	2217	6,77	150	207,896	161813	2,22	3589	49819	2,22	1105	0,934	9,91	69,949	7,05	0,654
g63-091	320	51	2370	6,33	150	70080	2,00	1402	1112	13,49	150	207,785	77785	2,43	1889	23925	2,43	581	2,132	14,90	63,037	13,64	0,896
a63-091 a63-091	314 342	93 48	2550 2420	5,88	150 150	31630 76880	2,00	633 1538	559 1294	26,84	150 150	207,575	39917 84761	2,81	1120	12283 26028	2,81	345 622	4,563	27,48	56,605 59,419	26,92	0,974
a63-091	317	36	2270	6,61	150	108380	2,00	2168	1638	9,16	150	207,853	115759	2,29	2655	35613	2,29	817	1,386	11,29	66,157	9,37	0,792
a63-091 a63-091	326 283	31 26	2480 2890	6,05 5,19	150 150	135520	2,00	2710 3228	2090 2156	7,18	150 150	207,868	143587	2,23	3198 3714	44144 52666	2,23	983 1146	1,187	9,39 8,68	64,838 74,854	7,45	0,737
a63-091	299	23	3240	4,63	150	191450	2,00	3829	2698	5,56	150	207,876	201967	2,14	4316	62218	2,14	1330	1,201	7,23	70,961	5,91	0,723
a63-091 a63-091	330	38	2950 3460	5,08 4,34	150	131880	2,00	2039	2099	9,12 7,14	150	207,810	143136	2,27	3126	34280 43997	2,27	961	1,793	10,44 8,36	62,818	9,33	0,853
a63-091	284	53	1360	11,03	150	68780	2,00	1376	926	16,19	150	207,860	73190	2,54	1862	22573	2,54	574	1,468	19,59	74,252	16,32	0,820
a63-091	298	37	1940	7,43	150	105020	2,00	21009	1479	10,14	150	207,867	111317	2,32	25587	34296	2,32	797	1,311	12,75	70,993	10,34	0,780
a63-091	300	36	1820	8,24	150	108340	2,00	2167	1532	9,79	150	207,877	114248	2,32	2654	35192	2,32	817	1,188	12,80	70,703	9,99	0,749
a63-091	300	22	2700	5,56	150	201440	2,00	4029	2814	5,33	150	207,896	210205	2,15	4516	64752	2,25	1391	0,959	7,70	71,577	5,69	0,648
a63-091	325	25	2670	5,62	150	181700	2,00	3634	2762	5,43	150	207,888	190384	2,17	4122	58536 11868	2,17	1267	0,967	7,81	65,784	5,79	0,652
g63-092	323	99	2490	6,02	150	29270	2,00	585	539	27,85	150	207,557	37367	2,87	1073	11491	2,87	330	4,623	28,50	54,349	27,92	0,975
g63-092 g63-092	332 308	75 48	2050	7,32	150 150	44190 77350	2,00	884 1547	754 1145	19,89	150 150	207,723	50861 83327	2,70	1372 2034	15629 25653	2,70	422 626	2,718	21,19	58,586 67,547	19,99	0,934
g63-092	337	36	2130	7,04	150	110450	2,00	2209	1767	8,49	150	207,862	117384	2,30	2697	36058	2,30	829	1,21	11,029	62,50	8,720	0,75
g63-092 a63-092	309 336	30 28	2570 2670	5,84 5.62	150 150	138140 156840	2,00	2763 3137	2020 2484	7,43 6.04	150 150	207,866	146489 165531	2,22	3250 3625	45095 50852	2,22	1000	1,272	9,45 8,25	68,395 63,142	7,69 6,36	0,759
a63-092	322	89	3740	4,01	150	29300	2,00	586	595	25,23	150	207,408	41461	2,59	1074	12751	2,59	330	6,290	25,54	49,278	25,31	0,985
a63-092 a63-092	322	39	2100	7,14 5,73	150	53190 96420	2,00	1064	751 1508	9,95	150 150	207,757	104939	2,58	2416	18508 32273	2,58	478 743	1,738	21,20	63,960	20,06	0,937
a63-092	336	25	3330	4,50	150	181570	2,00	3631	2891	5,19	150	207,868	192410	2,14	4120	59108	2,14	1266	1,152	6,87	62,809	5,56	0,705
a63-092	303	25	3020	4,04	150	174000	2,00	3480	2485	6,04	150	207,890	183806	2,12	3967	56608	2,12	1222	1,215	7,82	70,011	4,55 6,36	0,733
a63-092	308	31	1210	12,40	150	134290	2,00	2686	1904	7,88	150	207,922	138221	2,30	3173	42551	2,30	977 1251	0,636	14,69	70,530	8,13	0,520
a63-092	355	40	1830	8,20	150	101180	2,00	2024	1700	8,82	150	207,869	107146	2,35	2513	32868	2,35	771	1,076	12,04	59,512	9,05	0,714
a63-092 a63-092	279 294	47 42	1640 2060	9,15 7,28	150 150	77530 90010	2,00	1551 1800	1032 1268	14,54	150 150	207,852	82846 96694	2,46	2037 2287	25560 29800	2,46	628 705	1,589	17,17 13.89	75,127	14,67	0,838
a63-092	330	39	1720	8,72	150	101410	2,00	2028	1576	9,52	150	207,875	107006	2,35	2516	32888	2,35	773	1,091	12,91	64,330	9,72	0,721
a63-092 a63-092	321 328	38 37	1920 1890	7,81 7,94	150 150	101950	2,00	2039 2157	1549 1670	9,68 8,98	150 150	207,865	108193 113979	2,34	2527 2645	33276 35036	2,34	777 813	1,239	12,44	65,808 64,561	9,89 9.20	0,762
a63-092	332	38	1830	8,20	150	105100	2,00	2102	1648	9,10	150	207,873	111055	2,33	2590	34126	2,33	796	1,110	12,25	63,759	9,32	0,726
a63-092 a63-092	302	36	1900	7,89	150 150	110300	2,00	2206	1568 1789	9,57 8,38	150 150	207,874	116469	2,31	2693	35873 37492	2,31 2,30	829 862	1,212	12,40	70,335 64,723	9,77 8,62	0,755
a63-092	340	49	1310	11,45	150	78010	2,00	1560	1251	11,99	150	207,876	82276	2,49	2049	25267	2,49	629	1,047	16,58	62,335	12,15	0,713
a63-092	344	46	1290	11,63	150	85880	2,00	1718	1386	10,82	150	207,886	90082	2,30	2206	27656	2,30	677	0,931	15,89	61,973	11,01	0,670
a63-092	318	30	1550	9,68	150	142690	2,00	2854	2099	7,15	150	207,911	147729	2,26	3341	45445	2,26	1028	0,739	12,03	67,986	7,42	0,572
a63-091	308	28	1720	8,72	150	151100	2,00	3022	2159	6,95	150	207,908	156687	2,24	3509	48235	2,24	1080	0,797	11,15	69,979	7,23	0,599
a63-091 a63-091	322 309	29 38	1600 2600	9,38 5.77	150 150	146640 101510	2,00	2933 2030	2183 1519	6,87 9.87	150 150	207,910 207,828	151843 109956	2,25	3421 2517	46697 33847	2,25	1052 775	0,733	11,62	67,165 66.822	7,16	0,568
a63-091	312	38	3100	4,84	150	99190	2,00	1984	1523	9,85	150	207,798	109263	2,26	2471	33626	2,26	761	2,035	10,97	65,115	10,05	0,880
a63-091 a63-091	335	38	3080	5,34 4,87	150	98850 97480	2,00	1977	1424	9,32	150	207,813	107969	2,28	2464	33270	2,28	759	1,973	11,81	60,543	9,53	0,876
a63-091	344	40	2320	6,47	150	97520	2,00	1950	1615	9,29	150	207,838	105077	2,32	2439	32260	2,32	749	1,436	11,32	60,375	9,50	0,802
a63-091	348	39	2760	6,64 5,43	150	108070	2,00	2161	1818	8,25	150	207,841	117062	2,33	2650	35930	2,33	813	1,519	9,88	59,431	8,49	0,819
a63-091	299	35 43	3030	4,95	150	108290	2,00	2166	1577	9,51	150	207,816	118126	2,25	2653	36390	2,25	817	1,921	10,72	68,672	9,72	0,868
a63-091	315	38	1300	11,54	150	105250	2,00	2105	1543	9,72	150	207,902	109475	2,37	2593	33683	2,37	798	0,843	15,09	68,228	9,93	0,631
a63-091 a63-091	314	41	1440	10,42	150	96610 126730	2,00	1932	1421 1819	10,56	150 150	207,887	101290	2,39	2420	31168	2,39	745	1,014	14,83	67,998	10,75	0,699
a63-091	299	25	2660	5,64	150	173890	2,00	3478	2441	6,15	150	207,885	182525	2,17	3965	56227	2,17	1221	1,090	8,34	71,247	6,46	0,701
a63-091 a63-091	326 321	28 30	2390 2480	6,28 6,05	150 150	150990 136530	2,00	3020 2731	2313 2075	6,49 7,23	150 150	207,882 207.869	158764 144594	2,21 2,23	3508 3218	48809 44469	2,21 2,23	1078 990	1,033	9,03 9,43	65,284 65,797	6,79 7,50	0,687 0,739
a63-072	299	32	1600	9,38	150	128090	2,00	2562	1778	8,44	150	207,901	133284	2,29	3049	41061	2,29	939	0,900	12,61	72,059	8,67	0,651
a63-072 a63-072	290	32	1430	10,79	150	128540	2,00	25/1 2666	1830	8,20	150 150	207,911 207,912	133049 137951	2,30	3057	41015	2,30	943 971	0,807	13,86	74,597 72,851	8,93 8,44	0,598
a63-072	338	32	1340	11,19	150	131570	2,00	2631	2053	7,31	150	207,915	135933	2,30	3120	41753	2,30	958	0,653	13,37	64,092	7,58	0,527
a63-072	302	46	1060	14,15	150	83420	2,00	1668	1171	0,57	150	207,906	86862	2,34 2,48	214/	26753	2,34	664	0,749	19,09	04,557 71,231	12,96	0,564
a63-072	319	46	1020	14,71	150	85030	2,00	1701	1260	11,90	150	207,904	88346	2,48	2188	27174	2,48	673	0,809	18,92	67,462	12,07	0,620
a63-072	305	37	2490	6,02	150	102340	2,00	2038	1505	9,97	150	207,835	110427	2,29	2534	34002	2,29	780	1,655	11,65	68,007	10,17	0,839
a63-072	297 353	38 39	2910	5,15 5 28	150 150	98090 98610	2,00	1962 1972	1426 1704	10,52	150 150	207,807	107535	2,28	2449	33132	2,28	754 755	2,041	11,71	68,791 57 856	10,71	0,882
a63-072	317	38	2670	5,62	150	102180	2,00	2044	1570	9,56	150	207,825	110859	2,28	2531	34105	2,28	779	1,701	11,08	65,094	9,76	0,844
a63-072 b63-021	326 313	35 21	2110 3360	7,11	150 150	114600 229000	2,00	2292 4580	1771 3352	8,47 4,48	150 150	207,867 207 889	121463 239918	2,29	2780 5067	37341 73833	2,29	855 1559	1,191	11,06 6,32	64,695 68,324	8,70 4,90	0,745
g63-091	375	36	2070	7,25	150	114900	2,00	2298	2043	7,34	150	207,869	121658	2,29	2788	37262	2,29	854	1,013	10,32	56,249	7,61	0,687
a63-092	260	74	2000	7,50	150	44030	2,00	881	586	25,62	150	207,728	50503	2,70	1366	15604	2,70	422	3,416	26,69	75,200	25,70	0,957
Annexe III :

Données gravimétriques acquises

(Avec X et Y en Lambert II étendu (système NTF) et l'altitude en mètres) Densité de correction : 2.6 Densité pour les Corrections de Terrain (CT) : 2.6

/ XYZ EXPOR	T [07/18/07]	densité 2.6
/ DATABASE	[V:\AJoly\Data	base\gravimission1et2et3pastouche.gdb : SUPER]

Stat

atior	n X	Y	Elevation	Gravity F	reeAir	C_BOUG26	CT_26	/ Static	on X	Y	Elevation	Gravity	FreeAir
								/========	C24250 7	0404440.0	707.000	000545.000	44 000
1	647703.5	2145795.8	450.000	980630.113	21.307	-27.288	0.427	101	631256.7	2121143.3	727.000	980545.299	41.896
23	648067.8	2144929.1	410.000	980637.789	16 720	-27.014	0.304	102	631581.0	2122818.4	684.000	980556.272	38.241
4	648409.2	2142624.4	371.000	980644.404	13.797	-26.202	0.416	104	638953.4	2133299.9	548.000	980596.850	28.377
5	648107.7	2141776.0	409.000	980636.595	18.402	-25.857	0.296	105	638786.5	2132582.6	507.000	980603.830	23.286
6	647113.2	2141354.4	416.000	980634.072	18.375	-26.747	0.196	106	637735.1	2132344.4	557.000	980593.639	28.713
7	648782.2	2140969.4	369.000	980643.712	13.834	-25.882	0.481	107	633254.8	21269923	545.000	980594.672	20.022
9	645036 1	2130304.5	421.000	980630.033	18.063	-27.274	0.296	109	632726.5	2127863.2	626.000	980577.764	37.744
10	644137.5	2139223.3	429.000	980625.868	15.894	-30.480	0.360	110	630938.1	2126757.7	592.000	980583.411	33.789
11	643148.5	2139737.9	520.000	980607.809	25.493	-30.732	0.422	111	632039.6	2134392.6	551.000	980602.228	33.762
12	642974.1	2140172.0	523.000	980607.693	22.943	-30.577	0.447	112	631146.0	2136842.4	518.000	980612.852	32.209
13	647114.7	2144469.8	446.000	980629.645	20.677	-27.690	0.218	113	631732.7	2137101.8	485,000	980614.088	28.915
14	652571.6	2146215.0	374 000	980647 235	15 442	-25.090	0.319	115	628479.3	2139364.1	498.000	980614.725	25.853
16	653236.1	2147571.0	430.000	980640.136	23.755	-22.817	0.271	116	629481.9	2139764.1	463.000	980622.942	22.949
17	653344.8	2148584.6	437.000	980639.399	24.357	-22.935	0.313	117	630385.5	2140225.5	419.000	980631.958	18.016
18	651890.3	2148849.9	470.000	980632.902	27.818	-23.055	0.327	118	629392.5	2140532.4	452.000	980625.524	21.512
19	650866.6	2148767.1	474.000	980631.081	27.292	-24.105	0.239	120	631516.8	2141250.7	389,000	980633.781	13 584
20	656222.3	214/04/./	459.000	980637 452	20.230	-23.549	0.214	121	633746.2	2140499.6	433.000	980628.485	18.655
22	655372.6	2148781.9	396.000	980648.758	20.918	-21.637	0.584	122	634205.9	2141379.0	419.000	980632.152	17.290
23	654855.7	2149178.6	434.000	980641.116	24.677	-22.361	0.240	123	634923.2	2142868.1	420.000	980634.387	18.629
24	654600.2	2150006.8	439.000	980640.370	24.800	-22.832	0.192	124	634918.5	2145541.9	358.000	980650.646	13.584
25	653697.7	2150746.0	445.000	980638.528	24.204	-24.079	0.194	125	635151.1	2144907.2	375.000	980646.132	14.833
20	655445.8	2154272.0	440.000	980640.994	22.273	-25.596	0.263	127	636880.6	2145896.2	314.000	980659.994	9.076
28	655510.2	2153593.6	431.000	980643.281	22.338	-24,453	0.160	128	637357.3	2145263.1	353.000	980651.487	13.121
29	654957.3	2152122.0	444.000	980640.697	24.956	-23.113	0.299	129	637793.1	2144697.7	393.000	980642.775	17.214
30	655212.3	2151346.2	443.000	980641.040	25.622	-22.452	0.185	130	638616.7	2143745.8	439.000	980631.704	21.115
31	657218.3	2151939.2	438.000	980643.595	26.168	-21.356	0.191	131	639428.2	2143494.8	446.000	980630.245	22.023
32	656562.6	2152578.3	408.000	980649.052	21.844	-22.378	0.224	132	638395 0	2144950.7	371.000	980649 480	15,829
34	656841.3	2153404.2	420.000	980647.845	22.972	-22.102	0.252	134	639235.4	2145701.1	366.000	980649.516	14.816
35	655980.7	2154712.6	423.000	980645.804	21.489	-24.418	0.173	135	643543.0	2146524.0	368.000	980647.924	13.197
36	655510.8	2156085.3	439.000	980643.298	22.803	-24.503	0.517	136	642082.1	2148017.3	351.000	980653.707	12.513
37	653042.8	2153991.4	468.000	980635.596	25.731	-24.599	0.652	137	643391.4	2147977.1	350.000	980654.062	12.600
38	652250.0	2154250.0	450.000	980639.688	24.052	-24.394	0.575	138	642165.9	2146122.1	374.000	980647.138	14.581
39	651537.8	2154580.4	430.000	980644.168	22.087	-24.378	0.378	140	643172 7	2145520.0	368,000	980645.548	11 527
40	649978 4	2154005.9	429.000	980647.480	20.081	-24.560	0.303	141	634291.6	2125068.4	706.000	980556.131	43.075
42	648974.3	2153212.9	418.000	980645.902	21.211	-23.968	0.356	142	630815.1	2146695.9	357.000	980652.805	14.481
43	648147.7	2152082.4	434.000	980641.024	22.182	-24.822	0.275	143	630976.3	2146131.7	358.000	980651.891	14.333
44	648987.1	2151626.1	427.000	980641.951	21.325	-24.982	0.209	144	630711.5	2145605.5	347.000	980654.655	14.129
45	649554.8	2151473.2	447.000	980637.016	22.689	-25.718	0.287	145	633874.6	2145112.9	385.000	980644.593	16.207
46	652167.6	2150616.0	489.000	980627.749	27.083	-25.654	0.533	140	632869.0	2143900.0	357 000	980653 837	15 227
48	652759.4	2150472.2	442.000	980637.979	22.944	-24,929	0.277	148	633399.8	2147391.9	364.000	980653.846	17.128
49	645000.9	2146398.8	422.000	980636.048	18.095	-27.598	0.278	149	633887.2	2146681.4	378.000	980649.530	17.711
50	644249.9	2145531.9	411.000	980637.273	16.625	-27.861	0.287	150	634203.8	2147816.3	340.000	980658.912	14.447
51	644783.6	2144538.5	454.000	980627.660	21.090	-27.939	0.427	151	635857.3	2147804.3	322.000	980661.457	11.455
52	644093.6	2143773.9	427.000	980632.514	18.229	-27.884	0.402	152	637189.1	2146527.9	347.000	980653 754	12 509
54	642543.6	2138341.2	526 000	980605 004	25.500	-31 174	0.360	154	637061.0	2147536.8	339.000	980655.121	10.588
55	642169.3	2137338.2	535.000	980603.051	27.306	-30.539	0.435	155	638245.9	2147886.8	343.000	980654.028	10.452
56	637506.4	2136387.5	498.000	980608.758	22.342	-31.482	0.427	156	638707.2	2149331.6	311.000	980662.994	8.372
57	637684.5	2134968.4	570.000	980592.597	29.552	-32.025	0.516	157	639387.4	2148647.5	297.000	980664.906	6.523
58	636662.9	2134826.3	5/6.000	980592.416	31.334	-30.884	0.529	159	640302.5	214/595.0	426.000	980635.401	20 194
60	636324.5	2135855.5	548.000	980600 061	29.500	-29.713	0.484	160	640009.7	2145085.5	412.000	980639.279	19.278
61	637337.3	2138794.7	508.000	980611.420	26.136	-28.391	0.813	161	640179.7	2146241.4	324.000	980658.553	10.458
62	637772.5	2139754.5	465.000	980621.323	21.992	-28.057	0.606	359	623443.2	2147527.3	349.000	980652.250	10.755
63	638375.5	2139239.6	459.000	980621.455	20.694	-28.687	0.620	360	624078.0	2146678.4	346.000	980652.818	11.088
64	639/86.9	2139258.0	460.000	980610.260	25.230	-29.855	0.472	362	624888.8	2140140.2	338,000	980652 138	9 428
66	635166.0	2137920.3	512.000	980610.084	26.733	-28.511	0.531	363	629565.3	2169273.8	291.000	980692.284	15.268
67	632999.5	2138022.4	461.000	980620.838	21.656	-28.168	0.396	364	628758.2	2168785.3	266.000	980697.222	12.884
68	633020.7	2136870.9	528.000	980607.330	29.758	-27.270	0.490	365	627916.7	2168884.7	234.000	980702.798	8.501
69	634342.5	2134281.7	538.000	980604.042	31.664	-26.429	0.515	366	626898.0	2169332.4	208.000	980708.027	5.340
70	632923.3	2135085.8	520.000	980607.792	29.200	-27.173	0.274	368	626244 7	217101416.9	238.000	980702.725	8.366
72	632249.1	2132081.2	551.000	980600 191	33.601	-25.884	0.539	369	624743.2	2171110.5	191.000	980712.755	3.372
73	632455.0	2130470.6	538.000	980599.713	30.419	-27.551	0.638	370	624936.9	2170082.1	253.000	980699.717	10.301
74	630977.7	2130345.6	516.000	980605.015	29.028	-26.677	0.506	371	625808.9	2169973.5	180.000	980712.442	0.591
75	629475.1	2129695.9	503.000	980607.212	27.734	-26.652	0.409	372	624193.6	2168163.9	286.000	980690.803	13.125
76	632272.8	2128836.4	587.000	980588.019	35.172	-28.183	0.590	373	622970 3	2168362.5	299.000	980688.019	7 893
78	634753.2	2120/29.1	663.000	980567 845	38 176	-30.066	1 197	375	620919.8	2169957.9	187.000	980708.731	-0.963
79	635625.2	2129401.6	682.000	980563.829	39.855	-33.565	0.874	376	620577.5	2168429.5	185.000	980711.400	2.328
80	639477.9	2133087.2	527.000	980601.882	27.104	-29.751	0.554	377	620526.7	2167336.7	187.000	980710.620	3.052
81	640280.0	2132098.3	532.000	980602.353	29.925	-27.525	0.504	378	620406.9	2166210.4	203.000	980707.126	5.408
82	639536.1	2132059.4	501.000	980607.120	25.153	-28.901	0.523	3/9	621601 2	2161080 F	237.000	980600 700	3,652
83	637039 3	2131439.8	618,000	980586 642	20.863	-28.554	0.794	381	622448 5	2161153 7	287.000	980681 889	10.201
85	639649.4	2127842.7	600.000	980589.054	41.061	-23.686	0.614	382	619474.7	2160609.8	193.000	980699.571	-0.691
86	639702.7	2129213.9	475.000	980613.196	25.516	-25.521	0.709	383	622543.0	2162797.9	257.000	980690.124	7.845
87	640491.0	2128425.6	585.000	980593.205	40.115	-23.022	0.591	384	625170.7	2161676.8	312.000	980679.250	14.862
88	644654.6	2128322.0	623.000	980585.853	44.597	-22.649	0.621	385	625344.0	2161010.6	324.000	980675.741	15.597
89	638799.7	2126491.0	604.000	980584.817	39.151	-25.900	0.746	386	624180 0	2160221.2	332.000	980672 271	15 233
90 91	637144 6	212/944.0	573.000	980588 345	15 658	-29.937	0.598	388	625422.3	2163386.2	307.000	980682.443	15.126
92	635627.6	2130812.6	602.000	980582.154	32.348	-32.716	0.516	389	622900.2	2164187.5	265.000	980690.152	9.215
93	634880.8	2130514.9	625.000	980577.622	35.151	-32.079	0.855	390	622517.9	2164172.7	228.000	980697.223	4.879
94	633390.9	2129957.0	629.000	980578.962	38.171	-29.527	0.823	391	622810.6	2165352.0	250.000	980693.837	7.327
95	636102.1	2131110.4	578.000	980590.534	33.073	-29.211	0.681	392	624458 1	2160348.3	302 000	980684 751	12.826
90 97	637181 2	212/09/.0	517 000	980595 976	23 455	-32 161	0.705	394	624721.5	2165372.9	307.000	980683.755	14.824
98	636454.3	2124225.7	534.000	980589.467	24.026	-33.195	0.951	395	625009.3	2166317.7	316.000	980683.294	16.374
99	636102.3	2123115.2	553.000	980584.194	19.345	-33.645	1.080	396	623804.5	2166213.9	300.000	980685.577	13.800
100	632631.3	3 2122805.4	645.000	980564.262	34.211	-35.545	0.508	397	623047.5	2167238.0	245.000	980697.852	8.269

/ XYZ EXPORT [07/18/07] densité 2.6

/DATABASE [V:\AJoly\Database\gravimission1et2et3pastouche.gdb : SUPER]

C_BOUG26 CT_26

0.853

1.004

0.505 0.608 0.554

0 468

0.828 0.710

0.659 0.480 0.798

0.372

0.754

0.344

0.421 0.561

0.429

0.258

0.308

0.322 0.414 0.345

0.526

0.573

0.535

0.580

0.426

0.392

0.312

0.276

0.267

0.216

0.324 0.367

0.430

0.968

0.238

0.195

0.193 0.191 0.422 0.231

0.316 0.334

0.514

0.442 0.289

0.772 0.428 0.435 0.568

0.452 0.525

0.421

0.418 0.600 0.277

0.324 0.646 0.246

0.433 0.412 0.471

0.332 0.283 0.403

0.348 0.678 0.430 0.383

0.371 0.219

0 250

0.227

0 254

0.383

0.336

0.653 0.261 0.297

0.313 0.339 0.154

0.371 0.383 0.412

0.287

0.195

0.263

0.360

-36 447

-32.851

-35.451 -30.815 -31.337 -31.410

-32.281

-31.042 -29.739

-30.042 -25.782

-25 618

-26.693 -27.835

-27.145

-27.207

-27.406

-28.534 -28.150

-28.046 -26.802 -25.001 -25.674

-24.585

-24.557

-25.063

-26.128 -26.136

-25.022

-24.274 -24.778

-26.625

-25.507

-25.204 -25.793

-27.651

-32.865

-24.171 -24.473

-23.478

-25.543 -25.019

-23.433

-23.433 -22.209 -23.133 -22.270 -23.108 -24.160 -25.003

-25.570 -26.486 -25.072

-25 263

-27.091 -25.689

-25.182

-24.419 -26.663 -26.327

-25.788 -26.747

-16.186

-15.660 -16.578

-16.848

-17.178 -16.298 -17.032

-16.912 -18.340 -17.600

-17.394 -17.772 -21.116

-17.576

-17.092 -16.443

-19 877

-21.782

-21.380

-19.498 -18.866

-19,401

-20.571 -20.595

-18.164

-19.282 -19.575

-19.495

-18.587 -17.948 -18.425

-17.787

-18.061

/ XYZ EXPOR	[07/18/07] densité 2.6	
/ DATABASE	[V:\AJoly\Database\gravimission1et2et3pastouche.gdb : SUPER]	

/==

/ XYZ EXPORT [07/18/07]	densité 2.6
/ DATABASE [V:\AJoly\Da	tabase\gravimission1et2et3pastouche.gdb : SUPER]
/	

0.223 0.571 0.233 0.230 0.672 0.476 0.476 0.324 0.251 0.240 0.294

0.264 0.192 0.430 0.403 0.403 0.469 0.638 0.566 0.586 0.391 0.276

Station	x	Y	Elevation	Gravity F	reeAir	C BOUG26	CT 26	/ Station	n X	Y	Elevation	Gravity F	reeAir	C_BOUG26	CT_26
				=== ======	=== =====			/======							
398	627041.4	2167982.6	257.000	980696.430	9.960	-17.655	0.381	506	639616.5	2167184.0	239.000	980702.619	11.298	-14.343	0.395
399	627059.9	2164842.8	287.000	980687.879	15.217	-17.742	0.306	507	641245.3	216/44/.4	247.000	980695 609	13.674	-15.047	0.369
400	626534.2	2163792.3	316.000	980681.670	16.805	-17.418	0.201	509	640295.4	2169766.1	294.000	980693.871	17.432	-14.355	0.240
402	627753.4	2163183.1	317.000	980682.074	18.016	-16.234	0.283	510	642112.2	2171403.6	281.000	980695.820	14.051	-16.221	0.339
403	628190.8	2162768.3	290.000	980686.508	14.456	-16.587	0.548	511	642088.8	2170361.9	291.000	980693.276	15.438	-15.908	0.354
404	627422.8	2161396.5	327.000	980679.837	20.313	-15.049	0.260	512	633662.8	2162747.4	304.000	980690.114	22.422	-10.546	0.148
405	629808.8	2163477.4	238.000	980697.199	8.531	-17.202	0.195	513	643590.3	2168312.9	253.000	980696.383	8.489	-18.584	0.488
406	630173.4	2165512.2	239,000	980698.012	9.344	-16.757	0.155	515	643582.1	2166899.0	274.000	980694 977	7 613	-19.565	0.223
408	631247.4	2165074.1	236.000	980700.364	9,790	-15.525	0.394	516	645760.7	2168091.1	248.000	980695.671	6.427	-20.410	0.179
409	631758.0	2164349.9	235.000	980700.449	10.156	-15.208	0.236	517	645305.4	2169244.8	273.000	980692.623	10.155	-19.331	0.253
410	631543.9	2162709.3	266.000	980691.944	12.547	-16.227	0.203	518	645967.0	2170326.9	287.000	980690.429	11.408	-19.715	0.141
411	631760.8	2161775.7	256.000	980692.183	10.459	-17.265	0.164	519	646736.4	2169241.3	260.000	980694.584	8.116	-19.988	0.219
412	632661.1	2163764.5	267.000	980693.316	13.376	-15.505	0.205	520	646180.7	2171076.5	297.000	980689.012	2 12.470	-19.718	0.166
413	633298.2	2162423.1	263.000	980692.404	12.321	-16.190	0.139	521	646933.9	2168116.8	274.000	980689.121	7.887	-21.800	0.161
414	635081.3	2163183 /	246.000	980695.237	9.200	-17.406	0.122	522	649047.5	2168203 7	276,000	960666.376	9 7.000	-21.331	0.170
416	636653.4	2165353.5	214 000	980697 827	0.261	-22 621	0.430	524	643298.8	2163601.4	291,000	980682.083	9.736	-21.734	0.230
417	635980.5	2165794.1	247.000	980698.623	10.880	-15.627	0.400	525	645014.8	2162426.8	263.000	980685.433	5.409	-22.995	0.247
418	634170.8	2165415.7	233.000	980699.457	7.692	-17.499	0.191	162	629912.4	2156623.7	266.000	980681.043	6.577	-22.082	0.318
419	633334.1	2166084.5	233.000	980702.446	10.135	-15.021	0.226	163	628603.9	2158284.6	308.000	980678.044	15.186	-18.069	0.297
420	633642.8	2167434.5	264.000	980697.603	13.765	-14.633	0.361	164	629064.7	2157481.0	316.000	980675.600	15.865	-18.288	0.271
421	631340.3	216/291.0	243.000	980700.441	10.229	-15.997	0.246	165	628595.9	2156364.2	316.000	980676.096	17.265	-16.847	0.311
422	632836.8	2168457 1	266,000	980695 862	11 808	-17.007	0.323	167	630579.2	2155262.4	325,000	980671 666	16.514	-18 671	0.109
424	633057.0	2170565.7	331.000	980685.248	19.543	-16.259	0.255	168	630836.9	2154161.5	326.000	980669.909	15.960	-19.353	0.200
425	632732.4	2170995.2	338.000	980684.276	20.381	-16.151	0.288	169	629370.7	2154259.2	332.000	980667.970	15.787	-20.008	0.372
426	632408.8	2169846.4	299.000	980691.105	16.105	-16.176	0.291	170	630001.3	2153777.5	354.000	980665.080	20.080	-17.936	0.547
427	633890.9	2170956.0	335.000	980684.941	20.157	-16.164	0.173	171	629752.5	2152664.8	361.000	980660.936	18.998	-20.098	0.230
428	634485.0	2171829.7	324.000	980688.124	19.240	-15.747	0.308	172	630630.4	2152332.7	345.000	980664.289	17.686	-19.701	0.196
429	633003 3	21/24/8.5	327.000	980687.455	18.973	-16.193	0.456	1/3	632071.5	2151937.9	344.000	980653.060	12 716	-20.649	0.350
430	633308.8	2172196.6	357.000	980681 933	22.200	-15 628	0.334	175	630957.0	2150738.1	323,000	980666.049	13.953	-20.855	0.379
432	632132.7	2171834.5	351.000	980681.239	20.673	-17.175	0.389	176	633053.8	2151993.5	288.000	980674.112	10.205	-20.799	0.369
433	631720.7	2171148.7	350.000	980681.251	20.931	-16.911	0.286	177	633296.3	2152989.0	314.000	980670.537	13.847	-20.137	0.222
444	631850.1	2170160.2	308.000	980689.357	16.877	-16.304	0.370	178	632426.3	2154608.2	281.000	980679.808	11.617	-18.806	0.188
445	631379.1	2169573.1	284.000	980694.244	14.833	-15.813	0.292	179	632272.5	2155416.3	279.000	980679.897	10.432	-19.788	0.174
446	630418.4	2168688.9	275.000	980695.559	14.084	-15.672	0.201	180	633132.7	2155918.1	2/1.000	980681.744	9.407	-19.945	0.170
447	627629.5	2160775.0	241.000	980694.365	0.000	-17.922	0.247	101	631726.5	215/45/.5	267.000	980685.007	7 169	-10.203	0.266
449	628698.0	2170616.7	303.000	980689.873	15.467	-17.273	0.267	183	632329.2	2159584.7	258.000	980687.304	7.977	-19.971	0.158
450	629381.0	2171513.7	318.000	980686.627	16.126	-18.185	0.330	184	630607.9	2148748.0	340.000	980658.555	13.318	-23.325	0.396
451	630260.4	2172182.7	352.000	980681.030	20.482	-17.382	0.482	185	629572.9	2148746.0	321.000	980662.642	11.540	-23.140	0.289
452	631546.1	2172848.4	383.000	980675.360	23.844	-17.540	0.339	186	629135.9	2149793.6	316.000	980664.606	11.109	-23.045	0.270
453	631742.4	2173859.8	383.000	980676.137	23.801	-17.212	0.709	187	628626.7	2147599.0	354.000	980654.579	14.587	-23.671	0.306
454	633837.9	2173695.6	380,000	980675 682	22 562	-18 568	0.265	189	633646.0	2144705.5	326,000	980664 043	13 138	-22.194	0.333
456	636023.9	2174713.1	330.000	980690.167	20.803	-14.668	0.477	190	634287.4	2151929.3	311.000	980669.427	12.675	-20.855	0.349
457	636674.6	2175491.7	347.000	980687.386	22.640	-15.013	0.149	191	634636.3	2154459.9	288.000	980675.817	9.916	-21.212	0.245
458	635658.3	2176503.8	357.000	980685.803	23.316	-15.243	0.331	192	635149.6	2156204.3	273.000	980679.838	7.895	-21.696	0.149
459	634229.4	2176457.7	329.000	980690.696	19.600	-15.984	0.257	193	635551.6	2157947.9	256.000	980685.530	6.928	-20.784	0.175
460	634810.4	21//354./	339.000	980689.529	20.793	-15.805	0.331	194	638728.8	215/95/./	246.000	980684.760	5 366	-23.551	0.172
462	633586.3	2177289.9	295.000	980697 629	15 362	-16 426	0.348	195	639911.4	2159312.1	243,000	980686.614	2 915	-23 322	0.234
463	632506.4	2176631.5	330.000	980689.290	18.354	-17.083	0.512	197	640900.8	2157605.1	260.000	980681.936	4.874	-23.245	0.205
464	630815.5	2175062.1	361.000	980681.776	21.671	-17.339	0.315	198	640803.3	2157175.3	249.000	980683.379	3.271	-23.537	0.317
465	633025.0	2179609.9	273.000	980702.700	11.759	-17.685	0.295	199	640343.9	2155927.9	272.000	980678.912	6.911	-22.451	0.268
466	633593.3	2179615.2	278.000	980702.342	12.943	-17.135	0.206	200	639844.4	2153618.3	311.000	980669.501	11.406	-21.987	0.485
467	633463.0	21/8/9/.4	335.000	980690.350	17.049	-17.010	0.278	201	640607.7	2154037.8	251.000	980682.828	12 900	-21.043	0.428
469	634210 1	2180384.6	299.000	980699 134	15 594	-16 857	0.1204	202	640495 5	2151791 7	349 000	980659 547	14 665	-22 783	0.571
470	635883.4	2181166.8	298.000	980702.076	17.601	-14.719	0.144	204	639423.7	2152590.5	313.000	980668.340	11.695	-22.170	0.233
471	636560.5	2181021.9	318.000	980699.347	21.165	-13.210	0.267	205	638403.8	2151984.9	310.000	980668.485	11.400	-22.140	0.230
472	637580.3	2180687.0	318.000	980699.416	21.510	-12.915	0.216	206	639512.3	2151785.2	307.000	980669.886	12.043	-20.729	0.672
473	639379.6	2180160.5	329.000	980697.137	23.062	-12.531	0.246	207	640127.3	2150582.0	327.000	980661.909	11.217	-23.929	0.476
4/4	638027 /	2179339.3	351.000	980692.238	25.616	-12.378	0.243	208	638425.7	2148741.0	284,000	980652.876	7 104	-23.675	0.476
476	637397.5	2177446.9	391.000	980682.023	29.272	-12.876	0.446	210	637654.2	2150516.7	279.000	980672.059	6.595	-23.547	0.251
477	635858.4	2178163.3	365.000	980687.255	25.892	-13.492	0.378	211	636152.3	2153196.8	278.000	980677.269	9.315	-20.729	0.240
478	635492.1	2178832.5	333.000	980694.067	22.285	-13.686	0.305	212	637135.3	2153882.0	256.000	980681.087	5.792	-21.802	0.294
479	636274.7	2179773.1	301.000	980700.840	18.423	-14.087	0.280	213	636580.8	2154767.8	258.000	980681.537	6.138	-21.664	0.304
480	637749.1	21/9//9.9	330.000	980697.043	23.577	-12.193	0.178	214	635219.3	2154145.3	278.000	980676.455	0 7.726	-22.325	0.233
481	639513 /	2179020.0	325,000	980697.479	23.095	-13.302	0.235	215	641030.8	2149101.1	315.000	980653 705	12 883	-25.114	0.456
483	640813.1	2178840 7	311 000	980699 754	21 203	-12 435	0.234	217	635839.6	2149338 7	302 000	980666 307	8 887	-23 788	0.224
484	641285.1	2177824.6	314.000	980697.240	20.442	-13.589	0.175	218	634972.9	2150188.8	313.000	980667.013	12.294	-21.490	0.312
485	642665.0	2177496.3	296.000	980698.352	16.273	-15.783	0.189	219	643973.6	2149102.1	394.000	980646.752	17.959	-24.692	0.270
486	639794.1	2176195.1	356.000	980688.396	25.873	-12.652	0.256	220	642787.3	2150232.9	383.000	980650.753	17.641	-23.705	0.377
487	638904.2	2175858.1	373.000	980684.460	27.452	-12.805	0.377	221	641806.9	2150084.0	328.000	980661.916	5 11.946	-23.494	0.291
400	637653.8	2176272.5	367,000	980685.200	26,600	-12.725	0.223	222	645098 7	2150772.2	348,000	980657 660	13 309	-23.512	0.256
400	639175.0	2173584.5	381.000	980678.141	25.446	-15.654	0.404	224	645773.8	2151128.5	358.000	980655.943	14.407	-23.990	0.602
491	638561.9	2174488.7	364.000	980683.549	24.872	-14.485	0.296	225	647188.5	2152019.3	419.000	980644.843	21.417	-24.011	0.216
492	641292.3	2173639.8	325.000	980689.869	19.860	-15.271	0.274	226	644996.8	2152984.4	376.000	980655.871	18.379	-22.322	0.259
493	637404.1	2173044.2	367.000	980681.136	24.550	-15.099	0.331	227	644981.3	2152200.1	362.000	980657.706	16.530	-22.525	0.380
494	638035.7	2172472.4	344.000	980685.820	22.603	-14.604	0.266	228	644627.5	2151481.2	352.000	980658.483	14.802	-23.279	0.264
495	640274 2	21/1716.0	299.000	980693.576	47.948	-15.203	0.281	229	643324.0	2152382.2	359.000	980652.220	16.577	-22.339	0.192
490	641215.4	2170637 1	297 000	980693 131	16 917	-15.040	0.324	230	644658 6	2154216 9	362 000	980660 163	17 349	-21.511	0.430
498	640094.6	2171348.7	333.000	980688.018	22.329	-13.632	0.315	232	643716.3	2154225.5	345.000	980663.436	15.363	-21.751	0.469
499	639270.7	2171594.4	337.000	980687.435	22.777	-13.768	0.166	233	643817.7	2154973.4	331.000	980667.367	14.367	-21.052	0.638
500	638242.9	2169302.6	284.000	980695.339	16.180	-14.477	0.281	234	644403.0	2155274.1	338.000	980666.130	15.050	-21.204	0.566
501	635799.6	2166774.5	248.000	980699.723	11.492	-15.031	0.493	235	641587.9	2154886.6	257.000	980681.306	5.528	-21.882	0.586
502	635237 4	2167624 5	282.000	980692.683	15.528	-16.943	0.249	236	642450.0	2154/94.5	213.000	980670 500	7.181	-22.168	0.391
503	634596 2	2168624.8	303 000	980690 323	17,559	-15 262	0.187	238	641734.6	2156227 6	293.000	980674 907	9,151	-22 543	0.225
505	635398.9	2169007.3	298.000	980689.055	14.441	-17.801	0.221	239	642801.9	2156917.4	281.000	980677.527	7.515	-22.799	0.297

Annexe aIII. . Données gravimétriques acquises 2 sur le site de Montmarault

1	
/ XYZ EXPORT	[07/18/07] densité 2.6
/ DATABASE	[V:\AJoly\Database\gravimission1et2et3pastouche.gdb : SUPER]

XYZ EXPOR	T [07/18/07] densité 2.6	
DATABASE	[V:\AJoly\Database\gravimission1et2et3pastouche.gdb : SUPER]	

1									1								
/ Static	n	х	Y	Elevation	Gravity	FreeAir	C BOUG26	CT 26	1	Statio	n X	Y	Elevation	Gravity	FreeAir	C BOUG26	CT 26
/=======	======			== =======	==== ======	==========	=============		/=:				== =======				
			0457000 4	005 000	000004 407	0.400	00 400	0.540		200	650000 F	2162622.7	267.000	080660 072	21 160	10 151	0.660
240	64439	4.2	215/333.4	265.000	980681.467	6.189	-22.136	0.543		201	659023.5	2165000.7	367.000	900009.972	21.100	-10.151	0.009
241	64443	6.8	2158226.0	302.000	980674.124	9.540	-23.098	0.261		301	659761.0	2165209.5	430,000	960660.955	15.132	-10.007	0.424
242	64345	0.9	215/555.0	303.000	980673.381	9.644	-23.056	0.307		302	658245.5	2164666.7	439.000	980658.928	31.491	-15.597	0.735
243	64260	5.0	2158793.2	295.000	980675.963	8.748	-22.902	0.487		303	65/862.6	2163888.0	457.000	980653.651	32.397	-16.655	0.731
244	64518	1.6	2158855.2	327.000	980671.847	14.472	-20.528	0.622		304	658052.1	2163037.7	478.000	980647.098	33.017	-18.139	0.916
245	64420	0.0	2159076.4	282.000	980678.807	7.359	-23.028	0.332		305	657586.1	2162011.2	452.000	980650.996	29.720	-19.017	0.502
246	64460	3.9	2159888.3	305.000	980674.492	9.486	-23.345	0.395		306	65/258.4	2161690.1	424.000	980656.104	26.446	-19.425	0.318
247	64670	9.3	2160080.2	337.000	980672.093	3 16.819	-19.385	0.507		307	657853.5	2161498.2	424.000	980654.697	25.199	-20.540	0.450
248	64818	9.0	2159227.3	376.000	980664.484	21.947	-18.673	0.340		308	656912.8	2162128.3	419.000	980658.303	26.743	-18.634	0.267
249	64756	2.9	2158212.7	339.000	980670.332	2 17.196	-19.316	0.418		309	655888.3	2161001.1	399.000	980660.294	23.469	-19.707	0.289
250	64701	3.0	2157266.7	370.000	980663.366	20.560	-19.166	0.581		310	656583.5	2163116.4	421.000	980660.598	28.851	-16.678	0.333
251	64793	6.0	2156937.4	382.000	980659.421	20.592	-20.811	0.210		311	656619.6	2163586.0	412.000	980660.425	25.520	-19.120	0.241
252	64870	0.0	2155430.7	402.000	980653.104	21.674	-21.912	0.206		312	656442.3	2164516.8	406.000	980666.319	28.806	-15.174	0.248
253	65012	2.9	2155145.9	414.000	980647.855	20.369	-24.555	0.175		313	656466.0	2165177.8	398.000	980668.562	28.044	-14.902	0.410
254	64848	3.0	2153712.2	396.000	980651.939	20.050	-22.676	0.412		314	655945.5	2166571.6	381.000	980674.157	27.259	-13.813	0.433
255	64857	1.6	2154129.8	366.000	980658.326	6 16.841	-22.487	0.542		315	657910.2	2165373.6	422.000	980664.988	31.729	-13.577	0.665
256	64746	5.0	2154361.8	376.000	980657.173	18.579	-22.094	0.287		316	657120.9	2164498.5	422.000	980663.505	30.950	-14.508	0.513
257	64755	9.2	2155159.1	391.000	980655.086	20.475	-21.785	0.334		317	654821.2	2164514.2	397.000	980666.525	26.224	-16.709	0.314
258	64653	2.1	2154814.6	363.000	980660.246	17.266	-21.981	0.296		318	653604.7	2164589.7	369.000	980671.850	22.839	-17.019	0.339
259	64854	3.3	2148865.3	429.000	980637.366	19.594	-26.885	0.255		319	653836.2	2165897.8	346.000	980678.568	21.400	-16.031	0.261
260	64859	2.7	2149365.9	456.000	980632.764	22.919	-26.495	0.261		320	654675.5	2166702.0	388.000	980670.939	26.086	-15.880	0.301
261	64808	1.0	2150522.7	451.000	980635.548	3 23.217	-25.580	0.333		321	653611.0	2167955.2	342.000	980682.584	22.511	-14.437	0.308
262	64326	0.7	2158757.8	294.000	980676.426	8.934	-22.681	0.411		322	651111.9	2168532.5	297.000	980688.534	14.088	-18.126	0.139
263	64273	9.3	2157917.3	266.000	980682.056	6.603	-22.113	0.261		323	650578.6	2168577.4	295.000	980688.734	13.631	-18.369	0.136
264	64193	4.4	2159436.9	276.000	980680,440	6.835	-22,964	0.267		324	650322.2	2169668.3	267.000	980694.807	10.176	-18.699	0.211
265	64181	6.8	2161313.3	272,000	980683.563	7,200	-22,159	0.271		325	653763.9	2169463.3	303.000	980691.906	18.575	-14.290	0.142
266	64990	4.7	2161137.0	378.000	980666.660	23,202	-17.428	0.548		326	654501.8	2170819.2	298.000	980695.311	19.343	-12,777	0.343
267	65102	6.6	2160967.3	379.000	980665.268	22.264	-18.619	0.404		327	654124.3	2171816.2	258.000	980704.430	15.307	-12.348	0.451
268	65188	5.9	2160564.0	396.000	980659.735	22.310	-20.637	0.191		328	655007.8	2170021.1	290.000	980695.069	17.283	-14.051	0.257
269	65163	9.9	2159379.3	417.000	980652.867	22.882	-22.314	0.231		329	654894.1	2169161.7	293.000	980693.969	17.805	-13.867	0.246
270	64935	6.5	2158739.6	384,000	980660.677	21.012	-20.623	0.197		330	654342.3	2168424.9	322.000	980687.728	21,107	-13.549	0.421
271	65213	6.5	2157247.0	374 000	980658 787	17,266	-23 252	0.224		331	643052.7	2173536.3	321.000	980690.555	19.406	-15.365	0.198
272	65120	6.8	2157578.7	359,000	980661.931	15.505	-22,937	0.666		332	643925.7	2172684.2	294.000	980694,255	15,470	-16,412	0.145
273	65076	57	2157973 3	382 000	980658 239	18 588	-22 862	0 163		333	643930.2	2172072.9	267.000	980697.941	11.319	-17.612	0.155
274	64975	7.5	2157754 9	350,000	980665 738	16 382	-21 422	0.323		334	626235.6	2149505.5	389,000	980650.150	19,403	-22,752	0.220
275	65328	9.8	2155064.9	443 000	980641 607	23 157	-24 547	0.555		335	626605.5	2150485.9	386,000	980652,403	19.936	-21.864	0.248
276	65285	6.8	2155712.6	421 000	980647 437	21.670	-23 767	0.425		336	626494 4	2151442.5	388 000	980653 157	20,530	-21 521	0.216
277	65314	4.8	2156968 7	421.000	980649 471	22 687	-22 821	0.354		337	625156.6	2151356.5	383.000	980653.267	19 163	-22 290	0.270
278	65361	9.4	2158127.6	391 000	980657 012	20.033	-22 247	0.314		338	624308.5	2151248.0	374 000	980654 232	17 435	-22 992	0.314
279	65439	5.5	2158965 1	396,000	980657.411	21 302	-21 494	0 344		339	624611.3	2152990.6	368 000	980658 262	18 201	-21 554	0.333
280	65363	8 1	2161304 9	406.000	980658 475	23.547	-20.081	0.599		340	623899.0	2153700.9	358,000	980660 651	16 926	-21 713	0.361
281	65430	1.8	2162926.4	406,000	980661 704	25.466	-18 519	0.243		341	621943.8	2153730.6	249 000	980680 213	2 821	-23 812	0.492
282	65344	1.0	2162/01 8	381,000	980665 749	20.400	-19 191	0.243		342	622101 9	2154892.0	251 000	980681 438	3 721	-23 122	0.500
202	65173	7.6	216/2297	334,000	090679 220	10 610	-17 /20	0.170		343	622285.6	2155494.8	246.000	980683 173	3 4 2 4	-22 813	0.561
203	65110	1.0	2163410.2	350,000	980674 570	20.644	-16 804	0.520		344	621718 5	2156950.0	221 000	980686 929	-1 718	-25 369	0.424
204	65022	1.9	2163410.2	363,000	900074.578	20.044	17.407	0.675		345	622513.3	2156869.5	255,000	980682 340	4 254	-23 155	0.370
200	64696	6.0	2102041.4	303.000	900070.700	21.002	-17.407	0.575		346	622238 7	21500003.0	233.000	080687 174	1 562	23 202	0.578
200	64622	7.4	2103517.0	233.000	000000.000	7 690	-22.110	0.400		347	621668 1	2159694 5	207.000	980694 077	-1 116	-23.095	0.520
207	64603	0.0	2104040.0	273.000	900000.333	0.507	-21./1/	0.343		249	622286.0	2150034.0	207.000	090679 413	9 555	-23.033	0.495
200	04003	0.0	2165709.0	294.000	900002.022	9.507	-22.127	0.594		240	622500.9	2159277.5	200.000	090672.002	12 626	-22.333	0.400
289	04/02	0.9	2165252.8	301.000	980681.445	10.871	-21.380	0.539		349	626005 1	2159302.3	319.000	900073.992 090665 419	20,402	-20.076	0.430
290	0001/	3.2	2104313.3	311.000	900082.281	15.572	-17.971	0.330		354	626776 4	2100040.0	340.000	020671 170	17 795	-19.200	0.201
291	05099	3.0	2105110.7	294.000	980686.574	13.973	-17.730	0.324		351	626046.0	2100/02.0	340.000	000664 069	10 604	-19.043	0.211
292	65159	4.8	2165903.0	300.000	980686.263	14.8/9	-17.619	0.183		352	025045.9	2150932.0	358.000	980664.968	10.024	-20.127	0.240
293	65309	3.8	2166406.9	341.000	980680.332	21.203	-15./14	0.230		353	025308.0	2156056.2	354.000	960665.603	18.737	-19.370	0.457
294	66111	0.0	2159418.3	450.000	980649.903	28.638	-18.345	0.534		354	0200/0.8	2160217.8	326.000	9806/5.63/	10.758	-18.555	0.200
295	66202	4.6	2160375.5	440.000	980653.490	29.873	-17.533	0.526		355	02/2/1.6	2155419.5	357.000	980664.1//	18.760	-19.853	0.277
296	66141	8.7	2161604.4	396.000	980664.273	26.077	-16.524	0.538		356	020006.4	21545/7.2	362.000	980662.253	19.057	-20.153	0.224
297	65972	1.7	2163186.8	329.000	980674.786	14.616	-20.692	0.531		357	025266.6	2154200.5	315.000	980671.169	13.773	-20.254	0.288
298	65904	4.5	2162139.6	358.000	980668.601	18.225	-20.278	0.496		358	624653.9	2153549.6	358.000	980661.037	17.437	-21.252	0.310
299	65866	2.7	2162787.3	373.000	980667.255	20.979	-18.350	1.304									

Annexe aIII. . Données gravimétriques acquises 3 sur le site de Montmarault

ion	X	Y	Elevatio	n Gravity	FreeAir B	ougComp20	5 CT167 ====	/ Static	n X	Y	Elevation	Gravity	FreeAir	BougComp	26 CT1
5	95525	1991531	586	980464.225	22.776	-40.755	0.321	101	588638	1992549	587	980456.693	14.734	-48.847	0.38
3	595148	1992663	574	980468.242	22.172	-40.028	0.345	102	587329	1992773	670 571	980440.599 980459 674	24.073	-48.286	0.64
4	594489	1992801	577	980467.903	22.646	-39.863	0.362	104	590256	1991425	546	980465.107	11.405	-47.704	0.384
5	596498	1991698	569	980468.807	21.977	-39.737	0.286	105	590749	1990550	586	980456.497	15.849	-47.661	0.34
7	597273	1991511	590	980465.143	23,996	-36.913	0.329	106	591161	1990569	579	980458.395	15.571	-47.224	0.29
3	598599	1992789	554	980476.700	24.354	-35.654	0.358	107	592078	1991096	561	980463.607	15.083	-47.514	0.35
	598717	1993281	559	980476.033	24.831	-35.716	0.363	109	591860	1992081	548	980467.454	13.835	-45.524	0.35
0	599523	1992710	577	980472.025	26.841	-35.689	0.342	110	591644	1992650	529	980470.800	10.856	-46.444	0.34
2	598996	1991500	582	980469.795	27 880	-35.376	0.306	111	591738	1989198	589	980456.362	17.737	-45.986	0.45
3	598418	1990730	564	980470.556	22.967	-38.081	0.406	112	591752	1988435	594	980456 112	9.920	-44 695	0.792
4	599257	1990699	548	980475.692	23.190	-35.947	0.574	114	590316	1988225	639	980443.860	21.456	-47.703	0.46
5	599220	1989435	608	980463.003	30.045	-35.906	0.299	115	581389	1993195	639	980448.017	21.594	-47.580	0.45
7	600107	1988348	639	980459.880	37 614	-31.538	0.408	116	580186	1991035	624	980449.285	19.990	-47.497	0.50
8	601082	1988732	622	980460.958	32.891	-34.548	0.336	118	580872	1985865	679	980436.835	28.709	-44.702	0.57
9	601380	1989398	618	980462.219	32.377	-34.608	0.354	119	582179	1985608	672	980439.042	28.961	-43.704	0.55
0	601088	1990356	609	980464.143	30.745	-35.222	0.391	120	582630	1986663	697	980430.962	27.739	-47.599	0.60
2	603844	1991380	617	980475.139	20.700	-34.615	0.415	121	581979	1986945	696	980432.546	28.787	-46.429	0.62
3	600469	1995525	664	980456.424	35.802	-35.884	0.666	122	581136	1989198	645	980442 445	23.557	-48,729	0.70
4	597954	1995596	581	980472.491	26.198	-36.701	0.408	124	582600	1987872	666	980436.897	23.127	-48.943	0.49
5	596575	1995402	2 558	980476.446	23.212	-37.227	0.362	125	582545	1988695	650	980440.320	20.943	-49.380	0.50
6 7	596/21	1994928	548	980477.649	21./14	-37.631	0.366	126	583585	1985633	699	980429.646	27.874	-47.787	0.50
8	597389	1994810	566	980474.477	24.194	-37.156	0.323	127	584066	1985101	701	980428.102	28.689	-46.523	0.48
9	597649	1993536	553	980476.883	23.622	-36.306	0.329	129	583997	1986482	652	980432.378	15.412	-55.172	0.46
0	596544	1993351	548	980477.224	22.570	-36.828	0.314	130	583650	1987923	658	980437.527	21.243	-49.971	0.48
2	595663 595662	1995997	558	980476.210	22.494	-38.010	0.297	131	583749	1988693	652	980438.762	20.001	-50.507	0.53
2	595662	1996555	5 570	980474.725	24.259	-37.512	0.337	132	585870	1989373	613	980439.562	20.556	-55 965	0.46
3	596675	1996528	616	980465.590	29.341	-37.118	0.662	134	587199	1989244	608	980447.951	15.158	-50.701	0.39
4	594638	1996587	566	980475.032	23.307	-38.065	0.301	135	586581	1989439	604	980449.309	15.124	-50.334	0.35
5	594445	1998451	507	980488.424	16.978	-37.693	0.574	136	585050	1989050	643	980441.218	19.387	-50.328	0.34
7	594344	2000038	490	980490.798	14.451	-37.903	0.844	137	585240	1990528	628	980445.133	17.473	-50.636	0.31
8	598338	2000405	629	980466.373	30.987	-37.128	0.422	139	582896	1990544	624	980445.862	16.959	-50.686	0.30
9	596991	1999093	624	980467.792	31.929	-35.595	0.469	140	581936	1989981	571	980456.528	11.730	-49.953	0.53
0	596365	1997766	613	980467.639	29.460	-36.756	0.578	141	588071	1989532	584	980453.593	13.159	-50.115	0.36
2	593605	1992516	557	980470.949	20.061	-40.462	0.277	142	588135	1990358	579	980455.745	13.096	-49.545	0.44
3	593654	1994444	560	980473.197	21.361	-39.390	0.268	143	586620	1991577	681	980437.808	24.339	-49.725	0.62
4	594045	1995264	552	980476.754	21.783	-38.097	0.267	145	588627	1991701	568	980459.466	12.333	-49.137	0.42
5	594234	1995513	553	980475.943	21.078	-38.905	0.273	146	589132	1991249	572	980458.854	13.320	-48.660	0.34
6	595288	1994624	547	980478.833	22.838	-36.468	0.297	147	589198	1989977	542	980462.438	8.679	-49.944	0.43
8	593375	1995925	5 554	980475.488	20.599	-39.481	0.285	148	589684	1989502	505	980457.409	11.134	-50.072	0.35
9	592529	1997321	576	980471.138	21.905	-40.534	0.324	150	587876	1988626	585	980452.817	13.426	-50.005	0.31
0	592609	1997997	604	980467.362	26.221	-39.132	0.461	151	588683	1988441	588	980452.834	14.519	-49.265	0.28
1	591935	1998446	5 620	980463.592	27.024	-40.084	0.449	152	587467	1988023	591	980449.846	12.798	-51.277	0.32
3	593612	1998626	557	980479.559	23.401	-36.590	0.702	153	587633	1987538	645	980445.614	18.216	-49.121	0.32
4	593712	2002059	638	980466.764	32.815	-36.205	0.498	155	588442	1986061	628	980443.191	19,152	-48.927	0.34
5	593069	2001309	630	980468.577	32.769	-35.354	0.523	156	587328	1985195	660	980435.598	22.139	-49.360	0.41
5	592141	2001821	621	9804/1.946	32.945	-34.380	0.341	157	586379	1986518	648	980438.377	20.143	-50.116	0.34
8	592040	1999496	614	980465.980	26.708	-39.815	0.381	158	586276	198/585	634	980436.297	17.505	-52.773	0.44
9	590981	2001833	642	980466.464	33.936	-35.669	0.349	160	585172	1987907	637	980441.480	18.726	-50.360	0.32
0	589585	2002098	650	980462.732	32.460	-37.924	0.443	161	585429	1985988	687	980430.545	24.778	-49.557	0.52
1	591456	2001003	665	980465.296	30.586	-37.701	0.359	162	585536	1984525	740	980420.595	32.372	-47.497	0.76
3	589466	2000599	636	980463.519	30.143	-38.818	0.339	163	587233	1983879	679	980431 838	25.312	-46.207	0.64
4	589556	1999443	618	980463.725	25.733	-41.264	0.343	165	587107	1984697	658	980436.069	22.398	-48.798	0.50
5	591244	1997547	538	980474.822	13.680	-44.354	0.588	166	594490	1990389	609	980456.141	22.718	-43.067	0.57
7	590540	1998689	625	980461.546	26.324	-41.359	0.418	167	594635	1989986	603	980456.555	21.607	-43.551	0.54
3	589030	1997791	558	980469.759	14.593	-45.571	0.637	168	090062 596586	1990286	602	980459 445	23.857	-43.859	0.49
9	589283	1998398	637	980457.381	26.101	-42.672	0.636	170	598658	1989434	620	980459.382	30.128	-37.087	0.34
)	587778	1998035	616	980460.460	22.996	-43.612	0.513	171	598726	1988938	616	980459.773	29.687	-37.076	0.35
,	587305	1996530	5/6	980466.449	8 308	-44.941	1 397	172	597000	1989404	525	980472.865	14.318	-41.180	1.70
3	592615	1992887	591	980460.865	19.861	-43.937	0.599	173	596520	1968323	599	980457.356	22,195	-40.643	0.37
1	593610	1991640	575	980465.531	20.601	-41.509	0.543	175	595875	1988684	608	980454.370	22.023	-43.761	0.46
5	592251	1993788	589	980465.353	23.000	-40.702	0.477	176	594570	1988536	583	980457.381	17.439	-45.592	0.49
7	591374	1994376	548	9804/6.706	21.223	-37.982	0.507	177	593298	1988598	605	980453.389	20.187	-45.231	0.50
B	592025	1995632	575	980466.668	18.498	-43.849	0.307	178	593660	1989121	5/3	980459.551	24 344	-45.805	0.58
Э	592606	1995296	565	980475.999	25.015	-36.247	0.302	180	593794	1987181	642	980446.055	25.421	-44.092	0.44
0	591291	1996193	581	980464.701	17.928	-44.998	0.381	181	594411	1986890	633	980448.128	24.952	-43.618	0.40
1	590726	1995696	597	980459.239	17.808	-46.411	0.832	182	595346	1987229	631	980448.501	24.432	-43.871	0.45
3	590698	1996744	496	980476 274	8.376	-46.966	0.665	183	596729	1986216	685	980439.529	32.947	-41.047	0.64
4	584325	2001665	573	980470.291	16.617	-45.335	0.484	185	596754	1987610	637	980450.547	28.021	-41.013	0.42
5	588395	1995836	492	980477.823	3.878	-48.815	0.916	186	597892	1987112	635	980453.797	31.058	-37.720	0.41
6	587289	1995521	526	980468.336	5.141	-50.589	1.584	187	598173	1987769	599	980460.397	26.014	-38.825	0.43
/	584204	1994897	619	980452.092	18.106	-48.925	0.417	188	599274	1987027	571	980469.265	26.844	-34.354	1.02
9	579176	1995177	618	980455 516	21.009	-45.667	0.664	189	500274	1987577	626	980469.179	33.284	-34.554	0.37
0	584130	1992684	674	980438.078	22.865	-50.102	0.474	190	602107	1987998	646	980454.567	34.502	-35.548	0.43
1	583233	1992728	658	980441.074	20.890	-50.339	0.469	192	602665	1989317	619	980461.058	31.591	-35.457	0.40
2	583024	1991762	639	980444.387	19.123	-50.061	0.443	193	604815	1991099	597	980466.684	28.981	-35.657	0.41
5 1	590526	1994354	518	9804/2.077	7.357	-48.515	0.570	194	607177	1989362	622	980457.482	28.906	-38.507	0.36
	590027	1993437	553	980464.137	10.963	-48.829	0.464	195	601124	1985582	596	980463.704	29.359	-33.051	0.54
	590474	1992506	545	980465.253	10.364	-48.561	0.459	197	596725	1985322	705	980434.437	34.752	-41.542	0.52
	589109	1993364	547	980465.143	10.178	-48.712	0.713	198	595887	1985712	661	980442.896	29.317	-42.271	0.43
	587710	1993525	599	980455.333	16.284	-48.485	0.500	199	595477	1986281	634	980447.395	25.022	-43.608	0.45
~					20.100		w	200	- 1 C - 1 C - 2 C - P	170001///	D(D	1004.00 944			

Annexe aIII. . Données gravimétriques acquises sur le site de Glénat, Omps et Boisset

/ XYZ EX / DATAB	/Z EXPORT [07/18/07] densité 2.6 ATABASE [V:\Gravi-SP\datagravi-new\MaJ_2006\GlenatOmps2006.gdb : SUPER]								/							
/ / Statio	n X	Y	Elevation	Gravity	FreeAir B	BougComp	26 CT167	1	Statio	n X	Y	Elevation	Gravity	FreeAir B	ougComp2	26 CT167
201	596428	1984250	= =======) 707	980433 769	35 572	-40 912	0.553	/=								
202	595746	1983538	695	980437 225	35 903	-39 293	0.533		256	592566	1980421	623	980444.718	23.711	-43.520	0.652
203	594481	1983992	664	980440.257	29.001	-42.965	0.385		257	592466	1977456	565	980454.556	18.058	-42.528	0.979
204	593827	1985037	652	980443.077	27.270	-43.360	0.414		258	592225	1974895	552	980456.202	17.772	-40.596	1.780
205	593483	1986411	633	980447.172	24,386	-44,171	0.417		259	591228	1973504	485	980469.766	11.790	-39.200	1.857
206	593150	1984486	628	980446.356	23.591	-44.224	0.614		260	590917	19/040/	352	980493.928	-2.5/6	-39.782	1.150
207	596664	1983366	5 730	980430.717	40.336	-38.556	0.651		201	566298	1984010	700	980435.474	23.588	-48.111	0.434
208	597293	1984405	5 771	980422.184	43.611	-39.278	1.121		262	585030	1903000	725	900422.000	33 407	-47.121	0.740
209	599717	1985061	713	980440.401	43.396	-33.545	0.749		203	583037	1082556	730	980422.078	34 397	-45.775	0.015
210	599800	1984517	727	980437.129	44.887	-33.670	0.660		266	582003	1980830	733	980423 569	36 190	-44.105	1.065
211	601344	1983182	721	980436.853	43.843	-34.046	0.673		267	584788	1979435	628	980441 727	23 075	-44 725	0.628
212	600715	1982206	5 724	980433.599	42.307	-36.120	0.462		268	585391	1980442	615	980443 575	20.093	-46 414	0.505
213	599676	1983258	3 727	980434.762	43.542	-35.129	0.545		269	587099	1982691	649	980437.617	22,798	-47,492	0.427
214	600673	1986137	629	980457.267	33.467	-34.545	0.525		270	588709	1982726	647	980437.529	22.062	-48.029	0.408
215	59/440	1983477	/02	980436.551	37.439	-38.517	0.536		271	587685	1981046	633	980440.428	22.006	-46,511	0.457
216	59/566	1982238	688	980438.928	36.501	-37.927	0.539		272	588313	1980635	621	980443.186	21.394	-45.799	0.473
217	598252	1981181	686	980437.392	35.205	-38.759	0.784		273	589112	1980174	592	980447.576	17.208	-46.708	0.590
210	596710	1901371	561	900430.151	16 153	-40.304	0.979		274	590251	1981423	614	980445.206	20.611	-45.948	0.344
219	507631	1078825	5/3	980457 119	12 717	-44.037	0.078		275	590415	1980493	592	980448.815	18.185	-45.909	0.411
220	596341	1977827	640	980439 802	26 144	-43.721	0.720		276	589718	1977674	521	980462.074	11.824	-44.562	0.384
222	597794	1977367	584	980447 415	16 849	-42.041	0.848		277	588218	1977885	520	980462.145	11.416	-44.846	0.398
223	597120	1976617	522	980458 915	9 825	-46.332	0.722		278	586807	1978250	542	980457.382	13.150	-45.561	0.347
224	595595	1974180	421	980477.922	-0.357	-44.706	1.524		279	587032	1980368	569	980451.674	14.052	-47.418	0.530
225	595158	1972452	383	980482.844	-5.758	-45.304	2.187		280	584227	1977674	559	980455.979	17.465	-42.914	0.532
226	593014	1973409	450	980477.193	8.491	-39.814	0.728		282	584267	1976025	527	980464.916	17.865	-39.003	0.555
227	593981	1975369	519	980459.526	10.526	-44.790	1.236		283	583151	1975980	583	980451.580	21.850	-40.906	0.769
228	594445	1976308	531	980458.089	12.029	-45.020	0.810		283	583151	1975980	583	980450.932	21.202	-41.554	0.769
229	594768	1980398	617	980445.772	22.930	-43.776	0.523		284	583681	19/53/8	613	980444.430	24.445	-41.480	0.869
230	594975	1982596	673	980437.262	29.917	-42.949	0.466		200	593530	1072413	540	980448.694	22.300	37 073	0.056
231	594292	1982790	671	980436.804	28.684	-43.983	0.447		200	586172	107585/	5/1	980459.005	16 /00	-12 1/3	0.405
232	593332	1982289	648	980441.626	26.817	-43.273	0.518		288	585503	1977212	527	980460.091	12 075	-44 976	0.373
233	593711	1983131	668	980439.205	29.883	-42.446	0.458		289	587382	1975698	555	980456 169	18 018	-42 053	0.403
234	592194	1984774	586	980454.815	18.855	-44.650	0.347		290	587792	1974265	516	980466 344	17 321	-38 390	0.513
235	592354	1985451	581	980455.574	17.522	-45.420	0.365		291	587680	1973299	541	980460.304	19.781	-38.575	0.593
236	592198	1986285	611	980450.619	21.147	-44.997	0.432		292	587179	1972747	537	980460.633	19.324	-38,504	0.685
237	592247	198/109	5/3	980459.218	17.351	-44.484	0.601		294	588814	1972648	483	980470.965	13.070	-38.872	0.687
238	591570	198/555	601	980452.583	18.992	-46.147	0.348		295	589271	1971498	439	980478.823	8.282	-38.638	0.914
239	591404	1986803	0 020	980446.263	21.017	47.222	0.384		296	589580	1970396	362	980491.602	-1.806	-40.170	1.080
240	502264	1087740	535	980466 500	12 306	-47.223	0.200		297	589582	1969262	324	980497.467	-6.747	-41.127	0.924
241	589858	1987/2/	587	980453.006	15 207	-45.295	0.356		298	589638	1968456	280	980505.975	-11.162	-40.658	1.014
242	589383	1986212	597	9804493.000	16 102	-40.000	0.307		299	588593	1968655	280	980503.782	-13.516	-42.137	1.889
240	589275	1985620	620	980444 373	18 215	-48 960	0.383		300	589592	1966542	251	980510.363	-14.170	-40.555	0.965
245	590203	1985655	632	980443 350	20.874	-47 657	0.334		301	591602	1968766	412	980480.613	3.956	-40.069	0.868
246	591083	1985367	626	980445 856	21 760	-46 158	0.293		302	590356	1973631	484	980469.902	11.515	-40.036	1.187
247	591203	1984566	605	980448.661	18.735	-46.906	0.282		303	600701	1997081	692	980450.968	37.723	-37.154	0.525
248	591271	1983753	588	980451.193	16.680	-47.072	0.318		751	592575	1993496	590	980464.065	22.258	-41.580	0.449
249	590428	1984055	610	980446.893	18.926	-47.133	0.409		1802	594072	198717	5 618	980449.628	21.594	-45.381	0.364
250	588990	1984699	644	980439.529	21.533	-48.317	0.322		2252	594/07	19/040	7 501	980460.925	10.397	-43.604	0.589
251	589241	1983517	615	980444.642	18.657	-48.011	0.345		2542	592581	198124	7 535	980463.637	14.803	-42.4/1	1.021
252	589425	1982860	616	980444.825	19.681	-47.104	0.337		2042	382616	198320	2 /60	980421.071	40,100	-41.048	1.064
253	590353	1982546	615	980445.970	20.771	-45.928	0.313									
254	592665	1981192	517	980465.477	11.133	-43.847	1.354									
255	593507	1980577	508	980466.192	9.569	-44.480	1.305									

Annexe aIII. . Données gravimétriques acquises sur le site de Glénat, Omps et Boisset

Annexe IV : Mesures de densité et susceptibilité magnétique

N° site ou nom	Nature	x	Y	d (g/cm3)	n
Le Vilhain Sud (528)	Gneiss	634 881	2 172 643	2.78	1
Herisson Nord (529)	Migmatite	629 028	2 168 250	2.72	1
Venas (531)	Granite	632 111	2 164 468	2.65	1
Monturié (534)	Gres trias	642 963	2 177 724	2.4	1
La Borde (535)	Gres permien	643 598	2 167 297	2.36	1
Noyant (537)	Stephanien	659 139	2 165 175	2.54	1
Les Arclans (538)	Granite Treban	660 988	2 162 173	2.63	1
La Gaudière (540)	Gres stephanien	639 369	2 149 006	2.53	1
Pont de Bord (542)	Granite	631 969	2 148 358	2.65	1
St Angel (543)	Migmatite	627 626	2 150 801	2.7	1
Les Prugnets (545)	Leucogranite	632 325	2 151 772	2.62	1
Deneuille (546)	Granite peralumineux	634 572	2 153 390	2.65	1

X et Y en Lambert II étendu (système NTF)

Tableau aIV.1. Mesure de densité sur les formations géologiques du site de Montmarault obtenuepar la méthode de la double pesée.

N° site ou nom	Nature	Х	Y	χ(10-6 CS)	n
Louroux-Bourbonnais	Leucogranite	638 030	2 170 484	2	1
Rond des Fougières (527)	Gneiss	633 386	2 171 082	1000	1
Le Vilhain Sud (528)	Gneiss	634 881	2 172 643	1100	1
Herisson Nord (529)	Migmatite	629 028	2 168 250	8	1
Herisson Ouest (530)	Migmatite	627 833	2 169 148	10	1
Venas (531)	Granite	632 111	2 164 468	29	1
Favière (MM53)	Leucogranite	631 579	2 163 115	3	1
Louroux-Hodemont (533)	Granite	628 705	2 162 855	92	1
Monturié (534)	Gres trias	642 963	2 177 724	1	1
La Borde (535)	Gres permien	643 598	2 167 297	1	1
La petite Verpillère (536)	Granite mylonitique	653 549	2 164 970	3	1
Noyant (537)	Stephanien	659 139	2 165 175	2	1
Les Arclans (538)	Granite Treban	660 988	2 162 173	6	1
Féline (MM8)	Granite faillé	639 099	2 152 352	2	1
La Gaudière (540)	Gres stephanien	639 369	2 149 006	2	1
Montvicq (541)	Stephanien	637 446	2 147 477	1	1
Pont de Bord (542)	Granite	631 969	2 148 358	113	1
St Angel (543)	Migmatite	627 626	2 150 801	13	1
La Chaise (544)	Granite	632 151	2 150 005	10	1
Les Prugnets (545)	Leucogranite	632 325	2 151 772	2	1
Deneuille (546)	Granite peralumineux	634 572	2 153 390	255	1
Bizeneuille (MM 34)	Granite	629 999	2 154 066	86	1
Arginy (MM46)	Granite	630 000	2 154 068	439	1
Verneix (MM 48)	Leucogranite cataclasé	625 601	2 155 688	2	1
Verneix Sud (MM 49)	Granite	625 351	2 154 656	10	1
Barassier (MM31)	Leucogranite	622 870	2 154 073	3	1
Thizon (552)	Permien	622 624	2 156 929	3	1
Néris les Bains Ouest (MM	29) Granite	625 913	2 143 394	62	1
Hyds (MM38)	Granite	638 000	2 143 866	14	1
Les Marauds (MM39)	Granite	639 274	2 145 067	45	1
La Périère (MM40)	Granite Peralumineux	640 025	2 145 537	1000	1
la Corre (MM16)	Granite	636 691	2 133 602	65	1
Les Beaudonnets (MM19)	Granite	636 690	2 133 601	101	1
Ladoux (559)	Granite	635 860	2 130 391	3	1
Youx (MM23)	Granite	635 367	2 127 696	7	1
Les Raynault (MM53)	Granite	631 931	2 123 982	3	1
Le Crechol (MM15)	Granite	636 816	2 357 759	10	1
Le Monteix Sud (MM17)	Granite	637 470	2 136 703	6	1
Chabassière (MM18)	Granite	637 543	2 136 052	3	1
Les Bétules (MM24)	Granite	634 824	2 127 275	6	1
Le Quartier (MM25)	Granite	633 124	2 125 352	5	1
La Perche (MM27)	Granite	636 572	2 135 311	3	1

X et Y en Lambert II étendu (système NTF)

Tableau aIV.2. Mesure de susceptibilité magnétique sur les formations géologiques du site de Montmarault obtenue par Kappabridge

Annexe V : Coupes conjointes géophysiques 2D

Joint modeling of Bouguer and magnetic anomalies along profiles (see location on Figure aIII.1). On upper window, the model magnetic effect (thin black curve) has been fitted to magnetic anomaly data (black dots) using surface geology (lithologies and structural data on the lower window) and their petrophysical properties (density and magnetic susceptibility).On middle window, the model gravity effect has been fitted to Bouguer anomaly data using surface geology in the same way.

Figure aV.1. Localisation des coupes conjointes géophysiques 2D

Figure aV.2. Coupe géophysique conjointe 3 (localisation sur Figure aV.1)

Figure aV.3. Coupe géophysique conjointe 4 (localisation sur Figure aV.1)

Figure aV.4. Coupe géophysique conjointe 5 (localisation sur Figure aV.1)

Figure aV.5. Coupe géophysique conjointe 6 (localisation sur Figure aV.1)

Figure aV.6. Coupe géophysique conjointe 7 (localisation sur Figure aV.1)

Figure aV.7. Coupe géophysique conjointe 8 (localisation sur Figure aV.1)

Figure aV.8. Coupe géophysique conjointe 9 (localisation sur Figure aV.1)

Figure aV.9. Coupe géophysique conjointe 10 (localisation sur Figure aV.1)

Relations plutons et discontinuités lithosphériques. Approche pluridisciplinaire de la mise place de plutons granitiques le long du Sillon Houiller (Massif Central Français). Apports des études de terrain et des données gravimétriques, magnétiques et ASM pour des modélisations 3D.

Résumé:

La question du rôle structural et de la signification géodynamique des grandes discontinuités dans les phénomènes tardi-orogéniques se pose dans la chaîne Varisque. Dans le Massif central français, le Sillon Houiller (SH) est une faille lithosphérique dont la cinématique et le fonctionnement anté-Stéphanien restent inconnus. Afin de mieux appréhender le rôle du SH au cours de l'évolution post-orogénique du Massif central, une étude pluridisciplinaire a été réalisée sur des massifs granitiques qui longeaient l'accident : analyses pétro-structurales, géochrono-logiques, anisotropie de la susceptibilité magnétique (ASM), gravimétrie ainsi que le retraitement de données aéro-magnétiques disponibles. Ces nouvelles données géophysiques, de terrain et de l'ASM, ont été intégrées dans des modélisations géophysiques et géologiques, 2D et 3D, directes et inverses qui ont mis en valeur la géométrie et la mise en place de ces plutons syn-tectoniques namuriens. Il apparaît qu'au Namurien, le SH peut être lié à la mise en place de magmas, comme le pluton de Montmarault, ou pas, comme ceux de Glénat, Omps et Boisset. Néanmoins, au Namurien, l'ensemble des plutons granitiques enregistre une linéation d'étirement NW-SE, perpendiculaire à l'orientation générale du SH. Au vu des analyses structurales et cinématiques, au Namurien, le SH s'il existe, ne peut alors que se comporter que comme une zone de dilatation NW-SE.

Mots-clés : pluton granitique, ASM, gravimétrie, magnétisme, modélisation 2D et 3D, datation chimique U-Th-Pb, inversion géophysique, chaîne Varisque.

Relationships between plutons and lithospheric discontinuities. A multidisciplinary study of granitic plutons emplacement along the Sillon Houiller Fault (French Massif Central). Contribution from structural, gravity, magnetics and AMS data for 3D modelings.

Abstract :

The tectonic role and geodynamic significance of major discontinuities in the late to post-orogenic evolution are questioned in the Variscan belt. The Sillon Houiller Fault (SHF) is a major sub meridian discontinuity which pre-Stephanian kinematics and evolution remain poorly understood. In order to better understand the role of the SHF during the late Variscan evolution of the French Massif Central, a multidisciplinary study has been carried out on some of the massifs which are situated along the fault: petrology, geochronology, Anisotropy of Magnetic Susceptibility (AMS), gravity as well as interpretation of aeromagnetic survey. New geophysical, field and AMS data have been integrated into 2D and 3D, forward and inverse, geophysical and geological models, which highlight the geometry and the emplacement of syn-tectonic Namurian plutons. These results allow us to draw the following major conclusions. In Namurian time, the SHF may be related to magma emplacement, as for the Montmarault pluton in the north, or not, as for the Glénat, Omps and Boisset massifs in the south. Nevertheless, all the analyzed granitic plutons record a NW-SE stretching direction, perpendicular to the general strike of the SHF. From our structural and kinematics analysis, in Namurian time, if the SHF existed, it should behave as a NW-SE dilatant zone.

Keywords: granitic pluton, AMS, gravity, magnetic, 2D and 3D modeling, U-Th-Pb chemical dating, geophysical inversion, Variscan belt.

DISCIPLINE: Science de la Terre et de l'Univers **SPECIALITE DOCTORALE :** Géologie et géophysique

Institut des Sciences de la Terre d'Orléans, UMR CNRS 6113, Université d'Orléans, BP 6759, 45067, Orléans, France.

Bureau de Recherches Géologiques et Minières, 3 avenue Claude Guillemin, BP6009, Orléans, 45060, Cedex 2, France.