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Abstract

The capacity of single and multi-user state-dependent channels under imperfect

channel knowledge at the receiver(s) and/or transmitter are investigated. We address

these channel mismatch scenarios by introducing two novel notions of reliable commu-

nication under channel estimation errors, for which we provide an associated coding

theorem and its corresponding converse, assuming discrete memoryless channels. Ba-

sically, we exploit for our purpose an interesting feature of channel estimation through

use of pilot symbols. This feature is the availability of the statistic characterizing the

quality of channel estimates.

In this thesis we first introduce the notion of estimation-induced outage capacity for

single-user channels, where the transmitter and the receiver strive to construct codes

for ensuring reliable communication with a quality of service (QoS), no matter which

degree of accuracy estimation arises during a transmission. In our setting, the quality

of service constraint stands for achieving target rates with small error probability (the

desired communication service), even for very poor channel estimates. Our results

provide intuitive insights on the impact of the channel estimates and the channel

characteristics (e.g. SNR, number of pilots, feedback rate) on the maximal mean

outage rate.

Then the optimal decoder achieving this capacity is investigated. We focus on

the family of decoders that can be implemented on most practical coded modulation

systems. Based on the theoretical decoder that achieves the capacity, we derive

a practical decoding metric for arbitrary memoryless channels that minimizes the

average of the transmission error probability over all channel estimation errors. Next,

we specialize this metric for the case of fading MIMO channels. According to our

notion of outage rates, we characterize maximal achievable information rates of the

proposed decoder using Gaussian codebooks. Numerical results show that the derived

metric provides significant gains, in terms of achievable information rates and bit

error rate (BER), in a bit interleaved coded modulation (BICM) framework, without

introducing any additional decoding complexity.



We next consider the effects of imperfect channel estimation at the receivers with

imperfect (or without) channel knowledge at the transmitter on the capacity of state-

dependent channels with non-causal channel state information at the transmitter.

We address this through the notion of reliable communication based on the average

of the transmission error probability over all channel estimation errors. This notion

allows us to consider the capacity of a composite (more noisy) Gelfand and Pinsker’s

channel. We derive the optimal Dirty-paper coding (DPC) scheme that achieves the

capacity (assuming Gaussian inputs) of the fading Costa channel under the men-

tioned conditions. The results illustrate a practical trade-off between the amount of

training and its impact to the interference cancellation performances of DPC scheme.

This approach enable us to study the capacity region of the multiuser Fading MIMO

Broadcast Channel (MIMO-BC), where the mobiles (the receivers) only dispose of

a noisy estimate of the channel parameters, and these estimates may be (or not)

available at the base station (the transmitter). In particular, we observe the surpris-

ing result that a BC with a single transmitter and receiver antenna, and imperfect

channel estimation at each receiver, does not need the knowledge of estimates at the

transmitter to achieve large rates.

Finally, we consider several implementable DPC schemes for multi-user informa-

tion embedding, through emphasizing their tight relationship with conventional multi-

user information theory. We first show that depending on the targeted application

and on whether the different messages are asked to have different robustness and

transparency requirements, multi-user information embedding parallels the Gaussian

BC and the Gaussian Multiple Access Channel (MAC) with non-causal channel state

information at the transmitter(s). Based on the theoretical DPC, we propose practical

coding schemes for these scenarios. Our results extend the practical implementations

of QIM, DC-QIM and SCS from the single user case to the multi-user one. Then,

we show that the gap to full performance can be bridged up using finite dimensional

lattice codebooks.
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Chapter 1

Introduction

In the early 1940s, it was thought (the belief was) that increasing the transmis-

sion rate of information over a communication channel increased the probability of

error. A communication channel consists of a transmitter (source of information),

a transmission medium (with noise and distortion), and a receiver (whose goal is to

reconstruct the sender’s messages). Claude E. Shannon in his classic papers [1], [2]

surprised the communication theory community by proving that this was not true

as long as the communication rate was below channel capacity, i.e., the maximum

amount of information that can be sent over a noise channel. He showed the basic

results for memoryless sources and channels and introduced more general communi-

cation models including state-dependent channels.

Shannon’s original work focused on memoryless channels whose probability distri-

bution (the noise characteristics of the channel), which is assumed to not change with

time, is perfectly known to both the transmitter and the receiver. In this scenario, he

proved the existence of good coding and decoding schemes to derive a coding theo-

rem and its converse that allows one to calculate the channel capacity from the noisy

characteristics of the channel. While mathematical notions of information had existed

before, it was Shannon who made the connection between the construction of optimal

codes and an ingenious idea known as “random coding” in order to develop coding

theorems and thereby give operational significance to the information measures1. The

mathematical tools used for these proofs is the concept of typical sequences and the

1The name “random coding” is a bit misleading since it refers to the random selection of a
deterministic code and not a coding systems that operates in a random or stochastic manner.

13
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concentration of measure phenomenon as a device to redefine the class of typical se-

quences and to estimate the residual mass probability of the non-typical sequences

(see Csiszàr’s tutorial paper [3]).

Information theory or the mathematical theory of communications has two pri-

mary goals: The first is the development of the fundamental theoretical limits on the

achievable performance when communicating a given information source over given

communication channels using optimal (but theoretical) coding schemes from within

a prescribed class. The second goal is the development of practical coding schemes,

e.g. optimal encoder(s) and decoder(s), that provide performance reasonably good in

comparison with the optimal performance given by the theory.

Current research in information theory today is motivated by the increasing inter-

est of its potential applications on the design of single and multi-user communication

systems, computer networks, cooperative communications, multi-terminal source cod-

ing, multimedia signal processing, etc. There are several similarities in concepts and

methodologies between information theory and these current research areas so that

the results can be easily extrapolated. A good application example of these ideas is

the potential applications of Dirty-paper Coding (DPC) for interference cancellation

in multi-user communications such as Broadcast channels or applications such as mul-

tiple user information embedding (watermarking), in multimedia signal processing.

The developments so far in the engineering community had as significant an impact

on the foundations of information theory as they had on applications. In this thesis,

by using the relationships between information theory and its applications, we focus

on both aspects: (i) The development of capacity expressions providing the ultimate

limits of communications under imperfect channel knowledge and (ii) the optimal

means of achieving these limits by practical communication systems. The remainder

of this chapter provides necessary background material and outlines the contributions

of this thesis.

1.1 Background

In this section, we review some of fundamental results in information theory and

other topics related to the framework of this thesis.
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1.1.1 Basic Results

Mathematicians and engineers extended Shannon’s basic approach to ever more

general models of information sources, coding structures, and performance measures.

The fundamental ergodic theorem for entropy was extended to the same generality

as the ordinary ergodic theorems by McMillan [4] and Breiman [5] and the result is

now known as the Shannon-McMillan-Breiman theorem (the asymptotic equipartition

theorem or AEP, the ergodic theorem of information theory, and the entropy theorem).

A variety of detailed proofs of the basic coding theorems and stronger versions of the

theorems for memoryless, Markov, and other special cases of random processes were

developed, notable examples being the work of Feinstein [6] and Wolfowitz [7].

The ideas of measures of information, channels, codes, and communications sys-

tems were rigorously extended to more general random processes with abstract alpha-

bets and discrete and continuous time by Khinchine [8] and by Kolmogorov, Gelfand,

Yaglom, Dobrushin, and Pinsker [9], [10], [9] and [11]. In addition, the classic notion

of entropy was not useful when dealing with processes with continuous alphabets since

it is virtually always infinite in such cases. A generalization of the idea of entropy

called discrimination was developed by Kullback (cf. [12]). This form of information

measure is now more commonly referred to as relative entropy (or Kullback-Leibler

number) and it is better interpreted as a measure of similarity between probability

distributions than as a measure of information between random variables. Many re-

sults for mutual information and entropy can be viewed as special cases of results for

relative entropy and the formula for relative entropy arises naturally in some proofs.

Traditional noiseless coding theorems with simpler proofs of the basic results can

be found in the literature in a variety of important cases. See, e.g., the texts by

Gallager [13], Cover [14], Berger [15], Gray [16], and Csiszàr and Körner [17]. In

addition to this bibliography, good surveys of the multi-user information theory may

be found in El Gamal and Cover [18], van der Meulen [19], and Berger [20].

1.1.2 Related and Subsequent Works

We begin with the model originally addressed by Shannon [1] of a known mem-

oryless channel with (finite) input X and output Y alphabets, respectively. The
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channel law is defined by the probabilities W (y|x) of receiving y ∈ Y when x ∈ X

is sent. This channel is fixed and assumed to be known at both the transmitter and

the receiver. For this model, the capacity is given by [1]

C(W ) = max
P∈P(X )

I
(
P,W

)
,

where P(X ) denotes the set of all (input) probability distributions on X and

I
(
P,W

)
=
∑

x∈X

∑

y∈Y

P (x)W (y|x) log
W (y|x)
Q(y)

,

with Q(y) =
∑

x∈X
P (x)W (y|x) is the mutual information between the channel input

and output.

Within the class of Gaussian channels W , we consider constant or additive white

Gaussian noise (AWGN) channels, fading channels, and multiple-antenna channels.

We refer the reader to the above mentioned texts and for a complete survey of fading

channels see Biglieri, Proakis and Shamai [21].

In addition to the Shannon’s capacity, the concept of outage capacity was first

proposed in [22] for fading channels. It is defined as the maximum rate that can

be supported with probability 1 − γ, where γ is a prescribed outage probability.

Furthermore, it has been shown that the outage probability matches well the error

probability of actual codes (cf. [23, 24]). This outage probability depends on the

codeword error probability, averaged over a random coding ensemble and over all

channel realizations. In contrast, ergodic capacity is the maximum information rate

for which error probability decays exponentially with the code length.

State-dependent channels

In subsequent work, Shannon [25] and others have proposed several different chan-

nel models for a variety of situations in which either the encoder or the decoder must

be selected without a complete knowledge of the statistic governing the channel over

which transmission occurs. Our emphasis in this thesis shall be on single-user and

multi-user channels controlled by random states. In such situations where the chan-

nel statistic is fully unknown, the most relevant models can be summarized to: (i)

compound channels and (ii) arbitrarily varying channels.
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(i) Compound DMCs, which models communication over a memoryless channel

whose law is unknown but remains fixed throughout a transmission. Both transmitter

and receiver are assumed ignorant of the channel law governing the transmission; they

only know the family W to which the law belongs W ∈ W. We emphasize that in this

model no prior distribution is assumed, and codes for these channels must therefore

exhibit a small probability of error for every channel in the family. The capacity of a

compound DMC is given by the following expression

C(W) = max
P∈P(X )

inf
W∈W

I
(
P,W

)
.

Obviously, the highest achievable rate cannot exceed the capacity of any channel in

the family, but this bound is not tight, as different channels in the family may have

different capacity achieving input (cf. [26], [27], [28], [7]). However, if the encoder

knows the channel, even if the decoder does not, the capacity is equal to the infimum

of the capacities of the channels in the family.

(ii) Arbitrarily varying channels (AVC’s) were introduced by Blackwell, Breiman,

and Thomasian [29] to model communication situations where the channel statistics

(”state”) may vary in an unknown and arbitrary manner during the transmission of

a codeword, perhaps caused by jamming. Formally, an AVC with input alphabet

X , output alphabet Y , and set of possible states S is defined by the probabilities

W (y|x, s) of receiving y ∈ Y when x ∈ X is sent and s ∈ S is the state with

probability distribution PS(s). The capacity problem for AVC’s has many variants

according to sender’s and receivers’ knowledge about the states, the state selector’s

knowledge about the codeword, degree of randomization in encoding and decoding,

the error probability criteria adopted, etc. (for further discussions we refer the reader

to [30]). Assuming the situation when no information is available to the sender and

receiver about the states, nor to the state selector about the codeword sent, and

random encoders are permissible. Already the authors in [29] showed that

C(W,Q) = max
P∈P(X )

min
PS∈Q(S )

I
(
P,WS

)
,

where WS is computed by using PS and W .

In the context of fading channels, it is useful to note that the notions of reliable
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communication yielding to the compound channel and the arbitrary varying channel,

provide very small values of transmission rates (in most of the cases these are equal

to zero). In fact these notions require that the resulting values of capacity can be

attained when the channel uncertainty is at its severest during the course of a trans-

mission, and hence error probabilities are evaluated as being the largest with respect

to the unknown channels states. In other words, the corresponding notions of reliable

transmission are not adapted to wireless communication models.

A variation of these channels has been considered by Kusnetsov and Tsybakov

in [31], Heegar and El Gamal in [32] and Gelfand and Pinsker in [33], where the

channel states are assumed to be available at the transmitter in a non-causal way.

Consider the problem of communicating over a DMC where the transmitter knows the

channel states before beginning the transmission (i.e. non-causal state information)

but the receiver does not know these. This channel is commonly known as channel

with non-causal state information at the transmitter. The capacity expression of this

channel is given by [33],

C
(
W,PS

)
= sup
P (u,x|s)∈P(U ×X )

{
I
(
PU ,W

)
− I
(
PS, PU |S

)}
, (1.1)

where U ∈ U is an auxiliary random variable chosen so that U ­ (X,S) ­ Y form a

Markov chain, I(·) is the classical mutual information and P is the set of all joint

probability distributions P (u, x|s) = δ
(
x − f(u, s)

)
P (u|s) with f : U × S 7→ X

an arbitrary mapping function and δ(·) is the dirac function. The non-causal side

information at the transmitter can substantially increase the capacity.

Mismatched decoders

The class of decoders called mismatched decoders has been of interest since 1970’s

(cf. [34], [35] and [36]). They are decoders defined by minimizing a ”distance” given

function d(x,y) ≥ 0, which is defined on channel input and output alphabets. Given

an output sequence y this decoder that uses the metric d declares that the codeword

i was sent iff d(xi,y) < d(xj,y), for all j 6= i, and it declares an error if no such

exists. Here the term ”distance” is used in the widest sense, no restriction on this is

implied. This scenario arises naturally when, due to imperfect channel measurement

or for simplicity reasons, the receiver is designed using a suboptimal decoding rule.
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Theoretically, one can employ universal decoders (cf. [37], [38] and [39]), however in

most practical coded modulation systems it is ruled out by complexity considerations.

Thus, due to the simplicity of their implementation mismatched decoders are preferred

to all others.

The mismatch capacity [34], which is defined as the supremum of all achievable

rates, is unknown. More precisely, the d-capacity of a DMC is the supremum of

information rates of codes with a given d-decoder that yields arbitrarily small error

probability. In the special case when d is the hamming distance, d-capacity provides

the zero-error capacity or erasures-only capacity. Shannon’s zero-error capacity can

also be regarded as a special case of d-capacity, cf. [40]. A lower bound to d-capacity

follows as a special case of a result in [41]; this bound was obtained also by Hui [42].

Csiszár and Narayan [40] showed that this bound is not tight in general but its

positivity is necessary for positive d-capacity. Lapidoth [43] showed that d-capacity

can equal the channel capacity even if the above lower bound is strictly smaller. Other

works addressing the problem of d-capacity or its special case of zero-error capacity

include Merhav, Kaplan, Lapidoth, and Shamai [44], as well as its generalization to

the case with arbitrary alphabets [45].

This problem has been studied extensively, and we emphasize that different choices

of the code distribution lead to different bounds on the mismatch capacity. In [46], the

Gallager upper bound on the average message error probability for DMCs under the

random-coding regime was used to derive a bound that is referred to the Generalized

Mutual Information (GMI). This bound is loosest of the above bounds, but it has

the benefit of being applicable to channels with continuous alphabets. As was done

in [47], the rate function in this bound is computed by using the Gärtner-Ellis theorem

(large deviations principle: LDP).

A special class of mismatched decoders are nearest-neighbor decoders (minimum

Euclidean distance decoders) that are often used on additive noise channels, even if

the noise is not a white Gaussian process. Incurred performance loss of such decoders,

in terms of the achievable rates over single-antenna fading channels, has been studied

in [47] and [48]. While in [49] a modified nearest-neighbor decoder, using a weighting

factor, for the fading multiple-antenna channel is introduced, and an expression of

the GMI of its achievable rates is obtained. A similar investigation was carried out
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in [50].

Broadcast channels

The concept of broadcast channels (BCs) was introduced and first studied by Cover

in [51]. It simply consists of a transmitter communicating information simultaneously

to several receivers. We remark that this differs from a TV or radio broadcast, in

which the transmitter sends the same message to each receiver. Here the transmitter

sends different messages to each receiver.

In contrast with point-to-point systems, where the channel capacity is the max-

imum amount of information that the transmitter can send to the receiver, with

arbitrary small error probability. In multi-user communications (with continuous or

discrete alphabets), the transmitter can simultaneously transmit to more than one

user, and consequently multi-user interference cancellation between different messages

is needed. As a consequence, the channel capacity is the set of all simultaneously

achievable rate vectors, which become an achievable rate region.

Consider a BC with only two receivers, which consists of an input X ∈ X and

two outputs (Y1, Y2) ∈ Y1 × Y2 with a transition probability function W (y1, y2|x).
The capacity region of this BC only depends on the marginal channels W (y1|x) and

W (y2|x) (cf. [14], Theorem 14.6). So far conclusive results have been established for

special cases only. An achievable rate region for degraded BCs has been proposed by

Bergmans in [52]. The physically degraded BC is defined by assuming that X­Y1­Y2

form a Markov chain (the output Y2 is a noisy version of Y1). By proving the converse

of the corresponding coding theorem, Gallager [53] and Ahlswede [54] obtained the

capacity region of BCs with degraded components. However the capacity region for

a general non-degraded broadcast channel is still unknown. The largest achievable

region for the general case is given by the Marton’s region [55] by exploiting the idea

of random binning coding (see also [56] for a short proof).

Assume that (U1, U2) ∈ U1 × U2 are two auxiliary random variables with finite

alphabets such that (U1, U2)­X­(Y1, Y2) form a Markov chain. The Marton’s region
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(an inner bound of the capacity region) is the set of all rates (R1, R2) ∈ R(W )

R(W ) = co
{

(R1 ≥ 0, R2 ≥ 0) : R1 ≤ I
(
PU1

,W
)
,

R2 ≤ I
(
PU2

,W
)
,

R1 +R2 ≤ I
(
PU1

,W
)

+ I
(
PU2

,W
)

− I
(
PU2

, PU1|U2

)
, for all P (u1, u2, x) ∈ P

}
,

(1.2)

where co{·} stands for the convex hull and P(U1 × U2 × X ) denotes the set of all

input probability distributions. A complete survey of these channels can be found

in [57].

1.2 Research Context and Motivation

After a stellar growth over the 90’s driven by voice as the killer app, wireless

communications is now rapidly moving into a new era propelled by data networking,

which has transformed from a niche technology into a vital component of most people’s

lives. The resultant requirement to combine mobile phone service and rapid growth of

the Internet has created an environment where consumers desire seamless, high quality

connectivity at all times and from all virtual locations. This brings many technical

challenges. This spectacular growth is still occurring in cellular telephony and wireless

networking, with no apparent end in sight. In order to satisfy user demand, resulting

in constantly increasing of high-information rate transmission (without bandwidth

increase), the desired quality of service (QoS) must be guaranteed for each user, even

with very poor connection sessions. This means that the system designer must share

the available resources (e.g. transmission and training power, number of training

symbols, etc.) required to ensure the desired communication service (to achieve target

information rates with small error probability).

Supporting the QoS in presence of imperfect channel knowledge is one of the crit-

ical requirements of single and multi-user wireless systems. In such communication

systems channel estimation is usually performed at the receiver through use of pilot

symbols transmitted at the beginning of each frame, and this knowledge is generally

sent to the transmitter by some feedback. These channel estimates may strongly differ

from the unknown channel, which is a real concern for the design of communication
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systems guaranteeing the desired communication service. Specially for radio commu-

nications with mobile receivers, where the coherence time of the channel may be too

short to permit reliable estimation to the receiver side of the time-varying parameters

(the channel states) controlling the communication.

In the described scenario, most classic results concerning the theoretical commu-

nication limits and their optimal achieving schemes may turn out to be somewhat

limited in practical applications, because these either directly or indirectly assume

that the transmitter and receiver perfectly know the channel parameters. For in-

stance, these limits do not incorporate any information about the imperfect channel

knowledge. Thus, optimal coding schemes may not be as efficient as intended because

its design does not take into account the characterization of the estimation perfor-

mances. Furthermore, the practical importance of developing new theoretical limits

assuming imperfect channel knowledge and QoS requirements, is that this can allow

the system designer to decide how allocate the resources needed to achieve the desired

communication service.

Therefore, studying the limits of reliable information rates in the case of imperfect

channel estimation is an important problem from practical and theoretical viewpoint.

This problem was previously tackled by Médard in [58], who derives an inner and

outer bound of the capacity for AWGN channels with MMSE channel estimation at

the receiver and no information at the transmitter. In [59] Yoo and Goldsmith extend

these results to the multiple-antenna fading channel, assuming perfect feedback. This

problem was also tackled by Hassibi and Hochwald in [60] for a block-fading channel

with training sequences. These bounds are only depending on the variance of the

channel estimation error regardless of the channel estimation method. Whereas, its

extension to the case of general memoryless channels with an arbitrary estimator

function follows from the general framework considered in this work.

This thesis first investigates the fundamental limits of reliable communication over

wireless channels with QoS requirements, when the receiver and the transmitter only

know noisy estimates (probably very poor estimates) of the channel parameters. As an

attempt to deal with this problem of reliable communication over rapidly time-varying

channels, an alternative approach consists in relying on the statistic characterizing the

quality of channel estimates. This statistic can be used to define the notion of reliable
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communication and its associated capacity. Furthermore, through this statistic it is

possible to incorporate QoS requirements into the capacity expression.

In addition to studying theoretical limits, using this research outcome for our

purpose, optimal decoding for practical communication systems allowing to achieve

this capacity under imperfect channel estimation is also investigated. The results

obtained in this investigation contain as a special case the improved decoding metric

for space-time decoding of fading MIMO (Multiple-Input-Multiple-Output) channels

proposed by Tarokh et al. [61] and Taricco and Biglieri [62].

Our main questions motivating this research are: (i) How to design communica-

tion systems to carry the maximum amount of information by using a minimum of

resources, and (ii) how to correct them for imperfect channels knowledge.

Let us now move to a similar discussion concerning a downlink wireless commu-

nication channel, the multi-user broadcast channel. Consider, for example, a base

station transmitting information over a downlink channel, where the base station

(the transmitter) sends at the same time different informations to the mobiles (the

receivers). In the case of wireless networks, as Fig. 1.1 shows, the base station

may be transmitting a different voice call to a number of mobiles and simultaneously

transferring data files to those and other users.

In the recent years, the multiple antenna Gaussian broadcast channel (MIMO-

BC) has been extensively studied. Most of the literature focuses on the information-

theoretic performances under the assumption on the instantaneous availability at both

transmitter and all receivers of the channel matrices controlling the communication.

Caire and Shamai in [63], have established an achievable rate region, referred to as the

DPC region. They conjectured that this achievable region is the capacity. Recently

in [64], Weingarten, Steinberg and Shamai prove this conjecture by showing that the

DPC region is equal to the capacity region.

The great attraction of these channels is that under the assumption of perfect

channel knowledge, as the signal-to-noise ratio (SNR) tends to infinity, the limiting

ratio between the sum-rate capacity and the capacity of a single-user channel that

results when the receiver allowed to cooperate is one. Thus, for broadcast chan-

nels where the receivers cannot cooperate, the interference cancellation implemented

by DPC results in no asymptotic loss. However, as well as for single user wireless
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Figure 1.1: Base station transmitting information over a downlink channel.

channels, the assumption of perfect channel knowledge is not applicable to practical

BCs. The issue of the effect of the imperfect channel knowledge becomes more severe

in this scenario, since the error on the channel estimation of some user affects the

performances of many other users if e.g. multi-user interference cancellation is imple-

mented. In particular, the problem may even be more complicated in the situations

where no channel information is available at the transmitter, i.e., there is no feedback

information from the receiver to the transmitter covering the channel estimates.

For instance, when the channel parameters are not perfectly known at both trans-

mitter and all receivers, there are several questions that must be answered. For

example:

(i) First, it is not immediately clear whether it is more efficient to send information

to only a single user at a time rather than to use multiuser interference cancellation.

Obviously, this answer will depend on the amount and quality of the information

available at the transmitter and all receivers. Recently, Lapidoth, Shamai and Wigger

[65] have shown that when the transmitter only has an estimate of the channel and

the receivers perfectly know the channels, the limiting ratio between the sum-rate

capacity and the capacity of a single-user channel with cooperating receivers is upper

bounded by 2/3.

(ii) While it is well-known that for systems with perfect channel information sig-

nificant gains can be achieved by adding antennas at the transmitter and/or receivers

(cf. [66], [63]). It is natural to ask if also significant gains can be still achieved with

imperfect channel estimation, without excessive increases in the amount of training.
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(iii) As we mentioned before DPC scheme was proved to be the optimal way of

achieving the boundary points of the capacity region of the MIMO-BC. Nevertheless,

is DPC robust to channel estimation errors? if it is not, how to correct this?

The origins of DPC have started in the 1980s with the Gelfand and Pinsker’s

work [33], where the authors consider the capacity of discrete memoryless state-

dependent channels with non-causal channel state information at the transmitter

and without information at the receiver (called Gelfand and Pinsker’s channel). In

“Writing on Dirty Paper” [67], Costa applied this result to an additive white Gaus-

sian noise (AWGN) channel corrupted by an additive Gaussian interfering signal (the

channel states) that is non-causally known2 at the transmitter. He showed the sur-

prising result that choosing an adequate distribution for the codebooks, this channel

achieves the same capacity as if the interfering signal was not present. Furthermore,

the ”interference cancellation”holds for arbitrary power values of the interfering signal

compared to the transmission power. Several extensions of this result have been estab-

lished for non-Gaussian interfering signals and non-stationary/non-ergodic Gaussian

interference (cf. [68], [69]).

This result has gained considerable attention during the last years, mainly be-

cause of its potential use in communication scenarios where interference cancellation

at the transmitter is needed. In particular, many new applications to information

embedding (robust watermarking) in multimedia signal processing have emerged over

the years [70]. Most notably is the idea of interference cancellation implemented by

DPC scheme as well as the optimal way to embed information carrying-signals called

watermarks into another signal (generally stronger) called host signal. The host sig-

nal is any multimedia signal, which can be either text, image, audio or video. The

embedding must not introduce perceptible distortions to the host, and the water-

mark should survive common channel degradations. Applications of watermarking

include copyright protection, transaction tracking, broadcast monitoring and tamper

detection [71], e.g. the transmission of just one bit of information expected to be de-

tectable with very low probability of false alarm, is sufficient to serve as an evidence

of copyright.

This thesis investigates in an unified framework both scenarios: the capacity region

2The transmitter knows the channel states before beginning the transmission.
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of multi-user MIMO broadcast channels and the capacity of channels with channel

states non-causally known at the transmitter, under imperfect channel estimation. In

addition to these theoretical limits, the role of multi-user state-dependent channels

with non-causal channel state information at the transmitter in multiple information

embedding is also studied. As well as for multi-user channels, multiple information

embedding refers to the situation of embedding several messages into the same host

signal, with or without different robustness and transparency requirements. Exploring

these connections adds to the general understanding of multiple information embed-

ding, and secondly, also allows us to establish new practical coding schemes.

1.3 Overview of Contributions

Through this thesis we address the following specific questions:

1. What are the theoretical limits of reliable transmission rates with imperfect chan-

nel estimation and quality of service requirements? (see chapter II)

2. How those limits can be achieved by using practical decoders in coded modulation

systems? (see chapter III)

3. What are the fundamental capacity limits of state-dependent channels with non-

causal channel state information at the transmitter in presence of imperfect

channel knowledge: the fading Costa’s channel and the multiple antenna BC?

(see chapter IV)

4. Can multi-user information theory provide coding strategies for multiple informa-

tion embedding applications? (see chapter V)

In Chapter 2 we address the above-mentioned channel mismatch scenario by in-

troducing the notion of estimation-induced outage capacity, for which we provide an

associated coding theorem and its strong converse, assuming a discrete memoryless

channel. Basically, the transmitter and the receiver strive to construct codes for en-

suring reliable communication with a given quality of service, no matter which degree

of accuracy estimation arises during a transmission. In our setting, the quality of
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service constraint stands for achieving target rates with small error probability (the

desired communication service), even for very poor channel estimates.

We illustrate our ideas via numerical simulations for transmissions over single-user

Ricean fading channels, with and without channel estimates available at the transmit-

ter assuming maximum-likelihood (ML) channel estimation at the receiver. We also

consider the effects of imperfect channel information at the transmitter, i.e., there

is a rate-limited feedback link from the receiver back to the transmitter conveying

the channel estimates. These results provide intuitive insights on the impact of the

channel estimates and the channel characteristics (SNR, Ricean K-factor, training

sequence length, feedback rate, etc.) on the mean outage capacity. For both perfect

and rate-limited feedback channel, we derive optimal transmitter power allocation

strategies that achieve the mean outage capacity.

In Chapter 3 we investigate the optimal decoder achieving this capacity with im-

perfect channel estimation. First, by searching into the family of nearest neighbor

decoders, which can be easily implemented on most practical coded modulation sys-

tems, we derive a decoding metric that minimizes the average of the transmission

error probability over all channel estimation errors. This metric, for arbitrary mem-

oryless channels, achieves the capacity of a composite (more noisy) channel. Next,

we specialize the general expression to obtain its corresponding decoding metric for

fading MIMO channels.

According to the notion of estimation-induced outage rates introduced in Chapter

2, we characterize maximal achievable information rates associated to the proposed

decoder. These achievable rates, for uncorrelated Rayleigh fading, are compared to

both those of the classical mismatched ML decoder and the ultimate limits given by

the estimation-induced outage capacity, which uses a theoretical decoder (i.e. the

best possible decoder in presence of channel estimation errors). Numerical results

show that the derived metric provides significant gains for the considered scenario, in

terms of achievable information rates and bit error rate (BER), in a bit interleaved

coded modulation (BICM) framework, without introducing any additional decoding

complexity.

In Chapter 4 we examine the effect of imperfect channel estimation at the receiver

with imperfect (or without) channel knowledge at the transmitter on the capacity of
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state-dependent channels with non-causal channel state information at the transmit-

ter. We address this problem through the notion of reliable communication based

on the average of the error probability over all channel estimation errors, assuming

a DMC. This notion allows us to consider the capacity of a composite (more noisy)

Gelfand and Pinsker’s channel. We first derive the optimal DPC scheme (assuming

Gaussian codebooks) that achieves the capacity of the single-user fading Costa’s chan-

nel with ML channel estimation. These results illustrate a practical trade-off between

the amount of training and its impact to the interference cancellation performances

of DPC scheme. These are useful in realistic scenarios of multiuser wireless commu-

nications and information embedding applications (e.g. robust watermarking). We

also studied optimal training design adapted to each of these applications.

Next, we exploit the tight relation between the largest achievable rate region

(Marton’s region) for arbitrary BCs and channels with non-causal channel state in-

formation at the transmitter to extend this region to the case of imperfect channel

knowledge. We then derive achievable rate regions and optimal DPC schemes, for

a base station transmitting information over a multiuser Fading MIMO-BC, where

the receivers only dispose of a noisy estimate of the channel parameters, and these

estimates may be (or not) available to the transmitter. We provide numerical results

for a two-users MIMO-BC with ML or minimum mean square error (MMSE) channel

estimation. The results illustrate an interesting practical trade-off between the ben-

efit of a high number of transmit antennas and the amount of training needed. In

particular, we observe the surprising result that a BC with a single transmitter and

receiver antenna, and imperfect channel estimation at the receivers, does not need

the knowledge of estimates at the transmitter to achieve large rates.

In Chapter 5 we presents several implementable DPC based schemes for multi-

ple user information embedding, through emphasizing their tight relationship with

conventional multiple user information theory. We first show that depending on the

targeted application and on whether the different messages are asked to have differ-

ent robustness and transparency requirements, multiple user information embedding

parallels one of the well-known multi-user channels with non-causal channel state in-

formation at the transmitter. The focus is on the Gaussian BC and the Gaussian

Multiple Access Channel (MAC). For each of these channels, two practically feasible
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transmission schemes are compared. The first approach consists in a straightforward

-rather intuitive- superimposition of DPC schemes and the second consists in a joint

design of these DPC schemes.

The joint approach is based on the ideal DPC for the corresponding channel. Our

results extend on one side the practical implementations QIM, DC-QIM and SCS

from the single user case to the multiple user one, and on another side provide a clear

evaluation of the improvements brought by joint designs in practical situations. Then,

we broaden our view to discuss the framework of more general lattice-based (vector)

codebooks and show that the gap to full performance can be bridged up using finite

dimensional lattice codebooks. Performance evaluations, including Bit Error Rates

and achievable rate region curves are provided for both methods, illustrating the

improvements brought by a joint design.

Finally, we discuss conclusions and possible extensions of this thesis in Chapter

VI. The following table lists some abbreviations used throughout the thesis.
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QoS Quality of Service
AWGN Additive White Gaussian Noise
BC Broadcast Channel
MAC Multiple-Access Channel
DMC Discrete Memoryless Channel
MIMO Multiple Input Multiple Output (Multiple Antenna)
MIMO-BC MIMO Broadcast Channel
DPC Dirty Paper Coding
TDMA Time-Division Multiple Access
CSI Channel State Information
CSIR Channel State Information at the Receiver
CSIT Channel State Information at the Transmitter
CEE Channels Estimation Errors
BICM Bit Interleaved Coded Modulation
BER Bit Error Rate
Tx Transmitter
Rx Receiver
PM Probability Mass
PDF Probability Density Function
QIM Quantization Index Modulation
SCS Scalar Costa Scheme
ML Maximum-Likehood
MMSE Minimum Mean Square Error

Table 1.1: Table of abbreviations.



Chapter 2

Outage Behavior of Discrete

Memoryless Channels Under

Channel Estimation Errors

Classically, communication systems are designed assuming perfect channel state

information at the receiver and/or transmitter. However, in many practical situations,

only a noisy estimate of the channel is available that may strongly differs from the

true channel. We address this channel mismatch scenario by introducing the notion

of estimation-induced outage capacity, for which we provide an associated coding

theorem and its strong converse, assuming a discrete memoryless channel.

Basically, the transmitter and the receiver strive to construct codes for ensuring

reliable communication with a quality of service (QoS), no matter which degree of

accuracy estimation arises during a transmission. In our setting, the quality of service

constraint stands for achieving target rates with small error probability (the desired

communication service), even for very bad channel estimates.

We illustrate our ideas via numerical simulations for transmissions over Ricean

fading channels with different quality of services, without channel information at the

transmitter and with maximum-likelihood (ML) channel estimation at the receiver.

We also consider the effects of imperfect channel information at the transmitter, i.e.,

there is a rate-limited feedback link from the receiver back to the transmitter con-

veying the channel estimates. Our results provide intuitive insights on the impact of

31
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the channel estimates and the channel characteristics (SNR, Ricean K-factor, training

sequence length, feedback rate, etc.) on the mean outage capacity. For both perfect

and rate-limited feedback channel, we derive optimal transmitter power allocation

strategies that achieve the mean outage capacity. We furthermore compare our re-

sults with the achievable rates of a communication system where the receiver uses a

mismatched ML decoder based on the channel estimate.

2.1 Introduction

Channel uncertainty, caused e.g. by time variations/fading, interference, or chan-

nel estimation errors, can severely impair the performance of wireless systems. Even if

the channel is quasi-static and interference is small, uncertainty induced by imperfect

channel state information (CSI) remains. As a consequence, studying the limits of

reliable information rates in the case of imperfect channel estimation is an important

problem. The various amount of information available to the transmitter and/or re-

ceiver and the error probability criteria of interest, capturing the channel uncertainty,

lead to different capacity measures. Indeed, depending on the target communication

and the available resources, each scenario has to identify the adequate notion of reli-

able transmission, so that in practice the resulting capacity matches well the observed

rates.

In selecting a model for a communication scenario, several factors must be con-

sidered. These include the physical and statistical nature of the channel disturbances

(e.g. fading distribution, channel estimation errors, practical design constraints, etc.),

the information available to the transmitter and/or to the receiver and the presence

of any feedback link from the receiver to the transmitter (for further discussions we

refer the reader to [30]). Let us first review the model for communication under

channel uncertainty over a memoryless channel with input alphabet X and output

alphabet Y [30]. A specific instance of the unknown channel is characterized by a

transition probability mass (PM) W (·|x, θ) ∈ WΘ with a fixed but unknown channel

state θ ∈ Θ ⊆ Cd. Here, WΘ =
{
W (·|x, θ) : x ∈ X , θ ∈ Θ

}
is a family of conditional

transition PMs on Y , parameterized by a random vector θ ∈ Θ with probability

density function (pdf) ψ(θ). In practical wireless systems we may distinguish two
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different scenarios.

A first situation is described by two facts: (i) the transmitter and the receiver are

designed without full knowledge of the characteristics of the law governing the channel

variations (ψ(θ),WΘ), (ii) the receiver may dispose only of a noisy estimate θ̂ of the

CSI. A reasonable approach for this case consists in using mismatched decoders (cf.

[34], [42], [40] and [44]). The decoding rule is restricted to be a metric of the interest,

which perhaps is not necessarily matched to the channel. Recent additional results

obtained by Lapidoth et. al. [48,72] show that in absence of CSI the asymptotic MIMO

capacity grows double-logarithmically as a function of SNR. This line of work was

initiated by Marzetta and Hochwald [73], and then explored by Zheng and Tse [74], to

study the non-coherent capacity of MIMO channels under a block-fading assumption.

The authors show that the capacity increases logarithmically in the SNR but with a

reduced slope.

Another scenario concerns the case where the law governing the channel variations

is known at the transmitter and at the receiver. Caire and Shamai [75] have examined

the case of imperfect CSI at the transmitter (CSIT) and perfect CSI at the receiver

(CSIR), so that power allocation strategies can be employed.

2.1.1 Motivation

The results recalled above are derived assuming that either no CSI or perfect CSI

is available at the receiver. However, in many practical situations, the receiver dis-

poses only of a noisy channel estimate (which may in some circumstances be a poor

estimate). In that scenario, the resulting capacity will crucially relies on the error

probability criteria adopted. On the other hand, most practical constraints of a com-

munication system are concerned with the quality of service (QoS). These constraints

require to guarantee a given target rate R with small error probability for each user,

no matter which degree of accuracy estimation arises during the communication. To

this end, depending on the channel characteristics, the system designer must share the

available resources (e.g. power for transmission and training, the amount of training

used, etc.), so that the requirements can be satisfied.

Throughout the chapter we assume that the channel state, which neither the

transmitter nor the receiver know exactly, remains constant within blocks of duration
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T symbol periods (coherence time), and these states for different blocks are i.i.d. θ ∼
ψ(θ). Note that the value of T is related to the product of the coherence time and the

coherence bandwidth of a wireless channel. The receiver only knows an estimate θ̂R

of the channel state and a characterization of the estimator performance in terms of

the conditional pdf ψ(θ|θ̂R) (this can be obtained using WΘ, the estimation function

and the a priori distribution of θ). Moreover, a noisy feedback channel provides

the transmitter with θ̂T, a noisy version of θ̂R (e.g. due to quantization or feedback

errors). In what follows we assume that θ ­ θ̂R ­ θ̂T form a Markov chain, with

the joint distribution of (θ̂T, θ̂R, θ) given by ψ(θ̂T, θ̂R, θ). The scenario underlying

these assumptions is motivated by current wireless systems, where e.g. T for mobile

receivers may be too short to permit reliable estimation of the fading coefficients.

However, in spite of this difficulty, the system designer must guarantee the desired

quality of service.

The concept of outage capacity was first proposed in [22] for fading channels. It is

defined as the maximum rate that can be supported with probability 1− γ
QoS

, where

γ
QoS

is a prescribed outage probability. Furthermore, it has been shown that the

outage probability matches well the error probability of actual codes (cf. [23,24]). In

contrast, ergodic capacity is the maximum information rate for which error probability

decays exponentially with the code length. In our setting, a transceiver using θ̂ =

(θ̂R, θ̂T) instead of θ obviously might not support an information rate R, even if R is

less than the channel capacity under perfect CSI (even arbitrarily small rates might

not be supported if θ̂ and θ happen to be strongly different). Consequently, outages

induced by channel estimation errors will occur with a certain probability γ
QoS

. This

outage probability depends on the codeword error probability, averaged over a random

coding ensemble and over all channel realizations given the estimated state.

In this chapter we provide an explicit expression to evaluate the trade-off be-

tween the maximal outage rate versus the outage probability γ
QoS

, that we denote

by estimation-induced outage capacity C̄(γ
QoS

). Due to the independence of different

blocks (coherence intervals), it is sufficient to study the estimation-induced outage

rate C(γ
QoS

, θ̂) for a single block (cf. related discussions in [76]), for which the un-

known channel state is fixed with estimate θ̂ = (θ̂T, θ̂R). Then, we consider the
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performance measure

C̄(γ
QoS

) = Eθ̂

{
C(γ

QoS
, θ̂)
}
, (2.1)

which describes the average of information rates over all channel estimates (θ̂T, θ̂R),

with prescribed outage probability γ
QoS

. The expectation in (2.1) is taken with respect

to the joint distribution ψ(θ̂) = ψ(θ̂T, θ̂R) and reflects an average over a large number

of coherence intervals. Our time-varying channel model is relevant for communication

systems with small training overhead, where a quality of service in terms of achieving

target rates with small error probability must be ensured, although significant channel

variations occur, e.g. due to user mobility.

2.1.2 Related works

Assume a wireless channel where the coherence time is sufficiently long (this is

often a reasonable assumption for a fixed wireless environment), then the transmitter

can send a training sequence that allows the receiver to estimate the channel state. In

this case, the average of the error probability over all channel estimation errors E =

θ−θ̂R seems to be a reasonable criterion to define the notion of reliable communication,

together with the associated definition of achievable rates. By considering this notion

of reliable communication, Medard [58] derives capacity bounds for additive white

Gaussian noise (AWGN) channels with MMSE channel estimation at the receiver and

no CSIT. These bounds are only depending on the variance of the estimation error

σ2
E

regardless of the channel estimation method. These results have been extended

to flat-fading channels in [77, 78]. Recent work by Yoo and Goldsmith [59] derives a

capacity lower bound for MIMO fading channels by assuming a perfect feedback link.

Unfortunately, Gaussian input distribution are not optimal inputs for maximizing

the capacity. Because of the difficulty of computing this maximization only lower and

upper bounds are known, these are tight for accurate estimations.

In our setting, this notion of reliable communication relied to the pdf of θ given

θ̂R, corresponds to consider the capacity of the following composite channel model

W̃ (y|x, θ̂R) =

∫

Θ

W (y|x, θ)dψ(θ|θ̂R), (2.2)
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resulting from the average of the unknown channel W (y|x, θ) over all channel esti-

mation errors, given the estimate θ̂R. The maximal achievable rate “the capacity”,

defined for the average of the error probability over all channel estimation errors, is

given by

C̃(θ̂) = max
P (·|θ̂T)∈P(X )

I
(
P, W̃ (·|·, θ̂R)

)
, (2.3)

where I
(
P, W̃ (·|·, θ̂R)

)
is the mutual information computed with the composite chan-

nel (2.2) and the input distribution P ∈ P(X ). This expression is the capacity of

general DMCs for the corresponding bounds found in [58] and [59]. Its proof follows

from Shannon’s coding theorem, since the resulting error probability of the composite

channel is defined in terms of the conditional transition PM W̃ (·|x, θ̂R) (cf. [7]). This

capacity can be attained by using the maximum-likelihood (ML) decoding metric

based on the transition PM (2.2).

The exposed notion of reliable communication, which leads to the capacity (2.3),

reproduces well the observed rates in realistic communications when accurate chan-

nel estimates are available. However, if it is not the case, the average of the error

probability over all estimation errors cannot ensure (in practice) reliable decoding in

the case of significant channel variations and coarse estimations. Thus, the capac-

ity measure (2.3) might be not adequate for communication systems with very small

training overhead.

This chapter is organized as follows. In section 2.2, we first formalize the notion

of estimation-induced outage capacity for general DMCs. Then, we present a coding

theorem providing the explicit expression for the corresponding capacity. In section

2.3 the proof of the theorem and its converse are presented. An application example

for the considered scenario involving a fading Ricean channel with AWGN, without

feedback CSI and maximum likelihood (ML) channel estimation, is considered in sec-

tion 2.4. The mean outage capacity is also compared to the achievable outage rates

of a system using the mismatched ML decoder, based on the channel estimate. Then,

assuming an instantaneous and error-free feedback, we derive optimal power alloca-

tion strategies that maximize the mean outage capacity over all channel estimates.

We also consider the effect of rate-limited feedback CSI, deriving the correspond-

ing power allocation strategies. Finally, section 2.5 provides simulations to illustrate
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mean outage rates.

2.2 Estimation-induced Outage Capacity and Cod-

ing Theorem

In this section, we first develop a proper formalization of the notion of estimation-

induced outage capacity and state a coding theorem.

Note about notation: Throughout this section, we use the following notation:

P(X ) denotes the set of all atomic (or discrete) probability masses (PMs) on X

with finite number of atoms. Then the nth Cartesian power is defined as the sample

space of X = (X1, . . . , Xn), with P n-probability mass determined in terms of the nth

Cartesian power of P . The joint PM corresponding to the input P ∈ P(X ) and the

transition PM W (·|x) ∈ P(Y ) is denoted as W◦P ∈ P(X ×Y ), its marginal on

Y denoted as WP ∈ P(Y ). The alphabets X and Y are assumed finite, and their

cardinality is denoted by ‖ · ‖, and the complement of any set A is denoted by A c.

The functional D(·‖·) and H(·) respectively denote the Kullback-Leibler divergence

and the entropy. The conditional versions are D(·‖ · |·) and H(·|·), respectively. We

use the notion of (conditional) information-typical (I-typical) sets defined in terms of

(Kullback-Leibler) divergence, i.e., Tn
P (δ) =

{
x ∈ X : D(P̂n‖P ) ≤ δ

}
and Tn

W (x, δ) =
{
y ∈ Y : D(Ŵn‖W |P̂n) ≤ δ

}
(for further details see Appendix A.1).

2.2.1 Problem definition

A message m from the set M = {1, . . . , bexp(nR)c} is transmitted using a length-

n block code defined as a pair (ϕ, φ) of mappings, where ϕ : M × Θ 7→ X n is the

encoder (that makes only use of θ̂T), and φ : Y n ×Θ 7→ M∪{0} is the decoder (that

makes only use of θ̂R). The random rate, which depends on the unknown channel

realization θ and the estimate θ̂ = (θ̂T, θ̂R) through the probability of error, is given

by
1

n
logMθ,θ̂. The maximum error probability over all messages is defined as

e(n)
max(ϕ, φ, θ̂; θ) = max

m∈M

∑

y∈Y n:φ(y,θ̂R)6=m

W n
(
y|ϕ(m, θ̂T), θ

)
. (2.4)
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Definition 2.2.1 For a given channel estimate θ̂ = θ̂0, and 0 < ε, γ
QoS

< 1, an

outage rate R ≥ 0 is (ε, γ
QoS

)-achievable on an unknown channel W (·|x, θ) ∈ WΘ, if

for every δ > 0 and every sufficiently large n there exists a sequence of length-n block

codes such that the rate satisfies

Pr
({
θ ∈ Λ(n)

ε : n−1 logMθ,θ̂ ≥ R− δ
}∣∣θ̂
)
≥ 1 − γ

QoS
, (2.5)

where Λ
(n)
ε =

{
θ ∈ Θ : e

(n)
max(ϕ, φ, θ̂; θ) ≤ ε

}
is the set of all channel states allowing

for reliable decoding. This definition requires that maximum error probabilities larger

than ε occur with probability less than γ
QoS

, i.e., Pθ|θ̂(Λ
(n)
ε |θ̂) ≥ 1 − γ

QoS
.

A rate R ≥ 0 is γ
QoS

-achievable if it is (ε, γ
QoS

)-achievable for every 0 < ε < 1. Let

Cε(γQoS
, θ̂) be the largest (ε, γ

QoS
)-achievable rate for an outage probability γ

QoS
and

a given estimated θ̂. The estimation-induced outage capacity of this channel is then

defined as the largest γ
QoS

-achievable rate, i.e., C(γ
QoS

, ψθ|θ̂, θ̂) = lim
ε↓0

Cε(γQoS
, ψθ|θ̂, θ̂).

Remark: We would like to point out the main differences between the proposed

notion of reliable communication and other notions such as: the average of the trans-

mission error probability over all channel estimation errors and the classical definition

of outage capacity.

(i) The practical advantage of the definition 2.2.1 is that for any degree of accuracy

estimation, the transmitter and receiver are designed for ensuring reliable communi-

cation with probability 1 − γ
QoS

, no matter which unknown state θ arises during a

transmission. This definition provides a more precise measure of the reliability func-

tion compared to the classical definition that ensures reliable communication for the

average of the transmission error probability over all channel estimation errors (i.e.

the expectation of (2.4) over the pdf ψ(θ|θ̂)).
(ii) We emphasize the fundamental difference between definition 2.2.1 and the

classical definition of information outage capacity, in which the instantaneous mutual

information specifies the maximum rate with error-free communication1 depending

on each channel state. In the classical definition, when the transmission code rate

is greater than the instantaneous mutual information an outage event occurs. In

contrast, with channel estimation errors no error-free communications can be ensured,

1Here, error-free communications are understood in the sense of asymptotic arbitrary smaller
error probabilities ε.
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the channel realization (even for the “best” ones). Thus, the decoding may fail due to

the imperfect channel knowledge. As a consequence, this decoding error is captured

by the outage probability that follows the statistic of the channel estimation errors.

In other words, the estimation-induced outage capacity is defined as the maximal

rate, given an arbitrary channel estimate, ensuring error-free communication with

probability 1 − γ
QoS

, i.e., for (1 − γ
QoS

)% of channel estimations.

2.2.2 Coding Theorem

We next state a theorem quantifying the estimation-induced outage capacity

C(γ
QoS

, θ̂) for our scenario θ̂ = (θ̂T, θ̂R) where θ­ θ̂R­ θ̂T form a Markov chain. This

means that an estimate θ̂R of the channel state is known at the decoder and only its

noisy version θ̂T is available at the encoder. Classically, we impose an input constraint

that depends on the transmitter CSI, and require that Γ(P ) =
∑

x∈X
Γ(x)P (x|θ̂T)

is less than P(θ̂T). Here, Γ(·) is an arbitrary non-negative function, and P (·|θ̂T) ∈
PΓ denotes the input distribution depending on θ̂T and PΓ(θ̂T) = {P ∈ P(X ) :

Γ(P ) ≤ P(θ̂T)}. Let WΘ =
{
W (·|x, θ) : x ∈ X , θ ∈ Θ

}
be the family of DMCs,

parameterized by a random vector θ ∈ Θ.

Theorem 2.2.1 Given 0 ≤ γ
QoS

< 1 the estimation-induced outage capacity of an

unknown DMC W ∈ WΘ is given by

C(γ
QoS

, ψθ|θ̂, θ̂) = max
P (·|θ̂T)∈PΓ(θ̂T)

C (γ
QoS

, ψθ|θ̂, θ̂, P ), (2.6)

where

C (γ
QoS

, ψθ|θ̂, θ̂, P ) = sup
Λ⊂Θ: Pr(Λ|θ̂)≥1−γ

QoS

inf
θ∈Λ

I
(
P,W (·|·, θ)

)
. (2.7)

In addition, Cε(γQoS
, ψθ|θ̂, θ̂) = C(γ

QoS
, ψθ|θ̂, θ̂) for all 0 < ε < 1.

In this theorem, we used the mutual information

I
(
P,W (·|·, θ)

)
=
∑

x∈X

∑

y∈Y

P (x)W (y|x, θ) log
W (y|x, θ)
Q(y|θ) ,

with Q(y|θ) =
∑

x∈X
P (x)W (y|x, θ). We emphasize that the supremum in (2.7) is

taken over all subsets Λ of Θ that have (conditional) probability at least 1 − γ
QoS

.
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Theorem 2.2.1 provides an explicit way to evaluate the maximal outage rate versus

outage probability γ
QoS

for an unknown channel that has been estimated with a given

accuracy, characterized by ψ(θ|θ̂).

Remark: (i) A proof of the Theorem 2.2.1 is needed because the classical definition

of outage capacity in terms of instantaneous mutual information cannot be used since

it requires perfect CSI which here is available neither at the transmitter nor at the

receiver. A sketch of the proof of Theorem 2.2.1 is relegated to section 2.3. For further

details and technical discussions the reader is referred to Appendix A.2. Observe that

if perfect CSIR is available then Λε = Θ, and the instantaneous mutual information

is attainable. Thus, every rate R can be associated to the set ΛR = {θ ∈ Θ :

I(P,W (·|·, θ)) ≥ R − δ} whose probability is 1 − γ
QoS

. Therefore, in that case with

perfect CSI, the channel can be modeled as a compound channel (cf. [28]), whose

transition probability depends on a random parameter θ ∈ Θ. However, in our

setting this is different, since the instantaneous mutual information is not achievable

and Λε ⊂ Θ.

(ii) Theorem 2.2.1 is proved for DMCs by using well-known techniques based on

typical sequences (cf. Appendix A.1). Extension of the concept of types to contin-

uous alphabets are not known [3]. Consequently, for continuous-alphabet channels,

the capacity analysis may need to be conducted over the weak topology (requiring

completely different analytical tools from measure theory). Instead there are several

continuous-alphabet problems whose simplest (or the only) available solution relies

upon the method of types, via discrete approximations. For example, the proof of

a general version of Sanov’s theorem in [79], or the capacity subject to a state con-

straint of an AVC with general alphabets and states have been determined in this way

(cf. [80]). Theorem 2.2.1 can be extended in the same way to continuous alphabets,

subject to some constraints, in locally compact Hausdorff (LCH) spaces, e.g. alpha-

bets are like Rk (or Ck) which are separable spaces. For simplicity, this extension is

not included in this chapter.
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2.2.3 Impact of the channel estimation errors on the estimation-

induced outage capacity

To evaluate the rate loss due to imperfect channel estimation we first provide

general bounds on the mean outage capacity (2.1). Note that with high-accuracy es-

timations, the conditional pdf ψ(θ|θ̂) is close to a dirac distribution, and the resulting

averaged outage rate is equal to the ergodic capacity CE with perfect CSI. We first

compare the mean (over all channel estimates) outage rate C̄(γ
QoS

) to the Ergodic

capacity. Then, this maximal mean outage rate is compared to the average of the

capacity (2.3), which is defined in terms of the average error probability.

Assume that the optimal set of probability distributions WΛ∗ , which is obtained

by maximizing expression (2.7) over all sets Λ ⊂ Θ having probability at least 1−γ
QoS

,

is a convex set. We also assume that the composite channel W̃θ̂ ∈ WΛ∗
2, where W̃θ̂ is

given by expression (2.2). Let θ̄(θ̂) be the channel state (depending on θ̂) that provides

the infimum in (2.7). Under these conditions and assuming any PM P ∈ P(X ) the

following inequalities hold,

C̄(γ
QoS

) ≤ CE − Eθ,θ̂

[
D(Wθ‖Wθ̄(θ̂)|P ) − D(WθP‖Wθ̄(θ̂)P )

]
, (2.8)

C̄(γ
QoS

) ≤ Eθ̂

[
C̃(θ̂)

]
− Eθ̂

[
D(W̃θ̂‖Wθ̄(θ̂)|P ) − D(W̃θ̂P‖Wθ̄(θ̂)P )

]
. (2.9)

The second term on the right side of both inequalities is a positive quantity; and the

equality only holds for linear families of probability distributions. The proof of both

inequalities follows as consequence of Theorem A.3.1 in Appendix A.3. We emphasize

that our setting requires reliable transition for (1−γ
QoS

)% of channels (or estimates),

which differers than the average of channel estimation errors. Consequently, smaller

values of C̄(γ
QoS

) are expected, comparing to those obtained through the average of

the error probability Eθ̂

[
C̃(θ̂)

]
.

2.3 Proof of the Coding Theorem and Its Converse

In this section we approach the problem of determining the capacity by using the

tools of information theory, according to the definition in section 2.2.1. The proof of

2Often this is a reasonable assumption with small outage probabilities 0 ≤ γ
QoS

< 1.



42
Chapter 2: Outage Behavior of Discrete Memoryless Channels Under Channel

Estimation Errors

Theorem 2.2.1 is based on an extension of the maximal code lemma [17] to bound the

minimum size of the images for the considered channels, according to the notion of

estimation-induced outage capacity. This extension is based on robust I-typical sets

(further details are provided in Appendix A.2).

2.3.1 Generalized Maximal Code Lemma

Let IΛ denote the set of all common η-images Bn ⊆ Y n associated to a set

A n ⊂ X n via the collection of simultaneous DMCs WΛ,

IΛ(A n, η)=
{

B
n : inf

θ∈Λ
W n(Bn|x, θ) ≥ η for all x ∈A

n
}
.

In the following, we denote as

gΛ(A n, η) = min
Bn∈IΛ(A n,η)

‖Bn‖, (2.10)

the minimum of the cardinalities of all common η-images Bn. For a given channel

estimate θ̂ = (θ̂T, θ̂R) with degraded CSIT θ ­ θ̂R ­ θ̂
T
, a code

(
x1(θ̂T), . . . ,xM(θ̂T);

Dn
1 (θ̂), . . . ,Dn

M(θ̂)
)

according to the definition provided in section 2.2.1 consists of a

set of codewords xm(θ̂T) and associated decoding sets Dn
m(θ̂) (i.e., the decoder reads

φ(y, θ̂) = m iff y ∈ Dn
m(θ̂)). For any set A n, we call a code admissible if: (i)

xm(θ̂T) ∈ A n, (ii) all decoding sets Dn
m(θ̂) ⊆ Y n are mutually disjoint, and (iii) the

set

Λε =
{
θ ∈ Θ : max

m∈M

W n
(
(Dn

m(θ̂))c|xm(θ̂T), θ
)
≤ ε
}
, (2.11)

satisfies Pr(Λε|θ̂) ≥ 1 − γ
QoS

. Any input distribution satisfying the input constraint

P(θ̂T) is denoted as P (·|θ̂T).

Theorem 2.3.1 Let two arbitrary numbers 0 < ε, δ < 1 be given. There exists a

positive integer n0 such that for all n ≥ n0 the following two statements hold.

1) Direct Part: For any A n ⊂ Tn
P |θ̂T

(δ, θ̂T) and any random set Λ ⊂ Θ with

Pr(Λ|θ̂) ≥ 1− γ
QoS

, there exists an admissible sequence of length-n block codes of size

Mθ,θ̂ ≥ exp
[
− n

(
H(WΛ|P ) − δ

)]
gΛ(A n, ε− δ), (2.12)

for all θ ∈ Λ, where Λε = Λ.
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2) Converse Part: For A n = Tn
P |θ̂T

(δ, θ̂T), the size of any admissible sequence of

length-n block codes is bounded as

Mθ,θ̂ ≤ exp
[
− n

(
H(WΛε

|P ) + δ
)]

gΛε
(A n, ε+ δ), (2.13)

for all θ ∈ Λε.

The proof of this theorem easily follows from basic properties of I-typical sequences

and the concept of robust I-typical sets, recalled in Appendix A.2. Whereas, Theorem

2.2.1 is obtained based on the following corollary.

Corollary 2.3.1 For a given channel estimate θ̂, a given outage probability γ
QoS

, any

0 < ε, δ < 1 and any PM P (·|θ̂T) ∈ P(X ), let C (γ
QoS

, θ̂, P ) be defined by expression

(2.7). Then the following statements holds:

(i) There exists an optimal sequence of block codes of length n and size Mθ,θ̂, whose

maximum error probabilities larger than ε occur with probability less than γ
QoS

, such

that

Pr
(
n−1 logMθ,θ̂ ≥ R− 2δ

∣∣θ̂
)
≥ 1 − γ

QoS
(2.14)

for all rate R ≤ C (γ
QoS

, θ̂, P ), provided that n ≥ n0(|X |, |Y |, ε, δ).
(ii) For any block codes of length n, size Mθ,θ̂ and codewords in Tn

P |θ̂T

(δ, θ̂), whose

maximum error probabilities larger than ε occur with probability less than γ
QoS

, the

largest code size satisfies

Pr
(
n−1 logMθ,θ̂ > R + 2δ

∣∣θ̂
)
< γ

QoS
(2.15)

for all rate R ≥ C (γ
QoS

, θ̂, P ), whenever n ≥ n0(|X |, |Y |, ε, δ).

Proof: From the direct part of Theorem 2.3.1 and Lemma A.2.2, it is easy to see

that there exists admissible codes such that

n−1 logMθ,θ̂ ≥ n−1 log gΛ

(
A

n, ε− δ
)
−H(WΛ|P ) − δ, (2.16)

for all θ ∈ Λ and sets Λ ⊂ Θ (having probability at least 1 − γ
QoS

). Let D̂n be the

common (ε−δ)-image of minimal size ‖D̂n‖ = gΛ

(
A n, ε−δ

)
. Then it is easy to show
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that inf
θ∈Λ

WθP
n(D̂n) ≥ (ε− δ)2. By applying Lemma A.1.4 (see Appendix A.1) to this

relation and substituting it in (2.16), we obtain for all n ≥ n′
0(|X |, |Y |, ε, δ),

n−1 logMθ,θ̂ ≥ sup
θ∈Λ

H(WθP ) −H(WΛ|P ) − 2δ

≥ inf
θ∈Λ

I(P,W (·|·, θ)) − 2δ, (2.17)

for all θ ∈ Λ, where the last inequality follows from the concavity of the entropy

function with respect to Wθ. Finally, taking the supremum in (2.17) with respect to

all sets Λ ⊂ Θ having probability at least 1 − γ
QoS

yields the lower bound (2.14)

n−1 logMθ,θ̂ ≥ C (γ
QoS

, θ̂, P ) − 2δ

≥ R− 2δ, (2.18)

for all rate R ≤ C (γ
QoS

, θ̂, P ) and θ ∈ Λ∗, which is attained by some code with

Λε = Λ∗.

Next we prove the upper bound (2.15). From the converse part of Theorem 2.3.1

and Proposition A.2.1, we have

n−1 logMθ,θ̂ ≤ n−1 log gΛε

(
A

n, ε+ δ
)
−H(WΛε

|P ) + δ, (2.19)

for all θ ∈ Λε. Since A n = Tn
P |θ̂T

(δ, θ̂) implies that any common (ε+ δ)-image of A n

will be included in
⋂

θ∈Λε

Tn
WθP (δ′n), Proposition A.1.1-(iv) (see Appendix A.1) ensures

that there exists n ≥ n′′
0(|X |, |Y |, ε, δ) such that,

n−1 log gΛε

(
A

n, ε+ δ
)
≤ inf

θ∈Λε

H(WθP ) + δ. (2.20)

Then by applying equation (2.20) to equation (2.19), and then by taking its supremum

with respect to all sets Λ ⊂ Θ having probability at least 1 − γ
QoS

, we obtain

n−1 logMθ,θ̂ ≤ C (γ
QoS

, θ̂, P ) + 2δ,

≤ R + 2δ. (2.21)

for all R ≥ C (γ
QoS

, θ̂, P ) and θ ∈ Λε with Pr(θ /∈ Λε|θ̂) < γ
QoS

, and this concludes the

proof. ¥

We note that, codes achieving capacity (2.7) can be viewed as codes for a simul-

taneous channel WΛ∗ , which has been determined by the decoder. Hence, this outage

capacity C(γ
QoS

, θ̂) is seen to equal the maximum capacity of all compound channels

that are contained in WΘ and, conditioned on θ̂, have sufficiently high probability.
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2.4 Estimation-induced Outage Capacity of Ricean

Channels

In this section, we illustrate our results via a realistic single user mobile wireless

system involving a Ricean block flat-fading channel, where the channel state is de-

scribed by a single fading coefficient. The channel states of each block are assumed

i.i.d. and unknown at both transmitter and receiver. Each of these blocks are pre-

ceded by a length-N training sequence xT = [x0, . . . , xN−1] known by the receiver.

This enables maximum-likelihood (ML) estimation of the fading coefficient θ at the

receiver yielding the estimate θ̂R.

In many wireless systems, CSI at the transmitter is provided by the receiver via a

feedback channel. This allows the transmitter to perform power control. Below, we

consider the following three feedback schemes: (i) no feedback channel is available,

i.e., absence of CSIT. We compare our results with the capacity of a system where the

receiver uses a mismatched ML decoder based on θ̂R; (ii) an instantaneous and error-

free feedback channel is available (θ̂T = θ̂R); (iii) an instantaneous and rate-limited

feedback channel is available. Here the CSI is quantized using a quantization codebook

which is known at both transmitter and receiver (we construct this codebook using

the well-known Lloyd-Max algorithm [81]).

2.4.1 System Model

We consider a single user, narrowband and block flat-fading communication model

for wireless environments given by (all quantities are complex-valued)

Y [i] = H[i]X[i] + Z[i]. (2.22)

Here, Y [i] is the discrete-time received signal, X[i] denotes the transmit signal, H[i] is

the fading coefficient, and Z[i] is the additive noise. The transmit signal is subject to

the average power constraint Γ(P ) = EP

{
|X[i]

}2 ≤ P(θ̂T) with Eθ̂T

{
P(θ̂T)

}
≤ P̄ , and

the noise Z[i] is i.i.d. zero-mean, circularly complex Gaussian, i.e., Z(i) ∼ CN(0, σ2
Z).

To model Ricean fading, the channel state θ = H[i] is assumed to be circularly com-

plex Gaussian with mean µh and variance σ2
h, θ ∼ ψ(θ) = CN

(
µh, σ

2
h

)
. The Rice
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factor is defined as Kh =
|µh|2
σ2

h

. Furthermore, noise and fading coefficient are statis-

tically independent and their statistics are known at the encoder and decoder. Note

that (2.22) models a memoryless channel with channel law W (·|x, θ) = CN(θx, σ2
Z).

The mutual information I(X;Y |H = h) of this channel is maximized with an input

distribution for X[i] that is circularly complex Gaussian with zero mean and variance

P(θ̂T).

Assume that the specific realization of the complex fading coefficient H[i] is un-

known at the transmitter and at the receiver side but fixed during a coherence interval.

Furthermore, a maximum-likehood (ML) estimate θ̂R = Ĥ[i] of H[i] is assumed to

be known at the receiver; this can be achieved by dedicating in each block a short

time period to training. In particular, before sending a codeword, at the beginning of

each block a training sequence xT of length N and total power ‖xT‖2 = NPT that is

known by the receiver is transmitted. Within the training period, this results in an

instantaneous signal-to-noise ratio (SNR)

SNRT =
NPT

σ2
Z

. (2.23)

Note that in this model we have not considered the expense of the power used in

training. The ML estimate of θ = H[i] using the receive sequence yT = (y0, . . . , yN−1)

corresponding to the training sequence xT is given by

θ̂R =
xH

T yT

NPT

= H + E , (2.24)

where E ∼ CN(0, σ2
E
) with an estimation error given by σ2

E
= Eθ|θ̂R

[
(θ − θ̂R)2|θ̂R

]
=

SNR−1
T . The performance of this ML estimator can be characterized via the pdf of

the channel state estimate,

ψ(θ̂R|θ) = WN
(
A(xT , θ̂R)|xT , θ

)
, (2.25)

where A(xT , θ̂R) =
{
y ∈CN :

xH
T y

NPT
= θ̂R

}
. With (2.25), this conditional pdf of the

estimated state θ̂ can be shown to equal ψ
(
θ̂R|θ

)
= CN

(
θ, σ2

E

)
. Using this pdf and

the channel’s a priori distribution ψ(θ), the a posteriori distribution of θ given θ̂R can

be expressed as

ψ(θ|θ̂R) =
ψ(θ̂R|θ)ψ(θ)∫

C

ψ(θ̂R|θ)dψ(θ)
= CN

(
µ̃(θ̂R), σ̃2), (2.26)



Chapter 2: Outage Behavior of Discrete Memoryless Channels Under Channel
Estimation Errors 47

where

µ̃(θ̂R) = ρµh + (1 − ρ)θ̂R, with ρ =
σ2

E

σ2
E

+ σ2
h

(2.27a)

σ̃2 = ρσ2
h. (2.27b)

2.4.2 Global Performance of Fading Ricean Channels

Evaluating (2.7) requires to solve an optimization problem where we have to de-

termine the optimum set Λ∗, and the associated channel state θ∗ ∈ Λ∗ minimizing

mutual information. However, in our case it can be observed that the mutual infor-

mation depends only on |θ|. Thus, for the optimization we can replace the sets Λ of

complex fading coefficients with sets Λ̃ of positive real values r = |θ|. For a given

channel estimate θ̂0 = (θ̂T,0, θ̂R,0) that corresponds to the ML estimate of θ and its

corresponding feedback channel, the conditional pdf ψ(θ|θ̂ = θ̂0) can be easily ob-

tained from (2.26). Using these results, the pdf of r = |θ| given the estimated channel

θ̂0 can be shown to be Ricean:

ψ
(
r|θ̂ = θ̂0

)
=

r

σ̃2/2
exp

(
−r

2 + |µ̃(θ̂R,0)|2
σ̃2

)
I0

(
|µ̃(θ̂R,0)|r
σ̃2/2

)
. (2.28)

Here, I0 is the zero’th order modified Bessel function of the first kind, and µ̃(θ̂) and σ̃2

are specified in (2.27). Consequently, the optimization problem now reduces to finding

the optimum positive real interval Λ̃∗ = [r∗,∞[ having probability 1−γ
QoS

(computed

with the pdf in (2.28)). This follows from the fact that the mutual information is a

monotone and increasing function in r. Moreover, the optimal set Λ̃∗ is convex and

compact, thus the infimum in the capacity expression actually equals the minimum

capacity value over all r in the set Λ̃∗. It follows that r∗ is the γ
QoS

-percentile3 of

ψ
(
r|θ̂ = θ̂0

)
:

Pr
(
θ ∈ Λ̃∗|θ̂ = θ̂0

)
=

∫ ∞

r∗
dψ
(
r|θ̂ = θ̂0

)
= 1 − γ

QoS
. (2.29)

3Equation (2.29) can be computed by using the cumulative distribution of a non-central chi-square
of two degrees of freedom.
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Then, the estimation-induced outage capacity, with transmit power constrained to

P(θ̂T,0), can be shown to be given by

C(γ
QoS

, θ̂0) = log2

(
1 +

(
r∗(γ

QoS
, θ̂0)

)2
P(θ̂T,0)

σ2
Z

)
. (2.30)

We use this expression to evaluate C̄(γ
QoS

) via the expectation with respect to θ̂

according to (2.1).

We finally note that limN↓∞ Pr
(
|θ − θ̂R| > ε|θ̂R

)
→ 0 for any ε > 0. Thus,

Λ∗ = {θ ∈ Θ : |θ − θ̂R| ≤ ε} contains a smaller and smaller neighborhood of the true

parameter θ and hence by continuity C(γ
QoS

, θ̂) → log2

(
1 + |θ|2P(θ̂T)

σ2
Z

)
as the training

sequence lengthN tends to infinity. Therefore, the mean outage capacity C̄(γ
QoS

) con-

verges to the ergodic capacity with perfect CSI CE, i.e., C̄(γ
QoS

) = Eθ̂

{
C(γ

QoS
, θ̂)
}
→

CE for any 0 < γ
QoS

< 1.

2.4.3 Decoding with the Mismatched ML decoder

Mismatched decoding arises when the decoder is restricted to use a prescribed

“metric” d(·, ·), which does not necessarily match the channel [44]. Given an output

sequence y and an estimated state θ̂R = θ̂0, a mismatched ML decoder that uses the

metric dθ̂0
(xi,y) =

∥∥y− θ̂0 ·xi

∥∥2
declares that the codeword i was sent iff dθ̂0

(xi,y) <

dθ̂0
(xj,y), for all j 6= i. Of course, suboptimal performances are expected for this

classical decoder, since it does not depends on the law ψ(θ|θ̂) governing the channel

estimation errors. However, we aim at comparing the maximum achievable outage rate

(2.1) (obtained from expression (2.30)) with the achievable outage rates C̄ML(γ
QoS

) of

a receiver using this mismatched ML decoding, which does not need to know the law

governing the channel variations. For the channel model considered here, the capacity

expression provided in [44] specializes to

CML(θ̂0, θ) = min
µ∈C: Re{µθ̂0}≥Re{θθ̂0}

log2

(
1 +

|µ|2P̄
(|θ|2 − |µ|2)P̄ + σ2

Z

)
, (2.31)

which solution is easily obtained as

CML(θ̂0, θ) = log2

(
1 +

|η∗|2|θ̂0|2P̄
(|θ|2 − |η∗|2|θ̂0|2)P̄ + σ2

Z

)
, (2.32)
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with η∗ =
Re{θ†θ̂0}

|θ̂0|2
. Then, the associated outage probability for a rate R ≥ 0 is

defined as

P out
ML

(
R, θ̂0

)
= Pr

(
ΛML(R, θ̂0)

∣∣θ̂ = θ̂0

)
,

with ΛML(R, θ̂0) =
{
θ ∈ Θ : CML(θ̂0, θ) < R

}
, and the maximal outage rate for

an outage probability γ
QoS

, CML(γ
QoS

, θ̂0) = sup
{
R ≥ 0 : P out

ML

(
R, θ̂0

)
≤ γ

QoS

}
. The

average outage rate is then given by

C̄ML(γ
QoS

) = Eθ̂

{
CML(γ

QoS
, θ̂)
}
. (2.33)

Note that for real-valued channels, mismatched ML decoding becomes optimal and

(2.32) equals the capacity of the true channel. Hence, a comparison would not make

sense in that context.

2.4.4 Temporal power allocation for estimation-induced out-

age capacity

We have proved from (2.6) that the maximal achievable rate for a single user

Ricean fading channel is given by (2.30). In this subsection we concentrate on deriving

the optimal power allocation strategy to achieve the mean outage capacity (2.1).

Since each codeword experiences an additive white Gaussian channel noise, random

Gaussian codes with multiple codebooks are employed. Based on the channel estimate

known at the transmitter θ̂T, a codeword is transmitted at a power level given by the

optimal power allocation, as demonstrated in [76].

First consider a perfect feedback link from the receiver to the transmitter (θ̂ =

θ̂T = θ̂R). For simplicity, we assume an instantaneous and error-free feedback, but

the generalization to introduce the effects of feedback delay is rather straightforward.

Under these assumptions, from (2.1) and (2.30) the mean outage capacity is given by

C̄(γ
QoS

) = sup
P(θ̂): E

θ̂
{P(θ̂)}≤P̄

∫

Θ

log2

(
1 +

(
r∗(γ

QoS
, θ̂)
)2

P(θ̂)

σ2
Z

)
dψ(θ̂), (2.34)

where the supremum is over all power allocation non-negative functions P(θ̂) such that

Eθ̂{P(θ̂)} ≤ P̄ . Given a state measurement θ̂, the transmitter selects a code with a

power level P(θ̂) and uses θ̂ and the conditional pdf ψ
(
r|θ̂
)

to compute r∗(γ
QoS

, θ̂).
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Thus, the optimal power allocation maximizing (2.34) is easily derived as the well-

known water-filling solution,

P(θ̂)/σ2
Z =





1

r0
− 1

r∗(γ
QoS

, θ̂)
, r∗(γ

QoS
, θ̂) ≥ r0

0, r∗(γ
QoS

, θ̂) < r0

(2.35)

where r0 is a positive constant ensuring the power constraint Eθ̂{P(θ̂)} = P̄ .

The developments so far have assumed an instantaneous and error-free feedback

with non-rate-limited. Consider now the situation in which the decoder quantizes and

sends to the transmitter the optimal solution r∗(γ
QoS

, θ̂R), by using an instantaneous

and error-free but rate-limited feedback channel. Clearly, the performance is now a

function of RFB, the amount of feedback bits. In this case, the decoder must select

a quantized value among MFB = b2RFBc possibilities in the quantization codebook,

which is assumed to be also known at the transmitter. This quantization codebook

is usually designed to minimize the average squared error between the input value

and the quantized value. For analytical simplicity, we construct the quantization

codebook using the optimal non-uniform quantizer Q
[
·
]

given by the well-known

Lloyd-Max algorithm [81]. Then to make benefit of the rate-limited feedback the

power allocation (2.35) should be modified accordingly. Note that the considered

quantization codebook is not necessarily optimal in the sense of maximizing mean

outage rates. Optimal design of quantization codebooks, however, is a much difficult

problem. The reason is that the cost function (not necessary the average squared

error) can exploit any channel invariance, which may be present in the communication

system. For example, in [82] phase-invariance of closed-loop beamforming were used

to reduce the number of feedback parameters required (also see [83]).

Let θ̂T ∈
{
θ̂T,1, . . . , θ̂T,MFB

}
be the quantized value θ̂T = Q

[
r∗(γ

QoS
, θ̂R)

]
corre-

sponding to the optimal solution for r∗(γ
QoS

, θ̂R), which is obtained at the decoder.

In this case, by (2.1) and (2.30), the mean outage capacity with rate-limited feedback

is given by

C̄(γ
QoS

) = sup
P(θ̂T)

MFB∑

i=1

Pr(θ̂T,i)

∫

Λi

C
(
γ

QoS
, θ̂T,i, θ̂R

)
dψ(θ̂R|θ̂T,i), (2.36)

where the supremum is over all non-negative power allocation functions P(θ̂T) such

that
∑MFB

i=1 P(θ̂T,i) Pr(θ̂T,i) ≤ P̄ , and Pr(θ̂T,i) = Pr(θ̂T = θ̂T,i) denote the probability
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for the state known at the transmitter θ̂
T ,i and Λi =

{
θ̂R ∈ Θ : θ̂T,i = Q

[
r∗(γ

QoS
, θ̂R)

]}

is the set of states θ̂R corresponding to the quantized state θ̂T,i. It is immediate to see

that the optimal power allocation function P(θ̂T) must satisfy the power constraint

with equality. Then, from the Lagrange multipliers and the Kuhn-Tucker conditions

[84] we get that P(θ̂T) is the solution maximizing (2.36) if it satisfies the following

inequality
∫

Λi

r∗(γ
QoS

, θ̂R)

1 +

(
P(θ̂T,i)

σ2
Z

)
r∗(γ

QoS
, θ̂R)

dψ(θ̂R|θ̂T,i) ≤ r0, (2.37)

for all θ̂T,i ∈
{
θ̂T,1, . . . , θ̂T,MFB

}
, with equality for all θ̂T,i such that P(θ̂T,i) > 0,

where r0 is a given positive constant whose value is fixed in order to satisfy the power

constraint with equality. However, expression (2.37) shows that a closer solution to

P(θ̂T,i) cannot be found.

Define a function Lθ̂T,i
(r0) denoting the left-hand side of (2.37) as a function of

r0 ≥ 0, which is parameterized by θ̂T,i. Then, for a given θ̂
T ,i, Lθ̂T,i

(r0) is a positive

decreasing function whose maximum value is r̄(γ
QoS

, θ̂R,i) = Eθ̂R|θ̂T

{
r∗(γ

QoS
, θ̂R)|θ̂T =

θ̂T,i

}
and it is attained for P = 0. Thus, the solution for (2.37) is parametrized as

P(θ̂T,i) =





L−1

θ̂T,i
(r0), if 0 < r0 < r̄(γ

QoS
, θ̂R,i)

0, otherwise
(2.38)

where the value of r0 is determined by solving

MFB∑

i=1

P(θ̂T,i) Pr(θ̂T,i) = P̄ . (2.39)

For practical computation we can parameterize both the average power P̄ and the

solution P(θ̂
T ,i) in terms of r0 ∈ [0,maxθ̂R,i

r̄(γ
QoS

, θ̂R,i)]. Since L−1

θ̂T,i
(r0) is decreasing

in r0, then P̄ is also a decreasing function of r0. For a given r0 (i.e. given P̄ ), positive

power is allocated only for values θ̂T,i ∈
{
θ̂T,1, . . . , θ̂T,MFB

}
such that r̄(γ

QoS
, θ̂R,i) > r0.

Consequently, this optimal power allocation P(θ̂T,i) has a water-filling nature, similar

to the optimal power allocation in the case of non-rate-limited feedback, found in

(2.35). However, obtaining the optimal solution of P(θ̂T) may be computationally

intensive. We have observed that in most applications, rates close to the optimal can
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be achieved using the following suboptimal power allocation function:

P(θ̂R,i)/σ
2
Z =





1

r0
− 1

r̄(γ
QoS

, θ̂R,i)
, r̄(γ

QoS
, θ̂R,i) ≥ r0

0, r̄(γ
QoS

, θ̂R,i) < r0

(2.40)

where r0 is determined by the power constraint (2.39).

2.5 Simulation results

In this section, numerical results are presented based on Monte Carlo simulations.

We consider the three scenarios described in section 2.4 that are motivated by real

environments of mobile wireless systems.
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Figure 2.1: Average of estimation-induced outage capacity without feedback (no
CSIT) and achievable rates with mismatched ML decoding vs SNR, for various outage
probabilities.

(i) We suppose a communication system where no CSIT is available. Fig. 2.1

shows the average of estimation-induced outage capacity C̄(γ
QoS

) from (2.1) (in bits

per channel use) versus the signal-to-noise ratio SNR = |µh|2P̄ /σ2
Z for different outage

probabilities γ
QoS

= {10−1, 10−2, 10−3}. Here, the transmitter does not know the

channel estimate, and consequently no power control is possible. The channel’s Rice
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factor was Kh = 0 dB, the power and the length of the training sequence are PT = P

and N = 1, respectively. Note that with this length, e.g. at SNR = 0 dB (= SNRT ),

the estimation error is still large (σ2
E

= 1) to use the notion of reliable communication

based on the average of the error probability over all channel estimation errors. This

scenario has been outlined in the introduction section, exposing that the estimation-

induced outage capacity provides a more realistic measure of the limits of reliable rates

effectively supported. For comparison, we also show the mean outage rate C̄ ML(γ
QoS

)

of mismatched ML decoding (2.33). We observe that the mean outage rate C̄(γ
QoS

)

is still quite large, in spite of the small training sequence. However, achieving 2 bits

(γ
QoS

= 0.01) with imperfect channel information requires 5.5 dB more than in the case

with perfect CSI. In comparison, the mean outage rate C̄ML(γ
QoS

) with mismatched

ML decoding is significantly smaller. Indeed, in order to achieve the target rate of

2 bits, a communication system using this mismatched decoder would requires 2.5

additional dB. This means that the accuracy of the channel estimate in this case is

too small to allow for ML decoding.
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Figure 2.2: Average of estimation-induced outage capacity for different amounts
of training, without feedback (no CSIT) and with perfect feedback (CSIT=CSIR)
vs. SNR.
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(ii) Fig. 2.2 shows the average estimation-induced outage capacity in bits per chan-

nel use for different amounts of training, with both perfect and no feedback/CSIT

versus the signal-to-noise ratio, for an outage probability γ
QoS

= 10−2. For compar-

ison, we show ergodic capacity under perfect CSI. In this case, the power allocation

function is given by the optimal solution (2.35). It is seen that the average rate in-

creases with the amount of CSIR and CSIT. To achieve 2 bits without feedback/CSIT,

it is seen that a scheme with estimated CSIR and N = 3 (∇ markers) requires 7.5 dB,

i.e., 4.5 dB more than in the case with perfect CSIR (solid line). Whereas if the train-

ing length is further reduced to N = 1 (◦ markers), this gap increases to 6.5 dB. In

the case of perfect feedback (CSIT=CSIR), the SNR requirements for 2 bits are 2 dB

(perfect CSIR, dashed line), 5 dB (estimated CSIR with N=3, ∗ markers), and 7 dB

(estimated CSIR with N =1, × markers), respectively. Thus, with feedback the gap

between estimated and perfect CSI is slightly smaller than without feedback (3 dB

and 5 dB with N=3 and N=1, respectively). Observe that for values of SNR larger

than 10 dB similar performance are achieved without feedback channel and N = 3

comparing to a system with a feedback link and N = 1. Therefore, using this in-

formation a system designer may decide to use training sequences of length N = 3

instead of implementing a feedback channel.

(iii) Fig. 2.3 shows the average of estimation-induced outage capacity for an outage

probability γ
QoS

= 0.01 and rate-limited feedback/CSIT versus the signal-to-noise

ratio. We suppose error-free feedback link of two bits (RFB = 2) with training

sequences of length N = 1. Here, we used the power allocation function given by

the suboptimal solution (2.40). For comparison, we show the average of estimation-

induced outage capacity without CSIT and with perfect feedback, and we also show

the ergodic capacity under perfect CSI and feedback. Observe that at 2 bits the gap

between the average outage capacity without feedback and rate-limited feedback is

0.75 dB/2 bits. Whereas the gap between the average of outage capacity with 2 bits

of feedback and with non-limited rate is still 2.5 dB.

Finally, we study the impact of the imperfect channel estimation on the mean

outage rate for different fading statistics (different Rice factors) and perfect feedback

(CSIT=CSIR). Fig. 2.4 shows the average of estimation-induced outage capacity for

Rice factors Kh = {−15, 0, 25} dB and different amounts of training N = {1, 3}.
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Figure 2.3: Average of estimation-induced outage capacity for different amounts of
training with rate-limited feedback CSI (RFB = 2) vs. SNR.

For comparison, the ergodic capacity under perfect CSI is also plotted. We observe

that increasing the Rice factor from (A) to (B) and (C) increases the impact of the

estimation errors on the mean outage rates. On the other hand, for high value of

Kh = 25 dB (i.e. smaller variance values σ2
h) the mean outage rates are not sensitive

to the amount of training. While for smaller values of Rice factor Kh = −15 dB it is

more important to achieve accuracy channel estimations. This impact on the mean

outage rates, due to accuracy measurements of θ̂, depends on the trade-off between the

estimation error σ2
E

and the variance of the fading process σ2
h (see expression (2.27)).

Therefore, this analysis could serve as a basis to decide in practical situations whether

or not robust channel estimation is necessary depending on the nature of the fading

process. Of course, the worst case is observed for the range of middle values of Rice

factors (i.e. Kh = 0 dB), since for these values the uncertainty about the quality of

channel estimates is maximal.
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Figure 2.4: Average of estimation-induced outage capacity for different rice factors
and amounts of training with perfect feedback (CSIT=CSIR) vs. SNR.

2.6 Summary

In this chapter we have studied the problem of reliable communications over un-

known DMCs when the receiver and the transmitter only know a noisy estimate of the

channel state. We proposed to characterize the information theoretic limits of such

scenarios in terms of the novel notion of estimation-induced outage capacity. The

transmitter and receiver strive to construct codes for ensuring the desired communi-

cation service, i.e. for achieving target rates with small error probability, no matter

which degree of accuracy estimation arises during a transmission. We provided an ex-

plicit expression characterizing the trade-off between the maximum achievable outage

rate (i.e. maximizing over all possible transmitter-receiver pairs) satisfying the QoS

constraint. We proved the corresponding associated coding theorem and its strong

converse. A Ricean fading model is used to illustrate our approach by computing

its mean outage capacity. Our results are useful for a system designer to assess the

amount of training and feedback required to achieve target rates over a given channel.

Finally, we studied the maximum achievable outage rate of a native system whose
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receiver uses the mismatched maximum-likelihood decoder based on the channel es-

timate. Results indicate that this type of decoding can be largely suboptimal for the

considered class of channels, at least if the training phase is short and the channel

state information inaccurate. An improved decoder should use a metric based on max-

imizing a posteriori probability, e.g. ML metrics conditioned on the channel estimate

as MAP detectors. It will be attractive to study practical coding schemes satisfying

the QoS constraints and achieving rates close to the average of estimation-induced

outage capacity.

Possibly straightforward applications of these results are practical time-varying

systems with small training overhead and quality of service constraints, such as OFDM

systems. Another application scenario arises in the context of cellular coverage, where

the average of estimation-induced outage capacity would characterize performance

over multiple communication sessions of different users in a large number of geographic

locations (cf. [85]). In that scenario, the system designer must ensure a quality of

service during the connection session, i.e., reliable communication for (1 − γ
QoS

)-

percent of users, for any degree of accuracy estimation.





Chapter 3

On the Outage Capacity of a

Practical Decoder Using Channel

Estimation Accuracy

The optimal decoder achieving the outage capacity under imperfect channel es-

timation is investigated. First, by searching into the family of nearest neighbor de-

coders, which can be easily implemented on most practical coded modulation sys-

tems, we derive a decoding metric that minimizes the average of the transmission

error probability over all channel estimation errors. This metric, for arbitrary mem-

oryless channels (DMCs), achieves the capacity of a composite (more noisy) channel.

Next, we specialize our general expression to obtain its corresponding decoding met-

ric for fading MIMO channels. According to the notion of estimation-induced outage

capacity (EIO capacity) introduced in our previous work (see chapter 2), we charac-

terize maximal achievable information rates associated to the proposed decoder. In

the case of uncorrelated Rayleigh fading, these achievable rates are compared to the

rates achieved by the classical mismatched maximum-likelihood (ML) decoder and

the ultimate limits given by the EIO capacity. The latter uses the best theoretical

decoder in presence of channel estimation errors. Our results are useful for design-

ing a communication system (transmission power, training sequence length, training

power, etc.) where a prescribed quality of service (QoS) in terms of achieving target

rates with small error probability, must be satisfied even in presence of very poor

59
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channel estimates. Numerical results show that the derived metric provides signifi-

cant gains for the considered scenario, in terms of achievable information rates and bit

error rate (BER), in a bit interleaved coded modulation (BICM) framework, without

introducing any additional decoding complexity.

3.1 Introduction

Consider a practical wireless communication system, where the receiver disposes

only of noisy channel estimates that may in some circumstances be poor estimates,

and these estimates are not available at the transmitter. This constraint constitutes

a practical concern for the design of such communication systems that, in spite of

their knowledge limitations, have to ensure communications with a prescribed quality

of service (QoS). This QoS requires to guarantee transmissions with a given target

information rate and small error probability, no matter which degree of accuracy

estimation arises during the transmission. The described scenario addresses two im-

portant questions: (i) What are the theoretical limits of reliable transmission rates,

using the best possible decoder in presence of imperfect channel state information

at the receiver (CSIR) and (ii) how those limits can be achieved by using practi-

cal decoders in coded modulation systems ? Of course, these questions are strongly

related to the notion of capacity that must take into account the above mentioned

constraints.

We have addressed in chapter 2 the first question (i), for arbitrary memoryless

channels (DMCs), by introducing the notion of Estimation-induced outage capacity

(EIO capacity). This novel notion characterizes the information-theoretic limits of

such scenarios, where the transmitter and receiver strive to construct codes for ensur-

ing the desired communication service, no matter which degree of accuracy estimation

arises during the transmission. The explicit expression of this capacity allows one to

evaluate the trade-off between the maximal achievable outage rate (i.e. maximizing

over all possible transmitter-receiver pairs) versus the outage probability γ
QoS

(the

QoS constraint). This can be used by a system designer to optimally share the avail-

able resources (e.g. power for transmission and training, the amount of training used,

etc.), so that the communication requirements be satisfied. Nevertheless, the theoret-
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ical decoder used to achieve the latter capacity cannot be implemented on practical

communication systems.

The second question (ii) concerning the derivation of a practical decoder, which

can achieve information rates closed to the EIO capacity, is addressed in this chapter.

Classically, to deal with imperfect channel state information (CSI) one sub-optimal

technique, known as mismatched maximum-likehood (ML) decoding (cf. [35]), con-

sists in replacing the exact channel by its estimate in the decoding metric. However,

this scheme is not appropriate in presence of channel estimation errors (CEE), at

least for small number of training symbols [62]. Indeed, intensive recent research has

been conducted. In [86] and [87] the authors analyze bit error rate (BER) perfor-

mances of this decoder in the case of an orthogonal frequency division multiplexing

(OFDM) system. References [88] considered a training-based MIMO system and

showed that for compensating the performance degradation due to CEE, the number

of receive antennas should be increased, which may become a limiting item for mobile

applications. On the other hand, the performance of Bit Interleaved Coded Modula-

tion (BICM) over fading MIMO channels with perfect CSI was studied for instance,

in [89], [90] and [91]. Cavers in [92], derived a tight upper bound on the symbol

error rate of PSAM for 16-QAM modulations. A similar investigation was carried

out in [93] showing that for iterative decoding of BICM at low SNR, the quality of

channel estimates is too poor for being used in the mismatched ML decoder.

As an alternative to the aforementioned decoder, Tarokh et al. in [61] and Taricco

and Biglieri in [62], proposed an improved ML detection metric and applied it to a

space-time coded MIMO system, where they showed the superiority of this metric

in terms of BER. Interestly enough, this decoding metric can be formally derived as

a special case of the general framework presented in this chapter. So far, most of

the research in the field were focused on evaluating the performances of mismatched

decoders in terms of BER (cf. [35]), but still not providing an answer to the question

(ii). In [49], the authors investigate achievable rates of a weighting nearest-neighbor

decoder for multiple-antenna channel. Moreover, in section 2.4.3 we have showed

that the achievable rates using the mismatched ML decoding are largely sub-optimal

(at least for limited number of training symbols) compared to the ultimate limits

given by the EIO capacity (see also [94]). In this chapter, according to the notion of
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EIO capacity, we investigate the maximal achievable information rate with Gaussian

codebooks of the improved decoder in [62]. Furthermore, we show that this decoder

achieves the capacity of a composite (more noisy) channel.

This chapter is organized as follows. In section 3.2, we briefly review our notion of

capacity. Then, by using the tools of information theory, we search into the family of

decoders that can be easily implemented on most practical coded modulation systems

to derive the general expression of the decoder. This decoder minimizes the average

of the transmission error probability over all CEE and consequently, achieves the

capacity of the composite channel. We accomplish this by exploiting an interesting

feature of the theoretical decoder that achieves the EIO capacity. This feature is the

availability of the statistic characterizing the quality of channel estimates, i.e., the a

posteriori probability density function (pdf) of the unknown channel conditioned on

its estimate. In section 3.3 we describe the fading MIMO model. In section 3.4, we

specialize our expression of the decoding metric for the case of MIMO channels and

use this for iterative decoding of MIMO-BICM. In section 3.5, we compute achievable

information rates of a receiver using the proposed decoder and compare these to the

EIO capacity and the rates of the classical mismatched approach. Section 3.6 illus-

trates via simulations, conducted over uncorrelated Rayleigh fading, the performance

of the improved decoder in terms of achievable outage rates and BER, comparing to

those provided by the mismatched ML decoding.

Notational conventions are as follows. Upper and lower case bold symbols are used

to denote matrices and vectors; IM represents an (M ×M) identity matrix; EX{·}
refers to expectation with respect to the random vector X; |·| and ‖·‖F denote matrix

determinant and Frobenius norm, respectively; (·)T and (·)† denote vector transpose

and Hermitian transpose, respectively.

3.2 Decoding under Imperfect Channel Estimation

Throughout this section we focus on deriving a practical decoder for general memo-

ryless channels that achieves information rates close to the EIO capacity (the ultimate

bound).
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3.2.1 Communication Model Under Channel Uncertainty

A specific instance of the memoryless channel is characterized by a transition

probability W (y|x, θ) ∈ WΘ with an unknown channel state θ, over the general input

and output alphabets X ,Y . Here, WΘ =
{
W (·|x, θ) : x ∈ X , θ ∈ Θ

}
is a family

of conditional pdf parameterized by the vector of parameters θ ∈ Θ ⊆ Cd, where

d denotes the number of parameters. Throughout the chapter we assume that the

channel state, which neither the transmitter nor the receiver know exactly, remains

constant within blocks of symbols, related to the product of the coherence time and

the coherence bandwidth of a wireless channel, and these states for different blocks

are i.i.d. θ ∼ ψ(θ). The transmitter does not know the channel state and the receiver

only knows an estimate θ̂ and a characterization of the estimator performance in

terms of the conditional pdf ψ(θ|θ̂) (this can be obtained using WΘ, the estimation

function and ψ(θ)). A decoder using θ̂, instead of θ, obviously might not support an

information rate R (even small rates might not be supported if θ̂ and θ are strongly

different). Consequently, outage events induced by CEE will occur with a certain

probability γ
QoS

. The scenario underlying these assumptions is motivated by current

wireless systems, where the coherence time for mobile receivers may be too short

to permit reliable estimation of the fading coefficients and in spite of this fact, the

desired communication service must be guaranteed. This leads to the following notion

of capacity.

3.2.2 A Brief Review of Estimation-induced Outage Capac-

ity

A message m ∈ M = {1, . . . , bexp(nR)c} is transmitted using a pair (ϕ, φ) of

mappings, where ϕ : M 7→ X n is the encoder, and φ : Y n × Θ 7→ M is the decoder

(that utilizes θ̂). The random rate, which depends on the unknown channel realization

θ through its probability of error, is given by n−1 logMθ,θ̂. The maximum error

probability (over all messages)

e(n)
max(ϕ, φ, θ̂; θ) = max

m∈M

∫

{y∈Y n:φ(y,θ̂)6=m}
dW n

(
y|ϕ(m), θ

)
, (3.1)

where y = (y1, . . . , yn). For a given channel estimate θ̂, and 0 < ε, γ
QoS

< 1, an outage

rate R ≥ 0 is (ε, γ
QoS

)-achievable if for every δ > 0 and every sufficiently large n there
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exists a sequence of length-n block codes such that the rate satisfies the quality of

service

Pr
(
Λε(R, θ̂)

∣∣θ̂
)

=

∫

Λε(R,θ̂)

dψ(θ|θ̂) ≥ 1 − γ
QoS

, (3.2)

where Λε(R, θ̂) =
{
θ ∈ ∆

(n)
ε : n−1 logMθ,θ̂ ≥ R − δ

}
stands for the set of all

channel states allowing for the desired transmission rate R, and ∆
(n)
ε =

{
θ ∈ Θ :

e
(n)
max(ϕ, φ, θ̂; θ) ≤ ε

}
is the set of all channel states allowing for reliable decoding (ar-

bitrary small error probability). This definition requires that maximum error proba-

bilities larger than ε occur with probability less than γ
QoS

. The practical advantage

of such definition is that for (1−γ
QoS

)% of channel estimates, the transmitter and re-

ceiver strive to construct codes for ensuring the desired communication service. The

EIO capacity is then defined as the largest (ε, γ
QoS

)-achievable rate, for an outage

probability γ
QoS

and a given channel estimate θ̂, as

C(γ
QoS

, ψθ|θ̂, θ̂) = lim
ε↓0

sup
ϕ,φ

{
R ≥ 0 : Pr

(
Λε(R, θ̂)|θ̂

)
≥ 1 − γ

QoS

}
, (3.3)

where the maximization is taken over all encoder and decoder pairs. In section 2.3,

we proved the following coding Theorem that provides an explicit way to evaluate the

maximal outage rate (3.3) versus outage probability γ
QoS

for an estimate θ̂, charac-

terized by ψ(θ|θ̂).

Theorem 3.2.1 Given an outage probability 0 ≤ γ
QoS

< 1, the EIO capacity is given

by

C(γ
QoS

, ψθ|θ̂, θ̂) = max
P∈PΓ(X )

sup
Λ⊂Θ: Pr(Λ|θ̂)≥1−γ

QoS

inf
θ∈Λ

I
(
P,W (·|·, θ)

)
, (3.4)

where I(·) denotes the mutual information of the channel W (y|x, θ) and PΓ(X ) is

the set of input distributions that does not depend on θ̂, satisfying the input constraint
∫
g(x)dP (x) ≤ Γ for a nonnegative cost function g : X → [0,∞).

The existence of a decoder φ in (3.3) achieving the capacity (3.4) is proved using

a random-coding argument, based on the well-known method of typical sequences

[17]. Nevertheless, this decoder cannot be implemented on practical communication

systems.
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3.2.3 Derivation of a Practical Decoder Using Channel Esti-

mation Accuracy

We now consider the problem of deriving a practical decoder that achieves the

capacity (3.4). Assume that we restrict the searching of decoding functions φ, maxi-

mizing (3.3), to the class of additive decoding metrics, which can be implemented on

realistic systems. This means that for a given channel output y = (y1, . . . , yn), we set

the decoding function

φD(y, θ̂) = arg min
m∈M

D
n
(
ϕ(m),y|θ̂

)
, (3.5)

where Dn
(
x,y|θ̂

)
= 1

n

∑n
i=1 D

(
xi, yi|θ̂

)
and D : X ×Y ×Θ 7→ R≥0 is an arbitrary per-

letter additive metric. Consequently, the maximization in (3.3) is actually equivalent

to maximizing over all decoding metrics D. However, we note that this restriction

does not necessarily lead to an optimal decoder achieving the capacity.

Problem statement: In order to find the optimal decoding metric D maximizing

the outage rates in (3.3), for a given outage probability γ
QoS

and channel estimate θ̂,

it is necessary to look at the intrinsic properties of the capacity definition. Observe

that the size of the set of all channel states allowing for reliable decoding ∆
(n)
ε is

determined by the decoding function φ chosen and the maximal achievable rate R,

constrained to the outage probability (3.2), is then limited by this size. Thus, for

a given decoder φ, there exists an optimal set Λ∗
ε ⊆ ∆

(n)
ε of channel states with

conditional probability larger than 1 − γ
QoS

, providing the largest achievable rate,

which follows as the minimal instantaneous rate for the worst θ ∈ Λ∗
ε . The optimal

set Λ∗
ε is equal to the set Λ∗ maximizing the expression (3.4). Hence, an optimal

decoding metric must guarantee minimum error probability (3.1) for every θ ∈ Λ∗.

The computation of such a metric becomes very difficult (not necessary feasible

by using the class of decoders in (3.5)), since the maximization in (3.3) by using φD

is not an explicit function of D. However, it is interesting to note [40], that if the

set Λ∗ defines a compact and convex set of channels WΛ∗ , then the optimal decoding

metric can be chosen as the ML decoder D∗(x, y|θ̂) = − logW (y|x, θ∗), where θ∗ is

the channel state minimizing the mutual information in (3.4). The receiver can thus

be a ML receiver with respect to the worst channel in the family. However, in most

practical cases, the channel states are represented by vectors of complex coefficients
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that do not lead to convex sets of channels.

Optimal decoder for composite channels: Instead of trying to find an optimal de-

coding metric minimizing the error probability (3.1) for every θ ∈ Λ∗, we propose to

look at the decoding metric minimizing the average of the transmission error proba-

bility over all CEE. This means,

DM = arg min
D

∫

Θ

e(n)
max(ϕ, φD, θ̂; θ)dψ(θ|θ̂), (3.6)

where e
(n)
max is obtained by replacing (3.5) in (3.1). Actually, for n sufficiently large,

this optimization problem can be resolved by setting

DM(x, y|θ̂) = − log W̃ (y|x, θ̂) with W̃ (y|x, θ̂) =

∫

Θ

W (y|x, θ)dψ(θ|θ̂), (3.7)

W̃ is the channel resulting from the average of the unknown channel over all CEE,

given the estimate θ̂. Here, we do not go into the details of how the optimal metric

(3.7) minimizes (3.6), since it can be obtained by following an analogy with the proof

based on the method of types in [40]. Basically, the average of the transmission

error probability in (3.6) leads to the composite channel W̃ (y|x, θ̂). We then take the

logarithm of this composite channel to obtain its ML decoder (3.7), which minimizes

(with n sufficiently large) the error probability (3.6).

Remark: We emphasize that this decoder cannot guarantee small error probabili-

ties for every channel state θ ∈ Λ∗, and consequently it only achieves a lower bound

of the EIO capacity (3.4). Nevertheless, this decoder archives the capacity of the

composite channel. Therefore, the remaining question to answer is how much lower

are the achievable outage rates using the metric (3.7), comparing to the theoretical

decoder achieving the EIO capacity. In section 3.5, we evaluate the metric (3.7) and

its achievable information rates for fading MIMO channels.

3.3 System Model

3.3.1 Fading MIMO Channel

We consider a single-user MIMO system with MT transmit and MR receiver an-

tennas transmitting over a frequency non-selective channel and refer to it as a MIMO

channel. Fig. 3.1 depicts the BICM coding scheme used at the transmitter. The
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binary data sequence b is encoded by a non-recursive and non-systematic convolu-

tional (NRNSC) code, before being interleaved by a quasi-random interleaver. The

output bits d are gathered in subsequences of B bits and mapped to complex M-

QAM (M = 2B) vector symbols x with average power
tr(xx†)

MT

= P̄ . We also send

some pilot symbols at the beginning of each data frame for channel estimation. The

symbols of a frame are then multiplexed for being transmitted through MT antennas.

Assuming a frame of L transmitted symbols associated to each channel matrix Hk,

the received signal vector yk of dimension (MR × 1) is given by

yk = Hkxk + zk, k = 1, . . . , L, (3.8)

where xk is the (MT × 1) vector of transmitted symbols, referred to as a compound

symbol. Here, the entries of the random matrix Hk are independent identically dis-

tributed (i.i.d.) zero-mean circularly symmetric complex Gaussian (ZMCSCG) ran-

dom variables. Thus, the channel state θ = Hk is distributed as Hk ∼ ψH(H) =

CN
(
0, IMT

⊗ ΣH

)

CN
(
0, IMT

⊗ ΣH

)
=

1

πMRMT |ΣH |MT
exp

[
− tr

(
HΣH

−1H†)], (3.9)

where ΣH is the Hermitian covariance matrix of the columns of H (assumed to be

the same for all columns), i.e., ΣH = σ2
hIMR

. The noise vector zk ∈ CMR×1 consists

of ZMCSCG random vector with covariance matrix Σ0 = σ2
ZIMR

. Both Hk and zk

are assumed ergodic and stationary random processes, and the channel matrix Hk is

independent of xk and zk.

Figure 3.1: Block diagram of MIMO-BICM transmission scheme.
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3.3.2 Pilot Based Channel Estimation

Assuming that the channel matrix is time-invariant over an entire frame, chan-

nel estimation is usually performed on the basis of known training (pilot) symbols

transmitted at the beginning of each frame. The transmitter, before sending the data

xk, sends a training sequence of N vectors XT = (xT,1, . . . ,xT,N ). According to the

observation of the channel model (3.8), this sequence is affected by the channel matrix

Hk, allowing the receiver to observe separately YT,k = Hk XT,k + ZT,k, where ZT,k is

the noise matrix affecting the transmission of training symbols. We assume that the

coherence time is much longer than the training time and the average energy of the

training symbols is PT = 1
NMT

tr
(
XTX†

T

)
.

We focus on the estimation of Hk, from the observed signals YT,k and XT,k. In the

ML sense this estimate is obtained by minimizing ‖YT,k−HkXT‖2 with respect to Hk.

This yields ĤML,k = YT,kX
†
T

(
XTX†

T

)−1
= Hk + Ek, where Ek = ZT,kX

†
T

(
XTX†

T

)−1

denotes the estimation error matrix [62]. Since to estimate the MR ×MT channel

matrix, we need at least MRMT independent measurements, and each symbol time

yields MR samples at the receiver, we must have N ≥ MT . Moreover, matrix XT

must have full rank MT and consequently the matrix XTX†
T must be nonsingular. We

suppose orthogonal training sequences, i.e., we refer to a matrix XT with orthogonal

rows, such that XTX†
T = NPT IMT

. Next, denoting Ej the jth column of the error

matrix E, we can write ΣE = EE

{
EjE

†
j

}
= SNR−1

T IMR
with SNRT =

NPT

σ2
Z

, yielding

a white error matrix, i.e. the entries of E are i.i.d. ZMCSCG random variables with

variance σ2
E

= SNR−1
T . Thus, for each frame, the conditional pdf of θ̂ = ĤML given

θ = H is the complex normal matrix pdf

ψ bHML|H(ĤML|H) = CN
(
H, IMT

⊗ ΣE

)
. (3.10)

3.4 Metric Computation and Iterative Decoding

of BICM

In this section, we specialize the expression (3.7) to derive the decoding metric for

MIMO channels (3.8) and then we consider MIMO-BICM decoding with the derived

metric.
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3.4.1 Mismatched ML Decoder

The classical mismatched ML decoder consists of the likelihood function of the

channel pdf using the channel estimate ĤML. This leads to the following Euclidean

distance

DML

(
x,y|ĤML

)
= − logW (y|x, ĤML) = ‖y − ĤMLx‖2 + const. (3.11)

3.4.2 Metric Computation

We now specialize the expression (3.7) in the case of a MIMO channel (3.8). To

this end, we need to derive the pdf ψH| bHML
(H|ĤML), which can be obtained by using

the pdf (3.10) and (3.9) (see Appendix B.1). Thus,

ψH| bHML
(H|ĤML) = CN

(
Σ∆ĤML, IMT

⊗ Σ∆ΣE

)
, (3.12)

where Σ∆ = ΣH(ΣE + ΣH)−1 = IMR
δ and δ =

SNRTσ
2
h

SNRTσ2
h + 1

. The availability of the

distribution (3.12) characterizing the CEE is the key feature of pilot assisted channel

estimation. Then, by averaging the channel W (y|x,H) over all CEE, i.e. using the

pdf (3.12), and after some algebra we obtain the composite channel (cf. Appendix

B.1)

W̃ (y|x, ĤML) = CN
(
δĤMLx,Σ0 + δΣE‖x‖2

)
. (3.13)

Finally, from (3.13) the optimal decoding metric for the MIMO channel (3.8) is re-

duced to

D
MIMO
M

(
x,y|ĤML

)
= MR log(σ2

Z + δσ2
E‖x‖2) +

‖y − δĤMLx‖2

σ2
Z + δσ2

E
‖x‖2

. (3.14)

This metric coincides with that proposed for space-time decoding, from independent

results in [62]. We note that under near perfect CSI, obtained when N → ∞,

lim
N→∞

DMIMO
M

(
x,y|ĤML

)

DML

(
x,y|ĤML

) = 1, almost surely. (3.15)

Consequently, we have the expected result that the metric (3.14) tends to the classical

mismatched ML decoding metric (3.11), when the estimation error σ2
E
→ 0.
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3.4.3 Receiver Structure

The problem of decoding MIMO-BICM has been addressed in [95] under the

assumption of perfect CSIR. Here we consider the same problem with CEE, for which

we use the metric (3.14) in the iterative decoding process of BICM. Basically, the

receiver consists of the combination of two sub-blocks operating successively. The

block diagram of the transmitter and the receiver are shown in Fig. 3.1 and Fig. 3.2,

respectively. The first sub-block, referred to as soft symbol to bit MIMO demapper,

produces bit metrics (probabilities) from the input symbols and the second one is a

soft-input soft-output (SISO) trellis decoder. Each sub-block can take advantage of

the a posteriori (APP) provided by the other sub-block as an additive information.

Here, SISO decoding is performed using the well known forward-backward algorithm

[96]. We recall the formulation of the soft MIMO detector.

Suppose first the case where the channel matrix H is perfectly known at the

receiver. The MIMO demapper provides at its output the extrinsic probabilities

on coded and interleaved bits d. Let dk,i, i = 1, ..., BMT , be the interleaved bits

corresponding to the k-th compound symbol xk ∈ Q where the cardinality of Q is

equal to 2BMT . The extrinsic probability Pdem(dk,j) of the bit dk,j (bit metrics) at the

MIMO demapper output is calculated as

Pdem(dk,j = 1) = K
∑

xk∈Q

dj=1

BMT∏

i=1

i6=j

Pdec(di) exp
[
− D(xk,yk|Hk)

]
, (3.16)

where D(xk,yk|Hk) = − logW (yk|xk,Hk) and K is the normalization factor satis-

fying Pdem(dk,j = 1) + Pdem(dk,j = 0) = 1 and Pdec(dk,j) is the prior information

on bit dk,j, coming from the SISO decoder. The summation in (3.16) is taken over

the product of the channel likelihood given a compound symbol xk, and the a priori

probability on this symbol (the term
∏
Pdec) fed back from the SISO decoder at the

previous iteration. Concerning this latter term, the a priori probability of the bit dk,j

itself has been excluded, so as to let the exchange of extrinsic information between

the channel decoder and the MIMO demapper. Also, note that this term assumes

independent coded bits dk,i, which is true for random interleaving of large size. At the

first iteration, where there is no a priori information available, we set Pdec(dk,i) = 1/2.

Notice that by replacing the unknown channel involved in (3.16) by its channel
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Figure 3.2: Block digram of MIMO-BICM receiver.

estimate Ĥk, we obtain the mismatched ML decoder of MIMO-BICM. Instead of this

(mismatch approach (3.11)), we propose to introduce the demaping rule given by

DMIMO
M

(xk,yk|Ĥk) (3.14) in (3.16), which is adapted to the CEE. This yields to the

same equation that (3.16) with its appropriate constant K.

3.5 Achievable Information Rates over MIMO Chan-

nels

In this section we derive the achievable information rates in the sense of outage

rates, associated to a receiver using the decoding rule (3.5) based on the metric (3.14)

and on the mismatched ML metric (3.11).

3.5.1 Achievable Information Rates Associated to the Im-

proved Decoder

Assume a given pair of matrices (H, Ĥ), characterizing a specific instance of the

channel realization and its estimate. We first derive the instantaneous achievable

rates CMIMO
M

(H, Ĥ) for MIMO channels W (y|x,H) = CN
(
Hx,Σ0

)
, associated to a

receiver using the derived metric (3.14). This is done by using the following Theorem

[44], which provides the general expression for the maximal achievable rate with a

given decoding metric.
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Theorem 3.5.1 For any pair of matrices (H, Ĥ), the maximal achievable rate asso-

ciated to a receiver using a metric D(x,y|Ĥ) is given by

CD(H, Ĥ) = sup
PX∈PΓ(X )

inf
VY |X∈V(H, bH)

I(PX , VY |X), (3.17)

where the mutual information functional

I(PX , VY |X) =

∫∫
log2

VY |X(y|x,Υ)∫
VY |X(y|x′,Υ)dPX(x′)

dPX(x)dVY |X(y|x,Υ), (3.18)

and V(H, Ĥ) denotes the set of test channels, i.e., all possibles uncorrelated MIMO

channels VY |X(y|x,Υ) = CN(Υx,Σ), verifying that1

(c1) : tr
(
EP

{
EV {yy†}

})
= tr

(
EP

{
EW{yy†}

})
,

(c2) : EP

{
EV

{
D(x,y|Ĥ)

}}
≤ EP

{
EW

{
D(x,y|Ĥ)

}}
.

In order to solve the constrained minimization problem in Theorem (3.5.1) for our

metric D = DM (expression (3.14)), we must find the channel Υ ∈ CMR×MT and the

covariance matrix Σ = IMR
σ2 defining the test channel VY |X(y|x,Υ) that minimizes

the relative entropy (3.18). On the other hand, through this chapter we assume

that the transmitter does not dispose of the channel estimates, and consequently

no power control is possible. Thus, we choose the sub-optimal input distribution

PX = CN(0,ΣP) with ΣP = IMT
P̄ . We first compute the constraint set V(H, Ĥ),

given by (c1) and (c2), and then we factorize the matrix H to solve the minimization

problem. Before this, to compute the constraint (c2), we need the following result

(Appendix B.2).

Lemma 3.5.1 Let A ∈ CMR×MT be an arbitrary matrix and X be a random vector

with pdf CN(0,ΣP). For every real positive constants K1, K2 > 0, the following

equality holds

EX

[‖AX‖2 +K1

‖X‖2 +K2

]
=

‖A‖2
F

n+ 1
+

(
K1

K2

− ‖A‖2
F

n+ 1

)(
K2

P̄

)n+1

exp

(
K2

P̄

)
Γ
(
−n,K2/P̄

)
,

(3.19)

where n = MT−1 with n ∈ N+ and Γ(−n, t) =
(−1)n

n!

[
Γ(0, t) − exp(−t)

n−1∑

i=0

(−1)i i!

ti+1

]
,

ΣP = IMT
P̄ and Γ(0, t) =

∫ +∞

t

u−1 exp(−u)du denotes the exponential integral func-

tion.

1Our constraint (c1) is different of that provided in [44], since here the channel noise is i.i.d. and
consequently we can only satisfy the equality of the matrix traces and not of the covariance matrices.



Chapter 3: On the Outage Capacity of a Practical Decoder Using Channel
Estimation Accuracy 73

From Lemma 3.5.1 and some algebra, it is not difficult to show that the constraints

require that

(c1) : tr
(
ΥΣPΥ† + Σ

)
= tr

(
HΣPH† + Σ0

)
, (3.20)

(c2) : ‖Υ + aMĤ‖2
F ≤ ‖H + aMĤ‖2

F + C, (3.21)

aM = δ(δσ2
EP̄ − λnσ

2
Z)
[
MT δσ

2
EλnP̄ + λnσ

2
Z − δσ2

EP̄
]−1

,

C = MTλn

[
‖H‖2

F − ‖Υ‖2
F + P̄−1

(
tr(Σ0) − tr(Σ)

)][
1 − σ2

Z

δP̄σ2
E

λn −MTλn

]−1
,

λn =

(
σ2

Z

δP̄σ2
E

)n

exp

(
σ2

Z

δP̄σ2
E

)
Γ

(
−n, σ2

Z

δP̄σ2
E

)
, with n = MT − 1.

From expression (3.21) and computing the relative entropy, the minimization in (3.17)

writes

CMIMO
M (H, Ĥ) =





min
Υ

log2 det
(
IMR

+ ΥΣPΥ†Σ−1
)
,

subject to ‖Υ + aMĤ‖2
F ≤ ‖H + aMĤ‖2

F + C,
(3.22)

where Σ must be chosen such that tr
(
ΥΣPΥ† +Σ

)
= tr

(
HΣPH† +Σ0

)
. In order to

obtain a simpler and more tractable expression of (3.22), we consider the following

decomposition of the matrix H = U diag(λ)V† with λ = (λ1, . . . , λMR
)T . Let diag(µ)

be a diagonal matrix such that diag(µ) = U†ΥV, whose diagonal values are given by

the vector µ = (µ1, . . . , µMR
)T . We define H̃† = V†Ĥ†U, the vector h̃† = diag(H̃†)T

resulting of its diagonal and let bM = ‖H + aMĤ‖2
F − a2

M
(‖H̃‖2

F − ‖h̃‖2). Using the

above definitions and some algebra, the optimization (3.22) becomes equivalent to

CMIMO
M (H, Ĥ) =





min
µ

MR∑

i=1

log2

(
1 +

P̄ |µi|2
σ2(µ)

)
,

subject to ‖µ+ aMh̃‖2 ≤ bM,

(3.23)

with σ2(µ) = P̄
MR

(‖λ‖2 − ‖µ‖2) + σ2
Z . The constraint set in the minimization (3.23),

which corresponds to the set of vectors {µ ∈ CMT×1 : ‖µ+ aMh̃‖2 ≤ bM}, is a closed

convex polyhedral set. Thus, the infimun in (3.23) is attainable at the extremal of

the set given by the equality (cf. [84]). Furthermore, for every vector µ such that

‖µ‖2 ≤ ‖λ‖2, we observe that the expression (3.23) is a monotone increasing function

of the square norm of µ. As a consequence, it is sufficient to find the optimal vector

µopt
M

by minimizing the square norm over the constraint set. This becomes a classical
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minimization problem that can be easily solved by using Lagrange multipliers. The

corresponding achievable rates are then presented in the following corollary.

Corollary 3.5.1 Given a pair of matrices (H, Ĥ) the following information rates

can be achieved by a receiver using the decoding rule (3.5) based on the metric (3.14),

for uncorrelated MIMO channels,

CMIMO
M (H, Ĥ) = log2 det

(
IMR

+ ΥoptΣPΥ†
optσ

−2(µopt

M
)
)
, (3.24)

where the optimal solution Υopt = U diag(µopt
M

)V† with

µopt

M
=





(√
bM

‖h̃‖
− |aM|

)
h̃ if bM ≥ 0,

0 otherwise,

(3.25)

and σ2(µopt
M

) = P̄
MR

(‖λ‖2 − ‖µopt
M

‖2) + σ2
Z .

3.5.2 Achievable Information Rates Associated to the Mis-

matched ML decoder

Next, we aim at comparing the achievable rates obtained in (3.24) to those pro-

vided by the classical mismatched ML decoder (3.11). Following the same steps as

above, we can compute the achievable rates associated to the mismatched ML de-

coder. In this case, the minimization problem writes

CMIMO
ML (H, Ĥ) =





min
Υ

log2 det
(
IMR

+ ΥΣPΥ†Σ−1
)
,

subject to Re{tr(HΣPĤ†)} ≤ Re{tr(ΥΣPĤ†)},
(3.26)

where Σ must be chosen such that tr
(
ΥΣPΥ†+Σ

)
= tr

(
HΣPH†+Σ0

)
. The resulting

achievable rates are given by

CMIMO
ML (H, Ĥ) = log2 det

(
IMR

+ ΥoptΣPΥ†
optσ

−2(µopt

ML
)
)
, (3.27)

where Υopt = U diag(µopt
ML

)V† and

σ2(µopt

ML
) =

P̄

MT

(‖λ‖2 − ‖µopt

ML
‖2) + σ2

Z ,

µopt

ML
=

Re{tr(Λ†h̃)}
‖h̃‖2

h̃. (3.28)
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3.5.3 Estimation-Induced Outage Rates

Through this section, we have so far considered instantaneous achievable rates

over MIMO (3.24) channels. We now provided its associated outage rates, according

to the notion of EIO capacity defined in section 3.2.2. In order to compute these

outage rates, it is necessary to calculate the outage probability as a function of the

outage rate. Given outage rate R ≥ 0 and channel estimate Ĥ, the outage probability

is defined as

P out
M (R, Ĥ) =

∫
{

H∈CMR×MT : CM(H, bH)<R
} dψH| bH(H|Ĥ),

then the maximal outage rate for an outage probability γ
QoS

is given by

Cout
M (γ

QoS
, Ĥ) = sup

R

{
R ≥ 0 : P out

M (R, Ĥ) ≤ γ
QoS

}
. (3.30)

Since this outage rate still depends on the channel estimate, we consider the average

over all channel estimates as C
out

M (γ
QoS

) = E bH
{
Cout

M
(γ

QoS
, Ĥ)

}
. These achievable

rates are upper bounded by the mean outage rates given by the EIO capacity, which

provides the maximal outage rate (i.e. maximizing over all possible receiver using the

channel estimates), achieved by a theoretical decoder. In our case, this capacity is

given by C(γ
QoS

) = E bH
{
C(γ

QoS
, Ĥ)

}
, where C(γ

QoS
, Ĥ) can be computed from (3.4)

by setting θ = H and θ̂ = Ĥ.

3.6 Simulation Results

In this section we provide numerical results to analyze the performance of a receiver

using the decoder (3.5) based on the metric (3.14). We consider uncorrelated Rayleigh

fading MIMO channels, assuming that the channel changes for each compound symbol

inside the frame of Nc = 50 symbols. This assumption was made because of BICM, in

oder to let the interleaver to work. The performances are measured in terms of BER

and achievable outage rates. The binary information data is encoded by a rate 1/2

non-recursive non-systematic convolutional (NRNSC) channel code with constraint

length 3 defined in octal form by (5, 7). The interleaver is a random one operating

over the entire frame with size NcMT log2(B) bits and the symbols belonging to a
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16-QAM constellation with Gray and set-partition labeling. Besides, it is assumed

that the average pilot symbol energy is equal to the average data symbol energy.

3.6.1 Bit Error Rate Analysis of BICM Decoding Under Im-

perfect Channel Estimation

Here, we compare BER performances between the proposed decoder (3.14) and the

mismatched decoder (3.11) for BICM decoding (section IV). Fig. 3.3 and 3.4 show,

for a 2×2 MIMO channel (MT = MR = 2), the increase in the required Eb/N0 caused

by decoding with the mismatched ML decoder in presence of CEE. For comparison,

BER obtained with perfect CSIR are also presented. In this case, we need at least

2 pilot symbols to estimate the channel matrix H, since N ≥ MT . Thus, we insert

N = 2, 4 or 8 pilots per frame for channel training. At BER = 10−4 and N = 2, we

observe about 1.4 dB of SNR gain by using the proposed decoder. We also note that

the performance loss of the mismatched receiver with respect to our receiver becomes

insignificant for N ≥ 8. This can be explained from (3.15), since by increasing the

number of pilot symbols both decoders coincide. Results show that the decoder under

investigation outperforms the mismatched decoder, especially when few numbers of

pilots are dedicated for training.

3.6.2 Achievable Outage Rates Using the Derived Metric

Numerical results concerning achievable information rates decoding with the in-

vestigated metric over fading MIMO channels are based on Monte Carlo simulations.

Fig. 3.5 compares average outage rates (in bits per channel use) over all channel

estimates, of both mismatched ML decoding (given by expression (3.27)) and the pro-

posed metric (given by (3.24)) versus the SNR. The 2×2 MIMO channel is estimated

by sending N = 2 pilot symbols per frame, and the outage probability has been fixed

to γ
QoS

= 0.01. For comparison, we also display the upper bound of these rates given

by the EIO capacity (obtained by evaluating the expression (3.4)), and the capacity

with perfect channel knowledge. It can be observed that the achievable rate using the

mismatched ML decoding is about 5 dB (at a mean outage rate of 6 bits) of SNR far

from the EIO capacity. Whereas, we note that the proposed decoder achieves higher
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Figure 3.3: BER performances over 2 × 2 MIMO with Rayleigh fading for various
training sequence lengths and Gray labeling.

rates for any SNR values and decreases by about 1.5 dB the aforementioned SNR

gap.

Similar plots are shown in Fig. 3.6 in the case of a 4×4 MIMO channel estimated

by sending training sequences of length N = 4. Again, it can be observed that the

modified decoder achieves higher rates than the mismatched decoder. However, we

note that the performance degradation using the mismatched decoder has decreased

to less than 1 dB (at a mean outage rate of 10 bits). This observation is a consequence

of using orthogonal training sequences that requires N ≥ MT , since the CEE can be

reduced by increasing the number of antennas [97].

Note that, the achievable rates of the proposed decoder are still about 3 dB far

from the ultimate performance given by the EIO capacity. However, it provides

significative gains in terms of information rates compared to the classical mismatch

approach.
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3.7 Summary

This chapter studied the problem of reception in practical communication sys-

tems, when the receiver has only access to noisy estimates of the channel and these

estimates are not available at the transmitter. Specifically, we focused on determining

the optimal decoder that achieves the EIO capacity of arbitrary memoryless channels

under imperfect channel estimation. By using the tools of information theory, we

derived a practical decoding metric that minimizes the average of the transmission

error probability over all CEE. This decoder is not optimal in the sense that it can-

not achieve the EIO capacity. In contrast, this decoder achieves the capacity of a

composite (more noisy) channel.

By using the general decoding metric, we analyzed the case of uncorrelated fading

MIMO channels. Then, we used this metric for iterative BICM decoding of MIMO

systems with ML channel estimation. Moreover, we obtained the maximal achievable

rates, using Gaussian codebooks, associated to the proposed decoder and compared
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Figure 3.5: Expected outage rates over 2×2 MIMO with Rayleigh fading versus SNR
(N = 2).

these rates to those of the classical mismatched ML decoder. Simulation results

indicate that mismatched ML decoding is sub-optimal under short training sequences,

in terms of both BER and achievable outage rates, and confirmed the adequacy of

the proposed decoder.

Although we showed that the proposed decoder outperforms classical mismatched

approaches, the derivation of a practical decoder that maximizes the EIO capacity

(over all possible theoretical decoders) under imperfect channel estimation, is still

an open problem in its full generality. Nevertheless, other types of decoding metrics

incorporating also the outage probability value, have yet to be fully explored.



80
Chapter 3: On the Outage Capacity of a Practical Decoder Using Channel

Estimation Accuracy

5 10 15 20

6

8

10

12

14

16

18

20

22

24

26

28

SNR (dB)

E
xp

ec
te

d 
ou

ta
ge

 r
at

es
 (

bi
ts

/c
ha

nn
el

 u
se

)

4 x 4 MIMO, outage probability γ = 0.01

Ergodic capacity
Theoretical decoder
Improved decoder (N = 4)
Mismatched  (N = 4)

10 bits

Figure 3.6: Expected outage rates over 4×4 MIMO with Rayleigh fading versus SNR
(N = 4).



Chapter 4

Dirty-Paper Coding with

Imperfect Channel Knowledge:

Applications to the Fading MIMO

Broadcast Channel

The effect of imperfect channel estimation at the receiver with imperfect (or with-

out) channel knowledge at the transmitter on the capacity of state-dependent channels

with non-causal channel state information at the transmitter is examined. We address

this problem through the notion of reliable communication based on the average of the

transmission error probability over all channel estimation errors, assuming a discrete

memoryless channel. This notion allows us to consider the capacity of a composite

(more noisy) Gelfand and Pinsker’s channel. We first derive the optimal Dirty-paper

coding (DPC) scheme, by assuming Gaussian inputs, achieving the capacity of the

single-user fading Costa channel with maximum-likehood (ML) channel estimation.

Our results, for uncorrelated Rayleigh fading, illustrate a practical trade-off between

the amount of training and its impact to the interference cancellation performances

of DPC scheme. These are useful in realistic scenarios of multiuser wireless commu-

nications and information embedding applications (e.g. robust watermarking). We

also studied optimal training design adapted to each of these applications.

Next, we exploit the tight relation between the largest achievable rate region (Mar-

81
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ton’s region) for arbitrary broadcast channels and channels with non-causal channel

state information at the transmitter to extend this region to the case of imperfect

channel knowledge. We derive achievable rate regions and optimal DPC schemes

assuming Gaussian codebooks, for a base station transmitting information over a

multiuser Fading MIMO Broadcast Channel (MIMO-BC), where the mobiles (the

receivers) only dispose of a noisy estimate of the channel parameters, and these esti-

mates may be (or not) available at the base station (the transmitter).

These results are particularly useful for a system designer to assess the amount

of training data and the channel characteristics (e.g. SNR, fading process, power for

training, number of antennas) to achieve target rates. We provide numerical results

for a two-users MIMO-BC with ML or minimum mean square error (MMSE) channel

estimation. The results illustrate an interesting practical trade-off between the benefit

of an elevated number of transmit antennas and the amount of training needed. In

particular, we observe the surprising result that a BC with a single transmitter and

receiver antenna, and imperfect channel estimation at the receivers, does not need

the knowledge of estimates at the transmitter to achieve large rates compared to

time-division multiple access (TDMA).

4.1 Introduction

Consider the problem of communicating over a discrete memoryless channel (DMC)

defined by a conditional distribution W (y|x, s) where X ∈ X is the channel input,

S ∈ S is the random channel state with distribution PS and Y ∈ Y is the channel

output. The transmitter knows the channel states before beginning the transmission

(i.e. non-causal state information) but the receiver does not know these. This channel

is commonly known as channel with non-causal state information at the transmitter.

The capacity expression of this channel has been derived by Gelfand and Pinsker

in [33],

C
(
W,PS

)
= sup

P (u,x|s)∈P

{
I
(
PU ,W

)
− I
(
PS, PU |S

)}
, (4.1)

where U ∈ U is an auxiliary random variable chosen so that U ­ (X,S) ­ Y form a

Markov Chain, I(·) is the classical mutual information and P is the set of all joint

probability distributions P (u, x|s) = δ
(
x − f(u, s)

)
P (u|s) with f : U × S 7→ X
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an arbitrary mapping function and δ(·) is the dirac function. In “Writing on Dirty

Paper” [67], Costa applied this result to an additive white Gaussian noise (AWGN)

channel corrupted by an additive Gaussian interfering signal S that is non-causally

known at the transmitter. The channel state S is a Gaussian variable with power

Q independent of the Gaussian noise Z; the channel output Y = X + S + Z and

its input X of limited-power P̄ (often ¿ Q). He showed the simple but surprising

result that choosing the auxiliary variable U = X + αS with an appropriate value

α∗ = P̄ (P̄+σ2
Z)−1, where σ2

Z being the AWGN variance, this coding scheme referred as

Dirty-paper coding (DPC), allows one to achieve the same capacity as if the interfering

signal S was not present.

This result has gained considerable attention during the last years, mainly because

of its potential use in communication scenarios where interference cancellation at the

transmitter is needed. In particular, information embedding (robust watermarking

for multimedia security applications) [98] and multiuser interference cancellation for

Broadcast Channels (BC) [63] are instances of such scenarios. Indeed, this result

has been the focus of intense study and some remarkable progress has already been

made in several of its applications. However, there is still an important question

regarding the assumptions under which interference cancellation through the use of

DPC holds. This assumes that both the transmitter and receiver perfectly know

the channel statistic W controlling the communication. Therefore, it is not clear if

the surprising performances of DPC still hold in practical situations where imperfect

(or no) channel knowledge is available. Throughout this chapter, we investigate this

question in the context of the fading Costa channel and the Fading Multiple-Input-

Multiple-Output Broadcast Channel (MIMO-BC).

4.1.1 Related and Subsequent Work

The capacity region of a general BC is still unknown. Whereas Marton in [55]

found an achievable rate region for the general discrete memoryless broadcast channel,

which is the largest known inner bound to the capacity region. In the recent years,

the Fading MIMO-BC has been extensively studied. Most of the literature focuses

on the information-theoretic performances under the assumption on the availability

of the time-varying channel matrices at both transmitter and all receivers. Caire and
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Shamai in [63], have established an achievable rate region, referred to as the DPC

region. They conjectured that this achievable region is the capacity. Recently in [64],

Weingarten, Steinberg and Shamai prove this conjecture by showing that the DPC

region is equal to the capacity region. Furthermore, this region is shown to be tight

to the inner bound given by the Marton’s region.

The great attraction of the fading MIMO-BC is that under the assumption of

perfect channel knowledge, as the signal-to-noise ratio (SNR) tends to infinity, the

limiting ratio between the sum-rate capacity and the capacity of a single-user channel

that results when the receiver allowed to cooperate is one. Thus, for a BC where the

receivers cannot cooperate, the interference cancellation implemented by DPC results

in no asymptotic loss.

Nevertheless, it is well-known that the performances of wireless systems are severely

affected if only noisy channel estimates are available (cf. [58], [59] and chapter 2). Of

particular interest is the issue of the effect of this imperfect knowledge on the multiuser

interference cancellation implemented by DPC scheme. In such scenario, the error

on the channel estimation of some user affects the achievable rates of many other

users. Furthermore, the problem may even be more serious in practical situations

where no channel information is available at the transmitter, i.e., there is no feedback

information from the receiver to the transmitter covering the channel estimates.

Consequently, when the channel is imperfectly known (or unknown), it is not

immediately clear whether it is more efficient to send information to only a single

user at a time (i.e. time-division multiple-access TDMA) rather than to use multiuser

interference cancellation (cf. [99] and [100]). In addition to this, from a practical point

of view, the system designer must decide the amount of training and power required

to achieve a target pair of rates.

For these reasons, the limits of reliable information rates of Fading MIMO-BCs

with imperfect channel information is an important problem. Indeed, intensive recent

research has been conducted, e.g. Sharif and Hassibi in [101] proposed an opportunis-

tic coding scheme that employs only partial information. They show that the optimal

scaling factor of the sum-rate capacity is the same one as obtained with perfect chan-

nel knowledge using DPC. References in [102] already derive a lower bound of the

capacity of MIMO-BC with MMSE channel estimation and perfect feedback. This
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approach parallels that by Yoo and Goldsmith [59], which was initially introduced by

Medard in [58], where the authors have been derived similar bounds on the capac-

ity of single-user MIMO channels. Whereas in [65], Lapidoth, Shamai and Wigger

show that when the transmitter only has an estimate of the channel and the receivers

have perfect channel knowledge, the limiting ratio between the sum-rate capacity and

the capacity of a single-user channel with cooperating receivers is upper bounded by

2/3. Recently, Jindal in [103] investigates a system where each receiver has perfect

channel knowledge, but the transmitter only receives quantized information regarding

the channel instantiation. A similar work has been carried out in [104], considering

downlink systems with more users than transmitter antennas and finite rate feedback

at the transmitter.

4.1.2 Outline of This Work

In the first part of this chapter (section 4.2), we consider the natural extension

of DMCs W (y|x, s, θ) with channel states S non-causally known at the transmitter,

to the more realistic case where neither the transmitter nor the receiver know the

random parameters θ controlling the communication. We assume that the receiver

obtains an estimate θ̂ during a phase of independent training and its estimate may be

(or not) available at the transmitter. We address this problem through the notion of

reliable communication based on the average of the error probability over all channel

estimation errors (CEE). This is done by incorporating in the capacity definition the

statistic characterizing the quality of channel estimates, i.e., the a posteriori pdf of

the unknown channel conditioned on its estimate (it is available from the family of

channel pdfs controlling the communication and the estimator chosen). This novel

notion allows us to make a connection between the capacity of the Gelfand and

Pinsker’s channel (4.1) and the capacity of a composite (more noisy) channel. Based

on this setting, we formulate the analogue of the Marton’s region for arbitrary discrete

memoryless BCs with imperfect channel estimation.

In the second part of this chapter (section 4.3), based on our previous approach,

we first consider the special case of a single-user fading Costa channel modeled as

Y = H(X +S) +Z, where θ = H is the random channel estimated at the receiver by

using maximum-likelihood (ML) channel estimation. We study the cases where these
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channel estimates may be (or not) available at the transmitter. Here, we determine

the optimal trade-off between the amount of training required for channel estimation

and the corresponding achievable rates using an optimal DPC scheme under CEE.

We observe that depending on the targeted application, multiuser interference cancel-

lation or robust watermarking, two different training scenarios are relevant, for which

adequate training design is proposed. Then, in section 4.4 we focus on the capacity

region of the multiuser Fading MIMO-BC with imperfect channel estimation. We

assume that the channel is estimated at each receiver using ML or minimum mean

square error (MMSE) channel estimation. Two scenarios are considered: (i) We first

assume that an instantaneous error-free feedback provides the transmitter with the

channel estimates of each receiver and (ii) we suppose that there is no feedback from

the receivers back to the transmitter conveying these channel estimates. For each of

these scenarios, we derive the corresponding optimal DPC scheme and its achievable

rate region, assuming Gaussian codebooks.

The proposed framework in this work is sufficiently general to involve the most

important application scenarios in information embedding and multiuser communi-

cations. In particular, this can be easily extended by using recent results (e.g. [103]

and [104]) to the more general scenarios considering both noisy feedback and imper-

fect channel estimation. Section 4.5 illustrates average rates over all channel estimates

of the fading Costa channel, for different amount of training. Moreover, we use a

two-users uncorrelated Rayleigh-fading MIMO-BC to show average rates for different

amount of training and antenna configurations. Finally, section 4.4 concludes the

chapter.

Notational conventions are as follows: upper and lower case bold symbols are used

to denote matrices and vectors; IM represents an (M ×M) identity matrix; EX{·}
refers to expectation with respect to the random vector X; | · | denotes matrix deter-

minant; (·)T and (·)† denote vector transpose and Hermitian transpose, respectively.
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4.2 Channels with non-Causal CSI and Imperfect

Channel Estimation

In this section, we first introduce the single-user DMC with non-causal channel

state information at the transmitter and the notion of reliable communication based

on the average of the error probability over all CEE. This notion allows us to consider

the capacity of a composite (more noisy) channel. Subsequently we use a similar

approach to find the equivalent Marton’s region for the case of BCs with imperfect

channel estimation.

4.2.1 Single-User State-Dependent Channels

Consider a general model for communication under channel uncertainty over DMCs

with input alphabet X , output alphabet Y and states S (cf. [33] and [30]). A spe-

cific instance of the unknown channel is characterized by a transition probability mass

(PM) W (·|x, s, θ) ∈ WΘ with a random state s ∈ S perfect known by the transmit-

ter and a fixed but unknown channel θ ∈ Θ ⊆ Cd. Here, WΘ =
{
W (·|x, s, θ) : x ∈

X , s ∈ S , θ ∈ Θ
}

is a family of conditional transition PMs on Y , parameterized by

a vector θ ∈ Θ, which each realization follows i.i.d. θi ∼ fθ(θ).

Assume that the coherence time is sufficiently long and thus the transmitter can

send a training sequence that allows the receiver to estimate the channel θi. Thus,

the receiver only knows a channel estimate θ̂i and a characterization of the estimator

performance in terms of the conditional probability density function (pdf) fθ|θ̂(θ|θ̂).
This can be easily obtained using WΘ, the estimator function and fθ(θ). In this

context we identify two different scenarios: (i) The transmitter knows the channel

estimates θ̂i and (ii) the transmitter does not know the channel estimates, only its

statistic fθ̂(θ̂) is available. The memoryless extension of W (·|x, s, θ) within a block

of length n is given by W n(y|x, s, θ) =
∏n

i=1W (yi|xi, si, θi) where x = (x1, . . . , xn),

s = (s1, . . . , sn) and each realization follows independent and identically distributed

(i.i.d.) si ∼ PS(s) and y = (y1, . . . , yn). The sequence of channel state s is perfectly

known at the transmitter before sending x and unknown at the receiver.
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4.2.2 Notion of Reliable Communication and Coding Theo-

rem

A message m from the set M = {1, . . . , b2nR̄c} is transmitted using a length-n

block code defined as a pair (ϕ, φ) of mappings, where ϕ : M × S n × Θn 7→ X n

is the encoder (that utilize θ̂ if available), and φ : Y n × Θn 7→ M is the decoder

(that utilizes θ̂). Note that the encoder uses the realization of the state sequence s,

which is exploited for encoding the information messages m ∈ M. The average rate

over all channel estimates θ̂, is given by Eθ̂{n−1 log2Mθ̂} and the maximum (over all

messages) of the average of the error probability over all CEE

ē(n)
max(ϕ, φ, θ̂) = max

m∈M

EθS|θ̂
{ ∑

y∈Y n:φ(y,θ̂)6=m

W n
(
y|ϕ(m, s, θ̂), s, θ

)}
. (4.2)

where the joint pdf P (θ, s|θ̂) =
∏n

i=1 fθ|θ̂(θi|θ̂i)PS(si).

For a given 0 < ε < 1, a mean rate R̄ ≥ 0 is ε-achievable on an estimated channel,

if for every δ > 0 and every sufficiently large n there exists a sequence of length-n

block codes such that the rate satisfies Eθ̂{n−1 log2Mθ̂} ≥ R̄−δ and ē
(n)
max(ϕ, φ, θ̂) ≤ ε.

This definition requires that maximum of the averaged error probability occurs with

probability less than ε. For a more robust notion of reliability over single-user channels

we refer the reader to chapter 2. Then, a mean rate R̄ ≥ 0 is achievable if it is ε-

achievable for every 0 < ε < 1, and let C̄ε be the largest ε-achievable rate. The

capacity is then defined as the largest achievable mean rate, C̄ = lim
ε↓0

C̄ε. We next

state a theorem quantifying this capacity.

Theorem 4.2.1 The capacity of a DMC W (·|x, s, θ) with non-causal channel state

information at the transmitter and imperfect channel estimation, is given by C̄01 when

the channel estimates are not available at the transmitter and othercase C̄11,

C̄01(W ) = sup
P (u,x|s)∈P01

Eθ̂

{
C
(
P (u, x|s), θ̂

)}
, (4.3)

C̄11(W ) = Eθ̂

{
sup

P
θ̂
(u,x|s)∈P11

C
(
Pθ̂(u, x|s), θ̂

)}
, (4.4)

where

C
(
P (u, x|s), θ̂

)
= I
(
PU , W̃θ̂

)
− I
(
PS, PU |S

)
. (4.5)
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In this theorem P11 denotes the set of probability distributions so that (U, θ̂) ­

(X,S, θ)­Y form a Markov chain, while we emphasize that the supremum in (4.4) is

taken over the set P01 of input distributions not depending on the channel estimates

θ̂. The test channel is given by

W̃ (y|u, θ̂) =
∑

(x,s)∈X×S

δ
(
x− f(u, s)

)
PS(s)W̃ (y|x, s, θ̂), (4.6)

and the composite (more noisy) channel W̃ (y|x, s, θ̂) = Eθ|θ̂
{
W (y|x, s, θ)

}
, where

Eθ|θ̂{·} denotes the expectation with the conditional pdf fθ|θ̂ characterizing the chan-

nel estimation errors. We also used the mutual information

I
(
PU , W̃θ̂

)
=
∑

u∈U

∑

y∈Y

P (u)W̃ (y|u, θ̂) log2

W̃ (y|u, θ̂)
Q(y|θ̂)

,

with Q(y|θ̂) =
∑

u∈U
P (u)W̃ (y|u, θ̂). The exposed situation can be reduced to that

of Gelfand and Pinsker’s channel [33], and hence does not lead to a new mathematical

problem. The main differences are presented in appendix C.1.

4.2.3 Achievable Rate Region of Broadcast Channels with

Imperfect Channel Estimation

We now explore the strong connection between the Marton’s region and our pre-

vious formulation for channels with non-causal state information, to obtain a natural

extension of this region for the case of imperfect channel estimation.

A broadcast channel is composed of one sender and many receivers. The objective

is to broadcast information from a sender to the many receivers. Here, we consider

broadcast channels with only two receivers since multiple receivers cases can be simi-

larly treated. The discrete memoryless BC with one sender and two receivers consists

of an input X ∈ X and two outputs (Y1, Y2) ∈ Y1 ×Y2 with a transition probability

function W (y1, y2|x, θ) ∈ WΘ, which is parameterized by the vectors of parameters

θ = (θ1, θ2) ∈ Θ, such that Yi­ (X, θi)­θj with j 6= i form a Markov chain, for which

the joint realization follows i.i.d. θ ∼ fθ(θ). The capacity region of this BC only de-

pends on the marginal PMs W (y1|x, θ1) and W (y2|x, θ2) (cf. [14], Theorem 14.6). We

assume that each receiver i only knows its channel estimate θ̂i and a characterization
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of the estimator performance in terms of the conditional pdf

fθ|θ̂(θi|θ̂i) =

∫

Θ

∫

Θ

fθθ̂j |θ̂i
(θ, θ̂j|θ̂i)dθjdθ̂j, with j 6= i. (4.7)

We emphasize that in this model the joint vector θ of channel parameters may have

correlated components θi and in such case each marginal pdf in (4.7) contains the

estimation error of the other channel, which will be present in the capacity expression.

Following the same steps as before, we can obtain the memoryless n-th extension of

this channel and then define the average of the error probability (over all CEE)

corresponding to each user. Next, we state the following achievable rate region.

Theorem 4.2.2 Let (U1, U2) ∈ U1 × U2 be two arbitrary auxiliary random variables

with finite alphabets such that (U1, U2, θ̂) ­ (X, θ) ­ (Y1, Y2) form a Markov chain.

The following rate region is an inner bound of the capacity region of the discrete

memoryless BC W (y1, y2|x, θ) with imperfect channel estimation

R(W ) = co
{

(R̄1 ≥ 0, R̄2 ≥ 0) : R̄1 ≤ Eθ̂

{
I
(
PU1

, W̃θ̂1

)}
,

R̄2 ≤ Eθ̂

{
I
(
PU2

, W̃θ̂2

)}
,

R̄1 + R̄2 ≤ Eθ̂

{
I
(
PU1

, W̃θ̂1

)
+ I
(
PU2

, W̃θ̂2

)

− I
(
PU2

, PU1|U2

)}
, for all Pθ̂(u1, u2, x) ∈ P

}
,

(4.8)

where P is the set of all distribution Pθ̂(u1, u2, x) such that (U1, U2, θ̂) ­ (X, θ) ­

(Y1, Y2) form a Markov chain and co
{
·} stands for convex hull. We emphazise that

for the case where the channel estimates θ̂ are not available at the transmitter the

achievable region still holds, but the distributions in P must not depend on the channel

estimates.

The marginal distributions of the composite BC channel

W̃ (yi|ui, θ̂i) =
∑

(x,uj)∈X×Uj

δ
(
x− f(u1, u2)

)
PU1U2

(u1, u2)W̃ (yi|x, θ̂i), (4.9)

j 6= i and W̃ (yi|x, θ̂i) = Eθi|θ̂i

{
W (yi|x, θi)

}
, where Eθi|θ̂i

{·} denotes the expectation

with the conditional pdf fθi|θ̂i
(θi|θ̂i) characterizing the CEE. The achievability proof

of this theorem relies on the fact that the composite BC with imperfect channel

estimation can be seen as a more noisy BC. Then, by applying Marton’s coding
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scheme with the statistic of codewords adapted to the composite BC, the averaged

error probability of each user grows to zero as the size of these codewords n→ ∞.

We remark that for any joint distribution Pθ̂(u1, u2, x) ∈ P the rate pair

R1 = Eθ̂

{
I
(
PU1

, W̃θ̂1

)
− I
(
PU2

, PU1|U2

)}
,

R2 = Eθ̂

{
I
(
PU2

, W̃θ̂2

)}
,

(4.10)

can be achieved by using interference cancellation. This means that user 1 with

codewords U1 is considering U2 as the state sequence which is non-causally known

at the transmitter. Thus, the channel seen by user 1 is a single-user channel with

interference U2 as considered in theorem (4.2.1). In general, the set of achievable

rates can be increased by reversing the roles of user 1 and 2, and then the region

(4.8) follows [56]. This approach of ordering the users and encoding each user by

considering the effect of previous users as non-causally known interference is refereed

as successive encoding strategy, which was recently showed to achieve the capacity

region of the Gaussian MIMO-BC with perfect channel information [64].

Based on the results derived through this section, in the following two sections

we consider the capacity of the fading Costa channel and then the capacity region of

the Fading MIMO-BC, both with imperfect channel estimation at the receiver(s) and

channel estimates available (or not) at the transmitter.

4.3 On the Capacity of the Fading Costa Channel

with Imperfect Estimation

Throughout this section we consider a memoryless fading Costa channel with

Gaussian codebooks. We first derive adequate channel training adapted to each ap-

plication scenario, assuming ML channel estimation. Then, from Theorem (4.5) we

find the optimal DPC scheme and its maximal achievable rates.

4.3.1 Fading Costa Channel and Optimal Channel Training

The discrete-time channel at time t is Y (t) = H(t)
(
X(t) + S(t)

)
+ Z(t), where

X(t) ∈ C is the transmitter symbol and Y (t) ∈ C is the received symbol. Here,
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H(t) ∈ C is the complex random channel (θ = H) whose entries are i.i.d. zero-

mean circularly symmetric complex Gaussian (ZMCSCG) random variables fθ(θ) =

CN(0, σ2
H). The noise Z(t) ∈ C consists of i.i.d. ZMCSCG random variables with

variance σ2
Z . The channel state S(t) ∈ C consists of i.i.d. ZMCSCG random variables

with variance Q. The quantities H(t), Z(t), S(t) are assumed ergodic and stationary

random processes, and the channel matrix H(t) is independent of S(t), X(t) and Z(t).

This leads to a stationary and discrete-time memoryless channel W
(
y|x, s,H

)
with

pdf

W (y|x, s,H) = CN
(
H(x+ s), σ2

Z

)
. (4.11)

The average symbol energy at the transmitter is constrained to satisfy EX{X(t)X(t)†} ≤
P̄ . We next focus on training sequence design for channel estimation.

A standard technique to allow the receiver to estimate the channel matrix con-

sists of transmitting training sequences, i.e., a set of symbols whose location and

values are known to the receiver. From a practical point of view, we assume that

the channel is constant during the transmission of an entire codeword so that the

transmitter, before sending the data x, sends a short training sequence of N symbols

xT = (xT,1, . . . , xT,N ). The average energy per training symbol is PT = 1
N
tr
(
xTx†

T

)
.

Thus, in practical applications two different scenarios are relevant:

(i) The channel affects the training sequence only, i.e. the decoder observes yT =

HxT + zT , where zT is the noise affecting the transmission of training symbols. This

scenario arises, e.g., in BCs where the transmitter does not send the sequence xT

during the training phase. In that case, an optimal training is obtained by sending

an arbitrary constant symbol, xT,i = x0 for all i = 1, . . . , N . So that a ML estimate

θ̂ = ĤML is obtained at the receiver from the observed output. The ML estimate of

H is given by (see chapter 2)

ĤML =
(
x†

TxT

)−1
x†

TyT = H + E, (4.12)

where E =
(
x†

TxT

)−1
x†

TzT is the estimation error with a noise reduction factor η =

N−1

σ2
E = SNR−1

T and SNRT =
PT

ησ2
Z

. (4.13)

(ii) The channel affects both the training sequence and the state sequence, which is

unknown at the receiver, i.e. the decoder observes yT = H(xT + sT )+zT , where sT is
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the state sequence affecting the channel as multiplicative noise. This scenario arises

in robust digital watermarking where the channel means an unknown multiplicative

attack on the host signal sT that is used for training. Here, because the presence of

sT with average energy per symbol Q À PT , the scenario is much more complicated

than (i). In other words, as a consequence of this a different method for channel

estimation is needed.

We note that the transmitter, before sending the training sequence, perfectly

knows the state sequence sT . Therefore, it can be used for adapting the training

sequence to reduce the multiplicative noise at the transmitter. Consider the mean

estimator Ĥ∆ = 〈yT 〉 = Hν̄ + 〈zT 〉, where ν̄ = 〈xT 〉 + 〈sT 〉 and 〈·〉 denotes the

mean operator. Obviously, if for some length N the transmitter disposes of enough

power PT to get ν̄ = 1 the interference could completely be removed from yT . Of

course, in most of practical cases this is not possible for all realizations of the random

sequences sT , and only part of these sequences can be removed. We can state this

more formally as the following optimization problem. Given some arbitrary pair

(∆, γ) with 0 ≤ (∆, γ) < 1, we find the optimal training sequence x∗
T and its required

length N ∗ such that

x∗
T =





Minimize ‖xT‖2/N,

Subjet to

∫

{sT : ν̄2<(1−∆)PT }
df(sT ) ≤ γ,

(4.14)

where (1−∆)PT represents the power remaining for channel training after removing

sT . This means that for 100× (1− γ)% of channel estimates the multiplicative inter-

ference introduced by sT can be removed at the transmitter, elsewhere the training

fails. We call γ the failure tolerance level. Then, the solution of (4.14) is easily found

to be x∗
T (sT ) = (x∗0, . . . , x

∗
0) with

x∗0(sT ) =





√
(1 − ∆)PT − 〈sT 〉 if ‖x∗

T (sT )‖2 ≤ NPT ,

0 elsewise,
(4.15)

and N∗ is chosen such that the probability that the training power PT is not enough

to remove the interference be smaller than the failure tolerance level, i.e.

∫

{sT : ‖x∗
T

(sT )‖2>N∗PT }
df(sT ) ≤ γ.
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It follows that N ∗ can be computed by using the cumulative function of a non-

central chi-square of two degrees of freedom cdf
(
r; 2, 2N ∗PT (1−∆)Q−1

)
= 1−γ with

r = 2N∗

Q
PT . Actually, the channel estimate can be written as Ĥ∆ = H + E∆, where

E∆ =
√
η∆ 〈zT 〉 is the estimation error with

σ2
E∆

= SNR−1
T,∆ and SNRT,∆ =

PT

η∆σ2
Z

, (4.16)

and η∆ =
(
N(1 − ∆)

)−1
is the noise reduction factor. We note that η∆ > η, where

η is the noise reduction factor without the interference sequence present during the

phase of training.

From the expression (4.12) and some algebra, we compute the a posteriori pdf of

H given ĤML

fH| bHML
(H|ĤML) = CN(δĤML, δσ

2
E), (4.17)

where δ = (σ2
H + SNR−1

T )−1σ2
H and the analogue pdf fH| bH∆

(H|Ĥ∆) follows by substi-

tuting Ĥ∆, δ∆ = (σ2
H + SNR−1

T,∆)−1σ2
H and σ2

E∆
(instead of ĤML, δ and σ2

E
) in (4.17).

4.3.2 Achievable Rates and Optimal DPC Scheme

We now evaluate the test channel (4.11) in the capacity expression (4.4) to de-

rive maximal achievable rates with imperfect channel estimation. This requires to

determine the optimum distribution Pθ̂(u, x|s) maximizing the capacity. We begin by

computing the composite channels W̃ (y|x, s, ĤML) and W̃ (y|x, s, Ĥ∆) associated to

each estimation scenario (i) and (ii), respectively. From (4.11) and (4.17) we obtain

W̃
(
y|x, s, ĤML

)
= CN

(
δĤML(x+ s), σ2

Z + δσ2
E(|x|2 + |s|2)

)
, (4.18)

where W̃
(
y|x, s, Ĥ∆

)
follows by substituting Ĥ∆, δ∆ and σ2

E∆
in (4.18). Actually,

we only need to consider the capacity of the composite channel (4.18) associated to

the scenario (i), since that corresponding to the scenario (ii) differs only by constant

quantities.

A careful examination of the composite channel (4.18) shows that Gaussian code-

books may not necessary achieve the capacity (4.4) (see [105] and [94] for a similar dis-

cussions in the context of non-coherent capacity and performance of nearest-neighbor

decoding, respectively). The reason is that actually part of the channel noise, due to
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the estimation errors, is correlated to the channel input. Since we aim to compute

optimal DPC schemes, through this chapter we assume Gaussian inputs, which only

leads to a lower bound of the capacity. However, in section 4.5 numerical result show

that this assumption does not decrease significatively the capacity (at least for middle

and high SNR).

1) Channel estimates known at the transmitter: Obviously, if the channel estimates

ĤML are known at the transmitter, the optimal Gaussian input distribution is shown

to be given by

P bHML
(u, x|s) =





P (x) if u = x+ α∗(ĤML)s,

0 elsewhere,
(4.19)

where P (x) = CN
(
0, P̄

)
, and P̄ is the power constraint and

α∗(ĤML) =
δ2|ĤML|2P̄

δ2|ĤML|2P̄ + σ2
Z + δσ2

E
(P̄ +Q)

. (4.20)

By evaluating the capacity expression (4.4) in the composite channel (4.11) and using

the optimal input (4.19), the maximal achievable rate (respect to Gaussian codebooks)

denoted C̄11 is then

C̄11 = E bHML

{
log2

(
1 +

δ2|ĤML|2P̄
σ2

Z + δσ2
E
(P̄ +Q)

)}
. (4.21)

2) Channel estimates unknown at the transmitter: The problem in this case is

more complicated since the transmitter is not aware to the knowledge of the channel

estimate ĤML, and consequently the optimal parameter (4.20) cannot be computed.

However, assuming Gaussian inputs, which means that P
(
u, x|s

)
is a conditional joint

Gaussian pdf. The optimal DPC scheme can be shown to be given by

P
(
u, x|s

)
=





P (x) if u = x+ αs,

0 elsewhere,
(4.22)

where α ∈ [0, 1] is the parameter maximizing the capacity expression in (4.4). Hence,

given α the achievable rates can be computed by replacing (4.18) and (4.22) in (4.5).

Thus, using some algebra we obtain

Iα
(
PU ; W̃ bH

)
= log2

(
(P + Q + N)(P + α2Q)

PQ(1 − α)2 + N(P + α2Q)

)
, (4.23)
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Iα
(
PS;PU |S

)
= log2

(
P + α2Q

P

)
, (4.24)

where P = δ2|ĤML|2P̄ , Q = δ2|ĤML|2Q and N = σ2
Z + δσ2

E
(P̄ +Q). Given 0 ≤ α ≤ 1,

by using (4.23) and (4.24), the capacity expression in (4.4) denoted C̄01(α) that is

function of α, writes as

C̄01(α) = E bHML

{
log2

(
P(P + Q + N)

PQ(1 − α)2 + N(P + α2Q)

)}
. (4.25)

Actually, it remains to find the optimal parameter α maximizing (4.25).

Let us first consider the more intuitive suboptimal choice given by the average

over all channel estimates of the optimal parameter α∗(ĤML) in (4.20), i.e. ᾱ =

E bHML

{
α∗(ĤML)

}
with f bHML

(ĤML) = CN
(
0, σ2

H +σ2
E

)
. Thus, it is not difficult to show

that

ᾱ = 1 − 1

ρ
exp

(
1

ρ

)
E1

(
1

ρ

)
, with ρ =

δP̄σ2
H

N
, (4.26)

where E1(z) =

∫ ∞

z

t−1 exp(−t)dt denotes the exponential integral function. There-

fore, the rates in (4.25) can be achieved using the DPC scheme (4.22) with parameter

ᾱ (4.26).

Another possibility is to find directly by maximizing (4.25) the optimal parameter

α∗. To this end, we observe that

α∗ = arg min
0≤α≤1

E bHML

{
log2

(
PQ(1 − α)2 + N(P + α2Q)

)}
. (4.27)

Using some algebra the expression (4.27) writes as

α∗ = arg min
0≤α≤1

{
log2(P̄ /Q+α2)+

1

log(2)
exp

(
ρ(P̄ /Q+ α2)

(1 − α)2

)
E1

(
ρ(P̄ /Q+ α2)

(1 − α)2

)}
.

(4.28)

Unfortunately, there is no explicit solution of (4.28). However, this maximization

can be numerically solved to then compute C̄01(α
∗). The derived results through this

section are also valid for the composite channel corresponding to the channel training

of scenario (ii).
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4.4 On the Capacity of the Fading MIMO-BC with

Imperfect Estimation

We first introduce the channel estimation model and review the characterization

of the DPC region for the multiuser Fading MIMO-BC with perfect channel infor-

mation, since this will serve as a basis to derive the corresponding achievable rate

region with imperfect channel estimation. Then, from Theorem 4.2.2 we obtain two

achievable regions assuming ML or MMSE channel estimation at each receiver and

Gaussian codebooks. Here, as well as in previous section, we assume two scenarios:

(i) The channel estimates of each receiver are available at the transmitter and (ii)

these estimates are unknown at the transmitter.

4.4.1 MIMO-BC and Channel Estimation Model

We consider a memoryless Fading MIMO-BC with m-users. Assume that the

transmitter has MT antennas and each receiver has MR (MT ≥ MR) antennas.

The channel output at time t is yk(t) = Hk(t)x(t) + zk(t), k = 1, . . . , K where

x(t) ∈ CMT×1 is the vector of transmitter symbols and yk(t) ∈ CMR×1 is the vec-

tor of received symbols at k-terminal. Here, θk = Hk(t) ∈ CMR×MT is the complex

random matrix of the terminal k whose entries
(
Hk(t)

)
i,j

are independent identi-

cally distributed (i.i.d.) zero-mean circularly symmetric complex Gaussian (ZM-

CSCG) random variables CN(0, σ2
H,k). Thus, these matrices are distributed i.i.d.

Hk(t) ∼ fH(Hk) with pdf

CN
(
0, IMT

⊗ ΣH,k

)
=

1

πMRMT |ΣH,k|MT
exp

[
− tr

(
HkΣH,k

−1H†
k

)]
, (4.29)

where ΣH,k is the Hermitian covariance matrix of the columns of Hk (assumed to be

the same for all columns), i.e., ΣH,k = σ2
H,kIMR

. The noise vector zk(t) ∈ CMR×1 at k-

terminal consists of ZMCSCG random vector with covariance matrix Σ0,k = σ2
Z,kIMR

.

Both Hk(t) and zk(t) are assumed ergodic and stationary random processes, and the

channel matrix Hk(t) is independent of x(t) and zk(t). This leads to a stationary and
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discrete-time memoryless BC

W
(
y1, . . . ,ym|x,H

)
=

K∏

k=1

Wk(yk|x,Hk), with Wk(yk|x,Hk) = CN
(
Hkx,Σ0,k

)
,

(4.30)

where θ = H = (H1, . . . ,HK). The average symbol energy at the transmitter is

constrained to satisfy tr
(
EX(x(t)x(t)†)

)
≤ P̄ .

We assume the standard technique to allow the receivers to estimate the channel

matrix based on the use of training sequences (this estimation scenario corresponds

to that of (i) explained in section 4.3). This supposes that the channel matrices are

quasi-constant during the transmission of an entire codeword so that the channel

is information stable [106] and the transmitter, before sending the data X, sends a

training sequence of N vectors XT = (XT,1, . . . ,XT,N ). This sequence is affected by

the channel matrix Hk, allowing each k-receiver to observe separately YT,k = HkXT +

ZT,k, where ZT,k is the noise matrix affecting the transmission of training symbols.

The average energy of the training symbols is P̄T = 1
NMT

tr
(
XTX†

T

)
. We focus on ML

and MMSE estimation of the channel matrix Hk, for each user k = 1, . . . , K, from

the observed signals YT,k and XT . Consider the following estimators:

(i) The ML estimator is obtained by minimizing ‖YT,k −HkXT‖2 with respect to

Hk, yielding

ĤML,k = YT,kX
†
T

(
XTX†

T

)−1
= Hk + Ek, (4.31)

where Ek = ZT,kX
†
T

(
XTX†

T

)−1
denotes the estimation error matrix. Since to estimate

the MR ×MT channel matrix, we need at least MRMT independent measurements

so that each symbol time yields MR samples at the receiver. Therefore, the matrix

XT must be full rank MT and thus the matrix XTX†
T must be nonsingular. This

can be satisfied using orthogonal training sequences with N ≥MT , which means that

the matrix XT has orthogonal rows, such that XTX†
T = NPT IMT

. Next, denoting
(
Ek

)
j

the jth column of Ek, we can write ΣE,k = EE

{(
Ek

)
j

(
Ek

)†
j

}
= SNR−1

T,kIMR

with SNRT,k = NP̄T

σ2
Z,k

, yielding a white error matrix where the entries of Ek are i.i.d.

ZMCSCG random variables with variance SNR−1
T,k. Thus, the conditional pdf of ĤML,k

given Hk is f bHML|H(ĤML,k|Hk) = CN
(
Hk, IMT

⊗ ΣE,k

)
.

(ii) An MMSE estimate of Hk can be obtained by the linear transformation

YT,kTF,k, with TF,k the N × MT matrix that minimizes the mean square error
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E‖YT,kTF,k − Hk‖2. This, together with the definition of the error matrix yields

ĤMMSE,k = ĤML,kAMMSE,k, (4.32)

AMMSE,k = δk IMT
with δk =

SNRT,kσ
2
H,k

SNRT,kσ2
H,k + 1

, (4.33)

where AMMSE,k is an invertible biasing matrix (cf. [62]). In particular, from (4.33), it

is easy to show that the conditional pdf f bHMMSE|H(ĤMMSE,k|Hk) = CN
(
δk Hk, IMT

⊗
δ2
k ΣE,k

)
.

4.4.2 Achievable Rates and Optimal DPC scheme

Consider now the problem of finding the capacity region of the multiuser Fading

MIMO-BC W given by (4.30) under CEE. Let us first review, by assuming perfect

channel information at both transmitter and each receiver, the optimal design of

successive interference cancellation, obtained with DPC scheme.

DPC scheme for BCs : A successive encoding strategy corresponds to the follow-

ing approach: (i) the users are ordered and (ii) each user is encoded by considering

the previous users as non-causally known interference. In the DPC scheme, users

codeword {xk}K
k=1 are independent Gaussian vectors xk ∼ CN(0,Pk) with their cor-

responding covariance matrices {Pk º 0}K
k=1 and added up to form the transmitted

codeword x =
k−1∑
i=1

xi + xk + sK
Σ,k+1 with sK

Σ,k+1 =
K∑

i=k+1

xi and k ∈ {1, . . . , K}. The

encoder considers the interference sK
Σ,k+1, due to users i > k, to encode the user code-

word xk. The remaining codewords (x1, . . . ,xk−1) are considered by the k-th decoder

as additional channel noise z̃k−1
Σ,1 =

k−1∑
i=1

xi. Then, the k-th codeword xk is obtained

by letting xk = uk − Fk(Hk) s
K
Σ,k+1, where uk is the auxiliary random vector chosen

according to the message for the k-th user and {Fk º 0}K
k=1 with Fk ∈ CMR × MR are

the optimal precoding matrices. These matrices together with the covariance matri-

ces determine the joint pdf of the auxiliary random vectors PH(x,u1, . . . ,uK). The

optimal matrices are shown to be [69]

F∗
k(Hk) = HkPkH

†
k

(
HkPkH

†
k + Nk(Hk)

)−1
, (4.34)

where Nk = Σ0,k + HkP
k−1
Σ,1 H†

k and Pk−1
Σ,1 =

k−1∑
i=1

Pi.

Let π be a permutation defined on the set of index {1, . . . , K}, such that π de-

termines the encoding order for the DPC scheme, i.e., the message of user π(k) is
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encoded first while the message of user π(k − 1) is encoded second and so on. Then,

by searching the best choice between all permutations of the encoding order, this

coding scheme has been shown in [64] to be optimal (this achieves the capacity) for

the Fading MIMO-BC with perfect channel information.

Theorem 4.4.1 (Capacity region) The capacity region R̄
(DPC)
BC of the Fading MIMO-

BC W with K-users and perfect channel information at both transmitter and all

receivers is given by

R̄
(DPC)
BC (P̄ ) = co

{ ⋃

π,{Pkº0} ∀ k:

tr(
P

k Pk)≤P̄

A
(
π, {Pk}K

k=1,W
)}
, (4.35)

where A
(
π, {Pk}K

k=1,W
)

=
{
R ∈ RK

+ : Rk ≤ RDPC
π(k) , k = 1, . . . , K

}
, and

RDPC
π(k) = EH

{
log2

∣∣∣∣Hπ(k)

( k∑
i=1

Pπ(i)

)
H†

π(k) + Σ0,π(k)

∣∣∣∣
∣∣∣∣∣Hπ(k)

( k−1∑
j=1

Pπ(j)

)
H†

π(k) + Σ0,π(k)

∣∣∣∣∣

}
. (4.36)

This region R̄
(DPC)
BC is the convex hull of the union of all sets A

(
π, {Pk}K

k=1,W
)

of achievable rates over all permutations π and admissible covariance matrices {Pk º
0}K

k=1.

We now consider the already described scenarios of channel estimation, for which

we study two cases: (i) We assume that all channel estimates are perfectly known

at the transmitter side and (ii) all these channel estimates are not available at the

transmitter.

1) Channel estimates known at the transmitter: We now focus on the capacity

of this BC with imperfect channel estimation at the receivers and assuming that

the channel estimates are perfectly known at the transmitter. This can be done by

evaluating in the achievable region 4.2.2 the marginal channel pdfs of the (more noisy)

composite MIMO-BC given by (4.9). Here, we use the simple extension of that region

formulated for two users, to the general case of K-users. Thus, we obtain the following

achievable rate region.

Theorem 4.4.2 (Achievable rate region) An achievable region R̃
(DPC)
11 for the

Fading MIMO-BC with ML or MMSE channel estimation and all these estimates

(Ĥ1, . . . , ĤK) perfectly known at the transmitter, is given by
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R̃
(DPC)
11 (P̄ ) = co

{ ⋃

π,{Pkº0} ∀ k:

tr(
P

k Pk)≤P̄

A
(
π, {Pk}K

k=1,W̃
)}
, (4.37)

where A
(
π, {Pk}K

k=1,W̃
)

=
{
R ∈ RK

+ : Rk ≤ R̃DPC
π(k) , k = 1, . . . , K

}
, and

R̃DPC
π(k) = E bH

{
log2

∣∣∣∣δ2
π(k)Ĥπ(k)

( k∑
i=1

Pπ(i)

)
Ĥ†

π(k) + Σ̃0,π(k)

∣∣∣∣
∣∣∣∣∣δ

2
π(k)Ĥπ(k)

( k−1∑
j=1

Pπ(j)

)
Ĥ†

π(k) + Σ̃0,π(k)

∣∣∣∣∣

}
, (4.38)

with Σ̃0,π(k) = Σ0,π(k) + δπ(k)P̄ΣE,π(k) and δπ(k) defined by δπ(k) =
SNRT,π(k)σ

2
H,π(k)

SNRT,π(k)σ2
H,π(k) + 1

.

Proof: In order to prove the achievability of this region, we show in Appendix C.2

that the marginal pdf {W̃k}K
k=1 corresponding to the composite MIMO-BC are

W̃k(yk|x, Ĥk) = CN
(
δkĤkx,Σ0,k + δkΣE,k‖x‖2

)
, (4.39)

where ΣE,k = SNR−1
T,kIMR

and δk is given by (4.33). In particular, we show that the

expression of the achievable region is independent of the considered type of estimation

ML or MMSE, since both estimations lead to the same composite channel (4.39). Ac-

tually, it remains to evaluate these marginal pdfs in Theorem 4.2.2 to determine the

joint distribution P bH(x,u1, . . . ,uK) that achieves the boundary points of (4.8). We

already observe that part of the channel noise in (4.39) due to the estimation errors

is correlated to the channel input, as well as for the channel considered in section 4.3.

This implies that in contrast to the classical case, where perfect channel information

is available, here a joint Gaussian density P bH is not expected to be optimal to char-

acterize the boundary points of this region. However, we focus on the optimal DPC

scheme based on Gaussian codebooks, since numerical result show that this assump-

tion does not decrease significatively the capacity. By using DPC coding scheme and

some algebra, it is not difficult to show that the optimal precoding matrices are





F̂∗
k(Ĥk) = δ2

kĤkPkĤ
†
k

(
δ2
kĤkPkĤ

†
k + Nk(Ĥk)

)−1
,

xk = uk − F̂∗
k(Ĥk) s

K
Σ,k+1,

(4.40)

where Nk = Σ0,k + δkP̄ΣE,k + δ2
kĤkP

k−1
Σ,1 Ĥ†

k and Ĥk is the estimated channel matrix

for the k terminal. The definitions of the remaining quantities are equal to those
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of the DPC scheme with perfect channel information, i.e. users codeword {xk}K
k=1

are independent Gaussian vectors xk ∼ CN(0,Pk) with corresponding covariance

matrices {Pk º 0}K
k=1, etc. ¥

The sum-rate capacity of the considered MIMO-BC is equal to the maximum

sum-rate achievable on the dual uplink with power constraint P̄ and is given by

Csum
BC (P̄ ) = E bH

{
max

{Pkº0} ∀ k:

tr(
P

k Pk)≤P̄

∣∣∣∣∣IMR
+

K∑

k=1

γ2
kĤkPkĤ

†
k

∣∣∣∣∣
}
, (4.41)

where γ2
k =

SNRT,kδ
2
k

SNRT,kσ2
Z,k + δkP̄

. Note that (4.41) is a concave maximization, for which

efficient numerical algorithms exist (cf. [107]).

2) Channel estimates unknown at the transmitter: We now focus on the capacity

of the MIMO-BC with imperfect channel estimation at the receivers and assuming

that these channel estimates are unknown at the transmitter. The situation here is

significantly different of that with perfect channel knowledge (cf. [63]) or when the

channel estimates are also availables at the transmitter in Theorem (4.4.2). The rea-

son is that the transmitter cannot use the instantaneous channel estimates to find

the optimal precoding matrices needed for the DPC scheme. By using the successive

encoding strategy of DPC and Theorem 4.2.2, we first determine an achievable rate

region for the composite MIMO-BC, which results of imperfect channel estimation

at the receivers. Then, we investigate optimal precoding matrices F = (F1, . . . ,FK),

inspired by the optimal solution (4.40) when the estimates are availables at the trans-

mitter.

Theorem 4.4.3 (Achievable rate region) An achievable region R̃
(DPC)
01 for the

Fading MIMO-BC with ML or MMSE channel estimation, and assuming that the

channel estimates are not available at the transmitter, is given by

R̃
(DPC)
01 (P̄ ,F) = co

{ ⋃

π,{Pkº0} ∀ k:

tr(
P

k Pk)≤P̄

B
(
π, {Pk}K

k=1,W̃,F
)}
, (4.42)

B
(
π, {Pk}K

k=1,W̃,F
)

=
{
R ∈ RK

+ : Rk ≤ R̃D̃PC
π(k) (Fπ(k)), k = 1, . . . , K

}
, and
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R̃D̃PC
π(k) (Fπ(k)) = E bH

{
log2

|Pπ(k)||Pπ(k) + Qπ(k) + Nπ(k)|∣∣∣∣∣∣
Pπ(k) + Fπ(k)Qπ(k)F

†
π(k) Pπ(k) + Fπ(k)Qπ(k)

Pπ(k) + Qπ(k)F
†
π(k) Pπ(k) + Qπ(k) + Nπ(k)

∣∣∣∣∣∣

}
, (4.43)

Pπ(k) = δ2
π(k)Ĥπ(k)Pπ(k)Ĥ

†
π(k),

Qπ(k) = δ2
π(k)Ĥπ(k)P

m
Σ,π(k)+1Ĥ

†
π(k), Pk

Σ,j =
k∑

j=i

Pj,

Nπ(k) = Σ0,π(k) + δπ(k)P̄ΣE,π(k) + δ2
π(k)Ĥπ(k)P

π(k)−1
Σ,1 Ĥ†

π(k).

The derivation of this achievable region follows from Theorem 4.2.2 by evaluat-

ing (4.8) in the composite MIMO-BC (4.39), the details are presented in appendix

C.3. Actually, it remains to find the optimal precoding matrices F = (F1, . . . ,FK)

maximizing the rates in (4.43). We emphasize that this maximization must be taken

over all matrices not depending on the channel estimates Ĥ (these are assumed to be

unknown at the transmitter).

Consider first the more intuitive suboptimal choice for Fk, k = 1, . . . , K, that

consists in taking the average over all channel estimates of the optimal matrices (4.40)

with channel estimates availables at the transmitter. This amounts to the following

computation

F̄k = E bH
{
Pk(Ĥk)

(
Pk(Ĥk) + Nk(Ĥk)

)−1}
, (4.44)

where the channel estimates follows as Ĥk ∼ f bH(Ĥk) = CN
(
0, IMT

⊗ σ2
Ĥ,k

IMR

)
with

σ2
Ĥ,k

= σ2
E,k + σ2

H,k. By using some algebra, in appendix C.4 we prove the following

statement.

Lemma 4.4.1 The average over all channel estimates of the optimal precoding ma-

trices in (4.44) is given by

F̄k = IMR

1

MR

[
1 − ρn+1

k exp(ρk)Γ(−n, ρk)
]
, (4.45)

where ρk =
MT

MR

tr(Σ0,k + δkP̄ΣE,k)

δ2
kσ

2
Ĥ,k
tr(Pk

Σ,1)
and n = MTMR − 1 with n ∈ N+,

Γ(−n, t) =
(−1)n

n!

[
Γ(0, t) − exp(−t)

n−1∑

i=0

(−1)i i!

ti+1

]
,
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and Γ(0, t) =

∫ +∞

t

u−1 exp(−u)du denotes the exponential integral function.

The other (obviously optimal, but solvable numerically only) possibility is to find

directly the optimal matrix F∗
k maximizing the rates in (4.43). We observe that these

matrices can be found as follows

F∗
k = arg min

Fº0
E bH

{
log2

∣∣∣∣∣∣
Pk + FQkF

† Pk + FQk

Pk + QkF
† Pk + Qk + Nk

∣∣∣∣∣∣

}
. (4.46)

To solve expression (4.46), we note that the transmitter does not have access to

the channel estimates and consequently no spatial power optimization can be im-

plemented. Therefore, the solution is shown to be given by F∗
k = α∗

kIMR
and the

covariance matrices {Pk = IMT
Pk}K

k=1 such that
∑K

k=1 Pk = M−1
T P̄ (cf. [66]), where

by using elementary algebra it is not difficult to show that

α∗
k = arg min

0≤α≤1

{
λ(α)

[
exp

(
β−,k(α)

4α

)
Γ

(
0,
β−,k(α)

4α

)
−exp

(
β+,k(α)

4α

)
Γ

(
0,
β+,k(α)

4α

)]}
,

(4.47)

with constants

λ(α) =
A0,kA

−1
1,k

A3,k

√
B2

k − 4α
,

β±,k(α) = Bk ±
√
B2

k − 4α and Bk =
A0,k

A1,kA3,k

(
2A1,kA2,k

A0,k

− 1

)
,

A0,k = δ4
k(Pk + Pm

Σ,k+1α)2 and A1,k = δ2
k(Pk + Pm

Σ,k+1α
2),

A2,k = δ2
kP̄ and A3,k = σ2

Z,k + δkσ
2
E,kP̄ .

(4.48)

Unfortunately, (4.47) does not lead to an explicit solution for α∗
k. However, this

maximization can be numerically solved for each k = 1, . . . , K, to compute (4.43) and

then R̄01(P̄ ,F
∗). Both solutions were tested, and we observed that the achievable

rates with F̄ are very close to those provided by the optimal solution F∗. As a result,

we have chosen in the simulations below to use the mean parameter for designing the

”close to optimal” DPC scheme.

4.5 Simulation Results and Discussions

In this section, numerical results are presented based on Monte Carlo simulations.

We first illustrate achievable rates for the Fading Costa channel according to the de-

rived results in section 4.3. Then, using results in section 4.4, we illustrate achievable
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rates of a realistic downlink wireless communication scenario involving a two-users

(m = 2) Fading MIMO Broadcast Channel.

4.5.1 Achievable rates of the Fading Costa Channel

(i) Channel training and optimal DPC design: We start by considering the channel

training scenario described in 4.3 that arises in robust watermarking applications when

the channel coefficient during the training phase affects both the training sequence and

the state sequence. Fig. 4.1 shows the noise reduction factor η∆ versus the training

sequence length N , for various failure tolerance levels γ ∈ {10−1, 10−2, 10−3}. The

power of the state sequence Q is 20 dB larger than that corresponding to the training

sequence PT . Let us suppose that, e.g., we want to get an estimation error 10 times

less than the channel noise (i.e. η∆ = 10−1), with a failure tolerance level γ = 10−2.

From Fig. 4.1 we can observe that the required training length is N = 500. Whereas

to get equal performances, when the state sequence is not present during the training

phase, would only require N = 10.
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Figure 4.1: Noise reduction factor η∆ versus the training sequence lengths N , for
various probabilities γ.

Fig. 4.2 shows both the mean parameter ᾱ (4.26) and the optimal parameter α∗

(4.47) versus the signal-to-noise ratio, for various training sequence lengths N . The

state sequence power Q is +20 dB larger than that of the channel input P̄ , and the

training power is PT = P̄ . We can observe that both parameters are relatively close
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for many SNR values. Furthermore, even in the SNR ranges where the values seem

to be quite different, we have observed that the achievable rates with ᾱ are very close

to those provided by the optimal solution α∗. Therefore, we can conclude that the

mean parameter can be used to design the optimal DPC scheme.
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Figure 4.2: Optimal parameter α∗ (solid lines) versus the SNR, for various training
sequence lengths N . Dashed lines show mean alpha ᾱ.

(ii) Achievable rates: Fig. 4.3 shows achievable rates (4.25) (in bits per channel

use) with channel estimates unknown at the transmitter versus the SNR, for various

training sequence lengths N ∈ {1, 10, 20} (dashed line). For comparison we also show

achievable rates (4.21) with channel estimates known at the transmitter (danshed-

dot line) and with perfect channel knowledge at both transmitter and receiver (solid

line). It is seen that the average rates tend to increase rather fast with the amount

of training. For example, to achieve 2 bits with channel estimates unknown at the

transmitter. Observe that a scheme with estimated channel and N = 10 requires

18 dB, i.e., 11 dB more than with perfect channel information. Whereas, if the training

length is further reduced to N = 1, this gap increases to 27 dB. On the other hand,

when the channel estimates are known at the transmitter, the SNR required for 2

bits is only 1 dB less than the case with channel estimates unknown. This rate gain is

slightly smaller, and consequently we can conclude that for the fading Costa channel
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with a single transmitter and receiver antenna, the knowledge of the channel estimates

at the transmitter is not really necessary with the proposed DPC scheme.
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Figure 4.3: Achievable rates with channel estimates known at the transmitter (dashed-
dot lines) versus the SNR, for various training sequence lengths N . Dashed lines
suppose channel estimates unknown at the transmitter. Solid line shows the capacity
with the channel known at both the transmitter and the receiver.

Finally, we study the impact of the power state sequence on the achievable rates.

Fig. 4.4 shows similar plots for different values of +Q ∈ {+20,+30,+40}, i.e., Q is

times larger (in dB) than the channel input power P̄ , and training sequence length

is N = 10. We can observe that the performance are very sensitive to the power Q.

This is because with imperfect channel estimation the capacity still depends on Q (cf.

(4.25)), while with perfect channel information the state sequence is canceled at the

transmitter independent of the power Q.

4.5.2 Achievable Rates of the Fading MIMO-BC

We first consider a base station (the transmitter) with three antennas (MT = 3)

and mobiles (the receivers) with two antennas (MR = 2). We show the average of

achievable rates over all channel estimates, for different amount of training N . For

comparison, we also show the time-division rate region where the transmitter sends

information to only a single user at a time and the ergodic capacity (4.35) with perfect



108
Chapter 4: Dirty-Paper Coding with Imperfect Channel Knowledge: Applications to

the Fading MIMO Broadcast Channel

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

SNR [dB]

A
ve

ra
ge

 r
at

es

Training sequence length N=10 

Q=+10dB 

Q=+20dB 

Q=+30dB 

Ergodic capacity 

Figure 4.4: Similar plots for different power values of the state sequence Q.

channel knowledge. For numerical results, we assume that the transmitter is subject to

a short-term power constraint, so that the transmitter must satisfy power constraint P̄

for every fading state. This implies that there can be no adaptive power allocation over

time, only spatial power allocation if channel estimates available at the transmitter

is used. Suppose very different signal-to-noise ratios SNR1 = 0dB and SNR2 = 10dB,

and equal fading distributions σ2
H,1 = σ2

H,2 = 1. Here, the training assumes same

channel SNR than transmission, i.e., P̄T = P̄ . This is specially important to avoid

noise saturation over the achievable rates. We assume the two scenarios studied in

section 4.4: (i) The channel estimates of each receiver are available at the transmitter

and (ii) these estimates are unknown at the transmitter.

(i) In this case the channel estimates are available at the transmitter and con-

sequently spatial power allocation is possible. However, the expressions (4.36) and

(4.38) are not concave functions of the covariance matrices, and thus filing these

region borders is numerically difficult. Instead, we consider a simplified power al-

location scheme that maximizes the sum-rate capacity and achieves average rates

close to optimal performances. By assuming power-sharing between the two users

and a given encoding order, i.e. each user has power P̄k with tr(Pk) ≤ P̄k such that
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P̄ = αP̄1 + (1 − α)P̄2, we can obtain optimal covariance matrices {P1,P2} maxi-

mizing the sum-rate capacity. Then, we swap the encoder order, which allows us to

explore both possibilities, and choice the best one. This yields to the especializated

algorithm with individual power constraints developed in [107]. We then investigate

the performance in terms of the average of achievable sum-rate versus the amount of

training, for different number of transmit antennas.

Fig. 4.5 shows the average of the achievable region (in bits per channel use) with

perfect CSI (Ergodic capacity) and with estimated CSI (i.e. ML or MMSE channel

estimation), for different amount of training N = {4, 10}. Observe that the achievable

rates using imperfect channel estimation are still quite large irrespective of the small

training sequence length N = 4 (dashed line), i.e. 1.4 bits less comparing to the

capacity with perfect CSI (solid line). In comparison, only 0.6 bits less are expected

with N = 10. Suppose now that user-2 is sending information at a rate R2 = 4 bits, a

relevant question to ask is the following: In presence of imperfect channel estimation

with a given amount of training, how large performance gains can be achieved for

user-1 by using the DPC scheme adapted to the channel estimation errors instead of

the classical DPC substituting the unknown channel matrices by its corresponding

estimates (dashed-dot lines) ? We note that this gain is about +0.2 bits with N = 10

and +0.3 bits with N = 4.

Fig. 4.6 shows the average performance in terms of achievable sum-rate for differ-

ent training sequence lengths N ∈ {2, 100} and different number of transmit antennas

MT ∈ {2, 4, 8, 16, 32} with two receiver antennas MR = 2. This allows to evaluate

the amount of training necessary to achieve a certain mean sum-rate for a given num-

ber of transmit antennas. It is seen that a small increase in the training sequence

length can cause significant improvement in the mean sum-rate. We observe that

for large training sequence lengths and smaller number of transmit antennas, in this

case MT ≤ 8, the mean sum-rate has close performance to the sum-rate capacity.

However, increasing the number of transmit antennas requires very large amount of

training, with a very slow convergence to its performance limits.

(ii) Consider now that the base station and the mobiles have a single antenna

(MT = MR = 1). We show the average (over all channel estimates) of achievable

rates (4.43) with channel estimates unknown at the transmitter and using the mean
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parameter (4.45) in the precoding matrices, for different amount of training N . For

comparison, we also show similar plots with channel estimates known at the trans-

mitter, the time-division rate region and the ergodic capacity under perfect channel

information. Then, we investigate these achievable rates by increasing the number

of transmitter and receiver antennas. For which we assume a transmitter with four

antennas (MT = 4) and receivers with two antennas (MR = 2).

Fig. 4.7 shows the average of the achievable rates with both: channel estimates

available at both transmitter and all receivers (Theorem (4.4.2)) and with channel

estimates only available at the receivers (Theorem (4.4.3)), for different amount of

training N = {5, 20}. Observe that the achievable rates with channel estimation are

still quite large irrespective of the small training sequence length N = 5 (dashed and

danshed-dot lines), i.e. 0.2 bits less comparing to the capacity with perfect channel

information (solid line). Suppose now that user-2 needs to send information at a

rate R2 = 1.5 bits. We want to determine, how large performance gains can be

achieved for user-1, when the channel estimates are not availables at the transmitter.

We investigate this by observing the gain for the first user when the second user is

transmitting at 1.5 bits. Note that this gain is −0.1 bits (with N = 20) and −0.22 bits

(with N = 5) less compared to the case of perfect channel information. On the

other hand, only 0.04 bits more are expected when the transmitter knows the channel

estimates. This rate gain is slightly smaller, and consequently we can conclude that

the knowledge of the channel estimates at the transmitter is not really necessary with

the proposed DPC scheme.

Fig. 4.8 shows similar plots with MT = 4 and MR = 2 and N = {5, 40}. In

this multiple antenna scenario, without channel information at the transmitter, there

can be no adaptive spatial power allocation. However, at equal power, it is seen

that a small increase in the number of transmitter antennas can cause significant

improvement, comparing with the single antenna case. We recall that the short-

term power constraint is averaged over all transmitter antennas, so that this power

constraint is independent of the number of transmitter antennas. Consider now that

user-2 needs to send information at a rate R2 = 3 bits. We observe that, with channel

estimates available at the transmitter, significant gains can be achieved compared to

the case where the estimates are unknown at the transmitter (approximately 1.4 bits
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with N = 40). Whereas, a multiple antenna BC achieves rates close to those of the

time-division multiple access (dot line). The gain, by using DPC instead of TDMA, is

reduced to only 0.2 bits with N = 40, while not signicative gain is observed for N = 5

(only 0.1 bits). Note that this gain is equal to that obtained with a single antenna.

Thus, for a MIMO-BC, taking a real benefit from a large number of transmit antennas

would require an instantaneous knowledge of channel estimates at the transmitter. If

it is not the case, TDMA provides similar performances to MIMO Broadcast channels.

4.6 Summary

In this chapter we studied the problem of communicating reliably over imperfectly

known channels with channel states non-causally known at the transmitter. The gen-

eral framework considered through a novel notion of reliable communication under

imperfect channel knowledge, enables us to easily extend existing capacity expres-

sions that assume perfect channel knowledge to the more realistic case with imperfect

channel estimation. The key feature for this purpose is our notion of reliable commu-

nication that transforms the mismatched scenario given by the CEE, into a composite

(more noisy) state-dependent channel. We assumed two scenarios: (i) The receiver

only has access to noisy estimates of the channel and these estimates are perfectly

known at the transmitter and (ii) there is no channel information available at the

transmitter and imperfect information is available at the receiver. In this scenario,

we proposed to characterize the information-theoretic limits based on the average

of the transmission error probability over all CEE. This basically means that the

transceiver does not require small instantaneous transmission error probabilities, but

rather the average over all channel estimation errors must be arbitrary small. In-

spired by a similar approach, we consider a natural extension of the Marton’s region

for arbitrary broadcast channels, obtaining explicit expressions for general DMCs of

the corresponding maximal achievable rates.

We next used the capacity expression to obtain achievable rates for the fading

Costa channel with ML channel estimation and Gaussian inputs. We also studied

optimal training design adapted to each application scenario, e.g., BCs or robust wa-

termarking. The somewhat unexpected result is that, while it is well-known that
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DPC for such class of channel requires perfect channel knowledge at both transmitter

and receiver, without channel information at the transmitter, significant gains com-

pared to TDMA can be still achieved by using the proposed (adapted to the channel

estimation errors) DPC scheme. Further numerical results in the context of uncor-

related fading show that, under the assumption of imperfect channel information at

the receiver, the benefit of channel estimates known at the transmitter does not lead

to large rate increases.

In a similar manner, using the achievable region for general BCs, we characterized

an achievable rate region for the Fading MIMO-BC, assuming ML or MMSE channel

estimation. We considered both scenarios: (i) The transmitter and all receivers only

know a noisy estimate of the channel matrices and (ii) the more complicate case where

there is no channel information available at the transmitter. We derive the optimal

DPC scheme under the assumption of Gaussian inputs, for which we observed the

expected result that both estimators lead to the same capacity region. The ”close to

optimal”DPC scheme in scenario (ii), without knowledge of channel estimates, follows

as the average over all channel estimates of the optimal DPC scheme implemented

for the case where the transmitter knows the estimates.

Our results are useful to assess the amount of training data to achieve target

rates. Interesting is that a BC with a single transmitter and receiver antenna and

no channel information at the transmitter can still achieve significant gains compared

to TDMA using the proposed DPC scheme. Furthermore, in this case the benefit

of channel estimates known at the transmitter does not lead to large rate increases.

However, we also showed that, for multiple antenna BCs, in order to achieve large

gain rates the transmitter requires the knowledge of all channel estimates, i.e., some

feedback channel (perhaps rate-limited) must go from the receivers to the transmitter,

conveying these channel estimates. Clearly, while it is well-known that for systems

with many users significant gains can be achieved by adding base station antennas,

under imperfect channel estimation, benefiting of a large number antennas requires

very large amount of training. Consequently, in practice depending on the degree of

accuracy channel estimation, this benefit may not hold.



Chapter 5

Broadcast-Aware and MAC-Aware

Coding Strategies for Multiple

User Information Embedding

Multiple user information embedding is concerned with embedding several mes-

sages into the same host signal. This chapter presents several implementable “Dirty-

paper coding”(DPC) based schemes for multiple user information embedding, through

emphasizing their tight relationship with conventional multiple user information the-

ory.

We first show that depending on the targeted application and on whether the

different messages are asked to have different robustness and transparency require-

ments or not, multiple user information embedding parallels one of the well-known

multi-user channels with state information available at the transmitter. The focus is

on the Gaussian Broadcast Channel (BC) and the Gaussian Multiple Access Chan-

nel (MAC). For each of these channels, two practically feasible transmission schemes

are compared. The first approach consists in a straightforward- rather intuitive- su-

perimposition of DPC schemes. The second consists in a joint design of these DPC

schemes, which is based on the ideal DPC for the corresponding channel.

These results extend on one side the practical implementations QIM, DC-QIM

and SCS from the single user case to the multiple user one, and on another side

provide a clear evaluation of the improvements brought by joint designs in practical

115
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situations. After presenting the key features of the joint design within the context of

structured scalar codebooks, we broaden our view to discuss the framework of more

general lattice-based (vector) codebooks and show that the gap to full performance

can be bridged up using finite dimensional lattice codebooks. Performance evalua-

tions, including Bit Error Rates and achievable rate region curves are provided for

both methods, illustrating the improvements brought by a joint design.

5.1 Introduction

Research on information embedding has gained considerable attention during the

last years, mainly due to its potential application in multimedia security. Digital

watermarking and data hiding techniques, which are a major branch of information

embedding, refer to the situation of embedding information carrying-signals called wa-

termarks into another signal, generally stronger, called cover or host signal. The cover

signal is any multimedia signal. It can be either image, audio or video. The embed-

ding must not introduce perceptible distortions to the host, and the watermark should

survive common channel degradations. These two requirements are often called trans-

parency requirement and robustness requirement, respectively. Being conflicting, these

two requirements, together with the interference stemming from the host signal itself,

have for long time limited the use of digital watermarking to applications where little

information (payload) has to be embedded. These include copyright protection [71],

for example, where the transmission of just one bit of information, expected to be de-

tectable with very low probability of false alarm, is sufficient to serve as an evidence of

copyright. In these applications, the watermark is in general a pseudo-noise sequence

obtained by means of conventional Spread-Spectrum Modulations (SSM) techniques.

SSM techniques do not allow the encoder to exploit knowledge of the host signal in

the design of the transmitted codewords and are consequently interference limited by

construction.

Information embedding can also be viewed as power-limited communication over a

”super”-channel with state (or side) information non-causally known to the transmitter

[108, 109]. The channel input is the watermark and the available state information

is the cover or host signal itself. An achievable rate, for a watermarking system,
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consists in any rate of payload that can be successfully decodable. The capacity, or

more precisely the data hiding capacity, is the supremum of all achievable rates. Based

on this equivalence many host-interference rejecting schemes have been proposed [108,

110] in this still emerging field. It has then become possible to embed large amount

of information while at the same time satisfying the two requirements above.

The most relevant work in this area is the initial Costa’s ”Writing on Dirty Paper”

[111], commonly known as ”Costa’s problem”. Costa was the first to examine the

Gaussian dirty chapter problem. He obtained the remarkable result that an additive

Gaussian interference which is non-causally known only at the encoder incurs no

loss of capacity, relative to the Gaussian interference-free channel. The theoretical

proof of ”Costa’s problem” is based on an optimal random binning argument for

i.i.d. Gaussian codebook. This technique had been proved to be optimal for more

general problems in ”coding for channels with random parameters” studied in [112]

and [113]. Binning consists in a probabilistic construction of codewords. However, this

probabilistic construction is convenient only for theoretical analysis, not for practical

coding applications. The schemes proposed by Chen and Wornell [108] and Eggers et

al. [110], in the context of information embedding, adhere to Costa’s setting in that

the interference due to the host signal is nearly removed, thus achieving close to the

side-information capacity. In addition, these schemes are feasible in practice, for that

randomize codewords are replaced by low-complexity quantization-based algebraic

codewords. These two sample-wise schemes are referred to as ”Quantization Index

Modulation” (QIM) and ”Scalar Costa Scheme” (SCS), respectively.

During the last years, both QIM and SCS have been thoroughly studied and ex-

tended into different directions such as non-ergodic and correlated Gaussian channel

noise [69], non uniform quantizers [114] and recently to lattice codebooks [115–117].

This chapter extends these schemes to another direction: multiple information em-

bedding. Multiple information embedding refers to the situation of embedding several

messages into the same host signal, with or without different robustness and trans-

parency requirements. Of course finding a single unifying mathematical analysis to

general multiple information embedding situations under broad assumptions seems to

be a hard task. Instead, this chapter addresses the very common situations of multiple

user information embedding, from an information theoretic point-of-view. The basic
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problem is that of finding the set of rates at which the different watermarks can be

simultaneously embedded. This problem has tight relationship, as well as in the case

of single embedding, to conventional multiple user information theory. Consider for

example watermark applications such as copy control, transaction tracking, broadcast

monitoring and tamper detection. Obviously, each application has its own robustness

requirement and its own targeted data hiding rate. Thus, embedding different water-

marks intended to different usages into the same host signal naturally has strong links

with transmitting different messages to different users in a conventional multi-user

transmission environment. The design and the optimization of algorithms for mul-

tiple information embedding applications should then benefit from recent advances

and new findings in multi-user information theory [118].

In this chapter, we first argue that many multiple information embedding sit-

uations can be nicely modeled as communication over either a Broadcast Channel

(BC) or a Multiple Access Channel (MAC), both with state information available

at the transmitter(s). Next, we rely heavily on the general theoretical solutions for

these channels (cf. [118]) to devise efficient practical encoding schemes. The resulting

schemes consist, in essence, of applying the initial QIM or SCS as many times as the

number of different watermarks to be embedded. This choice conforms the near-to-

optimum performance of both QIM and SCS in the single user case. However, we show

that these schemes should be appropriately designed when it comes to the multi-user

case. A joint design is required so as to closely approach the theoretical performance

limits. For instance, for both the resulting BC-based and MAC-based schemes, the

improvement brought by this joint design is pointed out through comparison with

the straightforward -rather intuitive- corresponding scheme which is obtained by sim-

ply super-imposing (i.e with no joint design) scalar schemes (or DPCs for the ideal

coding).

We introduce the notion of ”awareness” to refer to this joint design. An interesting

contribution at this stage is then that awareness helps in improving system perfor-

mance. Awareness in the BC case basically implies that the encoder responsible for

embedding the robust watermark is aware that a fragile signal is also embedded (with

a known power) and thus, it modifies the coding scheme accordingly. This allows

increasing the rate for the robust watermark. Similarly, awareness in the MAC case
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takes advantage at the embedder from the knowledge that a peeling-off decoder is

used, i.e., that the better watermark is subtracted, an operation that changes the

channel seen by the embedder. Again, the way to account for this MAC-awareness is

to change the coding parameters. This increases the rate at which the worse water-

mark can be reliably communicated. The improvement brought up by awareness is

demonstrated through both achievable rate region and Bit Error Rate (BER) analy-

sis. We finally show that performance can further be made closer to the theoretical

limits by considering lattice-based codebooks. Some finite-dimensional lattices with

good packing and quantization properties are considered for illustration.

The rest of the chapter is organized as follows. After introducing the notation we

recall in section 5.2 some fundamental principles of the DPC technique. Also we give

a brief review of the formal statement of the information embedding problem as com-

munication with side information available only at the transmitter, together with the

state of the art of the sub-optimal practical coding schemes. These schemes will serve

as baseline for the construction of the proposed approaches throughout the chapter.

Then we turn in section 5.3 to a detailed discussion on multiple information embed-

ding applications. Two mathematical models corresponding to the multiple informa-

tion embedding problem viewed either as communication over a degraded Broadcast

Channel (BC) with state information at the transmitter or as communication over

a Multiple Access Channel (MAC) with state information at the transmitters are

provided. Corresponding performance analyses are undertaken in sections 5.4.1 and

5.4.2, respectively. For each of theses two mathematical models, analysis is carried

out within the context of two watermarks using scalar-valued codebooks. Section 5.5

extends these results to the more general case of an arbitrary number of watermarks

using high dimensional lattice-based codebooks. Finally, we close with a discussion

followed by some concluding remarks in section 5.6.

5.1.1 Notation

Throughout the chapter, boldface fonts denote vectors. We use uppercase letters

to denote random variables, lowercase letters for their individual values, e.g. x =

(x1, x2, . . . , xN) and calligraphic fonts for sets , e.g. X. Unless otherwise specified,

vectors are assumed to be in the n-dimensional Euclidean space (Rn, ‖.‖) where ‖.‖
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denotes the Euclidean norm of vectors. For a generic random vector X, we use EX[.]

to denote the expectation taken with respect to X and fX(.) to denote its probability

density function (PDF). The Gaussian distribution with mean µ and square deviation

σ2 is denoted by N(µ, σ2). A random variable X with conditional PDF given S is

denoted by X|S.

5.2 Information Embedding and DPC

In this section, we first give a brief review of the information embedding problem as

DPC. The resulting framework uses DPC principles to provide the ultimate theoretical

performance which is used as baseline for comparison in the rest of this chapter.

Next, both the well-known Scalar Costa Scheme (SCS) [110] and Quantization Index

Modulation [108] are briefly reviewed together with their achievable performance.

Encoder Decoder

Channel

Host signal s Noise z

x s + x y
Ŵ ∈ MW ∈ M

Figure 5.1: Blind information embedding viewed as DPC over a Gaussian channel.

5.2.1 Information Embedding as Communication with Side

Information

Fig. 5.1 depicts a block diagram of the blind information embedding problem

considered as a communication problem. A message m has to be sent to a receiver

through some channel called the watermark channel. This channel is assumed to be

i.i.d. Gaussian. We denote the Gaussian channel noise by Z, with Zi ∼ N(0, N).

The message m may be represented by a sequence {W} of M-ary symbols, with

M = {1, . . . ,M}, so as the transmission of the message m amounts to that of the

corresponding symbols {W}. Thus, from now on, we will concentrate on the reliable

transmission of W . Also, we will loosely use the term ”message” to refer to the symbol
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W itself, instead of m. Prior to transmission, the message W is encoded into a signal

X called the watermark which is then embedded into the cover signal S ∈ Rn, thus

forming the watermarked or composite signal S + X.

We assume that the cover signal Si ∼ N(0, Q) is Gaussian i.i.d. distributed

and the watermarker X must satisfy the input power constraint E[X2] ≤ P . M is

the greatest integer smaller than or equal to 2nR and R is the transmission rate,

expressed in number of bits per host sample that the encoder can reliably transmit.

The watermark must be embedded without introducing any perceptible distortion

to the host signal. This corresponds to the input power constraint in conventional

power-limited communication and is commonly called the transparency requirement.

The robustness requirement -as for it- refers to the ability of the watermark to survive

channel degradations. Rather than considering watermarking as communication over

a very noisy channel where the cover signal S acts as self-interference as in Spread-

Spectrum Modulations (SSM), it has been realized [109,119] that blind watermarking

can be viewed as communication with state information non-causally known at the

transmitter. The state information being the cover signal S (entirely known at the

transmitter). The relevant work is the initial Costa’s ”Writing on Dirty Paper” [111],

also commonly known as ”Dirty-paper coding” (DPC). Costa was the first to show the

remarkable result that the interference S, non-causally known only to the encoder,

incurs no loss in capacity relative to the standard interference-free AWGN channel,

i.e.

C =
1

2
log

(
1 +

P

N

)
. (5.1)

The achievability of this capacity is based on random binning arguments for general

channels with state information [112]. This consists in a random construction of Gaus-

sian codebook {U1, . . . ,UM} and random partition of its codewords into ”bins”. In

the Gaussian case (side information S and noise Z i.i.d. Gaussian), Costa showed that

with the choice of the input distribution p(u, x|s) such that X ∼ N(0, P ) independent

of S, and

U = X + αS with α = P/(P +N), (5.2)

this capacity is attained. The ideal DPC is however not feasible in practice due to the

huge random codewords size needed for efficient binning. Therefore some sub-optimal
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lower-complexity practical schemes have been proposed in [108] and in [110]. A brief

review is given in the following section.

5.2.2 Sub-optimal Coding

Following Costa’s ideal DPC, Chen et al. proposed the use of structured quantization-

based codebooks in [108]. The resulting embedding scheme is referred to as Quanti-

zation Index Modulation (QIM). Whereas in [110], Eggers et al. designed a practical

”Scalar Costa Scheme” (SCS) where the random codebook U is chosen to be a con-

catenation of dithered scalar uniform quantizers. The watermark signal is a scaled

version of the quantization error, i.e,

xk = α̃

(
Q∆

(
sk −

W

M
∆
)
−
(
sk −

W

M
∆
))

, (5.3)

with ∆ =
√

12P/α̃, α̃ =
√
P/(P + 2.71N) and Q∆ is the uniform scalar quantizer

with constant step size ∆. Decoding is also based on scalar quantization of the

received signal y = x + s + z followed by a thresholding procedure. That is, the

estimate Ŵ of the transmitted message W is the closest integer to rkM/∆, with

rk = Q∆(yk) − yk. The optimum parameter α̃ =
√
P/(P + 2.71N) is obtained by

numerically maximizing the Shannon mutual information I(W ; r)1. With this setting,

SCS performs close to the optimal DPC. The above mentioned QIM which corresponds

to the inflation parameter α = 1 is less efficient, especially at relatively high noise

levels. This QIM embedding function is referred to as regular QIM. Regular QIM can

be slightly modified so as to increase its immunity to noise. The resulting scheme,

called Distortion-Compensated QIM (DC-QIM), corresponds to α = P/(P +N) and

performs very close to SCS as shown in Fig. 5.2.

We observe that SCS and DC-QIM schemes, though clearly sub-optimal, perform

close to the ideal DPC. This constitutes the main motivation focus adapting them to

the multiple watermarking situation.

1Caution should be exercised here as r is the error quantization of the received signal, not the
received signal itself.
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Figure 5.2: Performance of Scalar Costa Scheme (SCS), regular and Distortion-
Compensated QIM in terms of both (a) Capacity in bit per transmission and (b) Bit
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(b) SCS outperforms -by far- regular QIM in terms of BER. A slight improvement over
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5.3 Multiple User Information Embedding: Broad-

cast and MAC Set-ups

In an information embedding context, ”multiple user” refers to the situation where

several messages Wi have to be embedded into a common cover signal S. The em-

bedding may or may not require different robustness and transparency requirements.

This means that each of these messages can be robust, semi-fragile or fragile. Also,

depending on the targeted application, the watermarking system may require either

joint or separate decoding. For joint decoding, think of one single trusted author-

ity checking for several (say K) watermarks at once. For separate (or distributed)

decoding, think of several (say L) authorities each checking for its own watermark.

In order to emphasize the very general case, one may even imagine these decoders

having access to different noisy versions of the same watermarked content. This is

due to the possibly different channel degradations the watermarked content may ex-

perience depending on the receiver location (think of a watermarked image being

transmitted over a mobile network, with watermarking verification performed at dif-

ferent nodes of this network). As in decoding process, we may wish that the encoding

of these messages be performed either jointly or separately. Some of the situations
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of concern are given by the illustrative examples described above, with the receivers

playing the role of the transmitters and vice-versa. Of course, though intentionally

kept in its very general form, this model may not include some specific multiple infor-

mation embedding situations. This is due to the difficulty of finding a single unifying

approach. Nevertheless, the framework that we proposed is sufficiently general to in-

volve the most important multiple information embedding scenarios. For instance two

classes of such scenarios, that we will recognize as being equivalent to communication

over a degraded Broadcast Channel (BC) and a Multiple Access Channel (MAC) in

subsections 5.3.1 and 5.3.2 respectively, are worthy of deep investigations. To sim-

plify the exposition, we first restrict our attention to the two-watermarks embedding

scenario. Extension to the general case then follows.

5.3.1 A Mathematical Model for BC-like Multiuser Informa-

tion Embedding

Consider an information embedding system aiming at embedding two messages

W1 and W2, assumed to be M1-ary and M2-ary respectively, into the same cover signal

S ∼ N(0, Q). We suppose that one single trusted authority (the same encoder) has to

embed these two messages and that embedding should be performed in such a way

that the corresponding two watermarks correspond to two different usages (separate

decoders). For example, the watermark X2 (carrying W2) should be very robust

whereas the watermark X1 (carrying W1) may be of lesser robustness. This means

that the watermark X2 must survive channel degradations up to some noise level N2

larger than N1, i.e. N2 À N1. Furthermore, the previously mentioned transparency

requirement implies that the two watermarks put together must satisfy the input

power constraint P , i.e. X = X1 + X2 is constrained to have EX[X2] = P . Assuming

in dependent watermarks2 X1 and X2, we suppose with no loss of generality that

EX1
[X2

1] = γP and EX2
[X2

2] = (1 − γ)P , where γ ∈ [0, 1] may be arbitrarily chosen

to share power between both watermarks.

In practice, this multiple watermarking scenario can be used to serve multiple

purposes. In the scope of watermarking of medical images for example, we may wish

2A justification of this assumption will be provided in section 5.4.
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Figure 5.3: Two users information embedding viewed as communication over a two-
users Gaussian Broadcast Channel (GBC).

to store the patient information into the corresponding image, in a secure and private

way. This information is sometimes called the ”annotation part”of the watermark and

is hence required to be sufficiently robust. Further, we may wish to use an additional

possibly fragile ”tamper detection part” to detect tampering. Another example stems

from proof-of-ownership applications: we may wish to use one watermark to convey

ownership information (should be robust) and a second watermark to check for content

integrity (should be semi-fragile or fragile). A third example concerns watermarking

for distributed storage. Suppose that a multimedia content (e.g. video or audio)

has to be stored in different storage devices. Furthermore, we want to protect this

multimedia content against piracy, by the use of a watermark. As the alteration level

induced by the storage and extraction processes may differ from one device to another,

the encoding technique must enable the reliably decoded rate to adapt to the actual

alteration level. Of course many other examples and applications can be listed. We

just mention here that the model at hand can be applied every time one watermarking

authority (i.e, one transmitter) has to simultaneously embed several watermarks in

such a way that these watermarks satisfy different robustness requirements.

Assuming Gaussian channel noises Zi ∼ N(0, Ni), with i = 1, 2, a simplified block

diagram of the transmission scheme of interest is shown in Fig. 5.3. Decoder i decodes

Ŵi from the received signal Yi = X1 + X2 + S + Zi at rate Ri. An error occurs if

Ŵi 6= Wi. Functionally, this is the very transmission diagram of a two users Gaussian

Broadcast Channel (GBC) with state information available at the transmitter but not

at the receivers. In addition, the watermark X2 having to be robust plays the role of
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the message directed to the ”degraded user” in a broadcast context. Conversely, the

watermark X1 plays the role of the message directed to the ”better user”. Also, here

we have considered only two watermarks. The similarity with a L-users BC will be

retained if, instead of just two watermarks, L watermarks are to be simultaneously

embedded by the same so-called trusted authority.

5.3.2 A Mathematical Model for MAC-like Multiuser Infor-

mation Embedding

We now consider another situation. Again, the watermarking system aims at em-

bedding two independent messages W1 and W2 into the same cover signal S. However,

the present situation is different in that, this time, (i) embedding is performed by two

different authorities, each having to embed its own message satisfying a given power

requirement and (ii) at the receiver, a single trusted authority having to check for

both watermarks. We assume no particular cooperation between the two embedding

authorities, meaning that the watermarks X1 (carrying W1) and X2 (carrying W2)

should be designed independently of each other. In addition, watermarks X1 and

X2 must satisfy independent power constraints P1 and P2, respectively. Thus, two

individual power constraints must be satisfied, which differs from the above scenario

(BC-like) in which the power constraint P is taking over both watermarks X1 +X2.

Encoder 1

Encoder 2

Decoder 

S ∼ N (0, Q) Z ∼ N (0, N)

Y

S

S + X

(Ŵ1, Ŵ2)
X1 : E[X1

2] ≤ P1

X2 : E[X2
2] ≤ P2

W1

W2

Figure 5.4: Two users information embedding viewed as communication over a (two
users) Multiple Access Channel (MAC).

In practice, this multiple watermarking scenario can be used to serve multiple

purposes. Loosely speaking, every watermarking system addressing the same appli-

cation multiple times is concerned. An example stemming from proof-of-ownership

applications is as follows. Consider two different creators independently watermark-
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ing the same original content S, as it is common for large artistic works such as

feature films and music recordings. Each of the two watermarks may contain private

information. A common trusted authority may have to check for both watermarks.

This is the case when an authenticator agent needs to track down the initial owner of

an illegally distributed image, for example. A second example is the so-called hybrid

in-band on-channel digital audio broadcasting [108]. In this application, we would like

to simultaneously transmit two digital signals within the same existing analog (AM

and/or FM) commercial broadcast radio without interfering with conventional ana-

log reception. Thus, the analog signal is the cover signal and the two digital signals

are the two watermarks. These two digital signals may be designed independently.

One digital signal may be used as an enhancement to refine the analog signal and

the other as supplemental information such as station or program identification. A

third application concerns distributed (i.e., at different places) watermarking: some

fingerprinting can be embedded right at the camera, while possible annotations can

be added next to the storage device.

Assuming a Gaussian channel noise Z ∼ N(0, N) corrupting the watermarked

signal S + X, a simplified diagram is shown in Fig. 5.4. The encoder i, i = 1, 2,

encodes Wi into Xi at rate Ri. The decoder outputs (Ŵ1, Ŵ2). An error occurs if

(Ŵ1, Ŵ2) 6= (W1,W2). Functionally, this is the very transmission diagram of a two

users Gaussian Multiple Access Channel (MAC) with state information available at

the transmitters but not to the receiver. Note that, here, we have considered only two

watermarks. The similarity with a K-users MAC will be retained if, instead of just

two authorities, K different embedding authorities, each encoding its own message

are considered.

The above discussion indicates that there are strong similarities between multiple

information embedding and conventional multiple user communication. In sections

5.4 and 5.5, we rely on recent findings in multi-user information theory [118] to devise

efficient implementable multiple watermarking schemes and address their practical

achievable performance. Also, in our attempt to further highlight the analogy with

conventional multi-user communication, we will sometimes use the terms ”multiple

users”, ”degraded user”and ”better user”to loosely refer to ”multiple watermarks”, ”the

receiver decoding the more noisy watermarked content” and ”the receiver decoding
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the less noisy watermarked content”, respectively.

5.4 Information Embedding over Gaussian Broad-

cast and Multiple Access Channels

In this section, we are interested in designing efficient low-complexity multiuser in-

formation embedding schemes for each of the two situations considered in section 5.3.

We first present a straightforward rather intuitive method based on super-imposing

two SCSs. This simple method can be thought as being “coding-unaware”. Next,

we use the similarity between multi-user information embedding problem and trans-

mission over Gaussian BC and MAC to design more efficient multiple watermarking

schemes. We reefer to these latter strategies as being “broadcast-aware” and ”MAC-

aware”, respectively. The improvement brought by ”awareness” is illustrated through

both achievable rate regions and BER enhancements. Note that we will assume,

throughout this section, that the flat-host assumption is satisfied as long as quanti-

zation is concerned.

5.4.1 Broadcast-Aware Coding for Two-Users Information

Embedding

A simple approach for designing a coding system for the two users information

embedding problem considered in subsection 5.3.1 consists in using two independent

single-user DPCs (or SCSs for the corresponding suboptimal practical implementa-

tion).3

Broadcast-unaware coding (double DPC)

In essence, the ideal coding is based on successive encoding at the transmitter as

follows:

(i) Use a first DPC (denoted by DPC2) taking into account the known state S and

the power of unknown noise Z2 to form the most robust watermark X2 intended

3Note that this is not the most naive way of working, each DPC being tuned based on all
information available.
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to the degraded user. By using (5.2), DPC1 is given by X2 = U2 − α2S with

U2|S ∼ N (α2S, (1 − γ)P ) , with α2 =
(1 − γ)P

(1 − γ)P +N2

. (5.4)

(ii) Use a second DPC (denoted by DPC1) taking into account the known state

S + X2, sum of the cover signal S and the already formed watermark X2, and

the power of unknown noise Z1 to form the less robust watermark X1 intended

to the better user. By using (5.2), DPC1 is given by X1 = U1 − α1(S + X2)

with

U1|U2,S ∼ N (α1(S + X2), γP ) , with α1 =
γP

γP +N1

. (5.5)

(iii) Finally, transmit the composite signal S + X over the watermark channel, with

X = X1 + X2 being the composite watermark. The received signals are Y1 =

X + S + Z1 and Y2 = X + S + Z2.

Note that the watermark X2 should be embedded first because of the following intu-

itive reason. When considering the extreme case where the watermark X1 is fragile,

this watermark should be by design, damaged by any operation that alters the cover

signal S. Since robust embedding is such an operation, the fragile watermark should

be embedded last. The theoretical achievable region RBC with DPC1 and DPC2 is

given by

RBC(P ) =
⋃

0≤γ≤1

{
(R1, R2) : R1 ≤ 1

2
log2

(
1 +

γP

N1

)
,

R2 ≤ R(α2, (1 − γ)P,Q, γP +N2)
}
,

(5.6)

where R(α, P,Q,N) =
1

2
log2

(
P (P +Q+N)/(PQ(1 − α)2 +N(P + α2Q))

)
and Q

is the power of the host signal S . Using straightforward algebra, which is omitted

for brevity, it can be shown that the rates in (5.6) can be obtained by evaluating the

achievable region [118]

RBC(PU1U2|S) =
{

(R1, R2) : R1 ≤ I(U1;Y1|U2) − I(U1;S|U2),

R2 ≤ I(U2;Y2) − I(U2;S)
}
,

(5.7)

with the choice of U1 and U2 given by (5.5) and (5.4), respectively.

Using (5.3) and following the way a single user SCS is derived from the correspond-

ing single-user DPC, a suboptimal practical two-users scalar information embedding
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scheme can be derived by independently super-imposing two SCSs (denoted by SCS1

and SCS2 and taken as scalar versions of DPC1 and DPC2, respectively). SCS1 and

SCS2 are applied sequentially, starting with SCS2 for the design of the watermark x2

as an appropriate scaled version of the quantization error of the cover signal s. Then,

SCS1 designs the watermark x1 as an appropriate scaled version of the quantization

error of the sum signal s + x2. The corresponding uniform scalar quantizers Q∆1
and

Q∆2
have step sizes ∆1 =

√
12γP/α̃1 and ∆2 =

√
12(1 − γ)P/α̃2, where

(α̃1, α̃2) =

(√
γP

γP + 2.71N1

,

√
(1 − γ)P

(1 − γ)P + 2.71N2

)
. (5.8)

Note that the flat-host assumption on signals s and s + x2 is assumed to hold as

supposed above. We denote by (R̃1, R̃2) the transmission throughput achieved by

this set-up. This rate pair is computed numerically. Results are depicted in Fig.

5.5 and are compared to the theoretical rate pair (R1, R2) ∈ RBC given by (5.6), for

two examples of channel parameters. The noise in first example, (i.e., the one such

that P/N2 = 0 dB) may model a channel attack which has the same power as the

composite watermark X = X1 +X2. The performance of this first approach is worthy

of some brief discussion.

(i) From (5.6), we see that DPC1- as given by (5.5)- is optimal. The achievable rate

R1 corresponds to that of a channel with not only no interfering cover signal

S, but also no interference signal X2. Thus, the message W1 can be sent at its

maximal rate, as if it were embedded alone. From ”Decoder 1” point of view,

the channel from W1 to Y1 is functionally equivalent to a single-user channel

from W1 to Y′
1 = Y1 − U2 = X1 + (1 − α2)S + Z1, having just (1 − α2)S as

state information, not S + X2. Yet, it is not that Y1 is a single-user channel,

but rather that the amount of reliably decodable information W1 is exactly the

same as if W1 were transmitted alone over Y′
1. Moreover DPC2- as given by

(5.4) is not optimal. The reason is that the achievable rate R2 given by (5.6) is

inferior to 1
2
log2(1+(1 − γ)P/(γP+N2)). The latter rate is that of a watermark

signal subject to the full interference penalty from both the cover signal S and

the watermark X1.

(ii) SCS1 performs close to optimality. The scalar channel having a message W1
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(a) Rates for P/N1 = 5 dB and P/N2 = 0
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(b) Rates for P/N1 = 12 dB and P/N2 = 9

dB.

Figure 5.5: Theoretical and feasible transmission rates for broadcast-like multiple
user information embedding for two examples of SNR. For each SNR, the upper curve
corresponds to the theoretical rate region RBC (5.6) of the double DPC and the lower

curve corresponds to the achievable rate region (R̃1, R̃2) of the two superimposed SCSs
with quantization parameters given by (5.8). Dashed line correspond to (2-ary,4-ary)
and (4-ary,2-ary) transmissions.

as input and the quantization error as output is functionally equivalent to that

from W1 to r′1 = Q∆1
(y′

1) − y′
1, where y′

1 is the single-user channel suffering

only partly from the interference X2
4. The practical transmission rate over this

channel is given by the mutual information I(W1; r
′
1), the maximum of which

(i.e R̃1) is obtained with the choice (5.8) of α̃1. However, being derived from

DPC2 -which is itself non optimal- SCS2 is obviously suboptimal. Consequently

the parameter α̃2 chosen does not maximize the mutual information I(W2; r2),

with r2 = Q∆2
(y2) − y2.

In the following section, we show that the encoding of W2 can be improved so as

to bring the rate R̃2 close to R
(max)
2 = 1

2
log2 (1 + (1 − γ)P/(γP +N2)). The corre-

sponding scheme, which we call ”Joint scalar DPC” in the sequel, improves system

performance by making multiple information embedding broadcast-aware.

4Note that in the equivalent channel y′

1
= x1 + (1 − α2)s + z1, the watermark x1 is formed as a

scaled version of the quantization error of the channel state (1 − α2)s and not s + x2 as before.
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Broadcast-aware coding (joint DPC)

In section 5.3.1, we have shown that the communication scenario depicted in Fig.

5.3 is basically that of a degraded GBC with state information non-causally known to

the transmitter but not to the receivers. In [118], it has been shown that the capacity

region CBC of this channel is given by

CBC(P ) =
⋃

0≤γ≤1

{
(R1, R2) : R1 ≤ 1

2
log2

(
1 +

γP

N1

)
,

R2 ≤ 1

2
log2

(
1 +

(1 − γ)P

γP +N2

)}
,

(5.9)

which is that of a GBC with no interfering signal S. This region can be attained by

an appropriate successive encoding scheme that uses two well designed DPCs. The

encoding of W1 (DPC1) is still given by (5.5). For the encoding of W2 however, the

key point is to consider the unknown watermark X1 as noise. We refer to this by

saying that the encoder is ”aware” of the existence of the watermark X1 and takes it

into account. The resulting DPC (again denoted by DPC2) uses the cover signal S

as channel state and Z2 + X1 as total channel noise:

U2|S ∼ N(α2S, (1 − γ)P ) with α2 =
(1 − γ)P

(1 − γ)P + (N2 + γP )
, (5.10)

and X2 = U2 − α2S. Obviously, this encoding does not remove the interference due

to X1. Nevertheless, DPC1 is optimal in that it attains the maximal possible rate

R
(max)
2 at which W2 can be sent together with W1.

Feasible rate region

Consider now a scalar implementation of this Joint DPC scheme consisting in two

successive SCSs. DPC2 can be implemented by a scalar scheme SCS2, quantizing the

cover signal s and outputting the watermark x2 as an appropriate scaled version of

the quantization error. We denote by α̃1 and ∆1 the corresponding scale factor and

quantization step size, respectively. DPC1 can be implemented by a scalar scheme

SCS1, quantizing the newly available signal s + x2 and outputting the watermark

x1 as an appropriately scaled version of the quantization error. We denote by α̃2

and ∆2 the corresponding scale factor and quantization step size, respectively. Let

Y′
1 = Y1 − U2 be the channel functionally equivalent to Y1 introduced above. The

resulting achievable rate region R̃BC, practically feasible with this coding, is given by
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R̃BC(P ) =
⋃

0≤γ≤1

{
(R̃1, R̃2) : R̃1 ≤ max

α1∈[0,1]
I
(
W1; Q∆1(α1,γ)(y

′
1) − y′

1︸ ︷︷ ︸
r′1

)
,

R̃2 ≤ max
α2∈[0,1]

I
(
W2; Q∆2(α2,γ)(y2) − y2︸ ︷︷ ︸

r2

)}
.

(5.11)

The proof simply follows from the discussion above regarding the equivalent channels

from W1 to r′1 for the message W1 and from W2 to r2 for the message W2. Each of

these two channels conforms the single user channel considered in the initial work [110]

and has hence a similar expression of the transmission rate. The inflation parameters

pair (α̃1, α̃2) maximizing the right hand side terms of (5.11) is given by

(α̃1, α̃2) =

(√
γP

γP + 2.71N1

,

√
(1 − γ)P

(1 − γ)P + 2.71(γP +N2)

)
. (5.12)

The region (5.11), obtained through a Monte-Carlo based integration, is depicted

in Fig. 5.6 and is compared to the ideal DPC region CBC given by (5.9), for two choices

of channel parameters: weak channel noise (Fig. 5.6(c) and Fig. 5.6(d)) and strong

channel noise (Fig. 5.6(a) and Fig. 5.6(b)). The latter may model, for example, a

channel attack with power equal to that of the composite watermark X = X1 + X2,

as mentioned above. Note that we need to compute the conditional probabilities

pr′1(r
′
1|W1) and pr2

(r2|W2). These are computed using the high resolution quantization

assumption QÀ P , which is relevant in most watermarking applications.

Improvement over the ”Double DPC” is made possible by increasing the rate R2

at which the robust watermark can be sent. It is precisely ”awareness” that allows

such improvement. However, note that this improvement is more significantly for

high SNR as shown in Fig. 5.6(c). Whereas for low SNR, this improvement (thought

still theoretically possible) is almost not visible for scalar codebooks, as shown in Fig.

5.6(a). This can be interpreted as follows: The above mentioned ”awareness”, which

can be viewed as a power saving technique for the ”degraded user”, does not sensibly

improve the overall communication when the channel is very bad.5 Both theoretical

and feasible rate regions of the BC-aware scheme are also depicted for non-binary

inputs in Fig. 5.6(d) and Fig. 5.6(b). It can be seen that, depending on the SNR,

5Note however that, this should not be considered as a drawback since when the channel is very
bad capacity is not needed, but reliability transmission.
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Figure 5.6: The improvement brought by ”BC-awareness” (with binary inputs) is
depicted for (a) P/N1 = 5 dB, P/N2 = 0 dB and (c) P/N1 = 12 dB, P/N2 = 9
dB. Solid line corresponds to the rate region of the BC-aware scheme achievable
theoretically (upper) and practically (lower). Dashed line corresponds to the rate
region of the BC-unaware scheme achievable theoretically (upper) and practically
(lower). (b) and (d): achievable rate region of the BC-aware scheme for M1-ary and
M2-ary alphabets depicted for (b) P/N1 = 5 dB, P/N2 = 0 dB and (d) P/N1 = 12
dB, P/N2 = 9 dB.



Chapter 5: Broadcast-Aware and MAC-Aware Coding Strategies for Multiple User
Information Embedding 135

the practically feasible rate region (5.11) can more-or-less approach the theoretical

capacity region CBC, by increasing the sizes M1 and M2 of the input alphabets M1

and M2.
6

Bit Error Rate analysis and discussion

Another performance analysis is based on measured BERs for hard decision based

decoding of binary scalar DPC. Results are obtained with Monte Carlo based sim-

ulation and are depicted in Fig. 5.7. Note that the set of channel parameters cho-

sen in Fig. 5.7 may model a wide range of admissible channel attacks on the indi-

vidual watermarks, since the individual SNRs, SNR1 = 10log10(γP/N1) and SNR2 =

10log10 ((1 − γ)P/(γP +N2)), vary from −8 dB to 12 dB and from −15 dB to 9

dB respectively as the power-sharing parameter γ varies from 0 to unity. However,

this may be not a good choice to model a strong attack on the composite watermark

X1+X2 (for example, one such that P/N2 = 0 dB). For such an attack, the individual

rates are very low and the BERs are very bad. In principle, it would be possible to use

any provably efficient error correction code for each of the channels Y1 and Y2 taken

separately. However, at low SNR ranges, it is well known that repetition coding is

almost optimal. The curves in Fig. 5.7(a) are obtained with (ρ1, ρ2) = (4, 4), meaning

that W1 and W2 are repeated 4 times each.

We observe that as γ ∈ [0, 1] increases, the power part of the signal X allocated to

the watermark carryingW1 becomes larger and that allocated to the watermark carry-

ing W2 becomes smaller. This causes the corresponding BER curves to monotonously

decrease and increase, respectively. Also, it can be checked that, when plotted sepa-

rately, these curves are identical to those of a SCS with a signal-to-noise power ratio

equal to SNR1 and SNR2, respectively. This conforms the assumption made above

regarding the functionally equivalent channels y′
1 and y2. The curves depicted in Fig.

5.7 also motivate the following discussion.

(i) In practical situations, the repetition factors ρ1 and ρ2 should be chosen in

light of the desired transmission rates and robustness requirements. The choice

(ρ1, ρ2) = (4, 4) made above should be taken just as a baseline example. Channel

6However, a gap of about 1.53 dB should remain visible, i.e., R1−R̃1 > 1.53 dB and R2−R̃2 > 1.53
dB.
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Figure 5.7: Broadcast-aware multiple user information embedding. (a): Bit Error
Rates for binary transmission using repetition coding. (b): Each decoder can only
decode ”his” own watermark. Thought much less noisy, the ”best user” performs only
slightly better than the ”degraded user” in decoding message W2. The messages W1

and W2 are repeated 4 times each, i.e. (ρ1, ρ2) = (4, 4) and channel parameters are
such that P/N1 = 12 dB and P/N2 = 9 dB.

coding as a means of providing additional redundancy obviously strengthens

the watermark immunity to channel degradations. However, such a redundancy

inevitably limits the transmission rate. This means that for equal targeted

transmissions rates R1 and R2, the repetition factors ρ1 and ρ2 should satisfy

ρ2 ≥ ρ1.

(ii) The scalar DPC considered here for multiple watermarking is constructed using

insights from coding for broadcast channels [120,121], as mentioned above. In-

terestingly, in such channels the user who experiences the better channel (less

noisy) has to reliably decode the message assigned to the (degraded) user who

experiences the worst channel (more noisy). In an information embedding con-

text, this means that the robust watermark, which is supposed to survive chan-

nel degradation levels up to N2, should be reliably decodable if, actually, the

channel noise is less-powerful. However, this strategy, which is inherently related

to the principle of superposition coding at the transmitter combined with suc-

cessive decoding (peeling off technique) at the ”better user” (Decoder 1) [122],

makes more sense in the situations where the ”better user” is unable to reliably
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decode its own message if it does not primarily subtract off the interference

due to the message assigned to the ”degraded user”. The DPC-based scheme

is fundamentally different in that the interference is already subtracted off at

the encoder. As a consequence, the ”better user” does not need to decode the

message of the degraded user.7

(iii) There could however have advantages and disadvantages for the DPC-based

scheme described above to follow such a strategy. An obvious disadvantage

concerns security issues. In a transmission scheme where security is a major

issue, the ”better user” should not be able to reliably decode the message as-

signed to the ”degraded user”. By opposition, an obvious advantage stems from

the following observation. If channel quality is improved, resulting in better

SNR in the transmission of W2, the ”degraded user”, being at present a ”better

user”, should be able to reliably decode much more information W2 than it does

with the old channel quality. For the above described DPC-based scheme, to

fulfill this additional requirement, one should focus on maximizing (over α1)

the conditional mutual information I(W1; r1|W2). This would however lead to a

suboptimal choice α̃′
1 of the inflation parameter α1 for the transmission of W1,

an d consequently to a smaller transmission rate R̃1 = I(W1; r
′
1)|α1=fα′

1

.

(iv) The present DPC-scheme, as is, does not fully satisfy the above mentioned

broadcast property. From Fig. 5.7(b), we observe that the ”better user” does

not fully exploit the fact of being much less noisy (than the degraded user) to

more reliably decode W2: The improvement in BER upon the ”degraded user is

very small and is even negligible, as shown in Fig. 5.7(b). And even though this

improvement seems to behave like the improvement in SNR (which is maximal

at γ = 0), it is actually smaller than the one, 10 log10 ((γP +N2)/(γP +N1))

dB, which should be visible if the ”better user” were able to reliably decode W2

as in superposition coding.

7Note that by opposition to superposition coding, there is an important embedding ordering at
the encoder. The benefit of such ordering is a decoupling of the receivers and hence a more scalable
system. Each receiver needs only know its own codebook to extract its message.
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5.4.2 MAC-Aware Coding for Two Users Information Em-

bedding

In this section we are interested in designing implementable multiple watermarking

schemes for the situation described in subsection 5.3.2. Paralleling the development

made in section 5.4, we provide a performance analysis for two MAC-aware and

unaware multiple watermarking strategies.

MAC-unaware coding (double DPC)

The situation described in subsection 5.3.2 corresponds in essence to two Costa’s

channels. A simple approach for designing a watermark system for this situation

consists in two single-user DPCs (or SCSs for the corresponding practical implemen-

tation). Let Y = X1 + X2 + S + Z denote the received signal. Upon reception,

the receiver should reliably decode the messages W1 and W2 having been embedded

into the watermarks X1 and X2, respectively. However, since decoding is performed

jointly, the successful decoding of one of the two messages should benefit of the other

message. This is illustrated through the following possible coding.

(i) Encoder 2 uses a DPC (DPC2) taking into account the known state S and the

power of unknown noise Z to form the watermark X2 of power P2 and carrying

W2 as X2 = U2 − α2S, where

U2 ∼ N (α2S, P2) , with α2 =
P2

P2 +N
. (5.13)

At reception, the decoder first decodes W2 and then cleans up the channel by

subtracting the interference penalty U2 that the transmission of W2 causes to

that of W1.
8 Thus the channel for W1 is made equivalent to Y1 = Y − U2 =

X1 + (1 − α2)S + Z. This ”cleaning up” step is inherently associated with

successive decoding and is sometimes referred to as the peeling-off technique.

Hence, encoder 1 can reliably transmit W1 over the channel Y1 by using a

second DPC (DPC1).

8Note that, theoretically, the decoder looks for the (unique) codeword U2 such that (U2,Y) is

jointly typical. In practice however, the decoder only knows an estimate Û2 of the codeword U2

even if W2 is decoded perfectly, since the host S is unknown at the receiver (see discussion in Section
5.4.2).
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(ii) Encoder 1 forms X1 as X1 = U1 − α1S, where

U1|S ∼ N (α1S, P1) , with α1 = (1 − α2)
P1

P1 +N
=

NP1

(P1 +N)(P2 +N)
. (5.14)

The rate pair (R1, R2) ∈ RMAC achieved by the considered two DPCs are those corre-

sponding to the corner point (B1) of the achievable region RMAC depicted in Fig. 5.8,

and are given by

R1(B1) =
1

2
log2

(
1 +

P1

N

)
, (5.15a)

R2(B1) =
1

2
log2

(
P2(P2 +Q+N + P1)

P2Q(1 − α2)2 + (N + P1)(P2 + α2
2Q)

)
. (5.15b)

Using straightforward algebra which is omitted for brevity, it can be shown that the

rates in (5.15) correspond to a corner point in the rate region obtained by evaluating

the achievable region [118]

RMAC(P1, P2) =
{

(R1, R2) : R1 ≤ I(U1;Y |U2) − I(U1;S|U2),

R2 ≤ I(U2;Y |U1) − I(U2;S|U1),

R1 +R2 ≤ I(U1, U2;Y ) − I(U1, U2;S),
}
,

(5.16)

with the choice of codebooks U1 and U2 given by (5.13) and (5.14), respectively.

Following the same principle, similar DPC schemes allowing to attain the corner

points (A), (C1) and (D) can be designed. The corner point (A) corresponds to the

watermark X1 (i.e, the information W1) being sent at its maximum achievable rate

whereas the watermark X2 (i.e, the information W2) not transmitted at all. The two

corner points (C1) and (D) correspond to the points (B1) and (A), respectively, with

the roles of the watermarks X1 and X2 reversed. Any rate pair lying on the lines

connecting these corner points can be attained by time sharing. We concentrate on

the corner point (B1) and consider a practical implementation of this theoretical set-

up. This can be performed by using two SCSs, SCS1 and SCS2, consisting of scalar

versions of DPC1 and DPC2. The uniform scalar quantizers Q∆1
and Q∆2

have step

sizes ∆1 =
√

12P1/α̃1 and ∆2 =
√

12P2/α̃2, where

(α̃1, α̃2) =

(
(1 − α2)

√
P1

P1 + 2.71N
,

√
P2

P2 + 2.71N

)
, (5.17)
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conform the codebooks choice in (5.13) and (5.14).9 Note that the signal S is assumed

to be flat-host as mentioned above. The feasible transmission rate pair achieved by

this practical coding corresponds to the corner point (B1’) in the diagrams shown

in Fig. 5.8. Note that results ate depicted for two choices of channel parameters:

strong channel noise (shown in Fig. 5.8(a)) and weak channel noise (shown in Fig.

5.8(b)). The strong noise may model a channel attack which has the same power as

the composite watermark X = X1 + X2. The performance of this first approach can
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Figure 5.8: Theoretical and feasible transmission rates for MAC-like multiple user
information embedding. The frontier with corner points (A), (B1), (C1), and (D)
corresponds to the theoretical rate pair (R1, R2) ∈ RMAC of the double ideal DPC.
The frontier with corner points (A’), (B1’), (C1’), and (D’) corresponds to the feasible

rate pair (R̃1, R̃2) of the two superimposed SCSs. Dashed line corresponds to practical
rates obtained with the use of quaternary alphabets.

be summarized as follows.

(i) From (5.15b), we see that DPC1- as given by (5.14)- is optimal. The inter-

ference due to the cover signal S and the second watermark X2 is completely

canceled. Hence, the watermark X1 can be sent at its maximal rate R1, as

if it were alone over the watermark channel. The channel from W1 to Y is

functionally equivalent to that from W1 to Y1 = Y − U2. However, DPC2- as

given by (5.13)- is non optimal, because the rate R2 given by (5.15b) is inferior

to 1
2
log2 (1 + P2/(P1 +N)), which is that of a watermark subject to the full

9Note that the choice (α̃1, α̃2) in (5.17) does not maximize the input-output mutual information.
Rather, it directly traces the way in which the codebooks are generated in (5.13) and (5.14).
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interference penalty from both the cover signal S and the watermark X1.

(ii) SCS1 performs close to optimality. The scalar channel is equivalent to that from

W1 to r1 = Q∆1
(y1) − y1. The practical transmission rate over this channel is

given by the mutual information I(W1; r1), the maximum of which (i.e R̃1) is

obtained with the choice (5.17) of α̃1. However, SCS2 is non optimal, simply

because DPC2 is not. The inflation parameter α̃2 does not maximize the mutual

information I(W2; r), with r = Q∆2
(y)− y. Thus, the achievable rate R̃2 is not

maximal and corresponds to R̃2 = I(W2; r)|α2=fα2
.

The encoding of W2 can be improved so as to bring the achievable rate R̃2(B1′)

close to R
(max)
2 = 1

2
log2

(
1 + P2

P1+N

)
. The corresponding scheme, called ”joint DPC”,

enhances the performance by making multiuser information embedding MAC-aware.

MAC-aware coding (joint DPC)

In subsection 5.3.2, we argued that the communication scenario depicted in Fig.

5.4 is basically that of a Gaussian Multiple Access Channel (GMAC) with state

information non-causally known to the transmitters but not to the receiver. In [118],

it is reported that the capacity region CMAC of this channel is given by

CMAC(P1, P2) =
{

(R1, R2) : R1 ≤ 1

2
log2

(
1 +

P1

N

)
,

R2 ≤ 1

2
log2

(
1 +

P2

N

)
,

R1 +R2 ≤ 1

2
log2

(
1 +

P1 + P2

N

)}
,

(5.18)

which is that of a GMAC with no interfering signal S. This region, with corner points

(A), (B), (C) and (D), is shown in Fig. 5.9 and can be attained by an appropriate

successive encoding scheme that uses well designed DPCs. Consider for example the

corner point (B). The encoding of W1 is again given by (5.14), recognized above to be

optimal10. The encoding DPC2 of W2 however should be changed so as to consider

the watermark X1 as noise. We refer to this situation by saying that the encoder

should be ”aware” of the existence of X1 and acts accordingly. The resulting DPC

10Note however that as α1 depends on α2, the optimal inflation parameter for DPC1 becomes
α1 = P1/(P1 + P2 + N).
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(again denoted by DPC2) uses the cover signal S as channel state and the signal

Z + X1 as total channel noise:

U2|S ∼ N (α2S, P2) , with α2 =
P2

P2 + (P1 +N)
. (5.19)

Obviously the interference due to X1 is not removed. However, this scheme is optimal

in that it achieves the maximum rate R
(max)
2 at which the message W2 can be sent as

long as the message W1 is sent at its maximum rate.

Feasible rate region

We consider now a practical implementation for this joint scheme through two

jointly designed SCSs with parameters (α̃1,∆1) and (α̃2,∆2), respectively. This re-

sults in a maximal feasible transmission rate R̃2 given, as before, by R̃2 = max
α2∈[0,1]

I(W2; r).

However, the corresponding scale parameter α2 is set this time to its optimal choice,

i.e, α̃2 =
√
P2/(P2 + 2.71(N + P1)).

11 The resulting transmission rate pair (R̃1, R̃2)

is represented by the corner point (B’) in Fig. 5.9 for two examples of channel condi-

tions: weak noise (shown in Fig. 5.9(b)) and strong noise modelling a strong channel

attack on the composite watermark X = X1 +v.X2 (shown in Fig. 5.9(a)). Reversing

the roles of the watermarks X1 and X2, the joint design also pushes out the corner

point (C1’) to (C’). More generally any rate pair on the region frontier delimited by

the corner points (A’), (B’), (C’) and (D’) is made practically feasible by subsequent

time-sharing. When the message Wi travels alone over the watermark channel, the

equivalent channel is Yi = Y−Uj, (i, j) ∈ {1, 2}×{1, 2}, i 6= j. Hence, Wi can be sent

at its maximum feasible rate, which is given by max
αi∈[0,1]

I(Wi; ri), withri = Q∆i
(yi)−yi.

When the two messages travel together, the maximal sum of the two feasible rates

corresponds to one of the two (say W1) set to its maximal feasible rate and the other

(W2) facing a total channel noise of z + x1. Of course, we can reverse the roles of W1

and W2, and the maximal feasible sum rate remains unchanged. Consequently, the

11Note that the optimal inflation parameter for SCS1 is α̃1 = (P1 + N)
√

P1/P1 + 2.71N/(P1 +
P2 + N).
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Figure 5.9: MAC-like multiple user information embedding. The improvement
brought by ”awareness” is depicted for (a) strong channel noise, P1 = P2, (P1 +
P2)/N = 0 dB and (b) weak channel noise, P1 = P2, (P1 + P2)/N = 9 dB. Solid
line delineates the capacity region of the MAC-aware scheme achievable theoretically
(upper) and practically (lower). Dashed line delineates the rate region of the MAC-
unaware scheme achievable theoretically (upper) and practically (lower). (c) Capacity
region of the MAC-aware scheme with (M1−ary,M2−ary) input alphabets for very
high SNR.
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Figure 5.10: MAC-like multiple user information embedding bit error rates. The two
messages W1 and W2 are sent at rates (R̃1, R̃2) corresponding to the corner point (B’)
in the capacity region diagram shown in Fig. 5.9.

achievable rate region R̃MAC is given by

R̃MAC(P1, P2) =
{

(R̃1, R̃2) : R̃1 ≤ max
α1∈[0,1]

I
(
W1; Q∆1(α1,P1)(y1) − y1

)
,

R̃2 ≤ max
α2∈[0,1]

I
(
W2; Q∆2(α2,P2)(y2) − y2

)
,

R̃1 + R̃2 ≤ max
α1∈[0,1]

I
(
W1; Q∆1(α1,P1)(y1) − y1

)

+ max
α2∈[0,1]

I
(
W2; Q∆2(α2,P2)(y) − y

)}
.

(5.20)

Fig. 5.9 shows the achievable rate region R̃MAC gain brought by the joint design

of the DPCs in approaching the theoretical limit CMAC (5.18). This improvement,

which is more visible at large SNR (i.e., weak channel noise), is more significant in

the situations where W1 and W2 are both transmitted with non-zero rates. In this

case, for a given transmission rate R̃2 of W2, the maximal transmission rate at which

W1 can be sent is larger and equivalently for any rate R̃1. Moreover the gap to the

theoretical limit CMAC can be reduced by use of sufficiently large size alphabets M1

and M2 as shown in Fig. 5.9(c). Of course, this is achieved at the cost of a slight

increase in encoding and decoding complexities.

Bit Error Rate analysis and discussion

Consider the coding scheme given by (5.14) and (5.19). The peeling off technique

aims to clean up the channel before decoding W1, by subtracting the codeword U2.
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This is good for performance evaluation and for theoretically proving the achievability

of the corner point (B) of the capacity region. However, in practice, the decoder does

not know the exact codeword U2 that ”Encoder 2” had used. Instead, it has access

to an estimation Û2 of U2, which is determined as the (unique) codeword being

typically joint with the received signal Y. Of course, the accuracy of this estimation,

and hence that of decoding message W1, depends on the value of SNR2. For instance,

a bad SNR2 will likely cause decoding of W2 to fail. Thus, the estimate Û2 does not

resemble the exact U2 and it is rather seen as an additional noise source. However,

at good (high) SNR2, the estimate Û2 of codeword U2 is accurate and the peeling off

technique is efficient as shown in Fig. 5.10. For instance, at the same SNR, decoding

message W1 is more accurate than that of W2, though P2 = 10P1.

5.5 Multi-User Information Embedding and Struc-

tured Lattice-Based Codebooks

In this section, we extend the results obtained in section 5.4 in the context of two

watermarks to the general multiple watermarking case. We also broaden our view to

consider the high dimensional lattice-based codebooks case.

5.5.1 Broadcast-Aware Information Embedding: the Case of

L - Watermarks

The results in subsection 5.4.1 can be straightforwardly extended to the situation

where, instead of just two messages, L messages Wi, i = 1, 2, . . . , L, have to be

embedded into the same cover signal S. The composite watermark is X =
L∑

i=1

Xi.

The watermark Xi has power Pi and carries the message Wi, where
L∑

i=1

Pi = P . We

consider a Gaussian Broadcast Channel Zi ∼ N(0, Ni) and assume without loss of

generality that N1 ≤ N2 ≤ . . . ≤ NL. This means that the watermarks should be

designed in such a way that Xi is less robust than Xj for i ≤ j. Following the joint

DPC scheme above, the watermarks should be ordered according to their relative

strengths and put on top of each other. This means that the most robust (that
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is XL) should be embedded first whereas the most fragile (that is X1) should be

embedded last. For i ranging from L to 1, the watermark signal Xi is obtained by

applying an i-th DPC (denoted here by DPCi). The available state information to be

used is Si = S +
L∑

j=i+1

Xj, the sum of the cover signal S and the already embedded

watermarks Xj, j > i. The channel noise is Zi +
i−1∑

j=1

Xj, the sum of the ambient

noise Zi and the not-yet embedded watermarks Xj, j < i, accumulated and taken as

an additional noise component. Note that the Gaussiannity of this noise term and

its statistic independence from both Xi and Si as well as the statistic independence

of Xi on Si conform to the statistical independence between the state information,

the watermark and the noise in the original Costa set-up [111]. Thus, the optimal

inflation parameter for DPCi is αi = Pi/(Ni +
i∑

j=1

Pj) and the corresponding maximal

achievable rate Ri is given by

Ri =
1

2
log2

(
1 +

Pi

Ni +
∑i−1

j=1 Pj

)
. (5.21)

A scalar implementation of this broadcast-based joint DPC for embedding L wa-

termarks, consists in L SCSs jointly designed. Similarly to the 2-watermark case and

using the equivalent channel y′
i = yi −

L∑

j=i+1

uj for SCSi, i = 1, 2, . . . , L, the corre-

sponding achievable rate region is given by the union of all rate L-tuples (R̃1, . . . , R̃L)

simultaneously satisfying

R̃i ≤ max
αi∈[0,1]

I
(
Wi; Q∆i(αi,Pi)(y

′
i) − y′

i

)
. (5.22)

The union is taken over all power assignments {Pi}, i = 1, 2, . . . , L, satisfying the

average power constraint
L∑

j=1

Pi = P. The inflation parameter maximizing the right

hand side term of (5.22) is

α̃i =

√√√√ Pi

Pi + 2.71
(
Ni +

∑i−1
j=1 Pj

) . (5.23)
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5.5.2 MAC-Aware Information Embedding: The Case of K-

Watermarks

The results in subsection 5.4.2 can be straightforwardly extended to the situation

where, instead of just two messages, K messages Wi, i = 1, . . . , K, have to be inde-

pendently encoded into the same cover signal S and jointly decoded, by the same wa-

termarking authority. We suppose that the watermark Xi, carrying Wi, i = 1, . . . , K,

has power Pi. Also we denote by Z ∼ N(0, N) the channel noise, assumed to be i.i.d.

Gaussian. Functionally, this is a K-user GMAC with state information available at

the transmitters but not to the receiver, as argued in subsection 5.3.2. The capacity

region of such a channel follows a straightforward generalization of (5.18). This region

is given by the union of all rate K-tuples simultaneously satisfying

Ri ≤ 1

2
log2

(
1 +

Pi

N

)
, i = 1, 2, . . . , K,

K∑

j=1

Rj ≤ 1

2
log2

(
1 +N−1

K∑

i=1

Pi

)
,

(5.24)

where the union is taken over all power assignments {Pi}, i = 1, . . . , K. Following the

two-message case considered above, any corner point of this region can be attained

by applying K well designed DPCs. Consider for example the corner point (B) cor-

responding to the message W1 transmitted at its maximum rate. Upon reception of

Y =
K∑

i=1

Xi +S+Z, the receiver should perform successive decoding so as to reliably

decode the K-tuple (W1,W2, . . . ,WK).

In order to attain the corner point (B), decoding should be performed in such a way

that WK is decoded first, W1 is decoded last and Wj is decoded before Wi for j > i.

Consequently, coding consists in a set of K DPCs, denoted by {DPCi}, with i ranging

from K to 1. At the receiver, the decoder sees the equivalent channel Y −
∑

j>i

Uj in

the decoding of the message Wi. Thus, an optimal DPCi for this equivalent channel is

given by: Xi = Ui−αiS where Ui|S ∼ N(αiS, Pi) and αi = Pi/(
K∑

j=1

Pj+N). With this

theoretical set-up, it is possible to reliably transmit all the messages together, with Wi

sent at rate Ri = 1
2
log2

(
1 + Pi/(

i−1∑
j=1

Pj +N)
)
. This rate is the maximal rate at which

Wi can be transmitted as long as the other messages Wj, j 6= i, are simultaneously

transmitted at non zero rates. A scalar implementation of this (K users) GMAC-
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based joint DPC scheme consists in successively applying K well designed SCSs.

Equivalent channel for SCSi is yi,b = y−
K∑

j=i+1

uj, which is the received signal assuming

interference from only the (i-1) before-hand watermarks xj, j < i and no post-hand

interference from the remaining (K − i) watermarks xj, j > i. We also denote by

yi , yi,0 = xi + s + z the received signal assuming neither beforehand nor post-

hand interferences. The set of feasible rates achieved by this practical coding can be

obtained as a straightforward generalization of (5.20). The corresponding achievable

rate region is given by the convex hull of all rateK-tuples (R̃1, . . . , R̃K) simultaneously

satisfying

R̃i ≤ max
α1∈[0,1]

I
(
Wi; Q∆i

(yi) − yi

)
, i = 1, 2, . . . , K,

K∑

j=1

R̃j ≤
K∑

j=1

max
αj∈[0,1]

I
(
Wj; Q∆j

(yj,b) − yj,b

)
.

(5.25)

The maximum of the mutual information I(Wi; Q∆i
(yi) − yi) is attained with the

optimal choice of αi ∈ [0, 1] given by

α̃i =
(
1 −

K∑

j=i+1

αj

)√ Pi

Pi + 2.71N
, with α̃K =

√
PK

PK + 2.71N
.

5.5.3 Lattice-Based Codebooks for BC-Aware Multi-User In-

formation Embedding

The gap to the ideal capacity region of the sample-wise joint scalar DPC prac-

tical capacity region shown in Fig. 5.6 can be partially bridged using structured

finite-dimensional lattice-based codebooks. Lattices have been studied in [123] and

considered for first time in the context of single-user watermarking in [115]. Conse-

quent works [116, 117] extended these results to different scenarios. In what follows,

only the required ingredients are briefly reviewed. The reader may refer to [124] for

a full discussion.

Consider the transmission scheme depicted in Fig. 5.11 where Λ is some n-

dimensional lattice. This scheme is a generalization to the lattice codebook case

of a slight variation of the scalar case considered in subsection 5.4.1 12. The function

12More precisely, this is a generalization to the lattice case of a DC-QIM based two users water-
marking scheme. DC-QIM is considered because it is more convenient and also it has very close
performance to SCS as has been reported in 5.2.2.
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ι1(.) is used for arbitrary mapping the set of indexes W1 ∈ M1 = {1, . . . ,M1} to a

certain set of vectors Cw1
= {cw1

: w1 = 1, . . . ,M1} to be specified in the sequel.

The function ι2(.) does similarly for the set of indexes W2 ∈ M2 = {1, . . . ,M2}. With

respect to the scalar codebook case, Cwi
, i = 1, 2, is a lattice codebook whose entries

must be appropriately chosen so as to maximize the encoding performance. For each
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Figure 5.11: Lattice-based scheme for multiple information embedding over a Gaus-
sian Broadcast Channel (GBC).

Wi ∈ Mi, with i = 1, 2, the codeword ιi(Wi) = cwi
is the coset leader of the coset

Λwi
= cwi

+ Λ relative to the lattice Λ. The codebook Cwi
is shared between the

encoder and the decoder i and is assumed to be uniformly distributed over the fun-

damental cell V(Λ) of the lattice Λ. Also, we assume common randomness, meaning

that the key ki, i = 1, 2, is known to both the encoder and the decoder i. Apart

from obvious security purposes, these keys will turn out to be useful in attaining the

capacity region.

In the following, we consider cover signal vectors (frames) of length n. Following

(5.3), the encoding and decoding functions for the lattice-based joint DPC given by

(5.5) and (5.10) write

x2(s;W2,Λ) = (cw2
+ k2 − α2s) mod Λ,

x1(s;W1,Λ) = (cw1
+ k1 − α1(s + x2)) mod Λ,

Ŵi = argminWi∈Mi
‖(αiyi − ki − cwi

) mod Λ‖, i = 1, 2. (5.26)

The modulo reduction operation is defined as x mod Λ , x − QΛ(x) ∈ V(Λ) where

the n-dimensional quantization operator QΛ(.) is such that quantization of x ∈ Rn

results in the closest lattice point λ ∈ Λ to x.
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We focus on the practically feasible rate region achieved by (5.26). To this end, we

rely on a previous works relative to practical achievable rates with lattice codebooks

in the context of a single-user watermark [115]. Here, the situation is different since

two watermarks are concerned, but the key ideas remain the same. Thus, details

are skipped and we only mention the key steps, in processing the received signals y1

and y2. Each of the channels Y1 and Y2 is similar to the one in [115, 117], with

however a different state information and channel noise. The establishment of the

results below relies principally on the properties of a Modulo Lattice Additive Noise

(MLAN) channel [125] and on the following two important properties of the mod-Λ

operation:

(P1) ∀(λ, a) ∈ Λ × Rn, (a + v + λ) mod Λ = (a + v) mod Λ. (5.27a)

(P2) ∀ (x,y) ∈ R2n, ((x mod Λ) + y) mod Λ = (x + y) mod Λ. (5.27b)

Upon reception of yi, i = 1, 2, ”receiver i” computes the signal ri = (αiyi −ki)modΛ.

Using (P1) and (P2) and straightforward algebra calculations, it can be shown that

r1 = (cw1
+ α1z1 − (1 − α1)x1) mod Λ, (5.28a)

r2 = (cw2
+ α2(z2 + x1) − (1 − α2)x2) mod Λ. (5.28b)

Hence, the ”degraded user” (more noisy watermarked content) sees the equivalent

channel noise Ṽ2 = (α2(Z2 + X1) − (1 − α2)X2) mod Λ and the ”better user” (less

noisy watermarked content) sees the equivalent channel noise Ṽ1 = (α1Z1 − (1 − α1)X1)

mod Λ. Now, using the important Inflated Lattice Lemma reported in [126], Y1 and

Y2 turn to be two MLAN channels with channel noises Ṽ1 and Ṽ2, respectively. The

MLAN channel has been first considered in [127,128]. It is shown that when modulo

reduction is with respect to some lattice Λ and when the channel noise V is i.i.d.

Gaussian, capacity in bits per dimension can be written as

C(Λ) =
1

n
(log2(V (Λ)) − h(V)), (5.29)

where h(·) denotes differential entropy. Hence, the practically achievable rates R1(Λ)

and R2(Λ) are given by (5.29), with the channel noise V being replaced by Ṽ1 and

Ṽ2, respectively. The maximally achievable rates are obtained by maximizing these

expressions over α1 and α2, respectively. The corresponding achievable rate region

R̄BC is given by
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R̄BC(P ) =
⋃

0≤γ≤1

{
(R̃1, R̃2) : R̃1 ≤ max

α1∈[0,1]

1

n

(
log2(V (Λ)) − h

(
Ṽ1(α1, γ)

))
,

R̃2 ≤ max
α2∈[0,1]

1

n

(
log2(V (Λ)) − h

(
Ṽ2(α2, γ)

))}
.

(5.30)

Note that from the right hand side term of (5.30), we have R̄BC ⊂ CBC, where CBC

is the full capacity region of a Gaussian BC with state information at the encoder

(5.9). In general no closed form of (5.30) can be derived and the optimal pair (α1, α2)

has to be computed numerically to evaluate the differential entropy h(Ṽi), i = 1, 2.

However, closed form approximations can be found in some special situations as shown

hereafter.

(i) As the dimensionality n of the lattice goes to infinity, the PDFs of the noises

Ṽ1 and Ṽ2 tend to Gaussian distributions as quantization errors with respect

to this lattice. Consequently, the optimal inflation parameters α1 and α2 mini-

mizing h(Ṽ1) and h(Ṽ2) are those which minimize the variances of Ṽ1 and Ṽ2,

respectively. These are α1 = γP/(γP +N1) and α2 = (1 − γ)P/(P +N2). The

ideal capacity region is attained with such a choice.

(ii) For finite-dimension lattice reduction however, the PDFs of Ṽ1 and Ṽ2 are

not strictly Gaussian, but rather the convolution of a Gaussian with a uniform

distribution. The equality (α1, α2) =
(

γP
γP+N1

, (1−γ)P
N2+P

)
does not hold strictly

but remains a quite accurate approximation. Considering this approximation

leads to E eV1
[Ṽ2

1] = α1N1 and E eV2
[Ṽ2

2] = α2(N2 + γP ). Now, given that13

h(Ṽ1) ≤ log(2πeα1N1) and h(Ṽ2) ≤ log2πeα2(N2 + γP ), we get

R1(Λ) ≥ 1

n

(
1

2
log

(
1 +

γP

N1

)
− 1

2
log 2πeG(Λ)

)
, (5.31a)

R2(Λ) ≥ 1

n

(
1

2
log

(
1 +

(1 − γ)P

N2 + γP

)
− 1

2
log 2πeG(Λ)

)
. (5.31b)

This means that by using appropriate lattices for modulo-reduction, we are able

to make the gap to the full theoretical capacity region smaller then log 2πeG(Λ).

This can be achieved by selecting lattices that have good quantization proper-

13This is because the normal distribution is the one that maximizes entropy for a given second
moment.
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ties. These are those for which the normalized second moment G(Λ) approaches

1/2πe.

The n-dimensional lattices considered for Monte-Carlo achievable rate region inte-

gration are summarized in table 5.1, together with their most important parameters.

Achievable rate region curves in bits per dimension are plotted in Fig. 5.12(a) where

Lattice Name n G(Λ) γs(Λ) [dB] γs(Λ) [bit per dimension]

Z Integer Lattice 1 1
12

0.00 0.000
A2 Hexagonal Lattice 2 5

36
√

3
0.17 0.028

D4 4D Checkerboard L. 4 0.0766 0.37 0.061

Table 5.1: Lattices with their important parameters

we observe that the use of the hexagonal lattice A2, for example, enlarges the set

of the rate pairs practically feasible, with respect to the scalar lattice Z. Of course,

this improvement goes along with a slight increase in computational cost. The same

improvement can be observed through BER enhancement visible in Fig. 5.12(b).

Note that Fig. 5.12(b) only shows the BER (against the per-bit per-dimension SNR

Eb(Λ)/N1) relative to the transmission of message W1 with normalized rates. The

BER curves corresponding to the transmission of message W2 can be obtained by

shifting to the right those of W1 by the factor βBC(R1, R2) = R1

R2
× (1−γ)P

γP
× N1

γP+N2
[dB].

5.5.4 Lattice-based codebooks for MAC-aware multi-user in-

formation embedding

The gap to the capacity region CMAC (5.18) of the achievable rate region R̃MAC

(5.20) shown in Fig. 5.9 and corresponding to the sample-wise joint scalar DPC can

be partially bridged using finite-dimensional lattice-based codebooks. The resulting

transmission scheme is depicted in Fig. 5.13 where Λ is some n-dimensional lattice.

The functions ιi(.), i = 1, 2 and the lattice codebooks Cwi
, i = 1, 2 are defined

in a similar way to that in the broadcast case addressed above. We focus on the

improvement of the feasible rate pair (R1(Λ), R2(Λ)) brought by the use of the lattice

codebooks Cwi
, i = 1, 2, with comparison to the baseline scalar codebooks considered
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in subsection 5.4.2. Consider, for example, the corner point (B’) of the capacity region

shown in Fig. 5.9. The encoding and decoding of W1 and W2 are performed according

to

x1(s;W1,Λ) = (cw1
+ k1 − α1(1 − α2)s) mod Λ,

x2(s;W2,Λ) = (cw2
+ k2 − α2s) mod Λ,

Ŵ1 = argminW1∈M1
‖(α1y1 − k1 − cw1

) mod Λ‖,

Ŵ2 = argminW2∈M2
‖(α2y − k2 − cw2

) mod Λ‖. (5.32)

where y1 = y − (x2 + α2s). Upon reception, the receiver first computes the error

signal r = (αy−k2)modΛ. In a similar way to that for the broadcast case, it can be

shown that r = (cw2
+ α2(z + x1) − (1 − α2)x2) modΛ. Hence the equivalent channel

for the transmission of W2 is an MLAN channel with (Gaussian) channel noise ṽ2 =

(α2(z + x1) − (1 − α2)x2) modΛ. Next, the receiver computes r1 = (αy1−k1)modΛ,

which can be shown to equal (cw1
+ α1z − (1 − α1)x1) modΛ, completely independent

of x2. Hence the equivalent channel for the transmission ofW1 is another MLAN chan-

nel with (Gaussian) channel noise ṽ1 = (α1z − (1 − α1)x1) mod Λ. Consequently,

by using (5.32) the achievable rate pair (R1(B
′), R2(B

′)) corresponding to the corner

point (B’) of the capacity region CMAC is given by

R1(B
′) = max

α1∈[0,1]

1

n

(
log2(V (Λ)) − h

(
Ṽ1(α1, P1)

))
, (5.33a)

R2(B
′) = max

α2∈[0,1]

1

n

(
log2(V (Λ)) − h

(
Ṽ2(α2, P2)

))
. (5.33b)

Note that (R1, R2) ∈ CMAC. Similarly to the development made in the broadcast case,

the achievable rate region by using the modulo reduction with respect to the lattice

Λ straightforwardly generalizes (5.20) and it is given by

R̄MAC(P1, P2) =
{

(R̃1, R̃2) : R̃1 ≤ max
α1∈[0,1]

1

n

(
log2(V (Λ)) − h

(
Ṽ1(α1, P1)

))
,

R̃2 ≤ max
α2∈[0,1]

1

n

(
log2(V (Λ)) − h

(
Ṽ2(α2, P2)

))
,

R̃1 + R̃2 ≤ max
α1∈[0,1]

1

n

(
log2(V (Λ)) − h

(
Ṽ1(α1, P1)

))

+ max
α2∈[0,1]

1

n

(
log2(V (Λ)) − h

(
Ṽ(α2, P2)

))}
,

(5.34)

where Ṽi = (αiZ − (1 − αi)Xi) modΛ, i = 1, 2 and Ṽ = (α2(Z + X1) − (1 − α2)X2)

mod Λ.



Chapter 5: Broadcast-Aware and MAC-Aware Coding Strategies for Multiple User
Information Embedding 155

The improvement brought by lattice coding is illustrated in Fig. 5.12(b). The

curves correspond to the transmission of message W1. As in the broadcast case, the

BER curves corresponding to the transmission of message W2 can be obtained by

translating to the right those of W1, by βMAC(R1, R2) = R1P2N
R2P1(N+P1)

[dB].

5.6 Summary

In this chapter, we investigated practical joint scalar schemes for multiple user

information embedding. For instance, two different situations of embedding several

messages into one common cover signal are considered. The first situation is recog-

nized as being equivalent to communication over a Gaussian BC with state informa-

tion non-causally known at the transmitter but not at the receivers. The second is

argued as to be analog to communication over a Gaussian MAC with state informa-

tion known non-causally at the transmitters but not at the receiver. Next, based

on this equivalence with multi-user information theory, two practically feasible scalar

schemes for simultaneously embedding two messages into the same host signal are

proposed. These schemes carefully extend the initial QIM and SCS schemes, that

were originally conceived for embedding one watermark, to the two-watermark case.

The careful design concerns the joint encoding as well as the appropriate order needed

so as to reliably embed the different watermarks. A central idea for the joint design

is ”awareness”.

The improvement brought by this awareness is shown through comparison to the

corresponding rather intuitive schemes, obtained through superimposition, as many

times as needed, of the single user schemes QIM and SCS. Performance is analyzed

in terms of both achievable rate region and BER. Finally, the proposed schemes are

straightforwardly extended to the arbitrary number of watermarks case and also to

the vector case through lattice-based codebooks. Results are supported by illustrative

achievable rate region and BER curves obtained through Monte-Carlo integration and

Monte-Carlo-simulation, respectively.





Chapter 6

Conclusions and Future Work

In this thesis we have studied the problem of reliable communication over single

and multi-user wireless channels when the receiver(s) and the transmitter only know

noisy estimates of the time-varying channel parameters. In particular, we established

a fundamental connection between the more common technique to obtain receiver

channel knowledge through use of pilot symbols and the notion of reliable commu-

nication under channel estimation errors. This connection for arbitrary channel es-

timators follows from the statistic of the channel estimation errors (CEE), i.e. the

probability distribution function of the unknown channel given its estimate. Further-

more, it appears to be an effective way to introduce the imperfect channel knowledge

in the capacity definition. We proposed to characterize the information theoretic lim-

its of such scenarios in terms of two novel notions: the (i) estimation-induced outage

capacity and (ii) the average (over all channel estimation errors) of the transmission

error probability, which leads to the capacity of a composite (more noisy) channel.

With regards to the practical consequences of this research, many of these out-

comes have been applied to develop practical coding schemes for applications like

watermarking and the optimal design of decoders adapted to the CEE. All this leads

to a number of results and still open questions in this thesis.

The transceiver in the estimation-induced outage capacity strives to construct

codes for ensuring the desired communication service, i.e. for achieving target rates

with small error probability, no matter which degree of accuracy estimation arises

during a transmission. We proved a coding theorem and its strong converse that

provides an explicit expression of the outage capacity within this constraint. This

157
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capacity expression allows us to evaluate the trade-off between the maximal achievable

outage rate (i.e. maximizing over all possible transmitter-receiver pairs) versus the

outage probability (the QoS constraint). This trade-off can be used by a system

designer to optimally share the available resources (e.g. power for transmission and

training, number of feedback bits, the amount of training used, etc.), so that the

communication requirements be satisfied.

Possibly straightforward applications of these results are practical time-varying

systems with small training overhead and quality of service constraints. Particularly

in mobile wireless environments where channels change rapidly, and as consequence it

may not be feasible to obtain reliable estimation of the channel parameters. Another

application scenario arises in the context of cellular coverage, where this capacity

would characterize performance over multiple communication sessions of different

users in a large number of geographic locations (cf. [85]). In that scenario based on

our results, the system designer can ensure reliable communication for (1 − γ
QoS

)-

percent of users during the connection session.

In addition to studying the capacity under the above mentioned constraints, we

also considered the problem of reception in practical communication systems. Specif-

ically, we focused on determining the optimal decoder that achieves the estimation-

induced outage capacity for arbitrary DMCs. Inspired by the theoretical decoder that

achieves the capacity we derived a practical decoding metric adapted to the channel

estimation errors. Performances of this decoder in terms of achievable information

rates and BER of iterative MIMO-BICM decoding were studied for the case of un-

correlated fading MIMO channels and compared to those of the classical mismatched

ML decoding, which replaces the unknown channel by its estimate. Simulation results

indicate that the mismatched ML decoding is sub-optimal compared to the proposed

decoder under short training sequences, in terms of both BER and achievable infor-

mation rates.

Although we showed that the proposed decoding metric outperforms classical mis-

matched approaches, this only achieves a lower bound of the estimation-induced out-

age capacity. This decoder ensures reliable communication for the average (over all

CEE) of the transmission error probability, but it does not guarantee small error prob-

abilities for every channel state in the optimal set of states maximizing the outage
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capacity. In contrast, this decoder achieves the capacity of a composite (more noisy)

channel. Nevertheless, different variations of the decoding metric incorporating not

only the statistic of the channel estimates, but also the optimal set of states, have yet

to be fully explored.

We also extensively investigated the problem of communicating reliably over im-

perfectly known channels with channel states non-causally known at the transmitter,

which is of particular importance to increase data rates in next generation wireless

systems. We addressed this, through the second notion of reliable communication

based on the average of the transmission error probability over all CEE. This basically

means that the transceiver does not require small instantaneous transmission error

probabilities, but rather its average over all CEE must be arbitrary small. This notion

enable us to easily extend existing capacity expressions that assume perfect channel

knowledge to the more realistic case with imperfect channel estimation, transforming

the mismatched scenario into composite (more noisy) state dependent channels. We

also considered the natural extension of the Marton’s region for arbitrary broadcast

channels to the case with imperfect channel knowledge.

Two scenarios are studied: (i) the receiver(s) only has access to noisy estimates

of the channel and these estimates are perfectly known at the transmitter and (ii)

no channel information is available at the transmitter and imperfect information is

available at the receiver(s). Then, we used the capacity expressions to derive achiev-

able rates and optimal DPC schemes with Gaussian codebooks for the fading Costa’s

channel and the Fading MIMO-BC, assuming ML or MMSE channel estimation. Our

results for downlink communications, are useful to assess the amount of training data

to achieve target rates.

The somewhat unexpected result is that, while it is well-known that DPC for

such class of channels requires perfect channel knowledge at both the transmitter

and the receiver, without channel information at the transmitter, significant gains

can be still achieved by using the proposed (adapted to the CEE) DPC scheme.

Further numerical results in the context of uncorrelated fading show that, under the

assumption of imperfect channel information at the receiver, the benefit of channel

estimates known at the transmitter does not lead to large rate increases. The ”close to

optimal”DPC scheme used in this scenario (without knowledge of channel estimates)
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follows as the average over all channel estimates of the optimal DPC scheme when

the transmitter knows the estimates.

Obtaining receiver channel knowledge in practical communication systems is fea-

sible through the use of a few number of pilot symbols, but transmitter channel

knowledge generally requires feedback from the receivers. One surprising conclusion

to be drawn from this research is that a BC with a single transmitter and receiver

antenna and no channel information at the transmitter can still achieve significant

gains compared to TDMA using the proposed DPC scheme. Furthermore, in this

case the benefit of channel estimates known at the transmitter does not lead to large

rate increases. However, we also showed that, for multiple antenna BCs, in order to

achieve large gain rates compared with TDMA the transmitter requires the knowledge

of all channel estimates, i.e., some feedback channel (perhaps rate-limited) must go

from the receivers to the transmitter, conveying these channel estimates.

Interestedly, while it is well-known that for systems with many users significant

gains can be achieved by adding base station antennas, under imperfect channel esti-

mation, benefiting of a large number antennas requires very large amount of training

and feedback channel. For practical multiple-antenna systems, this feedback may

require substantial bandwidth and may in fact be difficult to obtain within a fast

enough time scale, and consequently depending on the degree of accuracy channel

estimation, this benefit may not hold.

This work establishes the bases for further research considering also the effects of

rate-limited feedback channel that may provide the transmitter with degraded ver-

sions of the channel estimates at the receiver(s). Thus, it is of great interest to study

the large gray area between the two extreme cases (i)-(ii), where the receivers dispose

of imperfect channel estimation while the transmitter may (or not) know all these

channel estimates. Future research directions may include, in addition to instan-

taneous information, information regarding the quality of channel estimates at the

transmitter. For example, the pdf of the channel estimate (unknown at the transmit-

ter) given its degraded (more noisy) estimate resulting of rate limited feedback, can

be used to derive the optimal DPC in a similar manner as well as we did for the case

(ii). Answering this and related questions will allow to better understand the benefit

of adding multiple base station antennas in practical downlink systems.



Chapter 6: Conclusions and Future Work 161

In the final chapter of this thesis we studied the role of multi-user state dependent

channels with non-causal channel state information at the transmitter in multi-user

information embedding. We investigated practical joint scalar schemes for multiple

user information embedding. For instance, two different situations of embedding

several messages into one common cover signal are considered: (i) The first situation

is recognized as being equivalent to communication over a Gaussian BC with state

information non-causally known at the transmitter but not at the receivers and (ii)

the second over a Gaussian MAC with state information known non-causally at the

transmitters but not at the receiver.

Next, based on this equivalence with multi-user information theory, two practically

feasible scalar schemes for simultaneously embedding two messages into the same host

signal are proposed. These schemes extend the initial QIM and SCS schemes, that

were originally conceived for embedding one watermark, to the two-watermark case.

The careful design concerns the joint encoding as well as the appropriate order needed

so as to reliably embed the different watermarks. The central idea for this joint design

is ”awareness”. Performance is analyzed in terms of both achievable rate region and

Bit Error Rate. Finally, the proposed schemes are straightforwardly extended to the

arbitrary number of watermarks case and also to the vector case through lattice-based

codebooks.

The notions of reliable communication studied in this thesis require complete

knowledge of the statistics characterizing the channel variations (e.g. the pdf of

the fading process). However, for certain scenarios this assumption may not hold,

and consequently the statistic of the CEE (the pdf of the unknown channel given

its estimate) cannot be computed. This leads to a different mathematical problem,

which is connected with AVCs. Thus, it would be interesting as future work, to

investigate this capacity with partial knowledge of the statistics characterizing the

channel variations.





Appendix A

Information-typical Sets

Information divergence of probability distributions can be interpreted as a (non-

symmetric) analogue of Euclidean distance [129]. With this interpretation, several

results of these sequences are intuitive“information-typical sets” counterparts of stan-

dard “strong-typical sets” [3]. The definition of I-typical sets using the information

divergence was first suggested by Csiszár and Narayan [130].

Throughout this appendix, we use the following notation: The empirical PM

P̂n associated a sample x = (x1, . . . , xn) ∈ X n is P̂n(x,A ) = N(A |x)/n with

N(A |x) =
n∑

i=1

1A (xi), and Ŵn is the empirical transition PM associated with x and

y = (y1, . . . , yn) ∈ Y n. The set Pn(X ) ⊂ P(X ) denotes the set of all rational point

probability masses on X , and its cardinality is bounded by ‖Pn(X )‖ ≤ (1 + n)|X |

(cf. [17]). A function mapping θ ∈ Θ 7→ W (·|·, θ) ∈ P(Y ) is a stochastic transition

PM, i.e., for each θ ∈ Θ this mapping defines a transition PM, and for every subset

B ⊂ Y the function mapping θ 7→ W (B|·, θ) is Θ-measurable. We shall use the

total variation or variational distance defined by V(P,Q) = 2 sup
A ⊆X

|P (A ) − Q(A )|,

and its conditional version of Pinsker’s inequality V(W ◦P, V ◦P ) ≤
√

D(W‖V |P )/2

(cf. [17]). The support of a transition PM W is the set Supp(W ) = {b ∈ Y : W (b|a) >
0 for all P (a) > 0}. Given any set W ⊂ P(Y ), there is one PM that contains all

the others supports and this will be called the support of W, denoted Supp(W). It

follows that D(W‖V |P ) < ∞ iff Supp(W ) ⊂ Supp(V ). Let Q,P ∈ P(X ) be two

PMs, then Q is said to be absolutely continuous with respect to P , writes Q¿ P , if

Q(A ) = 0 for every set A ⊂ X for which P (A ) = 0.

163
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A.1 Definitions and Basic Properties

Definition A.1.1 For any PM P ∈ Pn(X ), the set of all sequences x ∈ X n with

type P is defined by Tn
P =

{
x ∈ X n : D(P̂n‖P ) = 0

}
, where P̂n(x, ·) is the empirical

probability.

Definition A.1.2 For any PM P ∈ P(X ), the set of all sequences x ∈ X n called

I-typical with constant δ > 0 is defined by Tn
P (δ) =

{
x ∈ X n : D(P̂n‖P ) ≤ δ

}
, where

P̂n(x, ·) is the empirical probability, such that P̂n(x, ·) ¿ P .

Definition A.1.3 For any transition PM W (·|x) ∈ P(Y ), the set of all sequences

y ∈ Y n under the condition x ∈ X called conditional I-typical with constant δ > 0

is defined by Tn
W (x, δ) =

{
y ∈ Y n : D(Ŵn‖W |P̂n) ≤ δ

}
, where Ŵn(b|a)N(a|x) =

N(a, b|x,y) is the transition empirical probability, such that Ŵn(·|a) ¿ W (·|a) for

each a ∈ X .

Lemma A.1.1 (Uniform continuity of the entropy function) Let P,Q ∈ P(X ) be

PMs and V (·|x),W (·|x) ∈ P(Y ) be two transition PMs. Then

(i) If V(P,Q) ≤ Θ ≤ 1/2, ⇒
∣∣H(P ) −H(Q)

∣∣ ≤ −Θ log
Θ

|X | .

(ii) If V(V ◦P,W ◦P ) ≤ Θ ≤ 1/2, ⇒
∣∣H(V |P ) −H(W |P )

∣∣ ≤ −Θ log
Θ

|X ||Y | .

See Lemma 1.2.7 in [17].

Proposition A.1.1 (Properties of I-typical sequences)

(i) Any sequence x ∈ Tn
P (δ) implies V

(
P̂n(x, ·), P

)
≤
√
δ/2. Moreover any se-

quence y ∈ Tn
W (x, δ) implies V(Ŵn◦P̂n,W ◦P̂n) ≤

√
δ/2 for all x ∈ X n.

(ii) There exists sequences (δn)n∈N+
and (δ′n)n∈N+

in R+ with (δn, δ
′
n) → 0 and

n log−1(n + 1) → ∞ as n → ∞, depending only on |X | and |Y | so that for every

PM P ∈ P(X ) and transition PM W (·|x) ∈ P(Y ), P n
(
Tn

P (δn)
)
> 1 − εn and

W n
(
Tn

W (δ′n)|x
)
> 1 − ε′n, with

εn = exp
{
− n

(
δn − n−1|X | log(n+ 1)

)}
,

ε′n = exp
{
− n

(
δ′n − n−1|X ‖Y | log(n+ 1)

)}
.

Note that log(n + 1) <
√
n and consequently these sequences vent to zero with a

convergence rate smaller than that obtained for strong typical sets [3].
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(iii) For any PMs P,Q ∈ P(X ) and transition PMs W (·|x), V (·|x) ∈ P(Y )

and δ > 0

If D(Q‖P ) ≤ δ ⇒ |H(Q) −H(P )| ≤ −
√
δ/2 log

√
δ/2

|X | .

If D(W‖V |P ) ≤ δ ⇒ |H(W |P ) −H(V |P )| ≤ −
√
δ/2 log

√
δ/2

|X ‖Y | .

(iv) There exists sequences (εn)n∈N+
and (ε′n)n∈N+

in R+ with (εn, ε
′
n) → 0 de-

pending only on |X | and |Y | so that for every PM P ∈ P(X ) and transition PM

W (·|x) ∈ P(Y )

∣∣∣ 1
n

log |Tn
P (δn)| −H(P )

∣∣∣ ≤ εn,∣∣∣ 1
n

log |Tn
W (x, δ′n)| −H(W |P )

∣∣∣ ≤ ε′n, for every x ∈ Tn
P (δn).

Proof: Assertion (i) immediately follows from Pinsker’s inequality. Assertion (iii)

follows from (i) and the uniform continuity Lemma A.1.1 of the entropy function.

Assertion (iv) immediately follows by defining I-typical sets using (δn, δ
′
n) sequences

and from the claim (iii), i.e. D(P̂n‖P ) ≤ δn and D(Ŵn‖W |P̂n) ≤ δ′n, where the

existence of such sequences was proved in the claim (ii). For the claim (ii) it is

sufficient to prove the second assertion

W n
(
[Tn

W (x, δ′n)]c|x
)

=
∑

Vn:D(Vn‖W |P̂n)>δ′n

W n
(
T

n
Vn

(x)|x
)

≤
∑

Vn:D(Vn‖W |P̂n)>δ′n

exp(−nD(Vn‖W |P̂n))

≤ (1 + n)|X ‖Y | exp(−nδ′n)

= exp
{
− n

(
δ′n − n−1|X ‖Y | log(n+ 1)

)}
. ¥

Lemma A.1.2 (Uniform continuity of I-divergences)

(i) For any transition PMs W (·|x), V (·|x), Z(·|x) ∈ P(Y ) and a PM P ∈ P(X ),

such that D(Z‖W |P ) ≤ ε for some ε > 0. Then there exists δ > 0 such that

|D(Z‖V |P )−D(W‖V |P )| ≤ δ and δ → 0 as ε→ 0, with δ = −
√
ε/2 log

(√
ε/2/(|X ||Y |2)

)
.

(ii) Similarly for P,Q,Z ∈ P(X ) such that D(Z‖Q) ≤ ε for some ε > 0. Then

there exists δ′ > 0 such that |D(Z‖P ) − D(Q‖P )| ≤ δ′ and δ′ → 0 as ε → 0, with

δ′ = −
√
ε/2 log

(√
ε/2/|X |2

)
.
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Proof: We only prove the first statement, since (ii) follows immediately. Observe

that from Proposition A.1.1 (i) and Lemma A.1.1 we have that D(Z‖W |P ) ≤ ε

implies |H(V |P ) − H(W |P )| ≤ −
√
ε/2 log

√
ε/2

|X ||Y | . By considering the following

inequalities:

|D(Z‖V |P ) − D(W‖V |P )| ≤ |H(V |P ) −H(W |P )|

+
∑

a∈X

∑

b∈Y

P (a)|W (b|a) − V (b|a)| log |Y |

≤ −
√
ε/2 log

(√
ε/2/(|X ||Y |)

)
+
√
ε/2 log |Y |

= δ. ¥

Lemma A.1.3 (Large probability of I-typical sets) Let Tn
P (δ) and Tn

W (x, δ) be

an I-typical and conditional I-typical sets, respectively. The probability that a sequence

does not belong to these sets vent to zero, i.e.

lim
n→∞

P n
(
[Tn

P (δ)]c
)

= 0,

lim
n→∞

W n
(
[Tn

W (x, δ)]c|x
)

= 0.

Furthermore, D(P̂n||P ) → 0 and D(Ŵn||W |P̂n) → 0 with probability 1 with n→ ∞.

Proof: We observe from assertion (ii)

W n
({

y ∈ Y
n : D(Ŵn‖W |P̂n)

)
> δ
}∣∣x
)
≤ exp

[
− n

(
δ − n−1|X ‖Y | log(n+ 1)

)]
,

for every x ∈ Tn
P (δ), and then it expression goes to zero as n→ ∞. The second asser-

tion follows from the fact that,
∞∑

n=1

Pr
({

D(Ŵn‖W |P̂n) > δ
}
|x
)
<∞, and by applying

Borel-Cantelli Lemma [131], we obtain Pr
(

lim sup
n→∞

{
D(Ŵn‖W |P̂n) > δ

}∣∣x
)

= 0.

This concludes the proof, since this holds for every δ > 0. ¥

Lemma A.1.4 Given 0 < η < 1, and PMs W (·|x, θ) ∈ P(Y ) with θ ∈ Θ and

P ∈ P(X ). Let Λ ⊂ Θ be a set of parameters, then there exists sequences (εn)n∈N+

and (ε′n)n∈N+
in R+ with (εn, ε

′
n) → 0 depending only on |X |, |Y | and η, so that:

(i) If A n ⊂ X , inf
θ∈Λ

WθP
n(A ) ≥ η, then

1

n
log ‖A n‖ ≥ sup

θ∈Λ
H
(
WθP

)
− εn.

(ii) If Bn ⊂ Y , inf
θ∈Λ

W n(B|x, θ) ≥ η, then
1

n
log ‖Bn‖ ≥ sup

θ∈Λ
H
(
W (·|·, θ)|P

)
− ε′n,

for any x ∈ Tn
P (δn).

This Lemma simply follows from the proof of Corollary 1.2.14 in [17] and previous

lemmas.
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A.2 Auxiliary results

This appendix introduces a few concepts shedding more light on the encoder and

decoder required to achieve outage rates and furthermore provides some auxiliary

technical results required for the formal proof of Theorem 2.2.1 in Section 2.3.

Unfeasibility of Mismatched Typical Decoding: Consider a DMC W (·|x, θ) ∈ WΘ

and its (noisy) estimate V (·|x) = W (·|x, θ̂) ∈ WΘ. The following Lemma proves that

typical set decoding based on V leads to a block-error probability that approaches

one when the channel is not perfectly known (W 6= V ).

Lemma A.2.1 Consider two channels W (·|x), V (·|x) ∈ WΘ such that D(W‖V |P ) >

ξ > 0 for any input distribution P and let Tn
W (x, δn), Tn

V (x, δn) ⊂ Y n denote two asso-

ciated conditional I-typical sets for arbitrary x ∈ Tn
P (δn). Then, (i) there exists an in-

dex n0 ∈ N+ such that for n ≥ n0 the conditional I-typical sets Tn
W (x, δn) and Tn

V (x, δn)

are disjoint, i.e. Tn
W (x, δn) ∩ Tn

V (x, δn) = ∅; (ii) the W -probability of Tn
V (x, δn)

converges to zero, lim
n→∞

W n
(
Tn

V (x, δn)
∣∣x
)

= 0; (iii) furthermore, D(Ŵn‖V |P̂n) →
D(W‖V |P ) with probability 1.

Results (i) and (ii) reveal that the standard concept of typical sequences (respect

to V ) merely specifies some local structure in a small neighborhood of V (·|x) but

not in the whole space (as outlined in [132]). In other words, this standard concept

should be useful only to decode over perfectly known channels. However, this does

not establish that any decoder based on method of types is not useful to decode

on estimated channels. This only shows that for any 0 < ε < 1, there is no exists

decoding sets {Dn
i } with Dn

i ⊆ Tn
V (xi, δn) associated to codewords {xi} ⊆ Tn

P (δn),

such that W n(Dn
i |xi) > 1 − ε for all n ≥ n0.

Proof: In order to prove (i) we must show that for every ξ > 0 with W (·|x), V (·|x)
and P verifying D(W‖V |P ) > ξ, with the assumption that D(Ŵn‖W |P̂n) ≤ δn

(using δ-sequences). Then, there exists n0 = n0(|X |, |Y |, δn, ξ) ∈ N+ such that

D(Ŵn‖V |P̂n) > δn for all n ≥ n0. To this end, we know from Lemma A.1.2

that D(Ŵn‖W |P̂n) ≤ δn implies |D(Ŵn‖V |P̂n) − D(W‖V |P )| ≤ δ′n, with δ′n =

−
√
δn/2 log

(√
δn/2/(|X ||Y |3)

)
. We have also used the fact that |D(W‖V |P̂n) −

D(W‖V |P )| ≤
√

2δn log |Y | for sufficiently large n, with D(P̂n‖P ) ≤ δn. As a result
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D(Ŵn‖V |P̂n) ≥ D(W‖V |P )−δ′n > ξ−δ′n, since there exits n0 = n0(|X |, |Y |, δn, ξ) ∈
N+ such that ξ − δ′n > δn for all n ≥ n0, and (δn, δ

′
n) → 0 as n → ∞. In particular,

this is also possible for any ξ > 0, concluding the proof of (i). We now prove the

assertion (ii),

W n
(
T

n
V (x, δ)

∣∣x
)

=
∑

Zn:D(Zn‖V |P̂n)≤δ

W n
(
T

n
Zn

(x)
)

≤
∑

Zn:D(Zn‖W |P̂n)≤δ

exp
(
− nD(Zn‖W |P̂n)

)

(a)

≤
∑

Zn∈Pn(Y )

exp(−nδ)

≤ exp
{
− n(δ − n−1|X ‖Y | log(n+ 1))

}
, (A.1)

where (a) follows from assertion (i) which proves that D(Zn‖W |P̂n) ≤ δ and D(W‖V |P ) >

δ imply D(Zn‖V |P̂n) > δ for all n ≥ n0. For this reason if D(Zn‖V |P̂n) ≤ δ

then D(Zn‖W |P̂n) > δ and D(W‖V |P ) ≤ ξ. Finally, we now prove assertion

(iii). From continuity Lemma A.1.2 we can assert that there exists n0 ∈ N+ such

if D(Ŵn‖V |P̂n) ≤ δ then |D(Ŵn‖V |P̂n) − D(W‖V |P )| ≤ η. Whereas, it also im-

plies that for an arbitrary η > 0 there exits n0 ∈ N+ and some δ > 0 such if

|D(Ŵn‖V |P̂n) − D(W‖V |P )| > η then D(Ŵn‖V |P̂n) > δ. Now apply this relation in

order to bound the following probability: Pr
({

|D(Ŵn‖V |P̂n)−D(W‖V |P )| > η
}∣∣x
)
≤

exp
{
−n(δ−n−1|X ‖Y | log(n+1))

}
for any n ≥ n0. Thus,

∞∑
n=n0

Pr
({

|D(Ŵn‖V |P̂n)−

D(W‖V |P )| > η
}∣∣x
)

converges for each η > 0, and the proof is concluded by applying

Borel-Cantelli Lemma [131]. ¥

Robust Decoders: Let A n ⊂ X n denote a set of transmit sequences and let

Wθ(·|x) = W (·|x, θ). A set Bn ⊂ Y n (depending on Λ ⊂ Θ) is called a robust ε-

decoding set for a sequence x ∈ A n and an unknown DMC W (·|x, θ) ∈ WΘ, if the

conditional (w.r.t. θ̂) probability of all θ, for which the W n(·|x, θ)-probability of Bn

exceeds 1 − ε, is at least 1 − γ
QoS

, i.e., Pr
(
W n(Bn|x, θ) > 1 − ε

∣∣θ̂
)
≥ 1 − γ

QoS
.

A set Bn ⊂ Y n of received sequences is called a common η-image (0 < η ≤ 1)

of a transmit set A n ⊂ X n for the collection of DMCs WΛ, iff inf
θ∈Λ

W n(Bn|x, θ) ≥
η for all x ∈ A n.

Finally, Λ ⊂ Θ is called a confidence set for θ given θ̂, if Pr(θ /∈ Λ|θ̂) < γ
QoS

where

γ
QoS

represents the confidence level.
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Proposition A.2.1 If Λ is a confidence set with confidence level γ
QoS

and Bn is

a common η-image for the associated collection of DMCs, then Bn is also a robust

ε-decoding set with ε = 1 − η.

The statement follows from the fact that any transition PM is Θ-measurable and

from basic properties of measurable functions (see [131, p. 185]).

Robust I-Typical Sets: We next elaborate the explicit construction of robust ε-

decoding sets by introducing the concept of robust I-typical sets. A robust I-typical

set is defined as

B
n
Λ(x, δn) =

⋃

θ∈Λ

T
n
Wθ

(x, δn),

with arbitrary Λ ⊂ Θ and δ-sequence {δn}.
The next result provides a relation of robust I-typical sets and robust ε-decoding

sets.

Lemma A.2.2 For any 0 < γ
QoS

, ε < 1, a necessary and sufficient condition for a

robust I-typical set Bn
Λ(x, θ) to be a robust ε-decoding set with probability 1 − γ

QoS
is

that Λ be a confidence set.

Proof: We start proving the necessary part of this condition, namely Pr
(
Λ|θ̂
)
≥

1 − γ
QoS

implies Pr
(
W n(Bn

Λ|x, θ) > 1 − ε
∣∣θ̂
)
≥ 1 − γ

QoS
. It straightforwardly show

that Bn
Λ(x, δn) is a common η-image for the collection of DMCs WΛ with η = 1 − ε

(see Proposition A.1.1-ii). Hence, the necessity is a direct consequence of Proposi-

tion A.2.1. Now prove the sufficiency condition. To this end, we will show that if

Pr
(
θ /∈ Λ|θ̂

)
≥ 1 − γ

QoS
then Pr

(
W n(Bn

Λ|x, θ) > 1 − ε
∣∣θ̂
)
< γ

QoS
. As a conse-

quence of this assumption, we have Pr
(
D(V ‖Wθ|P ) 6= 0

)
≥ 1 − γ

QoS
for all tran-

sition PM V (·|x) ∈ WΛ (with V 6= Wθ), where we have used the uniform conti-

nuity of information divergences. This implies that for each V (·|x) ∈ WΛ there

exists ξ > 0 such that Pr
(
D(V ‖Wθ|P ) > ξ

)
≥ 1 − γ

QoS
. Therefore from Lemma

A.2.1 (i), there exists n0 ∈ N+ such that Tn
V (x, δn) ∩ Tn

Wθ
(x, δn) = ∅ with probabil-

ity 1 − γ
QoS

, for δn > 0 and all n ≥ n0. Consequently, there exists also n′
0 ∈ N+

such that W n
(
Bn

Λ|x, θ
)
≤ W n

(
[Tn

Wθ
]c
∣∣x, θ

)
with probability 1 − γ

QoS
, for all n ≥

n′
0. Finally as above, this and Proposition A.1.1-(ii) imply for sufficiently “n” large,

Pr
(
W n(Bn

Λ|x, θ) ≤ ε
∣∣θ̂
)
≥ 1 − γ

QoS
, concluding the proof. ¥
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Theorem A.2.1 (Cardinality of robust I-typical sets) For any collection of DMCs

WΛ and associated robust I-typical set Bn
Λ(x, δn) with x ∈ Tn

P (δn), there exists an in-

dex n0 such that for all n ≥ n0 the size ‖Bn
Λ(x, δn)‖ of the robust I-typical set is

bounded as follows:

∣∣∣ 1
n

log ‖Bn
Λ(x, δn)‖ −H(WΛ|P )

∣∣∣ ≤ ηn.

Here, H(WΛ|P ) = sup
V ∈WΛ

H(V |P ) and ηn → 0 as δn → 0 and n→ ∞.

The quantity H(WΛ|P ) may be interpreted as the conditional entropy of the set

WΛ and can be shown to equal the I-projection [129] of the uniform distribution on

WΛ.

Corollary A.2.1 Assume same assumptions made in Theorem A.2.1, then

lim
n→∞

‖Bn
Λ(x, δn)‖ = H(WΛ|P ),

for every sequence x ∈ Tn
P (δn).

Before proving Theorem A.2.1, we need the following result.

Theorem A.2.2 Consider any arbitrary set W ⊂ P(Y ) of transition PMs, and a

set of sequences Bn
W

⊂ Y n defined by Bn
Σ(x) =

⋃

W∈Σ

T
n
W (x) for every x ∈ X n, where

Σ = W ∩ Pn(Y ). Then, the size of Bn
W

(x) is bounded by

∣∣∣ 1
n

log ‖Bn
W(x)‖ − max

W∈Σ
H(W |P̂n(·|x))

∣∣∣ ≤ |X ‖Y |n−1 log(1 + n).

Furthermore, if the set W is convex then the upper bound can be replaced by ‖Bn
Σ(x)‖ ≤

exp
{
nmax

W∈Σ
H(W |P̂n(·|x))

}
.

The lower bound can be easily proved. The upper bound for any convex set W

easily follows as a generalization from the results found in [133]. For W non convex,

the upper bound is easily obtained in the same way as the lower bound.

Proof: We first show that the size of Bn
Λ(x, δn) is asymptotically equal to the size

of Bn
Σ(x) =

⋃

V ∈Σ

T
n
V (x) where Σ = WΛ ∩ Pn(Y ) is the intersection of WΛ with the
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set Pn(Y ) of empirical distributions induced by receive sequences of length n. In

particular, there exists an index n0 such that for all n ≥ n0 and x ∈ Tn
P (δn)

‖Bn
Σ(x)‖ ≤ ‖Bn

Λ(x, δn)‖ ≤ (1 + n)|X ‖Y |‖Bn
Σ(x)‖. (A.2)

The lower bound in (A.2) is trivial. We will next establish that there exists εn > 0

such that for all n ≥ n0

⋃

W∈WΛ

T
n
W (x, δn) ⊆

⋃

V ∈Σ

T
n
V (x, εn), (A.3)

from which the upper bound in (A.2) follows from

∥∥∥∥∥
⋃

W∈WΛ

T
n
W (x, δn)

∥∥∥∥∥
(a)

≤
∑

V ∈Σ

‖Tn
V (x, εn)‖

(b)

≤ (1 + n)|X ‖Y |‖Bn
Σ(x)‖, (A.4)

where (a) follows from equation (A.3) and the union bound, (b) follows from ‖Tn
V (x, δn)‖ ≤

(1+n)|X ‖Y |‖Tn
V (x)‖ and the fact that for every V, V̄ ∈ Pn(Y ) with V 6= V̄ and each

x ∈ X n we have Tn
V (x) ∩ Tn

V̄
(x) = ∅.

Let us now prove expression (A.3). Assume that WΛ is a relatively τ0-open subset

of WΛ∪Pn(Y ), i.e., every W ∈ WΛ has a τ0-neighborhood defined in the τ0-topology

[79]. Then there exists n0 such that for any n ≥ n0 and ε > 0, the ε-open ball

U0(W, ε) satisfies U0(W, ε)∩Pn(Y ) ⊂ WΛ. Choose 0 < ε′ < ε and pick an empirical

transition PM V ∈ Pn(Y ) such that for all (a, b) ∈ X ×Y , |V (b|a)−W (b|a)| < ε′n

and V (b|a) = 0 if W (b|a) = 0 for every a ∈ X with P (a) > 0. The continuity

properties of information divergences imply that for any sequence y ∈ Tn
W (x, δn) (i.e.,

D(Ŵn‖W |P̂n) ≤ δn),
∣∣Ŵn(b|a)P̂n(a)−W (b|a)P̂n(a)

∣∣ ≤
√
δn/2, hence

∣∣Ŵn(b|a)P̂n(a)−
V (b|a)P̂n(a)

∣∣ ≤ ε′ +
√
δn/2. Finally, from this equation it is easily show, that there

exists an εn > 0 such that D(Ŵn‖V |P̂n) ≤ εn, i.e., y ∈ Tn
V (x, εn). Consequently, we

have proved that for any W ∈ WΛ and large enough n, it is possible to find V ∈ Σ

and εn > 0 such that Tn
W (x, δn) ⊆ Tn

V (x, εn), thus establishing (A.3). Using similar

arguments as above and the uniform continuity of the entropy function, it can be

shown that there exists n′
0 and ξ′n > 0 such that for all n ≥ n′

0 and x ∈ Tn
P (δn)

∣∣∣max
W∈Σ

H(W |P̂n) − sup
V ∈WΛ

H(V |P )
∣∣∣ ≤ ξ′n, (A.5)
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with ξ′n → 0 as n → ∞. Theorem A.2.1 then follows by combining the inequalities

(A.2) with Theorem A.2.2 and inequalities (A.5), and setting ηn = ξ′n+2|X ||Y |n−1 log(n+

1). Consequently, there exists n′′
0 = max{n′

0, n0} such that for any n ≥ n′′
0 this theorem

holds. ¥

Proof of the Generalized Maximal Code Lemma: For simplicity we denote M =

Mθ,θ̂. Up to now we know that choosing any arbitrary confidence set Λ ⊂ Θ (defined

by Pr(Λ
∣∣θ̂) ≥ 1 − γ

QoS
). The associated robust I-typical set Bn

Λ(x, δn) ⊂ Y n consti-

tutes a robust ε-decoding set for the simultaneous DMCs WΛ, i.e. Λε = Λ (see above

definitions). To prove the direct part, consider an admissible code that is maximal,

i.e., it cannot be extended by arbitrary (xM+1; D
n
M+1) such that the extended code

remains admissible.

Define the set Dn =
M⋃
i=1

Dn
i with Dn

i ⊆ Bn
Λ(xi, δ), and choose δ < ε such that

1 − ε > ε− δ. Then,

inf
θ∈Λ

W n(Dn|xi, θ) > ε− δ, for all xi ∈ A
n. (A.6)

For any x ∈ A n \
{
x1, . . . ,xM

}
, if W n(Bn

Λ(x, δ) \ Dn|x, θ) > 1 − ε for all θ ∈ Λ, the

code would have an admissible extension, contradicting our initial assumption. Thus,

for all x ∈ A n \
{
x1, . . . ,xM

}
, we have

inf
θ∈Λ

W n(Bn
Λ \ D

n|x, θ) ≤ 1 − ε.

This equation implies that for all θ ∈ Λ and large enough n

W n(Dn|x, θ) ≥ ε− δ, for all x ∈ A
n \
{
x1, . . . ,xM

}
. (A.7)

The inequalities (A.6) and (A.7) together imply that Dn is a common (ε−δ)-image

of the set A n via the collection of channels WΛ. By the definition of gΛ(A n, ε− δ) it

follows that

‖Dn‖ ≥ gΛ(A n, ε− δ). (A.8)

On the other hand, Dn
i ⊆ Bn

Λ(xi, δ) implies that

‖Dn‖ =
M∑

i=1

‖Dn
i ‖

≤Mθ,θ̂‖Bn
Λ(x, δ)‖

≤Mθ,θ̂ exp
[
n
(
H(WΛ|P ) + δ

)]
, (A.9)
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for n large enough and all θ ∈ Λ, where the last inequality follows by applying

the cardinality upper bound of Theorem A.2.1. The lower bound (2.12) is then

immediately obtained by combining (A.8) and (A.9). To prove the second statement

(converse part), let D̂n be a common (ε+δ)-image via the collection of channels WΛε
,

i.e.,

inf
θ∈Λε

W n(D̂n|xm, θ) ≥ ε+ δ, for m ∈ M, (A.10)

that achieves the minimum in (2.10), i.e., ‖D̂n‖ = gΛε(A
n, ε+ δ). For any admissible

code, (2.11) and (A.10) imply

inf
θ∈Λε

W n(Dn
m ∩ D̂n|xm, θ) ≥ δ for m ∈ M. (A.11)

Using Corollary 1.2.14 in [17], we hence obtain

∥∥Dn
m ∩ D̂

∥∥ ≥ exp
[
n
(
H(WΛε

|P ) − δ
)]
, (A.12)

for n large enough. On the other hand, the decoding sets Dn
m are disjoint and thus

gΛε
(A n, ε+ δ) = ‖D̂n‖ ≥

M∑

i=1

‖D̂ ∩ D
n
i ‖

≥Mθ,θ̂ exp
[
n
(
H(WΛε

|P ) − δ
)]
,

where the last inequality follows from (A.12). This inequality is equivalent to (2.13)

and concludes the proof of the theorem.

A.3 Information Inequalities

For any given functions f1, f2, . . . , , fk on Y and numbers λ1, λ2, . . . , λk, the set

L =
{
W (·|x) :

∑
b∈Y

W (b|x)fi(b) = λi, 1 ≤ i ≤ k
}

if non-empty, is called a linear

family of probability distributions.

Theorem A.3.1 Let Λ ⊂ Θ be a convex set, with WΛ ⊂ P(Y ) and W (·|x, θ∗) ∈ WΛ

be a transition PM such that Supp(Wθ∗) = Supp(WΛ). Then,

I(P,Wθ∗) ≤ I(P,Wθ) + D(WθP‖Wθ∗P ) − D(Wθ‖Wθ∗ |P ) (A.13)

holds for every θ ∈ Λ and any P ∈ P(X ). Furthermore, if the asserted inequality

holds for some θ∗ ∈ Λ and all θ ∈ Λ then θ∗ must be the transition PM providing
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the infimun value of the mutual information, i.e. I(P,Wθ∗) = inf
θ∈Λ

I(P,Wθ). More-

over, inequality (A.13) is actually an equality if WΛ is a linear family of probability

distributions L.

Proof: For any arbitrary W (·|x) ∈ WΛ, the convexity of WΛ ensures that Wα(·|x) =

(1− α)W ∗(·|x) + αW (·|x) ∈ WΛ for all 0 ≤ α ≤ 1. Observe that Wα(·|x) is linear in

α and I(P,W ) is a convex function in W , then I(P,Wα) is also convex function in

α. Hence, the difference quotient of I(P,Wα) evaluated in α = 0 is given by,

∆t(α = 0) =
1

t

[
I(P,Wt) − I(P,W ∗)

]
(A.14)

with ∆t(α = 0) ≥ 0 for each t ∈ (0, 1). Thus, there exits some 0 < t̃ < t such that

0 ≤ ∆t(α = 0) =
d

dα
I(P,Wα)

∣∣∣
α=t̃

. (A.15)

While,

d

dα
I(P,Wα) =

∑

a∈X

∑

b∈Y

P (a)
(
W (b|a) −W ∗(b|a)

)
log

Wα(b|a)
WαP (b)

(A.16)

and by taking t→ 0 in expression (A.15), we obtain

0 ≤ lim
t̃→0

∆t(α = 0) =
d

dα
I(P,Wt)

∣∣∣
α=t̃

=
∑

a∈X

∑

b∈Y

P (a)
(
W (b|a) −W ∗(b|a)

)
log

W ∗(b|a)
W ∗P (b)

= I(P,W ) + D(WP‖W ∗P ) − D(W‖W ∗|P ) − I(P,W ∗), (A.17)

where we have used the fact that Supp(W ) ⊆ Supp(W ∗). Thus, this concludes the

proof of the inequality, since expression (A.17) is always positive. In order to show

the equality, observe that under the assumption that WΛ is a linear family. For every

W (·|x) ∈ L, there is some α < 0 such that Wα(·|x) = (1 − α)W ∗(·|x) + αW (·|x) ∈
L. Therefore, we must have (d/dt)I(P,Wα)

∣∣
α=0

= 0, i.e.
∑

a∈X

∑
b∈Y

P (a)
(
W (b|a) −

W ∗(b|a)
)
log W ∗(b|a)

W ∗P (b)
= 0, for all W (·|x) ∈ L, and this proves the equality in (A.13).¥
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Auxiliary Proofs

B.1 Metric evaluation

Theorem B.1.1 Let Hi ∈ CMR×MT (i = 1, 2) be circularly symmetric complex Gaus-

sian random matrices with zero means and full-rank Hermitian covariance matrices

Σij = E{(H)i(H)†j} of the columns (H)i of Hi (assumed to be the same for all

columns) for i = 1, 2. Then the random variable H1|H2 ∼ CN(µ, IMT
⊗ Σ) is a

circularly symmetric complex Gaussian with mean µ = Σ12Σ
−1
22 H2 and covariance

matrix of its columns Σ = Σ12Σ
−1
22 Σ21.

From (3.9) and (3.10), by choosing Σ11 = Σ12 = ΣH and Σ22 = ΣH +ΣE in The-

orem B.1.1. We obtain the a posteriori pdf ψ
H| bHML

(H|ĤML) = CN
(
Σ∆ĤML, IMT

⊗
Σ∆ΣE

)
, where Σ∆ = ΣH(ΣE +ΣH)−1. In order to evaluate the general expression of

the decoding metric (3.7) for fading MIMO channels, we compute the expectation of

W(y|x,H) = CN
(
Hx,Σ0

)
over ψ

H| bHML
(H|ĤML). To this end, we need the following

result (cf. [134]).

Theorem B.1.2 For a circularly symmetric complex random vector V ∼ CN(µ,Π)

with mean µ = EV{V} and covariance matrix Π = EV{VV†} − µµ†, and Hermitian

matrix A such that I + ΠA Â 0, which means positive definite, we have

EV

[
exp(−V†AV)

]
= |I + ΠA|−1 exp

[
− µ†A(I + ΠA)−1µ

]
. (B.1)

From this theorem, we can compute the composite channel W̃(y|x, Ĥ). Let us define

V = y−Hx such that the conditional pdf of V given (Ĥ,x) is V|(Ĥ,x) ∼ CN(µ,Π)

175
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with µ = y − Σ∆Ĥx and Π = Σ∆ΣE‖x‖2. Thus, by defining A = Σ0
−1 from (B.1)

and some algebra, we obtain W̃(y|x, Ĥ) = CN
(
δĤx,Σ0 + δΣE‖x‖2

)
.

B.2 Proof of Lemma 3.5.1

Consider the quadratic expressionsQ1(X) = ‖AX‖2+K1 andQ2(X) = ‖X‖2+K2,

X is a vector ofMT elements, such thatQ1, Q2 > 0 almost surely. The joint generating

function of Q1 and Q2, namely, MQ1,Q2
(t1, t2) = EX

{
exp

(
t1Q1(X) + t2Q2(X)

)}
.

Evaluating this, we obtain

MQ1,Q2
(t1, t2) = exp

(
t1K1 + t2K2

)∣∣IMR
−
(
t1A

†A + t2
)
ΣP

∣∣−1/2
. (B.2)

Then from the gamma integral and setting t2 = −z in (C.14)

EX

{
Q1(X)Q−1

2 (X)
}

=

∞∫

0

EX

{
Q1(X) exp

[
− zQ2(X)

]}
dz, (B.3)

where it is not difficult to show that

EX

{
Q1(X) exp

[
− zQ2(X)

]}
=

∂MQ1,Q2
(t1,−z)

∂t1

∣∣∣
t1=0

,

=
[
K1 + 2−1tr(AΣPA†)(1 + zP̄ )−1

]

×(1 + zP̄ )−(MT /2) exp
(
−K2z

)
. (B.4)

Finally, this Lemma follows by solving the integral in (C.15), which leads to expression

(3.19).
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Additional Computations

C.1 Proof of Theorem 4.2.1

Next we provide an outline of the proof of coding theorem 4.2.1 and its weak

converse.

Proof: The direct part of the theorem easily follows by using the same random coding

scheme that is used to achieve the capacity (4.1) with perfect channel knowledge. The

main deference is that in this case we have to design random codewords (forming the

codebook) with the channel statistic corresponding to the composite model W̃ . Then,

given channel estimates θ̂ = (θ̂1, . . . , θ̂n), it is not difficult to show that the average

error probability ē
(n)
max(ϕ, φ, θ̂) → 0 vanishes as n → ∞. Whereas, a weak converse

follows from the convexity property of the conditional entropy and the Fano’s Lemma.

As messages m ∈ {1, . . . , b2nR
θ̂c} are assumed to be uniformly distributed, we have:

Rθ̂ = n−1I
(
m; ỹθ̂

)
+ n−1H

(
m|ỹθ̂

)
,

(a)

≤ n−1I
(
m; ỹθ̂

)
+ n−1Eθ|θ̂

{
H
(
m|ỹθ̂,θ

)}
,

(b)

≤ n−1I
(
m; ỹθ̂

)
+ Eθ|θ̂

{
H2

(
P

(n)

e,θ̂
(θ)
)

+ P
(n)

e,θ̂
(θ)
}
,

(c)

≤ n−1I
(
m; ỹθ̂

)
+
(
H2(P̄

(n)

e,θ̂
) + P̄

(n)

e,θ̂

)
, (C.1)

where ỹθ̂ = (Ỹθ̂1,1, . . . , Ỹθ̂n,n) is the vector of channel outputs, whose joint probability

distribution is computed using the n-extension of the composite channel W̃ n
θ̂
, s =

(S1, . . . , Sn) is the sequence of channel states and H2(p) , −p log p−(1−p) log(1−p).
(a) Follows from the convexity of the conditional entropy, (b) follows from the Fano’s

177
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Lemma and (c) follows from the concavity property of the binary entropy H2 respect

to the error probability with P̄
(n)

e,θ̂
, Eθ|θ̂{P

(n)

e,θ̂
(θ)}. Then, from (C.1) by bounding the

following term as [33]

n−1I
(
m; ỹθ̂

)
≤ 1

n

n∑

i=1

[
I
(
Uθ̂i,i

; Ỹθ̂,i

)
− I
(
Uθ̂,i;Si

)]
, (C.2)

the proof follows by taking the average over all channel estimates and noting that the

right-hand side in (C.1) grows to zero as P̄
(n)

e,θ̂
→ 0 when n→ ∞. ¥

C.2 Composite MIMO-BC Channel

The achievable rate region in Theorem 4.2.2 depends only on the conditional

marginal distributions of the composite MIMO-BC, which follows as the average of

the unknown marginal channel (4.30) over the a posterior pdf. According to the K-th

extension of the marginal pdfs (4.7), this writes as

W̃k(yk|x, Ĥk) =

∫
· · ·
∫

CMR×MT

Wk(yk|x,Hk) dfH { bH}k| bHk
(H, {Ĥ}k|Ĥk), (C.3)

where {Ĥ}k = (Ĥ1, · · · , Ĥk−1, Ĥk+1, · · · , ĤK) and H = (H1, . . . ,Hm). We note that

in this case the matrices H are independents and on the other side Yk­(X,Hk)­{H}k

and Hk­Ĥk­({H}k, {Ĥ}k) form a Markov chain for every k = {1, . . . , K}. Thus, we

must only compute the pdf f
H| bHML

(Hk|ĤML,k) and f
H| bHMMSE

(Hk|ĤMMSE,k) for which

we need the following theorem.

Theorem C.2.1 Let Hi ∈ CMR×MT be circularly symmetric complex Gaussian ran-

dom matrices with zero means and full-rank Hermitian covariance matrices Σij =

E{(H)i(H)†j} of the columns (H)i of Hi (assumed to be the same for all columns)

for i = 1, 2. Then the random variable H1|H2 ∼ CN(µ, IMT
⊗ Σ) is a circularly

symmetric complex Gaussian with mean µ = Σ12Σ
−1
22 H2 and covariance matrix of its

columns Σ = Σ12Σ
−1
22 Σ21.

From expressions (4.29) and (4.31), by choosing Σ11 = Σ12 = ΣH,k and Σ22 =

ΣH,k + ΣE,k in Theorem C.2.1, we obtain the a posteriori pdf

f
H| bHML

(Hk|ĤML,k) = CN
(
Σ∆,kĤML,k, IMT

⊗ Σ∆,kΣE,k

)
, (C.4)
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where Σ∆,k = ΣH,k(ΣE,k + ΣH,k)
−1. We note from (4.32) that both estimators yield

to the same a posteriori pdf, since

f
H| bHMMSE

(Hk|ĤMMSE,k) = CN
(
Σ∆,kA

−1
MMSE,kĤMMSE,k, IMT

⊗ Σ∆,kΣE,k

)
. (C.5)

We shall denote this pdf as f
H| bH(Hk|Ĥk) for some arbitrary estimate Ĥk. Finally,

by using (C.4) and the following result (cf. [134]) we can easily evaluate expression

(C.3).

Theorem C.2.2 For a circularly symmetric complex random vector v ∼ CN(µ,Π)

with mean µ = EV{v} and covariance matrix Π = EV{vv†} − µµ†, and Hermitian

matrix A such that I + ΠA Â 0, which means positive definite, we have

EV

[
exp(−v†Av)

]
= |I + ΠA|−1 exp

[
− µ†A(I + ΠA)−1µ

]
. (C.6)

From this theorem, we can compute the marginal distributions of the composite chan-

nel W̃k(yk|x, Ĥk). Let us define v = yk−Hkx such that the conditional pdf of v given

(Ĥk,x) is v|(Ĥk,x) ∼ CN(µ,Π) with µ = yk − Σ∆,kĤkx and Π = Σ∆,kΣE,k‖x‖2.

Thus, by defining A = Σ0,k
−1 from (C.6) and some algebra, we obtain

W̃k(yk|x, Ĥk) = CN
(
δkĤkx,Σ0,k + δkΣE,k‖x‖2

)
. (C.7)

C.3 Evaluation of the Marton’s Region for the Com-

posite MIMO-BC

Consider that users codeword {xk}K
k=1 are independent Gaussian vectors xk ∼

CN(0,Pk) with corresponding covariance matrices {Pk º 0}K
k=1. Assume arbitrary

positive semi-defined matrices Fk ∈ CMR × MR (not depending on the unknown channel

estimates), and let P (x,u1, . . . ,uK) be the joint pdf of auxiliary random vectors

defined as

uk = xk + Fk sK
Σ,k+1, (C.8)

thus this pdf does not depend on the channel estimates Ĥ. From the extension to

K-users of Theorem (4.2.2) and by evaluating the composite MIMO-BC and the DPC

scheme (C.8), it is not difficult to show that for every realization of channel estimates

R̃k(Fk, Ĥk) = I
(
PUk

, W̃ bHk

)
− I
(
PUk

, PU1,...,Uk−1|Uk

)
, for each k = {1, . . . , K}. (C.9)
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Then, by using standard algebra and taking the average of (C.9) over all channel

estimates, we can obtain expression (4.43).

C.4 Proof of Lemma 4.4.1

Let Ak = ĤkĤ
†
k =

MT∑
i=1

ĥiĥ
†
i be an MR × MR random complex matrix whose

columns are the vectors Ĥ1, . . . , ĥMT
. Then Ak follows a nonsingular central Wishart

distribution of dimensionality MR with MT degree of freedom and associated param-

eter matrix Σ bH,k = σ2
Ĥ,k

IMR
, i.e. the pdf of any matrix Ak º 0 is given by

f(Ak) = K−1
∣∣Ak

∣∣(MT−MR−1)/2
exp

[
tr(Σ bH,k

−1Ak)
]
, (C.10)

K =
∣∣Σ bH,k

∣∣MT
2 ΓMR

(MT/2),

and

ΓMR
(MT/2) = πMR(MR−1)/4

MT∏

j=1

Γ
[
(MT + 1 − j)/2

]
.

We define the exponential matrix function f(t) = exp(tA), for all t ∈ R and any

Hermitian matrix A ∈ CMR×MR with

exp(tA) =
∞∑

j=0

1

j!
(tA)j,

and we note that
d

dt
exp(tA) = exp(tA)A. Since A = A† it is not difficult to show

that the matrix inverse can be written as [135]

A−1 =

∞∫

0

exp(−zA)dz, (C.11)

this integral expression is a generalization of the Gamma integral for the matrix case.

Consider now the quadratic expressions Q1(Ak) = Ak and Q2(Ak) = Ak + Ck,

with Ck º 0 a diagonal matrix and Q1,Q2 º 0 almost surely. Thus, the derivation

of Lemma 4.4.1 follows by calculating the expectation that we denote as Ik, given by

Ik = EAk
{Q1(Ak)Q2

−1(Ak)}, (C.12)

where the integral involved in this expectation must be calculated over all positive

semi-definite matrices Ak º 0. We solve (C.12) through the joint generating function
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of Q1 and Q2, namely,

MQ1,Q2
(T1,T2) = EAk

{
exp

(
T1Q1(Ak) + T2Q2(Ak)

)}
. (C.13)

where T1,T2 º 0 are arbitrary positive definite matrices.

This expression can be evaluated by using the Wishart distribution (C.10) through

the Lebesgue measure in CMR×MR given by dAk = 2MR

MR∏
j=1

bMR+1−j
jj dB, where Ak =

BB† with B = (bij), bii > 0 ∀, i, bij = 0, ∀i < j. Thus, using some algebra from

(C.13) we can show that

MQ1,Q2
(T1,T2) =

∣∣IMR
− Σ bH,kT1 − Σ bH,kT2

∣∣−MT /2
exp

(
T2C

)
. (C.14)

Then from expression (C.11) the integral Ik (C.12) writes

EAk

{
Q1(Ak)Q2(Ak)

−1
}

=

∞∫

0

EAk

{
Q1(Ak) exp

[
− zQ2(Ak)

]}
dz. (C.15)

Actually, by setting T1 = tIMR
and T2 = −zIMR

in (C.14), ∀ t, z ∈ R+, it is not

difficult to show that

EAk

{
Q1(Ak) exp

[
− zQ2(Ak))

]}
=
∂MQ1,Q2

(tIMR
,−zIMR

)

∂t

∣∣∣
t=0
, (C.16)

where from (C.14)

∂MQ1,Q2
(tIMR

,−zIMR
)

∂t

∣∣∣
t=0

=
MT

2
Σ bH,k

(
1 + zσ2

Ĥ,k

)−“MT MR
2

+1
”

exp
(
− zCk

)
. (C.17)

Finally, it remains to solve the integral in (C.15) using (C.17) (it can be found in [136]),

which leads to the following expression

EAk

{
Q1(Ak)Q2

−1(Ak)
}

=
1

MR

[
1 − ρn+1

k exp(ρk)Γ(−n, ρk)
]
IMR

, (C.18)

where n = MRMT − 1, Ck = ckIMR
, ρk =

ck
σ2

Ĥ,k

and

Γ(−n, t) =
(−1)n

n!

[
Γ(0, t) − exp(−t)

n−1∑

i=0

(−1)i i!

ti+1

]
,

with Γ(0, t) =

∫ +∞

t

u−1 exp(−u)du denoting the exponential integral function. The

Lemma follows from (C.18) and the adequate choice of ck.
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