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Avant-propos

Introduction

Ce travail de thèse est consacré à un sujet essentiel pour les observations astronomiques faites au

sol; il s’agit de la caractérisation et de la spécification des conditions atmosphériques qui permettent

d’utiliser au mieux les interféromètres et les systèmes d’optique adaptative.

La qualité d’observations astronomiques au sol est limitée par la turbulence atmosphérique. Mais

ces observations restent compétitives par rapport aux observations depuis l’espace grâce à l’optique

adaptative. Celle-ci permet en effet de corriger les fluctuations de phase atmosphèriques suffisam-

ment, pour que les plus grands télescopes actuels – avec des diamètres de miroirs compris entre 8

et 10m – soient limités par la seule diffraction. En principe l’optique adaptative peut également

compenser les fluctuations des différences de phase entre les pupilles d’entrée d’un interféromètre.

Mais aujourd’hui cette correction est tout juste possible parce que les vitesses de compensation

sont encore insuffisantes. De fait, les systèmes correcteurs actuels, comme par exemple FINITO à

l’observatoire de Paranal au Chili, ne fonctionnent correctement que pour l’observation de quelques

étoiles brillantes.

En règle générale, les temps d’exposition utilisés lors d’observations interférométriques doivent

donc être suffisamment courts pour immobiliser les mouvements de la turbulence. Le prix en est

une perte considérable en sensibilité. Si l’on découvrait des sites où la turbulence est plus lente,

les systèmes de correction seraient alors assez rapides pour suivre la turbulence et la sensibilité des

interféromètres en serait considérablement améliorée.

La turbulence atmosphérique est caractérisée par plusieurs paramètres, parmi lesquels: le

paramètre de Fried, r0, le temps de cohérence, τ0, l’échelle externe, L0, l’angle isoplanétique, θ0.

Les deux premiers paramètres: r0 et τ0, sont au centre de mon travail de thèse, et j’en donne donc

une rapide définition:

– Le paramètre de Fried, r0, est égal au diamètre d’un miroir pour lequel les pertes en résolution

dues à la diffraction et aux turbulences atmosphériques sont tout juste égales. Une grande

valeur du paramètre de Fried implique une grande taille des cellules de turbulence et présente

ainsi un avantage direct pour la performance des systèmes d’optique adaptative.

– Un deuxième paramètre essentiel de la turbulence est le temps de cohérence, τ0. Il est défini de

telle manière qu’en un lieu donné, au bout du temps de cohérence, la variance des fluctuations

temporelles de phase dues à la turbulence soit égale à 1 rad2. Le temps de cohérence détermine

notamment la sensibilité des interféromètres.
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Ces deux paramètres varient d’un site à l’autre, mais à la différence de r0, le temps de cohérence

dépend également de la vitesse de la turbulence. Et comme il n’existe actuellement aucune méthode

adaptée pour mesurer le temps de cohérence avec un petit télescope, les campagnes de sélection

et de monitoring s’appuient principalement sur la mesure du paramètre de Fried. En pratique,

on se réfère plutôt au seeing, ε0, qu’au paramètre de Fried, mais ces deux quantités sont en fait

équivalentes: le seeing est égal à la résolution angulaire d’un télescope avec un miroir de diamètre

r0.

Un nouvel instrument FADE

Au cours de mon travail de thèse, nous avons proposé une méthode pour mesurer le temps de

cohérence. Elle consiste à défocaliser l’image d’une étoile et à en faire – grâce à une obstruction

centrale sur le miroir primaire – un anneau diffus. Une lentille avec une aberration sphérique est

alors placée sur le trajet du faisceau, la combinaison d’une défocalisation et de l’aberration sphérique

étant choisie de façon à s’apparenter au mieux à une aberration conique: l’anneau diffus est ainsi

focalisé sur un anneau fin. De fait, notre méthode est la fille isotrope du Differential Image Motion

Monitor, DIMM, l’instrument de référence pour la mesure du seeing.

La turbulence atmosphérique déforme l’image; ces déformations peuvent être convenablement

mesurées parce qu’au premier ordre elles se traduisent par des changements de rayons de l’anneau.

L’avantage de cette méthode est notamment son insensibilité aux aberrations de tip et tilt qui sont

causées en partie par la turbulence mais aussi par les vibrations de télescope, et qui n’intéressent

donc pas la turbulence seule. Au lieu du tip et tilt , nous mesurons le coefficient de défocalisation

qui est à l’origine des variations du rayon. Une relation entre les fluctuations temporelles du rayon

et le temps de cohérence a été établi dans le cadre du modèle de Kolmogorov de la turbulence

atmosphérique.1

Des premières mesures avec ce Fast Defocus Monitor, FADE, ont été obtenues à l’observatoire de

Cerro Tololo au Chili, du 29 Octobre au 2 Novembre 2006. L’instrument comportait un télescope

de 0.35 m de diamètre et une caméra à lecture rapide; nous avons enregistré des images d’anneaux

pendant cinq nuits en faisant varier les paramètres instrumentaux. L’analyse de ces mesures et de

leurs incertitudes est présentée dans le manuscrit. Il nous a fallu faire particulièrement attention

aux aberrations optiques du télescope et aux taches de scintillation causées par la turbulence dans

la haute atmosphère. Ces deux effets pouvant modifier le rayon de l’anneau, nous avons établis des

critères de rejet des images trop déformées.

Le seeing et le temps de cohérence estimés avec FADE ont été comparés aux résultats obtenus

par les instruments de référence que sont DIMM et le Multi Aperture Scintillation Sensor, MASS. A

Cerro Tololo, MASS et DIMM sont installés derrière un même télescope, sur une tour de 6 m à 10 m

du dôme dans lequel se trouvait FADE. Les résultats ne sont pas identiques parce que MASS et

DIMM observaient des étoiles moins brillantes que FADE, et sondaient donc une partie différente

de l’atmosphère. Statistiquement, sur l’ensemble des 5 nuits, FADE a tendance à sous-estimer le

seeing. Nous avons pu reproduire cet effet avec des simulations d’anneaux diffus. Et nous pensons

donc que cette sous-estimation est due – sur cet instrument prototype – à ce que la combinaison de

1On préfère souvent caractériser la turbulence en utilisant le modèle de Van Karman, qui est essentiellement équivalent au
modèle de Kolmogorov à ceci près qu’il prend en compte l’effet de l’échelle externe. Or l’échelle externe n’a pas d’effet sur
les fluctuations rapides qui déterminent le temps de cohérence, et nous nous sommes donc placés dans le cadre plus simple
du modèle de Kolmogorov.
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défocalisation et d’aberrations sphérique n’était pas optimisée et ne s’apparentait pas bien à une

aberration conique.

En ce qui concerne les temps de cohérence, les estimations obtenues avec MASS se basent sur

des mesures de scintillation. La turbulence en dessous de 500 m d’altitude n’engendrant pas de

scintillation, la méthode n’est pas sensible à la turbulence basse – contrairement à DIMM et FADE.

Par conséquent MASS n’a pas pu nous servir d’instrument de référence pour nos mesures. Et

c’est pourquoi nous organisons actuellement une deuxième campagne de mesures qui aura lieu en

Août 2007 à l’observatoire de Paranal. Ces observations se feront simultanément avec le système

d’optique adaptative NAOS qui est installé derrière un des Very Large Telescopes, VLT, et qui fournit

des mesures fiables du temps de cohérence.

A terme, l’objectif est d’utiliser FADE lors des campagnes de caractérisations de sites. En

particulier, des mesures sont prévues à Dôme C en Antarctique; un site potentiel pour les futures

générations de grands télescopes et d’interféromètres.

Mais l’étude de la turbulence n’est pas une fin en soi et je complète donc le manuscrit en donnant

un exemple d’un travail de recherche rendu possible grâce à la mâıtrise des effets de la turbulence.

Observations du syst̀eme triple δ Velorum

Comme il a été souligné plus haut, aujourd’hui les interféromètres sont limités à l’observation des

sources les plus brillantes à cause de la rapidité des turbulences atmosphériques. Mais pourtant,

même dans ces conditions, l’interférométrie reste une technique clef pour beaucoup d’observations,

parmi lesquelles l’observation de systèmes d’étoiles multiples. L’état, l’évolution et l’origine de

ces systèmes ne pourront être compris que si les études dynamiques sont confrontées aux résultats

d’observations à haute résolution angulaire. δVelorum donne un exemple d’une avancée récente due

à des observations interférométriques.

En 2000, δVelorum était encore considéré comme un système de quatre étoiles et il servait

d’étoile de référence au système d’autoguidage du satellite Galilée. Il fut la cause d’une véritable

frayeur des ingénieurs qui suivaient le satellite, lorsque la sonde signala une baisse brusque d’intensité.

Les ingénieurs crurent à une panne du système de guidage, mais Galilée avait en fait été témoin

d’une éclipse.

Ainsi, au début de ma thèse δVelorum avait acquis le rang de système quintuple. Nous voulions

saisir la chance de mesurer les paramètres d’un tel système: cinq étoiles du même âge mais avec des

masses différentes. δVelorum pouvait devenir un système clef pour tester des modèles d’évolutions

stellaires. J’ai analysé dans cet objectif les observations de δVelorum obtenues avec le VLT Interfer-

ometer Commissionning Instrument, VINCI, qui est installé à l’observatoire de Paranal.

Les résultats des observations avec VINCI nous ont surpris parce que les deux étoiles éclipsantes

semblent avoir des diamètres deux à trois fois plus grands que ceux attendus pour des étoiles de la

séquence principale et parce qu’elles se trouvent donc probablement dans des stades avancés de leur

évolution. Mais nous avons été tout autant surpris quand, en analysant des données photométriques

et spectroscopiques existantes, nous avons réalisé que deux des cinq étoiles ne font en fait pas partie

du système. Ainsi δVelorum a gagné en intérêt à cause des propriétés inattendues des deux étoiles

éclipsantes, mais en même temps il est retombé au rang de système triple. Ce travail est décrit dans

le dernier chapitre du manuscrit.
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Chapter 1

Introduction: Our screen towards the

Universe, the turbulent atmosphere

Life on earth and its evolution have become possible because of the radiation
shield, i.e. the atmosphere layer with a mass equivalent to about 10m of water.
While it is a precondition for existence, it complicates life for the astronomer
and astrophysicist, who desires an unfiltered view of the universe. Looking
through the screen in order to find those locations on the planet where the
view is least obstructed is, thus, an important task. It is also the major issue
of the research outlined in this thesis.

1.1 Looking through the screen

It is doubtlessly a tribute to the astronomers and engineers that they have
developed instruments precise enough to detect earth-like planets several light
years removed. An example of current interest are the lately discovered com-
panions of the 20 light-years distant Gliese 581[9]. Their detection was, of
course, indirect: temporal line-shifts on the spectrum of the star, correspond-
ing to velocity variations of only 2 to 3 meters per second, were used to infer
the presence of a planet about 5 times the mass of Earth. To resolve the planet
against its central star, i.e. to obtain a separate point image (1 pixel) at optical
wavelengths, a telescope with mirror diameter of at least 15m would be re-
quired. To obtain more than a point image a truly gigantic mirror, far beyond
technical feasibility would be required. While a point image will probably be
achieved with the next generation of large telescopes, the system could already
be resolved by combining the light collected by several telescopes, that is by
interferometry – provided the distortion by atmospheric fluctuations could be
overcome. At present the angular resolution and contrast of single-dish tele-
scopes, as well as the sensitivity of interferometers, are limited by atmospheric
turbulence and the planets of Gliese 581can, therefore, not yet be resolved.

13
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Still, ground based observations will remain competitive to observations
from space, because adaptive optics can, by now, correct the wave-front phase
fluctuations sufficiently to let the resolution of the currently largest telescopes
– with mirrors of 8-10 m diameter – attain the limit set by optical diffraction.
Adaptive optics can likewise compensate for the fluctuation of the phase dif-
ferences between individual beams of interferometers. However, with current
technologies, the task remains difficult, because the correction is not sufficiently
fast. Even at prime observation sites, such as Paranal, Chile, exposure times
are, therefore, employed that are short enough to immobilize the atmospheric
turbulence. The price is a significant loss of sensitivity for interferometric
observations. If sites were to be found with substantially slower turbulence,
available phasing devices might be fast enough to follow the phase fluctuations,
and exposure times could then be substantially increased.

1.2 Characterizing the screen

1.2.1 The notion of turbulence

But what is turbulence? Amazingly no simple definition can be given, even
though earthbound astronomy as well as everyday life are permanently con-
fronted with it. A look out of the window shows leaves whirling in the wind
and smoke curling over the roofs. Driving to work this morning one was an
atom of a turbulent circulation, or – if the highway was free – has created a
track of turbulent air flow.

What is common to all such processes? A first predominant element – and
not just, as the name might suggest, of gaseous turbulence – is chaos; i.e. the
evolution of turbulence depends erratically on initial conditions.

But even three or four particles can evolve chaotically, i.e. with an extreme
sensitiveness to the initial conditions, and this does not make for turbulence
yet. Thus, a second requirement is, indeed, the random involvement of a large
number of particles.

Imagine a company of soldiers led daily by another commander who chooses
the route of the parade. The path that is followed depends on the whim of
the leader, yet a company of properly disciplined soldiers will not accept to be
termed turbulent. A third requirement is, thus, that there must be random
motion over a continuous and broad range in time and in space.

Clearly, this is a modest and incomplete attempt to characterize turbulence,
but the reader who desires a more rigorous definition may turn to Davidson’s
monograph “Turbulence” [18].
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1.2.2 Is there a theory of turbulence?

Turbulence is in general merely a nuisance phenomenon. Where it becomes
critical, however, for example in aerodynamics, thermodynamics or meteorol-
ogy it needs to be studied and it is found to be complex and quite diverse. A
pilot may be well informed about turbulence in aerodynamics, yet he would
be confused, when the meteorologist were to add to the weather forecast his
analysis of atmospheric turbulence. Likewise an astrophysicist might approach
his colleague from the thermodynamics department and give him mass, tem-
perature and size of a star of particular interest whose spectral image he would
like to understand. He, too, might be confounded by a host of information in
the answer, that is difficult to relate to his problem and by the great number
of associated caveats.

To simplify matters, one would wish to have a theory that predicts large-
scale movements in turbulent flows, and that indicates the energy distribution
over different spatial scales. Ideally, it should be applicable to a broad range of
phenomena, from gas flows in galaxies to currents in the oceans. But presently
there are as many theories as there are problems.

Yet astronomers are fortunate: where they wish to characterize atmospheric
turbulence, they profit from one of the exceptional success stories in turbulence
physics. It is due to the Russian mathematician Andrei N. Kolmogorov who
studied turbulent flows from air jets and published his results in 1931 [43]. As
his point of departure, Kolmogorov used Richardson’s assumption that – in
a turbulent medium – the energy is continually transferred from large-scale
to small-scale structures, where it is eventually dissipated by viscosity [56]; he
then assumed an isotropic medium in equilibrium and deduced the law:

E( f , ǫ) = α ǫ2/3 f −5/3 (1.1)

where f is the norm of the three-dimensional spatial-frequency vector f ,
and E( f , ǫ) d f equals the energy contained in vortices with spatial frequencies
between f and f + d f , in a fluid characterized by its rate, ǫ, of viscous dissi-
pation. The Kolmogorov constant, α, is a function of the Reynolds number,
R= LV/ν, where L and V are the characteristic size and speed of the turbulent
flow, while ν is the viscosity of the fluid. The viscosity of air is 15· 10−6m2 s−1;
taking L = 15m/s and V = 1m/s leads to R = 106 which corresponds to fully
developed turbulence. Landau and Lifshitz [45] have shown that α ∼ 1.52, at
such high Reynolds numbers.

This law, which predicts the energy distribution over spatial scales, rests
entirely on the hypothesis of a continuous dissipation of kinetic energy from
large to small scales. Even though it is heuristic and not strictly proven,
the law is in excellent agreement with observations, within the inertial range
1/L0 ≪ f ≪ 1/l0. Here L0 denotes the size of the largest vortices, which – for
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our atmosphere – may vary between roughly 10m and 100m. While l0 – the
scale, below which the energy is predominantly dissipated by viscous friction
– ranges from a few millimeters to about 1 cm.

Figure 1.1: A turbulent cascade as seen by Leonardo da Vinci.Reproduced from [19].

1.2.3 Parameters for the viewing condition and their dependence on turbu-

lence

The viewing conditions at an observatory site relate to two major aspects. The
first aspect is the resolution attainable with long exposures and a telescope of
given mirror diameter, D. For small telescopes the angular resolution is entirely
limited by diffraction:

ε = 0.976λ/D (1.2)

For a 0.1m-telescope, the angular resolution at wavelength λ = 0.5µm
equals 4.9 · 10−6 rad, i.e. 1”.

With increasing mirror sizes the resolution tends to be increasingly affected
by the wavefront distortions due to atmospheric turbulence. To characterize
the magnitude of this influence, it is convenient to refer to the mirror diam-
eter where the effect of diffraction becomes just equal to the degradation of
resolution due to the atmosphere. This diameter is termed Fried parameter,
r0, where the somewhat uncommon use of the letter r for a diameter needs
to be noted. Under poor conditions – for example even during clear nights at
sea level – the Fried parameter may rarely be better than about 1 cm. Under
optimum conditions, such as on clear nights at Paranal, Chile, the value may
go up to 1m for wavelengths between 0.5 to 1µm. Large telescope mirrors
can then profitably be used, and they will attain excellent resolution, when
adaptive optics are being used that correct for phase differences by acting on
individual mirror segments.
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In practice one tends to refer to the seeing, ε0, rather than the Fried pa-
rameter, r0, but the two quantities are essentially equivalent, the seeing being
the angular resolution of a telescope with mirror diameter r0:

ε0 = 0.976λ/r0 (1.3)

Thus, the Fried parameters 1 cm and 1m correspond, at the wavelength
0.5 µm, to seeing values of 10” and 0.1”.

If the exposure time is shorter than the characteristic time of turbulent mo-
tions, say below 5ms, the image of a star consists of individual specklesinside
the spot formed by the long-exposure image. Speckles result from the inter-
ference between those parts of the wavefront where the turbulence-induced
wavefront-inclinations are the same; and these small interference patterns con-
tain information at angular resolutions up to the diffraction limit. Accordingly,
the angular resolution of large telescopes approaches the diffraction limit with
decreasing exposure times – the price being a considerable loss in sensitivity.

Figure 1.2: Two images of a star through a telescope with a mirror diameter,D, substantially larger
than the Fried parameter,r0. (a) If the exposure image is shorter than the coherence timeof tur-
bulence,τ0, the angular size of the smallest image-details is set by thediffraction on the telescope
mirror: ε = 0.976 λ/D. (b) After a much longer exposure time, the superposition ofmany speck-
les gives the image its more uniform aspect. The angular sizeof the spot then equals the seeing:
ε0 = 0.976λ/r0. Reproduced from [47].

The stability of such short-exposure images is a second aspect of the good-
ness of viewing conditions. The parameter that is being used to characterize
the stability is the coherence time, τ0. It equals the time interval over which the
rms-phase distortion at a point due to turbulence is 1 radian. This is equiv-
alent to stating that the coherence time equals 0.314 times the ratio of the
Fried parameter to the mean velocity of the turbulent medium. Hence, for a
single turbulent layer with velocity 50m/s and a Fried parameter 0.5m, the
coherence time is 3.14ms.

In summary, for a mirror of diameter r0 and an exposure time τ0, the effects
due to diffraction, finite mirror diameter, and finite exposure time are just
equal.
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1.2.4 Statistical description of atmospheric turbulence

In his extensive analysis of the statistical properties of atmospheric turbulence,
Roddier [58] examined the implications of Kolmogorov’s law for the propaga-
tion of optical wavefronts. Some of the results that are used in the subsequent
chapters can be summarized as follows.

The turbulent mixing of the air creates inhomogeneities of temperature, T,
which likewise follow Kolmogorov’s law:

WT( f ) ∝ f −5/3 (1.4)

WT( f ) = |T̃( f )2| is the power spectrum of temperature fluctuations, where
the symbol: ·̃ denotes the Fourier transform. In an isotropic medium, the
three-dimensional power spectrum WT(f ) = WT( fx, fy, fz) is related to the one-
dimensional power spectrum through an integration over two directions:

WT( f ) = 4π f 2 WT(f ) (1.5)

Thus,

WT(f ) ∝ f −11/3 (1.6)

The refractive index of air, n, is a function not only of the temperature
but also of the humidity. However at visible and near infrared wavelengths, n
proves to be largely insensitive to water vapor concentration; its fluctuations
follow therefore the same law as the temperature fluctuations:

Wn(f ) = 3.9 · 10−5 C2
n f −11/3 (1.7)

The index structure constant, C2
n, is related to the local gradient of the optical

index. It determines the contribution of the turbulence in the specified air
layer to optical propagation and typically it varies between 10−15m−2/3 and
10−13m−2/3.

Fluctuations of the wavefront phase, ϕ, are due to the fluctuations of the
optical index. In the case of many thin turbulent layers – contributing each
only a small phase change: dϕ ≪ 1rad – the spectrum of phase fluctuations
is, accordingly:

Wϕ(f ) = 9.7 · 10−3 k2 f −11/3

∫ hmax

0
Cn(h)2 dh (1.8)

k = 2π/λ is the spectral wave number, and h denotes the altitude of a
turbulent layer with thickness dh. This spectrum applies within the inertial
range 1/L0 ≪ f ≪ 1/l0.
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So much for the results of Roddier’s analysis. We conclude that, with regard
to the propagation of visible light through the atmosphere, three essential
parameters are: C2

n, l0 and L0. A fourth parameter is the mean velocity,
V, of the turbulent medium. Together these parameters determine the Fried
parameter (or the seeing) and the coherence time:

– The Fried parameter, r0, is an integral over the structure index constant,
C2

n:

r0 = [ 0.423k2 cos(γ)−1

∫ hmax

0
Cn(h)2 dh ]−3/5 (1.9)

where γ is the zenith-angle. The viewing conditions are optimized, when
observations are directed at the zenith; for lower angles the Fried param-
eter decreases.

– The coherence time is a combination of the Fried parameter and of an
averaged wind speed, V5/3 (see Chapter 4):

τ0 = 0.314 r0/V5/3 (1.10)

Vp =


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(1.11)

This definition is based on the assumption that independent layers at
different heights, h, contribute to the turbulence, and that – in each layer
– the turbulence as a whole is being displaced horizontally with velocity
V(h).1

Both parameters, the seeing, ε0, and the coherence time, τ0, are site depen-
dent. But there is a difference: the coherence time depends also on wind speed,
and there is currently no adequate technique to measure the coherence time.
For this reason, site testing and monitoring campaigns are currently restricted
to the assessment of the seeing.

1Turbulence arises predominantly at the interface of cold and warm layers that move in different directions. The resulting
shear layer is displaced along the layers’ interface in goodagreement with Taylor’s hypothesis which assumesfrozen flows:
“If the velocity of the air stream which carries the eddies isvery much greater than the turbulent velocity, one may assume
that the sequence of changes at a fixed point are simply due to the passage of an unchanging pattern of turbulent motion over
that point” [66]. But is this hypothesis adequate in spite of the fact that there are – relative to the overall motion of the layer –
motions of the vortices and eddies? Most astronomers are familiar with the aspect of turbulent patterns that are formed over
a telescope-mirror, because these patterns are readily observed on defocused stellar images: Generally, the pattern translates,
indeed, with a common global motion, yet each individual, turbulent cell evolves and moves during the time it crosses the
telescope aperture. This suggests that the turbulent motion is a combination of a frozen-flow and a dispersive motion and
Taylor’s hypothesis is, accordingly, an approximation. Infact, it has been shown that hisfrozen-flow hypothesisdescribes the
turbulent motions up to time intervals 20 to 30 milliseconds, i.e. typically a few coherence-times (Gendron & Léna [24]and
Schoeck & Spillar [62]).
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1.2.5 Coherence-time measurements

Because it determines the sensitivity of interferometers and the performance of
adaptive optic systems, the atmospheric coherence time, τ0, is a parameter of
major importance. Several instruments measure τ0 or related parameters, but
all current methods have limitations: either the instrument is not well suited
for site monitoring, or the method is burdened by intrinsic uncertainties and
biases.

– SCIDAR (Scintillation Detection And Ranging) has provided good results
on τ0, but it requires large telescopes and is not suitable for monitoring,
since it necessitates manual data processing (Fuchs et al. [22]).

– Balloons provide only single-shot profiles of low statistical significance
(Azouit & Vernin [8]).

– Adaptive-optic systems and interferometers give good results, but are
suitable neither for testing projected sites nor for long-term monitoring
(Fusco et al. [23]).

The four subsequent methods all use small telescopes and can, thus, be used
for site-testing. They all have their special attractions. However, with regard
to the coherence time each has intrinsic problems:

– SSS (Single Star SCIDAR) in essence extends the SCIDAR technique to
small telescopes: profiles of Cn(h)2 and V(h) are obtained with less altitude
resolution than with SCIDAR, and are then used to derive the coherence
time (Habib et al. [29]).

– The GSM (Generalized Seeing Monitor) measures velocities of prominent
atmospheric layers. By refined data processing, a coherence time, τAA –
but one with a different dependence on the turbulence profile than τ0 –
is deduced from the angle-of-arrival fluctuations (Ziad et al [73]).

– MASS (Multi-Aperture Scintillation Sensor) is a recent, but already well
proven, turbulence monitor. One of the measured quantities, related to
scintillation in a 2 cm-aperture, approximates the coherence time, but this
averaging does not include low-altitude layers and thus gives a biased
estimate of τ0 (Kornilov et al. [44]).

– DIMM (Differential Image Motion Monitor) is not actually meant to de-
termine τ0, but an estimation of the coherence time can nevertheless be
obtained by combining the measured r0 with meteorological wind-speed
data (Sarazin & Tokovinin [59]).

We conclude from this brief survey, that there is, at this point, no sufficiently
simple technique to measure τ0 with a small telescope.
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1.3 Constituents of this thesis

1.3.1 Assessing time scales of turbulence at Dome C, Antarctica

Dome C is a 3235m high summit (75◦06′ S, 123◦23′ E) on the Antarctic plateau.
Because of its elevation, the location does not experience the winds that are
typical for the coastal regions of Antarctica. This has led to the assumption,
that the atmospheric conditions might be particularly advantageous. In 2005,
Concordia, a French-Italian station opened on Dome C, for research in astron-
omy, glaciology, earth-science, etc. Aristidi et al. [5] and Lawrence et al. [46]
determined the size of the turbulent cells, as measured 30m above ground,
to be 2 to 3 times larger than at the best mid-latitude sites. The latter au-
thors concluded, that an interferometer built on Dome C could potentially
work on projects that would otherwise require a space mission. This is a clear
possibility, but it needs to be confirmed by measurements of the coherence
time.

Chapter 2 presents an analysis of the first interferometric fringes recorded
at Dome C, Antarctica. Measurements were taken between January 31st and
February 2nd 2005 at daytime. The instrumental set-up, termed Pistonscope,
aims at measuring temporal fluctuations of the atmospheric piston, which are
critical for interferometers and determine their sensitivity. The characteristic
time scales are derived through the motion of the image that is formed in the
focal plane of a Fizeau interferometer. Although the coherence time of piston
could not be determined directly – due to insufficient temporal and spatial
sampling – a lower limit was, nevertheless, determined by studying the decay
rate of correlation between successive fringes. Coherence times in excess of
10ms were determined in the analysis, i.e. at least three times higher than the
median coherence time measured at the site of Paranal (3.3ms).

To test the validity of the results derived in terms of the pistonscope, mea-
surements with this instrument have subsequently been obtained at the ob-
servatory of Paranal, Chile, in April 2006 with high temporal and spatial
resolution. In Chapter 3 the observations are analyzed, and it is found that
the resulting atmospheric parameters are consistent with the data from the
astronomical site monitor, if the Taylor hypothesis of “frozen flow” is invoked
with a single turbulent layer, i.e. if the atmospheric turbulence is taken to be
displaced along a single direction. This has permitted a reassessment of our
preliminary measurements – recorded with lower temporal and spatial resolu-
tion – at the Antarctic site of Dome C, and it was seen that the calibration
in terms of the new data sharpened the conclusions of the first qualitative
examination in Chapter 2.

As seen in Chapters 2 and 3, we have, in spite of the current limitations in
methodology and instrumentation, been able to infer considerably increased
coherence times at Dome C, Antarctica, which is consistent with the earlier ex-
tensive determinations of other parameters that demonstrate the superior con-
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Figure 1.3: Political map of Antarctica and year-round research stations (2005). Reproduced
from [13].
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Figure 1.4: Panoramic view of theConcordiastation at Dome C. Reproduced from [70].

dition for astronomical observations at this site (Agabi et al. [2] and Lawrence
et al.[46]). The two chapters make it equally clear, however, that a major
effort was required for this limited achievement, and that – even with more
extensive sampling – the reliability and accuracy of the measured coherence
times could not be fully satisfactory because of the influence of the uncertain
angle between the instrumental set-up and the wind direction. The tempo-
ral variations of the fringe pattern become faster, as the angle between the
wind direction and the interferometric axis diminishes. To derive – without
continuous assessment of changing wind directions – meaningful values of τ0,
a parameter must, therefore, be measured that is independent of the wind
direction. To make routine monitoring possible, the measurement would also
have to be comparatively simple. The challenge to find such a parameter and
to develop an instrument that permits its fast and reliable determination has,
thus, become central to this thesis.

1.3.2 A new instrument to measure the coherence time

Since there exists currently no method to measure the coherence time directly
and to achieve this with a compact instrument, Andrei Tokovinin and myself
have sought a new approach to close the gap. A comparatively simple method
has been adopted and an instrument has been designed to shift the image of
a star somewhat out of focus, which converts it – due to a suitably enlarged
central blind area of the telescope – to a ring. Insertion of a lens with proper
spherical aberration sharpens this ring into a narrow circle. Atmospheric tur-
bulence causes then distortions which can be conveniently assessed, because,
to a first approximation, they appear as ring-radius changes.

The strength of the Fast Defocus Monitor, FADE, lies in the fact, that it is
insensitive to tip and tilt , which – being jointly caused by telescope vibrations
and atmospheric turbulence – can not be meaningful indicators of turbulence
alone. Instead we measure the higher order aberration defocus, that causes
the radius changes. A relation between the temporal properties of the radius
variations and the coherence time has been developed in the framework of the
Kolmogorov theory of turbulence.

Chapter 4 deals with the consistency of the definition of τ0, since this is a
precondition for the application of FADE. The interferometric coherence time
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– that characterizes the time scale of the fringe motion in an interferometer – is
analyzed and is found to have the same dependence on atmospheric parameters
as the coherence time which is used in adaptive optics.

First measurements with FADE were obtained at Cerro Tololo, Chile, from
October 29th to November 2nd 2006. The instrumental set-up is based on a
telescope with mirror diameter 0.35m and a fast CCD detector. Ring images
were recorded during five nights with a broad range of instrument settings.
The measurements and their uncertainties are analyzed in Chapter 5, and
the seeing and coherence-time values obtained in terms of our instrument are
compared with simultaneous measurements from the MASS and DIMM site-
monitoring instruments.

1.3.3 Astrophysical application: interferometric observations ofδVelorum

Chapter 6 presents an example of how research is facilitated, when the influ-
ence of the atmospheric fluctuations can be partly overcome. Interferometers
have been introduced in astronomy to gain spatial resolution without the need
to build extremely large telescopes. To resolve δVelorum in the infrared would
require a telescope of about 100m mirror diameter. In contrast, the VLT In-
terferometer Commissionning Instrument, VINCI, installed on Paranal in Chile,
allows to resolve the bright, eclipsing binary Aa-Ab in δVelorum with two
small 0.4m siderostats 100m apart.

Today, interferometric observations are limited to the brightest sources be-
cause of turbulence-related rapid motions of the image. In spite of this current
limitation, interferometry proves to be a key technique in many astrophysical
domains. The study of multiple star systems is an example: to understand the
state, evolution and origin of such systems, the results of dynamical studies
need to be compared to observations with high angular resolutions.

In 2000, δVelorum had become infamously famous among the engineers of
the Galileo spacecraft; δVelorum was used as reference star for the guidance
system, but at some point the system failed. While an instrumental defect was
assumed at first, it turned out subsequently that the star, not the space probe,
was at fault. Galileo had in fact witnessed an eclipse. Since then δVelorum
had been classified as a quintuple stellar system and it promised to become a
key system for testing stellar evolutionary models: five stars of same age and
with different masses.

Three years ago, I began analyzing observations that had been obtained
with the VINCI recombination instrument. The results were startling, be-
cause the diameters of the two eclipsing stars appear to be 2 to 3 times larger
than expected for main sequence stars: the two stars are thus probably in a
more advanced evolutionary state. In the continued analysis of existing pho-
tometric and spectroscopic data we found, that two of the five stars are, in
fact, not part of the system. Thus, δVelorum has become more attractive due
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to the unexpected properties of the eclipsing binary, while, at the same time,
it relapsed to the status of a triple stellar system. This work is detailed in
Chapter 6.
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Chapter 2

A method of estimating time scales of

atmospheric piston and its

application at Dome C (Antarctica)

A. Kellerer, M. Sarazin, V. Coudé du Foresto, K. Agabi, E. Aristidi, T.
Sadibekova, 2006, Applied Optics, 45, 5709-5715

Abstract

This article presents the analysis of the first interferometric fringes recorded
at DomeC, Antarctica. Measurements were done on January 31st and Febru-
ary 1st 2005 at daytime.

The aim of the analysis is to measure temporal fluctuations of the atmo-
spheric piston, which are critical for interferometers and determine their sensi-
tivity. These scales are derived through the motion of the image that is formed
in the focal plane of a Fizeau interferometer.

We could establish a lower limit to the coherence time by studying the decay
rate of correlation between successive fringes. Coherence times are measured to
be larger than 10ms, i.e. at least three times higher than the median coherence
time measured at the site of Paranal (3.3ms).

27
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2.1 Introduction

While astronomical sites are usually selected mostly for the mild intensity
of the atmospheric turbulence (large values of the Fried parameter r0), an
equally important performance driver for ground based stellar interferometers
is its temporal behavior. In passive arrays, a fast turbulence requires shorter
exposure times to be frozen, thus reducing the sensitivity. In new generation
active arrays (which include phase control through adaptive optics and fringe
tracking), the optimum loop rate (for a given detection noise) is determined
mostly by the coherence time t0 of the atmospheric phase fluctuations, or in
a more complete way by their temporal spectral power density. In a low flux
regime, a slower turbulence enables a lock of active systems on fainter sources,
and therefore a higher sensitivity. For bright sources, a slower optimum loop
rate results in lower phase residuals, which are critical in high dynamic range
applications such as coronography or interferometric nulling [1]. Even in a
single-mode interferometer, where residual phase fluctuations accross a single
sub-pupil can be removed by proper spatial filtering (at the expense of a loss
of photons), turbulence power remains in the form of the piston mode between
two separate sub-pupils, which causes fringe jitter and can be reduced only by
active fringe tracking.

Much interest has recently arisen in the potential of the high Antarctic
plateau for astronomical observations. At DomeC (75◦06′ S, 123◦23′ E, 3235m
altitude), Agabi et al. [2] and Lawrence et al. [46] have – during the antartic
night and for a telescope positioned 30m above the ground – determined a
Fried parameter roughly equal to 37 cm, which is 2 to 3 times larger than at
the best mid-latitude sites. However, direct measurements of the fluctuation
times have yet to be performed.

In this paper we exploit the first stellar fringes recorded at DomeC (ob-
tained with a Fizeau interferometer on a 20 cm baseline) and investigate how,
despite their incomplete spatial and temporal sampling, they can be used to
derive information on the coherence time of the piston.

2.2 Measurements

2.2.1 Observational setup

Several observations of Canopuswere made at DomeC on January 31st and
February 1st 2005, i.e. during the antarctic day. To track the fluctuations of the
atmospheric piston, a modified Differential Image Motion Monitor (DIMM) [60]
was placed 3.50m above the ground. The DIMM is a telescope with a focal
length of 2.80m and 0.28m diameter primary mirror, whose entrance pupil is
covered by a mask with two 0.06m diameter circular openings, with centers
0.20m apart.
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In a standard DIMM the two light beams remain separated, and the motions
of the two images are compared. For our experiment, the light beams were
recombined, the resulting image being a fringe pattern within the superposition
of the two diffraction discs. The image is continuously deformed and shifted on
the detector due to the atmospheric turbulence. The detector is a 640× 480
array of (9.9µm× 9.9 µm) pixels. A Barlow lens was used to increase the
effective focal length by a factor of three, which makes each pixel correspond
to an angular increment 0.24”. Images were taken every 28ms, with exposure
times of 1, 2 or 3ms. Each film contains between 209 and 723 images and,
thus, lasts roughly 5 to 20 s. Details are given in Table 2.1.

Film number Date Universal time Altitude of Number Exposure
Canopus of frames time [ms]

1 31/01/05 9:03 61◦ 209 3
2 31/01/05 9:07 61◦ 723 3
3 01/02/05 7:45 59◦ 723 3
4 01/02/05 7:49 59◦ 723 3
5 01/02/05 8:11 58◦ 723 3
6 01/02/05 8:56 55◦ 723 3
7 01/02/05 8:59 55◦ 723 2
8 01/02/05 9:00 55◦ 723 1
9 01/02/05 9:41 52◦ 620 1

Table 2.1:Observational set-up. The observations were made onCanopus(HD 45348) at wavelengths between
350 and 600 nm. Images were taken every 28 milliseconds.

2.2.2 Data description

With perfectly stable atmosphere and no telescope vibrations all images would
look alike. To analyse the effect of atmospheric turbulence, it is convenient to
distinguish three image components:

– The two first components are the sets of Airy discswith diffraction rings,
as they would be obtained for each hole separately. The two sets coincide
in the absence of atmospheric disturbance. They are characterised by the
angular diameter of their central lobe (Airy disc):

θairy = 2.44λ0/D = 3.98” (2.1)

D = 6 cm: diameter of the holes, λ0 = 475 nm: central wavelength.

– The third component is the fringe pattern due to the interference of light
from the two mask openings. The fringes are perpendicular to the line
joining the centres of the two holes, the interferometric axis. Their angular
separation equals:

θfringes= λ0/B = 0.49” (2.2)

B = 20 cm: baseline of the interferometer, i.e. distance between the
centres of the two mask openings.
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The interference pattern is finite, because the observations are made on a
broad spectral band from 350 nm to 600 nm. The characteristic angular
width where fringes appear is:

θcoh = 2λ2
0/(B∆λ) = 1.86” (2.3)

∆λ = 250 nm: width of the wavelength interval.

The intensity profiles along the interferometric axis, is:

I (θ) = 2 I (0)

[

J1

(

2.44πθ
θairy

)

/

(

2.44πθ
θairy

)]2 [

1+ sinc

(

2πθ
θcoh

)

cos

(

2πθ
θfringes

)]

(2.4)

Even if the atmosphere were turbulence free and the telescope were optically
perfect, the measured profile would differ from the pattern specified in Eq. 2.4.
This is so, because – constrained by the available instrumentation – the fringe
pattern had to be sampled with relatively crude resolution. Whereas the fringe
pattern has an angular period of θfringes= 0.49”, each pixel corresponds already
to an angular increment θpixel = 0.23”. As it results from the integration over
fairly crude intervals, the measured intensity profile can, thus, not resemble
closely the intensity profile given by Eq. 2.4. However, as shown in the fol-
lowing section, the information content is sufficient to extract – with suitable
fitting procedure – the relevant parameters. Figure 2.1 exemplifies a recorded

Figure 2.1:Example of an image recorded through the interferometer. The mask openings are aligned along
the x axis.

image. The atmospheric turbulence keeps the image of the star moving on the
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detector. The local inclination of the wave front over each of the holes causes
the movements of the Airy discs, whereas difference in the optical path for the
two holes, i.e. the piston, shifts the fringe pattern relative to the centre of the
Airy discs. Telescope vibrations, on the other hand, cause merely a common
movement of Airy discs and fringes. The relative movements between airy
discs and fringes are, therefore, solely due to the atmospheric turbulence. The
subsequent analysis deals with their temporal patterns.

Piston changes shift the fringe pattern relative to the Airy discs along the
interferometric axis. Accordingly, in order to assess the temporal fluctuations
of the piston it is sufficient to consider the shift along the axis.

2.3 Quantifying the motion of the fringe pattern and the Airy

discs

Observations with a DIMM are commonly aimed at measuring the seeing pa-
rameter by observing the relative motions of the Airy discs. In the present
measurements the two beams have been combined in order to analyze the
piston in terms of the motion of the fringe packet relative to the combined
Airy discs. The quantification of the axial motion requires the extraction of 4
parameters from the observed images:

– position of the central fringe θf and contrast of the fringe pattern k,

– position, along the interferometric axis, of the center of the combined Airy
discs: θ0,

– intensity at the center of the combined Airy discs: I0.

No attempt was made to separate the two airy discs, since this would have
meant fitting six parameters on intensity profiles specified in terms of only 8
(∼ θcoh/θpixel) data points.

The intensity profile is made up of three components with different spatial
periods (cf. Eq. 2.4): θairy/1.22, θcoh and θfringes. In line with relations discussed
in the previous section, all three periods are superior to twice the pixel size
θpixel. Hence, in spite of the fairly crude detector resolution the intensity profile
is adequately sampled to extract unambiguously the central position of the two
Airy discs and the fringe pattern. To do so, the following profile was fitted
onto the recorded intensity profiles:

I (θ) =
∫ θ+θpixel/2

θ−θpixel/2
2I0

[
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θairy
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dθ′ (2.5)
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The non-linear least square algorithm written by C.Markwardt [51] was uti-

Figure 2.2:Example of data points recorded along the interferometric axis. The fit (solid line) is done on four
parameters (θf , k, θ0, I0), using Eq. 2.5. See text for more details. The graph refers to an image of film 5.

lized. Figure 2.2 shows a profile fitted onto an image of film5. The error bars
around the data points are computed through following relation:

σ(θ) = (σp(θ)
2 + σ2

d)
1/2 (2.6)

The photon noise, σp, equals the square root of the signal, whereas the noise
of the detector is dominated by the readout noise and equals σd ∼ 14electrons.

Each fit determines the set of four parameters (θf , k, θ0, I0) that minimizes
the mean squared distance, χ2, between the data points and the values derived
from Eq. 2.5. The error bars on the parameters correspond to χ2 doubling. Two
of the parameters then provide the axial separation between the central fringe
and the center of the combined Airy discs: θf − θ0. Figure 2.3 gives the rms of
the position of the combined Airy discs, θ0, and of the separation between the
central fringe and the combined Airy discs, θf − θ0, up to the times specified
on the abscissa. The starting values are based on the 100 images taken up to
t = 2.8s. For the characterization of the atmospheric turbulence instrument
related artifacts need to be negligible. For the absolute motion this condition
is violated by telescope vibrations and by the imperfect tracking which makes
the star actually drift off: the rms does not converge towards a fixed value, i.e.
the motion is not stationary. For the separations the value fluctuates around a
central value with roughly constant amplitude, i.e. the rms remains essentially
constant (cf. Figure 2.3). This indicates that the observed relative motion is
due to atmospheric turbulence which is stationary.
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Figure 2.3:Solid line: rms deviations of the axial image motion, measured over subsetsof increasing size
between 100 and 723 images. Dashed line:rms deviations of the axial separation between the central fringe
and the combined Airy discs. The graph refers to the data set of film 5.

2.4 Coherence time

2.4.1 Estimating coherence time through Fourier analysis

Figure 2.4:Cumulative squared norm of the Fourier transform for the data set of film 5.

To measure the complete spectrum of turbulence induced movement, it is
necessary to record images at least about twice as fast as the fastest compo-
nent of the turbulence. In the present measurements the recording rate was
constrained by the camera to ∼ 35Hz. Accordingly, the Fourier analysis can
reveal spectral components of the turbulence up to only ∼17Hz.

Whether the predominant fraction of the turbulence is slower than the sam-
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pling rate is judged by taking the Fourier transform of the image motions and
plotting the cumulated squared norm versus the frequency (cf. Figure 2.4).
According to the Kolmogorov theory of turbulence the cumulative squared
norm, CF(f), becomes constant after the highest frequencies of atmospheric
turbulence.

– For the absolute motions the nearly horizontal slope at 17Hz implies
that the main part of the telescope vibrations is associated with lower
frequencies.

– For the relative motions the dependence CF(f) still has positive slope at
f = 17Hz, which suggests that the fastest components of the turbulence
exceed the recording rate. Thus, the characteristic time scales of atmo-
spheric turbulence are inferior to ∼ 60ms, which is a very loose constraint,
given typical atmospheric time scales. [46] It is of interest, whether the
conclusions can be sharpened in terms of other considerations.

2.4.2 Estimating coherence time through the evolution of correlation

Although the sampling rates were too low in the present measurements to
assess the fastest atmospheric turbulence through Fourier analysis, some in-
formative inferences are still possible, because relevant information can be
obtained by tracing the decay time of correlation between successive fringe
positions. Figure 2.6 represents the following structure function as a function
of temporal separation:

D∆θ(t) = < |∆θ(τ + t) − ∆θ(τ)|2 > (2.7)

∆θ = θf − θ0: separation between the central fringe and the combined Airy
discs.

Figure 2.6 suggests that during films 1, 3, 5, 6, 7, 8 the cells of the turbulent
atmosphere were correlated up to a hundred milliseconds, which is a very
promising result.

The coherence time of piston is estimated by comparing the structure func-
tion predicted by the Kolmogorov spectrum of fluctuations [58] with the ob-
served data:

D(t) = D(t ≫ t0) × (1− exp(−(t/t0)
−5/3)) (2.8)

t0: coherence time.

Theoretical calculations have shown temporal power spectra of fringe mo-
tion to have a shape that is unaffected by wind direction and baseline orien-
tation. [17] In the case of differential image motion, only the low frequency
domain is dependent of wind direction. Evolution times of the separation
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between the central fringe and the combined Airy discs should, thus, be un-
sensitive to wind direction and baseline orientation on times scales of several
coherence times. We therefore take Eq. 2.8 as a valid approximation indepen-
dently of wind direction and baseline orientation.

In Figure 2.6 the measured correlation curve is compared to theoretical
curves obtained for the coherence times: 10, 30 and 50milliseconds. At most
five data points lie inside the domain where the structure function has not
reached its asymptotic value. Still, Figure 2.6 appears to suggest that during
films 1, 3, 5, 6, 7, 8, the coherence time of piston was superior to ten mil-
liseconds. The coherence time was highest during films 6, 7, 8, i.e. around
9:00 UT on February 1st. This is consistent with measurements of the seeing

Figure 2.5:Seeing angles measured by two DIMM instruments located 3.5 mand 8.5 m above the ground, on
January 31st and February 1st 2005.

angle at the same epoch: Figure 2.5 gives the seeing angles measured by two
DIMM instruments located 3.5m and 8.5m above the ground, on January 31st

and February 1st. The upper data series were acquired by the same telescope
which was used for recording the fringes here analyzed. This explains the in-
terruptions of the upper data series around 9:00UT the first day and starting
from 7:45UT the second day. As can be seen from the data recorded with the
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instrument located at 8.5m, the seeing angle reached a local minimum around
9:00UT on February 1st.

2.4.3 Optimal setup for coherence time measurements

The observations reported here were made with the equipment available on the
site and are subject to the following limitations, which will need to be lifted
in future observations:

– The recording speed of the camera was not fully sufficient for sampling of
atmospheric turbulence. Increased recording rate will permit the precise
determination of the actual coherence time. The highest frequencies of the
piston should – in line with the earlier (Agabi et al. [2] and Lawrence et
al. [46]) and the present measurements – be less than 500Hz. Accordingly
a recording rate of 1000Hz should ensure adequate temporal sampling.

– Caution is required, when the turbulent cells are larger than the distance
between the two mask openings (20 cm). In these cases the difference
between piston and tilt becomes too small to infer coherence times with
sufficient precision. At the time of observations, the seeing varied between
0.5” and 1.0” (cf. Figure 2.5). Thus, at 500 nm wavelength, the turbulent
cells had a characteristic size (Fried parameter) between 10 cm and 20 cm,
i.e. only just smaller than the baseline. For future measurements, we
consider the use of larger baselines up to 2m.

2.5 Conclusion

Stellar fringes were recorded at the Antarctic site of DomeC during day time,
using a Fizeau configuration on a modified DIMM telescope. Despite the par-
tial temporal and spatial sampling limitations imposed by the locally available
equipment, it was possible to determine a promising lower limit (around 10ms)
to the coherence time of piston and to validate our experimental procedure.
We are now considering regular observations using a dedicated setup – with
larger baselines and higher recording rates – to characterize the time scales of
atmospheric piston at DomeC, both during day and night time.
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Figure 2.6:Structure function of the separation between the central fringe and the combined Airy discs. The
fits correspond to coherence times equal to 10 (upper curve),30, 50 ms (lower curve) (cf. Eq. 2.8). During
films 1, 3, 5, 6, 7, 8 the coherence time appears to have been superior to ten milliseconds.
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A method of estimating time scales of

atmospheric piston and its

application at Dome C (Antarctica) –

II

A. Kellerer, M. Sarazin, T. Butterley, R. Wilson, 2007, Applies Optics, in
press

Abstract

Temporal fluctuations of the atmospheric piston are critical for interferom-
eters as they determine their sensitivity. We characterize an instrumental
set-up, termed the piston scope, that aims at measuring the atmospheric time
constant, τ0, through the image motion in the focal plane of a Fizeau interfer-
ometer.

High-resolution piston scope measurements have been obtained at the obser-
vatory of Paranal, Chile, in April 2006. The derived atmospheric parameters
are shown to be consistent with data from the astronomical site monitor, pro-
vided that the atmospheric turbulence is displaced along a single direction.
Piston scope measurements, of lower temporal and spatial resolution, were for
the first time recorded in February 2005 at the Antarctic site of DomeC. Their
re-analysis in terms of the new data calibration sharpens the conclusions of a
first qualitative examination [41].
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3.1 Introduction

Interferometers have been introduced in astronomy to gain in spatial resolu-
tion without the need to build extremely large telescopes. To resolve Sirius,
observations in the infrared domain (∼ 2µm) would require a telescope of
about 170m mirror diameter. Fortunately, Sirius can also be resolved by two
telescopes of more modest size, separated by 170m and operated as an inter-
ferometer. Yet, despite this considerable gain in resolution, interferometers are
not the prime tool of today’s astronomers. This is largely due to their limited
sensitivity: atmospheric turbulence makes the interferometric fringe pattern
move in the detector plane. Accordingly, one tends to use exposure times that
are short enough to “freeze” the turbulence, i.e. typically several milliseconds.
To increase the sensitivity, phasing devices are being designed that measure
the position of the fringe pattern due to a reference star, and correct contin-
uously for the fringe motion of the target object. For such devices to work, a
sufficient number of photons need to be collected on the reference star during
the time when the atmosphere is frozen, i.e. during the atmospheric coherence
time τ0 = 0.314 r0/V5/3, where r0 is the Fried parameterand V5/3 is a weighted
average of the turbulent layers’ velocities. Clearly, the coherence time is the
parameter that determines the performance of today’s interferometers. Dif-
ferent definitions of the atmospheric coherence time have been introduced in
relation to various observational techniques: single telescopes with or without
adaptive-optics, interferometers with or without fringe trackers etc. However
the standard adaptive-optics coherence time τ0 has been shown to quantify the
performance of all these techniques [42].

In a previous article [41], we characterized the temporal evolution of fringe
motion at DomeC, a summit on the antarctic continent, and a potential site
for a future interferometer, using the motion of the fringe pattern formed in
the focal plane of a Fizeau interferometer. The temporal and spatial sampling
of the measurements were low due to the available equipment and, instead
of determining coherence-time values, the mean duration of correlation was
assessed by fitting the fringe correlation-function onto an exponential curve
(cf. Section 3.4). Such measurements have now been repeated at the site of
Paranal, Chile, with sufficient spatial and temporal sampling, to allow the
determination of the coherence time. Further, all relevant atmospheric param-
eters are constantly monitored at Paranal by a meteorological station, hence
the parameter values derived through our set-up (termed piston scope) can be
checked against reference values.

In the first Section, the quantities measured with the piston scope are related
to the following atmospheric parameters: the Fried parameter, the turbulent
layers velocities and the coherence time – using the Kolmogorov theory of
atmospheric turbulence. The relations are then tested on the observations
performed at Paranal. It is shown that when the sampling is sufficient, the
precision on the coherence time is limited by the piston scope’s sensitivity to
wind direction. Given these results, the third Section presents a new analysis
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of the measurements obtained at DomeC [41]. The lower limits to the coher-
ence time, derived through our first qualitative analysis, are confirmed and
additional results on the Fried parameter and wavefront speed are given.

3.2 Formalism

The purpose of the piston scope experiment is to track the rapid fluctuations
of the atmospheric piston. To this effect, the entrance pupil of a telescope
is covered by a mask with two circular openings. The resulting image is a
fringe pattern within the superposition of the two diffraction discs. Atmo-
spheric turbulence keeps the image of the star moving on the detector. The
local inclination of the wave front over each of the holes causes the movement
of the Airy discs, whereas difference in the optical path for the two holes, i.e.
the piston, shifts the fringe pattern relative to the center of the Airy discs.
Telescope vibrations, on the other hand, cause merely a common movement of
Airy discs and fringes. The relative movements between Airy discs and fringes
are, therefore, solely due to the atmospheric turbulence. The subsequent anal-
ysis deals with their temporal patterns. Piston changes shift the fringe pattern
relative to the Airy discs along the interferometric axis. Accordingly, in order
to assess the temporal fluctuations of the piston it is sufficient to consider the
shift along the axis.

As suggested by Conan et al. [17], the spatial power spectrum Wφ of the
relative movements between Airy discs and fringes is derived from the phase
spectrum Wϕ, assuming a Kolmogorov model of turbulence with an infinite
outer scale. In the following we use the notations of Conan et al. [17].

Wϕ(f ) = 0.00969k2

∫ +∞

0
f −11/3 C2

n dh, (3.1)

where f is the spatial frequency and k = 2π/λ the wavenumber. The turbulence
intensity of a layer i of thickness dh at altitude h is specified in terms of C2

n dh.
The explicit dependence of C2

n and all following parameters on h is dropped to
ease the reading of the formulae. The measured quantity is the separation –
along the interferometric axis, x – between the central fringe and the center of
the combined Airy discs. The spatial filter M̃ that converts Wϕ into the power
spectrum Wφ equals:

M̃(f ) = λ/(2π) A(f ) FT[(δB − δ0)/B− (δB + δ0)/2 ∗ d /dx](f ), (3.2)

for a baseline vector B and the aperture filter function A(f ). For a circular
aperture of diameter D, A(f ) = 2J1(π f D)/(π f D) and f = |f |. Jn stands for the
Bessel function of order n. FT represents the Fourier transform, δL is the delta
function centered on L and ∗ denotes convolution. Hence,

M̃(f ) = λ/(2π) A(f ) [2 sin(πfB) − 2πfB cos(πfB)] / B (3.3)
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Wφ(f ) = M̃2(f ) Wϕ(f ). (3.4)

In the single layer approximation, we assume the turbulent layer to be trans-
ported with a velocity V directed at an angle α with respect to the baseline.
The temporal power spectrum of the measured quantity is obtained by in-
tegrating in the frequency plane over a line displaced by fx = ν/V from the
coordinate origin and inclined at angle α. Let fy be the integration variable
along this line and f 2 = f 2

x + f 2
y . The temporal power spectrum equals:

wφ(ν) =
1
V

∫ +∞

−∞
Wφ

(

fx cosα + fy sinα, fy cosα − fx sinα
)

d fy (3.5)

We then derive the expression of the structure function:

Dφ(t) = 2
∫ +∞

−∞
(1− cos(2πνt))wφ(ν)dν (3.6)

= 2× 0.00969C2
n dh / B2

∫ +∞

0
f −8/3(2J1(π f d)/(π f d))2d f

∫ 2π

0
(1− cos(2π f cos(θ + α)Vt))

[2 sin(πB f cosθ) − 2π f Bcosθ cos(π f Bcosθ)]2dθ (3.7)

The best estimate of the parameters is obtained by fitting the measured points

Figure 3.1: Structure functions of the fringe position relative to the combined Airy discs, for an
interferometer with mirror diametersD and baseline lengthB. The atmosphere is assumed to consist
of a single layer displaced with wind speedV at an angleα from the baseline. The values ofα are
indicated in the bottom right box.

to: Dφ(t) + K, where K is a constant that allows for white measurement noise.
As seen from Eq. 3.7, the structure function depends on the wind orientation α
because the mask of the piston scope is not rotationally symmetric. Temporal
evolutions of the structure functions, for different values of α, are represented
on Figure 3.1. The asymptotic value of the structure function at large time
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increments is determined by the Fried parameter r0, whereas the time needed
to reach the asymptotic value is a function of the velocity V.

3.3 Measurements at Paranal

3.3.1 Observational set-up

Several observations of Spicawere obtained at Paranal on the nights from 22-
23 and 23-24 April 2006, using a modified SLODAR [12] (Slope detection and
ranging). This SLODAR is designed to measure profiles of the atmospheric
turbulence with a telescope that has a 0.4m diameter primary mirror, and a
focal length of 4.064m. The detector is a 128× 128 array of (24× 24)µm2

pixels with a peak quantum efficiency of 92% at λ0 = 550nm and next to
zero read-out noise. For our experiment the entrance pupil of SLODAR was
covered by a mask with two circular openings of diameter D = 0.115m and
centers B = 0.260m apart. The resulting image is a fringe pattern of angular
period λ0/B = 0.44” within the superposition of two Airy discs of diameter
2.44λ0/D = 2.41”. Two lenses were used to increase the focal length by a factor
16.67, this makes each pixel correspond to an angular increment of 0.073”.
During the first night, a sequence of 1000 images was recorded at 240Hz with
an exposure time equal to 2ms. On the following night, six sequences of 1000
images were recorded at 300Hz with 1ms exposure time.

The piston is quantified in terms of the motion of the fringe packet relative
to the combined Airy discs. The quantification of the axial motion requires the
extraction of the following parameters from the observed images: the position
of the central fringe and the position – along the interferometric axis – of the
center of the combined Airy discs. This extraction has been described in detail
in a previous article [41]. An example of a raw image is shown on Figure 3.2
with the corresponding, fitted intensity profile.

Figure 3.2: Example of an image recorded with 1 ms exposure time at Paranal on the night of 23-24
April at 02:03:55 UT and fitted intensity profile along the axial direction.
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3.3.2 Derivation of atmospheric parameters

The Fried parameter r0, the wavefront velocity V and orientation α are
derived by fitting Dφ(t) + K onto the data points, as described in Section 3.2.
Dφ(t) corresponds to an atmospheric model where the turbulence is contained
in a single layer, that is displaced as a whole with the velocity V under an
angle α.

The resulting parameter values and uncertainties are indicated on Figure 3.3.
The latter correspond to a doubling of the squared deviation of the data points
to the theoretic structure function. The Fried parameter is determined by the
asymptotic value of the structure function at large time increments. To ease
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Figure 3.3: Theoretical structure functions (dashed lines) fitted onto data obtained at Paranal, the
resulting seeingǫ0, velocityV, wind orientationα and coherence timeτ0 are indicated.

the comparison with the meteorological station of Paranal, we indicate the
seeing angleǫ0 rather than the Fried parameter r0, these two parameters are
essentially equivalent: ǫ0 = 0.976λ/r0 [rad]. V and α are derived from the first
few measurement points and the coherence time, τ0, is then obtained through
the classic relation: τ0 = 0.314 r0/V.

3.3.3 Performance of the piston scope

Figure 3.4: Seeing values measured at Paranal with the DIMM and the piston scope. The uncertain-
ties of the piston scope values correspond to a twofold increase in the quality of the data adjustment.

On Figures 3.4-3.6, the values of ǫ0,Vps and τ0 obtained with the piston
scope are compared to measurements in terms of the Paranal monitoring-
instruments. We do not compare the wind orientations, because the value of
α that is obtained with the piston scope depends on the position of the mask,
hence on the pointing of the telescope, and it is difficult to relate it to the
angle measured by the meteorological station.
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Figure 3.5: Wavefront velocities obtained with the piston scope (Vps), wind velocities measured by
sensors at 30 m above the ground of Paranal (Vg) and interpolated at 200 mB from ECMWF data
(V200mB).

Figure 3.6: Coherence times obtained at Paranal through three different methods.

Figure 3.7: Profiles of the free atmosphere turbulence obtained by MASS at Paranal. On 22-23 April
(left panel) the turbulence was contained in several layersof similar intensity, while on 23-34 April
(right panel) one layer at 4 km was predominant around 2:00 UT.
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– Seeing values (see Figure 3.4): The values estimated with the piston scope
coincide with those measured at 6m height by the DIMM[60] (Differential
Image Motion Monitor). Note that we assume the atmosphere to consist
of one layer displaced along a single direction, yet Figure 3.7 shows that
on 22-23 April the turbulence was contained in several layers with similar
intensity. However, the asymptotic value of the structure function has
the same altitude dependence as the seeing:

Dφ(t ≫ τ0) ∝ r−5/3
0 ∝

∫ +∞

0
C2

n dh (3.8)

therefore the seeing estimated by the piston scope is correct independently
of turbulence profile.

– Velocities (see Figure 3.5): The wavefront velocity Vps derived with the
piston scope is a turbulence-weighted average of the layers’ velocities V(h).
Ideally, Vps should have the same dependence on turbulence parameters
as τ0, hence:

Vps ∝ V5/3 =

















∫ +∞
0

V(h)5/3 C2
n(h) dh

∫ +∞
0

C2
n(h) dh

















3/5

(3.9)

Sarazin & Tokovinin [59] give an empirical relation between V5/3 and the
wind speeds measured at ground level and at 200mB pressure. That
relation has been verified at Paranal and Cerro Pachon in Chile, and
later confirmed at San Pedro de Martir, Mexico:

V5/3 ≈ max(Vg, 0.4V200mB) (3.10)

At Paranal, Vg is measured by wind sensors at 30m height and V200mB

is estimated every 6 hours by the ECMWF [21] (European Center for
Medium Range Weather Forecast) through a global meteorological model
which runs twice a day at 00UT and 12UT. This involves the assimilation
of worldwide-collected data from radio soundings, satellite observations
etc.

It appears from Figure 3.5 that the wavefront velocities derived with the
piston scope coincide with 0.4V200mB, rather than V5/3 ≈ max(Vg, 0.4V200mB).
When the turbulence is contained in several layers, the measured structure
function is an average of single-layer structure functions as represented on
Figure 3.1. If these layers have different wind velocities and orientations,
the dispersion of the data points around the best-fitting structure function
is large and the resulting wavefront velocity is poorly constrained. Ac-
cordingly, and in line with Figure 3.7, Vps is derived with respectively 55%
and 10% uncertainties during the first and second night of observations.

– The coherence time (see Figure 3.6) is a combination of the seeing and
wavefront velocity, thus it is essentially unconstrained during the first
night. On the subsequent night, the values are consistent with those
derived through the two following methods: With MASS, τ0 is assessed
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from the scintillation through a 2 cm diameter aperture. MASS is not
sensitive to the lower layers of turbulence (< 500m), and, correspondingly,
measures higher coherence times. A second value of τ0 is obtained by
combining DIMM seeing-values with measurements of the wind speed:
τ0 = 0.314r0/V5/3, where V5/3 is estimated by Eq. 3.10. Since these values
are obtained from distinct locations with different telescopes pointing at
different stars, we do not expect them to coincide. The results seem
to suggest that the piston scope sees more turbulence than MASS and
DIMM: While this is probable – the piston scope is installed inside a
dome at ground level, whereas MASS and DIMM are placed on an open
platform at 6m above the ground – no definite conclusion is possible given
the amount of data.

3.4 Measurements at Dome C

DomeC is one of the summits on the Antarctic plateau with altitude 3235m.
The station, which is jointly operated by France and Italy, is located 1100 km
inland from the French research station Dumont Durville and 1200 km inland
from the Italian Zuchelli station. DomeC is known as a site with low wind
speeds at high altitudes. Because of its elevated location and its relative dis-
tance from the edges of the Antarctic Plateau, DomeC does not experience the
katabatic winds characteristic of the coastal regions of Antarctica. Hence the
coherence times could be particularly high. Lawrence et al. [46] have, during
the Antarctic night, determined high-altitude turbulence parameters that are
2 to 3 times better than at mid-latitude sites. Accordingly, they concluded
that an interferometer located on DomeC might allow projects that would
otherwise require instruments in space. The value of τ0 = 7.9ms obtained by
Lawrence et al. was derived from measurements with the MASS instrument
and hence, it does not take into account the turbulence below 500m (see the
MASS website for corresponding calibration studies [68]). Measurements of τ0
integrated over the whole atmosphere still need to be obtained.

In this context, similar measurements to those presented in Section 3.3, have
been performed at DomeC, Antarctica, on January 31st and February 1st 2005
at daytime. For these measurements, Canopuswas observed with a telescope
of focal length 2.80m and a primary mirror of 0.28m, placed 3.5m above the
ground. The entrance pupil was covered by a mask with two 0.06m diameter
circular openings and centers 0.20m apart. The observational set-up, as well
as a first qualitative data analysis has been presented in a previous article [41].
The observations – done with the available equipment – were both spatially
and temporally under sampled. During six sequences out of nine, it was nev-
ertheless possible to place a lower limit equal to 10ms to the mean duration of
correlation tc of the fringe patterns. This was done by fitting an exponential
curve onto the measured structure functions:

Dφ(t) = Dφ(t ≫ tc) × (1− exp(−(t/tc)
−5/3)) (3.11)
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Figure 3.8: Atmospheric parameter values derived from measurements at Dome C.
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In Section 3.2, the structure function has been related to the Fried parameter
r0 and to the velocity vector V in the case of a single turbulent layer, using the
Kolmogorov model of atmospheric turbulence. This relation has been tested on
well sampled piston scope measurements recorded at Paranal (see Section 3.3),
and is now applied to re-analyze the data from DomeC.

We consider six out of nine sequences that were presented in the previous
article. Images were taken every 28ms, with exposure times of 1, 2 or 3ms.
Each sequence contains between 209 and 723 images and, thus, lasts roughly
5 to 20 s. Two sequences – recorded on February 1st at 7:49UT and 9:41UT
– are not re-analyzed because the central positions of the fringe pattern and
of the combined Airy discs are determined with too large uncertainties. In
the previous article they were part of the three sequences during which the
correlation time tc was found to be less than 10ms. For the third such sequence,
recorded on January 31st at 9:07UT, the fringe pattern can be fitted but since
the structure function reaches its asymptotic value at the first measurement
point, it can not be compared to a theoretical curve.

As seen on Figure 3.8, the structure functions reach their asymptotic value
after the 4th to 5th data point. The fit involves three free parameters ǫ0,V, α
besides the white noise, K, that is approximately constant if the instrumental
settings do not vary. The data obtained at Paranal from April 23rd to 24th

yield: K = (3.2 ± 0.7) 10−14 rad2. To constrain the fit, K is therefore fixed
to the value that optimizes the global result of the six fitting procedures:
K = 1.1× 10−12 rad2.

Figure 3.9: Seeing values measured at Dome C with the DIMM andthe piston scope.

The derived parameter-values and uncertainties are indicated on Figure 3.8.
As specified in Section 3.3, the uncertainties correspond to a two-fold increase
in the squared deviation of the data points to the theoretic structure function.
The values of the seeing are consistent with measurements by DIMM (Fig-
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ure 3.9): The difference in the estimates by the piston scope and the DIMM at
8.5m height, resembles the scatter between the values estimated by the DIMM
instruments at 3.5m and 8.5m, and is due to ground layer turbulence. In line
with our previous qualitative analysis, coherence times are found to lie above
10ms during the periods when five of the nine sequences were recorded.

Note that the wind orientations are not constrained by the analysis. To
derive – without continuous assessment of wind-direction profiles – more ac-
curate values of τ0, a parameter needs to be measured that is independent of
the wind orientation. We have pointed out what appears to be a suitable new
method in a previous article [42].

3.5 Conclusions

The atmospheric coherence time, τ0, is the crucial parameter for interferome-
ters because it determines their sensitivity. Yet, a simple method is still lacking
to monitor the coherence time at different sites, and to decide where the future
large interferometers ought to be built. Does the piston scope fulfill this need?
To answer that question, we have related the measured quantity to parameters
of the Kolmogorov model of turbulence.

It was found that due to its sensitivity to the wind direction the piston scope
can be used to assess the wavefront velocity and the coherence time if, and only
if, the whole turbulence is displaced along a single direction. Since the single
layer model is not a permanent feature on most sites, the estimation of the
coherence time is insecure. This conclusion is supported by seven sequences
of 1000 images, recorded with the piston scope at the observatory of Paranal
in April 2005. To determine the coherence time for any kind of atmospheric
turbulence, a rotationally symmetric set-up has been proposed [42] and first
measurements are planned.

The measurements performed at DomeC have been analyzed using the
method here presented. Within the uncertainties due to low samplings, see-
ing angles are derived that coincide with simultaneous DIMM measurements.
Mean wavefront speeds are found to be remarkably low. In agreement with
a first qualitative analysis [41], the corresponding coherence times are deter-
mined to be superior to 10ms during five out of nine sequences.
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Chapter 4

Atmospheric coherence times in

interferometry: definition and

measurement

A. Kellerer, A. Tokovinin, 2007, A&A, 461, 775–781

Abstract

Current and future ground-based interferometers require knowledge of the
atmospheric time constant t0, but this parameter has diverse definitions. More-
over, adequate techniques for monitoring t0 still have to be implemented.

We derive a new formula for the structure function of the fringe phase (pis-
ton) in a long-baseline interferometer, and review available techniques for mea-
suring the atmospheric time constant and the shortcomings.

It is shown that the standard adaptive-optics atmospheric time constant is
sufficient for quantifying the piston coherence time, with only minor modifica-
tions. The residual error of a fast fringe tracker and the loss of fringe visibility
in a finite exposure time are calculated in terms of the same parameter.

A new method based on the fast variations of defocus is proposed. The
formula for relating the defocus speed to the time constant is derived. Simu-
lations of a 35-cm telescope demonstrate the feasibility of this new technique
for site testing.

53
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4.1 Introduction

Astronomical sites for classical observations are characterized in terms of at-
mospheric image quality (seeing). For high-angular resolution techniques such
as adaptive optics (AO) and interferometry, we need to know additional pa-
rameters. The atmospheric coherence time is one of these. Here we refine the
definition of the interferometric coherence time, review available techniques,
and propose a new method for its measurements.

The AO time constant,τ0, is a well-defined parameter related to the vertical
distribution of turbulence and wind speed (Roddier [58]). To correct wave
fronts in real time, a sufficient number of photons from the guide star is needed
within each coherence area during time τ0. This severely restricts the choice
of natural guide stars and tends to impose the complex use of laser guide stars
(Hardy [30]). It is shown below that new, simple methods of τ0 monitoring are
still needed.

Modern ground-based stellar interferometers attain extreme resolution, but
their sensitivity is limited by the atmosphere. Even at the best observing sites,
such as Paranal in Chile, fast fringe tracking is not fully operative yet, and one
therefore tends to employ exposure times that are short enough to “freeze” the
atmospheric turbulence. The price is a substantial loss in limiting magnitude.
It is hence important to measure the time constant, t0, of the piston – i. e. the
mean phase over the telescope aperture – at existing and future sites. However,
the exact definition of t0 is not clear, any more than are methods to measure
it. Do we need an interferometer to evaluate t0? Is t0 different from τ0? Does
it depend on the aperture size and baseline? We review various definitions of
the interferometric time constant based on the piston structure function(SF),
on the error of a fringe tracker, and on the loss of fringe contrast during a
finite exposure time. It is shown that the piston time constant is proportional
to the AO coherence time τ0, both depending on the same combination of
atmospheric parameters.

During site exploration campaigns, one would like to predict the performance
of large base-line interferometers, and it is desirable to do this with single-dish
and, preferably, small telescopes. The existing techniques for τ0 measurement
are listed and a new method for site testing proposed.

4.2 Atmospheric coherence time in interferometry

4.2.1 Atmospheric coherence timeτ0

First, we introduce the relevant atmospheric parameters and the AO time
constant τ0. For convenience, we outline the essential formulae, but for the
general background, we refer the reader to Roddier [58].
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The spatial and temporal fluctuations of atmospheric phase distortion ϕ are
usually described by the SF

Dϕ(r , t) = 〈
[

ϕ(r ′, t′) − ϕ(r + r ′, t + t′)
]2〉, (4.1)

which depends on the transverse spatial coordinate r and time interval t. The
angular brackets indicate statistical average.

The atmosphere consists of many layers. The contribution of a layer i of
thickness dh at altitude h to the turbulence intensity is specified in terms of
C2

n(h)dh, equivalently expressed through the Fried parameter:

r−5/3
0,i = 0.423k2C2

n(h)dh, (4.2)

k = 2π/λ being the wavenumber. The spatial SF in the inertial range(between
inner and outer scales) is

Dϕ(r , 0) = 6.883 (|r |/r0)
5/3. (4.3)

It is assumed that each layer moves as a whole with the velocity vector V(h)
(Taylor hypothesis). The temporal SF of the piston fluctuations Dϕ,i(0, t) in
one small aperture due to a single layer is then equal to, the spatial SF at shift
Vt,

Dϕ,i(0, t) = 6.883 [V(h)t/r0,i]
5/3. (4.4)

Summing the contributions of all layers, we obtain

Dϕ(0, t) = 2.910 t5/3 k2

∫ +∞

0
V5/3(h)C2

n(h)dh

= 6.883 (tV5/3/r0)
5/3 = (t/τ0)

5/3, (4.5)

where τ0 = 0.314 (r0/V5/3) is the AO time constant (Roddier 1981) and the
average wind speed Vp is computed as

Vp =

















∫ +∞
0

Vp(h)C2
n(h)dh

∫ +∞
0

C2
n(h)dh

















1/p

. (4.6)

The formulae are valid for observations at zenith. At angle γ from the zenith,
the optical path is increased in proportion to the air mass, secγ, and the
SF increases by the same factor. Further, the transverse component of the
wind velocity changes. In the following, we neglect these complications and
consider only observations at zenith, but the analysis of real data must account
for γ , 0.
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4.2.2 Piston time constant

In an interferometer with a large baseline (B ≫ L0, where L0: turbulence
outer scale) the phase patterns over the apertures are uncorrelated on short
time scales. Thus, for a small time interval (t < B/V), the SF of the phase
difference φ (do not confuse with the phase ϕ) in an interferometer with two
small apertures will simply be two times larger, Dφ(t) = 2Dϕ(0, t) (Conan et al.
[17]). As a result the differential piston variance reaches 1 rad2 for a time delay
t0 = 2−3/5 τ0 = 0.66 τ0. Note that, in the case of smaller baselines and large
outer scales – when the assumption B≫ L0 becomes invalid – Dφ(t) < 2Dϕ(0, t)
and the resulting coherence time, accordingly, lies between 0.66 τ0 and τ0.
Yet, B≫ L0 applies to the characterization of large baseline interferometers at
low-turbulence sites.

When an interferometer with larger circular apertures of diameter d is con-
sidered, phase fluctuations are averaged inside each aperture. As shown later,
for time increments smaller than d/V, the piston structure function is quadratic
in t and is essentially determined by the average wave-front tilt over the aper-
ture. The variance of the gradient tilt α (in radians) in one direction is (Roddier
[58], Conan et al. [17], Sasiela [61])

σ2
α = 0.170λ2r−5/3

0 d−1/3. (4.7)

We write the piston SF in this regime as Dφ(t) ≈ 2 (kσαVt)2, sum the contri-
butions of all layers, and obtain the expression

Dφ(t) ≈ 13.42 (V2t/r0)
2(r0/d)1/3 = (t/t1)

2, (4.8)

where the modified time constant t1 = 0.273 (r0/V2) (d/r0)1/6. The analysis of
the tilt variance with finite outer scale by Conan et al. [15] is applicable here.
The finite outer scale reduces the amplitude of the tilt and hence increases the
piston time constant, but this effect depends on the aperture size and is not
very strong for d < 1m.

Note that for small time intervals there is a weak dependence of the SF on
the aperture diameter. Also, the wind velocity averaging is slightly modified.
However, the expressions for t1 and t0 produce similar numerical results as long
as d/r0 is not too large. Thus, the system-independent definition of the AO
time constant (4.5) also gives a good description of the temporal variations of
the piston.

For time delays of approximately B/V and larger, the pistons on two aper-
tures are no longer independent. However, estimates of the time interval over
which the Taylor hypothesis is valid range from ∼ 40ms (Schoeck & Spillar
[63]) to several seconds (Colavita et al. [14]). Hence, at time intervals of 1 s
or more, the Taylor hypothesis is insecure. Moreover, the finite turbulence
outer scale reduces the amplitude of slow piston variations substantially. Here
we concentrate only on rapid piston variations where our approximations are
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Figure 4.1: Theoretical temporal power spectrum of the fringe position at 0.5µm wavelength. The
two telescopes are separated by 100 m and have mirrors of 2 m diameter, the Fried parameter equals
r0=11 cm, the wind vector makes an angle ofα = 45◦ with the baseline,V = 10 m/s. The vertical
lines correspond to the frequencies: 0.2V/Band 0.3V/d. The asymptotic power laws areν−2/3, ν−8/3,
ν−17/3 from lowest to highest frequencies.

Figure 4.2: Relation between average wind velocitiesV5/3 andV2 for 26 balloon profiles at Cerro
Pachon in Chile (Avila et al. [6]). The full line correspondsto equality, the dashed line isV2 =

1.1 V5/3.

valid.

4.2.3 Piston power spectrum and structure function

The temporal power spectrum of the atmospheric fringe position has been
derived by Conan et al. [17]. Their result is reproduced in AppendixA with
minor changes. The temporal piston power spectrum (4.18) produced by a
single turbulent layer is represented in Fig. 4.1 for a specific set of parame-
ters. Because of the infinite outer scale L0, this example is not realistic for
frequencies below ∼ 1Hz. Moreover, as discussed in Sect. 4.2.2, Taylor’s frozen
flow hypothesis becomes invalid at low frequencies. Due to the infinite L0, the
asymptotic behavior of the spectrum, and in particular the cut-off frequencies,
do not depend on the wind direction (Conan et al. [17]), whereas, in the real
case of a finite outer scale, the cut-off frequencies are affected by wind direc-
tion, as described by Avila et al. [7]. Conan et al. [17] point out that changing
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Figure 4.3: Structure function of the fringe position for aninterferometer with mirror diameters
d = 0.1 m, r0 = 11 cm,V = 10 m/s. The vertical line corresponds tot = d/V. For t < d/V, the SF is
quadratic in t (dotted line), cf. Eq. 4.8. For longer time scales,Dφ ≈ 2Dϕ (dashed line).

turbulence intensity and wind speed shift the spectrum vertically and hori-
zontally, respectively, without changing the shape of the curve on the log-log
plot. In observations with a small baseline (∼ 12m), the proportionality to
ν−2/3 at low frequencies and to ν−8/3 at medium frequencies has actually been
measured, e.g. by Colavita et al. [14].

Based on the piston power spectrum, we derive in AppendixA the new
expression of the piston SF valid for time increments t < min(B/V, L0/V):

Dφ(t) ≈ 13.76 (Vt/r0)
2 [1.17 (d/r0)

2 + (Vt/r0)
2]−1/6. (4.9)

As seen in Fig. 4.3, for t > d/V, the piston averaging over apertures is not
important and we obtain Dφ = 2Dϕ in agreement with heuristic arguments.

For very short increments t ≪ d/V, (4.9) reduces to (4.8). The average wind
speed is V ≈ V5/3 ≈ V2. The difference between V5/3 and V2 is indeed small
(Fig. 4.2).

4.2.4 Error of a fringe tracking servo

A fringe tracker measures the position of the central fringe and computes a
correction. The actual compensation equals the integrated corrections applied
after each iteration. Our analysis is similar to the classical work by Greenwood
& Fried [28]. For a more detailed model that takes the effect of the finite
exposure and response times of the phasing device into account, see the work
by Conan et al. [16]. The error transfer function of a first-order phase-tracking
loop equals

T(ν) = iν/(νc + iν), (4.10)

where νc is the 3 dB bandwidth of the system. The temporal power spectrum
of the corrected fringe position is wc(ν) = |T(ν)|2wφ(ν). The residual piston
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Figure 4.4: Variance of corrected fringe position as a function of the bandwidth frequency of the
correction system. The parameters of the simulation are identical to those of Fig. 4.1. At frequencies
higher thanνc = 0.3V/d (vertical line), the variance is approximated by (2πνct1)−2 (dotted line).

variance characterizes the performance of the phasing device. This variance is
shown in Fig. 4.4 as a function of νc and is given by

σ2
c(νc) =

∫ +∞

−∞
ν2/(ν2c + ν

2) wφ(ν)dν. (4.11)

When vc < 0.3V/d, the fringe tracker is too slow and leaves a large residual
error; only fast trackers with vc > 0.3V/d are of any practical interest. In
this case, the dominant contribution to the residual variance in (4.11) comes
from the frequencies just below 0.3V/d, where the filter is approximated as
(ν/νc)2. Hence the residual variance is proportional to the variance of the
piston velocity. There is a simple relation between the residual error of the
fringe tracker and the structure function of the piston. For small arguments t,
we can replace 2[1− cos(2πνt)] ≈ (2πνt)2 in the expression (4.19) for the phase
SF. Then the residual error of the fast fringe tracker is simply

σ2
c(νc) ≈ Dφ[1/(2πνc)] ≈ (2πνct1)−2. (4.12)

Thus, we have established that the error of the fast fringe tracker and the initial
quadratic part of the piston SF are essentially determined by the variance of
piston velocity which, in turn, depends on the tilt variance and the average
wind speed V2.

4.2.5 Summary of definitions and discussion

Table 4.1 assembles different definitions of the atmospheric coherence time. We
have demonstrated that the time constant t0 of the piston SF is proportional
to the AO time constant τ0. For small time increments, a slightly modified
parameter t1 should be used.

A different, but essentially equivalent, definition of the piston coherence
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Table 4.1: Definitions of atmospheric time constants

Quantity of interest Formula Time constant

Phase SF Dϕ(t) = (t/τ0)5/3 τ0 = 0.314r0/V5/3

Piston SF,t < d/V Dφ(t) = (t/t1)2 t1 = 0.273 (r0/V2)(d/r0)1/6

Piston SF,t > d/V Dφ(t) = (t/t0)5/3 t0 = 0.66 τ0
Piston variance during an exposuret > d/V σ2

φ(t) = (t/T0)5/3 T0 = 2.58 τ0

Phase tracker error,νc > 0.3 d/V σ2
c(νc) = (2πνct1)−2 t1

time T0 = 0.81 r0/V5/3 = 2.58 τ0 has been given by Tango & Twiss [64] and
reproduced by Colavita et al. [14]. It is the integration time during which
the piston variance equals 1 rad2. When fringes are integrated over a time
T0, the mean decrease in squared visibility equals 1/e. Here we use the more
convenient definition t0 = 0.66 τ0 based on the temporal SF and warn against
confusion with Tango’s T0. The definition of T0 is valid only for T > d/V, while
shorter integration times are of practical interest (see below).

The performance of the fringe-tracker in a long-baseline interferometer can
be characterized by the atmospheric time constant t1 or, equivalently, by the
average wind speed V2. The AO time constant τ0 (or V5/3) is also a good
estimator of the piston coherence time, especially for small apertures d ∼ r0.

In order to reach a good magnitude limit, all modern interferometers have
large apertures d > r0. The atmospheric variance over the aperture is 1.03 (d/r0)5/3 >

1rad2 and has to be corrected by some means (tip-tilt guiding, full AO correc-
tion, spatial filtering of the PSF) even at short integration times. The temporal
piston variance will also be >1 rad2 on time scales of approximately r0/V and
longer. Hence exposure times shorter than r0/V or fast fringe trackers are re-
quired in order to maintain high fringe contrast. In this regime, the relevant
time constant that determines the visibility loss is t1, rather than τ0 and T0.

All definitions of atmospheric time constants contain a combination of r0 and
V. As turbulence becomes stronger, the time constant decreases, although the
wind speed may remain unchanged. Being less correlated, the parameters
r0,V are thus more suitable for characterizing atmospheric turbulence than
the parameters r0, τ0. Astronomical sites with “slow” or “fast” seeing should
be ranked in terms of V rather than τ0. A fair correlation between V and the
wind speed at 200mB altitude has been noted by Sarazin & Tokovinin [59].

4.3 Measuring the atmospheric time constant

4.3.1 Existing methods ofτ0 measurement

Table 4.2 lists methods available for measuring the atmospheric coherence time
τ0 or related parameters. The 3rd column gives an indicative diameter of
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Table 4.2: Methods ofτ0 measurement

Method Measurables d, m Problems Reference

SCIDAR C2
n(h), V(h) >1 Needs large telescope Fuchs et al. [22]

Balloons C2
n(h), V(h) none Expensive, no monitoring Azouit & Vernin [8]

AO system r0, τ0 >1 Needs working AO Fusco et al. [23]
SSS C2

n(h), V(h) >0.4 Low height resolution Habib et al. [29]
GSM r0, V, τAA 4x0.1 No obvious relation toτ0 andt1 Ziad et al [73]
MASS τ∗0 0.02 Biased (low layers ignored) Kornilov et al. [44]
DIMM r0 0.25 Indirectτ0 estimate Sarazin & Tokovinin [59]
FADE r0, t1 0.35 New method This work

the telescope aperture required for each method. Short comments on each
technique are given below.

SCIDAR (SCIntillation Detection And Ranging) has provided good results
on τ0. It is not suitable for monitoring because manual data processing is
still needed to extract V(h), despite efforts to automate the process. Balloons
provide only single-shot profiles of low individual statistical significance. The
AO systems and interferometers give reliable results, but are not suitable for
testing new sites or for long-term monitoring.

The methods listed in the next four rows of Table 4.2 all require small tele-
scopes and can thus be used for site-testing. However, all these techniques
have some intrinsic problems. SSS (Single Star SCIDAR) essentially extends
the SCIDAR technique to small telescopes: profiles of C2

n(h) and V(h) are ob-
tained with lower height resolution than with the SCIDAR, and are then used
to derive the coherence time. The GSM (Generalized Seeing Monitor) can
only measure velocities of prominent layers after careful data processing. A
coherence time, τAA – which, however, does not have a similar dependence on
the turbulence profile than τ0 and t1 – is deduced from the angle of arrival fluc-
tuations. MASS (Multi-Aperture Scintillation Sensor) is a recent, but already
well-proven, turbulence monitor. One of its observables related to scintillation
in a 2 cm aperture approximates V5/3 (Tokovinin [68]), but this averaging does
not include low layers and thus gives a biased estimate of τ0. An even less se-
cure evaluation of τ0 can be obtained from DIMM (Differential Image Motion
Monitor) by combining the measured r0 with meteorological data on the wind
speed (Sarazin & Tokovinin [59]).

We conclude from this brief survey that a correct yet simple technique for
measuring τ0 with a small-aperture telescope is still lacking. Such a method
is proposed in the next section.

4.3.2 The new method: FADE

To measure the interferometric or AO time constant, we need an observable
related to V2 or V5/3. The atmosphere consists of many layers with different
wind speeds and directions, so a true C2

n-weighted estimator (4.6) is required.
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Figure 4.5: Five consecutive ring images distorted by turbulence and detector noise. Each image is
16x16 pixels (13.8′′), the average ring radius is 3′′, the interval between images is 3 ms, the wind
speed is 10 m/s.

Figure 4.6: Temporal structure functions of simulated measurements of the ring radius for wind
speeds 10 m/s (left) and 20 m/s (right) andr0 = 0.1 m seeing (time constantst1 of 3.36 and 1.68 ms,
respectively).

Its response should be independent of the wind direction.

Wavefront distortions are commonly decomposed into Zernike modes (Noll
[50]). The first mode, piston, cannot be sensed with a single telescope and
the two subsequent modes, tip and tilt, tend to be corrupted by telescope
vibrations. Of the remaining modes, the next three – defocus and two astig-
matisms – have the highest variance and are the best candidates for measuring
atmospheric parameters.

The total turbulence integral (or r0) is typically measured by the DIMM
(Sarazin, & Roddier [60]). Lopez [49] tried to derive τ0 from the speed of
the DIMM signal, but this method did not prove to be practical. Because
of its intrinsic asymmetry, DIMM does not provide an estimator of V that
is independent of the wind direction. On the other hand, the fourth Zernike
mode (defocus) is rotationally symmetric.

We show in AppendixB that the variance of defocus velocity provides an
estimator of the time constant t1. The variance of the defocus itself gives a
measure of r0. Thus, we can measure both r0 and V2. The method is based on
series of fast-defocus measurements, and we call it FADE (FAst DEfocus). The
details of the future FADE instrument still need to be worked out and will be
a subject of the forthcoming paper. Here we present numerical simulations to
show the feasibility of this approach. We simulated a telescope of d = 0.35m
diameter with a small central obstruction ǫ = 0.1. A conic aberration was
introduced to form ring-like images (Fig. 4.5). This configuration resembles a
DIMM with a continuous annular aperture. The ring radius 3′′ was chosen.
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Monochromatic (λ = 500nm) images were computed on a 642 pixel grid
from the interpolated distortions and binned into CCD pixels of 0.86′′ size.
We simulated photon noise corresponding to a star of R = 2 magnitude and
3ms exposure time (20 000 photons per frame) and added a readout noise of
15 electrons rms in each pixel.

The radius ρ of the ring image is calculated in the same way as standard
centroids, by simply replacing coordinate with radius. The radius fluctuations
∆ρ serve as an estimator for the defocus coefficient a4. The radius change is
approximated by the average slope of the Zernike defocus between inner and
outer borders of the aperture:

∆ρ = Cρ a4 ≈ [2
√

3(1+ ǫ)/π (λ/d)] a4. (4.13)

The complex amplitude of the light distorted by two phase screens at 0
and 10 km altitude with combined r0 = 0.1m was pre-calculated on a large
square grid (15m size, 0.015m pixels). This distribution is periodic in both
coordinates, and it was “moved” in front of the aperture in a helical pattern
with the wind speed V to simulate the temporal evolution of the wave-front.
The exposure time ∆t = 3ms corresponds to a wave-front shift V∆t = 0.06m
for V = 20m/s, such that the initial quadratic part of the defocus SF (β =
2Vt/d < 1) extends only to ∼ 3∆t.

Figure 4.6 shows the structure function, Dρ, of the ring-image radius cal-
culated from several seconds of simulated data. It contains a small additive
component due to the measurement noise (in this case 0.05′′ rms), which was
determined from the data itself by a quadratic fit to the 2nd and 3rd points
and its extrapolation to zero. The dashed lines are the theoretical SFs of de-
focus computed by (4.32) and converted into radius with the coefficient Cρ
(4.13). The slope between the second and third points of the simulated SF
closely matches the analytical formula.

To measure the speed of defocus variations, it is sufficient to fit a quadratic
approximation to the initial part of the measured SF, Dρ(t) ≈ at2. Considering
the noise, the best estimate of the coefficient a is obtained from the second
and third points, a = [Dρ(2∆t) − Dρ(∆t)]/(3∆t2). This estimator is not biased
by white measurement noise. Equating the quadratic fit to the theoretical
expression Dρ(t) = 0.0269 (Cρ t/t1)2, we get a recipe for calculating the time
constant from the experimental data,

t1 ≈ 0.284Cρ∆t [Dρ(2∆t) − Dρ(∆t)]−1/2. (4.14)

Application of this formula to the simulated data gives t1 values of 3.88 and
2.20ms for wind speeds 10 and 20m/s, while the input values are 3.36 and
1.68ms. Our simulated instrument slightly over-estimates t1 because the cho-
sen exposure time of 3ms is too long. Indeed, the error gets worse for a higher
wind speed and disappears for V = 5m/s (true and measured t1 are 6.73 and
6.62ms) or for a shorter exposure time. In the real situation of a multi-layer
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atmosphere, the experimental SF will be the sum of the SFs produced by dif-
ferent layers. The contribution to the “jump” of the SF Dρ(2∆t)−Dρ(∆t) from
fast layers will be reduced (in comparison with the quadratic formula) and will
cause a bias in the measured t1, increasing its value.

The crudeness of our simulations (discrete shifts of the phase screen, ap-
proximate Cρ, etc.) also contributes to the mismatch. Averaging of the image
during finite exposure time has not been simulated yet. The response and bias
of a real instrument will be studied thoroughly by a more detailed simulation.
However, the feasibility of the proposed technique for measuring t1 is already
clear.

The next two Zernike modes number 5 and 6 (astigmatism) are not rota-
tionally symmetric. However, the sum of the variances of the velocities of two
astigmatism coefficients is again symmetric. In fact, it has the same spatial
and temporal spectra as defocus, with a twice larger variance. Therefore, si-
multaneous measurement of the two astigmatism coefficients can be used to
estimate the atmospheric time constant in the same way as defocus. Other
measurables that are symmetric and have a cutoff at high frequencies can be
used as well. However, defocus and astigmatism have the largest and slow-
est atmospheric variances making it easier to measure than other higher-order
modes.

The FADE technique can be applied in a straightforward way to the analysis
of the AO loop data, as a simple alternative to the more complicated method
developed by Fusco et al. [23].

4.4 Conclusions

We reviewed the theory of fast temporal variations in the phase difference
in a large-baseline interferometer. For a practically interesting case of large
apertures d > r0, the piston SF usually exceeds 1 rad2 at the aperture crossing
time t = d/V. Hence, shorter times are of interest where the piston SF is
quadratic (rather than ∝ t5/3). The relevant atmospheric time constant is t1.
However, the standard AO time constant τ0 also provides a good estimation
of the piston coherence time. Both these parameters essentially depend on the
turbulence-weighted average wind speed V.

A brief review of available methods for measuring τ0 shows the need for
a simple technique suitable for site testing or monitoring, i.e. working on a
small-aperture telescope. The FAst DEfocus (FADE) method proposed here
fulfills this need. We argue that, for a given aperture size, this is the best way
of extracting the information on τ0. The feasibility of the method is proven
by simulation, which opens a way to the development of a real instrument.
An instrument concept using a small telescope, some simple optics, and a fast
camera will be described in a subsequent article.
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4.5 Appendix A - Derivation of the piston structure function

The spatial power spectrum of the piston is derived from the spatial atmo-
spheric phase spectrum (Roddier [58])

Wϕ(f ) = 0.00969k2

∫ +∞

0
( f 2 + L−2

0 )−11/6 C2
n dh, (4.15)

where f is the spatial frequency, L0 the turbulence outer scale at height h,
and the other notations were introduced in Sect. 4.2.1. We drop the explicit
dependence of Cn, L0, and all following altitude dependent-parameters on h,
to ease the reading of the formulae. The spatial filter that converts Wϕ(f ) into
the piston power spectrum Wφ(f ) is

M2(f ) = [2 sin(πfB) A(f )]2 (4.16)

Wφ(f ) = M2(f ) Wϕ(f ), (4.17)

for a baseline vector B and the aperture filter function A(f ). For a circular
aperture of diameter d, A(f ) = 2J1(π f d)/(π f d) and f = |f |. There Jn stands for
the Bessel function of order n.

As usual, we assume that turbulent layers are transported with wind speed
V directed at an angle α with respect to the baseline. The temporal power
spectrum of the piston is then obtained by integrating in the frequency plane
over a line displaced by fx = ν/V from the coordinate origin and inclined at
angle α. Let fy be the integration variable along this line and f 2 = f 2

x + f 2
y .

The temporal spectrum equals

wφ(ν) =
1
V

∫ +∞

−∞
Wφ

(

fx cosα + fy sinα, fy cosα − fx sinα
)

d fy

= 0.0388k2

∫ +∞

0
V−1C2

n dh
∫ +∞

−∞
( f 2 + L−2

0 )−11/6

×
[

sin
(

πB fx cosα + πB fy sinα
)

A( f )
]2

d fy. (4.18)

We use the rotational symmetry of the aperture filter. This formula can be
found in Conan et al. [17] in a slightly different form. The temporal power
spectrum is defined here on ν = (−∞,+∞) to keep the analogy with spatial
power spectra.

The temporal structure function of the piston is

Dφ(t) =
∫ +∞

−∞
2[1− cos(2πtν)] wφ(ν) dν. (4.19)
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For an interferometer with a large baseline B≫ d, the width of the aperture
filter is much larger than the period of the sin2 factor in (4.18). We can then
replace the sin2 with its average value 0.5. Assuming also that L0 ≫ d, we
obtain an approximation for the piston power spectrum

wφ(ν) ≈ 0.0194k2

∫ +∞

0
V−1 C2

n dh
∫ +∞

−∞
A2( f ) f −11/3 d fy. (4.20)

With this approximation,

Dφ(t) = 0.0388k2

∫ +∞

0
C2

n dh
∫ ∫ +∞

−∞
[1 − cos(2πt fxV)] A2( f ) f −11/3 d fxd fy

= 0.244k2

∫ +∞

0
C2

n dh
∫ +∞

0
[1 − J0(2πtV f)] A2( f ) f −8/3 d f . (4.21)

We used the relation (Gradshteyn & Ryzhik [26]):
∫ 2π

0
cos(2πzcosθ)dθ = 2π J0(2πz).

For a circular aperture of diameter d,

Dφ(t) = 1.641k2d5/3

∫ +∞

0
C2

n dh K1(2tV/d), (4.22)

where the new dimensionless variables are β = 2tV/d and x = π f d and the
function K1(β)

K1(β) =
∫ +∞

0
[2J1(x)/x]2x−8/3 [1 − J0(βx)] dx

≈ 1.1183
β2

(4.7+ β2)1/6
. (4.23)

The approximation of K1(β) is accurate to 1% for all values of the argument
and reproduces the analytic solutions of the integral for very large and very
small β. For example, for large β the aperture filter tends to one; hence

K1(β) ≈
∫ ∞

0
x−8/3 [1 − J0(βx)] dx

= π/[28/3 Γ2(11/6) sin(5π/6)] β5/3 = 1.1183β5/3 (4.24)

(cf. Eq. 20 in Noll [50]). It follows that for t > d/V

Dφ(t) ≈ 13.77 (V5/3 t/r0)
5/3 = (t/t0)

5/3. (4.25)

For t < d/V, K1(β) ≈ 0.864β2 and

Dφ(t) ≈ 13.41 (V2 t/r0)
2 (r0/d)1/3 = (t/t1)

2. (4.26)

We recover (4.8). This proves that the initial part of the piston SF is indeed
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defined by the overall wavefront tilts.

For a single turbulent layer, the piston SF is directly proportional to K1(β).
Considering the small difference between two alternative definitions of the
average wind speed, V5/3 ≈ V2 ≈ V, a good approximation for the SF at all
time increments will be

Dφ(t) ≈ 3.88 (d/r0)
5/3 K1(2tV/d). (4.27)

With the approximation (4.23), we finally obtain (4.9).

4.6 Appendix B - Fast focus variation

The temporal power spectrum of the Zernike defocus coefficient a4 is given in
Conan et al. [17] as

w4(ν) = 0.00969k2

∫ +∞

−∞
V−1C2

n dh
∫ +∞

−∞
A2

4( f ) f −11/3d fy, (4.28)

where A4( f ) = 2
√

3J3(π f d)/(π f d) is the spatial filter corresponding to the
defocus on a clear aperture of diameter d (Noll [50]), fx = ν/V, f 2 = f 2

x + f 2
y ,

and we assume L0 ≫ d. This expression is similar to (4.20) but has a two times
smaller coefficient and a different aperture filter. The variance of defocus is a
function of the Fried parameter:

σ2
4 =

∫ +∞

−∞
w4(ν)dν

= 0.00969k2

∫ +∞

0
C2

ndh
∫ ∫ +∞

−∞
A2

4( f ) f −11/3d fx d fy

= 0.0232 (d/r0)
5/3. (4.29)

The variance of the defocus velocity has the following dependence on atmo-
spheric parameters:

S2
4 =

∫ +∞

−∞
(2πν)2w4(ν)dν

= 0.383k2

∫ +∞

0
V2C2

ndh
∫ ∫ +∞

−∞
f 2
x A2

4( f ) f −11/3d fx d fy. (4.30)

We set x = π f d and find:

S2
4 ≈ 9.858k2 d−1/3

∫ +∞

0
V2C2

ndh
∫ +∞

0
J2

3(x)x−8/3dx

= 0.360 (V2/r0)
2 (r0/d)1/3 = 0.0269t−2

1 . (4.31)
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The transformation from (4.30) to (4.31) involves a coefficient increase by
12π2/3, while the definite integral is equal to Γ(8/3)Γ(13/6)/[28/3Γ2(11/6)Γ(29/6)] =
0.01547.

The SF of defocus D4(t) is derived in analogy with the piston SF, replacing
the response A1( f ) for piston with A4( f ) for defocus. The coefficient is 2 times
smaller because only one aperture is considered. In analogy with (4.22),

D4(t) = 0.821k2d5/3

∫ +∞

0
C2

n dh K4(2tV/d), (4.32)

K4(β) = 12
∫ +∞

0
[J3(x)/x]2x−8/3 [1 − J0(βx)] dx

≈ 0.0464β2 + 0.024β6

1+ 1.2β2 + β6
. (4.33)

The approximation has a relative error less than 2% and correct asymptotes.
Unlike K1, the K4 function saturates for large arguments. Considering only the
initial quadratic part of K4 at β ≪ 1, we write for small time intervals

D4(t) ≈ 0.360 (tV2/r0)
2 (r0/d)1/3 = 0.0269 (t/t1)

2. (4.34)
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FADE, an instrument to measure the

atmospheric coherence time

A. Tokovinin, A. Kellerer, V. Coudé du Foresto, 2007, submitted to A&A

Abstract

A new method to derive the atmospheric time constant from the speed of
the focus variations has been proposed by Kellerer & Tokovinin (2007). The
instrument FADE implements this idea.

FADE uses a 36-cm Celestron telescope that is modified to transform stellar
point images into a ring by increasing the central obstruction and combining
defocus with spherical aberration. Sequences of such images are recorded with
a fast CCD detector and are processed to determine the defocus and its vari-
ations in time, from the ring radii. The temporal structure function of the
defocus is fitted with a model to derive the atmospheric seeing and time con-
stant. The data reduction algorithm and instrumental biases are investigated
by numerical simulation.

Bias caused by instrumental effects such as optical aberrations, detector
noise, acquisition frequency etc. is quantified. The ring image must be well
focused, i.e. must have a sufficiently sharp radial profile, otherwise scintilla-
tion seriously affects the results. An acquisition frequency of 700 Hz appears
adequate. FADE was operated for 5 nights at the Cerro Tololo observatory in
parallel to the regular site monitor. Reasonable agreement between the results
from the two instruments has been obtained.

69
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5.1 Introduction

The site- and time-dependent performance of telescopes, and especially of in-
terferometers, can be characterized by the parameters seeing, ε0 (or, equiv-
alently, the Fried parameter r0 = 0.98λ/ε0), and the coherence time, τ0, that
determines the required reaction speed of adaptive-optics (Roddier [58]). The
variability of these parameters makes monitoring instruments essential. See-
ing is usually measured with the Differential Image Motion Monitor, DIMM
(Sarazin & Roddier [60]). However, a correct and simple technique to measure
τ0 is still lacking. At present this parameter is, therefore, variously inferred
from the vertical profiles of wind speed and turbulence, from the temporal
analysis of image motion, from scintillation, etc. (cf. the review in Kellerer &
Tokovinin [42], hereafter KT07). In particular, a Multi-Aperture Scintillation
Sensor, MASS (Kornilov et al. [44]) deduces the coherence time, τ0, from scin-
tillation, but this method (Tokovinin [68]) is only approximate and has not,
as yet, been verified by comparison with other techniques.

All current techniques having intrinsic limitations and shortcomings, a new
method to measure the coherence time with a small telescope has recently
been proposed in KT07. This method, termed FADE (FAst DEfocus), is based
on recording and processing focus fluctuations produced by the atmospheric
turbulence in a small telescope. The amplitude of defocus variation gives
a measure of the seeing, ε0, while the speed of the defocus change gives a
measure of the time constant, τ0 (cf. Section 5.3.4 for more details). FADE
can be useful for site testing and monitoring, but its reliability has so far been
demonstrated only by numerical simulation. Here we present an instrument
implementing the new method.

The need for the new instrument is apparent from an overview of alterna-
tive ways to measure τ0. In principle, this quantity can be obtained from the
temporal analysis of almost any quantity affected by turbulence, but all cur-
rent approaches have weaknesses. Tilts, the easiest to measure, are typically
corrupted by telescope shake and guiding errors, hence they are not suitable.
The DIMM instrument is immune to the wind shake, but it is intrinsically
asymmetric. An early attempt to extract τ0 from the DIMM signal by Lopez
[49] revealed the complexity of this approach and did not result in a practical
instrument. If we discard tilts, the next second largest and slowest atmospheric
terms are defocus and astigmatism. Defocus has angular symmetry and the
rate of its variation is closely related to τ0 (KT07). Thus, FADE, an instru-
ment based on defocus analysis, is nearly optimal for τ0 measurements. It is
a full-aperture, i.e. symmetric, equivalent of DIMM and has some advantage
over the latter even for classical seeing measurements.

The instrumental set-up is described in Section 5.2. Section 5.3 outlines the
data analysis algorithm. In Section 5.4 the seeing and coherence time measured
with FADE are checked for consistency and are compared to simultaneous data
from the DIMM and MASS instruments. Section 5.5 contains conclusions and
an outline of further work. Mathematical derivations and a detailed analysis
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of instrumental biases by means of numerical simulation are given in Appen-
dices 5.6–5.8.

5.2 The instrument

5.2.1 Operational principle

Figure 5.1: Overview of the FADE instrument and data analysis.

Defocusaberration can be measured with a wave-front sensor of any type
or can be simply inferred from the size of a slightly defocused long-exposure
stellar image (Tokovinin & Heathcote [67]). For FADE, a simple, fast, and
accurate method is required. We chose to introduce a conic aberration into
the beam in order to form a ring-like image. A small defocus slightly changes
the radius of the ring. Ring-like images, “donuts”, are obtained by defocusing
a telescope that has a central obstruction. However, unlike a donut, the ring is
fairly sharp in the radial direction, which means that the determination of the
ring radius is largely insensitive to intensity fluctuations (scintillation) at the
telescope pupil. There is an inherent similarity between FADE and DIMM.
In a DIMM, two peripheral beams are selected and are deviated by prisms to
form an image of two spots. In FADE, the prisms are replaced by a cone and
the whole annular aperture is used to form a ring-like image.

The ring images are recorded by a fast CCD detector and stored on a com-
puter disk (Fig. 5.1). They are processed off-line to determine a temporal
sequence of ring radii, ρ(t). In order to estimate the atmospheric parameters
ε0 and τ0, the temporal structure function of the radius variations is then fitted
to a model.
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Atmospheric defocus fluctuations are fast: their temporal correlations de-
crease with a half-width 0.3 times the aperture crossing time tcross= D/V, i.e.
with 2.2ms for a telescope diameter D = 0.36m and wind speed V = 50m/s
(cf. Appendix B). To capture the focus variations of interest, an acquisition
frequency ν ≥ 500Hz is required, which is attainable with today’s fast CCD
detectors.

5.2.2 Hardware

Table 5.1: Components of the FADE instrument

Component Description
Telescope CelestronC14,D = 0.356 m,F = 3.910m
Central obstruction Circular mask of 150 mm diameter
Aberrator PCX lenses (Linos312321 & 314321),

dL = 25 mm, fL = ±50 mm
Detector ProsilicaGE 680, 640× 480,

pixel 7.4µm (0.39′′)
Interface Gigabit Ethernet IEEE 802.3 1000baseT
Computer & OS Dell D410,WindowsXP

We assembled the FADE prototype from readily available commercial com-
ponents (Table5.1). A 36-cm telescope was selected because the focus vari-
ations are too weak and too fast in a smaller telescope to be conveniently
measured. Use of a fast CCD – GE680 from Prosilica – is critical for the in-
strument, because it permits continuous acquisition with an image frequency
740 Hz when a 100x100 region-of-interest (ROI) is used. The signal is digitized
in 12 bits. With the lowest internal gain setting, 0 dB, the conversion factor
2.86ADU per electron, and the readout noise 38ADU, i.e. 13.4 e, were mea-
sured. According to the specifications, the maximum quantum efficiency (QE)
is 0.5 electrons per photon at wavelength λ = 0.50 µm with a full-width half-
maximum response of roughly ∆λ = 0.25 µm. Indeed, the measured fluxes from
stars correspond to the overall system QE of 0.35–0.40 electrons per photon,
atmospheric and optical losses are included.

5.2.3 Optics

To create annular images, a conic aberration must be introduced into the
beam. Conic lenses, axicons, have wide technical and research applications
and are commercially available. For FADE the required conic aberration is
so small that instead of an axicon a pair of conventional lenses can be used.
The difference between quadratic (defocus) and conic aberrations on annular
apertures with a large relative central obstruction ǫ is already small. It can be
reduced even further, if the next term, spherical aberration, is added in a suit-
able proportion. For a relative central obstruction ǫ = 0.42, the mean squared
deviation from a conic surface is minimized when a11 = −0.1 a4 (throughout
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this article, the Zernike aberration coefficients are given in the Noll [50] nota-
tion). The ring image is then diffraction-limited if its radius is smaller than
5′′.

A small spherical aberration may already be inherent in the telescope or
may be introduced by procedures such as refocusing from the nominal (design)
position. To attain the desired aberration, we used an assembly of two simple
plane-spherical lenses with equal but opposite curvature radii, which can be
seen as a plane-parallel plate containing a meniscus-shaped void. The thickness
of the meniscus is adjusted by changing the gap between the lenses. The
positive lens is closer to the primary mirror, so that the meniscus curvature
opposes the curvature of the wavefront. We used lenses with focal lengths
fL = ±50mm and a gap g = 0.7mm. When this element is placed at distance
l = 93.5mm in front of the detector and the telescope is suitably refocused, a
ring image of radius ρ ≈ 53 µm is formed. Optical modeling in Zemaxshows
that this “aberrator” is reasonably achromatic. The spherical aberration is
proportional to g l6, therefore it can be adjusted over a wide range.

With the right combination of defocus and spherical aberrations, the wave-
front is almost perfectly conic near the border of the aperture. To block the
inner part of the wavefront, a central obstruction of 150mm diameter, i.e. a
relative diameter ǫ = 0.42, was placed at the telescope entrance. The average
ring image in the real FADE instrument (Fig. 5.2) shows marked aberrations
other than conical, caused by the defects of optical surfaces and of alignment.
Similar rings were reproduced in our simulations with a combination of coma
and higher-order aberrations (cf. Sect. 5.8.1). We also fitted the Zernike
aberrations directly using the donut method (Tokovinin & Heathcote [67])
and found that the coma coefficient could reach ∼100 nm (1.2 rad). Further,
the defocus was not always kept at its optimum value required for sharp ring
images. The effect of such aberrations is studied in Sect. 5.8.1 by simulation.

5.2.4 Acquisition software

The GE680 detector being relatively new, with no readily available software
development kits as yet, we used the commercial software, Streampixfrom
Prosilica. It provides all necessary functions for detector control and data
storage in the FITS format, but the parameters need to be set manually at
each acquisition, which requires constant attention. And they are not logged
into the FITS headers or otherwise. Thus, Streampixis only a temporary
solution. We checked that the image sequence is acquired at regular intervals,
without time jitter. The detector was exposed for this purpose to a strictly
periodic light signal at 10Hz and a 100× 100 ROI was read at 400Hz. The
power spectrum of the flux calculated from these data is a narrow peak at
(10.0± 0.2)Hz without significant tails.
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5.2.5 Observations

Figure 5.2: From left to right: Simulated ring image – Image of Sirius – Average of 1024 simulated
images – Average of 1024 Sirius images. The sequence of Sirius images was recorded on Nov 2nd at
6:46 UT. The parameters for the data and simulations are given in Sec. 5.8.1.

The FADE instrument has been installed in the USNO dome of the Cerro
Tololo Inter-American Observatory (CTIO) in Chile for the period October 27
to November 3, 2006. We pointed FADE at bright stars, Fomalhaut(α PsA,
A3V, mV = 1.16) in the evening, then Sirius (α CMa, A1V, mV = −1.47).
Figure 5.2 shows typical instantaneous and average images of Sirius, as well as
simulated images. During our test run, the seeing was not very good, being
roughly 1′′, and the turbulence in the high atmosphere was strong and fast, as
evidenced by the MASS data.

5.3 Data analysis

A correct algorithm of data processing and interpretation is critical to derive
the atmospheric parameters ε0 and τ0. We selected carefully the most robust
method of calculating atmospheric defocus from the ring-like images and stud-
ied by numerical simulation the influence of various instrumental effects and
of optical propagation on the results (Appendix 5.8).

5.3.1 Estimating the ring radius

The center of gravity of the image (xc, yc) is calculated by the usual formula

xc =
∑

l,k

xl,k I l,k/
∑

l,k

I l,k and yc =
∑

l,k

yl,k I l,k/
∑

l,k

I l,k. (5.1)

The ring radius ρ can then be estimated in a similar way, as the intensity-
averaged distance from this center:

ρ =
∑

l,k

r l,k I l,k/
∑

l,k

I l,k. (5.2)
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Here I l,k is the light intensity at pixel (l, k), and r l,k is the distance of this pixel
from the center. There are various caveats below the apparent simplicity of
this procedure.

There is no unambiguous way to assign a center to a real, distorted and noisy
ring image. A simple center-of-gravity is a very rough estimate of (xc, yc),
in particular it is affected by the intensity fluctuations in the ring due to
scintillation. It is better to compute (xc, yc) with clipped intensities: 0 below a
threshold and 1 above, the threshold being set safely above the background and
its fluctuations. This initial estimate can be further improved by minimizing
the intensity-weighted mean distance of the pixels from the ring, as described
in Appendix A. However, small inaccuracies in the center determination do not
affect the resulting radius critically and, in fact, we found the initial estimate
to be adequate.

A second caveat concerns the choice of the pixels used for the radius estimate.
A considerable fraction of pixels lie outside the ring in an empty area that
contributes only noise. To reduce the noise with a minimal loss of information,
we have restricted the pixels used in (5.2) to a mask of inner radius ρ−∆ρ and
outer radius ρ + ∆ρ, where ρ is the average ring radius. We express the mask
half-width ∆ρ as a fraction δ of the diffraction half-width of the ring,

∆ρ = δ λ/[0.5 D (1− ǫ)]. (5.3)

Figure 5.3 shows that a mask with δ = 2 would be good for an ideal,
diffraction-limited ring. For a typical image sequence, however, the ring is
widened by telescope aberrations and atmospheric distortions. So we set δ = 4
which covers the actual ring image with a sufficiently conservative, but still
reasonable margin.

The simulations show that scintillation and aberrations add to the fluctua-
tions of the estimated radii and thus bias the results of FADE. To reduce this
effect, we sub-divide the ring into eight 45◦ sectors and – utilizing the same
center estimate (xc, yc) – apply Eq. 5.2 to each sector separately, and then av-
erage the result. This reduces the effect of azimuthal intensity variations. An
added advantage of the procedure is that the relative variance s of the total
intensities in the sectors Ik with respect to their average I k serves as a measure
of the scintillation, hence of the turbulence height,

s =
1
8

8
∑

k=1

(Ik − I k)
2 / I k

2. (5.4)

The method of calculating the ring parameters (xc, yc, ρ) is less rigorous than
fitting a wave-front model directly to the image. The great advantage of the
estimator (5.2), however, is its simplicity.
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Figure 5.3: Total intensity inside concentric circles of radii ρ for the average of 1024 centered
images. Full line: sequence of Fomalhaut images recorded onNov 2nd. Dashed line: simulated
diffraction-limited ring images (see Table 5.3).

5.3.2 Noise and limiting stellar magnitude

The errors of the radius estimates caused by photon and readout noise are
obtained by differentiating Eq. (5.2) and using the independence of the noise
in each pixel:

σ2
ρ,noise =

(

σron

Nph

)2
∑

l,k

(r l,k − ρ)2 +
δ2ρ

Nph
, (5.5)

δ2ρ =
∑

l,k

I l,k (r l,k − ρ)2 / Nph. (5.6)

Here σron is the rms detector noise, Nph =
∑

l,k I l,k is the total stellar flux in one
exposure (both in electrons), ρ is the average ring radius, and r l,k is the distance
of pixel (l, k) from the center, expressed either in pixels or arc-seconds. The
rms ring-width δρ quantifies the ring sharpness which turns out to be critical
for getting unbiased measurements with FADE (see 5.8.1). The summation is
extended only over pixels inside the mask, as described in Section 5.3.1. We
recognize a familiar sum of the readout noise (first term) and photon noise
(second term), where the first term typically dominates. Eq. (5.5) does not
account for such additional noise sources as scintillation, image distortion, etc.

Formula (5.5) is useful for predicting the limiting magnitude of FADE. A
star of zero V-magnitude gives a flux Nph ∼ 6 · 105 photo-electrons in 1ms ex-
posure in our instrument. The rms noise on the radius estimate with plausible
parameters (ρ = 5′′, σRON = 13, δ = 4) is then about 2mas. It will increase to
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20mas for a star with mV = 2.5m – still much less than the atmospheric signal.
Hence, despite very short exposures, FADE is not photon-starved.

5.3.3 The response coefficient of FADE

The relation between the ring radius fluctuations ∆ρ and the atmospheric defo-
cus (Zernike coefficient a4) is intuitively clear. But what is the exactcoefficient
A in the formula ∆ρ = Aa4? Recall that the atmsopheric defocus a4 is related
to the phase distortion ϕ(r) as

a4 =

∫

z4(r) ϕ(r) d2r , (5.7)

where r is the normalized coordinate vector on the pupil and z4(r) is the orto-
normal Zernike defocus given by Noll [50] for the circular aperture and in
Fig. 5.4 for the annular aperture.

1

z z z

1e
e

1
e

Defocus Cone Gradient

r
r

r

Defocus z(r) =
√

12
(

r2 − 1+ǫ2

2

)

/(1− ǫ2)

Cone z(r) =
[

r − 2(1−ǫ3)
3(1−ǫ2)

] [

1+ǫ2

2 −
4(1−ǫ3)2

9(1−ǫ2)2

]−1/2

Gradient z(r) =
[

δ(r−1)
2πr −

δ(r−ǫ)
2πǫr

]

Figure 5.4: Response functionsz(r) on annular aperture for Zernike defocus, conic aberration, and
average radial gradient. The first two functions are normalized in the Noll [50] sense. The coeffi-
cientsa4, ac andag are calculated as integrals (5.7). Hereδ is the Dirac’s delta-function.

A reaction of our simple radius estimator (5.2) to a small perturbation of
phase and amplitude at the telescope pupil can be determined analytically (cf.
Perrin et al. [54] for an example of similar analytics). It turns out that the
response to a phase perturbation in the pupil plane is not exactly proportional
to the Zernike defocus. Moreover, it depends on the adopted mask half-width δ.
For δ ∼ 1, the response resembles a cone, therefore FADE measures something
similar to a conic aberration. On the other hand, for δ ≥ 2 the computed
ring radius is related to the average radial gradient of the wave-front, and
therefore FADE measures the difference ag between the phase averaged on the
outer and inner edges of its annular aperture. Its response is further modified
when the ring is distorted by aberrations. In this case, the radius estimate is
sensitive to both amplitude and phase fluctuations. Although we developed
a full analytical treatment of this problem, it is omitted here for the sake of
simplicity.

The three quantities – Zernike defocus a4, conic aberration ac, and average
phase gradient ag – are similar, especially on the annular aperture (Fig. 5.4).
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FADE measures yet something else, but its response is most closely approxi-
mated by ag when the ring radius is calculated with a large mask width δ. Let
ag be the average phase difference between the outer and inner borders of the
aperture, the corresponding change of the angular ring radius is then

∆ρ =
ag λ

πD(1− ǫ)
. (5.8)

The Zernike defocus on the annular aperture is proportional to a4

√
12r2/(1−ǫ2),

where r is normalized by the pupil radius. Hence, ag = a4 ×
√

12 and the
proportionality coefficient A follows from Eq. (5.8),

∆ρ = A a4 = a4
λ

πD

√
12

1− ǫ
. (5.9)

The atmospheric variance of the defocus a4 or gradient ag on an annular aper-
ture can be computed, as done by Noll [50] for a filled aperture. Alternatively,
the variance of the ring radius may be directly written as

σ2
ρ = Cρ(λ/D)2(D/r0)

5/3 (5.10)

in analogy with similar formulae for the gradient or Zernike tilt. Our nu-
merical calculation for the average-gradient response (see Eq. 5.8) leads to an
approximation valid for ǫ < 0.6 with an accuracy of ±7 10−5:

Cρ ≈ 0.03288+ 0.0503ǫ − 0.05638ǫ2 + 0.04056ǫ3. (5.11)

We studied the response of FADE by analytical calculation and numerical
simulations and found that the exact coefficient Cρ in Eq. 5.10 depends on all
parameters of the instrument and data processing. A choice of δ ≥ 2.5 ensures a
relative stability of the response with respect to small aberration, propagation,
etc. A small correction to the “ideal” response coefficient is finally determined
by simulation (Sect. 5.8.1) and applied to the real data.

The lack of a unique, well-established coefficient relating measurements to
atmospheric parameters may appear disturbing. However, a similar analysis
applied to the classical DIMM instrument leads to the conclusion that its
response, too, depends on the details of centroid calculation and, furthermore,
is modified by propagation and optical aberrations. In this respect, FADE and
DIMM are not different.

5.3.4 Derivation of the seeing and coherence time

We convert the measured ring radius into defocus using coefficient A (see
Eq. 5.9) and calculate the temporal structure function (SF) of defocus D4(t),

D4(t) = 〈[a4(t
′ + t) − a4(t

′)]2〉. (5.12)
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Figure 5.5: Structure function of focus variations measured at 700 Hz (crosses) fitted with a model
of three turbulent layers (line).

A typical SF is plotted in Fig. 5.5.

A theoretical expression for the defocus SF has been derived in KT07. We
generalize it to annular apertures in Appendix B. The initial, quadratic part
of the SF is directly related to the combined time constant τ0 of all turbulent
layers. However, the acquisition frequency is not fast enough to capture the
initial quadratic part of the SF extending only to time lags of < 0.1tcross. In
order to get two points on this part for a layer moving with V = 50m/s, a
frame rate of ∼ 3kHz would be required.

To overcome the sampling problem, we fit the initial part of the SF to a model
of N turbulent layers with Fried parameters r0,i and velocities Vi, 1 ≤ i ≤ N:

D4(t > 0) = 1.94D5/3
N

∑

i=1

r−5/3
0,i K4(2tVi/D, ǫ) +

2σ2
ρ,noise

A2
, (5.13)

where the function K4(β, ǫ) is defined in Appendix B and σ2
ρ,noise is the noise

of the radius estimate determined by Eq. 5.5. The adjusted parameters are r0,i

and Vi . As will be seen in Section 5.4.1, the estimate of τ0 is independent of
N if N ≥ 3. Accordingly, a three-layer model is chosen for the data analysis
(Fig. 5.5). We fit only the initial part of the SF, up to the time increment ∆t.
Its exact value is not critical, as long as it is large enough for unambiguous
fitting of the parameters, ∆t ν > 2N + 1. For further data analysis, we set
∆t = 40ms.
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The atmospheric parameters (r0,V, τ0) are calculated as

r−5/3
0 =

N
∑

i=1

r−5/3
0,i , (5.14)

(V/r0)
5/3 =

N
∑

i=1

(Vi/r0,i)
5/3, (5.15)

τ0 = 0.314 r0/V. (5.16)

The estimate of r0 is also obtained directly from the ring-radius variance σ2
ρ

by subtracting the noise,

σ2
ρ − σ2

ρ,noise= Cρ(λ/D)2(D/r0)
5/3. (5.17)

When the SF reaches its asymptotic value on time increments smaller than
40ms, the same value of r0 is derived from the ring-radius variance (Eq. 5.17)
and from the model (Eq. 5.14). The robustness of parameter estimates derived
by model fitting has been confirmed by numerical simulation and by fitting
alternative models to real data (Section 5.4.1).

5.4 Analysis of observations

Seeing and coherence time were estimated from all sequences of 4000 images
recorded with FADE at Cerro Tololo between October 29th and November 2nd,
2006. In this Section, we check the FADE results for consistency and compare
them with the MASS-DIMM.

5.4.1 Influence of instrumental parameters

During data acquisition, instrumental parameters were varied over a broad
range to evaluate their effect on the results. Even though the non-stationarity
of the atmosphere precludes direct comparisons, some conclusions can never-
theless be drawn.

The ring sharpness, δρ, has been identified as a major source of instrumental
bias in FADE when significant high-altitude turbulence is present. In our
data, most images have 1′′ < δρ < 1.5′′, whereas a perfect diffraction-limited
ring has δρ = 0.9′′. Analysis of the average ring-images confirms that the
optimum combination of defocus and spherical aberrations was not reached,
a4 and a11 often being of the same sign rather than of opposite signs. For
our data, the dispersion and mean of τ0 increase when δ > 1.25′′, accordingly
sequences with δρ > 1.25′′ are disregarded. Still, some bias caused by radially
defocused images remains.
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Figure 5.6: Coherence time derived from the recorded data byfitting a model withN = 3 layers
(x-axis) is compared to the coherence time derived withN = 2 (dotted line) andN = 4 (solid line)
models.

As described in Sect. 5.3.4, the data are fitted to a model with a discrete
number of turbulent layers, N. Which is the minimum value of N that permits
a correct derivation of τ0? Figure 5.6 shows that the τ0 values obtained with
3 and 2 (resp. 4) layers differ on average by 7% (resp. 2%). An average
difference of 2% is likewise obtained when comparing the estimates with of 3
and 5 layers. A 3-layer model is thus a good compromise enabling to fit the
data with only six parameters.

The influence of the acquisition frequencyon the measured coherence time is
examined in Fig. 5.7. The data sequences recorded at frequencies ν ≥ 700Hz
were re-analyzed considering every other image. The coherence time obtained
with a slower ν/2 sampling is on the average 9% longer than with the fast
sampling. This difference is reproduced by simulations if the turbulence is
placed at 5 km altitude and if the ring-images are slightly defocused in the
radial direction (a11/a4 ≈ −0.07 or −0.14 instead of a11/a4 = −0.11 correspond-
ing to a sharp ring). The effect of temporal under-sampling is perceptible if
the same comparison is repeated with sequences recorded at frequencies below
700Hz: the number of points on the initial, increasing part of the SF is then
not always sufficient to extract unambiguously the six fitted parameters and
the coherence time is hence poorly constrained. To ensure a correct temporal
sampling under fast turbulence, we disregard the sequences with ν < 500Hz.

In line with the simulations, the coherence time estimates do not depend on
the average ring image radius. Similarly, the parameter statistics seems unbi-
ased by the stellar fluxand by the exposure time. While the sequences of Sirius
(mV = −1.5) and Fomalhaut (mV = 1.2) images were recorded with exposure
times of dt < 0.5ms and 1.0 < dt < 1.9ms respectively, no obvious difference
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Figure 5.7: Coherence time derived from all sequences recorded withν ≥ 700 Hz when every image
(x axis) and every other image (y axis) is considered.

exists between the mean and rms of the atmospheric parameters measured in
terms of these two stars,
ǫS0 : (0.9± 0.2)′′ ǫF0 : (0.8± 0.1)′′

τS0 : (1.4± 0.5)ms τF0 : (1.3± 0.5)ms.

5.4.2 Comparison with MASS and DIMM

In this section, the seeing and coherence time obtained with FADE are com-
pared to simultaneous measurements by the CTIO site monitor located at 10m
distance from FADE on a 6m high tower. The monitor consists of a combined
MASS-DIMM instrument fed by the 25-cm Meade telescope and looking at
bright (V = 2m...3m) stars near zenith. Of particular interest here is the time
constant τ0 estimated by MASS from the temporal characteristics of scintil-
lation by the method of Tokovinin [68]. This method is intrinsically biased
because it does not account for the turbulence below ∼ 500m. Moreover, it
has been recently established by simulations that the coefficient used to cal-
culate τ0 in the MASS software must be increased by 1.27.1 In the following,
we correct τ0 by applying this coefficient and including the contribution of the
ground layer:

τ
−5/3
0 = (1.27 τMASS)−5/3 + 118λ−2 V5/3

GL (C2
n dh)GL. (5.18)

The turbulence integral in the ground layer, (C2
n dh)GL, is computed from the

difference between the turbulence integrals measured by DIMM (whole atmo-

1See the unpublished report by Tokovinin (2006) at http://www.ctio.noao.edu/˜atokovin/profiler/timeconst.pdf
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sphere) and MASS (above 500m), while the ground layer wind speed, VGL,
is known from the local meteorological station. Even after correction by
Eq. (5.18), the coherence time measured by MASS-DIMM should be taken
with some reservation because it has never been checked against independent
instruments and some bias is possible.

Figure 5.8 compares the estimates of ε0 and τ0 obtained with FADE from
October 29th to November 2nd, to the results of MASS-DIMM. We do not
expect detailed correlation because the instruments were sampling different
atmospheric volumes. As seen on Fig. 5.8, the seeing measurements are better
correlated than the coherence times.

Statistically, it appears that FADE slightly under-estimates the seeing. This
effect is reproduced with simulations of high-altitude turbulence if the ratio of
spherical aberration to defocus a11/a4 is set larger than its optimum value −0.1
corresponding to sharp ring images. In this case, FADE also under-estimates
the coherence time. The bias on τ0 can however not be ascertained by Fig. 5.8
because the τ0 estimates by MASS might likewise be biased.

5.5 Conclusions and perspectives

We have built a first prototype of the site-testing monitor, FADE, suitable
for routine measurements of the atmospheric coherence time, τ0, as well as
the seeing, ε0. The instrument has been tested on the sky. Extensive sim-
ulations substantiate the validity of the FADE results and indicate potential
instrumental biases. Our main conclusions are as follows:

– The sampling time of the image sequence must be a small fraction of the
aperture crossing time tcross = D/V (∼10 ms for D = 0.36m and wind
speed V = 36m/s). Sampling at ν ≥ 500Hz appears adequate under most
conditions.

– The sharpness of the ring image in the radial direction does not bias the
results when the turbulence is located near the ground. But it can bias
both τ0 and ε0 estimates when high layers dominate, and strict control of
the telescope aberrations is thus required.The aberrations (hence the data
validity) can be evaluated a posteriorifrom the average ring image. Real-
time estimates of the ring radius ρ and width δρ are necessary to ensure
good optical adjustment of the instrument.

– The FADE monitor with 36-cm telescope can work on stars as faint as
mV = 3m.

– A simple estimator of the ring radius (Eq. 5.2) is adequate and robust,
provided a wide enough mask around the ring (δ ∼ 4) is used in the
calculation.
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– Moderate telescope aberrations such as coma are acceptable. The results
are not critically influenced by small telescope focus errors.

The current FADE prototype stores all image sequences, leading to a large
data volume; the data are processed off-line. While this procedure was nec-
essary for the first experiments, on-line processing will be implemented in a
definitive instrument. We have formulated and tested the data processing
algorithm and can now develop adequate real-time software.

We plan to develop an improved version of FADE with real-time data analy-
sis. It will be compared to simultaneous estimates of the atmospheric time con-
stant from currently working adaptive-optics systems (Fusco et al. [23]) and/or
long-baseline interferometers such as VLTI. Characterization of Antarctic sites
for future interferometers is an obvious application for FADE.

Acknowledgements: This work was stimulated by discussionswith Marc Sarazin
and other colleagues involved in site characterization. Weacknowledge financial
and logistic help from ESO in building and testing the first FADE prototype. We
thank Cerro Tololo Inter-American Observatory for its hospitality and support of
the first FADE mission.

5.6 Appendix A – Estimator of the ring radius and center

The parameters of the ring-like image – its center (xc, yc) and radius ρ – can
be derived by minimizing the intensity-weighted mean squared distance of the
pixels from the circle, δ2ρ:

δ2ρ =
∑

l,k

I l,k (r l,k − ρ)2 /
∑

l,k

I l,k, (5.19)

where r l,k = [(l − xc)2 + (k − yc)2]0.5 is the distance of pixel (l, k) from the ring-
center, (xc, yc). Setting the partial derivative of δ2ρ over ρ to zero, we obtain
the radius estimator of Eq. 5.2. However, it still depends on the unknown
parameters (xc, yc). By use of Eq. 5.2, Eq. 5.19 is simplified to:

δ2ρ =

∑

l,k I l,kr2
l,k

∑

l,k I l,k
−

[∑

l,k I l,k r l,k
∑

l,k I l,k

]2

. (5.20)

This formula does not contain ρ. The center coordinates (xc, yc) can be derived
by setting the partial derivatives of δ2ρ over parameters to zero and solving the
equations. We determine the center numerically by minimizing Eq. 5.20 and
using the center-of-gravity coordinates as a starting point.
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5.7 Appendix B – Structure function of atmospheric defocus

The temporal structure function of atmospherically-induced defocus variations
– Zernike coefficient a4 in Noll’s [50] notation – has been derived in KT07 for a
filled circular aperture. Here we generalize it to an annular aperture. Without
repeating the whole derivation, we refer the reader to KT07 and modify only
the spatial spectrum of the Zernike defocus, taking into account the central
obstruction ratio ǫ. The resulting expression is

D4(t) = 0.821k2D5/3

∫ +∞

0
dh Cn(h)2 K4

(

2tV(h)
D
, ǫ

)

, (5.21)

K4(β, ǫ) =
12

(1− ǫ2)4

∫ +∞

0
dx x−8/3 [1 − J0(βx)]

×
[

J3(x)
x
− ǫ4 J3(ǫx)

ǫx
+ ǫ2

J1(x)
x
− ǫ2 J1(ǫx)

ǫx

]2

, (5.22)

where k = 2π/λ, Jn is the Bessel function of order n, Cn(h)2 and V(h) are
the altitude profiles of the refractive-index structure constant and wind speed,
respectively. Considering the known relation between the turbulence integral
and the Fried parameter, r−5/3

0 = 0.423k2 C2
ndh, we can also write the defocus

SF produced by a single layer as

D4(t) = 1.94 (D/r0)
5/3K4(2tV/D, ǫ). (5.23)

For calculating the function K4, it is convenient to approximate the integral
(5.22) by an analytical formula, as in KT07. We suggest the approximation

K4(β, ǫ) ≈
C1 β

2 +C2 β
6

1+C3 βα + β6
, (5.24)

where the coefficients are cubic polynomials of ǫ:

Ci = Ci,0

3
∑

k=0

ci,k ǫ
k, (5.25)

cf. Table 5.2. This approximation is valid for ǫ < 0.6 with a maximum relative
error of less than 5% (3% for ǫ = 0.42) and correct asymptotes. The asymptotic
value K4(∞, ǫ) = C2 gives the focus variance on annular aperture, analogous
to the Noll’s coefficient. For ǫ = 0, we get C2 = 0.024 and the focus variance
coefficient of 1.94× 0.024/2 = 0.0233, in agreement with the Noll’s result.

The function K4(β, ǫ) reaches half its saturation value at β = 0.63, hence the
atmospheric defocus correlation time is ∼ 0.3D/V, as is well known in adaptive
optics.

The above analysis is valid for instantaneous measurements, while in fact the
defocus is averaged over the exposure time. This effect is usually important for
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Table 5.2: Coefficients of (5.24)

Param. C0 ǫ0 ǫ1 ǫ2 ǫ3

C1 0.04642 1 −0.182 −2.431 2.028
C2 0.0240 1 −0.017 −3.619 2.833
C3 1 1.25 0 0 7.5
α 1 2.18 −0.93 0 0

the DIMM. The time averaging can be included as an additional factor in the
integral (5.22), as done e.g. in (Tokovinin [68]). We made this calculation and
found that the initial, quadratic part of D4(t) is reduced by 0.8 for an exposure
time texp ∼ 0.3D/V. Actual exposure times are much shorter, hence the bias
caused by the finite exposure in FADE can be neglected. In the hindsight,
this result could be expected: in order to follow the focus variations, we need
such a fast sampling that the integration during the sampling period has a
negligible effect.

5.8 Appendix C – Simulations

A new seeing monitor can be validated by comparing it with another, well-
established instrument. In the case of FADE, however, there is no reliable
comparison data on τ0. Instead, we simulated our instrument numerically as
faithfully as we could and studied the influence of various instrumental and
data-reduction parameters on the final result.

Table 5.3: Simulation parameters.

N ν dt mV σron ρ a4 a7 a11 a27 h ε0 V
Hz ms el. ′′ rad rad rad rad km ′′ m/s

Fig. 5.2 1024 700 0.15 -1.5 17 3.8 0 0.7 -0.75 0.3 13 1.05 17
Fig. 5.3 1024 700 0.15 -1.5 17 5.5 0 0 0 0 5 1.00 17
Eq. 5.26 1024 700 0.15 -1.5 17 3.8 0 0 0 0 10 var. 35
Fig. 5.9 top 1024 700 0.15 -1.5 17 0 12 0.7 var. 0.3 0 var. 35
Fig. 5.9 bottom 1024 700 0.15 -1.5 17 0 12 0.7 var. 0.3 5 var. 35
Fig. 5.10 left 1024 700 1.4 var. 17 4 0 0 0 0 5 var. 35
Fig. 5.10 middle 1024 700 0.15 -1.5 17 var. 0 0 0 0 5 var. 35
Fig. 5.10 right 1024 700 0.15 -1.5 17 4 0 var. 0 0 5 var. 35

5.8.1 Simulation tool

Our simulation tool generates the complex amplitude of the light field propa-
gated through one or several phase screens with Kolmogorov spectrum. The
screens are typically 10242 pixels with 1 cm sampling, i.e. about 10m across.
The resulting amplitude pattern is periodic, without edge effects. It is “dragged”
in front of the simulated telescope with a chosen wind speed, wrapping around
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edges in both coordinates and eventually covering the whole area. The monochro-
matic images created by a telescope with a perfect conic aberration of specified
amplitude and, possibly, some additional intrinsic aberrations are re-binned
into the detector pixels, distorted by readout and photon noise and fed to the
data-analysis routine instead of the real data. Our tool has been verified by
comparing with analytical results for weak perturbations and has been used for
simulating other instruments such as DIMM and MASS. The limitations of this
tool are: monochromatic light, single wind velocity for all layers, instantaneous
exposure time.

We used two alternative, nearly equivalent ways of producing ring images.
In the first method, a perfect conic wavefront was generated, and its amplitude
was expressed as a ring radius ρ. In the second method, we do not apply conic
aberration (ρ = 0), but, instead, select a combination of defocus and spherical
aberrations to mimic a real telescope. The sense of the Zernike coefficients a4

and a11 in both cases is distinct.

Parameters of the simulations

For convenience, the simulation parameters are gathered in Table 5.3. These
parameters are:

– number of images in the sequence N,

– acquisition frequency ν,

– exposure time dt,

– visual stellar magnitude m,

– readout noise σron,

– conic aberration quantified by the average ring radius ρ,

– amplitudes of the Zernike aberrations a4 (defocus), a7 (coma), a11 (spher-
ical), and a27,

– altitude of the single turbulent layer h,

– seeing ε0,

– wind speed V.

Simulated ring images are compared in Fig. 5.2 to the images of Sirius
recorded on Nov. 2nd. The combination of exposure time and magnitude results
in the detected flux of 3·105 electrons per simulated image, as in the actual im-
ages of Sirius. For this sequence, the estimated turbulence parameters equal:
ε0 = 1.05”, V = 17m/s, τ0 = 1.86ms (Fig. 5.5). The same parameters are
chosen for the simulated images. For best resemblance between simulated and
real images, telescope aberrations are set to a7 = 0.7rad, a11 = −0.75rad,
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a27 = 0.3rad. The turbulence is placed at 13 km altitude to reproduce the
actual level of scintillation, evaluated from the intensity variance between ring
sectors s= 0.011 (cf. Eq. 5.4).

Refining the response coefficient

The coefficient A relating radius variation to defocus is given by Eq. 5.9. Its
actual numerical value, however, depends on the method of radius estimation,
and in particular on the choice of the mask width δ. For δ = 4, we determined it
to equal 1.077 by comparing τ0 estimates from sequences of simulated images,
to the nominal input value of τ0 when Eq. 5.9 is used to relate the radius to de-
focus. The corresponding simulation parameters are summarized in Table 5.3.
Thus,

∆ρ/a4 = 1.077
λ

πD

√
12

1− ǫ
. (5.26)

Instrumental biases

The data analysis relies on radius estimates that can be altered by telescope
aberrations, scintillation, detector and photon noise, etc. Here we evaluate
the instrumental bias by changing some parameters, while other parameters
are fixed. In each case, a sequence of 1024 simulated images is generated with
parameter values listed in Table 5.3. The wind speed is set to 35m/s and the
coherence time is then changed by modifying the seeing.

Ring sharpness. The ring is sharp in the radial direction when the wavefront
is exactly conic. A good approximation of the conic wavefront is achieved by
the optimum combination of defocus and spherical aberrations, a11 = −0.1a4.
Here we explore the effect of unsharp ring images by setting a4 = 12rad and
varying a11 about its optimum value a11 = −1.2rad. Unlike the rest of the
simulations, we do not apply conic aberration and set ρ = 0. Wrong values of
a11 make the ring wider, as evidenced by its rms width, δρ (Eq. 5.6).

As seen in Fig. 5.9, the seeing and coherence-time estimates are biased in case
of blurred rings and high-altitude turbulence. The sign of the bias depends on
the sign of the deviation from the optimum a11. When the turbulent layers are
low, the scintillation is weak and the parameters are correctly derived even if
the ring images are blurred.

To ensure a correct derivation under any atmospheric conditions, the ring
width should be close to its diffraction-limited value δρ,0:

δρ < 1.2δρ,0 ; δρ,0 = 1.7λ/[D (1− ǫ)], (5.27)

where the coefficient 1.7 is determined from the width, δρ = 0.87′′, of diffraction-
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limited rings. Given the instrumental set-up, images should be rejected if
δρ < 1′′. However, all images recorded with the FADE prototype have δρ > 1′′.
Hence we apply a softer data-selection criterion: δρ < 1.25′′, and note that the
resulting estimates might still be biased if the turbulence was high.

Stellar magnitude, ring radius and coma. Figure 5.10 examines the stability of the
seeing and coherence time estimates with respect to the stellar magnitude
mV, ring image radius ρ, and coma aberration a7. In agreement with Eq. 5.5,
estimates are correct up to stellar magnitudes 2–3. Spatial sampling and coma
aberration do not affect the estimates if ρ ≥ 2′′ (i.e. 5 pixels) and a7 ≤ 2rad.
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Figure 5.8: Seeing and coherence time measured with FADE between October 29th and Novem-
ber 2nd, compared to simultaneous measurements by the MASS-DIMM. The average values and
standard deviations of parameters and the correlation coefficients are indicated.
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Figure 5.9: Influence of the ring sharpness – quantified in terms of the ring widthδρ – on the seeing
and coherence time estimates. Top – turbulence layer at ground level, bottom – turbulence layer at
5 km altitude. Simulation parameters are given in Table 5.3.
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Figure 5.10: Dependence of the seeing and coherence time estimates on stellar magnitudemV, mean
ring radiusρ and coma aberrationa7. Simulation parameters are given in Table 5.3.
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Interferometric observations of the

multiple stellar systemδVelorum

6.1 Introductory remarks to the article

New techniques for characterizing atmospheric turbulence and an improvement
of the underlying theory are not an end in itself; for the astronomers they are of
consequence where they facilitate and advance observational techniques. This
chapter is meant to exemplify one area where interferometry is of particular
importance.

A central issue in astrophysics, the theory of stellar evolution, has made
considerable progress during the last century, but it is still incomplete and in
many major aspects tentative. In the range of intermediate stellar masses,
luminosities and ages, the theory is essentially consistent. But where the early
and the final phases of stellar evolution are concerned, and also the extremely
massive and the very low-mass stars, it tends to fail. Essential mechanisms
remain largely unresolved. The energy transport out of the stellar centers,
i.e. the efficiency and relative contribution of the two major mechanisms,
conduction and convection, is reasonably known for a star of lower mass, such
as our sun, but outside the normal range no reliable answers can currently be
given.

The underlying problem is the impossibility to determine, with conventional
techniques, the relevant parameters of a star. The mass, the chemical com-
position and the age of a star are the essential characteristics that determine
its luminosity, size, heavy-element generation, and ultimately its fate. How-
ever, the stellar age can never be determined directly and the mass only under
special conditions. These two parameters must, therefore, be derived from the
luminosity, color or effective temperature by the use of relations obtained via
evolutionary models.

93
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To calibrate these relations, observations are required that are not possible
with single stars, but can be made on physical binary and multiple-star sys-
tems, i.e., on star systems that are not associated by chance alignment, but
are coupled by their gravitational forces. Such systems offer the possibility to
determine directly the masses of stars that have been formed from the same
pre-stellar cloud and are, thus, of same age. For a binary system the masses
are inferred from Kepler’s laws of motion, provided a number of parameters are
obtained: the period, the semi-major axis and the eccentricity of the binary’s
orbit, and the ratio of the two stars’ distances to their center of mass. These
parameters are inferred from the stellar radial velocities via the Doppler shifts
of spectral lines, and from the stars’ positions via astrometric measurements.

Astrometry requires the stars to be sufficiently separated to be resolved
as separate objects, i.e. the stars in binaries or multiple systems need to
be reasonably widely separated. This, however, implies long orbital cycles
and, accordingly, it obviates the quick acquisition of the relevant data. It is,
thus, more desirable to work on close binaries or on the closely associated
components in multiple stars, which usually are hierarchical, i.e. contain close
binaries. But in all these cases, where small distances are involved, positions
and separations need to be obtained through interferometric measurements.
While – as documented in the most up-to-date 1999 revision of Tokovinin’s
catalogue [69] – speckle interferometry has been successful in past observations,
long-baseline interferometry is required to deal with the close distances that
are currently of much interest.

It must be noted that the true three-dimensional orbit can be reconstructed
only if the interferometric measurements of the positions and the Doppler-
measurements of the radial-velocity are combined. This is so, because the
actual measured quantities are, first, the two-dimensional projections of the
positions onto the celestial sphere and, second, the one-dimensional projection
of the velocities along the line of sight. In practice, the measurements are
often not yet sufficient to derive the two stellar masses without additional
assumptions, such as for example the mass of the primary, which might be
estimated indirectly from the luminosity or spectral type.

In an eclipsing binary, the orbit is oriented so that one star passes in front
of the other as we observe the system. This not only reduces the problem to
two dimensions, but also permits to readily derive several parameters from the
temporal variations of the stellar flux: Twice during an orbital period the flux
drops as one star eclipses the other. The relative durations of these eclipses and
the relative durations between the eclipses are related to the eccentricity and
the orientation of the orbit. Further, the ratio of the stellar surface brightnesses
is obtained from the intensity ratio of the two eclipses. The orbital and physical
properties of two eclipsing stars can therefore be determined far more precisely
than with conventional binary systems.

The subsequent article exemplifies the use of interferometry in its application
to δ Velorum, which is prominent in the center of the Southern hemisphere,
where it is going to be the polar star in the year 9000. While δVelorum contains
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an eclipsing close binary, (Aa,Ab), which causes two substantial brightness
reductions during the 45-days orbital period, it has, amazingly, been taken for
a single star until recently. Only after δ VelorumA was chosen as reference for
the space probe Galileo, and after it failed as such, it was recognized to be a
binary system. The subsequent article outlines the study that has come, by
the use of interferometry, to some unexpected conclusions on the multiple-star
system δ Velorum.
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Interferometric observations of the multiple
stellar systemδVelorum

A. Kellerer, M.G.Petr-Gotzens, P. Kervella, V. Coudé du Foresto, 2007,
A&A, 469, 633-637

Abstract

The nearby (∼24 pc) triple stellar system δVelorum contains a close, eclips-
ing binary (Aa, Ab) discovered in 2000. Multiple systems provide an opportu-
nity to determine the set of fundamental parameters (mass, luminosity, size,
chemical composition) of coeval stars.

These parameters can be obtained with particular precision in the case of
eclipsing binaries; so we exploited this potential for δVelorum’s components
(Aa, Ab).

We have analysed interferometric observations of the close binary (Aa, Ab),
obtained with the VINCI instrument and two VLTI siderostats. The measure-
ments, which resolve the two components for the first time, are fitted onto the
simple model of two uniformly bright, spherical stars.

The observations suggest that Aa and Ab have larger diameters than ex-
pected for stars on the main sequence, hence they must be in a later evolu-
tionary state.
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6.2 Introduction

One of the fifty brightest stars on the sky, with a visual magnitude of mV = 1.96
mag (Johnson et al. [39]), δVelorum (HD 74956), is a multiple stellar system
(e.g.Worley & Douglass [71]). But in spite of its brightness and proximity,
π = (40.90± 0.38)mas (Perryman et al. [55]), the issue of its composition re-
mains unresolved. As early as 1847, Herschel published his detection of two
faint visual companions, δ Vel C and D, at a distance of 69′′ from δ Vel A.
Another companion – δ Vel B at the time separated by ∼ 3′′ from δ Vel A
– was later discovered by Innes [37]. The separation 0.′′736± 0.′′014 between
components A and B appeared surprising when measured by Hipparcos, but
it was explained later in terms of the orbit computation of Argyle et al. [4],
which showed a highly elliptical orbit of component B with period P = 142yr.
In 1979, preliminary results from speckle interferometry suggested yet another
component of the system (Tango et al. [65]). This apparent companion was
found at a separation of ∼ 0.′′6 and was taken to be a further component,
because the separation for star B at the time was believed to be ∼ 3′′.

By now, however, it seems very likely that the speckle observations resolved
δ Vel B; while there is still an unexplained disagreement for the position angle,
the measured small separation does fit well with the orbital solution found by
Argyle et al. [4]. As noted in earlier publications (Hoffleit et al. [35], Otero at
al. [52]), the two stars that are currently termed δ Vel C and D were taken to
be associated with the pair AB because of seemingly similar proper motion.
However, we have not found the source of the proper motion measurement of
C and D. Finally, the most luminous component, A, was recently recognized
to be a close eclipsing binary with a period T = 45.15days (Otero et al. [52]).
Since then, δVel has been classified as a quintuple stellar system.

This investigation is focussed on the bright eclipsing binary, δVelA, but
we also argue that δVelC and D are not physically associated with δVelA,B.
While this makes δVel a triple system, it takes little away from its challenging
potential for obtaining important information on stellar evolution. As the
inclination, i, of its orbital plane is constrained to be close to 90◦, an eclipsing
binary system provides one of the best means to obtain, in terms of the Kepler
laws of motion, fundamental stellar parameters.

In this research note, we present the first interferometric observations of the
eclipsing binary δVelA, obtained with ESO’s Very Large Telescope Interferom-
eter (VLTI) and its “commissioning instrument” VINCI. The measurements
resolve this binary system for the first time. They are analysed here with non-
linear least-square fitting methods. We combine our interferometric results
with existing photometric and spectroscopic observations, estimate some or-
bital parameters of the δVelA binary system, and discuss the stellar properties
of the individual components based on the results.
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Figure 6.1: The angle,ω, at primary eclipse and the eccentricity,e, as constrained by the fractional
durations between the eclipses,τ f = 0.43± 0.05, and the fractional durations of the eclipses,ρ f =

1.78± 0.19.

6.3 Characteristics ofδ Vel A derived from previous measure-

ments

In the following, a priori estimates of two orbital parameters for the δVel (Aa-
Ab) system are derived from the time interval between the eclipses and their
durations. In subsection 6.3.2, stellar properties are then estimated from ex-
isting photometric and spectroscopic observations.

6.3.1 Orbit orientation and eccentricity

As reported by Otero et al. [52] and Otero [53], the fractional orbital period
from the primary to the secondary eclipse equals τ f = 0.43 ± 0.05. The
secondary eclipse was observed by the Galileo satellite in 1989, and its du-
ration and depth were fairly precisely established as 0.91 ± 0.01days and
∆mII = 0.32± 0.02 (Otero [53]). The same spacecraft observed the primary
eclipse several years later, although its measurements had become less accu-
rate by then. The approximate duration and depth of the primary eclipse are
0.51±0.05days and ∆mI = 0.51±0.05 (Otero [53]). The ratio of durations thus
amounts to ρ f = 1.78± 0.19. As will be seen now, the eccentricity, e, and the
angle, ω, between the semi-major axis and the line of sight, are constrained
by τ f and ρ f . The angle ω is similar to, but must not be confused with, the
more generally used parameter longitude of periastron.

The relative motion of the two stars δVel Aa and Ab is taken to be indepen-
dent of external forces, and the vector, s, from Ab to Aa traces an elliptical
orbit around Ab as a focal point. Because the photometric light curve indi-
cates a total eclipse for δVel A, the inclination of the orbit needs to be close to
90◦. To simplify the equations, we assume i = 90◦, and Ab is taken to be the
star with the higher surface brightness. During the primary eclipse, which is
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deeper, Ab is thus eclipsed by Aa. The angle θ of s, also called the true anomaly,
is zero at periastron and increases to π as the star moves towards apastron.
The distance between the stars depends on θ according to the relation:

s(θ) = a(1− e2)/(1+ ecos(θ)), (6.1)

where a denotes the semi-major axis. In line with Kepler’s second law, the
vector s covers equal areas per unit time. The fractional orbital period to
reach angle θ is, accordingly:

τ(θ) =
2
A

∫ θ

0
s2(θ′)dθ′ (6.2)

= [2arctan(f1 tan(θ/2)− f2 sin(θ)/(1+ ecos(θ))]/2π, (6.3)

where A = πa2
√

(1− e2) equals the area of the ellipse, and f1 =
√

((1− e)/(1+ e))
and f2 = e

√

(1− e2).

During the primary eclipse, when the star with the lower surface brightness,
Aa, covers Ab, the vector s is directed towards Earth, and θ equals ω. During
the secondary eclipse θ equals ω + π. Thus:

τ f = 0.43± 0.05 (6.4)

=

∫ ω+π

ω

dθ/(1+ ecos(θ))2 (6.5)

= [arctan(f1 tan((ω + π)/2))− arctan(f1 tan(ω/2))

+ f2 sin(ω)/(1− e2 cos(ω)2)]/π, (6.6)

which determines ω for any given eccentricity, e (Fig. 6.1). The orbital velocity
decreases as θ goes from zero to π, i.e. from the periastron to the apastron. In
the subsequent interval, π to 2π (or -π to 0), it increases again. If the line of
sight contained the orbital major axis, i.e. ω = 0 or π, the fractional duration
between eclipses τ would equal 0.5. Note that for such values of ω, Eq. 6.6 is
not defined, yet τ tends towards 0.5 when ω approaches 0, or π. If the line
of sight contained the orbital minor axis, i.e. ω = π/2 or -π/2, the maximum
and minimum values of τ would be reached. Values of τ less than 0.5 are thus
associated with negative ω values. Since the fractional orbital period from the
primary to the secondary eclipse is 0.43, the angle ω must lie between -π and
0. As Fig. 6.1 shows, the eccentricity needs to be larger than ≈ 0.03.

On the other hand, ω can be further constrained through the ratio of the
eclipse durations as follows. The eclipse durations are inversely proportional to
the product r dθ/dt of radius and angular velocities during the eclipses. They
are thus proportional to s(θ), and their ratio is:

ρ(ω) = (1− ecos(ω))/(1+ ecos(ω)). (6.7)

Given ρ f = 1.78± 0.19, this leads to a second relation between e and ω. As
illustrated by Fig. 6.1, simultaneous agreement with both observed values τ f



100 Chapter 6

and ρ f is reached only if e ∈ [0.23− 0.37] and ω ∈ −[0.1− 0.7] rad.

6.3.2 Semi-major axis and stellar parameters

Orbital motion in the triple system δVel(Aa+Ab+B) has recently been sub-
stantiated and analysed by Argyle et al. [4]. From position measurements taken
over a period of roughly 100 years, the authors inferred a P = 142yr orbit for
component B and deduced a total dynamical mass M(Aa) + M(Ab) + M(B) =
5.7+1.27
−1.08 M⊙. Photometric and spectroscopic measurements of the individual

components being few and partly inconclusive, individual mass estimates are
still difficult.

Hipparcosmeasured an apparent magnitude of HP = 1.991 for δVelA and
HP = 5.570 for δVelB. With the transformations given by Harmanec [?], the
approximate Johnson V magnitudes are mV = 1.99 and mV = 5.5 for δVelA
and δVelB, respectively. With the colours of the individual δVel components
being unknown, it needs to be noted that the uncertainty of mV can be as
high as ∼ 0.07mag. Since δVel is close (d = 24.45pc according to Hipparcos),
no interstellar reddening towards the source needs to be assumed, making the
absolute magnitudes are MV ∼ 0.05 for δVelA and MV ∼ 3.6 for δVelB.

Several authors have analysed spectra of δVelA (e.g. Wright [72]; Alekseeva
[3]; Levato [48]; Gray & Garrison [27]). Many of their measurements have prob-
ably included δVelB, but its flux is too low to add a significant contribution.
From the metal line ratios and Balmer line equivalent widths, all authors de-
duced either spectral type A0V or A1V. This being most likely an average
classification of the two stars, Aa and Ab, one star should be slightly hotter
and the other cooler than an A0/1V star. No signatures of a double-lined
spectroscopic binary were reported in any of the spectroscopic observations.

Based on the spectrophotometric information referred to above and under
the assumption that all δVel components are on the main sequence, it is sug-
gested that Aa and Ab have spectral type between A0V and A5V with masses
in the range 2.0–3.0M⊙. Furthermore, it follows that B is an F-dwarf with
mass about ∼ 1.5M⊙. This agrees reasonably well with the total dynamical
mass derived by Argyle et al. [4].

An a priori estimate of the semi-major axis, a, of the Aa-Ab system is
next derived from the mass sum of Aa+Ab (5 ± 1 M⊙) and its orbital period
(T = 45.150±0.001days), which leads to a = (6.4±0.5)×1010m= 0.43±0.04AU.
If they are main sequence early A stars, Aa and Ab should have stellar diam-
eters between 1.7− 2.4D⊙.

Finally, the depths of the eclipses can be used to constrain the surface bright-
ness ratio φ of the two eclipsing components, δVel Aa and Ab,

1.28≤ φ = 1− 10−∆mI /2.5

1− 10−∆mI I /2.5
≤ 1.67. (6.8)
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Table 6.1: Details of the VINCI measurements. The uncertainty on the phase determination equals
±0.002.

Date Julian Date Phase V2 σV2 Ns

- 2452700 % %
21 Apr 03 50.628 0.937 57.40 3.60 383

50.633 0.937 54.20 3.60 298
50.639 0.937 54.00 3.50 311

03 May 03 62.498 0.200 27.54 0.66 96
62.502 0.200 34.03 0.70 393
62.507 0.201 43.40 2.20 260
62.512 0.201 42.20 5.07 68
62.542 0.201 13.37 0.45 80
62.545 0.201 8.47 0.58 122
62.554 0.202 5.06 0.17 356
62.562 0.202 15.32 0.33 416

10 May 03 69.551 0.357 44.30 1.80 435
69.556 0.357 52.20 2.00 446
69.561 0.357 56.40 2.10 455

11 May 03 70.492 0.377 8.30 0.45 258
70.506 0.378 2.92 0.40 116
70.519 0.378 1.30 1.40 45

6.4 VLT Interferometer /VINCI observations

6.4.1 Data description

During April-May 2003, the ESO Very Large Telescope Interferometer (VLTI)
was used to observe the eclipsing binary δVel(Aa+Ab) in the K-band at four
orbital phases with the single-mode fiber-based instrument VINCI (Glinde-
mann [25]; Kervella et al. [40]). The observations were performed with two
siderostats, placed at stations B3 and M0, separated by 155.368 m. Table 6.1
lists the observing dates, the orbital phases of δVel (Aa+Ab), the calibrated
squared visibilities V2 and their standard deviations σV2, and the number of
accepted scans NS (out of 500).

Every interferometric observation yields a fringe contrast or squared visi-
bility, V2, whose variations are due not only to interferometric modulation,
but also to atmospheric and instrumental fluctuations. Accordingly the raw
squared visibilities need to be calibrated by a reference star. To this purpose
the observations of δVel were combined with observations of HD 63744, a star
of spectral type K0III, with an estimated diameter of 1.63± 0.03mas (Bordé
et al. [10]). The interferometric measurements were then analysed by use of
the VINCI data reduction pipeline, described in detail in Kervella et al. [40].

Additionally, the calibrated V2 values need to be corrected for the influence
of the nearby component δVelB. The diffraction on the sky (through an in-
dividual VLTI 0.4m siderostat) of the fundamental fiber mode, which defines
the interferometric field of view, is equivalent to an Airy disk with a 1.′′38 di-
ameter. At the time of the observations, Aa+Ab and B were separated by
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Figure 6.2: Corrected visibility values and standard deviation, compared to a model of two uniformly
luminous, spherical stars. The parameter values of the bestfit (solid line) are indicated in the upper
left corner.

∼ (1.0± 0.3)′′. Depending on atmospheric conditions, the interferograms are,
therefore, contaminated by a random and time-varying fraction of light, i.e. an
incoherent signal, from star B. The visibilities must, accordingly, be multiplied
by a factor:

Vc = V × (1+ IB/IAa+Ab) = (1.05± 0.05)× V, (6.9)

where IB and IAa+Ab are the intensities collected by the interferometer from
δVelB and δVel (Aa+Ab). The value of IB/IAa+Ab lies between 0 (no light from
B) and 10−∆m/2.5 = 0.09 (star B is completely in the field of view), where
∆m∼ 2.6 equals the K-band magnitude difference between B and Aa+Ab.

6.4.2 Comparison to a model

The 17 visibility measurements, Vc
2, were fitted to a model of a binary system

of two uniformly bright spherical stellar discs, observed at K-band with a filter
of finite bandwith. Five parameters of the binary model (stellar diameters
Da,Db, position angle of the ascending node Ω, semi-major axis a, eccentricity
e) were adjusted for optimum fit to the observations. The fitting procedure
utilises a non-linear least-square algorithm (Markwardt [51]) that follows the
direction of steepest descent of χ2 in the parameter space, χ2 being the reduced
sum of squared deviations, i.e. the sum divided by the 13 degrees of freedom.
To distinguish between local and absolute minima, the initial parameters were
varied over the broad ranges of their potential values: The semi major axis,
a, was considered between 5.4 1010m and 8.0 1010m, which corresponds to a
total mass of Aa and Ab in the range 3 − 10M⊙. As specified in Sect. 6.3,
e ∈ [0.23, 0.37]. The stellar diameters were examined between 0.4 and 12.4mas.
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Figure 6.3:χ2 as a function of the stellar diameters. The three other parameters of the model are set
equal to:a = (5.7± 0.3)1010m, e= 0.230± 0.05 andΩ = 27.4± 1.2◦.

These limits refer respectively to the resolution limit of the interferometer and
to the Roche lobe volume diameter DL. The latter is approximated to better
than 1% by DL/d ∼ 12.4mas (Eggleton [20]). If one of the stars were to have
a diameter larger than DL, the system would be an interacting binary and
the simple model of two spherical, uniformly bright stars would not apply.
The position angle of the ascending node Ω, measured from North to East,
equals 0 if the projected orbital plane and the North-South axes are aligned.
No previous measurement of Ω exists, and the angles Ω and Ω + π cannot be
distinguished through interferometric measurements; therefore, Ω is considered
between 0 and π. Varying the surface brightness ratio φ over the range specified
in Eq. 6.8 has virtually no effect on χ2, φ is so fixed at 1.46. Likewise, the period
of the binary δVel (Aa-Ab) is fixed at T = 45.150days. No apsidal motion of
the eclipsing system has been noted since its discovery in 2000. The orbital
inclination has been fixed at 90◦, although given the stellar diameters and
separations deduced in Section 6.3.2, the actual inclination could lie between
87.5◦ and 92.5◦.

The best adjustment of the model to the measured visibilities and their 1-
sigma statistical errors is shown in Fig. 6.2. It corresponds to a reduced mean
squared deviation χ2

0 = 2.6 and is obtained for the following parameter values:
a = (5.7±0.3)×1010m, e= 0.230±0.005,Ω = (27.4±1.2)◦,Da = (6.0±0.5)D⊙,Db =

(3.3 ± 0.6)D⊙. The angle at primary eclipse is derived by the eccentricity as
specified in Section 6.3.1: ω = −(20± 3)◦. The parameter uncertainties equal
the statistical errors, σ, scaled by the reduced mean deviation of the model to
the measurements, i.e. χ0σ. The dependence of χ2 on the stellar diameters is
illustrated in Fig. 6.3.

The three visibilities measured on May 10, 2003 systematically deviate from
the model fit (see Fig. 6.2). There is no evident explanation for this deviation:
the data were obtained under good atmospheric conditions and the calibrator
was the same as on the other nights. If the three points are removed, the quality
of the fit is improved, χ2

0 = 1.4, but within the uncertainties, the resulting
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parameter values are unchanged: a = (5.4±0.5)×1010m, e= 0.230±0.005,Ω =
(29.2± 2.4)◦,Da = (6.6± 0.5)D⊙,Db = (3.2± 0.5)D⊙.

It is apparent from the relatively high χ2
0 that there are deviations in addition

to the purely statistical errors. They might be due to an underestimation of
the calibrator’s size or might reflect some inaccuracies in the model for two
uniformly bright, spherical stars. This is discussed in the subsequent section.

6.5 Results and discussion

6.5.1 The close eclipsing binaryδVel (Aa-Ab)

The computations could be slightly biased if the diameter of the calibrator star
were substantially misestimated or if HD 63744 were a – still undiscovered –
binary system. On the other hand, HD 63744 is part of the catalog of interfer-
ometric calibrator stars by Bordé et al. [10], with its diameter (1.63±0.03)mas
specified to a precision of 1.8%. Furthermore, it has been studied simultane-
ously with other calibrator stars in VINCI observations by one of the authors
(P. Kervella). In these investigations the visibilities of HD 63744 equal those
expected for a single star of 1.63±0.03mas diameter. Thus, HD 63744 appears
to be a reliable calibrator.

Perhaps more relevant are the possible astrophysical complexities of δVel (Aa+Ab)
that are disregarded in the model of two uniformly bright, spherical stars. In
particular, the rotational velocities of Aa and/or Ab are found to be high,
with values of ∼150 - 180 km/s (Royer et al. [57]; Hempel et al. [33]; Holweger
et al. [36]), which indicates that the two stars need not be uniformly luminous
or circular.

Another possible over-simplification of our binary model is the constraint on
the orbital inclination, i, being fixed at 90◦. Given the fitted semi-major axis
and stellar diameters, we note that the eclipse durations (0.51± 0.05days and
0.91± 0.01days) are shorter than they should be in the case of i = 90◦, where
the duration of the longer eclipse would have to exceed Da T/(2π a) = 1.06days.
We conclude that i is ∼ 88◦ or ∼ 92◦, rather than 90◦. All observations were
performed out of eclipse and, therefore, the visibility values are nearly un-
affected by such a small variation in i. With substantially more visibility
measurements and an increased number of fitted parameters, the issue on the
precise orbital inclination might be addressed in more detail.

The most important and remarkable result of our analysis is that the stellar
diameters of Aa and Ab are found to equal 6.0 ± 0.5D⊙ and 3.3 ± 0.6D⊙,
respectively. This exceeds significantly, by factors ∼ 1.4 - 3, the values expected
if Aa and Ab are main sequence stars. If both diameters are constrained to
lie below 2.5D⊙, the best fit corresponds to χ2 = 16.7, which is far beyond the
present result and confirms that large diameters are required to account for
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the measured visibilities.

6.5.2 The physical association ofδVel C and D

Ever since the observations of Herschel [34], δVel has been taken to be a visual
multiple star, with δVel C and D the outer components of the system. With
mV of 11.0 mag and 13.5 mag (Jeffers et al. [38]), C and D would need to be
of late spectral type, certainly no earlier than M, if they were as distant as
δVel (Aa+Ab+B). To our knowledge, the only existing spectra of C and D were
recorded during a survey of nearby M dwarfs (Hawley et al. [32]). While the
limited range and resolution of the spectra precluded ready determination of
the spectral types of C and D, they were nevertheless estimated as ∼G8V and
∼K0V. Therefore, given their apparent magnitudes, C and D must be much
farther away than δVel (Aa+Ab+B). We conclude that δVel C and D are not
physically associated. Hence, δVel ought to be only classified as a triple stellar
system.

6.6 Summary

Seventeen VINCI visibility measurements of δVel (Aa+Ab) were fitted onto
the model of two uniformly bright, spherical stars. The adjustment to the
measurements does not provide individual diameters compatible with A-type
main sequence stars. The two stars thus appear to be in a more advanced
evolutionary stage. More data are needed however to confirm this result. As
the stellar evolution is fast during this period, more detailed knowledge of
the system might also constrain the models more tightly. Precise photometric
and spectroscopic observations of the eclipses should provide the separate in-
tensities and chemical compositions of Aa and Ab and, hence, permit further
inferences on the age and evolutionary state of δVel.

Acknowledgements: We thank Rosanna Faraggiana for her extensive help, Sebas-
tian Otero for providing the light curvesδVel Aa, Ab, and Neil Reid for making the
spectra ofδVel C, D available. The manuscript was improved by helpful comments
from the referee.
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Conclusion

The various subjects in this thesis have as a common denominator the effects
of atmospheric turbulence on high-resolution astronomical observations. In
conclusion the main results are summarized and some perspectives are given.

Summary

Interferometric observations of δVelorum

The study of the close, double-star system in δVelorum exemplifies the po-
tential of interferometric observations: With a single telescope a mirror of
100-meter diameter would be required to resolve δVelorum Aa and Ab, but
this resolution has here been achieved with two small 0.4m telescopes placed
100m apart.

The analysis of the observations suggests that the stellar diameters are con-
siderably larger – by factors two to three – than indicated by their luminosity
and the combined spectrum of δVelorum (Aa+Ab). Possibly the stars are
older than previously assumed, and have reached the stage where the hydro-
gen in their cores has largely been converted into helium. They should then
be expanding by now, while helium and heavier elements are being fused.

Interferometry falls short of providing images of a stellar system, it merely
yields parameter values for an assumed model. In our case it excludes the pos-
sibility that δVelorum (Aa+Ab) is a system of two uniformly bright, spherical
stars that are located on the main-sequence. Given the small amount of avail-
able data, the observations permit no more than this conclusion. In particular,
it is not possible, at this point, to exclude a perhaps more realistic model that
might include two circumstellar discs.

Further observations have recently been obtained with the new Astronomical
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Multiple Beam Recombiner, AMBER, that is installed behind the Very Large
Telescope Interferometer, VLTI, since 2001. The δVelorum binary (Aa+Ab)
was observed with three 8m-telescopes during three nights, i.e. at three differ-
ent configurations of the double-star system. The analysis of the raw AMBER
data is complex and has been carefully performed by Stefan Kraus from the
Max-Planck Institut für Radioastronomie, Bonn. The results should permit
an assessment of various double-star models, and given the present conclusion,
these models should include alternatives, such as circumstellar discs.

It must be emphasized, that δVelorum can be observed interferometrically,
because it is a particularly bright star. In fact, interferometry is, at present,
essentially limited by its poor sensitivity. This limitation is due to the detri-
mental effects of turbulence and can only be overcome by phasing-devices when
the turbulence is sufficiently slow. To make the best use of interferometers –
and adaptive-optics as well – it is therefore essential to assess and specify the
time-scales of atmospheric turbulence. The focus of this work has, accordingly,
been on improved methods to measure these time scales at existing observa-
tories and at potential observatory sites.

The coherence time of atmospheric turbulence

Current corrections with adaptive-optics can react with sufficient amplitude
to compensate for the atmosphere-induced phase distortions, but they fail to
attain the high speeds that are required. While the necessary amplitude is
determined by the turbulent intensity, the speed requirements reflect the time
scales of turbulence. Accordingly, the site selection for the coming genera-
tions of single-dish telescopes and interferometers, should largely rely on the
specification of the turbulence-time scales. But which quantity – or, possibly,
which quantities – must be measured? Does the same parameter determine
the operating performance of single dish-telescopes and of interferometers? Or
are certain observational techniques more affected by high-altitude turbulent
layers, while others are particularly sensitive to low-altitude turbulence?

To answer these questions, several quantities were examined, that are jointly
termed “coherence time” while they are actually defined in relation to specific
observational techniques with single-dish telescopes or with interferometers,
with or without adaptive-optic systems. These various coherence-times are
found to have almost the same dependance on the altitude profiles of tur-
bulence and to be thus essentially equivalent. Accordingly, the sensitivity of
interferometers and the performance of phasing devices and of adaptive-optic
systems can be predicted by measuring one and the same quantity: the coher-
ence time, τ0.
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How is the coherence time to be measured?

Pistonscope A first attempt was made to measure the coherence time with the
Pistonscope, which is in essence a Differential Image Motion Monitor, DIMM,
without prism. This endeavour turned out to be a very partial success for
reasons inherent to the instrument. The pistonscope images a star through
two small, circular openings, the resulting image being a fringe pattern within
two, superimposed diffraction discs. The difference between the turbulence-
induced motion of the interference pattern and that of the two diffraction
discs is then used to assess the coherence time. The principal limitation of this
method is that it involves the measurement of a small, differential movement
that depends on the altitude-profile of the wind direction.

The pistonscope has been set up at Dome C, during daytime in Febru-
ary 2005. The measurements have provided promising lower limits for the
coherence-times, but exact values could not be obtained, because the measure-
ments are dependent on the unknown profiles of wind directions. The work
has, thus, affirmed the need for an approach that allows regular monitoring of
the coherence-time with an appropriate instrument.

FADE To measure the coherence time without continuous assessment of the
wind directions, an instrument has been conceived that can be seen as an
isotropic analogue to DIMM. The image of a star is shifted somewhat out of
focus, which converts it – due to a central obstruction on the primary mirror –
into a blurred ring. The image is then sharpened into a narrow ring by insertion
of a lens with proper spherical aberration. Turbulence-induced variations of
the defocus aberration cause, then, fast changes of the ring radius, and the
coherence time and seeing are deduced from the amplitude and the velocity of
these changes. The instrument is accordingly termed the Fast Defocus Monitor,
FADE.

First observations with a prototype of the FADE monitor have been obtained
at the Cerro Tololo observatory in October 2006. The resulting seeing values
and coherence-times agree with simultaneous estimates in terms of the Multi
Aperture Scintillation Sensor, MASS, and DIMM instruments.

FADE slightly underestimes the seeing; this bias is reproduced by simula-
tions of somewhat blurred ring images, in the presence of optical aberrations
or scintillation spots. We conclude that, to minimize the effects of scintillation
and telescope aberrations on the FADE monitor, relatively sharp ring images
are needed, close to the diffraction limit.
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Further work required

Bringing the coherence-time monitor into practical use

Further tests The initial coherence-time estimates were obtained with the pro-
totype of FADE and have been compared to results from the MASS monitor.
MASS is based on scintillation measurements and is, therefore, insensitive to
the low turbulent layers roughly below 500m altitude. The actual coherence
times are, accordingly, obtained from combined observations with MASS and
DIMM. This estimation is indirect and can not be used to test the validity of
the coherence times derived in terms of FADE.

To check the validity of the FADE estimates, observations must be obtained
in parallel to measurements by an adaptive optics system or by an interferom-
eter. Simultaneous measurements with FADE and with NAOS, the adaptive-
optic system installed behind one of the VLT telescopes, are, therefore, planned
for August 2007 at the observatory of Paranal.

Making FADE user friendly Two major requirements must be met to establish
FADE as a regular monitoring instrument. First, an automatic procedure
needs to be incorporated for bringing the ring-image close to its diffraction-
limit and then measuring its width. Secondly there needs to be a standard
data-acquisition chain.

These conditions can not be attained with the current, commercial camera-
software, and a suitable software is, therefore, now being developed at the
observatoire de Meudon; it should be available for the forth-coming observa-
tions, in August 2007.

Application at Dome C, Antarctica

The measurements with the MASS monitor at the Concordiastation on Dome
C, suggest that the coherence time of the high-altitude turbulence is at this
location considerably longer than at mid-latitude sites [46]. On the other hand,
estimates of seeing by the DIMM have shown that the low-layer turbulence
might be particularly strong at Dome C [2]. This raises a decisive question.
Should coming generations of large telescopes and interferometers be installed
at Concordia? Should they then be placed twenty or forty meters above the
ground?

This being an important issue, direct measurements of the coherence time
need to be performed. FADE may be ideally suited for such measurements,
provided the experimental setup can resist antarctic temperatures. FADE’s
survival-ability under antarctic conditions is, therefore currently examined.
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[40] Kellerer, A., Sarazin, M., Coudé Du Foresto, et al., Applied Optics, 45,
5709 (2006)

[41] Kellerer, A., & Tokovinin, A., A&A, 461, 775 (2007)

[42] Kolmogorov, A.N., “About the Analytical Methods of Probability The-
ory” in: Selected works of A.N. Kolmogorov, vol. 1, ed. Tikhomirov, V.
M.. Springer-Verlag (2001)

[43] Kornilov, V.,Tokovinin, A., Vozyakova, O., et al., Proc. SPIE, 4839, 837
(2003)



BIBLIOGRAPHY 113

[44] Landau, L.D., Lifshitz, E.M., Fluid Mechanics. Pergamon Press, 1st edi-
tion (1959)

[45] Lawrence, J.S. , Ashley, M.C.B., Tokovinin, A., & Travouillon, T., Nature,
431, 278 (2004)

[46] Lawrence Livermore National Laboratory, University of California,
http://www.llnl.gov/str/June05/Carrano.html

[47] Levato, O. H., PASP, 82, 584 (1972)

[48] Lopez, B., A& A, 253, 635 (1992)

[49] Markwardt, C., Mpfit version 1.38, http://cow.physics.wisc.edu/
∼craigm/idl/fitting.html (2005)

[50] Noll, R., J. Opt. Soc. Am., 66, 207 (1976)

[51] Otero, S. A., Fieseler, P. D., & Lloyd, C., IBVS, 4999 (2000)

[52] Otero, S.A., http://ar.geocities.com/varsao/delta Velorum.htm (2006)

[53] Perrin, M.D., Sivaramakrishnan, A., Makidon, R.B. et al., ApJ, 596, 702
(2003)

[54] Perryman, M.A.C., Lindegren, L., Kovalevsky, J. et al., A&A, 323, L49
(1997)

[55] Richardson, L.F., Proc. Roy. Soc. London A, 110, 709 (1926)

[56] Royer, F., Gerbaldi, M., Faraggiana, R., & Gomez, A.E., A&A, 381, 105
(2002)

[57] F. Roddier, Prog. Optics, 19, 281 (1981)

[58] Sarazin, M., & Tokovinin, A., in: Beyond conventional adaptive optics,
eds. E. Vernet, R. Ragazzoni, S. Esposito, N. Hubin, ESO Conf. Workshop
Proc. No. 58, Garching: ESO (2002)

[59] Sarazin, M., & Roddier, F., A&A, 227, 294 (1990)

[60] Sasiela, R.J., Electromagnetic Wave Propagation in Turbulence. Berlin:
Springer-Verlag (1994)

[61] Schoeck, M., Spillar, E.J., J. Opt. Soc. Am. A, 17, 1650 (2000)

[62] Schoeck, M., & Spillar, E.J., SPIE, 3353, 1092 (1998)

[63] Tango, W.J., & Twiss, R.Q., Progress in Optics, XVII, 239 (1980)

[64] Tango, W.J., Davis, J., Thompson, R.J., & Hanbury, R., PASAu, 3, 323
(1979)

[65] Taylor, G.I., Proc. R. Soc. Lond. A, 164, 476 (1938)

[66] Tokovinin, A. & Heathcote, S. PASP,118, 1165 (2006)

[67] Tokovinin, A., Appl. Opt., 41, 957 (2002)



114 BIBLIOGRAPHY

[68] Tokovinin, A., A&A Suppl. Ser., 124, 75 (1997)

[69] Wikipedia, Concordia Station, http://en.wikipedia.org/wiki/Concordia Station

[70] Worley, C.E., & Douglass, G.G., A&A Suppl., 125, 523 (1997)

[71] Wright, C.O., Egan, M.P., Kraemer, K.E., & Price, S.D., The Tycho-2
Spectral Type Catalog (2003)

[72] Ziad, A., Conan, R., & Tokovinin, A., et al., Appl. Opt., 39, 5415 (2000)



Summary The research brought together in this thesis is concerned with the distortion of astro-

nomical observations due to atmospheric fluctuations. These fluctuations are especially critical for

the technique of interferometry whose potential is here exemplified by the study of δVelorum. The

focus of the research is, accordingly, on improved methods to assess the changing viewing conditions

at existing observatories, as well as to determine the suitability of potential observatory sites.

Site-testing and site-monitoring missions are usually directed at the assessment of the Fried

parameter with instruments such as the Differential Image Motion Monitor, DIMM. An estimation of

the coherence time requires then, in addition, wind-speed measurements by weather stations. A

more refined evaluation is obtained with instruments such as the Multi Aperture Scintillation Sensor,

MASS, that measure the altitude profiles of the index structure constant, C2
n, and the wind speed

with a resolution of about 500 m, and infer the coherence time from the integrated turbulence

profiles. The main error in the estimated coherence time results from the turbulence below 500 m

altitude not being accounted for.

To avoid these complexities, we suggest the direct measurement of a quantity proportional to

the coherence time. The variance of the defocus velocity is a suitable option, because it can be

evaluated through fast and continuous sampling of the atmospheric defocus coefficient. The concept

of a Fast Defocus Monitor, FADE, an instrument using a small telescope, some simple optics and a

fast camera is described, and first measurements are presented.

The final aim is to use FADE for site monitoring and site testing campaigns. A particularly

challenging and interesting project will be to monitor the coherence time at Dome C.

Résuḿe La vie sur Terre est rendue possible grâce au rideau protecteur que constitue l’atmosphère.

Avec sa masse équivalente à dix mètres d’eau, l’atmosphère est une condition préalable à l’apparition

de la vie. Mais ce rideau rend la vie difficile aux astronomes qui préféreraient avoir une vue directe

sur l’Univers. Il est donc indispensable de caractériser et de spécifier les conditions atmosphériques

qui permettent la meilleure utilisation des systèmes d’optiques adaptatives et des interféromètres –

les interféromètres, dont le potentiel est ici illustré à travers les observations d’un système de trois

étoiles, δVelorum.

Le temps de cohérence de la turbulence est un paramètre essentiel qui détermine la sensibilité

des interféromètres et la performance des systèmes d’optiques adaptatives. Il existe plusieurs in-

struments qui mesurent le temps de cohérence ou des paramètres reliés, mais tous ces instruments

ont des limitations intrinsèques: ou bien ils nécessitent de grands télescopes, ou bien l’analyse des

données est complexe, ou encore la méthode n’est sensible qu’à une partie de la turbulence. C’est

pourquoi les campagnes de tests de sites et de monitoring reposent principalement sur la mesure

du seeing, avec des instruments comme le Differential Image Motion Monitor, DIMM.

Pour palier à ce manque, nous avons proposé un instrument pour mesurer le temps de cohérence:

le Fast Defocus Monitor, FADE. La méthode consiste à transformer l’image d’une étoile, à travers un

petit télescope de 0.35 m de diamètre, en un anneau fin. La turbulence cause alors des variations

temporelles du rayon de l’anneau, dont la vitesse et l’amplitude sont reliées au temps de cohérence

et au seeing. Cette méthode est présentée ici avec les résultats de premières observations.


