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Note de synthèse

Introduction

Lorsqu’il fut interrogé sur les rapports établissant qu’il n’y avait pas de preuve d’un lien

direct entre l’Iraq et certaines organisations terroristes, le secrétaire à la défense américain

Donald Rumsfeld répondit:

Reports that say that something hasn’t happened are always interesting to me,

because as we know, there are known knowns; there are things we know we

know. We also know there are known unknowns; that is to say we know there

are some things we do not know. But there are also unknown unknowns – the

ones we don’t know we don’t know. And if one looks throughout the history

of our country [...], it is the latter category that tend to be the difficult ones.

(Department of Defense News Briefing, 12 février 2002)1

A travers ces quelques phrases apparemment sibyllines, Donald Rumsfeld exprimait

l’idée suivante. Une bonne appréhension de sa connaissance et de sa méconnaissance est un

1Je trouve toujours intéressants les rapports qui disent que quelque chose ne s’est pas produit car, comme

on le sait, il y a des connus connus; il y a des choses dont on sait qu’on les connaît. On sait aussi qu’il y a

des inconnus connus; c’est-à-dire qu’on sait qu’il y a certaines choses qu’on ne sait pas. Mais il y a aussi

des inconnus inconnus, ceux dont on ne sait pas qu’on ne les connaît pas. Et lorsque l’on regarde l’histoire

de notre pays [...], c’est cette dernière catégorie qui pose le plus de problèmes.
1
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atout majeur en stratégie militaire. Plus généralement, la connaissance interactive, c’est-à-

dire la connaissance de la connaissance des autres, joue un rôle de première importance dans

tout domaine impliquant des interactions stratégiques, en particulier en économie. Prenons

l’exemple d’un duopole où deux entreprises se font concurrence en quantité. On suppose que

si aucune entreprise ne connaît le niveau de production de l’autre, alors chacune produit la

quantité qui maximise son espérance d’utilité. Appelons yA et yB ces quantités. Supposons

maintenant que l’entreprise A ait l’opportunité d’observer secrètement la quantité produite

par l’entreprise B, avant de choisir son niveau de production. A connaît la production de B,

mais B ne le sait pas. B continue à produire yB, tandis que A produit sa meilleure réponse

face à yB et augmente son profit. Imaginons maintenant que l’entreprise B apprenne

que l’entreprise A a la possibilité d’observer son niveau de production avant de produire

elle-même. L’entreprise B se retrouve alors dans la position d’un leader de Stackelberg :

elle anticipe que l’entreprise A produira sa meilleure réponse face à sa production, et tire

avantage de cette nouvelle connaissance. Ainsi, il n’est avantageux pour A de connaître

le niveau de production de B que dans la mesure où B ne le sait pas. Ainsi, la stratégie

optimale de B dépend de sa connaissance de yA, et de sa connaissance de la connaissance

de A sur yB.

Un état remarquable de connaissance interactive est l’état de connaissance commune.

On dit qu’un événement est connaissance commune dans un groupe d’individus lorsque

chaque individu sait cet événement, que chacun sait que chacun sait cet événement, que

chacun sait que chacun sait que chacun sait cet événement, etc. En économie, deux types

d’enjeux sont liés au phénomène de connaissance commune. Le premier concerne les prob-

lèmes de coordination. Un problème de coordination est une situation caractérisée par le

fait que les agents ont intérêt à participer à une action collective seulement si les autres
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agents y participent aussi. Un moyen possible pour les individus de se coordonner pourrait

être de communiquer un message du type “Participons tous à cette action collective”. Mais

comme chaque personne ne veut participer que dans la mesure où les autres participent

aussi, pour que le message permette aux agents de se coordonner, il faut non seulement

que tous les individus soient au courant du message, mais aussi que tous sachent que tous

sont au courant du message, etc. En un mot, il faut que le message soit connaissance

commune dans le groupe. Considérons l’exemple suivant. Deux collègues décident d’aller

boire un verre ensemble après leur journée de travail. Avant de monter dans le bus, ils se

mettent d’accord pour descendre à l’arrêt n, pensant tous les deux que le bar se trouve à

cet arrêt. Ils montent ensemble dans le bus, mais se trouvent séparés par le grand nombre

de voyageurs. Le collègue A se retrouve complètement en tête du bus, et le collègue B

complètement en queue. Lorsque les portes s’ouvrent à l’arrêt n − 1, les deux collègues se

rendent compte que l’arrêt le plus proche du bar est en fait celui-là. Que vont-ils faire ?

Descendre tout de suite alors qu’ils s’étaient mis d’accord pour descendre à l’arrêt d’après,

et risquer ainsi de se retrouver seul? Supposons qu’au moment où B réalise l’erreur, il

cherche A des yeux mais n’arrive pas à voir si A a remarqué qu’il faudrait descendre tout

de suite. B sait que l’arrêt n−1 est le bon arrêt, mais ne sait pas si A le sait aussi. Comme

B veut avant tout passer du temps avec A, il décide de rester dans le bus. Supposons main-

tenant qu’au moment où il réalise l’erreur, B voit A en train de le chercher des yeux sans

succès. B sait alors que le bon arrêt est l’arrêt n− 1, sait que A le sait aussi, mais ne sait

pas si A sait qu’il sait. Il décide donc de rester dans le bus. Si, en revanche, les regards

de A et B se croisent au moment où ils réalisent leur erreur, alors ils descendent tous les

deux du bus. Lorsque A et B ont réalisé l’erreur, que B sait que A a réalisé l’erreur, mais

ne sait pas si A sait qu’il a réalisé l’erreur, il n’est pas connaissance commune entre A et B
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que le bon arrêt est en fait l’arrêt n−1. Ainsi, A et B restent dans le bus. Le fait d’établir

un contact visuel rend connaissance commune entre A et B le fait qu’ils ont remarqué leur

erreur, et les conduit alors à descendre à l’arrêt n − 1.

Le deuxième enjeu économique de la connaissance commune concerne le phénomène

de consensus. Dans un article fondateur, Aumann [1976] montra que des individus ra-

tionnels ne peuvent pas “s’accorder sur un désaccord” à propos de leurs croyances a poste-

riori, lorsqu’ils ont les même croyances a priori (les croyances des agents étant formalisées

par leurs probabilités sur les états du monde). Plus précisément, le théorème d’accord

d’Aumann peut s’énoncer de la manière suivante. Supposons que deux agents aient les

mêmes probabilités a priori. Si les probabilités a posteriori qu’ils attribuent à un événe-

ment donné sont connaissance commune entre eux, alors elles sont égales. L’importance de

ce résultat tient au fait qu’il suggère que les asymétries d’information ont moins de pouvoir

explicatif qu’on ne pourrait le penser à première vue. En effet, ce résultat montre qu’on

ne peut pas expliquer des différences de croyances par des différences d’information privée,

lorsque ces différences de croyances sont connaissance commune. En particulier, il implique

que les échanges spéculatifs ne peuvent pas être expliqués uniquement par de l’asymétrie

d’information. En effet, supposons que deux spéculateurs aient la même croyance a priori,

et que tous les deux reçoivent une information privée contradictoire sur l’évolution future

du cours d’une certaine action a. L’un croit que le cours de l’action va baisser, et souhaite

par conséquent vendre de l’action a. L’autre croit que le cours de a va monter, et donc

souhaite acheter de l’action a. Supposons que ces deux spéculateurs se rencontrent, et se

mettent d’accord sur un prix d’échange. On peut alors penser que l’échange est connais-

sance commune entre eux, c’est-à-dire qu’il est connaissance commune entre eux que l’un

accepte d’acheter, et l’autre accepte de vendre. Cela signifie qu’il est connaissance com-
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mune entre eux que les deux spéculateurs ont des croyances opposées sur l’évolution future

du cours de l’action a. Or cela n’est pas possible, d’après le résultat d’Aumann. Ainsi, pour

expliquer les échanges spéculatifs, il faut soit supposer que les agents sont imparfaitement

rationnels, soit supposer qu’ils ont des croyances a priori différentes.

Le résultat d’Aumann a donné lieu à une vaste littérature de la part d’économistes,

de philosophes et de logiciens, portant aussi bien sur les fondements épistémiques de ce

type de réflexions que sur des extensions du résultat d’Aumann dans différentes directions.

Cette thèse présente trois contributions originales à cette littérature, que nous avons choisi

d’appeler la littérature Agreeing to Disagree, en référence au résultat d’Aumann. Elle se

compose de six chapitres. Les deux premiers chapitres présentent le cadre formel et la

littérature. Les trois chapitres suivants sont des contributions originales. Enfin, le dernier

chapitre compare les propriétés des règles de décision utilisées dans les chapitres 3 et 4 avec

celles des règles existant dans la littérature.

Chapitre 1 : Modéliser la connaissance

Introduction

La littérature Agreeing to Disagree se base sur une modélisation particulière de la

connaissance et de la connaissance commune, particulièrement appropriée dans les cadres

interactifs, où l’on a besoin de modéliser la connaissance qu’ont les agents de la connaissance

des autres agents. Le premier chapitre de cette thèse est ainsi consacré à une présentation

détaillée du modèle de connaissance utilisé dans la littérature et dans cette thèse. Ce

modèle, appelé structure à la Aumann, consiste en un ensemble d’états du monde et en une

partition d’information pour chaque agent. Un état du monde est une description complète
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du monde, incluant les faits objectifs comme “Il pleut” ainsi que les faits de connaissance

comme “Je sais qu’il pleut”. Une partition d’information est une partition de l’ensemble

des états du monde, représentant la manière dont les agents sont informés sur le monde

en chacun des états. Dans le chapitre 1, on insiste sur l’interprétation controversée de la

notion d’état du monde, et on apporte des éléments de réponse à certains pseudo-paradoxes

liés à ces problèmes d’interprétation. Parmi les questions posées par l’interprétation des

structures à la Aumann, deux peuvent particulièrement remettre en cause l’interprétation

des résultats de notre thèse. Les partitions individuelles sont-elles “connaissance commune”

entre les agents? Les états du monde évoluent-ils lorsque les agents révisent leur information

privée? Pour clarifier ces questions, on se propose de revenir aux fondements logiques des

structures à la Aumann, c’est-à-dire au modèle de connaissance utilisé de longue date en

logique épistémique.

Les structures à la Aumann

On considère un groupe d’individus raisonnant à propos d’un monde qui peut être

décrit en termes de faits objectifs, tels que “Il pleut”, et de faits de connaissance, tels que

“Je sais qu’il pleut”. Un état du monde consiste en la liste de tous les faits (objectifs et de

connaissance) qui sont vrais dans ce monde. A la manière de la théorie des probabilités,

l’approche utilisée en économie pour modéliser la connaissance se base sur les événements,

qui sont des ensembles d’états du monde. Plus précisément, un événement est le champ

d’une propriété, c’est-à-dire l’ensemble des états du monde dans lesquels cette propriété

est vraie, et on identifie les événements avec les propriétés dont ces événements sont le

champ. Par exemple, l’ensemble des états du monde dans lesquels la propriété “Il pleut”

est vraie est identifié à l’événement “Il pleut”. On note Ω l’ensemble des états du monde et
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2Ω l’ensemble des événements de Ω. L’ensemble vide correspond à une propriété qui n’est

jamais vraie, c’est-à-dire à une contradiction, et l’ensemble Ω à une propriété toujours

vraie, c’est-à-dire à une tautologie. L’inclusion entre des événements correspond à une

implication matérielle entre propriétés. Enfin, on note ¬E la négation de l’événement E,

i.e. ¬E := Ω \ E.

Une structure à la Aumann consiste en un ensemble d’états du monde Ω et une partition

d’information Πi pour chaque individu i. 2 Une partition d’information est une fonction

Π : Ω → 2Ω telle que pour tout ω ∈ Ω:

(i) ω ∈ Π(ω)

(ii) ω′ ∈ Π(ω) ⇒ Π(ω′) = Π(ω)

La partition d’information d’un agent représente sa relation de possibilité, c’est-à-dire les

états que l’agent croit possibles dans chaque état du monde. Plus précisément, Πi(ω) est

l’ensemble des états jugés possibles par l’agent i lorsque l’état ω se réalise. L’information

objective, correspondant à la réalisation de l’état du monde ω, apparaît déformée à l’agent

i par sa partition d’information Πi.

Modéliser la connaissance dans les structures à la Aumann.

Il y a deux manières équivalentes de représenter la connaissance dans une structure à

la Aumann. La première est de lister l’ensemble des événements dont l’individu sait qu’ils

se sont réalisés, étant donnée l’information qu’il a à sa disposition. On dit qu’un individu

muni d’une partition Πi sait l’événement E sous l’état ω si et seulement si

Πi(ω) ⊆ E

2Les structures à la Aumann sont des structures d’information particulières où les correspondances de

possibilité satisfont trois axiomes, de réflexivité, transitivité et euclidianité. Voir le Chapitre 1 de la thèse.
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En d’autres termes, on dit qu’un individu connaît un événement si cet événement est réalisé

en chacun des états que l’individu croit possibles.

La deuxième manière consiste à énumérer, pour chaque événement, l’ensemble des états

du monde dans lesquels l’individu sait l’événement. Pour cela, on définit un opérateur de

connaissance individuel K : 2Ω → 2Ω. Etant donnés un individu i et un événement E,

Ki(E) est l’événement “i sait E”. La partition d’un agent peut être construite à partir

de son opérateur de connaissance, de même que l’opérateur de connaissance peut être

construit à partir de la partition de l’agent, via la relation suivante :

K(E) = {ω ∈ Ω | Π(ω) ⊆ E}

On note ¬K l’opérateur de “méconnaissance”. Ainsi, ¬K(E) est l’événement “l’agent ne sait

pas E”. Comme K(E) est un événement particulier, on peut lui appliquer l’opérateur de

méconnaissance ¬K. ¬K(K(E)) est alors l’événement “l’agent ne sait pas qu’il sait E”. Cet

événement est-il réalisable, c’est-à-dire existe-t-il un état ω tel que ω ∈ ¬K(K(E))? Plus

généralement, quelles propriétés de la connaissance suppose-t-on implicitement lorsqu’on

considère des structures à la Aumann? On montre dans le chapitre 1 que lorsque la

connaissance des agents est représentée par une partition de l’ensemble des états du monde,

alors leur opérateur de connaissance vérifie les cinq propriétés axiomatiques suivantes :

A1 Axiome de conscience : les individus sont capables d’identifier l’ensemble des mon-

des possibles. Ainsi, ils ne sont jamais surpris par une contingence qu’ils n’auraient

pas anticipée.

A2 Omniscience logique : lorsqu’un individu sait un événement, il sait aussi toutes

les implications logiques de cet événement, c’est-à-dire tous les événements contenant
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cet événement.

A3 Axiome de vérité : bien qu’il soit possible que des agents ne connaissent pas tous les

événements réalisés, lorsqu’ils savent un événement, alors cet événement est réalisé.

Autrement dit, les individus ne peuvent pas se tromper, en sachant des choses fausses.

A4 Introspection positive : un individu ne peut pas savoir un événement sans savoir

qu’il le sait. Autrement dit, lorsqu’un agent sait un événement, alors il sait qu’il le

sait.

A5 Introspection négative : un individu ne peut pas ignorer un événement sans savoir

qu’il l’ignore. Autrement dit, lorsqu’un individu ne sait pas un événement, il sait qu’il

ne le sait pas.

Dans le chapitre 1, on présente en détail et on discute la force et la plausibilité de ces

cinq propriétés axiomatiques.

Modéliser la connaissance commune dans les structures à la Aumann

On attribue la définition informelle de la connaissance commune au philosophe Lewis

[1969]. Un événement E est dit connaissance commune dans un groupe d’individus si

chacun sait E, sait de plus que chacun sait E, sait que chacun le sait, et ainsi de suite. Dans

un article fondateur à plus d’un titre, Aumann [1976] fut le premier à formaliser la notion

de connaissance commune. Définissons d’abord l’union3 d’un ensemble de partitions.

Definition 1 (Union de partitions) L’union des partitions Π1, . . . ,Πn, notée M , est le

plus fin grossissement commun de ces partitions, c’est-à-dire la plus fine partition telle que

∀ i, ∀ ω, Πi(ω) ⊆ M(ω).

3Traduit de l’anglais meet.
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Aumann [1976] montre qu’un événement est connaissance commune en un état ω s’il

contient la cellule de la partition M qui contient ω:

Proposition 1 ( Aumann [1976] ) Considérons un groupe d’agents N , chaque agent

i ∈ N étant muni d’une partition Πi, et soit M l’union des partitions (Πi)i∈N . Un événe-

ment E est connaissance commune en ω si et seulement si M(ω) ⊆ E.

Aumann montra ainsi que l’union d’un groupe de partitions individuelles est la partition

de connaissance commune dans le groupe. Selon cette définition, il ne suffit que d’un

nombre fini d’étapes pour vérifier si un événement est connaissance commune, lorsque le

nombre d’agents et les partitions d’information sont finis. On montre dans le chapitre 1 que

la connaissance commune satisfait les mêmes propriétés que la connaissance individuelles.

Controverses

Dans la section 3 du chapitre 1, on présente deux controverses qui furent à la base de

critiques violentes à l’égard de la littérature Agreeing to Disagree. La première porte sur

ce que les individus savent de l’information des autres, et se décline en deux questions.

1. Est-ce que les partitions des individus sont “connaissance commune” entre eux?

2. Est-il nécessaire que les partitions individuelles soient “connaissance commune” pour

que l’union des partitions soit effectivement la partition de connaissance commune?

A l’aide de la formalisation de la connaissance utilisée de longue date par les logiciens

et les philosophes, on montre que la première question n’a pas de sens telle qu’elle est

posée. En effet, les individus ne peuvent pas “connaître” les partitions des autres : la

connaissance des individus porte sur des faits, objectifs ou de connaissance, et les parti-

tions sont une représentation de cette connaissance. Ainsi, la connaissance des individus
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ne peut pas porter sur un outil de représentation, nécessairement artificiel, et essentielle-

ment utile au modélisateur. A l’aide des mêmes outils (Lismont et Mongin [1994]), on

explique que l’union des partitions individuelles est également une représentation séman-

tique de l’opérateur de connaissance commune, et qu’aucune hypothèse supplémentaire

n’est nécessaire pour utiliser cette représentation.

La deuxième controverse est liée à l’utilisation dynamique qui est faite des structures

à la Aumann dans la littérature Agreeing to Disagree. En effet, on suppose dans cette

littérature que les agents révisent leur information selon la règle suivante. Soit Πt la

partition d’information d’un agent à la date t, et m : Ω×N → M une fonction de message,

où m(ω, t) désigne le message entendu par l’agent à la date t et sous l’état ω. L’ensemble

des états jugés possibles par l’agent à la date t+1 sous l’état ω est l’ensemble des états que

l’agent pensait possibles à la date t, qui n’ont pas pu être éliminés sur la base du message

m(ω, t). Formellement,

Πt+1(ω) = Πt(ω) ∩ {ω′ ∈ Ω | m(ω′, t) = m(ω, t)}

L’agent n’a pas la même connaissance à la date t + 1 qu’à la date t. Or les états

du monde décrivent entre autres choses l’état de connaissance des agents. La controverse

prend ainsi la forme de la question suivante.

3. Peut-on considérer que les états du monde ne changent pas entre la date t et la date

t + 1?

Pour que la règle de révision utilisée ait un sens, il faut qu’elle permette d’exprimer

une connaissance nouvelle des mêmes états du monde. Pour lever ce pseudo-paradoxe, on

se réfère aux travaux récents de Bonanno [2004] et Board [2004]. Ils montrent que dans un

cadre dynamique, les états du monde doivent non seulement décrire l’état de connaissance
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des agents à la date présente, mais aussi l’arrivée d’une information nouvelle, et les états de

connaissance après reception de la nouvelle information. Dans ce cas, les états du monde

ne changent pas, et les partitions d’information à la date t + 1 représentent effectivement

une connaissance nouvelle d’un même incertain.

Chapitre 2 : Une synthèse de la littérature Agreeing to Dis-

agree.

Introduction

Aumann [1976] montra que la connaissance commune dans un groupe d’agents peut

être représentée par une partition particulière, construite à partir des partitions individu-

elles. Dans cet article fondateur, il prouva de plus la propriété suivante. Si deux agents

ont les mêmes croyances a priori, alors leurs croyances a posteriori pour un événement

donné ne peuvent pas être différentes, si elles sont connaissance commune entre eux. Ainsi,

des différences d’opinion actées de tous, par exemple sur les perspectives des marchés fi-

nanciers, ne peuvent pas être expliquées uniquement par le fait que les agents détiennent

des informations privées différentes. Dans le chapitre 2, on présente le théorème d’accord

d’Aumann, ainsi qu’une synthèse des travaux réalisés à la suite de ce résultat. En sec-

tion 2.5, on présente les principales critiques adressées à l’encontre de cette littérature,

notamment par Moses et Nachum [1990].

Le résultat fondateur : Agreeing to Disagree

Le résultat d’Aumann s’énonce de manière élégante en anglais, mais se traduit diffi-

cilement en français. Il dit en substance que “Rational agents cannot agree to disagree”,

c’est-à-dire que des agents rationnels ne peuvent pas s’accorder sur leurs désaccords.
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Théorème 1 Soient deux agents A et B munis de partitions ΠA et ΠB, et soit E ⊆ Ω

un événement donné. Si A et B ont la même probabilité a priori P sur Ω, et s’il est

connaissance commune en l’état ω que P (E | ΠA(ω)) = pA et P (E | ΠB(ω)) = pB, alors

pA = pB.

L’hypothèse de probabilité a priori commune a été, et est encore, violemment cri-

tiquée en théorie des jeux (voir notamment Lipman [1995], Gul [1996]). Dans le chapitre

2, on souligne le fait que la contribution majeure du résultat d’Aumann ne nécessite pas

l’hypothèse d’a priori commune. En effet, la preuve du théorème utilise l’argument suiv-

ant. Soit Pi la probabilité a priori de l’agent i, et considérons un événement quelconque

E. Si Pi(E | Πi(ω)) est connaissance commune en ω, alors M(ω) ⊆ {ω′ ∈ Ω | Pi(E |

Πi(ω
′)) = Pi(E | Πi(ω))} par définition. Or par construction, M(ω) est une union, néces-

sairement disjointe, de cellules de Πi. Par conséquent, Pi(E | M(ω)) = Pi(E | Πi(ω)).

Ainsi, si la probabilité a posteriori d’un agent est connaissance commune, alors cette

probabilité aurait été la même, si l’agent avait conditionné sa probabilité non pas sur

son information privée Πi(ω), mais sur l’information publique M(ω). Cette propriété est

souvent interprétée comme le fait que la connaissance commune neutralise l’information

privée. En effet, supposons que les probabilités a posteriori des individus d’un groupe

soient toutes connaissance commune dans ce groupe. On sait alors que pour tout in-

dividu i, Pi(E | Πi(ω)) = Pi(E | M(ω)). Supposons maintenant que les membres du

groupe “permutent” leur partitions d’information. La partition de connaissance commune

ne change pas, par conséquent, les probabilités individuelles doivent encore être égales à

Pi(E | M(ω)). Ainsi, la connaissance commune des probabilités a posteriori individuelles

implique que les probabilités des individus ne reflètent pas les differences d’information

privée de chacun.
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La littérature Agreeing to Disagree

Les travaux réalisés à la suite du résultat d’Aumann peuvent être classés en deux

groupes, selon la question à laquelle ces travaux répondent. Les travaux du premier groupe

généralisent au sens strict le résultat d’Aumann, selon deux directions. La première direc-

tion est de considérer que les agents expriment non pas des probabilités a posteriori, mais

des décisions. La seconde direction est de considérer que la connaissance commune porte

non pas sur les décisions individuelles, mais sur un agrégat, ou statistique, de ces décisions.

Ainsi, les travaux généralisant le théorème d’Aumann répondent à la question suivante :

Question I : Quelles conditions garantissent que la connaissance commune d’une statistique

des décisions individuelles implique que les décisions des individus ne reflètent pas leur

information privée?

Les travaux du deuxième groupe tentent d’expliquer l’emergence de situations de con-

naissance commune, au travers de processus d’échange d’informations entre les agents.

Plus précisément, ces travaux répondent à la question suivante :

Question II : Quelles conditions garantissent que la communication des décisions individu-

elles conduit à la situation de connaissance commune de ces décisions?

Concernant cette question, on choisit d’articuler les résultats de la littérature selon

la nature publique ou privée de la communication. En effet, lorsque la communication

est publique, la connaissance commune des décisions émerge en toute généralité. Lorsque

la communication est non publique en revanche, la connaissance commune des décisions

émerge via le consensus, qui est une situation où les agents prennent tous la même décision,

et où cette décision partagée est connaissance commune entre eux. Par conséquent, il

faut au moins supposer l’égalité des règles de décisions pour garantir l’émergence de la

connaissance commune des décisions individuelles dans les protocoles non publics.



NOTE DE SYNTHÈSE 15

Chapitre 3 : Connaissance commune d’un agrégat de décisions.

Introduction

Le chapitre 3 est consacré à une étude de la question de type I. Aumann [1976] y apporta

le premier un élément de réponse, en montrant que lorsque la connaissance commune porte

sur les décisions individuelles, c’est-à-dire lorsque la statistique des décisions individuelles

est la fonction identité, alors il suffit que les décisions des agents soient leurs probabilités

a posteriori pour un événement. Dans le même cadre, Cave [1983] et Bacharach [1985]

ont montré qu’il suffit que les règles de décision des agents satisfassent une condition plus

générale dite de stabilité par l’union.4 Une fonction δ : 2Ω → D est stable par l’union si

pour tous E,E′ ⊆ Ω tels que E ∩ E′ = ∅, δ(E) = δ(E′) = d ⇒ δ(E ∪ E′) = d. Enfin,

McKelvey et Page [1986] ont considéré le cas où la connaissance commune porte non pas

sur les décisions individuelles, mais sur un agrégat, ou statistique, de ces décisions. Dans

ce cadre, ils montrent qu’il suffit que 1) les individus aient tous la même croyance a priori,

que 2) les décisions des agents soient leur probabilités a posteriori pour un événement

donné, et que 3) la statistique des décisions individuelles soit stochastiquement régulière,5.

A titre d’illustration, le résultat de McKelvey et Page implique que si les agents ont la

même probabilité a priori, et si la moyenne des probabilités a posteriori qu’ils attribuent

à un événement donné sont connaissance commune entre eux, alors ces probabilités sont

égales.

Dans le chapitre 3, on considère le même cadre que celui de McKelvey et Page [1986],

c’est-à-dire que la connaissance commune ne porte pas sur les décisions individuelles mais

sur un agrégat de ces décisions, en supposant à l’instar de Cave [1983] et Bacharach [1985]

4Traduit de l’anglais union consistency.
5Traduit de l’anglais stochastically regular.
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que les décisions des agents ne sont pas nécessairement leur probabilités a posteriori. On

montre que si les règles de décision suivies par les agents satisfont une condition dite

de stabilité par l’union équilibrée, et si la statistique des décisions individuelles satisfait

une condition dite d’exhaustivité, alors la connaissance commune de la valeur de la statis-

tique implique que les décisions des agents ne reflètent pas leur information privée. Les

hypothèses de notre théorème nous permettent de considérer l’application suivante. Sup-

posons que les membres d’une commission de recrutement se réunissent afin de décider

d’engager quelqu’un. Supposons de plus que les membres de la commission aient tous

comme objectif d’engager le candidat le plus qualifié, mais que chacun ait reçu une in-

formation privée sur les compétences des différents candidats. En arrivant à la réunion,

chaque recruteur a ainsi sa propre opinion sur les capacités des candidats. Supposons

qu’un sondage soit réalisé auprès de chacun des membres de la commission, et qu’on leur

demande quel est selon eux le candidat le plus qualifié pour le poste. Nous montrons dans

le chapitre 3 que si la valeur de ce sondage est connaissance commune, alors les membres

de la commission doivent être tous d’accord sur le candidat à engager.

Le modèle

On considère un groupe d’agents N , chaque agent i étant muni d’une partition Πi de

l’ensemble des états du monde Ω, supposé fini. La manière dont les agents prennent leur

décisions est déterminée par une règle de décision, qui prescrit aux agents quelle décision

prendre en fonction de leur information privée. Précisément, les agents suivent tous la

même règle de décision δ : 2Ω → D, où D est l’ensemble de décision des agents. Comme

Ω est fini, l’ensemble des situations d’information possibles l’est également, et on note

{d1, . . . , dm} cet ensemble de décisions possibles, avec m < ∞.
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Les agents prennent leur décisions en fonction de leur information privée. Lorsque l’état

ω se réalise, l’agent i est informé de Πi(ω), et par conséquent prend la décision δ(Πi(ω)).

On note δi(ω) la décision prise par i en l’état ω, et δ(ω) le profil de décisions sous ω. Dans

ce chapitre, on étudie l’effet que la connaissance commune d’une statistique Φ des décisions

individuelles en un état donné ω aura sur le profil δ(ω). On dit que la statistique Φ est

connaissance commune en ω si l’événement {ω′ ∈ Ω | Φ(δ(ω′)) = Φ(δ(ω))} est connaissance

commune en ω.

La condition que l’on impose sur la règle de décision suivie par les agents est la stabilité

par l’union équilibrée. Avant de définir cette condition, définissons ce que l’on appelle une

famille équilibrée, dont le sens diffère légèrement de celui de Shapley [1967].

Definition 2 Une famille non-vide B ⊆ 2Ω est équilibrée s’il existe une famille de coeffi-

cients positifs ou nuls {λS}S∈B, appelés coefficients d’équilibrage, tels que
∑

s∈B λS1ω∈S = 1

pour tout ω ∈
⋃

S∈B S.

Un exemple de famille équilibrée de Ω = {1, 2, 3, 4, 5, 6} est B = {{1, 2}{3, 4}{1, 2, 4}{1, 2, 3}},

qui est équilibrée par rapport aux coefficients λ1,2 = λ1,2,4 = λ1,2,3 = 1/3 et λ3,4 = 2/3.

Nous pouvons maintenant donner la définition de la stabilité par l’union équilibrée.

Definition 3 Une règle de décision δ est stable par l’union équilibrée si et seulement si

pour toute famille équilibrée B, δ(S) = d ∀ S ∈ B ⇒ δ(
⋃

S∈B S) = d.

La stabilité par l’union équilibrée implique la stabilité par l’union de Cave [1983] et

Bacharach [1985], qui impose que si un individu prend la même décision sachant deux

événements disjoints, alors il prend encore la même décision sachant l’union de ces événe-

ments. Cependant, la stabilité par l’union équilibrée est satisfaite par des règles de décision
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usuelles en économie, comme les règles argmax, dont une définition précise est donnée dans

le chapitre 4.

La condition que l’on impose à la statistique des décisions individuelles est l’exhaustivité.

On dit qu’une statistique Φ est exhaustive si elle est une transformation injective de la

statistique Φ∗ définie comme suit :

Definition 4 Φ∗ : {d1, . . . , dm}N → Nm est définie par Φ∗(x1, . . . , xN ) = (
∑N

i=1 1xi=d1 , . . . ,
∑N

i=1 1xi=dm
).

En d’autres termes, une statistique exhaustive est une sorte de mesure de comptage

des décisions individuelles. Typiquement, un sondage sur l’ensemble d’une population est

une statistique exhaustive.

Le résultat

Dans le chapitre 3, on montre le résultat suivant. Considérons un groupe d’agents

suivant tous la même règle de décision stable par l’union équilibrée. Si les agents du groupe

ont connaissance commune d’une statistique exhaustive de leurs décisions individuelles,

alors tous les agents doivent prendre la même décision.

Théorème 2 Soient δ une règle de décision stable par l’union équilibrée et Φ une statistique

exhaustive. Pour tout ω ∈ Ω, si Φ(δ(ω)) est connaissance commune en ω, alors δi(ω) =

δ(M(ω)) pour tout i.

Dans le chapitre 3, nous expliquons les rôles joués par les conditions de stabilité par

l’union équilibrée et d’exhaustivité dans l’établissement du résultat. On montre en parti-

culier que ni la condition de stabilité par l’union de Cave [1983] ni celle de convexité de

Parikh et Krasucki [1990] ne permettent de garantir le résultat pour plus de trois agents.
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Enfin, on compare la condition d’exhaustivité avec la condition de régularité stochastique

de McKelvey et Page.

Chapitre 4 : Consensus, communication et connaissance : une

extension avec des agents Bayésiens

Introduction

Dans le chapitre 4, on présente une contribution originale aux travaux traitant de la

question de type II. Geanakoplos et Polemarchakis [1982] furent les premiers à y apporter

un élément de réponse. Ils montrèrent que si deux agents ont les mêmes probabilités a

priori, et si ces agents révèlent et révisent leur probabilités a posteriori pour un événement

donné, alors au bout d’un nombre fini d’étapes, ces agents finiront par avoir les mêmes

probabilités a posteriori . Cave [1983] montra que des conditions suffisantes dans le cas

d’un nombre quelconque d’agents, sont que le protocole de communication soit public et

simultané, et que la règle de décision suivie par les agents soit stable par l’union. Parikh

et Krasucki [1990] considèrent le cas plus général d’une communication éventuellement

privée et séquentielle entre plusieurs agents. Ils supposent que les agents communiquent

leurs décisions selon un protocole Pr, qui détermine les émetteurs et les récepteurs de

la communication à chaque date. Ils montrent que deux conditions sont suffisantes pour

que la communication conduise à un consensus : le protocole de communication doit être

équitable,6 c’est-à-dire tel qu’aucun agent ne soit exclu de la communication, et la fonction

dont les valeurs sont communiquées doit être convexe.7 Une fonction δ : 2Ω → D est

convexe si pour tous E,E′ ⊆ Ω tels que E ∩ E′ = ∅, il existe α ∈]0, 1[ tel que δ(E ∪ E′) =

6Traduit de l’anglais fair.
7Traduit de l’anglais convex.
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αδ(E)+(1−α)δ(E′). La condition de convexité est satisfaite notamment par les probabilités

a posteriori. Parikh et Krasucki montrent que si la fonction est seulement faiblement

convexe,8 alors la situation de consensus peut ne pas émerger dans certains protocoles

équitables.

Il existe des espaces de décisions pour lesquels la condition de convexité de Parikh

et Krasucki ne peut pas s’appliquer. Considérons un individu sur le point d’acheter une

voiture. Son ensemble de décisions est {Acheter, Ne pas acheter}. Supposons qu’on re-

nomme les décisions dans R, avec 0 pour Acheter et 1 pour Ne pas acheter. La condition

de convexité implique que s’il existe deux événements disjoints X et Y tels que δ(X) = 1

et δ(Y ) = 0, alors δ(X ∪ Y ) ∈]0, 1[, ce qui ne correspond à aucune décision dans {Acheter,

Ne pas Acheter}.

Dans le chapitre 4, on identifie une nouvelle condition sur la fonction dont les valeurs

sont communiquées qui garantit que la communication conduise à un consensus dans tout

protocole équitable. On montre que si les agents ont la même fonction d’utilité, et s’ils

communiquent selon un protocole équitable l’action qui maximise leur espérance d’utilité,

alors ils vont atteindre un consensus sur leur action optimale. Contrairement à la condition

de convexité, notre condition, appelée argmax, s’applique à tout espace de décisions.

Même après avoir renommé leur image dans R, les fonctions considérées dans ce chapitre

ne sont pas toujours représentables par des fonctions faiblement convexes. De plus, il existe

des fonctions convexes qui ne satisfont pas notre condition. Ainsi, la classe des fonctions

argmax est d’intersection non vide avec la classe des fonctions faiblement convexes, mais il

n’y a pas de relation d’inclusion entre elles. D’autre part, les fonctions argmax sont stables

8Une fonction δ : 2Ω → D est faiblement convexe si pour tout E, E′ ⊆ Ω tels que E ∩ E′ = ∅, il existe

α ∈ [0, 1] tel que δ(E ∪ E′) = αδ(E) + (1 − α)δ(E′)
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par l’union quel que soit l’espace de décisions considéré.

Les hypothèses de notre théorème permettent de l’appliquer au problème de la dif-

fusion d’innovations. Considérons un groupe de producteurs de blé en Beauce qui ont

soudain l’opportunité de produire du maïs. Chacun s’est renseigné sur la convenance du

sol beauceron pour l’exploitation du maïs, mais les fermiers ne peuvent pas partager leur

information privée car ils travaillent toute la journée. Le seul contact qu’ils ont les uns avec

les autres est un contact visuel : chacun est capable d’observer ses plus proches voisins,

mais pas les voisins de ses voisins. En particulier, chaque fermier observe le choix de variété

de ses voisins, mais pas celui des voisins de ses voisins, qui sont trop loin. Supposons que

certains fermiers jugent préférable, au vu de leur information privée, de cultiver du maïs.

Comment vont réagir les autres fermiers? Une situation où certains fermiers produiraient

du blé et d’autres du maïs est-elle une situation d’équilibre stationnaire? Le théorème

présenté dans le chapitre 4 montre qu’au bout d’un certain temps, tous les fermiers vont

finir par produire la même variété de céréales, et que le choix de cette variété consensuelle

sera connaissance commune entre eux.

Le modèle

On considère toujours un groupe fini d’agents N , chaque agent i étant muni d’une

partition d’information Πi de l’ensemble des états du monde Ω, supposé fini. Les agents

suivent une règle de décision δ : 2Ω → D, et communiquent leurs décisions aux autres.

On suppose que D est un sous-ensemble compact d’un espace topologique quelconque. La

manière dont les agents communiquent est définie par un protocole de communication,

qui détermine les émetteurs et les récepteurs de la communication à chaque date. Plus

précisément,
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Definition 5 Un protocole de communication Pr est une paire de fonctions (s(.), r(.)) :

N → 2N × 2N , telle que s(t) et r(t) sont respectivement les ensembles d’émetteurs et de

récepteurs de la communication à la date t.

On suppose que le protocole de communication est équitable.9 La question de type

II se traduit alors par la suivante. Quelles conditions faut-il imposer sur le protocole

de communication Pr et sur la règle de décision suivie par les agents pour arriver à un

consensus, c’est-à-dire une situation où tous les agents prennent la même décision, et où

cette décision partagée est connaissance commune entre eux?

On définit maintenant la condition argmax. Supposons que les agents aient tous la

même fonction d’utilité U : D × Ω → R, dont la valeur dépend de l’action choisie d ∈ D

et de l’état du monde réalisé. On suppose que U(., ω) est continue sur D pour tout ω. Les

agents communiquent l’action qui maximise leur espérance d’utilité, calculée par rapport à

leur probabilité a priori P . Afin d’éviter les cas d’indifférence, on fait l’hypothèse que, pour

tout événement, toutes les actions ont des utilités espérées différentes conditionnellement

à cet événement.

[Hypothèse de non-indifference] Pour tout événement F ⊆ Ω, ∀ d 6= d′ ∈ D, E(U(d, .) |

F ) 6= E(U(d′, .) | F ).

Sans cette hypothèse, l’ensemble des actions optimales ne serait pas nécessairement

un singleton, et il faudrait alors spéficier la manière dont les agents choisissent l’action

communiquée dans cet ensemble. Cette hypothèse est cependant assez forte, et on discute

des conséquences de son relâchement dans la conclusion du chapitre 4.

Definition 6 Une fonction δ : 2Ω → D est du type argmax s’il existe une fonction

9Voir la définition dans la thèse
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d’utilité U : D × Ω → R et une probabilité P sur Ω telles que pour tout X ⊆ Ω,

δ(X) = argmaxd∈DEP [U(d, .) | X].

Supposons maintenant que Pr soit un protocole de communication donné. L’ensemble

des états possibles pour l’agent i à la date t lorsque l’état du monde est ω est noté Ci(ω, t),

et est défini par le processus récursif suivant :

Ci(ω, 0) = Πi(ω)

Ci(ω, t + 1) = Ci(ω, t) ∩ {ω′ ∈ Ω | δ(Cs(t)(ω
′, t)) = δ(Cs(t)(ω, t))} si i = r(t),

Ci(ω, t + 1) = Ci(ω, t) sinon.

Le résultat

Dans le chapitre 4, on montre que si les agents suivent une règle de décision de type

argmax, alors la communication des décisions individuelles selon un protocole équitable

permet de créer un consensus de décisions. Autrement dit, on montre que pour tout ω,

δ(Ci(ω, t)) admet une valeur limite qui ne dépend pas de i.

Théorème 3 Il existe T ∈ N tel que pour tout ω, i, et tout t, t′ ≥ T , Ci(ω, t) = Ci(ω, t′).

De plus, si le protocole est équitable, alors pour tout i, j, et pour tout ω, δ(Ci(ω, T )) =

δ(Cj(ω, T )).

On discute des propriétés des fonctions de type argmax dans le chapitre 6. Tout d’abord,

une fonction argmax est clairement stable par l’union quel que soit l’espace de décision.

Ensuite, une fonction argmax n’est pas forcément représentable par une fonction faiblement

convexe, c’est-à-dire qu’étant donné f argmax, il peut ne pas exister une fonction bijective

g : D → R telle que g ◦ f soit faiblement convexe. Si une telle fonction g existait, les

propriétés de f et de g ◦ f en termes d’apprentissage et de consensus seraient les mêmes.
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Ainsi, les fonctions argmax seraient des fonctions faiblement convexes particulières pour

lesquelles le consensus émerge dans tout protocole équitable. On montre que ce n’est pas le

cas dans le chapitre 6. Enfin, il existe des fonctions faiblement convexes qui ne peuvent pas

être définies comme l’argmax d’une espérance d’utilité. Un tel exemple peut être trouvé

dans Parikh and Krasucki [1990, p 185]: ils présentent une fonction f faiblement convexe

telle qu’aucun consensus n’émerge dans certains protocoles équitables. On montre dans le

chapitre 6 qu’il n’est pas possible de trouver une fonction d’utilité U et une probabilité P

telle que cette fonction f soit l’argmax de l’espérance conditionnelle de U .

Chapitre 5 : Consensus, communication et ordre de parole :

qui veut parler en premier?

Introduction

Issu d’un travail en collaboration avec Nicolas Houy, le chapitre 5 traite de la question

de l’influence de l’ordre de parole sur la prise de décision en groupe. Considérons l’histoire

suivante, inspirée de l’exemple bien connu des trois chapeaux. Alice et Bob sont assis l’un

en face de l’autre, chacun portant un chapeau pouvant être rouge ou blanc. Supposons que

les deux chapeaux soient rouges. Leur professeur annonce aux deux enfants qu’au moins un

de leurs chapeaux est rouge, et leur demande s’ils connaissent la couleur de leur chapeau.

Le fait qu’il soit maintenant connaissance commune entre les deux enfants qu’au moins un

de leur chapeaux est rouge n’est pas suffisant pour leur permettre d’en inférer la couleur

de leur propre chapeau. La seule manière pour eux de répondre à la question du professeur

est de communiquer d’une manière ou d’une autre. Supposons qu’Alice dise à Bob qu’elle

ne connaît pas la couleur de son chapeau. Bob comprend alors que son chapeau est rouge,

puisque s’il avait été blanc, Alice aurait compris que son chapeau à elle était rouge. Si
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maintenant Bob dit à Alice qu’il sait la couleur de son chapeau, Alice n’apprendra rien,

car Bob l’aurait su que son chapeau eût été rouge ou blanc. En effet, Alice sait que si son

chapeau était blanc, Bob aurait su que son chapeau à lui était rouge, d’après la remarque

du professeur, et elle sait que si son chapeau était rouge, Bob aurait su que son chapeau

à lui était rouge parce qu’elle ne savait pas la couleur de son chapeau. Si, en revanche,

Bob dit en premier qu’il ne sait pas la couleur de son chapeau, alors Alice comprendra

que son chapeau est rouge. Ainsi, si Alice veut apprendre la couleur de son chapeau, elle

n’a pas intérêt à être la première à parler. Cette histoire illustre le fait suivant. A partir

du moment où les agents communiquent de manière à apprendre de l’information, l’ordre

de parole n’est pas anodin. Les processus de communications ne sont pas commutatifs,

puisque différents ordres de parole conduisent à des issues différentes.

Parikh and Krasucki [1990] ont étudié le cas où les agents d’un groupe se communiquent

la valeur d’une fonction f , selon un protocole de communication sur lequel ils se sont mis

d’accord au préalable. Ils montrèrent que, si le protocole de communication est équitable,

et si la fonction dont les valeurs sont communiquées est convexe, alors la communication

conduit à un consensus sur la valeur de cette fonction. Le point de départ de ce travail

fut l’observation que, dans le cadre de Parikh et Krasucki, différents protocoles ont des

issues différentes, en termes de valeur du consensus atteint ainsi qu’en termes de mon-

tant d’information apprise par les agents au cours du processus. En particulier, il peut

arriver qu’un agent apprennent plus d’information en communiquant avec les autres via

un protocole α que via un protocole β. Il peut également arriver que les protocoles les plus

informatifs ne soient pas les mêmes pour tous les agents. Ainsi, si les agents communiquent

de manière à apprendre de l’information, ils peuvent être en désaccord quant au protocole

de communication à utiliser.
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La question étudiée dans le chapitre 5 est la suivante. On considère le même cadre que

celui de Parikh et Krasucki, en faisant l’hypothèse supplémentaire que les agents commu-

niquent afin d’apprendre de l’information. Implicitement, les agents sont des preneurs de

décision, qui essaient d’être mieux informés au sens de Blackwell [1953] afin de prendre de

meilleures décisions. Cette hypothèse implique que les agents ont des préférences dépen-

dantes des états sur les protocoles de communication. Dans le chapitre 5, on étudie les

inférences que peuvent faire des agents rationnels de la connaissance commune que certains

d’entre eux sont en désaccord quant au protocole de communication à utiliser.

On observe que les deux situations suivantes sont possibles. Premièrement, il peut

être connaissance commune dans un groupe d’agents que tous préfèrent le même ordre de

parole. Deuxièmement, il peut être connaissance commune dans un groupe d’agents que

certains d’entre eux sont en désaccord quant au protocole de communication à utiliser.

Cependant, on montre le résultat surprenant que dans ce cas, la valeur de consensus de la

fonction doit être la même, quel que soit le protocole utilisé.

Quel est le sens de ce résultat dans le cadre de l’exemple des producteurs de blé? On

sait que, sous certaines conditions, les fermiers vont finir par tous produire du blé, ou

tous produire du maïs. On sait aussi que la céréale “consensuelle”, sur laquelle les fermiers

vont tous tomber d’accord, dépend du protocole de communication utilisé, c’est-à-dire

dans ce cadre de la manière dont les fermiers sont localisés les uns par rapport aux autres.

Supposons que certaines fermes soient plus convoitées que d’autres, non parce que le terrain

y est meilleur, mais parce que leur disposition permet d’apprendre beaucoup d’information

(on peut penser par exemple à la ferme centrale, de laquelle on peut observer tous les

autres fermiers). Supposons que deux fermiers veuillent acheter la même ferme, et que

ce soit connaissance commune dans la région. Le résultat du Chapitre 5 implique que la
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variété consensuelle sera la même, quel que soit le fermier qui possède la ferme.

Le modèle

On reprend (en le généralisant un peu) le cadre de Parikh et Krasucki, et on introduit

les notations suivantes. Πα
i désigne la partition d’information de l’agent i à l’équilibre du

processus de communication, lorsque le protocole de communication est α. Πα désigne

la partition de connaissance commune à l’équilibre du processus, c’est-à-dire l’union des

partitions individuelles Πα
i , et f(Πα(ω)) désigne la valeur consensuelle de f sous l’état ω,

lorsque le protocole utilisé est α.

On sait que dans ce cadre, étant donné n’importe quel protocole α, sous les hypothèses

d’équitabilité et de convexité, la communication des valeurs privées de la fonction f conduit

à un consensus sur la valeur de f . La proposition suivante établit que cette valeur dépend

du protocole de communication.

Proposition 2 Il existe un modèle d’information 〈Ω, (Πi)i, f〉 avec f convexe et deux pro-

tocoles équitables α, β pour lesquels il existe ω tel que f(Πα(ω)) 6= f(Πβ(ω)).

Ce résultat peut être montré facilement pour des fonctions stables par l’union. Cepen-

dant, il n’avait pas été montré pour des probabilités a posteriori. Comme les probabilités

a posteriori sont des fonctions stables par l’union, il eut pu être possible qu’il n’existât

pas de modèle avec des probabilités a posteriori tel que l’ordre de parole compte. Dans le

chapitre 5, on montre un exemple prouvant la proposition ??.

On fait l’hypothèse que les agents communiquent de manière à être mieux informés au

sens de Blackwell [1953]. On sait qu’un partition Π est plus informative qu’une partition

Π′ si et seulement si Π est plus fine que Π′, c’est-à-dire si chaque cellule de Π est incluse
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dans une cellule de Π′. Ainsi, on dit qu’un agent est mieux informé lorsqu’il communique

avec un protocole α qu’avec un protocole β si sa partition d’information à l’équilibre du

processus est plus fine avec α qu’avec β.

Cela induit pour chaque agent une préférence dépendante de l’état sur l’ensemble des

protocoles. Avant que la communication n’ait lieu, l’ensemble des états pertinents pour

l’agent i sous l’état ω est Πi(ω). Ainsi, on dit qu’un agent préfère α à β sous l’état ω si

Πα
i est plus fine que Πβ

i en tout état que l’agent juge possible sous ω.

Definition 7 ( Préférences) Soient α et β deux protocoles. L’ensemble des états du

monde dans lesquels l’agent i préfère α à β est noté Bi(α, β), et est défini comme suit :

Bi(α, β) = {ω ∈ Ω | ∀ω′ ∈ Πi(ω), Πα
i (ω′) ⊆ Πβ

i (ω′) et ∃ ω′′ ∈ Πi(ω) s.t. Πα
i (ω′′) ⊂ Πβ

i (ω′′)}

Le résultat

On énonce maintenant le résultat principal du chapitre 5.

Théorème 4 Soit 〈Ω, (Πi)i, f〉 un modèle d’information tel que f soit convexe, et soient

α, β deux protocoles équitables tels que α 6= β. Considérons a1, a2, b1, b2 ∈ {α, β}, avec

a1 6= a2 et b1 6= b2, et fixons i 6= j. Les assertions (1), (2) et (3) ne peuvent pas être vraies

simultanément.

(1) Bi(a1, a2) et Bj(b1, b2) sont connaissance commune en ω.

(2) ω ∈ Bi(a1, a2) ∩ Bj(b1, b2) et a1 = b2.

(3) f(Πα(ω)) 6= f(Πβ(ω)).
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La signification de ce théorème dans l’exemple donné en introduction est la suivante.

• Si (1) et (2) sont vraies, c’est-à-dire s’il est connaissance commune en ω que Alice et

Bob veulent tous les deux parler en premier (ou en deuxième), alors (3) est fausse, i.e la

valeur de consensus de f en ω est la même, que Alice ou Bob parle en premier.

• Si (1) et (3) sont vraies, c’est-à-dire si les préférences d’Alice et de Bob concernant

l’ordre de parole sont connaissance commune en ω, et si la valeur consensuelle de f dépend

du fait qu’Alice ou Bob parle en premier, alors (2) est fausse, i.e Alice et Bob préfèrent le

même protocole en ω.

• Si (2) et (3) sont vraies, c’est-à-dire si Alice et Bob veulent tous les deux parler en

premier (ou en deuxième) en ω, et si la valeur consensuelle de f est différente selon que

Alice ou Bob parle en premier, alors (1) est fausse, i.e les préférences d’Alice ou de Bob

ne sont pas connaissance commune en ω.

Dans le chapitre 5, on montre que le résultat de ce théorème n’est pas dû au fait que

deux des trois assertions ne peuvent pas être vraies simultanément. On montre aussi qu’il

n’est pas dû au fait que lorsque (1) et (2) sont vraies, alors les partitions de connaissance

commune à l’équilibre du processus sont les mêmes avec α et β.
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Chapitre 6 : Une étude comparée de certaines propriétés des

règles de décision

La relation entre la convexité, la convexité faible et la stabilité par l’union fut clar-

ifiée par Parikh et Krasucki [1990] : l’ensemble des fonctions convexes est strictement

inclus dans l’ensemble des fonction faiblement convexes, lui-même strictement inclus dans

l’ensemble des fonctions stables par l’union. Dans le chapitre 6, on examine d’abord les

liens entre les nouvelles conditions introduites dans la thèse, argmax et stabilité par l’union

équilibrée, et les conditions de convexité et faible convexité. Ensuite, on précise si chacune

des conditions garantit que 1) la connaissance commune d’une statistique exhaustive des

décisions individuelles implique l’égalité des décisions, et que 2) la communication selon

un protocole équitable conduit à un consensus.

On note U l’ensemble des fonctions stables par l’union, BU l’ensemble des fonctions sta-

bles par l’union équilibrée, A l’ensemble des fonctions argmax, C l’ensemble des fonctions

convexes et WC l’ensemble des fonctions faiblement convexes. On montre les inclusions

décrites par la figure ci-dessous.

U

CWC A B
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On montre également que parmi les cinq conditions identifiées, la convexité et la con-

dition argmax sont les seules garantissant que la communication conduise à un consensus

dans tout protocole équitable, pour plus de trois agents. La stabilité par l’union équilibrée

est la seule garantissant que la connaissance commune d’une statistique exhaustive des

décisions individuelles implique un consensus, pour plus de trois agents.





Introduction

In a now famous response to questions about reports stating there was no evidence

of a direct link between Iraq and terrorist organizations, US Defense Secretary Donald

Rumsfeld said in 2002:

Reports that say that something hasn’t happened are always interesting to me,

because as we know, there are known knowns; there are things we know we

know. We also know there are known unknowns; that is to say we know there

are some things we do not know. But there are also unknown unknowns – the

ones we don’t know we don’t know. And if one looks throughout the history

of our country [...], it is the latter category that tend to be the difficult ones.

(Department of Defense News Briefing, February 12 2002)

Donald Rumsfeld found an elegant way to express the idea that knowledge about knowl-

edge is of primary importance in military intelligence. More generally, the notions of

knowledge and knowledge about knowledge are fundamental in any area implying strategic

interactions, in particular in economics.

Consider the case of two firms engaged in a duopolistic competition. Suppose that both

duopolists do not know the quantity produced by the other. Each duopolist produces the

quantity that maximizes his expected profit, say yA and yB. Suppose now that duopolist
33
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A has the opportunity to secretly learn duopolist B’s output before choosing its own. A

knows B’s output, but B does not know that A knows its output. B still produces yB and

A increases its profits by producing its best response to yB. Suppose now that B learns

that A will choose its output after observing its own output. B finds itself in the position

of a Stackelberg leader. B anticipates A’s best response and takes advantage of this knew

knowledge. Therefore, A’s knowledge about B’s production is an advantage for A only if

B does not know it.

This simple example shows that knowledge about others’ knowledge, namely interactive

knowledge, is at least as important as knowledge about objective facts such as production

levels. A particular state of interactive knowledge is the state of common knowledge.

Something is said to be common knowledge in a group of agents when everybody in the

group knows it, everybody knows that everybody knows it, and so on, ad infinitum.

The notion of common knowledge

Common knowledge is a phenomenon which is inherent to much of social life. In order

to communicate, people need to have some common knowledge of the language they use.

In order to coordinate their behavior successfully, people require some common under-

standing. Everyday life is full of social conventions, such as driving on the right, defined

by Lewis [1969] as strict coordination equilibria which agents follow on account of their

common knowledge that they all prefer to follow these equilibria. Hume [1740] was perhaps

the first to make explicit reference to the role of mutual knowledge in coordination. He

argued that a necessary condition for coordinated activity was that agents all know what

behavior to expect from one another. Much later, Littlewood [1953] presented some ex-

amples of common knowledge-type reasoning, and Schelling [1960] argued that something
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like common knowledge was needed to explain certain inferences people make about each

other. The first to give an explicit analysis of common knowledge was Lewis [1969], in his

book Convention, and the first to provide a formal characterization of common knowledge

was Aumann [1976] in his celebrated article Agreeing to Disagree. Assuming that individ-

uals are informed about the world by an information partition, he showed that common

knowledge can be represented by a particular partition, derived from individual partitions.

Let us give some motivating examples to illustrate a variety of ways in which the actions

of agents depend crucially on their having, or lacking, certain common knowledge.

The mischievous father A father has two children, Alice and Bob. He gives to each of

them an envelope, containing a certain amount of euro coins, and tells them that one

envelope contains one more euro than the other, with Alice having an odd number

of euro, and Bob an even number of euro. Each child observes the amount of money

in his or her envelope, but not the amount in the other child’s envelope. First, the

father asks Alice and Bob to announce if he or she knows who has the larger amount

of money. Of course, neither knows this, so none of them makes an announcement.

Now, the father tells Alice and Bob that no envelope contains ten euro or more.

Initially, nothing happens. But eventually one of the two announces that he or she

is richer. Why? If Alice had 9 euro, she would immediately realize that Bob has 8

euro, and would therefore announce that she was the richest. But now if Bob has 8

euro and Alice does not announce that she is the richest, he will be able to infer that

Alice must have 7 euro. By backward induction, one can infer that eventually, the

richest child will realize that he or she is the richest.

The department store (Thomas Schelling, The Strategy of Conflict, p 54) When a man



36 INTRODUCTION

loses his wife in a department store without any prior understanding on where to

meet if they get separated, the chances are good that they will find each other. It

is likely that each will think of some obvious place to meet, so obvious that each

will be sure that it is “obvious” to both of them. One does not simply predict where

the other will go, since the other will go where he predicts the first to go, which is

wherever the first predicts the second to predict the first to go, and so ad infinitum.

Not “What would I do if I were she?” but “What would I do if I were she wondering

what she would do if she were I wondering what I would do if I were she...?” What

is necessary is to coordinate predictions, to read the same message in the common

situation, to identify the one course of action that their expectations of each other can

converge on. They must “mutually recognize” some unique signal that coordinates

their expectations of each other. We cannot be sure they will meet, nor would all

couples read the same signal; but the chances are certainly a great deal better than

if they pursued a random course of search.

Getting off the bus (adapted from Chwe [2001]) Say you and I are co-workers who ride the

same bus home. Today the bus is completely packed and somehow we get separated,

with you standing near the front door of the bus and me near the back door. Before

we reach our usual stop, I notice a mutual acquaintance who yells from the sidewalk,

“Hey you two! Come join me for a drink!” Joining this acquaintance would be nice,

but we care mainly about each other’s company. The bus doors open; separated by

the crowd, we must decide independently whether to get off. What should we do?

Several situations are possible. Suppose that when our acquaintance yells out, I look

for you but cannot find you: I am not sure whether you notice her or not and thus

stay in the bus. We may both know that our acquaintance yelled but I do not know
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that you know. Suppose now that when our acquaintance yells, I see you raise your

head and look around for me, but I am not sure whether you manage to find me. I

know about the invitation, I know that you know since I see you looking at me, but

I stay in the bus because I do not know whether you know that I know about the

invitation. Suppose finally that we do manage to make eye contact, we get off the

bus.

Rebellion (from Jehl [1996]) For nearly thirty years, the price of a loaf of bread in Egypt

was held constant. Anwar El-Sadat’s attempt in 1977 to raise the price was met with

major riots. Since then, one government tactic has been to quietly replace a fraction

of the wheat flour with cheaper corn flour. Each person could notice that their own

loaf tasted different, but be unsure about how many other people noticed. Changing

the taste of the loaves is not the same public event as raising its price.

The three hats Imagine three pupils sitting in a circle, each wearing either a red hat or a

white hat. Suppose that the three hats are red, and that the teacher tells the girls

they are allowed to leave the room every time the school bell rings, if they know the

color of their hat with confidence. No girl ever leaves the class room, since no girl

can see her own hat. Suppose now that the teacher tells the girls that at least one

hat is red, a fact which is well-known, since every girl can see two red hats in the

room. The first two times the bell rings, no girl leaves the room. The third time the

bell rings however, the three girls leave the room, knowing with confidence that they

are all wearing a red hat. Why? By publicly announcing that at least one hat is red,

the teacher makes the information common knowledge among the three girls. The

fact that girl 3 does not leave the room the first time the ring bells informs the two
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other girls that at least one of their hats is red. The fact that girl 2 does not leave

the room the second time the ring bells informs girl 1 that her hat is red, for if her

hat had been white, girl 2 would have understood that her hat was red, and would

have leave the room the second time the bell rang. The same reasoning explains why

girls 2 and 3 also leave the room the third time the bell rings.

From these examples, it appears that common knowledge has strong implications for

coordination problems. Roughly speaking, a coordination problem is a situation in which

each person wants to participate in a joint action only if others participate also. In the

“Getting off the bus” example, the two co-workers want to joint their acquaintance and

have a drink only if both do it. One way to coordinate could be simply to communicate a

message such as “Let’s all participate”. But since each person will participate only if others

do, for the message to be successful, it is not sufficient that each person knows about it.

Each person must also know that each person knows that each person knows about it...

and so on. In other words, people will participate only if it is common knowledge that

they all do. In the bus example, the co-workers have to generate common knowledge of

the fact that they know about the invitation. If there is uncertainty at some level, like in

the case where one of the two co-workers knows that the other knows about the invitation,

but does not know whether the other knows that he knows, they do not get off the bus.

Another issue for which common knowledge has strong implications has been illumi-

nated by Aumann [1976]. Aumann showed that rational agents cannot “agree to disagree”

about their posterior beliefs, formalized as probability distributions, if they have common

prior beliefs. More precisely, if two agents have the same prior probability, and if they

have common knowledge of their posterior probability of a given event, then these poste-

rior probabilities must be the same, despite different conditioning information. This result
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suggested that asymmetric information had less explanatory power than might be thought:

in the absence of differences in prior beliefs, asymmetric information can not explain com-

monly known differences in posterior beliefs. In particular, Aumann’s result has crucial

implications for the theoretical analysis of speculation and trade among rational agents.

Consider for instance two stock traders who have received contradictory information about

the evolution of the price of some stock. Trader A, who believes that the price will go down,

offers his stocks to trader B. The deal is concluded, and a handshake makes it common

knowledge to both traders. If the fact that traders A and B are willing to exchange is

common knowledge to them, then it is also common knowledge to them that A believes

the price will go down, and that B believes the price of the stock will go up. Yet this is

not possible, according to Aumann’s result. To restore the conventional understanding of

speculation and trade, one has to assume either that traders are boundedly rational (“noisy

traders”) or that agents hold different prior probabilities.

Aumann’s result gave rise to a vast literature, which addresses basically the same

question. To what extent asymmetric information can explain differences in beliefs and

decisions?

Motivation and overview of the thesis

This thesis is a contribution to the literature that followed the result of Aumann, which

we shall call the Agreeing to Disagree literature. It is made of six chapters. The first two

chapters introduce background material and survey the literature. The next three chapters

are original contributions. The last chapter compares various conditions and assumptions of

the three contributions with conditions and assumptions that can be found in the literature.

The notions of knowledge and common knowledge are central to this literature, as well
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as their modelling. The first chapter of this thesis is a survey, devoted to a presentation

of the model of knowledge used in the Agreeing to Disagree literature and in this thesis.

This model, called an Aumann structure, consists of a set of states of the world, and an

information partition for each agent. A state of the world is a full description of the world,

including objective facts such as “It is raining”, and knowledge facts such as “I know that

you know that it is raining”. Information partitions are partitions of the set of states

of the world, and are intended to capture the way agents are informed about the world.

The framework of this thesis is fundamentally interactive: this thesis deals with the way

individuals learn from communicating with each other, and with the inferences that can

be made from common knowledge of their actions. The way agents make inferences from

observing others’ actions crucially depends on what agents know about the structure of

others’ information. Furthermore, when agents make inferences from others’ actions, their

knowledge evolve. Yet states of the world are a full description of the world, including

agents’ knowledge. Therefore, we make an attempt in Chapter 1 to answer to the two fol-

lowing questions, which are of primary importance for the Agreeing to Disagree literature.

Are individual partitions “common knowledge” to all individuals? Do states of the world

evolve when individuals update their information?

The aim of the second chapter is to review the Agreeing to Disagree literature, and to

present how our contributions relate to it. Aumann’s result illuminated a particular prop-

erty of common knowledge, which is stated as “common knowledge of individual posterior

probabilities negates asymmetric information”. In other words, common knowledge of indi-

vidual posteriors implies that these posteriors do not reflect the differential information that

each agent possesses. The first question addressed in the Agreeing to Disagree literature is

then the following. Under what conditions common knowledge of a statistic of individual
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decisions negates asymmetric information? In the Agreeing to Disagree literature, the way

agents make their decisions is described by a decision rule, which prescribes what decision

to make as a function of any information situation agents might be in. Aumann’s result

provide an answer to this question in the case where the statistic is the identity function,

and individual decision rules are posterior probabilities of a given event. McKelvey and

Page [1986] show that sufficient conditions are that the statistic is stochastically regular,

and that individual decision rules are posterior probabilities of some event. Their result

implies, for instance, that common knowledge of the mean of individual posteriors implies

that individuals have all the same posterior, provided that they have the same prior. In

Chapter 3, we investigate the case where decisions may not be posterior probabilities. Sup-

pose for instance that a recruiting committee contemplates hiring somebody for a job. All

members have the same preferences, namely they all want to hire to most skilled applicant,

but they have received differential information about each applicant’s abilities. A pool is

realized among members of the commission, who are asked which applicant they think is

the most qualified for the job. For each candidate, the percentage of members who think

that the candidate should be hired is made public. How will recruiters react to the public

announcement of the poll? We show that in that case, they cannot disagree on the can-

didate they want to hire. More generally, the aim of Chapter 3 is to answer the following

question.

1. What conditions should be imposed on the statistic and on individual decision rules

to guarantee that common knowledge of the statistic implies that individual decision

do not reflect the differential information that each agent possesses, in the case where

decisions may not be posterior probabilities?

We show that if the statistic is exhaustive, and if individual decision rules are balanced



42 INTRODUCTION

union consistent, which is a weaker requirement than posterior probabilities, then common

knowledge of the statistic of individual decisions negates asymmetric information.

It could be argued that common knowledge of individual decisions is a theoretical

situation that is not attainable. Therefore, the second question addressed in the Agreeing

to Disagree literature deals with how individual decisions can become common knowledge

in a group of agents. The general framework adopted in this line of research is the following.

Agents communicate their decisions according to a protocol upon which they have agreed

beforehand, which determines the senders and the receivers of the communication at each

date, and update their private information according to what they hear. The question

addressed in the Agreeing to Disagree literature is the following. What conditions should be

imposed on the communication protocol and on individual decision rules to guarantee that,

eventually, individual decisions become common knowledge to all agents? Geanakoplos and

Polemarchakis [1982] were the first to provide an answer to this question. They showed

that if two agents have the same prior probability, and communicate and update their

posterior probabilities of some event back and forth, then they will eventually converge

to a consensus, namely a situation in which they have common knowledge that they have

the same posteriors. In Chapter 4, we investigate the case of non-public communication

protocols, namely protocols in which agents may privately communicate at some dates.

Parikh and Krasucki [1990] were the first to investigate this case. They showed that

if individuals follow the same decision rule, and if this decision rule satisfies a convexity

condition, then communication eventually leads to a consensus. We show in Chapter 4 that

Parikh and Krasucki’s convexity condition may not apply in some decision spaces, such as

finite decision spaces. The typical example is the one of diffusion of innovations. Consider

a group of rice producers who have suddenly the opportunity to produce maize. The
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suitability of maize for the region’s soil is uncertain, and farmers are therefore uncertain

about the yield of this new variety of crop. Suppose that each farmer receives private

information about the yield of maize, but that they cannot share directly their information

with each other, because they must plow their land all day long. The only contact they

have with each other is visual: they are able to see their nearest neighbors, but not the

neighbors of their neighbors. In particular, they know what kind of crop are cultivated by

their neighbors, but not the variety of crop cultivated by the neighbors of their neighbors.

Suppose that according to their private information, some farmers decide to adopt maize.

What will other farmers do? Is the situation where some farmers produce maize and some

others rice a long term equilibrium (in this very simple framework)? We show that from

some time on, all farmers must produce the same crop, maize or rice, and that it must

be common knowledge to them. More generally, the aim of Chapter 4 is to answer the

following question.

2. Under what condition on individual decision rules communication leads to consensus

in any fair protocol and in any decision space?

We show that if agents have the same utility function and communicate the action that

maximizes their expected utility given their private information, then they will eventually

converge to a consensus on their decisions. Contrary to Parikh and Krasucki’s convexity

condition, our condition applies to any action space.

In this setting, different communication protocols may lead to different outcomes, in

terms of consensus decision and of information learned by the agents during the com-

munication process. In particular, it may well be the case that some agent learns more

information when communicating according to some protocol α than according to some
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protocol β. In the crop example, we know that under certain conditions, all farmers will

agree on one unique sort of crop. However, whether this consensus crop will be rice or

maize depends on the way farmers are located in the region. Furthermore, a farmer may

learn more information if his location is such that he is able to see all other farmers than

if he observes only one other farmer. It may well be the case that the most informative

protocols are not the same for all agents. Therefore, if agents communicate in order to

learn information from each other, they may disagree about the protocol they should use

for communicating. For instance, some farmers may fight to buy a certain plot of land,

not because this plot is more productive than others, but because it is located on a place

where farmers could learn a lot of information from others, about yields of new variety of

crops or about ways to produce more efficiently. The aim of Chapter 5 is to answer the

following question.

3. If agents communicate so as to learn information, what inferences can they make

from common knowledge that some of them disagree about the protocol they should

use for communicating?

We show that in that case, the consensus decision must be the same whatever the com-

munication protocol. Our result in the farmers example is as follows. Suppose that it is

common knowledge in the region that farmer A wants to exchange his land plot with the

one of farmer B, and that farmer B refuses the exchange. Then the consensus crop will be

the same whether B exchanges his land plot or not.

All results in the Agreeing to Disagree literature require that individual decision rules

satisfy some conditions. In Chapter 2, we define in particular union consistency, convexity

and weak convexity, which were used in different settings to guarantee that agents cannot
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agree to disagree on their decisions. In Chapter 3 and Chapter 4, we introduce two new

conditions called balanced union consistency and argmax. The aim of Chapter 6 is first to

examine how the conditions we introduced relate to convexity, weak convexity and union

consistency. Second, we study the consensus properties of each condition in the settings of

Chapter 3 and Chapter 4.





Chapter 1

Modelling knowledge

1.1. Introduction

The model of knowledge that is used in this thesis is sometimes called “the standard

model of knowledge”, for it is often used in economics and in game theory. Though there

are other approaches to modelling knowledge, this one has the advantage of being very

tractable in interactive settings, where knowledge about others’ knowledge matters. This

model, called an Aumann structure, consists of a set of states of the world and of an

information partition for each agent. Since Savage [1954] and Harsanyi [1967], the state of

the world has been the fundamental conceptual tool used for modelling knowledge in game

theory and decision theory. A state of the world is a full description of the world, or at least

a full description of the relevant facts for the economic problem considered by the modeler.

It specifies objective facts, whether past, present or future ( i.e. the physical environment);

it also specifies knowledge facts, that is to say individuals’ knowledge of objective facts, as

well as knowledge about individuals’ knowledge, at any level. Information partitions are

partitions of the set of states of the world, and are intended to represent the way individuals

are informed about the world.
47
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The framework used in this thesis is fundamentally interactive: individuals learn in-

formation from communicating with each other, and the analysis focuses on the inferences

that can be made by individuals from common knowledge of their mutual decisions. Con-

sider for instance the following situation. An individual, denoted A, has access to two kinds

of weather reports: a temperature map, or a precipitation map. If he sees the temperature

map, he will know if the next day will be hot or cold. If he sees the precipitation map, he

will know if the next day will be rainy or dry. Formally, there are four states of the world:

ω1 =(rainy and hot), ω2 =(rainy and cold), ω3 =(dry and hot) and ω4 =(dry and cold).

Imagine that A tells a friend, denoted B, that he intends to go to the beach on next day,

and that B knows that A goes to the beach only when he is sure that the weather is hot

or dry. What will B learn from the fact that A intends to go to the beach on next day?

If B does not know what kind of weather report A saw, B only learns that the weather

will not be (rainy and cold). To learn more from A’s decision, B needs to know what

kind of information A has. This raises an important question. What do individuals know

about the others’ information in Aumann structures? In chapters 3, 4, and 5, as well as

in the literature in which we cast our analysis, it seems implicit that agents “know” the

information partitions of the other agents. What is the status of this assertion? Is it a

meta-assumption? Is it, as Aumann wrote, a tautology implicit in the model?

In chapters 4 and 5, we consider a dynamic setting, where individuals communicate

with each other and update their information according to what they hear or observe. In

this setting, learning explicitly occurs over time. This raises another important question.

How to model updating in Aumann structures? In particular, do states of the world evolve

over time?

The aim of this chapter is first to present the approach used to model knowledge
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in this thesis, namely Aumann structures, and to introduce some notations that will be

maintained throughout the thesis. In particular, we present the properties satisfied by

individual knowledge in Aumann structures and the modelling of the crucial notion of

common knowledge. This modelling raises two questions that are of primary importance

for the Agreeing to Disagree literature, and then for this thesis.

1. Do individuals “know” others’ information partitions?

2. Do states of the world change when individuals update their information?

We make an attempt to answer these questions in section 3 of this chapter. To do

that, we have go back to the logical foundations of Aumann structures, and to answer the

questions of the very nature of states of the world and of information partitions. Though

less known by economists, an alternative approach to modelling knowledge is the one

traditionally taken in philosophy, epistemic logics and artificial intelligence. Let us call

this approach the logic based approach. Going back to at least Hintikka [1962], the logic

based approach uses a logical language, based on a set of primitive propositions and closed

under logical operators. Knowledge is here expressed syntactically, as a modal operator on

formulas of the language. The formal model used to determine what formulas are true is a

Kripke structure. Among other objects, a Kripke structure consists of a possibility relation

for each agent, which is intended to capture what states agents consider possible in each

state. Aumann structures turned out to be that particular case of Kripke structures in

which individual’s possibility relations are equivalence relations. The logic based approach

has the advantage to provide an explicit interpretation of states of the world, and to make

clear the nature of information partitions.
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1.2. Modelling knowledge with Aumann structures

1.2.1. Individual knowledge in Aumann structures

We assume that agents of a group wish to reason about a world that can be described

in terms of objective facts such as “It is raining”, and of knowledge facts such as “I know

that it is raining”. A state of the world consists of the list of all those facts (objective

facts and knowledge facts) that are true in this world. In the spirit of probability theory,

the approach to modelling knowledge in economics focuses on events, which are subsets of

the set of possible worlds Ω. In this thesis, we shall denote1 E ⊆ 2Ω the set of possible

events. More precisely, an event is the “field ”2 of a property, namely the set of states of the

world in which this property holds, and events are usually identified with the properties of

which those events are the field. For instance, the set of states of the world in which the

property “It is raining” is true is identified with the event “It is raining”. Given an event

E ⊆ Ω, let us denote pE some property whose field is E. We say that event E occurs

in some state ω if pE is true at ω. As E is the set of states of the world in which pE is

true, E is said to occur, or to be true at state ω if ω ∈ E. The empty set corresponds

to a contradiction, and the whole set Ω to a tautology, namely a property that is true in

every state of the world. Moreover, the inclusion between events corresponds to material

implication between properties. As usual, ¬E denotes the negation of event E, namely

¬E := Ω \ E.

The standard model used to determine what agents know about the states of the world

1As it depends on Ω, the set of possible events associated to Ω should be denoted EΩ. As we always

consider a unique set of states of the world, there is no possible confusion and we omit the subscript.
2We borrow the term of field from logics. In logics, an event is the field of a formula, namely the set of

possible worlds in which this formula is true.
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is an information structure. It consists of a set of states of the world Ω and a possibility

correspondence Pi for each individual i. A possibility correspondence for an agent is a

function P : Ω → 2Ω, such that P (ω) is the set of states of the world that the agent

conceives as possible at state ω. A possibility correspondence for an agent is intended to

capture what worlds the agents considers possible in any given world. At state ω, the agent

excludes all states outside P (ω), and does not exclude any states in P (ω).

There are two equivalent ways of expressing knowledge in an information structure.

The first one is to list the set of events that are guaranteed to occur given the information

an individual possesses in some given state. An individual knows an event E at state

ω if this event occurs at any state that the agent conceives as possible at ω, namely if

∀ ω′ ∈ P (ω), ω′ ∈ E. In other words, an agent endowed with an possibility correspondence

P is said to know an event E at state ω if and only if:

P (ω) ⊆ E

An alternative way of expressing knowledge in an information structure is to represent

an individual’s knowledge of some event E by enumerating all the possible worlds in which

the information that the individual possesses guarantees that E must occur. To do so,

one defines individual knowledge operators as functions from the set of events into itself,

mapping any event E into the set of states in which the individual knows that E has

occurred. Formally, an individual knowledge operator is denoted K : E → E . Given any

event E, K(E) is the event “the agent knows E”.

The possibility correspondence of an individual can be constructed on the basis of the

knowledge operator, and the knowledge operator can be constructed on the basis of the
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possibility correspondence via the following relation:

K(E) = {ω ∈ Ω | P (ω) ⊆ E} (1.1)

We denote ¬K the operator “the agent does not know”. It is defined by ¬K(E) :=

Ω \ K(E) for all event E, and ¬K(E) is the event “the agent does not know E”. Note

that not knowing an event E does not mean knowing that E has not occurred. Whenever

an individual knows ¬E, namely knows that E has not occurred, this individual does not

know E. Formally, K(¬E) ⊆ ¬K(E):3 if an individual knows that E is false, then he

does not know that E is true. However, the converse is not true. Not knowing E does not

imply knowing that E has not occurred. Consider the example of an individual endowed

with the following possibility correspondence:

P (ω1) = {ω1}, P (ω2) = {ω2}, P (ω3) = {ω3, ω4}, P (ω4) = {ω3, ω4}

and consider the event E = {ω2, ω3}. The set of states in which the individual knows E

is K(E) = {ω2}. Therefore, the set of states in which he does not know E is ¬K(E) =

{ω1, ω3, ω4}. The event ¬E is {ω1, ω4}. Therefore, the individual knows ¬E only at state

K(¬E) = {ω1}. The set K(¬E) is strictly included in the set ¬K(E).

An Aumann structure is a particular information structure where each individual pos-

sibility correspondence satisfies the three following properties:

For all ω ∈ Ω,

(PC1) ω ∈ P (ω)

(PC2) ∀ω′ ∈ P (ω), P (ω′) ⊆ P (ω)

3This is true as long as the state which has actually occurred is always believed possible. ω ∈ K(¬E) ⇒

ω ∈ ¬E. As K(E) ⊆ E, one has ¬E ⊆ ¬K(E). Then K(¬E) ⊆ ¬K(E).
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(PC3) ∀ω′ ∈ P (ω), P (ω) ⊆ P (ω′)

A possibility correspondence satisfying these three properties defines a partition of Ω,

and is called an information partition. Typically, we will denote Π the information partition

of an agent. Therefore, an Aumann structure consists of a set of states of the world and

of an information partition for each agent.

As K(E) is a particular event of the model, the operator ¬K can be applied to K(E).

¬K(K(E)) is then the event “the agent does not know that he knows E”. Is it possible that

this event occurs, namely is there some state ω such that ω ∈ ¬K(K(E))? More generally,

what properties of knowledge do we implicitly impose when assuming Aumann structures?

The fact that individuals are informed about the set of states of the world by information

partitions implies that knowledge operators defined by (1.1) satisfy some properties, which

we list in the next section.

1.2.2. Properties of knowledge in Aumann structures

In this section, we first list the properties that the individual knowledge operator Ki

must satisfy whenever knowledge is partitional. From these axiomatic properties it follows

that individuals are aware of all possible contingencies, that they know all the logical

implications of their knowledge, that they cannot know things that are false, and that they

know what they know, and what they do not know. Second we discuss the implications of

these properties. We particularly insist on negative introspection, which has been widely

criticized in the literature.

1.2.2.1 Axiomatic properties of partitional knowledge

The first two properties of knowledge must be considered apart from the last three.
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Indeed, these properties are satisfied in any information structures, not only in partitional

ones. They follow from what it means to know something in information structures, and

not from the assumption that knowledge is partitional.

A1. Ω = K(Ω). This property corresponds to the axiom of awareness, or to the Knowl-

edge Generalization Rule, for it implies that individuals can identify the entire set of

possible worlds: in each state of the world, individuals know Ω. Therefore, agents

cannot be surprised by some unforeseen contingency. The reason why this property

is satisfied in any information structures is the following. Ω is that particular event

that occurs in every state of the world. Therefore, Ω must also occur in any state

of the world that the agent conceives as possible in any state of the world, which by

definition implies that the agent must know Ω in any state of the world. Therefore,

one always has K(Ω) = Ω. Let us recall that the event Ω corresponds to a tautology,

namely a property which is true in any state of the world. The Knowledge Gener-

alization Rule therefore means that individuals always know every property of the

model which are necessarily true.

A2. K(E ∩ F ) = K(E) ∩ K(F ). This property corresponds to the distribution axiom,

or conjunctiveness axiom, since it allows to distribute knowledge operators over in-

tersection (which represents the conjunction connective). This axiom means that

individuals know E and F if and only if they know E and they know F . Know-

ing the intersection is the intersection of knowing. This axiom implies the following

property: if E ⊆ F , then K(E) ⊆ K(F ), namely whenever an agent knows an event

E, which is included in an event F , the agent also knows the event F . The reason

why this property is satisfied in any information structures is the following. If the
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agent knows E at ω, then E occurs at any state that the agent conceives as possible

at ω (P (ω) ⊆ E). If E ⊆ F , then F occurs whenever E occurs. Therefore, F must

occur at any state that the agent conceives as possible, which means that the agent

knows F (P (ω) ⊆ E ⊆ F ). Let us recall that inclusion between events corresponds to

material implication between properties. Therefore, the distribution axiom implies

the property of logical omniscience, which states that when an agent knows an event,

he also knows all the logical implications of this event.

The following properties are derived from the fact that P satisfies (PC1), (PC2), and

(PC3), and are therefore characteristic of Aumann structures.

A3. K(E) ⊆ E. This property corresponds to the truth axiom. Although agents may not

know things that are true, whenever they know an event, this event must be true. If

an agent knows E in some state ω, then E occurs in ω. This property of knowledge

comes from the fact that the true state of the world is always conceived as possible

by individuals when they have information partitions, which corresponds to property

(PC1). If an agent knows an event E at state ω, then E must be true in every state

that he conceives as possible at ω. As, in particular, ω is a possible state for the at

ω, then E must be true at ω.

A4. K(E) ⊆ K(K(E)). This property corresponds to positive introspection axiom. It

means that an agent cannot know an event without knowing he knows it. It comes

from the transitivity property of information partitions: ∀ ω′ ∈ Π(ω), Π(ω′) ⊆ Π(ω),

namely the property (PC2). If the agent considers ω′ possible at state ω, then the

agent must also consider possible every state ω′′ that he would consider possible at

state ω′. Suppose that the agent knows an event E at ω, i.e. Π(ω) ⊆ E. By property
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(PC2), we have ∀ ω′ ∈ Π(ω), Π(ω′) ⊆ Π(ω) ⊆ E, therefore, the agent must know E

in any states that he considers possible at ω, which precisely means that the agent

knows that he knows E.

A5. ¬K(E) ⊆ K(¬K(E)). This property corresponds to the negative introspection ax-

iom. Individuals may not know some events, but in that case they know that they

do not know them. If an agent does not know the event E, then he knows that

he does not know it. Agents are able to list those events that they do not know

at some state. Therefore, this axiom precludes people from ignoring their own

ignorance. This follows from the euclidianity property of information partitions:

∀ ω′ ∈ Π(ω), Π(ω) ⊆ Π(ω′), namely to the property (PC3). If the agent considers

ω′ possible at state ω, then he knows at ω all the states that he would conceive as

possible at state ω′. Let us show that if an agent does not know that he does not

know an event E, then he must know E. Suppose that the agent knows E at some

state ω′ that he considers possible at ω, i.e. ∃ω′ ∈ Π(ω), Π(ω′) ⊆ E. By (PC3),

Π(ω) ⊆ Π(ω′), thus Π(ω) ⊆ E, which means that the agent knows E at ω.

Note that A1 is implied by A3 and A5, and that A4 is implied by A3 and A5. These

properties together form Bacharach [1985]’s axiomatic system of the partitional model of

knowledge. Each of them corresponds to a particular axiom of a well-known axiomatic

model in epistemic logics called S5 or KT45. We present Bacharach’s characterization

theorem for the sake of consistency with our framework, but this equivalence has been

known in epistemic logics at least since Hintikka [1962] or Hugues and Cresswell [1968].

Theorem 1 ( Bacharach [1985] ) The individual knowledge operator K satisfies A1 −

A5 if and only if there exists an information partition Π such that K(E) = {ω ∈ Ω |
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Π(ω) ⊆ E} for all E ⊆ Ω.

In the next section, we discuss the properties of partitional knowledge.

1.2.2.2 Discussion of these properties

By imposing the axiom of awareness (A1), it is assumed that in every state of the

world, agents are aware of the entire set of possible worlds. This assumption might seem

straightforward in simple environments like the one in the three hats example, or in simple

card games situations. However, numerous realistic examples challenge the plausibility

of this axiom. Suppose4 that there are two states of nature: either the ozone layer is

disintegrating (state H) or it is not (state H). Imagine that a decaying ozone layer would

emit gamma rays. In state H, scientists would observe gamma rays, then would investigate

their cause and deduce that the ozone was disintegrating. They would then be aware of

the two possible states H and H. In state H, scientists would observe no gamma rays, and

would not even realize that there could be a hole in the ozone layer. Commonly, we realize

the current situation, and therefore its possibility as a world, from the moment where this

situation changes. For instance, we realize that our computer was making a background

noise as soon as we shut down the computer.

By imposing the distribution axiom (A2), one assumes that agents know every implica-

tion of everything they know. This property , combined with the fact that agents know all

possible contingencies, implies that agents have the property of logical omniscience. How-

ever, people are obviously not logically omniscient. A common example is that individuals

know the rules of chess, but do not know whether they are playing a winning strategy.

Lack of logical omniscience may stem from many sources. An obvious one is lack of com-

putational power; for instance, people clearly do not have the computational resources to

4This example is from Geanakoplos [1994].
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compute a best response strategy in the game of chess. Another cause of lack of logical

omniscience is that people may do faulty reasoning. People often happen to believe logical

contradictions, for instance when believing φ and ψ are true, whereas ψ implies ¬φ.

Therefore, the first two properties of knowledge imply that individuals are very powerful

reasoners. However, as we said before, this is not due to the Aumann structure, i.e. to

the fact that individuals have a partition of Ω. This is due to the definition of knowing

an event in information structures, as “ an individual knows an event at some state if this

event occurs in any state that the agent considers possible at that state.” The last three

properties however, are characteristic of Aumann structures, and are usually associated

with “rationality regarding knowledge”, which requires that knowledge employed by agents

to make their decisions is derived from coherent inferences.

By imposing the truth axiom (A3), one assumes that agents cannot be wrong, namely

cannot know things that are not true. If an agent believes that some event has occurred,

then this event must have occurred. (A3) has been taken by philosophers to be the major

axiom distinguishing knowledge from belief. Although agents may have false beliefs, they

cannot know something that is false.

Among the five axioms characterizing Aumann structures, that of Negative Introspec-

tion has been, to the best of our knowledge, the one that was most criticized. The following

example, first provided by Geanakoplos [1989], is commonly used to illustrate departures

from the partitional model of knowledge. Sherlock Holmes and Dr Watson are investigating

a crime. From what the local police tell him, Holmes notices that the dog in the garden

did not bark that night, and hence concludes that there was no intruder in the garden.

“Is there any other point to which you would wish to draw my attention?”

“To the incident of the dog in the night-time.”
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“The dog did nothing in the night-time.”

“That was the curious incident”, remarked Sherlock Holmes.

Doyle [1901]

Geanakoplos’ interpretation of the “curious incident” example is the following. When

Watson says that “The dog did nothing in the night-time”, he seems not to be aware that

“not barking” is actually doing something. Formally, reducing the set of possible worlds

to two states, B standing for the state in which the dog did bark and B for the state in

which the dog did not bark, Geanakoplos defines possibility correspondences of Holmes

and Watson as follows:




PH(B) = {B}

PH(B) = {B}

and





PW (B) = {B}

PW (B) = {B,B}

Clearly, Holmes’ possibility correspondence satisfies the three properties ensuring that

it defines a partition of {B,B}. Watson’s possibility correspondence however does not

satisfy the property (PC3) corresponding to the negative introspection axiom. Indeed,

B ∈ PW (B), but PW (B) * PW (B). In the state where the dog did not bark, Watson does

not know that “the dog did bark that night”, and does not know he does not know either.

There are different ways of interpreting this story. We can imagine that when Watson

says that the dog did nothing, he understands that the dog did not bark. However, he

somehow does not come up with the inference that there was no intruder. Watson and

Holmes both received the same information, and yet, contrary to Holmes, Watson did

not perceive the fact “The dog did not bark” as a clue. Therefore, this story can also be

modelled as an example of violation of the logical omniscience property. Watson knows

that the dog did not bark, but he does not conclude anything from it, in particular he does

not conclude that there was no intruder in the garden. However, recall that the logical
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omniscience property is de facto satisfied in information structures. Therefore, one should

use another model of knowledge.

Li [2006, p 2] proposes an alternative explanation of this story. “Watson is unaware of

the possibility that there was no intruder, and hence fails to recognize the factual information

“there was no intruder” contained in the message “the dog did not bark”. Had someone

asked Watson, “Could there have been an intruder in the stable that night?”, he would

have recognized his negligence and replied “Of course not, the dog did not bark!”.” This

explanation suggests that one could also explain Watson’s failure by a violation of the axiom

of awareness. Here again, one should use another model of knowledge than information

structures, in which the axiom of awareness is always satisfied.

We do not claim that negative introspection is not a strong assumption. However,

we think that the stronger assumptions that are made on individual knowledge are the

axiom of awareness (A1) and the one of logical omniscience (A2). Yet these two axioms

are precisely the ones that are not due to the assumption that knowledge is partitional.

We may wonder what would be the consequences of relaxing the Negative Introspec-

tion assumption. An interesting implication deals with the value of information. We know

since Blackwell [1953] that in non-interactive settings, having more information is always

an advantage for a decision maker who maximizes an expected utility. Consider a deci-

sion maker who has to choose an action whose payoff depends on the state of the world.

Formally, denote A the set of available actions and U : A × Ω → R the decision maker’s

payoff. The decision maker has a prior probability P over Ω, and takes the action that

maximizes his expected utility ex interim: the state of the world ω occurs, the decision

maker is informed of Π(ω) and then takes the decision that maximizes his expected utility

conditionally to Π(ω). Denote fΠ(ω) the action chosen by the decision maker at state ω,
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given his partition Π, formally fΠ(ω) := argmaxa∈AE[U(a, .) | Π(ω)].

Proposition 1 Let Π, Π′ be two information partitions. If Π is finer than Π′, then the ex-

ante expected payoff yielded by Π is larger than that yielded by Π′. Formally, E[U(fΠ(.), .)] ≥

E[U(fΠ′(.), .)].

With non-partitional information however, having more information may not be better

for the decision maker. Consider the following example, drawn from Rubinstein [1998].

There are three equally likely states of the world, denoted ω1, ω2, ω3. A seller offers a risk-

neutral decision maker the following bet: the decision maker gets 3 euro if state ω2 occurs,

and −2 euro if states ω1 or ω3 occurs. If the decision maker has no additional information

about the states of the world, the best option for him is to reject the bet, as his expected

payoff of accepting the offer is −1/3, whereas it is 0 if he rejects the offer. To persuade the

decision maker to accept the offer, the seller gives the decision maker the following “bonus”

information. If the state is ω1, the decision maker is told that ω3 has not occurred. If the

state is ω2, he is told that neither ω1 nor ω3 have occurred. Finally, if the state is ω3, the

decision maker is told that ω1 has not occurred. Assuming that he does not understand

the rule by which the bonus information is given, the decision maker is now endowed with

the following possibility correspondence.

P (ω1) = {ω1, ω2}, P (ω2) = {ω2}, P (ω3) = {ω2, ω3}

Such a possibility correspondence violates only property (PC3), which corresponds to the

negative introspection axiom. According to it, the best option of the decision maker is to

accept the offer at any state. His ex ante expected payoff is then −1/3. Therefore, being

more informed is not necessarily an advantage when knowledge is not partitional.
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1.2.3. Common knowledge in Aumann structures

Perhaps first introduced by Lewis [1969], the informal definition of common knowledge

is stated as follows: an event is said to be common knowledge in a group of agents if all

individuals in the group know it, all individuals know that all individuals know it, and so

on ad infinitum. Aumann [1976] was the first to provide a formal characterization of the

notion of common knowledge.

Like individual knowledge, common knowledge is a property which is true in some

states and false in others. With individual knowledge operators, Lewis’ definition of com-

mon knowledge is as follows: an event E is common knowledge at state ω in a group

of agents N if for all integer n, and all sequence (i1, . . . , in) such that ik ∈ N , one has

ω ∈ Ki1(Ki−2(. . . Kin(E) . . . )). In Aumann’s words, E is common knowledge at ω if it

contains all states ω′ that are reachable from ω, given the individuals’ information par-

titions. Therefore, even if there are finitely many agents and if individual information

partitions are finite, one has to check infinitely many conditions to know whether E is

common knowledge at ω. Aumann [1976] showed the equivalence of this definition with

another one, which is more tractable. Let us first define the meet of a set of partitions.

Definition 1 (Meet of partitions) The meet of partitions Π1, . . . ,Πn, denoted M , is

the finest common coarsening of these partitions, namely the finest partition such that

∀ i, ∀ ω, Πi(ω) ⊆ M(ω).

In other words, the meet of a collection of partitions (Πi)i is the finest partition whose

cells are a union of cells of each Πi. Aumann [1976] showed that an event E is common

knowledge at state ω if E includes that member of the meet of the individuals’ partitions

that contains ω.
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Proposition 2 ( Aumann [1976] ) Let N be a group of agents, each agent i ∈ N being

endowed with an information partition Πi, and let M denote the meet of partitions (Πi)i∈N .

An event E is common knowledge at state ω iff M(ω) ⊆ E.

The meet of individual partitions is therefore the partition of common knowledge in

the group of agents. According to this definition, finitely many steps are sufficient to check

whether an event is common knowledge, in the case where the set of agents and information

partitions are finite.

Milgrom [1981] provided a list of characteristic properties of common knowledge. He

defined the common knowledge operator as a function C : E → E such that for all E ∈ E ,

C(E) = {ω ∈ Ω | E is common knowledge at ω}. Consider two events E,E′ and the

following four properties:

(P1) C(E) ⊆ E

(P2) ∀ ω ∈ C(E), ∀ i ∈ N , Πi(ω) ⊆ C(E)

(P3) E ⊆ E′ ⇒ C(E) ⊆ C(E′)

(P4) [∀ i, ∀ ω ∈ E, Πi(ω) ⊆ E] ⇒ E = C(E)

Condition (P1) is analogous to the Truth axiom. It asserts that an event E can be

common knowledge only if E actually occurs. Condition (P2) holds that if E is common

knowledge, then every agent knows that E is common knowledge. Condition (P3) is

analogous to logical omniscience: whenever E is common knowledge, then any logical

consequence of E is also common knowledge. Condition (P4) deals with particular events

called public events. An event is said to be public in a group of agents if every agent
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knows this event whenever it occurs. Condition (P4) states that public events are common

knowledge whenever they occur.

Using Aumann’s definition of common knowledge, Milgrom showed that common knowl-

edge is characterized by these four properties.

Theorem 2 (Milgrom [1981]) There is a unique function C satisfying (P1)− (P4) and

it is given by C(E) = {ω ∈ Ω | M(ω) ⊆ E}.

As common knowledge can be represented by a particular partition of the set of states

of the world, its properties must be the same as that of individual knowledge: aware-

ness, distribution, truth, positive and negative introspection. (P1) and (P3) correspond

to the truth and logical omniscience properties. (P2) and (P4) directly imply the pos-

itive introspection axiom, and (P2) together with the fact that individual knowledge is

partitional imply the negative introspection axiom. As for individual knowledge, negative

introspection and logical omniscience imply awareness.

1.3. Controversial issues

Aumann structures are often used to model knowledge in economics and game theory.

However, the implicit assumptions of this approach to modelling knowledge have been

widely criticized in the literature. One of these criticisms deals with the cognitive abilities

that are assumed to have individuals in Aumann structures, which we discussed in the

former section. In this section, we aim to present two controversial issues about Aumann

structures, which are of primary importance for the Agreeing to Disagree literature.

The Agreeing to Disagree literature deals with the implications of common knowledge of

individual decisions. In chapter 3, we consider the particular issue of common knowledge
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of an aggregate of individual decisions. How can we interpret the fact that individual

decisions, or more generally, events, are common knowledge? Consider two agents A and

B endowed with the following partitions:

ΠA = {ω1}{ω2, ω3}{ω4, ω5}

ΠB = {ω1, ω2}{ω3}{ω4}{ω5}

and imagine that A decides to buy a car in states ω1, ω2 and ω3, and not to buy it otherwise.

Denoting F the event “A intends to buy the car”, we have F = {ω1, ω2, ω3}.

The meet of these two partitions is M : {ω1, ω2, ω3}{ω4}{ω5}. By Aumann’s char-

acterization, any event containing {ω1, ω2, ω3} is common knowledge in ω1, for instance.

Therefore, it is common knowledge at state ω1 that A intends to buy the car. How can we

interpret this assertion ? At state ω1, B knows that A intends to buy the car as it is the

case in any state that he conceives as possible at state ω1, namely ΠB(ω1) = {ω1, ω2} ⊆ F .

The event “B knows F ”, namely the set of states in which B knows that A intends to buy

the car is {ω1, ω2, ω3}. As a consequence, the event “B knows F ” is identical to the event

F . A knows that he intends to buy a car at state ω1, as ΠA(ω1) = {ω1} ⊆ F . Can we

conclude that A also knows that B knows that A intends to buy the car ? How comes that

A knows that the event F is also the event B knows F? It seems that we must suppose

that A understands B’s partition. As F is common knowledge at state ω1, the reasoning

“A knows that B knows that A knows etc”, must be iterated ad infinitum. Therefore, it

seems that underlying Aumann’s definition of common knowledge is the assumption that A

and B understand each other’s partition and that this understanding is somehow “common

knowledge”. This raises two related questions of primary importance for the Agreeing to

Disagree literature.

1. Are individual partitions “common knowledge” to all individuals?
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2. Is “common knowledge” of individual partitions necessary for the meet to be the

partition of common knowledge?

In chapters 4 and 5, we deal with a dynamic setting where agents learn from each

other by communicating. We consider for instance the following situation. Suppose that

B intends to buy a car at states ω1 and ω2, but not at ω3, and that he tells A about his

intention. A will learn something, precisely A will learn to distinguish between states ω2

and ω3. How to model learning processes in Aumann structures? As A learned something

from B’s message, A’s knowledge has evolved. Yet states of the world must be a complete

description of the world, including A’s knowledge. This raises another important question

about Aumann structures.

3. Do states of the world evolve when individuals update their information?

To answer these questions, one has to understand the very nature of states of the world,

and their relation with information partitions. A first answer in the economic literature was

given by Aumann in 1976: any aspect of the environment about which individuals might

be uncertain should be captured in the description of the states in the model: “Included in

the full description of a state [...] of the world is the manner in which the information is

imparted to the two persons.” (p 1237). This has given rise to a philosophical questioning

about the relation between states and partitions in Aumann structures. For instance, Fagin

et al. [1999] wrote: “If we think of a state as a complete description of the world, then it

must capture all the agents’ knowledge. Since the agents’ knowledge is defined in terms of

the partitions, the state must also include a description of the partitions. This seems to

lead to circularity, since the partitions are defined over the states, but the states contain

a description of the partitions.” (p 332). Partly in response to these circularity concerns,
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Fagin et al. [1991, 1992, 1999] provided an alternative approach to modelling knowledge,

in the line of Harsanyi [1968] and Mertens and Zamir [1985]. This approach intends to

capture the idea of a complete description of an agent’s uncertainty by constructing an

infinite information partition hierarchy, where each level in the hierarchy simply describes

which members of the previous hierarchy the agent considers possible. We do not discuss

the hierarchical approach here. Rather, we think that to understand what it means for a

state to be a “full description of the world”, one has to use the formal language of epistemic

logics.5

1.3.1. Logical foundations of Aumann structures

The idea of a formal logical analysis of reasoning about knowledge goes back at least

to Hintikka [1962]. To carry out complicated reasoning about knowledge, modal logic

uses a particular language called a syntax. To describe the language, one starts with a

nonempty set P of primitive propositions. These primitive propositions stand for objective

facts about the world such as “It is raining” or “I take my umbrella”. To express more

complicated statements like “It is raining and I am not taking my umbrella”, one uses

logical connectives of negation: ¬ and conjunction: ∧. To express statements like “I know

that it is raining”, one introduces modal operators k1, . . . , kn, such that kip reads “Agent

i knows the proposition p”. We also use the standard abbreviations φ ∨ ψ (φ “or” ψ) for

¬(¬ψ ∧ ¬ψ), ψ → φ (ψ “implies” φ) for ¬ψ ∨ φ, and φ ↔ ψ (φ “is equivalent” to ψ) for

(ψ → φ) ∧ (φ → ψ).

We denote Φ the set of well-formed formulae, which is the closure of the set of primitive

propositions under negation, conjunction, and the modal operators (ki)i. For instance,

5Most of the material about epistemic logic was found in Fagin et al. [1995].
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considering the primitive propositions rA, rB, wA, respectively standing for Alice’s hat is

red, Bob’s hat is red, and Alice’s hat is white, we can express the complicated sentence

“Alice does not know whether her hat is red and knows that Bob knows that his hat is red”

quite simply in modal logic, with the formula:

¬kArA ∧ kAkBrB

A syntax consists of a set of well-formed formulas, of inference rules and of an axiomatic

system. Once the syntax has been defined, one needs semantics, which is a formal model

that can be used to determine whether a given formula is true or false. One possible

approach is to use a formalization in terms of Kripke structures. A Kripke structure for

n agents is a tuple M = (Ω, π,K1, . . . ,Kn), where Ω is the set of states of the world ; π is

an interpretation function, that associates with each state in Ω a truth assignment to the

formulae in P , namely π(ω) : P → {true, false} for each ω ∈ Ω; finally, for each agent i,

Ki is a binary relation on Ω, that is a set of pairs of elements of Ω. The truth assignment

π(ω) tells us whether each primitive proposition is true or false in state ω, and in structure

M . The binary relations Ki capture the possibility relations between states according to

agent i: (ω, ω′) ∈ Ki if agent i considers state ω′ possible, given his information in state

ω. Under the axioms of the system S5 or KT45, (which is “analogous” to the axiomatic

system presented in section 1.2.2 for knowledge operators ki), the possibility relation Ki

is an equivalence relation, and can be equivalently represented by a partition Πi, with

Πi(ω) = {ω′ ∈ Ω | (ω, ω′) ∈ Ki} for all ω.

We now define what it means for a formula φ to be true in world ω in a structure M ,

which is denoted (M, ω) |= φ and can be read as “φ is true at (M, ω)”. The relation |= is

defined by induction on the structure of each formula, because the notion of a formula is

defined inductively.
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We start with the primitive propositions:

(1) (M, ω) |= p iff π(ω)(p) = true and (M, ω) 2 p iff π(ω)(p) = false

A conjunction φ ∧ φ′ is true if both φ and φ′ are true:

(2) (M, ω) |= φ ∧ φ′ iff (M,ω) |= φ and (M, ω) |= φ′

A negated formula ¬φ is true if φ is not true:

(3) (M, ω) |= ¬φ iff (M,ω) 2 φ

The last condition is the one which defines what it means for an agent to know a formula.

Agent i knows φ at state ω of structure M if φ is true in every state that i considers

possible in state ω:

(4) (M, ω) |= kiφ iff (M, ω) |= φ ∀ ω′ such that (ω, ω′) ∈ Ki

The term “full description of the world” is now well understood. We can think about a

state as the set of formulas that are true at that state. What a state can be, namely what set

of formulas can be a full description of the world, is determined by the axioms of the model.

For instance, formulas φ and ¬φ cannot be part of a description together. Additional

constraints on the information structure imply, for instance, that kiφ and ¬ki[kiφ] cannot

belong to the same description.

Let us now go back to the circularity issue. Fagin et al. wrote the circularity comes from

the fact that “partitions are defined over the states, but the states contain a description

of the partitions”. By examining the logical foundations of Aumann structures, it is clear

that states do not contain a description of individual partitions. It is true that states “must

capture all the agents’ knowledge”, but the agents’ knowledge is not defined in terms of
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partitions. Knowledge focuses on formulas, and states of the world describe what formulas

are known by agents in that world. Information partitions are representations of what

states agents conceive as possible in each state.

We now make an attempt to answer the first two questions about what individuals

know about others’ knowledge

1.3.2. What do individuals know about the others’ knowledge?

The first question is whether individual information partitions are “ ‘common knowl-

edge” to all individuals. Let us first examine whether individuals “know” the others’ infor-

mation partitions.

Possibility relations, and therefore information partitions, are completely determined by

individual knowledge operators with relation (4). Therefore, wondering whether individuals

know others’ partitions in Aumann structures amounts to wondering whether they know

others’ knowledge operators in the syntactic formalism. Yet the statement “knowing a

knowledge operator” makes no sense in syntax, it is not a well-formed formula. Indeed,

knowledge operators operate on formulas, taking each formula φ to another formula kiφ.

One can express that j knows that i knows φ with the statement kj [kiφ], as kiφ is a

particular formula. However, one cannot express that j knows ki, as ki itself is not a

formula. Let us go back to the example of page 32. We addressed the question of how

come that A knows that the event F is also the event “B knows F ”. Looking at the logical

foundations of a state of the world, we realize that it is like wondering how A knows that

F is the event “A intends to buy a car”. States describe primitive propositions (”A intends

to buy a car”), as well as formulas using knowledge operators (“B knows that A intends

to buy a car”). Knowing about others’ knowledge of formulas is treated as knowing about
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primitive propositions: it is part of the description of the states.

Therefore, it makes no sense, to the best of our understanding, wondering whether

individuals know other’s information partitions, since partitions are just representation

tools, used by the modeler. Interpretation functions and information partitions play the

same role: the first allow to represent which primitive propositions are true in each state,

and the second allow to represent which formulas are known in each state.

The second question is whether “common knowledge” of individual partitions is neces-

sary for the meet to be the partition of common knowledge. Like individual knowledge,

common knowledge of formulas is part of the description of the states. Let us introduce

the common knowledge operator C. The sentence (M, ω) |= Cφ states that φ is common

knowledge in state ω and in structure M . In a number of papers, Fagin, Halpern, Moses and

Vardi, as well as Lismont and Mongin investigated the axiomatization of common knowl-

edge by providing suitable axioms on the common knowledge operator C. A review of these

theorems can be found in Lismont and Mongin [1994]. It has been shown that in an Au-

mann structure M = (Ω, (Πi)i), (M,ω) |= Cφ if and only if the set {ω′ ∈ Ω | (M, ω′) |= φ}

includes that member of the meet of partitions Πi’s that contains ω. Therefore, the meet

of individual partitions represents common knowledge in an Aumann structure, as well as

individual partitions represent individual knowledge in an Aumann structure. It is a repre-

sentation and does not require any assumptions such as “common knowledge” of individual

partitions.

1.3.3. Do states of the world change over time?

We now turn to the third question, which is whether states of the world evolve when

agents update their information. In chapters 4 and 5, we consider a dynamic setting where
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agents communicate with each other and update their information according to what they

hear. In line with the Agreeing to Disagree literature, we model information updating as

follows. Let us define a message as a function m : Ω×N → M, where m(ω, t) is the message

heard by an agent at date t and state ω. (We do not need to go further into details for the

issue we consider in this chapter.) When hearing the message m(ω, t), agents update their

information by eliminating the states in which they would have heard another message.

Denote Πt the information partition of an agent at date t. Formally, the agent updates his

partition according to the following revision rule:

(RR) Πt+1(ω) = Πt(ω) ∩ {ω′ ∈ Ω | m(ω′, t) = m(ω, t)}

The agent does not have the same knowledge at date t + 1 as at date t. We saw in

the previous section that states are a full description of the world, including a description

of agents’ knowledge. As a consequence, can we consider that states of the world are

still the same? In this thesis, we use implicit states of the world, that is to say we do not

explicitly describe the list of formulas that are true in each state. However, we may wonder

whether the revision rule RR that we use in the Agreeing to Disagree literature makes

sense, namely whether updated partitions effectively represent new knowledge of the same

uncertainty. We shall show that, to the best of our understanding, states of the world do

not evolve if they explicitly describe knowledge at each date, i.e. actual knowledge and

updated knowledge.

Consider a simple example. Let p denote the primitive proposition “It is raining”, and

¬p the proposition “It is not raining”. Consider two agents, endowed with the following

partitions of Ω = {ω1, ω2}:

ΠA = {ω1}{ω2}

ΠB = {ω1, ω2}
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and assume that the proposition p is true at state ω1, and is false at state ω2. Let us list

some formulas that are valid in states ω1 and ω2:

(M, ω1) |= p ; kAp ; ¬kBp ∧ ¬kB¬p

(M, ω2) |= ¬p ; kA¬p ; ¬kBp ∧ ¬kB¬p

In words, at ω1, p is true, A knows p and B does not know p and does not know ¬p. At

state ω2, p is false, A knows that p is false and B does not know whether p is true or false.

A is able to distinguish between the state in which it is raining and the state in which it

is not. Imagine that A says to B whether it is raining or not. By the revision rule (RR),

B’s partition changes, and the model becomes:

ΠA = {ω1}{ω2}

ΠB = {ω1}{ω2}

Let us list some formulas that are now valid in states ω1 and ω2:

(M, ω1) |= p ; kAp ; kBp

(M, ω2) |= ¬p ; kA¬p ; kB¬p

Now, in world ω1, p is true and A and B both know it, and in world ω2, p is false and

A and B both know it. As the list of formulas that are valid in each state are not the same

before and after A’s message, ω1 and ω2 do not represent the same states of the world by

definition.

In this example, the problem comes from the fact that states only describe static knowl-

edge. To treat the case of a dynamical setting in which agents revise their knowledge, one

has to consider states that describe initial knowledge and revised knowledge. Bonanno

[2004] and Board [2004] propose a unifying framework for static belief and belief revision.

The idea is to augment the language with two operators for each agent, Ii and k′
i. The
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interpretation of each operator is as follows: kiφ means that i initially knows φ (at time 0),

Iiφ means that i is informed that φ (between time 0 and time 1), k′
iφ means that i knows

φ at time 1, namely after revising his knowledge in light of the information received. The

description of each state in the previous example should then be as follows:

(M,ω1) |= p ; k1p ; ¬k2p ∧ ¬k2¬p ; I2p ; k′
1p ; k′

2p

(M,ω2) |= ¬p ; k1¬p ; ¬k2p ∧ ¬k2¬p ; I2¬p ; k′
1¬p ; k′

2¬p

Now, the description of each ω is the same before and after A’s message.

To conclude, states of the world do not evolve when agents update their information if

one consider sufficiently rich states of the world, which describe individuals’ knowledge at

each possible date.

1.4. Conclusion

The aim of this chapter was first to present Aumann structures, which are used to model

knowledge in the Agreeing to Disagree literature. In this thesis, we model situations in

which agents update their private information from communicating with each other. The

way agents make inferences from observing others’ actions depends on two things. First,

it depends on whether they know how others’ actions relate to their private information.

Second, it depends on whether they understand the structure of others’ information. In

the example given in the introduction, B knows that his friend goes to the beach only when

he knows that the weather is hot or dry. However, he does not know what kind of weather

report his friend saw. In the Agreeing to Disagree literature, it seems implicit that agents

“know” others’ information partitions. The second aim of this chapter was therefore an

attempt to make clear whether “common knowledge” of partitions is a meta-assumption
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or a tautology implicit in the model. Going back to the logical foundations of Aumann

structures, we saw that what agents know is part of the description of the states, and that

information partitions are only a useful representation of individual possibility relations.

Therefore, it makes no sense, to the best of our knowledge, considering the possibility that

agents could have knowledge of a representation tool. Another important question that

often arises in the agreeing to disagree literature is whether states of the world evolve when

agents update their information. We saw that in dynamic settings, states of the world must

describe knowledge at each date, as well as the arrival of new information.





Chapter 2

A review of the Agreeing to Disagree

literature

2.1. Introduction

A formal and tractable definition of common knowledge was introduced into the eco-

nomics literature by Aumann [1976]. Assuming that individual knowledge is described by a

partition of the set of states of the world, he showed that common knowledge in a group of

agents can be represented by a particular partition, derived from each individual partition.

In this framework, Aumann showed a mathematically almost trivial but yet very powerful

result: if rational agents have the same prior probability, and if their posterior probabilities

of some given event are common knowledge at some state, then these posteriors must be

the same in that state, despite different conditioning information. In other words, rational

agents cannot agree to disagree. This result suggested that asymmetric information had

less explanatory power than might be thought: in the absence of differences in prior be-

liefs, asymmetric information could not explain commonly known differences in posterior

beliefs. In particular, Aumann’s result has crucial implications in the theoretical analysis
77
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of speculation and trade among rational agents. Consider for instance two stock traders

who have received contradictory information about the evolution of the price of some stock.

Trader A, who believes that the price will go down, offers his stocks to trader B. The deal

is concluded, and a handshake makes it common knowledge to both traders. If the fact

that traders A and B are willing to exchange is common knowledge to them, then it is also

common knowledge to them that A believes the price will go down, and that B believes

the price of the stock will go up. Yet this is not possible, according to Aumann’s result.

To restore the conventional understanding of speculation and trade, one has to assume

either that traders are boundedly rational (“noisy traders”) or that agents hold different

prior probabilities.

Aumann’s result gave rise to a literature that we shall call the Agreeing to Disagree

literature. This thesis presents three results that are part of it. The aim of this chapter is to

review the Agreeing to Disagree literature, before introducing our contributions to it. Other

treatments include Bonanno and Nehring [1997], Geanakoplos [1994] and Samuelson [2004].

Bonanno and Nehring provided a detailed survey of the Agreeing to Disagree literature,

as well as a deep analysis of the justifications and the consequences of the common prior

assumption. Geanakoplos wrote a rather technical survey of the implications of common

knowledge for economic behavior, whereas Samuelson examines knowledge modelling and

its role in economics in a less technical survey. Geanakoplos and Samuelson’s reviews are

broader in scope and are therefore less exhaustive on the Agreeing to Disagree literature

strictly speaking than that of Bonanno and Nehring or than ours.

In his agreement result, Aumann makes the assumption that individuals have the same

prior probability, and shows under this assumption that asymmetric information cannot

explain commonly known differences in posterior probabilities. Even without the common
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prior assumption, common knowledge of individual posteriors implies that these posteriors

would have been the same, had agents conditioned on the basis of the public information.

In other words, common knowledge of individual posteriors implies that posteriors do

not reflect the differential information that each agent possesses. This basic property

of common knowledge, identified thanks to Aumann’s result, is that common knowledge

of individual posteriors negates asymmetric information. Aumann’s result gave rise to a

line of research that studies the conditions under which common knowledge of individual

decisions negates the explanatory power of asymmetric information. It could be argued

that common knowledge of individual decisions, and common knowledge more generally,

is a theoretical situation that is not attainable, which would diminish the importance of

Aumann’s result. Another line of research has then studied the conditions of emergence of

common knowledge of individual decision rules.

The Agreeing to Disagree literature addresses the two following questions:

1. Under what conditions common knowledge of a statistic of individual decisions negates

asymmetric information?

2. Under what conditions individual decisions might become common knowledge in a

group of agents?

In section 3, we review some of the results that provided an answer to the first question.

The way agents make their decisions is described by a decision rule, which prescribes what

action to make as a function of any information situation they might be in. These results

give conditions on individual decision rules and on the statistic of individual decisions which

are sufficient to guarantee that common knowledge of the statistic implies that all decisions

are made on the basis of the same information. In Aumann’s result, these conditions are
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that the statistic is the identity function, and that individual decision rules are posterior

probabilities of some event. If, moreover, individuals follow the same decision rule (as in

Aumann’s results where agents have the same prior), then all individuals must take the

same decision, a situation which is referred to as consensus. Most authors presented their

results as being about how common knowledge might imply consensus, assuming common-

ness of decision rules. We emphasize that the very contribution of these results is rather

to provide conditions under which common knowledge negates asymmetric information,

which does not require that agents follow the same decision rules. However, commonness

of decision rules plays a crucial role in the answer to the second question addressed in the

literature.

In section 4, we review some results that provided conditions under which communica-

tion might create common knowledge of individual decisions. The setting of these results

is the following. Agents communicate their decisions according to a protocol upon which

they have agreed beforehand. The communication protocol determines the senders and the

receivers of the communication at each date. We distinguish between public and non-public

protocols, to illuminate the role of commonness of decision rules. In public protocols, all

agents are receivers of the communication at each date. Provided a fairness condition on

the protocol, communication according to a public protocol leads to common knowledge

of individual decisions without any restriction on decision rules. In non-public protocols

however, individual decisions may fail to ever become common knowledge if agents fol-

low different decision rules. We show that in non-public protocols, common knowledge of

individual decisions emerge via the consensus, and then requires commonness of decision

rules.

Among the criticisms addressed to the Agreeing to Disagree literature, two criticisms
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could particularly be addressed to this thesis. We discuss this criticisms in section 5.

2.2. Agreeing to disagree

In this section, we present the seminal result of Aumann [1976]. Take the example of

the two traders in a formal setting. Suppose that the set of states of the world allows to

consider the event E “The price of the stock will go up”, and the event E “The price of

the stock will go down ”. Traders A and B are endowed with information partitions ΠA

and ΠB, and share a common prior probability P over Ω. Suppose that the two traders’

behavior is the following. They buy the stock if they believe that its price will go up with

a probability larger than 1/2. They sell the stock if they believe that its price will go down

with a probability smaller than 1/2. If they believe that the price will go up or down with

the same probability, they decide not to trade.

When the state of the world ω occurs, each trader privately receives information ΠA(ω)

and ΠB(ω). Both update their probability that the price will go up, which become P (E |

ΠA(ω)) and P (E | ΠB(ω)). Assume that A accepts to sell the stock, and that B accepts to

buy it. According to the traders’ behavior rule, it must be the case that P (E | ΠA(ω)) <

1/2 and P (E | ΠB(ω)) > 1/2. We assume that when the deal is concluded, the fact that

A and B accept the deal is made common knowledge to both of them, for instance by a

handshake. Therefore, the event “A thinks the price will go up with a probability strictly

smaller than 1/2 and B thinks the price will go up with a probability strictly larger than

1/2 ” is common knowledge to A and B at state ω. Denoting M the partition of common

knowledge among A and B, we have:

M(ω) ⊆ {ω′ ∈ Ω | P (E | ΠA(ω′)) < 1/2 and P (E | ΠB(ω′)) > 1/2}
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By Aumann’s definition, the partition M is such that for all ω, ΠA(ω) ⊆ M(ω) and

ΠB(ω) ⊆ M(ω). Therefore, each cell of M is a union of cells of ΠA, and a union of cells

of ΠB. As these unions are necessarily disjoint, P (E | M(ω)) is a convex combination of

those values P (E | ΠA(ω′)) such that ΠA(ω′) ⊆ M(ω). Yet for all ω′ ∈ M(ω), we have

P (E | ΠA(ω′)) < 1/2. Therefore, P (E | M(ω)) < 1/2. As M(ω) is also a disjoint union of

cells of ΠB, the same reasoning implies that P (E | M(ω)) > 1/2.

Therefore, given some event E and some value a, it cannot be common knowledge

among two agents that one has a posterior probability of E strictly larger than a, and

the other a posterior probability of E strictly smaller than a. This result is a slight

generalization of Aumann’s result, which is known as “Rational agents cannot agree to

disagree”. Notice that the word “agree” plays two different roles in the phrase “agree to

disagree”: “agree” refers to common knowledge, while “disagree” refers to reaching different

decisions.

Theorem 1 ( Aumann [1976] ) Consider two agents A and B endowed with partitions

ΠA and ΠB, and let E ⊆ Ω be some given event.

1. If agents have the same prior probability P over Ω, and

2. if it is common knowledge at ω that P (E | ΠA(ω)) = pA and P (E | ΠB(ω)) = pB,

then pA = pB.

It is worth noting that stating “Rational agents cannot agree to disagree” is a slight

abuse of language. It may be common knowledge among two agents that they hold different

posterior probabilities. Let the set of states of the world be Ω = {ω1, ω2, ω3, ω4}, and

consider two agents A and B endowed with partitions ΠA : {ω1, ω2}{ω3, ω4} and ΠB :
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{ω1}{ω2, ω3}{ω4}. Suppose that they share a uniform prior P over Ω (P (ωk) = 1/4 ∀ k),

and that they express their posterior probability of the event {ω2, ω3}.
1

ΠA = {ω1, ω2}1/2{ω3, ω4}1/2

ΠB = {ω1}0{ω2, ω3}1{ω4}0

Clearly, agents A and B hold different posteriors in every state of the world. As a con-

sequence, it is effectively common knowledge in every state of the world among A and B

that they have different posteriors: for all ω ∈ Ω, M(ω) = Ω = {ω′ ∈ Ω | P ({ω2, ω3} |

ΠA(ω′)) 6= P ({ω2, ω3} | ΠB(ω′))}. Therefore, the result of Aumann [1976] does not state

that “it cannot be common knowledge among rational agents that they disagree on their

posteriors”, but that “if their posteriors are common knowledge, then they have to agree

on their posteriors”.

The assumption of a common prior is central to Aumann’s result on the impossibility

of agreeing to disagree, and is the basic assumption behind epistemic justifications of the

concepts of correlated equilibrium (Aumann [1987]) and Nash equilibrium (Aumann and

Brandenburger [1995]).2 Criticisms of the common prior assumption concern its meaning

in models of incomplete information.3 In those models, a state of the world describes

individual belief hierarchies about the actual world, and is for Lipman [1995, p 2] “a

fictitious construct, used to clarify our understanding of the real world”. Therefore, the

assumption of a common prior on the set of states of the world “seem[s] to be based on

giving the artificially constructed states more meaning than they have” (Dekel and Gul,

1The subscripts describe individual posteriors in each cell.
2For a review of results about epistemic foundations of solution concepts in game theory, see Bonanno

and Nehring [1997] for instance.
3Lipman [1995], Gul [1996].
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[1997, p 115]). We do not want to discuss the plausibility (or the non-plausibility) of the

common prior assumption in Aumann structures.4 However, we want to emphasize that the

major contribution of Aumann’s result does not depend on the common prior assumption,

as we shall see in the next paragraph.

The proof of Aumann’s result uses the following argument. Denote Pi the prior proba-

bility of agent i, and consider some event E. If Pi(E | Πi(ω)) is common knowledge at ω,

then Pi(E | Πi(ω)) must be equal to Pi(E | M(ω)). What does it mean? If i’s posterior

probability is common knowledge at some state, then this posterior would have been the

same, had i conditioned on the basis of the public information 5M(ω). Therefore, if each

posterior Pi(E | Πi(ω)) is common knowledge at ω, then Pi(E | Πi(ω)) = Pi(E | M(ω))

for all i. Imagine that each individual “permute” his information partition with the one

of another individual. The partition of common knowledge does not change, and common

knowledge of individual posteriors still implies that i’s posterior is equal to Pi(E | M(ω)).

As a consequence, common knowledge of individual posteriors implies that individual pos-

terior probabilities do not reflect the differential information that each agent possesses.

Note that this does not depend on the commonness of the prior at all. This implica-

tion of common knowledge is sometimes interpreted as the fact that common knowledge

negates asymmetric information. As soon as individual posteriors are common knowledge,

they do not depend on individuals’ private information anymore, but only on the public

information.

The Agreeing to Disagree literature raises basically the same question as Aumann’s

4See Bonanno and Nehring [1999].
5Recall that public events are common knowledge whenever they occur. Therefore, they are cells or

unions of cells of the partition of common knowledge.
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result. To what extent differences in decisions can be explained on the basis of asymmetric

information? Under what conditions common knowledge of individual decisions negates

asymmetric information?

2.3. Common knowledge of individual decisions negates asym-

metric information: the agreement theorems

Following Aumann [1976], a lot of papers have addressed the issue of how common

knowledge of individual decisions might negate asymmetric information. These results are

sometimes called the agreement theorems. In order to present these theorems, we use the

following unified framework. We define a model m as a collection m =
(
Ω, (Πi)i∈N , (δi)i∈N

)

where Ω is the set of states of the world, (Πi)i∈N the individual information partitions,

and (δi)i∈N the individual decision rules. A decision rule δi : 2Ω \ ∅ → Di prescribes to

agent i what decision to make as a function of any information situation i might be in.

Posterior probabilities as in Aumann [1976], conditional expectations or discrete decisions

such as “Buy” or “Sell ” all correspond to particular decision rules. The decision made by

agent i at state ω is generated by i’s decision rule δi, and is δi(Πi(ω)). Let M be the set

of models. We define an outcome as a function φ : M× Ω → Φ, which associates to each

vector
(
(Ω, (Πi)i∈N , (δi)i∈N ), ω

)
a value in Φ.

Agreement theorems investigate under what conditions common knowledge of the out-

come of the model implies that the outcome does not use in any way the differential

information that each agent possesses. Namely, agreement theorems raise the following

question:

What conditions are sufficient to guarantee that, for all model m and all outcome func-
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tion φ satisfying these conditions, common knowledge of φ(m,ω) at state ω implies that

δi(Πi(ω)) = δi(M(ω)) for all i?

If such conditions are satisfied, and if, moreover, all individual decision rules are the

same (δi = δ ∀ i), then common knowledge of φ(m,ω) at state ω implies that all agents

must take the decision δ(M(ω)), a situation which is referred to as consensus. Most

authors of agreement theorems studied the conditions under which common knowledge

implies consensus, assuming commonness of the decision rules. We emphasize that the

contribution of these results is not about consensus per se, but about the fact that common

knowledge of individual decisions implies that all decisions are made on the basis of the

same information.

We shall classify agreement theorems in two groups. Theorems in the first group inves-

tigate the conditions under which common knowledge of the vector of individual decisions

negates asymmetric information. Theorems in the second group study what inferences can

be made by individuals from common knowledge of aggregate information about individual

decisions.

2.3.1. Common knowledge of individual actions

In this section, we consider that the outcome function φ is defined by

φ(
(
Ω, (Πi)i∈N , (δi)i∈N ), ω

)
= ((δi(Πi(ω)))i∈N )

In this setting, Aumann [1976] proved that if δi is the posterior probability of an event

A ⊆ Ω, namely if δi(X) = P (A | X) for all X ⊆ Ω, then common knowledge of δi(Πi(ω))

for all i implies that δi(Πi(ω)) = δi(M(ω)) for all i. As we illustrated it with the two

traders example, the proof of this result uses the following property of stability by disjoint



THE AGREEING TO DISAGREE LITERATURE 87

union of posterior probabilities. Let S = {S1, . . . , Sk} be a family of disjoint events of Ω,

and A ⊆ Ω some given event. If P (A | Sl) = p ∀ l = 1, .., k, then P (A |
⋃k

l=1 Sl) = p.

Therefore, Aumann’s result has been naturally extended to all decision rules satisfying this

stability by disjoint union property, which was called union consistency by Cave [1983],

and identified with the sure-thing principle by Bacharach [1985].

Definition 1 (Union consistency) A function f : 2Ω → D is union consistent if for all

E,E′ ⊆ Ω such E ∩ E′ = ∅, f(E) = f(E′) ⇒ f(E ∪ E′) = f(E) = f(E′).

Bacharach called this condition “sure thing principle” because its intuitive meaning

sounds like Savage [1954]’s sure thing principle. If someone takes a particular decision

whenever he knows that some event has occurred, and if he takes the same decision when-

ever he knows that this event has not occurred, then he need not be informed about the

occurrence of this event to take this decision. For Bacharach [1985, p 168], it is a “certain

fundamental principle of rational decision-making.” However, union consistency proved

disputable, as it involves non-trivial assumptions whose appropriateness is questionable.

We present Moses and Nachum [1990]’s criticism of union consistency in section 5.

Cave [1983] and Bacharach [1985] independently showed that if individual decision rules

are union consistent, then agents cannot agree to disagree on their decisions.

Theorem 2 ( Cave [1983], Bacharach [1985] ) Suppose that δi is union consistent for

all i. If δi(Πi(ω)) is common knowledge at state ω for all i, then δi(Πi(ω)) = δi(M(ω)) for

all i. If, moreover, δi = δ ∀ i, then δi(Πi(ω)) = δj(Πj(ω)) ∀ j.

Posterior probabilities (δ(X) = P (E | X)) and conditional expectations (δ(X) = E[Y |

X]) satisfy the union consistency property. Therefore, Cave and Bacharach’s result implies
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some of the results in Milgrom and Stockey [1982] and in Rubinstein and Wolinski [1990].

Furthermore, Cave and Bacharach’s result has direct implications for betting analysis.

Consider the following particular decision rule. Let X : Ω → R be a real random variable, a

a given real number, and the decision rule δ defined for all F ⊆ Ω by δ(F ) = d1 ⇔ E[X(.) |

F ] ≥ a and δ(F ) = d2 ⇔ E[X(.) | F ] < a. Clearly, δ is union consistent. Therefore, Cave

and Bacharach’s result implies the one in Sebenius and Geanakoplos [1983]:

Theorem 3 ( Sebenius and Geanakoplos [1983] ) Let X : Ω → R be a random vari-

able, and a a real number. Consider two agents A and B endowed with partitions ΠA and

ΠB of Ω. There is no state ω such that it is common knowledge to A and B at ω that

E[X | ΠA(ω)] < a and E[X | ΠB(ω)] ≥ a.

This result has several economic implications. First, it implies that two risk-neutral

agents cannot bet against each other (it is therefore known as a no-bet theorem). Suppose

that the variable X represents a bet between two risk-neutral agents. At state ω, agent A

receives X(ω) and agent B receives −X(ω). If A and B accept the bet at state ω, then

it becomes common knowledge among them at state ω that both expect a positive return

from the bet. In other words, it is common knowledge at state ω that E[X(.) | ΠA(ω)] > 0

and that E[−X(.) | ΠB(ω)] > 0, which is E[X(.) | ΠB(ω)] < 0. This is impossible by

Sebenius and Geanakoplos’ result.

Another interesting application of this result deals with voting rules and group decision

procedures. Consider the following example. On Friday night, Alice and Bob must decide

whether they will go to the cinema (action C) or to the beach (action B) on Saturday.

Their utility of both actions depends on Saturday’s weather, which is sunny at state ω1,

cloudy at state ω2 and rainy at state ω3. If it is sunny, they both prefer to go to the beach
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than to go to the cinema. If it is not, they both prefer to go to the cinema. Let Alice and

Bob’s common utility function be defined by U(B,ω1) = 3, U(B, ω2) = U(B,ω3) = 0 and

U(C,ω) = 1 for all ω. They share a uniform prior P over Ω, that is P (ω) = 1/3 for all

ω. They both receive a private signal about the weather, which leads them to have the

following information partitions:

ΠA = {ω1, ω2}{ω3}

ΠB = {ω1, ω3}{ω2}

Alice’s expected utility of going to the beach is 3/2 at states ω1 and ω2, and is 0 at state

ω3. Her expected utility of going to the cinema is 1 in every state of the world. Therefore,

if Alice had to decide by herself where to go, she would go to the beach at states ω1 and

ω2, and to the cinema at state ω3. If Bob had to decide by himself, he would go to the

beach at states ω1 and ω3, and to the cinema at state ω2. Suppose that state ω1 occurs,

namely that Saturday will be sunny. Alice does not know whether the true state is ω1 or

ω2. The action that maximizes her expected utility is going to the beach, but she knows

there is half a chance for the weather to be cloudy and that she gets a payoff of 0. However,

she knows that if the true state were ω2, namely if Saturdays’ weather were cloudy, Bob

would know it and would decide to go to the cinema. She also knows that if the true

state is ω1, Bob would decide to go to the beach. As a consequence, when she phones

Bob on Friday night she says to him "Let’s do what you prefer." Bob makes the same

reasoning. At state ω1, his optimal action is going to the beach, but he knows that he

has a half chance of making a mistake. However, he also knows that Alice will be taking

the correct decision in any state that he conceives as possible. Therefore, he also says to

Alice "Let’s do what you want." In this example, Alice and Bob both prefer that the other

makes the decision for both of them at state 1. Note however that this fact is not common
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knowledge among them, for at state ω3, they both want Alice to decide and at state ω2,

they both want Bob to decide. More generally, let (Ω, (Πi)i∈N , (δi)i∈N ) be a model such

that all agents have the same decision space (Di = D ∀ i). A voting rule is defined

as a function v : DN → D, which associates a particular decision to a decision profile.

Majority rule, unanimity rule, Borda rule, dictatorship are some examples. At state ω,

the decision profile is d(ω) := (δi(Πi(ω)))i∈N . The result of the vote at state ω is then

v(δ(ω)). Suppose that individuals share a common utility function which depends both on

the winning alternative, and on the state of the world: U : D×Ω → R. Agent i’s expected

utility at state ω if voting rule v applies is E[U(v(δ(.)), .) | Πi(ω)]. An agent i prefers

voting rule v to voting rule v′ at ω if and only if E[U(v(δ(.)), .) | Πi(ω)] ≥ E[U(v′(δ(.)), .) |

Πi(ω)] ⇔ E[
(
U(v(δ(.)), .)−U(v′(δ(.)), .)

)
| Πi(ω)] ≥ 0. As U(v(δ(.)), .)−U(v′(δ(.)), .) is a

particular random variable on Ω, Sebenius and Geanakoplos’ result implies that it cannot

be common knowledge in a group of agents that two of them disagree about the voting

rule they should use to determine their collective decisions, provided that they have the

same preferences.

The most well-known economic implication of the hypotheses that individual actions are

common knowledge is the no-trade theorem. Milgrom and Stockey [1982] consider a pure

exchange economy, where n risk averse agents have to trade in a situation of uncertainty

about the state of the world. There are l commodities, and each agent’s consumption set

is Rl
+. Each agent i is described by his initial endowment ei : Ω → Rl

+ (which is a random

variable), his utility function Ui : Ω × Rl
+ → R and his information partition Πi. Agents

share a common prior P over Ω. A trade t is a function from Ω into Rnl, where ti(ω)

describes trader i’s net trade of commodities in state ω. A trade is feasible if each agent

possesses a non-negative quantity of each good after trading, in every state of the world
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(ei(ω) + ti(ω) ≥ 0 ∀ i,∀ ω), and if the sum of individual demands for some commodity

in state ω is smaller than the total amount of this commodity in the economy in state

ω (
∑n

i=1 ti(ω) ≤ 0 ∀ ω). Milgrom and Stockey [1982] show that, if the initial allocation

is Pareto-optimal, trade between rational, risk-averse agents, cannot be explained on the

basis of asymmetric information.

Theorem 4 ( Milgrom and Stockey [1982] ) Consider an economy where all traders

are risk-averse, and where the initial allocation (ei(ω))i is Pareto-optimal in any state ω.

If it is common knowledge at some state ω that t is a feasible trade, and that each trader

weakly prefers t(ω) to the zero trade at ω, then every agent is indifferent between t and the

zero trade at ω. If moreover all agents are strictly risk-averse, then t(ω) must be the zero

trade.

2.3.2. Common knowledge of an aggregate of individual decisions

It may sometimes be natural to assume that agents are facing aggregate information

about others’ decisions. Some agreement theorems study the aggregation of private in-

formation into a statistic, and the redistribution of information that occurs as individual

make inferences from the common knowledge of this statistic. In Aumann [1976], agents

have common knowledge of their posterior probabilities of some event. What happens if,

for instance, they have common knowledge of the mean of their posteriors? In that case,

agents cannot associate a particular posterior to a particular information partition when

it comes to making inferences. McKelvey and Page [1986] show that if the statistic of

individual posteriors satisfies a condition of stochastic regularity, then common knowledge

of this statistic implies equality of individual posteriors. A stochastically regular function
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is a one to one transformation of a stochastically monotone function, for which Bergin

and Brandenburger [1990] provided a nice characterization. They showed that a function

f : Rn → R is stochastically monotone if and only if f is additively separable into strictly

increasing components, namely if it can be written in the form f(x) =
∑n

i=1 fi(xi), where

xi denotes the ith coordinate of x, and fi : R → R is strictly increasing for all i.

Theorem 5 ( McKelvey and Page [1986] ) Consider n agents, each agent i being en-

dowed with a prior P and an information partition Πi of Ω, and let E ⊆ Ω be some given

event. If φ is stochastically regular, then common knowledge of φ((P (E | Πi(ω)))i) at state

ω implies that P (E | Πi(ω)) = P (E | M(ω)) ∀ i.

Nielsen, Brandenburger, Geanakoplos, McKelvey and Page [1990] extended

McKelvey and Page ’s result from posterior probabilities to conditional expectations of

some given random variable.

Theorem 6 ( Nielsen et al. [1990] ) Consider n agents, each agent i being endowed

with a prior P and an information partition Πi of Ω, and let X : Ω → R be some random

variable. If φ is stochastically regular, then common knowledge of φ((E[X(.) | Πi(ω)])i) at

state ω implies that E[X(.) | Πi(ω)] = E[X(.) | M(ω)] ∀ i.

Nielsen [1995] generalizes the last result to the case of random vectors. To do so, he

adapts the definition of stochastic monotonicity to the multivariate case. In this setting,

a function is stochastically monotone if it is additively separable into strictly comonotone

components.

In Chapter 3 of this thesis, we will address the same question as McKelvey and Page’s,

in a more general setting where decisions may not be posterior probabilities.
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Agreement theorems study the implications of common knowledge of a statistic of

individual decisions, but not the conditions of emergence of such common knowledge situ-

ations. Consider Aumann [1976]’s setting. Obviously, without the assumption of common

knowledge of individual posteriors, commonness of the priors does not guarantee equality

of the posteriors. Consider the case where there are four states of the world, and where

the two traders have a uniform prior over Ω (P (ωk) = 1/4 ∀ k) and are endowed with the

following partitions: ΠA = {ω1, ω2}{ω3, ω4} and ΠB = {ω1, ω2, ω3}{ω4}. Let E be the

event {ω2, ω3}. The subscript reflects individual posteriors of the event E:

ΠA = {ω1, ω2}1/2{ω3, ω4}1/2

ΠB = {ω1, ω2, ω3}2/3{ω4}0

At state ω1, A’s posterior probability of E is 1/2, and B knows it, for it is the case in any

state that B conceives as possible at state ω1. B’s posterior probability of E at state ω1 is

2/3, and A knows it, since it is the case in any state that A conceives as possible at state

ω1. Therefore, A and B’s posteriors are mutual knowledge, but they differ because they are

not common knowledge. In particular, B does not know that A knows that his posterior

is 2/3. At state ω1, B thinks that the true state of the world might be ω3. Therefore, B

cannot exclude the possibility that A conceives ω4 as possible, and thus believes that B’s

posterior is 0.

The importance of the assumption that posteriors are common knowledge raises the

question of how posterior probabilities, and more generally, how decisions, might become

common knowledge. This question has no meaning in the state-space model of knowledge,

where an event E being common knowledge is simply a property satisfied in some states and

violated in others. However, how do we interpret the assertion that an event is common
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knowledge when applying the model? It does not suffice for something to be common

knowledge to simply tell everyone, since this ensures only that everyone knows, but not

that everyone knows that everyone knows. It seems then difficult to observe a situation of

common knowledge. However, if we impose sufficient structure on the interaction between

agents, in particular if we assume that agents understand what they observe, and are able

to make appropriate inferences from it, then we can model a communication process in

which agents communicate their decisions until they become common knowledge to all.

2.4. Communication and common knowledge of individual

decisions

In this section, we present some of the results which provided an answer to the sec-

ond question addressed in the Agreeing to Disagree literature. Under what conditions

communication of individual decisions can lead to common knowledge of decisions?

Let us consider the last example again. Suppose that A announces his posterior to B.

In any state of the world, his posterior is 1/2, hence B does not learn anything from A’s

message. B’s partition remains:

ΠB : {ω1, ω2, ω3}2/3{ω4}0

Then B communicates his posterior to A. A knows that B will announce 2/3 if she believes

the state of the world to be in {ω1, ω2, ω3}, and will announce 0 otherwise. Therefore, B’s

message drives A to distinguish states ω1, ω2 and ω3 from state ω4. Since she could already

distinguish states ω1 and ω2 from states ω3 and ω4, his partition becomes:

ΠA : {ω1, ω2}1/2{ω3}1{ω4}0
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A announces his posterior again. B is now able to distinguish states {ω1, ω2} and state ω3.

His partition becomes:

ΠB : {ω1, ω2}1/2{ω3}1{ω4}0

From this time on, A and B do not learn any further information from communicating

their posterior with each other. Why? Because their posteriors have become common

knowledge to them. As a consequence, they are equal by Aumann’s theorem.

This example illustrates the result of Geanakoplos and Polemarchakis [1982], who

showed that two rational agents cannot “disagree forever”. Under the assumptions that

information partitions are finite and agents have common priors, they showed that by

communicating back and forth and revising their posteriors, the two agents will converge

to a common posterior equilibrium, even though they may base their posterior on different

information.

Theorem 7 ( Geanakoplos and Polemarchakis [1982] ) Consider two agents endowed

with finite partitions of Ω. If the two agents share a common prior, and if they alternately

announce their posterior probability of a given event to one another, then their posterior

probabilities will converge to a common posterior probability.

This result was the first to provide an answer to the second question addressed in the

literature, which deals with the conditions under which individual decisions might become

common knowledge. Even if this is not the way the authors presented it, we could state

Geanakoplos and Polemarchakis’ result as follows. “If two agents alternately announce

their posterior probabilities of a given event to one another, then eventually these poste-

rior probabilities will become common knowledge to both agents. If, moreover, agents share
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a common prior probability, then these posteriors must be equal by Aumann’s theorem.”

Actually, Geanakoplos and Polemarchakis identified a particular communication protocol

for two agents, according to which individual posteriors eventually become common knowl-

edge between the two agents. We now present some of the results which investigated more

generally how communication might generate common knowledge of individual decisions.

We first properly define what is a communication protocol in the Agreeing to Disagree lit-

erature, and we present the way agents update their private information in such protocols.

2.4.1. Communication and convergence of beliefs

Following Geanakoplos and Polemarchakis [1982], some authors have analyzed the con-

ditions under which communication might create common knowledge. Again, we shall

use a unified framework to present the results on the topic. A model is a collection

(
Ω, (Πi)i∈N , (δi)i∈N , P r

)
, where Ω is the set of states of the world, (Πi)i∈N the individual

partitions, (δi)i∈N the individual decision rules, and Pr the communication protocol. A

communication protocol Pr is a pair of functions which determine the set of senders and

the set of receivers of the communication at each date. Formally, Pr = (s(.), r(.)) : N →

2N × 2N , where s(t) and r(t) respectively stand for the set of senders and of receivers

of the communication which takes place at date t. At each date t, every sender j ∈ s(t)

communicates the private value of δj to every receiver k ∈ r(t).

Communication is completely non strategic, namely if i’s private information6 is X ⊆

Ω, then i truthfully communicates the value δi(X). Implicitly, one assumes that agents

commit, or are constrained to communicate via decision rules δi.

6X is the private information of an agent iff X is the smallest subset of Ω such that the agent thinks

that the true state of the world belongs to X and not to Ω \ X.
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During the communication process, all receivers update their beliefs according to what

they hear, and those who are not recipient of the communication at that date try to infer

what recipients might have heard. We denote Πi(ω, t) the set of possible states for an agent

i at time t if the state of the world is ω. It is defined for all i and for all ω by the following

recursive process:

Πi(ω, 0) = Πi(ω) and ∀ t ≥ 1,

Πi(ω, t + 1) = Πi(ω, t) ∩
{
ω′ ∈ Ω | δj(Πj(ω

′, t)) = δj(Πj(ω, t)) ∀ j ∈ s(t)
}

if i ∈ r(t),

Πi(ω, t + 1) = Πi(ω, t) otherwise.

If |Ω| < ∞ and |N | < ∞, then there exists some T < ∞ such that ∀ t ≥ T , Πi(ω, t) =

Πi(ω, T ) for all i. In the sequel, we will use the following notation:

- Π∗
i (ω) denotes the limiting value of Πi(ω, t), namely Π∗

i (ω) := limt→∞ Πi(ω, t).

- Π∗
i denotes the information partition of agent i at the limit of the process, and will

be called i’s limit information partition.

- M∗ denotes the partition of common knowledge at the limit, namely M∗ = ∧i∈NΠ∗
i ,

and will be called the limit partition of common knowledge.

Formally, the question raised by the papers on the topic is the following:

What conditions should be imposed on (δi)i∈N and on Pr to guarantee that commu-

nication eventually leads to common knowledge of individual decisions, and therefore that

δi(Π
∗
i (ω)) = δi(M

∗(ω)) for all ω ?

One first has to assume that nobody is excluded from communication. This condi-

tion is satisfied by fair protocols. A protocol is fair if every participant in this protocol

communicates directly or indirectly with every other participant, infinitely many times.
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Definition 2 ( Fair protocols ) A protocol Pr is fair if for all pair of players (i, j), i 6=

j, there exists an infinite number of finite sequences t1, . . . , tK , with tk ∈ N for all k ∈

{1, . . . , K}, such that i ∈ s(t1) and j ∈ r(tK).

It is easy to see why communication may not lead to common knowledge of individual

decisions with a non-fair protocol. Consider two agents denoted A and B, endowed with

a uniform prior probability over Ω = {ω1, ω2, ω3}, and with the following partitions: ΠA :

{ω1, ω2, ω3}, ΠB : {ω1, ω2}{ω3}. Suppose that A is the only one allowed to communicate his

posterior probability of event {ω1}. In every state of the world, A’s posterior is common

knowledge to A and B, whereas B’s posterior is not. In particular, A does not know

whether B’s posterior is 0 or 1/2.

We must distinguish two kinds of protocols: public and non-public protocols.7 We

define a public communication protocol as a protocol in which all agents are the recipient

of the communication at any period.

Definition 3 ( Public protocol ) A communication protocol is public if for all t ∈ N,

r(t) = N .

The reason for the distinction between public and non-public protocols is that the way

by which communication leads to common knowledge of individual decisions essentially

differs whether the protocol is public or not.

7We depart from the definition of Koessler [2001], according to which a protocol is public if there exists

t ∈ N such that r(t) = N .
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2.4.2. Public communication protocols

In a fair and public protocol, communication of individual decisions leads to common

knowledge of individual decisions, without any condition on the decision rules.

Proposition 1 Let | N |< ∞ and | Ω |< ∞. If Pr is fair and public, then for all (δi)i,

M∗(ω) ⊆ {ω′ ∈ Ω | δi(Π
∗
i (ω

′)) = δi(Π
∗
i (ω)) ∀ i ∈ N} for all i and all ω. If, moreover, δi is

union consistent, δi(Π
∗
i (ω)) = δi(M

∗(ω)) ∀ i ∈ N .

Proof : Let us fix some state ω. If Pr is public, then i ∈ r(t) for all i, t. Therefore, Πi(ω, t)

is defined for all i by:

Πi(ω, 0) = Πi(ω) and for all t ≥ 0

Πi(ω, t + 1) = Πi(ω, t) ∩ H(ω, t) with H(ω, t) := {ω′ | δj(Πj(ω
′, t)) = δj(Πj(ω, t)) ∀ j ∈

s(t)}.

Let T be such that for all t ≥ T , for all i, Πi(ω, t + 1) = Πi(ω, t). Let t ≥ T . By

definition of Πi(ω, t), Πi(ω, t + 1) = Πi(ω, t) ⇒ Πi(ω, t) ⊆ H(ω, t) for all i, as Pr is public.

Therefore, the smallest set of states containing Πi(ω, t) for all i is also contained in H(ω, t),

which implies that H(ω, t) is common knowledge at date t. It follows that for all j ∈ s(t),

δj(Πj(ω, t)) is common knowledge at date t. As the protocol is fair, for all i ∈ N , there

exists some date t ≥ T such that i ∈ s(t).

If moreover δi is union consistent, as Πi(ω, t) = Π∗
i (ω) for all i, and all ω, we have

δj(Π
∗
j (ω)) = δj(M

∗(ω)) for all j ∈ s(t). Therefore, for all i ∈ N , δi(Π
∗
i (ω)) = δi(M

∗(ω)).

¤

Therefore, if the protocol is fair and public, the sufficient conditions under which com-

munication of individual decisions leads to a consensus in decisions are the same as in the

case of common knowledge of individual decisions:
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Proposition 2 ( Cave [1983] ) If the communication protocol is fair and public, then

• equality of decision rules: δi = δj ∀ i, j;

• union consistency of decision rules;

are sufficient conditions to guarantee that eventually, all individual decisions are the same.

If the protocol is not public however, commonness and union consistency of individual

decision rules are not sufficient for consensus to emerge in any fair protocol.8 Why? Because

individual decisions may fail to ever become common knowledge in non-public protocols.

2.4.3. Non-public protocols

In non-public protocols, agents may privately communicate at some dates. The typical

example is Parikh and Krasucki’s round-robin protocol, where agents are sitting around

a table and whisper their decisions to their left neighbor. Let us present an example

where individual decisions fail to ever become common knowledge in a fair but non-public

protocol. There are four states of the world, and three agents who communicate according

to a round-robin protocol. Let us consider the very artificial decision rules defined as

follows. Agent A decides a at states ω1 and ω2, and b otherwise. Agents B and C take the

decision a in any state. The three agents are endowed with the following partitions:

ΠA = {ω1, ω2}a{ω3, ω4}b

ΠB = {ω1, ω2}a{ω3, ω4}a

ΠC = {ω1, ω2, ω3, ω4}a

A privately communicates his decision to B. The partition of common knowledge

between A and B is MAB = {ω1, ω2}{ω3, ω4}. As A’s decision is a in states ω1 and ω2,

8Parikh and Krasucki [1990, p 185] provide such an example, which we give in chapter 6.
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and b in states ω3 and ω4, A’s decision is common knowledge between A and B, and B

does not learn anything from A. B’s decision is the same in every state of the world,

then C does not learn anything from B, and similarly, A does not learn anything from C.

Therefore, Π∗
i = Πi for i = A,B,C and M∗ = {ω1, ω2, ω3, ω4}. B and C’s decisions are

trivially common knowledge to all agents, but A’s are not, for A takes different decisions

in ω1 and ω3 for instance.

Let us show that if the communication protocol is fair and public however, individual

decisions must become common knowledge, as stated in Proposition 1. In any fair protocol,

A will have to speak at some date. Then B will not learn anything but C will be able

to distinguish states ω1 and ω2 from states ω3 and ω4. From this time on, nobody will

learn anything more, and we will have Π∗
i = Πi for i = A,B, but Π∗

C = {ω1, ω2}{ω3, ω4}.

Therefore, M∗ = {ω1, ω2}{ω3, ω4}, and A’s decision will effectively be common knowledge

in every state.

This example shows that, contrary to the case of public protocols, one has to impose

some conditions on decision rules for individual decisions to become common knowledge in

non-public protocols. One way of achieving common knowledge of individual decisions by

communicating is to create a consensus. Suppose that all agents follow the same decision

rule, and that this decision rule guarantees that communication according to any fair

and non-public protocols eventually leads to a consensus, namely a situation in which all

agents take the same decision. Even in non-public protocols, once a consensus is reached,

the consensus decision is, formally, common knowledge to all agents. Let d ∈ D be some

decision, and let Cons(d) = {ω | δ(Π∗
i (ω)) = d ∀ i ∈ N} be the event that the agents

have reached a consensus on decision d. Weyers [1992] showed that if ω ∈ Cons(d), then

M∗(ω) ⊆ Cons(d). In other words, a consensus is reached in fair protocols if and only if
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there is common knowledge of that consensus. As a consequence, if a consensus is reached

at some state ω, then individual decisions must be common knowledge at that state, and

every one must behave as if there were no asymmetric information:

ω ∈ Cons(d) ⇒ M∗(ω) ⊆ {ω′ | δ(Π∗
i (ω

′)) = d ∀ i ∈ N} ⇒ δ(Π∗
i (ω)) = δ(M∗(ω)) ∀ i ∈ N .

To sum up, communication of individual decisions in public protocols leads to common

knowledge of individual decisions without any assumptions on decision rules (such as like-

mindedness, union consistency, and so on), whereas communication according to non-public

protocols leads to common knowledge of individual decisions if communication leads to

consensus. In non-public protocols, common knowledge of individual decisions emerge via

the consensus.

Therefore, to know what conditions guarantee that communication in non-public pro-

tocols leads to common knowledge of individual decisions, one has to know what conditions

guarantee that communication leads to a consensus in non-public protocols. Parikh and

Krasucki [1990] were the first to investigate that case. They show that if all individuals

have the same decision rule, and if this decision rule is convex, which is a stronger require-

ment than union consistency, then communication eventually leads to consensus in any fair

protocol.

Definition 4 (Convexity)

• A function f : 2Ω → R is convex iff for all E, E′ ⊆ Ω such that E ∩ E′ = ∅, there

exists α ∈]0, 1[ such that f(E ∪ E′) = αf(E) + (1 − α)f(E′).

• A function f : 2Ω → R is weakly convex iff for all E,E′ ⊆ Ω such that E ∩ E′ = ∅,

there exists α ∈ [0, 1] such that f(E ∪ E′) = αf(E) + (1 − α)f(E′).
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Typically, posterior probabilities are convex functions. Weak and strong convexity,

like union consistency, apply to disjoint unions of events. They therefore suffer the same

shortcomings as union consistency with respect to their meaning when applied to sets of

states of the world, as we will discuss in section 5.

Theorem 8 ( Parikh and Krasucki [1990] ) If the communication protocol is fair, then

• equality of decision rules: δi = δ for all i;

• convexity of decision rules;

are sufficient conditions to guarantee that eventually, all individual decisions are the same.

Parikh and Krasucki [1990] show that union consistency is not sufficient for consensus

to emerge in any fair protocol for more than two agents. We present Parikh and Krasucki’s

example in chapter 6. They also show that weak convexity guarantees the consensus

result for three agents, but not for more than three agents. Krasucki [1996] shows that

Parikh and Krasucki’s result holds for union consistent decision rules and more than two

agents, provided that the protocol contains no cycle, which excludes typical communication

networks as the circle.

Parikh and Krasucki’s convexity condition may not apply in some contexts, as shown

in the following example. An individual contemplates buying a car. Suppose that the set

of available decisions is {buy,not buy}. Suppose that we re-label the decisions in R, with

1 standing for buy and 0 standing for not buy. The convexity condition implies that if

δ(X) = 0 and δ(Y ) = 1 for some disjoint X, Y , then δ(X ∪ Y ) ∈]0, 1[, which does not

correspond to any decision in {buy, not buy}. In Chapter 4, we give a new condition

that should be applied to the common decision rule for consensus to emerge in any fair
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communication protocol. This condition is that the decision rule must be the maximizer of

a conditional expected utility. Contrary to convexity, this condition applies to any decision

space.

Let us now make a point on whether commonness of the decision rules is necessary to

have that communication leads to common knowledge of individual decisions. Parikh and

Krasucki’s result holds with different decision rules if all individual rules are a bijective

transformation of the same convex function, namely if there exists a convex function f

such that for all i, δi = hi ◦ f with hi bijective. It is typically the case where some

agents speak in Russian, some others speak in Spanish, and all agents understand only

their own language and English. If the first agents have a Spanish-English dictionary, and

the second agents a Russian-English dictionary, they can speak in Russian and Spanish

and still converge to common knowledge. However, Parikh and Krasucki’s result may not

hold in the general case of different decision rules, as we show with the following example.

Consider three agents denoted A, B and C who share a uniform prior over Ω = {1, . . . , 8},

and who communicate in turn the value of different decision rules:

δA(X) = P ({2, 3} | X), δB(X) = P ({3, 5} | X), δC(X) = P ({2, 5} | X)

The three agents are endowed with the partitions:

ΠA : {1, 2}1/2{3, 4}1/2{5, 6}0{7, 8}0

ΠB : {1, 3}1/2{2, 4}0{5, 7}1/2{6, 8}0

ΠC : {1, 5}1/2{2, 6}1/2{3, 7}0{4, 8}0

Consider the case where A speaks to B, who speaks to C, who speaks to A, and so on.
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The partition of common knowledge among agents A and B is

MAB : {1, 2, 3, 4}{5, 6, 7, 8}

As A’s decision is 1/2 in states 1, 2, 3 and 4, and 2 in states 5, 6, 7 and 8, A’s decision is

common knowledge among A and B at every state of the world. Therefore, agent B does

not learn anything from A’s message. The partition of common knowledge among agents

B and C is

MBC : {1, 3, 5, 7}{2, 4, 6, 8}

The set of states where B takes the decision 1/2 is {1, 3, 5, 7}, and the set of states where B

decides 0 is {2, 4, 6, 8}. Again, agent C does not learn anything from B’s message. Finally,

the partition of common knowledge among agents C and A is

MAC : {1, 2, 5, 6}{3, 4, 7, 8}

The set of states where C decides 1/2 is {1, 2, 5, 6}, and the set of states where C decides

0 is {3, 4, 7, 8}. As a consequence, agent A does not learn anything from C’s message.

However, individual decisions are not common knowledge to all agents. The partition

of common knowledge in the group is M = {Ω}, and each agent is taking a different

decision in state 1 and in state 8.

In public protocols, common knowledge emerge independently of the emergence of a

consensus, whereas in non-public protocols, common knowledge of individual decisions is

implied by the consensus, and therefore can emerge only under particular conditions on

individual decision rules. Since like-mindedness is necessary for consensus to obtain, it is

also a necessary condition for common knowledge of individual decisions to obtain. This

raises the question of the meaning of the usual like-mindedness assumption, which we

discuss in the next section.
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2.5. Some criticisms addressed to the Agreeing to Disagree

literature

We identified three criticisms that have been addressed to the Agreeing to Disagree

literature. The first one deals with the plausibility of the situation of common knowledge

of individual decisions. We saw that one can build communication protocols in which

individual decisions eventually become common knowledge. The last two were addressed

by Moses and Nachum [1990], and deal with the union consistency condition and the

assumption of commonness of decision rules.

2.5.1. Union consistency

Union consistency is the key assumption of agreement theorems. It is the necessary

condition for common knowledge of individual decisions to imply that decisions do not

reflect the differential information that each agent possesses. Even in Aumann’s result,

only the union consistency property of posterior probabilities is used to establish the result.

As stated by Cave and Bacharach, union consistency is a technical condition. However,

Bacharach justified it by identifying union consistency with Savage’s sure thing principle,

arguing that union consistency characterizes rational individuals’ decision rules. His in-

terpretation of union consistency is the following. If I take the same decision whether I

know that some event E has occurred or I know that ¬E has occurred, then I still take the

same decision if I am completely ignorant about the occurrence of E. Moses and Nachum

[1990] pointed out an important flaw in Bacharach’s interpretation of union consistency.

Consider an agent i endowed with a partition Πi and following a decision rule δi : 2Ω → D.

Consider two states ω and ω′ such that Πi(ω) ∩ Πi(ω
′) = ∅. If δi is union consistent, then
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δi(Πi(ω)) = δi(Πi(ω
′)) = d ⇒ δi(Πi(ω)∪Πi(ω

′)) = d. Yet Moses and Nachum pointed out

that “taking the union of states of knowledge in which an agent has differing knowledge

does not result in a state of knowledge in which the agent is more ignorant. It simply does

not result in a state of knowledge at all!” (Moses and Nachum [1990, p 156]).

We interpret Moses and Nachum’s criticism as follows. Union consistency could be

identified with Savages’ sure thing principle in a one-decision maker setting, where states

of the world are states of nature, for they describe only objective facts. Consider two states,

ω1 and ω2, such that it is raining in state ω1 and not in state ω2. Consider a decision maker

A who is able to distinguish between ω1 and ω2. A’ information partition is

ΠA = {ω1}{ω2}

In state ω1, A knows that it is raining, and in state ω2, A knows that it is not raining.

Suppose now that the agent is not able to distinguish ω1 and ω2, namely that his partition

is

ΠA = {ω1, ω2}

Then in both states, A does not know that it is raining, and does not know that it is not

raining. The event {ω1, ω2} is effectively a state of knowledge in which A is more ignorant

about the fact that it is raining.

Suppose now that there are two decision makers A and B, and there are endowed with

the following partitions

ΠA = {ω1}{ω2}

ΠB = {ω1, ω2}

In both states, B knows that either A knows that it is raining, or A knows that it is

not raining. Therefore, the event {ω1, ω2} cannot be seen as an event where A is more
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ignorant about the rain anymore, as it is the event “B knows that either A knows that it

is raining, or A knows that it is not raining”.

There are two levels in Moses and Nachum’s criticism. First, they argue that union

consistency does not capture the intuitive meaning of Savage’s sure thing principle. Indeed,

we saw that taking the union of information sets may not result in an information set where

the agent is more ignorant in interactive settings. However, one need not identifying union

consistency with the sure thing principle. Union consistency is a technical condition of

stability by disjoint union, which is satisfied de facto by, for instance, posterior probabil-

ities, argmax rules and conditional expectations. Obviously, decision rules which are only

required to satisfy union consistency may be quite artificial. But union consistency is the

less demanding requirement to guarantee that common knowledge of individual decisions

negates asymmetric information.

The second level is that union consistency “requires the decision function to be defined in

a manner satisfying certain consistency properties at what amount to impossible situations”

(p 152). Indeed, we saw that it is quite artificial to impose that δA({ω1}) = δA({ω2} = d ⇒

δA({ω1, ω2}) = d, as {ω1, ω2} is not a possible information situation for A. However, we

think it is worth noting that this level of Moses and Nachum’s criticism also applies to every

result using union consistency, namely every result in the Agreeing to Disagree literature,

in particular to Aumann’s agreement theorem. Aumann uses posterior probabilities. Yet if

it makes no sense wondering what would be A’s decision if he happened to know {ω1, ω2},

then it makes no sense either wondering what would be his probability of the event “It is

raining” had he had the information {ω1, ω2}.

To conclude, we think that union consistency should only be seen as a technical require-

ment. However, decision rules which are only required to satisfy union consistency may be
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quite artificial, and one should keep it in mind when applying results of the Agreeing to

Disagree literature.

2.5.2. Like-mindedness

We saw in section 3 that commonness of individual decision rules (henceforth like-

mindedness) is independent from the fact that common knowledge of individual decisions

negates asymmetric information. However, it is a necessary condition for communication

to lead to common knowledge of individual decisions in non-public protocols. It therefore

raises the question of the relevance of like-mindedness assumptions.

Basically, the like-mindedness assumption states that given the same information, indi-

viduals must behave in the same way. This property has been formalized in the Agreeing

to Disagree literature by the fact that agents follow the same decision rule. If quite natural,

commonness of the decision rules implies some non-trivial hidden assumptions.

Consider a simple example, with three states of the world, and two agents endowed

with the following partitions:

ΠA = {ω1}{ω2, ω3}

ΠB = {ω1, ω2}{ω3}

If A and B follow the same decision rule, then this decision rule must at least be defined

on the same set of events (if not the entire set of events). Consider the event E := {ω1}. In

state ω1, A knows E, and knows that B does not know E. Clearly, B cannot know that “A

knows E and A knows that B does not know E”. Therefore, it makes no sense assuming

that whenever B’s private information is {ω1}, B makes the same decision as A when A’s

private information is {ω1}. In this example, B’s decision rule should not be defined on

{ω1} and {ω2, ω3}, as these are not possible information sets for B.
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The problem comes from the fact that decision rules are defined from the entire set of

events into itself, associating decisions to set of states of the world that may not together

form an information set. However, if {ω1} is not an information set for B, it may well

become one. For instance, if A communicates his private information to B, B’s information

partition will become Π′
B = {ω1}{ω2}{ω3}, and the fact that δB is defined also on {ω1}

will make sense. To sum up, the basic problem with like mindedness is the same as the one

behind the assumption that decision rules are defined on the whole set of events. However,

it is justified in dynamic settings, where information sets evolve over time.

2.6. Conclusion

The Agreeing to Disagree literature addresses the following questions.

1. Under what conditions common knowledge of a statistic of individual decisions im-

plies that decisions do not reflect the differential information that each individual

possesses?

2. Under what conditions communication of individual decisions eventually leads to the

situation of common knowledge of individual decisions?

As an answer to the first question, Cave [1983] and Bacharach [1985] showed that union

consistency is a sufficient condition in the case where agents have common knowledge of

their individual decisions. We saw that union consistency is the less demanding require-

ment which guarantees that common knowledge of individual decisions negates asymmetric

information. McKelvey and Page [1986] showed that common knowledge of a stochastically

regular statistic of individual posterior probabilities negates asymmetric information. In

Chapter 3, we will provide another answer than McKelvey and Page’s in the case where
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individual decisions may not be posterior probabilities.

As an answer to the second question, Parikh and Krasucki [1990] showed that if indi-

viduals all follow the same convex decision rule, then communication eventually leads to

consensus and common knowledge of individual decisions in any fair protocol. In public

protocols, it is sufficient to assume that individual decision rules are union consistent, and

commonness of the decision rules is not required. We saw that common knowledge of in-

dividual decisions emerge via the consensus in non-public protocols, and therefore requires

commonness of the decision rules, whereas it emerges independently of any assumption on

the decision rules in public protocols. In Chapter 4, we will provide a new condition on

the common decision rule, sufficient for consensus and common knowledge of individual

decisions to emerge in any fair protocol. Contrary to Parikh and Krasucki’s convexity, our

condition applies to any decision space.

This review of the Agreeing to Disagree literature is obviously not exhaustive. We

made the choice to present only results to which our contributions could be related. In

chapters 3, 4 and 5, we assume that knowledge is partitional. Therefore, we did not review

those results which extended Aumann’s result in a non partitional framework. However,

it is worth mentioning that Geanakoplos [1989] and Samet [1990] showed that Aumann’s

result still holds when dropping the Negative Introspection axiom.

In chapters 4 and 5, we consider a dynamical setting in which agents learn by commu-

nicating with each other. We assume perfect communication, in the sense that messages

always reach their receivers, and agents hold no uncertainty about that. Therefore, we only

reviewed results investigating how perfect communication might create common knowledge

of individual decisions. Heifetz [1996] and Koessler [2001] investigated the case of noisy

communication. Heifetz showed that in this setting, a consensus may occur without being
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common knowledge. In the same setting, Koessler showed that common knowledge fails to

emerge in non-public and noisy protocols. He provided a general result for emergence of

consensus without common knowledge for those protocols.



Chapter 3

Consensus and common knowledge of an

aggregate of decisions

3.1. Introduction

Aumann [1976] showed that rational agents having common knowledge of their posterior

probabilities of an event cannot disagree, in the sense that common knowledge of their

posteriors implies the equality of these posteriors, provided that they have the same prior.

Generalizing Aumann’s theorem on the impossibility of agreeing to disagree, Cave [1983]

and Bacharach [1985] showed that it is impossible for people following the same decision

rule to take different decisions if these decisions are common knowledge, when the decision

rule satisfies a union consistency condition.

It may sometimes be more natural to assume that agents have aggregate information

about the others’ decisions. On financial markets, stock traders don’t know exactly which

of them bought or sold the stock. All they know is the asset price that summarizes all moves

on the market, that is, all individual decisions. McKelvey and Page [1986] investigate the

effect that common knowledge of a statistic of the actions taken by a group of agents has on
113
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individual actions, assuming that individual actions are individual posterior probabilities of

some given event. They show that if the statistic satisfies a stochastic regularity condition,

then common knowledge of it implies equality of all individual posterior probabilities.

In this chapter, we address the same question as McKelvey and Page’s, in a more

general setting where individual decisions may not be posterior probabilities. We consider

a set of rational individuals, and we suppose that each individual’s knowledge is described

by a partition of the set of states of the world. All agents follow the same decision rule,

which prescribes what decision to make as a function of any information situation they

might be in. Each agent takes a decision based on his private information, and then a

statistic of all decisions is made public. We investigate what conditions should be imposed

on the decision rule and the statistic to guarantee that, in a group of individuals, common

knowledge of the value of the statistic implies that everyone behaves as if there were

no private information. In McKelvey and Page, these conditions are that 1) decisions

are posterior probabilities of some event, and 2) the aggregate statistic is stochastically

regular. We show that the same result holds for more general decision rules, provided a

different condition on the statistic. Indeed, we show that if the decision rule is balanced

union consistent and if the statistic is exhaustive, then individuals cannot take different

decisions if this statistic is common knowledge, although beliefs might well remain different.

Balanced union consistency is stronger than Cave [1983]’s union consistency, but is still

obeyed by conditional probabilities, optimal actions and conditional expectations. The

difference with union consistency is that it put some structure on the decisions made on

the basis of non-disjoint events. The exhaustiveness condition imposes that the statistic

should describe how many agents carry out each decision.

Even if the statistic is not initially common knowledge, the argument of Geanakop-
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los and Polemarchakis [1982] can be adapted to show that an iterative announcement of

the statistic eventually achieves the situation of common knowledge of the statistic. Fur-

thermore, we give an example which shows that the consensus achieved by the common

knowledge of the aggregate statistic might well be inefficient, in the sense that agents can

agree on a decision different from the one they would have taken under perfect information.

Hence it can happen that some agents took a better decision before knowing the public

information than after.

The result of McKelvey and Page [1986] has been extended by Nielsen, Brandenburger,

Geanakoplos, McKelvey and Page [1990] and by Nielsen [1995]. Nielsen et al. [1990]

generalize the result from conditional probabilities of an event to conditional expectations

of a random variable, and Nielsen [1995] from random variables to random vectors. Our

contribution to the literature is to extend the results of McKelvey and Page [1986] and

Nielsen et al. [1990] to arbitrary decision spaces (decisions can be posterior probabilities

as well as ‘buy’ or ‘sell’), provided that the decision rule is balanced union consistent.

Section 2 describes the model. Section 3 defines balanced union consistency and ex-

haustiveness and develops the result. Section 4 concludes with a brief discussion of the

relation between McKelvey and Page’s stochastic regularity condition and our exhaustive-

ness condition. Proofs are gathered in Section 5.

3.2. The model

Let Ω be the finite set of states of the world, and 2Ω the set of possible events. There

are N agents, each agent i being endowed with a partition Πi of Ω. When the state ω ∈ Ω

occurs, agent i knows that the true state of the world belongs to Πi(ω), which is the cell

of i’s partition that contains ω. We say that a partition Π is finer than a partition Π′
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if and only if for all ω, Π(ω) ⊆ Π′(ω) and there exists ω′ such that Π(ω′) ⊂ Π′(ω′). A

partition Π′ is coarser than a partition Π if and only if Π is finer than Π′. The partition Πi

represents the ability of agent i to distinguish between the states of the world. The coarser

his partition is, the less precise his information is, in the sense that he distinguishes among

fewer states of the world. As usual, we say that an agent i endowed with a partition

Πi knows the event E at state ω if and only if Πi(ω) ⊆ E. We define the meet of the

partitions Π1,Π2, . . . ,ΠN as the finest common coarsening of these partitions, that is the

finest partition M such that for all ω ∈ Ω and for all i = 1, . . . , N , Πi(ω) ⊆ M(ω).

Common knowledge of an event E at some state ω is the situation that occurs when

each agent knows E at ω, each agent knows that each of them knows E at ω, each agent

knows that each agent knows that each agent knows... etc. Aumann [1976] showed that,

given a set of N agents, the meet M of their N partitions is the partition of common

knowledge among these N agents. Hence we say that an event E is common knowledge at

state ω iff M(ω) ⊆ E.

We suppose that each agent takes a decision d in a space D. All agents follow the same

decision rule, δ : 2Ω \ ∅ −→ D, which prescribes what decision to make as a function of

any information situation they might be in. As the set of states of the world Ω is finite,

the set of possible information situations is finite too. Consequently, the set of available

decisions is also finite. Let δ(2Ω \ ∅) := {d1, . . . , dm} denote the range of the decision rule,

with m < ∞.

Agents make their decisions on the basis of their private information. If the state

ω occurs, agent i’s private information is Πi(ω), therefore i takes the decision δ(Πi(ω)).

We note δi(ω) agent i’s decision at ω and δ(ω) the decision profile at ω. That is to say

δi(ω) := δ(Πi(ω)) and δ(ω) := (δi(ω))i. We investigate the effect that common knowledge
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of a statistic Φ of all individual decisions at some state ω will have on δ(ω). We say that

the statistic Φ is common knowledge at state ω if the event {ω′ ∈ Ω | Φ(δ(ω′)) = Φ(δ(ω))}

is common knowledge at ω.

3.3. The consensus result

As individuals act on the basis of their private information, the statistic of individual

decisions is informative. We study what inferences can be made about δ(ω) from the public

information Φ(δ(ω)). More precisely, our theorem investigates what conditions should be

imposed on δ and Φ to guarantee that common knowledge of Φ(δ(ω)) among a set of

individuals implies a consensus on their decisions.

The condition we impose on the decision rule is called balanced union consistency.

Before stating it, let us defined what we call a balanced family of 2Ω, which slightly differs

from Shapley [1967]’s definition.

Definition 1 A non-empty family B ⊆ 2Ω is balanced if there exists a family of non-

negative reals {λS}S∈B, called balancing coefficients, such that
∑

S∈B,ω∈ S λS = 1 for every

ω ∈
⋃

S∈B S.

An example of a balanced family of Ω = {1, 2, 3, 4, 5, 6} is B = {{1, 2}, {3, 4}, {1, 2, 4}, {1, 2, 3}},

which is balanced with respect to coefficients λ{1,2} = λ{1,2,4} = λ{1,2,3} = 1/3 and

λ{3,4} = 2/3.

In Shapley [1967]’s definition, B ⊆ 2Ω is a balanced family if
∑

S∈B, ω∈S λS = 1 for

every ω ∈ Ω (whereas we require that is is the case only for all ω ∈
⋃

S∈B S). Therefore, if

a family B is balanced according to Shapley’s definition, then it is balanced according to

ours.
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We can now state the definition of balanced union consistency.

Definition 2 The decision rule δ is balanced union consistent iff for every balanced family

of events B, δ(S) = d ∀ S ∈ B ⇒ δ(
⋃

S∈B S) = d.

Balanced union consistency implies the standard union consistency condition of Cave

[1983] and Bacharach [1985],1 which imposes that if a decision maker makes the same action

whether he knows E or F , where E and F are disjoint events, then he still makes the same

action if he knows E ∪F . Union consistency tells nothing if E and F are not disjoint. We

need the stronger condition of balanced union consistency to put some structure on the

decisions made on the basis on non-disjoint events. However, balanced union consistency

is still obeyed by usual decision rules in economics, in particular by argmax rules. We

say that agents follow an argmax rule if they choose actions that maximize their expected

utility given their private information. The argmax rule for an agent endowed with a

utility function U : D × Ω and a prior belief P over Ω is defined from 2Ω \ ∅ → 2D by

δ(X) = argmaxd∈DE[U(d, .) | X] ⊆ D for all X ⊆ Ω.

Lemma 1 Argmax rules are balanced union consistent.

As posterior probabilities2 and conditional expectations3 are particular argmax rules,

they also obey balanced union consistency.

The sufficient condition we impose on the statistic is exhaustiveness. We say that a

statistic is exhaustive if it is a one to one transformation of the statistic Φ∗ defined as

follows.

1A family of disjoint events is always balanced.
2If D = [0, 1] and U(d, ω) = −1/2d2 + d1A(ω), then argmaxd∈[0,1]E[U(d, .) | X] = P (A | X).
3If D = R and U(d, ω) = −1/2d2 + dY (ω), then argmaxd∈R

E[U(d, .) | X] = E(Y | X).
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Definition 3 Φ∗ : {d1, . . . , dm}N → Nm is defined by Φ∗(x1, . . . , xN ) = (
∑N

i=1 1xi=d1 , . . . ,
∑N

i=1 1xi=dm
)

In other words, the statistic Φ∗ is a counting measure of individual decisions. A natural

example is an opinion poll over the whole population. Suppose that people have to answer

the following question: “Do you think the unemployment situation is: a) very worrying, b)

pretty worrying, c) a little worrying, d) not worrying at all ". The decision is to choose

one of the four alternatives. Suppose that there are ten agents, and that the sequence of

their decisions is (a, a, b, d, a, c, b, b, c, a). Then Φ∗((a, a, b, d, a, c, b, b, c, a)) = (4, 3, 2, 1).

Our theorem holds for any exhaustive statistic Φ = h ◦ Φ∗, with h one to one. As our

results do not depend on the transformation h at any point, we state the theorem and the

proof for Φ∗.

Theorem 1 If δ is balanced union consistent, then at every ω ∈ Ω, common knowledge of

Φ∗(δ(ω)) implies that δi(ω) = δ(M(ω)) ∀ i.

This theorem states that if all agents follow the same balanced union consistent decision

rule, then common knowledge of the statistic Φ∗ of individual decisions implies equality of

all decisions. In other words, if the value of Φ∗ is common knowledge at ω, then that value

must be a permutation of the vector (N, 0, . . . , 0). Let us emphasize that this result does

not follow directly from the analysis of Cave [1983] and Bacharach [1985]. Basically, they

show that it cannot be common knowledge that two well identified agents take different

decisions. We show that it cannot be common knowledge that there exist two agents who

take different decisions. The fact that decisions are anonymous in our model implies that

agents have to base their inferences on less precise information than when they observe

individual decisions.

Even if the aggregate Φ∗(δ(ω)) is not initially common knowledge at ω, we can adapt



120 COMMON KNOWLEDGE OF AN AGGREGATE OF DECISIONS

the argument in Geanakoplos and Polemarchakis [1982] to show that repeated public an-

nouncements4 of the statistic must eventually lead to common knowledge of the statistic

and hence, by Theorem 1, to equality of individual decisions.

We now discuss the roles played by our conditions in establishing the result. First, we

assume that all agents follow the same decision rule (δi = δ ∀ i) and that this is common

knowledge among them. If individual decision rules (δi)i are not identical, then common

knowledge of Φ∗(δ(ω)) at state ω implies that, for all i, δi(Πi(ω
′)) = δi(M(ω)) for all

ω′ ∈ M(ω). In other words, the equality of individual decision rules is not necessary to

obtain that “common knowledge negates asymmetric information”. However, it is obvi-

ously necessary to guarantee that consensus emerge. If δi 6= δj , it is then possible that

δi(M(ω)) 6= δj(M(ω)), and thus that some agents take different decisions at ω.

We use exhaustiveness to prove that common knowledge of the statistic at some state

ω implies common knowledge of a finite number of decision profiles, which are all permu-

tations of the decision profile at ω. Obviously, it may not be the case if the statistic is not

exhaustive, e.g. if the statistic is a constant function. Let us show that it may also not be

the case for more interesting statistics than constant functions.

Let Ω = {ω1, ω2, ω3} and consider three agents endowed with a utility function U :

{0, 1/2, 1} × Ω → R defined as follows:

U(x, ω1) =





3 if x = 1

0 if x = 1/2

2 if x = 0

U(x, ω2) =





0 if x = 1

3 if x = 1/2

2 if x = 0

U(x, ω3) =





0 if x = 1

3 if x = 1/2

2 if x = 0

Agents follow the argmax rule associated with the utility function U and the uniform

prior probability on Ω (P (ω) = 1/3 ∀ ω). Suppose that the three agents are endowed with

4We show in chapter 6 that it may not be the case in settings of private communication, as in the one

of Parikh and Krasucki [1990].
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the following partitions:5

Π1 : {ω1, ω2}0{ω3}1/2

Π2 : {ω1, ω3}0{ω2}1/2

Π3 = {ω1}1{ω2, ω3}1/2

Imagine that the statistic of individual decisions is the mean, namely Φ(δ(ω)) =

1

3

3∑

i=1

δi(ω) for all ω, then the value of the statistic is 1/3 in every state of the world,

although the decision profile is (0, 0, 1) in state ω1, and (0, 1/2, 1/2) in state ω2.

Balanced union consistency implies that permutations of the decision profile at some

state cannot be common knowledge if agents take different decisions at this state. As

the events corresponding to each decision profile may not be disjoint, we may not be

able to apply Cave’s union consistency. We now give an example showing that Cave’s

union consistency property does not imply consensus with an exhaustive statistic. Let

Ω = {1, 2, 3, 4, 5, 6}. The decision rule δ takes integer values and is defined as follows: let

the subsets of Ω be numbered X1, X2, . . . , and let n(Xk) be k. We let

δ({1, 2, 3}) = δ({1, 4, 5}) = δ({2, 4, 6}) = δ({3, 5, 6}) = 1

δ({4, 5, 6}) = δ({2, 3, 6}) = δ({1, 3, 5}) = δ({1, 2, 4}) = 2

and for all other X ⊆ Ω, δ(X) = n(X) + 2. This ensures that δ is union consistent. We

consider four agents endowed with partitions Π1,Π2,Π3 and Π4:

Π1 : {1, 2, 3}1{4, 5, 6}2

Π2 : {1, 4, 5}1{2, 3, 6}2

Π3 : {1, 3, 5}2{2, 4, 6}1

Π4 : {1, 2, 4}2{3, 5, 6}1

5The subscript reflects the decision taken in each cell.
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At every state of the world, two agents take decision 1 and two agents take deci-

sion 2. Then it is common knowledge at every state of the world that the value of Φ∗ is

(2, 2, 0, . . . , 0). Note however that this decision rule is not balanced union consistent. Denot-

ing B1 = {{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}}, we have
∑

S∈B1, ω∈S 1/2 = 1 for ω = 1, .., 6.

Denoting B2 = {{4, 5, 6}, {2, 3, 6}, {1, 3, 5}, {1, 2, 4}}, we have
∑

S∈B2, ω∈S 1/2 = 1 for

ω = 1, .., 6. Hence B1 and B2 are balanced with respect to coefficients λS = 1/2 for

every S ∈ B1 and every S ∈ B2. As δ(S) = 1 for all S ∈ B1, if δ were balanced union con-

sistent, we would have δ(
⋃

S∈B1
S) = 1, that is to say δ({1, 2, 3, 4, 5, 6}) = 1. As δ(S) = 2

for all S ∈ B2, if δ were balanced union consistent, we would have δ(
⋃

S∈B2
S) = 2, that is

to say δ({1, 2, 3, 4, 5, 6}) = 2, which brings the contradiction. However, for N ≤ 3, union

consistency of the decision rule is sufficient to guarantee the result.

3.4. Concluding remarks

We now briefly discuss the relative strength of the exhaustiveness condition relatively

to the stochastic regularity of McKelvey and Page [1986]. A stochastically regular function

f : RN → R is a one to one transformation of a stochastically monotone function. Bergin

and Brandenburger [1990] showed that a function f : RN → R is stochastically monotone

if and only if it can be written in the form f(x) =
∑N

i=1 fi(xi) where each fi : R → R is

strictly increasing.

Stochastically regular functions and exhaustive functions do not have the same domains.

In order to compare these conditions, one first has to re-label the decision set D in R. Let

us define a one to one function t : D → R, and denote d̃k := t(dk) for k = 1, . . .m, and

D̃ := {d̃1, . . . , d̃m}. Then one has to define what could mean exhaustiveness for real-valued

functions, and what could mean stochastic monotonicity for non-real-valued functions. We
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propose the following (obviously imperfect) definition. We say that:

• f : D̃n → R is “exhaustive” if ∃ h : R → Nm such that h ◦ f(x) = Φ∗(x).

• g : D̃n → Nm is “stochastically monotone” if ∃ h : Nm → R such that h ◦ g(x) =

∑n
i=1 hi(xi), with hi(.) strictly increasing for all i.

Clearly, some stochastically monotone functions are not exhaustive, in the sense we

have just defined. The mean of individual posterior beliefs is clearly stochastically regular

but may not be exhaustive. If for instance there are two agents and the value of f is 0.2,

then both agents could have the posterior belief 0.2, or one could have the posterior 0.1

and the other the posterior 0.3.

Consider Φ∗(x) = (
∑n

i=1 1xi=d̃1
, . . . ,

∑n
i=1 1xi=d̃m

) and h : Nm → R defined by h(z1, . . . , zm) :=

d̃1z1 + d̃2z2 + · · ·+ d̃mzm. We have h◦Φ∗(x) =
∑m

k=1 d̃k
∑n

i=1 1xi=d̃k
=

∑n
i=1 xi. Therefore,

exhaustive functions are stochastically monotone according to the previous definition.

A very well-known fact in the Agreeing to Disagree literature is that consensus might

well be inefficient, in the sense that the consensus decision may differ from the one that

would have been made if all agents had shared their private information. The next example

illustrates that point. Consider three agents who have to vote for candidate A or candidate

B. The set of states of the world is {1, 2, 3, 4, 5} and the three agents share a uniform prior

P over Ω (P (ω) = 1/5 ∀ ω). Agents have a utility function depending both on the elected

candidate and the state of the world, defined by U(A, ω) = 1 if ω ∈ {2, 3}, U(A,ω) = 0

if ω ∈ {1, 4, 5} and U(B, ω) = 1 − U(A, ω) for all ω. Agents vote for the candidate

that maximizes their expected utility, conditionally on their private information. In the

particular setting we chose, this behavior can be described by the balanced union consistent

rule δ : 2Ω \ ∅ → {A,B} defined by:
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



δ(X) = A ⇔ P ({2, 3} | X) ≥ 1/2

δ(X) = B otherwise

This decision rule is an argmax rule, and is then balanced union consistent by Lemma

1. Agents are endowed with the partitions Π1, Π2 and Π3.

Π1 = {1, 2}A, {3}A, {4, 5}B

Π2 = {1, 3}A, {2, 4}A, {5}B

Π3 = {1, 2, 3, 4, 5}B

The percentage of agents who intend to vote for candidate A is made public. This

statistic is exhaustive as it allows to know how many agents intend to vote for each candi-

date. At states 1, 2 and 3, the percentage is 2/3. At state 4, it is 1/3, and it is 0 at state 5.

Hence the announcement of the statistic leads agents to distinguish between states 1,2,3,

state 4 and state 5. After the first announcement, individual partitions become:

Π1 = {1, 2}A, {3}A, {4}B{5}B

Π2 = {1, 3}A, {2}A{4}B, {5}B

Π3 = {1, 2, 3}A{4}B{5}B

The value of the statistic is now 1 at state 1,2,3, and 0 at state 4 and 5. As the par-

tition of common knowledge is now M = {1, 2, 3}{4, 5}, the statistic has become common

knowledge, and no agent can infer more information from it.

Note that in this example, the updating process achieves a decision consensus, but not

a probability one. At state 1, one can notice that posterior probabilities for the event {2, 3}

of agents 1 and 2 are 1/2, while the one of agent 3 is 2/3. Furthermore, the consensus is

inefficient at state 1, for the three agents would have known that the state of the world
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was 1 had they shared their private information, and then would have elected candidate

B instead of candidate A. Therefore, agent 3 took a better decision before receiving the

public information than after, for he took the decision he would have taken if he had known

the true state of the world.

3.5. Proofs

Proof of Lemma 1:

Consider the argmax rule δ associated to a utility function U and a prior belief P , and

let B be a balanced family of events. As B is balanced, there exist {λS}S∈B such that

λS ≥ 0 ∀ S ∈ B and
∑

S′∈B, ω∈S′ λS′ = 1 for every ω ∈
⋃

S∈B S. We have to show that if

δ(S) = δ(S′) for all S, S′ ∈ B, then δ(
⋃

S′∈B S′) = δ(S) for all S ∈ B. Consider d ∈ δ(S)

and d′ ∈ δ(
⋃

S′∈B S′) and note B =
⋃

S′∈B S′.

• By definition of δ,

E[U(d′, .) | B] ≥ E[U(d, .) | B]

• By definition of δ, for all S ∈ B, E[U(d, .) | S] ≥ E[U(d′, .) | S]. It follows that for

all S,

1

P (S)

∑

ω∈Ω

P (ω)1ω∈SU(d, ω) ≥
1

P (S)

∑

ω∈Ω

P (ω)1ω∈SU(d′, ω)

which is equivalent to

1

P (S)

∑

ω∈B

P (ω)1ω∈SU(d, ω) ≥
1

P (S)

∑

ω∈B

P (ω)1ω∈SU(d′, ω)

As λS ≥ 0, it follows that

∑

ω∈B

P (ω)λS1ω∈SU(d, ω) ≥
∑

ω∈B

P (ω)λS1ω∈SU(d′, ω)
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Summing over S, we get:

∑

S

∑

ω∈B

P (ω)λS1ω∈SU(d, ω) ≥
∑

S

∑

ω∈B

P (ω)λS1ω∈SU(d′, ω)

∑

ω∈B

P (ω)U(d, ω)
∑

S

λS1ω∈S ≥
∑

ω∈B

P (ω)U(d′, ω)
∑

S

λS1ω∈S

Yet for every ω ∈ Ω, we have
∑

S λS1ω∈S =
∑

S,ω∈S λS = 1. Thus we have

∑

ω∈B

P (ω)U(d, ω) ≥
∑

ω∈B

P (ω)U(d′, ω)

which boils down to

E[U(d, .) | B] ≥ E[U(d′, .) | B]

We get E[U(d, .) | B] = E[U(d′, .) | B] for all d ∈ δ(S) and d′ ∈ δ(B). Therefore,

δ(
⋃

S∈B S) = δ(S) for all S. ¤

Proof of Theorem 1:

Let ω be the state of the world. We note K(ω) the set of states of the world compatible

with the value of the statistic Φ∗(δ(ω)):

K(ω) = {ω′ ∈ Ω | Φ∗(δ(ω′)) = Φ∗(δ(ω))}

Given an agent i and a decision d ∈ D, we note Ki(d) the set of states (possibly empty)

that are common knowledge at ω and in which i takes the decision d:

Ki(d) = M(ω) ∩ {ω′ ∈ Ω | δi(ω
′) = d}

For the rest of the proof, we consider a decision d ∈ D chosen by at least one agent at

state ω, that is, such that ∃ i, δi(ω) = d, and we denote k the number of agents who take
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the decision d at state ω:

k := Card({i s.t. δi(ω) = d})

We first state three lemmas that will be used in the proof of the theorem.

Lemma 2 If M(ω) ⊆ K(ω), then {K1(d), . . . , KN (d)} is a balanced family of M(ω).

Proof: Let B denote {K1(d), . . . , KN (d)}. For all i, Ki(d) ⊆ M(ω), and B is non-empty as

∃ i such that ω ∈ Ki(d). By definition of Φ∗, the fact that exactly k individuals take

the decision d at ω implies that ∀ ω′ ∈ K(ω), exactly k individuals take the decision

d at ω′. As a consequence, if M(ω) ⊆ K(ω), then ∀ ω′ ∈ M(ω), there are exactly

k agents who take decision d at state ω′. Then ∀ ω′ ∈ M(ω),
∑N

i=1 1ω′∈Ki(d) = k.

Denoting λS = 1/k for all S ∈ B, we have ∀ ω′ ∈ M(ω),
∑

S∈B,ω′∈S λS = 1. ¤

Lemma 3 If δ is balanced union consistent, then δ(Ki(d)) = d for all i such that Ki(d) 6=

∅.

Proof: If Ki(d) 6= ∅, then Ki(d) is a union of cells of Πi such that δ(Πi(k)) = d. If δ is

balanced union consistent, δ is also union consistent and δ(Ki(d)) = d. ¤

Lemma 4 If M(ω) ⊆ K(ω), then
⋃N

i=1 Ki(d) = M(ω).

Proof: By definition, Ki(d) ⊆ M(ω) for all i, then
⋃N

i=1 Ki(d) ⊆ M(ω). If M(ω) ⊆ K(ω),

then for all ω′ ∈ M(ω), ∃ i such that ω′ ∈ Ki(d). Then M(ω) ⊆
⋃N

i=1 Ki(d). ¤

We now turn to the proof of the theorem itself. If Φ∗(δ(ω)) is common knowledge at

ω, then M(ω) ⊆ K(ω). By lemma 2, {K1(d), . . . , KN (d)} is balanced. If δ is balanced

union consistent, by lemma 3 we have δ(Ki(d)) = d for all i such that Ki(d) 6= ∅, and then

δ(
⋃N

i=1 Ki(d)) = d. Yet by lemma 4,
⋃N

i=1 Ki(d) = M(ω). As a consequence, δ(M(ω)) =
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d. As it is the case for any decision d taken by at least one agent at state ω, we have

δi(ω) = δ(M(ω)) ∀ i. ¤



Chapter 4

Consensus, communication and knowledge:

an extension with Bayesian agents

4.1. Introduction

Geanakoplos and Polemarchakis [1982] were the first to extend Aumann’s result on the

impossibility of agreeing to disagree to a dynamic framework. They showed that commu-

nication of posterior probabilities leads to a situation of common knowledge of these poste-

riors. Cave [1983] and Bacharach [1985] extended this result considering union consistent1

functions more general than posterior probabilities. In all of these settings, communication

is public, as achieved e.g. by auctions. Parikh and Krasucki [1990] investigated the case

where communication is not public but in pairs. They defined an updating process along

which agents communicate with each other, according to a protocol upon which they have

agreed beforehand. At each stage one of the agents transmits to another agent the value

of a certain function f , which depends on the set of states of the world he conceives as

1Let Ω be the set of states of the world. f : 2Ω → D is union consistent if ∀ X, Y ∈ 2Ω such that

X ∩ Y = ∅, f(X) = f(Y ) ⇒ f(X ∪ Y ) = f(X) = f(Y ).
129
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possible at that stage. Parikh and Krasucki [1990] showed that two conditions guarantee

that eventually, all agents will communicate the same value (a situation we will refer to as

a consensus): 1) a fairness condition on the communication protocol, which imposes that

every agent has to be sender and receiver of the communication infinitely many times; 2)

a convexity condition on the function whose value is communicated. Let Ω be the set of

states of the world. A function f : 2Ω → R is convex if ∀ X, Y ∈ 2Ω such that X ∩ Y = ∅,

there exists α ∈]0, 1[ such that f(X ∪ Y ) = αf(X) + (1 − α)f(Y ). This condition is sat-

isfied by conditional probabilities for instance, and is more restrictive than Cave’s union

consistency.

Parikh and Krasucki’s convexity condition may not apply in some contexts, as shown

in the following example. An individual contemplates buying a car. The set of available

decisions is {buy, not buy}. Suppose that we re-label the decisions in R, with for instance

1 standing for buy and 0 standing for not buy. The convexity condition implies that if

f(X) = 0 and f(Y ) = 1 for some X, Y such that X ∩Y = ∅, then f(X ∪Y ) ∈ ]0, 1[, which

does not correspond to any decision in {buy,not buy}. Hence there are some decision

spaces for which, even after a re-labelling in R, we may not be able to apply the convexity

condition.

Parikh and Krasucki [1990] showed by a counter-example that weak convexity2 and

union consistency are not sufficient to guarantee that consensus occurs in any fair protocol.

Krasucki [1996] investigated what restrictions on the communication protocol should be

imposed to guarantee the consensus with any union consistent function. He showed that

if the protocol is fair and contains no cycle, then communication of the value of any union

2Let Ω be the set of states of the world. f : 2Ω → R is weakly convex if ∀ X, Y ∈ 2Ω such that X∩Y = ∅,

there exists α ∈ [0, 1] such that f(X ∪ Y ) = αf(X) + (1 − α)f(Y ).
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consistent function leads to consensus.

In this chapter, we give a new condition on f for consensus to emerge in any fair com-

munication protocol. This condition is that the function whose values are communicated

is the maximizer of a conditional expected utility. Contrary to Parikh and Krasucki’s

convexity condition, this condition applies to any action space.

Even after an appropriate re-labelling of the image of f in R, the functions we consider

may not be representable by weakly convex functions. Furthermore, there exist weakly

convex functions that do not obey our condition. Hence the class of functions we look at

have a non-empty intersection with the class of weakly convex functions, but there is no

inclusion relation among them. On the other hand, for any decision space, the functions

we consider are union consistent.

4.2. Reaching a consensus

Let Ω be a finite set of states of the world. We consider a group of N agents, each of

them endowed with a partition Πi of Ω. All agents share some prior belief P on Ω. We

note Πi(ω) the cell of Πi that contains ω. Πi(ω) is the set of states that i judges possible

when state ω occurs. As in Parikh and Krasucki [1990], agents communicate the value of

a function f : 2Ω → D, according to a fair protocol Pr. A protocol is a pair of functions

(s(.), r(.)) : N → {1, . . . , N}2 where s(t) stands for the sender and r(t) the receiver of the

communication which takes place at time t. A protocol is fair if no participant is blocked

from the communication, that is if every agent is a sender and a receiver infinitely many

times, and everyone receives information from every other, possibly indirectly, infinitely

many times. Formally, given a protocol (s(t), r(t)), consider the directed graph whose
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vertices are the participants {1, . . . , N} and such that there is an edge from i to j iff there

are infinitely many t such that s(t) = i and r(t) = j. The protocol is fair if the graph

above is strongly connected.

Except fairness, we do not make any assumption on the protocol. We assume that D

can be any compact subset of a topological space.

Agents share a common payoff function U : D × Ω → R, which depends on the chosen

action d ∈ D and on the realized state of the world. We assume that U(., ω) is continuous

on D for all ω. What is communicated by an agent is the action that maximizes his

expected utility, computed with respect to the common belief P .

In order to avoid indifference cases, we make the assumption that given any event, all

actions have different expected utility conditional on this event.

Assumption [No indifference] For any event F ⊆ Ω, ∀ d 6= d′ ∈ D, E(U(d, .) | F ) 6=

E(U(d′, .) | F ).

Without the no indifference assumption, the set of maximizing actions of an agent may

not be a singleton, and we would have to specify the way agents choose between indifferent

actions. It is clearly a strong assumption and we discuss the implications of relaxing it in

the conclusion.

The function f : 2Ω → D is then defined by:

∀ E ⊆ Ω, f(E) = argmaxd∈DE(U(d, .) | E)

Suppose now that Pr is some given protocol. The set of possible states for an agent i

at time t if the state of the world is ω is denoted Ci(ω, t) and is defined by the following
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recursive process:

Ci(ω, 0) = Πi(ω)

Ci(ω, t + 1) = Ci(ω, t) ∩ {ω′ ∈ Ω | f(Cs(t)(ω
′, t)) = f(Cs(t)(ω, t))} if i = r(t),

Ci(ω, t + 1) = Ci(ω, t) otherwise.

The next result states that for all ω, f(Ci(ω, t)) has a limiting value which does not

depend on i.

Theorem 1 There is a T ∈ N such that for all ω, i, and all t, t′ ≥ T , Ci(ω, t) = Ci(ω, t′).

Moreover, if the protocol is fair, then for all i, j, for all ω, f(Ci(ω, T )) = f(Cj(ω, T )).

We discuss the properties of the function f defined as the argmax of an expected utility

in chapter 6. First, f is clearly union consistent for any action space. Second, f may not

be representable by a weakly convex function, namely a one to one function g : D → R may

fail to exist such that g ◦ f is weakly convex. If such a function g were to exist, learning

and consensus properties of f and g ◦ f would be the same. Therefore, the functions f

we consider would be particular weakly convex functions, for which consensus obtains in

any fair protocol. We show that it is not the case in chapter 6. Finally, there exist weakly

convex functions that cannot be defined as the argmax of an expected utility. Such an

example can be found in Parikh and Krasucki [1990, p 185]: they exhibit a weakly convex

function f such that consensus may fail to occur in some protocols. We show in chapter

6 that it is not possible to find a utility function U and a probability P such that this

function f is the argmax of the conditional expectation of U .
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4.3. Concluding remarks

The assumption that for any subset F and any d 6= d′ ∈ D, E[U(d, .) | F ] 6= E[U(d′, .) |

F ] is useful to avoid indifference cases, but is quite strong. We now discuss the implications

of relaxing this assumption for the consensus result. The primary consequence is obviously

that given a subset F ⊆ Ω, f(F ) may not be a singleton. The fact that f(.) may not

be a singleton does not matter for the result, as long as the function whose values are

communicated is union consistent. More precisely, as long as the Result 1 of the proof holds,

what action is communicated in the argmax does not matter, as they are all maximizing

actions. Two cases can be identified.

1) First, agents could communicate the entire set of their maximizing actions. In that

case, the result of Theorem 1 still holds, for f is still union consistent.

Proposition 1 For all utility function U : D × Ω → R and all probability P on Ω, the

function f : 2Ω → 2D defined by f(X) = argmaxd∈DEP [U(d, .) | X] for all X ⊆ Ω is union

consistent.

As f is union consistent, Result 1 of the proof holds. The rest of the proof is then the

same as when the argmax is a singleton, but is more tedious.

2) Second, agents could be able to communicate only one action (which is more real-

istic). In that case, the emergence of a consensus depends on the way agents choose the

action to be communicated in their argmax set. Let f∗(E) denotes the action effectively

communicated by an agent with private information E.

If they follow no particular selection rule, then the result of Theorem 1 does not hold,

for the function f∗ is not union consistent anymore. However, it is possible to find selection

rules such that the result still holds if agents communicate one of their maximizing actions
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according to these rules. Suppose that the decision space is endowed with a pre-order ≻,

and that agents communicate their larger (or their smaller) maximizing action according

to ≻. The so-defined function f∗ is union consistent.

Proposition 2 The function f∗ : 2Ω → D defined for any F ⊆ Ω by f∗(F ) = argmaxd∈f(F ) ≻

3 is union consistent.

Note however that assuming such a selection rule is tantamount to making a no-

indifference assumption.

4.4. Proofs

Proof: [Theorem 1]

1) As Ω is finite, the first part of the theorem is evident. In the sequel, we will note Ci(ω)

the limiting value of Ci(ω, t), and Ci the information partition of agent i at equilibrium.

2) As in Parikh and Krasucki [1990], we prove the second part of the theorem for N = 3 and

for a “round-robin protocol”, namely such that for all t, s(t) = t mod 3 and r(t) = (t + 1)

mod 3. Note that this is sufficient to prove the theorem for any fair protocol. Our argument

only uses the fact that we are able to find a chain t1 < t2 < · · · < tp, with T ≤ t1, such

that: (a) s(t1) = 1, (b) the receiver at tj is the sender at tj+1, (c) the chain passes through

all participants, finally returning to 1. This is implied by the fact that the protocol is fair.

Let Mij be the partition of common knowledge among agents i and j at equilibrium,

that is Mij is the finest partition of Ω such that ∀ ω, Ci(ω) ⊆ Mij(ω) and Cj(ω) ⊆ Mij(ω).

By consequence, ∀ ω, Mij(ω) is a disjoint union of cells of Ci and a disjoint union of cells

of Cj .
∑

Ci(k)⊆Mij(ω) will denote the sum on all cells of Ci composing Mij(ω).

3Or f∗(F ) = argmind∈f(F ) ≻
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At equilibrium, agent 1 communicates his optimal action to agent 2, agent 2 communi-

cates his optimal action to agent 3 and agent 3 communicates his optimal action to agent

1. By consequence, the action taken by agent 1 is common knowledge among 1 and 2.

Hence we have for all ω:

M12(ω) ⊆ {ω′ ∈ Ω | f(C1(ω
′)) = f(C1(ω))}

As M12(ω) is a disjoint union of cells of C1, union consistency of f implies that

f(M12(ω)) = f(C1(k))∀ k ∈ M12(ω).

• Result 1 E(U(f(M12(ω)), .) | M12(ω)) = E[E(U(f(C1(¦)), .) | C1(¦)) | M12(ω)]

Proof : For all ω′ ∈ M12(ω), f(C1(ω
′)) = f(M12(ω)). Then E[E(U(f(C1(¦)), .) | C1(¦)) | M12(ω)] =

E[E(U(f(M12(ω)), .) | C1(¦)) | M12(ω)]. As M12 is coarser than C1, the law of iterated ex-

pectations implies that E[E(U(f(M12(ω)), .) | C1(¦)) | M12(ω)] = E(U(f(M12(ω)), .) | M12(ω)].

• Result 2 E(U(f(M12(ω)), .) | M12(ω)) ≤
∑

C2(k)⊆M12(ω)

P (C2(k))

P (M12(ω))
E(U(f(C2(k)), .) | C2(k))

Proof : By definition, ∀ k ∈ M12(ω) we have:

E(U(f(M12(ω)), .) | C2(k)) ≤ E(U(f(C2(k)), .) | C2(k))

It implies that:

∑

C2(k)⊆M12(ω)

P (C2(k))E(U(f(M12(ω)), .) | C2(k)) ≤
∑

C2(k)⊆M12(ω)

P (C2(k))E(U(f(C2(k)), .) | C2(k))

that is:

P (M12(ω))E(U(f(M12(ω)), .) | M12(ω)) ≤
∑

C2(k)⊆M12(ω)

P (C2(k))E(U(f(C2(k)), .) | C2(k))¤
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• Result 3 ∀ i, j, E[E(U(f(Ci(¦)), .) | Ci(¦))] = E[E(U(f(Cj(¦)), .) | Cj(¦))]

Proof :

E[E(U(f(C1(¦)), .) | C1(¦))] =
∑

M12(ω)⊆Ω

P (M12(ω)E[E(U(f(C1(¦)), .) | C1(¦)) | M12(ω)]

Yet by results 1 and 2, we have

P (M12(ω))E[E(U(f(C1(¦)), .) | C1(¦)) | M12(ω)] ≤
∑

C2(k)⊆M12(ω)

P (C2(k))E(U(f(C2(k)), .) | C2(k))

Then

E[E(U(f(C1(¦)), .) | C1(¦))] ≤
∑

M12(ω)⊆Ω

∑

C2(k)⊆M12(ω)

P (C2(k))E(U(f(C2(k)), .) | C2(k))

=
∑

C2(k)⊆Ω

P (C2(k))E(U(f(C2(k)), .) | C2(k))

= E[E(U(f(C2(¦)), .) | C2(¦))]

Applying the same reasoning, we get

E[E(U(f(C2(¦)), .) | C2(¦))] ≤ E[E(U(f(C3(¦)), .) | C3(¦))]

and

E[E(U(f(C3(¦)), .) | C3(¦))] ≤ E[E(U(f(C1(¦)), .) | C1(¦))]

Hence E[E(U(f(Ci(¦)), .) | Ci(¦))] = E[E(U(f(Cj(¦)), .) | Cj(¦))] for all i, j. ¤

• Result 4 For all ω ∈ Ω, we have

E(U(f(C1(ω)), .) | C2(ω)) = E(U(f(C2(ω)), .) | C2(ω))

E(U(f(C2(ω)), .) | C3(ω)) = E(U(f(C3(ω)), .) | C3(ω))

E(U(f(C3(ω)), .) | C1(ω)) = E(U(f(C1(ω)), .) | C1(ω))

Proof :

By Result 3, the inequality can not be strict in Result 2. Then we have:

P (M12(ω))E(U(f(M12(ω)), .) | M12(ω)) =
∑

C2(k)⊆M12(ω)

P (C2(k))E(U(f(C2(k)), .) | C2(k))
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By definition, E(U(f(C1(k)), .) | C2(k)) ≤ E(U(f(C2(k)), .) | C2(k)) for all k ∈ M12(ω).

If ∃ k such that E(U(f(C1(k)), .) | C2(k)) < E(U(f(C2(k)), .) | C2(k)), then

∑

C2(k)⊆M12(ω)

P (C2(k))E(U(f(C1(k)), .) | C2(k)) <
∑

C2(k)⊆M12(ω)

P (C2(k)E(U(f(C2(k)), .) | C2(k))

that is:

P (M12(ω))E(U(f(M12(ω)), .) | M12(ω)) <
∑

C2(k)⊆M12(ω)

P (C2(k)E(U(f(C2(k)), .) | C2(k))

which is a contradiction.

Hence we have E(U(f(C1(k)), .) | C2(k)) = E(U(f(C2(k)), .) | C2(k)) for all k ∈ M12(ω).

As it is true for all ω, we have E(U(f(C1(k)), .) | C2(k)) = E(U(f(C2(k)), .) | C2(k)) for all

k ∈ Ω. The same reasoning applies for 2, 3 and 3, 1. ¤

From Result 4 and the assumption that all actions bring different expected utilities,

we have

f(C1(ω)) = f(C2(ω)) = f(C3(ω)) ∀ ω ∈ Ω

Proof: [Proposition 1]:

Consider X, X ′ ⊆ Ω, X ∩ X ′ = ∅, such that f(X) = f(X ′) = D∗ ⊆ D. Let d∗ be some

element of D∗. Clearly, we have E[U(d∗, .) | X ∪ X ′] = maxd∈D E[U(d, .) | X ∪ X ′], which

implies that d∗ ∈ f(X ∪ X ′). Therefore, D∗ ⊆ f(X ∪ X ′).

Let d∗∗ ∈ f(X ∪ X ′). We have E[U(d∗∗, .) | X ∪ X ′] = maxd∈D E[U(d, .) | X ∪

X ′] = E[U(d∗, .) | X ∪ X ′]. If d∗∗ /∈ D∗, then E[U(d∗∗, .) | X] < E[U(d∗, .) | X] and

E[U(d∗∗, .) | X ′] < E[U(d∗, .) | X ′], which implies that one would have E[U(d∗∗, .) |

X ∪ X ′] < E[U(d∗, .) | X ∪ X ′], which is a contradiction. Therefore, d∗∗ ∈ D∗ and

F (X ∪ X ′) ⊆ D∗. ¤
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Proof: [Proposition 2]

Consider X,X ′ ⊆ Ω, X ∩ X ′ = ∅, such that f(X) = f(X ′) = d∗ ∈ D. Clearly, we have

maxd∈D E[U(d, .) | X ∪ X ′] = E[U(d∗, .) | X ∪ X ′]. Therefore, d∗ ∈ argmaxd∈DE[U(d, .) |

X ∪ X ′]. If f(X ∪ X ′) 6= d∗, then it must be the case that f(X ∪ X ′) ≻ d∗. Yet if

f(X∪X ′) ≻ d∗, then it must also be the case that E[U(f(X∪X ′), .) | X] < E[U(d∗, .) | X]

and that E[U(f(X ∪X ′), .) | X ′] < E[U(d∗, .) | X ′]. This implies that E[U(f(X ∪X ′), .) |

X ∪ X ′] < E[U(d∗, .) | X ∪ X ′], which is a contradiction. Therefore, f(X ∪ X ′) = d∗, and

f is union consistent.





Chapter 5

Communication, consensus and order. Who

wants to speak first?

5.1. Introduction

Alice1 and Bob are sitting in front of each other, both wearing either a red hat or a

white hat. Suppose that the two hats are red. The teacher tells the children that there

is at least one red hat, and asks them whether they know the color of their hat. The two

children observe that the other’s hat is red, but cannot infer the color of their own hat.

The only way for them to answer the teacher is to communicate with each other. Suppose

that Alice tells Bob that she does not know the color of her hat. Bob understands that

his own hat is red, for if it had been white, Alice would have known that her hat was red.

Now Bob knows the color of his hat. But then if he tells Alice that he knows the color of

his hat, Alice will not learn anything, for the message of Bob would have been the same

regardless of the color of her hat. Therefore, Alice has no interest to be the first to say

whether she knows the color of her hat. This story illustrates the following fact. From the

1This chapter is a joint work with Nicolas Houy.
141
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moment that people communicate in order to be better informed, who gets to talk when is

important: the communication process is not commutative, for different orders of speech

may lead to different outcomes.

It is well known since Geanakoplos and Polemarchakis [1982] that in a group of rational

agents, a process of simultaneous and public communication of posterior probabilities of

an event leads to equality of all individual posteriors. Cave [1983] and Bacharach [1985]

extended this result to simultaneous and public communication of decisions, assuming that

the decision rule followed by agents satisfies a property called union consistency. Yet in

most economic situations where agents have to speak with each other, communication is

not simultaneous, and may not be public. It is common sense that each individual speaks

one after the other according to a given protocol. Parikh and Krasucki [1990] considered

the case where agents of a group communicate the value of some function f with each

other, according to a pairwise protocol upon which they have agreed beforehand. They

investigated what conditions on the function f and on the protocol guarantee that agents

eventually reach a consensus, i.e. that from some stage on all the communicated values

will be the same. They show that if the protocol is fair, that is if every participant

receives information directly or indirectly from every other participant, and if the function

f is convex, that is for all pair of disjoint events X, X ′, there exists a ∈]0, 1[ such that

f(X∪X ′) = af(X)+(1−a)f(X ′), then communication will eventually lead to a consensus

about the value of f .

The starting point of this work is to notice that, in Parikh and Krasucki’s setting, dif-

ferent protocols may lead to different outcomes, in terms of consensus values of f as well as

information learned by the agents during the communication process. In particular, it may

well be the case that some agent learns more information when communicating according
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to some protocol α than with some protocol β. It may also be the case that the most

informative protocols are not the same for all agents. Therefore, if agents communicate

in order to learn information from each other, they may disagree about the protocol they

should use for communicating.

The issue we address in this chapter is the following. We consider the same setting as

Parikh and Krasucki’s, and we make the additional assumption that agents communicate

with each other so as to learn information. Implicitly, agents are decision maker who try

to be better informed in the sense of Blackwell [1953] so as to improve their decisions.

An agent is said to be better informed with a structure I than with a structure I ′ if the

maximum expected payoff yielded by I is larger than that yielded by I ′ for any payoff

function and any prior probability. In a one-player decision problem, it has been shown

that an agent is better informed with a partition Π than with a partition Π′ if and only if Π

is a refinement of Π′, namely if each cell of Π is included in a cell of Π′. Therefore, we say

that an agent prefers a protocol α to a protocol β if and only if, at the end of the day, he

has a finer partition when communicating with α than with β. The non-commutativity of

the order of speech, as well as the fact that agents communicate so as to be better informed,

imply that they have preferences over the set of possible orders of speech. Depending on the

state of the world, Alice and Bob may prefer to speak first or second, or may be indifferent.

If neither Alice nor Bob wants to speak first, communication can not take place. However,

can we conclude that they will not learn anything from each other? The fact that Alice

does not want to speak first is informative for Bob. Bob knows that if Alice knew the color

of her hat, she wouldn’t mind speaking first and saying that she knows the color of her

hat. In this paper, we investigate what inferences can be made by rational agents from the

common knowledge that some of them disagree about the order of speech.
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The following situations are both possible. First, it can be common knowledge in

a group of agents that some of them prefer the same order of speech. Second, it can be

common knowledge in a group of agents that some of them prefer different orders of speech.

However, we show the surprising result that if it is the case, then the consensus value of f

must be the same whatever the order of speech. For instance, if it is common knowledge

among Alice and Bob that they both want to speak first, then what they will communicate

at the end of the day will be the same, whether Alice or Bob speaks first.

The chapter is organized as follows. In Section 2 we describe the model and the basic

result of Parikh and Krasucki [1990]. Section 3 defines preferences over protocols and

develops the result. Section 4 attempts to interpret and discuss our result. All proofs are

given in the section 5.

5.2. Preliminary notions

Let Ω be the finite set of states of the world, and 2Ω the set of possible events. There

are N agents, each agent i being endowed with a partition Πi of Ω. When the state ω ∈ Ω

occurs, agent i just knows that the true state of the world belongs to Πi(ω), which is the

cell of i’s partition that contains ω. We say that a partition Π is finer than a partition

Π′ if and only if for all ω, Π(ω) ⊆ Π′(ω) and there exists ω′ such that Π(ω′) ⊂ Π′(ω′). A

partition Π′ is coarser than a partition Π if and only if Π is finer than Π′. The partition Πi

represents the ability of agent i to distinguish between the states of the world. The coarser

his partition is, the less precise his information is, in the sense that he distinguishes among

fewer states of the world. As usual, we say that an agent i endowed with a partition

Πi knows the event E at state ω if and only if Πi(ω) ⊆ E. We define the meet of the
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partitions Π1,Π2, . . . ,ΠN as the finest common coarsening of these partitions, that is the

finest partition M such that for all ω ∈ Ω and for all i = 1, . . . , N , Πi(ω) ⊆ M(ω).

Before communicating, agents have to agree on a communication protocol that will be

applied throughout the debate, and which determines which agents are allowed to speak

at each date. We recall the formal definition of a communication protocol.

Definition 1 A protocol α is a pair of functions (s, r) from N to 2{1,...,N}. If s(t) = S

and r(t) = R, then we interpret S and R as, respectively, the set of senders and the set of

receivers of the communication which takes place at time t.

We note Γ the set of protocols. Along the debate, agents communicate by sending

messages, which we assume to be delivered instantaneously, that is at time t, messages

are simultaneously sent by every i ∈ s(t) and heard by every j ∈ r(t). As in Parikh and

Krasucki [1990], we assume that the message sent is the private value of some function f

defined from the set of subsets of Ω to R. The private value of f for an agent i at state

ω is f(Πi(ω)). This assumption implies that communication is completely non-strategic.

This is obviously a strong assumption, especially in a setting where agents communicate

in order to learn information. One implicitly assumes that agents are constrained to use

such a communication rule, and behave like automatons.

Finally, the set of states of the world Ω, the individual partitions (Πi)i, and the message

rule f define an information model I = 〈Ω, (Πi)i, f〉.

Two assumptions are made on the protocol and on the function f to guarantee that

iterated communication of the value of f leads to a consensus about the value of f . As in

Parikh and Krasucki [1990], we assume that the protocol is fair. We adapt2 Parikh and

2This definition is from Koessler [2001].
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Krasucki’s definition in our setting, but the meaning remains the same: a protocol is fair

if and only if every participant in this protocol communicates directly or indirectly with

every other participant infinitely many times. This condition is necessary so that nobody

is excluded from communication.

Assumption 1 (A1) The protocol α is fair, that is for all pair of players (i, j), i 6= j,

there exists an infinite number of finite sequences t1, . . . , tK , with tk ∈ N for all k ∈

{1, . . . , K}, such that i ∈ s(t1) and j ∈ r(tK).

Assumption 2 (A2) f is convex, that is for all subsets E, E′ ⊆ Ω such that E ∩E′ = ∅,

there exists α ∈]0, 1[ such that f(E ∪ E′) = αf(E) + (1 − α)f(E′).

Note that we will have f(E1 ∪ E2 ∪ · · · ∪ Ek) =
∑k

i=1 αif(Ei), with αi ∈ ]0, 1[ ∀ i and

∑k
i=1 αi = 1 provided that the Ei are pairwise disjoint events.

We now describe how information is aggregated during the debate. At a given date

t, the senders s(t) selected by the protocol (s, r) send a message heard by the receivers

r(t). Then each individual infers the set of states of the world that are compatible with

the messages possibly sent, and updates his partition accordingly. Given an information

model 〈Ω, (Πi)i, f〉 and a communication protocol α, we define by induction on t the set

Πα
i (ω, t) of possible states for an agent i at time t, given that the state of the world is ω:

Πα
i (ω, 0) = Πi(ω) and for all t ≥ 1,

Πα
i (ω, t + 1) = Πα

i (ω, t)∩ {ω′ ∈ Ω | f(Πα
j (ω′, t)) = f(Πα

j (ω, t)) ∀ j ∈ s(t)} if i ∈ r(t),

Πα
i (ω, t + 1) = Πα

i (ω, t) otherwise.

The next result states that for all i, for all ω, f(Πα
i (ω, t)) has a limiting value, and
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that this value does not depend on i. Under assumptions A1 and A2, participants in the

protocol converge to a consensus about the value of f .

Proposition 1 (Parikh and Krasucki (1990)) Let 〈Ω, (Πi)i, f〉 be an information model,

and α a communication protocol. Under assumptions A1 and A2, there exists a date T

such that for all ω, for all i, j, and all t, t′ ≥ T , f(Πα
i (ω, t)) = f(Πα

j (ω, t′)).

In the sequel, we will denote Πα
i (ω) the limiting value of Πα

i (ω, t), and Πα
i will be

called i’s partition of information at consensus. f(Πα(ω)) will denote the limiting value

of f(Πα
i (ω, t), which does not depend on i, and will be called the consensus value of f at

state ω, given that the protocol is α.

5.3. Who wants to speak first? An agreement theorem.

We know from Parikh and Krasucki [1990] that given any protocol α, under assumptions

A1 and A2, iterated communication of the private value of f eventually leads to a consensus

about the value of f . The next proposition states that this value may vary according to

the protocol.

Proposition 2 There exist an information model 〈Ω, (Πi)i, f〉 with f convex and two fair

protocols α, β for which there exists ω such that f(Πα(ω)) 6= f(Πβ(ω)).

This result can be proved easily for some union consistent functions f . However, to

the best of our knowledge, it was not proved for conditional probabilities. As the posterior

probabilities of an event are particular union consistent function, it could have been possible

that there exist no information model with posterior probabilities such that order matters.

We exhibit an example where it does.
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Example 1 Let Ω = {1, . . . , 13} be the set of states of the world. Suppose that Alice and

Bob have a uniform prior P on Ω. They communicate in turn the private value of the

function f(.) = P ({2, 3, 4, 8, 12} | .), which is convex, and are endowed with the following

partitions of Ω3:

ΠA = {1, 3, 7, 8}1/2{2, 6, 11, 12}1/2{4, 5, 10}1/3{9}0{13}0

ΠB = {1, 3, 5}1/3{2}1{4, 7, 9, 10, 12, 13}1/3{6, 8}1/2{11}0

If Alice speaks first (protocol α), individual partitions at consensus are:

Πα
A = {1, 3, 7, 8}1/2{2}1{11}0{6, 12}1/2{4, 10}1/2{5}0{9}0{13}0

Πα
B = {1, 3}1/2{5}0{2}1{4, 10}1/2{7, 12}1/2{9, 13}0{6, 8}1/2{11}0

If Bob speaks first (protocol β), individual partitions at consensus are:

Πβ
A = {1, 3, 7}1/3{8}1{2}1{6}0{11}0{12}1{4, 5, 10}1/3{9}0{13}0

Πβ
B = {1, 3, 5}1/3{2}1{4, 7, 10, }1/3{12}1{9, 13}0{6}0{8}1{11}0

At state 1, the consensus value of f is f({1, 3, 7, 8}) = f({1, 3}) = 1/2 if Alice speaks first,

whereas it is f({1, 3, 7}) = f({1, 3, 5}) = 1/3 if Bob speaks first.

We assume that agents are decision-makers who communicate with each other in order

to be better informed. As a consequence, they prefer protocols that lead them to be better

informed at the end of the day. What does «better informed» mean? Suppose that a

decision maker has to choose an action, and that the set of payoff-relevant states of the

3The subscript reflects the posterior belief in each cell.



WHO WANTS TO SPEAK FIRST? 149

world is Θ. Let P and P ′ be two partitions of Θ. The decision maker is better informed

with P than with P ′ if the maximal expected payoff yielded by P is larger than the maximal

expected payoff yielded by P ′, for any utility function, and any prior probability over Θ.

It has been shown that the partition P is more informative than the partition P ′ if and

only if P is a refinement of P ′, namely if P (θ) ⊆ P ′(θ) for all θ ∈ Θ.

Before communication takes place, the set of states which are of matter of interest for

agent i at state ω is Πi(ω). Therefore, at state ω, agent i knows that he will be better

informed with consensus partition Πα
i than with consensus partition Πα′

i if and only if Πα
i

induces a finer partition of Πi(ω) than Πα′

i .

Definition 1 Let α and α′ be two protocols. An agent i is better informed with Πα
i than

with Πα′

i at state ω if and only if

• Πα
i (ω′) ⊆ Πα′

i (ω′) for all ω′ ∈ Πi(ω)

• Πα
i (ω′′) ( Πα′

i (ω′′) for some ω′′ ∈ Πi(ω).

As a consequence, each agent knows ex interim which protocol he prefers among any

two protocols if he is not indifferent.

Definition 2 (Preferences) Let I := 〈Ω, (Πi)i, f〉 be an information model, and α, β two

protocols. The set of states of the world where agent i prefers α to β is denoted BI
i (α, β)

and is defined by

BI
i (α, β) = {ω ∈ Ω | ∀ω′ ∈ Πi(ω), Πα

i (ω′) ⊆ Πβ
i (ω′) and ∃ ω′′ ∈ Πi(ω) s.t. Πα

i (ω′′) ⊂ Πβ
i (ω′′)}

In Example 1, Alice and Bob are both better informed with the protocol α at state 4

and better informed with the protocol β at state 8. Hence at states 4 and 8, they agree

on the protocol they prefer. On the contrary, at state 1, Alice and Bob end up strictly
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better informed when they speak in second. What happens in that case? Suppose that

state 1 occurs, and that Alice and Bob stand in front of each other waiting for the other

to speak. Alice knows that the state of the world belongs to {1, 3, 7, 8}. She understands

that the state of the world can not be 7 nor 8, for Bob would have spoken first at state 8

and would have been indifferent at state 7. Bob knows that the state of the world belongs

to {1, 3, 5}. He understands that the state of the world can not be 5, for he knows that

Alice prefers to speak first at state 5. Hence knowing that the other does not want to

speak first makes Alice and Bob understand that the state of the world is in {1, 3}. From

now, they have the same private information at state 1. As they cannot learn information

from the communication process, they become indifferent between speaking first or second.

This example addresses the question of whether it can be common knowledge among two

persons that they disagree about the order of speech. More generally, what inferences can

be made by rational agents of a group from the common knowledge that some of them

disagree about the order of speech? Our main result states that if it is the case, then the

consensus message is the same according to any protocol.

Theorem 1 Let I = 〈Ω, (Πi)i, f〉 be an information model such that A1 and A2 are satis-

fied, and α, β two protocols such that α 6= β. Consider a1, a2, b1, b2 ∈ {α, β}, with a1 6= a2

and b1 6= b2, and let us fix i 6= j. Assertions (1), (2) and (3) cannot be true simultaneously.

(1) BI
i (a1, a2) and BI

j (b1, b2) are common knowledge at ω.

(2) ω ∈ BI
i (a1, a2) ∩ BI

j (b1, b2) and a1 = b2.

(3) f(Πα(ω)) 6= f(Πβ(ω)).

The meaning of this result in the example described in introduction is the following.
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• If (1) and (2) are true, namely if it is common knowledge at some state ω that Alice

and Bob prefer to speak first, then (3) is false, i.e the consensus value of f at ω is the same

regardless of the person who speaks first.

• If (1) and (3) are true, namely if it is common knowledge at ω that Alice prefers

a1 ∈ {α, β} and Bob prefers b1 ∈ {α, β}, and if the consensus value of f differs according

to whether the protocol is α or β, then (2) is false, i.e Alice and Bob prefer the same

protocol (a1 = b1).

• If (2) and (3) are true, namely if Alice and Bob prefer different orders of speech at

ω, then (1) is false, i.e these preferences are not common knowledge among them at ω.

The result of Theorem 1 is not due to the fact that assertions (1) and (2) or (1) and

(3) or (2) and (3) are never true simultaneously.

Proposition 3 (i) Assertions (1) and (2) of Theorem 2 can be true simultaneously.

(ii) Assertions (1) and (3) of Theorem 2 can be true simultaneously.

(iii) Assertions (2) and (3) of Theorem 2 can be true simultaneously.

This proposition states that (i) it can be common knowledge among them that Alice

and Bob prefer different orders of speech, (ii) it can be common knowledge among them

that Alice and Bob prefer the same order of speech, and (iii) it is possible that Alice and

Bob prefer different orders of speech which lead to different consensus values of f .

We prove point (i) with the following example, which describes a situation where it is

common knowledge between Alice and Bob that both of them prefer to speak in second.

The fact that both prefer to speak in second in order to be better informed is quite intuitive.

When an agent is the second to speak, the first message he hears contains purely private
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information of the other. When he is the first to speak, the first message he will hear will be

a join of the other’s private information and his private information, so he may not learn

anything. However, we found another example which shows that there exist situations

where both agents prefer to speak first. This example involves 288 states of the world, so

we did not include it in the thesis.

Example 2 The set of states of the world is Ω = {1, 2, 3, 4, 5, 6, 7} and Alice and Bob are

endowed with a uniform prior P on Ω. They communicate in turn the private value of the

function f(.) = P ({1, 2, 7} | .) and are endowed with the following partitions:

ΠA = {1, 2}1{3, 4}0{5, 6, 7}1/3

ΠB = {1, 7}1{2, 3, 6}1/3{4, 5}0

If Alice speaks first (protocol α), individual partitions at consensus are:




Πα
A = {1, 2}1{3, 4}0{5, 6}0{7}1

Πα
B = {1}1{2}1{3}0{4}0{5}0{6}0{7}1

If Bob speaks first (protocol β), individual partitions at consensus are:




Πβ
A = {1}1{2}1{3}0{4}0{5}0{6}0{7}1

Πβ
B = {1, 7}1{2}1{3, 6}0{4, 5}0

At every state of the world, Alice and Bob both prefer to speak in second: BA(β, α) = Ω

and BB(α, β) = Ω, hence at every state of the world, it is common knowledge among Alice

and Bob that Alice prefers the order β and Bob the order α. However, it does not contradict

Theorem 2 as for all ω, f(Πα(ω)) = f(Πβ(ω)).

We prove point (ii) with the following example, which shows that it is possible that

both agents prefer the same order of speech.
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Example 3 The set of states of the world is Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9} and Alice and Bob

are endowed with a uniform prior P on Ω. They communicate in turn the private value of

the function f(.) = P ({1, 6, 7, 9} | .) and are endowed with the following partitions:

ΠA = {1, 2, 4, 5, 9}2/5{3, 6, 7, 8}1/2

ΠB = {1, 3, 7}1/3{2, 5, 8}0{4, 6, 9}2/3

If Alice speaks first (protocol α), individual partitions at consensus are:





Πα
A = {1}1{2, 5}0{4, 9}1/2{3, 7}1/2{6}1{8}0

Πα
B = {1}1{2, 5}0{4, 9}1/2{3, 7}1/2{6}1{8}0

If Bob speaks first (protocol β), individual partitions at consensus are:





Πβ
A = {1, 4, 9}2/3{2, 5}0{3, 6, 7}2/3{8}0

Πβ
2 = {1, 3, 7}2/3{2, 5, 8}0{4, 6, 9}2/3

At every state of the world, Alice and Bob prefer that Alice speaks first: BA(α, β) =

BB(α, β) = Ω, hence it is common knowledge at any state that both prefer the order α.

Finally, we prove point (iii) with Example 1 in section 2. The partition of common

knowledge is M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. At state 1, Alice and Bob prefer

to speak second, and f(Πα(1)) = 1/3 6= f(Πβ(1) = 1/2. However, this is not common

knowledge, for Bob prefers to speak first at states 6 and 8.

5.4. Concluding remarks

What should be retained from Theorem 1 is that it cannot be common knowledge

in a group of agents that two of them disagree about the protocol they should use to
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communicate about f , if the consensus value of f actually differs according to each protocol.

This result is somewhat surprising, as it states basically that common knowledge about

fineness of partitions has implications in terms of messages. Indeed, the result is not due

to the fact that common knowledge that two agents disagree about two protocols α and β

implies that the partition of common knowledge is the same with α and β. Formally, we

have:

Proposition 4 Let I = 〈Ω, (Πi)i, f〉 be an information model such that A1 and A2 are

satisfied, and α, β two protocols such that α 6= β. Consider a1, a2, b1, b2 ∈ {α, β}, with

a1 6= a2 and b1 6= b2, and let us fix i 6= j. Assertions (1), (2) and (3’) can be true

simultaneously.

(1) Bi(a1, a2) and Bj(b1, b2) are common knowledge at ω

(2) ω ∈ Bi(a1, a2) ∩ Bj(b1, b2) and a1 = b2

(3’) Πα(ω) 6= Πβ(ω)

We prove it with Example 2, in which it is common knowledge in every state of the

world that Alice and Bob both want to speak second (which implies that assertions (1) and

(2) are true). The partition of common knowledge at consensus is Πα : {1, 2}{3, 4}{5, 6}{7}

if Alice speaks first, and is Πβ : {1, 7}{2}{3, 6}{4, 5} if Bob speaks first. However, we have

f(Πα(ω)) = f(Πβ(ω)) for all ω even if Πα(ω) 6= Πβ(ω) for all ω.

A first limit to this result is that conditions of application of Theorem 1 are quite

strong, in particular Assertion 2. Indeed, because of the way we defined them, preferences

over protocols are not complete. Therefore, the likelihood of a situation where two agents

would disagree between two protocols could be small.
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Another obvious limit of our result is that the justification we used for such preferences

over protocols works only in one-player decision problems. Indeed, more information does

not always mean better information in interactive situations. We know by Scarsini and

Zamir [1997], or Kamien, Tauman and Zamir [1990] among others, that in some games,

players might prefer dropping some payoff-relevant information because their equilibrium

payoff would then be higher. However, in particular games such as zero-sum games and

common interest games, each player improves his expected payoff by learning more infor-

mation.

5.5. Proof

Consider an information model I = 〈Ω, (Πi)i, f〉, and α, β two protocols such that

α 6= β. Let us show that if points 1) and 2) of theorem 1 are true, then point 3) is false.

We show that if there exist two agents i, j and a state ω such that BI
i (α, β) and BI

j (β, α)

are common knowledge at ω, then f(Πα(ω)) = f(Πβ(ω)). Clearly, the proof still holds if

we invert α and β.

Recall that M(ω) denotes the meet of individual partitions before communication takes

place: M =
∧n

i=1 Πi. We note Πα the meet of the individual partitions at consensus, given

that the protocol is α: Πα =
∧n

i=1 Πα
i .

If BI
i (α, β) and BI

j (β, α) are common knowledge at ω, then we have

M(ω) ⊆ Bi(α, β) ∩ Bj(β, α)

As Πα(ω) ⊆ M(ω) and Πβ(ω) ⊆ M(ω) ∀ ω, we have Πα(ω) ∩ Πβ(ω) ⊆ M(ω) ∀ ω.

Hence we have

Πα(ω) ∩ Πβ(ω) ⊆ BI
i (α, β) ∩ BI

j (β, α) (5.1)
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Consider some ω′ ∈ Πα(ω) ∩ Πβ(ω) (which is not empty as ω ∈ Πα(ω) ∩ Πβ(ω)).

By definition of the meet, we have Πα
i (ω′) ⊆ Πα(ω′) and Πβ

i (ω′) ⊆ Πβ(ω′). As ω′ ∈

Πα(ω) ∩ Πβ(ω), we have Πα(ω′) = Πα(ω) and Πβ(ω′) = Πβ(ω). Then we have

Πα
i (ω′) ⊆ Πα(ω) and Πβ

i (ω′) ⊆ Πβ(ω) (5.2)

By (5.1), ω′ ∈ BI
i (α, β). It implies that Πα

i (ω′) ⊆ Πβ
i (ω′). Yet Πβ

i (ω′) ⊆ Πβ(ω) by

(5.2). Then we have

Πα
i (ω′) ⊆ Πα(ω) ∩ Πβ(ω)

As this is true for every ω′ ∈ Πα(ω) ∩ Πβ(ω), we have

Πα(ω) ∩ Πβ(ω) =
⋃

ω′∈Πα(ω)∩Πβ(ω)

Πα
i (ω′)

By Proposition 1 of Parikh and Krasucki [1990], ∀ i, j, f(Πα
i (ω)) = f(Πα

j (ω)) for all

ω. By definition of the meet, it implies that ∀ ω′ ∈ Πα(ω), f(Πα
i (ω′) = f(Πα

i (ω)). As f is

convex, it is also union consistent, then we have f(Πα(ω) ∩ Πβ(ω)) = f(Πα(ω)).

The same reasoning applied to Πβ
j (ω) boils down to f(Πα(ω) ∩ Πβ(ω)) = f(Πβ(ω)).

Hence f(Πα(ω)) = f(Πα(ω)) ¤



Chapter 6

Comparative study of some properties of

decision rules

6.1. Introduction

Aumann’s result about the impossibility of agreeing to disagree has given rise to a vast

literature, dealing both with the implications of common knowledge of events for economic

behavior, and with the emergence of common knowledge situations in communication pro-

tocols. In any case, agents follow decision rules which prescribe what action to make as a

function of any information situation they might be in. The impossibility of agreeing to

disagree requires that individual decision rules satisfy some conditions. Cave [1983] and

Bacharach [1985] need union consistency to show that common knowledge of individual de-

cisions negates asymmetric information; Parikh and Krasucki [1990] need convexity to show

that pairwise communication of individual decisions eventually leads to consensus in deci-

sions; Aumann [1976], Geanakoplos and Polemarchakis [1982], McKelvey and Page [1986]

use posterior probabilities, Sebenius and Geanakoplos [1983] and Nielsen et al. [1990] use

conditional expectations, which are both convex functions. In Chapter 3, we use balanced
157
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union consistency to show that common knowledge of an exhaustive statistic of individual

decisions implies equality of decisions. In Chapter 4, we show that communication with an

argmax rule eventually leads to consensus in any fair protocol.

The relation between convexity, weak convexity and union consistency has been made

clear by Parikh and Krasucki [1990]: the set of convex functions is strictly included in

the set of weakly convex functions, which is also strictly included in the set of union con-

sistent functions. In this chapter, we first want to examine how the new conditions we

introduced in the literature, balanced union consistency and argmax, relate to convex-

ity, weak convexity and union consistency. Second, we discuss whether each condition is

sufficient to guarantee that 1) common knowledge of an exhaustive statistic of individ-

ual decisions implies equality of decisions, and that 2) communication according to a fair

protocol eventually leads to consensus. We show in Chapter 3 that common knowledge

of an exhaustive statistic may not imply consensus with union consistent decision rules.

What about argmax, weakly and simply convex rules? Parikh and Krasucki [1990] show

that consensus may fail to occur with union consistency and weak convexity. What about

balanced union consistency?

6.2. Relation between union consistency, weak convexity, con-

vexity, balanced union consistency and argmax

Let us first recall the definition of each condition.

• Union consistency : f is union consistent if ∀ E,F ⊆ Ω, such that E ∩ F = ∅

f(E) = f(F ) ⇒ f(E ∪ F ) = f(E) = f(F ).

We denote UC the set of union consistent functions.
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• Balanced union consistency : f is balanced union consistent if for all balanced

family1 B of Ω, f(S) = d ∀ S ∈ B ⇒ f(
⋃

S∈B S) = d.

We denote B the set of balanced union consistent functions.

• Argmax : f is an argmax function if there exist a function U : D × Ω → R and a

probability P over Ω such that ∀ X ⊆ Ω, f(X) = argmaxd∈DE[U(d, .) | X].

We denote A the set of argmax functions.

• Weak convexity : f is weakly convex if ∀ E, F ⊆ Ω such that E∩F = ∅, ∃ α ∈ [0, 1]

such that f(E ∪ F ) = αf(E) + (1 − α)f(F ).

We denote WC the set of weakly convex functions.

• Convexity : f is convex if ∀ E, F ⊆ Ω such that E ∩ F = ∅, ∃ α ∈]0, 1[ such that

f(E ∪ F ) = αf(E) + (1 − α)f(F ).

We denote C the set of convex functions.

Balanced union consistent functions, argmax function, weakly and strictly convex func-

tions are all union consistent. Parikh and Krasucki [1990] show that convexity implies weak

convexity which implies union consistency (C⊆ WC ⊆ U). We show in chapter 3 that

argmax functions are balanced union consistent, and that balanced union consistency im-

plies union consistency (A⊆ B ⊆ U). However, there is no inclusion relation between the

sets of weakly or simply convex functions and balanced union consistent functions, as well

as there is no inclusion relation between the sets of weakly or simply convex functions and

argmax functions.

1A non-empty family B ⊆ 2Ω is balanced if there exists a family of non-negative reals {λS}S∈B, called

balancing coefficients, such that
∑

S∈B,ω∈ S λS = 1 for every ω ∈
⋃

S∈B
S.
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Proposition We have:

1. C ( WC ( UC,

2. A ( B ( UC,

3. A ∩ C 6= ∅, but A * WC and C * A,

4. B ∩ C 6= ∅, but B * WC and C * B

We show points 3 and 4 with three examples. The next example shows that there

exists a convex and balanced union consistent function which cannot be represented as the

argmax of an expected utility.

Example 1 (C * A, B * A) Let the set of states of the world be Ω = {1, 2, 3, 4, 5}, and

the function f defined from 2Ω into [0, 1] by:

f({1}) = f({2}) = f({1, 2}) = 1, f({3}) = f({4}) = f({5}) = f({3, 4}) = f({3, 5}) =

f({4, 5}) = f({3, 4, 5}) = 0

f({1, 3}) = f({1, 4}) = f({1, 5}) = f({2, 3}) = f({2, 4}) = f({2, 5}) = f({1, 2, 3, 4}) =

f({1, 2, 3, 5}) = f({1, 2, 4, 5}) = 1/2

f({1, 4, 5}) = f({2, 3, 4}) = 1/3∗

f({1, 3, 4}) = f({2, 4, 5}) = 1/4∗∗

f({1, 3, 5}) = f({2, 3, 5}) = 1/4

f({1, 2, 3}) = f({1, 2, 4}) = f({1, 2, 5}) = 3/4

f({1, 3, 4, 5}) = f({2, 3, 4, 5}) = 1/6

f({1, 2, 3, 4, 5}) = 2/5

Such a function f is strictly convex and balanced union consistent. However, there exist

no utility function U : [0, 1] × Ω → R, and no probability distribution P such that f is the
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argmax of the conditional expectation of U . Suppose that there exist a utility function U

and a probability P such that f(X) = argmaxd∈[0,1]E[U(d, .) | X] for all X. Then by ∗ we

have:

P (1)U(1/3, 1)+P (4)U(1/3, 4)+P (5)U(1/3, 5) > P (1)U(1/4, 1)+P (4)U(1/4, 4)+P (5)U(1/4, 5)

and by ∗∗ we have:

P (1)U(1/4, 1)+P (3)U(1/4, 3)+P (4)U(1/4, 4) > P (1)U(1/3, 1)+P (3)U(1/3, 3)+P (4)U(1/3, 4)

which implies that

P (3)U(1/4, 3) + P (5)U(1/3, 5) > P (3)U(1/3, 3) + P (5)U(1/4, 5) (6.1)

Moreover, by ∗ we have:

P (2)U(1/3, 2)+P (3)U(1/3, 3)+P (4)U(1/3, 4) > P (2)U(1/4, 2)+P (3)U(1/4, 3)+P (4)U(1/4, 4)

and by ∗∗ we have:

P (2)U(1/4, 2)+P (4)U(1/4, 4)+P (5)U(1/4, 5) > P (2)U(1/3, 2)+P (4)U(1/3, 4)+P (5)U(1/3, 5)

which implies that

P (3)U(1/4, 3) + P (5)U(1/3, 5) < P (3)U(1/3, 3) + P (5)U(1/4, 5) (6.2)

(6.1) and (6.2) together bring the contradiction.

We now show that there exists an argmax function (and therefore, a balanced union

consistent function), which is not weakly convex.

Example 2 (A * WC, B * WC) Consider the case where Ω = {1, 2, 3, 4}, D = {a, b, c},

P is uniform (P (ω) = 1/4 ∀ ω) and the utility function U : D × Ω → R is defined by:
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U(a, 1) = 1, U(a, 2) = 0, U(a, 3) = 1, U(a, 4) = 0

U(b, 1) = 0, U(b, 2) = 1, U(b, 3) = 2/3, U(b, 4) = 2/3

U(c, 1) = 2/3, U(c, 2) = 2/3, U(c, 3) = 0, U(c, 4) = 1

Consider the argmax function f : 2Ω → D defined by f(X) = argmaxd∈DE[U(d, .) | X].

We have in particular:

f({1}) = a, f({2}) = b, f({3}) = a, f({4}) = c, f({1, 2}) = c, f({3, 4}) = b

Let us show that f is not weakly convex, namely that there exist no function g : D → R,

such that g ◦ f : 2Ω → R is weakly convex.

For any one to one function g : D → R, six cases are possible. We show that in each

case, g ◦ f is not weakly convex.

1. If g(a) < g(b) < g(c), then g ◦ f({1}) < g ◦ f({2}) < g ◦ f({1, 2}).

2. If g(a) < g(c) < g(b), then g ◦ f({3}) < g ◦ f({4}) < g ◦ f({3, 4}).

3. If g(b) < g(a) < g(c), then g ◦ f({3, 4}) < g ◦ f({3}) < g ◦ f({4}).

4. If g(b) < g(c) < g(a), then g ◦ f({3, 4}) < g ◦ f({4}) < g ◦ f({3}).

5. If g(c) < g(a) < g(b), then g ◦ f({1, 2}) < g ◦ f({1}) < g ◦ f({2}).

6. If g(c) < g(b) < g(a), then g ◦ f({1, 2}) < g ◦ f({2}) < g ◦ f({1}).

This example proves that argmax functions (and then, balanced union consistent func-

tions), may not be weakly convex.

Finally, we show that convexity does not imply balanced union consistency. The ex-

ample of a convex function which is not balanced union consistent is far from trivial. We
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conjecture that such an example requires an even number of states of the world, and four

states of the world are not enough.

Example 3 (C * B) Let the set of states of the world be Ω = {1, 2, 3, 4, 5, 6}, and f :

2Ω \ ∅ → R be defined by:

f({1}) = f({3}) = f({1, 3}) = 1

f({1, 3, 4}) = f({1, 3, 6}) = 2

f({3, 4}) = f({1, 4}) = 3

f({1, 3, 4, 6}) = 4

f({1, 6}) = f({3, 6}) = 5

f({3, 4, 6}) = f({1, 4, 6}) = 6

f({4}) = f({6}) = f({4, 6}) = 7

f({1, 2, 3, 4, 6}) = f({1, 3, 4, 5, 6}) = 8

f({1, 2, 3, 6}) = f({1, 4, 5, 6}) = f({1, 3, 5, 6}) = f({1, 2, 4, 6}) = f({3, 4, 5, 6}) = f({1, 3, 4, 5}) =

f({2, 3, 4, 6}) = f({1, 2, 3, 4}) = 9

f({1, 2, 3})∗ = f({1, 4, 5})∗ = f({2, 4, 6})∗ = f({3, 5, 6})∗ = f({1, 2, 6}) = f({1, 5, 6}) = 10

f({1, 2, 3, 4, 5, 6}) = 11

f({1, 2, 4}) = f({1, 3, 5}) = f({2, 3, 6}) = f({4, 5, 6}) = f({3, 4, 5}) = f({2, 3, 4}) = 12

f({1, 2, 3, 4, 5}) = f({1, 2, 3, 5, 6}) = f({1, 2, 4, 5, 6}) = f({2, 3, 4, 5, 6}) = 13

f({2, 3}) = f({2, 4}) = f({3, 5}) = f({4, 5}) = f({2, 3, 4, 5}) = 14

f({1, 2, 3, 5}) = f({1, 2, 4, 5}) = f({2, 3, 5, 6}) = f({2, 4, 5, 6}) = 15

f({1, 2}) = f({1, 5}) = f({2, 6}) = f({5, 6}) = f({1, 2, 5, 6}) = 16

f({2, 3, 5}) = f({2, 4, 5}) = f({1, 2, 5}) = f({2, 5, 6}) = 17

f({2}) = f({5}) = f({2, 5}) = 18
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Such a function f is strictly convex, but is not balanced union consistent. Indeed, the

family B = {{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}} is balanced with respect to coefficients

1/2 for each element of B. If f were balanced union consistent, the fact that f({1, 2, 3}) =

f({1, 4, 5}) = f({2, 4, 6}) = f({3, 5, 6}) = 10 would imply that f({1, 2, 3, 4, 5, 6}) = 10,

whereas f({1, 2, 3, 4, 5, 6}) = 11.

6.3. Relation between the results

We showed in chapter 3 that common knowledge of an exhaustive statistic of individual

decisions implies consensus if the decision rule is balanced union consistent. We also show

with a counter example that union consistency is not sufficient to guarantee the consensus

result, if the number of agents is greater than 4. As argmax functions are particular

balanced union consistent functions, the result of chapter 3 still holds for argmax decision

rules. However, some convex functions are not balanced union consistent. We show with

the next example that for those functions, common knowledge of an exhaustive statistic of

individual decisions may not imply consensus.

Example 4 (No consensus with an exhaustive statistic in C) Let the set of states

of the world be Ω = {1, 2, 3, 4, 5, 6} and consider the convex function f defined as in Example

3l. Consider four agents, endowed with the following partitions:

Π1 : {1, 2, 3}10{4, 5, 6}12

Π2 : {1, 4, 5}10{2, 3, 6}12

Π3 : {1, 3, 5}12{2, 4, 6}10

Π4 : {1, 2, 4}12{3, 5, 6}10

At every state of the world, two out of four agents take the decision 10, and two out of
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four the decision 12. Therefore, the statistic Φ∗(ω) is common knowledge at every state ω,

without implying consensus.

Parikh and Krasucki [1990] show that communication in a fair protocol eventually leads

to consensus if the function whose values are communicated is convex. They show that the

result does not hold for weakly convex functions if the number of agents is larger or equal

to 4, and does not hold neither for union consistent functions for more than two agents. We

showed in chapter 4 that consensus emerge in any fair protocol if the functions whose values

are communicated is the argmax of an expected utility. Argmax functions are balanced

union consistent, but some balanced union consistent functions are not the argmax of an

expected utility. We show with the following example, given in Parikh and Krasucki [1990,

p 184], that consensus may fail to occur in some fair protocols for non-argmax, but balanced

union consistent functions.

Example 5 (No consensus emerge in B with a fair protocol) The set of states of

the world is Ω = {1, 2, 3, 4, 5, 6, 7, 8}. Consider the function f : 2Ω \ ∅ → N defined as

follows: let the elements of 2Ω \ ∅ be numbered X1, X2, . . . , and let num(Xi) be i. Now let

f({1, 2}) = f({3, 4}) = f({1, 2, 3, 4}) = 1

f({5, 6}) = f({7, 8}) = f({5, 6, 7, 8}) = 2

f({1, 3}) = f({5, 7}) = f({1, 3, 5, 7}) = 3

f({2, 4}) = f({6, 8}) = f({2, 4, 6, 8}) = 4

f({1, 5}) = f({2, 6}) = f({1, 2, 5, 6}) = 5

f({3, 7}) = f({4, 8}) = f({3, 4, 7, 8}) = 6
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and for all other elements X of 2Ω \ ∅, we let f(X) = num(X) + 6. This ensures that f

has both the union consistency and the balanced union consistency properties.

Now consider three agents, endowed with the following partitions:2

ΠA : {1, 2}1{3, 4}1{5, 6}2{7, 8}2

ΠB : {1, 3}3{2, 4}4{5, 7}3{6, 8}4

ΠC : {1, 5}5{2, 6}5{3, 7}6{4, 8}6

Agent A speaks to agent B, who speaks to agent C, who speaks to agent A, and so on.

The partition of common knowledge among agents A and B is

MAB : {1, 2, 3, 4}{5, 6, 7, 8}

As agent A sends the message 1 at states 1, 2, 3 and 4, and the message 2 at states 5, 6,

7 and 8, A’s message is common knowledge among A and B at every state of the world.

Therefore, agent B does not learn anything from A’s message. The partition of common

knowledge among agents B and C is

MBC : {1, 3, 5, 7}{2, 4, 6, 8}

The set of states where B sends the message 3 is {1, 3, 5, 7}, and the set of states where

B sends the message 4 is {2, 4, 6, 8}. Again, agent C does not learn anything from B’s

message. Finally, the partition of common knowledge among agents C and A is

MAC : {1, 2, 5, 6}{3, 4, 7, 8}

The set of states where C sends the message 5 is {1, 2, 5, 6}, and the set of states where

C sends the message 6 is {3, 4, 7, 8}. As a consequence, agent A does not learn anything

from C’s message.

2The subscript reflects the decision associated to each cell.
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This example shows that consensus may fail to emerge in a fair protocol, if the function

f is balanced union consistent (and then union consistent).

6.4. Conclusion

To conclude, we sum up the relations between union consistency, balanced union con-

sistency, argmax, convexity and weak convexity in the following figure.

U

CWC A B

Among the five conditions we identified, convexity and argmax are the only one ensuring

that communication of individual decisions leads to consensus in any fair protocol, for

more than three agents. Balanced union consistency is the only one ensuring that common

knowledge of an exhaustive statistic of individual decisions implies a consensus, for more

than three agents.





Conclusion

This thesis is about common knowledge and some of its implications. Common knowl-

edge of an event is the particular state of interactive knowledge where everybody knows the

event, everybody knows that everybody knows the event, and so on ad infinitum. Common

knowledge is inherent to much of social life, and is crucial for coordination problems, which

are situations in which each person wants to participate to a joint action only if others

participate also. Another implication of common knowledge has been illuminated by Au-

mann [1976] in his celebrated article Agreeing to Disagree. He showed that if two rational

agents have the same prior probability, then they cannot have commonly known differences

in posterior probabilities, despite different conditioning information. This result suggested

that asymmetric information had less explanatory power than might be thought: in the

absence of differences in prior beliefs, asymmetric information cannot explain commonly

known differences in posterior beliefs. Aumann’s theorem gave rise to a literature called

the Agreeing to Disagree literature, which addresses basically the same question: to what

extent differences in beliefs and decisions can be explained by asymmetric information?

The most obvious contribution of this literature to economic theory are no-trade theorems.

These theorems state that trade among rational agents cannot be explained on the basis

of asymmetric information. To restore the conventional understanding of speculation and

trade, one has to assume either that traders are boundedly rational, or that they hold
169
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different prior probabilities.

This thesis is a contribution to the Agreeing to Disagree literature. It is made of six

chapters. The first two chapters have introduced background material and have surveyed

the literature. The three next chapters were original contributions. The last chapter

compared various conditions of the three contributions to conditions that can be found in

the literature.

In Chapter 1, we presented Aumann structures, which is the model of knowledge used

in the Agreeing to Disagree literature and in this thesis. We insisted on two controversial

issues. The first one deals with what agents know about the others’ knowledge. We made an

attempt to answer the questions of whether individual partitions are “common knowledge”

to all agents, and whether some “common knowledge” of individual partitions was required

for the meet to be the partition of common knowledge. Going back to epistemic logic, we

emphasized that knowledge is part of the description of the states, that partitions are only

representation tool, and that it makes no sense, to the best of our understanding, wondering

whether such representation tool are “known” by agents. The second controversial issue

deals with updating in Aumann structures, and is stated as follows. States of the world

describe individual knowledge. When agents update their information, their knowledge

change. Therefore, we may wonder whether states of the world change when agents update

their information. Following some recent works of Bonanno [2004] and Board [2004], we

emphasize that states do not change if they describe individual knowledge at each date.

Therefore, the revision rule used in the literature is effectively a way of representing new

knowledge of the same uncertainty.

In Chapter 2, we reviewed the Agreeing to Disagree literature. We classified the re-

sults in two groups. Results in the first group answer the following question. Under what
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conditions common knowledge of a statistic of individual decisions implies that these de-

cisions do not reflect the differential information that each agent possesses? Result in the

second group answer the question of the emergence of common knowledge of individual

decisions. Under what conditions communication of individual decisions leads to common

knowledge of decisions? We particularly insisted on the difference between public and

non-public communication protocols, for the way individual decisions become common

knowledge essentially differs whether the protocol is public or not. In public protocols,

common knowledge of individual decisions emerge without any restrictions on individual

decision rules. In particular, commonness of decision rules is not required. In non-public

protocols however, commonness of decision rules is required because common knowledge

of individual decisions emerge via the consensus.

In Chapter 3, we provided an answer to the first question addressed in the literature,

in the case where decisions may not be posterior probabilities of some event. We showed

that if the statistic is exhaustive, and if individual decision rules are balanced union con-

sistent, then common knowledge of a statistic of individual decisions negates asymmetric

information. Exhaustiveness imposes that the statistic should describe how many agents

carry out each decisions, like a poll for instance. Balanced union consistency is a stronger

requirement than union consistency, but is weaker than argmax and posterior probabilities.

The advantage of balanced union consistency is that it put some structures on the decision

made on the basis of non-disjoint events. The problem is that we have no decision theory

foundations for this decision rule. It may be a direction for future research. The main

problem with exhaustiveness is that it is difficult to compare with McKelvey and Page’s

stochastic regularity.

In Chapter 4, we provided an answer to the second question addressed in the literature,
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in the case where the communication protocol may not be public. We showed that if

agents have the same utility function and the same prior probability, then communication

of the action that maximizes their expected utility eventually leads to consensus in any

fair protocol. The advantage of this condition is that it applies to any action spaces. The

inconvenient is that we have to make a no-indifference assumption, imposing that the set

of maximizing actions is always a singleton.

In Chapter 5, we departed slightly from the two basic questions addressed in the liter-

ature. In Parikh and Krasucki [1990]’s setting, the outcome of the communication process

depends on the communication protocol, in terms of consensus decision as well as of the

amount of information that is learned by the agents during the process. We asked the

following question. What happens if agents communicate so as to learn information? We

showed that it may be the case that some agents disagree about the protocol to use for

communicating, and that this disagreement is common knowledge to all. However, we

showed that in this case, the consensus decision does not depend on the protocol. A first

limit to this result is that it applies only in decision settings, or in particular game settings

such as zero-sum games. A second limit is that preferences over protocols are not com-

plete. Therefore, the situation of common knowledge that two agents disagree about two

protocols might be quite unlikely. Finally, we lack a convincing economic interpretation

for this result.

In Chapter 6, we examined how the conditions we introduced in Chapters 3 and 4,

i.e. balanced union consistency and argmax, relate to convexity, weak convexity and union

consistency. We showed that there is no inclusion relation between the sets of argmax and

convex or weakly convex functions, and no inclusion relation between the sets of balanced

union consistent and convex or weakly convex functions. Finally, we showed that, among
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the five conditions we identified, convexity and argmax are the only one ensuring that

communication of individual decisions leads to consensus in any fair protocol, for more

than three agents. Balanced union consistency is the only one ensuring that common

knowledge of an exhaustive statistic of individual decisions implies a consensus, for more

than three agents.
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