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Outline

I - Triangulations II - Curved objects
Thanks to Pierre Alliez for the beautiful pictures.

III - Current and future work



Outline

Overview of some of the links of the chain
leading to reliable and largely distributed software:

mathematical background

algorithmic and combinatorial study

representation of objects and structures

robustness issues

design choices

efficient programming

. . .
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Triangulations



Triangulations

mathematical background

algorithmic and combinatorial study

representation of objects and structures

robustness issues

design choices

efficient programming



Triangulations Background

Delaunay triangulation in Rd

All balls circumscribing simplices are empty.

Well known properties

Size O
(

nd
d
2 e

)
(linear in R2, worst-case quadratic in R3)



Triangulations Algorithmic study
Randomization

Randomized Incremental Algorithms
General Data Structure: the History graph.

Practical framework:

Realistic analysis (no assumption on input data)

Implemented algorithms (Pascal, then C, . . . )
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Triangulations Algorithmic study
Randomization

Randomized Incremental Algorithms
General Data Structure: the History graph.

Boissonnat, Devillers,

T., Yvinec ≤’93

PhD Thesis ’91

Case of Delaunay triangulations:
Devillers ’02 better in practice

Practical framework:

Realistic analysis (no assumption on input data)

Implemented algorithms (Pascal, then C, then C++. . . )



Triangulations Algorithmic study
Point location

?

Devillers, Pion, T. SoCG’01, Int. J. Found. Comp. Sc.’02



Triangulations Algorithmic study
Point location

2D:
worst-case 2n triangles
Delaunay, random pts |pq|

√
n

Devroye...

2 orient. tests per triangle

3D:
worst-case O(n2) tetrahedra
Delaunay, random pts?

3 orient. tests per tetrahedron

Devillers, Pion, T. SoCG’01, Int. J. Found. Comp. Sc.’02



Triangulations Algorithmic study
Point location

Handling degeneracies:

worse in 3D...

Devillers, Pion, T. SoCG’01, Int. J. Found. Comp. Sc.’02



Triangulations Algorithmic study
Point location

Visibility walk

Devillers, Pion, T. SoCG’01, Int. J. Found. Comp. Sc.’02



Triangulations Algorithmic study
Point location

Delaunay 2D:
worst case 2n
random points?
≤ 1.5 orient. tests per triangle

Delaunay 3D:
worst-case O(n2) tetrahedra
random points?
≤ 2 orient. tests per tetra.

Devillers, Pion, T. SoCG’01, Int. J. Found. Comp. Sc.’02



Triangulations Algorithmic study
Point location

May loop for non Delaunay tr.

Devillers, Pion, T. SoCG’01, Int. J. Found. Comp. Sc.’02



Triangulations Algorithmic study
Point location

Stochastic walk

random choice

Always terminates

Average complexity
≤ exponential

Exponential example

Devillers, Pion, T. SoCG’01, Int. J. Found. Comp. Sc.’02



Triangulations Algorithmic study
Point location

Easy to code, even in 3D
no degeneracies...

Efficient in practice

Devillers, Pion, T. SoCG’01, Int. J. Found. Comp. Sc.’02



Triangulations Representation

Combinatorial triangulation of the sphere

∞ ∞ ∞

∞

∞ ∞ ∞

∞

Devillers, T., Yvinec



Triangulations Representation

Degenerate dimensions

geometric

∞ ∞

v(∞)

Increasing the dimension

combinatorial

T. EuroCG’99



Triangulations Representation

Degenerate dimensions

geometric

∞ ∞

∞ ∞ ∞

p
∞

v(p)v(∞)

Increasing the dimension

combinatorial

T. EuroCG’99



Triangulations Robustness
Arithmetic questions

Algorithms rely on

predicates = elementary operations

evaluated numerically.

Typically, signs of determinants
(small degree polynomial expressions)

Exact Geometric Computing framework Yap

Filtered exact computations Yap...Mehlhorn...Pion...



Triangulations Robustness
Degenerate cases

Delaunay triangulation
depends on the sign of
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Triangulations Robustness
Degenerate cases

Degenerate configurations handled explicitely.
Cospherical points

Delaunay triangulation
not uniquely defined
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Triangulations Robustness
Degenerate cases

Symbolic perturbation of the predicate
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˛̨̨̨ = P(ε)

coefficients =
orientation predicates of the non-perturbed points

Sign = sign of the first non-null coefficient.

Delaunay triangulation uniquely defined
by indexing the points e.g. lexicographic ordering.
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Triangulations Robustness
Degenerate cases

This perturbation

Does not create any flat tetrahedron

Easy to code

Allows implementation of vertex removal in 3D

Generalizes to regular triangulations

Devillers, T. SODA’03

Devillers, T. RR INRIA’07



Triangulations Implementation
Design

Enforced decoupling between geometry and combinatorics

Kettner CGAL Polyhedron

Triangulation_3 < Traits_3, TrDataStructure_3 >

Triangulation_3 : point location. . .

TrDataStructure_3 : insertion. . .

T. EuroCG’99



Triangulations Implementation

3D Triangulation package

Fully dynamic (insertion, removal)

Robust

Efficient (∼ 30, 000 pts/sec)

Generic

Flexible

Publicly available (QPL)

Documented

T. CGAL 2.1 - 2.2, ’00

Pion, T. CGAL 2.3 - 3.3, ’01-’07

Participation of C.Delage, O.Devillers, A. Fabri,. . .

2D: Yvinec CGAL 0.9-... Pion, Yvinec



Triangulations Implementation

3D Triangulation package

Many users

CGAL packages (meshing, reconstruction)
Rineau, Yvinec

academic users
Dey, Giesen, Oudot, Chaine, Amenta, Levy, Bernauer,

Robbins...

commercial users (through GeometryFactory)
Midland Valley Exploration, Total, BSAP,

British Telecom, France Telecom



Part II

Curved Objects



Curved Objects Motivation

Curves already appear for linear input

Bisecting curve



Curved Objects Motivation

Curves already appear for linear input

Karavelas, CGAL

Voronoi diagram

2D line segments
arcs of parabolas



Curved Objects Motivation

Curves already appear for linear input

Voronoi diagram

3D line segments
patches of quadric surfaces



Curved Objects Motivation

Mostly linear objects handled in

computational geometry literature

software, CGAL.

Start with low degree algebraic objects (circles, spheres)



Curved Objects

mathematical background

• algorithmic and combinatorial study
and
• robustness issues

design choices

representation of objects and structures

efficient programming



Curved Objects Algorithmic study
Arrangements of 3D quadrics

Sweeping plane approach
Computes the so-called vertical decomposition

volumic approach

Comparisons of algebraic numbers of degree 16...
Mourrain, Técourt, T. CGTA ’05

Complexity O(n log2 n + V log n), V = O(n3.2α(n)16
)

Halperin et al

Chazelle, Edelsbrunner, Guibas, Sharir

Case of spheres: algebraic numbers of degree 4

New decomposition: degree 2 only
+ Degenerate cases Russel, T. in progress

CGAL implementation Russel in progress

uses CGAL 3D cellular data structure Bru, T. in progress
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Curved Objects Algorithmic study
Algebraic numbers

Comparing intersection points

signs of
polynomial expressions

comparison of
algebraic numbers

Algebraic tools −→
signs of
polynomial expressions
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Curved Objects Algorithmic study
Algebraic numbers

Comparing algebraic numbers of degree 2

Measure of complexity

degree of polynomials

number of arithmetic operations



Curved Objects Algorithmic study
Algebraic numbers

Comparing algebraic numbers of degree 2

J

+−
P1 > 0

Case 1,2,3

P1 < 0

Case 3,4,5

K

+−
P3 > 0

Case 3,4

D

+−

P2 > 0; P3 < 0

Case 4,5

Case 3b4

+−
P4 > 0

l1 > l2

Case 3a

+−

Case 4

P4

Case 3a,4

l1 > l2

l1 < l2

l1 > l2

K

+−
P2, P3 > 0

l1 < l2

Case 1,2

D

+−

P3 < 0

Case 2,3

l1 < l2

Case 2,3a

+−
P4 > 0

l1 > l2

Case 3b

+−

Case 3bCase 2

P4

Case 2,3b

l1 > l2l1 < l2l1 < l2

Case 3a

21 5

28 6

13 10

3 7

4 12

6

10

7

12

28

13

3

4

J ′J ′

Polynomial expressions pre-computed + arithmetic filtering
Devillers, Fronville, Mourrain, T. SoCG ’00 CGTA ’02



Curved Objects Algorithmic study
Algebraic numbers

Polynomial expressions have an intrinsic geometric meaning

B1
A1

y

x

√√√√√√C1
q2
1

√
I1

A1

J
A1 A2

l1 r1 l2 r2

K = 0⇐⇒ l1, r1, l2, r2 harmonic division

geometric reasoning?



Curved Objects Implementation
Design

Enforced decoupling between geometry and algebra

Curved_kernel < LinearKernel, AlgebraicKernel >

“Kernel”: basic geometric objects and manipulations

allows to
• interchange algebraic kernels
• compare different approaches

Definition of the AlgebraicKernel C++ concept
=

identification of mathematical concepts underlying the computations



Curved Objects Implementation
Design

Enforced decoupling between geometry and algebra

Careful definition
of the interface

AK::Root of system 2 2

CK::Circular point 2

CK::Intersect

CK::Get equation CK::Get equation

AK::Solve

CK::Circle 2 CK::Circle 2

AK::Polynomial 2 2 AK::Polynomial 2 2



Curved Objects Implementation
Design

Enforced decoupling between geometry and algebra

High-level interface for the algebraic kernel

Solve polynomial system

Sign_at of polynomial at the roots of a system

. . .

Emiris, Kakargias, Pion, Tsigaridas, T. SoCG ’04

Full specifications, general degree:
Berberich, Hemmer, Karavelas, T. CGAL, submitted

why not: non-algebraic curves...?



Curved Objects Implementation
Experiments

Circular arcs in 2D
Benchmarking on industrial VLSI data

with CGAL Arrangement_2 package



Curved Objects Implementation
Experiments

Circular arcs in 2D
Benchmarking on industrial VLSI data

with CGAL Arrangement_2 package

Efficiency improved:

caching

reference counting

optimization of special cases (rational intersections)

arithmetic filtering in algebraic numbers

representation of algebraic numbers
to reduce length of multi-precision coefficients

geometric filtering

de Castro, Pion, T. EuroCG ’07



Curved Objects Implementation

packages

2D Circular Kernel Pion, T. CGAL 3.2-3.3 ’06-’07

Research license Dassault Systèmes

3D Spherical Kernel de Castro, T. CGAL, Submitted

Extension in progress
de Castro, Cazals, Loriot, T. RR INRIA’07

Used by Russel, Loriot



Curved Objects Open Questions

Minimality of the set of predicates
necessary to run an algorithm or compute a structure

number of predicates

complexity of predicates

Degree measure of precision

of a given geometric predicate

of an algorithm

of a geometric problem
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Part III

Future? More Triangulations!

c©S. Popescu c©A. Burbanks



Future? More Triangulations!

Most of the computational geometry literature in Rd

Implementations R2 or R3

Other geometries?

hyperbolic

projective

periodic

. . . ?



Future? More Triangulations! Hyperbolic

The space of spheres

Rd −→ Rd+1

S : (C, r) 7→ s = (C, ‖C‖2 − r2)

Unified framework for the [mostly known] duality results:
various generalized Voronoi diagrams←→ lower envelopes
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Future? More Triangulations! Hyperbolic

The space of spheres

Rd −→ Rd+1

S : (C, r) 7→ s = (C, ‖C‖2 − r2)

Unified framework for the [mostly known] duality results:
various generalized Voronoi diagrams←→ lower envelopes



Future? More Triangulations! Hyperbolic

Poincaré model of the hyperbolic plane:

D∞

p
line (qr)

bisector(q, r)

q
r

Hyperbolic line
=

Half Euclidean circle
orthogonal to D∞

Hyperbolic circle centered at p
=

Euclidean circle of the pencil with
limit point p and radical axis D∞



Future? More Triangulations! Hyperbolic

Rd

Pencil of circles
with given radical axis

←→
Rd+1

Line
with given direction

silhouette
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Rd

Pencil of circles
with given radical axis

←→
Rd+1

Line
with given direction



Future? More Triangulations! Hyperbolic

Berger ’77 ’87

Boissonnat, Cérézo, Devillers, T. CCCG’91 IJCGA’96

Devillers, Meiser, T. RR INRIA’92

Perspectives
CGAL implementation and arising issues
Applications (study of cristalline structures. . . ?)



Future? More Triangulations! Projective

Triangulation of the projective plane
mostly studied from a graph-theoretic perspective.

In computational geometry:

algorithms in Rd based on orientation predicates

oriented projective plane Stolfi



Future? More Triangulations! Projective

Projective plane non-orientable

p

q

r

pr

q

V(p)

V(q)

V(r)

P2 = R3 − {0} / ∼
p ∼ p′ : p = λp′, λ ∈ R?

Incremental algorithm Aanjaneya, T. RR INRIA’07

Perspectives
Definition of a Delaunay-like triangulation
Generalization to 3D (dD)
CGAL implementation



Future? More Triangulations! Projective

Projective plane non-orientable

p

q

r

pr

q

V(p)

V(q)

V(r)

P2 = R3 − {0} / ∼
p ∼ p′ : p = λp′, λ ∈ R?

Incremental algorithm Aanjaneya, T. RR INRIA’07

Perspectives
Definition of a Delaunay-like triangulation
Generalization to 3D (dD)
CGAL implementation



Future? More Triangulations! Projective

Projective plane non-orientable

p

q

r

pr

q

V(p)

V(q)

V(r)

P2 = R3 − {0} / ∼
p ∼ p′ : p = λp′, λ ∈ R?

Incremental algorithm Aanjaneya, T. RR INRIA’07

Perspectives
Definition of a Delaunay-like triangulation
Generalization to 3D (dD)
CGAL implementation



Future? More Triangulations! Projective

Projective plane non-orientable

p

q

r

pr

q

V(p)

V(q)

V(r)

P2 = R3 − {0} / ∼
p ∼ p′ : p = λp′, λ ∈ R?

Incremental algorithm Aanjaneya, T. RR INRIA’07

Perspectives
Definition of a Delaunay-like triangulation
Generalization to 3D (dD)
CGAL implementation



Future? More Triangulations! Projective

Projective plane non-orientable

p

q

r

pr

q

V(p)

V(q)

V(r)

Still:
interior of a closed curve well defined.

Incremental algorithm Aanjaneya, T. RR INRIA’07

Perspectives
Definition of a Delaunay-like triangulation
Generalization to 3D (dD)
CGAL implementation



Future? More Triangulations! Periodic

Periodic triangulations (2D and 3D) widely used for simulations

Parameter space : torus

Few points: the “triangulation” is not a simplicial complex.

2D:

b b

a

a



Future? More Triangulations! Periodic

Periodic triangulations (2D and 3D) widely used for simulations

Parameter space : torus

Few points: the “triangulation” is not a simplicial complex.

2D:



Future? More Triangulations! Periodic

Method
• Compute first in a 3-sheeted covering (27 copies in 3D),
• Switch to the 1-sheeted covering as soon as simplicial

complex.

Implementation
• Redesign the CGAL triangulation package,

Allow one more level of genericity.
Triangulation_3

< Traits_3, TrDataStructure_3, Space >

Kruithof, T.

Caroli, T. in progress

Perspectives
Other periodic spaces (cylinders)
Meshes in periodic spaces. . .



Conclusion

Implementing mathematical structures has

a good future,

many applications.

André Cérézo ’91


