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1.1 Context

This work is situated in the global context of computational composite ma-
terials research.

Nanocomposites are materials that are created by introducing nanopar-
ticles into a macroscopic sample material. This is part of the growing field of
nano technology. Particulate composites reinforced with micron-sized par-
ticles of various materials are perhaps the most widely used composites in
everyday materials. By scaling the particle size down to the nanometer scale,
it has been shown that novel material properties can be obtained.

In general, the nano substances used are nanoscopic filler particles of
different nature (metallic, silica, carbon black) or nanotubes and they are
dispersed into the other composite materials during processing. The nano-
materials tend to drastically add to the electrical and thermal conductivity
as well as to the mechanical strength properties of the original material.

In this section we will give a brief overview of the basic properties of inter-
est of nanocomposite polymer based materials and nanoparticle suspensions
(nanofluids).

1



2 Chapter 1. Introduction

1.1.1 Polymer Nanocomposites and Thin Films

Polymer composites are important commercial materials with applications
that include filled elastomers for damping, electrical insulators, thermal con-
ductors, and high-performance composites for use in aircraft. Materials with
synergistic properties are chosen to create composites with tailored prop-
erties; for example, high-modulus but brittle carbon fibers are added to
low-modulus polymers to create a stiff, lightweight composite with some de-
gree of toughness. In recent years, however, we have reached the limits of
optimizing composite properties of traditional micrometer-scale composite
fillers, because the properties achieved usually involve compromises. Stiff-
ness is traded for toughness, or toughness is obtained at the cost of optical
clarity. In addition, macroscopic defects due to regions of high or low vol-
ume fraction of filler often lead to breakdown or failure. In the last decade
a large window of opportunity has opened to overcome the limitations of
traditional micrometer-scale polymer composites - nanoscale filled polymer
composites - in which the filler is smaller than 100 nm in at least one di-
mension. Some nanofilled composites (carbon black [1] and fumed silica [2]
filled polymers) have been used for more than a century, but research and
development of nanofilled polymers has greatly increased in recent years, for
several reasons. First, unprecedented combinations of properties have been
observed in some polymer nanocomposites [3]. For example, the inclusion of
roughly spherical nanoparticles in thermoplastics, and particularly in semi
crystalline thermoplastics, increases the yield stress, the tensile strength, and
Young’s modulus compared to pure polymer. A volume fraction of only 0.04
mica-type silicates in epoxy increases the modulus below the glass transition
temperature by 58% and the modulus in the rubbery region by 450 % [4]. A
second reason for the large increase in research and development efforts was
the “discovery” of carbon nanotubes in the early 1990s and their subsequent
usage in composite materials [5]. The properties of these carbon nanotubes,
strength and electrical properties in particular, offer exciting possibilities for
new composite materials. Third, significant development in the chemical
processing of nanoparticles and in the in situ processing of nanocomposites
has led to unprecedented control over the morphology of such composites,
it has also created an almost unlimited ability to control in principle the
interface between the matrix and the filler.

Thus, this is an exciting time to study nanocomposites, because of the
unique combinations of properties that are achievable and also because of
the high potential for successful commercial development. Scientists now
have the ability to change the size, shape, volume fraction, interface, and
degree of dispersion or aggregation of fillers. Thus, the opportunities may
well become limitless when theory and experiment have assembled enough
information to guide further development.

A relevant question to ask is: What is unique to nano-fillers compared to



1.1. Context 3

micrometer-scale traditional fillers, and how do the nanocomposites compare
to their macroscopic counterparts? The most obvious difference is the small
size of the fillers. For example, very small nanoparticles do not scatter light
significantly, and thus it is possible to make composites with altered electrical
or mechanical properties that retain their optical clarity. In addition, the
small size means that the particles do not create large stress concentrations
and thus do not compromise the ductility of the polymer. A similar concept
applies for electrical breakdown strength.

A substantial difference compared to bigger particles and a main moti-
vation for the present work is the fact that the small size of the fillers leads
to an exceptionally large interfacial area in the composites.

Figure 1.1: Surface area per unit volume and particle particle distance as a
function of particle size and volume fraction for spherical particles that are
ideally dispersed

Figure 1.1, top shows the surface area per unit volume as a function of
particle size for spherical particles that are ideally dispersed. The increase in
surface area below 100 nm is dramatic. The interface controls the degree of
interaction between the filler and the polymer and thus controls the proper-
ties. Therefore the greatest challenge in developing polymer nanocomposites
may be learning to control the interlace. Thus, it seems relevant to define
the interfacial region and discuss its properties. As defined in traditional
composites, the interfacial region is the region beginning at the point in the
filler at which the properties differ from those of the bulk filler and ending at
the point in the matrix at which the properties become equal to those of the
bulk matrix. It can be a region of altered chemistry, altered polymer chain
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mobility, altered degree of cure, and altered crystallinity. Interface size has
been reported to be as small as 2 nm and as large as about 50 nm. Figure
1.1, bottom shows inter particle spacing as a function of particle size for an
ideally dispersed nanoparticle composite: at low volume fractions the entire
matrix is essentially part of the interfacial region. For example, for 15 nm
particles at a filler loading of 10 vol %, the inter particle spacing is only 10
nm. Even if the interfacial region is only a few nanometers, very quickly
the entire polymer matrix has a different behavior than the bulk. If the
interfacial region is more extended, then the polymer matrix behavior can
be altered at much smaller loadings. Therefore, by controlling the degree
of interaction between the polymer and the nanofiller, the properties of the
entire matrix can be controlled.

In order to understand the properties of confined polymers, much ex-
perimental and computational effort has been devoted to the study of thin
polymer films. This interest originates in part from the many technological
applications of these systems, and in part from some fundamental questions
associated with the influence of confinement on physical processes. Some
of the numerous applications of polymer films are protective coatings, scaf-
fold structure in microelectronic devices and membranes in vesicles used
for drug delivery. Moreover, as in polymer based nanocomposite materials,
most of the “polymer” component is actually confined in the form of thin
layers squeezed between the fillers, the study of thin films provides clues for
explaining the complex physics in these heterogeneous materials. On the
fundamental side, much of the interest has focused on the influence of con-
finement on the glass transition temperature. In spite of many difficulties
in the interpretation of early results, a clear consensus seems now to have
emerged, that the glass transition temperature is reduced, and the dynamics
accelerated, in the vicinity of a free interface. This observation has been
confirmed by several different experimental techniques and molecular simu-
lations. In the case of supported films, strong interaction with the substrate
may counterbalance the effect of the free surface.

Many unique properties of the polymer matrix are related to the chain-
like nature of polymer molecules and the fact that they form entanglements.
Entanglements of polymer chains are topological constraints to motion that
have a profound effect on the mobility of the molecules [6]. Qualitatively,
they can be viewed as crossings of polymer chains that remain intact when
the material is subject to strain and so are mechanically active. They there-
fore strongly influence dynamic properties of polymer melts such as viscos-
ity and diffusion. The main glassy state properties that are influenced by
entanglements are the high strain properties, such as natural draw ratio,
craze extension ratio, and toughness. In molten polymeric systems, above
the glass transition, dynamics is dominated by chain connectivity and en-
tanglement effects. The density of entanglements, often described by the
molecular weight of a chain between entanglements Me, can be obtained
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from the plateau modulus of a high molecular weight melt. The mean dis-
tance between entanglements serves as the tube diameter within the dom-
inant reptation model of polymer dynamics. Entanglement in the polymer
bulk is reasonably well understood in broad terms [7], but the situation at
an interface, surface or in a thin film is much less clear. Some theoretical
assumptions have been put forward [8] suggesting that the entanglement
density should vary near an interface, but experimental results exist only
for a limited number of cases [9]. Experimental verification of such effects
is difficult, as entanglements are not directly observable. Conflicting con-
clusions have been reached from several different mechanical determinations
[9, 10, 11] and spectroscopic methods [12]. While the spectroscopic methods
probe mostly the overlap between different chains, the mechanical approach
is more directly linked to the entanglement concept used in rheology. Some
of these studies imply that the rubber modulus is decreased, or the entangle-
ment distance (as measured from the extension before rupture) decreased, in
confined films [9]. Using a bubble inflation method for the determination of
viscoelastic properties, O’Connell and McKenna [10] conclude that the com-
pliance is drastically reduced in thin films, which would rather correspond to
an increase in entanglement density. Finally, experiments on the spreading
of thin films on a liquid substrate [11] conclude that this modulus is not
affected, while the terminal relaxation time is. Some distinctions between
interchain and intra-chain entanglements have been proposed in order to rec-
oncile these different results. The behavior of the entanglement network in
a filled polymer melt is unclear. Some experimental results suggest that it
can remain to a large extent unaffected for a certain filler type [13], or be
subject to variation in the case of strong filler polymer interaction [14].

In summary, the interfacial region is complex, and when the interfacial
area is very large, the whole polymer matrix may essentially be interfacial
region. This presents one of the essential challenges in polymer nanocompos-
ites: to develop technology to control the interface, to describe the interface
mathematically, and to be able to predict properties taking into account the
interfacial region. Traditional composite theory, although very far advanced
in describing properties that are relatively independent of the interface, is
still in its infancy in taking into account the role of the interfacial region.
A number of open questions remain concerning the understanding of the in-
teraction of polymers with flat surfaces. The interaction of polymers with
highly curved surfaces and at scales similar to that of the radius of gyration
is also not well understood.

1.1.2 Nanofluids

Nanofluids are solid-liquid composite materials consisting of solid nanopar-
ticles or nano fibers with sizes typically of 1-100 nm suspended in liquid.
Nanofluids have been proposed as a route for surpassing the performance
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of heat transfer liquids currently available. Cooling is one of the most im-
portant technical challenges facing many diverse industries. Technological
developments such as microelectronic devices with smaller (sub-100 nm) fea-
tures and faster (multi-gigahertz) operating speeds, higher-power engines,
and brighter optical devices are driving increased thermal loads, requiring
advances in cooling. The conventional method for increasing heat dissipa-
tion is to increase the area available for exchanging heat with a heat transfer
fluid. However, this approach requires an undesirable increase in the ther-
mal management system’s size. There is therefore an urgent need for new
and innovative coolants with improved performance. The novel concept of
nanofluids has been proposed as a means of meeting these challenges. Re-
cent experiments on nanofluids have indicated significant increases in thermal
conductivity compared to liquids without nanoparticles or larger particles.
Some of the experimental results are controversial, the extent of thermal
conductivity enhancement sometimes greatly exceeds the predictions of well-
established theories (fig. 1.2).

Figure 1.2: Relative increase in the thermal conductivity as a function of the
volume fraction of nanoparticles. The lower dashed line is the prediction from
effective medium theory for well-dispersed suspensions of highly thermally
conductive nanoparticles; the upper dashed line is the prediction for random-
close-packed aggregates of nanoparticles. Most of the data is reasonably well
described by effective medium theory. The most anomalous results (furthest
left and above the dashed lines) for Cu and Au nanoparticle suspensions are
[15] and [16].

For example, a small amount (about 1% volume fraction) of Cu nanopar-
ticles or carbon nanotubes dispersed in ethylene glycol or oil is reported to
increase the inherently poor thermal conductivity of the liquid by 40% and
150%, respectively [15, 17]. Conventional particle-liquid suspensions require
high concentrations (higher than 10%) of particles to achieve such enhance-
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ment. There are problems of rheology and stability at high concentrations,
making the possibility to use nanofluids even more attractive. In contrast
with the highly optimistic results many researchers report “normal” thermal
behavior of nanoparticle suspensions [18] (fig. 1.2). If these exciting results
on nanofluids can be confirmed in future systematic experiments, new the-
oretical descriptions may be needed to account properly for the unique fea-
tures of these materials. These enhanced thermal properties are not merely
of academic interest. If confirmed and found consistent, they would make
nanofluids promising for applications in thermal management.

The rather controversial findings have stimulated computational and the-
oretical studies trying to explain the microscopic mechanisms behind the in-
crease in thermal properties. Among the possibilities that were suggested,
the Brownian motion [19] of a single sphere in a liquid leads to an increase in
thermal conductivity on the order of 4−5%, and appears to be an attractive
and generic explanation. The essential idea is that the Brownian velocity
of the suspended particle induces a fluctuating hydrodynamic flow [20, 21],
which on average influences (increases) thermal transport. This mechanism
is different from transport of heat through center of mass diffusion, which
was previously shown to be negligible [22]. However, some experimental high
precision studies question the validity of this assumption [18]. Recent sim-
ulations also showed that normal conductivity is expected for low volume
fractions (around 3.3%) and the physical parameter determining thermal
properties should be the particle interfacial thermal resistance [23]. However
a method providing quantitative data on the particles interfacial resistance
and its dependence on physical properties is still missing. Such data should
allow direct quantitative prediction of the thermal properties. Also, study-
ing the fluid conductivity when precisely controlling the diffusion of particles
can further elucidate the heat transfer mechanisms in nanofluids and clarify
the role of Brownian motion. Another possible explanation of the peculiar
thermal behavior of nanofluids lies in collective effects. This field is generally
rather complex but some insights in the possible mechanisms involved can
be achieved in a study of systems with a small number of particles.

1.2 Methods

The characterization and study of nanocomposites involves many different
fields of materials science. Among them computer simulations have a notice-
able place with growing importance. Computation is now an integral part
of contemporary science, and is having a profound effect on the way we do
physics, on the nature of the important questions, and on the physical sys-
tems we choose to study. Developments in computer technology are leading
to new ways of thinking about physical systems.

We carry out computer simulations in the hope of understanding the
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properties of assemblies of molecules in terms of their structure and the
microscopic interactions between them. This serves as a complement to
conventional experiments, enabling us to learn something new, something
that cannot be found out in other ways.

Intermolecular
T

r

t
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Dynamics
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Complex Fluid
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Test theory
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Figure 1.3: Simulations as a bridge between microscopic and macroscopic on
one hand and theory and experiment on the other.

Computer simulations act as a bridge (see fig. 1.3) between microscopic
length and time scales and the macroscopic world of the laboratory: we
provide a guess at the interactions between molecules, and obtain “exact”
predictions of bulk properties. The predictions are “exact” in the sense that
they can be made as accurate as we like, subject to the limitations imposed
by our computer budget. At the same time, the hidden detail behind bulk
measurements can be revealed. An example is the link between the diffusion
coefficient and velocity autocorrelation function (the former easy to mea-
sure experimentally, the latter much harder). Simulations act as a bridge in
another sense: between theory and experiment. We may test a theory by
conducting a simulation using the same model. We may test the model by
comparing with experimental results. We may also carry out simulations on
the computer that are difficult or impossible in the laboratory. Examples
for this are measurements under extreme conditions that are experimentally
prohibitive. Simulations can also provide details of molecular motion and
structure concerning events that are too fast or too slow to study experi-
mentally.

Ultimately we may want to make direct comparisons with experimental
measurements made on specific materials, in which case a good model of
molecular interactions is essential. On the other hand, we may be interested
in phenomena of a rather generic nature, or we may simply want to discrim-
inate between good and bad theories. When it comes to aims of this kind,
it is not necessary to have a perfectly realistic molecular model; one that
contains the essential physics may be quite suitable.

The two main families of simulation technique are molecular dynamics
(MD) and Monte Carlo (MC); additionally, there is a whole range of hybrid
techniques which combine features from both. In this work we mainly use
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MD. The obvious advantage of MD over MC is that it gives a route to dy-
namical properties of the system: transport coefficients, time-dependent re-
sponses to perturbations, rheological properties and easily allows non equilib-
rium simulations. All simulations were performed with the LAMMPS (Large-
scale Atomic/Molecular Massively Parallel Simulator) code (http://lammps.sandia.gov/)
[24]. It is an open source, rich, flexible and fast simulation software package,
that met (modified whenever needed) all the needs of the present work.

1.3 Overview

The present work is organized as follows: at first a description of the basic
problems and theoretical concepts widely used later will be given. In the
second chapter we will discuss in microscopic detail the viscoelastic behav-
ior of a pure bulk polymer material. While exposing comprehensively the
molecular mechanisms involved, we will also concentrate on the development
and calibration of computational and mathematical tools to be used later.
In the third and fourth chapter we will turn to the detailed local study of
polymer interfaces and polymer based nanocomposites. We explain the local
static and dynamical behavior of the chains in the interfacial region, very
important for the macroscopic properties of a nanocomposite. We also study
the properties of the entanglement network at an interface as a function of
its chemical nature. We discuss model systems of polymer nanocomposites
and provide insights about the microscopic basis of reinforcement. In the
last chapter we turn to the study of heat transfer in nanofluids, revealing
the role of the interface in the enhancement of thermal properties in these
materials.

http://lammps.sandia.gov/
http://lammps.sandia.gov/
http://lammps.sandia.gov/
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Theoretical background

Contents
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Payne effect . . . . . . . . . . . . . . . . . . . . . . 22

In the present section some basic concepts of polymer physics will be
described. Also some experimental results and ideas for explaining the com-
posite materials properties will be enumerated. Those concepts are essential
for the understanding of the interpretations given in the following chapters,
as well as to motivate the particular numerical measurements in the studied
systems.

2.1 Coarse grained models

Often the simulations of physical systems cannot and do not need to take into
account all possible detail and all the degrees of freedom of the real system.
Simulating the electrons in the molecules would be irrelevant for determining
a liquid’s viscosity. Furthermore simulation can become virtually impossible
if one takes into account all the chemical details of the system.

This situation is particularly unfavorable in the case of polymers since
these long molecules span very different length (and in consequence time)
scales (see fig. 2.1). Simulation of specific polymer systems has been greatly
advanced by employing systematically derived coarse-grained molecular mod-
els. These models vary in the details of their development and implemen-
tation, yet all seek to construct particle- or lattice- based chain-like objects

11
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Figure 2.1: Schematic representation of a polymer molecule (polyethylene)

whose constituents represent at most a few chemical repeating units of any
specific polymer (see fig. 2.2 and fig. 2.3).
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Figure 2.2: From a chemically realistic model to a coarse-grained bead-spring
type model. Local properties of the realistic model are determined by its
microscopic degrees of freedom: l, θ and φ. On the global level of the chain,
however, the influence of the microscopic degrees of freedom can be lumped
into one parameter, the effective bond length.

This is meant to circumvent the great difficulty in producing equilibrated
samples of atomically-resolved polymers due to the up to ten orders of mag-
nitude spread between the resolution required in time for standard atomistic
molecular dynamics (MD) simulation (10−15s) and the slow molecular relax-
ation times (∼ 10−5s) which must be achieved. Monte Carlo simulation fares
no better as an alternative approach, especially in dense multi-molecular sys-
tems, because local moves are constrained to impractically small values by
steep bonded potentials, and enormous numbers of successful moves have
to accumulate in order to move chain sections larger than a repeat unit or
so. Integrating out these fast motions, or put another way, averaging over
their underlying steep potentials, allows us in principle to construct models
that can produce equilibrated configurations with relatively much less com-
putational effort. Coarse-graining aims to guarantee that the chain confor-
mations in a simulation sample represent true equilibrium conformations of
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Figure 2.3: Representation of a polymer molecule and a corresponding coarse
grained model

the specific polymer considered. A central feature of coarse-graining is that
the models retain only as much unique and relevant information as needed
about the specific polymer(s) under investigation, using significantly fewer
degrees of freedom (i.e., particles) than required for full atomistic detail.
The coarsened degrees of freedom must be constrained within ensembles of
configurations which represent an appropriate average over the microscopic
atomic-scale potential energy surface of the fully resolved system.

2.2 Static properties of a polymer

As polymers have a great number of equilibrium conformations, characteris-
tic quantities are defined as statistical mean values.

If we consider a chain as a sequence of non correlated randomly oriented
vectors of length b0 - an ideal (or Gaussian) chain, the mean end-to-end
square distance is simply given by 〈R2〉 = 〈(~RN − ~R1)

2〉 = Nb2
0. If the

chain is subject to additional constraints (like fixing the angle between two
consecutive segments) the previous relation becomes:

〈R2〉 = Nb2 (2.1)

where b is the effective segment length. This length is the distance over which
correlation is lost in the chain. If we consider for example a freely rotating
chain model with an angle θ between segments the end to end vector becomes
〈R2〉 = Nb2

0(1+cos θ)/(1−cos θ) and the effective bond length in this case is
given by b = b0((1+cos θ)/(1−cos θ))1/2. The effective bond length depends
on one hand on the microscopic structure of the chain, on its stiffness and
on the monomer concentration on the other hand. For melt densities close
to 1, due to mutual screening of interactions polymers behave like Gaussian
chains with their effective bond length function of the microscopic structure
alone. The microscopic stiffness of the chain is represented by the ratio

C∞ = b2/b2
0 (2.2)
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This coefficient can be calculated from the local structure of the chain. The
stiffness can also be represented by another parameter, the Kuhn statistical
segment length defined by:

bK = 〈R2〉/Rmax = b2/b0 (2.3)

where Rmax is the maximum length of the end to end vector. The typical
spatial extension of a polymer chain is given by its radius of gyration:

R2
g =

1

N

N
∑

n=1

〈(~rn − ~rCM )2〉 (2.4)

where rCM is the position of the center of mass of the chain. The radius of
gyration is also the mean square distance between all pairs of the segments
of the chain:

R2
g =

1

2N2

N
∑

n,m=1

〈(~rn − ~rm)2〉 (2.5)

This relation can easily be obtained by replacing the expression for the center
of mass in equation 2.4 and developing. For a linear polymer, if we assume
Gaussian behavior on all length scales, Rg can easily be calculated:

R2
g =

1

2N2

N
∑

n,m=1

|n − m|b2

=
1

2N2

∫ N

0
dn

∫ N

0
dm|n − m|b2

=
1

N2

∫ N

0
dn

∫ N

0
dm(n − m)b2

=
1

6
Nb2 (2.6)

Thus the typical dimension of the linear polymer is given by R̄/
√

6.

2.3 The Rouse model

The motion of a single monomer is governed by the connectivity of the chain
and the interaction of the monomer with its surroundings. In a simple model,
called the Rouse model [25], one can think that for such a situation all the
complicated non-bond interactions are adsorbed into a monomeric friction
and a coupling to a heat bath. In this entropy governed model the motion
of the bead is described by a Langevin equation:

ζ
∂~ri

∂t
= −∇U({~ri}) + ~fi(t) (2.7)
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where ri denotes the position of monomer i, ζ is the friction coefficient with
the viscous background, U is the bond potential that keeps the chain con-
nected and ~fi(t) is a random Langevin force related to ζ via a fluctuation-
dissipation relation. If we consider the case of a harmonic bond potential:
U(~r) = −k ∂2~r

∂i2
where k = 3kBT/b2 is the spring stiffness (b is the bond

length) the model can be solved exactly. The choice of this potential comes
from the idea that interactions in the coarse grained chain backbone are
due to entropic springs. Taking free boundary conditions and rewriting the
equation (2.7) in terms of vibration modes one has:

2Nζ
∂ ~X0

∂t
= ~g0 (2.8)

2Nζ
∂ ~Xp

∂t
= −kp

~Xp + ~gp, p > 0 (2.9)

where kp = k6Np2π2/(Nb)2, ~gp is a random force and the proper modes ~Xp

are related to positions by:

~Xp =
1

N

∫ N

0
dn ~Rn(t) cos(

npπ

N
) (2.10)

From equations (2.9) the time correlation functions of the modes can be
calculated:

〈Xp,i(t)Xq,j(0)〉 =
kBT

kp
δijδpq exp(−t/τp) (2.11)

Finally, 2.11 yields the diffusion constant of the center of mass of the chain

D = kBT/Nζ (2.12)

and the relaxation time of the mode p:

τp =
ζN2b2

3π2kBTp2
=

ζN〈R2(N)〉
3π2kBTp2

(2.13)

The largest relaxation time τ1 = τR is called Rouse time. The times τp can
be viewed as the relaxation times of a chain of length N/p monomers.

The evolution of the mean square displacement of a single monomer g1(t)

g1(t) =
1

N

N
∑

i=1

〈(~ri(t) − ~ri(0))2〉 (2.14)

with time is governed by the fact that as time increases an increasing number
of monomers have to be carried along. As the chain structure is that of a
random walk, one can show that:

g1(t) ∝







t1, t < τ0, g1(t) < a2

t1/2, τ0 < t < τR, g1(t) < 〈R2〉
t1, t > τR, g1(t) > 〈R2〉

(2.15)
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It turns out experimentally that this simple model provides an excellent
description of polymer dynamics in the case of a melt and provided that
the chains are short enough. The calculation above made in the continuous
limit has to be slightly modified to be used in simulations. For the discrete
polymer models we will be considering the Rouse modes can be written as
[26]:

~Xp(t) =
1

N

N
∑

n=1

~rn(t) cos

(

(n − 1/2)pπ

N

)

, p = 0, . . . , N − 1 (2.16)

with N the chain length, ρ the monomer number density and ~rn(t) - the
position of the n-th monomer in the chain at the time t. In this case the
mean square value of a mode p is:

〈X2
p 〉 =

b2

8N(sin pπ/2N)2
→p/N≪1

Nb2

2π2p2
(2.17)

and the relaxation time of the mode is given by:

τp =
ζb2

12kBT (sin pπ/2N)2
→p/N≪1

ζN2b2

3π2kBTp2
(2.18)

The modes calculated in a simulated melt remain orthogonal to each other.
This was tested in the present study by measuring cross correlations between
modes p and q 6= p. The value of the resulting function is about two to three
orders of magnitude smaller than the autocorrelation of the modes.

Microscopic expression for the stress tensor

An essential quantity for the study of the viscoelastic properties of a material
is the stress tensor. We will briefly present here a rather general definition of
the stress and see how it can be related to the Rouse modes. We consider a
small portion of fluid, small enough for all macroscopic gradients to be zero,
and large enough to represent a homogeneous phase. Now let us consider
the quantity (virial):

Aαβ = 〈 1

V

d

dt

∑

i

mir
i
αvi

β〉

where the average is an ensemble average, or a time average over a time span
long enough to smooth out fluctuations, and short enough to assume that the
macroscopic flow is stationary. The sum is over all particles in our control
volume, i.e. particles leaving the control volume are from that moment on
left out of the sum, and particles entering the control volume will from that
moment on contribute to the sum. Since in this case

∑

mir
i
αvi

β is a bounded
quantity, with a well defined average, the average of its time variation must
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be zero, i. e. Aαβ = 0 for α, β = x, y, z. Evaluating the derivative we
obtain:

0 = 〈 1

V

∑

i

vi
αvi

β〉 + 〈 1

V

∑

i

mir
i
α

dvi
β

dt
〉 (2.19)

We can quite generally divide the forces acting on a particle i in two parts:
internal and external to the considered volume ~Fi = mid~vi/dt = ~F int

i +
~F ext

i . The stress tensor component σαβ is defined as the α component of the
force (per unit area) that the material above a plane perpendicular to the
β direction exerts on the material below this plane. In this case, assuming
that the net flow is zero (zero average macroscopic velocity), the stress is
given by:

σαβ = 〈 1

V

∑

i

ri,αF ext
i,β 〉

Reintroducing this term in equation 2.19 we obtain the microscopic expres-
sion for the stress:

σαβ = −〈 1

V

∑

i

vi
αvi

β〉 − 〈 1

V

∑

i

ri
αF i

β〉 (2.20)

At melt densities the first term in equation 2.20 associated with convective
motion is usually negligible. The second term can be rewritten as

σαβ =
ρ

N

N
∑

1

〈 ∂U

∂rn,β
rn,α〉 (2.21)

where N is the chain length and ~rn is the position of the nth monomer of
the chain. The prefactor accounts for the number of polymer molecules per
unit volume. Assuming that the interaction potential is the same coarse
grained entropic spring potential in the previous section, this expression is
transformed into:

σαβ =
ρ

N

3kBT

b2

N
∑

1

〈−(~rn+1 + ~rn−1 − 2~rn)βrn,α〉

=
ρ

N

3kBT

b2

N
∑

1

〈(~rn+1 − ~rn)α(~rn+1 − ~rn)β〉 (2.22)

or in the continuous limit

σαβ =
ρ

N

3kBT

b2

∫ N

0
dn

〈

∂rn,α

∂n

∂rn,β

∂n

〉

(2.23)

Strictly speaking, one has to add an excluded volume interaction to the
potential U . Let us model the excluded volume by the potential:

UV =
υ

2
kBT

∑

m,n

δ(~rn − ~rm) (2.24)
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the stress arising from this potential can be neglected because:

〈

∑

n

∂UV

∂rn,α
rn,β

〉

=
υ

2
kBT

∑

m,n

〈(

∂

∂rn,α
δ(~rn − ~rm)

)

rn,β

〉

=
υ

4
kBT

∑

m,n

〈(

∂

∂rn,α
δ(~rn − ~rm)

)

(rn,β − rm,β)

〉

=
υ

4
kBT

∑

m,n

〈

∂

∂rn,α
[δ(~rn − ~rm)(rn,β − rm,β)]

〉

−υ

4
kBT

∑

m,n

〈δ(~rn − ~rm)δαβ〉 (2.25)

the first term in equation 2.25 is zero and the second term can be omitted
because it is isotropic. Therefore the expression 2.23 holds even for the
chain with the excluded volume effect. This of course does not mean that
the excluded volume does not have any effect on the stress tensor, it does
play a role via the distribution function over which the average in equation
2.23 is taken. Finally we can rewrite 2.23 in normal coordinates, using the
modes:

σαβ =
ρ

N

3kBT

b2

∑

p,q

4
pπ

N

qπ

N
〈Xpα(t)Xqβ(t)〉

×
∫ N

0
dn sin

pπn

N
sin

qπn

N

=
ρ

N

∑

p

kp〈Xpα(t)Xpβ(t)〉

=
ρkBT

N

∑

p

〈Xpα(t)Xpβ(t)〉
〈X2

pα〉
(2.26)

2.4 The reptation concept

If longer chains are considered, other important effects change the dynamics
and they are no longer predicted by the Rouse model. Entanglement effects
become important when chains exceed significantly an entanglement length
Ne. The motion is slowed down drastically, experimentally one finds D ∝
N−2 and η ∝ N3.4 (see fig. 2.4). The reptation concept [28] gives a nice
physical picture for this slowing down. The idea is that the chain moves
mainly along its own contour. The reason for this is that the topology of
the surroundings, due to entangled chains, suppresses the motion transverse
to its contour (see fig. 2.5). This contour is called primitive path and its
characteristics are crucial for the rheological properties of the material. The
quantity characterizing the microscopic topology of an entangled melt is the
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Figure 2.4: Evolution of the diffusion coefficient and the viscosity with the
chain length (data from [27])

tube =̂

chain topology

neighbor chains
dT

end-to-end distance

primitive path

Figure 2.5: Representation of the chain primitive path.

entanglement length - the number of monomer units between entanglements
Ne (and also its related quantities such as the tube diameter). Here we
present a calculation of these quantities inspired by ref. [29] and ref. [6, 30].
The following model is based on the idea that there is a relation between the
sizes of the polymer coils and the degree to which they are entangled with
each other. Basically, the idea is that the larger the dimensions of a chain,
the greater the volume it sweeps out, so the greater the number of other
chains it will encounter and with which it might entangle. This requires a
knowledge of the volume the chain occupies (just given by 1/ρch, with ρch

the number of chains per unit volume) and also the volume “pervaded” by
the chain, that is, the volume spanned by the chain, which is quite difficult
to calculate. Here we will approximate this volume by Vsp, the volume of
the smallest sphere which completely contains the chain. We assume this is
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proportional to the cube of the radius of gyration:

Vsp = A × R3
G (2.27)

where A is a constant of order unity. Let nch be the number of chains of
length N that would completely fill a volume Vsp. Then we have

nch = Vspρch (2.28)

Now nch − 1 can also be considered as the number of chains with which a
particular chain is entangled, since that is the number of other chains that
are in the volume it pervades. In a highly entangled melt, nch will be a large
number. For shorter chains, there is less entanglement and nch becomes
smaller. We may now ask, what is the number of chains nch in Vsp when
N = Ne? Let us define Ne as the length of a chain at which nch = 2, that
is, when there is just one other chain in the spanned volume. For N < Ne,
there is thus no full chain in that volume, so there is no entanglement. Using
equation 2.6 this leads to the following expression:

Vsp(Ne)ρ/Ne =
A√
6
b3
√

Neρ = 2 (2.29)

and thus the entanglement length is

Ne =
24

A2

1

b6ρ2
(2.30)

We see that this parameter depends only on the microscopic structure of
the polymer. To quantify the bulkiness of the polymer we can define a
microscopic characteristic length called the packing length:

p =
v0

b2
=

1

ρb2
=

1

ρch〈R2〉 (2.31)

where v0 is the volume of a monomer and b is the effective bond length
(equation 2.1). So the universal relation between the microscopic structure
and the entanglement length is

Ne ∝ p3ρ (2.32)

and the tube diameter or equivalently the Kuhn length of the primitive path
is given by

d2
T = a2

pp = Neb
2

=
〈R2〉
Lpp

= Neb0bK (2.33)
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where Lpp is the length of the primitive path.
From a dynamical point of view for short time scales the motion of the

chain cannot be distinguished from that of a Rouse chain. The typical time
for the onset of entanglement constraint motion is τe ∝ N2

e . As a result one
has Rouse like behavior for short times, then a Rouse random walk relaxation
along a coarse grained structure of displacements of length dT so that the
power law for g1(t) becomes a t1/4 power law. On this time scale the chain
is going back and forth in the reptation tube - the so called “local reptation”.
After the chain along this coarse grained path is relaxed (t > τR ∝ N2), it
has only moved a distance on the order of the square root of the contour
length of the tube. Then an overall diffusion along the tube yields a second
t1/2 regime for the motion in space. Finally, after a time τd ∝ N3/Ne, called
the disentanglement time, an overall diffusion in space takes place - on this
time scale the chain “reptates out” of the initial tube it was constraint in.
Thus the following general power law is expected:

g1(t) ∝























t1, t < τ0

t1/2, t < τe ∼ N2
e

t1/4, t < τR ∼ N2

t1/2, t < τd ∼ N3/Ne

t1, t > τd

(2.34)

The presence of entanglements is experimentally well seen in the stress au-
tocorrelation function:

G(t) =
V

kBT
〈σαβ(t)σαβ(0)〉, α 6= β (2.35)

This function displays a plateau for τe < t < τd called the plateau modulus
G0

N that is related to the presence of entanglements (see fig. 2.6).

Figure 2.6: A log-log plot of the stress correlation function as a function of
time as predicted by the reptation theory

Its value is given by: [31]

G0
N =

4

5
ρ
kBT

Ne
=

4

5
ρkBT

b2

a2
pp

(2.36)
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However, the reptation idea leaves some unanswered questions. The mea-
sured viscosity scales as N3.4, contradicting the fact that the largest relax-
ation time τd ∝ N3. It is essentially a single chain scenario and the idea
of rigid topological obstacles forming the entanglements is still under dis-
cussion. It is clear that the background moves as well and this leads to
release and reconstruction of constraints. Still the reptation idea remains
the simplest physical frame partially explaining the dynamics of long chains.

2.5 Polymer based composites - reinforcement and

Payne effect

It has long been known that the addition of filler to a polymer matrix results
in reinforcement and nonlinear viscoelastic behavior. In 1960 Payne [32]
investigated the amplitude dependence of the shear moduli of elastomers
filled with carbon black. When an oscillatory stress is applied to a linear
viscoelastic material the strain will oscillate out of phase with the stress.
The strain, γ, and stress, σ, can be written as

γ = γ0e
iωt (2.37)

σ = σ0e
i(ωt+δ) (2.38)

The complex shear modulus is defined as the stress-strain ratio

G∗ = σ(t)/γ(t) = σ0/γ0e
iδ = G′ + iG′′ (2.39)

where G′ is the storage modulus

G′ = σ0/γ0 cos δ (2.40)

and G′′ is the loss modulus

G′′ = σ0/γ0 sin δ (2.41)

σ0 and γ0 are the maximum amplitudes of stress and strain respectively. The
loss factor is defined as

loss factor = tan δ = G′′/G′ (2.42)

that is, the ratio of energy lost to energy stored.
The addition of even a small portion of fillers in a polymer melt leads

to a substantial increase of the storage and loss modulus. This phenomenon
is known as reinforcement and is one of the main reasons for the wide in-
terest in filled polymer melts. Another effect is related to the behavior of
reinforcement for different shear strain amplitudes. For a linear viscoelastic
material (such as an unfilled rubber for shear deformation smaller than about
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10%), the response depends only on the frequency of the imposed oscillation.
However for filled rubbers the response is also known to depend upon the
dynamic strain amplitude. Thus they are termed nonlinear viscoelastic ma-
terials. The resulting behavior is known as the Payne effect. The storage
modulus decreases monotonically with amplitude while the loss modulus has
a maximum at a certain amplitude (see fig. (2.7), (2.8)). The nature of

Figure 2.7: Shear storage modulus vs shear strain amplitude at 90 C and 5
Hz for NT-380 silica filled 83K PVAc from 0 to 25 phr. [33]

the reinforcement mechanism remains an open question. It has long been
believed that reinforcement is caused by agglomeration and network forma-
tion of the filler particles [34]. Experimental evidence has indeed shown that
agglomeration and percolation occur at sufficiently high filler concentration.
In addition Payne [32] showed that reinforcement also occurs in non poly-
meric liquids (n-decane and liquid parrafins) with a filler concentration of
28 vol%. As Payne did not concentrate at lower filler concentrations this
is taken as evidence that the Payne effect can be caused by agglomeration
and/or network formation without regard to interaction between filler and
polymer.

However, more recently the Payne effect has been observed even at very
low filler concentrations (below 12.5% - well below the percolation thresh-
old) [33]. In this limit filler particles are assumed to reside far from one
another and thus the most probable mechanism involves interaction between
individual particles and the polymer matrix. In addition the shear moduli
varies continuously with filler concentration, arguing against an effect which
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Figure 2.8: Shear loss modulus vs shear strain amplitude at 90 C and 5 Hz
for NT-380 silica filled 83K PVAc from 0 to 25 phr. [33]

occurs at the percolation threshold. An explanation of reinforcement in this
case has been proposed for temperatures close to the glass transition tem-
perature of the matrix [35]. A shift of the glass transition temperature can
occur at the filler matrix interface thus leading to the formation of glassy
bridges (see fig. 2.9). Still this explanation is not universal. For example the
reinforcement shown in fig. 2.7, 2.8 has been measured for T ≥ 2Tg of the
polymer matrix [36, 33, 37]. The authors propose an explanation in terms
of trapped entanglements near the filler particles (see fig. 2.10).
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glassy layer

filler

Figure 2.9: Schematic representation of reinforcement through glassy
bridges. The glassy layers are much tougher than the polymer matrix and
their percolation increases the macroscopic mechanical properties of the ma-
terial.

Figure 2.10: Schematic representation of reinforcement through trapped en-
tanglements. The interface changes the number and/or mobility of entan-
glements thus altering the mechanical properties of the sample.
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In this chapter we examine the mechanical properties of a bulk polymer
material. The study is limited to short chain lengths in the unentangled
regime so that a large frequency domain can be explored. An overview
of the viscoelastic behavior is given and a new method for studying local
viscoelastic properties is developed and discussed.

3.1 Introduction

The response of polymer melts to mechanical perturbations, involving either
oscillatory or steady flow, is of great practical importance, and has been the
object of extensive experimental and theoretical studies [38, 39, 31]. This
response is well known to be viscoelastic and non-linear, i.e. the storage and
loss moduli exhibit a strong dependence on frequency, shear rate and shear
amplitude, with a typical shear thinning behavior for the viscosity.

On the simulation side, the steady state viscosity and shear thinning ef-
fects have been studied quite extensively in various configurations for model

27
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systems. An extensive review of recent work is given in reference [40]. A spec-
tacular success was the reproduction of the Rouse-Reptation (or unentangled-
entangled) crossover in the rheological behavior for model polymer melts of
the bead spring type [41]. This crossover is obtained for chain lengths of the
order of N = 100 monomers. According to the popular wisdom in the field,
melts with N < 100 should therefore be amenable to a description in terms
of the Rouse model, which is considered as a reasonable phenomenological
description of unentangled melts.

Investigation of frequency dependent response are much less numerous
than for steady state viscosity. In fact we are aware of only one recent
study,[42] with objectives similar to those treated in the present chapter.
Our aim is to investigate the mechanical response of model polymer melts
submitted to steady or oscillatory shear, in order to obtain a characteriza-
tion in terms of frequency and amplitude of the solicitation. In view of the
numerical cost of such calculations, our study will be limited to short chains,
but will explore several values of amplitudes and frequencies, concentrating
on relatively low frequencies.

As it turns out, a direct assessment of mechanical properties using non
equilibrium molecular dynamics (NEMD) is very costly from a computational
viewpoint. Hence it is desirable to explore methods that could provide the
same information with a lesser computational effort. We will in particular
explore the possibility of obtaining viscoelastic properties directly from a
study of Rouse modes. Those, being single chain properties, offer a much
better statistical accuracy than the stress itself, which is a global property
of the system.

The systems under study are briefly described in the next section. We
then discuss the steady state viscosity, both in the linear and nonlinear
regime. We use three different methods to determine the viscosity - NEMD
simulations, equilibrium Green-Kubo approach and show how the viscosity
can be obtained in a third way from the analysis of equilibrium Rouse modes,
provided the contribution from short times is correctly taken into account.
We then turn to the study of oscillatory strains by means of NEMD simu-
lations. The conditions for linear response at low frequency are discussed,
and the various contributions to stress response - storage and loss - are esti-
mated. Again, the results are compared to an equilibrium analysis based on
the Rouse model.

3.2 System description and methods

The chains are modelled by an abstract and generic, though well studied,
bead spring model - the rather common “Lennard-Jones + FENE” model
[43]. All monomers in the system are interacting through the Lennard-Jones
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potential:

Ulj(r) =

{

4ε((σ/r)12 − (σ/r)6), r ≤ rc

0, r > rc
(3.1)

where rc = 2.5σ. Neighbor monomers in the same chain are linked by the
FENE (Finite extension non-linear elastic) potential:

UFENE(r) = −k

2
R0 ln(1 − (

r

R0
)2) + 4ε((σ/r)12 − (σ/r)6) + ε (3.2)

where R0 = 1.5σ and k = 30.0ε/σ2. The first term is attractive, the sec-
ond Lennard-Jones term is repulsive. The first term extends to r < R0, the
maximum extent of the bond. The second is cut off at 6

√
2σ, the minimum

of the LJ potential. The temperature of the melt was fixed in all simula-
tions at kBT = ε, well above the glass transition temperature for our model
(kBTg ∼ 0.42ε). With these parameters and for the temperature of our
system the bonds have a very narrow distribution around the mean value
(0.965 ± 0.013σ). The time step in the simulation runs was set to 0.005τ .
All results are presented in conventional Lenard-Jones (LJ) reduced units:
length scale - σ, energy scale - ε, mass - monomer mass m. All other units

can be deduced: time - reduced LJ τ =
√

mσ2

ε , velocity - σ/τ , force - σ/τ2,
reduced temperature, pressure, etc.

As we are interested in the bulk properties of the material the choice of
the non equilibrium simulation method to be used is very important. Two
methods are possible to impose a shear flow in the system. One can simulate
a confined slice of material between two walls and impose a given velocity or
force on the walls thus shearing the particles in between. In order to assess
bulk properties in this kind of system the measurements should be restricted
to the inmost region so that altered interfacial properties do not affect the
results. In the case of polymer melts (as discussed thoroughly in chapter 4)
we know that the size of this region is of the order of the polymer bulk radius
of gyration and could possibly vary in a non trivial manner as a function of
the stresses on the wall. In order to obtain bulk properties from a simulation
of a confined system, taking a large system is important so that bulk behavior
can be measured and this typically leads to a large computational cost. The
second solution are the so called Lees Edwards periodic boundary conditions
[44]. These allow the simulation of an unconfined periodic system under
shear, achieved through a modification of the periodic boundaries (sliding
bricks, fig 3.1). The sole application of the modified boundary conditions
is referred to as boundary driven algorithm. As the particles move under
Newton’s equations of motion they feel the inter atomic forces exerted by
the particles within the unit cell and by the image particles whose positions
are determined by the instantaneous lattice vectors of the periodic array of
cells. The motion of the image cells defines the shear rate, γ̇ = ∂vx

∂y , for the
flow. The motion of the cell images is such that their individual origins move
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Figure 3.1: The modified boundary conditions following the Lees Edwards
scheme

with an x-velocity which is proportional to the y-coordinate of the particular
cell origin. If the Reynolds number is sufficiently small and turbulence does
not occur, we expect that the motion of image particles above and below
any given cell will, in time, induce a linear streaming velocity vx = γ̇y, on
each of the particles within the cell. If a particle i moves out the bottom of
the simulation cube, it is replaced by the image particle with coordinates:

~ri,new = (~ri + ~exγ̇Lt)mod L (3.3)

or if i moves out of the top of the simulation cube, it is replaced by

~ri,new = (~ri − ~exγ̇Lt)mod L (3.4)

where L is the box size.
There is a major difficulty with the boundary driven algorithm. The

way in which the boundaries induce a shearing motion to the particles takes
time to occur, approximately given by the sound propagation time across the
primitive cell. This is the minimum time taken for the particles to realise
that the shear is taking place, and the shear profile is fully established after
the momentum has diffused in the cell. The boundary driven method as
described above, therefore cannot be used to study time dependent flows.
The most elegant solution to this problem introduces the SLLOD algorithm
[44]. The equations of motion to be integrated for the motion of the particles
are:

d~ri

dt
=

~pi

m
+ ~exγ̇yi (3.5)

d~pi

dt
= ~Fi − ~exγ̇pyi (3.6)

The above equations are equivalent to:

m
d2~ri

dt2
= ~Fi + ~exm

dγ̇

dt
yi (3.7)

For example if the shear rate is a step function its derivative in the equa-
tion above is a delta function dγ̇/dt = γ̇δ(t) and the t = 0 velocities are
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Figure 3.2: The SLLOD equations of motion give an exact representation of
planar Couette flow

incremented with respect to the flow (fig. 3.2). We note that the SLLOD
equations of motion should be implemented with the Lees Edwards bound-
ary conditions. Compared to the boundary driven methods, the advantages
of using the SLLOD algorithm in computer simulations are many. Under pe-
riodic boundaries the SLLOD momenta are continuous functions of time and
space. For simulations of viscoelasticity special measures have to be taken
in the boundary driven algorithm to ensure that the time varying strain
rate is actually what you expect it to be. In the SLLOD method no special
techniques are required for simulations of time dependent flows. One simply
has to solve the equations of motion with a time dependent strain rate and
ensure that the periodic boundary conditions are precisely consistent with
the strain derived by integrating the imposed shear rate. The imposed shear
causes a major change in the microscopic fluid structure. This is manifest in
all the thermodynamic properties of the system changing with shear rate.

The NEMD simulations were performed with a modified version of the
LAMMPS code [24]. In practice the implementation of the Lees Edwards
boundaries in a parallel code using spatial decomposition of the simulation
box between processors is not an easy task. Special care should be taken
when establishing the communication lists as they become time and shear
rate dependent. Parallel efficiency is considerably reduced due to increased
communication time. Still the simulations are considerably faster than those
of systems with walls as the total number of particles is much lower as the
system remains periodic in all three dimensions and there are no interfacial
effects.

The typical size of the studied systems in this chapter was of 1280 and
2560 particles (for chain lengths of 10 and 20) in a cubic simulation box
periodic in all three dimensions. The temperature of the melt was fixed in
all simulations at kBT = 1 and the density was ρ = 0.85. A straightforward
application of a thermostat should be avoided in NEMD. The thermostat
should be applied to the thermal velocity field, which is the actual velocities
of the particles minus the imposed shear velocity field. In practice one does
not have to couple a thermostat to all the velocity components, as different
directions are coupled to each other. In our case the velocity component in
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the direction of the shear flow vx is left unchanged and the other components
are rescaled.

3.3 Viscosity determination by NEMD

The most direct method to obtain shear viscosities is undoubtedly the non
equilibrium approach that generates homogeneous, planar Couette flow using
Lees-Edwards boundary conditions and the SLLOD algorithm, imposing a
constant shear rate. For a shear rate γ̇ and a velocity profile vx(y) = γ̇y, the
viscosity is given by

η =
〈σ(t)〉

γ̇
(3.8)

Where σ(t) is the xy component of the stress tensor in the sample. The

stress tensor in the melt is calculated as σαβ(t) = − 1
V

∑

rα
ijF

β
ij , where F β

ij

the β component of the force between particles i and j. The kinetic con-
tribution of the stress (∝

∑

vα
i vβ

i ) was also evaluated and found to have a
negligible contribution to the stress. As discussed in section 2.3, this result
is expected at high density and for the shear rates that we simulate as there
is no convection in our system. The viscosity obtained by this method de-
pends on the shear rate, generally decreasing with γ̇. This behavior, known
as shear thinning is typical for complex fluids and has been observed for
polymer melts in a number of studies [44, 45]. An extrapolation is required
to estimate the zero shear rate value. Shear thinning generally takes place
when γ̇ > 1/τc, where τc is a characteristic relaxation time of the polymer
melt (usually, for unentangled melts, the Rouse time τR, as can be seen in
fig. 3.3).

Precise measurements for low shear rates are very time consuming as
substantial statistics are needed for the accurate determination of 〈σ(t)〉
which has a small value for small shear rates. An accurate estimation of
the error bars in this kind of study is of essence in order to evaluate the
potential utility of the presented method. If we neglect all systematic error
sources such as finite size effects or possible deviations of the algorithm from
physical reality we have to precisely estimate the statistical accuracy of the
data. A method providing the statistical error value without any assumption
of the nature of the physical system is the block averaging. Let’s suppose
we measure a quantity A. We define

An =
1

n

n
∑

i=0

Ai (3.9)

as the mean value over n measurements. Assuming that the true value of the
quantity, i.e. the expectation value with respect to the exact but unknown
probability distribution is a, what we measure in reality is Ai = a + δi. If
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Figure 3.3: Shear viscosity as a function of shear rate γ̇ measured in simu-
lations of planar flow (equation 3.8). Shear thinning takes place for approx-
imately γ̇ > 0.01 for N = 10 and γ̇ > 0.0025 for N = 20. The estimated
Rouse relaxation times for the two chain lengths are respectively about 100
and 400. Stress was measured every 2τLJ for a time ranging from 15000τLJ

for high shear rates to 55000τLJ for low shear rates. Error bars are estimated
using block averages for data correlation.[46]

our estimations are unbiased the mean value of the random variable δi is
0. If every measurement was statistically independent from any other the
standard error (δ) of the true value would be related to the measured values
as

δ2
n =

1

n
δ2 (3.10)

Assuming there is some correlation between the measurements typically
spanning over kc measurements

〈δiδj〉 = f(|i − j|) = exp(−|i − j|/kc) (3.11)

the equation 3.10 is changed to

δ2
n =

1

n
δ2

n
∑

k=0

f(k) ≈ 1

n
δ2kc (3.12)

If we have ntot measurements we divide the data into nb blocks each of length
n. We calculate the block averages A1, ..., Anb

and the variance:

δ2
n =

1

nb

nb
∑

i=0

(Ai − 〈A〉run)2 (3.13)

where 〈A〉run is the global mean value calculated from all data points. Given
that n is large enough the so calculated variance is related to the error of the
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real distribution and the data correlation via equation 3.12. In practice we
repeat this procedure several times for different values of the block length
n and then plot δ2

n versus 1/n (see fig. 3.4). The estimated slope from this
plot indicates the “real” variance δ2kc we are looking for and the error bar
for the measured value of the stress is then (δ2kc/Trun)1/2. More detailed
discussion about the error estimation can be found mostly in [47] as well as
in [46] and [48].
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1/p
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0.001
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Figure 3.4: Variance estimated from the data (equation 3.13) as a function
of the inverse block length. The fit slope gives the statistical variance and
correlation and is used to calculate error bars of the mean stress value (here
for N = 10 and γ̇ = 0.07)

The greatest shortcoming of the NEMD measurement comes from the
fact that as the relaxation time of the polymer chains increases rapidly with
the chain length (τc ∝ N2 and ∝ N3 in the entangled regime), for long
chains very low shear rates γ̇ < 1/τc, should be used to reach the Newtonian
plateau in η(γ̇). The low shear rates yield a low value of the stress whereas
the fluctuations remain large. Furthermore the mean stress is divided by
the small shear rate to obtain the viscosity so the uncertainty is increased.
This is illustrated by the large error bars on the low shear rate side of figure
3.3. We note that by using the Lees-Edwards/SLLOD method we do not
have any error on the shear rate value as it is imposed via the equations
of motion and the boundary conditions. If we were shearing the melt with
external walls the shear rate would be obtained from the velocity profile
and would be therefore prone to some error itself. This can be stated as
another advantage of the SLLOD method. For chains of lengths N = 10 and
N = 20, our extrapolation at zero shear rate is consistent with the scaling
expected for unentangled melts, η ∝ N , and with earlier estimates found in
the literature [42].



3.3. Viscosity determination by NEMD 35

3.3.1 Green-Kubo approach

The problem of extrapolating the shear rate dependent viscosity value does
not occur in equilibrium methods. Using linear response theory one can
relate the value of the transport coefficients to the equilibrium fluctuations of
their associated thermodynamic flux. The resulting formulae are the Green-
Kubo relations widely used in computer simulations [44, 46]. The zero shear
rate viscosity is thus given by the integral of the stress correlation function

G(t) =
V

kBT
〈σxy(t)σxy(0)〉 (3.14)

η =

∫ ∞

0
G(t)dt (3.15)

with T and V the melt temperature and volume. It is well known that
obtaining an accurate value for the slowly decaying stress correlation function
involves very long runs in order to have sufficient statistics. The results we
present here are obtained by calculating the stress correlation over a time
series of data covering 25000τ of the N = 10 system. This simulation time
is roughly 250 times the largest relaxation time of the polymer chains of
length 10 and is hardly attainable for longer chains. The most natural way
of estimating the error in the viscosity from the Green Kubo formula is to
compare the three different values obtained from the three different (and
independent) off diagonal components of the stress tensor. The results are
shown on fig. 3.5. The uncertainty of the Green-Kubo formula concerning
viscosity is on the order of 30% when the integral is carried out to several
relaxation times and grows much larger as the correlation function is further
integrated.
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Figure 3.5: Integrals of the stress correlation function G(t) for N = 10
(equation 3.15). More details for the measurements are given on fig. 3.6.
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We know that the correlation function is non zero for times smaller than
the largest relaxation time in our system (the Rouse time in our case). To
understand the unstable behavior of the integrals and identify the possible
error sources a more detailed study of the statistical accuracy of the correla-
tion functions is needed. Such information is also vital in order to evaluate
the usefulness of this method in practical situations.

In the following calculation we will omit the prefactor V/kBT in the
stress correlation as it does not play a role in the error calculation. From a
MD run we measure the auto correlation of the stress as:

G(t) =
1

Trun

∫ Trun

0
σxy(s + t)σxy(s)ds (3.16)

Let’s consider the variance in G(t):

〈G(t)2〉 − 〈G(t)〉2 =

= 1
T 2

run

∫ Trun

0

∫ Trun

0 〈σxy(s + t)σxy(s)σxy(u + t)σxy(u)〉dsdu

− 1
T 2

run

∫ Trun

0

∫ Trun

0 〈σxy(s + t)σxy(s)〉〈σxy(u + t)σxy(u)〉dsdu

(3.17)

This rather complicated expression can be simplified if we assume that the
fluctuations of the stress follow Gaussian statistics. For Gaussian variables
we can factorize all high order correlation functions and in particular:

〈σxy(s + t)σxy(s)σxy(u + t)σxy(u)〉 =
= 〈σxy(s + t)σxy(s)〉〈σxy(u + t)σxy(u)〉
+〈σxy(s)σxy(u)〉〈σxy(u + t)σxy(s + t)〉
+〈σxy(s + t)σxy(u)〉〈σxy(u + t)σxy(s)〉

(3.18)

inserting this into equation 3.17 and simplifying we obtain:

〈G(t)2〉 − 〈G(t)〉2 =
= 1

Trun

∫∞
−∞(〈σxy(v)σxy(0)〉2 − 〈σxy(v − t)σxy(0)〉〈σxy(v + t)σxy(0)〉)dv

(3.19)
where we consider the simulation time much longer than the characteristic
decay time of the stress and we have defined v = s − u. Let us define a
typical correlation time of the data as:

τc = 2

∫ ∞

0

〈σxy(v)σxy(0)〉2
〈σxy(0)2〉2 dv (3.20)

We note that if our correlation is a simple exponential the definition above
gives the decay time of the exponential. Now we can easily estimate the
variance of the stress correlation in the two limiting cases of short times and
long times. For t → 0 we have:

〈G(t)2〉 − 〈G(t)〉2 = 4G(0)2
τc

Trun
(3.21)
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For t → ∞ the second term in the integral in equation 3.19 vanishes and we
have:

〈G(t)2〉 − 〈G(t)〉2 = 2G(0)2
τc

Trun
(3.22)

and the standard absolute error in the correlation function is given by the
square root of the variance above. It should be stressed that the preced-
ing estimate is only approximative, relying on the validity of the Gaussian
approximation. It is also very general and does not take into account the
specific physical nature of the stress correlation function in a polymer melt.
Additional details about this type of calculation are given in ref. [49]. Com-
paring the t → ∞ and t → 0 behavior we see that the absolute error in
G(t) changes very little with the time t. As a consequence, the relative error
increases rapidly as G(t) goes to zero. Furthermore, this derivation assumes
that the total number of samples for each t is equal, so strictly speaking if
we have fewer samples for large t this approach is not valid. In practice this
is the case for nearly any correlation function so this calculation should un-
derestimate error for long times. Estimating the statistical correlation time
from the correlation function (equation 3.20) we find τc ∼ 0.05. The problem
with the stress auto correlation is that it has a high initial value and drops
rather quickly to a small plateau, we have 〈σ2〉 ≈ 103〈σ(10)σ(0)〉 (this can
be seen on fig. 3.8). This means that in order to obtain a relative precision
of ∼ 10% for 〈σ(10)σ(0)〉 it would be necessary to run a simulation of ∼ 107

(units of LJ time). Hence the stress correlation function in the polymeric
case is long ranged in time and has a low amplitude, easily masked by noise
associated with the rapid pair and bond-potential part of the stress that
does not involve polymer chain relaxation. This estimate is indeed very pes-
simistic and should be seen as an upper bound of the possible error in the
Green Kubo formula. In practice a partial solution can be to average out the
oscillations in the stress correlation due to bond vibrations and short time
relaxation. This has been done by performing sliding averages in ref. [50].
The procedure affects only slightly the viscosity in the case of long chains but
can alter its value for shorter chains where short time relaxation is impor-
tant as we will discuss later in the present chapter. In this case the observed
error on viscosity (at least at intermediate times) is lower than the straight-
forward statistical prediction but still consistent with the picture on fig. 3.5.
An issue worth discussing is the fact that the correlation time estimated via
equation 3.20 is rather small compared to the physical times involved in the
system, being of the same order of magnitude as the period of the bond vi-
brations in the chains (fig. 3.8). One one hand this indicates that the largest
error source tends to be the bond high frequency vibrations and justifies to
a certain extent the averaging procedure. In practice the stress auto correla-
tion function has several contributions with different weights and correlation
times. If G(t) has a structure of the form

∑

i Ai exp(−t/τi) exhibiting a se-
ries of relaxation times, a calculation using 3.20 produces a correlation time
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in which each τi have a weighing factor ∼ A2
i . For more precise estimation

knowledge of the values of the prefactors would be required. The error value
should in reality be chain length dependent. For longer chains the largest
correlation times as well as their prefactors are expected to increase as the
long time stress relaxation’s contribution to the viscosity grows rapidly with
chain length, as well as the chain relaxation times. A complete picture of
the uncertainties in those cases requires additional measurements and stands
outside of the goals of the present study. The best way to estimate uncer-
tainty in this case seems to remain the comparison of the viscosity value
from the three independent components of the stress correlation (fig. 3.5).

We did not examine the influence of system size on the statistical ac-
curacy of our data. If a larger system should diminish stress fluctuations
(by a factor ∝

√
N , where N is the number of particles), a similar effect is

expected by longer simulation time (a factor ∝
√

T ). As the computational
effort for larger system increases roughly as N log N , we do not expect to
gain better precision for less computational time this way, so we did not
examine the trade off between system size and run time.

We are aware of several determinations of polymer melt viscosity using
the Green-Kubo approach. In [51] a good agreement with NEMD results
was obtained for short simulation times without discussion on uncertainty.
Another calculation was made in [50], where the authors reported the exis-
tence of a large noise in the correlation function. This problem was solved,
as mentioned above, by performing running averages to smooth the data, a
method that can reduce the noise due to rapid bond vibrations but whose
effect on the intrinsic statistical accuracy of the stress correlation is not ob-
vious. Our data still indicate a large error bar (30%), when this error bar
is estimated from the three independent components of the stress tensor. A
similar result is also reached when using this estimation in other systems
[52]. A viscosity determination based on a Green-Kubo formula in terms
of an Einstein relation was presented in [53], unfortunately with relatively
little details that would allow us to compare with our results in terms of
efficiency and accuracy. It is clear that the Green-Kubo formula remains the
only exact way of determining the viscosity from equilibrium simulations,
and should be used whenever an “exact” result is required. Although this
is feasible with a large computational effort [53], a detailed report on its
accuracy for polymers is still missing (see however [52]). Therefore it seems
interesting to discuss an alternative, faster, approach that can be used for
example in comparative studies at a moderate computational cost.

3.3.2 Rouse modes

It is well known that, at least at a qualitative level, the Rouse model can
account for the viscoelastic behavior of unentangled polymer melts. Hence,
it is tempting to attempt to bypass the difficulty in obtaining the viscoelastic
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properties stricto-sensu by directly using this model. A major motivation
for this is that the large uncertainties discussed above are highly reduced,
when we turn to the calculation of single-particle (or single-chain) correlation
functions, which are the essential ingredient of the Rouse model. As the
final result is an average over M separate functions the standard error at
long times (equation 3.22) is in this case be (2G(0)2τc/(M ×Trun))1/2. This
is the reason why single particle correlation functions (such as the velocity
auto correlation) are relatively easily measured in computer simulations.

The spirit of the Rouse model consists in assuming that the melt me-
chanical behavior is dictated by the relaxation of a single polymer chain, the
influence of inter chain interactions being limited to the phenomenological
friction constant (section 2.3). Consistent with this assumption, the me-
chanical stress can be calculated from the Rouse modes of the chains [31] as
described in section 2.3

σxy(t) =
ρkBT

N

N−1
∑

p=1

〈Xpx(t)Xpy(t)〉
〈X2

px〉eq
(3.23)

where Xp(t) are the Rouse modes given by equation 2.16. Assuming, again
in the spirit of the Rouse model, independent Rouse modes, the stress corre-
lation from equation (3.14) can be rewritten as a function of the equilibrium
correlation functions for individual Rouse modes at equilibrium:

G(t) = V
kBT 〈σxy(t)σxy(0)〉

= V
kBT

1
T sim

∫ T sim

0 dτ
(

ρkBT
N

)2
∑

p,q
〈Xpx(t+τ)Xpy(t+τ)〉

〈X2
px〉

〈Xqx(τ)Xqy(τ)〉
〈X2

qx〉

= V
kBT

1
T sim

∫ T sim

0 dτ
(

ρkBT
N

)2
1

N2
c

∑

c,c′
∑

p,q
Xc

px(t+τ)Xc
py(t+τ)

〈X2
px〉

Xc′

qx(τ)Xc′

qy(τ)

〈X2
qx〉

= 1
T sim

∫ T sim

0 dτ ρkBT
N

1
Nc

∑Nc

c=1

∑N−1
p=1

Xc
px(t+τ)Xc

py(t+τ)Xc
px(τ)Xc

py(τ)

〈X2
px〉

= ρkBT
N

∑N−1
p=1

〈Xpx(t)Xpy(t)Xpx(0)Xpy(0)〉
〈X2

px〉
2

(3.24)
The viscosity is then calculated using equation (3.15). With this method

we observe a substantial gain in precision (see figure 3.6) using as criterion
the viscosity determination via the three off diagonal stress components.
This better accuracy is achieved for a shorter simulation time. The values
obtained are smaller than the non equilibrium estimates, by about the same
amount for the two different chain lengths (ηNEMD − ηeq ∼ 5 [LJ units]).

This result is not surprising given the simplifications of the latter cal-
culation. The interactions between chains in the melt are not taken into
account and the Rouse model cannot yield information about stress relax-
ation on very short “non - polymer” time scales. In order to get a better
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Figure 3.6: Integrals of the stress correlation function G(t) for N = 10
obtained from the global stress (Green-Kubo) and the Rouse modes stress.
A distinct plateau that stays stable for very long times (∼ 50τR) is clearly
reached with the Rouse modes formulation. For comparison the Green-Kubo
integral value has important fluctuations for times longer than several times
the Rouse relaxation time τR as predicted by the uncertainty calculation.
Global stress was measured every 0.01τLJ for a time span of 25000τLJ and
G(t) was calculated by taking every point as a starting state and averaging.
Such fine sampling is needed to capture the fast oscillations in G(t) shown in
fig. 3.8. Rouse modes were measured every 0.5τLJ for every chain for a time
of 15000τLJ . Than GRouse(t) was calculated averaging over starting states
and chains.

understanding of the deficiencies in the calculation using the Rouse model,
we first compute the individual relaxation times of the modes. The relax-
ation times, shown in figure 3.7, are extracted from the exponential decay of
these correlation functions. The Rouse scaling τp ∝ 1/p2 is well obeyed for
the first modes.[26] While this is a typical result for the bead-spring model
[26], we note that using more detailed atomistic simulations larger deviations
from the Rouse scaling can be observed, especially in higher modes [54]. For
both chain lengths, the relaxation time of the fastest mode was found to be
τN−1 ∼ 2.

It is clear that the Rouse calculation cannot account for the contribution
to the viscosity associated with time scales shorter than τN−1. On such short
time scales the Green-Kubo viscosity integrand can however be obtained with
high accuracy, as illustrated in 3.8. As statistics decrease linearly with time
when we perform averaging over initial states, for short times G(t) has higher
precision. This stress-stress correlation function first decreases rapidly, and
displays a short time damped oscillatory behavior, with a time constant
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Figure 3.7: Relaxation times of the Rouse modes of the chains versus the
mode number. Relaxation times were estimated by an exponential fit of
the normalized correlation function of the mode, which had in all cases an
exponential behavior. Dashed lines show the Rouse theory prediction τp ∝
1/p2, followed closely by the first several modes as discussed in [26].

smaller than 0.5. Similar stress oscillations were reported for n-alkanes as
well as for a bead-spring melt [53, 50]. In our case, a detailed study of the
FENE bonds and Lennard-Jones forces contributions to the stress, shows
that these oscillations are due bond vibrations, and that their frequency is
close to the intrinsic frequency of the FENE bonds.

Integrating this short time stress correlation function gives the contribu-
tion to the melt viscosity of the rapidly decaying part of the global stress,
unaccounted for in the Rouse model.

η =

∫ ∞

0
G(t)dt (3.25)

=

∫ ∞

0
GRouse(t)dt +

∫ τN−1

0

V

kBT
〈σαβ(t)σαβ(0)〉dt (3.26)

Adding the contribution of the second term of equation 3.26 to the vis-
cosity from the Rouse model provides a significantly more accurate estimate
of the viscosity, compared to that calculated from non equilibrium runs (ta-
ble 3.1). The short time behavior of the stress correlation function is the
same for chain lengths N = 10 and N = 20, which is an evidence that this
short times contribution is independent of chain length and represents the
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Figure 3.8: Global stress correlation functions for short times. Correlations
of the pair Lennard-Jones and FENE bond interactions contribution to the
global stress are also shown. Dashed line shows a fit of the global stress cor-
relation to indicate the relevant decay time scales and oscillation frequency.

missing “non-polymeric” part of the mechanical properties of the melt. In
fact it provides a contribution to viscosity on the order of the viscosity of a
simple LJ fluid at the considered density and temperature [40].

Viscosity N = 10 N = 20

Green-Kubo estimate 8 ± 4 N/A
Rouse modes value 4.88 ± 0.28 10.2 ± 1.0
Short times correction 3.38 3.43
NEMD extrapolation 8.2 ± 1.3 14.9 ± 1.9
Corrected Rouse value 8.26 ± 0.28 13.6 ± 1.0

Table 3.1: Viscosity values from the different methods. Uncertainties in
Green-Kubo and Rouse modes G(t) integrals are estimated by evaluating
the 〈σxy(t)σxy(0)〉, 〈σxz(t)σxz(0)〉 and 〈σyz(t)σyz(0)〉 integrals.

Being chain length independent, short times stress relaxation represents
a part in viscosity that diminishes with increasing chain length, about 40%
for N = 10 and ∼ 30% for N = 20. Still it cannot be neglected for predicting
mechanical properties of a melt of unentangled chains. It is equally impor-
tant for long chains at large shear rates, when the melt viscosity becomes
comparable to the one of a simple fluid and can explain deviations from the
stress-optic rule [55]. As we shall see in the next chapter, for long chains this
contribution can be neglected in equilibrium as it is a minor correction.

The presented method provides a way to rapidly obtain an estimate of
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the viscosity as it requires much less computational time than an accurate
Green Kubo measurement. It is still less straightforward and one needs to
monitor N (where N is the chain length) Rouse modes for every chain to
build the correlation function. On the other hand as the modes variation is
slower than the variation of the global stress, on does not need to store the
modes values as frequently as the stress for a Green Kubo calculation. The
method’s main advantage is that, being based on a single chain quantity, it
is local in nature and can be used to assess local viscoelastic properties in
inhomogeneous systems such as confined melts or melts with filler particles.
The calculation can be applied to a group of chains in a specific region thus
studying the typical viscoelastic behavior of the considered area.

3.4 Elastic Moduli

3.4.1 Method

Like the viscosity, elastic moduli can be obtained using either equilibrium
or non equilibrium simulation. If one is interested only in linear response
properties, the moduli can be obtained by Fourier transforming the Green-
Kubo integrand G(t) (equation 3.14) in the form

G′(ω) = ω

∫ ∞

0
dtG(t) sinωt (3.27)

G′′(ω) = ω

∫ ∞

0
dtG(t) cos ωt (3.28)

This equilibrium determination, however, suffers from the same drawbacks
as the Green-Kubo determination of the viscosity, i.e. a long time, small
amplitude tail of G(t) has to be known very accurately to obtain reasonable
results. That is why we do not show any result concerning elastic moduli
issued by a Green-Kubo method. Instead, the only practical way of using
equations 3.27 and 3.28 is to start from a “model” calculation of G(t), in the
sense of the Rouse modeling described in the previous section.

To obtain information beyond the linear regime, the only possibility is to
effectively do NEMD and submit the sample to an oscillatory strain, using
the standard SLLOD algorithm discussed above. The strain is given by

γ̇0(t) = γ0ω sin ωt ⇒ γ0(t) = −γ0 cos ωt (3.29)

And we define the response of the system by the usual formulae for the stress
σ(t)

σ(t) =

∫ t

−∞
G(t − t′; γ0, ω)γ̇0(t

′)dt′ (3.30)

A dependence on the shear amplitude and frequency is indicated in the
response function G, to recall the possible existence of nonlinear effects.
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The frequency dependent moduli are defined from the Fourier component of
σ(t) at the imposed frequency ω

σ(t) = γ0(G
′(ω, γ0) sinωt + G′′(ω, γ0) cos ωt) + harmonics at 2ω, 3ω..

(3.31)
The moduli are formally given by the Fourier transforms of the response
function

G′(ω; γ0) = ω

∫ ∞

0
dtG(t; γ0, ω) sinωt (3.32)

G′′(ω; γ0) = ω

∫ ∞

0
dtG(t; γ0, ω) cos ωt (3.33)

In practice, G′ (resp. G′′) is extracted from the time series for the stress by
multiplying the signal by cos(ωt) (resp. sin(ωt)), i.e.

G′(ω, γ0)

∫ Tr

0
dt cos2 ωt = − 1

γ0

∫ Tr

0
dtσ(t) cos ωt+G′′(ω)

∫ Tr

0
dt cos ωt sin ωt

(3.34)
with Tr the length of the simulation run. Thus we obtain the storage and
loss moduli as a function of stress :

G′(ω, γ0) =
2

Tr + sin
2ωTr

× (3.35)

(

− 1

γ0

∫ Tr

0
dtσ(t) cos ωt + G′′(ω; γ0)

sin2 ωTr

2ω

)

G′′(ω) =
2

Tr − sin 2ωTr

2ω

× (3.36)

(

1

γ0

∫ Tr

0
dtσ(t) sinωt + G′(ω; γ0)

sin2 ωTr

2ω

)

In the above formulae potential harmonic terms were ignored for simplicity,
their contribution being of order 1/Tr. In the limit Tr ≫ 1/ω one has simply

G′(ω; γ0) = − 2

Trγ0

∫ T

0
dtσ(t) cos ωt (3.37)

G′′(ω; γ0) =
2

Trγ0

∫ T

0
dtσ(t) sinωt (3.38)

In order to elucidate the role of the different interactions for the elastic
moduli we focus on their respective contribution. The stress can very gen-
erally be separated into an intramolecular stress component associated with
FENE bonds and intra chain Lennard-Jones forces, and a intermolecular
stress component associated with inter-chain Lennard-Jones interactions. In
the following the moduli issued from NEMD simulations will be discussed
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in terms of these two separate intra and inter molecular contributions. Dur-
ing a NEMD run the full stress in the system as well as its inter and intra
molecular components are stored and then elastic moduli are calculated as
described above.

3.4.2 Results

NEMD Results

The first question that we investigated is the extent of the linear regime, in
terms of the strain amplitude. Nonlinear effects can in principle be detected
by a dependence of G(ω) on γ0, or by the presence of higher harmonics in
the stress signal.

There is a clear softening of the response at frequency ω as amplitude is
increased. This softening is obtained above a value of the strain rate γ0ω on
the order of 1/τR at low frequencies, as illustrated in figure 3.9. The situation
is very similar to the shear thinning behavior of the viscosity, namely the
relevant parameter is the shear rate rather than the strain amplitude or
frequency.
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Figure 3.9: Dependence of elastic moduli on strain rate amplitude γ0ω for
N = 10. Elastic moduli are normalized by their lowest shear rate amplitude
value. For all frequencies the linear regime extends at least to γ0ω ≈ 1/τR,
for ω ≫ 1/τR the linear behavior breaks down for γ0ω ∝ ω. The same
behavior was measured for N = 20 (data not shown)

For frequencies ω ≫ 1/τR, the softening is observed for values of γ0ω sig-
nificantly larger than 1/τR. The behavior of chains in this frequency range is
further discussed below. Harmonics were detected in the time series for σ(t)
at high values of the strain amplitude γ0 > 2.5 at a frequency of 3ω, where
ω is the solicitation frequency, for all frequencies. For symmetry reasons the
stress must be an odd function of the strain, so that the response function G
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is an even function of γ. Hence harmonic contributions are observed only for
odd multiples of the solicitation frequency. The amplitudes of the harmonic
terms in the power spectrum are small, about 8% and 3% of the ω peak for
respectively G′(ω) and G′′(ω). In the molecular stress harmonics are more
visible with about 17% and 5% for the storage and loss moduli, respectively.
We have not been able to distinguish harmonics for strain amplitudes γ0

below 2.5. The observation of harmonics can thus be attributed to physical
extension of the chains in which the non linear terms in the interaction po-
tentials become inevitably important. Given this preliminary investigation
of the non linear regime, we choose first to explore the linear response and
place ourselves at shear rates γ0ω < 1/τR.

Figures 3.10 and 3.11 display the frequency dependence of the elastic
moduli. As discussed above, the important uncertainty in G(t) obtained
from equilibrium calculations imposes the use of non equilibrium methods.

0 1 2 3 4 5 6
ωτ
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0,05

0,1
G´ full stress (N=10)
G´ intra-molecular stress
G´ inter-molecular stress

Figure 3.10: G′(ω) for N = 10, measured by NEMD. Contributions from
the intra-molecular and inter-molecular forces are shown. Intra molecular
forces are important for stress storage up to high frequencies. As ω > 1/τp,
the modes Xi, i < p are “frozen” and behave like stiff springs and store
stress efficiently, so that the intra-molecular component of G′(ω) grows with
frequency.

The contributions of the different interactions to the elastic moduli (cal-
culated by eqn. (3.37) and (3.38)) can be examined by measuring the dif-
ferent contributions to the global stress. The loss modulus, which is a mea-
sure of stress dissipation in the melt has several contributions depending
on the time scale (fig. 3.11): at short times stress is relaxed through the
pair interactions between monomers, in a "liquid like" manner. At longer
times, relaxation of chain fragments of length Np = 1, 2...N , take place on
increasingly larger time scales. Knowing that a mode p can be viewed as
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Figure 3.11: G′′(ω) for N = 10, measured by NEMD. Contributions to
the moduli from the intra-molecular and inter-molecular stress components
are also shown. For ω > 1/τR the inter-molecular contribution to the loss
modulus grows larger than the molecular component and the system crosses
over to a liquid-like regime.

the relaxation of a sub chain of Np = N/p monomers, for a given mode p
relaxing over τp, if the frequency is such that ω > 1/τp, the mode cannot
relax over one oscillation and does not take part in the stress relaxation,
meaning that stress is relaxed on scales smaller than N/p monomers. This
leads to the Rouse model prediction that, if chain relaxation was the only
process in the melt, the loss modulus had to decrease at high frequencies.
This decrease was not observed in our model melt (fig. 3.11), due to non-
polymer relaxation. As non-polymer relaxation we refer to the relaxation
of stress occurring on a time scale smaller than the relaxation of the fastest
Rouse mode and independent of chain length. Results show that at high
frequencies the behavior of the loss modulus is dictated by inter molecular
interactions, the inter molecular stress component is dominant. There is a
crossover from polymer melt behavior where stress dissipation is carried out
mainly by chain relaxation to a behavior of a liquid of interacting chains that
do not have time to significantly change their conformation over one period.
In this regime there is no stress dissipation due to internal polymer chain
relaxation and the increase of the loss modulus with frequency is entirely due
to Lennard Jones pair interactions on very short time scales. The situation
is somewhat different for the storage modulus, where simulations show that
internal polymer chain interactions and chain modes are important for the
elastic response of the melt up to high frequencies (fig. 3.10). For a simple
liquid the value of G′(ω) is very small in the considered frequency range,
so it is not surprising that its value for the melt is due to the chains. The
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stress storage thus takes place to a large extent in the slowly varying chain
conformations. Over a large frequency range the slow vibration modes act
as an energy reservoir and the higher the frequency, the more the chains re-
main rigid at the time scale of a single period and thus cause the increase in
the storage modulus with frequency. The melt exhibits an elastic behavior
due to the chains that grows stronger with frequency, in fact the mechanism
exposed for the loss modulus can be applied the other way around for G′(ω).
A given mode p goes rigid as ω > 1/τp and thus stores stress (rigid behavior)
instead of relaxing it (liquid behavior). As ω > 1/τp, the modes Xi, i < p
are “frozen” and take an important part in energy storage. For very high
frequencies ω > 1/τN−1 the chain behaves more like a spring than a flexible
polymer.
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Figure 3.12: Storage modulus from NEMD and equilibrium Rouse modes
calculation for chains of length N = 10 and N = 20. For high frequencies
the response of both systems: N = 10 and N = 20, becomes identical.

Calculation from Rouse modes and comparison to NEMD data

An analytical calculation of G′(ω) and G′′(ω) can be done using the Rouse
model [31, 38]. For the bead-spring polymer melt studied here these func-
tions can be estimated using GRouse(t) (eqn. 3.24) via the integrals in equa-
tions (3.32) and (3.33). Given that, as discussed above, the stress storage
is dictated by slow, “frozen” chain vibration modes for the whole frequency
range, the melt elastic response is well reproduced by this calculation (see
fig. 3.12). As shown in fig. 3.13, the Rouse approach leads to an underes-
timate of the loss modulus, especially at high frequencies (ω > 1/τR). The
increase in G′′(ω) for high frequencies is due to short time non-polymeric
stress relaxation discussed in the previous section. As discussed in the first
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Figure 3.13: Elastic loss modulus from NEMD full stress (left, N = 20 -
squares, N = 10 - circles), NEMD intra molecular stress (right, N = 20 -
squares, N = 10 - circles), corrected equilibrium Rouse modes calculation
(en. 3.42) (left, N = 20 - stars, N = 10 - small circles) and Rouse calculation
without short times corrections (right, N = 20 - stars, N = 10 - small
circles). The uncorrected Rouse calculation fits well the intra molecular
moduli component. Stress relaxation for high frequencies is identical for the
two systems, dictated by short sub chain and inter molecular forces relaxation
on short time scales as discussed.

part concerning viscosity, this contribution cannot be predicted by GRouse(t)
that takes into account only chain vibration modes. As no inter molecular
forces whatsoever can be taken into account by the single chain Rouse model,
GRouse(t) provides a good approximation of the loss modulus calculated from
the intra molecular stress component and shows a discrepancy with the full
stress loss modulus that grows with frequency. In order to obtain an equi-
librium single chain estimate of the mechanical behavior of the melt for all
frequencies, we estimate the short time corrections to GRouse(t) in a man-
ner similar to the one used for viscosity. We use the fit of the short times
stress correlation function (fig. 3.8) to calculate the short times correction to
the elastic moduli in the frequency domain by equations (3.32) and (3.33).
Writing the short time stress correlation in the form

Gfast(t) = Ae−t/τ1 cos Ωt + Be−t/τ2 (3.39)
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leads to

G′(ω) = ω

∫ ∞

0
GRouse(t) sinωtdt (3.40)

+
A

2

(

ω(ω + Ω)τ2
1

1 + (ω + Ω)2τ2
1

+
ω(ω − Ω)τ2

1

1 + (ω − Ω)2τ2
1

)

+ B
ω2τ2

2

1 + ω2τ2
2

G′′(ω) = ω

∫ ∞

0
GRouse(t) cos ωtdt (3.41)

+
ωτ1A

2

(

1

1 + (ω + Ω)2τ2
1

+
1

1 + (ω − Ω)2τ2
1

)

+ B
ωτ2

1 + ω2τ2
2

where we determine the parameters A, B, Ω, τ1 and τ2 from the stress cor-
relation function (A = 45, Ω = 43, τ1 = τ2 = 0.1 and B = 21 for both
N = 10 and N = 20). Adding these terms to the equilibrium Rouse modes
loss modulus gives a much better estimate of G′′(ω), producing the curves
referred to as corrected Rouse (fig. 3.13, corrected Rouse). The correction
concerning G′(ω) is negligible for the frequency range studied here and the
corrected curve falls on top of the original Rouse curve. This is the expected
result knowing that, as already mentioned, the liquid like interactions that
dominate at short times participate in stress storage only at very high fre-
quencies. We find the expected linear dependence of G′′(ω) for ω < 1/τR

(fig. 3.15), the slope being within error bars the value of the viscosity es-
timated by planar Couette flow simulations. The storage modulus has, as
expected, ∼ ω2 behavior at low frequencies (ω < 1/τR) (fig. 3.14). The
Rouse theory predicts a cross over towards a ∝ √

ω behavior for higher fre-
quencies [31]. Our simulations show that G′(ω), estimated by NEMD and

Rouse modes measurements, grows slightly faster than
√

ω at high frequen-
cies (fig. 3.14). We can relate this to the discrepancy between theoretical
and measured modes relaxation times and argue that the “mean field” pres-
ence of multiple chains in our vibration modes determination promotes more
efficient stress storage in the melt at high frequencies. Simulations show that
G′′(ω) does not follow the

√
ω behavior at high frequencies either. The loss

modulus calculated from the intra molecular stress component, as well as
the direct Rouse determination follow closely the square root behavior, but
the contribution of “non polymer” short time scale inter chain forces change
this behavior to almost completely mask the “polymeric” cross over.

Following the discussion of the linear properties of the melt we can further
explore the non linear behavior studied by NEMD, considering the results
presented in fig. 3.9. Both the relative decrease in moduli and the har-
monics intensity show that the storage modulus has a stronger non linear
behavior compared to the loss modulus at a given shear rate. As we have
shown that G′(ω) has, at all considered frequencies, a large intra molecular
contribution, and given that the bond potential is much steeper than the
pair potential acting between all monomers, it is reasonable to expect that



3.4. Elastic Moduli 51

0,1 1 10
ω τ

R

0,01

0,1

1
G

´ 
/ρ

ch
kT

G´ Rouse N=10
G´ Rouse eq N=20
G´ full stress N=10
G´ full stress N=20

∝ (ωτ
R
)
½

∝ (ωτ
R
)²

Figure 3.14: Storage modulus divided by the chain density times kBT as a
function of the reduced frequency ωτR for the two systems. A cross over in
the behavior is visible for ω = 1/τR.

non linear effects due to large deformations would be more pronounced and
would appear earlier for the storage modulus. From fig. 3.9 one can see that
for ω > 1/τR, the higher the frequency, the higher the shear rate determin-
ing the onset of non-linear behavior. This critical value of the shear rate
was found to vary linearly with frequency (γ0ω)c ∝ ω. The system starts
behaving as viscoelastic, and the linear regime extends to higher shear rates.
In fact, as global chain relaxation does not take place on the time scale of
the oscillations, there are already “frozen” slow vibration modes in the linear
regime at low shear rates. Thus the relevant shear rate for the onset of non-
linearity is shifted from 1/τR = 1/τ1 to 1/τp, where p > 1 is the number of a
higher vibration mode that still relaxes on the oscillations time scale at the
given frequency.

Finally, we can summarize the overall mechanical behavior of the studied
polymer melt exhibiting several distinct regimes as shown in fig. 3.16. At
low frequencies 0 ≤ ω < 1/τR and low shear rate amplitudes γ0ω < 1/τR

the melt has Newtonian behavior. The viscosity is independent of shear rate
and the elastic response is rather small as most of the stress is relaxed by the
chain conformations. At low frequencies and high shear rates γ0ω > 1/τR

the system is non linear: shear thinning in viscosity, softening in moduli
and harmonics in the measured stress. When we shift to high frequencies
ω > 1/τR the melt exhibits more pronounced viscoelastic behavior with
increasing storage modulus due to “frozen” modes and less intra molecular
stress relaxation. The non linear boundary becomes frequency dependent
and is shifted to higher shear rates determined by the relaxation time scale
of chain segments of length < N . The melt is then expected to exhibit glassy
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Figure 3.15: Loss modulus divided by the chain density times kBT as a
function of the reduced frequency ωτR for the two systems (N = 20 - left,
N = 10 - right). NEMD full stress G′′ - squares, NEMD intra molecular stress
G′′ - triangles, corrected Rouse calculation - stars, Rouse calculation without
short times correction - small circles. A crossover in the intra molecular
component can be seen for ω = 1/τR. “Non polymer” relaxation mask the
slope change for the full stress G′′(ω).

behavior at very high frequencies when no sub chain relaxation whatsoever
can occur within an oscillation.

3.5 Discussion and Conclusions

We have discussed the visco-elastic response of a model unentangled poly-
mer melt to external shear strain. We use non equilibrium molecular dy-
namics methods to directly measure the elastic moduli and the viscosity of
the melt. Our aim was also to investigate an equilibrium based method
for these quantities, inspired by Green-Kubo relations and possibly offering
greater precision. A both statistical and practical study of the uncertainties
inherent to the Green Kubo method for measuring viscosity revealed that a
precise determination needs a large computational effort. The method we
proposed is inspired by the Rouse model, and based on a measurement of the
vibration modes of the chains at equilibrium. This single chain quantity can
be rather accurately measured from an equilibrium simulation. Following
the philosophy of the Rouse model, we use the Rouse modes of the chains
to estimate the long times mechanical behavior of the melt and the equilib-
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intra-

Figure 3.16: Mechanical behavior of the melt for different frequencies and
shear rates

rium stress correlation function to estimate small times, independent of chain
length non-polymeric behavior. The resulting model provides a satisfactory
description of the viscosity and of the elastic moduli of the melt. The part
of the different contributions in the mechanical stress played in the visco-
elastic melt behavior was also discussed. The NEMD results show that inter
chain interactions in the melt add a non negligible background part to the
storage modulus and dictate the loss modulus behavior at high frequencies.
These interactions should be taken into account for a precise description of
the mechanical properties of a polymer melt made of relatively short chains.
More generally, these contributions are important for longer chains in sev-
eral far from equilibrium situations including relaxation. We measured the
chain Rouse modes mean square equilibrium values and mode correlations
directly from our simulation, so that these quantities already contain, in
a “mean field” way, some information about the background environment
of the polymer chains. After completing this measurements quantitatively
with short times estimate of the stress behavior, the obtained values for the
mechanical properties of the melt are accurate, compared to non equilibrium
“direct” measurements. The NEMD results show that the storage modulus
depends on mode relaxation over a large frequency range, the energy storage
takes place in chain conformations whereas for the loss modulus vibration
modes are “frozen” one by one as the frequency grows higher than the in-
verse chain relaxation time and dissipation is dictated by short time scales
“non polymer” stress relaxation. A given vibration mode p relaxing over τp,
interpreted as the relaxation of a sub-chain of length N/p monomers, can
contribute mostly to the loss modulus (ω < 1/τp) or to the storage modulus,
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if ω > 1/τp. This picture provides an explanation for the overall behav-
ior of the elastic moduli in the studied frequency range. Our results are
in quantitative agreement with previous studies, [42] but here we focused
on lower frequencies for the elastic moduli, based on the chain relaxation
time that we estimated, in order to interpret the microscopic mechanisms
involved. Different stress contributions on different time scales were mea-
sured from the simulations, thus allowing the determination of mechanical
response from equilibrium properties involving Rouse modes measurements
and short times corrections.

We examined the onset of non linear effects in the measured quantities,
manifested by shear thinning, moduli softening and harmonics in the stress
time series. The non linear regime is dictated by the shear rate of the solic-
itation and takes place at γ0ω > 1/τR for ω < 1/τR. At higher frequencies,
onset of nonlinear effects is related to the strain amplitude rather than rate,
as full chain relaxation does not take place on the time scale of the oscilla-
tions. Our study allows a comprehensive description of the melt mechanical
behavior in the form of a schematic frequency - shear rate diagram shown in
fig. 3.16.

We finally mention that the general method presented here is not, in
principle, limited to unentangled melts. Indeed, in the general reptation pic-
ture, the formula used for the stress tensor is the same as that used in the
Rouse model, formula 3.24. The relaxation of the modes will be dramati-
cally slowed down by entanglement effects, so that the viscosity will increase
rapidly. Prefactors, however, are associated with equilibrium correlation
functions and are not affected by entanglement effects.
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4.1 Introduction

Historically, polymer materials were characterized solely by their bulk prop-
erties including stiffness, elongation, gas permeability, impact and modulus.
Because the bulk polymers were essentially homogeneous, characterization
of substructure was not important. Advances in polymer science require
advanced methods for polymer micro and nano structure characterization.
Polymer nanocomposite materials are now created having clusters, layers,
rods, and networks of nanometer sized materials blended with a bulk poly-
mer. A unique aspect of the nanocomposites is the high interfacial volume of
the materials, just the opposite of traditional bulk polymers. The chemical
and physical properties of the interfaces are what give rise to unique and of-
ten desirable properties. The dependence of those properties on the matrix
molecular detail and the type of filler is under intense investigation and is
far from being understood on a fundamental physical level. The nature of
nanocomposites indicates that the key to the understanding of their unique
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properties lies in the local microscopic influence of the additive on the ma-
trix. While those effects are for now experimentally inaccessible, computer
simulation is well suited to examine features of filler-polymer interaction.

The statics and dynamics of polymer solutions near solid surfaces (ad-
sorption in solution) have been widely studied, but it is not the case concern-
ing polymer melts. Relatively basic questions of the chains statics (such as
the number of loops and adsorbed sites of a given chain) have been studied
on lattice but not with more realistic continuum-space models. The dynam-
ics (the exchange time of an adsorbed chain with a chain in the bulk melt
and its dependence on the molecular weight) has never been studied. Such
a study is necessary to fix the relevant time scales involved in the polymer
dynamics under mechanical perturbation.

The inhomogeneous systems under study in the present and the follow-
ing chapter are briefly described in the next section. We will then study
the influence of a flat or grafted surface as well as a single spherical filler
particle on the static properties of interfacial chains. We will also examine
the micro scale dynamics of monomer adsorption/desorption from the flat
surface, comparing the measurements to theoretical calculations for simple
models.

4.2 Systems description and preparation

The polymer model used in this and the following chapters was described
previously (see section 3.2). We will discuss simulations of polymer melts
near a flat Lennard-Jones potential surface and study the chain conforma-
tions in the immediate vicinity of the surface and the microscopic adsorption
desorption dynamics.

Unentangled melt near a flat wall

The typical size of the studied systems was of 6400 particles (for chain lengths
of 10 and 50) in semi-periodic cubic simulation box of dimension about 20σ.

The introduction of a flat wall or a particle in the system is a process
that needs rearrangement and careful equilibration of the system. A wall at
z = zw is in this case represented by a Lenard-Jones potential Uw applied to
the monomers in the z direction with Uw → ∞ for z → zw. An attractive
wall has the same cutoff distance as the bulk interaction and a given intensity
εw (in the simulation presented here εw = 2εbulk) whereas a “repulsive” wall
has the same intensity but a cutoff of 6

√
2σ so that only excluded volume

effects are taken into account. The initial state is a pure polymer melt in
a three dimensional periodic box. At first the boundary condition following
the wall direction (z) is set to free, non periodic and coordinates are rescaled
accordingly. Then the wall potential is introduced zw being large enough
(i.e. larger than the system size following z plus a bulk cutoff distance). In
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practice two symmetric walls are set at zw and −zw and periodic boundaries
are kept following the x and y directions. Then the walls are moved slowly
confining the system roughly to the desired density (the examined density
is about 0.925). The obtained state is then equilibrated in a constant NPT
ensemble in order to relax to the equilibrium value of the volume. After
another equilibration in a constant NVT ensemble, simulations can be ran
measuring the system equilibrium properties in the NVT ensemble. A similar
scenario is applied for the insertion of a particle - first an insertion phase
with a growing sphere in the box center and then NPT-NVT equilibration.
The monomer-filler interaction is modeled by a Lennard Jones potential with
a shifted distance:

Ufill(r) = 4ε

(

(

σ

r − ∆

)12

−
(

σ

r − ∆

)6
)

, r ≤ rc + ∆ (4.1)

with ∆ = 3σ. The representation chosen for the surfaces as an interac-
tion potential implies that they are perfectly smooth and there is no energy
barrier for sliding along the surface while keeping the distance constant.

Polymer melt near bare or grafted wall

In order to investigate the chain relaxation in the interfacial layer and the
influence of the presence of grafted chains additional systems were prepared.
We studied chain lengths of 10, 20, 50, 100 and 200 beads with a total
number of beads ranging from 6400 to 110000. This allows us to investigate
the crossover into the weakly entangled regime, with an entanglement mass
Ne estimated for this model in the vicinity of 65[7]. The melt was confined
between walls in the z direction with Lz > 5Rg in all cases. The interaction
between the wall and the beads consists of an integrated 9-3 Lennard-Jones
short range potential. Its parameters were chosen to crudely reproduce the
PE - silica interaction. The bead diameter was mapped through the polymer
C∞ ratio [56] to give σ ∼ 8. In order to determine both the number of
chemical units per bead and the bead diameter we resolve the equations:

(N − 1)b2
0C∞ = (NPE − 1)b2

PECPE
∞ (4.2)

(N − 1)b0 = (NPE − 1)bPE cos (θ/2) (4.3)

where b0 = 0.96σ and bPE are respectively the bond distance in the bead
spring chain and in the PE molecule, N and NPE are the number of beads
and ethylene monomers and C∞ and CPE

∞ are the stiffness ratios measured in
the simulation and experimentally for a PE chain. The described procedure
imposes that the statistical coil size and the contour length of the chains in
the simulation map the corresponding values in a polyethylene melt. Deter-
mining the numerical ratios b0/bPE and N/NPE thus crudely sets the length
scale and the number of monomers per bead for the simulation.
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We apply a mixing rule using values for the PE and silica interaction
intensity found in the literature [57] to obtain for the wall potential length
scale σwall = 0.6875σ and intensity εwall = 0.82ε. The potential is cut off
at 21/6σwall = 0.77σ and shifted. It has a repulsive part (|z − zw| ≤ 0.59σ)
and a short range attraction (0.59σ < |z − zw| ≤ 0.77σ). The potential well
depth seen by the particles is thus 0.3ε, much smaller than kBT = 1ε, so
that the attraction is very weak. The wall is represented either by the flat
wall potential only or by a 111 surface of an FCC lattice made of spherical
particles (of size σwall), supplemented by the same flat repulsive potential in
the second layer to prevent beads from escaping. We have established that
the microscopic roughness of the surface does not affect the chain relaxation
times. No significant difference was detected when using a flat potential,
FCC atomic plane or a square lattice atomic plane with different lattice
spacing. Dynamics slowing down due to surface roughness was observed in
binary LJ mixtures [58] but this mechanism is irrelevant for our system. As
the wall is made of particles smaller than the beads, surface “caging” does
not occur, moreover a bead trapped on the surface is immediately pulled
out by its bond neighbors. In view of the results above, we believe that
with the silica-like wall structure a surface roughness on a scale smaller than
the polymer radius of gyration would have a negligible effect on dynamics.
For each chain length two systems were prepared: one with a flat wall and
one with chemisorbing sites on the wall, where grafted chains are anchored.
Silica surface treatment consists in introducing very short chain molecules on
the surface that covalently bond with some sites on the surface on one side
and with monomers on the other side. The number of bonding sites in the
simulation was calculated assuming that 4% of the silica molecules covering
the surface of the wall are active and react with the bonding molecule, this
number being chosen to reflect experimental situations [57]. The surface
density of active sites is therefore 0.2σ−2. The resulting bond between a
wall particle and a coarse grained bead is chosen to be a soft entropic spring
of finite length on the order of several chemical units modelled by a non-
harmonic spring:

Ubond =
εbond(r − r0)

2

[λ2 − (r − r0)2]
(4.4)

The spring constant was set to εbond = 3
2kBT = 1.5ε, the equilibrium dis-

tance and the finite extension length are set to r0 = λ = 0.8σ. These
parameters define a soft spring freely fluctuating with ambient temperature,
that cannot extend further than 1.6σ away from the surface. This bond
model is inspired by experiment as the grafting molecules are short chains
(around 10 carbons). The resulting entropic spring length easily varies with
temperature but it has a finite extension.

At first a pure polymer melt was confined at a given pressure (0 ≤ P ≤
0.8 depending on the system) between two flat walls. Pressure is monitored
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by calculating the normal force on the walls. Then, in order to obtain the
system with grafted chains from this initial configuration, a new bond is cre-
ated between each active wall site and the closest monomer of the melt. Only
one bond per active wall site is allowed while a monomer can be bonded to
several wall atoms as it is a coarse-grained bead representing several chem-
ical units (1 bead ∼ 6CH2). There is no preferential bonding for end or
middle monomers, matching the physical situation of polymers bonding to
silica beads. The new system is now equilibrated at the same pressure as the
original system, its pressure being calculated via the force on the wall and

the grafted chains. All systems were equilibrated for 5 × 103τ (N = 10) to
5×104τ (N = 100) and 4×105τ (N = 200) before production runs of about
105τ . The equilibration time is in all cases larger than twice the longest
polymer relaxation time. For chain lengths smaller than 200 we study both
dynamics and entanglements, for the N = 200 systems we perform primitive
path analysis only (results in the next chapter), due to the high computa-
tional cost for simulating such large systems and the long runs needed to
measure relaxation times accurately.

The grafting procedure creates a population of grafted chains near the
wall having from 1.4 for N = 10 up to 7 for N = 200 grafted beads per chain
(fig. 4.1). The grafted chains extend in all systems a distance of maximum
2.5RG in the melt (fig. 4.2). There are no bridges between the walls.
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Figure 4.1: Distribution of the number of bonded monomers per grafted
chain in the systems with treated surface

Polymer melt with spherical filler particles

The last family of systems discussed in the next chapter consists of an entan-
gled melt with spherical fillers. The polymer model used differs slightly from
the previous one. Monomers are interacting through the previously described
Lennard Jones potential (equation 6.1). Chain connectivity is achieved with



60

Chapter 4. Static properties and adsorption desorption at

interfaces

0.5 1 1.5 2 2.5
(zw-z)/RG

0

0.2

0.4

0.6

0.8

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

bare wall
all, grafted system
free chains
grafted chains

Figure 4.2: Monomer density profile of the system with and without grafted
chains for N=100. The densities of the monomers of the grafted and the free
chains are also shown. The density profiles in the other systems have similar
behavior.

a harmonic bond potential:

Uh(r) =
k

2
(r − r0)

2 (4.5)

where k = 1000ε and r0 = 1σ. The resulting equilibrium bond length
(≈ 0.998) is slightly larger than the FENE bond (≈ 0.965). The high bond
stiffness requires a smaller time step for this system dt = 0.002τ , this draw-
back being partially compensated by the fact that the calculation time for
the simpler bond potential is slightly shorter. The length of the polymer
chains was 500 beads. The filler-monomer interaction is modelled by the
distance shifted Lennard Jones potential (equation 4.1) with ∆ = 2σ. This
results in an effective filler diameter of ≈ 6σ which is about half the typical
size of the chains (RG = 12.1σ). We compare the behavior of three different
systems: a pure polymer melt (81 chains, 40500 atoms), and a polymer melt
with 10% (81 chains and 42 fillers) and 20% (81 chains and 84 fillers) filler
volume fraction. The systems were equilibrated in an NPT simulation to
kBT = 0.8ε and P = 1. The equilibration was achieved in the group of J.
J. de Pablo (University of Wisconsin) with a Monte Calro double bridging
chain connectivity altering algorithm, which is by far the most efficient way
to generate independent equilibrium configurations of highly entangled melts
[59, 60]. In the systems obtained the polymer chains are fully relaxed around
the filler particles.
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4.3 Static properties of chains at the interface

Density profile and chain dimensions

The first measurements concerned the density profile of the monomers in the
vicinity of the wall or the filler particle. The evolution of the fully equili-
brated system was monitored during a time period of several times the bulk
chain relaxation time (calculated from the Rouse model) and the data was
used to build average densities. Given the high density of the melt the for-
mation of layers of monomers close to the surface is expected and can be in
fact observed in both the case of a wall and a spherical particle (fig. 4.3, 4.4).
The first layer is centered at the equilibrium distance for the interaction po-
tential ( 6

√
2σw). The layer density is lower for a repulsive surface as expected
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N=10, excluded volume
N=50, attractive
N=50, excluded volume

Flat wall

Figure 4.3: Density profile for a flat wall. Measurements have been made
for two chain lengths - 10 and 50 monomers both for the attractive and the
repulsive case

and the density peaks are a little bit wider and slightly shifted for the second
and further layers from the surface. The profile relaxes to the mean bulk
density in a distance of about 4σ from the first peak. There is no significant
dependence on the chain length of the polymers for the equilibrium density
profiles. The relative intensity of the peaks depends on the pressure (and
therefore density), we have observed slightly less pronounced peaks at lower
density, the position of the maxima and minima is unaffected and determined
by the length scale of the Lennard Jones potential between the wall and the
monomers. These measurements are used to set layer boundaries and give
the definition of an adsorbed monomer: we consider that a monomer is ad-
sorbed if it is closer to the surface than the first minimum of the density
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profile in the attractive case.
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Figure 4.4: Density profile for a filler particle for chain lengths of 10 and 50
in the case of repulsion and attraction

Another important aspect is the relative change of the chain dimensions
near the interface. We report these results in the case of a flat wall as well
as for a surface bearing grafted chains. The z component of the mean end to
end vector and the radius of gyration of the chains decreases in the vicinity of
the wall and there is a very slight increase in the size of the chains parallel to
the wall (see fig. 4.5). The effects are observed to extent within about one to
two RG (bulk value) from the wall, as was established in earlier simulations.
[61, 62]

In systems with grafted chains the decrease is slightly more pronounced
and extends farther into the melt, up to 2RG from the wall surface. This
slightly larger length scale is close to the typical spatial extension of the
grafted chains, that are on average more extended than the bulk chains (see
fig. 4.6).

Characteristics of the adsorbed chains

After obtaining the density profiles we established some more surface-specific
static properties concerning the adsorption behavior of the system. Gener-
ally, an adsorbed chain consists of three types of segment sequences. These
are adsorbed segments (trains), free segments connecting successive trains
(loops) and terminal segments starting with a free chain end and terminat-
ing just before the first or last train (tails) (see fig. 4.7). A thorough study
of the adsorbed chains conformations involves the measurement of the size
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Figure 4.5: Variation of the perpendicular component of the radius of gyra-
tion squared, as a function of the distance to the wall divided by the bulk RG.
The results are normalized by the bulk value 〈R2

G〉. The parallel component
is shown for N = 100, the other systems having similar behavior.

distribution of these quantities as well as the number of trains, loops, tails
and adsorbed monomers per adsorbed chain.

An important quantity is the distribution of the number of adsorbed
(attached) monomers per chain in the cases of different chain lengths, filler
radii, and surface-melt interaction. This distribution is obtained by counting
the mean number of chains with a given number of monomers in the first
layer - results can be seen in fig. 4.8.

The influence of the surface-chain interaction as well as the surface cur-
vature is visible in these results. The attractive surfaces give a broader
distribution due to the presence of more strongly attached chains. Strong
attachments are also more frequent for a flat surface, in accordance with
the fact that a large radius filler is geometrically more favorable for adsorp-
tion. The formation of layers shown by the density profile also promotes
adsorption independent of the surface-monomer interaction.

Analytical calculation for the adsorption probability for a random

walk

Since the conformations of a polymer chain in a melt are random walk con-
formations it is interesting to compare the obtained results with the case of a
random walk. Here we present a calculation of the probability as a function
of the number of attachments in the case of a one dimensional random walk
and a flat surface (fig. 4.9). The calculation is based on two formulae con-
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Figure 4.6: Variation of the radius of gyration squared, as a function of the
distance to the wall divided by the bulk RG for the grafted chains in the
N = 100 system. The variation of the dimensions of the free chains are
shown for comparison. The results are normalized by the bulk value 〈R2

G〉.

cerning random walks, a brief idea of the proof is given here, for a detailed
proof see ref. [63].

Let us consider a one dimensional random walk staring from the origin
zi = 0 - the probability that up to and including the n− th step the random
walk returns to z = 0 exactly p times is given by:

z(p)
n =

(

n − p
n
2

)

1

2n−p
(4.6)

Where n is even. In fact the number of paths of length k (necessarily even)
joining two z = 0 points is equal to the number of ways to choose k/2
elements among k -

(

k
k/2

)

. As all these paths have half of their steps going
up and half going down a microscopic conformation is equivalent to choosing
which k/2 steps should go up among the k possible steps. This statement
can be generalized to give equation 4.6 [63]. Let us again consider a one
dimensional random walk starting from the origin zi = 0 - the probability
for a first passage through 0 < a < n on the n − th step is:

f (a)
n =

a

n

(

n
n+a

2

)

1

2n
(4.7)

Here a + n is even. Hence a path of length n joining the origin and a site
a > 0 has to go (n+a)/2 times up and (n−a)/2 times down, so the number
of those paths is given by

(

n
n+a

2

)

=
(

n
n−a

2

)

. The factor a/n accounts for the

first passage and is much more difficult to derive [63].
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Figure 4.7: Different types of segments for an adsorbed chain. The chain
presented here has six attached monomers and the following segments: one
tail of length 3, three trains of length 2,3 and 1, and two loops of length 7
and 1. Note that the number of loops is always related to the number of
trains as loops = trains − 1.

Now using equation (4.7) it is straightforward to find the number of paths
of length n touching a plane at a distance 0 < a < n from their origin for
the first time after r steps: a

r

(

r
r+a
2

)

2n−r.

We now calculate the number of adsorbed paths: all possible one di-
mensional random paths, starting from a given initial position zi, having a
length of n steps and touching at least once a plane at zw (our wall). Let
a = zw − zi, then the total number of adsorbed paths, using (4.7) is given
by:

Z = 2n +

n
∑

a=1

[ n
∑

r=a,a+2,...

a

r

(

r
r+a
2

)

2n−r

]

(4.8)

The term 2n accounts for the fact that all possible paths starting at the very
plane are adsorbed. In the second sum the allowed values are r = a+2k, k =
0, 1, 2, ... as follows from the condition a + n even in equation 4.7. In fact
once the surface is reached the next contact can occur in minimum 2 steps
and, in all cases, in an even number of steps (see also fig. 4.9). Now we can
derive the probability that a random walk of length n, starting a positions
away from the plane at zw has exactly t contacts with the plane. Using
equations (4.8) and (4.6) we have:

p
(a)
t =

n−2(t−1)
∑

r=a,a+2,...

( 1

Z

a

r

(

r
r+a
2

)

2n−rz
(t−1)
n−r

)

(4.9)

The latter expression is the product of the probability to reach zw in r steps
for the first time and then have t − 1 more contacts within the n − r steps
left. Note that any path of length n having t contacts cannot start further
than n− 2(t− 1) step lengths from the wall. Normalizing by Z ensures that
any adsorbed path has a probability of 1 to have at least one contact. Now
the total probability for an adsorbed path to have exactly t contacts with
the plane can easily be written using (4.9):

p(t) =

n−2(t−1)
∑

a=0

p
(a)
t (4.10)
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Figure 4.8: Distribution of attached monomers per chain

Comparison with MD results

An attempt to compare numerical Monte-Carlo results concerning train dis-
tributions with random walk calculation was made by Bitsanis and Brinke
[64]. Their study involved random walks only starting on the plane and
a continuous approach that did not seem to reproduce our measurements.
Measured chain conformations were compared with the result given by equa-
tion (4.10). The use of a one dimensional model reproduces the chain be-
havior in a single direction, z, perpendicular to the wall. As the train length
for a one dimensional random walk is strictly zero steps, a single attachment
point of the one dimensional walk corresponds to a train for the three dimen-
sional chain (as steps in the x and y direction are not taken into account).
Thus the probability given by (4.10) is relevant for the train distribution of
the chains adsorbed from the melt. We should note also that, for the deriva-
tion of (4.10), the wall has been replaced by a penetrable plane. The use
of this procedure for counting adsorbed chains makes good physical sense as
the ensemble of “penetrating” paths maps onto the ensemble of “reflected”
paths. This issue has been widely discussed by Silberberg [65, 64]. Still, the
one dimensional walk length n has to be chosen in accordance with the 3D
studied chains containing N monomers. As successive steps in the random
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Figure 4.9: Representation of the 1D random walks used to calculate the
adsorption probability

walk are uncorrelated the step length in a random path corresponds to the
effective bond length b of the 3D chain. So the 1D number of uncorrelated
steps has to verify nb2 = 〈z2〉 = 1

3〈R2〉 = 1
3(N − 1)b2, where 〈R2〉 is the

end-to-end mean square distance of a bulk chain and is related to b by equa-
tion 2.1 [43]. A comparison of the analytical result with simulation can be
seen in fig. (4.10). The adsorbed chains conformations, as far as the train
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Figure 4.10: Comparison of the derived probability with simulation results
in the case of a chain with 50 monomers.N = 50, which gives n = 16.3

distribution is concerned, follow closely a random walk behavior as predicted
by theory.

Comparison with a 3D random walk

In the case of a filler particle the explicit calculation of probabilities is much
more difficult. That is why, in order to compare actual MD results with
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random walk results, computer simulations of three dimensional random
walks were ran. The random walks were simulated in continuum space and
their behavior studied in the presence of both a filler or a flat wall (no
interaction whatsoever was implemented between the surface and the random
walk and the surface is impenetrable). The step length for the random walk
was chosen equal to the persistence length of the bulk chain as discussed
above. The number of steps is equal to the number of bonds in the polymer
(N − 1 for a polymer of N monomers). Thus we have the same end-to-end
mean square radius for the polymer and the random walk as: (N − 1)b2 =
〈R2〉, and b2 = 1.32 [43]. These simulations permit also to obtain data
for the adsorbed monomers distribution, loop size, train size and tail size
distributions for a random walk. The result obtained earlier concerning the
number of adsorbed trains is confirmed (see fig. 4.11) whereas the number
of adsorbed monomers per chain in the polymer system is the quantity to
differ the most from random walks values (see fig. 4.12). A thorough study
of all the segment statistics is briefly presented in table (4.1).
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Figure 4.11: Train distributions fitted with values for a 3D random walk

The actual value of the number of adsorbed monomers (Na) is larger
for the simulations. This is consistent with our finding that the number of
trains per chain is predicted by the random walk model but the length of
these trains is greater than predicted.

We associate this discrepancy with the known tendency of polymer chains
to lie “flat” on the substrate (fig. 4.5). Since the FENE bond length is shorter
than the equilibrium distance of the Lennard-Jones potential, longer trains
allow for closer packing of monomers in the attached layer and are therefore
favored.

The differences are thus related to the density profile, which is signif-
icantly altered by the presence of a wall or a filler both in the attractive
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10w 10wx 10f 10fx rw10w rw10f

Adsorbed monomers 3.85 3.27 3.21 2.64 2.25 1.93
Trains per chain 1.54 1.59 1.40 1.42 1.49 1.36
Tails per chain 1.20 1.28 1.36 1.42 1.58 1.63
Monomers per loop 1.99 2.08 2.03 2.06 1.83 1.81
Monomers per tail 4.04 4.13 4.11 4.30 3.42 3.43
Monomers per train 2.27 1.90 2.11 1.73 1.44 1.37

50w 50wx 50f 50fx rw50w rw50f

Adsorbed monomers 9.22 7.30 5.53 4.54 4.74 3.17
Trains per chain 3.04 3.11 2.11 2.16 3.00 2.13
Tails per chain 1.58 1.62 1.76 1.78 1.84 1.88
Monomers per loop 5.03 5.06 4.66 4.74 5.28 5.22
Monomers per tail 19.00 19.50 21.94 22.09 17.99 20.75
Monomers per train 2.97 2.30 2.58 2.07 1.57 1.48

Table 4.1: Measured mean values for adsorbed chains in the studied systems.
w - attractive wall; wx - wall with excluded volume interaction only; f - filler
particle r = 3 attraction; fx - filler r = 3 excluded volume; rw - 3D random
walk simulation in continuum space. The two chain lengths studied are 10
and 50

and the repulsive case. In the random walk simulation the distribution of
chain starts (or ends) is uniform whereas in the MD simulation it follows the
density profile so that the ends of the adsorbed chains are in average closer
to the surface, especially for short chains. For this reason MD chains show
less tails and more adsorbed monomers than random walks even in the case
of non attractive interaction between the surface and the chain. Statistics in
the non attractive case show about 0.25 less tails per chain for a length of
10, 0.16 less for a length of 50 and about 10% more adsorbed monomers for
chain length of 10 and 5% more for a length of 50. Adsorption is further pro-
moted by the presence of attraction (roughly 5% more adsorbed monomers
than the repulsive case) and is stronger in the case of a flat wall (about 6%
more adsorbed monomers in the case of a wall) (see table (4.1)).

4.4 Adsorption and desorption dynamics

In this section we will study in detail the microscopic dynamics of polymers
in the immediate vicinity of a flat surface. In order to quantitatively describe
those effects one has to gain insight into the relevant time scales involved in
the polymer motion in a melt in the vicinity of a surface. The mechanism
of desorption in the case of a melt is to a large extent unknown and there
are no clear predictions of the typical desorption time. The nature of MD
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Figure 4.12: Adsorbed monomers distributions in comparison with the case
of a random walk. MD distributions are broader than the random walk case
due to interaction and density profiles.

simulations permits to reproduce a realistic dynamical evolution of the sim-
ulated system and offers, at least in principle, the opportunity to “directly”
measure the adsorption and desorption of chains. In this section we will also
propose a way to calculate measured times.

Detachment dynamics by a diffusion model

The population of adsorbed chains in the melt is in constant evolution in
equilibrium. Through its evolution we will define the state of an adsorbed
chain as the instant value of the number of adsorbed monomers (monomers
in the first layer next to the surface) 0 ≤ Na(t) ≤ N . We will suppose
here that this is the unique parameter describing an attached chain, so that
all attached chains having the same number of attached monomers will be
considered as a whole regardless of further microscopic detail like trains,
loops or tails or specific chain conformation. There are limitations of this
approach as this behavior has to be related to the chain characteristics in
the interfacial layer extending up to a RG from the surface in order to give a
more complete picture. Here at first we concentrate on the dynamics of the
population of adsorbed monomers only. In order to put the measurements
in a concrete theoretical framework, first we present a model describing the
detachment dynamics of a population of attached chains, diffusing in a set
of adsorbed states. In this case we can build a model that is exactly solvable
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and gives simple clues about the times scaling behavior and detachment
mechanism of the adsorbed chains. This model is not intended to predict
exact numerical values, but to explain basic ideas about the detachment
mechanism.

Let us consider the properties of the distribution P (Na, tatt) - the dis-
tribution for the subset of attached chains which have been continuously
attached to the surface for a time of exactly tatt. The distribution will de-
pend on this attachment time. Evidently for tatt = 0, that is for chains
which have just arrived at the surface, all of the chains will be attached by
exactly one monomer and P will be a delta function at Na = 1. The form
of the distribution at long time is of interest. One may expect that an equi-
librium distribution is reached as tatt → ∞. A prediction of this limit can
be formulated.

An attached chain is continually varying Na until it detaches. A char-
acteristic transition time τi→i±1 is defined for each change in Na from i to
i ± 1. (see fig. (4.13), one can alternatively speak in terms of a transition
rate ki→i±1 which is the inverse of the respective transition time.)

tau(2,1)

P

Na2 31

tau(2,3)

tau(3,2)

tau(3,4)

tau(4,3)

tau(0,1)

tau(1,0)

tau(1,2)

Figure 4.13: Representation of adsorption/desorption transition times. Ad-
sorbed chains in equilibrium migrate between states of different Na in a a

priori transition specific characteristic time.

Now let us consider the evolution of the distribution P (Na, tatt) as a
function of the time period the chains have been attached tatt. At any time
tatt we are only interested in members of the original set which have never

left the surface. Thus we are considering the properties of a population whose
size decreases to zero over time. Newly attached chains are not considered,
the distribution P (Na, tatt), being independent of the initial time tatt = 0,
will evolve following the equilibrium detachment dynamics of the chains. It
is useful to distinguish here between absolute and normalized terms. For
instance we define X(tatt) as the number of chains remaining in the set at
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time tatt. The distribution P (Na) is of course normalized so that

N
∑

Na=1

P (Na, tatt) = 1 (4.11)

We define the related value F (Na, tatt) = P (Na, tatt)X(tatt) which is the
actual number of chains in the set with Na attached monomers. It follows
that

N
∑

Na=1

F (Na, tatt) = X(tatt) (4.12)

The transition times govern the transitions between states of different Na and
also describe the rate of change of the absolute numbers of chains. For the
evolution of the attached by i monomers chains we can write the following
master equation:

∂F (i, t)

∂t
=

F (i + 1, t)

τi+1→i
+

F (i − 1, t)

τi−1→i
− F (i, t)

τi→i+1
− F (i, t)

τi→i−1
(4.13)

To simplify the calculation let us suppose transition times independent of i:

τ
∂F (i, t)

∂t
= F (i + 1, t) + F (i − 1, t) − 2F (i, t) (4.14)

Supposing the transition time constant means that chains diffuse between
states with no preferable direction. So the equation above is a discrete diffu-
sion equation with the diffusion coefficient τ−1 - characterizing the diffusion
between states of different Na. So far the system has been treated in discrete
terms. For large N it is reasonable to move to a continuous approach. Then
the above equation becomes

∂F

∂t
=

1

τ

∂2

∂i2
F (4.15)

The boundary conditions are as follows. At Na = N there are no more
highly attached chains with which to exchange. In other words the flux at
Na = N is zero:

∂F (N, t)

∂i
= 0 (4.16)

As Na → 0 we have the following situation. There is a flux from chains
with one attached monomer to chains with no attached monomers which is
equal to τ−1F (1). However there is no flux in the opposite direction because
chains which become unattached are immediately removed from the set and
can no longer participate in its evolution. This is equivalent to requiring

F (0, t) = 0 (4.17)
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With the governing equation 4.15 and these boundary conditions the evolu-
tion of any set of attached chains, for instance the delta function at Na = 1
for chains which have just arrived at the surface, can be described. In par-
ticular one would like to know whether the normalized distribution P (i, t)
attains a steady form at long times. If this is the case then only the total
number of attached chains changes with time. Then

F (i, t) = X(t)P (i) (4.18)

and equation 4.15 becomes

X ′P = τ−1XP ′′ (4.19)

By separation of variables

X ′

X
= τ−1 P ′′

P
= constant (4.20)

The initial condition is X(0) = X0 and the long time limit is X(t → ∞) = 0
so that the constant on the right hand side is negative, say −K, and

X(t) = X0exp(−Kt) (4.21)

The boundary conditions for P are the same as those for F

P (0) = 0 (4.22)

∂P (N)

∂i
= 0 (4.23)

Then solving
P ′′ = −KτP (4.24)

yields
P (n) = Asin(

√
Kτn) (4.25)

and from the boundary condition at N , K = ( π
2N )2 1

τ . Finally from the

requirement that
∫ N
0 P (n)dn = 1 we have

P (n) =
π

2N
sin(

π

2
n/N) (4.26)

This is the distribution of Na in the limit of long attachment times. The
average number of attached monomers in this limit is

〈Na〉 =

∫ N

0
nP (n)dn =

2

π
N (4.27)

And the global detachment time is deduced from the evolution of the total
number of chains X(t) = X0 exp (−Kt) = X0 exp (−t/tdett) that gives

τdett =
2

π
N2τ (4.28)



74

Chapter 4. Static properties and adsorption desorption at

interfaces

0 2 4 6 8 10
N

a

0

0,05

0,1

0,15

0,2

0,25

P

Initial distribution
Steady state distribution

Figure 4.14: Evolution of an initial distribution predicted by the diffusion
model. With time any initial condition ends up taking the form of the
stationary state normalized distribution. Here the initial condition is the
equilibrium distribution for repulsive wall N = 10. The single transition
time is τ = 20 and the steady state is attained after about 10 − 20τ .

where τ is the time of desorption/adsorption of a single monomer. The
model indicates that any initial distribution will evolve towards a steady
state described by the distribution from equation 4.26 (see fig. 4.14). The
most populated states for the detaching chains are the strongly attached
states, as weakly attached chains detach rapidly. The model predicts that
the average number of attachments of chains attached for a long time scales
as N - a chain spending a long time on the surface will have a tendency to
inevitably lye flat on the surface.

The fact that transition time is constant (with respect to Na) implies
that the equilibrium distribution (if incoming flow of attaching chains is
included) is flat. This can be seen by applying the detailed balance condition:
P (i)/τ = P (i + 1)/τ . Thus at this point it is clear that this model cannot
quantitatively reproduce the differences between the different systems only
by the adjustment of a single parameter - the transition time.

The scaling predicted for detachment time is N2 - this is the typical time
for a chain attached with Na ∼ N to diffuse out of the attached population.
One can calculate by this model the fraction of initially adsorbed chains that
remain on the surface for a given time. This quantity - Gc(t) is defined as the
number of adsorbed chains that stayed on the surface for a time t divided by
the number of adsorbed chains at t = 0. The result according to the model
is shown in fig. 4.15, where as initial distribution we took an equilibrium
distribution of the simulated chains from fig. 4.8.

From this graph two distinct regimes are visible - a transition regime for
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Figure 4.15: Semi log plot of the fraction of adsorbed chains remaining on
the surface after a time of t according to the diffusion model with transition
time τ = 20. Two regimes are visible - transition period from the initial
distribution to the steady state and, after about 10 − 20τ , an exponential
decay in the steady state.

small times between the initial distribution 1 and the distribution given by
equation 4.26, and an exponential regime for longer times. The exponential
decay means that a steady state is attained and chains detach with a single
typical detachment time given here by equation 4.28.

Detachment times and attachment dynamics

We now turn to direct measurements of the dynamics in the simulations. At
first the average lifetime of a chain on the surface has been measured. It
is simply defined as the time chains spend in touch with the adsorbed layer
divided by the number of adsorptions. This time does not fully characterizes
the dynamics of adsorption/desorption: as chains greatly differ by their de-
gree of adsorption a unique typical time is not relevant for all of the adsorbed
chains. Here we try to determine the typical time for a complete renewal of
an adsorbed chains population. To do so we measure the fraction of initially
adsorbed chains that remain on the surface for a given time. Gc(t) (see fig.
4.16) is defined as the number of adsorbed chains that stayed on the surface
for a time t divided by the number of adsorbed chains at t = 0.

As expected this fraction decays to zero with a rate dependent on the
studied system. Two distinct regimes are visible from fig. 4.16. For short
times desorption rate is faster than an exponential decay and becomes ex-

1The initial condition for resolving the equations was taken to be our measured equi-
librium distribution of fig. 4.8
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Figure 4.16: Semi log plot of the fraction of adsorbed chains versus time.
The rapidly decreasing region is approximately indicated for chain length of
50.

ponential for long times with a well defined time constant. From fig. 4.16
we can define two characteristic times: long time detachment time τ l

d as
Gc(t) ∝ exp(−t/τ l

d) for t >> 1 and mean desorption time - td =
∫∞
0 Gc(t)dt.

Results are given in table 4.2.

System measured 10w 10wx 50w 50wx

Average Lifetime 61 24 135 61
td 270 88 2970 1208
tld 333 123 6097 2762

Table 4.2: Measured lifetime, average desorption time and long time detach-
ment time.w - attractive wall, wx - wall with excluded volume interaction

The average lifetime is relatively short due to chains that have few attach-
ments. These chains have undoubtedly their center of mass in the outmost re-
gion of the interfacial layer. Chains closer to the surface have a substantially
longer lifetime exceeding (especially for attractive interaction) their bulk
Rouse time (estimated to be τR(N = 10) ∼ 100 and τR(N = 50) ∼ 2600).

Evolution of attached chains and discussion

The existence of two regimes in fig. 4.16 is the signature of the existence of
a steady state that is reached in a certain time from an initial condition, as
discussed earlier for the theoretical model. If we consider the distribution
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of the attached monomers of the chains that have stayed on the surface for
a time of at least t, this distribution changes considerably with time. As
expected from the two regime behavior the normalized distribution reaches
a stable constant form with time, and this stationary state gives rise to the
exponential decay. The measured evolution of the distribution of attached
chains with time is shown in fig. 4.17. There is a significant shift in the
distribution’s mean value with time: for newly attached chains Na ≃ 1,
whereas for chains attached a long time Na ∼ N/2.
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Figure 4.17: The distribution of the number of attached monomers for sev-
eral times (N=10, repulsive wall). The initial form is the static equilibrium
distribution that evolves towards the distribution of chains that have stayed
at least a time of t on the surface. Newly attached chains meanwhile are not
taken into account

If an attached chain survives longer on the surface it migrates towards
states of bigger Na and “diffuses” around a state of 〈Na〉 ∝ N before detach-
ment (fig. 4.18). Thus the first chains to detach are, in their vast majority,
those that have stayed on the surface for a short time - they have few at-
tached monomers and detach in a small time (see fig. 4.18). This fraction of
“rapid” chains is frequently renewed, on a time scale smaller than the average
lifetime, but in order to see all adsorbed chains detach one has to wait much
longer - this is the second regime in Gc(t) evolving on a time scale orders
of magnitude larger. As the chains that stayed on the surface for a short
time are frequently renewed, their contribution to the measurement of the
average lifetime is much greater (greater number of adsorptions) so the mean
lifetime reflects approximately their time scale 2.

Through measurement the scaling behavior of the average detachment

2For example for N = 10, wall no more than 20% of the newly adsorbed chains stay
on the surface longer than t = 25. The question is further discussed in the next section.
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Figure 4.18: Evolution of the number of attached monomers of an attached
chain. 〈Na(t)〉 is the mean number of attached monomers of the chains
that have been adsorbed for a time of t. A newly attached chain that stays
for a long time on the surface “relaxes” towards states of high number of
attachments.

time can be estimated. Results are shown in fig. 4.19. The observed scaling
of τd is close to N2 (∼ N2.1) as predicted by the diffusion based calculation.
Both long time detachment time and the average detachment time have the
same scaling with N .

Thus, in an average sense it can be expected that the mean detachment
time (τd) will be related to the time needed for an adsorbed chain to diffuse
a distance on the order of RG. According to the Rouse model this time is
given by:

tdiff ≈ 〈R2
G〉

DCM
∼ τR (4.29)

where DCM is the center of mass diffusion coefficient (equation 2.12) and
τR is the Rouse time (equation 2.13). The measured scaling behavior is
in agreement with the assumption of diffusive desorption. The bulk Rouse
time is estimated to be τR(N = 10) ∼ 100 and τR(N = 50) ∼ 2600. By
comparing the numerical values we can conclude that the chains exhibiting
few attachments have undoubtedly their center of mass in the outmost region
of the interfacial layer and in consequence need less time to desorb. Chains
closer to the surface have a substantially longer lifetime and desorb in a time
exceeding, for attractive interaction, their bulk Rouse time. For a repulsive
surface the desorption seem to be faster than a bulk relaxation time. It
should be noted that, as will be discussed later, the relaxation times as well
as diffusion coefficients are modified at the interface and the comparison to
the bulk values does not necessarily have a quantitative meaning. We note
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that the desorption time discussed here is the time it takes for a chain to take
out its monomers from the first surface layer and is not necessarily relevant
to the time scale at which the chain leaves the interfacial layer of thickness
∼ RG. The subject is further discussed in the next section.
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Figure 4.19: Log-Log plot of average detachment times versus chain length
for an attractive and repulsive wall. The scaling of τd is N2

To further explore the validity of the model the scaling of the average Na

was measured (fig. 4.20). Measurements do not indicate that for long times
〈Na〉 ∝ N but rather a behavior close to 〈Na〉 ∝

√
N at least for the case

of repulsive wall (for long times 〈Na〉 ∝ N0.62 in the repulsive case). This
disagreement should be attributed to the constant transition rates hypothesis
and suggests that microscopic detachment needs to be further explored.

Microscopic transitions and residence times

After results concerning attachment and detachment phenomena on the scale
of a whole chain, attempts were made to characterize the microscopic attach-
ment/detachment dynamics on a typical scale of a single monomer, in order
to clarify the behavior of microscopic transition times. To do so a series of
measurements were set up. Adsorbed chains were directly monitored during
runs - the residence time τn of a chain in a state with a given number n of
adsorbed monomers (or with a given number of trains) was measured, as well
as the number of transitions between the different adsorbed states. There
is a subtlety in these measurements, as dynamics at microscopic time scales
is strongly blurred by thermal motion. A monomer is considered adsorbed
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Figure 4.20: Log-Log plot of the average number of attached monomers
versus chain length. Scaling is N0.52 for repulsive wall, N0.55 for attractive
wall and N0.62 for a repulsive wall for chains attached a long time.

if it is inside a strictly defined region. This definition does not cause any
problem for static measurements over a great number of conformations, but
yields non physical data in microscopic dynamic measurements. A monomer
close to the first layer frontier (set earlier from the density profile), undergo-
ing thermal diffusion, may leave and reenter the adsorbed layer on very short
time scales and this movement does not correspond to adsorption-desorption
transitions, but to irrelevant thermal fluctuations. To overcome this prob-
lem the measurement procedure was modified - the current position of a
monomer is replaced by its average position over a small time period τ0 (see
fig. 4.21) This time period has to be large enough to smooth out very high
frequency thermal fluctuations and yet small enough to allow the measure-
ment of sufficiently small time scale transition times. Considering the chain
dynamics described by the Rouse model τ0 was chosen equal to the smallest
relaxation time of a bulk chain of length N (see equation (2.13)):

τ0 =
ζb2

3π2kBT
(4.30)

this time corresponds to the relaxation of a single monomer inside an ideal
chain. According to equation (4.30) with the simulation parameters (kBT =
1, b2 ≈ 1.32, ζ ≈ 20, [43]), we have τ0 ≈ 1. It should be mentioned that
an overestimate of the value of τ0 could lead to biased measurements and
could mask transitions, that is why a control measurement has been set up
to test the assumption that τ0 is the proper time scale for a single monomer
“pop-up”.

The control consisted in measuring the distribution p(∆Na,∆t = 1) -
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Figure 4.21: Thermal averaging of the monomers trajectory. Averaging over
time τ0 ensures that thermal fluctuations are not measured as physical tran-
sitions

the probability that an adsorbed chain adsorbs/desorbs ∆Na monomers in
a time period of 1. Results show that 〈∆Na〉∆t=1 < 0.5 for all studied
systems, so that an adsorbed chain has, in all the considered systems, less
than 50% chance to desorb/adsorb a monomer in a time of τ0. Thus it is
reasonable to state that the relevant time scale to consider for monomer
adsorptions/desorption events is larger than τ0, which is also a value that
is large enough to ensure the elimination of thermal noise in the dynamical
measurements.

A transition time between two neighboring adsorption states (neighbor-
ing states of Na = i are Na = i + 1 and Na = i − 1) is defined as the time
a chain spends in state i before migrating to state i ± 1 (fig. 4.13). In or-
der to verify the hypothesis of constant transition times the transition times
of chains attached a long time on the surface have been measured (see fig.
4.22). They give rise to a stationary state distribution that matches the long
time distribution of attached chains shown in fig. 4.17. This distribution
is characteristic for the time scales proper to the attached chains that have
stayed on the surface a long time3. If global transition times are measured,
including the contribution of chains that have a short lifetime and only a
few transitions on the surface, another steady state is to be expected. In or-
der to obtain the right values for the transition times governing detachment
one has to restrain measurements on the long-life chains. Results show that
transition times are not constant and the approximation made to derive the
diffusion model (τi→i±1 = const) is not valid in our system 4.

The average time a chain stays in a given Na state was also measured.
Residence times in highly attached states are shorter in all systems and
essentially constant when Na → N (see fig. 4.23). This fact does not imply
faster adsorption on a single monomer scale, but is due to the fact that
strongly attached chains have many monomers near the adsorbed layer and
thus more chances to exchange monomers with the first layer per time step.

3A time long enough for the initial distribution (which is the equilibrium distribution)
to evolve towards the steady state distribution

4This was already stated before as the equilibrium distribution predicted by the diffu-
sion model is flat, unlike those observed in the simulated systems
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Figure 4.22: Left: Transition and residence times for adsorbed states and
strongly attached chains (N=10, repulsive wall). Right: N=10, repulsive
wall: The distribution of strongly attached chains calculated first from static
data and then by finding a stationary state distribution for the master equa-
tion using the measured transition times. In blue is the stationary distribu-
tion according to overall transition times. It does not match the strongly
attached chains stationary distribution (because of the contribution to tran-
sition times of weakly attached chains)

So a particular transition/residence time depends not only on the actual
state, but also strongly on the particular chain conformation - the chain
specific number of trains, tails and average position. As the number of
trains of a chain is not simply related to its number of attached monomers,
its influence on transition times is hard to extract. One can argue that if
a chain is strongly attached it has on average the mean number of trains
for the specific system (measurements shown in the previous section) so
its residence times are expected to be constant on average, a hypothesis
supported by measurements.

As the adsorption and desorption time depend on the chain’s conforma-
tion (therefore on its past evolution), it is reasonable to think that a desorbed
previously “strongly attached” chain has good chances to be strongly reat-
tached again (see fig. 4.24). The real exchange between free melt chains and
chains close to the surface could be further slowed down by a chain diffusion
time. This question cannot be answered with our data for now and will be
addressed further in the next chapter.
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Figure 4.23: Average residence times per microscopic state considering all
chains

Detachment times description in terms of master equation

Quantitatively more adequate description of the detachment dynamics is
obtained by solving equation 4.13 without the hypothesis that all transition
times are constant. Transition times are chosen as follows:

τi→i−1 = 〈τtr〉, i = 1..N (4.31)

τi−1→i =
P l(i − 1)

P l(i)
τi→i−1 (4.32)

where 〈τtr〉 is an average value over transition times and P l is the long
time Na distribution (fig. 4.17). The initial condition is the overall static
equilibrium Na distribution and the choice of transition times shown above
ensures that the initial distribution will evolve towards P l(i) which is, making
this choice for transition times, a stationary solution of the master equation.
Desorption times calculated using this model are in good agreement with
measured values (see fig. 4.25). The first regime is considerably shorter (but
exists) for calculated values which is a logical consequence of replacing half
of the transition times by a single average value. The implementation of
the right long times Na distribution in the model gives correct values for
desorption times.

This calculation further emphasizes the ingredients that play a major
role in the process of desorption. Using equilibrium distributions of attached
monomers on the surface and a relevant microscopic transition time one could
determine desorption time scales for different systems. Thus, by studying the
dependence of microscopic transitions on surface interaction, chain length or
filler radii, conclusions about global desorption times can be drawn.
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Figure 4.24: Two possible chain conformations for chains with Na = 1. The
blue chain is likely to rapidly detach and the red chain has good chances to
turn out a “strongly attached” chain.

4.5 Conclusion

We first examined the static properties of polymers in a melt in the presence
of a flat surface, flat surface bearing grafted chains or a filler particle. The
chain size is affected by the presence of the wall in a layer up to two RG

from the wall surface. Static conformations near the surface were compared
to predictions from a random walk model and found to be in good agreement
for the number of trains per chain. The length of the trains is larger than
in the random walk model, reflecting a tendency of chains to lie flat on the
surface.

Next we measured the microscopic adsoption-desorption dynamics by fol-
lowing the evolution of chain conformations as described by a single param-
eter NA, the number of “attached” monomers. The population of chains is
shown to contain a portion of weakly adsorbed chains with rapid desorption
dynamics and strongly adsorbed chains with slower desorption dynamics.
The strongly adsorbed chains are responsible for a slow-down in dynamics
immediately near the surface. Slower desorption is observed for an attrac-
tive surface. The desorption time is seen to scale slightly slower than N2, for
chains up to N = 100. A kinetic model for chain desorption was proposed
to rationalize the behavior and conformation of strongly adsorbed chains. If
a simple “diffusion” model in terms of the variable Na (number of adsorbed
monomers) was adopted, such a model would yield a desorption time scaling
as N2. Our results indicate a more complex behavior in that the behavior of
chains depends not only on Na but also on the time a chain has been attached
to the surface. This suggests that to sufficiently describe the dynamics more
parameters are needed, for instance, the distance of the chain center of mass
from the surface. For a better understanding of the melt dynamical behavior
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Figure 4.25: Gc(t) for N=10, repulsive wall. Comparison between values
measured in simulation and obtained by solving the master equation.

at the interface a larger portion of material near the wall should be carefully
considered.
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Chapter 5

Dynamics and entanglements

in the interfacial layer

5.1 Introduction

The properties of polymer-filler composites are often associated with filler
clustering and percolation [32, 66] but several studies over the past years
showed that the effect is also observable below the percolation threshold
[36, 67]. This indicates that the particle-matrix interface is another crucial
ingredient in the complex physics of filled elastomers. Another indication
of the importance of surface effects lies in the fact that small size particles
(nanoparticles) have a much greater effect compared to micron size fillers.
The nature of the polymer filler interactions was shown to be very important,
it was established by experiment [35] and simulation [58] that attractive in-
teractions lead to an increase of the glass transition temperature near the
interface. With this argument an explanation of reinforcement has been put
forward involving the formation of “harder”, glassy layers with slow dynamics
around attractive fillers. Yet this explanation is not sufficient as reinforce-
ment (a lower value, but still around 100%) was experimentally measured in
nanocomposites at temperatures twice as high as the glass transition tem-
perature of the matrix [36]. Most of the fillers used in practical applications
(tires) and leading to substantial reinforcement, such as treated silica parti-
cles, exhibit a globally repulsive interface with some sites that can covalently
bond polymer chains from the melt. The micro scale physics of interfacial
reinforcement remains unclear in this case. Experimental studies [36] sug-
gested that chain entanglements in the vicinity of the surface should play a
major role in the reinforcement which can be explained by the presence of
trapped entanglements near the interface. Theoretical studies have qualita-
tively suggested that the density of entanglements decreases in the vicinity
of a wall [68, 69] because of the average decrease in chain dimensions estab-
lished earlier by simulation [62, 61]. On the experimental side the validity of
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this assumption was recently questioned for free standing films [12]. Other
experimental results suggest a depletion in the entanglement density and
report a decrease in viscosity in thin films [11]. Clear evidence of this phe-
nomenon on the microscopic level near a flat wall is still lacking, and it could
not be related to mechanical properties.

Recent advances in molecular simulation has made possible a precise
study of these problems. The well established concept of entanglement in a
polymer melt can be “observed” by direct primitive path analysis [7, 70]. As
we discussed in chapter 3, we developed an equilibrium method for study-
ing the mechanical properties of a melt that can be used to assess local
viscoelastic properties [71].

Using these tools, in the present chapter we analyze the dynamics and
the entanglement density of a polymer melt near a repulsive wall with or
without bonding sites and give a generic explanation of the melt slowing
down or acceleration at the interface as a function of molecular weight. The
systems under study were described in the previous chapter. We will con-
centrate on the chain relaxation and dynamics in the whole interfacial layer
in the case of flat wall compared to the case of a wall bearing grafted chains.
An analysis in terms of primitive paths will be used to study the entangle-
ment network in these systems. At last a study of the entanglements in the
previously described high molecular weight melts with a fraction of spherical
filler particles (10% or 20%) will be presented.

5.2 Local dynamics near a bare and grafting wall

In this section we study the dynamics at a flat melt-wall interface compared
to the case of a grafted wall. The position of the chains center of mass
is taken into account so that the difference between interfacial and bulk
dynamics can be clearly identified.

5.2.1 Desorption and Mean Square Displacement

We can get a qualitative idea of the melt dynamics in the bulk and near
the surface by looking at the local mean square displacement of the polymer
chains. We define the bulk and interfacial chains mean square displacement
by:

〈R2(τ)〉bulk =
1

TN z
ch

∫

dt
∑

i; −σ<Zi
cm(t)<σ

(Ri(t + τ) − Ri(t))
2 (5.1)

〈R2(τ)〉wall =
1

TN z
ch

∫

dt
∑

i; zw−2σ<|Zi
cm(t)|<zw

(Ri(t + τ) − Ri(t))
2(5.2)

In the case of a bare surface we find that surface chains have increased
mobility parallel to the surface in the x and y direction compared to bulk
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chains and they are slowed down perpendicular to the surface. For a wall
with grafted chains the free chains in the wall vicinity are slower in the
parallel direction (fig. 5.1) - this is attributed to the presence of the grafted
chains acting as obstacles for motion parallel to the wall.
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Figure 5.1: Monomer mean square displacement in the wall vicinity for the
system N = 20 with and without grafted chains.

A more surprising result is that, in the presence of grafted chains, the
free chains are faster than the chains near a bare wall in the perpendicular
direction (fig. 5.1). This kind of behavior can be understood knowing the
desorption mechanism from a flat surface discussed in the previous chapter
[72]. As was already mentioned, even in the case of a flat repulsive wall,
surface chains having relaxed conformations with many monomers on the
surface are very slow to desorb and are thus responsible for a slowing down
in dynamics near the surface. This is seen in the perpendicular slowing down
in the bare wall system. In the presence of grafted chains, there are fewer
free chains near the surface, as the corresponding conformations are taken by
the grafted chains that do not desorb. The presence of grafted chains makes
the surface rough on a scale comparable to the polymer size, it can be argued
that adsorption and desorption on a rough surface for polymers is faster as
it involves less entropy loss than in the case of a flat wall [73]. Thus the free
chains population near the surface has faster exchange dynamics with the
bulk chains.

5.2.2 Local Dynamics from Rouse Modes

We study the local dynamics of the polymer chains by again monitoring the
relaxation of the Rouse modes of the chains (equation 2.16). As correla-
tion of the p-th Rouse mode describes the relaxation of a sub-chain of N/p
monomers, the study of this quantity allows to probe the dynamics on differ-
ent length scales. Being a local single chain quantity, the correlation of the
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Rouse modes allows us to investigate the dynamics in different sub-volumes
of a non-homogeneous system, provided they contain a large enough number
of chains. It is also a route to estimate the local viscosity in each region
(discussed in chapter 3). In our confined systems, we define the relaxation
of local modes as a function of the z coordinate as:

〈X(τ)X(0)〉(z) =
1

TN z
ch

∫

dt
∑

i; z−dz<Zi
cm(t)<z+dz

Xi(t + τ)Xi(t) (5.3)

It is expected that the slowest Rouse mode relaxes on a time scale smaller
than the time needed for a chain to diffuse its own size. Hence, we choose a
slice width on the order of RG, so that the center of mass of a chain stays
(statistically) within the same slice while the correlation is measured. This
allows us to access local dynamics with a spatial resolution on the order of
RG, which is better than the resolution associated with measurements of the
mean square displacement. For the systems with grafted chains we define
relaxation times by considering only the modes of the free chains. Hence the
values of the relaxation times shown in this study are not affected directly
by the frozen dynamics of the tethered chains. Our goal is to understand the
influence of the presence of the grafted chains on the remaining melt and to
capture, if any, matrix mediated slowing down.

For short chains (N ≤ 20) we estimate the Rouse times by an exponential
fit of the normalized correlation function of the first mode, which have in all
cases a clear exponential behavior. We estimate separately the relaxation
of chain conformations following the three directions in order to take into
account the spatial inhomogeneity near the surface. For chain lengths of
N = 10 and N = 20 we observe a clear decrease in the relaxation times of
the modes near the wall in all systems, regardless of the presence of grafted
chains (fig. 5.2). In the case of a flat surface this acceleration is expected and
can be understood in terms of reduction of the monomeric friction due to the
repulsion of the surface [58]. We also studied the influence of the pressure
and the microscopic wall roughness on the acceleration of the chains. They
were found to have a negligible effect on the modes relaxation times in the
melt. Cage effects associated with microscopic roughness of the wall are
relatively unimportant for chain molecules compared to simple fluids, due
to the competition with bond constraints associated with the neighboring
monomers in the chain.

As the grafted chains act as soft obstacles for the free chains one could
expect that the free chains will be slower close to the wall than in the bulk.
Studying the local Rouse times we find that this assumption is not true
for melts with chain lengths N = 10, 20. In the systems where there are
attached chains on the surface, the free chains in the immediate vicinity of
the wall are still accelerated with respect to the bulk chains. The effect of
the grafted chains is seen when comparing the systems with and without
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grafted chains. In the direction parallel to the surface the free chains in the
immediate vicinity of the wall having grafted chains are about 20% (N = 10)
and 30% (N = 20) slower compared to the chains seeing a bare repulsive
surface, but they are still accelerated by 20% (N = 10) and 10% (N = 20)
compared to the bulk dynamics (see fig. 5.2). In the perpendicular direction
the chain conformations equilibrate in about the same time for the two types
of systems. For these systems of short chains, the slowing down due to
the grafted chains is not sufficient to overcome the acceleration due to the
repulsive surface and we do not expect reinforcement with respect to the
bulk properties of the material, as discussed in the next section.
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Figure 5.2: Local Rouse times normalized by the bulk value for chain lengths
of 10 and 20 and for the free chains in the systems with grafted chains
(referred to as “grafted”) and for the chains in the system without grafted
chains (referred to as “bare”).

For chain lengths N > 20 we measure the modes relaxation times as
the integral of the normalized correlation function so that an exponential
behavior of the latter is not required. Although the relaxation is not strictly
exponential, the resulting values are close to those that would be obtained
using an exponential fit. For chain lengths around and above the entangle-
ment length we observe an acceleration for the first Rouse mode in the case of
a bare wall, very similar to the case of short chains. The influence of grafted
chains, however, is much more important than for short chains. In the sys-
tems with grafted chains of N = 50, 100, we measure a slowing down for the
largest relaxation time in the parallel direction (of around 10% for N = 50
and 40% for N = 100 within a distance of RG from the wall) with respect to
the dynamics in the middle of the film (see fig. 5.3). The average relaxation
times in the layer feeling the presence of the grafted chains are larger than
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those for the system without grafted chains. On average, for N = 100, the
mean relaxation times of the first five Rouse modes are increased by ∼ 20%
in the presence of grafted chains, compared to what is observed for a bare
wall (see fig. 5.4). In summary, the presence of grafted chains induces a
slowing down for all modes (compared to the bare wall case), and in the case
of the first mode a slowing down compared to the bulk is also observed.
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Figure 5.3: Local Rouse times (first mode), normalized by the bulk value,
for chain lengths of 50 and 100 and systems with and without grafted chains.

In the z direction the conformation dynamics varies in a similar way as a
function of the distance to the surface, regardless of the presence of grafted
chains.

In the following, we argue that the substantial slowing down observed
in the relaxation time of the first mode is due to entanglement effects near
the surface. If the slowing down is due to entanglements, we should still
have faster dynamics close to the surface for chain segments well below the
entanglement threshold. In other words, the relaxation of a mode p such
that N/p > Ne should be slowed down when approaching the wall, while
the dynamics of a mode p satisfying N/p < Ne should be similar to the
unentangled case, i.e. accelerated with respect to its value in the middle if
the film. This assumption is confirmed by the measurement of the relaxation
of higher Rouse modes of the chains (see fig. 5.6). In terms of effective
monomeric friction the presence of the repulsive surface still leads to relative
acceleration of the dynamics in the immediate vicinity of the wall on length
scales smaller than the tube diameter (as in the case of unentangled chains).
This leads to a relative acceleration of the small scale modes in the interface
layer when approaching the wall. On the scale of entanglements the shorter
the distance to the wall is, the slower the dynamics. This issue will be further
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Figure 5.4: Local relaxation times of the first five Rouse modes for chain
length of 100 for the systems with and without grafted chains. The system
without grafted chains is systematically the faster one. Bare wall: p =
1:circles, p = 2: rectangles, p = 3: diamonds, p = 4: triangles, p = 5: left
triangles; Grafted: p = 1: down triangles, p = 2: right triangles, p = 3:
pluses, p = 4: crosses, p = 5: stars;

investigated in terms of entanglements in the next section.

In summary, the presence of the flat surface results in the formation of an
interfacial layer where the dynamics and chain conformations are different
from the bulk. The presence of the surface alters the dynamical properties of
the melt in its vicinity within around two to three bulk RG. The presence of
grafted chains on the surface increases the thickness of the interfacial layer
as far as static properties are concerned due to the tendency of the grafted
chains to have an extension larger than the bulk RG.

In the unentangled regime, the presence of a repulsive surface results
in a relative acceleration of the melt dynamics when approaching the wall
regardless of the presence of grafted chains on the surface. The presence of
grafted chains (below the polymer brush density) slows down the free chains
dynamics parallel to the surface compared to the system without grafted
chains, but chains are accelerated with respect to the bulk.

The situation changes when the chain length increases and we enter the
entangled regime. In the case of entangled melts, the relaxation of entangled
modes p such that N/p > Ne is slowed down compared to the bulk near the
surface in presence of grafted chains. In the next section we will relate this to
the local entanglement density. The local dynamics at length scales shorter
than the entanglement length is slower with grafted chains than without,
but remains accelerated close to the surface with respect to the bulk.
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Figure 5.5: Local relaxation times (N=100) normalized by the bulk value
of the first (entangled) mode and of higher modes for the free chains in the
system with grafted chains.

In the perpendicular direction adsorption-desorption dynamics are slightly
accelerated compared to the system without grafted chains. This is due to
the fact that the slowest chains in the vicinity of a flat wall tend to be those
with most contacts with the wall [72]. In the grafting process, these chains
are removed from the population of "free" chains that we consider here.

5.2.3 Local stress relaxation function

Next, we calculate the local stress relaxation in our systems using the method
previously discussed for pure melts. We have seen that this quantity can
be used to calculate the melt viscosity in the bulk and we will use it here
to provide a local estimate for η. The stress correlation function can be
calculated from equation 3.24, in this case each mode p of the chains has a
contribution of:

Gp(t) =
ρkBT

N

〈Xpα(t)Xpβ(t)Xpα(0)Xpβ(0)〉
(

〈X2
pα〉+〈X2

pβ
〉

2

)2 (5.4)

where α, β = x, y, z. Here we calculate these quantities locally in slices
parallel to the wall, as for the Rouse modes in the previous section:

〈Xpα(t)Xpβ(t)Xpα(0)Xpβ(0)〉(z) = (5.5)

=
1

TN z
ch

∫

ds
∑

i; z−dz<Zi
cm(t)<z+dz

Xi
pα(s + t)Xi

pβ(s + t)Xi
pα(s)Xi

pβ(s)

〈X2
pα〉(z) =

1

TN z
ch

∫

ds
∑

i; z−dz<Zi
cm(t)<z+dz

(Xi
pα(s))2 (5.6)
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Figure 5.6: Relative variation of local relaxation times normalized (N=100)
by the bulk value. The first (entangled) mode and the fifth mode for the free
chains in the system with grafted chains and the chains near a bare surface
are shown. All modes except the first mode in the grafted system follow the
same qualitative behavior and are accelerated close to the surface. The first
mode of the free chains in presence of grafted chains is slowed down.

The contribution to the viscosity of the mode is ηp =
∫∞
0 Gp(t)dt and the

total viscosity is given by η = ηp=1+...+ηp=N−1. For chain lengths of N = 10
and N = 20 the integral of the stress correlation function is estimated from
all the Rouse modes and for chains of N = 50 and N = 100 only the
first ten modes were considered. The contribution of the eleventh mode for
N ≥ 50 was found to be less than 1% of the contribution of the first mode.
The contribution of the non polymeric stress on very short time scales was
neglected. This leads to an underestimate of the viscosity on the order of
20% in the unentangled regime, and this contribution is negligible (< 1%)
for longer chains of N ∼ 100. The average local integrated value of Glocal

is shown in fig. 5.7. For chains of length N = 100, the grafting induces
an increase in the integrated stress relaxation function in a range of around
2RG from the wall, as could be expected from the increase in the relaxation
times, due to the increased entanglement density. A smaller increase in a
layer of RG is observed for the chains around the entanglement threshold
(N = 50). For unentangled melts, there is essentially no difference between
the results with and without grafted chains.
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Figure 5.7: Local integral of G(t) for the different systems. The values are
calculated as the mean of the three components xy, xz and yz of the stress
correlation function integral and error bars indicate the dispersion around
the mean value.

5.3 Primitive Path Analysis of the Wall Melt In-

terface

In order to interpret the slowing down in the dynamics for entangled systems
in the presence of grafted chains, we perform a local primitive path analysis
following the algorithm discussed in ref. [70]. Starting from independent
initial states separated by more than a chain relaxation time, the chain ends
are kept fixed, while the intra chain pair interactions are switched off and
the equilibrium bond length is reduced to zero while increasing the bond
tension to k = 100ε/σ2. Several parameters have to be carefully monitored
for a correct primitive path quench. The main concern with this kind of
simulation is to ensure the non crossability of the polymer chains during the
relaxation. There are two ways in which a chain can cross another: due to a
stretched bond or due to large monomer displacement for a large force and
large time step. The setup for chain crossing is schematised in fig. 5.8.

For the LJ-FENE polymer model the critical value for the bond length is
btrans ≈ 1.29σ [70]. To prevent this kind of situation, during the bond force
calculation the code checks the bond length and the simulation is interrupted
whenever a single bond stretches further than 1.2σ. Even if the bonds are
short enough, one can imagine that due to the high tension in the chain
large accelerations can result and a chain could hop in a single time step on
the other side of a neighboring chain, before “feeling” the repulsive potential.
We prevent this from happening in the simulation in two ways. First, the
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Figure 5.8: Schematic representation of PPA chain crossing. This can only
take place for btrans > 1.29σ

time step is decreased and second we impose a very low temperature. In fact
in the first stages of the primitive path quench the velocities are rescaled
every single time step to give a temperature T = 0.001. This is limiting
the maximum velocity of the monomers. In the same time, the time step is
reduced to dt = 0.0025τ : first to ensure the correct calculation of the bonds
having now higher tension and second to limit the maximum displacement
of a monomer within a time step. With these parameters a monomer has to
have a velocity more than a thousand times higher than the thermal velocity
in order to achieve a displacement of 0.1σ in a time step.

In the systems with grafted chains the grafting bonds are maintained,
the primitive path quench is applied to all the chains and the parameters of
the primitive paths are measured for the free chains only as in the previous
section.

We measure locally, as a function of the distance to the surface, the length
of the primitive paths (Lpp). If no entanglements exist between the chains the
length of their primitive paths should be equal or very close to their end-to-
end distance. The presence of entanglements leads to primitive paths longer
than the end-to-end distance with a typical Kuhn length app = 〈R2〉/Lpp and
an average bond length bpp = Lpp/N , which are related to the entanglement
length [7]. We can define the number of monomers in straight primitive path
segments by:

Npp(N) =
app

bpp
=

N〈R2〉
L2

pp

(5.7)

For short chains with no entanglements at all, as their primitive path length
equals their end to end distance, equation 5.7 gives Npp = N . When the
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chain length becomes comparable to the entanglement length we are in a
transition state (around one entanglement per chain) and the result of 5.7
is Npp < Ne, smaller than the real value of the entanglement length. For
longer chains (N > 2Ne) with several entanglements per chain we have
Npp(N) = Ne. The statistical determination of Ne via equation 5.7 is al-
ready accurate and the result no longer depends on the chain length. The
average number of entanglements per chain is

Lpp

app
− 1. For chain lengths

of 10 and 20 the primitive path analysis shows that we are in the unen-
tangled regime as expected (with 0.1 entanglements per chain for N = 20).
For N = 50 the melt is closer but still under the entanglement threshold
with 0.5 entanglements per chain. For a chain length of 100 there are 1.1
entanglements per chain, the system is weakly entangled and for N = 200
we measure on average 2.2 entanglements per chain. As expected in the
unentangled case (fig. 5.9), the behavior in terms of primitive paths of the
free chains in the system with and without grafted chains is identical. There
is a slight decrease of the primitive path length close to the surface that is
related to the decrease in the dimensions of chains lying flat on the surface.
A noticeable difference is seen in the entangled case where the ratio Lpp/Ree

becomes larger for the free chains near the surface bearing tethered chains,
while it decreases with respect to the bulk value for the bare wall system.
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Figure 5.9: Local ratio of the primitive path length to the end-to-end chain
distance in the different systems. This ratio for a given chain is proportional
to its number of entanglements.

Measuring separately the primitive path length and the end-to-end dis-
tance in the systems of N = 100, 200 (see fig. 5.10,5.11) we see that in the
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presence of grafted chains on the surface the length of the primitive paths of
the free chains remains essentially constant throughout the boundary layer,
while it decreases in the presence of a bare wall. At the same time there is
a slightly more pronounced decrease in the end-to-end distance for the sys-
tem with grafted chains as discussed previously (fig. 4.5, 5.11). The grafted
chains, being on average more extended than the free chains provide more
entanglements in the plane parallel to the wall for the chains close to the in-
terface, thus keeping their path length constant regardless of the fact that the
perpendicular size of the chains diminishes leading to less inter-penetration
in the z direction. In the case of a bare surface the decrease in the chains
RG results in less inter-penetration diminishing the primitive paths.
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Figure 5.10: Local primitive path length for N = 100 and 200.
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Figure 5.11: Local end-to-end distance for N = 100 and 200.

The additional entanglements due to the grafted chains can be inter-
preted in terms of local reduction of the entanglement length (or, equiva-
lently increase in the entanglement density) as shown in fig. 5.12 and fig.
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Figure 5.12: Local length of straight primitive path segments for the systems
of N = 100 and N = 200. Npp(z) was calculated from the simulation data
using equation 5.7. For N = 200 the bulk value is equal to the entanglement
length for the bead spring model at melt densities for flexible chains. [7]

5.13. The bulk entanglement length found for N = 200 (Ne ≈ 63) is in
agreement with the result of reference [7]. In the case of N < 200 the nu-
merical value of the bulk Npp is lower than the Ne value for the melt as there
are on average less than 2 entanglements per chain. The relative variation
in Npp is still meaningful and corresponds to a general trend in the entangle-
ment density. To verify this assumption, we measure the local entanglement
densities (entanglements per monomer) in the studied systems, defined as
(Lpp(z)/app(z) − 1)/N . The results are shown in fig. 5.13, confirming that
the variation in Npp leads to an increase in the entanglement density.

In a region that extends about one RG from the surface, there is a de-
pletion of entanglements for a bare repulsive wall, as qualitatively predicted
in reference [68]. A similar behavior was also observed in ref. [74]. This
effect was associated with smaller chain size in the z direction. It can be
also understood knowing that chains in the immediate vicinity of the wall
only have neighboring chains on one side and no chains to entangle with on
the other side, so they have a smaller total number of entanglements. On
the other hand, in presence of grafted chains the free chains near the surface
do not feel its presence as far as entanglements are concerned as they still
entangle with the chains grafted on the surface keeping a constant primi-
tive path length. Moreover, as the parallel dimensions of the free chains are
reduced, we end up with an interfacial region with higher density of entan-
glements. This difference in entanglement density explains the slowing down
in the dynamics of the entangled modes. Moreover, a quantitative predic-
tion can be established. Knowing from reptation theory that the relaxation
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Figure 5.13: Local number of entanglements per monomer in the N = 100
and N = 200 systems. An increase in the entanglement density is seen
for grafted wall, consistent with the measured variation in Npp and Ne. A
similar behavior is observed for N = 50.

of an entangled chain is proportional to N ×
(

N
Ne

)2
, the ratio between the

relaxation times of two systems of equal chain length should be equal to the
inverse square ratio of the entanglement lengths in the two cases, i.e.

τ grafted
R

τ bare
R

=

(

N bare
e

Ngrafted
e

)2

(5.8)

This relation provides a way to predict dynamics from a static equilibrium
quantity in the melt. It is reasonably well verified in the interfacial layer of
our N = 100 system, even if the melt is only weakly entangled at this chain
length (see fig. 5.14). This argument can be pushed further to predict the
local viscosity in the interfacial layer in the reptation regime:

ηgrafted

ηbare
=

(

N bare
e

Ngrafted
e

)3

(5.9)

This prediction is no longer valid for chain lengths as short as N = 100
as we have only one entangled mode (too few entanglements per chain),
but should be verified for strongly entangled melts where the mechanical
behavior is entirely dictated by the entanglements.

5.4 Entanglements in polymer nanocomposites

In this section we will discuss the variation of the entanglement density in
an entangled polymer melt with spherical filler particles. The system under



102 Chapter 5. Dynamics and entanglements at the interface

0 0.5 1 1.5 2 2.5 3
|zw-z|/RG

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 30.8

1

1.2

1.4

1.6

1.8

2

τR
grafted

 / τR
bare

(Ne
bare

/ Ne
grafted

) 
2

Figure 5.14: Comparison between the ratio of the local relaxation times
(left term in eq. 5.8) and the inverse square ratio of the local entanglement
lengths (right term in eq. 5.8) of the N = 100 systems with and without
grafted chains.

study was presented earlier (81 chains of N = 500 and 10% (42 fillers) and
20% (84 fillers) of filler volume fraction). In these systems where N = 500
we have on average in all cases at least 8 entanglements per chain.

In order to study the effect of the fillers on entanglements we follow
several distinct setups for the primitive path quench. In the first setup the
fillers are taken out of the melt before the quench. This study probes for an
effect of the fillers presence on the equilibrium conformations in the polymer
matrix without the the actual influence of the filler-melt interface. Next, we
study the influence of the filler polymer interaction and the filler mobility
on the primitive paths. In the second setup fillers are kept still in the melt
and the chains are allowed to relax around the fixed fillers with attractive
filler-polymer interactions identical to those during equilibration (ε = 3,
rcut = 2.5σ), with strongly attractive filler-polymer interactions (ε = 10,
rcut = 2.5σ) and also with purely repulsive interactions (ε = 3, rcut = 1.12σ).
Strong attraction increases the energy cost for a desorption during quench,
transforming the fillers into more solid bridges, whereas repulsion allows the
adsorbed chain segments to slip away from the filler surface. In the last set
of simulations fillers are allowed to move freely during the analysis and again
the cases of filler polymer repulsion and attraction are separately examined.
Filler mobility during quench allows the fillers to take part in the constraint
release of the primitive paths.

In the case of mobile fillers we studied the influence of excluded volume
interactions between the fillers. We performed runs with fillers allowed to
cross each other or having repulsive interactions. This parameter was found
to have negligible effect on the primitive paths at the relatively low filler
volume fractions we study. The primitive paths parameters measured in the
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filled melt are compared to the results for a pure polymer melt (equilibrated
at the same pressure).

In order to calculate the entanglement length the only quantity we need
to extract from the PP quench is the bond length bpp. The mean square
end to end distance 〈R2〉 is measured in an equilibrium simulation and the
entanglement length is calculated by simplifying equation 5.7 using the ex-
pression:

Ne =
〈R2〉

(N − 1)bpp
(5.10)

The primitive path analysis in the pure polymer indicates an entangle-
ment length Ne ≈ 53. This value is again in agreement with the results in
ref. [7], given that our system is at higher density and the equilibrium bond
length is slightly larger.

We report a reduction of the entanglement length (or, equivalently in-
crease in the entanglement density) in the systems with fillers (fig. 5.15).
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Figure 5.15: Entanglement length and tube diameter in the nanocomposites
normalized by the value for the pure polymer. Results from the different
quench set-ups are shown: PPA without fillers, mobile attractive fillers, fixed
attractive fillers and fixed strongly attractive fillers.

In the case of repulsive interactions and mobile fillers the results super-
impose with those from the PPA without fillers. A quench without fillers
leads to no Ne variation for Φ = 10% and a small reduction (∼ 15%) for
Φ = 20%. The reduction for Φ = 20 can be explained via the increase in the
mean square end to end distance as discussed below. In view of this result
we believe that the global chain conformations are not significantly affected
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by the presence of the fillers, in the sense that when fillers are taken out the
melt recovers an entanglement network close to the one of a pure polymer.

The observed Ne reduction is clearly related to the presence of the filler
polymer interface and to the attractive filler-polymer interaction. This re-
duction is more pronounced in the case of fixed fillers. The increase in the
entanglement density is in all cases higher in the samples with higher filler
volume fraction.

In the following we discuss the results presented here in order to explain
the origin of the Ne variation in the composite.

5.4.1 Effect of fillers on chain conformations

We observe that the overall chain dimensions remain only slightly perturbed
compared to the reference pure system. The mean square end to end vector
〈R2〉 is increased by 3% for a filler volume fraction of Φ = 10% and 8% for
Φ = 20%. This result explains to a certain extent the PPA results without
fillers - no difference for Φ = 10 and Ne reduction on the order of 15% in the
case of Φ = 20. An increase of the chain dimensions seems reasonable for
sub-chain size fillers. Slight reduction of the chain size in MC simulations
have been reported in the past for neutral interactions and fillers considerably
larger than the chains RG [75, 76]. In our system no global chain confinement
is present due to the fillers.

On length scales smaller than the end to end distance we observe more no-
ticeable differences in the chain conformations. The presence of the fillers sur-
face leads to certain alignment and structuration in the surrounding chains
thus effectively increasing the persistence length on the length scale of the
inclusion. To study this effect it is useful to define the Kuhn length-like
quantity [77]:

bk(n) =
〈R2(n)〉

nb0
(5.11)

where n is the number of monomers over which the mean square distance is
calculated. Results can be seen on figure 5.16. The change in the microscopic
persistence length leads in principle to a modified packing length in a pure
melt and can have an impact on the entanglement length as was discussed
in section 2.4.

Better inter-penetration of neighboring chains promoted by higher per-
sistence length causes a decrease in Ne for a pure polymer melt. This is
equivalent to a decrease of the packing length p defined by equation 2.31.
Still, calculating the packing length in a confined or an inhomogeneous sys-
tem is not straightforward. To estimate this quantity we have to first define
the volume per monomer and the effective bond length of the chains (or
equivalently, the Kuhn segment length or the persistence length). Here we
calculate the volume per monomer as the total volume occupied only by the
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Figure 5.16: Kuhn length calculated over chain segments of length n as a
function of n. The straight lines show the terminal values for n = 500.

polymer in the composite, divided by the total number of monomers:

v0 =
V − Vf

N × Nch
(5.12)

where V is the simulation box volume, Vf is the volume of the fillers, N the
chain length and Nch - the number of chains in the system. The effective
bond length was calculated from the terminal value of the Kuhn length on
fig. 5.16. The resulting prediction for the entanglement length and the tube
diameter is shown on fig. 5.17. We note that an even larger effect can be
obtained if we estimate the effective bond length at the scale of around 50
monomers, where the filler influence is bigger. We see that the estimation
based on the packing argument is consistent with the decrease in Ne and
app measured by PPA. This result will be further discussed in the following
sections.

5.4.2 Influence of fillers on primitive paths

Given the presence of a large interfacial area in the composite system, next we
analyze in finer detail the PPA results. Knowing that the quantity resulting
from the quench is the bond length we measure its distribution in order to
understand the structure of the primitive path network. Results for the PPA
bpp in absence of fillers are shown in fig. 5.18.

As stated earlier, we see that for Φ = 10% and quench without fillers the
effect on the PPA is close to negligible and there is an increase in bpp for
Φ = 20%.

The nature of the bond length distributions in the filled melt changes
qualitatively in presence of attractive fillers (fig. 5.19, 5.20, 5.21).
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Figure 5.17: Comparison of the entanglement length and the tube diameter
normalized by the bulk values with the prediction from the packing length,
taking the volume par monomer from equation 5.12.

There are two distinct populations of bond lengths - highly extended
and short. To understand this result we need a more precise view of the
typical conformations of the primitive paths with respect to the polymer
filler interface. Inspired by the analysis in section 4.3, we study the primitive
paths in terms of filler adsorption. An adsorbed monomer of the primitive
chain is defined as being closer to the filler than the first minimum of the
measured g(r) function after quench. We can thus define several types of
segments in a primitive chain: adsorbed (where monomers are within 3.16σ
from the center of the filler), bridge and loop segments (starting and ending
with an adsorbed monomer) and tail segments (beginning or ending with
a chain end). We measured separately the PP bond lengths of adsorbed
segments and segments belonging to bridges and loops. Measurements show
that bonds belonging to bridge segments are on average 2.5 times longer
than the adsorbed bonds (table 5.1, fig. 5.22). More details about the PP
conformations are given in table 5.1.

The PP quench increases in all cases the number of monomers on the
surface of the fillers, there are around 8 times more adsorbed monomers after
quench for the Φ = 10 systems and 4 to 5 times more for Φ = 20 (table 5.1).
This result is expected: as during the quench excluded volume interactions
between neighboring monomers are switched off, monomer adsorption on
the filler surface is easier, not limited by intrachain excluded volume effects.
Knowing that the surface is attractive, primitive paths have a tendency to
maximize their number of adsorbed monomers as long as this does not involve
an important elongation, penalized by the large bond tension during the
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System Φ = 10 eq PP fix PP mob PP fix10

Loops per chain 10.8 1.7 1.7 2.1
Bridges per chain 4.8 4.5 4.7 5.2
Correlation after quench 0.39 0.21 0.64
Fillers per chain 5.1 4.9 5.5 5.5
Adsorbed monomers per chain 27 195 233 306
app 8.79 σ 9.06 σ 7.96 σ
Ne 44.3 47.1 37.1
bpp 0.199 σ 0.193 σ 0.217 σ
adsorbed segments bpp 0.117 σ 0.093 σ 0.105 σ
bridge segments bpp 0.243 σ 0.286 σ 0.392 σ
loop segments bpp 0.153 σ 0.177 σ 0.300 σ
Lpp 99.3 σ 96.2 σ 108.4 σ
fraction adsorbed Lpp 23% 22% 29%

System Φ = 20 eq PP fix PP mob PP fix10

Loops per chain 20.3 2.3 2.0 3.2
Bridges per chain 11.5 8.5 9.6 10.6
Correlation after quench 0.27 0.13 0.49
Fillers per chain 10.4 8.7 10.2 10.1
Adsorbed monomers per chain 53 207 257 307
app 8.20 σ 8.53 σ 7.20 σ
Ne 36.5 39.7 28.1
bpp 0.225 σ 0.216 σ 0.256 σ
adsorbed segments bpp 0.165 σ 0.126 σ 0.168 σ
bridge segments bpp 0.273 σ 0.325 σ 0.406 σ
loop segments bpp 0.244 σ 0.266 σ 0.388 σ
Lpp 112.2 σ 107.6 σ 127.7 σ
fraction adsorbed Lpp 30% 30% 40%

Table 5.1: Average values for primitive paths and equilibrium conformations.
Different columns contain values for different quench methods: eq - equilib-
rium, unquenched melt; PP fix - quench with fixed particles and attractive
interaction (same intensity as in equilibrium, ε = 3); PP mob - quench with
mobile particles and attractive interaction as in equilibrium; PP fix10 -
quench with fixed particles and strongly attractive interaction (ε = 10).
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Figure 5.18: Distribution of the primitive path bond lengths for pure polymer
and composites after quench in absence of fillers.

quench. The energy of a primitive chain is given by:

E =

N
∑

2

Efene(|~ri − ~ri−1|) +
∑

j∈fillers

∑

i

ELJ(|~ri − ~rj |) (5.13)

We can simplify this expression by approximating the FENE potential by a
harmonic spring and by simplifying the Lennard Jones potential considering
that a particle has an energy gain of ε when it is adsorbed and does not feel
the presence of the fillers otherwise. We can also assume that the primitive
paths bond length has a constant value in the adsorbed layer and in the
unadsorbed segments (bridge, loop and tail segments). The path energy
becomes:

E(bb, ba, Na) = (N − Na)
k

2
b2
b + Na

k

2
b2
a − Naε (5.14)

where bb is the primitive path bond length of the bridge, loop and tail seg-
ments, ba is the bond length of the adsorbed segments and Na is the number
of adsorbed monomers. The primitive path conformations after quench are
given by the minimum of this energy for every chain (with a certain number
of topological constraints - the entanglements). Deriving this expression with
respect to Na and setting the derivative to zero gives the relation existing
between the two distinct bond lengths:

k

2
b2
b = ε +

k

2
b2
a (5.15)

and from here the bridge/loop segments bond length is given by

bb =

√

2ε

k
+ b2

a (5.16)
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Figure 5.19: Distribution of the primitive path bond lengths for pure polymer
and composites after quench with mobile attractive fillers.

Taking k = 100 and ε as the Lennard Jones potential intensity, this relation
is reasonably well verified by the results obtained from the PPA (see table
5.1). The last equation explains the fact that bridge segments are more
extended than adsorbed ones. If bb grows too large the extended spring in
the unadsorbed segment will pull out monomers from the adsorbed layer. On
the other hand if bb is too small the segment will be adsorbed by the surface
as it won’t be able to resist the surface attraction added to the spring force
from the adsorbed monomers. Thus equation 5.15 simply states that, in order
for the chain to be stable, unadsorbed segments have to exactly balance the
force from adsorbed segments.

5.4.3 Predicting the entanglement length

Next we will try to calculate the variation in Ne induced by the presence of
the attractive fillers. The idea is that the presence of fillers creates polymer
bridges that are seen by the chains as new entanglements to be added to the
already existing ones in the pure polymer. For instance, we measured the
average number of entanglements per chain given by:

nent =
N

Ne
− 1 (5.17)

We can consider that the bridges between fillers a chain has (nbr) contribute
as entanglements as long as they are not destroyed during the PP quench.
We assume that the chain acquires αnbr new entanglements (0 ≤ α ≤ 1, see
below for a discussion of the appropriate choice of α) that are due to bridges.
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Figure 5.20: Distribution of the primitive path bond lengths for pure polymer
and composites after quench with fixed attractive fillers.

So the number of entanglements per chain in the nanocomposite becomes:

nnc
ent = npure

ent + αnbr =
N

Nnc
e

− 1 (5.18)

where npure
ent is the number of entanglements per chain in the unfilled melt

and Nnc
e is the effective entanglement length measured from the PPA of the

nanocomposite. In equation 5.18 we assume that the entanglements present
in the pure polymer system persist in the nanocomposite and the bridges add
independently their contribution. We calculate the number of bridges per
chain by counting the number of fillers present in a typical volume spanned by
the chain (a sphere of radius RG). The number of fillers in a sphere of radius
RG is given by ρf × 4/3πR3

G = Φ × (RG/rf )3. Taking rf = 3.12σ and the
measured bulk RG of the chains, this estimate predicts 5.3 fillers per chain for
the Φ = 10 system and 10.6 for Φ = 20. These values are in good agreement
with the simulation data as can be seen in table 5.1. Rewriting equation 5.18
using this expression gives an estimate for the effective entanglement length
in the nanocomposite:

N

Npure
e

− 1 + α(Φ(RG/rf )3 − 1) =
N

Nnc
e

− 1 (5.19)

Nnc
e = N/[Npure

e + α(Φ(RG/rf )3 − 1)] (5.20)

In order to compare this result to the simulation data, we need to deter-
mine the value of α. It is reasonable to believe that during the quench with
strong particle monomer attraction ε = 10, we have α = 1 (there is no signif-
icant bridge loss during the quench). To verify this assumption we calculated
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Figure 5.21: Distribution of the primitive path bond lengths for pure polymer
and composites after quench with fixed strongly attractive (LJ10) fillers.

a per chain quantity that can be described as adsorption correlation after
quench: it is defined as the number of adsorbed monomers in the primitive
chain that remain adsorbed and adsorbed to the same filler as they were
in the original chain, divided by the total number of adsorbed monomers
of the original chain. If this quantity equals one, every adsorbed monomer
of the original chain remained adsorbed to the same filler and zero means
that every originally adsorbed monomer is either desorbed or adsorbed to
a different filler in the primitive chain. The calculated correlation is shown
in table 5.1, in both systems the primitive paths obtained with the quench
with fixed particles and ε = 10 show the largest degree of correlation to the
original adsorption pattern of the chains (see fig. 5.23).

It is important to note that, even if the number of fillers and bridges per
chain does not vary much for the other quenches, there is a more impor-
tant change in the conformation, resulting in keeping only the moderately
extended bridges and leading to shorter primitive paths: this situation is
illustrated on figure 5.23.

The Nnc
e estimate from equation 5.20 with α = 1 is in agreement with

the PPA results for ε = 10 (table 5.1), predicting Nnc
e ≈ 36.5 for Φ = 10 and

Nnc
e ≈ 26.4 for Φ = 20. We can conclude that the simple expression given

in 5.20 can be used to estimate the Ne reduction in the filled polymer melt.

5.4.4 Conclusion

We used two different ways to predict the entanglement length in the nanocom-
posite from equilibrium properties. The observed decrease can be explained
by packing arguments: the packing length in the composite decreases as
there is less space per monomer while the effective bond length increases
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Figure 5.22: Snapshot of the primitive path of a chain in presence of filler
particles (fixed fillers, LJ10). Adsorbed segments are shorter than bridge
segments.

(as chain dimensions are larger or as large as in the pure polymer). On
the other hand we can explain the Ne variation by taking into account the
inter-filler bridges in the composite. When considering every bridge as new
entanglement a large decrease in Ne can be obtained, fitting the PPA re-
sults with strongly attractive fixed filler particles. The two predictions are
essentially based on the same idea. The packing length reduction means
that the nanoparticles bring chains closer together allowing the formation
of entanglements “through” the fillers. In the bridge-based prediction fillers
are considered to form links between chains, making them interact with each
other in the same way an entanglement would. The idea of the entanglement
forming fillers requires in both cases the presence of filler polymer attraction.

In the case of repulsion the PPA results are similar to the quench results
in absence of fillers. In this setup, there is no Ne variation for Φ = 10% and
a reduction of around 10-15% for Φ = 20% that we relate to the increase in
chain dimensions at equilibrium in this system.

Recent experimental work has suggested that the entanglement network
remains unmodified by sub-chain sized filler particles (ideal organic nanopar-
ticles) having neutral interaction with the polymer [13, 78]. On the other
hand, experiments with particles strongly interacting with the polymer ma-
trix showed a large increase in the viscosity for entangled melts [14]. This
effect was attributed to the possible formation of polymer-filler network.
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Figure 5.23: Snapshot of a chain along with its primitive paths after a quench
with ε = 3 (red) and ε = 10 (blue). The ε = 10 quench preserves most of
the original adsorptions of the chain.

These experimental findings are in qualitative agreement with our predic-
tions.

The choice of the parameter α in our model, as well as the type of PP
quench to be applied when a particular physical system is investigated, need
to be further discussed. Filler mobility in the entanglement network of the
polymer plays undoubtedly a major role in the reinforcement. Light, mobile
fillers diffusing faster than the reptation time of the chains will undoubt-
edly have smaller reinforcing effect or even accelerate disentanglement and
participate in constraint release [78]. Heavier, more compact fillers (such as
silica, or grafted fillers), can on the contrary anchor entanglements. After the
PP quench, as the achieved configuration is an energy minimum, the entan-
glement length does not depend on filler mass. Thus experimental results
for heavy particles composites should be better modeled with fixed fillers
quench whereas particles with typical diffusion time faster than τd would
correspond to a mobile filler quench. The parameter α should depend on
the surface chemistry of the inclusions for heavy particles and for light par-
ticles its value has to be adapted to take into account an eventual constraint
release occurring due to the high filler mobility.
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5.5 Stress relaxation and dynamics in polymer nanocom-

posites

Next we study the dynamical behavior of the filled melt compared to the bulk
system. A variation in the entanglement density between the pure and filled
systems is in principle reflected in the plateau modulus and therefore in the
stress autocorrelation function of the systems. We explore here two distinct
ways to obtain the G(t) function: step shear and equilibrium determination.

The first setup consists in applying a step shear to the system and mon-
itoring the following stress decay over time. Starting from a fully relaxed
equilibrium configuration we impose a deformation εsh to all the atoms:

xnew = u(x, y) = x(1 + εshy) (5.21)

the corresponding shear rate is given by

∂u

∂y
= εshδ(t) (5.22)

the resulting stress is then [31]

σxy(t) =

∫ t

−∞
G(t − t′)u̇(t′)dt′

= εshG(t) (5.23)

Where G(t) is the stress correlation function. For entangled melts we know
that in theory this function has an initial decay and for times τe < t < τd

(where τe is the entanglement time and τd is the reptation time) shows a
plateau (fig. 2.6). Its value is given by the plateau modulus [31] (equation
2.36).

Thus the measurement of the stress relaxation after a step shear provides
a way to estimate some characteristics of the primitive paths. In practice due
to stress fluctuations the stress correlation function is difficult to accurately
obtain using the global stress as was discussed in chapter 3. Here we measure
the stress using the Rouse modes of the chains following equation 2.26.

σp
xy(t)Vp

σnc
xy(t)Vnc
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(5.25)

The measurement of this quantity in practice suffers from several draw-
backs. First, the computational cost for this setup is very high. As we are
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using Lees-Edwards boundary conditions due to the tilted box, the simu-
lation has low parallel efficiency. Second, in order to obtain a measurable
stress signal, the deformation applied to the simulation box has to be rather
large because of the stress fluctuations. We performed 5 distinct simulations
starting from independent equilibrated initial configurations for every system
(pure, Φ = 10%, Φ = 20%), and for three distinct values of the deformation
εsh = 5%, 10%, 20%. Error bars were calculated from the dispersion of the
signal from the simulations with identical parameters and different initial
states. The resulting stress curves for εsh = 5% have error bars consider-
ably larger than the difference of the stress between the systems. For higher
deformations non linear effects (Payne effect) are expected at the particle
volume fractions we study. The Payne effect we observed between 5% and
20% of deformation was around 30% for Φ = 20%, but the initial drop for
εsh < 5% could not be estimated. Results for εsh = 10% are shown on fig.
5.24.
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Figure 5.24: Stress correlation function calculated from equation 5.23 after
step shear deformation of εsh = 10%.

The stress was calculated from the first 50 modes of the chains. The
curves follow approximately the 1/

√
t power law predicted by theory. The

noise in G(t) remains rather large and a plateau cannot be clearly distin-
guished. The values for Φ = 10% and Φ = 20% are on average 38% and
43% higher than the response of the pure system. A difference around 10%
smaller was observed for a deformation of εsh = 20%. The uncertainty in
these values are very large, so we do not discuss them further.

The second method for obtaining the stress correlation function is the
equilibrium based Rouse modes method discussed in section 3.3.2. We mon-
itored the values of the first 60 Rouse modes of the chains in equilibrium. To
obtain G(t) we performed averaging over chains, time origins and the three
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off diagonal components of the stress tensor (see section 3.3.2 for details).
The resulting functions are shown in fig. 5.25.
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Figure 5.25: Stress correlation function calculated in the nanocomposite
systems from the first 60 equilibrium Rouse modes. Only every 50th symbol
of the curves is shown for clarity.

The simulation time in the three systems for this measurement was 2 ×
105τ . The stress correlation does not show a plateau and follows a 1/

√
t

behavior. By measuring the relaxation of the individual Rouse modes we
established that, within the simulated time span, the first mode stays more
than 95% correlated to its initial value. Full relaxation allowing to extract
a relaxation time only occurs for modes p > 20 (see fig. 5.26).

From the measured Rouse times for modes p > 20 we find a slowing down
in dynamics of around 20% for Φ = 10% and around 50% for Φ = 20%.
Knowing that these modes are associated with relaxation on sub-Ne lenght
scales, this increase in relaxation times has undoubtedly its origin in the
increased monomeric friction in the filler/polymer interface. Even if it could
be partly due to bridges, a relation to the entanglement length cannot be
easily established. Due to the slowing down at the interface, the measured
G(t) is roughly increased by about 8% and 18% for Φ = 10% and Φ = 20%.

From the results above we can conclude that, in order to extract an
information relevant to the entanglement network from dynamics, the system
has to be simulated for at least several disentanglement times, which, for the
chain length considered in our study, is presently out of reach for molecular
dynamics.
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Figure 5.26: Calculated values of the Rouse times in equilibrium for the N =
500 systems. The 1/p2 behavior is followed by modes of roughly p > 20. The
simulated time does not permit the determination of an accurate relaxation
time for slower modes.

5.6 Discussion and conclusions

In this chapter we further extended our study to cover the melt properties in
a wider zone covering the whole interface with different microscopic chemical
nature of the wall, as well as for a filled melt. We examined the dynamic
behavior for a polymer melt at the interface with a flat wall and a flat wall
subject to surface treatment creating about 20% of chemisorbing sites on the
surface. We find that the modifications in the dynamics due to the surface
treatment depends on the level of entanglement of the melt. In the case of
unentangled melts, the dynamics is accelerated compared to the bulk due
to the repulsive surface. The grafted chains locally slow down the dynamics
in the surface plane compared to systems without grafted chains, but the
relaxation times are smaller than in the bulk and there is a local decrease
in the integrated stress relaxation function as in the case of a bare wall. In
the case of weakly entangled melts, the presence of the surface induces a
decrease (∼ 20 − 40%) in the entanglement density in a range of about RG

from the surface. The presence of the grafted chains prevents this depletion
of the entanglements and further reduces the entanglement length in the
interfacial layer, in part due to the smaller chain dimensions. This leads to
slower dynamics in the interfacial layer and a local increase of the relaxation
times of the entangled modes near the surface. A summary of the dynamical
behavior of the chains is given in fig. 5.27. The behavior of the relaxation
times can be predicted by measuring the local entanglement length, following
the expression given by reptation theory.

Our results on dynamics are obtained for chains that are only slightly
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Figure 5.27: Schematic representation of the relative variation of the relax-
ation times of the modes of the polymer chains at the interface.

above the entanglement threshold but the primitive path analysis extends
to chains further in the entangled regime. The results of the two methods
are consistent and if a contribution from the grafted chains is added we can
explain the observed moderate reinforcement in systems of T ≥ 2Tg where
there can be no formation of glassy bridges.

We expect that these conclusions would hold for highly entangled melts.
For longer chains the extension of the region where entanglement effects are
enhanced by the grafting will be larger. It is likely that the motion of the
chains perpendicular to the interface will be slowed down as well within this
region, as entanglements will also hinder this type of motion.

We note that the explanation of reinforcement by local variation of the
entanglement length we proposed here is also relevant in a wider range of
systems. We considered a surface with a certain number of infinitely attrac-
tive sites, but similar effects can be expected for a surface with a fraction
of finitely attractive sites or a globally attractive surface. Thus the slowing
down mediated by the adsorbed, slowest chains plays a role in the high tem-
perature mechanical properties of nanocomposite polymer based materials.

Finally, we studied a model polymer nanocomposite with spherical fillers.
We report that the presence of attractive nanofillers with subchain dimen-
sions and volume fraction allowing bridging leads to an effective increase of
the total entanglement density in the system. Fillers tend to act as reticu-
lations, creating new effective entanglements between chains. The measured
reduction of the entanglement length can be partly predicted by packing
arguments and with a model taking into account the polymer bridges be-
tween fillers in the melt. This effect, different from the confinement effect
near a grafted surface discussed above, should play a role in the mechanical
properties of nanocomposites filled with small size attractive fillers.
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6.1 Introduction

Numerous experimental studies have suggested that the thermal conductivity
of nanofluids is unusually high [15, 17]. On the theoretical side predictions
of effective medium theories are accurate in some cases [79] but generally
fail to account for the large enhancement in conductivity. Despite of the
large number of - sometimes conflicting or controversial - suggestions and
experimental findings [80] (fig. 1.2), the microscopic mechanisms for such an
increase remain unclear.

Knowing the importance of interfaces in nanocomposite materials, an
essential feature of nanofluids is the large influence of interfacial thermal
resistance, called Kapitza resistance. Its meaning can be understood by
defining a characteristic Kapitza length as the product of the Kapitza resis-
tance with the thermal conductivity. This length is simply the thickness of
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material equivalent to the interface from a thermal point of view as shown
in figure 6.1.

Figure 6.1: Schematic illustration of the Kapitza length of the interface

The Kapitza resistance has been mostly studied in the case of superfluid
helium in contact with a solid, or in the case of grain boundaries between
pure crystals [81]. In both cases the conductivity is large, so the Kapitza
length is large and measurable effects can be expected. Size effects on the
thermal conductivity of composites are also an indirect way of assessing the
thermal properties of interfaces. These interfacial properties, as we will see
later, are crucial for the conductivity of the material.

In this work we use non equilibrium molecular dynamics “experiments”
to explore the transfer of heat in a model fluid containing nanoparticles.
First we discuss a method for measuring the interfacial resistance. Our ap-
proach is closely related to experimental techniques, but we also make use of
the flexibility allowed by molecular simulations to explore extreme cases in
terms e.g. particle/fluid mass density mismatch and to control the behavior
of the particles to assess the influence of collective effects. We concentrate on
model systems that are expected to be representative of generic properties.
We explore a large range of parameters and make a quantitative comparison
with effective medium calculations. We examine in detail the influence of
Brownian motion on the thermal transport. By studying the thermal con-
ductivity in a system with two particles and by precisely controlling their
positions we are able to observe the influence of collective effects consisting
in different particle-particle interactions and displacement with respect to
the temperature gradient.

6.2 Simulation method

The model fluid used in this study is a simple Lennard-Jones liquid. The
nanoparticles (solid phase) suspended in the fluid are represented by roughly
spherical inclusions of a bulk fcc solid. All atoms in our system interact
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through Lennard-Jones interactions

Ulj(r) =

{

4ε((σ/r)12 − c(σ/r)6), r ≤ rc

0, r > rc
(6.1)

where rc = 2.5σ. The coefficient c is equal to 1 for atoms belonging to the
same phase, but can be adjusted to modify the wetting properties of the
liquid on the solid particle. It has been shown that the variation of this pa-
rameter is related to the contact angle between the phases thus providing an
efficient way to study systems with different interfacial microscopic wetting
behavior [82, 83]. A coefficient of c = 1 defines a wetting interaction while
the non wetting case is modeled by c = 0.5. Within the solid particles, atoms
are linked with their neighbors through a FENE (Finite extension non-linear
elastic) bonding potential:

UFENE(r) = −k

2
R0 ln(1 − (

r

R0
)2) + 4ε((σ/r)12 − (σ/r)6) + ε, r < R0

(6.2)
where R0 = 1.5σ and k = 30.0ε/σ2. This potential, combined with the
Lennard-Jones interaction results in a narrow distribution of the distance
between linked atoms around 0.965σ as discussed in section 3.2. A solid
particle in the fluid was prepared as follows: starting from a fcc bulk ar-
rangement of atoms at zero temperature, the atoms within a sphere were
linked to their first neighbors by the FENE bond. Then the system was
equilibrated in a constant NVE ensemble with energy value corresponding
to a temperature kBT = 1ε. A particle contains 555 atoms, surrounded by
the atoms of the liquid. The number density in the system is ρ = 0.85σ−3.
As the simulated particles are not exactly spherical, but present some FCC
facets, special care should be taken when evaluating their radius. Here we
estimate this radius (Rp) from the radius of gyration of the solid atoms:

〈R2
g〉 =

1

N

N
∑

1

(ri − rCM )2 =
3

5
R2

p (6.3)

where R2
g is the measured radius of gyration of the particle atoms, and the

second equality applies to an ideal sphere. Taking σ = 0.3nm this corre-
sponds to a particle radius of order Rp ∼ 1.5nm. The so obtained solid
particles behave much like ideal harmonic solids. Non linear effects asso-
ciated with the non linearity of the bond potential are absent in a wide
temperature range. This assumption was verified through equilibrium sim-
ulations at different temperatures monitoring the energy per particle. We
equilibrate the particle and the surrounding fluid for several values of the
temperature and than measure the mean value of the total energy of the
nanoparticle for a period of around 1000τ . The observed relation is linear
and indicates a particle heat capacity very close to 3kBTN as shown on fig.
6.2.
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Figure 6.2: Plot of the total energy of the particle for different temperatures.
The error bars indicate the standard error from the energy fluctuations. The
particle contains 555 atoms.

This value is what one should expect for an harmonic ideal solid, i. e. a
capacity of 3kB per atom in the solid phase. There are no deviations from
this behavior in the temperature range (from T = 1 to T ≈ 3) of interest
in our study. In order to cover a large range of physical situations we study
systems of both wetting (c = 1) and non wetting (c = 0.5) particles. For
each new value of the constant c the system is re-equilibrated coupled to a
Nose-Hoover thermostat and pressostat to the same pressure. Changing in-
teraction parameters results in a change in pressure due to different behavior
of the solid-liquid interface and the equilibration of the different systems is a
crucial point. We also explore different density mismatch between the solid
and liquid phase (mp/ml = 1, 50, 100 where ml is the mass of a fluid atom
and mp is the mass of a particle atom) and different volume fractions of the
particle.

Simulating Heat Flow and Measuring Conductivity

The most simple and direct method of measuring thermal conductivities
in a simulation is undoubtedly non equilibrium molecular dynamics. With
this set up a temperature gradient is established through the sample and
thermal properties are calculated from the measurement of energy fluxes.
This method involves locally injecting and evacuating heat in the system.
In our study this is achieved by applying two thermostats with different
temperatures in the two ends of a fluid slab. The periodicity of the box is
maintained in the directions perpendicular to the temperature gradient and
the system is non periodic in the direction of the heat flux. If one allows
the gradient to change sign in the simulation box a stationary heat flow
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can be achieved in a fully periodic box [23]. However with this setup special
attention should be payed in the regions of abrupt change in the temperature
gradient, and the simulated system is less physically realistic. The systems
we study are periodic in the x and y directions. Following z the liquid is
confined by the repulsive part of an integrated 9-3 Lennard Jones potential
(ideal flat wall). The thermostats are applied to a fluid slice in the vicinity
of the walls of width of around 3 atom diameters. The thermostat consists
in a rescaling of the velocities of the particles currently present in the slice at
a given time interval. The temperature measured locally in slices parallel to
the heat flow direction shows that a linear profile is established in the fluid
slab. The value of the temperature gradient depends on the temperature of
the thermostats and their rescaling time constant (see fig. 6.3).
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Figure 6.3: Dependence of the temperature profile on the thermostat time
constant for a pure liquid. A smaller rescaling interval increases the efficiency
of the energy transfer between the thermostat and the liquid inducing a
smaller temperature jump.

A smaller rescaling interval increases lightly the energy transfer between
the thermostat and the fluid thus maintaining the thermostated layer at
an average temperature closer to the temperature of the thermostat. It is
thus important to have the same time constant for the thermostat in all
the systems in order to compare the values of the energy flow and detect
its variations in the different setups. We set this value to dt = 1.5τ in the
simulations. Using this heat transfer setup, the local thermal conductivity
is given by:

λ(z) =
J(z)

∇T (z)
(6.4)

where J(z) is the heat flow and T (z) the temperature. This formula is easily
generalized to the whole slab by taking the heat flow at the thermostats
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and a mean slope of the temperature profile. The problem is that such an
estimation of the mean gradient is prone to error. The mean temperature
profile for a pure liquid has a well defined slope, even if the fluctuations
and the fitting procedure cause error. The situation is worse in the presence
of nanoparticles. The temperature profile averaged over liquid and solid
atoms has noticeable fluctuations around the particles as the gradient is
different in the two phases. That is why measuring an effective value of the
conductivity that does not involve fitting and assuming linear temperature
profile is preferable. If the thermostat relaxation time is constant for all
systems, a well defined values are the two thermostats temperatures. Thus
we define the slab conductivity as:

λeff =
J

(T1 − T2)/L
(6.5)

where J is the mean stationary heat flux measured by the thermostats, Ti

is the temperature of the thermostat i and L is the length of the simulation
box in the z dimension. The conductivity chosen this way is only sensible
to variations in the energy flux and is a more precise method for capturing
free of artifacts variations in conductivities between systems. Another point
that needs attention is the diffusion of the nanoparticle in the liquid under-
going a heat flow. Usually there is a thermal drift of the particle position
(thermoporesis). To avoid any effect of thermophoresis or coupling of the
thermostat to the particle, the particles are constrained to stay away from
the thermostated regions. This is achieved by either tethering weakly their
center of mass to a fixed point by harmonic springs of stiffness k = 30 or by
applying a flat repulsive potential only to the particle atoms, thus constrain-
ing the particles to move in a plane in the middle of the simulation box away
from the thermostats. Controlling the particles position also allows to study
different configurations and explore the influence of the spatial distribution
of the particles on the thermal properties. The temperatures of the two
thermostats were T1 = 2 and T2 = 1. In order to compare the conductivity
results for the different systems they were first equilibrated to the same pres-
sure at a temperature T = 1.5, then a non equilibrium run was performed
for about 1500-2000 τLJ to make sure the pressure stays the same for the
systems of different nature and finally a production run of about 15000 τLJ

during which thermostats energy, particle positions and temperature profiles
are monitored.

6.3 Modeling pump-probe experiments and deter-

mination of the interfacial resistance

As mentioned above, in nanoscale systems it has been observed that interfa-
cial effects are very important [84]. In order to compare quantitatively the
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conductivity variations to the predictions of effective medium calculations
it is necessary to know the value of the interfacial (Kapitza) thermal resis-
tance. Its value in simulations can be determined both by equilibrium and
non equilibrium methods. If we have two infinite media - a solid slab in
contact with a fluid, RK can be determined via a Green-Kubo relation:

1

RK
=

1

SkBT 2

∫ ∞

0
〈q(t)q(0)〉dt (6.6)

This equation cannot be applied in the case of a spherical particle and it
is preferable to use a non equilibrium method for the determination of RK .
In our study this is achieved by performing a simulation inspired by the
experimental setup of pump-probe experiments (known also as transient ab-
sorption). The "pump-probe" experiments are used in nanofluids to estimate
interfacial resistance. They are an essential ingredient in modeling the ther-
mal properties of highly dispersed systems [85]. The idea is to emit a short
laser pulse (pump) that converts some ground state atoms of the metallic
particles into their excited states thus increasing selectively the particle tem-
perature. Typically, the temperature of the metal nanoparticles is inferred
through changes in optical absorption of the particle-fluid mixture measured
by a second, time-delayed beam (probe).

To reproduce this procedure in simulation we prepare a system with a
single nanoparticle containing 555 atoms, surrounded by 30000 atoms of
liquid. The number density in the system is ρ = 0.85σ−3. For a σ = 0.3nm
this corresponds to a system size L ∼ 10nm (the particle radius being about
Rp ∼ 1.5nm). The particle volume fraction in the system is about 1.4%. The
transient absorption simulation starts with an equilibrium configuration at
temperature T = 1, by “heating” uniformly the nanoparticle. This heating
is achieved by rescaling the velocities of all atoms within the solid particles,
so that the kinetic energy per atom is equal to 3ǫ. We then monitor the
kinetic energy per atom of the particle as a function of time, which we take
as a measure of the particle temperature. The system evolves at constant
energy, but the average temperature of the liquid, which acts essentially as a
reservoir, is only very weekly affected by the cooling process. Within a few
time steps the kinetic temperature of the particle drops to a value of Tp ≈ 2.
This evolution corresponds to the standard one for an isolated, harmonic
system. As the particle was equilibrated at Tp = 1, we have due to kinetic
and potential energy equipartition 〈Epot(t = 0)〉 = 1/2. As we start our
simulation with 〈Ek(t = 0)〉 = 3, within a very short time the kinetic energy
drops to a value of 1.5, then the potential energy stored in the particle atoms
positions yields its contribution of 1/2 to the temperature, equilibrating it
to a value of 2. This first step does not involve any heat exchange with the
liquid surroundings.

The subsequent decrease of the particle temperature, on the other hand,
directly probes such exchanges. A quantitative understanding of this decay
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is particularly important, as it remains an essential experimental tool to
quantify heat transfer across the particle-liquid interface. In figure 6.4, we
compare the molecular dynamics simulation result for the temperature as
a function of time, to the result of a continuum calculation involving the
interfacial (Kapitza) thermal resistance as an adjustable parameter. The
continuum calculation makes use of the standard heat transfer equations

C
dTp

dt
= −4πR2

pj(Rp, t) (6.7)

∂Tl

∂t
= Dth

1

r2

∂

∂r

(

r2 ∂Tl(r, t)

∂r

)

(6.8)

where Tl(r, t) and Tp are the liquid and particle temperatures, respectively.
C is the thermal capacity of the particle, Rp its radius, Dth is the thermal
diffusion coefficient of the liquid. The above equations are solved with the
following boundary conditions:

j(Rp, t) =
1

Rk

(

Tl(R
+
p , t) − Tp(t)

)

(6.9)

j(R∞, t) = 0 (6.10)

where R∞ is chosen so that 4
3πR3

∞ is equal to the volume of the simulation
box from the previous section. The initial condition is

Tp(0) = 2 (6.11)

Tl(r, 0) = 1 (6.12)

The temperature was assumed to be uniform inside the nanoparticle. This
assumption is based on the simulation results, where the observed temper-
ature profile inside the particle was found independent of position within
statistical accuracy. We used data found in the literature [83, 86] for the
values of the fluid thermal diffusivity and conductivity. The particle radius
is estimated via equation 6.3. The heat capacity of the particle is taken to
be 3kBTN , as obtained from equilibrium simulations (fig. 6.2).

The value of the interface thermal resistance (Kapitza resistance) appear-
ing in equation 6.10 was adjusted to fit the simulation data. The value that
fits the simulation results for the wetting system m = 1 and c = 1 was found
to be RK ≈ 0.8. This number is in agreement with the thermal resistance
for a wetting flat wall calculated in [83] for a similar system with a different
potential in the solid phase, and a completely different simulation method.

The same cooling simulation was performed using a non wetting particle
(c = 0.5). A substantial slowing down of the cooling rate was also observed,
which can be attributed to an increased Kapitza resistance. The resulting
value of RK is 3.2 (Lennard-Jones units), again in agreement with previous
determinations for flat surfaces [83]. In real units, a value RK = 1 corre-
sponds typically to an interfacial conductance G = 1/RK , on the order of
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100MW/Km2. The conversion to physical units is made by taking a Lennard-
Jones time unit τLJ = 10−12s, and a length unit σ = 0.3nm. The unit for G
is energy/temperature/(length)2/time. As the energy/temperature ratio
is given by the Boltzmann constant kB, we end up with a unit for G equal
to kB/σ2/τLJ ≃= 108W/m2/s. In view of the results above, we can con-
clude that the method is a sensitive probe of interfacial resistance, as usually
assumed in experiments.
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Figure 6.4: Comparison between the temperature evolution from simulations
and the solution of the continuum heat equation. The value of the Kapitza
resistance taken for the calculation is RK = 0.8.

In the second part of this section, we explore the influence of thermal
Brownian motion of the particle on the cooling process. First, let us recall
that the naive idea, that diffusion could speed up cooling by displacing the
particles towards cooler fluid regions is easily excluded. Quantitatively, diffu-
sion of the particle and heat diffusion take place on very different time scales.
The diffusion coefficient of the particle was measured, in our case, to be three
orders of magnitude smaller than the heat diffusion coefficient in the fluid.
We also suppressed diffusion by tethering the particle to its initial position
with a harmonic spring of stiffness k = 30ǫ/σ2. As expected, no effect is
observable on the cooling rate. This measurement cannot probe for another
possible effect - the influence of fluid flow on the cooling. As discussed in
[87] the heat transfer from a sphere in a low Reynolds number velocity field
is enhanced by the latter. Because of the diffusion velocity of the Brownian

particle v =
(

3kBT
m

)1/2
, it can be viewed, at any given moment, as a particle

in a velocity field [19]. To probe the influence of this phenomenon, we tether
every single atom in the particle to its initial position with a harmonic spring
(k = 30) and compare the measured temperature evolution with the previous
results. The cooling rate is still not influenced by this manipulation even if



128 Chapter 6. Heat transfer and conductivity in nanofluids

the center of mass is now “frozen” (fig. 6.5).

0 500 1000 1500 2000
t

-3

-2

-1

0

1

2
Z

 C
M

0 500 1000 1500 2000-3

-2

-1

0

1

2
spring center of mass
free diffusion
spring all atoms

Figure 6.5: Evolution of the Z coordinate of the particle center of mass for
the different systems: free particle, particle confined by a spring attached to
its center of mass and particle where all atoms are tethered to their initial
position. The spring constant for all springs is k = 30.

A final check on the influence of such velocity effects was attempted by
modifying the mass of the atoms that constitute the nanoparticle. This
artificial procedure reduces the thermal Brownian velocity, and when it is
carried out we indeed observe a strong slowing down of the cooling process.
However, this slowing down is again completely independent of the center
of mass motion of the particle, which is controlled by the presence of the
tethering springs. On the other hand, the effect of this mass density increase
is easily understood in terms of an increase of the interfacial resistance. A
higher mass of the particle atoms decreases the speed of sound in the solid
and thus leads to a larger acoustic mismatch between the two media, which
slows down the cooling. Numerically, we find that for a mass of 100 times
the mass of a liquid atom, the Kapitza resistance increases to RK = 7.4 (fig.
6.7).

In summary, we have shown that the Brownian motion of the particle does
not affect the cooling process. As a byproduct, we have shown that the mass
density parameter provides a flexible numerical way of tuning the interfacial
resistance, which will be used in the following section of this chapter.
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Figure 6.6: The evolution of the particle temperature for the different sys-
tems: free particle, particle confined by a spring attached to its center of
mass and particle where all atoms are tethered to their initial position. Ev-
ery curve is the mean value from 20 simulation runs. No effect is observed.

6.4 Conductivity of nanofluids

6.4.1 The Maxwell Garnett calculation

The standard way of predicting the thermal conductivity of composite ma-
terials are the effective medium calculations. If one takes into account the
interfacial thermal resistance between the different materials in the compos-
ite, the resulting equation for the thermal conductivity is called a Maxwell
Garnett equation. This approach has been successful in predicting the ther-
mal properties of solid composites, as well as for some particle suspensions.
We present briefly here the derivation of the Maxwell Garnett equation for
the effective thermal conductivity in a two phase media (matrix with spher-
ical inclusions) taking into account the interfacial thermal resistance. We
consider a macroscopically homogeneous material with thermal conductivity
λeff in a temperature gradient following some axis: Teff (r) = −~g·~r. We con-
centrate on a spherical inclusion of radius r0 and conductivity λ1 surrounded
by a spherical shell of host material of thickness r1, matrix conductivity λ2

and we assume that the inclusion does not change the temperature field for
r > r1. The two radii define the volume fraction of the inclusion, Φ = r3

0/r3
1

(fig. 6.8). The effective conductivity can be determined by solving the steady
state diffusion equation for the temperature:

∆T (r, θ) = 0 (6.13)
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Figure 6.7: The evolution of the particle temperature as a function of the
mass of the particle atoms. Every curve is the mean value from 20 simulation
runs. The increased mass slows down heat exchange.

where θ is the angle between ~r and the external gradient ~g. The solutions of
equation 6.13 in the three different regions are given by:

T1(r, θ) = Ar cos θ, 0 < r ≤ r0 (6.14)

T2(r, θ) = (Br + E/r2) cos θ, r0 < r ≤ r1 (6.15)

Teff (r, θ) = −gr cos θ, r1 < r (6.16)

The unknown constants in the equations above are to be determined from
the appropriate boundary conditions. These are obtained by expressing the
continuity of the heat flow at the domain boundaries and the value of the
temperature field:

T1(r0, θ) − T2(r0, θ) = −λ1
∂T1

∂r
(r0)RK (6.17)

λ1
∂T1

∂r
(r0) = λ2

∂T2

∂r
(r0) (6.18)

T2(r1, θ) = Teff (r1, θ) (6.19)

λ2
∂T2

∂r
(r1) = λeff

∂Teff

∂r
(r1) (6.20)

where RK is the interfacial thermal resistance responsible for a tempera-
ture jump at the matrix-inclusion interface. Substituting the solutions for
the temperature fields in equations 6.18-6.20, we end up with the following
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Figure 6.8: Schematic presentation of the matrix with dispersed inclusions

relations:

Ar3
0 − Br3

0 − E + λ1RKAr2
0 = 0 (6.21)

λ1Ar3
0 − λ2Br3

0 + 2λ2E = 0 (6.22)

Br3
1 + E + gr3

1 = 0 (6.23)

λ2Br3
1 − 2λ2E + λeffgr3

1 = 0 (6.24)

Using this set of equations, one can obtain the Maxwell Garnett equation
for the effective conductivity with interfacial thermal resistance:

λeff

λ2
=

(

λ1

λ2
(1 + 2α) + 2

)

+ 2Φ
(

λ1

λ2
(1 − α) − 1

)

(

λ1

λ2
(1 + 2α) + 2

)

− Φ
(

λ1

λ2
(1 − α) − 1

) (6.25)

where α = RKλ2/r0. The parameter α is crucial for the effective conduc-
tivity. It represents the ratio of the thermal interface width to the inclusion
radius. The product RKλ2 called Kapitza length is simply the thickness of
material 1 equivalent to the interface from a thermal point of view (see figure
6.1).

Equation 6.25 predicts an increase in the effective conductivity for α > 1
and a decrease for α < 1, regardless of the value of the conductivity of the
inclusions or of their volume fraction. If a composite is made of inclusions
whose size is smaller than the thermal interface they create, the resulting
effective conductivity will be smaller than the one of the matrix, even if
the inclusions are much more conductive than the matrix. The prediction
depends very weekly on the ratio λ1/λ2, less than 1% for 10 < λ1/λ2 < 100.
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The minimum value of λeff/λ2, obtained when α → ∞, is 1−Φ
1+Φ/2 while the

maximum possible enhancement (for λ1 → ∞ and RK → 0) is 1+2Φ
1−Φ .

6.4.2 Single particle in a heat flow

In this section we turn to the direct measurement of the thermal conductivity
of a nanofluid slab in a thermal gradient. Periodic boundary conditions are
maintained in the x and y direction and the system is confined by a flat
repulsive potential in the z direction. We study systems with particle volume
fraction of 2%, 13% or 12%. The volume fraction is defined as the volume
of the particle divided by the volume of the fluid outside the thermostats.

Figure 6.9: Snapshot of the system used to evaluate the thermal conductivity
with a particle of 13% volume fraction.

First we checked the influence of Brownian motion on the measured con-
ductivities. The conductivity was measured in several different set-ups, the
particle movement was controlled by attaching its center of mass with a
spring, by attaching all its atoms to their initial positions and by letting the
particle diffuse freely in the x− y plane in the middle of the simulation box.
As expected from the study in the previous section, no effect of the particle
diffusion on the fluid conductivity was observed. The effective conductiv-
ity measured for the particle diffusing in 2D, the particle attached with a
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single spring or the particle where all atoms were attached to their initial
positions has the same value within 1% which is below the error bar of the
measurement (around 2-3%).

Now we investigate the effect of the presence of a single nanoparticle on
the thermal conductivity of the fluid. In this system the particle center of
mass is at equal distance from the two thermostats (fig. 6.9). We performed
simulations for a small volume fraction (Φ ∼ 2%), where we were not able
to detect any change in thermal conductivity compared to the bulk fluid.
At a higher volume fraction (Φ ∼ 13%), on the other hand, we observe
a clear decrease in the heat conductivity associated with the presence of
the nanoparticle (fig. 6.10). The Kapitza resistance RK for the considered
particles ranges from 1 to 7 so that the associated characteristic Kapitza
length is in all cases on the order of and larger than the particles diameter.
This means that the decrease must be interpreted in terms of interfacial
effects as discussed in section 6.4.1. To quantify these effects, we use the
Maxwell-Garnett equation 6.25 [88].

The Kapitza resistance can be modified by tuning either the liquid solid
interaction coefficient c, or the mass density of the solid, or a combina-
tion thereof. Figure 6.10 illustrates the variation of the measured effective
conductivity for several values of the Kapitza resistance, determined inde-
pendently for various values of these parameters. It is seen that the observed
variation (decrease in our case) in the effective conductivity is very well de-
scribed by the Maxwell-Garnett expression. This expression also allows us to
understand why the heat conductivity does not vary in a perceptible manner
for small volume fractions (∼ 2%), for which the predicted change would be
less than 2%, within our statistical accuracy.
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Figure 6.10: Comparison between the ratio of the effective conductivity to
the conductivity of the pure liquid of the simulated systems and the values
obtained from the Maxwell Garnett equation.



134 Chapter 6. Heat transfer and conductivity in nanofluids

6.4.3 Study of Collective Effects

Given the previous discussion it is rather clear that Brownian motion can-
not cause an increase in the conductivity and in the case of small nanoscopic
particles the interfacial resistance can cause a decrease in the effective con-
ductivity. This means that the large increase reported in some experiments
has to come from some kind of collective effects and cannot be explained
considering a single particle. In this section we study a system of volume
fraction 12% containing two nanoparticles in different configurations prob-
ing for the influence of collective effects. In order to model the influence of
microscopic particle clustering we tether the particles by soft springs to stay
in “contact”, directly interacting with each other (fig. 6.11. We modify the
particles center of mass position with respect to the temperature gradient
- the particles are either aligned parallel or perpendicular to the gradient.
In these two situations the solid phase has an aspect ratio of either a = 2
(parallel) or a = 1/2 (perpendicular). We also varied the Lennard-Jones
interaction intensity between the two particles (εpp) in order to increase the
rate of particle-particle energy transfer. The particles-liquid thermal resis-
tance is also modified by choosing different wetting properties or different
ratios of the masses of the atoms belonging to the two phases. Finally to re-
flect a broader range of configurations we also modified the distance between
the centers of mass of the particles. In most configurations the particles are
directly interacting with each other and in two setups they are separated fol-
lowing the z direction by a layer of liquid on the order of a particle diameter.
An overview of the studied systems can be seen in table 6.1.

System name Aspect ratio a εpp mp/ml c RK Particle-particle ∆r

a2ε1m1c1 2.0 1.0 1 1 0.8 2Rp

a2ε10m1c1 2.0 10.0 1 1 0.8 2Rp

a2ε1m50c1 2.0 1.0 50 1 4.0 2Rp

a2ε10m50c1 2.0 10.0 50 1 4.0 2Rp

a2ε10m1c0.5 2.0 1.0 1 0.5 3.2 2Rp

a0.5ε1m1c1 0.5 1.0 1 1 0.8 2Rp

a0.5ε10m1c1 0.5 10.0 1 1 0.8 2Rp

a0.5ε1m50c1 0.5 1.0 50 1 4.0 2Rp

a0.5ε10m50c1 0.5 10.0 50 1 4.0 2Rp

ε1m1c1 × 1.0 1 1 0.8 4Rp

ε1m50c1 × 1.0 50 1 4.0 4Rp

Table 6.1: List of the studied systems containing two particles. The last col-
umn indicates the distance between the centers of mass of the two particles.

First we study the systems of aspect ratio 2 and strong particle-particle
interaction as a function of the interfacial resistance (fig. 6.11). Given that
the intense pair potential between the particles makes them move as a single
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rigid body and the heat transfer between them is considerably enhanced, it
makes sens to compare the obtained conductivities to what effective medium
calculation would predict for an ellipsoid of the same aspect ratio. A calcula-

Figure 6.11: Snapshot of the system containing two particles aligned with
the temperature gradient having strong particle-particle interaction.

tion including interfacial thermal resistance for equisized ellipsoidal particles
aligned with the thermal gradient relevant for this case can be derived from
a general expression in ref. [88]. The ratio of the effective conductivity to
the conductivity of the pure liquid is given by:

λeff

λl
=

1 + Φβ(1 − Lzz)

1 − ΦβLzz
(6.26)

where Φ is the volume fraction, Lzz is given by

Lzz = 1 − 2

(

a2

2(a2 − 1)
− a2

2(a2 − 1)3/2
cosh−1 a

)

(6.27)

with aspect ratio a > 1. The parameter β is given by

β =
λc − λl

λl + Lzz(λc − λl)
(6.28)

where

λc =
λp

1 +
λp

λl
(2 + 1/a)RKλl

Rp
Lzz

(6.29)

In the above λp and λl are the conductivities of the particles and the liquid,
Rp is the particles radius and RK - the Kapitza resistance of the particle-
liquid interface. The relations hold for an aspect ratio a > 1.
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As can be seen on fig. 6.12 the measured conductivities are in reasonable
agreement with the calculation. For the smallest interfacial resistance there
is an enhancement of the composite system conductivity not larger than
10% and for larger RK the small radius of the particles makes that there is
a decrease in the conductivity due to interfacial effects.
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Figure 6.12: Comparison of the measured variation in conductivity in the
ε = 10, a = 2 systems to the prediction of the effective medium calculation
with aspect ratio 2 and volume fraction 0.12 (equation 6.26).

Next we study the thermal behavior of the systems with particles aligned
with the thermal gradient and neutral particle-particle interaction εpp =
1 (a2ε1m50c1, a2ε1m1c1 in table 6.1). The tenfold stronger interaction
increases the measured conductivity by about 4% (3% for m = 50 and 5%
for m = 1). Even if the contact area between the two particles is small, the
increased interaction intensity influences the temperature of the particles as
can be seen on fig. 6.13. As the strongly attractive interaction decreases the
particle-particle thermal resistance the particles temperatures are closer for
εpp = 10. As the particles are much more conductive than the liquid phase
their temperature varies very little within their dimension, it is essentially
constant. We observed that the temperature difference between the particles
decreases by a factor of two when the interaction intensity is increased by
a factor of ten: ∆T = 0.22 for εpp = 1 and ∆T = 0.12 for εpp = 10 in
the systems of m = 1. In the m = 50 case ∆T (εpp = 1) = 0.44 and
∆T (εpp = 10) = 0.2. Because of the layers of fluid (of thickness around
5σ) remaining in both cases between the particles and the thermostats the
global conductivity of the slab is still dominated by interfacial effects and its
increase is small.

When the particle-particle distance increases so that the particles do not
interact directly with each other the conductivity of the sample stays nearly
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Figure 6.13: Temperature profiles in the particles in the m = 1 systems in
stationary heat flow. The temperature profile of the liquid for one of the
systems is also shown, for the other systems the liquid temperature profile
is very similar. Stronger interaction decreases the temperature difference
between the particles approximately twice compared to particles separated
by the same distance with neutral interaction.

identical (difference ∼ 1% in favor for the system where the particles are
closer) to the case where they are in contact and with neutral interaction.
Knowing that the contact area is very small when the particles are close and
also given that the interaction is not strong, being equal to the interaction
with the liquid atoms εpp = ε = 1, the inter particle distance in this case
does not play an important role in the value of the conductivity. As can
be seen on fig. 6.13 whenever εpp = ε = 1 the average temperature of the
particle is close to the average temperature of the liquid at the z coordinate
of its center of mass, the particle thermalizes with the surrounding fluid. In
contrast, when εpp = 10 the inter particle heat flux becomes important and
the two particles behave more like a single body.

We now turn to the conductivity of the systems where the particles are in
the plane situated in the middle of the box and orthogonal to the temperature
gradient. The heat fluxes measured for the systems of aspect ratio 1/2
with strong and neutral particle-particle interaction were identical within
our statistical accuracy (difference less than one percent). The conductivities
in this case are slightly lower, with about 4.5% (2% for m = 1 and 7% for
m = 50) than the case where the particles are aligned with the temperature
gradient and has neutral interactions (εpp = 1). The difference is further
increased to ∼ 8% (7% for m = 1 and 10% for m = 50) when the a = 0.5
systems are compared with the a = 2 and εpp = 10 systems.
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In summary, we showed that the mutual positions of the particles in
suspension in the fluid has an influence on the thermal conductivity of the
system. If the particles interact so that clustering occurs in the suspension,
the global conductivity of the nanofluid can increase to values higher than
those for a pure fluid, even if a well dispersed suspension at the same volume
fraction has a conductivity lower than the pure system. The alignment
with the temperature gradient enhances the conductivity and its effect on
a microscopic level can be predicted by effective medium calculation taking
into account the aspect ratio of the particle cluster. According to the effective
medium prediction the ratio of the slab conductivity to the conductivity of
the pure liquid grows linearly with the number of aligned particles (or the
aspect ratio) (see fig. 6.14) when this number is smaller than the ratio of
the conductivities of the two phases (λp/λl).
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Figure 6.14: Prediction of the effective medium calculation (equation 6.26)
for the ratio of the system conductivity to the conductivity of the liquid for
an interfacial resistance RK = 1.

The enhancement tends to (1−Φ)+Φλp/λl when the aspect ratio tends
to infinity. Thus, following this calculation that seems to give reasonable
results at least on the scale of two particles and given that the ratio λp/λl is
usually high in real nanofluids, a big enhancement can be expected through
particle alignment.

6.5 Conclusion

We have explored some important aspects of the thermal properties of nanoflu-
ids, at the level of model system, individual solid particles and collective
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effects involving two particles on a microscopic scale.
The molecular modelling of transient heating experiments confirms that

they are a sensitive tool for the determination of thermal boundary resis-
tances. The effect of Brownian motion on the cooling process, on the other
hand, was found to be negligible.

By varying interaction parameters or mass density, we are able to vary
the interfacial resistance between the particle and the fluid in a large range.
This allowed us to estimate, over a large range of parameters, the effective
heat conductivity of a model nanofluid in which the particles would be per-
fectly dispersed. The results for this setup can be simply explained in terms
of the classical Maxwell-Garnett model, provided the interfacial resistance
is taken into account. The essential parameter that influences the effective
conductivity turns out to be the ratio between the Kapitza length and the
particle radius, and for very small particles a decrease in conductivity com-
pared to bulk fluids is found.

We also examined the effect of particle clustering and alignment with
respect to the temperature gradient. We found that alignment improves
the conductivity of the nanofluid in accordance with calculation with effec-
tive medium approach. Increased inter particle interaction further enhances
conductivity. The increase in the case of alignment and neutral interaction
persists even when the particles do not interact directly with each other but
through a fluid layer.

Given our results it is possible, even if difficult, to provide some clues ex-
plaining the diversity of experimental findings about nanofluids conductivity.
As collective effects have been shown to be the only possibility of providing
tremendous increase in conductivity, special care should be taken in experi-
ment for the determination of the exact level of dispersity of the nanofluid.
It is clear that in real nanofluids there are very few isolated particles that
contribute to the conductivity as described in section 6.4.2. Nanoparticle
clusters and aggregates are generally persistent and difficult to brake for
nearly any way of preparation. It seems plausible that small differences in
the way of preparation of the samples thus result in noticeable differences in
the value of the conductivity.

In order to draw more precise conclusions concerning the conductivity
dependence on the complex physics of collective effects undoubtedly larger
systems should be examined. The present study provides guidelines and
outlines general tendencies that are to be expected in a larger and more
complex system.
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7.1 Summary of the main results

We began our study with an investigation of the viscoelastic behavior of a
pure model polymer melt. The Green Kubo method for measuring viscosity
revealed that a precise determination needs a large computational effort, so
we proposed an alternative method inspired by the Rouse model. Based on
a measurement of the Rouse modes of the chains at equilibrium, this method
provides a satisfactory description of the viscosity and of the elastic moduli
of the melt and, being based on a single chain quantity, is inherently local
and therefore can be applied to the study of local dynamics in heterogeneous
systems.

We showed that inter chain interactions in the melt add a non negligible
background part to the storage modulus and dictate the loss modulus behav-
ior at high frequencies. These interactions should be taken into account for
a precise description of the mechanical properties of a polymer melt made
of relatively short chains and are important for longer chains in several far
from equilibrium situations.

We demonstrated by non equilibrium MD simulations of bulk polymer
melts that the elastic energy storage takes place in chain conformations re-
laxing on times longer than the period of the external solicitation. Energy
dissipation is, on the contrary, dictated by short time scales “non polymer”
stress relaxation and subchain relaxation on times shorter than the solicita-
tion period. Chain vibration modes are “frozen” one by one as the frequency
grows higher than the inverse mode relaxation time.

141
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The non linear regime is dictated by the shear rate of the solicitation and
takes place at γ0ω > 1/τR for ω < 1/τR. At higher frequencies, the onset of
nonlinear effects is related to the strain amplitude rather than rate, as full
chain relaxation does not take place on the time scale of one oscillation. Our
study allows a comprehensive description of the melt mechanical behavior in
the form of a schematic frequency - shear rate diagram (fig. 3.16).

Next, we examined the static and dynamic properties of polymers in a
melt in the presence of a flat surface. Static conformations near the surface
were compared to predictions from a random walk model and found to be in
good agreement for the number of trains per chain. The length of the trains
is larger than in the random walk model, reflecting a tendency of chains to
lie flat on the surface.

The population of chains is shown to contain a portion of weakly adsorbed
chains with rapid desorption dynamics and strongly adsorbed chains with
slower desorption dynamics. The desorption time is seen to scale slightly
slower than N2, for chains up to N = 100 showing dynamics more complex
than the predictions of a simple diffusion based model.

We further extended our study to cover the melt properties in a wider
zone covering the whole interface with different microscopic chemical nature
of the wall. We find that the modifications in the dynamics due to the sur-
face treatment depends on the level of entanglement of the melt. In the
case of unentangled melts, the dynamics are, both for bare and grafted wall,
accelerated compared to the bulk. In the case of weakly entangled melts, the
presence of the flat surface induces a decrease (∼ 20 − 40%) in the entan-
glement density in a range of about RG from the surface. In contrast, the
presence of grafted chains prevents this depletion of the entanglements and
further increases the entanglement density in the interfacial layer. This leads
to slower dynamics in the interfacial layer and a local increase of the relax-
ation times of the entangled Rouse modes near the surface. The behavior of
the relaxation times can be predicted by measuring the local entanglement
length, following the expression given by reptation theory.

Our study showed that reinforcement via the entanglement network can
be obtained in presence of grafted chains and chain confinement at the in-
terface, i.e. for fillers larger than the chain typical size.

In order to cover a broader range of physical situations, we studied a
model polymer nanocomposite with spherical fillers, smaller than the spatial
extension of the polymer chains. The chains are not confined in this case
and their dimensions tend to increase compared to those in a pure melt. We
report that the presence of attractive nanofillers with subchain dimensions
and volume fraction allowing bridging leads to an effective increase of the
total entanglement density in the system. Fillers tend to act as reticula-
tions, creating new effective entanglements between chains. The measured
reduction of the entanglement length can be partly predicted by packing
arguments and with a model taking into account the polymer bridges be-
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tween fillers in the melt. This effect plays a role in the mechanical properties
of nanocomposites either filled with small size attractive fillers or for high
molecular weight melts where the chains become larger than the fillers.

In the last part of this study, we have explored some important aspects
of the thermal properties of “nanofluids”, at the level of model system, in-
dividual solid particles and collective effects involving two particles on a
microscopic scale.

The molecular modeling of transient heating experiments confirms that
they are a sensitive tool for the determination of thermal boundary resis-
tances. The effect of Brownian motion on the cooling process, on the other
hand, was found to be negligible. By varying interaction parameters or mass
density, we are able to vary the interfacial resistance between the particle
and the fluid in a large range. This allowed us to estimate, over a large range
of parameters, the effective heat conductivity of a model nanofluid in which
the particles would be perfectly dispersed. The results for this setup can be
simply explained in terms of the classical Maxwell-Garnett model, provided
the interfacial resistance is taken into account. The essential parameter that
influences the effective conductivity turns out to be the ratio between the
Kapitza length and the particle radius, and for very small particles a de-
crease in conductivity compared to bulk fluids is found, even if particles are
many times more conducting than the fluid.

We also examined the effect of particle clustering and alignment with
respect to the temperature gradient. We found that alignment improves the
conductivity of the nanofluid in accordance with a calculation with effec-
tive medium approach. Increased inter particle interaction further enhances
conductivity. The increase in the case of alignment and neutral interaction
persists even when the particles do not interact directly with each other but
through a fluid layer.

Given our results it is possible, even if difficult, to provide some clues
explaining the diversity of experimental findings about nanofluids conduc-
tivity. As collective effects have been shown to be the only possibility of
providing tremendous increase in conductivity, special care should be taken
in experiment for the determination of the exact level of dispersity of the
nanofluid. It seems plausible that small differences in the way of prepara-
tion of the samples thus result in noticeable differences in the value of the
conductivity.

7.2 Perspectives

The results presented in this work provide a background for a number of
future studies. We have provided the tools and understanding needed to
undertake more precise investigations of the linear and non linear mechanical
properties in composite polymer based materials. An interesting question
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arising from our results is what would be the mechanical response of the
polymer interface to external solicitation. The equilibrium entanglement
density at a polymer-wall interface was found to vary as a function of the wall
surface chemistry and the presence of grafted chains was shown to provide
additional entanglements. This finding could be more precisely related to
practical applications. In order to establish such relation, the dependence of
the entanglement density on shear, including the exact dependence on the
amplitude and the frequency of the solicitation and the mechanical history of
the sample, need to be examined. For instance, the onset of non linear effects
can be governed either by the global chain relaxation time as we showed for
pure melts, or by the entanglement time. The relevant length scale in this
phenomenon is expected to be related to the tube diameter, itself dependent
in equilibrium on the surface structure as discussed (interaction, grafting,
chain length). This analysis can be achieved by applying the primitive paths
quench systematically after a precise number of shear cycles with given shear
rate. Another question concerns the dynamics of entanglements - do they
have a longer lifetime near the interface compared to the bulk? This problem
is harder to study by conventional molecular dynamics using the bead spring
model, due to the long computational time needed to study disentanglement.

Non equilibrium simulations could also provide interesting results for
the nanocomposite systems. The response of the filled melt to solicitation,
compared to the behavior observed in the pure melts is of great practical
interest. Again the case of sub chain size fillers can be compared to the case
of a grafted wall, relevant for larger filler particles. The response to high
amplitude and frequency shear can in principle be examined in the scope of
the coarse grained models we considered. Understanding of the molecular
mechanisms involved can be achieved through non equilibrium molecular
dynamics via a Lees-Edwards setup as we used in chapter 3.

The modification of the effective entanglement density in filled melts
reported here should also have an impact on the stress-strain curves one
measures in these systems [89]. Applying uniaxial deformation and studying
the resulting stress-strain relation as well as an eventual cracking in the
material is another problem that can be addressed via molecular dynamics
on the samples we studied.

Last but certainly not least, the obtained results and modeling at the
scale we considered can also be integrated into models of higher level of coarse
graining (such as described in [90, 91, 92]) for a study of the viscoelastic
behavior on larger time and length scales.

As a part of this work we also studied the thermal conductivity of
nanoparticle suspensions. At this stage the subject is somewhat disconnected
from the larger part of the thesis concerning polymer melts. A straightfor-
ward application of interest using the accumulated results and knowledge
in the two fields would be the study of thermal transport in filled polymer
melts. Experimental work on the subject suggests phenomena differing from
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the case of a liquid, involving possibly different mechanisms in this case [79].
The study of such a system involves the introduction of all atom thermal
nanofiller in the polymer melt (this being a rather standard procedure [93])
and simulating a thermal flow in the sample.

Our study of nanofluids can itself be extended to draw more precise con-
clusions concerning the conductivity dependence on the complex physics of
collective effects. This can be achieved by studying larger systems involving
more nanoparticles and precisely controlling their level of dispersion, again
varying the interfacial properties.
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