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Résumé

Ce mémoire porte sur l'utilisation de dictionnaires en analyse et restauration d’images
numériques. Nous nous sommes intéressés aux différents aspects mathématiques et pra-
tiques de ce genre de méthodes: modélisation, analyse de propriétés de la solution d'un
modele, analyse numérique, apprentissage du dictionnaire et expérimentation.

Apres le Chapitre 1, qui retrace les étapes les plus significatives de ce domaine, nous
présentons dans le Chapitre 2 notre implémentation et les résultats que nous avons obtenus
avec le modele consistant a résoudre

{ min,, TV (w), (1)
sous les contraintes [(w — v, ¢)| < 7,Vp € D

pour v € RV 2, une donnée initiale, 7 > 0, TV(-) la variation totale et un dictionnaire
imvariant par translation D. Le dictionnaire est, en effet, construit comme toutes les
translations d'un ensemble Fy d’éléments de RN (des caractéristiques ou des patchs).
L’implémentation de ce modele avec ce genre de dictionnaire est nouvelle. (Les auteurs
avaient jusque la considéré des dictionnaires de paquets d’ondelettes ou de curvelets.) La
souplesse de la construction du dictionnaire a permis de conduire plusieurs expériences
dont les enseignements sont rapportés dans les Chapitre 2 et 3.

Les expériences du Chapitre 2 confirment que, pour obtenir de bons résultats en
débruitage avec le modele ci-dessus, le dictionnaire doit bien représenter la courbure
des textures. Ainsi, lorsque I'on utilise un dictionnaire de Gabor, il vaut mieux utiliser
des filtres de Gabor dont le support est isotrope (ou presque isotrope). En effet, pour
représenter la courbure d’'une texture ayant une fréquence donnée et vivant sur un support
Q, il faut que le support, en espace, des filtres de Gabor permette un “pavage” avec peu
d’éléments du support 2. Dans la mesure ou, pour une classe générale d’images, le sup-
port 2 est indépendant de la fréquence de la texture, le plus raisonnable est bien de choisir
des filtres de Gabor dont le support est isotrope. Ceci est un argument fort en faveur
des paquets d’ondelettes, qui permettent en plus d’avoir plusieurs tailles de supports en
espace (pour une fréquence donnée) et pour lesquelles (1) peut étre résolu rapidement.

Dans le Chapitre 3 nous présentons des expériences dans lesquels le dictionnaire con-
tient les courbures de formes connues (des lettres). Le terme d’attache aux données du
modele (1) autorise 'apparition dans le résidu w* — v de toutes les structures, sauf des
formes ayant servi a construire le dictionnaire. Ainsi, on s’attend a ce que les forment
restent dans le résultat w* et que les autres structures en soient absente. Nos expériences
portent sur un probléeme de séparation de sources et confirment cette impression. L’image
de départ contient des lettres (connues) sur un fond tres structuré (une image). Nous
montrons qu’il est possible, avec (1), d’obtenir une séparation raisonnable de ces struc-
tures. Enfin ce travail met bien en évidence que le dictionnaire D doit contenir la courbure
des éléments que 'on cherche a préserver et non pas les éléments eux-mémes, comme on
pourrait le penser naivement.
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Le Chapitre 4 présente un travail dans lequel nous avons cherché a faire collaborer la
méthode K-SVD avec le modele (1). Notre idée de départ est d’utiliser le fait que quelques
itérations de 'algorithme qu’il utilise pour résoudre (1) permettent de faire réapparatre
des structures absentes de 'image servant a l'initialisation de lalgorithme (et dont la
courbure est présente dans le dictionnaire). Nous appliquons donc quelques une de ces
itérations au résultat de K-SVD et retrouvons bien les textures perdues. Ceci permet un
gain visuel et en PSNR.

Dans le Chapitre 5, nous exposons un schéma numérique pour résoudre une variante
du Basis Pursuit. Celle-ci consiste a appliquer un algorithme du point proximal a ce
modele. L’intérét est de transformer un probleme convexe non-différentiable en une suite
(convergeant rapidement) de problemes convexes tres réguliers. Nous montrons la conver-
gence théorique de I'algorithme. Celle-ci est confirmée par I'expérience. Cet algorithme
permet d’améliorer considérablement la qualité (en terme de parcimonie) de la solution
par rapport a l’état de 'art concernant la résolution pratique du Basis Pursuit. Nous
nous espérons que cet algorithme devrait avoir un impact conséquent dans ce domaine en
rapide développement.

Dans le Chapitre 6, nous adapte aux cas d’'un modele variationnel, dont le terme
régularisant est celui du Basis Pursuit et dont le terme d’attache aux données est celui
du modele (1), un résultat de D. Donoho (voir [55]). Ce résultat montre que, sous une
condition liant le dictionnaire définissant le terme régularisant au dictionnaire définissant
le terme d’attache aux données, il est possible d’étendre les résultats de D. Donoho aux
modeles qui nous intéressent dans ce chapitre. Le résultat obtenu dit que, si la donnée
initiale est tres parcimonieuse, la solution du modele est proche de sa décomposition la
plus parcimonieuse. Ceci garantie la stabilité du modele dans ce cadre et fait un lien entre
régularisation ! et [, pour ce type d’attache aux données.

Le Chapitre 7 contient I’étude d’une variante du Matching Pursuit. Dans cette vari-
ante, nous proposons de réduire le produit scalaire avec 1’élément le mieux corrélé au
résidu, avant de modifier le résidu. Ceci pour une fonction de seuillage général. En util-
isant des propriétés simples de ces fonctions de seuillage, nons montrons que 1’algorithme
ainsi obtenu converge vers la projection orthogonale de la donnée sur ’espace linéaire
engendré par le dictionnaire (le tout modulo une approximation quantifiée par les car-
actéristiques de la fonction de seuillage). Enfin, sous une hypothese faible sur la fonction
de seuillage (par exemple le seuillage dur la satisfait), cet algorithme converge en un
temps fini que 'on peut déduire des propriétés de la fonction de seuillage. Typiquement,
cet algorithme peut-étre utilisé pour faire les projections orthogonales dans 1’algorithme
“Orthogonal Matching Pursuit”. Ceci nous n’avons pas encore été fait.

Le Chapitre 8 explore enfin la problématique de l'apprentissage de dictionnaires.
Le point de vue développé est de considerer cette problématique comme un probleme
d’estimation de parametres dans une famille de modeles génératifs additifs. L’introduction
de switchs aléatoires de Bernoulli activant ou désactivant chaque élément d’un diction-
naire invariant par translation a estimer en permet l'identification dans des conditions
assez générales en particulier dans le cas ou les coefficients sont gaussiens. En utilisant
une technique d’EM variationel et d’approximation de la loi a posteriori par champ moyen,
nous dérivons d’un principe d’estimation par maximum de vraisemblance un nouvel al-
gorithme effectif d’apprentissage de dictionaire que 'on peut apparenter pour certains
aspects a l'algorithme K-SVD. Les résultats expérimentaux sur données synthétiques il-
lustrent la possibilité d’une identification correcte d’un dictionaire source et de plusieurs
applications en décomposition d’images et en débruitage.



Abstract

Titre: Study on the variational models and dictionary learning

This dissertation is dedicated to the use of dictionaries in the image analysis and image
restoration. We are interested in various mathematical and practical aspects of this kind
of methods: modeling, analysis the solution to such model, numerical analysis, dictionary
learning and experimentation.

After Chapter 1, which reviews the most significant works of this field, we present in
Chapter 2 the implementation and results which we obtained with the model consisting
in solving

{ min,, TV (w), )
subject to [(w — v, )| < 7,Vp € D

for v € RN? an initial image, 7 > 0, T V'(+) the total variation and a translation invariant
dictionary D. Actually, the dictionary, is built as all the translations of a collection Fy of
elements of RN (of features or of the patches). The implementation of this model with
this kind of dictionary is new. (The authors before this dissertation only considered the
dictionaries of wavelet basis/packets or curvelets.) The flexibility of the construction of
the dictionary leads to several experiments which we report in chapter 2 and 3.

The experiments of Chapter 2 confirm that, to obtain good results of denoising with the
above model, the dictionary must represent the curvature of textures well. Hence, when
one uses Gabor dictionary, it is better to use Gabor filters whose support is isotropic (or
almost isotropic). Indeed, for represent the curvature of a texture with a given frequency
and living on a support €2, it is necessary that the support, in space, of Gabor filters
allows a paving with few elements of support ). Insofar as, for a general class images, the
support 2 is independent of the frequency of the texture, it is most reasonable to choose
Gaobr filters whose support is isotropic. This is a strong argument in favor of the wavelet
packets, which allow in addition to having several sizes of supports in space (for a given
frequency) and for which (2) can be solved quickly.

In Chapter 3, we present the experiments in which the dictionary contains the cur-
vatures of known forms (letters). The data-fidelity term of the model (2) authorizes the
appearance in the residue w* — v of all the structures, except forms being used to build
the dictionary. Thus, we can expect that these forms remain in the result w* and that
the other structures will disappear. Our experiments are carried on a problem of sources
separation and confirm this impression. The starting image contains letters (known) on a
very structured background (an image). We show that it is possible, with (2), to obtain
a reasonable separation of these structures. Finally this work illustrates clearly that the
dictionary D must contain the curvature of elements which we seek to preserve and not
the elements themselves, as we might think this naively.

Chapter 4 presents a work in which we try to integrate the K-SVD method with the
model (2). Our starting idea is to use the fact that some iterations of the algorithm which

7
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we use to solve (2) allow to reappear the lost structures from the image which we used
as the initialization of the algorithm (and whose curvature is present in dictionary). We
thus apply some of these iterations to the result of K-SVD and recover lost textures well.
This allows a gain of visual and in PSNR.

In Chapter 5, we expose a numerical schema to solve a variant of Basis Pursuit. This
consists to apply a proximal point algorithm to this model. The interest is to transform
a non-differentiable convex problem to a sequence (quickly converging) of very regular
convex problem. We show the theoretical convergence of the algorithm. This one is
confirmed by the experiment. This algorithm allows to improve remarkably the quality
(in term of sparseness) of the solution compared to the state-of-the-art concerning the
practical resolution of Basis Pursuit. This algorithm should have a consequent impact in
this rapidly developing field.

In chapter 6, we adapt to the cases of a variational model, whose regularization term
is that of Basis Pursuit and whose data-fidelity term is that of the model (2), a result of
D. Donoho (see [55]). This result shows that, under a condition relating the dictionary
defining the regularization term to the dictionary defining the data-fidelity term, it is
possible to extend the results of D. Donoho to the models which interest us in this chapter.
The obtained result says that, if the given data is very sparse, the solution of the model is
close to its most sparse decomposition. This guarantee the stability of this model within
this framework and establishes a link between [' and [° regularization, for this type of
data-fidelity term.

Chapter 7 contains the study of a variant of Matching Pursuit. In this variant, we
proposes to reduce the scalar product with the element best correlated with the residue,
before modifying the residue. This is for a general threshold function. By using simple
properties of these threshold functions, we show that the algorithm thus obtained con-
verges towards the orthogonal projection of the data on linear space generated by the
dictionary (the whole modulo an approximation quantified by the characteristics of the
threshold function). Finally, under a weak assumption on the threshold function (for
example the hard-threshold satisfies this assumption), this algorithm converges in a finite
time which one can deduce from the properties of the threshold function. Typically, this
algorithm might be useful to make the orthogonal projections in the algorithm Orthogonal
Matching Pursuit. This we have not done yet.

Chapter 8 explores finally the dictionary learning problem. The developed point of
view is to regard this problem as a parameter estimation problem in a family of additive
generative models. The introduction of random on/off switches of Bernoulli activating or
deactivating each element of a translation invariant dictionary to be estimated allows the
identification under rather general conditions in particular if the coefficients are Gaussian.
By using an EM variational technic and the approximation of the posteriori distribution
by mean field, we derive from a estimation principle by maximum likelihood a new effective
algorithm of dictionary learning which one can connect for certain aspects with algorithm
K-SVD. The experimental results on synthetic data illustrate the possibility of a correct
identification of a source dictionary and several applications in image decomposition and
image denoising.
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Introduction

The calculus of variations is a classical mathematical field that deals with functionals,
as opposed to ordinary calculus which deals with functions. The first synthesis work of
variation method goes back to Léonard Euler (1707 - 1783). Based on the seminal works
of Pierre de Fermat (1601 - 1665), Jakob Bernoulli (1654 - 1705) and Johann Bernoulli
(1667-1748), Euler developed the calculus of variations and proposed in 1743 the principle
of variation and thus opened the pandora box with this fundamental work (see [1], [2]).

The computers appeared at the beginning of the 1960, and this promoted significantly
the capability of human being to tackle very complex problems including digital image
processing. From then on, the use of variational methods, typically Energy Minimization
Method, grew throughout image processing.

A pioneer work applied the total variation to image restoration. It was first proposed
by Rudin-Osher-Fatami in 1992. Ever since, the total variation became a classical tool in
image processing. F.Malgouyres first combined the total variation idea with the wavelet
soft-threshold idea of D.Donoho using the general framework of variational approaches.
This leads to an efficient image restoration method and we call it the TV — [* model
here. Throughout this dissertation, we will concentrate our efforts on the study of various
variational models related to the TV — [*® model with certain dictionary which plays an
important role in these models. The main framework of this dissertation is organized as
following.

1. In Chapter 1, we will review the important restoration methods which are closely
to our works.

2. In Chapter 2, we will propose a translation-invariant dictionary approach for the

TV — [ model.

— [*®

3. In Chapter 3, ad-hoc dictionary and dictionary with known features for TV
model will be examined.

4. In Chapter 4, the TV —[* model will be used as a post-processing procedure for the
K — SV D model and this will lead to a new state-of-the-art denoising performance.

5. In Chapter 5, we will propose a dual algorithm based on Uzawa and Armijo method
to solve a variant of the Basis Pursuit problem. We will analyze its convergence and
report some numerical results comparing it with existing algorithms.

6. In Chapter 6, we will investigate two sparse representations models in R * and then
propose a Soft-Threshold Matching Pursuit algorithm.

7. In Chapter 7, we propose a MP shrinkage method in Hilbert space. It is a general-
ization to Matching Pursuit and wavelet shrinkage. Hence, this builds a solid bridge
between these two important fields of image processing.

17



8. In Chapter 8, we will use MCMC and mean field method to search the typical
patterns in a training set.

9. In Chapter 9, future works will be discussed.
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Chapter 1

Preliminaries

1.1 Introduction

Digital image processing uses computer algorithms to perform information processing for
which the input data is a digital image (digital photograph or frame of digital video). The
output data is not necessarily a digital image, but can be, for instance, a set of features
of the digital image.

Typical problems of digital image processing include but are not limited to geometric
transformations such as enlargement, reduction, rotation, registration of two or more
digital images, interpolation, segmentation of the image into regions, image editing and
digital retouching, texture synthesis, classification, feature extraction, pattern recognition,
projection and multi-scale image analysis.

As productions of digital images and various kinds of movies are often taken in some
poor conditions, the requirement for efficient restoration techniques has grown rapidly.
No matter how good a digital cameras is, an image improvement is always suitable to
augment their range of action. In this chapter, we will concentrate our efforts on the
problems related to image restoration.

Generally speaking, the digital image is encoded as a matrix of grey-level or color
values. For each pair (i,u(i)) , 4 is a point on the two-dimensional grid {0,..., N — 1}?
and the pixel u(7) is the value at position i. It is a real value for grey-level image or a triplet
of real values for color image. For the sake of simplicity of notations and presentations of
experiments, we shall only consider square 2D grey-level images and typically, we denote
digital images by u,v,w € RV ’ throughout this dissertation, unless explicitly specified.

1.2 Image restoration

The two main aspects which affect the image accuracy are the blur and the presence of
noise. The blur is intrinsic to the image formation systems, as a digital image has only a
finite number of samples and must approach the well-known Shannon-Nyquist sampling
condition. As usual, we will use a linear operator H to model this blur. The second
main image perturbation is the presence of noise. Mathematically, the observed image
v € RMis formed as:

v=Hu+b, (1.1)

where H is the known linear operator from RY * to RN 2, u € RY is an ideal image and
b € RY” is a Gaussian white noise of standard variation o.
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The digital image restoration task, a classical inverse problem in image processing,
consists in recovering the ideal image v € RY” from the noisy, blurred image v € RY” on
the basis of a mathematical degradation model. Typical examples of image restoration
include but are not limited to image denoising, image deblurring, image zooming, image
inpainting and linear local contrast changes. In practice, combinations of these tasks are
also of great importance. For example, one might want to denoise an image and in the
meanwhile fill in some small parts of missing pixels.

Throughout this dissertation, we will either consider a general H or, for the sake of
simplicity, only focus on image denoising, i.e. H = Id.

1.3 Recollection of image restoration/denoising

In this section, we will present a bibliography of the common image restoration/denosing
methods. We would like to point out that it is far from a complete list containing all the
various models proposed in this domain. A recent review of some significant works in the
area of image denoising, including insights and potential future trends can be found in
[3]. The authors of [4] compared several popular denoising methods and proposed a new
one named Non-Local means with better visual effect on natural images. In fact, we only
consider the models which are closely related to our current dissertation. They are:

wavelet-shrinkage

Total variation (7'V) and Rudin-Osher-Fatemi (ROF) model

TV — 1>

NL-means

K-SVD

1.3.1 Wavelet-shrinkage for denoising

The wavelet-shrinkage method is usually used for image denoising or image compression,
so in this subsection, H = Id. This simple but useful method was first proposed by
D.Dohono and I.Johnstone in [5] and has been extensively studied by many authors and
is still a fruitful area of research in image processing. It is also closely related to the
standard image compression method JPEG-2000.

Let D = (¢;),er C RY * be a wavelet basis. To introduce the wavelet-shrinkage method,
we define the soft-threshold function as, for any t € R

_ [ (t] = 7)sign(t) when |t| > T
orlt) = { 0 otherwise, (1.2)

where 7 is a fixed positive.
For a noisy image v, the wavelet-shrinkage method considers the following image

w="> pr((v,0;)); (1.3)

el

as the denoised result. As most of the small wavelet coefficients of natural images are
caused by noise, this method leads to a fairly good result (see [6]).
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In order to anticipate the relation of wavelet-shrinkage with the upcoming method, we

remark that if we denote
E(w) =>_ fill{w, ¢3)]),
iel
where f; are strictly increasing functions, the wavelet soft-shrinkage provides the solution
to

min E(w)
{ suject to [(w — v, ¥;)| < 7. (1.4)

1.3.2 Rudin-Osher-Fatami Model

The total variation approach was initiated in [7] and was often considered as the most
efficient method in the extensive works carried out by the group of Stanley Osher at
UCLA and others. The greatest benefit of the total variation model is that it is very
efficient for the restoration of edges present in natural images.

The basic idea of the ROF model is that the original image u has a simple geomet-
ric structure, corresponding to objects with smooth contours, or edges. The image is
supposed to be smooth inside the objects but with some jumps across the boundaries.

A fundamental functional space to model these properties is the space of functions
with bounded variation (BV'). The space BV owns the feature of containing functions
with discontinuities along lines which can represent edges in the natural image. We recall
the definition of total variation for function of R? here.

Definition 1 Denote by Q an open connected set of R%. BV () is the subspace of func-
tions u € LY(Q) s.t. the following quantity, named Total Variation of u, is finite:

TV (u) = sup {/Qu(x)div(g(x))dx | ¢ € CHOQ,R?), [[¢] () < 1} : (1.5)
When u € C*(Q) (i.e. u is continuously differentiable over 2), we have:

TV (u) :/Q|Vu(x)|d$.

Since most of the time, we work on the discrete images, we need to define a discrete
total variation. Let’s first introduce the discrete gradient operator. For a discrete image
u € RY", the discrete gradient Vu is a vector of (R?)N* defined by:

(Vu);; = ((Vu)1 (Vu)f]) , forall0 <i,5 <N,

i
where o<
vt = 16
and
S A 1)

Then the discrete total variation of u is defined by:

v = X (VL) + ((Vuz,)’ (1.8)

0<i,j<N
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Given a degraded image v € RN (see Eq.(1.1)), the authors of [7] proposed to recover
the original image u € RY * as the solution of the constrained minimization problem

{ min v TV (w) (1.9)

suject to ||[Hw — v||* < 72

The solution image u* should be as regular as possible in the sense of the total variation,

while the residue Hu — v has a prescribed /2-norm. The constraint of (1.9) prescribes the

right variance to Hu* — v but does not guarantee that it is similar to a real Gaussian

white noise, even when H = Id (see thorough details in [8]). Reformatted with a Lagrange
multiplier, the preceding problem is related to the following unconstrained problem

min  _pr2 TV (w) + A|Hw — vlf?, (1.10)

where A is the new parameter (which stands for a Lagrange multiplier).
Notice that (1.9) can be rewritten as:

min , en2 TV (w)
suject to |[(Hw — v, )| < 7,V € D,

where we set D = {¢ € RN ||4b]| = 1}.

(1.11)

1.3.3 The TV — [* model
Generalizing the R.O.F model and wavelet shrinkage, the author of [9] proposed the

following unified variational framework,

min ey B(w) (1.12)
suject to [(Hw — v, ¢;)| < 7,Vi € I, '

for a certain energy E(w), a finite dictionary D = (¢;);c; C RN * and a positive parameter
7 associated to the noise level. Notice that when E =TV, D = {¢ € RN?|||v|| = 1}, this
is just the ROF model; when
E(w) = fill{w, ¥3))),
iel

where f; are strictly increasing functions and D is wavelet basis, this is just wavelet
soft-shrinkage.

When we take ' = T'V, this leads to the so called T'V —[** model which we will study
in Chapter 2. Explicitly, the TV — [*® model takes the following form

{ min,, _pv2 TV (w) (1.13)

suject to [|[Hw — v||p e < T,

where ||.||p,o is defined by
[ullp,c0 = sup |(u, )],
YeD

for a dictionary D € RY” and the discrete total variation.

This model has, at least, been studied in [9, 10, 11, 12]. The contents of these papers
are summarized in the introduction of [12].

In [9, 10, 11, 12], the authors only considered translation-dependant dictionaries and
in most of the situation, this leads to a lack of translation-invariance of the restoration
result. To overcome this problem, in Chapter 2, we will describe an implementation of
the T'V — 1> model with a translation-invariant dictionary. We will also try to understand
how to choose the dictionary, in order to improve the result of (1.13).
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1.4 Sparse representation models

As redundant dictionaries are more flexible to incorporate prior information than a single
orthogonal basis, the use of sparse representation models with redundant dictionary in
image/signal processing is now a rapid growing research field.

1.4.1 Basis Pursuit

The Basis Pursuit model (see [13]) revoked great attention recently in image processing.
For instance, it is used for compression, source separation (see [14]) and feature selection
for classification (see [15]). In [16], using a Basis Pursuit model with Contourlet dictionary,
the authors presented a satisfying denoising result which is comparable to Gaussian Scale
Mixtures (GSM) approach of [17]. Many theoretical results have also been established
supporting this model. Most of them aim at understanding the equivalence between the
common Basis Pursuit model (see Eq.(1.14)) and the search for the sparsest decomposition
(see, among others, [18, 19]). Other authors show that the Basis Pursuit model is an
efficient way to simplify a complex data distribution (see [20, 21]). In [22], I.Daubechies
and al. provided an alternative to linear and quadratic programming techniques via an
iterative thresholding algorithm for this model. In [23], the authors proposed an iterative
proximal thresholding algorithm to solve the Basis Pursuit model over orthonormal bases.
The other paper devoted to the resolution of the usual Basis Pursuit Denoising are [24,
25, 26, 27, 28, 29, 30, 31]. We will detail the content of some of these papers.
The common model named Basis Pursuit takes the form

min || S Ak — v+ A A (1.14)

). I
(M)ier€R! ST icl

for a finite dictionary D = (¢;)ics, A > 0, a datum v € RY * and the standard /2 norm on
R LI
Parallel Coordinate descent (PCD) Algorithm

In [28, 29], the authors proposed a parallel shrinkage approach for solving the Basis Pursuit

model. Denoting
F(Nier) = 11D Ay — o|* + A,
icl iel
the algorithm proposed in [28, 29| is described in Table 1.1.
We remark that in fact for all 2 € I, we have:

k_ : k—1 Nyt
di = (argrtré%lf()\ +te;) — A7)

where (e;);er is the canonical basis of R!. The authors shows experimentally that the
convergence of this parallel shrinkage method is satisfactory.

Iterative Thresholding (IT)

We also present an algorithms described in [22, 24, 25, 26]. This algorithm is easy to
describe, given Table 1.1. When all the elements of the dictionary are normalised®, the

'The normalisation is not necessary. It just simplifies the description of this algorithm once the PCD
algorithm has been written.
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e Initialize (AY);c;.
e Repeat until convergence (loop in k)

1. Compute d¥, for all i € I :

1
A =p o [N o= S My ) | — AR,
ll; 112 H%’Hz

jeI
2. Compute the optimal step :

th = arg mlnf (( Mier + t(d? )zEI)

3. Update N\ :

Vi€ I = 2\ ikl

Table 1.1: The algorithm, solving (1.14), described in [28].

algorithm in [22, 24, 25, 26] indeed corresponds to the one of Table 1.1 when we always
choose t* = 1. It therefore consist in an iterative thresholding.

In Chapter 5, we will propose a variant of the Basis Pursuit model and give a dual
approach to solve this new model.

1.4.2 Matching Pursuit, OMP

Matching pursuit (MP) was first proposed in the image processing domain in [32] and
[33]. Below we briefly present the basic ideas of MP: we are looking for a linear expansion
approximating the analyzed signal /image v € RN’

M
VR Z)\l% (1'15>
=1

in terms of atoms chosen from a large and redundant set (a dictionary D = (¢;)ic; € RN’
with ||¢;||2 = 1,Vi € I'). The problem of choosing M atoms, which explain most of energy
of a given image, is NP-hard, i.e. computationally intractable. MP provides a sub-optimal
solution to this problem. It is obtained with the help of an iterative procedure. In the first
step of the iterative algorithm we choose the atom which gives the largest scalar product
with the image. The iterative procedure is repeated on the subsequent residue R"v (for
details, see Table 1.2).
The procedure converges to v (see [32]):
“+o0o
v=Y (R"0, 1)y, (1.16)

n=0

and conserves the image’s energy (see [32])

lvll* = Z (R, ) + [[RY 0. (1.17)
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e Set Rv =wv.
e Iterate (loop in n)

1. Compute:

o = argmax [(R"v, ;)]

2. Sub-decompose:

R = R — (R™,¢., ).,

Table 1.2: MP algorithm

If we denote V' the closed linear span of the vectors in D, i.e.
V = Span{D} (1.18)

and W the orthogonal complement of V in RV ’ denoting also the orthogonal projector
over V and W by Py and Py respectively, we have:

Theorem 2 (Mallat and Zhang [32]) Let v € RN". The residue R™v defined by the
induction Eq.(1.2) satisfies

llr_{l |R"v — Pyvl| = 0. (1.19)
Hence
+o0o
PVU - Z( U w7n>w7n7 (12())
n=0
and
| Pyoll” = Z [(R™0, s,) 7. (1.21)

Usually in applications (eg. image restoration or image compression), we take the M-first
terms as the result u:

U = Z <an7¢vn>¢vm

where M is predefined. Another possibility is to stop the process once the residue RMv
attains a certain predefined level ¢ i.e.

|RMol|y < 4.

The so called Orthogonal Matching Pursuit (OMP) is slightly different from MP (see
[34]). With more computations, this method attains a faster convergence approximation

than MP. It is also an iterative procedure applied on the subsequent residue R"v. The
details of OMP are given in Table 1.3.
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e Set R0 =w.
e Repeat until convergence (loop in n)
1. Compute:
7 = argmax [(R"v, ¢3)],

V™ = Span{t,, ..., ¥}

2. Sub-decompose:

Ry = R"w — Pyn R™.

Table 1.3: OMP algorithm

1.5 Non-local algorithm and dictionary learning

Most of natural images contain a lot of redundant information. By this, we mean that
every small window in a natural image is similar to many windows in the same image.
More generally, the collection of small windows of same size in a natural image has a
sparse representation over a certain dictionary. The image processing models which take
advantage of this kind of redundancy information have better performance.

1.5.1 NL-means

The so called Non-Local means (NL-means) algorithm introduced in [4] can be given by
a simple closed formula. Let u be defined in a bounded domain Q C R?, then

_ Gaxlu(z+)—v(y+)|2(0)
h2

u(y) (1.22)

where x € 2, G, is a Gaussian kernel of standard variation a, h acts as a filtering
_ Gaxlu(e+)—v(z42(0) | .
parameter and C(z) = Y. e n? is the normalization factor. In order to

make Eq.(1.22) clear, we recall that

G |u(z++) = v(y +)1*(0) = X Galt) * [u(z +1) —v(y +1)]*. (1.23)

t

As NL-means incorporate non-local information, it is natural that this leads to a
successful image restoration approach.

1.5.2 Dictionary learning

The approximation performances using redundant expansions rely strongly on choosing
dictionaries adapted to images. For natural high-dimensional data, the statistical depen-
dencies are, most of the time, not obvious. The data-driven learning of domain-specific
overcomplete dictionaries is a recent popular problem in approximation theory.

In [35], the authors proposed to learn an environmentally adapted dictionary by de-
veloping algorithm which iterates between a representative set of sparse representations
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found by variants of FOCUSS and an update of the dictionary using these sparse repre-
sentations. In experiments with natural images, they showed that learned overcomplete
dictionaries have higher coding efficiency than complete dictionaries; that is, images en-
coded with an overcomplete dictionary have both higher compression (fewer bits per pixel)
and higher accuracy (lower mean square error).

In many situations, the basis elements are shift invariant, thus the learning process
should try to find the best matching filters. In this regard, the authors of [36] presented
an algorithm for learning iteratively generating functions that can be translated at all
positions in the images to generate a highly redundant dictionary.

K-SVD

In [37], the authors presented a modification of the K-means clustering process, K-SVD
algorithm to learn dictionary. This is an iterative method that alternates between sparse
coding of the examples based on the current dictionary and a process of updating the dic-
tionary atoms to better fit the data. In [38], the authors developed K-SVD into an image
denoising method via sparse and redundant representations over the learned dictionary
([38]). After comparing with the leading denoising method using Gaussian Scale Mixtures
approach in the wavelet domain of [17], it claims state-of-the-art denoising performance.

In this subsection, we will briefly review the main mathematical framework of K-SVD
denoising method, as this is one of starting point of Chapter 4. First let the clean image
u be written as a column vector of length N2. Considering patches of size /n x \/n,
we assume that all the patches in the clean image u admit a sparse representation in a
certain basis. Addressing the denoising problem as a sparse decomposition technique for
each patch leads to the following energy minimization problem:

{ci, Do, u} = arg Dgfg?w’YHw —oll3+ > miglleilo
Qg i
+>_ [Dociy — Rijwl3, (1.24)
i\j

where for (i,5) € {0,1,...,N — /n}? fixed, ||a;;|jo stands for the number of non-zero
coefficients in the K-dimension column vector ¢; ;. In order to avoid confusing with the
dictionary used in the post-processing process of Chapter 4, we use the symbols Dy, Dy
to represent the matrices containing the dictionary.

In (1.24), u is the estimator of a hidden image and the dictionary Dy € R™K is an
estimator of the best dictionary which gives the sparsest representation of the patches
associated to the restored image. The index (7, j) indicates the position of the patch in
the image. The binary matrix R;; of n x N? extracts the square patch of size \/n x /n
at coordinate (i,7) from the image represented by a column vector w of size N2. ()
are the hidden parameters which are implicitly fixed by the method.

The first term of (1.24) demands a proximity between u and v. The second and the
third term both give the image prior. This regularization term assumes that every patch
of a natural image has a sparse representation in Dy. The second term ensures the sparsest
representation, and the third term forces the consistency of the decomposition.

The approximation method for solving (1.24) is presented in Table 1.4. When using
this algorithm in Chapter 4, following with the work of [38], we assume that o is known
and we set J = 10, C' = 1.15 (these values are experimentally tuned in [38], another more
theoretical choice based on Rayleigh law, see [39] for C' is 0.93).
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Task: Denoise a given image v.
Parameters: n-block size, K-size of first dictionary, J-number of K-SVD iterations,
C-noise gain, y-Lagrange parameter.

1. Set u = v, Dy=overcomplete DCT dictionary.
2. Repeat J times:

e Sparse Coding Stage:
Use OMP pursuit algorithm to compute the representation vectors «; ; for every
fixed patch R;ju, by approximating the solution of

min | ;]lo subject to || Riju — Doavi |3 < (Co)?.
¥
e Dictionary Update Stage:

For each column [ = 1,2,..., K in Dy, update it by

Find the set of patches that use this atom, w; = {(¢, j)|c ;(1) # 0}

Find every index (i, j) € w;, compute its representation error

e ;= Rijuij — Y dmo;(m)
m#l

Set E; as the matrix whose columns are {e} ;}(i e,

Apply SVD decomposition E; = U AVT. Choose the updated dictionary
column d; to be the first column of U. Update the coefficient values
{a;;(1)};i; € wy to be entries of V multiplied by A(1,1).

3. Set:
u = (’y[ + Z RZjRiJ)il(’Y’U + Z RZ‘]‘DOO%J)

i,j 2

Table 1.4: K-SVD algorithm for denoising. o is known.
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1.6 Image decomposition

The separation of a natural image into semantic parts plays an important role in ap-
plications such as image compression, image enhancement, image restoration, and com-
puter vision. Recently, several pioneering papers suggested that such a separation can
be achieved based on variational models ([8, 40]) or independent component analysis and
sparsity ([41]).

The total variation plays an important role in the Rudin-Osher-Fatemi (ROF) model
(see [7] or subsection 1.3.2). In [8], Yves Meyer has recently investigated this model and
proposed another space G for oscillating patterns. This space G is very closely related to
the dual space of BV. In this space, oscillating patterns have a small norm and this is
very useful when we use an energy minimization process.

Thus in [8], the author proposed a G-norm model to replace the ROF model to de-
compose an image into a geometrical component and a textured component. Later, the
authors of [40] proposed a decomposition model which splits an image into three compo-
nents: the first one containing the structure of the image, the second one the texture of
the image, and the third one the noise. This decomposition model relies on the use of
three different semi-norms: the total variation for the geometrical component, a negative
Sobolev norm for the texture, and a negative Besov norm for the noise.

In [41], combining the Basis Pursuit Denoising (BPDN) algorithm (see [13] or subsec-
tion 1.4.1) and the Total-Variation (TV) regularization scheme, the authors presented a
method for separating images into texture and piecewise smooth (cartoon) parts, exploit-
ing both the variational and the sparsity mechanisms.

The basic idea presented in [41], is the use of two appropriate dictionaries, one for
the representation of textures, and the other for the piecewise-smooth content of natural
scene. Both dictionaries are chosen such that they lead to sparse representations over
one type of image-content (either texture or piecewise smooth). The use of the BPDN
with the two amalgamated dictionaries leads to the desired separation, along with noise
removal as a by-product. As the requirement to select proper dictionaries is generally
hard, a TV regularization is employed to better control the separation process and to
reduce ringing artifacts.
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Chapter 2

Translation-invariant dictionary for
TV —[*° model

2.1 Introduction

This chapter is an extensive version of [42]. In this chapter, we will concentrate our
efforts on the TV — [* model to get a restored image u € RY * from a noisy image
v € RY obtained by Eq.(1.1). The details of TV — [ model is given in Section 1.3.3.

The authors of [9, 10, 11, 12] only considered translation-dependent dictionaries such
as wavelet or wavelet packet dictionaries and their restoration results lack of translation-
invariance. Mathematically, for an image u € RY’, we can translate it by (4, j) (i.e. by
applying the operator T; ;):

Tiju(,) =u(-—1,-—j),0<4,j <N, (2.1)

where we periodized the image by setting u(m + N,n + N) = u(m,n).
Suppose O is the restoration operator, O is translation-invariant if and only if, for all
uwe RN,
Ou=T_,_;000T,;u. (2.2)

Translation-invariance is a natural requirement for image restoration. The result of
the restoration of an object in an image should not depend on its location in the image.

The novelty of the current chapter is to provide an implementation of the TV — [*®
model with a translation-invariant dictionary. We emphasize that the main goal of this
chapter is that we will try to understand how to choose the dictionary, in order to improve
the results of (1.13). Instead of denoising itself, the mechanism behind of the model i.e.
the role of the dictionary in the T'V — [* model is more interesting for us. In fact, in
this chapter and the upcoming chapter, we will try to answer, at least partially, the open
question posed in [43]: for the TV — [*° model, given a class of images and a degradation
H, how should the dictionary D be designed, if one is to aim at optimal results?

2.2 The dictionary

2.2.1 From features to dictionary

In order to build the translation-invariant dictionary, we first consider a finite set
Fo= {‘I’khgkgr

31
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of elements in RV, In the remaining of the chapter, we refer to these elements as ”fea-
tures” and we refer to Fy as the "feature dictionary”. Roughly speaking, the features
need not to have small support. In the following of this chapter, we will consider both
situations.

For any k € {1,...,r} and any index (i, j) € {0,..., N—1}?, we denote the translation
of U¥ by

Yhid & T, Uk, (2.3)

where 7 ; is defined by (2.1).

We then consider the dictionary

D= {U* for 1 <k<rand0<ij< N}

In the remaining of the dissertation, we refer to D as "total dictionary”. The total
dictionary D is obviously translation invariant. Moreover, depending on the structure of
feature dictionary Fy, it might be rotation invariant, scale invariant,...

Before going on, we need to present two important operators for solving (1.13) with
the above dictionary.

The first one calculates all the scalar products (u,¥)yep for any u € RY 2, we call it
the decomposition; the other one computes > ep Ayt for any set of coeflicients (Ay)ypep,
this is the recomposition. If we calculate these operators in a straightforward manner,
the complexity is O(rN*). Fortunately, as our dictionary is translation-invariant, we can
provide a fast calculation method whose complexity is reduced to O(rN?log N).

2.2.2 The decomposition

The decomposition of u € RY ’ provides the set of values

k 2
((u, ¥ Z]>)0§z‘7j<N and 1<k<r’

Notice that, using (2.3), we have, for any u € RV and any feature U* € F,

k,i,j
(u, UHH7) Zumnmmj

m,n=0

So the set of values ((u, ¥y ;))1<ij<n, i just u* Wk, where * stands for the convolution
product and Wk, , = Wk, _, (remember the images are periodized).

The decomposition can therefore be computed with one Fourier transform and r inverse
Fourier transforms, if we memorize the Fourier transforms of the features. The details of
the algorithm of decomposition are shown in Table 2.1.

2.2.3 The recomposition

Denoting A = the recomposition takes the following form

(A 7])0<z]<N and 1<k<r?
r N-—1

i Ae RN 3 N AEghid e RV

k=11,7=0

Using (2.3), we get
=> PUER VLS
k=1

where \¥ = ()\f j)ogm-< ~. This can be computed with r Fourier transforms and one inverse
Fourier transform. The details of the algorithm of recomposition are shown in Table 2.2.
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Task: Compute all the decomposition coefficients (u, U*"7)
Remark: (FW¥*); <<, have been already computed and stored

1. Compute Fu
2. Fork=1tor

e compute

ub = Fu- FUk

e compute

((u, U5 )ocsjen = F 10"

Table 2.1: Details of decomposition algorithm: for input u, (FU¥*),<4<, and output
((u, U*49)) oo ioni<k<r. F and F~!' denote the Fourier transform and its inverse, re-
spectively.

r N-—1
Task: Compute the recomposition 7 = Z Z )\ﬁ j\Ilk’i’j
k=11,j=0
Remark: (F¥*),<1<, have already been computed and stored

1. Set 7 =0
2. Fork=1tor

e Compute fkﬁj

e Compute
wh = FU* - FAY

e update

=
T
=N
+
S

3. Compute 7 = F~ 17

Table 2.2: Details of decomposition algorithm: for input (FU¥*);<4c, and A =
r N-—1

()\ﬁj)lgkgr and 0<ij<N € ]R””N2, output the recomposition result m(A) = Z Z /\ﬁj\llk’i’j.
k=11,j=0

F and F~! denote the Fourier transform and its inverse, respectively.
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2.3 Numerical aspects

The discrete total variation of an image u € RN” is defined in (1.8). But in practice, we
need the regularization technique which first appeared in [44]. Finally, what we use is:

N-1
TV(u)= \/(Um,j — Uij)* + (Wi — uig)® + €, (2.4)
i,j=0
where we let u; n = u;0, un,; = up; and € is a very small positive (say e = 0.001).
We use a penalty method, in order to solve (1.13). More precisely, we minimize the
unconstrained energy

E\(w) £TV(w) + A > ¢, ((Hw — v, 7)), (2.5)

veD

with
p-(t) = (sup(|t| — 7,0))%,
and for a large number .
This optimization problem is solved by a steepest descent algorithm. In order to get
such an algorithm, the main difficulty is to compute the gradient of (2.5). It takes the
form

VE\(w) = VTV (w) + \H* (Z oL ((Hw — v, ww) , (2.6)

veD

where ¢’ is the derivative of .

2t —7) ift >,
el (t)=14 0 if |t] < T, (2.7)
2(t +7) otherwise.

Compared to the soft thresholding of Eq.(1.2), we have:

P (t) = 2p-(1). (2.8)

In order to compute the gradient of the data fidelity term we need to compute the
decomposition in D and a recomposition. These two operations are already detailed in
the previous section.

We now give few details about the computation of VI'V(w). It can easily be found in
the literature (see, for instance,[44]) and can also be calculated directly. We have:

VTV (w)= -V - (V“’) . (2.9)

| Vwl|? + €2

The algorithm for fixed penalization parameter A is detailed in Table 2.3. The main
algorithm that we use to solve (1.13) is given in Table 2.4.

2.4 The Gabor dictionaries for 7'V — [* Model

From this section on, we will report on experiments where we use Gabor dictionaries in
the TV — [*° model. This allows many possible choices. Our conclusion is that the choice
of the dictionary impact the restoration of textures with similar structures.
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Task: Denoise a given image v by minimization Eq.(2.5)
1. initial w with certain method
2. repeat until convergence

e calculate:

VE\(u) = VTV (u)+ \H* (Z o ((Hu — v, \I/>)\If>

veD
e find the optimal step by dichotomy method :

t= argg]enﬂiél Eyx(u—1t-VE\(u))

e update u:
u—u—t-VE\(u)

Table 2.3: Penalization algorithm for fixed A

Task: Denoise a given image v by solving the TV’ — [* model (Eq.(1.13))
L. set (Ak)gen, Ay — +00
2. set u* with R.O.F method or noisy image
3. repeat for k =1 to +00

e Use u™-1 as the initial of u for algorithm of Table 2.3
e Calculate result u of Table 2.3

e Update:
u™t —

4. return the result

U — u e

Table 2.4: Solving the T'V — [* model by iterations of penalization processus



Page 36 CHAPTER 2. TRANSLATION-INVARIANT DICTIONARY FOR TV — L* MODEL

In order to make experiments with several kinds of dictionaries, we used the dictio-
naries made of Gabor functions as feature dictionary. The motivations for this choice are
of two natures. First, as will be described in the next section, this allows many possi-
bilities for frequency and spacial localization. Secondly, they are often used to describe
textures and we believe that this kind of feature dictionary pursuits to better recover
texture information.

The reason for this belief is that the Kuhn-Tucker equation satisfied by the solution
u* to (1.13) is:

VIV(u*) = > AH" Y, (2.10)
$ED
for some real numbers (Ay)yep where H* is the adjoint operator of H (for the proof of
(2.10), see Chapter 3). Moreover, if an element 1 is such that A\, # 0, we know that
|(Hw — v, )| = 7. This means that, in order to solve (1.13), we had to erase, as much as
possible, the information modeled by % (which is bad). So, for a good dictionary there
should exist a sparse representation of VI'V (u*) in

H*(D) 2 {H*y|y € D}.

When interpreted in the context of BV ([0, N — 1]?) (the space of bounded variation, see,
for instance [8]), this means that the dictionary should give a good description of the dual
of BV (at least for denoising). The latter is often considered for texture modeling (For
definition of dual of BV and other details, see [8] and [45] and references therein).

Meanwhile, Gabor filters, generated by the dimension two Gabor functions, are known
as multi-scale, multi-channel spatial-frequency and orientation selective filters. Psy-
chophysiological experiments with Gabor filters for texture analysis have shown their
remarkable similarity with the human visual system, i.e., Gabor filters could be conceived
as hypothetical structures of neural receptive fields in the visual cortex of human beings
(see [46]).

In image processing, Gabor filters are widely used for texture analysis since they
contain oscillatory terms, and texture are typical oscillatory patterns (see [8]). It seems
therefore natural to use Gabor dictionaries in (1.13).

Notice the above heuristic is confirmed by the experimental results described in Sec-
tion 2.6: while we tested 12 different dictionaries, they all provide similar results on
homogeneous zones and in the vicinity of edges. The only differences occur in textured
zones.

2.5 Gabor filters

The considered features are Gabor filters of the form

ac2 .2
Gl — Coe 5% cos(2n L), (2.11)
' N
where f,0 € R, x = mcosf +nsinf, y = —msinf + ncosf, o and ¢’ need to be chosen

and Cj is such that the [? norm of the features equals to 1. A typical Gabor filter and its
Fourier transform are shown in Figure 2.1.

Knowing that the features take the form (2.11), we still need to determine the fre-
quency and angular locations of elements of F.
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Figure 2.1: Example of Gabor filter. left: Gabor filter; right : Fourier transform of this
filter.

e
L

Figure 2.2: Sum of the Fourier transforms of the : up-left : Gabor I features; up-right :
features with curvelet scaling; bottom-left : Gabor III features; bottom-right : Gabor II
features.

Except for the features described in Section 2.5.4, we consider a finite set of frequencies
{fi}o<i<r. We then split the frequency band characterized by f; in A; angular sections.
For this band, we obtain A; features

gltbe, (2.12)

where Qa:%gr—l“,forae {0,..., A —1}.

Once these locations are fixed, we obtain a decomposition of the frequency plan. Then
o and ¢’ are chosen so that the Fourier transforms of the features cover the whole disk of
center 0 and radius §. (Of course, we would gain in covering the whole Fourier domain.)
Moreover, o and ¢’ are fixed automatically (for details see Appendix) so that the Fourier
transforms of any two features do not overlap too much . Notice that, given (2.12), there
is no need to adapt the variances o and ¢’ to the angular direction. We therefore have a
bench of (o4, 07)o<i<F-

The sum of the Fourier transforms of the features described below are represented on
Figure 2.2.
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2.5.1 Features of type Gabor I

We call Gabor I features those filters built according to (2.12) where, for non-negative
integers F' and A, we take, for [ € {0,..., F'},

fi=0and 4, =1 Jif 1 =0,
fi=32"Fand A=A | otherwise.

We then take, for [ € {0,..., F'},

(O-Zvo-l,) = {

where C'is given in the upcoming (2.17). For this schema, the feature dictionary contains

CERCER)  iti=0
(C’(42F) C’(L)2) , otherwise,

N2!

(2.13)

F
Y A+1=FA+1

=1
filters corresponding to 2F A+ 1 cells in the frequency plan. The sum of Fourier transform

of filters of this schema (for (F, A) = (3,8)) are shown in the up-left image of Figure 2.2.

2.5.2 Features of type Gabor II

For non-negative integers F' and A, we take, for [ € {0,..., F'},

fi=0and 4, =1 L1 =0,
fi= l2lﬁ\i1 and A; =[A | otherwise.

: /
The variances (0, 0]) equal

(CERR?CEE)) L ifl=0

N N
(01,07) = { (c( %r )270(%) ), otherwise,

where C'is as in (2.13).
For this schema, the feature dictionary contains

F
dooFlA+1=02"-1)A+1
=1

filters corresponding to (277! — 2)A + 1 cells in the frequency plan. The sum of Fourier

transform of filters of this schema (for (F, A) = (3,4)) is shown in the bottom-left image

of Figure 2.2.

2.5.3 Features with a curvelet scaling

For details on the curvelet scaling, see [10] and references therein. For non-negative
integers F' and A, we take, for [ € {0, ..., F},

fi=0and 4 =1 it =0,
fi=2N91F and A = rd (A2”TF) , otherwise,

where rd(t) is the closest integer to t.
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The variances (0, 0]) are determined according to (2.13).
For this schema, the feature dictionary contains

N, = szrd (4257) +1
=1

filters corresponding to 2/N. + 1 cells in the frequency plan. The sum of Fourier transform
of filters of this schema (for (F, A) = (3,6)) is shown in the bottom-right image of Figure
2.2.

2.5.4 Features of Gabor type III

This cosine dictionary, is similar to fully decomposed wavelet packet basis of a given
depth. It has the advantage of being translation invariant.
For F' € N, we consider the set of frequency locations

N N N?
Fo = {(QFJQF> with (i, j) € Op and i* + 5% < 4}’

where
Or ={(i,7)li € {0,...,F} and j € {-F,...,F}}
if F'is pair and
Or={(i,j)lie{l,....,F}and je {—F,...,F}ori=0and j € {0,...,F}}

if F'is odd.

The set of features is then of the form

_ n2+m2

Fo = {e = cos(2n(fom + fyn)), for (fu, f,) € ]:6},

for o = C(#51)?, where C' is as in (2.13).
For this schema, the feature dictionary contains #F filters corresponding to 2#F|—1
cells in the frequency plan. The sum of Fourier transform of filters of this schema (for

F =7) is shown in the bottom-left image of Figure 2.2.

2.6 Denoising experiments with Gabor dictionaries

We report on denoising experiments of the image ” Barbara”. The noise variance is o = 20.
The twelve dictionaries described in Table 2.5 have been tested. For each dictionary, we
tuned the parameter 7 (in (1.13)) in order to obtain good visual results. As the goal of
this chapter is not the denoising performance itself but the understanding of the role of
the dictionary, we do not compare the performance of our approach with other denoising
method here. However, for the interested reader, we invite them to visit the online images
by:

http://www.math.univ-paris13.fr/“zeng/gabor/

There we show the results of our twelve dictionaries approaches and the R.O.F model.
Clearly, all our twelve approaches are much better than R.O.F model, especially in the
region of textures.
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type/size small | medium | large
Gabor I, (F, A) = | (3,8) | (3,16) (3,48)
Gabor II, (F, A) = | (3,4) | (5,4) (8,4)

curvelet, (F, A) = | (3,6) | (3,10) (3,32)
Gabor III, F = 7 11 18

Table 2.5: Parameters for the dictionary definitions. The features of small dictionaries
are displayed on 2.2.

Figure 2.3: Barbara image. The most interesting zones are in white.

Figure 2.4: left: zone 1; center: zone 2; right : zone 3.
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type/size | small medium | large
Gabor 1 27.2375 | 27.1484 | 27.1073
Gabor II | 27.2617 | 27.1569 | 26.8859
curvelet | 27.2239 | 27.1711 | 27. 0189
Gabor III | 27.2449 | 27.1612 | 26.8798

Table 2.6: PSNR for zone 1.

type/size | small medium | large
Gabor I | 20.9255 | 21.443 21.619
Gabor IT | 22.986 | 23.3515 | 23.7118
curvelet | 21.0472 | 21.6531 | 21.3748
Gabor 20.8129 | 22.9513 | 23.1407

Table 2.7: PSNR for zone 2.

In this section we focus on three regions of the images. They corresponds to the white
zones on Figure 2.3. The zones are represented in Figure 2.4.

Zone 1 contains an edge. It seems that nearly all the dictionaries give the same kind
of results (see Table 2.6). Also we see that there is a clear relation on the PSNR,

small dictionary = medium dictionary > large dictionary. (2.14)

Above the relationship > means "better than’. This is not strange. Roughly speaking,
since the more elements in the dictionary, the smaller cell of frequency plan, then the
larger 0,0’ and the better similarity between the filter and the texture (Beware that
when 0,0’ — 0, the filter tends to a constant). But Zone 1 is an edge, so it is very
reasonable that small size dictionary wins for this zone.

Zone 2 contains a texture whose orientation is not related to the shape of region where
it lives. Gabor II features, whose spatial localization is almost isotropic, give the best
results. Features with a curvelet scaling, whose spatial localization is strongly anisotropic
and fits the texture patterns, give the worst. Figure 2.5 compares the result for curvelet
(medium) dictionary and Gabor II (medium) dictionary, the result with Gabor II is much
better than with curvelet.

On the other side, if we compare the result depends on the size of dictionary, we find
the opposite of the relationship (2.14), except for the curvelet dictionary. This tells us
that roughly speaking, Zone 2 is of high variance so this time large size dictionary wins.

Figure 2.5: left: noisy zone 2; center: result for the medium ”curvelet scaling” dictionary,
PSNR = 21.7; right: result for the medium Gabor II dictionary, PSNR = 23.4.
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type/size | small medium | large

Gabor 1 19.4346 | 19.113 21.0173
Gabor I | 20.6871 | 20.0332 | 21.8354
curvelet 18.7523 | 21.0859 | 21.0625
Gabor IIT | 20.4984 | 17.0148 | 20.4302

Table 2.8: PSNR for zone 3.

The situation of Zone 3 is more complex, as it seems that it contains a merge of high
and low variation information, so there is no clear conclusion for the result depending on
the size of the dictionary. On the other hand, Zone 3 contains a texture supported on an
elongated region. Moreover, the pattern of the texture fits the shape of the region where
it lives. Features with a curvelet scaling or Gabor II give better results than the other
features. Our belief is that this region might be rare in natural images. From Table 3,
we can see that this time the performances vary more. Visionally, we can barely see the
difference between the images (for more clearly comparing, please see online results).

Appendix

How to determine o, 0’

We explain how to o, ¢’ after a decomposition of the frequency plan through an example.
For another possibility of choosing these parameters for dictionary based on Gabor atoms,
we refer the reader to [47]. We would like to point out that as the support of the Fourier
transform of any Gabor filter is not compact, we can not expect an exact reconstruction
over the frequency plan. We are happy if we can cover the frequency plan by the main
energy part (roughly speaking, by this we mean the high-light part of Figure 2.2) of the
Fourier transform of those Gabor filters.

Figure 2.6 shows the the decomposition of frequency plan for Gabor I (see Section
2.5.1) with (F,A) = (4,2). The frequency plan is thus divided into 2FA + 1 = 17
cells: one circle in the center, 8 arc-trapezoidal in the first slice, 8 arc-trapezoidal in the
second slice. These 17 cells correspond to FA + 1 = 9 filters. The frequency center of a
Gabor/Gaussian filter is the center of the cell, its frequency covers two opposite cells.

We determine o, 0’ in two steps.

The first step is, for each cell in the frequency plan, find a suitable ellipse to represent
it. As the shapes of the cell are only of 3 types in all our frequency decomposition schemas:
arc-trapezoidal, circular and square, our choice is to use an ellipse (neglecting rotation
and position):

72 y?
(/2)? + (/22 1, (2.15)

where if the cell is a

1. arc-trapezoidal, we take d, d' the length of the center line and the middle arc of the
arc-trapezoidal respectively;

2. circular, we take d = d’ as the diameter of the circle;

3. square, we take d = d’ as the length of the square.
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We therefore take

for the central cell of Figure 2.6, since it is a circular. For the 8 ellipses of the cells in the
second slice shown in Figure 2.6, we should take
1 3T

d=-N, d = ““N.
4 32

The second step is to determine o, 0’ from d,d’. The values of 0,0’ are given by

o=—,0 =— (2.16)

with
(2.17)

where a is a constant, in our experiments, we took a = 0.15. (The value of C' is such that,

22

once normalized at the frequency 2/, the Fourier transform of e ¢@)~2 equals to a. The
value of a is tuned so that the overlaps of the Fourier transforms of the Gabor filters are
reasonable (see Figure 2.2)).

Figure 2.6: Decomposition the frequency plan and choice of 0,0’ to make the Fourier
Transform of the Gabor filters cover the corresponding cells.
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Chapter 3

Incorporate known features in the
general TV — [*° model

This chapter contains some theoretical analysis on the general TV — [*® model. Then
based on these theoretical results, we report denoising and separation experiments with
known features.

In fact, we consider a more general model:

Model 1 For a datum v € RN*, a known linear operator H of RN to RY?, @ finite
dictionary D = (¢;)ier of elements of RN, a functional E conver and differentiable on
RY* and 7 > 0, solve:

min E(u) (3.1)
subject to (Hu — v, ;) <7, for alli € I. ’

When E = TV, to distinguish with the TV — [* model, we refer to this model as the

general TV — [*° model. Obviously, in the case of D symmetric, the general TV — [*°
model is reduced to the TV — [*® model.

3.1 Ad-hoc dictionary for 7'V — [*° model

We recall some classical result of convex problem.

3.1.1 Preliminaries

Consider a convex optimization problem:
min f(w),w
(Q) {4 subject to g¢;(w) <0,i=1,---k, (3.2)

with the convex domain 2 C R", a convex f € C*(Q2) and some affine functions g; and
hi, ie.
h(w) = Aw — b

for some matrix A and vector b.

45
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Definition 3 The Lagrangian function of the problem (Q) is
L(w Q ﬁ + Z algl ) + Z ﬂjhj(w)v (33>
j=1

where a; > 0(1 < i < k) and B; e R(1 < j <m).

Theorem 4 (Kuhn-Tucker)The necessary and sufficient conditions for a mormal point
w* € R™ to be an optimum of Problem () are the existence of a*, 3* such that

oL

%(w*aa*7ﬁ*) =0
afgi(w*) = 0,i=1,...,k
hj(w*) = O,jzl,...,m

of > 0,i=1,....k

This theorem can be found in [48] (Theorem 5.21), another version of this theorem

is Theorem 28.3 of [49]. Using Kuhn-Tucker theorem, we can easily prove the following
Corollary.

Corollary 5 Given an optimization problem with convexr domain 2 C R™,

min  E(w),w € Q
subject to  g;(w) <0,i=1,---  k,

where the g; are affine functions, and E(w) is of C*(Q) and convex. Then for any solution
u* of this problem, there exits (A1,...,A\x) >0 s.t.

VE(u")+ zk: AiVgi(u®) = 0. (3.4)

i=1

3.1.2 Analysis on TV — [* model

Applying Corollary 5 to (3.1), we know that there exists Lagrangian parameters (\;);c; €
R*! such that:
iel
where u* is a solution to (3.1).
In particular, when £ = T'V, D is symmetric, we always have non-negative Lagrangian
parameters (A )ier, (A7 )ies such that:

VTV (u*) + > (A7 = A\ ) H*y; = 0.
i€l
Hence if we denote \; = —(A\] — \;),Vi € I, we can obtain:
VTV (ut) = 3 N H ;. (3.6)
il

Since H is a linear operator, we can change (3.5) as

—(H*H)*HVE(u) =>_ M\, (3.7)
el
where (H*H )™ is the Moore-Penrose inverse of H*H. This means that —(H*H)"HV E(u)
can be expressed by a linear sum of elements of D.
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Figure 3.1: Curvature of Lenna image

3.1.3 When D only contains one element

When D = {¢} and we want to restore a known image, from (3.7), we find that a wise
choice for 1 is (we force ||[¢]|=1):

H*H)*HVE(u
[(H*H)*HVE(u)|
More specially, when H = Id and ' =TV, since
Vu
VTV (u) = -V (= 3.9
(1) =~V - (G (39)
we should take (neglecting a normalization constant):
Vu
=V (=) 3.10
¥ =V (g (310)

This is the curvature of u. We call this dictionary as the ad-hoc dictionary.

3.2 Experiments

3.2.1 Denoising experiments with the ad-hoc dictionary

We report the denoising tests with the ad-hoc dictionary. We add a gaussian additive
noise of variation 20 to the famous Lenna image. The dictionary we used here is the
curvature of Lenna image, it is shown in Figure 3.1. Beware that this is not a real image
restoration experiment as we use the curvature of the ideal image. We use this only to
demonstrate the ability of the ad-hoc dictionary.

Figure 3.2 shows the result of the general TV —[* with the ad-hoc dictionary and result
of the ROF model. From this figure, we clearly see that the general T'V — [*° with this
dictionary almost perfectly reconstruct the image. Not only the PSNR is very high, the
visual effect are much better than the ROF model. The residue image is nearly a Gaussian
noise and this is an important index to reflect the performance of the restoration(see [4]).
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Figure 3.2: Denoising with the ad-hoc dictionary: original image (top-left), noisy image
(top-right, o = 20, PSNR = 22.11); result of the ROF model (middle-left, PSNR = 27.66),
result of the general TV — > with the ad-hoc dictionary(middle-right, PSNR = 34.93);
residual of the ROF model (bottom-left), residual of the general TV —[* model (bottom-
right)
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Figure 3.3: Left: clean image; right: noisy image to decompose, it is obtained by adding
20% impulse noise on the left image

3.2.2 First application: image decomposition with known fea-
tures

The above analysis and experiment illustrate that when we know the curvature of the
ideal image, we can get a nearly perfect restoration result. But the problem is that the
task of obtaining a nearly perfect curvature is equivalent to get the ideal image.

Fortunately, sometimes we have some prior information about the image. For instance,
we may know that the ideal image contains some special structure and we are especially
interested in extracting these structures. In this case we can still use the general TV — [*
model together with a dictionary reflecting the prior information. We explain this process
through an image decomposition example.

Suppose that we are interested in recognizing some letters in a noisy image (see Figure
3.3). We want to separate the image into two parts: one part containing the letters and
one part containing the noise and the background information. We hope that the "letter
part” contains more information corresponding to letters and less information on the
background and noise. Typically, the letter part can be used in a pattern recognition
process.

Now suppose that we know the letters. Then we can incorporate these information
to construct a feature dictionary JFy. Figure 3.4 displays the known letters and their
curvature. We then obtain the total dictionary D by translating F, on the plan (see
Section 2.2.1 for details).

Using this total dictionary D, the general TV — [* model provide a fairly good image
decomposition result. Figure 3.5 displays the results and residuals of the general TV —[*°
model and the ROF model. Clearly we see that most of the letter information is contained
in the letter part while most of background and noise information is in the residual part.

3.2.3 Second application: denoising with known features

Now we add a Gaussian noise of standard variation 20 to the left image of Figure 3.3.
The noisy image is shown in top-right of Figure 3.7. We want to incorporate the prior
provided by the known letters to denoise this image.

The feature dictionary contains two parts. The first part contains 9 filters: the
curvatures of the letters which are shown in Figure 3.4. The second part contains 13
filters {dy,...,d;3} which are from Daubechie-3 wavelet of level 4 and their opposites
{—=di,...,—di3}. Hence the size of the feature dictionary is 9 + 2 x 13 = 35. The 13
Daubechie-3 wavelet filters are shown in Figure 3.6.
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a b c
d]l m
nop

Figure 3.4: Left: ideal letter as prior information; right: basis elements to form the
translate-invariant dictionary, it’s curvature of the left part

Figure 3.5: Image decomposition results for right image of Figure 3.3. up-left: cartoon
part of the ROF model; up-right: noisy-texture part of the ROF model; bottom-left:
"letter part” of the general TV — [*° model; bottom-right: background and noise part of
the general TV — [*° model.
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Figure 3.6: The Daubechie-3 wavelet filters.

The denoising results are shown in Figure 3.7. Clearly, with the known features we
have a much better performance than the ROF model.

3.3 Discussion

When H = Id, if we neglect the interactive between features, we can conclude that
a feature of the form —VT'V(f) in the dictionary D will favor the appearance of the
pattern f i.e. we have the mechanism:

v- (%{) o f. (3.11)

Thus if we aim at recovering a special pattern/structure f from the noisy image by
using the general TV — [* model, we should add the feature —VT'V(f) into the feature
dictionary (when the position of this feature is not known) or total dictionary D (when
it has a known position).

When the total dictionary D contains all the unit-norm vector of RV * the TV — [®
is the ROF model (see Section 1.3.2). Various experiments have already shown that the
ROF model is not good as TV — [*® model with wavelet packets or Gabor dictionaries
(see [50][42]). This illustrates that the construction of the total dictionary is not simply
the union of all possible atoms. Actually, when D is of large size, we can not neglect the
interaction between the elements of D.

Rewriting Eq.(3.6) when H = Id, we have:

iel
We know that the solution of the TV —[*>° model is only involved with the active constraints
(where \; # 0 and (u* — v, ;) = £7). If the vector (\;);cs is sparse, this will reduce the
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Figure 3.7: Image denoising with known features: top-left: original image, top-right:
noisy image with ¢ = 20, PSNR = 22.0801; middle-left: denoise result of the ROF
model, PSN R = 24.5559, middle-right: denoise residual of the ROF model; bottom-left:
denoise result of the general TV — [* model, PSNR = 31.1993, bottom-right: residual
of the general TV — [* model.
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possibility of interaction between the atoms. The sparsest situation is that there is only
one active atom, and this corresponds to the ad-hoc dictionary and we have already seen
that the quality of restoration of this case is fairly good. This illustrates that we should
choose a dictionary D = (1;);c; which can give a sparse representation for the curvature
of the underlying ideal image.

As pointed out in the previous chapter, the authors of [43] proposed an important
open problem: for the TV — [* model, given a class of images and a degradation H, how
should the dictionary D be designed, if one is to aim at optimal results?

Our conclusion is that for H = Id, for a certain class Cy of images, in order to obtain
ideal restoration result with the TV — [*® model, we should take a dictionary D which
gives sparse representation for the collection of curvature of Cy:

VIV (Co) £{VTV(f)Vf € Co}.

We leave the verification of this conclusion for future works. In Chapter 8, we will pro-
pose an Expectation-Maximum approach for learning the typical patterns from a certain
class of images based some statistical model.
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Chapter 4

The TV — [*° post-processing for
K-SVD

4.1 Introduction

In this chapter, we continue to consider the denoising problem (the special case of Eq.(1.1)
when H = Id): an ideal image u € RY ® is observed in the presence of an additive zero-
mean Gaussian white noise b € RY” of standard deviation o. Thus in this chapter, the
observed image v € R¥ ® is obtained by:

v=1u+b. (4.1)

Recently, Michael Elad and Michal Aharon proposed an image denoising method via
sparse and redundant representations over learned dictionaries (see [38] or Chapter 1).
This leads to state-of-the-art denoising performance. The importance of this method is
that it can recover most of the information in the noisy image while there is few wash-out
effect (for instance, for the face region of the image Barbara). That is to say, it is able to
avoid the shortcoming of most T’V based denoising methods.

The drawback of this approach could be that it has some ”checkboard” effect along
edges and it sometimes still loses some texture information especially when the noise level
o is pretty high. It is well known that total variation model can avoid the checkboard
effect and the TV — 1~ model with Gabor dictionary ([42]) has proved to be very effective
for texture restoration. So in this chapter, we try to use the TV — [* model as a post-
processing procedure for the K-SVD denoising model. Numerical results will show that
the post-processing approach is quite effective and it can improve the visual quality of
denoised images restored by the K-SVD method, in the meanwhile keeps or even augment
the PSNR.

4.1.1 The TV — [* algorithm for Denoising

The details of the TV — [ model is presented in Chapter 2. We are interested in the
penalization procedure for this model, i.e the algorithm presented in Table 2.3. For
clarity, we call that step 2 of Table 2.3 as a T'V-penalty procedure. Precisely, a T'V-
penalty procedure contains 3 steps: one calculation of the gradient, one search of the
optimal step, one update of the image. Using this terminology, the algorithm of Table
2.3 can be rephrased as initialize with certain method and then repeat the T'V-penalty
procedure until convergence.
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Figure 4.1: Fast construction of the TV — [* model with Gabor dictionary. up-left: a
clean patch of image Barbara; up-right: noisy image of this clean patch by Gaussian noise
of 0 = 20; bottom-left: result of the ROF model; bottom-right: after one T'V-penalty
procedure from the ROF result

During the experiments of the TV — [* model, we observed that the T'V-penalty pro-
cedure has strong reconstruct capability. More precisely, when A is fixed and reasonably
large, if we initialize for the penalization algorithm presented in Table 2.3 well, only one
or two T'V-penalty procedures are needed for reconstruct most of the lost information.

Figure 4.1 shows this fast reconstruction ability. The up-left is a clean patch of the
Barbara image. A Gaussian noise with standard variation 20 was added to the clean image
and the noisy image is shown in up-right of Figure 4.1. The bottom-left is the denoising
result of the ROF model. We use this image to initialize for the TV — [* model with a
certain Gabor dictionary. After only one T'V-penalty procedure, we can reconstruct most
of the lost texture information. The result is shown as bottom-right of Figure 4.1.

4.1.2 Post-processing approach

Comparing to the TV — [* model, K-SVD model gives higher PSN R and has very few
washout effect, especially for the face region of Barbara; comparing to K-SVD model,
the TV — [*° model has more chance to reduce the checkboard effect. Both methods
can recover most part of the texture. Based on these observations, we propose a post-
processing approach. In order to solve the denoising task, we first use the K-SVD method
to get a fairly good restoration result and then we use this result as the initial for the
TV — [*° model. Beware that this time we only need to repeat k T'V-penalty procedure
with & very small.
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Task: Denoise a given image v.
Parameters: \-penalization parameter, e-regularization for curvature, k-number of
the T'V-penalty procedure, 7- noise control parameter

1. initial u with result of K-SVD (Table 1.4)
2. Repeat k times:

e (Calculate direction of gradient:

YU ) A (=, )Y

V|Vul? + € =

e Find the optimal step by dichotomy:

w=-V-(

§ = arg min (TV(u —tw) + A Y o (((u—tw) — v, ¢>>)

+
teR beD

e Update u:

Uu=u—=>sw.

Table 4.1: General form of Post-processing algorithms.

4.2 Main algorithm

The details of our main algorithm is presented in Table 4.1, where ¢’ is defined in Eq.(2.7).
The typical choice of A is between 10 and 10°. 7 = 3.50. The choice of k is discussed
in the experiments.

4.3 Experimental results

We report our experiments for o = 20, 30 on Barbara and Lenna image. As in [38], we
assume that o is already known or could be estimated from elsewhere. We use Gabor
dictionary (Gabor II of ([42]), large size) which contains 145 filters, as we think that it
is globally better for restoration. The sum of FFT of all the filters of this dictionary is
shown as Figure 4.2.

4.3.1 Noise level of 0 = 20 for Barbara

Our first experiment is to denoise the Barbara image with noise level o = 20, the PSNR
of the noisy image is 22.0977.

Figure 4.3 shows TV (u) and PSNR(u) with the iteration number k, in the main
algorithm (see step 4 of Table 4.1). This Figure tells us that after about 2 or 3 times
of the TV-penalty procedure, TV (u) and PSNR(u) both reach their maximums at the
same time. So if we aim to get a higher PSN R denoising, we should stop the iteration
of the TV-penalty procedure once TV (u) reaches its top.

For our experiment, the highest PSN R is 30.9376, when k£ = 2, this is a slightly higher
than K-SVD of Elad (30.8113) which claimed state-of-the-art denoising performance and
much higher than the classical Rudin-Osher-Fatemi method (24.6759).
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Figure 4.2: Sum of Fourier transforms of the 145 filters in the Gabor II dictionary (large
size).

Meanwhile, if we want a better visual quality, we can continue the iteration of the
TV -penalty procedure and set k = 10 to 15. Figure 4.4 displays a piece of the left-bottom
part of the Barbara, with k& = 15. The visual effect of the new approach is only slightly
better than the K-SVD, in the texture region on the desk.

4.3.2 Noise level of 0 = 30 for Barabara

In our experiment, when ¢ = 30 the PSN R of the piece of the Barbara image is 18.5448.
Figure 4.5 shows the result for the same piece as Figure 4.4. From this Figure we obviously
see that our new approach performs better. Both Rudin-Osher-Fatemi method and K-
SVD fail to recover the texture of the tablecloths, while our approach still can recover most
of the information. And for the left part this piece, Rudin-Osher-Fatemi lost the texture
information and K-SVD can recover some of this information. But our new approach
recovers more information and the texture is still presented.

Globally,for this level of noise, the PSN R of the noisy image and the result of Rudin-
Osher-Fatemi,K-SVD, and our approach are respectively 18.5867, 24.0429, 28.5947, and
28.8376.

4.3.3 Noise level of 0 = 20 for Lenna

We also report our experiment result on Lenna image of size 256 x 256. For the sake
of display, we adopt a different version with the one reported in [38] where the size of
Lenna image is 512 x 512. Beware that the similarly observations hold for larger version
of Lenna.

The clean Lenna is shown on the up-left in Fig.4.6. The T'V of this image is 13.8457.
With a Gaussian noise of standard variation 20, the TV and PSN R of the noisy image is
respectively 39.9117 and 22.0823. We show the noisy image as up-right of Fig.4.6. After
K-SVD denoising method, a fairly good result is obtained, the TV and PSNR of the
restoration image is respectively 10.8710 and 30.4464. We then use our post-processing
procedure, with £ = 1 (again, the value of k is decided automatically), we obtain a new
restoration image whose TV is 11.0179 and whose PSN R is 30.4688. Hence, comparing
to K-SVD result, the PSN R of our new approach is only very slightly better, but the 7'V
is more better and this hints us that our new approach recovers some structure lost in
the K-SVD denosing method. The result of K-SVD and our new approach are shown as
bottom-left and bottom-right in Fig.4.6. Clearly, our new approach recovers some texture
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Figure 4.3: TV (u) and PSN R(u) as a function of the iteration number k (see Table 4.1).
Note that k = 0 is result of K-SVD of Elad.
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Figure 4.4: Denoising a 128 x 128 piece of Barbara. From left to right and from top
to bottom: noisy image (¢ = 20), PSNR 22.0896; Rudin-Osher-Fatemi, PSNR 24.2663);
K-SVD, PSNR 28.9013; Our new approach,PSNR 29.1148.

on the region of the hat while these information are lost after the K-SVD denoising
method.

4.4 Conclusion

In this chapter, we have proposed a post-processing approach for K-SVD. This combines
the sparse representation and total variation concept. Our post-processing approach can
recover part of lost information of K-SVD thus improve effectively the visual quality, in
the meanwhile keeps or even augments the PSNR.
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Figure 4.5: Denoising the same piece of Barbara as Figure 4.4. From left to right and
from top to bottom: noisy (o = 30), PSNR 18.5448; Rudin-Osher-Fatemi, PSNR 23.4331;
K-SVD, PSNR 26.4467; Our new approach, PSNR 27.032.
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Figure 4.6: Denoising Lenna (size 256 x 256 ). From left to right and from top to bottom:
clean Lenna image, TV 13.8457; noisy image (o = 20), TV 39.9117, PSNR 22.0823;
K-SVD result, TV 10.8710, PSNR 30.4464; Our new approach, TV 11.0179, PSNR
30.4688



Chapter 5

Proximal Point Algorithm for Non
Negative Basis Pursuit model

This chapter develops an implementation of a Proximal Point Algorithm solving a Non
Negative Basis Pursuit Denoising model. The variant imposes a constraint on the /2 norm
of the residual, instead of penalizing it. Thanks to the proximal regularisation (applied to
the predual of the Non Negative Basis Pursuit Denoising model), we turn a constrained
non differentiable convex problem into a small sequence of smooth concave maximization
problems. By smooth, we mean that the functions which are maximized are differentiable
and their gradient are Lipschitz.

The algorithm is easy to implement, easier to tune and more general than the algorithm
found in the literature (it can be applied to the usual and the Non Negative Basis Pursuit
and it does not make any assumption on the dictionary). We prove its convergence to an
actual solution of the model and provide convergence rates.

Experiments on image approximation show that the algorithm is simultaneously faster
and more accurate than the existing algorithms.

5.1 Introduction

5.1.1 From Basis Pursuit to the new variant

In its most recent form [19, 20], the Basis Pursuit functional is defined by a finite subset
of D ¢ RV (called dictionary) (1;)se; and takes the form

E('U) = inf()\i)iel Zie[ )\Z
under the constraints \; > 0,Vz € I,
and 3 7;cr Aty = v,

for all v € RN,
The ordinary Basis Pursuit model is presented as Eq.(1.14). It can be rewritten under
the form
min_||w — v||* + AE(w), (5.1)
weRN?

where E is defined with a symmetric dictionary D i.e. D = {—,1 € D}.

The strength of the functional F is that its level sets are scaled versions of the convex
hull of (v);)ier (see [51, 20]). It is therefore possible to build a functional E that favor the
apparition of specific structures; and we have a complete control on these structures. This
functional can then be used in optimization problems designed for specific applications.
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One drawback of the above functional F is that it favors both the apparition of v; and
—1);. This might lead to a bad modeling of some structures which only appears with a
given sign. For instance when dealing with images of text, the letters are always dark on
a brighter background. If, in an approximation, an element of the dictionary representing
a letter at a given location appears with a negative sign, it describes something which
is not a letter and should be represented by elements of the dictionary devoted to the
background. (This holds also for astronomical image, images of faces,...). This led some
authors [19, 20] to study the Non Negative Basis Pursuit, where the above regularisation
term FE is replace by E,, defined, for every w € RY*, by

Enn(w) - min()\i)ie[ Zie] )\z
under the constraints \; > 0,Vi € I,

and diel Ay = w,

for a dictionary (¢;);cr. The level sets of E,,, are scaled versions of the convex hull of
(¢i)ier. Of course, if (¢;);es is symmetric (for all j € I, —1; € (¢;);er) one obtains a
model similar to the usual Basis Pursuit Denoising model.

Another issue which we wanted to improve in (1.14) concerns the choice of the para-
meter \. For practical applications, it is always preferable to solve the model under the
form

under the constraints [|[w — v|| < 7,

for a parameter 7 > 0. Indeed, 7 can be tuned automatically, according to some prescribed
precision (in approximation) or a known noise level (in denoising).

Notice that, as is well known, there is a correspondence between the parameter \ in
(1.14) and the parameter 7 in a model of the form (5.2). However, this correspondence
depends on the initial data v. For instance, when solving (5.2), for A = 0.1, with the
translation invariant local cosine dictionary described in Section 5.3.1 and for the initial
data “Barbara”, “baboon” and “Lenna’”, the norm of the obtained residual are respec-
tively 0.28, 0.40 and 0.30. If we run the same experiments with A = 200, on noisy versions
(an additive Gaussian noise of standard deviation 20) of those three images, we obtain
respectively 24.06, 28.9, and 25.74. The discrepancy between those numbers does not
occur when the model takes the form (5.2).

All these considerations led us to consider a Non Negative Basis Pursuit Denoising
model taking the form

min(/\i)iel Diel Ai
(D) ¢ under the constraints \; > 0,Vi € I,
and || ey Mtk — v < 7,

for a dictionary (¢;)ic;, 7 > 0 and an initial datum v € RN”,
The purpose of the current chapter is to design an efficient algorithm for solving (D).
If ||v|| < 7, obviously the unique solution to (D) is A; = 0,Vi € I. To avoid this trivial
situation, in this chapter, we will always assume that:

[oll > . (5.3)
Throughout this chapter, we denote,

R = {(A\)ier € R, Vi € T, > 0},
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and we will assume also that the dictionary is such that

Vw € RY,3(\)ier € R and w = 3 M\,

iel
or equivalently (see Proposition 6) that
{w,Vi € I,(w,y;) <1} is bounded.
When this hypothesis holds, (D) and the upcoming problem (P) have a solution.

Proposition 6 Suppose D = (V;)ier C RN, The following two assertions are equivalent:

A.
Yw € RY I(\i)ier € R and w =" \y;
il
B.
{w,¥i € I, (w, ;) < 1} is bounded.
Proof. see Appendix. O

5.1.2 Simple analysis on the solution to (D)

Proposition 7 If the dictionary D satisfies the assertion of Proposition 6, then a solution
(Ni)ier to (D) exists and the value ;e A\ith; does not depend on the choice of (\;)ier-

Proof. As the assertion of Proposition 6 holds, we know that there exists (A\));c; € RT!

such that

i€l

Thus the feasible set is non-empty (at least it contains (A?);cr), and if we denote

Ag =N,

el
then (D) is equivalent to:

min()\i)iel Dier Ai
(Do) 4 under the constraints 0 < \; < Ag, Vi € I,
and [|v — X Ahil| < 7.

The Problem (D) can be regarded as minimizing a continuous function over a non-empty
compact set, so a solution to (Dy) (hence to (D)) exists.

Now if ||v|| < 7, then it is obvious that the unique solution to (D) is (A;)ier = 0. So
we only need to consider the case ||v]| > 7.

The first assertion is that for any solution (\;);es to (D), the constraint ||[v—>";c; Ait||
7 must be active. Indeed, if this is not true, then the solution to (D) is also solution to

IN

(D1> min()\i)iel diel Ai
under the constraints \; > 0,Vz2 € I,
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i.e. (A)ier = 0 but this is impossible since (A;);e; = 0 is not in the feasible set of (D).
This implies that for any solution (\;);e; to (D), we always have:

v — Z Aithi]| = .

il

Now we want to prove the uniqueness of >;c; A\itb;. Suppose that (A )ier, (A?)ier are
two different solutions to (D). Then we know that:

S =Y

iel iel

and

lo =D Al = llo = > Nl = . (5.4)

el el

Considering £(A! + A;)iez, from the fact that:

2
lz +yll < llzll +llyll, Y2,y € R,

we know that (A} + A?);es is in the feasible set of (D). Moreover since:

22 A+ A7) =D A,

iel el
we know that (A + );)ses is also a solution to (D). Hence:
Lo e
lv =2 SN+ ADeill = 7.
el 2

This lead to:
(v =Y Aiws) + (0 =D Nl = llv =D Xl + lo = > Al

iel el il el

Moreover, in Euclidian space||z+y|| = |||+ ||y|| holds if and only if there exits a positive
0o such that x = Byy or y = [Box. Without loss of generality, we assume that:

v = Z)\l% Bo(v — ZAZZ%’),

el i€l
for By > 0. Taking the norm on both sides of the above equation and using Eq.(5.4), we
know that fy = 1 and then
DA =D A

el i€l

This finishes the proof. U

5.1.3 Sketch of this chapter

In section 5.2, we build the simplest version of our algorithm. The algorithm solves a
problem (P) whose dual problem is (D). The problem (P) is stabilized by a Proximal
regularization (see Section 5.2.2 and 5.2.3). Then, some calculations permits to obtain
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closed form formulas for some of the necessary computations of the algorithms (see Section
5.2.4). They also guarantee its convergence (see Section 5.2.5). The simplest version of
the algorithm is given in Section 5.2.6. It is easy to implement. Some variations around
this algorithm are proposed in Section 5.2.7.

Then, some experiments are explained and commented in Section 5.3. The experiments
are described in Section 5.3.1, the practical convergence of the proposed algorithms is
studied in Section 5.3.2, as a bibliography on existing algorithms is made in Chapter 1,
we compare our algorithms to the main existing algorithms. This comparison shows that
our algorithms are far more accurate than the existing algorithms.

5.2 Building algorithms

We consider the optimization problem below and will show that the corresponding dual
problem takes the form (D) above. As in the preceding section v € RY * is the initial
datum, D = (v;);c; is a finite subset of RN (called dictionary) and 7 > 0.

(P) minwERN2 ||UJH - %(w,v}
under the constraints Vi € I, (w, ;) < 1.

5.2.1 Basic property of Problem (P)
We first present a simple lemma.

Lemma 8 If the dictionary D satisfies the assertion of Proposition 6 and v € RN” is
nonzero, then
mgjx(v,@/w > 0.

Proof. Since the dictionary D satisfies the assertion of Proposition 6, there exists (\;);es €
R* such that:
U= Z Aith;.

iel
Thus:
ol = (v.0) = - M) < mav, ) Y A
i€l el
This implies that: ,
| > 0.

v
>
igX<U7¢Z> T D ier i

Proposition 9 If the dictionary D satisfies the assertion of Proposition 6, then the so-
lution to (P) exists and

1. if ||v|| < 7, then the solution to (P) is unique and it is just w = 0;

2. if ||v|| = 7, then the solutions to (P) are the segment [0,vv] for an approximate
positive number Yo,

3. if ||[v|| > 7, then the solution to (P) is unique.
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Proof. When the assertion of Proposition 6 holds, then the feasible set of (D)
{we RN |Vi € I, (w,v;) < 1}

is non-empty (at least w = 0 is in this set) and bounded. Since [|w| — L(w,v) is a
continuous function, the minimum exists.

If v = 0, it is obvious that (P) has a unique solution w = 0. In the following we
suppose that v #£ 0.

1. When ||v| < 7, for any w € RY’, we have

1 ol
- — > 1-— > 0.
) =~ w,v) = w1 - 1) >

Thus the minimum of (P) is 0 and the only choice to attain this minimum is w = 0.

2. When |jv|| = 7, we still have:
1 o]
-~ > [wl(1 = ™My = o,
ol = 2y > o2 - 120

But this time, the equality holds if and only if:
(w, v) = [lwllf|v]].

This tells us that w = v where v > 0. As yv should belong to the feasible set, we
need:

Using Lemma 8, we obtain,
1

VS ———— -
maxer (v, ¥;)
Therefore,

o
max;er (v, ¥;)

is such that all the solutions to (P) are the segment [0, yov].

Yo = >0, (5.5)

3. Now let us consider the case: ||v| > 7.

Our first assertion is that in this case, the minimum of (P) is strictly less than 0. In

fact, consider w = yov where g is defined in (5.5), then this point is in the feasible
set of (P) and

1 v
full — 2w,y = ol - 10y <o

Now suppose that there are two solutions wy, wy € RY’ to (P). Since (w1 +ws) is
also in the feasible set, we have:

1 1 1
§||w1 + wal| — 2*<UJ1 +wa,v) > lwi|| = =(wi,v)
T T

1
= llwall = s, v)

1 1
= §(Hw1\| + [Jwal]) — ;(wl + ws, v).
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This lead to that:
w1 + wa| > [Jwi || + [Jwa].

Hence
[wi + wa = [Jw || + [Jwal],

and
wy = fw,
where 3 > 0 (remember that w,, we are not zero).

Then we know that:

1 1
lerl} = —wr,v) = B(llwz]| = —(wa, v)).
But
1 1
w1l = =(wi,v) = |lwa]] — =(wq, v) <O,
T T

thus we must have # = 1 and then w; = wy. This finishes the proof of the uniqueness
of the solution to (P), when ||v| > 7.

O

5.2.2 Dual formulation

The Lagrangian of the problem (P) is

L, (Wier) = ol =+ (w,0) + 3 A, ) — 1)

el

As usual (see Th. 28.3, pp 281, in [49]), the unique solution w* to (P) is also the first
argument of any saddle point (w*, (A]);cr) of the form

min ma Llw. (M), )
weRN? ()\i)ieIEXR"'I (w, (Ai)ier)

All along the chapter, we denote

S={(\icr ER™ (\)ier =arg max  L(w*, (\)ier)}- (5.6)
(Mi)ier€RTI
We know that S # ) (see Cor. 28.2.1, pp. 278, in [49]) but cannot guarantee it is reduced
to a single element.

Notice that, L is a saddle function (i.e. : convex in w and concave in (\;);cr) which
satisfies the hypotheses of Th. 37.6, pp. 397, in [49] (L(., (\i)icr) and —L(w,.) do not
have any direction of recession). So, for any (A})icr € S, (w*, (A})ier) is a saddle point of
the form

min  max  L(w, (\;); = ma min Llw. ()
wGIéNQ ()\i)ielgR+I ( 7( z)zel) ()\i)iele}(R+Iw€IéN2 ( 7( z)ze])

~ max  min <||w|| - (w,j_v - ZM/)O) Y

(Mi)ier€ERT 1 eRN? iel iel
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Finally, notice that, denoting F'(w) = ||w||, we have
i 1 _ ) oo Lif v =i A € TOF(0)
weRN? (HwH —{w, 0 ;/\lwl>> N { 0 , otherwise. (5.7)

Also, we know that
OF(0) = {w € RY, Jw] < 1}. (5.8)

So we finally know that any (\!);c; € S is solution to

mMaX(y;);ereRTT — Dier i
under the constraint ||[v — > ,c; TAY;]| < T,

which, modulo a trivial multiplication by 7 is precisely the problem (D) considered in the
preceding section.

As a conclusion, the problem (D) can be solved by any algorithm solving (P) which
also provides a Kuhn-Tucker vector (Af);e;. The point is that, in fact, most algorithms
solving (P) also provide such a (Af);c;. We summarize this as:

Proposition 10 Suppose that ||v]| > 7 and the assertion of Proposition 6 holds. Denote
w* the unique solution to (P) and suppose that (A})er is any Kuhn-Tucker vector of (P).
Then (TAf)er is a solution to (D).

In the following, we will only consider a small family of such algorithms. (Our moti-
vation for considering this family will be clear after Section 5.2.4 and 5.2.5) This family
is described in the next section.

5.2.3 Applying the Proximal Point Algorithm to (P)

We write
S ((No)ier) = min, L(w, (Ai)ier)-
weRN

As indicated in the previous section, (D) consists in maximizing f over R™!. Assuming
that we know how to evaluate V f at any location ()\;);e; such that f((\;)ies) is finite,
we could in principle apply any gradient based algorithm to achieve that goal. A typical
example is the Uzawa algorithm.

Now, at each iteration, the step size of such an algorithm will have to be such that f
remains finite (see (5.7)). This will result in a slow and unstable algorithm.

In order to avoid this problem, we propose to stabilize (P) with a Proximal Point
Algorithm (see [52, 53]).

We consider

() = Il = ~w, ) + Lo (w), (5.9

with C' = {w € RN",Vi € I, (w,;) < 1} and 1;0(w) equal to 0, if w € C, and to infinity
otherwise. Minimizing g is equivalent to solving (P).
Using the Proximal Point Algorithm regularization, we consider, for any u € RN?,

ua(w) = aflw —ul* + g(w),

and the algorithm

umtt = argmin, _px2 Gum o, (w), (5.10)
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for a given u® and a fixed nondecreasing sequence (v, )men, With ag > 0.
General results on Proximal Point Algorithm will guarantee that (u™),,en converges
rapidly to the solution w* to (P). (A more precise statement is given in Proposition 11).
In our dissertation, we need to go one step further and prove that this implies the
convergence of the corresponding Kuhn-Tucker vectors. To do so, we exhibit those vectors
and write

Jum am ((Ai)ier) = min L'(w, (Ni)ier, u™, o), (5.11)

weRN?
with
1
L'(w, (Nier, v, am) = apljw — u™|]> + |l = (w, =vo = > Nh) — >\, (5.12)
7 i€l i€l
The family of algorithms which we consider in this chapter is described in Table 5.1.

A discussion similar to the one of the preceding section guarantees that the sequence
(u™)men built by such an algorithm equals the one built with (5.10).

e Initialize u°

e Repeat until convergence (loop in m)

1. Use a gradient based algorithm for solving

()\;’n)iel € a’rgma‘x()\i)iejeR"'I fum7a7n (()\Z)ZEI)

2. Update u™ = argmin, _pnz L' (w, (A )ier, u™, ).

Table 5.1: General form of the algorithms. The gradient based algorithm still needs to
be specified.

Notice that, beside the decompositions and recompositions, the only difficulties in the
implementation of the above algorithm are the computations of the gradient V f,m ,,,, in
step 1, the resolution of the step 2 and, depending on the gradient based algorithm in
step 1, the evaluation of fym o, ((Ai)ier).

Our interest for the algorithms above comes from the fact that, as will be shown in the
next section, those computations can be performed exactly. Essentially, the cost of the
evaluation of V f,m 4, is one decomposition and one recomposition in (1;);cr; the cost for
computing argmin, g2 L'(w, (A]")icr, u™, auy) and for evaluating fum q,, ((Xi)icr) is one
recomposition in (1;);er.

Moreover, we will show that V f,m ,,. is Lipschitz and we will provide an upper bound
of its Lipschitz constant (this bound can be computed numerically). This will guarantee
the convergence of many gradient based algorithms considered in step 1.

Before, going into those details, let us first state the following proposition which guar-
antees that our “predual-primal” proximal approach actually provides an approximation
of actual solutions to (P) and (D). It also guarantees that the loop in m of Table 5.1
converges rapidly and is short. Its proof is given in Appendix.

Proposition 11 Assume (q,)men i @ nondecreasing sequence with oy > 0 and ||v|| > 7
(if ||v]| < 7, 0 is a trivial solution to (P) and (D)), there exists a > 0 and M > 0 such
that the sequences (U™ )men and ((A]")ier)men defined in Table 5.1 satisfy

()
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1. (u"™)men converges to the solution w* of (P). Moreover, for ¢, = ﬁ <1
™ — w*|| < epllu™ — w*||, Vm > M. (5.13)

2. For Cp, = 20m (e + 1) + 2225 and any (A)ier € S, where S is the optimal set of
(D),

< Cpllu™ — w*||,¥Ym > M.

DAY = D AN

i€l el

Using (5.13), the right term converges to 0.

3. limy,— 400 A(A)icr, S) = 0 where,

(3

d((>‘i )i€l78) = (,\;*I;}é?es ”()\z - )‘i)iGIH'

5.2.4 Exact resolution of step 2 and exact computation of V f,m , ((\;)ier)
and fymq,, ((N)ier)

First, as is usual with the gradient of functions defined as a minimum, many terms cancels
out! and we will finally calculate V fym 4,

Proposition 12 The gradient of fym a,, can be calculated as:

V fum om ((Ni)ier) = ({w*, ;) — 1)1’617

where )
w* = arg min_ ap|jw — u" | + || — (w, —v = > Npy). (5.14)
weRN? T iel

Proof. see Appendix. O

As a consequence, modulo a decomposition in (1;);cr, the computation of V fym 4,
and the resolution of step 2 boils down to the same problem : the resolution of (5.14).

m

Proposition 13 Denote r = > ;1 Nty — %v, u=u", @ = a,. Then the solution to

(5.14) w* is given by:

. {O i ||20u — 7| <1
w g

|I20cu—r||—1 . .
Sal2au—rT (2ccu — 1), otherwise.

(5.15)

Proof. Using the notations of r, u, we need only consider the problem

w* = arg min_allw —ul]* + |w| + (w,7),
weRN?2

. 2
where v and r are in RV,

!Notice that the differentiation is not that trivial since, in L', the optimal w depends on (\;)icr-

. . . / .
However, as is common with such max min problems, the term %ﬁ; equals zero and it cancels the terms

% which appear in the calculation of V fym ., ((A\i)ier). For an example of such a calculation, see the

proof of Th. 9.3.3, in [54]
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Let us begin with the situation where ||w*|| = 0. Differentiating, we know that 2a/(w*—
u) +r € 0F(0), where F(w) = ||w||. Using (5.8), we have

w*=0=[r—2ou| <1

On the other hand, if we assume that ||w*|| # 0, we know that

20(w* —u) + w* +r=0
[Jw*|
This gives
|w*]|(2au — 1) = 2a||w*|| + 1)w*. (5.16)
Taking the norm of the above equality, we obtain
|2au — r|| = 2a||Jw*|| + 1, (5.17)

which guaranties that ||2au — 7| > 1.
As a conclusion,

w'=0<%< ||20u — 1| <1,
and when w* # 0, w* can be computed, using (5.16) and (5.17), and is

|20 — 7| — 1
* 2 .
v 2|20 — | (20u =)

We can rephrase this as

l[2au—r| -1 _ .
2al[2au—r]| (2ccu — 1), otherwise.

. {O ,if [[2au — 7] <1
w =

As a conclusion, in the Step 1 of the algorithm described in Table 5.1, the gradient
can be computed with :

Vfumﬂlm (()\Z>Z€I) = (<U)*7 ¢Z> - 1)i617 (518>
where
. J0 Vit <1 -
v 2'('5%:“ t , otherwise, (5.19)
with

T

el

Moreover, the step 2 of the algorithm of Table 5.1 is solved by applying (5.19) at (AI").
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5.2.5 Computing the Lipschitz constant of the energy gradient

Known results on the Moreau envelope permits to prove the following result. Notice that,
at the expense of a longer proof, we could, using (5.18), obtain a similar bound.

Proposition 14 For any (\;)ier and (\,)ser in R,

IV fum i ((Ai)ier) =V fum o (Nier) | < A = Aiea

with C = YAz ity

My =) llvill?,

i€l

and My is the norm of the reconstruction operator :

e Aiti
My= sup e Al
(Ni)ier#0 | (Ai)ier ||

Proof. In order to obtain this result, we first rewrite

!/ m m v
L(w, Nier, u™ am) = amfw —u™* + ol = {w, = =3 Athi) = >_ A

el el
= alw—u"— —20% (7_ — ;&%) + ||wl|
- *_Z)\zwz ‘*_Z)\szlﬁ Z)\z
iel iel iel
So, for any (\i)ie; € RY,
fum,am(()‘i>iel) = min L/( ()\i>i€1'a Um7 Oém)
wERN?

- o (u "z (- 2)
- 7_Z>\Z¢Z _7”*_2)‘11&2”2 Z)\z

i€l i€l i€l

where, for any ¢ € RV,

Con (1) = min, a[lw = t* + [l
w

stands for the Moreau envelope of ||.|.
As a consequence, for any (\;);er € R,

Vfum,am«Aj)jeI):( 1 <Veam< (5 = ), >

Qam m el

m 1 v
+ (u™, ) + g(* = Ny, i) — 1>iel-

m T el
Moreover, as is common for the Moreau envelope (see the introduction of [55]),

IVea,, (t) = Vea,, ()] < 2aml|t — ']
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So, for any (\;)ie; € R and (\));er € RY,
IV fum i (A)ier) =V fum,aom (Mier)|I”

2
Ny — A 1
<y (H S 2Nyl + 5o S0 - Agmuuwiu)
iel \ jel m mo el
1
< D (A = Al 3 ill”
m jel el
M2 M2
< ;3’1 21 = el
where M; and M, are given in the proposition. U

The above proposition is important since it guarantees that some gradient based algo-
rithm with constant step size, used to solve the first step of Table 5.1, converges for some
step size (see next sections). Together with Proposition 11, this ensures that the whole
algorithm converges to the desired solution.

However, in order to chose the step size in these algorithms we need to have an estimate
of the best possible constant Lipschitz constant. This can, of course be done experimen-
tally be running the algorithm for several step-size, when all the other parameters are
fixed.

A more flexible way to chose the step size is to use the formula expressing the bound
C' given in Proposition 14. With this regards, for most dictionaries, all its elements but
M, are easy to calculate.

In order to estimate My, we use the upper bound (it is easy to obtain)

My < > |1l (5.20)
icl

Finally, as can easily be seen from (5.18) and (5.19), fum.a,, does not satisfy any sort
of ellipticity property. In particular, it is not elliptic. This rules out the guarantee of
some well known properties (see [54]).

5.2.6 Uzawa version of the algorithm

In this section, we present the algorithm obtained when the gradient based algorithm used
to solve the step 1 of the algorithm described in Table 5.1 is a simple projected gradient
ascent with constant time step. The step 1 is then an Uzawa algorithm solving the dual
of (P,m) (thus the name of the version). Given Proposition 14, we know (see [56], Cor.
2.1.2, pp. 70, and Th. 2.2.8, pp. 88) that it converges as soon as the time step is in the

range (0, %), where C'is given in Proposition 14. Moreover, the "best time step” is p = L

ol
We also know (see [56]) that, for p = & and u™ € RY *, there exists a constant Cy > 0

(which depends on the quality of the initialization) such that

2C
k+4’

Jam o = Jum am (()\f)z‘el) <G
where (A\F);c; is the result at the k1 iteration of the algorithm and

f;m,am = max fu'rrz7am ((Al)’LEI) (521)

(Ai)ier€RH
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e Inputs : 7 > 0, the initial image v € RV, a dictionary
(Vi)iei and (aum)men

e Output : the coordinates (\;)ies
e The algorithm :

— Initialize (A?);er, u® € R and p= %

— Repeat until convergence (loop in m)
* Repeat until convergence (loop in k)
1. Compute w” = 200, u™ — Y;c; Afth; + 1o
2. if (JJw®| < 1), set w* =0
otherwise, set w* « aw*, with a =

3. Update \F+1,

w1
20 [lw* ]|

Viel, )\f“ = max (O,/\i-C + p((wk,@/)i) — 1))

x update v = w¥ and, for all i € I, \) = AFL

— Compute i € I, \; = 7).

Table 5.2: Uzawa version of the algorithm : The step 1 of the algorithm described in
Table 5.1 is solved by a projected gradient descent with constant step size.

The final algorithm is described in Table 5.2.
The details on the initialization are given in Section 5.2.7. The constant C' was esti-
mated using Proposition 14 and (5.20). This gives :
3
. 112)2
C = M (5.22)

QAm

5.2.7 Details and variants of the algorithm

This section contains some details on the use of the above algorithm when solving the usual
Basis Pursuit Denoising model (instead of the Non-Negative Basis Pursuit Denoising), the
initialization and the stopping criterion of the algorithm.

Also, there exists many gradient based algorithms for solving the step 1 in Table 5.1.
In addition to the projected gradient algorithm with constant step described in the above
section, we have implemented two other versions. Those versions are described in this
section.

Symmetric and partly symmetric dictionaries

The algorithm presented so far solves a Non Negative Basis Pursuit Denoising model.
We would like to emphasize that when the dictionary is symmetric (i.e. 3J C I, such
that (v:)ier = (¥)jes U (—1;)jes) or partly symmetric (i.e. 3J and J' C I, such that
(Vi)ier = (¥5)jer U (¥))jes U (=) es), this generalization is not made at any expense.

For simplicity, let us consider a symmetric dictionary (¢;)icr = (¥})jes U (—%;) e
When applied to coordinates (A])jes U (Aj)jes € R*/, the reconstruction operator in
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(¢i)ier s

ieJ
This is just the reconstruction in (¢;);ey, apphed to A} )jer-

(A
Similarly, the decomposition of any w € RN, in (¢;)ier, 18

((w,¥5))jer U (—(w,¥;))jer,

and only requires to decompose w € RY” in (V) jer-

As a conclusion, the cost for applying a decomposition or a recomposition operator
in (vj)jes U (—1;)jes is essentially the same as the cost for applying the corresponding
operators in (¢;)e;.

A more serious issue is that the algorithm might converge more slowly, because it
needs time to set a coordinate (for instance) A; to 0 although A > 0. In order to assess
the extent of this problem, we evaluated

#{j € J,A] >0and \j >0}
#J

for a symmetric dictionary, along the iterative process (# denotes the cardinal of a set).
The order of magnitude of the worse value we found was R ~ 0.1 and it always rapidly
decays to 0. This suggests that it is not a practical problem.

However, when this occurs, we also observed that adding the “projection”

R =100

. L o— (AT = X7,0) if AT > A7
Vi€ (00 A) < { (0,])\]-_ —])\j) , oth(]arwisej,
as a fourth step, in the algorithm of Table 5.2, slightly improves the convergence. No-
tice that this “projection” obviously increases fym,,, (the objective function which is
maximized). We have no theoretical proof of convergence with this “projection”, but we
do neither anticipate, nor have experimentally observed, any convergence problem when
using this “projection”.

Although it does not seem to be a mandatory step, all the experiments conducted in

Section 5.3 use this “projection”.

The initialization

In the algorithm of Table 5.2, we need to initialize (\);e; and u° € RN,
We have not studied the initialization of (A\?);c;. There are indeed many possibilities
for this initialization and we leave this study for a future work. We therefore simply use

N =0, foralli€ I
Concerning the initialization of u°, we tried two possibilities:
e the simplest : u’ =0

e the most efficient : First observe that (u™),,en converges to the solution w* to (P).
Therefore, u° should be close to w*. Let us approximate w*, given an estimate
(A?);er of a solution to (D).
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If (\Y);c; is properly initialized, we know that

*

w

v
— =+ M = 0.

w7 M

Moreover, since w* solves (P) and ||v]| > 7 we have

max(w*,¥;) =1

el

So, we have
: L / (5.23)
w* & w )
max;er (W', ;) ’

= 7_2/\02#2

el

with

All these considerations leads to the idea of initializing ©° at the approximate value
of w* given by (5.23).

Experimentally, the latter initialization procedure consistently provides a better ini-
tialization than u® = 0, even when (\?);c; is far from the actual solution to (D). Of
course, the advantage of this initialization is more striking when (\?);c; is close to the
actual solution to (D).

In all the experiments which are presented in Section 5.3, we use the initialization

defined by (5.23).

Stopping criteria
Although it is a source of improvements of the algorithm, this an aspect we have not

really studied. The stopping criteria used in the experiments are :

e for the loop in k£ : The loop continues while :

1S (F = M=1)]| > 0.01 and k < 50.

el

In practice, during the first iterations of the loop in m, the used stopping criterion is
k > 50. After that || X;e;(AF — AF"1)4;]| < 0.01 is used and the number of iteration
in k rapidly equals 1.

Notice with this regard that a better stopping criterion could be deduced from
conditions B or B’, in [52], pp. 880. It would indeed provide better theoretical
guarantees of convergence.

e for the loop in m : In order to study the ability of the algorithm to converge, we
simply use the stopping criterion : continue the loop in m while

the number of decomposition/recomposition < 3000.

A better stopping criterion should be used if one wants to avoid useless iterations.

Notice that the transition between m and m + 1 is sometimes visible on the curves
of Section 5.3. The “singularities” of those curves correspond indeed to such a
transition.
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Armijo Rule Along the Projection Arc

We also implemented a version of the algorithm where the gradient based algorithm used
to solve step 1 of Table 5.1 is the “Armijo Rule Along the Projection Arc” described in
[57], Section 2.3.1, pp. 230.

In short, the principle of this algorithm (for maximization) is to define

(Ai(p))ier = sup ((\ier + pV fum a, (Aier), 0))
where we denote, for any (\;)ic; € RY,

sup((Ai)ier, 0) = (sup(A;, 0) )ier-

The algorithm uses the update

(AN Yier = (Ni(p"))iers

where p* = ™py, for 3 € (0,1), a fixed py > 0 and for the first nonnegative integer m
such that

Fumam (i (87 p0))ier) = fum am (AMier) 2 0V fum an (A)ier), (Ai(8™p0) = Af)ier),

for o € (0,1).

In the context of our problem, the drawback of this algorithm is that each test of a new
value m requires one evaluation of fym o, (Ai(8™po))icr). This evaluation is made using
(5.11) and requires one recomposition in (¢;);c;. In order to avoid too many evaluations
we restricted our search to m € {0,1,2}. It avoids useless computations when, close to
convergence, the step size tends to be small. We have not proved that such a variation
converges. However, we anticipate no difficulty in this regard, as long as $%py < %, where
C is the constant in Proposition 14.

In the experiments using this version of the algorithm, we take o = i, po = % and
8= % Doing so, we only test the steps %, % and % This is the best set of parameters
we found.

Nesterov version of the algorithm

We also implemented a version of the algorithm where the gradient based algorithm used
to solve step 1 of Table 5.1 is the Nesterov Algorithm described [56], Section 2.2.4, pp.90.
Despite theoretical qualities?, this algorithm suffers from instabilities during the first
iterations which make it slower than the Uzawa version above. Specialists who saw our
results was not surprised.
We do not report any further on this implementation.

5.3 Experimental results

In Section 5.3.1, we give all the details on the experimental data and the quantities which
will be used to assess the quality of the algorithms.

>The convergence of this algorithm is in 7 (see [56], Th. 2.2.3, pp. 80). This improves the 1
performance of our projected gradient algorithm (see Section 5.2.6).
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We display in Section 5.3.2 some experiments on the convergence of the algorithms
presented in this chapter. In particular they emphasize on the influence of (@, )men on
the convergence speed of the algorithms.

In Section 5.3.3, we describe the existing algorithms solving the Basis Pursuit Denois-
ing model. In particular, we describe in details the algorithm proposed by M. Elad, in
28], and the one proposed by I. Daubechies M. Defrise and C. De Mol, in [22]. We also
comment other existing algorithms.

Finally, in Section 5.3.4, we compare the different implementations (our Proximal
Point Algorithm, the one of Daubechies-Defrise-De Mol, called IT, and the one of Elad,
which is called PCD) of the Basis Pursuit.

5.3.1 Experiments description

All the experiments are made with the same dictionary : a translation invariant discrete
local cosine dictionary. It consists in all the translations of the 64 small images displayed
on Figure 5.1. The small image at the “frequency location” (£,7n) € {0,...,7}? is

1 {cos(ﬁ@ﬁgn’f)cos("@’;gl)”) Jif (m,n) €{0,...,7}2,

(b&n —
e JCey L0 Jif (m,n) € {0,...,7)2,

with

Figure 5.1: Small images defining the translation invariant discrete local cosine dictionary.
The dictionary is also symmetrized and we finally obtain
(Vi)ier = (¥5)jes U (—¥5)je
where
(5)jes = {Tmn(6%"), for (&,m) € {0,...7}* and (m,n) € {0,..., N — 1}*},

for 7,,, ,, the translation of an image by the vector (m,n).
Doing so, we obtain a model which can also be solved by any algorithm solving the
usual Basis Pursuit Denoising (as opposed to the Non Negative Basis Pursuit Denoising).
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This will allow comparisons. Moreover, the dictionary is particularly large and we can
expect the resolution of the Basis Pursuit Denoising to be particularly difficult.

The decompositions and recompositions which are needed in the algorithms are com-
puted with Fast Fourier Transforms, as is explained in [42] or Chapter 1.

To assess the quality of a decomposition (\;);er = ()\+)]€ 7 U () )jes approximating

an image v € RY”, we consider three quantities :
o _ 100 n _
#{j € J,Af #0or \; # 0}, (5.24)

where, again, # denotes the cardinal of a set.
Similarly, we consider

Z . (5.25)
JEJ
and
P=1Y X — ol — 7], (5.26)
el

where, 7 is the parameter in (D) and, for any u € RV ’

Those are the quantities evaluated by the curves displayed on Figure 5.3, 5.4, 5.5,. ..

Since most of the computational time is spent in computing the decomposition and
recomposition in (¢;);cr, the unit of the x-axis of all the curves presented in the paper
corresponds to one decomposition and one recomposition in (¢;);c;. Notice this also
corresponds to the computational effort for computing two recompositions. This allows
keeping the same x-axis unit for the Armijo version of the algorithm.

In the experiments, we take v equal to an extracted part of the image Barbara (see
Figure 5.2).

Figure 5.2: Image extracted from the image Barbara. It is used for the input v in all the
experiments.

Finally, the experiments are for

e 7 = 0.0254 which corresponds to the {?> norm of the residual when applying the IT
algorithm (see Section 5.3.3), for solving (5.27), with A = 0.1 and for v : the image
on Figure 5.2. (The [2 norm of the residual obtained by solving the same problem
with the PCD algorithm is larger.)
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l2

""""" : curve for o, = 1

—— : curve for o, = 10

fffff : curve for «,, = 100

—— : curve for (ay,)men linearly increasing in [1, 100]

102+

Figure 5.3: [? curves for Uzawa algorithm, for 7 = 0.0254: The drawn curves give the
criterion {2 (see (5.26)), as a function of the number of decomposition/recomposition, for
am =1, o, = 10, oy, = 100 and (ayy,)men linearly increasing from 1 to 100. The final
norms of the residual are respectively 0.0254, 0.0254, 0.0364 and 0.0497.

e 7 = 15.29 which corresponds to the /2 norm of the residual when applying the PCD
algorithm (see Section 5.3.3), for solving (5.27), with A = 200 and for v : the image
on Figure 5.2. (The [2 norm of the residual obtained by solving the same problem
with the IT algorithm is larger.)

Notice that 7 = 0.0254 is a very difficult situation since, with such a large dictionary,
the choice of the non-zero coordinates is very ambiguous and the decomposition is not
extremely sparse. The values 7 = 15.29 correspond to much simpler situation.

5.3.2 Practical convergence of the Proximal Point Algorithm
and influence of (a,;,)men

As can be seen in the preceding sections, beside the parameters of the problem (1;);er, T
and v, the only parameter of the algorithm is (v, )men (see (5.10)). Our first experiments
therefore aim at understanding its role on the convergence properties of the algorithms.
We study 4 possibilities : a,, = 1, a,, = 10, @, = 100 and () men linearly varying
between 1 and 100.

In fact, it plays the same role in both the Uzawa and the “Armijo” implementation.
So, we only display the curves for the Uzawa version of the algorithm. All the curves
which we comment and display in this section concern experiments with the image on
Figure 5.2, 7 = 0.0254 and the dictionary described in Section 5.3.1.

The first issue we would like to address is the convergence of [2. In theory, it should
converge to 0. This is actually the case in our experiments. We display on Figure 5.3
the curves representing [? as a function of computational cost, for the 3000 first decom-
position /recompositions. Those curves use a logarithmic scale. A precision of 1079 is all
we can expect, since this corresponds to the precision of the float numbers used in the
implementation of the algorithm.
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fffff : curve for «,, = 100

: curve for (au,)men linearly increasing in [1, 100]

time
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Figure 5.4: [' curves for Uzawa algorithm, for 7 = 0.0254 : The drawn curves give the
criterion [ (see (5.25)), as a function of the number of decomposition/recomposition, for
am =1, ay = 10, oy, = 100 and (o, )men linearly increasing from 1 to 100. The final
values of these curves are respectively 0.250, 0.228, 0.219 and 0.222.

We see on Figure 5.3 (and this was confirmed in many other experiments for both
the Uzawa and the “Armijo” versions of the algorithm) that, as far as the (2 criterion is
concerned, small values in (a,,)men are preferable. Also, when compared to a constant
(i, an increasing ((y, )men does not seem to improve the convergence. The [? value for
a given value of a,, does not seem to be influenced a lot by the results of the preceding
iterations.

We display on Figure 5.4 the curves representing the quantity ! as a function of the
number of decomposition/recompositions. Again, those curves are representative of many
other experiments confirming the same statement : As far as the ! criterion is concerned,
large values in (o, )men are preferable. Notice that adding more iterations does not permit
to improve the result as much as a change of (v, )men. Again, the I value for a given
value of (@, )men is not influenced a lot by the results of the preceding iterations.

The quantity [° is also of a particular interest, since people usually use the Basis
Pursuit Denoising model to obtain a result which is sparsely represented in the dictionary
(¢i)ier. We display on Figure 5.5 the curves representing the quantity {°, as a function
of the number of decomposition/recomposition. These curves are, of course, very much
correlated to those concerning the I' criterion. We get the conclusions : As far as the
[° criterion is concerned, large values in (au,)men are preferable. Again, adding more
iterations does not permit to improve the result as much as a change in (a,;,)men. This
change is not influenced a lot by the results of the preceding iterations.

As a conclusion, (,)men 1S a numerical parameter. A strategy which consists in
increasing ay,,, with m, does not permit to keep the benefit of the first iterations (where
the [2 criterion was good). However, since a change in «,, is not influenced a lot by results
of the preceding iterations, a strategy consisting in

e increasing a,,, if the [? norm of the residual is close to 7.
e shrinking a,,, if the [? norm of the residual is far from 7.

is a possible way to get rid of this parameter.
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Figure 5.5: [° curves for Uzawa algorithm, for 7 = 0.0254 : The drawn curves give the
criterion [V (see (5.24)), as a function of the number of decomposition/recomposition, for
am =1, oy, = 10, o, = 100 and (ayy,)men linearly increasing from 1 to 100. The final
values of these curves are respectively 9.58, 3.97, 2.38 and 2.94.

5.3.3 Existing algorithms for solving the Basis Pursuit Denois-
ing model

As already mentioned in the introduction, there are surprisingly few algorithms for solving

the Basis Pursuit Denoising model. The literature on the subject is currently rapidly

growing though. All those we found [22, 24, 26, 25, 27, 28, 29, 30, 31] deal with the model
under its form :

el

(Ai)iGIERI icl

Let us denote, for all (\;);c; € RY

F()ier) = 1D Nthi — o2+ XD N,

icl i€l

and, for 0 > 0 and t € R,

Parallel Coordinate descent (PCD) Algorithm

Recall that the PCD algorithm proposed in [28] is described in Table 1.1 (see Chapter 1).
This is one of the existing algorithm to which we will compare our results.

Iterative Thresholding (IT)

This IT algorithm (described in Table 1.1, see Chapter 1))is proved to converge as soon
as the norm of the reconstruction operator is strictly smaller than 1. Taking the notation
of Proposition 14, we write

My < 1.
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Of course, it can be applied to any dictionary (1;);es, since, for any 5 >0 :
(A )ier € argmin . er! | Zier Nithi — vl|2 + A Xier [N (5.28)
< (BA))ier € argmin . cpr || Xier )\z% —vl]* + % Dier [l (5.29)

So one can solve (5.29), for § such that % < 1, and multiply the obtained solution by %
This provides a solution to (5.28).

In practice, we used the upper bound provided by (5.20) (which can be computed
numerically) and chose (3 such that

it [0 _

/8 Y
with ¢ = 0.999. This value 0.999 might seem arbitrary, since any ¢ € (0, 1) guarantees con-
vergence. However, we found experimentally that a larger ¢ leads to a better convergence.
We do not report any further on the tuning of c.

Our Proximal Point Algorithm under the light of IT

The loop in £ of the algorithm is very similar to the soft thresholding of IT. In particular,
when applied to a symmetric dictionary, the step 3 is a soft thresholding. However, w*
is not exactly the residual which is found in IT. It indeed contains a “stabilization term”
2a,,u™ and its norm is slightly modified.

Notice, by the way, that our Proximal Point Algorithms are not homogeneous in
(¢i)ier. So an extra parameter similar to ¢ (or ) (see the above description of IT) might
permit to improve the convergence of our Proximal Point Algorithms. We have not tested
this possibility.

What remains

Beside a small regularization, the main innovation, in [29], is to replace t* by a M + 1-
dimensional vector. Its computation is then performed by minimizing f over

Span (@ U (M")ier = M ier)meqr,.an)
Although this obviously improves the convergence results, we have not implemented this
algorithm. It seems indeed to provide only a relatively small improvement when compared
to the algorithm described in Table 1.1 (see [29]). This improvement is made at the price
of an important effort in the implementation of the algorithm. Experimentally, they found
in [29] that the best value for M is 1.

In [13], the authors propose an interior point method. (A better description is given
in [27].) We have not implemented it, since it is not guaranteed to converge.

The BCR algorithm introduced in [27] only applies when the dictionary (1;);cs is
a union of orthonormal bases (its extension to a union of orthogonal bases is straight-
forward). It indeed uses the fact that the soft-thresholding operator provides an exact
resolution of (5.27) when the dictionary is an orthonormal basis. Moreover, in order to
obtain a reasonable algorithm, a fast transform needs to be available for all the bases con-
tained in (1;);er. It is therefore a very specialised algorithm and we have not implemented
it.

Finally, the algorithm proposed in [30, 31] is very elegant and has the advantage of
being exact. However, it does require, at each iteration, the inversion of a matrix. The
size of this matrix goes to the number of non-zero coordinates of the result. This restricts
its use to applications where this number remains very small.
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5.3.4 Comparison of the algorithms

We display on Figure 5.6, 5.7, 5.8, 5.9, 5.11, 5.12 and 5.13 the curves corresponding to
a comparison between the Uzawa and the Armijo versions of our algorithm (see Table
5.2), the PCD algorithm described in Table 1.1 and the IT algorithm described in Section
5.3.3.

Concerning the choice of the parameters, the purpose of our paper is obviously not to
answer the question : How to fix A in the model (5.27)7 So our only choice is to follow
the steps:

e Run the PCD algorithm and IT algorithm for a given value \.

e Compute 7 : the smallest [> norm of the residual amongst those obtained by the
PCD and IT algorithm.

e Run Uzawa and Armijo versions of the algorithm for this 7.

This results in an unfair comparison favoring the PCD algorithm or the I'T algorithm,
depending on which leads to the smallest norm.

We display on Figure 5.6, 5.7 and 5.8 the [?, I! and [° criterion as a function of the
number of decomposition/recomposition. This experiment is made for A = 0.1, in (5.27),
which corresponds to 7 = 0.0254, when using IT. Notice that for our Proximal Point
Algorithm the curves corresponds to o, = 10. A better [° and [! convergence is achieved
with a,,, = 100 and a better [* convergence is achieved with a,, = 1 (see the curves of
Section 5.3.2).

Concerning the comparison between the Uzawa and the Armijo versions of the algo-
rithm, we find that they have very similar convergence ability. The Uzawa version seems
to converge a little faster, but this conclusion might be false on some other experiments
or with better parameters for the Armijo version of the algorithm. Given the additional
difficulty in the implementation of the Armijo version, we do not recommend it.

Concerning the convergence of the [? criterion, PCD and IT are much faster at ob-
taining a fair approximation. It is not clear whether we would find the same result when
A is tuned in order to reach a given precision level 7. This would clearly depend on the
strategy used to achieve this goal. Notice also that PCD and IT are slower at getting
a very good convergence to 0. In particular, I'T and PCD do not converge to the same
error.

The convergence of the [* and [° criterion are in favor of our Proximal Point Algorithm
implementation of the Basis Pursuit Denoising (see Figure 5.7 and 5.8). In particular,
almost none of the coordinates are canceled by the PCD implementation of the Basis
Pursuit Denoising, our implementation has less than 3.9% non-zero coordinates (after the
3000 iterations). To compare the IT and our Proximal Point Algorithm implementation,
remember that the curves on Figure 5.7 and 5.8 needs to be red “horizontally”. For
instance, in order to obtain 20% of non-zero coordinates, it takes less than a hundred
decomposition/recomposition with a Proximal Point Algorithm and around one thousand
with IT. Similarly the Proximal Point Algorithm reaches I° = 11.38 after 215 decomposi-
tion/recompositions only, when IT needs 3000.

Finally, concerning the PCD algorithm, we observe (this is corroborated by many
other experiments) that, modulo negligible changes, it stops evolving after few iterations
(say 20).

The recurrent question concerning those [V statistics concerns the instability of the {°
criterion. Indeed, the addition of the tinny noise on a very sparse (\;);c leads to I° = 100.
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2, e : PCD algorithm with A = 0.1
— : IT algorithm with A = 0.1
(for this v, this corresponds to 7 = 0.0254)
—— : Uzawa version of the algorithm 7 = 0.0254 (v, = 10)
s T : Armijo version of the algorithm 7 = 0.0254 («,, = 10)
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Figure 5.6: Comparison of [? curves : The drawn curves give the criterion I* (see (5.26)),
as a function of the number of decomposition/recomposition, for the PCD Algorithm
(see Table 1.1), IT algorithm (see Section 5.3.3), the Uzawa and Armijo versions of the
Proximal Point Algorithm (see Table 5.2 and Section 5.2.7). The final norm of the residual
are respectively : 0.0348, 0.0254, 0.0254 and 0.0254.

- : PCD algorithm with A = 0.1
—— : IT algorithm with A = 0.1
0.5+ (for this v, this corresponds to 7 = 0.0254)
—— : Uzawa version of the algorithm 7 = 0.0254 («,,, = 10)
fffff : Armijo version of the algorithm 7 = 0.0254 («,, = 10)

0 | | | | | tlme
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Figure 5.7: Comparison of [! curves : The drawn curves give the criterion ! (see (5.25)),
as a function of the number of decomposition/recomposition, for the PCD Algorithm (see
Table 1.1), IT algorithm (see Section 5.3.3), the Uzawa and Armijo versions of the Prox-
imal Point Algorithm (see Table 5.2 and Section 5.2.7). The final values are respectively
: 0.326, 0.254, 0.228 and 0.227.
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TOO :

o4 : PCD algorithm with A = 0.1

—— : IT algorithm with A = 0.1
(for this v, this corresponds to 7 = 0.0254)

—— : Uzawa version of the algorithm 7 = 0.0254 («,,, = 10)

60

404, Swe 0 - : Armijo version of the algorithm 7 = 0.0254 (o, = 10)
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Figure 5.8: Comparison of [ curves : The drawn curves give the criterion [° (see (5.24)),
as a function of the number of decomposition/recomposition, for the PCD Algorithm (see
Table 1.1), IT algorithm (see Section 5.3.3), the Uzawa and Armijo versions of the Prox-
imal Point Algorithm (see Table 5.2 and Section 5.2.7). The final values are respectively
: 98.78, 11.38, 3.97 and 3.88.

In order to illustrate that the solutions provided by the I'T and PCD algorithm actually
differ from ours, we applied a hard-thresholding on those solutions. At each threshold
corresponds new statistics {° and /2. When the threshold varies we obtain the curves
drawn on Figure 5.9. In order to obtain a solution as sparse as with the Proximal Point
Algorithm (i.e. [° = 3.97), we need to set the threshold to a value such that we obtain
I2 ~ 9.2 with PCD and [? =~ 4 with IT. So, clearly, the [° curves are meaningful.

This is confirmed by the images of the coordinates displayed on Figure 5.10.

We also display the curves corresponding to the same experiment for A = 200, in
(5.27), this corresponds to 7 = 15.29 with the PCD algorithm, for the small image dis-
played on Figure 5.2. Although the situation is completely different (the problem is much
simpler), we can draw, from these curves (see Figure 5.11, 5.12 and 5.13), exactly the same
conclusions as in the previous case. Again, those curves need to be red “horizontally”. For
instance, the Uzawa, version of the Proximal Point Algorithm reaches [° = 0.66 after 724
decomposition /recompositions and the norm of its residual is smaller than the on with the
IT algorithm. In comparison the IT algorithm needs 3000 decomposition/recomposition
to obtain [Y = 0.66. The PCD algorithm never reaches [° = 0.66.

To conclude with these curves, notice that the Uzawa version of our algorithm reaches
a fair level of convergence after few hundreds of decomposition/recomposition in the
dictionary (v;)er-

Appendix

Proof of Proposition 6
Proof.

e (<) Denote

iel
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144 / Line [° = 3.97, it is the {° performance of the Proximal Point Algorithm

124

"""" : Hard thresholding on the result of PCD algorithm, when A = 0.1
—— : Hard thresholding on the result of IT algorithm, when A = 0.1
10+

10 20 30 40 50 60 70 s0 90 100 !

Figure 5.9: Post processing on PCD and IT algorithms: When applying a hard thresh-
olding on the result of an algorithm, we obtain a decomposition which is represented by
a point in the ({° %) plane. When the threshold varies, we obtain a curve. The curves
displayed on the figure are obtained by applying this process to the result of the IT and
the PCD algorithms. In order to achieve the [ performance of our Proximal Point Algo-
rithm, the thresholds need to be such that [? ~ 4, with IT algorithm and [? ~ 9.2, with
PCD algorithm.

Since #D is finite, we know that C'is a close convex set. So now suppose that there
exists a w € RV, but w ¢ C. Let w* be the projection of w on C', then w* € C' and

*x : _ |2
w —argrvrggHw (0] |
As w* € C, there exists (\;)ier, Vi € I, \; > 0 and

iel
Then for any fixed j € I, Vd; > 0, we always have:
lw = Nwpal|? < Jlw = Nhs — dis 1.
iel icl

So we know that u = w — >,c; \it; is such that u # 0 and:

1
(u, 1) < §dj\|¢j||2-
Let d; — 0+, we get
<u,’¢j> S O

So Vv > 0, we have yu € {w,Vi € I, (w,v;) < 1}. This leads a to contradiction
since the latter set is bounded. This contraction tells us ¢ = RY* and this finish
the first part of the proof.
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Figure 5.10: Experiment with 7 = 0.0254 (i.e. A = 0.1) : Absolute values of the coordi-
nates along the three directions (defined by the small images of the dictionary represented
on Figure 5.1) along which the Proximal Point Algorithm has most non-zero coordinates.
(For a good display, the coordinates are rescaled to have the same range.) The corre-
sponding small images correspond to (£,1) = (0,0), (0,2) and (0,1). Top raw : for PCD
algorithm; Middle raw : for I'T; Bottom raw : for the Proximal Point Algorithm.
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""""" : PCD algorithm with A = 200 (for this v, this corresponds to 7 = 15.29
—  IT algorithm with A = 0.1 :
1 - ; 1 1 tipe
500 1000 2000 3000
1021 —— : Uzawa version of the algorithm 7 = 15.29 («,, = 10)

fffff : Armijo version of the algorithm 7 = 15.29 (a,,, = 10)

Figure 5.11: Comparison of [? curves : The drawn curves give the criterion [? (see (5.26)),
as a function of the number of decomposition/recomposition, for the PCD Algorithm
(see Table 1.1), IT algorithm (see Section 5.3.3), the Uzawa and Armijo versions of the
Proximal Point Algorithm (see Table 5.2 and Section 5.2.7). The final norm of the residual
are respectively : 15.29, 15.72, 15.29 and 15.29.

ll
0.4+
rrrrrrrrrr : PCD algorithm with A = 200 (for this v, this corresponds to 7 = 15.29)
031 — : IT algorithm with A = 0.1
’ —— : Uzawa version of the algorithm 7 = 15.29 («a,,, = 10)
fffff : Armijo version of the algorithm 7 = 15.29 (a,, = 10)
0.2
i
g
0.4
| | | | | time
0 250 500 1000 2000 3000

Figure 5.12: Comparison of [! curves : The drawn curves give the criterion ! (see (5.25)),
as a function of the number of decomposition/recomposition, for the PCD Algorithm (see
Table 1.1), IT algorithm (see Section 5.3.3), the Uzawa and Armijo versions of the Prox-
imal Point Algorithm (see Table 5.2 and Section 5.2.7). The final values are respectively
£ 0.188, 0.159, 0.16 and 0.16.
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T

""""" : PCD algorithm with A = 200 (for this v, this corresponds to 7 = 15.29)
— : IT algorithm with A = 0.1

—— : Uzawa version of the algorithm 7 = 15.29 (a,, = 10)

fffff : Armijo version of the algorithm 7 = 15.29 (a,, = 10)

_ time

250 500 1000 2000 3000

Figure 5.13: Comparison of [° curves : The drawn curves give the criterion ° (see (5.24)),
as a function of the number of decomposition/recomposition, for the PCD Algorithm (see
Table 1.1), IT algorithm (see Section 5.3.3), the Uzawa and Armijo versions of the Prox-
imal Point Algorithm (see Table 5.2 and Section 5.2.7). The final values are respectively:
2.74, 0.660, 0.558 and 0.595.

(=) Set

Then W is a non-empty convex of RY *. Now we want to prove that 0 is an interior
point of W. In fact, we know that for any w # 0, we can find a positive r,, such
that:

Vr < ry,rw € W.
Thus for any basis (eq,...,ex) of RM*| we can find ro = min{re,, ..., 7yt >0,
Vr <rog,Vielre; e€W.

As W is convex, we know that for any (\;);e; such that A; > 0,3, A; < rg, we have
>icr Aie; € W. Thus 0 is an interior point of W and then there exists a r; > 0 such
that:

Vw, if ||w|| < 7y, then w € W.

Now for any w € {w, Vi € I, (w,¢;) <1}, w # 0, if we let

w*

= —w
lwll ™
then ||w*|| = r; and w* € W. So there exists (\;);e; such that:

w* :Z)\I@Di, and Vi € I, \; > 0, andZ)\i <1

icl icl

Then we know that Vj € I,

<Z )\z%, )\jz/}j> = <w*7 )‘jwj> < )‘j HlZaX<w*, wl>
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So,
O, > Niby) <3N max(w”, ¢;),
( J J
and
rt 2
max(w*, ;) > >ri.
Since w* = ”z’}—”, we finally obtain
1 1
Jw] < —max(w, ;) < —.
T1 ? (&1
This concludes the proof. 0

Appendix : proof of Proposition 11
Proof of the first statement

The first statement is a direct application of the Theorem 2 in [52]. In order to apply
this theorem, we need to show that the sequence (u™),,ey is bounded and that dg~! is
Lipschitz continuous at 0 (see [52]), for g defined by (5.9).

The first assertion directly follows from Theorem 1, in [52], and the fact that (P) has
a solution. We therefore know that the sequence (u™),en is bounded.

The Lipschitz continuity of dg~! at 0, will then follow from Proposition 7, in [52]. We
are indeed going to show that, when |[v|| > 7, the function g satisfies the second statement
(named b) of Proposition 7, in [52].

First, notice that, when ||v|| > 7, the minimizer w* of g (i.e. the solution to (P)) is
unique. The proof of this statement is straightforward and is detailed in [?].

We still need to show that

lim i 202 =90 (5.30)
wowtlw — w*|?

In order to prove this last statement, let us first remark that, since ||v|| > 7, w* # 0.
Therefore, w — [|w||— X (w, v) is infinitely differentiable at w*. The second order Lagrange
serie holds and, for all w € C,

w* v 1

* * (12 *1(12 * *\ 2 * |12
W}ﬂ—;uhw>+ﬂﬁﬂﬁww—wHHwH-%w7w—w>)+dWwﬂvH)
(5.31)

Also, since w* solves (P), there exists a Kuhn-Tucker vector (););er such that (see [49],
Th. 28.3, pp. 281)

g9(w) = g(w*)+(

i€ I >0 and A ({w”, ) — 1) =0 (5.32)
and .
w v
—— == A (5.33)
Wl TS

Notice that, since ||v|| > 7, (5.33) guarantees that there exists iy € I such that \;, >
0. Notice then that, from (5.32), for any ¢ € I such that \; > 0, (w*,4;) = 1 and
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iy, w* —w) >0, for all w € C. Thus

*

<m—;,w—w> = %AA%,UJ w)
2 )\7;0 <1/JZ'O, w* — w) (534)
> 0. (5.35)

Notice that for any w € C there exists 8 € R and r € R’ such that w = (1=B)w*+r,
with (r,w*) = 0. Moreover, § and r are unique. Let us denote

E={w=>01-p)w" +reC, for >0, (r,w)=0and |r] < 2”5 H}
0
We deduce from (5.31) and (5.34) that, for all w € E,
glw) = g(w®) = A (B = {r;¥3)) + of[lw — w?[])
B ‘
> 22 4ol )
Moreover, for w € E,
* * * * 1
Bl < llw —w*l* = 82w * + Ir1* < (le"|* + 7——)8°
15 |
So .
lminf AW 70 _ (5.36)
w—we w—w
wekl

If we C\ E, we deduce from (5.31) and (5.35) that

1
2[Jw]?

g(w) — g(w”) = (o = w Pllw|* = (w*, w — w*)?) + of|lw — w"|]?).

Decomposing again w = (1 — f)w* 4 r, with (r,w*) = 0, we obtain

1
g(w) — g(w*) = 72||w*||3((ﬂ2|\w*||2+||7”H2)||w*|!2—ﬁQHw*||4)+0(||w—w*||2)
Ir ]I .2
> 2] + o(|Jw — w*[|7). (5.37)

For w ¢ E, we cither have 3 < 0 or ||r|| > 572— > 0. Now, if 8 < 0,

2[[¥ill
1 Z <w7¢io>
> (1=08)+ (r.i)-
So
<T‘, wi0> S B
and

0 <=8 < {=rvi) < [[¥lIr].
This implies that 8% < ||vy, [|2||7]]2.
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We finally obtain that, whenever w € C'\ E,
B2 < i ||l

and
1712 < [lw — w*|]> = BJw* || + |1 < (4lles, 1P [[w*]|* + 1)[|7]%.

Together with (5.37), this guarantees that

lim inf ngug)>0'
w — w* [Jw —w*||
weC\E

Together with (5.36), this guarantees that (5.30) holds.

Proof of the second statement
Again, since ||v|| > 7, w* # 0. So, for any (A}),e; € S,

*

w

lwrll 7 i

1

Since u™*! converges to w*. for m large enough, u™!' cannot be zero. Given the
) b

definition of u™*!, we know that

2a (um—irl_um)_i_ﬂ_lv_i_z:)\mw,zo
m Hum+1H T = i 7 .
We finally obtain
()\:< — )\;n)wl = 2am<um+1 _ um) + . —
; Jum [ fw]]
from which we obtain
1D = A7)l
il
||w*||um+1 _ ||um+1||w*
< 2an( =l + - o)+ |
[[w [[Jum+1]]
®|| m+1 m+1 __ m—+1 x _ oomA1
< 2am(L +1)[u™ — w'|| + H(Hw | = (™) : m”ﬁf [(w* — w1 ‘
Jar + o, ]
I — m+1 * _ oom+l
< 20%&* + D flu™ — w*|| + [l !u || w 7: |
Va2 +az, | 0]
a 2a
< Pamlm—t 1+ ™ — ]
Ve e, MIIw*H]
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Proof of the third statement

In order to establish the last statement of Proposition 11, we are going to show that

(()\Q"H)ie I)mEN is bounded in R’ and that any converging sequence extracted from (()Q"H)ie I)mEN

converges to an element in S.
Let us first remark that because of the definition u™*! and (A\**');c;, we have for any
(AH)ier € S (as for any element of RT),

L/(um+17 (/\zm—’_l)ieb um’ am) 2 L/(um+1a ()‘:)ieb um, a/m)-
Using the definition of L', we obtain

(™ DN ) = 3O = W D M) = AT
i€l i€l i€l i€l

So,
DN N A e

i€l 1€l

DA = AT

i€l

(5.38)

Since lim, oo ™ = w* and lim, oo Yier (A — AN ep; = 0, we are sure that there
exists B > 0, such that, for all m € N,

> A< B.

i€l

Let (X;)ier be an accumulation point of ((A7")ics),,cy, We obtain, using (5.38),

DAY

el el

Now, since limy, o0 D ier M"Y = > ier Af10;, we obviously have

D Ahi =) A

el el

Using the fact that (A\f);er solves (D), we finally have

Sh= YA

el il

which implies (\;);er € S.
This concludes the proof.

Proof of Proposition 12
Proof. Using (5.11),(5.12), we know that
fum i (Noier) = L'(w*, (N)ier, u™),
where
w* = argmin L'(w, (A;)ier, u™, o)

1
_ : o m|2 . I aly.
= arg min, A ||w — u™||* + [Jw]| — (w, v > \ii).

we el
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When (\;);e; is fixed, w* uniquely exists (L’ is coercive and strictly convex). Hence it can
be regarded as a function on (\;)er,

w* = w*((/\i)iel)'

The explicitly formula of w* on (\;);es is given by (5.15).

Denote
2((M)ier) = 20mu™ = > At —i— - (5.39)
el
Using (5.15), we have:
(=) L if [z > 1
N Dier = < 2am B R =

Beware that (5.40) is well defined for ||z|| = 1. Hence, when ||z|| > 1, ||w*|| = 2am(HxH— ).
Thus we have,

tmll* = a2+ (2] = 1) = (", 2 — 2apu™) — S As  if ] > 1
U™, )‘zz = m 2am ? ]
furan(Ai)ier) {amuu 12— s A if 2] < 1,
(5.41)

where z, w* is given by (5.39), (5.40). Beware that (5.41) is well defined for ||z|| = 1 since
|z|]| = 1 implies that w* = 0.

Now for ()\;);er fixed, considering a vector (d;);cr, we want to compute the one-side
directional derivative,

fum,am(()‘i)iel + t( 1)161) fum am(( Z)ZGI).

vfum,am(( z)zela (5‘)161) é tl_l}gi t (542)
Indeed, we will prove that:
V fum am (ANi)ier; (6)ier) =D ((w*, ;) — 1)6;. (5.43)
icl
Denote
_ Z it (5.44)

iel
Then we know that when t; > 0 is small enough, one of the following assertions must
hold:

L [z, 2 +too] C {€ € RV[|f¢] < 1};
2. o, + tovo] € {€ € RV[Ji¢]| > 1}

Indeed, this fact is obvious for ||z|| > 1 or ||z|| < 1. When ||z|| = 1, if the second
assertion is not true, then there must exist a ¢ty > 0 such that ||z + to)]| < 1. Since
{€ e RV|||€]| < 1} is convex, the segment [z, 2 + tothg] C {€ € RV'|[|€]| < 1). ie. the first
assertion is true.

When the first assertion occurs, we must have ||z|| < 1, and then w* = 0. Using (5.42)
and the second formula of (5.41), we have:

Vfum,am((Ai)iGI; % zGI 26 (545)

el
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Since w* = 0, (5.43) is true for this case.
Now suppose that the second assertion occurs, then ||z|| > 1. Since ||z|| > 1, the one
side directional derivative of w*, ||z||, z for direction v all exist. Indeed, when ||| > 0,
Slelivg) 2 i Il =]
e+l — P
t=0% 2([|2 + o] + [|]])
2(z, ¢o) + tl[¥ol®
=07 ||z + thol| + ||

= <ma¢0>

Similarly, when ||z|| > 1, using (5.40), we know that:

0 . B 1
%(w ;o) = m%,

and for all = € RNQ,

0
@(x;%) = .

When ¢ varies from 0 to to, x((\; + td;)icr) varies linearly from x to = + tg1)y. Hence,
the computation of (5.42) is only involved with the one side directional derivative for
direction 1. Moreover, denoting

(1]

= Va((M)ier; (0i)ier),

then using (5.39), we have,
i€l
The chain rule on (5.43) (for details of directional chain rule for locally Lipschitz
functions, see Lemma 5.13 of [58] or Lemma 2.2 of [59]) leads to,

V fum anm (Ai)iers (6i)ier)

* m a *, = L i =
- 2am<w —u 7%(11} 7¢0)>“—‘+2am<||x”7¢0>“
—(w*, o) — m@o,ﬂﬁ—?amu )E — iezldi
L Qo + = 2)E — (o) — 30
= — (o' + — — )= — (v, — ;
20, | ]| 0=
= —(w*, o) — > & (using (5.40) for ||z| > 1)
iel
S () — 1), (using Eq.(5.44)).
il

Overall, (5.43) is always true and it can be rewritten as:

V fum am (N )ier; (6i)ier) = (((w*, i) — Dier, (6i)ier)-
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Hence, fum o, ((A\i)ier) is differential at any point (\;);e; € R, and

V fum am ((Ai)ier) = ((w*, i) — Vier-
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Chapter 6

. . 2
Sparse representation in RN

In this chapter, we concentrate our efforts on sparse representation theory in RV > In
Section 6.1, we first introduce a D’-functional where D’ is a finite dictionary of unit-norm
entries in RV and then using this functional, we define two sparse representation models
named (D.Py,7), (D.P,7). In Section 6.2, we present some stability results on these
models. Then in Section 6.3, we introduce a fast algorithm to approximate (D.P;, ) for
the case D = D’ and prove its convergence. Some numerical experiments on this fast
algorithm are presented in Section 6.4.

6.1 Preliminaries

Before presenting the sparse representation models, let us introduce a definition.

6.1.1 D’-functional

Definition 15 Suppose D’ is a finite dictionary of unit-normalized entries in RN*. Then
for any f € RN’ we can define the D'-functional as:

171 :max( <f,w>,o). (6.1)

sup
PpeD’
Proposition 16 The D’'-functional satisfies:

1| flls > 0,Yf € RV,

2. \laflls = allflls, Ya > 0,Yf € RV,

3. fr+ foll < Al + I folls Vi, fo € RN

b e < N Nlas VF € RYY

Proof. We only verify the triangle inequality, the others are trivial.
For any fi, f» € RN’ ¢ € D', we have:

(fi+ f2,0) = (f1,90) + (f2,¥).

Taking the sup and max over the right side we have,

(f1+ fo, ) < max (sup (f1,¢>,0> + max (sup(f2,¢>,0> )

PpeD! PpeD!

101
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Taking the max over the left side we have:

sup (f1 + f2,%) < max <sup <f1,1p>,0> -+ max (sup(fg,w>,0> )

beD! beD! YeD!

Thus, since the right side is non-negative,

max <sup<f1 +f2,¢>,0> < max (sup (f1,¢),0> -+ max (sup(fQ,w,O) )

YED! YED! YeD!

This finishes the proof of

11+ falls < (1Al + 1 fall

0
Proposition 17 If D' = (V) is symmetric and satisfies
{we RN |Vi € I, (w, ;) <1} is bounded,
then || - ||+, as defined in (6.1), is a norm of RN".
Proof. When D’ is symmetric, Eq.(6.1) can be rewritten as:
1f 1l = sup [(f,¥}],
GED!
and we know that, for any o € R,
ol = alif]l.
Together with the triangle inequality, this shows that || - ||, is a semi-norm. Now for any
feRN . if | f|l« = 0, then for any v € R, we still has ||vf||. = 0. But
{weRV*|Vi e I, (w,v;) <1} is bounded,
and «yf is in this set. So the only choice is that f = 0. This shows that || - || is a norm.
U

6.1.2 Sparse representation models

Suppose that the dictionary D = (;)ics is a finite family of unit-norm vectors in RY .
For v € RV 2, we consider the problem of finding the sparsest possible representation in
the dictionary D. As a measure of sparsity of a vector (\);c7, we take the so-called [°
norm ||(A);er|lo, which is simply the number of non-zero elements in (\;);c;. The sparsest
representation is then the solution to the optimization problem

(Ry) : ()r\n)in |(A)ier|lo subject to v ="YX (6.2)

i)iel icl
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As the original Problem (Fp) is unrealistic to compute, the classical approach, Basis
Pursuit (see Chapter 1) is to approximate (Pp) by replacing the {°-norm with an [! norm:

(P1): min » |\ subject to v =">_ N, (6.3)
Ai)iel Geq iel
This can be cast as a Linear Program (LP), for which various exact solutions or
approximations have already been discussed in literature. The BP is known to give
highly sparse solutions to problem known to have such sparse solutions (see [13, 60]). It
has been shown that it could, in some specific cases, outperform the greedy Matching
Pursuit approach in generating sparse solutions (see [13, 60]).

6.1.3 Presence of noise

In most practical situations it is not sensible to assume that the available data v obey pre-
cise equality v = Yo7 \ip; with a sparse representation (A;);c;. A more plausible scenario
assumes sparse approzimate representation: that there is an ideal noiseless signal/image
u with a sparse representation u = Yo7 pip; with ||(¢)ier|lo small, but we can observe
only a noisy version v = u + b, where [|b]|2 < e.

We can adapt to this noisy setting by modifying (Fp),(P;) to include a noise allowance
and a non-negative direction. In order to do so, we consider another dictionary D’ (this

defines the functional || - ||, as in (6.1)) and the optimization problems:
minimize  ||(A)ierllo
(D.Fy;) : { subject to |lv =2 Nl <7 (6.4)
ANi > 0,Viel,
and

minimize > A
(D.Py ;) : < subject to |lv =2 Nl <7 (6.5)
A > 0,Viel
These two models will be studied in this chapter. In these models, every element ¢ in
D is a possible pattern/atom for the recomposition of the original image u. D’ represents

those interesting directions and plays the same role as the dictionary in the TV — [*°
model (see Chapter 2 and 3).

6.2 Stability Results

The concept of mutual coherence of the dictionary D, which appeared in [60] and references
therein, plays an important role in the stability result.

Definition 18 Assuming D = (¢;)ics is such that for all i € I, ||p;]| = 1, we define the
mutual coherence as:

v=v(D) =, max (¢, @)l (6.6)
We also need an important Lemma (Lemma 2.9 of [60]).

Lemma 19 Given an s-by s symmetric matric H with diagonal entries equal to one and
off-diagonal entries not larger than v in amplitude, the smallest eigenvalue of H is at least
1—v(s—1).
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6.2.1 Stability of (D.P,,)

Theorem 20 Let the dictionary D = (¢;)icr has mutual coherence v(D) and there exists
a constant co = co(D,D') such that for any subset I' C D, we always have:

1

iy (u, ©)* < collull2 (6.7)
pel’

where ||+ ||« is defined in (6.1). If some representation of the noiseless image u = >;cr pi i
satisfies
No = [[(ma)ietllo < (1/v +1)/2, (6.8)
and
lv — Z/M%’Hz <,

iel
then (;)ier s the unique sparsest representation of u; moreover, when T > €, the result
Xore of (D.Py ;) applied at the noisy data v approzimates (fu)icr:

V2coNo(e + 7)
1—v(2N, — 1)

Hj‘O,T,e - (Ui)ie]“2 <

Proof. The first part is just the same as Th.2.1 of [60]. For the second part, let y =
Xore — (fi)ier, we know that:
1Y xipill« < e+

i€l
But x only has at most 2Ny non-zero entries (remember that ||(u;)icr|| = No and (u;)ier
is in the feasible set of (D.F, ) since T > ¢, hence |[(Aoro)|l < [[(1i)ier]] = No), so there
is only at most 2NNy entries of D involved. For simplicity, we suppose those are

DS = {%017"'a908}7

and x5 = (x(1),...,x(s))” where s < 2N,. So we have:

1Y xs(k)orll« < e+
P

Using Eq.(6.7), we know that:

i<i Xs(k)en, 0i)? < cos(e+7)°

i=1 k=1
Denote G5 = ((¢k, ¢;))(1 < k,7 < s), then the above inequality can be rewritten as:
XL GT Gy < cos(e+T1)2
Using Lemma 19, we have
Xs G5 GaXs 2 Xs Xs - Omin{ G} > [IXs[3(1 = v(s = 1)) > [Ix[[5(1 = v(2Np — 1))?,

where the last inequality is based on the fact s < 2Ny and (6.8).
So we have proved:

Vas(e+7) _ v2eNo(e+7)

= < '
||XH2 ||Xs||2 =71_ V(No — 1) - 1- V(2N0 - 1)
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O

Remark. When DU{—4,¢ € D} c D', (6.7) holds for ¢, = 1. Indeed, we have in
this case:
[(u, )| < |Julls, Yo € D.

Hence, for arbitrary I' C D, we have:

> (u,0)? < H#T - [lulf2.

pel’

6.2.2 Stability of (D.P;,)

We want to prove a stability result similar to the work of Donoho ([60]). Suppose we
are given a signal v = u + b where b is an additive noise, known to satisfy ||b]] < e. We
apply (D.P, ;) with the dictionaries D, D’ and 7 to this image (not necessarily with 7 = ¢)
i.e. we solve (D.P;,) and obtain a solution 5\17T,€. We study its deviation from the ideal
representation u = ) ;cr [t p;.

Theorem 21 Let the dictionary D = (v;)icr has mutual coherence v(D) and there exists
a constant v = Yo(D,D') such that for any (&)ier € RY, we have:

| Zfi%‘”Q < - Z &l - || Zﬁz%“* (6.9)

iel el i€l

If some representation of the noiseless image uw =3 ;cr pip; satisfies

No = l[(wierllo > (1/v +1)/4, (6.10)

and
HU - Zﬂz%’b <€

iel
then this is the unique sparsest representation of u; moreover, when T > €, the result 5\1,¢,e
of (D.Py ;) applied at the noisy data v approximates (fi;)ier:

2v/Noyo(e + 7)

5\7'6_ < .
e = ll> < 1— (4N, — 1)

Proof. First, the assertion that (u;);c; is the unique sparsest representation follows from
Th.2.1 of Donoho (see [60]) and the fact that £ < 2. From now on, we denote
p= (i)ier-

Second, the stability bound can be posed as the solution to an optimization problem
of the form:

A = argminyczs | A1 subject to [lv — Yy il < 7 }

max ||\ — (t]|2 subject to {
pelIr = all 0 = Sioy tapn -+ b, 8]z < € | (t)eerllo < No.

)

(6.11)
In words, we consider all the representation vectors u of bounded support, and all possible
realizations of bounded noise, and we ask for the largest error between the ideal sparse
decomposition and its reconstruction from noisy data. Defining ¥ = o — A, and similarly
X = A — i, we can rewrite the above problem as:
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X = argminy |[u — J|; subject to [|b+ Xie; dipill < 7
1bll2 < €, [[(1i)ierllo < No. ’
(6.12)
We will estimate an upper bound of the maximum of (6.12) by a sequence of relaxations,
each one expanding the feasible set and increasing the maximal value. To begin, note that
if x is the minimizer of ||y — ¥||; under these constraints, then relaxing the constraints to
all x satisfying || — x|| < ||p]| expands the feasible set. Attention here we used the fact

T > €, 80 ¥ = 0 is in the feasible set. Thus, we consider:
_ < . o], <
it = Xl <l and b+ Siey xapille < 7 } | 613

{X Ibll2 < e, #S < Ny,
We now expand this set by exploiting the relation

e =l = aall = Hlxlls = 237 Ix(®)],
keS

max || x||2 subject to {
,b

where § is the support of the non-zeros in p with complement §¢, and we used |a—b|—|a| >
la| — |b| —|a| = —|b|]. Therefore, we get a further increase in value by replacing the feasible
set in (6.13) with

. Ixll < 23 kes [X(F)] and b+ Yier xiill« <7
r)?‘g%(”x”g subject to { 1blla < €, 8 < No. : (6.14)

We next simplify our analysis by eliminating the noise vector b, using

{xI 3,00+ > xigills < Tand [Blla < e} € {xI [ xweill. < 7+ (6.15)

i€l icl

Expanding the feasible set of (6.14) with this observation gives

Ixlh €23 kes IX(B)], || Zier xaill« < A } ’ (6.16)

n;%x||x||2 subject to { 45 < Ny,

where we introduced A = € + 7. Now using (6.9) we have,

1> xieills <A =D xieills < lixIhA.
el =y

Using this fact, we can expand the feasible set to:

Xl < 25kes IX(B)] 1 Zier xaill3 < ollxlh A } (6.17)

rg%xﬂxﬂz subject to { 4S < No.

The constraints || > ic; Xi@ill3 < Yollx][1A is still not posed in terms of the absolute values
in the vector x, complicating the analysis; we now relax this constraint using incoherence
of D. Again the Gram matrix is G = ((¢i, ¥;))ijer, and the mutual coherence is the
maximal off-diagonal amplitude: v = max;; |G(7,7)|. Let abs(x) be the vector (|x;|)ier-
We also use a similar notation for matrices. Also, let 1. be the #I-by-#1I matrix whose
entries are all equal to one, Id the #I-by-#I identity matrix. The constraint

1> xiills = X" Gx < llxlhA,
il
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can be relaxed to:

Ixll? + x"(G — 1d)x

Ixll3 — abs(x)" abs(G — Id) abs(x)
||X||§ —v- abs(x)T abs(1. — Id) abs(x)
(L+v)[Ixl3 = vIIxIl3-

YllxliA > x"Gx

(AVARVS

Using this fact, the maximum in (6.17) is upper-bounded by the value

| Il < 2 Shes (k)
mags [l subject to & (14 v)xI - vIx[3 < vl . (6.18)

#S < Ny
This problem is invariant under permutations of the entries in y which preserve mem-
bership in & and §¢ It is also invariant under relabeling of coordinates. So assume
that all non-zeros in p are concentrated in the initial slots of the vector, i.e. that
S:{O,,NO—]_}
Putting x = (xo0, x1) where xo contains the Ny first entries in x and x; contains the
remaining #I — Ny entries of y, we obviously have

X113 = IIxoll5 + Ixall3
and
IxIl = lIxolls + [Ixallr-

The I*-norm on R* dominates the {2 norm and is dominated by vk times the {2 norm.
Thus

X011
Xoll1 = ||Xoll2 = ,
o0l > [Ixo0ll2 NG
1x1ll1
Xil1 = lIxillz 2 ——————==-
Ixille > [Ixall2 oy gy
We define , ,
X X
f“ﬂmMBZM%JF«HMﬂ,q=C“m>. (6.19)
lIx0ll1 lIx1ll1

Returning to the problem given in (6.18), and using our notations, we obtain a fur-

ther reduction, from an optimization problem on R#! to an optimization problem on
(A, B,cy,c1) € R%:

A>DB
max \/coA? + ¢, B2 subject to { (1 +v)(coA%+ c1B?) —v(A+ B)? < (A+ B)yA
AB>0,5<c<1,0<¢ <1
(6.20)
We further define B = pA, where 0 < p < 1 and rewrite (6.20) as,

. 1+ v) 92 A — (14 p)A < A
2 ( 1+p = /0
max Ay/co + p*cy subject to { AZO,NLO§00§1,0<61 <1.0<p<1 | (6.21)

Define & = (1 + p)/v/co + p?ci. Then % < & < 24/Ny over the region (6.21). Setting
V = A\/co + p?cq, the first constraint defining that region takes the form
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1+ ”)2 — U]V < A (6.22)
Our hypothesis (6.10) guaranties that,
(1+v)—ve>1-v(4Ny—1) >0, (6.23)
Hence,

A < 2/ NooA

Ve o) v S1ooan, -0

(6.24)

O

Remark When DU{—p,p € D} C D', (6.9) holds with vy = 1. Indeed, under this
condition, V(& )se; € R#!, we have:

1O &G om) < N1D_&Gwills, Yk € 1.

el el

Hence,

zEI zEI il
Taking the sum over k € I leading to (6.9), with v = 1.

6.3 Soft-Threshold Matching Pursuit

In this section, we want to develop a fast algorithm to approximate the solution of (D.P; ;)
when D' = D. We consider D = D’ = (¢;);c;r and suppose that Vi € I, ||¢;|| = 1. Beware
that we do not force that D is symmetric in this section. We will detail this case in an
upcoming chapter.

We consider the following problem:

min PPV
(P"): < subject to (v —3;c; Ny, ¥) < 7, for ¢p € D (6.25)
A > 0,for any ¢ € I.

We propose a Soft-Threshold Matching Pursuit (STMP) scheme to approximation
its solution. This STMP algorithm is an iterative greedy process that decomposes the
function v € RY?, using the dictionary D = (¢3)ier C RN ®. Recall that for all i € I, 9, is
a function with unit norm.

Our STMP algorithm builds iteratively some coordinates in (1;);e;-

Set \; =0 for all i € I and R% = v.

Repeat(loop for k& > 0):

e Search v, € I such that:
Y = argmax(R*v, ).

e Update A, by:
Ay = Ay, + max((R*v,4.,) — 7,0).
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e Update R¥*1y by:

Ry — v =" A\

el

Repeat n times and denote the result (\;);e; as (A );er-

The goal of this STMP algorithm is to find a feasible solution (\;);cs for Problem (P")
and in the mean time to keep > ,c; A\; be as small as possible.
We can prove that:

Theorem 22 When n — 400,
Z)‘?el (
i€l

converges.

Proof. See Appendix. O

Theorem 23 Denote Fy the feasible set of Problem (P") and

Co={we RNQE'(M)ieI € Fo,w = Zm%}-

iel
Denote
ut = lim > ANy
noteo e
If Fy is non-vide, then:
u” € Oo.
Proof. See Appendix. O

This theorem shows that if Problem (P”) is feasible, then the result of STMP algo-
rithm converges to a point in the feasible set. This can be used as an initial point to the
penalization algorithm to solve Problem (P").

6.4 Experiments

6.4.1 STMP for approximation

We use this algorithm to approximate the top-right image of Figure 6.1. We consider a
translation-invariant dictionary built on the features presented in Figure 6.2 (their mean
is zero and they are normalized).

Figure 6.1 shows the results of STMP. The middle-left and bottom-left image are
>S9 spthy, for 7 = 50 and 100 respectively. The middle-right and bottom-right image
are the residues R™>v. This figure illustrates that, when 7 augments, more information
is left in the residual image.

The left image of Figure 6.3 shows s, as a function of n, for 7 = 50 and 7 = 100.
From this image we clearly see that in both cases, (s,)nen rapidly decreases to zero. The

100

right image of Figure 6.3 shows s — s1% where s! means the coefficient s, for 7 = .

Clearly, the coefficients s, for 7 = 100, is below those for 7 = 50.
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Figure 6.1: Results of STMP: top-left: original image, top-right: noisy image with o = 20;
middle-left: result for 7 = 50, middle-right: residue for 7 = 50; bottom-left: result for
7 = 100, bottom-right: residue for 7 = 100.
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Figure 6.2: Features to build the translation-invariant dictionary
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Figure 6.3: STMP: left: s, as a function on n, for 7 = 100 and 7 = 50; right: s5° — 5100
where s’ stands for the coefficients s,,, for 7 =t.

6.4.2 STMP for image decomposition

The feature dictionary contains two parts. The first part contains 9 filters: the letters
which are shown in Figure 6.2. The second part contains 13 filters {di, ..., dy3} which
corresponds to the Daubechie-3 wavelet basis of level 4 and their opposites. (see Figure
3.6). Hence the size of the feature dictionary is 9 + 2 x 13 = 35. We use this feature
dictionary to build a translation-invariant dictionary D. Using this D, we try to represent
a noisy image v which is shown as top-right of Figure 6.4.

Figure 6.4 shows the STMP for 7 = 0. The top-right is the noisy image. The middle-
left is the reconstructed image

> A

i€l

with n = 4000, 7 = 0. Since neither the wavelet filters nor the letter filters are good for
representation of noise, the residual (middle-right) contains most of the noise. The letter
part and the background part are shown as bottom-left, bottom-right of Figure 6.4.

Figure 6.5 shows the STMP for 7 = 100. The top-left is the reconstructed image
which contains less information than middle-left of Figure 6.4. The residual image is
in top-right. It contains more information than the middle-right of Figure 6.4. The
letter part(bottom-left) is cleaner than the bottom-left of Figure 6.4 as it contains less
information. The background part (bottom-right) also contains less noise when compared
to bottom-right of Figure 6.4.
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Figure 6.4: STMP for 7 = 0: top-left: original image, top-right: noisy image with o = 20;
middle-left: STMP with 7 = 0 and n = 4000, middle-right: residual image corresponding
to the middle-left image; bottom-left: the letter part; bottom-right: the background part.

Figure 6.5: STMP for 7 = 100: top-left: the result image; top-right: the residual; bottom-
left: the letter part; bottom-right: the background part.
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Appendix

Proof of Theorem 22
Proof. Denote M,, = (R"v,1., ) and s, = max(M,, — 7,0). Thus
R =vw
and
Yo = Argmax(R"v, 1),
R = R"'v + max(M,, — 7,0)1,.
As for any n € N:

n—1
Z A?wl = Z Siqvb"/iv
iel i=0
we need to prove the convergence of
+oo
Z Spn, -
n=0
By recurrence, we can prove that,
M-1
ol = 3 (52 + 250(M, — 5,) ) + [|RMv]>. (6.26)
n=0
As s, >0, M, > s,, we know that:
+oo
D52 < +o0.
n=0
Then using Eq.(6.26) again,
“+oo
Z spM, < 400.
n=0
But 7s,, < s, M, thus:
+oo +0o0
an < —anMn < +00.
n=0 n=0

Then easily we know that: (X720 s,1., Jmen is a Cauchy sequence and then 3" s,
exists.

O

Proof of Theorem 23

Still using the Notations in the Proof of Theorem 22.
Suppose that u* ¢ Cy. Thus there exists a ¢ € D such that,

(v —u", ) =T+ do,

where &g > 0.
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Since Y% s;1b, exists, there exist Ny such that Vm > Ny, we have:

+00 5
Hence,
m—1 +o0
(0 =" sy, ¥) = (V—u" ) = (D sty ¥)
=0 i=m

“+00
> T4 00— | Zsﬂvb%

v

1
—0p.
T+ 50
It implies that Vm > Nj:
1
Mm > 74+ 5(50

Thus,
1
Sm = 550, Vm > Ny.

This contradicts, lim,, ., s, = 0. Thus u* € Cj,.
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Chapter 7

MP shrinkage in Hilbert space

This chapter contains a MP shrinkage approach with general dictionary. As this chapter
is closely related to the work of [32], we adopt the view of that paper for the convenience
of the readers who are familiar with this work. Hence, we use the notation of the Hilbert
space (eg. H = L*(R?) or H = RY”). Beware that in the experimental part, we use the
space RM” as usual.

We reaffirm that all the dictionaries that we consider in this chapter is still of finite
size. Hence, the dictionary is not a redundant basis when the underlying Hilbert space 'H
is of infinite dimension.

7.1 General shrinkage function

Before presenting the MP shrinkage method, let us introduce a family of shrinkage func-
tion.

Definition 24 A function 0(-) : R — R is called a general shrinkage function if and
only if it satisfies:

1. 6(0) =0;
2. 6(-) is nondecreasing i.e

0(r) < 0(y),Vor <y,z,y € R;

3. 0(-) is a shrinkage i.e
6(2)] < |2, Vo € R.

We have the following proposition.

Proposition 25 For any general shrinkage function 0-, we have:
O(z)(x —6(z)) > 0,Vx € R. (7.1)
Proof. When x > 0, using the definition, we know that:
0<0(x) <z

Hence, 6(z)(x — 6(x)) > 0. The similar discussion holds for z < 0. O

117
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Definition 26 The gap of a general shrinkage function 0(-) is defined as:
ro = sup{r € R*|0(x) > 0 = 6*(x) + 20(z)(x — 0(z)) > r*}. (7.2)

If the gap ro > 0, the function is called gap shrinkage function and if the gap ro = 0, the
function is called non-gap shrinkage function.

Definition 27 A general shrinkage function 6(-) is T-controlled if one of the following is
satisfied:

e 7 >0 and
lz| < 7= 0(x) = 0; (7.3)

o 7 =0 and there exists a constant 0 < cg < 1 such that:
colz| < 10(x)] < |z|. (7.4)
Definition 28 A 7-controlled shrinkage function 0(-) is strictly T-controlled and if one
of the following is satisfied:

e 7 >0 and
0(z) — 0= d(z,(—7,7)) — 0, (7.5)

1.€.

Ve > 0,30 > 0,Vz, |0(x)] < d=d(z,(—7,7)) <, (7.6)

where d(x, (—7,7)) = infye—r ) |2 —y;

o 7=20.

Example

1. For 7 > 0, the soft-threshold function p,(-) defined in Eq.(1.2) is a non-gap shrinkage
function i.e the gap ro(p,) = 0. This function is strictly 7-controlled.
2. For 7 > 0, the hard-threshold function defined as following,

() :{ toif |t > 7 (77)

0 otherwise,

is a gap shrinkage function with gap rq(h,) = 7. This function is strictly 7-controlled.
3. The identity function defined as:

i(t) = t,Vt € R, (7.8)

is a non-gap shrinkage function. This function is strictly 0-controlled.
4. For 7 > 0, the Non-Negative Garrote threshold function(see [61]) defined as:

5C(t) =t <1 — 72>+ : (7.9)

t2

is strictly 7-controlled, non-gap.
5. For 0 < 7y < 7, the firm shrinkage function(see [62]) defined as:
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0 |t| S T
Orym () = § sign()2EET) 7y < 1] < 7 (7.10)
t |t| Z T2,

is strictly 77-controlled, non-gap.
6. For p € N, 7 > 0, the generalized threshold function(see [63]) defined as:

SP(t) =t — tI(Jt] < 1) — t;pll(\ﬂ > 7)(sign(t)?), (7.11)

is strictly 7-controlled shrinkage function, non-gap when p < +o0o. When p = 1, it is
soft-threshold function; when p = 400, it is hard-threshold function, with gap 7. When
p = 2 it is actually Non-Negative Garrote threshold function.

All these shrinkage functions are strictly 7-controlled with some 7 > 0, this implies
that in fact this is a very general class of shrinkage function.

7.2 MP shrinkage in Hilbert space

Let H be a Hilbert space and v € H. We define a dictionary as a family D = (1;);e; of
vectors in ‘H, such that Vi € I, |[¢;]]2 = 1. We assume that v contains some noise. We
aim to find a linear expansion approximating the analyzed signal /image v in the presence
of noise. The MP algorithm (see Chapter 1) is widely used to generate an adaptive
representation for this image v. The wavelet shrinkage (see Chapter 1) is also widely used
to denoise images. In this section, we will propose an algorithm (called MP shrinkage)
which combines these two important algorithms.

7.2.1 The details of MP shrinkage algorithm

Throughout this chapter, we always assume that t — 6(t) of R — R is a general shrinkage
function.

The MP shrinkage method is defined recursively. Recall that v € H fixed. Let R = v.
We suppose that we have computed the n-th order residue R"v for n > 0. We choose an
elements v,, € D which best matches the residue R"v:

Y = arg max [(R"v, ¢;)]
The residue R™v is sub-decomposed into
an - 9(<an7 ¢7n>)1/}’7n + Rn+lv

which defines the residue at the order n + 1.

More clearly, the details of MP shrinkage algorithm are given in Table 7.1. When € is
the identity function, this is just the MP; when D is the wavelet basis and # is hard/soft
threshold function, this is Donoho’s wavelet shrinkage.

Remark. If in the step 2 of Table 7.1, the choice of the atom is made according to:
find an atom 1., satisfies:

(s B0)| > aomax [(R", 9i)]

where 0 < a < 1 is a predefined constant. Then almost all of the theoretical results of
this section still hold. We do not present the details here.
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Task: MP shrinkage algorithm for fixed 7 > 0
1. initialize R% = v
2. repeat forn =0,...,+00

- find the best atom ., by:

Tn = aI'g mgx |<ana ,l/}l>|7

- sub-decompose the residue R"v into
R = s, + R o
where M, = (R"v,»,), S, = 0(M,).

3. take:
+o0o

u= saths,

n=0

Table 7.1: Details of MP shrinkage algorithm

7.2.2 Theoretical aspects on MP shrinkage

Now for MP shrinkage the energy conservation corresponding to (1.17) of MP becomes:

Proposition 29 For MP shrinkage, we have:
M-1

W2 = 3 (52 + 250 (M, — 50)) + [ RMv]?,

S
o

—

S

I sp + 1Rl

Y

lv

I
o

+oo
Z si < H00,
n=0
where M,, = (R"v,1.,), s, = 0(M,,) is defined in Table 7.1.

Proof. A straightforward calculation gives,

Sn Uy Rn““) = 80 ((¥y,, R"v) — 3n<¢7n7 ¢vn>)
= $"(M, — sp)
>0

where the last inequality is from Eq.(7.1).
We can therefore deduce from

R = s, + R" o,

that

IR [ = [[R" ]| + 25" (M, — s0) + 53, = [R" 0] + 55,

(7.12)
(7.13)

(7.14)
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Using R% = v, we then obtained (7.12), (7.13) by a recursion. (7.14) directly follows
from (7.12). O

Theorem 30 For MP shrinkage, there exists a sequence (gm)men of N such that:
g'm_l

Z Sn Yy,

n=0

converges when m tends to +o00.
Proof. From Proposition 29, we know that:
Vn e N, [|R"| < |v].

As R™v is in the finite-dimension subspace v 4+ Span{D}, thus a convergent subsequence
can be extracted from (R"),en. Since:

m—1
m
anzﬁ% =v— R,
n=0
a convergent subsequence can be extracted from (Z;”;OI Sp Wy, Jnen- O

Theorem 31 If the shrinkage function 6(-) is T-controlled with T > 0 then

m—1

D sy,

n=0

converges when m tends to +00.

Proof. It 7 = 0, then this situation contains MP as special case. We can modify the
proof of Theorem 2 in [32] to adapt this kind of generation and prove that >} S,
converges. We leave the details as Appendix.

Now we suppose that 7 > 0 and 6(-) is 7-controlled. If >0 s,1,, contains only finite
number of terms, it obviously converges. Let us suppose that it has infinitely matching

terms. This guaranties that:
|M,| > 7,¥n € N.

Using (7.12), (7.13) we know that:

+o00
Z spM,, < +o00.
n=0

As s, M,, have the same sign, we have:

+oo

> sul - [ M| < 4o0.
n=0
But |s,| - |M,| > 7|s.|, we obtain:
“+oo
> |sn| < +oo.

n=0
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As for any N; < Ny, we have:

N N Noy—1 No—1
[RM 0 — R0l = Y sath, [l < D [snl-
n=N1 n=N1

Thus (R™)men is a cauchy sequence, and (R"™v)nen converges. This tell us that:

(s 8nths, Jmen converges as m tends to +oo.

OJ

This theorem tell us when 6(-) is 7-controlled, then 379 5,1, exists, thus (R™v)men
converges as m — —+o00, we denote RT>v its limit. Before saying where R*>°v is, we
present a corollary.

Corollary 32 For MP shrinkage,

1. when n — 400, s, tends to 0, i.e.

lim s, =0;
’I’L—>+OO n b

2. if 0(-) is strictly T-controlled with T > 0, then

lim d(M,,—(r,7)) =0.

n—-4o0o

Proof. From (7.14) of Proposition(29), we know that

+0o0
2
Z S, < +o00.
n=0
Thus we have:
lim s, =0.
n—-+4oo n

Now, for the second part. For any fixed € > 0, as 6(+) is strictly 7-controlled, we know
that there exists a 0 > 0 such that:

Vo, |0(z)] <6 = d(z,(—7,7)) <e

But lim,, ., S, = 0, so for this §, there exits a Ny, such that ¥n > Ny, we have |s,| < 0,
then using the fact: s, = 6(M,,), we know:

d(M,, (—7,7)) <e.

This complete the proof. O

Now, we denote V the closed linear span of the vectors in D, i.e.
V = Span{D} (7.15)

and W the orthogonal complement of V' in H. The orthogonal projectors over V and W
are denoted by Py and Py respectively.
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Theorem 33 For MP shrinkage, if 0(-) is strictly T-controlled with T > 0, and we denote
the convex

C={g€H| [g,¥)| <1,y € D},

then
hI_P d(R"v, Pwv +7C) = 0.
Hence,
R**v e (Pywv+7C)()(v + Span{D}),
and

+o0
> snthy, € (Pyv+7C) () Span{D}.
n=0

Proof. When 7 = 0, it is nearly the same as the proof of MP in [32]. We leave the details
in Appendix.
We now suppose that 7 > 0. Using the Corollary 32, we know that :

lim d(M,, (—7,7)) =0. (7.16)
As
M—1
RMy =v — > sutby,
n=0

and as the projection operator is linear, we know that for all M:

Pw(RMv) = Py (v), Pr(RMv) = Po(v) — 3 suib,.

n=0

As
Vi € I, |<Rn'U,wz>| < Mny

and Py (¢;) = ¢y, Vi € I, we have:
Vi€ I, [(Py(R"), )| < M,.
Denoting
Co = C( Span{D},

we know that Cy is compact and:

po = max gl < +oo.

If |M,| < 7, then Py(R™) € Cy, then d(Py(R"),7Cy) = 0. If |M,| > 7, since 0 is
the inside of 7Cy and Py (R") € Cj is outside of 7Cy, the segment [0, Py (R"v)] must
intersect with the border of 7Cy. Denote the intersection by

A T

;kl = EPV(R"U)

w

Then we know that:

|Mn\—7"

d(Py(R"), 7Co) < [|Py(R"v) — wy| < wyll < ([Mn] = 7)po.
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In both cases we have:

d(Py(R™),7Ch) < max(|M,| — 7,0)po.
As Cy C C, thus

d(Py(R"v),7C) < max(|M,| — 7,0)po.
Using (7.16), we have:

lim d(Py(R"),7C) = 0.

n—-+o0o

Since R"v = Py (R"v) + Pyv, we have:

lim d(R"w, Pyv+ 7C) = 0.

n—-4oo

The remaining part of the theorem is easy to deduced.

During the proof Theorem 31 we saw that when 6(-) is 7-controlled with 7 > 0, then,

[ee]

D fsn] < +oo.

n=0
Theorem 34 If the shrinkage function 6(-) is T-controlled with T > 0, then

| = R+

T

+o0 HU
> sal <
n=0

Proof. Using (7.13), we know that for any M € N,

n

M-1
> sn < ll* = [RMol?
n=0

From (7.13), we can deduced that:

M-1 M—1
> 25, M, = ||+ > sk — |[RMv?
n=0 n=0

< 2([Jol* = [RY[?).

Thus:
M—1

> su M, < ||v]]? = |[RMo|?

n=0
Now since s,,, M,, have the same sign, s, M, = |s,||M,|. Since 6(-) is T-controlled,

SpMy, > 7|8y

Thus we know that, for all M > 0,

M-1 HU
> sl <
n=0

I — | RMol?

T
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Letting M go to infinity, we have,

+ZOO|S < o] — [R+°0|?
n|l S .
n=0

T

O

Remark. This theorem tells us that we can control 3,79 |s,| when 6(-) is 7-controlled.
We would like to point out some important facts. Firstly, 7-controlled is not a very strong
condition. For example, both soft and hard-threshold satisfy it. Secondly, for all i € I,
for all M > 0, if we denote,

A\ = > 1
( Z S {m=i}
n=0

then \; exists and

+oo
Y Saty, = D At
n=0 el

Moreover,

“+oo
DoM< D sl
iel n=0
It is well-known that the control of [P-norm for 0 < p < 1 implies sparsity, our theorem
gives a theoretical guarantee of sparseness and it is controlled by parameter 7. Generally
speaking, the larger 7, the smaller [!-norm, the sparser the solution. As MP could be
regarded as a special case of 7 = 0 with soft-threshold, our general MP shrinkage should
be more appropriate than MP when searching for a sparse representation of v in the
presence of noise. Comparing to the soft/hard wavelet shrinkage, our MP shrinkage can
be used with a more general dictionary D.

Now again using Proposition 29, we want to prove that if we deal with a gap shrinkage
function, MP shrinkage stops automatically.

Theorem 35 For any gap shrinkage function 0(-) with gap ro > 0, then the MP shrinkage

algorithm will stop after at most
[v]”
M = L 2 J

7o

iterations, where |-| denotes the floor function.

Proof. If the MP shrinkage algorithm does not stop after M = LH’T’—!QJ iterations, that
means that for all n =0,..., M, we have:

s2 4+ 28,(M,, — s,) > 13,

where M, = (R"v,v»,), s, = 0(M,) and 7, is the gap of ().
From (7.12), we know that:

M
[ol> > 3" (82 + 250(My — 5,)) > (M + 1)1,

n=0

Thus )
ol |

M <
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Since M is an integer, we have:

il

< |

7

This is contradict to M = L”””QJ.

2
To

Since 7-control ensures the convergence of the MP shrinkage, from now on, we as-
sume that this condition holds. Analyzing on the MP shrinkage algorithm, we know
that when 6(-) is 7-controlled, then for any v € H, the result >0 s,t., after MP
shrinkage exists and is unique (to be rigorous, we need define how to chose 7, when
Yo = argmax;es | (R"v, ;)| is not unique, normally we chose smallest allowed ~,. Since
this does not affect our conclusions, we neglect this detail), so Y% s,t),, can be re-
garded as a function of v € H. We call this function as MP shrinkage function/operator

and denote it by
+o0

M, (0) = Y s (7.17)

n=0
Recall that V is the closed linear span of the vectors in D, and W the orthogonal
complement of V' in H. The orthogonal projectors over V and W are respectively written
as Py and Py .

Theorem 36 If 0(-) is strictly T-controlled, then for any v € H fized, when 7 — 0%,
M. (v) converges to the projection Py (v). More precisely, we have:

M. (v) = Py(v) + O(1) (when 7 — 0%) (7.18)
Proof. From Theorem 33, we know that:
M.(v) = Py(v) e TC(V,
where

C ={g € Hl[{g, )| <1,¥¢ € D}.

Since C'NV is compact (see Proposition 6), there exists a p > 0 such that for all
gelnV, llgll <p.
Hence,
[M:r(v) = Py (v)]]2 < pT.

7.3 Experiment

In this section, we want to compare the performance of MP with MP shrinkage. We want
to approximate a noisy image v shown as Figure 7.1 (right side) which is a noisy version
(Gaussian white noise of standard variation 20) of Figure 7.1 (left side). The size of both
images are 128 x 128. The PSN R of the noisy image is 22.2215.
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Figure 7.1: Test image of MP shrinkage: left: clean image; right: noisy image of Gaussian
white noise of variation 20, this is the image v that we used in MP shrinkage

PSNR

14} .

0 500 1000 1500 2000 2500 3000 3500 4000
M

Figure 7.2: PSNR for the M terms reconstructed image of MP shrinkage, with soft-
threshold function on various 7: blue line: 7=0; other lines: 7 = 10, 50, 60.
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The feature dictionary we used is still the 13 filters of Daubechies-3 wavelet of level 4.
The image of these 13 filters are shown in Figure 3.6.

We use these features to construct the translation-invariant dictionary. We test various
7 for MP shrinkage with soft-threshold function. When 7 = 0, this method is just MP.

Figure 7.2 shows the PSN R between

M-1

> st (7.19)

n=0

and the clean image for M = 1 to 4000. Beware that in (7.19), both s,,, depend on 7.

Figure 7.2 shows that when M is small (say M < 200), all the 7 values perform
similarly. When M is greater than 1000, then it seems that MP shrinkage with 7 positive
is better than MP. In this experiment, for our case, 7 = 50 provides best result.

Appendix

Proof of Theorem 31, Theorem 33 for 7 =0

This section gives an adaptation to MP of Jones’s proof (see [64]) for the convergence of
projection pursuit regressions and the proof of Theorem 1 of [32]. Throughout this proof,
we suppose that the shrinkage function 6(-) for the MP shrinkage is 0-controlled with cg
(see Eq.(7.4)).

Lemma 37 Let h,, = sy1,,. For anyn >0 and m > 0

1
[ (s BM0) | < — ||| o]
Co

Proof. Using Eq.(7.4), we have:

[(Bomy R*0)| = [8] - [(4,,,, R"0)]
< 8wl - (¥4, R™"0)|
1 n
< sm| - 100, B0))
0
1
= ;‘Sm‘ |80
0
1
= —||hnlll|fnll.
COH [ 11721

Lemma 38 If (z,,)nen @S a positive sequence such that Y125 x2 < +oo, then

lim inf z,, Z xr = 0.

n—-+o00 =0
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Proof. For any € > 0, we choose n such that >,7%° 22 < £. Since limy_ 2, = 0, we can
choose k > n + 1 large enough such that z3 >>i_z; < 5. Let x; be the smallest element
in {z,1,...,2x}. Then

J n J
Ty ak = Ty wpha; Y Iy
k=0 k=0

k=n+1

5T > 7
k=n-+1

IN

IA

€.
O
To prove Theorem 31 for 7 = 0, we prove that the sequence (R"v),en is a Cauchy
sequence. Let N7 > Ny > 0. Beware that for all wq,wy € ‘H, we have:
lwr — ws|[? = [lwn[|* — [lwa||* = 2{ws, wi — wa) < [Jwn]* = [Jws]|* + 2[(wa, w1 — w)].

This fact and Lemma 37 imply that:

No—1
|RM v — RMo|* < |[RM0l* — [R™=0[* + 2(R™20, D hy)l
n=N1
N- 2 N- 2 2 e
< [[RM0f7 = ||R™0]| +;0||hN2H > Nl (7.20)
n=N1

Using (7.12) and Proposition 29, we know that the sequence (|| R™v||)nen is monotoni-
cally decreasing and thus converges to some value R.,. Let ¢ > 0, there exits K > 0 such
that for all m > K, ||R™v||*> < R% +¢€*. Let p > 0. We want to estimate || R™v — R™Py||,
for m > K. Using (7.14), we know that 3720 [|h,||* = 3729 s2 < +00. Hence Lemma 38
implies that there exists ¢ > m + p such that

q
Bl Y Ml < €.
n=0
We can decompose
|R™v — R™Py|| < ||R™v — Ri|| + || R™Pv — Riv||.
Eq.(7.20) for Ny = m and Ny = ¢ implies
2
|R™ — Riw||* < & + €%
Co
Similarly,
2
|R™ Py — RI||? < € + =€
Co

Hence,

|R™v — R™ ol < ey/2(1 +2/cy),
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which proves that (R™v),en is a Cauchy sequence. This completes the proof of Theorem
31 for 7 = 0.
In order to prove the Theorem 33 for 7 = 0, we denote

R™y = lim R".
n—-+00
As lim,, 4 |8, = 0 (using Proposition 29), and |s,| = [0((R"v,,,))| > col(R"v, 1,,)]
(6(-) is 0-controlled), we have:
lim_ ({0, )] = 0.
Hence, for all 7 € I, we have:
lir+n [(R"v, ;)| = 0.

Thus |(RT>®v, ;)| = 0,Vi € I. This implies that RT™>°v € W. Since,

—+00

U= suthy, + R

n=0
and Y720 s,10,, € V, we derive that

—+00

PVU - Z anvz)vm

n=0

and
Pyv = R™.

This completes the proof of Theorem 33 for 7 = 0.



Chapter 8

Statistical approach for dictionary
learning

In this chapter, we focus on the dictionary learning problem by itself. We do not follow
our previous variational route but for a while, we consider a more probabilistic modeling
point of view based on probabilistic generative models. Introducing simple additive sto-
chastic image models with Bernoulli on/off flags, we cast the dictionary learning problem
into a rigorous statistical framework. This allows a principle derivation of a new dic-
tionary learning algorithm based on maximum likelihood and mean field approximation
algorithms.

8.1 A simple probabilistic generative model

Denote ) = R” the space of digital image (more precisely, in this chapter, ) would be
a space of small size image). In the following, the support A will always be the discrete
tore (Z/nZ)?* as we will consider the translation over the plan.

The point of view adopted here is the framework of generative models. This makes
it possible to state the dictionary learning problem as a statistical parameters estimation
problem. According to this regard, we represent the database as a realization of a family
of i.i.d random variables whose probability distribution is defined through a generative
mechanism. This mechanism depends on a parameter § € © which will be estimated by
maximum likelihood estimation method.

Let us begin with the case of a single observed image defined as the realization y =
Y (w) of the random variable Y : Q — ). To define the distribution of Y, we introduce a
dictionary of basic patterns, which is represented by a family ® = (¢5,)1<n<, of elements
in Y. To obtain a dictionary invariant by translation, for all s € A, we denote ¢, the
translation of ¢, by s, i.e.

¢h,s(t) = ¢h(t - S) :
The basic model for Y is an additive model defined by:

Y é Z Bh,sXh,s¢h,s + ¢, (81)
h,s

where:

® B = (Bhs)1<h<qsea is a family of independent Bernoulli variables acting as on/off
flags activating or deactivating a pattern ¢y, s in the dictionary, such that for each

131
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h, (Bhs)sea is i.i.d and distributed according to B,,, the Bernoulli distribution with
parameter pp;

o X = (Xps)i<h<qsea is a family of independent random coefficients, such that for
each h, (Xps)sea is 1.i.d;

e ¢ is a additive independent white noise i.e. € ~ N(0,Id,).

From this generic probabilistic structure, one can derive several specific statistical
models depending on the chosen distributions for X. We will investigate in this chapter
basically two different models.

8.1.1 The Bernoulli-Exponential model (BEM)

For this model, we assume that the (X}, s)sea are distributed according to the exponential
distribution &,, with parameter ;. The parameters of the model are defined by:

0 = ((1)7 (/\h)lﬁhﬁfb (ph)lﬁhﬁqv g, CI), (82)

which we seek to estimate. To avoid trivial problems of identifiability of the model, we
suppose that the elements of the dictionary are normalized to 1: V1 < h < ¢, ||¢n]2 = 1.
(In fact, since uXy s ~ €y, ju, the change (A, ¢n) — (An/u, ¢p/u) does not change the
result on Y'). Hence, throughout the chapter, the parameter space Opgy for the Bernoulli-
Exponential model is defined as:

Osem = {(P, (An)i1<h<q, (Ph)1<n<q, 0, @) |q € Ny,
V1<h<gqlon|=1A A >0,0<p,<1and o> 0}.

Now, using the hidden variables B, 5, X} s, we can write the complete likelihood:

Lo(X,B)Y) = e~ 1Y =DZ|?/(20%) (2mo?) 1A/ Hp — pp) B Ao MK ns (8.3)

where Z = (X}, sBns)i1<h<qsen and D is the matrix obtained by concatenation of the
column vectors formed by the elements of the dictionary. The log-likelihood can be
written as:

|y -Dzp

202

ZQ(X, B, Y) = - Z [)\hXh,s + thh,s] + 097 (84)

h,s
where 7, = log(1 =) and Cy £ |A| [~ log(27m0?) /2 + log(As) + log(1 — py)].

We remark that the minimization of —ly(X, B,Y) on X, B leads to a variational prob-
lem which combines the term L? and the mixed regularization of L' and L°:

min 5220 DZ| + s [AXns + 71 Bhs]
(8.5)
Xns >0, Bps€{0,1} for all h,s.
Remark: We remark here, by this probabilistic interpretation, that the parameters A

at pp, associated respectively with the L' and L° regularization terms have very differ-
ent significance: the parameter p, stands for the appearance probability for a pixel of a
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given element of dictionary while A\, controls the intensity of the multiplicative coefficient
applied to this element (in fact the reverse of this intensity since E(Xj ) = 1/\,) condi-
tionally with the fact that this element is active. A model with a regularization purely L!
as for basis pursuit, makes the parameter A\, play a double role in only one parameter.
From a statistical modeling point of view, this is problematic: when one element of a
dictionary rarely appears but with a strong intensity or when an element often appears
but with a low intensity we are brought to choose the same value of )\, whereas these
are two situations very different. In some sense, a purely L' regularization is intrinsically
ambiguous.

If we no longer have only one image but a finite family ¥ = (Y!,---  YN), we
choose to extend the model by independence. By denoting X = (X! ... X%) and
B 2 (B,---,B"), we obtain the log-likelihood

N |Yk _ Dzk|2 . .
oo (X, B,Y) = Y {——s =2 M XE, +raBf | + Co}. (8.6)
k=1 h,s

8.1.2 The Bernoulli-Gaussian model (BGM)

In BEM, the random coefficients are constrained to positive values. In the following
second model, we relax this constraint and we assume that the (X}, )sea are distributed
according to a common gaussian distribution N'(0,07). Here, the parameter 6 becomes
0 = (P, (03)1<n<q> (Pn)1<n<q, 0*) € Opam With new parameter space:

Opam = {(P, (07)1<h<q, (Pr)1<n<q: 0%, q) | ¢ € N,
V1<h<gq,lonla=1,0,>0,0<p,<1and o >0}.

We compute, with the same notation as for the BEM, the log-likelihood for a finite family

Y2yl YNy
1(XEN? i
() +st.

N |Yk _Dzk|2
lva(X.B,Y) = Y {5 =%

k=1 h,s

+ Cy}, (8.7)

where rj, = log(%) and Cy = |A| [~ log(270) + log(1 — pp)].
One can notice that the maximization of the log-likelihood leads to a variational
L? — LY problem so that the Bernoulli-Exponential model and the Bernoulli-Gaussian

model covers two easily interpretable variational setting.

8.2 Identifiability issues

The first interesting statistical question is to address the identifiability issues of our models
i.e. can we distinguish the distribution on Y given by two different parameters 6 and
0" € © 7 We will give a positive answer under weak conditions in both cases. This part
is slightly technical and the reader can skip it at the first reading and come back later if
interested.

8.2.1 Identifiability of the BEM

Obviously, a permutation on the indexes h does not change the overall distribution so
that we should define an appropriate equivalence relation on ©Oggy. Two parameters
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0,0 € Opgm are said to be equivalent if and only if (denoted by 6 ~ ¢'):
q=4q
and there exits a permutation 7 on {1,...,¢q} x A such that V(h, s),

¢h,s = ¢;l/,5/7 Ap = )\;wph = p;n g = 0/7
where (B, ") = w(h, s).

Proposition 39 If (¢ns)i1<n<qsen are different from each other, then the model (8.1) is
identifiable on ©pgp/ ~.

Proof. We only need to prove the identifiability in the more general case

Y = Z BhXthh + ge€, (88)
h

where By, is of B, , X}, is of &, € is of N'(0,1d) and all ¢, are different from each other.
The characteristic function of Eq.(8.8) is:

ov(§) £ E(OM)
_ HhE(eiBhXh<§:¢h>)
Z<€7 ¢h>

= Ifpa(1 — /\7)71 +(1—pp)]-e TE,
h

(72 . .
As the convergence of e~ 7K is faster than any polynomial, let £ — 400, we can deter-
mine o uniquely. In fact, suppose that there are two decompositions satisfying:

Wi pn(1 = MW +(1—pa)] - TP = T8 (1 — M)‘1 +(1—py)] - e TP,

A N,
(8.9)
If o’ # o, then without loss of generality, we can assume that o’ < . Rewriting (8.9), we
have:

hh
! i6,¢0,) \ —
I o7, (1= 5220~ 4+ (1= )
Let £ — 400 for both sides of (8.10), the right side is finite while the left side is infinite.

Thus we must have o = ¢”.
Now we can only consider,

e Tialp(l = 5557+ (1= o)

. (8.10)

by (&) £ oy (—if)- o lEP

= (1= 2 (- )
§7¢ - ih
= Hi—l(l—ph)ﬂi—1W~

Suppose that there are two compositions such that:
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q q <€7¢h> - 1i}ll7h g ’ q <£’¢;L> o 1i;;);1
I, (1= Ph)Hh=1m =1L, (1 - ph)thlm'
Rewriting the above equation, we have:
)\ ’
s (1= P 6n) = 72 L[ 6h) — )
/ )\/
= I, (=PI [ ) = ML ) = 72 (810)

Notice that both sides of (8.11) can be regarded as non-zero elements of the multi-
variable polynomial ring C[¢] £ C[¢y, ..., (). Since C is a field, C[¢] is a unique factor-
ization domain and obviously, the polynomial ((&, ¢5) —A) with ||¢|| # 0 and A constant is
an irreducible element in C[¢], Eq.(8.11) should be equal term by term except a constant
multiplier. Moreover, all these multipliers are equal to 1. In fact, suppose that

(€, 01) — Ay = co((&,12) — A) (8.12)

where 11,15 could be any member of

{¢1,--.,¢q7¢/17~'7¢;/}7

and A, Ay could be any one of

An A
PR ’ A &) —h Iy
| _ph)lghgq (Ahsnzas (1 _pz)lghstz }

{()‘h)lghgqa (
Comparing the coefficients of (8.12), we know that:
Y1 = cota, A1 = coAs.

Since A;, Ay > 0, we must have ¢ > 0. Moreover, |[¢1|]* = &||¢2]>. So ¢ = 1 as

[1]] = lloll = 1. Hence, ¢y = 1hy.

Now we will prove the Lemma by induction on max(q, ¢’).
When max(q,q') = 1, observing (8.11), we know that ¢ = ¢’ = 1. The only possibility
for (8.11) to hold is that:

A B
I —p

)\
<£7 ¢/1> - 1 1p/ ;

gt

(§; 01)

and
(€ 01) — M= (&, 07) — L.
Hence
$1 = ¢y, M = AL, p1 = ph.
The lemma is true for this situation.
Suppose that for max(q, ¢’) — 1, the lemma is true.
For max(q, ¢'), consider ¢,. As all the ¢,(1 < h < ¢—1) are different with ¢, and li‘;q +#
>\q
1—pq

Ag), the only possible term of the right side of Eq.(8.11) corresponding to (£, ¢,) —
should be from ¢}, ..., ¢,. Say it is:

A Al
(€, bq) — 1_7(]]% = <57¢;> —7 _qp, )
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Hence,
¢ — gbl )\q — )\:1

T l-p, 1-pf
Now considering (£, ¢,) — A, and (£, ¢,) — A, of Eq.(8.11), these two terms have to be the
same as there is no possibility to provide this opportunity from {¢y, ..., ¢} or {¢}, ..., ¢}
(in other case, this will lead to some h,1 < h < ¢ such that ¢, = ¢, or ¢, = ¢;). Hence:

<£7 ¢;> - /\; = <§7 ¢q> - /\Q'

Thus
gbq = ¢ip/\q = /\iquq = gb;

Dividing [(€, ¢,) — %H@’ ¢q) — Ay from both sides of Eq.(8.11) leads to situation of
max(q,q) — 1. By induction, the lemma is true for any ¢, ¢'. O

Remark When ¢ is degenerate, then this model is non-identifiable. In fact, a simple
counterexample is: ¢ = 2, ¢1 = ¢2, (A\1,p1) = (5,3), (A2,p2) = (5,3), 0 = 1. Then

472 672
(A1,p1) = (3,3), (A2, p2) = (3, 2), 0 = 1 generate the same Y. Indeed, in both situations,
their characteristic functions of Y are:

4 @<f’¢1> - % Z<£aw1> -
As random vectors are equal in distribution if and only if their characteristic functions
are equal (see lemma 2.15 of [65]), both cases generate the same Y.

Remark When ¢ is degenerate, then the collection of all the possible patterns is still

identifiable i.e. the following set is uniquely determined by Y:

Lo hle?

[N SV

{p1,..., 04}

In fact, in this case, Eq.(8.11) still holds. Hence for any ¢ € {¢1,...,¢,} fixed, taking
out all the term relative to ¢, we have:

A AN
g _4)% :Hh.¢,_¢<§7¢h>1p§z' (8.13)
o <§7 ¢h> - )‘h o <§7 qb%) - /\§1
As R
_2Ah
Up.g,=¢ 1;2" = Hh;¢h:¢1 o > 1,

the left side of (8.13) will not be reduced to a constant. Thus the right side of (8.13) must
have some term i.e. {h|¢) = ¢} is non-empty, thus ¢ € {¢';,...,¢',}. When ¢ passes
over all the elements of {¢y,...,¢,}, we have:

{le,...,gbq} - {gbllv"'agblq/}'

And similarly for the other direction. Hence,

{¢17"'7¢q} = {¢I17"'7¢/q’}'
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8.2.2 Identifiability of the BGM

In this section, we will prove that the BGM is also identifiable under a similarly equivalence
relation in ©pgym. The two elements of ©pgy have a equivalence relation (also denoting

by ~):

(@, (07)1<h<as (Pr)1<h<qs 02 @) ~ (P, (0"D)1<neqs Phr<neq, o2 d)

if and only if ¢ = ¢’ and there exits a permutation 7 on {1,...,q} x A, a family ¢ =
(5h)1§h§q S {—1, 1}q such that:

2 2

/ 2 12 / /
¢h,s = ghth/,sl,o'h =0 h”ph = ph/,O' =0

where (1, ") = w(h, s).
Whenever the dictionary (¢p)1<n<, is degenerate or non-degenerate, this new model
is always identifiable. We need a lemma.

Lemma 40 Suppose that

Iy (pne™ + (1= pn)) = Ty (phe®™ + (1= p},)) . ¥z € (0, 1), (8.14)
where q,q are positive integers, a, > 0,0 < pp, < 1,V1 < h < g and a), > 0,0 < p}, <
1,V1 < h<gq. Then q=q and except a permutation we have:

ap = a;wph :p/hu\V/1 < h < q.
Proof. Both sides of (8.14) are entire functions, thus extending analytically to the total
plan z € C, we have:
I [pne™* + (1= pa)] = TG, [phe™™ + (1 = p})],Vz € C. (8.15)

We prove the lemma by induction on max(q, ¢’).

When max(q, ¢') = 1, Obviously, the lemma is true.

Suppose that for max(q,¢’) — 1, the lemma is true. For max(q,¢’), without loss of gener-
ality, we can assume that:

ag = max{ay, ..., aq,dy,...,a,}.
Note that a, > 0 and if we denote i = \/—1, then we know that

1 1—
z:<logpq+7rz'>,
q DPq

is a complex root of the left side of (8.15). So it exits a h,1 < h < ¢’ such that:

1 - 1 1-p
- <log Pa y m'> == <log Ph (2K + 1)7m'> , (8.16)
Qg Pq ap, by,

where k is some integer. Comparing the real part of (8.16), we have:

1 1-— 1 1—9p
— log Pa _ — log ,ph.
Qq Pq ap Ph

Comparing the imaginary part of (8.16) we know that:

1 1
Qq ap



Page 138 CHAPTER 8. STATISTICAL APPROACH FOR DICTIONARY LEARNING

Thus k is non-negative and

1
— =2k+1)- - - .
Qg ap QG4

Hence, a, = aj,. Re-comparing the real part of (8.16) we know that:
/
DPq = Dh-

Dividing both sides of (8.15) by (p,e** + (1 — p,)) leads to the situation of max(q,q") — 1.
By induction we know that the lemma is always true for any ¢, ¢'.
OJ

Proposition 41 The model (8.1) is identifiable on 0 = (®, (07)1<n<q> (Ph)1<n<q, 0°) with
(Bhs)i<h<qser of By, (Xns)i<n<gsen of N(0,07) and € of N(0,1d) in the sense of
Opau/ ~.

Proof. We only need to prove the more general case:
Y = ZBhXh¢h+U€ (817)
h

where By, is of B,,, X}, is of N'(0,07), € is of N'(0, Id) is identifiable modulo a permutation
on {1,...,q} and a sign on ¢p(1 < h < g). Similarly to the proof of Prop.39, we have:

oy(&) = E(e7™Y)
= y[ppe 270" 4 (1 — py)]e 27K,

Still reasoning as the proof of Prop.39 and using the fact that V1 < h < ¢q,0 < p, < 1 we
know that o2 is determined by ¢y (€). Hence if we consider:

Oy (€) £ ¢y (E)e 37,
we have:

Py (t€) = Hh[Phe_%tQU’QL@"mQ + (1 — pn)]-

We only need to prove the decomposition of the above equation is uniquely. Suppose
that there are two decompositions such that:

_142,2 2 / _ 142,02 1\2
Ty [pre™ 2" & 1 (1= pp)] = Ty [pre ™20 OO 4 (1 — pp),

where ¢y, @), are all unit-norm, ¢, ¢’ are positive integers, o; > 0,p, € (0,1),V1 < h < g¢q
and o, > 0,p}, € (0,1),V1 < h <¢.

Replacing —%tZ by z and extending analytical to the entire plan z € C, we have:

202 2 ! zo! 2 4
07y [pren & 4 (1= pp)] = T, [ 9" 4 (1= pp)] vz € C (8.18)
Without loss of generality, we assume that:

o / /
0q = max{0y,...,04,00,...,0,}.
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Taking £ = ¢, in Eq.(8.18) and using Lemma 40, we know that there exists a h €
{1,...,4¢'} such that:
1 —pj,

1—p
U§<¢qa ¢q>2 = 022<¢q7 ¢;z>2> 1 = 7
Dq Py,

Hence,
05 = 03(04, 0)° = 03 (b, 04)° < 0} < 0.
Then we must have:
g = O, g = £, Py = Ph.
Dividing o7 (¢, ¢q>2+% from both sides of Eq. (8.18) and using the induction method
we know that except a perturbation and except a sign on ¢y, ¢}, we have,

/

q4=4q

and
Oh = O-;Laph :p;w(éh - (é;wVI < h < q-
This completes the proof. 0

8.3 From likelihood to MCMC

The maximum likelihood approach for the estimation problem is basically defined as the
computation of:

0 = argmax Ly (Y) with Lyg(Y) =Y Lyo(X,B,Y)dX. (8.19)
USS] B /X=0

8.3.1 The MCMC-EM approach

The resolution of (8.19) requires to use an EM (Expectation-Minimization) type algo-
rithm [66] which is built on the following principle: let p(dz,dB) be dominated measure
associated with the likelihood (8.3) (i.e. the product of the measure of counting for B
and Lebesgue measure restricted to subspace X > 0 for X). We then have,

Ino(Y) 2 log ( [ Exatab, Y)dp> = max ( [ oty = K (g, p)) (8.20)

where 1 is an arbitrary distribution for the couple (X, B) and K (u, p) is the Kullback-
Leibler divergence. The max is reached for p = pyy equal to the posterior distribution
(X, B) knowning Y i.e.

d/ie,y
dp

(‘/L'?b) - LN,9(I7ba Y)/ZN,G,Y (821)

with Zygy = [ Lng(2’,0,Y)p(da’,db") (for details, see [67]). By alternating maximiza-
tion on p and on # of (8.20), we are led to the following algorithm:

0.1 = arg max/lNyg(w,b, Y)dpe, vy (dz, db). (8.22)
0
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Parameter: NEmlter (number of iter. of’EM), M (nb of iteration of MCMC)
input 6,;
for I=1 NEmlter do

for k=1 N do

Generate a sequence (X (m), B(m))1<m<m according to kernel Qy,.

end for

Compute )4, = argmax, > Iy (X (m), B(m),Y)
end for
return Oxgmiter;

Table 8.1: pseudo-code version of algorithm MCMC-EM.

The integral of complete log-likelihood of the hidden variables following the posterior
distribution €, (so called (E)-step, the (M)-step corresponding to the optimization in 6 of
(8.22)) cannot be given in closed form. A first approach would be to replace the posterior
distribution by a Dirac mass on the maximum of a posteriori ., b,; of 1,y which leads
to more or less a resolution of (8.5) by alternating maximization on # and (X, b). However,
it is known that usually this approach is not consistent (for instance, see [68]). Moreover,
the calculation of the maximum on (X, b) with 6 fixed is not easy because of the presence
of a L® term. One alternative is to approximate the posterior distribution thanks to
a MCMC (Monte Carlo Markov Chain) [69]. The algorithm generates, according to a
Markov chain (X (m), B(m)),>1 associated to a Markov kernel )y, which admits g, y as
the invariant measure and for this Markov chain we have,

j\14 mgl lNﬁz (X(m), B(m),Y) - /ZN,0(I7 b, Y)d,uel,y(dx, db). (8.23)

The pseudo-code version of algorithm MCMC-EM (presented as Table 8.1) thus is
obtained. It is necessary to detail here two important aspects: the choice of the kernel
)y and the method of carrying out the stage of maximization on 6.

8.3.2 MCMC dynamic

It is obviously a crucial point. Let us note that the independence of the observations (Y*)
in the database already makes that on the posteriori distribution, the parts (X*, B¥), <1<y
of the hidden variables are independent among themselves. In this case, we can choose
separable Markov kernels on various images. We thus reduce to the study of a kernel Q’gl
on (X%, B*). We choose for the moment to explore kernels obtained by the composition of
elementary kernels acting on restricted parts A of the co-ordinates. Thus let us introduce
that £ = {1,---,¢} x A is the space of the indices (h, s) and denote W}, = (Xf , By ).
The elementary kernels that we used are defined by,

Qf.a(w, dwlh) = gy (dils [ 4) (8.24)

where pb ., indicates the posteriori distribution of W* knowing Y* for the parameter 6.
However, the simulation of the kernel is not direct (because of the normalization constants
to be computed and the mixture of several continuous conditional distributions for the
values of the discrete variables). But we can use a acceptance-rejection method [70, 71]
with intrumental distribution 7% under which, the variables (X} ,)(n.s)ea follow the prior
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Input: w, A, k
Set: flag « 1.
while (flag) do
Simulate W% according to the distribution 7%
Calculate a = e Ha(wWa)HHE (w)
if rand(1)< a then
set: flag < 0
end if
end while

return W¥;

Table 8.2: Acceptance-rejection method

distribution of 6, and (Bf ,)n,s)ea are i.i.d. Bernoulli variables of parameter p, (in the
following we will often use p. = 1/2)%.

k
Suppose H% (w,4) £ —log {%(w%wgm)}. For §; = 0 and p, = 1/2, we have:
A

_ |Y*— Dp\azp 4 — DaZi|?

+ 3 b, + Cte (8.25)
A

where Dp indicates the restriction of D on the indices B. By introducing the projection
Yf of Y* on space DE\AZE\A + D4RA, and xi* the co-ordinates of Yj on R4 of this
projection, we have

Dk )P

+3° rhi)ﬁ’s + Cte. (8.26)
A

For w fixed, we now obtain a problem in (R, x {0,1})4 for which we can calculate the
minimum H%(W).
For the calculation of H%(w), we calculate for all C' C A,

2% o = argmin | Deul, — Daa® 2 (8.27)
’ u’éERC 7

and we denote C, = {s € A | (h,s) € C and xix,c‘ ) > 0}. As

(h,s

|Dealy o — Daxly )|

H%(w)= min { 53 + > rh|C’h|}+Cte. (8.28)

k
CCA,xA7020 1<h<q

We thus deduce a method of obtaining H¥(w): for small A, say #A4 = 2, we can
take all possible C' (2#4 choices) and then compute Eq.(8.27) directly. The desired kernel
Q’gl is defined as the composition the elementary local kernels Q’gh 4 for an appropriate
sweeping of the set of indexes.

Tt seems strange not to choose the prior distribution of the current parameter 6; but that leads in the
usual cases where the proportion of active flags is small to propose in a very preferential way the value 0
for Bernoulli. When an element of the dictionary must be presented so that the candidate is not rejected,
this will cause to simulate an unnecessarily large number of candidate before the first acceptance.
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8.3.3 The update of 6

Now, let us look at the update of #. Since,
M
el—i-l = arg ;nax Z lN,Gl (X<m)a B<m)7 Y)a (829)
m=1

Calculating in a straightforward manner, we have,

P = Dkms B];:ZL/(NMn2)
L= T Xt/ (NMn?)

o = \/Ek,m ([Y*k — ®Bkm @ Xkm|2) /(N Mn?2) (8.30)

¢ = argming Y, |Y* — ®BF™ @ Xkm|2,

The details of the derivation the last equation is presented in the upcoming section.

8.4 Mean field approach

It is well known that the MCMC-EM algorithm or more sophisticated stochastic ap-
proximation versions like MCMC-SAEM [72], despite good convergence properties are
unfortunately slow as soon as the number of hidden variable is large. In the following
part, we derive a speedup version based on mean field approximation in variational EM

73).

8.4.1 Mean field derivation

The main idea of variational EM methods is to replace the untractable computation of
the posterior distribution jiyy+(dz*, db*) in the (E) step by computable approximation in
a given family of distribution. In the mean field approach, we seek to approximate the
posterior distribution by a product distribution on B* and X*. In this chapter, we will
derive the mean field approximation for the Bernoulli-Gaussian model (BGM) for which
mean-field equations are simpler.

For this let us consider M’ the collection of the distributions v under which the
variables (Bj ,)ns and (X}F ) s are independent and for all (h, s), Bf; , follows a Bernoulli
distribution of parameter g, s and X}f’s follows a distribution NV (my,s, 07, ,). We pose then:

Vg = uier/lét' K(v, pgyr). (8.31)
The idea is that 74, is an approximation which can be calculated fairly easily by fixed
point method (we will see it later) and can be plugged into algorithm of EMZ.
In fact, if we denote y = Y* (we also omit the superscript k in the following but we
should note that we consider not only the case of a single observed image here), then
calculating directly, we have:

2a basic fact is that [lg(z*, 0%, Y*)dv — K (v, p*) = —K (v, p19.y+) + Cte so that the maximization of
the term of left on M’ is equivalent to the minimization of K (v, g y)
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K(V7M0,Yk>:
Gh,s 1— th 1 0-f2ls+m%LS 2
lo Gn.s + 1o 1—qns —1—(”—10 Oh
z{ B0 )+ LoB(T )1 gua) 5 | T 57— log(o})

1 2
+55v(ly = DZJ) + Cte (8.32)
We remark easily that now K (v, jigy+) is convex for each coordinate of

((Qh s)h ) (mh s)h s5 (0;21 5>h,s> .

(Ihs) —4qh,s

Moreover the derivative of log(%:2)g, , + log(+=22 —
at gns = 1, we thus easily know that the minimum exists and is reached for ¢, ¢ €]0,1]
and o}, , > 0.

J(1 — qns) is —o00 at gns = 0 and 400

8.4.2 Fixed point equation
Using the fact that |¢p s> = 1, we have

v(ly—DZI*) =y — Dv(Z)]* + hZ Vi(Zh,s), (8.33)

with V,(Zy ) = m,%vsths(l — qns) + qh,sa,zhs. Then we know that

Dan v(ly — DZ|*) = =2(y — Dv(Z), p.smns) + mj, (1 — 2qn.5) + 07, - (8.34)
Since
0 1 —qns } (%s(l_ph))
lo +1o V1 = ge) b = log [ Lus2 TP 8.35
P { g( L o =), 8(5 " )(1 = qns) A (8.35)

the equation %K(y, o) = 0 leads to

DPh

qn,s = —2{y—Dv smp s)+m? (1—-2qp )+o : <836>
Dh + (1 —ph) eXp( (y (Zz )¢h hQ;; hé,( qh, )+ }Lé)
The same reason, since
0
o (|y DZ| ) <y DV( )a ¢h,SQh,s> + 2mh,sq}z,s(1 - Qh,s)
mp,s

= —2((y — Dv(Z), bn,sqn,s) + MnsGh ) + 2 sqn,s, (8.37)

the equation 5 6 K(l/ to.yr) = 0 leads to

— Dv(Z), bn.sqns) + Mnsqr
My = (y ( )¢h, Qh,> h,sqh, ' (8.38)

2
g
g + dh,s

Finally, since

0
do?

v(ly — DZ|*) = qus (8.39)

»S



Page 144 CHAPTER 8. STATISTICAL APPROACH FOR DICTIONARY LEARNING

we obtain .
Of =T (8.40)

S 1| dns
oz

Combining (8.36), (8.38) et (8.40), we obtain the fixed point equation

q — Ph
h,s —2(y—Du(Z),6p, smp o)t me (1-2ap, )07 _
pr+(1—pn) exp( Py =)

(y_DV(Z)7¢h,sq}1,s>+mh,sqz§,

2
0-2 +qh,s
o

h

(8.41)

2 _ 1
Uh,s - qhés
o

‘ =

o

>N

When the mapping underlying the fixed point equation is a contraction, (8.41) can
be solved by fixed point method, precisely, by iterating from a starting solution®. The
update in the fixed point can be made in a fast way since v(Z) = ¢ ® m, thus

Duv(Z)(s) = D (¢n* (qn @ mp))(s)

1<h<q

and denoting a =y — Dv(Z), we have,

(y — Dv(Z), dns) = (a* dn)(s)

where f(s) = f(—s) is the symmetry of f. Using fast Fourier transform, the update
is of complexity O(gn?log(N)) times the iteration number required to have convergence
towards the fixed point.

Now, let us look at the update of . We reintroduce the superscript k again and denote
1y, the solution of (8.41). By using the approximation for 8 = 6, of g, y defined by

V= Qp_ U, (8.42)
we have
0,41 = arg max/lN,g(L b, Y)dv. (8.43)
0cOBaMm

Computing directly, we know that:

Pn = Zk,s Qili,s/<Nn2)

0} = i ((0F )2+ (mh)?) /(Nn?)

o = T (VE— B @b + S (mk )28 (1~ af) + b (0F,)7) /(Nn)

® = argming Y, |Y* — ¢k @ m*|?.
(8.44)
The last equation can not be solved in closed form since the elements of ® are on the
sphere. A method to tackle this problem is to solve it without constraints on the norm

3a difficult problem is to know when the application is a contraction. You have no general answer
about this point but the practice shows that this is not always the case. Alternative strategies will be
given below.
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and then project the elements on the sphere by normalization. Then for the problem

without constraints, by denoting zf(s) £ gf ;mj ,, we have:

N q
ST e (Y=Y 2 xow) =0, VI<h<q. (8.45)
k=1

h'=1

This is a linear equations system which can be solved easily on with the Fast Fourier
Transform by writing:

M(s)(F®)(s) =U(s), Vs € A (8.46)
where M (s) is the complex matrix ¢ x ¢ and U(s) the complex vector defined by

(F2)(s)(FY)(s) (8.47)

hWE

My (s) = D (Fzh)(s)(Fp)(s) et Un(s) =

k=1 k=1

and (F®)(s) is the complex vector defined by
(F®)n(s) = (Fon)(s). (8.48)

Consequently we are brought back to reverse n? system ¢ x ¢ for a complexity of
O(¢*n® + gqn?log(n)). Once obtained F®, we can recover the new dictionary by inverting
the Fourier transform and by re-normalization the vectors to bring them back on the
sphere.

8.4.3 Presence of background

Suppose that we are interested in the situation where a weak background is presented in
the image Y. Now our model is changed from Eq. (8.1) to

Y =Y BpXnsdns + > XuwGy + o€, (8.49)
h,s h'

where X (1 < B/ < ¢') is of N(0,0%) and G}, are typical functions to represent the
background. To simplify the model, we assume that (), are known and fixed and can
be estimated by other statistical model elsewhere. We also assume that |G|l = 1. A
trivial choice is to let ¢ = 1 and G| = ﬁl A where 1, is the index function on A. The

parameters of our new model are defined as:

0 = (P, (07)1<h<q> (Pr)1<h<q: 07 (Ti1<w<q) € Onam, (8.50)

which are to be estimated.

Similarly, consider M’ the collection of distribution » under which the variable (B , )
and (XF ,)ns, Xi are independent. For all (h, s, 1), By , follows a Bernoulli distribution of
parameter gy 5, X},  follows the distribution N (my, s, 07 ,) and X follows the distribution
N (mp 0,07 ,). We pose

Vi = Vlefjla, K (v, pg.y») (8.51)

Similarly to Eq.(8.32), denoting y = Y*, the Kullback-Leibler distance is:
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K(”?M@,Y’“) -
Gh,s 1—%5 1 O-fQLS—I_m%LS 2
log qn.s +log =) —qns) + = (”—log Oh,s
3= {lon(® ), +los =)0 )+ 5 (P (02
oV, +m ’ 1
£33 <hOh log(gizl,p)) +oiglly — DZ — 3" XuGul?) + Cre. (852)
Ohy h

Here again K (v, pig y«) is convex for each coordinate of

((@h)ns (Mno)nss (07 s (08 o)y (M o))

Since K (v, jigy+) is lower bounded, the minimum exists.
Using the fact that [¢,,5]> =1 and |Gy|* = 1, we have

V(|y_DZ_ZXh’Gh’|2) (853)
hl
= ly—Dv(Z) =Y v(Xp)Gu*+ > Vi(Zhs) + > Vi(Xw) (8.54)
I h,s h
= ly—Dv(Z) =Y mpoGr> + Y VilZns) + D oo, (8.55)
h h,s h

where V,,(Zn.s) = mj, (qn.s(1 = qn,s) + G503 . Hence, we know that

d
70 v(ly—DZ-> XpGpl|?) = —2(y—Dy(Z)—mh/70Gh/,¢h75mh75)+m278(1—2qh75)+0278.
h,s h

)

(8.56)
The equation ﬁf( (v, pg.yr) = 0 gives
Pn
= : 8.57
ks 1 —2(y—Dv(2)=)",, My oGyt Pn,sin,s)+my (1=2qp,5)+07 ( )
pr+ (1 — pn) exp( 202 )
Now the equation of fixed point Eq.(8.41) is changed into:
q — Ph
h,s 72<y7Du(Z)7Zh, my OGh/’¢h,smh,s>+mi S(lf2qh’s)+ai R
prt(1—pn) exp( 7 : =)
<y_DV(Z)_Zh/ mh’,OGh’7¢h,sqh,s>+mh,sq}217s
Mps = -2
672+Qh,5
h
(8.58)
2 2
2 _ 0 0y
O—h”g - 2+Uhqh s
ag
My = 2+(l, (y — Dv(Z) — X zry M 0Gror s Gr)
2 2
2 o g O'h/
O-hl7 = 2+Uh/

The complete likelihood for the model with background is,

Lo(X,B,X'Y) = e~ IY=DZ=3,, X Gy ?/(20%) 27r<7 —|Al/2 Hp 1 Bh.s

1 —X,%,/<2mi,>

—X2 /(2m02)
g \/27T0’h h H /27, ’

(8.59)
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thus the log-likelihood turns into:

A
lo(X,B,X'\Y) = ——\Y D7 — ZXh/Gh,\ — ulog(27ror )
h/
Xi
+ Z By slogpn + (1 — By 5) log(1 — pp) — = 10g(27r0h) 20’;
h,s h
1 X2
——log(2mod) — 2
(8.60)
We need update 6 as:
0111 = arg m1n Z/lf’ z,b, 2’ Y*)dp (8.61)
0€OBGM k=1
where
Calculating directly, the update of 8, Eq.(8.44) is changed to:
Pn = Zk,s qilj,s/(Nn?)
0 = T ((0F)? + (m},)?) /(Nn?)
o = Y {|Yk — ®¢" @ mF — don mﬁf,oGh/\Q + Zh,s(mi,s)qu,s<1 - C.I}If,s) (8.63)
+ gh ok )+ Swlohi)?} /(Nn?)
ot = i ((0F0)? + (mf0)?) /()
® = argming > [V* — O¢F @ m* — 3 my o G |*.
Notice that, if we want to learn the background G' = (Gi)1<p<y, We can use:
G =argminy_ [Y" - ®¢" @m* =Y mj, ;Gu|? (8.64)
G k, h/
That’s to say,
Gh/ Z{Yk quk & mk — Z mﬁ/,70Gh//}2 (865)
1 + mh/ h'' £k

and then normalization Gy to let ||Gp/|| = 1.
When ¢’ = 1, the solution is of closed form. When ¢’ > 1, we need iterate on Eq.(8.65).
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8.5 Numerical aspects

When the initial value for the parameter

0o = (P, (07)1<h<q: (Pr)1<h<q: 0, (Oh )1<w<g) € OBam (8.66)
is reasonable (say, near the “real” parameter) and for each 6;, the initial values (gp s, M, 0,2178)
is in the region where the map Eq.(8.58) is a contraction, our EM method with mean field
is usually converging. As these conditions are not easy to guarantee, we need some tech-
nics to promote the possibility of convergence.

8.5.1 Grids for fixed point equation

Before going on, we need state some simple facts for the fix point equation Eq.(8.58).
Since

Du(Z)(s) = Y (én*(gn @ mn))(s),

1<h<q

we know that for (h, s) fixed, we have:

(y—Dv(Z) => mpoGu,bns) = —(Dv(Z),¢ns)+ A
h/

- _<Z Qh’,s’mh’,s’¢h’,s’> ¢h,s> + A2
h',s’

= Qn,sMn,s(Ph,s, Pn,s) + As

= QqnhsMps + Ag,

where Ay, A, A3 are constants for my, s, qps-

Using this fact, from Eq.(8.58) we know that, for ¢, s fixed, the update of g, s does
not depend on ¢, itself. This means that if all the other values are fixed and we only
change g s, the update formula is nothing but just the unique minimum point of gy, 5 for
K (v, jtg,yx). This observation also holds for other parameter (o7 )n.s, (05 o), (T04,0) -
Hence, if we update all these parameter sequentially, we are always on the direction of
decreasing K (v, f1g y+). Thus we can find the minimum point of K (v, j1gy+) by sequential
method.

Now the problem is that sequential update may be time consuming. We propose a
grids method to approximate the sequential updating. For fixed integer r, let

Uiy = {(Z/rZ)* + (i, j)} (A1 < i,5 <, (8.67)

L= (L1 <ij <7} (8.68)

Then I', is a partition of A. Now we do not update all the s € A at the same time as
this might cause convergence problem. Instead, we update s € I';; sequentially i.e. we
first update all the s € I'y 1, then all the s € I'y » and so on. When r is large enough (say
r > ¢, where c is the size of support compact of all the ¢;), convergence is guaranteed.
In practice, we need not r be so large, r = ¢/2 is also reasonable choice. When (4, j) runs
over 1 <4,7 <r, I'; ; will cover all the s € A one time, after this, we can update the other
parameter (mpu o)1<n, (0 )1<w one time. If the initiation of parameters is reasonable,
the convergence is almost sure.

In practice, if we think that the grids method is still time consuming, we can carry
out the grids method and update totally alternatively, e.g. 5 times update totally then 1
time grids method.
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8.5.2 Thresholding to get sparse elements

Our first technic is to threshold each element of dictionary ¢, after the inverse Fourier
transform on the result of Eq.(8.48):

on(s) = { on(s) if [on(s)] > n - max, [gn(s)] (8.69)

0 else

where 7 tends from a small positive (say 0.1) to 0 along the EM iteration. The reason for
this technic is that we prefer the sparse element and we want to build the larger values
of ¢y, firstly during the EM procedure.

8.5.3 Support compact

Our second technic is to use the constraint that the support of ¢, is compact. This is
reasonable for us because we are more interested in looking for the typical patterns in
the image Y*. As we have placed ¢, in every position s € A, we can suppose that the
support of ¢, is much smaller than A. So suppose that the support of ¢, is A, C A, we
can update ¢y, after Eq.(8.63) as:

bn(s) = 14, (8)dn(s),Vs € A, (8.70)

where again 1,, is index function and typical choice of Ay, is
Ay, =1[0,c] x [0,] (8.71)

where ¢ is known and much smaller than n.

8.5.4 Initialization of parameters

The initializaion of parameters is of great importance. We present here as two parts.

e Dictionary
For each y € Y, it has (n — ¢ + 1)? patches of size ¢>. We can choose the patch
which has maximum [?-norm, normalization this patch, and then extend it to size
of n? by filling in zero. We set the result as ¢,. Randomly choose ¢ differen images
in the training set: (y")1<n<, € Y, and then we can set the initiation of ® as:

P = (Pyn)1<n<q-

® Zh,s, TNh 0
When n is small, say n < 20, combining all the above technics with other reasonable
parameters, the convergence is almost sure. When n is larger than 20, the conver-
gence is not so easy, usual parameters setting can not guarantee the convergence.
But when we observe carefully the situation of failure of convergence, we find that
it is caused by the fact during iteration, most part of image y = Y'* in the training
set are not represented sufficiently. This hints us that

|y — DV(Z) — th/,OGh”2
Y
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(it is essential part of Eq.(8.53) and key part of Eq.(8.52)) should be reasonable
small. To achieve this goal, as

Dv(Z)(s) = > (dn* (g @mu))(s)

1<h<q

= Z thmhs¢h,s

h,s

= Z Zhs ¢h,s )
h,s

and all of (én.s)n.s, (Gr)p are normalized, we can matching pursuit y in the total
dictionary

((¢h,8)h,87 (Gh')h/)1§h§q,s€A,1§h’§q’
and then set zj 5, my o as the corresponding coefficients.

With all the above technics of convergence, our tests show that even n > 100, our
codes is stable and can provide a reasonable solution under the condition that the
size of training set N is reasonable large though the choose of N is beyond the scope
of our current chapter.

8.5.5 Force the appearance probability of (¢5)1<n<4

When the data does not obey the probability models very well, through our experiments
we find that it is useful to force all the (py) to the same value. So sometimes, through a
flag FEqProb, the update of 6, Eq.(8.62)

Pr = Z Qf]f,s/(N”Z)

k,s

is changed to

o= G/ (aNn?).
k,s,h
Beware that in all of our experiments, the FEqProb will not be turned on except in
the experiment of learning typical patterns from natural image (see Section 8.7.5 ) where
we set FEqProb=1. When ¢ is fixed, this flag can force the learning processus to learn
q atoms, i.e there is no atom who is always unchanged ever since the initialization. We
remark that this flag might by discarded in the final version of the dissertation.

8.5.6 Details of mean field algorithm

Mixing all these aspects, we present our mean field algorithm as Table 8.3.

8.6 Experiments on MCMC

In all the experiments for MCMC, the training set always contains 10 images of size
15x15. They are generated as the additive composition of the translation of 3 basic atoms
(see Figure 8.1) at random position over A, together with a Gaussian noise of standard
variation o = 0.1. Figure 8.2 shows the training set. The real dictionary contains ¢ = 3
atoms (see Figure 8.1) and we want to test what happens if set ¢ correctly (¢ = 3) and

wrongly (¢ = 1).
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Parameter: NEmlter (number of iter. of’EM), M (nb of iteration of Mean Field),
N (size of training set), r (for Grids), n (to threshold dictionary), FEqProb (flag
to force p,, to same level), N, (to control the use of Grid), ¢ (for compact support)
input 0y = (P, (07)1<n<q: (Pn)1<h<q, 0% (07 ) 12w <)
prepare Generate Grids I',,, T'; by Eq.(8.68)
for k=1to N do
generate: Z; = (Mps, Gh.s, M 0, 0,2178, 0}%/70) (by MP method)
end for
for [ =1 to NEmlter do
if [ =1 or N, dividing NEmlIter then
set Grid I as T,
else
set Grid I as I'y
end if
for k=1to N do
initial: (mp.s, qns, Mar 0, 0,2175, 0,21,’0) with =,
for m =1 to M do
update (mp,s, Gh,s, Mar 0, 3 4, O o) by fixed point equation (Eq. 8.58) with
Grid T
end for
end for
Update 6,,; by Eq. (8.63)
Threshold ® = (¢1,)1<n<, by Eq.(8.69) and then decrease 7
Project ® = (¢1,)1<n<, On the support compact by Eq.(8.70) and then normal-
ization to 1
if FEqProb=1 then
set all (py)1<n<q tO %thh
end if
end for
return Ongmiter

Table 8.3: Mean Field-EM Method.
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Figure 8.1: Real dictionary: left: 4 x 4 square; middle: 2 x 7 rectangle; right: 7 x 2
rectangle.

Figure 8.2: Training set for simple structure experiments of MCMC and of mean field.
The noise level is 0.1.

8.6.1 MOCMUC for simple structure with ¢ = 3

We fixed ¢ = 3 in this experiment. After MCMC, the learned dictionary is shown in
Figure 8.3. The reconstruction image

> B s XnsOhs
h,s

is shown in Figure 8.4. We can see that MCMC can learn the dictionary properly.

8.6.2 MCMC for simple structure with ¢ =1

In this experiment, we set ¢ = 1. The learned dictionary and reconstruction images given
by the MCMC algortihm are shown in Figure 8.5 and Figure 8.6 respectively. From these
two figures we can see that this time, since ¢ is set too small, we are obliged to use a
special atom: the common part of the real atoms to represent the images in the training
set and this kind of representation is a little worse comparing to ¢ = 3. The estimated
noise is o = 0.12, so interestingly, it seems that the noise level is properly estimated.

Figure 8.3: Learned dictionary by MCMC with ¢ = 3.
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Figure 8.4: Reconstruction image by MCMC for ¢ = 3.

Figure 8.5: Learned dictionary by MCMC with ¢ = 1.

When ¢ set properly, the MCMC approach works robustly and efficiently. Unfortu-
nately, the computation burden of this approach is high. Hence, we illustrate now the
mean field approach which is much faster than MCMC.

8.7 Experiments for mean field

8.7.1 Experiments on simple structure by mean field

In this experiment, the image of our training set is the same as the experiments for
MCMC (see Section 8.6). After the completion of the mean field algorithm, the learned
dictionary is shown as Figure 8.7. The reconstruction images are shown in Figure 8.8. The
estimated noise standard deviation is 0.0995 (the real ¢ = 0.1). Hence, the performance
of mean field is comparative to MCMC by various aspects: the result of the dictionary,
the reconstruction images, the estimation of noise. Moreover, mean field method is much

faster than MCMC.

8.7.2 Maean field for learning 5 numbers

In this experiment, we try to learn ¢ = 5 basic atoms from a training set containing
N = 100 images of size 20 x 20. The real atoms are shown in top image of Figure 8.10
and typical examples in the training set are shown in Figure 8.9. The noise level is 0.1.

After learning, the learned dictionary is shown as bottom image of Figure 8.10. Some
reconstruction images are shown bottom in Figure 8.9.

8.7.3 Mean field for 10 numbers

When ¢ = 10, the problem is very difficult. However, our result is also good. We use a
training set of N = 100 images, the size is also 20 x 20. Typical examples are shown in
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Figure 8.6: Reconstruction image of MCMC for ¢ = 1.

Figure 8.7: Learned dictionary for simple structure experiment by mean field.

the Figure 8.11, the standard deviation is 0.1.
The real dictionary is shown as the top 10 images in Figure 8.12. After learning, the
learned dictionary is shown as the bottom 10 images of Figure 8.12.

8.7.4 Analysis on g, 21 5

Now we study a little bit the distribution of the hidden variables through a simple example.
The training set contains 9 images of size 15 x 15 (one of them, denoted by Y*, is shown
as the top-left image of Figure 8.13). Beware that we have translated this atoms to the
corner, in order to make the reader judges the position of occurring atoms more clearly,
the upcoming ¢y s, 21,s are also translated accordingly. The real dictionary is shown in
Figure 8.1. The noise level is 0.1.

After completion of the mean field algorithm, all the reconstruction images are shown
in the top-right image of Figure 8.13 (Every 15 x 15 patch in appropriate position is
a reconstruction image). One of the 3 learning atoms, denoted by ¢, is shown in the
top-middle of Figure 8.13.

The (gf ,)sea is displayed in bottom-left of Figure 8.13. The values of (gf ) for two
points s = (3,3), (5,6) are nearly 1.0. Except these two points, the values of (¢f ) for all
the other points are nearly zero. And we have,

> g, =2.0011.

sEA

)

Roughly speaking, this means that there are two atoms relative to ¢, appearing in Y'*.
The histogram of qﬁs is shown in the bottom-right image of Figure 8.13. This image
clearly shows that except a very small number (actually, 2) of s, all the other qis is
almost zero.
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£ = j g g

Figure 8.8: Reconstruction image for simple structure experiment by mean field.

AL ]
DEOE

Figure 8.9: Top: typical images of training set for ¢ = 5; bottom, reconstruction images.
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Figure 8.10: Real dictionary and the learning dictionary (support part) of ¢ = 5.

Figure 8.11: Typical images of training set for ¢ = 10
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Figure 8.12: Real dictionary (top 10 images) and learned dictionary (bottom 10 images)

for ¢ = 10.
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Figure 8.13: Analysis for hidden variables

Now for 2F , we have
[
Zh,s - qh,smh,s‘

Except
2 (a3 = 0.9922, 25 5 o = 0.6675,

the other values of z}’is are nearly zero. Hence, we have a correct detection of the ¢, at
position s = (3,3). But for position s = (5, 6), this is not very clear. It could be regarded
as a false alarm though the pattern ¢; does occur in that position. But a more probable

interpretation is that this ¢ is formed by the union of 2 rectangles of 2 x 7, 2 rectangles
of 7 x 2.

8.7.5 Learning patterns from natural image

In this experiment, we use a piece of Barbara image. The original image is shown as the
left image of Figure 8.15. The size of this image is 64 x 64 and it is the only element in
the training set. We want to learn ¢ = 8 typical patterns appearing in this image.

The initial dictionary is shown in the left of Figure 8.14. These 8 atoms are the
diagonal elements of Figure 8.14 (DCT dictionary). Since these 8 atoms contains various
frequency information, we think that this may be a good choice for representation . We
set the flag FEqProb of the main algorithm (Table 8.3) as true to force the appearance
of 8 elements.

After the mean field algorithm, the learned dictionary is shown as right image of Figure
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Figure 8.14: Dictionaries: left: initial dictionary; right: learned dictionary from the left
image of Figure 8.15.

Figure 8.15: Left: original image; MP result(1141 terms) with special DCT dictionary,
PSN R = 21.4602; reconstruction image of mean field (containing 1141 terms), PSNR =
25.7237.

8.14. The reconstruction image (there is no background for the experiment presented here)

8
Z Z mh,th,s¢h,s

h=1 seA

is shown as the right image of Figure 8.15. This reconstruction image has 1141 no zero-
terms (more precisely, if the absolute value of my, sqp s is greater than 0.000001, we say
that my sqn s¢Pns is a non-zero term).

The PSNR of the reconstruction image to the original image (left image of Figure
8.15) is 25.7237. The middle image of Figure 8.15 is the 1141-terms matching pursuit
result of the original image with the dictionary displayed in the left image of Figure 8.14.
The PSNR of this image is 21.4602. From Figure 8.15 and 8.14, we clearly see that the
typical patterns (texture) of the original are learned via our mean field approach.
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Clean image NL-means image Mean field result

Noisy image NL-means residual Mean field residual

Figure 8.16: Denoising performances: top-left, clean image; bottom-left, noisy image
(0 = 0.2, PSNR = 27.5296); top-middle: NL-means denoising result (PSNR = 33.6332);
bottom-middle, NL-means denoising residual; top-right: result of mean field approach
(PSNR = 34.7421), bottom-right: mean field residual

8.7.6 Experiment: by-product of denoising

In this experiment, the training set contains 36 small images of 15 x 15. We merge these
images to form a 90 x 90 image. Figure 8.16 demonstrates the result. The top-left is the
clean image, the top-right is Gaussian noisy image with standard deviation ¢ = 0.2. The
PSNR of this image is 27.5296; The middle-left is the result of NL-means denoising which
is obtained by various tests to best choice of parameters for this method. The PSNR
of this image is 33.6332, the middle-right is the residual for NL-means denoising result;
The bottom-left is the result of mean field approach with PSNR equal to 34.7421, the
bottom-right is the residual for the mean field method.

In order to see the difference, we zoom out a small patch ({[1,15] x [1,15]}) of the
Figure 8.16 to Figure 8.17. From the latter figure, we clearly see that the NL-means is
fairly good for the background but its denoising performance on the structure itself is not
as good as our mean field approach.

Moreover, we can learn the atoms which are served to represent the images in the
training set via mean field approach. The top 3 images of Figure 8.18 shows the atoms in
the true dictionary. After mean field, we can learn these atoms. The learned result are
shown as the bottom 3 images of Figure 8.18.

The true o in this experiment is 0.2, the learned o is 0.2150.
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Clean image NL-means image Mean field result
Noisy image NL-means residual Mean field residual

Figure 8.17: Zoom on a zone of Figure 8.16: top-left, clean image; bottom-left, noisy image
(0 =0.2, PSNR = 24.3946); top-middle: NL-means denoising result (PSNR = 29.5700);
bottom-middle, NL-means denoising residual; top-right: result of mean field approach
(PSNR = 34.4510), bottom-right: mean field residual
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Figure 8.18: Dictionary: top: the 3 atoms of the true dictionary; the 3 atoms of learned
dictionary.



Chapter 9

Conclusion and Discussion

We have studied some important variational models in this dissertation. The contributions
of this dissertation are in various aspects. It includes: a translation-invariant dictionary
for the T'V — [*° model; better understanding of choosing dictionary adapted to specific
image for the general TV — [* model; a post-processing approach for K — SV D method;
a variant of Basis Pursuit Model and a primal/dual implementation to this model; sparse
representation model in RY” and MP shrinkage in Hilbert Space; statistical approach for
dictionary learning.
The future works could be:

e a new Gabor-type dictionary to the TV — [* model
e using Basis Pursuit variant model for image processing

e Continue to study the MP shrinkage in a more general way and study the speed of
convergence and other important proprieties.

e Continue the study of statistical models. For instance, we may can prove the con-
sistence of the EM-MCMC method. The mean field method or other variational
approach to solve the BEM model will also be interesting.

163
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