Caractérisation des phénomènes hydrodynamiques lors de l'impact de gouttes sur divers types de substrats

Damien Vadillo

Grenoble, le 13 Juillet 2007

Thèse réalisée au:

Laboratoire des Écoulements Géophysiques et Industriels

Au sein de l'équipe:

Microfluidique, Interfaces et Particules

Au cours de cette thèse:

- Participation avec des industriels dans le cadre d'un projet Européen (Image-In) pour les applications de jet d'encre
- Collaboration avec le CEA LETI sur un projet de Synthèse In Situ d'oligonucléotides

Introduction Générale

Introduction

Le phénomène d'impact de goutte est un problème largement présent au quotidien

Dans la nature

Pulvérisation d'engrais ou d'insecticide

Dans l'industrie

4

Impression numérique: collection de points de couleur

Introduction

Des domaines nouveaux: diagnostic médical (synthèse in situ d'oligonucléotides)

Prélèvement de l'échantillon

Hybridation sur puces à ADN

Introduction

Plan général de la présentation

- Contexte Scientifique
- Dispositifs Expérimentaux
- Impact sur Surface Homogène
- Coalescence
- Impact sur Surface Hétérogène
- Conclusions et Perspectives

Contexte Scientifique

Phénomène d'impact

Les comportements possibles lors de l'impact d'une goutte

Tiré de Rioboo et al (2001), Atomization Sprays 11.

Nombres sans dimension

Échelles:

- Vitesse: vitesse d'impact U
- Longueur: diamètre initial de la goutte en vol D₀
- Temps: $t_c = D_0/U$

$$\frac{\partial u_{r}^{*}}{\partial t^{*}} + u_{r}^{*} \frac{\partial u_{r}^{*}}{\partial r^{*}} + u_{z}^{*} \frac{\partial u_{r}^{*}}{\partial z^{*}} = \underbrace{\frac{1}{We} \frac{\partial p^{*}}{\partial r^{*}} + \frac{1}{Re}}_{We} \underbrace{\frac{\partial }{\partial r^{*}} \left[\frac{1}{r^{*}} \frac{\partial }{\partial r^{*}} (r^{*} u_{r}^{*})\right]}_{\frac{\partial }{\partial z^{*2}}} + \underbrace{\frac{\partial }{\partial z^{*2}}}_{\frac{\partial }{\partial r^{*}}} + u_{z}^{*} \frac{\partial u_{z}^{*}}{\partial z^{*}} = \underbrace{\frac{1}{We} \frac{\partial p^{*}}{\partial z^{*}} + \frac{1}{Re}}_{\frac{\partial }{\partial r^{*}}} \underbrace{\frac{\partial }{\partial r^{*}} \left[r^{*} \frac{\partial u_{z}^{*}}{\partial r^{*}}\right]}_{\frac{\partial }{\partial r^{*}}} + \underbrace{\frac{\partial }{\partial z^{*2}}}_{\frac{\partial }{\partial r^{*}}} + \underbrace{\frac{\partial }{\partial z^{*2}}}_{\frac{\partial }{\partial r^{*}}} + \underbrace{\frac{\partial }{\partial z^{*2}}}_{\frac{\partial }{\partial r^{*}}} \underbrace{\frac{\partial }{\partial r^{*}} \left[r^{*} \frac{\partial }{\partial r^{*}}\right]}_{\frac{\partial }{\partial r^{*}}} + \underbrace{\frac{\partial }{\partial z^{*2}}}_{\frac{\partial }{\partial r^{*}}} \underbrace{\frac{\partial }{\partial r^{*}} \left[r^{*} u_{r}^{*}\right]}_{\frac{\partial }{\partial r^{*}}} + \underbrace{\frac{\partial }{\partial r^{*}} \left[r^{*} u_{$$

\sim				
	We	Re	M _c	F _r
$\begin{split} D_0 &= 2mm, \ U = 0.5m/s, \\ \rho &= 1000 kg/m^3, \ \mu = 1 \ mPa.s \\ \sigma &= 73mN/m \end{split}$	6.8	1000	3.300-4	\varkappa
$D_0 = 50 \mu m$, $U = 5 m/s$, $\rho = 1000 kg/m^3$, $\mu = 10 mPa.s$ $\sigma = 30 mN/m$	41	25	3.3 0-4	5.104

Dispositifs Expérimentaux

11

Surfaces modèles

Surfaces parfaitement caractérisées

Large gamme de mouillabilité: de 5° à 110°

Rugosité faible et très peu variable entre les plaques (mesure AFM: de 5 à 50 nm)

Dispositifs de visualisation

Intensificateur de lumière Obturation de 10ns à 1µs Camera Nac Jusqu'à 168 000 i/s

20000 flashs / seconde

Mourougou-Candoni et al (1997), Journal of Colloid and Interface Science, vol.192 Rozhkov et al (2002), Physics of Fluids, vol.14 Durée de 20ns

Dispositifs de visualisation

We = 12.7, Re = 44

We = 15.6, Re = 62

Traitement automatique d'image

Traitement d'image spécifique et automatique (boîtes à outils Matlab ®, développement d'une interface utilisateur)

Incertitude de détection: 1 pixel soit 7µm

Traitement automatique d'image

Mécanisme d'éjection

Cinématographie rapide (Phantom v4.2) Lumière continue (50W)

Fréquence: 40000 i/s Obturation à 2µs D_{buse}: 150µm Incertitude: 1 pixel soit 2µm

Filtre « Canny »

Impact sur Surface Homogène

Les différentes phases

La phase cinématique

La phase cinématique

La phase cinématique

Évolution du diamètre de contact

Sikalo et al (2005) Physics of Fluid vol. 17

Résumé

Phase cinématique:

Bon accord entre modèles géométriques et expériences

Paramètre ajustable dépendant de la viscosité

La phase d'étalement

La phase d'étalement

Sur l'angle de contact dynamique

 D_0 = 2.28mm, μ = 1mPa.s, σ = 73mN/m, U = 0.35m/s

La phase d'étalement

Effet de la vitesse d'impact

D₀ = 2.28mm, μ = 1mPa.s, σ = 73mN/m, $\theta_{\text{éq}}$ = 50°

La phase d'étalement

La phase a charement

La phase d'étalement

Angle de contact dynamique

La phase d'étalement

Ukiwe & Kwok (2005) Langmuir vol. 21

Détermination du diamètre à l'étalement maximum le modèle de Ukiwe & Kwok (Langmuir, 2005)

La phase d'étalement

Évolution temporelle du diamètre de contact

Résumé

Phase d'étalement:

Influence de l'angle d'équilibre sur le diamètre maximum

Dépendance de l'angle d'avancée dynamique vis-à-vis de la viscosité et de l'angle d'équilibre

Modèle énergétique pour l'étalement maximum

Modèle géométrique pour l'évolution temporelle du diamètre de contact

La phase de transition

La phase de transition

Fréquence d'oscillation

Clift et al (1978) Academic, New York

100

La phase de transition

Fréquence d'oscillation

La phase de transition

Détermination de la tension de surface de l'éthylène glycol

ABORATOIRE DES ECOULEMENTS

Résumé

Phase de transition:

Corrélation entre angle d'équilibre et fréquence d'oscillation

Mesure de la tension de surface à partir de la mesure de la fréquence

La phase capillaire

La phase capillaire

Régime asymptotique de la forme sur $D \approx \alpha t^n$ avec $n = \frac{1}{10}^{(1)}$ ou $n = \frac{1}{7}^{(2)}$ une surface complètement mouillante

⁽¹⁾ De Gennes (1985) Review of Modern Physics ⁽²⁾ De Ruijter et al (2000) Langmuir vol.16

Résumé

Phase capillaire:

Influence de l'angle d'équilibre

Phase identique dans le cas du dépôt et dans le cas de l'impact

Similitude des mécanismes microgouttes/macrogouttes

Méthode Variationnelle: principe

Prédiction de l'évolution complète du diamètre de contact

Hypothèses:

- Géométrie axisymétrique fixe: sphère tronquée
- Variation d'énergie nulle entre deux instants
- Paramètre du problème « x »: hauteur sans dimension au centre de la goutte

Comparaison avec l'expérience

Joseph Fourier Grenoble

Un outil de prédiction

41

Résumé

Méthode Variationnelle:

Détermination de θ_{dyn} à partir de μ et $\theta_{\text{éq}}$

Détermination de D_{max} à partir de U, D_0

Ajustement du coefficient d'ajustement Fd dans la Méthode Variationnelle

Obtention de l'évolution temporelle complète du diamètre

Coalescence

Coalescence Deux cas particuliers de coalescence Configuration axisymétrique Configuration non axisymétrique 0ms 1 2mm 0.ms 12 8 12.5 16 21 $D_0 = 2.28$ mm, U = 0.6m/s, $\mu = 1$ mPa.s, $D_0 = 2mm$, U = 0.7m/s, $\mu = 10mPa.s$, σ = 73mN/m, ρ = 1000 kg/m³ σ = 69mN/m, ρ = 1100 kg/m³

2

50

Coalescence axisymétrique

Comportement général

Effet de la mouillabilité

U = 0.7 m/s

Effet de la vitesse

LABORATOIRE DES ECOULEMENTS GEOPHYSIQUES ET INDUSTRIELS

Effet de la tension de surface

Échelle de longueur: **diamètre d'une goutte de volume double** Échelle de temps: **temps inertiel inchangé** (inertie liée à une seule goutte)

U = 0.6 m/s

Coalescence non axisymétrique

t U_{collision}/D₀

Eggers et al (1999), Biotechnics, vol. 17 Menchaca-Rocha et al (2001), Physical Review E, vol. 63

0,50

0,25

0,75

1.00

macrogouttes

microgouttes

Résumé

Coalescence axisymétrique:

Mécanisme de coalescence influencé par:

- la vitesse d'impact

- la mouillabilité de la surface

- les propriétés physico-chimiques des liquides

Diamètre et angle dynamique: comportement identique au cas d'une goutte seule

Coalescence non axisymétrique:

Réorganisation de la masse de liquide

Loi d'évolution du point de coalescence à partir des travaux de Eggers et al (1999) et Menchaca-Rocha et al (2001)

Coefficient d'ajustement identique pour microgouttes et macrogouttes

Impact sur Surface Hétérogène

Surface plane et hétérogène

Surface mouillante/non mouillante

Recentrage automatique

Forme du film protecteur

Test sur biopuce

Nombre de gouttes: 3

D₀: 90µm

Concentration: 5%

Dépassement du site avant cuisson

Image MEB après cuisson (80°C)

Recentrage du polymère sur le site fonctionnalisé Protection de l'intégralité du site fonctionnalisé

Forme du film protecteur: sphère tronquée d'épaisseur 15µm

Rozhkov et al (2003), Physics of Fluids, vol.15

Test de synthèse in situ

Sur la biopuce

A A A A A **X** A A A A A A A A

avec X étant T, G, C ou A

Émission de fluorescence: Détection du brin de nucléotide cible

Site 100µm espacé 200µm centre à centre

Résumé

Surface hétérogène:

Mouvement de la goutte sur la surface par « stick and slip »

Contrôle de positionnement de la goutte: recentrage

Contrôle de positionnement du film de polymère: démouillage lors de l'évaporation

Réalisation d'une protection efficace pour la synthèse in situ d'oligonucléotides

Conclusions et Perspectives

Conclusions

- 1. Moyens expérimentaux
 - Caméras rapides
 - Obturation courte (intensificateur de lumière ou lumière pulsée)
 - Utilisation de surfaces modèles homogènes et hétérogènes (mouillabilité de 5° à 110°)
 - Développement d'algorithmes de traitement d'images spécifiques
- 2. Description complète du mécanisme d'impact :
 - En fonction de D_0, U, $\sigma,\,\mu$ et $\theta_{\text{éq}}$
 - sur surface homogène
 - sur surface hétérogène
 - lors de la coalescence axisymétrique et non axisymétrique
 - développement de modèles analytiques simples pour chacune des phases
 - simulation de l'impact par la Méthode Variationnelle

Conclusions

- 3. Synthèse in situ d'oligonucléotides
 - Formation d'une couche de protection polymérique sur surface plane
 - Synthèse in situ d'oligonucléotides sur surface plane
 - Résultat de synthèse identique que méthodes standards

Perspectives

De nombreux points doivent encore faire l'objet d'études spécifiques. On peut citer:

Impact d'une seule goutte

- Rugosité (forme, dimension, répartition)
- Surfaces superhydrophobes: augmentation de la vitesse d'impact
- Composante de la tension de surface (polaire/dispersive) sur le mouillage
- Loi d'angle de contact dynamique

Synthèse in situ

- Sur la formation du film de polymère:
 - Effet de D_{site}
 - Effet de la concentration en polymère
 - Utilisation pour d'autres protocoles (synthèse de sucre)
- Optimisation du procédé par:
 - minimisation de la taille des sites
 - microstructuration des zones hydrophobes

Merci de votre attention

